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Copper mining activity is going through big changes due to increasing technological development in the area and the influence of
industry 4.0. These changes, produced by technological context and more controls (e.g., environmental controls), are also becoming
visible in Chilean mining. New regulations from the Chilean government and changes in the copper mining industry (such as a
trend to underground mining) are fostering the search for better results in typical processes such as leaching. This paper
describes an experience using artificial intelligence techniques, particularly random forest, to develop predictive models for
copper recovery by leaching, using data from an enterprise present in northern Chile for more than 20 years. Two models, one
of them with actual operational data and another one with data generated in a controlled environment (piling) are presented.
Well-classified values of 98.90% for operational data and 98.72% for pile/piling data were obtained. The methodology devised
for the study can be transferred to piling columns or piles with other characteristics, though the operation must focus on copper
leaching. It can even be transferred to other leaching processes using another type of mineral, with proper adjustments.

1. Introduction

The Chilean mining industry, as in the whole world, is
experimenting with big changes due to the rapid technologi-
cal advance in the so-called industry 4.0 [1]. According to
Pietrobelli et al. in [2], big mining companies typically tended
to control their operations from remote centers located in
multinational corporations, thus resulting in little local
innovation and development. This way of operating helps
the macroeconomy, but it makes difficult diversification,
knowledge transfer, and regional innovation in the value
chain [3]. Another factor producing changes in the above-
mentioned trend is the significant fall of copper price since
2015, fostering both technological advances enabling compa-
nies to face production costs [4] and also greater regional
innovation and development.

Chilean copper production represents 35% on a world
basis [5, 6]. On a local basis, the copper production industry
is the country’s most profitable, providing almost 15% of
Chilean GDP and representing 50% of exports [7, 8]. This
Chilean predominant position in the copper industry is also

complemented with leadership in other mineral products,
such as lithium. To keep this leadership in the world’s
mining activity, Chile must ensure mining profitability in
the short term. A valid strategy for this may be investing
in technology and innovation, together with mining indus-
try diversification.

Recent papers [5–7] report a trend to technological
diversification in the sector, even frommining suppliers. Fur-
thermore, as stated in [6], a recent report from the Chilean
government declares the objective of promoting the estab-
lishment of 250 local suppliers for the mining sector in
2035. This strategy is expected to create knowledge about
business and technology appropriate for current challenges,
both elements being directed to local mining development
and exports as well. This would result in an income of about
US$10 thousand million.

For the aforementioned technological development and
innovation, the Chilean mining industry is incorporating
technology to develop intelligence system-type applications
for supporting tasks such as copper recovery prediction.
These systems are frequently based on artificial intelligence
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computing models. Apart from representing a technological
contribution, these models are becoming a great help for pre-
dicting or reducing production costs [9, 10], a very conve-
nient fact for supporting modern technology characterized
by a greater extraction complexity and increasing restrictions
such as environmental ones [11].

In typical production processes such as leaching, predic-
tive models have been satisfactorily used in the last decade to
identify factors allowing production increase [9, 10]. There
are several cases illustrating predictive model generation
using artificial intelligence, specifically soft computing [12].
In particular, this paper fully describes the process for devel-
oping predictive models [13] to recover copper by leaching
and the results were obtained at SCM Franke Company, from
the KGHM International Group, present in Chilean mining
exploitation since 2009.

Recently, research into the applicability of artificial intel-
ligence techniques such as predictive model algorithms, for
copper recovery prediction, has been conducted. In this
context, comparative studies of which predictive model algo-
rithms are the most appropriate according to the characteris-
tics of the copper mining production process have been
published. Thus, advantages of using support vector machine
(SVM), random forest (RF), artificial neural networks
(ANN), gradient boosted trees (GBT), or wavelet neural
network (WNN) are frequently reported in the literature
(such as [14]). For example, in [15], a predictive modeling
using SVM for copper potential mapping in the Kerman cop-
per bearing belt in the south of Iran is reported. In [16], a
comparative analysis of ANN, WNN, and SVM models to
mineral potential mapping for copper mineralization is pre-
sented. As a particular result of this work, the authors high-
light that WNN exhibits excellent learning ability compared
to the conventional ANN.

Also, in [17], SVM, ANN, and RF were used to conduct
predictive modeling of mineral prospectively. For these algo-
rithms, input data was obtained fromGIS-based mineral pro-
spectively mapping of the Tongling ore district (eastern
China). As a conclusion from this work, authors highlight
that the RF model outperformed the SVM and ANN models,
giving a greater consistency and better predictive accuracy.
Another example of comparative analysis of predictive
models using GBT, ANNs, and RF is the work described in
[16], where authors highlight that the RF models show the
highest coefficients of determination (R2) values and the low-
est root-mean-square error (RMSE), and the highest residual
prediction deviations (RPD) were obtained.

There are several papers that report that RF and
GBDT perform the best (see Table 1 for a comparison
among these methods); therefore, and based on the
described information in the previous paragraphs, the use
of RF can more appropriately lead to the achievement of
the stated objective.

This paper describes the tasks done to generate predictive
models for copper recovery in leaching piles with low-grade
material, using data from actual pile operation and those pro-
duced in a controlled environment (pilot), using the same
artificial intelligence technique (random forest technique)
in both cases to develop predictive models.

The remaining document is organized as follows: Section
2 describes the base concepts of the study and related work.
Section 3 describes the experiment, the discretizing of the
variables used in the model, data characteristics and how they
were collected, work methodology, and the techniques used
for analyzing results. Section 4 shows the results obtained
for the two models, that is, operational data and piling data
models. Section 5 deals with the discussion. Section 6 shows
the conclusions of the paper. Finally, acknowledgments and
bibliographical references are stated.

2. Concepts and Related Work

2.1. Leaching and Company Work. The copper leaching pro-
cess involves tasks thoroughly identified by the industry, that
is, irrigation beginning and maintenance, agglomerate
condition evaluation, drainage distribution, pool solution
inventory, PLS flow evaluation, and distribution and depo-
sition of the material leached at the plant (harvest). These
processes, due to the nature and variability of the input
material, usually produce high levels of entropy and uncer-
tainty (close to 20%) concerning copper recovery at the
end of the harvest [9].

SCM Franke uses three industrial processes widely
known in the industry of metallic copper production via
hydrometallurgy. These processes are dynamic pile leaching,
solvent extraction, and electrowinning [9]. The ultimate goal
of these processes is to obtain the greatest copper production
by saving resources and being the least possible aggressive to
the environment (a kind of environmental trade-off). The
leaching process has been shown to be one of the most con-
venient to achieve this environmental trade-off. The objective
of this paper is predicting estimated copper recovery as accu-
rately as possible at about 95% by dynamic pile leaching,
using the least possible amount of leaching material and the
best irrigation homogeneity.

2.2. RelatedWork and Predictive Models. The development of
applications using predictive modeling to improve mineral

Table 1: Accuracy ranking of different classification algorithms
[32].

Algorithm
Accuracy ranking

Top 1 Top 2 Top 3 Top 4 Top 5

GBDT 42.25% 63.38% 67.61% 77.46% 83.10%

RF 21.13% 56.34% 77.46% 84.51% 92.96%

SVM 18.31% 30.99% 52.11% 64.79% 78.87%

ELM 15.49% 23.94% 30.99% 47.89% 56.34%

C4.5 12.68% 15.49% 28.17% 43.66% 56.34%

SRC 11.27% 22.54% 23.94% 33.80% 38.03%

LR 4.23% 11.27% 19.72% 26.76% 40.85%

AB 4.23% 7.04% 8.45% 19.72% 18.31%

KNN 2.82% 8.45% 12.68% 26.76% 36.62%

NB 2.82% 5.63% 7.04% 9.86% 19.72%

DL 1.41% 1.41% 2.82% 4.23% 4.23%
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recovery estimation is prospectively becoming a central area
of study in the mining industry [18–20].

Recent studies such as [3, 9, 10] reveal that one of the
most critical tasks in prospective modeling is the selection
of appropriate criteria and the application of sound innovat-
ing techniques to get the evidential characteristics of these
criteria.

Traditionally, these criteria have been selected by differ-
ent numerical methods, but in the last few decades, alterna-
tive techniques such as those from the artificial intelligence
area have been applied for both criteria selection and the
development of predictive models for mineral recovery
[21]. In general, methods containing machine learning algo-
rithms are being applied for building these predictive models.

In the literature, the methods referred to here have been
grouped into two sets [21–23]: knowledge-driven models
and data-driven models. Data-driven models are probabilistic
models such as discriminant analysis or logistic regression
[19, 24]. The algorithms of data-driven models, whose
evidence of use is more often reported in the literature, are
artificial neural networks (generally with backpropagation
[25, 26]) (ANN) [19, 27, 28] and regression trees (RTs)
[13, 24, 29] in sectors such as copper mining. Methods
called support vector machines (SVM) and random forest
(RF) [29] are sometimes used in this domain [13, 30, 31].
The common way of using the algorithms of the data-
driven model group in concrete mining tasks such as
studying copper recovery is using data themselves, while
in knowledge-driven methods, an expert in mineral extrac-
tion via hydrometallurgy should be consulted for the job.
As a whole, ANN, RT, or SVM models require enough
amounts of records and parameters to achieve good qual-
ity in the models created as output.

The literature contains papers such as [32] that propose a
comparison among the performance of predictive models.
Table 1 shows that RF and GBDT perform the best, followed
by SVM and ELM. Moreover, we observe that the interquar-
tile ranges of RF, GBDT, and SVM are the smallest, showing
that these three algorithms generally perform well, in terms
of prediction accuracy, regardless of the datasets [32]. While
ensemble and boosting methods have been reported to
obtain good predictive performance in supervised learning,
GBDT is generally less popular than RF. GBDT and RF show
both best total average classification accuracy and best mean
rank followed by SVM and ELM [32].

This study uses RF as a predictive model; it is a kind of
predictive model based on decision trees. There are previous
works as [33] that defined this kind of predictive models as “a
type of predictive model that uses a decision tree to go from
observations of an object (represented as the branches of a
tree) to a certain conclusion about a target value of the object
(represented by the tree leaves).”

Thus, the interest of using RF is twofold. First, data-
driven model algorithms (like RF) are frequently used to pre-
dict values of the target variable influenced by other variables
(predictor variables) in datasets [33, 34]. In this context, the
RF model is adequate for generating a predictive model of
the copper recovery by leaching (the target variable for this
work), due to it providing a way to measure the influence

of each predictor variable on the target variable. And second,
one of the main benefits of RF is that it can be used to deter-
mine the importance of variables in a regression or classifica-
tion problem intuitively [35]. So, RF can be used to determine
the importance of each predictive variable over the target
variable.

Prediction is a highly interesting topic in machine
learning, which is, in turn, one of the branches of artificial
intelligence. As mentioned above, RF is based on decision
trees (DT). DT have been widely used in areas such as
medicine to yield a diagnosis since they are easy to inter-
pret. Basically, DT is a hierarchical set of nodes (starting
from a root node), where each node contains a decision
based on the comparison of an attribute with a threshold
value [36, 37]. DT-based learning goes from the observa-
tion of an object represented as branches of a tree to cer-
tain conclusions related to a target value of an object
(represented by tree values) [36, 37].

Previous studies use artificial intelligence techniques for
copper-related models. For example, in [8], a model based
on fuzzy logic is reported to predict ground vibration and
environmental impact due to blasts in the open-pit mine.
For this model, the toolbox fuzzy logic of MATLAB was used.
In [38], ANN was used to predict the copper ore flotation
indices of separation efficiency within different operational
conditions.

3. Materials and Methods

3.1. Experimental Description. Operational and piling data
are available for attaining the objective set by SCM Franke
company (environmental trade-off described in Section 2).
The company keeps records of planning and copper recovery
by heap leaching. These are called operational data (indus-
trial operation). Work has also been done with data collected
in a controlled environment. These data are known as piling
data, which are the result of tests in leaching columns using
strictly controlled measures on irrigation rates, acid concen-
tration in irrigation solutions, and operational cycles.

For the specific case of this study, both operational and
piling data were collected by two students in practice and
Professor C. Leiva (students under the supervision of Profes-
sor C. Leiva, coauthor in this paper) all from the Chemical
Department at the Universidad Católica del Norte, Chile. In
a similar way to what worked in [9], the parameters of these
data groups are fully described below:

(i) Agglomerate is measured in mm, where 80% of the
solids are below this value

(ii) Irrigation rate (RL) (L hr/m2) is the surface flow of
sulfuric acid in the pile

(iii) H+fed (gpl) is the volumetric flow of ILS (interme-
diate liquid solution) recirculating in the pile

(iv) The height of a pile is defined by the production
goals expected to be accomplished; that is, the piled
fine copper tonnage with which the production to
be obtained will be determined
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(v) Total Cu grade (%) is the total copper percentage
existing in the pile in the n day of operation

(vi) CO3 grade (%) is the carbonate percentage existing
in the pile in the n day of operation

(vii) Leaching ratio (m3/TMS) is defined by the amount
of sulfuric acid with respect to the total material to
be leached

(viii) Days of operation refer to the days elapsing from
the pile starting up to the end of leaching

(ix) Soluble Cu (%) is the percentage of copper soluble
in sulfuric acid present in the pile in the n day of
operation

(x) Class R (%) is the percentage of leached copper in
the n day with respect to the soluble copper present
in the pile in day 1 of operation

3.2. Operational Data. Operational data were collected
during time periods called leaching cycles emerging after soil
piling and the beginning of the irrigation process since day 1
to the last day of harvest. The leaching cycles in the company
are planned to last 65-70 days. Operational data were
obtained with a frequency of 4 hours during one year. Due
to the conditions of the process and operational decisions,
the irrigation of some piles or modules in service was
stopped, a fact that could render incongruent results when
modeling the system. For this reason and with the purpose
of avoiding unnecessary “noise” in the system, along with
storing poor data for the statistic model, the records of the
nonirrigation periods were deleted from the database.

3.3. Piling Data. Piling (or pilot plant) was conducted in two
agglomerate tanks of the same dimensions with a material
whose granulometry was less than 13mm in diameter. The
mineral was put in contact (irrigated) with a solution of sul-
furic acid and water and refined to form lumps of fine mate-
rial; this was made in order to give the mineral a proper
uniform size for the leaching stage and also help copper sul-
fidation via contact with acid solutions. The aforementioned
conditions vary according to leaching cycles to obtain piling
scenarios as close as possible to actual pile mineral exploita-
tion. Piling data were obtained in the same way as explained
for operational data.

3.4. Random Forest. As previously mentioned, random forest
(RF) is a predictive model based on decision tree (DT). The
RF supervised learning algorithm is based on the machine
learning theory which belongs to the ensemble methods
family [34]. These methods use supervised learning meth-
odology over a set of labelled data (training set) to make
predictions and produce a model which can be later used
to classify nonlabelled data [39]. It uses supervised learn-
ing methodology to collect data from parameter values
and threshold values, working on a set of training data
[40]. The method combines the idea of bagging with the
random selection of characteristics, so as to build decision
trees using controlled variance [37].

The RF model is successfully used in classification and
regression tasks, operating via the construction of multiple
decision trees during training, with the purpose of discover-
ing patterns existing in data. The method generates several
trees as subsets by combining several automatic learning
algorithms appropriately selected [33]. This method is a gen-
eral technique of random decision trees that combines the
idea of bagging with a random selection of characteristics,
with the intention of building decision trees with controlled
variance [34, 35].

RF is an ensemble method for classification and regres-
sion tasks, which operates through the construction of multi-
ple decision trees during training [34]. Additionally, RF is
useful for calculating the influence of predictive variables
on the target and also for calculating the importance of each
of these influences over the target. The calculation of this
importance is made with a metric calculated according to
impurity decrease in each node used for partitioning data.
In case of a classification, the class determined corresponds
to the mode of the classes provided by each tree. In case of
a regression, it corresponds to the average prediction of indi-
vidual trees. Random decision trees correct the DT tendency
to overadjust to their training set [41].

3.5. Case Study. Using operational and piling data, a case
study was conducted with a database of about 30,000 records.
For each parameter above, discrete values of low, normal, and
high were devised according to threshold values previously
defined by SCM Franke, which are commonly used in copper
leaching. In particular, this discretization considered data
standard deviation (σ) defining low (low value of the
variable), corresponding to values lower than a ‐σ; normal
(normal value of the variable), corresponding to values at
the interval [‐σ, σ]; and values considered high (high value
of the variable), that is, those greater than +σ.

3.6. Methodology. The methodology consists of 4 steps. The
initial step to collect data of both operation and piling are
considered a stage previous to the methodology described
below since these data (mainly operational data) were col-
lected during several years of operation. Parameter values
were grouped in periods including days of operation while
class (recovery) is described for each day of operation per
each period. Figure 1 shows examples of what was described
above. Figure 1(a) shows daily recovery in two consecutive
periods of operation, while Figure 1(b) shows daily recovery
in two consecutive periods, but with pilot plant (piling) data.
In detail, the steps of our methodology are as follows:

(1) Data Preparation. This stage included filtration tasks
and data selection per leaching cycles. Plant data were
obtained with a frequency of four hours in one year.
Due to process conditions and operational decisions,
the irrigation of some piles or modules in service was
stopped during some periods, a fact that could render
incongruent results when modeling the system. To
ensure operational data congruence, records corre-
sponding to irrigation suppression periods were
deleted from the database; these records were being
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substituted by the leaching ratio. Leaching cycles with
recovery values lower than 10% were also deleted
after day 15 of the operation because this indicates
an error in data acquisition

(2) Model Generation. In this stage, data were collected
and selected according to relevance in order to create
a predictive copper recovery model on the conditions
determined by the context of the study

(3) Model Visualization and Analysis. In this stage,
model results were visualized and analyzed to deter-
mine their validity. Evaluation consisted of checking
the performance of the models obtained with RF for
each dataset. To do this, values of certainty such as
accuracy, recall, and precision were calculated and
analyzed. The way these values of certainty were cal-
culated and their importance for model quality are
described below

(4) Result Analysis. In this stage, the analysis is aimed at
establishing if the results obtained are useful for the
industry. This was done by analyzing aspects such
as how optimal variable parametrization was or
how well classified training set instances were (confu-
sion matrix values)

To make the analysis in stage 3 above, a confusion matrix
was considered. The confusion matrix facilitates the analysis
necessary to determine an error in the classification, through
a sample of error distribution in the different categories.

In this matrix, performance indicators [42] frequently
used to evaluate classifier performance are described. They

are accuracy (Acc), recall (r), and precision (p). The way
these indicators are calculated is described in Equations
(1)–(3). The simplest indicator to evaluate a classifier per-
formance is accuracy (Acc), corresponding to sample
ratios correctly classified in the total number of examples
of the dataset [33]. This indicator can be calculated on
the basis of confusion matrix data according to Equation
(1) (the dataset is supposed not to be empty). The other
indicators, recall (r) and precision (p), are understood as
relevance measures.

The p value is the ratio of true positives (a) among the
elements predicted as positive (a + b). Conceptually, p value
refers to the dispersion of the value set obtained from
repeated measures of a quantity. Specifically, a high p value
indicates low dispersion in measures. The r value is the ratio
of true positives predicted among all the elements classified
as negative.

Acc = a + b
a + b + c + d

, ð1Þ

p =
a

a + b
, ð2Þ

r =
a + d
b + c

, ð3Þ

where a is the true positives, b is the false positives, c is the
true negatives, and d is the false negatives.
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Figure 1: Examples of recovery periods. (a) shows daily recovery in two consecutive periods of operation, while (b) describes two consecutive
periods with pilot plant (piling) data.
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4. Results

The problem described above was dealt with as a regression
instance, looking for obtaining a copper recovery prediction
numerically from data in each dataset (operational and pil-
ing). So, a model was obtained for both operational and pil-
ing data, the importance of associated variables being
studied in both cases. To obtain the models, the free Rapid
Miner Studio v 9.0 was used.

The strategy used in the model generation process was,
first, preparing data according to task 1 of the methodology
above. After the data preparation process (according to Sec-
tion 3), a file with 1638 records for piling and another with
2001 records for operation were obtained (both files in CSV
format). Previous studies such as [12, 34, 43] indicate that a
minimum value of 1000 input cases for RF minimizes error
in the classification and, at the same time, enables RF to make
more stable predictions. So, both datasets are considered
appropriate for generating the models.

In order to prepare the model evaluation and in a similar
way to what is done in [34], a parameter tuning phase was
performed. The models were evaluated using these parame-
ters (40-fold crossvalidation 10 times) and averaging final
results were taken. But the results of this validation were
not good, for roundness. So, a method based on hold-out val-
idation and similar to that performed in [34] was done as fol-
lows: for each dataset and using our defined optimal
parameterization, one part of each dataset was taken to adjust
the model and the rest of the sample for testing. In detail, to
adjust the models, 70% of the total data in each dataset was
used, leaving the remaining 30% for conducting the valida-
tion. The results and details of this are presented below.

4.1. Model Based on Random Forest Using Piling Data.
Table 2 summarizes the values obtained with RF in the
parameter optimization process during training with the pil-
ing dataset. The parameters of interest for the optimal
parametrization obtained in this model, that is, confidence
(Con), number of trees (NoT), max depth (MDp), and accu-
racy (Acc), were used for interpreting results; these values are
related to the confidence in a random tree model [43, 44].

Parameter Con is related to relative error, accord-
ing to studies such as [1, 44]. Therefore, the values
of Con = f25, 40, 55, 70, 85, 100g were used for grouping
the values of NoT, MDp, and Acc.

Figure 2 shows the values of Acc for each value of Con.
Figure 2 also shows that all the graphs indicate a decreasing
trend for parameter Acc, except for Con = 40. In this figure,
the best mean value of Acc is for Con = 100, the following
best values being for Con = 40, 55, and 85. In all cases
highlighted as the best, the average value of tree depth
(MDp) is 8.5. This may be interpreted as follows: the best
combination of parameters is given when the mean tree
depth of 8.5 is achieved; that is, this value represents the opti-
mal depth in this classification.

On the basis of the piling data, the confusion matrix of
this model was also obtained. In this optimization, 80% data
were used for crossvalidation and 20% for validation [40]
(Table 3).

Table 4 shows the importance of variables for this model.
The most important variable is “agglomerate H dose,”,
followed by variable “RL.” In contrast, the least important
variable is “soluble Cu.” Variables “operation day,” “H fed,”
and “CO3 grade” are over 10% of the value of importance, a
fact that may be interpreted as their having a good predictive
capacity for this model. This is not so for variable “Soluble
Cu,” which does not exceed the threshold value of 10%.

4.2. RF-Based Model Using Operational Data. This section
describes the results obtained with the operational data.
Table 5 summarizes the statistical values obtained with RF
in the parameter optimization process during training with
the operational dataset. Like the model using piling data,
parameters NoT, MDp, and Acc of optimal parametrization
were used for interpreting results, grouped according to
parameter Con. Figure 3 shows that all the graphs indicate
a decreasing trend for parameter Acc. Also, all the mean
values of Acc are quite close to one another (Table 5).

As can be seen in Figure 3, the best is when Con = 25.
Other important aspects are, on the one hand, that the mean
depth of trees increased (mean value = 12:7) as compared
with the previous model (mean depth = 9:2). This indicates
that a greater number of depth cases per each tree were clas-
sified, which is good for the model. On the other hand, the
number of trees decreased (mean value = 23:4) as compared
with the number of trees of the piling data model
(mean value of the number of trees = 62:5). This may indi-
cate that, as a whole, data were easier to group for the model
algorithm.

Thus, on the basis of the abovementioned data and as
shown in Figure 3, it may be stated that optimal parametriza-
tion for the operational data model is better than its equiva-
lent with piling data.

Similar to the previous piling model, the confusion
matrix for this model was also obtained, optimization proce-
dure being the same as the previous model. Table 6 shows
that all the values of recall (r) exceed 93%, the lowest being
for the label high, thus coinciding with the previous model.
Given this coincidence, the conditions for classifying records
in this label should be improved to make future classifica-
tions better. The performance of the model is reliable, given
the value p = 98:90% and the value of accuracy.

Table 7 shows the importance of variables for this model.
The two most important variables here are the same as those
of the piling data model (agglomerate H dose = 22:76% rela-
tive importance and RL = 18:86% relative importance). As

Table 2: Mean values of NoT, MDp, and Acc (as a percentage) for
each value of Con; optimal parametrization for each operational set.

Con NoT MDp Acc (%)
25 62.5 8.5 83.4

40 62.5 8.5 83.5

55 62.5 8.5 83.6

70 62.5 12.7 83.5

85 62.5 8.5 83.6

100 62.5 8.5 83.8
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can be seen in Table 7, the order or importance of variables is
the same as shown in the previous model (Table 4), but the
importance values are different. The least important variable
in Table 7 is the same as in the previous model (Cu soluble).
For this model, the percentage value of soluble Cu decreased
in about 1%. This means that, although the order of impor-
tance of variables is maintained, the relative importance of
the variables changes with respect to the previous model.
Since this model was developed using operational data, it is
prudent to consider that this order of importance is the most
convenient. Figure 4 illustrates the contrast described above.
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Figure 2: Evolution of parameter Acc for each of the values of parameter Con in optimization using piling data. The x values correspond to
weeks of operations and y values correspond to accuracy values for each Con of relative error.

Table 3: Confusion matrix for operation with piling data. Value of
accuracy = 98:72%.

True
low

True
medium

True
high

Class
precision

Pred. low 1039 12 0 99.86%

Pred.
medium

6 531 2 98.52%

Pred. high 0 1 47 97.92%

Class recall 99.43% 97.61% 95.92%
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Figure 5 summarizes the importance of variables accord-
ing to RF models for each experiment. Particularly, the figure
shows that variable H+fed (volumetric flow of ILS solution)
is the most important, followed by variables RL, total Cu
grade, and day of operation. The order of importance of the
variables remains in both classifications; that is, reproductiv-
ity of the conditions of the leaching pile in a controlled envi-
ronment (piling) is an accurate representation thoroughly
describing the pile, and therefore, piling can be used to pre-
dict pile copper recovery, with amuch lower cost and reliabil-
ity in the predictive model resulting from piling.

5. Discussion

Artificial intelligence techniques, specifically soft computing,
are being used in productive industry to generate predictive
models that improve industrial activity [25]. Random forest
(RF) was used in this study to predict copper recovery by
leaching. Predictive models using RF have been recently pub-
lished by the mining industry, showing good results such as
those reported in [3, 12, 33], but these studies were directed
to objectives different from copper recovery prediction.

In recent papers such as [9], artificial intelligence com-
puting tools (particularly machine learning algorithms) have
been reported, but no evidence of the use of RF has been
found in the literature to predict copper recovery. However,
these works have helped to identify and relate information
that directly influences to improve the copper recovery pro-
cess by leaching.

The study published in [3] highlights that machine
learning algorithms, since they are artificial neural net-
works, regression trees, random forest, and support vector
machines, make up powerful tools currently scarcely used

in the copper mining industry, though there should be a
tendency to increasingly use these machine learning tools
in the present mining industry.

In RF, each tree is developed on the basis of the bootstrap
algorithm philosophy. This may mean that the classification
obtained for each tree is precise, thus causing a positive
impact on the models presented here. In addition, this phi-
losophy of work has made it possible to use all datasets in
the classification and generate the models. The model preci-
sion obtained in this study is similar in both cases. The model
for both datasets shows that a wealth of information was used
to interpret the influence of predictive variables on class. For
example, the order of the variables of interest is similar in
both models and the performance shown by variables Acc,
p, and r enables concluding that both models have a good
quality and could be used to predict copper recovery in new
cases with a good reliability value.

The capacity to identify the importance of variables for
the model using training data (piling) is similar to the one
shown by the model using actual data (operation). This was
an expected result since the leaching material was the same
in both cases, but this result validates the applicability of
the machine learning algorithm selected for generating the
models.

On the basis of the above described information, the
objective of environmental trade-off was accomplished
because model performance is optimal, and in both cases,
the greatest number of records was classified as normal,
when the acid irrigation rate lies between 20 and 50 g/l
(normal value).

6. Conclusions

Copper recovery prediction by hydrometallurgical methods
and, particularly, leaching is usually made with the help of
mathematical models, but soft computing techniques can
help create complex computational models [45] that help in
this prediction. Recently, an increase in using soft computing
tools in the industry has been observed [9, 13, 39], but in this
particular case, the literature does not contain many studies
reporting the use of RF to generate a copper recovery predic-
tion model.

This study resulted in the generation of two copper
recovery prediction models using the leaching method.
Actual data (operation) were used in one of the models, while
the other model was generated with hive-simulated data
which had the same characteristics as the material to be lea-
ched and the lixiviant. In both cases, the models achieved
an excellent predictive quality, one of the cases reaching
100% prediction for the label high, the mean being higher
than 95% precision. In this way, it excelled in what was posed
in the objective of this study (described at the beginning of
this document).

As recently published in [9], a comparison between a lin-
ear model and an artificial neural network (ANN) for pre-
dicting copper recovery is made. One of the conclusions of
this study is that ANN exceeds the linear model in terms of
precision, but as conclusion at the present work, the interpre-
tation capacities of RF-generated models exceed those of

Table 4: Importance of variables for the piling data model.

Attribute Importance Relative importance (%)

Agglomerate H dose 13.74 19.31

RL 13.42 18.86

Total Cu grade 11.11 15.61

Day of operation 8.92 12.54

H fed 8.82 12.40

CO3 grade 8.39 11.79

Soluble Cu 6.75 9.49

Table 5: Mean values of NoT, MDp, and Acc (as a percentage) for
each value of Con; optimal parametrization for each operational
dataset.

Con NoT MDp Acc (%)
25 23.0 13 91.9

40 23.6 12.7 91.6

55 23.6 12.7 91.6

70 23.6 12.7 91.6

85 22.9 12.7 91.6

100 24 12.7 91.6
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ANN from the work previously mentioned, thus making it
easier to arrive at conclusions.

This study helped make a comparison between two cop-
per recovery prediction models in the same work context.

Adjustment precision measure indicates that the RF algo-
rithm is highly useful for processes to predict future copper
production.
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Figure 3: Evolution of parameter Acc for each value of parameter Con in optimization using operational data. The x values correspond to
weeks of operations and y values correspond to accuracy values for each Con of relative error.

Table 6: Confusion matrix for the operation with operational data.
Value of accuracy = 98:90%.

True
low

True
medium

True
high

Class
precision

Pred. low 1487 7 0 99.53%

Pred.
medium

10 434 5 96.58%

Pred. high 0 0 68 100.00%

Class recall 99.33% 98.38% 93.15%

Table 7: Importance of variables for the operational data model.

Attribute Importance Relative importance (%)

Agglomerate H dose 23.02 22.76

RL 18.32 18.86

Total Cu grade 16.28 16.10

Day of operation 12.63 12.49

H fed 11.07 10.95

CO3 grade 11.01 10.89

Soluble Cu 8.79 8.69
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Figure 4: Comparison of parameter values for each value of parameter of interest for the optimal parametrization, obtained in each of the
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In addition, experience was gained for defining and
implementing the predictive model in the leaching domain
on this specific work context. This experience may be used
for other simulations of processes relative to the improve-
ment of results to obtain copper at SCM Franke by means
of soft computing techniques or other companies of the same
industrial production sector.

What was said about model performance, the capacity to
identify the influence of variables on class, and the capacity to
interpret results, etc., is very important in the copper industry
because it allows generating supporting tools for material
exploitation planning, along with viewing, via indicators gen-
erated with this type of model, copper recovery results in the
presence of a certain material. It also allows properly select-
ing both the most influential variables and the values of those
variables to achieve the desired recovery. This may have a
considerable impact on the intelligent exploitation of this
mineral, considering the increasing demand and lack of this
industrial activity.

To conduct this study, a methodology was proposed;
results obtained by following the methodological steps
devised show excellent quality and are replicable for other
copper leaching piles to study the future performance of cop-
per recovery using the prediction method. Also, this method-
ology can be transferred to other copper leaching processes,
including the knowledge of this particular process to generate
a predictive model. In this way, this study may indicate a
future line of research.
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Building the fingerprint map for indoor localization problems is a labour-intensive and time-consuming process. However, due to
its direct influence on the location estimation accuracy, finding a proper mechanism to construct the fingerprint map is essential to
enhance the position estimation accuracy. Therefore, in this work, we present a fingerprint map construction technique based on
location fix determination and fingerprint matching motivated by the availability of advanced sensing capabilities in smartphones
to reduce the time and labour cost required for the site survey. The proposed Location Fixing and Finger Matching (LFFM) method
use a landmark graph-based localization approach to automatically estimate the location fixes for the Reference Points and
matching the collected fingerprints, without requiring active user participation. Experimental results show that the proposed
LFFM is faster than the manual fingerprint map construction method and remarkably improves the positioning accuracy.

1. Introduction

With the increase of ubiquitous deployment of Wi-Fi
infrastructures both at indoor and at outdoor environments
together with the exponential multiplication of mobile com-
puting devices, intense attention has been paid to various
approaches of Wi-Fi network aided location tracking [1].
Such positioning methods are extremely useful in applications
such as visitor navigation inmuseums or large buildings where
GPS signal is not available: elderly health care positioning sys-
tems, facility management, transportation, and emergency
rescue [2, 3]. In this respect, fingerprinting techniques became
particularly popular for indoor localization.

More formally, utilizing the existing Wi-Fi infrastruc-
tures [4], the fingerprinting approach involves two distinct
phases: offline map construction and online location estima-
tion. In the offline phase, a site survey is conducted to collect
Received Signal Strength (RSS) at known locations called
Reference Points (RPs), which usually contain the Media
Access Control (MAC) address of visible Access Points
(APs). The RPs’ coordinates along with their corresponding

RSSs are then stored in a radio map database. The latter is
used in the second phase, referred to testing or online phase,
which, through some interpolation or machine learning-
based technique, enables the system to infer the position of
an unknown (mobile) target given its RSS value. Neverthe-
less, radio map construction often requires a large number
of locations—labelled RSS fingerprints—gathered from
either wireless APs or RPs, often evenly distributed within
the area of interest, in order to ensure a good positioning
accuracy during the testing phase. Besides, in order to
account for the inherent deficit of wireless signal propaga-
tion, several samples, executed with special care, are needed
at each measurement.

Therefore, and from our personal experiences as men-
tioned in [5], a major challenge in constructing efficient radio
map is the expensive time requirement and labour-intensive
site survey process, hindering a wide set of potential applica-
tions, which, in turn, promote RSS fingerprinting
localization-based techniques. Besides, the complex and
dynamic nature of the indoor wireless environment, which
makes radio map maintenance difficult as the signal, is easily
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influenced by the structures, layout, and pedestrians around
the study site. In order to deal with the radio map construc-
tion challenge, many research works have been performed
to expedite the site survey process while ensuring high-
quality standards. For instance, the Simultaneous Localiza-
tion and Mapping (SLAM) [6–8] can be used to construct
the radio map with lower survey cost, but it may be unsuit-
able to work on the resource-limited handheld devices such
as smartphones due to its heavy computation load [9].
Although many map management methods (e.g., Map Filter-
ing [10] and pedestrian dead-reckoning [11]) can be
employed to infer a user’s initial location and improve SLAM
performance accordingly, their associated high computa-
tional cost restricts their implementation in resource-
limited ubiquitous devices. Alternatively, the
crowdsourcing-based radio map construction has been pro-
posed recently in both active and passive formats [10]. While
the active crowdsourcing method requires active user partic-
ipation, which reduces the need for professional surveyors, it
may suffer from intentional frauds due to user participation.
On the other hand, the passive crowdsourcing approach
reduces user participation by utilizing information from
smartphone inertial sensors in order to associate fingerprints
to the corresponding RPs. Although the passive crowdsour-
cing is more practical, its main drawback lies in the low accu-
racy and the need for GPS readings, which, in turn, may
constrain the application scope [12]. Therefore, using the
high-end smart devices that are equipped with a variety of
sensors (e.g., a barometer that detects floor change in the
building) can be vital to improving user experience and
crowdsourcing-based radio map construction, which, ulti-
mately, enhances the indoor localization system and
expands the applicability of the underlying localization ser-
vices. However, the accumulated error of many inertial sen-
sors grows over time for instance gyroscope; also, to the
potential uncertainty pervading the locations of APs, it may
force special care and a regular update that utilizes the envi-
ronment knowledge.

In this respect, a new passive fingerprint crowdsourcing
method has been proposed in this paper. More formally, this
work proposes a landmark graph-based localization method
for automatically estimating the location of RPs matched
with the collected fingerprints in order to design a practical,
fast, and reliable fingerprint data collection method using
sensor-rich smart devices. Compared to other existing
methods, our technique can significantly build a fast finger-
print map with a minimum user participation while ensuring
high standards in terms of accuracy and reliability due to the
incorporating of a belief factor that accounts for the RPs and
assesses the quality of location fixes of RPs, so that only those
location fixes that are associated with high quality are
matched with the corresponding fingerprints. This achieves
better location accuracy than Map Filtering and Pedestrian
Dead Reckoning (PDR) [13]. Besides, the accuracy of the
constructed radio map is compared to state-of-the-art
approaches ZEE [10] and manual fingerprint map building
techniques [14].

The rest of this paper is organized as follows: Section 2
describes the related work in the field. Section 3 details the

proposed system, while Section 4 describes the LFFM
technique based on a landmark graph, Section 5 describes
the fingerprint map construction, Section 6 explains the
experimental findings, and Section 7 draws the conclusion.

2. Related Work

Indoor localization has been an active area of research for
the past three decades, initially in the context of mobile
robot navigation and more recently in the context of perva-
sive and mobile computing where the issue of environment
mapping is crucial for a variety of applications requiring var-
ious levels of accuracy. In this course, one distinguishes
approaches that make use of existing infrastructures (e.g.,
Wi-Fi APs as in RADAR [15]) and those that require special
deployment infrastructure (e.g., infrared beacons as in
Active Badge [16] and ultrasound devices as in Cricket
[17]). In the area of mobile robotics, a significant step was
achieved by the emergence of Simultaneous Localization
and Mapping (SLAM) which allowed a robot to build a
map of the indoor environment, usually, in terms of walls
and other obstruction objects, while simultaneously deter-
mining its location with respect to the constructed map.

In the SLAM group, special attention has been drawn to
the offline map construction techniques that often employ
motion and system models, where several approaches have
been proposed, typically, such methods differ according to
the employed sensors, type of prior knowledge available,
and the used mapping techniques [6–8]. For instance, one
may distinguish the recently populated GraphSLAM [18],
which transforms the SLAM posterior into a graphical net-
work, where a greedy algorithm is usually used for data asso-
ciation. Traditionally, the positions of landmarks (objects) in
the environment are estimated using a laser range finder like
a sensor (either fixed or scanning through the environment)
embedded in some mobile platform, which yields a relatively
accurate estimate of the RPs with respect to the local frame. A
critical assumption is that these landmarks do not change
position during the journey. In the case of nonstatic of either
the mobile platform or landmarks, due to the accumulation
of the relative positioning error throughout the journey,
a correction step is required, yielding an updated map of
the environment. For example, the WiFi-SLAM system
proposed in [8] uses a Gaussian Process Latent Variable
Model to associate Wi-Fi fingerprints in combination with
a motion dynamics model without requiring any location
labels in the training data. Authors in [19] used GraphSLAM
in order to improve the computational efficiency of theWiFi-
SLAM system and relieve its dependency on the requirement
of fingerprint uniqueness assumption. WiSLAM [7] uses a
Bayesian framework to fuse WiFi RSS with data from a foot
mounted inertial measurement units for localization and
mapping. In [6], a Smart SLAM is proposed to construct a
radio map through a fruitful combination of different fusion
algorithms, namely, PDR algorithm, Fingerprint Extended
Kalman Filter (FEKF), Fingerprint Extended Kalman Filter
SLAM (FEKF-SLAM), and Distributed Particle SLAM
(DPSLAM). However, the heavy computation load of these
SLAM systems prevents them from being implemented on
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resource-limited handheld devices such as smartphones.
Moreover, another disadvantage of such filtering-like tech-
niques is that the data, once processed, is often discarded.
This makes it impossible to revisit all data at the time of a
map building task [18].

In contrast to those above computationally expensive
map building techniques and costly labour-based site sur-
vey methods, crowdsourcing has emerged as a natural
participatory model that benefits from daily user activities
and widespread of smartphone devices. In this respect, one
distinguishes active crowdsourcing [20–22] and passive
crowdsourcing [10, 23, 24]. The active crowdsourcing
methods construct a radio map by utilizing the user feedback
where the surveyors are volunteers who decided to share RSS
signal at specific locations of the environment. Especially,
authors in [9–11] highlighted several clear advantages of
such techniques. First, the underlined radio map can provide
robust and accurate fingerprint data even when it is built
solely on short-duration RSS measurements. Second, there
is no constraint on the type and the number of devices
employed. As a result, the active crowdsourcing eliminates
the need for costly professional surveyors. Nevertheless, this
should not hide some implicit limitations as well. For
instance, since users carry heterogeneous devices, this can
result in a radio map built where RSS values originated from
diverse devices with distinct chipsets and antenna designs,
which affect the calibration or consistency of employed radio
model, even when the devices were placed at exactly the same
positions. It can also result in holes in terms of data sparsity
with no designated fingerprint collection points. Indeed,
since the radio map is updated by untrained voluntary users
without centralized controls, different users can upload their
fingerprint data that is collected at slightly different locations
but with the same location label. Multiple fingerprint data
indicating one particular location not only cause slow loca-
tion estimation but also store space wastage in a radio map
server. Finally, since it requires active user participation, this
technique may suffer from intentional frauds [20]. A partic-
ular example of an active crowdsource system the Organic
Indoor Location (OIL) [20] that periodically asks the users
to bind their measurements along with their locations on
the floor plan, providing information about the nearby wire-
less resources, then the determined position is reflected into a
global map. Similarly, FreeLoc [21] and Mobile Organic
Localization Engine (Mol’e) [22] use semantic labels rather
than exact floor maps to annotate fingerprints with locations
such as rooms, hallways, and corridors.

On the other hand, passive crowdsourcing methods asso-
ciate fingerprints with the corresponding RPs with the aid of
smartphone inertial sensors. For example, EZ [23] uses occa-
sional GPS fixes together with reported RSS measurements of
specific APs arising from users’ participation to build a radio
map that does not require any predeployment effort. Never-
theless, the reliance on the method on the existence of occa-
sional GPS fixes might be an issue in an indoor environment,
which delays the map construction until the availability of
GPS signal. Zee [10] utilizes smartphone inertial sensors to
track the user while performing Wi-Fi scan simultaneously,
which enabled the authors to construct a radio map in a non-

intrusive way. However, the approach uses magnetometers to
calculate the direction, which is easily affected by building
structure, service amenities, and furniture in indoor environ-
ments. Besides, its use of the particle filter to fuse inertial
sensors with a floor plan is computationally expensive,
which makes it unsuitable for running on resource-limited
devices. LiFS [24] builds the radio map by exploiting the
built-in sensors of the mobile device with the floor plan of
the testing environment, which resulted in a relatively fast
deployment process and a less labour effort. Especially, it
was shown that LiFS works well in buildings exhibiting some
spatial symmetry of the environment layout; e.g., office
rooms are connected by a corridor and are equally distrib-
uted on both sides of the corridor, but may fail to work on
other types of buildings. Although the passive crowdsour-
cing significantly reduces the labour cost of site surveying
task and does not require active user participation, it has
several problems too. This includes low accuracy, limited
applicability to hand-device implementation constraints,
and more importantly the requirement for GPS readings.
Table 1 summarizes some of the most common fingerprint
map construction techniques.

Our work falls in the class of methods that rely on the
existing infrastructure, namely, Wi-Fi network, without
recourse to any additional deployment or detailed floorplan
and exact AP placements, which distinguishes it from works
in [20, 22]. Similarly, our approach also belongs to the class
of passive crowdsourcing methods in the sense of enabling
random smartphone users to participate in the radio map
construction task as in [21], but with the additional step
of utilizing inertial device sensory information in order to
estimate the RPs positions. In addition, our approach intro-
duces a confidence factor (called belief factor) that accounts
for the quality of location fixes of RPs, so that only those
location fixes that are associated with high quality are
matched with the corresponding fingerprints. Our approach
also bears similarity with Gu et al.’s work [13] that makes
use of mobile inertial sensors for position estimation but
with the additional use of crowdsourcing technology and
confidence factor analysis in the pattern-matching task. Like-
wise, our work bears similarity with EZ’s approach [23] with
the difference that our proposal does not require any GPS fixe
locations, making use of device inertial sensors. Besides, we
also restrict to cases where some prior information about
the environment through floor plan is provided, which
excludes fully unknown environment scenarios as in some
other studies.

3. System Overview

The outline of the proposed fingerprint collecting technique
based on Location Fixing and Fingerprint Matching (LFFM)
is shown in Figure 1. It is composed of two main modules:
Location Fixing of RPs and Fingerprint Matching.

The Location Fixing module receives measurements from
the built-in smartphone sensors and is fed with a landmark
graph [13]. The sensor measurements—basically, barometer,
accelerometer, gyroscope, and magnetometer—are used to
determine the step size and directional heading of the
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particular user using the well-known Pedestrian Dead Reck-
oning (PDR) method described in [37]. The estimated step
size and directional heading are then employed to infer the
current user position in real time with respect to the land-
marks according to the provided landmark graph. In this
respect, a landmark processing task is necessary in order to
reduce the error accumulation of the PDR, in addition to
position calibration based on landmark detection.

The Fingerprint Matching module uses the fixed loca-
tions estimated by the Location Fixing module and the
scanned Wi-Fi signal information (MAC address and cor-
responding RSS) to generate the fingerprint radio map.
Location estimates together with the corresponding match
fingerprint are then added into the radio map—only if they
meet a certain quality requirement, which will be detailed

later on. This constraint is added to guarantee the accuracy
and reliability of the generated fingerprint map. More details
on the algorithm will be elaborated in the next section. How-
ever, initially, Table 2 will help the reader to navigate through
the article by providing a list of abbreviations.

4. Location Fixing and Fingerprint Matching
(LFFM) Based on Landmark Graph

4.1. Landmark Detection. Our approach utilizes the fact that
naturally spread smartphones in indoor environments are
rich with powerful sensors and sensing ability. In our work,
a landmark will refer to spatial points where sensor measure-
ments indicate an identifiable and distinguishable pattern or
change in pattern. For example; corners and turns will force

Table 1: Fingerprint map construction techniques.

Methods System name Algorithm and requirements Accuracy of RM Testbed area

Crowdsourcing

RedPIN [25] Label position by user, indoor map Room level (90%) 26 rooms

Molé [22] Kernel, accelerometer Room level (91%) 3-floor building

FreeLoc [21] Relative RSS comparison <3m A laboratory,
a corridor

SLAM

WiFi-SLAM [8] GP-LVM, initial ISO map model 3.97m (ME) 250–500m (traces)

SignalSLAM [26]
Least square, PDR, GraphSLAM, landmarks,
accelerometer, gyroscope, magnetometer

<16.5m (MD) 200m × 160m

Graph-SLAM [18, 19]
Sparse graph, constraint optimization,

least square, linearization, approximation,
EKF SLAM, accelerometer, GPS

<10m Urban area
600m × 800m

Inertial sensors

Zee [10]
DR, augmented particle filter, indoor map,
accelerometer, gyroscope, magnetometer

1.2m (50%),
1.8m (80%)

65m × 35m

LiFS [24] DR, feature extraction, indoor map, accelerometer 5.88m (ME) 70m × 23m
WILL [27] PDR, K-means, accelerometer Room level (86%) 70m × 23m

Semisupervised
learning

Manifold learning [28]
Manifold alignment, inherent spatial correlation

of RSS, path loss model, partial RPs, APs’
locations, indoor map

3.8m (ME);
2.4m (ME)

40m × 30m, 5 APs;
40m × 20m, 4 APs

Coforest [29]
Implicit crowdsourcing sampling, random forest

ensemble classifier, partial RPs, RSS
3.65m (ME) 800m2, 30 APs

Unsupervised
learning

WRM [30, 31]
HMM, EM, memetic algorithm, path loss model,

indoor map, APs’ locations
Around 3m (ME) 80m × 32m, 30 APs

Path loss model

ARIADNE [32]
Ray tracing, path loss model, simulated
annealing algorithm, APs’ location,

partial RPs, indoor map
3m (ME), 2.5m (STD) 65m × 48m, 5 APs

Multiwall Path
Loss Model
(MWM) [33]

MWM, APs’ location, indoor map, parameters
setting for Gaussian distribution, Euclidean

distance error, kNN
1.2m (ME) 480m2, 3 APs

Interpolation

Inverse Distance
Weighting (IDW) [34]

RSS, interpolation and extrapolation methods,
estimation error statistics, uniform grid,

IDW, probabilistic positioning
5~20m (ME)

150m × 60m,
316 2.4GHz APs,
106 5GHz APs

Kriging [35]
Kriging algorithm, spatial interpolation,

semivariogrammodel fitting, unbiased estimation,
RSS, K-weighted nearest neighbours,

1.12m (ME) 9.5m× 2.5m, 9 APs

Forward
Interpolation [36]

cubic spline, boundary condition
(fixed, zero-slope natural, nonnode),

RMS, RSS
2.82m (best) 5 rooms, 4 APs
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users to change walking direction, while, stairs and elevators
are highlighted by elevation change. Similarly, doors are trig-
gered whenever a change in the velocity is identified, and
thus, a movement pattern can be predicted.

For this purpose, we utilize information issued from iner-
tial sensors, mainly, barometer, gyroscope, and accelerome-
ter for landmark detection. The detection of landmarks is
based on the distinct change of pattern in one or more types
of sensor readings. The locations of these landmarks corre-
spond to the locations of elevators, stairs, corners, turns,
and doors that can be simply obtained from floor plans,
which is usually available for most indoor environments.

More formally, a landmark L can be defined as

L : < x, y, zð Þ, R1,⋯, RNð Þ > , ð1Þ

where ðx, y, zÞ denotes the location of the landmark accord-
ing to the underlined floor plan and ðR1,⋯, RNÞ represents
the set of detection rules, according to the different types of
sensor measurements, satisfied by the corresponding land-
mark, where N corresponds to the number of rules triggered
by this landmark. Typically, each device inertial sensor would
trigger one or more rules associated to the constraints on the
measurement values/patterns linked to each landmark type.

4.1.1. Barometer-Based Landmark. The barometer sensor
measurements provide information about vertical movement
detection, for example, a user going upstairs, going downstairs,
or taking an elevator, since the barometric value changes with
the altitude or height. Although the barometric pressure is
influenced by many factors such as temperature and altitude,
due to the relatively instantaneous measurement time, such
factors are discarded in this work, and we only account for alti-
tude information. The change in the barometer readings,
when a user walks horizontally, upstairs/downstairs, or takes
the elevator, can be shown in Figure 2.

Here, the entrance and exit of stairs and elevators are
considered barometer landmarks due to their pattern repre-

sentation in barometer pressure measurements, since it is
distinctive, identifiable, and stable. The entrance detection
includes a “horizontal movement→vertical movement” pat-
tern. Similarly, the exit detection includes a “vertical move-
ment→horizontal movement” pattern.

More formally, having observed the change in barometer
readings as shown in Figure 2, where it is almost a linear
change when the user moves vertically, in this case, the linear
model can be used to fit those readings; then, let pi denote the
pressure of the ith window of air pressure readings at time t,
and let βbar1 and βbar2 be the thresholds used to detect hori-
zontal movement and vertical movement, respectively. Then
Rbar rule to detect the entrance to a set of staircases or an ele-
vator can be defined by the following rule:

Rbar1 :
�
loct when pi − pi−1j jð Þ < βbar1 AND S1j j

= = Kp1
AND pi + Kp1

− pi
��� ��� > βbar2

�
:

ð2Þ

The first term is for detecting horizontal movement, and
the latter two terms are for detecting vertical movement. The
thresholds βbar1 and βbar2 on horizontal and vertical move-
ments are set manually after an extensive testing phase.
Although many algorithms can be used to determine the
thresholds experimentally [38], for the time being, it is out
of the scope of this work, thus all the thresholds are set man-
ually based on the empirical test as shown in Table 2, for
example, and as illustrated in Figure 2, βbar1 can be calculated
as ð1013:4 − 1013:2Þ/4 sec = 0:05 hPa for every second in
case of going up or down on the stairs.

The function S1 can be defined as

S1 = 〠
i+Kp1

j=i+1
sgn pj − pj−1

� �� �
, ð3Þ

Floor plan Landmarks processing

Landmarks detection
and

location fixing

Signal processing
and

fingerprint matching

Radio m
apping

Smartphone

Accelerometer Gyroscope Compass

GPS Light sensor Barometer

Figure 1: System architecture.
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where sgn is the signum function, which can be
described as

sgn pj − pj−1
� �

=
1, if pj > pj−1,
0, if pj = pj−1,
−1, if pj < pj−1:

8>><
>>: ð4Þ

Similarly, the rule to detect the exit from a set of staircases
or an elevator can be defined by the following rule:

Rbar2 :
�
loct when pi − pi+1j jð Þ < βbar1 AND S2j j

= = Kp2
AND pi + Kp2

− pi
��� ��� > βbar2

�
:

ð5Þ

Then the function S2 can be defined in the same spirit
of (2):

S2 = 〠
i+Kp1

j=i−Kp2 +1
sgn pj − pj−1

� �� �
: ð6Þ

The two values Kp1 and Kp2 are not constant, but are
determined dynamically. Their initial values can be set to
1 and gradually increase as long as the value of the signum
function was kept unchanged.

4.1.2. Accelerometer-Based Landmark. The motion that pre-
sents a distinct change pattern can also be measured by the
accelerometer. It can be considered, where a point that wit-
nesses the changing pattern of “walking→steady→walking”
(of course for an acceptable short period, i.e., one second or
few seconds) can be regarded as a potential accelerometer
landmark (the term still or steady refers to motionless
action). This pattern may happen when passing doors as
shown in Figure 3 or passing water fountain, which can be
detected by comparing the magnitude of the accelerometer
measurement against a predefined threshold (which is again
set based on empirical results). A location point is regarded
as an accelerometer landmark if the accelerometer readings
present this changing pattern every time the user passes it.
Formally, the rule Racc of accelerometer landmarks is defined
by the following rule:

Racc :
�
loct whenmt−β1:t

is walking ANDm t:t+β2ð Þ

is steady ANDmt+β1
is walking

�
,

ð7Þ

wheremt represents the motion state (e.g, walking, steady) at
time t. β1 and β2 are two thresholds that are set empirically to
determine the period of the corresponding motion state.

4.1.3. Gyroscope-Based Landmark. A location point where
the gyroscope measurements present a distinct and stable
pattern is considered a gyroscope landmark. The magnetom-
eter can also be used to detect a change in direction, but its
measurements tend to be affected by ferromagnetic materials.
Therefore, gyroscope measurements seem to be more suit-
able for detecting the change in direction in our experiment.
The target is to determine the right and left turn patterns as
shown in Figure 4. This pattern can usually be witnessed at
the location of a turn, corner, or door. The rule Rgyr to detect
a gyroscope landmark can be set as

Rgyr : loct when _θt

��� ��� > βgyr

� �
, ð8Þ

where _θt is the gyroscope measurement along the vertical
direction. When the absolute value of _θt is greater than a cer-
tain threshold βgyr, this location point can be considered a
potential gyroscope landmark. Trivially, the initial direction
heading can be set to north or south depending on the under-
lying environment orientation.

Table 2: List of abbreviations.

Rbar Barometer landmark rule

Racc Accelerometer landmark rule

Rgyr Gyroscope landmark rule

βbar1 Barometer horizontal movement threshold

βbar2 Barometer vertical movement threshold

pi
Pressure of the ith window of air

pressure readings at time t

mt
Represents the motion state

(e.g., walking and stationary) at time t

β1 Accelerometer threshold for walking state

β2 Accelerometer threshold for steady state

_θt
Gyroscope measurement along the

vertical direction

βgyr Gyroscope threshold

St Step length

θt Heading direction

Pt Pressure values at time t

Pdiff a,bð Þ Pressure difference between floor a and floor b

con lkð Þ Confidence level of land mark

δ Rk, R∗
tð Þ Validity of rule detection

r θk, θ∗tð Þ Validity of path detection

g dk, d∗tð Þ Ratio of moved distance

βθ Heading direction threshold

βcon Confidence threshold

PS Path segment connecting two neighbour landmarks

bel PSð Þ Quality belief of path segment PS

T Step periodicity

βbel PSð Þ
Threshold of belief value bel PSð Þ

of the path segment PS

Tr Trajectory
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4.2. Landmark Graph for Location Fixing of RPs. A land-
mark graph can be defined as a directed graph where
nodes are landmarks and edges are accessible paths with
heading information.

Let G = ðL, EÞ denote a landmark graph where L = fl1,
l2,⋯, lNg is a set of landmarks and E = fe1, e2,⋯, eMg is
the set of edges in graph G. Each edge ei consists of the
two landmarks, direction from one landmark to another,
and the corresponding distance between them, ei = <l j, lk,
θjk, di > . Note that the direction from landmark l j to land-
mark lk is different from that from lk to landmark l j. In other
words, there are two edges between any two neighbour land-

marks. The general algorithm for Location Fixing and Fin-
gerprint Matching (LFFM) using a landmark graph in
indoor localization is shown in Figure 5.

The details of each task in Figure 5 is commented as
follows:

(1) The construction of the landmark graph requires
location landmarks, which can be extracted from a
floor plan. Most buildings are symmetric. For
instance, floors of the same building have a similar
or almost identical layout, so that by changing floor
information on its landmark graph, we can easily
obtain the landmark graph for another floor
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(2) The step detection is done via detecting acceleration
peaks, where each acceleration peak corresponds to
one step. In order to distinguish the walking state
from the steady state, we check if the change of the
acceleration within the detected time window is
greater than the set threshold. If a step is detected,
then the corresponding heading direction and step
size are computed

(3) Using the inertial sensor measurements and the PDR
technique, the user’s position at each step can be cal-
culated given his/her initial location as follows:

xt = xt−1 + St sin θtð Þ, ð9Þ

yt = yt−1 + St sin θtð Þ, ð10Þ

f t = f t−1 −
Pt − Pt−1
Pdiff a,bð Þ

, ð11Þ

where xt and yt are the user coordinates at floor f t at
time t and St is the corresponding step length and θt
the heading direction. Pt and Pt−1 are the air pressure
values at time t and t − 1, respectively. And Pdiff ða,bÞ is

the air pressure difference between floor a and floor b.
Adding the threshold values for both step detection
and direction heading will ensure values and of
course a robust position when these landmarks are
added later to the localization map

(4) While the PDR is conducted to estimate the location
of the user, the measurements from the barometer,
gyroscope, and accelerometer are simultaneously
used to detect landmarks. Although both the gyro-
scope readings and compass readings (inferred from
accelerometer readings and magnetometer readings)

can be used to estimate the heading, they cannot pro-
vide a robust heading estimation since the gyroscope
has the drift problem and the compass is vulnerable
to ferromagnetic materials [39]. Therefore, the land-
mark graph is used to assist with the heading direc-
tion estimation. If a user is detected to walk on the
path connecting two landmarks in the landmark
graph, the heading from this landmark graph will
be used. Otherwise, the compass readings will be used
as the heading. Also, the step size is updated when a
user passes two neighbouring landmarks in the land-
mark graph. Let l1 and l2 indicate the two neighbour
landmarks that a user passes subsequently. Given the
ðx, yÞ coordinates of each of these landmarks, and the
number NS of detected steps between them; then the
step size S can be calculated as follows:

S =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xl1

− Xl2

� �2 + Yl1
− Yl2

� �2q
NS

ð12Þ

The step size estimation method does not require the
user’s stature information and can adapt to varying walking
speeds, and it is updated as the user passes two neighbour
landmarks on the landmark graph.

Using landmarks for assisting localization may result in a
need to solve the data association issue [40], in other words,
when there are multiple landmarks nearby, or when there is
a case that one or more landmarks are missed from sensor
data, or mainly it can be used to avoid false detections.

We need to have a measure of how much confidence a
location points meeting the landmark detection rule. The
confidence that a location point is matching should be con-
strained by the following facts; first, the detected landmark
should be a valid detection for one of the landmark types;
second, it has to fall within the same moving direction; in
other words, there should be somehow a path between the
estimated landmark at a specific time and the landmark at
an earlier time; third, it has to have an acceptable distance
from the previous detection. Formally, let lk be a landmark
then the confidence conðlkÞ in the landmark graph can be
calculated as

con lkð Þ = δ Rk, R∗
tð Þ · r θk, θ∗tð Þ · g dk, d∗tð Þ, ð13Þ

where k is the index of a landmark in the landmark graph, Rk
is the detection rule of the reference landmark lk, and R∗

t is
the type of the detected landmark at time t; then δðRk, R∗

t Þ
is the validity function of the detected landmark, with δ as
the Dirac delta function that is denoted as

δ Rk, R∗
tð Þ =

1, if Rk = R∗
t ,

0, otherwise:

(
ð14Þ

From (13), where θk and θ
∗
t are the reference heading and

the estimated heading from the time visiting the last

Start

Detecting step events using the
accelerometer measurements

Estimating the location of the user at
each step using PDR

End

Constructing the landmark graph of
the indoor environment

Detecting landmarks and correcting
the estimated location

Figure 5: Landmark detection algorithm.
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landmark to time t. Then, the path validity r is the rectangle
function adopted from our earlier work [14] and can be
described as

r θk, θ∗tð Þ =
1, if θk − θ∗tj j < βθ,
0, otherwise,

(
ð15Þ

where βθ is a heading direction threshold, when dk and d
∗
t are

the reference distance and the traveled distance from the last
landmark to the location point. Then the distance weight
function g is defined as

g dk, d∗tð Þ = 1
dk − d∗tj j : ð16Þ

Once every landmark is being associated with a confi-
dence level, then, when multiple landmarks are nearby, the
one with the highest confidence factor will be selected. More-
over, fake landmarks may occur due to user unpredictable
actions, for instance making a turn in the middle of the cor-
ridor, which may be resulting in detection of a gyroscope
landmark. To solve this issue, a confidence threshold βcon
value may be used as such as

lk : con lkð Þ ≥ βcon, ∀lk : x, yð Þt: ð17Þ

In some other cases, when landmarks are missed from
sensor data, for instance, certain landmarks at the locations
of doors can be missed if a door is left open since “walking→-
steady→walking” behaviour pattern will not be detected. In
such a case, we have no option but to ignore the underlined
landmark, which may result in increasing the accumulation
error. But this error will be reduced back when the next land-
mark is detected since after the addition of every landmark
the graph will be denser, having more nodes and, definitely,
more connective paths, which will result in reducing the
chance of error for the upcoming detections.

5. Construction of Fingerprint Map

5.1. Quality of Location Fixes of RPs. The construction of a
fingerprint map is one essential step towards fine position
estimation. Therefore, any location fix is subject to quality
check before being matched to any fingerprint and added to
the fingerprint map. As explained in the earlier section, the
PDR method consists of two components: step size estima-
tion and heading direction estimation. So, a robust algorithm
will tend to bind the accumulative error of these two compo-
nents. In [41], it has been proved that the step periodicity for
the same motion state (e.g., walking and jogging) suffers from
small variation when a user moves at a relatively constant
speed. However, this will significantly vary when a user
remains stationary (steady) while using the smartphone arbi-
trarily, for texting, playing phone games, etc. Therefore, lim-
iting the step periodicity to a certain interval will reduce the

location estimation error. The step periodicity can be defined
as the period of one step, which is equal to the time difference
between two neighbour peaks of the accelerometer measure-
ments as shown in Figure 3. Let PS denote a path segment
connecting two neighbour landmarks with N steps in
between and N + 1 RPs.

PS = ti, xi, yi, f ið Þ, ∀i = 1, 2,⋯,N + 1f g, ð18Þ

where xi and yi are the coordinates of RPi at time ti with cor-
responding floor information f i. And let T = fT1,⋯, TNg
indicate the step periodicity set measured by the accelerome-
ter for these N steps. Then the quality belief of path segment
PS going through those RP can be evaluated as

bel PSð Þ = ∑N
i=1X Tið Þ · Ti

∑N
i=1Ti

· 1
σT∗

, T∗ ⊆ T , ∀Tmin ≤ T ≤ Tmax,

ð19Þ

where the first term indicates the ratio of valid steps with
respect to the total number of steps after outliering false
walks or frequent stops. The outliering step is carried out
using the identifier function XðTiÞ, which is defined as

X Tið Þ =
1, if Ti ∈ Tmin, Tmax½ �,
0, otherwise:

(
ð20Þ

The second term is reciprocal of the standard deviation of
the valid time set T∗, which includes the valid walks only
after outliering the fake walks. In this case, if the user walks
with constant speed, then the deviation will be too small.
Finally, the belief value belðPSÞ of the path segment PS is
compared to a certain threshold βbelðPSÞ, and the location fix
is considered accurate and reliable to be matched with and
then added to the fingerprint map.

5.2. Fingerprint Matching and Construction of Fingerprint
Map. It is necessary to evaluate the estimated location fix
quality before using fingerprint matching. Because the accu-
racy of the RPs’ location fix estimation has a direct impact on
the accuracy of the construction of the fingerprint map.

Now, let Tr denote the trajectory that the user has trav-
eled, including K path segments, which are divided by land-
marks, namely, Tr = fT1,⋯, TKg. And the set of fingerprints
collected along this trajectory FP = f f p1,⋯, f pNg, where N
is the number of Wi-Fi scans, each fingerprint contains the
RSS and the MAC address of its corresponding RP, since
the time when a walk state event happens may be different
from the time when the WiFi scan is conducted. Synchroniz-
ing the time to conduct theWi-Fi scan with the time the walk
event happens is necessary in order to match the fingerprint
with the estimated location fixes. Suppose that theWi-Fi scan
at time t j happens during the time period the user walks from
the location ðxk−1, yk−1Þ to ðxk, ykÞ, namely, tk−1 ≤ t j ≤ tk; then
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we can estimate the location of the jth potential location fix
RPs by using a linear interpolation:

xj = x k−1ð Þ +
xk − xk−1ð Þ · t j − tk−1

� �
tk − tk−1

, ð21Þ

yj = y k−1ð Þ +
yk − yk−1ð Þ · t j − tk−1

� �
tk − tk−1

: ð22Þ

According to the calculated location ðxj, yjÞ, then the
path segment PSi can be found, such that it includes the loca-
tion ðxj, yj, f jÞ. After this, we evaluate the quality of PSi,
where only when the belðPSiÞ meets the threshold require-
ment—it is essential to evaluate the quality since this will
affect the map construction, and therefore, will affect the
localization process—later on, the fingerprint is matched

with the corresponding location fix and then is added to
the fingerprint map in term of RSSj, MACAP j

, and its corre-

sponding location ðxj, yj, f jÞ. This process is recursively done
until all the elements in the FP set are used. A summary of the
process is shown in Algorithm 1.

6. Experiments and Results

The proposed method was evaluated by experiments con-
ducted in a three-story office building. The area of each
floor is about 6,750 square meters. The testing path goes
through two floors of this building, and its length is about
420 meters as shown in Figure 6. The building is made of
precast concrete, blockwork, steel structure, aluminium,
ceramic tiles, and zinc-coated materials and also offices
and classroom furniture, lab equipment (electrical, elec-
tronic and mechanical), and it has many other home

LFFM algorithm
Input:

initila location ðX0, Y0, f0Þ
Trajectory Tr = fT1,⋯, Tkg
vector of
FP = fðRSS1,MACAP1

Þ1, ðRSS2,MACAP2
Þ2,⋯, ðRSSi,MACAPi

Þ
N
g

Output:
Fingerprint Map

for j = 1 : N do
Compute the location ðxj, yj, f jÞ of the j-th potential Location fix;
Search for the PSi

that includes location ðxj, yj, f jÞ
Compute the belief belðPSi

Þ of PSi
if belðPSi

Þ > βbel then
Match the fingerprint PFj and the corresponding location ðxj, yj, f jÞ
Add the tuple ðxj, yj, f jFPjÞ to the fingerprint map;

end if
end for

Algorithm 1: Location Fixing and Fingerprint Matching.

Figure 6: Experiment test bed layout.
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appliances. Using this environment and the test bed in
Figure 6, a set of experiments were carried out to evaluate
the proposed method.

The device used in the experiments is a Samsung Galaxy
Note 3 smartphone equipped with Wi-Fi, accelerometer,
magnetometer, gyroscope, and barometer. An android app
was developed to collect the sensor data. A test user walked
along the preset path with the phone in hand and clicked
on the app to record the measurements of sensors and collect
information about location fixes of RPs to evaluate the loca-
tion accuracy. The data recorded include the MAC address
of visible APs and corresponding RSS and readings from
the accelerometer, gyroscope, and barometer. The values of
parameters used in this work were empirically determined
as shown in Table 3.

The results of LFFM based on the landmark graph for
indoor localization method are compared with those of com-
monly used PDR-I and PDR-II methods in [13] and Map Fil-
tering method in [42]. Both PDR methods used the step-
counting approach to estimate the step size; however, to esti-
mate the heading direction, PDR-I used the compass mea-
surements, while PDR-II used the gyroscope measurements,
which is almost the same as the sensors used in our work.
The cumulative distribution of localization errors shown in
Figure 7 shows that our method significantly outperforms
the other methods, achieving a mean error of 0.71 meters.

Another experiment was carried out on a long straight
path so that the heading direction could be ignored. This
was necessary to evaluate the accuracy of location fixes,
where in the first part the user walked along the straight dis-
tance with constant speed and in the second part the user
walked the same distance with varying speeds and stopped
at a few locations to imitate a fake walk status. The localiza-
tion average error was less than 1 meter in the first part and
about 5 meters in the second part.

Two different fingerprint maps were created with dif-
ferent belief thresholds introduced; later those maps were
fused into the well-known algorithm k-nearest neighbour
(kNN)—in the same spirit as in [5]—the localization error
of kNN is shown in Figure 8. It can be seen that using the
location estimation with high belief ðbelðPSÞ > 18Þ to match
fingerprints for constructing a radio map achieves much
higher accuracy than the one with low belief ðbelðPSÞ < 10Þ.
Therefore, it is necessary to control the quality of location
estimation that is used to match fingerprints with location
fixes, which has a direct effect on the accuracy of the finger-
printing localization method.

The best way to evaluate the constructed maps can be
done by comparing the localization results using a map con-
structed using LFFM and another map. In this sense, another
comparison was done for fingerprint map construction using
the Zee system proposed in [10], and the manual fingerprint
map construction technique, despite the huge time cost for

Table 3: Parameters of experimental results.

Function Parameter Value

Barometer
landmark

Pressure threshold βbar1 0.05 hPa

Pressure threshold βbar2 0.3 hPa

Accelerometer
landmark

Window size 50 samples

Walking-state threshold 2 s

Steady-state threshold 1-5 s

Gyroscope
landmark

Window size 10 samples

Gyro threshold βgyr 1.1 rad/s

PDR

Pressure difference PRdiff 0.45 hPa

Heading threshold βθ 30o

Confidence threshold βcon 0.25

Initial step size 0.63m

Quality evaluation

Step periodicity threshold Tmax 1 s

Step periodicity threshold Tmin 0.4 s

Belief threshold βS 15
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constructing the fingerprint map manually, where RSS data
has to be collected from a grid of points on the floor map.
In this work two various Wi-Fi scans were made, the first
with 4 Wi-Fi scans at each grid point, and the second with
10 Wi-Fi scans. These various scans seemed to be necessary
to compensate for the orientation of the user, which is a very
well-known problem in the fingerprint-based techniques. A
total of 300 grid points were placed on the floor with a 2-
meter distance interval. The localization errors were com-
pared after fusing the resulting fingerprint maps into the
kNN. The positive value fingerprint representation was used
[43], namely, positiveið f pÞ = ðRSSi − τÞ if the ith AP is pres-
ent in the fingerprint f p and RSSi > τ, where RSSi is the
Received Signal Strength from the ith AP and τ is a threshold
value (APs whose RSS were lower than the threshold are con-
sidered not detected); otherwise, positiveið f pÞ = 0. The accu-
racy of applied method is shown in Figure 9.

The effect of RSS threshold usually has a direct effect on
the localization accuracy. Figure 10 demonstrates that the
best performance of all the methods is achieved when the
RSS threshold τ was set within [-75, -85] dBm; in our exper-
iments, we have set τ = −80 dBm. A larger or smaller value of
τ will lead to an increase in the mean localization error. This

is because increasing the RSS threshold may introduce
Access Points with very weak signals, which are vulnerable
to human movements, and decreasing the RSS threshold
would exclude some useful Access Points that can help
improve the localization accuracy.

7. Conclusion

This paper presented a fast and reliable Location Fixing and
Fingerprint Matching to build a fingerprint map based on a
landmark graph. Compared to the existing methods, namely
ZEE andmanual fingerprint map constructions performed in
our earlier works, the new method outperforms the manual
method and is almost equally as fast as the ZEE method.
Moreover, it does not require active user participation; it
takes less time and effort and can construct an accurate fin-
gerprint map with the addition of the belief factor.
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The accuracy of a capacitive proximity sensor is affected by various factors, including the geometry and composition of the nearby
object. The quantitative regression models that are used to seek out the relationship between the measured capacitances and
distances to objects are highly dependent on the geometrical properties of the objects. Consequently, the application of
capacitive proximity sensors has been mainly limited to detection of objects rather than estimation of distances to them. This
paper presents a capacitive proximity sensing system for the detection of metallic objects with improved accuracy based on
target profile estimation. The presented approach alleviates large errors in distance estimation by implementing a classifier to
recognize the surface profiles before using a suitable regression model to estimate the distance. The sensing system features an
electrode matrix that is configured to sweep a series of inner-connection patterns and produce features for profile classification.
The performance of the sensing modalities is experimentally assessed with an industrial robot. Two-term exponential regression
models provide a high degree of fittings for an object whose shape is known. Recognizing the shape of the object improved the
regression models and reduced the close-distance measurement error by a factor of five compared to methods that did not take
the geometry into account. The breakthroughs made through this work will make capacitive sensing a viable low-cost alternative
to existing technologies for proximity detection in robotics and other fields.

1. Introduction

The demand for industrial robots has accelerated consider-
ably due to the ongoing trend toward automation and con-
tinued innovative technical improvements in industrial
robots within the past decade. Despite significant advances
in the field of automation, human intelligence is superior in
terms of reasoning, comprehension, vision, and ingenuity.
Robots and humans present complementary features for the
development of manufacturing processes; therefore, the close
cooperation of human and machine is highly demanded [1].
A great deal of attention has been paid to the human workers’
safety as collisions between the worker and the robotic
manipulators can be extremely dangerous. The data on
industrial robot-related fatalities indicate that safety remains
a major concern, especially because the human operators are
by necessity physically close to mechanical arms or vehicles
[2]. One highlighted approach that modifies the robot’s

trajectory based on safety zones or separation distances has
shown its superiority in practical applications. In this tech-
nique, nonintrusive sensors for distance measurement and
localization are critical.

Among the different types of available proximity sensors,
the capacitive sensors are appealing for industrial human-
robot interaction applications due to their capability of
detecting the presence of most obstacles with large coverage
and accurately measuring small gaps with fast response [3].
Sensors used for safety applications should have a long detec-
tion range and high accuracy in order to secure proper
response before colliding with nearby objects. A capacitive
warning system developed in [4] can apply the brake and
turn off the chainsaw to avoid the harmful effects at a dis-
tance up to 15 cm. The electrode field sensing method is also
used in [5] to provide a sense of “pretouch” for a grasping
system. In this work, multiple capacitive sensors were used
so that the robotic hand could be guided from a distance up
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to about 12 cm. However, these systems are not able to pro-
vide an accurate distance estimation; thus, a more intelligent
control of the robot cannot be achieved.

Alternatively, some passive capacitive sensing systems
were designed for estimating the human’s location. Platypus,
proposed in [6], was claimed as the first system to localize
and identify people remotely and passively. By using a
6-sensor array covering an area of 2m by 2.5m, their system
demonstrated a localization error of 16 cm and identification
accuracy of 75% for 30 users. Another passive human posi-
tioning system described in [7] was based on measuring the
capacitance between multiple floor tiles and a receiving elec-
trode. It can locate a standing person with 15 cm accuracy
and track a walking human with 41 cm accuracy. Though
with a large detection range and high accuracy, the large
electrode areas and low speed limit the application of these
systems in human-robot interaction fields.

A major challenge for capacitive sensors is the nonlin-
ear response that makes the extraction of useful information
frommeasurements a difficult computational problem.More-
over, the geometrical parameters of an approaching object
and the environmental interferences will add additional
unknown contributions to the capacitive responses.

Models that determine continuous properties are physi-
cally motivated. An approach for continuous 3D finger and
hand localization problems with capacitive sensors was
explained in [8]. Random decision forests were used in their
system for regression. However, their device suffered from
environmental interferences and limited detection range.
In addition, the applications of proximity sensors always
involve more than one detected state, so classifiers are fre-
quently used. A Support Vector Machine (SVM) is one of
the most frequently used methodologies for extracting infor-
mation from sensing data as it can handle both linear tasks
and more complex problems [9]. Laput et al. used SVM for
touch recognition of uninstrumented, electrical, and electro-
mechanical objects [10]. Across the 24 classes, SVM achieved
an overall accuracy of 97.9% and 18 out of 24 tested objects
reached the accuracy of 100%. SVM was also used in capaci-
tive fingerprinting for user differentiation [11]. For single fin-
ger touches, the SVM yielded an all-pair average accuracy of
97.3%, while in distinguishing between users performing a
variety of gestures, the achieved average accuracy was 97.8%.

Explorations on the design of a tri-mode capacitive
proximity sensor have been demonstrated previously in
[12]. This work is aimed at improving the accuracy of dis-
tance measurements by alleviating the issue of ambiguity
due to an object profile. The focus of this work is on the
detection of a nearby metallic object which is a common sit-
uation in various human-robot interaction domains. This is
particularly important on factory floors where such sensors
are needed to improve worker safety. The proposed capaci-
tive proximity sensing system inherently involves inferring
information from measured data, either continuously (i.e.,
for estimating the human’s position) or discretely (i.e., for
recognizing the shape of the object). We employ a classifier
to identify the shape of an approaching object in conjunc-
tion with a library of regression models to improve the
distance measurement accuracy.

2. Materials and Methods

The general term electric field sensing is used to refer to a
family of noncontact measurements that can be made with
slowly varying electric fields [13]. Some of these measure-
ments are lumped together under the rubric “capacitive
sensing,” in which a low-frequency voltage signal is applied
to the transmit electrode. A displacement current flows from
the transmitter to receivers through the mutual capacitors
between them. Optimal hardware design and sensing config-
urations rely on a good understanding of fundamental prin-
ciples and trade-offs.

A two-electrode measurement setup, as depicted in
Figure 1(a), is adopted as the basic architecture of this
work. It is a three-terminal measurement where neither
the transmitter nor the receiver is in contact with the
object [14]. If the electric field distribution is mapped
using N-independent electrodes, there will be N N − 1
measurements resulting in 1/2 N N − 1 -independent
mutual capacitance values due to the symmetrical capaci-
tance matrix. Moreover, single electrode-pair measurements
can be combined with multiplexing methods allowing paral-
lel access to multiple transmitters/receivers at the same time.
In the context of the applications where the designed sensor
should be fitted onto a piece of a working garment, the elec-
trode matrix area is restricted to 6 5 cm × 6 5 cm. A 4 × 4
electrode matrix yielding 16 independent electrodes (see
Figure 1(b)) is used as it meets the functional requirements
with an acceptable complexity. In addition, a grounded
backplane is placed underneath the sensor substrate to
avoid the undesired detection from the backside. A 4 × 4
electrode array is added between the ground and the top
electrodes. These electrodes, whose individual dimensions
are slightly larger than those on the top surface and are
centred below them, are driven with the same drive signal
(after a buffer) that is applied to the sense electrodes. This
active shield will push the electric field from the sense
electrodes to the space above them, significantly improving
the detection range of the sensor [12].

In order to implement different electrode configurations
and extract the capacitive responses, the proximity sensing
system composes five building blocks as depicted in
Figure 1(b). The 4 × 4 electrode matrix together with its
active shielding electrode array and the grounded backplane
constitute the core sensing section. Two analog switch
arrays are used for physical connections within sensing
and active shielding matrices. A digital controlling module
is mapped on a field programmable gate array (FPGA) to
create the required signals to program the switch arrays.
A capacitance-to-digital converter measures the capacitive
responses and digitizes the data. Finally, a personal com-
puter (PC) is used to collect and process the data.

The designed sensor has 16 independent electrodes,
providing many possible configurations to generate the
fringing electric fields so that multiple functionalities can
be realized with the same sensing platform. The performance
of the array-structured proximity sensor typically depends
on the number and arrangement of electrodes that form the
transmitter and receiver. In our previous work, three

2 Journal of Sensors



Transmitter 

Receiver 

 

×1 

Active shield 

(a)

PC 

FPGA 

Switch
array 

IN1 
... 

IN16 

24-bit Σ−Δ
modulator

Data CDC 

65
 m

m

65 mm

Excitation 

OUT1 

OUT16 

EXC CIN 

(b)

Figure 1: (a) Detection of an object that interferes with electric field distribution between electrodes and (b) block diagram of the sensing
system.
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electrode-connecting types that result in comb-structure,
adjacent two-rectangular configuration, and two-edge
patterns have been investigated [12]. According to Ye et al.,
electrodes with a spiral shape perform well in terms of
dynamic range and sensitivity distribution homogeneity
compared to those with the other shapes [15]. In this work,
electrodes are connected as a symmetric structure, depicted
in Figure 2(a), to mimic the spiral shape. Each letter in
Figure 2(a) represents the electrical destination of the elec-
trode, i.e., “T” for transmitter, “R” for receiver, and “G” for
grounded connections. Electrodes labeled by the same letter
are shorted to each other.

For distance measurement, the excitation signal is
applied to the transmitters, i.e., the middle four electrodes,
resulting in the mutual capacitance C0. The generated electric
field is demonstrated in Figure 2(b). Penetration depth is a
parameter that indicates how quickly the electrical field
weakens with the distance [16]. A greater penetration depth
will lead to a longer detection range. The depth that the elec-
tric field penetrates to the space is roughly proportional to the
spatial wavelength λ, which is defined as the distance
between two consecutive electrodes of the same polarity
[17]. This electrode configuration provides two different spa-
tial wavelengths, and the capacitive response is correlated
with the distance.

One challenge of using capacitive sensors is that they are
susceptible to shape and size of the object: a small object that
is close to the sensor might result in the same response as a
larger object at a further distance [18]. This confusion makes

it difficult to infer high-resolution information from the
measured capacitances. Therefore, surface profile recognition
is required to improve the accuracy in distance evaluation.

For the purpose of distinguishing different object shapes,
more detailed information is required. The electrode matrix
is programmed to form different distributed proximity sen-
sors so that the nearby surroundings can be monitored by
sweeping these electrode configurations.

The acquired capacitance values constitute the inputs
of classification tools for profile recognition. Management
of electrode sweeping modes plays an essential role in
determining the shape information. The key point in recon-
structing the desired obstacles is to distinguish the differences
in terms of sensor responses among different circumstances.
Two different sweeping approaches to mesh the close sur-
roundings are proposed and examined in this work.

The first approach scans eight mutual capacitors C1 to C8
as described in Figure 3. The electric fields between adjacent
columns and adjacent rows are generated by selecting one
column/row of electrodes as the transmitter and a neigh-
bouring column/row of electrodes as the receiver. That
results in the first six matrices in Figure 3. Six individual
capacitors are formed, and the nearby space can be well
meshed along the X-Y plane. Moreover, to reduce the obscu-
rity brought by objects with symmetrical appearance, two
more capacitors between diagonal electrodes (i.e., C7 and
C8 in Figure 3) are also measured. In this attempt, every sin-
gle sweeping cycle of the sensor measures eight independent
capacitors or features.
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Figure 2: Electrode configuration for distance measurement. “T”: transmitter; “R”: receiver. (a) Four central electrodes are shorted to
each other to form the transmitter, and all the rest electrodes are connected to work as the receiver. The generated capacitor is C0.
(b) Cross-section view of the electric field formed by the electrode matrix. The larger the spatial wavelength (λ), the farther the electric
field penetrates to the space and the longer the detection range can be achieved.
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The inspiration for the second approach comes from the
spiral-shaped connection structure: the electric field propa-
gates from four neighbouring electrodes in every direction
and terminates on the rest electrodes. The environment
around the sensor can be meshed comprehensively when
employing this mode to the whole sensing matrix as demon-
strated in Figure 4. Each of the nine connection patterns gen-
erates multiple electric fields resulting in different spatial
wavelengths and different penetration depths. By combining
the capacitive responses (CI to CIX) from each sweeping cycle
and using proper classifiers, the surface profile of the nearby
object can be estimated.

2.1. Operation Flow. Distance estimation, the primary task
for this work, is quantitative. The desired results take on
numerical values making it a regression problem. The
method is to build a regression model, which is a prediction
equation that enables predicting response for given inputs
with small errors [19]. A series of experiments are conducted
in order to gather the required data to create regression
models for objects with specific shapes. The actual shape of
an object is approximated by a simple geometric shape that
is easier to process. A plate, sphere, and cylinder are selected
as representatives for the most frequently encountered
shapes in an industrial working space. The experimental
process is moving the selected object continuously from
1 cm to 20 cm away from the sensor and recording the values
of the capacitor C0. The regression model is then built by
using the measured capacitances as inputs and the corre-
sponding distances as outputs. Consequently, a library that
contains three prediction equations corresponding to the
selected geometries is created.

Regression provides an effective way to deduce the dis-
tance information from measured capacitances. However,
picking the proper regression model depends on the percep-
tion of the object’s shape. The task of profile recognition is
qualitative: the variables being predicted (i.e., different
shapes) are discrete rather than continuous. Therefore,
classification tools are used to take over this job. In order to
provide enough information for shape recognition, the
inputs of the classifiers are the combinations of the capaci-
tances obtained from electrode configuration sweeping.
These inputs are experimentally acquired by placing the
objects at different locations within the detectable range
and collecting capacitive responses generated by the sweep-
ing patterns in Figures 3 and 4. The classifier output is a best
estimate for the shape of the object (i.e., plate, sphere, or
cylinder). The data is used for supervised training of the
classifiers with the raw inputs and preknown targets.

The previous two steps, namely, building the regression
model library and training the classifier, are completed off-
line before using the sensing system in real applications. In
practice, when an object enters the detection range, the sensor
is programmed to work in the scanning mode to deter-
mine the most probable shape information. Then, the sensor
is switched to the spiral-shaped electrode connection to mea-
sure the capacitive responses caused by the approaching
object. Lastly, the distance is calculated by selecting the proper
regression model according to the object’s profile. The
operation flow of the presented sensing system is demon-
strated in Figure 5.

2.2. Data Processing. The goal of data processing is to obtain
desired information from raw measurement results. Such a
process is inherently interactive and iterative [20]. Preparing
input data and selecting the most suitable classifiers are car-
ried out with attention to the problem domain.

Data from capacitive proximity sensors is suseptible to
internal and external parasitics, environmental interferences,
noise, and potentially other error sources. Therefore, pre-
processing of the data, including cleaning, normalization,
and integration, is the foremost step before running the
analysis [21].

The environmental interferences add both high-
frequency noise and low-frequency random walks to the
capacitive response. The data cleaning process is to
remove noise and correct for drift in the “dirty” raw data-
set. More specifically, a DC notch filter (to eliminate slow
environmental changes such as humidity and temperature
variations) together with a low-pass averaging filter with
the cut-off frequency of 20Hz (to reduce high-frequency
noise and interference) was used to compensate these non-
ideal effects. Additional details and implementation can be
found in [12].

One intermediate step between collecting raw measured
capacitive values and applying the statistical learning tools
is scaling the data. This step is important and almost required
for most learning algorithms because scaling can avoid attri-
butes in greater numeric ranges dominating those in smaller
numeric ranges. In addition, it can also avoid numerical dif-
ficulties during the calculation. The applied method is line-
arly rescaling the range of all the input data to the range of
−1,+1 . Given the maximum capacitive value Cmax and the
lower bound Cmin, a normalized value is calculated from
CN = 2 × C − Cmin / Cmax − Cmin − 1.

The final step for preparing the input datasets is
data integration that merges data from multiple mea-
surements. Every scanned capacitor has its contribution

T
T
R
R

R
R
R
R

R
R
R
RR

R
T
T T

T
R
R

T
T
R
R

R
R
R
RR

R
R
R R

R
R
R

T
T
R
R

T
T
R
RR

R
R
R R

T
T
R

R
R
R
R

R
R
R
RR

T
T
R R

T
T
R

R
T
T
R

R
R
R
RR

R
R
R R

R
R
R

R
T
T
R

R
T
T
RR

R
R
R R

R
T
T

R
R
R
R

R
R
R
RT

T
R
R R

R
T
T

R
R
T
T

R
R
R
RR

R
R
R R

R
R
R

R
R
T
T

R
R
T
TR

R
R
R

CI CII CIII CIV CV CVI CVII CVIII CIX

Figure 4: Sweeping pattern II that measures nine mutual capacitors CI to CIX. The generated electrode fields emit from the four neighbouring
electrodes (connected as the transmitter) in every direction and fall to all the rest electrodes (collected as the receiver).
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to reconstructing the profile of a nearby object, so all the
capacitances acquired by one complete sweeping cycle are
combined together as one single input which can be referred
to as a “feature vector.” For the first approach that measures
eight mutual capacitors as depicted in Figure 3, the generated
feature vectors are eight-dimensional (i.e., {C1, C2, …, C8}),
whereas the second scanning method, as explained in
Figure 4, results in nine-dimensional feature vectors
(i.e., {CI, CII, …, CIX}).

Interpreting the experimental results requires the analy-
sis of complex, multivariate, and multidimensional data.
One approach that has grown popularity is the use of
machine learning algorithms to train classifiers to decode
behaviors and information of interest from the experimental
data [22]. Thanks to the efficient pattern recognition perfor-
mance for the nonlinear multiclass scenarios, Support Vector

Machines (SVM), a kernel-based learning method, are
adopted in this work [23].

Originally developed for binary classification problems,
SVM uses maximal margin hyperplanes to define decision
boundaries separating data points of different classes. The
equation of a linear decision surface is

wT
0 x + b0 = 0, 1

where x is the input feature vector andw0 and b0 are the opti-
mal weight vector and bias, respectively. The discriminant
function is expressed as

g x =wT
0 x + b0, 2

and provides an algebraic measure of the geometric distance
from any x to the optimal hyperplane [24]. The input x can
be described through

x = xp + r
w

∣ w0 ∣
, 3

where xp is the normal projection of x onto the optimal hyper-
plane and r is the algebraic distance such that r is positive
when xi belongs to the class of +1 and negative otherwise.

Given the dataset x, l where l is the target class, param-
eters w0, b0 must satisfy the following constraints:

wT
0 x1 + b0 ≥ 0, for li = +1,

wT
0 x1 + b0 ≤ 0, for li = −1

4

The particular training data points for which one of the
constraints is satisfied with the equality sign are the “support
vectors.”Maximizing the margin of separation between clas-
ses is equivalent to minimizing the Euclidean norm of the
weight vector w. This distinct property makes the SVM an
effective tool in pattern recognition applications. The previ-
ous equations describe the foundation of SVM that classifies
a binary problem which can be linearly separated. For more
complex tasks, Gaussian kernel [25] is a reasonable first
choice. This kernel function nonlinearly maps samples
into a higher dimensional space allowing it to handle the
cases where the relationship between class labels and
inputs is nonlinear. The linear function is a special case
of the Gaussian kernel.

The problem in this study requires the discrimination for
more than two categories. So SVM is extended so that it can
be suitable for more general cases where an arbitrary number
of classes is important. Among all the proposals for modify-
ing the SVM to the K-class case, the two most popular
approaches are the “one versus one” (1V1) and “one versus
rest” (1VR) [26]. The 1V1 approach is a pairwise decomposi-
tion. It evaluates all possible pairwise classes and therefore
constructs K K − 1 /2 individual binary classifiers. Applying
each classifier to a test sample will generate one vote to the
winning class. The data point will be assigned to the class
with the most votes. By contrast, the 1VR approach only con-
structs K separate binary classifiers for the K-class problem.

Step1: create regression a model library for the three objects 
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Figure 5: Operation flow for improved distance measurement.
First, create separate regression models for all the objects with
experimental data (total capacitance is shown at the top, but
several sweeping patterns are generated per measurement). When
an object appears, use a classifier to recognize its surface profile
based on one of the two sweeping patterns. Lastly, select the
proper regression model depending on the classification result for
advanced distance estimation.
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Each time, one class is compared to all the remaining classes
as a whole. The ith classifier is trained using the data from the
ith class as positive examples and all the other data as negative
samples. During testing, the class label is determined by the
classifier that results in the maximum output value. It is note-
worthy that there is no clear evidence that the 1V1 method
can achieve higher accuracy compared to alternative multi-
class SVM methods, but Hsu and Lin argue that 1V1 is more
practical due to its faster training process [27].

The core structure of the presented sensing system
together with the complementary electronics is fabricated
on a four-layer printed circuit board (PCB). The top three
layers of the PCB serve as carriers for the 4 × 4 electrode
matrix, active shielding matrix, and backplane shielding.
The analog switch array chips (AD75019 from Analog
Devices) and required electronic components including
bypass capacitors and resistors are fabricated on the bottom
side. The FPGA board adopted in this work is the Terasic
DE1 board featuring the ALTERA Cyclone II 2C20 FPGA
device. In addition, an AD7746 CDC chipset is acquired to
measure the capacitors, quantize the capacitances, and
exhibit results in terms of both capacitive values and digital
strings via a standard communication interface. The sam-
pling rate it can achieve is 90.9Hz.

The performance and behavior of the designed capacitive
sensing system were investigated with an industrial robot
KUKA LBR iiwa. The robot is a lightweight robot with a
7-axis jointed arm. All drive units and current-carrying cables
are installed inside the robot so that it can autonomously
move and transport objects. It has the capability of orienting
itself independently in its surroundings andmoving into posi-
tions for automation tasks with millimeter precision [28].

Ideally, the test objects would be electrically grounded
during the system operation. However, to better resemble
the actual working conditions during the experiments, the
objects were isolated electrically from the robot or the
circuitry (i.e., electrically floating).

3. Results and Discussion

To verify the distance measurement capability and the shape
classification feature, a series of prototypical experiments are
conducted. The established apparatus and the experimental
setup are illustrated in Figure 6. The robot is programmed
to perform predefined movements on the attached object,
and the value d which represents the distance from the object
to the sensor can be controlled with high accuracy. Three
metallic objects, namely, a plate, a ball, and a cylinder, are
used as actual instances of the three shapes of interest. The
size of the plate is 16 cm × 13 cm, the diameter of the ball is
6.5 cm, and the radius and the length of the cylinder are
1.5 cm and 10 cm, respectively. During the experiments, the
plate was brought towards the electrode at different inclina-
tion angels. The ball and cylinder were positioned at different
lateral and vertical positions above the electrode array. The
cylinder was brought in at different in-plane angles (parallel
to the electrode array). With all these variations in position-
ing and relative angles, the objective was to improve the accu-
racy of distance estimation from the electrode array to the
closest point on the object by taking into account the object
geometry regardless of approaching angles or lateral position
of the object relative to the electrode array.

3.1. Shape Recognition. The shape recognition is achieved by
performing a series of dynamic experiments and using SVM
as the classifier [29]. The classification accuracy is examined
with respect to the electrode sweeping pattern.

The dynamic experiment is about automatically sweep-
ing the inner electrode configurations while moving one of
the objects to nine different locations. At each location, the
object is held by the robot for a short period of time allowing
100 times of the complete sweeping cycle. For the first scan
pattern, each sweeping cycle measures eight mutual capaci-
tors as described in Figure 3, and the capacitive responses
from one complete cycle can be fused to one eight-

Aluminum
plate 

Electrode
matrix 

CDC
FPGA

KUKA
robot 

Cylinder

Sphere

Figure 6: Experimental setup with an industrial robot. The electrode matrix is controlled by the FPGA to accomplish desired configurations,
the robot is programmed to move the attached object based on predefined trajectories, and the capacitances are measured and quantified by
the CDC. Three aluminum objects are a plate, a ball, and a cylinder.
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dimensional feature vector {C1, C2,…, C8}. Similarly, the sec-
ond sweeping method results in nine-dimensional feature
vectors {CI, CII,…, CIX} as shown in Figure 4. Consequently,
two datasets, each containing 27 × 100 feature vectors, are
acquired for classification. Dataset I, obtained with the first
scan pattern, is composed of eight-dimensional feature vec-
tors. Whereas the feature vectors in Dataset II are nine-
dimensional. Each dataset is further split into two parts:
one contains 18 × 100 feature vectors to train the SVM clas-
sifier and the rest 9 × 100 feature vectors are used for testing.

The test accuracy is determined by two kernel function
parameters: cost parameter (β) and gamma (γ). It is not
known beforehand which combination of the two parameters
will lead to the best result for a specific problem. Conse-
quently, a parameter search procedure is done separately on
both datasets. Growing sequences of β and γ are tried for
training the model, and the identified most efficient parame-
ter pair is the one that leads to the highest testing accuracy.
The involved values of β and γ for the grid search are the
same: 0.5, 1, 2, 3, 4, and 5. The classification accuracies with
respect to the cost parameter and gamma are summarized
in Table 1. For both datasets, the testing accuracy starts from
66.67% when β and γ are both small. With the increase in the
parameters, Dataset I shows its superiority: the classification
accuracy reaches 100% when the value of either β or γ
extends 2. That indicates for this specific task, and using
Dataset I as the input for SVM is able to classify the capacitive
responses to desired shape categories. After performing this
classification step, the determined shape information is used
for selecting the proper regression model.

3.2. Distance Estimation. The distance is measured with
respect to the three objects so that the regression model
library can be built. The distance range of interest in this
work is 1 cm to 20 cm.

The implementation of the measurement can be divided
into three steps: Configure the inner connection of the elec-
trode matrix to be spiral-shaped by programming the FPGA
board. Then, the robot moves one of the objects from 1 cm to
20 cm away from the surface of the sensor at a constant
speed. The capacitive responses are recorded at the same
time. Lastly, the acquired capacitances and their correspond-
ing distance values are used to generate the desired regression
model. This procedure is repeated for the other two objects so
that three regression models are created.

The raw experimental capacitive samples for the three
objects are plotted with black dots in Figures 7(a)–7(c). Note
that the capacitance measured between the electrode groups
decreases as the objects approached the electrode array. This
is due to the fact that at closer distances some of the current
from the driven electrodes will flow to the grounded metal
object that was used. Fitted curves that stand for the mathe-
matical formulas describing the relationship between a
capacitance and its corresponding distance are denoted by
the red lines. In this case, two-term exponential regression
models are adopted to provide a high degree of fittings. “High
degree” indicates the model has a small random error com-
ponent and takes as much proportion of variance into
account so that it is more useful for prediction. From the sta-
tistical point of view, the sum of squared errors of prediction
(SSE) that measures the total deviation of the response values
from fit values should be close to 0 and the coefficient of
determination (R-squared or R2) be close to 1 [30]. The
regression model expressions together with corresponding
coefficients and goodness indices (i.e., SSE and R2) are also
denoted in the figures.

Based on the analysis of the regression models, they can
provide predictions on the distance with high confidence
under the condition that the shape of the approaching object
is preknown. However, when comparing the data acquired by
different objects, it can be discovered that both the absolute
capacitive values and the changing rates are different. To
eliminate the error caused by drift, an offset cancelling proce-
dure is performed: the plate’s asymptotic capacitance, mea-
sured when the plate is put infinitely far from the sensor
(50 cm in this work as the capacitances stop changing), is
taken as a reference. Then, shift the capacitance vs. distance
curves of the other two objects to the same ending point by
adding or subtracting a constant. The experimental capaci-
tances after offset cancelling as functions of distances for
the three objects are summarized in Figure 7(d). From which,
it can be observed that the same capacitance value can result
in very different distance values without knowledge of the
object’s shape. This fact will lead to a decreased distance eval-
uation accuracy or even a wrong detection.

A more precise analysis of the distance errors e d is
demonstrated in Figure 7(d). Use the capacitive responses
measured with the plate as references, and feed the capaci-
tances to the three regression models to predict the distances
d′ P for the plate, d′ Sp for the sphere, and d′ Cy for the
cylinder. At a certain distance, the estimation of the distance
error e d can be calculated as the absolute difference
between the predicted distance d′ and the actual distance d.
To get a clearer vision on how the distance error would affect

Table 1: SVM testing accuracy with a grid search for cost parameter
and gamma (%).

β
γ

0.5 1 2 3 4 5

Dataset I: inputs are 8-dimensional based on sweeping mode I
(Figure 3)

0.5 66.67 66.67 66.67 66.67 82.33 96.22

1 66.67 66.67 82.33 100 100 100

2 66.67 82.33 100 100 100 100

3 66.67 100 100 100 100 100

4 82.33 100 100 100 100 100

5 82.33 100 100 100 100 100

Dataset II: inputs are 9-dimensional based on sweeping mode II
(Figure 4)

0.5 66.67 66.67 66.67 66.67 66.67 69.67

1 66.67 66.67 66.67 75.56 82.67 82.67

2 66.67 66.67 82.67 82.67 82.67 82.67

3 66.67 75.56 82.67 82.67 82.67 82.89

4 66.67 82.67 82.67 82.67 82.67 82.67

5 69.67 82.67 82.67 82.89 82.67 82.67
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the measurement accuracy, the relative error with respect to
the distance e d /d is also calculated. The relative errors at
few different discrete distances are plotted with the bars in
Figure 8, and the numerical absolute errors in millimeters
are also provided. For the plate, the proper regression model
has been selected so that the estimation errors are small: e d
is less than 1 cm when the distance is below 10 cm. The

increase in error with the distance is due to the worsening
of the signal-to-noise ratio for the measurements and is lim-
ited to 25%. However, the same model would result in signif-
icantly larger errors when applied to the other objects,
especially in short distances (i.e., less than 5 cm) such that
the uncertainty in the measurements is comparable to the
actual distances (i.e., the relative errors are around 100%).
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Figure 7: (a) Measured raw capacitive responses and the fitting curve for the plate. (b) Measured raw capacitive responses and the fitting
curve for the sphere. (c) Measured raw capacitive responses and the fitting curve for the cylinder. (d) A comparison of capacitive
responses for the three objects. An example of the calculation of the absolute and relative errors caused by using the wrong regression
model is demonstrated.
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However, at short ranges, a higher detection accuracy is in
fact needed in most applications, hence necessitating profile
recognition.

4. Conclusions

In this paper, a capacitive proximity sensing system with
improved distance measurement accuracy is presented.
Shunt detecting mode is used in combination with the 4 × 4
electrode matrix to provide more informative and flexible
measurements. Statistical tools are employed for interpreting
the experimental capacitive responses: quantitative regres-
sion models are built to seek out relationships between capac-
itances and distances while the SVM classifier is trained to
recognize the surface profile of the approaching object. Dif-
ferent electrode sweeping patterns are implemented and
compared in terms of classification accuracy.

The performance of the sensing modalities is experimen-
tally assessed with an industrial robot and three objects with
different shapes. The relative distance estimation error is lim-
ited to 25% under the condition that the proper regression
model is selected. Otherwise, the errors can be competitive
to the actual distance. The SVM classifier recognized the
shape of an object with high accuracy. The classification
result is used to choose the most suitable regression model
with high confidence. The next step will be involving more
objects to enrich the regression model library and collecting
data with random locations to generalize the training dataset.

It is possible to expand the capabilities of the system so
that one may obtain additional information regarding the
nearby objects. For instance, if impedances over a range of
frequencies are measured instead of capacitance values at a
single frequency, it will be possible to deduce permittivity
and conductance information for a nearby object. This addi-
tional information, however, would require new hardware
with phase-sensitive measurements at different frequencies
and collection of suitable training data from different objects
and materials.

The sensor system operated robustly against slow envi-
ronmental disturbances with tests producing reliable results
over a span of several weeks after the collection of training
data. This was in part done through removal of the contribu-
tions of slow changes by filtering out near DC signals. How-
ever, if the operating environment is significantly different
from the test setup (e.g., all objects are grounded), the system
can be retrained using data collected from the environment.
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This paper proposes the end-to-end detection of a deep network for far infrared small target detection. The problem of detecting
small targets has been a subject of research for decades and has been applied mainly in the field of surveillance. Traditional methods
focus on filter design for each environment, and several steps are needed to obtain the final detection result.Most of themwork well
in a given environment but are vulnerable to severe clutter or environmental changes. This paper proposes a novel deep learning-
based far infrared small target detectionmethod and a heterogeneous data fusion method to solve the lack of semantic information
due to the small target size. Heterogeneous data consists of radiometric temperature data (14-bit) and gray scale data (8-bit), which
includes the physical meaning of the target, and compares the effects of the normalization method to fuse heterogeneous data.
Experiments were conducted using an infrared small target dataset built directly on the cloud backgrounds. The experimental
results showed that there is a significant difference in performance according to the various fusion methods and normalization
methods, and the proposed detector showed approximately 20% improvement in average precision (AP) compared to the baseline
constant false alarm rate (CFAR) detector.

1. Introduction

The problem of the robust detection of small targets is an
important issue in surveillance applications, such as infrared
search and track (IRST) and infrared (IR) remote sensing.
Information about the objects that can be obtained from the
image is extremely limited due to the small target size. In
particular, targets located on a long distance have a low signal-
to-clutter ratio (SCR) and eventually have an adverse effect
on the detection performance. In addition, because of the
small target size, it is relatively vulnerable to noise of the
surrounding environment, such as sun glint, sensor noise,
cloud, etc., making it difficult to detect accurately.

The problem of detecting small targets has been directed
mainly at using the most suitable filter among themany filters
available or to design a new filter. To solve the problem of a
fixed filter, which does not reflect the size change according to
the movement of the target, studies have been carried out to
consider the scale. Moreover, studies have been conducted on
using the classifier together with the conventional machine

learning based method. On the other hand, because of
the characteristics of the hand-crafted, the small target is
confined to a specific environment and severe noise prevents
its detection.

This paper proposes a small target detection method
based on deep learning capable of end-to-end training. The
network structure and training strategy are inspired by the
single shot multibox detector (SSD) [1], and the network
structure is transformed to a single-scale because it deals only
with small targets. The proposed network learned a small
target dataset that was constructed directly with the various
background clusters. By learning various backgrounds of the
sky, this study solved the problem caused by the uncertain
heterogeneous background, which was a problem in previous
research. This study also compared the result of the fusion
of radiometric temperature data by directly constructing raw
infrared data aswell as gray-scale data that is generally used as
the input of a detector network. In addition, the performance
was assessed and compared according to the normalization
method in heterogeneous data fusion.
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The contribution of this paper is summarized as follows.

(i) A dataset targeting various backgrounds of the sky
was constructed for the detection of far infrared
small targets. Unlike other research areas, where open
datasets exist, there is no dataset to detect and classify
far infrared small targets.

(ii) The dataset constructed in this paper includes
infrared raw data. Unlike previous studies that used
only intensity-based gray data (8 bits), raw data (14
bits) can be used together. Temperature information
is available by applying a radiometric calibration to
the raw data. The use of gray-scale and temperature
data with physical meaning together as input to the
network allows the use of more information and
better detection results through fusion.

(iii) A deep learning-based network for far infrared small
target detection that can train and detect from end-
to-end beyond conventional hand-crafted method is
proposed. Using the proposed network, this study
analyzed the effects of pixel-level fusion of gray-scale
and radiometric temperature data and the effects of
efficient normalization methods for data fusion.

The remainder of this paper is organized as follows. Section 2
briefly introduces previous studies related to the detection
and recognition of small targets. Section 3 outlines the pro-
posed method. Section 4 introduces the experimental results
and datasets. Finally, Section 5 reports the conclusions.

2. Related Works

Object detection is an important research area of computer
vision. Among them, the detection of small targets is a
challenging problem because of the limited information. The
research directions to solve this problem can be classified
broadly into the traditional machine learning-based methods
and deep learning-based methodologies, in which recent
studies will be conducted.

One of the traditional methodologies is the filter-based
method [2–9]. First, previous studies [2–5] examined the
filter itself. For example, Barnett [3] evaluated a promising
spatial filter for point target detection in infrared images and
used a median subtraction filter. Schmidt [5] examined a
modified matched filter (MMF) composed of a product of a
nonlinear operator called an inverse Euclidean distance and
a least-mean-square (LMS) filter to suppress cloud clutter.
Studies on adaptively improved filters have been conducted
[6–8]. Yang et al. [7] proposed a Butterworth high-pass filter
(HPF) that can adaptively determine the cut-off frequency.
Zhao et al. [9] proposed another method using a filter to fuse
the results of several filters with different directions. Other
methods [10–15] were based on the contrastmechanismof the
humanvision system (HVS).Qi et al. [10] were inspired by the
attention mechanism to produce a color and direction-based
Boolean map to fuse, and Chen et al. [11] proposed a method
of obtaining a local contrast map using a new local contrast
measure that measures the degree of difference between the
current location and neighbors. After that, a target is detected

with an adaptive threshold inspired by the contrast. Han et
al. [12] increased the detection rate through size-adaptation
preprocessing and calculated the saliency map using the
improved local contrast measure, unlike the conventional
method using only the contrast. Deng et al. [13] improved
the contrast mechanism by the weighted local difference
measure, and a method that applies a classifier was proposed
[14]. Han et al. [15] proposed a multiscale relative local
contrast measure to remove the interference region at each
pixel.

Another approach was to solve the size variation problem
that occurs when the target moves [16–18]. For example,
Kim et al. [17] proposed a Tune-Max of the SCR method to
consider the problem of scale and clutter rejection inspired
by the HVS. In the predetection step, target candidates
maximizing Laplacian-scale space images are extracted and
in the final-detection step.The scale parameterswere adjusted
to find target candidates with the largest SCR value. This
method has shown good performance, but it consists of
complicated steps.

The following methodologies [19–21] deal with methods
for making the best use of features. Dash et al. [19] proposed
a feature selection method that can use features efficiently
in a classifier rather than directly relating to the problem of
detecting a small target. Kim [20] analyzed various target
features to determine which feature is useful for detecting
small targets and proposed a machine learning-based target
classification method. Bi et al. [21] used multiple novel
features to solve the problem of many false alarms (FAs) that
occur when existing methods consistently use single metrics
for complex backgrounds. A total of seven features were used
and a method to identify the final target through a classifier
was proposed.

A range of machine learning-based methodologies can
be used for small target detection [22–32]. Gu et al. [23]
proposed a method to apply a constant false alarm rate
(CFAR) detector to the target region after suppressing the
clutter by predicting the background through a kernel-based
nonparametric regression method. Qi et al. [29] proposed
a directional saliency-based method based on observations
that the background clutter has a local direction and treat it
as a salient region-detection problem. The existing methods
still raise the problem of not separating the background
completely. Zhang et al. [30] used an optimization approach
to separate the target from the background.

Over the last few decades, research has been conducted
in various directions mentioned above and more studies
are being conducted based on deep learning. Liu et al. [33]
proposed that training a sample using a signal-to-noise ratio
(SNR) with an appropriate constant value helps improve the
performance over training with a randomly sampled SNR.
The targets were generated and synthesized randomly and
were not actual targets. Chen et al. [34] used a synthetic
aperture radar (SAR) image and treated it as a convolutional
neural network- (CNN-) based classification problem not a
detector network. Because there is little data, it adopts a fully
convolution structure except for a fully connected layer to
prevent overfitting. Generative adversarial networks (GAN),
which is not a general CNN-based structure, were proposed
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Figure 1: Proposed network structure and pixel-level fusion of temperature data.

[35]. The generator trains to transfer the representation of
a small object similar to a large object. The discriminator,
however, competes with the generator to identify the repre-
sentation generated by the generator and allows the generator
to have a representation that is useful for detection. Hu et al.
[36] proposed a way to use the features extracted from other
levels of features. Bosquet et al. [37] proposed the problem
of a loss of target information as existing detector networks
undergo downsampling. After several convolution layers, it
assumes that the feature map has sufficient information to
determine the area where the target exists and proposes a
new concept called the region context network (RCN). In the
feature map that passes the shallow convolution, the region
with the highest possible likelihood of the target is extracted
along with the context to perform a late convolution. The
subsequent steps are similar to the general detector net-
work.

Deep learning-based methodologies have been active in
many areas in recent years. On the other hand, the problem
of detecting small targets has not been actively researched
because not only are there no publicly available datasets that
can be verified, the information available from the image is
limited and it is difficult to produce a situationwhere a dataset
can be constructed.

3. Proposed Method

This section introduces the proposed network structure for
the detection and fusion of small targets in the far-infrared
region and compares the intensity-based gray-scale data with
the radiometric temperature data obtained from the con-
structed data. This section also introduces the normalization
method to fuse heterogeneous data.

Proposed Network Architecture. The proposed network was
inspired by the SSD and uses a single-scale feature structure
instead of a multiscale feature structure, which is an advan-
tage of SSD because only small targets of up to 20 pixels are
handled. The blue dashed line in Figure 1 represents input
data and four cases where pixel-level fusion is possible. In
addition, the first feature map is a feature map that passes
through Resnet-34 [38], the base network. Subsequently, it
goes through six convolution layers, and the detection result
is obtained by removing redundant detection through the
non-maximum suppression (NMS) in the last feature map.
In Figure 1, x2 represents two convolutional blocks, so there
are six convolutional layers in total. To minimize the loss of
information, Resnet-34 was used up to a ĳ scale. Bounding
box regression and score prediction for obtaining the final
detection results have the same structure as the general object
detectionnetwork but theNMS standard is somewhat relaxed
because of the small target size. For training, the learning
rate is set to 0.0001 and is a fully convolutional structure
consisting only of a 3x3 convolution layer. The optimization
method uses Adam optimizer [39], and He initialization [40]
is used.

Comparison of Fusion Methods. The blue dotted box in
Figure 1 shows the pixel-level fusion method for the fusion
of an intensity-based gray-scale and radiometric temperature
data.The gray-scale data has one channel and the radiometric
temperature data is also made up of one channel, so the
heterogeneous data can be concatenated in channel direction.
Another common method is to try the feature-level fusion
method. Hou et al. [41] used the late-fusion method and it
is a method of concatenating feature maps using RGB and
gray-scale data as inputs to different networks with the
same structure. On the other hand, this paper used the
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Figure 2: Comparison of the seasonally distorted target temperature data. (a) Midsummer in August, and (b) a midwinter in February.

pixel-level fusion method because the feature-level fusion
method has not been detected properly. In addition to
the pixel-level fusion method, which proposes a range of
combinations based on three channels, there is also a method
of accumulating three gray scale data, such as RGB and one
radiometric temperature data, for a total of four channels.
The pretrained deep network cannot be used when this
fusion method is applied. Therefore, this paper compares
several fusion methods that can fuse heterogeneous data with
three channels. Proper normalization methods are required
because gray scale data (8-bit) and radiometric temperature
data (14-bit) with different ranges of values must be fused
together at the pixel-level.

Thermal Normalization. Radiometric temperature data
should be normalized. Kim. [42] dealt with temperature
data for the problem of detecting pedestrians. At this time,
a normalization method was used assuming a maximum
temperature of 40∘C due to human thermoregulation. On the
other hand, the radiometric temperature data was distorted
because the experimental environment of this paper dealt
only with distant small targets. As a result, even in the same
sky, as shown in Figure 2, there is a significant temperature
deviation in the air according to the season. The temperature
difference between the target and the surrounding air is
not large at mid-summer (August, Figure 2(a)), whereas
the difference is 20∘C or more at mid-winter (February,
Figure 2(b)).

At this time, both targets in Figures 2(a) and 2(b) were
located in the same sky background and distance with
different seasons. Owing to the distorted temperature data,
the temperature of the target does not have a constant
range. Therefore, the normalization method in the methods
reported elsewhere cannot be used and normalized [42], as
expressed in (1), to have a value of a specific range. The
following were used to compare the results according to
the various normalization methods: a normalization method
with a specific range of−1 to 0,−1 to 1, and 0 to 1; amethod
of normalizing the mean and standard deviation to 0.5;
and a precalculated mean and standard deviation of large

scale data. 𝐼𝑛(𝑥, 𝑦) is the input data and min(𝐼),max(𝐼) are
the minimum and maximum values, respectively, for the
entire input data, and subscripts 𝑥, 𝑦 mean each pixel. The
abbreviations, 𝑢𝑏 and 𝑙𝑏, represent the upper and lower
bounds of the normalization range, respectively. This makes
𝑙𝑏 when each pixel of the input data 𝐼 is the min value, and
𝑢𝑏 when it is the max value, and the rest has a value between
them. For example, if the input data should be normalized
between -1 and 1, set 𝑢𝑏 to 1 and 𝑙𝑏 to -1.

𝐼
𝑛
(𝑥, 𝑦) =

𝑢𝑏 − 𝑙𝑏

max (𝐼 (𝑥, 𝑦)) −min (𝐼 (𝑥, 𝑦))
× (𝐼 (𝑥, 𝑦)

−min (𝐼 (𝑥, 𝑦)) + 𝑙𝑏
(1)

4. Experimental Results

This section introduces the infrared small target dataset,
augmentation method for training, comparison of the results
with existing research directions, and various experiments.

4.1. Yeungnam University (YU) FIR Small Targets Dataset

Hardware Specifications.The FLIR T620 model in Figure 3(a)
was the thermal imaging camera equipment used to build
infrared small target data. FLIR T620 has a spatial resolution
of 640x480 and a temperature range between −40∘C and
650∘C and stores data at 14 bits operating at 30 frames per
second (FPS). Figure 3(b) presents small drones that serve
as simulated targets and use the DJI’s PHANTOM 4 PRO
model. The model was 1.38kg, including the battery and
propeller, and the size was not provided separately and was
approximately 30×30×16 (cm) whenmeasured directly. The
maximum flight time was approximately 30 minutes.

Experimental Environment and Data Acquisition. Experi-
ments were conducted on a specific location, and Figure 3(c)
shows the flight record by Google Earth�. The yellow line
indicates the accumulated path that the actual target has
flown. The target was experimented in various directions
and elevation angles at specific locations. When constructing
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(a) (b) (c)

Figure 3: Equipment used in the experiment and experimental environment. (a) is a FLIR T620 infrared camera, (b) is a PHANTOM4 PRO
drone model used as a target, and (c) is the flight trajectory of a target.

data under these circumstances, if all sequences are used, the
similarity between the adjacent frames was so large that the
frame was divided into 50m frames and frames up to 1km
in length. Because the near target can be detected well by
the conventional deep learning-based detector, the minimum
distance of the target was set to 100m and the maximum
distance was set to a maximum of 1km, corresponding to
the dot target. The distances used in this paper were the
actual distances between the infrared camera and the target.
As shown in Figure 3(c), the maximum experiment distance
was 1 km and most of the yellow lines (flight trajectory) were
performed at distances of less than approximately 500m.This
is because seasons other than winter have smaller targets and
less contrast with the surrounding backgrounds, making it
impossible to collect data from images.

Dataset Construction. Small infrared target datasets were
constructed around 1,000 images. Owing to the problems
mentioned above, most of the dataset was composed of less
than 500m, mainly from winter and summer. Figure 4 shows
the distance of the dataset from 100m to 900m.

AugmentationDataset.Because it takes considerable time and
effort to construct the data, less data can be accumulated
unconditionally. Therefore, amethod for increasing the num-
ber of data is needed. Because the target is small, the methods
of changing the image, such as random noise and blur, are
difficult to use because the signal of the target is likely to be
distorted. The augmentation method used in this paper is a
commonly used technique, and random crop augmentation
and flip augmentation were applied. An example shown
in Figure 5 performed flip augmentation for the original
image (a), as shown in (b). (c) and (d) are the results of
random crop augmentation for (a) and (b), respectively. The
two augmentations were applied together and approximately
7,000 data were used for training.

Label the Ground Truth. When data was extracted from the
infrared sequence file from a minimum distance of 100m to a
maximumdistance of 1km in 50m increments, themaximum
target size corresponded to 20 square pixels, a 1 or 2 pixels
minimum. The precise location information of the target
must be extracted from the constructed data. Considerable
effort is needed compared to the general object label for the
following two reasons. First, it is difficult to judge whether
there is a target, even if it is close (within 500 m) in the
case of a low contrast season or weather due to background
cluster, such as clouds. Second, if the target exceeds 500m,
the size of the target corresponds to several pixels; hence, it
is difficult to confirm the existence of the target. Therefore,
sequence data, radiometric temperature data, and intensity-
based gray-scale data should be considered together. First,
ground truth data is generated based on gray-scale data. If
the gray-scale data is difficult to identify with the naked eye,
the approximate position of the target is obtained through the
sequence, and the accurate position of the target is obtained
from the radiometric temperature data.

4.2. Performance Evaluation of the Proposed Methods

Performance Comparison Pixel-Level Fusion and Normaliza-
tion Method. Figure 6 shows the performance according to
the normalization method and pixel-level fusion method.
The gray-scale data and the radiometric temperature data
showed inferior performance when they were normalized
to different ranges. Therefore, radiometric temperature data
and gray-scale data were fused at the pixel-level and the
same normalization method was then used. As a result, it
showed significant performance differences according to the
normalization method. In particular, normalization with the
mean and standard deviation calculated without normalizing
to a specific range showed poor performance. Normalization
to a specific range did not result in a significant difference
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Figure 4: Example of infrared small target detection dataset distance from 100m to 900m.

(a) (b)

(c) (d)

Figure 5: Examples of augmentation results. (a) Raw infrared, (b) flip augmented image, (c) image randomly cropped with respect to an
original, and (d) random cropped image for a flip augmented image.
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Figure 6: Continued.
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Figure 6: Performance comparison between the normalization and pixel-level fusion method. (a)-(e) are the results for the winter test set,
and (f)-(j) are the results for the summer test set. The first row was normalized with the mean and standard deviation of 0.5; the second
row is between 0 and 1; the third row is between -1 and 0; and the fourth row is between -1 and 1. The last row uses the precomputed mean
and standard deviation for large scale dataset. (a)-(j) are the performance results according to the normalization method and fusion method,
and (k) and (l) were obtained by collecting only the best performance of each normalization method for the summer and winter test set,
respectively.

in performance between normalization methods, but overall,
it was helpful to have the minimum of the normalization
range to include -1. Figure 6 also shows that robust detection
is possible without any significant effect on the seasonal
variations.

Experiments in aNetwork Optimization Perspective.To obtain
the optimized results, Table 1 compares the performance
according to the network structure, batch normalization,
and activation function. Because the ReLU [43] activation
function does not use negative data, this study used the Leaky



Journal of Sensors 9

Table 1: Performance comparison based on the network structure, batch normalization and Leaky ReLU.

# of Layers Batch normalization Leaky ReLU (𝛼:0.01) Average precision

5
0.7679

✓ 0.7757
� � 0.8784

7
0.7153

✓ 0.7365
✓ ✓ 0.7987

10
0.6564

✓ 0.6613
✓ ✓ 0.6709

14
0.6610

✓ 0.6821
✓ ✓ 0.6855

Table 2: Performance comparison based on the network structure, batch normalization and Leaky ReLU.

Batch normalization Leaky ReLU (𝛼:0.01) Average precision
Normalization and fusion methods � � +1% ∼ +10%

ReLU [44] activation function with a slope factor 𝛼 of 0.01
and applied batch normalization. In particular, approximately
10% of the Leaky ReLU activation function was improved
compared to ReLU. The performance of the table is based on
the normalization method with a value between -1 and 1, and
the lowest performance fusion method was used to make a
clear comparison. As listed in Table 2, the AP was improved
by between 1% and 10% for the various normalization and
fusion methods mentioned.

Experimental according to Fusion Method and Normalization
Method. Figure 7 shows the detection results according to the
data fusion method using the fixed normalization method
and Figure 8 shows the detection results according to the
normalization method using the fixed data fusion method.
The fixed normalization method and data fusion method use
the method that showed the best performance on average.
At this time, the normalization method is a method of
normalizing to a value between -1 and 1, and the data
fusion method is a method using two sets of radiometric
temperature data.

In Figure 7, (a) is the case when only radiometric temper-
ature data was used; (b) is for gray-scale data only; (c) is for
radiometric temperature data for one channel, and (d) is for
radiometric temperature data for two channels. Based on the
normalization method with a value between -1 and 1, a false
alarm did not occur in (d) using two radiometric temperature
data, which showed the best performance and in (c) based on
temperature data fusion. A false alarm occurs in (a) and (b)
because it uses only single data rather than fusion-based data.
On the other hand, detection was performed correctly in all
four cases.

In Figure 8, (a) shows the normalization method using
the previously calculated mean and standard deviation for
a large scale dataset; (b) normalizes the mean and standard
deviation to 0.5; (c) is the normalized value between 0 and

1; (d) is the normalized value between -1 and 0, and (e)
is the detection result according to the normalized value
between -1 and 1. From the detection results of (a) and (b),
which performed normalization based on a specific value,
it can be confirmed that although the detection is correct,
many false alarms are generated and the performance is
poor.

Comparison with Existing Techniques. Figure 9 presents a test
result image from a test dataset constructed on different days
and was configured to include various background clusters.
Figures 9(a), 9(b), and 9(c) show the result based on theCFAR
detector, high-boost (HB) method [45], and the detection
results of the proposed network using the best fusionmethod,
respectively. The CFAR detector showed 0.7621 AP, which
is similar to or less than that of the deep learning-based
method.TheHBmethodworkswell for locating small targets,
but there is a problem that the threshold parameters must
be changed according to the environment changes. This
paper used test datasets that were built by distance, but
the maximum distance of the test dataset was only 321m
because the test was done only to that distance. Robust
detection is possible using the proposed deep learning-
based network, even in complex and various environments,
where there is a strong clutter-like cloud. In addition, robust
detection is possible without being affected by seasonal
changes.

4.3. HowCan the Radiometric TemperatureData BeObtained?
The radiometric temperature data can be obtained using the
procedure shown in Figure 10. Variable x is the raw input
data and is a 14-bit digital count. The FLIR T620 infrared
camera, which receives 14-bit digital count input, internally
finds for a, b corresponding to the slope and intercept of
the calibration curve. This process is called a radiometric
calibration. The radiance y can be obtained using a and b of
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Ground truth
Prediction (Normalized from -1 to 1)

Just use temperature data

False Alarm

(a)

Ground truth
Prediction (Normalized from -1 to 1)

Just use gray scale data

False Alarm

False Alarm

(b)

Ground truth
Prediction (Normalized from -1 to 1)

Fusion (1-channel temperature)

(c)

Ground truth
Prediction (Normalized from -1 to 1)

Fusion (2-channel temperature)

(d)

Figure 7: Comparison of detection results according to data fusion method. All the same normalization methods were used with values
between -1 and 1. The image (a) shows the case where only the radiometric temperature data is used for three channels, (b) shows the case
where only the gray scale data is used, (c) shows the case where the temperature data is fused using only one channel, and (d) is an example
in which temperature data is fused to two channels.

the calibration curve and the 14-bit digital count input. The
radiant energy emitted between T1 and T2, the temperature
range over which the FLIR T620 equipment operates, can be
obtained by integrating the function and can be expressed in
terms of 𝐿(𝜆). This shows Planck’s law as a function of the
wavelength. When the radiance value corresponding to y is
obtained through the calibration curve, 𝐿(𝜆) can be solved
using the equation for 𝐿𝑇 to obtain the temperature data for
the input data 14-bit digital count.

5. Conclusions

This paper proposed a deep learning-based method for the
far-infrared detection of small targets. The proposed method
directly constructs datasets containing raw IR data to include

a range of backgrounds. Therefore, this study could utilize
radiometric temperature data as well as commonly used
gray-scale data and attempted to use this temperature data
to solve the problem of a lack of information due to the
small target size. Various normalization and fusion methods
were examined to efficiently combine gray-scale data with
radiometric temperature data. In the case of normalization,
the performance was better than that using a specific value
or a precomputed value for a large scale dataset rather
than using a specific range. The use of data fused at the
pixel-level rather than using only single data resulted in
better overall performance. The seasonal performance can
be detected robustly by seasonal changes. The performance
of the proposed detector is similar to or better than that
of the conventional detector. A comparison of the detection
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Ground truth
Prediction (2-channel temperature fusion)

Normalized with pre-calculated

False Alarm

(a)

False Alarm

Ground truth
Prediction (2-channel temperature fusion)

Normalized with 0.5

(b)

False Alarm

Ground truth
Prediction (2-channel temperature fusion)

Normalized from 0 to 1

(c)

Ground truth
Prediction (2-channel temperature fusion)

Normalized from -1 to 0

(d)

Ground truth
Prediction (2-channel temperature fusion)

Normalized from -1 to 1
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Figure 8: Comparison of the detection results according to the normalization method. The same fusion method was used for the two
temperature channels from (a)-(e).The image (a) was normalized to a previously calculated mean and standard deviation for a large dataset;
(b) was normalized to an arbitrary value of 0.5; and (c) is a value between 0 and 1. In normalization, (d) is normalized to a value between -1
and 0, and (e) is normalized to a value between -1 and 1.
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Figure 9: Comparison of the results of proposed deep learning based detector, conventional CFAR detector, and HB-based detector. The
proposed detector is based on the fusion method using two sets of radiometric temperature data that showed the best performance and
normalization method with a value between -1 and 1. In case of HB, the threshold parameter for detection at 208m was applied to 321m as it
is.
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Figure 10: Process for obtaining radiometric temperature data. The radiance corresponding to the 14-bit digital count input data was
calculated through the radiometric calibration process. Using the Planck equation to find the temperature corresponding to that radiance,
the temperature is the target’s radiometric temperature data.

results confirmed that the clutter can be detected robustly
using the proposed deep learning-basedmethod, even in very
complicated and varying environments.
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The supplementary file compares the detection results of the
proposed detector with a constant false alarm rate (CFAR)
detector, which corresponds to the baseline method.The first
page compares the detection results of the proposed detector
with the CFAR detector for the winter season, and the upper
left represents the flight record for constructing the test demo
dataset. The yellow solid line is the flight record of the actual
target. The second page compares the results of the CFAR
detector with that of the proposed detector by comparing the
detection results for summer.The third page is a total seasonal
flight record for building a test demo dataset containing both
seasons. (Supplementary Materials)
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Particulate matter (PM) has been revealed to have detrimental effects on public health, social economy, agriculture, and so forth.
Thus, it became one of themajor concerns in terms of a factor that can reduce “quality of life” over EastAsia, where the concentration
is significantly high. In this regard, it is imperative to develop affordable and efficient prediction models to monitor real-time
changes in PM concentration levels using digital images, which are readily available for many individuals (e.g., via mobile phone).
Previous studies (i.e., DeepHaze) were limited in scope to priorly collected data and thereby less practical in providing real-time
information (i.e., undermined interprediction).This drawback led us to hardly capture drastic changes causedbyweather or regions
of interests. To address this challenge, we propose a newmethod called Deep Q-haze, whose inference scheme is built on an online
learning-based method in collaboration with reinforcement learning and deep learning (i.e., Deep Q-learning), making it possible
to improve testing accuracy and model flexibility in virtue of real-time basis inference. Taking into account various experiment
scenarios, the proposed method learns a binary decision rule on the basis of video sequences to predict, in real time, whether
the level of PM10 (particles smaller than 10 in aerodynamic diameter) concentration is harmful (>80𝜇𝑔/𝑚3) or not. The proposed
model shows superior accuracy compared to existing algorithms. Deep Q-haze effectively accounts for unexpected environmental
changes in essence (e.g., weather) and facilitatesmonitoring of real-time PM10 concentration levels, showing implications for better
understanding of characteristics of airborne particles.

1. Introduction

Particulate is a minute particle that is in liquid or solid
phase in the atmosphere and often refers to a particulate
material having an aerodynamic diameter of 10𝜇𝑔/𝑚3or less
(PM10).This originates from anthropogenic sources, such as
combustion of fossil fuels such as coal, oil, the exhaust gas
of manufacturing factories, and automobile engines as well
as natural sources, such as desert and ocean (mineral dust
and sea salt). Particulates are also known to affect climate

and precipitation as well as human health [1, 2]. Moreover,
confronting threats of PM to Asian countries becomes no
longer negligible to the point that the media and research
groups consistently reveal detrimental effects [3]. To our
surprise, it is notable that the World Cancer Institute in
October 2013 analyzed a large-scale cohort of 2,095 lung
cancer patients out of 312,944 people in the nine European
countries [4]. Evidences that PM was determined as primary
carcinogens were due to the fact that the risk of lung cancer
increased by 22% at an PM increment of 10 𝜇𝑔/𝑚3.

Hindawi
Journal of Sensors
Volume 2019, Article ID 9673047, 10 pages
https://doi.org/10.1155/2019/9673047

https://orcid.org/0000-0002-0442-7795
https://orcid.org/0000-0001-7980-3911
https://orcid.org/0000-0002-2972-135X
https://orcid.org/0000-0002-5029-476X
https://orcid.org/0000-0002-0040-3542
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/9673047


2 Journal of Sensors

Of late days, air pollution remains intractable to be
resolved in massively populated regions like Seoul in South
Korea, where the presence of fine dust is easily detected
in vision. It is reported that PM10 concentration in South
Korea is measured twice as high as that of OECD countries
on average [5]. This record is even higher than the major
cities such as New York City and Paris. To circumvent air
pollution, the government has put significant efforts for
better forecasting and developing benchmarks. And yet, we
still encounter many challenges, for instance, inaccurate
reporting system particularly at a specific location because
of the limited metering sites, costly gadgets, and so forth.
No wonder the most complete way to resolve fine dust is
to eliminate the sources. However, this strategy obviously
takes demanding costs and time-consuming tasks. Under this
circumstance, concerns to public health have increased at an
unprecedented rate. Civilians believe that hourly reporting
of PM levels might not be sufficient for real-time air quality
[6]. Thus, it is necessary to suggest a method applicable
to prompt measurements of PM concentrations without
expensive devices and spacious place to install. This is the
point where our research motivation comes in.

The predictive models of PM concentration are pro-
posed in various ways. A majority of methods adopted an
explorative way: (1) elementary statistic [7], (2) time-series
visualization [8], (3) histogram on a yearly basis [9], and (4)
image data [10]. Another choice is to use predictive models
such as logistic regression, support vector machine (SVM),
and deep neural network (DNN) [11]. To construct training
data set, a majority of previous methods typically utilized
regional, climatic, or daily publicly available weather data
(e.g., humidity, insolation, etc.), whereas the image data-
based method makes an exclusive use of RGB data (Red,
Green, and Blue) calibrated on true PM levels.

To the best of our knowledge, the attention to artificial
intelligence revives through the diverse fields due to the
rethinking of reinforcement learning. AlphaGo broke down
at the 9th stage against Lee Sedol. The level of artificial
intelligence is much better than expected. AlphaGo is based
on Google’s deep Q algorithm [12]. It is an artificial intel-
ligence algorithm system exploiting reinforcement learning.
Originally reinforcement learning is inspired by behavioral
psychology, in which an agent defined in an environment
recognizes the current state and selects a behavior or
sequence of actions that maximizes compensation among the
selectable behaviors. These problems are so comprehensive
that they are also studied in areas of game theory, control
theory, operational science, information theory, simulation-
based optimization, multiagent systems, flock intelligence,
statistics, and genetic algorithms [13, 14].

The deep Q-network algorithm (a.k.a DQN) learns the
optimal policy by learning the Q function predicting the
expected value of the utility that would result from perform-
ing a given action in a given state. After learning the Q
function, we can derive the optimal policy by performing
the action that gives the highest Q in each state. The goal
of the agent (decision maker) is to maximize the sum of the
rewards.The choice is the action of getting the greatest reward
in that state in the long run. The DQN predicts the Q-value

using the action-value function CNN (convolutional neural
networks), one of the neural network-type decision rules. It
is well known that the convolutional neural network (CNN)
is an efficient image processing algorithm adapted for vision
analysis and image recognition.

In this paper, we proposed a predictive model that builds
on the deep Q-network algorithm in spirit of reinforce-
ment learning in order to predict particulate levels. We
call this algorithm Deep Q-haze. Inspired by conventional
reinforcement learning, this predictive model assigns the
state an image to evoke multiclass actions on the basis of the
prespecified calibration of particulates (e.g., 80𝜇𝑔/𝑚3 less or
more). Subsequent to this, the reward and action to get the
best reward are determined. Taken together, the proposed
Deep Q-haze serves as an effective tool to predict particulate
levels solely subject to image data. We hypothesize that
superior predictive performance of Deep Q-haze leads to less
chance of false detection compared to previous classification
model (e.g., SVM, RF, and DeepHaze) and consequently
improves practical utility.

2. Datasets and Related Work

2.1. Datasets. Below we describe particulate data that a
predictive model learns on. For the most part, we col-
lect the video sequence data in the major cities of South
Korea (e.g., Seoul and Daegu), where the cities are fea-
tured with a large-scale industrial complex, automobiles,
highly populated counties. In such mega cities, gas emission
has been a years-long environmental challenge, and high-
concentration dusts occupy the peninsula throughout the
year. More importantly, it is asserted that air pollution is
primarily attributed to contaminants of eastern and southern
China [15] and thus this problem, at present, remains out
of control. When it comes to data collection, we gauge
particulate levels via a high-performance device (Aerosol
Mass Monitor (AEROCET-831) manufactured by Met One
Instruments; http://metone.com/), whose perceptible dust
size ranges from PM2.5 to PM10. In this paper, we pur-
posely focus on the level of PM10. Regarding nonfixed
image sequences (i.e., manually taken via mobile phone), we
retrieved image data in our recent research, where we take
into account residential areas, a group of trees, and building
complexes featured with only nonatmospheric information
(i.e., absence of sky). The interested regions largely include
diverse categories: (1) outdoor parking spots, (2) building
complex on campus, (3) indoor office environment, (4) street
regions by exhausts emission, (5) vicinity of construction
sites, and (6) residential areas. On average, video sequences
are recorded with 5∼25 frames per second for a total of
268 sequences. To take a glance, thumbnails of each video
sequence are presented in Table 3. The video sequences are
taken by Samsung phone cameras (S7) and its built-in IP
webcam. Data and programming codes are available online
(https://sites.google.com/site/sunghwanshome/).

2.2. Deep Q-Network Algorithm. Briefly, the deep reinforce-
ment learning (Deep RL) system combines reinforcement

http://metone.com/
https://sites.google.com/site/sunghwanshome/


Journal of Sensors 3

Table 1: The proposed architecture of simplified CNNmodels.

type patch size/stride input size
conv 4×4/1 200×200×9
conv 2×2/1 200×200×10
flattening - 1×1×400000
linear - 1×1×100
softmax classifier 1×1×2

learning and neural networks. As aforementioned, reinforce-
ment learning relates to an area of machine learning, in
which an agent defined in an environment recognizes the
current state and selects a behavior or sequence of actions that
maximizes the expectation of the sum of the rewards among
the selectable behaviors as below:

𝑅𝑡 = 𝑟𝑡 + 𝛾 (𝑟𝑡−1) + 𝛾2 (𝑟𝑡−2) + ⋅ ⋅ ⋅ + 𝛾𝑇 (𝑟𝑡−𝑇) (1)

The objective of the agent is to find a strategy (a.k.a.
policy) so as to maximize the expected sum of discounted
rewards. In theory, the optimal policy is defined as the
expectation of rewards that potentially earn in the future
when continuing the actions along the policy 𝜋 at the current
state 𝑠𝑡 = 𝑠.

𝜋∗ (𝑠) = arg max
𝑎

𝐸 (𝑅𝑡 | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎) (2)

The action a (i.e., ∗(𝑠)) is selected such that the expecta-
tion of the sumof the rewards ismaximized. Instead of above,
we learn 𝑄(𝑠, 𝑎) and thereby find the optimal action 𝑎𝑡(= 𝑎)
in state 𝑠𝑡(= 𝑠).

𝑄new (𝑠𝑡, 𝑎𝑡) ←

𝑄 (𝑠𝑡, 𝑎𝑡) + 𝛼 [𝑟𝑡+1 + 𝛾 ⋅max
𝑎

𝑄 (𝑠𝑡+1, 𝑎) − 𝑄 (𝑠𝑡, 𝑎𝑡)]
(3)

where 𝛾 ∈ [0, 1) is the discount factor. This is the Q-learning
method proposed by Watkins [15]. Stepping up beyond Q-
learning, [12] proposed theDeepQ-network algorithm (a.k.a.
DQN) that learns the optimal policy by the Q function on
the basis of the deep convolution neural network (CNN)
and approximates the action-state function. In this paper, we
use the customized CNN (see Table 1) to detect the charac-
teristics of the image and to determine the behavior of the
agent.

min
𝜃

𝑇

∑
𝑡=0

[𝑄 (𝑠𝑡, 𝑎𝑡 | 𝜃) − (𝑟𝑡 + 𝛾 ⋅max
𝑎

𝑄 (𝑠𝑡+1, 𝑎 | 𝜃))]2 , (4)

where 𝜃 is the set of model parameters and 𝑄 is an estimated
Q-function.

The learning process optimizes the cost function updat-
ing the weight to minimize the above equation. Importantly,
two techniques designed to enhance predictive power get
involved in the learning process. The first stage is called the
capture and replay method. To put this plainly, this performs
repetitive tasks between storing and taking data at random.

Due to the fact that sequential samples are likely to be
strongly correlated, randomness of replaymemory attenuates
correlation and reduces the variance of updates. In the second
stage, the networks learn on a target network and main
network one after the other (i.e., constructing two networks).
Meanwhile, the target network is fixed and only the main
network is updated. The target network updates the values
of the main network once every predetermined step. This
trick tackles the problem of moving targets and continuously
updates the Q-function to maximize the expectation of
rewards in the future. All things taken together, the optimal
behavior is determined by the updated main Q-function.

3. Methods

3.1. Augmented Temporal Image Features. In context of big
data analytics, it is interesting to boost power of our predictive
model. To this end, the proposed model combines multiple
feature channels, each containing RGB, HSV, and its haze-
related features (i.e., dark channel, color attenuation, and hue
disparity; [16–18], (Fattal et al., 2008, and Koschmieder et al.,
1925)), for a total of 9 channels. Needless to say, it is generally
true that the larger data set we apply, the more potential
signals the model may decipher. To take a glance, Figure 1
illustrates how we form augmented image data, which serve
as a building block tomeasure the amount of dusts. Saturation
index in HSV ranging from 0 to 255 represents the degree
of saturation, which are closely linked to noises attributed to
particulates. Combining all channels above, the state 𝑠𝑡 in the
Q-function at time t takes a 200 × 200 × 9 multidimensional
array. To account for particulate levels, we create difference
values of two consecutive arrays followed by standardization
and filtering outliers exceeding 90th quantile. These arrays of
difference in image sequences play a role as building blocks
of our predictive model (see Figure 2).

3.2. Resampling-Based Reinforcement Learning. Here, we
propose the resampling-based reinforcement learning algo-
rithm. Typically, environmental data are prone to being
sequential, time-dependent, and seasonal. These characters
naturally invite reinforcement learning-type models to come
into play. In one sense, an atmospheric model is suited to
reinforcement learning as consecutive variability relates to
atmosphere. To the contrary, it is also found that reinforce-
ment learning is hardly exploited to natural environment
data, in the sense that repetitive tasks to mimic natural
environment are challenging to be implemented, as com-
pared to training for robot arms or video games to which
reinforcement learning widely applies. However unlikely it
may seem,we can create an artificial environmentwith regard
to particulates such that we arbitrarily maneuver weather
conditions in purpose (e.g., dust quantity) via bootstrap
sampling. In doing so, we initially build an integrated data
pool consisting of real image sequences in a proportion to
balanced class labels (e.g., safe and harmful) to stably perform
bootstrap sampling (e.g., with replacement). Importantly,
such a sampling process allows consecutive learning tasks to
construct a vast number of predictive models whose training
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Figure 1: A workflow to implement Deep Q-haze and augmented image-related arrays constituting temporal differences between two
consecutive arrays.

− =

(a) Safe

− =

(b) Harmful

Figure 2: Shown are temporal differences between two consecutive arrays with regard to two scenarios (e.g., safe and harmful), respectively.
The visual distinction of two difference arrays looks obvious in the sense that the harmful case generates explicit discordance as compared to
the safe case.
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Table 2: Deep Q-haze algorithm.

(1) Initialize model configuration
(i) Initialize action-value function Q with random weights
(ii) Construct𝑁 sequence arrays (i.e., 𝑠𝑡 at time 𝑡) of nine channels and randomly sample
bootstrap batch out of the integrated data pool (i.e.,𝑁 = 20 as default)
(iii) Initialize sequence 𝑠𝑡 and preprocessed sequenced (i.e., standardization and filtering
outliers exceeding 90th quantile) via 𝜙, namely 𝜙(𝑠𝑡).
(2) Create difference values of two consecutive arrays

𝜙𝑡 = 𝜙(𝑠𝑡) − 𝜙(𝑠𝑡+1)
(3) Repeat the following for 𝑡 = 1, . . . , 𝑇 :
(i) To derive the optimized action, select a random action 𝑎𝑡, where 𝑎𝑡 ∈ {0, 1}
(i.e., safe or harmful) with probability 𝜖
(ii) Otherwise select 𝑎𝑡 = max𝑎𝑄(𝜙𝑡)
(iii) Execute action 𝑎𝑡 in the predictive rule and observe reward 𝑟𝑡
and new incoming sequence 𝑠𝑡+1
(iv) Set 𝑎𝑡, 𝑠𝑡+1, 𝑠𝑡+2 and process 𝜙𝑡+1 = 𝜙(𝑠𝑡+1) − 𝜙(𝑠𝑡+2) and calculate rewards determining
actions and impose the weight according to testing outcome (i.e., true or false) and update
𝑄 every 10 times.
(v) For 𝑗 = 1, . . . ,𝑁 − 1, set as follows

𝑦𝑗 =
{{
{{
{

𝑟𝑗 if terminal 𝜙𝑗+1
𝑟𝑗 + 𝛾 ⋅max

𝑎
𝑄(𝜙𝑗+1 , 𝑎; 𝜃) otherwise

where

𝑟𝑗 =
{{
{{
{

V, if 𝑧𝑗 = arg max
𝑎𝑗

𝑄(𝜙𝑗, 𝑎𝑗)

−V, otherwise
and 𝑧𝑗 ∈ {0, 1}, a true class label monitored via a device and set V = 1 in this paper.
(vi) Perform a gradient descent step on (𝑦𝑗 − 𝑄(𝜙𝑗, 𝑎𝑗; 𝜃))2.

data determine rewards, policy, and actions. Particulate levels
and image data are monitored over the years, and models all
in one, aiming at exclusion of possible seasonal and climate
effects. In what follows, Table 2 encapsulates themajor imple-
mentation schemes one at a step, in short, each including the
kernels of deep Q-network [12] and vision-based DeepHaze
[11] learning on differences vision of neighboring sequences.
In our simulation, we, for simplicity, make in rewards to
be small, equivalently adjusting future rewards to be quite
negligible. With regard to the Q-function, we adopt the CNN
architectures of the predictive model as presented in Table 1,
and the CNN architectures are implemented by TensorFlow
1.10 in Python.

4. Results and Discussion

In this experiment, we evaluate the variants of the Deep
Q-haze models learning on a range of frame numbers and
compare them to other popularly used classifiers (e.g., Deep-
Haze, random forest, and SVM). With varying parameters,
diverse experiment scenarios are considered to mimic real
environments and to fortify universal applicability of the
model. Tables 4 and 5 encapsulate the predictive performance
of the Deep Q-haze and its competitor classifiers. It is evident
to say that the proposed algorithm, when using all datasets,

outstandingly distinguishes a harmful atmospheric condition
with high accuracy and low false detection (i.e., Youden index
= sensitivity + specificity - 1; e.g., 0.9817 - 0.9894 for the
indoor office).

4.1. Indoor Environment (an Office and an Experimental
Chamber). It is certain that clean air quality in an indoor
office is a critical part to maintain health. It is sensible,
with that in mind, to purposely focus on image sequences
in office at Konkuk University over the several months.
We collect 2,200 video sequences (i.e., 1,100 clips of each
class label), each containing at least 20 image frames per 1
min. Generally robustness of the algorithm is essential for
practical utility. In what follows, we performed large-scale
experiments under controlled conditions to verify if the Deep
Q-haze is robust against various environmental factors. The
experiments were carried out largely under four conditions:
presence of windiness, high temperature, high humidity, and
high light intensity. To this end, we construct the experiment
chamber (i.e., large container) specially designed to create
artificial circumstances (see Table 3 at the bottom). Beside
factors of interest, other conditions remained the same at
ordinary level. Table 6 shows that Deep Q-haze consistently
maintains high predictive power regardless of environmental
conditions (e.g., windiness, high temperature, etc.). It is found
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Table 3: Thumbnails of target regions where particulate matters are analyzed to construct the predictive model.

Category Thumbnails # of video sequences

Indoor office 2,200

Outdoor parking lot of Konkuk
Univ. 3,200

Outdoor parking lot of
Keimyung Univ. 3,000

Mobile video clips 1,000

Experimental chamber 500

that Deep Q-haze is less likely to be deteriorated, even though
varying environmental factors can promote the randomness
of particulates. We collect 500 sequences of only harmful
labels, consisting of at least 20 images per 1 min.

4.2. Outdoor Regions. Unsurprisingly, outdoor regions have a
tendency to higher levels of particulate than indoor and, due
to open space, facilitate visually gauging dust particles present
in the air through a long distance. Considering that campus
regions are filled up with automobiles, where population
flows are relatively intense, we chose two regions: (1) a
parking lot (Keimyung University) and (2) building com-
plex (Konkuk University), where we install high-resolution
cameras and dust measurement device (AEROCET-831). For
several months (2017∼2018), we monitored outdoor parking
lots all day long and recoded image sequences. We collect
3,000 (an outdoor parking lot of Keimyung University) and
3,200 (an outdoor parking lot of Konkuk University) video

sequences of both safe and harmful labels, consisting of at
least 20 image frames per 1 min. We focus on image captured
from fixed camera and mobile phone camera in a different
way due to perturbation that occurs when a mobile phone is
manually controlled. To take a glimpse, refer to the thumbnail
image in Table 3.

4.2.1. Image Sequences of Fixed Camera. Tables 4 and 5 show
that Deep Q-haze outperforms DeepHaze, SVM, and RFs.
Note that Deep Q-haze performs with high accuracy (0.9839
∼ 0.9914 of Keimyung Univ., 0.9040 ∼ 0.9220 of Konkuk
Univ.; hereafter this order is kept the same) as opposed
to DeepHaze (0.6300 ∼ 0.6336, 0.4560 ∼ 0.4580), random
forest (0.4100 ∼0.4581, 0.4380 ∼ 0.4690), and SVM (0.3800 ∼
0.4236, 0.6240∼ 0.6560). It is interesting to see that predictive
power tends to be increasing as the frames augmented from
5 to 20. Besides, Deep Q-haze suffers less from the false
detection (i.e., high Youden index; Deep Q-haze: 0.9658
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Table 5: Prediction accuracy of predictive models with an application to various video sequences.

# of frames 5 frames 10 frames 15 frames 20 frames
Konkuk Univ. Indoor

Deep Q-Haze 0.9918 0.9945 0.9927 0.9817
Deep Haze 0.7112 0.7487 0.7450 0.7487
RF 0.6262 0.6300 0.5000 0.5000
SVM 0.5000 0.5000 0.5000 0.5000

Konkuk Univ. Outdoor
Deep Q-Haze 0.9040 0.9100 0.9160 0.9220
Deep Haze 0.4560 0.4580 0.4520 0.4580
RF 0.4690 0.5060 0.4380 0.4610
SVM 0.6560 0.6270 0.6240 0.6440

Keimyung Univ.
Deep Q-Haze 0.9839 0.9861 0.9877 0.9914
Deep Haze 0.6300 0.6336 0.6309 0.6336
RF 0.4100 0.4390 0.4418 0.4581
SVM 0.3800 0.4054 0.4318 0.4236

Mobile Phone
Deep Q-Haze 0.8842 0.8796 0.8703 0.8657
Deep Haze 0.5046 0.5000 0.5023 0.5000
RF 0.4768 0.5046 0.4513 0.4791
SVM 0.3287 0.3217 0.3148 0.3148

Table 6: Simulation study: sensitivity (Sen), specificity (Spe), Youden index, and standard errors in parentheses with an application to various
video sequences and environmental conditions. The simulation was repeated 50 times.

# of frames 5 frames 10 frames 15 frames 20 frames
Windiness (Use of fan)

Sen 0.8411 (0.0408) 0.8495 (0.0452) 0.9152 (0.0335) 0.9116 (0.0304)
Spe 0.8796 (0.0299) 0.9141 (0.0266) 0.9411 (0.0221) 0.9419 (0.0200)
Youden 0.7207 (0.0377) 0.7636 (0.0526) 0.8563 (0.0738) 0.8535 (0.0496)

High Temperature (40∘C)
Sen 0.8664 (0.0291) 0.8866 (0.0315) 0.8844 (0.0357) 0.9090 (0.0291)
Spe 0.9160 (0.0236) 0.9524 (0.0201) 0.9601 (0.0157) 0.9587 (0.0170)
Youden 0.7824 (0.0336) 0.8390 (0.0398) 0.8445 (0.0427) 0.8677 (0.0371)

High Humidity (50%)
Sen 0.8758 (0.0274) 0.9317 (0.0221) 0.9478 (0.0193) 0.9392 (0.0234)
Spe 0.9562 (0.0185) 0.9647 (0.0199) 0.9961 (0.0029) 0.9821 (0.0146)
Youden 0.8320 (0.0312) 0.8764 (0.0298) 0.9439 (0.0209) 0.9213 (0.0308)

High luminous Intensity (250lx)
Sen 0.8990 (0.0276) 0.9290 (0.0247) 0.9259 (0.0251) 0.9211 (0.0278)
Spe 0.8669 (0.0308) 0.8947 (0.0307) 0.9071 (0.0293) 0.9265 (0.0278)
Youden 0.7659 (0.0342) 0.8237 (0.0396) 0.8330 (0.0404) 0.8476 (0.0430)

∼ 0.9828, 0.7916 ∼ 0.8233). Putting another way, the low
Youden index values imply that random forest and SVM are
not as efficient as Deep Q-haze with regard to image-based
prediction.

4.2.2. Image Sequences of Mobile Phone Camera. We hypoth-
esize whether our predictive model effectively applies to
image sequences manually taken. Admittedly, chances are
that our proposed method does not work due to unexpected

minute vibration; it is sensible to assess its performance
in this scenario. Coherent to experiments above, Tables
4 and 5 show that the proposed models are superior in
accuracy to DeepHaze, SVM, and RFs (i.e., Deep Q-haze:
0.8657 ∼ 0.8842, random forest: 0.6500 ∼ 0.6429, SVM:
0.3148 ∼ 0.3287) and in low false detection (i.e., Deep Q-
haze: 0.9733 ∼ 0.9866, random forest: -0.0781 ∼ 0.0303, and
SVM: -0.3485 ∼ -0.3187). Additionally, it is notable to see
that indoor experiment designs generally show better results
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compared to outdoor ones. This gap mainly results from
the difference in experimental setups. Since extra variables
(e.g., light and atmosphere) are adequately adjusted indoors,
predictive power of indoor models tends to be superior to
models of outdoor environments, where unexpected hardly
controlled variables are present.

5. Conclusion

Recently, we dove into the season of burgeoning AI. Many
are fascinated with its widespread applicability and practical
benefits (e.g., self-driving car, robots, healthcare, etc.). Here
we tried to take advantage of the flexible, highly efficient
AI technique in air quality monitoring and bring spatial
scale of the monitoring down to a “room scale”. Derivation
of real-time PM concentrations (even in a semiquantita-
tive way) at a “room scale” is essential, as it can provide
information on quality of air that people actually inhale
in their everyday life. There is no doubt that it would be
even better if the task can be done relatively easily using
data readily available to the public. We presented a novel
deep learning approach to determine real-time PM10 level
whether it is harmful or not from digital images acquired
by nonindustrial level recording devices, including mobile
phones. Our previous method (DeepHaze, Kim et al. [11])
triggered developing a vision-based predictive model and is
found to be applicable in a range of experimental scenarios.
Compared to the existing decision rule, Deep Q-haze in the
model stretches to additional colorific features (e.g., RGB,
HSV, and particulate related features), implicating that the
predictive power noticeably improved due to the blessing of
big data. Yet, there are urgent needs to synchronize pixels
across image sequences (e.g., homogenous configuration),
as taking images from flying drones or manual controls is
possibly subject to external factors. This homogenous nature
serves essential roles to make it to the exquisite differences
between consecutive frames. Besides, it is recommended to
ensure universal applicability regardless of the type of regions,
weather, and the amount of light. Avoiding false detection
is an intractable hurdle due to the fact that particulates in
image are captured with weak signals for the most part. To
enhance utility to the maximum extent by the public, Deep
Q-haze is planned to be implemented in portable electronic
gadgets in the form of mobile application software. The
model needs to have advance extension; the model should
be advanced toward multiclass prediction on the basis of
moderate calibrations, together with aerosol-related features
(e.g., image contrast or visibility [19–21]). To this end, another
recurrent neural network-type architecture can potentially be
a choice to improve accuracy. We leave these topics for future
study.
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