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Diffusion plays an essential role in the distribution of predator and prey. We mainly research the diffusion network’s effect on the
predator-prey model through bifurcation. First, it is found that the link probability and diffusion parameter can cause Turing
instability in the network-organized predator-prey model. +en, the Turing stability region is obtained according to the sufficient
condition of Turing instability and the eigenvalues’ distribution. Finally, the biological mechanism is explained through our
theoretical results, which are also illustrated by numerical simulation.

1. Introduction

Turing instability was first investigated in the reaction-dif-
fusion system [1], and it is constantly being promoted to
explain the dynamical mechanism [2, 3]. Asllani et al.
pointed out that the directed network could induce Turing
instability when an indirect network does not work [4, 5].
Meanwhile, tuning the topology structure of the system can
create or destroy patterns in a reaction-diffusion system [6].
Mimar et al. proved that the pattern formation’s topological
properties are determined by complex interaction [7]. Al-
though spontaneous patterns [8] are associated with the
dominance of eigenvectors and eigenvalues [9–11], the
dynamical mechanism of the random network in pattern
formation remains to be uncovered.

Since the Lotka–Volterra model was proposed in the
early twentieth century, some biological mechanisms were
explained in the predator-prey system [12–18]. Chang et al.
researched the dynamics in the predator-prey system on
complex networks and found that Turing instability caused
by delay can generate spiral waves [19]. Liu et al. showed the
effect of network and diffusion on the ecological balance of
the predator-prey system [20]. Upadhyay and Bhattacharya
studied the differences between the aqueous and terrestrial
environments in predator-prey networks and tried to

explain their biological mechanism [21]. Astarloa et al. tried
to use the joint species distribution modeling to reveal the
coexistence problem of prey and predator in the Bay of
Biscay [22]. Although previous work shows that diffusion
and randomness influence the Turing pattern significantly,
the random network’s effect on the distribution of predator
and prey should be carefully evaluated.

To reveal the natural mechanism of biological invasion,
we intend to investigate the random diffusion network’s
effect on the network-organized predator-prey model’s
stability. First, we obtain the conditions under which Turing
bifurcation arises. Second, we find an estimated region of all
the eigenvalues of the Laplacian matrix, the sufficient sta-
bility conditions in the network-organized predator-prey
model. +ird, we explain the network-organized Turing
instability by the mean-field approximation and comparison
principle. Also, we estimate the Turing instability range
about link probability and diffusion and try to explain the
mechanism of biological invasion. Last, we illustrate our
theoretical results through numerical simulation.

2. A Network-Organized Predator-Prey Model

For the convenience of subsequent research, we first give
some necessary symbolic rules. +e network Laplacian
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matrix L � Lij􏽮 􏽯 can be treated as Lij � Aij − kiδij, and all
the eigenvalues of L areΛ � Λi􏼈 􏼉.+e eigenvectors ϕi ∈ Rn of
Λi satisfy Lϕi � Λiϕi, i � 1, . . . , n. L is real symmetric, and we
choose an orthonormal basis for ϕiϕj � δij, where the degree
of node i is ki, and δij is the Kronecker delta function.

We consider the following predator-prey system:

dx

dt
� x r1 − a11x − a12y􏼂 􏼃,

dy

dt
� y r2 + a21x − a22y􏼂 􏼃,

(1)

where x and y are prey and predator, respectively. r1 rep-
resents the intrinsic growth rate, a12 is the proportionality
coefficient of predator and prey, and a21 is the growth rate of
the predator; the predator increases exponentially with ratio
r2 (actually r2 < 0 means the number of predators decreases
exponentially). According to Samuelson’s assumptions [23],
a11 and a22 represent increasing returns or decreasing
returns, respectively. Among them, aii > 0(< 0), (i � 1, 2)

correspond to increasing returns (decreasing returns).
System (1) correspond to the mixed-income when a11a22 ≤ 0.

System (1) always has three equilibria
E0 ≜ (0, 0), E1 ≜ (r1/a11, 0), and E2 ≜ (0, r2/a22). System (1)
also have fourth equilibrium point E3 ≜ (x∗, y∗)≜ (r1a22 −

r2a12/a11a22 + a12a21, r1a21 + r2a11/a11a22 + a12a21) when
r1a22 − r2a12/a11a22 + a12a21 > 0, r1
a21 + r2a11/a11a22 + a12a21 > 0. On the basis of Hopf bifur-
cation’s definition, we need to satisfy
tr(JE3

) � 0, det(JE3
)> 0.+e critical value for bifurcation is a

positive root of tr(JE3
) � 0 and the bifurcation parameter is

a12 � a∗12 which satisfies det(JE3
)> 0,

a12 �
r1 + r2( 􏼁a11a22 + r1a21a22

r2a11
≜ a
∗
12,

r2 r1a21 + r2a11( 􏼁

a11 + a21
< 0.

(2)

+en, we give the condition of Hopf bifurcation. Firstly,
we verify the transversality condition [24].

d
da12

tr J x∗ ,y∗( )􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌a12�a∗12

� −
a22 a11 + a21( 􏼁 r1a21 + r2a11( 􏼁

a11a22 + a12a21( 􏼁
2

􏼌􏼌􏼌􏼌􏼌􏼌a12�a∗12

� −
r2a11( 􏼁

2

a22 a11 + a21( 􏼁 r1a21 + r2a11( 􏼁
≠ 0.

(3)

+en, we compute the first Lyapunov coefficient [25]. Let
a12 � a∗12, then (x∗c, y∗c) � (− (r2/a11 + a21),

(r2a11/a22(a11 + a21))). Making the following shift

X � x − x
∗c

,

Y � y − y
∗c

.
(4)

(1) becomes

_X � α10X + α01Y + α20X
2

+ α11XY,

_Y � β10X + β01Y + β11XY + β02Y
2
,

(5)

where α10 � − a11x
∗c, α01 � − a12x

∗c, α20 � − a11, α11 � − a12,

β10 � a21y
∗c, β01 � − a22y

∗c, β11 � a21, β02 � − a22.
+e first Lyapunov coefficient at a12 � a∗12 can be

computed by the formula

l1 �
− 3π

2α01Δ
3/2

α10α01 β211 − 2α220 + α20β11 + α11β02􏼐 􏼑 + α10β10 α211 − 2β202 + α11β02􏼐 􏼑

+α01β10 β11β02 − α11α20( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦ − 2α210β11β02 + 2α210α11α20

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

�
− 3π
2

−
a11 + a21

r2 r1a21 + r2a11( 􏼁
􏼠 􏼡

3/2
r1a21 + r1a11 + r2a11( 􏼁a

2
22

a11 + a21
,

(6)

where Δ � α10β01 − α01β10 > 0, α10 + β01 � 0, and if
l1 < 0(> 0), the Hopf bifurcation is supercritical (resp.
subcritical).

When r1a22 − r2a12/a11a22 + a12a21 > 0, r1 a21 + r2a11/
a11a22 + a12a21 > 0, E3 changes its stability, and Hopf bi-
furcation occurs if a12 � a∗12.

Typically, the distribution of individuals is spatially
heterogeneous. So, we research (1) with a reaction-diffusion
and network as follows:

dxi

dt
� xi r1 − a11xi − a12yi􏼂 􏼃 + d1∇

2
xi,

dyi

dt
� yi r2 + a21xi − a22yi􏼂 􏼃 + d2∇

2
yi,

(7)

where d1, d2 are the diffusion constants.
Generally, we can regard diffusion as an interplay be-

tween network nodes. In this article, we consider a dis-
tinctive interaction between nodes. So the network-
organized system (7) is
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dxi

dt
� xi r1 − a11xi − a12yi􏼂 􏼃 + d1 􏽘

j

Lijxi,

dyi

dt
� yi r2 + a21xi − a22yi􏼂 􏼃 + d2 􏽘

j

Lijyi.

(8)

+e linearized network-organized system of the system
(8) is

dxi

dt
� α10xi + α01yi + d1 􏽘

j

Lijxi,

dyi

dt
� β10xi + β01yi + d2 􏽘

j

Lijyi.

(9)

+e general solution of the linear network-organized
system can be expressed as [3].

xi � 􏽘

N

k�1
ckβke

λktϕk
i ,

yi � 􏽘
N

k�1
cke

λktϕk
i ,

(10)

where 􏽐jLijϕ
k
j � Λiϕ

k
i .

Substituting the general solution into system (9), the
Jacobian matrix Bi(i � 1, . . . , n) is

Bi �
α10 + d1Λi α01

β10 β01 + d2Λi

􏼠 􏼡, (11)

where all the eigenvalues of matrix L can be represented as
Λi(0 � Λ1 >Λ2 > · · · >ΛN). +en, system (8) has the fol-
lowing characteristic function:

λ2 + pΛi
λ + qΛi

� 0, (12)

where pΛi
� − (α10 + β01) − (d1 + d2)Λi,

qΛi
� d1d2Λ2i + (α10d2 + β01d1)Λi + α10β01 + α01β10. Turing

instability occurs when there is a Λi with Reλ> 0. From (12),

4d1d2 α10β01 + α01β10( 􏼁 + α10d2 + β01d1( 􏼁
2

� 0. (13)

We can get the Turing instability’s critical value about Λ
(Skim d1 � 0.1562d2) in the reaction-diffusion system Fig-
ure 1. Note k2

1c, k2
2c(k2

1c < k2
2c) as two solutions of

Reλ(k2) � 0, Reλ(k2)> 0 holds if k2 ∈ B � λ|k21c < λ< k2
2c􏼈 􏼉

Figure 2(d2 � 2). Turing instability of the reaction-diffusion
system is the Turing instability’s prerequisite in the network-
organized system. Based on the Gershgorin circle theorem
[9, 10], we have.

(i) Result 1: kmax � max ki􏼈 􏼉, kmin � min ki􏼈 􏼉 and Λi is
the eigenvalue of the Laplacian matrix L, then,
Λi ∈ C � Λi| − 2kmax <Λi ≤ 0􏼈 􏼉.

(ii) Result 2: in a network-organized system, a system
remains stable when no eigenvalue of L stays at the
instability range Λ∩B � Φ, Turing instability occurs
when Λ∩B≠Φ, and B∩C≠Φ (C is the set of the

eigenvalues of Laplacian matrix) induces the oc-
curring of instability.

To study the mechanism of the network-organized
system’s stability, we research (8) through the comparison
principle: let xi � x∗ + ε􏽢xi and yi � y∗ + ε􏽢yi, where
0< ε≪ 1. Substituting xi, yi in (9), expanding in ε, we can get
the linearized system:

d􏽢xi

dt
� α10􏽢xi + α01􏽢yi + d1L􏽢xi,

d􏽢yi

dt
� β10􏽢xi + β01􏽢yi + d2L􏽢yi.

(14)

We resolve the first-order perturbations into ϕi’s
eigenfunction expansions, to consider the system’s stability.
Let

􏽢xi � 􏽢Xiϕi,
􏽢Yi � 􏽢Yiϕi, for each i � 1, . . . , n. (15)

x
y

2

2.5

3

3.5

4

4.5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20
t ×104

Figure 1: +e stability of the system (1) without diffusion when
r1 � 1, r2 � − 1, a11 � − 1.158, a12 � 1, a21 � 2, a22 � 1.

0.9
1

1.1
1.2
1.3
1.4
1.5
1.6
1.7

0.5 1 1.5 20
t ×104

x
y

Figure 2: +e stability of the system (1) without diffusion when
r1 � 1, r2 � − 1, a11 � − 1.158, a12 � 1.7271, a21 � 2, a22 � 1.
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Substituting (15) into (20) and noting the properties of
ϕi, we obtain

d 􏽢Xi

dt
� α10 􏽢Xi + α01 􏽢Yi + d1Λi

􏽢Xi,

d􏽢Yi

dt
� β10 􏽢Xi + β01 􏽢Yi + d2Λi

􏽢Yi.

(16)

Using the comparison principle from [26], we note

d2Y
dt

2 + P(t)
dY

dt
+ Q(t)Y � 0, (17)

where Q(t)< 0. We eliminate one of 􏽢Xi or 􏽢Yi from (16), then
d2 􏽢Xi

dt
2 + pΛi

d 􏽢Xi

dt
+ qΛi

􏽢Xi � 0,

d2 􏽢Yi

dt
2 + pΛi

d􏽢Yi

dt
+ qΛi

􏽢Xi � 0,

(18)

where pΛi
, qΛi

are as in (12). +en, we obtain the generalized
condition:

α10β01 + α01β10 + d1β01 + d2α10( 􏼁Λi + d1d2Λ
2
i < 0. (19)

Assume that the instability condition (19) holds. +en,
the homogeneous state (xk, yk) � (x∗, y∗) is unstable under
the ith Turing mode (15).

We also consider the system (8) through the mean-field
theory:

dxi

dt
� f xi, yi( 􏼁 + d1 H

x
− kixi( 􏼁,

dyi

dt
� g xi, yi( 􏼁 + d2 H

y
− kiyi( 􏼁,

(20)

where Hx � 􏽐
n
j�1 Aijxj, Hy � 􏽐

n
j�1 Aijyj and ki is the net-

work’s degree. We let other nodes stay at equilibrium
(x∗, y∗), and rewrite the single-node system,

dxi

dt
� xi r1 − a11xi − a12yi􏼂 􏼃 + d1 x

∗
− kixi( 􏼁,

dyi

dt
� yi r2 + a21xi − a22yi􏼂 􏼃 + d2 y

∗
− kiyi( 􏼁.

(21)

+erefore, it is easy to obtain the characteristic equation:

λ2 + pki
λ + qki

� 0, (22)

where pki
� − (α10 + β01) + d1ki + d2ki, qki

� α10β01+ (α10d2
+ β01d1)ki + d1d2k

2
i . Assume λ1 and λ2 are two eigenvalues of

system (22). +en system (21) is stable when d1 � d2 � 0,
namely pki

> 0, so λ1 + λ2 � − pki
< 0. If qki

> 0(qki
< 0). +en,

the system (21) is stable(unstable). To sum up, we can use the
comparison principle(the mean-field theory) to conclude that
the system (8) is unstable when qΛi

< 0(qki
< 0).

3. Numerical Simulation

We give some numerical analysis based on the earlier
theoretical analysis. From Figure 3, if we choose

r1 � 1, r2 � − 1, a11 � − 1.158, a12 � 1, a21 � 2, a22 � 1, the
equilibrium point (x∗, y∗) is asymptotically stable, namely,
ecological balance persists as long as there is no biological
invasion. +at means the predator and the prey can coexist.
+e equilibrium (x∗c, y∗c) � (1.1326, 1.2651) is unstable,
and Hopf bifurcation occurs Figure 4, when a12 passes
through the critical value a∗12 � 1.7271. Because
l1 � 8.2123> 0, the Hopf bifurcation is subcritical, the prey-
predator system shows periodic changes; thus, this state is
easy to destroy. +e equilibrium point (x∗, y∗) becomes
unstable, when a12 � 1.8271> a∗12.

As diffusion is a vital factor in the distribution of
predator and prey, we should not ignore migration. So we
construct the random network and transform it into the
Laplacian matrix Lij. And we consider how the random
network affects the equilibrium point’s stability when (7) is
stable.

Based on the above theoretical analysis, the Turing in-
stability in the reaction-diffusion equation is a precondition
for Turing instability in a network-organized system. Turing
instability occurs in a reaction-diffusion equation when
Turing bifurcation parameters d2 and d1 are in a certain
range Figure 1. Namely, diffusion behavior is universal and
allowed, but the relative diffusion rate needs to be within a
specific range; otherwise, the ecosystem will be out of bal-
ance and destroyed.

To observe Turing instability in the network-organized, we
should guarantee d1 < 0.1562d2 while changing p. However,
the Laplacian matrix eigenvalues are Λ1,Λ2, . . . ,ΛN, N is the
number of nodes, and k2 is continuous in a reaction-diffusion
system. In other words, the distribution of − Λi determines the
system stability.+e critical point is d1c � 0.3124 when d2 � 2.
+e range of eigenvalues Λi could be obtained by result 1. +e
eigenvalues of L are discrete and included in the continuous
region Figure 2.

+e red region shows the estimated range of Turing
instability about (p, d1) in Figure 5. Besides, we obtain the
estimated range of p, (d2 ln N/d1cN)>p> (1/N2), which
determines the system dynamical behavior and network
characteristics. Moreover, p � ln N/N is the critical value
between the connected network and sparse network [27].
Anyway, the invasive rate of species and p in the predator-
prey network play a vital role in balancing the native bio-
logical system.

Let the value of (p, d1) lie in the blue region shown in
Figure 5 (here, we set p � 0.00006, d1 � 0.1124), then,

Turing instability

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

d1

2 4 6 8 100
d2

Figure 3: Turing bifurcation about d2 and d1 in the continuous
system.
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Figure 4: Linear stability analysis. +e relationship between Reλ about − Λi(k2) when r1 � 1, r2 � − 1, a11 � − 1.158, a12 � 1, a21 � 2, a22 � 1,
and p � 0.1, d2 � 2. +e critical values are Λc � − 3.35, d1c � 0.3124.
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Figure 5: +e region of instability about d1 and p.
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Figure 6: (a) Instability region (left) of random network and pattern formation (right) in random network when p � 0.00006, d1 � 0.1124.
(b) +e bifurcation about d1 when p � 0.00006.
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there is no point Λi (k2) in the instability region
Λ∩ (1.7, 21.1) � Φ (result 2) (Figure 6(a)) and the equi-
librium is stable (Figure 6(a)). We verified the correctness
of the previous analysis with bifurcation diagrams
(Figure 6(b)). We can conclude that with a fixed predator
invasion rate and a fixed prey invasion rate, the link
probability between two different systems will negatively
impact the entire predator-prey network stability. Even
the predator-prey network’s diffusion induces the species
extinction.

Figure 7 shows an example of p that belongs to the red
region in Figure 5, such as p � 0.08, d1 �

0.1124< d1c � 0.3124, almost all of Λi(k2) in instability re-
gion Figure 7(a) left(up) and 7(a) right(up) shows that Turing
instability occurs. If p � 0.08 and d1 � 1.1124>d1c � 0.3124
(i.e., (p, d1) in the blue region in Figure 5), there is no point
Λi(k2) in the instability region (Figure 7(a), left(down)), the
system is stable (Figure 7(a), right(down)). We also verified
the correctness of the previous analysis with a bifurcation
diagram (Figure 7(b)).
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Figure 7: (a) +e relationship between Reλ about − Λi(k2) (left) and the pattern formation of system (3) (right). Top: when
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+e ecological interpretation is that the system is less
stable when the invasion rate of the prey is lower when the
link probability of predator-prey systems is fixed. Con-
versely, if we want to keep the predator-prey system stable,
the invasion rate of the prey needs to be decreased.

4. Conclusion

+is paper theoretically derives Turing instability conditions
[28–31] in a predator-prey network and carries out a detailed
numerical study. We study the effects of diffusion and link
probability on pattern formation in a random system. +e
smaller the invasion rate d1 of the prey undergoes, the easier
the predator-prey network Turing instability. Meanwhile,
Turing instability occurs when the link probability p falls in
the approximate region (d2 ln N/d1cN)>p> (N2/1), which
depends on the system characteristics.

Regarding an explanatory biological mechanism, the link
probability and the invasion rate significantly influence the
entire predator-prey network stability. +e lower the inva-
sion rate of the prey is, the less stable it is. Conversely, the
prey invasion rate can be increased if we want to keep the
predator-prey system stable. +at means we can find an
equilibrium point between native and invasive species by
adjusting the diffusion probability and species’ invasion rate.
Finally, we obtain the estimated region of p,
(d2 ln N/d1cN)>p> (1/N2). +us, invasion rate of species
and the link probability in the predator-prey network play a
key role in balancing the native biological system.
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Based on the Lotka–Volterra system, a pest-natural enemy model with nonlinear feedback control as well as nonlinear action
threshold is introduced. +e model characterizes the implementation of comprehensive prevention and control measures when
the pest density reaches the nonlinear action threshold level depending on the pest density and its change rate. +e mortality rate
of the pest is a saturation function that strictly depends on their density while the release of natural enemies is also a nonlinear
pulse term depending on the density of real-time natural enemies.+e exact impulsive and phase sets are given.+e definition and
properties of the Poincaré map corresponding to the pulse points on the phase set are provided. We investigate the existence and
stability of boundary and interior order-1 periodic solution. +e theoretical analysis developed in the present paper combined
with nonlinear controlling measures as well as nonlinear action threshold methods and techniques laid the foundation for the
establishment and analysis of other state-dependent feedback control models.

1. Introduction

Pest control [1–6] is not only an ancient problem but also a
new challenge faced by the modern world. Various scientific
and effective methods [7–13] are needed to comprehensively
prevent and control pest outbreaks and reinfestation. +e
most common early method was chemical control [14, 15],
that is, the method of controlling pest by spraying pesticides
during pest outbreaks. +e main advantages of chemical
control are quick effect and convenient use. It can eradicate
or maintain the number of pests at a lower level within a
short period of time. +erefore, chemical control is still one

of the important means to control pest population. Bio-
logical control [16–18] is another important control method,
which has the advantages of strong effect and long duration,
and is also an environmental friendly control method. Maiti
et al. [19] used a valuable technique known as sterile insect
release method (SIRM) to manage the pest population. +e
authors discussed the effect of uncertain ecological varia-
tions on sterile and fertile insects. Other main methods are
physical control and agricultural control. For example, the
agricultural control method is a method to reduce or control
pests throughmeasures such as crop rotation, intercropping,
and reasonable adjustment of cultivation procedures.
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Each pest control method has its advantages and dis-
advantages. Due to long-term and high-dose use, pests can
easily develop resistance to specific pesticides, resulting in
pest control failure and pest reemergance. However, other
control strategies cannot effectively reduce the number of
pests in a short time because of their slow effectiveness.
+erefore, how to effectively and reasonably use multiple
methods is the best choice for pest control. Based on this, the
Food and Agriculture Organization of the United Nations
(FAO) proposed the concept of integrated pest management
(IPM) [1, 20, 21] and defined it as follows: “IPM is a pest
control system that comprehensively considers the pop-
ulation dynamics of the pest and its related environment and
uses all appropriate control techniques and methods that
work as closely as possible to maintain levels at which pest
populations do not cause economic harm.” Both experi-
mentally [22, 23] and theoretically [24, 25], it has been
proved that IPM is more practical than the classic approach.
+is is one of the most useful methods which minimizes
damage to individuals and the environment in addressing
pest control.

In this perspective, researchers have studied the math-
ematical problems based on impulsive differential equations
in order investigate the dynamics of IPM and compass biped
robotic systems. In numerous realistic problems, impulses
often occur at state-dependent. +erefore, it is more feasible
to apply the procedure of state-dependent feedback control
to model real-world issues. Znegui et al. [26] used an im-
pulsive hybrid nonlinear system to construct a passive biped
robot model that demonstrates complicated behaviors. In
[27], the authors constructed a Poincaré map which was
further utilized to examine the existence and stability of
order-1 periodic type solution of the problem under con-
sideration. Many new systems on the design of specific
analytical expression of the hybrid state-dependent Poincaré
were studied in [28, 29].+e authors in [26–29] portrayed an
expression of the controlled Poincaré map to discuss the
stabilization of passive dynamic walking of the compass-gait
biped robot. +e compass-gait biped robot is a two-DoF
legged mechanical system which is identified by its passive
dynamic walking. +e one-DoF mechanical systems are also
of great importance. Some articles related to one-DoF state-
feedback control with respect to different perspectives can be
found in [30, 31].

+e impulsive differential equations are also used pro-
ficiently in epidemic dynamics [32] and population dy-
namics [33–35]. A basic assumption of the above series of
studies is that regardless of how huge the number of pests or
the growth rate is, as long as the number of pest populations
touches economic threshold (ET) [33–35], the IPM strategy
can be implemented. However, there are two basic situations
of actual pest growth that require high attention: first, the
number of pests is comparatively large, and the rate of
change is small; second, the population is small, but the rate
of change is high. A fundamental problem illustrated by

these two situations is that when the pest population is large
(such as exceeding ET), the growth rate is small or even
negative at this time. In this case, even if the IPM strategy is
not implemented, the number of pests may not exceed
economic injury level (EIL) [36]. Another situation is that
the number of pests is not large, and the rate at which the
pest population is growing is very large. In this case, if the
control strategy is not implemented in time, it may lead to a
large outbreak of pests. Next, in order to establish appro-
priate and effective integrated controlling strategies, the IPM
process needs precise inspection of the pest quantity. +e
mortality rate should be fluctuated according to the satu-
rating function which relies upon the density of pest, and the
releasing quantity of natural enemies should be a function of
their density. +erefore, keeping in mind the above factors, a
feasible new state-feedback control pest-natural enemy
ecosystem with nonlinear controlling measures as well as
nonlinear action threshold system is proposed. +e corre-
sponding analytical techniques and numerical methods are
developed to examine the dynamical aspects of the system
under consideration.

+e main research contents are reflected in the fol-
lowing aspects. We construct a Lotka–Volterra prey-
predator model involving both nonlinear feedback and
action threshold depending on the density of pest and its
change rate. In the model, we use the action threshold
instead of the economic threshold to characterize the
implementation of control measures, that is, when the
number of pests reaches the action threshold depending
on the density of pest and its change rate, a comprehensive
pest control tactic is applied so that the number of pests
does not exceed the nonlinear ratio-dependent AT. On the
other hand, the use of nonlinear controlling factors in the
feedback control makes the model closer to reality.
Properties of the nonlinear ratio-dependent AT are given.
+en, the classification is performed according to the
positional relationship between the action threshold level
and the stable equilibrium point of the corresponding
ordinary differential system. By using the definition and
properties of Lambert W function, the analytical ex-
pression of the Poincaré map is given. Furthermore, by
using the analytical properties of Poincaré map, the ex-
istence, uniqueness, and stability of the pest-free and
interior-order one periodic solution of the pest-natural
enemy system are given, and corresponding sufficient
conditions are obtained. +e main results are confirmed
by numerical simulations.

2. Model Construction and Main Properties of
Action Threshold

2.1. Construction of Model. In view of the above objective
factors, we propose the following nonlinear state-dependent
feedback control model combined with nonlinear ratio-
dependent AT:
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dx(t)

dt
� ax(t) − bx(t)y(t),

dy(t)

dt
� cx(t)y(t) − dy(t),

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

θ1x(t) + θ2
dx(t)

dt
<AT,

x t
+

( 􏼁 � 1 −
δx(t)

x(t) + α
􏼠 􏼡x(t),

y t
+

( 􏼁 � y(t) +
υ

1 + βy(t)
,

⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

θ1x(t) + θ2
dx(t)

dt
� AT.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

It can be seen that without pulse control measures,
the model is simply based on the classical Lotka–Volterra
type problem which is extensively used to describe the
relation between the populations of pest and natural
enemy shown by x(t) and y(t), respectively. Weighted
parameters θ1, θ2, and AT are positive constants, which
satisfy θ1 + θ2 � 1. +e discontinuous mapping shown in
the third and fourth equations in system (1) represents
that the implementation of comprehensive control
measures depends on the action level, that is, once the
pest density reaches action threshold, the densities of
pests as well as the natural enemies are immediately
updated to (1 − δx(t)/x(t) + α)x(t) and y(t) + υ/1+ βy(t),
respectively. α> 0 represents the semisaturation con-
stant, δ > 0 is defined as the maximum instantaneous
killing rate after the use of pesticides, and υ> 0 is the
maximum natural enemy when executing the control
strategy. +e amount β> 0 is the natural enemy density
adjustment parameter. +e nonlinear term υ/1 + βy(t)

shows a function of y(t) which decreases monotonically,
and the maximum amount of natural enemy release does
not exceed. +e symbols x(0+) with y(0+), respectively,
represent the initial populations of pests and natural
enemies and satisfy x(0+) + y(0+)<AT. In model (1),
there always exist a stable centre E0 � (d/c, a/b) and a
saddle point (0, 0) which is unstable.

+e special cases of the above model for different pa-
rameters were considered in [37–39]. +e biological sig-
nificance and main properties of the corresponding ODE
model can be seen in [37]. In [38], Tian et al. extended the
classic pest-natural enemy model with linear state-depen-
dent control measures to a model with nonlinear state-
dependent impulsive control tactics. In [39], the authors for
the first time introduced and provided the concept of action
threshold depending on the density of pest and its rate of
change. +ey used the definition and properties of the
LambertW function to construct the analytical expression of
the Poincaré map. Furthermore, by using the analytical
properties of Poincaré map, the existence, uniqueness, and
stability of the natural enemy free periodic solution and
internal periodic solution were discussed in detail. +e re-
sults explain the significance of nonlinear ratio-dependent
AT in integrated pest control and the important guiding role
in IPM strategy.

2.2. Properties of Action8reshold. +e quantities θ1 and θ2
are dependent weighted parameters. If θ2 � 0, then the ratio-
dependent AT converts into ET. +erefore, we can say that
ET is a special case of ratio-dependent AT for θ2 � 0.
Combining the first equation of ODE model (1) with ratio-
dependent AT, we get

lim
x⟶+∞

θ1 + aθ2( 􏼁x − AT
bθ2x

�
θ1 + aθ2

bθ2
. (2)

If we put θ1 � 0, then the ratio-dependent AT converts
into y � ax − AT/bx. In this case, if x⟶ +∞, then y is
bounded and reaches its highest value a/b. Further, with the
utilization of the control actions on y � (θ1 + aθ2)x−

AT/bθ2x, we get another curve y+ � (θ1 + aθ2)x+−

AT(1 − δx(t)/x(t) + α)/bθ2x+ + υ/1 + βy. For θ2 � 0, the
curve changes into x+ � (1 − δx/x + α)AT showing a ver-
tical straight line. Let PAT � δx/x + α; then, for convenience,
we denote the two curves y � (θ1 + aθ2)x − AT/bθ2x and
y+ � (θ1 + aθ2)x+ − AT(1 − PAT)/bθ2x+ + υ/1 + βy by ΓIS
and ΓPS, respectively, as shown in Figure 1.

3. Impulsive and Phase Sets

+is section is devoted to present the dynamical aspects of
the system (1), and we can use the Poincaré map on the
sequence of pulse points which will be formulated later. Let
AT/θ1 be the abscissa of the curves ΓIS at y � a/b.

+en, we take the following cases based on the equi-
librium E0 and curve ΓIS.

(A)
AT
θ1
≤

d

c
; (B)

d

c
<
AT
θ1

. (3)

+e necessary and primary component is to examine the
section that is not used during the pulse effect process, which
means that the trajectory initiating from ΓPS cannot touch
the curve ΓIS in the case of maximum impulsive set. In the
following part of the paper, we address the definition of
impulsive sets.

3.1. Impulsive Set. In Case (A), the solution Γ1 is tangent to
the curve ΓPS at point T � (xT, yT). If we denote the im-
pulsive set by M1, then it can be written as
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M1 � (x, y) ∈ R2
+

􏼌􏼌􏼌􏼌􏼌􏼌
AT

θ1 + aθ2
≤x≤ xG2

, 0≤y≤yG2
􏼨 􏼩. (4)

Now based on the corresponding horizontal coordinate,
we search the exact value of yG2

in the following lemma. +e
point yG2

is actually the maximum value of the impulsive set
M1 for Case (A).

Lemma 1. For Case (A), the maximum impulsive set is
defined as M1 with

yG2
� −

a

b
W −

b

a
yTe

− b/ayT+AG2/a􏼠 􏼡provided thatA
1
G2
≤ 0. (5)

Proof. Let Γ1 be a trajectory tangent at T � (xT, yT), and it
touches the curve ΓIS at point G2 � (xG2

, yG2
). +en, T and

G2 must satisfy the following equation:

a lnyG2
− byG2

+ d lnxG2
− cxG2

� a lnyT − byT + d lnxT − cxT.

(6)

Solving this equation for yG2
, we get

−
b

a
yG2

􏼠 􏼡e
− b/ayG2 � −

b

a
yTe

− b/ayT+AG2/a, (7)

where AG2
� d(lnxT − lnxQ2

) + c(xG2
− xT). +e above

equation obviously gives two solutions when we solve it by
using Lambert W function. +e minimum solution can be
written as follows:

yG2
� −

a

b
W −

b

a
yTe

− b/ayT+AG2/a􏼠 􏼡, (8)

which is well defined because AG2
≤ 0.

For Case (B), it is clear from Figure 1(b) that at point
S � (xS, yS), Γ2 is tangent to the curve ΓIS where yS ≤ a/b.
+en, taking into account the locations of equilibrium E0
and the curve ΓIS, we can write the maximum impulsive set
for Case (B) as

M2 � (x, y) ∈ R2
􏼌􏼌􏼌􏼌􏼌􏼌

AT
θ1 + aθ2

≤x≤ xS, 0≤y≤yS􏼨 􏼩. (9)

+e above information shows that for this case, the
tangent point with ΓIS varies due to small changes in θ1 and
θ2.

If the weighted parameter θ2 decreases, then the quantity
yS approaches its maximum value a/b. □

3.2. Phase Set. To determine the exact phase set of system (1)
under different conditions, we need to know whether the
solution from initial point (x+

0 , y+
0 ) reaches the corre-

sponding impulsive set and whether the pulse action occurs
or not. To provide the exact domain of phase sets, we first
discuss the interval which is free of impulsive effect.

Lemma 2. For Case (B), any solution starting from the phase
set with initial point (x+

0 , y+
0 ) (where y+

0 ∈ (yK2
, yK1

)) will not
reach the impulsive set M2, where
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Figure 1: Detailed diagrams describing the impulsive along with phase sets where (a) AT/θ1 ≤ d/c and AT/θ1 >d/c. In sub-plot (a), Γ1 shows
the tangent trajectory to the curve ΓPS and touches the curve ΓIS at (xG2

, yG2
). In sub-plot (b), Γ2 touches the curve ΓPS at two points

(xK1
, yK1

) and (xK2
, yK2

), and tangent to the curve ΓIS at point (xS, yS).
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yK1
� −

a

b
W − 1, −

b

a
ySe

− b/ayS− AK1/a􏼠 􏼡andyK2
� −

a

b
W −

b

a
ySe

− b/ayS − AK2/a􏼠 􏼡, (10)

provided that AK1
, AK2
≥ 0.

Proof. Assume that the closed trajectory Γ1 starts from K1 �

(xK1
, yK1

) and touches the curve ΓIS at point S � (xS, yS).
+en, K1 and S must satisfy the following relationship:

a lnyK1
− byK1

+ d lnxK1
− cxK1

� a lnyS − byS

+ d lnxS − cxS.
(11)

Rearranging this equation for yK1
, we get

−
b

a
yK1

􏼠 􏼡e
− b/ayK1 � −

b

a
ySe

− b/ayS− AK1/a, (12)

where AK1
� d(lnxK1

− lnxS) + c(xS − xK1
). +e above

equation can be easily solved utilizing the Lambert W
function approach which clearly will result in two solutions
of the problem. +e maximum solution can be written as

yK1
� −

a

b
W − 1, −

b

a
ySe

− b/ayS− AK1/a􏼠 􏼡. (13)

+e value of yK2
can be found in the similar way as above,

i.e.,

yK2
� −

a

b
W −

b

a
ySe

− b/ayS− AK2/a􏼠 􏼡, (14)

with AK2
� d(lnxK2

− lnxS) + c(xS − xK2
).

As a result, any solution curve initiating from (x+
0 , y+

0 )

with y+
0 ∈ (yK2

, yK1
) will be free from the effect of impulsive

set.
For the case when θ2 � 0, the trajectory shown by Γ2

becomes tangent at y � a/b. So, yK2
and yK1

become

yK2
� −

a

b
W − 1, − e

− 1− AK1/a􏼐 􏼑, andyK1
� −

a

b
W − e

− 1− AK2/a􏼐 􏼑.

(15)

+e impulsive function described by y(t+) �

y(t) + υ/1 + βy(t) satisfies some properties which are very
important.

To do this, we indicate

F(u) � u +
υ

1 + βu
, u ∈ 0,

a

b
􏼔 􏼕, (16)

and then we get F
�

(u) � 1 − υβ/(1 + βu)2 and F
�

(u) � 0 at
u �

��
υβ

􏽰
− 1/β.

(A)AT/θ1 ≤d/c. From Lemma 1, we can describe the
impulsive set M1 as M1 � (x, y) ∈ R2

+|AT/θ1 + aθ2 ≤􏼈

x≤ xG2
, 0≤y≤yG2

}. Further, we can take three subclasses as
follows.

(i)
��
υβ

􏽰
− 1/β≤ 0.

For this subcase, F
�

(u)≥ 0 for all u ∈ [0, yG2
], which

shows that υ≤F(u)≤yG2
+ υ/1 + βyG2

. +en, the
corresponding phase set to M1 can be expressed as

N11 � x
+
, y

+
( 􏼁 ∈ R2

+|x
+ ∈ X

1
1, y

+ ∈ Y
1
1􏽮 􏽯, (17)

with

X
1
1 �

AT 1 − PAT( 􏼁

θ1 + aθ2
, 1 − PAT( 􏼁xG2

􏼢 􏼣,

Y
1
1 � υ, yG2

+
υ

1 + βyG2

􏼢 􏼣.

(18)

(ii)
��
υβ

􏽰
− 1/β≥yG2

.
For this subcase, F

�

(u)≤ 0 for u ∈ [0, yG2
], which

denotes that yG2
+ υ/1 + βyG2

≤F(u)≤ υ. +en, the
corresponding phase set to M1 is expressed as
follows:

N12 � x
+
, y

+
( 􏼁 ∈ R+ × R+|x

+ ∈ X
1
2, y

+ ∈ Y
1
2􏽮 􏽯, (19)

with

X
1
2 � 1 − PAT( 􏼁xG2

,
AT 1 − PAT( 􏼁

θ1 + aθ2
􏼢 􏼣,

Y
1
2 � yG2

+
υ

1 + βyG2

, υ􏼢 􏼣.

(20)

(iii) 0<
��
υβ

􏽰
− 1/β<yG2

.

For the present subcase, the impulsive set M1 becomes
M1 � M11 ∪M12, where

M11 � (x, y) ∈ R2
+|x ∈ X

1
3, y ∈ Y

1
3􏽮 􏽯, (21)

with

X
1
3 �

AT
θ1 + aθ2

,
ATβ

θ1 + aθ2( 􏼁β − (
��
υβ

􏽰
− 1)bθ2

􏼢 􏼣,

Y
1
3 � 0,

��
υβ

􏽰
− 1

β
􏼢 􏼣,

(22)

M12 � (x, y) ∈ R2
+|< x ∈ X

1
4, y ∈ Y

1
4􏽮 􏽯, (23)

with

X
1
4 �

ATβ
θ1 + aθ2( 􏼁β − (

��
υβ

􏽰
− 1)bθ2

, xG2
􏼠 􏼣,

Y
1
4 �

��
υβ

􏽰
− 1

β
, yG2

􏼠 􏼣.

(24)

Hence, the corresponding phase set to the impulsive set
M1 � M11 ∪M12 is N13 ∪N14, where

N13 � x
+
, y

+
( 􏼁 ∈ R2

+|x
+ ∈ X

1
5, y

+ ∈ Y
1
5􏽮 􏽯, (25)

Complexity 5



with

X
1
5 �

AT 1 − PAT( 􏼁β
θ1 + aθ2( 􏼁β − (

��
υβ

􏽰
− 1)bθ2

,
AT 1 − PAT( 􏼁

θ1 + aθ2
􏼢 􏼣,

Y
1
5 �

2
��
υβ

􏽰
− 1

β
, υ􏼢 􏼣,

(26)

N14 � x
+
, y

+
( 􏼁 ∈ R2

+|x
+ ∈ X

1
6, y

+ ∈ Y
1
6􏽮 􏽯, (27)

with

X
1
6 �

AT 1 − PAT( 􏼁β
θ1 + aθ2( 􏼁β − (

��
υβ

􏽰
− 1)bθ2

, 1 − PAT( 􏼁xG2
􏼠 􏼣,

Y
1
6 �

2
��
υβ

􏽰
− 1

β
, yG2

+
υ

1 + βyG2

􏼠 􏼣.

(28)

(B) d/c<AT/θ1. For this case, we express the impulsive
set as follows.

M2 � (x, y) ∈ R+ × R+|AT/θ1 + aθ2 ≤x􏼈

≤ xS, 0≤y≤yS}. In order to give the exact domain of phase
sets for Case (B), based on Lemma 2, we describe the fol-
lowing sets:

X
l
D �

AT 1 − PAT( 􏼁

θ1 + aθ2 + υbθ2( 􏼁
, xK2

􏼢 􏼣∪ xK1
,∞􏽨 􏼑,

Y
l
D � 0, yK2

􏽨 􏽩∪ yK1
,
θ1 + aθ2( 􏼁

bθ2
+

bθ2υ
bθ2 + β θ1 + aθ2( 􏼁

􏼢 􏼡.

(29)

+e following three subcases can be taken based on the
definition of the phase set.

(i)
��
υβ

􏽰
− 1/θ≤ 0.

For this subcase, F
�

(u)≥ 0 for all values of u belongs
to [0, yS]. +is shows that υ≤F(u)≤yS + υ/1 + βyS.
+e corresponding phase set toM2 can be expressed
as

N21 � x
+
, y

+
( 􏼁 ∈ R+ × R+|x

+ ∈ X
2
1, y

+ ∈ Y
2
1􏽮 􏽯, (30)

with

X
0
21 �

AT 1 − PAT( 􏼁

θ1 + aθ2
, 1 − PAT( 􏼁xS􏼢 􏼣,

X
2
1 � X

l
D ∩X

0
21,

(31)

Y
0
21 � υ, yS +

υ
1 + βyS

􏼢 􏼣,

Y
2
1 � Y

l
D ∩Y

0
21.

(32)

(ii)
��
υβ

􏽰
− 1/β≥yS.

For this subcase, F
�

(u)≤ 0 for u ∈ [0, yS], which
denotes that yS + υ/1 + βyS ≤F(u)≤ υ. Hence, the
phase set corresponding to M2 is given as

N22 � x
+
, y

+
( 􏼁 ∈ R+ × R+|x

+ ∈ X
2
2, y

+ ∈ Y
2
2􏽮 􏽯, (33)

with

X
0
22 � 1 − PAT( 􏼁xS,

AT 1 − PAT( 􏼁

θ1 + aθ2
􏼢 􏼣,

X
2
2 � X

l
D ∩X

0
22,

(34)

Y
0
22 � yS +

υ
1 + βyS

, υ􏼢 􏼣,

Y
2
2 � Y

l
D ∩Y

0
22.

(35)

(iii) 0<
��
υβ

􏽰
− 1/β<yS.

If 0≤ u≤
��
υβ

􏽰
− 1/β, then F

�

(u)≤ 0 and
2

��
υβ

􏽰
− 1/β≤F(u)≤ υ. If

��
υθ

√
− 1/β< u≤yS, then F

�

(u)> 0
and 2

��
υβ

􏽰
− 1/β<F(u)≤yS + υ/1 + βyS.

+e impulsive set M2 is now can be explained in the
form M2 � M21 ∪M22, where

M21 � (x, y) ∈ R2
+|x ∈ X

2
3, y ∈ Y

2
3􏽮 􏽯, (36)

with

X
2
3 �

AT
θ1 + aθ2

,
ATβ

θ1 + aθ2( 􏼁β − (
��
υβ

􏽰
− 1)bθ2

􏼢 􏼣,

Y
2
3 � 0,

��
υβ

􏽰
− 1

β
􏼢 􏼣,

(37)

and

M22 � (x, y) ∈ R2
+|x ∈ X

2
4, y ∈ Y

2
4􏽮 􏽯, (38)

with

X
2
4 �

ATβ
θ1 + aθ2( 􏼁β − (

��
υβ

􏽰
− 1)bθ2

, xS􏼠 􏼣,

Y
2
4 �

��
υβ

􏽰
− 1

β
, yS􏼠 􏼣.

(39)

Hence, the phase set corresponding to the impulsive set
M2 � M21 ∪M22 can be expressed as N23 ∪N24, where

N23 � x
+
, y

+
( 􏼁 ∈ R2

+|x
+ ∈ X

2
5, y

+ ∈ Y
2
5􏽮 􏽯, (40)

with
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X
0
23 �

AT 1 − PAT( 􏼁β
θ1 + aθ2( 􏼁β − (

��
υβ

􏽰
− 1)bθ2

,
AT 1 − PAT( 􏼁

θ1 + aθ2
􏼠 􏼣, X

2
5 � X

l
D ∩X

0
23,

Y
0
23 �

2
��
υβ

􏽰
− 1

β
, υ􏼢 􏼣, Y

2
5 � Y

l
D ∩Y

0
23,

(41)

N24 � x
+
, y

+
( 􏼁 ∈ R2

+|x
+ ∈ X

2
6, y

+ ∈ Y
2
6􏽮 􏽯, (42)

with

X
0
24 �

AT 1 − PAT( 􏼁β
θ1 + aθ2( 􏼁β − (

��
υβ

􏽰
− 1)bθ2

, 1 − PAT( 􏼁xS􏼠 􏼣,

X
2
6 � X

l
D ∩X

0
24,

(43)

Y
0
24 �

2
��
υβ

􏽰
− 1

β
, yS +

υ
1 + βyS

􏼠 􏼣,

Y
2
6 � Y

l
D ∩Y

0
24.

(44)

For Case (A), if AT/θ1 ≤ d/c, then the solution from the
phase set does not reach the interval (yG2

, a/b]. It is also
important to note that if yT � a/b and AG2

� 0, then
yG2

� a/b. For Case (B), it can be seen from the vector field
of system (1) that if the closed orbit is tangent or does not
touch the curve ΓPS, then there must be a trajectory that is
tangent to the curve ΓPS at a point (xT, yT), and the tra-
jectory intersects the curve ΓIS at lower point G2. +is proves
that the impulsive set in this case is defined byM1, as shown
in Figure 1(b).

If the closed trajectory is tangent to ΓIS at point S �

(xS, yS) and intersects the curve ΓPS at two points, then it can
be seen that for any solution from the phase set, it is im-
possible to reach the interval (yS, a/b]. +e above theory
shows that nonlinear terms of the controlling measure
combined with nonlinear action threshold make impulse
system (1) quite complicated, and it is very difficult to an-
alyze each situation in detail. □

4. Poincaré Map

Poincaré map [40–42] plays a very helpful role in examining
the qualitative behavior of a dynamical system, most

prominently the asymptotic stability of periodic or almost
periodic orbits. Based on the impulse and phase sets dis-
cussed above, the following related theorem for Poincaré
map can be obtained.

Theorem 1. For the impulsive points of model (1), the
Poincaré map for Cases (A)and(B) has the following form.

(A) AT/θ1 ≤ d/c:

y
+
i+1 �

ψ y
+
i( 􏼁, y

+
i ∈ Y

1
1, if

��
υβ

􏽰
− 1

β
≤ 0,

ψ y
+
i( 􏼁, y

+
i ∈ Y

1
2, if

��
υβ

􏽰
− 1

β
≥yG2

,

ψ y
+
i( 􏼁, y

+
i ∈ Y

1
5 ∪Y

1
6, if 0<

��
υβ

􏽰
− 1

β
<yG2

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(45)

(B) d/c<AT/θ1:

y
+
i+1 �

ψ y
+
i( 􏼁, y

+
i ∈ Y

2
1, if

��
υβ

􏽰
− 1

β
≤ 0,

ψ y
+
i( 􏼁, y

+
i ∈ Y

2
2, if

��
υβ

􏽰
− 1

β
≥yS,

ψ y
+
i( 􏼁, y

+
i ∈ Y

2
5 ∪Y

2
6, if 0<

��
υβ

􏽰
− 1

β
<yS,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(46)

where

ψ y
+
i( 􏼁 � −

a

b
W −

b

a
y

+
i exp −

b

a
y

+
i +

Al

a
􏼠 􏼡􏼢 􏼣 +

υ
1 − βa/bW − b/ay

+
i exp − b/ay

+
i + Al/a( 􏼁􏼂 􏼃

. (47)

Proof. Suppose that a trajectory initiating from (x+
0 , y+

0 )

repeats k (finite or infinite) times pulse action. Let the points
of the impulse set be represented by pi � (xi, yi), and after
the pulse action, the corresponding points of phase set are

represented by p+
i � (x+

i , y+
i ). If p+

0 � (x+
i , y+

i ) ∈ ΓPS and
p1 � (xi+1, yi+1) ∈ ΓIS are on the same trajectory above, then
the coordinates of the two points satisfy the following tra-
jectory equation:
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d lnx
+
i − d lnxi+1 + cxi+1 − cx+

i � a ln
yi+1

y
+
i

− b yi+1 − y
+
i( 􏼁.

(48)

Solving the above equation for yi+1, we get

yi+1 � −
a

b
􏼒 􏼓W −

b

a
y

+
i exp −

b

a
y

+
i +

A1

a
􏼠 􏼡􏼢 􏼣, (49)

where

Al � d lnx
+
i − d lnxi+1 + cxi+1 − cx+

i , (50)

and therefore

ψ y
+
i( 􏼁 � −

a

b
W −

b

a
y

+
i exp −

b

a
y

+
i +

A1

a
􏼠 􏼡􏼢 􏼣 + υ/1 −

βa

b
W −

b

a
y

+
i exp −

b

a
y

+
i +

Al

a
􏼠 􏼡􏼢 􏼣 � y

+
i+1. (51)

From above equation, we can see that the Poincaré map
given in (47) depends on both the Lambert W function and
the sign of Al.

Case. (A). If Al ≤ 0, then for y+
i ≥ 0, the above expressions

defined in (9) and (10) are well defined. Further, if we define
g(y) � − b/ay exp(− b/ay), then it is easy to prove that g(y)

achieved its minimum value − e− 1 at y � a/b. +erefore,
− b/ay exp(− b/ay)exp(Al/a) ∈ [− e− 1, 0) for all Al ≤ 0 and
y> 0. +is denotes that the Poincaré map defined relative to
Case (A) is (7).

For Case (B), if Al > 0, then − b/ay exp(− b/ay)

exp(Al/a)≥ − exp(− 1). From this, we obtain the following:

b

a
􏼠 􏼡y exp − y

b

a
􏼠 􏼡≤ exp − 1 +

Al

a
􏼢 􏼣􏼠 􏼡. (52)

+is solution further simplifies as y ∈ (0, yK2
]∪

[yK1
, (θ1+ aθ2)/bθ2+ bθ2υ/bθ2 + β(θ1 + aθ2)), and from

Lemma 2 we know that

yK2
� −

a

b
W −

b

a
ySe

− b/ayS− AK2/a􏼠 􏼡 andyK1
� −

a

b
W − 1, −

b

a
ySe

− b/ayS− AK1/a􏼠 􏼡. (53)

Hence, in the same way, the Poincaré map domain for all
remaining cases provided in Section 3 and Table 1 can be
found. +is finalized the proof. □

5. Characteristics of Poincaré Map

To discuss the existence as well as the stability for the order-1
periodic solution of problem (1), we first analyze the dif-
ferent characteristics of Poincaré map for the above existing
cases. For this, we define an important point G � (xG, yG) �

(ATβ/(θ1 + aθ2)β − (
��
υβ

􏽰
− 1)bθ2,

��
υβ

􏽰
− 1/β) which will

be used in the following discussion. If G ∈ ΓIS, then after one
time pulse, the corresponding impulse point can be pre-
sented as G+: (xG+ , yG+ ) � (AT(1 − PAT) β/(θ1 + aθ2)β−

(
��
υβ

􏽰
− 1)bθ2, 2

��
υβ

􏽰
− 1/β).

Theorem 2. 8e Poincaré map ψ(y+
i ) for Cases (A) and (B)

provided in Table 2 satisfies different properties as follows:

(A) AT/θ1 ≤d/c and Al ≤ 0.

(i) It shows increasing behavior on [0, yT] and
decreasing behavior on [yT, θ1 + aθ2/bθ2+
bθ2υ/bθ2 + β(θ1 + aθ2)) for

��
υβ

􏽰
− 1/β≤ 0.

(ii) It is increasing on [yT, θ1 + aθ2/bθ2+ bθ2υ/bθ2 +

β(θ1 + aθ2)) and decreasing on [0, yT] for��
υβ

􏽰
− 1/β≥yG2

.
(iii) It is decreasing on [0, yn2

] and [yT, yn1
] and

increasing on [yn2
, yT] and [yn1

, θ1 + aθ2/bθ2 +

bθ2υ/bθ2 + β(θ1 + aθ2)) for 0<
��
υβ

􏽰
− 1/β<yG2

,
where yn2

� min y+: ψ(y+) � yG+􏼈 }, yn1
� max

y+: ψ(y+) � yG+􏼈 􏼉.

(B) d/c<AT/θ1 and Al > 0 .

(i) It shows increasing behavior over the closed
interval [0, yK2

] and decreasing behavior on
[yK1

, θ1 + aθ2/bθ + bθ2υ/bθ2 + β(θ1 + aθ2) for��
υβ

􏽰
− 1/β≤ 0.

(ii) It is increasing on [yK1
, θ1 + aθ2/bθ2 + bθ2υ/

bθ2 + β(θ1 + aθ2)) and decreasing on [0, yK2
] for��

υβ
􏽰

− 1/β≥yS.

Table 1: +e exact impulsive and phase sets for system (1) under
Cases (A) and (B).

Cases Condition Impulsive set Phase set

(A)

(i) AT
θ1
≤ d

c

M1

N11
(ii) N12
(iii) N13 ∪N14

(B)

(i) AT
θ1
≤ d

c

M2

N21
(ii) N22
(iii) N23 ∪N24
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(iii) It is decreasing on [0, yN2
] and [yK1

, yN1
] and

increasing on [yN2
, yK2

] and [yN1
, θ1+

aθ2/bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)) for 0<��
υβ

􏽰
− 1/β<yS, where yN2

� min y+: ψ(y+) �􏼈

yG+ }, yN1
� max y+: ψ(y+) � yG+􏼈 􏼉.

Proof. Assuming that q+
i � (x+

i , y+
i ) ∈ ΓPS, the solution

initiating from q+
i intersects the curve ΓIS at

qi+1 � (xi+1, yi+1). If q+
i and qi+1 lie in one trajectory, then

yi+1 is established by y+
i and can be expressed as

yi+1 � F(y+
i ). +e corresponding vector field relative of the

system given in (1) confirms that the domain of consider-
ation of Poincaré map ψ(y+

i ) for Case (A)(i) is defined by
[0, yT]∪ [yT, θ1 + aθ2/bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)). Fur-
thermore, for this case, the corresponding impulsive func-
tion F has increasing behavior over the closed interval
[0, yT]. +erefore, based on the definition of ψ(y+

i ), it is
increasing on [0, yT] and decreasing on
[yT, θ1 + aθ2/bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)). +e function F

is decreasing upon [0, yT] in Case (A)(ii), which shows that
ψ(y+

i ) is decreasing over the interval [0, yT] and increasing
over the closed interval [yT, θ1 + aθ2/bθ2 + bθ2υ/
bθ2 + β(θ1 + aθ2)). For Case (A)(iii), F is decreasing over
[0, yG] and increasing upon [yG, yT]. +erefore, ψ(y+

i ) is
decreasing on [0, yN2

] and [yK1
, yN1

] and increasing on
[yN2

, yK2
] and [yN1

, θ1 + aθ2/bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)).
By using the same methods as above, we can prove that

the monotonicities of the Poincaré map for Cases
(B)(i), (ii), (iii) in +eorem 2 are true. □

Lemma 3. If Al > 0 and υ> 0, then the inequality

ψ y
+
i( 􏼁>y

+
i , for ally+

i ∈ 0, yK2
􏼐 􏼑, (54)

is fulfilled for the corresponding Poincaré map shown by
ψ(y+

i ).

Proof. Let a solution originate from p+
0 � (x+

i , y+
i ), and it

touches the curve ΓIS at point p1 � (xi+1, yi+1). We assume
that y+

i , yi+1 < a/b; then,

a lnyi+1 − byi+1 + d lnxi+1 − cxi+1 � a lny
+
i − by+

i

+ d lnx
+
i − cx+

i .
(55)

From (55), we get

−
b

a
yi+1e

− b/ayi+1( ) � −
b

a
y

+
i e

− b/ay+
i
+Al/a( ). (56)

If Al > 0, then we get the inequality

−
b

a
yi+1e

− b/ayi+1( ) < −
b

a
y

+
i e

− b/ay+
i( ). (57)

Let f(y) � − y exp(− y); then, f′(y)> 0 if y> 1 and
f′(y)< 0 if y ∈ (0, 1). +e inequality yi+1 >y+

i is satisfied for
all b/ay+

i , b/ayi+1 ∈ (0, 1). We also know that y+
i+1 � yi+1 + υ

and ψ(y+
i ) � y+

i+1. Hence, we deduce that ψ(y+
i )>y+

i for all
y+

i ∈ (0, yK2
).

In light of the above explained properties of Poincaré
map, the existence of the fixed point of Poincaré map ψ(y+

i )

for υ> 0 is discussed in following section. □

6. Characteristics of Boundary
Periodic Solution

In Section 4, the formula for Poincaré map ψ(y+
i ) has been

attained. We will use this formula to study the existence of
fixed point, where the fixed point is indicated as y∗, satis-
fying ψ(y∗) � y∗, such as

y
∗

� −
a

b
W × −

b

a
􏼠 􏼡y

∗ exp −
b

a
y
∗

+
Al

a
􏼠 􏼡􏼢 􏼣 +

υ
1 − βa/bW − b/ay

∗ exp − b/ay
∗

+ Al/a( 􏼁􏼂 􏼃
. (58)

For υ � 0, we get the following equation from above:

y
∗

� −
a

b
􏼒 􏼓W −

b

a
y
∗ exp −

b

a
y
∗

+
Al

a
􏼠 􏼡􏼢 􏼣. (59)

If Al � 0, the fixed point shown by y∗ of the respective
Poincaré map ψ(y+

i ) becomes

y
∗

� −
a

b
􏼒 􏼓W −

b

a
y
∗ exp −

b

a
y
∗

􏼠 􏼡􏼢 􏼣. (60)

+is shows that if υ � 0, Al � 0, then every point is the
fixed point of ψ(y+

i ). If υ � 0, Al ≠ 0, then y∗ (a fix point) of
the ψ(y+

i ) fulfils

y
∗

� −
a

b
􏼒 􏼓W −

b

a
y
∗ exp −

b

a
y
∗

+
Al

a
􏼠 􏼡􏼢 􏼣. (61)

In this case, ψ(y∗) � y∗ holds ⇔y∗ � 0. +us, we de-
duced that y∗ � 0 is a unique fixed point for system (1).

Table 2: +e domain of the Poincaré map for Cases (A) and (B).

Cases Condition Al ψ(y+
i )

(A)

(i)

AT/θ1 ≤d/c Al ≤ 0
y+

i ∈ Y1
1

(ii) y+
i ∈ Y1

2
(iii) y+

i ∈ Y1
5 ∪Y1

6

(B)

(i)

AT/θ1 ≤d/c Al > 0
y+

i ∈ Y2
1

(ii) y+
i ∈ Y2

2
(iii) y+

i ∈ Y2
5 ∪Y2

6
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In the following result, we present the conditions of
global stability for boundary order-1 periodic solution. To
demonstrate it, we first discuss an important lemma [43, 44].

Lemma 4. 8e T-periodic solution (x, y) � (ζ(t), ξ(t)) of
system

dx

dt
� C(x, y),

dy

dt
� D(x, y), if θ(x, y)≠ 0,

x
+

� x + ε(x, y), y
+

� y + ε(x, y), if θ(x, y) � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(62)

is orbitally asymptotically stable if the Floquet multiplier μ2
satisfies |μ2|< 1, where

μ2 � 􏽙
k

j�1
Δj exp 􏽚

T

0

zC

zx
(ζ(t), ξ(t)) +

zD

zy
(ζ(t), ξ(t))􏼢 􏼣dt􏼠 􏼡,

(63)

with

Δj �
C+(zε/zyzθ/zx − zε/zxzθ/zy + zθ/zx) + D+(zϵ/zxzθ/zy − zϵ/zyzθ/zx + zθ/zy)

Czθ/zx + Bzθ/zy
, (64)

and θ is continuously differentiable corresponding to both
x, y. C, D, zϵ/zx, zϵ/zy, zε/zx, zε/zy, zθ/zx and zθ/zy are
evaluated at (ζ(tj), ξ(tj)), C+ � C(ζ(t+

j ), ξ(t+
j )) and

D+ � D(ζ(t+
j ), ξ(t+

j )), and tj (j, k ∈ N, N is the set of non-
negative integers) is the time of the j-th jump.

Theorem 3. If Al � 0 and υ � 0, then the fixed point y∗ of
Poincaré map ψ(y+

i ) is stable in the phase set. If Al < 0 and
υ � 0, then (xT(t), 0) is globally asymptotically stable. If
Al > 0 and υ � 0, then it is unstable.

Proof. If υ � 0, Al � 0, then y∗ in the phase set is a fixed
point of the Poincaré map ψ(y+

i ). +is case confirms the
stable solution of the problem but is not asymptotically
stable. We first show that when y(t) � 0 if and only if υ � 0,
and then boundary order-1 periodic solution exists for
system (1). For y(t) � 0, system (1) is converted into the
subsystem given below:

dx(t)

dt
� a × x(t), x(t)<

AT
θ1 + aθ2

,

x t
+

( 􏼁 � x(t) 1 −
δx(t)

x(t) + α
􏼠 􏼡, x(t) �

AT
θ1 + aθ2

,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(65)

+e first equation of the subsystem (14), combining with
the respective initial condition shown as x(0+) � (1−

PAT)AT/θ1 + aθ2, where PAT � δx(t)/x(t) + α, gives us the
solution

x(t) � 1 − PAT( 􏼁
AT

θ1 + aθ2
exp(at). (66)

Taking the equation AT/θ1 + aθ2 � (1 − PAT)AT/ θ1 +

aθ2 exp(aT) and evaluating it for T, we get

T � − 1/aln(1 − PAT). +is shows that T-periodic boundary
order-1 solution exists for system (1) as

x
T
(t), 0􏼐 􏼑 � 1 − PAT( 􏼁

AT
θ2 + aθ2

exp(at), 0􏼠 􏼡. (67)

Next, we show that (xT(t), 0) is asymptotically stable.
For this, we apply Lemma 4 and present the following.

Metho d 1.

C(x, y) � (a − by)x, D(x, y) � y(cx − d),

ε(x, y) � − PATx, ε(x, y) �
υ

1 + βy
, θ(x, y) � θ1 + aθ2( 􏼁x − bθ2xy − AT,

x
T
(T), y

T
(T)􏼐 􏼑 �

AT
θ1 + aθ2

, 0􏼠 􏼡, x
T

T
+

( 􏼁, y
T

T
+

( 􏼁􏼐 􏼑 � 1 − PAT( 􏼁
AT

θ1 + aθ2
, 0􏼠 􏼡.

(68)
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From the above, we get

zC

zx
� a − by,

zD

zy
� cx − d,

zε
zx

�
− δx

2
+ 2δαx

(x + α)
2 ,

zε
zx

�
υβ

(1 + βy)
2,

zθ
zx

� θ1 + aθ2 − bθ2y,
zθ
zy

� − bθ2x,
zε
zy

�
zε
zy

� 0,

(69)

Δ1 �
C+(zε/zyzθ/zx − zε/zxzθ/zy + zθ/zx) + D+(zε/zxzθ/zy − zε/zyzθ/zx + zθ/zy)

Czθ/zx + Dzθ/zy

�
C

+
x

T
T

+
( 􏼁, y

T
T

+
( 􏼁􏼐 􏼑 θ1 + aθ2 − bθ2y( 􏼁 + D

+
x

T
T

+
( 􏼁, y

T
T

+
( 􏼁􏼐 􏼑 PATbθ2x − bθ2x( 􏼁

C x
T
(T), y

T
(T)􏼐 􏼑 θ1 + aθ2 − bθ2y( 􏼁 − D x

T
(T), y

T
(T)􏼐 􏼑 bθ2x( 􏼁

� 1 − PAT( 􏼁.

(70)

Based on the above information, the Floquet multiplier
denoted by μ2 is defined as

μ2 � Δ1 exp 􏽚
T

0

zC

zx
x

T
(t), y

T
(t)􏼐 􏼑 +

zD

zy
x

T
(t), y

T
(t)􏼐 􏼑􏼢 􏼣dt􏼠 􏼡

� 1 − PAT( 􏼁exp ln
1

1 − PAT
+

Al

a
􏼠 􏼡

� exp
Al

a
􏼒 􏼓.

(71)

If Al < 0 and υ � 0, then we get |μ2|< 1. +is indicates
that for the problem described in (1), the boundary order-1
periodic solution (xT(t), 0) is orbitally stable asymptotically.
If Al > 0, the sequence y+

k of pulse points is increasing strictly
and additionally will be free from more pulse action only
after limited time pulse effects.

Metho d 2. +e asymptotic stability of boundary order-1
periodic solution can also be discussed directly from
Poincaré map portrayed in (47). Let υ � 0; then,

ψ y
+
i( 􏼁 � −

a

b
W −

b

a
y

+
i exp −

b

a
y

+
i +

Al

a
􏼠 􏼡􏼠 􏼡􏼢 􏼣. (72)

Taking the derivative of (72), we get

dψ y
+
i( 􏼁

dy
+
i

y
+
i � y
∗

�
d

dy+
i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
y+

i
�y∗

−
a

b
W −

b

a
y

+
i exp −

b

a
y

+
i +

Al

a
􏼠 􏼡􏼠 􏼡􏼢 􏼣􏼠 􏼡

�
− a/bW − b/ay

∗ exp − b/ay
∗

+ Al/a( 􏼁( 􏼁􏼂 􏼃

1 + W − b/ay
∗ exp − b/ay

∗
+ Al/a( 􏼁( 􏼁􏼂 􏼃

1/y∗ − b/a( 􏼁 � h y
∗

( 􏼁.

(73)

+e boundary order-1 periodic solution is stable
⇔|h(y∗)|< 1. By utilizing the limit of h(y∗), we get

lim
y∗⟶0

h y
∗

( 􏼁 � e
Al/a. (74)
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+is denotes that if y∗ ⟶ 0, then |h(y∗)|< 1 for Al < 0,
and hence (xT(t), 0) is asymptotically stable.

In the following, we show the global attractivity of the
boundary order-1 periodic solution (xT(t), 0). Let
p+
0 � (AT(1 − PAT)/θ1 + aθ2, y+

1 ) ∈ L3 and p1 � (AT/θ1 +

aθ2, y2) ∈ L2 be the points of the same trajectory; then,

Al � d ln 1 − PAT( 􏼁 + c
AT

θ1 + aθ2
PAT � a ln

y2

y
+
1

− b y2 − y
+
1( 􏼁.

(75)

Let Al ≠ 0; then, from (75), it is clear that y2 ≠y+
1 . If

f(y) � a lny − by, then f
�

(y) � a/y − b. +is indicates that
if y< a/b, then f(y) is monotonically increasing.

If Al < 0, then a lny2/y+
1 − b(y2 − y+

1 )< 0. Since υ � 0,
the inequality becomes a lny2/y1 − b(y2 − y1)< 0. +is
shows that y2 <y1. +erefore, if Al ≤ 0, then the impulsive
sequence y+

k􏼈 􏼉
∞
k�0 is monotonically decreasing and

lim
k⟶∞

y+
k � y∗. +ese kinds of information affirm that the

boundary order-1 periodic solution is globally attractive. In
the same way as above, we can prove that if Al > 0, then
y2 >y1. +erefore, the sequence y+

k will be free from im-
pulsive effect after finite time pulse actions, as shown in
Figure 2(b). Hence, from all the above outcomes, it can be
concluded that if Al < 0, then the boundary order-1 periodic
solution, i.e., (xT(t), 0), is globally asymptotically stable.

+e numerical calculation in Figure 2(a) shows that if
Al < 0, then the boundary order-1 periodic solution is stable
while Figure 2(b) confirms that if Al ≥ 0, then it is
unstable. □

7. Existence of Order-1 Periodic Solution

In this section, we will discuss and analyze the order-1
periodic solution for system (1) when υ> 0.

Theorem 4. For Case (A)(i)(or(ii)), the fixed point of
Poincaré map ψ(y+

i ) exists, and therefore an order-1 periodic
solution exists for system (1).

Proof. For Case (A)(i), the trajectory Γ1 is tangent to the
curve ΓPS at point (xT, yT) and intersects the curve ΓIS at
lower point G2. If ψ(yT) � yG+

2
� yT, then the curve 􏽤TG2

forms an order-1 periodic solution for system (1).
For Case (A)(i), if yG+

2
>yT or yG+

2
<yT, then the so-

lution originating from the point G+
2 touches the curve ΓPS at

a point G3 � (xG3
, yG3

) with yG3
<yG2

. +e pulse action is
applied and the point G3 maps to a point G+

3 � (xG+
3
, yG+

3
),

and yG+
3

� F(yG3
). For Case (A)(i), F is increasing on

[0, yG2
]. +erefore, yG+

3
� ψ(yG+

2
) satisfies the inequality

ψ yG+
2

􏼒 􏼓<yG+
2
. (76)

+e point ψυ(AT(1 − PAT)/θ1 + aθ2, υ) being the lowest
impulsive point satisfies

ψ(υ)> υ. (77)

Inequalities (17) and (18) confirm that a fixed point of the
Poincaré map exists, and therefore an order-1 periodic
solution exists for system (1).

For Case (A)(ii), F is decreasing on [0, yG2
]. If yG+

2
>yT

or yG+
2
<yT, we get

ψ yG+
2

􏼒 􏼓>yG+
2
. (78)

Moreover, the highest impulsive point is
ψυ(AT(1 − PAT)/θ1 + aθ2, υ), and we get

ψ(υ)< υ. (79)

Inequalities (19) and (20) confirm that there exists a fixed
point for the Poincaré map, and therefore an order-1 pe-
riodic solution exists for system (1). +is completes the
proof. □

Theorem 5. For Case (A)(iii), the fixed point of Poincaré
map ψ(y+

i ) exists, and therefore an order-1 periodic solution
exists for system (1).

Proof. If yG+
2

� yT, then the curve 􏽤TG2 forms an order-1
periodic solution for the problem given in system (1). If
yG+

2
≠yT, then the following two cases are taken into

consideration.

(1) yG+
2
≥ υ, (2) yG+

2
< υ. (80)

For Case (1), if yG+
2
>yT, then we can write

ψ yT( 􏼁>yT. (81)

As G+
2 is the lowest impulsive point, it satisfies

ψ yG+
2

􏼒 􏼓<yG+
2
. (82)

+us, inequalities (21) and (22) confirm that we can find
a fixed point of Poincaré map ψ(y+

i ).
If yG+

2
<yT, then we can write

ψ yT( 􏼁<yT. (83)

Moreover, if G+ is the least impulsive point, then it leads
to the following:

ψ yG+( 􏼁≥yG+. (84)

+us, the above two inequalities (83) and (84) confirm
that there exists a fixed point of Poincare map ψ(y+

i ).
For Case (2), if yG+

2
>yT, then ψ(yT)>yT. On the other

hand, if the highest impulsive point is ψυ(AT(1 − PAT)/θ1+
aθ2, υ), then ψ(υ)< υ. +e above two inequalities affirm that
there exists a fixed point of the Poincaré map ψ(y+

i ).
If yG+

2
<yT, then ψ(yT)<yT. Moreover, as G+ is the least

impulsive point, we get ψ(yG+ )≥yG+ . It confirms that there
exists a fixed point for the map shown by ψ(y+

i ), and hence
an order-1 periodic solution exists for system (1). □
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Theorem 6. For Case (B)(i)(or(ii)), if yS+ >yK1
, then the

fixed point of Poincaré map ψ(y+
i ) exists, and therefore an

order-1 periodic solution exists for system (1).

Proof. For Case (B)(i), we know that there exists a curve Γ2,
which is tangent to ΓIS at point S � (xS, yS) and intersects
the curve ΓPS at two points K1 and K2. If yS+ � yK1

, then the
curve 􏽤K1S forms an order-1 periodic solution for the
problem stated in (1).

Further, for Case (B)(i), if yS+ >yK1
, then the point

demoted by S+ lies above the point K1, and we get

ψ yK1
􏼐 􏼑>yK1

. (85)

In addition, the solution initiating from the point S+

meets the curve ΓIS at a point S1 which lies below the point S,
i.e., yS1

<yS. As F is increasing on [0, yS], we have
F(yS1

)<F(yS), i.e., y+
S1
<y+

S . All the above results affirm that
the Poincaré map for Case (B)(i) satisfies

ψ yS+( 􏼁<yS+. (86)

Inequalities (25) and (26) confirm that a fixed point in
(yK1

, yT+ ) will exist. Hence, an order-1 periodic solution
exists for problem (1).

If yS+ <yK1
, then after a one time impulsive effect, the

solution will directly map to the interval [υ, yS+ ]. +us, if
yK2
≥ υ, then according to inequality (1), any trajectory

originating from y+ with υ≤y+ ≤yK2
will intersect the curve

ΓIS and experience a limited time of pulse actions and at last
enter into Int Γ2 and will be free from more pulse action. If
yK2
< υ<yS+ , then each solution curve of problem (1) will

map to the Int Γ2 after a one time impulsive effect. Hence, if
yS+ <yK1

, then a fixed point does not exist.
For Case (B)(ii), if yS+ >yK1

, then ψ(yK1
)>yK1

. We also
know that the function F is decreasing on [0, yS]. So, the

solution y+ initiating from [0, yK2
]∪ [yK1

, θ1 + aθ2/bθ2+
bθ2υ/bθ2 + β(θ1 + aθ2)) will map to the interval [yS+ , υ] after
a one time impulsive effect. +erefore, the trajectory orig-
inating from the point ψυ(AT(1 − PAT)/θ1 + aθ2, υ) will
satisfy ψ(υ)< υ. From the above inequalities, it follows that
the fixed point exists in the interval (yK1

, υ). □

Theorem 7. For Case (B)(iii), if yS+ >yK1
, then the fixed

point of Poincaré map ψ(y+
i ) exists, and therefore an order-1

periodic solution exists for system (1).

Proof. If yS+ � yK1
, then for system (1), the curve 􏽤K1S forms

an order-1 periodic solution. If yS+ ≠yK1
, then we consider

the following two cases.

(1) yS+ ≥ υ, (2) yS+ < υ. (87)

For Case (1), if yT+ >yK1
, then ψ(yK1

)>yK1
. Moreover,

according to the exact domain of the Poincaré map ψ(y+
i ),

the impulsive point S+
1 of S+ lies below the point S+, i.e.,

S+
1 < S+ for yS+ ≥ υ. +erefore, inequality ψ(yS+ )<yS+ is true,
which shows that the fixed point exists in the interval
[yK1

, yS+ ].
If yS+ <yK1

, then applying the same techniques as those
given in+eorem 6, it can easily be shown there must exist a
finite number of pulse effects for any solution of system (1).
Furthermore, the solution enters into Int Γ2 and becomes
free from more pulse actions.

For Case (2), if yS+ >yK1
, then ψ(yK1

)>yK1
holds true.

We also know that the highest impulsive point is ψυ(AT(1 −

PAT)/θ1 + aθ2, υ) because yS+ < υ. +erefore, we get ψ(υ)< υ,
and hence the theorem is true.

If yS+ <yK1
, then any trajectory of system (1) tends into

Int Γ2 only after finite pulse effects. +is completes the
proof. □
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Figure 2: (a) +e stable boundary order-1 periodic solution where L2 � 1.4 and Al � − 0.050, c � 0.50, d � 1.20. (b) +e unstable boundary
order-1 periodic solution with L2 � 1.20 and Al � 0.0030, d � 0.20, c � 0.20. +e rest of the parameter values are fixed with
a � 1, δ � 0.3, b � 0.1, α � 4, β � 1, υ � 0.
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8. Stability of Order-1 Periodic Solution

+e monotonicities of Poincaré map ψ(y+
i ) and existence of

its fixed point were discussed in previous sections. Now,
based on these, we will discuss the stability of fixed point of
Poincaré map ψ(y+

i ) for system (1).

Theorem 8. For Case (A)(i), if the fixed point of Poincaré
map ψ(y+

i ) is unique and one of the following two conditions
is satisfied, then the corresponding fixed point denoted by y∗ is
stable globally.

(a) If ψ(yT)<yT.
(b) If ψ(yT)>yT and ψ2(y+

i )>y+
i for y+

i ∈ [yT, y∗).

Proof. From +eorem 4, we know that for Case (A)(i), the
fixed point of Poincaré map ψ(y+

i ) exists. Let the fixed point
y∗ be unique; then, the global stability can be discussed as
follows:

(a) If ψ(yT)<yT, then y+
i <ψ(y+

i )<y∗ for all
y+

i ∈ [0, y∗). +is means that as j increases, ψj(y+
i )

increases monotonically and satisfies limj⟶+∞
ψj(y+

i ) � y∗. If y+
i ∈ (y∗, θ1 + aθ2/bθ2 + bθ2υ/bθ2+

β(θ1 + aθ2)], then we take two cases. (1) If
y+

i ∈ (y∗, yT], then according to the relation
y∗ <ψ(y+

i )<y+
i , ψ(y+

i ) decreases monotonically,
i.e., y∗ <ψj(y+

i )<ψj− 1 (y+
i ) for all j≥ 1 and we get

limj⟶+∞ψj(y+
i ) � y∗. (2) If y+

i ∈ (yT,

θ1 + aθ2/bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)), then
ψ(y+

i ) ∈ (0, yT) and limj⟶+∞ψ1+j(y+
i ) � y∗.

+erefore, the conclusion in (a) is true.
(b) If ψ(yT)>yT, then we take three intervals: (1)

y+
i ∈ [yT, y∗); (2) y+

i ∈ [0, yT); (3) y+
i ∈ (y∗, θ1+

aθ2/bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)). For interval (1),
since yT ≤y+

i <y∗ and Poincaré map ψ(y+
i ) is

monotonically decreasing in this interval, it is easy to
get (yT)≥ψ(y+

i )>y∗. At the same time, by using the
second condition ψ2(y+

i )>y+
i , we get

y+
i <ψ2(y+

i )<y∗. +is means that for all j≥ 1,
ψ2(j− 1)(y+

i )<ψ2j(y+
i )<y∗. +is shows that ψ2j(y+

i )

increases monotonically, and limj⟶+∞ψ2j

(y+
i ) � y∗.

For intervals (2) and (3), using the same method as those
in (1), we can prove that there must exist n≥ 1 such that
ψn(y+

i ) ∈ [yT, y∗], and hence the fixed point of Poincaré
map ψ(y+

i ) is globally stable under conditions (2) and (3).
+is completes the proof. □

Theorem 9. For Case (A)(ii), if the fixed point y∗ of
Poincaré map ψ(y+

i ) is unique and one of the following two
conditions is true, then y∗ is globally stable.

(a) If ψ(yT)>yT.
(b) If ψ(yT)<yT and ψ2(y+

i )<y+
i for y+

i ∈ (y∗, yT].

Proof. +eorem 4 shows that for Case (A)(ii), there exists a
fixed point of the map ψ(y+

i ). Assuming that the fixed point

is unique, we have the following conclusions regarding its
stability:

(a) From +eorem 2, it is clear that the Poincaré map is
monotonically increasing in the interval [yT, θ1 +

aθ2/bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)) and monotoni-
cally decreasing in the interval [0, yT]. If ψ(yT)>yT,
then the fixed point satisfies y∗ >yT for any
y+

i ∈ [yT, y∗) and ψj1(y+
i ) increases with the in-

creasing value of j1 such that limj⟶+∞ ψj1(y+
i ) � y∗

for all y+
i ∈ (y∗, θ1 + aθ2/bθ2 + bθ2υ/bθ2 + β

(θ1 + aθ2)). ψj2(y+
i ) decreases as j2 increases, and

limj⟶+∞ψj2(y+
i ) � y∗.

For all y+
i ∈ (0, yT), there is ψ(y+

i ) ∈ (yT, θ1 + aθ2/
bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)); therefore, limj⟶+∞
ψ1+j1(y+

i ) � y∗ or limj⟶+∞ψ1+j2(y+
i ) � y∗. In

summary, the only fixed point y∗ is globally stable.
(b) +e Poincaré map ψ(y+

i ) is monotonically de-
creasing in the interval [0, yT], and for
y+

i ∈ (y∗, yT], the condition ψ2(y+
i )<y+

i is satisfied.
So, it is easy to get y∗ <ψ4(y+

i )<ψ2(y+
i ). By in-

duction, there is a relation
y∗ <ψ2j(y+

i )<ψ2(j− 1)(y+
i ) for all j≥ 1. +is shows

that ψ2j(y+
i ) monotonically decreases with in-

creasing value of j, and limj⟶+∞ψ2j(y+
i ) � y∗. In

addition, for all y+
i ∈ (0, y∗)∪ (yT, θ1 + aθ2

/bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)), there must exist l≥ 1
such that ψl(y+

i ) ∈ (y∗, yT], and hence
limj⟶+∞ ψl+2j(y+

i ) � y∗. □

Theorem 10. For Case (A)(iii), if the fixed point y∗ is
unique and one of the following conditions is true, then it is
globally stable.

(a) If ψ(yni
)>yni

i � 1, 2.
(b) If ψ(yni

)<yni
i � 1, 2, and ψ2(y+

i )<y+
i for all

y+
i ∈ (y∗, yn2

].
(c) If ψ(yT)>yT, ψ(yn2

)>yn2
, and ψ(yn1

)<yn1
, for

y+
i ∈ (y∗, yn1

] when y∗ <ψ2(y+
i )<y+

i .
(d) If ψ(yT)<yT, ψ(yn2

)>yn2
, and ψ(yn1

)<yn1
.

Proof. +eorem 5 shows that there exists a fixed point of
Poincaré map ψ(y+

i ) for Case (A)(iii). Moreover, if y∗ is
unique, then its global stability can be described as follows:

(a) If ψ(yni
)>yni

for i � 1, 2, then we take three inter-
vals: (1) [yn1

, y∗); (2) (y∗, θ1 + aθ2/bθ2 + bθ2υ/bθ2+
β(θ1 + aθ2)); (3) (0, yn1

). For all y+
i ∈ [yn1

, y∗), we
get y+

i <ψ(y+
i )<y∗. +e Poincaré map ψ(y+

i ) is
monotonically increasing in the interval
[yn1

, θ1 + aθ2/bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)), and
ψ(y+

i )<ψ2(y+
i )<y∗. By induction, we get

ψj− 1(y+
i )<ψj(y+

i )<y∗ for all j≥ 1, which means
that ψj(y+

i ) monotonically increases as j increases,
and limj⟶+∞ψj(y+

i ) � y∗, y+
i ∈ [yn1

, y∗).
For all y+

i ∈ (y∗, θ1 + aθ2/bθ2 + bθ2υ/bθ2 + β(θ1
+aθ2)), we get y∗ <ψ(y+

i )<y+
i . From the
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monotonicity of ψ(y+
i ), we have

y∗ <ψ2(y+
i )<ψ(y+

i ), which means that ψj(y+
i ) de-

creases with increasing value of j and
limj⟶+∞ψj(y+

i ) � y∗ for all
y+

i ∈ (y∗, θ1 + aθ2/bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)).
For all y+

i ∈ (0, yn1
), it is easy to get

ψ(y+
i ) ∈ (yn1

, θ1 + aθ2/bθ2 + bθ2
υ/bθ2 + β(θ1 + aθ2)), and according to the previous
conclusion, we get limj⟶+∞ψ1+j(y+

i ) � y∗. +ere-
fore, the result in Case (a) is true.

(b) If ψ(yni
))<yni

for i � 1, 2, then we take two cases: (1)
y+

i ∈ (y∗, yn2
]; (2) y+

i ∈ (0, y∗)∪ (yn2
, θ1 + aθ2/b

θ2 + bθ2υ/bθ2 + β(θ1 + aθ2)). For all y+
i ∈ (y∗, yn2

]

and according to the monotonicity of the Poincaré
map, ψ(y+

i ) satisfies ψ2(y+
i )<y+

i . From this, it is easy
to get y∗ <ψ4(y+

i )<ψ2(y+
i ). By induction, the in-

equality y∗ <ψ2j(y+
i )<ψ2(j− 1)(y+

i ) for all j≥ 1
holds, which means that as j increases, the mapping
ψ2j(y+

i ) monotonically decreases, and
limj⟶+∞ψ2j(y+

i ) � y∗ for all y+
i ∈ (y∗, yn2

]. For all
y+

i ∈ (0, y∗)∪ (yn2
, +∞), there exists k≥ 1, such that

ψk(y+
i ) ∈ [y∗, yn2

). From this, we get
limj⟶+∞ψk+2j(y+

i ) � y∗ for all y+
i ∈ (0, y∗)∪ (yn2

,

θ1 + aθ2/b θ2 + bθ2υ/bθ2 + β(θ1 + aθ2)). All the
above conclusions indicate that Case (b) is true.

(c) We again take two conditions: (1) y+
i ∈ (y∗, yn1

]; (2)
y+

i ∈ (0, y∗)∪ (yn1
, θ1 + aθ2/bθ2+ bθ2υ/bθ2 + β(θ1+

aθ2)). For all y+
i ∈ (y∗, yn1

], the Poincaré map ψ(y+
i )

is monotonically decreasing, and the inequality
y∗ <ψ2(y+

i )<y+
i is satisfied. We can easily get the

relationship y∗ <ψ4(y+
i )<ψ2(y+

i ), and by induc-
tion, y∗ <ψ2j(y+

i )<ψ2(j− 1)(y+
i ) for all j≥ 1. +is

means that as j increases, the mapping ψ2j(y+
i )

monotonically decreases, and limj⟶+∞ψ2j

(y+
i ) � y∗. For all y+

i ∈ (0, y∗)∪ (yn1
, +∞), there

must exist l≥ 1, such that ψl(y+
i ) ∈ [y∗, yn1

].
+erefore, we get limj⟶+∞ψl+2j(y+

i ) � y∗ for all
y+

i ∈ (0, y∗)∪ (yn1
, θ1 + aθ2/bθ2+ bθ2υ/bθ2+

β(θ1 + aθ2)), which means that Case (c) is true.
(d) If the conditions given in statement are satisfied, we

consider two intervals: (1) y+
i ∈ [yn2

, yT]; (2)
y+

i ∈ (0, yn2
)∪ (yT, θ1 + a θ2/bθ2 + bθ2υ/bθ2 + β

(θ1+ aθ2)). If y+
i ∈ [yn2

, yT], then according to the
monotonicity of the Poincaré map ψ(y+

i ), ψj1(y+
i )

monotonically increases as j1 increases, and
limj⟶+∞ ψj1(y+

i ) � y∗. If y+
i ∈ (y∗, yT], then

ψj2(y+
i ) monotonically decreases as j2 increases, and

limj⟶+∞ψj2(y+
i ) � y∗. For all y+

i ∈ (0, yn2
)∪ (yT,

θ1 + aθ2/ bθ2 + bθ2υ/ bθ2 + β(θ1 + aθ2)), it is easy to
know that there must exist a positive integer k, such
that ψk(y+

i ) ∈ [yn2
, yT], and at the same time,

limj⟶+∞ψk+j1(y+
i ) � y∗ or limj⟶+∞ψk+j2

(y+
i ) � y∗. Hence, the Case (d) is true. □

Theorem 11. For Case (B)(i), if ψ(yK1
)>yK1

, then the fixed
point y∗ of Poincaré map ψ(y+

i ) is globally asymptotically
stable provided that ψ2(y+

i )>y+
i for all y+

i ∈ [yK1
, y∗).

Proof. From +eorem 6, we know that for Case (B)(i), a
fixed point of Poincaré map ψ(y+

i ) exists.
According to the inequality given in Lemma 3,

ψ(y+
i )>y+

i for all y+
i ∈ (0, yK2

). At the same time, the in-
equality ψ(0) � υ> 0 is satisfied. So, the fixed point y∗ does
not lie in the interval [0, yK2

]. +is shows that the unique
fixed point belongs to the interval
[yK1

, θ1 + aθ2/bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)).
If yK1
≤y+

i <y∗, then from the monotonicity of the
mapping ψ(y+

i ), we get ψ(yK1
)≥ψ(y+

i )>y∗. By applying
the inequality ψ2(y+

i )>y+
i for all y+

i ∈ [yK1
, y∗), we get

y+
i <ψ2(y+

i )<y∗. By induction, there exists a relationship
ψ2(j− 1)(y+

i )<ψ2j(y+
i )<y∗ for all j≥ 1. +is means that as j

increases, ψ2j(y+
i ) increases monotonically, and hence

limj⟶+∞ψ2j(y+
i ) � y∗. □

Theorem 12. For Case (B)(ii), if ψ(yK1
)>yK1

, then the
fixed point of Poincaré map ψ(y+

i ) is globally stable.

Proof. From +eorem 6, there exists a fixed point of
Poincaré map ψ(y+

i ) for Case (B)(ii). Using the same
method as in +eorem 11, there is no fixed point on the
interval [0, yK2

], and y∗ is located in the interval
(yK1

, θ1 + aθ2/bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)). Moreover,
under the uniqueness of y∗, the global stability can be
described as follows.

For Case (B)(ii), the Poincaré map ψ(y+
i ) is mono-

tonically decreasing in the interval [0, yK2
] and monoton-

ically increasing in the interval [yK1
, θ1 + aθ2/bθ2+

bθ2υ/bθ2 + β(θ1 + aθ2)). If y+
i ∈ [yK1

, y∗), then according to
the relationship y+

i <ψ(y+
i )<y∗, it is obvious that ψj(y+)

increases monotonically towards y∗ as j increases, i.e.,
limj⟶+∞ψj(y+

i ) � y∗. For all y+
i ∈ (y∗, θ1 + aθ2/bθ2+

bθ2υ/bθ2 + β(θ1 + aθ2)), according to the relationship
y∗ <ψ(y+

i )<y+
i and properties of Poincaré map ψ(y+

i ), we
know that ψj(y+

i ) monotonically decreases with the in-
creasing value of j, and limj⟶+∞ψj(y+

i ) � y∗.
If y+

i ∈ [0, yK2
], then there must exist some l≥ 1 such

that ψ(y+
i ) ∈ [yK1

, θ1 + aθ2/bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)),
and therefore limj⟶+∞ψ1+j(y+

i ) � y∗. Hence, the result in
+eorem 12 is correct. □

Theorem 13. For Case (B)(iii), if ψ(yK1
)>yK1

, then the
unique fixed point y∗ of Poincaré map ψ(y+

i ) exists. If one of
the conditions (a) and (b) given below is true, then y∗ is
globally stable.

(a) If ψ(yNi
)>yNi

i � 1, 2.
(b) If yK1

≤ψ(yN2
) � ψ(yN1

)≤yN1
, and ψ2(y+

i )>y+
i for

all y+
i ∈ [yK1

, y∗).

Proof. For Case (B)(iii), if ψ(yK1
)>yK1

, then from Lemma
3 and+eorem 7, we know that Poincaré mapping ψ(y+

i ) has
at least one fixed point y∗ belonging to the interval
[yK1

, θ1 + aθ2/bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)). Under the
uniqueness of y∗, the global stability can be demonstrated as
follows:
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(a) If ψ(yNi
)>yNi

i � 1, 2, then only y∗ exists in the
interval [yN1

, θ1 + aθ2/bθ2 + bθ2υ/bθ2 + β(θ1+ aθ2)).
From +eorem 2, we can see that Poincaré map
ψ(y+

i ) is monotonically increasing in the interval
[yN1

, θ1 + aθ2/bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)). For
any y+

i ∈ [yN1
, y∗), we get y+

i <ψ(y+
i )<y∗, which

shows that ψj(y+
i ) for j≥ 1 increases monotonically,

and limj⟶+∞ψj(y+
i ) � y∗. For any y+

i ∈ (y∗, θ1+
aθ2/bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)], we get the rela-
tion y∗ <ψ(y+

i )<y+
i . +erefore, from the monoto-

nicity of ψ(y+
i ), ψj(y+

i ) monotonically decreases
with increasing value of j, and we get
limj⟶+∞ψj(y+

i ) � y∗. For all y+
i ∈ [0, yK2

]∪ [yK1
,

yN1
), it is obvious that there exists an integer l≥ 0,

such that ψl(y+
i ) ∈ [yN1

, θ1 + aθ2/ bθ2 + bθ2υ/bθ2+
β(θ1 + aθ2)). Hence, for all y+

i ∈ [0, yK2
]∪

[yK1
, yN1

), we get limj⟶+∞ψl+j(y+
i ) � y∗.

All these results show that if ψ(yNi
)>yNi

i � 1, 2,
then the unique fixed point y∗ of the mapping ψ(y+

i )

is globally stable.
(b) If yK1

≤ψ(yN2
) � ψ(yN1

)≤yN1
, then combined with

the inequality ψ(yK1
)>yK1

given in the statement, it
is clear that there exists only one y∗ in the interval
(yK1

, yN1
]. +e mapping ψ(y+

i ) monotonically de-
creases in the interval [yK1

, y∗), i.e., for all
y+

i ∈ [yK1
, y∗), we have ψ(yK1

)≥ψ(y+
i )>y∗. In

addition, by applying the condition ψ2(y+
i )>y+

i , we
get y+

i <ψ2(y+
i )<y∗. Hence, we get ψ2(j− 1)(y+

i )<
ψ2j(y+

i )<y∗ for j≥ 1. +is shows that ψ2j(y+
i )

monotonically increases with the increasing value of
j and limj⟶+∞ ψ2j(y+

i ) � y∗ for all y+
i ∈ [yK1

, y∗).

If y+
i ∈ (0, yK2

)∪ (y∗, θ1 + aθ2/bθ2 + bθ2υ/bθ2 + β(θ1 +

aθ2)) and yK1
≤ψ(yN2

) � ψ(yN1
)≤yN1

, then there must
exist l≥ 1 such that ψl(y+

i ) ∈ [yK1
, y∗]. By using the same

way as above, we get limj⟶+∞ ψl+2j(y+
i ) � y∗ for all

y+
i ∈ [0, yK2

]∪ (y∗, θ1 + aθ2/bθ2 + bθ2υ/bθ2 + β(θ1 + aθ2)).
+erefore, if yK1

≤ψ(yN2
) � ψ(yN1

)≤yN1
and

ψ2(y+
i )>y+

i for all y+
i ∈ [yK1

, y∗), then the fixed point y∗ is
globally stable. □

9. Conclusions

+e IPM strategy is a dynamic management system. From a
mathematical perspective, this is actually an optimal control
problem under multiple objectives. +e IPM approach’s
purpose is to monitor the number of pest populations in real
time and decide whether to implement a control strategy
based on the size of the population. +e state-dependent
impulsive differential equation [20, 45–47] is needed to truly
characterize the IPM strategy and the dynamic evolution of
pest-natural system. Moreover, in recent years, researchers
have proposed a variety of state-dependent pest-natural
enemy feedback control systems.

+e change rate of pest population plays an important
role in state-dependent prey-predator ecological system.
+ere are two fundamental circumstances in the previous
studies which require high attention. First, the pest pop-
ulation is comparatively high and the change rate is little;

second, the population of pest is small, but the change rate is
high. A crucial issue illustrated by these two situations is that
when the pest population is large, the growth rate is small or
even negative at this time. In this case, even if the IPM
strategy is not implemented, the number of pests may not
exceed EIL. Another situation is that although the number of
pests is not large, the growth rate of the pest population is
very large. If the control strategy is not implemented in time,
it may lead to a large outbreak of pests. Next, the IPM
process needs precise checking of the pest populations, and
consequently suitable integrated control strategies can be
prepared. +e pest killing rate should be a function of their
density, whereas the releasing quantity of natural enemies
should be a function of their density. Based on this, a feasible
new nonlinear state-feedback system with nonlinear ratio-
dependent AT is proposed.

+e use of nonlinear pulse as state-dependent feedback
control with nonlinear ratio-dependent AT is more reasonable
and closer to reality in a biological sense, but the impulsive
model becomes very difficult because of the existence of two
population quantities in the control actions. By including the
densities of pest and its natural enemy in controlling measures,
we can develop the pest control model based on the practical
importance according to the growth direction of agriculture
and forestry. Corresponding analytical techniques and nu-
merical methods were developed, the dynamic behavior of the
system was examined, and the important role of the main
conclusions in integrated pest control was given.

To avoid the complexity, in this paper, we proposed the
simple Lotka–Volterra impulsive mathematical model. Our
aim is to reveal how nonlinear pulse control with nonlinear
ratio-dependent AT affects the whole dynamics and con-
centrate on the biological implications. +e definition and
properties of Poincaré map for phase-concentrated pulse
points in various cases are discussed and studied. +e ex-
istence, uniqueness, and global stability of boundary and
interior periodic solutions of order 1 for model (1) are
analyzed by using the definition of Poincaré map. In the
present paper, some basic techniques were used for the
qualitative analysis of nonlinear pulsed model with non-
linear ratio-depended AT, which can be widely used in the
study of feedback control systems with critical conditions,
such as the blood glucose-insulin regulation system.
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With the help of Banach’s fixed-point approach and the Leray–Schauder alternative theorem, we produced existence results for a
general class of fractional differential equations in this paper. *e proposed problem is more comprehensive and applicable to
real-life situations. As an example of how our problemmight be used, we have created a fractional-order COVID-19 model whose
solution is guaranteed by our results. We employed a numerical approach to solve the COVID-19 model, and the results were
compared for different fractional orders. Our numerical results for fractional orders follow the same pattern as the classical
example of order 1, indicating that our numerical scheme is accurate.

1. Introduction

In science and engineering, fractional-order operators have
lately been investigated for the modeling of dynamical
systems. *ere are operators based on singular kernels and
nonsingular kernels. It is tough to determine which op-
erator is the best at the moment, but researchers are
constantly analyzing various operators for new features and
uses. We have seen that in the vast majority of cases, re-
searchers must compare their findings to the traditional
results in terms of accuracy, stability, and simulations.
Atangana and Araz focused on the modeling and existence
results of the COVID-19 model [1, 2]. *e area of fractional
calculus is still open for the researchers to investigate
nonlinear models for their theoretical and computational
studies with the help of [6–9].

In order to highlight the literature for the existence
results and numerical simulations and their applications, we
present some examples. Recently, Ahmad et al. [3] discussed
a fractional-order COVID-19 model for the existence,
uniqueness, and comparative analysis with the existing

integer-order model. Babakhani and Daftardar-Gejji [4]
studied a boundary value problem of fractional order for the
existence of results and presented some applications of their
results. Tuan et al. [5] gave some theoretical and compu-
tational studies of a fractional-order COVID-19 model for
the existence and numerical simulations by the help of Haar
wavelets approach. Zhang et al. [10] investigated an im-
pulsive integrodifferential equation for the existence of re-
sults and applications.

Boundary value problems (BVPs) with lower-order
fractional derivatives and either constant or linear boundary
conditions are considered in the majority of these papers.
However, there are many cases where nonlinear circum-
stances at the boundary and differential equations are
possible. For example, in case of head flow problems, there
are possibilities to have some source or sink on both sides of
the boundary (at x � 0 and x � 1) which may be nonlinear
functions and a controller at x � ζ0(0< ζ0 < 1). Okuonghae
and Omame [11] studied a nonlinear system of hybrid
fractional differential equations (FDEs) for the existence and
applications of solutions. *e purpose of this paper is to
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investigate existence results for BVPs involving nonlinear
boundary conditions at both ends; that is, we study the
following class of two-point BVPs:
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∗
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where the fractional orders 0< ϑi ≤ 1 and 0≤ω∗∗i ≤ 1, the
functions u∗i : I⟶Re are fractional-order differentiable
functions for i � 1, 2, . . . , m, and fi: I × Re⟶
Re − 0{ } and hi: I × Re⟶Re(i � 1, 2, . . . , m) satisfy the
Caratheodory conditions. *e fractional-order derivatives
cDϑcDω ∗∗

i are in Caputo’s sense. To the best of our
knowledge, existence, uniqueness, and stability results had
never been studied for BVP (1). Such situation may have
importance in application point of view and also in theo-
retical development and can be studied in the work of Dhage
in [12–14] and the reference therein.

2. Existence Criteria

Lemma 1. For integrable functions fi and hi on I, problem
(1) has integral representation given by

u
∗
i (t) � 􏽚

1

0
Kωi ,ϑi

(s, t)fi s, u
∗
i (s)( 􏼁ds, (2)

where Kωi
(s, t) is Green’s function given by

Kωi ,ϑi
(s, t) �

1
Γ ω∗∗i + ϑi( 􏼁

(1 − s)
ω∗∗

i
+ϑi− 1

; t≤ s,

(1 − s)
ω∗∗

i
+ϑi− 1

− (t − s)
ω∗∗

i
+ϑi− 1

, s≤ t,

⎧⎪⎨

⎪⎩
(3)

for i � 1, 2, . . . , m.

Proof. Applying integral (Iϑi) to problem (1), we obtain
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for i � 1, 2, . . . , m. By the help of u∗i (0) � 0, we have C1 � 0
and hence, we obtain
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By the use of initial condition u∗i (1) � 0, for
i � 1, 2, . . . , m and (6), we have K1 � Iϑi+ω∗∗i fi(t, u∗i (t))|t�1.
Ultimately, we have the following solution:
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Kωi ,ϑi
(s, t) are Green’s functions defined in (3), for

i � 1, 2, . . . , m. □
Here, we introduce a Banach’s space B � fi(t):􏼈

fi(t) ∈ C([0, 1],R), for t ∈ [0, 1]}, with a norm
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‖fi‖ � maxt∈[0,1]fi(t), for i � 1, 2, . . . , m. Let us a define an
operator Ti: C([0, 1],R)⟶ C([0, 1],R), for i �

1, 2, . . . , m, such that
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where Kωi ,ϑi
(s, t) are Green’s functions defined in (3), for

i � 1, 2, . . . , m. *en, the solutions of fractional-order sys-
tem (1) are the fixed points of the operatorTi defined in (8).

Also, with the help of (3), Green’s functions Kωi
(s, t)> 0

for the following cases. For t≤ s, we have Kωi
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+ϑi − 1. Ultimately, Green’s functions are positive.

Lemma 2. Let fi ∈ C � C([0, 1] × Re,Re) be continuous
functions for all i � 1, 2, . . . , m and there exist some positive
constants λi ∈Re, for u∗l , u∗j ∈ C and t ∈ [0, k], such that
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*is implies TiSηi
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. Furthermore, we assume
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Γ ϑi + ω∗∗i( 􏼁
􏽚

t

0
(t − s)

ϑi+ω∗∗i
− 1

fi s, u
∗
l (s)( 􏼁 − f s, u

∗
j (s)􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌ds

≤
λi u
∗
l − u
∗
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

Γ ϑi + ω∗∗i( 􏼁
􏽚
1

0
(1 − s)

ϑi+ω∗∗i
− 1ds +

λi u
∗
l − u
∗
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

Γ ϑi + ω∗∗i( 􏼁
􏽚

t

0
(t − s)

ϑi+ω∗∗i
− 1ds

≤
λi 1 + k

ϑi+ω∗∗i􏼐 􏼑

Γ ϑi + ω∗∗i + 1( 􏼁
u
∗
l − u
∗
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ βi u
∗
l − u
∗
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

(12)

for i � 1, 2, . . . , m. Ultimately, the operator is a contraction
and by Banach’s fixed-point theorem, the system of frac-
tional order (1) has a unique solution. □

Theorem 1. Assume that the fi ∈ C([0, k] × Re,Re), for
i � 1, 2, . . . , m. :en, fractional-order system (1) has a so-
lution provided that the assumptions of Lemma 2 are satisfied.

Proof. However, in Lemma 2, we have studied that the
operatorTi is a bounded operator andTiSηi

⊂ Sηi
. Now, in

order to prove the existence of solution of problem (1), we
move towards the equicontinuity of the Ti. For this, let us
assume t1, t2 ∈ [0, k] with t2 > t1, and consider

Tiu
∗
i t2( 􏼁 − Tiu

∗
i t1( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 �

1
Γ ϑi + ω∗∗i( 􏼁

􏽚
t2

0
t2 − s( 􏼁

ϑi+ω∗∗i
− 1

fi s, u
∗
i (s)( 􏼁ds −

1
Γ ϑi + ω∗∗i( 􏼁

􏽚
t1

0
t1 − s( 􏼁

ϑi+ω∗∗i
− 1

fi s, u
∗
i (s)( 􏼁ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
λiηi + ℘

Γ ϑi + ω∗∗i + 1( 􏼁
􏽚

t2

0
t2 − s( 􏼁

ϑi+ω∗∗i
− 1ds − 􏽚

t1

0
t1 − s( 􏼁

ϑi+ω∗∗i
− 1ds􏼠 􏼡 �

λiηi + ℘
Γ ϑi + ω∗∗i + 1( 􏼁

t
ϑi+ω∗∗i

2 − t
ϑi+ω∗∗i

1􏼒 􏼓.

(13)

*is implies |Tiu
∗
i (t2) − Tiu

∗
i (t1)|⟶ 0 as t2⟶ t1.

*is implies that the operator Ti is equicontinuous. Next,
we show that A � u∗ ∈ C([0, k],Re): u∗ � ZTi(u∗),􏼈

for Z ∈ [0, 1]} is bounded. For this, consider

u
∗����
���� � ZTiu

∗
i (t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � Z

1
Γ ϑi + ω∗∗i( 􏼁

􏽚
1

0
(1 − s)

ϑi+ω∗∗i
− 1

fi s, u
∗
i (s)( 􏼁ds −

1
Γ ϑi + ω∗∗i( 􏼁

􏽚
t

0
(t − s)

ϑi+ω∗∗i
− 1

fi s, u
∗
i (s)( 􏼁ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤
Z

Γ ϑi + ω∗∗i( 􏼁
􏽚
1

0
(1 − s)

ϑi+ω∗∗i
− 1

fi s, u
∗
i (s)( 􏼁 − fi(s, 0) + fi(s, 0)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds

+
Z

Γ ϑi + ω∗∗i( 􏼁
􏽚

t

0
(t − s)

ϑi+ω∗∗i
− 1

fi s, u
∗
i (s)( 􏼁 − fi(s, 0) + fi(s, 0)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds

≤
Z λi u

∗����
���� + ℘􏼐 􏼑

Γ ϑi + ω∗∗i( 􏼁
􏽚
1

0
(1 − s)

ϑi+ω∗∗i
− 1ds +

Z λi u
∗����
���� + ℘􏼐 􏼑

Γ ϑi + ω∗∗i( 􏼁
􏽚

t

0
(t − s)

ϑi+ω∗∗i
− 1ds≤

Z 1 + k
ϑi+ω∗∗i􏼐 􏼑 λi u

∗����
���� + ℘􏼐 􏼑

Γ ϑi + ω∗∗i + 1( 􏼁
.

(14)
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By the help of (14), we have

u
∗����
����≤

Z 1 + k
ϑi+ω∗∗i􏼐 􏼑℘

Γ ϑi + ω∗∗i + 1( 􏼁 − Z 1 + k
ϑi+ω∗∗i􏼐 􏼑λi

, (15)

for i � 1, 2, . . . , m. Hence, by (15), we have that the set A is
bounded. *erefore, by Leray–Schauder alternative theo-
rem, operator Ti has at least one fixed point which is the
solution of fractional-order system (1). □

3. Hyers–Ulam Stability

In this section, we are presenting the Hyers–Ulam stability
analysis for hybrid fractional differential equation (8).

Definition 1. Fractional integral system (8) is said to be
Hyers–Ulam stable, if there exists a constant ζ > 0, such that
for a given φ> 0 and for each solution u∗i of the inequality

u
∗
i − Tiu

∗
i

����
����1<φ, (16)

there exists a solution u∗i (t) of integral system (8),

u
∗
i (t) � Tiu

∗
i (t), (17)

such that

u
∗
i − u
∗
i

����
����<φζ. (18)

Theorem 2. Assume that fi ∈ C([[0, k] × Re,Re), for
i � 1, 2, . . . , m. :en, fractional-order system (1) is
Hyers–Ulam stable provided that the assumptions of Lemma
2 are satisfied.

Proof. Let u∗i ∈ C satisfy the inequality (16) and u∗i ∈ C be a
solution of BVP (1) satisfying integral system (8). By the help
of (16) and (17), consider the following norm:

u
∗
i − u
∗
i

����
���� � u

∗
i − Tiu

∗
i + Tiu

∗
i − u
∗
i

����
����≤ u

∗
i − Tiu

∗
i

����
���� + Tiu

∗
i − Tiu

∗
i

����
����≤φi + λi u

∗
i − u
∗
i

����
����, (19)

for i � 1, 2, . . . , m. *is further implies that
u
∗
i − u
∗
i

����
����≤

φ
1 − λi

, (20)

with ζ i � 1/1 − λi, for i � 1, 2, . . . , m. *erefore, system (8) is
Hyers–Ulam stable which implies the stability of fractional-
order system (1). □

4. Application

In this section, we give a specific example of fractional-order
system (1) which is a fractional-order extension of the
COVID-19 model given in [15]:

D
ϑ1
0 S � Λ∗ −

α∗SI1

1 + mI
2
1

−
β∗SI2

1 + kI
2
2

− δ∗S,

D
ϑ2
0 Ε1 �

α∗SI1

1 + mI
2
1

− c
∗
1 + δ∗( 􏼁Ε1,

D
ϑ3
0 Ε2 �

β∗SI2

1 + kI
2
2

− c
∗
2 + δ∗( 􏼁Ε2,

D
ϑ4
0 I1 � c

∗
1Ε1 − μ∗1 + δ∗( 􏼁I1,

D
ϑ5
0 I2 � c

∗
2Ε2 − μ∗2 + δ∗( 􏼁I2,

D
ϑ6
0 R � μ∗1I1 + μ∗2I2 − δ∗R.

(21)

Here, ϑi ∈ (0, 1], for i � 1, 2, . . . , 6, (u∗1 , u∗2 , . . . , u∗6 ) �

(S,E1,E2,I1,I2,R), f1 � Λ∗ − α∗SI1/1 + mI2
1 − β∗

SI2/1 + kI2
2 − δ∗S, f2 � α∗SI1/1 + mI2

1 − (c∗1 + δ∗)E1,
f3 � β∗SI2/1 + kI2

2 − (c∗2 + δ∗)E2, f4 � c∗1E1 − (μ∗1 +

δ∗)I1, f5 � c∗2E2 − (μ∗2 + δ∗)I2, and f6 � μ∗1I1 + μ∗2
I2 − δ∗R.

Fractional-order model (21) has six compartments.
S(t) represents the susceptible class, E1(t) and E2(t)

are latent individuals, I1(t) and I2(t) are infected
individuals, and R(t) is the recovered class. *e pa-
rameters include the following: Λ is the recruitment
rate, 1/δ is the average life of the population, α is the
infection rate of strain 1, β is the infection rate of strain
2, 1/μ1 is the average infection period for strain 1,
1/μ2 is the average infection period for strain 2, 1/c1
is the average latency rate for strain 1, 1/c2 is the av-
erage latency rate for strain 2, m is the psychological
effect of strain 1, and k is the psychological effect of
strain 2.

*e existence of solution of (21) is ensured by *eorem
1.*e stability of (21) is also ensured by*eorem 2. Now, we
give the numerical scheme for the simulation of (21) as
follows. By applying the fractional-order Riemann–Liouville
integral operator for the equispace intervals of [0, k], we get
the following form:
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Figure 1: Joint solution of (21) for order 1.0.
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Figure 2: Joint solution of (21) for order 0.99.

S
E1
E2

I1
I2
R

0

1

2

3

4

5

6

7

8

9

10

Jo
in

t s
ol

ut
io

n 
fo

r o
rd

er
 0

.9
8

5 10 15 20 25 30 35 40 450
Time t (days)

Figure 3: Joint solution of (21) for order 0.98.
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Figure 4: Comparison of S(t) for orders 1.0, 0.99, and 0.98.
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Figure 5: Comparison of E1(t) for orders 1.0, 0.99, and 0.98.
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Figure 6: Comparison of I1(t) for orders 1.0, 0.99, and 0.98.
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Figure 7: Comparison of E2(t) for orders 1.0, 0.99, and 0.98.
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Figure 8: Comparison of R(t) for orders 1.0, 0.99, and 0.98.
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Sn+1 � S0 +
h
ϑ1

Γ ϑ1 + 1( 􏼁
× 􏽘

n

k�0
(n − k + 1)

ϑ1 − (n − k)
ϑ1􏼐 􏼑 Λ∗ −

α∗SnI1n

1 + mI
2
1n

−
β∗SnI2n

1 + kI
2
2n

− δ∗Sn
⎛⎝ ⎞⎠,

ε1n
� ε0 +

h
ϑ2

Γ ϑ2 + 1( 􏼁
× 􏽘

n

k�0
(n − k + 1)

ϑ2 − (n − k)
ϑ2􏼐 􏼑

α∗SnI1n

1 + mI
2
1n

− c
∗
1 + δ∗( 􏼁Ε1n

⎛⎝ ⎞⎠,

ε2n
� ε20 +

h
ϑ3

Γ ϑ3 + 1( 􏼁
× 􏽘

n

k�0
(n − k + 1)

ϑ3 − (n − k)
ϑ3􏼐 􏼑

β∗SnI2n

1 + kI
2
2n

− c
∗
2 + δ∗( 􏼁Ε2n

⎛⎝ ⎞⎠,

I1n
� I10 +

h
ϑ4

Γ ϑ4 + 1( 􏼁
× 􏽘

n

k�0
(n − k + 1)

ϑ4 − (n − k)
ϑ4􏼐 􏼑 c
∗
1Ε1n

− μ∗1 + δ∗( 􏼁I1n
􏼐 􏼑,

I2n
� I20 +

h
ϑ5

Γ ϑ5 + 1( 􏼁
× 􏽘

n

k�0
(n − k + 1)

ϑ5 − (n − k)
ϑ5􏼐 􏼑 c
∗
2Ε2n

− μ∗2 + δ∗( 􏼁I2n
􏼐 􏼑,

Rn � R0 +
h
ϑ6

Γ ϑ6 + 1( 􏼁
× 􏽘

n

k�0
(n − k + 1)

ϑ6 − (n − k)
ϑ6􏼐 􏼑 μ∗1I1n

+ μ∗2I2n
− δ∗Rn􏼐 􏼑.

(22)

5. Computational Results

Here, we test the numerical scheme given in (22) for the
numerical results of fractional-order COVID-19 model
(21), considering the parametric values, and ϑi �

1.0, 0.99, and 0.98, for i � 1, 2, . . . , 6, and the initial values
S(0)� 10,E1(0) � 5,E2(0)�4,I1(0) � 1,I2(0) � 1, and
R(0) � 0.

In Figure 1, we have given the numerical solution of
COVID-19 model (21) for the order 1.0. Also, Figures 2 and
3 are the solutions for the fractional orders 0.99 and 0.98,
respectively. *ese graphs show that the fractional-order
solutions of model (21) are similar in behavior as to the

solution of the classical model of the order 1.0. *is shows
the accuracy of our scheme given in (22).

In Figure 4, we have given a comparative study of the
susceptible class which has a decrease in the early 5 days
and later on a slight increase and then a stability is ob-
served for the orders 1.0, 0.99, and 0.98. In Figure 5, we
have given a comparative study of the E1(t) for the orders
1.0, 0.99, and 0.98. We have observed that the behavior of
the fractional-order results are similar to the classical
integer order and in this class, there is a slight increase
and then there is a rapid decrease up to 10 days.
*is decrease is converted into the infected class, and
we observe a rapid increase in the I1(t) class and then
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Figure 9: Comparison of I2(t) for orders 1.0, 0.99, and 0.98.
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there is a gradual decrease of up to 14 days as given in
Figure 6.

In Figure 7, we have given a comparative study of the
E2(t) for the orders 1.0, 0.99, and 0.98. We have observed
that the behavior of the fractional-order results are similar to
the classical integer order and in this class, there is a rapid
decrease of up to 10 days. *is decrease is converted into the
infected class, and we observed a rapid increase in the R(t)

class and then there is a gradual decrease of up to 20 days as
given in Figure 8. In Figure 9, we have presented a com-
putational analysis of I2 class.

All the numerical computations are for the comparative
study of COVID-19 model (21) and we have noticed the be-
havior of the joint solution as well as the individual comparison
of the compartments for the orders 1.0, 0.99, and 0.98.

6. Conclusion

In this article, we have considered a very important class of
fractional-order system of sequential differential equations
(1), for the existence and stability results based on the
classical fixed-point approach, and have observed that under
certain necessary assumptions, suggested problem (1) has a
unique solution as well as Hyers–Ulam stability. Such
problems are widely applicable in the real-world situations.
In the example section, we have given a COVID-19 model as
a particular case of system (1). *e existence of solution of
(21) is ensured by *eorem 1. *e Hyers–Ulam stability of
(21) is guaranteed by*eorem 2. For the numerical solution
of example (21), we obtained numerical scheme (22) and the
scheme was tested with the real data given in the literature
[15]. All the computational results ensured that the nu-
merical simulations for fractional-order system (21) are of
the same behavior as to the classical case for the order 1.
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2Instituto de Matemáticas, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain

Correspondence should be addressed to G. P. Samanta; gpsamanta@math.iiests.ac.in

Received 6 March 2021; Revised 7 May 2021; Accepted 11 June 2021; Published 5 July 2021

Academic Editor: Eberhard O. Voit

Copyright © 2021 Sudeshna Mondal et al. )is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In this work, our aim is to investigate the impact of a non-Kolmogorov predator-prey-subsidymodel incorporating nonlinear prey
refuge and the effect of fear with Holling type II functional response. )e model arises from the study of a biological system
involving arctic foxes (predator), lemmings (prey), and seal carcasses (subsidy). )e positivity and asymptotically uniform
boundedness of the solutions of the system have been derived. Analytically, we have studied the criteria for the feasibility and
stability of different equilibrium points. In addition, we have derived sufficient conditions for the existence of local bifurcations of
codimension 1 (transcritical and Hopf bifurcation). It is also observed that there is some time lag between the time of perceiving
predator signals through vocal cues and the reduction of prey’s birth rate. So, we have analyzed the dynamical behaviour of the
delayed predator-prey-subsidy model. Numerical computations have been performed usingMATLAB to validate all the analytical
findings. Numerically, it has been observed that the predator, prey, and subsidy can always exist at a nonzero subsidy input rate.
But, at a high subsidy input rate, the prey population cannot persist and the predator population has a huge growth due to the
availability of food sources.

1. Introduction

In the ecological system, the predator-prey interaction is one
of the most significant tools which is comparatively easy to
observe in the field. But fear of the predator felt by the prey
(indirect effect) also plays a vital role since its effect is
stronger than direct predation [1, 2]. )e cost of fear can
reduce the reproduction rate of prey because it affects the
physiological condition of prey population. As a result, the
prey species may get a long-term loss. In support of this, it is
mentioned that, in the Greater Yellowstone Ecosystem,
wolves (Canis lupus) affect the reproductive physiology of
elk (Cervus elaphus) [3].When the prey species recognize the
predator signal (chemical/vocal), they spend more time to
become keenly watchful to detect danger rather than in
foraging. So, the birth rate of the scared prey reduces and

adopts some survival mechanisms like starvation [1, 2]. For
examples, some birds react to the sound of predator with
antipredator defenses [1, 2] and they flee from their nests at
the first sign of danger [2]. )is antipredator behaviour may
affect survival and reproduction of the birds [2]. It has been
experimentally investigated that, in the absence of direct
killing, the reproduction of the offspring of song sparrows
(Melospiza melodia) could be reduced by 40% as a result of
impact of feeling fear created by the predator [4]. So, this
reduction caused by the antipredator behaviour affects the
birth rate and survival of offspring. )us, the cost of fear
(apart from direct predation) should be introduced in a
predator-prey interaction. Mathematical formulation of the
impact of fear on the two species prey-predator system has
been initiated by Wang et al. [5] in 2016 introducing fear
factor: f(k, y) � (1/(1 + ky)). It involves a parameter k
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denoting the level of fear to represent the antipredator
behaviour of the prey. Some research works have already
been done on the ecological system under the influence of
predation fear felt by prey species [6–17]. Moreover, the
impact of fear in a two-species predator-prey model with
prey refuge was analyzed by many researchers [11, 18, 19].

In evolutionary biology, prey refuge is a concept which
helps an organism to protect themselves from predation by
hiding in an area inaccessible to the predator, for example, in
a wolf-ungulate system, ungulates may seek refuge by mi-
grating to areas outside the core territories of wolves. Also, it
has many significant roles on the dynamics of predator-prey
interactions: prey refuge may decrease the chance of ex-
tinction of prey. Researchers have mainly used the dynamic
nature of predator-prey model with linear prey refuge (that
is, mx amounts of prey are unavailable to the predator,
where m ∈ (0, 1) is the coefficient of refuge and x is the
biomass of prey species) with Volterra response [20–22].
Recently, Mondal and Samanta have studied the dynamics of
the predator-prey system with prey refuge dependent on
both species (that is, mxy amounts of prey are free from the
predator risk, where 0< 1 − my< 1, m is prey refuge coef-
ficient, x is the biomass of prey population, and y is the
biomass of predator population) in the presence of addi-
tional food (for details, see [23]). In 2020, Mondal and
Samanta [11] have also analyzed the dynamics of predator-
prey interaction having nonlinear prey refuge function
Φ(x, y) � (mxy/(a + y)) which is the amount of prey that
are free from predation, where a is half saturation constant
and y is the biomass of predator population.

Many experimental studies suspect that the introduction
of resource subsidies may disrupt otherwise stable food web
linkages [24–26]. Such concept is significant for resource
management purposes. It is learnt that reintroduced wolves
in Yellowstone Park switch to bison when their preferred
ungulate prey, namely, elk, are rare in the concerned eco-
system [27]. Mathematically, the influence of resource
subsidy on the predator-prey model has been initiated in the
work of Nevai and Van Gorder [28]. )ey have discussed
how different subsidy input rate may affect the prey and
predator population to persist in the ecosystem.

Generalist predator can consume more than one food
source: either multiple prey population or a combination of
prey population and resource subsidy. )ere are many rich
theoretical research on ecological systems involving gen-
eralist predator [29–31]. Also, there are a variety of real-life
applications for such systems [32–34]. From literature

surveys, it has been shown that generalist predator can
persist in an ecosystem even if one particular prey species is
going towards extinction [29–31].

In 2012, Nevai and Van Gorder [28] first extended the
Kolmogorov model to a non-Kolmogorov predator-prey-
subsidy model. It has been observed that the predator-prey-
subsidy model occurs in the arctic foxes (predator), lemmings
(prey), and seal carcasses (subsidy). Motivated by the works of
Das and Samanta [35], Nevai and Van Gorder [28], and Xu
et al. [36], we have analyzed the dynamical behaviour of a
mathematical model of non-Kolmogorov form that includes
the three components (predator, prey, and subsidy) with the
impacts of nonlinear prey refuge function and the fear effect felt
by the prey in the presence of the predator. To the best of our
knowledge, there does not exist any mathematical model to
explore the impact of fear effect incorporating nonlinear prey
refuge function in predator-prey-subsidy interaction.

)e organization of this work is structured as follows: in
Section 2, a mathematical model has been formulated with
the influences of nonlinear prey refuge and fear effect.
Section 3 shows that the proposed model is well-behaved. In
Section 4, feasibility criteria and stability of all the equilibria
of the proposed system (in absence of delay) have been
studied. )e equilibria can change their stability nature
through transcritical and Hopf bifurcation which are also
analyzed in this section. Generally, the reduction of prey’s
birth rate due to the effect of fear will not be an instanta-
neous biological process but deviated through some time lag,
so the study of time-delay τ is very meaningful to obtain the
more realistic dynamics. So, Section 5 deals with the dy-
namic behaviour of the delayed system for two equilibrium
points E3 (subsidy free) and E∗ (interior), respectively.
Section 6 provides the numerical computations which
support the analytical calculations. Section 7 provides a brief
conclusion about the system dynamics.

2. Model Formulation

In 2020, Mondal and Samanta [11] analyzed the dynamics of
a delayed predator-prey interaction incorporating nonlinear
prey refuge function under the influence of fear effect and
additional food. Motivated by the work of Mondal and
Samanta [11], we have first considered a predator-prey-
subsidy model with nonlinear prey refuge function where
the prey and subsidy occur in the same habitat and they are
both consumed by a single generalist predator according to
the following differential equations:

dx

dt
� rx − d1x − a1x

2
−

a2(1 − (my/(a + y)))xy

b1 + w +(1 − (my/(a + y)))x
, x(0)> 0,

dw

dt
� A − d2w −

a3wy

b1 + w +(1 − (my/(a + y)))x
, w(0)> 0,

dy

dt
�

c1a2(1 − (my/(a + y)))xy

b1 + w +(1 − (my/(a + y)))x
+

c2a3wy

b1 + w +(1 − (my/(a + y)))x
− d3y, y(0)> 0,

(1)
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where x is prey population, w denotes the population of the
subsidy, and y is the generalist predator which exploits both
the prey and subsidy. For example, wolves (predator)
consume both deer (prey) and salmon carcasses (subsidy)
[37].

)e term (1 − (my/(a + y)))x represents the quantity of
prey available to the predator, i.e., (mxy/(a + y)) amounts
of prey are free from predation risk where (mxy/(a + y)) is
designated as nonlinear prey refuge function. Also, we have
modeled the dynamics of a generalist predator with Holling
type II [38–41] response function in the presence of non-
linear prey refuge function.

All parameters are positive (except A≥ 0) and biologi-
cally meaningful. Parameters are described in Table 1.

Apart from direct consumption, feeling of fear among
the individuals of the prey species in presence of predator is
very common in predator-prey interaction which changes
life-history, behavioural responses, and reproduction ca-
pability of prey species. In ecology, effect of fear is a common
factor, but there does not exist any considerable attention to
introduce the impact of fear in the mathematical modeling.

Experimental studies indicate that the feeling of fear among
the individuals of the prey species in presence of predator
reduces the prey’s birth rate. So, birth rate of prey species r is
multiplied by a monotone decreasing function
f(k, y) � (1/(1 + ky)), where k(≥ 0) is a level of fear [5].
)e fear function f(k, y) satisfies the following conditions:

(1) f(0, y) � 1: when there is no fear effect on the prey
species, the birth rate of the prey is not reduced

(2) f(k, 0) � 1: when there is no predator, the birth rate
of the prey species is not reduced in the presence of
fear effect

(3) (zf(k, y)/zk)< 0: when fear effect increases, the
birth rate of the prey reduces

(4) (zf(k, y)/zy)< 0: when predator species increases,
prey population reduces

Our main focus is to analyze the dynamic nature of the
predator-prey-subsidymodel with the influence of nonlinear
prey refuge and fear effect. So, system (1) can be modified in
the following aspects:

dx

dt
�

rx

1 + ky
− d1x − a1x

2
−

a2(1 − (my/(a + y)))xy

b1 + w +(1 − (my/(a + y)))x
,

dw

dt
� A − d2w −

a3wy

b1 + w +(1 − (my/(a + y)))x
,

dy

dt
�

c1a2(1 − (my/(a + y)))xy

b1 + w +(1 − (my/(a + y)))x
+

c2a3wy

b1 + w +(1 − (my/(a + y)))x
− d3y,

(2)

with initial conditions:

x(0)> 0,

w(0)> 0,

y(0)> 0.

(3)

)roughout the analysis of this work, we have taken
c1 > c2 which is biologically meaningful.

3. Positivity and Uniform Boundedness

Theorem 1. Every solution of system (2) with (3) uniquely
exists and is positive for all t≥ 0.

Proof. Solution (x(t), w(t), y(t)) of (2) with (3) exists and is
unique on [0, ξ), where (0< ξ ≤ +∞) [42].

From (2) with (3),

x(t) � x(0)exp 􏽚
t

0

r

1 + ky(θ)
− d1 − a1x(θ) −

a2(1 − (my(θ)/(a + y(θ))))y(θ)

b1 + w(θ) +(1 − (my(θ)/(a + y(θ))))x(θ)
􏼨 􏼩dθ􏼢 􏼣> 0,

y(t) � y(0)exp 􏽚
t

0

c1a2(1 − (my(θ)/(a + y(θ))))x(θ)

b1 + w(θ) +(1 − (my(θ)/(a + y(θ))))x(θ)
+

c2a3w(θ)

b1 + w(θ) +(1 − (my(θ)/(a + y(θ))))x(θ)
− d3􏼨 􏼩dθ􏼢 􏼣> 0.

(4)
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Now, we claim that w(t)> 0 for all t ∈ [0, ξ). If it does
not hold then there exists t1 ∈ [0, ξ) such that w(t1) � 0,
_w(t)≤ 0, and w(t)> 0 on [0, t1). From the second equation
of (2),

w t1( 􏼁 � w(0)exp − 􏽚
t1

0
d2 +

a3y(θ)

b1 + w(θ) +(1 − (my(θ)/(a + y(θ))))x(θ)
􏼠 􏼡d(θ)􏼢 􏼣

+ 􏽚
t1

0
A exp 􏽚

u

t1

d2 +
a3y(θ)

b1 + w(θ) +(1 − (my(θ)/(a + y(θ))))x(θ)
􏼠 􏼡d(θ)􏼠 􏼡􏼢 􏼣du> 0,

(5)

a contradiction with w(t1) � 0. So, w(t)> 0,∀t ∈ [0, ξ).
Hence, solutions of (2) stay positive for all t≥ 0. □

Theorem 2. All solutions of system (2) which start in R3
+ are

asymptotically uniformly bounded.

Proof. Case 1: if r> d1, from the first equation of (2),

dx

dt
≤

rx

1 + ky
− d1x − a1x

2

≤ rx − d1x − a1x
2 since

rx

1 + ky
≤ rx􏼢 􏼣

� r − d1( 􏼁x 1 −
x

r − d1( 􏼁/a1
􏼠 􏼡,

∴ lim sup
t⟶+∞

x(t)≤
r − d1

a1
, since r>d1.

(6)

Let us take P � x + w + (y/c1).
Differentiating both sides with respect to t, we obtain

Table 1: Description of biologically meaningful parameters.

Parameters Descriptions
r Birth rate of the prey
d1 Natural death rate of the prey
d2 )e subsidy decay rate
a1 Mortality rate due to intraspecific competition among the individuals of the prey population
a2 Consumption rate of the predator
a3 Maximum rate at which the predator consumes the subsidy
b1 Handling time assumed to be uniform over all food sources
c1 Conversion rate of the energy that the predator obtains from the target prey
c2 Conversion rate of the energy that the predator obtains from the subsidy
A Subsidy input rate
m Coefficient of prey refuge (m ∈ (0, 1))
d3 Mortality rate of the predator
a Half saturation constant for refuge function
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dP

dt
�
dx

dt
+
dw

dt
+
1
c1

dy

dt

�
rx

1 + ky
− d1x − a1x

2
+ A − d2w −

a3wy(a + y)

b1 + w( 􏼁(a + y) +(a +(1 − m)y)x

+
c2/c1( 􏼁a3wy(a + y)

b1 + w( 􏼁(a + y) +(a +(1 − m)y)x
−

d3y

c1

≤ rx − d1x − a1x
2

+ A − d2w − d3
y

c1
−

a3wy(a + y)

b1 + w( 􏼁(a + y) +(a +(1 − m)y)x
1 −

c2

c1
􏼠 􏼡

≤ 2 r − d1( 􏼁x − a1x
2

+ A − r − d1( 􏼁x − d2w − d3
y

c1
since c1 > c2􏼂 􏼃

� − a1 x −
r − d1

a1
􏼠 􏼡

2

+
r − d1( 􏼁

2

a1
+ A − r − d1( 􏼁x + d2w + d3

y

c1
􏼨 􏼩

≤
r − d1( 􏼁

2

a1
+ A − r − d1( 􏼁x + d2w + d3

y

c1
􏼨 􏼩,

∴
dP

dt
≤

r − d1( 􏼁
2

a1
+ A − r − d1( 􏼁x + d2w + d3

y

c1
􏼨 􏼩.

(7)

Let

η � min r − d1, d2, d3􏼈 􏼉, when r>d1. (8)

)en,

dP

dt
+ ηP≤

r − d1( 􏼁
2

a1
+ A. (9)

Using the Gronwall inequality, we obtain

0<P(x(t), w(t), y(t))≤
r − d1( 􏼁

2/a1􏼐 􏼑 + A

η
1 − e

− ηt
􏼐 􏼑 + e

− ηt
P(x(0), w(0), y(0)),

∴ 0<P(x(t), w(t), y(t))≤
r − d1( 􏼁

2/a1􏼐 􏼑 + A

η
, as t⟶∞.

(10)

)us, all solutions of system (2) enter into the region:

Ω � (x, w, y) ∈ R3
+: 0<x(t)≤

r − d1

a1
; 0<P(x(t), w(t), y(t))≤

r − d1( 􏼁
2/a1􏼐 􏼑 + A

η
⎧⎨

⎩

⎫⎬

⎭. (11)

Case 2: if r<d1, from the first equation of (2) we obtain
limt⟶∞x(t) � 0.

Now, from the second and third equations of (2), we
have

dw

dt
+
1
c2

dy

dt
� A − d2w +

c1/c2( 􏼁a2(1 − (my/(a + y)))xy

b1 + w +(1 − (my/(a + y)))x
− d3

y

c2
. (12)

For large t,
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dw

dt
+
1
c2

dy

dt
� A − d2w − d3

y

c2
∵ lim

t⟶∞
x(t) � 0􏼔 􏼕. (13)

Let

η′ � min d2, d3􏼈 􏼉. (14)

)en,

d
dt

w +
y

c2
􏼠 􏼡 + η′ w +

y

c2
􏼠 􏼡≤A. (15)

Using Gronwall inequality, we obtain

0<w(t) +
y(t)

c2
≤

A

η′
1 − e

− η′t
􏼒 􏼓 + e

− η′t
w(0) +

y(0)

c2
􏼠 􏼡,

∴ 0<w(t) +
y(t)

c2
≤

A

η′
, as t⟶∞.

(16)

Hence, the theorem. □

4. Equilibrium Points and Stability Analysis

4.1. Equilibria

4.1.1. Trivial Equilibrium Point. Extinction: E0(0, 0, 0).

4.1.2. Axial Equilibrium Points

(i) Subsidy only: E1(0, (A/d2), 0)

(ii) Prey only: E2((r − d1)/a1, 0, 0) exists if r>d1 and
A � 0

4.1.3. Planer Equilibrium Points

(i) Subsidy free: E3(x, 0, y) exists if A � 0, x> 0, and
y> 0 where x and y can be obtained by solving the
equations:

r

1 + ky
− d1 − a1x −

a2(1 − (my/(a + y)))y

b1 +(1 − (my/(a + y)))x
� 0,

c1a2(1 − (my/(a + y)))x

b1 +(1 − (my/(a + y)))x
− d3 � 0,

(17)

and we get

y �
a d3b1 − x c1a2 − d3( 􏼁􏼈 􏼉

(1 − m) c1a2 − d3( 􏼁x − d3b1
, m≠ 1, (18)

where x is a positive root of the equation:

B0x
4

+ B1x
3

+ B2x
2

+ B3x + B4 � 0. (19)

Here,

B0 � a1(1 − m)(1 − m − ak) c1a2 − d3( 􏼁
2
,

B1 � a1b1d3(1 − m)(ak − 1) c1a2 − d3( 􏼁 − a1b1d3(1 − m − ak) c1a2 − d3( 􏼁 + d1(1 − m)(1 − m − ak) c1a2 − d3( 􏼁
2

− r(1 − m)
2

c1a2 − d3( 􏼁
2
,

B2 � b1d1d3(1 − m)(ak − 1) c1a2 − d3( 􏼁 − a1b
2
1d

2
3(ak − 1) − b1d1d3(1 − m − ak) c1a2 − d3( 􏼁

−
d3

c1
(1 − m − ak) c1a2 − d3( 􏼁

2
+ 2b1d3r(1 − m) c1a2 − d3( 􏼁,

B3 � − b
2
1d

2
3r +

b1d
2
3

c1
(1 − m − ak) c1a2 − d3( 􏼁 −

b1d
2
3

c1
(ak − 1) c1a2 − d3( 􏼁 − b

2
1d1d

2
3(ak − 1),

B4 �
b
2
1d

3
3

c1
(ak − 1),

(20)

and y � (a d3b1 − x(c1a2 − d3)􏼈 􏼉/((1 − m)(c1
a2 − d3)x − d3d1)) exists if (1 − m)(c1a2 −

d3)x< d3b1 < (c1a2 − d3)x and c1a2 > d3.
(ii) Prey free: E4(0, 􏽢w � (d3b1/(c2a3 − d3)), 􏽢y � ((A −

d2 􏽢w)(b1 + 􏽢w)/a3)) exists if c2a3 >d3 and 􏽢y> 0.

(iii) Predator free: E5((r − d1)/a1, (A/d2), 0) exists if
r> d1.

4.1.4. Interior (Coexistence) Equilibrium Point. Solving the
following system of equations,
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r

1 + ky
− d1 − a1x −

a2(1 − (my/(a + y)))y

b1 + w +(1 − (my/(a + y)))x
� 0,

A − d2w −
a3wy

b1 + w +(1 − (my/(a + y)))x
� 0,

c1a2(1 − (my/(a + y)))x

b1 + w +(1 − (my/(a + y)))x
+

c2a3w

b1 + w +(1 − (my/(a + y)))x
− d3 � 0,

(21)

we can obtain E∗(x∗, w∗, y∗) using the software MATH-
EMATICA with the following existence conditions:

(1) d3 <min c1a2, c2a3􏼈 􏼉

(2) 0<w∗ <min (A/d2), d3b1/(c2a3 − d3)􏼈 􏼉

(3) r> d1 + a1x
∗ + ( b1d3 − (c2a3 − d3)w

∗􏼈 􏼉(A −

d2w
∗)/a3x

∗w∗(c1a2 − d3)) (otherwise, predator pop-
ulation goes into extinction)

4.2. Stability Analysis. Now, we will study the stability
conditions of all equilibria for the proposed system (2).

)e Jacobian matrix J0(0, 0, 0) at E0(0, 0, 0) is given by

J0(0, 0, 0) �

r − d1 0 0

0 − d2 0

0 0 − d3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (22)

)e eigenvalues of J0(0, 0, 0) are r − d1, − d2(<0), and
− d3(< 0). )en. we have stated the following theorem.

Theorem 3. Trivial equilibrium point E0(0, 0, 0) is locally
asymptotically stable (LAS) if r<d1 and unstable if r> d1.

)e Jacobian matrix J1(0, (A/d2), 0) at E1(0, (A/d2), 0)

is as follows:

J1 0,
A

d2
, 0􏼠 􏼡 �

r − d1 0 0

0 − d2 −
a3 A/d2( 􏼁

b1 + A/d2( 􏼁

0 0 − d3 +
c2a3 A/d2( 􏼁

b1 + A/d2( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (23)

We see that

r − d1,

− d2(< 0),

− d3 +
c2a3 A/d2( 􏼁

b1 + A/d2( 􏼁
,

(24)

are the eigenvalues of the matrix J1(0, (A/d2), 0). )us, we
have the following theorem.

Theorem 4. Axial equilibrium point (subsidy only)
E1(0, (A/d2), 0) is locally asymptotically stable if r< d1 and
(c2a3(A/d2)/b1 + (A/d2))< d3 and unstable if either
r>d1, (c2a3(A/d2)/b1 + (A/d2))<d3􏼈 􏼉 or r< d1, (c2a3􏼈

(A/d2)/b1 + (A/d2))> d3} or r> d1, (c2a3(A/d2)/b1+􏼈

(A/d2))> d3}.

)e Jacobian matrix J2((r − d1)/a1, 0, 0) at
E2((r − d1)/a1, 0, 0) is given by

J2
r − d1

a1
, 0, 0􏼠 􏼡 �

− r + d1 0
r − d1

a1
− rk −

a2

b1 + r − d1( 􏼁/a1( 􏼁
􏼠 􏼡

0 − d2 0

0 0 − d3 +
c1a2 r − d1( 􏼁/a1( 􏼁

b1 + r − d1( 􏼁/a1( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (25)
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)e eigenvalues of J2((r − d1)/a1, 0, 0) are − r + d1(< 0),
− d2(< 0) or − d3 + (c1a2((r − d1)/a1)/b1 + ((r − d1)/a1)).
)us. we have stated the following theorem.

Theorem 5. Axial equilibrium point (prey only) E2((r −

d1)/a1, 0, 0) is locally asymptotically stable if

c1a2 r − d1( 􏼁/a1( 􏼁

b1 + r − d1( 􏼁/a1( 􏼁
< d3⟹ 0< r< d1 + a1

b1d3

c1a2 − d3
􏼠 􏼡with c1a2 > d3. (26)

If r>d1 + a1(b1d3/(c1a2 − d3)) with c1a2 >d3, then
E2((r − d1)/a1, 0, 0) is unstable.

)e Jacobian matrix J3(x, 0, y) at E3(x, 0, y) is as
follows:

J3(x, 0, y) �

b11 b12 b13

b21 b22 b23

b31 b32 b33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (27)

where

b11 � x − a1 +
a2y(a +(1 − m)y)

2

b1(a + y) +[a +(1 − m)y]x􏼈 􏼉
2

⎧⎨

⎩

⎫⎬

⎭,

b12 �
a2xy[a +(1 − m)y](a + y)

b1(a + y) +[a +(1 − m)y]x􏼈 􏼉
2,

b13 � x −
rk

(1 + ky)
2 −

a2[a + 2(1 − m)y]

b1(a + y) +[a +(1 − m)y]x
+

a2y[a +(1 − m)y] b1 +(1 − m)x􏼂 􏼃

b1(a + y) +[a +(1 − m)y]x􏼈 􏼉
2

⎧⎨

⎩

⎫⎬

⎭,

b21 � 0,

b22 � − d2 −
a3y

b1 +(1 − (my/(a + y)))x
,

b23 � 0,

b31 � y
c1a2[a +(1 − m)y]

b1(a + y) +[a +(1 − m)y]x
−

c1a2[a +(1 − m)y]
2
x

b1(a + y) +[a +(1 − m)y]x􏼈 􏼉
2

⎧⎨

⎩

⎫⎬

⎭,

b32 �
c2a3y(a + y)

b1 a + y
∗

( 􏼁 +[a +(1 − m)y]x
,

b33 � y
c1a2(1 − m)x

b1(a + y) +[a +(1 − m)y]x
−

c1a2[a +(1 − m)y]x b1 +(1 − m)x􏼂 􏼃

b1(a + y) +[a +(1 − m)y]x􏼈 􏼉
2

⎧⎨

⎩

⎫⎬

⎭.

(28)

)e characteristic equation corresponding to J3(x, 0, y)

is expressed as

λ3 + B1λ
2

+ B2λ + B3 � 0, (29)

where B1 � − (b11 + b22 + b33), B2 � b22b33 + b11b33 −

b13b31 + b11b22, and B3 � − b22(b11b33 − b13b31).

Theorem 6. Subsidy-free equilibrium point E3(x, 0, y) is
locally asymptotically stable if b11 < 0, b33 < 0, and b13 < 0.

)e Jacobian matrix J4(0, 􏽢w, 􏽢y) corresponding to
E4(0, 􏽢w, 􏽢y) is given by

J4(0, 􏽢w, 􏽢y) �

c11 c12 c13

c21 c22 c23

c31 c32 c33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (30)

where
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c11 �
r

1 + k􏽢y
− d1 −

a2[a +(1 − m)􏽢y]􏽢y

b1 + 􏽢w( 􏼁(a + 􏽢y)
,

c12 � 0,

c13 � 0,

c21 �
a3(1 − m)(a + 􏽢y)􏽢w􏽢y

2

b1 + 􏽢w( 􏼁(a + 􏽢y)􏼂 􏼃
2 ,

c22 � − d2 −
a3􏽢y(a + 􏽢y)

b1 + 􏽢w( 􏼁(a + 􏽢y)
,

c23 � −
a3 􏽢w(a + 2􏽢y)

b1 + 􏽢w( 􏼁(a + 􏽢y)
+

a3􏽢y􏽢w(a + 􏽢y) b1 + 􏽢w( 􏼁

b1 + 􏽢w( 􏼁(a + 􏽢y)􏼂 􏼃
2 ,

c31 �
c1a2􏽢y[a +(1 − m)􏽢y]

b1 + 􏽢w( 􏼁(a + 􏽢y)
,

c32 �
c2a3􏽢y(a + 􏽢y)

b1 + 􏽢w( 􏼁(a + 􏽢y)
−

c2a3 􏽢w􏽢y(a + 􏽢y)
2

b1 + 􏽢w( 􏼁(a + 􏽢y)􏼂 􏼃
2 �

c2a3􏽢yb1

b1 + 􏽢w( 􏼁(a + 􏽢y)􏼂 􏼃
2,

c33 �
c2a3 􏽢w􏽢y

b1 + 􏽢w( 􏼁(a + 􏽢y)
−

c2a3 􏽢w􏽢y(a + 􏽢y) b1 + 􏽢w( 􏼁

b1 + 􏽢w( 􏼁(a + 􏽢y)􏼂 􏼃
2 � 0.

(31)

)e characteristic equation corresponding to J4(0, 􏽢w, 􏽢y)

is expressed as

λ3 + C1λ
2

+ C2λ + C3 � 0, (32)

where

C1 � − c11 + c22( 􏼁,

C2 � − c23c32 + c11c22,

C3 � + c11c23c32.

(33)

Theorem 7. Prey-free equilibrium point E4(0, 􏽢w, 􏽢y) is locally
asymptotically stable if c11 < 0 and c23 < 0.

)e Jacobian matrix J5((r − d1)/a1, (A/d2), 0) corre-
sponding to E5((r − d1)/a1, (A/d2), 0) is given by

J5
r − d1

a1
,

A

d2
, 0􏼠 􏼡 �

d11 d12 d13

d21 d22 d23

d31 d32 d33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (34)

where

d11 � − r + d1,

d12 � 0,

d13 �
r − d1

a1
− rk −

a2

b1 + A/d2( 􏼁 + r − d1( 􏼁/a1( 􏼁
􏼢 􏼣,

d21 � 0,

d22 � − d2,

d23 � −
a3 A/d2( 􏼁

b1 + A/d2( 􏼁 + r − d1( 􏼁/a1( 􏼁
,

d31 � d32 � 0,

d33 �
c1a2 r − d1( 􏼁/a1( 􏼁

b1 + A/d2( 􏼁 + r − d1( 􏼁/a1( 􏼁
+

c2a3 A/d2( 􏼁

b1 + A/d2( 􏼁 + r − d1( 􏼁/a1( 􏼁
− d3.

(35)

)e characteristic equation corresponding to
J5((r − d1)/a1, (A/d2), 0) is expressed as

λ3 + D1λ
2

+ D2λ + D3 � 0, (36)

where

D1 � − d11 + d22 + d33( 􏼁,

D2 � d22d33 + d11d33 + d11d22,

D3 � − d11d22d33.

(37)
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Theorem 8. Predator free equilibrium point E5((r − d1)/
a1, (A/d2), 0) is locally asymptotically stable if

c1a2 r − d1( 􏼁/a1( 􏼁

b1 + A/d2( 􏼁 + r − d1( 􏼁/a1( 􏼁
+

c2a3 A/d2( 􏼁

b1 + A/d2( 􏼁 + r − d1( 􏼁/a1( 􏼁
< d3⟹ 0< r< d1 + a1

b1d3 − c2a3 − d3( 􏼁 A/d2( 􏼁

c1a2 − d3
􏼨 􏼩, (38)

provided d3 <min c1a2, c2a3􏼈 􏼉 and 0< (A/d2)< (b1d3
/(c2a3 − d3)).

)e Jacobian matrix J∗(x∗, w∗, y∗) corresponding to
E∗(x∗, w∗, y∗) is as follows:

J
∗

x
∗
, w
∗
, y
∗

( 􏼁 �

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (39)

where

a11 � x
∗

− a1 +
a2 a +(1 − m)y

∗
( 􏼁

2
y
∗

b1 + w
∗

( 􏼁 a + y
∗

( 􏼁 + a +(1 − m)y
∗

( 􏼁x
∗

􏼂 􏼃
2

⎡⎣ ⎤⎦,

a12 �
a2 a +(1 − m)y

∗
( 􏼁 a + y

∗
( 􏼁x

∗
y
∗

b1 + w
∗

( 􏼁 a + y
∗

( 􏼁 + a +(1 − m)y
∗

( 􏼁x
∗

􏼂 􏼃
2,

a13 � −
rkx
∗

1 + ky
∗

( 􏼁
2 −

a2 a + 2(1 − m)y
∗

( 􏼁x
∗

b1 + w
∗

( 􏼁 a + y
∗

( 􏼁 + a +(1 − m)y
∗

( 􏼁x
∗ +

a2 a +(1 − m)y
∗

( 􏼁x
∗
y
∗

b1 + w
∗

+(1 − m)x
∗

( 􏼁

b1 + w
∗

( 􏼁 a + y
∗

( 􏼁 + a +(1 − m)y
∗

( 􏼁x
∗

􏼂 􏼃
2

⎡⎣ ⎤⎦,

a21 �
a3 a + y

∗
( 􏼁 a +(1 − m)y

∗
( 􏼁w

∗
y
∗

b1 + w
∗

( 􏼁 a + y
∗

( 􏼁 + a +(1 − m)y
∗

( 􏼁x
∗

􏼂 􏼃
2,

a22 � − d2 −
a3 a + y

∗
( 􏼁y

∗

b1 + w
∗

( 􏼁 a + y
∗

( 􏼁 + a +(1 − m)y
∗

( 􏼁x
∗ +

a3 a + y
∗

( 􏼁
2
w
∗
y
∗

b1 + w
∗

( 􏼁 a + y
∗

( 􏼁 + a +(1 − m)y
∗

( 􏼁x
∗

􏼂 􏼃
2,

a23 � −
a3 a + 2y

∗
( 􏼁w

∗

b1 + w
∗

( 􏼁 a + y
∗

( 􏼁 + a +(1 − m)y
∗

( 􏼁x
∗ +

a3 a + y
∗

( 􏼁 b1 + w
∗

+(1 − m)x
∗

( 􏼁

b1 + w
∗

( 􏼁 a + y
∗

( 􏼁 + a +(1 − m)y
∗

( 􏼁x
∗

􏼂 􏼃
2,

a31 �
c1a2 a +(1 − m)y

∗
( 􏼁y

∗

b1 + w
∗

( 􏼁 a + y
∗

( 􏼁 + a +(1 − m)y
∗

( 􏼁x
∗ −

c1a2 a +(1 − m)y
∗

( 􏼁
2
x
∗
y
∗

b1 + w
∗

( 􏼁 a + y
∗

( 􏼁 + a +(1 − m)y
∗

( 􏼁x
∗

􏼂 􏼃
2

−
c2a3w

∗
y
∗

a + y
∗

( 􏼁 a +(1 − m)y
∗

( 􏼁

b1 + w
∗

( 􏼁 a + y
∗

( 􏼁 + a +(1 − m)y
∗

( 􏼁x
∗

􏼂 􏼃
2,

a32 � −
c1a2 a +(1 − m)y

∗
( 􏼁x

∗
y
∗

a + y
∗

( 􏼁

b1 + w
∗

( 􏼁 a + y
∗

( 􏼁 + a +(1 − m)y
∗

( 􏼁x
∗

􏼂 􏼃
2 +

c2a3 a + y
∗

( 􏼁y
∗

b1 + w
∗

( 􏼁 a + y
∗

( 􏼁 + a +(1 − m)y
∗

( 􏼁x
∗

−
c2a3w

∗
y
∗

a + y
∗

( 􏼁
2

b1 + w
∗

( 􏼁 a + y
∗

( 􏼁 + a +(1 − m)y
∗

( 􏼁x
∗

􏼂 􏼃
2,

a33 �
c1a2(1 − m)x

∗
y
∗

+ c2a3w
∗
y
∗

b1 + w
∗

( 􏼁 a + y
∗

( 􏼁 + a +(1 − m)y
∗

( 􏼁x
∗ −

c1a2 a +(1 − m)y
∗

( 􏼁x
∗
y
∗

+ c2a3w
∗
y
∗

a + y
∗

( 􏼁􏼂 􏼃 b1 + w
∗

+(1 − m)x
∗

( 􏼁

b1 + w
∗

( 􏼁 a + y
∗

( 􏼁 + a +(1 − m)y
∗

( 􏼁x
∗

􏼂 􏼃
2 .

(40)

)e characteristic equation corresponding to
J∗(x∗, w∗, y∗) is expressed as

λ3 + A1λ
2

+ A2λ + A3 � 0, (41)

where
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A1 � − a11 + a22 + a33( 􏼁,

A2 � a22a33 − a23a32 + a11a33 − a13a31 + a11a22 − a12a21,

A3 � − a11 a22a33 − a23a32( 􏼁 + a12 a23a31 − a21a33( 􏼁 + a13 a21a32 − a22a31( 􏼁􏼂 􏼃.

(42)

Theorem 9. :e coexistence equilibrium E∗(x∗, w∗, y∗) is
locally asymptotically stable if A1 > 0, A3 > 0, and A1A2 >A3,
where A1, A2, andA3 are stated in (41).

4.3. Local Bifurcations of Codimension 1

4.3.1. Transcritical Bifurcation

Theorem 10. System (2) undergoes a transcritical bifurca-
tion around E1(0, (A/d2), 0) if d

[TC]
1 � r and

(c2a3(A/d2)/(b1 + (A/d2)))< d3 ([TC] stands for tran-
scritical bifurcation).

Proof. We apply Sotomayor’s theorem [43] to prove the
occurrence of a transcritical bifurcation around E1 with d1 as
bifurcation parameter. For applicability of Sotomayor’s
theorem, exactly one of the eigenvalues of the Jacobian
matrix at E1 must be zero and other eigenvalues must have
negative real parts. So, we need to fulfill the condition
(c2a3(A/d2)/(b1 + (A/d2)))< d3.

)e eigenvectors of J(E1) � [vij] and (J(E1))
T corre-

sponding to the zero eigenvalue of E1(0, (A/d2), 0) are
obtained as V � (v1, v2, v3)

T and W � (1, 0, 0)T, respec-
tively, where v1 � 1, v2 � v3 � 0, v11 � 0, v12 � 0, v13 � 0,
v21 � 0, v22 � − d2, v23 � 0, v31 � 0, v32 � 0,
v33 � − d3 + (c2a3(A/d2)/(b1 + (A/d2))).

Compute Δ1, Δ2, and Δ3 as follows:

Δ1 � W
T

· Fd1
0,

A

d2
, 0; d

[TC]
1􏼠 􏼡 � (1, 0, 0) ·

zF1

zd1

zF2

zd1

zF3

zd1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

E1

� (1, 0, 0) ·

− x

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

E1

� 0, (43)

where F � (F1, F2, F3)
T and F1, F2, and F3 are given by

F1 �
rx

1 + ky
− d1x − a1x

2
−

a2(1 − (my/(a + y)))xy

b1 + w +(1 − (my/(a + y)))x
,

F2 � A − d2w −
a3wy

b1 + w +(1 − (my/(a + y)))x
,

F3 �
c1a2(1 − (my/(a + y)))xy

b1 + w +(1 − (my/(a + y)))x
+

c2a3wy

b1 + w +(1 − (my/(a + y)))x
− d3y,

Δ2 � W
T

· DFd1
0,

A

d2
, 0; d

[TC]
1􏼠 􏼡V􏼢 􏼣 � (1, 0, 0) ·

z2F1

zx zd1

z2F1

zw zd1

z2F1

zy zd1

z2F2

zx zd1

z2F2

zw zd1

z2F2

zy zd1

z2F3

zx zd1

z2F3

zw zd1

z2F3

zy zd1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

E1

·

1

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Complexity 11



� (1, 0, 0) ·

− 1 0 0
0 0 0
0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

E1

·

1
0
0

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠ � − 1≠ 0,

Δ3 � W
T

· D
2
F 0,

A

d2
, 0; d

[TC]
1􏼠 􏼡(V, V)􏼢 􏼣 � (1, 0, 0) · D

zF1

zx
v1 +

zF1

zw
v2 +

zF1

zy
v3

zF2

zx
v1 +

zF2

zw
v2 +

zF2

zy
v3

zF3

zx
v1 +

zF3

zw
v2 +

zF3

zy
v3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

E1

·

v1

v2

v3

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠

� (1, 0, 0) ·

z2F1

zx2 v
2
1 +

z2F1

zw2 v
2
2 +

z2F1

zy2 v
2
3 + 2

z2F1

zx zw
v1v2 + 2

z2F1

zx zy
v1v3 + 2

z2F1

zw zy
v2v3

z2F2

zx2 v
2
1 +

z2F2

zw2 v
2
2 +

z2F2

zy2 v
2
3 + 2

z2F2

zx zw
v1v2 + 2

z2F2

zx zy
v1v3 + 2

z2F2

zw zy
v2v3

z2F3

zx2 v
2
1 +

z2F3

zw2 v
2
2 +

z2F3

zy2 v
2
3 + 2

z2F3

zx zw
v1v2 + 2

z2F3

zx zy
v1v3 + 2

z2F3

zw zy
v2v3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

E1

� − 2a1 ≠ 0.

(44)

)erefore, by Sotomayor’s theorem [43], system (2)
undergoes a transcritical bifurcation at d1 � d

[TC]
1 around

the axial equilibrium point E1. □

Theorem 11. System (2) exhibits a transcritical bifurcation
around E2((r − d1)/a1, 0, 0) if

d
[TC]
3 �

c1a2 r − d1( 􏼁/a1( 􏼁

b1 + r − d1( 􏼁/a1( 􏼁
. (45)

Proof. Let us apply Sotomayor’s theorem [43] to prove the
occurrence of a transcritical bifurcation around E2 with d3 as

bifurcation parameter. For applicability of Sotomayor’s
theorem, exactly one of the eigenvalues of the Jacobian
matrix at E2 must be zero and other eigenvalues must have
negative real parts.

)e eigenvectors of J(E2) � [tij] and (J(E2))
T corre-

sponding to the zero eigenvalue of E2((r − d1)/a1, 0, 0) are
obtained as V � (v1, v2, v3)

T and W � (0, 0, 1)T, respec-
tively, where v1 � (1/a1)[− rk − (a2/(b1 + ((r −

d1)/a1)))]< 0, v2 � 0, v3 � 1, t11 � − r + d1, t12 � 0,
t13 � ((r − d1)/a1)[− rk − (a2/(b1 + ((r − d1)/a1)))], t21 �

0, t22 � − d2, t23 � 0, t31 � 0, t32 � 0, t33 � 0.
Compute Δ1, Δ2, and Δ3 as follows:

Δ1 � W
T

· Fd1

r − d1

a1
, 0, 0; d

[TC]
3􏼠 􏼡 � (0, 0, 1) ·

zF1

zd3

zF2

zd3

zF3

zd3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

E2

� (0, 0, 1) ·

0

0

− y

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

E2

� 0, (46)

where F � (F1, F2, F3)
T and F1, F2, and F3 are given by
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F1 �
rx

1 + ky
− d1x − a1x

2
−

a2(1 − (my/(a + y)))xy

b1 + w +(1 − (my/(a + y)))x
,

F2 � A − d2w −
a3wy

b1 + w +(1 − (my/(a + y)))x
,

F3 �
c1a2(1 − (my/(a + y)))xy

b1 + w +(1 − (my/(a + y)))x
+

c2a3wy

b1 + w +(1 − (my/(a + y)))x
− d3y,

Δ2 � W
T

· DFd3

r − d1

a1
, 0, 0; d

[TC]
3􏼠 􏼡V􏼢 􏼣 � (0, 0, 1) ·

z2F1

zx zd3

z2F1

zw zd3

z2F1

zy zd3

z2F2

zx zd3

z2F2

zw zd3

z2F2

zy zd3

z2F3

zx zd3

z2F3

zw zd3

z2F3

zw zd3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

E2

·

v1

v2

v3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� (0, 0, 1) ·

0 0 0

0 0 0

0 0 − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

E2

·

v1

v2

v3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� − v3 � − 1≠ 0,

Δ3 � W
T

· D
2
F

r − d1

a1
, 0, 0; d

[TC]
3􏼠 􏼡(V, V)􏼢 􏼣 � (0, 0, 1) · D

zF1

zx
v1 +

zF1

zw
v2 +

zF1

zy
v3

zF2

zx
v1 +

zF2

zw
v2 +

zF2

zy
v3

zF3

zx
v1 +

zF3

zw
v2 +

zF3

zy
v3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

E2

·

v1

v2

v3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� (0, 0, 1) ·

z2F1

zx2 v
2
1 +

z2F1

zw2 v
2
2 +

z2F1

zy2 v
2
3 + 2

z2F1

zx zw
v1v2 + 2

z2F1

zx zy
v1v3 + 2

z2F1

zw zy
v2v3

z2F2

zx2 v
2
1 +

z2F2

zw2 v
2
2 +

z2F2

zy2 v
2
3 + 2

z2F2

zx zw
v1v2 + 2

z2F2

zx zy
v1v3 + 2

z2F2

zw zy
v2v3

z2F3

zx2 v
2
1 +

z2F3

zw2 v
2
2 +

z2F3

zy2 v
2
3 + 2

z2F3

zx zw
v1v2 + 2

z2F3

zx zy
v1v3 + 2

z2F3

zw zy
v2v3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

E2

�
2a2b1c1 v1 − (m/a)( 􏼁

b1 + r − d1( 􏼁/a1( 􏼁( 􏼁
2 ≠ 0.

(47)

)erefore, by Sotomayor’s theorem [43], system (2)
exhibits a transcritical bifurcation at d3 � d

[TC]
3 around the

axial equilibrium point E2. □

Theorem 12. System (2) undergoes a transcritical bifurca-
tion around E4(0, 􏽢w, 􏽢y) if

d
[TC]
1 �

r

1 + k􏽢y
−

a2[a +(1 − m)􏽢y]􏽢y

b1 + 􏽢y( 􏼁(a + 􏽢y)
,

c2a3 􏽢w􏽢y

b1 + 􏽢w( 􏼁(a + 􏽢y)
<

c2a3 􏽢w􏽢y(a + 􏽢y) b1 + 􏽢w( 􏼁

b1 + 􏽢w( 􏼁(a + 􏽢y)􏼂 􏼃
2 .

(48)
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Proof. Proof is the same as in )eorem 10. □ Theorem 13. System (2) undergoes a transcritical bifurca-
tion around E5((r − d1)/a1, (A/d2), 0) if

d
[TC]
3 �

c1a2 r − d1( 􏼁/a1( 􏼁

b1 + A/d2( 􏼁 + r − d1( 􏼁/a1( 􏼁
+

c2a3 A/d2( 􏼁

b1 + A/d2( 􏼁 + r − d1( 􏼁/a1( 􏼁
. (49)

Proof. Proof is the same as in )eorem 11. □

4.3.2. Hopf Bifurcation around E∗(x∗, w∗, y∗). Let us
consider k as a bifurcation parameter of system (2) where the
characteristic equation at E∗ is

λ3 + A1(k)λ2 + A2(k)λ + A3(k) � 0. (50)

)en, Hopf bifurcation theorem is stated as follows.

Theorem 14 (Hopf bifurcation theorem [44]). If A1(k),
A2(k), and A3(k) are the smooth functions of k in Nε(k[H]),
(ε> 0), k[H] ∈ R for which the characteristic equation (50)
has the following:

(i) A pair of imaginary eigenvalues λ � q1(k) ± iq2(k)

with q1(k) and q2(k) ∈ R so that they become purely
complex at k � k[H] and (dq1/dk)|k�k[H] ≠ 0

(ii) :e other eigenvalue is negative at k � k[H]; then, a
Hopf bifurcation appears around E∗ at k � k[H]

Theorem 15. If E∗(x∗, w∗, y∗) is locally asymptotically
stable, then a Hopf bifurcation is exhibited around
E∗(x∗, w∗, y∗) when k passes through its critical value k[H]

provided A1(k[H])> 0, A3(k[H])> 0, and
A1(k[H])A2(k[H]) � A3(k[H]) (k[H] is a positive root of
equation A1(k)A2(k) − A3(k) � 0).

Proof. At k � k[H], we can write equation (50) as

λ2 + A2􏼐 􏼑 λ + A1( 􏼁 � 0. (51)

)e roots of equation (51) are λ1 � i
���
A2

􏽰
, λ2 � − i

���
A2

􏽰
,

and λ3 � − A1. Also A1, A2, and A3 are the smooth functions
of k. So, the roots of equation (59) have the form
λ1 � p1(k) + ip2(k), λ2 � p1(k) − ip2(k), and λ3 � p3(k)

where pi(k) are real functions of k in an open neighborhood
of k[H] for i � 1, 2, 3. Next, we verify the transversality
condition:

d
dk

Reλi(k)( 􏼁|k�k[H] ≠ 0, i � 1, 2. (52)

Putting λ(k) � p1(k) + ip2(k) in (59), we get

p1(k) + ip2(k)
3

+ A1(k)p1(k) + ip2(k)
2

+ A2(k) p1(k) + ip2(k)( 􏼁 + A3(k) � 0. (53)

Differentiating both sides with respect to k, we have

3 p1(k) + ip2(k)( 􏼁
2 _p1(k) + i _p2(k)( 􏼁 + 2A1(k) p1(k) + ip2(k)( 􏼁 _p1(k) + i _p2(k)( 􏼁

+ _A1(k) p1(k) + ip2(k)( 􏼁
2

+ A2 _p1(k) + i _p2(k)( 􏼁 + _A2(k) p1(k) + ip2(k)( 􏼁 + _A3(k) � 0.
(54)

Comparing real and imaginary parts from both sides, we
obtain

X1 _p1 − X2 _p2 + X3 � 0, (55)

X2 _p1 + X1 _p2 + X4 � 0, (56)

where

X1 � 3 p
2
1 − p

2
2􏼐 􏼑 + 2A1p1 + A2,

X2 � 6p1p2 + 2A1p2,

X3 � _A1 p
2
1 − p

2
2􏼐 􏼑 + _A2p1 + _A3 ≠ _A1 p

2
1 − p

2
2􏼐 􏼑 + _A2p1 + A1

_A2 + A2
_A1,

sinceA3 ≠A1A2 in a deleted neighbour hood of k
[H]

􏽨 􏽩,

(57)
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and X4 � 2 _A1p1p2 + _A2p2.
Multiplying (55) by X1 and (56) by X2 and then adding,

we get

X
2
1 + X

2
2􏼐 􏼑 _p1 + X1X3 + X2X4 � 0⟹ _p1 � −

X1X3 + X2X4

X
2
1 + X

2
2

􏼨 􏼩.

(58)

At k � k[H],

Case 1: p1 � 0, p2 �
���
A2

􏽰
. )en, X1 � − 2A2,

X2 � 2A1
���
A2

􏽰
, X3 ≠A1

_A2, and X4 � _A2
���
A2

􏽰
.

∴X1X3 + X2X4 ≠ 0.
Case 2: p1 � 0, p2 � −

���
A2

􏽰
. )en, X1 � − 2A2,

X2 � − 2A1
���
A2

􏽰
, X3 ≠A1

_A2, and X4 � − _A2
���
A2

􏽰
.

∴X1X3 + X2X4 ≠ 0.

Also, λ3 � − A1(k[H])< 0.
Hence, this theorem is proved by virtue of )eorem

14. □

4.3.3. Hopf Bifurcation around E3(x, 0, y). Let us consider k

as a bifurcation parameter of system (2) where the char-
acteristic equation of E3 is

λ3 + B1(k)λ2 + B2(k)λ + B3(k) � 0, (59)

and then Hopf bifurcation theorem is stated as follows.

Theorem 16 (Hopf bifurcation theorem [44]). If B1(k),
B2(k), and B3(k) are the smooth functions of k in Nε(k∗),
(ε> 0), k∗ ∈ R for which the characteristic equation (59) has
the following:

(i) A pair of imaginary eigenvalues λ � p1′(k) ± ip2′(k)

with p1′(k) and p2′(k) ∈ R so that they become purely
imaginary at k � k∗ and (dp1′/dk)|k�k∗ ≠ 0

(ii) :e other eigenvalue is negative at k � k∗; then aHopf
bifurcation occurs around E3(x, 0, y) at k � k∗

Theorem 17. If E3(x, 0, y) is locally asymptotically stable,
then a Hopf bifurcation appears around subsidy-free equi-
librium E3(x, 0, y) when k passes through its critical value k∗

provided B1(k∗)> 0, B3(k∗)> 0, and
B1(k∗)B2(k∗) � B3(k∗) (k∗ is a positive root of equation
B1(k)B2(k) − B3(k) � 0).

Proof. Proof is the same as in )eorem 15. □

5. Delayed Dynamical System

In biological point of view, many processes, both natural and
man-made, include time-delay. )e study of delay factor
makes our system much more realistic than non-delayed
system. Also, a delay differential equation reveals much
more complicated dynamics than an ordinary differential
equation (for details, see [10–13, 23, 45–49]).

In reality, after sensing the vocal cue, individuals of prey
species take some time for assessing the predation risk. So,
the effect of fear (felt by prey) of predator does not respond
spontaneously on the birth rate of prey population; some
time lag must be needed. In view of this fact, the predator-
prey-subsidy interactions (2) can be modified as follows:

dx

dt
�

rx

1 + ky(t − τ)
− d1x − a1x

2
−

a2(1 − (my/(a + y)))xy

b1 + w +(1 − (my/(a + y)))x
,

dw

dt
� A − d2w −

a3wy

b1 + w +(1 − (my/(a + y)))x
,

dy

dt
�

c1a2(1 − (my/(a + y)))xy

b1 + w +(1 − (my/(a + y)))x
+

c2a3wy

b1 + w +(1 − (my/(a + y)))x
− d3y.

(60)

)e initial conditions are assumed as (i � 1, 2, 3)

ψi(ϕ)> 0,ϕ ∈ [− τ, 0], where x(ϕ) � ψ1(ϕ), w(ϕ) � ψ2(ϕ), y(ϕ) � ψ3(ϕ),

For biological feasibility: ψ1(0)> 0, ψ2(0)> 0,ψ3(0)> 0.
(60a)

Let us linearize (60) using the following transformations:

X � x − x,

W � w − 0,

Y � y − y.

(61)

It leads to

dU

dt
� B1′U(t) + B2′U(t − τ), (62)

where U � [X, W, Y]T,
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B1′ �

b11 b12 b13′

b21 b22 b23

b31 b32 b33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B2′ �

0 0 b
′′
13

0 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b11 � x − a1 +
a2y(a +(1 − m)y)

2

b1(a + y) +[a +(1 − m)y]x􏼈 􏼉
2

⎧⎨

⎩

⎫⎬

⎭,

b12 �
a2xy[a +(1 − m)y](a + y)

b1(a + y) +[a +(1 − m)y]x􏼈 􏼉
2,

b13′ � x −
a2[a + 2(1 − m)y]

b1(a + y) +[a +(1 − m)y]x
+

a2y[a +(1 − m)y] b1 +(1 − m)x􏼂 􏼃

b1(a + y) +[a +(1 − m)y]x􏼈 􏼉
2

⎧⎨

⎩

⎫⎬

⎭,

b21 � 0,

b22 � − d2 −
a3y

b1 +(1 − (my/(a + y)))x
,

b23 � 0,

b31 � y
c1a2[a +(1 − m)y]

b1(a + y) +[a +(1 − m)y]x
−

c1a2[a +(1 − m)y]
2
x

b1(a + y) +[a +(1 − m)y]x􏼈 􏼉
2

⎧⎨

⎩

⎫⎬

⎭,

b32 �
c2a3y(a + y)

b1 a + y
∗

( 􏼁 +[a +(1 − m)y]x
,

b33 � y
c1a2(1 − m)x

b1(a + y) +[a +(1 − m)y]x
−

c1a2[a +(1 − m)y]x b1 +(1 − m)x􏼂 􏼃

b1(a + y) +[a +(1 − m)y]x􏼈 􏼉
2

⎧⎨

⎩

⎫⎬

⎭,

b13″ � −
rkx

(1 + ky)
2.

(63)

)e characteristic equation corresponding to (62) is

λ3 + L1λ
2

+ L2λ + L3 + M1λ + M2( 􏼁e
− λτ

� 0, (64)

where

L1 � − b11 + b22 + b33( 􏼁,

L2 � b22b33 + b11b33 − b13′ b31 + b11b22,

L3 � − b11b22b33 − b13′ b22b31􏼂 􏼃,

M1 � − b13″ b31,

M2 � b13″ b31b22.

(65)

If τ ≠ 0, E3 of system (60) is LAS provided equation (64)
has no purely imaginary roots and it is also LAS for τ � 0.
Further, it has been shown that stability nature of E3
switches at τ � τ′∗. Already, it has been derived that E3 is
LAS provided B1 > 0, B3 > 0, and B1B2 >B3 for τ � 0 (non-
delayed system). Let us discuss if the real part of the roots of
equation (64) gradually increases to reach zero and even-
tually turns to a positive value when τ increases.

Substituting λ � q1′ + iq2′ in equation (64), we have

q1′ + iq2′( 􏼁
3

+ L1 q1′ + iq2′( 􏼁
2

+ L2 q1′ + iq2′( 􏼁 + L3

+ M1 q1′ + iq2′( 􏼁 + M2( 􏼁e
− q1′τ cos q2′τ( 􏼁 − i sin q2′τ( 􏼁( 􏼁 � 0.

(66)
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Equating respective real and complex parts from both
sides, we obtain

q′
3
1 − 3q1′q

′2
2 + L1 q′

2
1 − q′

2
2􏼐 􏼑 + L2q1′ + L3 + M1q1′e

− q1′τ cos q2′τ( 􏼁 + M2e
− q1′τ cos q2′τ( 􏼁 + M1q2′e

− q1′τ sin q2′τ( 􏼁 � 0, (67)

3q′
2
1 q2′ − q′

3
2 + 2L1q1′q2′ + L2q2′ + M1q2′e

− q1′τ cos q2′τ( 􏼁 − M1q1′e
− q1′τ sin q2′τ( 􏼁 − M2e

− q1′τ sin q2′τ( 􏼁 � 0. (68)

Now, let us examine whether equation (64) has purely
imaginary roots or not. For this purpose, let us take q1′ � 0.
)en, equations (67) and (68) become

M1q2′ sin q2′τ( 􏼁 + M2 cos q2′τ( 􏼁 � L1q
′2
2 − L3, (69)

M1q2′ cos q2′τ( 􏼁 − M2 sin q2′τ( 􏼁 � q
′3
2 − L2q2′. (70)

Eliminating τ from (69) and (70) (squaring and adding),
we get

q
′6
2 + q
′4
2 L

2
1 − 2L2􏼐 􏼑 + q

′2
2 L

2
2 − 2L1L3 − M

2
1􏼐 􏼑 + L

2
3 − M

2
2􏼐 􏼑 � 0.

(71)

Putting q′22 � β, we have

L(β) ≡ β3 + L
2
1 − 2L2􏼐 􏼑β2 + L

2
2 − 2L1L3 − M

2
1􏼐 􏼑β + L

2
3 − M

2
2􏼐 􏼑 � 0. (72)

)is is a cubic equation of β. It is noticed that
L(∞) �∞. So, equation (72) has exactly one positive real
root if L(0)< 0, i.e., if L2

3 <M2
2.

Let β � β+ be a positive root of (77); then, q2′ �
��
β+

􏽰
.

Lemma 1 (see [50]). Consider the exponential polynomial:

P(λ) ≡ P λ, τ1, τ2, . . . , τm( 􏼁 ≡ λn
+ p

(0)
1 λn− 1

+ · · · + p
(0)
n− 1λ + p

(0)
n + p

(1)
1 λn− 1

+ · · · + p
(1)
n− 1λ + p

(1)
n􏽨 􏽩e

− λτ1 + · · ·

+ p
(m)
1 λn− 1

+ · · · + p
(m)
n− 1λ + p

(m)
n􏽨 􏽩e

− λτm ,
(73)

where τi ≥ 0(i � 1, 2, . . . , m) and p
(i)
j (i � 0, 1, . . . , m; j �

1, 2, . . . , n) are constants. As (τ1, τ2, . . . , τm) vary, the sum of
the orders of zero of P(λ) in the open half plane can change
only if a zero appears on or crosses the imaginary axis.

Now, let us discuss the existence of Hopf bifurcation
around E3 with τ as a bifurcation parameter.

Theorem 18. Suppose E3 exists and is locally asymptotically
stable for system (2) when τ � 0. If L2

3 <M2
2, then there exists a

critical value τ′∗ such that E3 of system (60) is LAS when
τ ∈ [0, τ′∗) and unstable when τ > τ′∗, where

τ′(j)
+ �

cos− 1
M2 L1β+ − L3( 􏼁 + M1 β2+ − L2β+􏼐 􏼑􏼐 􏼑/ M

2
2 + M

2
1β+􏼐 􏼑􏼐 􏼑

��
β+

􏽰 +
2πj

��
β+

􏽰 , j � 0, 1, 2, 3, . . . , (74)

and τ′∗ � τ′(0)
+ (minimum value). Also, system (60) exhibits

Hopf bifurcation around E3 at τ � τ′∗ provided
K′M′ − L′N′ ≠ 0, where
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K′ � − 3β+ + L2 + M1 cos
��

β+

􏽱

τ′∗􏼒 􏼓 − M2τ′
∗ cos

��

β+

􏽱

τ′∗􏼒 􏼓 − M1

��

β+

􏽱

τ′∗ sin
��

β+

􏽱

τ′∗􏼒 􏼓􏼚 􏼛,

L′ � − 2L1

��

β+

􏽱

+ M1 sin
��

β+

􏽱

τ′∗􏼒 􏼓 − M2τ′
∗ sin

��

β+

􏽱

τ′∗􏼒 􏼓 + M1

��

β+

􏽱

τ′∗ cos
��

β+

􏽱

τ′∗􏼒 􏼓􏼚 􏼛,

M′ � M2

��

β+

􏽱

sin
��

β+

􏽱

τ′∗􏼒 􏼓 − M1β+cos
��

β+

􏽱

τ′∗􏼒 􏼓􏼚 􏼛,

N′ � M2

��

β+

􏽱

cos
��

β+

􏽱

τ′∗􏼒 􏼓 + M1β+sin
��

β+

􏽱

τ′∗􏼒 􏼓􏼚 􏼛.

(75)

Proof. If L2
3 <M2

2, then (72) has exactly one positive root β+,
i.e., from (69) and (70), τ′(j)

+ , j � 0, 1, 2, . . ., are obtained as
functions of β+:

τ′(j)
+ �

cos− 1
M2 L1β+ − L3( 􏼁 + M1 β2+ − L2β+􏼐 􏼑􏼐 􏼑/ M

2
2 + M

2
1β+􏼐 􏼑􏼐 􏼑

��
β+

􏽰 +
2πj

��
β+

􏽰 , j � 0, 1, 2, 3, . . . . (76)

If E3 is locally asymptotically stable, the stability be-
haviour of E3 will remain unaltered for τ < τ′∗ (using Butler’s
Lemma [51]).

To check the transversality condition,
[(d/dτ)Re λ(τ)]

τ�τ′
∗ ≠ 0, let us differentiate (67) and (68)

with respect to τ and set q1′ � 0 and τ � τ′∗. )e following
equations are obtained:

K′
d
dτ

[Re λ(τ){ }]􏼢 􏼣
τ�τ′
∗

+ L′
d
dτ

[Im λ(τ){ }]􏼢 􏼣
τ�τ′
∗

� M′,

(77)

− L′
d
dτ

[Re λ(τ){ }]􏼢 􏼣
τ�τ′
∗

+ K′
d
dτ

[Im λ(τ){ }]􏼢 􏼣
τ�τ′
∗

� N′,

(78)

where

K′ � − 3β+ + L2 + M1 cos
��

β+

􏽱

τ′∗􏼒 􏼓 − M2τ′
∗ cos

��

β+

􏽱

τ′∗􏼒 􏼓 − M1

��

β+

􏽱

τ′∗ sin
��

β+

􏽱

τ′∗􏼒 􏼓􏼚 􏼛,

L′ � − 2L1

��

β+

􏽱

+ M1 sin
��

β+

􏽱

τ′∗􏼒 􏼓 − M2τ′
∗ sin

��

β+

􏽱

τ′∗􏼒 􏼓 + M1

��

β+

􏽱

τ′∗ cos
��

β+

􏽱

τ′∗􏼒 􏼓􏼚 􏼛,

M′ � M2

��

β+

􏽱

sin
��

β+

􏽱

τ′∗􏼒 􏼓 − M1β+cos
��

β+

􏽱

τ′∗􏼒 􏼓􏼚 􏼛,

N′ � M2

��

β+

􏽱

cos
��

β+

􏽱

τ′∗􏼒 􏼓 + M1β+sin
��

β+

􏽱

τ′∗􏼒 􏼓􏼚 􏼛.

(79)

Solving (77) and (78),

d[Re λ(τ){ }]

dτ
􏼢 􏼣

τ�τ′
∗

�
K′M′ − L′N′

K′
2

+ L′
2􏼢 􏼣. (80)

Now, we have d[Re λ(τ){ }]/dττ�τ′
∗ ≠ 0, if

K′M′ − L′N′ ≠ 0. Hence, the transversality condition is

satisfied and a Hopf bifurcation occurs around E∗ when τ
passes through its critical value τ′∗. □

Now, linearize system (60) using the transformations
X � x − x∗, W � w − w∗, and Y � y − y∗:

dU

dt
� A1′U(t) + A2′U(t − τ), (81)
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where U � [X, W, Y]T,

A1′ �

a11 a12 a13′

a21 a22 a23

a31 a32 a33

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A2′ �

0 0 a13″

0 0 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

a11 � x
∗

− a1 +
a2 a +(1 − m)y

∗
( 􏼁

2
y
∗

b1 + w
∗

( 􏼁 a + y
∗

( 􏼁 + a +(1 − m)y
∗

( 􏼁x
∗

􏼂 􏼃
2

⎡⎣ ⎤⎦,

a12 �
a2 a +(1 − m)y

∗
( 􏼁 a + y

∗
( 􏼁x

∗
y
∗

b1 + w
∗

( 􏼁 a + y
∗

( 􏼁 + a +(1 − m)y
∗

( 􏼁x
∗

􏼂 􏼃
2,

a13′ � −
a2 a + 2(1 − m)y

∗
( 􏼁x

∗

b1 + w
∗

( 􏼁 a + y
∗

( 􏼁 + a +(1 − m)y
∗

( 􏼁x
∗ +

a2 a +(1 − m)y
∗

( 􏼁x
∗
y
∗

b1 + w
∗

+(1 − m)x
∗

( 􏼁

b1 + w
∗

( 􏼁 a + y
∗

( 􏼁 + a +(1 − m)y
∗

( 􏼁x
∗

􏼂 􏼃
2

⎡⎣ ⎤⎦,

a21 �
a3 a + y

∗
( 􏼁 a +(1 − m)y

∗
( 􏼁w

∗
y
∗

b1 + w
∗

( 􏼁 a + y
∗

( 􏼁 + a +(1 − m)y
∗

( 􏼁x
∗

􏼂 􏼃
2,

a22 � − d2 −
a3 a + y

∗
( 􏼁y

∗

b1 + w
∗

( 􏼁 a + y
∗

( 􏼁 + a +(1 − m)y
∗

( 􏼁x
∗ +

a3 a + y
∗

( 􏼁
2
w
∗
y
∗

b1 + w
∗

( 􏼁 a + y
∗

( 􏼁 + a +(1 − m)y
∗

( 􏼁x
∗

􏼂 􏼃
2,

a23 � −
a3 a + 2y

∗
( 􏼁w

∗

b1 + w
∗

( 􏼁 a + y
∗

( 􏼁 + a +(1 − m)y
∗

( 􏼁x
∗ +

a3 a + y
∗

( 􏼁 b1 + w
∗

+(1 − m)x
∗

( 􏼁

b1 + w
∗

( 􏼁 a + y
∗

( 􏼁 + a +(1 − m)y
∗

( 􏼁x
∗

􏼂 􏼃
2,

a31 �
c1a2 a +(1 − m)y

∗
( 􏼁y

∗

b1 + w
∗

( 􏼁 a + y
∗

( 􏼁 + a +(1 − m)y
∗

( 􏼁x
∗ −

c1a2 a +(1 − m)y
∗

( 􏼁
2
x
∗
y
∗

b1 + w
∗

( 􏼁 a + y
∗

( 􏼁 + a +(1 − m)y
∗

( 􏼁x
∗

􏼂 􏼃
2

−
c2a3w

∗
y
∗

a + y
∗

( 􏼁 a +(1 − m)y
∗

( 􏼁

b1 + w
∗

( 􏼁 a + y
∗

( 􏼁 + a +(1 − m)y
∗

( 􏼁x
∗

􏼂 􏼃
2

a32 � −
c1a2 a +(1 − m)y

∗
( 􏼁x

∗
y
∗

a + y
∗

( 􏼁

b1 + w
∗

( 􏼁 a + y
∗

( 􏼁 + a +(1 − m)y
∗

( 􏼁x
∗

􏼂 􏼃
2 +

c2a3 a + y
∗

( 􏼁y
∗

b1 + w
∗

( 􏼁 a + y
∗

( 􏼁 + a +(1 − m)y
∗

( 􏼁x
∗

−
c2a3w

∗
y
∗

a + y
∗

( 􏼁
2

b1 + w
∗

( 􏼁 a + y
∗

( 􏼁 + a +(1 − m)y
∗

( 􏼁x
∗

􏼂 􏼃
2,

a33 �
c1a2(1 − m)x

∗
y
∗

+ c2a3w
∗
y
∗

b1 + w
∗

( 􏼁 a + y
∗

( 􏼁 + a +(1 − m)y
∗

( 􏼁x
∗ −

c1a2 a +(1 − m)y
∗

( 􏼁x
∗
y
∗

+ c2a3w
∗
y
∗

a + y
∗

( 􏼁􏼂 􏼃 b1 + w
∗

+(1 − m)x
∗

( 􏼁

b1 + w
∗

( 􏼁 a + y
∗

( 􏼁 + a +(1 − m)y
∗

( 􏼁x
∗

􏼂 􏼃
2 ,

a
′′
13 � −

rkx
∗

1 + ky
∗

( 􏼁
2.

(82)
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)e characteristic equation corresponding to (81) is

λ3 + R1λ
2

+ R2λ + R3 + S1λ + S2( 􏼁e
− λτ

� 0, (83)

where

R1 � − a11 + a22 + a33( 􏼁,

R2 � a22a33 − a23a32 + a11a33 − a13′a31 + a11a22 − a12a21,

R3 � − a11 a22a33 − a23a32( 􏼁 + a12 a23a31 − a21a33( 􏼁 + a13′ a21a32 − a22a31( 􏼁􏼂 􏼃,

S1 � − a13″ a31,

S2 � − a13″ a21a32 − a31a22( 􏼁.

(84)

If τ ≠ 0, E∗ of system (60) is LAS provided equation (83)
has no purely imaginary roots and it is LAS for τ � 0.
Furthermore, it has to be noted that changes of stability
occur at τ � τ∗. Already, it has been discussed that E∗ is LAS
when τ � 0 provided A1 > 0, A3 > 0, and A1A2 >A3. Here,
equation (83) is a transcendental equation, so it contains

infinitely many eigenvalues. In this situation, we cannot
apply the Routh–Hurwitz criteria to determine the stability
of system (60). To understand the stability behaviour, our
necessity is to check the sign of the real parts of the ei-
genvalues of equation (83).

Now, putting λ � q1 + iq2 in equation (83), we have

q1 + iq2( 􏼁
3

+ R1 q1 + iq2( 􏼁
2

+ R2 q1 + iq2( 􏼁 + R3 + S1 q1 + iq2( 􏼁 + S2( 􏼁e
− q1τ cos q2τ( 􏼁 − i sin q2τ( 􏼁( 􏼁 � 0. (85)

Equating respective real and complex parts from both
sides, we get

q
3
1 − 3q1q

2
2 + R1 q

2
1 − q

2
2􏼐 􏼑 + R2q1 + R3 + S1q1e

− q1τ cos q2τ( 􏼁 + S2e
− q1τ cos q2τ( 􏼁 + S1q2e

− q1τ sin q2τ( 􏼁 � 0, (86)

3q
2
1q2 − q

3
2 + 2R1q1q2 + R2q2 + S1q2e

− q1τ cos q2τ( 􏼁 − S1q1e
− q1τ sin q2τ( 􏼁 − S2e

− q1τ sin q2τ( 􏼁 � 0. (87)

To check whether (83) has purely imaginary roots or not,
set q1 � 0; then, (86) and (87) become

S1q2 sin q2τ( 􏼁 + S2 cos q2τ( 􏼁 � R1q
2
2 − R3, (88)

S1q2 cos q2τ( 􏼁 − S2 sin q2τ( 􏼁 � q
3
2 − R2q2. (89)

Eliminating τ from (88) and (89) (squaring and adding),
we get

q
6
2 + q

4
2 R

2
1 − 2R2􏼐 􏼑 + q

2
2 R

2
2 − 2R1R3 − S

2
1􏼐 􏼑 + R

2
3 − S

2
2􏼐 􏼑 � 0.

(90)

Putting q22 � σ, we have

R′(σ) ≡ σ3 + R
2
1 − 2R2􏼐 􏼑σ2 + R

2
2 − 2R1R3 − S

2
1􏼐 􏼑σ + R

2
3 − S

2
2􏼐 􏼑 � 0.

(91)

)is is a cubic equation of σ. It is noted that R′(∞) �∞.
So, equation (91) has exactly one positive root if R′(0)< 0,
i.e., if R2

3 < S22.
Let σ � σ+ be a positive root of (91); then, q2 �

��σ+

√ .
Let us study the existence of Hopf bifurcation around E∗

with τ as bifurcation parameter.

Theorem 19. Suppose E∗ exists and is locally asymptotically
stable for system (2) when τ � 0. If R2

3 < S22, then there exists a
critical value τ∗ such that E∗ of system (60) is LAS when
τ ∈ [0, τ∗) and unstable when τ > τ∗, where

τ(j)
+ �

cos− 1
S2 R1σ+ − R3( 􏼁 + S1 σ2+ − R2σ+􏼐 􏼑􏼐 􏼑/ S

2
2 + S

2
1σ+􏼐 􏼑􏼐 􏼑

��σ+

√ +
2πj

��σ+

√ , j � 0, 1, 2, 3, . . . , (92)

and τ∗ � τ(0)
+ (minimum value). Also, a supercritical Hopf

bifurcation is exhibited around E∗ at τ � τ∗ provided
K″M″ − L″N″ ≠ 0, where
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Figure 1: Stable behaviour of E0(0, 0, 0) with respect to time t corresponding to the data set {r � 5.5, d1 � 6.5, d2 � 4, k � 0.2, d3 � 5, a1 � 2,
a2 � 0.3, a3 � 0.25, b1 � 1.5, c1 � 0.7, c2 � 0.5, A � 0, a � 1.2, m � 0.01}.
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Figure 2: Stable behaviour of E1(0, 0.5, 0) with respect to time t taking the parameters as {r � 5.5, d1 � 6.5, d2 � 4, k � 0.2, d3 � 5, a1 � 2,
a2 � 0.3, a3 � 0.25, b1 � 1.5, c1 � 0.7, c2 � 0.5, A � 2, a � 1.2, m � 0.01}.
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Figure 3: Stable nature of E2(8, 0, 0) with respect to time t regarding the parameters as {r � 5.5, d1 � 1.5, d2 � 0.52, k � 1.9, d3 � 2, a1 � 0.5,
a2 � 0.3, a3 � 0.25, b1 � 1.5, c1 � 0.7, c2 � 0.5, A � 0, a � 1.2, m � 0.01}.
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Figure 4: (a) Stable nature of E3(1.20053, 0, 6.49267) with t and (b) stable phase portrait of E3(1.20053, 0, 6.49267) when k � 0.2> k∗

(threshold value) � 0.019 and other are taken as {r � 5.5, d1 � 0.4, d2 � 0.3, d3 � 0.2, a1 � 0.6, a2 � 0.98, a3 � 0.8, b1 � 2.5, c1 � 0.85,
c2 � 0.7, A � 0, a � 1.1, m � 0.4}.
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Figure 5: (a) Oscillatory behaviour of E3 with time t and (b) phase diagram (isolated closed orbit) when k � 0.01< k∗ � 0.019 and all other
parameters are fixed as in Figure 4.
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Figure 6: Bifurcation diagrams for the Hopf bifurcation around E3(1.20053, 0, 6.49267) regarding k as bifurcation parameter and others are
the same as in Figure 4. (a) Bifurcation diagram of x. (b) Bifurcation diagram of y.
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Figure 7: Stability nature of E4(0, 1.3889, 5.5417) with time t regarding the parameters as {r � 5.5, d1 � 6.5, d2 � 0.3, k � 0.2, d3 � 0.2,
a1 � 0.6, a2 � 0.98, a3 � 0.8, b1 � 2.5, c1 � 0.85, c2 � 0.7, A � 2, a � 1.1, m � 0.01}.
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Figure 8: Stability nature of E5(8.3333, 6.6667, 0) with time t regarding the parameters as {r � 5.5, d1 � 0.5, d2 � 0.3, k � 0.2, d3 � 2.2,
a1 � 0.6, a2 � 0.98, a3 � 0.8, b1 � 2.5, c1 � 0.85, c2 � 0.7, A � 2, a � 1.1, m � 0.01}.
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Figure 9: (a) Stable nature of E∗(0.385717, 0.950363, 8.34509) with time t and (b) stable phase diagram of E∗(0.385717, 0.950363, 8.34509)

when k � 0.2> k[H] � 0.025 and others are chosen as {r � 5.5, d1 � 0.4, d2 � 0.3, d3 � 0.2, a1 � 0.6, a2 � 0.98, a3 � 0.8, b1 � 2.5, c1 � 0.85,
c2 � 0.7, A � 2, a � 1.1, m � 0.4}.
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√
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√
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��
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√
τ∗( 􏼁􏼈 􏼉.

(93)

Proof. Proof is similar to that in )eorem 18. □
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Figure 10: Nature of steady state E∗ when subsidy input rate A varies from 1 to 10 and other parameters are fixed as in Figure 9.
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Figure 11: (a), (b) Oscillatory behaviour of E∗ with time and (c) isolated closed orbit around E∗ when k � 0.02< k[H] � 0.025 and all others
are fixed as in Figure 9.
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Figure 12: Bifurcation diagrams for the Hopf bifurcation around E∗(0.385717, 0.950363, 8.34509) regarding k as bifurcation parameter and
others are the same as in Figure 9. (a) Bifurcation diagram of x. (b) Bifurcation diagram of w. (c) Bifurcation diagram of y.
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Figure 13: Bifurcation diagram with respect to subsidy input rate A when k � 0 and the remaining parameters are fixed as in Figure 9.
(a) Bifurcation diagram of x. (b) Bifurcation diagram of w. (c) Bifurcation diagram of y.
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Theorem 20. Suppose interior (coexistence) equilibrium
point E∗ exists and is locally asymptotically stable for system
(2) when τ � 0. Let equation (91) have exactly two positive

roots σi, i � 1, 2(σ1 > σ2) when R2
3 > S22 and

R2
2 − 2R1R3 − S21 < 0 irrespective of sign of R2

1 − 2R2. More-
over, let

τi
j �

cos− 1
S2 R1σi − R3( 􏼁 + S1 σ2i − R2σi􏼐 􏼑􏼐 􏼑/ S

2
2 + S

2
1σi􏼐 􏼑􏼐 􏼑

��σi

√ +
2πj

��σi

√ , i � 1, 2; j � 0, 1, 2, 3 . . . ,

τ+
k � min τi

k: i � 1, 2􏽮 􏽯, τ−
k � max τi

k: i � 1, 2􏽮 􏽯, k � 0, 1, 2, 3 . . . ,

(94)

then there is a positive integer k such that

0< τ+
0 < τ

−
0 < τ

+
1 < τ

−
1 < τ

+
2 < · · · < τ−

k− 1 < τ
+
k , (95)

and there are k switches from stability to instability to sta-
bility; that is, when

τ ∈ 0, τ+
0􏼂 􏼁, τ−

0 , τ+
1( 􏼁, τ−

1 , τ+
2( 􏼁, . . . , τ−

k− 1, τ
+
k( 􏼁, (96)

then E∗ is locally asymptotically stable and when

τ ∈ τ+
0 , τ−

0( 􏼁, τ+
1 , τ−

1( 􏼁, τ+
2 , τ−

2( 􏼁, . . . , τ+
k− 1, τ

−
k− 1( 􏼁, τ > τ+

k ,

(97)
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Figure 14: Impact of m on the nature of steady states E3 and E∗ when other parameters are fixed as in Figure 9. (a) Nature of steady state E3
(A� 0). (b) Nature of steady state E∗ (A ≠ 0).
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Figure 15: Impact of m on the predator’s growth for different values of k when others are fixed as in Figure 9. ((i) red color: k � 0.2, (ii) blue
color: k � 0.5, and (iii) green color: k � 0.8). (a) Nature at E3 (A� 0). (b) Nature at E∗ (A ≠ 0).
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Figure 16: Bifurcation diagram around E3 with respect to coefficient of refuge parameter m when k � 0 and the remaining parameters are
fixed as in Figure 4. (a) Bifurcation diagram of x. (b) Bifurcation diagram of y.
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Figure 17: Bifurcation diagram around E∗ when k � 0 and the remaining parameters are fixed as in Figure 9. (a) Bifurcation diagram of x.
(b) Bifurcation diagram of w. (c) Bifurcation diagram of y.
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then E∗ is unstable. Further, at τ � τ ±k , k � 0, 1, 2, . . ., system
(60) experiences Hopf bifurcation provided

P
+
kR

+
k − Q

+
k S

+
k ≠ 0, for k � 0, 1, 2, . . . ,

P
−
kR

−
k − Q

−
k S

−
k ≠ 0, for k � 0, 1, 2, . . . ,

(98)

where
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Proof. Proof is similar to that in )eorem 18. □
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Figure 18: Transcritical bifurcation diagram around E2(8.0, 0, 0) considering d3 as bifurcation parameter and others parameters are the
same as in Figure 3. Here d[TC]

3 � 0.1768.
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Figure 21: (a) Stable nature with time and (b) stable spiral of E3(1.20053, 0, 6.49267) when τ � 2< τ′∗ � 2.9272 corresponding to the data
set of Figure 4.
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Figure 22: (a, b) Oscillatory nature of x, y, respectively, and (c) stable limit cycle around E3(1.20053, 0, 6.49267) when τ � 3.5> τ′∗ �

2.9272 corresponding to the data set of Figure 4. (a) Time series of prey. (b) Time series of predator. (c) Phase diagram.
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6. Numerical Computations

Here, we have illustrated numerical simulations to verify the
analytical findings of the proposed system (2). We select a
parameter set: {r � 5.5, d1 � 6.5, d2 � 4, k � 0.2, d3 � 5,
a1 � 2, a2 � 0.3, a3 � 0.25, b1 � 1.5, c1 � 0.7, c2 � 0.5, A � 0,
a � 1.2, m � 0.01}. Under this set of parametric values, the
stable nature of E0(0, 0, 0) is shown in Figure 1. If we take
subsidy input rate A � 2 and other parametric values are
chosen from the data set of Figure 1, then the subsidy only

equilibrium E1(0, (A/d2), 0) ≡ E1(0, 0.5, 0) exists and stable
nature of E1(0, 0.5, 0) with time t is depicted in Figure 2.
Now, we choose another parameter set: {r � 5.5, d1 � 1.5,
d2 � 0.52, k � 1.9, d3 � 2, a1 � 0.5, a2 � 0.3, a3 � 0.25,
b1 � 1.5, c1 � 0.7, c2 � 0.5, A � 0, a � 1.2, m � 0.01}. Under
this set of parametric values, the prey only equilibrium
E2((r − d1)/a1, 0, 0) ≡ E2(8, 0, 0) exists and stable behaviour
of E2(8, 0, 0) is presented in Figure 3. Let us choose the
parameters as follows:

r � 5.5, d1 � 0.4, d2 � 0.3, k � 0.2, d3 � 0.2, a1 � 0.6, a2 � 0.98, a3 � 0.8, b1 � 2.5, c1 � 0.85, c2 � 0.7, a � 1.1, m � 0.4􏼈 􏼉.

(100)

If we take subsidy input rate A � 0 and other parameters
are taken from set (100), then subsidy-free equilibrium point
E3(x, 0, y) ≡ E3(1.20053, 0, 6.49267) exists and is locally
asymptotically stable. Stable time series and stable phase
diagram are represented in Figure 4. In the same manner, if
we change the value of the parameter k(� 0.01) and others
are the same as in the data set of Figure 4, then it is observed
that E3(1.20053, 0, 6.49267) is unstable accompanied with a
limit cycle (see Figure 5). From Figures 4 and 5, it can be
easily noted that there must exist a threshold value of k, say
k∗ � 0.019 for which unstable behaviour of E3 changes to
stable spiral. Since the vector fields for k< k∗ and k> k∗ are
qualitatively different, a Hopf bifurcation is created around
E3 taking k as bifurcation parameter (see Figure 6). For the
set of parameter values {r � 5.5, d1 � 6.5, d2 � 0.3, k � 0.2,
d3 � 0.2, a1 � 0.6, a2 � 0.98, a3 � 0.8, b1 � 2.5, c1 � 0.85,
c2 � 0.7, A � 2, a � 1.1, m � 0.01}, prey free equilibrium
point E4(0, 􏽢w, 􏽢y) ≡ E4(0, 1.3889, 5.5417) exists and is stable
(see Figure 7). Next, let us take a different set of parameters
of system (2): {r � 5.5, d1 � 0.5, d2 � 0.3, k � 0.2, d3 � 2.2,

a1 � 0.6, a2 � 0.98, a3 � 0.8, b1 � 2.5, c1 � 0.85, c2 � 0.7,
A � 2, a � 1.1, m � 0.01}. )en, predator free equilibrium
point E5((r − d1)/a1, (A/d2), 0) ≡ E5(8.3333, 6.6667, 0) is
locally asymptotically stable. )e stable behaviour with time
t is shown in Figure 8.

If we take subsidy input rate A � 2 and others are fixed as
in the data set of Figure 4, then
E∗(x∗, w∗, y∗) ≡ E∗(0.385717, 0.950363, 8.34509) exists
and is locally asymptotically stable. Figure 9 depicts the
stable behaviour of E∗. Comparing Figures 4 and 9, it is
observed that subsidy input rate A enhances the value of y

component of E∗ and decreases the value of x component of
E∗. Also, from Figure 10, it is noticed that the prey pop-
ulation is leading towards extinction and the predator
population has enormous growth (due to huge supply of
food source) at high subsidy input rate (when A ∈ (2, 10]) in
the presence of fear felt by prey population. So, it can be
concluded that it is not possible to control prey population
from extinction in presence of nonlinear prey refuge because
they cannot get enough time to protect themselves from
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Figure 23: Supercritical Hopf bifurcation diagram around E3(1.20053, 0, 6.49267) considering τ as bifurcation parameter and other
parameters are chosen from the data set of Figure 4. (a) Bifurcation diagram of prey. (b) Bifurcation diagram of predator.
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Figure 24: (a) Stable behaviour with time and (b) stable trajectory of E∗(0.385717, 0.950363, 8.34509) when τ � 2.5 ∈ [0, τ+
0 � 4.0652)

corresponding to the data set of Figure 9.
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Figure 25: (a) Stable nature with time and (b) stable phase portrait of E∗(0.385717, 0.950363, 8.34509) when τ � 14.5 ∈ (τ−
0 � 10.3836, τ+

1 �

22.7845) corresponding to the data set of Figure 9.
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Figure 26: (a) Stable behaviour with time and (b) stable trajectory of E∗(0.385717, 0.950363, 8.34509) when τ � 39 ∈ (τ−
1 � 37.7710, τ+

2 �

41.5037) corresponding to the data set of Figure 9.
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predation risk. After extinction of prey species, predator can
easily survive with the help of resource subsidy. )us, the
parameter A has great importance in the proposed pop-
ulation dynamics.

Moreover, Figure 11 represents the unstable nature of E∗

when k � 0.02 and other parametric values are the same as in
Figure 9. So, the parameter k has an interesting nature
because there exists a threshold value k[H] � 0.025 of k for
which unstable nature (limit cycle) of E∗ switches to stable
behaviour (stable spiral) when k passes through its critical
value k[H]; i.e., the vector fields for k> k[H] and k< k[H] are
topologically different. Hence, a Hopf bifurcation occurs
around E∗ and Figure 12 depicts the corresponding bifur-
cation diagram taking k as bifurcation parameter. Also, it has
to be noted from Figure 13 that, in the absence of fear effect,
the oscillatory behaviour of E∗ changes to stable nature
when subsidy input rate A crosses its critical value A∗ � 7.9
(approximately) and since predator population has huge
growth rate at very large value of subsidy input rate A, the
prey population cannot persist in ecosystem in presence
nonlinear prey refuge. )is phenomenon is very interesting
because the prey refuge cannot control the prey population

from extinction due to enormous growth of predator when
subsidy input rate is very high. In this manner, system (2) is
not persistent.

Further, Figure 14 depicts that the nature of steady states
E3 and E∗ when m ∈ (0, 1). Here, the predator population
cannot go extinct for large value of coefficient of prey refuge
parameter. Also, Figure 15 shows the changes of predator’s
growth at the steady states E3 and E∗ for three different fear
levels k when m varies from 0 to 1. Here, also the predator
can persist for large m. From here, it may be concluded that
system (2) is always persistent for small subsidy input rate in
the presence of nonlinear prey refuge function. Again,
Figures 16 and 17, respectively, show that, in the absence of
fear effect (k � 0), the equilibria E3 and E∗ are approaching
towards stable state by excluding the existence of oscillatory
behaviour taking m as the bifurcating parameter. In this
manner, predator population also survives in ecosystem for
large coefficient of prey refuge parameter m.

A “transcritical bifurcation” (BP) occurs at d
[TC]
1 � 5.5

around E1. At this point, exactly one eigenvalue of the Ja-
cobian matrix is zero and others have negative real parts.
Bifurcation diagram 32 depicts that when d1 <d

[TC]
1 , then E1
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Figure 27: (a, b, c) Oscillatory nature of prey, subsidy, and predator, respectively, with time and (d) stable limit cycle around
E∗(0.385717, 0.950363, 8.34509) when τ � 5 ∈ (τ+

0 � 4.0652, τ−
0 � 10.3836) corresponding to the data set of Figure 9. (a) Oscillation of prey.

(b). Oscillation of subsidy. (c) Oscillation of predator. (d) Phase portrait (closed orbit).
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is unstable, and when d1 > d
[TC]
1 , then E1 is stable. Also,

Figure 18 exhibits that when d3 <d
[TC]
3 � 0.1768, then E2 is

unstable, and when d3 >d[TC]
3 � 0.1768, then E2 is stable. So,

a transcritical bifurcation is exhibited at d[TC]
3 � 0.1768

around E2. Similarly, Figures 19 and 20 depict the tran-
scritical bifurcation diagrams around equilibrium E4 and E5
taking d1(d

[TC]
1 � 1.2238) and d3(d

[TC]
3 � 0.61) as bifurca-

tion parameter, respectively.

6.1. Effect of Time-Delay on Population Dynamics. Now, let
us perform the numerical computations to validate the
analytical results of the delayed model (60). For the pa-
rameter set {r � 5.5, d1 � 0.4, d2 � 0.3, d3 � 0.2, a1 � 0.6,
a2 � 0.98, a3 � 0.8, b1 � 2.5, c1 � 0.85, c2 � 0.7, A � 0,
a � 1.1, m � 0.4}, equation (72) has exactly one positive root
0.2246 (correct up to four decimal places). So, from)eorem
18, the planer equilibrium point E3(1.20053, 0, 6.49267) is
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Figure 28: (a–c) oscillatory nature of prey, subsidy, and predator, respectively, with time and (d) stable limit cycle around
E∗(0.385717, 0.950363, 8.34509) when τ � 25 ∈ (τ+

1 � 22.7845, τ−
1 � 37.7710) corresponding to the data set of Figure 9. (a) Oscillation of

prey. (b). Oscillation of subsidy. (c) Oscillation of predator. (d) Phase portrait (closed orbit).
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Figure 29: (a–c) Oscillatory nature of prey, subsidy, and predator, respectively, with time around E∗(0.385717, 0.950363, 8.34509) when
τ � 50> τ+

2 � 41.5037 corresponding to the data set of Figure 9. (a) Oscillation of prey. (b). Oscillation of subsidy. (c) Oscillation of predator.
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Figure 30: Bifurcation diagram around E∗ considering τ as independent variable and the remaining parameters are fixed as in dataset of
Figure 9. Here, τ runs from 0 to 30. (a) Bifurcation diagram of x. (b) Bifurcation diagram of w. (c) Bifurcation diagram of y.
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Figure 31: Continued.
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stable when τ ∈ [0, τ′∗ � 2.9272) and unstable when
τ > τ′∗ � 2.9272. Stable time series and stable phase trajec-
tory of E3(1.20053, 0, 6.49267) are shown in Figure 21 when
τ � 2< τ′∗ � 2.9272. Also, Figure 22 depicts the corre-
sponding unstable behaviour of E3 when
τ � 3.5> τ′∗ � 2.9272. Moreover, Figure 23 presents the
supercritical Hopf bifurcation diagram around E3 taking τ as
bifurcation parameter.

For the parameter set {r � 5.5, d1 � 0.4, d2 � 0.3,
d3 � 0.2, a1 � 0.6, a2 � 0.98, a3 � 0.8, b1 � 2.5, c1 � 0.85,
c2 � 0.7, A � 2, a � 1.1, m � 0.4}, equation (91) has exactly
two positive roots, 0.1127 and 0.0526 (correct up to four
decimal places). )en from )eorem 20, we have calculated
τ+
0 � 4.0652, τ−

0 � 10.3836, τ+
1 � 22.7845, τ−

1 � 37.7710, and
τ+
2 � 41.5037. )e interior equilibrium E∗(0.385717,

0.950363, 8.34509) is locally asymptotically stable when
τ ∈ [0, 4.0652), (10.3836, 22.7845), (37.7710, 41.5037) and
unstable when τ ∈ (4.0652, 10.3836), (22.7845, 37.7710) and
τ > 41.5037. At τ � τ ±k , k � 0, 1 and τ+

2 , Hopf bifurcation

appears around E∗. Figures 24–26 depict the stable nature of
E∗ for τ ∈ [0, 4.0652), (10.3836, 22.7845), (37.7710, 41.50
37) respectively. Also, unstable behaviour of E∗ is presented
in Figures 27–29 for τ ∈ (4.0652, 10.3836), (22.7845, 37.77
10) and τ > τ+

2 � 41.5037, respectively. )e corresponding
bifurcation diagrams are depicted in Figures 30 and 31 .

7. Conclusion

Wehave analyzed a system for generalist predator which utilizes
more than one food source: predator-prey-subsidy model of
non-Kolmogorov form introducing nonlinear prey refuge
function and the effect of fear felt by prey population. Ourmain
interest is to find the situations such that dynamical stability and
instability appear so as tomake outmore fully how subsidymay
influence the predator and their prey. It has been shown that the
solutions of system (2) remain positively invariant always and
they are asymptotically uniformly bounded. )ese, in turn,
imply that system (2) is biologically well-behaved. Existence
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Figure 31: Bifurcation diagram around E∗ regarding τ as bifurcation parameter when τ runs from 30 to 70 and parameters are chosen from
the data set of Figure 9. (a) Bifurcation diagram of x. (b) Bifurcation diagram of w. (c) Bifurcation diagram of y.

w

BP

StableUnstable

5.2 5.4 5.6 5.8 6 6.25
d1

1

0.8

0.6

0.4

0.2

0

Figure 32: Transcritical bifurcation diagram around E1(0, 0.5, 0) considering d1 as bifurcation parameter and others parameters are the
same as in Figure 2. Here d

[TC]
1 � 5.5.

Complexity 35



criteria and stable behaviour of all the biologically meaningful
equilibria have been discussed. It has to be noted that Hopf
bifurcations are exhibited around E3 (subsidy free) and E∗

(interior) of system (2) considering k as a bifurcating parameter
(see Figures 4–6, 9, 11, and 12). Also, observing Figures 6 and
12, it can be concluded that high levels of fear can stabilize
system (2) by excluding the existence of periodic solutions.
)ese phenomena are biologically significant because prey
species are aware after a certain level of fear; i.e., after a certain
level of fear, they are not affected as they are aware and show
signs of habituation.

Moreover, this work derives transcritical bifurcations
(local bifurcation of codimension 1) at the various equi-
librium points E1, E2, E4, and E5, respectively (see
Figures 18–20 and 32).

Also, we have discussed numerically the influences of
coefficient of prey refuge parameter m on the nature of the
equilibrium points E3 (zero subsidy input rate) and E∗ (fixed
small subsidy input rate) irrespective of fear level k. Noting
Figures 14–17, it is observed that both the prey and predator
species always persist in ecosystem due to continuous incre-
ment of coefficient of prey refuge. But Figures 10 and 13 depict
that, irrespective of fear level, a highly subsidized predator
should indeed drive the prey population towards extinction
regardless of whether the prey and subsidy arise in the same
habitat. )is phenomenon is ecologically meaningful because
the prey population cannot get enough time to protect
themselves from predation risk for enormous growth of
predator at high subsidy input rate. So, the prey population is
leading towards extinction, but the predator species can easily
survive in ecosystem with the help of resource subsidy. )us,
the study of system (2) is ecologically very significant.

In reality, fear effect does not instantaneously reduce the
birth of a prey population, but some time lag should be
needed to create an impact on the birth rate of the prey
population. We have considered that there is a time-delay on
the impact of fear to the birth rate of prey, from the instance it
perceives the fear of predator through any means. So, the
incorporation of time-delay makes system (60) more realistic.
It is noted that delay parameter τ has a significant role because
there exists a threshold value τ′∗ such that stable behaviour of
planer equilibrium point E3 (in the absence of subsidy input
rate) switches to oscillatory nature when τ passes through its
threshold value τ′∗; i.e., the vector fields for τ < τ′∗ and τ > τ′∗

are qualitatively different. So, system (60) exhibits a super-
critical Hopf bifurcation around E3 considering τ as bifur-
cation parameter (see Figures 21–23). Also, a rigorous study
of the stability and bifurcation of interior equilibrium point
E∗ has been performed. Our analysis describes that the delay
within a certain specified range could maintain the stable
behaviour of E∗. On the other hand, the delay could drive the
system into an unstable state. Hence, the study of the time-
delay parameter has a regulatory impact on the whole system.
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)e aim of this work is to propose and analyze a new mathematical model formulated by fractional differential equations (FDEs)
that describes the dynamics of oncolytic M1 virotherapy. )e well-posedness of the proposed model is proved through existence,
uniqueness, nonnegativity, and boundedness of solutions. Furthermore, we study all equilibrium points and conditions needed for
their existence. We also analyze the global stability of these equilibrium points and investigate their instability conditions. Finally,
we state some numerical simulations in order to exemplify our theoretical results.

1. Introduction

Cancer is a collection of related diseases where some of the
body’s cells divide continuously and spread into surrounding
tissues. Cancer is caused by certain changes to genes. It can
start almost anywhere in the human body. Old or damaged
cells survive when they should die; new cells form when the
body does not need them. )ese extra cells can divide con-
tinuously andmay form tumors. A tumor becomes dangerous
when it begins to form extensions to neighboring areas
(metastasis) [1]. )is is why it is important to detect cancer as
early as possible in order to avoid this migration. Cancer
treatment is adapted according to each situation. )ere are
different cancer treatments used alone or in combination,
such as surgery, radiotherapy, chemotherapy, hormone
therapy, immunotherapy, and virotherapy. Virotherapy is one
of the new therapies; it consists in using a virus after having
reprogrammed it. )is virus is called oncolytic virus.
Oncolytic viruses infect and destroy cancer cells; they use the
cell’s genetic machinery to make copies of themselves and
subsequently spread to surrounding uninfected cells [2].

According to a medical experiment, in vitro, in vivo, and
ex vivo studies showed potent oncolytic efficacy and high

tumor tropism of alphavirus M1, which is a naturally oc-
curring and a selective oncolytic virus targeting zinc-finger
antiviral protein (ZAP) deficient cancer cells [3]. To model
the role of the M1 virus in oncolytic virotherapy, Wang et al.
[4] proposed a nonlinear system governed by ordinary
differential equations (ODEs) that describe the growth of
normal cells, tumor cells, and the M1 virus with limited
nutrients. Elaiw et al. [5] extended the model presented in
[4] by including spatial effects and anti-tumor immune
response mediated by cytotoxic T lymphocyte (CTL) cells.
)e results in [5] indicated that the immune response has a
negative impact on oncolytic M1 virotherapy, and it reduced
its efficiency.

On the other hand, all the above mathematical models
neglected the memory effect by considering only integer-
order derivatives. However, fractional-order derivative
provides an excellent tool for describing memory and he-
reditary properties which exist in most biological systems.
For instance, Cole [6] proved that the membranes of cells of
the biological organism have fractional-order electrical
conductance since the memory means that the system’s
response is dependent not only on the current state but on its
complete history. )erefore, the classical integer-order
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derivative does not reflect this memory effect because it is a
local operator, unlike the fractional derivative.

)e main purpose of this study is to develop a mathe-
matical model governed by fractional-order differential
equations (FDEs) to study the effect of memory on the
dynamics of oncolytic M1 virotherapy. So, the rest of the
paper is outlined as follows: the next section is devoted to the
formulation of the model, including the well-posedness and
the existence of equilibria. Section 3 focuses on stability
analysis. Section 4 deals with numerical simulations in order
to illustrate our main analytical results. Finally, a brief
conclusion is given in Section 5.

2. Model Formulation and Preliminaries

In this section, we propose the following FDE model:

D
α
S(t) � A − dS(t) − β1S(t)N(t) − β2S(t)T(t),

D
α
N(t) � r1β1S(t)N(t) − d + ε1( 􏼁N(t),

D
α
T(t) � r2β2S(t)T(t) − d + ε2( 􏼁T(t) − β3T(t)V(t),

D
α
V(t) � B + r3β3T(t)V(t) − d + ε3( 􏼁V(t),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where S(t), N(t), T(t), and V(t) are the concentrations of
nutrient, normal cells, tumor cells, and M1 virus at time t,
respectively. )e parameters A and B are the recruitment
rates of nutrient and M1 virus, respectively. Also, B rep-
resents the minimum effective dosage of medication. )e
normal and tumor cells consume the nutrient at rates β1SN

and β2ST, respectively. )e growth rate of normal cells as a
result of consuming the nutrient is given by r1β1SN, while
the growth rate of tumor cells is given by r2β2ST. )e virus
infects and kills tumor cells at rate β3TV, and it replicates at
rate r3β3TV. )e parameter d is the washout constant rate of
nutrient and bacteria. )e parameters ε1, ε2, and ε3 are the
natural death rates of normal cells, tumor cells, and M1
virus, respectively. )e operator Dα denotes the Caputo
fractional derivative with α ∈ (0, 1] that describes the
memory effect.

It is important to note that the ODEmathematical model
verifying potent oncolytic efficacy of M1 virus [4] is a special
case of our model presented by system (1), and it suffices to
take α � 1. Furthermore, to prove that our model is bio-
logically well-posed, we assume that the initial conditions of
(1) satisfy:

S(0) � ϕ1(0)≥ 0, N(0) � ϕ2(0)≥ 0, T(0) � ϕ3(0)

≥ 0, V(0) � ϕ4(0)≥ 0.
(2)

Theorem 1. If the initial conditions (2) are given, then there
exists a unique solution of system (1) defined on [0, +∞).
Moreover, this solution remains nonnegative and bounded for
all t≥ 0.

Proof. It is not hard to show that the vector function of
system (1) satisfies the first condition of Lemma 4 in [7]. It
remains to prove the second condition. Let

X(t) �

S(t)

N(t)

T(t)

V(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

Y �

A

0

0

B

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(3)

)en

D
α
X(t) � Y + A1X(t) + A2S(t)X(t) + A3T(t)X(t), (4)

where

A1 �

− d 0 0 0

0 − d + ε1( 􏼁 0 0

0 0 − d + ε2( 􏼁 0

0 0 0 − d + ε3( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

A2 �

0 − β1 − β2 0

0 r1β1 0 0

0 0 r2β2 0

0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

A3 �

0 0 0 0

0 0 0 0

0 0 0 − β3
0 0 0 r3β3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(5)

)us,

D
α
X(t)

����
����≤ ‖Y‖ + A1

����
���� + A2

����
����‖S‖ + A3

����
����‖T‖􏼐 􏼑‖X‖. (6)

)is implies that the second condition of Lemma 4 in [7]
is satisfied. )en system (1) has a unique solution on
[0, +∞).

On the other hand and according to (1), we have

D
α
S(t)|S�0 � A> 0,

D
α
N(t)|N�0 � 0≥ 0,

D
α
T(t)|T�0 � 0≥ 0,

D
α
V(t)|V�0 � B> 0.

(7)

By Lemmas 5 and 6 in [7], we deduce that the solution of
(1) is nonnegative.

It remains to prove the boundedness of solutions. )en
we consider the following function:

F(t) � r1r2r3S(t) + r2r3N(t) + r1r3T(t) + r1V(t). (8)

Hence,
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D
α
F(t) � r1r2r3A + r1B − r1r2r3dS(t) − r2r3 d + ε1( 􏼁N(t)

− r1r3 d + ε2( 􏼁T(t) − r1 d + ε3( 􏼁V(t)

≤ r1 r2r3A + B( 􏼁 − dF(t).

(9)

)en

F(t)≤F(0)Eα − dt
α

( 􏼁 +
r1

d
r2r3A + B( 􏼁 1 − Eα − dt

α
( 􏼁( 􏼁.

(10)

Since 0≤Eα(− dtα)≤ 1, we have

F(t)≤F(0) +
r1

d
r2r3A + B( 􏼁, (11)

which implies that S, N, T, and V are bounded. )is
completes the proof.

Now, we establish the equilibrium points of our model. It
is obvious that any equilibrium point of system (1) satisfies
the following algebraic equations:

A − dS − β1SN − β2ST � 0, (12)

r1β1SN − d + ε1( 􏼁N � 0, (13)

r2β2ST − d + ε2( 􏼁T − β3TV � 0, (14)

B + r3β3TV − d + ε3( 􏼁V � 0. (15)

From (13), we have N � 0 or S � (d + ε1)/r1β1. Similarly,
equation (14) leads to T � 0 or r2β2S � d + ε2 + β3V:

(i) For N � 0 and T � 0, we have S � (A/d) and
V � B/(d + ε3). )en system (1) has an equilibrium
point of the form E0(S0, 0, 0, V0), where S0 � (A/d)

and V0 � B/((d + ε3)).
(ii) For N≠ 0 and T � 0, we have S � (d + ε1)/r1β1, V �

B/(d + ε3) and N � (d/β1)(A1 − 1), where

A1 �
Ar1β1

d d + ε1( 􏼁
. (16)

)is number reflects the ability of absorbing nu-
trients by normal cells. It is called absorbing number
[4]. When A1 > 1, system (1) has another equilib-
rium E1(S1, N1, 0, V1), where S1 � (d + ε1)/r1β1,
N1 � (d/β1)(A1 − 1), and V1 � B/(d + ε3).

(iii) For N � 0 and T≠ 0, we have S � (β3V + d+

ε2)/r2β2, T � (− d/β2) + (Ar2/β3V + d + ε2), and

a1V
2

+ a2V + a3 � 0, (17)

where

a1 � β3 r3β3d + β2 d + ε3( 􏼁􏼂 􏼃,

a2 �
a1

β3
d + ε2( 􏼁 − β2β3 B + r2r3A( 􏼁,

a3 � − Bβ2 d + ε2( 􏼁.

(18)

Since a1 > 0 and a3 < 0, we have δ � a2
2 − 4a1a3 ≥ 0.

)us equation (17) has two roots given by

V ± �
− a2 ±

�
δ

√

2a1
. (19)

Clearly, V+ > 0 and V− < 0. As V> 0, we have
V � V+.
It is obvious that S> 0. However, T> 0 implies that
A2 > 1 + (Bβ3/(d + ε2)(d + ε3)), where

A2 �
Ar2β2

d d + ε2( 􏼁
. (20)

)is number reflects the ability of absorbing nu-
trients by tumor cells. It can be called the absorbing
number of nutrients by tumor cells. Hence, system
(1) has another equilibrium point when
A2 > 1 + (Bβ3/(d + ε2)(d + ε3)). )is equilibrium
point is denoted by E2(S2, 0, T2, V2), where

V2 � V+,

S2 �
β3V2 + d + ε2

r2β2
,

T2 �
− d

β2
+

Ar2
β3V2 + d + ε2

.

(21)

(iv) For N≠ 0 and T≠ 0, we have S � (d + ε1)/r1β1 and
V � (d + ε2/β3)((A2/A1) − 1) as V> 0 implies that
A2 >A1. From (15), we get T � (− B+

(d + ε3)V)/r3β3V. Similarly, T> 0 leads to
A2 >A1 + (ABr1β1β3/d(d + ε3)(d + ε2)(d + ε1)).
Substituting S and T in (12), we obtain
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N �
d + ε2( 􏼁 A2/A1( 􏼁 − 1( 􏼁 Ar1r3β1β3 − r3β3d d + ε1( 􏼁 − β2 d + ε1( 􏼁 d + ε3( 􏼁􏼂 􏼃

r3β1β3 d + ε1( 􏼁 d + ε2( 􏼁 A2/A1( 􏼁 − 1( 􏼁

+
Bβ2β3

r3β1β3 d + ε2( 􏼁 A2/A1( 􏼁 − 1( 􏼁
.

(22)

Furthermore, N> 0 implies that

A1 +
β2B

r3d d + ε2( 􏼁 A2/A1( 􏼁 − 1( 􏼁
> 1 +

β2 d + ε3( 􏼁

r3β3d
. (23)

)us, system (1) has another equilibrium point when
A2 >A1:

A1 +
β2B

r3d d + ε2( 􏼁 A2/A1( 􏼁 − 1( 􏼁
> 1 +

β2 d + ε3( 􏼁

r3β3d
,

A2 >A1 +
ABr1β1β3

d d + ε3( 􏼁 d + ε2( 􏼁 d + ε1( 􏼁
.

(24)

)is equilibrium point is denoted by E3(S3, N3, T3, V3),
where

S3 �
d + ε1
r1β1

,

V3 �
d + ε2
β3

A2/A1( 􏼁 − 1( 􏼁,

N3 �
d + ε2( 􏼁 A2/A1( 􏼁 − 1( 􏼁 Ar1r3β1β3 − r3β3d d + ε1( 􏼁 − β2 d + ε1( 􏼁 d + ε3( 􏼁􏼂 􏼃

r3β1β3 d + ε1( 􏼁 d + ε2( 􏼁 A2/A1( 􏼁 − 1( 􏼁

+
Bβ2β3

r3β1β3 d + ε2( 􏼁 A2/A1( 􏼁 − 1( 􏼁
,

T3 �
− B + d + ε3( 􏼁V3

r3β3V3
.

(25)

All the above cases are summerized in the following
result. □

Theorem 2. LetA1 andA2 be defined by (16) and (20).<en

(i) System (1) always has a competition-free equilibrium
E0(S0, 0, 0, V0).

(ii) System (1) has a tumor-free equilibrium
E1(S1, N1, 0, V1) when A1 > 1.

(iii) System (1) has a treatment failure equilibrium
E2(S2, 0, T2, V2) when
A2 > 1 + (Bβ3/(d + ε2)(d + ε3)).

(iv) System (1) has a partial success equilibrium
E3(S3, N3, T3, V3) when

A2 >A1 +
ABr1β1β3

d d + ε3( 􏼁 d + ε2( 􏼁 d + ε1( 􏼁
,

A1 +
β2B

r3d d + ε2( 􏼁 A2/A1( 􏼁 − 1( 􏼁
> 1 +

β2 d + ε3( 􏼁

r3β3d
.

(26)

3. Stability Analysis

In this section, we focus on the stability analysis of the
equilibria E0, E1, E2, and E3.

Theorem 3. <e competition-free equilibrium E0 is globally
asymptotically stable for A2 ≤ 1 + (Bβ3/(d + ε2)(d + ε3))
and A1 ≤ 1, and it is unstable if A2 > 1 + (Bβ3/(d + ε2)(d +

ε3)) or A1 > 1.

Proof. In order to show the first part of this theorem, we
consider the following Lyapunov functional:

L0(t) � S0ϕ
S(t)

S0
􏼠 􏼡 +

1
r1

N(t) +
1
r2

T(t) +
1

r2r3
V0ϕ

V(t)

V0
􏼠 􏼡,

(27)

where ϕ(x) � x − ln(x) − 1 for x> 0.
Based on the property of fractional derivatives given in

[8], we get
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D
α
L0 ≤ 1 −

S0

S
􏼒 􏼓D

α
S +

1
r1

D
α
N +

1
r2

D
α
T +

1
r2r3

1 −
V0

V
􏼒 􏼓D

α
V

� 1 −
S0

S
􏼒 􏼓 A − dS − β1SN − β2ST( 􏼁

+
1
r1

r1β1SN − d + ε1( 􏼁N( 􏼁

+
1
r2

r2β2ST − d + ε2( 􏼁T − β3TV( 􏼁

+
1

r2r3
1 −

V0

V
􏼒 􏼓 B + r3β3TV − d + ε3( 􏼁V( 􏼁.

(28)

By S0 � (A/d) and V0 � B/(d + ε3), we obtain

D
α
L0 ≤ dS0 1 −

S

S0
􏼠 􏼡 1 −

S0
S

􏼒 􏼓 + β1S0N + β2S0T −
d + ε1

r1
N −

d + ε2
r2

T

+
d + ε3
r2r3

V0 1 −
V

V0
􏼠 􏼡 1 −

V0

V
􏼒 􏼓 −

β3
r2

TV0

�
− d

S
S − S0( 􏼁

2
+ β1S0 −

d + ε1
r1

􏼠 􏼡N + β2S0 −
d + ε2

r2
−
β3V0

r2
􏼠 􏼡T

−
d + ε3
r2r3

V − V0( 􏼁
2

V

�
− d

S
S − S0( 􏼁

2
+

d + ε1
r1

A1 − 1( 􏼁N

+
d + ε2

r2
A2 − 1 −

Bβ3
d + ε2( 􏼁 d + ε3( 􏼁

􏼠 􏼡T −
d + ε3
r2r3

V − V0( 􏼁
2

V
.

(29)

)en DαL0 ≤ 0 when A1 ≤ 1 and A2 ≤ 1+

(Bβ3/(d + ε2)(d + ε3)). Clearly, DαL0 � 0 if and only if
S � S0, N � 0, T � 0, and V � V0. )en the largest invariant
set contained in (S, N, T, V)|DαL0(t) � 0􏼈 􏼉 is the singleton
E0􏼈 􏼉. By LaSalle’s invariance principale [9], we deduce that

E0 is globally asymptotically stable for A1 ≤ 1 and
A2 ≤ 1 + (Bβ3/(d + ε2)(d + ε3)).

It remains to investigate the dynamical property of E0 in
case when A1 > 1 or A2 > 1 + (Bβ3/(d + ε2)(d + ε3)). For
this purpose, we compute the characteristic equation at E0
that is given by

λ − λ1( 􏼁 λ − λ2( 􏼁 λ − λ3( 􏼁 λ − λ4( 􏼁 � 0, (30)

where

λ1 � − d,

λ2 � − d − ε3,

λ3 � d + ε2( 􏼁 A2 − 1 −
Bβ3

d + ε2( 􏼁 d + ε3( 􏼁
􏼠 􏼡,

λ4 � d + ε1( 􏼁 A1 − 1( 􏼁.

(31)

We have λ1 < 0, λ2 < 0, λ3 > 0 if A2 > 1 + (Bβ3/
(d + ε2)(d + ε3)), and λ4 > 0 if A1 > 1. Consequently, E0 is
unstable if A1 > 1 or A2 > 1 + (Bβ3/(d + ε2)(d + ε3)). □
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Theorem 4. Suppose that A1 > 1. <en the tumor-free
equilibrium E1 is globally asymptotically stable if

A2 ≤A1 +
ABr1β1β3

d d + ε1( 􏼁 d + ε2( 􏼁 d + ε3( 􏼁
, (32)

and it is unstable if

A2 >A1 +
ABr1β1β3

d d + ε1( 􏼁 d + ε2( 􏼁 d + ε3( 􏼁
. (33)

Proof. Consider the following Lyapunov functional:

L1(t) � S1ϕ
S(t)

S1
􏼠 􏼡 +

1
r1

N1ϕ
N(t)

N1
􏼠 􏼡 +

1
r2

T(t) +
1

r2r3
V1ϕ

V(t)

V1
􏼠 􏼡. (34)

)en

D
α
L1 ≤ 1 −

S1

S
􏼒 􏼓 A − dS − β1SN − β2ST( 􏼁

+
1
r1

1 −
N1

N
􏼒 􏼓 r1β1SN − d + ε1( 􏼁N( 􏼁

+
1
r2

r2β2ST − d + ε2( 􏼁T − β3TV( 􏼁

+
1

r2r3
1 −

V1

V
􏼒 􏼓 B + r3β3TV − d + ε3( 􏼁V( 􏼁.

(35)

By V1 � B/(d + ε3) and S1 � (d + ε1)/r1β1, we obtain

D
α
L1 ≤ dS1 1 −

S1

S
􏼒 􏼓 1 −

S

S1
􏼠 􏼡 + β1S1N1 2 −

S1

S
−

S

S1
􏼠 􏼡

+ β1S1 −
d + ε1

r1
􏼠 􏼡N + β2

d + ε1
r1β1

−
d + ε2

r2
−

β3B
r2 d + ε3( 􏼁

􏼠 􏼡T

+
B

r2r3
2 −

V1

V
−

V

V1
􏼠 􏼡

� − d + β1N1( 􏼁
S − S1( 􏼁

2

S
−

B

r2r3

V − V1( 􏼁
2

VV1

+
d d + ε1( 􏼁 d + ε2( 􏼁

Ar1r2β1
A2 − A1 −

ABr1β1β3
d d + ε1( 􏼁 d + ε2( 􏼁 d + ε3( 􏼁

􏼠 􏼡T.

(36)

)en DαL1 ≤ 0 when

A2 ≤A1 +
ABr1β1β3

d d + ε1( 􏼁 d + ε2( 􏼁 d + ε3( 􏼁
. (37)

Obviously, DαL1 � 0 if and only if S � S1,N � N1,T � 0,
and V � V1. )en the largest invariant set contained in
(S, N, T, V)|DαL1(t) � 0􏼈 􏼉 is the singleton E1. By LaSalle’s
invariance principle, we deduce that E1 is globally asymp-
totically stable for

A2 ≤A1 +
ABr1β1β3

d d + ε1( 􏼁 d + ε2( 􏼁 d + ε3( 􏼁
. (38)

On the contrary, the characteristic equation at E1 is given
by

d + ε1 + λ( 􏼁 r2β2S1 − d − ε2 − β3V1 − λ( 􏼁f(λ) � 0, (39)

where
f(λ) � (d + λ + β1N1)(d + ε1 + λ − r1β1S1) + r1β

2
1N1S1.

One of the eigenvalues of (39) is
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λ1 � r2β2S1 − d − ε2 − β3V1

�
d d + ε1( 􏼁 d + ε2( 􏼁

Ar1β1
A2 − A1 −

ABr1β1β3
d d + ε1( 􏼁 d + ε2( 􏼁 d + ε3( 􏼁

􏼠 􏼡.

(40)

We observe that λ1 > 0 if

A2 >A1 +
ABr1β1β3

d d + ε1( 􏼁 d + ε2( 􏼁 d + ε3( 􏼁
. (41)

)us, E1 is unstable when

A2 >A1 +
ABr1β1β3

d d + ε1( 􏼁 d + ε2( 􏼁 d + ε3( 􏼁
. (42)

□

Theorem 5. Suppose that A2 > 1 + (Bβ3/(d + ε2)(d + ε3))
and (A2/A1)> 1. <en the treatment failure equilibrium E2
is globally asymptotically stable if

1 +
β2 d + ε3( 􏼁

r3β3d
≥A1 +

Bβ2
r3d d + ε2( 􏼁 A2/A1( 􏼁 − 1( 􏼁

, (43)

and becomes unstable if

1 +
β2 d + ε3( 􏼁

r3β3d
<A1 +

Bβ2
r3d d + ε2( 􏼁 A2/A1( 􏼁 − 1( 􏼁

. (44)

Proof. Consider the following Lyapunov functional:

L2(t) � S2ϕ
S(t)

S2
􏼠 􏼡 +

1
r1

N(t) +
1
r2

T2ϕ
T(t)

T2
􏼠 􏼡

+
1

r2r3
V2ϕ

V(t)

V2
􏼠 􏼡.

(45)

)en

D
α
L2 ≤ dS2 1 −

S2

S
􏼒 􏼓 1 −

S

S2
􏼠 􏼡 + β2S2T2 2 −

S2

S
−

S

S2
􏼠 􏼡

+ β1S2 −
d + ε1

r1
􏼠 􏼡N

+ β2S2 −
d + ε2

r2
−
β3
r2

V2􏼠 􏼡T

+
B

r2r3
2 −

V2

V
−

V

V2
􏼠 􏼡

� − d + β2T2( 􏼁
S − S2( 􏼁

2

S
+ β1 S2 − S3( 􏼁N −

B

r2r3

V − V2( 􏼁
2

VV2
.

(46)

By computation, we find

S2 − S3 � Ar1β1r3β3 d + ε2( 􏼁
A2

A1
− 1􏼠 􏼡 + Bβ2β3 d + ε1( 􏼁

− β2 d + ε1( 􏼁 d + ε2( 􏼁 d + ε3( 􏼁
A2

A1
− 1􏼠 􏼡

− r3β3d d + ε1( 􏼁 d + ε2( 􏼁
A2

A1
− 1􏼠 􏼡.

(47)

)us, S2 − S3 ≤ 0 implies that

A1 +
Bβ2

r3d d + ε2( 􏼁 A2/A1( 􏼁 − 1( 􏼁
≤ 1 +

β2 d + ε3( 􏼁

r3β3d
. (48)

Consequently, DαL2 ≤ 0 when

A1 +
Bβ2

r3d d + ε2( 􏼁 A2/A1( 􏼁 − 1( 􏼁
≤ 1 +

β2 d + ε3( 􏼁

r3β3d
. (49)

Clearly, DαL2 � 0 if and only if S � S2, N � 0, T � T2,
and V � V2. )en the largest invariant set contained in
(S, N, T, V)|DαL2(t) � 0􏼈 􏼉 is the singleton E2􏼈 􏼉. By LaSalle’s
invariance principle, we deduce that E2 is globally asymp-
totically stable for

1 +
β2 d + ε3( 􏼁

r3β3d
≥A1 +

Bβ2
r3d d + ε2( 􏼁 A2/A1( 􏼁 − 1( 􏼁

. (50)

On the other side, the characteristic equation at E2 is
given by

r1β1S2 − d − ε1 − λ( 􏼁g(λ) � 0, (51)

where

Complexity 7



g(λ) � d + β2T2 + λ( 􏼁 d + ε2 + λ + β3V2 − r2β2S2( 􏼁 r3β3T2 − d − ε3 − λ( 􏼁 − r3β
2
3T2V2􏽨 􏽩

+ r2β
2
2S2T2 r3β3T2 − d − ε3 − λ( 􏼁.

(52)

One of the eigenvalues of (51) is

λ2 � r1β1S2 − d − ε1 � r1β1 S2 − S3( 􏼁. (53)

We can observe from the proof of part (a) that λ2 > 0 if

1 +
β2 d + ε3( 􏼁

r3β3d
<A1 +

Bβ2
r3d d + ε2( 􏼁 A2/A1( 􏼁 − 1( 􏼁

. (54)

)us, E2 is unstable when

1 +
β2 d + ε3( 􏼁

r3β3d
<A1 +

Bβ2
r3d d + ε2( 􏼁 A2/A1( 􏼁 − 1( 􏼁

. (55)
□

Theorem 6. <e partial success equilibrium E3 is globally
asymptotically stable if

A2 >A1 +
ABr1β1β3

d d + ε1( 􏼁 d + ε2( 􏼁 d + ε3( 􏼁
,

A1 +
Bβ2

r3d d + ε2( 􏼁 A2/A1( 􏼁 − 1( 􏼁
> 1 +

β2 d + ε3( 􏼁

r3β3d
.

(56)

Proof. Consider the following Lyapunov functional

L3(t) � S3ϕ
S(t)

S3
􏼠 􏼡 +

1
r1

N3ϕ
N(t)

N3
􏼠 􏼡 +

1
r2

T3ϕ
T(t)

T3
􏼠 􏼡

+
1

r2r3
V3ϕ

V(t)

V3
􏼠 􏼡.

(57)

)en

D
α
L3 ≤ 1 −

S3

S
􏼒 􏼓 A − dS − β1SN − β2ST( 􏼁

+
1
r1

1 −
N3

N
􏼒 􏼓 r1β1SN − d + ε1( 􏼁N( 􏼁

+
1
r2

1 −
T3

T
􏼒 􏼓 r2β2ST − d + ε2( 􏼁T − β3TV( 􏼁

+
1

r2r3
1 −

V3

V
􏼒 􏼓 B + r3β3TV − d + ε3( 􏼁V( 􏼁.

(58)

By A � dS3 + β2S3T3 + β1S3N3, (β3/r2)T3V3 � (d + ε3/
r2r3)V3 − (B/r2r3), β1S3N3 � (d + ε1/r1)N3, and β2S3T3 �

(d + ε2/r2)T3 + (β3/r2)T3V3, we get

D
α
L3 ≤ dS3 1 −

S3
S

􏼒 􏼓 1 −
S

S3
􏼠 􏼡 + β2S3T3 2 −

S3
S

−
S

S3
􏼠 􏼡

+ β1S3 −
d + ε1

r1
􏼠 􏼡N + β2S3 −

d + ε2
r2

−
β3
r2

V3􏼠 􏼡T

+ β1S3N3 2 −
S3
S

−
S

S3
􏼠 􏼡 +

B

r2r3
2 −

V3

V
−

V

V3
􏼠 􏼡

� − d + β2T3 + β1N3( 􏼁
S − S3( 􏼁

2

S
−

B

r2r3

V − V3( 􏼁
2

VV3
.

(59)

)erefore DαL3 ≤ 0, with equality if and only if S � S3
and V � V3. By a simple computation, we show that DαL3 �

0 if and only if S � S3,N � N3,T � T3 andV � V3. It follows
from LaSalle’s invariance principale that E3 is globally as-
ymptotically stable under the conditions that this point
exists. ■ □

4. Numerical Simulations

In this section, we give some numerical simulations to il-
lustrate and validate our theoretical results, and we present
some biological interpretations. We choose the time interval
from t � 0 to t � 400 with a step size Δt � 0.1. We take
A � 0.02, d � 0.02, B � 0.01, r1 � 0.8, and r3 � 0.5. )e
parameters β1, β2, β3, ε1, ε2, ε3, and r2 of model (1) are taken
as free parameters.

First, we take β1 � 0.03, β2 � 0.03, β3 � 0.1, ε1 � 0.04,
ε2 � 0.01, ε3 � 0.008, and r2 � 0.8. )ese values give
A1 � 0.4, A2 � 0.8, and 1 + (Bβ3/(d + ε2)(d + ε3)) �

2.1905. )us, A1 < 1 and A2 < 1 + (Bβ3/(d + ε2)(d + ε3)).
According to )eorem 1, the equilibrium E0(1, 0, 0, 0.3571)

is globally asymptotically stable which consists with our
numerical simulation in Figure 1. )is may reflect an ex-
treme competition between normal and tumor cells, leading
to the extinction of normal cells and eradicating tumor cells
by the M1 virus, giving rise to patient death.

Next, we take β1 � 0.1, β2 � 0.03, β3 � 0.1, ε1 � 0.008,
ε2 � 0.01, ε3 � 0.006, and r2 � 0.8. For this case, we obtain

A1 � 2.8571,

A2 � 0.8,

A1 +
ABr1β1β3

d d + ε1( 􏼁 d + ε2( 􏼁 d + ε3( 􏼁
� 6.5201.

(60)

)us we get
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Figure 1: Stability of the competition-free equilibrium E0.
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Figure 2: Stability of the tumor-free equilibrium E1.
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Figure 3: Stability of the treatment failure equilibrium E2.
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Figure 4: Stability of the partial success equilibrium E3.
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A1 > 1,

A2 ≤A1 +
ABr1β1β3

d d + ε1( 􏼁 d + ε2( 􏼁 d + ε3( 􏼁
.

(61)

In agreement with )eorem 4, the tumor-free equilib-
rium E1(0.35, 0.3714, 0, 0.3846) is globally asymptotically
stable as exhibited in Figure 2. In this situation, we notice
that the M1 virotherapy successfully eliminates tumor cells,
and then normal cells have been restored. Consequently, the
patient’s health will be improved.

In Figure 3, we assume that β1 � 0.03, β2 � 0.1, β3 � 0.1,
ε1 � 0.04, ε2 � 0.008, ε3 � 0.008, and r2 � 0.8. )us,

A2 � 2.8571> 2.2755 � 1 +
Bβ3

d + ε2( 􏼁 d + ε3( 􏼁
,

A2

A1
� 7.1429> 1,

1 +
β2 d + ε3( 􏼁

r3β3d
� 3.8≥ 0.9814 � A1

+
Bβ2

r3d d + ε2( 􏼁 A2/A1( 􏼁 − 1( 􏼁
.

(62)

We can see that the equilibrium E2(0.8313,

0, 0.0406, 0.385) is globally asymptotically stable that agrees
with our result in )eorem 5. Biologically, our treatment
fails in eliminating the tumor cells as that normal cells are
lost. Hence, the patient’s health is in danger.

Finally, we choose β1 � 0.15, β2 � 0.35, β3 � 0.1,
ε1 � 0.008, ε2 � 0.008, ε3 � 0.008, and r2 � 0.9. We get

A2 � 11.25> 4.2857 � A1,

A2 > 9.7522 � A1 +
ABr1β1β3

d d + ε1( 􏼁 d + ε2( 􏼁 d + ε3( 􏼁
,

1 +
β2 d + ε3( 􏼁

r3β3d
� 10.8< 11.978 � A1 +

Bβ2
r3d d + ε2( 􏼁 A2/A1( 􏼁 − 1( 􏼁

.

(63)

In agreement with )eorem 6, the equilibrium
E3(0.2333, 0.1571, 0.1204, 0.455) is globally asymptotically
stable as shown in Figure 4. Here, our treatment partially
reduces tumor cells and increases normal cells’ levels.
However, the treatment cannot wholly eliminate tumor cells,
but it can prolong the patient’s life.

5. Conclusion

In this paper, we have studied the dynamics of an oncolytic
M1 virotherapy model, considering the memory effect
denoted by the Caputo fractional derivative. )e well-pos-
edness of the proposed model was proved through non-
negativity and boundedness of solutions. We found that the
model has four possible equilibrium points, namely, the
competition-free equilibrium E0, the tumor-free equilib-
rium E1, the treatment failure equilibrium E2, and the partial

success equilibrium E3. By constructing suitable Lyapunov
functionals, the global stability of E0 is determined by two
threshold parameters that are the absorbing number of
nutrients by normal cells A1 and the absorbing number of
nutrients by tumor cells A2, when A1 ≤ 1 and
A2 ≤ 1 + (Bβ3/(d + ε2)(d + ε3)), E0 is globally asymptoti-
cally stable, and these conditions determine when normal
and tumor cells are lost, which may not be useful to test the
viability of treatment. )e tumor-free equilibrium E1 exists
and is globally asymptotically stable if A1 > 1 and

A2 ≤A1 +
ABr1β1β3

d d + ε1( 􏼁 d + ε2( 􏼁 d + ε3( 􏼁
, (64)

and these conditions show that the M1 virus succeeds to
eliminate the tumor, which is helpful in improving viro-
therapy. )e treatment failure equilibrium E2 exists and is
globally asymptotically stable if
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A2 >A1,

A2 > 1 +
Bβ3

d + ε2( 􏼁 d + ε3( 􏼁
,

1 +
β2 d + ε3( 􏼁

r3β3d
≥A1 +

Bβ2
r3d d + ε2( 􏼁 A2/A1( 􏼁 − 1( 􏼁

,

(65)

and these conditions refer to the failure of the treatment, as
indicated by his name. )e partial success equilibrium E3
exists and is globally asymptotically stable if

A2 >A1 +
ABr1β1β3

d d + ε1( 􏼁 d + ε2( 􏼁 d + ε3( 􏼁
,

1 +
β2 d + ε3( 􏼁

r3β3d
<A1 +

Bβ2
r3d d + ε2( 􏼁 A2/A1( 􏼁 − 1( 􏼁

.

(66)

)ese results indicate the partial success of M1 virus in
decreasing tumor cells and increasing normal cells, which
can reduce the tumor’s size and stabilize the disease
progression.

From the above analytical results, we remark that the
Caputo fractional derivative’s memory does not affect the
stability analysis of equilibria. Based on the numerical
simulations, we observe that the fractional order affects the
speed of convergence and the time for arriving to equilibria
(Figures 1–4).

)e results obtained in this study are based on the
fractional derivative in sense of Caputo with singular kernel.
It will be more interesting to model the dynamics of
oncolytic M1 virotherapy by using the new generalized
fractional derivative with nonsingular kernel [10]. Moreover,
we will extend our model presented in (1) by taking into
account other biological factors such as diffusion [11, 12]
and immunity [13, 14].
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