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Simplicial depth (SD) plays an important role in discriminant analysis, hypothesis testing, machine learning, and engineering
computations. However, the computation of simplicial depth is hugely challenging because the exact algorithm is an NP problem
with dimension d and sample size n as input arguments. ,e approximate algorithm for simplicial depth computation has
extremely low efficiency, especially in high-dimensional cases. In this study, we design an importance sampling algorithm for the
computation of simplicial depth. As an advanced Monte Carlo method, the proposed algorithm outperforms other approximate
and exact algorithms in accuracy and efficiency, as shown by simulated and real data experiments. Furthermore, we illustrate the
robustness of simplicial depth in regression analysis through a concrete physical data experiment.

1. Introduction

With the development of computer technology and multi-
variate statistical analysis, scientists deal with a large amount
of multidimensional data in many fields, such as biogenetics
and industrial engineering. ,e demand for multivariate
data analysis tools has become increasingly urgent. As a
powerful multivariate nonparametric and robust statistical
tool, the statistical depth function extends the concept of
one-dimensional data order statistics and provides the
central-outward sorting of multivariate data [1–4]. In recent
years, the interest of researchers in statistical depth has
increased due to the extensive application of the statistical
depth function in multivariate statistical analysis, robust
estimation, discriminant analysis, hypothesis testing, ma-
chine learning, economics, and hydrological data analysis
[5, 6].

,e first statistical depth function concept, which was
proposed by Tukey in 1975, is known as the halfspace depth
(also known as the Tukey depth) [7–9].,e other concepts of
the statistical depth function include projection depth
[3, 10], simplicial depth (SD) [11, 12], and regression depth

[13, 14]. Zuo and Serfling defined a general structural
property of the statistical depth function [1]. Among the
many concepts of this statistical depth function, SD is a
relatively attractive one not only because of its simple form
and ability to achieve themaximum depth value in the center
and satisfy monotonicity but also because of its important
applications in sign test and centralization test [1, 12].

However, the computation of SD is complicated. ,e
exact calculation of SD is an NP problem, which is only
feasible when the dimension is no higher than three. Serfling
and Wang emphasized that the computation of SD for
higher-dimensional data still requires further study [12].,e
computation and application of the statistical depth function
are active research topics.

Similarly, Monte Carlo (MC) methods have become
important statistical, computational tools that are widely
used in finance, engineering computation, genetic biology,
computational chemistry, and other related fields [15–18].
As a critical MC strategy, the importance sampling (IS)
method concentrates most of the test samples in the im-
portant area of the objective function by introducing the
transfer probability density function [15, 19]. ,is method
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dramatically improves the computational efficiency and is an
important MC acceleration algorithm. In this study, we
apply an efficient IS algorithm to the approximate com-
putation of SD and demonstrate the advantages of such an
algorithm over other MC methods and exact algorithms
through simulated and real data examples. Furthermore, we
extend the SD to regression analysis and obtain a robust
estimation of regression analysis. ,e results of a real
physical data experiment show that the estimation based on
the SD method is more robust than that based on the tra-
ditional least squares (LS) method.

,e remainder of this paper is organized as follows. In
Section 2, we review the preliminary concept and existing
algorithms for SD. Section 3 describes the IS algorithm used
for the computation of SD. ,e advantages of the IS algo-
rithm are illustrated through simulated data examples in
Section 4. ,e extension of SD to regression analysis and a
real data experiment are presented in Section 5. Lastly, the
conclusions are provided in Section 6.

2. Preliminary of SD and the State of the Art

In this section, we present the preliminary of SD and the
existing algorithms for its computation.

Consider a sample set Xn � X1,X2, . . . ,Xn􏼈 􏼉 in
Rd, (d≥ 2), where Xn is one sample of size n in Rd and x is a
given point in Rd. ,e sample version [11] of SD of x with
respect to the sample set Xn is expressed as

SD x,Xn
( 􏼁 �

1
C

d+1
n

􏽘
1≤i1 <···< id+1≤n

1
x∈S Xi1 ,...,Xid+1

􏽨 􏽩􏽮 􏽯
, (1)

where 1 A{ } denotes the indicator function of event
A, and S[Xi1

, . . . ,Xid+1
] denotes the simplex determined by

the d + 1 sample points Xi1
, . . . ,Xid+1

􏽮 􏽯.
Serfling and Wang stated that no algorithms are faster

than simply generating all simplices and counting the ones
enclosing the given point (using O(nd+1) complex time)
when dimension d≥ 5 [12]. ,erefore, designing an efficient
approximate algorithm for the computation of SD is
necessary.

A direct MCmethod for the computation of SD contains
two steps: (1) randomly selecting d + 1 points from Xn and
then (2) taking the average of the points that enclose the
given point x (i.e., using 􏽣SD(x,Xn) to estimate the true SD
value SD(x,Xn)).

􏽣SD x,Xn
( 􏼁 �

1
M

􏽘

M

i�1
1

x∈S Xi1 ,...,Xid+1
􏽨 􏽩􏽮 􏽯

, (2)

where Xi1
, . . . ,Xid+1

􏽮 􏽯 is randomly chosen from Xn and M is
the trying number for the estimation.

Another approach for the computation of SD is the use
of the IS algorithm, which is the proposed method in this
study. ,e computation of SD is an expectation computa-
tion.,erefore, SD can be estimated by the IS algorithm.,e
simple MC method uses the randomly selected d + 1 points
to estimate the SD, whereas the IS approach selects d + 1
points with a high probability that they contain the given
point x. ,eoretically, the results of the latter will have a

smaller variance than those of the former. ,e simulated
data examples in Section 4 illustrate the advantage of the IS
algorithm over the MC method.

3. New Algorithm for SD in Rd

3.1. Overview of the IS Algorithm. Many engineering prob-
lems can be expressed as computations of a multidimen-
sional integral. Using the MC method to compute the
integral involves drawing samples from a uniform distri-
bution on a regular area and using the sample mean to
approximate the true integral. In higher-dimensional cases,
the efficiency of the MC method is extremely low if the
region where the target function is not equal to zero is
extraordinarily sparse. On the contrary, the IS algorithm
draws most samples in the important area. ,is strategy
improves the efficiency of the integral computation. ,e IS
algorithm plays an important role in the field of statistical
physics, molecular simulation, and Bayesian statistics.

For example, we want to compute the integral of h(x) on
region A; that is,

μ � 􏽚
A

h(x)dx, (3)

and the integral computation (3) can be treated as an ex-
pectation calculation:

μ � Eπ
h(X)

π(X)
􏼠 􏼡, (4)

where X is a random variable (r.v.) with its own probability
density function (p.d.f.) π(x); that is,X ∼ π(x). IfX1, . . . ,Xn

denote samples with size n from X, the MCmethod draws X
from a uniform distribution on region A. From the Law of
Large Numbers [20], the sample mean can be used to es-
timate the expectation in (4) as

􏽢μ �
1
n

􏽘

n

i�1
h Xi( 􏼁 · S(A), (5)

where S(A) is the area of A and X is the r.v. from the
uniform distribution on A (X ∼ U(x)).

However, the efficiency of the MC method (5) will be
extremely low if region A is extremely wide or sparse (es-
pecially in high-dimensional cases). By contrast, the IS
method uses a special p.d.f. g(x) instead of π(x) in (4) to
compute mean μ and utilizes the corresponding sample
mean to estimate the expectation in (4):

􏽥μ �
1
n

􏽘

n

i�1

h Xi( 􏼁

g Xi( 􏼁
, (6)

and the variance Var(􏽥μ) � 1/nVar(h(Xi)/g(Xi)), which
means that we can choose appropriate g(x) close to h(x) to
reduce the variance of 􏽥μ. In extreme situations, if we select
g(x)∝ h(x), that is,g(x) � c · h(x) (where c � 1/􏽒

A
h(x)dx ),

the variance of 􏽥μ will drop to zero, and 􏽥μ is equal to the exact
value 􏽒

A
h(x)dx. However, we cannot directly use the IS

method defined in (6) during such an extreme situation be-
cause we do not know the exact value of 􏽒

A
h(x)dx in advance.
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Nevertheless, it gives us a significant hint that the closer g(x)

and h(x) are, the more accurate the IS method’s result is. ,e
steps of the IS method for the computation of integral (3) are
listed as follows:

(1) Draw the samples ∞ from g(x).
(2) Compute the importance weights ωi � h(xi)/g(xi).
(3) Use the mean of the computed weights to estimate

the integral in (3):

􏽥μ �
1
n

􏽘

n

i�1
ωi. (7)

,e following theorem shows that the IS estimator in (7)
is unbiased.

Theorem 1. -e IS estimator 􏽥μ in (7) is an unbiased esti-
mator of μ.

Proof. To prove that the IS estimator is unbiased, we only
need to show that the expectation of 􏽥μ is equal to μ:

E(􏽥μ) � E
1
n

􏽘

n

i�1
ωi

⎛⎝ ⎞⎠

�
1
n

􏽘

n

i�1
E ωi( 􏼁

� E ωi( 􏼁.

(8)

Because ωi is a r.v. and ωi � h(Xi)/g(Xi),

E ωi( 􏼁 � E
h Xi( 􏼁

g Xi( 􏼁
􏼠 􏼡

� 􏽚
A

h(x)

g(x)
· g(x)dx

� 􏽚
A

(x)dx

� μ.

(9)

We obtain the expression E(􏽥μ) � μ, which verifies that
the IS estimator 􏽥μ in (7) is unbiased. So we complete the
proof of this theorem.

Aside from being an unbiased estimator of the integral
presented in (3), the IS estimator exhibits a more efficient
and powerful integral computation than the MC estimator
defined in (5), especially in higher-dimensional cases. □

3.2. ISAlgorithm for SDComputation. We use the previously
described ISmethod to compute the SD. Using the definition
of SD in (1) is not appropriate in computing the SD value of a
data point with respect to a dataset. ,e MC method in (6)
becomes extremely inefficient when dimension p or sample
size n is excessively large because the number of simplices

containing the original data point decreases with the in-
crease in p or n.

,e IS algorithm can transform the original p.d.f. into
a highly efficient one that can construct the simplex
containing the original data point. In the computation of
SD, the MC method randomly selects p data points to
construct the simplex, whereas the IS method chooses the
data points that are likely to let the original data point
inside the simplex. Figure 1 is a 2D example that is
composed of 20 sample data points. ,e data point x0 is
used to compute the SD value. After sampling the two data
points (x1 and x2), only two more (x3 or x4) are needed to
construct the simplex that contains the original data point
x0. In this illustrated example, we do not need to count all
the simplices after getting x1 and x2; only x3 or x4 is
considered as the final vertex of the simplices containing
x0.

We list the details of the IS algorithm for the com-
putation of SD in high-dimensional cases. Suppose that
Xn is a sample with size n in Rd (i.e.,
Xn � X1,X2, . . . ,Xn􏼈 􏼉) and x is a given point in
Rd, (d≥ 2). ,e data points are in general position (i.e.,
any d data points can define a unique d − 1-dimensional
hyperplane in Rd). ,e procedure of using the IS algo-
rithm to compute SD (i.e., the computation of SD(x,Xn) )
is summarized as follows:

(1) Set the IS parameters, including the number of
samples tries N.

(2) Let t � 1, 2, . . . , N. Compute the importance weight
ωt for the t-th sample try.

(i) Randomly choose d sample points from
X1,X2, . . . ,Xn􏼈 􏼉, and denote them as
Xt
1,X

t
2, . . . ,Xt

d􏼈 􏼉.
(ii) Let k � 1, . . . , d, and compute the simplex data

point set Ut
k (i.e., the datasets consist of the

possible data points that can construct a simplex
containing the original data point x).

Replace the k-th data pointXt
k with the original

data point x to obtain a dataset Pt
k with size d

(i.e., Pt
k � Xt

1, . . . , Xt
k−1, x, Xt

k+1, . . . , Xt
d􏼈 􏼉).

Compute the unique director dt
k which is

perpendicular to the hyperplane determined
by Pt

k.
Project all data points X1,X2, . . . ,Xn􏼈 􏼉 and x
along dt

k, and compute the projected value
xl

t,k􏽮 􏽯,wheret � 1, . . . , N; k � 1, . . . , d; and
l � 0, 1, . . . , n, and x0

t,k is the projected value of
x along dt

k.
Compute the simplex data point set
Ut

k � Xl|(xl
t,k − x0

t,k) × (xt,􏽮 kk − x0
t,k)< 0, l �

1, . . . , n}.

(iii) Let Ut � ∩ d
k�1U

t
k, and set ωt � # Ut􏼈 􏼉/(n − d),

where t � 1, . . . , N.

(3) ,e sample mean of ωt(t � 1, . . . , N) can be treated
as the IS estimator of SD(x, Xn); that is,
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􏽦SD x,Xn( 􏼁 �
1
N

􏽘

N

t�1
ωt. (10)

Theorem 2. -e computational complexity of using the IS
algorithm to calculate SD is

O Nd
5
n􏼐 􏼑, (11)

whereN is the number of samples tries of the IS algorithm, d is
the dimension of the sample data, and n is the sample size.

Proof. According to the steps for computing SD using the IS
algorithm, we need to compute every ωi for i � 1, . . . , N. For
every ωi, every selected sample data pointXt

k for k � 1, . . . , d
must be replaced. ,e computational complexity of finding
the unique director perpendicular to the hyperplane is
O(d3), whereas that of projecting all data points to the
unique director is O(dn). ,e total computational com-
plexity is O(Nd5n). ,en we complete the proof of this
theorem.

,eorem 2 shows that the computational complexity of
the IS algorithm for the computation of SD is a polynomial
with dimension d and sample size n as its input arguments.
While all other exact algorithms for the computation of SD
are NP problems, especially when the dimension d≥ 5, there
is no algorithm that can run faster than simply generating all
simplices and computing the exact SD value (i.e., using
O(nd+1) time) [12]. According to the definition of the IS
algorithm in (7) and ,eorem 1, the IS estimator defined in
(10) is an unbiased estimator of SD(x,Xn). □

4. Performance Comparison

,is section presents simulated and real data examples of SD
computation. All results are obtained using R (version X64
3.6.2) and MATLAB (R2017a) on a Lenovo K42-80 laptop

computer (Intel(R) Core(TM) i7-6500U CPU@2.5GHz,
RAM 16.00GB, Windows 10). ,e R and MATLAB codes
for the results in this section are available upon request from
the corresponding author.

4.1. 2D Simulated Data Example. In the simulated data ex-
periment, we compare the computed SD results of the IS, exact,
and approximate algorithms, including the MC method. ,e
simulated dataset is sampled from a 2D multivariate normal
distribution (i.e., N( 0

→
2,E2 ), where 0

→
2 is 2D zeros vector and

E2 is a 2D unit matrix), and the sample size is 100.
We used the exact algorithm [21], the MC method, and

the IS algorithm to compute the SD.,e selected points x are
(0, 0), (0.5, 0.5), (1, 1), and (2, 2). We used the exact and
approximate algorithms to compute the SD of x with respect
to the dataset. ,e number of random simplices was set to
100 for the MC and IS algorithms. All computations were
repeated 50 times. ,e computed results (mean, standard
deviation (sd), and total CPU time (s)) are summarized in
Table 1 and Figure 2.

Since there is an exact algorithm for the SD computation
in the 2D case, we can evaluate the accuracy of the IS andMC
methods through their mean values and sd values. More-
over, the total CPU time consumed by every algorithm can
reflect its efficiency. So, in this experiment, we use these
three indicators (mean, sd, and total CPU time) to compare
the performances of these algorithms (exact, MC, and IS
methods) for the computation of SD.

,e results reveal that (1) the exact algorithm consumes
less CPU time (approximately 0.1 s), (2) the approximate
algorithms (MC and IS) can achieve accurate results because
their means are extremely close to the exact value, (3) IS
performs better thanMC as indicated by the smaller sd of the
results of the former compared with those of the latter under
the same CPU time, (4) all computed SD results from exact
and approximate algorithms are zeros at point (2, 2), which
means that (2, 2) is outside the data cloud, and (5), with the
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Figure 1: A 2D simulated example (sample size� 20) which indicates that only two possible trilaterals (or simplices) can contain the original
data point x0 (the vertexes of the trilaterals are x1, x2, x3􏼈 􏼉 and x1, x2, x4􏼈 􏼉).
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exact algorithm, the simulated example also indicates that
the IS algorithm can obtain highly accurate results.

4.2. Higher-Dimensional Simulated Data Example. In this
subsection, we compute the SD of different data points by

using the MC and IS algorithms in 3D and five-dimensional
simulated dataset. We did not use the exact algorithm [21]
because it cannot obtain any result within three hours.

In the 3D case, the dataset was sampled from N( 0
→

3,E3),
and the sample size was 1000. We used MC and IS methods
to compute the SD of points (0, 0, 0), (0.5, 0.5, 0.5), and
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Figure 2: Boxplots of the results from different algorithms (exact, MC, and IS) in 2D experiments. (a–d),e results from the computed SD
of (0, 0), (0.5, 0.5), (1, 1), and (2, 2), respectively.

Table 1: Computed results (mean, sd, and total CPU time in s) from different algorithms (exact, MC, and IS) in 2D experiments.

Exact MC IS
(0, 0) Mean 0.2407 0.2380 0.2437

sd 0 0.0420 0.0150
Time 0.099 1.545 1.229

(0.5, 0.5) Mean 0.1607 0.1528 0.1608
sd 0 0.0326 0.0177

Time 0.149 1.51 1.364
(1, 1) Mean 0.054 5 0.059 4 0.055 9

sd 0 0.024 5 0.012 7
Time 0.125 1.587 1.332

(2, 2) Mean 0 0 0
sd 0 0 0

Time 0.223 1.594 1.492
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(1, 1, 1). We set the number of random simplices to 100 and
repeated the computation 50 times. ,e computed results
are summarized in Table 2 and Figure 3.

Because the exact algorithm cannot get any computed
SD results within three hours when dimension d≥ 3, we can
only use MC and IS methods for the computation of SD in
this subsection. ,ree indicators (mean, sd, and total CPU
time) are summarized for the evaluation of the approximate
methods. ,e mean values can be seen as the final computed
SD results and the sd reflects the accuracy of the method (the
smaller, the more accurate). ,e total CPU time reflects the
efficiency of the method because it is more efficient if the
method consumes less CPU time in the same computation of
SD.

Table 2 and Figure 3 indicate that (1) the computed SD
results decrease when the data points are changed from
(0, 0, 0) to (1, 1, 1); the data point (0, 0, 0) is deeper than the
data point (1, 1, 1) with respect to the dataset; (2) the two
methods have similar computational efficiencies because
they consume almost the same total CPU time; (3) the sd
obtained by the IS method is smaller than that calculated by
the MC method, which means that the former is more
accurate than the latter in this case.

In the five-dimensional case, the dataset was sampled
from N( 0

→
5,E5), and the sample size was 1000. We used

MC and IS methods to compute the SD of points
(0, 0, 0, 0, 0), (0.5, 0.5, 0.5, 0.5, 0.5), and (1, 1, 1, 1, 1). ,e
number of random simplices was 100, and the computa-
tions were repeated 50 times. ,e computed results (mean,
sd, and total CPU time in s) are presented in Table 3 and
Figure 4.

Table 3 and Figure 4 show that (1) the computed SD
values decrease when the data points are changed from
(0, 0, 0, 0, 0) to (1, 1, 1, 1, 1), thereby suggesting that the
former is deeper than the latter; (2) the SD values in the five-
dimensional examples are slightly smaller than those in 3D
examples because the sparsity of the data points increases
when the dimension is increased from three to five; (3) the IS
algorithm performs better than the MC approach as indi-
cated by the smaller sd of the results of the former compared
with those of the latter; (4) the two approximate algorithms
consume almost the same CPU time; (5) even after using 100
random simplices, the MC algorithm cannot find any
simplex containing point, whereas the IS algorithm can
identify many simplices. In conclusion, the IS method
outperforms the MC method in terms of accuracy in these
simulated examples.

We also evaluated the MC and IS methods with other
numbers of random samples tries in different datasets. ,e
findings show that the result’s accuracy increases with the
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Figure 3: Boxplots of the results obtained by MC and IS methods in 3D experiments.

Table 2: Results (mean, sd, and total CPU time in s) were obtained by MC and IS methods with respect to different data points in 3D
experiments.

(0, 0, 0) (0.5, 0.5, 0.5) (1, 1, 1) Total CPU time
MC 0.1254(0.0330) 0.0460(0.0242) 0.0054(0.0073) 5.13
IS 0.1280(0.0121) 0.0449(0.0078) 0.0050(0.0033) 5.23
,e sd values are listed in the parentheses behind the mean values.
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increase in the number of random samples tries. In addition,
the number of random samples tries can be used by IS
method in lots of datasets. It is found in our experiments
that, if we set the number of random samples tries N� 1000,
the IS method can obtain the computed SD results within
one second when dimension d≤ 10 and sample size
n≤ 10000.

5. Application to Regression and Real
Data Example

One of the most important extensions of SD is the robust
estimation of regression based on SD. To demonstrate the
relevant concept, we consider the linear regression model as
follows:

Y � α + βX + ε, (12)

where random variables X and Y are in R1, ε ∼ N(0, σ2), and
α, β, and σ2 are unknown parameters.

Considering that SD(x,Xn) can measure the depth of x
with respect to Xn, we extend the definition of SD to re-
gression (12) and determine the simplicial regression depth:

SD θ,Wn
( 􏼁 �

n

3
􏼠 􏼡

−1

􏽘
i<j<k

A ri(θ), rj(θ), rk(θ)􏼐 􏼑, (13)

where θ � (α, β) are the parameters, Wn � (Yn, Xn) are the
samples of the model defined in (12), and ri(θ) � Yi − α −

βXi is the residual based on the i-th sample and

A ri(θ), rj(θ), rk(θ)􏼐 􏼑

�
1, ri(θ), rj(θ), rk(θ)have alternating signs,

0, otherwise.
􏼨

(14)

,e SD based estimator of (12) can be defined as the
maximum of SD(θ,Wn); that is,

􏽢θSD � argmax
θ

SD θ,Wn
( 􏼁. (15)

We consider the physical experiment data concerning
the relationship between the atmospheric pressure and
boiling point of water, which was discussed by a Scottish
physicist named James D. Forbes [22]. In the mid-nine-
teenth century, this experiment can illustrate whether the
simple measurement of the boiling point of water can
substitute for the direct reading of the barometric pressure.
,e dataset was collected in the Alps in Scotland (Table 4 and
Figure 5).

,e linear regression model in (12) was used to fit the
Forbes dataset. We used LS and SD methods to estimate the
parameters of the model in (12).,e function “lm” in R Stats
package (“stat”) can be used to determine the LS estimator of

Table 3: Results (mean, sd, and total CPU time in s) were obtained by MC and IS methods in five-dimensional experiments.

(0, 0, 0, 0, 0) (0.5, 0.5, 0.5, 0.5, 0.5) (1, 1, 1, 1, 1) Total CPU time
MC 0.0360(0.0160) 0.0036(0.0066) 0(0) 7.67
IS 0.0315(0.0076) 0.0028(0.0023) 2.8 × 10−6(7.3 × 10−6) 8.42

,e sd values are listed in the parentheses behind the mean values.
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Figure 4: Boxplots of the results obtained by MC and IS methods in five-dimensional experiments.
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the model in (12). For the SD based method, we combined
quasi-Newton [23] and IS methods to find the maximum
point of (15). Moreover, we performed three statistical tests
(i.e., the R square value, normality test, and the test of
goodness of fit [24]) for every fitted regression model to get a
more insightful analysis. ,e R square (or adjusted R square)
value from the significance test gives the percentage that the
dependent variable (Y) can be explained by the fitted model
(α + βX) (see (12)).,e normality test is used to test whether
the residuals of the fitted model obey normal distribution
which is the basis of other statistical tests. For example,
under the assumption of normality, the F statistic value in
the test of goodness of fit can be used to determine whether
the fitted regression model makes sense.

We first used the LS method and SD approaches to
compute the linear regression model with the original
Forbes dataset (Table 4, denoted as original data in this
section).,e computed regression results are summarized in
Table 5 and Figure 5(a); their corresponding statistical tests
are summarized in Table 6 and Figure 6.

Table 5 and Figure 5(a) show that the LS and SD esti-
mators obtained the very similar intercept parameter and
slope parameter. ,is finding suggests that the SD method
can capture the same accurate regression results compared
with LS method.

,e statistical test results have also confirmed the finding
since the results from LS and SD methods were also very
similar. ,ey have very high R square values which indicate
more than variance of the dependent variable that can be
explained by the fitted model. Under significance level 0.01,
we accept the assumption of normality and they pass the
goodness of fit test (i.e., the p value of F statistic is almost
zero). In addition, if one needs a higher level of significance
(such as 0.05) in this example, then some statistical tech-
niques (e.g., Box-Cox transformation or strong influence
points detection) can be used to improve the regression
model (see more details in [22]). However, this is another

research topic and there is a lack of sample points in this
example; we only focus on the robustness of the regression
model computed from different methods, especially when
the dataset is contaminated, and that is what we do in the
next experiment.

In the following experiment, we worked with a con-
taminated dataset from Forbes data. We intentionally
changed the pressure of the 16th data point from 29.88 to
59.76.,e new dataset was denoted as the contaminated data
(Figure 5(b)). We compared the SD and LS methods’ per-
formances in the linear regression model with the con-
taminated dataset. ,e regression results are presented in
Table 5 and Figure 5(b). ,eir corresponding statistical tests
are summarized in Table 6 and Figure 7.

Table 4: Forbes data collected in Alps and Scotland. ,e tem-
perature is measured using the boiling point (°F) and the pressure is
obtained using barometric pressure (mmHg).

No. Temperature Pressure
1 194.5 20.79
2 194.3 20.79
3 197.9 22.40
4 198.4 22.67
5 199.4 23.15
6 199.9 23.35
7 200.9 23.89
8 201.1 23.99
9 201.4 24.02
10 201.3 24.01
11 203.6 25.14
12 204.6 26.57
13 209.5 28.49
14 208.6 27.76
15 210.7 29.04
16 211.9 29.88
17 212.2 30.06
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Figure 5: Regression analysis results from original (a) and con-
taminated (b) datasets.
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Table 5: Computed regression analysis results (original and contaminated) from Forbes data.

Original data Contaminated data
α β α β

LS estimator −81.0637 0.5229 −181.527 1.0266
SD estimator −78.2631 0.5086 −78.2623 0.5085

Table 6: ,e statistical tests for regression analysis with original data and contaminated data using LS and SD methods.

Original data Contaminated data
R2(AdjustedR2) F(p − value) S − W(p − value) R2(AdjustedR2) F(p − value) S − W(p − value)

LS 0.9944(0.9941) 2677(0) 0.8723(0.024) 0.7650(0.7493) 48.82(4.37 × 10−6) 0.6473(3.10 × 10−5)

SD 0.9922(0.9918) 1928(0) 0.8574(0.0140) 0.9917(0.9912) 1812(0) 0.2861(3.13 × 10−8)

Note: (Adjusted) is the adjusted R square value, F and pvalue are the F statistic value and its corresponding p value, and S–W and p value are the
Shapiro–Wilk test statistic value and its corresponding p value.
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Figure 6: Quantile-quantile (QQ) plots of the residuals from LS and SD methods with the original data. (a) ,e QQ plot from the LS
method. (b) ,e QQ plot from the SD method.
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Figure 7: Quantile-quantile (QQ) plots of the residuals from LS and SD methods with the contaminated data. (a) ,e QQ plot from the LS
method. (b) ,e QQ plot from the SD method.
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,e results show that the LS estimator is greatly influ-
enced by the contaminated data point, whereas the SD es-
timator can maintain satisfactory performance. ,e slope
parameter estimated by the LS estimator changes from
0.522 9 to 1.026 6, which cannot reflect the actual variation
trend of the pressure-temperature curve. By contrast, the SD
estimator is not affected by the contaminated data point and
can still provide the actual variation trend. ,e estimated
slope parameters obtained using SD method for two dif-
ferent datasets are 0.508 6 and 0.508 5, respectively. ,e
statistical test results show that, under the influence of the
contaminated data point, the residuals of the fitted models
from the two methods do not pass the normality test.
However, the R square (or Adjusted R square) value from the
SD method (0.991 7) is much large than that of the LS
method (0.765 0) which means that the regression line from
the SD method can explain more percentage of the variance
of dependence variable compared with that of the LS
method. ,ese results imply that the SD estimator out-
performs the LS estimator in the contaminated dataset
experiment in terms of robustness.

6. Conclusions

,e concept of statistical depth plays an important role in
mathematical sciences, engineering, regression analysis, and
life sciences. In this study, we computed the SD using the IS
method and found that this new approach performs better
than other exact and MC methods in terms of accuracy and
efficiency. ,e simulated and real data examples illustrated
the advantage of this new method. Finally, we tested the SD
method based regression analysis through a concrete
physical data example. ,e result indicated the excellent
robustness of the proposed method compared with the LS
estimation.

Given the many favorable properties of the proposed
method, further research can be conducted on different
angles. First, the IS parameter (i.e., number of sample tries N)
plays an important role in the computation of SD, so the
determination of N before the performance of IS algorithm is
yet to be thoroughly investigated. Second, the IS method for
the SD computation can be improved by sampling the data
points via other more important simplices (not the last data
point in the possible simplices). ,ird, with the development
of modern computer science, multicore high-performance
computer is gaining popularity. ,erefore, the IS method can
be extended to a parallel computation based version. Lastly,
the approximate algorithms (advanced MC methods) for
other statistical depths (e.g., halfspace depth, projection
depth, and regression depth) can be further explored.
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/e current research aims to study the mixed convection of a hybrid-based nanofluid consisting of ethylene glycol-water,
copper (II) oxide (CuO) and titanium dioxide (TiO2) in a vertical cone. A hybrid base blend model is used to examine the
nanofluid’s hydrostatic and thermal behaviors over a diverse range of Reynolds numbers. /e application of mixed nano-
particles rather than simple nanoparticles is one of the most imperative things in increasing the heat flow of the fluids. To test
such a flow sector, for the very first time, a hybrid-based mixture model was introduced. Also, the mixture framework is a
single-phase model formulation, which was used extensively for heat transfer with nanofluids. Comparison of computed values
with the experimental values is presented between two models (i.e., the model of a mixture with the model of a single-phase).
/e natural convection within the liquid phase of phase change material is considered through the liquid fraction dependence
of the thermal conductivity. /e predicted results of the current model are also compared with the literature; for numerical
results, the bvp4c algorithm is used to quantify the effects of nanoparticle volume fraction diffusion on the continuity,
momentum, and energy equations using the viscous model for convective heat transfer in nanofluids. Expressions for velocity
and temperature fields are presented. Also, the expressions for skin frictions, shear strain, and Nusselt number are obtained.
/e effects of involved physical parameters (e.g., Prandtl number, angular velocity ratio, buoyancy ratio, and unsteady
parameter) are examined through graphs and tables.

1. Introduction

Nanofluid is the mixture of hard nanoparticles with the
base fluid./e study of nanofluid is of huge interest for the
evaluation of increasing thermal conductivity, In the
engineering, cooling is important, such as the cooling of
nano-electromechanical systems and semiconductors.
/e convection of nanofluids flow in nanowires such as
microchannels and microtubes is mandatory to use
nanofluids for these low-scale cooling techniques.
Nanofluids are served in related works with single-phase
heterogeneous fluids (whereas the nanoparticles are
consistently distributed in base fluids). Free convection is

critical in thermal engineering in nanofluid within en-
closures because rising heat flow is a significant problem
for energy efficiency. /e first attempts to improve heat
transport using nanofluid. /ey simulated the heat
transfer features of nanofluids in a two-dimensional in-
sertion and originate that the heat transfer rate dramat-
ically increases with postponed nanoparticles at every
Grashof value. Elaziz and Marin [1] investigated one
significant feature of theory, and it does not account for
thermal energy dissipation. We discover a method for
dealing with elastic interactions that do not take into
account energy dissipation caused by heat sources and
body forces. Remote as literature analysis is revised,
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[2–12] scholars are doing notable nanofluid work. /e
analysis of heat transmission and nanofluid flow is an
important unsolidified rheology issue. Experimenting on
Cu-water nanofluid rheology, in which we noticed the
conduct of a shear-thinning fluid obtained by Chang et al.,
[13] Santra et al. [14] introduced the forced conduction of
Cu-water in Newtonian and non-Newtonian fluids in a
channel. Das et al. [15] extended Aziz’s attempt by looking
at the Buongiorno fluid method for nanofluid flow. Xuan
and Li [16] explored Cu-water nanofluid flow charac-
teristics. Infrared photons are visible; sunlight or infrared
and illumination are shown by the material nature pro-
duced from those radiations. Based on the way solar
energy is collected and transmitted or transformed into
solar power, energy sources and their technologies are
mostly known as either active solar or inactive solar.
Blackbody radioactivity is the radiation of electromag-
netic waves from a superficial that exceeds absolute zero.
In several practical applications, heat transport occurs via
a porous medium flow. /ese inspections cover a wide
range of fields of science and engineering, mainly grain
storage, chemical hydrogen reactors, dampness move-
ment by air-filled rubber protection, and much more. /e
efficiency of common base fluid thermal systems is rel-
atively low. Suspending metallic nanoparticles in the
sordid fluid is a recent way to improve the efficiency of
those systems. Sheikholeslami et al. [17] investigated the
free convection warmth transfer in a concentration halo
between warm four-sided and heated curve cylinders in
the non-attendance of the magnetic field. Kandelousi [18]
investigated the consequence on ferrofluid flow of espe-
cially variable magnetic fields by considering the constant
heat flux endpoint state. Sheikholeslami et al. [19–21]
examined nanofluid flow alongside convective heat
transfer through a different geometry. /e fluid flows
including chemical reaction has wide range in the pro-
cesses of extrusion, refrigeration, and polymer industries.
Under GN electromagnetic theory, Abd-Elaziz et al. [1]
demonstrated the effect of /omson and initial stress in a
thermo-porous elastic solid. Vlase et al. [22] looked into
the motion equation for a versatile one-dimensional el-
ement used in a multibody system’s dynamical analysis.
Malik et al. [23] proposed the idea of an incompressible
fluid past MHD natural reaction over a heat-producing
porous layer. /e electrically transmitting non-New-
tonian fluids can be used as a refrigeration liquid because
their flow can be controlled by the outdoor magnetic field,
which to some degree controls the heat transfer. Its usage
of magnetic fields that impact heat preoccupation/gen-
eration system has several engineering applications, like
crystallization and bottling of copper wires by dragging
continuous polymers through inactive fluid [24–29].

Shirejini et al. [30] used a nanofluid and a gyratory
scheme to restore the heat transfer rate after a decrease.
Turkyilmazoglu [31–33] investigated the thermal broadcast
of an electrically conductive fluid over a rotating infinite
disk. Digital devices for stowage, rotating equipment,
thermal energy generation systems, electrode material,
geothermic industry, gas turbines, biological courses, and

different types of medical equipment are examples of ap-
plications of such problems. Turkyilmazoglu investigated
fluid stream and heat allocation on a rotating disk that was
traveling vertically. A spinning cone induces warmth
transfer and enables flow in a quiescent liquid. Kumar et al.
[34] used a finite element method to research the ran-
domness production of a nanofluid containing copper and
aluminum oxide nanoparticles in the spaces between two
coaxial spinning disks.

/e above studies indicate that no attempt has been
complete to analyze the 3D hybrid nanofluid flow model
around the cone as poignant or immobile under fluid
control. /e effect of copper oxide (CuO) and titanium
dioxide (TiO2) nanoparticles on the thermal performance
properties of ethylene glycol-water is investigated in this
study, which has an extensive scientific and technological
value. /e second significance is to build on the principle
of Refs. [35–37] which also contain the most important
studies about the current model. In the case of counter-
rotating, create a mathematical model for rotating cones
that are called moving or stationary. /e flow reckonings
are reduced to an ordinary scheme, and then bvp4c is
used to solve them. Figures illustrate the effects of cor-
poreal relevant variable quantity on velocity and tem-
perature. Superficial grind force and temperature incline
numerical outputs are tabulated contrary to stimulating
physical objects. /e uniqueness of the latest work is
emphasized.

(1) /e current study considers three-dimensional
CuO + TiO2/C2H6O2 hybrid nanofluid flow, while
previous research [38, 39] has concentrated on
viscous fluids and nanofluids.

(2) /eMATLAB bvp4c algorithm has been used for the
explanation of the non-linear problem.

(3) In comparison to other fluids, hybrid nanofluids
have been found to increase the thermal efficiency of
base fluids quickly.

2. Mathematical Formulations

To find another way to simplify the process of convection in
fluids, the basis for this paper is a three-dimensional (3D)
natural heat transfer of Newtonian two-phase nanofluid flow
composed of TiO2/CuO hybrid particles/ethylene glycol-
water (50 percent-50 percent) combination of base fluid due
to a pivoting cone. All conclusions and conditions con-
sidered for the geometry of this paper are clearly shown in
Figure 1. Differential equations that model the problem
according to the assumptions mentioned above and the
physical terms that affect the problem are
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/e velocity gears in the paths of x, y, and z-axis, sep-
arately, are in the above equations (u, v, and w). Also, ρhnf is
the concentration of nanofluid, μhnf is the fluid viscosity of
nanofluid, ve is the free flow velocity, (ρβ)hnf is the coef-
ficient of growth and contraction because of the temperature
difference, T is the dynamic temperature, ζ is the electrical
conductivity of the fluid, ]hnf is kinematic viscosity,
(ρCP)hnf is nanofluid’s heat capacity, khnf is nanofluid’s heat
conductivity, A is the Deborah number, and αhnf is the
thermal diffusivity.

/e boundary conditions are

u(0, x, z) � v � w � ui, viwi,

T � Ti,

u(t, 0, z) � w � 0,

v �
Ω1x sin α∗

1 − st
∗ ,

T � TW.

(5)

/e momentum, temperature, and boundary conditions
for this problem are [38, 39].

/e most recent method would be the utilization of
hybrid nanoparticles rather than single nanoparticles to
advance the process of convection in fluids. Nanofluid
formed by hybrid nanoparticles has higher conduction than
nanofluid generated by one single nanoparticle. Further-
more, the impact of using nanoparticles of different shapes
on conductivity and reducing the amount of convection
cannot be simply overlooked.

6ermophysical Properties. /e following are the different
thermal properties of hybrid nanofluid and water [39]:

ρhnf � 1 − ϕ2( 􏼁 1 − ϕ1( 􏼁ρf + ϕ1ρcuo􏽨 􏽩 + ϕ2ρTio2
,

ρCp􏼐 􏼑
hnf
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/e functions required for the conversion of the partial
differential equations (PDEs) ((2), (3), and (4)) to the or-
dinary differential equations (ODEs) are as follows.

In which the hybrid angular velocity is ω � ω1 + ω2, the
angular velocities of a cone are ω1, the free torrent liquid is
ω2, and the unstable parameter is S. Also, θ and ζ are the
variable and temperature without dimensions, respectively.

Tw

Tm

g

nanoparticles

z, w

y, v

x.uΩ

Figure 1: Corporeal geometry of the problem.
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After substituting equation (7) into equations (2)–(4) and
modifying and converting, the usual differential equations

relating the flow and temperature, together with the
boundary conditions, are as follows:

f
‴

(1 − ϕ)
2.5 1 − ϕ2( 􏼁

2.5 1 − ϕ2( 􏼁 1 − ϕ1( 􏼁 − ϕ1 ρcuo/ρf􏼐 􏼑􏽮 􏽯 + ϕ2 ρTio2
/ρf􏼐 􏼑􏽨 􏽩

− f +
1
2

sη􏼒 􏼓f′ +
1
2
f′ − s􏼒 􏼓f′ − 2 g − 1 − α1( 􏼁

2
􏼐 􏼑 − 2c1θ⎛⎝ ⎞⎠, (8)

g″

(1 − ϕ)
2.5 1 − ϕ2( 􏼁

2.5 1 − ϕ2( 􏼁 1 − ϕ1( 􏼁 − ϕ1 ρcuo/ρf􏼐 􏼑􏽮 􏽯 + ϕ2 ρTio2
/ρf􏼐 􏼑􏽨 􏽩

− − f′g + fg′( 􏼁 + s 1 − α1 − g −
1
2
ηg′􏼒 􏼓⎛⎝ ⎞⎠, (9)

1
Pr

κhnf
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􏼠 􏼡θ″ − fθ′ −
f′θ
2

􏼠 􏼡 − 2sθ +
1
2

sηθ′􏼠 􏼡. (10)

Now, the boundary conditions are

f(0) � 0,

g(∞) � − 1 + α1,

g(0) � α1,

θ(0) � − 1,

f′(∞) � 0,

f′(0) � 0,

θ(∞) � 0.

(11)

/e important natural quantities impacting the flow and
the transfer of heat are the coefficient of skin friction
Cfx, Cfy and the local Nusselt number Nux, respectively,
which are clear as follows:

Cfx � − Re− (1/2)
x

2μ zu

zz
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z�0
, (12)

Cfy �
2μ zv

zz
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z�0
− Re− (1/2)
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/eir dimensionless form is as follows:

CfxRe
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1
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2.5
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/e factor of heat allocation in dimensionless form is
given as

NuxRe
(1/2)
x � −

khnf

kf

􏼠 􏼡θ′(0). (16)

3. Numerical Solution

/e coupled ordinary, non-linear differential equations
(8)–(10) and the limit conditions set out in equation (11) are
numerically solved using the bvp4c MATLAB algorithm.

F � y1,

ρf � b,

F′ � y2,

g � y4,

F″ � y3,

ρs � a,

g′ � y5,

g″ � y5′,

F″ � y3′,

θ(0) � y6,

θ′ � y7,

θ″ � y7′,

ks � m,

kf � n,

ρcp􏼐 􏼑
s

� c,

ρcp􏼐 􏼑
f

� d.

(17)

Now, the new equations are
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2
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Pr1
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along with limitation

%

y(1) � 0,

y∞(2) � 0,

y(2) � 0,

y(4) � α1,

y(6) � − 1,

y∞(6) � 0.

(21)

4. Graphical Observations and Discussion

Non-linear standard differential equations (8)–(10) con-
cerning boundary condition equation (11) are solved by the
bvp4c method of numerical technique for evaluating the
various physical parameters. Results indicate the effect on
velocity − f′(η), g(η) and temperature θ(η) profiles of non-
dimensional governing parameters laterally with the skin
friction constant and limited Nusselt number for recom-
mended fence temperature (PWT) cases. We considered
entirely dimensional parameter values for numerical al-
gorithms as s � 2.0, α1 � 0.6,ϕ � 0.8, c1 � 1.5, andPr � 7.0.

/ese parameter values are samein the entire article except
for the disparities in the corresponding figures and tables.
We learned that the heat transfer rate has been further
increased due to hybrid nanofluid (TiO2 − Cuo/ethylene
glycol-water). /e rate of the heat transfer decreases when
we increase the rotation parameter and the capacity
fraction of nanoparticles. Figures 2–5 display the block
diagram of the speed and temperature profiles for different
models of the volume fractions of Tio2 and Cuo nano-
particles. /e rise in the medium fraction of nanotubes
augments the tangential velocity − f′(η) field and fluctuates
the azimuthal velocity g(η) field as well as the temperature
profiles in the PWT case. As assumed, the improvement of
the medium fraction of nanoparticles would enhance the
colloidal interruption here amid solid particles, and due to
this, the velocity fields are reduced. By contrast, the field of
Tio2 nanoparticle velocity is faster by enhancing the values
of the nanoparticle volume fraction. For this motive, we
saw an enrichment in the field of tangential velocity.
Figures 2(a) and 2(b) describe the effect of the α1 on
prescribed wall temperature (PWT) case velocity − f′

profiles. /e velocity curve decreases when increasing the
values of α1 in Cuo − TiO2 cases. In Figures 4(a) and 4(b),
α1 indicates mixed solutions for both cases in fields of
azimuthal velocity g. In both cases, velocity decreases if the
value of this parameter increases. But with increasing
values of α1 the tangential boundary layer of velocity − f′
enables. Physically, the parameter of α1 helps to increase
the velocity of the flow because for this reason the velocity
fields are initially enhanced. At Figures 3(a) and 3(b) under
the impact of the parameter c1 almost similar behavior is
observed, but here the thickness of the boundary layer
increases rapidly with the growth. Velocity behavior for s
the maximum value of s sluggish down the tangential speed
of the fluid as well as velocity − f′ goes to zero far absent
from the cone superficial for high values of s velocity profile
goes down rd/e effects of the Pr on θ in both cases are
shown in Figures 5(a) and 5(b). /e depth of the thermal
boundary layer and θ(η) increases by enhancing the values
of Prandtl number Pr. /e effect of the Reynolds number
on tangential velocity is seen in Figures 5(a) and 5(b). It is
represented in figures with an increase in Re because in-
ertial forces have a direct relationship with Re; /e curve in
Figure 6(a) increases and in 6(b) decreases with the in-
creasing values of tangential velocities near the cone wall.
Figures 7(a) and 7(b) are devoted to the manifestation of
the effect of c1 (buoyancy parameter) on the tangential skin
friction coefficient. From these figures, it is clear that Cfx

grows as c1 increases, while it decreases as α1 increases.
Figures 8(a) and 8(b) indicate the impact on the skin
friction coefficients Cfy at the cone boundary of the ro-
tation parameter (α1) and Reynolds number. Skin friction
coefficients are shown in figure 8(b) by increasing values of
function of rotation parameters and 8(a) is decreasing by
function of α1 while showing declining behavior for the
number of Reynolds. /e effect of Pr is shown in
Figure 9(a) on the Nusselt number by an improvement in
the value of Pr the Nusselt number decrease. From
Figure 9(b), it is noted that the Nusselt number is decreased
when enhancing the value of Pr. Tables 1 and 2 demonstrate
the impact of several parameters on skin friction and
Nusselt number for Reynolds model. Amount of α1 and c1
expand the skin and Nusselt number decline for α1 and
grow for α1. Table 1 demonstrated the hybrid surface fluid
and nanoparticles have fluid dynamics-physical properties
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Figure 2: (a) Impact of α1 on the velocity field distribution − f′(η) for Cuo nanoparticles. (b) Impact of α1 on the velocity distribution
− f′(η) for TiO2 nanoparticles.
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Figure 3: (a) Impact of c1 on velocity distribution − f′ for Cuo nanoparticles. (b) Impact of c1 on velocity distribution − f′ for TiO2
nanoparticles.
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Table 1: Impact of different parameters and dimensions of nanomaterials on velocity and temperature profiles in CuO-hybrid base fluid.

α1 c1 S Pr Cfx Cfy Nux
0.6 0.5 1.0 7.0 0.01573 0.01530 − 5.01480
0.7 0.02965 0.00882 − 4.83310
0.8 0.04081 0.00202 − 4.45480
0.9 0.05035 0.00710 − 4.01480
0.7 0.0 2.0 5.0 0.01171 0.02283 − 7.24294

0.5 0.02535 0.01107 − 7.20510
1.0 0.03678 0.08875 − 7.16484

0.8 1.5 0.5 3.0 0.04706 0.00132 − 7.12153
1.0 0.00848 0.01523 − 8.89947
1.5 0.02186 0.01552 − 8.88430
2.0 0.03367 0.00754 − 8.86861

0.9 0.5 0.5 1.0 0.04379 0.00375 − 8.85267
3.0 0.00517 0.01573 − 10.2863
5.0 0.01849 0.01171 − 10.2791
7.0 0.03054 0.00898 − 10.2119
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for Cuo and in Table 2 also shows the properties of TiO2.
/e thermophysical properties of the nanofluid are dis-
cussed in Table 3.

5. Concluding Remarks

In the present paper, the influence of rotation and buoyancy
force parameters on velocity and temperature is discussed in
hybrid base nanofluid over a gyrating cone in the occurrence
of gravity and film condensation and heat dissipation effect.
By using the bvp4c algorithm, we solve PDEs with minimum
errors and correct results. /e results indicate that by in-
creasing the value of α1, the tangential and azimuthal ve-
locity reduces near the boundary of the cone for CuO and
TiO2 cases. Also, with the increase of c1, azimuthal velocity
increases./e inclination of the Prandtl number results in an
increase in the temperature profile./e skin friction factor is
increasingby rotation and unstable parameters while it is
decreasing with Reynolds number. /e Nusselt number
increases for larger Pr near the wall of the cone. /e major
outcomes of this study are given as follows:

(1) TiO2 nanofluid has a higher coefficient of friction
factor as opposed to Cuo nanofluid. However, the
heat transfer rate of Tio2 nanofluid is lower than that
of Cuo nanofluid. Cuo nanofluid, therefore, im-
proves the thermal transfer more than the Tio2
nanofluid.

(2) /e parameter of viscous variation improves both
temperature and the rate of heat transfer. /us, we
can say that viscosity dependent on temperature is
helpful for processes of heat transfer modification.

(3) Hybridity reduces the velocity distribution while
increasing the temperature distribution.

(4) As compared to nanofluid, hybrid nanofluid can
have better heat transfer efficiency.

(5) /e optimal heat transfer rate in hybrid nanofluid
can be achieved by choosing distinct and sufficient
nanoparticle increases.

(6) /e heat source decreases the temperature field and
enhances the heat transfer rate.

Abbreviations

Pr: Prandtl number
t, t∗: Dimensional and dimensionless times,

respectively
T: Temperature
(x, y, z): /e distance measured along the meridian of

a circular segment parallel to the cone’s
superficial

Cfx: Local skin friction in x-direction
α: Semi-upright angle of the cone
Cfy: Skin friction in y-direction
η: Similarity variable
f, g: Dimensionless stream function and velocity

component in x− and y− direction,
respectively

θ: Dimensionless temperature
K, L: /ermal conductivity and characteristic

length, respectively
Km− 1K− 1 c1: Buoyancy parameter due to temperature
μ: Dynamic viscosity (Nms− 2)
]: Kinematic viscosity (m2s− 1)
Nux: Local Nusselt number
ρ: Density (kgm− 3)
Rex: Reynold number based on x

Table 2: Results of skin friction and Nusselt coefficient for TIO2.

α1 c1 S Pr Cfx Cfy Nux
0.6 0.5 1.0 7.0 0.01150 0.0114280 − 8.09597
0.7 0.00487 0.0216298 − 8.15971
0.8 − 0.00617 0.0306057 − 8.22153
0.9 − 0.04201 0.0383555 − 8.22153
0.7 0.0 2.0 5.0 0.01440 0.0049780 − 11.4494

0.5 0.00666 0.0151825 − 11.4824
1.0 0.00190 0.0241606 − 11.5149

0.8 1.5 0.5 3.0 − 0.00204 0.0319124 − 11.5471
1.0 0.01146 0.0082032 − 14.0226
1.5 0.00759 0.0184064 − 14.0448
2.0 0.00352 0.0273834 − 14.0448

0.9 0.5 0.5 1.0 − 0.00042 0.0351342 − 14.0669
3.0 0.01109 0.0017524 − 16.1919
5.0 0.00799 0.0119582 − 16.2087
7.0 0.00454 0.0209374 − 16.2253

Table 3: /e hybrid surface fluid and nanoparticles having fluid dynamic-physical properties.

Physical Properties CuO TiO2 C2H6O2 − H2O

ρ (kg/m3) 6500 4250 1063.8
cp (J/kgk) 540 686.2 3630
K (w/mk) 18 8.9538 0.387
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ReL: Reynold number based on L

(ρCp)hnf: Heat capacity of hybrid nanofluid (jk− 1)
ρhnf: Nanofluid density (kgm− 3)
μf: /e viscosity of fluid (Nms− 2)
(u, v, w): Velocity components (ms− 1)
μhnf: Hybrid nanofluid viscosity (Nms− 2)
αhnf: Hybrid nanofluid thermal diffusivity

(m2s− 1).
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A time-dependent convectional flowof a two-phase nanofluid over a rotating conewith the impact of heat andmass rates is elaborated in
this article. /e instability in the flow field is induced by the cone angular velocity that depends on the time. /e Navier–Stokes self-
similar solution and the energy equations are obtained numerically. Here, the achieved solution is not only for Navier–Stokes equations
but also for the equations of the boundary layers. In this work, the concentration, Brownian motion, and thermal buoyancy effects have
important significance. We have assumed viscous dissipation with heat-absorbing fluid. Similarity answers for spinning cones with
divider temperature boundary conditions give an arrangement of nonlinear differential conditions that have been handled numerically.
/eMATLABmethodology BVP4C is used to resolve the reduced structure of nonlinear differential equations numerically. Observation
for skin friction and Nusselt number is also taken into account. Velocity and temperature impact is depicted graphically, while the
outward shear stress values and heat allocation rate are included in tables.

1. Introduction

/e design of reliable equipment in manufacturing indus-
tries relies heavily on convective flow ended a cone through
radiative heat and form transfer. Due to its relevance in
modern technology and applications in geothermal engi-
neering, as well as other hydrological and astrophysical
biofluid studies, researchers have shown a strong interest in
heat and mass transfer in Newtonian flows in recent years.
/e analysis of fluid flow in a cone encompasses a wide
variety of subjects. It is used in plastic processing, elastic
sheet cooling, polymer technology, polymer chemistry, and
engineering, to name a few. So, because of its enormous
applications, the researchers are holding a purpose in this
area. Dependence of viscosity on temperature plays a vital
role in the realm of fluids flow. /e viscosity of water de-
creases as the temperature increases, while the viscosity of
gases rises as the temperature rises. /e increase in tem-
perature in lubricating fluids causes internal friction that
affects the fluid’s viscosity and will no longer remain

constant. Because of this inadequacy, many researchers are
interested to understand the effects of using different var-
iable viscosity models.

Nanofluids remain a class of heat allocation fluids
which caused suspended nanoparticles are distributed in
the fluid (1–100 nm). In base fluids, locomotive oil, polymer
solutions, bio-fluids, other critical fluids, water, and or-
ganic fluids (e.g., ethylene and diethylene) are commonly
used. Nanoparticles are generally made of carbon in diverse
edifices (e.g., carbon nanotubes, black lead, and diamond),
metals (e.g., copper, hoary, and gold), and metal oxides
(e.g., titanium and zirconia), besides functionalized
nanoparticles. A wide-range of possible applications has
been initiated for the use of nanofluids. Choi remained the
first to research updraft conductivity development in
nanofluids [1–12]. Nanofluids, bio and pharmacological
nanofluids, remedial nanofluids, environmental nano-
fluids, and other heat transfer fluids are categorized
according to their applications. Many researchers have
looked into how extent, concentration, form, and other
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assets affect the warmth transfer rate of a fluid. For the
Prandtl number of airs, Hering and Grosh [13] investigated
a steady mixed convection boundary layer flow from a
vertical cone in an ambient fluid. For a broad range of
Prandtl numbers, Himasekhar et al. [14] solved the simi-
larity solution of the mixed convection boundary layer flow
over a vertical rotating cone in an ambient fluid. Body
solutions of unstable mixed convection flow from a ro-
tating cone in a rotating fluid were obtained by Anil Kumar
and Roy [15] a few years ago. Chamkha and Mudhaf [16]
examined heat generation, consumption, and unstable heat
and mass transfer from a revolving vertical cone with a
magnetic field. Ravindran et al. [17] suggested a new ap-
proach for investigating the effects of fluid flow (suction/
injection) on a vertical porous cone’s steady natural con-
vection boundary layer flow. /e impact of heat-dependent
viscosity with viscous heat generation on third-grade fluid
flow in a standard pipe was examined by Nadeem and
Hussain [18]. Exploitation the finite simple difference
method, numerical solutions were obtained. Different
fluids like water, ethylene glycol, and oil, due to their poor
thermal conductivity, have low heat transfer properties. It
is now realized that by retaining nano-sized metal flakes
such as Al, titanium, silver, gold, Cu, or their oxides, the
thermophysical characteristics of such fluids could be
enhanced, ending in what is commonly known as nanofluid
[19]. Several researchers have spent the last few years
studying the edge layer movement of nanofluid fluids in
various geometries and under various conditions.
Kameswaran et al. [20] investigated the flow of hydro-
magnetic nanofluids due to a shrinking surface. Over a
stretching field, Kameswaran et al. [21] discovered solu-
tions for the deflation-point flow equations. Fauzi et al. [22]
explored the time-independent nanofluid boundary film
flowing along a perpendicular cone in a brittle medium.
Boutra et al. [23] investigated unrestricted convection
induction in a nanofluid-filled framework through round
heaters, and Ambethkar and Kumar [24] investigated 2D
noncompressible flow solutions with the transfer of heat in
a powered square cavity singing stream function-vorticity
model. Cheng [25] addressed natural convection flowing
through a formatted cone in a brittle medium in the
boundary layer. Chamkha et al. [26] examined the issue of
mixed convection boundary layer flow in a continuous,
turbulent flow over a rigid cone enclosed in a brittle
thermal radiation medium. Nadeem and Saleem [27] ex-
amined turbulent nanofluid flow in a turning cone sub-
jected to an inducedmagnetic field. In this paper, we look at
a two-phase nanofluid flow along a vertically stretching
cone.

/e work of Heiring and Grosh [28] on natural con-
vection over a multi-isothermal cone is one of the most
recent cone-shaped surface boundary layer studies. A the-
oretical study of forced convection flow in relation to a
rotating cone was suggested by Tien and Tsuji [29]. Koh and
Price [30] have evaluated the transfer of heat past a pivoting
cone. Ellahi et al. [31] have studied the analysis of simplified
third-grade slide Couette fluid flow. /ere are some related
studies about this phenomenon provided in References
[32–43]. Extrusion processes, plastic product processing,
polymers, and silicone slips, wire and copper-coating, glass
and fiber optic production, hot spinning manufacture, metal
rolling, food preparation, and a variety of other topics are
frequently mentioned.

/e combination of fluids has a broad range of appli-
cations, including cooling systems, heating processes, as well
as biomedical and automotive science and technologies that
control heat and mass transfer rates. /e persistence of this
article is to inspect the flow of liquid-based two-phase
nanofluids (copper oxide and silver added to water) over a
rotating cone. Two-phase flows include the flows that
transition from pure liquid to vapor as a result of external
heating, separated flows, and scattered two-phase flows in
which phase is observed in a continuous carrier phase in the
form of particles, droplets, or leaks. We have solved gov-
erning differential equations with the assistance of the
BVP4V scheme under MATLAB. It also describes the
possessions of relevant bodily parameters that affect the
velocities, surface strain tensors, temperature, and convec-
tion rate with the help of graphs and tables.

2. Mathematical Formulations

We deliberate the flow of a compressible viscous nanofluid
along an erect turning cone enclosed in a brittle medium as a
two-dimensional time-dependent boundary layer. Figure 1
displays the scheme of coordinates and the corporal model.
We have used a rectangular coordinate system in which the
x− axis is determined along a meridian, the y− axis is de-
termined along a round section, and the z− axis is deter-
mined on the cone’s surface. Let u, v, and w be velocity gears,
with x (tangential), y (azimuthal), and z (horizontal) orders
(normal). /e equations can be written as follows:
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x zu
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/e boundaries conditions are set, subject to initial terms
and conditions as follows:

u(0, x, z) � v � w � ui,

viwi,

T � Ti,

u(t, 0, z) � w � 0,

v �
Ω1x sin α∗

1 − st
∗ ,

T � TW.

(5)

Reference [15] provides the momentum, temperature,
initial conditions, and boundary conditions for this issue.

/e following transformation is defined where A is the
Deborah number and c1 and c2 are the buoyancy param-
eters./e things of physical importance use in the two-phase
model are as follows: αnf is the thermal diffusivity, ]nf is the
kinematic viscosity, μnf is the effective dynamic viscosity, ρnf
is the density, (ρCP)nf is the heat capacity, κnf is the
nanofluid thermal conductivity, and (ρβ)nf is the nanofluid
thermal expansion coefficient:

η �
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0.5
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,
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]
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]nf �
μnf
ρnf

,

αnf �
knf

ρcp􏼐 􏼑nf

,

μ � μf(1 − ϕ)
− 2.5

,

ρnf � (1 − ϕ)∗ ρf + ϕρs,

ρcp􏼐 􏼑nf,

ρf � (1 − ϕ)∗ cpρ􏼐 􏼑
f

+ ϕ ρcp􏼐 􏼑
f
,

knf

kf

�
ks + 2kf􏼐 􏼑 − 2ϕ kf − ks􏼐 􏼑􏼐 􏼑

ks + 2kf + ϕ kf − ks􏼐 􏼑􏼐 􏼑
,

(ρβ)nf � (1 − ϕ)(ρβ)f + ϕ(ρβ)s.

(7)

/e transformation’s equations (7) and (6) are replaced
into (1)–(3). After that equation (1) will be fulfilled auto-
matically, and equations (2)− (4) diminish to the form as
follows:

y,v

x,uΩ

γ
Tw

Ag-CuO
nanoparticles

Tm

g

z,w

Figure 1: Bodily geometry of the problem.
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f″′

(1 − ϕ)
2.5 1 − ϕ + ϕ ρs/ρf􏼐 􏼑􏼐
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1
2
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Now, the boundary conditions are

f(0) � 0,

g(∞) � − 1 + α1,

g(0) � α1,

θ(0) � − 1,

f′(∞) � 0,

f′(0) � 0,

θ(∞) � 0.

(9)

/e skin friction Cfx across the x-axis, Cfy along y-axis,
and Nusselt sum Nux are physical quantities of our distinct
interest where

Cfx � − Re− (1/2)
x

2μ zu

zz
􏼠 􏼡

z�0
,

Cfy �
2μ zv

zz
􏼠 􏼡

z�0
− Re− (1/2)

x􏼐 􏼑,

(10)

or in the form of dimensionless

CfxRe
1/2
x � − f″( 􏼁η�0,

CfyRe
1/2
x � (− g′)η�0.

(11)

In dimensionless form, the heat transfer coefficient is
given as

NuxRe
1/2
x � − θ′(0). (12)

Now, the Reynolds number is

(13)

3. Numerical Solution

/e numerical technique performs the solutions of the
joined linear sinusoidal differential equations. /e following
initial estimates and nonlinear operators are f0, g0 , and θ0,
respectively, for velocity components and temperature fields.

New variables are defined simplifying differential
equations of high order in the form of first-order equation,
i.e.,

F � y1,

ρf � b,

f′ � y2,

g � y4,

F″ � y3,

ρs � a,

g′ � y5,

g″ � y5′,

F″′ � y3′,

θ(0) � y6,
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θ″ � y7′,

ks � m,

kf � n,

ρcp􏼐 􏼑
s
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f

� d.

(14)

Now, the new equations are
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Along with limitation,
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y(1) � 0,

y(6) � − 1,

y∞(2) � 0,

y(2) � 0,

y(4) � α1,

y∞(6) � 0.

(16)

4. Graphical Observations and Discussion

/is section of the learning includes the graphical and
mathematical outcomes of multiple major parameters on
velocities, temperature, coefficients of surface stress, and
coefficient of heat transfer. Such variations are noted in
figures. Figures 2(a) and 2(b) and Figures 3(a) and 3(b) are
sketched to demonstrate primary velocity activity for pa-
rameter mixed convection. /e positive parameter of
buoyancy functions as a desirable gradient of pressure is
mended to improve the property of the fluid. It is foretold
from Figures 2(a) and 2(b) and Figures 3(a) and 3(b) that the
thickness of the upper and lower layers will decrease with
increase in α1 and c1 values; further, the primary velocity will
have a higher magnitude for c1. /e effect of mixed con-
vection on buoyancy parameter c1 is to decrease the sec-
ondary velocity g (see Figures 4(a) and 4(b), respectively).
/e secondary velocity g is also seen to have the greater
magnitude for α1. A vertically spinning or expanding cone
was analyzed on the unstable frontier layer flow of both
water-based nanofluids. /e flow was contrary to viscous
debauchery, the cohort of excess heat, and a natural process.
/e numerical technique is used to resolve the equations.We
studied the belongings on the nanofluid velocity (f&g) and
temperature (θ) profiles and even the skin friction
(Cfx&Cfy) coefficient, energy, and mass exchange coeffi-
cients of the nanoparticle volume segment, buoyancy pa-
rameter c1, heat production, and chemical reaction. We
considered nanoparticles of copper oxide (Cuo) and silver

(Ag) with water as the basis fluid. In Figures 2(a) and 2(b)
and Figures 3(a) and 3(b), see the variation of the angular
velocity ratio α1, and the buoyancy coefficient c1 on tan-
gential velocity − f′ is plotted. Tangential velocities are
observed to decrease for α1 and c1 parameters. Figures 4(a)
and 4(b) display the variance of the angular velocity ratio α1
on azimuthal velocity g. At g, the action of α1 is contrary to
that of tangential velocity − f′. Here, Figures 5(a) and 5(b)
are shown in the temperature sector θ for specific Pr values.
/e width of the thermoelectric boundary layer is indicated
to reduce for rising Pr values. /is is because the higher
Prandtl number fluid hasmore heat conductivity resulting in
a softer heat boundary layer. Now, see in Cuo case Figure
5(a) temperature decrease with increases the value of Pr but
contrary in Ag case Figure 5(b). Figures 6(a) and 6(b) ad-
dress the variance in the ratio of the c1 buoyancy parameter
on the secondary velocity skin friction coefficient. Skin
values decrease in Cuo case but enhance in Tio2 case.
Figures 7(a) and 7(b) show changes in the coefficient of Cfy

skin friction by rising α1. Figure 7(a) shows that Cfy values
increase in Cuo but Figure 7(b) shows decline values of Cfy.
Physically, we can conclude that the surface temperature is
higher than the fluid temperature close to the cone
boundaries; therefore, larger c1 gives the greater values of
skin friction. It is examined that the coefficient of tangential
skin friction (Cfx&Cfy) decreases as α1 increases (see
Figures 7(a) and 7(b)). Figures 8(a) and 8(b) and Figures 9(a)
and 9(b) show that the primary skin friction coefficients
increase or decrease with the rise in α1, also the same be-
havior for c1. In Figures 8(a) and 9(a), Cfy values decline for
Cuo, and we see that in Figures 8(b) and 9(b), the values of
Cfx are enhanced when the values of α1 and c1 are increased.
Since the impact of Pr in the primary − f′ and secondary g

directions on the velocity profiles is relatively small,
therefore, the profiles are ignored. In Figures 10(a) and
10(b), the heat exchange rate has decreased, with increase in
Pr. In Figures 10(a) and 10(b), see that the Nusselt number
decreases when the values of Pr increase. Finally, figures also
display the positive impact of heat dissipation on the local
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Figure 2: (a) Impact of α1 on the velocity distribution − f′(n) for Cuo nanoparticles. (b) Impact of α1 on the velocity distribution − f′(n) for
Ag nanoparticles.
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Figure 3: (a) Impact of c1 on velocity distribution − f′ for Cuo nanoparticles. (b) Impact of c1 on velocity distribution − f′ for Ag
nanoparticles.
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Figure 4: (a) Impact of α1 on velocity profile g(η) for Cuo nanoparticles. (b) Impact of α1 on velocity profile g(η) for Ag nanoparticles.
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Figure 5: (a) Deviation of Pr on temperature profile θ(η) for Cuo nanoparticles. (b) Deviation of Pr on temperature profile θ(η) for Ag
nanoparticles.
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Figure 6: (a) Impact on skin friction Cfy along y-direction of c1 for Cuo nanoparticles. (b) Impact on skin friction Cfy along y-direction of
c1 for Ag nanoparticles.
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Figure 7: (a) Impact on skin friction of α1 besides y-direction for Cuo − water. (b) Impact on skin friction of α1 besides y-direction for
Ag − water.

70

50

60

40

30

20

10
0.5 1 1.5 2

C
fx

Re
x–1

/2

α = 0.7, 1.0, 1.5, 2.0

(a)

α = 0.7, 0.8, 0.9, 1.0

–1.8

–2

–2.2

–2.4

–2.6

–3

–2.8

–3.2

–3.6

–3.4

1 1.5 2 2.5 3 3.5 4

C
fx

Re
x1/

2

(b)

Figure 8: (a) Influence on skin frictionCfx along x-direction of α1 for Cuo − water. (b) Influence on skin frictionCfx along x-direction of α1
forAg − water
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Nusselt number. It must be noted that the shape effects in all
figures are positive and growing factor in the ratio of heat
flow. Table 1 and Table 2 represent the variations of α1, c1, s,

and Pr on the coefficient of skin friction (Cfx&Cfy) and
local Nusselt number (Nux). Table 3 shows the physical
properties of copper oxide and silver.
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Figure 9: (a) Influence on skin friction of c1 along y-direction for Cuo − water. (b) Influence on skin friction of c1 along y-direction for
Ag − water.
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Figure 10: (a) Impact on the Nusselt number of Pr for Cuo − water of nanoparticles. (b) Impact on the Nusselt number of Pr for water Ag of
nanoparticles.

Table 1: Variations of α, c, s, and Pr on the coefficient of skin friction Cfx andCfy and local Nusselt number (Nux) for Cuo − water.

α1 c1 s Pr Cfx Cfy Nux

0.5 1.5 2.0 1.0 0.56971 0.64524 − 33.7303
2.5 0.55597 0.61825 − 33.8036
3.5 0.54147 0.59124 − 33.8762
4.5 0.52733 0.56420 − 33.9481

0.8 0.75065 0.35930 − 65.5158
1.0 2.5 0.8 2.5 0.73655 0.55678 − 65.6143
1.2 0.72245 0.81300 − 65.7122
1.4 0.70835 0.86329 − 65.8094

0.6 0.55559 0.54225 − 71.2271
0.8 0.54147 0.52817 − 71.1483
1.0 0.52735 0.51408 − 71.1877

1.2 2.5 1.2 3.5 0.51323 0.50000 − 71.1087
1.0 − 21.5615 − 26.2363 − 30.2121
1.5 − 21.7700 − 26.3719 − 30.3089

1.2 3.5 1.0 2.0 − 21.9711 − 26.5047 − 30.4045
2.5 − 22.1854 − 26.1654 − 30.4988
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5. Concluding Remarks

\In this numerical study, we have considered an unstable two-
phase nanofluid flow and heat transfer attitudes over a cone
littered with two diverse metal types specifically Ag and Cuo.
Unsteady mixed convection flow has been investigated in a
moving viscous fluid on a turning cone. Numerical solution of
ordinary differential equations BVP4C has been implemented
successfully./e afresh determined outcomes are recognized to
be accessible in the literature in traditional agreement with the
findings previously reported. Viscous dissipation was found to
have the consequence of swelling the nanofluid temperature
within the gravity effects area when the heat transfer rate from
the layer decreases with an increase in a viscous heat gener-
ation. /e analysis summary is as follows:

(1) For increasing c1 and α1, the tangential velocity field
− f′ declines. However, s near to the boundary often
causes − f′ to decrease and increases it far away from
the boundary for increasing c1 and α1.

(2) On elevating α1, the azimuthal velocity field g de-
creases and decreases with increase in s.

(3) For higher values of Pr, the temperature profile θ(η)

increases for Ag but decreases for Cuo.
(4) Growing the importance of shape effects has raised

the temperature profile and also the local Nusselt
number.

(5) /e two-phase nanoparticle model has always a
bigger impact than nanoparticles on the temperature
profile.

List of Symbols

Pr: Prandtl number
T: Temperature
Cfx: In the x-direction, there is local skin friction
Cfy: Skin friction in y-direction
f, g: /e velocity of a dimensionless stream function

component in x− and y− direction, respectively
K, L: /ermal conductivity and area of the indentation,

respectively, Km− 1K− 1

μ: Dynamic viscosity Nms− 2

Nux: Local Nusselt number
Rex: Reynold number based on x

ReL: Reynold number based on L

(ρCp)nf: Heat capacity of nanofluid jk− 1

(u, v, w): Velocity components ms− 1

t, t∗: Dimensional and dimensionless times,
respectively

(x, y, z): /e distance measured along the meridian of a
circular segment parallel to the cone’s superficial

α: Semiupright angle of the cone
η: Similarity variable
θ: Dimensionless temperature
c1: Buoyancy parameter due to temperature
]: Kinematic viscosity m2s− 1

ρ: Density kgm− 3

ρnf: Nanofluid density kgm− 3

μf: /e viscosity of fluid Nms− 2

μnf: Nanofluid viscosity Nms− 2

αnf: Nanofluid thermal diffusivity m2s− 1.
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-e performance of mass transfer rate, friction drag, and heat transfer rate is illustrated in the boundary layer flow region via
induced magnetic flux. In this recent analysis, the Buongiorno model is introduced to inspect the induced magnetic flux and
radiative and convective kinetic molecular theory of liquid-initiated nanoliquid flow near the stagnant point. -e energy equation
is modified by radiation efficacy using the application of the Rosseland approximation. -rough similarity variables, the available
formulated partial differential equations are promoted into the nondimensional structure. -e variation of the induced magnetic
field near the wall goes up, and very far away, it decays when the size of the radiation characteristic ascends.-e velocity amplitude
expands by enlargement in the amount of the magnetic parameter, mixed convection, thermophoresis parameter, and fluid
characteristic.-e nanoparticle concentration reduces if the reciprocal of the magnetic Prandtl number expands.-e temperature
spectrum declines by enhancing the amount of the magnetic parameter. Drag friction decreases by the increment in the values of
radiation and thermophoresis parameters. Heat transport rate increases when there is an increase in the values of Brownian and
magnetic parameters. Mass transfer rate increases when there is incline in the values of the magnetic Prandtl and fluid parameter.

1. Introduction

Improving the thermal efficiency of fluid flows under
different conditions and applications has always been a
famous research area. Besides, the significance of this
issue because of the very wide range of applications in
industries has made this area attractive to scientists and
companies working in this field. To improve effectiveness,
any solution proposed for this in any application can have
different technical aspects that should be considered and
investigated adequately [1]. For example, Ellahi et al. [2]
explored the slip effect in the Newtonian fluid two-phase
flow. Particles of the nanosized Hafnium are utilized in
the base fluid. Two cases are discussed for fluid under

consideration, namely, (i) phase of particles and (ii) fluid
phase. -ree forms of geometries are investigated in both
cases. Relevant studies of nanofluids are discussed in
recent articles [3–19].

-ere are many engineering applications of the mixed
convective boundary layer flow such as food processing,
solidification system, and nuclear reactors. Convection also
plays an important role in managing the production cycle
such as medications and cosmetics. -e transverse magnetic
field that merged with the boundary layer-mixed convection
flow towards an inclined plate with a wave is examined. -e
retardation inflow far from the magnetic field and leading-
edge yield acceleration in the leading-edge close flow of the
wavy sheet is observed by Wang and Chi-Chang [20]. Many
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researchers analyzed the regime of mixed convection flows
in their articles [21–26].

-ere are several uses of free convection in the presence
of Lorentz forces, such as fire engineering and geophysics.
Newly proposed nanotechnology is a new passive way to
enhance heat transfer [27]. -e induced magnetic field’s
influence on temperature curves is represented by Ghosh
et al. [28]. Vanita and Kumar [29] have examined transient
flow towards a cone with the inclined magnetic field. Akbar
et al. [30] investigated nanoparticle interaction for peristaltic
flow in an asymmetric channel towards the magnetic field
induced. Nadeem and Ijaz [31] explored the impulse of
nanoparticles as a drug carrier to investigate theoretically
stenosis arteries in the existence of the induced magnetic
effect. Hayat et al. [32] observed second-grade nanoliquid
flow with the induced magnetic field towards a stretched
convectively heated surface. Rashid et al. [33] inspected the
induced magnetic field effects of the Williamson peristaltic
fluid flow in a curved channel.

-e radiation may be sunlight, infrared, or visible and
the nature of the material emitted by such radiation
depends on its exposure. Depending on how solar heat is
collected and distributed or converted into solar
electricity, a heat source and its systems are also cate-
gorized as either passive solar or active solar. -ermal
radiations are defined as electromagnetic emissions from
a sheet with a temperature greater than zero [34]. Viskant
and Grosh [35] noted that when considering the power
plants, hypersonic flights, cooling systems, and com-
bustion chambers, radiations became an important part.
Using Rosseland’s approximations, they addressed
thermal radiation impacts for the flow of Falkner-Skan.
Hayat et al. [36] portrayed the Ag-CuO/H2O rotating
hybrid nanofluid flow in the existence of partial slip
radiation impacts. Hussain et al. [37] noted the non-
Newtonian fluid flow with radiation efficacy and time-
dependent viscosity. Li et al. [38] examined the radiation
impacts in the heat storage system by adding nano-
particles. Zeeshan et al. [39] investigated, due to entropy
generation, the impacts of electro-
magnetohydrodynamics radiative diminishing internal
energy of the pressure-driven dioxide-water titanium
nanofluid flow.

-e non-Newtonian fluid is more naturalistic to consider
because of the rheological characteristics of physiological
and industrial fluids. -ere is no extensive model that can
describe themoving structure of all fluids due to the complex
behavior of non-Newtonian fluids. -us, to study non-
Newtonian fluid flow characteristics, numerous models have
been developed. -e Eyring–Powell model was obtained
from a liquid molecular hypothesis. And the inclusion of
additional analytical constants was further improved. It
accurately reflects the essence of Newtonian for low and high
shear values. For example, rubber melts, condensed liquids,
toiletries, cosmetics, and vegetable products are included in
these fluids [40]. Appropriate studies of Eyring–Powell fluid
may be mentioned in these articles [41–45].

-is report is to narrate the specifications of radiative
mass and heat transfer enhancement and flow analysis of

the molecular kinetic theory of liquid-initiated boundary
layer stagnation point nanofluid towards a vertical
stretched surface. -e non-Newtonian nanofluid model is
manifested with the induced magnetic field, radiation
efficacy, combined convection, Brownian, and thermo-
phoresis diffusion. -e flow field describes that, in the
form of partial differential equations, the laws of con-
servation of momentum are considered. By reducing the
number of independent variables by using the technique
of similarity transformation, these coupled equations are
then purified into the system of ordinary differential
equations. -e results are interpreted by the MATLAB
bvp4c technique. Induced magnetic pattern near the wall
decreases, and far away, it increases with an increase in
the values of the reciprocal of the magnetic Prandtl
number. -e concentration curve enhances when the
number of magnetic, stretching, and Prandtl character-
istics incline. -is study of nanofluid is mainly applied in
heat transfer devices such as electrical cooling systems,
radiators, and heat exchangers.

2. Mathematical Formulations

Consider the incompressible, steady, two-dimensional (2D)
stagnant point flow under the assumption of the induced
magnetic field in the molecular kinetic theory of liquid-
initiated nanofluid and heat transport enhancement in the
existence of combined convection and radiation towards a
vertical stretched sheet as shown in Figure 1. -e surface
stretching with velocity uw(x) � dx and ambient velocity is
u∞(x) � bx while the origin is fixed at O; see Figure 1.

Taken the Cartesian coordinate structure, the velocity of
liquid flow will change through x- and y-axes in a way that
x − axis is assumed vertically and y − axis is supposed
horizontally. -e fundamental form of the kinetic molecular
postulate of liquid-originated nanofluid is [45]

τ � μ +
1
δ _c
sinh− 1 1

c1
_c􏼠 􏼡􏼢 􏼣A1, (1)

where

_c �

�������

tr A
2
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1
2

􏽲

, (2)

where δ, c1, μ, A1, and tr are fluid parameters, dynamic
viscosity, first Rivlin-Ericksen tensor, and trace, respectively.
Here, τ is the extra stress tensor and
A1 � [(gradv)t + gradv]. We consider the second-order
approximation for sinh− 1 function as

sinh− 1 1
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-en, equation (1) becomes

τ � μ +
1
δc1

−
_c
2

6δc
3
1

􏼢 􏼣A1. (4)

Under these premises, the governing equations of this
particular investigation are as follows:
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-e above equations narrate the viscosity coefficient ],
where (u, v) and (H1, H2) describe the velocity and

magnetic field components along the x and y directions,
respectively, whereas uw(x) � dx and H∞(x) � xH0 are the

x

O

Stagnation
point

Induced magnetic field

uw = dx

u∞ = bx

T∞

C∞

H1

H2

u

v

x

y

g

Figure 1: Geometry of the problem.

Mathematical Problems in Engineering 3



x velocity and y magnetic field at the edge of the boundary
layer and H0 is the uniform value of the vertical magnetic
field at infinity.

-e radiation heat flux is given by using Rosseland
approximation:

qr � −
4σ∗

3k
∗

zT
4

zy
􏼠 􏼡, (11)

where σ∗, k∗ are the Stefan–Boltzmann and the mean ab-
sorption coefficient, respectively, whereas via extending T4

about T∞ in Taylor’s series and ignoring the larger terms,

T
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� 4T
3
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4
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Substituting equations (11) and (12) into (9), the heat
equation takes the form
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-e relevant boundary conditions are

u � uw(x) � dx,

v � 0,
zH1

zy
� 0,

H2 � 0, T⟶ Tw, at y⟶ 0,

(14)

u � u∞(x) � bx,

H1 � H∞,

T⟶ T∞, C⟶ Cw, at y⟶∞.

(15)
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d]

√
F(c),

H1 �
H0x

L
􏼒 􏼓h′(c),

H2 � −

����
]
d

􏼒 􏼓

􏽲
H0

L
􏼒 􏼓h(c),

u � uw(x) � dx,

H∞ � H0
x

L
,

θ(c) �
T − T∞

Tw − T∞
,

φ(c) �
C − C∞

Cw − C∞
.

(16)

-e magnetized pressure is described as

p � p +
μ|H|

2

8π
. (17)

Equations (5) and (6) are satisfied identically. Equations
(7), (8), (10), and (13)–(15) reduce to

1 + ε − εm1􏼂 􏼃F″′ + FF″ − F′( 􏼁
2

+ η2 + β h′( 􏼁
2

− hh″ − 1􏽨 􏽩 + λ1θ − Nrφ � 0, (18)

α1h″′ + Fh″ − hF″ � 0, (19)

1
Pr

1 +
4
3
Rd􏼒 􏼓θ″ + θ′F + Nbφ′θ′ + Nt θ′( 􏼁

2
� 0, (20)

φ″ + Le PrFφ′ +
Nt

Nb

θ″ � 0, (21)

with boundary conditions
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F � 0,

F′ � 1,

θ � 1,

φ � 0,

h � 0,

h″ � 0, at c⟶ 0,

(22)

F′ � η,

θ � 0,

φ � 1,

h′ � 1, at c⟶∞.

(23)

Here, prime denotes derivative for c and other di-
mensionless parameters are described as

λ1 �
(1 − C)βρfm Tw − T∞( 􏼁g

d2xρf

,

Nr �
ρp − ρfm􏼐 􏼑 Cw − C∞( 􏼁g

d2xρf

,

η �
b

d
, Rd �

4T
3
∞σ
∗

k
∗
kf

, Nt �
ρcp􏼐 􏼑

p
DT Tw − T∞( 􏼁

ρcp􏼐 􏼑
f
]T∞

, Pr �
]
α

,

Nb �
ρcp􏼐 􏼑

p
DB Cw − C∞( 􏼁

ρcp􏼐 􏼑
f
]

, Le �
α

DB

, α �
K

ρcp􏼐 􏼑
f

,

ε �
1

δc1μ
, m1 �

d3x2

2c
2
1]

, ] �
μ
ρf

, α1 �
α∗1
]

, Re(1/2)
x �

����
uwx

]

􏽲

,

β �
H

2
0μ∞

4d
2πρf

. (24)

Physical quantities are very valuable from an engi-
neering point of view. -ese quantities reported the flow
behavior which is defined by local Nusselt number Nux,
skin friction Cf, and local Sherwood number Shx defi-
nitions as follows:

Cf �
τw

ρu
2
w

,

Nux �
xqw

k Tw − T∞( 􏼁
,

Shx �
xqm

DB Cw − C∞( 􏼁
,

(25)

where τw represents the surface shear stress, qw denotes the
surface heat flux, and qm presents the surface mass flux for
fluid:

τw � μ +
1
δc1

−
1

6δc31

zu

zy
􏼠 􏼡

2
⎛⎝ ⎞⎠

zu

zy
⎡⎢⎢⎣ ⎤⎥⎥⎦

y�0

,

qw � − k
zT

zy
−
16σ∗T3

∞
3k∗

zT

zy
􏼠 􏼡􏼢 􏼣

y�0
,

qm � − DB

zC

zy
􏼢 􏼣

y�0
.

(26)

Using invoking transformation equation (16), the di-
mensionless local Nusselt number, skin friction, and the
local Sherwood number become

CfRe
(1/2)
x � (1 + ε)f″(0) −

εm1

3
f″(0)( 􏼁

3
􏼔 􏼕,

NuxRe
− (1/2)
x � − 1 +

4
3
Rd􏼔 􏼕θ′(0),

ShxRe
− (1/2)
x � − φ′(0).

(27)

3. Results and Discussion

Coupled nonlinear differential equations (18)–(21) and their
boundary conditions (22) and (23) are numerically worked out
by employing theMATLAB scheme.-is portion illustrates the
impact of nondimensional sundry characteristics on induced
magnetic, temperature, velocity, and concentration flow char-
acteristics numerically and graphically. Figure 2 portrays the
impact of η versus h′(c). It is noticeable that the induced
magnetic spectrum falls when increasing in η. Figure 3 des-
ignates the effects of α1 on the induced magnetic pattern. Dual
behavior has been seen for α1, near the wall, it is getting down,
and far away, it moves upward. -e field of h′(c) rises by
enhancing the amount of β in Figure 4. With larger values of
mixed convection characteristic, the flow of induced magnetic
expands as shown in Figure 5. Figures 6 and 7 demonstrate the
effect of Brownian and thermophoresis diffusion on the induced
magnetic field, respectively. When there is increase in the
amount of Brownian diffusion, the induced magnetic field
decreases, and the induced magnetic field increases by growing
quantity of thermophoresis. Figure 8 shows the consequence of
the Prandtl number on the induced magnetic curve, and profile
falls by a bigger amount of Prandtl. -e impacts of thermal
radiation flux on the magnetic field are described in Figure 9.
-e variation of h′(c) near the wall moves upward and very far
away it moves downward by increasing the amount of thermal
radiation. Figure 10 exhibits the outcome of the fluid parameter
on h′(c)expands in the values of ε which cause rise inh′(c).
Figure 11 exhibits the deviation of β on velocity curve. When
there is expansion in the amount of β, then there is increase in

Mathematical Problems in Engineering 5



velocity flow. Figure 12 portrays the effect of λ1 on the flow of
velocity. -e diagram shows that the fluctuation shoots up by
increment in the mixed convection parameter. Nanofluid be-
haviour is shown by Brownian and thermophoretic charac-
teristics in in Figures 13 and 14. It is depicted that the contrary
attitude showed variation in velocity decline for Nb and incline
for Nt by enhancing the quantity of these parameters. Figure 15
investigates that the velocity graph expands if the fluid pa-
rameter ε rises. Figure 16 demonstrates that the field of velocity
shrinks by rising the amount of the reciprocal of the magnetic
Prandtl number. Figure 17 shows that when increasing
stretching parameter, the field of F′(c) enhances. Figures 18
and 19 show opposite behavior against the parameters of α1 and
β, respectively. -e temperature profile increases and decreases
against the characteristics ofα1 and β. Figure 20 explores the
impact of Lewis number on temperature distribution, θ(c) rises

near the wall, and far away, it declines compared to Le. -e
temperature reduction against the Brownianmotion diffusion is
shown in Figure 21. Figure 22 describes that temperature sketch
grows by inclining the quantity of thermophoresis diffusion. It is
easily noticed that enlarging the amount of Prandtl number
causes the figure of temperature decline in Figure 23. Figure 24
depicts the influence of η on the temperature field. -e am-
plitude of temperature diminishes when the size of the
stretching parameter boosts up. Figure 25 explores the influence
of radiation characteristics on temperature portraits; field en-
hances by rising the amount of radiation parameter.
Figure 26shows the influence of buoyancy ratio parameter on
temperature distribution field increases by increasing the
amount of buoyancy ratio parameter. -e nanoparticle con-
centration field decreases if the reciprocal of the magnetic
Prandtl number rises in Figure 27. Figure 28 exhibits the
outcome of β on the concentration field. -e figure of con-
centration inclines when the number of β grows. Figure 29
portrays the result of buoyancy ratio characteristics on nano-
particle concentration. It is easily observed that the field of
concentration reduces if the number ofNr increases. Figures 30
and 31 define the matching outcomes on the concentration
profile. When the size of Pr and η expands, the nanoparticle
concentration grows. Streamlines graphs against the distinct
amount ofα1andεare shown in Figures 32–35. Table 1 shows the
impact of different characteristics on drag friction CfRe(1/2)

x .
-eNusselt number for noticeable amounts ofRd, Nt, Nb, ε, λ1,
m1, β, and α1 is analyzed and characterized in Table 2. Table 3
portrays the deviation of different amounts of parameters on the
local Sherwood number.

4. Concluding Remarks

We studied the molecular theory of liquid-originated
non-Newtonian nanofluids which are commonly used in
heat transfer devices such as heat exchangers, engine oils,
electrical cooling systems (such as flat plates), nuclear
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Table 1: Variation of Cf(Rex)(1/2) for distinct amounts of nondimensional parameters.

Rd Nt Nb ε Pr λ1 m1 η Nr Le β α1 Cf(Rex)(1/2)

0.1 0.1 0.1 1 7 0.1 0.1 0.5 0.1 0.1 0.1 0.5 − 0.85974
0.3 − 0.87093
0.5 − 0.88148

0.1
0.2 0.1 1 7 0.1 0.1 0.5 0.1 0.1 0.1 0.5 − 0.93303
0.3 − 1.00570
0.5 − 1.14835

0.1
0.1 0.2 1 7 0.1 0.1 0.5 0.1 0.1 0.1 0.5 − 0.82344

0.3 − 0.81182
0.4 − 0.80635

0.1
0.1 0.1 1.2 7 0.1 0.1 0.5 0.1 0.1 0.1 0.5 − 1.43201

1.3 − 1.40042
1.4 − 1.37091

0.1
0.1 0.1 1 7 0.2 0.1 0.5 0.1 0.1 0.1 0.5 − 0.83200

0.3 − 0.80432
0.4 − 0.77670
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Table 1: Continued.

Rd Nt Nb ε Pr λ1 m1 η Nr Le β α1 Cf(Rex)(1/2)

0.1
0.1 0.1 1 7 0.1 0.2 0.5 0.1 0.1 0.1 0.5 − 0.84285

0.4 − 0.84659
0.6 − 0.85046

0.1
0.1 0.1 1 7 0.1 0.1 0.5 0.1 0.1 0.2 0.5 − 0.66689

0.4 − 0.09788
0.6 0.68368

0.1
0.1 0.1 1 7 0.1 0.1 0.5 0.1 0.1 0.1 0.2 − 0.84019

0.4 − 0.85400
0.6 − 0.86503

Table 2: Variation of Nux(Rex)− (1/2) for distinct amounts of nondimensional parameters.

Rd Nt Nb ε Pr λ1 m1 η Nr Le β α1 Nux(Rex)− (1/2)

0.1 0.1 0.1 1 7 0.1 0.1 0.5 0.1 0.1 0.1 0.5 3.68235
0.3 3.46053
0.5 3.25753

0.1
0.2 0.1 1 7 0.1 0.1 0.5 0.1 0.1 0.1 0.5 2.10453
0.3 2.04608
0.5 1.91548

0.1
0.1 0.2 1 7 0.1 0.1 0.5 0.1 0.1 0.1 0.5 2.21832

0.3 2.27728
0.4 2.33814

0.1
0.1 0.1 1 9 0.1 0.1 0.5 0.1 0.1 0.1 0.5 2.46411

12 2.86748
15 3.22622

0.1
0.1 0.1 1 7 0.1 0.2 0.5 0.1 0.1 0.1 0.5 2.15845

0.4 2.15809
0.6 2.15774

0.1
0.1 0.1 1 7 0.1 0.1 0.5 0.1 0.1 0.2 0.5 2.18123

0.4 2.24457
0.6 2.32438

0.1
0.1 0.1 1 7 0.1 0.1 0.5 0.1 0.1 0.1 0.2 2.16042

0.4 2.15919
0.6 2.15807

Table 3: Variation of Shx(Rex)− (1/2) for distinct amounts of nondimensional parameters.

Rd Nt Nb ε Pr λ1 m1 η Nr Le β α1 Shx(Rex)− (1/2)

0.1 0.1 0.1 1 7 0.1 0.1 0.5 0.1 0.1 0.1 0.5 − 1.93921
0.3 − 2.20711
0.5 − 2.43144

0.1
0.2 0.1 1 7 0.1 0.1 0.5 0.1 0.1 0.1 0.5 − 3.70463
0.3 − 5.34866
0.5 − 8.21711

0.1
0.1 0.2 1 7 0.1 0.1 0.5 0.1 0.1 0.1 0.5 − 1.03388

0.3 − 0.73383
0.4 − 0.58575

0.1
0.1 0.1 1 9 0.1 0.1 0.5 0.1 0.1 0.1 0.5 − 2.21493

12 − 2.57936
15 − 2.90386

0.1
0.1 0.1 1 7 0.1 0.2 0.5 0.1 0.1 0.1 0.5 − 1.93906

0.4 − 1.93874
0.6 − 1.93842

0.1
0.1 0.1 1 7 0.1 0.1 0.5 0.1 0.1 0.2 0.5 − 1.95958

0.4 − 2.01667
0.6 − 2.08858

0.1
0.1 0.1 1 7 0.1 0.1 0.5 0.1 0.1 0.1 0.2 − 1.94083

0.4 − 1.93972
0.6 − 1.93872
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reactors, biomedicine lubricants, and radiators. -e key
points of observation in the recent analysis are as follows:

(i) Induced magnetic pattern near the wall declines, and
far away, it inclines when (α1) intensifies. -e var-
iation of h′(c) field near the wall goes up and very far
away it decays when the size (Rd) ascends.

(ii) h′(c) (nondimensionless induced magnetic func-
tion) falls, whereas (η), Brownian diffusion (Nb),
and Prandtl number (Pr) rise. -e field h′(c)

expands by enhancing the amount of magnetic
parameter (β), mixed convection (λ1), thermo-
phoresis parameter (Nt), and fluid parameter (ε).
-e variation of h′(c) profile near the wall moves
upward and very far away it moves down when the
size (Rd) ascends.

(iii) -e velocity amplitude expands by enlargement in the
amount ofmagnetic parameter (β), mixed convection
(λ1), thermophoresis parameter (Nt), fluid charac-
teristic (ε), and stretching parameter (η).F′(c) col-
lapses by Brownian motion (Nb) and (α1).

(iv) -e temperature spectrum increases when the values
of (α1), radiation parameter(Rd), and buoyancy
ratio(Nr) increases and decreases by Prandtl num-
ber, magnetic parameter(β), Brownian motion dif-
fusion(Nb), and stretching parameter(η).
θ(c)(nondimensional temperature function) rises
near the wall, and far away, it diminishes when there
is increase in the values of Le.

(v) -e nanoparticle concentration portrait reduces if
the reciprocal of the magnetic Prandtl number
(α1) and (Nr) rises. Concentration enlarges when
the number of (β), (Pr), and (η) grows.

(vi) Drag friction decays by the inclination in the values
of (Rd), (Nt), (m1), and (α1). When inclining the
amount of (Nb), (ε), (λ1), and (β), drag force
expands.

(vii) Heat transfer rates are increased when there is an
increase in the values of (Nb), (Pr), and(β)and
decrease when there is an increase in the values of
(Rd), (Nt), (m1), and(α1).

(viii) Mass transfer rates diminish, for (Rd), (Nt), (Pr),
and (β), but increases by (Nb), (m1), and (α1).

Abbreviations

α1: Reciprocal of the magnetic Prandtl number (− )

μ: Dynamic viscosity (Nsm− 2)

k∗: Mean absorption coefficient (− )

b: Body forces (Nm− 3)

C: Nanoparticles concentration (kgm− 3)

F: Dimensionless velocity function (− )

T: Temperature (− )

Nb: Brownian motion parameter (− )

Nux: Local Nusselt number (− )

C∞: Ambient fluid concentration (kgm− 3)

Tw: Hot fluid temperature (K)

(u, v): Velocity components (ms− 1)

m1: Fluid characteristic (− )

τ: Extra stress tensor (− )

ε: Fluid characteristics (− )

Shx: Local Sherwood number (− )

Rd: Radiation parameter (− )

λ1: Mixed convection parameter (− )

ρf: Density of the base fluid (kgm− 3)

qw: Surface heat flux (− )

np: Nanoparticle (− )

α: -ermal diffusivity (m2s− 1)

α∗1 : Magnetic diffusivity (− )

θ: Dimensionless heat transfer function (− )

c: Similarity variable (− )

ρ: Density (kgm− 3)

β: Magnetic parameter (− )

tr: Trace (− )

Cw: Hot fluid concentration (kgm− 3)

A1: Rivlin–Ericksen tensor (− )

Cf: Skin friction coefficient (− )

DB: Brownian diffusion coefficient (m2s− 1)

DT: -ermophoresis diffusion coefficient (m2s− 1)

g: Gravity acceleration (ms− 2)

Le: Lewis number (− )

Nt: -ermophoresis parameter (− )

Rex: Local Reynolds number (− )

σ∗: Stefan–Boltzmann constant (Wm− 2K− 4)

T∞: Ambient temperature (K)

uw: Stretching sheet velocity (ms− 1)

u∞: External flow velocity (ms− 1)

(x, y): Cartesian coordinate components (m)

δ: Fluid characteristics (− )

c1: Fluid parameter (− )

Pr: Prandtl number (− )

Nr: Buoyancy ratio characteristics (− )

τw: Surface shear stress (− )

qm: Surface mass flux (− )

f: Base fluid (− )

η: Stretching parameter (− )

h: Dimensionless magnetic function (− )

φ: Dimensionless concentration
function (− )

ρp: -e density of the nanoparticles (kgm− 3).
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To study the heterogeneous nature of lifetimes of certain mechanical or engineering processes, a mixture model of some suitable
lifetime distributions may bemore appropriate and appealing as compared to simple models.*is paper considers amixture of the
Marshall–Olkin extended Weibull distribution for efficient modeling of failure, survival, and COVID-19 data under classical and
Bayesian perspectives based on type-II censored data. We derive several properties of the new distribution such as moments,
incomplete moments, mean deviation, average lifetime, mean residual lifetime, Rényi entropy, Shannon entropy, and order
statistics of the proposed distribution. Maximum likelihood and Bayes procedure are used to derive both point and interval
estimates of the parameters involved in the model. Bayes estimators of the unknown parameters of the model are obtained under
symmetric (squared error) and asymmetric (linear exponential (LINEX)) loss functions using gamma priors for both the shape
and the scale parameters. Furthermore, approximate confidence intervals and Bayes credible intervals (CIs) are also obtained.
Monte Carlo simulation study is carried out to assess the performance of the maximum likelihood estimators and Bayes estimators
with respect to their estimated risk. *e flexibility and importance of the proposed distribution are illustrated by means of four
real datasets.

1. Introduction

In the history of statistics, the use of finite mixture models is
very old. *ey were particularly used to model population
heterogeneity, generalize distributional assumptions, clus-
tering and classification, etc. *e concept of the finite
mixture distribution was pioneered by Newcomb [1] for
modeling outliers. Eight years later, Pearson [2] considered a
mixture of two univariate Gaussian distributions to estimate
the parameters of the model using the method of moments
(MOM) to analyze a dataset containing ratios of the forehead
to body lengths for 1,000 crabs. Since then, several authors
have studied finite mixture models under different scenarios.
Mendenhall and Hader [3] considered exponentially

distributed failure time distributions based on censored
lifetime data to estimate the model parameters using the
maximum likelihood method. In their study, they divided
the failure population into two subpopulations, each rep-
resenting a different cause or type of failure. Radhakrishna
et al. [4] considered both moment and maximum likelihood
estimators of the unknown parameters of a two-component
mixture of generalized gamma distribution. Ahmed et al. [5]
obtained approximate Bayes estimators for parameters of the
mixture of two Weibull distributions under type-II cen-
soring. Al-Hussaini et al. [6] applied both maximum like-
lihood and Bayes estimation methods on a two-component
mixture of the Gompertz distribution based on type-I and
type-II censoring. Jaheen [7] adopted both maximum
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likelihood and Bayesian approach to discuss the problem of
estimating the parameters using the finite mixture of two
exponential distributions based on record statistics. Shawky
and Bakoban [8] adopted both maximum likelihood and
Bayesian approach to estimate the parameters of the model,
reliability, and failure rate functions of two-component fi-
nite mixtures of exponentiated gamma distribution. Abu-
Zinadah [9] used maximum likelihood and Bayes estimation
methods to estimate the parameters, reliability, and hazard
functions of a mixture of exponentiated Pareto and expo-
nential distribution under complete and type-II censoring
schemes. Prakash [10] adopted the Bayes method to estimate
the parameters from the mixture of two Weibull distribu-
tions based on informative and noninformative priors.
Zhang et al. [11] proposed a mixture Weibull proportional
hazard model to predict the failure of a mechanical system
with multiple failure modes. *ey estimated the mixed
model parameters by combining historical lifetime and
monitoring data of all failure modes. ALgfary [12] intro-
duced the finite mixture of two exponentiated Kumar-
aswamy (MEKum) distributions and obtained the
maximum likelihood estimates for the vector of the pa-
rameters of the MEKum distribution. Adham and ALgfary
[13] adopted the Bayesian approach to estimate the vector of
parameters of the finite mixture of two-component expo-
nentiated Kumaraswamy distribution. *ey also obtained
Bayesian predictive density functions of future observations
from the MEKum distribution. Ateya and Al Khald [14]
studied the finite mixture of truncated generalized Cauchy
distribution based on type-I, type-II, and progressively type-
II censored samples. Aslam et al. [15] studied the three-
component mixture of exponential, Rayleigh, Pareto, and
Burr type-XII distributions in relation to reliability analysis.
Tahir et al. [16] studied the properties of the three-com-
ponent mixture of Rayleigh distributions based on doubly
censored lifetime data. Kalantan and Alrewely [17] studied
the two-component Laplacemixturemodel and obtained the
estimates of the parameters using maximum likelihood and
method of moments. Recently, Tahir et al. [18] also studied
the three-component mixture of exponential distributions
from the Bayesian perspective based on type-II doubly
censoring sampling scheme. Kharazmi et al. [19] studied the
2-component mixture of Topp–Leone distribution and
obtained classical and Bayes estimators based on the com-
plete sample and the references cited therein.

Wide applicability of mixture modeling motivates us to
develop a two-component mixture of Marshall–Olkin ex-
tended Weibull distribution for efficient modeling of
breaking stress of carbon fibers, survival times in days of 72
guinea pigs infected datasets, survival times in weeks of 33
patients suffering from acute myelogenous leukemia, and
COVID-19 data belonging to Canada of 36 days. In this
article, the primary objective of the paper is twofold. First,
we obtain maximum likelihood estimators and corre-
sponding approximate confidence intervals (CIs) of the
unknown parameters of the 2-component mixture of the
Marshall–Olkin extendedWeibull (MOEW) distribution for
type-II censored data. Next, we consider the Bayes esti-
mation method.*e Bayes estimators have been derived and

evaluated under the assumption of two loss functions using
independent gamma priors. Symmetric 100(1 − τ)% two-
sided Bayes credible intervals are also obtained, and they are
compared with classical CIs. To the best of our knowledge,
the 2-component mixture of the MOEW distribution is not
discussed before using the aforementioned methods of es-
timation. *rough this paper, we purport to provide some
guidelines on selecting the best estimator that may be of
significant interest to applied statisticians/practitioners/
engineers.

*e organization of this paper is as follows. *e de-
scription of the model along with basic properties is reported
in Section 2. We use the maximum likelihood estimation
method based on type-II censoring as a part of frequentist
methodology for parameter estimation in Section 3.We have
also taken into account approximate CIs in the same section.
In Section 4, we have derived the Bayes estimators of the
unknown parameters of the model under squared error loss
(SEL) and linear exponential (LINEX) loss functions using
gamma priors for both scale and shape parameters. We have
also obtained two-sided Bayes probability intervals in the
same section. *e simulation study is carried out in Section
5. For illustrative purposes, four real datasets are analyzed in
Section 6. Finally, concluding remarks are presented in
Section 7.

2. Model Description

*e probability density function (pdf) of the Marshal-
l–Olkin extended Weibull distribution (MOEW) for a
random variable X is defined by (see Ghitany et al. [20] and
Zhang and Xie [21])

f(x) �
αλθx

θ− 1
e

− λxθ

1 − ae
− λxθ

􏼒 􏼓
2, x≥ 0, α, λ, θ> 0, (1)

where a � 1 − a, and the cumulative distribution function
(cdf) of the distribution is

F(x) �
1 − e

− λxθ

1 − αe
− λxθ , x≥ 0. (2)

*e hazard rate function of MOEW takes the form

h(x) �
λθx

θ− 1

1 − αe
− λxθ , x≥ 0. (3)

A density function for the mixture of two components’
densities with mixing proportions (pj, j � 1, 2) is

g(x) � 􏽘
2

j�1
pjfj(x), wherefj(x)

� αjθjλjx
θj − 1

e
− λjx

θj

1 − αje
λjx

θj

􏼒 􏼓
− 2

,

(4)
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where pj are the mixing proportions, satisfying the con-
ditions 􏽐

2
j�1 pj � 1 and pj ≥ 0; all of them are unknowns,

and the pdf is plotted in Figure 1. *e cdf for the mixture
model is

G(x) � 􏽘
2

j�1
pjFj(x), (5)

where

Fj(x) �
1 − e

− λjx
θj

􏼒 􏼓

1 − αe
λjx

θj

􏼒 􏼓

. (6)

*e reliability function for the mixture model is

S(x) � 􏽘
2

j�1
pjRj(x), (7)

where

Rj(x) � 1 −
1 − e

− λjx
θj

􏼒 􏼓

1 − αe
λjx

θj

􏼒 􏼓

. (8)

Due to exponentiation of each component by a positive
integer, the model is so flexible that shows different shapes of
hazard rate function (hrf) of the mixture which is given by

H(x) � 􏽘
2

j�1
pjhj(x),

hj(x) �
αjθjλjx

θj− 1
e

− λjx
θj

1 − αje
λjx

θj

􏼒 􏼓

1 − αe
λjx

θj

􏼒 􏼓 − 1 − αe
λjx

θj

􏼒 􏼓 1 − e
− λjx

θj

􏼒 􏼓

.

(9)

3. General Properties of the
MOEW Distribution

3.1. Moments. *e rth moment of a finite mixture of the 2-
component MOEW distribution is given by

μr
′ � 􏽘

2

j�1
pjμr � 􏽚

∞

0
p1α1θ1λ1x

θ1+r− 1
e

− λ1 1 − α1e
λ1xθ1

􏼒 􏼓
− 2

+ 􏽚
∞

0
1 − p1( 􏼁α2θ2λ2x

θ2+r− 1
e

− λ2 1 − α2e
λ2xθ2

􏼒 􏼓
− 2

�
p1

α1
λ1 − λ1( 􏼁

− r/θ1( )Γ
r + θ1
θ1

􏼠 􏼡􏼢 􏼣

+
1 − p1( 􏼁

α2
λ2 − λ2( 􏼁

− r/θ2( )Γ
r + θ2
θ2

􏼠 􏼡􏼢 􏼣,

(10)

where p2 � (1 − p1).
When r� 1, the mean is given by

μ1′ �
p1

α1
λ1 − λ1( 􏼁

− 1/θ1( )Γ
1 + θ1
θ1

􏼠 􏼡􏼢 􏼣

+
1 − p1( 􏼁

α2
λ2 − λ2( 􏼁

− 1/θ2( )Γ
1 + θ2
θ2

􏼠 􏼡􏼢 􏼣.

(11)

*emoment-generating function of the mixture MOEW
distribution is given by

μx(t) � 􏽚
∞

0
e

tx
fj(x)dx

�
p1θ1λ1x

θ1e
− λ1xθ1 /α1􏼒 􏼓 + 1 − p1( 􏼁θ2λ2x

θ2e
− λ1xθ2 /α2􏼒 􏼓

x
2 .

(12)

3.2. Incomplete Moments. *e rth incomplete moment of a
finite mixture of the 2-component mixture distribution is
given by

Tr(z) � E x
r

( 􏼁 � 􏽚
z

0
x

r
f(x)dx � 􏽘

2

j�1
pj 􏽚

z

0
x

r
fj(x)dx

� 􏽘
2

j�1
pjμjr,

(13)

where Tjr � 􏽒
z

0 xrfj(x)dx is the rth incomplete moment of
the jth component so that the rth incomplete moment of a
finite mixture of the 2-component MOEW distribution is
given by

Tr(z) � 􏽘

2

j�1
pj � 􏽚

z

0
p1α1θ1λ1x

θ1+r− 1
e

− λ1 1 − α1e
λ1xθ1

􏼒 􏼓
− 2

+ 􏽚
z

0
1 − p1( 􏼁α2θ2λ2x

θ2+r− 1
e

− λ2 1 − α2e
λ2xθ2

􏼒 􏼓
− 2
dx.

(14)

*e first incomplete moment of a finite mixture of the 2-
component MOEW distribution is given by

T1(z) � 􏽘
2

j�1
pjμj1 � 􏽚

z

0
p1α1θ1λ1x

θ1e
− λ1 1 − α1e

λ1xθ1
􏼒 􏼓

− 2

· 􏽚
z

0
1 − p1( 􏼁α2θ2λ2x

θ2e
− λ2 1 − α2e

λ2xθ2
􏼒 􏼓

− 2
dx.

(15)

3.3. Mean Deviations. *e mean deviations of the random
variable X about the mean, μ, and the median, M, are given,
respectively, by
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δ1 � 􏽚
.

x
|x − μ|f(x, α, λ, θ)dx,

δ2 � 􏽚
.

x
|x − M|f(x, α, λ, θ)dx,

(16)

where δ1 � p1δ1j + (1 − p1)δ1j and δ2 � p1δ2j + (1 − p1)

δ2j since δ1j � 􏽒
∞
0 |x − μ|fj(x, αj, λj, θj)dx and

δ2j � 􏽒
∞
0 |x − M|fj(x, αj, λj, θj)dx.

δ1 � 􏽚
∞

0
|x − μ| f(x, α, λ, θ)dx,

δ1 � 􏽚
∞

0
|x − μ| p1

α1λ1θ1(x)
θ1− 1

e
− λ1(x)θ1

1 − α1e
− λ1(x)θ1

􏼒 􏼓
2

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

+ 1 − p1( 􏼁
α2λ2θ2(x)

θ2− 1
e

− λ2(x)θ2

1 − α2e
− λ2(x)θ2

􏼒 􏼓
2

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠dx

� p1
α1λ1θ1(x)

θ1− 1
e

− λ1(x)θ1

1 − α1e
− λ1(x)θ1

􏼒 􏼓
2

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

+ 1 − p1( 􏼁
α2λ2θ2(x)

θ2− 1
e

− λ2(x)θ2

1 − α2e
− λ2(x)θ2

􏼒 􏼓
2

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

,

δ2 � 􏽚
∞

0
|x − M| p1

α1λ1θ1(x)
θ1− 1

e
− λ1(x)θ1

1 − α1e
− λ1(x)θ1

􏼒 􏼓
2

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

+ 1 − p1( 􏼁
α2λ2θ2(x)

θ2− 1
e

− λ2(x)θ2

1 − α2e
− λ2(x)θ2

􏼒 􏼓
2

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠dx.

(17)

*e median follows from the nonlinear equation
F(x, α, λ, θ) � 1/2. So, these quantities reduce to

δ1F(x, α, λ, θ)2μF(x, α, λ, θ) − 2T1(μ),

δ2 � μ − 2T1(M),
(18)

where T1(z) is the first incomplete moment of X obtained
from (15),

δ1j � 2μjFj x, αj, λj, θj􏼐 􏼑 − 2T1 μj􏼐 􏼑,

δ2j � μj − 2T1 Mj􏼐 􏼑,
(19)
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Figure 1: pdf of the two-component mixture of the Marshall–Olkin extended Weibull distribution for different values of the parameters,
where c1 � (α1 � 2, θ1 � 3, λ1 � 1, α2 � 2, θ2 � 3, λ2 � 1, p1 � 0.4), c2 � (α1 � 1, θ1 � 5, λ1 � 2, α2 � 2, θ2 � 3, λ2 � 5, p1 � 0.3), and c3 �

(α1 � 1, θ1 � 5, λ1 � 2, α2 � 4, θ2 � 3, λ2 � 5, p1 � 0.2).
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where

δ1 � 2μ p1
1 − e

− λ1x
θ1
0

1 − α1e
− λ1x

θ1
0

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦⎛⎝

+ 1 − p1(( 􏼁
1 − e

− λ2x
θ2
0

1 − α2e
− λ2x

θ2
0

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦⎞⎠ − 2T1(μ),

δ1 � μ − 2T1(M).

(20)

3.4. Average Lifetime and Mean Residual Lifetime Functions.
*e average lifetime is given by

tm � 􏽚
∞

0
[1 − F(x, α, λ, θ)]dx,

tm � 􏽚
∞

0
1 − p1

1 − e
− λ1xθ1

1 − α1e
− λ1xθ1

⎡⎢⎣ ⎤⎥⎦
⎧⎨

⎩
⎡⎢⎣

+ 1 − p1( 􏼁
1 − e

− λ2xθ2

1 − α2e
− λ2xθ2

⎡⎢⎣ ⎤⎥⎦
⎫⎬

⎭
⎤⎥⎦dx.

(21)

*e application of mean residual lifetime can be seen in
the paper of Guess and Proschan [22]. *e mean residual
lifetime is given by

m x0, α, λ, θ( 􏼁 � E X − x0|X≥x0, α, λ, θ( 􏼁

� 􏽚
∞

X: X− x0( )

X − x0( 􏼁f(x, α, (k + 1)λ, θ)

Pr X≥ x0􏼂 􏼃
dx � Pr X≥x0􏼂 􏼃􏼂 􏼃

− 1
􏽚
∞

0
yf x0 + y, α, λ, θ( 􏼁dy

� 1 − p1
1 − e− λ1x

θ1
0

1 − α1e− λ1x
θ1
0

⎡⎢⎣ ⎤⎥⎦ + 1 − p1( 􏼁
1 − e− λ2x

θ2
0

1 − α2e− λ2x
θ2
0

⎡⎢⎣ ⎤⎥⎦
⎧⎨

⎩

⎫⎬

⎭
⎡⎢⎣ ⎤⎥⎦

− 1

� 􏽚
∞

0
y p1

α1λ1θ1 x0 + y( 􏼁
θ1− 1

e
− λ1 x0+y( )

θ1

1 − α1e
− λ1 x0+y( )

θ1
􏼒 􏼓

2

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

+ 1 − p1( 􏼁
α2λ2θ2 x0 + y( 􏼁

θ2− 1
e

− λ2 x0+y( )
θ2

1 − α2e
− λ2 x0+y( )

θ2
􏼒 􏼓

2

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠dy.

(22)

*en, m(x0, α, λ, θ)⟶ E(X) asx0⟶ 0.

3.5. Rényi Entropy. *e Rényi entropy of X with pdf (4) is
given by

H
S
R(x) �

1
1 − S

log 􏽚
.

x
f(x, α, λ, θ)

Sdx􏼒 􏼓, (23)

where S ∈ (0, 1)∪ (1,∞).

H
S
R(x) �

1
1 − S

log 􏽚
∞

0
p1

α1λ1θ1(x)θ1− 1e− λ1(x)θ1

1 − α1e− λ1(x)θ1􏼐 􏼑
2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
+ 1 − p1( 􏼁

α2λ2θ2(x)θ2− 1e− λ2(x)θ2

1 − α2e− λ2(x)θ2􏼐 􏼑
2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
⎛⎜⎝ ⎞⎟⎠

S

dx⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠. (24)

It is difficult to obtain HS
R(x) in the closed form for a

finite mixture of the 2-component MOEW distribution.

3.6. ShannonEntropy. *e Shannon entropy of X is given by

Hs(x) � Ex − log(f(x, α, λ, θ))􏼈 􏼉. (25)

*us, from (4), we can get the log-likelihood function as

log fj x, αj, λj, θj􏼐 􏼑􏽨 􏽩 � log αjλj􏼐 􏼑 + log θjx
θj − 1

􏽨 􏽩 − λjx
θj

− 2 log 1 − αj · exp − λjx
θj􏽨 􏽩􏽮 􏽯.

(26)

*us, the above equation can be rewritten as

Hs(x) � − log P α1λ1( 􏼁 + 2E log 1 − α1 exp − λ1x
θ1􏽨 􏽩􏽮 􏽯􏽨 􏽩􏽨􏽮

− Ex log θ1x
θ1− 1

􏼐 􏼑􏽮 􏽯 + λ1E x
θ1􏼐 􏼑􏽩 + q α2λ2( 􏼁􏼂

+ 2E log 1 − α2 · exp − λ2x
θ2􏽨 􏽩􏽮 􏽯􏽨 􏽩

− Ex log θ2x
θ2− 1

􏼐 􏼑􏽮 􏽯 + λ2E x
θ2􏼐 􏼑􏽩􏽯.

(27)

3.7. Distribution of Order Statistics. *e pdf of the rth order
statistic for a random sample x1, x2, x3, . . . , xn from the
MOEW distribution with pdf and cdf given in equations (1)
and (2), respectively, is given by
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fr,n(x) �
n!

(n − r)!(r − 1)!
f(X)[F(X)]

r− 1
[1 − F(X)]

n− r
,

(28)

where

[1 − F(X)]
n− r

� 􏽘

n− r

i�0
(− 1)

i
n − r

i
􏼠 􏼡[F(X)]

i
. (29)

*e rth order statistics for a finite mixture of the 2-
component MOEW distribution can be obtained by
substituting equations (4) and (6) into (28); thus, we have

fr,n(x) �
n!

(n − r)!(r − 1)!

􏽘

n− r

i�0
(− 1)

i

n − r

i

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠ p1

α1λ1θ1x
θ1− 1

e
− λ1xθ1 1 − e

− λ1xθ1
􏼒 􏼓

r+i− 1

1 − α1e
− λ1xθ1

􏼒 􏼓
r+i+1

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

+ 1 − p1( 􏼁

α2λ2θ2x
θ2− 1

e
− λ2xθ2 1 − e

− λ2xθ2
􏼒 􏼓

r+i− 1

1 − α2e
− λ2xθ2

􏼒 􏼓
r+i+1

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

.

(30)

3.8. Maximum Likelihood Estimation Based on Type-II
Censoring. Here, we discuss the maximum likelihood esti-
mates of the unknown parameters of the 2-component
mixture of the MOEW distributions. In a life testing ex-
periment, n items from the above mixture model are
employed to test and get terminated when a preassigned
number of items, say r (<n), have failed. *e samples ob-
tained from such an experiment are called failure-censored

samples or type-II censored samples. In the failure-censored
case, data comprise the lifetime of the r items that have failed
(say x1 < x2 < · · · <xr), and the remaining (n − r) items have
survived beyond xr with the assumption that the lifetime
distribution of the items is independent and identically
distributed MOEW distribution; the likelihood function for
the type-II censoring scheme can be written as

L θ1, θ2, λ1, λ2, α1, α2, p1| x( 􏼁∝􏽙
r

i�1
fj xi( 􏼁Rj xr( 􏼁

(n− r)

� p
r
1θ

r
1λ

r
1α

r
1 􏽙

r

i�1
x
θ1− 1
i e

− λ1x
θ1
i 1 − 1 − α1( 􏼁e

− λ1x
θ1
i􏼒 􏼓

− 2
1 −

1 − e− λ1x
θ1
r􏼒 􏼓.

1 − 1 − α1( 􏼁e− λ1x
θ1
r􏼒 􏼓

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(n− r)

+ 1 − p1( 􏼁
rθr

2λ
r
2α

r
2 􏽙

r

i�1
x
θ2− 1
i e

− λ2x
θ2
i 1 − 1 − α2( 􏼁e

− λ2x
θ2
i􏼒 􏼓

− 2
1 −

1 − e− λ2x
θ2
r􏼒 􏼓

1 − 1 − α2( 􏼁e− λ2x
θ2
r􏼒 􏼓

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(n− r)

.

(31)
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*e corresponding log-likelihood function can be
written as

ℓ � log L � r log p1 + r log θ1 + r log λ1 + r log α1

+ θ1 − 1( 􏼁 􏽘

r

i�1
log xi − λ1 􏽘

r

i�1
x
θ1
i − 2􏽘

r

i�1
log 1 − 1 − α1( 􏼁e

− λ1x
θ1
i􏼒 􏼓

+(n − r)log 1 −
1 − e

− λ1x
θ1
r􏼒 􏼓

1 − 1 − α1( 􏼁e
− λ1x

θ1
r􏼒 􏼓

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + r log 1 − p1( 􏼁 + r log θ2

+ r log λ2 + r log α2 + θ2 − 1( 􏼁 􏽘

r

i�1
log xi

− λ2 􏽘

r

i�1
x
θ2
i − 2􏽘

r

i�1
log 1 − 1 − α2( 􏼁e

− λ2x
θ2
i􏼒 􏼓 +(n − r)log 1 −

1 − e
− λ2x

θ2
r􏼒 􏼓

1 − 1 − α2( 􏼁e
− λ2x

θ2
r􏼒 􏼓

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(32)

*e resulting normal equations are

zℓ
zα1

�
r

α1
− 2􏽘

r

i�1

e
− λ1x

θ1
i

1 − 1 − α1( 􏼁e
− λ1x

θ1
i􏼒 􏼓

+
(n − r)e

− λ1x
θ1
r 1 − 1 − α1( 􏼁e

− λ1x
θ1
r􏼒 􏼓

− 2

1 − 1 − e
− λ1x

θ1
r􏼒 􏼓/ 1 − 1 − α1( 􏼁e

− λ1x
θ1
r􏼒 􏼓􏼒 􏼓􏼔 􏼕

, (33)

zℓ
zα2

�
r

α2
− 2􏽘

r

i�1

e
− λ2x

θ2
i

1 − 1 − α2( 􏼁e
− λ2x

θ2
i􏼒 􏼓

+
(n − r)e

− λ2x
θ2
r 1 − 1 − α2( 􏼁e

− λ2x
θ2
r􏼒 􏼓

− 2

1 − 1 − e
− λ2x

θ2
r􏼒 􏼓/ 1 − 1 − α2( 􏼁e

− λ2x
θ2
r􏼒 􏼓􏼒 􏼓􏼔 􏼕

, (34)

zℓ
zθ1

�
r

θ1
+ 􏽘

r

i�1
log xi − λ1 􏽘

r

i�1
x
θ1
i log xi

+ 2􏽘
r

i�1

1 − α1( 􏼁λ1log xix
θ1
i e

− λ1x
θ1
i

1 − 1 − α1( 􏼁e
− λ1x

θ1
i􏼒 􏼓

− (n − r)

α1λ1log xrx
θ1
r e

− λ1x
θ1
i 1 − 1 − α1( 􏼁e

− λ1x
θ1
r􏼒 􏼓/ 1 − 1 − α1( 􏼁e

− λ1x
θ1
r􏼒 􏼓

2
􏼠 􏼡

1 − 1 − e
− λ1x

θ1
r􏼒 􏼓/ 1 − 1 − α1( 􏼁e

− λ1x
θ1
r􏼒 􏼓􏼒 􏼓􏼔 􏼕

,

(35)

zℓ
zθ2

�
r

θ2
+ 􏽘

r

i�1
log xi − λ2 􏽘

r

i�1
x
θ2
i log xi

+ 2􏽘

r

i�1

1 − α2( 􏼁λ2log xix
θ2
i e

− λ2x
θ2
i

1 − 1 − α2( 􏼁e
− λ2x

θ2
i􏼒 􏼓

− (n − r)

α2λ2log xrx
θ2
r e

− λ2x
θ2
i 1 − 1 − α2( 􏼁e

− λ2x
θ2
r􏼒 􏼓/ 1 − 1 − α1( 􏼁e

− λ1x
θ1
r􏼒 􏼓

2
􏼠 􏼡

1 − 1 − e
− λ2x

θ2
r􏼒 􏼓/ 1 − 1 − α2( 􏼁e

− λ2x
θ2
r􏼒 􏼓􏼒 􏼓􏼔 􏼕

,

(36)
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zℓ
zλ1

�
r

λ1
− 􏽘

r

i�1
x
θ1
i − 2􏽘

r

i�1

1 − α1( 􏼁x
θ1
i e

− 2λ1x
θ1
i

1 − 1 − α1( 􏼁e
− λ1x

θ1
i􏼒 􏼓

+

(n − r) x
θ1
r e

− λ1x
θ1
i 1 − 1 − α1( 􏼁e

− λ1x
θ1
r􏼒 􏼓 + 1 − α1( 􏼁 1 − e

− λ1x
θ1
r􏼒 􏼓􏼔 􏼕/ 1 − 1 − α1( 􏼁e

− λ1x
θ1
r􏼒 􏼓

2
􏼠 􏼡

1 − 1 − e
− λ1x

θ1
r􏼒 􏼓/ 1 − 1 − α1( 􏼁e

− λ1x
θ1
r􏼒 􏼓􏼒 􏼓􏼔 􏼕

,

(37)

zℓ
zλ2

�
r

λ2
− 􏽘

r

i�1
x
θ2
i − 2􏽘

r

i�1

1 − α2( 􏼁x
θ2
i e

− 2λ2x2
i

1 − 1 − α2( 􏼁e
− λ2x

θ2
i􏼒 􏼓

+

(n − r) x
θ2
r e

− λ2x
θ2
i 1 − 1 − α2( 􏼁e

− λ2x
θ2
r􏼒 􏼓 + 1 − α2( 􏼁 1 − e

− λ2x
θ2
r􏼒 􏼓􏼔 􏼕/ 1 − 1 − α2( 􏼁e

− λ2x
θ2
r􏼒 􏼓

2
􏼠 􏼡

1 − 1 − e
− λ2x

θ2
r􏼒 􏼓/ 1 − 1 − α2( 􏼁e

− λ2x
θ2
r􏼒 􏼓􏼒 􏼓􏼔 􏼕

,

(38)

zℓ
zp1

�
r

p1
−

r

1 − p1
. (39)

*e MLEs of Φ � (α1, α2, θ1, θ2, λ1, λ2) andp1 can be
obtained by solving equations (32)–(39) simultaneously.
Since explicit solutions cannot be obtained from the above
equations, thus, we propose to use a suitable numerical
technique to solve these seven nonlinear equations; however,
one may use Newton–Raphson to solve these equations.*is
can be routinely done using R packages.

3.9.ApproximateConfidence Intervals. In this section, under
the normality property of MLEs of the parameters
Φ � (α1, α2, θ1, θ2, λ1, λ2, p1), we obtain the asymptotic
confidence interval. *e asymptotic distribution of the MLE
Φ̂ is (Φ̂ − Φ)⟶ N(0, I− 1(Φ)), see Lawless [23], where
I− 1(Φ), the inverse of the observed information matrix of
the unknown parameters Φ � (α1, α2, θ1, θ2, λ1, λ2, p1), is
I− 1(Φ) � [(z2ℓ/zΦ2)]− 1

(α1 ,α2 ,θ1 ,θ2 ,λ1 ,λ2 ,p1)�(α̂1 ,α̂2 ,θ̂1 ,θ̂2 ,λ̂1 ,λ̂2 , 􏽢p1).
*e above approach is used to derive approximate

100(1 − τ)% confidence intervals of the parameters Φ of the
forms 􏽢Φ∓z(τ/2)

������

var(Φ̂)

􏽱

, where z(τ/2) is the upper (τ/2)th

percentile of the standard normal distribution.

4. Bayesian Estimation Using the Gamma
Prior Distribution

In this section, the Bayes estimates of the model parameters
are obtained under the assumption that the random vari-
ables Φ have independent gamma prior distributions (see
Dey et al. [24–26]) with hyperparameters
ak and bk, k � 1, 2, 3, 4, 5, 6, 7, and are given by

f(Φ; a, b) �
b

ak

k

Γak

Φak− 1
e

− bkΦ, Φ> 0, (40)

where Φ � (αj, θj, λj, pj). By multiplying (31) with (40), the
joint posterior density for the vector of parameters Φ given
the data becomes

π Φ| x( 􏼁∝ L(x|Φ)f Φ; ak, bk( 􏼁. (41)

*us,

π Φ| x( 􏼁∝ (n − r)
.
p

r
1θ

r
1λ

r
1α

r
1 􏽙

r

i�1
x
θ1− 1
i e

− λ1x
θ1
i 1 − 1 − α1( 􏼁e

− λ1x
θ1
i􏼒 􏼓

− 2
1 −

1 − e
− λ1x

θ1
r􏼒 􏼓

1 − 1 − α1( 􏼁e
− λ1x

θ1
r􏼒 􏼓

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+(n − r) 1 − p1( 􏼁
rθr

2λ
r
2α

r
2 􏽙

r

i�1
x
θ2− 1
i e

− λ2x
θ2
i 1 − 1 − α2( 􏼁e

− λ2x
θ2
i􏼒 􏼓

− 2
1 −

1 − e
− λ2x

θ2
r􏼒 􏼓

1 − 1 − α2( 􏼁e
− λ2x

θ2
r􏼒 􏼓

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b
ak

k

Γak

Φak− 1
e

− bkΦ.

(42)

Marginal distributions of Φ can be obtained by inte-
grating with respect to the nuisance parameters. Next, we

consider the loss function that will be used to derive the
estimators from the marginal posterior distributions.
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4.1. Bayes Estimators of the Vector of Parameters Φ. In this
section, we derive the Bayes estimators of the model pa-
rameters under symmetric as well asymmetric loss functions.
A much known symmetric loss function is the squared error
loss (SEL) function which is defined as

L(Φ̂ − Φ) � (Φ − Φ̂)
2
. (43)

*e popularity of this loss function is due to its rela-
tionship to least squares theory; it also makes the calcula-
tions simpler. Under the SELF in (43), the Bayes estimates of
any function Φ � (αj, θj, λj, pj) can be derived as

Φ̂SEL � E Φ| t( 􏼁 � A � πr
2
􏽚
Φ

(Φ − Φ̂)
2π Φ| x( 􏼁dΦ. (44)

All the above integrals have no closed form; so, we
employ the numerical method to estimate the parameters. A
useful asymmetric loss function, known as LINEX loss
function, was introduced by Varian [27] and widely used by
several authors (see Zellner [28] and Pandey and Rai [29]).
We noticed that the LINEX loss function does not perform
well for the estimation of the scale parameter in the whole
parametric space, but performs well for a certain specified
value of Φ. Basu and Ebrahimi [30] also suggested that the
LINEX loss function is proper for the location parameter,
and it appears not to be suitable for the estimation of the
scale parameter. *e linear exponential (LINEX) is an
asymmetric loss function defined as

L(Φ̂ − Φ) � e
](Φ− Φ̂)

− ](Φ − Φ̂) − 1.
. (45)

Under the LINEX loss function, the Bayes estimators of
any function Φ � (αj, θj, λj, p) can be written as

Φ̂LINEX � E Φ| t( 􏼁 � 􏽚
.

Φ
e
](Φ− Φ̂)

− ](Φ − Φ̂) − 1􏼒 􏼓π Φ| x( 􏼁dΦ.

(46)

All the above integrals have no closed form. So, they are
solved by the analytical method.

4.2. Credible Intervals. In this section, a symmetric 100(1 −

τ)% two-sided Bayes probability interval estimate of Φ,
denoted by [LΦ, UΦ], is obtained by satisfying the following
expression:

p L t( 􏼁<Φ<U t( 􏼁􏼂 􏼃 � 􏽚
U t( )

L t( )
π θ, β, λ| t( 􏼁dΦ � 1 − τ. (47)

Since it is difficult to find the interval LΦ and UΦ an-
alytically, thus, we apply suitable numerical techniques to
solve this nonlinear equation.

5. Simulation Study and Comparisons

Here, we have carried out Monte Carlo simulation study to
assess the performance of the maximum likelihood esti-
mators and Bayes estimators with respect to their estimated
risk. Here, for the simulation study, we have considered the
parameter values as a1 � (1.9, 5), a2 � (2, 4), θ1 � (1.3, 4),

θ2 � (1.6, 3), λ1 � (1, 2.5), λ2 � (1.3, 3.5), andp1 � (0.5,

0.6) and different values of the mixing proportion. We set
sample sizes n� 20, 40, and 80.

Probabilistic mixing is used here to generate the mixture
data. For each observation, a random number u is generated
from the uniform (0, 1) distribution. If u< p1, the obser-
vation is taken randomly from F1 (the MOEW distribution
with parameters a1, θ1, and λ1); otherwise, from F2 (the
MOEW distribution with parameters a2, θ2, and λ2). *e
choice of the censoring failure is made in such a way that the
censoring rate of the resultant sample is approximately 10%.
To implement censored samplings, the observations
x11, . . . , x1r and x21, . . . , x2r, of failed items come from first
and second subpopulations, respectively. *e rest of the
observations, which are greater than x1r and x2r, have been
assumed to be censored from each component.

*e simulated datasets have been obtained using the
following steps:

Step 1: generate a uniform random number u corre-
sponding to each observation
Step 2: if u<p1, take the observation x11, . . . , x1n1 from
the first subpopulation; otherwise, from the second
subpopulation x21, . . . , x2n2

Step 3: determine the test termination points on the
right, that is, xr

Step 4: the observations which are greater than xr have
been considered to be censored from each component
(type-II censoring)

To avoid an extreme sample, we simulate 5000 datasets
each of size n. *e abbreviations used in the tables are es-
timate, estimated risk, and length of CIs based on the
maximum likelihood method, Bayes estimates based on the
squared loss function, and Bayes estimates based on the
LINEX loss function. *e Bayes estimates, estimated risk,
and length of the confidence interval are computed using R
package. *ese results are reported in Table 1. We assume
that the prior distributions follow gamma distribution with
hyperparameters ak and bk, k � 1, 2, 3, 4, 5, 6, 7,
(a1, b1) � (1.3, 1.8), (a2, b2) � (2.1, 1.7), (a3, b3) �

(2.3, 2.5), (a4, b4) � (1.6, 2.2), (a5, b5) � (0.7, 2.3),

(a6, b6) � (2.7, 0.8), (a7, b7) � (1.9, 2.4).
From Table 1, we observe that, as sample size increases,

estimated values of the parameters converge to the true
values, and Bayes posterior risk tends to decrease. We also
observe that, as sample size increases, the length of the
classical confidence interval and Bayes credible interval
decreases. It is to be noted that the Bayes estimates perform
better thanmaximum likelihood estimates. In comparison of
loss functions, the squared loss function provides better
results than the LINEX loss function.

6. Real Data Analysis

In this section, we use four real-life datasets to illustrate the
importance and flexibility of the MMOEW distribution. We
compare the fits of the new MMOEW distribution with
some other competitive models, such as Weibull (W),
exponentiated Weibull (EW), exponentiated exponential
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(EE), Marshall–OlkinWeibull (MOW), andMarshall–Olkin
extended Weibull (MOEW) distributions. *e comparisons
are done based on some measures of goodness of fit, namely,
the maximized log-likelihood under the model (− ℓ̂), Akaike
information criterion (AIC), Bayesian information criterion
(BIC), Hannan–Quinn information criterion (HQIC),
consistent Akaike information criterion (CAIC), and Kol-
mogorov–Smirnov (KS) statistic with its p value (PV). We
observe that all the distributions in Tables 2–5 show a
reasonably good fit for the given four datasets. *e plots of

empirical and fitted cdfs (Figures 2–5) also support the
results in Tables 2–5. However, according to the cited sta-
tistics, the MMOEW model fits dataset II better than the
other models.

Dataset I: the first dataset consists of 100 observations of
breaking stress of carbon fibers.*is dataset is obtained from
Nichols and Padgett [31]. *ese data are stated as follows:
0.98, 5.56, 5.08, 0.39, 1.57, 3.19, 4.90, 2.93, 2.85, 2.77, 2.76,
1.73, 2.48, 3.68, 1.08, 3.22, 3.75, 3.22, 3.70, 2.74, 2.73, 2.50,
3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.40, 3.15, 2.67, 3.31,

Table 1: *e estimate, estimated risk, and length of the interval, Bayes method based on the squared loss function, and Bayes method based
on the LINEX function when the prior distribution is gamma at different sample sizes.

n 20 40 80
MLEs

Parameter Estimate Estimated
risk Length Estimate Estimated

risk Length Estimate Estimated
risk Length

α1
2.2266962 0.45522293 1.7844411 1.9255029 0.26150688 1.0250881 1.7196975 0.17338100 0.679611
5.4480750 0.74643451 2.9259695 4.8738022 0.4519073 1.7714444 4.6622334 0.29481590 1.1556571

α2
2.6050691 0.4696128 1.8408485 2.3622973 0.32997054 1.2934608 2.1965263 0.2134274 0.8366198
4.9593311 0.74254833 2.9107360 4.6106123 0.4359577 1.7089228 4.4158906 0.28053577 1.0996800

θ1
2.1842048 0.78639415 3.2410730 1.8386415 0.3436788 1.3471963 1.7059249 0.18937750 0.7423461
4.8291733 1.51823446 5.9513697 4.1635412 0.7380715 2.8931873 3.8762212 0.40641529 1.5931187

θ2
2.2241709 0.8904526 3.5851222 1.9410834 0.4002303 1.5688740 1.8120731 0.23350051 0.9153052
4.5922180 1.32300762 5.1860946 4.1184271 0.7396291 2.8992929 3.8127630 0.39210727 1.5370323

λ1
1.78123132 0.51279547 2.0599757 1.7370224 0.327979 1.2856868 1.7424558 0.22229935 0.8713974
4.1672100 1.27710513 5.0061601 3.7528999 0.7512598 2.9448842 3.3100211 0.44260320 1.7349727

λ2
1.6369791 0.56717175 2.2361035 1.4859141 0.3043238 1.1929277 1.3966339 0.18769952 0.7357686
5.0407180 1.56241461 6.1245527 4.3449870 0.8754458 3.4316845 3.8052724 0.51894037 2.0342089

p1
0.4997187 0.07901453 0.309731 0.4993052 0.0558837 0.2190601 0.994209 0.03951937 0.1549131
0.4797218 0.07900847 0.3097075 0.5003156 0.0558811 0.2190499 0.5000605 0.03952083 0.1549188

Bayes estimates based on the squared loss function

α1
2.1729181 0.004552293 0.9784551 1.08645905 0.00227611 0.48922755 0.543229525 0.001138055 0.244613775
4.980901 0.05829461 1.9342585 2.4904505 0.0291473 0.9671291 1.245225 0.014574 0.483565

α2
2.056629 0.4696128 1.1297355 1.0283145 0.2348064 0.56486775 0.514157 0.117403 0.282434
4.5283112 0.07326548 2.4938260 2.2641556 0.03663274 1.246913 1.132078 0.018316 0.623457

θ1
1.7043984 0.092688415 2.3864156 0.8521992 0.0463442075 1.1932078 0.4261 0.023172 0.596604
4.1261944 0.0692846326 2.5368135 2.0630972 0.03464231 1.2684065 1.031549 0.017321 0.634203

θ2
2.1368209 0.0845269 2.1851222 1.06841045 0.0422636 1.0925611 0.534205 0.021132 0.546281
4.3123180 0.032300762 1.9860946 2.1561599 0.01615036 0.9930473 1.07808 0.008075 0.496524

λ1
1.2926875 0.051279547 2.0599757 0.64634375 0.02563897 1.02998785 0.323172 0.012819 0.514994
3.9683190 0.49710513 3.0061601 0.9841595 1.9841595 1.50308005 0.99208 0.099208 0.75154

λ2
1.4398321 0.06717175 2.2361035 0.71991605 0.71991605 1.1180515 0.359958 0.359958 0.559026
4.28437120 1.56241461 0.9245527 2.1421856 0.014021856 0.46227635 1.071093 0.007011 0.231138

p1
0.4991957857 0.07901453 0.6309731 0.24959785 0.03495978 0.31548655 0.124799 0.0124799 0.157743
0.6389978 0.07900847 0.0309792 0.3194989 0.02194989 0.0154896 0.159749 0.019749 0.007745

Bayes estimates based on the LINEX function

α1
2.272918 0.104552 1.078455 1.186459 0.102276 0.589228 0.64323 0.101138 0.344614
5.080901 0.158295 2.034259 2.590451 0.129147 1.067129 1.345225 0.114574 0.583565

α2
2.156629 0.569613 1.229736 1.128315 0.334806 0.664868 0.614157 0.217403 0.382434
4.628311 0.173265 2.593826 2.364156 0.136633 1.346913 1.232078 0.118316 0.723457

θ1
1.804398 0.192688 2.486416 0.952199 0.146344 1.293208 0.5261 0.123172 0.696604
4.226194 0.169285 2.636814 2.163097 0.134642 1.368407 1.131549 0.117321 0.734203

θ2
2.236821 0.184527 2.285122 1.16841 0.142264 1.192561 0.634205 0.121132 0.646281
4.412318 0.132301 2.086095 2.25616 0.11615 1.093047 1.17808 0.108075 0.596524

λ1
1.392688 0.15128 2.159976 0.746344 0.125639 1.129988 0.423172 0.112819 0.614994
4.068319 0.597105 3.10616 1.08416 2.08416 1.60308 1.09208 0.199208 0.85154

λ2
1.539832 0.167172 2.336104 0.819916 0.819916 1.218052 0.459958 0.459958 0.659026
4.384371 1.662415 1.024553 2.242186 0.114022 0.562276 1.171093 0.107011 0.331138

p1
0.599196 0.179015 0.730973 0.349598 0.13496 0.415487 0.224799 0.11248 0.257743
0.738998 0.179008 0.130979 0.419499 0.12195 0.11549 0.259749 0.119749 0.107745
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Table 3: Comparison among MMOEW, EW, MOEW, Weibull, EE, and MOW based on MLEs, the measures AIC, BIC, HQIC, CAIC, and
KS, and p value for real data II.

Distribution Par. Estimates − ℓ̂ AIC BIC HQIC CAIC KS p value

MMOEW

θ̂1 3.07

90.91 195.82 211.75 202.16 203.78 0.07 0.8695

α̂1 0.51
λ̂1 0.15
θ̂2 1.02
α̂2 2.54
λ̂2 0.33
ρ̂ 0.78

EW
θ̂ 1.55

104.70 215.40 222.23 218.12 218.81 0.09 0.6466α̂ 1.79
λ̂ 0.69

MOEW
θ̂ 1.86

111.13 228.27 235.10 230.98 231.68 0.09 0.5932α̂ 1.72
λ̂ 0.40

MOW
θ̂ 2.40

107.47 220.94 227.77 223.66 224.36 0.09 0.5301α̂ 0.46
λ̂ 0.42

Weibull θ̂ 2.11 111.12 226.24 230.79 228.05 228.52 0.08 0.6951λ̂ 0.52

EE α̂ 5.04 102.46 208.92 213.47 210.73 211.19 0.07 0.8247λ̂ 1.33

Table 2: Comparison among MMOEW, EW, MOEW, Weibull, EE, and MOW based on MLEs, the measures AIC, BIC, HQIC, CAIC, and
KS, and p value for real data I.

Distribution Par. Estimates − ℓ̂ AIC BIC HQIC CAIC KS p value

MMOEW

θ̂1 2.93

80.13 174.26 192.49 181.64 183.38 0.09 0.3730

α̂1 0.62
λ̂1 0.06
θ̂2 0.39
α̂2 0.88
λ̂2 0.71
ρ̂ 0.93

EW
θ̂ 2.40

141.69 289.39 297.20 292.55 293.29 0.06 0.84α̂ 1.49
λ̂ 0.38

MOEW
θ̂ 2.60

142.12 290.24 298.06 293.41 294.15 0.12 0.1282α̂ 1.81
λ̂ 0.08

MOW
θ̂ 2.81

142.08 290.15 297.97 293.32 294.06 0.05 0.9684α̂ 1.33
λ̂ 0.36

Weibull θ̂ 3.00 142.03 288.05 293.26 290.16 290.66 0.05 0.9604λ̂ 0.34

EE α̂ 12.81 150.48 304.96 310.17 307.07 307.57 0.08 0.5089λ̂ 1.16

Table 4: Comparison among MMOEW, EW, MOEW, Weibull, EE, and MOW based on MLEs, the measures AIC, BIC, HQIC, CAIC, and
KS, and p value for real data III.

Distribution Par. Estimates − ℓ̂ AIC BIC HQIC CAIC KS p value

MMOEW

θ̂1 3.34

108.74 231.48 241.95 237.82 236.72 0.15 0.4473

α̂1 1.04
λ̂1 0.26
θ̂2 0.53
α̂2 3.22
λ̂2 0.28
ρ̂ 0.02
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Table 5: Comparison among MMOEW, EW, MOEW, Weibull, EE, and MOW based on MLEs, the measures AIC, BIC, HQIC, CAIC, and
KS, and p value for real data IV.

Distribution Par. Estimates − ℓ̂ AIC BIC HQIC CAIC KS p value

MMOEW

θ̂1 4.92

− 61.62 137.24 148.32 141.11 142.78 0.09 0.9144

α̂1 1.26
λ̂1 0.002
θ̂2 2.68
α̂2 2.88
λ̂2 1.59
ρ̂ 0.93

EW
θ̂ 5.19

− 72.34 150.68 155.43 152.34 153.06 0.09 0.8747α̂ 0.88
λ̂ 0.29

MOEW
θ̂ 5.57

− 68.33 142.66 147.41 144.31 145.03 0.11 0.8012α̂ 0.49
λ̂ 0.0006

MOW
θ̂ 6.53

− 75.96 157.92 162.67 159.57 160.29 0.08 0.9614α̂ 0.27
λ̂ 0.25

Weibull θ̂ 4.86
− 68.32 140.64 142.22 141.74 142.22 0.09 0.8893λ̂ 0.29

Table 4: Continued.

Distribution Par. Estimates − ℓ̂ AIC BIC HQIC CAIC KS p value

EW
θ̂ 0.58

154.20 314.41 318.90 315.92 316.6524 0.089 0.9546α̂ 1.27
λ̂ 0.04

MOEW
θ̂ 0.71

154.09 314.17 318.66 315.68 316.42 0.20 0.1588α̂ 0.73
λ̂ 0.07

MOW
θ̂ 0.63

154.20 314.39 318.88 315.90 316.64 0.10 0.8945α̂ 1.41
λ̂ 0.04

Weibull θ̂ 0.67 154.10 312.20 315.19 313.21 313.69 0.09 0.9474λ̂ 0.03

EE α̂ 0.58 153.93 311.85 314.85 312.86 313.35 0.15 0.4131λ̂ 0.02
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Figure 2: Empirical and fitted cdfs for the breaking stress data for
MMOEW, MOEW, EW, Weibull, EE, and MOW distributions.
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Figure 3: Empirical and fitted cdfs for survival times in days of 72
guinea pigs infected with virulent tubercle bacilli for MMOEW,
MOEW, EW, Weibull, EE, and MOW distributions.
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2.81, 2.56, 2.17, 4.91, 1.59, 1.18, 2.48, 2.03, 1.69, 2.43, 3.39,
3.56, 2.83, 3.68, 2.00, 3.51, 0.85, 1.61, 3.28, 2.95, 2.81, 3.15,
1.92, 1.84, 1.22, 2.17, 1.61, 2.12, 3.09, 2.97, 4.20, 2.35, 1.41,
1.59, 1.12, 1.69, 2.79, 1.89, 1.87, 3.39, 3.33, 2.55, 3.68, 3.19,
1.71, 1.25, 4.70, 2.88, 2.96, 2.55, 2.59, 2.97, 1.57, 2.17, 4.38,
2.03, 2.82, 2.53, 3.31, 2.38, 1.36, 0.81, 1.17, 1.84, 1.80, 2.05,
and 3.65.

Dataset II: the second dataset consists of survival times in
days of 72 guinea pigs infected with virulent tubercle bacilli.
*is dataset is taken from Bjerkedal [32]. *ese data are
illustrated as follows: 0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74,

0.77, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 07, 1.08, 1.08, 1.08,
1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34,
1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.63, 1.68, 1.71,
1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22,
2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.54, 2.78, 2.93, 3.27, 3.42,
3.47, 3.61, 4.02, 4.32, 4.58, and 5.55.

Dataset III: the third dataset consists of the survival times
in weeks of 33 patients suffering from acute myelogenous
leukemia. *is dataset is taken from Mahmoudi [33]. *ese
data are illustrated as follows: 65, 156, 100, 134, 16, 108, 121,
4, 39, 143, 56, 26, 22, 1, 1, 5, 65, 56, 65, 17, 7, 16, 22, 3, 4, 2, 3,
8, 4, 3, 30, 4, and 43.

Dataset IV: the fourth dataset consists of drought
mortality rate.*e data represent COVID-19 data belonging
to Canada of 36 days from 10 April to 15 May, 2020 (see the
link https://covid19.who.int/). *e data are as follows:
3.1091, 3.3825, 3.1444, 3.2135, 2.4946, 3.5146, 4.9274, 3.3769,
6.8686, 3.0914, 4.9378, 3.1091, 3.2823, 3.8594, 4.0480, 4.1685,
3.6426, 3.2110, 2.8636, 3.2218, 2.9078, 3.6346, 2.7957, 4.2781,
4.2202, 1.5157, 2.6029, 3.3592, 2.8349, 3.1348, 2.5261, 1.5806,
2.7704, 2.1901, 2.4141, and 1.9048.

7. Concluding Remarks

In this paper, we have introduced a two-component mixture
model based on Marshall–Olkin extended Weibull distri-
butions. Maximum likelihood and Bayes methods of esti-
mation have been used to estimate the parameters of the
mixture model. *e numerical evidence shows that Bayes
estimates perform better than the maximum likelihood
estimates. Our simulated results follow the consistency
property. *e length of Bayes credible intervals is shorter
than classical ones. From the simulation study, we may
conclude that the Bayesian estimation has an advantage
because of its small posterior risks as compared to the MLE
method. If we compare the estimates with respect to loss
functions, SELF performs better as compared to the LINEX
loss function. Finally, for precise estimation of the unknown
parameters of theMarshall–Olkin extendedWeibull mixture
model, Bayes method of estimation is preferable over
maximum likelihood estimation, especially when the suit-
able prior information of the unknown parameters is
available.*e contents of the study may be useful in different
fields where lifetime models are used for analysis of more
than one causal factor of failure and where the data are type-
II censored. *e scope of this study may also be extended to
other censoring schemes as well as for more than two-
component mixture models.
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Figure 4: Empirical and fitted cdfs for survival times of 33 patients
suffering from acute myelogenous leukemia for MMOEW,
MOEW, EW, Weibull, EE, and MOW distributions.

1.0

0.8

0.6

0.4

0.2

2 3 4 5 6 7

cd
f

MMOEW
MOEW
EW

Weibull
MOW

Figure 5: Empirical and fitted cdfs for the COVID-19 data be-
longing to Canada of 36 days for MMOEW, MOEW, EW,Weibull,
EE, and MOW distributions.

Mathematical Problems in Engineering 13



Acknowledgments

*is research was funded by the Deanship of Scientific
Research at Princess Nourah Bint Abdulrahman University
through the Fast-track Research Funding Program.

References

[1] S. Newcomb, “A generalized theory of the combination of
observations so as to obtain the best result,” American Journal
of Mathematics, vol. 8, no. 4, pp. 343–366, 1886.

[2] K. Pearson, “Contributions to the Mathematical theory of
Evolution,” Philosophical Transactions, A, vol. 185, pp. 71–110,
1894.

[3] W. Mendenhall and R. J. Hader, “Estimation of parameters of
mixed exponentially distributed failure time distributions
from censored life test data,” Biometrika, vol. 45, no. 3-4,
pp. 504–520, 1958.

[4] C. Radhakrishna, A. V. Dattatreya Rao, and
G. V. S. R. Anjaneyulu, “Estimation of parameters in a two-
component mixture generalized gamma distribution,” Com-
munications in Statistics-Geory and Methods, vol. 21, no. 6,
pp. 1799–1805, 1992.

[5] K. E. Ahmed, H. M. Moustafa, and A. M. Abd-Elrahman,
“Approximate Bayes estimation for mixture of two Weibull
distributions under type-2 censoring,” Journal of Statistical
Computation and Simulation, vol. 58, pp. 269–285, 1997.

[6] E. K. AL-Hussaini, G. H. AL-Dayian, and S. A. Adham, “On
finite mixture of two-component Gompertz lifetime model,”
Journal of Statistical Computation and Simulation, vol. 67,
pp. 1–20, 2000.

[7] Z. F. Jaheen, “On record statistics from a mixture of two
exponential distributions,” Journal of Statistical Computation
and Simulation, vol. 75, pp. 1–11, 2005.

[8] A. I. Shawky and R. A. Bakoban, “On infinite mixture of two-
component exponentiated gamma distribution,” Journal of
Applied Sciences Research, vol. 5, no. 10, pp. 1351–1369, 2009.

[9] H. H. Abu-Zinadah, “A study on mixture of exponentiated
Pareto and exponential distributions,” Journal of Applied
Sciences Research, vol. 6, pp. 358–376, 2012.

[10] G. Prakash, “Bayes estimation for a mixture of the Weibull
distributions,” International Journal of Mathematics and
Scientific Computing, vol. 2, no. 1, pp. 2231–5330, 2012.

[11] Q. Zhang, C. Hua, and G. Xu, “A mixture Weibull propor-
tional hazard model for mechanical system failure prediction
utilizing lifetime and monitoring data,” Mechanical Systems
and Signal Processing, vol. 43, no. 1-2, pp. 103–112, 2014.

[12] A. A. ALgfary, “On finite mixture of exponentiated kumar-
aswamy distributions,” Masters thesis, King Abdulaziz Uni-
versity, Jeddah, Saudi Arabia, 2015.

[13] S. A. Adham and A. A. ALgfary, “Bayesian estimation and
prediction for a mixture of exponentiated Kumaraswamy
distributions,” International Journal of Contemporary
Mathematical Sciences, vol. 11, pp. 497–508, 2016.

[14] S. F. Ateya and H. A. Al Khald, “Bayes estimation under a
finite mixture of truncated generalized Cauchy distributions
based on censored data with application,” Biostatistics and
Biometrics Open Access Journal, vol. 5, no. 1, pp. 1–7, 2018.

[15] M. Aslam, M. Tahir, and Z. Hussain, “Reliability analysis of
three-component mixture of distributions,” ScientiaIranica,

Transactions E: Industrial Engineering, vol. 25, pp. 1768–1781,
2018.

[16] M. Tahir, M. Aslam, H. Hussain, M. Abid, and S. H. Bhatti,
“Bayesian analysis of heterogeneous doubly censored lifetime
data using the 3-component mixture of Rayleigh distribu-
tions: a Monte Carlo simulation study,” ScientiaIranica,
vol. 26, no. 3, pp. 1789–1808, 2019.

[17] Z. I. Kalantan and F. Alrewely, “A 2-component Laplace
mixture model: properties and parametric estimations,”
Mathematics and Statistics, vol. 7, no. 4A, pp. 9–16, 2019.

[18] M. Tahir, M. Aslam, M. Abid, S. Ali, andM. Ahsanullah, “A 3-
component mixture of exponential distribution assuming
doubly censored data: properties and Bayesian estimation,”
Journal of Statistical Geory and Applications, vol. 19, no. 2,
pp. 197–211, 2020.

[19] O. Kharazmi, S. Dey, and D. Kumar, “Statistical inference on
2-component mixture of Topp-Leone distribution, Bayesian
and non-Bayesian estimation,” Journal of Mathematical Ex-
tension, In press, 2020.

[20] M. E. Ghitany, E. K. Al-Hussaini, and R. A. Al-Jarallah,
“Marshall-Olkin extended Weibull distribution and its ap-
plication to censored data,” Journal of Applied Statistics,
vol. 32, no. 10, pp. 1025–1034, 2005.

[21] T. Zhang and M. Xie, “Failure data analysis with extended
Weibull distribution,” Communications in Statistics-Simula-
tion and Computation, vol. 36, no. 3, pp. 579–592, 2007.

[22] F. Guess and F. Proschan, “Mean residual life: theory and
applications,” Handbook in Statistics, vol. 7, pp. 512–224,
1988.

[23] J. F. Lawless, Statistical Models andMethods for Lifetime Data,
John Wiley & Sons, New York, NY, USA, 1982.

[24] S. Dey, S. Ali, and C. Park, “Weighted exponential distri-
bution: properties and different methods of estimation,”
Journal of Statistical Computation and Simulation, vol. 85,
no. 18, pp. 3641–3661, 2015.

[25] S. Dey, T. Dey, S. Ali, and M. S. Mulekar, “Two-parameter
Maxwell distribution: properties and different methods of
estimation,” Journal of Statistical Geory and Practice, vol. 10,
no. 2, pp. 291–310, 2016.

[26] S. Dey, D. Kumar, and P. L. Ramos, “Exponentiated chen
distribution: properties and estimation,” Communications in
Statistics—Simulation and Computation, vol. 46, no. 10,
pp. 8118–8139, 2017.

[27] H. Varian, “A Bayesian approach to real estate Assessment,”
in Studies in Bayesian Econometrics and Statistics,
S. E. Fienberg and A. Zellner, Eds., Scientific Research,
Amsterdam, Netherlands, 1975.

[28] A. Zellner, “Bayesian and non-Bayesian estimation using
Balanced loss functions,” in Statistical Decision Geory and
Related Topics V, S. S. Gupta and J. O. Burger, Eds., Springer,
Berlin, Germany, 1986.

[29] B. N. Pandey and O. Rai, “Bayesian estimation of mean and
square of mean of normal distribution using LINEX loss
function,” Communication in Statistics Geory and Methods,
vol. 21, pp. 3369–3391, 1992.

[30] A. P. Basu and N. Ebrahimi, “Bayesian approach to life testing
and reliability estimation using asymmetric loss function,”
Journal of Statistical Planning and Inference, vol. 29, pp. 21–31,
1991.

14 Mathematical Problems in Engineering



[31] M. D. Nichols and W. J. Padgett, “A bootstrap control chart
for Weibull percentiles,” Quality and Reliability Engineering
International, vol. 22, pp. 141–151, 2006.

[32] T. Bjerkedal, “Acquisition of resistance in Guinea pigs in-
fected with different doses of virulent tubercle bacilli,”
American Journal of Public Hygiene, vol. 72, pp. 130–148,
1960.

[33] E. Mahmoudi, “*e beta generalized Pareto distribution with
application to lifetime data,” Mathematics and Computers in
Simulation, vol. 81, no. 11, pp. 2414–2430, 2011.

Mathematical Problems in Engineering 15



Research Article
Stationary Wavelet with Double Generalised
Rayleigh Distribution

Hassan M. Aljohani

Department of Mathematics & Statistics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

Correspondence should be addressed to Hassan M. Aljohani; h.m.sarhan@gmail.com

Received 23 October 2020; Revised 28 November 2020; Accepted 5 April 2021; Published 3 May 2021

Academic Editor: Alessandro Mauro

Copyright © 2021HassanM.Aljohani.(is is an open access article distributed under theCreative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Statistics are mathematical tools applying scientific investigations, such as engineering and medical and biological analyses.
However, statistical methods are often improved. Nowadays, statisticians try to find an accurate way to solve a problem. One of
these problems is estimation parameters, which can be expressed as an inverse problem when independent variables are highly
correlated. (is paper’s significant goal is to interpret the parameter estimates of double generalized Rayleigh distribution in a
regressionmodel using a wavelet basis. It is difficult to use the standard version of the regressionmethods in practical terms, which
is obtained using the likelihood. Since a noise level usually makes the result of estimation unstable, multicollinearity leads to
various estimates. (is kind of problem estimates that features of the truth are complicated. So it is reasonable to use a mixed
method that combines a fully Bayesian approach and a wavelet basis. (e usual rule for wavelet approaches is to choose a wavelet
basis, where it helps to compute the wavelet coefficients, and then, these coefficients are used to remove Gaussian noise. Re-
covering data is typically calculated by inverting the wavelet coefficients. Some wavelet bases have been considered, which provide
a shift-invariant wavelet transform, simultaneously providing improvements in smoothness, in recovering, and in squared-error
performance.(e proposedmethod uses combining a penalizedmaximum likelihood approach, a penalty term, and wavelet tools.
In this paper, real data are involved and modeled using double generalized Rayleigh distributions, as they are used to estimate the
wavelet coefficients of the sample using numerical tools. In practical applications, wavelet approaches are recommended. (ey
reduce noise levels. (is process may be useful since the noise level is often corrupted in real data, as a significant cause of most
numerical estimation problems. A simulation investigation is studied using the MCMC tool to estimate the underlying features as
an essential task statistics.

1. Introduction

Parameters’ estimation, to provide an interpreted model, is
often the biggest challenge in statistics since data might
contain noise, blur, or both. (ese kinds of problems were
found in science, geophysics, engineering, and medicine.
(is kind of situation received much attention from re-
searchers over the past decade. In practical applications, the
biggest challenge in estimating the unknown parameters is
that real data usually contain white noise. Hence, using a
pretreatment may reduce noise, where it might provide a
suitable fit. More precisely, it is used in the statistical ap-
proaches of data corrupted with white noise arising from the
collocation of equipment. (ere are two types of statistical
tools that are usually involved in processing the data. (e

first one is data pretreatment, which is applied to reduce the
independent variable’s correlation or noise level. (e second
is model calibration, which can be related to using Bayesian
and wavelet methods. Hence, the key issues can be presented
as working with many unknown features compared to the
number of observations and then an ill-posed or ill-con-
ditioned order in the model; that is, the maximum likelihood
estimation is unsuitable for estimating underlying param-
eters. (e widespread problem is to study real data collected
by magnetometer or voltage reading, which are usually
highly correlated. (is process is needed since the sample’s
measured spectral characteristics may have noise levels and
blur. Statistically, several established methods can be ap-
plied, such as classical thresholding approaches. Early work
for studying this procedure can be found in [1, 2] who
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introduced a new tool for removing noise (see [3, 4] for
explicit motivation). Bayesian approaches were studied
using different probability distributions in many fields over
the last century. A common practice would be to perform
exponential [5], and others were applied to various density
distributions. For example, the authors in [6] studied the
exponential distribution and estimated their parameters,
whereas those in [7] employed the Weibull distribution to
estimate the parameters using censored data. Also, the
authors in [8] studied the Rayleigh distribution using
consorted data. Hence, the idea of this article is to combine
Bayesian and wavelet methods for estimating underlying
parameters. Wavelets can be powerful mathematical tools
applied to reduce the impact of multicollinearity problems.
Wavelet basis can be explained as a special complicated level
of the Fourier transform. However, the main reason for
using wavelet approaches is that it is easy to choose between
different wavelet bases. Many summaries were written about
this topic by several authors. For example, Mallat [9] states
that a probability density function of wavelet coefficients is
notably peaked and centered around at zero. Also, the al-
gorithm of discrete wavelet transform can be found in [10].
In wavelet, the stationary basis is recommended for the
reconstruction (see [11] for more details). (en, the wavelets
have received many comments from scientists, while several
authors analyzed some real-statistical applications (see [12]
for a direct result). Different approaches to the use of the
wavelet can be found in [13]. Considerable details about
wavelets can found in [14]. (e central concept of the
Bayesian approach is using the construction of theory.
However, when the rules are built carefully, the model
provides a good fit afterward as the estimation process.(ere
are several papers on Bayesian methods (see [15] who
studied Bayesian approaches in the wavelet domain).
Wavelet via Bayesian approaches can be studied in many
articles, such as in [16]. More details about the combination
of Bayesian and wavelet can be studied in [17]. Besides, using
the MCMC algorithm is extracting a sample at each run of
simulation from the rule. (e posterior rule is more com-
plicated for an analytic solution. (e easy type of MCMC is
in [18], which can be implemented to extract notation. More
details about the MCMC tool can be studied in [19–21].
Moreover, the estimation of the unknown parameters of the
double generalized Rayleigh DGRay (cj, κj, λj) distributions
is proposed to provide a new tool, where J � 0, 1, . . . , j − 1
for some indexes J. In practical terms, this type of inves-
tigation is sometimes called the “level-dependent” models
since the distribution parameters are estimated for each level
j, especially when the measurable characteristics are as-
sumed under two or more different conditions. For example,
some wavelet coefficients have defects that are close to be
around zero, whereas wavelet coefficients without defects
may take a form far from zero. Consider the linear inverse
problem defined by

x � θ + ε, (1)

with observed measurement xn×1 � Xi: i � 1, . . . , n􏼈 􏼉, the
vector of the unknown parameters θn×1 � θi: i � 1, . . . , n􏼈 􏼉,

and errors εn×1. Furthermore, ε ∼ Nn(0, σ2In), the noise level
is usually assumed to be independent and identically dis-
tributed normally random, and n � 2J. Consider the un-
known parameters Θ defined by

ΘC,D
� KΘ, (2)

where K is an orthonormal matrix containing the wavelet
basis. Hence, the unknown parameters Θ can be defined by
their discrete wavelet transform
ΘC,D � θC0,0, θ

D
j,l: j � 0, 1, . . . ,J − 1, l � 0, 1, . . . , n − 1􏽮 􏽯,

and the stationary transform is used in this article. So the
number of wavelet coefficients and observations is equal.
Also, the wavelet coefficients of the observed data x are
defined by

xC,D
� ΘC,D

+ ϱ, (3)

where xC,D is the set of the wavelet coefficients of x and
ΘC,D ⊂ R is also the set of Θ, where ϱ ∼ Nn(0, σ2In). Level-
dependent models play a significant role in wavelet appli-
cations—this procedure allows us to investigate the value of
unknown parameters at each resolution j of wavelet coef-
ficients. (ere are numerous methods for specifying values
of unknown parameters of the double generalized Rayleigh
distributions. Moreover, the MCMC algorithms are
implemented to investigate the unknown parameters from
complicated or nonstandard posterior distributions [22]. In
statistics, there are many tools that can be applied to estimate
parameters, such as EM and MCMC algorithms. In this
article, two types of methods are supposed; the first one is the
posterior mean (PM), and the second is maximum a pos-
teriori (MAP).

Figure 1 illustrates the shape of the double Rayleigh
distribution for different values of c. It can be seen that as
c⟶ 0, the density double Rayleigh approaches infinity,
and this type of distribution can be used to fit the density of
the empirical wavelet coefficients. More precisely, the
wavelet coefficients are nearby the zero, which is found using
the double generalized Rayleigh distribution with c � 0 and
0< κ≤ 0.5. In the other words, the density double Rayleigh
approaches infinity as x approaches zero when κ ∈ (0, 0.5]

and c � 0, which is equivalent to the summary of Mallat.
(is article is structured as follows: introduction to the
double generalized Rayleigh distribution is explained in
Section 2. All technical arguments are referred to in Sections
3 and 4. Numerical work confirming their features and
simulation study to investigate estimation properties is
provided in Sections 5 and 6. Section 7 gives the result of the
proposed rule to real data. (e final summary and con-
clusions are presented in Section 8.

2. Double Generalized Rayleigh Distribution

(e generalized Rayleigh DGRay (cj, κj, λj) distribution was
proposed by Aykroyd et al. as a generalized distribution.
(ey showed the properties of the model, such as cumulative
and survivor functions. Also, Aykroyd et al. [23] showed that
the generalized Rayleigh distribution works well to fit data.
(ey also used the Bayesian approaches to estimate
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unknown parameters of the generalized Rayleigh distribu-
tion. In this paper, a double generalized Rayleigh distri-
bution will be used to model the wavelet coefficients,

equivalent to the density of the wavelet coefficients. Let
single wavelet coefficient θD

j,l at the level j be the probability
density function (pdf) given by

f θD
j,l|λj, κj, cj􏼐 􏼑 �

λjκj

2
θD

j,l

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 θD2
j,l − cj􏼐 􏼑

κj− 1
exp −

λj θD2
j,l − cj􏼐 􏼑

κj

2
⎧⎨

⎩

⎫⎬

⎭, −
��
cj

􏽰 < θD
j,l <

��
cj

􏽰
,

0, O.W,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

where |.| is the absolute value. (e cumulative distribution
function (cdf) is defined by

F θD
j,l|λj, κj, cj􏼐 􏼑 �

1 − exp −
λj θD2

j,l − cj􏼐 􏼑
κj

2
⎧⎨

⎩

⎫⎬

⎭, θD
j,l >

��
cj

􏽰
,

exp −
λj θD2

j,l − cj􏼐 􏼑
κj

2
⎧⎨

⎩

⎫⎬

⎭, θD
j,l < −

��
cj

􏽰
,

0, O.W.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

(e survivor function (sf ) is given by

S θD
j,l|λj, κj, cj􏼐 􏼑 �

exp −
λj θD2

j,l − cj􏼐 􏼑
κj

2
⎧⎨

⎩

⎫⎬

⎭, θD
j,l >

��
cj

􏽰
,

1 − exp −
λj θD2

j,l − cj􏼐 􏼑
κj

2
⎧⎨

⎩

⎫⎬

⎭, θD
j,l < −

��
cj

􏽰
,

0, O.W,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

and the failure function (hrf ) is given by

h θD
j,l|λj, κj, cj􏼐 􏼑 �

λjκjθ
D
j,l θD2

j,l − cj􏼐 􏼑
κj− 1

, θD
j,l >

��
cj

􏽰
,

λjκj/2􏼐 􏼑 θD
j,l

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 θD2
j,l − cj􏼐 􏼑

κj− 1
exp − λj t

2
− cj􏼐 􏼑

κj /2􏼐 􏼑􏽮 􏽯

1 − exp − λj θD2
j,l − cj􏼐 􏼑

κj /2􏼐 􏼑􏽮 􏽯
, θD

j,l <
��
cj

􏽰
,

0, O.W,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where cj > 0, κj > 0 and λj > 0. In some indexes,
J � log2(n). (e parameters λj and κj are shape
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parameters, and cj is a location parameter. Setting cj � 0
and κj � 1 in (4)–(6), the results of the standard of the
double Rayleigh distribution with parameter λj are obtained.

3. Bayesian Approach

In statistics, Bayesian tools play important roles, where the
approach has two keys. (e first one is the likelihood,
concocted between observation and unknown parameters,
say p(x|ζ), where ζ and x are sets of underlying parameters
and observations, respectively. (e second key is the prior
distribution, say p(ζ), and then the combining posterior
distribution. Assuming the link between the model of x and
the unknown of wavelet coefficients (KTΘD),

p x|ΘD
, σ2􏼐 􏼑 � 􏽙

n

i�1

1
����
2πσ2

√􏼠 􏼡

n

exp −
1
2σ2

􏽘

n

i�1
xi − K

TΘD
􏼐 􏼑

i
􏼐 􏼑

2⎧⎨

⎩

⎫⎬

⎭,

x,ΘD ⊂ Rn
; σ > 0,

(8)

where σ2 is the variance of data and can be assumed by

p σ2|τ􏼐 􏼑 � τ exp −τσ2􏽮 􏽯, τ > 0, (9)

using equation (2) and the marginal likelihood given by

p(x|θ, τ) � 􏽚
∞

0
p x|θ, σ2􏼐 􏼑p σ2|τ􏼐 􏼑dσ2

�

��
2τ

√

2
exp −

��
2τ

√
|x − θ|􏼈 􏼉.

(10)

(e result of the previous integration can be found in
[24]. (e equivalent likelihood is defined by

p x|ΘD
, τ􏼐 􏼑 � 􏽙

n

i�1

��
2τ

√

2
􏼠 􏼡

n

exp −
��
2τ

√
􏽘

n

i�1
xi − K

TΘD
􏼐 􏼑

i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
⎧⎨

⎩

⎫⎬

⎭, x,ΘD ⊂ Rn
; σ > 0.

(11)

In addition, the posterior distribution for ΘD given x is

p ΘD
|x, λJ−1, . . . , λ0, κJ−1, . . . , κ0􏼐 􏼑

� p x|K
TΘD

􏼐 􏼑p θD
J−1|λJ−1, κJ−1􏼐 􏼑, . . . , p θD

0 |λ0, κ0􏼐 􏼑

∝􏽙
n

i�1
exp −

��
2τ

√
􏽘

n

i�1
xi − K

TΘD
􏼐 􏼑

i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
⎧⎨

⎩

⎫⎬

⎭ ×
(2τ)

n/2λnJ−1
J−1κ

nJ−1
J−1

2n 􏽙

nJ−1

l�0
θD
J−1,l

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 θD2
J− 1,l􏼐 􏼑

κJ−1− l

× exp −
λJ−l θ

D2
J− 1,l􏼐 􏼑

κJ−l

2
⎧⎨

⎩

⎫⎬

⎭ · · · × λn0
0 κ

n0
0 θD

0,0

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 × θD2
0,0􏼐 􏼑

κ0− 1
exp −

λ0 θD2
0,0􏼐 􏼑

κ0

2
⎧⎨

⎩

⎫⎬

⎭, xi, θ
D
j,l ∈ R; λJ−1, . . . , λ0, κJ−1, . . . , κ0􏼐 􏼑> 0, σ > 0,

(12)

where nJ−1, . . . , n0 are the size of the coefficients at each level
J − 1, . . . , 0. Hence, the value of κj is suggested as 0< κj ≤ 0.5.
(e main reason for choosing the double generalized Rayleigh
is that as the value of cj⟶ 0 and |θD

j,l|⟶ 0, the proposed
distribution approaches infinity, which is followed by the
saying of Mallat about the interpretation of the wavelet co-
efficients distribution. Clearly, equation (12) can be used to
estimate the unknown parameters ΘD given
x, λJ−1, . . . , λ0, κJ−1, . . . , κ0, and then these unknown pa-
rameters can be employed to describe the reconstruction.
Hence, the unknown parameters are made up of one set, say
with ζ � θC0,0, θ

C
1,0, θ

C
1,1, . . . , θCJ−1,n−1, λJ−1, . . . , λ0,􏽮

κJ−1, . . . , κ0, τ}, and then, the previous form (12) becomes

p(ζ|x)∝p(x|ζ)p(ζ) � p x|K
TΘD

,ω􏼐 􏼑p ΘD
􏼐 􏼑p(ω)p(τ),

(13)

where ΘC,D � θC0,0, θ
D
j,l: j � 0, 1, . . . ,J − 1, l �􏽮 0, 1, . . . , n −

1} and suppose that ω � τ, λ, κ{ } at the level j. Aykroyd et al.
considered gamma prior density for λ and κ with hyperprior
parameters (α1, β1) and (α2, β2). Also, gamma distribution is
proposed for τ with hyperparameters (α3, β3), with density
function

p ωi|αi, βi( 􏼁 �
1
Γ αi( 􏼁

βαi ω
αi− 1 exp −βiω􏼈 􏼉, (α, β)> 0, i � 1, 2, 3.

(14)
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(en, the posterior density of the single value of θD
j,l with

parameters τ, λj, and κj at the level j, given the data x, is
given by

p θDj,l, τ, λj, κj|xi􏼐 􏼑 �
p xi| K

TΘD
􏼐 􏼑

i
, τ􏼐 􏼑p(τ)p λj􏼐 􏼑p κj􏼐 􏼑

􏽒θD
j,l

􏽒λj
􏽒κj

􏽒τp xi| K
TΘD

􏼐 􏼑
i
, τ􏼐 􏼑p(τ)p λj􏼐 􏼑p κj􏼐 􏼑dκjdλjdθ

D
j,l

,

p ΘD
, τ, λJ−1, . . . , λ0, κJ−1, . . . , κ0|x􏼐 􏼑∝p x|K

TΘD
, τ􏼐 􏼑p(τ)p θD

J−1􏼐 􏼑 . . .

× p θD
0􏼐 􏼑p λJ−1􏼐 􏼑 . . . p λ0( 􏼁p κJ−1􏼐 􏼑 . . . p κ0( 􏼁,

(15)

and the joint posterior density given data, x, can be written
as

p ΘD
, τ, λJ−1, . . . , λ0, κJ−1, . . . , κ0|x􏼐 􏼑

∝
(2τ)

n/2τn+α1− 1λnJ−1+α2,J−1−1
J−1 . . . λn0+α2,0−1

0 κnJ−1+α3,J−1−1
J−1 . . . κn0+α3,0−1

0

2nΓ α1,n􏼐 􏼑βα1,n

1,n Γ α2,J−1􏼐 􏼑βα2,J−1
2,J−1 . . . Γ α2,0􏼐 􏼑βα2,0

2,0 Γ α3,J−1􏼐 􏼑βα3,J−1
3,J−1 . . . Γ α3,0􏼐 􏼑βα3,0

3,0

exp −
τ
β1,n

+
λJ−1

β2,J−1
+ · · · +

λ0
β2,0

+
κJ−1

β3,J−1
+ · · · +

κ0
β3,0

􏼠 􏼡􏼨 􏼩 􏽙

nJ−1

l�0
θD
J−1,l

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 θD
J−1,l􏼐 􏼑

2κJ−1− 1
exp −

λJ−1 θD
J−1,l􏼐 􏼑

2κJ−1

2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

× · · · θD
0

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 θD
0􏼐 􏼑

2κ0− 1
exp −

λ0 θD
0􏼐 􏼑

2κ0

2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
􏽙

n

i�1
exp −

��
2τ

√
􏽘

n

i�1
xi − K

TΘD
􏼐 􏼑

i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
⎧⎨

⎩

⎫⎬

⎭, xi, θ
D
j,l ∈ R; λJ−1, . . . , λ0, κJ−1, . . . , κ0􏼐 􏼑> 0, σ > 0.

(16)

(e hyperprior parameters τ,
κ � κ1,J−1, . . . , κ1,0, κ2,J−1, . . . , κ2,0􏽮 􏽯, and
β � β1,J−1, . . . , β1,0, β2,J−1, . . . , β2,0􏽮 􏽯 can be fixed, as follows:
let the expectation and variance of ωj at resolution j, say ti,j

and ri,j, where i � 1, 2, 3. By solving the following equations
E ωj􏼐 􏼑 � αi,jβi,j,

Var ωj􏼐 􏼑 � αi,jβ
2
i,j, i � 1, 2, 3,

(17)

the corresponding hyperprior parameters can be defined as
αi,j � t2i,j/ri,j and βi,j � ri,j/ti,j.

4. Stationary Approaches

(e vital task in the wavelet approaches is to choose a basis.
For more details, the interpretation of the wavelet basis is to
start with two functions. (e first one is scaling or father
function ϕ, where the main task of this function is to
compute the scaling coefficients. (e other is a wavelet or
mother function ψ, where it can be used to calculate the
wavelet coefficients. Several wavelet bases are now available

with different degrees of smoothness. However, the Haar
basis is a simple version of the wavelet transform. Moreover,
there are several established wavelet families demonstrated
(see [25–29] for details). Stationary wavelet transforms
(SWTs) attracted much attention for many applications over
the last few years. In particular, the classical stationary
wavelet transform was introduced in [30], while the authors
in [31, 32] applied at that time as the maximal overlap for
discrete wavelet.

In 1995, Nason extended the discrete wavelet and
recalled it as the “stationary.” In the same year, Ronald and
David [33] proposed a new tool: stationary wavelet coeffi-
cients and is sometimes referred to as “cycle spinning.” In
general, the SWT can be described as “fills in the gaps”
between the decimated wavelet coefficients; that is, there is
no missing computation between two different values of
wavelet coefficients. Nason stated that this leads to an over-
determined redundancy of the original data (see the below
example for more explanation). (e producer gives a shift-
invariant removing noisy tool, which simultaneously shows
improvements in reconstruction quality (see Ronald and
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David). For example, of the SWT, the Haar wavelet is applied
to the data x � x1, x2, x3, x4􏼈 􏼉. (e first and second sets of
the scaling and detail coefficients can be computed:

θC
1,l �

�
2

√

2

�
2

√

2
0 0

0
�
2

√

2

�
2

√

2
0

0 0
�
2

√

2

�
2

√

2

�
2

√

2
0 0

�
2

√

2
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

x1
x2
x3
x4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (18)

where θC
1,l, θ

C
0,l, θ

D
1,l, and θD

0,l are the matrices of transform at
level j � 0, 1{ }, respectively. Hence, the number N of van-
ishing moments decreases. (is implicates that the
smoothness of the corresponding shape decreases. In this
paper, Daubechies father function ϕ and mother ψ with N �

8 vanishing moments are used to provide a smooth
reconstruction.

(e plotting procedure for the stationary wavelet
transform is shown in Figure 2. It can be seen that each level
j has the same number of wavelet coefficients. Figure 3
shows the scaling and wavelet functions for Daubechies with
N � 8 vanishing moments. Table 1 shows the wavelet co-
efficients for Daubechies compact, phase N � 8. Here, we
present the idea of Daubechies, omitting some technical
details.

5. Numerical Methods

(e goal of the Bayesian computation is to extract a posterior
sample for some unknown parameters ζ. However, com-
putational statistics can be explained as inverse problems.
Some tools can be used to make the estimation more effi-
cient. (ey include the standard version of the MCMC al-
gorithms, Metropolis-Hastings tools, to extract a random
sample from the posterior rule p(ζ|x) in (16). (e procedure
of the technique for parameter estimation, through the
MCMC approach, can be found in [34]; for more infor-
mation, see [35,36] and more recent works such as [37].

Figure 4 shows the diagram of the procedure of the
proposed methods, where the procedure starts with data,
which is corrupted by noise. (e data are transformed to
wavelet coefficients, which are used to estimate the unknown
wavelet coefficients using the suggested method, and then,
the underlying signal is calculated by inverting the esti-
mation of wavelet coefficients. (e main idea of the MCMC
algorithms is that the parameter can take at any valued point
in the parameter space Ω, say ζ i is the value point. (en, at
each step, MCMC creates values, say ζ1i , ζ2i , . . . , ζr

i . Each
single parameter updates separately in the order that the
MCMC algorithms depend on a random walk. More pre-
cisely, the general framework of the tool is defined as follows:

(i) Starting with an initial value for ΘC,D � 0 and for
each level j � 0, 1, . . . , 2J− 1, that is, for parameters,
let ω0 � κ00, κ

0
1, . . . κ02J− 1 , β00, β

0
1, . . . β02J− 1􏽮 􏽯.

(ii) For times k � 1, . . . , K.

(1) Generate a new value ω∗j � ωk−1
j + ε, where

ε ∼ N(0, ς2k−1
ω,j ). Hence, the current value of the prior

parameters is proposed with a variance parameter for
each resolution j, which is chosen to obtain an ac-
ceptable convergence rate.

(2) Compute the posterior distribution in (16).

For s � 1, 2, . . . , n, that is, for each wavelet coefficient θD
j,l.

(a) Generate a new wavelet coefficient θD∗
j,l � θDs−1

j,l + ε,
where ε ∼ N(0, ς2s−1

θ,j ).
(b) Again, compute the posterior distribution in (16).
(c) Generate u ∼ U(0, 1).
(d) When α(ζ∗| ζsk

) � min 1, (p(θD0,0, θ
D
1,0, . . . , θD∗j,l , . . . ,􏽮

θDJ−1,n−1, λJ−1, . . . , λ∗j , . . . , λ0, κ
J−1, . . . , κ∗j , . . . , κ0)/p(θD0,0, θ

D
1,0, . . . , θDs−

j,l

1, . . . , θDJ−1,n−1, λJ−1, . . . , λk−
j
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1, . . . , λ0, κJ−1, . . . , κk−1
j , . . . , κ0))}> u, accept the

proposal and set θDs
j,l � θD∗

j,l and ωk
j � ω∗j ; else, θ

Ds
j,l �

θDs−1
j,l and ωk

j � ωk−1
j .

Hence, all parameters are generated from the Gaussian
distribution, while the current amount of the parameter is
the expectation of the normal distribution with updating

−1 1 3−3
x

γ = 0
γ = 1
γ = 2

0.4

0.8f (
x)

1.2

Figure 1: Typical data (points) derived from the generalized Rayleigh distribution (dashed line) along with different values of c, while
κ � 0.5 and λ � 10.

x1 x2 x3 x4 x1

θC1,0

θD1,0 θD1,0θD1,1 θD1,2 θD1,3

θC1,0θC1,1 θC1,2 θC1,3

дl

hl

Figure 2: Graphical depiction of the stationary wavelet transform. (e first row depicts the data, the second row indicates the wavelet
coefficients, and the third shows the correspondence to the detailed wavelets. hl and gl are high- and low-pass quadrature mirror filters.
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Figure 3: Plots of the father ϕ and mother ψ wavelets with N � 8 vanishing moments.
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variance, which is based on the acceptance rate. It is essential
to realize to pick up a random value around the current
value, that is, both low and high, with variances ς2ζ ,j chosen to
depend on an acceptance rate. More precisely, choosing any
valued point ω in the parameter space is accepted. (e
authors in [38] stated determining value is between 20% and
30% for an acceptance rate. Hence, we considered the fol-
lowing gamma prior density for the variance of noise σ2,
where the starting point is computed from the finest level of
the wavelet coefficients, ΘD

J−1, (see Nason).
Once the sample is collected from the posterior rule, the

posterior mean for ζ can be calculated by

􏽢ζ � ζ �
1

K − M
􏽘

K

k�M+1
ζk

, (19)

and also, the posterior variance can be calculated by

􏽢σ2 �
1

K − M
􏽘

K

k�M+1
ζk

− ζ􏼐 􏼑
2
, (20)

where K and M are the number of run and burn-in, re-
spectively. Hence, there is an enormous method to compute
the estimate point and interval. For the MAP rule, the
previous procedure is changed into a simulated annealing

process of Geman and Geman; this process can answer more
quickly than the posterior mean. More accurately, the MAP
estimate is chosen as the final iteration 􏽢θMAP � 􏽢θ

K
. In other

words, sample mean and variance can not be computed. (e
maximum a posteriori estimator (MAP) is defined as

􏽢ζMAP � argmax
ζ

p(ζ|x)
K

, (21)

where K indicates the final iteration of the run of theMCMC
algorithms.

6. Simulation

(e investigation of the proposed rule is considered. (en,
the results are compared to some established wavelet-based
methods. (e authors in [39] introduced four test signals:
bumps, Doppler, heavisine, and blocks. Moreover, these
functions were corrupted by the independent Gaussian noise
Nn(0, Inς2θ). Different sizes are studied to investigate the
proposed method’s performance, which is n � 64 and 128,
where the four test functions were simulated. Also, various
wavelet bases were used: Daubechies with N � 8 applied for
the test functions heavisine, Doppler, and bumps, while
Haar basis was used for blocks. (e starting level was j0 � 3,
as recommended in [40]. (e average mean squared-error

Table 1: Orthogonal Daubechies coefficients for filter number 8.

l 0 1 2 3 4
hl 0.0544158422 0.3128715909 0.6756307363 0.5853546837 −0.0158291053
l 5 6 7 8 9
hl −0.2840155430 0.0004724846 0.1287474266 −0.0173693010 −0.0440882539
l 10 11 12 13 14
hl 0.0139810279 0.0087460940 −0.0048703530 −0.0003917404 0.0006754494
l 15 16 17 18 19
hl −0.0001174768 0 0 0 0

Wavelet transform

Observation

Wavelet coefficients

Parameters estimation

Invert wavelet transform

Estimation of signal

X

XC,D

θC,D

θ

Estimation of wavelet
coefficients



Figure 4: Diagram showing the structure of the suggested methods.
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(AMSE) evaluated the results of the estimation, which is
defined as

AMSE �
1

KN
􏽘

K

j�1
􏽐
N

i�1

􏽢θj,i − θi􏼐 􏼑
2
, (22)

where N and K are the numbers of the data and the runs of
the MCMC algorithms. Moreover, the results from the
proposed method are denoted by 􏽢θk,i, i � 1, . . . , N at k-th
run of MCMC algorithms.

(e proposed estimators were compared to various
methods, such as the Bayesian wavelet thresholding
(BAYES.THR) method of Abramovich and Silverman, the
ABWS rule of Chipman, Kolaczyk, and McCulloch, and the
BAMS rule of Vidakovic and Ruggeri. Table 2 shows the results
of the simulation when decimated and the nonstationary
wavelet were used. It shows the result of AMSE; for our
simulation, two bases are used. (e first one is the basis with
zero vanishing moments, and the other is the Daubechies’
wavelets with N � 8 vanishing moments. (e proposed
technique always gives the best reconstructions. (e main
interest is to improve the result of the reconstruction. (is can
be seen when the size of the sample is large because extensive
observations contain massive information about the feature of
the signal. In general, the MAP method provides a fair reso-
lution in the test functions. However, the worst of the results is
better than the other of the competed wavelet rules.(e biggest
problem in the MAP estimate is that the confidence intervals

can not be computed because the latest sample of posterior is
picked.

7. Application to Medical Data

(e suggested method is studied and investigated to a real-
world inductance plethysmography data to evaluate the ex-
cellent performance of the proposed rules, compared to the
state-of-the-art methods.(e Department of Anaesthesia at the
Bristol Royal Infirmary collected these observations. (e
number of observations is 2048, equally spaced points. Readers
can obtain these data within Wave(resh using data (Baby-
ECG). Also, the structure of the sleep state can be downloaded
using data (BabySS). Figure 5 shows the plots of BabyECG and
sleep state. Hence, the aim of the investigation of the BabyECG
was to specify the sleep state successfully from the observations.
(ese data were studied and investigated by other authors (for
example, [41]). (e reconstruction of the unbalanced Haar
approach (red line) is illustrated in Figure 6. It is not accessible
to describe every moment using the unbalanced Haar method
or to talk in general about the sleep state for the babies. Figures 7
and 8 show the reconstructions of the underlying feature with
the MAP method using the Haar wavelet basis and Daubechies
wavelet with N� 8 vanishing moments. In our reconstruction,
the value of the shape κj is set within the interval (0, 0.4).
Table 3 shows the results of the simulations using the MAP and
PM estimators. As the level j decreases, the value of κ increases.
In contrast, the value of the parameter λ is slightly changed.

Table 2: (e results of the simulation based on different methods.

Signal σ BAYES.THR ABWS BAMS SWTMAP SWTPM
64

Block
0.1 7.8638 0.0168 0.0144 0.0183 0.0124
0.4 8.8873 0.1615 0.0756 0.0470 0.0446
0.8 9.9290 0.6249 0.3282 0.0498 0.0512

Doppler
0.1 4.0397 0.0142 0.0467 0.0202 0.0144
0.4 4.0528 0.1600 0.2326 0.0612 0.0581
0.8 4.4217 0.6146 0.6219 0.0834 0.0707

Heavisine
0.1 0.1215 0.0192 0.0197 0.0146 0.0115
0.4 0.2981 0.1541 0.3688 0.0344 0.0375
0.8 0.5775 0.6227 0.6369 0.0642 0.0718

Bumps
0.1 10.6644 0.0135 0.0110 0.0018 0.0026
0.4 10.8529 0.3605 0.0865 0.0210 0.0281
0.8 11.5967 0.6120 0.3033 0.0684 0.0674

128

Block
0.1 7.874 0.0151 0.0134 0.0092 0.0120
0.4 8.8243 0.1585 0.1615 0.0427 0.0482
0.8 9.9474 0.6196 0.5358 0.0447 0.0594

Doppler
0.1 1.2554 0.0105 0.0218 0.0198 0.0113
0.4 1.3098 0.1575 0.1440 0.0420 0.0431
0.8 1.7197 0.6317 0.4826 0.0861 0.0682

Heavisine
0.1 0.0541 0.0097 0.0191 0.0128 0.0146
0.4 0.1404 0.1572 0.3324 0.0317 0.0370
0.8 0.3421 0.6324 0.6257 0.0506 0.0500

Bumps
0.1 16.9746 0.0102 0.0159 0.0014 0.0084
0.4 17.2119 0.1592 0.0989 0.0207 0.0276
0.8 17.6878 0.6350 0.3713 0.0674 0.0650
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Figure 5: Plots of BabyECG data (solid line) and sleep state (dashed line).
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Figure 6: Plots of the reconstructions using the unbalanced Haar estimator (red line) and BabyECG data (black line).
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Figure 7: Plots of the reconstructions using the MAP estimator with a Haar basis.
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Figure 8: Plots of the reconstructions using the MAP estimator with N � 8 vanishing moments.
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8. Conclusion

In this article, we show various ways in which the Bayesian
rules and wavelet methods were used successfully in the
practical problem. Also, a procedure for estimating the scale
parameters, k and λ, of double generalized Rayleigh was
estimated based on the BabyECG sample.(is approach was
adopted from the wavelet method for the independent level j

and Bayesian approaches. Prior probability distributions for
the parameters were assumed to be gamma distribution.
Bayesian estimates for the points were proposed in the cases
of artificial samples under the squared-error loss. (e
simulation studies are showing that the proposed rules
worked well, and the proposed Bayesian estimate performed
better than the existing state-of-the-art methods based on
signal functions by reducing the AMSE. We discussed the
proposed method estimates to estimate the underlying pa-
rameters. Numerical results were obtained to compare the
theoretical performance results. Some points are observed
from numerical results, which are summarized as follows:

(i )From the results in Table 2, the suggested method
process provides better excellent results for artificial
data.

(ii) Estimation results under the PM andMAPmethods
provide better estimation than the other established
wavelet denoising methods according to the MSE.

(iii) (e use of the suggested method allows to describe
the main feature of the real data, especially when
observations are large.

(is paper has confirmed that the wavelet approach
provides attractive alternatives to other established wavelet
methods, especially when underlying signals are
inhomogeneous.
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Heat andmass transfer combined effects onMHDnatural convection for a viscoelastic fluid flow are investigated..e dynamics of
the fluid are controlled by the motion of the plate with arbitrary velocity along with varying temperature and mass diffusion. .e
non-dimensional forms of the governing equations of the model are developed along with generalized boundary conditions and
the resulting forms are solved by the classical integral (Laplace) transform technique/method and closed-form solutions are
developed. Obtained generalized results are very important due to their vast applications in the field of engineering and applied
sciences; few of them are highlighted here as limiting cases. Moreover, parametric analysis of system parameters
Pr, S, Kc, GT, Gc, M, Sc, λ is done via graphical simulations.

1. Introduction

In science and in many engineering applications such as in
condensation, evaporation, and chemical process, many
transport processes are influenced by the combined action of
the buoyancy forces from both heat and mass diffusion. Heat
and mass transfer combined effects are studied extensively
due to their significant role in chemical processing equip-
ment, oceanic circulation, emergency cooling system of ad-
vanced nuclear reactors, cooling process of plastic sheets,
formation and dissipation of the fog, processing and drying
the food, temperature distribution andmoisture of agriculture
fields, and production of polymer. In recent years, a lot of
practical applications attracted many scientists and engineers
to pay a considerable amount of focus to learn the heat and
mass effects either analytically or numerically [1–4].In

industrial and engineering processes, most fluids are non-
Newtonian. Since the non-Newtonian fluids deal more
complexities due to the rheological behavior than Newtonian
fluids, distinct models were proposed. .e influence of heat
and mass transfer in the non-Newtonian fluid is an important
subject from the theoretical as well as practical point of view
due to its abundant applications in industry and engineering.
Common examples include polymer extrusion, the emer-
gency cooling system of nuclear reactors, food processing,
thermal welding, to name a few. Convective flow is a self-
sustained flow with the effect of the temperature gradient. In
literature, different theories are made to see the occurrence of
heat and mass transfer in convective flows of different fluids.
Mebarek-Oudina et al. [5] investigated the natural convective
heat transfer phenomenon of water-based hybrid nanofluid in
a porous medium along with the magnetic field. Das et al. [6]
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considered the natural convective flow of the electrically
conducting fluid past on vertical plate embedded in a per-
meable medium and explored the impacts of heat and mass
transfer. .e heat transfer phenomenon of Casson nanofluid
flow is taken into account by Abo-Dahab et al. [7]. .ey
analyzed the problem with the convective boundary condi-
tions and discussed the influence of chemical reaction and
heat source. Sajad et al.[8] studied the heat transfer and
magnetic effect on hybrid nanofluid. Nazish et al. [9] explored
the influence of heat and concentration/mass transform with
the existence of fields developed by magnetic in the Maxwell
fluid model. Ahmad [10] explored the heat transfer for the
Maxwell fluid on the stretching plate with the slip boundary
on the velocity. .ey explored the numerical solutions and
showed the heat flux effect using the Nusselt number and the
Prandtl number. A computational analysis is performed to
study the effects of the transverse magnetic field at the un-
steady Poiseuille–Rayleigh–Benard flow by Marzougui et al.
[11]. .e thermal properties’ effects on the soil temperature
are modeled and investigated numerically by Belatrache [12].
To have more insight about heat and mass transfer mecha-
nisms in fluid flow and their applications, readers are referred
to review references [13–16].On the other hand, many re-
searchers paid a significant amount of attention to the study of
MHD free convective flows due to its numerous applications
in solar and stellar structure, radio propagation, MHD
pumps, MHD bearings, aerodynamics, polymer technology,
petroleum industry, crude oil purification, glass fiber drawing,
etc. In light of these applications, many researchers such as
Rajput [17], Gupta [18], and El Amin [19] studied the MHD
flow of different fluids. .ey found the exact solution for
velocity, concentration, and temperature by the Laplace
transform method. Heat and mass transfer simultaneous
effects on MHD flow of Maxwell fluid have been investigated
by Nadeem et al. [20]. Recently, the study of the unsteady
boundary layer heat transfer of Maxwell viscoelastic fluid was
carried out by Zhao et al. [21]. Ahmad [22] studied MHD
viscous, with constant density, electro-conducting fluid in the
existence of the radiation, thermal diffusion, free convection,
and mass transfer flow. .ese results motivated Chaudhry
et al. [23] and they used classical integral transform to obtain
the exact solutions of naturalMHD convective flow past on an
accelerated surface submerged in a permeable medium. Das
[24] developed the closed-form solution of the unsteady

MHD natural convection flow on a moving vertical plate
accompanied by mass transfer and thermal radiation. Car-
rying on, Das et al. [25] investigated the time-dependent
MHD natural convection flow past a moving vertical plate
dipped in a porous medium and studied the different aspects
of heat and mass transfer. .ey discussed the problem with
the uniform, oscillating, and impulsive motions of the plate
besides considering the constant heat and mass diffusion and
implemented the Laplace integral transform to develop the
analytic solutions.Motivated by these investigations, the ob-
jective of this manuscript is to study the combined effect of
heat and mass transfer on MHD Maxwell fluid. Laplace in-
tegral transformation is used to obtain the unique solution of
temperature, velocity, and concentration under the impact of
generalized boundary conditions on temperature, velocity,
and concentration. .e importance of the problem is high-
lighted by showing its impact/applications in the field of
engineering and applied sciences. .e paper is organized into
six sections. After the introductory section in Section 2, the
dimensionless governing equations are developed. In Section
3, Laplace integral transform is implemented to find the exact
solution of the temperature, velocity, and concentration field.
In Section 4, some applications in different fields are discussed
as limiting cases to justify our results. In Section 5, the effect of
physical parameters is analyzed graphically. .e concluding
observation is listed at the end.

2. Problem Formulation

We studied here the motion of the viscoelastic, in-
compressible, electronically conducting Maxwell fluid
due to plate motion with arbitrary velocity u0f′(t′). .e
plate is along x − axis and y − axis is considered normal
on the plate. In the first instance, at t � 0 the plate and
fluid are at temperature T∞′ and concentration C∞′. With
the time t � 0+, the plate starts to move in its own axis.
.en, the level of temperature and concentration takes up

to T∞
^

′􏼚 􏼛 + Tw

^

′􏼚 􏼛h′(t′) and C∞
^

′􏼚 􏼛 + Cw

^

′􏼚 􏼛g′(t′) where

f′(t′), h′(t′) and g′(t′) are piecewise continuous func-
tions that vanish at t � 0. Details of different parameters
are given in Table 1. Momentum, energy, and concen-
tration equations are formed as follows:
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C′ χ′, t′( 􏼁

zχ′2
− Kc
′ C′ − C∞′( 􏼁.

(1)

.e imposed initial and boundary conditions are

t′ ≤ 0, u′ χ′, t′( 􏼁 � 0,

φ′ χ′, t′( 􏼁 � φ∞′ ,

C′ χ′, t′( 􏼁 � C∞′ , χ′ ≥ 0,

t′ ≥ 0, u′ 0, t′( 􏼁 � u0f′ t′( 􏼁,

φ′ 0, t′( 􏼁 � φ∞′ + φw
′h′ t′( 􏼁,

C′ 0, t′( 􏼁 � C∞′ + Cw
′ g′ t′( 􏼁,

u′ χ′, t′( 􏼁⟶ 0,

φ′ χ′, t′( 􏼁⟶ φ∞′ ,

C′ χ′, t′( 􏼁⟶ C∞′ , χ′ ⟶∞.

(2)

For dimensionless problem, we use the following relations:

Table 1: Nomenclature.

Symbol Quantity
u Velocity of fluid
B0 Magnetic field parameter
q Laplace transforms parameter
D Mass diffusivity
BT .ermal expansion parameter
BC Concentration expansion coefficient
K .ermal conductivity
ρ Density of fluid
λ Relaxation time
σ Electric conductivity coefficient
μ Dynamic viscosity
υ Kinematic viscosity
cp Specific heat
S Heat source parameter
Kc Chemical reaction coefficient
g Gravitational acceleration
SC Schmidt number
M Parameter due to magnetic field
Pr Prandtl number
GT Grashof number due to thermal effect
GC Grashof number due to concentration
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After non-dimensionalizing, the governing equations
become

1 + λ
z

zt
􏼠 􏼡

zu(y, t)

zt
�

z
2
u(y, t)

zy
2 + GT 1 + λ

z

zt
􏼠 􏼡T(y, t)

+ GC 1 + λ
z

zt
􏼠 􏼡C(y, t)

− M 1 + λ
z

zt
􏼠 􏼡u(y, t),

(4)

zT(y, t)

zt
�

1
Pr

z
2
T(y, t)

zy
2 − ST(y, t), (5)

zC(y, t)

zt
�

1
Sc

z
2
C(y, t)

zy
2 − KcC(y, t). (6)

along the following initial and boundary conditions:

u(y, 0) � 0, T(y, 0) � 0, C(y, 0) � 0, (7)

u(0, t) � f(t), T(0, t) � h(t), C(0, t) � g(t), (8)

u(y, t)⟶ 0, T(y, t)⟶ 0, C(y, t)⟶ 0, asy⟶∞.

(9)

3. Solution of the Problem

3.1. Concentration. Transforming equation (7) after apply-
ing the Laplace integral transform and utilizing the corre-
sponding initial condition, we get

z
2
C(y, q)

zy
2 − Sc Kc + q( 􏼁C(y, q) � 0, (10)

.e above differential equation solution is

C(y, q) � C1e
− y

������
Sc Kc+q( )

􏽰

+ C2e
y

������
Sc Kc+q( )

􏽰

. (11)

.e solution of equation (11) with the transformed form
of boundary conditions becomes

C(y, q) � G(q)e
− y

������
Sc Kc+q( )

􏽰

. (12)
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Applying the Laplace inverse on equation (12) and using
the L− 1 G(q)􏼈 􏼉 � g′(t) with g(0) � 0, convolution theorem
and equation (A.22), the generalized solution for concen-
tration is

C(y, t) � 􏽚
t

0
g′(t − s)Φ y,

��
Sc

􏽰
, s; Kc( 􏼁ds, (13)

and Φ is specified in equation (A.23).

3.2. Temperature Distribution. Implementing the Laplace
transform on equation (5) and using the concerned the
initial condition, we get

z
2
T(y, q)

zy
2 − Pr(S + q)T(y, q) � 0. (14)

.e solution is

T(y, q) � C1e
− y

�����
Pr(S+q)

√

+ C2e
y

�����
Pr(S+q)

√

. (15)

After implementing the boundary conditions, equation (15)
becomes

T(y, q) � H(q)e
− y

�����
Pr(S+q)

√

. (16)

.e Laplace inverse on equation (16) and using the
L− 1 H(q)􏼈 􏼉 � h′(t) with h(0) � 0, convolution theorem and
equation (A.24), the generalized solution for temperature
obtained is

T(y, t) � 􏽚
t

0
h′(t − s)Ψ y,

��
Pr

􏽰
, s; S( 􏼁ds, (17)

where Ψ is defined in equation (A.25).

3.3. Velocity. Employing the Laplace transform on equation
(4) and using the corresponding initial condition on velocity
form the following differential equation:

z
2
u(y, q)

zy
2 − ((1 + λq)(q + M))u(y, q)

� − GT(1 + λq)T(y, q)) − Gc(1 + λq)C(y, q).

(18)

In order to solve equation (18), we use the value of
C(y, q) , T(y, q) from equation (12) and equation (16),
respectively. With boundary conditions use on velocity, the
following solution is obtained:

u(y, q) � F(q)e
− y

���������
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√

+
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− y
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− e
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− e
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Further simplification reduces equation (19):
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(20)

where 2α1 � (λM + 1/λ), α2 � (M/λ), α23 � α2 − α21, 2α4 �

(λM + 1 − Pr/λ), α5 � (M − PrS/λ), α26 � α24 − α5, 2α7 �

(λM + 1 − Sc/λ), α8 � (M − ScKc/λ), α29 � α27 − α8.

Generalized expression for velocity field is acquired by
employing the inverse Laplace transform on equation (20):

u(y, t) � I1 +
GT

λ
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GT

λ
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λ
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λ
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where
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.

By using equation (A.20) and equation (A.21), expres-
sions for the B1(y, t) and B2(t) are evaluated as follows:
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.e above results are obtained for generalized time-dependent
boundary conditions on velocity, concentration, and temper-
ature. .ese results have many applications in engineering and
applied science. Now, we will consider and discuss its few
applications.

4. Applications

4.1. Application 1: f(t) � H(t), g(t) � H(t), h(t) � H(t).
.is function value shows the motion of the fluid is because
of the motion of an infinite plate in its plane with constant
velocity..is function has importance in a lot of engineering
problems such as signal waves, driving forces that act for a
short time only, and impulsive forces acting for an instance
such as a hammer blow.Substituting the value of G(q) �

(1/q) into equation (12) and applying the Laplace inverse,
the expression for concentration is

C(y, t) � δ(t) + Kct( 􏼁
∗erfc

y
��
Sc

􏽰

2
�
t

√􏼠 􏼡e
− Kct

, (32)

where δ(.) is known as Dirac delta function.
Embedding the value of H(q) � (1/q) into equation (16)

and taking Laplace inverse make the expression of
temperature

T(y, t) � (δ(t) + St)
∗erfc

y
��
Pr

􏽰

2
�
t

√􏼠 􏼡e
− St

. (33)

.e equation of velocity
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u(y, t) � I
I
1 +

GT

λ
I

I
2 −

GT

λ
I

I
3 +

Gc

λ
I

I
4 −

Gc

λ
I

I
5, (34)

where

I
I
1 � B1(y, t)

∗
B

I
2(t), (35)

BI
2(t) is obtained as

B
I
2(t) � e

− α1t
iα3( 􏼁I1 iα3t( 􏼁 + δ(t)( 􏼁􏼐 􏼑

∗ δ(t) + α1H(t)( 􏼁

+ α23e
− α1t

I0 iα3t( 􏼁
∗
H(t),

(36)

and for B1(y, t) (see equation (A.1)).
After substituting the value of H(q) � (1/q) into

equation (25)

I
I
2 � (H(t) + λδ(t)) e

− α4tcosh α6t( 􏼁􏼐

+
S − α4( 􏼁

α6
e

− α4tsinh α6t( 􏼁􏼡

∗erfc
y

��
Pr

􏽰

2
�
t

√􏼠 􏼡e
− St

.

(37)

Equation (26) takes the form after employing the value of
H(q) � (1/q)

I
I
3 � B1(y, t)

∗
B

I
3(t), (38)

where

B
I
3(t) � δ(t) + λH(t)

∗δ(t)( 􏼁

∗
A
∗

+ B
∗
e

− α4+α6( )t
+ C
∗
e

− α4− α6( )t
􏼒 􏼓

∗
e

− α1t
I0 iα3t( 􏼁,

(39)

and for B1(y, t) (see equation (A.1)).
After substituting the value of G(q) � (1/q) into equa-

tion (29)

I
I
4 � (H(t) + λδ(t)) e

− α7tcosh α9t( 􏼁 +
Kc − α7( 􏼁

α9
e

− α7tsinh α9t( 􏼁􏼠 􏼡

∗erfc
y

��
Sc

􏽰

2
�
t

√􏼠 􏼡e
− Kct

.

(40)

Similarly, equation (30) after substituting the value of
G(q) � (1/q)

I
I
5 � B1(y, t)

∗
B

I
4(t), (41)

and

B
I
4(t) � δ(t) + λH(t)

∗δ(t)( 􏼁

∗
D
∗

+ E
∗
e

− α7+α9( )t
+ E
∗
e

− α7− α9( )t
􏼒 􏼓

∗
e

− α1t
I0 iα3t( 􏼁,

(42)

and for B1(y, t) (see equation (A.1).

Similar result for concentration was obtained by Nehad
Ali Shah [26] (equation (35)). .us, our result supports the
result already present in literature.

4.2. Application 2: f(t) � t, g(t) � t, h(t) � t. .e impor-
tant concepts of engineering are based around linear
functions. .ey are often used in engineering to explain data
and evaluate the lines that best fit the given data sets. It has a
lot of applications in engineering and it can be represented
in a variety of ways. One of the particular interests is direct
variation, which forms many engineering applications such
as Hooke’s law and Ohm’s law. To learn about slope, en-
gineers use linear functions to interpret and understand
graphs that describe displacement, velocity, and accelera-
tion..ey use these functions to analyze data to learn how to
design their engineering products more efficiently, reliably,
and safely.For the choice of F(q), G(q), H(q) equal to
(1/q2) in the appropriate equations and employing the
Laplace inverse, the expression of C(y, t), T(y, t), u(y, t),
and then III

1 , III
2 , III

3 , III
4 and III

5 changes into, respectively,

C(y, t) � 1 + Kct( 􏼁
∗erfc

y
��
Sc

􏽰

2
�
t

√􏼠 􏼡e
− Kct

,

T(y, t) � (1 + St)
∗erfc

y
��
Pr

􏽰

2
�
t

√􏼠 􏼡e
− St

,

u(y, t) � I
II
1 +

GT

λ
I

II
2 −

GT

λ
I

II
3 +

Gc

λ
I

II
4 −

Gc

λ
I

II
5 ,

(43)

where

I
II
1 � B1(y, t)

∗
B

II
2 (t), (44)

where B1(y, t) (see equation (A.1)) and BII
2 (t) (see equation

(A.2)).

I
II
2 � (t + λ)

∗
e

− α4tcosh α6t( 􏼁 +
S − α4( 􏼁

α6
e

− α4tsinh α6t( 􏼁􏼠 􏼡

∗erfc
y

��
Pr

􏽰

2
�
t

√􏼠 􏼡e
− St

,

I
II
3 � B1(y, t)

∗
B

II
3 (t),

(45)

where B1(y, t) (see equation (A.1)) and BII
3 (t) (see equation

(A.3)).

I
II
4 � (t + λ)

∗
e

− α7tcosh α9t( 􏼁 +
Kc − α7( 􏼁

α9
e

− α7tsinh α9t( 􏼁􏼠 􏼡

∗erfc
y

��
Sc

􏽰

2
�
t

√􏼠 􏼡e
− Kct

,

I
II
5 � B1(y, t)

∗
B

II
4 (t),

(46)
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where B1(y, t) (see equation (A.1)) and BII
4 (t) (see equation

(A.4)).

4.3. Application 3: f(t) � sin t, g(t) � sin t, h(t) � sin t.
.e choice of this function shows the fluid motion due to the
oscillation of the plate. It has a lot of applications in physics
such as wave motion, other oscillatory motions, and engi-
neering. It is used to model the behavior that repeats.
Trigonometric functions are used to calculate angles in many
engineering problems. In civil and mechanical engineering,
trigonometry is used to calculate torque and forces on
objects, which help build bridges and girders. In the con-
struction of bridges, we need to consider the forces which
keep the bridges at their balance and trigonometry helps us
to calculate the static force which keeps the bridges static. In
engineering, trigonometry is used to decompose the forces
into horizontal and vertical components that can be ana-
lyzed..e expression for concentration after putting the
value of G(q) � (1/q2 + 1) into equation (12) is

C(y, t) � cos t + Kc sin t( 􏼁
∗erfc

y
��
Sc

􏽰

2
�
t

√􏼠 􏼡e
− Kct

, (47)

the expression for temperature become after putting the
value of H(q) � (1/q2 + 1) into equation (16) is

T(y, t) � (cos t + S sin t)
∗erfc

y
��
Pr

􏽰

2
�
t

√􏼠 􏼡e
− St

, (48)

and velocity change after substitute the value of
F(q) � (1/q2 + 1) into equation (21) is

u(y, t) � I
III
1 +

GT

λ
I

III
2 −

GT

λ
I

III
3 +

Gc

λ
I

III
4 −

Gc

λ
I

III
5 , (49)

where

I
III
1 � B1(y, t)

∗
B

III
2 (t), (50)

where B1(y, t) (see equation (A.1)) and BIII
2 (t) (see equation

(A.5)).

I
III
2 � (sin t + λ cos t)

∗
e

− α4tcosh α6t( 􏼁 +
S − α4( 􏼁

α6
e

− α4tsinh α6t( 􏼁􏼠 􏼡

∗erfc
y

��
Pr

􏽰

2
�
t

√􏼠 􏼡e
− St

,

I
III
3 � B1(y, t)

∗
B

III
3 (t),

(51)

where B1(y, t) (see equation (A.1)) and BIII
3 (t) (see equation

(A.6)).

I
III
4 � (sin t + λ cos t)

∗
e

− α7tcosh α9t( 􏼁 +
Kc − α7( 􏼁

α9
e

− α7tsinh α9t( 􏼁􏼠 􏼡

∗erfc
y

��
Sc

􏽰

2
�
t

√􏼠 􏼡e
− Kct

,

I
III
5 � B1(y, t)

∗
B

III
4 (t),

(52)

where B1(y, t) (see equation (A.1)) and BIII
4 (t) (see equation

(A.7)).

4.4. Application 4: f(t) � et, g(t) � et, h(t) � et. .e ex-
ponent functions are used for real-world application as for
calculating area, volume, determining growth or decay, and
impacts of force. In engineering, it helps them to design,
build, and improve the machinery, structure, and equip-
ment. For example, in sound engineering, it is used to
calculate sound waves. In basic engineering, it is used to
compute the tensile strength, which finds out the amount of
stress that a structure can withstand. In aeronautical engi-
neering, it is used to predict how airplanes, rockets, and jets
will perform during flight. To determine the kinetic and
potential energy, pressure, heat, and airflow of waves be-
havior, it is very helpful. Nuclear power sources are one of
the important things developed by nuclear engineers. .ey
used the exponents to work with extremely small numbers to
make the big things happen. Substituting the value of G(q) �

(1/q − 1) into equation (12), the concentration equation
after implementing the Laplace inverse becomes

C(y, t) � e
t

+ Kce
t

􏼐 􏼑
∗erfc

y
��
Sc

􏽰

2
�
t

√􏼠 􏼡e
− Kct

, (53)

and equation of temperature distribution after putting the
value of H(q) � (1/q − 1) into equation (16) and applying
Laplace inverse

T(y, t) � e
t

+ Se
t

􏼐 􏼑
∗erfc

y
��
Pr

􏽰

2
�
t

√􏼠 􏼡e
− St

. (54)

.e expression for velocity is

u(y, t) � I
IV
1 +

GT

λ
I

IV
2 −

GT

λ
I

IV
3 +

Gc

λ
I

IV
4 −

Gc

λ
I

IV
5 , (55)

where

I
IV
1 � B1(y, t)

∗
B

IV
2 (t), (56)

and B1(y, t) (see equation (A.1)) and BIV
2 (t) (see equation

(A.8)).
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I
IV
2 � e

t
+ λe

t
􏼐 􏼑

∗
e

− α4tcosh α6t( 􏼁 +
S − α4( 􏼁

α6
e

− α4tsinh α6t( 􏼁􏼠 􏼡

∗erfc
y

��
Pr

􏽰

2
�
t

√􏼠 􏼡e
− St

,

I
IV
3 � B1(y, t)

∗
B

IV
3 (t),

(57)

and B1(y, t) (see equation (A.1)) and BIV
3 (t) (see equation

(A.9)).

I
IV
4 � e

t
+ λe

t
􏼐 􏼑

∗
e

− α7tcosh α9t( 􏼁 +
Kc − α7( 􏼁

α9
e

− α7tsinh α9t( 􏼁􏼠 􏼡

∗erfc
y

��
Sc

􏽰

2
�
t

√􏼠 􏼡e
− Kct

.

(58)

Similarly,

I
IV
5 � B1(y, t)

∗
B

IV
4 (t), (59)

and B1(y, t) (see equation (A.1)) and BIV
4 (t) (see equation

(A.10)).

4.5. Application 5: f(t) � tet, g(t) � tet, h(t) � tet. Inserting
the G(q) � (1/(q − 1)2) into equation (12) and applying the
Laplace inverse, we get

C(y, t) � e
t

+ Kc + 1( 􏼁te
t

􏼐 􏼑
∗erfc

y
��
Sc

􏽰

2
�
t

√􏼠 􏼡e
− Kct

, (60)

and insert the H(q) � (1/(q − 1)2) into equation (16) and
take Laplace inverse:

T(y, t) � e
t

+(S + 1)te
t

􏼐 􏼑
∗erfc

y
��
Pr

􏽰

2
�
t

√􏼠 􏼡e
− St

,

u(y, t) � I
V
1 +

GT

λ
I

V
2 −

GT

λ
I

V
3 +

Gc

λ
I

V
4 −

Gc

λ
I

V
5 .

(61)

.e IV
1 takes the form after embedding the F(q) � (1/

(q − 1)2)

I
V
1 � B1(y, t)

∗
B

V
2 (t), (62)

where B1(y, t) (see equation (A.1)) and BV
2 (t) (see equation

(A.11)).

I
V
2 � te

t
+ λe

t
(t + 1)􏼐 􏼑

∗
e

− α4tcosh α6t( 􏼁 +
S − α4( 􏼁

α6
e

− α4tsinh α6t( 􏼁􏼠 􏼡

∗erfc
y

��
Pr

􏽰

2
�
t

√􏼠 􏼡e
− St

,

I
V
3 � B1(y, t)

∗
B

V
3 (t),

(63)

where B1(y, t) (see equation (A.1)) and BV
3 (t) (see equation

(A.12)).

I
V
4 � te

t
+ λe

t
(t + 1)􏼐 􏼑

∗
e

− α7tcosh α9t( 􏼁 +
Kc − α7( 􏼁

α9
e

− α7tsinh α9t( 􏼁􏼠 􏼡

∗erfc
y

��
Sc

􏽰

2
�
t

√􏼠 􏼡e
− Kct

,

I
V
5 � B1(y, t)

∗
B

V
4 (t),

(64)

where B1(y, t) (see equation (A.1)) and BV
4 (t) (see equation

(A.13)).

4.6. Application 6: f(t) � et sin t, g(t) � et sin t, h(t) � et

sin t. .e choice of the value of G(q) � (1/(q − 1)2 + 1), H

(q) � (1/(q − 1)2 + 1), F(q) � (1/(q − 1)2 + 1) makes the
expression

C(y, t) � e
t cos t + 1 + Kc( 􏼁sin t( 􏼁􏼐 􏼑

∗erfc
y

��
Sc

􏽰

2
�
t

√􏼠 􏼡e
− Kct

,

T(y, t) � e
t
(cos t +(1 + S)sin t)􏼐 􏼑

∗erfc
y

��
Pr

􏽰

2
�
t

√􏼠 􏼡e
− St

,

u(y, t) � I
VI
1 +

GT

λ
I

VI
2 −

GT

λ
I

VI
3 +

Gc

λ
I

VI
4 −

Gc

λ
I

VI
5 ,

I
VI
1 � B1(y, t)

∗
B

VI
2 (t),

(65)

where B1(y, t) (see equation (A.1)) and BVI
2 (t) (see equation

(A.14)).

I
VI
2 � e

t sin t(1 + λ) + e
t cos t􏼐 􏼑

∗
e

− α4tcosh α6t( 􏼁 +
S − α4( 􏼁

α6
e

− α4tsinh α6t( 􏼁􏼠 􏼡

∗erfc
y

��
Pr

􏽰

2
�
t

√􏼠 􏼡e
− St

,

I
VI
3 � B1(y, t)

∗
B

VI
3 (t),

(66)

where B1(y, t) (see equation (A.1)) and BVI
3 (t) (see equation

(A.15)).

I
VI
4 � e

t sin t(1 + λ) + e
t cos t􏼐 􏼑

∗
e

− α7tcosh α9t( 􏼁 +
Kc − α7( 􏼁

α9
e

− α7tsinh α9t( 􏼁􏼠 􏼡

∗erfc
y

��
Sc

􏽰

2
�
t

√􏼠 􏼡e
− Kct

.

(67)

Similarly,

I
VI
5 � B1(y, t)

∗
B

VI
4 (t), (68)

where B1(y, t) (see (A.1)) and BVI
4 (t) (see equation (A.16)).
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4.7.Application 7:f(t) � t sin t, g(t) � t sin t, h(t) � t sin
t. By putting the value of G(q) � (2q/(q2 + 1)2) into
equation (12) and employing Laplace inverse,

C(y, t) � t cos t + Kct + 1( 􏼁sin t( 􏼁
∗erfc

y
��
Sc

􏽰

2
�
t

√􏼠 􏼡e
− Kct

.

(69)

By putting the value of H(q) � (2q/(q2 + 1)2) into
equation (16) and Laplace inverse gives the expression

T(y, t) � (t cos t +(St + 1)sin t)
∗erfc

y
��
Pr

􏽰

2
�
t

√􏼠 􏼡e
− St

,

u(y, t) � I
VII
1 +

GT

λ
I

VII
2 −

GT

λ
I

VII
3 +

Gc

λ
I

VII
4 −

Gc

λ
I

VII
5 ,

(70)

where

I
VII
1 � B1(y, t)

∗
B

VII
2 (t), (71)

and B1(y, t) (see equation (A.1)) and BVII
2 (t) (see equation

(A.17)).

I
VII
2 � ((t + λ)sin t + λ cos t)

∗
e

− α4tcosh α6t( 􏼁 +
S − α4( 􏼁

α6
e

− α4tsinh α6t( 􏼁􏼠 􏼡

∗erfc
y

��
Pr

􏽰

2
�
t

√􏼠 􏼡e
− St

,

I
VII
3 � B1(y, t)

∗
B

VII
3 (t),

(72)

where B1(y, t) (see equation (A.1)) and BVII
3 (t) (see equa-

tion (A.18)).

I
VII
4 � ((t + λ)sin t + λ cos t)

∗
e

− α7tcosh α9t( 􏼁 +
Kc − α7( 􏼁

α9
e

− α7tsinh α9t( 􏼁􏼠 􏼡

∗erfc
y

��
Sc

􏽰

2
�
t

√􏼠 􏼡e
− Kct

,

I
VII
5 � B1(y, t)

∗
B

VII
4 (t),

(73)

and for B1(y, t) (see equation (A.1)) and BVII
4 (t) (see

equation (A.19))..ese are solutions for the choice of same
function for f(t), g(t), and h(t) from the list of functions
H(t), t, sin t, et, tet, t sin t, sin tet. We can consider the
problem with the different choice of function for
f(t), g(t), h(t), e.g., f(t) � t, g(t) � et, h(t) � H(t) and
find its solution. For the validation of results, if we take λ �

0, GT � 1, S � 0, h(t) � 1 − aebt, g(t) � 1 with choice of
f(t) � H(t)tα, (α> 0) or sin t, in our system of equations
(4)–(8), the results obtained are the same as the result

obtained by Nehad Ali shah [27] (choosing the ϵ � 0, N �

GC in equation (9)).

5. Results and Discussion

.e heat and mass transfer study of Maxwell fluid is dis-
cussed here. .e solutions for dimensionless velocity,
concentration, and temperature are assessed by the Laplace
transform method. .e application of these solutions in
different fields of engineering sciences is also discussed. It
brings to attention that these results are helpful to solve the
complicated problems of engineering and applied science.
.e behavior of these solutions for velocity, concentration,
and temperature profile is depicted graphically. .e impacts
of different pertinent parameters λ, M, Sc, Kc, Pr, GT, GC, S

on fluid flow are also deliberated using plots and their
physical aspects described. To avoid repetition, only the
most significant graphical representations regarding the
effects of the concerned parameter will be included here.

.e variation in the behavior of velocity and concen-
tration with varying values of Schmidt number Sc is illus-
trated inFigures 1–3, respectively. An increase in Schmidt
number results in the decline in the thickness of the
boundary layer of concentration. Since the Schmidt number
is defined as the ratio between kinematic viscosity and mass
diffusivity, it reduced the concentration as well as velocity
profile. In reality, the increase occurring in momentum
diffusivity causes a decline in the fluid velocity.

.e deviation in temperature profile for varying values of
Prandtl number Pr is demonstrated in Figures 4 and 5. It is
depicted that the thermal boundary layer thickness decreases
rapidly with the increase in the values of Pr. For a small value
of Pr, heat diffuses very quickly in comparison to the ve-
locity..e reason is, the thermal boundary layer thickness in
liquid metals is higher than the momentum boundary layer.
Finally, Pr can be practiced to expand the percentage of
cooling.

Similar effects can be seen for the heat absorption co-
efficient S on temperature profile with different values of the
function g(t) at different time scales depicted in Figure 6
and 7. .e thermal buoyancy forces decrease with the in-
crease of S which decreases the fluid temperature.

Impacts of magnetic parameter M displayed in Figure 8
depict the velocity decline with the increase of magnetic
parameter values. Physically, when magnetic force is applied
to the velocity field, it generates the drag force known as the
Lorentz force which opposes themotion of the fluid. Figure 9
shows the impact of Pr on velocity..e increase of Pr results
in a decrease in velocity. .e velocity boundary layer gets
thicker due to the low rate of thermal diffusion. Basically, in
heat transfer problems, Pr control the relative thickness
momentum boundary layer.

In Figure 10, the study of the effects of GT on velocity
describes the increase in behavior with increment in the
values of GT. Physically, the result of more induced fluid
flows is due to a rise in buoyancy effects which is the result of
the increase in GT. .e depiction of GC on velocity is
portrayed in Figure 11. We can see the rise in velocity with
the rise in the value of GC. .e natural convection and
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Figure 1: Profile of velocity for different values of Sc and M � 2.0, λ � 0.6, S � 1.0.5, Kc � 0.5, GT � 5.0, GC � 2.0, Pr � 0.71.
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acceleration in fluid flow is due to the fact that buoyancy
forces bcomes powerful than viscous forces.

Figures 12–14 show the chemical reaction Kc pa-
rameter effects on velocity and concentration description.
.e increase in Kc decreases the concentration and ve-
locity profiles. Basically, chemical molecular diffusivity
and species concentration drop with the higher values of
Kc. .e distribution in concentration falls at all the fluid
flow field points with the rise in Kc. .e curve for velocity
for different values of the Maxwell fluid parameter λ is
plotted in Figure 15. It is observed that an increase in λ
produces a significant increase in the momentum
boundary layer of the fluid which then increases the ve-
locity. .e rise in λ will therefore correspond to a fall in
fluid viscosity, resulting in it accelerating the flow and
hence velocity rising. Further, an increase in λ causes a rise
in velocity near the plate surface. Although the trend is
reversed away from the plate, the Newtonian fluid
(λ⟶ 0) has a higher velocity.

In Figure 16, velocity profiles are plotted against the
heat absorption parameter S values. .ese curves show
that the velocity is a decreasing function of parameter
S. Furthermore, due to the absorption of heat, the fluid
temperature diminishes and the thermal buoyancy force
diminishes. .ese results have seen a fall in the velocity of
a fluid with the increase in the values of S.

Figure 17 shows the behavior of velocity profile for
different values of the parameters with a different choice of
the functionf(t), g(t), h(t). For validation of our results, we
consider some special cases of temperature profile already
existing in literature and their graphical illustration is
depicted in Figures 18–20. Figure 18 shows the temperature
decrease with the increase in Pr for the variation of time with
g(t) � 1 − e− t. .e effects of the heat absorption parameter
can be observed in Figure (19) which depicts the decline in
temperature. .e impacts of g(t) � 1 − ae− bt for different
choices of a and b are explained in Figure 20. We see the
decline in temperature with the increasing values of a and b.
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Figure 8: Profile of velocity for different values of M and Pr � 0.71, λ � 0.6, S � 0.5, Sc � 0.60, Kc � 0.5, GT � 5.0, GC � 2.0.
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Figure 11: Profile of velocity for different values of GC and M � 0.2, λ � 0.6, S � 0.5, Kc � 0.5, Sc � 0.60, GT � 5.0, Pr � 0.71.
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Figure 12: Continued.
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Figure 12: Profile of velocity for different values of Kc and M � 0.5, λ � 0.6, S � 0.5, Sc � 0.60, GT � 5.0, GC � 2.0, Pr � 0.71.
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Figure 15: Profile of velocity for different values of λ and M � 2.0, GC � 2.0, S � 1.5, Kc � 0.5, Sc � 0.60, GT � 10.0, Pr � 0.5.

Mathematical Problems in Engineering 29



3

2

1

0

Ve
lo

ci
ty

0 1 2 3 54
y

S = 4
S = 3S = 1

S = 2

f (t) = 1, g (t) = 1, h (t) = 1

(a)

3

2

1

0

Ve
lo

ci
ty

0 1 2 3 54
y

S = 4
S = 3S = 1

S = 2

f (t) = t, g (t) = 1, h (t) = 1

(b)

3

2

1

0

Ve
lo

ci
ty

0 1 2 3 54
y

S = 4
S = 3S = 1

S = 2

f (t) = sin t, g (t) = 1, h (t) = 1

(c)

3

2

1

0

Ve
lo

ci
ty

0 1 2 3 54
y

S = 4
S = 3S = 1

S = 2

f (t) = et, g (t) = 1, h (t) = 1

(d)

2

0

–2

–4

–6

–8

Ve
lo

ci
ty

0 1 2 3 54
y

S = 4
S = 3S = 1

S = 2

f (t) = tet, g (t) = 1, h (t) = 1

(e)

5

4

3

2

1

0

Ve
lo

ci
ty

0 1 2 3 54
y

S = 4
S = 3S = 1

S = 2

f (t) = et sin t, g (t) = 1, h (t) = 1

(f )

Figure 16: Continued.

30 Mathematical Problems in Engineering



3

2

1

0

Ve
lo

ci
ty

0 1 2 3 54
y

S = 4
S = 3S = 1

S = 2

f (t) = t sin t, g (t) = 1, h (t) = 1

(g)

Figure 16: Profile of velocity for different values of S and M � 2.0, GC � 2.0, λ � 0.6, Kc � 0.5, Sc � 0.60, GT � 10.0, Pr � 0.5.
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Figure 17: Profile of velocity for different values of M, S, Sc, Kc, GT, GC and different choice of function for f(t), g(t), h(t).

0.4

0.3

0.2

0.1

0

–0.1

Te
m

pe
ra

tu
re

0
y

Pr = 7.0
Pr = 5.0Pr = 0.71

Pr = 1.5

0.5 1 1.5 2

g (t) = 1 – e–t

(a)

0.6

0.4

0.2

0

–0.2

Te
m

pe
ra

tu
re

0
y

Pr = 7.0
Pr = 5.0Pr = 0.71

Pr = 1.5

0.5 1 1.5 2

g (t) = 1 – e–t

(b)

Figure 18: Temperature profile for different values of Pr with S � 0.5 and g(t) � 1 − e− t.

32 Mathematical Problems in Engineering



6. Conclusions

A thorough investigation of MHDMaxwell fluid motion has
been studied here under the effects of different parameters.
.e exact solutions are obtained for concentration, tem-
perature, and velocity which satisfied the described initial
and boundary conditions. Laplace transform is employed to
obtain the exact solution and the behavior of different pa-
rameters on the flow of fluid along with different boundary
conditions is investigated. Effects of chemical reaction co-
efficient, Schmidt number, and different boundary condi-
tions on concentration, effects of Prandtl number, heat

source, Newtonian heating, etc. on temperature, Magnetic
parameter, Schmidt number, thermal Grashof number, re-
laxation parameter, mass Grashof number, Prandtl number,
heat source, and chemical reaction impacts on the fluid
motion are discussed. .e results obtained are as follows:

(1) .e boundary layer thickness of concentration de-
creases with the increase in the mass diffusivity Sc

and chemical reaction parameter KC.
(2) .e thermal boundary layer decreases with the in-

crease in momentum boundary layer due to Pr and
heat absorption S.
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Figure 19: Temperature profile for different values of S with Pr � 0.71 and g(t) � 1 − e− t.
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(3) Lorentz force effects due to M, momentum
boundary layer effects due to Pr, mass diffusivity
effects due to Sc, chemical reaction Kc, and heat
absorption decrease the velocity with the increase of
these parameters.

(4) Increase in buoyancy forces due to GT and GC

stimulates the speed of fluid flow.

(5) A rise in relaxation time λ reduces the fluid viscosity
and results in acceleration of fluid flow.
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Different types of censoring scheme are investigated; however, statistical inference on censoring scheme which can save the ideal
test time and the minimum number of failures is needed. )e generalized type-I hybrid censoring scheme (GHCS) solves this
problem. Competing the risk models under the GHCS when time to failure has Chen lifetime distribution (CD) is adopted in this
research with consideration of only two cases of failure. Partially step-stress accelerated life tests (ALTs) are applied to obtain
enough failure times in a small period to achieve a highly reliable product. )e problem of parameter estimation under maximum
likelihood (ML) and Bayes methods is discussed. )e asymptotic confidence interval as well as the Bayes credible interval is
constructed. )e validity of theoretical results is assessed and compared through simulation study. Finally, brief comments are
reported to describe the behaviour of the estimation results.

1. Introduction

Information about the lifetime products is presented in com-
plete or censored data with respect to time or cost consider-
ations.)e complete failure time data is used when all the units
under the test fail through the determined period of time.
However, the censoring failure time data is used when some
units under the test fail through a determined period of time.
Various types of censoring are available and the common types
are called type-I and type-II censoring schemes. )e first
scheme has a prefixed test time and a random number of
failures but the second scheme has a prefixed number of failures
and a random test time. In serval cases of censoring, the test is
required to run joint case of type-I and type-II censoring
schemes described by the hybrid censoring scheme (HCS). )e
HCS can be described statistically as follows: suppose (τ, Tm)
denote the ideal test time and the time ofm failure which is used
for statistical inference, respectively, and the test is removed at

the only one time of them. )en, HCS is defined under type-I
and type-II censoring schemes and is called type-I HCS and
type-II HCS. )e test is removed at min (τ, Tm) in the type-I
HCS, but at max (τ, Tm) in the type-II HCS, there is more
information about the type of censoring presented by [1–3].
Furthermore, type-I censoring scheme or type-I HCS may
satisfy the properties that the test has the smallest number of
failures or maybe zero. However, type-II censoring scheme or
type-II HCS satisfies the properties that the test has the largest
number of failures; see [4]. )e problem that appeared in these
censoring schemes can be overcome in the generalized form of
HSC; see [5] as type-I GHCS and type-II GHCS.

(1) In type-I GHCS, suppose n independent units are put
under test and the prior integers r andm satisfy that 1 ≤
r<m≤n and prior time τ. If the smallest number r is
satisfied before τ (Tr<τ), then the test is terminated
atmin (Tm, τ) and the observed test times data are given
by
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t � t1;n < t1;n < · · · < tr;n < · · · < ts;n􏼐 􏼑, r≤ s≤m.

(1)

However, if the smallest number r does not satisfy
before τ (τ <Tr), then the test is terminated at Tr

and the observed test times data are given by

t � t1;n < t1;n < · · · < tr;n􏼐 􏼑. (2)

Finally, if the largest number m is satisfied before τ
(Tm < τ),, then the test is terminated at Tm and the
observed test times are given by

t � t1;n < t1;n < · · · < tm;n􏼐 􏼑. (3)

)erefore, the type-I GHCS saves the minimum
number which is necessary for statistical inferences.

(2) In type-II GHCS, let n independent units be put
under test and the two prior times τ1 and τ2 such that
τ1 < τ2 and integer m satisfies 1≤ m≤ n. If the re-
quired number of failures is observed before τ1
(Tm < τ1), then the test is terminated at τ1 and the
observed test times data are given by

t � t1;n < t1;n < · · · < tm;n < · · · < ts;n􏼐 􏼑, m≤ s≤ n. (4)

On the other hand, if the required number of failures
observed satisfies τ1 <Tm < τ2, then the test is terminated at
Tm and the observed test times data are given by

t � t1;n < t1;n < · · · < tm;n􏼐 􏼑. (5)

Finally, if the required number of failures is observed to
satisfy τ1 < τ2 <Tm, then the test is terminated at τ2 and the
observed test times are given by

t � t1;n < t1;n < · · · < ts;n􏼐 􏼑, 1≤ s≤m. (6)

In life testing experiments, the common problem is that
units fail due to several fetal risks which are known as
competing risks problem.

)e effect of any risk factor in the presence of other risk
factors need to be assessed. )is problem has been discussed
early in [6–10] and recently in [11]. Under the consideration
of two causes of failure, the competing risks model in the
presence of type-I GHCS is presented as follows.

For a randomly selected n independent unit, a life testing
experiment with priors integers r and m, 1≤ r<m≤ n, is
considered. At each step of the experiment, time Ti;n and the
cause of failure ρi are recorded for i � 1, 2, . . . , d, where d

satisfies r<d<m and ρi ∈ 1, 2{ }. )en, the joint likelihood
function of type-I GHCS where t � {(t1;n, ρ1), (t2;n, ρ2), . . .,
(td;n, ρd)} under the competing risks model is reported as

L t |Θ( 􏼁 � A S1 td( 􏼁S2 td( 􏼁􏼂 􏼃
(n− d)

􏽙

d

i�1
h1 ti( 􏼁􏼂 􏼃

δ ρi�1( ) h2 ti( 􏼁􏼂 􏼃
δ ρi�2( ),

(7)

where A � n!/(n − d)!, S(.) � 1 − F(.), h(.) � f(.)/F(.),

δ(ρi � j) �
1, ρi � j,

0, ρi ≠ j,
􏼨 and for ti � ti;n, 0< t1 < t2 < · · · <

tm <∞.
To obtain more information about the lifetime of

products industrial process, accelerated life tests (ALTs)
present a suitable manner for reducing test time rather than
using conditions. As we see in [12], ALTs are presented in
different types; one of them is constant-stress ALTs, in which
the test is kept with a constant level of stress; see [13–15].)e
second type is called progressive-stress ALTs, in which the
stress is kept with a continuously increasing level; see
[16–18]. )e third type is called step-stress ALTs, in which
the stress level is changed through a prior time or the
number of failures; see [19, 20]. Furthermore, the ALTs can
be done under the accelerated condition which is known by
partial ALTs; see [21–26].

)is paper aims to build and analyze type-I GHC
competing risks sample under the model of partially step-
stress ALTs from Chen lifetime products. )e results of
statistical analysis are built under maximum likelihood and
Bayes method for point and interval estimation. )e per-
formances of the developed results are assessed and com-
pared with mean squared error (MSE), average interval
length (AL), and probability coverage (PC) through the
Monte Carlo study.

)is paper is structured as follows: the model formu-
lation and abbreviation are presented in Section 2.)eMLEs
of model parameters as well as the asymptotic confidence
intervals are investigated in Section 3. Bayes estimation with
credible intervals is discussed in Section 4.)e quality points
and interval estimators are assessed via the Monte Carlo
study in Section 5. Finally, the discussion and conclusion are
presented in Section 6 (Table 1).

2. Abbreviation and Model Formulation

2.1. Abbreviations

2.1.1. Model Formulation. Suppose n identical units are
under life testing and two prior integer numbers r and m

satisfy that 1≤ r<m≤ n and prior fixed time τ. )e failure
times Ti and cause of failure ρi are recorded through the test
steps. If the smallest number of failure units r is satisfied
before time τ, then the test is terminated at min (Tm, τ).
However, if r is satisfied after the time τ, then the test is
terminated at Tr.)e test is running under conditions until a
fixed time η; then, the test is ruining under accelerated
conditions. Considering that, the failure time has an inde-
pendent CD and two independent causes of failure to satisfy
the following assumptions:

(1) )e random variable Tji is distributed with
CD(α, βj), j � 1, 2 with PDF given by

fj1(t) � αβjt
α− 1

e
tα + βj 1− etα[ ], t> 0, α, βj > 0, (8)

and CDF is given by

2 Mathematical Problems in Engineering



Fj1(t) � 1 − e
βj 1− etα[ ]. (9)

Also, Sj1(t) and hj1(t) of CD(α, βj) are, respectively,
given by

Sj1(t) � e
βj 1− etα[ ],

hj1(t) � αβjt
α− 1

e
tα

.
(10)

(2) )e random failure times Ti, i � 1, 2, . . . , d, with the
failure times under cause j Tji, satisfy Ti � min T1i,􏼈

T2i}.
(3) )e total lifetime under use and accelerated condition

W under accelerated stress change η is defined by

W �

T, T< η,

η +
T − η
λ

, T> η,

⎧⎪⎪⎨

⎪⎪⎩
(11)

where λ is the accelerated factor. )e random var-
iable W is distributed with Chen lifetime distribution
with PDF and is given by

fl(w) �

0, w< 0,

fj1(w), 0<w< η,

fj2(w), w≥ η,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(12)

where

fj2(w) � αλβj(η + λ(w − η))
α− 1

e
(η+ λ(w− η))α+βj 1− e(η+λ(w− η))α[ ],

(13)

and fj1(z) is given by (8). )e CDF, Sj2(z), and
hazard rate function hj2(z) are given by

Fj2(w) � 1 − e
βj 1− e(η+λ(w− η))α[ ], (14)

Sj2(w) � e
βj 1− e(η+λ(w− η))α[ ], (15)

hj2(w) � αλβj(η + λ(w − η))
α− 1

e
(η+λ(w− η))α

. (16)

(4) Under competing risks type-I GHC sample and
partially step-stress ALTs model, the test is termi-
nated at Tr at τ <Tr and min(τ, Tm) at τ >Tr. )en,
the random sample of the total lifetime W is de-
scribed by

W � W1, ρ1( 􏼁< W2, ρ2( 􏼁< · · · < Wk, ρk( 􏼁< η􏼈

< Wk+1, ρk+1( 􏼁< · · · < Wm, ρd( 􏼁􏼉,
(17)

where d denotes the number of fail units, where r<d<m

and k and m − k are the numbers of fail units under using
and accelerated conditions, respectively. For this model, we
can consider three different cases, τ < η, τ � η, or τ < η.
Hence, the joint likelihood function of the observed values
w � (w1, ρ1)􏼈 < (w2, ρ2)< · · · < (wk, ρk) < η< (wk+1, ρk+1)

< · · · < (wm, ρd)} is obtained as follows:

L t |Θ( 􏼁 � A S12 wd( 􏼁S22 wd( 􏼁􏼂 􏼃
(n− d)

􏽙

k

i�1
h11 wi( 􏼁􏼂 􏼃

δ ρi�1( )

h21 wi( 􏼁􏼂 􏼃
δ ρi�2( )S11 wi( 􏼁S21 wi( 􏼁×

􏽙

d

i�k+1
h12 wi( 􏼁􏼂 􏼃

δ ρi�1( ) h22 wi( 􏼁􏼂 􏼃
δ ρi�2( )S12 wi( 􏼁S22 wi( 􏼁.

(18)

3. Maximum Likelihood Estimation

When only two independent causes of failure and the test are
running under the model of partially step-stress ALTs with
type-I GHCS, the test information sample is used to obtain
the point and interval MLEs which is reported in this section
as follows.

3.1.MLEs. )e joint likelihood function (18) under CDF (9)
and (14) for the observed type-I GHC sample w � (w1,ρ1)􏼈

<(w2,ρ2)< · · · <(wk,ρk)<η<(wk+1,ρk+1)< · · · <(wm, ρd)} is
given by

Table 1: List of abbreviations.

PDF Probability density function
CDF Cumulative probability function
ti )e i-th unit failure time
tji )e i-th unit failure time under cause j, j � 1, 2
f(.) )e PDF of ti

F(.) )e CDF of ti

S(.) Survival function of ti

h(.) Hazard failure rate of ti

fj(.) )e PDF of tji

Fj(.) )e CDF of tji

Sj(.) Survival function of tji

hj(.) Hazard failure rate function of tji

ρi )e cause of failure form i-th unit failure time
CD(α, β) Chen distribution with PDF αβtα− 1e tα+β[1− etα ]{ }

MLE Maximum likelihood estimators
AV Average estimate
MSE Mean squared error
AL Average interval length
PC Probability coverage
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L α, β1, β2, λ | w( 􏼁∝ αdβm1
1 βm2

2 λd− k
􏽙

k

i�1
w

α− 1
i 􏽙

d

i�k+1
(η + λ(w − η))

α− 1

e
− β1+β2( ) (n− d) e η+λ wd − η( )( )α􏼂 􏼃+􏽘

k

i�1
e

wα
i +􏽘

d

i�k+1
e η+λ wi − η( )( )α − n􏼚 􏼛

e
􏽘

k

i�1
wα

i
+􏽘

d

i�k+1
(η+λ(w− η))α

,

(19)

where integers k and (d − k) are denoted to failure units
under using and stress conditions, respectively, and integers

m1 and m2 denoted failure units under causes (ρ1, ρ2). )en,
the log-form from (19) is reduced to

ℓ α, β1, β2, λ|w( 􏼁 � d log α + m1log β1 + m2log β2 +(d − k)log λ − β1 + β2( 􏼁

× (n − d)e
η+λ wd− η( )( )

α

+ 􏽘
k

i�1
e

wα
i + 􏽘

d

i�k+1
e

η+λ wi − η( )( )
α

− n
⎧⎨

⎩

⎫⎬

⎭

+(α − 1) 􏽘
k

i�1
log wi + 􏽘

d

i�k+1
log[η + λ(w − η)]

⎧⎨

⎩

⎫⎬

⎭ + 􏽘
k

i�1
w

α
i

+ 􏽘
m

i�k+1
(η + λ(w − η))

α
.

(20)

)e partial derivatives of log-likelihood function (20) are
reduced to the likelihood equations solved with some nu-
merical methods to obtain the estimates as follows:

0 �
z α, β1, β2, λ|w( 􏼁

zβl

, l � 1, 2, (21)

is reduced to

β1 �
m1

(n − d)e
η+λ wd− η( )( )

α

+ 􏽐
k
i�1 e

wα
i + 􏽐

d
i�k+1 e

η+λ wi − η( )( )
α

− n
, (22)

β2 �
m2

(n − d)e
η+λ wd − η( )( )

α

+ 􏽐
k
i�1 e

wα
i + 􏽐

d
i�k+1 e

η+λ wi − η( )( )
α

− n
. (23)

Also,

0 �
z α, β1, β2, λ|w( 􏼁

zα
, (24)

is reduced to

d

α
− β1 + β2( 􏼁

⎧⎨

⎩(n − d) η + λ wd − η( 􏼁( 􏼁
α
e

η+λ wd− η( )( )
α

log η + λ wd − η( 􏼁( 􏼁

+ 􏽘
k

i�1
w

α
i e

wα
i log wi + 􏽘

d

i�k+1
η + λ wi − η( 􏼁( 􏼁

α
e

η+λ wi − η( )( )
α

log η + λ wi − η( 􏼁( 􏼁
⎫⎬

⎭

+ 􏽘
k

i�1
log wi + 􏽘

d

i�k+1
log[η + λ(w − η)] + 􏽘

k

i�1
w

α
i log wi

+ 􏽘
m

i�k+1
(η + λ(w − η))

αlog(η + λ(w − η)) � 0,

0 �
z α, β1, β2, λ|w( 􏼁

zλ
,

(25)
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which is reduced to

(d − k)

λ
− β1 + β2( 􏼁

⎧⎨

⎩α(n − d) wd − η( 􏼁 η + λ wd − η( 􏼁( 􏼁
α− 1

e
η+λ wd− η( )( )

α

+α 􏽘
d

i�k+1
wi − η( 􏼁 η + λ wi − η( 􏼁( 􏼁

α− 1
e

η+λ wi − η( )( )
α⎫⎬

⎭

+(α − 1) 􏽘
d

i�k+1

(w − η)

η + λ(w − η)
+ α 􏽘

m

i�k+1
wi − η( 􏼁 η + λ wi − η( 􏼁( 􏼁

α− 1
� 0.

(26)

)e likelihood equations are reduced to two nonlinear
equations which are solved numerically with any iteration
method such as Newton Raphson to obtain 􏽢α and 􏽢λ which
are used in (22) and (23) to present 􏽢β1 and 􏽢β2.

3.2. Interval Estimation. For the parameters vectors Θ �(α,
β1, β2, λ), the second partial derivatives of (20) with respect
to Θi, where Θ1 � α, Θ2 � β1, Θ3 � β2, Θ4 � λ, are given by

z α, β1, β2, λ|w( 􏼁

zΘizΘl

, i, l � 1, 2, 3, 4, (27)

and the Fisher information matrix Σ is given by

Σ � − E
z
2 α, β1, β2, λ|w( 􏼁

zΘizΘl

􏼠 􏼡, (28)

which is computed as the negative expectation of second
partial derivatives (27).)e approximate informationmatrix
is used as the approximate form of the Fisher information
matrix Σ specially in a large sample. )e approximate in-
formation matrix Σ0 at the maximum likelihood estimates
􏽢Θ �(􏽢α, 􏽢β1, 􏽢β2, 􏽢λ) is given by

Σ0 � −
z2 α, β1, β2, λ|w( 􏼁

zΘizΘl

􏼠 􏼡
􏽢Θ� 􏽢α,􏽢β1 ,􏽢β2 ,􏽢λ􏼈 􏼉

. (29)

)e asymptotic normality distribution of estimating 􏽢α,
􏽢β1, 􏽢β2, and 􏽢λ with mean (α, β1, β2, λ) and a variance co-
variance matrix Σ− 10 (􏽢α, 􏽢β1, 􏽢β2, 􏽢λ) is as follows:

􏽢α, 􏽢β1, 􏽢β2, 􏽢λ􏼐 􏼑 distributed asN α, β1, β2, λ( 􏼁,Σ− 10 􏽢α, 􏽢β1, 􏽢β2, 􏽢λ􏼐 􏼑􏼐 􏼑.

(30)

)erefore, 100(1 − ξ) intervals estimation of parameters
vector Θ �{α, β1, β2, λ} are computed by

􏽢Θi∓zξ/2
���
Σii

􏽰
, i � 1, 2, 3, 4, (31)

where 􏽢Θi denotes the parameters estimate and value Σii
denotes the diagonal of variance covariance matrix Σ− 10 with
standard normal probability ξ/2.

4. Bayesian Approach with MCMC

Information about the model parameters and the infor-
mation which is obtained from the life sample is used in this
section to build the Bayes approach with the MCMC
method. Besides, the estimators of parameters of CD and
noninformative about accelerated factor are computed
under squared error loss (SEL) function and independent
prior distributions. )erefore, independent gamma prior is
adapted as follows:

π∗l Θl( 􏼁∝Θal − 1
l e

− blΘl , l � 1, 2, 3, and π∗4 Θ4( 􏼁∝Θ− 1
4 ,

(32)

π∗ Θ( 􏼁 � 􏽙
4

l�1
π∗l Θl( 􏼁, (33)

whereΘ �(α, β1, β2, λ). )en, the posterior distribution ofΘ
is defined by

π Θ | w( 􏼁 �
π∗ Θ( 􏼁L Θ | w( 􏼁

􏽒Θπ
∗ Θ( 􏼁L Θ | w( 􏼁dΘ

. (34)

)en, the Bayes estimate for any function ϕ(Θ) under
SEL function is given by

􏽢ϕB Θ( 􏼁 �
􏽒Θϕ Θ( 􏼁π∗ Θ( 􏼁L Θ | w( 􏼁d Θ( 􏼁

􏽒 Θ( )
π∗ Θ( 􏼁L Θ | w( 􏼁d Θ( 􏼁

. (35)

Generally, the ratio in (35) needs numerical approxi-
mation to compute, such as numerical integration and
Lindley approximation. However, MCMC methods are the
important tools that were applied recently with high ac-
curacy and are obtained as follows.

4.1. Gibbs with MH Method. )e posterior distribution in
(34) with prior distribution (33) and likelihood function (19)
is calculated as;
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π α, β1, β2, λ|w( 􏼁∝ αa1+d− 1βa2+m1− 1
1 βa3+m2− 1

2 λd− k− 1
􏽙

k

i�1w
α− 1
i 􏽙

d

i�k+1
(η + λ(w − η))

α− 1

· e
− β1+β2( ) (n− d) e η+λ wd − η( )( )α􏼂 􏼃+􏽘

k

i�1
e

wα
i +􏽘

d

i�k+1
e η+λ wi − η( )( )α − n􏼚 􏼛

· e
− b1α− b2β1− b3β2+􏽘

k

i�1
e

wα
i +􏽘

m

i�k+1
(η+λ(w− η))α

.

(36)

)en, the conditional PDFs of the posterior distribution
is given by

π1 α|β1, β2, λ|w( 􏼁 � αa1+d− 1
e

− β1+β2( ) (n− d) e η+λ wd − η( )( )α􏼂 􏼃+􏽘
k

i�1
e

wα
i +􏽘

d

i�k+1
e η+λ wi − η( )( )α􏼚 􏼛

e
− b1α+􏽘

k

i�1
wα

i
+􏽘

m

i�k+1
(η+λ(w− η))α

􏽙

k

i�1
w

α− 1
i 􏽙

d

i�k+1
(η + λ(w − η))

α− 1
,

(37)

π2 β1|α, β2, λ|w( 􏼁∝ βa2+m1− 1
1 e

− β1 b2+(n− d) e η+λ wd − η( )( )α􏼂 􏼃+􏽘
k

i�1
e

wα
i +􏽘

d

i�k+1
e η+λ wi − η( )( )α − n􏼚 􏼛

,
(38)

π3 β2|α, β1, λ|w( 􏼁∝ βa3+m2− 1
2 e

− β2 b3+(n− d) e η+λ wd − η( )( )α􏼂 􏼃+􏽘
k

i�1
e

wα
i +􏽘

d

i�k+1
e η+λ wi − η( )( )α − n􏼚 􏼛

,
(39)

π4 λ|α, β1, β2, w( 􏼁∝ λd− k− 1
e

− β1+β2( ) (n − d) e
η+λ wd− η( )( )

α

􏼔 􏼕 + 􏽘
k

i�k+1
e

η+λ wi − η( )( )
α

⎡⎣ ⎤⎦

+ 􏽘
m

i�k+1
(η + λ(w − η))

α

􏽙

d

i�k+1
(η + λ(w − η))

α− 1
.

(40)

From equations (37) and (38), the conditional posterior
PDFs are reduced to two conditional gamma density
equations (38) and (39). Two functions are plotted similar to
the normal distribution in (37) and (40).)en, the process of
generation from posterior distribution under the conditional
posterior distribution by using Gibbs with the MH algo-
rithms with normal proposal distribution [27] is given as
follows:

(1) Begin with initial vectors Θ(0) �(α(0), β(0)
1 , β(0)

2 , λ(0))
and indicator κ � 1.

(2) )e two values β(κ)
1 and β(κ)

2 are generated from
conditional gamma densities (38) and (39).

(3) )e two values α(κ) and λ(κ) are generated from
conditional densities (37) and (40) by MH algo-
rithms with normal proposal distributions. )e
symmetric normal distributions are applied with
mean α(κ− 1) or λ(κ− ) and variance obtained from the
diagonal of the approximate information matrix,
respectively. Also, the generated values are accepted

with acceptance probability min[1, (π4(α(κ)|

λ(κ− 1), β(κ)
1 , β(κ)

2 , w)/π4(α(κ− 1)| λ(κ− 1), β(κ)
1 , β(κ)

2 , w))]

or min[1, (π4(λ
(κ)|α(κ), β(κ)

1 , β(κ)
2 , w)/π4(λ

(κ− 1)|α(κ),

β(κ)
1 , β(κ)

2 , w))], respectively, with respect to uniform
(0, 1).

(4) )e vectorΘ(κ) �(α(κ), β(κ)
1 , β(κ)

2 , λ(κ)) is a built vector
with Gibbs manner.

(5) Put κ � 1 + 1 and then repeat steps 2–4 N times.
(6) )e Bayes estimates and the corresponding variance

are given by 􏽢ΘB � (1/N − N) 􏽐
N
i�N+1Θ

(i)

andVar( 􏽢ΘB) � (1/N − N) 􏽐
N
i�N+1 ( 􏽢ΘB − Θ (i))2,

where N is the number of iteration used to get
stationary distribution.

(7) )e Bayes credible intervals can be obtained after
ordered values of Θ(κ)

l in acceding order of Θ(N+1)
l ,

Θ(N+2)
l ,. . .,Θ[N]

l as Θ[1]
l , Θ[2]

l ,. . .,Θ[N− N]
l . )en, the

100(1 − ζ)% symmetric credible intervals are ob-
tained as (Θ(N− N)(ζ/2)

l ,Θ(N− N)(1− (ζ/2))
l ), l �

1, 2, 3, 4.

6 Mathematical Problems in Engineering



5. Monte Carlo Simulations

Different theoretical results that were developed in this study
are assessed and compared in this section through theMonte
Carlo study. )e numerical computation is formulated to
measure the effect of changing the total size n and the sample

size m as well as stress time η and censoring time τ and the
effect of parameters change. Different three cases of two time
(τ < η, τ � η, τ > η) and two values of parameters vector
Θ �(α, β1, β2, λ)� {(2.0, 0.1, 0.2, 2.0), (0.7, 1.5, 2.0, 2.5)} are
assumed. Point and interval estimation results are measured.
Average (AV) and mean squared error (MSE) are used to

Table 2: )e AV and MSE of parameters estimates for Θ (2, 0.1, 0.2, 2.0).

(η, τ ) (r, m, n)
MLE MCMC/Prior 0 MCMC/Prior 1

α β1 β1 λ α β1 β1 λ α β1 β1 λ

(0.8, 1.0)

(15, 20, 30) 2.321 0.152 0.231 2.412 2.301 0.140 0.218 2.392 2.321 0.132 0.211 2.355
0.514 0.042 0.062 0.641 0.505 0.041 0.059 0.613 0.428 0.032 0.042 0.517

(15, 25, 30) 2.305 0.150 0.229 2.400 2.299 0.140 0.215 2.366 2.309 0.132 0.213 2.341
0.485 0.033 0.057 0.632 0.481 0.035 0.056 0.629 0.376 0.028 0.029 0.488

(20, 25, 30) 2.317 0.147 0.224 2.389 2.294 0.136 0.209 2.359 2.290 0.124 0.208 2.337
0.479 0.029 0.049 0.628 0.478 0.029 0.050 0.624 0.371 0.024 0.024 0.480

(20, 30, 50) 2.301 0.132 0.201 2.340 2.290 0.129 0.208 2.338 2.287 0.113 0.207 2.324
0.401 0.025 0.022 0.589 0.422 0.019 0.019 0.582 0.342 0.014 0.017 0.402

(20, 40, 50) 2.303 0.125 0.212 2.338 2.289 0.124 0.207 2.334 2.279 0.112 0.206 2.319
0.398 0.019 0.021 0.560 0.410 0.018 0.018 0.563 0.332 0.012 0.013 0.388

(30, 40, 50) 2.298 0.124 0.207 2.327 2.279 0.118 0.208 2.332 2.269 0.109 0.206 2.314
0.379 0.017 0.018 0.549 0.390 0.016 0.018 0.544 0.314 0.011 0.013 0.371

Table 3: )e AV and MSE of parameters estimates for Θ (2, 0.1, 0.2, 2.0).

(η, τ ) (r, m, n)
MLE MCMC/Prior 0 MCMC/Prior 1

α β1 β1 λ α β1 β1 λ α β1 β1 λ

(1.0, 1.0)

(15, 20, 30) 2.311 0.140 0.222 2.401 2.289 0.129 0.209 2.380 2.313 0.121 0.201 2.344
0.490 0.032 0.051 0.620 0.490 0.031 0.048 0.594 0.412 0.022 0.031 0.500

(15, 25, 30) 2.294 0.139 0.218 2.391 2.288 0.129 0.204 2.357 2.298 0.121 0.201 2.330
0.461 0.023 0.045 0.612 0.464 0.025 0.047 0.608 0.355 0.018 0.019 0.469

(20, 25, 30) 2.307 0.138 0.215 2.379 2.285 0.126 0.200 2.348 2.288 0.114 0.200 2.329
0.460 0.018 0.038 0.609 0.456 0.018 0.041 0.601 0.352 0.014 0.013 0.461

(20, 30, 50) 2.291 0.122 0.195 2.330 2.280 0.119 0.190 2.328 2.275 0.102 0.198 2.313
0.385 0.014 0.011 0.574 0.403 0.008 0.009 0.564 0.325 0.005 0.008 0.385

(20, 40, 50) 2.295 0.115 0.203 2.327 2.278 0.113 0.198 2.324 2.268 0.100 0.195 2.308
0.378 0.010 0.011 0.542 0.401 0.009 0.009 0.544 0.315 0.004 0.007 0.368

(30, 40, 50) 2.288 0.112 0.195 2.318 2.268 0.109 0.200 2.322 2.249 0.100 0.197 2.301
0.358 0.007 0.008 0.530 0.371 0.009 0.007 0.521 0.290 0.004 0.004 0.356

Table 4: )e AV and MSE of parameters estimates for Θ (2, 0.1, 0.2, 2.0).

(η, τ ) (r, m, n)
MLE MCMC/Prior 0 MCMC/Prior 1

α β1 β1 λ α β1 β1 λ α β1 β1 λ

(1.2, 1.0)

(15, 20, 30) 2.341 0.162 0.252 2.430 2.322 0.160 0.239 2.412 2.342 0.153 0.231 2.374
0.545 0.073 0.095 0.671 0.535 0.074 0.090 0.645 0.460 0.061 0.071 0.550

(15, 25, 30) 2.325 0.170 0.249 2.419 2.318 0.161 0.236 2.386 2.328 0.151 0.233 2.360
0.515 0.073 0.088 0.672 0.507 0.065 0.086 0.661 0.399 0.059 0.061 0.510

(20, 25, 30) 2.337 0.165 0.244 2.410 2.310 0.156 0.228 2.379 2.310 0.143 0.227 2.358
0.509 0.060 0.081 0.660 0.508 0.058 0.081 0.658 0.399 0.055 0.056 0.503

(20, 30, 50) 2.319 0.150 0.224 2.365 2.310 0.148 0.228 2.355 2.305 0.133 0.227 2.345
0.431 0.055 0.052 0.610 0.452 0.050 0.049 0.605 0.372 0.044 0.048 0.437

(20, 40, 50) 2.323 0.145 0.233 2.358 2.307 0.144 0.226 2.355 2.299 0.131 0.227 2.338
0.428 0.050 0.052 0.594 0.440 0.038 0.039 0.594 0.365 0.041 0.042 0.411

(30, 40, 50) 2.308 0.141 0.227 2.347 2.298 0.138 0.229 2.351 2.290 0.131 0.228 2.333
0.408 0.047 0.048 0.578 0.421 0.047 0.048 0.574 0.345 0.042 0.045 0.399
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measure point estimate and average lengths (AL) and the
probability coverage (CP) are used to measure interval es-
timate. For Bayes estimation with MCMC methods, prior
parameters are selected to satisfy the expectation of gamma
prior as E(Θl) � (al/bl) � Θl, l � 1, 2, 3. )en, informative

prior information (Prior 1) and noninformative prior are
obtained when the posterior distribution is proportional
with the likelihood function (Prior 0). Also, Chan is built for
11,000 iterations with the first 1000 as bur-in. Average Bayes
estimates, mean squared errors (MSEs), coverage

Table 5: )e AL and CP of parameters estimates for Θ (2, 0.1, 0.2, 2.0).

(η, τ ) (r, m, n)
MLE MCMC/Prior 0 MCMC/Prior 1

α β1 β1 λ α β1 β1 λ α β1 β1 λ

(0.8, 1.0)

(15, 20, 30) 4.321 0.321 0.421 5.212 4.314 0.318 0.419 5.209 4.045 0.298 0.318 5.009
0.89 0.90 0.90 0.88 0.90 0.91 0.91 0.90 0.90 0.92 0.90 0.91

(15, 25, 30) 4.300 0.299 0.401 5.180 4.280 0.295 0.400 5.189 4.045 0.266 0.300 4.975
0.90 0.91 0.91 0.90 0.91 0.91 0.92 0.91 0.93 0.94 0.91 0.92

(20, 25, 30) 4.271 0.268 0.375 5.154 4.255 0.265 0.381 5.174 4.018 0.239 0.271 4.944
0.91 0.91 0.92 0.91 0.91 0.93 0.92 0.93 0.93 0.94 0.96 0.93

(20, 30, 50) 4.248 0.241 0.348 5.125 4.230 0.235 0.351 5.144 4.001 0.211 0.242 4.914
0.92 0.92 0.92 0.90 0.93 0.93 0.93 0.93 0.93 0.95 0.95 0.92

(20, 40, 50) 4.219 0.215 0.321 5.100 4.201 0.203 0.318 5.115 3.971 0.180 0.215 4.850
0.91 0.93 0.93 0.91 0.93 0.94 0.93 0.93 0.94 0.97 0.95 0.93

(30, 40, 50) 4.185 0.194 0.300 4.990 4.150 0.164 0.270 5.070 3.941 0.149 0.176 4.817
0.92 0.93 0.93 0.92 0.93 0.94 0.93 0.93 0.94 0.93 0.95 0.94

Table 6: )e AL and CP of parameters estimates for Θ (2, 0.1, 0.2, 2.0).

(η, τ ) (r, m, n)
MLE MCMC/Prior 0 MCMC/Prior 1

α β1 β1 λ α β1 β1 λ α β1 β1 λ

(1.0, 1.0)

(15, 20, 30) 4.285 0.291 0.387 5.088 4.300 0.290 0.400 5.187 4.019 0.270 0.294 4.980
0.90 0.91 0.90 0.89 0.91 0.91 0.91 0.92 0.90 0.92 0.91 0.91

(15, 25, 30) 4.272 0.271 0.375 5.152 4.253 0.269 0.374 5.158 4.014 0.249 0.274 4.948
0.91 0.91 0.92 0.90 0.91 0.91 0.92 0.93 0.93 0.94 0.91 0.94

(20, 25, 30) 4.242 0.235 0.342 5.118 4.255 0.239 0.351 5.149 3.980 0.208 0.241 4.915
0.92 0.93 0.92 0.92 0.91 0.93 0.92 0.95 0.93 0.94 0.96 0.94

(20, 30, 50) 4.219 0.212 0.318 5.100 4.204 0.208 0.328 5.113 3.971 0.185 0.214 4.875
0.93 0.92 0.94 0.90 0.93 0.93 0.97 0.93 0.93 0.95 0.97 0.92

(20, 40, 50) 4.181 0.185 0.284 5.079 4.172 0.169 0.280 5.081 3.940 0.151 0.179 4.821
0.96 0.92 0.93 0.91 0.93 0.93 0.93 0.93 0.94 0.97 0.95 0.94

(30, 40, 50) 4.158 0.166 0.274 4.965 4.118 0.135 0.241 5.040 3.915 0.118 0.148 4.782
0.92 0.94 0.93 0.92 0.93 0.94 0.92 0.93 0.94 0.95 0.95 0.94

Table 7: )e AL and CP of parameters estimates for Θ (2, 0.1, 0.2, 2.0).

(η, τ ) (r, m, n)
MLE MCMC/Prior 0 MCMC/Prior 1

α β1 β1 λ α β1 β1 λ α β1 β1 λ

(1.2, 1.0)

(15, 20, 30) 4.371 0.369 0.470 5.269 4.370 0.371 0.466 5.255 4.098 0.345 0.361 5.057
0.88 0.89 0.90 0.88 0.91 0.90 0.91 0.91 0.91 0.92 0.90 0.91

(15, 25, 30) 4.347 0.245 0.453 5.230 4.330 0.345 0.450 5.238 4.091 0.299 0.348 5001
0.89 0.90 0.91 0.91 0.91 0.92 0.92 0.93 0.93 0.94 0.93 0.92

(20, 25, 30) 4.318 0.310 0.415 5.198 4.294 0.310 0.428 5.221 4.071 0.288 0.321 4.989
0.90 0.91 0.92 0.90 0.92 0.93 0.92 0.93 0.94 0.94 0.96 0.97

(20, 30, 50) 4.291 0.287 0.389 5.176 4.280 0.279 0.398 5.188 4.056 0.261 0.289 4.961
0.92 0.91 0.92 0.90 0.92 0.93 0.93 0.93 0.93 0.93 0.95 0.94

(20, 40, 50) 4.270 0.265 0.372 5.164 4.245 0.253 0.359 5.164 4.008 0.220 0.266 4.894
0.92 0.93 0.90 0.91 0.93 0.94 0.93 0.92 0.94 0.97 0.94 0.93

(30, 40, 50) 4.221 0.243 0.351 5.011 4.194 0.210 0.320 5.123 3.990 0.187 0.516 4.866
0.92 0.90 0.93 0.91 0.93 0.94 0.93 0.93 0.94 0.94 0.95 0.96

8 Mathematical Problems in Engineering



Table 8: )e AV and MSE of parameters estimates for Θ (1.0, 0.8, 1.0, 2.5).

(η , τ ) (r, m, n)
MLE MCMC/Prior 0 MCMC/Prior 1

α β1 β1 λ α β1 β1 λ α β1 β1 λ

(0.3, 0.5)

(15, 20, 30) 1.235 1.001 1.321 2.821 1.214 0.982 1.301 2.805 1.201 0.854 1.241 2.754
0.254 0.221 0.243 0.647 0.241 0.213 0.232 0.641 0.185 0.167 0.200 0.425

(15, 25, 30) 1.219 0.985 1.307 2.809 1.200 0.968 1.280 2.791 1.189 0.842 1.229 2.742
0.237 0.205 0.218 0.622 0.221 0.190 0.214 0.628 0.165 0.155 0.193 0.417

(20, 25, 30) 1.221 0.982 1.313 2.814 1.201 0.955 1.275 2.792 1.178 0.840 1.214 2.735
0.227 0.201 0.212 0.619 0.218 0.183 0.208 0.614 0.145 0.147 0.190 0.409

(20, 30, 50) 1.214 0.977 1.307 2.817 1.194 0.948 1.269 2.790 1.160 0.825 1.204 2.727
0.209 0.192 0.200 0.604 0.201 0.164 0.201 0.601 0.139 0.132 0.179 0.401

(20, 40, 50) 1.195 0.899 1.265 2.800 1.191 0.888 1.255 2.718 1.124 0.801 1.176 2.702
0.182 0.176 0.166 0.550 0.183 0.161 0.164 0.547 0.101 0.108 0.151 0.382

(30, 40, 50) 1.184 0.875 1.240 2.741 1.179 0.872 1.221 2.719 1.127 0.789 1.154 2.701
0.174 0.160 0.142 0.514 0.156 0.140 0.133 0.519 0.099 0.089 0.132 0.314

Table 9: )e AV and MSE of parameters estimates for Θ (1.0, 0.8, 1.0, 2.5).

(η , τ ) (r, m, n)
MLE MCMC/Prior 0 MCMC/Prior 1

α β1 β1 λ α β1 β1 λ α β1 β1 λ

(0.5, 0.5)

(15, 20, 30) 1.219 0945 1.300 2.800 1.184 0.973 1.290 2.780 1.212 0.866 1.254 2.767
0.233 0.207 0.219 0.618 0.215 0.200 0.211 0.619 0.155 0.149 0.179 0.403

(15, 25, 30) 1.201 0.971 1.219 2.800 1.203 0.954 1.275 2.787 1.180 0.845 1.217 2.732
0.219 0.187 0.204 0.604 0.200 0.172 0.189 0.611 0.152 0.141 0.173 0.401

(20, 25, 30) 1.211 0.975 1.300 2.801 1.192 0.947 1.269 2.790 1.179 0.842 1.207 2.725
0.209 0.175 0.200 0.601 0.197 0.164 0.187 0.600 0.132 0.125 0.174 0.390

(20, 30, 50) 1.204 0.961 1.310 2.807 1.182 0.941 1.260 2.784 1.163 0.817 1.191 2.708
0.191 0.179 0.183 0.581 0.180 0.162 0.189 0.580 0.117 0.111 0.160 0.382

(20, 40, 50) 1.190 0.880 1.260 2.803 1.190 0.878 1.247 2.725 1.132 0.715 1.160 2.650
0.161 0.156 0.149 0.535 0.168 0.145 0.145 0.538 0.089 0.079 0.138 0.365

(30, 40, 50) 1.176 0.871 1.233 2.742 1.165 0.869 1.217 2.731 1.130 0.776 1.151 2.690
0.155 0.143 0.128 0.500 0.141 0.128 0.117 0.504 0.081 0.076 0.114 0.301

Table 10: )e AV and MSE of parameters estimates for Θ (1.0, 0.8, 1.0, 2.5).

(η , τ ) (r, m, n)
MLE MCMC/Prior 0 MCMC/Prior 1

α β1 β1 λ α β1 β1 λ α β1 β1 λ

(0.3, 0.5)

(15, 20, 30) 1.235 1.001 1.321 2.821 1.214 0.982 1.301 2.805 1.201 0.854 1.241 2.754
0.254 0.221 0.243 0.647 0.241 0.213 0.232 0.641 0.185 0.167 0.200 0.425

(15, 25, 30) 1.219 0.985 1.307 2.809 1.200 0.968 1.280 2.791 1.189 0.842 1.229 2.742
0.237 0.205 0.218 0.622 0.221 0.190 0.214 0.628 0.165 0.155 0.193 0.417

(20, 25, 30) 1.221 0.982 1.313 2.814 1.201 0.955 1.275 2.792 1.178 0.840 1.214 2.735
0.227 0.201 0.212 0.619 0.218 0.183 0.208 0.614 0.145 0.147 0.190 0.409

(20, 30, 50) 1.214 0.977 1.307 2.817 1.194 0.948 1.269 2.790 1.160 0.825 1.204 2.727
0.209 0.192 0.200 0.604 0.201 0.164 0.201 0.601 0.139 0.132 0.179 0.401

(20, 40, 50) 1.195 0.899 1.265 2.800 1.191 0.888 1.255 2.718 1.124 0.801 1.176 2.702
0.182 0.176 0.166 0.550 0.183 0.161 0.164 0.547 0.101 0.108 0.151 0.382

(30, 40, 50) 1.184 0.875 1.240 2.741 1.179 0.872 1.221 2.719 1.127 0.789 1.154 2.701
0.174 0.160 0.142 0.514 0.156 0.140 0.133 0.519 0.099 0.089 0.132 0.314
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percentages, and average confidence interval lengths based
on 1000 replications are reported. )e results are shown in
Tables 2–13.

6. Conclusions

A suitable censoring scheme and a suitable accelerated type
for competing risk populations are developed. )e results

are computed when the products have Chen lifetime dis-
tribution. )e model parameters are estimated with MLEs
and Bayes methods; then, the numerical results are reported
in Tables 2–13.)e following comments are observed for the
numerical results.

(1) From all tables, the proposed methods serve well for
all choices.

Table 11: )e AL and CP of parameters estimates for Θ (1.0, 0.8, 1.0, 2.5).

(η, τ ) (r, m, n)
MLE MCMC/Prior 0 MCMC/Prior 1

α β1 β1 λ α β1 β1 λ α β1 β1 λ

(0.3, 0.5)

(15, 20, 30) 2.824 2.541 3.104 5.512 2.801 2.549 3.097 5.489 2.612 2.325 2.900 5.342
0.89 0.88 0.89 0.87 0.89 0.90 0.90 0.88 0.90 0.90 0.90 0.90

(15, 25, 30) 2.804 2.525 3.077 5.500 2.785 2.525 3.077 5.468 2.591 2.301 2.879 5.324
0.90 0.90 0.90 0.90 0.91 0.91 0.91 0.91 0.91 0.92 0.91 0.92

(20, 25, 30) 2.781 2.507 3.059 5.480 2.766 2.508 3.059 5.455 2.579 2.284 2.862 5.304
0.91 0.91 0.92 0.92 0.91 0.93 0.92 0.92 0.93 0.94 0.98 0.93

(20, 30, 50) 2.759 2.487 3.042 5.461 2.745 2.592 3.040 5.439 2.565 2.271 2.842 5.281
0.91 0.92 0.91 0.90 0.93 0.93 0.91 0.93 0.93 0.92 0.92 0.92

(20, 40, 50) 2.744 2.464 3.031 5.449 2.736 2.581 3.024 5.418 2.548 2.255 2.819 5.260
0.912 0.93 0.92 0.90 0.93 0.94 0.93 0.93 0.93 0.92 0.94 0.93

(30, 40, 50) 2.719 2.439 3.008 5.413 2.714 2.547 3.004 5.400 2.521 2.228 2.801 5.239
0.92 0.92 0.93 0.92 0.92 0.94 0.93 0.94 0.94 0.93 0.95 0.95

Table 12: )e AL and CP of parameters estimates for Θ (1.0, 0.8, 1.0, 2.5).

(η, τ ) (r, m, n)
MLE MCMC/Prior 0 MCMC/Prior 1

α β1 β1 λ α β1 β1 λ α β1 β1 λ

(0.5, 0.5)

(15, 20, 30) 2.801 2.514 3.076 5.500 2.783 2.515 3.072 5.471 2.593 2.304 2.879 5.319
0.90 0.90 0.89 0.89 0.90 0.90 0.91 0.90 0.90 0.91 0.90 0.92

(15, 25, 30) 2.782 2.507 3.058 5.483 2.769 2.507 3.061 5.454 2.576 2.279 2.864 5.308
0.92 0.91 0.90 0.91 0.92 0.91 0.92 0.91 0.91 0.92 0.93 0.93

(20, 25, 30) 2.756 2.486 3.035 5.464 2.748 2.492 3.041 5.441 2.568 2.269 2.847 5.292
0.92 0.93 0.92 0.93 0.91 0.93 0.94 0.92 0.93 0.95 0.96 0.95

(20, 30, 50) 2.743 2.461 3.020 5.443 2.738 2.582 3.025 5.428 2.547 2.256 2.821 5.255
0.93 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.95 0.94 0.93

(20, 40, 50) 2.725 2.451 3.014 5.432 2.718 2.563 3.011 5.408 2.531 2.241 2.808 5.245
0.92 0.93 0.92 0.90 0.94 0.94 0.93 0.93 0.94 0.92 0.94 0.96

(30, 40, 50) 2.719 2.439 3.008 5.413 2.714 2.547 3.004 5.400 2.521 2.228 2.801 5.239
0.92 0.92 0.93 0.92 0.92 0.94 0.93 0.94 0.94 0.93 0.95 0.95

Table 13: )e AL and CP of parameters estimates for Θ (1.0, 0.8, 1.0, 2.5).

(η, τ ) (r, m, n)
MLE MCMC/Prior 0 MCMC/Prior 1

α β1 β1 λ α β1 β1 λ α β1 β1 λ

(0.7, 0.5)

(15, 20, 30) 2.861 2.579 3.142 5.544 2.832 2.580 3.180 5.511 2.645 2.349 2.932 5.361
0.89 0.88 0.89 0.88 0.91 0.90 0.91 0.89 0.90 0.90 0.90 0.91

(15, 25, 30) 2.835 2.559 3.103 5.528 2.810 2.561 3.098 5.488 2.670 2.342 2.915 5.357
0.90 0.91 0.90 0.91 0.91 0.91 0.91 0.92 0.91 0.92 0.91 0.92

(20, 25, 30) 2.799 2.538 3.071 5.499 2.784 2.541 3.075 5.478 2.611 2.315 2.881 5.338
0.90 0.91 0.93 0.92 0.91 0.93 0.92 0.92 0.94 0.94 0.98 0.92

(20, 30, 50) 2.782 2.499 3.073 5.486 2.774 2.615 3.069 5.470 2.592 2.298 2.869 5.298
0.92 0.90 0.91 0.91 0.93 0.93 0.91 0.94 0.93 0.92 0.93 0.92

(20, 40, 50) 2.771 2.492 3.059 5.480 2.764 2.598 3.052 5.441 2.563 2.277 2.842 5.285
0.90 0.93 0.92 0.92 0.93 0.94 0.94 0.93 0.93 0.92 0.94 0.95

(30, 40, 50) 2.741 2.458 3.032 5.439 2.742 2.568 3.032 5.429 2.544 2.253 2.834 5.257
0.92 0.91 0.93 0.92 0.92 0.94 0.93 0.92 0.94 0.93 0.93 0.93
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(2) )e numerical results which are obtained fromMLEs
and Bayes with noninformative prior are approxi-
mately similar.

(3) )e Bayes method under informative prior serves
very well compared to the other cases.

(4) )e censoring scheme of type-I GHCS has saved the
minimum number of failures which present suitable
numerical results of all choices

(5) For the effective (r, m) sample increases, the MSEs
and the AL of different estimators are reduced.

(6) )e best results are obtained for the cases of η � τ.

Data Availability

No data were used to support the findings of this study.

Conflicts of Interest

)e authors have no conflicts of interest regarding the
publication of the paper.

Acknowledgments

)is research was funded by the Deanship of Scientific
Research, Taif University, KSA (Research Group no. 1- 1441-
100).

References

[1] R. D. Gupta and D. Kundu, “Hybrid censoring schemes with
exponential failure distribution,” Communications in Statis-
tics-Aeory and Methods, vol. 27, no. 12, pp. 3065–3083, 1998.

[2] D. Kundu and B. Pradhan, “Estimating the parameters of the
generalized exponential distribution in presence of hybrid
censoring,” Communications in Statistics-Aeory and
Methods, vol. 38, no. 12, pp. 2030–2041, 2009.

[3] A. Childs, B. Chandrasekar, N. Balakrishnan, and D. Kundu,
“Exact likelihood inference based on Type-I and Type-II
hybrid censored samples from the exponential distribution,”
Annals of the Institute of Statistical Mathematics, vol. 55, no. 2,
pp. 319–330, 2003.

[4] M. G. M. Ghazal, “Prediction of exponentiated family dis-
tributions observables under type-II hybrid censored data,”
Journal of Statistics Applications & Probability, vol. 7, no. 2,
pp. 307–319, 2018.

[5] B. Chandrasekar, A. Childs, and N. Balakrishnan, “Exact
likelihood inference for the exponential distribution under
generalized Type-I and Type-II hybrid censoring,” Naval
Research Logistics, vol. 51, no. 7, pp. 994–1004, 2004.

[6] D. R. Cox, “)e analysis of exponentially distributed life-times
with two types of failure,” Journal of the Royal Statistical
Society: Series B (Methodological), vol. 21, no. 2, pp. 411–421,
1959.

[7] H. A. David and M. L. Moeschberger, Ae Aeory of Com-
peting Risks, Grin, London, UK, 1978.

[8] M. J. Crowder, Classical Competing Risks, Chapman & Hall,
London. UK, 2001.

[9] N. Balakrishnan and D. Han, “Exact inference for a simple
step-stress model with competing risks for failure from ex-
ponential distribution under Type-II censoring,” Journal of

Statistical Planning and Inference, vol. 138, no. 12, pp. 4172–
4186, 2008.

[10] A. Ganguly and D. Kundu, “Analysis of simple step-stress
model in presence of competing risks,” Journal of Statistical
Computation and Simulation, vol. 86, no. 10, pp. 1989–2006,
2016.

[11] H. H. Abu-Zinadah and N. Sayed-Ahmed, “Competing risks
model with partially step-stress accelerate life tests in analyses
lifetime chen data under type-II censoring scheme,” Open
Physics, vol. 17, no. 1, pp. 192–199, 2019.

[12] W. Nelson, Accelerated Testing: Statistical Models, Test Plans
and Data Analysis, Wiley, NewYork, NY, USA, 1990.

[13] C. M. Kim and D. S. Bai, “Analyses of accelerated life test data
under two failure modes,” International Journal of Reliability,
Quality and Safety Engineering, vol. 09, no. 02, pp. 111–125,
2002.

[14] V. Bagdonavicius and M. Nikulin, Accelerated Life Models:
Modeling and Statistical Analysis, Chapman and Hall/CRC
Press, Boca Raton, FL, USA, 2002.

[15] E. K. AL-Hussaini and A. H. Abdel-Hamid, “Bayesian esti-
mation of the parameters, reliability and hazard rate functions
of mixtures under accelerated life tests,” Communications in
Statistics - Simulation and Computation, vol. 33, no. 4,
pp. 963–982, 2004.

[16] E. K. AL-Hussaini and A. H. Abdel-Hamid, “Accelerated life
tests under finite mixture models,” Journal of Statistical
Computation and Simulation, vol. 76, no. 8, pp. 673–690,
2006.

[17] D. S. Bai, M. S. Kim, and S. H. Lee, “Optimum simple step-
stress accelerated life tests with censoring,” IEEE Transactions
on Reliability, vol. 38, no. 5, pp. 528–532, 1989.

[18] R. Wang and H. Fei, “Statistical inference of Weibull dis-
tribution for tampered failure rate model in progressive stress
accelerated life testing,” IEEE Transactions on Reliability,
vol. 17, pp. 237–243, 2004.

[19] A. H. Abdel-Hamid and E. K. Al-Hussaini, “Progressive stress
accelerated life tests under finite mixture models,” Metrika,
vol. 66, no. 2, pp. 213–231, 2007.

[20] G. K. Bhattacharyya and Z. Soejoeti, “A tampered failure rate
model for step-stress accelerated life test,” Communications in
Statistics-Aeory and Methods, vol. 18, no. 5, pp. 1627–1643,
1989.

[21] H. Seunggeun and J. Lee, “Constant-stress partially
accelerated life testing for log-logistic distribution with cen-
sored data,” IEEE Transactions on Reliability, vol. 2,
pp. 193–201, 2015.

[22] A. A. Tahani and A. A. Soliman, “Estimating the Pareto
parameters under progressive censoring data for constant-
partially accelerated life tests,” IEEE Transactions on Reli-
ability, vol. 85, pp. 917–934, 2015.

[23] G. A. Abd-Elmougod and E. E. Mahmoud, “Paramters esti-
mation of compound Rayleigh distribution under an adaptive
type-II progressively hybrid censored data for constant par-
tially accelerated life tests,” Global Journal of Pure and Applied
Mathematics, vol. 13, pp. 8361–8372, 2016.

[24] A. A. Soliman, G. A. Abd-Elmougod, and M. M. Al- Sobhi,
“Estimation in step-stress partially accelerated life tests for the
Chen distribution using progressive Type-II censoring,”
Applied Mathematics & Information Sciences, vol. 11, no. 1,
pp. 325–332, 2017.

[25] A. M. Almarashi, AlgarniA, G. A. Abd-Elmougod, and
S. M. Sayed Abdel-Khalek, “MCMC in estimation for gen-
eralized exponential distribution with constant partially

Mathematical Problems in Engineering 11



accelerated life tests under type-II censoring scheme,”
Transylvanian Review, vol. 32, pp. 8369–8376, 2019.

[26] A. M. Almarashia, A. Ali, G. A. Abd-Elmougod, and S. Abdel-
Khalek, “Statistical analysis of Rayleigh competing risks
models based on partially step stress Type-II censoring
samples,” Journal of Nonlinear Science and Applications,
vol. 12, pp. 230–238, 2019.

[27] Q. Guan and Y. Tang, “Optimal step-stress test under Type-I
censoring for multivariate exponential distribution,” Journal
of Statistical Planning and Inference, vol. 142, no. 7,
pp. 1908–1923, 2012.

12 Mathematical Problems in Engineering



Research Article
Kinematics Analysis of 6-DoF Articulated Robot with
Spherical Wrist

Seemal Asif and Philip Webb

School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, Cranfield, UK

Correspondence should be addressed to Seemal Asif; s.asif@cranfield.ac.uk

Received 29 November 2020; Revised 30 December 2020; Accepted 18 January 2021; Published 2 February 2021

Academic Editor: Fateh Mebarek-Oudina

Copyright © 2021 Seemal Asif and Philip Webb. 0is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

0e aim of the paper is to study the kinematics of the manipulator. 0e articulated robot with a spherical wrist has been used for
this purpose. 0e Comau NM45 Manipulator has been chosen for the kinematic model study. 0e manipulator contains six
revolution joints. Pieper’s approach has been employed to study the kinematics (inverse) of the robot manipulator. Using this
approach, the inverse kinematic problem is divided into two small less complex problems. 0is reduces the time of analysing the
manipulator kinematically. 0e forward and inverse kinematics has been performed, and mathematical solutions are detailed
based on D-H (Denavit–Hartenberg) parameters. 0e kinematics solution has been verified by solving the manipulator’s motion.
It has been observed that the model is accurate as the motion trajectory was smoothly followed by the manipulator.

1. Introduction

Locomotion is the process of causing a rigid body to move.
0e body needs force to move. Dynamics is the study of the
motion of the body in which forces are modelled which helps
the body to move, whereas kinematics is the geometrical
study of the motion of the body without considering the
forces that can affect the motion of the body.

Kinematics is the motion description of the rigid body.
[1] Links are the connectivity body/member between joints.
0e kinematic chain is a grouping of links connected by
joints, as illustrated in Figure 1. In the kinematic chain, the
number of DoF (degree of freedom) is equal to the number
of joints.

Maintaining a strong connection between the two joints
is called the kinematics function of a link. 0is connection
can be described with the following factors:

(i) a: link length
(ii) α: link twist

Link length is measured along the line which is mutually
perpendicular to both joints/axes. 0e perpendicularity in
joints always exists except when both joints are parallel. Link

twist is the angle of projection from the previous joint (i− 1)
to the next joint (i) onto the axis i− 1 (previous joint); the
projection line is parallel to the next joint (axis i). 0e re-
lationship between link length and twist is described in
Figure 2.

(i) A joint axis is formed at the connection of two links.
0is joint will have two parameters (one for each
link) connected to it. 0ese parameters are as
follows:

(ii) d: distance between links
(iii) W: angle between links

0e relative position or distance between the links is
called link offset. Figure 3 describes these parameters, in
which the joint angle is the angle between the links.

0e four parameters demonstrated above are associated
with each link. Axes can be aligned using these parameters.
0e parameters are also known as Denavit–Hartenberg link
parameters. 0ese are illustrated in Table 1 below:

0e link numbering convention follows from the base of
the arm till the last moving link. As mentioned in Figure 4,
the first link is the connection between the base and first
joint.

Hindawi
Mathematical Problems in Engineering
Volume 2021, Article ID 6647035, 11 pages
https://doi.org/10.1155/2021/6647035

mailto:s.asif@cranfield.ac.uk
https://orcid.org/0000-0001-7048-0183
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6647035


0e parameters mentioned above in Table 1 are used for
kinematic modelling of the robot. In kinematics, modelling
the geometry of the robot is represented. Homogenous
transformation (of the matrix) is commonly used as the
definition of the kinematics model (particularly for chains
mechanism). As described below,

0
nT � T1T2T3 . . . Ti . . . Tn, (1)

where n is the number of links, Ti is the link transformation
from the ith joint, and 0

nT is the final pose for end-effector
relative to the base.

0ere are two main types of kinematic models: forward
kinematics and inverse kinematics. In forward kinematics,
the length of each link and angle of each joint is given, and
through that, position of any point (x, y, z) can be found. In
inverse kinematics, the length of each link and position of
some points (x, y, z) is given, and the angle of each joint is
needed to find to obtain that position.

Several models are developed for kinematic modelling,
but the D-H (Denavit–Hartenberg) model [4] is the most
popular model. Limitations of the D-H model are discussed,
and CPC (completeness and parametric continuity) model
and its mapping with the D-Hmodel were proposed [5].0e
parametric continuity of the CPC model was achieved by
using singularity free line representation.

2. Forward Kinematics of Comau NM45

0e Comau NM45 [6] is a medium-scale robot. It has 6
degree of freedom joints. It is an articulated arm with a
spherical wrist. 0e wrist joint intersects at one point.
Figure 5 shows the manipulator with its link length and
working envelope.

Forward kinematics is the study of the manipulator to
find out its tip or end-effector position and orientation by
using joint values of the manipulator. 0e first step of
performing the forward kinematics is to label link lengths.

(a) (b)

Figure 1: Kinematics of the manipulator: (a) open chain; (b) closed chain [2].

Axis i – 1

Axis i

ai–1

αi–1

Figure 2: Kinematic function of link.

Axis i – 1

Axis i

ai

diθi

ai–1

αi–1

Figure 3: Link and joint parameters. Joint parameters are high-
lighted in red.

Table 1: Denavit–Hartenberg link parameters.

Link parameters Joint parameters
a: link length d: distance between links
α: link twist W: angle between links

Link 6
Link 5

Link 4

Link 0

Link 1

Link 2

{Base}

θ1

θ2

θ3

θ4

θ5

θ6

θ7

Σ7

Σ0

Link 3

Figure 4: A 7-DoF manipulator arm [3].
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0is step has been performed in Figure 5. 0e second step to
find the forward kinematics of the manipulator is to assign
the frames. 0e frame assignment is done in Figure 6.

0e D-H parameters can be found based on the frame
assignment. 0e modified DH convention has been used for
the frame assignment and DH parameters [7, 8]. 0ese
parameters are illustrated in Table 2.

0e transformation matrix for a link i is described as
follows:

Ai �

cos θi − sin θi cos αi sin θi sin αi αi cos θi

sin θi cos θi cos αi − cos θi sin αi αi sin θi

0 sin αi cos αi di

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

A1 is the transformation matrix T0
1:

T
0
1 �

cos θ1 − sin θ1 cos α1 sin θ1 sin α1 α1 cos θ1
sin θ1 cos θ1 cos α1 − cos θ1 sin α1 α1 sin θ1
0 sin α1 cos α1 d1
0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(3)
and α � 90, so T0

1 will be as follows:

T
0
1 �

cos θ1 0 sin θ1 α1 cos θ1

sin θ1 0 − cos θ1 α1 sin θ1

0 1 0 d1

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

whereas a1� l1� 0.4 and d1� 0.75; by placing these values
above, the following equation which is the resultant for the
transformation between the base and joint 1 is obtained:

T
0
1 �

cos θ1 0 sin θ1 α1 cos θ1

sin θ1 0 − cos θ1 α1 sin θ1

0 1 0 0.75

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

For A2 � T1
2,

T
1
2 �

cos θ2 − sin θ2 0 α2 cos θ2

sin θ2 cos θ2 0 α2 sin θ2

0 0 1 d2

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6)

L1

400

Ax.2

Ax.3

Ax.523
50

58
2.

09

75
0

75
0

25
0

951,842000

1212,67

3

2

1

5

6

4

7

8

R530
L2

L3

d1
Z

d6

175

Pos,9

(812,40)
d4 850

+110°

+123° –170°

–1
23

°

–42°
+1

30
°

Figure 5: Comau NM45 (inline) operative area and link lengths.
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whereas a2� l2� 0.75 and d2� 0; by placing these values
above, the following equation which is the resultant for the
transformation between joint 1 and joint 2 is obtained:

T
1
2 �

cos θ2 − sin θ2 0 0.75 cos θ2

sin θ2 cos θ2 0 0.75 sin θ2

0 0 1 0

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

For A3 � T2
3,

T
2
3 �

cos θ3 0 sin θ3 α3 cos θ3

sin θ3 0 − cos θ3 α3 sin θ3

0 1 0 d3

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8)

whereas a3� l3� 0.25 and d3� 0; by placing these values
above, the following equation which is the resultant for the
transformation between joint 2 and joint 3 is obtained:

T
2
3 �

cos θ3 0 sin θ3 0.25 cos θ3
sin θ3 0 − cos θ3 0.25 sin θ3
0 1 0 0
0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

For A4 � T3
4 and α � 90,

T
3
4 �

cos θ4 0 − sin θ4 α4 cos θ4

sin θ4 0 cos θ4 α4 sin θ4

0 − 1 0 d4

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10)

whereas a4� 0; by placing the value of a4 in the above
equation, the following equation which is the resultant
for the transformation between joint 3 and joint 4 is
obtained:

T
3
4 �

cos θ4 0 − sin θ4 0

sin θ4 0 cos θ4 0

0 − 1 0 d4

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

For A4 � T4
5,

T
4
5 �

cos θ5 0 sin θ5 α5 cos θ5

sin θ5 0 − cos θ5 α5 sin θ5

0 1 0 d5

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (12)

Z
Y

X

Z
Y

+

–

–

+

X
Ax.6
+/–2700°
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+/–2700°

Flange (axis 6)

Figure 6: NM45 model with coordinates mapping.

Table 2: Comau NM45 DH parameters.

Link Link length (αi), m Twist angle (αi), deg Joint offset Joint angle (θi), deg
1 L1� 0.4 90 D1� 0.75 (θ1)

2 L2� 0.75 0 0 (θ2)

3 L3� 0.25 90 0 (θ3)

4 0 − 90 D4� 0.8124 (θ4)

5 0 90 0 (θ5)

6 0 0 D6� 0.175 (θ6)
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whereas a5� 0 and d5� 0; by placing these values in the
above equation, the following equation which is the resultant
for the transformation between joint 4 and joint 5 is
obtained:

T
4
5 �

cos θ5 0 sin θ5 0

sin θ5 0 − cos θ5 0

0 1 0 0

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

For A5 � T5
6 and α � 0,

T
5
6 �

cos θ6 − sin θ6 0 α6 cos θ6

sin θ6 cos θ6 0 α6 sin θ6

0 0 1 d6

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (14)

whereas a6� 0; by placing the value of a6 in the above
equation, the following equation which is the resultant for
the transformation between joint 5 and joint 6 is obtained:

T
5
6 �

cos θ6 − sin θ6 0 0

sin θ6 cos θ6 0 0

0 0 1 d6

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

2.1. Transformation. For simplification, the following has
been substituted:

θ1 � u,

θ2 � v,

θ3 � w,

θ4 � a,

θ5 � b,

θ6 � m.

(16)

For A12 � T0
2 � T0

1 × T1
2, substitute values from equa-

tions (5) and (7):

T
0
2 � T

0
1XT

1
2 �

cos(u) 0 sin(u) 0.4 cos(u)

sin(u) 0 − cos(u) 0.4 sin(u)

0 1 0 0.75

0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

cos(v) − sin(v) 0 0.75 cos(v)

sin(v) cos(v) 0 0.75 sin(v)

0 0 1 0

0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (17)

0e resultant transformation between the base and joint
2 is illustrated as follows:

T
0
2 �

cos(u)cos(v) − cos(u)sin(v) sin(u) cos(u)(0.75 cos(v) + 0.4)

cos(v)sin(u) − sin(u)sin(v) − cos(u) (0.75 cos(v) + 0.4)sin(u)

sin(v) cos(v) 0 0.75 sin(v) + 0.75

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (18)

For A123 � T0
3 � T0

1 × T1
2 × T2

3, for simplicity,

m � cos(u)(0.75 cos(v) + 0.4),

n � (0.75 cos(v) + 0.4)sin(u),

u � 0.75 sin(v) + 0.75,

T
0
3 � T

0
2XT

2
3 �

cos(u) cos(v) − cos(u)sin(v) sin(u) m

cos(v)sin(u) − sin(u)sin(v) − cos(u) n

sin(v) cos(v) 0 o

0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

cos(w) 0 sin(w) 0.25 cos(w)

sin(w) 0 − cos(w) 0.25 sin(w)

0 1 0 0

0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(19)

Mathematical Problems in Engineering 5



0e resultant transformation between the base and joint
3 is illustrated as follows:

T
0
3 �

cos(u)cos(v + w) sin(u) cos(u)sin(v + w) m + 0.25 cos(u)cos(v + w)

cos(v + w)sin(u) − cos(u) sin(u)sin(v + w) n + 0.25 cos(v + w)sin(u)

sin(v + w) 0 − cos(v + w) 0 + 0.25 sin(v + w)

0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (20)

For A456 � T3
6 � T3

4 × T4
5 × T5

6,

A45 � T
3
5 � T

3
4 × T

4
5 �

cos(a) 0 − sin(a) 0

sin(a) 0 cos(a) 0

0 − 1 0 0.8124

0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

cos(b) 0 sin(b) 0

sin(b) 0 − cos(b) 0

0 1 0 0

0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

A45 � T
3
5 �

cos(a) cos(b) − sin(a) cos(a)sin(b) 0

sin(a)cos(b) cos(a) sin(a)sin(b) 0

− sin(b) 0 cos(b) 0.8124

0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

T
3
6 � T

3
4 × T

4
5 × T

5
6 � T

3
5 × T

5
6 �

cos(a) cos(b) − sin(a) cos(a)sin(b) 0

sin(a)cos(b) cos(a) sin(a)sin(b) 0

− sin(b) 0 cos(b) d
4

0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

cos(m) − sin(m) 0 0

sin(m) cos(m) 0 0

0 0 1 d
6

0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(21)

0e resultant transformation between joint 3 and joint 6
is illustrated as follows:

T
3
6 �

cos(a)cos(b)cos(m) − sin(a)sin(m) − cos(m)sin(a) − cos(a)cos(b)sin(m) cos(a)sin(b) d
6 cos(a)sin(b)

cos(b)cos(m)sin(a) + cos(a)sin(m) cos(a)cos(m) − cos(b)sin(a)sin(m) sin(a)sin(b) d
6 sin(a)sin(b)

− cos(m)sin(b) sin(b)sin(m) cos(b) cos(b)d
6

+ d
4

0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(22)

Spherical wrist position can be extracted using the last
column of T0

6 transformation matrix, where

T
0
6 �

r11 r12 r13 Px

r21 r22 r23 Py

r31 r32 r33 Pz

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (23)

Which means the T0
6 the transformation matrix can be

represented in terms of R0
6 and P0

6 illustrated as follows:

T
0
6 �

R
0
6 P

0
6

0 1
⎡⎣ ⎤⎦, (24)

and spherical wrist position is illustrated as

P
0
6 �

Px

Py

Pz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (25)

Transformation matrix from base to end-effector is
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T
0
6 � T

0
1 × T

1
2 × T

2
3 × T

3
4 × T

4
5 × T

5
6,

T
0
6 �

r11 r12 r13 Px

r21 r22 r23 Py

r31 r32 r33 Pz

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

T
0
6 �

R
0
6 P

0
6

0 1
⎡⎣ ⎤⎦.

(26)

3. Inverse Kinematics of Comau NM45

Inverse kinematics is finding the joint values
θ1, θ2, θ3, θ4, θ5, θ6( 􏼁 of the robot arm for the given

position (p) and orientation (o). For inverse kinematics, the
inverse orientation R and inverse position P are needed.

0e Comau NM45 is an articulated arm with a spherical
wrist. For finding anthropomorphic/articulated arm position
and joint values θ1, θ2, θ3, the inverse position is needed.

Let Oc be intersecting the last 3 joints. 0e motion of joints
4, 5, and 6 will not change the position of Oc, as stated in
Figure 7 [19]0is is according to Pieper’s approach [7], in which
themanipulator is divided to analyse the inverse kinematics [10].

According to T3
6 matrix from equation (22), the position

P3
6 is always as mentioned in the following equation:

P
3
6 �

0

0

dz6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (27)

So, the position O will be as follows:

O � O
0
c + d6R

0

0

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (28)

where O is the position P0
6 and R is the orientation which is R.

0e above equation can be written in terms of O0
c as follows:

O
0
c � O − d6R

0

0

1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (29)

0e first three joints can be found in the following steps.
0ey will determine the position of the manipulator:

O �

ox

oy

oz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

O
0
c �

xc

yc

zc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

xc

yc

zc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

ox − d6r13

ox − d6r23

ox − d6r33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(30)

For the orientation, the last three joints orientation is
needed.0e following equation shows the overall rotation of
the manipulator in terms of R0

3 and R3
6:

R � R
0
3R

3
6. (31)

Rearrangement of equation (31) will yield R3
6 below,

through which the last three joint angles can be found:

R
3
6 � R

0− 1
3 R⟶ θ4, θ5, θ6. (32)

For articulated manipulator, the first three joints tell the
position, as illustrated in Figure 8.

Projection of wrist onto x0, y0 plane has been shown in
Figure 9.

0is projection yields the triangle through which the
angle value for θ1 can be found as follows:

θ1 � A tan 2 xc, yc( 􏼁. (33)

If the wrist is rotated, then it will result in the following
equation:

θ1 � A tan 2 xc, yc( 􏼁 + π. (34)

Another projection, as mentioned in Figure 10, on the
plane formed with link 2 and link 3 can help to find the value
of joint angle 2 (θ2, 2) and joint angle 3 (θ3, 3).

Law of cosines can be applied to obtain the joint angle 3
(θ3, 3), as follows:

cos θ3 �
r
2

+ s
2

− a
2
2 − a

2
3

2a2a3
. (35)

By substituting the values of r and s, these can be
extracted by using Figure 8:

cos θ3 �
x
2
c + y

2
c − d

2
􏼐 􏼑 + zc − d1( 􏼁

2
− a

2
2 − a

2
3

2a2a3
. (36)

As NM45 2.0 is inline, no shoulder is offset and, hence,
d� 0.

Joint 5

Joint 4

Joint 3

Joint 2

Joint 1

Oc

O6

d6

Wrist centre

Joint 6

Figure 7: Kinematics decoupling (Spong, Hutchinson, and
Vidyasagar, 2006).
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So,

cos θ3 �
x
2
c + y

2
c + zc − d1( 􏼁

2
− a

2
2 − a

2
3

2a2a3
, (37)

where a2 � L2 according to DH labelled figure, and

cos θ3 �
x
2
c + y

2
c + zc − d1( 􏼁

2
− L

2
2 − a

2
3

2L2a3
,

sin θ3 �

���������

1 − cos θ23
􏽱

.

(38)

Also,

tan θ3 �

���������

1 − cos θ23
cos θ3

􏽳

�

������
1 − D2

􏽰

D
. (39)

0e value of θ3 can be written in terms of atan2 and D as
follows:

θ3 � a tan 2 D, ±
������
1 − D2

􏽰
􏼒 􏼓, (40)

where + is for elbow up and − is for elbow down.
0e projection in Figure 11 has been drawn onto the link

2 and link 3 plane to find θ2:

θ2 � h1 − h2,

h1 � a tan 2(r, s) � a tan 2
�������

x
2
c + y

2
c ,

􏽱

Zc − d1􏼒 􏼓,

h2 � a tan 2 a2 + a3 cos θ3, a3 sin θ3( 􏼁.

(41)

So, the value of θ2 can be written as follows:

θ2 � a tan 2
�������������

x
2
c + y

2
c , zc − d1

􏽱

􏼒 􏼓

− a tan 2 a2 + a3 cos θ3, a3 sin θ3( 􏼁.

(42)

3.1. Finding Spherical Wrist Joint Values (Rotation) Using
Euler Angles. 0e last three joint variables, θ4, θ5, θ6, are
the Euler angles. So,

θ4 � ∅,

θ5 � θ,

θ6 � φ.

(43)

0ese angles are concerning the coordinate frame
o3, x3, y3, z3. Now we need to calculate the transformation
from T3

4 to T5
6 which is T3

6:

T
3
6 � A5XA5XA6 � T

3
4 × T

4
5XT

5
6, (44)

where T3
6 can be written in terms of R3

6 and O3
6 mentioned as

follows:

T
3
6 �

R
3
6 O

3
6

0 1
⎡⎣ ⎤⎦, (45)

where O3
6 is the position.

r
s

θ1

θ2
θ3

Joint 2

Joint 1

Joint 3

d1

y0

z0

x0

yc

zc

xc

Figure 8: Comau NM45 (articulated arm) first three joints (Spong,
Hutchinson, and Vidyasagar, 2006).

r

θ1

y0

x0

yc

xc

Figure 9: Projection of wrist centre onto x0, y0 plane (Spong,
Hutchinson, and Vidyasagar, 2006).

r

θ2

a2

θ3

a3

z0

s

Figure 10: Projection on the plane (Link2 l2, Link3 l3) (Spong,
Hutchinson, and Vidyasagar, 2006).
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For the spherical wrist, the ZYZ Euler transformation is
needed. R3

6 is captured from equation (22), so R3
6 can be

written as

RZYZ � R
3
6 �

cos(∅)cos(θ)cos(φ) − sin(∅)sin(φ) − cos(φ)sin(∅) − cos(∅)cos(θ)sin(φ) cos(∅)sin(θ)

cos(θ)cos(φ)sin(∅) + cos(∅)sin(φ) cos(∅)cos(φ) − cos(θ)sin(∅)sin(φ) sin(∅)sin(θ)

− cos(φ)sin(θ) sin(θ)sin(φ) cos(θ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

R
3
6 �

r11 r12 r13

r21 r22 r23

r31 r32 r33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(46)

Whereas angles a, b, m are ∅, θ, φ, respectively.
0e cosθ can be extracted from r33 from the following

equation:

cos(b) � cos θ,

sin(b) � sin θ
���������

1 − cos2 θ
􏽱

.

(47)

0e above cosθ and sinθ can be written in form of tan to
find the value of θ:

θ � tan− 1

���������
1 − cos2 θ

􏽰

r33
⎛⎝ ⎞⎠,

θ � tan− 1

�������
1 − r332

􏽰

r33
⎛⎝ ⎞⎠.

(48)

For nonsingular case, if both r13 and r23 are not zero,
then equation (49) will yield the value of θ:

θ � a tan 2 r33, ±
�������

1 − r332
􏽱

􏼠 􏼡, (49)

or

tan θ�

���������
r132 + r232

􏽰

r33
�

����������������������������

(cos(∅)sin(θ))
2

+(sin(∅)sin(θ))
2

􏽱

cos(θ)
,

θ� tan− 1

���������
r132 + r232

􏽰

r33
⎛⎝ ⎞⎠.

(50)

Equation (51) shows the value of θ in terms of
r13, r23 and r33:

θ � a tan 2 r33, ±
����������

r132 + r232
􏽱

􏼠 􏼡. (51)

0e last column of R3
6 from equation (46) can help to

yield the value of ∅:

tan∅ �
r23
r13

�
sin(∅)sin(θ)

cos(∅)sin(θ)
. (52)

∅ can be represented in terms of r13 and r23, as follows:

r

θ2

a2

θ3

a3

h1

h2

z0

s

Figure 11: Projection onto l2 and l3 plane to find θ2. θ2 can be written in terms of angles h1 and h2.
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∅ � a tan 2(r13, r23). (53)

For φ,

tanφ �
r32

− r21
�

sin(θ)sin(φ)

− (− cos(φ) sin(θ))
. (54)

0e φ can be represented in terms of r31 and r32
mentioned as follows:

φ � a tan 2(− r31, r32). (55)

For catering singularity, if sin(θ)> 0, whereas 0 < θ < π,
then solution will be

∅ � a tan 2(− r13, − r23),

θ � a tan 2 r33, ±
����������

r132 + r232
􏽱

􏼠 􏼡,

φ � a tan 2(r31, − r32).

(56)

If sin(θ)< 0, whereas − π < θ < 0, then the solution will be

∅ � a tan 2(− r13, − r23),

θ � a tan 2 r33, ±
����������

r132 + r232
􏽱

􏼠 􏼡,

φ � a tan 2(r31, − r32).

(57)

0e last three joint values have been resolved by using
the above equations of ∅, θ, and φ.

For the trajectory planning, the program was written in
Matlab by using forward and inverse kinematics equations
mentioned in the above sections. 0e planned trajectory
required the smooth motion of the end-effector. 0e joint
angles were calculated using the inverse kinematics equa-
tions. Figure 12 shows the trajectory planning and robot
motion along with the trajectory for the Comau NM45. 0e
robot was able to follow the trajectory smoothly.

Figure 13 shows the mapping of the values of joints to
move on 100 points to follow the trajectory. It shows that the
achievement was smooth as there are no sudden spikes in the
joint values.
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Figure 12: 0e trajectory of Comau NM45.
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Figure 13: Joint trajectory of Comau NM45.
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4. Conclusion

0e modified DH convention has been used to perform the
forward kinematics for the manipulator. 0e kinematics
decoupling has been used to perform the inverse kinematics.
0e manipulator was divided into two parts to make the
inverse kinematics problem simpler. 0e first 3 joints were
resolved by using a geometrical approach, whereas the last
three joints were resolved using the algebraic approach. 0e
resultant kinematics solution was applied on the manipu-
lator, and it was able to follow a test trajectory successfully. A
similar approach can be used while solving the articulated
robot with a spherical wrist. 0e techniques are applied for
the 6-DoF robot.
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In this paper, stope structure optimization during sublevel caving mining is considered under the condition that the isolated draw
zones (IDZs) are nonstandard ellipsoid, which is realized by dynamically adjusting the arrangement of IDZs and quantifying the
degree of intersection of IDZs according to an ore profit and loss calculation model. A dynamic intersecting arrangement model
based on IDZs was proposed, which can dynamically adjust the sublevel height and drift spacing according to the ore-rock bulk
flow parameters, economic indicators, occurrence condition of the ore body, drilling machine, and so forth. Based on the model,
the range of drift spacing, the lower volume of crestal residual ore, and the higher volume of mixing waste rock are calculated. By
deducing the function of ore profit and loss, a calculation model for ore profit and loss is established to quantify the degree of
intersection of IDZs and determine the best stope structure. Using the constructed dynamic intersecting arrangement model, a
stope structure of − 213m to − 303m in the Yanqianshan Iron Mine was designed, with a sublevel height of 22.5m and a drift
spacing of 20.5m. A physical drawing model was designed, and three physical simulation experiment schemes were conducted to
compare and analyse the ore loss and dilution of the intersecting arrangement model and the traditional tangent arrangement
model. -e results showed that the loss rate decreased by 3.66% and the dilution rate increased by only 0.22%, thus verifying the
effectiveness and applicability of the model to optimize the stope structure.

1. Introduction

-e sublevel caving method is one of the oldest methods for
underground mining. -is method has many advantages with
regard to safety and mechanization, so it is widely used in
various kinds of metallic mines worldwide [1, 2]. With the
extension of deep undergroundmining and the transformation
of open-pit mines to underground mines, the application of
this mining method is continuously growing, developing to-
wards intelligent mining equipment and stope structure op-
timization [3]. -e stope structure, including sublevel height,
drift spacing, and caving spacing, is the main factor that causes
ore loss and dilution. An optimal stope structure can adapt to
the fluidity of ore-rock, thus reducing ore loss and dilution.

-e sublevel caving method is used for mining between
sublevels from top to bottom. When ore is extracted,
overlying waste rock fills the void created by ore extraction,
so the ore is always surrounded by the overlying waste rock.
-e caved ore is drawn from drifts under loose cover-layer-
rock, so ore loss and dilution readily occur [4–6]. -is is a
significant disadvantage of this method. Obviously, the
optimal stope structure from a scientific drawing model can
accelerate the flow of ore and control the mixing of waste
rock, thus mitigating the shortcomings of serious ore loss
and dilution [5, 7]. -erefore, relevant studies that can help
improve the recovery and utilization of mineral resources
and increase the economic benefit of mines are very
significant.
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To optimize the stope structure to reduce ore loss and
dilution in sublevel caving mines, scholars have proposed
different basic theories; those theories with practical value
include ellipsoid draw theory and stochastic medium draw
theory [8, 9]. -ese theories study the movement trends of
caved ore and overlying waste rock but adopt different
research methods [10]. Ellipsoid draw theory experimen-
tally proves that isolated draw zones (IDZs) (the geo-
metrical locus defined by the initial location of the caved
ore that is recovered from a drawpoint in underground
mining) are approximately ellipsoids [11]. -en, the
properties of IDZs are studied and used to explain the flow
characteristics of the ore-rock bulk. Stochastic medium
draw theory simplifies the ore-rock bulk into a continuous
flowing random medium and then studies the movement
process of the ore-rock bulk through probability theory
[12, 13]. In the final analysis, these theories are ultimately
used to optimize caving mining schemes and to determine
reasonable stope structures. Based on ellipsoid draw the-
ory, Kvapil [14] expanded from a single IDZ and used IDZ
spatial arrangement theory to design stope structures. -is
design principle later evolved into two stope structures:
wide drift spacing structure and high sublevel structure. In
wide drift spacing structure, the upper and lower ellipsoids
are directly tangent, while the left and right discharge
ellipsoids are separated and tangent to the upper and lower
ellipsoids (see Figure 1(a)). Similarly, in high sublevel
structure, the left and right ellipsoids are directly tangent to
each other, while the upper and lower discharge ellipsoids
are separated and tangent to both the left and right el-
lipsoids (see Figure 1(b)). According to the design prin-
ciple, the sublevel height of caving mines worldwide is 15m
to 30m, and the drift spacing is generally slightly less than
or equal to the sublevel height. However, under these stope
structures, a certain proportion of ore is outside the IDZ
(see Figure 1); therefore, this cannot be regarded as the
optimal stope structure, and it has been proven that these
stope structures do not yield a good recovery effect in
practical mining applications. Some mines, such as the
Xiadian Gold Mine in China and the Kamoto Copper Mine
in Zambia, have recoveries of less than 80% [15]. Yuan et al.
[16] analysed the coincident relationship between the
caved ore, crestal residual ore, and IDZ and concluded that,
within a certain temporal period and spatial area, in-
creasing the distance between the drawpoints reduces the
recovery rate of ore. Wang et al. [17] numerically simulated
drift spacings of 12m to 20m, and the results showed that
there were no obvious changes in the waste in-ore rate as
the drift spacing increased, but the ore recovery rate de-
creased from 63% to 46% with increasing drift spacing. Tan
et al. [18] discussed the wide drift spacing structure based
on the ellipsoid drawing theory and pointed out the defects
of the design scheme. -e above studies are all based on
qualitative descriptions of stope structure and analyse the
influence of drift spacing on ore recovery. -e specific
stope structure is still determined according to mining
experience and experiments. Moreover, for the whole
mine, the stope structure is fixed and cannot be dynami-
cally adjusted.

When mining by the sublevel caving method, the shape
of the IDZ is affected by many factors, including not only the
physical properties of particles, such as the ore-rock bulk
geometry, lumpiness, concrete gradation, humidity, and
loose factor, but also the mechanical properties of particles,
such as the lateral pressure and friction [19]. -erefore, the
shape of the IDZ is not a regular ellipsoid. Marano et al.
[9, 20] believe that the IDZ is composed of different shapes,
such as an ellipsoid in the upper part and a parabolic rotating
body in the lower part. Janelid and Kvapil [3, 21, 22] proved
that the ellipsoid is an approximate ellipsoid, but there are
cases in which the upper part is thick and the lower half is
thin and vice versa. -e nonstandard ellipsoid shape of the
IDZ means that the tangent arrangement model cannot be
completely applied to the design of the stope structure.

In this study, stope structure optimization during sub-
level caving mining is considered under the condition that
the IDZs are nonstandard ellipsoids, which is realized by
dynamically adjusting the arrangement of IDZs and quan-
tifying the degree of intersection of IDZs according to an ore
profit and loss calculation model. A dynamic intersecting
arrangement model based on IDZs which can dynamically
adjust the stope structure according to the ore-rock bulk
flow parameters, economic indicators, occurrence condi-
tions of ore bodies, drilling machines, and so forth is pro-
posed. -en, taking the ore profit and loss as the research
object, a calculation model is established to quantify the
degree of intersection of the IDZs and determine the best
sublevel height and drift spacing. Finally, with the dynamic
intersecting arrangement model, the optimal stope structure
of the Yanqianshan Iron Mine is designed; moreover, three
experimental schemes using the Yanqianshan Iron Mine as
the background were carried out to compare the tangent
arrangement model based on IDZs and the intersecting
arrangement model based on IDZs.

2. The Intersecting Arrangement Model
Based on IDZs

-e design and optimization of the stope structure generally
follow the principle that the shape of the caved ore heap is

Isolated draw zone

Crestal residual ore

Drawpoint

(a) (b)

HH

B B

Figure 1: -e conventional tangent arrangement model based on
IDZs [14]. (a)Wide drift spacing structure. (b)High sublevel structure.
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consistent with that of the IDZ [14], which means that the
IDZ should contain as much caved ore and residual ore as
possible. According to the conclusion of Yuan and Liu
[16, 23], if the distance between drawpoints is reduced so
that the IDZs intersect, the crestal residual ore will be re-
duced (see Figure 2), which has a significant impact on the
ore recovery rate. -erefore, the intersecting arrangement
model based on IDZs can better reflect the principle that the
shape of the caved ore heap is consistent with that of the
IDZ, especially when the IDZ is a nonstandard ellipsoid.

Stochastic medium draw theory of Ren [12] simplifies
the ore-rock bulk into a continuous flowing random me-
dium, which better reflects the shape of the IDZ. Based on
stochastic medium draw theory, for the end ore drawing of
the sublevel caving method, the shape of IDZ is given by

x − kz
(α/2)

􏼐 􏼑
2

βz
α +

y
2

β1z
α1 �

α + α1
2

+ 1􏼒 􏼓ln
2H

z
[12], (1)

where α, β, α1, and β1 are the ore-rock bulk flow parameters
(α and β represent the vertical direction of the drift, and
α1 and β1 represent the horizontal direction of the drift); k is
the impact coefficient of the ore body and depends on the
damping degree of the ore-rock bulk by the ore body (in
general, k� 0.1∼0.15); and H is the sublevel height. Equation
(1) is mainly used to determine the width of the IDZ in the
vertical direction of the drift to design the drift spacing.

When mining by the sublevel caving method, the shape
of the IDZ is not a regular ellipsoid, and the tangent ar-
rangement model based on IDZs will reduce the density of
the spatial arrangement, causing more ore to be outside the
range of the IDZ. Under these conditions, it is more ap-
propriate to adopt the intersecting arrangementmodel based
on IDZs. -e drift spacing is shortened so that IDZs R2 and
R3 intersect with the upper and lower IDZs R1 and R3,
respectively, and then the crestal residual ore will be reduced
(see Figure 3). Of course, this shortening will promote the
mixing of waste rock, but this problem can be addressed by
calculating the comprehensive economic benefits of the ore.
-e best intersection degree of the IDZ corresponds to the
maximum economic benefit.

3. Optimization of the Stope Structure

-e sublevel height is determined by occurrence conditions
of the ore body, drilling machine, demolition equipment,
and so forth. Once the sublevel height is determined, it is
difficult to change. -e drift spacing is a quantitative rep-
resentation of the intersecting arrangement model based on
IDZs, and the degree of intersection determines the drift
spacing. In this section, on the basis of establishing the
intersecting arrangement model based on IDZs, the method
for determining the optimal stope structure is given.

3.1. Range of the Drift Spacing. In this section, equations of
the four adjacent IDZs are established at the same coordinate
according to the shape of the IDZ (equation (1)). On this
basis, we derived the calculation method of the width of the
IDZ in the vertical direction of the drift and provided the

determination method for the drift spacing by using the
arrangement of the IDZs.

From equation (1) and Figure 3, the equation of the IDZ
R1 is as follows:

R1:
x − kz

(α/2)
􏼐 􏼑

2

βz
α +

y
2

β1z
α1 �

α + α1
2

+ 1􏼒 􏼓ln
2H

z
[12]. (2)

By transforming the coordinates of the centre point of
IDZ R1, the equations of R2, R3, and R4 are as follows:

R2:
x − k(z − H)

(α/2)
􏼐 􏼑

2

β(z − H)
α +

(y − B)
2

β1(z − H)
α1 �

α + α1
2

+ 1􏼒 􏼓ln
2H

z − H
,

(3)

R3:
x − k(z − 2H)

(α/2)
􏼐 􏼑

2

β(z − 2H)
α +

y
2

β1(z − 2H)
α1 �

α + α1
2

+ 1􏼒 􏼓ln
2H

z − 2H
,

(4)

Isolated draw zone

Dri�

Crestal residual ore

Waste rock

Sublevel

H

B

Dri� spacing

Figure 2: Stope structure of the intersecting arrangement model
based on IDZs.
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Figure 3:-e intersecting arrangement model based on IDZs. (a)α
< 1.44. (b)α> 1.44.
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R4:
x − k(z − H)

(α/2)
􏼐 􏼑

2

β(z − H)
α +

(y + B)
2

β1(z − H)
α1 �

α + α1
2

+ 1􏼒 􏼓ln
2H

z − H
,

(5)

where B is the drift spacing, which refers to the distance
between two drawpoints; R1 is the lower IDZ; R2 is the right
IDZ; R3 is the upper IDZ; and R4 is the left IDZ.

For R1, along the direction of x � kz(̂α/2), which is the
vertical direction of the drift, the profile equation of R1 is as
follows:

y
2

�
α + α1

2
+ 1􏼒 􏼓β1z

α1 ln
2H

z
. (6)

For R2, along the direction of x � k(z − H)(̂α/2), which
is the vertical direction of the drift, the profile equation of R2
is as follows:

(y − B)
2

�
α + α1

2
+ 1􏼒 􏼓β1(z − H)

α1 ln
2H

(z − H)
. (7)

-e height of the widest part of R1 is denoted by h, and
the normal slope of R1 at z � h is zero; for equation (6),
dy/dz � 0. -en,

z � h � 2He
− 1/α1( ). (8)

Next, the maximum and minimum values of the drift
spacing are calculated for different IDZ shapes.

(1) α< 1.44
-ewidest part of the IDZ is located at the lower part,
and the IDZ is similar to an ellipsoid with a thin
upper part and thick lower part (see Figure 3(a)).
For R2, by equations (7) and (8), the widest part is
located at z, where

z � 2He
− 1/α1( ) + H. (9)

Point G1 is defined as follows:

G1 2He
− 1/α1( ) + H, −

���������������������
α + α1/2( 􏼁 + 1( 􏼁β1(2H)

α1

α1e

􏽳

+ B⎛⎝ ⎞⎠.

(10)

For R1, by equations (6), (8), and (9), point F1 is defined
as follows:

F1 2He
− 1/α1( ) + H,

�����������������������������������������
α + α1

2
+ 1􏼒 􏼓β1H

α1 1 + 2e
− 1/α1( )􏼒 􏼓

α1
ln

2

1 + 2e
− 1/α1( )

􏽳

⎛⎝ ⎞⎠. (11)

When R2 is tangent to R1 and R3, the drift spacing is
maximized, and points G1 and F1 coincide; therefore,

Bmax �

�����������������������������������������
α + α1

2
+ 1􏼒 􏼓β1H

α1 1 + 2e
− 1/α1( )􏼒 􏼓

α1
ln

2

1 + 2e
− 1/α1( )

􏽳

+

���������������������
α + α1/2( 􏼁 + 1( 􏼁β1(2H)

α1

α1e

􏽳

. (12)

When R2 is tangent to the z-axis, the drift spacing is
minimized; therefore,

Bmin �

���������������������
α + α1/2( 􏼁 + 1( 􏼁β1(2H)

α1

α1e

􏽳

, (13)

where Bmax is the maximum drift spacing and Bmin is
the minimum drift spacing.

(2) α> 1.44

-e widest part of the IDZ is located in the upper part,
and the IDZ is similar to an ellipsoid with a thick upper part
and thin lower part (see Figure 3(b)).

For R1, according to equations (6) and (8), the widest
part is located at z, and point F2 is defined as follows:

F2 2He
− 1/α1( ),

���������������������
α + α1/2( 􏼁 + 1( 􏼁β1(2H)

α1

α1e

􏽳

⎛⎝ ⎞⎠. (14)

For R2, according to equations (7) and (8), point G2 is
defined as follows:

G2 2He
− 1/α1( ), −

�����������������������������������������
α + α1

2
+ 1􏼒 􏼓β1H

α1 2e
− 1/α1( ) − 1􏼒 􏼓

α1
ln

2

2e
− 1/α1( ) − 1

􏽳

+ B⎛⎝ ⎞⎠. (15)
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When R2 is tangent to R1 and R3, the drift spacing is
maximized, and points G2 and F2 coincide:

Bmax �

�����������������������������������������
α + α1

2
+ 1􏼒 􏼓β1H

α1 2e
− 1/α1( ) − 1􏼒 􏼓

α1
ln

2

2e
− 1/α1( ) − 1

􏽳

+

���������������������
α + α1/2( 􏼁 + 1( 􏼁β1(2H)

α1

α1e

􏽳

. (16)

When R2 is tangent to the z-axis, the drift spacing is
minimized:

Bmin �

���������������������
α + α1/2( 􏼁 + 1( 􏼁β1(2H)

α1

α1e

􏽳

. (17)

In summary, when the IDZ is a nonstandard ellipsoid,
the range of the drift spacing is as follows:

���������������������
α + α1/2( 􏼁 + 1( 􏼁β1(2H)

α1

α1e

􏽳

�����������������������������������������
α + α1

2
+ 1􏼒 􏼓β1H

α1 1 + 2e
− 1/α1( )􏼒 􏼓

α1
ln

2

1 + 2e
− 1/α1( )

􏽳

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+

���������������������
α + α1/2( 􏼁 + 1( 􏼁β1(2H)

α1

α1e

􏽳

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

α< 1.44,

(18)
���������������������
α + α1/2( 􏼁 + 1( 􏼁β1(2H)

α1

α1e

􏽳

�����������������������������������������
α + α1

2
+ 1􏼒 􏼓β1H

α1 2e
− 1/α1( ) − 1􏼒 􏼓

α1
ln

2

2e
− 1/α1( ) − 1

􏽳

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+

���������������������
α + α1/2( 􏼁 + 1( 􏼁β1(2H)

α1

α1e

􏽳
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

α> 1.44.

(19)

3.2. Volume Calculation. When the sublevel height is de-
termined, with decreasing drift spacing, the arrangement
model based on IDZs changes from tangent to intersecting,
the amount of crestal residual ore decreases, and the mixing
amount of waste rock increases. Vo is the lower crestal
residual ore volume, and Vr is the higher mixing waste rock
volume. When Vo and Vr are calculated, the functional

relations of Vo and B as well as those of Vr and B are fitted
(see Figure 4).

-e solution steps are as follows:

Step 1: determine the sublevel height, parameter value,
and range of B. -e sublevel height is determined by
occurrence conditions of the ore body, drilling ma-
chine, demolition equipment, and so forth. Once the
sublevel height is determined, it is difficult to change.
-e parameters include the ore-rock bulk flow pa-
rameters (α, β, α1and β1), the impact coefficient of the
ore body (k), and the sublevel height (H). -e ore-rock
bulk flow parameters can be obtained by laboratory or
mining field drawing experiments, and the impact
coefficient of the ore body is generally between 0.1 and
0.15.-e range of B can be determined by equation (18)
or (19).
Step 2: divide the areas of Vo and Vr. As shown in
Figure 3, the areas of Vo and Vr can be calculated by
Vo � 1/2[R2 − (R2 ∩R2′) − (R2 ∩R1) − (R2 ∩R4)] and
Vr � R1 ∩R2.
Step 3: find the Monte Carlo solution for Vo and Vr.
With equations (2)–(5) and the parameters that are
determined in step 1, the IDZ boundary is established.
Using theMonte Carlo method with the IDZ boundary,
the membership function, which is used to judge
whether a point is within the boundary of the IDZ, is
written. Statistical points in the Vo and Vr areas and Vo

and Vr are determined [24, 25].
Step 4: determine the functional relationship between
Vo and B as well as that between Vr and B. Data analysis
is performed on Vo and B as well as Vr and B, and then
the functional relationship between Vo and B and that
between Vr and B are fitted.

Vo � f1(B),

Vr � f2(B).
(20)

3.3. Economic Evaluation. -e direct purpose of mining
enterprises is to exploit ore, and the final profit product is the
ore concentrate. To determine the optimal intersecting ar-
rangement model based on IDZs, the economic benefit of
the concentrate is taken as the final evaluation target. First,
the calculation formula for ore profit and the calculation
formula for ore loss are established. -en, combined with
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equation (20), the ore profit and loss are calculated. Finally,
the ore profit and loss are analysed comprehensively, and the
optimal solution is determined to obtain the best stope
structure.

3.3.1. Ore Profit and Loss. (1) Ore Profit. -e crestal residual
ore from drawing to dressing eventually becomes concen-
trate; in this process, the profit mainly considers the con-
centrate profit and cost loss [26].

-e concentrate profit refers to the value of the con-
centrate produced after the ore is processed by the benefi-
ciation plant [27].

-e ore is processed by the beneficiation plant and finally
becomes concentrate and tailings. According to the con-
servation of quality, one ton of ore is processed into con-
centrate and tailings, so 1 � Qc + Qt. -e conservation of the
metal content is

1 × co � Qc × cc + Qt × ct [27], (21)

Qc �
co − ct

cc − ct

. (22)

-e profit from converting a ton of ore into concentrate
is

p1 � Qc �
co − ct( 􏼁

cc − ct( 􏼁
× P, (23)

where Qc is the quality of the concentrate, Qt is the quality of
tailings, Co is the ore grade, Cc is the concentrate grade, Ct is
the tailings grade, p1 is the profit of converting a ton of ore
into concentrate, and P is the concentrate price.

-e cost loss refers to the costs incurred by ore from
drawing to dressing due to upgrading, ore blending,
transportation, and so forth. Mining enterprises can sta-
tistically determine the actual technical and economic in-
dicators of the year to obtain the cost loss per ton of ore,
which is represented by p2 [28].

Based on the above analysis, the profit generated by
recovering one ton of crestal residual ore is p1 − p2, and,
with equation (23),

p �
co − ct( 􏼁

cc − ct( 􏼁
× P − p2, (24)

where p is the ore profit.
(2) Ore Loss. -e mixing of waste rock results in ore

dilution, and the loss caused by this dilution mainly con-
siders the loss of metal from tailings and the cost of waste
rock mining and processing [26].

-e loss of metal from tailings refers to waste rock that is
of no grade or is lower than tailings grade; when this rock is
treated as tailings, it needs to be matched with some low-
grade ore, causing metal loss [27].

For one ton of waste rock in tailings, the resulting metal
loss is

Qm �
1

1 − ct

× ct [27], (25)

where Qm is the metal quality.
-e amount of metal lost due to one ton of waste rock in

tailings is expressed as the amount of concentrate:

Qm � Qc × cc. (26)

-e conservation of the metal content is
1

1 − ct

× ct � Qc × cc. (27)

-e loss of metal from converting a ton of waste rock
into tailings is converted into concentrate:

Qc �
ct

cc × 1 − ct( 􏼁
. (28)

-e loss of metal from tailings is

l1 �
cw

cj × 1 − cw( 􏼁
× P, (29)

Sublevel height (H)

 Ore-rock bulk flow parameters (α, β, α1 and β1)

Range of B ([Bmin, Bmax])

Impact coefficient of the ore body (k, k = 0.1~0.15)

Monte Carlo solution for Vo and Vr

Fit the functional relationship between Vo and B as well as that between Vr and B

Write the membership function

Divide the area: Vo = 1/2[R2 – (R2 ∩ R2′) – (R2 ∩ R1) – (R2 ∩ R4)]
Vr = R1 ∩ R2

Statistically solve for Vo and Vr

Figure 4: Technical route of the volume calculation.
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where l1 is the loss of metal from tailings.
-e cost of waste rock mining and processing refers to

the expenses associated with mining, processing, trans-
portation and stacking, and so forth incurred by the
mixture of waste rock. Mining enterprises can calculate
the actual technical and economic indicators of the year to
obtain the cost loss per ton of waste rock, which is rep-
resented by l2.

Based on the above analysis, the loss generated by mixing
one ton of waste rock is l1 + l2, and, with equation (29),

l �
cw

cj × 1 − cw( 􏼁
× P + l2, (30)

where l is the ore loss.

3.3.2. Optimal Path Spacing. When the spatial arrangement
model based on IDZs changes from a tangent arrangement
to an intersecting arrangement, as the drift spacing de-
creases, the amount of crestal residual ore decreases but the
amount of mixed waste rock increases. A smaller amount of
crestal residual ore increases the profitability of the mine,
and a larger amount of mixing waste rock increases the mine
loss. With equations (24) and (30), the economy of the
intersecting arrangement model based on IDZs can be
calculated as

s � VO × ρO × p − Vr × ρr × l, (31)

where ρo is the ore density and ρr is the rock density.
By equations (20), (31) can be rewritten as follows:

s � f1(B) × ρo × p − f2(B) × ρr × l. (32)

Differentiating equation (32) with respect to B yields the
drift spacing with the highest benefit, that is, the optimal
intersection degree of IDZs.

4. Application of the Model

4.1. Engineering Background. -e Yanqianshan Iron Mine is
located in the Anshan mining area in Northeast China, the
largest mining area currently in China. After the previous
open-pit mining phase, there were approximately 357.27
million tons of geological reserves outside the open-pit
boundary. In 2009, the mine officially entered the transition
period from open pit to underground mining, which lasted
for 5 years. After the transition period, the mine was fully
converted to underground mining and the sublevel caving
method was adopted (see Figure 5). -e stope structure
parameters are as follows: the sublevel height is 18m and the
drift spacing is 20m. Under the conditions of the stope
structure, the loss rate and dilution rate are approximately
15% and 18%, respectively, and there is still room for im-
provement [29, 30].

In 2019, the design of the mining scheme for elevations
of − 213m to − 303m in the Yanqianshan IronMine began in
preparation for production over the next five years. Under
the premise that the mining equipment meets the

production needs, the intent is to divide the ore body from
elevations of − 213m to − 303m into four sublevels; then, the
sublevel height is 22.5m. -is can reduce the cost of pre-
liminary mining and the cutting of a sublevel (see Figure 6).
However, the drift spacing has not been matched with the
sublevel height, and the drift spacing has been included in
the design and experimentation of the Yanqianshan Iron
Mine.

According to the intersecting arrangement model based
on IDZs, the optimal stope structure of elevations from
− 213m to − 303m in the Yanqianshan Iron Mine is deter-
mined. Moreover, three experimental schemes are designed
to compare and analyse the differences between the con-
ventional tangent arrangement model based on IDZs and the
intersecting arrangement model based on IDZs.

4.2. Stope Structure Determination. According to the
intersecting arrangement model based on IDZs and com-
bined with the stope characteristics of the Yanqianshan Iron
Mine, the sublevel height is 22.5m. -e next step is to
calculate the optimal drift spacing of elevations from − 213m
to − 303m.

-e ore-rock bulk flow parameters are determined by ore
drawing experiments, with reference to stochastic medium
draw theory of Ren. To improve the consistency between the
experiment and the mining site, the ore from the stope is
used as the experimental material, and the similarity ratio is
set to 1 :100. After three experiments, the experimental
results are averaged, and the ore-rock bulk flow parameters
of the − 213m to − 303m sublevels of the Yanqianshan Iron
Mine are as follows: α�1.21, β� 1.63, α1 � 1.32, and
β1 � 1.98. Based on the mine design, the sublevel height H is
22.5m, and k � 0.1.

Because α� 1.21, the IDZ of the Yanqianshan Iron Mine
is similar to an ellipsoid with a thin upper part and thick
lower part; according to equation (18), the range of the drift
spacing is [17.9106m, 22.4647m].

Using the calculation formula of Vo and Vr, the values of
α, β, α1, β1, k andH are input, and then Vo and Vr corre-
sponding to different drift spacings are obtained. Data
analysis is performed on Vo and B as well as Vr and B, and
then the functional relationship between Vo and B as well as
that between Vr and B are fit (see Figure 7).

Vo � − 15.08 × B
2

+ 467.37 × B − 1108.36, (33)

Vr � 13.90 × B
2

− 791.98 × B + 9087.28. (34)

-e economic and technical indicators obtained from
statistical analysis of the production and economic situation
in 2019 by the Technical Department of the Yanqianshan
Iron Mine are shown in Table 1.

According to equation (24), the profit generated by
recovering one ton of crestal residual ore is 51.09USD/t;
p � 51.09USD/t.

According to equation (30), the loss generated by mixing
one ton of waste rock is 24.2USD/t; l � 24.2USD/t.
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-e amount of crestal residual ore recovered is 2Vo, and
the amount of waste rock is 4Vr (see Figure 3). -e ore
density is measured as 5.0 t/m3, and the rock density is 3.5 t/
m3. According to equations (32)–(34),

s � − 12413.47 × B
2

+ 507102.13 × B − 3645031.58. (35)

According to equation (35), the derivative with respect to
B yields B � 20.43m. Considering the construction and
operation of the mine, the optimal approach spacing is set to
20.5m.

4.3. Physical Simulation Experiments. Based on the above
analysis, the stope structure from − 213m to − 303m in the
Yanqianshan Iron Mine is determined, the sublevel height is
22.5m, and the drift spacing is 20.5m. To verify the

rationality of the scheme, physical simulation experiments
are carried out to compare and analyse the loss and dilution
degree of ore under the three conditions of the stope
structure: the intersecting model, tangent model, and
original stope structure.

4.3.1. Materials and Device. Magnetite and dolomite are
used as the simulationmaterials in the experiments, in which
magnetite is regarded as the caved ore and dolomite is
regarded as the overlying waste rock. -e lumpiness ratio of
magnetite to stope caved ore is 1 :100, which is obtained by
screening at the crushing station, and the magnetite size is
1mm to 3mm. Dolomite has a slightly larger size than
magnetite, ranging from 2mm to 3mm. Due to the fluidity
of the ore-rock bulk, the size of overlying waste rock is larger

–200
–300

0

Open pit Open-pit limit 

Figure 5: -e mining status model of the Yanqianshan Iron Mine.
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Figure 6: Underground mining structure of the Yanqianshan Iron Mine.
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than that of caved ore, which can reduce the mixing of waste
rock and reduce ore dilution.

A self-designed physical stope model (see Figure 8) with
a geometric scale of 1 :100 is used to compare the loss and
dilution degree of ore under the three stope structure
conditions. A 10mm thick transparent organic glass plate is
used to simulate the stope work-plane. -e work-plane has
five sublevels, each sublevel has 4 or 5 drawpoints, and the
drawpoints are in a staggered arrangement shaped like a
rhombus. In this experiment, three organic glass plates are
made to simulate three groups of different stope structures.
An aluminum frame is used to hold the organic glass plates
in place to form the stope model. -e left, right, and back
sides of the stope model are covered with a 10mm thick
transparent organic glass plate, which is convenient for
loading experimental materials and observing the experi-
mental process. -ere are slots on the left and right sides of
the organic glass plate at a distance of 2 cm from the front
stope work-plane to simulate caving space.

4.3.2. Schemes. As presented in Table 2, three physical
simulation schemes are designed and 9 groups of experi-
ments are conducted to compare and analyse the loss and
dilution degree of the ore under the three stope structure
conditions. -e objective is to verify the rationality and

superiority of the intersecting arrangement model based on
IDZs.

4.3.3. Process. -e experiment is divided into three steps:
filling, drawing, and weighing. During filling, a steel plate
should be inserted into the slots of the organic glass plates
on the left and right sides to form the caving space,
magnetite should be used to fill the caving space, and
dolomite should be used to fill the outside of the caving
space. Magnetite and dolomite are added simultaneously
up to sublevel 5; then, the steel plate is drawn out, and
dolomite is continually added to a filling height greater
than 2 times the height of a sublevel. -e cut-off grade
drawing method of the Yanqianshan Iron Mine is sim-
ulated for drawing, and the cut-off grade is 20%. To fa-
cilitate the experiment operation, the cut-off grade is
converted into the waste rock mixing rate, which is cal-
culated to be 26%. For each drawing, the magnetite and
dolomite weights are determined, and when the weight of
the dolomite divided by the weight of the magnetite and
dolomite reaches 26%, drawing at this drawpoint is
stopped. Drawing is carried out from top to bottom and
from left to right in turn. In the process, the overlying
dolomite should be added in a timely manner to maintain
a steady drawing pressure. After drawing, the magnetite
and dolomite are separated to prepare for the next
experiment.

In the drawing process, with the drawing of the ore, the
overlying waste rock flows downward, resulting in ore and
rockmixtures.When the ore and waste rock are mixed to the
cut-off grade, drawing at this drawpoint is stopped.-rough
the transparent organic glass plate, part of the crestal re-
sidual ore can be seen (see Figure 9(a)). When the overlying
waste rock is exfoliated layer by layer, residual ore can be
seen (see Figure 9(b)). As ore drawing continues, the residual
ore moves down with the overlying waste rock and is
concentrated in the lowest sublevel.
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Figure 7: Fitting of the drift spacing and volume. (a) B and VO. (b) B and Vr.

Table 1: Economic and technical indicators of the Yanqianshan
Iron Mine in 2019.

Economic and technical indicators Symbols & units Value
Ore grade Co % 34
Concentrate grade Cc % 65.5
Tailings grade Ct % 10
Concentrate price PUSD/t 125.7
Cost loss p2 USD/t 2.96
Cost of waste rock l2USD/t 2.96
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4.3.4. Experimental Results and Analysis. -rough com-
parative experiments under different IDZ arrangement
models, the ore loss rate and the ore dilution rate are ob-
tained. A comparison of the drawing effects under different
IDZ arrangement models is presented in Table 3 and
Figure 10.

Table 3 shows that, compared to the original stope
structure, a sublevel height of 22.5m can effectively reduce
the ore loss and dilution rate, which proves the feasibility of
large stope structure. When the sublevel height is 22.5m, the
drift spacing is set as 22.5m in the tangent model, and the

ore loss rate and ore dilution rate are 14.18% and 12.08%,
respectively. However, when the drift spacing is set as 20.5m
in the intersecting model, the ore loss rate and ore dilution
rate are 10.52% and 12.30%, respectively, and the loss rate is
significantly reduced, but the dilution rate changes slightly.
-erefore, the intersecting arrangement model based on
IDZs can have a beneficial drawing effect. It is further
verified that the intersecting arrangement model based on
IDZs can reduce the crestal residual ore and improve the
recovery of the ore. Although there is also mixing of waste
rock, it has little effect on the ore dilution.

Overlying waste rock

Caved ore

Drawpoint

Dri� spacing

Sublevel height

Front Side

B

H

Ore-rock boundary

Sublevel 1

Sublevel 2

Sublevel 3

Sublevel 4

Sublevel 5

Figure 8: Physical stope model of ore drawing.

Table 2: Experimental schemes.

Number Name Sublevel height (m) Drift spacing (m)
1 Original 18 20
2 Intersecting model 22.5 20.5
3 Tangent model 22.5 22.5

(a)

(b)

Crestal residual ore Crestal residual ore

Crestal residual ore Crestal residual ore

Figure 9: Drawing phenomenon and effect. (a) Front view. (b) Top view.
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Figure 10: A comparison of the drawing effects with different IDZ arrangement models. (a) Loss rate. (b) Dilution rate.

Table 3: Comparison of the drawing effects with different IDZ arrangement models.

Number Stope height (m) Drift spacing (m) Loss rate (%) Dilution rate (%)
1 18 20 17.96 20.45
2 22.5 20.5 10.52 12.30
3 22.5 22.5 14.18 12.08
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Figure 11: Schematic of the dynamic intersecting arrangement model based on IDZs for stope structure optimization.
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5. Discussion and Conclusion

-e concept of the intersecting arrangement of IDZs was
first proposed by Kvapil [3]; later, Laubscher [31] developed
and established interaction theory. However, these studies
were based on the ellipsoid draw theory, and no reasonable
evidence has been provided to quantify the intersecting
arrangement of IDZs [32]. In this paper, based on stochastic
medium draw theory, a dynamic intersecting arrangement
model based on IDZs was established for the case in which
the shape of the IDZ is a nonstandard ellipsoid.-e dynamic
intersecting arrangement model can dynamically adjust the
stope structure according to the ore-rock bulk flow pa-
rameters, economic indicators, occurrence conditions of the
ore body, drilling machine, and so forth.-en, taking the ore
profit and loss as the research object, a calculationmodel was
established to quantify the degree of intersection of the IDZs
and to determine the best stope structure. -e schematic of
the study setup is as follows (see Figure 11).

From the analysis of this model (see Figure 11), the main
results are as follows:

(1) A dynamic intersecting arrangement model based on
IDZs is established

(2) -e range of the drift spacing [Bmin, Bmax] is
determined

(3) With the Monte Carlo algorithm, the calculation
method of the ore recovery volume (Vo) and rock
mixed volume (Vr) when the IDZs intersect is
provided

(4) A calculation model is established for the ore profit
and loss
Ore profit: p � ((co − ct)/(cc − ct)) × P − p2

Ore loss: l � (cw/cj × (1 − cw)) × P + l2

(5) A method for determining the drift spacing:
s � VO × ρO × p − Vr × ρr × l � f1(B) × ρo × p −

f2(B) × ρr × l is established, and the drift spacing is
determined by finding the derivative with respect to
B

According to the intersecting arrangement model based
on IDZs, the stope structure of elevations from − 213m to
− 303m in the Yanqianshan Iron Mine in China was de-
termined; the optimal drift spacing is 20.5m, and the
sublevel height is 22.5m. Nine physical experiments under
three stope structure conditions, namely, the intersecting
model, tangent model, and original stope structure, were
carried out. -e experimental results showed that the
sublevel height of 22.5m can effectively reduce the ore loss
and dilution rate; at a drift spacing of 20.5m, the ore loss rate
decreased by 3.66%, but the dilution rate changed little, with
an increment of 0.22%. -is finding verifies the rationality
and superiority of the intersecting arrangement model based
on IDZs to optimize the stope structure.

An intersecting arrangement model based on Kvapil and
Laubscher’s interaction theory was proposed in this paper.
-is model is suitable for the case in which the shape of the
IDZ is a nonstandard ellipsoid, and the model is more in line

with actual mining conditions. -e accurate shape of the
IDZ is the basis for stope structure optimization, and future
research should focus on the measurement of the shape of
the IDZ. Moreover, the model does consider the mechanical
properties of the movement of ore-rock bulk when dy-
namically adjusting the arrangement of IDZs. In future
research, mechanical factors should be added to develop a
stope structure optimization software program that dy-
namically adjusts the intersecting arrangement to better
guide mine production.
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0is paper investigates a dual-channel supply chain in which a manufacturer sells the product via an offline retailer or online store.
0emanufacturer sets the wholesale and online price, and the retailer decides the retail price with the retailer’s fairness preference
and consumer’s online channel preference. 0rough investigating the combined impacts of fairness preference and channel
preference on the enterprises’ operational strategies, this paper obtains somemeaningful results. If a manufacturer thinks over the
fairness preference, he decreases the wholesale price to mitigate a loss of retailer and benefit the supply chain design. 0e
manufacturer intends to set up the online channel with a lower acceptance as the fairness preference grows. However, the gains
from enhanced online channel acceptance cannot compensate for the manufacturer’s loss by the fairness effect that benefits the
retailer. Moreover, the manufacturer cannot neglect the retailer’s fairness preference generating a “lose-lose” case for
both members.

1. Introduction

With the increasing innovation of information technology
and vigorous publicity by commercial organizations, con-
sumers are getting used to online shopping. According to
China Statistical Yearbook-2020, online sales in China
reached 155.2 billion dollars in 2019, increasing 16.5% over
the previous year (https://www.chinainternetwatch.com/
30232/retail%202019/). To seize the Internet opportunity,
many enterprises have set up the supply chain composed of
online and offline channels such as Apple, Nike, Zara, and
Huawei, and many scholars study dual-channel supply chain
under different cases. A few papers focus on how the
consumer’s online channel preference impacts the dual-
channel strategy (Chiang et al. [1], Xu et al. [2], and Zhang
et al. [3]), while others try to find the operational strategy for
the dual-channel supply chain (Guo et al. [4] and Zhu et al.
[5]). 0ere is also a lot of research (Chen et al. [6], Cui et al.
[7], Guan et al. [8], Niu et al. [9], and Pan et al. [10]) studying

the impact of fairness preference in the supply chain, es-
pecially the supply chain design decisions and coordination.
However, the combined effect of the retailer’s fairness and
consumer’s online channel preference is ignored in the dual-
channel design, which motivates our research. To fill this
gap, our paper considers a dual-channel system in which the
retailer has fairness preference, and the consumers are
differentiated in online channel acceptance. 0e primary
purposes of our research are to address the following issues:

(1) Varying with consumer’s online channel preference
and fairness concern, how do the manufacturer and
retailer decide their operational strategy, including
pricing and dual-channel design? Also, how do the
related parameters affect the manufacturer’s and
retailer’s strategy?

(2) With the increases in the consumer’s online channel
preference, can the manufacturer’s profit be better
when the retailer has a fairness preference?
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(3) Can the manufacturer ignore the retailer’s fairness
preference? What strategy would be adopted by the
retailer if the manufacturer ignores it?

To tackle these issues, the paper establishes a dual-
channel decision model composed of a manufacturer (he)
and a retailer (she). 0e model has three circumstances: the
retailer without fairness preference, the manufacturer
considering her fairness preference, and ignoring her fair-
ness preference. 0e paper studies the synergistic impact of
consumer online channel acceptance and retailer’s fairness
preference on members’ pricing decisions and profits. It
compares and analyzes optimal decisions under the above
three circumstances. Different from other literatures that
independently examine the influence of supply chain en-
terprises’ decisions from the perspective of consumer’s
online channel preference or retailers’ fairness, this paper
obtains some meaningful conclusions as follows: (i) If a
manufacturer thinks over the fairness preference, he de-
creases his wholesale price to mitigate a loss of retailer. 0e
increase in consumer online channel acceptance would
strengthen the trend. However, the manufacturer also in-
tends to build an online channel with a lower consumer
online channel acceptance to decrease his dependence on the
retailer. (ii) Whether the manufacturer considers or ignores
fairness preference, the increase of consumer online channel
acceptance cannot compensate for the manufacturer’s loss
due to the retailer’s fairness effect. 0e manufacturer’s in-
terest concessions via wholesale price reduction caused by
the consideration of the retailer’s fairness preference exceed
the benefit from the increase of online shopping. (iii) If the
manufacturer overlooks the retailer’s fairness, they will fall
into a “lose-lose” case. 0e retailer would price higher to
make up for the online market’s loss, which also injures her
profit. 0is also brings harm to the sale resulting in the
reduction of the manufacturer’s profit.

0e rest of the paper is arranged as follows. Section 2 is a
review of relevant literature with two streams. Section 3
establishes a gamemodel with one leadingmanufacturer and
one following retailer. It examines the members’ pricing
decisions and profits when the retailer has no fairness
preference as a benchmark case. Section 4 consists of two
situations as comparative cases, where the manufacturer
considers or ignores the retailer’s fairness preference. 0e
enterprises’ decisions and profits in two different situations
are obtained. Section 5 analyzes the manufacturer’s deci-
sions on setting up the online channel under different
scenarios. Section 6 makes some comparisons between
different situations. Section 7 concludes the paper.

2. Literature Review

0is paper is related to two literature streams: the online
channel preference and the retailer’s fairness preference in
the supply chain.

0e first related stream of the literature focuses on the
online channel preference that includes Zhang et al. [3], Guo
et al. [4], Zhu et al. [5], Cai [11], Cao [12], Dumrongsiri et al.
[13], Dan et al. [14], Gao et al. [15], Hua et al. [16], Huang

and Swaminathan [17], Li et al. [18], Lu and Liu [19], Ranjan
and Jha [20], and Yoo and Lee [21]. For instance, Zhang et al.
[3] find that the channel selections are determined by the
consumer’s online acceptance. Guo et al. [4] show that the
dual channel may make traditional retailers feel threatened.
Dumrongsiri et al. [13] show that the uncertain demand
obviously affects the optimal pricing and the manufacturer’s
incentive to seek an online channel. Hua et al. [16] dem-
onstrate that consumer acceptance of online purchases can
positively affect the manufacturer’s online pricing and lead
to longer delivery lead times. Li et al. [18] find that, with the
high consumer’s online acceptance, the manufacturer pro-
vides customized products under the decentralized and
centralized supply chain structures. Gao et al. [15] and Lu
and Liu [19] investigate how the consumer’s online ac-
ceptance affects the dual-channel excepted profits and obtain
that the consumer’s online acceptances positively affect the
manufacturer’s profit, while the retailer’s gain is the op-
posite. Ranjan and Jha [20] think over the effect of retailers’
risk attitude and demand uncertainty on the pricing
mechanism among dual-channel members.

0e second related stream of the literature concentrates
on fairness preference in supply chain management in-
cluding Chen et al. [6], Cui et al. [7], Guan et al. [8], Niu et al.
[9], Caliskan-Demirag et al. [22], Du et al. [23], Ho et al. [24],
Katok and Pavlov [25], Q. H. Li and B. Li [26], Nie and Du
[27], and Du et al. [28]. Cui et al. [7] introduce members’
fairness preference into the dyadic supply chain and con-
clude that the channel can be coordinated by using a
wholesale price contract. Guan et al. [8] extend the analysis
of the impact of peer-fairness or Nash bargaining fairness
preference on the pricing of supply chain enterprises and the
overall efficiency of the supply chain. Niu et al. [9] study the
role of channel strength and fairness preference in online
channel opening and find that supplier fairness concerns are
not conducive to online channel development. Chen et al.
[6] and Pan et al. [10] show that the enhancement of the
retailer’s rights will make her pay attention to the fairness of
her own profits, which may improve the supply chain’s
performance. Caliskan-Demirag et al. [22] research channel
coordination issues with different fairness concerns through
a simple wholesale price and other nonlinear demands. Du
et al. [23] analyze the impact of fairness preference behavior
on enterprise decisions and channel efficiency and show that
although channel efficiency will be reduced, fairness pref-
erence still coordinates the supply chain in specific cases.
Q. H. Li and B. Li [26] study the channel issues with retailer’s
fairness preference and show the fairness concern’s negative
impacts on channel efficiency.

0e above literature studies the influence of supply chain
members’ decision-making in the sense of consumer’s
online channel preference or retailers’ fairness. Unlike the
related research, our paper first studies the combining effect
of both consumer’s online channel preference differences
and the retailer’s fairness preference on supply chain de-
cisions. 0erefore, our paper theoretically enriches the
supply chain design research, which is more practical. It
helps decision-makers be aware of the critical role of fairness
preference behavior and online consumer heterogeneity in
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decision-making. Moreover, our research allows decision-
makers to use these factors to reach supply chain efficiency
improvement and provide guidance for the enterprises.

3. Benchmark Model

3.1. Model Description. 0is paper develops a dual-channel
supply chain, including one manufacturer (he) and one
retailer (she). 0ere is a Stackelberg game between the
manufacturer and the retailer, with the manufacturer
dominating the supply chain and the retailer being the
follower. 0e manufacturer wholesales the product at the
wholesale price w to the retailer, with the cost c, while the
retailer sells it to consumers at a retail price pr. With the
popularity of online shopping, the manufacturer opens up
an online channel to increase market penetration with
online price pe and gain more profits. In turn, the manu-
facturer has a dual-channel structure, consisting of an offline
channel and an online channel as shown in Figure 1.

0e demand function refers to the analyses of Chiang
et al. [1], Dan et al. [14], and Huang and Swaminathan [17].
0e manufacturer’s online channel demand function qe and
the retailer’s offline channel demand function qr are as
follows:

qe � θa − bpe + λpr, (1)

qr � (1 − θ)a − bpr + λpe, (2)

where a indicates the basic demand of the market.
θ (0< θ< 1) measures the consumer’s online channel pref-
erence and 1 − θ indicates the consumer’s offline channel
acceptance. b denotes the influence factor of the channel
price on demand, while λ denotes the influence factor of the
cross-price with b> λ.

0e manufacturer’s rationality means that the maxi-
mization of its profit is the decision-making process’s de-
cision-making goal. 0e fairness preference of a retailer
indicates that the retailer is concerned with maximizing its
utility when making decisions. 0e retailer’s fairness pref-
erence model draws on the FS model [29], and its utility
function is the following:

Ur � 􏽙
r

− αmax 􏽙
m

− 􏽙
r

, 0⎞⎠ − βmax 􏽙
r

− 􏽙
m

, 0⎞⎠.⎛⎝⎛⎝

(3)

0e coefficients of α and β are the disadvantage and
advantage inequity aversion, respectively. Qin and Yang [30]
show that, in the Stackelberg game of the two-tier supply
chain, the member playing the leadership role can reap more
than half of the overall profits. 0us, in this study, only the
disadvantage inequity averseness of the retailer is consid-
ered. 0e retailer’s utility function is as follows:

Ur � 􏽙
r

− αmax 􏽙
m

− 􏽙
r

, 0⎞⎠.⎛⎝ (4)

0e relevant symbols are shown in Table 1.

3.2.+e Retailer without Fairness Preference. In this context,
the profits functions of the manufacturer and the retailer are
as follows:

􏽙
m

� (w − c)qr + pe − c( 􏼁qe, (5)

􏽙
r

� pr − w( 􏼁qr, (6)

and, with backward induction to solve this problem, it can be
easily verified that when the retailer has no fairness pref-
erence, the equilibrium pricing strategies and profits for the
manufacturer and the retailer are

pe �
(λ + bθ − λθ)a + b

2
− λ2􏼐 􏼑c

2 b
2

− λ2􏼐 􏼑
, (7)

w �
(b + λθ − bθ)a + b

2
− λ2􏼐 􏼑c

2 b
2

− λ2􏼐 􏼑
, (8)

pr �
3b

2
(1 − θ) + λθ(2b + λ) − λ2􏽨 􏽩a + c(b − λ)(b + λ)

2

4b b
2

− λ2􏼐 􏼑
.

(9)

According to the above optimal pricing decisions, the
optimal profits for the retailer and the manufacturer without
fairness preference are

Manufacturer

Retailer

Consumer

pr

w

pe

Figure 1: 0e dual-channel supply chain.

Table 1: Nomenclature.

Notation Definition
Πm Manufacturer’s profit
Πr Retailer’s profit
Um Manufacturer’s utility
Ur Retailer’s utility
w Wholesale price
pe Online channel price
pr Offline channel price
c Manufacturer’s cost
θ Consumer’s online channel preference
a Total market demand
b Price elasticity
λ Cross-price elasticity
α Coefficient of retailer fairness preference
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􏽙
r

�
[a(θ − 1) + c(b − λ)]

2

16b
, (10)

􏽙
m

�
a
2
A1 − 2ac b

2
− λ2􏼐 􏼑A2 + c

2
(b − λ)

2
A3

8b b
2

− λ2􏼐 􏼑
, (11)

where A1 � (3b2 + λ2)θ2 − 4bλθ(θ − 1) + (1 − 2θ)(b2 + λ2),
A2 � θ(b − λ) + (b + λ), and A3 � 3b2 + λ2 + 4bλ.

4. The Model with the Retailer’s
Fairness Preference

0ere are two circumstances when the retailer has a fairness
preference. One case is when the manufacturer considers the
retailer’s fairness preference and the other is when the
manufacturer ignores it. 0e paper analyzes the different
cases with Sections 4.1 and 4.2.0e subscript ∗ represents the
manufacturer’s optimal decisions considering the retailer’s

fairness preference; the subscript ∗∗ means the optimal
choices with the manufacturer ignoring the retailer’s fairness
preference.

4.1. +e Manufacturer Considers the Retailer’s Fairness
Preference. In this situation, the utility functions of the
manufacturer and the retailer are

Um � 􏽙
m

, (12)

Ur � 􏽙
r

− α 􏽙
m

− 􏽙
r

⎞⎠ � (1 + α)􏽙
r

− α􏽙
m

.⎛⎝ (13)

Lemma 1. When the manufacturer considers the retailer’s
fairness preference, the equilibrium pricing strategies and
profits for the manufacturer and the retailer are

p
∗
e �

(λ + bθ − λθ)a + b
2

− λ2􏼐 􏼑c

2 b
2

− λ2􏼐 􏼑
, (14)

w
∗

�
(3αc + c)b

3
− ((cλ +(θ − 1)a)α +(θ − 1)a)b

2
+ 2aλθ − 3cλ2􏼐 􏼑α + aλθ − cλ2􏼐 􏼑b − (− λc +(θ − 1)a)λ2α

2b b
2

− λ2􏼐 􏼑(1 + 2α)
, (15)

p
∗
r �

3b
2
(1 − θ) + λθ(2b + λ) − λ2􏽨 􏽩a + c(b − λ)(b + λ)

2

4b b
2

− λ2􏼐 􏼑
. (16)

According to the above optimal pricing, it can be ob-
tained that 􏽑r and 􏽑m in this case are

􏽙

∗

r

�
[a(θ − 1) + c(b − λ)]

2
(4α + 1)

16b(2α + 1)
, (17)

􏽙

∗

m

�
a
2
B1 − 2ac b

2
− λ2􏼐 􏼑B2 + c

2
(b − λ)

2
B3

8b b
2

− λ2􏼐 􏼑(2α + 1)
, (18)

where B1 � [(5α + 3)θ2 + (1 + α)(1 − 2θ)]b2 + (3α + 1)

(θ − 1)2 + 4bλ(1 − θ)(1 + 2α), B2 � 3αθ(b − λ) + b(α + θ)

+λ(3α − θ) + b + λ, and B3 � (5α + 3)b2 + (3α + 1)λ2 + 4bλ
(2α + 1).
Proof of Lemma 1. Solving the Stackelberg game, the
backward induction is used as follows.

Inserting (6) and (12) into (13) produces

Ur � (1 + α) pr − w( 􏼁 (1 − θ)a − bpr + λpe( 􏼁

− α(w − c) (1 − θ)a − bpr + λpe( 􏼁

− α pe − c( 􏼁 θa − bpe + λpr( 􏼁.

(19)

As (zUr/zpr) � 0 and (z2Ur/zp2
r) � − 2b(1 + α)< 0, the

retailer has the only optimal retail price. 0e first-order
partial derivative of Ur concerning pr is expressed as follows:

pr w, pe( 􏼁 �
[a(1 − θ) − c(b + λ) + 2bw]α + a(1 − θ) + bw − λpe

2b(1 + α)
.

(20)

To verify that 􏽑m is a joint concave function on
wholesale price w and online price pe, the second-order
conditions can be obtained:

z
2
􏽑m

zw
2 �

− b(1 + 2α)

1 + α
< 0,

z
2
􏽑m

zp
2
e

�
λ2

(1 + α)b
− 2b< 0,

z
2
􏽑m

zw zpe

�
(1 + 2α)λ
1 + α
> 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)
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As the Hessian matrix of the 􏽑m above formulae is
negative, it has a unique optimal solution. 0en setting
(δΠm/δw) and (δΠm/δpe) to zero yields

w �
a(1 − θ) + 3bc − 3cλ + 4λpe􏼂 􏼃α + a(1 − θ) + bc − cλ + 2λpe

2b(1 + 2α)
,

pe �
2abθ − aλθ + 2b

2
c − 3bcλ + 4bwλ + cλ2 + aλ􏼐 􏼑α + 2abθ − aλθ + 2b

2
c − bcλ + 2bwλ − cλ2 + aλ

2 2b
2α + 2b

2
− λ2􏼐 􏼑

.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(22)

Solving (20) and (22) can obtain the optimal pricing as
(14)–(16). 0en inserting (14)–(16) into (5) and (6) produces
the equilibrium profits for the retailer and the manufacturer
as (17) and (18). Lemma 1 is proved.

4.2. +e Manufacturer Ignores the Retailer’s Fairness
Preference. In this subsection, the paper assumes that the
retailer’s fairness preference information is not taken into
account by the manufacturer. Under this condition, the

manufacturer still prices considering that the retailer has no
fairness preference, which is represented by w∗∗ � w and
p∗∗e � pe. However, the retailer has a fairness preference and
uses the utility function of equation (13) to make optimal
decisions.

Lemma 2. When the manufacturer ignores the retailer’s
fairness preference, the offline price and the manufacturer’s
and retailer’s profits are

p
∗∗
r �

2abλθ − 4ab
2θ + 2aλ2θ + 2b

2
cλ − 2cλ3 + 4ab

2
− 2aλ2􏼐 􏼑α + 3b

2
(1 − θ) + λθ(2b + λ) − λ2􏽨 􏽩a + c(b − λ)(b + λ)

2

4b(1 + α) b
2

− λ2􏼐 􏼑
.

(23)

􏽑r and 􏽑m can be calculated as

􏽙

∗ ∗

r

�
[a(θ − 1) + c(b − λ)]

2
(1 + 2α)

16b(1 + α)
2 , (24)

􏽙

∗ ∗

m

�
a
2
C1 − 2ac b

2
− λ2􏼐 􏼑C2 + c

2
(b − λ)

2
C3

8b b
2

− λ2􏼐 􏼑(1 + α)
, (25)

where C1 � (2α + 3)b2θ2 − 4bλθ(θ − 1)(1 + α) + [2α(θ − 1)2

+θ2]λ2 + (1 − 2θ)(b2 + λ2), C2 � θ(b − λ)(2α + 1) + 2αλb

+b + λ, and C3 � [(b + λ)α + 2b](b + λ).
Following the calculating process of the proof of Lemma

1 in Section 4.1, Lemma 2 can be easily proved. 0e detailed
formulae are not provided here.

5. Supply Chain Design Analysis

0is section analyzes the manufacturer’s decisions on setting
up the online channel under different scenarios. When the
manufacturer ignores the fairness concern of the retailer, his
strategy is the same as the retailer who has no fairness
preference shown in Section 4.2. 0erefore, the two possible
situations are as follows.

5.1. +e Retailer without Fairness Preference. As the manu-
facturer’s online price is greater than the wholesale price

(pe >w), this results in θ> (1/2). If 0< θ< (1/2), then pe <w.
0e retailer can purchase large quantities of goods from the
online channel and then sell them offline to make more
profits, contrary to the manufacturer’s original intention to
set up an online channel.

Moreover, the retailer’s offline channel’s price should be
greater than the manufacturer’s wholesale price, which
means that pr >w and results in θ< ((a − c(b − λ))/a). If
((a − c(b − λ))/a)< θ< 1, then pr <w. It will bring loss to the
retailer and cause the retailer to abandon the offline channel.
0e dual-channel supply chainmay need to be reconstructed
if θ is out of ((1/2), ((a − c(b − λ))/a)).

Following the same analytical process above, this paper
could find that the range is as same as that when the
manufacturer ignores the fairness concern of the retailer.
0e paper concludes the supply chain design strategy in
Lemma 3 as follows.

Lemma 3. If the retailer does not have fairness preference or
the manufacturer ignores her preference, the manufacturer
intends to build an online channel when θ> (1/2). When θ
approaches ((a − c(b − λ))/a), the retailer may choose to quit
the supply chain.

Lemma 3 indicates that when the retailer has no fairness
preference or the manufacturer ignores it, the manufacturer
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chooses to develop an online channel when the consumers
are more receptive to them. Furthermore, the retailer is
unwilling to participate in the dual-channel operation if the
online channel acceptance exceeds a threshold. For the
manufacturer, if he continues to use the dual channel to
protect market penetration, he may need to provide addi-
tional benefits for the retailer.

5.2. +e Manufacturer Considers the Retailer’s Fairness
Preference. Now this paper discusses the supply chain de-
sign strategy when the retailer possesses the fairness pref-
erence. Following the analytic process in Section 5.1, it can
get θ> ((αc(b2 − λ2) + αa(b − λ) + ab)/(a(3bα − αλ + 2b)))

as p∗e >w∗. With p∗r >w∗, it gets θ< ((a − c(b − λ))/a).
When the lower bound ((αc(b2 − λ2) + αa(b − λ)

+ab)/(a(3bα − αλ + 2b))) is used to get the derivation of α,
((b(b + λ)[2c(b − λ) − a])/(a(3bα − αλ + 2b)2))< 0 can be
obtained. 0is shows that the manufacturer intends to de-
velop a new road to market as he decreases the wholesale
price for the retailer’s fairness concerns. 0e upper bound of
θ remains unchanged because the high consumer’s online
channel preference may lead to the suspension of the re-
tailer’s sales. So, the upper bound of θ is not affected by
fairness preference.

Lemma 4 shows the manufacturer's supply chain design
strategy when considering the retailer's fairness preference.

Lemma 4. When the manufacturer takes the retailer’s
fairness into account, the dual-channel supply chain works if
and only if ((αc(b2 − λ2) +αa(b − λ) + ab)/(a(3bα − αλ +

2b)))< θ< ((a − c(b − λ))/a). With the increase of the
fairness preference coefficient, the lower bound of θ will
gradually decrease.

Intuitively, if the retailer focuses on fairness, the
manufacturer will transfer some profit to the retailer to
eliminate its fairness. However, the manufacturer also
wants to offset the offline supply chain’s loss by adding an
online channel. 0is brings a decrease in the starting point
of opening an online channel. As the acceptance is low, the
retailer does not think that the online channel is a threat,
and the manufacturer can also get a little profit by adding
an online channel. Lemma 4 shows that if a retailer pursues
the fairness of her profit excessively, the manufacturer
becomes urgent for setting up an online channel, even
though consumers have a low preference for an online
channel. However, this is not beneficial for the retailer,
which means that she should maintain an appropriate level
of fairness.

6. Comparative Analysis

Given the strategies under the three circumstances men-
tioned in Section 3 and 4, this paper compares operational
strategies between the manufacturer and the retailer to
analyze the effects of the retailer’s fairness preference and
consumer’s online channel preference.

6.1. Pricing Comparison

Lemma 5. For pricing strategies,

(a) pe � p∗e � p∗∗e , w∗ <w � w∗∗, and pr � p∗r <p∗∗r ;
(b) (zw∗/zα)< 0, (zw∗/zθ)< 0, (zp∗ ∗r /zα)> 0, and

(zp∗∗r /zθ)< 0.

Proof of Lemma 5. When the manufacturer considers the
retailers’ fairness preference, w∗ − w< 0; (zw∗/zα) �

((a(θ − 1) + c(b − λ))/(2b(1 + 2α)2)) and (zw∗/zθ) �

− ((a[α(b− λ) + b])/(2b(b + λ)(1 + 2α)))< 0 can be ob-
tained when formula (15) is used to get the derivations of α
and θ. (zw∗/zα) � ((a(θ − 1)+ c(b − λ))/(2 b(1 + 2α)2))< 0
because θ< ((a − c(b − λ))/a) is demonstrated in Lemmas 3
and 4. When the manufacturer ignores the retailer’s fairness
preference, p∗∗r − pr > 0. (zp∗∗r /zα) � ((a(1 − θ)−

c(b − λ))/(4b (1 + α)2))> 0 and (zp∗∗/zθ) � − ((a[b(4α +

3) + λ(2α+ 1)])/(4b(b + λ)(1 + α)))< 0 can be obtained
when formula (23) is used to get the derivation of α.

It can be seen from Lemma 5 that when the manu-
facturer thinks over the retailer’s fairness preference, the
wholesale price reduces as the fairness preference coeffi-
cient increases. If the manufacturer ignores it, the retail
price improves with the fairness preference coefficient
increasing. Moreover, taking the rise in consumers’ online
channel preferences into account, the wholesale will decline
faster, but the retail price growth slows down. To dem-
onstrate the impact of the fairness preference coefficient on
supply chain members’ pricing decisions and profits in
Lemma 5 more clearly, this paper numerically analyzes the
above model and discusses the results. 0e numerical re-
sults are shown in Figures 2 and 3 with
a � 100, b � 1, λ � 0.4, c � 10. 0e parameter values are also
applicable to subsequent numerical legends. As shown in
Figure 2, it can be seen directly that when θ is constant, with
the increase of α, w∗ continues to fall. In order to make the
dual channels work, the value of θ should be greater than 1/
2. Moreover, when α is constant, the wholesale price still
deceases with the increase of θ. According to Figure 3, when
θ is constant, with the increase of α, the retail price im-
proves when the manufacturer ignores the retailer’s fair-
ness preference. If α is constant, the retail price decreases
with the increase of θ.

When the manufacturer takes the retailer’s fairness
preference into account, he lowers the wholesale price to
maintain the balance of channel profit distribution.
When the increase in consumer’s online channel pref-
erence weakens the retailer’s market competitiveness,
consumers are willing to choose shopping online. To
compensate for the loss of the retailer, the manufacturer’s
wholesale price will fall more. Moreover, because the
manufacturer ignores the retailer’s fairness preference,
with the fairness preference increase, the retailer’s focus
on fairness will force her to raise pricing for the sake of
maintaining profits. However, with the increase of con-
sumer’s online preference, the retailer chooses to reduce
the retail price attracting consumers to select the offline
channel.
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6.2. +e Retailer’s Profits Comparison

Lemma 6. For the retailer’s profits under the above three
circumstances,

(a) 􏽑
∗
r >􏽑r > 􏽑

∗∗
r

(b) (z 􏽑
∗
r /zα)> 0, (z 􏽑

∗
r /zθ)< 0, (z 􏽑

∗∗
r /zα)< 0, and

(z 􏽑
∗∗
r /zθ)< 0

Proof of Lemma 6. It can be easily calculated from (10), (17),
and (24) that 􏽑

∗
r − 􏽑r > 0 and 􏽑r − 􏽑

∗∗
r > 0. (z 􏽑

∗
r /zα) �

(([a(θ − 1) + c(b − λ)]2)/(8b(2α+ 1)2))> 0 and (z 􏽑
∗
r /

zθ) � ((a(4α + 1)[a(θ − 1) + c(b − λ)])/(8b (1 + 2α)))< 0
can be obtained when (17) is used to get the derivation of α
and θ. (z 􏽑

∗∗
r /zα) � ((− α[a(θ − 1) +c(b − λ)]2)/ (8b(1+

α)3))< 0 and (z 􏽑
∗∗
r /zθ) � ((a(2α + 1) [a(θ − 1)+ c(b −

λ)])/(8b(1 + 2α)2))< 0 can be obtained when (24) is used to
get the derivation of α and θ.

Lemma 6 shows that the retailer can increase profitability
when she focuses on fairness. 0e manufacturer considers
the retailer’s fairness preference, which enhances the re-
tailer’s bargaining power. He transfers profits to the retailer

in various ways, consistent with the recent literature, such as
Caliskan-Demirag et al. [22] andHo et al. [24]. However, it is
obvious that the retailer’s profit with the manufacturer
considering the retailer’s fairness preference improves when
the consumer’s online acceptance increases. If the manu-
facturer ignores her fairness preference, the retailer intends
to increase profits by increasing her pricing demonstrated in
Lemma 5. But this reduces the retailer’s sales and results in a
decrease in the retailer’s profit. Moreover, the retailer’s profit
decreases faster as the consumer’s online channel preference
increases. It is easy to understand that the number of
consumers choosing to shop offline reduces while the online
channel acceptance increases. 0is decrease in retailer sales
leads to a decline in profits if the manufacturer ignores the
retailer’s fairness preference and does not transfer the
earning.

0e numerical analysis also shows the above results more
intuitively. From Figure 4, if θ is at a certain value, with the
increase of α, the retailer’s profit with the manufacturer
considering her fairness preference improves. However, if α
is at a certain value, the retailer’s profit decreases with the
increase of θ. Similarly, it is obvious from Figure 5 that when
θ is at a certain value, with the increase of α, the retailer’s
profit with the manufacturer ignoring the retailer’s fairness
preference reduces. If α is at a certain value, the retailer’s
profit also decreases with the increase of θ.

6.3. +e Manufacturer’s Profits Comparison

Lemma 7. For the above three circumstances,

(a) 􏽑m > 􏽑
∗
m > 􏽑

∗∗
m ;

(b) (z 􏽑
∗
m /zα)< 0, (z 􏽑

∗
m /zθ)> 0, (z 􏽑

∗∗
m /zα)< 0,

and (z 􏽑
∗ ∗
m /zθ)> 0.

Proof of Lemma 7.With formulae (11), (18), and (25), 􏽑m −

􏽑
∗
m > 0 and 􏽑

∗
m − 􏽑

∗∗
m > 0 are got. (z 􏽑

∗
m /zα) �

− (([a(θ − 1) + c(b − λ)]2)/(8b(1 + 2α)2))< 0 and (z 􏽑
∗
m /

zθ) � ((a2[αθ(5b − 3λ) − α(b − 3λ) + θ(3b − λ) − (b − λ)] −

ac(3α + 1)(b − λ2))/(4b(1 + α)(b + λ)))> 0 can be obtained
when (18) is used to get the derivation of α and θ. Calculating
with (25), (z 􏽑

∗∗
m /zα) � − (([a(θ− 1) + c(b − λ)]2)/ (8b

(1 + 2α)2))< 0 and (z 􏽑
∗∗
m /zθ) � ((a2[θ(3b − λ)+ 2αλ+

(b − λ)(2αθ − 1)] − ac(2α + 1)(b2 − λ2))/(4b(1 + α) (b+

λ)))> 0.

Lemma 7 shows that whether the manufacturer con-
siders the retailer’s fairness preference or not, the manu-
facturer’s profit will be lower than the case when the retailer
has no fairness preference. When the manufacturer thinks
over the retailer’s fairness preference, he will reduce his
profit to add the retailer’s profit, thus ensuring the fairness of
channel profit distribution. Moreover, the manufacturer’s
profit when he considers the retailer’s fairness preference is
higher than that when he ignores it. When the manufacturer
ignores the retailer’s fairness preference, this may enlarge the
retailer’s fairness concerns and lead to broader damage. 0is
means that if the retailer has a fairness preference, the
manufacturer should consider this behavior more favorable.
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Taking the increase of consumer’s online channel preference
into account would benefit the manufacturer’s profit for
both cases. However, the manufacturer’s profit that in-
creased by the online channel is smaller than the profit

transfer for the retailer’s fairness preference. When more
consumers intend to shop online, this injures the retailer’s
profit andmagnifies her fairness requirements. To ensure the
channel operation, the manufacturer can only choose to give
the retailer more incentives.

To visually show the analysis in Lemma 7, the paper
applies a numerical example. As shown in Figures 6 and 7, it
can be seen that whether the manufacturer considers the
retailer’s fairness concern or not, the manufacturer’s profit
will reduce with the increase of α but improve with the
increase of θ. 0e main reason is that the enhancement of
fairness preference makes the manufacturer have to give up
profit; otherwise, it is difficult to carry out dual-channel
cooperation. On the contrary, enhancing consumers’ online
acceptance enables the manufacturer to obtain more profit
from an online channel, leading to an increased profit in the
whole dual channels.

7. Conclusions

0is paper first attempts to study the compound impact of
the retailer’s fairness preference and consumer’s online
channel preference on supply chain enterprises’ operational
strategy. A single manufacturer sells his products by online
and offline channels with a retailer in the dual-channel
supply chain. To observe supply chain enterprises’ opera-
tional decisions, this paper uses three circumstances. 0e
benchmark one is that the retailer has no fairness preference,
while the manufacturer considers or ignores the retailer’s
fairness preference as comparative cases. 0e study shows
that the manufacturer intends to build an online channel
with lower consumer acceptance when the manufacturer
takes the retailer’s fairness preference into account. 0e
wholesale price and manufacturer’s profit are lower than
those in the benchmark case, while the increase in con-
sumer’s online channel preference can narrow the gap. 0e
retailer’s profit is higher than that without fairness prefer-
ence because of the manufacturer’s interest concession.
When the manufacturer ignores the retailer’s fairness
preference, the retailer will increase offline channel pricing,
which hurts the manufacturer’s and the retailer’s profits,

∏
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although the increase of consumer’s online channel ac-
ceptance benefits the manufacturer. 0ese results demon-
strate that the manufacturer needs to take fairness
preference into account to avoid a “lose-lose” situation when
the retailer possesses a fairness preference. If the acceptance
degree of the online channel is high to a certain extent, the
manufacturer needs to provide additional revenue for the
retailer to ensure the operation of the dual-channel strategy.
For the retailer, her fairness preference needs to be main-
tained at an appropriate level; otherwise, the manufacturer
will start online channel construction earlier, which will
affect his profit level.

0is paper focuses on the retailer’s fairness preference,
but, in practical operation, all decision-makers may possess
fairness preferences, and the fairness preference could be
extended to a more elaborate setting. 0e market demand is
determined to be a linear demand in the study. However, the
market demand is random and uncertain or changes to
dynamic, which also deserves further study.
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A rotating functionally graded circular disk undergoing a contact load is taken into account to investigate the thermoelastic
characteristics. By considering contact force, a pair of partial differential equations is induced as the governing equations based on
Hooke’s law. .e behavior of circular disk modes is described with the variations of contact force and homogeneous thickness. A
finite volume model is introduced to obtain approximate solutions for the governing equations because of the complexity of the
equations. Contact force is highly influential in the radial direction compared to the circumferential direction in the displacement
distribution, while a large radial stress appears near the area of the contact point. In the strain distribution, the magnitude
increases as the angle grows near part of the outer boundary in the circular domain..e radial distribution profiles are susceptible
to the growth of contact force in nearby area of the outer boundary, whereas the influences on the circumferential direction
profiles are trivial. .e increase of homogeneous thickness dwindles the radial magnitude of displacement, stress, and strain
distribution profiles over nearby area of the outer boundary of the circular domain. As a result, numerical approach demonstrates
that contact force and homogeneous thickness are indispensable parameters and provide deep influence on the thermoelastic
movements of a rotating circular disk. .us, the results obtained may be useful to design an appropriate FGM circular disk model
for the industrial area by controlling the above parameters.

1. Introduction

.e analysis of thermoelastic characteristics of a rotating
circular disk has been a challenging work due to complex
processes generating during operations. Friction, wear, heat
generation, and temperature deformation are representative
processes developed during the load of a contact force. By
the operation of a rotating circular disk, all parameters are
connected mutually and complicated interactions progress.
.e thermoelastic characteristics of a circular disk are under
complicated interaction influences and the variation of each
parameter may not be ignorable to determine the thermo-
elastic movements. .us, the influences of temperature,
contact pressure, and blushed wear on the rotating circular
disk are interesting and valuable for research.

Ceramic is a typical material used at one surface to resist
severe environmental effects such as high temperature, wear,

and friction..e other surface is composed of ametal to ensure
higher toughness and thermal conductivity. .e comple-
mentary functions of each material invoke the introduction of
functionally graded materials (FGMs). FGMs are nonhomo-
geneous composites composed of two or more different ma-
terial phases and the volume fractions continuously vary with
space variables. .us, FGMs are structures involving succes-
sively varying mechanical and thermal properties from one
surface to another surface. FGMs were introduced to prosper
thermal barrier coatings for propulsion system of space planes
to endure high temperature and ensure high thermal con-
ductivity at the beginning [1]. .e graded material property
provides improved bonding strength in various applications
undergoing a high temperature gradient field.

On the pursuit superior properties such as strength,
impact toughness, and fiber resistance, fiber metal laminates
(FMLs) have drawn attention as promising hybrid
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composite materials in last few decades. FMLs are composed
of metallic and composite materials. .e combination of
fiber-reinforced composite layers and composite materials
creates FMLs, which exhibit excellent durability..us, FMLs
are applicable in various industries and are used in aircraft,
wind turbine, and automobile. A laminated composite made
with thin sheet/grass was investigated by BnvsGaneshGupta
et al. [2] for the flexural properties. .ey evaluated flexural
strength and failure analysis using stereo microscope.
Zimmermann and Wang [3] analyzed failure modes and
characteristics of adhesively and mechanically fastened
joints in aircraft composite materials.

Meanwhile, the shape of circular disk is commonly
employed for practical use in various industrial applications,
and the physical behavior of circular diskmodels is amatter of
interest to many engineering researchers. Obata and Noda [4]
and Liew et al. [5] analyzed the thermal stresses of FGM
circular cylinder and hollow sphere. Afsar et al. [6] investi-
gated the brittle fracture characteristics of thick-walled FGM
cylinders by considering incompatible eigenstrain, which is a
cause of thermal residual stress. .e characterization that
oscillatory movements reduce cutting forces in operating
process of a circular disk cutter was presented by Kovalyshen
[7], and Huang and Li [8] studied the radial component
effects on the bending of thin circular plates using Kirchhoff
plate theory. .e angular speed of a rotating circular disk
varies during the start and stop process in machine operation.
Dai et al. [9] investigated the displacement and stress fields of
a FGM hollow circular disk subjecting an angular acceleration
due to a changing temperature. Static behavior of functionally
graded auxetic-porous structures was presented by Rad [10]
considering torsional interaction and horizontal friction
force. .e static response of nonuniform bidirectional
functionally graded auxetic-porous material circular plates is
carried out based on poroelasticity theory. Friction induced a
vibration in rotary contact system, and the vibration causes a
misalignment problem. Tadokoro et al. [11] described the
stabilizing effect arising from parallel misalignment in circular
sliding contact. Infinitesimal theory of plane elasticity and
Complementary Functions Method was employed to inves-
tigate hydrogen-induced stresses in functionally graded axi-
symmetric spheres, cylinders, and disks by Yildirim [12].
Sondhi et al. [13] used element-based gradation of material
properties over the discretized domain to study linear elastic
stress analysis of functionally graded rotating disks.

However, the comprehensive understanding and quanti-
fying for the thermoelastic field of a rotating FGM circular disk
may be useful in design FGM cutter or a grinding disk. In
general, FGM cutter or a grinding disk experiences the thermal
load and inertia force due to rotation of the disk. .e previous
study [14] demonstrated that proper control of some pa-
rameters such as temperature distribution, angular speed, and
radial thickness improves thermoselastic characteristics in the
design of a circular or grinding disk and reduces failure
mechanism such as crack and brittle, but most of previous
works progressed their studies without considering contact
load even though contact load is a crucial parameter in de-
termination of thermoelastic characteristics. .e present study
focuses on the analysis of thermoelastic characteristics of a

rotating (Al2O3/Al) FGM disk subjected to a contact force.
Young’s modulus, CTE, and density of the FGM disk are
assumed to vary exponentially only in the radial direction due
to symmetry with respect to the axis of the disk, whereas
Poisson’s ratio is assumed to be constant because of insig-
nificant effect on the thermoelastic characteristics of the disk.
.e research addresses the following: (i) the contact force and
homogeneous thickness are crucial factors in the determination
of the thermoelastic characteristics of FGM circular models, (ii)
the radial direction is more susceptible to the variation of the
magnitude of contact force and homogeneous thickness, and
(iii) the variation of homogeneous thickness is highly influ-
ential to thermoelastic characteristics over the area of 0.2< (r −

a)/(b − a)< 0.8 in FGM circular domain.
.e process for the mathematical approach is presented in

Section 2. A pair of partial differential equations is derived based
on Hooke’s law in Section 2.1. Due to the complexity of the
governing equation, a finite volume method is introduced in
Section 2.2 to obtain numerical solutions. In Section 3, nu-
merical solutions are displayed and the elastic characteristics are
discussed according to the results obtained..e significances of
the results are addressed in the conclusions in Section 4.

2. Mathematical Modeling

A rotating FGM circular disk with a concentric circular hole
is considered (see Figure 1). .e origin of the polar coor-
dinate system r − θ is assumed to be located at the center of
the disk and hole. A and B, denoted by the dark and the
white colors, represent constituent materials of FGM cir-
cular disk, as shown in the figure. .e distribution of each
material varies continuously along the radial direction only.
.e radii of the hole and outer surface of the disk are
designated by a and b. .e angular velocity ω can be de-
termined from the relation ω � (2πN/60), N represents the
revolutions per minute (rpm). Since the material distribu-
tions vary along the radial direction only, the FGM disk can
be reduced to an axisymmetric problem. .us, all properties
of the disk can be treated as a function of r only. Young’s
modulus, coefficient of thermal expansion, and the density
of the disk are denoted by E, α, and ρ, respectively, and each
property is assumed to vary exponentially as follows (for
various and detailed distribution profiles, see [15]):

E � E0e
βr

, (1a)

α � α0e
ξr

, (1b)

ρ � ρ0e
μr

. (1c)

By the assumption that the disk is composed of 100%
material A at the surface of the hole (r � a) and 100%
material B at the outer surface (r � b), the constants in
equations (1a)–(1c) can be determined as follows:

E0 � EAe
− βa

, (2a)

α0 � αAe
− ξa

, (2b)
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ρ0 � ρAe
− μa

, (2c)

β �
1

a − b
ln

EA

EB

􏼠 􏼡, (3a)

ξ �
1

a − b
ln

αA

αB

􏼠 􏼡, (3b)

μ �
1

a − b
ln

ρA

ρB

􏼠 􏼡. (3c)

.e subscripts A and B represent the properties of the
constituent materials A and B, respectively, but the non-
subscripted variables are used to denote the properties of
FGM composed of materials A and B.

2.1.1ermoelastic Formulation. In the polar coordinate, the
relations between the strain components and deformation
components are as follows:

εr �
zu

zr
,

εθ �
1
r

zv

zθ
+

u

r
,

εz � 0,

crθ �
1
r

zu

zθ
+

zv

zr
−

v

r
,

czθ � 0,

crz � 0.

(4)

.e plane stress exposed with thermal expansion, by
Hooke’s law, produces the strain-stress relations undergoing
thermal expansion ([16], p8):

εr �
1
E

σr − υσθ􏼂 􏼃 + αT,

εθ �
1
E

σθ − υσr􏼂 􏼃 + αT,

τrθ �
E

2(1 + ])
crθ,

τθz � 0,

τrz � 0.

(5)

T(r) is the function of temperature variation with radius
variable r. .e temperature function can be expressed as

T(r) � c1 ln r + c2, (6)

under the assumption that the circular disk is subjected by a
loading of symmetric temperature to the radial direction
only [17]. c1and c2 will be determined based on the boundary
conditions. .e equilibrium equations in polar coordinates
are

zσr

zr
+
1
r

zτrθ

zθ
+
σr − σθ

r
+ ρω2

r � 0, (7a)

zσθ
zθ

+ r
zτrθ

zr
+ 2τrθ � 0, (7b)

and the algebra among equations (4), (5), (7a), and (7b)
yields the following governing equations:

A
B

h

r

θ
P

a

A + B

ω

b

(a)

Δr

Δθw

Δθe

Δrs Δrn

Δθ

ϕw

ϕs

ϕP
w

s e

n

ϕE

ϕN

(b)

Figure 1: (a) Schematic diagram of functionally graded circular disk models. (b) Notations of finite control volumes.

Mathematical Problems in Engineering 3



z

zr
r

zu

zr
􏼠 􏼡 +

1 − υ
2r

z
2
u

zθ2
−
3 − υ
2r

zv

zθ
+
1 + υ
2

z
2
v

zrzθ
−

u

r

+
1 − υ2

E
ρω2

r
2

� (υ + 1)αr
dT(r)
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,

(8a)

1 − υ
2

z

zr
r

zv

zr
􏼠 􏼡 +

1
r

z
2
v

zθ2
+
3 − υ
2r

zu

zθ
+
1 + υ
2

z
2
u

zrzθ
−
1 − υ
2

v

r
� 0.

(8b)

.e governing equations (8a) and (8b) are a pair of
partial differential equations in the polar coordinate
system expressed with the radial and circumferential
displacement distribution profiles under the loading of
temperature. .e thermoelastic characteristics of a
functionally graded rotating circular disk subjected to a
contact force are investigated according to the boundary
conditions:

σr(a, θ) � 0,

σr(b, θ − 0{ }) � 0,

σr(b, 0) � P,

(9)

at a contact point.
.e boundary condition implies that the circular model

is under the loading of thermal expansion over the entire
domain and of radial pressure P at the outer boundary
contact point (b, 0).

2.2. Finite Volume Formulation. Due to the complexity of
the governing equations, a numerical technique is required,
and a finite volume method is applied for approximation.
.e domain is divided up into control volume and integrates
the field equations over each control volume (see
Figure 1(b)). Equations (8a) and (8b) thus are discretized as
follows [18]:

A11ui+1,j + A12ui,j+1 + A13ui,j + A14ui,j− 1 + A15ui− 1,j

+ B11vi,j+1 + B12vi,j + B13vi,j− 1 + B14vi− 1,j+1 + B15vi− 1,j + B16vi− 1,j− 1 + B17vi− 2,j+1 + B18vi− 2,j + B19vi− 2,j− 1 � fi,j,

A21ui,j+1 + A22ui,j + A23ui,j− 1 + A24ui− 1,j+1 + A25ui− 1,j + A26ui− 1,j− 1 + A27ui− 2,j+1 + A28ui− 2,j + A29ui− 2,j− 1

+ B21vi+1,j + B22vi,j+1 + B23vi,j + B24vi,j− 1 + B25vi− 1,j � 0,

(10)

Table 1: Mechanical and thermal properties used for analyzing thermoelastic characteristics of rotating CM circular disks.

Material/property Elastic modulus (MPa) .ermal expansion coefficient (10− 6/°C) Density (g/cm3)
Substrate (Al) 71 23.1 2.70
Bond coating (Al/Al2O3) 164.3 13.6 1.61
Top (Al2O3) 380 8.0 0.96

H = 0.75
P = 100
b/a = 10
N = 150rpm
Tb = 150°C

θ = 0
θ = 90

θ = 180
θ = 270

0.2 0.4 0.6 0.8 1.00.0
r–a/b–a

–2

0

2

4

6

8

10

12

σ r
 (M

Pa
)

(a)

H = 0.75
P = 100
b/a = 10
N = 150rpm
Tb = 150°C

r–a/b–a = 0.1
r–a/b–a = 0.5
r–a/b–a = 0.9
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Angle (θ)
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(b)

Figure 2: Stress distribution profiles in the (a) radial direction and (b) circumferential direction.
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A11 �
1 − υ
2
Δr
Δθ

1
ri,j

,

A12 �
Δθ
Δr

ri,j+(1/2),

A13 � −
Δθ
Δr

ri,j+(1/2) + ri,j− (1/2)􏼐 􏼑 − (1 − υ)
Δr
Δθ

1
ri,j

− ΔrΔθ
1

ri,j

,

A14 �
Δθ
Δr

ri,j− (1/2),

A15 �
1 − υ
2
Δr
Δθ

1
ri,j

,

B11 �
3
8

(1 + υ),

B12 � −
3
4

(3 − υ)Δr
1

ri,j

,

B13 � −
7
16

(1 + υ),

B14 � −
1
2

(1 + υ),

B15 �
5
2

(3 − υ)
1

ri,j

,

B16 �
9
16
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1
8
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B18 � −
3
4

(3 − υ)Δr
1

ri,j

,

B19 � −
1
8

(1 + υ),

fi,j � (1 + υ)αri,jΔθ Ti,j+(1/2) − Ti,j− (1/2)􏼐 􏼑 − ΔrΔθρω21 − υ2

E
r
2
i,j,

A21 �
3
8

(1 + υ),

A22 �
3
4

(3 − υ)Δr
1

ri,j

,

A23 � −
7
16

(1 + υ),

A24 � −
1
2

(1 + υ),

A25 � − (3 − υ)Δr
1

ri,j

,

A26 �
9
16

(1 + υ),

A27 �
1
8

(1 + υ),

A28 � (3 − υ)Δr
1

ri,j

,

A29 � −
1
8

(1 + υ),

B21 �
Δr
Δθ

1
ri,j

,

B22 �
Δθ
Δr

ri,j+(1/2),
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B23 � −
Δθ
Δr

ri,j+(1/2) + ri,j− (1/2)􏼐 􏼑 −
1 − υ
2
ΔrΔθ

1
ri,j

− 2
Δr
Δθ

1
ri,j

,

B24 �
Δθ
Δr

ri,j− (1/2),

B25 �
Δr
Δθ

1
ri,j

.

(11)

.e validation and convergence of the above finite
volume method (FVM) were presented in [17], and
Mathematica (version 5.0) is used to obtain numerical
solutions.

3. Numerical Results and Discussion

In this section, the differential equation induced in Sec-
tion 2.1 and the finite volume formula developed in
Section 2.2 are used to evaluate the approximated results
of different components of displacement, stress, and strain
for an (Al 2O3 /Al) FGM circular disk. .e mechanical and
thermal properties of these ingredient materials are shown
in Table 1.

Stress distribution profiles are presented in Figure 2. As
shown in Figure 2(a), the circular disk is undergoing tensile
radial stress. All areas of the disk except near outer boundary
experience trivial influence in radial stress distribution, whereas
the contact point suffers from the largest radial stress. But
different phase develops in circumferential stress. At nor-
malized values (r − a)/(b − a) � 0.1 and 0.5, the magnitude of
circumferential stresses is ignorable in comparison with cir-
cumferential stress at (r − a)/(b − a) � 0.9 (see Figure 2(b)).
In addition, the entire area of the disk is under the loading of
tensile circumferential stress at (r − a)/(b − a) � 0.9 and the
circumferential stress distribution exhibits exponential decay
with the increase of angle. .e strain distribution profiles are
described in Figure 3. Near area of outer boundary in circular
domain presents that themagnitude increases with the increase
of angle value in the radial strain distribution (see Figure 3(a)).
Positive radial strain distribution appears over the disk, and the
largest radial strain value occurring at the contact point gen-
erates. However, the circumferential strain distribution shows
different pattern (see Figure 3(b)). At (r − a)/(b − a) � 0.9,
the circumferential strain deploys to the positive direction,
while negative circumferential strain distributions are obtained
at (r − a)/(b − a) � 0.1 and 0.5. .e changing shape of the
circumferential strain is a parabola as the angle increases at
(r − a)/(b − a) � 0.1 and 0.5, whereas the circumferential
strain distribution profile fluctuates at the beginning and
logarithmic decay appears after θ � 2 at (r − a)/(b − a) � 0.9.
.e results inform that (i) contact force is highly influential to
near area of contact point in radial direction, (ii) the cir-
cumference stress is more sensitive to contact force than the
radial stress distribution, and (iii) various phenomena appear
in circumferential strain distribution depending on the value of
(r − a)/(b − a).

Figure 4 presents the influences of contact force on the
stress distribution by choosing the representative angles θ �

0 and 180 and the normalized radius (r − a)/(b − a) � 0.1

and 0.9. .e radial stress distribution is susceptible to the
change of contact force, especially near the area of contact
point (see Figures 4(a) and 4(b)). Entire domain of the
circular disk suffers from a tensile stress and the magnitude
of the radial stress is getting larger as the contact force
increases. As shown in Figure 4(c), the area near the inner
boundary of the disk sits loose to the variation of contact
force, but the area near the outer boundary reacts sensitively
to the change of contact force, and noticeable impact appears
when θ � 0 (see Figure 4(d)). By the increase of contact
force, the radial and circumferential stresses exhibit expo-
nential growth near area of contact point, even though
minor effects appear over entire circular domain.

.e effects of contact force on the strain distributions are
described in Figure 5. .e reactions of the radial strain
distribution to the change of contact force are similar to
those of radial stress distribution (see Figures 5(a) and 5(b)).
Nearby area of the outer boundary is particularly susceptible
to the increase of contact force and the magnitude of the
radial strain grows with the increment of contact force.
Trivial reaction appears in the circumferential strain dis-
tribution to the variation of contact force for
(r − a)/(b − a) � 0.1 (see Figure 5(c)), whereas nearby part
of the outer boundary is sensitive to the change of contact
force (see Figure 5(d)). Pronounced alterations in the cir-
cumferential strain distribution appear on area around
θ � 0. .e numerical solutions imply that (i) the magnitude
of contact force is a critical factor to determine the ther-
moelastic characteristics of circular FGMmodels and (ii) the
radial direction is more susceptible to the variation of the
magnitude of contact force.

.e influences of homogeneous thickness on thermo-
elastic characteristics, denoted by H, are explained through
Figures 6–8. H � 1 implies that the circular disk is composed
of homogeneous material. .e representative values
H � 0.25, 0.5, and 0.75 are applied. Figure 6 expresses the
effects of H on the displacement distributions.

.e area between normalized values (r − a)/( b − a) �

0.2 and (r − a)/(b − a) � 0.85 reveals noticeable reactions to
homogeneous thickness variation. .e magnitude of the
radial displacement increases with the growth of homoge-
neous part (see Figures 6(a) and 6(b)), but nearby area of the
outer boundary displays that the magnitude to the positive
direction decreases as the value of H increases. .e results
imply that the growth of functionally graded area in the
circular disk yields more stability in the radial displacement
distribution profiles.

As shown in Figures 6(c) and 6(d)), minor influence
appears in the circumferential displacement except nearby
area of contact force. .e circumferential displacement
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Figure 4: Effects of contact force on the stress in the radial direction (a) at θ � 0 and (b) at θ � 180 and in the circumferential direction (c) at
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–0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

εr

θ = 0
θ = 90

θ = 180
θ = 270

0.2 0.4 0.6 0.8 1.00.0
r–a/b–a

H = 0.75
P = 100
b/a = 10
N = 150rpm
Tb = 150°C

(a)

–0.0015

–0.0010

–0.0005

0.0000

0.0005

0.0010

0.0015

0.0020

εθ

r–a/b–a = 0.1
r–a/b–a = 0.5
r–a/b–a = 0.9

1 2 3 4 5 60
Angle θ

H = 0.75
P = 100
b/a = 10
N = 150rpm
Tb = 150°C

(b)

Figure 3: Strain distribution profiles in the (a) radial direction and (b) circumferential direction.

Mathematical Problems in Engineering 7



–0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

εr

0.2 0.4 0.6 0.8 1.00.0
r–a/b–a

H = 0.75
θ = 0

b/a = 10
N = 150rpm
Tb = 150°C

P = 100
P = 300

P = 500
P = 700

(a)

–0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

εr

0.2 0.4 0.6 0.8 1.00.0
r–a/b–a

H = 0.75
θ = 180

b/a = 10
N = 150rpm
Tb = 150°C

P = 100
P = 300

P = 500
P = 700

(b)

–0.0010

–0.0009

–0.0008

–0.0007

–0.0006

–0.0005

–0.0004

–0.0003

–0.0002

εθ

1 2 3 4 50
Angle (θ)

H = 0.75
r–a/b–a = 0.1

b/a = 10
N = 150rpm
Tb = 150°C

P = 100
P = 300

P = 500
P = 700

(c)

–0.002

0.000

0.002

0.004

0.006

0.008

εθ

1 2 3 4 5 60
Angle (θ)

H = 0.75
r–a/b–a = 0.9

b/a = 10
N = 150rpm
Tb = 150°C

P = 100
P = 300

P = 500
P = 700

(d)
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increases with growth of the value of H over the area around
contact force.

Figure 7 presents the effects of H on the stress distri-
butions..e radial distribution exhibits smaller tensile stress
over the nearby area of outer boundary with increase of the
value of H when θ � 0 (see Figure 7(a)). But the circular disk
undergoes larger compressive radial stress over area between
normalized values (r − a)/(b − a) � 0.1 and
(r − a)/(b − a) � 0.8 when θ � 180 (see Figure 7(b)).
According to the radial stress distributions, the circular disk
with larger functionally graded area may not guarantee
higher stability over nearby area of outer boundary. Dif-
ferent phase develops in circumferential stress distributions.
Over nearby area of the inner boundary, entire domain of
the disk experiences compressive circumferential stress for
the values of H � 0.5 and 0.75, whereas some part of the disk
with H � 0.25 undergoes tensile circumferential stress (see
Figure 7(c)). Over nearby area of the outer boundary of the
disk, the circumferential stress with H � 0.75 is trivial in
comparison with the value of H � 0.25 and 0.5 (see
Figure 7(d)). .e magnitude of the circumferential stress is
higher near contact point as the homogeneous thickness
decreases. Based on the circumferential stress distributions,
greater functionally graded area affords higher stability in
the circular disk. .e influences of homogeneous thickness
H on the strain distributions are described in Figure 8.
Nearby area of the outer boundary of the disk is sensitive to
the change of homogeneous thickness in the radial strain
distributions. .e magnitude of strain decreases with the
growth of the value of H (see Figures 8(a) and 8(b)), which
signifies that the circular disk with larger homogeneous area
is more stable over nearby area of the outer boundary.
Similar movements occur in the circumferential strain. As
shown in Figures 8(c) and 8(d), the magnitude of the cir-
cumferential strain is getting larger according to the decline

of the value of H. .e outcomes describe that the circular
disk stability with greater functionally graded area is greater
in the circumferential strain distribution. .e numerical
approaches make point of the following: (i) the variation of
homogeneous thickness is highly influential to thermoelastic
characteristics over the area of 0.2< (r − a)/(b − a)< 0.8 and
(ii) the radial direction is more susceptible to the change of
homogeneous thickness.

4. Conclusions

A rotating FGM circular disk with a concentric circular hole
is taken into account to investigate the thermoelastic
characteristics. .e circular disk is under the loading of a
contact force..e effects of the variation of contact force and
homogeneous thickness on the components of displace-
ment, stress, and strain have been described. Over nearby
area of the contact point, the thermoselastic behavior reacts
sensitively to the change of contact force and exhibits ex-
ponential growth in the magnitude, whereas the influence of
contact force over the other area is greater in the circum-
ferential stress distributions. .e outcomes explain that the
outer boundary area is exposed to become brittle with the
growth of a contact force. In the radial displacement dis-
tribution, the growth of functionally graded area grants
more stability in the circular disk, while, according to the
radial stress distributions, the circular disk with larger
functionally graded area may not guarantee higher stability
over nearby area of outer boundary. Based on the cir-
cumferential distribution profiles, the circular disk with
greater functionally area evinces higher stability. Overall, the
results demonstrate that contact force and homogeneous
thickness are crucial parameters to determine the thermo-
elastic characteristics of FGM circular disks, and the
movements of an FGM circular disk can be controlled by
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controlling of these parameters. .erefore, a FGM circular
cutter or grinding disk suffering from the loading of a
contact force can be designed applying the finite volume
analysis used in this investigation to promote proper and
reliable thermoelastic characteristics in service.

Nomenclature

u: Radial displacement component (mm)
v: Circumferential displacement component (mm)
εr: Radial strain
εθ: Circumferential strain
c: Shearing strain
σr: Radial stress (MPa)
σθ: Circumferential stress (MPa)
τ: Shearing stress
]: Poisson’s ratio
ω: Angular velocity
N: Revolutions per minute (rpm)
E: Young’s modulus (MPa)
α: Coefficient of thermal expansion (10–6/°C)
ρ: Density of the disk (g/cm3).
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(is article is concerned about the planed rigid body pendulummotion suspended with a spring which is suspended to move on a
vertical plane moving uniformly about a horizontal X-axis. (is model depends on a system containing three generalized
coordinates. (e three nonlinear differential equations of motion of the second order are obtained to the elastic string length and
the oscillation angles φ1 and φ2 which represent the freedom degrees for the pendulummotions. It is assumed that the bodymoves
in a rotating vertical plane uniformly with an arbitrary angular velocity ω. (e relative periodic motions of this model are
considered. (e governing equations of motion are obtained using Lagrange’s equations and represent a nonlinear system of
second-order differential equations that can be solved in terms of generalized coordinates. (e numerical solutions are in-
vestigated using the approximated fourth-order Runge–Kutta method through programming packages. (ese solutions are
represented graphically to describe and discuss the behavior of the body at any instant for different values of the different physical
parameters of the body. (e obtained results have been discussed and compared with some previously published works. Some
concluding remarks have been presented at the end of this work. (e value of this study comes from its wide applications in both
civil and military life. (e main findings and objectives of the current study are obtaining periodic solutions for the problem and
satisfying their accuracy and stabilities through the numerical procedure.

1. Introduction

(e pendulum motion is studied by many outstanding
scientists in the last century due to the wide application of
this problem in applied mathematics, physics, and engi-
neering. In [1], El-Barki and others studied the rotary
motion of a pendulum model about an elliptic path. (ey
described the problem dynamically and then deduced the
equations of motion for this model using Lagrange’s
equation. (e authors defined a small parameter that de-
pends on the different parameters of the moving model.
(ey solved the problem analytically using the small pa-
rameter technique and numerically using the Runge–Kutta
method to make a comparison between the two sets of
solutions. (is comparison proved the validity of both
obtained solutions.

Ismail in [2] presented a case of relative periodicity
motion of a rigidity pendulum model in presence of

multidegrees of freedom. He described the motion dy-
namically and used the Lagrangian function to describe the
motion. (e system of equations of motion is obtained. He
defined a small parameter and used the small parameter
technique to find the approximated periodic solutions of the
obtained motion. He achieved computer programs through
numerical consideration for proving the validity of the
obtained solutions. In [3], the author studied the periodic
solutions of a pendulum in a relative case. (is case is
considered as an especial one from the problem in [2]. (e
author used Poincare’s method to find the approximated
solutions. In [4], the author studied the oscillated motion of
a simple pendulum model. He used the Lagrangian function
for deriving the equations of motion.(e processing method
of analysis is used to find approximated solutions of the
second order. In [5], the elastic pendulum oscillations are
given by Vitt and Gorelik in 1933. (ey give an example of
oscillated linear systems with two parametrical couples.
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In [6], Lynch presented the three dimensions of elastic
pendulum motions in the resonant case. He used the La-
grangian function for describing the motion. In [7], Holm
and others studied a resonant elastic pendulum in the case of
stepwise precession. In [8], the authors studied themotion of
a harmonically excited elastic pendulum in the chaos re-
sponse case. (ey derived the equations of motion of the
pendulum model using Lagrange’s equations. In [9], Amer
described the dynamical oscillations of an elastic rigid
pendulum in a plane to the equilibrium position. (e author
considered the plane rotates about the downward vertical
fixed axis with uniform velocity. He used the Lagrangian
function to deduce the equations of motion of the model.
(e numerical considerations [10] are considered using one
of the numerical methods for searching the accuracy of the
solutions.

(e phrase diagram procedure is used for studying the
stability of the solutions [11]. In [12], Brearley studied a
simple pendulum model when its string length is changing
uniformly. In [13], Pinsky and others studied the oscillated
pendulum model for swing with a length which varies
periodically.

Nayfeh in [14] presented many perturbation techniques
for solving a lot of problems in mathematics, physics, and
engineering. Such techniques are named the multiple scales,
small parameter, KBM, processing analysis, and finite ele-
ment method which are used in solving most of the previous
problems. None of the authors thought about the use of the
large parameter technique which gives accuring results for
the required solutions. In [15], the two freedom degrees
motion of a dynamic nonlinear model for an elastic damped
pendulum in the inviscid flow of fluid was considered. (e
system for equations of motion was considered applying the
Lagrangian function. (e multiple scales technique is used
for solving such equations to obtain the approximated so-
lutions. (e cases of resonance and steady state were in-
vestigated. (e graphical representations of the motion were
considered to show the behavior of the motion. (e sta-
bilities of the motion were studied. In [16, 17], the restricted
motion for the harmonically damped elastic pendulum
motion of a rigid body in the elliptic path was investigated
when the damped coefficients are linear. In [18], the near
resonance pendulum motions in the presence of a tunned
absorber dynamical model system were considered. (e
authors in [19] studied the pendulummotion of a rigid body
which moves in a plane with a constant angular velocity ω
attached to a damped spring. (e obtained solutions are
analyzed numerically through computerized programs for
showing motion behavior.

In this paper, a new problem is given for the elastic rigid
pendulum motion in a vertical plane which rotates about a
horizontal fixed axis in space by a uniform angular velocity
ω. (e importance of this motion comes from its wide
applications in physics, engineering, and other fields.

2. Formulation of the Problem

In this section, the motion of an elastic pendulum model is
considered which consists of a rigid body suspended with a
massless spring at point O2 which is suspended from the
other hand by point O1, see Figure 1. Let the coordinate
system OXY rotate about its horizontal axis OX with a
uniform angular velocity ω relative to the pendulum
motion. Consider OO1 � h cosωt at any instant of the time
t such that at t � 0, OO1 � h. Let the point C represent a
mass center of the body, φ1 represent the angle between
O1Y1 and O1C, and φ2 denote the angle between O2C and
the vertical. Assuming Cξ, Cη, and Cζ are the principal axes
of inertia of the body such that Cζ is perpendicular to the
plane OXY.

(us, the mass center (xC, yC) of the body to the system
OXY becomes

xC � h cosωt + ρ sinφ1 + a sinφ2,

yC � ρ cosφ1 + a cosφ2, a � O2C,
(1)

where ρ is the elastic string length.
(e potential and kinetic energies V and T are given as

V � 0.5k
2
(ρ − ℓ)2 − mg ρ cosφ1 + a cosφ2( 􏼁,

T � 0.5m (− hω sinωt)
2

+ _ρ2 + ρ _φ1( 􏼁
2

+ a _φ2( 􏼁
2

􏽮

− 2hω _ρ sinφ1 sinωt + ρ _φ1 sinωt cosφ1 + a _φ2 sinωt cosφ2􏼂 􏼃

+ 2a _ρ _φ2 sin φ1 − φ2( 􏼁 + _φ1 _φ2 cos φ1 − φ2( 􏼁􏼂 􏼃

+ ω2
h cosωt + ρ sinφ1 + a sinφ2( 􏼁

2
+ m

− 1
I3 _φ2

2

+ m
− 1ω2

I1sin
2φ2 + I2cos

2φ2􏼐 􏼑􏽯,

(2)

where I1, I2, and I3 are the principal inertia moments to the
axes Cξηζ , k2 is the constant of the spring, ℓ denotes the
unstretched spring length, and g is the acceleration of
gravity.

(e Lagrangian function L for this model is of the form
[15]

L � T − V, (3)

where L is a function of ρ, φ1, and φ2 and their derivatives.
Applying Lagrange’s equations

d

dt

zL

z _ρ
􏼠 􏼡 �

zL

zρ
, ρ,φ1,φ2. (4)

Making use of equations (1) to (4), the second-order
differential equations of the motion are obtained as follows:
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€ρ + a€φ2 sin φ1 − φ2( 􏼁 − a _φ2
2 cos φ1 − φ2( 􏼁 − ρ _φ2

1

− ω2 2h cosωt + ρ sinφ1 + a sinφ2( 􏼁sinφ1 − g cosφ1

+ k
2
m

− 1
(ρ − ℓ) � 0,

ρ€φ1 + 2 _ρ _φ1 + a€φ2 cos φ1 − φ2( 􏼁 + a _φ2
2 sin φ1 − φ2( 􏼁

− ω2 2h cosωt + ρ sinφ1 + a sinφ2( 􏼁cosφ1 + g sinφ1 � 0,

ℓ1€φ2 + 2 _ρ _φ1 + ρ€φ1( 􏼁cos φ1 − φ2( 􏼁 + €ρ − ρ _φ2
1􏼐 􏼑sin φ1 − φ2( 􏼁

− ω2 2h cosωt + ρ sinφ1 + a sinφ2( 􏼁cos φ1 − φ2( 􏼁 + g sinφ2

+ 2m
− 1ω2

I2 − I1( 􏼁sin 2φ2 � 0,

ℓ1 � a − I3m
− 1

a
− 1

.

(5)

Equations (5) are the differential equations of motion of
second order in the three generalized coordinates.

Let the system oscillate in the closing relative equilib-
rium position, and the following is obtained:

I1 � I2. (6)

(e relative equilibrium admits the equality of the initial
values for the angles φ1 and φ2, and thus

ρ � b + ξ(t),

φ1 � φ0 + φ(t),

φ2 � φ0 + ψ(t),

(7)

where b is the relative equilibrium for the length of the
pendulum string. (e quantities b and φ0 are determined as
follows:

m
− 1

k
2
(b − ℓ) � ω2

(a + b)sin2φ0 + g cosφ0,

g � ω2
(a + b)cosφ0.

(8)

Making use of (7) into (5) and then (6) and (8), one
obtains

€ξ + a11ξ + a12φ + a13ψ � f1,

b€φ + a€ψ + b11ξ + b12φ + b13ψ � f2,

b€φ + ℓ1€ψ + c11ξ + c12φ + c13ψ � f3,

(9)

where

a11 � m
− 1

k
2

− ω2 sin2φ0 + 2h cosφ0 cosωt􏼐 􏼑,

a12 � bc11,

a13 � ac11,

b11 � c11,

b12 �
k
2
(b − ℓ)

m − ω2
b cos2φ0

,

b13 � − ω2
acos2φ0,

c11 � − ω2 sinφ0 cosφ0,

c12 � − ω2
bcos2φ0,

c13 � k
2
m

− 1
(b − ℓ) + ω2 2h sinφ0 cosωt − acos2φ0􏼐 􏼑,

(10)

f1 � (ξ + b) _φ2
+ Aξφ + a€ψ(ψ − φ) + a _ψ2

+ Bψφ + C1,

f2 � − ξ€φ − 2 _ξ _φ +(ψ − φ)a _ψ + c11(ξ + b)φ2

+ Dξ + 2a13ψ( 􏼁φ + C2,

f3 � €ξ(ψ − φ) − _φ2
(b + ξ)(ψ − φ) − ξ€φ − 2 _ξ _φ

+ 2ω2
h cosωt cosφ0

− b + 1 − ψ2
􏼐 􏼑 − (b + ξ)φψ􏽨 􏽩c11 − g sinφ0

+ ω2ξ φcos2φ0 − ψsin2φ0􏼐 􏼑,

(11)

A � − 2c11,

B � aω2cos2φ0,

D �
B

a
,

C1 � − k
2

− ω2sin2φ0􏼐 􏼑 + ω2 2h sinφ0 cosωt􏼂

+ a cos2 ωt + sin2φ0􏼐 􏼑􏽩 + g cosφ0 + k
2ℓ,

C2 � 2hω2 cosωt

− (b + a)c11 − g sinφ0.

(12)

O

h cos ωt

O1

φ1

φ2

ξ

ζ

X, X1

η

C

O2

Y1Y

Figure 1: (e elastic rigid pendulum model.
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Next, numerical considerations for solving system (9) in
three degrees of freedom ξ, φ, and ψ are presented. (e
fourth-order Runge–Kutta method [10] is used for satisfying
the numerical solutions for this system.

3. Numerical Investigations

In this section, the fourth-order Runge–Kutta method is
used for solving the problem in the previous sections
through computerized data. (ese solutions are investigated
to illustrate and describe the oscillations of this system at
different values of the time.

Making use of (10), (11), and (12), system (9) is refor-
mulated in the form:

€ξ � €ξ(ξ,φ,ψ, _ξ, _φ, _ψ), (ξφψ), (13)

where the symbol (ξφψ) refers to the equations which are
neglected. (ese functions are determined accordingly to
equations (9)–(12). Introducing the following data:

m � 10kg,

g � 9.8m · s− 2
,

I1 � 3kg · m2
,

ℓ � 0.9m,

ω � 2rad · s− 1
,

a � 0.7m,

b � 0.5m,

φ0 � 0.2rad,

h � 4,

t � 0⟶ 300s.

(14)

(e graphical representations for the solutions
ξ,φ,ψ, _ξ, _φ, and _ψ are given in Figures 2–7.

4. Conclusion

It is concluded that the model of relativistic elastic rigid
pendulummotions is considered a wide application problem
in many scientific fields. (e Lagrangian function was used,
and Lagrange’s equations were applied for deriving the

system of equations of motion for this problem. Computer
programs were achieved applying the fourth-order Run-
ge–Kutta method for obtaining the numerical solutions for
the considered system. (e obtained solutions are sketched
at different values of rigid body parameters. From the fig-
ures, it is deduced that the approximated solutions are
seemed to be periodic in a big interval of the motion. ξ and φ
solutions represented in Figures 2, 3, 5, and 6 have uniform
motion and stable solutions, but ψ is a chaotic and excited
solution, see Figures 4 and 7. In all figures, the positive
vibration waves come from the motion of the vertical plane
above the horizontal axis and vice versa. (e solution ψ is
not stable since it moves with fast oscillations with small
amplitudes in the beginning time and then goes slowly with
larger amplitudes. (e changing of the values of h, b, and φ0
affects the behavior of the motion and vice versa.
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A nonlinear mathematical model of a magnetic bearing system has been obtained by applying a modified conventional
identification technique based on the principle of harmonic balance. In this study, we examined the rich nonlinear dynamics of a
magnetic bearing system with closed-loop control using phase portraits, Poincaré maps, and frequency spectra. (e resulting
bifurcation diagram can be used to evaluate the operational range of systems employing nonlinear actuators. Estimates of the
largest Lyapunov exponent based on the properties of synchronization revealed the occurrence of chatter vibration indicative of
chaotic motion. Various control methods, such as the state feedback control and the injection of dither signals, were then used to
quench the chaotic behavior.

1. Introduction and System Description

(e rotor in magnetic bearing systems is suspended by
magnetic bearings to ensure stable rotation at high speeds;
however, a closed-loop control system is required to stabilize
the system by eliminating vibrations caused by disturbing
forces. (e characteristics of magnetic bearings are inher-
ently nonlinear due to nonlinearities in electromagnetic
forces. (e occurrence of large unbalanced forces in rotor
bearings can cause nonlinear motion of high amplitude in
magnetic bearing systems. Accurate control of the system is
required which designers account for the effects of non-
linearities. In a previous work [1], we conducted experi-
ments on an unloaded symmetric rotor with flexible coupler
at one end and a bearing comprising two pairs of electro-
magnets at the other end (Figure 1). It was carried out by
applying a series of nonlinear electromagnetic forces to
identify a nonlinear model for this system. (ese rich
nonlinear dynamics must be taken into account in the design
of magnetic bearing systems. In this study, we sought to
predict these nonlinear dynamics by modifying the

conventional identification technique based on the principle
of harmonic balance in order to characterize the system with
a higher degree of precision. (e resulting nonlinear model
[1] is obtained as follows:

_x1 � x2, (1a)

_x2 � −d1x2 − d2x1 + d3x3 + d4x4 + d5x
2
1 + d6x1x3

+ d7x1x4 + d8x
2
3 + d9x

2
4 + d10x

3
1,

(1b)

L _x3 + Rx3 � KA ec1 + A0 sinΩt( 􏼁, (1c)

L _x4 + Rx4 � KA ec2 + A0 sinΩt( 􏼁, (1d)

where

ec1 � KH KPx1 + KDx2 + KI 􏽚 x1dt􏼒 􏼓,

ec2 � KH −KPx1 − KDx2 − KI 􏽚 x1dt􏼒 􏼓,

(2)
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with the limitations

−3.5 volts< ec1 < 6.5 volts,

−3.5 volts< ec2 < 6.5 volts,

0.0 amp<x3 andx4 < 2.0 amp,

(3)

where x1 is the displacement of the rotor around the
equilibrium point; x2 is the velocity of the rotor; x3 and x4
are coil currents oscillating around the bias current; ec1 and
ec2 are the outputs of the PID controller to the two coils;
KP � −55, KD � −0.3, and KI � −50 are the control gains; KA
(�2.4) and KH (�10000) represent the gains of the power
amplifier and displacement sensor; and A0sinΩt is the
forcing voltage generated by a programmable function
generator. (e procedures used to derive the other coeffi-
cients necessary for (1a)–(1d) are listed in Table 1 [1].

(is model captures the primary characteristics of the
system by comparing the frequency responses from
simulations with those from experiments [1]. However,
this model has not been subjected to dynamic analysis to
determine whether the nonlinear mathematical model
derived from experiments can be used to characterize and/
or predict the dynamics in a physical system. Further-
more, the chaotic motion that occurs at the moment the
rotor strikes the electromagnet has not been
characterized.

In this study, we employed bifurcation diagrams, phase
portraits, Poincaré maps, frequency spectra, and Lyapunov
exponents to observe periodic and chaotic motions. Across a
broad range of parameters, the Lyapunov exponent provides
the most powerful means by which to measure the sensitivity
of a dynamic system as it pertains to its initial conditions.
(is approach can be used to determine whether a system is
susceptible to chaotic motion. (e algorithms used to

compute Lyapunov exponents associated with smooth dy-
namic systems are well-established [2–5]. However, a
number of nonsmooth dynamic systems possess disconti-
nuities to which this algorithm cannot be applied directly,
such as those associated with dry friction, backlash, and
saturation. Many studies have proposed methods for the
calculation of Lyapunov exponents associated with non-
smooth dynamic systems [6–8]. In this study, we adopted the
method developed by Stefanski [8] for estimating the largest
Lyapunov exponent in a magnetic bearing system with
closed-loop control.

Many practical engineering problems involving chaos
require control techniques to convert chaotic attractors into
stable periodic orbits. Since the pioneering work of Ott et al.
[9], numerous methods for the control of chaos have been
devised [10–19]. Improving the performance of a controlled
magnetic bearing system and/or eliminating chatter be-
havior require the conversion of chaotic behavior into pe-
riodic motion. Two control methods have been developed

Current sensor

Current sensor

A/D

D/ASUM/DIF
amplifier

Power amplifierPower supply

Programmable
function generator

Induction
motor

Coupler

Displacement
sensor

Electromagnet

Auxiliary
bearing

Ro
to

r

Figure 1: Schematic diagram of a magnetic bearing system.

Table 1: Identified results [1].

System parameter Identified value
d1 3.066133
d2 4.3315×103

d3 −5.5786683
d4 6.5562
d5 1.43371× 107

d6 −2.531× 104

d7 −4.53203×104

d8 0.34514
d9 −0.40171
d10 −2.399816×1010

L 0.0161203
R 14.3128231
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for chaos suppression: state feedback control [11–15] and
dither control [16–19].

2. System Characteristics: Simulations
and Discussion

We conducted a series of numerical simulations based on
(1a)–(1d) to clearly elucidate the dynamic characteristics of
the system in this study. In (1a)–(1d), the amplitude of the
input excitation, A0, equals 3.5V. We employed FORTRAN
subroutines in the commercial software package DIVPRK
(IMSL) to solve ordinary differential equations [20]. (e
resulting bifurcation diagram is presented in Figure 2. (is
figure clearly shows that the first period-doubling bifurcation
occurred at approximately Ω� 19.5Hz and chaotic motion
appeared at approximately Ω� 18.5Hz. Further details of the
responses exhibited by the system are presented in
Figures 3–5, in which each type of response is characterized by
a phase portrait, Poincaré map, and frequency spectrum.
Figures 3(a)–3(c) show that the Tf-period includes the
constant term and fundamental components. From Figure 4,
we determined that a cascade of period-doubling bifurcations
produced a series of subharmonic components, revealing the
bifurcations with new frequency components at Ω/2, 3Ω/2,
5Ω/2, . . .. (e essence of chaotic behavior can be described
using Poincaré maps, which present an infinite set of points
referred to as a strange attractor. Chaotic motion also presents
a broad continuous frequency spectrum. (us, strange
attractors and continuous-type Fourier spectra are generally
regarded as strong indictors of chaos, as illustrated in
Figures 5(a)–5(c).

3. Synchronization and the Lyapunov Exponent

(e largest Lyapunov exponent is a useful diagnostic ele-
ment for the analysis of chaotic systems. Every dynamic
system possesses a spectrum of Lyapunov exponents (λ),
which determine length, area, and volume changes in the
phase space. In other words, Lyapunov exponents measure
the rate of divergence (or convergence) between two adja-
cent orbits. Chaos can be identified simply by calculating the
largest Lyapunov exponent, thereby determining whether
nearby trajectories generally diverge (λ> 0) or converge
(λ< 0). Any bounded motion in a system containing at least
one positive Lyapunov exponent is defined as chaotic,
whereas nonpositive Lyapunov exponents indicate periodic
motion. (ere are a number of well-established algorithms
that compute the Lyapunov spectrum of smooth dynamic
systems [2–5]. However, nonsmooth dynamic systems with
discontinuities, such as dry friction, backlash, and satura-
tion, do not allow for the direct application of such algo-
rithms. In this study, we estimated the largest Lyapunov
exponent in order to identify the onset of chaotic motion in a
controlledmagnetic bearing system. Stefanski [8] proposed a
simple method for estimating the largest Lyapunov expo-
nent based on properties associated with synchronization.
Synchronization controls the response system by accessing
the output of the drive system such that the output of the

response system asymptotically follows the output of the
drive system. (is method is described briefly as follows.

(e dynamic system is decomposed into the following
two subsystems:

A drive system

_x � f(x). (4)

A response system

_y � f(y). (5)

Consider a dynamic system comprising two identical
n-dimensional subsystems, where the response system (5)
is combined with coupling coefficient d, and the drive
system (4) remains the same. (e first-order differential
equations used to describe such a system are written as
follows:

_x � f(x),

_y � f(y) + d(x − y).
(6)

(e condition of synchronization is given by the fol-
lowing inequality:

d> λmax. (7)

(e smallest value of coupling coefficient d in syn-
chronization ds is assumed to be equal to the largest Lya-
punov exponent, as follows:

ds � λmax. (8)

(6) provides an augmented system based on (1a)–(1d), as
follows:

_x1 � x2, (9a)

_x2 � −d1x2 − d2x1 + d3x3 + d4x4 + d5x
2
1 + d6x1x3

+ d7x1x4 + d8x
2
3 + d9x

2
4 + d10x

3
1,

(9b)
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Figure 2: Bifurcation diagram of the system for A0 � 3.5V.

Mathematical Problems in Engineering 3



L _x3 + Rx3 � KA ec1x + A0 sinΩt( 􏼁, (9c)

L _x4 + Rx4 � KA ec2x + A0 sinΩt( 􏼁, (9d)

_y1 � y2 + d x1 − y1( 􏼁, (10a)

_y2 � −d1y2 − d2y1 + d3y3 + d4y4 + d5y
2
1 + d6y1y3

+ d7y1y4 + d8y
2
3 + d9y

2
4 + d10y

3
1 + d x2 − y2( 􏼁,

(10b)

L _y3 + Ry3 � KA ec1y + A0 sinΩt􏼐 􏼑 + d x3 − y3( 􏼁, (10c)

L _y4 + Ry4 � KA ec2y + A0 sinΩt􏼐 􏼑 + d x4 − y4( 􏼁, (10d)

where

ec1x � KH KPx1 + KDx2 + KI 􏽚 x1dt􏼒 􏼓,

ec2x � KH −KPx1 − KDx2 − KI 􏽚 x1dt􏼒 􏼓,

ec1y � KH KPy1 + KDy2 + KI 􏽚 y1dt􏼒 􏼓,

ec2y � KH −KPy1 − KDy2 − KI 􏽚 y1dt􏼒 􏼓,

(11)

with the following limitations:

−3.5 volts< ec1x < 6.5 volts,

−3.5 volts< ec2x < 6.5 volts,

0.0 amp<x3 and x4 < 2.0 amp,

−3.5 volts< ec1y < 6.5 volts,

−3.5 volts< ec2y < 6.5 volts,

0.0 amp<y3 andy4 < 2.0 amp.

(12)

In the next step, we estimate the largest Lyapunov ex-
ponent for the selected parametric values in accordance with
the method described above. Figure 6 presents the results of
numerical calculations showing the estimated largest Lya-
punov exponents obtained using the above synchronization
method. All of the largest Lyapunov exponents are positive
with regard to the forcing frequency (Ω< 18.5Hz), indi-
cating that the system exhibits chaotic motion. (ese results
help to enhance our understanding of chatter vibration in a
controlled magnetic bearing system.

4. Quenching Chatter

Chaotic motion can induce chatter vibrations capable of
destroying a magnetic bearing system. Accurate prediction
of the behavior of a chaotic system can be beneficial;
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Figure 3: Period-one orbit for Ω� 20.0Hz: (a) phase portrait; (b) Poincaré map; (c) frequency spectrum.
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however, maximizing the benefits requires the ability to
control this behavior. A chaotic system must be transformed
into periodic motion in order to work under specific con-
ditions and thereby improve the performance of a dynamic
system and/or avoid chatter. In this section, we discuss the
means by which chaos can be converted into periodic
motion using minimal efforts. We present two methods of
controlling chaos: the addition of state feedback control
[12, 13] and the application of dither signals [16, 17].

4.1. State Feedback Control. Cai et al. [12, 13] proposed a
simple, yet effective, state feedback control algorithm. (is
method for the n-dimensional dynamical system is
explained briefly as follows:

_x � f(x, t), (13)

where x(t) ∈Rn is the state vector and f� (f1,. . ., fi,. . ., fn),
where fi is a linear or a nonlinear function and f includes at
least one nonlinear function. Suppose that fk(x, t) is the key
nonlinear function leading to chaotic motion in system (13).
We add to the equation only one term of state feedback of an
available system variable xm that includes fk(x, t), as
follows:

_xk � fk(x, t) + Gxm, k, m ∈ 1, 2, . . . , n{ }, (14)

where G is feedback gain. Other functions retain their
original forms. We applied this method to (1a)–(1d) to more
clearly elucidate the simple control scheme.

In the absence of state feedback control, (1a)–(1d) ex-
hibits chaotic behavior under the following parameters:
A0 � 3.5 V and Ω� 18.2Hz. Consider how the addition of
state feedback control to the right-hand side of the (1a)–(1d)
would affect the results. Figure 7 presents the resulting
bifurcation diagram for Ω� 18.2Hz with state feedback
control. When G� 0, (1a)–(1d) displays chaotic motion (see
Figure 5). (is figure shows that chaotic motion occurs at
approximately G>−7.0 and disappears at approximately
G≤−7.0. When the feedback gain G falls below −7.0, the
system described by (1a)–(1d) exhibits stable periodic mo-
tion. After 10 seconds, the control signal is applied to the
system to control chaotic oscillation (Figure 8). In so doing,
the state feedback control can be used to suppress chaotic
motion and improve the performance of a magnetic bearing
system with closed-loop control.

4.2. Dither Control. In this section, we describe how chaotic
motion can be controlled by injecting an external dither
signal to adjust nonlinear terms. A dither is a high-frequency
signal introduced to modify the behaviors of nonlinear
systems through the elimination of nonlinearities. (e
ability of a dither signal to average out nonlinearities can be
attributed to its high frequency and periodic nature. Dither
smoothing techniques were proposed in references [16, 17]
to stabilize chaotic systems. Some of the most common
dither signals were proposed by Cook [21].

(i) Square-wave dither: the simplest type of dither signal
is the square-wave signal as shown in Figure 9, where
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Figure 4: Period-two orbit for Ω� 19.0Hz: (a) phase portrait; (b) Poincaré map; (c) frequency spectrum.
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dither signal takes the constant values W and −W al-
ternately, each holding for a half-period T/2, with T
being much smaller than the time constant of the
system. (e amplitude W is applied in front of the
nonlinearity f(·). (us, the effective value of n (the
output of the nonlinear element) can be written as [16]

n �
1
2

[f(y + W) + f(y − W)]. (15)

(us, the system equations can be written as follows:

_y � n. (16)

Consider the effect of adding square-wave dither
control to the system described in (1a)–(1d), where
Ω� 18.2Hz. Increasing the amplitude of the square-
wave dither signal from W� 0 to 0.0005V would
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change the chaotic behavior to period-one motion.
(e resulting bifurcation diagram under
Ω� 18.2Hz with a square-wave dither signal is
shown in Figure 10. Figure 11 shows the effects 10
seconds after applying a control signal to the system
in order to illustrate the effectiveness of this con-
troller in controlling chaotic oscillations.

(ii) Sinusoidal dither: one simple dither signal is a high-
frequency sinusoid. Here, the effective value of n is
its average over a complete period of the sinusoidal
dither signal oscillation:

n �
1
2π

􏽚
2π

0
f(x + W sin θ)dθ. (17)

Adding a sinusoidal dither signal to (1a)–(1d) yields the
following coupled system:

_􏽥x1 � 􏽥x2, (18a)

_􏽥x2 � −d1􏽥x2 − d2􏽥x1 + d3􏽥x3 + d4􏽥x4 + n, (18b)

L _􏽥x3 + R􏽥x3 � KA 􏽥ec1 + A0 sinΩt( 􏼁, (18c)

L _􏽥x4 + R􏽥x4 � KA 􏽥ec2 + A0 sinΩt( 􏼁, (18d)

where

􏽥ec1 � KH KP􏽥x1 + KD􏽥x2 + KI 􏽚 􏽥x1dt􏼒 􏼓,

􏽥ec2 � KH −KP􏽥x1 − KD􏽥x2 − KI 􏽚 􏽥x1dt􏼒 􏼓,

n �
1
2π

􏽚
2π

0
d5 􏽥x1 + W sin θ( 􏼁

2
+ d6 􏽥x1 + W sin θ( 􏼁􏽨

· 􏽥x3 + W sin θ( 􏼁 + d7 􏽥x1 + W sin θ( 􏼁 􏽥x4 + W sin θ( 􏼁

+ d8 􏽥x3 + W sin θ( 􏼁
2

+ d9 􏽥x4 + W sin θ( 􏼁
2

+ d10 􏽥x1 + W sin θ( 􏼁
3
􏽩,

(19)

with the following limitations:

−3.5 volts<􏽥ec1 < 6.5 volts,

−3.5 volts<􏽥ec2 < 6.5 volts,

0.0 amp< 􏽥x3 and 􏽥x4 < 2.0 amp.

(20)

(e dither frequency must substantially exceed that of
any other frequency used to operate the system in order to
ensure that the dither signal does not introduce other un-
desirable oscillations at the same frequency as the dither
signal. For example, Figure 12 presents the resulting
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bifurcation diagram for a system with a sinusoidal dither in
which parameter Ω is 18.2Hz and the frequency of the
sinusoidal dither is 6000 rad/s. (is reveals that a sinusoidal
dither with amplitude exceeding 0.0005V can convert
chaotic behavior into stable periodic motion in a magnetic
bearing system. (e next steps are setting W� 0.008V and
plotting the effective nonlinearity n and original nonlinearity
f, as shown in Figure 13. (e time response of displacement
10 seconds after the injection of a sinusoidal dither signal is
shown in Figure 14(a). (e chaotic behavior is converted
into period-one motion. Figure 14(b) presents a phase
portrait of the controlled system. Note that the behavior of
the system is initially chaotic, but gradually becomes peri-
odic following dither injection.

5. Conclusions

(is work uses the identified nonlinear model examine
global bifurcation and chaos control in the magnetic bearing
system. Dynamic behavior over the entire range of pa-
rameter values is observable in the resulting bifurcation
diagram, which reveals that the magnetic bearing system
exhibits period-doubling bifurcations and chaotic motions.
(e largest Lyapunov exponent derived using the properties
of synchronization provided the most powerful tool to
measure and analyze chaotic motion in such a system.
Controlling chaotic motion is an effective way to prevent
chatter vibration in magnetic bearing systems. State feed-
back control is a simple, yet effective, approach to sup-
pressing chaos. It can be implemented by adding feedback
associated with a suitable variable into the original system
with control gain sufficient to overcome the development of
chaos in dynamic systems prone to chaotic behavior. It is
also possible to convert chaotic behavior into a periodic orbit
through the injection of a dither signal in front of nonlin-
earities in a chaotic magnetic bearing system.

Our analysis revealed that the proposed nonlinear model
is able to predict the occurrence of bifurcation and chaos in
an active magnetic bearing system, which means that it is
potentially applicable to a wide range of functions in the
design of active magnetic bearing systems. Chaotic behavior
must be accepted in some situations; however, it is normally
deemed undesirable, as it degrades performance and re-
stricts the operating range of electric and mechanical de-
vices. Accordingly, we applied state feedback and dither

control methods to quench chaos, improve the performance
of the magnetic bearing system, and prevent the occurrence
of chaos behaviors. Furthering the development of mag-
netically levitated vehicles requires an understanding of their
nonlinear dynamic characteristics from the viewpoint of
stability, safety, and ride quality at high speeds. Our con-
tribution of this study is that studying nonlinear dynamics
and controlling chaotic vibrations in the active magnetic
bearing systems will help to advance the development of
magnetic transportation systems.
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In this paper, we deal with the global behavior of the positive solutions of the system of k-difference equations u
(1)
n+1 �

(α1u
(1)
n−1/β1 + α1(u

(2)
n−2)

r1 ), u
(2)
n+1 � α2u

(2)
n−1/β2 + α2(u

(3)
n−2)

r2 , . . . , u
(k)
n+1 � αku

(k)
n−1/βk + αk(u

(1)
n−2)

rk , n ∈ N0, where the initial conditions
u

(i)
−l (l � 0, 1, 2) are nonnegative real numbers and the parameters αi, βi, ci, and ri are positive real numbers for i � 1, 2, . . . , k, by

extending some results in the literature. By the end of the paper, we give three numerical examples to support our theoretical
results related to the system with some restrictions on the parameters.

1. Introduction

Recently, many works have been published on rational dif-
ference equations, which have an important position in applied
sciences. In this process, many rational difference equations
have been studied by mathematicians. And so, some equations
have frequently been the subject of many articles using gen-
eralizations.Many typical examples of these can be found in the
literature. For example, in [1], El-Owaidy et al. dealt with global
behavior of the difference equation

xn+1 �
αxn−1

β + cx
p
n−2

, n ∈ N0, (1)

with nonnegative parameters and initial conditions. Gumus
and Soykan [2] dealt with the dynamical behavior of the
positive solutions for a system of rational difference equa-
tions of the following form:

− 4pt

un+1 �
αun−1

β + cv
p
n−2

,

vn+1 �
α1vn−1

β1 + c1u
p
n−2

, n ∈ N0,

(2)

where the parameters and initial conditions are positive
real numbers. Tollu and Yalcinkaya [3] dealt with the
dynamical behavior of the positive solutions for the fol-
lowing three-dimensional system of rational difference
equations:

un+1 �
α1un−1

β1 + c1v
p
n−2

,

vn+1 �
α2vn−1

β2 + c2w
q
n−2

,

wn+1 �
α3wn−1

β3 + c3u
r
n−2

, n ∈ N0,

(3)

where the parameters and initial conditions are positive real
numbers. For more papers on this topic, see, for example,
[4–29].

In the present paper, we investigate the global behavior
of the positive solutions of the k-dimensional system of
difference equations:
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u
(1)
n+1 �

α1u
(1)
n−1

β1 + c1 u
(2)
n−2􏼐 􏼑

r1
, u

(2)
n+1 �

α2u
(2)
n−1

β2 + c2 u
(3)
n−2􏼐 􏼑

r2
, . . . , u

(k)
n+1

�
αku

(k)
n−1

βk + ck u
(1)
n−2􏼐 􏼑

rk
, n ∈ N0,

(4)

where the initial conditions u
(i)
−l (l � 0, 1, 2) are nonnegative

real numbers and the parameters αi, βi, ci, and ri are positive
real numbers for i � 1, 2, . . . , k, by extending some recent
results in the literature.

Remark 1. /is paper extends the results of studies in the
references [1–3]. /at is to say, if we take k � 1, then system
(4) reduces equation (1). If we take k � 2, then system (4)
reduces system (2). Finally, if we take k � 3, then system (4)
reduces system (3). So, system (4) is a natural generalization
of equation (1), system (2), and system (3).

Note that system (4) can be written as

x
(1)
n+1 �

a1x
(1)
n−1

1 + x
(2)
n−2􏼐 􏼑

r1
, x

(2)
n+1 �

a2x
(2)
n−1

1 + x
(3)
n−2􏼐 􏼑

r2
, . . . , x

(k)
n+1

�
akx

(k)
n−1

1 + x
(1)
n−2􏼐 􏼑

rk
, n ∈ N0,

(5)

by the change of variables u(1)
n � (βk/ck)1/rk x(1)

n ,
u(2)

n � (β1/c1)
(1/r1)x(2)

n , . . ., u(k)
n � (βk− 1/ck−1)

(1/rk−1)x(k)
n with

ai � (αi/βi) for i � 1, 2, . . . k. So, we will consider system (5)
instead of system (4) from now.

2. Preliminaries

Let I1, I2, . . . , Ik be some intervals of real numbers and
f1: I31 × I32 × · · · × I3k⟶ I1, f2: I31 × I32 × · · · × I3k⟶ I2,

. . . , fk: I31 × I32 × · · · × I3k⟶ Ik be continuously differen-
tiable functions. /en, for initial conditions (u

(1)
0 , u

(1)
−1 ,

u
(1)
−2 , u

(2)
0 , u

(2)
−1 , u

(2)
−2 , . . . , u

(k)
0 , u

(k)
−1 , u

(k)
−2 ) ∈ I31 × I32 × · · · × I3k,

the system of difference equations,

u
(1)
n+1 � f1 u

(1)
n , u

(1)
n−1, u

(1)
n−2, u

(2)
n , u

(2)
n−1, u

(2)
n−2, . . . , u

(k)
n , u

(k)
n−1, u

(k)
n−2􏼐 􏼑,

u
(2)
n+1 � f2 u

(1)
n , u

(1)
n−1, u

(1)
n−2, u

(2)
n , u

(2)
n−1, u

(2)
n−2, . . . , u

(k)
n , u

(k)
n−1, u

(k)
n−2􏼐 􏼑,

⋮

u
(k)
n+1 � fk u

(1)
n , u

(1)
n−1, u

(1)
n−2, u

(2)
n , u

(2)
n−1, u

(2)
n−2, . . . , u

(k)
n , u

(k)
n−1, u

(k)
n−2􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n ∈ N0, (6)

has the unique solution (u(1)
n , u(2)

n , . . . , u(k)
n )􏼈 􏼉
∞
n�−2. Also, an

equilibrium point of system (6) is a point
(u(1), u(2), . . . , u(k)) that satisfies the following system:

u
(1)

� f1 u
(1)

, u
(1)

, u
(1)

, u
(2)

, u
(2)

, u
(2)

, . . . , u
(k)

, u
(k)

, u
(k)

􏼐 􏼑,

u
(2)

� f2 u
(1)

, u
(1)

, u
(1)

, u
(2)

, u
(2)

, u
(2)

, . . . , u
(k)

, u
(k)

, u
(k)

􏼐 􏼑,

⋮

u
(k)

� fk u
(1)

, u
(1)

, u
(1)

, u
(2)

, u
(2)

, u
(2)

, . . . , u
(k)

, u
(k)

, u
(k)

􏼐 􏼑.

(7)

We rewrite system (6) in the vector form

Un+1 � F Un( 􏼁, n ∈ N0, (8)

where Un � (u(1)
n , un− 1

(1), u
(1)
n− 2, u(2)

n , u
(2)
n− 1, u

(2)
n− 2, . . . , u(k)

n ,

u
(k)
n− 1, u

(k)
n− 2)

T, F is a vector map such that F: I31 × I32 × · · · ×

I3k⟶ I31 × I32 × · · · × I3k, and

F

v
(1)
0

v
(1)
1

v
(1)
2

v
(2)
0

v
(2)
1

v
(2)
2
⋮
v

(k)
0

v
(k)
1

v
(k)
2
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�

f1 v
(1)
0 , v

(1)
1 , v

(1)
2 , v

(2)
0 , v

(2)
1 , v

(2)
2 , . . . , v

(k)
0 , v

(k)
1 , v

(k)
2􏼐 􏼑

v
(1)
0

v
(1)
1

f2 v
(1)
0 , v

(1)
1 , v

(1)
2 , v

(2)
0 , v

(2)
1 , v

(2)
2 , . . . , v

(k)
0 , v

(k)
1 , v

(k)
2􏼐 􏼑

v
(2)
0

v
(2)
1
⋮

fk v
(1)
0 , v

(1)
1 , v

(1)
2 , v

(2)
0 , v

(2)
1 , v

(2)
2 , . . . , v

(k)
0 , v

(k)
1 , v

(k)
2􏼐 􏼑

v
(k)
0

v
(k)
1
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· (9)
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It is clear that if an equilibrium point of system (6) is
(u(1), u(2), . . . , u(k)), then the corresponding equilibrium
point of system (8) is the point U � (u(1), u(1), u(1),

u(2), u(2), u(2), . . . , u(k), u(k), u(k))T.
In this study, we denote by ‖ · ‖ any convenient vector

norm and the corresponding matrix norm. Also, we denote
by U0 ∈ I31 × I32 × · · · × I3k a initial condition of system (8).

Definition 1. Let U be an equilibrium point of system (8).
/en,

(i) /e equilibrium point U is called stable if for every
ϵ> 0 there exists δ > 0 such that ‖U0 − U‖< δ implies
‖Un − U‖< ε, for all n≥ 0. Otherwise, the equilib-
rium point U is called unstable.

(ii) /e equilibrium point U is called locally asymp-
totically stable if it is stable and there exists c> 0
such that ‖U0 − U‖< c and Un⟶ U as n⟶∞.

(iii) /e equilibrium point U is called a global attractor if
Un⟶ U as n⟶∞.

(iv) /e equilibrium point U is called globally asymp-
totically stable if it is both locally asymptotically
stable and global attractor.

/e linearized system of (8) evaluated at the equilibrium
U is

Zn+1 � JFZn, n ∈ N0, (10)

where JF is the Jacobian matrix of F at the equilibrium U.
/e characteristic equation of system (10) about the equi-
librium U is

P(λ) � a0λ
3k

+ a1λ
3k− 2

+ · · · + a3k−1λ + a3k � 0, (11)

with real coefficients and a0 > 0.

Theorem 1 (see [30]). Assume that U is a equilibrium point
of system (8). If all eigenvalues of the Jacobian matrix JF

evaluated at U lie in the open unit disk |λ|< 1, then U is locally
asymptotically stable. If one of them has a modulus greater
than one, then U is unstable.

3. Global Stability

In this section, we investigate the stability of the two
equilibrium points of system (5). When ai ∈ (0, 1) for
i � 1, 2, . . . , k, the point X0 � (x

(1)
1 , x

(2)
1 , . . . , x

(k)
1 ) �

(0, 0, . . . , 0) is the unique nonnegative equilibrium point of
system (5). When ai ∈ (1,∞) for i � 1, 2, . . . , k, the unique
positive equilibrium point of system (5) is

Xai
� x

(1)
2 , x

(2)
2 , . . . , x

(k)
2􏼐 􏼑 � ak − 1( 􏼁

1/rk( ), a1 − 1( 􏼁
1/r1( ), . . . , ak− 1 − 1( 􏼁

1/rk−1( )􏼒 􏼓. (12)

Theorem 2. :e following statements hold:

(i) If ai ∈ (0, 1) for i � 1, 2, . . . , k, then the equilibrium
point (x

(1)
1 , x

(2)
1 , . . . , x

(k)
1 ) of system (5) is locally

asymptotically stable
(ii) If ai ∈ (1,∞) for i � 1, 2, . . . , k, then the equilibrium

point (x
(1)
1 , x

(2)
1 , . . . , x

(k)
1 ) of system (5) is unstable

(iii) If ai ∈ (1,∞) for i � 1, 2, . . . , k, then the positive
equilibrium point (x

(1)
2 , x

(2)
2 , . . . , x

(k)
2 ) of system (5)

is unstable

Proof

(i) /e characteristic equation of JF(X0) is given by

P(λ) � λk λ2 − a1􏼐 􏼑 λ2 − a2􏼐 􏼑, . . . , λ2 − ak􏼐 􏼑 � 0. (13)

It is easy to see that if ai ∈ (0, 1) for i � 1, 2, . . . , k,
then all the roots of the characteristic equation (13)
lie in the open unit disk |λ|< 1. So, the equilibrium
point (x

(1)
1 , x

(2)
1 , . . . , x

(k)
1 ) of (5) is locally asymp-

totically stable.
(ii) It is clearly seen that if ai ∈ (1,∞) for i � 1, 2, . . . , k,

then some roots of characteristic equation (13) have
absolute value greater than one. In this case, the
equilibrium point (x

(1)
1 , x

(2)
1 , . . . , x

(k)
1 ) of (5) is

unstable.

(iii) /e characteristic polynomial of JF(Xai
) is given by

P(λ) � 􏽘
k

j�0
(−1)

j
k

j

⎛⎝ ⎞⎠λ3k− 2j
+(−1)

k+1
􏽙

k

i�1

ri ai − 1( 􏼁

ai

,

(14)

where k

j
􏼠 􏼡 is the binomial coefficient. It is clear that if

k is an odd number, then P(λ) has a root in interval
(−∞, −1) since

P(−1) � 􏽙
k

i�1

ri ai − 1( 􏼁

ai

> 0,

lim
λ⟶−∞

P(λ) � −∞·

(15)

Also, if k is an even number, then P(λ) has a root in
interval (1,∞) since

P(1) � − 􏽙
k

i�1

ri ai − 1( 􏼁

ai

< 0,

lim
λ⟶∞

P(λ) �∞·

(16)

So, from /eorem 1, we can say that if ai ∈ (1,∞) for
i � 1, 2, . . . , k, then the positive equilibrium point
(x

(1)
2 , x

(2)
2 , . . . , x

(k)
2 ) of system (5) is unstable. □
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Theorem 3. If ai ∈ (0, 1) for i � 1, 2, . . . , k, then the equi-
librium point (x

(1)
1 , x

(2)
1 , . . . , x

(k)
1 ) of system (5) is globally

asymptotically stable.

Proof. From /eorem 2, we know that if ai ∈ (0, 1) for
i � 1, 2, . . . , k, then the equilibrium point (x

(1)
1 , x

(2)
1 ,

. . . , x
(k)
1 ) of system (5) is locally asymptotically stable.

Hence, it suffices to show that

lim
n⟶∞

x
(1)
n , x

(2)
n , . . . , x

(k)
n􏼐 􏼑 � (0, 0, . . . , 0). (17)

From system (5), we have that

0≤x
(1)
n+1 �

a1x
(1)
n−1

1 + x
(2)
n− 2􏼐 􏼑

r1
≤ a1x

(1)
n−1,

0≤x
(2)
n+1 �

a2x
(2)
n−1

1 + x
(3)
n− 2􏼐 􏼑

r2
≤ a2x

(2)
n−1,

⋮

0≤ x
(k)
n+1 �

akx
(k)
n−1

1 + x
(1)
n− 2􏼐 􏼑

rk
≤ akx

(k)
n−1,

(18)

for n ∈ N0. From (18), we have by induction

0≤ x
(i)
2n−l ≤ a

n
i x

(i)
−l , (19)

where x
(i)
−l (l � 0, 1) for i � 1, 2, . . . , k are the initial condi-

tions. Consequently, by taking limits of inequalities in (19)
when ai ∈ (0, 1) for i � 1, 2, . . . , k, we have the limit in (17)
which completes the proof. □

4. Oscillation Behavior and Existence of
Unbounded Solutions

In the following result, we are concerned with the oscillation
of positive solutions of system (5) about the equilibrium
point (x

(1)
2 , x

(2)
2 , . . . , x

(k)
2 ).

Theorem 4. Assume that ai ∈ (1,∞), and let (x(1)
n , x(2)

n ,􏼈

. . . , x(k)
n )}∞n�−2 be a positive solution of system (5) such that

x
(i)
−2 , x

(i)
0 ≥ x

(i)
2 ,

x
(i)
−1 < x

(i)
2 ,

(20)

or

x
(i)
−2 , x

(i)
0 < x

(i)
2 ,

x
(i)
−1 ≥ x

(i)
2 ,

(21)

for i � 1, 2, . . . , k. :en, (x(1)
n , x(2)

n , . . . , x(k)
n )􏼈 􏼉
∞
n�−2 oscillates

about the equilibrium point (x
(1)
2 , x

(2)
2 , . . . , x

(k)
2 ) with

semicycles of length one.

Proof. Assume that (20) holds. (/e case where (21) holds is
similar and will be omitted.) From (5), we have

x
(1)
1 �

a1x
(1)
−1

1 + x
(2)
− 2􏼐 􏼑

r1
<

a1x
(1)
2

1 + x
(2)
2􏼐 􏼑

r1
� x

(1)
2 , x

(2)
1 �

a2x
(2)
−1

1 + x
(3)
− 2􏼐 􏼑

r2
<

a2x
(2)
2

1 + x
(3)
2􏼐 􏼑

r2
� x

(2)
2 ,⋮x

(k)
1 �

akx
(k)
−1

1 + x
(1)
− 2􏼐 􏼑

rk
<

akx
(k)
2

1 + x
(1)
2􏼐 􏼑

rk
� x

(k)
2 , x

(1)
2

�
a1x

(1)
0

1 + x
(2)
− 1􏼐 􏼑

r1
≥

a1x
(1)
2

1 + x
(2)
2􏼐 􏼑

r1
� x

(1)
2 , x

(2)
2 �

a2x
(2)
0

1 + x
(3)
− 1􏼐 􏼑

r2
≥

a2x
(2)
2

1 + x
(3)
2􏼐 􏼑

r2
� x

(2)
2 ,⋮x

(k)
2 �

akx
(k)
0

1 + x
(1)
− 1􏼐 􏼑

rk
≥

akx
(k)
2

1 + x
(1)
2􏼐 􏼑

rk
� x

(k)
2 .

(22)

/en, the proof follows by induction.
In the following theorem, we show the existence of

unbounded solutions for system (5). □
Theorem 5. Assume that ai ∈ (1,∞) for i � 1, 2, . . . , k, then
system (5) possesses an unbounded solution.

Proof. From/eorem 4, we can assume that, without loss of
generality, the solution (x(1)

n , x(2)
n , . . . , x(k)

n )􏼈 􏼉
∞
n�−2 of system

(5) is such that x
(i)
2n−1 < x

(i)
2 and x

(i)
2n >x

(i)
2 for i � 1, 2, . . . , k

and n ∈ N0. /en, we have
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x
(1)
2n+2 �

a1x
(1)
2n

1 + x
(2)
2n− 1􏼐 􏼑

r1
>

a1x
(1)
2n

1 + x
(2)
2􏼐 􏼑

r1
�

a1x
(1)
2n

1 + a1 − 1( 􏼁
� x

(1)
2n ,

x
(2)
2n+2 �

a2x
(2)
2n

1 + x
(3)
2n− 1􏼐 􏼑

r2
>

a2x
(2)
2n

1 + x
(3)
2􏼐 􏼑

r2
�

a2x
(2)
2n

1 + a2 − 1( 􏼁
� x

(2)
2n ,

⋮

x
(k)
2n+2 �

akx
(k)
2n

1 + x
(1)
2n− 1􏼐 􏼑

rk
>

akx
(k)
2n

1 + x
(1)
2􏼐 􏼑

rk
�

akx
(k)
2n

1 + ak − 1( 􏼁
� x

(k)
2n ,

x
(1)
2n+3 �

a1x
(1)
2n+1

1 + x
(2)
2n􏼐 􏼑

r1
<

a1x
(1)
2n+1

1 + x
(2)
2􏼐 􏼑

r1
�

a1x
(1)
2n+1

1 + a1 − 1( 􏼁
� x

(1)
2n+1,

x
(2)
2n+3 �

a2x
(2)
2n+1

1 + x
(3)
2n􏼐 􏼑

r2
<

a2x
(2)
2n+1

1 + x
(3)
2􏼐 􏼑

r2
�

a2x
(2)
2n+1

1 + a2 − 1( 􏼁
� x

(2)
2n+1,

⋮

x
(k)
2n+3 �

akx
(k)
2n+1

1 + x
(1)
2n􏼐 􏼑

rk
<

akx
(k)
2n+1

1 + x
(1)
2􏼐 􏼑

rk
�

akx
(k)
2n+1

1 + ak − 1( 􏼁
� x

(k)
2n+1,

(23)

from which it follows that

lim
n⟶∞

x
(1)
2n , x

(2)
2n , . . . , x

(k)
2n􏼐 􏼑 � (∞,∞, . . . ,∞),

lim
n⟶∞

x
(1)
2n+1, x

(2)
2n+1, . . . , x

(k)
2n+1􏼐 􏼑 � (0, 0, . . . , 0),

(24)

which completes the proof. □

5. Periodicity

In this section, we investigate the existence of period-two
solution of system (5).

Theorem 6. If ai � 1 for i � 1, 2, . . . , k, then system (5)
possesses the prime period-two solution

. . . , (0, 0, . . . , 0,φ), (0, 0, . . . , 0,ψ), (0, 0, . . . , 0,φ), (0, 0, . . . , 0,ψ), . . . ,

(25)

with φ,ψ > 0. Furthermore, every solution of system (5)
converges to a period-two solution.

Proof. Assume that ai � 1 for i � 1, 2, . . . , k, and let
(x(1)

n , x(2)
n , . . . , x(k)

n )􏼈 􏼉
∞
n�−2 be a solution of system (5). /en,

from system (5), we have

x
(1)
2n+1 �

x
(1)
2n−1

1 + x
(2)
2n− 2􏼐 􏼑

r1
,

x
(1)
2n+2 �

x
(1)
2n

1 + x
(2)
2n− 1􏼐 􏼑

r1
,

x
(2)
2n+1 �

x
(2)
2n−1

1 + x
(3)
2n− 2􏼐 􏼑

r2
,

x
(2)
2n+2 �

x
(2)
2n

1 + x
(3)
2n− 1􏼐 􏼑

r2
,

⋮

x
(k)
2n+1 �

x
(k)
2n−1

1 + x
(1)
2n− 2􏼐 􏼑

rk
,

x
(k)
2n+2 �

x
(k)
2n

1 + x
(1)
2n− 1􏼐 􏼑

rk
,

(26)

for n ∈ N0. From (26), we obtain

x
(1)
2n−1 � x

(1)
−1 􏽙

n−1

i�0

1
1 + x

(2)
2i−2􏼐 􏼑

r1
⎛⎝ ⎞⎠,

x
(1)
2n � x

(1)
0 􏽙

n−1

i�0

1
1 + x

(2)
2i−1􏼐 􏼑

r1
⎛⎝ ⎞⎠,

x
(2)
2n−1 � x

(2)
−1 􏽙

n−1

i�0

1
1 + x

(3)
2i−2􏼐 􏼑

r2
⎛⎝ ⎞⎠,

x
(2)
2n � x

(2)
0 􏽙

n−1

i�0

1
1 + x

(3)
2i−1􏼐 􏼑

r2
⎛⎝ ⎞⎠,

⋮

x
(k)
2n−1 � x

(k)
−1 􏽙

n−1

i�0

1
1 + x

(1)
2i−2􏼐 􏼑

rk

⎛⎝ ⎞⎠,

x
(k)
2n � x

(k)
0 􏽙

n−1

i�0

1
1 + x

(1)
2i−1􏼐 􏼑

rk

⎛⎝ ⎞⎠,

(27)

for n ∈ N0. If x
(i)
−l � 0 for l � 0, 1 and i � 1, 2, . . . , k − 1, then

x(i)
n � 0 for i � 1, 2, . . . , k − 1 and (x

(k)
2n−1, x

(k)
2n ) � ( x

(k)
−1 , x

(k)
0 )

for n ∈ N0. /erefore,

. . . , (0, 0, . . . , 0,φ), (0, 0, . . . , 0,ψ), (0, 0, . . . , 0,φ), (0, 0, . . . , 0,ψ), . . .

(28)
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is a period-two solution of system (5) with x
(k)
−2 � x

(k)
0 �

φ> 0 and x
(k)
−1 � ψ > 0. Furthermore, from (26), we have

x
(1)
2n+1 − x

(1)
2n−1 � −

x
(1)
2n−1 x

(2)
2n−2􏼐 􏼑

r1

1 + x
(2)
2n− 2􏼐 􏼑

r1
≤ 0,

x
(2)
2n+1 − x

(2)
2n−1 � −

x
(2)
2n−1 x

(3)
2n−2􏼐 􏼑

r2

1 + x
(3)
2n− 2􏼐 􏼑

r2
≤ 0,

⋮

x
(k)
2n+1 − x

(k)
2n−1 � −

x
(k)
2n−1 x

(1)
2n−2􏼐 􏼑

rk

1 + x
(1)
2n− 2􏼐 􏼑

rk
≤ 0,

(29)

x
(1)
2n+2 − x

(1)
2n � −

x
(1)
2n x

(2)
2n−1􏼐 􏼑

r1

1 + x
(2)
2n− 1􏼐 􏼑

r1
≤ 0,

x
(2)
2n+2 − x

(2)
2n � −

x
(2)
2n x

(3)
2n−1􏼐 􏼑

r2

1 + x
(3)
2n− 1􏼐 􏼑

r2
≤ 0,

⋮

x
(k)
2n+2 − x

(k)
2n � −

x
(k)
2n x

(1)
2n−1􏼐 􏼑

rk

1 + x
(1)
2n− 1􏼐 􏼑

rk
≤ 0.

(30)

From (29) and (30), we obtain x
(i)
2n+1 ≤x

(i)
2n−1 and

x
(i)
2n+2 ≤x

(i)
2n for i � 1, 2, . . . , k. /at is, the sequences (x

(i)
2n−1)

and (x
(i)
2n ) for i � 1, 2, . . . , k are nonincreasing. On the other

hand, from (26), we have the inequalities

x
(1)
2n−1 � x

(1)
−1 􏽙

n−1

i�0

1
1 + x

(2)
2i−2􏼐 􏼑

r1
⎛⎝ ⎞⎠≤x

(1)
−1 ,

x
(1)
2n � x

(1)
0 􏽙

n−1

i�0

1
1 + x

(2)
2i−1􏼐 􏼑

r1
⎛⎝ ⎞⎠≤x

(1)
0 ,

x
(2)
2n−1 � x

(2)
−1 􏽙

n−1

i�0

1
1 + x

(3)
2i−2􏼐 􏼑

r2
⎛⎝ ⎞⎠≤x

(2)
−1 ,

x
(2)
2n � x

(2)
0 􏽙

n−1

i�0

1
1 + x

(3)
2i−1􏼐 􏼑

r2
⎛⎝ ⎞⎠≤x

(2)
0 ,

⋮

x
(k)
2n−1 � x

(k)
−1 􏽙

n−1

i�0

1
1 + x

(1)
2i−2􏼐 􏼑

rk

⎛⎝ ⎞⎠≤ x
(k)
−1 ,

x
(k)
2n � x

(k)
0 􏽙

n−1

i�0

1
1 + x

(1)
2i−1􏼐 􏼑

rk

⎛⎝ ⎞⎠≤ x
(k)
0 ,

(31)

which show the boundedness of the solutions. Hence, the
odd-index terms tend to one periodic point and the even-
index terms tend to another periodic point. /is completes
the proof. □

6. Numerical Examples

In this section, we give some numerical examples to support
our theoretical results related to system (5) with some re-
strictions on the parameters ai and ri for i � 1, 2, . . . k.

Example 1. If k � 3, x(1)
n � xn, x(2)

n � yn, x(3)
n � zn, r1 � 2,

r2 � 3, and r3 � 4 in system (5), we obtain the following
system:

xn+1 �
a1xn−1

1 + yn−2( 􏼁
2,

yn+1 �
a2yn−1

1 + zn−2( 􏼁
3,

zn+1 �
a3zn−1

1 + xn−2( 􏼁
4.

(32)

We visualize the solutions of system (32) in Figures 1–3
for the initial conditions x−2 � 1.34, x−1 � 2.13, x0 � 3.1,
y−2 � 0.17, y−1 � 4.03, y0 � 2.21, z−2 � 0.32, z−1 � 2.76, and
z0 � 3.12.

Example 2. If k � 4, x(1)
n � xn, x(2)

n � yn, x(3)
n � zn,

x(4)
n � pn, r1 � 2, r2 � 3, r3 � 4, and r4 � 5 in system (5), we

obtain the following system:

xn+1 �
a1xn−1

1 + yn−2( 􏼁
2,

yn+1 �
a2yn−1

1 + zn−2( 􏼁
3,

zn+1 �
a3zn−1

1 + pn−2( 􏼁
4,

pn+1 �
a4pn−1

1 + xn−2( 􏼁
5.

(33)

We visualize the solutions of system (33) in Figures 4–6
for the initial conditions x−2 � 1.34, x−1 � 2.13, x0 � 3.1,
y−2 � 0.17, y−1 � 4.03, y0 � 2.21, z−2 � 0.32, z−1 � 2.76,
z0 � 3.12, p−2 � 3.27, p−1 � 1.33, and p0 � 2.78.

Example 3. If k � 5, x(1)
n � xn, x(2)

n � yn, x(3)
n � zn,

x(4)
n � pn, and x(5)

n � qn in system (5), we obtain the fol-
lowing system:
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Figure 1: /e solutions of system (32) when a1 � 1.12, a2 � 1.13, and a3 � 1.14.
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Figure 2: /e solutions of system (32) when a1 � 1, a2 � 1, and a3 � 1.
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Figure 3: /e solutions of system (32) when a1 � 0.91, a2 � 0.92, and a3 � 0.93.
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Figure 5: /e solutions of system (33) when a1 � 1, a2 � 1, a3 � 14, and a4 � 1.
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Figure 6: /e solutions of system (33) when a1 � 0.91, a2 � 0.92, a3 � 0.93, and a4 � 0.94.
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Figure 4: /e solutions of system (33) when a1 � 1.12, a2 � 1.13, a3 � 1.14, and a4 � 1.15.
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Figure 7: /e solutions of system (34) when a1 � 1.12, a2 � 1.13, a3 � 1.14, a4 � 1.15, and a5 � 1.16.
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Figure 8: /e solutions of system (34) when a1 � 1, a2 � 1, a3 � 14, a4 � 1, and a5 � 1.
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Figure 9: /e solutions of system (34) when a1 � 0.91, a2 � 0.92, a3 � 0.93, a4 � 0.94, and a1 � 0.95.
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xn+1 �
a1xn−1

1 + yn−2( 􏼁
2,

yn+1 �
a2yn−1

1 + zn−2( 􏼁
3,

zn+1 �
a3zn−1

1 + pn−2( 􏼁
4,

pn+1 �
a4pn−1

1 + qn−2( 􏼁
5,

qn+1 �
a5qn−1

1 + xn−2( 􏼁
6,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)

with r1 � 2, r2 � 3, r3 � 4, r4 � 5, and r5 � 6. We visualize
the solutions of system (34) in Figures 7–9 for the initial
conditions x−2 � 1.34, x−1 � 2.13, x0 � 3.1, y−2 � 0.17,
y−1 � 4.03, y0 � 2.21, z−2 � 0.32, z−1 � 2.76, z0 � 3.12,
p−2 � 3.27, p−1 � 1.33, p0 � 2.78, q−2 � 0.32, q−1 � 2.16, and
q0 � 3.91.

7. Conclusion

In this study, we have generalized some of the results in the
literature. As shown in Section 1, equation (1) was developed
systematically. By this study, we ended this development.
More concretely, we investigated the local asymptotic sta-
bility, global asymptotic stability, periodicity, and oscillation
behavior of system (5) which is the k-dimensional gener-
alization of equation (1). According to our findings, our
results are consistent with the results of the paper [1] in the
case of k � 1. Similarly, our results are in line with the results
of the papers [2, 3] in the case of k � 2 and k � 3,
respectively.
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Differential equations of second order appear in a wide variety of applications in physics, mathematics, and engineering. In this
paper, necessary and sufficient conditions are established for oscillations of solutions to second-order half-linear delay differential
equations of the form (ς(y)(u′(y))a)′ + p(y)uc(ϑ(y)) � 0, fory≥y0, under the assumption 􏽒

∞
(ς(η))− (1/a) �∞. Two cases are

considered for a< c and a> c, where a and c are the quotients of two positive odd integers. Two examples are given to show the
effectiveness and applicability of the result.

1. Introduction

Differential equations (DEs) have received a lot of attention,
and it is an active research area among scientists and en-
gineers [1–8]. *e DEs have ability to formulate many
complex phenomena in various fields such as biology, fluid
mechanics, plasma physics, fluid mechanics, and optics;
many exact and numerical schemes have been being derived
such as [9–15]. Differential equation of second order appears
in models as well as in physical applications such as fluid
dynamics, electromagnetism, acoustic vibrations and
quantum mechanics, biological, physical and chemical
phenomena, optimization, mathematics of networks, and
dynamical systems (see [16–24]).

In this article, we consider the differential equation

ς(y) u′(y)( 􏼁
a

􏼐 􏼑′ + p(y)u
c
(ϑ(y)) � 0, fory≥y0, (1)

where a and c are the quotient of two positive odd integers,
and the functions p, ς, and ϑ are continuous that satisfy the
conditions stated below:

(A1) ϑ ∈ C([0,∞),R), ϑ(y)<y, limy⟶∞ϑ(y) �∞.
(A2) ς ∈ C1([0,∞),R), p ∈ C([0,∞),R); 0< ς(y),
0≤p(y) for all y≥ 0; p(y) is not identically zero in any
interval [b,∞).
(A3) Υ(y) � 􏽒

y

y1
ς− 1/a(η)dη with limy⟶∞Υ(y) �∞.

(A4) the existence of a differentiable function ϑ0 such
that 0< ϑ0(y)≤ ϑ(y), for ϑ0′(y)≥ ϑ0 > 0, fory≥y0.

In [25, 26], Baculǐkovǎ and Džurina have considered

ς(y) z′(y)( 􏼁
a

􏼐 􏼑′ + p(y)u
c
(ϑ(y)) � 0,

z(y) � u(y) + q(y)u(τ(y)), y≥y0,
(2)
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and obtained oscillation criteria for the solutions of (2) using
comparison techniques when a � c � 1, 0≤ q(y)<∞, and
limy⟶∞Υ(y) �∞. In the same technique, Džurina and
Dzurina [27] have studied the oscillatory behavior of the
solutions of (2) under the assumptions 0≤ q(y)<∞ and
limy⟶∞Υ(y) �∞. In [28], Bohner et al. have studied the
oscillatory behavior of solutions of (2) under a � c,
limy⟶∞Υ(y)<∞, and 0≤ q(y)< 1. Grace et al. [29] have
studied the oscillatory behavior of (2) when a � c and
limy⟶∞Υ(y)<∞ and limy⟶∞Υ(y) �∞ and
0≤ q(y)< 1. In [30], Ali has studied the oscillatory behavior
of the solutions of (2), under the assumptions
limy⟶∞Υ(y)<∞ and q(y)≥ 0. Karpuz and Santra [31]
have studied the oscillatory behavior of

ς(y)(u(y) + q(y)u(τ(y)))′( 􏼁′ + p(y)f(u(ϑ(y))) � 0,

(3)

by considering the assumptions limy⟶∞Υ(y)<∞ and
limy⟶∞Υ(y) �∞ for different ranges of the neutral co-
efficient q.

For further work on the oscillation of this type of
equations, we refer the readers to the references. Note that
the majority of works consider only sufficient conditions,
and merely a few consider both necessary and sufficient
conditions. Hence, the objective of this work is to establish
both necessary and sufficient conditions for the oscillation of
solutions of (1) without using the comparison and the Riccati
techniques. In this paper, we restrict our attention to the
study (1), which includes the class of functional differential
equations of neutral type.

Remark 1. When the domain is not specified explicitly, all
functional inequalities considered in this paper are assumed
to hold eventually, i.e., they are satisfied for all y large
enough.

2. Necessary and Sufficient Conditions

Lemma 1. Let (A1)–(A3) hold and that u is an eventually
positive solution of (1). ?en, there exist y1 ≥y0 and d> 0
such that

0< u(y)≤ dΥ(y), (4)

Υ(y) 􏽚
∞

y
p(ζ)u

c
(ϑ(ζ))dζ􏼢 􏼣

1/a

≤ u(y), (5)

for y≥y1.

Proof. Let u be an eventually positive solution of (1). *en,
by (A1), there exists a y∗ such that u(y)> 0 and u(ϑ(y))> 0
for all y≥y∗. From (1) it follows that

ς(y) u′(y)( 􏼁
a

􏼐 􏼑′ � − p(y)u
c
(ϑ(y))≤ 0. (6)

*erefore, ς(y)(u′(y))a is nonincreasing for y≥y∗.
Next, we show that ς(y)(u′(y))a is positive. By contra-
diction, assume that ς(y)(u′(y))a ≤ 0 at a certain time

y≥y∗. Using that p is not identically zero on any interval
[b,∞) and by (6), there exists y1 ≥y∗ such that

ς(y) u′(y)( 􏼁
a ≤ ς y1( 􏼁 u′ y1( 􏼁( 􏼁

a < 0, for ally≥y1. (7)

Recall that a is the quotient of two positive odd integers.
*en,

u′(y)≤
ς y1( 􏼁

ς(y)
􏼠 􏼡

1/a

u′ y1( 􏼁, fory≥y1. (8)

Integrating from y2 to y, we have

u(y)≤ u y1( 􏼁 + ς y1( 􏼁( 􏼁
1/a

u′ y1( 􏼁Υ(y). (9)

By (A3), the right-hand side approaches − ∞; then,
limy⟶∞u(y) � − ∞. *is is a contradiction to the fact that
u(y)> 0. *erefore, ς(y)(u′(y))a > 0 for all y≥y∗. From
ς(y)(u′(y))a being nonincreasing, we have

u′(y)≤
ς y1( 􏼁

ς(y)
􏼠 􏼡

1/a

u′ y1( 􏼁, fory≥y1. (10)

Integrating this inequality from y1 to y and using that u

is continuous,

u(y)≤ u y1( 􏼁 + ς y1( 􏼁( 􏼁
1/a

u′ y1( 􏼁Υ(y). (11)

Since limy⟶∞Υ(y) �∞, there exists a positive con-
stant d such that (4) holds.

Since ς(y)(u′(y))a is positive and nonincreasing,
limy⟶∞ς(y)(u′(y))a exists and is nonnegative. Integrating
(1) from y to b, we have

ς(b) u′(b)( 􏼁
a

− ς(y) u′(y)( 􏼁
a

+ 􏽚
∞

y
p(η)u

c
(ϑ(η))dη � 0.

(12)

Letting limit as b⟶∞, we get

ς(y) u′(y)( 􏼁
a ≥ 􏽚
∞

y
p(η)u

c
(ϑ(η))dη. (13)

*en,

u′(y)≥
1

ς(y)
􏽚
∞

y
p(η)u

c
(ϑ(η))dη􏼢 􏼣

1/a

. (14)

Since u(y1)> 0, integrating the above inequality yields

u(y)≥ 􏽚
y

y1

1
ς(η)

􏽚
∞

η
p(ζ)u

c
(ϑ(ζ))dζ􏼢 􏼣

1/a

dη. (15)

Since the integrand is positive, we can increase the lower
limit of integration from η to y and then use the definition of
Υ(y) to obtain

u(y)≥Υ(y) 􏽚
∞

y
p(ζ)u

c
(ϑ(ζ))dζ􏼢 􏼣

1/a

, (16)

which yields (5). □

Theorem 1. Assume that there exists a constant b1, the
quotient of two positive odd integers, such that 0< c< b1 < a.

2 Mathematical Problems in Engineering



If (A1)–(A3) hold, then each solution of (1) is oscillatory
if and only if

􏽚
∞

0
p(ζ)Υc

(ϑ(ζ))dζ �∞. (17)

Proof. On the contrary, we assume that u is eventually
positive solution. So, Lemma 1 holds, and then there exists
y1 ≥y0 such that

u(y)≥Υ(y)w
1/a

(y)≥ 0, fory≥y1, (18)

where

w(y) � 􏽚
∞

y
p(ζ)u

c
(ϑ(ζ))dζ. (19)

Computing the derivative of w, we have

w′(y) � − p(y)u
c
(ϑ(y)). (20)

*us, w is nonnegative and nonincreasing. Since u> 0,
by (A2), it follows that p(y)uc(ϑ(y)) cannot be identically
zero in any interval [b,∞); thus, w′ cannot be identically
zero, and w cannot be constant on any interval [b,∞).
*erefore, w(y)> 0 for y≥y1. Computing the derivative, we
have

w
1− b1/a(y)􏼐 􏼑′ � 1 −

b1

a
􏼠 􏼡w

− b1/a(y)w′(y). (21)

Integrating (21) from y2 to y and using that w> 0, we
have

w
1− b1/a y2( 􏼁≥ 1 −

b1

a
􏼠 􏼡 − 􏽚

y

y2

w
− b1/a(ζ)w′(ζ)dζ􏼢 􏼣

� 1 −
b1

a
􏼠 􏼡 􏽚

y

y2

w
− b1/a(ζ) p(ζ)u

c
(ϑ(ζ))( 􏼁dζ􏼢 􏼣.

(22)

Next, we find a lower bound for the right-hand side of
(25), independent of the solution u. By (4) and (19), we have

u
c
(y) � u

c− b1(y)u
b1(y)≥ (dΥ(y))

c− b1u
b1(y)

≥ (dΥ(y))
c− b1 Υ(y)w

1/a
(y)􏼐 􏼑

b1

� d
c− b1Υc

(y)w
b1/a(y), fory≥y2.

(23)

Since w is nonincreasing, b1/a> 0, and ϑ(η)< η, it fol-
lows that

u
c
(ϑ(η))≥d

c− b1Υc
(ϑ(η))w

b1/a(ϑ(η))

≥d
c− b1Υc

(ϑ(η))w
b1/a(η).

(24)

Going back to (22), we have

w
1− b1/a y2( 􏼁≥ 1 −

b1

a
􏼠 􏼡d

c− b1 􏽚
y

y2

p(η)Υc
(ϑ(η))dη􏼢 􏼣.

(25)

Since (1 − b1/a)> 0, by (17) the right-hand side ap-
proaches +∞ as y⟶∞. *is contradicts (25) and
completes the proof of sufficiency for eventually positive
solutions.

*e eventually negative solution can be dealt similarly by
introducing the variables v � − u.

Next, we show the necessity part by a contrapositive
argument. If (17) does not hold, then for each κ> 0 there
exists y1 ≥y0 such that

􏽚
∞

η
p(ζ)Υc

(ϑ(ζ))dζ ≤
κ(1− c/a)

2
, (26)

for all η≥y1. We define the set of continuous functions

S � u ∈ C([0,∞)):
κ
2

􏼒 􏼓
1/a
Υ(y)≤ u(y)≤ κ1/aΥ(y), y≥y1􏼨 􏼩.

(27)

We define an operator Ω on S by

(Ωu)(y) �

0, if y≤y1,

􏽚
y

y1

1
ς(η)

κ
2

+ 􏽚
∞

η
p(ζ)u

c
(ϑ(ζ))dζ􏼢 􏼣􏼢 􏼣

1/a

dη, if y>y1.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(28)

Note that when u is continuous, Ωu is also continuous
on [0,∞). If u is a fixed point of Ω, i.e., Ωu � u, then u is a
solution of (1).

First, we estimate (Ωu)(y) from below. By (A3), we have

(Ωu)(y)≥ 􏽚
y

y1

1
ς(η)

κ
2

+ 0􏼔 􏼕􏼢 􏼣

1/a

dη �
κ
2

􏼒 􏼓
1/a
Υ(y). (29)

Now, we estimate (Ωu)(y) from above. For u in S, we
have uc(ϑ(ζ))≤ (κ1/aΥ(ϑ(ζ)))c. *en, by (26),

(Ωu)(y)≤ 􏽚
y

y1

1
ς(η)

κ
2

+ 􏽚
∞

η
p(ζ)u

c
(ϑ(ζ))dζ􏼢 􏼣􏼢 􏼣

1/a

dη

≤ κ1/aΥ(y).

(30)

*erefore, Ω maps S to S.
Next, we find a fixed point for Ω in S. Let us define a

sequence of functions in S by the recurrence relation

Mathematical Problems in Engineering 3



v0(y) � 0, fory≥y0,

v1(y) � Ωv0( 􏼁(y) �
0, if y<y1,

κ1/aΥ(y), if y≥y1,
􏼨

vn+1(y) � Ωvn( 􏼁(y), for n≥ 1, y≥y1.

(31)

Note that for each fixed y, we have v1(y)≥ v0(y). Using
mathematical induction, we can show that vn+1(y)≥ vn(y).
*erefore, the sequence vn􏼈 􏼉 converges pointwise to a
function v. Using the Lebesgue dominated convergence
theorem, we can show that v is a fixed point of Ω in S. *is
shows under assumption (26), there is a nonoscillatory
solution that does not converge to zero. *is completes the
proof. □

Theorem 2. Assume that there exists a constant b2, the
quotient of two positive odd integers such that 0< a< b2 < c. If
(A1)–(A4) hold and ς(y) is nondecreasing, then each solution
of (1) is oscillatory if and only if

􏽚
∞

y1

1
ς(s)

􏽚
∞

s
p(ζ)dζ􏼢 􏼣

1/a

dη �∞. (32)

Proof. On the contrary, we assume that u is an eventually
positive solution that does not converge to zero. Using the
same argument as in Lemma 1, there exists y1 ≥y0 such that
u(ϑ(y))> 0 and ς(y)(u′(y))a is positive and nonincreasing.
Since ς(y)> 0, u(y) is increasing for y≥y1. Using
u(y)≥ u(y1), we have

u
c
(y)≥ u

c− b2(y)u
b2(y)≥ u

c− b2 y1( 􏼁u
b2(y), (33)

and hence

u
c
(ϑ(y))≥ u

c− b2 y1( 􏼁u
b2(ϑ(y)), fory≥y2. (34)

Using (34) and ϑ(y)≥ ϑ0(y), from (13), we have

ς(y) u′(y)( 􏼁
a ≥ u

c− b2 y1( 􏼁u
b2 ϑ0(y)( 􏼁 􏽚

∞

y
p(η)dη, (35)

for y≥y2. From ς(y)(u′(y))a being nonincreasing and
ϑ0(y)≤y, we have

ς ϑ0(y)( 􏼁 u′ ϑ0(y)( 􏼁( 􏼁
a ≥ ς(y) u′(y)( 􏼁

a
. (36)

We use this in the left-hand side of (35). *en, dividing
by ς(ϑ0(y))ub2(ϑ0(y)) > 0 and raising both sides to the 1/a
power, we have

u′ ϑ0((y))( 􏼁

u
b2/a ϑ0(y)( 􏼁

≥
uc− b2 y1( 􏼁

ς ϑ0(y)( 􏼁
􏽚
∞

y
p(η)dη􏼢 􏼣

1/a

, (37)

for y≥y2. Multiplying the left-hand side by ϑ0′(y)/ϑ0 ≥ 1 and
integrating from y2 to y, we have

1
ϑ0

􏽚
y

y2

u′ ϑ0(η)( 􏼁ϑ0′(η)

u
b2/a ϑ0(η)( 􏼁

dη

≥ u
c− b2 y1( 􏼁 􏽚

y

y2

1
ς ϑ0(η)( 􏼁

􏽚
∞

η
p(ζ)dζ􏼢 􏼣

1/a

dη.

(38)

On the left-hand side, since a< b2, integrating, we have

1
α 1 − b2/a( 􏼁

z
1− b2/a ϑ0(η)( 􏼁􏽨 􏽩

y

s�y2

≤
1

α b2/a − 1( 􏼁
z
1− b2/a ϑ0 y2( 􏼁( 􏼁<∞.

(39)

On the right-hand side of (38), we use that
ς(ϑ0(η))≤ ς(η) to conclude that (32) implies the right-hand
side approaching +∞, as y⟶∞, which is a contradiction.
Hence, the solution u cannot be eventually positive.

For eventually negative solutions, we use the same
change of variables as in *eorem 1 and proceed as above.

To prove the necessity part, we assume that (32) does not
hold and obtain an eventually positive solution that does not
converge to zero. If (32) does not hold, then for each κ> 0
there exists y1 ≥y0 such that

􏽚
∞

y1

1
ς(η)

􏽚
∞

η
p(ζ)dζ􏼢 􏼣

1/a

dη
κ(1− c/a)

2
, ∀y≥y1. (40)

We define the set of continuous function

S � u ∈ C([0,∞)):
κ
2
≤ u(y)≤ κ fory≥y1􏼚 􏼛. (41)

*en, we define the operator

(Ωu)(y) �

0, if y≤y1,

κ
2

+ 􏽚
y

y1

1
ς(η)

􏽚
∞

η
p(ζ)u

c
(ϑ(ζ))dζ􏼢 􏼣

1/a

dη, if y>y1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(42)

Note that if u is continuous, Ωu is also continuous at
y � y1. Also, note that if Ωu � u, then u is solution of (1).

First, we estimate (Ωu)(y) from below. Let u ∈M, we
have (Ωu)(y) ≥ κ/2 + 0, on [y1,∞).

Now, we estimate (Ωu)(y) from above. Let u ∈M.
*en, u≤ κ and by (40), we have

(Ωu)(y) ≤
κ
2

+ κc/a
􏽚

y

y1

1
ς(η)

􏽚
∞

η
p(ζ)dζ􏼢 􏼣

1/a

dη

≤
κ
2

+
κ
2

� κ.

(43)
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*erefore,Ωmaps S to S. To find a fixed point forΩ in S,
we define a sequence of functions by the recurrence relation

v0(y) � 0, fory≥y0,

v1(y) � Ωv0( 􏼁(y) � 1, fory≥y1,

vn+1(y) � Ωvn( 􏼁(y), for n≥ 1, y≥y1.

(44)

Note that for each fixed y, we have v1(y)≥ v0(y). Using
mathematical induction, we can prove that vn+1(y)≥ vn(y).
*erefore, vn􏼈 􏼉 converges pointwise to a function v in S.
*en, v is a fixed point ofΩ and a positive solution of (1).*e
proof is completed. □

Example 1. Consider the differential equations

e
− y

u′(y)( 􏼁
11/3

􏼐 􏼑′ +
1

y + 1
(u(y − 2))

1/3
� 0. (45)

Here, a � 11/3, ς(y) � e− y, ϑ1(y) � y − 2, Υ(y) �

􏽒
y

y1
e11η/3dη � (3/11)(e11y/3 − e11y1/3), and c1 � 1/3. For

b � 7/3, we have 0< c< b< a. To check (17), we have

􏽚
∞

0
p(s)Υc

(ϑ(s))ds

� 􏽚
∞

0

1
η + 1

3
11

e
11(s− 2)/3

− e
11y1/3􏼐 􏼑􏼒 􏼓

1/3
ds �∞.

(46)

So, every conditions of *eorem 1 hold true, and
therefore, all solutions of (45) are oscillatory or converge to
zero.

Example 2. Consider the differential equations

u′(y)( 􏼁
1/3

􏼐 􏼑′ + y(u(y − 2))
7/3

� 0. (47)

Here, a � 1/3, ς(y) � 1, ϑ1(y) � y − 2, and c1 � 7/3. For
b � 5/3, we have c> b> a. To check (32), we have

􏽚
∞

y0

1
ς(s)

􏽚
∞

s
p(ζ)dζ􏼢 􏼣

1/a

ds � 􏽚
∞

2
􏽚
∞

s
ζdζ􏼔 􏼕

3
ds �∞.

(48)

So, every conditions of *eorem 2 hold true. *us, all
solutions of (47) are oscillatory or converge to zero.

3. Conclusion

*e aim of this work is to establish necessary and sufficient
conditions for the oscillation of solution to second-order
half-linear differential equation. *e obtained oscillation
theorems complement the well-known oscillation results
present in the literature. *is work, as well as [31–41], leads
us to pose an open problem: Can we find necessary and
sufficient conditions for the oscillation of solutions to sec-
ond-order differential equation

r(t) (y(t) + p(t)y(τ(t)))′( 􏼁
c

􏽨 􏽩′ + 􏽘
m

i�1
qi(t)y

αi τi(t)( 􏼁 ) � 0,

forp ∈ C R+,R( 􏼁?.

(49)
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In this paper, the stability conditions for the rotary motion of a heavy solid about its fixed point are considered.(e center of mass
of the body is assumed to lie on the moving z-axis which is assumed to be the minor axis of the ellipsoid of inertia. (e nonlinear
equations of motion and their three first integrals are obtained when the principal moments of inertia are distributed as
I1 < I2 < I3. We construct a Lyapunov function L to investigate the stability conditions for this motion. We give a numerical
example to illustrate the necessary and sufficient conditions for the stability of the body at certain moments of inertia. (is
problem has many important applications in different sciences.

1. Introduction

(e problem of stability of a rotary motion of a heavy solid
moving in a uniform gravity field or a rigid body moving in a
Newtonian one is considered as one of the vital problems in
the nonlinear dynamics. (ese problems were searched in
the last half century. (ese problems are classified according
to the bodies containing partially fluid or fully fluid or lie in
attracting centers. In [1], the rotational motion about the
center of mass for an asymmetric dynamic body with an
aspheric cavity filled with liquid is studied. Numerical
analysis for changing the kinetic momentum vector of the
body was given. (e extreme position for the stability of the
axis of rotation of a body was obtained. A mass geometry
solid of the Earth was attained. In [2], the authors studied the
stability conditions of rotary motion for a heavy solid
containing cavity filled fully or partially with a viscous fluid.
(e author in [3] considered the stability problem for a
steady rotary motion of a gyro filled with liquid in a cavity.
(e author achieved the conditions of stability for this case
of studied motion.(e authors in [4] studied a branching for
the stability of permanent rotatory motions of a rigid body
filled with a viscous fluid. In [5], the stability problem of a
permanent rotary motion of an asymmetric top about a fixed
point under the influence of a central Newtonian force field

is considered for different cases. In [6], the evolution of the
stability for the rotary motion of a planet containing a liquid
core is considered. For some special cases of the orbiting
motions for a planet, the stability conditions are obtained in
[7]. (e work of [8] gave the conditions for stability of a
rotating unperturbed rigid body about a fixed point in
different problems using the well-known energy first
integral.

Moreover, the first integral related to energy was used in
[8] for the aim of obtaining sufficient conditions of stability
when the governing system of the body has not any per-
turbation. In [9], the authors evaluated the orbiting for a
satellite containing a cavity filled with a viscous fluid. For
both the uniform and the Newtonian force fields, the
problems of stabilities of the orbiting bodies about fixed
points are considered in some steady motion cases in [10]. In
[11], the stability spin for a Lagrange top with linear os-
cillators is considered. In [12], the authors evaluated the
plane periodic rotary motion stabilities of a symmetric rigid
body moving about a fixed point when the principal mo-
ments of inertia I1 � I2 � 2I3. (e permanent orbiting sta-
bility problem of an asymmetric gyro is considered in [13]
when the gyro moved under a Newtonian force field. In [14],
the author considered the conditions of stability motion of a
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rigid body rotating about the x-axis when I1 > I2 > I3. He
assumed a moment λ1 ​ about the x-axis and deduced the
equations of motion. (ere are some new applications of
nano-/microcomponents related to stability conditions in
different application subjects that should be mentioned here.
(e applications such as the Chebyshev–Ritz technique for
static stability and vibration analysis of nonlocal micro-
structure-dependent nanostructures are given by Ebrahimi
et al. [15].

Our article is searching the conditions of stability of a
nonperturbed coupled heavy solid rotating about a fixed
point in a uniform field of gravity. (e body is assumed to
rotate about the minor z-axis of the ellipsoid of inertia with
couple λ3. We consider the body rotates with principal
moments of inertia to satisfy the condition I1 < I2 < I3. We
use the three well-known first integral of the problem for
finding the stability conditions using amodified definition of
Lyapunov function L. A numerical example is considered to
show the stability conditions for a certain case.

2. Definition of the Problem

In this section, we define the problem of the motion of a
heavy solid rotating about the minor z-axis of the ellipsoid of
inertia. Consider the coordinate frame OXYZ is the fixed
coordinate system in space and Oxyz is the fixed system in
the body. Let the body rotates with an angular velocity vector
ω � (ω1,ω2,ω3) to the system Oxyz. Assume the couple λ �

(0, 0, λ3) to the moving coordinate system Oxyz. Let the
mass center of the body lies on the z-axis (see Figure 1), and
the moments of inertia of the body satisfy the conditions:

I1 < I2 < I3, z0 ≠ 0, (1)

where (0, 0, z0) is the position of the mass center for the
origin.

(us, the nonlinear system of equations of motion for
this case and its first integrals are obtained as follows:

I1 _ω1 + I3 − I2( 􏼁ω2ω3 + λ3ω2 � −mgz0c2,

I2 _ω2 + I1 − I3( 􏼁ω3ω1 − λ3ω1 � mgz0c1,

I3 _ω3 + I2 − I1( 􏼁ω1ω2 � 0,

(2)

_c1 � ω3c2 − ω2c3,

_c2 � ω1c3 − ω3c1,

_c3 � ω2c1 − ω1c2,

(3)

I1ω
2
1 + I2ω

2
2 + I3ω

2
3 − 2mgzoc3 � E1,

I1ω1c1 + I2ω2c2 + I3ω3 + λ3( 􏼁c3 � H1,

c
2
1 + c

2
2 + c

2
3 � 1,

(4)

where the unit vector in the direction of the Z-axis is
􏽢Z � (c1, c2, c3), m is the solid mass, g is the gravity accel-
eration, · ≡ d/dt is the differentiation to time, and E1 and H1
are the initial energy and momentum constants. Assuming
that mgz0 � a, equation (2) can be rewritten as follows:

I1 _ω1 � I2 − I3( 􏼁ω2ω3 − λ3ω2 − ac2,

I2 _ω2 � I3 − I1( 􏼁ω3ω1 + λ3ω1 + ac1,

I3 _ω3 � I1 − I2( 􏼁ω1ω2.

(5)

Assuming that the following special solutions satisfy the
six nonlinear differential equations of motion (5) and (3),

ω1 � ω2 � c1 � c2 � λ3 � 0,

ω3 � r � const,

c3 � 1.

(6)

(is is a case of uniform rotation of the solid about the
minor axis of the ellipsoid of inertia (z-axis).

3. Stability Investigation

In this section, the stability procedure of the unperturbed
solid is investigated. Consider that the variables in (6)
change according to

ω1 � Γ1,

ω2 � Γ2,

ω3 � r + Γ3,

c1 � ξ1,

c2 � ξ2,

c3 � 1 + ξ3.

(7)

Substituting the variables in (7) into the equations of
motion (5) and (3), it gives

I1
_Γ1 � I2 − I3( 􏼁Γ2 r + Γ3( 􏼁 − aξ2,

I2
_Γ2 � I3 − I1( 􏼁 r + Γ3( 􏼁Γ1 + aξ1,

I3
_Γ3 � I1 − I2( 􏼁Γ1Γ2,

_ξ1 � r + Γ3( 􏼁ξ2 − Γ2 1 + ξ3( 􏼁,

_ξ2 � Γ1 1 + ξ3( 􏼁 − r + Γ3( 􏼁ξ1,
_ξ3 � Γ2ξ1 − Γ1ξ2.

(8)

Substituting the variables in (7) into the first integrals
(4), it gives

V1 � I1Γ
2
1 + I2Γ

2
2 + I3Γ

2
3 + 2I3rΓ3 − 2aξ3,

V2 � I1Γ1ξ1 + I2Γ2ξ2 + I3Γ3ξ3 + I3rξ3,

V3 � ξ21 + ξ22 + ξ23 + 2ξ3,

(9)

where V1, V2, and V3 are constants.
We make a linear combination of the relations in (9) to

satisfy the Lyapunov and Chetayev stability procedures. the
Lyapunov function L is modified to be in the form:

L � V1 − 2rV2 + I3r
2

+ a􏼐 􏼑V3. (10)

(us, using the relations in (9), we obtain

L � L1 + L2 + L3, (11)
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where

L1 � I1Γ
2
1 − 2I1rΓ1ξ1 + I3r

2
+ a􏼐 􏼑ξ21,

L2 � I2Γ
2
2 − 2I2rΓ2ξ2 + I3r

2
+ a􏼐 􏼑ξ22,

L3 � I3Γ
2
3 − 2I3rΓ3ξ3 + I3r

2
+ a􏼐 􏼑ξ23.

(12)

We deduce from the relations in (12) that
Li > 0, i � 1, 2, 3, if and only if the following inequalities are
satisfied [14], respectively:

I1 −I1r

−I1r I3r
2

+ a􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� I1 I3r

2
+ a􏼐 􏼑 − I1

2
r
2 > 0,

I2 −I2r

−I2r I3r
2

+ a􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� I2 I3r

2
+ a􏼐 􏼑 − I2

2
r
2 > 0,

I3 −I3r

−I3r I3r
2

+ a􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� I3 I3r

2
+ a􏼐 􏼑 − I3

2
r
2

� I3a> 0.

(13)

(us, we obtain from the back substitution

a> 0,

I3 > I2,

I3 > I1.

(14)

We note that when condition (1) is satisfied, inequalities
(13) and (14) are investigated automatically.

(us, the conditions in (13) considered the sufficient and
necessary conditions for the unperturbed stability motion of
the solid concerning the variables ω1,ω2,ω3, c1, c2, andc3.

4. A Simple Application Example

A simple application example can be given in this section.
Just formulation the sufficient and necessary conditions for
the unperturbed stability motion are studied.

Consider a rigid body of massMwithmoments of inertia
as follows:

I1 � 10 kg.m2
,

I2 � 15 kg.m2
,

I3 � 20 kg.m2
,

M � 100 kg,

g � 9.81m.s− 2
,

zo � 50m,

r � 10 rad.s−1
.

(15)

From (15), we deduce that

a � 49050 kgm2
.s−2

,

I3r
2

+ a􏼐 􏼑 � 51050.
(16)

From (13), (14), and (15), we deduce that

I1 I3r
2

+ a􏼐 􏼑 − I1
2
r
2

� 500500> 0,

I2 I3r
2

+ a􏼐 􏼑 − I2
2
r
2

� 743250> 0,

I3a � 981000> 0.

(17)

From this example, we deduce that if condition (1) is
satisfied by (15), Li > 0, i � 1, 2, 3, is satisfied if and only if
relation (17) is satisfied.

5. Conclusion

(e necessary and sufficient conditions for the stability of
the rotary motion of a solid about a fixed point are con-
sidered when the center of mass of the body lies on theminor
z-axis of the ellipsoid of inertia. (e system of equations of
motion and their first integrals are obtained. (e modified
Lyapunov function L is constructed depending on the three
first integrals. (e necessary and sufficient conditions are
constructed in the case I3 > I2 > I1 that the x-axis is the major
axis of the ellipsoid of inertia and the y-axis is the inter-
mediate axis while the z-axis is the minor one. (e moments
of inertia Ii, i� 1, 2, 3 are assumed as arbitrary constants that
satisfy the above condition, and λ3 is estimated by
substituting (7) into the second equation from (4). (is
problem has wide applications in satellite motions which
assumedmoments of inertia according to the above relations
[16–18]. A numerical example is given to show the stability
conditions for a special case.
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In this article, we consider the analytic solutions of the uncertain fractional backward difference equations in the sense of
Riemann–Liouville fractional operators which are solved by using the Picard successive iteration method. Also, we consider the
existence and uniqueness theorem of the solution to an uncertain fractional backward difference equation via the Banach
contraction fixed-point theorem under the conditions of Lipschitz constant and linear combination growth. Finally, we point out
some examples to confirm the validity of the existence and uniqueness of the solution.

1. Introduction

Fractional calculus is based on an old idea that has become
important and popular in applications only recently. �e
idea is to generalize integration and differentiation to
noninteger orders in order to develop and extend the
theory of calculus and to describe a more extensive range of
possible doings in reality. During the past decades, frac-
tional differential equations have been widely employed in
many fields: mathematical analysis, optics and thermal
systems, control engineering, and robotics, see, for ex-
ample, [1–9].

In recent years, uncertain fractional differential and
difference equations and discrete difference equations
have become popular in both theory and applications.
�ese represent a new area for researchers which was

developed slowly in their early stages. By using modeling
techniques with discrete fractional calculus, some re-
searchers established the existence, uniqueness, mono-
tonicity, multiplicity, and qualitative properties of
solutions to uncertain fractional difference equations
(UFDEs) in the sense of Riemann–Liouville, Caputo, and
AB operators; for further details, see [10–22] and the
references cited therein.

�e aim of this attempt is to investigate the existence and
uniqueness of fractional difference equations in the sense of
Riemann–Liouville-like difference operator with assuming
Lipschitz condition on its nonlinear term. Our findings are
partial continuation of some results obtained in [23–25]. It is
worth mentioning that the uncertainty theory of fractional
difference equations is used to make the problems have a
unique solution almost surely.
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2. Preliminaries

�is section presents some preliminaries, definitions, and
facts in the field of uncertainty theory and discrete fractional
calculus, see, e.g., [12, 26–28]. �roughout the article, we
consider Na � a, a + 1, a + 2, . . . ,{ } for a ∈ R and the
backward jump operator ρ(r) ≔ r − 1 for r ∈ Na.

Definition 1 (see [26]). For any function f: Na⟶ R, the
backward difference operator is defined by

∇f(t) � f(t) − f(ρ(t)), t ∈ Na, (1)

while the backward sum is given by

∇− 1
a f(t) � 􏽘

t

r�a+1
f(r), t ∈ Na+1. (2)

Definition 2 (see [26–29]). For any natural number j, the
∇-rising factorial function of t is defined by

t
j

� 􏽙

j− 1

ℓ�0
(t + ℓ), t

0
� 1. (3)

Moreover, for any ] ∈ R, the ∇-rising factorial function
is defined by

t
]

�
Γ(t + ])

Γ(t)
, 0] � 0, (4)

for t ∈ R\ . . . , − 2, − 1, 0{ }. Also, note that the division by
negative integer poles of the gamma function gives zero.

A major property of the rising factorial function is as
follows:

∇ t
]

􏼐 􏼑 � ]t
]− 1

. (5)

�is implies that t] is increasing on N0 such that ]> 0.

Definition 3 (see [13, 14, 26–29]). For any function
f: Na⟶ R, the nabla fractional sum of order ]> 0 in the
sense of Riemann–Liouville is defined by

∇− ]
a f( 􏼁(t) �

1
Γ(])

􏽘

t

r�a+1
(t − ρ(r))

]− 1
f(r),

∇0af􏼐 􏼑(t) � f(t).

(6)

Lemma 1 (see [13, 14, 26–28]). For any function f defined
on Na and any ], α> 0, we have

∇− ]
a ∇

− α
a f( 􏼁(t) � ∇− (α+])

a f􏼐 􏼑(t) � ∇− α
a ∇

− ]
a f( 􏼁(t). (7)

Lemma 2 (see [13, 14, 26–28]). For any function f defined
on Na and any ]> 0, we have

∇]af( 􏼁(t) � ∇∇− (1− ])
a f􏼐 􏼑(t). (8)

Lemma 3 (see [13, 14, 26–28]). For any function f defined
on Na and any ]> 0, we have

∇− ]
a ∇f( 􏼁(t) � ∇∇− ]

a f( 􏼁(t) −
(t − a)

]− 1

Γ(])
f(a). (9)

Lemma 4 (see [13, 14, 26–28]). For any function f defined
on Na and any ]> 0, we have

∇− ]
a ∇

]
f( 􏼁(t) � ∇]a∇

− ]
f( 􏼁(t) � f(t), ] ∉ N,

∇− ]
a ∇

]
f( 􏼁(t) � f(t) − 􏽘

]− 1

k�0

(t − a)
k

k!
∇k

f(a), ] ∈ N.

(10)

Lemma 5 (see [13, 14, 26–28]). For any a ∈ R and ], α> 0,
we have

∇− ]
a (t − a)

α
�
Γ(α + 1)

Γ(α + ] + 1)
(t − a)

α+]
. (11)

Motivated by the definition of the nth-order backward
sum for uncertain sequence ξt, we define the ]th-order
backward sum for uncertain sequence ξt as follows:

Definition 4 (see [13, 14, 28]). Let ]> 0, a ∈ R, and ξt be an
uncertain sequence indexed by t ∈ Na. �en, we have

∇− ]
a ξt �

1
Γ(])

􏽘

t

r�a+1
(t − ρ(r))

]− 1ξr, (12)

which is called the ]th-order backward fractional sum of
uncertain sequence ξt.

Definition 5 (see [13, 14, 28]). For any ]> 0, the fractional
Riemann–Liouville-like backward difference for uncertain
sequence ξt is defined by

∇]aξt � ∇a ∇
− (1− ])
a ξt􏼐 􏼑. (13)

Next, we recall the definition of nabla discrete Mittag-
Leffler (ML).

Definition 6 (see [28]). For any λ ∈ R and ], μ, η ∈ C with
Re(])> 0, the two-parameter discreteML function is defined
by

E],μ(λ, η) ≔ 􏽘
∞

ℓ�0
λℓ

ηℓ]+μ− 1

Γ(ℓ] + μ)
, |λ|< 1. (14)

Particularly, if μ � 1, we get the one-parameter discrete
ML function:

E](λ, η) ≔ 􏽘
∞

ℓ�0
λℓ

ηℓ]

Γ(ℓ] + 1)
, |λ|< 1. (15)
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3. UFBDE and Existence and
Uniqueness Theorem

First, we recall the inverse uncertainty distribution theory.

Definition 7. (see [11]). An uncertainty distribution Ψ is
called regular if it is a continuous and strictly increasing
function and satisfies

lim
x⟶− ∞
Ψ(x) � 0,

lim
x⟶+∞
Ψ(x) � 1.

(16)

Definition 8. (see [11]). Let ξ be an uncertain variable with a
regular uncertainty distribution Ψ. �en, the inverse func-
tion Ψ− 1 is called the inverse uncertainty distribution of ξ.

Example 1. FromDefinition 8, we deduce that the following:

(i) �e inverse uncertainty distribution of a linear un-
certain variable L(a, b) is given by

Ψ− 1
(α) � (1 − α)a + αb. (17)

(ii) �e inverse uncertainty distribution of a normal
uncertain variable L(e, σ) is given by

Ψ− 1
(α) � e +

�
3

√
σ

π
ln

α
1 − α

􏼒 􏼓. (18)

(iii) �e inverse uncertainty distribution of a normal
uncertain variable LOGN(e, σ) is given by

Ψ− 1
(α) � exp(e) +

α
1 − α

􏼒 􏼓
(

�
3

√
σ/π)

. (19)

Definition 9. (see [11]). We say that an uncertain variable ξ
is symmetrical if

Ψ(x) + Ψ(− x) � 1, (20)

where Ψ(x) is a regular uncertainty distribution of ξ.

Remark 1. From Definition 9, we can deduce that the
symmetrical uncertain variable has the inverse uncertainty
distribution Ψ− 1(α) that satiates

Ψ− 1
(α) + Ψ− 1

(1 − α) � 0. (21)

Example 2. FromDefinition 9, we deduce that the following:

(1) �e linear uncertain variable L(− a, a) is symmet-
rical for any positive real number a

(2) �e normal uncertain variable L(0, 1) is
symmetrical

Definition 10. (see [11]; i.i.d. definition). In statistics and
probability theory, a collection of random variables ξis is
independent and identically distributed (or briefly, i.i.d.) if
each random variable ξi has the same probability distri-
bution as the others and all are mutually independent.

�en, we state the definition of the UFBDE.

Definition 11. An uncertain fractional difference equation is
a fractional difference equation which is driven by an un-
certain sequence. Moreover, an uncertain fractional back-
ward difference equation for the Riemann–Liouville type is
the uncertain fractional difference equation with Rie-
mann–Liouville-like backward difference.

Consider the following generalized Riemann–Liouville
fractional difference equation:

∇αα− 1y( 􏼁(t) � G(t, y(t)) + H(t, y(t))ξt, (22)

subject to the initial condition (i.c.)

∇− (1− α)
α− 1 y􏼐 􏼑(t)|t�α � y(α), (23)

where ∇αα− 1 denotes fractional Riemann–Liouville-like
backward difference with 0< α< 1, G, H are two real-valued
functions defined on [1,∞] × R, t ∈ N1 ∩ [1, T + 1],
y(α) ∈ R is a crisp number, and ξ1, ξ2, . . . , ξT+1 are
(T + 1)-i.i.d. uncertain variables with symmetrical uncer-
tainty distribution L(a, b).

Remark 2. Observe that the i.i.d. uncertain variables are
those uncertain variables that are independent and have the
same uncertainty distribution. See [11] for more detail.

Lemma 6. Initial value problem (22) with i.c. (23) is
equivalent to the following uncertain fractional sum equation:

y(t) �
(t − α + 1)

α− 1

Γ(α)
y(α)

+
1
Γ(α)

􏽘

t

r�α+1
(t − ρ(r))

α− 1
G(r, y(r)) + H(r, y(r))ξr􏼂 􏼃,

(24)

for t ∈ Nα+1 ∩ [1, T + 1].

Proof. �eproof is very similar to [29], Lemma 5.1, and [30],
�eorem 2, hereby applying the operator ∇− α

α to IVP (22)
with Definition 3, Lemma 2, and Lemma 3, so we omit this.

In this paper, the following special linear UFBDE will be
considered:

∇αα− 1y(t) � λy(t) + λξt, (25)

∇− (1− α)
α− 1 y(t)|t�α � y(α), (26)

for t ∈ N1 ∩ [1, T + 1], n ∈ N1, and λ ∈ (0, 1). □

Remark 3. �e following identity is useful in proving the
upcoming theorem. FromDefinition 3 and Lemma 5, we can
deduce for any real number a
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∇− α
a (t − a + 1)

β
�
Γ(β + 1)

Γ(α + β + 1)
(t − a + 1)

α+β

−
Γ(β + 1)

Γ(α)
(t − a + 1)

α− 1
,

(27)

where α> 0 and β> − 1.

Theorem 1. For any t ∈ Nα+1 ∩ [1, T + 1] and |λ|< 1, linear
UFBDE (25) with the initial condition (26) has a solution

y(t) � (1 − λ)Eα,α(λ, t − α + 1)y(α) + ξt, (28)

where ξt is an uncertain sequence with the uncertainty dis-
tribution L(a · λEα,α+1(λ, t − α), b · λEα,α+1(λ, t − α)).

Proof. Applying the operator ∇− α
α to equation (25), we get

∇− α
α ∇

α
α− 1y(t)( 􏼁 � λ∇− α

α y(t) ) + λ∇− α
α ξt,

t ∈ Nα+1 ∩ [1, T + 1].
(29)

Making use of Lemma 2 and Lemma 3 to the left-hand
side of (29), we get

∇− α
α ∇

α
α− 1y(t)( 􏼁 � ∇− α

α ∇α∇
− (1− α)
α− 1 y(t)􏼐 􏼑,

� ∇α ∇
− α
α ∇

− (1− α)
α− 1 y(t)􏼐 􏼑 −

(t − α + 1)
α− 1

Γ(α)
y(α),

� y(t) −
(t − α + 1)

α− 1

Γ(α)
y(α),

t ∈ Nα+1 ∩ [1, T + 1].

(30)

It follows from this and equation (29) that

y(t) �
(t − α + 1)

α− 1

Γ(α)
y(α) + λ∇− α

α y(t) + λ∇− α
α ξt,

t ∈ Nα+1 ∩ [1, T + 1],

(31)

which is the solution of UFBDE (28).
To derive the solution, we use the Picard approximation

recurrence formula with a starting point y0(t) �

((t − α + 1)α− 1/Γ(α))y(α) for each t ∈ Nα− 1 ∩ [1, T + 1]. �e
other components can be determined by using the following
recurrence relation:

yj(t) �
(t − α + 1)

α− 1

Γ(α)
y(α) + λ∇− α

α yj− 1(t) + λ∇− α
α ξt,

(32)

for t ∈ Nα+1 ∩ [1, T + 1] and j ∈ N1. Since ξ1, ξ2, . . . , ξT+1 are
i.i.d. uncertain variables, we write ξt � ξ in distribution. By
using Lemma 5, Remark 3, and the fact that the linear
combination of finite independent uncertain variables is an
uncertain variable with a positive linear combination co-
efficient (see �eorems 1.21–1.24 of [11]), we can deduce

y1(t) �
(t − α + 1)

α− 1

Γ(α)
y(α) + λ∇− α

α y0(t) + λ∇− α
α ξ

�
(t − α + 1)

α− 1

Γ(α)
y(α)

+ λ
(t − α + 1)

2α− 1

Γ(2α)
−

(t − α + 1)
α− 1

Γ(α)
⎡⎢⎣ ⎤⎥⎦y(α)

+ λ
(t − α)

α

Γ(α + 1)
ξ,

y2(t) �
(t − α + 1)

α− 1

Γ(α)
y(α) + λ∇− α

α y1(t) + λ∇− α
α ξ

�
(t − α + 1)

α− 1

Γ(α)
y(α)

+ λ
(t − α + 1)

2α− 1

Γ(2α)
−

(t − α + 1)
α− 1

Γ(α)
⎡⎢⎣ ⎤⎥⎦y(α)

+ λ2
(t − α + 1)

3α− 1

Γ(3α)
−

(t − α + 1)
2α− 1

Γ(2α)
⎡⎢⎣ ⎤⎥⎦y(α)

+
λ(t − α)

α

Γ(α + 1)
+
λ2(t − α)

2α

Γ(2α + 1)
⎡⎢⎣ ⎤⎥⎦ξ,

⋮
(33)

and so on, continuing the process up to the jth term to get

yj(t) � 􏽘

j

k�0
λk (t − α + 1)

kα+α− 1

Γ((k + 1)α)
−

(t − α + 1)
kα− 1

Γ(kα)
⎡⎢⎢⎣ ⎤⎥⎥⎦y(α)

+ 􏽘

j

k�1
λk (t − α)

kα

Γ(kα + 1)
ξ,

(34)

for each t ∈ Nα+1 ∩ [1, T + 1]. Observe that the two series
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􏽘

∞

k�0
λk (t − α + 1)

kα+α− 1

Γ((k + 1)α)
−

(t − α + 1)
kα− 1

Γ(kα)
⎡⎢⎢⎣ ⎤⎥⎥⎦ � Eα,α(λ, t − α + 1) − λEα,α(λ, t − α + 1)

� (1 − λ)Eα,α(λ, t − α + 1),

􏽘

∞

k�1
λk (t − α)

kα

Γ(kα + 1)
� λEα,α+1(λ, t − α),

(35)

are absolutely convergent for |λ|< 1 by the d’Alembert ratio
comparison test, and the limitation Y(t) ≔ limj⟶∞yj ex-
ists. �us, we have

Y(t) � λEα,α+1(λ, t − α)ξ +(1 − λ)Eα,α(λ, t − α + 1)y(α),

t ∈ Nα+1 ∩ [1, T + 1].

(36)

On the contrary, taking the limit on both sides of (32)
yields

Y(t) �
(t − α + 1)

α− 1

Γ(α)
y(α) + λ∇− α

α Y(t) + λ∇− α
α ξt,

t ∈ Nα+1 ∩ [1, T + 1].

(37)

�at is, Y(t) satisfies equation (31), and hence, Y(t) is a
solution of equation (25) subject to the initial condition (26).
�us, our proof is completed.

�e following theorem provides and confirms the ex-
istence and uniqueness of the solution of UFBDEs. □

Theorem 2. Assume that G(t, x) and H(t, x) satisfy the
Lipschitz condition

|G(t, x) − G(t, y)| +|H(t, x) − H(t, y)|≤L|x − y|, (38)

and there is a positive number L that satisfies the following
inequality:

L<
Γ(α + 1)Γ(T + 1 − α)

Γ(T + 1)(Q + 1)
, (39)

where Q � |a|∨ |b|. Hen, UFBDE (25) subject to the initial
condition (26) has a unique solution y(t) for
t ∈ Nα+1 ∩ [1, T + 1] almost surely.

Proof. Define

l
k
α ≔ x; x � x(t){ }

k
α+1, k ∈ N1􏽮 􏽯, ‖x‖,

≔ maxt∈Nα+1 ∩ [1,T+1]|x(t)|,
(40)

where x(t){ }
k
α are finite real sequences which have k terms.

It is clear that (lkα, ‖·‖) is a Banach space (see [31], Chapter
4). Now, for any yt ∈ lkα, we define the operator P as
follows:

Pyt �
(t − α)

α− 1

Γ(α)
y(α) +

1
Γ(α)

􏽘

t

r�α+1
(t − ρ(r))

α− 1
G r, yr( 􏼁􏼂

+ H r, yr( 􏼁ξr􏼃.

(41)

Since ξt(t ∈ Nα+1 ∩ [1, T + 1]) is an uncertain variable at
each time t with the linear uncertainty distributionL(a, b),
we have M (ξt < a)∪ (ξt > b)􏼈 􏼉 � 0. �e inequality ξt(c)≤Q

(where Q � |a|∨|b|) holds almost surely for any
c ∈ χ (ξt < a)∪ (ξt > b); t ∈ Nα+1 ∩ [1, T + 1]􏼈 􏼉, where χ rep-
resents the universal set on the uncertainty space. �en, by
making use of the assumptions and Lemma 5, we have, for
any xt, yt ∈ lkα,

Mathematical Problems in Engineering 5



Pxt(c) − Pyt(c)
����

���� � max
t∈Nα+1 ∩ [1,T+1]

Pxt(c) − Pyt(c)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

≤
1
Γ(α)

max
t∈Nα+1 ∩ [1,T+1]

􏽘

t

r�α+1
(t − ρ(r))

α− 1
,

× G( r, xr(c) − G( r, yr(c)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + H( r, xr(c) − H( r, yr(c)􏼂 􏼃ξr

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑,

≤
1
Γ(α)

max
t∈Nα+1 ∩ [1,T+1]

􏽘

t

r�α+1
(t − ρ(r))

α− 1
,

× G( r, xr(c) − G( r, yr(c)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + Q H( r, xr(c) − H( r, yr(c)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑,

≤L(1 + Q)
1
Γ(α)

max
t∈Nα+1 ∩ [1,T+1]

􏽘

t

r�α+1
(t − ρ(r))

α− 1
xr(c) − yr(c)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

≤L(1 + Q) xt(c) − yt(c)
����

���� max
t∈Nα+1 ∩ [1,T+1]

∇− α
α (t − α)

0
􏼒 􏼓,

� L(1 + Q) xt(c) − yt(c)
����

���� max
t∈Nα+1 ∩ [1,T+1]

1
Γ(α + 1)

(t − α)
α

􏼠 􏼡,

≤
L(1 + Q)(T + 1 − α)

α

Γ(α + 1)
xt(c) − yt(c)

����
����,

�
L(1 + Q)Γ(T + 1)

Γ(α + 1)Γ(T − α + 1)
xt(c) − yt(c)

����
����.

(42)

Now, we can observe that the mapping P is a contraction
in lkα almost surely with 0<L< (Γ(α + 1)Γ(T − α + 1)/(1 +

Q)Γ(T + 1)) (see [31], Chapter 4).�en, by using the Banach
contraction mapping theorem (see [31], Chapter 4), we get a
unique fixed point yt(c) of P in lkα almost surely. Moreover,
yt(c) � limj⟶∞y

j
t (c), where y

j
t (c) � P(y

j− 1
t (c)), with

y0
t (c) � ((t − α)α− 1/Γ(α))y(α).
For any given t ∈ Nα+1 ∩ [1, T + 1], as G and H are

Lipschitz continuous functions, the operator P is measur-
able. Since y1

t (c), y2
t (c), . . . , y

j
t (c), . . . are uncertain vari-

ables and y0
t (c) is a real-valued measurable function of

uncertain variables, y0
t (c) is an uncertain variable by [11],

�eorem 1.10. Hence, yt � limj⟶∞y
j
t is an uncertain

variable (see [21], �eorem 3).
Consequently, UFBDE (25) with i.c. (26) has a unique

solution yt for t ∈ Nα+1 ∩ [1, T + 1] almost surely. □

4. Example Illustrations

�is section deals with some examples to confirm the val-
idity of �eorem 2.

Example 3. Consider the following UFBDE:

∇(1/2)
(− 1/2)y(t) �

ln(|y(t)| + 1)

2t
3 + 0.5ξt, t ∈ N1 ∩ [1, 4],

y
1
2

􏼒 􏼓 � 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(43)

where ξ1, . . . , ξ4 are four i.i.d. uncertain variables with
uncertainty distribution L(− 1, 2).

According to Lemma 6 with α � (1/2), the inverse
uncertainty distribution of the solution for UFBDE (43) is
the solution of the following sum equation:

y(t) �
(t +(1/2))

− 0.5

Γ(0.5)
y(α) +

1
Γ(0.5)

􏽘

t

r�(3/2)

(t − ρ(r))
− 0.5

·
ln(|y(r)| + 1)

4r
3 + 0.25ξr􏼠 􏼡, t ∈ N0.5 ∩ [1, 4].

(44)
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�en, for t ∈ N0.5 ∩ [1, 4], we have

|G(t, x) − G(t, y)| +|H(t, x) − H(t, y)| �
ln(|x| + 1)

2t
3 −

ln(|y| + 1)

2t
3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

�
1
2t

3 |ln(|x| + 1) − ln(|y| + 1)|,

≤
1

2(3/2)
3 ||x| − |y||≤

4|x − y|

27
,

Γ(0.5 + 1)Γ(4 + 1 − 0.5)

3Γ(4 + 1)
≈ 0.1636>

4
27

� 0.1481.

(45)

�us, UFBDE (43) has a unique solution almost surely
by �eorem 2.

Example 4. We consider the following UFBDE:

∇0.25
− 0.25y(t) �

y
2
t

40
+ ξt, t ∈ N1 ∩ [1, 4], (46)

where ξ1, ξ2, ξ3, ξ4 are four i.i.d. linear uncertain variables
with linear uncertainty distribution L(− 3, 3).

According to Lemma 6 with α � (1/4), the inverse
uncertainty distribution of the solution for UFBDE (46) is
the solution of the following sum equation:

y(t) �
(t +(1/2))

− (3/4)

Γ(0.25)
y(α)

+
1
Γ(0.25)

􏽘

t

r�1.25
(t − ρ(r))

− (3/4) y
2
r

40
+ ξr􏼠 􏼡.

(47)

Observe that |G(t, x) − G(t, y)| + |H(t, x) − H(t, y)| is
Lipschitz-continuous in [− 20, 20] with Lipschitz constant
0.1 as follows:

|G(t, x) − G(t, y)| +|H(t, x) − H(t, y)|≤
1
40

|x + y||x − y|

� 0.1|x − y|.

(48)

Also, we have

Γ(0.25 + 1)Γ(3 + 1 − 0.25)

4Γ(3 + 1)
≈ 0.167> 0.1. (49)

Consequently, UFBDE (50) has a unique solution almost
surely by �eorem 2.

Example 5. Consider the following UFBDE:

∇0.5
− 0.5y(t) �

sin(ty)

10 + t
2 + 0.1ξt, t ∈ N1 ∩ [1, 4], (50)

where ξ1, ξ2, ξ3, ξ4 are 4 i.i.d. linear uncertain variables with
linear uncertainty distribution L(− 1, 1).

According to Lemma 6 with α � (1/2), the inverse
uncertainty distribution of the solution for UFBDE (50) is
the solution of the following sum equation:

y(t) �
(t +(1/2))

− 0.5

��
π

√ y(α)

+
1
��
π

√ 􏽘

t

r�1.5
(t − ρ(r))

− 0.5 sin(ry)

10 + r
2 + 0.1ξr􏼠 􏼡.

(51)

�en, we can directly verify that

|G(t, x) − G(t, y)| +|H(t, x) − H(t, y)|≤
1
10

|x − y|,

Γ(0.5 + 1)Γ(3 + 1 − 0.5)

2Γ(3 + 1)
≈ 0.2454>

1
10

� 0.1.

(52)

Consequently, UFBDE (50) has a unique solution almost
surely by �eorem 2.

5. Conclusion

We have presented analytical solutions to a special type of
linear UFBDEs. Moreover, a Lipschitz condition with its
constant is given to provide a unique solution almost surely
to an UFBDE. It can be seen that our obtained results pave
the way for the future works, that is, to investigate the
stability analysis and applications of UFBDEs.

Data Availability

No data were used to support this study.

Conflicts of Interest

�e authors declare that they have no conflicts of interest.

Authors’ Contributions

All authors contributed equally and significantly to writing
this article. All authors read and approved the final
manuscript.

Mathematical Problems in Engineering 7



Acknowledgments

�e first author would like to thank Prince Sultan University
for funding this work through research group Nonlinear
Analysis Methods in Applied Mathematics (NAMAM)
(group number: RG-DES-2017-01-17).

References

[1] K. S. Miller and B. Ross, An Introduction to the Fractional
Calculus and Fractional Differential Equations, John Wiley &
Sons, New York, NY, USA, 1993.

[2] I. Podlubny, Fractional Differential Equations, Academic
Press, San Diego, CA, USA, 1999.

[3] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Heory and
Applications of Fractional Differential Equations, Elsevier
B.V., Amsterdam, Netherlands, 2006.

[4] K. Diethelm,He Analysis of Fractional Differential Equations,
Springer, Berlin, Germany, 2010.

[5] F. K. Hamasalh and P. O. Muhammad, “Generalized quartic
fractional spline interpolation with applications,” Interna-
tional Journal of Open Problems in Computer Science and
Mathematics, vol. 8, no. 1, pp. 67–80, 2015.

[6] F. K. Hamasalh and P. O. Muhammed, “Computational
method for fractional differential equations using non-
polynomial fractional spline,” Mathematical Sciences Letters,
vol. 5, no. 2, pp. 131–136, 2016.

[7] R. Almeida, N. R. O. Bastos, and M. T. T. Monteiro,
“Modeling some real phenomena by fractional differential
equations,” Mathematical Methods in the Applied Sciences,
vol. 39, no. 16, pp. 4846–4855, 2016.

[8] M. Martinez, P. O. Mohammed, and J. E. N. Valdes, “Non-
conformable fractional Laplace transform,” Kragujevac
Journal of Mathematics, vol. 46, no. 3, pp. 341–354, 2022.

[9] P. O. Mohammed and M. Z. Sarikaya, “On generalized
fractional integral inequalities for twice differentiable convex
functions,” Journal of Computational and Applied Mathe-
matics, vol. 372, Article ID 112740, 2020.

[10] M. Bohner and A. C. Peterson, Advances in Dynamic
Equations on Time Scales, Birkhauser, Boston, MA, USA,
2003.

[11] B. Liu, Uncertainty Heory: A Branch of Mathematics for
Modeling Human Uncertainty, Springer, Berlin, Germany,
2010.

[12] C. Goodrich and A. Peterson, Discrete Fractional Calculus,
Springer, Berlin, Germany, 2015.

[13] F. Atici and P. Eloe, “A transform method in discrete frac-
tional calculus,” IJDE, vol. 2, no. 2, pp. 165–176, 2007.

[14] F. Atici and P. Eloe, “Initial value problems in discrete
fractional calculus,” Proceedings of the American Mathe-
matical Society, vol. 137, no. 3, pp. 981–989, 2009.

[15] C. S. Goodrich, “Existence of a positive solution to a system of
discrete fractional boundary value problems,” Applied
Mathematics and Computation, vol. 217, no. 9, pp. 4740–4753,
2011.

[16] G.-C. Wu and D. Baleanu, “Discrete chaos in fractional
delayed logistic maps,” Nonlinear Dynamics, vol. 80, no. 4,
pp. 1697–1703, 2015.

[17] G.-C. Wu, D. Baleanu, and W.-H. Luo, “Lyapunov functions
for Riemann-Liouville-like fractional difference equations,”
Applied Mathematics and Computation, vol. 314, pp. 228–236,
2017.

[18] I. Suwan, T. Abdeljawad, and F. Jarad, “Monotonicity analysis
for nabla h-discrete fractional Atangana-Baleanu differences,”
Chaos, Solitons & Fractals, vol. 117, pp. 50–59, 2018.

[19] T. Abdeljawad and D. Baleanu, “Monotonicity analysis of a
nabla discrete fractional operator with discrete Mittag-Leffler
kernel,” Chaos Solitons & Fractals, vol. 116, pp. 1–5, 2017.

[20] Y. Zhu, “Uncertain fractional differential equations and an
interest rate model,” Mathematical Methods in the Applied
Sciences, vol. 38, no. 15, pp. 3359–3368, 2015.

[21] Y. Zhu, “Existence and uniqueness of the solution to uncertain
fractional differential equation,” Journal of Uncertainty
Analysis and Applications, vol. 3, pp. 1–11, 2015.

[22] Z. Lu and Y. Zhu, “Numerical approach for solution to an
uncertain fractional differential equation,” Applied Mathe-
matics and Computation, vol. 343, pp. 137–148, 2019.

[23] J. W. He, L. Zhang, Y. Zhou, and B. Ahmad, “Existence of
solutions for fractional difference equations via topological
degree methods,” Advances in Difference Equations, vol. 2018,
p. 153, 2018.

[24] P. O. Mohammed, “A generalized uncertain fractional for-
ward difference equations of Riemann-Liouville type,” Journal
of Mathematics Research, vol. 11, no. 4, pp. 43–50, 2019.

[25] Q. Lu, Y. Zhu, and Z. Lu, “Uncertain fractional forward
difference equations for Riemann–Liouville type,” Advances
in Difference Equations, vol. 2019, p. 147, 2019.

[26] T. Abdeljawad, “On delta and nabla caputo fractional dif-
ferences and dual identities,”Discrete Dynamics in Nature and
Society, vol. 2013, Article ID 406910, 12 pages, 2013.

[27] T. Abdeljawad, F. Jarad, and J. Alzabut, “Fractional pro-
portional differences with memory,” He European Physical
Journal Special Topics, vol. 226, no. 16–18, pp. 3333–3354,
2017.

[28] T. Abdeljawad, “Different type kernel h− fractional differences
and their fractional h− sums,” Chaos, Solitons & Fractals,
vol. 116, pp. 146–156, 2018.

[29] T. Abdeljawad and F. M. Atici, “On the definitions of nabla
fractional operators,”Abstract and Applied Analysis, vol. 2012,
Article ID 406757, 13 pages, 2012.

[30] F. Atici and P. Eloe, “Gronwall’s inequality on discrete
fractional calculus,” Computers & Mathematics with Appli-
cations, vol. 64, pp. 3193–3200, 2012.

[31] P. Sacks, Techniques of Functional Analysis for Differential and
Integral Equations, Academic Press, London, UK, 2017.

8 Mathematical Problems in Engineering


