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Machine learning techniques have been increasingly applied
in the medical imaging field for developing computer-aided
diagnosis and prognosis models. Multimodal medical imag-
ing can provide uswith separate yet complementary structure
and function information of a patient study and hence
has transformed the way we study living bodies. Therefore,
using machine learning techniques to deal with multimodal
medical images is much more challenging due to the diver-
sity of biophysical-biochemical mechanisms. In these years,
researchers mainly adapt modern machine learning and
pattern recognition techniques such as supervised, unsuper-
vised, semisupervised, and deep learning to solvemultimodal
medical imaging related problems.

To record the ideas of talents and gather more contri-
butions to these fields, this special issue was launched and
supported by this journal. This special issue focuses on the
new imaging modalities/methodologies and new machine
learning algorithms/applications for the further development
in the multimodal medical imaging field, which will provide
opportunities for academics and industrial professionals to
discuss the latest issues and progresses in the area of multi-
modal medical imaging. The papers contained in this special
issue address the development and application of medical
image segmentation, registration, fusion, classification, image
restoration, image retrieval, and computer-aided diagnosis.

In “Estimation of Response Functions Based on Varia-
tional Bayes Algorithm in Dynamic Images Sequences,” B.

Shan proposes a nonparametric Bayesian model to estimate
the response functions in dynamicmedical imaging, inwhich
the nonparametric Bayesian priors are designed to favor
desirable properties of the functions and used to improve the
estimation of response functions.

In “Two-Layer Tight Frame Sparsifying Model for Com-
pressed Sensing Magnetic Resonance Imaging,” S. Wang et
al. propose a two-layer tight frame sparsifying model for
compressed sensing magnetic resonance imaging (MRI) by
sparsifying the imagewith a product of a fixed tight frame and
an adaptively learned tight frame, which is solved by a three-
level Bregman numerical algorithm and enables accurate
MRI reconstruction from highly undersampled data with
efficiency.

In “Many is Better than One: An Integration of Multiple
Simple Strategies for Accurate Lung Segmentation in CT
Images,” Z. Shi et al. present a novel computerized tomog-
raphy (CT) lung image segmentation method by integrating
multiple strategies, including the guided filter to smooth the
image, the optimized threshold to get binary image, region-
growing strategy to extract thorax regions, and random walk
algorithm to segment lung regions and to get the state-of-the-
art segmentation accuracy.

In “Pulmonary Nodule Detection Model Based on SVM
and CT Image Feature-Level Fusion with Rough Sets,” T.
Zhou et al. present a pulmonary nodules detection algorithm
based on support vector machine (SVM) and CT image
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feature-level fusion with rough sets to improve the detection
accuracy of pulmonary nodules in CT image. Both the unrea-
sonable feature structure and the nontightness of feature
representation are taken into consideration in this pulmonary
nodules detection algorithm.

In “Multigrid Nonlocal Gaussian Mixture Model for Seg-
mentation of Brain Tissues in Magnetic Resonance Images,”
Y. Chen et al. propose a novel segmentation method based
on the regional and nonlocal information to overcome the
impact of image intensity inhomogeneities and noise in
human brain magnetic resonance images.

In “DTI Image Registration under Probabilistic Fiber
Bundles Tractography Learning,” Z. Guo et al. propose a
diffusion tensor imaging (DTI) image registration method
under probabilistic fiber bundles tractography learning,
where the residual error model is modified with finite sample
set and the calculated deformation field is then registered on
the DTI images.

In “Automated Segmentation of Coronary Arteries based
on Statistical Region Growing and Heuristic Decision
Method,” Y. Tian et al. propose a fully automated coronary
artery segmentation from cardiac data volume based on a
statistics region growing together with a heuristic decision to
further help cardiovascular radiologists detect and quantify
stenosis.

In “Rapid Retrieval of Lung Nodule CT Images Based
on Hashing and Pruning Methods,” L. Pan et al. propose a
new retrieval framework based on a hashing method for lung
nodule CT images, which can translate high-dimensional
image features into a compact hash code to greatly reduce
the retrieval time and memory space. Moreover, a pruning-
based decision rule is utilized in this algorithm to improve its
retrieval precision.

In “The Classification of Tongue Colors with Standard-
ized Acquisition and ICC Profile Correction in Traditional
Chinese Medicine,” Z. Qi et al. design a tongue color classi-
fication approach using a standardized tongue image acquisi-
tion process, color correction, and several machine learning
techniques for tongue inspection-based diagnosis in tradi-
tional Chinese medicine.

In “Diagnostic Method of Diabetes Based on Support
Vector Machine and Tongue Images,” J. Zhang et al. develop
a SVM-based diagnostic method for diabetes using stan-
dardized tongue images. This work shows the potential of
applying digitalized tongue images, which are usually used in
traditional Chinese medicine, to the diagnosis of diabetes.

In “A Computer-Aided Analysis Method of SPECT Brain
Images for Quantitative Treatment Monitoring: Performance
Evaluations and Clinical Applications,” X. Zheng et al.
introduce and validate a computer-aided analysis method
to achieve the quantitative treatment monitoring based
on single-photon emission computed tomography (SPECT)
images, which can provide a convenient solution to generate
a parametric image and derive the quantitative indexes from
the longitudinal SPECT brain images for treatment monitor-
ing.

The papers in this special issue provide a useful message
of machine learning techniques in dealing with multimodal
medical images. This unique and informative collection of

papers highlights the direction of related studies.This special
issue illustrates the important role that machine learning
techniques play in the multimodal medical imaging fields.
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The objective and quantitative analysis of longitudinal single photon emission computed tomography (SPECT) images are
significant for the treatment monitoring of brain disorders. Therefore, a computer aided analysis (CAA) method is introduced
to extract a change-rate map (CRM) as a parametric image for quantifying the changes of regional cerebral blood flow (rCBF)
in longitudinal SPECT brain images. The performances of the CAA-CRM approach in treatment monitoring are evaluated by
the computer simulations and clinical applications. The results of computer simulations show that the derived CRMs have high
similarities with their ground truths when the lesion size is larger than system spatial resolution and the change rate is higher than
20%. In clinical applications, the CAA-CRM approach is used to assess the treatment of 50 patients with brain ischemia.The results
demonstrate that CAA-CRM approach has a 93.4% accuracy of recovered region’s localization. Moreover, the quantitative indexes
of recovered regions derived from CRM are all significantly different among the groups and highly correlated with the experienced
clinical diagnosis. In conclusion, the proposed CAA-CRM approach provides a convenient solution to generate a parametric image
and derive the quantitative indexes from the longitudinal SPECT brain images for treatment monitoring.

1. Introduction

Single photon emission computed tomography (SPECT)with
99mTc-ethyl cysteine dimer (99mTc-ECD) has been widely
used to evaluate many types of cerebrovascular diseases and
brain disorders by measuring regional cerebral blood flow
(rCBF) [1–6]. Moreover, longitudinal 99mTc-ECD SPECT
brain imaging can be adopted to monitor the changes of
rCBF to support the treatment plan [7, 8].Themost common
approach for interpreting SPECT brain images is visual
inspection in daily clinical practice. Usually the relevant
structural images, such as CT or MRI images, are preferred
for the visual interpretation together with SPECT images. For
treatment monitoring, the baseline and follow-up SPECT
brain images should be parallelly interpreted under the same

condition to figure out the differences. Due to the lack of the
quantitative standards, the accuracy and reliability of visual
inspection mainly rely on the experience of the physicians,
such that only the qualitative results are presented in the
reports. The aforementioned drawbacks of vissual insspec-
tion prevent the applications of SPECT imaging in distant
diagnosis and multicenter studies. The image processing
technology can bring solutions to the visual inspection prob-
lems and explore the hidden information in the images.

Beside the region of interest (ROI)/volume of inter-
est (VOI) analysis methods, statistical parametric mapping
(SPM) has been used in group-wise comparisons of func-
tional brain images to evaluate the responses to the treat-
ments [9, 10]. On the other hand, subtraction analysis is
also a useful technology to extract differences in a series
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Figure 1: The workflow of the computer-aided analysis method to extract a change-rate map.

of images for individual treatment monitoring. In ictal-
interictal SPECT imaging, the subtraction analysis has been
proved to benefit the treatment plan of epilepsy patients [11–
14]. Recent studies have reported that the quantitative SPECT
analysis would be playing an ever-growing role in treatment
plan and response monitoring of several disorders related
with the central nervous system [15, 16].These studies encour-
age us to generate the parametric imaging and extract quan-
titative indexes from the SPECT images to support the treat-
ment plan. In this study, we introduce a computer-aided anal-
ysis (CAA) method inherited from subtraction analysis to
quantify the changes of rCBF in longitudinal SPECT images
for individual treatment monitoring.The performance of the
proposed method would be objectively and systematically
evaluated by the computer simulations and the clinical appli-
cations.

2. Materials and Methods

2.1. Computer-Aided Analysis Method. When using SPECT
imaging in treatment monitoring, the pre- and postscans
are usually performed to acquire the baseline and follow-up
SPECT images before and after delivering treatments. The
obtained baseline and follow-up images from an individual
subject are a set of longitudinal SPECT images requiring
independent analysis. For interpreting the individual subject’s
data, a computer-aided analysis (CAA)method is established
to process the longitudinal SPECT images via three main
steps: coregistration, value normalization, and parametric
imaging. The workflow chart is shown in Figure 1.

In the first step, the follow-up SPECT brain images are
aligned with the baseline images by the rigid registration
algorithm provided by SPM 8.0 software package (http://
www.fil.ion.ucl.ac.uk/spm/). If the SPECT brain imaging is
performed using SPECT-CT integrated system, the CT and
SPECT images can be obtained in the same position and
considered as well aligned. In this condition, the baseline
and follow-up CT images could be used as the reference and
source image, respectively, in the step of coregistration for
aligning longitudinal SPECT images.

In the second step, the value normalization is applied
on the SPECT images. Before the numerical calculation, the
extracerebral voxels are removed by a predefinedwhole-brain
mask. If only the SPECT image is available, then the whole-
brain mask can be obtained by segmenting the enhanced
SPECT image with Otsu’s algorithm. If the corresponding
aligned CT image is available, then the whole-brainmask can
be more accurately defined by separating the brain tissues
fromnonbrain tissue inCT images using fuzzy𝐶-means clus-
tering algorithm [17]. The whole-brain mask extracted based
on the CT images is then applied on the SPECT images to
delineate the brain area.

After deriving the whole-brain area in the SPECT images,
the value of each cerebral voxel is normalized by the average
voxel value of the reference area that is automatically selected
by 𝑍-map approach [18]. In 𝑍-map approach, the 𝑍 value of
the 𝑖th voxel was calculated as in (1). Two𝑍-maps are, respec-
tively, estimated for baseline and follow-up SPECT brain
images. Then, the reference region is the intersection of the
𝑍 < 1 areas of these two 𝑍-maps.

𝑍𝑖 =
󵄨󵄨󵄨󵄨𝐶𝑖 −mean󵄨󵄨󵄨󵄨

SD
, (1)

where 𝐶𝑖 is the value of the 𝑖th voxel in one SPECT brain
image; mean and SD, respectively, denote the average and
standard deviation of voxel values of brain area in the SPECT
image.

In the third step, the changes in the longitudinal SPECT
images are expressed in a parametric image to reflect the
disease progress or responses to the treatment. As in sub-
traction analysis, the difference can be directly obtained by
subtracting two aligned normalized images, as

𝐷𝑖 = 𝐶
𝑓
𝑖 − 𝐶
𝑏
𝑖 , (2)

where 𝐶𝑓𝑖 and 𝐶
𝑏
𝑖 denote the normalized values of the 𝑖th

voxel in the follow-up and baseline SPECT images, respec-
tively.

Next, the change-rate map can be calculated voxel-by-
voxel to reflect the extent of the changes between the baseline
and follow-up images. The value of the 𝑖th voxel in the
estimated change-rate map is denoted by 𝑅𝑖, which can be
derived from

𝑅𝑖 =
𝐷𝑖
𝐶𝑏𝑖
. (3)

The change-rate map (CRM) is a parametric image which
can be fused with aligned SPECT/CT images for visual
inspections. The positive voxel value in CRM demonstrates
the recovery of hypoperfusion, while the negative value indi-
cates the recovery of hyperperfusion. For the visualization,
Gaussian smoothing filter can be applied in the CRM to
reduce the impact of noise. Based on the CRM, the changed
regions are automatically obtained by thresholding and clus-
tering. Firstly, the voxels with lower change-rate (<20%) were
set to 0 in CRM. Then, the 𝐾-means clustering algorithm is
adopted to recognize the changed regions. The morphologi-
cal processing is applied to refine and distinguish each region.
Considering the SPECT image resolution and partial volume
effects, the regions with larger volumes (>120 voxels) are
selected as the recovered regions.

For the localization of recovered regions, an atlas of brain
lobes, which consists of 12 brain anatomical structures (listed

http://www.fil.ion.ucl.ac.uk/spm/
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Table 1: The list of brain anatomical structures in the atlas of brain
lobes.

Brain anatomical structures Values in atlas
Cerebellum anterior lobe 80
Cerebellum posterior lobe 10
Frontal lobe Left: 50, right: 55
Frontal-temporal space Left: 110, right: 115
Limbic lobe Left: 40, right: 45
Medulla 20
Midbrain 100
Occipital lobe Left: 90, right: 95
Parietal lobe Left: 120, right: 125
Pons 70
Sublobar 60
Temporal lobe Left: 30, right: 35

in Table 1), is created from the Talairach Daemon atlas [19,
20] and then translated into MNI (Montreal Neurological
Institute) space [21] with dimensions of 91 × 109 × 91 sampled
at 2mm intervals, corresponding to the SPM templates [22].
The SPECT/CT images as well as the obtained CRM are
mapped to SPM template by the nonrigid registration algorithm
provided by SPM 8.0 software package and then aligned with
the atlas of brain lobes. Based on the atlas of brain lobes,
the recovered regions could be located in the different brain
lobes.Thequantitative indexes for the recovered regions, such
as themean andmaximum change-rate and the proportion of
the recovered regions to the corresponding brain lobes, could
be calculated for each detected recovered regions.

In order to facilitate the expression, the proposed approach
used to evaluate longitudinal SPECT images through a CRM
derived by the CAAmethod is noted as CAA-CRM approach
in the subsequent parts.

2.2. Computer Simulations

2.2.1. Simulated Data. In this study, the performance of the
CAA-CRM approach in treatment monitoring was objec-
tively and systematically evaluated by the computer simula-
tions. The longitudinal SPECT images are simulated using
predesigned digital brain phantoms.The normal digital brain
phantom is a 100 × 100 × 82 matrix representation of the
hardwareHoffmanphantom [23], whose voxel size is 2.13mm
× 2.13mm × 2.13mm. In the digital brain phantom, the value
of each voxel presents the radioactivity in the corresponding
position. Generally, this digital brain phantom is used to
simulate the normal brain perfusion images acquired by
99mTc-ECD SPECT imaging. Comparing with other regular
geometrical objects, the sphere ismore suitable for simulating
the ischemic lesions in perfusion images. For convenience, a
sphere is created in the normal digital brain phantom located
in the right frontal lobe as a lesion analogue.Thediameter and
radioactivity of the sphere can be changed for several scales
to simulate the varied degrees of hypoperfusion for brain
ischemia. The diameter of the sphere was designed in three

scales: 8mm, 16mm, and 24mm. In addition, the radioactiv-
ity in the sphere was set based on the predefined change-rate
scaled in 9 different levels uniformly distributed from 10% to
90%. The simulated brain SPECT images are generated with
an injected dose of 25mCi of 99mTc-ECD. The abnormal and
normal brain images are, respectively, regarded as the base-
line and follow-up images obtained in treatment monitoring
for brain ischemia.

The system parameters used in computer simulations are
set according to the geometry of the dual-head Philips Prece-
dence 6 SPECT/CT scanner. Each detector head is mounted
with a low-energy and high-resolution (LEHR) collimator.
The two heads rotate in H-mode to obtain 128 projections in
total over 360∘ around the predesigned phantom. Projection
data are acquired for 10 minutes with a total count number
of 108 accompanied with measurement noise that is modeled
as an additive Poisson noise.The radioactivity distribution in
the brain phantom is reconstructed with a maximum a pos-
teriori (MAP) algorithm with total variation regularization.

2.2.2. Performance Evaluation. In the performance evalua-
tion, the ground truth of CRM is directly defined based on
the phantoms for every simulated lesion size at each change-
rate. The estimated CRM is compared to the corresponding
ground truth for evaluating its quality. In this study, the
indexes of image quality are adopted to objectively and sys-
tematically quantify the performance. Denote the value of the
𝑖th voxel in the estimated CRM as 𝑅𝑖, and denote the value of
corresponding voxel in ground truth as𝐺𝑖.Thus, the normal-
ized absolute error (NAE), which is the simplest metric for
measuring the difference between two images, can be calcu-
lated by

NAE =
∑𝑁𝑖=1
󵄨󵄨󵄨󵄨𝑅𝑖 − 𝐺𝑖
󵄨󵄨󵄨󵄨

∑𝑁𝑖=1 𝐺𝑖
. (4)

As shown in (5), the peak signal to noise ratio (PSNR)
is the index to reflect the image quality of obtained CRM
comparing with its ground truth.

PSNR = 20 log10
𝐺max
√MSE
,

MSE = 1
𝑁

𝑁

∑
𝑖=1

(𝑅𝑖 − 𝐺𝑖)
2 ,

(5)

where 𝐺max is the maximum voxel value of ground truth of
CRM; MSE is for mean square error.

The normalized cross-correlation (NCC) is used to quan-
tify the similarity between the obtained CRM and its ground
truth. The NCC can be calculated by

NCC = 1
𝑁 − 1

𝑁

∑
𝑖=1

(𝑅𝑖 − 𝑅) (𝐺𝑖 − 𝐺)
𝜎𝑐𝜎𝐺

, (6)

where 𝑅 and 𝐺 represent the mean values of the obtained
CRM and the corresponding ground truth, respectively; 𝜎𝑐
and 𝜎𝐺 denote their standard deviations.
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After the recovered region is detected based on CRM,
the Dice similarity coefficient (DSC), which is calculated as
in (7), is used to measure the accuracy of the recovered
regions detection comparing with the ground truth that is the
predefined sphere in the phantom.

DSC = 2 × TP
TP + FN + TP + FP

, (7)

where TP is true positive, that is, the set of voxels common
to the derived recovered region and ground truth; TN is true
negative, that is, the set of voxels not labelled as the derived
recovered region and ground truth; FN is false negative; and
FP is false positive.

Moreover, the change-rates derived from the recovered
regions are also used to evaluate the accuracy of recovered
region detection. Because of the homogeneity of voxel values
in the predefined digital phantom, only themean change-rate
of the recovered region is calculated and compared with the
predefined real value by linear regressions.

2.3. Clinical Applications

2.3.1. Clinical Data Acquisition. In this study, 99mTc-ECD
SPECT brain imaging is used in the treatment monitoring of
the internal carotid artery (ICA) stenting, which is a common
treatment technique for brain ischemia. This study has been
approved by the Ethics Committee of Renji Hospital, School
of Medicine, Shanghai Jiaotong University. All the SPECT
scans are performed in accordance with the guidelines for
brain perfusion SPECT using 99mTc-labelled radiopharma-
ceuticals [1]. 50 patients in total (7 women, 43 men, and
average age 62.9 ± 10.5 years) prescribed ICA stenting are
recruited. 27 of them have cerebral infarction, while the rest
suffer different degrees of cerebral ischemia. For each patient,
the baseline 99mTc-ECD SPECT imaging is performed within
7 days before surgery, and then the follow-up scan is generally
conducted in ∼7 days (ranged from 2 to 12 days) after the
treatment of ICA stenting. The SPECT imaging was started
within 20∼30 minutes after the radiotracer injection (around
25mCi 99mTc-ECD) using dual-head Philips Precedence 6
SPECT/CT scanner with low-energy and high-resolution
collimators. For 41 patients, the CT scans are performed
together with SPECT imaging. For the rest of 9 patients, the
corresponding CT images are not available. The system reso-
lution is 7.4mm full width half maximum (FWHM) at 10 cm
for SPECT imaging. Three-dimensional SPECT images were
reconstructed using Astonish� technology, which adopts an
iterative ordered-subset expectation-maximization (OSEM)
algorithm with built-in scatter correction and attenuation
correction [24]. For each patient, a pair of baseline and
follow-up SPECT images was used to evaluate the therapy of
ICA stenting.

2.3.2. Clinical Data Analysis. For the data analysis, the
traditional visual inspection and theCAA-CRMapproach are
both used to assess the recovery levels. For the visual inspec-
tions, the baseline and follow-up SPECT brain images were
compared by two independent experienced physicians in the

same image workstation. When CT images are available, the
physicians inspected the SPECT images with the support of
the aligned CT images. The hypoperfusion lesions caused by
cerebral infarction or ischemia are carefully studied, and then
the recovered regions are delineated manually. Furthermore,
the overall recovery level for each patient is formally reported
in four scales (none, mild recovery, moderate recovery, and
severe recovery) based on the physicians’ experience. On the
other hand, these longitudinal SPECT images are quantita-
tively analyzed by the CAA-CRM approach. After all auto-
matic processes, a CRM is derived for each patient. Then, the
estimated CRM is fused with the original SPECT/CT images.
The recovered regions are automatically derived based on the
CRM by thresholding and clustering. The threshold is set
as 20% according to the results of computer simulations (as
mentioned in Section 3). Small regions (less than 120 voxels)
are excluded to eliminate the influence ofmeasurement noise.
Then, the automatically recovered regions are located by the
atlas of brain lobes and the quantitative indexes related to
recovery level are estimated. In the further evaluation of the
performance of CAA-CRM approach in treatment monitor-
ing, the clinical diagnosis derived by visual inspection is
considered as the standard of the classification of recovery
groups to validate the results of the CAA-CRM approach.

In the performance evaluation, the automatically recov-
ered regions are firstly compared with manually defined
ones. If an automatic recovered region hits the corresponding
manual one, it would be considered as a successful detection
of the real recovered region. Moreover, McNemar’s test [25]
for paired automatic and manual recovered regions is used
to investigate the concordance of the CAA-CRM approach
and traditional visual inspection in the detection of recovered
regions.Meanwhile, quantitative indexes, including themean
change-rate, maximum change-rate, and proportion of the
recovered regions to the corresponding lobes, are estimated
from the CRM. The statistics of these quantitative indexes
related to the recovery levels are analyzed in three different
recovery groups classified according to clinical reports. Non-
parametric one-way ANOVA is also applied in the analysis of
variance of different recovery groups.

3. Results

3.1. Results of Computer Simulation. Using CAA-CRM
approach, the CRMs are derived based on the simulated data.
These estimated CRMs are compared with the corresponding
ground truths. The properties of CRM in treatment moni-
toring are quantified by image quality indexes, including the
NAE, PSNR, and NCC.The comparative results of the image
quality indexes for different lesion sizes at each change-rate
are shown in Figure 2. In Figure 2(a), NAE declines with
the increase of change-rate for each lesion size. Moreover, for
small-size lesion (𝜙8mm), the calculatedNAE ismuchhigher
than larger-size lesions (𝜙16mm and 𝜙24mm), especially
in the condition of low change-rates (10% and 20%). In
Figure 2(b), PSNR progressively rises along the increase of
change-rate, and it climbs quicker in the case of small-size
lesion. Figure 2(c) shows that NCC goes up with the increase
of change-rate when the lesion size is comparatively large
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Figure 2: Comparisons of the image quality indexes for three-size lesions (𝜙8mm: diameter of 8mm, 𝜙16mm: diameter of 16mm, and
𝜙24mm: diameter of 24mm) at nine different change-rates (10% to 90%). (a)Thenormalized average error (NAE) formeasuring the difference
between the change-rate map (CRM) and its ground truth; (b) the peak signal-noise ratio (PSNR) for reflecting the image quality of the CRM;
(c) the normalized cross-correlation (NCC) for quantifying the similarity between the CRM and its ground truth.

(𝜙16mm and 𝜙24mm). However, NCC increases slightly for
small-size lesion.

DSC andmean change-rate estimates of recovered region
are both used to evaluate the performance of the derived
CRM in recovered region detection. From the curve chart
in Figure 3(a), the DSC of large lesion (𝜙24mm) maintains
a higher value (>0.7). For the medium lesion (𝜙16mm), the
DSC increases quickly with rising of change-rate when the
change-rate is less than 40%. Meanwhile, the DSC changes
slightly and stays in a high level when the recovery level is
higher than 40%. However, the DSC fluctuates with a low
value along the increase of recovery level for the small lesion
(𝜙8mm). In Figure 3(b), the linear regressions are plotted for

three different lesion sizes. The highly linear relations (𝑟2 =
0.99,𝑝 < 0.0001) between the change-rates estimates and real
values are observed in the condition of larger lesions (𝜙16mm
and 𝜙24mm). It is also found that the estimated mean
change-rates are underestimated since the liner regression
lines of the estimates and real values are under the line 𝑦 = 𝑥
(the black solid line).The underestimation ismore serious for
the small lesions. It seems that the CAA-CRM approach fails
in deriving the acceptable change-rate for small-size lesion
with diameter of 8mm.

Based on the results of compuater simulations, it can
be concluded that the CAA-CRM approach has a better
performance in the detection of recovered regions and
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Figure 3: Comparisons of detected recovered regions with the ground truth for three-size lesions (𝜙8mm: diameter of 8mm, 𝜙16mm:
diameter of 16mm, and 𝜙24mm: diameter of 24mm) at nine different change-rates (10% to 90%). (a) The Dice similarity coefficient (DSC)
for measuring the accuracy of the recovered regions detection comparing with the ground truth; (b) linear regressions of estimated change-
rates (CR) of the recovered regions with the real values.

the quantification of change-rates, when the lesion size is
sufficiently large (larger than a sphere with diameter of 8mm
that is closed to the proposed spatial resolution of SPECT
images) and the change-rate is high enough (at least not lower
than 20%).

3.2. Results of Clinical Application. For the visual inspection,
17 of 50 patients are reported as severe recovery in brain
perfusion after ICA stenting, while 22 patients are scaled as
moderate recovery. In the remaining 11 patients, there are 8
patients with mild recovery, and 3 patients are diagnosed as
no improvement along with the treatment. Considering the
population distributions of these 4 groups, themild and none
recovery patients are combined as one group to compare with
the other groups. In the visual inspection, 106 manual VOIs
are totally delineated to locate the recovered regions for these
50 patients.

Beside the visual inspection, the CAA-CRM approach is
applied to monitor the changes based on the longitudinal
SPECT images for each patient. Figure 4 illuminates a typical
case of severe recovery. In Figure 4(a), there are three trans-
verse slices (the 36th, 40th, and 44th slices) of baseline 99mTc-
ECD SPECT images. The lesion of cerebral infarction can be
clearly found in the left parietal lobe, which is pointed by a
white arrow. The cerebral ischemia is easily detected for the
hypoperfusion regions around the lesion.The corresponding
slices of aligned follow-up SPECT images are shown in
Figure 4(b). In the clinical report based on visual inspection,
the lesion of cerebral infarction had no improvement after the
treatment of ICA stenting. However, the cerebral blood flow
recovers significantly in the hypoperfusion regions around
the lesion of cerebral infarction. The overall recovery level
given by physicians is severe recovery. In Figure 4(c), the

Table 2: The concordance of automatic VOIs with manual ones in
the localization of recovered regions.

FN TP FP
Sever 3 41 5
Moderate 3 42 3
Mild/none 1 16 4
Total 7 99 12
FN: false negative, the number ofmanually recovered regions whichwere not
hit by automatic ones; TP: true positive, the number of manually recovered
regions which were hit by automatic ones; FP: false positive, the number
of automatically recovered regions which could not find the paired manual
ones.

estimated CRM presents as a parametric image fused with
the corresponding baseline SPECT image. In this case, the
derived CRM could be used to enhance the visual inspection
for physicians in treatment monitoring. In Figure 4(d), the
CRM as well as the corresponding SPECT images is mapped
to the standard atlas of brain lobes for the convenient
localization of recovered regions.

The CAA-CRM approach also has the advantages in
automatic and quantitative analysis of recovered regions. For
all the patients’ SPECT images, the recovered regions are
automatically derived, located, and compared tomanual ones
which are used as the standard for validation. The detailed
results are listed in Table 2 to reflect the concordance between
the automatic detection and manual detection of recovered
regions. From Table 2, there are in total 99 concordat pairs
(automatically recovered regions that hit manual ones) and
the total concordance rate of localization is 93.4%. For
the rest of 19 discordant pairs, there are 12 (12/19, 63.2%)
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Figure 4: A typical case of treatment monitoring using CAA-CRM approach, where the estimated change-rate map can directly reflect
response to treatment.The patient (male, 69-year-old) suffered cerebral infarction in left parietal lobe. While the baseline 99mTc-ECD SPECT
scan was performed 3 days before the treatment of ICA stenting, the follow-up scan was obtained 7 days after the treatment. (a) Three
transverse slices (the 36th, 40th, and 44th slices) of baseline SPECT images. The lesion of cerebral infarction is pointed out by white arrow.
Around this lesion, the hypoperfusion could be observed. (b) Three corresponding transvers slices of the follow-up SPECT image. There is
no improvement in the lesion of cerebral infarction, while the severe recovery is observed for the cerebral ischemia in hypoperfusion regions
around the lesion. The recovery level was scaled as severe by the traditional visual inspection in clinical report. (c) Three transverse slices
of the derived change-rate map (CRM) fused with baseline SPECT image. The scales of change-rate are presented by rainbow color bar. The
warmer color denotes higher change-rate. In this case, the recovered regions can be detected easily and clearly in the change-rate map. (d)
The selected transverse slices of the CRM fused with the atlas of brain lobes. The contours of the brain lobes are delineated. The recovered
regions can be conveniently localized in the brain area.

pairs where the automatic method recommended recovered
regions while the physicians did not, and 7 (7/19, 36.8%)
pairs are in the contrary condition. By the conventional
criteria of McNemar’s test (𝑝 < 0.05), this difference is
considered to be not statistically significant. There is also
no significant difference between the automatic and manual
approaches in localization of recovered regions, whatever
group (severe, moderate, and mild/none groups) is chosen.
The results indicate that the CAA-CRM approach and visual
inspections of experienced physicians have the concordance
in the localization of recovered regions.

After localizing the recovered regions, the mean and
maximum change-rates for each patient could be calculated
based on the delineated recovered regions and then compared
in groups. The group-wise results of statistical comparisons
are illuminated by bar graphs in Figure 5. Figure 5(a)
illuminates that the mean change-rates of the severe recovery
group are mainly higher than those for the moderate group
and mild/none group. The similar results can be observed
in Figure 5(b) for the maximum change-rate estimates for
three groups.The statistical results of nonparametric one-way
ANOVA indicate that the significant differences (𝑝 < 0.0001)
exist among the mean/maximum change-rates of three dif-
ferent recovery groups. Beside the indexes of change-rate,

the proportion of recovered regions to the corresponding
brain lobes, which is calculated as a volume ratio between
recovered regions and the corresponding brain lobes, is also a
specific index for quantifying the recovery level for treatment
monitoring. The comparison of proportion of recovered
regions for three recovery groups is shown in Figure 5(c).
The tendency of the proportions in groups is similar to that
of the change-rate. It is obvious that the better recovery
groups have the higher proportions. According to the results
of nonparametric one-way ANOVA, three recovery groups
had significant effect (𝑝 < 0.001) on proportion of recovered
regions to the brain lobes.

To sum up the results of clinical applications, the higher
change-rates and larger recovered regions could correspond
to better recovery levels given in the clinical reports. These
quantitative indexes derived by the CAA-CRM approach can
be used to quantify the response to the treatment.

4. Discussion

In this study, the performance of the CAA-CRM approach is
objectively and systematically evaluated by the computer sim-
ulations as well as the clinical applications. From the results



8 BioMed Research International

S M M/N
20

22

24

26

28

30

M
ea

n 
CR

 (%
)

(a)
S M M/N

20

30

40

50

60

70

80

M
ax

 C
R 

(%
)

(b)
S M M/N

0

5

10

15

20

25

Pr
op

or
tio

n 
of

 R
Rs

 (%
)

(c)

Figure 5: The bar graphs (mean + SD) for comparisons of quantitative indexes for three recovery groups (S: severe, M: moderate, and M/N:
mild/none). (a) The mean change-rate (CR) estimates of the recovered regions; (b) the maximum CR estimates of the recovered regions; (c)
the proportion of recovered regions (RRs) to the corresponding brain lobes.

of computer simulations, the lesion size and change-rate are
considered as two major factors for extracting reliable CRM.
According to the changing tendency of image quality indexes
of CRM, it can be concluded that the lesions with larger size
and higher change-rate could be easier to detect; moreover,
the estimates of change-rate could be more accurate as the
real values. This conclusion confirmed our experiences from
clinical practice. Additionally, the results also clarified that
the spatial resolution of SPECT image could be a major
limitation of the CAA-CRM approach to get accurate quanti-
tative indexes for quantifying the recovery levels. It has been
reported that the quantitative accuracy of the radioactive
concentration in SPECT image would deteriorate with the
decreasing of target size, especially when the targets are below
three times of spatial resolution [26]. For the CAA-CRM
approach, the poor quantitative accuracy of original SPECT
images would directly result in estimated bias of change-rate
and even in the missing recovered regions. As the results
shown in Figure 2(c), for the small lesion (𝜙8mm),whose size
is closer to spatial resolution (7.4mm FWHM at 10 cm), the
values of NCC aremuch lower than those of the larger lesions
(𝜙16mm and 𝜙24mm).The uptrend with increasing change-
rate is also very slight.The low value of NCC reflects the poor
similarity between the obtained CRM and its ground truth.
It means that the obtained CRM could not accurately reflect
the small recovered regions when the region size is closed to
or even smaller than the spatial resolution of SPECT images.

In the computer simulations, the underestimation of
change-rate is observed for all lesions with varied sizes.
However, the underestimation is more significant for the
small lesion.Thebias probably comes from the partial volume
effects (PVEs) that are usually related to the spatial resolution.

The PVEs could induce the underestimation for quantitative
SPECT images, especially when the target is smaller than
three times of spatial resolution [26]. This impact could
directly propagate into the CRM that is derived based on
SPECT images. As illuminated in Figure 3(b), the estimated
change-rate is much lower than the predefined change-rate
for the small-size lesion (𝜙8mm).The estimated change-rates
for middle-size lesion (𝜙16mm) have the high linear relation
with the predefined values, although the values are only
nearly 70% of the real values. It is concluded that the change-
rate could be significantly underestimated comparing with
the real value, when the sizes of recovered regions are below
three times of spatial resolution.Therefore, this underestima-
tion should be kept in mind for clinical applications.

For the clinical applications, the CAA-CRM approach
could be used to define the recovered regions and derived
quantitative indexes to measure recovery levels. In this study,
the thresholding and clustering method is applied to auto-
matically derive the recovered regions. The chosen threshold
of change-rate could be themajor impact factor in delineating
the recovered regions. Furthermore, it could influence the
estimations of quantitative indexes from recovered regions
[27, 28]. The experimental threshold is set as 20% in the clin-
ical applications. It is chosen based on the results of the com-
puter simulations. As shown in Figure 2, the image quality
indexes for the change-rates of 10% and 20% are both much
poorer than the other change-rates regardless of the lesion
size. The CRM would not accurately reflect the change-rate
lower than 20%.This indicates that the significant distortions
may exist in the CRM for the voxels with lower change-rates.
In this case, the lowest limit for available estimated range
of change-rate is required to eliminate the turbulences from
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Figure 6: The bar graphs (mean + SD) for comparisons of quantitative indexes for severe and moderate recovery groups with different
thresholds (S 20: severe recovery group with the threshold of 20%, M 20: moderate recovery group with the threshold of 20%, and M 10:
moderate recovery group with the threshold of 10%). (a) The mean change-rate (CR) estimates of the recovered regions; (b) the proportion
of recovered regions (RRs) to the corresponding lobes.

lower change-rate estimates. Meanwhile, the threshold set-
ting should try to retain as much information as possible in
the CRM for further quantitative analysis. Hence, the experi-
mental threshold set in this study is chosen as 20% rather than
10%. The thresholds could also be able to reset for different
conditions of varied clinical applications.

In the clinical applications, considering the concordance
of the CAA-CRM approach in the detection of recovery
regions, the false positive (12/99) and false negative (7/99)
could be found. The false positive might be caused by
using the uniform 20% threshold which might result in the
detection of not only themain recovered regions (validated by
visual inspections) but also the otherminor recovered regions.
However, the minor recovered regions might be ignored by
the physicians. On the other hand, the uniform threshold
could easily introduce the small changed regions (<120
voxels) for a certain case. The small changed regions could
be removed or even miss the main recovered regions. This
may lead to the false negative. In this condition, the threshold
should be adjusted carefully to balance the false positive and
false negative for detecting the recovered regions. Moreover,
the chosen threshold could further impact on the estimations
of the mean change-rate and the proportion of recovered
regions to the brain lobes. As shown in Figure 6, when a
threshold of 10% instead of 20% is applied in the moderate
group, the values of mean change-rate are decreased sharply.
Meanwhile, the values of proportion of recovered regions to
the brain lobes have increased. From the comparisons, the
mean change-rate is negatively related to the proportion of
recovered region. Therefore, these two quantitative indexes
should be used together to scale the recovery level in

treatment monitoring. To an extent the maximum change-
rate could not be affected by the chosen threshold in theCAA-
CRM approach, so that it becomes an important quantitative
index in treatment monitoring.

Because all the algorithms used in the proposed CAA-
CRM approach totally rely on image contents, this approach
could be extended to analyze other types of SPECT brain
images, such as 99mTc-HMPAO SPECT brain images. The
obtained change-rate map could also illuminate the global
changes for reflecting the response to treatment. The derived
quantitative indexes have the potential to quantify the recov-
ery levels.

5. Conclusion

In this study, a CAA-CRM approach has been introduced
to evaluate the longitudinal 99mTc-ECD SPECT images in
treatment monitoring. This approach can provide change-
rate map as a parametric image to reflect the changes of rCBF.
Computer simulations show the efficacy of the proposed
approach in detecting the recovered regions and in quantify-
ing the change-rates for the lesions larger than spatial resolu-
tion. In clinical applications, this method is used to assess the
treatment of ICA stenting. The results demonstrate that the
quantitative indexes derived from CRM are all significantly
different among the groups and highly correlated with the
experienced clinical diagnosis.

In conclusion, the CAA-CRM approach has the advan-
tages of directly illuminating the global recovery and conve-
niently quantifying the recovery levels. It could be helpful in
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improving the efficiency and accuracy of therapy evaluations
using SPECT brain images in clinical routines.
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Objective. The purpose of this research is to develop a diagnostic method of diabetes based on standardized tongue image using
support vector machine (SVM). Methods. Tongue images of 296 diabetic subjects and 531 nondiabetic subjects were collected
by the TDA-1 digital tongue instrument. Tongue body and tongue coating were separated by the division-merging method and
chrominance-threshold method. With extracted color and texture features of the tongue image as input variables, the diagnostic
model of diabetes with SVM was trained. After optimizing the combination of SVM kernel parameters and input variables, the
influences of the combinations on the model were analyzed. Results. After normalizing parameters of tongue images, the accuracy
rate of diabetes predication was increased from 77.83% to 78.77%.The accuracy rate and area under curve (AUC) were not reduced
after reducing the dimensions of tongue features with principal component analysis (PCA), while substantially saving the training
time. During the training for selecting SVM parameters by genetic algorithm (GA), the accuracy rate of cross-validation was
grown from 72% or so to 83.06%. Finally, we compare with several state-of-the-art algorithms, and experimental results show
that our algorithm has the best predictive accuracy. Conclusions.The diagnostic method of diabetes on the basis of tongue images
in Traditional Chinese Medicine (TCM) is of great value, indicating the feasibility of digitalized tongue diagnosis.

1. Introduction

Resulting from a variety of factors, diabetes is a metabolic
disordermainly characterized by chronic high blood glucose.
The number of patients diagnosed with diabetes has been
increasing at a rapid rate worldwide. Among them, Chinese
patients increase at the highest rate.The overall prevalence of
diabetes in the adult population of China grew from 0.67% in
1980 to 11.6% by 2010 [1], and it greatly influences people’s life.

Traditional Chinese Medicine (TCM) diagnosis is based
on the information obtained from four diagnostic processes,
that is, looking, listening and smelling, asking, and touching.
The most common tasks are taking the pulse and inspecting
the tongue [2]. Studies demonstrate that tongue images have
relatively strong correlation with diabetes in TCM [3–5].

Traditionally, doctors diagnose diseases and identify patterns
by inspecting, describing, and experiences. Thus, the results
are easily affected by doctors’ own professional skills and
surrounding environment.Without objective assessment cri-
teria, the precision of pattern identification and the repeata-
bility of verification are unclear. Thus, a workable solution
is to apply computer techniques and image processing,
guided by TCM theory, to make tongue diagnosis standard,
objective, and quantitative.

Fortunately, computational methods for digital image
processing techniques in tongue have been developed, which
achieve promising results [6–8]. Based on the results above,
various machine learning methods have been used in tongue
manifestation recognition or classification, such as support
vector machine (SVM) [9–11], 𝑘 Nearest Neighbor (𝑘-NN)
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[12, 13], Naive Bayes [11], Decision Tree [11], and Neural
Network [9, 14]. Throughout all mentioned works on the
inspection, the popular machine learning algorithms, such as
𝑘-NN and SVM, are still the first choice in current literature
[15]. Though the identification and classification of tongue
image havemade certain achievements in the past researches,
there still existed some issues, firstly, a standard lighting
source environment is needed in the tongue image collection,
and an effective method is necessary in the tongue image
analysis. Moreover, for a successful SVMmodel, the selection
of its kernel parameter and optimization of the data set is of
great importance.

In this study, tongue images were collected by the TDA-
1 digital tongue instrument, which can create a stable light
source environment for tongue image acquisition. Research
on tongue image mainly focuses on two parts: tongue
body and tongue coating. The segmentation of these two
parts is an important step in tongue diagnosis since it
provides a premise for analyzing the color and texture. This
study adopted division-merging method and chrominance-
threshold method to distinguish tongue body from tongue
coating and then to obtain the parameters of each part [16].

Among commonly used data mining methods, SVM
[17] is widely applied due to its excellency in generalization
and nonlinear function fitting, and it also presents a lot of
advantages in dealing with small sample studies [18]. For a
successful SVM model, kernel parameters of SVM are the
most important factors affecting the prediction accuracy.
Therefore, with its kernel parameters optimized by genetic
algorithm (GA), we designed a genetic-based SVM (GA-
SVM) model, which was adopted to establish a diagnosis
model for diabetes on the basis of tongue images. In our
study, techniques for collecting and analyzing information
were employed to achieve interdisciplinary research and
application in TCM, which will promote the construction of
assessment system supported by information acquired from
TCM four diagnostic methods in the future formedical treat-
ment in communities and individual health management.

2. Materials and Methods

2.1. Subjects. This study included 827 subjects with informed
consent from outpatients and physical examination centers at
Shuguang Hospital Affiliated to Shanghai University of Tra-
ditional Chinese Medicine (SHUTCM) and TCM Hospital
of Baoshan Area in Shanghai, from July 2013 to June 2015.
Among them, 296 (159 males and 137 females, average age:
58.35 ± 12.99) were diagnosed with diabetes; 531 (191 males
and 340 females, average age: 62.37 ± 8.13) had no diabetes.

2.2. Inclusion and Exclusion Criteria. Inclusion criteria for
diabetes group signed with informed consent were from
World Health Organization (WHO) in 1999 [19], which
include (1) symptoms of high blood sugar and random
plasma glucose ≥11.1mmol/L (200mg/dL); (2) fasting plasma
glucose level ≥7.0mmol/L (126mg/dL); (3) plasma glucose ≥
11.1mmol/L (200mg/dL) two hours after a 75 g oral glucose
load as in a glucose tolerance test.

Figure 1: TDA-1 tongue instrument.

Exclusion criteria include (1) those diagnosed with other
severe diseases such as tumor and diseases of immune and
hematological systems; (2) those who cannot make a clear
description or cooperate with the imaging collection due
to mental disorders; (3) those who refuse to sign informed
consent.

2.3. Tongue Image Collection and Analysis Methods

2.3.1. Collection Instrument. Developed by the research team
handling intelligent processing of TCM diagnosis informa-
tion in SHUTCM, the TDA-1 digital tongue instrument
was applied to collect images. This apparatus (Figure 1)
is made up with an Eolane digital camera, a LED3 light,
a removable collection ring, a circuit board, and a hand.
The main technical parameters are Charge-coupled device:
Eolane A12; light: cold white LED light; color temperature:
6466K; luminance: 23541 ux [20].

2.3.2. Collection Methods. The TDA-1 tongue instrument
was used to collect tongue images in the morning before
breakfast. With build-in light on, parameters were set into a
manual mode with an aperture of 13, a shutter speed of 1/60 s,
microlens, and no flash. Subjects were asked to take a seat,
look at the front horizontally, and extend tongue with tongue
tip hanging naturally at a 60-degree angle to the horizontal
line. The chin was supported by the inferior margin of the
collection ring so that the facewas closely attached to the ring.
With flat surface, 1/2 to 2/3 part of the tongue was protruded.
Then, the OK button was pressed. After closing the build-in
light, the collected images were checked. If these images did
not conform to the requirements mentioned above, collect it
again.

2.3.3. Analysis Methods. To obtain parameters of tongue
images, tongue body and coating need to be separated,
and the color and texture of both body and coating need
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Figure 2: Tongue diagnosis analysis system.

to be analyzed and recognized [16]. The method has been
developed into a Tongue Diagnosis Analysis System (TDAS)
by the TCM diagnosis Intelligent Information Processing
Laboratory of Shanghai University of TCM (Figure 2). The
upper part of the system is the toolbar, including settings,
projects, analysis, data, and print; the left side is the module
of tongue manifestation analysis, including new data, tongue
manifestation segmentation and results. The middle part
is tongue body and tongue coating picture. Manual and
automatic analyses can be used in color and texture. Because
manual analysis can be based on the experience of TCM
experts to choose different points and boundaries, we choose
the combination ofmanual and automatic analyses according
to experience. The data view window shows the color of the
tongue body, the tongue coating, and texture parameters.The
bottom right part shows the results of tongue manifestation
analysis (Figure 2, light red tongue; light yellow coating).

Segmentation of Tongue Body and Coating. The identification
of tongue body and coating is an important procedure in
tongue diagnosis since it is the premise for analyzing the
color and texture features of body and coating. The biggest
distinction between tongue body and coating lies in the
color: with red as the dominant hue, the color of the tongue
body can be presented as light white, light red, crimson
red, and purple. For tongue coating, the color can be white,
yellow, grey, and black. Due to different color attributes

and value ranges, division-merging algorithm based on the
color of body and coating was adopted. For images with
typical color of body and coating, this method achieves
good results. But when tongue coating is thin, the color of
tongue body overlaps with that of tongue coating. In this
case, this approach fails to separate two colors. Therefore,
chrominance-threshold method was adopted too. In this
study, the division-merging algorithm and chrominance-
threshold method were combined to separate the tongue
body and tongue coating. Detailed algorithm was referred
to the relevant literature [16]. The tongue images after
segmentation were shown in Figure 3.

Acquisition of Features in Color and Texture. After separating
the area of tongue body and coating, RGB color values of
the pixels in tongue body and coating were calculated and
then the values of total pixels were averaged. Considering the
visualization of color and the feasibility and practicability of
classification, we transformed RGB chroma space into LAB
and HIS [21]. The texture of tongue contains rough tongue,
tender tongue, greasy coating, and rough coating. Among
them, tender tongue body and greasy coating are fine and
smooth. The changes of texture mainly lie in the variations
of gray level. Thus, this study applied gray scale differential
algorithm to describe the texture of body and coating. The
obtained parameters included contrast (CON), angle second
moments (ASM), entropy (ENT), and mean [22].
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Figure 3: The segmentation of tongue body and coating.
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2.4. Study Design and Setting. The data, mainly including
color feature and texture feature, were derived from tongue
images of diabetes group and nondiabetes group. These
feature parameters were input as independent variables in
the preprocessing. Whether the subject has diabetes or not
(dependent variable) was considered as the classified variable.
80% specimenswere used for training, while 20% for test.The
model is illustrated in Figure 4.

2.4.1. Sample Equalization. The sample size of diabetes group
and nondiabetes group differs a lot. To avoid the influences
of unequal sample size on classification model, Synthetic
Minority Oversampling Technique (SMOTE) was adopted
to equalize samples. SMOTE, proposed by Chawla et al. in
Artificial Intelligence in 2002 [23], is a solution based on
oversampling. In this study, the equalization was achieved by
DMwR package in R Language.

2.4.2. Feature Normalization. Due to the differences of
feature parameters in magnitude orders, to eliminate the
negative effects of these differences, the value ranges were
scaled and mapped into the range between −1 and 1.

2.4.3. Dimension Reduction of Features. The increase in the
number of variables will make the SVM more complicated.
In addition, variablesmay have relevance between each other.
Thus, in our study, principal component analysis (PCA),
the classic approach to reduce dimensions, was adopted to

process the acquired raw features of tongue images so that the
information integrity can be maintained as much as possible
in the process of dimension reduction.

2.4.4. Optimization of Kernel Parameters for SVMbyGA. GA,
first proposed by American professor Holland in 1962 [24], is
a computational model for optimization with parallel search
that simulates genetic mechanism and biological evolution
in nature. In the study, the penalty parameter 𝑐 and kernel
function parameter 𝑔 were optimized by GA. The accuracy
of training sample prediction was considered as the fitness
function value of GA. The process of algorithm is shown in
Figure 5 [25, 26].

2.4.5. Development Platform. The study was performed
in MATLAB platform by the toolbox of LIBSVM-
FarutoUltimate [27] that adds some auxiliary functions
on the basis of LIBSVM [28].

3. Results

3.1. Results of Sample Equalization. In SMOTE, by confirm-
ing the frequency of sampling, the samples of both groups
were equalized. The result is shown in Table 1.

3.2. Results of Dimension Reduction of Features. There were
23 input parameters, which include personal information
(gender, age, and BIM) and parameters of tongue color
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Table 1: Samples before and after equalization.

Samples Diabetes group Nondiabetes group
Original 296 531
Equalized 531 531

and texture. PCA was applied to reduce the dimensions of
raw data on the condition that the 95% information was
maintained. The result is shown in Figure 6.

3.3. Optimized SVM Parameters. In the training process of
SVM model, the penalty parameter 𝑐 and kernel function
parameter 𝑔 were optimized by GA. With population size set
as 20, evolutionary generations as 100, and other parameters
of LIBSVM toolbox as the default, the precision of sample
tests with 10-fold cross-validation was considered as fitness
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Figure 7: Fitness curve of SVM parameters optimized by GA.

and the accuracy of cross-validation in the training process
grew from 72% or so to 83.06%, which is shown in Figure 7.

3.4. Results of Prediction with GA-SVM Model. We estab-
lished three GA-SVM classifiers on different datasets which
are raw data, normalized data, and normalized data after
PCA, respectively. The result shown in Table 2 demonstrates
that the classifier on normalize data after PCA yields a better
accuracy than other two datasets, which is 1.89% higher than
that of raw data at 79.72%.

A receiver operating characteristic (ROC) curve is a
graphical plot that illustrates the performance of a binary
classifiers system. The curve is created by plotting the true
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Table 2: SVM classification before and after data processing.

Datasets
Accuracy of

cross-validation
(%)

Accuracy of training
samples (%)

Accuracy of test
samples (%) Running time (s)

Raw data 81.65 100.00 77.83 817.86
Normalized data 84.35 99.53 78.77 747.40
Normalized data with PCA 83.06 99.88 79.72 465.52
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Figure 8: The ROC curve (raw data).

positive rate (TPR) against the false positive rate (FPR) at
various threshold settings. Sensitivity is also known as TPR,
which means the probability that true judgement is made
for having diabetes. Specificity is equal to true negative rate,
which means the probability that true judgement is made for
not having the disease. The area under ROC curve (AUC) is
most commonly used as precision index.When the sensitivity
and specificity reached 1, the area under ROC curve is
obtaining a perfect precision. The best possible prediction
method would generate a point on the upper left corner
(0, 1) in ROC space, representing 100% sensitivity (no false
negatives) and 100% specificity (no false positives) [29].

In this study, we used sensitivity, specificity, ROC, and
AUC to assess the performance of classifiers. As shown in
Figures 8–10, the ROC curves in three figures are for the
classifiers using different datasets. Blue curves represent the
ROC curve of the nondiabetic class, while other curves
represent theROCcurve of the diabetic class.TheAUCvalues
for the classifiers using different datasets are 0.8773, 0.9065,
and 0.9037, which indicates that the classifier is effective in
distinguishing the two classes of objects. We can know from
Table 3 that the performance of third classifier (normalized
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Figure 9: The ROC curve (normalized data).

Table 3: Specificity, sensitivity, and AUC of SVM classification
before and after data processing.

Datasets Specificity (%) Sensitivity (%) AUC
Raw data 81.05 75.21 0.8773
Normalized data 82.80 75.63 0.9065
Normalized data with PCA 83.16 76.92 0.9037

data with PCA) has higher sensitivity and specificity than that
of the first two (raw data and normalized data). Although the
AUC of the third classifier is lower than the second by 0.3%,
it substantially saves the average training time as shown in
Table 2.

3.5. Comparison with Other Algorithms. In order to evalu-
ate efficacy for established GA-SVM model, three distinct
prediction models, 𝑘-NN, Naive Bayes, and Backpropagation
Neural Network (BP-NN), were employed to compare with
GA-SVM model. The three classification model using 𝑘-
NN, Naive Bayes, and BP-NN methods are established in
MATLAB. As shown in Table 4, accuracy, specificity, and
AUC of GA-SVM models are higher than other algorithms,
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Figure 10: The ROC curve (normalized data with PCA).

Table 4: Result compared with other algorithms.

Algorithms Accuracy (%) Specificity (%) Sensitivity (%) AUC
𝑘-NN 78.77 80.18 77.36 0.8471
Naive Bayes 75.94 78.30 73.58 0.8248
BP-NN 75.00 73.58 76.42 0.8285
GA-SVM 79.72 83.16 76.92 0.9037

except for sensitivity a little lower than 𝑘-NN. Combined
with the results above, it can be concluded that our algorithm
has a better established classification model for tongue
manifestation.

4. Discussion

Over the past 3000 years, tongue diagnosis has been proved to
be one of the most valuable and the most extensively applied
TCM diagnostic approaches in clinical practice. The color,
moisture, size, shape, and texture of tongue reveal the overall
health condition and dysfunctions of specific organs. Tongue
color and coating have long been key parameters in differen-
tiating diseases. In this research, we took photos of tongues
with the TDA-1 tongue instrument, which segmented the
tongue body and coating. After obtaining color parameters
of RGB, HIS, and LAB and texture parameters of CON, ASM,
ENT, andMEAN, with these data, a diabetes diagnosis model
was established on the basis of SVM.

Sample imbalance is a problem that must be faced
in many computational problems in medical research. For
unbalanced samples between two groups, SMOTE was
adopted to equalize the data. Due to the differences of feature

parameters in magnitude orders, to eliminate the negative
effects of these differences, the value ranges of input variables
were scaled and mapped into the range between −1 and 1.
After processing, the accuracy of test samples was slightly
increased from 77.83% to 78.77%, and the AUCwas increased
from 0.8773 to 0.9065.

In addition, in the training process of SVM model, the
penalty parameter 𝑐 and kernel function parameter 𝑔 in SVM
model were optimized by GA. As shown in Figure 7, the
accuracy of cross-validation in training process grew from
72% or so to 83.06%, indicating the significance of parameter
optimization in improving the precision of classification.

To handle multiple input variables, PCA was adopted
to decrease the number of variables from 29 to 8 on the
condition that 95% information was retained. The results
show the accuracy of classification was not reduced and it
substantially saved the training time.

With standardized tongue image parameters, we devel-
oped a novel model to search the optimal values of SVM
parameters, to increase the accuracy of prediction. In order to
evaluate efficacy for the established GA-SVM model, 𝑘-NN,
Naive Bayes, and BP-NNmodel were applied to our datasets.
From Table 4, the results show that the GA-SVM model
performs the best, implying that the hybrid system has a high
potential to dramatically increase the predictive accuracy
when integrating GA with traditional SVMmodel. As shown
in Figure 7, the accuracy of cross-validation in training pro-
cess has greatly increased after SVMparameters optimized by
GA. The diabetes is of varied TCM syndromes for its clinical
manifestations, such as the deficiency of qi and yin syndrome,
yin-deficiency and fire-hyperactivity syndrome, and different
syndromes manifest with different tongue image features.
However it is difficult for the traditional statisticalmethods to
identify the diabetes through its tongue image automatically,
so it is essential to find a method which is suitable for the
diagnosis of diabetes via its tongue images. By comparison
with other algorithms and internal validation of the model, it
is indicated that the SVM classification model we established
had a fair effect in this study.

5. Conclusion

In this paper, with tongue images, SVMwas used to establish
the classification model for diabetes, which achieves good
classification results. It indicates the feasibility of using the
information science method to carry out TCM diagnosis.
Data preprocessing and parameter optimization directly
impact the results. Feature dimension reduction is a double-
edged sword. On the one hand, it can accelerate the training
speed and avoid overfitting; on the other hand, it may cause
the loss of useful information. GA can find the optimal option
without going through thewhole search space and can also be
used for feature selection in other studies.

With information collecting and analyzing techniques,
this interdisciplinary study researches on the informatization
of TCM and its application and provides a reference for
designing more effective data analysis and processing algo-
rithms. In future researches, other pieces of TCM diagnostic
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information can be integrated to improve the precision of
classification.
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Background and Goal. The application of digital image processing techniques and machine learning methods in tongue image
classification in Traditional Chinese Medicine (TCM) has been widely studied nowadays. However, it is difficult for the outcomes
to generalize because of lack of color reproducibility and image standardization. Our study aims at the exploration of tongue
colors classification with a standardized tongue image acquisition process and color correction.Methods.Three traditional Chinese
medical experts are chosen to identify the selected tongue pictures taken by the TDA-1 tongue imaging device in TIFF format
through ICC profile correction. Then we compare the mean value of 𝐿*𝑎*𝑏* of different tongue colors and evaluate the effect of
the tongue color classification by machine learning methods. Results. The 𝐿*𝑎*𝑏* values of the five tongue colors are statistically
different. Random forest method has a better performance than SVM in classification. SMOTE algorithm can increase classification
accuracy by solving the imbalance of the varied color samples. Conclusions. At the premise of standardized tongue acquisition and
color reproduction, preliminary objectification of tongue color classification in Traditional Chinese Medicine (TCM) is feasible.

1. Introduction

Tongue inspection, an important diagnosis tool inTraditional
Chinese Medicine (TCM), is essential for clinical syndrome
differentiation and therapeutic evaluation. The traditional
tongue inspection in TCM mainly focuses on the visual
description other than the objective quantification and as
a result limits the development of diagnostic methods and
techniques in TCM to a certain extent.

However, with the development of computer techniques,
application of digital image processing techniques in tongue
diagnosis has been widely studied, such as segmentation of
the tongue image [1–3], separation of tongue substance and
tongue coating [4, 5], and analysis of tongue image [6].

Recently, on the basis of the above research results,
more and more researchers attempt to use machine learning

methods in tongue image recognition or classification. Their
research can be grouped into four categories, shape [7–9],
texture [10], color [11–15], and comprehensive feature analysis
of tongue images [16, 17].

Themajority paysmore attention to themachine learning
for the fuzziness and uncertainty of tongue images due to
the uneven personal experiences of observers and different
illumination conditions. According to two different color
measurement systems, studies on the objective classification
of tongue color are mainly implemented through the visible
reflection spectrum [12, 13] and the commonly used pixelwise
or color space, respectively [14, 15].

There are only a few studies on former measurement sys-
tem used in the tongue color classification. Most researchers
try to recognize the tongue color on the basis of the pixel-
wise or color space. For example, Yamamoto et al. observed
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that the tongue color change in different periods in the
device-independent International Commission on Illumina-
tion (CIE) 1976 𝐿∗𝑎∗𝑏∗ color space varied between individu-
als [18].

On the other hand, some researchers attempt to observe
the difference of the tongue color identification outcomes
accompanied with different medical practitioners. Oji et
al. once studied the color discrimination and tongue color
diagnosis in 68 traditional Japanese medical practitioners
by the Farnsworth-Munsell 100 Hue test and 84 tongue
images, respectively, and they found out that overall color dis-
crimination became worse with aging [19].

Another group of Japanese researchers had chosen 10
experienced Kampo medicine physicians to identify the
tongue images acquired by the DS01-B tongue color infor-
mation acquisition system. They used K-means clustering
algorithm to quantify tongue body and color coating infor-
mation and concluded that clinically important tongue color
differences in Kampomedicine can be visualized by applying
machine learning to tongue images that are taken under
stable conditions [15].

Machine learning methods used in tongue image clas-
sification include KNN [20, 21], Naive Bayes [22], Decision
Tree [22], SVM [20, 22–25], Neutral Network [26], Graphical
Models [22, 27], and Principle Component Analysis (PCA)
[28]. KNN and SVM are the most commonly used methods.

Although in the past researches have made significant
achievements in tongue classification and identification,
there are some issues left to be discussed. First, there exists
some inconsistency between the identified tongue images and
the actual tongue colors observed by clinical TCMpractition-
ers. It is because color correction or reproduction on tongue
images needs to be performed. Consequently, it is difficult for
the identified outcomes to generalize to the clinics. Second,
tongue’s objective quantization parameters vary from each
research institute, making it hard to communicate between
institutes. Moreover, tongue images are neither normalized
nor unified. It is extremely hard to compare those models of
cognition on the same platform and choose the best classi-
fication scheme.

Thus, our study would focus on the standardization of
tongue collection environment [29] and color correction to
overcome the above issues [30].

2. Materials and Methods

2.1. Subjects of Our Study. Since there was no available data
by the literature retrieval that would indicate the effective
sample size to study the classification of tongue color, our
study would be carried out using tongue images sampled
from First People’s hospital in Taicang, Shuguang hospital,
and Longhua hospital affiliated to Shanghai University of
Traditional Chinese Medicine during 2011 to 2014. A total of
2230 tongue photos were collected.

2.2. Tongue Imaging Device and Methods. TDA-1 hand-
held tongue imaging device consists of image acquisition
system, LED illuminator, and removable collecting ring. It is
equipped with Charge Coupled Device as its photosensitive

components, namely, a small-sized Eolane digital camera
(AltekA12, China).The camera can capture color imageswith
resolution of 2048 × 1536 pixels. We can manually adjust
white balance, exposure time, exposure compensation, ISO
speed, metering modes, flash mode, and so on. To obtain
a more realistic color feature for the tongue image, LED
illuminator (Kingbright KA-3021HVR4D1Z1S-C1-SH, Japan)
with 6447 k color temperature, 98 color rendering index (RI),
and 2413 Lux illumination is placed in the middle part of the
telescopic cylinder.The whole system can create a stable light
source environment for tongue image acquisition. In order to
evenly illuminate the dorsal surface of the tongue, the concave
reflective material is used in the back of telescopic cylinder
to form a uniform irradiation light. The removable collecting
ring can fix lower jaw position to ensure tongue is in a proper
location in the process of tongue image collection. It can also
keep out natural sunlight or unnecessary external source of
light that will have disturbance on tongue and create a stable
illumination environment; see Figure 1.

The operation procedure of TDA-1 tongue imaging device
for tongue image collection is as follows. (1) The participants
would have their mouth rinsed with water 10 minutes before
imaging collection. (2) Sterilize the removable collecting ring
with alcohol wipes, turn on the TDA-1 device and set up the
parameters (manual mode, aperture of 13, shutter of 1/60 s,
sunshine, macro lens, and nonflashlight), and then turn on
the built-in light. (3) The participants would be asked to
look at the front horizontally with a sitting position. And
his/her jaw would be hold by the inside face of lower edge
of the collecting ring which is close to the face area of the
participants. After a short stabilization period of the light
source (usually 5–10 s), the participants would be asked to
open their mouth and protrude their tongue with a relaxed
tongue body, flat tongue surface, and naturally pointing-
down tongue tip. In themeantime, press the collection button
when the tongue image in the previewwindow is appropriate.
Three–five-minute rest would be needed for them if we need
another collection.

2.3. Tongue Image Color CorrectionMethod. In order to solve
the chromatic aberration of tongue images caused by the
different collection time, ICC profile correction was used in
this study, and the digital ColorChecker SG was chosen. The
detailed tongue image color correction based on ICC profile
is as follows. First, an ICC profile is made before each batch of
tongue image acquisition; the TDA-1 tongue imaging device
is placed right above the digital ColorChecker SG (produced
by X-rite Macbeth) in the darkroom; then take a photo of the
digital ColorChecker SG and import it into the ProfileMaker
software (Gretagmacbeth ProfileMaker Pro 5.0.5). Make the
ICC profile of the ColorChecker SG correspond to the stable
tongue acquisition light source D65. Second, import this
ICC profile into Photoshop CS 4.0; the specific path is
“C:\WINDOWS\system 32\spool\drivers\color.” Import the
tongue images that need color correction into Photoshop CS
4.0, assign the profile, and choose the inserted ICC profile for
color correction of the original tongue images. To evaluate the
effect of the ICCprofile correction, we used the TDA-1 tongue
imaging device to obtain 5 photos of the same SG color
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Figure 1: Structure chart of the TDA-1 tongue imaging device. Note: 1: telescopic cylinder, 2: removable collecting ring, 3: hand shank, 4:
control panel, 5: Camera power, 6: camera button, 7: USB interface, 8: zoom button, 9: playback button, 10: OK button, 11: four-way navigation
buttons, 12: MENU button, 13: SCENE button, 14: external power switch, and 15: external power connector.

checker. And in each photo, 13 color-blocks (includingD7, E7,
F7, G7, H7, J7, D8, E8, F8, G8, H8, I8, and J8) corresponding
to the human complexion would be chosen to carry out ICC
profile correction and the Imatest software would be used to
evaluate the color value difference (Δ𝐸 = [(𝐿∗2 − 𝐿

∗
1)
2 + (𝑎∗2 −

𝑎∗1 )
2 + (𝑏∗2 − 𝑏

∗
1 )
2]1/2).

2.4. Tongue Image Selection Method. First, the tongue body
area of each collected tongue photos was extracted as a size
of 300 × 300 in order to make the clipped tongue image close
to the actual size of the tongue in clinics, and this operation
was implemented by the function of tongue extraction in
the software “TCM Tongue Diagnosis and Analysis System
(TDAS) V2.0” (developed by our experiment team). The
picture which mainly included the tongue body in its middle
part was manually framed in a square, and the clipped
tongue image would be automatically saved as a size of 300
× 300 by clicking the save function (Figure 2). Then look
through those extracted tongue body images on the same
computer monitors (Lenovo AIO has resolution of 1440 ×
900); tongue pictures would be excluded if they fail to satisfy
the requirements due towrong position of tongue protrusion,
underexposure or overexposure, blur, invisible tongue body
covered by tongue coating, and so on. Tongue images which
had petechia or ecchymosis or prick or barb on the tongue
surface would also be discarded since they can be disturbance
in color recognition of tongue surface.

2.5. Tongue Image Identification Method. The color of tongue
images in TIFF format after color correction would be
recognized by three TCM diagnosis professionals.Those that
received the agreement from all three professionals would be
included in this study. According to the literature’s reporting,
tongue color would be classified into five groups, namely, pale

tongue, light red tongue, red tongue, crimson tongue, and
purplish tongue (including light purple tongue and blue and
purple tongue) [15, 19].

2.6. The Selection and Analysis of Characteristic Parameter
for the Color of Tongue Images. Given the conformance
and intuition between different color space’s description on
tongue color and the regular TCM diagnostic description
for tongue color, 𝐿∗𝑎∗𝑏∗ color space would be used in this
study. The 𝐿∗ value represents the luminosity, which means
the lightness of color, ranging from 0 to 100 (absolute black
to absolute white).The 𝑎∗ value runs in range of +127 to −128
(red to green) and the 𝑏∗ value suggests the range from yellow
to blue with the value between +127 and −128 (yellow to
blue). Besides, in order to avoid the variation in tongue color
classification index caused by different image segmentation
techniques, the mean value of 𝐿∗, 𝑎∗, and 𝑏∗ before or after
the color correction would be acquired by manual selection
of tongue tip, tongue left side, and tongue right side in each
tongue image with the color sampler tool of 5 × 5mm in
Photoshop CS 4.0 (Figure 3).

2.7. Statistical Method and DataMiningMethod. t-test would
be used in the comparison of ΔE before and after the ICC
color correction. Dunnett’s T3 multiple comparison test in
ANOVAwould be used for the pairwise comparison of𝐿∗, 𝑎∗,
and 𝑏∗ value of different color groups in SPSS18.0. Consider
the idea that SVM is the most commonly used supervised
machine learning method in tongue diagnosis [31], while
Random forest is rarely used in this area according to the
reports; besides the tongue color classification in this study
is a multiclassification research; meanwhile the samples are
limited and imbalanced, and the feature number for the
studied images is relatively small; in order to obtain a better
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classification accuracy, we will use SVM and Random forest
in the modeling and analytical test for the experimental data
in WEKA software [32].

3. Results

3.1. Results for the Evaluation of ICC Profile Correction. The
color value difference (Δ𝐸) of the 65 color-blocks in the SG
color checker before ICC profile correction is 11.79 ± 1.67, it
would decrease to 4.50±2.41 after ICC profile correction, and
it was statistically evident between them (𝑝 < 0.05). As we
know, the value of Δ𝐸 indicates the total difference of varied
colors, and a bigger Δ𝐸 value means a larger color difference.
Generally speaking, when Δ𝐸 is more than 12.0, it indicates
that the two colors are entirely different; while it is less than
1.5, the difference is beyond the human vision’s sensation [33].
Therefore, from the above outcomes, the color difference is
obviously reduced after the ICC profile correction.

3.2. Tongue Color’s Distribution in the 𝐿∗𝑎∗𝑏∗ Color Space
before and after the Correction. Tongue color’s distribution

in the 𝐿∗𝑎∗𝑏∗ color space before and after the correction
by ICC profile was demonstrated in Figures 4 and 5. Those
figures indicate that the total dispersion of tongue color
was reduced after correction, especially for the light red
tongue’s distribution in the 𝐿∗𝑎∗𝑏∗ color space. It means
that the tongue colors have a more centralized and balanced
distribution in the 𝐿∗𝑎∗𝑏∗ color space, so that it would be
more beneficial for the TCM practitioners to recognize.

3.3. The Comparison for the Feature Parameter of Intergroup
Tongue Colors. The comparison result for different tongue
colors is shown in Table 1.

The results in Table 1 indicate the following aspects. (1)
As for the 𝐿∗ value, most colors have a statistical significance
in their pairwise comparison (𝑝 < 0.05) except for the com-
parison between purplish tongue and light red tongue/pale
tongue as well as the comparison between the red tongue and
crimson tongue. For the 𝐿∗ value suggesting the lightness
of a certain color, from Table 1 we could conclude that the
lightness of the red or crimson tongue is relatively lower than
other three colors, and the light red tongue has lower lightness
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Table 1: Comparison for the different tongue color’s 𝐿∗, 𝑎∗, and 𝑏∗ value (𝑥 ± 𝑠).

Group Number (𝑛 = 729) 𝐿∗ 𝑎∗ 𝑏∗

Light red 478 53.31 ± 5.90󳵳‰∗ 20.63 ± 3.08󳵳∗◼ 7.6 ± 3.93‰∗◼

Pale 45 56.18 ± 6.06e‰∗ 16.93 ± 1.75e‰∗ 8.69 ± 3.48‰∗◼

Crimson 35 48.07 ± 6.12e󳵳◼ 21.08 ± 3.14󳵳∗◼ 2.83 ± 3.65e󳵳∗◼

Red 107 48.43 ± 6.57e󳵳◼ 24.21 ± 3.43e󳵳‰◼ 5.32 ± 4.14e󳵳‰◼

purplish 63 52.46 ± 6.53‰∗ 16.47 ± 2.67e‰∗ −1.39 ± 4.22e󳵳‰∗
eCompared with light red tongue 𝑝 < 0.05.
‰Compared with crimson tongue 𝑝 < 0.05.
◼Compared with purplish tongue 𝑝 < 0.05.
󳵳Compared with pale tongue 𝑝 < 0.05.
∗Compared with red tongue 𝑝 < 0.05.
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Figure 4: 𝐿∗𝑎∗𝑏∗ color space distribution for varied tongue colors
(before color correction).

than the pale tongue. There was no obvious difference in
lightness between the purplish tongue and the light red
tongue/the pale tongue, and so did the red tongue versus the
crimson tongue. (2) As for the 𝑎∗ value, except for the light
red tongue versus the crimson tongue and the pale tongue
versus the purplish tongue, the rest colors are statistically
evident for their pairwise comparison.And the 𝑎∗mean value
of different tongue colors shows that the red tongue had
the highest red component, next is light red tongue/crimson
tongue, and pale tongue/purplish tongue is the lowest in
the red component, while no obvious difference was found
in both pale tongue versus purplish tongue and light red
tongue versus crimson tongue for the red component. (3) As
for the 𝑏∗ value, each tongue color is statistically significant
(𝑝 < 0.05) with the rest of tongue colors except the light
red tongue versus the pale tongue, and the mean value of 𝑏∗
of those varied colors shows that the blue component was
decreased from purplish tongue to crimson tongue and then
to red tongue. We can also tell that light red tongue or pale
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Figure 5: 𝐿∗𝑎∗𝑏∗ color space distribution for varied tongue colors
(after color correction).

tongue has the lowest blue component and there is no obvious
difference between them.

The results in Table 1 indicate that the difference of those
five tongue colors is more obvious in 𝑎∗ and 𝑏∗ value. The
distribution of different tongue colors in 𝑎∗𝑏∗ plane was
demonstrated in Figure 6. Even though there exist certain
overlaps at the boundaries between some colors in the 𝑎∗𝑏∗
plane color space distribution due to the absence of 𝐿∗ value,
general tendency can be found in the distribution of varied
tongue colors in the 𝑎∗𝑏∗ plane color space, namely, from
the pale tongue to the light red tongue and then to the red
tongue; their color is gradually changed. In other words, it
is a progress of gradual increase of 𝑎∗ value and gradual
decrease of 𝑏∗ value, which indicates the gradual increase of
red component and gradual decrease of yellow components
in their colors. Besides, the purplish tongue has both the
lowest 𝑎∗ value and the lowest 𝑏∗ value (negative value),
which indicates that both the red component and yellow
component of this tongue color are reduced while its blue
component is augmented. For the crimson tongue, its 𝑎∗
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Figure 6: Distribution of respective average tongue colors in 𝑎∗𝑏∗
plane color space. Note: (1) 𝑎∗ value: purplish tongue< pale tongue<
light red tongue< crimson tongue< red tongue, which indicates that
the red components are decreasing. (2) 𝑏∗ value: purplish tongue <
crimson tongue< red tongue< light red tongue< pale tongue, which
indicates that the blue components are decreasing, while the yellow
component is increasing.

value ranks only second to the red tongue’s and its 𝑏∗ value
is next to the lowest (purplish tongue), which suggests a
relatively higher red component and a relatively lower yellow
component among the five tongue colors.

3.4. The Results for Data Mining Modeling. WEKA software
was used in the data mining modeling. The selected 728
tongue images would be studied, which included 478 cases of
light red tongue, 45 cases of pale tongue, 35 cases of crimson
tongue, 107 cases of red tongue, and 63 cases of purplish
tongue. All original data would be processed in the “.ARFF”
format under the software’s requirement.

In order to fulfill the evaluation of effectiveness for
the established model, the studied tongue images would be
divided into two groups by 10-fold cross-validation: one is the
training set for the training of the best model and the other
is testing set for the evaluation of the classification effect.
In order to solve the problem of imbalance of tongue color
samples, SMOTE algorithmwould be used in this study to the
sample amplification of 2390 cases. Furthermore, SVM and
Random forest would be applied, respectively, for analytical
test and the evaluation of the classification accuracy ofmodel.

The results are shown in Tables 2, 3, 4, 5, and 6.
Table 2 demonstrates that the overall classification accuracy
for tongue color is relatively high. Random forest has a

Table 2: Comparison of classification accuracy.

Classification accuracy (%) samples LibSVM Random forest
Before sample amplification 728 74.59 78.81
After sample amplification 2390 79.83 84.94

Table 3: Classification results of LibSVM before amplification.

Pale Light red Crimson Red Purplish
Pale 14 30 0 0 1
Light red 6 450 0 15 7
Crimson 0 20 2 11 2
Red 0 57 3 47 0
Purplish 1 29 2 1 30

Table 4: Classification results of LibSVM after amplification.

Pale Light red Crimson Red Purplish
Pale 444 21 1 3 9
Light red 75 284 26 46 47
Crimson 0 7 404 56 11
Red 0 21 113 337 7
Purplish 8 16 10 5 439

Table 5: Classification results of Random forest before amplifica-
tion.

Pale Light red Crimson Red Purplish
Pale 32 11 0 0 2
Light red 12 420 3 28 15
Crimson 0 4 24 5 2
Red 0 35 7 62 3
Purplish 1 23 2 2 35

Table 6: Classification results of Random forest after amplification.

Pale Light red Crimson Red Purplish
Pale 439 30 0 1 8
Light red 41 338 21 43 35
Crimson 0 13 408 46 11
Red 0 28 45 399 6
Purplish 4 18 6 4 446

higher classification accuracy than LibSVM either before or
after the sample amplification. The classification accuracy of
both Random forest and SVM is increased after the sample
amplification.The accuracy of SVM increases from 74.59% to
79.83%, while the accuracy of Random forest increases from
78.71% to 84.94%.

Furthermore, the classification accuracy of SVM and
Random forest for different tongue colors was shown in
Table 7. We can see that, without sample amplification, Ran-
dom forest achieved relatively higher classification accuracy
for varied tongue colors than SVM. However, after sample



BioMed Research International 7

Table 7: Classification accuracy of different tongue colors (%).

Amplification LibSVM Random forest
NO YES NO YES

Pale 31.1 92.9 71.1 91.8
Light red 94.1 59.4 87.9 70.7
Crimson 5.7 84.5 68.6 85.3
Red 43.9 70.5 57.9 83.5
Purplish 47.6 91.8 55.5 93.3

Table 8: Auc for different machine learning methods.

Auc LibSVM Random forest
Before amplification 0.69 0.89
After amplification 0.87 0.98

amplification both SVM and Random forest’s classification
accuracy for the light red tongue were decreased, but the
whole classification accuracy for the rest tongue colors is
obviously improved.

3.5. Diagnostic Value for Different Classifiers. Tongue
weighted average area under the ROC curve (Auc) would be
calculated for both SVM and Random forest (Table 8). The
Auc for both classifiers is approximately between 0.69 and
0.98 whether before or after the amplification. This is a fairly
good diagnostic value in terms of the diagnostic significance
of area. And the Auc of the two classified models is 0.69
and 0.89, respectively, before the amplification but increases
to 0.87 and 0.98 after the amplification. Therefore, the Auc
of the Random forest is higher than LibSVM no matter
whether the samples were amplified or not. Besides, the Auc
of the two classification model is largely increased after the
sample amplification. Combined with the accuracy above,
it can be concluded that the Random forest has a better
established classification model for the tongue, and the
sample amplification can solve the imbalance of different
tongue colors effectively. Therefore, our method has great
diagnostic significance in clinics.

4. Discussion

Along with the achievements obtained in the digitization
and objectification of tongue image diagnosis in TCM, many
other researches about prediction of health state or abnormity
of physical indicators in western medicine have been done
recently [20, 22–25, 28, 34, 35].Though they have successfully
set up certain connection between the objective tongue
feature parameter and the health state, it is difficult for
them to be accepted and admitted by the TCM clinicians
for their abstraction in the tongue diagnosis. Therefore, our
study successfully establishes the connection between the
visualized tongue color diagnosed by TCM experts and the
abstract objective feature parameters through the exploration
on the classification of different tongue colors in TCM.

Tongue color, generally, is clinically classified into cat-
egories as pale, light red, red, crimson, blue, purple, and

others. For there is no strict boundaries among them, the
color recognition of each observer is also varied. In this study,
tongue color is classified into light red tongue, pale tongue,
red tongue, crimson tongue, and purplish tongue on the basis
of relevant literature report.

ICC profile is a kind of color management method based
on the ICC standard by the International Color Consortium.
Its basic idea is to choose a reference color space which has
nothing to dowith the equipment to describe the equipment’s
characteristic; therefore, it can make it up to the loss of
color information caused by equipment. So far, this color
management method has been admitted by a lot of operating
systems and equipment manufacturers, and it has become
an internationally recognized method for color correction.
From this study, it can be concluded that ICC profile cor-
rection could not only decrease color value difference (Δ𝐸)
evidently but also reduce the dispersion of different tongue
colors effectively, which would make the identified tongue
images more consistent on the coherence and authenticity
with the images seen in the clinic by the TCM practition-
ers.

Moreover, the outcomes indicate the 𝑎∗ value of the light
red tongue was between the pale/purplish tongue and the red
tongue (𝑝 < 0.05), while its 𝑏∗ value was obviously higher
than the red tongue, crimson tongue, and purplish tongue
(𝑝 < 0.05). Preliminarily objective quantification could be
carried out for the light red tongue in the future. As for
the pale tongue, 𝑎∗ value is significantly lower than the red
tongue and the light red/crimson tongue (𝑝 < 0.05), and it
has a higher 𝑏∗ value than the red tongue, crimson tongue,
and purplish tongue (𝑝 < 0.05); combined with its higher 𝐿∗
value than the light red tongue (𝑝 < 0.05), the red component
of the pale tongue is significantly decreased, corresponding to
the general understanding of Traditional Chinese Medicine.
The red tongue has the highest 𝑎∗ value than the rest of the
four colors (𝑝 < 0.05) and a lower 𝐿∗ value than the light red
tongue, pale tongue, and purplish tongue (𝑝 < 0.05); that is to
say, its red component is relatively higher. With the red color
being deeper, the brightness dimmed. As for the crimson
tongue, its 𝐿∗ value was obviously lower than the light red
tongue, pale tongue, and purplish tongue (𝑝 < 0.05), its 𝑎∗
value was between pale/purplish tongue and red tongue (𝑝 <
0.05), and its 𝑏∗ value is obviously lower than red tongue,
light red tongue, and pale tongue (𝑝 < 0.05). The crimson
tongue had a mediate red component but relatively small
brightness. For the purplish tongue, its 𝑎∗ value is obviously
lower than the light red tongue, red tongue, and crimson
tongue (𝑝 < 0.05), and its 𝑏∗ value is the lowest compared to
the other four colors (𝑝 < 0.05). This shows the decreasing
of the red component and the yellow component and the
tendency to be blue and purple. Totally, 𝑎∗ value became
gradually smaller from the red tongue to the crimson/light
red tongue and to the pale/purplish tongue, which brought
the decreasing of the red component. And the 𝐿∗ value
became gradually smaller from the pale tongue to light
red tongue, to purplish tongue, and to red tongue/crimson
tongue, which caused the gradually dim brightness. As for the
𝑏∗ value, the purplish tongue was the lowest compared to the
others, which indicated its highest blue component.



8 BioMed Research International

From the perspective of 𝐿∗𝑎∗𝑏∗ color space, the main
characteristics index of pale tongue and red tongue were 𝐿∗
and 𝑎∗ value; namely, the pale tongue had a higher 𝐿∗ value
and a lower 𝑎∗ value than normal tongue color, while the red
tongue is the opposite. The main characteristics index of the
crimson tongue is lower 𝐿∗ value than the normal tongue
color. And the purplish tongue shows the lowest 𝑏∗ value and
the decreasing of 𝑎∗ value.

This experiment suggests the different characteristics in
𝐿∗𝑎∗𝑏∗ color space for varied colors. For the imbalance and
limitation of the studied samples, some index of the five
tongue color in the 𝐿∗𝑎∗𝑏∗ color space has shown no signifi-
cant difference, such as the 𝐿∗ value for the red and crimson
tongue, 𝑎∗ value of the pale tongue and purplish tongue, 𝑎∗
value of the light red tongue and crimson tongue, and 𝑏∗ value
of the light red tongue and pale tongue.Therefore, it is feasible
for the standardization and formulation of medical reference
range for tongue colors in TCM and it is necessary to increase
the sample size of other abnormal tongue colors in the further
study.

In addition, we also study the tongue color classification
in the application of machine learning methods. Comparing
to the commonly used SVM algorithm, Random forest has
a better result on the tongue color classification despite
using imbalanced sample for different tongue colors (Tables
2, 7, and 8). Moreover, SMOTE algorithm could improve
both the whole accuracy of tongue color classification and
the accuracy of those abnormal tongue color classification
effectively by sample amplification (Tables 2, 3, 4, 5, 6, 7, and
8). Consistency of the tongue image collection process and
the use of the color correction ensured the uniformity and
authenticity of the tongue pictures’ quality. The inconformity
of tongue image segmentation during the tongue image
processing procedure would lead to the difference of tongue
color classification index, so an agreement should be reached
in the future on the tongue image processing method. Only 3
experts are chosen to recognize the tongue color in this study;
on account of the difference of the subjective experience of
varied observers and the uncertainty of the classification
standard, the consensus on the TCM expert diagnosis system
of the tongue images should be reached in the future.

Last but not least, color is a low-level feature for tongue
images. The identification and extraction of other tongue
features like texture or fissures are based on the color infor-
mation of the digital tongue image. Therefore, we initially
researched the objective classification of tongue color. Given
the idea that TCM normally combines color, texture, and
fissures for diagnosis rather than the single factor color,
studies on the objective and quantitative classification of
texture and fissures are still required in the future.

5. Conclusions

In this study, preliminary objectification of tongue color clas-
sification is feasible on the basis of standardized tongue acqui-
sition and color correction. Data mining methods of SVM
and Random forest can help us to evaluate the classification
results effectively. Random forest has a better performance
in the classification accuracy of abnormal tongue colors

than SVM. SMOTE algorithm can improve the classification
accuracy by solving the imbalance of the studied samples.
Our research would contribute to the automatic diagnostic
system of tongue image in TCM.
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The similarity-based retrieval of lung nodule computed tomography (CT) images is an important task in the computer-aided
diagnosis of lung lesions. It can provide similar clinical cases for physicians andhelp themmake reliable clinical diagnostic decisions.
However, when handling large-scale lung images with a general-purpose computer, traditional image retrieval methods may not
be efficient. In this paper, a new retrieval framework based on a hashing method for lung nodule CT images is proposed. This
method can translate high-dimensional image features into a compact hash code, so the retrieval time and required memory space
can be reduced greatly. Moreover, a pruning algorithm is presented to further improve the retrieval speed, and a pruning-based
decision rule is presented to improve the retrieval precision. Finally, the proposed retrievalmethod is validated on 2,450 lung nodule
CT images selected from the public Lung Image Database Consortium (LIDC) database. The experimental results show that the
proposed pruning algorithm effectively reduces the retrieval time of lung nodule CT images and improves the retrieval precision.
In addition, the retrieval framework is evaluated by differentiating benign and malignant nodules, and the classification accuracy
can reach 86.62%, outperforming other commonly used classification methods.

1. Introduction

The early diagnosis and treatment of lung cancer patients can
help improve their survival rate [1]. However, with the devel-
opment and improvement of variousmedical image scanning
technologies, especially computed tomography (CT), the
number of medical images is growing explosively every year.
Hence, in the earlymedical screening process, reviewing lung
lesions is an extremely labor-intensive job for radiologists. In
addition, when reviewing and analyzing lesions, radiologists
mainly rely on their diagnostic experience, and the diagnosis
tends to be highly subjective. Moreover, clinical statistical
studies show that the same radiologist, at different times,
under different states of physical fatigue, may come up with a
different diagnosis for the sameCT image.Therefore, it is nec-
essary to retrieve similar lung nodule CT images to improve
diagnostic efficiency. By obtaining similar images from a CT
image repository of pulmonary nodules, the anamnesis and
successful treatments of these images can be viewed as clinical

references for the case under consideration, which can lessen
the reliance on a physician’s clinical diagnostic experience to
a certain degree.

Given the explosive growth of the number of current lung
images and advantage of medical image retrieval for physi-
cians’ diagnosis of lung lesions, in this paper, a novel retrieval
framework based on a hashing and pruning algorithm for
lung nodule CT images is proposed. When retrieving similar
lung nodule CT images, it not only can reduce the memory
space required but also further shorten the retrieval time and
improve precision with a pruning-based similarity measure
method.

The remainder of this paper is organized as follows.
Section 2 introduces previous work related to lung nodule
image retrieval and current popular retrieval methods. Sec-
tion 3 describes the proposed retrieval framework in detail.
Experimental results are presented with some discussion in
Section 4. Section 5 concludes the paper and discusses future
work.

Hindawi Publishing Corporation
BioMed Research International
Volume 2016, Article ID 3162649, 10 pages
http://dx.doi.org/10.1155/2016/3162649

http://dx.doi.org/10.1155/2016/3162649


2 BioMed Research International

2. Related Work

Recent years have witnessed the growing popularity of medi-
cal image retrieval, and there are many significant results in
the field of lung imaging. Oliveira and Ferreira [2] proposed
a bag-of-tasks method combining texture features and reg-
istration techniques to retrieve lung cancer images. Ng et al.
[3] presented an improved hierarchical spatial descriptor and
binary descriptor to retrieve similar lung nodule CT images
from the perspective of spatial similarity. Aggarwal et al.
[4] studied the detection and classification of lung nodules
with content-based medical image retrieval. However, given
the large number of lung CT images generated every year,
effective medical image retrieval is still a difficult challenge.

At present, hashing-based methods for image retrieval
can solve the storage and efficiency problems that traditional
image retrieval methods may encounter [5]. Further, these
hashing methods can transform high-dimensional image
data into a low-dimensional binary space by utilizing the
constructed hash functions [6]. It is precisely because of these
advantages that many scholars focus on researching hashing-
based image retrieval technology. Locality-sensitive hashing
[7], a pioneering work, can generate compact binary codes
with a random threshold. Further, in many hashingmethods,
such as those in [8–10], principal component analysis (PCA)
is a common method for preprocessing image data. The
simplest of these approaches is PCAH: after using PCA to
reduce the dimensionality of the image data, “0” is viewed
as the boundary, and both sides, respectively, correspond to
“0” and “1.” Moreover, according to whether label informa-
tion is used to construct hash functions, hashing methods
can be categorized as unsupervised hashing [8, 9, 11], semisu-
pervised hashing [10], or supervised hashing [12, 13]. Addi-
tionally, the core of these hashing methods is the minimiza-
tion of the error when translating the image data into binary
space.

Although many hashing and improved hashing methods
have been presented, only a few researchers have applied
them to medical image retrieval. Liu et al. [14] presented
an image retrieval framework for digital mammograms with
anchor graph hashing and improved its search accuracy by
fusing different features. Jiang et al. [15] used a joint kernel-
based supervised hashing algorithm with a small amount of
supervised information to compress breast histopathological
images into 10-bit hash codes and identified actionable and
benign tumors based on the retrieval results. Zhang et al.
[16] built a histopathological image retrieval framework using
a supervised hashing with kernel (KSH) method and vali-
dated the retrieval performance on breastmicroscopic tissues
images.

In our proposed retrieval method for lung nodule CT
images, partitioning the dataset with a clustering algorithm
is the foundation of the pruning algorithm.The KSHmethod
is then used to translate the images in each cluster into short
hash codes and form the hash code database. During retri-
eval, a pruning algorithm is employed to shorten the retrieval
area and further improve the retrieval speed and precision.
We use other state-of-the-art hashing methods to validate
the proposed pruning algorithm and compare it with other

commonly used classification methods to demonstrate the
performance of our retrieval framework.

3. Description of the Retrieval Framework and
Pruning Algorithm

The retrieval framework for lung nodule CT images proposed
in this paper consists of two main parts, the learning phase
and query phase, as shown in Figure 1.The aim of the learning
phase is to build a hash code database. First, we use the
extracted visual and medical features to represent each lung
nodule CT image. Binary codes are then obtained and stored
in a hash code database using the KSH method. In the query
phase, given a query lung nodule CT image, we first extract
the same features that were extracted in the learning phase
and translate them into binary code with the constructed
hash functions. Next, similar images are retrieved from the
hash code database while using the pruning algorithm. The
retrieval results can be used to recognize benign ormalignant
nodule.

3.1. Lung Nodule Feature Extraction. Feature extraction plays
an important role in image retrieval and can transform high-
dimensional nodule images into a lower-dimensional space
while retaining the essential content of the image. Good
features can help physicians to distinguish lung nodules
efficiently [17–19]. To facilitate analysis and research on lung
lesions, we extract lung nodule features based on grayscale,
morphology, and texture.

Grayscale features are the most basic characteristics of
an image of lung nodules, and the grayscale difference can
highlight the corresponding organization and structure. The
proposed method extracts three gray level characteristics,
grayscale mean, variance, and entropy, where grayscale
entropy reflects the grayscale information contained in the
nodule image, and is defined as

𝐻 = −
𝑘−1

∑
𝑖=0

𝐻(𝑖) log𝐻(𝑖) , (1)

where 𝐻(𝑖) represents the probability density of a different
greyscale value and 𝑘 is the number of available gray level
values.

Morphological features are the most intuitive visual
features and are helpful for identifying tumors. We describe
the morphological features of lung nodule mainly using
invariant moments, medical signs, and geometric features.
We employ the seven invariant moments proposed by Hu
to describe the shape characteristics of pulmonary nodules.
The calcification area, calcification degree, cavitary area, and
cavitary ratio are calculated and represent the medical sign
information of the lung nodules. The geometric features
consist of lung nodule perimeter, area, maximum diameter,
rectangle, and roundness, where roundness describes the
degree of deviation of the nodule region froma circular shape,
defined as

𝐹 = 4𝜋𝐴
𝐿2

, (2)
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Figure 1: Retrieval framework for lung nodule CT images with hashing and pruning algorithms.

where 𝐴 is the area of the nodule region and 𝐿 is the peri-
meter.

Texture features can provide important information on
the health of the lung. For example, the structure of diseased
tissue is more chaotic and rough than healthy tissue [18].
Here, the gray level co-occurrence matrix is used to extract
texture features. This is the most widely used texture analysis
method in medical imaging. The computed features include
14 characteristic values, such as contrast, angular second
moment, entropy, and inverse difference moment, which are
defined as

CON =
𝑘−1

∑
𝑛=0

𝑛2
{
{
{
∑
|𝑖−𝑗|=𝑛

𝐺 (𝑖, 𝑗)
}
}
}
,

ASM =
𝑘−1

∑
𝑖=0

𝑘−1

∑
𝑗=0

{𝐺 (𝑖, 𝑗)}2 ,

ENT = −
𝑘−1

∑
𝑖=0

𝑘−1

∑
𝑗=0

𝐺 (𝑖, 𝑗) log𝐺 (𝑖, 𝑗) ,

IDM = −
𝑘−1

∑
𝑖=0

𝑘−1

∑
𝑗=0

𝐺 (𝑖, 𝑗)
1 + (𝑖 − 𝑗)2

.

(3)

We also calculate the mean and variance of these 14 feature
values.

A detailed description of the extracted multiple features
is given in Table 1. By extracting the lung nodule features
from grayscale, morphology, and texture, we utilized a 104-
dimensional feature vector to uniquely represent each lung
nodule CT image, constructed as follows:

𝑥 = [
[
𝑓1, 𝑓2, 𝑓3⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

gray
, 𝑓4, . . . , 𝑓10, 𝑓11, . . . , 𝑓15, 𝑓16, . . . , 𝑓20⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

morphology
,

𝑓21, 𝑓22, . . . , 𝑓104⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
texture

]
]
.

(4)

3.2. Building the Hash Code Database. In order to achieve
the rapid retrieval of lung nodule CT images using the
proposed pruning algorithm, it is necessary to partition the

dataset before constructing the hash code database using the
hashing method. As shown in Figure 2, the construction
of a hash code database includes two parts: clustering and
hashing. In the first part, a spectral clustering algorithm is
used to partition our training dataset into several clusters
so that the distribution of lung nodule CT images in each
cluster is near uniform. In addition, when retrieving a query
image, the retrieval scope can be narrowed according to the
distance between the query image and cluster centers. In the
second part, the KSH method is employed to construct hash
functions for the whole training dataset and obtain the hash
code database. Furthermore, the uniform distribution of lung
nodule CT images in clusters could reduce the instability of
retrieval performance caused by the uneven distribution of
images.

3.2.1. Partitioning the Lung Nodule Dataset. Spectral cluster-
ing is a clustering algorithm based on spectral graph theory
that can identify a sample space with arbitrary shapes and
converge to the global optimal solution. Furthermore, the
obtained clustering results outperform traditional clustering
approaches, such as 𝑘-means or single linkage clustering
[20, 21].

In this paper, given a training dataset of lung nodule CT
image 𝜒 = {𝑥1, . . . , 𝑥𝑛} ∈ 𝑅𝑑, where 𝑛 is the number of
images and 𝑑 is the dimension of extracted features, a graph
𝐺 is first built to represent these data. The vertices 𝑉 in the
graph represent lung nodule CT images, and the weights of
edges 𝐸 represent the similarity of any two lung nodule CT
images. An undirected weighted graph 𝐺 = (𝑉, 𝐸) based
on the similarity of the images then can be obtained. Thus,
the clustering problem is converted into a graph partitioning
problem on 𝐺.

The main step of spectral clustering is to construct graph
partitions based on graph Laplacian matrix 𝐿. Here, we use
the normalized Laplacian matrix, which is defined as

𝐿 = 𝐷−1/2 (𝐷 −𝑊)𝐷−1/2, (5)

where𝑊 is a similarity matrix, defined as

𝑊𝑖𝑗 = exp−‖𝑥𝑖−𝑥𝑗‖
2/2𝛿2 , (6)
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Table 1: Description of lung nodule feature extraction.

Feature Descriptors Representation
Gray 3 gray features (gray mean, variance, and entropy) 𝑓1, 𝑓2, 𝑓3

Morphology
7 invariant moments features (Hu moment invariants) 𝑓4, . . . , 𝑓10,

𝑓11, . . . , 𝑓15,
𝑓16, . . . , 𝑓19, 𝑓20

5 geometrical features (perimeter, area, roundness, rectangularity, and maximum
diameter)

4 medical signs (calcification area and degree, cavitary area, and degree) and Fourier
descriptor

Texture 14 texture features from GLCM (contrast, angular second moment, entropy, inverse
difference moment, etc.) with 4 different angles as well as the mean, variance of them 𝑓21, 𝑓22, . . . , 𝑓104
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Figure 2: Hash code database construction.

where 𝛿 is a parameter and 𝐷 is a diagonal matrix obtained
from𝑊, defined as

𝐷𝑖𝑗 =
{{
{{
{

𝑛

∑
𝑗=1

𝑊𝑖𝑗, 𝑖 = 𝑗

0, 𝑖 ̸= 𝑗.
(7)

The classical 𝑘-means method is then utilized to cluster the
eigenvectors of Laplacian matrix 𝐿. Using the above steps,
we can acquire several clusters in which the lung nodule CT
images are similar to each other. This is the foundation for
achieving a pruning algorithm and is helpful for improving
the retrieval speed as well as precision.

3.2.2. Construction of Hash Functions. One of the factors
affecting the performance of a hashing method is the ability
to preserve the similarity of any two images in the original
feature space. Hence, the key to a hashing method is to con-
struct appropriate hash functions andmaintain the similarity
within the hash code. KSH is a supervised hashing method
that uses a limited amount of supervised information for
learning hash functions, and the retrieval results are better
than other unsupervised hashing methods as well as some
supervised hashing methods.

Given all the lung nodule CT images in training dataset
𝜒, we need to construct a group of hash functions 𝐻 =
{ℎ1(𝑥), . . . , ℎ𝑟(𝑥)}, each of which will generate a single hash

bit. In addition, if the length of the hash code is 𝑟, then 𝑟 hash
functions will be constructed. A hash function is defined as

ℎ (𝑥) = sgn (𝑓 (𝑥)) = sgn(
𝑚

∑
𝑗=1

𝜅 (𝑥(𝑗), 𝑥) 𝑎𝑗 − 𝑏) , (8)

where 𝜅(𝑥, 𝑦) = exp(−‖𝑥 − 𝑦‖/2𝜎2)is a Gaussian kernel
function for solving the problem of the linear inseparability
of lung nodule images, {𝑥(1), . . . , 𝑥(𝑚)} are samples randomly
selected from the training dataset𝜒 to support kernel compu-
tation, {𝑎1, . . . , 𝑎𝑚} are a group of coefficients, sgn(𝑥) is a sign
function outputting 1 for positive input and −1 for negative
input, and 𝑏 ∈ 𝑅 is a bias defined as

𝑏 = 1
𝑛

𝑛

∑
𝑖=1

𝑚

∑
𝑗=1

𝜅 (𝑥(𝑗), 𝑥𝑖) 𝑎𝑗. (9)

As the differences in lung nodule images are not apparent,
as they are in natural images, the coefficient vector a =
[𝑎1, . . . , 𝑎𝑚]𝑇 is vital for generating distinguishable hash func-
tions. Here, supervised information, that is, a label matrix,
is utilized to solve this problem. During the image prepro-
cessing, we mark each lung nodule CT image with a label 1
or 0 based on whether it shows benign or malignant lesions.
The 𝑙 (𝑚 < 𝑙 ≤ 𝑛) images from the training dataset are then
randomly selected to construct a label matrix S ∈ 𝑅𝑙×𝑙. The
construction process is shown in Figure 3.
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When retrieving a query image, the Hamming distance is
a commonly used method to measure the similarity between
the query image and the database images. However, it is

difficult to directly compute this distance because of its com-
plex formula.The research in [13] explains the corresponding
relation between the Hamming distance and code inner
product. Hence, the objective function can be defined using a
codematrix formed by the selected 𝑙 samples and label matrix
to solve A = [a1, . . . , a𝑟] for hash functions𝐻 as follows:

min
A
𝑄 (A) =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑟

∑
𝑘=1

sgn (𝐾𝑙a𝑘) (sgn (𝐾𝑙a𝑘))
𝑇
− 𝑟S

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

, (10)

where ‖⋅‖𝐹 is the Frobenius norm and𝐾𝑙 represents the kernel
computation for the 𝑙 images involved in label matrix S and
is expressed as

𝐾𝑙 =

[[[[[[[[
[

𝜅 (𝑥(1), 𝑥1) −
1
𝑛

𝑛

∑
𝑖=1

𝜅 (𝑥(1), 𝑥𝑖) ⋅ ⋅ ⋅ 𝜅 (𝑥(𝑚), 𝑥1) −
1
𝑛

𝑛

∑
𝑖=1

𝜅 (𝑥(𝑚), 𝑥𝑖)

... d
...

𝜅 (𝑥(1), 𝑥𝑙) −
1
𝑛

𝑛

∑
𝑖=1

𝜅 (𝑥(1), 𝑥𝑖) ⋅ ⋅ ⋅ 𝜅 (𝑥(𝑚), 𝑥𝑙) −
1
𝑛

𝑛

∑
𝑖=1

𝜅 (𝑥(𝑚), 𝑥𝑖)

]]]]]]]]
]

∈ R
𝑙×𝑚. (11)

Thus, by minimizing the error between the code matrix
and label matrix, the hash functions with supervised infor-
mation can be acquired and used to encode each lung nodule
CT image.

3.3. Retrieval Process for Lung Nodule CT Images. The aim of
the proposed method is to achieve rapid retrieval for lung
nodule CT images with higher precision. Hence, a pruning
algorithm is presented.The retrieval procedure with pruning
algorithm is illustrated in Figure 4.

Given a query image, the retrieval process includes the
following three steps: (1) determining candidate clusters,
that is, selecting some clusters as the candidate clusters to
which the query image may belong, (2) encoding the query
image, that is, compressing the extracted relevant features
into binary codes with the constructed hash functions, and
(3) calculating similarity, that is, computing and sorting the
code inner products between the query image and images
in the candidate clusters and returning the similar images
according to the similarity.

However, when sorting the code inner products, if the
length of hash code is 𝑟, the value range of code inner
product is [−𝑟, 𝑟], and it is impossible to directly sort the
images that have the same code inner products. In order to
solve this problem, we designed a decision rule: compare the
distances between the query image and the clusters that these
similar images belong to and return the image with a smaller
distance.Thewhole pruning process is shown in Algorithm 1.

Algorithm 1 (pruning algorithm for image retrieval).

Input.Query lung nodule image 𝑞, cluster centers {𝜇1, . . . , 𝜇𝑘},
number of candidate clusters𝑚 (0 < 𝑚 < 𝑘), hash functions

𝐻 = {ℎ1(𝑥), . . . , ℎ𝑟(𝑥)}, hash codes {code𝜇1 , . . . , code𝜇𝑘} in
clusters, and number of returned similar images 𝑝.

Output. Similar images {𝑥1, . . . , 𝑥𝑝}.

Step 1. Calculate the distance between 𝑞 and each cluster
center using

𝑑 = 󵄩󵄩󵄩󵄩𝑞 − 𝜇𝑖
󵄩󵄩󵄩󵄩
2 , (𝑖 = 1, . . . , 𝑘) . (12)

Step 2. Rank and select the top 𝑚 clusters as the candidate
clusters using

cluster1, . . . , cluster𝑚 ←󳨀 sort (𝑑𝑖, “abscend”) . (13)

Step 3. Compress the query image into code with𝐻.

Step 4. Calculate the code inner products between 𝑞 and the
images in the candidate clusters as follows:

sim = code ∘ code𝜇𝑖 , (𝑖 = 1, . . . , 𝑚) . (14)

Step 5. Rank the code inner products sim as follows:
𝑥1, . . . , 𝑥𝑝 ←󳨀 sort (sim, “descend”) . (15)

Step 6. If equal (simi, simj), then compare the corresponding
distances 𝑑𝑖 and 𝑑𝑗 in Step 1.

Step 7. If 𝑑𝑖 > 𝑑𝑗, then return image 𝑥𝑗 first.

Step 8. Repeat Steps 6-7 until 𝑝 similar images are returned
in order.

4. Experimental Results and Discussion

In this section, we first introduce the dataset used in the eva-
luation and the extracted multiple features. Next, we discuss
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Figure 4: Procedure of lung nodule CT image retrieval with pruning.

Table 2: Distribution of cases and slices over the lung tumor types
involved in the dataset.

Lung tumor type Cases Slices
Benign 250 1054
Malignant 350 1396

the parameter settings in our proposed retrieval method. We
then validate our pruning algorithm on different hashing
methods. Finally, we evaluate the performance of our retri-
eval framework by comparing it with other commonly used
classification methods. All our experiments were imple-
mented inMATLABR2014b on a workstationwith Intel Core
i7-4770CPU 3.40GHz and 8GB of RAM.

4.1. Image Dataset. The image data used in our experiments
are from the LIDC dataset [22]. The LIDC dataset contains
1,018 cases, each of which includes a set of chest CT images
and an associated XML file that records some relevant
information about the lung nodules (such as whether they
are benign or malignant). There are a total of 7,371 nodules
labeled at least by one radiologist and 2,669 of these nodules
are marked “nodule ≥ 3mm.” Here, in order to ensure that
the training dataset does not influence the testing dataset (i.e.,
that no images belonging to the same case appear in both the
training dataset and the testing dataset), the dataset in this
research is constructed from 600 cases. Further, we randomly
selected 70% of them as training data and the remaining
30% as testing data. Here, slices with unclear nodules in each
case were discarded, resulting in a total of 2,450 slices in
our dataset. The detailed contents of this dataset are listed in
Table 2.

This study is aimed at lung nodules, so the first step in
our experiment is to obtain the region of interest. As the
XML files in the LIDC record information about the lung
nodules, our team designed a visual interface and parsed
these XML files to obtain the relevant information, as shown

Figure 5: Visual interface for obtaining the relevant information
from the lung nodule image.

in Figure 5. The rectangular regions containing lung nodules
were extracted and viewed as regions of interest. Thus, the
lung image database was constructed based on these regions.

In order to facilitate the research and analysis of lung
lesions, we extracted themultiple features of lung nodules and
stored them into our database in advance. Table 3 describes
some feature values extracted from the lung nodule images.

4.2. Parameter Settings. There are three main parameters
affecting the performance of the proposed retrieval frame-
work.They are the length of the compact hash code bit, num-
ber of clusters 𝑘, and number of candidate clusters used for
retrieval𝑚.

The effect of a hashing method is to transform the high-
dimensional image features of lung nodules into a low-
dimensional hash code to represent each image. Additionally,
based on the experience of a large number of studies, the
length of hash codes in this paper is set to between 8 and
64 bits. Here, in order to determine the influence of the hash
code length on the retrieval results, we first did our experi-
ment using the KSHmethod only (without using the pruning
algorithm). The retrieval precision for different hash code
lengths is reported in Table 4, and the best retrieval results
are obtained when bit = 48. Retrieval precision is one of
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Table 3: Quantitative results of some features of lung nodule images.

Image Gray

Morphology

Texture (0∘)7 invariant
moments Medical signs Geometrical features

Mean Entropy 𝑀1 𝑀2 Calcification degree Cavitary ratio Area Roundness Rectangle ASM CON IDM
𝐼1 0.5327 4.9199 0.2789 0.0025 0.1720 0 343 0.3961 0.5489 0.0521 1.3518 0.7151
𝐼2 0.5403 4.8428 0.2731 0.0016 0.1954 0.2483 302 0.3503 0.5243 0.0451 1.9339 0.6360
𝐼3 0.4496 4.7236 0.3173 0.0032 0.2268 0 529 0.6274 0.3701 0.0854 2.1015 0.6853
𝐼4 0.3933 4.4967 0.3757 0.0037 0 0.1985 297 0.5632 0.4127 0.1415 1.5383 0.7105
𝐼5 0.5293 5.1302 0.2707 0.0017 0.2571 0.1684 412 0.5279 0.2953 0.0267 1.7759 0.6369

Table 4: Retrieval precision for the top 5 similar lung images for different hash code lengths.

Bits 8 16 24 32 40 48 56 64
Pre. for top 5 0.6997 0.7541 0.7731 0.8176 0.8351 0.8542 0.8207 0.8031

the criteria used to evaluate the performance of a retrieval
method and defined as

precision = relevant results
results

, (16)

where results indicate the number of returned images and
relevant results denote the number of correct results in the
returned images as judged by the label information.

Next, setting bit to 48, we discuss how to set parameters 𝑘
and𝑚 appropriately to achieve a retrieval precision of 85.42%
within the shortest retrieval time. Retrieval time refers to the
period of time beginning with the encoding of the test images
and ending when the similar lung nodule CT images have
been obtained.

In order to reach the same retrieval precision without
using a decision rule, the values of parameters 𝑚 and 𝑘 were
acquired through experiment and are shown in Table 5. Fig-
ure 6 demonstrates how the retrieval time changes according
to the number of clusters when the length of hash code is
48 bits. We can see that, as the number of clusters increases,
the retrieval time decreases when 𝑘 < 35, but when 𝑘 > 35,
the retrieval time increases. Considering Table 5 and Figure 6,
the reason for this situation is that as the number of clusters
increases, the reduced number of images in the candidate
clusters is greater than the increased number of images in
the newly produced candidate clusters. That is, the total
number of images in the candidate clusters needed to reach
the same retrieval precision is less than before. However,
when 𝑘 > 35, the situation is reversed. This may be similar to
the phenomenon of overfitting in statistical learning. When
the number of clusters increases, the retrieval result may be
worse.Moreover, as the number of clusters increases, the time
required to calculate the distance between the query image
and each cluster center cannot be ignored. Hence, in order to
obtain a better retrieval result, we set the length of the hash
code to 48 bits and the number of clusters to 35. Additionally,
as shown in Table 5, the number of candidate clusters is set to
eight.

The retrieval results of lung nodule CT images based on
the above parameter settings are shown in Figure 7, where the
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Figure 6: Retrieval time with respect to number of clusters for bit =
48.

first two query images are malignant tumors, and the last two
are benign tumors.

4.3. Performance Comparison of the Pruning Algorithm. In
these experiments, we applied the proposed pruning algo-
rithm to different hash methods such as kernelized locality-
sensitive hashing (KLSH) [11], spectral hashing (SH) [8],
binary reconstructive embedding (BRE) [12], PCAH, and
iterative quantization (ITQ) [9]. We compared the retrieval
time and precision to evaluate the performance of the prun-
ing algorithm.The experiment flow is shown in Figure 8.

First, the different hashing methods were utilized to
retrieve the similar lung nodule CT images without using the
pruning algorithm. Figure 9 shows the retrieval precision of
these hashing methods, in which the retrieval result of the
KSH method outperforms the other hashing methods.

We then applied the proposed pruning algorithm (with-
out using the decision rule) to these hashing methods and
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Table 5: Settings for parameters k andm to reach the retrieval precision at 48 bits.

Clusters 𝑘 5 10 15 20 25 30 35 40 45
Candidate clusters𝑚 2 4 5 6 6 7 8 12 16

Table 6: Parameter settings of the different hash methods for the
pruning algorithm evaluation.

Parameters Different hash methods
KSH KLSH SH BRE PCAH ITQ

Bit 48 40 24 48 16 40
𝑚 8 9 11 7 9 8

Query images Retrieval results

Figure 7: Retrieval results for lung nodule CT images using the
proposed method.

validated its performance when the dataset is partitioned into
35 clusters. The parameter settings for the hash code length
and number of candidate clusters are shown in Table 6, which
differ depending on the highest precision that these hashing
methods can reach. Figure 10 shows the retrieval time for
all query images for the different hashing methods. We can
see that the retrieval speed of these hashing methods using
the pruning algorithm is about 2–4 times faster than when
these methods do not use the pruning algorithm. Hence, the
proposed pruning algorithmclearly reduces the retrieval time
of lung nodule CT images.

Moreover, the decision rule designed in the pruning
algorithm is also helpful for improving the retrieval precision
to some extent. By comparing the distance between the query
image and the clusters, the most similar lung image can be
returned first. Figure 11 shows the influence of the decision
rule on the highest retrieval precision of different hashing
methods.

4.4. Evaluation of the Retrieval Framework. Figure 12 com-
pares different classification methods, the support vector
machine (SVM), back propagation (BP), and 𝐾 nearest
neighbors (KNN), with our hashing-basedmethod, using the
classification accuracy of benign and malignant lesions. In
this evaluation, we compared themwith respect to overall (all
nodules in the test dataset), benign nodule, and malignant
nodule accuracy in the test dataset. We judged whether the
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Improve
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(without decision rule)

The retrieval
timeStep 2 To reach the best

retrieval results

Step 1
Different hashing
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Figure 8: Experiment flow for evaluating the performance of the
pruning algorithm.
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Figure 9: Retrieval precision of different hashing methods for
different hash code lengths (without using the pruning algorithm).

query lesion was benign or malignant using the returned
similar lungnoduleCT images.The judgingmethod is similar
to the idea of the KNN algorithm, that is, if the number of
benign lung nodules is greater than the number of malignant
lung nodules in the returned similar images, the query image
is diagnosed as a benign tumor. Otherwise, the query tumor
is diagnosed as malignant.

The KNN algorithm is always used as a baseline classical
classification method in machine learning. Here, we employ
the Euclidean distance to obtain similar samples and set 𝐾
to 5. However, the calculation is not efficient enough for
the high-dimensional image features. Our hashing method
leverages the compact hash code and code inner products
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Figure 12: Comparison of the accuracy of different classification
methods.

to measure the similarity, which is helpful for improving its
efficiency. The BP neural network is one of the most widely
used neural network models. The learning rate is set to 0.01,
and the number of iterations is 500 in our experiments. A
SVM is a supervised learning model that uses supervised
information to bridge the semantic gap. Hence, the classifi-
cation results of SVM with a radial basis function are better
than KNN and the BP method.

Furthermore, we can see that our method significantly
outperforms the other three classificationmethods.The over-
all classification accuracy can reach 86.62%, with accuracies
of 84.61% for the benign lesions and 87.67% for themalignant
lesions.This improvement illustrates that hash functions with
supervised information actually preserve the similarity of the
images in the original feature space and validate its retrieval
performance.

5. Conclusion

In this paper, in order to improve the retrieval efficiency of
lung nodule CT images, we presented a retrieval framework
based on the KSH method and a pruning algorithm. Specifi-
cally, a clustering method is first used to partition the dataset
into several clusters. The KSH method is then utilized to
compress the high-dimensional feature vectors into compact
hash codes. Finally, a pruning algorithm is employed to
narrow the retrieval range and further shorten the retrieval
time while improving the retrieval precision. Here, the hash
functions are used tomap a 104-dimensional image feature of
lung nodules into a 48-bit binary code, which, to some extent,
reduces the memory space. Low memory cost, fast query
speed, and a higher precision demonstrate the suitability
of the proposed retrieval framework for lung nodule image
retrieval. However, in this paper, we only handle benign and
malignant lung nodules, which is a relatively easy task. In
future work, the method should be further refined to retrieve
lung images at the level ofmedical signs (such as calcification,
lobulation, and speculation) with a higher retrieval precision,
helping physicians make reliable diagnostic decisions for
clinical cases.
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The segmentation of coronary arteries is a vital process that helps cardiovascular radiologists detect and quantify stenosis. In this
paper, we propose a fully automated coronary artery segmentation from cardiac data volume. The method is built on a statistics
region growing together with a heuristic decision. First, the heart region is extracted using a multi-atlas-based approach. Second,
the vessel structures are enhanced via a 3D multiscale line filter. Next, seed points are detected automatically through a threshold
preprocessing and a subsequentmorphological operation. Based on the set of detected seed points, a statistics-based region growing
is applied. Finally, results are obtained by setting conservative parameters. A heuristic decision method is then used to obtain the
desired result automatically because parameters in region growing vary in different patients, and the segmentation requires full
automation. The experiments are carried out on a dataset that includes eight-patient multivendor cardiac computed tomography
angiography (CTA) volume data. The DICE similarity index, mean distance, and Hausdorff distance metrics are employed to
compare the proposed algorithm with two state-of-the-art methods. Experimental results indicate that the proposed algorithm
is capable of performing complete, robust, and accurate extraction of coronary arteries.

1. Introduction

Over the past decades, coronary artery disease (CAD) has
been the main cause of human deaths in the world [1]. Many
factors can lead to CAD, and, of these, stenosis caused by
atherosclerosis is the most common. Coronary arteries are
usually extracted first to diagnose stenosis. An inaccurate
segmentation of coronary arteries can result in fatal false
treatments because a missing segment or mixed extraction of
other structures can lead to the oversight of existing stenosis
or improper narrow lumen detections.

Many studies have been conducted on automated or
semiautomated segmentation of coronary arteries on com-
puted tomography angiography (CTA) images. Automated
segmentation methods can automatically segment regions of
interest of images, without any human intervention. How-
ever, the complexity of suchmethods is usually relatively high

[2, 3]. Compared with automated segmentation methods,
semiautomated segmentation methods [4, 5] require the
interactions of therapists, making the methods less conve-
nient than automated methods. However, the performances
of semiautomated methods are sometimes better than those
of the automated methods. Öksüz et al. [4] proposed a
hybrid method composed of threshold preprocessing, vessel
enhancement, and traditional 3D region growing. Threshold
preprocessing in this method retains many uninterested
regions. In addition, traditional 3D region growing requires
human interactions and lacks accuracy. Thus, the precision
and automation of this method must be improved.

Kitamura et al. [5] proposed a novel coronary seg-
mentation method based on multilabel graph cuts; this
method utilizes higher-order potentials to impose shape
priors. However, the method derives a limitation from the
Hessian-based features, which cannot distinguish a very wide
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variety of structures. In addition, themethod requires human
interactions. Research on automated segmentation methods
has been making great progress recently, and automated
methods are gradually becoming popular in clinical diag-
nosis. However, automated methods have problems in both
efficiency and accuracy. To solve this problem, Lugauer et
al. [6] proposed a lumen segmentation method for coronary
CTA. They utilized a Markov random field formulation with
convex priors that rely on the training of a large dataset.
Their method is sensitive to the dataset and its training and
also proved to be inefficient because the dataset analysis
is time-consuming. Zheng et al. [7] proposed a machine
learning-based method that can gain better performance
than empirically designedmeasurement (e.g., thewidely used
Hessian-basedmethod), but the learning process requires the
analysis of a large expert-annotated dataset, which is also
very time-consuming. Zhou et al. [8] presented a method
following the steps of heart region extraction, multiscale
coronary artery response method for vascular structure
enhancement, automated detection of seed points, and 3D
dynamic balloon-tracking method for coronary arteries
tracking. However, the EMalgorithmused in the heart region
extraction has low efficiency because of the huge amount
of points in the CTA volume. Meanwhile, Bouraoui et al.
[9] introduced an automated method based on advanced
mathematical morphology techniques. They employed a
blurry grey-level hit-or-miss transformmethod to detect seed
points automatically. However, the 13 structure candidates
employed in their method occasionally fail to detect seed
points because they cannot cover all patient conditions.Many
of the works mentioned above use region growing as a part of
the segmentation process, and these region growingmethods
are not fully automated and lack robustness and accuracy. In
addition, the precision of coronary artery extraction needs
to be improved.

In this paper, we present a novel scheme for extracting
coronary arteries from CTA images. First, the heart region
is extracted using a multi-atlas-based approach. Second, the
vessel structures are enhanced via a 3D multiscale line filter.
Next, a set of seed points is detected automatically through
threshold preprocessing and a subsequent morphological
operation. Based on the set of seed points, statistics-based
region growing is applied. Upon generating the results by
setting conservative parameters, a heuristic decision method
is used to obtain the desired result. Each step of the algorithm
is fully automated for an efficient and automated pipeline.
The proposed algorithm outperforms two state-of-the-art
methods, which are used for comparison. The experiments
are carried out on eight-patient multicenter multivendor
cardiac CTA volume data, and the DICE similarity index,
mean distance, and Hausdorff distance metrics are employed
to compare the different methods.

The rest of the paper is organized as follows.We introduce
two related works in Section 2 to be compared with our
proposed method. Section 3 describes the proposed method
in detail. We validate the proposed method in Section 4
through the well-known evaluation methodology mentioned
above. Conclusions are provided in Section 5.

2. Related Works

2.1. Öksüz et al. The algorithm proposed by Öksüz et al. [4]
consists of five stages, of which three are related to coronary
artery segmentation. First, pulmonary vessels are removed by
performing the thresholding and morphological procedures.
Then, Frangi vesselness filter [10] is applied on the processed
data. Finally, vessel segmentation is achieved by successively
performing 3D region growing and fast marching.

The Frangi vesselness filter used in their algorithm is
based on the eigenvalues of the Hessian matrix:

𝐻 =
[[[
[

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧
𝐼𝑦𝑥 𝐼𝑦𝑦 𝐼𝑦𝑧
𝐼𝑧𝑥 𝐼𝑧𝑦 𝐼𝑧𝑧

]]]
]

, (1)

where 𝐼𝑥𝑥, 𝐼𝑧𝑦, and so forth are the partial second derivatives
of image 𝐼(𝑥, 𝑦, 𝑧). An ideal bright 3D line is defined as

𝐼 (𝑥, 𝑦, 𝑧) = exp(
− (𝑥2 + 𝑦2)

2𝜎2
) , (2)

where the direction of the maximum second derivative is
identical to the direction of the 𝑧-axis (i.e., the direction of the
line), and its value is zero. Any second derivative orthogonal
to the 𝑧-axis has a negative value at each point in the central
region of the line cross section. Ideally, the conditions of a
bright line can be regarded as 𝜆1 ≅ 0, 𝜆2 ≅ 𝜆3 ≪ 0.

In the method of Öksüz et al., the pulmonary vessels may
not be completely removed by simply setting the threshold-
ing and morphological operations. Furthermore, the region
growing in their method is not fully automated.

2.2. Zhou et al. The algorithm proposed by Zhou et al. [8]
consists of four stages. First, the heart region is extracted
using the EM algorithm. Then, a 3D multiscale filter is
applied to the heart region. Next, seed points are detected
automatically on the processed data. Finally, a dynamic
balloon-tracking algorithm is applied to track the coronary
arteries.

The idea of this method is similar with our algorithm.
However, the EM algorithm employed in the heart extraction
is time-consuming, which is unacceptable in the clinical diag-
nosis process. Moreover, multi-atlas-based heart extraction
is more precise than the EM algorithm. The multi-atlas-
based method is based on the registration of the standard
images to obtain the optimal parameters, which determine
the deformation of the reference images to form the extracted
goal. Although this method requires also a large amount of
computation, the Gaussian pyramid model can be employed
to improve the computational efficiency. The dynamic bal-
loon tracking can also terminate in the coronary segments
where high-grade stenosis exists. In comparison, statistical
region growing, based on a group of seed points, can handle
this situation. As a result, our method performs better in the
diseased coronary segments.
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3. Proposed Methodology

The proposed method, which can robustly and automatically
extract complete coronary arteries, has four steps as follows:
(1) heart segmentation, (2) vessel enhancement, (3) extraction
of seed points, and (4) coronary artery extraction.

3.1. Segmentation of the Heart Region. We apply a two-stage
registration method denoted as an optimization problem
searching for an optimal transformation 𝑇, which minimizes
the dissimilarity between a fixed image 𝐼𝐹(𝑥) and a moving
image 𝐼𝑀(𝑥):

𝑇̂ = argmin𝐶 (𝐼𝐹 (𝑥) , 𝐼𝑀 (𝑇 (𝑥))) . (3)

In the equation above, 𝐶 is a cost function that measures the
dissimilarity between two images.

In the first stage, an affine registration is used to spatially
align the fixed andmoving images roughly.The cost function
is defined as

𝐶 (𝐶, 𝐼𝐹, 𝐼𝑀) =
1
󵄨󵄨󵄨󵄨𝜎𝐹

󵄨󵄨󵄨󵄨
∑
𝑥𝑖∈𝜎𝐹

[𝐼𝐹 (𝑥𝑖) − 𝐼𝑀 (𝑇𝐶 (𝑥𝑖))]
2 , (4)

where 𝜎𝐹 is the fixed image domain. This equation is calcu-
lated using image samples that are randomly chosen in each
iteration in the entire image domain. Then, 256 iterations of
the gradient descent optimizer are performed.

In the second stage, a B-spline registration is utilized.The
result of the affine registration is used as the initialization of
B-spline registration. In each iteration, one voxel is selected
randomly in the entire image domain. The remaining image
samples are picked in a 50mm square neighborhood around
that voxel. The algorithm optimizes the localized similarity
measure using the equation

𝐿 (𝐶, 𝐼𝐹, 𝐼𝑀) = ∑
𝑚∈𝐿𝑀

∑
𝑓∈𝐿𝐹

(𝑝 (𝑓,𝑚; 𝐶)

⋅ log2 (
𝑝 (𝑓,𝑚; 𝐶)

𝑝𝐹 (𝑓) 𝑝𝑀 (𝑚; 𝐶)
)) ,

(5)

where 𝐿𝐹 and 𝐿𝑀 are sets of regularly spaced intensity bin
centers, 𝑝 is the discrete joint probability, and 𝑝𝐹 and 𝑝𝑀 are
the marginal discrete probabilities of the fixed and moving
images obtained by summing 𝑝 over 𝑓 and𝑚, respectively.

Furthermore, a Gaussian pyramid model is applied dur-
ing the registration to improve the computational efficiency.
The transformation parameters calculated in (1) are prop-
agated to label the regions that must be segmented to the
patient images. Finally,majority voting is used to combine the
labeled atlas images and generate the final heart segmentation
results. The atlas images employed in our method are similar
to those used in [11].

3.2. Vessel Structures Enhancements. After the heart region
is extracted, a 3D multiscale line filter, previously described
by Sato et al. [12], is applied to segment the curvilinear
structures in the heart region.Themethodusedhere is similar
to the Frangi vesselness filter, which has been introduced in
Section 2.1 (i.e., the method proposed by Öksüz et al.).

3.3. Automated Seed Points Detection. As coronary arteries
are enhanced in CTA images, a threshold operator plays an
important role in noncardiovascular removal. The threshold
value used in this process should be conservative in consider-
ation of the various pathologies of different patients. Thus, in
this study, a threshold of 120HU is used in our method, and
a 3D erode filter is employed to suppress noise points. The
kernel of the erosion process should be sufficiently large to
ensure that the remaining points belong to coronary arteries.
In ourmethod, the erosion kernel is defined as a 4×4×3 cube.
Therefore, a point set is attached to the coronary arteries,
wherein all of the points are to be applied in the next step.

3.4. Coronary Artery Extraction. By using all the previously
detected seed points, coronary arteries are extracted using
a statistics-based growing method, which identifies voxels
with similar statistics via connectivity. The method is based
on the iterative computation of the statistical information of
voxel intensities included in the current region. As for each
seed point, the mean and variance across a 26-connected
neighborhood are calculated to define a range:

𝐼 = [𝑚 − V ∗ 𝑑, 𝑚 + V ∗ 𝑑] , (6)

where 𝐼 represents the consistent interval; 𝑚 and 𝑑 stand
for the mean and standard deviation of the seed point,
respectively; and V is a bounds control parameter, which
is automatically set through the heuristic decision manner.
26-neighborhood voxels with intensities within this range
are included in the region. If the seed points were included
in the growing region, they are removed from the seed
point set. Thus, the growing efficiency can be improved.
It is noteworthy that some parts of coronary arteries may
not be included by the region growing of a seed point, but
they may be included by the region growing of other seed
points. Therefore, using a seed set to carry out the statistics-
based region growing, not only can the robustness of the
proposed algorithm be enhanced, but also the integrity of the
segmented coronary arteries can be improved.

After this initial segmentation is calculated, themean and
variance, of all voxels from the current segmented coronary
arteries, are computed again to define a new intensity range.
The intensity range is used to detect whether intensities of the
voxels in the neighborhood of the current segmentation fall
within the range. If a voxel’s intensity is within the interval,
the voxel is included in the segmented arteries. This process
is repeated until no new voxels are added or a specified
number of iterations are reached. In this study, the number
of iterations was set to 5.

Whenever a seed point is provided, the mean and stan-
dard deviation can be calculated automatically. However, V
cannot be automatically obtained. Hence, a heuristic decision
method is presented to acquire Vwithout human interactions,
and its flow chart is shown in Figure 1. The process is
described below.

(1) Initialize V0 to 1.0 and make 𝑖 (set to 0 at first) refer to
the number of times the method should be repeated.
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Initiate variable v
as v(0) and i = 0

Use v(i) to segment
the coronary arteries

Calculate the number
of segmented voxels as

N(i)

End of the
algorithm

v(i + 1) = v(i) + 0.1
and i++

Y

Ni = = 0 or
N(i) − N(i − 1) < 1 ∗ 108

Figure 1: Flow chart of the statistics-based method.

0
5000000

10000000
15000000
20000000
25000000
30000000
35000000
40000000
45000000

1
1.

05 1.
1

1.
15 1.

2
1.

25 1.
3

1.
35 1.

4
1.

45 1.
5

1.
55 1.

6
1.

65 1.
7

1.
75 1.

8
1.

85 1.
9

1.
95 2

2.
05 2.

1

Figure 2: Sketch map of the mutation between the desired and
redundant results (the horizontal axis represents the incremental
variable V, and the vertical axis represents the number of the
segmented voxels).

(2) Perform segmentation using V𝑖 and calculate 𝑁𝑖 (i.e.,
the number of segmented points). If 𝑁𝑖 is calculated
for the first time, go to step (4); else continue to step
(3).

(3) Compare𝑁𝑖 with𝑁𝑖−1. If the difference between them
is over 1 ∗ 108, the algorithm is ended.

(4) Gradually increase V𝑖 by a step of 0.1; go to step (2).

This heuristic decision method is based on the fact that
a mutation between the desirable and redundant segmen-
tations exists, as shown in Figure 2. Specifically, before the
advent of oversegmentation, the segmented results of each
increment of V, compared with that of the previous V, the
change of the number of the segmented voxels is less than
1 × 107 orders of magnitude. If the change of the number
of the segmented voxels is greater than 1 × 108, this means
“mutation.” The reason is that the redundant segmentation
almost comprises the whole heart, whereas the coronary
arteries are relatively small parts of the heart region.

4. Result and Discussion

4.1. Data. CTA provides a visualization of the whole chest,
including vessel lumen, atherosclerotic, and stenosis, without
the invasive catheterization procedure [13]. Thus, CTA is less
harmful comparedwith the traditional 2DX-ray angiography
because only the contrast medium is required to be injected

Table 1: CT acquisition parameters.

Parameter name Value
Voxel spacing 0.33 × 0.33 × 0.4mm3

Resolution 512 × 512 voxels/slice
Slice thickness 0.8mm
Tube voltage 120 kV
Exposure time 1833ms
Series description 75%
Table height 89mm

before proceeding to CTA. Meanwhile, its 3D reconstruction
capability is highly suitable for the treatment of CAD.

We employ CTA images as materials in the testing
and development of our method. The detailed acquisition
parameters of CTA are shown in Table 1.

4.2. Result and Validation. The validation process of the
proposed method was built based on the publicly acces-
sible standardized coronary artery evaluation framework
presented by Kirişli et al. [14]. The method presented in this
paper was implemented using C++within the VolView open-
source platform (http://www.kitware.com/opensource/volv-
iew.html). Figure 3 shows images of the left and right
coronary arteries extracted by our method from two-patient
volume CTA data.

In the experiment, two state-of-the-art methods (those
presented by Öksüz et al. [4] and Zhou et al. [8]) were
compared to our method using the volumetric overlap
(DICE) and max/mean surface distance (MAXSD/MSD) as
metrics. DICE is the dice similarity coefficient, which is used
to evaluate the volumetric cardinality of different algorithms.
Table 2 lists the DICE, MAXSD, and MSD values calculated
separately for healthy and diseased arteries over a dataset
of eight patients with different grades of stenosis (D and H
denote diseased and healthy vessels, resp.). As can be seen, the
proposedmethodperforms best on both healthy anddiseased
vessel segments forDICE andMAXSDmetrics. Furthermore,
the method achieved the highest rank compared to the two
state-of-the-art methods.

Visual results and segmentation comparisons between
the proposed method and one of the two state-of-the-art
methods are shown in Figure 4. The first row of Figure 4
shows the comparison between our method and that pro-
posed by Öksüz et al. [4] using four patients with different

http://www.kitware.com/opensource/volview.html
http://www.kitware.com/opensource/volview.html
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(a) (b)

Figure 3: Extraction results by our method from different patient volume CTA data. (a) A patient who suffers from low-grade stenosis in
both the right coronary artery (RCA) and the left coronary artery (LCA). (b) A patient who suffers from high-grade stenosis in the LCA and
low-grade stenosis in the RCA.

Table 2: Comparison of the segmentation results (D and H denote diseased and healthy vessels, resp.).

Method DICE
D [%]

DICE
H [%]

MSD
D [mm]

MSD
H [mm]

MAXSD
D [mm]

MAXSD
H [mm]

Rank
avg.

Proposed
method 0.71 0.76 0.34 0.41 2.47 2.75 4.2

Öksüz et al. [4] 0.60 0.68 0.45 0.55 3.94 6.48 6.9
Zhou et al. [8] 0.69 0.72 0.32 0.39 2.87 3.20 4.4

stenosis in both the LCA and RCA. The second row of
Figure 4 shows the comparison between our method and
that proposed by Zhou et al. [8] using the same dataset as
that of the first row. Each dataset result from the different
comparisons is shown in every column. The red vessels
in Figure 4 are common segments extracted by both the
proposed and state-of-the-art methods, and the green vessels
are the segments extracted by the proposed method and
missed by the traditional methods. It can be seen from the
first row of Figure 4 that Öksüz’s method is only capable
of extracting the thick vessels, which is not connective. The
reason is that Öksüz’s method employs the thresholding and
morphological operations to extract arteries based on the
globe information of volume data, which fails to cope with
the coronary arteries with different intensities. It can be seen
from the second row of Figure 4 that Zhou’s method obtains
a better result than that of Öksüz’s method and is capable of
extractingmost coronary arteries.However, someweak arter-
ies are still missing, as shown in the first column of the second
row in Figure 4. The reason is that the artery segmentation
is terminated in advance by the dynamic tracking balloon
where there is a high-grade stenosis. It is clearly seen from
Figure 4 that our method is capable of accurately extracting
the thick and thin arteries, and they are red and green. At
the same time, the segmented coronary arteries appear with
better connectivity.The excellent performance of ourmethod
is attributed to the automated seed points detection and the
elaborately exploited statistics-based region growing.

Figure 5 shows the difference between the segmentation
methods and gold standards derived from the manual seg-
mentation of expert radiologists in Beijing’s Navy General
Hospital to ensure the validity and authenticity of our
experiment. In Figure 5 the common parts are painted red,
and the differences are painted green. Two different patients

with low- and high-grade stenosis were employed as samples
in the comparison of each method with the gold standard.
Figure 5(a) shows our method and the gold standard using
a sample patient with low-grade stenosis. Figure 5(b) shows
our method and the gold standard using a sample patient
with high-grade of stenosis. Figure 5(c) shows the method
proposed by Öksüz et al. [4] and the gold standard using a
sample patient with low-grade stenosis. Figure 5(d) shows the
method proposed by Öksüz et al. [4] and the gold standard
using a sample patient with low-grade stenosis. Figure 5(e)
shows the method proposed by Zhou et al. [8] and the gold
standard using a sample patient with low-grade stenosis.
Figure 5(f) shows the method proposed by Zhou et al. [8]
and the gold standard using a sample patient with high-
grade stenosis. As can be seen from Figure 5, our method
yielded a robust segmentation for each volume data. This
can be attributed to the fact that a segment missing by one
seed point in the proposed method can be supplemented by
other seed points in the subsequent growing process because
of the employment of a novel seed point detection method,
and the heuristic decision that determines the desired results
automatically ensures the absence of human interaction in
the pipeline.The detailed information on the equipment used
in our experiment is as follows: Intel� Core� i7-3770 CPU,
8.0GB RAM, 64-bit Ubuntu 14.04. The time consumed by
the proposed method was less than 60 seconds for each set
of volume data.

5. Conclusion

We proposed a fully automated segmentation of coronary
arteries from 3D cardiac CTA (CCTA). This algorithm is
a combination of various technologies, including multi-
atlas, multiscale vascular enhancement, morphological, and
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Comparison of our method with Öksüz’s method [4] and Zhou’s method [8] using four patients with different stenosis. Rows 1
and 2 show the comparisons between our method and Öksüz’s method [4] and Zhou’s method [8], respectively. Each dataset result from the
different comparisons is shown in every column.

(a) (b) (c)

(d) (e) (f)

Figure 5: Comparison results between each method and the gold standard. (a) Our method and the gold standard using a sample patient
with low-grade stenosis. (b) Our method and the gold standard using a sample patient with high-grade stenosis. (c) The method proposed
by Öksüz et al. [4] and the gold standard using a sample patient with low-grade stenosis. (d) The method proposed by Öksüz et al. [4] and
the gold standard using a sample patient with low-grade stenosis. (e) The method proposed by Zhou et al. [8] and the gold standard using
a sample patient with low-grade stenosis. (f) The method proposed by Zhou et al. [8] and the gold standard using a sample patient with
high-grade stenosis.
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statistical decision technologies. First, the heart region is
extracted by a multi-atlas-based approach, which is capable
of segmenting the heart due to the employed prior knowledge
from the reference heart atlas set. At the same time, the
registration efficiency is improved by a Gaussian pyramid
model employed.Then, a 3Dmultiscale vessel filter is applied
to enhance the coronary artery structures, which effectively
enhances the coronary artery contrast, because the shape
information of the blood vessel is considered. Subsequently,
seed points are detected automatically through threshold
preprocessing and a morphological operation. Based on the
set of seed points, statistics-based region growing is applied,
which grows the coronary arteries in virtue of the local
statistical information of the seek point. Thus, the connec-
tivity of the arteries can be well guaranteed. Finally, results
are obtained by setting conservative parameters, and then
a heuristic decision is employed to automatically obtain the
desired result.The coronary arteries are gradually segmented
from the CCTA data in a coarse-to-fine manner. No manual
interaction is involved in the entire segmentation process
because each required parameter is searched using novel
specific algorithms. Hence, the proposed algorithm is capable
of performing complete, robust, and accurate extraction of
coronary arteries.
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Diffusion Tensor Imaging (DTI) image registration is an essential step for diffusion tensor image analysis. Most of the fiber bundle
based registration algorithms use deterministic fiber tracking technique to get the white matter fiber bundles, which will be affected
by the noise and volume. In order to overcome the above problem, we proposed a Diffusion Tensor Imaging image registration
method under probabilistic fiber bundles tractography learning. Probabilistic tractography technique can more reasonably trace to
the structure of the nerve fibers.The residual error estimation step in active sample selection learning is improved bymodifying the
residual errormodel using finite sample set.The calculated deformation field is then registered on theDTI images.The results of our
proposed registrationmethod are comparedwith 6 state-of-the-artDTI image registrationmethods under visualization and 3 quan-
titative evaluation standards. The experimental results show that our proposed method has a good comprehensive performance.

1. Introduction

Diffusion Tensor Imaging (DTI) is a Magnetic Resonance
Imaging (MRI) technique which measures diffusion prop-
erties of water molecules in tissue to gained neural bundle
images, which cannot be obtained by other imaging modal-
ities [1]. It captures vital information that import for vivo
investigation of white matter and connectivity alterations,
thus playing an increasingly significant role in vivo studies
of anatomical structure and functional connectivity in the
brain regions [2]. DTI image registration is an essential
step for diffusion tensor image analysis. DTI registration
is involved in many clinical diagnoses of disease diffusion
tensor image analysis; all need image registration techniques
[3]. For ordinarymedical image registration, the correspond-
ing points of two images will be transformed to have the
exact consistency on the space position and the anatomical
structure by space transformation; the registration process
is essentially a multiparameter optimization problem [4].
Tensor image registration will encounter many ordinary
medical image registration problems but also includes some
special difficulties due to the particularity of the DTI data.

According to the object of the registration algorithm, the
existing DTI image registration algorithms can be divided
into three categories: the scalar image based registration
algorithm, the tensor image based registration algorithm, and
the fiber bundle based registration algorithm [5]. The scalar
image based registration algorithm has low computational
complexity; however, as this algorithm does not make full
use of all the directions and structure information of the
DTI images, it will lose some important data in the registra-
tion process. The tensor image based registration algorithm
should ensure the consistency of the tensor direction and
anatomical structure before and after the transformation.
Fiber bundle based registration algorithm directly uses white
matter fiber bundles for registration and can avoid the estima-
tion error of DTI direction and hence improve accuracy and
robustness of registration.Therefore, in recent years, this kind
of registration algorithm becomes the mainstream of diffu-
sion tensor magnetic resonance image registration method.

In the fiber bundle based registration method, fiber
tracking is a very important step, and the correctness of
fiber tracking directly affects the accuracy of the registration
[6]. The neural fiber tracking technique based on DTI can
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be roughly divided into two categories: deterministic fiber
tracking technique and probabilistic fiber tracking technique.
As the diffusion tensor of the voxel is sensitive to noise, the
result of the deterministic fiber tracking will be affected by
the noise also. Furthermore, due to the effect of volume, there
is more than one fiber beam in the unit voxel. For the area
including two or multiple nerves and fibers cross through,
the accuracy of deterministic fiber tracking is not high [7].
Because of the introduction of probability statistics method,
the probabilistic fiber bundle tracking technique can solve the
problem of volume effect and noise interference [8].

Probabilistic tractography uses a deterministic streamline
algorithm to generate thousands of trajectories by Monte
Carlo methods. The directions of the line segments are
repeatedly sampled from a Bayesian posterior distribution
[8]. The probability of a trajectory to the selected sample
voxel is then defined as the number of virtual fibers passing a
voxel. Probability distribution based on a priori assumptions
about the form of the uncertainty in the data is used in
most probabilistic tractographymethods. Nevertheless, since
a parametric description of subject artifacts is generally
unavailable, the uncertainty is modeled without considering
the artifacts interference.

To resolve this disadvantage, a typical active sample
selection learning method called bootstrap [9] has been
incorporated in probabilistic tractography [10]. Bootstrap
method is nonparametric procedure which assesses the mea-
surement uncertainty of parameters without the assumption
of a noise model and the acquirement of large amount of
datasets [11]. Consequently, the local directions are derived
by resampling from the acquired data itself instead of a
probability distribution.

Based on the above analysis, in this paper, we proposed
a DTI image registration method under probabilistic fiber
bundles tractography learning. We improve the residual
error estimation step in bootstrap method used in active
sample selection learning for the probabilistic tractography.
Our method assumes that, in the case of independent and
identically distributed error, the residuals can be adjusted
and the error model is then modified by using finite sample
set, therefore, improving the study ability of samples. Subse-
quently, the tracked fiber bundles can be registered by using
symmetric image standardization registration algorithm.The
results of our proposed registration method are compared
with 6 state-of-the-art DTI image registrationmethods under
visualization and 3 quantitative evaluation standards [12] for
the comprehensive analysis. The experimental results show
that our proposed registration method under probabilistic
fiber bundles tractography learning has a good comprehen-
sive performance.

2. Related Works

DTI registration methods are mainly divided into three parts
by the processing object: the scalar image based registration
algorithm, the tensor image based registration algorithm, and
the fiber bundle based registration algorithm.

2.1. Scalar Image Based Registration. Scalar image based reg-
istration methods convert tensor images into scalar images,
for example, fractional anisotropy (FA) images, by rotation-
ally invariant measures, and then perform registration on
the scalar images. Studholme et al. [13] proposed the rigid
registration method (denoted as Rigid), which was based on
normalizedmutual information.Thismethodwas commonly
used in therapy planning, clinical diagnosis, and automatic
clinical image registration as a rough registration. Multires-
olution elastic matching algorithm (denoted as Elastic) [14]
and multiresolution B-spline method [15] were proposed
successively and applied to the registration of diffusion tensor
images; the latter was proved to have the high geometric
fidelity [16]. Consequently, Andersson et al. [17] developed
B-spline registration based on sum-of-squared differences
(denoted as FSL), the regularization that was based on
membrane energy, and a multiscale Leven berg-Marquardt
minimization avoided the local minimum value. Soon after,
affine image coregistration technique (denoted as Affine) [18]
was performed in some cases to align images before the appli-
cation of higher order registration. In 2008, the literature [19]
discussed normalizedmutual information criterion, in which
the symmetrized Kullback-Leibler divergence was used to
improve fluid registration of diffusion tensor images. This
algorithm was diffeomorphic and reversible consistency but
performed badly on smoothness and was time-consuming.
Recently, Hufnagel et al. [20] mentioned the block-matching
algorithm in his article. In this method, the determined
sparse displacement vector field was used for nonlinear
transformation parameters estimation.

Diffeomorphic mapping is a smooth spatial transform,
in which the topology of the images is preserved, as well as
voxel correspondence based on the second-order tensor field
of Riemannianmanifold. It was combined with Lie group [21,
22] structure to perform relatively simple calculation. With-
out the Riemannian manifold measure, directly computing
differences between tensors with Euclidean space would lead
to the “tensor swelling effect” [23] and could not guarantee
reversible consistency of the transformation. Diffeomorphic
mapping can avoid the “tensor swelling effect,” guarantee
the reversible consistency of the transformation and the
smoothness, and enhance the computational efficiency and
registration precision.

Based on the above advantages, Cao et al. [24] devel-
oped a large diffeomorphic registration algorithm for vector
fields. Due to computational difficulties, this algorithm was
not applied widely. However, this method was a success-
ful foundation for differential homeomorphism registration
method. In 2008, Vercauteren et al. [25] proposed the sym-
metric log-domain diffeomorphic registration method. The
parameterization of diffeomorphic transformations was done
completely in log-domain, based on stationary velocity field
and Lie group structure, which guaranteed the invertibility
of deformation and had access to the true inverse transfor-
mation. Almost simultaneously, Avants et al. [26] developed
a symmetric image normalization method (denoted as SyN).
The Euler-Lagrange equation was used for the optimization.
In 2009, Vercauteren et al. [27] proposed an efficient non-
parametric diffeomorphic image registration algorithm. It
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optimized the entire space of displacement fields based on
Thirion’s demons algorithm [28]. In 2010, the literature [29]
compared symmetric log-domain diffeomorphic registration
and asymmetric log-domain diffeomorphic registration. The
results showed that the former has good reversible consis-
tency by catching transformation information.

2.2. Tensor Image Based Registration. The registration of
tensor image is more difficult than scalar image based
registration. One reason is multidimensionality of the data.
Another is that anatomical structure has changed after image
transformations.We need to ensure the tensor orientations to
keep consistence with the anatomy.

In 2003, Park et al. [30] proposed multichannel DTI reg-
istrationmethod based on the Demons algorithm.The whole
diffusion tensor and various features of tensor were used in
this algorithm and this improved the quality of registration.
But the tensor reorientation was not explicitly optimized and
only applied tensor reorientation iteratively. In 2006, Zhang et
al. [3] proposed diffeomorphic deformable tensor registration
(named as DTI-TK).Thismethodmeasured tensor similarity
as a whole and enabled explicit optimization of tensor reori-
entation without additional correction to tensor orientation.
In 2009, Yeo et al. [31] proposed exact finite-strain diffeomor-
phic registration, which combined exactly finite strain reori-
entation with the object function of Demons. This algorithm
was reversible consistency and achieved significantly better
registration with the exact gradient. However, the tensor
reorientation was not optimized explicitly. In 2009, Yap et al.
[32] proposed tensor image morphing for elastic registration.
This algorithm leveraged tensor regional distributions and
local boundaries directly and was improved by utilizing
automatic detecting structure characteristics and thin-plate-
spline (TPS) [33]. Recently, DTI-TK was improved in differ-
ent ways, such as utilizing various tensor characteristics and
orientation features with neighborhood interpolation [34],
combining tract and tensor features [35], and also extending
Statistical Parametric Mapping to reduce the computation
complexity [36].

2.3. Fiber Bundle Based Registration. With direct registration
of fiber, we can avoid the estimation error of DTI direction
and improve the accuracy as well as robustness of the regis-
tration. In 2007, Mayer and Greenspan [37] proposed direct
registration based on white matter (WM) fiber where fibers
were represented as 3D points to be registered.This algorithm
adopted an iterative closest fiber approach, and each iteration
estimated the 12-parameter affine transformation. However
this method was time-consuming. In 2010, Shadmi et al. [38]
presented piecewise affine registration of fiber. The regis-
tration of fiber was considered as a problem of probability
density estimation. The energy function was optimized by
the gradient descent method and evaluated by residual mean
square error.The algorithmmade full use of fiber orientation,
so it improved accuracy and robustness of the registration.
In 2010, Zvitia et al. [39] proposed registration of WM
fibers by Adaptive-Mean-Shift (AMS) and Gaussian Mixture
Modeling (GMM). The fibers were projected into a high

dimensional feature space based on 3D coordinates.The fiber
modes were produced by the AMS, and the GMM of fibers
was obtained by Gaussian distribution. The registration of
WM fibers depended on the alignment of two GMMs.

Compared to the deterministic fiber tracking technology,
probabilistic tractography technique can more reasonably
trace to the structure of the nerve fibers and in a certain extent
overcome the internal defect of the single tensormodel. Since
the probability statistics method is introduced, probabilistic
tractography can effectively reduce uncertainty of tracking
results by noise and other environmental factors and thus has
better performance of antinoise interference. But there are
few researches on the DTI image registration based on the
probabilistic fiber bundles tractography.

To improve the efficiency of DTI image registration, we
proposed a DTI image registrationmethod under probabilis-
tic fiber bundles tractography learning. We first get the dis-
tribution of the whole brain white matter fiber bundles based
on probabilistic tractography.Then, the tracked fiber bundles
can be registered by using symmetric image standardization
registration algorithm, and the calculated deformation field
acts on the DTI images, finally implementing the accurate
DTI images registration. For the experiments, we compared
our method with the state of the art methods under visual-
ization and three quantitative evaluation standards and gave
a comprehensive analysis.

Our method is innovative in the following two aspects:

(1) Using fiber bundles tracked by probabilistic tractog-
raphy to calculate the deformation field of DTI image
registration: Registration based on white matter fiber
bundles can avoid the estimation error of DTI direc-
tion. Furthermore, probabilistic tractography tech-
nique can more reasonably trace to the structure of
the nerve fibers and can effectively reduce uncertainty
of tracking results by noise and other environmental
factors.

(2) Improving the residual error estimation step in boot-
strap method used in active sample selection learn-
ing for the probabilistic tractography: Our method
assumes that, in the case of independent and identi-
cally distributed error, the residuals can be adjusted
and the error model is then modified by using finite
sample set, therefore, improving the study ability of
samples.

3. Probabilistic Fiber Bundles
Tractography Learning

3.1. Probabilistic Tractography. Given a brain diffusion MRI
image, the DTI can be modeled as a simple diffusion with a
Gaussian profile [40]:

𝐺 (𝑥;𝐷, 𝑡) = ((4𝜋𝑡)3 det (𝐷))
−1/2

exp(−𝑥
𝑇𝐷−1𝑥
4𝑡

) , (1)

where 𝐷 is the diffusion tensor, 𝑡 is the diffusion time, and 𝑥
describes the element of the MRI image.



4 BioMed Research International

To sample the ellipsoid structure based on probability
distribution, the 3 × 3 diffusion tensor 𝐷 needs to be solved.
The estimation of the diffusion coefficients of the tensor 𝐷
can be implemented by six independent measurements along
noncollinear gradient orientations. The solution to 𝐷, using
singular value decomposition (SVD), identifies a new basis
system describing the diffusion profile at each voxel using
eigen values 𝜆1, 𝜆2, and 𝜆3 and the corresponding eigen
vector e1, e2, and e3 that indicate the preferred direction of
water diffusion.

Probabilistic tracking algorithm devised by Friman et al.
[8] is based on a Bayesian inference and estimation scheme.
Due to noise or complex fiber architectures, uncertainties of
probability are not disregarded but captured in the model
itself, in form of the posterior distribution at each voxel.
Given a source region𝐴 and a target region 𝐵, the probability
of connectivity between 𝐴 and 𝐵 is given as

𝑝 (𝐴 󳨀→ 𝐵 | 𝐷) =
∞

∑
𝑛=1

∫
Ω𝑛
𝐴𝐵

𝑝 (𝑛) 𝑝 (𝜐1:𝑛 | 𝐷) , (2)

where 𝑝(𝜐1:𝑛 | 𝐷) is the probability of the fiber path going
from 𝐴 to 𝐵, given the diffusion tensor𝐷, and 𝜐 represents a
voxel. Ω𝑛𝐴𝐵 represents the sampling space of the connectivity
between 𝐴 and 𝐵 of path length 1 through 𝑛.

In order to make (2) analytically solvable, a rejection
sampling strategy can be employed. Specifically, a large
number of sampled fiber paths starting from region 𝐴 are
drawn randomly, and the probability of the path between
𝐴 and 𝐵 is then evaluated. These random paths need to
be found by working at each step of the path up until the
predetermined length 𝑛. We assume these steps are unit
length vectors and only depended on previous step direction.
Under this assumption, the posterior distribution at each step
is calculated based on the diffusion data 𝐷. This distribution
can be described in terms of Bayes theorem as

𝑝 (𝜐̂𝑖, 𝜃 | 𝜐̂𝑖−1, 𝐷) =
𝑝 (𝐷 | 𝜐̂𝑖, 𝜃) 𝑝 (𝜐̂𝑖 | 𝜐̂𝑖−1) 𝑝 (𝜃)

𝑝 (𝐷)
, (3)

where 𝑝(𝐷 | 𝜐̂𝑖, 𝜃) represents the likelihood distribution
using a constrained model based on a Gaussian diffusion
profile at the current point. 𝑝(𝜐̂𝑖 | 𝜐̂𝑖−1) is the prior to
indicate that the current point depends on the direction
of the previous step. The nuisance priors, 𝑝(𝜃), are the
parameters of the Gaussian profile modeled as dirac priors
which can significantly save computation time. 𝑝(𝐷) is the
normalizing constant. Those expressions combined together
give the probability distribution at 𝜐̂𝑖 over a unit sphere.

3.2. Active Sample Selection Learning. In the probabilistic
tractography, sample selection is a very important step.
Through the sample selection step, a large number of samples
describing the fiber paths starting from region 𝐴 can be
obtained, and the probability density function of the path
between 𝐴 and 𝐵 is then estimated according to a nonpara-
metric procedure. After that, the probabilistic tractography
can be completed based on a Bayesian inference and estima-
tion scheme.

Sample selection learning is one kind of learningmethods
which learn from the environment to obtain a number of
concept related examples and derive general concept after the
induction. Bootstrap [9] is a typical active sample selection
learning method which includes a nonparametric procedure
to estimate the probability density function (PDF), by ran-
domly selecting individual measurements, with replacement,
from a set of repeated measurements, thus generating many
bootstrap samples [10].

Having observed a random sample 𝑉 = (𝜐1, . . . , 𝜐𝑛) with
size 𝑛, from a distribution with cumulative density function
𝐹,

𝐹 󳨀→ (𝜐1, . . . , 𝜐𝑛) , (4)

the empirical distribution function 𝐹̂ is then defined to be the
discrete distribution that puts probability 1/𝑛 on each 𝜐𝑖, 𝑖 =
1, . . . , 𝑛. The arrow notation (→) indicates that the sample
values are outcomes of random variables with independent
and identically distributed attribute, each with distribution
function 𝐹, that is, 𝜐𝑖 i.i.d

̃
𝐹 [41]. A bootstrap sample is a

random sample of size 𝑛 drawn from 𝐹̂, denoted as 𝑉∗ =
(𝜐∗1 , 𝜐
∗
2 , . . . , 𝜐

∗
𝑛 ), obtained by

𝐹̂ 󳨀→ (𝜐∗1 , 𝜐
∗
2 , . . . , 𝜐

∗
𝑛 ) . (5)

The star notation in the upper right corner of 𝑉∗ indicates
that𝑉∗ is not the actual data set𝑉, but a randomized version
of 𝑉. These significant amounts of bootstrap samples enable
us to estimate the sampling distribution statistics for making
inferences about a population parameter 𝜑. If estimate is
denoted as 𝜑̂ = 𝑠(𝑉), for each bootstrap sample, a bootstrap
replication of 𝜑̂ can be computed by [41]

𝜑̂∗ = 𝑠 (𝑉∗) . (6)

A collection of bootstrap replication will provide us with
the information needed to obtain the sampling distribution
estimation of 𝜑̂.

The wild bootstrap (WB) proposed originally by Wu
[42] is suited when the residuals of regression model exhibit
heteroskedasticity. The observations in this case, 𝑉 =
[(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)], are assumed to be instances of bivari-
ate random variable (X,Y). X is a 𝑅𝑑X-valued predictor
random variable and Y is a 𝑅𝑑Y-valued response random
variable. If ℓ̂(𝑥) is an estimate of the regression function
ℓ(𝑥) = 𝐸(Y | X = 𝑥) of Y on X, WB resamples the residuals
by assuming the “true” residual distribution is symmetric. For
the least square regression, the finite sample is used to replace
the residuals 𝑟𝑖 = 𝑦𝑖 − ℓ̂(𝑥𝑖) by the factor (1 − ℎ𝑖)

−1/2, 𝑖 =
1, . . . , 𝑛, where ℎ𝑖 is the 𝑖th diagonal element from the hat
matrix of the ordinary least squares solution.

Ourmethod assumes that, in the case of independent and
identically distributed error, the residuals can be adjusted and
the error model is then modified by using finite sample set.
Consequently, our method generates each bootstrap sample
using

𝑉∗ = [(𝑥1, ℓ̂ (𝑥1) + 𝑟̃
∗
1 ) , . . . , (𝑥𝑛, ℓ̂ (𝑥𝑛) + 𝑟̃

∗
𝑛)] , (7)
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where 𝑟̃∗𝑖 = 𝑟̃𝑖 + 𝛾−1ℎ𝑖𝜓(𝑟̃𝑖), 𝛾 = ∫𝜓(𝑥)𝑓(𝑥)𝑑𝑥, 𝑓 is the
density function of 𝑟𝑖, 𝜓 is the score function, and ℎ𝑖 =
𝑥𝑇𝑖 (∑𝑘 𝑥𝑘𝑥

𝑇
𝑘 )
−1𝑥𝑖, 𝑘 ≪ 𝑛. The tildes denote the corrected

residuals.

4. Materials and Registration Method

4.1. Ethical Standards

Ethical Approval. All procedures performed in studies involv-
ing human participants were in accordance with the ethical
standards of the institutional and/or national research com-
mittee and with the 1964 Helsinki declaration and its later
amendments or comparable ethical standards.

Informed Consent. Informed consent was obtained from all
individual participants included in the study.

4.2. Materials

Diffusion MRI Data. The open accessed IXI dataset from
Hammersmith Hospital of London was used (http://www
.brain-development.org/). A 3 Tesla Philips MRI scanner
was used to scan the healthy subjects. With spatial resolution
1.7409 × 1.7355 × 1.9806mm, the volume data of head is
128 × 128 × 64 voxels. Diffusion weighted images are along
unique gradient directions with b = 1000 s/mm2 (repetition
time = 11894.44ms; echo time = 51ms). More parameter
information can be found at the website.

Template and Subject. In this paper, 10 data were chosen
randomly as subjects (5 male, average age = 51.586 years,
min age = 30.89 years, and max age = 63.68 years; 5 female,
average age = 51.512 years, min age = 33.76 years, and max =
74.01 years) and also another data was chosen as the template
(male, age = 37.83 years). The template is shown in Figure 1.
The white matter area in FA is obviously highlighted in
Figures 1(d), 1(e), and 1(f). TR means the trace of diffusion
tensor.

4.3. Preprocessing. Brain Extraction Tool (BET) in FMRIB
software Library was used to extract brain tissue for each
subject and template. The mask used for skull stripping
was generated from each subject or template individually
and checked manually. Before tensor estimation, diffusion
weighted images (DWIs) in 15 diffusion gradient directions
were eddy-current corrected with FMRIB software Library.

4.4. Registration Method. In this paper, the symmetric image
standardization algorithm (also called symmetric image nor-
malization, SyN) proposed by Avants et al. [26] is used to
register the tracked fiber bundles. In this method, the cross-
correlation is made as similarity criterion, and the Euler-
Lagrange equation is used for algorithm optimization. In this
way, the diffeomorphism transformation can be decomposed
into two parts and also ensures the reversible consistency of
the spatial transform.

In the spatial domain of fiber bundlesΩ, if the diffeomor-
phism transformation function is 𝜑, affine transformation of
fiber bundle can be noted as

𝜑 (𝜕Ω) = A (Id) , (8)

whereA(Id) is the affine transformation, and the symmetrical
and time varying velocity field is

𝑑𝜑 (x, 𝑡)
𝑑𝑡

= V (𝜑 (x, 𝑡) , 𝑡) . (9)

Through the integration of time and smooth velocity field,
the diffeomorphism transformation 𝜑 can be obtained. 𝜑
can be decomposed into two parts: 𝜑1 and 𝜑2, transformed
to the middle point along the geodesic line, for the fiber
bundles to be registered and standard fiber bundle templates,
respectively. The parameters are

𝜐 (x, 𝑡) = 𝜐1 (x, 𝑡) 𝑡 ∈ [0, 0.5] ,

𝑢 (x, 𝑡) = 𝑢2 (x, 1 − 𝑡) 𝑡 ∈ [0.5, 1] ,
(10)

the corresponding fiber bundle set can be obtained by integral
transform, and the similarity measurement is

󵄨󵄨󵄨󵄨𝜑1 (x, 𝑡) I − 𝜑2 (x, 1 − 𝑡) J
󵄨󵄨󵄨󵄨
2 . (11)

The Euler-Lagrange equation is then used for algorithm
optimization. For computation from the fiber bundle to be
registered to the standard template fiber bundle or from the
standard template fiber bundle to the fiber bundle to be
registered, the path is the same (I ⇔ J), which ensures the
reversible consistency. The formula of reversible consistency
can be described as

𝜑−11 (𝜑1) = Id,

𝜑−12 (𝜑2) = Id.
(12)

SyN algorithm can deal with both small and large defor-
mation. The results will not change by the input data order,
and the diffeomorphic mapping ensures the precision of the
reversible consistency transform.

4.5. Evaluation Criteria

4.5.1. Dyadic Coherence 𝜅 [43]. After the eigen decomposi-
tion of the diffusion tensor, the eigenvalues could be denoted
in descending order as 𝜆1 > 𝜆2 > 𝜆3, and the corresponding
eigenvectors are denoted as e1, e2, and e3. Dyadic coherence
describes the variability in the dominant diffusion direction.
For each voxel, the dyadic coherence is defined as

𝜅 = 1 − √
𝛽2 + 𝛽3
2𝛽1

, (13)

where 𝜅 measures the variability of eigenvectors, which
ranges from 0 to 1 (0 for randomly and 1 for identically
oriented directions). 𝛽𝑗 (𝑗 = 1, 2, 3) is the eigenvalue of the
mean dyadic tensor [38]. The higher value for the dyadic
tensor will represent better eigenvector alignment and higher
fiber alignment accuracy.
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(a) DTI axial image (b) DTI sagittal image (c) DTI coronal image

(d) FA axial image (e) FA sagittal image (f) FA coronal image

(g) TR axial image (h) TR sagittal image (i) TR coronal image

Figure 1: 2D views of the template (the color images are encoded as follows: red for left-right, green for anterior-posterior, and blue for
inferior-superior).

4.5.2. Overlap of Eigenvalue-Eigenvector (OVL) [44]. The
overlap of eigenvalue-eigenvector pairs is defined as

OVL = 1
𝑁

𝑁

∑
𝑖=1

∑3𝑗=1 (𝜆
𝑖
𝑗𝜆
󸀠𝑖
𝑗 (e
𝑖
𝑗 ⋅ e
󸀠𝑖
𝑗 )
2
)

∑3𝑗=1 𝜆𝑖𝑗𝜆󸀠𝑖𝑗
, (14)

where 𝜆𝑖𝑗, e
𝑖
𝑗, 𝜆
󸀠𝑖
𝑗 , and e󸀠𝑖𝑗 are the 𝑗th eigenvalue-eigenvector

pairs from the 𝑖th subject and the template tensors, respec-
tively. The value of OVL is more closer to 1; the alignment of
tensor orientation and fibers is better.

4.5.3. Cross-Correlations (CCx) [45]. The cross-correlations
of the WM voxels between subjects and template are com-
puted by using the FA and TR:

CC𝑥 =
∑V𝑋1 (V) 𝑋2 (V)

√∑V𝑋1 (V) 𝑋1 (V) ∑V𝑋2 (V) 𝑋2 (V)
, (15)

where V indexes over all the voxels.𝑋1(V) and𝑋2(V) are scalar
images derived from DTI and could be replaced by FA or
TR. The value ranges between 0 and 1. The higher cross-
correlation describes the higher similarity between twomaps.
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Genu Splenium Left ATR Right ATR

Right IFOLeft IFO Left CST Right CST

Figure 2: Fiber bundles tracking results (8 ROIs is Genu of the Corpus Callosum (Genu), Splenium of the Corpus Callosum (Splenium), Left
Anterior Thalamic Radiations (ATR), Right ATR, Left Inferior Frontooccipital Fasciculi (IFO), Right IFO, Left Corticospinal/Corticobulbar
Tracts (CST), and Right CST).

5. Experimental Results

In order to test the performance of the proposed registration
method based on probabilistic fiber bundles tractography
learning, in this paper, we compare our method with 6 state-
of-the-art methods, which are 5 scalar based methods: Rigid
[13], Affine [18], Elastic [14], SyN [26], FSL [17], and one
tensor based method: DTI-TK [3]. Dyadic coherence 𝜅, over-
lap of eigenvalue-eigenvector (OVL), and cross-correlations
(CC𝑥) are used as three evaluation criteria. Maps and empir-
ical cumulative distribution functions (CDFs) are used for
illustrating 7 registration algorithms. CDF is probability of
variable less than or equal to a certain number; that is, 𝐹(𝑥) =
𝑝(𝑋 ≤ 𝑥), where 𝑃 is probability.

5.1. Fiber Bundles Tracking Results. The result of fiber bundles
tracking will affect the accuracy of the following registration
method as tracking result is the input of registration step; as
a result, fiber bundles tracking is an important step in the
whole algorithm system. Figure 2 gives fiber bundles tracking
results of 8 regions of interest (ROIs) by the probabilistic
fiber tracking algorithm proposed in this paper. Figure 3
shows the global display of fiber bundles tracking results for
11 experimental data. From Figures 2 and 3, it can be seen that
our proposed probabilistic fiber bundles trackingmethod has
the ability to tracking white matter fiber bundles of diffusion
MRI image accurately.

5.2. Comparison of Registration Results. In this section, we
test the registration effectiveness by visualization. The results
of 7 registration algorithms are shown in Figure 4. In Figure 4,
images of all the registered datasets were visualized, which
could give qualitative results. From the visual results, our
proposed method keeps the distribution character of subject
white matter fiber bundles and also gets the better matching
results with the template.

5.3. Comparison by Dyadic Coherence 𝜅. The higher dyadic
coherence value indicates better eigenvectors alignment and
anatomical structure consistency. The empirical CDFs of
dyadic coherence are presented in Figure 5(a). From the
empirical CDFs of dyadic coherence, 𝜅 of DTI-TK is the
biggest, which indicates the highest anatomical structure
consistency. Our proposed method gets the second ranking,
only slightly worse than theDTI-TKmethod andmuch better
than the existingRigid,Affine, Elastic, SyN, andFSLmethods,
while, with the increase of 𝜅 value, the empirical CDFs of
FSL increase rapidly and even exceed the DTI-TK and ours,
but the overall empirical CDFs shock more seriously, which
means the algorithm performance is not stable.

5.4. Comparison by Overlap of Eigenvalue-Eigenvector (OVL).
A higher OVL values represents a greater correspondence in
anatomical structure between subjects. The empirical CDFs
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Figure 3: Global display of fiber bundles tracking results.

of OVL are presented in Figure 5(b). From Figure 5(b), it
can be seen that when the OVL value is low, Rigid, FSL, and
our proposed method show the better performance. As OVL
increases, DTI-TK, Elastic, FSL, and our proposed method
got the better performance. Considering the changing curve
of OVL synthetically, DTI-TK, Elastic, and our proposed
method are three stable methods. Our method is better than
DTI-TK and quite equal to Elastic.

5.5. Comparison by Cross-Correlation of Diffusion (CCx).
For the cross-correlation, higher value represents the higher
similarity between two maps. The empirical CDFs of cross-
correlation for FA and TR are presented in Figures 6(a) and
6(b), respectively. From the empirical CDFs of CCFA, DTI-TK
and our method show the top two highest performance, our
method only slightly worse than the DTI-TK method. From

the empirical CDFs of CCTR, our method is the best, which
indicates highest image similarity.

From three evaluation criteria and visualization exper-
imental results, our proposed method shows a high com-
prehensive performance. DTI-TK method is the currently
recognized best registration method; our method shows the
quite equal comprehensive performance. DTI-TK is a non-
parametric, diffeomorphic deformable image registration,
taking tensors as a whole and explicating the optimization
of tensor reorientation. The disadvantage of the DTI-TK is
that the image boundary is not smooth and the computing
is complicated. Meanwhile, it only supports the affine trans-
formation with the least parameters. Our method is based
on the completely different algorithm theory; we completes
the DTI Image registration method under probabilistic fiber
bundles tractography learning. The distribution of the whole
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(a) Template (b) Subject (c) Rigid result

(d) Elastic result (e) Affine result (f) FSL result

(g) SyN result (h) DTI-TK result (i) Proposed result

Figure 4: The results of 7 registration algorithms.

brain white matter fiber bundles is first obtained based on
probabilistic tractography. Then, the tracked fiber bundles
are registered by using symmetric image standardization
registration algorithm, and the calculated deformation field

acts on the DTI images. Those steps all have the advantages
to improve the registration accuracy and robustness.

For the empirical CDFs of CCTR and OVL, our method
is better than DTI-TK. The experimental results show that
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Figure 5: The empirical CDFs of dyadic coherence and OVL. (a) is the empirical CDFs of dyadic coherence; (b) is the empirical CDFs of
OVL.
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Figure 6: The empirical CDFs of cross-correlation. (a) is the empirical CDFs of the cross-correlations for FA; (b) is the empirical CDFs of
the cross-correlations for TR.

the proposed method has a very good comprehensive perfor-
mance and can be used for DT-MRI Image registration.

6. Conclusions

In this paper, we proposed a DTI Image registration method
under probabilistic fiber bundles tractography learning, as

the probabilistic tractography technique canmore reasonably
trace to the structure of the nerve fibers and in a certain
extent overcome the internal defect of the single tensor
model. We improved the residual error estimation step in
bootstrap method used in active sample selection learning
for the probabilistic tractography.The results of our proposed
method were compared with 5 scalar based methods (Rigid,
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Affine, Elastic, SyN, and FSL) and one tensor based method
(DTI-TK). The visualization and 3 quantitative evaluation
standards were used to give a comprehensive analysis. The
experimental results show that our proposed probabilistic
fiber bundles tracking method has the ability to track white
matter fiber bundles of diffusion MRI image accurately.
Our registration method gives a quite equal comprehensive
performance with DTI-TK, much better than the others.
Consequently, our method can be used for accurate and
efficient DTI image registration.
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Compressed sensing magnetic resonance imaging (CSMRI) employs image sparsity to reconstruct MR images from incoherently
undersampled K-space data. Existing CSMRI approaches have exploited analysis transform, synthesis dictionary, and their variants
to trigger image sparsity. Nevertheless, the accuracy, efficiency, or acceleration rate of existing CSMRImethods can still be improved
due to either lack of adaptability, high complexity of the training, or insufficient sparsity promotion. To properly balance the three
factors, this paper proposes a two-layer tight frame sparsifying (TRIMS) model for CSMRI by sparsifying the image with a product
of a fixed tight frame and an adaptively learned tight frame. The two-layer sparsifying and adaptive learning nature of TRIMS has
enabled accurate MR reconstruction from highly undersampled data with efficiency. To solve the reconstruction problem, a three-
level Bregman numerical algorithm is developed. The proposed approach has been compared to three state-of-the-art methods
over scanned physical phantom and in vivo MR datasets and encouraging performances have been achieved.

1. Introduction

Compressed sensing magnetic resonance imaging (CSMRI)
is a very popular signal processing based technique for
accelerating MRI scan. Different from the classical fixed-
rate sampling dogma Shannon-Nyquist sampling theorem,
CS exploits the sparsity of anMR image and allows CSMRI to
recover MR images from less incoherently sampled K-space
data [1].The classical formulation of CSMRI can be written as

min
𝑢

‖𝑊𝑢‖1

s.t. 𝐹𝑝𝑢 = 𝑓,
(1)

where 𝑢 ∈ C𝑄×1 and 𝑓 ∈ C𝑃×1, respectively, denote
the MR image and its corresponding undersampled raw
K-space data, 𝐹𝑝 ∈ C𝑃×𝑄 represents the undersampled
Fourier encoding matrix with 𝑃 ≪ 𝑄, and ‖𝑊𝑢‖1 is an

analysis model which sparsifies the image with transform
𝑊 ∈ C𝑄×𝑄 under the ℓ1 norm constraint. 𝑃 and 𝑄 are the
number of image pixels and measured data. The classical
formulation is typically equipped with total variation and
wavelet and it can be solved very efficiently [1]. However,
the efficiency comes at the expense of accuracy, especially
with highly undersampled noisy measurements, due to lack
of adaptability or insufficient sparsity promotion. To address
this issue, there have been diverse methods proposed [2, 3]
andwe focus on the following three representative directions.

One main endeavor is employing nonlocal operations or
redundant transforms to analytically sparsify the MR image
[4]. Typical examples include nonlocal total variation regular-
ization [5], patch-based directional wavelet [6], and wavelet
tree sparsity based CSMRI techniques [7]. These methods
generally have straightforward models; nevertheless, the
reconstruction accuracy is not that perfectly satisfying due
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to lack of adaptability. We proposed one-layer data-driven
tight frame DDTF for undersampled image reconstruction
[8]. It is generally very efficient. But its performance is still
limited due to its insufficient sparsity promotion and reliance
on the Bregman iteration technique for bringing back the
image details.

The other effort is training adaptive dictionary to sparsely
represent the MR image in the synthesis manner. For exam-
ple, DLMRI [9], BPFA triggeredMR reconstruction [10], and
our proposed TBMDU [3] employ dictionary learning to
adaptively capture image structures while promoting sparsity.
These methods can generally achieve accurate MR image
reconstruction with strong noise suppression capability.
Unfortunately, the complexity of these approaches is very
high and the sparsity is still directly limited to one-layer
representation of the target image.

The third group endeavors could be regarded as the
variants of the above two efforts, which target employing
the advantages of both the analysis and synthesis sparse
models. For example, the balanced tight frame model [11]
introduces a penalty term to bridge the gap between the
analysis and synthesis model. Unfortunately, although it pos-
sesses a fascinating mathematical explanation, the sparsity
promotion is still limited to a single layer and therefore
its performance is only comparable to the analysis one.
To further promote sparsity, a wavelet driven dictionary
learning (named WaveDLMRI) [12] technique and our pro-
posed total variation driven dictionary learning approach
(named GradDLRec) [13] adaptively represent the sparse
coefficients derived from the analysis transform rather than
directly encode the underlying image. Nevertheless, despite
achieving encouraging performances, they still rely on the
computationally expensive dictionary learning technique.

Recently, there are double sparsity model and doubly
sparse transforms proposed in general image/signal process-
ing community [14, 15]. The double sparsity model tries
to train a sparse dictionary over a fixed base, while the
doubly sparse transform is devoted to learning an adaptive
sparse matrix over an analytic transform. There is no doubt
that their application to image denoising has presented
promising results, albeit the two-layer sparsifying model
is more concerned to assist efficient learning, storage, and
implementation by constraining the dictionary sparse rather
than focus on further triggering of the sparsity of the image.

Motivated by the above observations, we try to develop a
two-layer tight frame sparsifying (TRIMS) model for CSMRI
by sparsifying the image with a product of a fixed tight frame
and an adaptive learned tight frame. The proposed TRIMS
has several merits: (1) the tight frame satisfies the perfect
reconstruction property which ensures the given signal can
be perfectly represented by its canonical expansion [16]; (2)
a tight frame can be implemented very efficiently since it
satisfies𝑊𝐻𝑊 = 𝐼; (3) the adaptability has been kept by the
second-layer tight frame tailored for the target reconstruction
task; (4) the two-layer tight frame has enabled the image
sparsity to be explored more sufficiently compared to the
one-layer one. Furthermore, the two-layer tight frame also
has a convolutional explanation, which extracts appropriate

image characteristics to constrain MR image reconstruction
[17]. We have compared our method with three state-of-
the-art approaches of the above three directions, namely,
DDTF-MRI, DLMRI, and GradDLRec on an in vivo complex
valued MR dataset. The results have advised the proposed
method could properly balance the efficiency, accuracy, and
acceleration factors.

2. Theory

2.1. TRIMS Model. To reconstruct MR images from under-
sampled data, we propose a TRIMS model which can be
implicitly described as

min
𝑢,𝑊𝑏∈⋀

󵄩󵄩󵄩󵄩󵄩𝐹𝑝𝑢 − 𝑓
󵄩󵄩󵄩󵄩󵄩
2

2
+ 𝛼 󵄩󵄩󵄩󵄩𝑊𝑏 (𝑊𝑎𝑢)

󵄩󵄩󵄩󵄩1 , (2)

where 𝑊𝑎 is the fixed tight frame and 𝑊𝑏 denotes the data-
driven tight frame. ⋀ means the tight frame system, since
a tight frame can be formulated with a set of filters under
the unitary extension principle (UEP) condition [16]. The
proposed model also has another approximately equivalent
convolutional expression, which we name the explicit model

min
𝑢,𝑏𝑚

󵄩󵄩󵄩󵄩󵄩𝐹𝑝𝑢 − 𝑓
󵄩󵄩󵄩󵄩󵄩
2

2
+ 𝛼∑
𝑚

∑
𝑛

󵄩󵄩󵄩󵄩𝑏𝑚 ∗ (𝑎𝑛 ∗ 𝑢)
󵄩󵄩󵄩󵄩1 , (3)

where 𝑎𝑛 are the fixed kernels and 𝑏𝑚 denote the to-be-learned
adaptive kernels.

2.2. TRIMS Algorithm. To solve the proposed model, we
develop a three-level Bregman iteration numerical algorithm.
Introducing a Bregman parameter 𝑐, we have the first-level
Bregman iteration

{𝑢𝑘+1,𝑊𝑘+1𝑏 } = argmin
𝑢,𝑊𝑏∈⋀

󵄩󵄩󵄩󵄩󵄩𝐹𝑝𝑢 − 𝑓 + 𝑐
𝑘󵄩󵄩󵄩󵄩󵄩
2

2

+ 𝛼 󵄩󵄩󵄩󵄩𝑊𝑏 (𝑊𝑎𝑢)
󵄩󵄩󵄩󵄩1 ,

𝑐𝑘+1 = 𝑐𝑘 + 𝐹𝑝𝑢
𝑘+1 − 𝑓.

(4)

To attack the first subproblem in (4), we introduce an assistant
variable 𝑢𝑎 = 𝑊𝑎𝑢 and obtain the second-level iteration

{𝑢𝑘+1𝑎 ,𝑊
𝑘+1
𝑏 } = argmin

𝑢𝑎 ,𝑊𝑏

𝜇 󵄩󵄩󵄩󵄩󵄩𝑊𝑎𝑢 − 𝑢𝑎 + 𝑑
𝑘󵄩󵄩󵄩󵄩󵄩
2

2

+ 𝛼 󵄩󵄩󵄩󵄩𝑊𝑏𝑢𝑎
󵄩󵄩󵄩󵄩1 ,

𝑢𝑘+1 = argmin
𝑢

󵄩󵄩󵄩󵄩󵄩𝐹𝑝𝑢 − 𝑓 + 𝑐
𝑘󵄩󵄩󵄩󵄩󵄩
2

2

+ 𝜇 󵄩󵄩󵄩󵄩󵄩𝑊𝑎𝑢 − 𝑢
𝑘+1
𝑎 + 𝑑

𝑘󵄩󵄩󵄩󵄩󵄩
2

2
,

𝑑𝑘+1 = 𝑑𝑘 +𝑊𝑎𝑢
𝑘+1 − 𝑢𝑘+1𝑎 .

(5)

The subproblem regarding the update of 𝑢 is a simple least
squares problem admitting an analytical solution. Its solution
satisfies the following normal equation:

𝐹𝐻𝑝 (𝐹𝑝𝑢 − 𝑓 + 𝑐
𝑘) + 𝜇𝑊𝐻𝑎 (𝑊𝑎𝑢 − 𝑢

𝑘
𝑎 + 𝑑
𝑘) = 0. (6)
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(1) Initialization: 𝑘 = 0,𝑊𝑎,𝑊0𝑏 , 𝑐
0 = 0, 𝑑0 = 0, 𝑒0 = 0.

(2) while stop condition is not met do
(3) 𝑡 ← 0.01, 𝑤 ← 0
(4) for 𝑚 = 1 to𝑀 do
(5) V𝑘+1 = shrink(𝑊𝑏𝑢𝑘𝑎 + 𝑒

𝑘, 1/𝛼)
(6) 𝑒𝑘+1 = 𝑒𝑘 +𝑊𝑘𝑏 𝑢

𝑘
𝑎 − V
𝑘+1

(7) 𝑢𝑘+1𝑎 = (𝜇(𝑊𝑎𝑢
𝑘 + 𝑑) +𝑊𝐻𝑏 (V

𝑘+1 − 𝑒𝑘))/(1 + 𝜇)
(8) update𝑊𝑘+1𝑏 with the SVD technique of [16]
(9) 𝑑𝑘+1 = 𝑑𝑘 +𝑊𝑎𝑢𝑘+1 − 𝑢𝑘+1𝑎
(10) update 𝑢𝑘+1 as the inverse Fourier transform of the data acquired in (7)
(11) end for
(12) update 𝑐𝑘+1 = 𝑐𝑘 + 𝐹𝑝𝑢𝑘+1 − 𝑓
(13) 𝑘 ← 𝑘 + 1
(14) end while

Algorithm 1: Reconstructing MR images from undersampled K-space data with TRIMS.

Since 𝑊𝑎 is a tight frame satisfying 𝑊𝐻𝑎 𝑊𝑎 = 𝐼, letting 𝐹
denote the full Fourier encodingmatrix normalized such that
𝐹𝐻𝐹 = 𝐼, we have

𝐹𝑢 (𝑘𝑥, 𝑘𝑦)

=
{{{
{{{
{

𝑆 (𝑘𝑥, 𝑘𝑦) , (𝑘𝑥, 𝑘𝑦) ∉ Ω,

𝑆 (𝑘𝑥, 𝑘𝑦) + 𝜇𝑆0 (𝑘𝑥, 𝑘𝑦)
1 + 𝜇

, (𝑘𝑥, 𝑘𝑦) ∈ Ω,

(7)

where 𝑆0(𝑘𝑥, 𝑘𝑦) = 𝐹𝐹𝐻𝑝 (𝑓 − 𝑐
𝑘), 𝑆(𝑘𝑥, 𝑘𝑦) = 𝐹𝑊𝐻𝑎 (𝑢

𝑘
𝑎 − 𝑑
𝑘),

andΩ denotes the sampledK-space subset. In order to update
𝑢𝑎 and𝑊𝑏, we introduce another assistant variable V = 𝑊𝑏𝑢𝑎
to decompose the coupling between𝑊𝑏 and 𝑢𝑎 and therefore
obtain the third-level Bregman iteration

{V𝑘+1,𝑊𝑘+1𝑏 } = argmin
V,𝑊𝑏

󵄩󵄩󵄩󵄩󵄩𝑊𝑏𝑢
𝑘
𝑎 − V + 𝑒

𝑘󵄩󵄩󵄩󵄩󵄩
2

2
+ 𝛼 ‖V‖1 ,

𝑢𝑘+1𝑎 = argmin
𝑢𝑎

𝜇 󵄩󵄩󵄩󵄩󵄩𝑊𝑎𝑢
𝑘 − 𝑢𝑎 + 𝑑

𝑘󵄩󵄩󵄩󵄩󵄩
2

2

+ 󵄩󵄩󵄩󵄩󵄩𝑊
𝑘
𝑏 𝑢𝑎 − V

𝑘+1 + 𝑒𝑘󵄩󵄩󵄩󵄩󵄩
2

2
,

𝑒𝑘+1 = 𝑒𝑘 +𝑊𝑘𝑏 𝑢
𝑘
𝑎 − V
𝑘+1.

(8)

Similar to the update of 𝑢, we can easily get the least squares
solution for 𝑢𝑎

𝑢𝑘+1𝑎 =
𝜇 (𝑊𝑎𝑢𝑘 + 𝑑𝑘) +𝑊𝐻𝑏 (V

𝑘+1 − 𝑒𝑘)
1 + 𝜇

. (9)

As for the update of V, we temporarily fix the value of
𝑊𝑏 and can easily obtain its update rule with the iterative
shrinkage/thresholding algorithm (ISTA)

V𝑘+1 = shrink (𝑊𝑏𝑢
𝑘+1
𝑎 + 𝑒

𝑘, 1
𝛼
) , (10)

where shrink(𝑥, 𝑎) = sign(𝑥)max(0, |𝑥| − 𝑎). Now fix V, we
update𝑊𝑏 by minimizing

argmin
𝑊𝑏∈⋀

󵄩󵄩󵄩󵄩󵄩𝑊𝑏𝑢
𝑘
𝑎 − V + 𝑒

𝑘󵄩󵄩󵄩󵄩󵄩
2

2
. (11)

Instead of directly optimizing 𝑊𝑏, we sequentially partition
the coefficient vectors V − 𝑒 into vectors and apply the tech-
nique of [16] to solve this subproblem using singular value
decomposition (SVD), with the aim of learning its corre-
sponding filter 𝑏𝑚. To facilitate the readers to grasp the overall
picture, we summarize the proposed TRIMS in Algorithm 1.

3. Experiments and Results

Weevaluated the proposedmethod on three datasets, namely,
a T1-weighted brain image obtained from GE 3T commercial
scanner with an eight-channel head coil (TE = 11ms, TR =
700ms, FOV = 22 cm, and matrix = 256 × 256), a PD-
weighted brain image scanned from 3T SIEMENS with an
eight-channel head coil andMPRAGE (3D flashwith IR prep,
TE = 3.45ms, TR = 2530ms, TI = 1100ms, flip angle = 7 deg.,
slice = 1, matrix = 256 × 256, slice thickness = 1.33mm,
FOV = 256mm, and measurement = 1), and a physical
phantom scanned from a 3T commercial scanner (SIEMENS
MAGNETOMTrioTim syngo) with a four-channel head coil
(TE = 12ms, TR = 800ms, FOV = 24.2 cm, and matrix =
256 × 256). Informed consent was obtained from the imaging
subject in compliance with the Institutional Review Board
policy.TheWalsh adaptive combination method is applied to
combine themultichannel data to a single-channel one corre-
sponding to a complex-valued image. We have compared the
proposed method to three state-of-the-art methods, namely,
the representative analysis transform based DDTF-MRI,
the synthesis dictionary based DLMRI, and the analysis-
synthesis mixture based GradDLRec approach. TRIMS was
implemented with shift invariant Haar wavelet filters for the
fixed tight frame (the size of each filter is 2 × 2) and for
initializing the second-level tight frame (the size of each filter
is 4 × 4). The other three algorithms were implemented with
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Figure 1: Visual quality comparison on GE MR images reconstructed by the four approaches from radially undersampled K-space data
(25.16%). (a) From left to right: ground truth image and images reconstructed by the DDTF, DLMRI, GradDLRec, and proposed TRIMS;
each one has an enlarged region for a closer comparison. (b) From left to right: color axis and difference images of the DDTF, DLMRI,
GradDLRec, and TRIMS.

their recommended parameter settings. To quantitatively
evaluate the reconstruction accuracy of eachmethod,we have
employed peak signal-to-noise ratio (PSNR), relative error,
and structural similarity (SSIM) index [18] which are defined
as follows:

PSNR = 20 log10
max (𝑢0)√𝑄
󵄩󵄩󵄩󵄩𝑢0 − 𝑢̂

󵄩󵄩󵄩󵄩2
,

err =
󵄩󵄩󵄩󵄩𝑢0 − 𝑢̂

󵄩󵄩󵄩󵄩2󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩2
,

SSIM = [𝑙 (𝑢̂, 𝑢0)]
𝛼 ⋅ [𝑐 (𝑢̂, 𝑢0)]

𝛽 ⋅ [𝑠 (𝑢̂, 𝑢0)]
𝛾 ,

(12)

where SSIM is multiplicative combination of the three terms,
namely, the luminance term 𝑙(𝑢̂, 𝑢0), the contrast term
𝑐(𝑢̂, 𝑢0), and the structural term 𝑠(𝑢̂, 𝑢0).

We firstly applied the four approaches to reconstruct
T1-weighted MR image under the radial sampling scheme
with the acceleration factor 𝑅 = 4 (sampling ratio 25.16%).
The reconstructed image obtained by each algorithm and
the absolute difference between the reconstructed image and
the ground truth image were displayed in Figure 1. We also
present an enlargement area to reveal the fine details and
structures each method has preserved. We can see that there
exist somewhat blurring artifacts on the edges in the results
reconstructed by the four methods. However, TRIMS can
reconstruct an image closer to the one reconstructed from
the full data. The absolute difference maps also indicate that
TRIMS incurs less errors while reconstructing the MR image
compared to the other three approaches.

We further utilized the four approaches to reconstruct
the PD-weighted brain image from 9.13% of 2D randomly
sampled K-space data. Figure 2(a) displays the original image

and the images reconstructed by the four approaches. For a
close-up look, the white box enclosed part has been zoomed
and presented at the right corner of the image. It can be
observed that our method has produced an image closer to
the original image. The four approaches were also evaluated
on a scanned physical phantom which consists of quite a
few regular structures with fine details. Figure 2(b) provided
the visual comparison results of the phantoms reconstructed
from 12.79% of 2D randomly sampled K-space data. An area
with different scales of lines was enlarged in each image to
visualize the reconstruction accuracy of each method. It can
be observed that the enlarged parts in the reconstruction
results suffer from blur. Nevertheless, the proposed method
can still produce an image with less blurry artifacts.

To test the sensitivity of the four methods to acceleration
factors, we retrospectively undersampled the full K-space
data with the 2D variable density scheme at 2.5-, 4-, 6-, 8-,
and 10-time acceleration and employed the four methods to
reconstructMR images from the undersampled data. Figure 3
has presented the average PSNR, relative error values, and
SSIM over all the three images reconstructed by the four
methods versus different acceleration factors. The two PSNR
and relative error plots have demonstrated that the proposed
method could achieve better reconstruction results at all
acceleration rates. Nevertheless, we should admit that the plot
of SSIM indicates that the proposedmethod does not produce
the best results at all undersampling factors on average since
the current tight frame size is relatively small based on the
concern of the computational complexity. Better results can
be produced if the size of the tight frame is set a little bigger.

We also have provided a comparison of the convergence
property of the four methods over acceleration rates 2.5 and
6 on the T1-weighted image in Figure 4. As can be seen, the
four methods all have approximately converged.
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(a)

(b)

Figure 2: Visual quality comparison on PD-weighted and physical phantom MR images reconstructed by the four approaches from 2D
randomly undersampled K-space data (9.312%). From left to right: ground truth image and images reconstructed by the DDTF, DLMRI,
GradDLRec, and proposed TRIMS; each one has an enlarged region for a closer comparison.

4 6 8 102
R

20

25

30

35

40

45

PS
N

R

TRIMS
DDTF

DLMRI
GradDLRec

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

ER
R

4 6 8 102
R

TRIMS
DDTF

DLMRI
GradDLRec

(b)

4 6 8 102
R

TRIMS
DDTF

DLMRI
GradDLRec

0.6

0.7

0.8

0.9

1

SS
IM

(c)
Figure 3: The average reconstruction errors in PSNR, relative error, and SSIM over all images with respect to different acceleration rates.
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Figure 4: The convergence development of the four methods over acceleration rates 2.5 and 6 in PSNR, relative error, and SSIM while
reconstructing the T1-weighted image.
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Table 1: The computational time (in second) comparison over
different acceleration rates.

Image PD-weighted image
Acceleration rate 2.5 4 6 8 10 20
TRIMS 137 139 140 139 137 137
DDTF 148 149 148 148 148 148
DLMRI 1294 1234 1215 1205 1188 1161
GradDLRec 2644 2475 2386 2352 2338 2298

Finally, we compare the computational time of the four
methods, which were implemented on a Windows 7 (64-bit)
operating system equippedwith 8GBRAMand Intel�Core�
i7-4770 CPU @ 3.40GHz in MATLAB 2015a. Table 1 lists the
computational time for eachmethod over the six acceleration
rates. We can observe that TRIMS is more efficient compared
to DLMRI and GradDLRec. It is even more efficient than
DDTF sinceDDTFneeds to train 64 filters, each size of which
is 8 × 8, while TRIMS only needs to train 16 filters whose size
is 4×4. Furthermore, it is worthmentioning that although the
size of the to-be-learned tight frame of TRIMS is smaller than
that of DDTF, the two-layer sparsifying nature has facilitated
TRIMS to achieve better reconstruction results in shorter
time compared to DDTF.

4. Conclusions

This paper proposes a two-layer tight frame sparsifying
model, namely, TRIMS, for compressed sensing magnetic
resonance imaging. This approach explores the strength of
adaptive learning technique and tight frames for accurate
reconstruction of MR images from undersampled K-space
data. The experimental results demonstrated that the pro-
posed TRIMS could accurately reconstruct MR images from
a variety of undersampled data with proper efficiency.
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In order to improve the detection accuracy of pulmonary nodules in CT image, considering two problems of pulmonary nodules
detection model, including unreasonable feature structure and nontightness of feature representation, a pulmonary nodules
detection algorithm is proposed based on SVM and CT image feature-level fusion with rough sets. Firstly, CT images of pulmonary
nodule are analyzed, and 42-dimensional feature components are extracted, including six new 3-dimensional features proposed by
this paper and others 2-dimensional and 3-dimensional features. Secondly, these features are reduced for five times with rough set
based on feature-level fusion.Thirdly, a grid optimization model is used to optimize the kernel function of support vector machine
(SVM), which is used as a classifier to identify pulmonary nodules. Finally, lung CT images of 70 patients with pulmonary nodules
are collected as the original samples, which are used to verify the effectiveness and stability of the proposed model by four groups’
comparative experiments.The experimental results show that the effectiveness and stability of the proposed model based on rough
set feature-level fusion are improved in some degrees.

1. Introduction

Lung cancer is a malignant tumor with the highest morbidity
and mortality rate in the world, posing a serious threat to
human life and health [1, 2].The ability to estimate the risk of
lung cancer is important in two common clinical models [3]:
pulmonary nodules management and risk prediction model.
Identification of early symptomatic in lung cancer is very
important to improve early survival and reduce emergency
presentations. Early detection is the most popular method to
improve the effectiveness of the treatment of patients with
lung cancer. Since pulmonary nodules are the early form of
lung cancer [4], the detection of pulmonary nodules plays
a critical role in the early diagnosis and treatment of lung
cancer. Recent advances in computed tomography (CT) have
a progressively increased spatial resolution and decreased
acquisition times,making it possible for high resolution,mul-
tiangle, 3-dimensional, isotropic image of the whole lung to
be acquired in less than 10 seconds. This has expanded capa-
bilities for the early detection of small pulmonary nodules [4].

It is believed that early detection of lung cancer will result
in earlier treatment at lower stages of the disease, thereby
improving the 5-year survival rate, which has remained
relatively constant at 15% for the last 30 years. However, with
the wide application of CT in the lung imaging, the issues of
CT data overloading and subjective interpretation of images
result in a high clinical misdiagnosis rate [5].

Computer-Aided Diagnosis (CAD) systems provided a
beneficial support and enhance the diagnostic accuracy.
CAD is capable of performing the preliminary screen of the
vast amounts of CT image and marking suspicious lesions,
thereby helping radiologists to carry out the quadratic dis-
crimination to reduce the workload and improve the accu-
racy rate of cancer diagnosis [6, 7].

Pulmonary nodule detection technology is one of the hot
topics in the field of CAD in recent years. For example, ROI
segment is a key problem, Xia et al. [8] using local variational
Gaussianmixturemodels to segment brainMRI image Based
on Learning Local Variational GaussianMixtureModels, seg-
mentation of breast ultrasound images are discussed by Xian
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[9, 10] and Santos et al. [11] segment the lung parenchyma
based on region growing algorithm. Magalhães Barros Netto
et al. [12] use growing neural gas (GNG) to segment the
lung parenchyma, the obtained pulmonary nodules are then
separated from tissues containing blood vessels and bronchi
according to the 3D distance transform, and finally SVM is
used to carry out the effective identification of pulmonary
nodules with shape and texture features. Ye et al. [13] firstly
segment and extract region of interest (ROI) with fuzzy
threshold in combinationwith Gaussianmatrix, mean curva-
ture, and Hessian matrix, then choose the local shape infor-
mation and local intensity dispersion as the feature expres-
sion of ROI, and finally use theweighted SVM for recognition
of pulmonary nodules. Tan et al. [14] segment pulmonary
nodules based on the blood vessels and nodule enhancement
filter proposed by Li et al. [15], then locate the clustering cen-
ter of pulmonary nodules based on the divergence calculated
by Gaussian template and achieve ROI extraction, and finally
use the classifier based on genetic model, artificial neural
network (ANN), and SVM for comparative analysis of the
detection effectiveness of pulmonary nodules; Cascio et al.
[16] use regional growthmodel andmorphological operation
to extract the ROI firstly, then reconstruct B-spline surface
based on 3D spring model in order to extract the related 3D
gray features and shape features, and detect the pulmonary
nodules using ANN. Although the above literature explores
the methods of detecting pulmonary nodules, overall, these
are still two disadvantages of these methods in feature
structure design and feature set expression as follows.

(1) When extracting and quantifying feature for ROI, the
feature structure design is irrational, reflected by the
fact that the combination of global features and local
features and the combination of two-dimensional and
three-dimensional features are not fully considered.

(2) When fusing feature data, the compactness of feature
expression is a difficult problem. Therefore, feature
redundancy is usually not eliminated. Moreover, the
feature-level fusion method without prior knowledge
is rarely used.

Rough set theory was developed by Zdzislaw Pawlak in
the early 1980s and can be regarded as a new mathematical
tool for feature selection, feature extraction, and decision rule
generation without prior knowledge. Rough sets provide the
mechanism to find the minimal set of attributes required to
classify the training samples. This minimal set of attributes is
called reduct and contains the same knowledge as the original
set of attributes in a given information system. Therefore,
reducts can be used to obtain different classifiers. Wang et al.
[17] present a framework for a systematic study of the rough
set theory. Various views and interpretations of the theory
and different approaches to study the theory are discussed.
The relationships between the rough sets and other theories,
such as fuzzy sets, evidence theory, granular computing, for-
mal concept analysis, and knowledge spaces, are examined.
Cost of disease prediction and diagnosis can be reduced by
applying machine learning and data mining methods. Dis-
ease prediction and decision-making play a significant role in

medical diagnosis. Udhaya Kumar and Hannah Inbarani [18]
put forward a novel neighborhood rough set classification
approach to deal with medical datasets. Experimental result
of the proposed classification algorithm is compared with
other existing approaches such as rough set, 𝐾th-nearest
neighbor, support vector machine, BP NN, and multilayer
perceptron to conclude that the proposed approach is a
cheaperway for disease prediction anddecision-making. Fea-
ture Selection (FS) is a solution that involves finding a subset
of prominent features to improve predictive accuracy and
to remove the redundant features. Thus, the learning model
receives a concise structure without forfeiting the predictive
accuracy built by using only the selected prominent features.
Therefore, nowadays, FS is an essential part of knowledge dis-
covery. Inbarani et al. [19] proposed new supervised feature
selection methods based on hybridization of Particle Swarm
Optimization (PSO), PSO based Relative Reduct (PSO-RR),
and PSO based Quick Reduct (PSO-QR) presented for the
diseases diagnosis, in order to seek to investigate the utility
of a computer-aided diagnosis in the task of differentiating
malignant nodules frombenign nodules based on single thin-
section CT image data. In Shah et al. [20], CT images of soli-
tary pulmonary nodules were contouredmanually on a single
representative slice by a thoracic radiologist. Two separate
contours were created for each nodule, one including only the
solid portion of the nodule and one including any ground-
glass components. For each contour, 75 features were calcu-
lated that measured the attenuation, shape, and texture of the
nodule.These features were then input into a feature selection
step and four different classifiers to determine if the diagnosis
could be predicted from the feature vector. Hassanien [21]
discuss a hybrid scheme that combines the advantages of
fuzzy sets and rough sets in conjunction with statistical
feature extraction techniques. An application of breast cancer
imaging has been chosen and hybridization scheme have
been applied to see their ability and accuracy to classify the
breast cancer images into two outcomes: cancer or noncancer.

Based on the above reasons, a pulmonary nodule detec-
tion model based on rough set (RS) feature-level fusion and
SVM is proposed in this paper. To overcome the first afore-
mentioned disadvantage, the shape feature, intensity feature
and texture feature are extracted. For shape feature, three new
3-dimensional features, namely, External Spherical Volume
(ESV), Surface-Center Distance Standard Deviation (SCD-
STD), and External Rectangle Cross Line Distance (ERCLD)
are proposed. For intensity feature, three new 3-dimensional
features, namely intensity gradient (from inside to outside),
Laplace Divergence Mean (LDM), and Laplace Divergence
Distance (LDD) are proposed. Regarding feature description,
two-dimensional texture feature, three-dimensional shape
feature, and intensity feature are used for quantification.With
regard to the second aforementioned disadvantage, rough set
feature-level fusion is adopted since it can fully retain the
properties of the features without prior knowledge. Finally,
a grid optimizationmodel is employed to optimize the kernel
function of support vector machine (SVM), which is used to
conduct the recognition and detection of pulmonary nodules.
In order to verify the validity and stability, advantages of
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the model, four groups of comparative experiments are per-
formed in this paper, that is, model validation experiments
before and after rough set reduction, model stability experi-
ments before and after rough set reduction, validation exper-
iments of the superiority of the rough set feature-level fusion
model, and comparative experiments with other pulmonary
nodule detection models to compare the performance. The
experimental results show that the method proposed in this
paper can improve, to a certain extent, the rationality of fea-
ture structure and compactness of feature expression, thereby
improving the detection accuracy of pulmonary nodules.

2. Related Theory

The description of ROI features is determined by both
its comprehensiveness (features cannot be “observed” with
“multiperspective” approach if the features amount is too
little) and the accuracy of characterization (more quantized
values diverged from the real information will cause a low
feature discrimination). A large number of noise information
sets will reduce the ROI feature extraction accuracy and affect
the final results of detection. Therefore, for comprehensive
and accurate expression of the morphological structure of
ROI and local features, six new 3-dimensional features are
proposed based on the analysis of ROI for lung CT image.
These new 3-dimensional features are used to qualitatively
analyze and quantitatively characterize the lesions from 2-
dimensional and 3-dimensional perspectives in combination
with other shape features, intensity features, texture features.

2.1. Pulmonary Nodules Features in CT Image

2.1.1. Shape Characteristics. Shape characteristics analyze the
spatial distribution of gray values, by computing local features
at each point in the image. Shape feature is the most intuitive
visual feature, which can be used to describe themainmedical
signs of CT image of pulmonary nodule ROI, such as nodule
sign, lobulation sign, spinous process sign, vacuole sign, and
spicule sign, from the perspectives of geometric shape, edge
roughness, and topology structure. In this paper the extracted
components of the shape features mainly include perimeter,
area, volume, roundness, rectangularity, elongation, Euler
number, Harris, Hu moment, ESV, SCDSTD, and ERCLD.
Here some features are given [22]:

(1) Area

𝑆 =
𝑁

∑
𝑥=1

𝑀

∑
𝑦=1

𝑓 (𝑥, 𝑦) , (1)

where 𝑓(𝑥, 𝑦) is the pixels of the target and𝑀 and𝑁 are the
length and width, respectively.

(2) Perimeter

𝐶 =
𝑀

∑
𝑖=1

𝑁

∑
𝑗=1

𝑝 (𝑖, 𝑗) , (2)

where 𝑝(𝑖, 𝑗) is the pixels of the target edge and𝑀 and𝑁 are
the length and width, respectively.

(3) Circularity

𝑅0 =
𝐶2

4𝜋𝑆
. (3)

Circularity describes object shape that is close to the
degree of circular, where 𝑆 is the area of the target region and
𝐶 is circumference of the target region. 0 < 𝑅0 < 1 and 𝑅0
value reflects the complexity of the measurement boundary;
the shape is more complex and the 𝑅0 value is more smaller.

(4) Rectangularity

𝑅 = 𝑆
(𝐻 ∗𝑊)

, (4)

where 𝑆 is the area of the target region and𝐻 and,𝑊 are the
length and width, respectively.

(5) Elongation

𝐸 = min (𝐻,𝑊)
max (𝐻,𝑊)

. (5)

Elongation can distinguish different shapes of the images
(such as circle, square, ellipse, thin and long, and short and
wide), where𝐻 and𝑊 are the length and width, respectively.

(6) Euler Number

𝐸 = 𝐶 − 𝐻, (6)

where 𝐶 is the number of connection parts and 𝐻 is the
number of holes.

(7) External Spherical Volume (ESV). ESV is the ratio of each
ROI 𝐴 𝑖 (maximum diameter is dim(𝐴 𝑖)) to the External
Spherical Volume VS(𝐴 𝑖) extracted from three-dimensional
CT image, which reflects the similarity between the region
and the sphere, as shown in Figure 1(b).

Volume (VS (𝐴 𝑖)) =
4
3
× 𝜋 × (dim

2
)
3

𝐸1 (𝐴 𝑖) =
Volume (𝐴 𝑖)

Volume (VS (𝐴 𝑖))
.

(7)

(8) Surface-Center Distance STandard Deviation (SCDSTD).
SCDSTD is the coordinate distance standard deviation of
each individual element 𝐶(𝑆𝑖) and regional center 𝐶cen(𝐴 𝑖)
from the surface of each ROI; its value also describes the
similarity with sphere of ROI. If the value is 0, 𝐸2(𝐴 𝑖) is
a standard sphere. With the increase in 𝐸2(𝐴 𝑖) value, the
magnitude of the deviation from the sphere in the region
increases, as shown in Figure 1(c).

𝐸2 (𝐴 𝑖) = std(
󵄩󵄩󵄩󵄩𝐶 (𝑆𝑖) − 𝐶cen (𝐴 𝑖)

󵄩󵄩󵄩󵄩
mean (󵄩󵄩󵄩󵄩𝐶 (𝑆𝑖) − 𝐶cen (𝐴 𝑖)

󵄩󵄩󵄩󵄩)
) . (8)

(9) External Rectangle Cross Line Distance (ERCLD). ERCLD
is the distance from center voxel𝐶cen(𝐴 𝑖) of ROI to the center
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Figure 1: Three-dimensional character sketch.

dim(𝐿 𝑖) (𝑖 = 1, 2, . . . , 12) of its 12 intersecting lines, which
may indicate that the regional voxel is evenly distributed in
the rectangular body, as shown in Figure 1(d).

𝐸3 (𝐴) =
󵄩󵄩󵄩󵄩mean (𝐶cen (𝐴 𝑖) − 𝐶cen (dim (𝐿 𝑖)))

󵄩󵄩󵄩󵄩
mean (𝐶cen (dim (𝐿 𝑖)))

. (9)

2.1.2. Hu Moment Characteristics. Moments and the related
invariants have been extensively analyzed to characterize the
patterns in images. The moment invariants are independent
of position, size, and orientation but also independent of
parallel projection. Hu [23] was the first person to prove the
central moment invariants. The central geometric moment
invariants are derived based upon algebraic invariants,
including six absolute orthogonal invariants and one skew
orthogonal invariant. The moment invariants have been
proved to be the adequatemeasures for tracing image patterns
about the images translation, scaling, and rotation.

Hu moment invariants define seven values, computed by
normalizing central moments through order three, which
are invariant to object scale, position, and orientation, and a
large number of papers that have significant contribution to

the application of Hu moment. Two-dimensional moments
of a digitally sampled 𝑀 ∗ 𝑁 image that has gray function
𝑓(𝑥, 𝑦) (𝑥 = 1, 2, . . . ,𝑀, 𝑦 = 1, 2, . . . , 𝑁) are given as

𝑀𝑝,𝑞 =
𝑀

∑
𝑥=1

𝑁

∑
𝑦=1

𝑥𝑝𝑦𝑞𝑓 (𝑥, 𝑦) 𝑝, 𝑞 = 1, 2, 3, . . . . (10)

The moments 𝑓(𝑥, 𝑦) translated by an amount (𝑎, 𝑏) are
defined as

𝑥 = 𝑚10
𝑚00

,

𝑦 = 𝑚01
𝑚00

𝜇𝑝,𝑞 =
𝑀

∑
𝑥=1

𝑁

∑
𝑦=1

(𝑥 − 𝑥)𝑝 (𝑦 − 𝑦)𝑞 𝑓 (𝑥, 𝑦)

𝑝, 𝑞 = 1, 2, 3, . . . .

(11)
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When a scaling normalization is applied, the central
moments change as

𝜂𝑝,𝑞 =
𝜇𝑝,𝑞
𝜇𝛾00
, 𝛾 = (

(𝑝 + 𝑞)
2

) + 1. (12)

In terms of the central moments, the seven moments are
given as

𝐶1 = 𝜂20 + 𝜂02

𝐶2 = (𝜂20 − 𝜂02)
2 + 4𝜂211

𝐶3 = (𝜂30 − 3𝜂12)
2 + (3𝜂21 − 𝜂03)

2

𝐶4 = (𝜂30 + 𝜂12)
2 + (𝜂03 + 𝜂21)

2

𝐶5 = (𝜂30 − 3𝜂12) (𝜂30 + 𝜂12)

⋅ [(𝜂30 + 𝜂12)
2 − 3 (𝜂03 + 𝜂21)

2] + (3𝜂21 − 𝜂03)

⋅ (𝜂21 + 𝜂03) [3 (𝜂30 + 𝜂12)
2 − (𝜂03 + 𝜂21)

2]

𝐶6 = (𝜂20 − 𝜂02) [(𝜂30 + 𝜂12)
2 − (𝜂03 + 𝜂21)

2]

+ 4𝜂11 (𝜂30 + 𝜂12) (𝜂21 + 𝜂03)

𝐶7 = (3𝜂21 − 𝜂03) (𝜂30 + 𝜂12)

⋅ [(𝜂30 + 𝜂12)
2 − 3 (𝜂03 + 𝜂21)

2] + (3𝜂12 − 𝜂30)

⋅ (𝜂21 + 𝜂03) [3 (𝜂30 + 𝜂12)
2 − (𝜂03 + 𝜂21)

2] .

(13)

Hu 7-moment invariants varywidely, in order to compare,
using logarithmic function to compress data, and hence the
actual invariants moment features are 𝐶󸀠𝐾:

𝐶𝐾 =
󵄨󵄨󵄨󵄨󵄨log10

󵄨󵄨󵄨󵄨󵄨𝐶
󸀠
𝐾

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨 𝐾 = 1, 2, . . . , 7. (14)

The amended moment invariant features possess transla-
tion invariance, rotational invariance, and scale invariance.

2.1.3. TextureCharacteristics. Tamura texture features, Tamura
texture based on human visual perception in psychological
research, are proposed by Tamura in 1978. Six components of
Tamura texture feature correspond with 6 properties in psy-
chology, three of themare coarseness, contrast, anddirection-
ality, which have the good application value in the texture
synthesis, image recognition, and so on.

Texture is the gray distribution which appears repeatedly
in the space position, so there are some relationships between
two pixels at some distance from each other in image space,
called gray spatial correlation properties in gray image.
GLCM is a common method by studying the relevant rela-
tionship of gray image.

2.1.4. Intensity Features. Gray statistical feature is a quantita-
tivemethod to describe the basic features of two-dimensional
image region; it is called intensity feature from three-dimen-
sional perspective [16]. In this paper, the extracted com-
ponents of intensity features include the mean intensity,

intensity variance, maximum and minimum intensity dif-
ference, skewness, kurtosis, intensity gradient (from inside
to outside), Laplace Divergence Mean (LDM), and Laplace
Divergence Distance (LDD).

(1) Intensity Gradient (from Inside to Outside). For ROI 𝐴 𝑖
with the voxel 𝑆𝑖 volume greater than 0, morphological
erosion processing is performed continuously and the ratio of
the mean of the excluded area of each erosion processing to
the mean of the last operation (initial value is 0) is calculated
until the ratio is zero. Consider the following equation where
𝑛 is the number of operations.

𝐸4 (𝐴 𝑖) =
𝐾
𝑛
. (15)

(2) Laplace Divergence Mean (LDM). According to the
Laplacian convolution results with the original CT image,
it is found that the nodule surrounding area with smaller
gray value difference has a significant different divergence.
Therefore, calculation of Laplace divergence is helpful to
distinguish pulmonary nodules from interfering impurities.

𝐸5 (𝐴 𝑖) = mean (𝐴 𝑖 × La) . (16)

(3) Laplace Divergence Distance (LDD). The difference
between the maximum and minimum values of the Laplace
divergence values is used to describe the range of regional
divergence.

𝐸6 (𝐴 𝑖) = max (𝐴 𝑖 × La) −min (𝐴 𝑖 × La) . (17)

Table 1 shows the feature set of 42 features based on the
above feature description of ROI. To facilitate subsequent
tests, features are numbered in the order as showed in
Table 1; that is, the shape features are numbered fs1–fs18, the
intensity features are numbered fi1–fi8, and texture features
are numbered ft1–ft16, respectively.

2.2. Rough Set and Attribute Reduction. Rough set theory
(RST), proposed by Pawlak in 1982, is one of the effective
mathematical tools for processing fuzzy and uncertainty
knowledge. Nowadays, RST has been applied to a variety
of fields such as artificial intelligence, data mining, pattern
recognition, and knowledge discovery. Rough set is founded
on the assumption that with every object of the universe
of discourse some knowledge is associated. Objects char-
acterized by the same information are similar in view of
the available information about them. The indiscernibility
relation generated in this way is the mathematical basis of
rough set theory. Any set of all indiscernible objects are called
an elementary set and form a basic granule of knowledge
about the universe. Any union of some elementary sets is
referred to as a crisp set, otherwise the set is rough set.

Definition 1. An information system 𝑆 is a quadruple 𝑆 =
(𝑈, 𝐴, 𝑉, 𝑓), where 𝑈 is a nonempty and finite set of objects,
𝐴 is a nonempty and finite set of attributes, 𝑉 fl ⋃𝑉𝑎 with
𝑉𝑎 being the domain of attribute 𝑎, and 𝑓 is an information
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Table 1: ROI feature set.

Feature type Feature vectors Dimensionality

Shape
features (fs)

Perimeter, area, volume,
roundness, rectangularity, length,
Euler’s number, ESV, SCDSTD,
ERCLD, Hu moment

18

Intensity
features (fi)

Mean intensity, intensity
standard variance,
maximum-minimum intensity
difference value of variance,
skewness, kurtosis, intensity
gradient (from inside to outside),
LDM, LDD

8

Texture
features (ft)

Tamura texture features
(contrast, direction, roughness),
GLCM (angular second moment,
moment of inertia, torque deficit,
sum mean, variance, sum
variance, difference variance,
entropy, sum entropy, differential
entropy, information measure,
correlation coefficient, maximum
correlation coefficient)

16

function such that𝑓(𝑥, 𝑎) ∈ 𝑉𝑎 for every 𝑥 ∈ 𝑈 and every 𝑎 ∈
𝐴. A decision system is an information system (𝑈, 𝐶∪𝐷,𝑉, 𝑓)
with𝐶∩𝐷 = B, where𝐶 and𝐷 are called the conditional and
decision attribute sets, respectively.

For a subset 𝑃 of 𝐴, let us define the corresponding
equivalence relation as

IND (𝑃) = {(𝑥, 𝑦) ∈ 𝑈 × 𝑈 | 𝑓 (𝑥, 𝑎)

= 𝑓 (𝑦, 𝑎) for any 𝑎 ∈ 𝑃}
(18)

and denote the equivalence class of IND(𝑃) which contains
the object 𝑥 ∈ 𝑈 by [𝑥]𝑃; that is,

[𝑥]𝑃 = {𝑦 ∈ 𝑈 | (𝑥, 𝑦) ∈ IND (𝑃)} . (19)

The factor set of all equivalence classes of IND(𝑃) is
denoted by 𝑈/𝑃; that is, 𝑈/𝑃 = {[𝑥]𝑃 | 𝑥 ∈ 𝑈}.

As well known, attribute reduction is one of the key
issues in RST. It is performed in information systems by
means of the notion of a reduct based on a specialization
of the notion of independence due to Marczewski. Up to
now, much attention has been paid to this issue and many
different methods of attribute reduction have been proposed
for decision systems. For example, the reduction approaches
are, respectively, based on partition, discernibility matrix,
conditional information entropy, positive region, and ant
colony optimization approach.

Definition 2. Let 𝑆 = (𝑈, 𝐴, 𝑉, 𝑓) be an information system
and 𝑃 ⊆ 𝐴. For a subset𝑋 of 𝑈, 𝑅𝑃(𝑋) = {𝑥 ∈ 𝑈 | [𝑥]𝑃 ⊆ 𝑋}
and 𝑅𝑃(𝑋) = {𝑥 ∈ 𝑈 | [𝑥]𝑃 ∩ 𝑋 ̸= B} are called 𝑃-lower and
𝑃-upper approximations of𝑋, respectively.

H1

H2

H

r

r

Figure 2: Optimal hyper plane.

Definition 3. Let 𝑆 = (𝑈, 𝐴, 𝑉, 𝑓) be an information system
and let 𝑃 and 𝑄 be two subsets of 𝐴. Then, POS𝑃(𝑄) =
⋃𝑋∈𝑈/𝑄𝑅𝑃(𝑋) is called 𝑃-positive region of 𝑄, where 𝑅𝑃(𝑋)
is the 𝑃-lower approximation of 𝑋.

Definition 4. Let 𝑆 = (𝑈, 𝐴, 𝑉, 𝑓) be a decision system, 𝑎 ∈ 𝐶,
and 𝑃 ⊆ 𝐶. If POS𝐶(𝑄) = POS𝐶\{𝑎}(𝑄), 𝑎 is said to be 𝐷-
dispensable in 𝐶; otherwise, 𝑎 is said to be 𝐷-indispensable
in𝐶. The set of all the𝐷-indispensable attributes is called the
core of 𝑆 and denoted by Core(𝑆). Furthermore, if POS𝑃(𝑄) =
POS𝐶(𝑄) and each of the attributes of 𝑃 is 𝐷-indispensable,
then 𝑃 is called a reduct of 𝑆.

2.3. SVM and Its Optimization. SVM is a pattern recognition
method developed from statistical learning theory based on
the idea of structural risk minimization principle. In the case
of ensuring classification accuracy, SVM can improve the
generalization ability of the learning machine by maximizing
the classification interval. The biggest advantage of SVM
is that it overcomes the overlearning and high dimension
both of which lead to computational complexity and local
extremum problems. A reliable classification model based
on SVM is urgently needed for the study of hospitalization
expenses of patients with gastric cancer.

SVM deals with linearly separable data (Figure 2); the
assumption is that there are data sets 𝑆 = {𝑥1, . . . , 𝑥𝑛} and data
marker 𝐺 = {𝑦1, . . . , 𝑦𝑛}, where 𝑥𝑖 is the input space vector of
the data sample and 𝑦𝑖 records the category of the sample.

The aim of SVM is to find an optimal hyper plane 𝐻 to
separate these two samples andmake the largest interval.The
optimal hyper plane𝐻 is expressed as

𝑤𝑇𝑥 + 𝑏 = 0, (20)

where 𝑤 is the weight vector and 𝑏 is the threshold.
This problem is transformed into the optimal problem of

𝑤 and 𝑏:

min
𝑤,𝑏

𝑟 (𝑤) = 1
2
‖𝑤‖

𝑦𝑖 ((𝑤 ⋅ 𝑥) + 𝑏) ≥ 1, 𝑖 = 1, . . . , 𝑛.
(21)
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In order to simplify the formula, the Lagrange dual is
introduced to meet the requirements of KKT (Karush-Kuhn-
Tucker). The objective function is transformed into

min
𝛼

1
2

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗 (𝑥𝑖 ⋅ 𝑥𝑗) −
𝑛

∑
𝑗=1

𝛼𝑗

s.t.
𝑛

∑
𝑖=1

𝑦𝑖𝛼𝑖 = 0, 𝛼𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛.

(22)

As for the linearly inseparable data, the penalty parameter
𝐶 and relaxation variable 𝜉 are introduced in the constraint
condition, thus the generalization ability of SVM is increased,
and the function is transformed into

min
𝛼

1
2

𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

𝑦𝑖𝑦𝑗𝛼𝑖𝛼𝑗 (𝑥𝑖 ⋅ 𝑥𝑗) −
𝑛

∑
𝑗=1

𝛼𝑗

s.t.
𝑛

∑
𝑖=1

𝑦𝑖𝛼𝑖 = 0, 0 ≤ 𝛼𝑖 ≤ 𝐶,

(23)

where 𝐶 is the artificial setting parameter. According to the
practical experience, the bigger 𝐶, the greater separation
interval. At the same time, it will increase the risk of
generalization.

The final classification function is

𝑓 (𝑥) = sgn{(
𝑛

∑
𝑖=1

𝑎∗𝑖 𝑦𝑖 (𝑥𝑖 ⋅ 𝑥)) + 𝑏
∗} . (24)

For nonlinear classification data, SVM transforms them
into linearly separable data in a high-dimensional space via
nonlinear mapping of kernel function, and the optimal hyper
plane is found in high-dimensional space. The kernel func-
tion which meets the mercer kernel condition corresponding
to the transvection of a spatial transformation is used to
realize the nonlinear transformation of linear classification.

The corresponding kernel function is defined as

𝐾(𝑥𝑖, 𝑥) = (𝜑 (𝑥𝑖) , 𝜑 (𝑥)) . (25)

At this point the final classification function is

𝑓 (𝑥) = sgn{(
𝑛

∑
𝑖=1

𝑎𝑖𝑦𝑖𝐾(𝑥𝑖 ⋅ 𝑥)) + 𝑏} . (26)

Penalty factor 𝐶 and parameter 𝑔 of the kernel function
play an extremely important role in the performance of SVM
classification. In order to obtain the optimal classification
results, grid optimization model is used for optimization in
this paper. In grid optimization model, the parameters to be
searched are expressed in the form of grids in a certain space,
and the optimal parameters are selected by traversing all the
grids. Therefore, grid optimization model has the advantages
of simplicity, convenience, good stability, and easiness to get
the global optimal solution [24]. In the learning process of
SVM, 10-fold cross-validation is used to calculate the kernel

function parameters and penalty coefficient with the optimal
classification performance, which are then applied to the
SVM classifier for recognition and detection of pulmonary
nodules. Finally, sensitivity, specificity, accuracy, and pro-
cessing time are used as indexes to evaluate the detection of
relevant experiments.

3. Pulmonary Nodule Detection Model

In this paper, CT images of 70 cases of patients with pul-
monary nodules are used. The images are firstly segmented
[7] to three different types of pulmonary nodules (solitary
pulmonary nodules or SPN, vascular adhesion pulmonary
nodules or VAPN, and pleural adhesion pulmonary nodules
or PAPN), which are marked by radiologists, as well as a
large number of nonnodular areas, including blood vessels,
bones, and alveoli. Forty-two feature components charac-
terizing ROI are extracted from the 2-dimensional and 3-
dimensional perspectives, including six new 3-dimensional
features proposed in this paper. They are composed of 18
shape features, 8 intensity features, and 16 texture features.
The extracted feature set (identified as the FS) is discretized
and normalized. Feature-level fusion of the improved feature
data is performed for five times using rough set model (since
the reduction of rough set feature subset is not unique, in this
paper, the extracted feature sets are reduced for five times
and are identified as RS1, RS2, RS3, RS4, and RS5). Feature
subset RS1 is used for comparative experiment. Finally, SVM
parameters are optimized using grid optimization model,
and the improved SVM is used in the following four sets
of comparative experiments: comparative analysis of the
effectiveness and stability of classification before and after
rough set reduction of features; comparative analysis of the
recognition performance before and after feature-level fusion
based on rough set or PCA; comparative analysis of the
recognition performance of our proposed method and other
methods. Based on the above views, we present a flow chart
of pulmonary nodule detection model as shown in Figure 3.

4. Results and Discussion

4.1. Experimental Environments. In this paper, the hardware
and software environments are as follows.

Software Environments. Windows 7 OS, the Matlab R2014b,
ImageJ 1.48 u, and LibSVM.

Hardware Environments. Intel Core i5 4670-3.4GHz, 8.0GB
of memory, and 500GB hard disk.

Experimental Data. CT images of 70 cases of patients with
pulmonary nodules are collected as experimental samples,
which are marked by radiologists, with a size of 512 × 512
and a thickness of 2mm. They are composed of 2232 CT
images from 38 cases of patients with solitary pulmonary
nodules (SPN), 17 cases of patients with vascular adhesion
pulmonary nodules (VAPN), and 15 cases of patients with
pleural adhesion pulmonary nodules (PAPN), respectively.
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Figure 3: Flow chart of pulmonary nodule detection model.

Figure 4 shows the representatives of each type of pulmonary
nodules and the corresponding segmentation results.

In this paper, 42-dimensional features of 70 marked
pulmonary nodular areas and 70 randomly selected nonn-
odular areas are extracted. Table 2 shows the 42-dimensional
feature values of the lung nodular and nonnodular areas.
shape features are identified as the fs, intensity features are
identified as the fi, and texture features are identified as the ft.
In order to intuitively understand the distribution of different
feature values and the discrimination comparison, external
sphere volume (ESV) ratio and the standard deviation of

surface-center distance (SCD) are calculated and plotted as
box diagram as shown in Figure 5.

4.2. Feature-Level Fusion Based on Rough Set. In order to
avoid the attribute value of small range of values dominated
by that of large range of values and reduce the complexity
of the statistical computation process, the extracted feature
sets are firstly preprocessed by normalizing data with bigger
difference and linearly mapping the data to [0, 1]. The
preprocessed feature data are then fused for five times using
rough set model. The fusion results are shown in Table 3.
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(a) Original image of SPN (b) Segment result of SPN (c) Original image of VAPN

(d) Segment result of VAPN (e) Original image of PAPN (f) Segment result of PAPN

Figure 4: Pulmonary nodule segmentation results.

Table 2: Feature values of pulmonary nodular areas and nonnodular areas.

Shape features (fs) Intensity features (fi) Texture features (ft)
Nodular areas Nonnodular areas Nodular areas Nonnodular areas Nodular areas Nonnodular areas
95 78 59.06 91.0987 8.3104 5.4016
159 128 14.06 4.4872 12.041 12.5216
284 178 0.5956 −0.39568 0.4303 0.0067
0.6517 0.211 2.7348 1.8669 0.7709 0.7275
0.6961 2.1587 55.1865 14.3481 0.7169 0.9865
0.3529 0.7778 0.5 1 0.8059 5.3894
0 1 13.9598 20.6044 0.1942 0.0487
0.3186 1.0295 729.905 354.6389 0.7708 0.7273
0.0686 1.0197 0.8059 5.3498
0.0042 0.0458 3.5042 5.0971
0.0021 0.0295 0.6514 0.8453
0.0013 0.0268 0.0971 0.6143
0.0005 0.0011 4.4033 82.1862
0 1 0.0691 5.0061
14 9 −0.5785 −0.4245
0.5356 0.5571 2.307 3.2239
0.3072 0.501788
0.1738 0.207122
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Figure 5: Pulmonary nodule area and the pulmonary nodules boxplot. “+” refers to upper and lower bounders of ESV value and SCDSTD
value.

Table 3: Feature reduction based on rough sets.

Feature
subset Reduction results Dimensionality

RS1
fs4, fs16, fs17, fs18, fi2, fi4, fi6, fi7,
fi8, ft2, ft4, ft5, ft6, ft7, ft8, ft9,
ft10, ft11, ft13, ft14, ft15, ft16

21

RS2
fs4, fs9, fs16, fs18, fi1, fi2, fi5, ft2,
ft5, ft6, ft8, ft9, ft10, ft11, ft12, ft13,

ft15
17

RS3
fs9, fs17, fs18, fi1, fi2, fi5, fi7, fi8,
ft2, ft6, ft7, ft8, ft9, ft10, ft11, ft12,

ft14, ft15, ft16
19

RS4
fs9, fs16, fs18, fi1, fi2, fi5, fi7, fi8,
ft5, ft6, ft7, ft8, ft9, ft10, ft11, ft12,

ft14, ft15, ft16
19

RS5
fs9, fs16, fs17, fs18, fi1, fi2, fi4, fi5,
fi7, fi8, ft2, ft5, ft6, ft7, ft8, ft9, ft10,

ft12, ft15, ft16
20

4.3. Pulmonary Nodule Detection with
SVM Based on Grid Optimization

4.3.1. The Model Effectiveness Experiment. Tenfold cross-
validation is used to calculate the accuracy, sensitivity, speci-
ficity, and processing time of classification before and after
rough set reduction (RS1(70 × 21) obtained from experiment
one is used as the data set after reduction), and the recogni-
tion performance of classifier is compared before and after
reduction. The results are shown in Table 4.

Experimental results show that pulmonary nodule
detection accuracy is increased significantly after feature-
level fusion, with a decrease in the missed diagnosis rate,
reflected by the increased sensitivity, and the misdiagnosis
rate, reflected by the increased specificity. The processing
time is also shorter after reduction. These results indicate
that the feature-level fusion of the extracted feature set with

42 dimensionalities based on rough set model is effective,
which not only improves the compactness of the feature set
(to eliminate redundancy and low degree of differentiation
features component), but also corrects the abnormal data of
the feature set, thereby further improving the performance of
pulmonary nodule detection. Table 5 shows the effectiveness
of the five rough set reduction subsets.

4.3.2. The Model Stability Experiment. The feature data of
pulmonary nodules are tested with RS1(70∗21) as the dataset
for classification for five rounds with a different ratio of
training set over testing set of 50/20, 40/30, 35/35, 35/35, or
20/50. Each round of test is carried out with a randomly
selected ratio of training set over testing set and themeanof 10
test results is used as the corresponding accuracy, sensitivity,
specificity, and running time of the model. The results are
shown in Table 6.

The experimental results show that, with the decrease
in the ratio of training set over testing set, the decrease in
the classification accuracy of feature subset after rough set
reduction is not obvious, whereas that of feature set before
rough set reduction is fluctuating to certain extent (Figure 6
is more intuitive).These results indicate that the classification
stability of the feature level fusion model based on rough set
is higher and is less susceptible to the interference of sample
data. Table 7 shows the stability of 5 groups feature subset after
rough set reduction.

4.3.3. The Superiority of Feature-Level Fusion Model Based
on Rough Set. Since PCA is a well-developed model, char-
acterized by simple calculation and easy programming, it
has become the preferred dimension reduction method for
most of the feature-level fusion model in order to analyze
comparatively two types of feature-level fusions. In this paper,
PCA-based feature-level fusion of the extracted feature sets is
performed at the same time, and the tenfold cross-validation
results are shown in Table 8. Figure 7 shows the classification
performance of the two types of feature-level fusion methods
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Table 4: Statistics of effectiveness before and after rough set reduction.

Serial number Accuracy (%) Sensibility (%) Specificity (%) Processing time (s)

Before reduction

1 96.42 92.86 100 1.0610
2 91.96 83.93 100 0.6170
3 95.54 100 91.07 0.5490
4 89.28 100 78.57 0.5630
5 95.54 91.07 100 0.5470
6 98.21 96.43 100 0.5460
7 94.64 89.29 100 0.5460
8 95.53 91.07 100 0.5460
9 91.96 83.93 100 0.5460
10 97.32 100 96.64 0.5300

Mean 94.64 92.86 96.43 0.6051

After reduction (Rs1)

1 100 100 100 0.9370
2 100 100 100 0.4360
3 100 100 100 0.3870
4 100 100 100 0.4210
5 100 100 100 0.4210
6 100 100 100 0.3900
7 100 100 100 0.4060
8 91.67 100 83.33 0.4060
9 100 100 100 0.3740
10 100 100 100 0.3930

Mean 99.17 100 98.33 0.4571
Increase after reduction 4.53 7.14 1.9 0.148

Table 5: Effectiveness of rough set reduction subsets.

Subset Average
accuracy (%)

Average
sensitivity (%)

Average
specificity (%)

Processing
time (s)

RS1 99.17 100 98.33 0.4571
RS2 97.5 96.67 98.33 0.4650
RS3 99.17 100 98.33 0.4656
RS4 100 100 100 0.4731
RS5 98.33 98.33 98.33 0.4850
Mean 98.83 99 98.66 0.4672

(feature subset RS1 fromTable 3 is used, and the running time
is 100 × actual time).

Experimental results show that various performance
indicators of the feature-level fusion model based on rough
set are better than those based on PCA, indicating that the
rough set is more suitable than PCA to eliminate redundant
information.

4.3.4. Comparison with Other Pulmonary Nodule Detection
Methods. Pulmonary nodule detection accuracy and False
Positives per scan (FP/s) are used as the evaluation indexes
of pulmonary nodule detection methods to compare and
analyze the method proposed in this paper and other five

92
93
94
95
96
97
98
99

100
101

50/20 40/30 35/35 30/40 20/50

Before reduction
After reduction

Figure 6: Comparative results of feature subsets before and after
rough set reduction.

detectionmethods of pulmonary nodules (the optimal detec-
tion accuracy is used for all detection methods). The results
are shown in Table 9 (Pr: private database; L: LIDC).

Experimental results show that the proposed method is
superior to the other pulmonary nodule detection methods
to a certain extent, indicating that this method not only
improves the comprehensiveness and accuracy of the feature
description of ROI by supplementing and improving the
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Table 6: Stability statistics of rough set reduction subsets.

Training
set/testing set Accuracy (%) Sensitivity (%) Specificity (%) Running time (s)

Before fusion

50/20 97.35 94.71 100 0.4873
40/30 96.53 93.08 98.32 0.3846
35/35 95.83 92.39 97.79 0.4254
30/40 96.16 95.58 96.74 0.3560
20/50 94.88 94.63 95.86 0.4236
Mean 96.15 94.08 97.742 0.4154

After fusion (Rs1)

50/20 99.71 99.41 100 0.2684
40/30 98.96 99.58 98.46 0.2568
35/35 98.65 99.23 98.08 0.2382
30/40 98.37 98.60 98.14 0.2646
20/50 98.25 97.67 98.84 0.2636
Mean 98.79 98.84 98.70 0.2583

Table 7: Classification performance of rough set reduction subset.

Subset
Average
accuracy

(%)

Average
sensitivity

(%)

Average
specificity

(%)

Running
time (s)

RS1 99.17 100 98.33 0.2583
RS2 97.5 96.67 98.33 0.2870
RS3 99.17 100 98.33 0.2560
RS4 100 100 100 0.2531
RS5 98.33 98.33 98.33 0.2656
Mean 98.834 99 98.66 0.2620

Table 8: Classification performance of feature reduction based on
PCA.

Serial
number

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

10 ×
running
time (s)

1 91.67 83.33 100 0.9970
2 96.74 93.48 100 0.4830
3 96.74 93.48 100 0.4880
4 98.91 100 97.83 0.4950
5 93.48 86.96 100 0.4950
6 96.74 100 93.48 0.5140
7 96.74 100 93.48 0.5120
8 94.57 89.13 100 0.4890
9 97.83 95.65 100 0.4990
10 95.65 93.48 97.83 0.5180
Mean 95.91 93.55 98.26 0.5490

feature components, but also improves the firmness of the
feature set by integrating the concept of feature-level fusion
based on rough set to exclude the redundant features and data
with irregular information, thereby improving the overall
pulmonary nodule detection performance.

Table 9: Comparison of the performance of different lung nodule
detection methods.

Author Database Nodule
numbers

Accuracy
(%) FP/s

Santos et al.
[11] L 260 88.4 1.17

Magalhães
Barros Netto
et al. [12]

L 48 90.65 0.138

Ye et al. [13] Pr 220 90.2 8.2
Tan et al. [14] L 172 87.5 4
Cascio et al.
[16] L 148 97 6.1

Our method Pr 70 99.17 0.47

Rough set

Accuracy Sensitivity Specificity Running time

PCA

0
20
40
60
80

100
120

Figure 7: Comparison of two feature-level fusion models.

5. Conclusions

In this paper the research status quo of pulmonary nodule
detection methods is analyzed and a pulmonary nodule
detection model is proposed based on rough set based
feature-level fusion. To address the issues that the feature
description is insufficient and the characterization is inac-
curate in the process of feature extraction, six new 3D
features, in combination with other 2D and 3D features, are
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proposed to extract and quantify the feature information of
ROI in this model. A rough set based feature-level fusion
is employed to reduce the dimensionality of the feature sets
since there is redundant information in the extracted high-
dimensional features. In addition, a grid optimization model
is adopted to optimize the SVM kernel function, which
is used as the classifier for detection and recognition of
pulmonary nodule. Finally, the pulmonary nodule detection
performance of the proposed method is verified with four
groups of comparative experiments.The experimental results
show that the proposed pulmonary nodule detectionmethod
based on rough set based feature-level fusion is effective, with
the classification accuracy that can basicallymeet the require-
ments of medical imaging for the detection of pulmonary
nodules and therefore is of great value for the detection of
pulmonary nodules and auxiliary diagnosis of lung cancer.
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We propose a novel segmentation method based on regional and nonlocal information to overcome the impact of image intensity
inhomogeneities and noise in human brain magnetic resonance images. With the consideration of the spatial distribution of
different tissues in brain images, ourmethoddoes not need preestimation or precorrection procedures for intensity inhomogeneities
and noise. A nonlocal information based Gaussianmixture model (NGMM) is proposed to reduce the effect of noise. To reduce the
effect of intensity inhomogeneity, the multigrid nonlocal Gaussian mixture model (MNGMM) is proposed to segment brain MR
images in each nonoverlapping multigrid generated by using a new multigrid generation method. Therefore the proposed model
can simultaneously overcome the impact of noise and intensity inhomogeneity and automatically classify 2D and 3DMR data into
tissues of white matter, gray matter, and cerebral spinal fluid. To maintain the statistical reliability and spatial continuity of the
segmentation, a fusion strategy is adopted to integrate the clustering results from different grid. The experiments on synthetic and
clinical brain MR images demonstrate the superior performance of the proposed model comparing with several state-of-the-art
algorithms.

1. Introduction

Magnetic resonance imaging (MRI) is a helpful method for
diagnosis of brain diseases, such as Alzheimer’s disease and
schizophrenia. Accurate tissues segmentation, including gray
matter (GM), white matter (WM), and cerebrospinal fluid
(CSF), plays an important role in clinical practice and hence
has attracted extensive research attention.

Many methods have been proposed for MR image seg-
mentation in the past several decades. These approaches
can be classified in terms of different criteria. For example,
edge based methods [1, 2], region based methods [3, 4],
and clustering based methods [5–7]. Unfortunately, most
segmentation methods are hindered by various imaging
artifacts such as noise and intensity inhomogeneities.

Intensity inhomogeneity, also known as bias field, arises
from the imperfections of the image acquisition process and

changes the absolute intensity for a given tissue class in
different locations, which usually makes the intensity distri-
bution within a particular tissue class flatter. Most traditional
intensity based methods cannot obtain satisfactory results
due to the impact of intensity inhomogeneity.

The observed MRI signal 𝑌 is the product of the true
signal𝑋 generated by the underlying anatomy and a spatially
varying field factor 𝐵 and an additive noise𝑁:

𝑌𝑖 = 𝑋𝑖𝐵𝑖 + 𝑁𝑖 ∀𝑖 ∈ {1, 2, . . . ,𝑀} , (1)

where 𝑌𝑖, 𝑋𝑖, 𝐵𝑖, and 𝑁𝑖 are the observed intensity, true
intensity, bias field, and noise at the 𝑖th voxel, respectively.
𝑀 is the total number of pixels in the MR image. Many
techniques [6, 8, 9] often ignore the noise and take the
logarithmic transform on both sides of (1):

log (𝑌) = log (𝑋) + log (𝐵) . (2)
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Manymethods have been proposed to correct or estimate
intensity inhomogeneities. Collewet et al. proposed amethod
based on measuring the coil sensitivity functions [8]. Based
on the observation that the bias field is smooth, another group
of methods overcome the impact of intensity inhomogeneity
without estimating the bias field [9, 10]. However, most of
them may lose edge information [11].

In this paper, we first propose an improved nonlocal
Gaussian mixture model by introducing the nonlocal infor-
mation into GMM model to reduce the effect of the noise.
Then, a new multigrid generation method is presented, and
we simplify the NGMM into a local version to eliminate
the effect of the bias field and the intensity variation of
intratissues. Finally, we propose a fusion strategy to integrate
the results from different local regions. The experiments on
both synthetic and clinical brain MR images show that our
method can obtain more accurate results.

2. Nonlocal Gaussian Mixture Model

Gaussian mixture model (GMM) has been widely used in
many applications due to its excellent approximation prop-
erties. Suppose a MR image has a mixture of 𝐾 components,
the mixture density function of pixel 𝑖 can be written as

𝑝 (𝑌𝑖 | 𝜃) =
𝐾

∑
𝑘=1

𝜋𝑘𝑝 (𝑌𝑖 | 𝜃𝑘) , (3)

where 𝜋𝑘 is the mixture weights and 𝜃 = (𝜃1, 𝜃2, . . . , 𝜃𝐾)
is the parameter vector. 𝑝(𝑌𝑖 | 𝜃𝐾) is a standard Gaussian
distribution of the 𝑘th component and 𝜃𝑘 = (𝜇𝑘, 𝜎𝑘) contains
the parameters of the Gaussian distribution. 𝜇𝑘 and 𝜎𝑘 are the
mean and variance, respectively. Then the entire distribution
can be written as

𝑝 (𝑌 | 𝜃) =
𝑀

∏
𝑖=1

𝑝 (𝑌𝑖 | 𝜃) = 𝐿 (𝜃 | 𝑌) . (4)

The problem is how to find the best parameters 𝜃:

𝜃∗ = argmax 𝐿 (𝜃 | 𝑌) . (5)

Equation (5) can be calculated by using the expectation-
maximization (EM) method [7]. In the E-Step, the algorithm
calculates the expected value of the 𝑘th weight:

𝑝 (𝑘 | 𝑌𝑖, 𝜃) =
𝜋𝑘𝑝𝑘 (𝑌𝑖 | 𝜃)

∑𝐾𝑗=1 𝜋𝑗𝑝𝑗 (𝑌𝑖 | 𝜃)
,

𝛼𝑘 =
𝑁

∑
𝑖=1

𝑝 (𝑘 | 𝑌𝑖, 𝜃) .

(6)

In the M-Step, the parameters of the 𝑘th Gaussian
distribution can be calculated:

𝜋𝑘 =
1
𝑁
𝛼𝑘,

𝜇𝑘 =
∑𝑁𝑖=1 𝑌𝑖𝑝 (𝑘 | 𝑌𝑖, 𝜃)
∑𝑁𝑖=1 𝑝 (𝑘 | 𝑌𝑖, 𝜃)

,

𝜎𝑘 =
∑𝑁𝑖=1 (𝑌𝑖 − 𝜇𝑘)

2 𝑝 (𝑘 | 𝑌𝑖, 𝜃)
∑𝑁𝑖=1 𝑝 (𝑘 | 𝑌𝑖, 𝜃)

.

(7)

Based on the initialization, 𝛼 and 𝜃 are calculated itera-
tively until the stop criteria are reached. Finally, the pixel 𝑖 can
be classified into the 𝑘th class when {𝑘 | 𝑝(𝑘 | 𝑌𝑖, 𝜃) > 𝑝(𝑗 |
𝑌𝑖, 𝜃), 𝑗 ∈ {1, 2, . . . , 𝐾} 𝑗 ̸= 𝑘}. From (3), we can find that
the GMM only considers the intensity distribution, which
makes the method sensitive to the intensity inhomogeneity
and noise.

In order to reduce the effect of the intensity inhomo-
geneity, Wells et al. [6] proposed a method to simultaneously
estimate the bias field and segment the image into different
classes. However, the method only addressed the bias field
without analyzing the inhomogeneities in inner tissues. In
order to ensure the smoothness of the bias field, a low-pass
filter is utilized to convolve the bias field, which makes the
estimated bias field inaccurate. Furthermore, the method is
sensitive to the noise.

In order to reduce the effect of the noise and preserve
more detailed information, we improve the Gaussianmixture
model by using nonlocal information.The nonlocal informa-
tion has been widely used for denoising purposes [12, 13].
Following the idea of nonlocal means method [12], we use
the nonlocal information to adapt 𝑝(𝑘 | 𝑌, 𝜃) which can be
defined as

NL (𝑝 (𝑘 | 𝑌𝑖, 𝜃)) =
𝑁

∑
𝑗=1

𝑊(𝑖, 𝑗) 𝑝 (𝑘 | 𝑌𝑗, 𝜃) ,

𝑘 = 1, . . . , 𝐾,

(8)

where 𝑊(𝑖, 𝑗) is the weight function based on the similarity
between the neighbor patch of each neighbor pixel to that
of center pixel and satisfies the conditions 0 ≤ 𝑊(𝑖, 𝑗) ≤ 1
and ∑𝑁𝑗=1𝑊(𝑖, 𝑗) = 1. For pixel 𝑖 and its neighbor pixel 𝑗, the
weight function is defined as

𝑊(𝑖, 𝑗) = 𝑒−‖Δ 𝑖−Δ 𝑗‖
2
2,𝑟/ℎ
2

∑𝑁𝑗=1 𝑒−‖Δ 𝑖−Δ 𝑗‖
2
2,𝑟/ℎ
2
, (9)

where Δ 𝑖 and Δ 𝑗 are the neighbor patches around pixels
𝑖 and 𝑗 with width 2 × 𝑝 + 1. Broadly speaking, if the
neighbor patches of two pixels 𝑖 and 𝑗 are similar, it is
more probable that these pixels belong to the same tissue,
and the corresponding values of weight function would be
higher. Conversely, if these two pixels are quite different, the
value of the weight function should be small. ℎ acts as a
filtering parameter to control the decay of the exponential
function. ‖ ⋅ ‖ is the Euclidean distance and 𝑟 is the standard
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deviation of the Gaussian kernel. Due to the fast decay of
the exponential kernel, large distances between estimated
patches lead to nearly zero weights. Essentially, the weight
function aims to take advantage of the redundancy present in
natural structures. Therefore, by using nonlocal information,
the nonlocal Gaussianmixture model can reduce the effect of
noise and preserve details of the edges.

3. Multigrid Nonlocal Gaussian Mixture
Method (MGMM)

Without considering the intensity inhomogeneity, the non-
local Gaussian mixture model can only reduce the effect of
noise but cannot obtain satisfactory results for the image con-
taining severe intensity inhomogeneities. Zhu and Jiang [14]
proposed a multicontext fuzzy clustering method (MCFC)
to reduce the effect of intensity inhomogeneity by using
fuzzy clustering method on each nonoverlapping regions
and a fusion strategy to integrate the clustering outcomes
form different regions. However, this method is sensitive
to noise and it only uses traditional multigrid generation
method, which makes the method inaccurate. Following
the idea of MCFC, we improve the GMM by using the
nonoverlappingmultigrid.This idea is based on the following
four assumptions:

(1) Thebrain image has been skull-stripped. In this paper,
we use the cut based method [15].

(2) Bias field 𝐵 is smooth and slowly varying.
(3) Within each grid, the number of clustersmust equal𝐾

and there are considerable numbers of pixels in each
tissue class.

(4) Within a grid, all pixels of the same tissue have similar
true intensities.

The brain image without skull only has cerebrospinal
fluid, gray matter, and white matter. Then, we set 𝐾 = 3
with assumption (3). The bias field is smooth and slowly
varying, which makes it probable that the bias field values
in small local region be regarded as constant. Then the
multigrid segmentation method is less sensitive to the bias
field. However, each pixel is processed only in its single local
grid, which makes the method very sensitive to the size
of the grid and unable to preserve the statistical reliability
and spatial continuity of segmentation results. This can be
illustrated in Figure 1.

Figure 1 shows the segmentation results of GMM and
MGMM applied on a synthetic 3 T MR image, which were
created by using the MRI simulator (Brain Imaging Center at
theMontreal Neurological Institute, McGill University, Mon-
treal). There are many advantages for using these synthetic
images rather than real image data volumes for validating
segmentation methods.The simulator can provide full three-
dimensional data volumes which have been simulated using
three sequences (T1-, T2-, and PD-weighted) and a variety
of slice thicknesses, noise levels, and intensity inhomogeneity
levels, providing the ground truth of the image data. In this
paper, the parameters of the simulated data sets are as follows:

Phantom: normal; slice thickness: 1mm; scan technique:
SFLASH; TR = 18msec; flip angle = 30 degrees; TE = 10msec.
The dimension of the image data sets is 181 × 217 × 181. The
parameters of Figure 1(a) are as follows: noise level 0% and
INU (RF) level 100%. Figure 1(a) shows the initial image,
which is uniformly divided into 4 × 4 nonoverlapping grids.
Figure 1(b) shows the results of GMM. Due to the effect
of the bias field, some voxels of WM and CSF have been
misclassified into GM. Figures 1(c)–1(e) are segmentation
results of MGMM when the image is divided into 3 × 3, 4
× 4, and 5 × 5 grids, respectively.

It can be seen from the grids (2, 2) and (3, 2) in Figure 1(c)
or from the grids (3, 2) and (4, 2) in Figure 1(d) that
the variation of intensity distributions of neighbor patches
would, more or less, lead to discontinuities across the grids’
boundaries. Furthermore, when the bias field is severe, grids
with large size can satisfy assumption (3); however, this would
make the method sensitive to the bias field and does not
satisfy assumption (4). It is hard to hold assumption (3) in
some grids when the size of the grids is small. For example,
there are noWM pixels in the grid (3, 1) of Figure 1(e), which
makes some pixels of GM misclassified into WM. It can also
be found in grid (3, 2) of Figure 1(e) that tissues of WM and
GM predominate the grid, which yields a deviant intensity
distribution far from that typical of the brain. The GMM
misclassifies someGMpixels with relatively low intensity into
the class of CSF.

3.1. New Multigrid Generation Method. In this paper we
present a new method to generate the multigrid. Firstly, the
boundary of the brain needs to be found, because there are a
large number of pixels belonging to the background in brain
MR images, which usually affect the accuracy of segmenta-
tionmethods. Secondly, the brain region is divided into𝑁×𝑁
small nonoverlapping grids. The generated nonoverlapping
grids may not satisfy assumption (3). Figure 2 shows the
generated multigrid on brain MR images. In this paper, we
set 𝑁 = 6. It can be seen from Figure 2(a) that the grids
(1, 1) and (6, 3) only contain some CSF pixels and the grids
(1, 6) and (6, 6) have no brain tissues. Furthermore, the grid
(6, 1) has no pixels of the WM. The NGMM cannot obtain
accurate results based on these grids. In order to deal with this
problem, the small grids need to be combined. The combine
process includes 6 steps as follows.

Step 1. Define a matrix 𝐿 with the same size of the multigrid
and a variable𝑁number = 1 to count the serial number of the
final patches.

Step 2. Classify every grid into𝐾 classes.

Step 3. Find the worst grid (𝑥, 𝑦) and set 𝐿(𝑥, 𝑦) = 𝑁number.

Step 4. Find the preferred grid (𝑥󸀠, 𝑦󸀠) to be combined into
the patch {(𝑥, 𝑦) | 𝐿(𝑥, 𝑦) = 𝑁number} and set 𝐿(𝑥󸀠, 𝑦󸀠) =
𝑁number. Repeat this process𝑁search times.

Step 5. Set 𝑁number = 𝑁number + 1 and go to Step 3 until all
grids have been labeled except those nonbrain grids.
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Figure 1: Brain image segmentation: (a) original T1-weighted image; (b) GMM segmentation; (c)–(e) MGMM segmentation.

Step 6. Combine single patches into the preferred patches
nearby.

In Step 1, matrix 𝐿 is defined to sign the multigrid and
initialized to zero for ∀𝑥, 𝑦. The variable 𝑁number is used to
count the serial numbers of the final patches and initialized
as 1. In Step 2, every grid is classified into 𝐾 classes by using
Fuzzy Clustering Means (FCM) method, which can classify
grids efficiently. We assume that assumption (3) holds in all
grids and all patches are classified into 3 classes except those
background grids. The histograms of the grids (6, 2) and (3,
3) are shown in Figures 2(b) and 2(c), respectively. There are
only GM and some CSF pixels in the grid (6, 2), which make
the distribution of the pixels’ intensities more compact than
that of (3, 3).

In Step 3, we first calculate an inner distance for
every grid. The inner distance is defined as min(|𝐶CSF −
𝐶GM|, |𝐶WM − 𝐶GM|), where 𝐶CSF, 𝐶GM, and 𝐶WM are the
intensity centers of CSF, GM, and WM, respectively. The
worst grid (𝑥, 𝑦) with the smallest inner distance can be
found easily and 𝐿(𝑥, 𝑦) is set as𝑁number. In Step 4, the grids

{(𝑥̂, 𝑦̂) | 𝐿(𝑥̂, 𝑦̂) = 0}, which are next to the patch {(𝑥, 𝑦) |
𝐿(𝑥, 𝑦) = 𝑁number} need to be found. Then, every grid (𝑥̂, 𝑦̂)
is combined into the patch {(𝑥, 𝑦) | 𝐿(𝑥, 𝑦) = 𝑁number}
independently and the inner distance of the corresponding
combined patch is calculated. The grid with the largest inner
distance is regarded as the preferred grid to be combined into
patch {(𝑥, 𝑦) | 𝐿(𝑥, 𝑦) = 𝑁number}. This process should be
repeated for 𝑁search times, where 𝑁search satisfies 𝑁search ∗
𝑁grid ≤ 𝛼𝑁brain. 𝑁grid is the size of the grids. 𝑁brain is the
amount of tissue pixels in the input image. 𝛼 is the control
parameter. It is hard to hold assumption (4) with large 𝛼. In
this paper, we set 𝛼 = 0.1, then𝑁search = 3. Furthermore the
width and height of every patch are no more than 1/2 of the
brain region’s width and height.

After Step 5, all grids have been labeled; however, there
may be some grids that have not been combined with any
neighbor patch.These grids are set as single grids. It is hard to
hold assumption (3) in these grids. In order to deal with this
problem, we use similar strategy shown in Step 4 to combine
the single grids into best neighbor patch. Firstly, we find one
of the single grids. Secondly, we analyze the neighbor patches,
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Figure 2: Generation of the grid: (a) initial results; (b) histogram of patch (6, 2); (c) histogram of patch (3, 3); (d)–(f) results of multigrid.

which are next to the single grid, to find the patch with
largest inner distance as the preferred patch. The single grid
is combined into the preferred patch. The process is repeated
until all single grids have been combined into their preferred
patch.

Figures 2(d)–2(f) show the results of the new multigrid
generationmethod on three synthetic brainMR images, with
the following parameters: noise levels are 0%, 0%, and 5%,

respectively, and INU (RF) levels are 0%, 100%, and 40%,
respectively. It can be seen that ourmethod can generate good
multigrid even when the image has strong noise or bias field.

3.2. Multigrid Nonlocal Gaussian Mixture Model (MNGMM).
Assumption (3) can be retained by using the improved
multigrid. However, due to the effect of the bias field,
the variation of intensity distributions of neighbor patches
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would, more or less, lead to boundaries discontinuous across
edges of some grids. Despite this problem, the assumptions
for simplifying the imagemodel are still correct inmost cases,
due to the complicated and convoluted structure of human
brain as mentioned above. In other words, most grids would
yield good judgments based on the expected values 𝑝(𝑘 |
𝑌𝑖, 𝜃). A very natural idea is that the adverse impact of some
grids could be overcome by all the good clustering results
from other neighbor patches. Such a consideration leads to
the development of a novel method called the multigrid
nonlocal Gaussian mixture model (MNGMM) that can take
advantage of the adaptation of local clustering but also
keep the classifications spatially continuous and statistically
reliable.

MNGMM includes two basic parts: clustering and infor-
mation fusion.The rationale ofMNGMMcan be described as
follows. First, all grids need to be classified by using NGMM
to obtain the corresponding expected values 𝑝(𝑘 | 𝑌𝑖, 𝜃).
For every pixel 𝑖, it is easy to find the corresponding grid
and obtain its expected values 𝑝(𝑘 | 𝑌𝑖, 𝜃) in the grid.
The distribution information of the neighbor grids 𝑄𝑖𝑗, 𝑗 =
1, . . . , 𝑁𝑖 next to 𝑖 is used to calculate 𝑝(𝑘 | 𝑌𝑖, 𝜃𝑗), where 𝜃𝑗 is
the distribution parameter of 𝑄𝑖𝑗 and 𝑁𝑖 is the total number
of the neighbor grids. In the information fusion stage, all
these expected values are integrated with a strategy𝐹 to adapt
the current expected values. Consequently, for each pixel 𝑃,
MNGMM can be summarized as follows.

Step 1. One has

𝑄𝑖𝑗 = {𝑝 (𝑘 | 𝑌𝑖, 𝜃𝑗)} , 𝑘 = 1, . . . , 𝐾; 𝑗 = 1, . . . , 𝑁𝑖. (10)

Step 2. One has
𝑝 (𝑘 | 𝑌𝑖, 𝜃)

= 𝐹 (𝑝 (𝑘 | 𝑌, 𝜃) , 𝑝 (𝑘 | 𝑌, 𝜃1) , . . . , 𝑝 (𝑘 | 𝑌, 𝜃𝑁𝑖)) .
(11)

Here, we name 𝑝(𝑘 | 𝑌𝑖, 𝜃) as 𝑝𝑘,0 and 𝑝(𝑘 | 𝑌𝑖, 𝜃𝑗), 𝑗 =
1, . . . , 𝑁𝑖 as 𝑝𝑘,𝑗; the strategy is

𝐹 (𝑝𝑘,0, 𝑝𝑘,1, . . . , 𝑝𝑘,𝑁𝑖) =
𝑁𝑖

∑
𝑗=0

𝑝 (𝑌𝑖 | 𝜃𝑘,𝑗)

∑𝑁𝑖
𝑙=0

𝑝 (𝑌𝑖 | 𝜃𝑘,𝑙)
𝑝𝑘,𝑗. (12)

In ourmethod, only pixels on edge regions of the gridmay
be misclassified into other class. The intensities of the pixels
are continuous across the edges of the neighbor grids, which
makes it probable that the expected values of themisclassified
pixels be weighted averaged by using the information of the
neighbor grids. As a result, the weighted averaging values of
different grids make the final result more reliable. Moreover,
the weighted averaging operation can also preserve spatial
continuity of the membership distributions of each tissue
class. Finally, maximum expected values 𝑝(𝑘 | 𝑌𝑖, 𝜃) principle
is used to obtain the segmentation results from the weighted
averaging values.

4. Results

In order to show the robustness of our method, we compared
our method with GMM and Wells method on a clinical 3 T

MR image, which has severe intensity inhomogeneity and
noise. The acquisition parameters of the real data are as
follows: slice thickness 1mm, echo delay time (TE) 35msec,
repetition time (TR) 450msec, and flip angle 90 deg. The
size of the data is 256 × 256 × 170. From the image, we
can find that most intensities of putamen are higher than
those of the cortex, which also belong to the GM. GMM
misclassifies putamen into WM since some intensities of
putamen are closer to WM than to GM, which can be shown
in Figure 3(b).The result of theWells method [6] is shown in
Figure 3(c). It can be seen from the result that the method
can reduce the effect of the bias field; however, with the
effect of the inhomogeneities in inner tissues, some pixels of
putamen have been misclassified into WM and the method
is sensitive to the noise. In contrast, MNGMM can yield
satisfactory results, which are more compatible with human
visual perception.

In order to quantitatively show the performances of the
proposedmodel, we compared ourmethodwithGMM,Wells
method, MCFC, and MNGMM on the synthetic data from
MRI simulator with the following parameters: noise level 5%
and INU level 80%.The results are shown in Figure 4.The left
column shows the initial image. The end column shows the
ground truth. The second column to the fifth column show
the segment results of GMM, Wells, MCFC, and MNGMM,
respectively. Due to the effect of the intensity inhomogeneity,
many pixels of WM have been misclassified into GM in the
result of GMM. Wells and MCFC can reduce the effect of
the intensity inhomogeneities; however, they are affected by
the noise. By using the nonlocal information and multigrid
information, MNGMM can yield much more complete and
continuous results, which are very similar to the ground
truth.

We use Jaccard similarity value (JS) [6] to quantitatively
evaluate the performance of a classification method. The
value of JS ranges from 0 to 1, with a higher value representing
a more accurate segmentation result. The statistical results
(means and standard deviations of JS values for WM, GM,
and CSF) are listed in Table 1. The results demonstrate that
our method produces the most accurate results and has
the best ability and robustness to the noisy images (with
lower standard deviations of JS values and higher mean of
JS values when the noise increases), especially in the area
with abundant textures (with higher JS values for CSF tissue).
We also apply the above five methods to the segmentation of
40 whole synthetic MR image data sets, in which the level
of intensity inhomogeneity ranges from 20% to 100%. The
segmentation accuracy is measured in terms of the average JS
of WM, GM, and CSF delineation and is shown in Figure 5.
Both visual and quantitative comparisons show that our
method is more robust to the intensity inhomogeneity and
can obtain more accurate results.

Figure 6 shows the segmentation results on a real brain
MR data from the Internet brain segmentation repository
(IBSR at http://www.cma.mgh.harvard.edu/ibsr/) with the
name 12 3 (39th image).The intensity distribution of the basal
ganglia is midway between the assumed distributions of GM
and WM and the basal ganglia have low contrast. From the
results, we can find that our method can obtain accurate
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(a) (b) (c) (d)

Figure 3: Segmentation results for a clinical 3 T MR image: (a) original image; (b) segmentation result of GMM; (c) segmentation result of
Wells; (d) segmentation result of MNGMM.

Figure 4: Segmentation results of synthetic data with the parameter noise level 5% and INU level 80%. The left column shows the initial
image. The second column to the fifth column show the results of GMM,Wells, MCFC, and MNGMM, respectively. The right column is the
ground truth.

Table 1: The average JS values (mean ± standard deviation) of GM, WM, and CSF segmentation obtained by applying four algorithms to
T1-weighted brain MR images with increasing level of noise.

Algorithm Tissues 3% 5% 7% 9%

GMM
WM 0.8512 ± 0.051 0.7532 ± 0.047 0.6574 ± 0.064 0.6135 ± 0.067
GM 0.8478 ± 0.059 0.7231 ± 0.065 0.6326 ± 0.046 0.6012 ± 0.056
CSF 0.8547 ± 0.048 0.7447 ± 0.054 0.6236 ± 0.043 0.6103 ± 0.055

Wells
WM 0.9201 ± 0.071 0.7932 ± 0.069 0.7154 ± 0.061 0.6843 ± 0.062
GM 0.9102 ± 0.056 0.7863 ± 0.048 0.7001 ± 0.044 0.6632 ± 0.051
CSF 0.8842 ± 0.052 0.7731 ± 0.059 0.7011 ± 0.061 0.6691 ± 0.058

MCFC
WM 0.9382 ± 0.051 0.8131 ± 0.053 0.7320 ± 0.046 0.6914 ± 0.038
GM 0.9262 ± 0.048 0.7914 ± 0.046 0.7250 ± 0.047 0.6853 ± 0.032
CSF 0.8937 ± 0.046 0.7724 ± 0.055 0.7123 ± 0.059 0.6749 ± 0.054

MNGMM
WM 0.9328 ± 0.019 0.9257 ± 0.032 0.9231 ± 0.031 0.9105 ± 0.032
GM 0.9331 ± 0.017 0.9216 ± 0.038 0.9187 ± 0.034 0.9073 ± 0.038
CSF 0.9293 ± 0.022 0.9211 ± 0.039 0.9127 ± 0.028 0.9005 ± 0.041
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Figure 5: Average JS values of the segmentation results of WM (a), GM (b), and CSF (c) obtained by applying five segmentation methods to
simulated brain MR images with increasing levels of intensity inhomogeneity.

Table 2:The average JS values for the real MR images segmentation
(%).

GMM Wells MCFC MNGMM
JS of WM 61.32 72.13 80.87 90.31
JS of GM 59.23 71.35 78.31 88.37
JS of CSF 57.87 78.32 76.45 89.52

result. In order to quantitatively evaluate the benefits, we
segmented 20 standard sets of real brain MR data from IBSR
by using GMM, Wells method, MCFC, and MNGMM. The
average quantitative results of GM, WM, and CSF are listed
in Table 2. It can be seen that our method is more accurate
than others.

5. Discussion

In our work, the number of grids 𝑁 is set as a constant. The
choices of the divided number should be based on the size

of the brain region and intensity inhomogeneity level. A
smaller divided number will make the brain region only
divided into few patches, which makes the proposed method
sensitive to intensity inhomogeneity. A larger divided num-
ber will make the method less efficient. We have studied
the relationship between size of patches and segmentation
accuracies. Figure 7 shows the accuracies of the segmentation
to simulated images with different parameters. In fact, the
larger the patch, the more the data to be clustered; the greater
the similarity between the intensity distribution of the patch
and that of the input image is, the more reliable the clustering
results are. However, assumptions 2 and 4 require smaller
patches. The left column of Figure 6 shows the accuracies of
the results using different 𝑁 when generating the multigrid
on the input data with the following parameters: noise level,
0%, and intensity inhomogeneity level, 0%, 10%, 20%, 40%,
80%, and 100%, respectively. It can be seen that with the
increase of intensity inhomogeneities the accuracies decrease
when 𝑁 is small, which also means that the patch is bigger.
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Figure 6: Segmentation results of real data from IBSR with the name 12 3 (39th image). (a) Initial image, (b) ground truth, and (c–f) the
segmentation results of GMM, Wells, MCFC, and MNGMM.
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Figure 7: Accuracies of the segmentation with different𝑁 and𝑁search.
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At this time, assumptions (2) and (4) cannot be satisfied and
the accuracies decrease very quickly. When𝑁 = 6, 7, 8, 9 the
results have similar accuracies.We also analyzed the influence
of𝑁search. The right column of Figure 7 shows the accuracies
with different 𝑁search when 𝑁 = 6. It can be seen from
the results that the accuracy is decreasing with the increase
of 𝑁search when the intensity inhomogeneities increase. This
is because the bigger 𝑁search leads to bigger patches, which
means that assumptions (2) and (4) cannot hold.

6. Conclusions

In this paper, we have presented a theoretically simple
approach to automatically segment 2D or 3D human brain
MRI data. To reduce the effect of intensity inhomogeneity,
a multigrid Gaussian mixture model has been proposed.
In order to reduce the effect of noise, we improve the
Gaussian mixture by using the nonlocal information, which
can preservemore detailed information. Experimental results
have proved that our method outperforms other segmenta-
tion methods when segmenting images with severe intensity
inhomogeneities and noise.
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Accurate lung segmentation is an essential step in developing a computer-aided lung disease diagnosis system. However, because
of the high variability of computerized tomography (CT) images, it remains a difficult task to accurately segment lung tissue in CT
slices using a simple strategy. Motived by the aforementioned, a novel CT lung segmentation method based on the integration of
multiple strategies was proposed in this paper. Firstly, in order to avoid noise, the input CT slice was smoothed using the guided
filter. Then, the smoothed slice was transformed into a binary image using an optimized threshold. Next, a region growing strategy
was employed to extract thorax regions. Then, lung regions were segmented from the thorax regions using a seed-based random
walk algorithm.The segmented lung contour was then smoothed and corrected with a curvature-based correction method on each
axis slice. Finally, with the lung masks, the lung region was automatically segmented from a CT slice. The proposed method was
validated on a CT database consisting of 23 scans, including a number of 883 2D slices (the number of slices per scan is 38 slices), by
comparing it to the commonly used lung segmentation method. Experimental results show that the proposed method accurately
segmented lung regions in CT slices.

1. Introduction

Accurate lung segmentation is very important to ensure
the performance of computer-aided lung diseases diagnosis
(CAD) systems [1]. A recent study shows that 17% of true
positives were missed because of poor lung segmentation
[2]. Hence, there has been a growing interest in automated
and accurate segmentation methods for lung CT images
in recent years. Studies have reported on many methods,
which are generally classified as threshold-based [3], region-
based [4–6], and deformable-model-based methods [7–
10]. Though they provide good results, no method has
demonstrated robust and accurate results across the wide
range of clinical imaging parameters and pathology faced
in clinical practice. And so it remains an ongoing challenge
to segment lung regions accurately in CT slices because

of the complex anatomy of the thorax and image arti-
facts.

In this paper, a novel method for accurately segmenting
lung in CT (computed tomography) slice based on the
integration ofmultiple segmentation strategies was proposed.
Themethod was derived of several different simple strategies.
Firstly, in order to avoid noise disturbances, the input CT
slice was smoothed using a guided filter. Then, the smoothed
slice was transformed into a binary image using an optimized
threshold. Next, a region growing and random walk strategy
was employed to obtain the masks of the lungs. Finally, with
the lung masks, lung regions were automatically segmented
from a CT slice. The proposed method was assessed on 23
lung CT scans with 883 2D slices. Experiments indicate that
this method achieved an average absolute border distance of
0.62mm compared to manually segmented ground truths.
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The primary contributions of the paper are summarized
as follows:

(1) A fully automatic approach for accurate lung segmen-
tation is developed by effective integrating multiple
well developed simple image preprocessing strategies.
Thewhole process does not need any user interaction.

(2) The affection of image noise on integrity of lung
segmentation is counted.

(3) To make the segmentation of lung region more
accurate, the contours of initial segmented lungs are
refined using a curvature-based correction method.
The proposed method can include all juxtapleural
nodules near the mediastinum.

The remainder of this paper is organized as follows. To
easy understand the value of this work, related works are
discussed in Section 2. The proposed method is described in
Section 3. Subsequently, experimental results are presented
and discussed in Sections 4 and 5, respectively. Finally,
conclusions and further discussion are provided in Section 6.

2. Related Works

One of themost commonly used lung segmentationmethods
for CT images is the threshold-based method [3], where the
contrast between the low-density lungs and the surrounding
high-density chest wall is usually used to guide the segmen-
tation process, and by which tissues having higher gray levels
than the selected threshold are excluded from the thoracic
region. Although threshold-based strategies can be used to
extract the lung parenchyma, these methods may fail in
intensity variation condition and incorrectly exclude some
vital regions, for example, juxtapleural nodules, from the
lung area. Region-basedmethods, such as region growing [4]
and graph cutting [5], are useful for dealing with intensity
variations. However, with the presence of dense pathology
in the lung field, it is not enough for successful delineation
only with intensity. Deformable-model-based methods are
widely used for the segmentation of pathological lungs [9, 10].
For example, in [9], an initial contour close to the lung
boundary is firstly obtained, and then the contour reaches
the object border. The limitation of this method is that some
edge information might be lost when the edge of the contour
is cracked. In [10], the level set method is employed to find
the lung boundaries using energy minimization procedures.
Though these methods are accurate in segmenting lung
regions, they might lead to local minima states.

Recently, random-walk-based segmentations [12], in
which graph optimization is employed to obtain accurate
segmentation with user interaction based on selected seed
pixels, are attracting increasing interest. Though this method
shows excellent performance in image segmentation, it is
sensitive to seed pixels.

3. The Proposed Method

Figure 1 shows a flow of the proposed method. It effectively
integrates six simple strategies in three operation steps, CT

image processing, lung region initial segmentation, and lung
region refinement. For the whole processing, the method
beganwith image denoising using the guided filter [13].Then,
a threshold is selected to binarize the filtered CT images
using the Otsu algorithm, and the thorax regions are then
extracted by region growing. In this step, the artifacts external
to the patients bodies are removed. Next, prior knowledge is
used for the automated selection of foreground seeds, defined
as the lung confidence region. After the estimating of seed
points and that of the lung intensity range, a seed-based
random walk algorithm is applied to segment lung regions
from the thorax region. Finally, holes in the segmented lung
region are filled with a rolling-ball algorithm, and an iterative
weighted averaging and adaptive curvature threshold is used
to smooth and correct the segmented lung contour on each
axis slice.

Details of each operation are described in the following
sections.

3.1. CT Image Denoising Using Guided Filter. The aim of
this operation is to smooth intraregion and to preserve the
interregion edges of the images, which is of benefit to the
following processing, because all operations in following
steps including thorax extraction by region growing and
lung segmentation with random walk are sensitive to image
noise. Conventional filteringmethods, such asGaussian filter,
mean filter, and the median filter, often obtain poor results
as they incur more edge blurring and detail loss. However,
some improved anisotropic diffusion filtering methods, such
as guided filters and bilateral filters, can overcome this
drawback by introducing an implicit edge detection step
into the filtering process to encourage intraregion smoothing
and preserve the interregion edges [13]. Guided filters [13]
are widely used in image smoothing as an alternative to
bilateral filters, as was done in this paper. Not only can a
guided filter reduce computing time compared to a bilateral
filter, but also image noise which can be incorrectly regarded
as lung borders in many cases can be removed from lung
parenchyma. The main idea of a guided filter is to filter input
images by considering the content of the guidance image.
Formally, given a guidance image, a guided filter is defined
as follows:

𝑞𝑖 = 𝑎𝑘𝐼𝑖 + 𝑏𝑘, ∀𝑖 ∈ 𝜔𝑘, (1)

where 𝑞𝑖 is a linear transformation of 𝐼𝑖 in a window 𝜔𝑘
centered at the pixel (𝑥, 𝑦) and 𝑎𝑘 and 𝑏𝑘 are the linear
coefficients of local area𝜔𝑘 and are supposed to be a constant.
In this section, 𝜔𝑘 is assigned as 15 × 15. This local linear
model ensures that 𝑞𝑖 has an edge only if 𝐼𝑖 has an edge. To
make the difference between the output 𝑞𝑖 and the input 𝐼𝑖 as
small as possible, the cost function 𝐸(𝑎𝑘, 𝑏𝑘) is minimized in
window 𝜔𝑘:

𝐸 (𝑎𝑘, 𝑏𝑘) = ∑
𝑖∈𝜔𝑘

((𝑎𝑘𝐼𝑖 + 𝑏𝑘 − 𝑝𝑖)
2 + 𝜀𝑎2𝑘) , (2)

where 𝜀 is a regularization parameter keeping 𝑎𝑘 from being
too large. In this work, the value of 𝜀 is assigned as 0.008
according to our experience.
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Figure 1: Flow chart of proposed method.
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Figure 2: Comparison of CT image smoothing using the guided filter against other filtering methods. (a) Input CT image. (b) Smoothed CT
image by Gaussian filter. (c) Smoothed CT image by mean filter. (d) Smoothed CT image by guided filter.

Through (2), the linear coefficients 𝑎𝑘 and 𝑏𝑘 can be
computed as follows:

𝑎𝑘 =
(1/𝜔)∑𝑖∈𝜔𝑘 𝐼𝑖𝑝𝑖 − 𝑢𝑘𝑝𝑘

𝜎2
𝑘
+ 𝜀

,

𝑏𝑘 = 𝑝𝑘 − 𝑎𝑘𝑢𝑘,

(3)

where 𝑢𝑘 and 𝜎2𝑘 are the average value and the variance of
the input image 𝐼𝑖 in window 𝜔𝑘. |𝜔| is the pixels number of
window𝜔𝑘.𝑝𝑘 is themean of the guided image inwindow𝜔𝑘.
𝜀 is the regularization parameter which is used to determine
the intensity of changes in the pixels values.

In our work, the guided image filter is used to filter the
3 channels of RGB image, respectively, and the guided image
is selected as the corresponding original channel component.
Figure 2 shows a comparison of CT image smoothing using
the guided filter against other filtering methods. It is obvious
that the boundary of the smoothed image using the guided
filter was clearer than when the other filters were used.

A quantitative comparison between the aforementioned
filters in terms of PSNR (peak signal-to-noise ratio) was also
conducted, as shown in Table 1. A higher PSNR value means
that the image has high quality with less noise. It can be
seen from Table 1 that the guided filter performed better than
other denoise filters with the maximum PSNR of 63.1342. By

Table 1: Quantitative comparison of different denoise filters.

Ground-truth
marker

The number of
locations recognized by

the system
Images during day 100 98
Images during night 100 90

contrast, the Gauss filter was inferior to both the guided filter
and mean filter with a smaller PSNR of 61.4568.These results
were consistent with those shown in Figure 2.

3.2. CT Image Binarization. In this step, Otsu’s adaptive
thresholding method [3] is employed to obtain a binarized
CT image. The purpose of this operation is to simply follow
operations for lung segmentation. For a given image, let L
represent the grey level of the pixels [1, 2, . . . , 𝐿]. By choosing
a threshold at grey level k, the pixels are divided into object
class 𝐶0 and background class 𝐶1.

Let 𝜔0 and 𝜔1 be the probabilities of 𝐶0 and 𝐶1 separated
by a defined threshold, and let 𝜎20 and 𝜎21 be the variances
of the two kinds. The variance of intrakind is defined as the
weighted sum of the two variances [3], as in the following:

𝜎2intra (𝑘) = 𝜔0 (𝑘) 𝜎
2
0 (𝑘) + 𝜔1 (𝑘) 𝜎

2
1 (𝑘) . (4)
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(a) (b) (c)

Figure 3: Thorax extraction by region growing. (a) Input CT image. (b) Binarized CT image. (c) Extracted thorax using region growing.

The optimal threshold T is calculated as the value mini-
mizing 𝜎2intra(𝑘), as in the following:

𝑇 = argmin
𝑘∈[1,𝐿]

𝜎2intra (𝑘) . (5)

3.3. Thorax Extraction by Region Growing. In chest CT
images, there are two main basic regions with different
density distributions. The first is the low-density region,
which contains background air, lungs, and airways, and the
second is the high-density region, which includes the chest
wall and bed and lung nodules.

The goal of this operation is to reduce artifacts external
to the patients bodies to a certain extent. Based on the
density of chest CT images, to extract the thorax from the
CT images in this step, region growing [4] is used in the
thresholded chest CT images to discard the background. For
this purpose, seed pixels are selected from the four corners
of the background in each axial CT image firstly, which then
grows to all pixels in the four neighborhoods. The region
growing process is repeated until there are no more adjacent
pixels with a lower density than threshold value T. Then,
the background region is obtained. The background image
is subtracted from the binarization CT image and then the
thorax region is extracted. Figure 3 shows an example of
thorax extraction using region growing.

3.4. Extracting Lung from Thorax Region with Random Walk
Algorithm. Considering the distribution of density of thorax
tissues in CT images, random walk [12] strategy is employed
for extracting lung from the thorax region in this step. Ran-
dom walk is a seed-based graph method in which an image
is considered a discrete object described with a weighted
graph, where image pixels are taken as nodes connected by
undirected edges. Taking an undirected graph

𝐺 = (𝑉, 𝐸) , (6)

where 𝑉 describes the set of vertex and 𝐸 is the set of
edges, and letting 𝜔𝑖𝑗 be the edge weight that represents the

probabilities between two neighboring nodes, the weight 𝜔𝑖𝑗
can be defined as follows:

𝜔𝑖𝑗 = exp (−𝛽 (𝑔𝑖 − 𝑔𝑗)
2
) , (7)

where 𝑔𝑖 indexes an image feature at pixel 𝑖 such as intensity
gradients, which indicates the relationship of pixels to an
image. The parameter 𝛽 is the only parameter that can be
adjusted in this method. The weights of 𝜔𝑖𝑗 edges range
from 0 to 1, letting 1 represent similar pixels and 0 represent
dissimilar pixels. Given a small number of seeds in different
locations, the random-walk-based lung segmentation will
start its task at a pixel that reaches prelabeled seeds first by
measuring the greatest transition probability. Essentially, the
exact solution to the desired random walk is to minimize
the Dirichlet energy with boundary conditions.TheDirichlet
integral can be described as follows:

𝐷 [𝑥] = 1
2
𝑥𝑇𝐿𝑥 = 1

2
∑
𝜔𝑖𝑗∈𝐸

𝜔𝑖𝑗 (𝑥𝑖 − 𝑥𝑗)
2
, (8)

where the function x is only the critical points, which will be
minima, and L is a Laplacian matrix described as follows:

𝐷 [𝑥] = 1
2
𝑥𝑇𝐿𝑥 = 1

2
∑
𝜔𝑖𝑗∈𝐸

𝜔𝑖𝑗 (𝑥𝑖 − 𝑥𝑗)
2
. (9)

Derived from the Laplacian graph expressing the image,
the analysis and computation of the probabilities are obtained
by resolving a set of sparse and positive definite linear equa-
tions. In random walk processing, each step usually works
with previous steps independently. And then its behavior is
absolute according to a transition probability matrix L.

Research shows that the random walk method demon-
strates good performance in image segmentation and is
sensitive to initial seeds. In CT images, the intensity of lung
tissue is usually in 400HU to 600HU, while the chest wall,
blood, and bone are usually above 100HU [4]. Aimed at the
issue mentioned above, pixels with 500HUwithin the thorax
region are selected as initial seeds firstly, and then a set of
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(a) (b) (c) (d)

Figure 4: Final result for lung extraction. (a) Input CT image. (b) Binarized CT image. (c) Extracted thorax by region growing. (d) Extracted
lung region by random walk.

(a) (b) (c) (d)

Figure 5: Example of final refined lung mask and final segmented lung region. (a) Input CT image. (b) Extracted lung region using random
walk. (c) Refined lung segmentation mask. (d) Final segmented lung region.

pixels withminimumHUvalues surrounding the initial seeds
are sampled as seeds. Once seeds and affinity parameters
for the random walk are set, lung delineation is performed.
In this work, three initial seeds are automatically selected.
Figure 4 shows a final result for this step.

3.5. Lung Region Refinement. As can be seen in Figure 4, it is
obvious that though the lung regionwas extracted, there were
many holes in the extracted lung regions, and parts of the
regions were also excluded from the extracted lung region,
which may lead to important tissue information being lost.
In order to overcome such problems, holes in the segmented
lung region are filled with a rolling-ball algorithm, and the
contours of the segmented lungs are refined by a curvature-
based correction method [14] in which a scan line search
is used to calculate the curvatures of scanned points on the
preliminary contour described by the random walk. In order
to cut down computation time, each CT slice is scanned
in the horizontal direction with a predefined interval 𝑙 by
seeking the intersection points, which is experimentally set
to 3 pixels. The intersection points of the scanned edge are
classified into three species, namely, the first point (𝑃first

𝑖 ), the
last point (𝑃last

𝑖 ), and the middle point (𝑃middle
𝑖 ). The middle

point should be removed, as it is frequently found around the
mediastinum or indentations that include the lung nodules.
Thus, only the first and last intersection points are retained

as they correspond to the lateral and medial lung contours.
The curvature of the first and the last intersection points is
computed as follows:

𝑘𝑖 = (𝑥𝑖−1 − 𝑥𝑖) × (𝑦𝑖−1 − 2𝑦𝑖 + 𝑦𝑖+1)

×
(𝑦𝑖−1 − 𝑦𝑖) × (𝑥𝑖−1 − 2𝑥𝑖 + 𝑥𝑖+1)

[(𝑥𝑖−1 − 𝑥𝑖)
2 + (𝑦𝑖−1 − 𝑦𝑖)

2]
3/2

,
(10)

where (𝑥𝑖, 𝑦𝑖) denotes an intersection point on 𝑖th search
line. Similarly, (𝑥𝑖−1, 𝑦𝑖−1) and (𝑥𝑖+1, 𝑦𝑖+1) are the same on
the previous and following scan lines. For most natural
images, taking into account high curvatures located at small
perturbations, such as at the base and areas of normal lungs,
the differences are used to rule out unnecessary points.
Figure 5 shows an example of the final refined lung mask and
final segmented lung region. As seen, the proposed method
worked well.

4. Experiments

In this section, the clinicalmaterials used in this work and the
evaluation criteria are described.Then, the detailed results are
presented, which include the visualization of segmentation
errors and quantitative and statistical accuracy comparisons.
Finally, the issues and limitations that were observed in the
experiments are discussed. All methods were implemented
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in Matlab and tested using a 2.3GHz Intel Core i3 computer
with 2GB RAM.

4.1. Materials. The database used in this study consisted
of 23 CT scans, including a total of 883 2D slices, which
were acquired using MDCT scanner (GE Light-Speed Ultra,
Milwaukee, WI, USA) with 120 kVp and 100mA in the
medical school of Xian Jiaotong University. The number of
slices per scan is about 38 slices per scan. Each CT slice had
an image matrix of 512 by 512 (16-bit depth) pixels. Pixel size
ranged between 0.625mm and 0.742mm, with a mean value
of 0.692mm, depending on the physical size of the patient.

4.2. Evaluation Method. Quantitative evaluation of lung
segmentation is important because it not only provides a
reliable basis for clinical application but also indicates its
relative performance with respect to other used methods [4].
However, conducting an evaluation of a lung segmentation
method is still difficult. One reason is that the true lung
boundary is unknown, and the reference standard often refers
to several experts consensus [6]. In this study, the reference
standard was produced in the following way to address this
issue: all lung contours were first manually marked by an
experienced radiograph expert and then reviewed by another
radiologist. If the opinion of the second radiologist was
different from that of the first one, the lung contours were
corrected by the two radiologists under collaboration and the
results were used as the reference standard. Although only
limited radiologists involved in the manual segmentation
might lead to bias, the difference between the lung boundaries
obtained by this method and the reference standard can
reflect the errors of the proposed method with respect to an
expert.

Another reason for difficulty is that even though there are
many metrics used to evaluate a lung segmentation method,
such as dice similarity coefficient, jacquard similarity, false
positive rate, and false negative rate, they do not provide
both local and global impressions of the segmentation per-
formance [6]. Because of this, the following three metrics for
measuring the segmentation performance of the proposed
methodwere employed: (1) oversegmentation rate, (2) under-
segmentation rate, and (3) the average of absolute border dis-
tance. The experiments showed that these three metrics not
only demonstrated an overview of the oversegmentation and
undersegmentation but also confirmed the whole statistical
distribution of segmentation error distances.

The oversegmentation rate is termed as the number of
voxels in a segmented regionwhich are included as part of the
ROI but are not in the reference standard. Let 𝑉auto represent
the volume of the binary mask generated using the proposed
approach and let 𝑉mannual be the volume of the reference
standard. The oversegmentation rate of OR(𝑉auto, 𝑉mannual)
can be found using the following:

OR (𝑉auto, 𝑉mannual) =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑉auto/𝑉mannual

𝑉mannual

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
, (11)

where 𝑉auto/𝑉mannual represents the relative complement of
𝑉auto in 𝑉mannual. Similarly, the undersegmentation rate of

Table 2: Quantitative comparison of segmentation results.

Methods OR UR ABD (mm)
Region growing 2.1% 2.7% 0.72
Active contour 1.9% 2.38% 0.64
Proposed method 1.87% 2.36% 0.62

UR(𝑉auto, 𝑉mannual) is defined as the relative lung volume
amount which is regarded as lung tissue in the reference
standard but not in a segmented image region with an
automatic segmentation method:

UR (𝑉auto, 𝑉mannual) =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑉auto/Vmannual

𝑉mannual

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
. (12)

The average of the absolute border distance (ABD) is
a statistical measurement of the fitting between the lung
surfaces generated by a segmentation method and the lung
surfaces in the reference standard. It is used to measure the
spatial similarity between the lung boundaries generated by
a segmentation approach and that of the reference standard.
The shortest distance between a point on the lung surface
obtained by the proposed algorithm and the lung surface
of the reference standard was used to generate the absolute
border distance.

4.3. Qualitative Results. Figure 6 shows the results between
ground truth and the proposed method. Figure 6(a) shows
the input CT slices.The ground truth is in Figure 6(b), which
was manually marked by an experienced radiograph expert.
Figure 6(c) displays the segmented results using the proposed
method. As can be seen, the proposed method’s segment
results were closest to the ground truth, which indexes the
effectiveness of the proposed method.

A comparison of the proposed approach with two often-
used state-of-the-art lung segmentation methods, the active-
contour-based method [9] and the region growing-based
method [4], is shown in Figure 7. Figure 7(a) shows the input
CT images, and Figure 7(b) shows the segmented results
using the active-contour-based method. In Figure 7(c),
the region growing-based method is shown. The proposed
method’s segmentation results are shown in Figure 7(d).
From Figure 7(c), it can be seen that even though the lung
boundaries are well smoothed, part of the pleural regions in
the mediastinum was excluded. In Figure 7(b), although no
lung regions were excluded, parts of nonlung regions were
erroneously included. However, Figure 7(d) shows sufficient
pleural nodule regions and diffuse areas are also included.
This indicates that the proposed method exhibits a more
powerful discriminating ability compared to other methods.

4.4. Quantitative Results. Table 2 shows comparisons
between the proposed method and two state-of-the-art
techniques, the region growing method and the active
contour method, to the manually defined ground truth using
prior-mentioned metrics. It can be seen that the average
of the absolute border distance, the oversegmentation rate,
and the undersegmentation rate of the proposed method
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(a) (b) (c)

Figure 6: Comparisons between ground truth and the proposed method. (a) Input CT images. (b) Ground truth. (c) Results using proposed
method.

were 0.62mm, 1.87%, and 2.36%, respectively. These results
were better than those of the region growing-based method
(0.72mm, 2.1%, and 2.7%) and the active-contour-based
method (0.64mm, 1.9%, and 2.38%). This indicated that the
proposed method achieved more accurate and robust results
than the other approaches.

5. Discussion

As an integration of multiple simple image segmentation
strategies, the method proposed in this paper possesses

several advantages over single segmentation strategy meth-
ods, as illustrated in Figure 8. Figure 8(a) shows input
CT slices, Figure 8(b) shows the results obtained with the
threshold-based method, Figure 8(c) is the region growing-
based method, Figure 8(d) is the active-contour-based
method, Figure 8(e) is the random walk method, Figure 8(f)
is the active contour and curvature correction method, and
Figure 8(g) shows the segmented results using the proposed
method. Figure 8(h) shows the reference standard. As can be
seen in the images, compared with the reference standard,
the main trachea was excluded from the segmented lung
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(a) (b) (c) (d)

Figure 7: Comparison of segmentation results. (a)Original CT images. (b) Active-contour-basedmethod. (c) Region growing-basedmethod.
(d) The proposed method.

area using the threshold-based method.The region growing-
based method made the lung edge rough, and good segmen-
tation results of lung regions were not achieved due to the
limiting of growth rule. In the evolution of the active contour
curves, the diffuse area was left out. The random-walk-based
method produced inaccurate segmentation results. As can be
seen from the results of the active contour and curvature-
based correction method, the lung boundary was smoothed
with undersegmentation in the mediastinum. By compari-
son, the developed approach demonstrated a more powerful
discriminating ability and included sufficient pleural nodule
regions and diffuse areas.

A quantitative comparison between the segmentation
results obtainedwith an assemblage ofmultiple segmentation
strategies against other segmentation strategies was also per-
formedusing the overlap ratio between themanually outlined
contours and computer-defined outlines, as shown in Table 3.
The overlap ratio can be defined using the following:

overlap ratio = 𝑁TP + 𝑁TN
𝑁TP + 𝑁TN + 𝑁FP + 𝑁FN

, (13)

where 𝑁TP represents the number of correctly segmented
pixels in a lung region, 𝑁TN stands for the number of
correctly segmented pixels in the background area, and 𝑁FP
and𝑁FN are the missegmented lung regions and background
area, respectively. A high overlap ratio indicates accurate
segmentation results. As can be seen fromTable 3, the average
overlap ratio obtained using the proposedmethodwas 98.4%,
whereas that obtained using the threshold-basedmethod was
94.1%, the region growing overlap ratio was 95.3%, the active
contour was 94.4%, the active contour with a curvature-based
correction method was 95.8%, and the random-walk-based
method was only 93.8%. These results were consistent with
those shown in Figure 8. The conclusion from these results is
also consistent with the outcome mentioned in Table 2.

A comparison between our method and some recently
published, independentmethods, such as the graph-cut based
method presented in [5] and the method proposed in [11],
is shown in Figure 9 and Table 4. It can be seen from
Figure 9 that the segmented lung images are very similar, and
the difference between the segmented lung image with our
method and that with the graph-cut based method presented
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Figure 8: Continued.
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(f)

(g)

(h)

Figure 8: Comparisons of segmentation results. (a) CT images. (b) Threshold method. (c) Region growing method. (d) Active contour
method. (e) Randomwalkmethod. (f) Active contourwith curvature-based correctionmethod. (g) Proposedmethod. (h) Reference standard.

Table 3: Quantitative comparison between segmentation results.

Methods Overlap ratio (%)
Threshold 94.1
Region growing 95.3
Active contour 94.4
Random walk 93.8
Active contour with curvature correction 95.8
Proposed method 98.4

in [5] and also that with the method proposed in [11] are too
tiny to observe.

Table 4 shows the comparison in terms of the overseg-
mentation rate and the undersegmentation rate. As can be
seen, the oversegmentation rates of our proposed method,
of the graph-cut method [5], and of the method proposed
in [11] are 1.87%, 1.88%, and 1.86%, respectively, whereas
the undersegmentation rates of these are 2.36%, 2.34%, and

Table 4: Quantitative comparison of segmentation results in terms
of the oversegmentation rate and the undersegmentation rate.

Methods OR UR
Method in [11] 1.86% 2.37%
Method in [5] 1.88% 2.34%
Proposed method 1.87% 2.36%

2.37%, respectively. This indicated that the segmentation
accuracies of the three methods mentioned above are similar.
This conclusion is consistent with the outcome demonstrated
in Figure 9.

A comparison of running time for allmethodsmentioned
above is given in Table 5. It can be seen that the pro-
posed method requires longer working times (1.68 s for one
slice segmentation) compared to previously well-established
methods, such as threshold-based method (0.28 s for one
slice segmentation), region growing (0.38 s for one slice
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Figure 9: Continued.
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(e)

Figure 9: Comparisons of segmentation results. (a) Original CT images. (b) The method proposed in [11]. (c) The graph-cut based method
presented in [5]. (d) Our method. (e) Reference standard.

Table 5: Working times of different methods.

Methods Average running
time (seconds)

Threshold 0.28
Region growing 0.38
Active contour 0.54
Random walk 0.58
Active contour with curvature
correction 0.64

Method in [11] 2.58
Method in [5] 3
Proposed method 1.68

segmentation), active contour (0.54 s for one slice segmen-
tation), random walk (0.58 s for one slice segmentation), and
active contour with curvature correction (0.64 s for one slice
segmentation), whereas compared to the graph-cut based
method [5] (3 s for one slice segmentation) and the method
proposed in [11] (2.58 s for one slice segmentation), the
running time of our method is significantly short. What is
the reason for this? For the proposed method and previously
well-established methods, the reason is that the new method
is an integration of six simpler image segmentation strategies
meaning more time is needed to carry out all the steps. For
the proposed method and the graph-cut based method, the
reason is that the use of expectationmaximization to calculate
the weight that each pixel belongs to the foreground object
leads to a longer running time than that of our proposed
method. For the proposed method and the method proposed
in [11], the reason is that the fuzzy c-means method which is
used for lung identification might lead to a longer running
time.

Considering the compromise between the accuracy of
the segmented results and the computing time of the whole
method, it is obvious that our proposed method is more
efficient.

6. Conclusions

In this paper, an assemblage of several simple image segmen-
tation strategies was proposed for segmenting lung regions
in chest CT images. The effectiveness of this approach
was demonstrated on 23 CT scans, and the results were
compared to the manual segmentations of an expert and
results obtained with the two most esteemed techniques.
Experimental results showed that this method was more
accurate in lung segmentation compared to other methods.

It should be noted that accurate segmentation of lung
regions in the presence of severe pathologies, such as lung
cancer, is still a challenging task. Future work will mainly
focus on the segmentation algorithm of lung tissue charac-
terized with severe abnormalities.
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We proposed a nonparametric Bayesian model based on variational Bayes algorithm to estimate the response functions in dynamic
medical imaging. In dynamic renal scintigraphy, the impulse response or retention functions are rather complicated and finding a
suitable parametric form is problematic. In this paper, we estimated the response functions using nonparametric Bayesian priors.
These priors were designed to favor desirable properties of the functions, such as sparsity or smoothness. These assumptions
were used within hierarchical priors of the variational Bayes algorithm. We performed our algorithm on the real online dataset
of dynamic renal scintigraphy. The results demonstrated that this algorithm improved the estimation of response functions with
nonparametric priors.

1. Introduction

Highly rapid development of machine learning technique
offers an opportunity to obtain information about organ
function from dynamic medical images, instead of invasive
intervention. The unknown input function can be obtained
by deconvolution of the organ time-activity curve and organ
response function. Typically, both the input function and
the response functions are unknown. Moreover, the time-
activity curves are also not directly observed since the
recorded images are observed as superposition of multiple
signals. Analysis of the dynamic image sequences thus require
to separate the original sources images and their weights
over the time forming the time-activity curves (TACs). The
TACs are then decomposed into input function and response
functions. Success of the procedure is dependent on the
model of the image sequence.

The common model for dynamic image sequences is the
factor analysis model [1], which assumes linear combination
of the source images and TACs. Another common model is
that TAC arises as a convolution of common input function
and source-specific kernel [2, 3].The common input function
is typically the original signal from the blood and the role
of convolution kernels varies from application area: impulse

response or retention function in dynamic renal scintigraphy
[4]. In this paper, we will refer to the source kernels as the
response functions; however other interpretations are also
possible.

Analysis of the dynamic image sequences can be done
with supervision of experienced physician or technician, who
follows recommended guidelines and uses medical knowl-
edge. However, we aim at fully automated approachwhere the
analysis fully depends on the used model. The most sensitive
parameter of the analysis is the model of the response
functions (i.e., the convolution kernels). Many parametric
models of response functions have been proposed, including
the exponential model [5] or piecewise linear model [6, 7].
An obvious disadvantage of the approach is that the real
response function may differ from the assumed parametric
models. Therefore, more flexible classes of models based
on nonparametric ideas were proposed such as averaging
over region [8], temporal regularization using finite impulse
response filters [9], or free-form response functions using
automatic relevance determination principle in [10].

In this paper, we will study the probabilistic models of
response functions using Bayesian methodology within the
general blind source separation model [11]. The Bayesian
approach was chosen for its inference flexibility and for
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its ability to incorporate prior information of models [12,
13]. We will formulate the prior model for general blind
source separation problemwith deconvolution [10] where the
hierarchical structure of the model allows us to study various
versions of prior models of response functions. Specifically,
we design different prior models of the response functions
with more parameters than the number of points in the
unknown response function. The challenge is to regularize
the estimation procedure such that all parameters are esti-
mated from the observed data. We will use the approximate
Bayesian approach known as the variational Bayes method
[14]. The resulting algorithms are tested on synthetic as well
as on real datasets.

2. Probabilistic Model of Image Sequences

A probabilistic model of image sequences is introduced in
this section. Estimation of the model parameters yields an
algorithm for Blind Source Separation and Deconvolution.
Prior models of all parameters except for the response
functions are described here while the priors for the response
functions will be studied in detail in the next section.

2.1. Model of Observation. Each recorded image is stored as
a column vector d𝑡 ∈ R𝑝×1, 𝑡 = 1, . . . , 𝑛, where 𝑛 is the
total number of recorded images. Each vector d𝑡 is supposed
to be an observation of a superposition of 𝑟 source images
a𝑘 ∈ R𝑝×1, 𝑘 = 1, . . . , 𝑟, stored again columnwise. The
source images are weighed by their specific activities in time
𝑡 denoted as 𝑥1,𝑡, . . . , 𝑥𝑟,𝑡 ≡ 𝑥𝑡 ∈ R1×𝑟. Formally,

d𝑡 ∈ a1𝑥1,𝑡 + a2𝑥2,𝑡 + ⋅ ⋅ ⋅ + a𝑟𝑥𝑟,𝑡 + e𝑡 = 𝐴𝑥𝑇𝑡 + e𝑡, (1)

where e𝑡 is the noise of the observation,𝐴 ∈ R𝑝×𝑟 is thematrix
composed of source images as its columns 𝐴 ∈ [a1, . . . , a𝑟],
and symbol ()𝑇 denotes transposition of a vector or a matrix.
Equation (1) can be rewritten in the matrix form. Suppose
that the observation matrix 𝐷 = [d1, . . . , d𝑛] ∈ R𝑝×𝑟 and the
matrix with TACs in its columns 𝑋 = [𝑥𝑇1 , . . . , 𝑥

𝑇
1 ]
𝑇 ∈ R𝑛×𝑟.

Note that we will use the bar symbol, 𝑥𝑘, to distinguish the
𝑘th row of matrix 𝑋, while 𝑥𝑘 will be used to denote the 𝑘th
column. Then, (1) can be rewritten into the matrix form as

𝐷 = 𝐴𝑋𝑇 + 𝐸. (2)

The tracer dynamics in each compartment is commonly
described as convolution of common input function, vector
𝑏 ∈ R𝑛×1, and source-specific response function (convolution
kernel, mathematically), vector u𝑘 ∈ R𝑛×1, 𝑘 = 1, . . . , 𝑟
[5, 6, 15]. Using convolution assumption, each TAC can be
rewritten as

𝑥𝑘 = 𝐵u𝑘, ∀𝑘 = 1, . . . , 𝑟, (3)

where the matrix 𝐵 ∈ R𝑛×𝑛 is composed of elements of input
function 𝑏 as

𝐵 = (

𝑏1 0 0 0
𝑏2 𝑏1 0 0
⋅ ⋅ ⋅ 𝑏2 𝑏1 0
𝑏𝑛 ⋅ ⋅ ⋅ 𝑏2 𝑏1

). (4)

Suppose that the aggregation of response function 𝑈 =
[u1, . . . , u𝑟] ∈ R𝑛×𝑟. Then, 𝑋 = 𝐵𝑈 and model (2) can be
rewritten as

𝐷 = 𝐴𝑈𝑇𝐵𝑇 + 𝐸. (5)

The task of subsequent analysis is to estimate thematrices
𝐴 and 𝑈 and the vector 𝑏 from the data matrix𝐷.

2.2. NoiseModel. Weassume that the noise has homogeneous
Gaussian distribution with zero mean and unknown preci-
sion parameter 𝜔, 𝑒𝑖,𝑗 = N𝑒𝑖,𝑗(0, 𝜔

−1). Then, the data model
(2) can be rewritten as

𝑓 (𝐷 | 𝐴,𝑋, 𝜔) =
𝑛

∏
𝑡=1

N𝑑𝑡 (𝐴𝑥𝑡, 𝜔
−1𝐼𝑝) , (6)

where symbol N denotes Gaussian distribution and 𝐼𝑝 is
identity matrix of the size given in its subscript. Since all
unknown parameters must have their prior distribution in
the variational Bayes methodology, the precision parameter
(inverse variance) 𝜔 has a conjugate prior in the form of the
Gamma distribution

𝑓 (𝜔) = G𝜔 (𝜗0, 𝜌0) (7)

with chosen constants shape parameter 𝜗0 and scale parame-
ter 𝜌0, due to the homogeneous noise model.

2.3. Probabilistic Model of Source Images. The only assump-
tion on source images is that they are sparse; that is, only some
pixels of source images are nonzeros.The sparsity is achieved
using prior model that favors sparse solution depending on
data [16]. We will employ the automatic relevance determi-
nation (ARD) principle [17] based on joint estimation of the
parameter of interest together with its unknown precision.
Specifically, each pixel 𝑎𝑖,𝑗 of each source image has Gaussian
prior truncated to positive values (see Appendix A.1) with
unknown precision parameter 𝜉𝑖,𝑗 which is supposed to have
conjugate Gamma prior as

𝑓 (𝑎𝑖,𝑘 | 𝜉𝑖,𝑘) = 𝑡N𝑎𝑖,𝑗 (0, 𝜉
−1
𝑖,𝑘) ,

𝑓 (𝜉𝑖,𝑘) = G𝜉𝑖,𝑘 (𝜙0, 𝜓0)
(8)

for ∀𝑖 = 1, . . . , 𝑝, ∀𝑘 = 1, . . . , 𝑟, and 𝜙0, 𝜓0 are chosen
constants. The precisions 𝜉𝑖,𝑗 form the matrix Ξ of the same
size as 𝐴.
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Figure 1: Hierarchical model for image sequences.

2.4. ProbabilisticModel of Input Function. The input function
b is assumed to be a positive vector; hence, it will be modeled
as truncated Gaussian distribution to positive values with
scaling parameter 𝜍 ∈ R as

𝑓 (b | 𝜍) = 𝑡N (0𝑛,1, 𝜍
−1𝐼𝑛) ,

𝑓 (𝜍) = G (𝜁0, 𝜂0) ,
(9)

where 0𝑛,1 denotes zerosmatrix of the given size and 𝜁0, 𝜂0 are
chosen constants.

2.5. Models of Response Functions. So far, we have formulated
the prior models for source images 𝐴 and input function b
from decomposition of the matrix 𝐷. The task of this paper
is to propose and study prior models for response functions
𝑈 as illustrated in Figure 1. Different choices of the priors on
the response functions have strong influence on the results of
the analysis which will be studied in the next section.

3. Nonparametric Prior Models of
Response Function

Here, we will formulate several prior models of response
functions. Our purpose is not to impose any parametric form
as it was done, for example, in [5, 6], but to model response
function as a free-form curve with only influence from their
prior models. The motivation is demonstrated in Figure 2,
where a common parametric model [6] is compared to an
example of response function obtained from real data. While
the basic form of the response function is correct, exact para-
metric form of the function would be very complex. There-
fore, we prefer to estimate each point on the response func-
tion individually. However, this leads to overparameteriza-
tion and poor estimates would result without regularization.
Allmodels in this section introduce regularization of the non-
parametric function via unknown covariance of the prior
with hyperparameters.

3.1. Orthogonal Prior. The first prior model assumes that
each response function u𝑘, 𝑘 = 1, . . . , 𝑟, is positive and each

response function is weighed by its own precision relevance
parameter V𝑘 ∈ R which has a conjugate Gamma prior:

𝑓 (u𝑘 | V𝑘) = 𝑡Nu𝑘 (0𝑛,1, V
−1
𝑘 𝐼𝑛) ,

𝑓 (V𝑘) = GV𝑘 (𝛼0, 𝛽0)
(10)

for ∀𝑘 = 1, . . . , 𝑟 and where 𝛼0, 𝛽0 are chosen constants.
The precision parameters V𝑘 serve for suppression of

weak response functions during iterative computation and
therefore as parameters responsible for estimation of the
number of relevant sources.

3.2. Sparse Prior. The model with sparse response functions
has been introduced in [10]. The key assumption of this
model is that the response functions are most likely sparse
which is modeled similarly as in case of source images,
Section 2.2, using the ARD principle. Here, each element of
response function 𝑢𝑘,𝑗 has its relevance parameter V𝑘,𝑗 which
is supposed to be conjugate Gamma distributed. In vector
notation, each response function u𝑘 has its precision matrix
Υ𝑘 with precision parameters V𝑘,𝑗 on its diagonal and zeros
otherwise. Then

𝑓 (u𝑘 | Υ𝑘) = 𝑡Nu𝑘 (0𝑛,1, Υ𝑘) ,

𝑓 (V𝑘,𝑗) = GV𝑘,𝑗 (𝛼0, 𝛽0) , ∀𝑗 = 1, . . . , 𝑛,
(11)

where 𝛼0, 𝛽0 are chosen constants.
The employed ARD principle should suppress the noisy

parts of response functions which should lead to clearer
response functions and subsequently to clearer TACs.

3.3. Wishart Prior. So far, we have modeled only the first
or the second diagonal of the precision matrix Υ𝑘. Each of
these approaches has its advantages which we would like
to generalize into estimation of several diagonals of the
prior covariance matrix. However, this is difficult to solve
analytically. Instead, we note that it is possible to create the
model for the full prior covariance matrix of the response
functions as well as their mutual interactions. For this task,
we use vectorized form of response functions denoted as u ∈
R𝑛𝑟×1, u = vec(𝑈) = [u𝑇1 , . . . , u

𝑇
𝑟 ]
𝑇.This rearranging allows us

tomodelmutual correlation between response functions.The
full covariance matrix Υ ∈ R𝑛𝑟×𝑛𝑟 can be modeled as follows:

𝑓 (u | Υ) = 𝑡Nu (0𝑛𝑟,1, Υ
−1) ,

𝑓 (Υ) = WΥ (𝛼0𝐼𝑛𝑟, 𝛽0) ,
(12)

whereW is the Wishart distribution with parameters 𝛼0, 𝛽0.
See Appendix A.2.

The advantage of this parameterization is obvious: the
full covariance matrix is estimated. The disadvantage in this
model is that, for estimation of 𝑛𝑟 parameters in vector u,
we need to estimate 𝑛2𝑟2 additional parameters in covariance
structure.The problem is regularized by the prior onΥ, which
is relativelyweak regularizationwith potential side effects.We
try to suppress these side effects in the next section.
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Figure 2: Example of theoretical shape of response function (by [6]), left, and corresponding real-world shape of convolution kernels, right.

3.4. Variational Bayes Approximate Solution. The whole
probabilistic model comprises (6)-(7), (8), and (9) and
selected response functions model from Sections 3.1–3.3.The
probabilistic model is solved using variational Bayes (VB)
method. Here, the solution is found in the form of probability
densities of the same type of the priors. The shaping parame-
ters of the posterior densities form a set of implicit equations,
Appendix B,which is typically analytically intractable and has
to be solved iteratively.

The algorithms are summarized in Algorithm 1. We
named our algorithms as Nonparametric Variational Bayes
Approximation (NVBA) algorithm. All prior parameters are
set to 10−10 or 10+10 in order to obtain noninformative priors.
The initial response functions are selected as pulses with dif-
ferent lengths with respect to covering the typical structures
while the initial input function is selected as an exponential
curve since the iterative solution could converge only to a
local minimum.

Algorithm 1 (iterative NVBA algorithm).

(1) Initialization:

(a) Set prior parameters 𝛼0, 𝛽0, 𝜗0, 𝜌0, 𝜙0, 𝜓0, 𝜁0, 𝜂0.

(b) Set initial values for 𝐴̂,𝐴𝑇𝐴, Ξ̂, û, û𝑇u, Υ̂, b̂, b̂𝑇b,
𝜍̂, 𝜔̂.

(c) Set the initial number of sources 𝑟max.

(2) Iterate until convergence is reached using computa-
tion of shaping parameters from Appendix B:

(a) Source images 𝜇𝑎𝑖 , Σ𝑎𝑖 and their variances
𝜙𝑖, 𝜓𝑖, ∀𝑖 using (B.1)–(B.4).

(b) Response functions 𝜇u, Σu and their hyperpa-
rameters depending on version of the prior:
(i) OrthogonalRF: (B.11) and (B.12),
(ii) SparseRF: (B.11) and (B.13),
(iii) WishartRF: (B.11) and (B.14).

(c) Input function 𝜇b, Σb and its variance 𝜁, 𝜂 using
(B.5)–(B.7).

(d) Variance of noise 𝜗, 𝜌 using (B.8)–(B.9).

(3) Report estimates of source images 𝐴̂, response func-
tions 𝑈̂, and input function b̂.

4. Experiments and Discussion

We proposed three versions of model of nonparametric
response functions within the model of probabilistic blind
source separation model in Sections 3.1–3.3. The proposed
algorithms are tested on simulated phantom study as well
as on representative clinical data set from dynamic renal
scintigraphy.

4.1. Synthetic Dataset. Performance of the proposed models
of response functions is first studied on a synthetic dataset
generated according to model (5). The size of each image is
50 × 50 pixels and the number of simulated time points is 𝑛 =
50.We simulate 3 sourceswhich are given in Figure 3, top row,
using their source images and response functions together
with generated input function b (top row, right). We generate
homogeneous Gaussian noise with standard deviation 0.3 of
the signal strength.

The results of the three proposed models are given in
Figure 3 in the rowwise schema. Note that all algorithms are
capable of estimating the correct number of sources. It can be
seen that all methods estimated the source images correctly.
Themain differences are in estimated response functions, the
fourth to the sixth columns, and estimated input function, the
seventh column. Note that only the first prior, orthogonal,
was not able to respect the sparse character of the modeled
response functions; all other priors were able to do so.

4.2. Competing Methods. There are some other methods
which provide solution to estimate the response functions in
a nonparametric fashion as well.

(1) FIR Filter.A semiparametric approach based on finite
impulse response filter (FIR Filter) is used to model
the haemodynamic response functions [9].

(2) S-BSS-vecDC.The sparse blind source separation and
vectorized deconvolution (S-BSS-vecDC) algorithm
is used in hierarchical models [10].

Quality of estimation of the proposed methods is val-
idated with quantitative results using mean square error
(MSE). Here the MSE (𝜇𝑘MSE) is computed between the
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Figure 3: The results of the three studied methods on synthetic dataset (the first row). The red lines are generated data while the blue lines
are estimated results from the respective methods.

Table 1: Comparison of MSE of response functions with different
sets of images.

Algorithm 𝑘 𝜇𝑘MSE

FIR filter

1 0.044
2 0.0214
3 0.115
4 0.234

S-BSS-vecDC

1 0.0057
2 0.0021
3 0.2401
4 0.4722

NVBA with Wishart prior

1 0.003
2 0.0016
3 0.0077
4 0.0056

estimated response functions 𝑈̂𝑗 and their simulated values
𝑈sim
𝑗 :

𝜇𝑘MSE = 1
𝑛

𝑛

∑
𝑗=1

(𝑈̂𝑗,𝑘 − 𝑈sim
𝑗,𝑘 )
2
. (13)

𝑘 = 1, . . . , 4 is the set number of testing image. We compare
the estimation results of the FIR filter, S-BSS-vecDC, and our
NVBA withWishart Prior with 4 sets of images [18]. Figure 4
gives the bar figure of Table 1.

For the four sets of images, the proposed NVBA with
Wishart prior algorithm provided the best estimate of the
response function (in terms of the MSE).
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Figure 4: Comparison of MSE of response functions with different
sets of images.

4.3. Datasets fromDynamic Renal Scintigraphy. Themethods
from Sections 3.1–3.3 were tested on real data from dynamic
renal scintigraphy taken from online database (http://www
.dynamicrenalstudy.org/). We illustrate the possible outcome
of the method on two distinct datasets, numbers 84 and 42.
Each dataset represents different behavior of the methods.

Both sequences consist of 50 frames taken after 10 seconds
and both were preprocessed by selection region of the left
kidney. The data are expected to contain three sources of
activity: (i) parenchyma, the outer part of a kidney where
the tracer is accumulated at the first, (ii) pelvis, the inner
part of a kidney where the accumulation has physiological
delay, and (iii) background tissues which is typically active
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orthogonal, sparse, and Wishart.
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Figure 6: Estimated source images (columns 1–3), response functions (columns 4–6), and input functions (column 7) using priors:
orthogonal, sparse, and Wishart.

at the beginning of the sequence. Since the noise in scintigra-
phy is Poisson distributed, the assumption of homogeneous
Gaussian noise (6) can be achieved by asymptotic scaling
known as the correspondence analysis [19] which transforms
the original data𝐷orig as

𝑑𝑖𝑗 =
𝑑𝑖𝑗,orig

√∑𝑝𝑖=1 𝑑𝑖𝑗,orig ∑
𝑛
𝑗=1 𝑑𝑖𝑗,orig

. (14)

First, we applied themethods fromSections 3.1–3.3 on dataset
number 84 as a typical noncontroversial case. The results
are shown in Figure 5 using the estimated source images
(columns 1–3), the estimated related response functions
(columns 4–6), and the estimated input function (column 7).

The results of all three methods are comparable with the
main difference being in the smoothness or nonsmoothness
of the estimated response functions. This is most remarkable
in the fifth column corresponding to the response functions
of the pelvis. The sparse prior prefers sparse solution with
many zeros, while the Wishart prior models full covariance
of response function where no smoothness is incorporated.
However, the differences in this case are relatively minor.
Second, we apply the methods 3.1–3.3 on dataset number
42 where different methods yield more distinct results; see
Figure 6. Note that the sparse priors were not able to
separate the pelvis which is mixed with the parenchyma in
the first column while the orthogonal prior estimated the
source images reasonably; however, the response functions
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of the parenchyma and the pelvis are clearly mixed. The
Wishart prior was able to separate the parenchyma and the
pelvis correctly together with meaningful estimates of their
response functions. In this case, the use of more complex
prior models significantly outperformed the simpler models.
Indeed, the analysis of the full database would be of interest
in concrete application; however, it is not a goal of this paper.

5. Conclusion

A common model in functional analysis of dynamic image
sequences assumes that the observed images arise from
superposition of the original source images weighed by their
time-activity curves. Each time-activity curve is assumed to
be a result of common input function and source-specific
response function, both unknown. Estimation of the model
parameters yields an algorithm for blind source separation
and deconvolution.The focus of this study is the prior model
of the response functions while the models of the source
images and the input function are the same. We propose
three prior models of the response functions. The advantage
of all three models is their flexibility in estimation of var-
ious shapes of response functions since we do not impose
any parametric form of them. The formulated probabilistic
models in the form of hierarchical priors are solved using
the variational Bayes methodology. The performance of the
proposedmethods is tested on simulated dataset as well as on
representative real datasets from dynamic renal scintigraphy.
It is shown that the behaviors of themethods well correspond
with their prior expectations. We compared our algorithm
with the other competingmethods, and ourmethod achieved
the most accurate result. We conclude that the most complex
model, that is, the Wishart model, provides also the most
desirable results in the sense of mean square errors to the
original simulated data as well as in sense of biologically
meaningfulness of the results on the real datasets.Notably, the
methods have no domain-specific assumptions; hence, they
can be used in other tasks in dynamic medical imaging.

Appendix

A. Required Probability Distributions

A.1. Truncated Normal Distribution. Truncated normal dis-
tribution, denoted as 𝑡N, of a scalar variable 𝑥 on interval
[𝑎; 𝑏] is defined as

𝑡N (𝜇, 𝜎 [𝑎, 𝑏]) =
√2 exp ((𝑥 − 𝜇)2)

√𝜋𝜎 (erf (𝛽) − erf (𝛼))
𝜒[𝑎,𝑏] (𝑥) , (A.1)

where𝛼 = (𝑎−𝜇)/√2𝜎,𝛽 = (𝑏−𝜇)/√2𝜎, function𝜒[𝑎,𝑏](𝑥) is a
characteristic function of interval [𝑎, 𝑏] defined as 𝜒[𝑎,𝑏](𝑥) =
1 if 𝑥 ∈ [𝑎, 𝑏], and 𝜒[𝑎,𝑏](𝑥) = 0 otherwise. erf() is the error
function defined as erf(𝑡) = (2/√𝜋) ∫𝑡

0
𝑒−𝑢
2

𝑑𝑢.

The moments of truncated normal distribution are

𝑥̂ = 𝜇 − √𝜎
√2 [exp (−𝛽2) − exp (−𝛼2)]

√𝜋𝜎 (erf (𝛽) − erf (𝛼))
,

𝑥2 = 𝜎 + 𝜇𝑥̂ − √𝜎
√2 [𝑏 exp (−𝛽2) − 𝑎 exp (−𝛼2)]

√𝜋 (erf (𝛽) − erf (𝛼))
.

(A.2)

A.2. Wishart Distribution. Wishart distribution W of the
positive-definite matrix𝑋 ∈ R𝑝×𝑝 is defined as

W𝑝 (Σ, V) = |𝑋|(V−𝑝−1)/2 2−V𝑝/2 |Σ|−V/2 Γ−1𝑝 ( V
2
)

⋅ exp (−1
2
tr (Σ−1𝑋)) ,

(A.3)

where Γ𝑝(V/2) is the Gamma function.The required moment
is

𝑋̂ = VΣ. (A.4)

B. Shaping Parameters of Posteriors

Shaping parameters of posterior distributions are given as

Σa𝑖 = (𝜔̂
𝑛

∑
𝑗=1

(𝑥𝑇𝑗 𝑥𝑗) + diag (Ξ̂𝑖))
−1

, (B.1)

𝜇a𝑖 = Σa𝑖 𝜔̂
𝑛

∑
𝑗=1

(𝑥𝑗𝑑𝑖,𝑗) , (B.2)

𝜙𝑖 = 𝜙𝑖,0 +
1
2
1𝑟,1, (B.3)

𝜓𝑖 = 𝜓𝑖,0 +
1
2
diag (â𝑇𝑖 a𝑖) , (B.4)

Σb

= (𝜍̂𝐼𝑛 + 𝜔
𝑟

∑
𝑖,𝑗=1

(â𝑇𝑗 a𝑗)(
𝑛−1

∑
𝑘,𝑙=0

Δ𝑇𝑘Δ 𝑙 ̂𝑢𝑘+1,𝑗𝑢𝑙+1,𝑖))
−1

,
(B.5)

𝜇b = Σb𝜔̂
𝑟

∑
𝑘=1

(
𝑛−1

∑
𝑗=0

Δ 𝑗𝑢𝑗+1,𝑘)
𝑇

𝐷𝑇â𝑘, (B.6)

𝜁 = 𝜁0 +
𝑛
2
,

𝜂 = 𝜂0 +
1
2
tr(b̂𝑇b) ,

(B.7)

𝜗 = 𝜗0 +
𝑛𝑝
2
, (B.8)

𝜌

= 𝜌0 +
1
2
tr (𝐷𝐷𝑇 − 𝐴̂𝐷̂𝑇𝐷𝑇 − 𝐷𝑋̂𝑇𝐴̂𝑇)

+ 1
2
tr(𝐴𝑇𝐴𝑋𝑇𝑋) .

(B.9)



8 BioMed Research International

Here, 𝑥̂ denotes a moment of respective distribution, tr()
denotes a trace of argument, diag() denotes a square matrix
with argument vector on diagonal and zeros otherwise or a
vector composed from diagonal element of argument matrix,
and 1𝑛,1 denotes the matrix of ones of dimension 𝑛 × 1; the
auxiliary matrix Δ 𝑘 ∈ R𝑛×𝑛 is defined as

(Δ 𝑘)𝑖,𝑗 =
{
{
{

1, if 𝑖 − 𝑗 = 𝑘

0, otherwise,
(B.10)

and standard moments of required probability distributions
are given in Appendices A.1 and A.2.

The shaping parameters for response functions are given
in the following subsections while the parameter 𝜇u is
common for all methods as

𝜇u

= Σu (𝐴
𝑇𝐴 ⊗ 𝜔̂𝐵𝑇𝐵) vec(𝐵𝑇𝐵

−1

𝐵̂𝑇𝐷𝑇𝐴̂𝐴𝑇𝐴
−1

) .
(B.11)

B.1. Shaping Parameters for Orthogonal Prior. Consider

Σu = (𝐴𝑇𝐴 ⊗ 𝜔̂𝐵𝑇𝐵 + 𝐼𝑛 ⊗ Υ̂)
−1

,

𝛼𝑘 = 𝛼𝑘,0 +
𝑛
2
,

𝛽𝑘 = 𝛽𝑘,0 +
1
2
tr (u𝑘u

𝑇
𝑘 ) .

(B.12)

B.2. Shaping Parameters for Sparse Prior. Consider

Σu = (𝐴𝑇𝐴 ⊗ 𝜔̂𝐵𝑇𝐵 + diag (vec (Υ̂)))
−1

,

𝛼 = 𝛼0 +
1
2
1𝑛𝑟,1,

𝛽 = 𝛽0 +
1
2
diag (ûu𝑇) .

(B.13)

B.3. Shaping Parameters for Wishart Prior. Consider

Σu = (𝐴𝑇𝐴 ⊗ 𝜔̂𝐵𝑇𝐵 + Υ̂)
−1

,

ΣΥ = (ûu𝑇 + (𝛼0𝐼𝑛𝑟)
−1)
−1

,

𝛽 = 𝛽0 + 1.

(B.14)
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[3] T. Taxt, R. Jiř́ık, C. B. Rygh et al., “Single-channel blind estima-
tion of arterial input function and tissue impulse response in
DCE-MRI,” IEEE Transactions on Biomedical Engineering, vol.
59, no. 4, pp. 1012–1021, 2012.

[4] E. Durand, M. D. Blaufox, K. E. Britton et al., “Interna-
tional Scientific Committee of Radionuclides inNephrourology
(ISCORN) consensus on renal transit time measurements,”
Seminars in Nuclear Medicine, vol. 38, no. 1, pp. 82–102, 2008.

[5] L. Chen, P. L. Choyke, T.-H. Chan, C.-Y. Chi, G. Wang, and
Y. Wang, “Tissue-specific compartmental analysis for dynamic
contrast-enhanced MR imaging of complex tumors,” IEEE
Transactions onMedical Imaging, vol. 30, no. 12, pp. 2044–2058,
2011.

[6] A. Kuruc, W. J. Caldicott, and S. Treves, “An improved
deconvolution technique for the calculation of renal retention
functions,” Computers and Biomedical Research, vol. 15, no. 1,
pp. 46–56, 1982.

[7] O. Tichý, V. Šmı́dl, and M. Šámal, “Model-based extraction of
input and organ functions in dynamic scintigraphic imaging,”
Computer Methods in Biomechanics and Biomedical Engineer-
ing: Imaging & Visualization, vol. 4, no. 3-4, pp. 135–145, 2014.

[8] J. Kershaw, S. Abe, K. Kashikura, X. Zhang, and I. Kanno, “A
bayesian approach to estimating the haemodynamic response
function in event-related fMRI,” NeuroImage, vol. 11, no. 5, p.
S474, 2000.
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