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Mechanical vibration constitutes a valuable cue for performing fault diagnosis as it is directly related to the transient regime of
rolling machinery.'is study establishes a multidomain feature fusion network (MFFN) to extract and fuse multidomain features
through a novel multistream architecture. 'ree primary features are simultaneously extracted from the time, frequency, and
time-frequency domains. 'en, highly representative features are extracted via three convolutional branches in one- or two-
dimensional spaces. A novel squeeze-connection-excitation (SCE) module is proposed to adaptively fuse features in the three
domains. 'e advantage offered by the proposed method is that it can leverage cues from the raw vibration signal, resulting in
accurate fault diagnosis. Experimental results comprehensively demonstrate and analyze the high accuracy and generalization
achieved by this MFFN-based fault diagnosis method.

1. Introduction

Rolling machinery is a foundational element in industrial
infrastructures. Machinery faults are the main factors that
significantly affect equipment and production safety. In-
telligent fault diagnosis of rolling machinery has been a topic
of interest in studies concerning vibration-based health
monitoring of mechanical systems [1]. Previously, fault
diagnosis was realized through a combination of traditional
signal processing methods, such as Fourier and wavelet
transforms (WTs), and shallow learning techniques, such as
support vector machine (SVM) [2] and Bayes classifiers [3].
In general, these methods are physically analyzable; how-
ever, they provide an inadequate representation of faults,
which may result in a low diagnosis accuracy. 'is problem
has motivated the development of deep learning-based
methods, such as deep belief networks (DBNs) [4], stacked
autoencoders (SAEs) [5], convolutional neural networks
(CNNs) [6], and long short-term memory (LSTM) [7]. 'e
high representability offered by deep learning methods
significantly improves fault diagnosis accuracy.

Recently, multistream architectures are being used for
fault diagnosis. In contrast to single-stream architectures,
multistream architectures can represent faults in terms of
multiple aspects; thus, they can achieve further enhance-
ments in the representability of intrinsic characteristics of
machinery faults. 'is property may further improve the
performance of fault diagnosis methods. However, current
multistream architectures primarily focus on the multiscale
characteristic of raw vibration signals [8] and ignore the
various physical properties observed in multiple domains. A
novel multistream architecture that can extract and fuse
multidomain features is desirable to facilitate accurate fault
diagnosis.

'is study proposes a novel multidomain feature fusion
network (MFFN) for fault diagnosis. To this end, three one-
dimensional (1D) and two-dimensional (2D) convolutional
streams are designed and combined to construct the mul-
tistream architecture. Two 1D streams manage the data in
the time and frequency domains, while a 2D stream extracts
the time-frequency feature. At the backend joint, three
representative features are fused by the squeeze-connection-
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excitation (SCE) module. Finally, the fused features are used
for fault classification.'e contributions of this study to fault
diagnosis include the following:

(i) A novel multistream architecture that can process
multidomain features in an organized and com-
prehensive manner

(ii) A novel SCE module that can adaptively fuse
multidomain features

(iii) A novel feature type that offers high representability
of fault patterns and improves the decision-making
capabilities of fault diagnosis

'e remainder of this paper is organized as follows.
Section 2 reviews related works. 'e overall framework of
MFFN is presented in Section 3. Section 4 describes the
proposed MFFN-based fault recognition method. Experi-
mental comparisons and analysis are discussed in Section 5.
Section 6 provides the summary and conclusions.

2. Related Works

Various fault diagnosis methods have been proposed to
classify faults in mechanical systems. 'ese methods gen-
erally collect vibration signals as the source data because
vibrations directly relate to the transient state of running
elements. Various existing shallow learning models, such as
the hidden Markov model [9], k-nearest neighbors [10], and
SVMs [11], have been applied in fault classification. Re-
cently, deep learning-based methods have demonstrated
excellent performance in fault diagnosis. 'e advantage
afforded by deep learning methods is the high represent-
ability of faults. For example, the DBN model [4], which is
a typical probabilistic generative model, has been introduced
to solve the problems of nonlinear dynamics and discrete
failure patterns. However, experimental results have
revealed that DBN architectures are susceptible to over-
fitting. 'e SAE method, which is a popular deep learning-
based fault diagnosis method, can incrementally learn new
samples without a retraining process [5].

Another key issue in fault diagnosis is that feature ex-
traction. Previously, temporal and frequency analyses were
the two main approaches toward fault feature extraction
[12]. However, they cannot represent the temporal variation
of a vibration signal accurately [13]. 'is problem has been
solved via methods including short-time Fourier transforms
[13], Wigner Ville distributions [14], and WTs [15]. Among
these, WT is the most practical because its relaxed structure
can decompose signals with varying temporal resolutions.
Moreover, WT can produce 2D feature maps such that
successful image classification methods can be transformed
into fault diagnosis methods.

Deep learning-based fault diagnosis has attracted con-
siderable attention recently [16]. 'e advantage of deep
learning lies in its excellent ability to abstract signals by
performing layer-wise nonlinear calculations, thereby en-
abling the deeper layer to generate more representative
features. 'is encourages the utilization of various deep
learning methods in fault recognition.'e DBN is one of the

most widely used deep learning methods because it can
adapt to a wide range of problems, including those of
nonlinear dynamics and discrete failure patterns [17]. To
leverage valuable cues for fault diagnosis, an adaptive spa-
tiotemporal feature learning architecture with multiple
measurements was proposed [18]. Subsequently, the gen-
eralization of deep learning architecture was considered. For
example, a domain generalization-based hybrid diagnosis
network was established, which could be deployed in unseen
working conditions instead of in real-world working con-
ditions [19]. Moreover, a domain adversarial transfer net-
work has been evaluated for application in fault diagnosis,
wherein a transfer learning mechanism can be implemented
to enhance the generalization of deep learning-based fault
diagnosis [20]. Recently, a novel convolutional neural net-
work is established to diagnose faults from small samples.
Based on the domain adaption, this method won success
when the vibration data are not available in abundant [21].
Different from this previous strategy, our study in this paper
aims to solve another problem in fault diagnosis—feature
representation and fusion.

Also, other types of signal have been introduced in faults
diagnosis. For example, the thermographic information has
been utilized in fault diagnosis of ventilation in BLDC
motors [22, 23]. In contrast to the vibration signal, the
thermographic signals provide additional informative clues
which help to increase the accuracy of the fault diagnosis.
Moreover, the thermographic signal is relatively simple in
contrast to the vibration signal, such that it can better
identify the fault types. However, the main drawback of the
thermographic signal-based strategy lies in that it is com-
monly hysteretic to reflect the machinery statement. In
practice, it is observed that the temperature significantly
increases after a while of the fault occurrence. Alternatively,
the acoustic signal has been investigated in the field of fault
diagnosis [24]. 'e main advantage of the acoustic signal-
based strategy lies in the noncontact measurement that we
can efficiently deploy the acoustic sensors to diagnose faults.
However, the acoustic signal is likely affected by the envi-
ronmental noises. As the result, noise removal is the main
issue of the acoustic signal processing.

'is study aims to leverage valuable cues from multiple
domains for fault diagnosis. To this end, a novel MFFN is
proposed. 'is network comprises three streams that can
comprehensively extract highly representative features in
multiple domains, such as the temporal, frequency, and
time-frequency domains. 'e MFFN can obtain more
valuable cues for fault diagnosis than those of current single-
stream andmultistream architectures. Moreover, the novelty
of the proposed architecture lies in its ability to adaptively
fuse 1D and 2D features using the SCE block.

3. Proposed Fault Diagnosis Scheme

3.1.MFFN. To achieve high fault representability, this study
proposes a novel multistream architecture for extracting and
classifying three types of features in the temporal, time-
frequency, and frequency domains. 'e block diagram of
MFFN is shown in Figure 1. 'e sliding window block is
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applied to segment the vibration signal into sequence vectors
at the first stream. Time-frequency features are extracted using
WT at the second stream. 'e third stream extracts frequency
features via fast Fourier transform (FFT).'ese primary features
are subsequently enhanced in terms of their representability
through layer-wise convolutional calculations. Finally, these
highly representative features are adaptively fused via the SCE
module. 'e backend classifier is established using two fully
connected layers and a Softmax calculation block.'e data used
in this study were obtained from public datasets. 'e fault
diagnosis platform consists of a motor, torque transducer/en-
coder, dynamometer, and control electronics [21]. 'e reason
for selecting these datasets lies in that they provide a baseline to
fairly evaluate and compare different methods.

3.2. Primary Feature Extraction. 'e primary feature ex-
traction process is shown in Figure 2. 'e sliding window is
used for extracting temporal features. L denotes the window
length, and M is the sliding step. 'e frequency spectrum is
extracted via the following FFT:

X(k) � 􏽘
N−1

n�0
x(n)e

− j2π/Nkn
, k � 0, 1, . . . , N − 1, (1)

where N denotes the length of the signal segmentation.
A limitation of FFT is that it analyses the frequency

spectrum pattern of the vibration signal exclusively from
a global perspective; therefore, it is not suitable for an
amplitude-modulated or nonstationary signal. 'is draw-
back can be addressed by wavelet package transform (WPT),
which is a time-frequency analysis method that can analyze
vibration signals with flexible temporal resolutions at both
high and low frequencies [15]. 'erefore, theWT is operated
with a wavelet packet tree that decomposes a signal into
several levels of wavelet packets. A three-layer wavelet packet
tree is used in our method. As a result, eight sub-bands are
obtained, and the energy value of each sub-band signal can
be calculated through the following equation:

E
j
n � 􏽚 C

j
n(t)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dt � 􏽘

Ni

k�1
x

k
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
, (2)

where C
j
n(t)(n � 3, j � 0, 1, . . . , 7) is the reconstructed

sub-band signal, Ni is the length of the reconstructed signal,

and xk
j(k � 1, 2, . . . , r) is the amplitude of the jth recon-

structed signal. 'e energy spectrum feature of a sub-band
signal can be presented through a normalized value, as
shown in the following:

E
0
4��

Er

􏽰 ,
E
1
4��

Er

􏽰 , · · · ,
E
7
4��

Er

􏽰􏼢 􏼣, (3)

where Er is the square root of the summed square values of
the sub-band signal energy and is expressed as follows:

Er �

��������

􏽘

M

j�1
E

j
n􏼐 􏼑

2

􏽶
􏽴

. (4)

3.3. Extraction and Fusion of Highly Representative Features.
In the first and third streams, two 1D-CNNs are connected
to the primary feature extractor to manage features in the
temporal and frequency domains, while a 2D-CNN is
connected to the WT module to process the feature in the
time-frequency domain.'ese highly representative features
are then fused at the backend joint by the SCE module. In
general, there are four successive phases in the SCE module,
namely, squeeze, connection, excitation, and reweight, as
shown in Figure 3.'e feature matrices of the three domains
are the input to the SCE module. 'e temporal, frequency,
and time-frequency feature matrices are presented as
follows:

X �

x11 · · · x1C1

⋮ ⋱ ⋮

xL11 · · · xL1C1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L1×C1

,

Y �

y11 · · · y1C2

⋮ ⋱ ⋮

yL21 · · · yL2C2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L2×C2

,

Z �

z11 · · · z1C3

⋮ ⋱ ⋮

zL31 · · · zL3C3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L3×C3

,

(5)

where L1, L2, and L3 are the feature dimensions and C1, C2,
and C3 are the number of feature channels.
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Figure 1: Block diagram of multidomain feature fusion network.
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3.4. Squeeze. A pooling operation is applied to squeeze the
feature matrix. As a result, three 1D feature vectors are
generated to present the feature matrix across three do-
mains, shown as follows:

lj � Fsq(X) �
1
L1

􏽘

L1

i�1
xij, j � 1, 2, . . . , C1( 􏼁, l � l1, l2, . . . , lC1

􏼐 􏼑,

mj � Fsq(Y) �
1
L2

􏽘

L2

i�1
yij, j � 1, 2, . . . , C2( 􏼁,m � m1, m2, . . . , mC2

􏼐 􏼑,

nj � Fsq(Z) �
1
L3

􏽘

L3

i�1
zij, j � 1, 2, . . . , C3( 􏼁n � n1, n2, . . . , nC3

􏼐 􏼑.

(6)

3.5. Connection. 'e feature vectors are fused by the fol-
lowing concatenation operation:

p � Fc(l,m,n)

� l1, l2, . . . , lC1
, m1, m2, . . . , mC2

, n1, n2, . . . , nC3
􏼐 􏼑

� p1, p2, . . . , pC( 􏼁,

J � Fc(X,Y,Z) �

j11 · · · j1C

⋮ ⋱ ⋮

jL1 · · · jLC

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L×C

.

(7)

3.6. Excitation. Multilayer mapping is performed to achieve
excitation, as follows:

q � Fex(p,W) � σ W2δ W1p( 􏼁( 􏼁. (8)

In the above equation, σ is the sigmoid function, δ is the
ReLU activation function, and W,W1, andW2 are the full-
connection weights.

3.7. Reweight. 'e learned weight is added to feature
channels to generate the weighted feature for final
classification:

K � Fr(J, q) � J × q. (9)

'e advantage of the reweight calculation is similar to
that of the global average pooling operation in the squeeze
process that can generate channel-wise statistics. Sub-
sequently, this global information is embedded by the
excitation process to generate the channel descriptor q,
which comprehensively captures channel-wise de-
pendencies. As a result, the most important feature can be
emphasized by multiplying the feature channels with the
channel descriptor. In this regard, SCE blocks intrinsically
introduced dynamics conditioned on the input, thereby
helping boost feature discriminability of specific fault
patterns [5].
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Figure 3: SCE module.
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Figure 2: Primary feature extraction: (a) temporal feature, (b) frequency feature, and (c) time-frequency feature.
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4. MFFN-Based Fault Diagnosis

'e MFFN-based fault diagnosis method comprises four
modules. 'e first module performs primary data pro-
cessing, wherein the physical significance of the vibration
signal is presented with respect to the temporal, frequency,
and time-frequency features. In the second module, the
high-representation features are extracted through
layer-wise mapping. Adaptive feature fusion is realized
in the third module, wherein the most credible factor is
enhanced, while feature redundancy is reduced con-
siderably. Finally, the fourth module is designed for fault
classification, wherein a shallow architecture is estab-
lished with two fully connected layers and a Softmax
calculation block. 'e details of our proposed MFFN are
presented in Table 1.

5. Experimental Evaluation and Discussion

5.1. Setup. To evaluate the performance of the proposed
MFFN, experiments were conducted on defective bearing
datasets provided by the Case Western Reserve University
Bearing Data Center (CWRU dataset) [25], Jiangnan
University (Jiangnan dataset) [26], and Paderborn Uni-
versity (Paderborn dataset) [27]. 'e bearing system
platform in the Case Western Reserve University Bearing
Data Center includes a 2 HP motor, torque transducer,
dynamometer, and load motor. 'e vibration signal was
collected via an accelerometer at a sampling frequency of
12 kHz. In addition to the normal state, nine categories of
fault state data were included in this database: single-point
faults with sizes of 0.007, 0.14, and 0.021 were individually
identified on the inner race (IR), outer race (OR), and
rolling elements (REs), respectively. For each state, 120,000
samples were collected in 10 s. 'e data from Jiangnan
University include four categories of running states: the
normal state and fault states separately seeded on the
bearing at IR, OR, and RE. All data were collected at
a 50 kHz sampling frequency at rolling speeds of 600, 800,
and 1000 rpm. For the normal state, 1800 samples were
randomly collected, while 600 samples were collected for
each fault state. 'e data from the Paderborn University
were provided via measurements concerning six healthy
and 26 damaged bearings at IR and OR. All data were
collected at a 64 kHz sampling frequency at rolling speeds
of 900 and 1500 rpm. For each state, 256,0000 samples are
collected in 4 s. 'e training and testing samples for ex-
perimental evaluations are shown in Tables 2 to 4.

5.2. Model Pretraining and Fine-Tuning. An adequate
number of epochs in the training period is important for
model training. Excessive epochs may result in overfitting,
while the learning outcome may be poor in the case of
insufficient epochs. Figure 4 illustrates the training times of
the three datasets and reveals that that the MFFN can
converge rapidly on all three datasets. 'irty iterations are

sufficient for model learning with the CWRU and Jiangnan
datasets, while 25 iterations are required for model learning
with the Paderborn dataset.

5.3. MFFN-Based Fault Diagnosis. Confusion matrices were
utilized for evaluating the performance of the proposed
MFFN. Figure 5(a) presents the confusion matrix for the
CWRU dataset. 'is result demonstrates that our fault di-
agnosis method is highly accurate. Only two samples were
erroneously classified; the rest were identified correctly. 'e
classification results regarding the Jiangnan dataset are
satisfactory (Figure 5(b)); only one sample was misclassified.
A similar outcome was observed in the results on the
Paderborn dataset (Figure 5(c)) with one error.

5.4. Comparison against Existing Deep Learning Methods.
We evaluated the proposed MFFN by comparing it to state-
of-the-art methods. 'e temporal-, frequency-, and time-
frequency feature-based methods are comprehensively
catalogued for experimental comparison. For example, the
1D-CNN was used to classify 1D temporal features [28] and
denoted as “TF+ 1D-CNN.” Furthermore, temporal fea-
ture +WDCNN (TF+WDCNN) [29], frequency
feature + 1D-CNN (FF + 1D-CNN) [30], frequency featur-
e + SDAE (FF + SDAE), time-frequency feature + 2D-CNN
(TFF + 2D-CNN), and time-frequency feature +VGG16
(TFF +VGG16) [31] were included in the experimental
comparison. Each dataset was divided into 10 subsets for
experimental evaluation with respect to working conditions.
Figure 6 reveals that no salient performance variation was
observed among the 10 evaluations for MFFN; the maxi-
mum differences among evaluations were 0.08% on the
CWRU dataset, 0.12% on the Jiangnan dataset, and 0.13% on
the Paderborn dataset. 'us, experimental analysis demon-
strates the stability of our MFFN compared with that of the
other methods, which exhibit lesser model stability owing to
significant performance variations across tested subsets.

'e average accuracies of the compared fault diagnosis
methods are listed in Table 5. Two observations can be made
based on this table. First, the feature in the time-frequency
domain outperforms the temporal- and frequency-domain
features. 'is is because the time-frequency domain feature
can identify details of the frequency spectrum of the vi-
bration signal, which facilitates an improved fault diagnosis.
Second, fusing features in multiple domains is preferable for
fault diagnosis. 'is is because the feature fusion results can
represent machinery faults from multiple aspects and allow
more valuable cues to be leveraged for fault diagnosis. As
a result, intraclass fault differences are enlarged, while in-
terclass clustering is enhanced, which theoretically explains
the better performance of the proposed MFFN.

5.5. Visualization. Aiming to comprehensively understand
the benefits of our proposedMFFN, the t-SNE technique was
applied to reduce the dimensionality of the learned features
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Table 1: Parameters of MFFN.

Module Name Size/step/number Parameter size Output size

1D-CNN

Input_1 — 0 (None,4096,1)
ResBlock_1 3/1/16 912 (None,4096,16)
ResBlock_2 3/1/16 1568 (None,4096,16)
ResBlock_3 3/1/4 441 (None,4096,4)
Max_Pooling 2/1/- 0 (None,2048,4)

2D-CNN

Input_2 — 0 (None,128,128,3)
Conv2D_1 30/5/256 691200 (None,20,20,256)
Conv2D_2 6/2/256 2359552 (None,8,8,256)
Inception_1 (1,3,5,7)/1/32 688768 (None,8,8,128)
Reshape_1 — 0 (None,2048,4)

SCE

Global_Average_Pooling_1 — 0 (None,4)
Global_Average_Pooling_2 — 0 (None,4)
Global_Average_Pooling_3 — 0 (None,4)

Concatenate_1 — 0 (None,2048,12)
Concatenate_2 — 0 (None,12)

Dense_1 6/-/- 78 (None,6)
Dense_2 12/-/- 84 (None,12)
Multiply — 0 (None,2048,12)

Classifier
Flatten_1 — 0 (None,24576)
Dense_3 100/-/- 2457700 (None,100)
Dense_4 10,4,3/-/- 1010,404,303 (None,10),(None,4),(None,3)

Table 4: Samples in the Paderborn dataset.

Category Normal Outer race Inner race
Label 0 1 2
Training 1200 1200 1200
Validation 400 400 400
Testing 400 400 400

Table 2: Samples in the CWRU dataset.

Category Normal Outer race Inner race Rolling element
Size — 0.007 0.014 0.021 0.007 0.014 0.021 0.007 0.014 0.021
Label 0 1 2 3 4 5 6 7 8 9
Training 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200
Validation 400 400 400 400 400 400 400 400 400 400
Testing 400 400 400 400 400 400 400 400 400 400

Table 3: Samples in the Jiangnan dataset.

Category Normal Outer race Inner race Rolling element
Label 0 1 2 3
Training 1200 1200 1200 1200
Validation 400 400 400 400
Testing 400 400 400 400
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to two for facilitating map generation. 'e resulting 2D
feature maps are shown in Figure 6, wherein different colors
represent various fault or normal categories. As shown in
Figure 7, after MFFN feature learning, a fault-category
clustering effect is observed in contrast to the raw

distribution, along with linear margins between fault cate-
gories. 'is result is desirable and enables simpler classifi-
cation. 'is further demonstrates that using the MFFN
architecture can significantly improve the accuracy of fault
diagnosis.
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Figure 4: Training-time investigation for CWRU, Jiangnan, and Paderborn datasets. CWRU: (a) accuracy and (b) loss; Jiangnan:
(c) accuracy and (d) loss; Paderborn: (e) accuracy and (f) loss.
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Figure 5: Confusion matrices for (a) CWRU, (b) Jiangnan, and (c) Paderborn datasets.
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Figure 6: Experimental comparisons on (a) CWRU, (b) Jiangnan, and (c) Paderborn datasets.

Table 5: 'e average performance in different domains.

Input Model
Average accuracy

CWRU (%) Jiangnan (%) Paderborn (%)

TF WDCNN 99.78 99.74 99.73
1D-CNN 99.81 99.80 99.77

FF SDAE 99.69 99.71 99.78
1D-CNN 99.75 99.74 99.72

TFF VGG16 99.84 99.85 99.82
2D-CNN 99.87 99.86 99.84

TF + FF+TFF MFFN 99.95 99.92 99.91
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6. Conclusions

A novel MFFN-based fault diagnosis method is proposed.
'e proposed MFFN can fuse features in different domains,
such as the temporal, frequency, and time-frequency do-
mains. Sufficient cues are comprehensively leveraged
through the deep learning process of MFFN. 'e main
contribution of MFFN is that it can improve the repre-
sentability of faults, leading to a significant improvement in
the accuracy of fault diagnosis. 'eoretically, features in
multiple domains depict faults from multiple perspectives,

which are complementary in physical significance. More-
over, the importance of features in multiple domains
varies with respect to the tasks on hand. Intrinsically, our
proposed MFFN adopts a feature fusion strategy using
adaptive weights. Features extracted in multiple domains
are weighted and fused, leading to a comprehensive
utilization of their advantages. Consequently, MFFN
achieves higher accuracy compared with existing
architectures.

Using our proposed MFFN, exceptional accuracy can
be achieved, enabling its utilization in many practical
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Figure 7: Feature visualization with (a) raw data on the CWRU dataset, (b) learned features on the CWRU dataset, (c) raw data on the
Jiangnan dataset, (d) learned features on the Jiangnan dataset, (e) raw data on the Paderborn dataset, and (f) learned features on the
Paderborn dataset.
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applications. In our future work, we will train the MFFN
model to handle more signal types, such as thermal imaging
and acoustic data, which contain much more valuable
features for diagnosing faults. Moreover, we will evaluate
MFFN in real-world applications, especially in online fault
diagnosis.
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Digital image correlation has emerged as a popular method for the dynamic performance measurement of metallic and polymer
sheets, owing to the benefits of being a noncontact, full-field, and high-precision method. Two or more high-speed cameras are
required for full-field vibration measurements with three-dimensional digital image correlation, which is generally costly.
Perpendicular view to the specimen surface is conventional in two-dimensional digital image correlation, and the out-of-plane
displacement is regarded as a part of systematic errors. In this study, a single view method was implemented with no
complex optical settings. *e full-field vibration displacement of the metal sheet was measured with projection components,
and the first four orders of displacement modes were identified. Finite element analysis and traditional experimental modal
analysis were then implemented to validate the effectiveness and accuracy of the proposed approach. *e results show that
the dynamic parameters, including the natural frequencies and mode shapes, were well consistent. Meanwhile, there is a
significant difference in the length of mode shape vectors. *e number of measurement points in the proposed method is
2016, which is far more than the number of measurement points in the traditional experimental modal analysis. *is would
be convenient and beneficial for damage identification towards thin-wall parts including turbine blade with the continuum
hypothesis of mode shapes and a single-camera DIC system. It is worth noting that this is effective with conditions of small
deformation vibration and no rigid-body rotation.

1. Introduction

In the past decade, the digital image correlation (DIC)
method was widely studied and employed for deformation,
shape, and motion measurements in various applications
[1–4]. *e field of mechanical performance testing of new
materials and structures is revolutionary, such as additive
manufacturing (AM) alloys [5], shape memory alloys (SMA)
[6], and carbon fibre reinforced plastics (CFRP) [7]. In
addition, it is also a new path to the crack near-field
measurement [8, 9] and model updating [10]. With the
development of high-speed camera performance, such as
achieving maximum frame rates at full resolution, an in-
creasing number of structural dynamic characteristics can be
measured through the high-speed digital image correlation
(HS-DIC) method [11, 12]. *e dynamic performance
measurement of metallic and polymer sheets is increased by

the benefits of being a noncontact, full-field, and high-
precision method [13–15]. It also benefits from the in-
verse-compositional Gauss–Newton (IC-GN) algorithm
and parallel computing which greatly increases the
computational efficiency [16–18]. However, the cost of a
high-speed camera is usually in excess of $10 000, and
this measurement often requires two or more cameras to
capture the full-field vibration measurement through the
stereo-vision method. Such a high price is close to the
laser Doppler vibrometer (LDV) system. *e DIC and
LDV methods both have their own strengths in full-field
vibration measurement [19, 20]. *e essential difference
between the two methods is that DIC adopts the time-
frozen method and records a frame containing full-field
displacement information for each sample, while LDV is
generally limited to the velocity of a single point in each
sample [21].
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To overcome this significant drawback of HS-DIC, a
series of investigations aimed at single-camera stereo-DIC
systems [22–26] have been published, while the time syn-
chronization errors caused by triggers between different
cameras are eliminated, especially high-speed rotating parts
measurement of the HS-DIC are potential and valuable [27].
Single-camera stereo-DIC techniques have gained increas-
ing attention owing to their advantages of cost effectiveness,
compactness, and avoidance of additional camera
synchronization.

Two types of single-camera stereo-DIC systems have
been proposed in recent studies. *e first one adopts a
biprism and a set of planar mirrors to split the single view
into two different views. *e two views are captured in the
same CCD/CMOS sensor, which is generally divided equally
by the centerline. Owing to hardware constraints, the
maximum resolution of most high-speed cameras ranges
from 1 to 4 megapixels, such as 1280 px× 800 px. *is is an
extremely poor resolution of strain field measurement based
on the DIC method when it is divided into two halves,
usually 800 px× 640 px or even less. Compared with the
megapixel resolutions of low-speed cameras, the number
of full-field grid in ten megapixel images is 10 times
larger than above. For example, Genovese et al. [23]
presented a single-camera stereo-DIC system that uses a
biprism in front of the camera objective to split a single
sensor into two views. Pankow et al. [24] devised a single-
camera stereo-DIC system to record images at high
speeds using a series of mirrors. Yu and Pan [25] pro-
posed a single-camera high-speed stereo-DIC system
using a four-mirror adapter for full-field 3D vibration
measurement. One common element across these
methodologies was that all these methods were con-
fronted with low-resolution and stable accessory
platforms.

*e second type of single-camera stereo-DIC system
adopts different optical bandpass filters to gather the two
different views into the same CCD/CMOS color sensor. *is
method is questionable when improving the spatial reso-
lution of the high-speed camera, considering that a
monochrome camera is replaced by a color camera. *is is
primarily because there are many camera sensor capability
penalties that should be considered in color image acqui-
sition, such as sensor pixel size, sensitivity, and dark current,
to balance the spatial resolution and image noise. For ex-
ample, Yu and Pan [26] designed a single-camera stereo
imaging apparatus, and the specimen surface was recorded
using a high-speed color CMOS camera, with the images
consisting of blue and red channels, which were from two
different optical paths. A specialized camera, called a 3CCD
color camera, was also trialled in a single-camera stereo-
vision system. Hijazi et al. [28] demonstrated the feasibility
of using a low-cost 3CCD color camera and recorded six
frame sequences at frame rates up to 20 kHz, proving that it
was suitable for application in quantitative and transient
full-field measurements, such as DIC and particle image
velocimetry (PIV). Yu and Pan [29] adopted a single 3CCD
color camera for full-field shape, motion, and deformation
measurements, thus avoiding sacrificing the spatial

resolution of the camera sensor, with the aid of a specially
designed color separation device using a beam splitter and
two optical bandpass filters.

*e two types of single-camera stereo-DIC system
mentioned above are not limited to static and steady-state
vibration measurement but also include transient response
measurement as long as the frame rate and image quality are
sufficient. Moreover, a new single-camera method for
steady-state vibration measurement was proposed newly.
Gorjup et al. [30] utilized a moving high-speed camera,
extending the image-based vibration measurement method.
Spatial small harmonic motion can be identified in the
frequency domain.*e properties of the stationary vibration
response of linear, time-invariant mechanical structures are
leveraged to produce full-field 3D operating deflection shape
measurements using only a single monochrome high-speed
camera. *e disadvantage is that three or more different
views are required, which signifies that at least three images
are processed. In addition, multiple perspectives must have
the same field of view (FOV), which is a limitation for
specimen shapes. Earlier, Quan et al. [31] attempted at using
the traditional 2D-DIC method and local displacement
gradient feature in the image coordinate system for 3D
displacement measurement. *e robustness is at the risk of
the filtering size and signal-noise ratio, especially for a small
angle between the local normal vector of specimen surface
and optical axis. Essentially, the core issue is also how to
separate the component of out-plane displacement from the
image coordinate system under a series of assumptions such
as a linear approximation of deformation mapping with
first-order shape function.

Although quite a few single-camera DIC methods have
been published, various contributions devoted tometal sheet
or similar composite structure vibration analysis have been
proposed by several teams based on traditional 3D-DIC with
two high-speed cameras. Huňady and Hagara [14] realized a
huge efficiency improvement using the enhanced frequency
function (EFRF) instead of FRF in modal parameter esti-
mation procedure, with hundreds or thousands of output
degrees of freedom in full-field modal analysis being nec-
essary. Chang et al. [32] followed the adaptive geometric
moment descriptor (AGMD) and combined it with K-SVD
and Gram–Schmidt orthonormalization (GSO) to achieve
data compression of displacement maps. Passieux et al. [33]
developed a new regularized DIC method for time-depen-
dent measurements to improve the space field uncertainties
and achieve a trade-off between the frame rate and spatial
resolution. Bharadwaj et al. [15, 34] migrated the strain
expansion-reduction approach (SERA) from the traditional
finite element analysis (FEA) to experimental mechanics.
*e full-field strain mode shapes from the FEA were instead
obtained from the DIC results. *erefore, a metal sheet
vibration measurement was also implemented in the current
work.

In this study, the cumbersome settings for single-camera
stereo-DIC systems, such as biprisms, mirror adapters, or
optical bandpass filters, were removed completely. At the
same time, it breaks the traditional methodology in 2D-DIC
perpendicular to the specimen surface. Furthermore, using
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projection components, the full-field vibration displacement
of the metal sheet was measured with a single monochrome
high-speed camera, which is subject to the classical pin-hole
model and projection model. *e first four order dis-
placement mode shapes were identified and analyzed. To
validate the effectiveness and accuracy of the proposed
method, FEA simulations and traditional experimental
modal analysis (EMA) were implemented.

2. Experimental Setup and
Measuring Principles

Figure 1 schematically shows the three types of single-
camera DIC experimental setups for full-field vibration
measurements. A four-mirror adaptor with a monochrome
camera scheme in Figure 1(a) and a set of optical bandpass
filters with color camera scheme in Figure 1(b) were pro-
posed in [24–26], which required a stable environment to
hold these optical components, such as an air-floating
platform in the laboratory. *e scheme proposed in this
study was specifically designed to have no complex optical
arrangement or projection component and is shown in
Figure 1(c). Although the vibration deformation is strictly a
3D curved surface, the principal vibrating directions of
arbitrary point on the surface were approximately the same
due to normal vectors, almost parallel with regard to the
metal sheet or other small-curvature thin-wall parts. *e tilt
angle, θ, was between the optical axis of the camera and the
normal direction of the metal sheet.

*e main objectives were as follows: (1) converting the
projection component from the in-plane displacement to the
vibration direction and (2) converting the pixel unit to an

actual physical unit, such as a millimeter, according to the
different spatial resolutions at different horizontal heights.

As shown in Figure 1(c), the DIC experimental setup
primarily consisted of four parts: (I) a bench vice for fixed
support; (II) a Phantom v2511 high-speed camera with a
Nikon lens with a focal length of 85mm; (III) a high-in-
tensity LED light, with a power supply up to 250W, which
gave consideration both to enough luminance in low ex-
posure time and sufficient depth-of-view in small aperture;
and (IV) a laser displacement sensor (MTI Corporation,
LTS-50-10) which was used to validate the single-point
displacement and EMA. *e specimen used was a rectan-
gular stainless-steel sheet with dimensions of
138mm× 80mm and thickness of 0.5mm. *e depth of the
clamped part between the jaws was 18mm, which gave a
vibration measurement region of 120mm× 80mm (H×W),
as shown in Figure 2(a). *e weight of the specimen was
43.5 g after covering a layer of water transfer speckles on one
side. Meanwhile, the weight of the bench vice was ∼ 15 kg to
achieve a reliable fixed boundary. In Figure 2(b), a real image
from the HS camera shows the effect of tilt angle, where there
was little width at the tip and narrowness at the root. Owing
to the tilt angle, θ, the different horizontal heights have
different object distances to the camera, corresponding to
different spatial resolutions, with two different spatial res-
olutions of height approximately given by δtip and δroot in (1).
It is worth noting that the middle position is described in the
physical coordinates rather than being described in the
image coordinates. *us, the middle position was not in the
center of the image but slightly closer to the root. *e en-
larged four corners in Figure 2(c) showed a satisfactory
imaging quality within a certain range of depth of field

Reference image Target image

(a)

Reference image Target image

(b)

Reference image Target image

θ

I-Fixed support III-High-speed camera
IV-Laser displacement sensorII-LED light

θIII

III
IV

(c)

Figure 1: Schematics of experimental setup for single-camera DIC vibration measurement: (a) the scheme of splitting the sensor into two
halves in [24, 25]; (b) the scheme of splitting the different color channels in [26]; (c) the simple and convenient experimental setup in the
current work.
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(DOF) and illumination uniformity, which benefited largely
from the sufficient light intensity and small aperture.
Meanwhile, a speckle is framed in a 4 px× 4 px box in the
enlarged center part, illustrating that the water transfer
speckle size was suitable for this experimental setup (rec-
ommended in 3 px ∼ 5 px).

δtip �
wtip

W
≈
6.7750pixel

mm
,

δroot �
wroot

W
≈
6.4500pixel

mm
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

In addition, the image resolution was 800 px× 640 px at
2000 frames per second (FPS), with an exposure time of
20 μs. *ere were 8101 images recorded for each excitation
at around 4.05 seconds. It should be noted that the
conventional local-DIC tracking algorithm was employed,

including an initial value estimation and zero-mean
normalized sum of the squared difference (ZNSSD) cri-
teria optimization with a first-order shape function. *ere
were 9801 points within the trapezium region of interest
(ROI). A grid spacing of ∼2mm and a subset size of
31 px × 31 px were set for data processing.

*e bold arrows in Figure 3(a) represent the metal
sheets, with the capital letterH representing the object size in
millimeters and the small letter h representing the pixel size
in the image.*ree different spatial resolutions represent the
three different object distance planes along the optical axis.
δmiddle was defined in the precise middle of δtip and δroot, as
shown in (2). According to geometric similarity, the tilt
angle, θ, was derived using (3) and (4), in this case. Com-
bined with the projection relationship in Figure 3(b), the first
step was to convert the in-plane displacement to the vi-
bration direction. *e vibration response was then derived

W=80
H

=1
20

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Hammering point

Thickness = 0.5 mm

(a)

h=770pixels

Real image from HS-camera Spatial resolution

wtip = 542pixels

pixel/mm

wmiddle

A B

CD
wroot = 516pixels

(b)

A B

CD

4×4 pixels

Enlarged four corners and centre

(c)

Figure 2: Specimen: (a) the schematic of metal sheet size, hammering point, and vibration pickup nodes layout for EMA validation; (b) the
real image from HS camera and the schematic of different spatial resolution in different horizontal heights; (c) enlarged four corners and
center showing a satisfactory imaging quality in different object distances and illumination uniformity.

//

h

θ

FOV

Optical axis

Lens

δroot
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δtip
H

//

(a)

FOV

Optical axis

Lens
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d2 actual vibration displacement
d1 projection compoment in image plane

d1 d2

θ

(b)

Figure 3: Measurement principle: (a) the different spatial resolution in different object distance and specific geometric relations; (b) the
displacement projection component from actual vibration to image.
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from the DIC results in (5), where δy denotes the local spatial
resolution, d1 represents the DIC tracking results in the y-
direction in pixels, and d2 represents the vibration response
associated with d1. *e vibration response, D, in millimeters
was defined from d2 and δy in (5).

δmiddle �
δtip + δroot􏼐 􏼑

2
≈
6.6125pixel

mm
, (2)

δmiddle �
h

H · cos θ
, (3)

θ � arccos
h

H · δmiddle
􏼠 􏼡 ≈ 13.98∘, (4)

D �
d2

δy

�
d1

δy · sin θ
.

(5)

*e origin of the pixel coordinates was located at the
top-left corner of the image. In this case, the y-coordinate
of tip line AB was around ytip � 10px, and the root line CD
was around yroot � 780px. *e variable upper bound in-
tegral expression of the local spatial resolution can then be
written as (6) under the boundaries of δy�10 � δtip and
δy�780 � δroot.

δ(y) � δtip + δroot − δtip􏼐 􏼑
1
H

􏽚
y

10

1
δ(y)

dy, (6)

when solved as the following equation:

δ(y) �

������

ky + b

􏽱

, y ∈ [1, 800], (7)

substituting the upper and lower boundary conditions
and solving the coefficients b ≈ 45.96 and k ≈ −5.58 × 10− 3.

*erefore, the metal sheet vibration displacement was
mapped from the DIC tracking results using (5) and (7).

3. Results and Discussion

3.1. Measurement Results of Proposed Method. As shown in
Figure 4, a single-point displacement response was com-
pared between the laser displacement sensor and DIC results
in the time and frequency domains. *e position of the
measuring point was near the tip corner on both sides of the
metal sheet, as shown in Figure 4(a). In the time-domain
diagram, the two displacement response curves were gen-
erally consistent, with a redundant low-frequency compo-
nent in the DIC results of approximately 5Hz, which was
considered as the shake of the camera system. *e influence
of this low-frequency component in the data process was
ignored because it was far less than the modal frequencies,
and more details about the influence of the camera rotation
can be found in [35]. *rough the fast Fourier transform
(FFT) and logarithm operation, the displacement amplitude
spectra are presented in Figure 4(b). *e first four modal
frequencies were picked with ranges from 29.00Hz to
330.25Hz, and the frequency resolution is 0.25Hz.

*e full-field displacement response under impulse
excitation is shown in Figure 5, and several vibration
modes were excited. *ese nine frames represent a series
of deformations in 0.04 s intervals, which was little more
than a period of the first-order vibration modal. Com-
paring T � 0.005s and T � 0.040s, the duration from T �

0.005s to T � 0.040s went through a period of the first-
order vibration modal approximately, which was the first
bending mode. It went through approximately half a
period of the second-order modal vibration, which was the
first torsion mode. *e modal analysis results in Section
3.2 provide more accurate mode shapes of the single edge
fixed metal sheet. In Figure 5, the clamped edge was
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around the line y � 120mm, where the displacement re-
sponse is close to zero at every moment. At the other end,
the maximum amplitude of the displacement response was
approximately 1mm.

3.2. Modal Analysis and Validation. In this section, the
poly-reference least-squares complex frequency-domain
method (p-LSCF) [36] was is employed for modal pa-
rameter identification of experimental data. Compared
with the traditional EMA method, the DIC results have
thousands of vibration receiver points and were a chal-
lenge for the parameter identification process due to the
cost function size of the reduced linear least-squares es-
timates, detonated by the large frequency response
function matrix (FRF). In a recent study, an approximated
enhanced frequency response function (EFRF) was

utilized to reduce the matrix size [14], computational
time, and memory usage. In the current work, 2016 output
channels of DIC results were implemented for modal
parameter identification. *e stable chart is shown in
Figure 6, and the poles of the first four vibration modes,
which lie in the 33rd order of the polynomial basis
function, were selected.

*e EMA and FEA validations were implemented. In
this traditional EMA, there are 25 points for the laser
displacement sensor successively, and the hammering
point was invariable at point 25, as shown in Figure 2(a).
In the simulation FE model, it was necessary to dem-
onstrate some material parameters, such as the density,
ρ � 7.93 × 103kg/m3; Young’s modulus, G � 199Gpa; and
Poisson’s ratio ] � 0.3. *e solid shell element dimension
was ∼1mm. A total of 9801 nodes on the metal sheet were
extracted in the modal analysis. *e boundary condition
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Table 1: *e first four natural frequencies and damping ratios of the proposed DIC method, EMA, and FEA results.

Single-camera
DIC EMA FEA Frequency difference between DIC and EMA (%) Frequency difference between DIC

and FEA (%)
fn (Hz) ζ (%) fn (Hz) ζ (%) fn (Hz)

1st mode 28.83 1.09 28.52 0.51 28.94 1.09 0.38
2nd mode 99.81 0.83 96.26 0.91 97.52 3.69 2.35
3rd mode 180.49 0.33 178.94 0.33 179.87 0.87 0.34
4th mode 331.34 0.33 327.23 0.04 328.99 1.26 0.71
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Figure 7: *e first four mode shapes of the FEA, the EMA, and the proposed DIC method.
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was unilateral fixation such as a cantilever plate. *e first
four natural frequencies identified from the proposed DIC
method, EMA, and FEA results are listed in Table 1. *e
first four damping ratios of the proposed DIC method and
EMA are also given, with the maximum value being only
1.09% in this small damping structure. In Table 1, the
maximum frequency difference between the 2nd mode of
DIC and EMA results was 3.69%. *is result was slightly
better than that of previous studies in [25], which were
4.36% and 10%, respectively, corresponding to the tra-
ditional accelerometer measurements and FEA results.

As shown in Figure 7, the first four mode shapes
identified from the FEA, EMA, and DIC data are presented
together. *e blue grids represent the reference equilibrium
position, and the red grids represent the mode shapes. All
modal vectors were normalized in ±1. *e first and third
modes are bending, and the second and fourth modes are
torsion. Different numbers of nodes correspond to different
grid densities, and the EMA mode shapes were the sparsest
among these three groups; meanwhile, the curved surfaces of
the FEA and DIC mode shapes were smooth. According to
the modal assurance criterion (MAC) results in Figure 8, the
MAC of DIC mode shapes with FEA and that with EMA
were both acceptable. Meanwhile, the MAC with FEA was
slightly better than EMA, which benefits from the simple
boundary conditions and structure of the metal sheet in the
FE model.

4. Conclusions

With a projection component, the vibration displacement of
the metal sheet was measured using a single high-speed
camera, and the FEA and EMA were validated. Firstly, a
single-point displacement response was compared between
the laser displacement sensor data and DIC data in the time
and frequency domains. Secondly, the modal analysis re-
sults, including natural frequencies, mode shapes, and MAC
matrices, demonstrated consistent results among the three
different methods.

In several single-camera DIC vibration measurement
schemes, this method is simpler, more convenient, and more
accurate for the vibration measurement of metal sheets
because there is no need for other optical devices such as
mirrors or prisms, and there is no use of a color camera
instead of a monochrome camera. *e monochrome camera
has a better sensitivity and signal-to-noise ratio than those of
the color camera, which is equipped with the same size of
CCD/COMS sensor.

Furthermore, this is an alternative strategy to the full-
field vibration measurement of small-curvature thin-wall
parts and differs from the motion camera for the multiview
method [30], which requires steady-state vibration and data
processing in the frequency domain. In contrast, the full-
field transient response in the time domain can be recorded
and processed directly through this proposed method. It is
worth noting that the full-field displacement response was
projected from the physical coordinates to image coordi-
nates, assuming that the displacement is a linear mapping
from physical coordinates to image coordinates. In other

words, it is based on the condition that the vibration am-
plitude is far less than the structure size in the FOV. For most
nonflexible structures, this requirement is similar to that of a
natural match.

Overall, regardless of the splitting optical path or motion
camera for multiple views, the scheme was designed for
three-dimensional reconstruction and following traditional
stereo vision with a single camera. However, when it comes
to small vibration measurements of small-curvature thin-
wall parts, the proposed approach is a good choice. *e full-
field vibration vectors could be determined through the
simple affine transformation or FE model, which is expected
to be applied to damage detection with mode shape con-
tinuity and more dynamic performance measurements.
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*e magnetorheological elastomer (MRE) is a smart material widely used in recent vibration systems. A system using these
materials often faces difficulties designing the controller such as unknown parameters, hysteresis state, and input constraints.
First, a model is designed for the MRE-based absorber to portray the behavior of MRE and predict the appropriate electric current
supplied. *e conventional adaptive controller often suffers from so-called control singularities. *e singularity-free adaptive
controller is proposed to eliminate the singularity with parametric uncertainty. *e proposed controller consists of four
components: an adaptive linearizing controller, a deputy adaptive neural network controller, an auxiliary part designed for the
controller to overcome the input constraint problem, and a smooth switching algorithm used to exchange the takeover rights of
the two controllers. Moreover, the controller is designed to obtain the stabilization of hysteretic state estimation for the vibration
system. *e adaptive algorithms are proposed to update the unknown system parameters and to observe the unmeasurable
hysteretic state. Meanwhile, closed-loop system stability is comprehensively assessed. Finally, the simulation performed on a
quarter-car suspension with an MRE-based absorber shows the proposed controller’s efficiency.

1. Introduction

Semiactive vibrating systems using magnetorheological
materials have become well known. In particular, the
magnetorheological elastomers (MREs) used in semiactive
controls have recently emerged as a new material for vi-
bration control [1, 2]. *e system can change the natural
frequency by varying the stiffness of the material. *ese
properties are attractive for many engineering applications
such as vibration isolators and vibration absorbers [3–5]. For
example, Gao et al. used the MRE as a semiactive vibration
isolator to suppress the vibration [4].*e results showed that
the natural frequency was adjustable by 3.9Hz. *is study
introduces the MRE-based absorber to reduce the suspen-
sion system’s vibration caused by road irregularities and
onboard engines. Using the MREs, the system can adjust its
own frequency to avoid resonances for different types of
road and engine speeds. It is expected that the MRE-based
absorber overcomes the limitations of theMR damper.*ere

are manymethods proposed to represent material properties
in recent years [6–10]. Optimization algorithms are an ef-
fective method to determine model parameters. An inno-
vative nonlinear model has been proposed for MRE, and an
improved PSO algorithm has been designed to estimate the
model’s parameters [7]. An extreme machine learning
method was proposed to predict the device’s nonlinear
(shear force) responses with applied current, displacement,
and velocity level. *e new swarm optimization method,
called a binary coded discrete cat, was applied to select the
optimal input and the number of neurons in the hidden layer
for the network development [8]. *e fruit fly optimization
algorithm was used to determine the model parameters. A
three-story standard building model under four standard
earthquake excitations was tested to evaluate the model’s
effectiveness [9]. Artificial intelligence approaches, including
linear and nonlinear regression analysis, adaptive neural
fuzzy inference systems (ANFIS), and artificial neural net-
work (ANN) techniques, are highly reliable methods for
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predicting various nonlinear properties, which have been
comprehensively analyzed in [10].

*e MRE-based device needs a suitable controller to
achieve efficiency in the vibration system. *e vibration
system using an MRE-based absorber is as effective as an
active system without the need for large energy. In [11–15],
semiactive controllers have been widely used in vibration
systems, such as the sky-hook, ground-hook, fuzzy clipped
on-off, and LPV approaches. *ese controllers do not
consider the system’s dynamics, so the controller does not
guarantee stability in some cases. Many modern controllers
have been proposed for the semiactive system, such as
optimal control, adaptive control, and robust linear con-
troller [16–18]. *e adaptive control strategies ensure as-
ymptotic stability with a small gain. However, singularities
can occur, which causes a tremendous control force in these
controllers. A common remedy is to limit the estimated
parameter to a compact set with no specified singularity.*e
system parameters were bounded by the maximum and
minimum values to ensure that the singularity does not
occur [19, 20]. In recent years, adaptive intelligent control
algorithms have achieved high efficiency in controlling
complex, time-varying, and highly nonlinear civil structures
[21]. *ese algorithms mainly work on the principles of soft
computing methods and artificial intelligence. *e adaptive
neural network (ANN) controller has recently achieved high
efficiency in controlling the system with unknown dynamics
[22]. Optimization associated with multiple control devices
is considered a difficult task. Rashid et al. [23] proposed an
adaptive algorithm based on acceleration response com-
bined with a displacement optimization algorithm for 5-
stage steel frames. However, the ANN controller often re-
quires large amounts of computation. *e unknown dy-
namics have been approximated by the radial basis function
where the weights are optimal. However, this method cannot
identify the parameters of the system such as mass, stiffness,
and damping coefficient. *erefore, control strategies
encompassing all the aforementioned controller’s advan-
tages and eliminating drawbacks should be designed to yield
high-quality performance.

*e major challenge with the semiactive device is the
control force limitation and hysteresis state. *e force con-
straint is a complicated problem because the maximum force
value depends on the displacement and velocity value.
Consequently, the actuator is inadequate in the controller
requirements. Actuator limitations need special attention in
the controller design. Recent studies have also mentioned this
problem in engineering systems [24]. Hysteresis is a funda-
mental phenomenon in engineering.*e semiactive vibration
system usually exhibits a stable hysteretic state. *e
Bouc–Wen hysteresis model (BWM) is widely used to rep-
resent the properties of MR materials which have attracted
researchers to develop intelligent vibration systems [25, 26].
*e model is flexible and can be adjusted for different hys-
teretic states. BWM, with its flexibility in shape control, has
been used to describe asymmetric hysteresis loops. *e
parametric modeling approach includes spring, damping, and
Bouc–Wen models represented by a mathematical function.
*e coefficients of this function can be determined by using

an optimization technique. *e parameter values are changed
until the model’s output force closely matches to the ex-
perimental output force. In contrast, nonparametric models
are entirely based on the performance of a specific MR-based
device, such as the neural network model and fuzzy model.
*ese models are more flexible, but the physical relationship
between modal parameters and hysteresis phenomena may
not be explicitly maintained. *ese methods need large
amounts of data and are performed in advance. We introduce
a hysteresis observer to approximate the hysteresis state. *e
developed observer is expected to estimate the hysteresis
quickly. *e observer supports the controller to improve
robustness against unmeasurable hysteresis. For practical
applications, a novel controller is necessary to ensure the
stability of a semiactive system.

In this study, we proposed an innovative control method
to overcome the singularity in the traditional adaptive
controller. *e controller aims to exploit the advantages of
adaptive controllers and neural network controllers and
eliminate the disadvantages of these controllers with a
smooth switching mechanism. Consequently, the denomi-
nator part of the adaptive control formula is absorbed near
zero to eliminate the singularity problem. *e adaptive
controller is temporarily disabled in the event of a singularity
occurring. An adaptive neural network controller is intro-
duced to take over the system to ensure system stability. *e
displacement response converges to zero using the proposed
controller, and the output control value can be remarkably
reduced near the singularity condition. Firstly, a model was
designed for the MRE-based isolator using the Bouc–Wen
model, and an inverse model was developed to predict the
desired current. Next, the ANN controller is used to estimate
the uncertainty nonlinearity, and an adaptive controller
(e.g., sliding adaptive controller) is designed to override the
approximation error. A smooth switching algorithm is in-
troduced to observe the singularity and determine the
control authority between the ANN controller and a con-
ventional adaptive controller.*e new strategy is expected to
avoid singularities, small control force, and fast stability. *e
novel adaptive controller includes five components:

(i) A robust adaptive controller is designed to ensure
system stability.

(ii) An ANN controller is designed as the temporary
controller in the singularity.

(iii) A smooth switching is used to exchange the take-
over rights of the two controllers.

(iv) An auxiliary controller is developed to overcome the
input constraint.

(v) Adaptive laws provide online estimates of the un-
certain parameters without bounds, and a hysteresis
observer is proposed to support the controller.

2. Magnetorheological Elastomer (MRE)

2.1. Model of MRE-Based Absorber. *ree main materials
used to fabricate the MRE samples included the matrix
silicon RTV (68%) of the brand Shin-Etsu, carbon iron
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powder with 20 μm diameter (30%) of the brand BASF SG-
BH, and silicone oil (2%). MRE samples’ fabrication pro-
cedures like natural rubber synthesis consist of mixing,
compressing, molding, and curing. Firstly, these compo-
nents were mixed to form a homogeneous mixture for 12
minutes. *e mixture was placed in a vacuum chamber to
remove air bubbles inside the material for 30 minutes. Fi-
nally, the mixture was vulcanized in a mold under a mag-
netic field or without a magnetic field for 24 hours at room
temperature (26 degrees Celsius). Anisotropic MRE samples
were vulcanized in a magnetic field, while isotropic MRE
samples were vulcanized without a magnetic field. We use
25× 25× 8mm cube samples of MRE materials for the
experiment.

*e MRE-based absorber is used in this study, whose
properties depend on displacement, amplitude, frequency,
and magnetic field. In particular, its stiffness increases
significantly when the applied current is increased. Con-
sequently, the absorber operates efficiently over a wide range
of frequencies presented in the research.

An MRE model is necessary for vibration system design;
the hysteresis force-displacement loop is a major challenge
under different applied currents. In this study, the
Bouc–Wen model was used to present the behavior of MRE
as shown in Figure 1. *e model consists of a Bouc–Wen
component and a Maxwell component. In the Bouc–Wen
model, the evolutionary variable z describes the hysteresis
behavior. *e force of the MRE-based absorber is given by

FMRE � αk0x + c0 _x +(1 − α)k0z, (1)

_z � A _x − β| _x||z|
n− 1

z − c _x|z|
n
, (2)

where the linear stiffness force and purely hysteretic force
are αk0x and (1 − α)k0z, respectively. *e coefficient,

α ∈ (0, 1), represents the linearity level of the loop. *e size
and the shape of the hysteresis loops are determined by
nondimensional parameters A, n, β, and c as shown in
equation (2). *e parameter A has a significant influence on
the force amplitude of the hysteresis, β and c represent the
shape of the hysteresis, and n is the order transition from
linear to nonlinear state that was set to be one to reduce the
amount of computation.

*e variables of the model are approximated under the
input current as follows [27, 28]:

k0 � k0a + k0bI, (3a)

c0 � c0a + c0bI, (3b)

α � αa + abI, (3c)

A � Aa + AbI, (3d)

β � βa + βbI, (3e)

c � ca + cbI. (3f)

*emodel parameters were identified using a numerical
optimization algorithm presented in Figure 2. *e genetic
algorithm is used to optimize the parameters of the
Bouc–Wen model. *e parameters were adjusted to fit the
experimental data. Data were collected in many different
cases (different frequency values, different current values,
and different amplitude values). *e fit values are listed in
Table 1.

*e MRE model, equation (1), is analyzed into three
components: the viscous passive component, the active
component Fa, and nonlinear hysteresis component Φ:

FMRE � αak0ax + coa _x + αak0b + αbk0a( 􏼁I + αbk0bI
2

􏼐 􏼑x + c0bI _x +(1 − α)k0z

� αak0ax + coa _x + Fa +Φ,
(4)

where

Fa � αak0b + αbk0a( 􏼁I + αbk0bI
2

􏼐 􏼑x + c0bI _x, (5a)

Φ � (1 − α)k0z. (5b)

2.2. Experimental Tests and Validation. An experimental
schematic was set up, as shown in Figure 3. *e shear
displacements were conducted with the sinusoidal function
where the amplitudes were set from 0.4mm to 0.8mm and
the frequencies were adjustable from 1Hz to 20Hz. *e
experiment was performed with various values of amperages
from 0 A to 4 A. *e displacement-force responses are
compared between the measurement data and the numerical
model with different current inputs and at the low-frequency
case (1Hz), as shown in Figure 4(a). In this case, the viscosity

is very low, while the effect of hysteresis is very apparent. It
can be seen that the effect of hysteresis is significant even at
very low frequencies. *e Bouc–Wen model with the ap-
propriate parameters portrays very well the nonlinear
hysteresis behavior. *e viscous behavior was shown when
performed at 10Hz in Figure 4(b). *e hysteresis loops tend
to become elliptic as the applied current increases. Nu-
merical responses and experimental results achieved a good
agreement.*e numerical model still achieves high accuracy
when applying different current levels compared to the
experiments, as shown in Figure 5. Based on the measured
data, the current-dependent Bouc–Wen hysteretic model
has fit the MRE isolator’s dynamic behavior. Because the
thickness of the MRE sample is small (0.8mm), the value of
the performance amplitude is also small. We perform at
medium and large amplitudes according to 0.4mm (5%
shear stress) and 0.8mm (10% shear stress), respectively.*e
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Figure 1: Schematic diagram of MRE-based isolator model.
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Figure 3: Experimental schematic for collecting force-displacement data under different current values: (a) schematic; (b) photo.

Table 1: Parameter values of MRE-based absorber using the Bouc–Wen model.

k0a c0a αa Aa βa ca k0b c0b ab Aa βa ca

22 0.05 0.65 2 3.8 − 1 12 0.01 0.05 0.2 0.33 0.3
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isolator can perform up to 14% shear stress [14]. In the case
of large amplitude performance, the MRE material sample
thickness needs to be larger, and the magnetic system also
needs to be enhanced to increase the system’s efficiency.

2.3. Inversed Model. In practical applications, the inversed
model is used to determine the input current/voltage for the
isolator from the control force [17, 18, 29]. From equation (5a)
and Table 1, the active force can be rewritten by variable
amperage:

Fa � αak0b + αbk0a + c0b _x( 􏼁I + αbk0bx( 􏼁I
2

� (8.9 + 0.01 _x)I +(0.6x)I
2
.

(6)

It is expected that the active force generated coincides
with the control force, Fa(t) � u(t). *e input current is
solved with the following equation and the electric current
must be positive and I∈[0, 4] ampere:

I
2
(t) +

8.9 + 0.01 _x(t)

0.6x(t)
􏼠 􏼡I(t) −

u(t)

0.6x(t)
� 0, (7)

-0.5 0 0.5 1-1
Displacement [mm]

-60

-40

-20

0

20

40

60

Fo
rc

e [
N

]

Experiment 0 A
Experiment 2 A
Model

(a)

-60

-40

-20

0

20

40

60

Fo
rc

e [
N

]

-0.5 0 0.5 1-1
Displacement [mm]

Experiment 0 A

Model
Experiment 2 A

(b)

Figure 4: Force-displacement response under two displacement amplitude values (x0 � 0.4 and 0.8) and two levels of applied current (I� 0
A (0mT) and I� 2 A (218mT)): (a) f� 1Hz and (b) f� 15Hz.
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where u(t) is the control force determined by the proposed
controller, x(t) is measured by a displacement sensor, and
velocity, _x(t), is the first derivative of the displacement with
respect to time.

*e experiment was conducted under harmonic exci-
tation. *e applied current was adjusted to different values
within the range of 0–4A. *e displacement data and force
data were inputs of the MRE inverse model, as shown in
Figures 6(a) and 6(b). *e response current of the inverse
model was compared with the measured current to evaluate
the effectiveness of the model, as shown in Figure 6(c). *e
figure shows that the inverse model performed well in de-
termining the current. *e results demonstrate that the
developed inverse model can convert the required control
force into the value of current, which was fed to the MRE-
based isolator.

3. Nonlinear Adaptive Control Design for
Suspension Systems

3.1. A Quarter-Car Model Using MRE-Based Absorber.
We consider the quarter-car model with MR elastomer as
shown in Figure 7, and the system can be given by the
following description.

*e dynamic equations of the suspension system can be
expressed as

ms €xs + cs _xs − _xu( 􏼁 + ks xs − xu( 􏼁 + FMRE � 0, (8a)

muxu + cs _xu − _xr( 􏼁 + ks xu − xs( 􏼁

+ku xu − xr( 􏼁 − FMRE � 0.
(8b)

*e absorber force, FMRE, is modeled by equation (4) by
using the Bouc–Wen model to describe the effect of the
hysteresis, Φ � (1 − α)k0z, AΦ � (1 − α)k0A. Let u � Fa be
a control input, and the sprung mass dynamics system
equation (8a) can be rewritten as

msxs + cs + c0a( 􏼁 _xs − _xu( 􏼁

+ ks + αak0a( 􏼁 xs − xu( 􏼁 + u +Φ � 0,
(9a)

_Φ � AΦ _x − β| _x|Φ − c _x|Φ|
1
. (9b)

Assumption 1. *e system parameters ms, ks, and cs are
uncertain and unbound. *e component Φ represents the
unmeasurable hysteresis. *e control input is bounded by
[umin, umax].

Lemma 1 (see [30]). For any ϵ> 0 and η ∈ R, the inequality
is introduced as

0≤ |η| − η tanh
η
ϵ

􏼒 􏼓≤ κϵ, (10)

where κ � 0.2785 is the constant. To increase the smoothness
of the system, the function sat(.) is replaced by tanh(.) in the
robust controller.

3.2. Problem Statement. For the semiactive suspension
system, many problems need to be dealt with in the con-
troller design, and in this study, we consider the following
aspects.

(1) Ride Comfort. In semiactive suspension design,
stabilizing the vertical displacement is the main task
in the controller’s design which absorbs the maxi-
mum force of passengers.

(2) Uncertain Parameters. *e system parameters such
as mass, stiffness, and damping coefficient are un-
certain and unbound. Singularity may occur during
parameter adaptation, which can cause enormous
forces or a faulty controller. A new adaptive con-
troller needs to be designed to overcome the issue.

(3) Actuator Saturation. *e control force is just active
in the first and third of the force-displacement
quadrant using anMRE-based absorber.*e value of
the force is also constrained by the maximum value
and the minimum value.

(4) Hysteresis State. Hysteresis is a major problem in the
MR system.*is is a nonmeasurable component that
greatly affects the stability of the system.

3.3. Adaptive Control Design

(a) *e sliding control is defined as

S � _xs + λxs, (11)

where λ> 0 is the gain constant.
*e time derivative of the sliding function S is as
follows:

_S � €xs + λ _xs. (12)

Dynamic system equation (9) is written in terms of S:
_S � − b1u − b1Φ − b2xr − b3 _xr + λxs, (13)

where b1 � 1/ms b2 � 1/ms(ks + αak0a);
b3 � 1/ms(cs + c0a), xr � xs − xu; and _xr � _xs − _xu.
Considering the fact that the system parameters
b1, b2, b3, and ms are unknown in advance, the
hysteresis stateΦ is an unmeasurable component. To
solve this problem, the parameters are estimated
using the controller. *e adaptive control force is
proposed as

u �
1
􏽢b1

kS − 􏽢b2xr − 􏽢b3 _xr + λxs􏼐 􏼑 − 􏽢Φ, (14)
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where 􏽢b1, 􏽢b2, and 􏽢b3 are the estimated values of the
unknown model parameters b1, b2, and b3, respec-
tively, and k is a positive constant.
*e controller is a significant dynamic variation in
the plant. When the estimates parameter 􏽢b1 reach
around zero or 􏽢b2,

􏽢b3 achieve large values, the control
force becomes a large value; if
􏽢b1⟶ 0 or 􏽢b2⟶∞ or 􏽢b3⟶∞, then u⟶∞.
*is problem will greatly affect the stability of the
system [31].

(b) Adaptive neural network control.
We applied the radial basis function (RBF) neural
network WTZ(S) that can estimate the function
f(S) � b− 1

1 (− b2xr − b3 _xr + λxs) with arbitrary ac-
curacy, such that

b
− 1
1 − b2xr − b3 _xr + λxs( 􏼁 � W

T
c Z(S) + εc, ∀x ∈ D,

(15)

where Wc � [w1, w2, . . . , wN]T is an optimal con-
stant weight vector, N> 1 is the number of the
neurons, Z(S) � [z1(S), z2(S), . . . , xN(S)]T is the
RBF vector, and εc is error that is optimized by the
vector W.
*e weight vector W is updated to minimize εc on
the compact set D:

W ≔ argmin
W∈R

sup
x∈D

f(S) − W
T
c Z(S)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼨 􏼩. (16)

Assume that εc is bounded by |εc|< ε∗ with ε∗ being
an unknown positive constant. *e Gaussian func-
tion, zi(x), is given by

zi(S) � exp
− S − ci( 􏼁

T
S − ci( 􏼁

ω2
i

􏼢 􏼣, (17)

where ci and ωi represent the center and width of the
function, respectively.

*e adaptive neural network controller was designed,
uann, for the nonlinear uncertain part of the suspension
system:

uann � 􏽢W
T

c Z(S) + 􏽢εc + kS. (18)

*e controller has a capacity in predicting model
nonsingularities on a compact set D and achieving a good
performance in nonlinear identification. However, the
controller takes up a lot of computation and takes a long
time to process. *e system parameters, such as stiffness,
mass, and damping coefficient, cannot be identified by using
this method.

3.4. Smooth Switching Adaptive Controller. A control
strategy that encompasses all advantages of the controller
mentioned above and eliminates the drawbacks is proposed
in this study.*e block diagram of the controller is shown in

Figure 8. First, the smooth switching algorithm is introduced
in this study to observe the singularity and to determine the
authority of the two above controllers:

η(b) � 1 − exp −
b

δ
􏼠 􏼡

2
⎛⎝ ⎞⎠, b

� min 􏽢b1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,
1
􏽢b2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
,
1
􏽢b3

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,∀􏽢b1, 􏽢b2,

􏽢b3 ∈ R ,

(19)

where b is the variable that causes the singularity and δ is the
width of the corresponding transition. *e switching al-
gorithm has the following characteristics:

C1.0≤ η(b)≤ 1∀􏽢b1 ∈ R, (20a)

C2. lim
b⟶0

η(b) � 0, (20b)

C3. lim
b⟶0

η(b) � 1, (20c)

C4. lim
􏽢b1⟶ 0

η(b)

􏽢b1
� 0, lim

􏽢b2⟶∞
η(b) × 􏽢b2􏽨 􏽩

� 0, lim
􏽢b3⟶∞

η(b) × 􏽢b3􏽨 􏽩 � 0.
(20d)

Furthermore, to support the controller, an observer was
developed to estimate the hysteresis state Φ that can be
described by

_􏽢Φ � AΦ _x − β| _x| 􏽢Φ − c _x| 􏽢Φ| + ϑ, (21)

where ϑ is the observer dynamic component suggested later.
Suppose the observation error is defined as 􏽥Φ � 􏽢Φ − Φ, and
the observation misalignment is determined as follows:

_􏽥Φ �
_􏽢Φ − _Φ � − β|x| 􏽥Φ − c _x(| 􏽢Φ| − |Φ|) + ϑ. (22)

A switching adaptive control algorithm is proposed as
follows:

uc � ηua +(1 − η)uann − 􏽢Φ, (23)

where

ua � 􏽢b1􏼐 􏼑
− 1

kS − 􏽢b2xr − 􏽢b3 _xr + λxs􏼐 􏼑, (24)

uann � 􏽢W
T

c Z(S) + 􏽢εc + kS, (25)

where 􏽢b1, 􏽢b2, and 􏽢b3 are estimated values of the unknown
model parameters b1, b2, and b3, respectively. *e error
responses were defined as 􏽥b1 � 􏽢b1 − b1,

􏽥b2 � 􏽢b2 − b2, and
􏽥b3 � 􏽢b3 − b3. *e hysteresis observer 􏽢Φ is developed for the
proposed controller.

*e force of MRE-based absorber is limited by the
maximum and minimum values [32]. *e input control
force of the system is satisfied with the following
requirements:
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u �

umax if uc > umax

umin if uc < umin

uc if umax < uc < umax

⎧⎪⎪⎨

⎪⎪⎩
, (26)

and

δ �

uc − umax if uc > umax

uc − umin if uc < umin

0 if umax < uc < umax

⎧⎪⎪⎨

⎪⎪⎩
, (27)

where umax and umin are determined by using equation (5a),
umax � Fa(Imax) if Fa > 0, umin � Fa(Imax) if Fa < 0, the di-
rection of Fa depends on xr, δ is the amount of value that
exceeds the limits of the controller, ξ is a regulator to ensure
the system is stable, u is the actual force, and uc is the desired
control force. *e absorber force fails to meet the control
force due to actuator limitations in many cases. In this study,
the following auxiliary design system is proposed to regulate
the phenomenon:

_ξ �

− kλξ −
Sδ +|ξ|

ξ
+ tanh

ξ
ϵ

􏼠 􏼡 |ξ|≥ μ

0 |ξ|≤ μ

,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(28)

where ξ ∈ R is an auxiliary design system state, Kλ ∈ R+, and
μ is a small positive value.

*e auxiliary controller uau that satisfies the constraint of
MRE isolator is added as

uau � − δ − ξ. (29)

Finally, the controller proposed in this study consists of
four components including the adaptive controller ua, the

adaptive neural network controller uann, the auxiliary con-
troller uau, and the smooth switching η(b):

u � ηua +(1 − η)uann + uau − 􏽢Φ. (30)

*e updated laws for the parameters are proposed as
follows:

_􏽢b1 � c1
η
􏽢b1

S kS − 􏽢b2xr − 􏽢b3 _xr + λxs􏼐 􏼑, (31a)

_􏽢b2 � c2ηSxr, (31b)

_􏽢b3 � c3ηS _xr, (31c)

_􏽢Wc � c4(1 − η)S Z(S), (31d)

_􏽢εc � c5(1 − η)S. (31e)

*e dynamic component of the hysteresis state can be
regulated as

ϑ � − c6S. (31f)

Remark 1. Regarding property characteristic C4, we see that
the singularity is eliminated, which means 􏽢b1⟶ 0,
􏽢b2⟶∞, 􏽢b3⟶∞, lim

􏽢b1⟶ 0
η(b)/􏽢b1 � 0, lim

􏽢b2⟶∞

[η(b) × 􏽢b2] � 0, and lim
􏽢b3⟶∞

[η(b) × 􏽢b3] � 0. As a result,
adaptive control signal equation (24) and adaptive signal
equation (31a) are bounded. Hence, the singularity is totally
avoided. Furthermore, the smooth switching algorithm
ensures continuous signals.*e chattering is also reduced by
switching.

Adaptive Controller
Eq. (24) Suspension 

system Eq. (8)

MRE-based 
isolator 
Eq. (4) 

Hysteresis
Observer
Eq. (21)

Constraint
Observer

Eq. (26, and 27)

Adaptive law
Eq. 31 (a-e)

Inversed 
model Eq. 

(7)

Observer dynamic
component Eq.

(31f)

Auxilirary
control design

Eq. (28)

u I

ANN Eq. (25)

1

0

Switching Eq. (19)

(1−η)

η
FMRE x, ẋ

Figure 8: Block diagram of the proposed controller.
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4. Stability Analysis

Theorem 1. Consider the vibration system ((8a) and (8b))
with the sliding function given by (9a) and (9b) under the
novel adaptive controller (30) and the updated laws
(31a)–(31e) such that all signals are bounded and the system is
stable.

Proof. Lyapunov function candidate is selected as

V �
1
2
S
2

+
1
2c1

􏽥b
2
1 +

1
2c2

􏽥b
2
2 +

1
2c3

􏽥b
2
3 +

1
2c4

b1
􏽥W

2
c

+
1
2c5

b1􏽥ε
2
c +

1
2c6

b1
􏽥Φ2 +

1
2
b1ξ

2
.

(32)

With the time derivative of Lyapunov function and
application of equation (30), we have

_V � S _S +
1
c1

􏽥b1
_􏽥b1 +

1
c2

􏽥b2
_􏽥b2 +

1
c3

􏽥b3
_􏽥b3 +

1
c4

b1
􏽥Wc

_􏽥Wc +
1
c5

b1􏽥εc
_􏽥εc +

1
c6

b1
􏽥Φ _􏽥Φ + b1ξ _ξ

� S − b1u − b1Φ − b2xr − b3 _xr + λxs􏼂 􏼃 +
1
c1

􏽥b1
_􏽥b1 +

1
c2

􏽥b2
_􏽥b2 +

1
c3

􏽥b3
_􏽥b3 +

1
c4

b1
􏽥Wc

_􏽥Wc +
1
c5

b1􏽥εc
_􏽥εc +

1
c6

b1
􏽥Φ _􏽥Φ + b1ξ _ξ

� S − b1 ηua +(1 − η)uann + uau − 􏽢Φ􏼐 􏼑 − b1Φ − b2xr − b3 _xr + λxs􏽨 􏽩 +
1
c1

􏽥b1
_􏽢b1 +

1
c2

􏽥b2
_􏽢b2 +

1
c3

􏽥b3
_􏽢b3 +

1
c4

b1
􏽥Wc

_􏽥Wc +
1
c5

b1􏽥εc
_􏽢εc

+
1
c6

b1
􏽥Φ _􏽥Φ + b1ξ _ξ,

(33)

_V � _V1 + _V2 + _V3 + _V4, (34)

where each term on right-hand side of the function is written
explicitly as follows.

We apply the inequality (|Φ| − | 􏽢Φ|)≤ | 􏽢Φ − Φ| � | 􏽥Φ| and
the observer dynamics component equation (31f), ϑ � − c6S,
to V1:

_V1 � Sb1(
􏽢Φ − Φ) +

1
c6

b1
􏽥Φ _􏽥Φ

� b1 S 􏽥Φ +
1
c6

􏽥Φ(− β|x| 􏽥Φ − cx(| 􏽢Φ| − |Φ|)) + ϑ􏼠 􏼡

≤ b1 S 􏽥Φ −
1
c6

β|x| 􏽥Φ2 +
1
c6

c|x| 􏽥Φ2 +
1
c6

􏽥Φϑ􏼠 􏼡

� −
b1

c6
(β − c)|x| 􏽥Φ2,

(35)
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where b1 > 0, c> 0, β − c> 0 in Table 1. Next, adaptive algorithm equations (31a)–31c are ap-
plied to _V2:

_V2 � ηS − b1ua − b2xr − b3 _xr + λxs( 􏼁 +
1
c1

􏽥b1
_􏽢b1 +

1
c2

􏽥b2
_􏽢b2 +

1
c3

􏽥b3
_􏽢b3

� ηS − 􏽢b1 − 􏽥b1􏼐 􏼑
1
􏽢b1

kS − 􏽢b2xr − 􏽢b3 _xr + λxs􏼐 􏼑 − b2xr − b3 _xr + λxs􏼠 􏼡 +
1
c1

􏽥b1
_􏽢b1 +

1
c2

􏽥b2
_􏽢b2 +

1
c3

􏽥b3
_􏽢b3

� − ηkS
2

− ηSxr
􏽢b2 − b2􏼐 􏼑 − ηS _xr

􏽢b3 − b3􏼐 􏼑 − ηS
􏽥b1
􏽢b1

ksS − 􏽢b2xr − 􏽢b3 _xr + λxs􏼐 􏼑 +
1
c1

􏽥b1
_􏽢b1 +

1
c2

􏽥b2
_􏽢b2 +

1
c3

􏽥b3
_􏽢b3

� − ηkS
2

− 􏽥b2 ηSxr −
1
c2

_􏽢b2􏼠 􏼡 − 􏽥b3 ηS _xr −
1
c3

_􏽢b3􏼠 􏼡 − 􏽥b1 η 􏽢b1􏼐 􏼑
− 1

S ksS − 􏽢b2xr − 􏽢b3 _xr + λxs􏼐 􏼑 +
1
c1

_􏽢b1􏼠 􏼡

� − ηkS
2
.

(36)

Adaptive algorithm equations (31d)–31e are applied to
_V3:

_V3 � (1 − η)S − b1uann − b2xr − b3 _xr + λxs( 􏼁 +
1
c4

􏽥Wc
_􏽥Wc +

1
c5

􏽥εc
_􏽢εc

� (1 − η)S − b1
􏽢W

T

c Z(z) + 􏽢εc + kS􏼒 􏼓 − b1 W
T
c Z(z) + εc􏼐 􏼑􏼒 􏼓 +

1
c4

b1
􏽥Wc

_􏽥Wc +
1
c5

b1􏽥εc
_􏽢εc

� − (1 − η)b1kS
2

+ b1 (1 − η)S − 􏽢W
T

c Z(z)􏼒 + W
T
c Z(z)􏼐 􏼑􏼔 􏼕 + b1 (1 − η)S − 􏽢εc + εc( 􏼁􏼂 􏼃 +

1
c4

b1
􏽥Wc

_􏽢Wc +
1
c5

b1􏽥εc
_􏽢εc

� − (1 − η)b1kS
2

+ b1
􏽥Wc − (1 − η)S Z(z) +

1
c4

_􏽢Wc􏼢 􏼣 + b1􏽥εc − (1 − η)S +
1
c5

_􏽢εc􏼢 􏼣

� − (1 − η)b1kS
2
.

(37)

*e auxiliary design system equation (29) and Lemma 1
are applied to _V4:

_V4 � − b1Suau + ξ _ξ

� − b1S(− δ − ξ) + b1ξ − kλξ −
Sδ +|ξ|

ξ
+ tanh

ξ
ϵ

􏼠 􏼡􏼢 􏼣

� − b1kλξ
2

− b1 |ξ| − ξtanh
ξ
ϵ

􏼠 􏼡􏼢 􏼣

� − b1kλξ
2

− κ,

(38)

where ϵ is a positive constant and κ � 0.2785,
|ξ| − ξ tanh(ξ/ϵ)≤ κϵ.

Applying equations (35)–(38), the derivative Lyapunov
equation (34) is represented as

_V< −
b1

c6
(β − c)|x| 􏽥Φ2 − ηkS

2
− (1 − η)b1kS

2
− b1kλξ

2
− κϵ< 0.

(39)

*e boundedness of 􏽥b1,
􏽥b2, 􏽥b3,

􏽥Φ, and S is asymptotic to
zero by the Lyapunov stability criterion. *erefore, the
closed-loop system is asymptotically stable. Associated with
Remark 1, all signals are bounded.

5. Simulations

In this section, the system, combined with the proposed
controller, is simulated to reduce the vibration effectiveness.
*e dynamic system’s parameter values are assigned as ms

� 2.45 kg, mu � 1 kg, ks � 900m− 1, cs � 8N sm− 1, kt �

2500N m− 1, and the parameters of MREmodel are shown in
Table 1; the initial state [b1, b2, b3] � [0.01, 0.01, 0.01], and
[xs, _xs, xu, _xu] � [0, 0, 0, 0]. *e coefficients of the
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controller are selected as c1 � 2; c2 � 2; c3 � 2;

c4 � 4; c5 � 4; c6 � 1; λ � 2; and δ � 0.1. Four strategies
have been investigated to evaluate controllers: conventional
adaptive controller, adaptive neural network controller, the
switching adaptive controller (proposed controller), and
passive controller. We used the Runge–Kutta 4th order
method to solve the differential equation.

5.1. Bump Wheel Excitation. *e relative displacement and
mass acceleration responses are depicted in Figure 9 for four
cases including conventional adaptive controller, ANN
controller, proposed controller, and passive system. *e
relative displacement is reduced significantly using the
controllers. *e efficiency is the same for the acceleration
response, as shown in Figure 9(b). Furthermore, the re-
sponse is smoother when it reaches a steady state by using
the proposed controller.

*e switching signal and control forces are shown in
Figures 10 and 11, respectively. *e switching signal indicates
that the adaptive neural network controller takes over in
about 1.5 seconds, and then the adaptive controller gradually
dominates the controller. Figure 11 presents the control force
of the three strategies. From the figure, the proposed con-
troller required a small control effort than the single con-
troller, while the control force jumped to a large value when 􏽢b1
was near zero using the conventional adaptive controller.

*e adaptive parameters and hysteresis state are shown
in Figures 12 and 13. From the figures, the parameters
achieve a stable state after 2 seconds. *e input current
calculated by using the proposed algorithm is shown in
Figure 14. If the actual force achieves a maximum value, the
applied current is set at four amperages. In other cases, the
inverse model is used to calculate the required current.*ese
results demonstrate that the proposed controller achieves
high efficiency compared to conventional controllers to
reduce system vibration.

5.2. Random Road Displacement. To further validate the
proposed strategy under random excitation, we choose the road
disturbance with an amplitude of 5mm. From Figure 15, we
found that the controllers work well, and themass displacement
responses approach zero quickly. *e proposed controller has
achieved a positive result while avoiding the drawbacks of the
traditional adaptive controllers. *e control force, smooth
switching, hysteresis state, and applied current are also shown in
Figures 16–19.*e force generated by theMRE-based isolator is
compared for different strategies in Figure 16, where the
proposed controller needs a smaller value compared to the other
controllers. At the initial time, the hysteresis value is unknown,
and the measurement is not achievable. Using an adaptive
observer, the value of the hysteresis is estimated and updated
based on the hysteresis dynamics equation (31f). Results are
depicted in Figure 19 after 0.2 seconds to verify the hysteresis
state estimation. *e observer has portrayed well the hysteresis
properties by using the hysteresis state dynamics.

*e efficiency of the proposed controller is based on its
adaptability. In the early stages of the control process, the
adaptive parameters are in a highly dynamic state, so a
singularity phenomenon may occur in this state. *e system
is dominated temporarily by the ANN controller so that the
system works stably and safely. In this stage, the traditional
adaptive controller still works as the virtual controller, and
the parameters are continuously adapted.When the adaptive
values are out of the singularity, the adaptive controller
smoothly takes over the system, and the adaptive values
update to their true values quickly. A smooth switching
algorithm is used to observe the adaptive parameters and
decide which controller takes over the system. *e smooth
switching algorithm has outstanding advantages. When the
signals pass through the singularity, the algorithm can
suppress this phenomenon, and the controller is temporarily
switched to the ANN controller. In this way, the advantages
of a single controller are exploited, and their disadvantages
are eliminated.
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Figure 9: *e comparison of sprung mass responses under bump wheel excitation for three different strategies: (a) displacement response
and (b) acceleration response.
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Figure 10: *e smooth switching to take over between the controllers under bump wheel excitation.
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Figure 11: *e comparison of control force for the system with the proposed algorithm.
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Figure 14: Current input for the system with the proposed algorithm.
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Figure 13: Time history of the hysteresis state.
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Figure 16: *e comparison of control forces for the system for three different strategies.
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Figure 17: *e smooth switching to take over between the controllers under random excitation.
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6. Conclusions

In this study, the Bouc–Wen model was used to represent the
properties of the MRE material. *e inverse model was also
developed to determine the applied current for the MRE-based
isolator. A nonlinear observer was constructed to predict the
unknown hysteresis state, and the input constraint was also
considered to ensure the system’s stability. *e control sin-
gularity was avoided with such an approach, and the transient
behavior improved in the adaptive controller. Based on the
unique characteristics of smooth switching equations (20a)–
20d, the controller requires less force without loss performance
than the single controller.*e proposed controller exploited the
advantages of adaptive controllers and neural network con-
trollers and eliminated the disadvantages of these controllers
with a smooth switching mechanism. Consequently, the de-
nominator part of the adaptive control formula was absorbed
near zero to eliminate the singularity problem. *e proposed
controller overcomes the traditional adaptive controller’s dis-
advantages, including nonsingularity, low control force, and
high stability. *e simulation results have proved the effec-
tiveness of the proposed control algorithm. *e proposed
controller significantly improves the vibration system compared
to the adaptive controller.
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Aiming at the problems of weak generalization ability and long training time in most fault diagnosis models based on deep
learning, such as support vector machines and random forest algorithms, one intelligent diagnosis method of rolling bearing fault
based on the improved convolution neural network and light gradient boosting machine is proposed. At first, the convolution
layer is used to extract the features of the original signal. Second, the generalization ability of the model is improved by replacing
the full connection layer with the global average pooling layer. ,en, the extracted features are classified by a light gradient
boosting machine. Finally, the verification experiment is carried out, and the experimental result shows that the average training
and diagnosis time of the model is only 39.73 s and 0.09 s, respectively, and the average classification accuracy of the model is
99.72% and 95.62%, respectively, on the same and variable load test sets, which indicates that the diagnostic efficiency and
classification accuracy of the proposed model are better than those of other comparison models.

1. Introduction

Rolling bearing is one of the most critical components
widely used in a modern machine, and it is easy to appear
cracks, pitting corrosion, and other local damages or defects
on the inner and outer ring raceways and rolling elements of
the rolling bearings under the harsh working conditions of
high temperature, alternating load, and long-time fatigue. As
one key component, once the rolling bearing fails, it will
affect the safe operation of mechanical equipment, or even
damage the equipment and cause casualties. It is of great
significance for the safe operation of the mechanical
equipment to avoid the occurrence of catastrophic accidents,
if we can accurately, timely, and intelligently identify the
faults of the rolling bearing and carry out maintenance as
soon as possible.

In recent years, various fields made great achievements
in the research of algorithms. In order to overcome the slow
convergence speed, poor global search ability, and difficult
designing rotation angle of quantum-inspired evolutionary
algorithm (QEA), Xing et al. [1] proposed an improved
quantum-inspired cooperative coevolutionary algorithm,

named MSQCCEA, which is based on combining the
strategies of cooperative coevolution, random rotation di-
rection, and Hamming adaptive rotation angle, and the
results demonstrate that the proposed MSQCCEA has faster
convergence speed and higher convergence accuracy. In
order to overcome the low solution efficiency, insufficient
diversity in the later search stage, slow convergence speed,
and a high search stagnation possibility of differential
evolution (DE) algorithm, Deng et al. [2] studied the
quantum computing characteristics of quantum evolu-
tionary algorithm (QEA) and, combined with the divide and
conquer idea of cooperative evolutionary algorithm
(CCEA), proposed an improved differential evolutionary
algorithm (HMCFQDE), and the results proved that the
proposed HMCFQDE has higher convergence accuracy and
stronger stability and a strong ability to optimize high-di-
mensional complex functions. Deep learning theory has
made great progress in the field of fault diagnosis, and as one
of the important models of deep learning theory, continuous
neural network (CNN) has shown its own value and great
potential in the field of bearing fault diagnosis. For example,
Verstraete et al. [3] proposed a deep learning-enabled
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featureless methodology to automatically learn the features
of the data, and the proposed CNN architecture achieved
better results. He [4] presented a deep learning-based ap-
proach for bearing fault diagnosis and built an optimized
deep learning structure LAMSTAR neural network to di-
agnose the bearing faults, and the approach shows the ac-
curate classification performance on various bearing faults
under different working conditions. Hoang and Kang [5]
provided a systematic review of deep learning-based bearing
fault diagnosis, introduced the three popular deep learning
algorithms for bearing fault diagnosis including autoen-
coder, restricted Boltzmann machine, and convolutional
neural network, and reviewed their applications in the area
of bearing fault diagnosis. Zhenghong et al. [6] proposed an
adaptive deep transfer learning method for bearing fault
diagnosis and verified the method with two kinds of datasets,
and the results demonstrate the effectiveness and robustness
of the proposed method. Sun et al. [7] proposed a novel
intelligent diagnosis method for fault identification of ro-
tating machines, which can not only reduce the amount of
measured data that contained all the information of faults
but also realize the automatic feature extraction in the
transform domain, and the proposed method can reduce the
need of human labor and expertise and provide a new
strategy to more easily handle the massive data. Ding and He
[8] proposed a novel energy-fluctuated multiscale feature
mining approach based on wavelet packet energy (WPE)
image and deep convolutional network (ConvNet) for
spindle bearing fault diagnosis, which is quite suitable for
spindle bearing fault diagnosis with multiclass classification
regardless of the load fluctuation. Chen et al. [9] proposed a
rolling bearing fault diagnosis method based on discrete
wavelet transform and the convolution neural network so as
to achieve the adaptive feature extraction and intelligent
diagnosis of rolling bearing faults, and the experimental
results showed that the proposed method has the better
generalization ability and robustness. Haidong et al. [10]
proposed a novel method for intelligent fault diagnosis of
rolling bearing based on deep wavelet autoencoder and
extreme learning machine, the method is applied to analyze
the experimental bearing vibration signals, and the results
showed that the method is superior to the traditional
methods and standard deep learning methods. Ding and Jia
[11] proposed a one-dimensional multiscale convolutional
autoencoder fault diagnosis model of rolling bearings based
on the standard convolutional autoencoder, and the test
results show that the proposed model has a better recog-
nition effect for rolling bearing fault data. ,ese studies have
achieved good diagnosis results. Although the convolutional
neural network has achieved good results in the field of fault
diagnosis, it cannot well separate the feature extraction and
classification functions of the model using the softmax layer
to classify the features extracted from the convolution layer,
and it may lead to poor classification and generalization
ability of the model.

Machine learning algorithms play an important role in
the field of fault diagnosis. ,e single machine learning
algorithm, such as support vector machine (SVM) [12, 13]
and K-nearest neighbor (KNN) [14], and the ensemble

learning algorithm, such as random forest algorithm [15]
and extreme gradient boosting [16, 17], all have made great
achievements in the field of mechanical fault diagnosis.
However, it is difficult for these classification algorithms to
meet the requirements in terms of efficiency and accuracy in
big data and high-dimensional environments. Light gradient
boosting machine (LightGBM) [18, 19] is a gradient lifting
algorithm based on the decision tree, it optimizes the
classification accuracy and computational efficiency based
on the boosting algorithm, and it is more suitable for
classification in a large sample environment, while there will
be a lot of unprocessed redundant signals if the original
signals are directly input in LightGBM, and it will consume
too much memory space in model training and easily cause
overfitting of LightGBM classifier.

In order to solve the above problems, in this study, a
bearing fault diagnosis model combined with LightGBM
algorithm and the improved convolutional neural network
that is optimized by replacing the full connection layer to the
global average pooling (GAP) layer is proposed (hereinafter
referred to as GCNN). ,e two kinds of data sets under the
same load and variable load conditions are constructed. ,e
improvement effect of the global average pooling layer on
the model generalization ability and the effectiveness of the
proposed model are proved through the comparative
analysis with other models.

2. Improved Convolution Neural Network
and LightGBM

,e convolution neural network is one kind of feed-forward
neural network, which adopts unsupervised or semi-
supervised learning mode. It contains convolution calcu-
lation and deep structure and can classify the input
information according to its hierarchical structure [20].
Figure 1 shows the structure of the convolution neural
network [21, 22], and it includes the input layer, convolution
layer, pooling layer, full connection layer, and output layer.
Convolution layer, pooling layer, and full connection layer
constitute the hidden layer.

2.1. ConvolutionLayer andPoolingLayer. Convolution layer
is the most basic structure of the convolution neural
network, it is the feature extraction layer, its main function
is to extract features from the input data, and it uses the
local link, weight sharing, and multiple convolution kernels
to extract features from data. ,e most significant features
of convolution layer are local sensing and parameter
sharing compared with the general deep learning network
structure, which can greatly reduce the model parameters
and ensure the sparsity of the network. ,e convolution
layer formula is

y
l(i,j)

� 􏽘
m−1

j′�0

k
l j′( )
i x

l j+j′( )m, (1)

where yl(i,j) is convoluted output, k
l(j′)
i is the j′ weight value

of the convolution kernel i in the l layer, xl(j+j′) is the
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convoluted local region j in the l layer, andm is the width of
convolution kernel.

,e pooling layer is mainly used to select and filter the
feature graph extracted from the convolution layer and
replace the results of a single point in the feature graph with
the statistics of its adjacent regions so as to reduce the
number of nodes in the final fully connected layer. It can
reduce the overfitting and improve the fault tolerance of the
model. ,e common pooling methods are maximum
pooling and average pooling. Compared with the average
pooling method, the maximum pooling can select the most
significant features in the region; therefore, in this study, the
maximum poolingmethod is selected to select the maximum
value in the region as the pooled value of the region. ,e
expression of the maximum pooling method is

p
l(i,j)

� max a
l(i,j)

􏽮 􏽯; (j − 1)n + 1≤ t≤ jn, (2)

where plij is pooled output and n is the width of the pooling
area.

,e comparison between the full connection layer and
the global average pooling layer is shown in Figure 2. It can
be seen from Figure 1 that it needs to expand all the features
of each feature graph before using the full connection layer,
while the global average pooling layer only needs to calculate
the average value of each feature graph. It is easy to see from
this simple comparison structure diagram that it can greatly
reduce the parameter calculation of the classical convolu-
tional neural network using the global average pooling layer
to replace the full connection layer.

2.2. Light Gradient Boosting Machine. Gradient boosting
decision tree (GBDT) is a long-standing model in machine
learning. Its main idea is to use a weak classifier, decision
tree, and iterative training to get the optimal model, which
has the advantages of good training effect and is not easy to
overfit. LightGBM is a framework to realize the GBDT al-
gorithm, it supports efficient parallel training, and it has the
advantages of faster training speed, lower memory con-
sumption, better accuracy, support for distribution, and can
quickly process massive data. LightGBM uses the negative

gradient of the loss function as the residual approximation of
the current decision tree to fit the new decision tree. It uses
the histogram algorithm, which takes up less memory and
reduces the complexity of data separation. It adopts the leaf-
wise strategy with depth restriction, and it will find the leaf
with the largest splitting gain, the largest amount of data,
from all the current leaves every time, and then splits it. In
this way, if the splitting times are the same, the leaf-wise
strategy can reduce more errors and get better accuracy.
LightGBM can skillfully solve the problem that traditional
boosting algorithm is very time-consuming in the large
sample environment, and the key of LightGBM is to
combine two new methods of gradient-based one-side
sampling (GOSS) and exclusive feature bundling (EFB).
GOSS is a balancing algorithm in reducing the amount of
data and ensuring accuracy. GOSS is to reduce the amount
of calculation by distinguishing the instances of different
gradients, retaining the larger gradient instances, and ran-
domly sampling the smaller gradients, so as to improve the
efficiency. EFB is a way to reduce the feature dimension by
binding features to improve computing efficiency. Usually,
the bundled features are mutually exclusive so that the two
features will not lose information.

3. Model of the Improved Convolution Neural
Network and LightGBM

3.1. Structure Diagram of the Model. ,e structure diagram
of the improved convolution neural network and LightGBM
(GCNN-LightGBM) model is shown in Figure 3, and it is
mainly composed of convolution layer, pooling layer, global
average pooling layer, and LightGBM classifier. Before the
original one-dimensional vibration signal was input into the
convolution layer, the random deactivation with a proba-
bility of 0.2 was carried out on it, so as to improve the
generalization ability of the training model and the stability
of fault diagnosis under variable load conditions. ,ere are
two convolution layers and two pooling layers. In the first
layer, a large convolution kernel is used to obtain more
effective information in the low- and medium-frequency
bands of the original signal. ,e feature maps obtained by

Input Layer Convolution 
Layer Pooling Layer Convolution 

Layer Pooling Layer
Fully 

Connection 
Layer

Output Layer

Covolution Pooling Covolution Pooling

Figure 1: ,e model of the convolution neural network.
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two convolution layers and two pooling layers are input into
the global average pooling layer, and the secondary feature
extraction and data dimension reduction are realized by
averaging each feature map. Finally, the extracted low-di-
mensional features are input into the LightGBM classifier for
classification.

3.2. Parameter Setting of the GCNN-LightGBM Model.
,e GCNN-LightGBM model uses the improved convolu-
tion neural network to extract the adaptive features of the
bearing vibration signals. It is very important for the feature
extraction effect to select the superparameters of the con-
volution neural network. ,erefore, the parameters of the
convolution neural network are trained by softmax classifier
(shown as Table 1). After the convolution part is trained,
LightGBM is used to replace the softmax layer. ,e selection
of LightGBM parameters is processed by the Bayesian pa-
rameter adjustment algorithm. ,e meanings and values of
some important parameters are shown in Table 2.

4. Test and Performance Analysis

4.1. Test Data Set. ,e test data are selected from the Case
Western Reserve University Bearing Data Center. ,e
normal bearing data under different load conditions and the
fault bearing data of the inner ring, steel ball, and outer ring

Fully Connected Layers

Fully Connected
Layers

Output nodes

Concatenation

Feature maps Feature maps Output nodes

Averaging

Global Average Pooling

Figure 2: Comparison between the full connection layer and global average pooling layer.
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Figure 3: Structure diagram of the model of the improved convolution neural network and LightGBM.

Table 1: Hyperparameter setting of the improved convolution
neural network.

Names of the hyper parameters Parameter value
Input random deactivation rate 0.2
Loss function Categorical_crossentropy
Optimizer Adam
Initial learning rate 0.001
Attenuation coefficient 0.5
Attenuation interval 5
Minimum learning rate 0.00001
Number of batches 32
Iterations 20

Table 2: Value of important parameters of LightGBM.

Names of the parameters Parameter value
n_estimators 500
max_depth 6
num_leaves 34
learning_rate 0.07
bagging_fractin 0.68
bagging_freq 5
feature_fraction 0.6
lambda_l1，lambda_l2 3.4, 2.1
min_data_in_leaf 33
min_split_gain 0.96
min_sum_hessian_in_leaf 0.003
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with the damage diameters of 0.178, 0.356, and 0.534mm are
selected, and the fault bearing is at the drive end. A total of 10
kinds of bearing operation state data are selected. ,e
sampling frequency is set to 12 kHz, and 1,024 data points
are collected as a sample each time.,e z-sore normalization
method is used to preprocess the data before feature ex-
traction so as to accelerate the convergence speed of the
convolution neural network. ,e expression of the z-sore
method is

x′ �
x − u

σ
, (3)

where x is the original sample value, u is the mean value of all
sample data, σ is the standard deviation of all samples, and x′
is the normalized value.

,e selected data are divided into three data sets cor-
responding to the load of 1 HP, 2 HP, and 3 HP. Each data
set contains 10,000 samples, there are 10 kinds of bearing
operation state, and each bearing state includes 1,000
samples. About 70% of samples are selected as the training
set, 20% samples are selected as the verification set, and 10%
samples are randomly selected as the test set. ,e specific
data sets are shown in Table 3.

Generally, the distribution of the data set is different due
to the amplitude, fluctuation period, and phase inconsis-
tency of the vibration signals under different working
conditions. ,erefore, it needs the classifier designed has
strong generalization ability and robustness. However, it is
not realistic to collect and mark enough training samples to
make the classifier robust to all the working conditions. In
this study, one method using the single load to train the fault
diagnosis model and using the test set of the other loads to
carry out the fault diagnosis is adopted [23]. For example, it
requires the model trained under 1 HP load to not only have
high classification accuracy in the 1 HP test set but also in the
2 HP or 3 HP test set, and the variable load adaptive data set
constructed to achieve this goal is shown in Table 4.

4.2. Model Validation. In the experiment, the GCNN-
LightGBMmodel uses the deep learning framework Keras in
Python language, the classification module directly calls the
LightGBM software package, and the established network is
used to train and test using different data sets. Because the
initialization of input data and neural network weights is
random, the average value was calculated after each data set
was trained 10 times so as to ensure the reliability of the test
results.

In order to verify that the improved convolutional neural
network has stronger generalization ability, the contrast
model of the classical convolutional neural network and
LightGBM is constructed, and the network structure and
training parameters of the contrast model are consistent
with the GCNN-LightGBM model except for the full con-
nection layer. At the same time, in order to verify that
LightGBM has a stronger classification ability than the
softmax layer, one contrast model of the improved con-
volutional neural network and softmax also is constructed,
and the feature extraction part of the contrast model is

consistent with the model in this study except the softmax
classifier.

,e recognition accuracy of each model under different
load conditions is shown in Figures 4 and 5.

It can be seen from Figures 4 and 5 that the average
classification accuracy of the GCNN-LightGBM model is
slightly higher than that of the CNN-LightGBM model
under the same load condition, while the average classifi-
cation accuracy of the GCNN-LightGBM model is 2.72%
higher than that of the CNN-LightGBM model under
variable load condition, and it is verified that the improved
convolutional neural network has a better anti-overfitting
effect and can improve the generalization ability of the
model. ,e average classification accuracy of the GCNN-
LightGBMmodel is 1.05% and 0.77% higher than that of the
GCNN-softmax model, respectively, under the same load
and variable load conditions, and it indicates that LightGBM
has a stronger classification ability than softmax. LightGBM
classifier can achieve good classification results under the
same load condition, but the average classification accuracy
is less than 68% under the variable load condition, which
indicates that it is easy to overfit when LightGBM is directly
used to train the original data although it is a very powerful
classifier, and it is necessary to extract features from the
original data. ,e classification accuracy between adjacent
conditions is high under variable load conditions, which
indirectly reflects that the distribution difference of adjacent
load data sets is small but the distribution difference of
nonadjacent load data sets is large.

4.3. Contrast Test

4.3.1. Accuracy Rate of Fault Diagnosis. Since the classifi-
cation accuracy of the GCNN-LightGBM model is close to
100% under the same load test set, several deep learning
models [24, 25] that have achieved good classification results
under the same load conditions are selected to carry out the

Table 3: Bearing test data set.

Bearing status Fault diameter (mm) Number of samples
Normal — 700/200/100

Ball failure
0.178 700/200/100
0.356 700/200/100
0.534 700/200/100

Inner ring fault
0.178 700/200/100
0.356 700/200/100
0.534 700/200/100

Outer ring fault
0.178 700/200/100
0.356 700/200/100
0.534 700/200/100

Table 4: Variable load adaptive data set.

Training data set Training sample Target test set Test sample
1 HP 7000 2 HP, 3HP 1000, 1000
2 HP 7000 1 HP, 3HP 1000, 1000
3 HP 7000 1 HP, 2HP 1000, 1000
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comparative analysis under the variable load test sets, so as
to highlight the advantages of the generalization ability and
load migration ability of GCNN-LightGBM model. ,e
classification accuracy of different deep learning models
under the variable load adaptive data sets is shown in
Figure 6.

It can be seen from Figure 6 that the models of CNN-
LSTM and WDCNN have strong adaptability when they
are trained under the load conditions of 1 HP and 2 HP,
and the classification accuracy can reach more than 90% in
other variable load test sets. But the load migration ability
of the models is not strong when they are trained under
the load conditions of 3 HP, and the classification accu-
racy can only reach about 80% under the load conditions
of 1 HP and 2 HP. ,e classification accuracy of the CNN-
SVM model trained under the load condition of 3 HP in
other test sets is close to 100%, but the classification ac-
curacy of the CNN-SVM model trained under the load
condition of 1 HP in other test sets is even less than 80%. It
shows that the overall robustness and load migration
ability of the three comparison models are not very strong,
although they can achieve good classification results on a
variable load test set.

,e lowest classification accuracy of the GCNN-
LightGBM model is about 87.89% under the variable load
conditions, and it is increased by 20.57%, 9.93%, and 11.10%,
respectively, compared with the worst cases of the models of
CNN-LSTM, WDCNN, and CNN-SVM. ,e average clas-
sification accuracy of the GCNN-LightGBM model is
94.64%, which is significantly higher than that of other
models. It can be seen that the GCNN-LightGBMmodel has
the better overall classification effect under the variable load
conditions and also has better generalization ability and load
migration ability.

4.3.2. Efficiency of Fault Diagnosis. In order to further
highlight the advantages of the GCNN-LightGBMmodel on
the efficiency of rolling bearing fault diagnosis, the training
time and diagnosis time of each model, the amount of
training parameters of the deep learning model, and the
number of required layers of training parameters (excluding
pooling layer) are recorded in the process of comparative
test, and these parameter values are shown as Table 5.
Among them, the average duration is the average value of
each model trained for 10 times under different load con-
ditions, and the average value of different loads is calculated
again.

It can be seen from Table 5 that the required training
parameters and network layers of the GCNN-LightGBM
model are the least, especially the amount of the training
parameters are several orders of magnitude different from
the other three networks, and the required average training
and diagnosis time is the smallest among the four models.
,e training time is shortened by 90.81%, and the fault
diagnosis efficiency is improved by 10.44 times compared
with the CNN-LSTM model.

,ese data show that the less the parameters and layers of
the model need to be trained, the shorter the time of model
training and fault diagnosis. ,e advantage of the short fault
diagnosis time of the GCNN-LightGBM model will be more
obvious when there are hundreds or even millions of
samples need to be trained or diagnosed, and it can save a lot
of time cost.
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Figure 4:,e classification accuracy of each model under the same
load condition.
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Figure 5: ,e classification accuracy of each model under different
load conditions.
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Figure 6: ,e classification accuracy of each model under the
variable load condition.
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5. Conclusions

In order to solve the problem that weak generalization ability
and long training time in most fault diagnosis models based
on deep learning, one intelligent diagnosis method of rolling
bearing fault based on the improved convolution neural
network and light gradient boosting machine is proposed.

(1) First, the random deactivation with a probability of
0.2 was carried out on the original one-dimensional
vibration signal, so as to improve the generalization
ability of the training model and the stability of fault
diagnosis under variable load conditions. Second, the
signal was input into the GCNN. In the first layer, a
large convolution kernel is used to obtain more
effective information in the low- and medium-fre-
quency bands of the original signal.,e feature maps
obtained by two-layer convolution pooling operation
are input into the global average pooling layer, and
the secondary feature extraction and data dimension
reduction are realized by averaging each feature map.
Finally, the extracted low-dimensional features are
input into the LightGBM classifier for classification.

(2) ,e results show that (1) the average classification
accuracy of the GCNN-LightGBM is 99.72% for the
same load test set and 95.62% for the variable load
test set; (2) the GCNN-LightGBM model has the
higher average classification accuracy on the variable
load test set compared with the models of CNN-
LSTM, WDCNN, and CNN-SVM, and it has the
stronger generalization ability and load migration
ability; (3) the GCNN-LightGBM model only needs
two training layers, and the amount of parameter
calculation is less than 3,000, the training and fault
diagnosis durations are 39.73 s and 0.09 s, respec-
tively, and these data are far lower than other
comparison models, which shows that the GCNN-
Light GBM model has the advantages of simple
structure, less parameter calculation, and high effi-
ciency of training and fault diagnosis.

(3) In this study, the generalization ability of the model
is improved according to the change of load. In the
future, the robustness of the model will be further
improved by adding noise interference to the
samples.
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)e large-span spatial structure is a complex structural type with large number of elements, which makes health monitoring
difficult. A time domain global substructural identification method was proposed in this paper to identify the local damage for the
large-span spatial structure. )e proposed method was an improvement method based on the time domain substructural
identification method, which can identify the damage with a reduced structural model, and explicit force identification method,
which can give convergent force identification result with incomplete response measurements, and it can assess one or more target
substructures without knowing the conditions of the other parts of the structure.)e application of the newmethod to large-span
spatial structure was presented, and then an improved global method was proposed to further reduce the computation time and
promote it in practice. Two orthogonal spatial square pyramid grid structure models are constructed to validate the time domain
global substructural method and the improved global method.)e results show that the time domain global substructural damage
identification method identifies the small local damage in multiple members with satisfactory accuracy and the improved global
method effectively shortens identification time.

1. Introduction

A great quantity of large-span spatial structures, such as
stadiums, train stations, airport terminals, and exhibition
centers, have been constructed around the world in the past
several decades. )e large-span spatial structure usually has
important functions to undertake activities or transfer
passengers, thereby always gathering large numbers of
people in it. Once failure or even collapse occurs, it will cause
terrible casualties, huge property loss [1], and extremely bad
social impact, which makes the structural health monitoring
of large-span spatial structure a crucial issue. )e small local
damage may lead to disastrous damage under strong
earthquake, so the small local damage detection becomes a
key issue for the structural health monitoring of the large-
span spatial structure. )e damage detection method based

on vibration information [2–5] has been proposed and
developed in the past three decades, and it has been applied
in various structures (e.g., bridges [6], frame structures, and
plane trusses [7, 8]).

Several structural health monitoring methods based on
vibration information have been proposed to estimate the
local damage of space truss structure in recent years. )e
square ratio of frequency variation and variation rate of axial
strain were adopted to identify local damage of space truss
structure [9, 10], and the numerical simulation results
show that the single damage location can be detected
accurately while the damage quantification needs to be
further discussed. Song et al. [11] expanded incomplete
mode shape through a dynamic model expansion tech-
nique, identified the possible damage members by model
strain energy, and then used Least Squares Support Vector
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Machine to detect the location and extent of the local
damage of a space truss. However, the measurement noise
level is a challenge. Another method based on residual
modal force and modal strain energy was proposed to
detect the local damage of space truss [12], and a space
truss was numerically simulated to verify the proposed
method. )e damage location and quantification can be
detected accurately, but the sensitive mode shape is needed
in the simulation cases.

)e neural networks have been adopted in structural
health monitoring widely since last decades. Wu and Zhang
[13] presented the damage identification method of grid
structures based on BP neural networks, and it has been
verified with numerical model of space truss and experi-
mental model of a double-layer cylindrical reticulated shell
structure.)e erroneous judgment is always unavoidable for
some damage locations, and this method cannot give good
identification results with missed damaged members. To
solve the data explosion problem, Liu et al. [14] introduced
the method of substructure, while using probabilistic neural
networks (PNN) to improve identification accuracy. )e
numerical simulation results show that this method is ef-
fective, but there are still erroneous judgments. If the
damaged members are located in different substructures, the
condition assessment will become more complicated, and
excessive substructure partitioning will produce some new
problems in global detection. He and Yan [15] adopted the
method combining wavelet packet with support vector
machine to identify the damage of single-layer lattice shell,
but the comprehensive correct rate of damage identification
was 80%.

Data fusion technique has also been adopted for the
damage detection of large-span spatial structure to improve
the accuracy of the damage identification. )e information
of acceleration measurements and strain measurements is
used to identify the damage of reticulated shell based on
Dempster–Shafer evidence theory [16, 17]. Teng and Yao
[18] added wavelet packet analysis on the basis of infor-
mation fusion. Although both methods improve the accu-
racy of damage identification, for avoiding data explosion,
global structure still needs to be divided into too many parts.
Moreover, the damaged members are all located in the same
substructure; the scenarios with damaged members located
in different substructures are not considered. )erefore,
these methods can be used to assess a small amount of
concentrated damage.

A probabilistic substructure identification and health
monitoring methodology was proposed [19], which does not
require any interface measurements or excitation mea-
surements. )is method can be applied widely, because only
the stochastic model of the input is required. )en, the
boundary force in the substructure is modulated as filtered
white noise [20], which can be viewed as a continuity
condition. )is proposed method does not require statio-
narity of the response. An identifiability-enhanced Bayesian
frequency-domain substructure identification approach is
proposed without the requirement of input or boundary
force measurements [21], in which extra constraints are
imposed to enhance the identifiability of the inverse

problem. Substructural identification approaches provide
effective methodologies for the identification of large-span
spatial structures, because they offer the flexibility to isolate
some critical substructures for identification. However, for
large-span spatial structure, the common substructural
damage identification methods based on vibration infor-
mation still suffer difficulties because of the characteristics of
large-span spatial structure including complex structural
composition, intensive frequency distribution, and nu-
merous dynamic degrees of freedom.

)e response sensitivity-based method was derived by
Jahn [22] in 1940s; usually, its application involves model
updating iteration and optimization algorithm [23–25] to
enhance the identifiability. Liu et al. [26] proposed a
substructural condition assessment method based on re-
sponse sensitivity, and the accuracy and effectiveness are
then validated with simulation studies of a plane truss
when damage only exists in one of the substructures. )is
method, with comparatively lesser substructure parti-
tioning, may be suitable for large complex structures. Since
this method shows potential for damage identification of
large-span spatial structure, in this paper, the global
damage identification method based on this substructural
method is presented to detect the location and extent of
local damage in different substructures with uncompleted
acceleration measurements. An improved global substruc-
tural damage identification method is further proposed to
reduce calculation duration. )e global substructural damage
identification method and the improved global substruc-
tural damage identification method are numerically veri-
fied with simulation studies of two double-layer lattice
space structures.

2. The Global Substructural Damage
Identification Method

)e target substructure can be assessed based on the time
domain response sensitivity matrix of the substructural
system as is described in Appendix B, and the detailed
process has been written in previous paper [26]. However,
this original substructural method is effective only when the
condition of the rest substructure is known. )e interface
force depends on the local damage extent of the target
substructure and the rest substructure, so the interface force
sensitivity is related to the local damaged parameters of both
substructures. When the local damaged parameter of the rest
substructure is unknown, the substructural response sen-
sitivity considering the interface force effect cannot be ob-
tained. To overcome this problem, this paper will propose a
global substructural method based on the interrelation be-
tween each substructural dynamic equation.

If the whole structure is divided into n substructures,
similar to (B.6), the motion equation of ith substructure
among the n substructures can be written as

Mi €xi + Ci _xi + Kixi � LiPi, (1)

where the subscripts i denote the number of substructures;
obviously 1≤ i≤ n. )e interface force Pi is related to all the
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substructural stiffness matrices from K1 to Kn. Due to the
interconnection between substructural motion equations,

the global substructural dynamic equation set can be written
as

M1 €x1 + C1 _x1 + K1x1 � L1P1,

⋮

Mi €xi + Ci _xi + Kixi � LiPi,

⋮

Mn €xn + Cn _xn + Knxn � LnPn.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

In (2) the DOFs of the interface are repeated once
compared with the equation of motion of the full
structure.

2.1. -e Global Substructural Damage Identification
Algorithm. Assume that the local damage extent of the jth
substructure is damage index vector αj, which includes the
local damaged parameter of every element in the jth sub-
structure. A change in the global substructural stiffness
matrix can be described as

ΔK � 􏽘
j

αjKj. (3)

Performing differentiation of both sides of (1), the
motion equation of ith substructure, with respect to the
damage index vector αj, we have

Mi

z €xi

zαj

+ Ci

z _xi

zαj

+ Ki

zxi

zαj

� −
zKi

zαj

xi − a1
zKi

zαj

_xi + Li

zPi

zαj

,

(4)

where z €xi/zαj, z _xi/zαj, and zxi/zαj are the substructural
response sensitivity matrices which can be obtained by
solving (4). )e substructural response sensitivity algorithm
is presented in (B.9)–(B.16).

Let the ith substructural response sensitivity matrix with
respect to the jth substructural damage index vector be
represented as Si,j. All the substructural sensitivity matrices
can be calculated, and then the global substructural sensi-
tivity matrix is assembled as

S �

S1,1 · · · S1,j · · · S1,n

⋮ ⋱ ⋮ ⋱ ⋮

Si,1 · · · Si,j · · · Si,n

⋮ ⋱ ⋮ ⋱ ⋮

Sn,1 · · · Sn,j · · · Sn,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

)e identification equation for the local damage of all the
substructures with the global substructural sensitivity matrix
can be represented as

Sα + o α2􏼐 􏼑 � €X
cs

− €X
ms

, (6)

where

α � αT
1 · · · αT

i · · · αT
n

􏽨 􏽩,

€X
cs

− €X
ms

� X
T
1 · · · X

T
i · · · X

T
n

􏽨 􏽩.
(7)

)emeasured acceleration response €X
ms, the corresponding

calculated acceleration response €X
cs, and the global substruc-

tural sensitivity matrix S in (6) are knownwhile the higher order
term o(α2) can be omitted.)e unknown damage index vector
α can be determined from (6) with an iterative approach based
on Gauss elimination method. )e substructural sensitivity
matrix Si,j and the difference values of the response vectorXi are
the basic computing unit in the process of solving.)e fractional
change increment of the stiffness vector Δαi is the result of each
iteration, and the final damage index vector αi is obtained by
summarizing all the iterative results.

)e substructural stiffness matrix is only related to its
own damage parameter, so (4) can be also written as

Mi

z €xi

zαj

+ Ci

z _xi

zαj

+ Ki

zxi

zαj

�

−
zKi

zαj

xi − a1
zKi

zαj

_xi + Li

zPi

zαj

, i � j,

Li

zPi

zαj

, i≠ j.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(8)

In (8), if i≠ j, only one term is considered on the right-
hand side. Obviously, the substructural sensitivity matrix
obtained from (8) or (4), Si,j (i≠ j), has less contribution

than Si,i to the global substructural sensitivity matrix. A part
of the global substructural sensitivity matrix far from the
diagonal can be ignored as zero, and then the global
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substructural sensitivity matrix becomes sparse, and the
computational processes of Gauss elimination can be
simplified.

When the full structure is divided into two substructures,
after ignoring low contribution sensitivity matrices, the
global substructural sensitivity matrix can be written as

SII �
S1,1 0

0 S2,2
􏼢 􏼣. (9)

According to the solution by Gauss elimination method,
the kth iterative algorithm can be written as

Δαk
1 � S

+
1,1X1,

Δαk
2 � S

+
2,2X2.

(10)

Similarly, when the full structure is divided into three
substructures, the simplified global substructural sensitivity
matrix and the kth iterative algorithm can be written, re-
spectively, as

SIII �

S1,1 S1,2 0

S2,1 S2,2 S2,3

0 S3,2 S3,3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (11)

Δαk
1 � S

+
2,1 + S

+
1,1S1,2S

+
3,2S3,3S

+
2,3 − S

+
1,1S1,2S

+
2,2􏼐 􏼑 S2,3S

+
3,3S3,2S

+
1,2 − S2,2S

+
1,2􏼐 􏼑X1 + X2 − S2,3S

+
3,3X3􏽨 􏽩,

Δαk
2 � S

+
1,2X1 − S

+
1,2S1,1Δα

k
1,

Δαk
3 � S

+
3,3X3 − S

+
3,3S3,2Δα

k
2.

(12)

)e substructural method by dividing the full structure
into several substructures can effectively reduce structural
model, and then the size of response sensitivity matrix is
reduced significantly. When there is local damage in dif-
ferent substructures, the following procedure based on the
global substructural damage identification method can be
performed to assess all the substructures’ conditions.

Step 1: Conduct the dynamic measurement in the
structure, and assemble the measured responses. )en,
set k � 0.
Step 2: )e relationship between the interface forces
and the measured responses is constructed, and the
interface forces are then identified.
Step 3: Compute the response of the structure ( €X

cs) and
the substructural sensitivity matrices of response (Si,j)
with respect to the local damaged parameters of dif-
ferent substructure.
Step 4: Let k � k + 1, and identify the kth local change
increment of the stiffness with the global substructural
sensitivity matrix S in (6).
Step 5: Update the finite element model and repeat
Steps 2 to 4 until convergence in (13) is met. )e final
damage index vector α which is used to represent the
change of stiffness can be obtained as
αk+1 � 􏽐k+1Δαk+1.

αk+1
− αk

�����

�����

αk+1
�����

�����
<Tol1

Tol1� 10− 5 for the noise free case,

Tol1� 10− 3 for 5%noise level case.

⎧⎪⎨

⎪⎩

(13)

)e flowchart of the global substructural method is
shown in Figure 1.

2.2.-e ImprovedGlobal SubstructuralDamage Identification
Algorithm. )e application of global substructural
method to large-span spatial structure can reduce the
structural model and the size of sensitivity matrix through
dividing the full structure into several substructures, but
all the elements need to be considered repeatedly in each
iterative computation. When the structural model is too
large and complex, it will consume a lot of computation
time for damage identification with the global substruc-
tural method due to the huge number of elements. To
enhance the computational efficiency of damage identi-
fication, an improved global substructural method can be
proposed by shrinking the scope of assessment in the
iterative process.

In this method the damage index is calculated at first
identification round, and then a critical value is defined for
determining the damaged location, in which those elements
with the local damage extent larger than the defined critical
value are set as the probable damaged elements. After fil-
tering the probable damaged elements, these elements are
independently identified, while regarding the others as in-
tact. )en, all the elements are reviewed to avoid missing the
damaged element. Based on the global substructural damage
identification method, the improved global substructural
damage identification method can be performed as in the
following steps:

Step 1: Conduct the dynamic measurement in the
structure, and assemble the measured responses. )en,
set k � 0 and k1 � 0.
Step 2: )e relationship between the interface forces
and the measured responses is constructed, and the
interface forces are then identified. Compute the re-
sponse of the structure and the substructural sensitivity
matrices of responses with respect to the local damaged
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parameters of different substructures based on the
identified interface forces.
Step 3: Let k � k + 1, and identify the kth local change
increment of the stiffness with the analytical responses
and the corresponding substructural sensitivity ma-
trices in Step 2.
Step 4: Update the finite element model and repeat
Steps 2 to 3 until convergence in (14) is met. Define a
critical value for determining the damaged location.
)e elements with the obvious stiffness reduction are
selected to be updated in the following update pro-
cedures (referred to as “damaged elements”), and the
stiffness change of the other elements regarded as intact
is set to zero. Set k1 � k+ 1; the first-round identification
is finished.

αk+1
− αk

�����

�����

αk+1
�����

�����
<Tol2

Tol2 � 10− 2 for the noise free case,

Tol2 � 10− 1 for 5%noise level case.

⎧⎪⎨

⎪⎩

(14)

Step 5: Let k � k + 1, calculate the responses based on
the previous updated model of structure and sensi-
tivities of the “damaged elements” in every substruc-
ture, and then identify the kth fractional increment of
the damaged parameters of the “damaged elements”
Δαk

d.
Step 6: Update the finite element model and repeat
Steps 5 until “damaged elements” convergence in (15) is
met.

αd
k+1

− αd
k

�����

�����

αd
k+1

�����

�����
<Tol3

Tol3� 10− 5 for the noise free case,

Tol3� 10− 3 for 5%noise level case.

⎧⎪⎨

⎪⎩

(15)

Step 7: To review the damage identification results,
update the finite element model and repeat Steps 2 to 3
until convergence in (14) is met.

)e flowchart of the improved global substructural
method is shown in Figure 2.

3. Numerical Simulations

3.1. Numerical Simulation of Global Substructural Method.
)e orthogonal spatial square pyramid grid structure as
shown in Figure 3 serves for the following study. )is
structure is modeled using 240 spatial truss finite elements
without internal nodes and 72 hinge nodes giving 150 DOFs.
)e structure is divided into two substructures as shown in
Figure 4. )e node number and element number are shown
in Figures 3 and 4. Substructure I contains Nodes 1 to 44 and
Substructure II contains Nodes 34 to 72. Nodes 34 to 44 are
the interface nodes. )e structure is hinge-supported at
peripheral nodes, and the location of bearing is shown in
Figure 3 as solid blue squares. )e upper, lower, and web
members are all 3.0 meters long. )e cross-sectional area of
all members is 0.0028m2. )e plane dimensions of the
structure are 18m× 15m, and the height of the structure is
2.12m.)e first eight natural frequencies of the structure are
2.724Hz, 4.621Hz, 5.438Hz, 7.029Hz, 7.030Hz, 8.057Hz,
8.462Hz, and 8.560Hz, respectively. Rayleigh damping is
adopted for the system, and the two damping coefficients are
a1 � 0.1077 and a2 � 2.1669 × 10− 4. )e mass density and
elastic modulus of material are, respectively, 7.85 × 103 kg/
m3 and 2.06GPa.

Vertical external loads are applied to the structure at
Nodes 26 and 47, and they are, respectively, modeled as

F1(t) � 650 sin(20πt) + 600 sin(80πt) + 550 sin(160πt),

F2(t) � 500 sin(18πt) + 450 sin(70πt) + 450 sin(210πt),

(16)

to simulate excitation over a relatively wide range of
frequencies.

)e sampling rate is 1000Hz and the time duration of
study is 0.5 s after the load application. )e acceleration
responses of the structure are calculated using theNewmark-

Construct the model (Mi,Ci,Ki)
and measure the response of the damaged 

substructure and set k=0

Identify interface force Pi with Mi,Ci,Ki and 
the measured response, and compute the 
responses and the acceleration sensitivity 

matrices from Eq. (4)

Let k=k+1, identify the local change 
increment of the stiffness ∆αk with the global 

substructural sensitivity S in Eq. (6)

Is convergence in Eq. (13) met?

END

Yes

Update
Mi,Ci,Ki 

Figure 1: Flowchart of the global substructural method.
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β method as the “measured” responses. )e sensor location
is shown in Figure 3 as red hollow circles.

)e initial global substructural sensitivity matrix is
obtained with the substructural response sensitivity

algorithm. )e former 120 columns of matrix are related to
the local damaged parameters of Substructure I, and the last
120 columns of matrix are related to the local damaged
parameters of Substructure II. To compare the contribution

Is convergence in Eq. (14) met?

Yes

No

END

Is convergence in Eq. (15) met?
NoYes

Yes

Construct the model (Mi,Ci,Ki)
and measure the response of the damaged 

substructure and set k=0, k1 = 0.

Identify interface force Pi with Mi,Ci,Ki and 
the measured response, and compute the 
responses and the acceleration sensitivity 

matrices from Eq. (4)

Let k=k+1, identify the local change 
increment of the stiffness of the “being

damaged elements” Δαdk with the global 
substructural sensitivity S in Eq. (4)

Update
Mi,Ci,Ki 

Update
Mi,Ci,Ki 

Define a critical value, select the element
with the obvious stiffness reduction as

“being damaged elements’’. Set the stiffness
change of the other elements to be zeros. Set

k1= k+1.

k1 = 0

k1 ≠ 0

Let k=k+1, identify the local change 
increment of the stiffness Δαk with the global 

substructural sensitivity S in Eq. (6)

Figure 2: Flowchart of the improved global substructural method.
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between different substructural sensitivity matrices, every
sensitivity vector norm with respect to single local damaged
parameter at the different nodes is calculated. )e norm of
sensitivity vectors at the sensor locations is shown in

Figure 5.)emean of norm of sensitivity vectors is shown in
Table 1. It is noted that the norm of sensitivity vectors with
respect to the parameters of Substructure I is greater than
that of Substructure II at the nodes belonging to Sub-
structure I, but it is the opposite at the nodes belonging to
Substructure II. Accordingly, the substructural sensitivity Si,j

(i≠ j) has less contribution than Si,j (i � j) to the global
substructural sensitivity matrix.

To evaluate the contribution extent of different sub-
structural sensitivity to the global substructural sensitivity
matrix, a ratio is defined as

Ratio �
Si,jΔαj

�����

�����

􏽐jSi,jΔαj

�����

�����
. (17)

Because all the fractional change increments Δαi keep
the same level under the small local damage, the defined
ratio in (17) can represent the influence of one substructural
sensitivity in the identification equation. Small stiffness
reduction of 0.1% is simulated in all structural elements, and
the initial substructural sensitivitymatrices are considered to
calculate the ratio. )e results of ratio are shown in Table 2,
demonstrating that the influence of substructural sensitivity
matrix S1,1 and S2,2 is much larger than the others. In the
following numerical simulation, (9) and (10) are applied to
assess the condition of structure setting S1,2 and S2,1 as zero.

Two damage scenarios as shown in Table 3 are studied in
this section. 10% stiffness reduction is assumed as local
damage of each selected element in each scenario. )e
damaged members are located in different substructures.

With the global substructural damage identification
method, the damage identification results of the two sce-
narios are shown in Figure 6. )e identified results without
noise are consistent with the real damaged scenarios, which

Figure 3: An orthogonal spatial square pyramid grid structure and element number system.

Figure 4: Substructure division.
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Figure 5: Sensitivity vector norm. (a) At node 9 belonging to Substructure I. (b) At node 15 belonging to Substructure I. (c) At node 21
belonging to Substructure I. (d) At node 25 belonging to Substructure I. (e) At node 37 belonging to Substructure I. (f ) At node 30 belonging
to Substructure I. (g) At node 43 belonging to Substructure II. (h) At node 46 belonging to Substructure II. (i) At node 48 belonging to
Substructure II. (j) At node 52 belonging to Substructure II. (k) At node 58 belonging to Substructure II. (l) At node 64 belonging to
Substructure II.
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indicate that the global substructural damage identification
algorithm is correct and accurate. )ere are some small false
positives and negatives in the results, because identification
of interface force and simplification of sensitivity matrix will
generate errors in iterative process. However, the identifi-
cation results with 5% noise in measurements have larger
errors than those in the scenario without noise. )e mean
values and standard deviations of error are shown in Table 4.
)e identified error of damaged element 46 in Scenario I
reaches about 3.8%, but the damage locations can be
identified with satisfactory accuracy in both scenarios.

)e size of sensitivity matrices is shown in Table 5,
and it is noted that the size of sensitivity matrix is reduced
significantly in the identification process. )is study
shows that the global substructural method can be applied
for assessing the double-layer lattice space structure with
small damage in multiple members distributed in dif-
ferent substructures by incomplete measured acceleration
responses (24% of responses data are measured in this
simulation study).

3.2. Numerical Simulation of Improved Global Substructural
Method. )e orthogonal spatial square pyramid grid

structure as shown in Figure 7 serves for the following
study. )is structure is modeled using 800 spatial truss
finite elements without internal nodes and 221 hinge
nodes giving 543 DOFs. )e structure is divided into three
substructures as shown in Figure 8, and the node number
and element number are shown in Figure 9. Nodes 64
to 84 and Nodes 138 to 158 are the interface nodes. )e
structure is hinge-supported at peripheral nodes, and the
location of bearing is shown in Figure 9 as solid blue
squares. )e upper, lower, and web members are all 3.0
meters long. )e cross-sectional area of all members is
0.0028m2. )e plane dimensions of the structure are
30m × 30m, and the height of the structure is 2.12 meters.
)e first eight natural frequencies of the structure are
0.864Hz, 1.826Hz, 2.564Hz, 3.659Hz, 3.682Hz, 3.985Hz,
4.144Hz, and 4.628Hz, respectively. Rayleigh damping is
adopted for the system, and the two damping coefficients are
a1 � 0.0368 and a2 � 5.9167 × 10− 4. )e mass density and
elastic modulus of material are, respectively, 7.85 × 103 kg/
m3 and 2.06GPa.

Vertical external loads are applied to the structure at
Nodes 67, 71, 141, and 145, and they are, respectively,
modeled as

F1(t) � 500 sin(18πt) + 450 sin(70πt) + 450 sin(210πt),

F2(t) � 650 sin(20πt)600 sin(80πt) + 550 sin(160πt),

F3(t) � 550 sin(18πt) + 500 sin(50πt) + 500 sin(160πt),

F4(t) � 600 sin(20πt) + 550 sin(30πt) + 500 sin(210πt),

(18)

to simulate excitation over a relatively wide range of
frequencies.

)e sampling rate is 1000Hz and the time duration of
study is 0.5 s after the load application. )e acceleration
responses of the structure are calculated using theNewmark-
β method as the “measured” responses. )e sensor location
is shown in Figure 7 as red hollow circles. Two damaged
scenarios as shown in Table 6 are studied in this section. 10%
stiffness reduction is assumed as local damage of selected
element in each scenario. Equations (11) and (12) are applied

Table 1: Mean value of sensitivity vector norm.

Node number
Mean of sensitivity vector norm

Related to parameters of Sub I Related to parameters of Sub II
9 3.68 1.95
15 4.27 2.44
21 4.18 2.68
25 4.32 2.57
27 4.16 2.11
30 4.84 2.76
All nodes of Sub I 4.24 2.42
43 2.45 6.34
46 2.01 6.24
48 2.22 5.37
52 2.11 5.20
58 1.86 6.09
64 1.43 4.51
All nodes of Sub II 2.02 5.62

Table 2: Contribution extent of substructural sensitivity.

Index of sensitivity matrix Ratio
S1,1 0.88
S1,2 0.33
S2,1 0.25
S2,2 0.92

Table 3: Damage scenarios.

Damage scenario
Damaged element

Upper member Lower member Web
member

Scenario I 12,46 163 206,238
Scenario II 40 84,130 192,240

Shock and Vibration 9



to assess the condition of structure setting S1,3 and S3,1 as
zero.

With the improved global substructural method, the
damage identification results of the two scenarios without
noise in measurements are shown in Figure 8. )e
identified results are consistent with the real damage
scenarios, and there is almost no error, which indicates
that the improved global substructural methodology is

correct and accurate. )e required computation time on a
PC with 3.6 GHz Intel Core i7-4790 CPU and 4 GB
memory is shown in Table 7. Compared with that of the
global substructural method, the calculation duration of
the improved global substructural method is reduced
significantly.

In the first-round identification, the number of ele-
ments regarded as “damaged elements” is decided by the
defined critical value, being related to the efficiency of
next step identification. However, if the defined critical
value is too large, some damaged elements may be
missing. In order to verify that the improved sub-
structural method is still effective even when there are
erroneous judgments in the process of filtering, the
critical value is defined as 0.09 in this numerical study.
After filtering, the damaged element 500 is to be left out
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Figure 6: Identified results of global substructural method. (a) Scenario I with (i) part I, (ii) part II, and (iii) part III. (b) Scenario II with (i)
part I, (ii) part II, and (iii) part III.

Table 4: Calculated error of the identified results.

Damage scenario
With 5% noise in measurements Without noise in measurements

Mean value (%) Standard deviation Mean value (%) Standard deviation
Scenario I 1.24 1.50 0.18 0.26
Scenario II 1.16 1.34 0.22 0.23

Table 5: Size of sensitivity matrix.

Index of sensitivity matrix Size of sensitivity matrix
SII 18000× 240
S11 9000×120
S22 9000×120
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in Scenario I and the damaged element 736 is to be left
out in Scenario II. )e identified results of the selected
elements of the two scenarios with 5% noise in mea-
surements are shown in Figure 10, and the locations of
erroneous judgment are marked by red circles. )e final
damage identification results after review of the two
scenarios are shown in Figure 11. )e correct identified
results of damaged location indicate that the accuracy of
damage identification is not affected.

)e mean value and standard deviation of error are
shown in Table 8. It is noted that the error between two
methods is extremely close, which indicate that the im-
proved global substructural method is stable for error with
5% noise while improving the identification speed. 25% of
responses data are obtained for measurement, which is
reasonable extent in the practical application. )is study
shows that the improved global substructural method can be
applied for assessing the bigger double-layer lattice space

Figure 7: An orthogonal spatial square pyramid grid structure.
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Figure 8: Identified results of improved substructural method. (a) Scenario I. (b) Scenario II.
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Figure 9: Substructure division and element number system.

Table 6: Damage scenario.

Damage scenario
Damaged element

Upper member Lower member Web member
Scenario I 27, 64, 98, 135, 195 258, 322, 410, 500, 550 632, 690, 724, 760, 790
Scenario II 12, 85, 125, 170, 218 263, 341, 405, 492, 566 622, 650, 700, 736, 800

Table 7: Required computation time (s) for damage identification.

Damage scenario
Improved global substructural method

Global substructural method
Filtering Identifying Review Total time

Scenario I 502 16 407 925 1108
Scenario II 526 21 390 937 1276
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Figure 10: Identified results of selected elements. (a) Scenario I. (b) Scenario II.
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Figure 11: Final identified results after review. (a) Scenario I. (b) Scenario II.

Table 8: Calculated error of the identified result with 5% noise in measurements.

Damage scenario
Improved substructural method Global substructural method

Mean value Standard deviation Mean value Standard deviation
Scenario I 0.61 0.67 0.71 0.79
Scenario II 0.44 0.42 0.50 0.51

Interface

Target Substructure

Rest Substructure

Figure 12: Substructure division.
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structure rapidly with dividing substructure to avoid data
explosion.

4. Conclusions and Discussions

)e proposed global substructural damage identification
method can assess all the substructures without knowing the
conditions of the other parts of the entire structure, so it is a
practical method for the health monitoring of large-span
spatial structure. )e numerical simulation of a double-layer
lattice space structure with local damage distributed in dif-
ferent substructures verifies that the new method is effective
in identifying the damage of large-span spatial structure by
the incomplete dynamic response information. )e small
damage in multiple members can be accurately assessed
without noise, and the damaged location can be correctly
identified with 5% noise in measurements. )e divided
substructure has less model and smaller sensitivity matrix
than the full structure to avoid data explosion, and the ap-
propriate number of sensors ensures the practical feasibility.

)e improved global substructural method is proposed
to shorten the required computation time, and a larger
orthogonal spatial square pyramid grid structure illustrates
and verifies this improved global method. )e iterative al-
gorithm based on the Gauss elimination of identification is
simplified by ignoring a few substructural sensitivities in-
cluded in the global sensitivity matrix. However, the cal-
culated error will increase with the number of ignored
sensitivity matrices growing. )e relation between the error
and the number of the ignored sensitivity matrices should be
further studied. If the number of divided substructures is
excessive and the Gauss elimination method suffers diffi-
culty, the Jacobi iteration can be adopted.

Appendix

A. Explicit Interface Force IdentificationMethod

)e displacement, velocity and acceleration of the sub-
structure at time ti+1 can be obtained from Equations (A.1)
to (A.3) similar to a full structure [27] as

xsub( 􏼁i+1 � A0Lsub Psub( 􏼁i+1 + Ad xsub( 􏼁i + Av _xsub( 􏼁i + Aa €xsub( 􏼁i, (A.1)

_xsub( 􏼁i+1 � B0Lsub Psub( 􏼁i+1 + Bd xsub( 􏼁i + Bv _xsub( 􏼁i + Ba €xsub( 􏼁i, (A.2)

€xsub( 􏼁i+1 � C0Lsub Psub( 􏼁i+1 + Cd xsub( 􏼁i + Cv _xsub( 􏼁i + Ca €xsub( 􏼁i, (A.3)

where
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Combining (A.1) to (A.3), we have the displacement,
velocity, and acceleration at (i + 1)th time instant as function
of the responses at the ith time instant as
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Equation (A.5) is formulated from the standard New-
mark-β method for the forward dynamic analysis of a
substructure. It can be further rewritten into a general re-
cursive relation as
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and the response at time ti can be written as
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where both indices i and j denote a power of the corre-
sponding matrices.

)e measurement matrix ysub represents the output of
the structural system and it can be assembled from the
measurements with

ysub � Ra €xsub + Rv _xsub + Rdxsub, (A.8)

where Ra, Rv and Rd ∈ Rns×N are the output influence
matrices for the measured acceleration, velocity and dis-
placement respectively, ns is the number of the measured

responses and N is the number of DOFs of the selected
substructure.

Vector ysub can be rewritten as

ysub � Rd Rv Ra􏼂 􏼃

xsub

_xsub

€xsub

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (A.9)

Let R � Rd Rv Ra􏼂 􏼃 and substituting Equations (A.7)
and (A.9) can be rewritten into the following discrete
equation as

ysub ti( 􏼁 � 􏽘
i−1

j�0
R

Ad Av Aa

Bd Bv Ba

Cd Cv Ca

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

j
A0

B0

C0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Lsub Psub( 􏼁i−j + R

Ad Av Aa

Bd Bv Ba

Cd Cv Ca

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

i
xsub( 􏼁0

_xsub( 􏼁0

€xsub( 􏼁0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (A.10)

Assuming zero initial response of the structure and let,
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Hk � R

Ad Av Aa

Bd Bv Ba

Cd Cv Ca

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

k
A0

B0

C0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (A.11)

Equation (A.10) can be rewritten into a matrix convo-
lution relation from t1 to tnt time instants as

Ysub � Hsub( 􏼁LPsub, (A.12)

where

Ysub �

ysub t1( 􏼁

ysub t2( 􏼁

⋮

ysub tnt( 􏼁

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

Hsub( 􏼁L �

H0Lsub 0 · · · 0

H1Lsub H0Lsub · · · 0

⋮ ⋮ ⋱ ⋮

Hnt−1Lsub Hnt−2Lsub · · · H0Lsub

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Psub �

Psub t1( 􏼁

Psub t2( 􏼁

⋮

Psub tnt( 􏼁

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

(A.13)

)e inverse problem in Equation (A.12) is ill-posed, and
the interface forces are therefore identified through the

Tikhonov regularization technique by minimizing the fol-
lowing objective function.

J Psub, λ( 􏼁 � Hsub( 􏼁LPsub − Ysub
����

����
2

+ λ Psub
����

����
2
, (A.14)

where λ is the regularization parameter obtained using the L-
curve method.

B. SubstructuralDamage IdentificationMethod

)e equation of motion of a damped linear structure with
multiple DOFs can be written as

M €x + C _x + Kx � LP(t), (B.1)

where M, C and K are the mass, damping and stiffness
matrices of the structural system, respectively. P(t) is the
vector of external forces on the structure and L is the
mapping matrix for the external forces. €x, _x and x are the
vectors of acceleration, velocity and displacement responses,
respectively. )e structure is assumed to exhibit Rayleigh
damping for discussion as

C � a1M + a2K, (B.2)

where a1 and a2 are the damping coefficients.
A structure can be divided into several substructures and

a target substructure can be selected for the assessment.
Based on the sub-division of a structure as shown in Fig-
ure 12, Equation (B.1) can be rewritten as

Mrr Mri 0

Mir Mii Mis

0 Msi Mss

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ €xr €xi €xs􏼈 􏼉 +

Crr Cri 0

Cir Cii Cis

0 Csi Css

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

_xr

_xi

_xs

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
+

Krr Kri 0

Kir Kii Kis

0 Ksi Kss

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

xr

xi

xs

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
�

LrPr

LiPi

LsPs

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
, (B.3)

where the subscripts r, i and s denote the DOFs of the target
substructure, the interface DOFs between the substructures
and the DOFs of the rest substructure.

)e following equation on DOFs r and i of the structure
can be extracted from (B.3) as

Mrr Mri

Mir Mii

􏼢 􏼣 €xr €xi􏼈 􏼉 +
Crr Cri

Cir Cii

􏼢 􏼣
_xr

_xi

􏼨 􏼩 +
Krr Kri

Kir Kii

􏼢 􏼣
xr

xi

􏼨 􏼩 �
LrPr

LiPi + Ps
′

􏼨 􏼩, (B.4)

where Ps
′ � −Mis €xs − Cis _xs − Kisxs is the set of interface

forces. )e presence of other parts of the structure is rep-
resented by the interfacing forces acting on the target
substructure. Accurate knowledge of these forces is therefore
a requirement for a successful assessment.

)e target substructure is selected for study as an in-
dividual structure, and the interface forces can be considered
as a set of external forces acting on the target substructure.
)e subscript ‘sub’ is adopted to represent the substructure.
Let,
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Msub �
Mrr Mri

Mir Mii

􏼢 􏼣,

Csub �
Crr Cri

Cir Cii

􏼢 􏼣,

Ksub �
Krr Kri

Kir Kii

􏼢 􏼣,

€xsub � €xr €xi􏼈 􏼉,

_xsub �
_xr

_xi

􏼨 􏼩,

xsub �
xr

xi

􏼨 􏼩,

Lsub �
Lr 0

0 I
􏼢 􏼣,

Psub �
Pr

Ps
′

􏼨 􏼩,

(B.5)

then the equation of motion of the substructure in Equation
(B.4) can be written as

Msub €xsub + Csub _xsub + Ksubxsub � LsubPsub. (B.6)

Since matrices Msub, Csub and Ksub are positive semi-
definite similar to the mass, damping and stiffness matrices
of the whole structure, the substructural force identification
can also be performed similar to that for a full structure, and
the external forces identification method is listed in
AppendixA.

Assuming the local damage extent of themth element in
the target substructure as αm, the change of the stiffness
matrix can be described as

ΔKsub � 􏽘
m

αm Ksub( 􏼁m, (B.7)

where (Ksub)m is the stiffness matrix of the mth element in
the target substructure. Performing differentiation to both
sides of Equation (B.6) with respect to the parameter αm, we
have

Msub
z €xsub

zαm

+ Csub

z _xsub

zαm

+ Ksub
zxsub

zαm

� −
zKsub

zαm

xsub − a1
zKsub

zαm

_xsub + Lsub
zPsub

zαm

. (B.8)

Equation (B.8) is of the same form as similar equations
for the response sensitivity of a full structure [8] except one
extra term (the third term) on the right-hand side. When
only the first two terms on the right are included, the ob-
tained response sensitivity is for the substructure with an
non-varying interface force. Equation (B.8) is solved again
by keeping the third term on the right to get the response
sensitivity derived from the interface force sensitivity alone.
)e response sensitivity derived from the interface force
sensitivity is noted to be significant [26] and it cannot be
ignored in the calculation of the response sensitivity of the
substructure.

Vector yαm
sub represents the response sensitivity vector of

the substructural system and similar to Equation (A.8) it can
be assembled as

y
αm
sub � Ra

z €xsub

zαm

+ Rv

z _xsub

zαm

+ Rd

zxsub

zαm

. (B.9)

Let,

L
αm
sub � −

zKsub

zαm

−a1
zKsub

zαm

0􏼢 􏼣. (B.10)

Combining Equations (B.8) and (B.9) and assuming zero
initial conditions, similar to Equations (A.1) to (A.10) the
following solution of the sensitivity can be obtained.

y
αm
sub ti( 􏼁 � 􏽘

i− 1

j�0
R

Ad Av Aa

Bd Bv Ba

Cd Cv Ca

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

j
A0

B0

C0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

L
αm
sub

xsub

_xsub

€xsub

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭
i−j

+ Lsub
zPsub

zαm

􏼠 􏼡
i−j

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (B.11)

Based on Equation (A.12), the sensitivity of the interface
force can be defined as

zPsub

zαm

� Hsub( 􏼁L􏼂 􏼃
− 1z Hsub( 􏼁L

zαm

Hsub( 􏼁L􏼂 􏼃
− 1

Ysub, (B.12)

and identified based on the explicit Newmark- β method [27],

xsub

_xsub

€xsub

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
i

� 􏽘
i−1

j�0

Ad Av Aa

Bd Bv Ba

Cd Cv Ca

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

j
A0

B0

C0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Lsub Psub( 􏼁i−j.

(B.13)

Similar to Equations (A.12) and (A.13), let
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w
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Ad Av Aa

Bd Bv Ba

Cd Cv Ca

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

k
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C0
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

H
w
sub( 􏼁L �

H
w
0 Lsub 0 · · · 0

H
w
1 Lsub H

w
0 Lsub · · · 0

⋮ ⋮ ⋱ ⋮

H
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nt−1Lsub H

w
nt−2Lsub · · · H

w
0 Lsub
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,

H
αm
sub( 􏼁L �

H0L
αm
sub 0 · · · 0

H1L
αm
sub H0L

αm
sub · · · 0

⋮ ⋮ ⋱ ⋮

Hnt−1L
αm
sub Hnt−2L

αm
sub · · · H0L

αm
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(B.14)

)e response sensitivity considering the interface force
effect can be obtained as,

Y
αm
sub � H

αm
sub( 􏼁L H

w
sub( 􏼁L +

z Hsub( 􏼁L

zαm

􏼠 􏼡 Hsub( 􏼁L􏼂 􏼃
− 1

Ysub,

(B.15)

and the sensitivity matrix Ssub for the substructure with NE
elements can be defined as

Ssub � Y
α1
sub Y

α2
sub · · · Y

αNE
sub􏽨 􏽩. (B.16)
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&e acoustic signal generated by mechanical motion contains the information of its motion state, but when the signal-to-noise
ratio (SNR) is low, the accuracy of real-timemonitoring mechanical motion state by the acoustic signal is low.&is study proposes
an adaptive noise reduction method based on the dislocation superposition method (DSM), which can realize the adaptive noise
reduction and the extraction of fault a component from the automobile engine abnormal noise signal of low SNR. Firstly, the
wavelet coefficients of engine abnormal noise signal are obtained by continuous wavelet transform (CWT), and the fault feature
points of the abnormal noise signal in each period are extracted by setting hard threshold function, window function, and feature
points extraction algorithm. &en, the signal segments containing fault components are obtained by using the position of feature
points to extend the length of the fault component forward and backward, respectively, and Pearson’s correlation is calculated by
traversal to determine the starting superposition point of each signal segment containing fault components. Finally, the signal
segments of the odd group and even group are selected for superposition calculation. When the superposition stop condition is
not satisfied, the number of superpositions increased until the stop condition is satisfied, and the superposition signal can be used
as a fault component.&e experimental results show that, compared with the improved DSM, this method has a good effect on the
noise reduction and extraction of fault components of automobile engine cylinder knocking fault, and the effectiveness of this
method is verified. &is method is used to reduce the noise and extract the fault components of automobile engine cylinder
missing fault and knock fault, and good results are obtained.

1. Introduction

At present, cars play an important role in human life and are
a necessary condition for human travel. &e engine is an
important part of the automobile, and its structure is
complex [1]. In the working process of the engine, due to
wear, fatigue, aging, and other factors, the engine failure may
cause serious economic losses and even casualties [2, 3].
When the engine failure produces an abnormal noise signal,
the higher SNR of the abnormal noise signal will make
engine fault diagnosis easier and more accurate, so it is
necessary to improve the SNR of the engine abnormal noise
signal [4].

&e traditional noise reduction methods mainly include
Wiener filtering, spectral subtraction, and minimum mean
square deviation, but the effectiveness of noise reduction for
the nonstationary signal and short-term transient signal is
significantly reduced [5, 6]. &e commonly used noise re-
duction methods mainly include wavelet transform (WT)
[7], empirical mode decomposition (EMD) [8], local mean
decomposition (LMD) [9], DSM [10], etc.

As a widely used signal processing tool, WT has strong
multiresolution analysis ability in the time domain and
frequency domain. &e wavelet denoising generally uses
setting the wavelet coefficient threshold to eliminate the
noise information and then uses the inverse WT to
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reconstruct the signal from the threshold wavelet coefficient
[11]. Li [12] used the wavelet decomposition and recon-
struction algorithm to decompose and reduce noise and
reconstruct and analyze the spectrum of bearing vibration
signal. Experiment shows that the wavelet noise reduction
method is very suitable for fault frequency detection of weak
vibration signal of the rolling bearing in low SNR cases.
Moshrefi et al. [13] usedWTand adaptive filtering to denoise
the knock signal of the internal combustion engine. &is
method is applied to real knock signal, which showed su-
periority compare to previous works and led to a 13.2%
improvement in detection accuracy. Kai et al. [14] proposed
a wavelet denoising method based on improved threshold
function by studying soft threshold function and hard
threshold function. By this method, the feature of fault signal
is highlighted and the fault diagnosis effect was improved.
Wen and You [15] used the wavelet decomposition and
reconstruction algorithm to denoise the fault signal of high-
speed rolling bearing, and the experimental data showed that
most of the noise has been filtered out compared with the
original data. Although wavelet denoising has good pro-
cessing ability for nonstationary signals, the selection of
wavelet basis function is very difficult. Different wavelet
basis functions have different denoising effects. To solve this
problem, Huang et al. [16] proposed the EMD, which can
efficiently decompose nonlinear and nonstationary signals
without any set of basis functions. Sun et al. [17] used the
wavelet threshold noise reduction algorithm based on EMD
to solve the problem of complex centrifugal pump vibration
signals. &e experimental results show that the wavelet soft
threshold denoising algorithm based on EMD decomposi-
tion has a better noise reduction effect when the centrifugal
pump vibration signal is used as the noise reduction object.
Ren and Liu [18] proposed an adaptive reduction noise and
feature extraction algorithm based on improved EMD and
verified the effectiveness and feasibility of the method by
simulation signals and examples. Although EMD has been
successfully applied in the field of signal noise reduction, it
also has its limitations, such as the frequent occurrence of
modal mixing. In view of the shortcomings of EMD,Wu and
Huang [19] proposed ensemble empirical mode decompo-
sition (EEMD) in 2009. EEMD adds finite amplitude Gauss
white noise to the signal, and then the signal with the white
noise is decomposed as a whole, to effectively suppress the
mode mixing of EMD. However, this method can only
reduce modal mixing to some extent.

In recent years, scholars have also proposed some other
signal noise reduction methods. Gao et al. [20] proposed a
new method based on LMD and wavelet denoising to an-
alyze the signals of bearing outer ring, inner ring, and ball.
However, LMD has the phenomenon of modal mixing,
which reduces the accuracy of signal decomposition and
affects the accuracy of the noise reduction signal. Dayong
et al. [21] proposed DSM based on random decrement
technique in 2015. Compared with other methods, DSM
only calculates in time domain. In the superposition process,
the method does not destroy the correlation components in
the mixed signal and effectively avoids the modal mixing. In
2019, Dayong et al. [10] used improved DSM to

automatically extract engine fault components. Although the
improved DSM can automatically extract the fault com-
ponents of the automotive engine quasiperiodic signal, this
method needs to use the pulse number of the encoder to
determine the starting superposition point of each quasi-
periodic fault signal. In practical applications, automobile
engines are not suitable for installing encoders, and encoders
are prone to failure when subjected to severe impact, so the
improved DSM is limited in some practical applications.

To overcome the above problems, this paper proposes an
adaptive noise reduction and extraction method of engine
abnormal noise signal fault components based on improved
DSM. &e essence of this method is the superposition cal-
culation in the time domain, which avoids the modal mixing
and can better deal with the acoustic signal with low SNR.
&e method can adaptively select the starting superposition
points, superposition length, and superposition number. By
changing the superposition number, the noise reduction
degree of fault components can be changed. Compared with
the improved DSM, it not only reduces the use of encoders
and improves the practicability of DSM but also makes it
more convenient to extract fault components.

2. DSM Review

&e mathematical expression of the traditional DSM is as
follows:

􏽢S(n) �
1

K + 1
􏽘

K

K�0
S(n + KL), (1)

where S (n) is the original signal, Ŝ (n) is the signal processed
by DSM (named superposition signal), K is the number of
superpositions (K� 0, 1, 2, . . .), and L is the superposition
step length (the period of the signal to be processed).
Figure 1 shows the graphical description of DSM processing
results.

In Figure 1, S is the target signal; N is the interference
signal; SN is a mixed signal of S and N; SN1, SN2, and SN3 are
superposition signals obtained by superposition of 5, 15, and
20 times, respectively, using equation (1); &e superposition
step length L is the period of signal S. Compared with signal
SN, the component proportion of target signal in signals
SN1, SN2, and SN3 increases with the increase of superpo-
sition times. On the contrary, the proportion of interference
signal decreases with the increase of superposition times
[22]. Generally, Pearson’s correlation coefficient is used to
compare the similarity between the target and the super-
imposed signals to test the DSM processing effect [10].

3. Adaptive Noise Reduction and Extraction
Method of Engine Abnormal Noise
Fault Component

3.1. Influence Factors of DSM. Due to the system error of the
engine, the actual speed of the engine is slightly changed,
which causes the acoustic signal of the engine to be a
quasiperiodic signal. Figure 2 shows the schematic of the
quasi-periodic signal.
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When the engine has an abnormal noise impact
failure, the fault signal is quasi-periodic, resulting in
different superposition step lengths. In the dislocation
superposition, it may cause the phase deviation of the
impact fault component and even lead to the destruction
of the fault component. According to the characteristics of
impact failure, it is artificially divided into the “intense
change region” and the “stable region,” as shown in
Figure 3. When the engine impact fault acoustic signal is
noise reduction by DSM, due to the less fault energy and
information contained in the stable region, to improve the
computational efficiency, the intense change region
containing more energy and information is separated as
the impact fault component [10, 23]. &e noise reduction
degree of the fault component also depends on the
number of superpositions. &eoretically, the more the
number of superpositions is, the better the noise reduc-
tion effect is. However, the more the number of super-
positions is, the longer the consumed time is. When the
number of superpositions reaches a certain amount, the
noise reduction effect shows a stable trend. &erefore, the
adaptive noise reduction process of engine impact fault
acoustic signal is a process of automatically finding the
starting superposition points of impact fault acoustic

components, the length of the intense change region, and
the number of superpositions.

3.2. Adaptive Noise Reduction and Extraction Method Based
on Improved DSM and CWT. Based on CWTand improved
DSM, an adaptive noise reduction method for automobile
engine fault acoustic signal is proposed. Figure 4 shows the
flowchart of the method. &e details are as follows.

3.2.1. Extraction of Feature Point Location of Each Period
Impact Fault Component. &e “intense change region” has
the characteristics of transient, periodic, and large energy
which is not easily submerged by background noise [23].&e
mother wavelet which is similar to the waveform of the
impact fault component is selected for CWT to obtain
wavelet coefficients, and the wavelet coefficients are hard
thresholding processes. Finally, the window function and
feature points extraction algorithm are used to extract the

0 500 1000 1500 2000 2500 3000
Sampling point

-10

0

10
A

m
pl

itu
de

-10

0

10

A
m

pl
itu

de

0 500 1000 1500 2000 2500 3000
Sampling point

-10

0

10

A
m

pl
itu

de

-5
0
5

A
m

pl
itu

de

-5
0
5

A
m

pl
itu

de

-10

0

10

A
m

pl
itu

de

S N

0 500 1000 1500 2000 2500 3000
Sampling point

0 500 1000 1500 2000 2500 3000
Sampling point

SN SN1

0 500 1000 1500 2000 2500 3000
Sampling point

0 500 1000 1500 2000 2500 3000
Sampling point

SN2 SN3

Figure 1: DiagramofDSM. S is the target signal; N is the interference signal; SN is amixed signal of S andN; SN1, SN2, and SN3 are the superposition
signals obtained by superposition of 5, 15, and 20 times, respectively, using equation (1). &e superposition step length L is the period of signal S.
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feature points location of the impact fault component by
using the threshold wavelet coefficient. &e specific steps are
as follows:

(1) Load the original fault signal S (n), and select the
mother wavelet similar to the intense change region
of the fault signal to perform CWTon the signal S (n)
to obtain the wavelet coefficients WTS.

(2) Eliminate the smaller wavelet coefficients containing
interference components in the fault signal through
the hard threshold function and retain the larger
wavelet coefficients containing the impact fault
components. &e mathematical model of the hard
threshold function is

ηH WTS, λ( 􏼁 �
WTS, WTS( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≥ λ,

0, WTS( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< λ,

⎧⎨

⎩ (2)

where ηH (WTS, λ) is the processed wavelet coeffi-
cient by hard threshold function, denoted as ηH; WTS
are wavelet coefficients; and λ is the size of the set
hard threshold.

(3) Extract the feature point location of each period fault
component.

Two diagonally paired time-frequency points (t1, f 1), (t2,
f 2) are selected to form a rectangular window R, and a time-
frequency block is selected from the frame of the thresh-
olding wavelet time-frequency diagram by using the rect-
angular window R, which is denoted as ηH (a0, b0), where
t1< t2, f 1< f 2, a0 = t1, t1 + 1/f s, . . ., t2, b0 = f 1, f 1 + f s/2a, . . .,
f 2, f s is the sampling frequency, and a is the scale factor of
CWT. &e maximum point of |ηH| in time-frequency block
ηH (a0, b0) is taken, which is denoted as C0 (t

spe
0 , f

spe
0 ). Keep

the frequency [f 1, f 1 + f s/2a, . . ., f 2] unchanged, make the

Load abnormal noise signal S (n)

Initial parameters λ, R, σ, s, K, τj

PerformCWT on S (n) to get WTS, and
set a hard threshold λ for WTs to get ηH

Use rectangular window R to process ηH to obtain point Ci,
and processpoint Ci through condition 1 and condition 2

to obtain feature point Qj of the fault component

Use the fault component length σ and feature points Qj to get Wj
range (nj)

Select Ws
range (ns) as the reference signal

Extend Wj
range (nj) to get Wj

erange (nj)

Intercept Wj
fra (nj) from Wj

erange (nj), traverse and calculate the correlation
between Ws

range (ns) and Wj
fra (nj + τj) to get the optimal offset τj

opt

Select number 2K of Wj
fra (nj + τj

opt), and divide Wj
fra (nj + τj

opt) into odd group
and even group to perform superposition operations to obtain DW1K and DW2K

opt opt

Calculate ρ (DW1K, DW2K)opt opt

ρ (DW1K, DW2K) ≥ M?opt opt

DW1K and DW2K are the fault components after noise reductionopt opt

No

Yes

K = K + 1

Figure 4: &e flowchart of the adaptive noise reduction method of automobile engine acoustic signal based on improved DSM and CWT.
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rectangular window Rmove one time every t2 along the time
axis direction, and constantly frame time-frequency block
ηH (ai, bi) one after another, and the maximum point of |ηH|
in the time-frequency block ηH (ai, bi) is denoted as Ci (t

spe
i ,

f
spe
i ). Ifthe selected signal length is not an integer multiple of

the rectangular windowlength, the maximum value of i is

i �
ntot

fs · t2 − t1( 􏼁
􏼢 􏼣, (3)

where [·] is rounding function and ntot is the total number of
sampling points of the signal S (n).

Let the wavelet coefficient corresponding to the point Ci

(tspei , f
spe
i ) be ηHCi

, and two condition algorithms are set for
ηHCi

to extract feature points. Condition 1: if ηHCi
� 0,

|ηHCi+1
|> 0, ηHCi+2

� 0, then Ci+1 (tspei+1, f
spe
i+1) is called the

feature point of the impact fault component. Condition 2: if
ηHCi

� 0, |ηHCi+1
|> 0, |ηHCi+2

|> 0, . . ., |ηHCi+n
|> 0, |ηHCi+n+1

|� 0.
Take the point C corresponding to max {|ηHCi+1

|, |ηHCi+2
|, . . .,

|ηHCi+n
|} as the feature point of the impact fault component.

Finally, all the feature points of the impact fault components
are assigned to Qj (tjj, f jj), so the point set of each of the
periodic feature points of the impact fault component is [Q1,
Q2, . . ., Qj]. Using each periodic feature point of the fault
signal to estimate the period of the fault acoustic signal, the
period of the fault signal is approximately T1 � t22 − t11,
T2 � t33 − t22, . . ., Tj−1 � tjj − t(jj−1) (jj−1).

3.2.2. Extraction of Impact Fault Component by Super-
imposing Noise Reduction. Since the feature point of the
impact fault component is determined by the intense change
region of the impact fault signal, the feature point of the
impact fault component is located in a certain location of the
intense change region of the impact fault signal. According
to the feature pointQj (tjj, f jj) of the impact fault component,
the sampling point corresponding to the feature point is

njj � tjj · fs, (4)

where njj is the number of sampling points corresponding to
the fault feature point, tjj is the time of the feature point of
the impact fault component, and f s is the sampling
frequency.

&e range of the impact fault component of each period
is as follows: (σ −1) sampling points are extended forward
and backward from the njjth sampling point, and the signal
segment is denoted as W

range
i (nj), so W

range
i (nj) includes

fault components. nj ∈ [njj − σ + 1, njj+ σ − 1]; σ is the length
of the intense change region. Due to the interference of
background noise, the feature point location of per period is
different in the intense change region. &erefore, the intense
change regions in W

range
i (nj) may have location offset of

different degrees in different periods. As shown in Figure 5,
there is offset τ of different degrees in the intense change

regions of different periodic W
range
i (nj), which will affect the

dislocation superposition effect and lead to inaccurate su-
perposition results.

To solve the problem of the offset of the intense change
region, the specific method is as follows.

A segment of W
range
i (nj) containing the fault component

is taken as the reference signal, denoted as W
range
s (ns).

W
range
i (nj) is extended forward and backward by b sampling

points, respectively, to obtain the extended signal segment
W

erange
i (nj), nj ∈ [njj − σ + 1− b, njj+ σ − 1 + b]. &e contin-

uous intercept length of (2σ −1) sampling points from the
first sampling point in W

erange
i (nj) is denoted as Wfra

i (nj).
Set τj to the offset of Wfra

i (nj) on W
erange
i (nj), and record the

offset signal of Wfra
i (nj) as Wfra

i (nj+ τj), as shown in
Figure 6. &e subset of τj is denoted as L, and L is set to
{0: σ −1 + b}. Find the optimal offset τoptj of the offset τj in
Wfra

j (nj+ τj); that is, also find the optimal starting super-
position point, where the superposition length is (2σ −1)
sampling points.

Traverse all the τj values in L, and calculate Pearson’s
correlation coefficient ρsj (W

range
s (ns), Wfra

i (nj+ τj)) of the
reference signal segments W

range
s (ns) and Wfra

i (nj+ τj), re-
spectively; the offset corresponding to themaximum value of
ρsj (W

range
s (ns), Wfra

i (nj+ τj)) is the optimal offset τopti . &e
equation of the proposed method is as follows:

τopt1 , τopt2 , ..., τoptj􏼐 􏼑 � argmax
τj∈L,j�1,2,3,...

ρsj W
range
s ns( 􏼁, W

erange
j nj + τj􏼐 􏼑􏼐 􏼑􏽨 􏽩,

(5)

where τoptj is the best offset; argmax [·] is arguments of the
maxima; W

range
s (ns) is the reference signal segment;

Wfra
i (nj+ τj) is the offset signal segment; and ρsj (W

range
s (ns),

Wfra
i (nj+ τj)) is to calculate the correlation between

W
range
s (ns) and Wfra

i (nj+ τj).
2K consecutive signals Wfra

i (nj+ τ
opt
i ) are selected, which

are divided into two groups according to the parity of the
sequence number j, and each group is superimposed with
different times according to the sequence number from low
to high. &e equation of the proposed method is as follows:

A
m

pl
itu

de

Sampling point

τj τj+1

Figure 5: &e offset τ of the intense change region in different
periods W

range
i (nj).
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D
opt
W1K �

1
K + 1

W
fra
1 n1 + τopt1􏼐 􏼑 + W

fra
3 n3 + τoptj+3􏼐 􏼑 + · · · + W

fra
2k−1 n2k−1 + τopt2k−1􏼐 􏼑􏽨 􏽩,

D
opt
W2K �

1
K + 1

W
fra
2 n2 + τopt2􏼐 􏼑 + W

fra
4 n4 + τopt4􏼐 􏼑 + · · · + W

fra
2k n2k + τopt2k􏼐 􏼑􏽨 􏽩,

ρopt(K) � ρ D
opt
W1K, D

opt
W2K􏼐 􏼑,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where D
opt
W1K is the signal after the superposition of the odd

group; D
opt
W2K is the signal after the superposition of the even

group; K is the number of superpositions; Wfra
2K−1

(n2K−1 + τ
opt
2K−1) is the signal segment of the odd group with

fault components; Wfra
2K (n2K+ τopt2K ) is the signal segment of

the even group containing the fault component; ρopt (K) is
the correlation between the signal after the superposition of
the odd group and the signal after the superposition of the
even group.

Set the thresholdM, when ρopt (K)≥M, stop the iteration
and output the superposition results.

3.2.3. Parameters Setting

(1) Hard :reshold λ Setting. &e hard threshold λ is mainly
to remove the smaller wavelet coefficients that only contain
background noise and retains the larger wavelet coefficients
that contain fault components. When the value of λ is too
small, the smaller wavelet coefficients generated by back-
ground noise may be incompletely removed, resulting in
unobvious fault periodicity. When the value of λ is ap-
propriate, the smaller wavelet coefficients are completely
removed, only the larger wavelet coefficients containing fault
components are retained, and the fault periodicity is ob-
vious. When the value of λ is too large, not only the smaller
wavelet coefficients are completely removed, but also part of
the larger wavelet coefficients containing fault components
will be removed, resulting in a jump in the period of the fault
signal. However, the location of the fault component can be
found without affecting the superimposing effect. &erefore,
the hard threshold λ should be as large as possible.

(2) Rectangular Window R Setting. &e rectangular window
R is composed of two diagonally paired time-frequency
points (t1, f 1), (t2, f 2); then, the length of the rectangular

window R is l, l� t2 − t1 and the width w � f 2 − f 1. Consid-
ering the frequency distribution of the impact fault signal
and the length σ of the impact fault component, the time of
the intense change region is

tσ �
σ
fs

. (7)

&e rectangular window starts from t� 0 s, so t1 � 0 s.
According to the characteristic frequency of the impact fault
signal, which is generally distributed in the middle and low
frequency, f 1 can be set between 0Hz and 500Hz, and
f 2≤ 5000Hz. If t2 is too large, it will cause the rectangular
window to select multiple fault signal periods, which is not
conducive to extracting the fault signal period. If t2 is too
small, it will increase the amount of calculation. &erefore,
the general value range of l is 2tσ ≤ l≤ 4tσ, which corresponds
to 2σ to 4σ sampling points.

(3):e Length of the Intense Change Region σ. &e length σ of
the intense change region is generally the length of the high-
amplitude zone of artificially selected fault component. Liter-
ature [10] puts forward the general empirical formula of σ as

σ �
fs

44100
× 300, (8)

where f s is the sampling frequency of the acoustic signal.

(4) Parameter b Setting. According to the offset of the feature
point in the fault component, b� σ − 1 sampling points are
selected to minimize the calculation amount finding the
optimal offset τoptj more accurately and finding the optimal
starting point.

(5) :reshold M Setting. With the increase of superposition
number K, the correlation coefficient ρ will not always
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Figure 6: Wfra
i (nj+ τj) signal segment schematic diagram. &e part selected by the blue frame is Wfra

i (nj), and the part selected by the red
frame is Wfra

i (nj+ τj).
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increase. When ρ generally increases to 0.9, it will tend to be
stable, and there is an unobvious increase trend [10]. To
achieve a better noise reduction effect for the fault com-
ponent, M should be set to a value between 0.75 and 0.85,
where M= 0.80.

4. Experiment Condition

Figure 7 is the physical diagram of the automobile engine
fault detection test bench, which consists of an automobile
engine, sound sensor, data acquisition card, encoder, and
computer. &e engine model is EA211 with the detailed
parameters shown in Table 1. &e sound sensor with the
frequency range of 20Hz to 20 kHz is placed above the
cylinder to receive the abnormal sound signal generated by
the engine. &e data acquisition card uses the USB-6341
produced by National Instruments Company. When col-
lecting the sound signal, the sampling frequency is set to
44100Hz. &e encoder model is ZSP3806GC, and the res-
olution is 100P/R. &e encoder can synchronously revolve
with the crankshaft by fixing it on the front end of the
crankshaft through a coupling.

5. Collection and Processing of
Experimental Data

5.1. Fault Component Extraction of Engine Knocking
Cylinder. Figure 8(a) shows the knocking cylinder abnor-
mal noise signal and encoder pulse signal collected under the
condition of engine running at 1800 r/min, Figure 8(b) uses
db5 wavelet as the mother wavelet to perform CWT on the
knocking cylinder abnormal noise signal to obtain the
wavelet time-frequency diagram. &e two diagonally paired
time-frequency points of the rectangular window R are (0,
0), (0.0227, 4000), respectively. &e hard threshold of the
wavelet coefficient is λ� 0.94, and the length of the intense
change region is calculated by equation (8) to obtain σ � 300,
b� 299. &e subset L of offset τj is set to {0 : 598}.

Table 2 is the sampling point corresponding to the
fault feature point njj of each periodic obtained by data
processing using the above method. Table 3 shows the
number of sampling points for each period of impact
fault signal calculated by using the feature points of each
periodic failure component. It can be seen from Table 3
that the number of sampling points in the 6th–8th periods
is 8708, which is quite different from the number of
sampling points in other periods. &is is due to the
excessive setting of the hard threshold λ, which leads to
the zeroing of the wavelet coefficients corresponding to
the feature points of the fault signal components in the
7th and 8th periods after the hard threshold processing, so
the number of sampling points in the 6th, 7th, and 8th
periods cannot be obtained, but it does not affect the
superposition effect.

Selecting s� 1, 299 sampling points are extended forward
and backward from the first feature point 3530 of the fault
component to obtain the reference signal segment W

range
1

(n1), as shown in Figure 9. Table 4 shows the optimal offset

τoptj of each Wfra
j (nj+ τj) by equation (5), and Wfra

j (nj+ τ
opt
j )

is obtained according to τoptj . &e continuous 2K signal
segments Wfra

j (nj+ τ
opt
j ) including fault components are

selected and divided into two groups according to the parity
of the sequence number j for superposition operation, and
the correlation coefficient ρopt (K) of the parity group is
calculated. Figure 10 shows the variation curve of ρopt (K)
and the number of superpositions.

WhenK� 14, ρopt (14)� 0.8030, which is greater than the
threshold M, stopping superimposing. Figure 11 shows the
fault component signals D

opt
W114 and D

opt
W214 after noise

reduction.
Figure 12 shows the time-domain diagram of the odd

group and even group superimposed signals obtained by
superimposing 10 times using the improved DSM. &e
optimal starting point of superposition is the sampling point
of the acoustic signal corresponding to the 28th pulse of each
cycle encoder signal. &e superposition length is set to 600
sampling points, the odd group and even group are
superimposed 10 times to obtain D

opt
W110 and D

opt
W210, and the

correlation reaches 0.8020.
According to Figures 11 and 12, the length σ � 150 of

fault component is accurately extracted. Figure 13 shows the
fault components W1, W2, W3, andW4 extracted from
D

opt
W114, D

opt
W214, D

opt
W110, and D

opt
W210, respectively. &e corre-

lation between W1 and W3 is 0.9029, and the correlation
between W2 and W4 is 0.9290, which further verifies that the
fault component noise reduction method achieves the same
effect compared with the improved DSM.

5.2. Fault Component Extraction of Engine Lacking Cylinder.
Figure 14 shows the physical picture of the first cylinder
lacking of the automobile engine by pulling out the cylinder
line of the first cylinder. Figure 15 shows that the engine
produces abnormal noise signal for the first cylinder lacking.
&e db5 wavelet is selected as the mother wavelet to perform
CWT on the abnormal noise signal of the lack of cylinder.
&e time-frequency points of the two diagonally paired of
the rectangular window R are set as (0, 500), (0.0227, 4000),
respectively. &e hard threshold of the wavelet coefficient
λ= 1, σ = 300, b= 299, and the subset L of the offset τj is set as
{0 : 598}.

14 15.
Table 5 shows the sampling points corresponding to

the feature points of each period of fault component
obtained by the above method. Selecting s � 1, the ref-
erence signal W

range
1 (n1) is obtained by extending 299

sampling points forward and backward from the 1794th

sampling point, as shown in Figure 16. Table 6 shows the
optimal offset τoptj of each Wfra

j (nj + τj) signal by equation
(5), and Wfra

j (nj + τoptj ) is obtained according to τoptj .
Figure 17 shows the variation curve of the correlation
coefficient ρopt (K) of the superposition signals of the odd
group and even group with the number of superpositions
K. When K � 6, ρopt (6) � 0.8048, which is greater than the
threshold M and stopping superimposition, D

opt
W16 and

D
opt
W26 of the fault component after noise reduction are got,

as shown in Figure 18.
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Figure 7: Automobile engine fault detection test bench. (1) Engine; (2) coupling; (3) sound sensor; (4) encoder; (5) data acquisition card;
(6) computer.

Table 1: Engine parameters.
Engine type EA211
Cylinder 4
Displacement 1.6 L
Maximum power 66 kW
Maximum power revolution 5500 rpm
Maximum torque 132Nm
Maximum torque speed 3800 rpm
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Figure 8: (a) Knocking cylinder and encoder signal collected at 1800 r/min. (b) Wavelet time-frequency diagram.

Table 2: &e sampling point corresponding to the fault feature points of each period.
j 1 2 3 4 5 6 7 8 9 10 11 12
Sampling point (njj) 3530 6734 9623 12681 15538 18699 27407 30568 33465 36673 39590 42700
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Figure 10: &e variation curve of ρopt (K) with the increase of the superimposition number (K).
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Figure 9: Reference signal segment W
range
1 (n1).

Table 3: Error of cylinder knock fault signal period.
j 1 2 3 4 5 6–8 9 10 11 12
Number of sampling points of each period (nc) 3204 2889 3058 2857 3161 8708 3161 2897 3208 2917
Actual number of sampling points of each period (na) 3153 2953 3025 2846 3174 8680 3166 2917 3190 2944
Error (Δ) 50 −64 33 11 −13 28 −5 −20 18 −27

Table 4: &e optimal offset τoptj of Wfra
j (nj+ τj).

j 1 2 3 4 5 6 7 8 9 10 11 12
&e optimal offset (τoptj ) 299 312 348 336 310 347 348 301 337 301 313 300
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Figure 11: Odd and even groups superposition signals after 14-time superposition.
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Figure 12: &e superimposed signals of the odd group and even group after superimposing 10 times with the improved DSM.
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Figure 14: &e physical map of the first cylinder lacking of the car engine. (1) Automotive engine; (2) the first cylinder line.
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Figure 13: Fault components extracted accurately. W1, W2, W3, andW4 are fault components accurately extracted from D
opt
W114, D

opt
W214,

D
opt
W110, and D

opt
W210, respectively.
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Figure 15: Engine abnormal noise signal of the first cylinder lacking.

Table 5: &e sampling point corresponding to the fault feature points of each period.
j 1 2 3 4 5 6 7 8 9 10 11 12
Sampling point (njj) 1794 4204 6567 8885 11161 13606 16002 18301 20798 23331 25749 28247
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Sampling point
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Figure 16: Reference signal W
range
1 (n1).

Table 6: &e optimal offset τoptj of Wfra
j (nj+ τj).

j 1 2 3 4 5 6 7 8 9 10 11 12
&e optimal offset (τoptj ) 299 268 298 300 298 196 191 266 266 265 301 356
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5.3. Fault Component Extraction of Engine Knocking.
Figure 19 shows the engine knock signal due to the low
gasoline label. &e db5 wavelet is selected as the mother
wavelet to perform CWT on the knocking signal. &e time-
frequency points of the two diagonally paired of the rect-
angular window R are set as (0, 0), (0.0227, 4000), respectively.
&e hard threshold of the wavelet coefficient λ� 2.8, σ � 300,
b� 299, and the subset L of the offset τj is set as {0 : 598}.

Table 7 shows the sampling points corresponding to the
fault feature points. Due to the large value of hard threshold
λ of wavelet coefficient, the feature points of fault compo-
nents do not show periodic feature, but the interval of
sampling points between each two feature points is ap-
proximately 4000 times. Table 8 shows the optimal offset τoptj

of each Wfra
j (nj+ τj), and Wfra

j (nj+ τ
opt
j ) is obtained

according to τoptj . Figure 20 shows the variation curve of the
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Figure 17: &e variation curve of ρopt (K) with the increase of the superimposition number K.
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Figure 18: Odd group and even group superposition signals after 6-time superposition.
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Figure 19: Engine knocking signal.

Table 7: &e sampling point corresponding to the fault feature points of each period.
j 1 2 3 4 5 6 7 8 9 10 11 12
Sampling point (njj) 8617 21164 25307 29327 34003 45681 49581 53832 57872 61933 70294 78110

Table 8: &e optimal offset τoptj of Wfra
j (nj+ τj).

j 1 2 3 4 5 6 7 8 9 10 11 12
&e optimal offset (τoptj ) 299 228 17 389 167 244 442 236 234 234 447 232
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correlation coefficient ρopt (K) of the superposition signals of
the odd group and even group with the number of super-
positions K. When K� 6, ρopt (8)� 0.8091, which is greater
than the threshold M, and stopping superimposition, D

opt
W18

and D
opt
W28 of the fault components after noise reduction is

got, as shown in Figure 21.

6. Experimental Results Analysis

In order to further verify the effectiveness of this method, the
experimental results of this method and the improved DSM
are compared by using the knocking cylinder experiment of
automobile engine, and then the effectiveness of this method
is verified. In this method, odd group signals and even group
of engine knocking cylinder signals are superimposed 14
times, and the correlation between the noise reduction
signals D

opt
W114 and D

opt
W214 is 0.8030.&en, the noise reduction

processing and extraction of engine knocking cylinder
failure component are carried out by using the improved
DSM. When odd group signals and even group signals are
superposed 10 times, the correlation between the noise
reduction signals D

opt
W110 and D

opt
W210 is 0.8020. Finally, the

fault components W1, W2, W3, andW4 are accurately
extracted from noise reduction signals of D

opt
W114, D

opt
W214,

D
opt
W110, and D

opt
W210, where the correlation between W1 and

W3 is 0.9029, and the correlation between W2 and W4 is
0.9290.&e results show that this method can further replace
the use of encoders and achieve the same noise reduction
effect as the improved DSM.

In the engine cylinder lacking experiment, this method is
used to reduce the noise of fault components. &e

correlation between the noise reduction signal D
opt
W16 and

D
opt
W26 obtained by superposition of odd group signals and

even group signals for 6 times is 0.8048. In the engine knock
experiment, due to the relatively small setting of hard
threshold λ, some fault feature points are not selected ac-
curately, resulting in the correlation of superposition signals
of odd and even groups after superposition for 2 and 3 times
gradually decreasing, as shown in Figure 20. However, with
the gradual increase in the number of superpositions, the
correlation between D

opt
W18 and D

opt
W28 obtained by superpo-

sition of odd group and even group for 8 times is 0.8091.
From the analysis results, the method can replace the

improved DSM, effectively reduce the noise, and extract the
fault component of the engine abnormal noise signal. By
increasing the threshold M and superimposition number K,
the accuracy of the extracted fault components can be
improved. &e method can also use the extracted fault
components to establish a database of automobile engine
faults, which lays a foundation for the later diagnosis and
classification of automobile engine faults.

7. Conclusion

Althoughthe improved DSM can automatically find the
starting superposition point andsuperposition length of the
periodic signal, it needs to use the encoder toassist in finding
the starting superposition point. In practical applications,
many occasions are not suitable for the use of encoders,
which limits the applicability of DSM. &erefore, based on
the improved DSM, this paper proposes an adaptive noise
reduction method of automobile engine abnormal noise
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Figure 20: &e variation curve of ρopt (K) with the increase of the superimposition number K.

0 100 200 300 400 500 600
Sampling point

0.5

0

-0.5

A
m

pl
itu

de

Odd array superposition signal Dopt

Even group superimposed signal Dopt
W18

W28

Figure 21: Odd group and even group superposition signals after 6-time superposition.
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signal, which cancels the use of the encoder. Using this
method, the fault components of knocking cylinder, cylinder
lacking, and knocking are extracted from the abnormal
sound signal of automobile engine, and the effectiveness of
the method is verified.&emethod can adaptively obtain the
starting superposition point and superposition length from
the engine abnormal sound signal and determine the
number of superpositions, which replaces the encoder in the
improved DSM to determine the starting position of the
automobile engine impact fault and greatly improves the
applicability of DSM. However, when the hard threshold λ is
set to a small value, the selection of fault feature points will
be inaccurate, and then the selected fault components will be
biased, resulting in inaccurate noise reduction signals. &e
specific problem of hard threshold setting will be further
studied. When the starting superposition point is selected,
the accuracy is reduced compared with the improved DSM,
resulting in more superposition times than the improved
DSM. However, according to the superposition results, the
increase of superposition times is within an acceptable
range.

In the future, the hard threshold λ setting problem will
be further improved, and the corresponding fault compo-
nent database will be established. &e fault type will be
determined by comparing the extracted fault component
with the fault component in the database.
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'anks to their advantages over rigid ones, interest for lightweight parallel manipulator was increased. Besides, structural
flexibility effects at high operational speeds are more significant. 'us, developing an appropriate model for the assessment of the
dynamic properties of flexible mechanisms and linkages to gain effective vibration control will raise high demand. 'erefore, this
paper represents the dynamic and kinematic modeling using the assumed mode method and first-type Lagrange equations of the
2-DOF planar parallel manipulator with two flexible links. To truly predict vibrations of the manipulator without any major
simplifying assumptions, nonlinear dynamic modeling, which thoroughly attempts to represent the flexible behavior of the links,
is considered. As a result, an active damping approach is being studied with PZTactuators. 'e results show that this approach is
effective in damping the vibrations of the links that give accurate trajectory control.

1. Introduction

With regard to parallel manipulators with a lightweight
structure, a planar parallel manipulator with lightweight
linkages provides a high-speed alternative positioning
mechanism for manipulators of serial architecture. 'ese
robots are used in a wide range of applications, from simple
selection and location of robotic systems for industrial
applications to microsurgical applications, maintenance of
nuclear power plants, or space robotics [1]. 'e interest in
research into flexible connection manipulators and mech-
anisms was significantly increased to make full use of the
potential offered by flexible manipulators. It is, nevertheless,
particularly challenging to control flexible manipulators so
that precise positioning can be maintained. For a two-link
flexible manipulator, the problem becomes more complex.
'e dynamics are highly nonlinear and complex due to the
flexibility of the system [2, 3]. Although lightweight links are
more likely to meet high-speed and high-acceleration re-
quirements, the inertia and forces from the actuators are

more likely than ever to deflect and vibrate [4]. 'e
structural flexibility effects at high end-effector speeds are
much more significant. Manipulators and mechanisms with
flexible links are systems with a variety of degrees of free-
dom. 'ey are described by coupled nonlinear partial dif-
ferential equations of motion. 'e dynamic model
formulation of manipulators with flexible links and mech-
anisms was based on different discretization ways of flexible
links to devise and apply a real-time controller for joint
movements and vibration removal. 'e most popular ap-
proaches are the finite element method (FEM) [5, 6] and the
assumedmodemethod (AMM) [7, 8]. It has been commonly
established to model a flexible single link manipulator.
Various approaches were developed, mainly divisible into
two categories: the approach to numerical analysis and the
assumed method mode (AMM) [9, 10]. AMM examines
approximatemodels by solving a partial differential equation
that characterizes the system’s dynamic behavior.

Previous studies have been reported using this approach
to model a flexible single-link manipulator [11, 12]. Zhou
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et al. recently developed dynamic equations for a flexible
three-PRS manipulator with regard to vibrational analyses
using the FEM method [13], taking into consideration link
flexibility. Kang and Mills introduced a dynamic flexible-
link 3-PRR planar parallel manipulator by employing AMM
[14]. 'e existing parallel 2-DOF manipulator with solid
links for an optimal design was studied [7]. In high-speed
pick-and-place applications, this manipulator is also pro-
ductive [15]. Nevertheless, no research has been conducted
on the dynamic modeling of the mechanism, taking into
account the flexibility in which industrial operations are
inevitable. 'is paper considers a method of active damping
using piezoelectric materials. Deformation of the flexible
links produces shear stress that PZTmaterials can counteract
due to the voltage control applied. PZT can achieve better
performance in vibration damping than other transducer
materials as PZT has higher stress constant [16–19].

Due to the promising results, the parallel kinematic
machine (PKM) is the greatest increasing need of the ma-
chining and pick and place industry. Due to their high
structural stiffness and rigidity, PKMs’ absolute positioning
error is reduced. 'e 2-DOF PRRRP PKM machine tool
proves to achieve competing accuracies in the end tool [15].
However, the heavy and bulky links used to give adequate
stiffness and accuracy significantly increase equipment costs,
motor torques (power), and energy consumption. To
overcome this issue, as a real-world requirement, research
on the use of lightweight robot links is carried out in this
paper. To overcome the positioning error due to the flexi-
bility of the links, an active vibration control system based on
PZT actuators is implemented.

In the present paper, an AMM modeling of the flexible
links following Lagrangian method and a PD feedback
control with linear velocity feedback (L-type) is used to
correctly attenuate vibration due to trajectory tracking. 'is
is followed by a proper PD trajectory control. 'e proposed
active vibration damping approach was verified by simu-
lations for flexible linkage manipulators.

2. Kinematic Modeling

Figure 1 illustrates the planar 2-DOF parallel manipulator
with two flexible links. 'e manipulator architecture is 2-
PRRRP, while R and P represent revolute and prismatic
joints, respectively. In a plane that works properly for pick
and place tasks, the end-effector offers high precision 2-DOF
translational motion. 'e end-effector position vector, two
active prism joints, and two passive revolute joints are
presented as follows, respectively, about the fixed X-y ref-
erence framework displayed in Figure 2:

Xe � x y􏼂 􏼃
T
,

q � q1 q2􏼂 􏼃
T
,

β � β1 β2􏼂 􏼃
T

.

(1)

As a deformation assumption and design criteria of the
flexible links, the influence of transverse, shear, and rotary
inertia has not been taken into account since the beam is

long and slender. Links only vibrate horizontally, and the
torsion and vertical bending are not considered. Besides, the
beam properties variation can be neglected across the whole
body and cross section [20].

Consequently, Euler–Bernoulli beam theory can be
employed to simulate the manipulator’s elastic behavior.'e
product of position-and time-dependent functions, i.e.,
AMM, expresses the deflection of the link, wi, as

wi(x, t) � 􏽘

r

j�1
ηij(t)φj(ξ). (2)

In the equation above, ξ � x/l, j and r denote the jth
vibration mode and a finite number of assumed modes,
respectively.

To select the boundary conditions, one can take many
different approaches in the AMM.'e optimum set is found
closest to the system’s natural modes among the hypothe-
sized modes in ideal situations. 'us, no assumption can be
made about the employed set of hypothesized modes since
several structural factors of the manipulator determine the
natural modes [21]. In this study, pin-free modeling,
implemented in a flexible PKM [16, 19], is considered for
boundary conditions, which causes a significant deflection in
the flexible links and remarkably investigates the effect of
PZT actuators on damping the vibrations of flexible links.
'e alternative in the future needs an evaluation based on
the robot’s actual structure to improve outcomes in the
results.

Given the boundary conditions of the flexible links on Si

and the end-effector, the selected normalized shape function
that satisfies a pin-free boundary condition is as follows:

φj(ξ) �
1

2 sin cj􏼐 􏼑
× sin cjξ􏼐 􏼑 +

sin cj􏼐 􏼑

sinh cj􏼐 􏼑
sinh cjξ􏼐 􏼑⎡⎢⎣ ⎤⎥⎦, (3)

where

0≤ ξ ≤ 1,

cj � (j + 0.25)π.
(4)

'e shape functions in the first three mode shapes of the
flexible link are shown in Figure 3. 'e inverse kinematics
problem is solvable by expanding the following restrictive
equation, as shown in Figure 2:

OE � OAi + qi + bi + wi(l), i � 1, 2, (5)

which yields

q1 � ±
�����������������

L
2

− (x − d)
2

+ w
2
1(l)

􏽱

+ y,

q2 � ±
�����������������

L
2

− (x + d)
2

+ w
2
2(l)

􏽱

+ y.

⎧⎪⎪⎨

⎪⎪⎩
(6)

Equation (6) states that four solutions are available for
the inverse kinematics of the mechanism. 'e four alter-
natives are consistent with four types of mechanism work
modes. 'e deflection term, i.e., wi, should be drawn from
dynamic modeling to approach the solutions.
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Figure 1: Architecture of 2-PRRRP with flexible links (dashed lines denote the deflection of the links).
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Figure 2: Coordinate system of 2-PRRRP with flexible links.

Shock and Vibration 3



1

0.8

0.6

0.4

ψ

ξ

0.2

0

–0.2

–0.4

–0.6

–0.8
0 0.1 0.2

Model #1
Model #2
Model #3

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 4: 'e closed kinematic chain of 2-PRRRP with flexible links.
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3. Dynamic Modeling

In terms of link flexibility, the generalized coordinates are
taken as follows:

Xflex � q β Xe η􏽨 􏽩
T
, (7)

where

η � η11 η12 η13 η21 η22 η23􏼂 􏼃
T
6×1. (8)

Figure 4 shows the manipulator’s closed kinematic chain
with the flexible link deflection. Expanding equation (5), as
mentioned, leads to four constraint equations, as follows:

xe � xAi + L cos βi − wi(l)sin βi,

ye � qi + L sin βi + wi(l)cos βi.
􏼨 (9)

As shown in Figure 5, the kinematic energy is taken into
account in expecting the deformation of the links:

T � 􏽘
2

i�1
Ts + Tl + Te, (10)

where

Te �
1
2
me _x

2
e + _y

2
e􏼐 􏼑,

Ts � 􏽘
2

i�1

1
2
ms _q

2
i ,

Tl � 􏽘
2

i�1

1
2

􏽚
L

0
ρAv

2
xdx,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

where ρA, ms, and me are mass of the end-effector, mass of
the sliders, and mass per length, respectively. Put the ki-
nematic energy and the potential energy induced by link
deformation for each coordinate in first-type Lagrangian
equations to derive the dynamic modeling yielding the
equations of motion for the flexible-link parallel
manipulator:

Vs1

β1

Vx

Vx/s1+xβ1

β2
·

bβ2 + w2 (l)
· ·

·

Figure 5: 'e kinetic energy of the flexible link.

Table 1: Dynamic parameters.

Flexible Link
Density (kg/m3) 2770

Young’s modulus (GPa) 73
Dimension (mm) 360∗ 30∗ 5

PZT actuator Young’s modulus (GPa) 69
Dimension (mm) 50∗ 25∗ 0.75

Slider Mass (kg) 0.3

Table 2: Feedback control gains.

KP 1000 (N/m)
KD 600 (N-s/m)
KI 3000 (Volts-s/m)
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Each of the components has been defined in the Ap-
pendix. Equation (12) is a differential-algebraic equation
(DAE) that can be simplified by removing the Lagrangian
constraint term λi as follows:
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4. Vibration Control

Structural flexibility of the links transfers undesirable vi-
bration to the end-effector, which leads to poor tracking
efficiency.When the links are flexible for linear actuators, the
vibration attenuation is difficult. 'us, an active damping
approach with the help of PZT is implemented. Attaching
the link surface, the PZT generates a shear force that sup-
presses the structural vibration of the links along the length.
For flexible link manipulators, the aim of the above analysis
is to make the rigid mode variable follow the required
trajectory or converge to a certain point while suppressing
the flexible link modes. 'e voltage of the PZTactuators will
specify the L-type approach as explained in Appendix [22].
'e voltage applied to the PZT actuator can be defined as
follows:

Vi(t) � − kI _wi a2, t( 􏼁 − _wi a1, t( 􏼁􏼂 􏼃, (14)

where ki represents the linear velocity feedback gain for PZT
and a1 and a2 are the start- and end-point positions of the
PZTactuators from the linear actuators, Si, along the length.
_wi(ai, t) denotes the linear velocity of each link at ai. 'e
virtual work conducted by the i-th PZT actuator can be
measured as follows:

δWPZT � cVi(t) 􏽘
r

j�1
φf
′ a2( 􏼁 − φf

′ a1( 􏼁􏽨 􏽩δηij, (15)

where c denotes a positive constant implying the bending
moment by applying voltage. Fulfilling the PZTactuator’s L-
type layout is based on the position of the PZTactuator. 'e
PZT actuator is to be installed in a region where the form
function and the derivative has a similar variation trend
within to achieve a stable control movement: x ∈ [a1, a2].

φ a2( 􏼁 − φ a1( 􏼁( 􏼁 φ′ a2( 􏼁 − φ′ a1( 􏼁( 􏼁≥ 0. (16)

'e application of this case to higher frequency modes is
limited as the fulfillment of the equation for higher fre-
quencies is only carried out in small areas on the link.

5. Simulation Results

Two linear actuators are equipped with a simple propor-
tional-derivative-type (PD) feedback controller system as
follows:

fi � − kp qdi − qi( 􏼁 − kd _qdi − _qi( 􏼁, (17)

where kp and kd represent PD feedback gains, respectively.
qdi and _qdi indicate desired values for linear actuators ob-
tained from (5).

Tables 1 and 2, respectively, include dynamic parameters
and feedback control gains. Using a fourth-order, Run-
ge–Kutta method with MATLAB software was integrated
into the normal differential equations at 1msec integration
intervals.

'e desired trajectory, which accelerates and decelerates
smoothly, has a sinusoidal function:

xe �
xf

tf

t −
xf

2π
sin

2π
tf

t􏼠 􏼡. (18)

'e objective is that the end-effector moves 2mm (xf)

within 10msec (tf).
Figure 6 illustrates the end-effector’s tracking error

following the desired trajectory with and without PZT ac-
tuators in the X direction. 'e activated profile of the PZT
actuator, known as “active damping,” decreases continu-
ously as a result of the PZT actuator’s damping effect, while
oscillation at the initial acceleration is significant. 'e
tracking error in active damping mode is rapidly decreased,
accordingly. 'e label “not damping,” shown in Figure 6,
demonstrates that the PZT actuator is not activated. 'us, it
refers to the typical features of the undamped system with
flexible connections. 'e Y-direction movement of the end-
effector, which should retain the Y position on 0m, is also
shown in Figure 7.'e damping also damped the coordinate
oscillations.

Also, to determine the effects of different acceleration
values, the proposed path was tested using accelerations two
and four times faster than the determined amount, which is
exhibited in Figure 8 (i.e., the end-effector moves 4mm and
8mm in the same time frame in the second and third
scenario). Figure 9 shows the tip deformation of every
flexible link, wi, confirming the prominent role of the PZT
actuator when vibrating the links structurally as the struc-
tural vibrations are damped thoroughly after 60msec. As
reflected, the increase of acceleration puts more vibration on
the manipulator, resulting in more deflection of flexible
links, which were fully dampened by the active damping
method in all three scenarios.
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As discussed, the dynamic model for the manipulator is
studied only by the first three modes. To address this, we
performed a power spectral density (PSD) analysis of the

manipulator based on frequency-domain for the proposed
trajectories with and without active damping; the results plotted
in Figures 10–12 determine that the first mode has the

0.3

0.2

Er
ro

r o
f x

e (
m

m
)

0.1

0

0 50
Time (ms)

No damping
Active damping

100 150

0

20 40 60 80
Time (ms)

100 120 140
Er

ro
r o

f x
e (

m
m

)

Figure 6: End effector’s tracking error in X-direction between desired and actual path (blue line refers to the undamped system where red
line refers to active PZT damping).
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significant strength of the energy, while the variation at second
and third modes are much weaker and had the same measures.
Figures 10–12 also prove that the active damping method
appropriately reduced the vibration in all given trajectories.'is
study’s results match the research conducted by Zhang et al., in
which the vibrations of an experimentallymoving platformwith

flexible links are damped using the PZT actuators as an active
control method [23]. Furthermore, well-established researches
in this area obtained comprehensive damping performance by
considering less than three modes of the manipulator [19, 24]
and validated by experimental setups [25], which indicates the
accuracy of our results.
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Figure 9: Flexible deformation of each links. (a) 1st trajectory. (b) 2nd trajectory. (c) 3rd trajectory.
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6. Conclusions

2-DOF parallel manipulators containing lightweight and
flexible materials are among the most discussed subjects by
industrial scholars due to their extensive applications, such
as pick and place tasks. In addition to the flexibility of robot
links, working at high speeds makes it impossible to consider
the deformation of the links as rigid. In this study, the
deformation of the 2-PRRRP manipulators’ links during
accelerated trajectories is addressed by approaching the
assumed mode method. Using the first-type Lagrangian
equations, the dynamic equations of the 2-DOF flexible-link
planar parallel manipulator are represented. 'e active
damping method with the PZT actuators is considered to
attenuate the structural vibration of flexible links. 'e pi-
ezoelectric materials can achieve a suitable damping per-
formance with an L-type control strategy to counter
structural vibration of flexible connections, which sub-
stantially reduces the time of setting of the end-effector

leading to precise tracking of the trajectory. Relevant results
indicate no requirement to use solid heavy links in 2-DOF
parallel manipulators and spend less energy by considering
them flexible.

Appendix

First-type Lagrangian equations:

d
dt

zT

z _qi

􏼠 􏼡 −
z(T − V)

zqi

� Qi + 􏽘
m

k�1
λk

zΓk
zqi

. (A.1)

Potential energy induced by link deformation:

U �
1
2

􏽘

2

i�1
EiIi 􏽚

l

0

z2wi(x)

zx2􏼠 􏼡

2

dx. (A.2)

Equation of motion components:
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Figure 11: PSD of the first three modes of each link for the 2nd trajectory. (a) 1st link. (b) 2nd link.
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V1 �

− ρA
_β1s1 􏽘

3

j�1
_η1j 􏽚φjdξ − 0.5mll

_β
2
1s1

− ρA
_β2s2 􏽘

3

j�1
_η2j 􏽚φjdξ − 0.5mll

_β
2
2s2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V2 �

ρA _q1s
2
1 􏽘

3

j�1
_η1j 􏽚φjdξ

ρA _q2s
2
2 􏽘

3

j�1
_η2j 􏽚φjdξ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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V4 �

− ρA _q1
_β1s1 􏽚φ1dξ

− ρA _q1
_β1s1 􏽚φ2dξ

− ρA _q1
_β1s1 􏽚φ3dξ

− ρA _q2
_β2s2 􏽚φ1dξ

− ρA _q2
_β2s2 􏽚φ2dξ

− ρA _q2
_β2s2 􏽚φ3dξ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

J1 �
1 1 0 0
0 0 1 1

􏼢 􏼣,

J2 �
− ls1 − w1c1 lc1 − w1s1 0 0
0 0 − ls2 − w2c2 lc2 − w2s2

􏼢 􏼣,

J3 �
− 1 0 − 1 0
0 − 1 0 − 1

􏼢 􏼣,

J4 �

− s1 􏽚φ1dξ c1 􏽚φ1dξ 0 0

− s1 􏽚φ2dξ c1 􏽚φ2dξ 0 0

− s1 􏽚φ3dξ c1 􏽚φ3dξ 0 0

0 0 − s2 􏽚φ1dξ c2 􏽚φ1dξ

0 0 − s2 􏽚φ2dξ c2 􏽚φ2dξ

0 0 − s3 􏽚φ3dξ c2 􏽚φ3dξ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Fq �
F1

F2
􏼢 􏼣,

Fext �
Fx

Fy

􏼢 􏼣,

(A.3)

where ci � cos(βi), si � sin(βi).
Voltage generated by PZT sensor:

Vs � ksε

� ks

σ
E

� ks

MC/I
E

� ks

z
2
w(x, t)

zx
2􏼠 􏼡.

(A.4)

Using strain rate feedback,

Vi(t) � − k′ _ε

� − k′
_Vs

ks

� − kI _w,

(A.5)

where − k′ is control gain applied to the PZT actuator.
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%e vibrational behavior of composite structures has been demonstrated as a useful feature for identifying debonding damage.%e
precision of the damage localization can be greatly improved by the addition of more measuring points. %erefore, full-field
vibration measurements, such as those obtained using high-speed digital image correlation (DIC) techniques, are particularly
useful. In this study, deep learning techniques, which have demonstrated excellent performance in image classification and
segmentation, are incorporated into a novel approach for assessing damage in composite structures. %is article presents a
damage-assessment algorithm for composite sandwich structures that uses full-field vibration mode shapes and deep learning.
First, the vibration mode shapes are identified using high-speed 3D DIC measurements. %en, Gaussian process regression is
implemented to estimate the mode shape curvatures, and a baseline-free gapped smoothing method is applied to compute the
damage images. %e damage indices, which are represented as grayscale images, are processed using a convolutional-neural-
network-based algorithm to automatically identify damaged regions.%e proposed methodology is validated using numerical and
experimental data from a composite sandwich panel with different damage configurations.

1. Introduction

%e vibration characteristics of composite structures are
sensitive to debonding. In particular, mode shape curvatures
are extensively used to identify debonding regions in
composite materials [1–4], and a greater damage localization
accuracy is achieved as the number of measured degrees of
freedom (DOFs) increases [1]. However, the number of
DOFs that can be acquired simultaneously is largely re-
stricted in conventional vibration measurement techniques.
To overcome this limitation, high-speed digital image cor-
relation (DIC) techniques have been implemented for full-
field vibration measurements and damage assessment [3–5].

In general, the damage can be identified by examining
the changes in the modes of the damaged structure with
respect to the undamaged modes. However, modes from
the damaged structures cannot always be matched to a

corresponding “baseline” mode in the undamaged struc-
ture. %is has driven the development of baseline-free
damage-assessment algorithms, which include gapped
smoothing (GS) [2, 6, 7] and wavelet-based [8] methods. In
wavelet-based methods, a continuous or discrete wavelet
transform is used to detect abrupt changes in the mode
shape displacements or curvatures, which are related to
damage. However, the accuracy of these methods is par-
ticularly sensitive to the family and order of the wavelets
selected [9]. %e GS method was initially proposed by
Ratcliffe and Bagaria [6], who assumed that the undamaged
mode shapes can be estimated using a smoothed version of
the damaged mode shapes. %en, the damage indices are
computed from the difference between the shapes of the
undamaged and damaged curvature modes. %is method
has proven to be useful in different damage detection and
localization applications, such as damage identification in
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beams [10], beam-like structures [11], and plate-like
structures [2, 4, 7, 12]. Yoon et al. [7] implemented the GS
method with mode shape curvatures to assess damage in
plate-like structures under the assumption that stiffness
reductions are related to damage. %eir method was suc-
cessful in identifying delamination in experimental com-
posite panels. Qiao et al. [2] investigated the application of
three damage-assessment methodologies in composite
laminates: the generalized fractal dimension, strain energy
method, and GS. %e experimental and numerical data of a
composite panel with delamination were used to validate
the proposed approach.%e experimental panel was excited
using lead-zirconate-titanate actuators, and the vibratory
response was captured using a scanning laser vibrometer
with polyvinylidene fluoride sensors. In this case, the best
results were obtained using the GS method. A principle
similar to that of the GS method was used by Rucevskis
et al. [12] to detect damage in plates. In their imple-
mentation, the damage indices were formulated as the
difference between the measured mode shape curvatures of
the damaged and undamaged panels. %e undamaged
mode-shaped curvatures were estimated using a smooth
polynomial version of the damaged modes. %e algorithm
was investigated using the simulated data of a panel under
different damage scenarios, considering the damage size,
measurement noise, and sensor distribution. %en, the
experimental data of an aluminum panel with a cut as the
damage were employed to validate the approach.

Second-order displacement derivatives required to de-
termine mode shape curvatures are frequently computed
using the central difference method, which greatly amplifies
the experimental noise. Another approach to obtain de-
rivatives without noise amplification is by using Gaussian
process (GP) regression models [13], which are effective
nonparametric regression techniques [14]. Meruane et al. [4]
combined the GS method with curvature mode shapes es-
timated through GP regression. %ey demonstrated that GP
regression allows to obtain noise-free mode shape curvatures
from mode shape displacements with noise, thus improving
the damage identification results compared to those using
the conventional GS method.

Previous methods, such as wavelet-based or GSmethods,
have been implemented to calculate damage indices dis-
tributed over the surface of a structure. Given the damage
indices, the range of damage index values corresponding to
the damaged and undamaged states must be determined.
%is can be viewed as a semantic segmentation problem,
where each pixel must be classified as damaged or un-
damaged. %e most straightforward solution is to use a
statistical approach [3] under the assumption that the
damage indices in the undamaged regions follow a normal
statistical distribution. %erefore, the outliers were consid-
ered as damage indices corresponding to statistically sig-
nificant characteristics, such as damaged elements.
Alternatively, automatic thresholding techniques can be
implemented, which are frequently used for the automated
visual inspection of defects. %e valley-emphasis method has
been demonstrated to be particularly effective for damage

assessment [4]. Unlike the statistical approach, this method
automatically performs image segmentation without re-
quiring parameter tuning. Recently, the introduction of deep
learning techniques has generated tremendous progress in
semantic segmentation. In particular, convolutional neural
networks (CNNs) have obtained remarkable results for
image segmentation [15], mainly because of their structure.
%at is, a CNN extracts relevant features from the input
images in an incremental manner with no need for domain
expertise. %is allows the identification of hidden relation-
ships in the images not evident to the naked eye, in many
cases exceeding human precision. However, the application
of CNNs for the identification of delaminated regions in
composite panels has not yet been investigated.

%is article presents a novel damage-assessment algo-
rithm for composite sandwich structures based on full-field
vibrationmode shapes and deep learning. First, the vibration
mode shapes were identified from high-speed DIC dis-
placement measurements. %en, the curvature mode shapes
were computed using a GP regression, and a baseline-free
GS method was applied to compute the damage indices. %e
damage indices, which are represented as grayscale images,
were processed using a CNN-based algorithm to identify the
damaged regions automatically. %e proposed methodology
was validated using numerical and experimental data from a
composite sandwich panel under different damage scenar-
ios. Furthermore, to highlight the advantages of our ap-
proach over existing methods, the results obtained were
compared with those of a similar approach that uses an
automatic thresholding technique instead of a CNN for
image segmentation [4].

2. Estimation of Curvatures Using
GP Regression

%e use of the GS technique requires the estimation of the
curvatures of the damaged plates. %is task is generally re-
alized by applying a finite difference technique on the
identified experimental vibration mode, thus making it sus-
ceptible to noise in the vibration modes. In this study, the use
of a GP to estimate the plate’s curvature is motivated by two
main reasons: (1) GP can clean the noise from each vibration
mode and (2) offer a smooth estimation of the second de-
rivative (with the use of a squared exponential kernel).

Let us define the grid point coordinates using vector
X � [(x1, y1), (x2, y2), . . . , (xn, yn)]and the measured mode
shape displacements as ϕr � [ϕr(x1, y1), ϕr(x2, y2), . . . ,

ϕr(xn, yn)]. %e root mean square normalization is imple-
mented as follows:

φr xi, yj􏼐 􏼑 � ϕr xi, yj􏼐 􏼑

�����������������

NxNy

􏽐
Nx

i�1 􏽐
Ny

j�1 ϕ
2
r xi, yj􏼐 􏼑

􏽶
􏽴

, (1)

where Nx and Ny correspond to the number of grid points
in the x and y directions, respectively, and φr(xi, yj)is the
normalized rth mode shape at points (xi, yj). Because the
mode shape displacements include experimental noise, they
can be expressed as
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φr xi, yi( 􏼁 � f xi, yi( 􏼁 + ε, (2)

where ε represents additive Gaussian noise, with a mean of 0
and variance σ2n. %e mean mode shape displacements at
points (x∗, y∗)are predicted as

φs
r x∗, y∗( 􏼁 � kT∗K

− 1ϕr, (3)

where k∗ contains the kernel values between point
(x∗, y∗)and grid points X:

k∗[i] � k x∗, y∗( 􏼁, xi, yi( 􏼁( 􏼁. (4)

Function k is the GP autocorrelation function. In this
study, as in [4], a squared exponential kernel with additive
noise was used:

k xi, yi( 􏼁, xj, yj􏼐 􏼑􏼐 􏼑 � e
− (1/2) xi− xj( 􏼁

2
/s2x􏼐 􏼑+ yi− yj( 􏼁

2
/s2y􏼐 􏼑􏼐 􏼑

+ σ2nδij,

(5)

where s2xand s2yare the length scales that define the corre-
lation between grid points, which ultimately drives the
smoothness of the mode shape. Parameter σ2naccounts for
the covariate noise and corresponds to the Kronecker delta.
%e selection of the squared exponential kernel is motivated
by the need to have a GP that could be at least twice dif-
ferentiable (to allow curvature estimation in damaged
plates). K is the kernel matrix evaluated at the grid points
and is defined as

K[i, j] � k xi, yi( 􏼁, xj, yj􏼐 􏼑􏼐 􏼑. (6)

%e mode shape curvatures are computed as

z
2φs

r x∗, y∗( 􏼁

zx
2 � k∗xx􏼂 􏼃

TK− 1ϕr,

z
2φs

r x∗, y∗( 􏼁

zy
2 � k∗yy􏽨 􏽩

T
K− 1ϕr.

(7)

Vectors k∗xxand k∗yycontain the second-order deriva-
tives of the autocorrelation function evaluated at points
(x∗, y∗)and grid point X. Finally, the damage-assessment
algorithm utilizes the mode shape Laplacian, which is for-
mulated as

∇2φr xi, yj􏼐 􏼑 �
z
2φs

r xi, yj􏼐 􏼑

zx
2 +

z
2φs

r xi, yj􏼐 􏼑

zy
2 . (8)

3. GS Method

In the GS method, the undamaged mode shape curvatures
are calculated using a smoothed version of the damaged
mode shape curvatures (Laplacian). %e undamaged mode
shape curvatures are approximated using first-order base
functions, as follows:

∇2φr xi, yj􏼐 􏼑 � gTi,jθi,j, (9)

where gi,jis a vector of base functions and θi,jdenotes its
coefficients:

gTi,j � 1, xi, yj􏽨 􏽩,

θTi,j � a0, a1, a2􏼂 􏼃.
(10)

Let us consider the neighboring points of (xi, yj); then,
(9) can be expressed in the matrix form as follows:

λr xi, yj􏼐 􏼑 � GT
r xi, yj􏼐 􏼑θi,j, (11)

where

λTr xi, yj􏼐 􏼑 � ∇2φr xi− 1, yj− 1􏼐 􏼑,∇2φr xi, yj− 1􏼐 􏼑,􏽨

∇2φr xi+1, yj− 1􏼐 􏼑, . . . ,∇2φr xi+1, yj+1􏼐 􏼑􏽩,

GT
r xi, yj􏼐 􏼑 � gi− 1,j− 1, gi,j− 1,gi+1,j− 1, . . . , gi+1,j+1􏽨 􏽩.

(12)

%e coefficients are estimated using least squares
resulting in

􏽢θ
r

i,j � GT
r xi, yj􏼐 􏼑Gr xi, yj􏼐 􏼑􏼐 􏼑

− 1
GT

r xi, yj􏼐 􏼑λr xi, yj􏼐 􏼑.

(13)

%ese coefficients are used to calculate the undamaged
mode shape curvature as

Cr xi, yj􏼐 􏼑 � gTi,j􏽢θ
r

i,j. (14)

%e measure of damage at point (xi, yj)is estimated by
the difference in the curvatures of the undamaged and
damaged modes, represented by damage index dr:

dr xi, yj􏼐 􏼑 � ∇2φr xi, yj􏼐 􏼑 − Cr xi, yj􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌. (15)

Ultimately, this expression is expanded to consider the
first m modes:

d xi, yj􏼐 􏼑 � 􏽘
m

r�1
dr xi, yj􏼐 􏼑. (16)

4. Deep Learning and Semantic Segmentation

Deep learning models have shown excellent performance in
various tasks involving image recognition and computer
vision, such as image classification [16, 17], natural language
processing [18], and image segmentation [15]. In particular,
CNNs have been extensively used for image classification,
where the network output to an image is a class label. %is is
achieved by arranging convolutional, pooling, and fully
connected layers, as illustrated in Figure 1.

%e convolution operation utilizes weight matrix K,
denominated as a filter or kernel, to obtain feature matrix S
from input matrix A as follows:

S � A∗K, where S(i, j) � 􏽘
n

􏽘
m

A(i − m, i − n) · K(m, n).

(17)
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%en, the feature matrix is added to bias matrix B, and the
activation function is employed to build the feature map H:

H � f(A∗K + B). (18)

%e convolution layer applies various kernels and biases
to the input matrix, and by operating convolutional layers
sequentially, high-level features can be extracted. Pooling
layers can then be used to reduce the number of features. For
instance, a max-pooling layer provides only the maximum
value of the next feature map within a rectangular cell.
Finally, a feed-forward neural network located at the end of
the CNN delivers the predicted class labels.

Considering the significant quantity of parameters in a
CNN, precautions must be taken to prevent overfitting or
overadjustment of the CNN to the training data. Over-
fitting results in an inadequate generalization; therefore,
the network is unable to predict unseen cases. Regulari-
zation techniques, such as dropout [19] and batch nor-
malization [20], can be implemented to prevent overfitting.
In addition, the early stopping strategy, which stops
training when the validation error begins to increase, helps
prevent overfitting.

Although the most common application of a CNN is
image classification, it has also been implemented for image
segmentation. In image segmentation, the classification is
performed pixel by pixel. Long et al. [21] were the first to
introduce a fully CNN for image segmentation, in which the
fully connected layers were replaced by convolutional layers.
%ey used interpolation layers to guarantee that the output
size equals the input size, which is essential for image
segmentation. Ronneberger et al. [22] modified this archi-
tecture to allow training with fewer images, and the pro-
posed architecture was named U-Net because of its shape, as
illustrated in Figure 2.

%eU-Net architecture is characterized by a contraction-
expansion configuration. %e contraction part is built by
arranging convolutional layers using 3× 3 kernels, rectified
linear activation functions, and pooling layers. For a certain
number of convolutional layers, max-pooling with stride 2
was implemented. %e combination of a convolutional layer
followed by max-pooling is a contraction step. In Figure 2,

each contraction step is composed of two convolutional
layers and one max-pooling layer; at each step, the number
of channels (kernels) is doubled.

In the expansive part, the pooling layers are replaced by
upsampling layers, which have the opposite purpose of
pooling layers, thereby increasing the size of the input
matrix. To increase the localization accuracy, features from
the contracting part are joined to the features in the
upsampled output. %is is represented by the segmented
lines in Figure 2. Finally, a 1× 1 convolution layer is
employed to transform the feature vectors to the required
number of classes.

5. Damage-Assessment Methodology

%e proposed damage-assessment methodology comprises
the following steps:

(1) %e experimental mode shapes are identified using a
high-speed DIC system, as described in Section 5.3.

(2) %e mode shape curvatures are estimated using a
Gaussian regression process. %e values of the length
scale parameters (s2xand s2y) and the noise variance
(σ2n)are the same as those used in [4] because the
application case is the same: sx � sy � 5dxand σ2n = 1.
As the GP is used merely to clean the noise from
vibration modes and facilitate the curvature esti-
mation, a robust selection of GP hyperparameters
(s2x, s2y, σ2n) is considered unnecessary as long as the
GP mean corresponds to the observations, i.e., no
bias is introduced (which is demonstrated in [4] by
studying the residual error). However, a new
hyperparameter selection is recommended for new
applications.

(3) Damage indices are obtained according to the pro-
cedure presented in Section 3.

(4) %e damaged regions are identified using a CNN
with a customized version of the U-Net architecture,
which is presented in Section 6.1. %e CNN was
trained using a database created using a numerical
model of the composite sandwich panel.

Feature maps

Feature maps

Output layer 

Input layer
Convolutional layer Pooling layer Fully connected layer

Figure 1: CNN architecture for image classification.
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%is methodology was applied to identify debonding
damage in an aluminum composite sandwich panel
using numerical and experimental data. An automatic
thresholding technique was used to contrast the image
segmentation results obtained with the proposed
approach.

%e intersection over union (IoU) metric, which is
widely used in image segmentation and object detection
problems [23], was employed to evaluate the segmentation.
In the damage identification problem, we have the true
damaged region of the panel and the predicted damaged
region, as illustrated in Figure 3. %e true positives (TP) are
defined as the intersection between both regions; false
negatives (FN) correspond to the actual damage that was
not detected, whereas the false positives (FP) were incor-
rectly detected damage. Considering this, the IoU metric is
calculated as

IoU �
area of overlap
area of union

�
TP

TP + FP + FN
. (19)

5.1. Application Case. An aluminum honeycomb sandwich
panel with dimensions 0.35m× 0.25m× 0.021m was used
in our case study. %e skins are made of aluminum sheets
with 0.8mm thickness and the properties listed in Table 1,

1 64 64 64 64 2

64 128 128 128

128

128

128 256 256 256

256

256

256 512 512512

512

512 1024 1024

1024512

2 × 2 max pool

2 × 2 up-conv

Convolutional layer with 3 × 3 filters + Relu

Convolutional layer with 1 × 1 filters + sigmoid

Transfer and concatenate

Figure 2: Scheme of the U-Net architecture.

Predicted

True

Figure 3: Representation of true and predicted damaged regions.

Table 1: Skin characteristics.
%ickness 0.8mm
Elastic modulus 6.9×1010 Pa
Poisson’s ratio 0.33
Density 2700 kg/m3

Table 2: Core characteristics.
Cell size 19.1mm
Foil thickness 5×10− 5m
%ickness 10mm
Density 20.8 kg/m3

Compressive strength 0.448MPa
Longitudinal shear strength (σxy) 0.345MPa
Longitudinal shear modulus (Gxy) 89.63MPa
Transversal shear strength (σyz) 0.241MPa
Transversal shear modulus (Gyz) 41.37MPa
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whereas the honeycomb core is made of aluminum with the
characteristics presented in Table 2.

Figure 4 shows the experimental panel. For DIC mea-
surements, the face of the panel was painted with a speckled
pattern. %e aluminum panel was built by bonding the skin
to the honeycomb core with an epoxy resin. To introduce
debonding damage to one of the skins, a region was in-
tentionally left without an adhesive.

%e panels were manufactured with four damage con-
figurations, as listed in Table 3, describing the summary of
the damage scenarios with the corresponding attributes,
which include circular and square debonding damage shapes
and a range of damage sizes. In the third and fourth cases,
the panel has two debonded regions, whereas the first and
second cases have one debonded region. %e normalized
damage size, which ranged from 0.07 to 0.17, is defined as the
size of the damaged region (diameter or side length) divided
by the diagonal length of the panel.

5.2. Numerical Model. %e numerical model considers the
composite panel as three layers of shell elements connected
by linear springs. %e exterior shells represent the skin, and
the interior shell represents the honeycomb core. %e
springs act as the epoxy adhesive layer; therefore, the
damaged region is represented as a zone with reduced spring
stiffness. %e model was built using the Structural Dynamics
Toolbox (SDT) [24] using MATLAB®, and the layers were
modeled with isotropic four-node shell elements (see
Figure 5).

Experimental noise is always present in mode shapes
identified from experimental data, which is why we
decided to introduce noise artificially into the numerical
mode shapes to make them similar to the experimental
ones. In particular, the noise is introduced by adding a
random sample to the mode amplitude at each grid point,
where the samples are obtained from a Gaussian dis-
tribution with zero mean and standard deviation equal to
10% of the maximum mode amplitude. A database of
3500 panels with a range of damage scenarios was

generated to train and evaluate the damage-assessment
algorithms. %e panels in the database had circular
debonded regions with normalized damage sizes ranging
between 0 and 0.25, and both the damage location and
size were defined randomly.

5.3. Experimental Setup and Measurements. Figure 6 pres-
ents the experimental setup, where the panel is sus-
pended by elastic cords while it is excited by an
electrodynamic shaker. %e panel displacements were
captured by two high-speed cameras connected to the
DIC software. %e DIC system is a Q450 high-speed DIC
system manufactured by Dantec Dynamics. %e acqui-
sition frequency was 7530 fps and the picture resolution
was 1 MP.

%e experimental mode shapes are identified according
to the following procedure:

(1) First, the natural frequencies of the panel are
identified by an impact test

(2) %e shaker is configured to vibrate with a sinusoidal
signal at the natural frequency

(3) %e panel vibration is recorded with the cameras,
and the displacements are calculated using the DIC
software

(4) %e displacements are exported to MATLAB, and
the operational mode shapes are identified

(5) Steps 2 to 4 are repeated for each natural frequency

Mode shapes with frequencies up to 2000Hz were
identified, and the number of experimental modes in this
frequency range varied between 6 and 11 for each panel.

Figure 4: Experimental panel with speckle pattern.

Table 3: Experimental damage cases.

Case
Normalized damage size

Shape
Damage 1 Damage 2

1 0.09 — Circular
2 0.12 — Circular
3 0.14 0.07 Square
4 0.11 0.17 Circular

Figure 5: Numerical model representing the sandwich panel.
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Figure 7 illustrates the first three experimental modes ob-
tained for the first panel (Case 1).

6. Results

%e numerical database was divided into training, valida-
tion, and testing sets. A total of 2800 panels were used for
training, 175 for validation, and 525 for testing. %e vali-
dation set was used during training and to tune the model,
whereas the testing set was used to test the final model.

6.1. Optimization of Model Parameters. %e first test was
performed using the standard U-Net architecture, as
described in Section 4. %e algorithm was initially trained
using the Adam optimizer, and the learning rate was set to
0.00001. %e loss function was defined as (1 − IoU). An
early stopping strategy was adopted with a validation
patience of 50 epochs. %erefore, if the validation loss did
not improve after 50 epochs, the training was stopped. To
define the best regularization strategy, three cases were
evaluated: no regularization, batch normalization, and

(a) (b)

Figure 6: Experimental setup: (a) panel with the speckle pattern and (b) shaker attachment.

(a) (b) (c)

Figure 7: Example of the first three experimental mode shapes. (a) 488Hz. (b) 612Hz. (c) 968Hz.
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Figure 8: Validation performance with different (a) regularization strategies and (b) learning rates.
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dropout (20%). Because variability exists in each training
process, each case was trained five times. Figure 8(a)shows
the mean validation IoU obtained in each case, and the
error bars represent the standard deviation. %e best
performance was obtained by batch normalization.
%erefore, this regularization strategy was adopted. Next,
a sensitivity analysis was performed with respect to the
learning rate. %e results shown in Figure 8(b)indicate
that the best learning rate is 0.0001.

Finally, two additional sensitivity analyses were
conducted. %e first analysis explored the optimal
number of convolutional layers at each step of the
U-Net algorithm. In the second analysis, the optimal
number of channels was investigated. %e results are
illustrated in Figure 9, and the final configuration of the
deep learning segmentation model is summarized in
Table 4.

6.2. Numerical Damage Assessment. Figure 10 shows the
damage-assessment performance of the testing data as a
function of the normalized damage size. %e results were
compared with the results obtained using an automatic
thresholding method, as described in [4]. %e results clearly
indicate that by using a CNN for segmentation, the damage
is identified with a significantly higher exactitude, which
allows for the detection of smaller-sized damages.

Some examples of damage identified by both ap-
proaches are shown in Figure 11. %e damage indices
tended to increase at the edges of the panels. %is effect is
most clearly observed in cases with small damage sizes.
Indeed, in cases with small or no damage, larger damage
indices are at the edges. %is causes the automatic
thresholding method to identify damage incorrectly at the
edges, but the CNN-based approach is capable of learning
that these indices on the edges do not correspond to
damage. Furthermore, the CNN is capable of detecting
damages as small as a 0.05 normalized size. Damage of this
size is not discerned by the human eye in the damage index
image or by the thresholding methods.

%e automatic thresholdingmethodmerely finds regions
where the damage indices exceed a certain threshold and
identifies those regions as damaged. In contrast, the CNN-
based approach can learn different damage index patterns
and identify whether an increase in damage indices corre-
sponds to actual damage. %is enables the identification of
small damages that are not identifiable with other methods
and prevents the detection of false damage.

6.3. Experimental Damage Assessment. To validate the ap-
proach with the experimental data, four experimental
damage scenarios were considered, as listed in Table 1. %e
damage identified using the proposed CNN-based meth-
odology is shown in Figure 12, whereas the results of the
automatic thresholding method are presented in Figure 13.
Table 5 summarizes the IoU obtained using the proposed
approach compared to the IoU obtained using the automatic
thresholding method. On average, the CNN approach
performs better, although it is not a significant improve-
ment. %e main advantage of the CNN-based approach is
that it does not detect false damages and can detect small
damages. For example, the CNN-based approach correctly
identified the smaller-sized damage in Case 3, but the
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Figure 9: Validation performance with respect to the (a) number of convolutional layers and (b) number of channels.

Table 4: Segmentation model configuration.
Optimizer Adam
Learning rate 0.0001
Regularization strategy Batch normalization
Model architecture U-Net
Number of channels 64–128–256–512–1024
Number of convolutional layers per step 2
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automatic thresholding method did not.%us, the automatic
thresholding method performed satisfactorily in Case 3
because this model can catch the bigger damages very well,
but it misses the small ones completely. Conversely, the

CNN-based method is much better at identifying small
damages. Furthermore, the experimental investigation in-
dicates that the proposed approach is capable of correctly
generalizing the numerical data because it accurately detects

IoU = 0.74 IoU = 0.016

IoU = 0.92 IoU = 0.28

IoU = 0.95 IoU = 0.58

Damage indices
Damage detected 

CNN Automatic thresholding

(a)

(b)

(c)

Figure 11: Damage detected using CNN and automatic thresholdingmethod. Normalized damage sizes: (a) 0.05, (b) 0.1, and (c) 0.2.%e red
circles indicate the true damage.
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Figure 10: Performance of the damage-assessment methodologies.
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IoU = 0.56

(a)

IoU = 0.51

(b)

IoU = 0.46

(c)

IoU = 0.6

(d)

Figure 12: Experimental damage identified with the proposed CNN-based approach. Normalized damage sizes: (a) 0.09 (Case 1), (b) 0.12
(Case 2), (c) 0.14 and 0.07 (Case 3), and (d) 0.11 and 0.17 (Case 4). %e red circles/squares denote the true damage region.

IoU = 0.47

(a)

IoU = 0.46

(b)

Figure 13: Continued.
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experimental damage with precision despite having been
trained using only data from the numerical model.

7. Conclusions

A damage-assessment methodology using full-field vibra-
tion modes and deep learning was developed and imple-
mented to assess the debonding damage in composite
sandwich structures. %e main novelty of this approach is
that the damage indices, represented as grayscale images, are
processed using a CNN to automatically identify the
damaged regions. %e results showed that, compared with
automatic thresholding methods, the CNN can better
identify damaged regions with respect to IoU. In particular,
the CNN enables the identification of smaller damages,
significantly improving the results of existing approaches;
this is essential from a practical perspective.

%e proposed approach can learn different damage index
patterns and correctly identify whether an increase in
damage indices corresponds to actual damage. %is ad-
vancement enables the identification of damage that is too
small to be identified by other methods and prevents the
detection of false damage. %e results indicate that the
proposed approach can correctly assess damages with
normalized sizes greater than 0.05.

Although the experimental results are encouraging, the
number of cases studied is not statistically significant, and
therefore further experimental analysis is required. In

addition, the proposed approach was validated using a
simple sandwich plate structure. %is structure does not
necessarily represent a real structure with geometrical
changes and different types of joints and edge conditions.
%erefore, applications with more complex and realistic
structures will be investigated in the future. In particular, the
effects of different boundary conditions and geometrical
changes on the damage identified must be analyzed. Because
the approach searches for discontinuities in the structure, it
is important to discriminate between changes caused by
damage and variations due to geometry or boundary
conditions.
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[1] P. M. Garćıa, J. V. A. D. Santos, and H. Lopes, “A new
technique to optimize the use of mode shape derivatives to
localize damage in laminated composite plates,” Composite
Structures, vol. 108, no. 1, pp. 548–554, 2014.

IoU = 0.46

(c)

IoU = 0.65

(d)

Figure 13: Experimental damage identified with an automatic thresholding method. Normalized damage sizes: (a) 0.09 (Case 1), (b) 0.12
(Case 2), (c) 0.14 and 0.07 (Case 3), and (d) 0.11 and 0.17 (Case 4). %e red circles/squares denote the true damage region.

Table 5: Performance of the damage detected using CNN and
automatic thresholding method.

Case
IoU

CNN Automatic thresholding
1 0.56 0.47
2 0.51 0.46
3 0.46 0.46
4 0.60 0.65

Shock and Vibration 11

http://www.lvmr.cl/des_en.htm
http://www.lvmr.cl/des_en.htm


[2] P. Qiao, K. Lu, W. Lestari, and J. Wang, “Curvature mode
shape-based damage detection in composite laminated
plates,”Composite Structures, vol. 80, no. 3, pp. 409–428, 2007.

[3] F. Seguel and V. Meruane, “Damage assessment in a sandwich
panel based on full-field vibration measurements,” Journal of
Sound and Vibration, vol. 417, pp. 1–18, 2018.

[4] V. Meruane, I. Fernandez, R. O. Ruiz, G. Petrone, and
D. E. Lopez, “Gapped Gaussian smoothing technique for
debonding assessment with automatic thresholding,” Struc-
tural Control Health Monitoring, vol. 26, 2019.

[5] V. Meruane, M. Lasen, E. L. Droguett, and A. O Bernardin,
“Modal strain energy-based debonding assessment of sand-
wich panels using a linear approximation with maximum
entropy,” Entropy, vol. 19, no. 11, pp. 619–622, 2017.

[6] C. P. Ratcliffe and W. J. Bagaria, “Vibration technique for
locating delamination in a composite beam,” AIAA Journal,
vol. 36, no. 6, pp. 1074–1077, 1998.

[7] M. K. Yoon, D. Heider, J. W. Gillespie, C. P. Ratcliffe, and
R. M. Crane, “Local damage detection using the two-dimensional
gapped smoothing method,” Journal of Sound and Vibration,
vol. 279, no. 1-2, pp. 119–139, 2005.

[8] C. C. Chang and L. W. Chen, “Damage detection of a rect-
angular plate by spatial wavelet based approach,” Applied
Acoustics, vol. 65, no. 8, pp. 819–832, 2004.

[9] A. Katunin, “Stone impact damage identification in composite
plates using modal data and quincunx wavelet analysis,”
Archives of Civil and Mechanical Engineering, vol. 15, no. 1,
pp. 251–261, 2015.

[10] C. P. Ratcliffe, “Damage detection using a modified laplacian
operator on mode shape data,” Journal of Sound and Vi-
bration, vol. 204, no. 3, pp. 505–517, 1997.

[11] A. K. Pandey, M. Biswas, and M. M. Samman, “Damage
detection from changes in curvature mode shapes,” Journal of
Sound and Vibration, vol. 145, no. 2, pp. 321–332, 1991.

[12] S. Rucevskis, R. Janeliukstis, P. Akishin, and A. Chate, “Mode
shape-based damage detection in plate structure without
baseline data,” Structural Control and Health Monitoring,
vol. 23, no. 9, pp. 1180–1193, 2016.

[13] C. E. Rasmussen, “Gaussian processes in machine learning,”
in Advanced Lectures on Machine LearningSpringer, Berlin,
Germany, 2004.

[14] J. Ko and D. Fox, “GP-BayesFilters: bayesian filtering using
Gaussian process prediction and observation models,” Au-
tonomous Robots, vol. 27, no. 1, pp. 75–90, 2009.

[15] Y. Guo, Y. Liu, T. Georgiou, and M. S. Lew, “A review of
semantic segmentation using deep neural networks,” Inter-
national Journal of Multimedia Information Retrieval, vol. 7,
no. 2, pp. 87–93, 2018.

[16] W. Rawat and Z. Wang, “Deep convolutional neural networks
for image classification: a comprehensive review,” Neural
Computation, vol. 29, no. 9, pp. 2352–2449, 2017.

[17] C. Modarres, N. Astorga, E. L. Droguett, and V. Meruane,
“Convolutional neural networks for automated damage rec-
ognition and damage type identification,” Structural Control
and Health Monitoring, vol. 25, no. 10, 2018.

[18] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent
trends in deep learning based natural language processing
[review article],” IEEE Computational Intelligence Magazine,
vol. 13, no. 3, pp. 55–75, 2018.

[19] S. Wager, S. Wang, and P. S. Liang, “Dropout training as
adaptive regularization,” Advances in Neural Information
Processing Systems, Stanford University, Stanford, CA, USA,
2013.

[20] S. Ioffe and C. Szegedy, “Batch normalization: accelerating
deep network training by reducing internal covariate shift,”
2015, https://arxiv.org/abs/1502.03167.

[21] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional
networks for semantic segmentation,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3431–3440, Boston, MA, USA, June 2015.

[22] O. Ronneberger, P. Fischer, and T. Brox, “U-net: convolu-
tional networks for biomedical image segmentation,” in
Proceedings of International Conference on Medical Image
Computing and Computer-Assisted Intervention, pp. 234–241,
Munich, Germany, October 2015.

[23] M. A. Rahman and Y. Wang, “Optimizing intersection-over-
union in deep neural networks for image segmentation,” in
Proceedings of International Symposium on Visual Computing,
pp. 234–244, Las vegas, NV, USA, December-2016.

[24] E. Balmès, J. P. Bianchi, and J. M. Leclère, Structural Dynamics
Toolbox User’s Guide, SDTools, Paris, France, 2011.

12 Shock and Vibration

https://arxiv.org/abs/1502.03167


Research Article
Lubrication State Recognition Based on Energy Characteristics of
Friction Vibration with EEMD and SVM

Hai-jie Yu , Hai-jun Wei , Jing-ming Li , Da-ping Zhou, Li-dui Wei, and Hong Liu

Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China

Correspondence should be addressed to Hai-jun Wei; haijun_welson@163.com

Received 11 March 2021; Revised 10 April 2021; Accepted 19 April 2021; Published 23 April 2021

Academic Editor: Franco Concli

Copyright © 2021 Hai-jie Yu et al. ,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In order to identify different lubrication states, lubrication experiments were carried out on a Bruker UMT-3 tester. ,e ex-
perimental results show that the frequency band energy characteristics of friction vibration signals are different under different
lubrication states. Based on this, a lubrication state recognition method with ensemble empirical mode decomposition (EEMD)
and support vector machine (SVM) was proposed. ,e vibration signals were decomposed into a finite number of stationary
intrinsic mode functions (IMFs) with the EEMDmethod. ,e first six IMF components containing the main friction information
were retained to calculate the energy ratio and construct the feature vector. ,e experimental results show that the mixed
lubrication state can be identified by hundred percent, and there is a slight confusion between boundary lubrication and dry
friction. ,e results show that frequency band energy of friction vibration signals is an effective feature to identify different
lubrication states, and the proposed method can be used to identify different lubrication states.

1. Introduction

It is well known that friction vibration is caused by the
relative movement of friction pairs. Friction vibration can
reflect the characteristics and wear state of the friction
system. Compared with friction coefficient, wear surface,
and wear debris, friction vibration signals can be acquired
online and in real-time without affecting the normal op-
eration of the equipment. Real-time monitoring of equip-
ment lubrication status is of great help to the efficient
operation and maintenance of machinery and equipment.

As a typical nonlinear signal, the feature extraction of
friction vibration has always been a difficulty in research. In
recent years, the study mainly focuses on the qualitative
analysis of friction vibration, but the quantitative analysis is
rarely reported. Sun decomposed the vibration signals of
reciprocating sliding friction pair by wavelet packet and
analyzed the chaotic characteristics of the friction vibration
[1]. Liu et al. analyzed the correlation between the frictional
vibration in the normal and tangential directions and
pointed out that the friction vibration in different directions
has strong correlation [2]. Li et al. made multifractal analysis
of the friction vibration signals in the running-in process [3].

In recently years, empirical mode decomposition (EMD)
has been widely used to deal with nonlinear signal problems
[4–7]. It adaptively decomposes signals into several sta-
tionary basic mode components by subtracting the local
mean of signals in an iterative way. Because of the defects of
the algorithm, false intrinsic mode functions may be gen-
erated in the decomposition results. ,erefore, Huang
proposed the ensemble empirical mode decomposition
method (EEMD), which solves the modal aliasing problem
of EMD by adding white noise components to the original
signals to maintain the continuity of signals in different
regions [8]. ,e most common method of EMD and its
improved algorithm in mechanical fault diagnosis is to
combine this method with other technologies to extract fault
frequency [9–13]. However, there is no obvious periodicity
in friction vibration and it is difficult to distinguish the
lubrication state by the change of frequency. When the
lubrication state changes, the energy in the same frequency
band of the friction vibration signal will have a big differ-
ence. ,e signal energy in these frequency bands contains
the main friction information, and the change of the signal
energy in one or several frequency bands represents the
change of the lubrication states. ,erefore, the lubrication
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states can be distinguished according to the change of fre-
quency band energy.

Support vector machine (SVM) is an intelligent opti-
mization algorithm proposed by Vapnik et al. in 1995 on the
basis of statistical learning theory [14, 15]. Based on the
principle of structural risk minimization, the SVM can solve
practical problems such as small samples, high dimensions,
nonlinearity, and local minimum points well. A large
number of studies have shown that SVM parameters are the
main factors affecting the performance of support vector
machines. ,e differential evolution (DE) algorithm is an
optimization algorithm of heuristic parallel random search
based on floating-point vector coding proposed by Storn and
Price in 1995 [16].,e principle of the algorithm is relatively
simple with fewer control parameters. ,e algorithm has a
strong global search ability and robustness and can improve
the speed of optimization. In recent years, scholars have
done a lot of work to improve the optimization performance
of this method. In this paper, in order to improve the
classification accuracy of support vector machine, the kernel
parameters and penalty parameter of SVM are optimized by
using the DE algorithm.

Based on the energy distribution characteristics of
friction vibration, a lubrication state recognition method
combining EEMD and SVMwas proposed in this article.,e
vibration signals were decomposed by EEMD, and the en-
ergy ratio of the high-order intrinsic mode function (IMF)
components containing the main friction information was
calculated. ,en, the standard mode feature vector was
constructed with the energy ratio as the element, and the
different lubrication states were identified by the SVM.

,e innovations andmain contributions of this paper are
as follows:

(1) Frequency band energy is innovatively used as a
characteristic to distinguish different lubrication
states

(2) ,e IMFs are innovatively applied to construct the
energy eigenvector of frequency band

(3) A lubrication state identification method based on
EEMD and SVM is proposed to effectively monitor
the lubrication state of equipment

,e remainder of this paper is organized as follows:
Section 2 presents the EEMD method, SVM method, DE
algorithm, and the recognition method. ,e design and
implementation of operational different lubrication states’
tests are provided in Section 3. ,e results and discussion
have been presented in Section 4. Finally, Section 5 would
conclude the paper.

2. Method

2.1. EEMD. To solve the modal mixing problem of EMD,
EEMD was invented on the basis of EMD algorithm in 2009
[8]. By adding white noise components to the original signal,
the signals in different regions are kept continuous and the
degree of mode aliasing is reduced. ,e decomposition steps
are as follows:

(1) A Gaussian white noise is added to the original signal
to produce a new signal, that is,

xi(t) � x(t) + ni(t), (1)

where x(t) is the original signal and ni(t) is the
Gaussian white noise.

(2) ,e signal xi(t) is decomposed by EMD, that is,

xi(t) � 􏽘

J

j�1
ci,j(t) + ri,j(t), (2)

where ci,j(t) is the jth IMF decomposed after adding
white noise for the ith time and ri,j(t) is the re-
mainder term.

(3) Repeat steps (1) and (2) for m times, and add white
noise signals with different amplitudes to each de-
composition to get the IMF set as follows: {c1,j(t),
c2,j(t), . . ., cm,j(t) j � 1, 2, . . ., J}.

(4) Based on the principle that the statistical mean value
of unrelated sequences is zero, the average calcula-
tion is carried out for the abovementioned corre-
sponding IMF:

cj(t) �
1
m

􏽘

m

i�1
ci,j(t), (3)

where cj(t) is the jth IMF decomposed by EEMD,
i � 1, 2, . . ., m, and j � 1, 2, . . ., J.

2.2. SVM. SVM classification is a machine learning method
based on statistical learning theory and structural risk
minimization. It is applicable to both linearly separable and
linearly nonseparable samples. For more details, please refer
to [17].

With the sample (xi, yi)
(xi ∈ Rd; yi ∈ −1, +1{ }; i � 1, 2, . . . , n), xi is a feature vector
and yi is class label. If the sample is linearly separable, then
SVM transforms the classification problem into a convex
quadratic optimization problem, as shown in the following
equation:

min
1
2
‖ω‖

2
+ C 􏽘

n

i�1
ξis.t. yi ω · xi( 􏼁 + b􏼂 􏼃≥ 1 − ξi,􏼨 (4)

where ω is the weight vector, C is the penalty factor, ξ is the
relaxation factor, and b is the bias.

,e dual description of the above optimization problem
is obtained by Lagrange operator. Under the condition that
yi[(ω · xi) + b] � 1, the classification decision function can
be obtained, that is,

f(x) � sgn 􏽘
i

αiyi xi · x( 􏼁 + b
∗⎧⎨

⎩

⎫⎬

⎭, (5)

where αi is the Lagrange coefficient.
If the samples are linearly nonseparable, the samples in

the input space can be mapped into the high-dimensional
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linearly separable feature space by nonlinear mapping, and
the optimal classification decision function in the feature
vector can be obtained by kernel function, that is,

f(x) � sgn 􏽘
i

α∗i yiK xi, xj􏼐 􏼑 + b
∗⎧⎨

⎩

⎫⎬

⎭, (6)

where K(xi, xj) is the kernel function.

2.3. Differential EvolutionAlgorithm. ,e basic idea of DE is
to extract the search step and direction information from the
current population and add random difference and cross-
over to improve the diversity of the population. After the
above mutation and crossover operation, a temporary
population is generated. ,en, one-to-one selection of the
two populations is carried out based on greedy thought to
generate a new generation of population. ,e population
evolves continuously according to the above method until
the termination condition of the algorithm is satisfied. ,e
details are described as follows:

(1) Four different individuals are randomly selected
from the population to generate a difference vector
to mutate the optimal individuals of each generation,
which can not only improve the convergence speed
of the algorithm but also maintain a high population
diversity to a certain extent, that is,

v
g+1
i � x

g+1
best + k x

g+1
s1

− x
g+1
s2

􏼐 􏼑 + x
g+1
s3

− x
g+1
s4

􏼐 􏼑􏽨 􏽩, (7)

where v
g+1
i is the mutant individual obtained from

each individual x
g
i of g generation by mutation

operation, x
g+1
best is the best individual of g+ 1 gen-

eration, and k is the scaling factor.
(2) In order to improve the diversity of the population,

the crossover operation mode is

y
g+1
i �

v
g+1
i,j , rand(j)≤CR,

x
g+1
i,j , rand(j)>CR,

⎧⎪⎨

⎪⎩
(8)

where rand(j) is a random value on [0, 1] and the
crossover rate (CR) is a specified constant on [0, 1].

(3) If the values of the parameters exceed the corre-
sponding bounds, they will be randomly and uni-
formly reinitialized within the given range. ,en, the
target function values of all test vectors are evaluated
and selected. If the objective function value of the test
vector is less than or equal to the objective function
value of the corresponding objective vector, the next
generation replaces the objective vector with the test
vector. Otherwise, the target vector will be retained
for the next generation. ,e selection operation can
be represented as follows:

x
g+1
i �

y
g+1
i , f y

g+1
i􏼐 􏼑<f x

g
i( 􏼁,

y
g+1
i , f y

g+1
i􏼐 􏼑<f x

g
i( 􏼁,

⎧⎪⎨

⎪⎩
(9)

where f is the target function.

2.4. Recognition Method. ,e collisions and breakage of the
rough peak between the friction pairs are characterized by
microimpact and random distribution on the contact in-
terface, which stimulates the high-frequency dynamic re-
sponse of the coupling system [18]. ,erefore, the lower
orders of IMF components should be removed and the
higher orders of IMF components should be retained. As
shown in Figure 1, the proposed lubrication state recogni-
tionmethod based on energy characteristics with EEMD and
SVM is described as follows:

(1) Under the states of mixed lubrication, boundary
lubrication, and dry friction, the samples are sam-
pled several times at a certain sampling frequency to
obtain enough samples.

(2) ,e collected vibration signals are decomposed by
EEMD, and several IMF components are obtained.

(3) ,e energy ratio of the first n IMF components is
calculated:

Ej � 􏽚

+∞

−∞

c
2
j(t)dt j � 1, 2, 3, . . . , n,

Tj �
Ej

􏽐
n
j�1 Ej

,

(10)

where Ej is the energy of the jth IMF component and
Tj is the energy proportion of the jth IMF
component.

(4) ,e feature vector T � [T1, T2, . . . , Tj] is
constructed.

(5) Lubrication states are classified and identified with
SVM.

3. Experiment

3.1. Apparatus. ,e experiments were conducted on a piece
of commercial equipment, Bruker UMT-3 tester, as illus-
trated in Figure 2. ,e equipment is able to control the disk
rotational speed and the load. Friction force was measured
by the sensors of the equipment. A triaxial acceleration
sensor, fixed on the pin specimen (model 356B17ICP, PCB
Piezotronics Company) with a range of ±5 g and a sensitivity
of 1000mv/g, was used to measure the vibration signal. A
data acquisition system (VibPilot, m+ p international) was
used to collect the data.

3.2. Experimental Method. In order to obtain the standard
mode feature vectors of typical states, it is necessary to carry
out experiments on the experimental bench to obtain the
friction vibration signals under different lubrication states by
controlling the amount of lubricating oil to change the
lubrication states and according to the friction coefficient to
judge the lubrication states. First, the experiment was carried
out under the condition of oil lubrication. When the lu-
brication experiment lasted to the 50th min, the severe wear
experiment without lubrication was carried out, at which dry
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absorbent cottons were used to clean the oil. Meanwhile, the
vibration signals were collected by using the triaxial accel-
eration sensor with a sampling frequency of 51200Hz and a
sampling duration of 2 s per minute.

4. Results and Discussion

4.1. Different Lubrication States. ,e whole experimental
process is shown in Figure 3. In the actual mechanical
operation, the friction pairs are usually in the mixed lu-
brication state, and the friction coefficient in this state is
about 0.1. In the beginning stage, the friction coefficient
experienced a short decline and then entered a stable weak
fluctuation state, corresponding to the running-in wear stage
and the stable wear state, respectively, which were analyzed
in detailed in [19]. Until the 50th minute, the oil was sucked
away, and there was only a very small amount of adsorbed oil
film between the friction pairs.,e lubrication state changed
from the mixed lubrication to the boundary lubrication with
the friction factor varied between 0.25 and 0.4. With the
aggravation of wear, the oil films in the friction pairs were
destroyed. ,e lubrication state changed from the boundary
lubrication to the dry friction with large fluctuation of
friction factor at the 70th minute, under which the friction
factor was greater than 0.4.

Figure 4 shows the spectrum diagram of the vibration
signals in different lubrication states. As analyzed in the liter-
ature [18], the friction vibration can be divided into low-fre-
quency and medium-high-frequency parts. ,e low-frequency
part corresponds to the eigenfrequency and coupling frequency
of the system. ,e medium-high-frequency part is closely

related to the surface characteristics of the friction pair. ,e
impact and fracture of themicroconvex bodies are characterized
by microimpact and randomly distributed on the contact in-
terface, which stimulates the medium-high-frequency dynamic
response of the coupling system. In the process of deterioration
of lubrication state, the amplitude of high-frequency compo-
nents increases continuously, which is very useful to state
recognition.

4.2. Energy Feature Vectors. ,e vibration signals collected
during the experiment were decomposed by EEMD. ,e

Vibration
signals

EEMD
composition

Energy
feature
vector

SVM

Training
sample Classifier

State
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Test 
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Figure 1: States’ recognition flowchart.
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Figure 2: Schematic diagram of the UMT-3 tester. (a) Experiment device and (b) tribological pair.
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ensemble average times and the amplitude coefficient of
Gaussian white noise were 100 and 0.4, respectively [3].
Figure 5 shows the EEMD decomposition results of friction
vibration signals in the dry friction (80th min). ,e original
signal was decomposed into 10 IMF components c1–c10 and
a remainder term r10. ,e IMF components represent fre-
quency band components of the original signal and are
arranged in order from high to low frequencies. ,e re-
mainder term is actually a trend line, that is, the wave with
very low frequency (very long period), which can be
regarded as the foundation of other IMF components. ,e
characteristics cannot be directly seen from components and
remainder term.

In this paper, the first 6 order components were retained
to calculate the energy ratio and construct the feature
vectors. Figure 6 shows the energy ratio of the friction pair
under three states. As expected, the energy distribution in
different states was markedly different.

4.3. Lubrication State Classification and Recognition with
SVM. In order to illustrate the accuracy of the method
proposed in this article, the 100 samples obtained from the
experiment were divided into two groups. 50 samples were
taken out as training samples, and the remaining 50 samples
were taken as test samples. Considering the relatively large
number of training samples and the small number of fea-
tures, polynomial kernel was used as the kernel function of
SVM [12]. Also, the differential evolution algorithm was
used to obtain the optimal penalty parameter and kernel
parameters.

,e results of state recognition are shown in the con-
fusion matrix in Figure 7. In this confusion matrix, all 25
samples in the mixed lubrication state were accurately
identified. However, 2 out of 10 samples in the boundary
lubrication state were incorrectly recognized as dry friction.
For the 15 samples in the dry friction state, 3 samples were
incorrectly recognized as boundary lubrication. Confusion
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Figure 4: Spectrum diagram of the vibration signal in different lubrication states. (a) Mixed lubrication (20th min), (b) boundary lubrication
(60th min), and (c) dry friction (80th min).
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Figure 6: Energy ratio based on EEMD under three states. (a) Mixed lubrication (20th min), (b) boundary lubrication (60th min), and (c) dry
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between the mixed lubrication state and the dry friction state
can partly be explained by high degree of similarity between
the two states. ,e results suggest that the SVM method can
identify different lubrication states well.

5. Conclusion

In this article, vibration signals under different lubrication
conditions were obtained by using the friction testing ma-
chine. ,e friction vibration signals were decomposed by
using the EEMD method, and the medium-high-frequency
components containing the main friction information were
retained. ,e energy ratio of IMF components was calcu-
lated, and the feature vectors were constructed to provide the
basis for lubrication state identification. ,e SVM was used
to recognize the different lubrication states of friction pairs.
,e results illustrate that the method presented in this work
can accurately recognize different lubrication states. ,e
main conclusions are as follows:

(1) ,e medium-high-frequency components of the fric-
tion vibration signal contained the lubrication state
information, and the retained IMF components by
EEMD decomposition can be used to construct the
energy feature vectors under different lubrication states.

(2) Mixed lubrication states can be accurately identified by
the SVM. However, there was confusion between
boundary lubrication and dry friction, and further
research is needed to improve the recognition accuracy.
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