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$e usage and dependence of mobile computing devices as
well as mobile information systems have exponentially in-
creased in the recent past. $e adaptation of modern
technologies in the developed world has completely rede-
signed the canvass of the daily life of a common person. Even
in the developing world, it has penetrated and is still pen-
etrating at a very fast pace. Such systems and applications
now encompass a broad range of application domains in
today’s world including, but not limited to, healthcare,
education, e-commerce, agriculture, forestry, weather,
livestock, security, and social networking. Most of the ap-
plications address the problems of identification, recogni-
tion, diagnosis, predictions, reasoning, interpretation, and
summarizations. Computer vision and machine learning
have intersected decently to effectively cover these appli-
cation as well as problem domains.

In the same era, machine learning has evolved as a
panoramic science for almost all disciplines of computer
science, with intelligence being embedded at the core of
information systems. $eory and applications of supervised,
unsupervised, and reinforcement learning have significantly
been improved in the recent years. In most of the machine
learning paradigms, theories of learning and cognitive sci-
ences have contributed as base lines. Neural networks are
one of such paradigms. $e fundamental building block of a
neural network is a neuron shown in Figure 1. One neuron
takes inputs from its universe of discourse, aggregates the
input while assigning a weight to each input, and passes the
output through a transfer function and a final output is
generated.

In conventional supervised learning, the generated
output is compared with the target output provided by the
trainer and an error is computed using the following
equation:

E � oj − tj, (1)

where oj is the output of the neuron and tj is the target
output.

$e error propagates back to compute the rate of change
of error with respect to each weight using chain rule depicted
in the following equation:
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$e step size of this differential is controlled through the
learning rate and change in each weight is computed using
the following equation:

Δwij � −η
zE

zwij

, (3)

where Δwij is the change in the weight wij and η is the
learning rate. Each weight is updated using the update rule
given in equation (4) and the process is repeated with the
expectation that the new weights would have gotten closer to
the target weights.

wij
′ � wij + Δwij, (4)

where wij
′ is the updated weight. It is applied across all edges

of the neural network.
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$is back-propagation procedure is repeated across
multiple iterations depending on the complexity of the target
function. Different neurons are put together to generate a
neural network to address the complex problems which may
not be solvable by single neuron. Different neurons are
arranged in different layers. Depth of the neural network is
primarily determined by the number of hidden layers. $e
deeper neural networks are capable to learn the complex
problem domains with the compromise on the computa-
tional complexity. Deep learning has successfully enhanced
the effectiveness of mobile information systems in recent
years to serve many different purposes, including object
recognition, fault diagnosis, health monitoring, malware
detection, and language translation. Over the last decade,
mobile information systems have become more robust,
autonomous, and self-organized, making tasks performed
through these systems more reliable. Deep learning-based
algorithms, models, and techniques, such as convolutional
neural networks, probabilistic gradient algorithms, adaptive
subgradient methods, and distributed deep learning over
cloud methods, have been proposed, implemented, and
deployed as the core decision-making engines in these
systems.

$e aim of this special issue of mobile information
systems is to highlight the recent innovations where deep
learning has been exploited to enhance the effectiveness of
mobile applications and computing devices. $is special
issue includes papers that report innovative applications of
deep learning for tasks such as visual analysis and classifi-
cation in different fields including geology, indoor locali-
zation, animal species recognition, and human-computer
interaction. $is issue also includes a survey paper that
summarizes typical applications of computational-resource-
limited deep learning and presents a list of challenges to be
addressed.

Fan et al. have presented a deep learning model for quick
and accurate rock recognition with smart phones to help
geological surveys. Recognition and classification of rock
lithology is an important topic in geographical sciences. A
lightweight convolutional neural network (CNN) has been
trained to correctly recognize and classify rock images.

Ji et al. have proposed an indoor classification mecha-
nism based on multiple descriptors fusion. Descriptor filter
algorithms using a greedy approach have been proposed and
implemented. Its performance has been analyzed and
simulation results have been presented.

Choe et al. have presented a CNN to classify the en-
dangered parrot species. $e proposed approach has been
deployed with a real-time mobile application. $e appli-
cation is quite innovative and significant to protect the
endangered species of parrot. It has significant application to
prevent smuggling and assist the relevant authorities identify
breaches.

Liu et al. have presented a deep learning algorithm to
recognize hand gestures. Hand gestures in complex sce-
narios have been chosen to be tested using single shot
multibox detector deep learning algorithm. $e proposed
setup has been tested in real-time situations and high
classification accuracy has been achieved. $is adds sig-
nificant value from the human-computer interaction
perspective.

Wang et al. have presented a modification in MobileNet
(a lightweight convolutional neural network) to improve its
efficiency and capacity to integrate with mobile platforms.
Image classification has been successfully tested in the
implementation and analysis of the proposed framework.

Chen et al. have presented a survey on the deployment of
deep learning in computational-resource-limited platforms.
Deep learning is quite expensive in terms of resource re-
quirements due to its inherent multilayer architecture and
huge number of iterations required to execute the gradient-
descent algorithm. $e topic addressed in this survey paper
is worth exploring to maintain a balance between the two
extremes: computational expense and available resource-
limited platforms.

With the intervention of sophisticated computational
resources globally available through cloud computing, deep
learning applications have been extensively developed and
deployed. Conventional machine learning has been largely
evolved into artificial neural networks and deep learning-
based models primarily due to their potential to solve
complex problems. With the advent of smarter computa-
tional resources for mobile devices, deep learning has im-
mense potential to enable and embed intelligence in all kinds
of applications and systems running over mobile devices.
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Figure 1: Building block of a neural network.
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In the geological survey, the recognition and classification of rock lithology are an important content. (e recognition method
based on rock thin section leads to long recognition period and high recognition cost, and the recognition accuracy cannot be
guaranteed. Moreover, the above method cannot provide an effective solution in the field. As a communication device with
multiple sensors, smartphones are carried bymost geological survey workers. In this paper, a smartphone application based on the
convolutional neural network is developed. In this application, the phone’s camera can be used to take photos of rocks. And the
types and lithology of rocks can be quickly and accurately identified in a very short time.(is paper proposed a method for quickly
and accurately recognizing rock lithology in the field. Based on ShuffleNet, a lightweight convolutional neural network used in
deep learning, combined with the transfer learning method, the recognition model of the rock image was established. (e trained
model was then deployed to the smartphone. A smartphone application for identifying rock lithology was designed and developed
to verify its usability and accuracy. (e research results showed that the accuracy of the recognition model in this paper was
97.65% on the verification data set of the PC. (e accuracy of recognition on the test data set of the smartphone was 95.30%,
among which the average recognition time of the single sheet was 786 milliseconds, the maximum value was 1,045 milliseconds,
and the minimum value was 452 milliseconds. And the single-image accuracy above 96% accounted for 95% of the test data set.
(is paper presented a new solution for the rapid and accurate recognition of rock lithology in field geological surveys, which met
the needs of geological survey personnel to quickly and accurately identify rock lithology in field operations.

1. Introduction

(e recognition of rocks is not only an important part of
geological survey but also the focus of geological research.
(e traditional recognition method consists of three steps
[1, 2]: firstly, workers collect fresh rock samples in the
process of exploration; secondly, after returning to the
laboratory, the rock thin section with an area of about
2× 2 cm is cut from the vertical stratification direction of the
rock samples. When one side of the rock samples has been
flattened on the grinding machine, it is glued to the carrier
glass with glue such as adhesive. (en, the thickness of the
other side is smoothed to 0.03mm, and the cover glass piece
is glued with the adhesive. Finally, an image of the rock sheet
is viewed under a polarizing microscope by a knowledgeable

or experienced geologist. In this way, the rock type and
structural parameters can be determined. (is traditional
identification method requires the observer to have very rich
geological knowledge and experience. In addition, the
method has many problems, such as strong subjectivity, long
identification period, and poor field identification ability.

With the development of computer vision and image
processing technology, great changes have been brought to
rock recognition and mineral analysis [3, 4]. Many re-
searchers analyzed the texture, fabric, granularity, and li-
thology of rocks based on image processing techniques such
as image analysis and feature extraction. Patel used the
probabilistic neural network (PNN) to develop a lab-scale
vision-based model in which color histogram features are
used as the input. (e model has achieved good recognition
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results, and the error of misclassification of limestone is less
than 6%. (e main limitation of this study is that the
classification object is the entire rock sample of multiple
rocks, and no further consideration is applied to identify
rocks on site [5, 6]. Based on the basalt thin section image,
Singh et al. extracted 27 characteristic parameters and
identified 300 rock thin sections [7]. (e recognition ac-
curacy of the three texture categories is 92.22%, which is
improved compared with previous studies, but the classi-
fication categories are fewer. Based on the research of image
features, Cheng Guojian and Yin Juanjuan applied the
support vector machine to realize the image classification of
a total of 100 rock thin sections of 4 categories, with an
accuracy of 80% [8]. (e disadvantage is that the model
performed poorly. With the continuous development of
deep learning in the field of image intelligent recognition,
many researchers used deep learning methods to auto-
matically identify rock images [9–11]. Zhang Ye et al. used
the transfer learning method for the first time to auto-
matically identify and classify rock images. (ey have
achieved the effective identification of three types of granite,
Chiba, and breccia [12]. However, the experimental data are
few and cannot meet the needs of on-site recognition. Li
et al. used the transfer learning method to train the sand-
stone microscopic images to obtain a high-precision
sandpaper slice microscopic image classification model [13].
(e disadvantage is that the adaptability is poor, and it is
only suitable for sandstone recognition. Cheng Guojian,
Guo Wenhui and others realized automatic granularity
recognition based on the rock thin section image [14]. (e
accuracy of rock identification is 98.5%. However, the
identification objects of this study are rock thin section
images, which need to be made in the laboratory and cannot
be directly applied to the work site. Based on computer
vision and machine learning, Marmo et al. used more than
1,000 carbonate flakes. Based on the gray scale digital image,
they set up the multilayer sensory neural network model.
(en, network training based on texture data was carried
out, and the classification accuracy reached 93.3% [15]. Guo
Chao et al. used the original color image of the rock to
describe the feature space. (eir method was to calculate the
standard arithmetic values of different color channels by
combining their morphologies [16]. (e neural network is
used to establish the mapping relationship between the
feature space and the rock image category, and the algorithm
is tested using 100 rock thin section images from the Ordos
Basin. (e results show that the automatic recognition rate
of rock images in different color spaces is more than 95%.

(e above research on rock image recognition uses the
standard rock thin section image, rather than taking the
more complex and direct rock image as the research object.
It is based on various more complex feature parameter
extraction algorithms, and the identified rock image data are
less. (e current research results reduce the problem of
strong subjectivity and high recognition cost in the tradi-
tional method. But, it cannot meet the requirements of
geological survey personnel to quickly identify rock lithology
in real time in the field. “Smartphones” are now a ubiquitous
handheld communication and computing device with

multiple sensors that all workers can use anytime, anywhere.
In order to get a better solution, this paper proposes a
method to identify the rock image. (e method is suitable
for smartphones, and the recognition is fast and accurate. An
application running on an android smartphone is also
designed and developed in this article. Because smartphone
computing and storage resources are limited, this method is
based on ShuffleNet, a light convolutional neural network.
Combining with the transfer learning method, the learning
results of ShuffleNet on ImageNet of a large data set are
transferred. (ese are transferred to the experimental data
set in this paper, namely, the rock image data set (a total of
30 categories). After retraining, the generated rock recog-
nition model is exported. Finally, an app was designed and
developed in this paper to help the staff quickly and ac-
curately identify the rock lithology on site. (e rock rec-
ognition model needs to be deployed on android-based
smartphones. (e model of this paper extracted features by
searching image pixels without manual operation, which
reduced the influence of subjective factors. Moreover, the
training process has low requirements on the rock image
size, imaging distance, and light intensity. Using smart-
phones, which are carried by workers, lithology can be
quickly and accurately identified. Compared with the tra-
ditional method, it solves the problem of the traditional
method. (e solved problems include strong subjectivity,
high identification cost, and long cycle. It also has advan-
tages over the analysis and feature extraction techniques
based on rock slice images. For example, the method can
directly identify more complex images of rocks without
making thin sections. (is method has the advantage of
quickly and accurately identifying rock lithology in the field,
which can meet the requirements of workers to identify
rocks quickly and accurately.

2. Materials and Methods

2.1. Rock Recognition Model Structure Design

2.1.1. ShuffleNet. ShuffleNet is an extremely efficient con-
volution structure designed for smartphones. It was pro-
posed by Zhang Jian and others [17]. (e depthwise
separable convolution and group convolution introduced by
Xception and ResNeXt can coordinate the ability and
computation of the model, but their pointwise convolution
occupies a large amount of computation [18–21]. ShuffleNet
introduces pointwise group convolution to solve this
problem. It has two characteristics: pointwise group con-
volution and channel shuffle. Compared with the existing
advanced CNN models (such as MobileNets) [22, 23], the
calculation amount can be greatly reduced under the similar
precision, and the parameter amount can be greatly reduced.
A large number of 1×1 convolutions consume a lot of
computing resources, and pointwise group convolution
helps reduce computational complexity. As shown in Fig-
ure 1, channel shuffle is to orderly disrupt the channels of
each feature map to form a new feature map to solve the
problem of “poor information flow” caused by group
convolution.
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Group convolution can effectively reduce the compu-
tational cost, but the output only comes from some fixed
input channels. It prevents feature exchange between
channels and does not obtain the optimal representation.
ShuffleNet uses channel shuffle to construct the association
between the input channel and the output channel, in-
cluding a convolutional layer with g groups and an output
with g × n channels. (e output dimension is reshaped into
(g, n), and it is transposed and flattened as the input to the
next layer. Figure 2 shows that ShuffleNet is based on
channel shuffle to construct the ShuffleNet unit.

(e ShuffleNet architecture is primarily built from a set
of ShuffleNet units. A ShuffleNet unit consists of a 1× 1
pointwise group convolution layer and follows the channel
shuffle operation layer. Under the same conditions, the
calculation cost of this structure is low.(e input is c× h× w

with bottleneck channels m. ShuffleNet only requires
hw(2 cm/g + 9m) FLOPs, but ResNet requires hw(2 cm +

9m2/g) floating-point operations per second (FLOPs).
Compared to MobileNet, the ShuffleNet model achieves an
absolute 7.8% performance in ImageNet Top-1 errors at a
cost of approximately 40 million floating-point operations
per second (MFLOPs). Channel split operation was pro-
posed in the ShuffleNet V2. Firstly, the input of the feature
channel is divided into two branch channels. One branch
remains unchanged, and the other branch is computed a
1× 1 convolution and 3× 3 depthwise separable convolu-
tion. (en, the two branch features are connected, and the
channel shuffle operation is implemented. After the channel
is reorganized, the next unit is repeated. (e report shows
that ShuffleNet V2 is about 40% faster than ShuffleNet V1
and about 16% faster than MobileNet V2. With 500
MFLOPs, ShuffleNet V2 is 58% faster than MobileNet V2
and 63% faster than ShuffleNet V1 [24, 25].

2.1.2. Transfer Learning and Model Construction. (e
transfer learning method can apply the knowledge learned
from other tasks (source tasks) to the target task. (is
method is conducive to the construction of themathematical
model of the target task and reduces the duplication of labor
and the dependence on training data of the target task
[26–28]. A comparison of transfer learning and traditional
machine learning is shown in Figure 3. Traditional machine
learning faces different learning tasks, and even if there is a
similarity between tasks, different learning systems need to
be established. However, in the face of different learning
tasks, transfer learning can transfer the knowledge learned
from the learning system. In other words, knowledge learned
in solving the source task is transferred to the learning
system that solves the target task.

From the perspective of the structure and function of the
deep neural network, the convolutional layer of the neural
network mainly extracts features and shares parameters and
reduces the number of parameters through the use of the
pooling layers [27–30]. (e features extracted by the network
are integrated through the final fully connected layer to obtain
the high-level meaning of the image features. (en, it is
classified by the classifier to get the final classification result
[26, 31]. In some cases, the data set is small, and the distribution
is not balanced, which makes the training results overfitting.
(e model performs well on the training data set but performs
poorly on the verification data set and test data set. Using
transfer learning method can improve this problem very well.

2.1.3. Model Structure Design. (rough transfer learning,
the model parameters trained by ShuffleNet on ImageNet of
the large data set are migrated. In order to help train the rock
image recognition model, it was migrated to 30 classes in the

(c)(b)(a)

Channels Channels Channels

Input

GConv1

Feature

Gconv2

Output

Channel
shuffle

Figure 1: Channel shuffle with two stacked group convolutions. GConv stands for group convolution. (a) Two stacked convolution layers
with the same number of groups. Each output channel only relates to the input channels within the group. No cross talk; (b) input and
output channels are fully related when GConv2 takes data from different groups after GConv1; (c) an equivalent implementation to (b) using
channel shuffle.
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experimental data set of the rock image. (e ShuffleNet can
extract valid information from images [32, 33]. (e differ-
ence between rock image data sets and large data sets is
relatively small. And in specialized fields, it is a small data set
of fine-grained types. (erefore, the problem of rock image
recognition belongs to the fine-grained classification of small
data sets. (is paper used the transfer learning method to
perform rock image recognition. Most parameters of the
network pretrained on large data sets were retained and
adjusted to fit this data set. Input image resolution: 128, 160,
192, or 224px. Different sizes of input pictures will affect the
classification results [34]. (is article used 224 as the initial
setting. (e relative size of the model can be set to 1.0, 0.75,

0.50, or 0.25. (is paper recommended 0.5 as the initial
setting. Smaller models run significantly faster but at the
expense of accuracy.

In order to deploy the trained model to the smartphone,
the lightweight convolutional neural network structure
ShuffleNet of 2.1.1 was used. ShuffleNet weights and pa-
rameters pretrained by ShuffleNet on the ImageNet data set
were imported based on the characteristics of the rock image
data set. Each convolutional layer used ReLU as the acti-
vation function. Batchnorm was used to normalize the
distribution of the batch. (e Softmax classifier of 2.1.4 was
used for classification. A model was trained on the data set.
(e model structure is shown in Table 1.

1 × 1 Conv

3 × 3 DWConv

1 × 1 Conv

Add

BN

BN ReLU

BN ReLU

ReLU

(a)

3 × 3 DWConv

1 × 1 GConv

1 × 1 GConv

BN

BN

BN ReLU

Channel
shuffle

Add

ReLU

(b)

3 × 3 DWConv
(stride = 2)

1 × 1 GConv

1 × 1 GConv

3 × 3 AVG Pool
(stride = 2)

BN

BN

BN ReLU
Channel
shuffle

Concat

ReLU

(c)

Figure 2: ShuffleNet units. (a) Bottleneck unit with depthwise convolution (DWConv); (b) ShuffleNet unit with pointwise group con-
volution (GConv) and channel shuffle; (c) ShuffleNet unit with stride� 2.

Different tasks

Task A Task B Task C

Learning
system A

Learning
system B

Learning
system C

(a)

Source tasks Target tasks

Task A Task B Task C

A trained model

Knowledge model Learning system

(b)

Figure 3: Comparison of traditional machine learning (a) and transfer learning (b).
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2.1.4. Softmax Regression Model. In the multiclassification
problem, the Softmax regression algorithm was adopted in
the rock recognition model in this paper to map the output
values for multiple neural units into (0, 1) with a total value
of 1 [29, 35]. (erefore, the rock recognition model was
classified as the probability of a sample being in a certain
category to realize multiclassification. Let the training set
consist of m labeled samples, i.e.,
(x(1), y(1)), . . . , (x(m), y(m)) . (e range of the category
label y is y(i) ∈ 1, 2, . . . , k{ }. Let probability p(y � j|x|)

denote the probability that the sample is discriminated as
being in category j in the case of input x. (erefore, the
output of the k-class classifier is a k-dimensional vector, and
the sum of its elements is 1. Analogical logistic regression
using the hypothesis function hθ(x(i)) can express the
output of Softmax as

hθ x
(i)

  �

p y(i) � 1 | x(i); θ( 

p y(i) � 2 | x(i); θ( 

⋮

p y(i) � k | x(i); θ( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
1


k
j�1 eθ

T
j x(i)

eθ
T
1 x(i)

eθ
T
2 x(i)

⋮

eθ
T
k x(i)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(1)

Among the terms in the equation, the input x is a vector
of dimension m× 1, and the output model parameter is a
matrix of order m× k. (e training process of the model is
used to find the optimal value through continuous iteration
so that the predicted value approaches the actual value. (e
cost function of the regression model can be expressed as

J(θ) � −
1
m



m

i�1


k

j�1
1 y

(i)
� j log

eθ
T
j x(i)


k
l�1 eθ

T
l x(i)

],⎡⎢⎢⎣ (2)

where 1 {×} is an indicative function, whose value rule is 1
{expression whose value is true}� 1; 1 {expression whose
value is false}� 0.

As for solving the parameters by minimizing J(θ), there
is currently no closed solution to minimize J(θ). In this
paper, iterative algorithms such as gradient descent are used

to solve the problem.(e gradient formula that was obtained
after taking derivatives is as follows:

▽θj
J(θ) � −

1
m



m

i�1
x

(i) 1 y
(i)

� j  − p y
(i)

� j | x
(i)

; θ    ,

(3)

▽θj
is a vector whose l element zJ(θ)/zθjt is the partial

derivative of J(θ) to the l component of θj.
In this paper, a weight attenuation function term is

added to the cost function to make it strictly convex to
ensure its convergence and unique solution. (e cost
function is modified by adding λ/2

k
i�1 

k
j�0 θ

2
ij, where n

represents the number of input data, and this weight at-
tenuation term will punish excessive parameter values. (e
cost function was converted to the following equation:

J(θ) � −
1
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After adding the weight attenuation term (λ> 0), the
cost function became a strict convex function so that a
unique solution can be guaranteed, and since J(θ) is a
convex function, the gradient descent method can guarantee
convergence to the global optimal solution. Divide the data
set into 3 parts: training set, validation set, and test set, take
the number in λ from small to large, and then learn the
model parameters on the training set, calculate the verifi-
cation set error on the cross-validation set, and select the
model with the smallest error, that is, choose λ. Finally, the
evaluation is performed on the test set to obtain the best λ
value. In order to use the optimization algorithm, the de-
rivative of this new function J(θ) is required:

▽θj
J(θ) � −

1
m



m

i�1
x

(i) 1 y
(i)

� j  − p y
(i)

� j | x
(i)

; θ    + λθ .

(5)

An available Softmax regression model can be achieved
by minimizing J(θ).

Table 1: ShuffleNet architecture.

Layer Output size K size Stride Repeat
Output channels (g groups)

g � 1 g � 2 g � 3 g � 4 g � 5
Image 224× 224 3 3 3 3 3
Conv1 112×112 3× 3 2 1 24 24 24 24 24
MaxPool 56× 56 3× 3 2 1

Stage 21 28× 28 2 1 144 200 240 272 384
28× 28 1 3 144 200 240 272 384

Stage 3 2 1 288 400 480 544 768
1 7 288 400 480 544 768

Stage 4 7× 7 2 1 576 800 960 1088 1536
7× 7 1 3 576 800 960 1088 1536

GlobalPool 1× 1 7× 7
FC 1000 1000 1000 1000 1000
Complexity2 143M 140M 137M 133M 137M
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2.2. Model Training

2.2.1. Data Set and Data Preprocessing. Geological survey
workers use fresh rocks by using a smartphone as an exper-
iment in a data set of rock images. (ese rocks are generally
rock foam rhyolite of different lithologies and dark gray sto-
matal almond-like rough rocks. For example, there are 30 kinds
of light gray rhyolite, purple red tuff, gray black obsidian,
purple gray amphibolic rhyolite, and potassium graywhite rock
data.(ese images came frommultiple locations in East China,
with sizes between 3M and 6M. In this paper, the size of each
image is compressed to 224 ∗ 224 pixels on the condition of
ensuring accuracy. Figure 4 is a sample map of the rock.

30 different kinds of rocks were collected, and a total of
3,795 images were taken. According to the ratio of 8:1:1,
images were randomly selected from rock samples as the
training data set, verification data set, and test data set. (at
is, there are 3,046 graphs of the training set, 381 graphs of the
verification set, and 368 graphs of the test set. (e detailed
data distribution is shown in Figure 5.

It can be seen from the observation of the data set that
the number of all types of data was unbalanced, and the
number of pictures of some categories was very less.
Methods such as rotation, flipping, cutting, and adjusting
light and shade were used to randomly expand the training
data set to improve the training performance.

2.2.2. Training Model. (e transfer learning method was
used to train the rock recognition model in the TensorFlow
framework on the PC.(e ShuffleNet network structure was
built using the Python programming language, and the
parameters pretrained by ShuffleNet on the ImageNet data
set were imported. Experiments were evaluated on Core I9
series CPU, 32G RAM, NVIDIA GeForce GTX Titan Z 12G
GPU, Linux OS PC. In the training process, the default
iteration step number was 3600, and the learning rate was
0.008. (e activation function was ReLU. During each it-
eration, 50 images were randomly selected from the data set
for training, and 15 images were randomly selected for cross-
validation. Softmax was used as a classifier to classify, and
the optimization function used a method of stochastic
gradient descent. Training accuracy refers to the percentage
of accurate classification of currently trained images, while
verification accuracy refers to the percentage of accurate
classification of randomly selected images. Cross-entropy
displays the learning effect of the model training process.
(e smaller the value, the better the learning effect.

As can be seen from Figure 6, the loss converges after the
160th iteration. After the 640th iteration, it remained stable,
and the loss was close to zero. And at this point, the training
accuracy is close to 100%.(e accuracy of the verification set
is slightly tight. After 3,600 iterations, the accuracy of the
rock recognitionmodel on the training set approaches 100%,
and the loss is only 0.0004; the accuracy on the verification
data set reached 97.65%, and the loss is only 0.1052.
According to the training accuracy, verification accuracy,
and cross-entropy changes, it can be seen that the training
effect of the model is relatively ideal.

2.3. Accuracy and Run Time Comparison. (is paper shows
the superiority of the rock recognition model which is based
on the combination of the ShuffleNet convolutional neural
network and the transfer learning method. On the personal
computer, the precision and running of the rock recognition
model based on ShuffleNet were compared with the
MobileNet model, the SqueezeNet model, and the standard
convolutional network ResNet50model. Originally designed
for mobile and embedded visual applications, MobileNets
are built primarily from the deep separable convolution
operation, which decomparts standard convolution into
deep convolution and point-by-point convolution. Mobi-
leNets apply a single filter to each input channel and then
combine the output with linear combinations through
point-by-point convolution. MobileNet V2 is proposed for
further improvement. It is constructed by inversion residual
and linear bottleneck technique, which can reduce the
number of parameters and the loss of activation operation.
Combined with the single-shot detector lite used for object
detection, it was reported that MobileNet V2 was 35% faster
than MobileNet V1, with 20 times less computation and 10
times fewer parameters than YOLO V2 [36]. SqueezeNet
proposes to maintain precision with a small number of
parameters, and its core structure is a new type of com-
ponent Fire module. (ere are three main strategies for
building Fire module [37, 38]. First, the 3× 3 filter was
replaced with a 1× 1 filter. Second, the number of input
channels of the filter was reduced. Finally, the network
sampling was delayed. (e evaluation results showed that
the structural parameters of SqueezeNet were 50 times less
than original AlexNet and maintained the horizontal ac-
curacy of AlexNet on Imagenet.

2.4. Software Deployment. In this study, the trained rock
recognition model was deployed on smartphones or em-
bedded products. (e significance of rock identification lies
in the fact that geological investigators use smartphones for
recognition on the work site instead of huge servers in the
laboratory. Recognition in the laboratory is not a bad option.
But, if workers take rock samples back to the laboratory to
make rock thin sections, the recognition period and cost will
increase. Many applications are often very sensitive to the
response time of a program; even small latency in service
response can have a significant impact on the user. Today,
more and more applications provide core functionality
through deep learning models. Whether people are
deploying models to the cloud or to smartphones, low-la-
tency reasoning is becoming increasingly important. One
way to solve this problem is to performmodel inference on a
high-performance cloud server. Also, the input and output
models are transferred between the client and the server.
However, this solution brings many problems, such as high
computing costs, massive data migration through mobile
networks, user privacy, and increased latency. (e top-level
compressed ShuffleNet model takes an alternative approach
to these scenarios and requires less resources to perform
reasoning. (is section describes the process of deploying
the ShuffleNet model on a smartphone.
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(e rock recognitionmodel is trained on a PC server.(is
paper uses the TensorFlow framework to run properly on
Linux. However, this cannot be done directly on the
smartphone and requires some necessary conversions and
deployments. (e CNN model on Linux needs to be con-
verted to the (.pb) format and deployed on Android
smartphones. In order to implement the solution of

identifying rock lithology in the field, this paper developed an
application running on Android smartphones. In addition,
Huawei, Samsung, and Oppo, three common smartphones in
the market, were selected as the experimental platform. (e
interfaces of the application are shown in Figure 7.

(e application is written in the Java programming
language and runs on an Android smartphone (Android

Figure 4: Rock sample data.
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4.4 operating system or higher). (e operating memory of
the phone should be greater than 4GB, and the storage
capacity should be 32 GB or more. (e application can load
and run the trained CNN model under the TensorFlow
framework [39, 40]. It can identify not only the rock image
captured by the smartphone in the field but also the rock
photos stored in the gallery of the mobile phone. Software
can output the recognition results (the type and nature of
the rock, the accuracy of the recognition, and the time of
execution) to the interface. (e Huawei P20 mobile phone
is used for the accuracy test of the model on the smart-
phone. (e built-in main camera has a focal length of
3.95mm and a resolution of 2244×1080 pixels, which is
supported by most smartphones. Samsung Galaxy A8 s and
Oppo R17 with a 16 megapixel rear camera (Android 7.0)
are used to illustrate the performance of this app on other
phones.

Operating the application is simple and convenient.
Install the application on the smartphone carried by the
investigator. Open the software at work. (en, click
“Camera” to enter the camera photographing interface.
(en, point the camera at the rock and click “photo-
graphing.” After this series of steps, the captured image is
loaded into the interface to be recognized. (en, click
“recognize,” and the recognition result (including the type
and lithology of the rock, the recognition accuracy, and the
recognition time) is displayed on the interface in less than 1
second.

2.4.1. Software Development Platform. On Windows 10,
build the application development environment based on
Android Studio 3.3, Android SDK (Java Development Kit),
Java JDK 8 (Java Development Kit), TensorFlowLite De-
velopment Kit (you can migrate the model trained under the
TensorFlow framework to Android smartphone), and ADT
(Android development tools). (e application is suitable for
the operating system of Android 6.0 and above.

2.4.2. Software Performance and Technical Overview.
(is software can be used by all types of Android smart-
phone users. It implements a friendly graphical user in-
terface and features linear execution. In this interface, only
the rock identification results (type, lithology, and accuracy)
and the identification time are shown. It also allows the user
to use the application without knowing its internal per-
formance.(e technical system of the application program is
basically composed of two parts. One is the underlying part
composed of the TensorFlow Lite development interface,
and the other is the Android application layer composed of
the Android native development interface (API) [41, 42].
TensorFlow Lite can deploy the CNN model trained under
the TensorFlow framework to Android smartphones.
According to the principle described in Section 2.1, Ten-
sorFlow Lite provides a Jar package written in Java and (.so)
format dynamic library written in C ++. (e latter provides
APIs for operational models such as functions for reading
models, recognition functions, and output functions. (e
“Android native API” implements the main parts of the
main application and the graphical user interface. It is re-
sponsible for coordinating tasks, invoking Android camera
sensors to capture rock images and correctly store results.
When rock images are captured in the “Android application
layer” and needed to be identified and analyzed, a request
was made for “TensorFlow Lite underlying part.” However,
direct communication between the two parts is not feasible.
So, this paper needs to use the Java Native Interface (JNI) to
allow this interaction. (e “Android application part” calls
the required functionality through JNI, which is actually
responsible for executing the C ++ library and returning the
results.

3. Results

3.1. 8e Accuracy and Time of the Rock Recognition Model
Tested on the Smartphone. (e purpose of this study is to
facilitate geologists. (e idea is for them to use smartphones

100

80

60

40

20

0
0 160 320 480 640 800 960 1120 1280 1440 1600 1760

0

0.5

1

1.5

2

2.5

3

3.5

4

Loss
Train accuracy (%)
Val accuracy (%)
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to quickly and accurately identify the types and lithology of
rocks in the wild. (erefore, the accuracy and running time
of identification are very important. (e test data set and the
(.pb) format model which has completed the training and
the (.txt) format label file containing rock information are
imported into the SD card of the Hauwei smartphone, re-
spectively. When the application in 2.2 is run, the rock
recognition model is automatically loaded. (en, the test
data set in the smartphone is read, and the recognition result
of the test set is obtained. As shown in Figure 8, the accuracy
of the model is represented by the confusion matrix.

Among them, the row value of the matrix is the true
value. (e column value is the predicted value, and the
accuracy of the whole test set is 95.30%. And the accuracy of
the single image is above 96%, accounting for 95% of the test
data set.

(e recognition time distribution of the single image of
the test data set is shown in Figure 9. Among them, the
average recognition time of the single image is 786 milli-
seconds. (e maximum is 1,045 milliseconds. And the
minimum is 452 milliseconds. (e boxplot has no outliers,
indicating stable model recognition.

3.2. Correlative Experiments and Analysis. A rock recogni-
tion model based on the ShuffleNet convolutional neural
network combined with the transfer learning method was
presented in this paper. In order to verify the superiority of
this model, the same training data set and validation data set
were used in this paper. And the accuracy and running time
of this model were contrasted with other CNN models
(MobileNet and SqueezeNet).

3.2.1. Compared with Other CNN Models. (e training
based on different batch sizes was evaluated at 8, 16, 32, and

48, respectively. Figure 10 shows the relationship between
model accuracy and training period. (is section takes
advantage of the accuracy of the rock type and lithology.(e
data and other parameter settings were the same as the
experimental data provided in Section 2.2.

All models converged after about 35 training epochs.(e
32-batch training model achieved better performance, about
5% better than the other models. SqueezeNet was more
stable and smooth during training, while MobileNet and
ShuffleNet fluctuated more. It is reasonable to find that the
calculation of gradient descent direction was more accurate
and milder for larger batch sizes during model training.
Smaller batch sizes resulted in more randomness and made
it harder to achieve optimal performance.

3.2.2. Execution Time Evaluation. Different CNN models
contain layers of various depths and widths, number of
filters, and size and shape of filters, which lead to different
structures, parameters, and complexity. In this paper, rock
recognition models based on ShuffleNet training are com-
pared with models based on other convolutional neural
network training. (e following results were obtained by
evaluating the running time of different models. Running
time of different CNN models was evaluated. Training and
testing time of MobileNet, ShuffleNet, SqueezeNet, and
ResNet50 models with various batch sizes (8, 16, 32, and 48)
were evaluated. Table 2 gives the experiment results.

Using batch sizes 8, 16, 32, and 48 during each iteration,
the MobileNet model had the longest training time, and
these training times were 1.265 s, 2.364 s, 4.728 s, and 8.512 s,
respectively. (e ShuffleNet model had the shortest training
time, about 75% of that of MobileNet. For test time,
ShuffleNet took the shortest amount of time, with a time of
0.125 s. Comparing with the ResNet50 model, the running
efficiency was greatly improved with compressed CNN

Figure 7: Application operator interface.
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models. For the size of space occupied by the model,
MobileNet, ShuffleNet, and SqueezeNet required 34.5M,
18.2M, and 25M, respectively, but 219.4M is needed for the
ResNet50 model.(e experimental results also show that the
ShuffleNet model is efficient and occupies less space. It is 7
times faster than the standard convolutional network
ResNet50 model and takes up 12 times less space.

3.3.Comparing theRecognitionTimesUsingDifferentAndroid
Smartphones. (e compressed CNN model was deployed
on the Android smartphone, and its performance was tested.
After the model was converted, ShuffleNet, MobileNet, and

SqueezeNet files were, respectively, 15.2MB, 8.4MB, and
42.8MB. Table 3 shows the model test results for the selected
Android smartphone. Huawei, Samsung, and Oppo phones
were used for testing, and the processors of the three phones
are Kylin970, Qualcomm710, and Qualcomm670. (e re-
sults showed that smartphones were very efficient and could
perform operations in 0.5 seconds, enabling real-time ap-
plications. (e Huawei phone achieved the best perfor-
mance, taking 0.283 seconds to execute the model due to the
neural network processing unit contained in it.(reemodels
were deployed on the same smartphone. (ere were three
different types of smartphones. As shown in Table 3, the
model of ShuffleNet achieved the best performance.

3.4. 8e Advantages of the Presented Method. (e rock
identification method in this paper is compared with the
traditional method and the method based on rock slice
image processing. Table 4 shows the advantages of the
presented method. (e model of this paper can quickly
identify the types and properties of rocks on the condition
that the accuracy requirements are met. (e presented
method can quickly get the recognition results in less than 1
second after taking photos in the field. And there is no need
to make rock flakes to reduce the cost of identification. (e
experimental results show that the convolutional network
model has obvious performance in model compression and
computation. It is suitable for rapid and accurate recognition
of rock lithology under field offline conditions.
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4. Discussion

In this paper, lightweight convolutional neural network
ShuffleNet was used to solve the problem of recognizing
types and lithology of rocks in the field. (e pretraining
model of ShuffleNet was fine-tuned in combination with the
transfer learning method, and then the model was retrained
on the rock image data set in this paper. Finally, this paper
developed an intelligent program for quickly identifying
rocks for geological survey. (is program enabled effective

recognition of 30 types of rocks such as granite, rhyolite, tuff,
and breccia before deploying trained rock models to An-
droid smartphones. In this paper, the accuracy of the rec-
ognition model reached 97.65% in the verification data set of
PC. And the accuracy of the recognition model on the test
data set of the smartphone was 95.30%. (e average rec-
ognition time of a single rock image was 786 milliseconds.
(e model size was only 18.2MB. For the same rock model,
there was no significant difference in the results of different
smartphone recognition. (e model extracted features by
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Figure 10: Model accuracy versus training epoch on various batch sizes: (a) result on the MobileNet model; (b, c) result on SqueezeNet and
ShuffleNet models, respectively. Orange, yellow, green, and wine curves represent batch sizes equal 8, 16, 32, and 48, respectively.

Table 2: Execution time (millisecond).

Execution time Batch size MobileNet ShuffleNet SqueezeNet ResNet50

Training time

8 657 158 553 1465
16 1182 212 995 2935
32 2364 424 1770 5048
48 4256 954 2655 8993

Testing time X 249 125 192 915
Space occupation X 34.5M 18.2M 25M 219.4M

Table 3: Execution time on Android smartphones (millisecond).

CNN models Oppo R17 Samsung Galaxy A8s Huawei P20 Our PC server
MobileNet 1145 531 417 249
ShuffleNet 457 308 283 125
SqueezeNet 621 367 339 192
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searching image pixel points without manual operation, thus
reducing the influence of subjective factors. Compared with
the recognition of rocks using the technique of rock thin
section image processing [3, 43], the presented method has
lower requirements on the size, imaging distance, and light
intensity of the rock image. In this paper, the rock recog-
nition model trained by ShuffleNet was compared with
MobileNet and SqueezeNet training models, respectively, in
terms of accuracy and running time. It was found that the
rock recognition model based on ShuffleNet training has
many advantages. For example, it can effectively reduce
model parameters, compress model size, improve model
calculation speed, and shorten model running time. (is
method had short recognition time and high accuracy and
was suitable for fast and accurate recognition of rock images
under offline conditions in the field. Based on ShuffleNet’s
lightweight convolutional neural network, the characteris-
tics of rocks were effectively identified in the image.(rough
the tests on PC and smartphones, there was no wrong sit-
uation, which fully proved the robustness and generalization
ability of the model.

(e greatest contribution of this paper was to provide a
solution for geological survey to quickly and accurately
recognize rock lithology. Traditional recognition methods
need not only collection of fresh rock samples to make rock
thin section but also knowledgeable or experienced pro-
fessionals to recognize the rock type and structure param-
eters under the microscope. (e traditional method has
strong subjectivity, long period, and high difficulty in the
field. (erefore, the traditional identification method re-
quires the observer to have very rich geological knowledge
and experience [42–44]. At present, it was found that most of
the rock deep learning recognition techniques are used to
identify rock slices. (e same is true for image processing
techniques. Workers need to collect rock samples and go
back to the office or laboratory to make the rock thin section.
(e recognition accuracy can meet the requirements of
professional standards. But, the biggest disadvantage is that
the research results of rock recognition cannot be applied to
the field. And workers cannot use the research results of rock
recognition to quickly and accurately identify the rock in the
field [6, 45, 46]. (is paper used ShuffleNet combined with
the transfer learning method to train the rock recognition
model. (ere was no need to make the rock thin section.

Geological investigators use smartphones which they carried
as tools to photograph rock images in the field.

(e presentedmethod also has some limitations.(e size
of sample data has a crucial influence on the recognition
effect of the deep learning model. When the number of
images of a certain type of the rock is less, its features will be
submerged, leading to poor recognition effect. It is difficult
to find similar rock images with low probability of classi-
fication and recognition. (erefore, the probability of
identifying such rock images is low. In this paper, the
original training data set is expanded after cutting the rock
image. (en, a new classification recognition model is
established by training. (e second test was made by clas-
sifying and recognizing the rock images with low probability.
For granite, which contains a lot of minerals and has a wide
range of variation in its content, the recognition and clas-
sification effect in the model are poor. Because granite
mainly consists of feldspar, quartz, and black and white
mica, the mineral composition of different varieties is not the
same. And there may be pyroxene and amphibole, so the
image features are complex, and the difficulty of recognition
is increased. In addition, there were 30 types of rocks
identified in this paper, and more types and quantities of
training samples were needed. (e model in this paper was
compared with the training models of MobileNet and
SqueezeNet. Experimental results show that the ShuffleNet-
based rock recognition model has advantages in precision
and running time. (e comparison involves fewer models
and requires more lightweight compression models. Adding
more models is to choose a better solution in terms of
precision and time.

5. Conclusions

Recognition of rock types and lithology are an important
part of geological survey. In this research, ShuffleNet, a
lightweight convolutional neural network designed for
smartphones, was used to recognize the types and lithology
of rocks. (e transfer learning method was used to train the
rock recognition model on the PC, and the trained model
was deployed on the smartphone. (is paper designed and
developed an application program that runs on a smart-
phone. (is application is not only simple in operation but
also highly accurate in rock recognition. (is paper solved

Table 4: (e presented method is compared with traditional recognition methods and feature extraction methods based on the rock thin
section.

Recognition methods Recognition
period Recognition process and cost estimate Whether it can be

applied in the field
Recognition
accuracy

(e presented method Real-time
recognition

Use a smartphone to take pictures of the rocks
directly. Approximately $300

Can be recognized
in the field

Meet the accuracy
of the survey

Traditional recognition
methods

More than 2
days

Collect rock specimens, make rock thin
sections, and observe the thin sections under
the microscope by professionals. Costs over

$850

Unable to
recognize in the

field

Meet the accuracy
of the survey

(e method for analyzing and
feature extraction based on the
rock thin section

More than 2
days

Collect rock samples, make rock thin sections,
and recognize in PC. Costs over $850

Unable to
recognize in the

field

Meet the accuracy
of the survey
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the problems of long recognition period and high cost in
traditional recognition methods. It also makes up for the
defect that the methods based on the image processing and
feature extraction of rock thin section cannot recognize the
rock quickly and accurately in the field. Geological inves-
tigators can quickly and accurately identify rocks by using
their smartphones in the field, which is of great help to
geological surveys. In the future, this paper needs to compare
the rock recognition model based on ShuffleNet with more
models trained by the lightweight convolutional neural
network. In order to improve the accuracy and efficiency of
the method, more different kinds of rock training samples
were added.
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[5] L. Lepistö, I. Kunttu, and A. J. E. Visa, “Rock image classi-
fication using color features in Gabor space,” Journal of
Electronic Imaging, vol. 14, no. 4, Article ID 040503, 2005.

[6] A. K. Patel and S. Chatterjee, “Computer vision-based
limestone rock-type classification using probabilistic neural
network,” Geoscience Frontiers, vol. 7, no. 1, pp. 53–60, 2016.

[7] N. Singh, T. N. Singh, A. Tiwary, and K. M. Sarkar, “Textural
identification of basaltic rock mass using image processing
and neural network,” Computational Geosciences, vol. 14,
no. 2, pp. 301–310, 2010.

[8] G. Cheng and W. Guo, “Rock images classification by using
deep convolution neural network,” Journal of Physics: Con-
ference Series, vol. 887, Article ID 012089, 2017.

[9] P. Y. Zhang, J. M. Sun, Y. J. Jiang, and J. S. Gao, “Deep
learning method for lithology identification from borehole
images,” in Proceedings of the 79th EAGE Conference and
Exhibition 2017, Paris, France, June 2017.

[10] S. Rinnen, C. Stroth, A. Riße, C. Ostertag-Henning, and
H. F. Arlinghaus, “Characterization and identification of
minerals in rocks by ToF-SIMS and principal component
analysis,” Applied Surface Science, vol. 349, pp. 622–628, 2015.

[11] H. Izadi, J. Sadri, and M. Bayati, “An intelligent system for
mineral identification in thin sections based on a cascade
approach,” Computers & Geosciences, vol. 99, pp. 37–49, 2017.

[12] Y. Zhang, M. Li, and S. Han, “Automatic identification and
classification in lithology based on deep learning in rock
images,” Acta Petrologica Sinica, vol. 34, no. 2, pp. 333–342,
2018.

[13] N. Li, H. Hao, Q. Gu, D. Wang, and X. Hu, “A transfer
learning method for automatic identification of sandstone
microscopic images,” Computers & Geosciences, vol. 103,
pp. 111–121, 2017.

[14] G. Cheng, Q. Yue, and X. Qiang, “Research on feasibility of
convolution neural networks for rock thin sections image
retrieval,” in Proceedings of the 2018 2nd IEEE Advanced
Information Management, Communicates, Electronic and
Automation Control Conference (IMCEC), pp. 2539–2542,
Xi’an, China, May 2018.

[15] R. Marmo, S. Amodio, R. Tagliaferri, V. Ferreri, and G. Longo,
“Textural identification of carbonate rocks by image pro-
cessing and neural network: methodology proposal and ex-
amples,” Computers & Geosciences, vol. 31, no. 5, pp. 649–659,
2005.

[16] C. Guo and Y. Liu, “Recognition of rock images based on
multiple color spaces,” Science Technology and Engineering,
vol. 14, pp. 247–251+255, 2014.

[17] Zhang X., Zhou X., Lin M., Sun J. S. N., An extremely efficient
convolutional neural network for mobile devices, arXiv:
1707.01083 [cs] 2017.

[18] F. Chollet, “Deep learning with depthwise separable convo-
lutions,” in Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1251–
1258, Honolulu, HI, USA, July 2017.

[19] M. D. Zeiler and R. Fergus, “Visualizing and understanding
convolutional networks,” in Computer Vision—ECCV 2014;,
D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds., Springer
International Publishing, Berlin, Germany, pp. 818–833, 2014.

[20] F. Bordignon, L. P. D. Figueiredo, R. Exterkoetter,
B. B. Rodrigues, and M. D. Correia, “Deep Learning for Grain
Size and Porosity Distributions Estimation on micro-CT
Images,” in Proceedings of the 16th International Congress of
the Brazilian Geophysical Society & Expogef, Rio de Janeiro,
Brazil, August 2019.

[21] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “In-
ception-v4, inception-ResNet and the impact of residual
connections on learning,” in Proceedings of the 8irty-First
AAAI Conference on Artificial Intelligence, San Francisco,
California, USA, February 2017.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning
for Image Recognition,” in Proceedings of the 2016 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, Las Vegas, NV, USA, June 2016.

[23] Han S., Mao H., Dally W. J., Deep compression: compressing
deep neural networks with pruning, trained quantization and
huffman coding, arXiv:1510.00149 [cs] 2015.

[24] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and
L.-C. Chen, “MobileNetV2: inverted residuals and linear

Mobile Information Systems 13



bottlenecks,” in Proceedings of the 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 4510–4520,
Salt Lake City, UT, USA, June 2018.

[25] Niu W., Ma X., Wang Y., Ren B, 26ms inference time for
ResNet-50: towards real-time execution of all DNNs on
smartphone, arXiv:1905.00571 [cs, stat] 2019.

[26] Y. Ganin, E. Ustinova, H. Ajakan et al., “Domain-adversarial
training of neural networks,” in Domain Adaptation in
Computer Vision Applications, G. Csurka, Ed., Springer In-
ternational Publishing, Cham, Switzerland, pp. 189–209, 2017.

[27] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How
transferable are features in deep neural networks?” in Ad-
vances in Neural Information Processing Systems 27,
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger, Eds., pp. 3320–3328, Curran Associates,
Inc., New York, NY, USA, 2014.

[28] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning
transferable architectures for scalable image recognition,” in
Proceedings of the 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 8697–8710, Salt Lake City,
UT, USA, June 2018.

[29] Jang E., Gu S., Poole B., Categorical reparameterization with
gumbel-softmax, arXiv:1611.01144 [cs, stat] 2016.

[30] F. Zang and J. Zhang, “Softmax discriminant classifier,” in
Proceedings of the 2011 8ird International Conference on
Multimedia Information Networking and Security, pp. 16–19,
Shanghai, China, November 2011.

[31] A. Caliskan, M. E. Yuksel, H. Badem, and A. Basturk,
“Performance improvement of deep neural network classifiers
by a simple training strategy,” Engineering Applications of
Artificial Intelligence, vol. 67, pp. 14–23, 2018.

[32] Xie X., Zhou Y., Kung S.-Y., H. G. C.: hierarchical group
convolution for highly efficient neural network, arXiv:
1906.03657 [cs] 2019.

[33] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,” in
Advances in Neural Information Processing Systems 25,
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
Eds., pp. 1097–1105, Curran Associates, Inc., New York, NY,
USA, 2012.

[34] E. Zawadzka-Gosk, K. Wołk, and W. Czarnowski, “Deep
learning in state-of-the-art image classification exceeding 99%
accuracy,” in Advances in Intelligent Systems and Computing,
pp. 946–957, Springer, Cham, Switzerland, 2019.

[35] S. Tao, T. Zhang, J. Yang, X. Wang, and W. Lu, “Bearing fault
diagnosis method based on stacked autoencoder and softmax
regression,” in Proceedings of the 2015 34th Chinese Control
Conference (CCC), pp. 6331–6335, Hangzhou, China, July
2015.

[36] J. Redmon and A. Farhadi, “YOLO9000: better, faster,
stronger,” in Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pp. 7263–7271, Honolulu, HI, USA, July 2017.

[37] Shafiee M. J., Li F., Chwyl B. W. A., SquishedNets, Squishing
SqueezeNet further for edge device scenarios via deep evo-
lutionary synthesis, arXiv:1711.07459, 2017.

[38] A. G. Santos, C. O. De Souza, C. Zanchettin, D. Macedo,
A. L. I. Oliveira, and T. Ludermir, “Reducing SqueezeNet
storage size with depthwise separable convolutions,” in
Proceedings of the 2018 International Joint Conference on
Neural Networks (IJCNN), pp. 1–6, Rio de Janeiro, Brazil,
October 2018.

[39] M. Abadi, P. Barham, J. Chen et al., “TensorFlow: a system for
large-scale machine learning,” in Proceedings of the 21st ACM

SIGPLAN International Conference on Functional Pro-
gramming—ICFP 2016, pp. 265–283, Nara Japan, September
2016.

[40] M. A. S. Adhiwibawa, M. R. Ariyanto, A. Struck,
K. R. Prilianti, and T. H. P. Brotosudarmo, “Convolutional
neural network in image analysis for determination of
mangrove species,” in Proceedings of the 8ird International
Seminar on Photonics, Optics, and Its Applications (ISPhOA
2018), Surabaya, Indonesia, August 2019.

[41] H. Liu, X. Ma, M. Tao et al., “A plant leaf geometric parameter
measurement system based on the android platform,” Sensors,
vol. 19, no. 8, p. 1872, 2019.

[42] J. Kang, J. Lee, and D.-S. Eom, “Smartphone-based traveled
distance estimation using individual walking patterns for
indoor localization,” Sensors, vol. 18, no. 9, p. 3149, 2018.

[43] S. Karimpouli and P. Tahmasebi, “Segmentation of digital
rock images using deep convolutional autoencoder net-
works,” Computers & Geosciences, vol. 126, pp. 142–150, 2019.

[44] L. Shu, G. R. Osinski, K. McIsaac, and D. Wang, “An auto-
matic methodology for analyzing sorting level of rock par-
ticles,” Computers & Geosciences, vol. 120, pp. 97–104, 2018.

[45] S. Aligholi, R. Khajavi, and M. Razmara, “Automated mineral
identification algorithm using optical properties of crystals,”
Computers & Geosciences, vol. 85, pp. 175–183, 2015.

[46] F. J. Galdames, C. A. Perez, P. A. Estévez, and M. Adams,
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+is study aims at the great limitations caused by the non-ROI (region of interest) information interference in traditional scene
classification algorithms, including the changes of multiscale or various visual angles and the high similarity between classes and
other factors. An effective indoor scene classification mechanism based on multiple descriptors fusion is proposed, which
introduces the depth images to improve descriptor efficiency.+e greedy descriptor filter algorithm (GDFA) is proposed to obtain
valuable descriptors, and the multiple descriptor combination method is also given to further improve descriptor performance.
Performance analysis and simulation results show that multiple descriptors fusion not only can achieve higher classification
accuracy than principal components analysis (PCA) in the condition with medium and large size of descriptors but also can
improve the classification accuracy than the other existing algorithms effectively.

1. Introduction

With the rapid development of the Internet and the in-
creasing demand for applications based on location
awareness, location-based services are getting extensive at-
tention. Most people cannot live without the location service
and the navigation system based on GPS (Global Position
System) in their daily life. Obviously, outdoor localization
technology has been relatively mature, and many mobile
devices also refer to outdoor location technology [1, 2, 3, 4].
Due to the particularity of indoor environment, the GPS
signal cannot directly meet the requirements of indoor lo-
calization service. At present, there are many indoor lo-
calization methods [4–6], mainly including WiFi, RFID,
Bluetooth, Ultrawide band, and so on. Nowadays, the visual
indoor localization system [7–9] is attracting more andmore
attentions of the researchers all over the world due to the
advantages of low deployment cost, strong autonomy, and
high localization accuracy.

A large visual database, namely, Visual Map, has oc-
casionally been established at offline stage to achieve ac-
curate indoor visual localization. Visual Map may contain a
large number of images or image features of different scenes

and corresponding location information, which is the
foundation of visual indoor localization. When the user
performs a location query online, the image will be retrieved
in the Visual Map. Traditional image retrieval algorithms
rely on pixel point matching [10, 11], which can only give the
results of image matching but does not contain the visual
image location information. In addition, existing image
retrieval algorithms often carry out global traversal search,
which leads to excessive time overhead and is not conducive
to real-time localization of mobile users. +erefore, an ef-
fective indoor scene classification mechanism is proposed in
this paper based on multiple descriptors fusion. +e images
in Visual Map will be classified according to the scenes, so as
to reduce the time overhead of visual images retrieval at
online stage and improve the efficiency and accuracy of
indoor scene classification. In this paper, both the visual
information and the depth information of an image are
fused. +e visual image mainly contains color information,
and each point on the depth image corresponds to the visual
image and contains position information. Both types of
images are captured by Microsoft Kinect 2.0.

In the indoor scene classification mechanism, the initial
descriptor set containing two kinds of image descriptors will
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be generated by the existing spatial pyramid model (SPM)
[12, 13].+en, the greedy descriptor filter algorithm (GDFA)
will be proposed to find out the valuable descriptors.
Multiple fusion descriptors will be generated by homologous
and nonhomologous combination to further enhance the
effectiveness of descriptors. Finally, support vector machine
(SVM) will be adopted for classification. +e overall
framework of the indoor scene classification mechanism is
shown in Figure 1.

+e remaining of the paper is arranged as follows:
Section 2 reviews the research progress of scene classification
techniques and their applications in indoor scenes. Section 3
describes the generation of the initial descriptor set and the
descriptor filtering in detail. Section 4 introduces the ex-
perimental database of this paper and shows descriptor
evaluation results. In Section 5, two combinations of ho-
mologous and nonhomologous will be realized and the
combination results will be evaluated. Section 6 concludes
the article.

2. Motivation

At the Scene Understanding Symposium held at MIT in
2006, an important point was clearly stated for the first time,
namely, scene classification is a new promising research
direction for image understanding. Although existing
classification methods claim to be able to solve any scene
classification problems [14, 15], the experimental outcome
shows that only the outdoor scene classification can be ef-
fectively solved by these methods, while the indoor scene
classification problems may still be a challenging task. In
addition, [16] shows that the classification accuracy of the
indoor scene is far lower than that of the outdoor scene
adopting the same feature extraction and classification
recognition methods. +erefore, it is important to improve
the classification accuracy of the indoor scene.

In early studies, low-level features of images were usually
extracted to classify scenes, such as color, texture, and shape
[17–19]. However, these methods based on low-level features
have not been a hot topic in the field of scene classification
due to its unsatisfactory classification effect. In order to
overcome such problems, the methods based on middle-
level features of image are proposed. +e global feature Gist
is adopted and improved in [20]. +e good identification
ability of scale invariant feature transform (SIFT) makes it
always be adopted as the local features with the highest
priority in many scene recognition algorithms [21]. Shi et al.
[22] proposed an indoor scene classification algorithm based
on the enhancement of visual sensitive area information.
And local features and global features are integrated by the
visual sensitive area information.

With the rise of Kinect, the scene classification algorithm
based on depth information [24, 25] has received more and
more attention. +e histogram of oriented gradient (HOG)
algorithm [26] is adopted to classify depth images and visual
images, respectively [28]. SIFT is adopted to extract features
of depth images and color images, and SPM coding is
adopted to classify images after feature fusion [29]. SIFT of
visual images and speeded up robust features (SURF) [27] of

depth images are fused to classify images [30]. Five deep core
feature extraction algorithms are designed in [31] to extract
the size, edge, and shape information of visual images, re-
spectively, and the extracted information is fused for
classification.

As research continues, the model based on the con-
volutional neural network (CNN) [16, 23] has attracted the
researchers. However, massive training sets are required in
CNN, which may result in relatively long training time. In
addition, CNN usually has high computing requirement on
the platform, so it is difficult to realize indoor scene clas-
sification on the platform with limited computing resource.

3. Multiple Image Descriptor Generation
and Filtering

Inspired by [28–31], visual information and depth infor-
mation will be fused in this paper. +e higher accuracy
indoor scene classification effect will be achieved by the
spatial 3D information contained in the depth image, which
is insensitive to light and reflects the position relationship
between objects. Features of the original images will be
extracted by D-SIFT (Dense SIFT) [32], and similar features
will be clustered to form BoW (Bag-of-Words) [33–35] by
K-means [36, 37]. Based on BoW, the initial descriptors set
including visual image descriptors and depth image de-
scriptors will be generated with the construction of SPM. It is
true that the number of initial descriptors is large and the
quality is uneven. In addition, combining directly with
unfiltered initial descriptors will lead to an explosion of the
combined results. +erefore, a simple and effective de-
scriptor filtering algorithm ought to be proposed to obtain
those valuable descriptors.

3.1. Initial Descriptors Generation. +e descriptor generated
expression could be derived from the following procedure.
Let I be any input image and x be a descriptor generated by
the image. L is a set of predefined class tags, and l is one of
them. +e function of generating descriptor x from image I
can be expressed as g(I) � x, and the probability of suc-
cessfully matching descriptor x to class tag l is Pl | x.
+erefore, the expression of the most appropriate class tag l

will be
l � argmax

l∈L
P(l | g(I)). (1)

+e key to the research will be turning the initial de-
scriptors into valuable descriptors with high classification
accuracy. In order to find such descriptors, equation (1) will
be further optimized. On the premise of the best descriptor
filtering and combination methods, a correct class label
assigned to input image I will bel (l≠l) andX is adopted to
express a set of multiple image descriptors. +en, the op-
timized descriptor generation expression will be

g(I) � arg max
g(I)∈X

P(l | g(I)). (2)

According to equation (2), the initial descriptors gen-
erated by the input image can only get the desired
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classification effect through filtering and combination.
Initial descriptors are large in number and poor in quality,
while descriptor filtering can discard worthless descriptors
and descriptor combination can improve the effectiveness of
descriptors. +e descriptor generation process based on
SPM will be described as follows.

3.2. Spatial PyramidModel. In recent years, the BoW model
has been widely adopted in computer vision. It takes the
image features as visual words and classifies images by
counting the number of visual words in each image. However,
the traditional BoW lacks the spatial position information
[29]. In this research, SPMwill be established to cut the image
into scale cells, then the number of visual words will be
counted in each cell and the histograms can be drawn. Finally,
histogram features at all scales will be linked together to form
an eigenvector. We assume that a part of visual words has
been selected as basic features. +e steps of descriptor gen-
eration based on SPM are described in detail as follows:

(i) Extracting the D-SIFT feature.

(ii) Mapping each feature point to the corresponding
visual word.

(iii) Cutting the image and constructing spatial pyramid
hierarchy (three cutting methods, such as vertical
cutting method, horizontal cutting method, and
grid cutting method, are adopted in this paper, as
shown in Figures 2(a)–2(c), respectively).

(iv) Counting the number of visual words in each cell
and plotting histograms for each cell.

(v) Connecting all histograms to form a feature vector
as the image descriptor.

+e SPM-based descriptor generation process is
shown in Figures 2(a)–2(c), and each cutting type will be
divided into three columns for clear explanation. As
shown in Figure 2(a), the first column shows the cutting
type of the initial image, the second column represents the
statistical results of visual words for each cell, and the
initial descriptors formed by connecting the second
column histograms are shown in the third column. +e

image contains 5 visual words; three pyramid hierarchies;
and vertical, horizontal, and grid, the three cutting
methods. +e descriptors generation based on SPM
mainly depends on three important parameters: BOW size
(S), pyramid hierarchy (H), and cutting method (C). H � 0
represents the first hierarchy, and the image is cut 0 times.
H � 1 represents the second hierarchy, and the image is cut
1 time; H � 2 represents the third hierarchy, and the image
is cut 2 times. +erefore, the number of cutting depends
on H. In other words, when H � h, the image will be cut h
times, and the number of cells generated after cutting is
2HC. Finally, seven different descriptors are obtained in
Figure 2, whose size increases exponentially with the
number of H and C and has a linear relationship with
dictionary size S. +e calculation formula of descriptor
size η is as follows:

η � S · 2HC
. (3)

As we know, image descriptors contain semantic and
spatial distribution information of the scene. S will deter-
mine the semantic meaning of descriptors, while H and C
will focus on the spatial distribution of descriptors, ensuring
that more detailed information can be provided.+e larger S
will provide more detailed semantic information, making
features more obvious and more representative. However, if
there are a lot of visual words, the histogram will become
longer, which will affect the image retrieval and matching
process, subsequently. Analogously, a higher pyramid hi-
erarchy contains more detail, while a lower hierarchy is more
general.

As can be seen from [12, 13, 38], the standard values of
the three parameters are S� 20, 50, and 100; H� 0, 1, and 2;
and C� 1 (horizontal and vertical segmentation) and 2 (grid
segmentation), respectively. 21 different visual image de-
scriptors and 21 depth descriptors can be obtained by
combining these standard values. +e reason why the
number of descriptors is 21 instead of 27 (33) is that H� 0 in
the pyramid model does not cut the image, with no demands
for combination indeed. In other words, for any S, the first
pyramid hierarchy will deal with only one descriptor, while
the second and third pyramid hierarchies will deal with three
descriptors.
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Figure 1: +e indoor scene classification mechanism.
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Figure 2: Continued.
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3.3. Descriptors Filtering. In this section, the greedy de-
scriptor filter algorithm (GDFA) will be proposed to find the
most valuable descriptors in the initial descriptor set. Since η
of the initial descriptors mainly gathered in (0, 400] (as
shown in Figure 3), η is divided into three continuous in-
tervals (0, 150], [150, 350],and[350,∞) for the convenience
of descriptor filtering. We assume that large, medium, and
small intervals are suitable for our data-gathering platform
with small, medium, and high computing power configu-
rations, respectively.+e descriptor weight α is related to the
descriptor classification accuracy ζ and descriptor size η . In
order to obtain descriptors with smaller size and higher
accuracy, the calculation formula of the weight α could be
defined as follows:

α �
ζ

log η
. (4)

+e greedy descriptor filtering algorithm (GDFA) flow is
given in Algorithm 1.

At first, the weight of all descriptors is calculated
according to equation (4). Next, the descriptor size is divided
into (0, 150], [150, 350], and [350,∞) three continuous
intervals, and then the descriptors are sorted in order of
weight values from the largest to the smallest. +e descriptor
with the largest weight inNi is filtered and added to the first
position in F. If the descriptor weight is greater than 95% of
the weight of the previous selected descriptor, that is,
(αi > 0.95αi−1), the descriptor is filtered out; otherwise, the
next descriptor will be compared. GDFA not only could find

out the most valuable descriptors in each interval, but also
could filter out descriptors with similar weights.

4. Descriptor Evaluation

4.1. Experimental Database. In order to study the indoor
scene classification mechanism, as shown in Figure 4(a),
the indoor image data gathering platform with Microsoft
Kinect 2.0, independently developed by the laboratory, will
be adopted to carry out image data gathering in the
Heilongjiang University physical laboratory building. +e
database contains visual and depth images captured in 9
indoor scenes under different lighting conditions. To cite
some examples, Figure 4(b) shows part of the database
images.

+e database images will be randomly divided into 5
sequences, namely, Training 1, 2, and 3 and Test 1 and 2.+e
image number for 9 scenes in 5 sequences is listed in Table 1.

4.2. Evaluation Results and Analysis. K-fold cross-validation
could be a common accuracy test method, which can effec-
tively avoid over-learning and under-learning. 10-CV (10-fold
cross-validation) will be adopted to evaluate the classifier
model in this section. To ensure that each cross-validation
image is similar, a subset of 30 consecutive images will be
randomly assigned to Fold1–Fold10 (represents 10 subsets of
the 30 images), which effectively prevented any deviation
caused by the time continuity in the data set. Figure 5 shows
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Figure 2: Construction of SPM and generation of the initial descriptor set. (a) Vertical cutting. (b) Horizontal cutting. (c) Grid cutting.
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the distribution of each scene in the data set in each fold of 10-
CV and global distribution. It is worth noting that scenes in
the data set are not evenly distributed in Fold1–Fold10.

Table 2 shows the classification accuracy of initial de-
scriptors of 42 visual image descriptors and depth image
descriptors after 10 times of cross-validation. In SPM, when
H� 0, for any kind of segmentation type, there is no image
cutting and the generated descriptors are identical, so the
evaluation results are identical too. By comparing the results
of visual images and depth images, we can find that the
classification accuracy of depth images is significantly lower
than that of visual images. +e reason may be that the visual
coding technology (visual coding is the mapping between

data and visual results) of the depth image is not accurate
enough to obtain fine-grained data.

GDFA can find the valuable descriptors from the initial
descriptor set, which will facilitate the descriptor combination
work in Section 5. Table 3 shows the internal parameters and
classification accuracy of the 4 visual image descriptors and 7
depth image descriptors filtered by GDFA, analogously, and
the evaluation data are from 10-CV. In other words, the 42
initial descriptors given in Table 2 are reduced to 11 through
the filtering of GDFA.+ese descriptors may have the highest
weight in(0, 150], [150, 350], and [350,∞)intervals.

PCA is one of the classical and widely algorithms in
current data preprocessing algorithms. Dimensionality
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Figure 3: Greedy descriptor filtering algorithm versus PCA.

Input: descriptor list---L
descriptor classification accuracy list---ζ
descriptor size list---η

(1) for j ∈ ⌈0, size(L)⌉ do
(2) α[j]⟵ ζ[j]/log(η[j])

(3) end
(4) Divide the descriptor size into(0, 150], [150, 350], and [350,∞) three continuous intervals
(5) for i ∈ ⌈1, 2, 3⌉ do
(6) Divide L into new lists Ni

(7) Sort the descriptors in Ni in order of weight values from largest to smallest
(8) for j ∈ [0, len(Ni)] do
(9) Filter the descriptor Ni [1] with the largest weight in Ni and add Ni [1] to Φi
(10) if Ni [j− 1] is filtered and

α[j]> 0.95∗ α[j − 1] then
(11) Add Ni [j] to αi
(12) else
(13) end
(14) end
(15) end

Output: filtered descriptor list---α

ALGORITHM 1: Greedy descriptor filtering algorithm.
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reduction with PCA can preserve the most important
features in high-dimensional data and remove noise and
worthless features, which could improve data quality and
data processing speed. Figure 3 shows the comparison
between the filtering result of GDFA and the dimensional
reduction result of PCA (the solid point in Figure 3 is the
descriptor obtained by the GDFA, and the dotted line

separates three intervals). As observed, when descriptor
size is in (0, 150], PCA outperforms both visual descriptors
and depth descriptors. But when descriptor size is in
[150, 350] and [350,∞), the performance of PCA begins to
decline, which may indicate that GDFA performs better
than PCA, especially when the descriptor size is medium or
large.

(a)

Scene1 students laboratory

Visual image Depth image

Scene2 professor office

Scene3 classroom

Scene 4 ping pong room

Scene 5 conference room

Scene 6 corridor

Scene 7 lobby

Scene 8 elevator room

Scene 9 staircase

(b)

Figure 4: Indoor image data gathering platform (a) and part of database (b).
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5. Descriptor Combination

+e most valuable descriptors have been selected by GDFA
in Section 4. In order to further obtain the high-quality and
highly efficient final descriptor, this section will propose a
multiple descriptor combination algorithm (this section
only combines two descriptors) although this step might
increase the running time of scene classification. +ere will
be two descriptor combination levels, as shown in Figure 6.

One is the descriptor level (DL), which can be input to SVM1
after the descriptors of Image1 and Image2 have been
connected into one combination descriptor, as shown in
Figure 6(a). +e other one is the classifier level (CL), which
weights the different response results after Image1 and
Image2 have been input to SVM1 and SVM2 separately, as
shown in Figure 6(b). Also, this section will discuss ho-
mologous combinations (V+V or D+D) and nonhomol-
ogous combinations (V+D).

Table 1: +e number of images of 9 scenes in 5 sequences.

Scene
Frame

Training 1 Training 2 Training 3 Test 1 Test 2
1 438 498 444 511 319
2 140 152 84 95 147
3 119 80 65 109 229
4 421 452 376 392 442
5 408 336 247 307 942
6 664 599 388 692 1287
7 126 79 60 95 223
8 153 96 118 140 193
9 198 240 131 104 241
All 2267 2532 1913 2445 4023
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Figure 5: Distribution of each scene in Fold1-Fold10 and the global data set.

Table 2: Evaluation results of initial descriptors.

C H
Visual Depth

S� 20 (%) S� 50 (%) S� 100 (%) S� 20 (%) S� 50 (%) S� 100 (%)

Vertical
0 48.13 58.75 66.20 37.07 42.49 50.06
1 51.84 63.36 69.53 37.23 48.83 52.55
2 56.38 65.88 72.09 41.03 50.51 55.44

Horizontal
0
1 52.51 64.68 72.01 40.93 47.53 51.78
2 60.73 72.36 77.81 47.39 53.65 59.40

Grid
0
1 56.25 69.02 74.34 41.82 52.95 57.07
2 67.53 75.26 77.24 52.76 58.37 60.86
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+e combined sequences of training 1, 2, and 3 given in
Table 1 will be used as the training set, while Test 1 and Test 2
will be used as the test set. +ese 5 sequences have the same
scene. But it is noted that the light variation in Test 1 is
stronger than that in Test 2.

5.1. Homologous Combinations. +is section will combine
two descriptors extracted from the same image type, namely,
V +V or D+D, which are called homologous combination.
+e combination will be carried out at DL and CL, re-
spectively. +e test set of SVM could have been composed of
two groups of sequences with obvious light differences, Test
1 and Test 2, respectively.

5.1.1. V +V. +ere are 6 different combinations of the 4
depth image descriptors V1, V2, V3, and V4 given in Table 3,
which will be applied to DL and CL, respectively. +e
classification accuracy obtained in Test 1 and Test 2 is shown
in Figures 7(a) and 7(b), respectively.

5.1.2. D +D. +ere are 21 different combinations of the 7
depth image descriptors D1, D2, D3, . . ., D7 given in Table 3,
which will be applied to DL and CL, respectively. +e
classification accuracy obtained in Test 1 and Test 2 is shown
in Figures 8(a) and 8(b), respectively.

Comparing Figure 7 with Figure 8, we find that the
classification accuracy of D+D is generally lower than
V+V.+e highest classification accuracy in Test 1 and Test 2
achieved by the best depth image descriptor D7 is 48.79%
and 65.45%, respectively (while the highest classification
accuracy in Test 1 and Test 2 achieved by the best visual
image descriptor V4 is 74.76% and 85.78%, respectively).
When the best initial descriptor D7 acts as the parent

descriptor, the highest classification accuracy of DL is
56.07% in Test 1, while it is 71.86% in Test 2. Apparently, the
classification accuracy in Test 2 is still higher than that in
Test 1 in D+D.

Similar to V+V, DL always outperforms CL in D+D.
+e classification accuracy of combination descriptors in DL
is always higher than the parents’ descriptors (39 out of 42),
while only a few combination descriptors have higher
classification accuracy than parents’ descriptors in the CL
(16 out of 42). +e internal parameters of D7 are S� 100,
H� 2, and C� horizontal. D5+D7 (56.07%) achieves a fa-
vorable effect, and the internal parameters of D5 are S� 100,
H� 1, and C� horizontal. D2+D7 (71.86%) also achieves a
favorable effect, and the internal parameters of D2 are S� 50,
H� 2, and C� horizontal. +e similarity of the optimal
combination is C� horizontal, which is verified in Section 4.
In addition, the internal parameters of V4 and D7 are
S� 100, H� 2, and C� horizontal. So, we can speculate that
high classification accuracy could be obtained by descriptors
with such a group of internal parameters, which will be
verified in Section 6.

5.2. Nonhomologous Combinations. +is section will com-
bine two descriptors extracted from different image types,
namely, V +D, which is called as nonhomologous combi-
nation. +ere are 28 different combinations of V1, V2, V3,
and V4 and D1, D2, D3, . . ., D7 in Table 3, which will be
applied to DL and CL, respectively. +e specific evaluation
process is the same as homologous combination, and the
evaluation results are shown in Figure 9.

In Test 2, the highest classification accuracy of CL and
DL reaches 80.36% and 92.64%, respectively, while in Test 1,
it reaches 72.84% and 81.76%. +is is consistent with what

Table 3: Filtering results of GDFA.

Image type
Parameters Filtering criteria

S H C ζ (%) η (interval)
V1 20 0 — 48.13 20 (1)
V2 50 2 Horizontal 72.36 200 (2)
V3 100 1 Horizontal 72.01 200 (2)
V4 100 2 Horizontal 77.81 400 (3)
D1 20 0 — 37.07 20 (1)
D2 50 2 Horizontal 53.65 200 (2)
D3 50 1 Grid 52.95 200 (2)
D4 100 1 Vertical 52.55 200 (2)
D5 100 1 Horizontal 51.78 200 (2)
D6 50 2 Vertical 50.51 200 (2)
D7 100 2 Horizontal 59.40 400 (3)

Descriptor1

Descriptor2

Descriptor 
combination SVM

I1

I2

Output 
response

(a)

SVM1

SVM2

Response1

Response2

Output 
response

I1

I2

Weight

(b)

Figure 6: Descriptor combination level. (a) DL. (b) CL.
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Figure 7: V+V combination evaluation results. (a) Test 1. (b) Test 2.
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Figure 8: D+D combination evaluation results. (a) Test 1. (b) Test 2.
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we found before, the classification accuracy of Test 2 is
always higher than Test 1, and DL always outperforms CL.

In CL, the combination with the highest classification
accuracy is D5+V4 (72.84%) in Test 1. In the meantime, the
classification accuracy of V4, which acts a parent descriptor, is
74.76%. +e combination with the highest classification ac-
curacy is D7+V4 (80.36%) in Test 2. +e classification ac-
curacy of V4, which acts as a parent descriptor, is 85.78%. As
shown in Figures 9(a) and 9(b), only a few combination
descriptors have higher classification accuracy than parent
descriptors in the CL (18 out of 56), the same as in homologous
combinations. It shows that the result of CL is not satisfactory.

In DL, the combination with the highest classification ac-
curacy is D7+V4 (81.76%) in Test 1. In the meantime, the
classification accuracy ofV4, which acts as a parent descriptor, is
74.76%. +e combination with the highest classification accu-
racy isD7+V4 (92.64%) in Test 2.+e classification accuracy of
V4, which acts as a parent descriptor, is 85.78%. As shown in
Figures 9(a) and 9(b), the classification accuracy of combination
descriptors in DL is always higher than that in parents’ de-
scriptors (56 out of 56).

We can conclude that DL outperforms CL in nonho-
mologous combination because most combination

descriptors in DL outperform their parent descriptor, while
the combination descriptors in CL might be difficult to
achieve. In addition, no matter in which level, the combi-
nations of the descriptor with excellent performance and the
descriptor with poor performance outperform other com-
binations. To cite some, D1+V4 precedes D1+V1, D1+ V2,
and D1+V3 in Figure 9(b).

Combining Figures 7–9, we can conclude that the overall
effect of V +V and D+V outperforms D+D. Sometimes
V+V outperforms D+V although nonhomologous com-
binations contain more comprehensive information. DL
combines descriptors before entering a classifier, which may
preserve characteristics of the descriptors completely. +is
may be the reason why DL is always better than CL. So, we
only compare the evaluation results of V+V and V+D in
DL.

Table 4 lists the best combinations of homologous and
nonhomologous in DL, as well as the highest classification
accuracy (bold data) obtained in Test 1 and Test 2. +e best
combination is V3 +V4 in Test 1, and the best combination
is D2 +V4 in Test 2. We recall that the light variation in Test
1 is stronger than that in Test 2. So V+V can be the best in
Test 1, while D+V can be the best in Test 2.
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Figure 9: D+V combination evaluation results. (a) Test 1. (b) Test 2.
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As shown in Table 3, descriptor size has 8 possible
values (including single descriptor or combination de-
scriptor), respectively: 20, 40, 200, 220, 400, 420, 600, and
800. +e maximum classification accuracy corresponding
to each descriptor size value is compared with PCA results.
Figure 10 shows the relationship between classification
accuracy and descriptor size in Test 1 and Test 2. As we can
see, the classification accuracy of the multiple descriptors
fusion mechanism can be improved significantly with the
descriptor size from small to middle. Also, the classifi-
cation accuracy gradually tends to be stable with the
descriptor size from middle to large. In Test 1, when
descriptor size equals to 400 (large), V2 + V3 (80.94%)

gets the highest classification accuracy. In Test 2, when
descriptor size equals to 600 (large), D2 +V4 (92.64%)
gets the highest classification accuracy. PCA achieves high
classification accuracy in the condition with small de-
scriptor size. +e superiority of the multiple descriptors
fusion mechanism becomes obvious with the increasing
descriptor size.

5.3. Execution Time. Indoor scene classification is divided
into two stages: offline training and online testing. It is as-
sumed that the construction of BoW and classifier training has
been completed at the offline stage. +erefore, what affects the

Table 5: Indoor scene classification execution time.

Step Parameters Time (s)

Descriptor generation

Extracting D-SIFT feature imageSize� 640∗ 480 0.0840

Mapping feature point
S� 20 0.0096
S� 50 0.0140
S� 100 0.0218

Counting histograms

H� 0 0.0006
H� 1,C� 1 0.0004

H� 2, C� 1 or H� 1, C� 2 0.0003
H� 2, C� 2 0.0002

Descriptor classification Classifying the input descriptor

η � 20 0.0010
η � 50 0.0016
η � 100 0.0029
η � 200 0.0062
η � 400 0.0131
η � 800 0.0291

Table 4: +e best combination.

V +V ζ (%) D+V ζ (%)
Test 1 V3+V4 82.09 D7 +V4 81.76
Test 2 V2 +V4 91.60 D2+V4 92.64
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Figure 10: Descriptor size versus classification accuracy and PCA. (a) Test 1. (b) Test 2.
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running time of the online stage is the generation and clas-
sification of descriptors, including 4 steps, as shown in Table 5.

It is worth noting that step 1 adopts
imageSize� 640∗ 480. Step 2 is related to BoW size (S), so
S� 20, 50, and 100 are studied, respectively. Step 3 depends
on the size and number of image cells, which is related to
pyramid hierarchy (H) and cutting method (C). Step 4 is
determined by η.

5.4. Algorithm Analysis and Comparison. Under the same
database, the classification accuracy obtained by our
mechanism will be compared with other fusion methods, as
shown in Table 6.+e classification accuracy obtained by the
algorithms with single feature fusion [28–30] tends to be low
for the indoor scene, largely because these algorithms do not
filter descriptors. So it seems that the algorithm with single
feature fusion is suitable for indoor scene classification.
Higher classification accuracy is obtained by the algorithm
with multiple features fusion [31], which extracted five
different kernel descriptors from the images. After inte-
gration, they are trained and classified by Linear SVM,
Kernel SVM, and Random Forest, respectively, and obtained
89.6%, 90.0%, and 90.1% accuracy in this experiment. 92.6%
accuracy is achieved by our classification mechanism, which
has a 2.5% higher value than in [31]. Above all, multiple
descriptors fusion mechanism has good performance in
indoor scene classification.

6. Conclusion

Aiming at the actual demands for indoor positioning ap-
plications, a multiple descriptors fusion model is established
and an image classification strategy is proposed to improve
the quality and efficiency of descriptors so as to achieve a
better indoor scene classification effect. Firstly, the initial
descriptor set is formed based on the established SPM.+en,
the greedy descriptor filtering algorithm is adopted to select
the descriptors with high weight in each descriptor size
interval and a valuable descriptor set is obtained. Finally, the
multiple descriptors combination algorithm is proposed to
obtain high-quality and highly efficient multiple descriptors
by combining homologous and nonhomologous images at
DL and CL, respectively.

+e generation, filtering, and combination of multiple
descriptors proposed in this study improve the performance
of the classifier. +e evaluation results reflect that the
multiple descriptors fusion mechanism proposed in this
study outperforms the well-known PCA dimensionality

reduction technology, especially for the condition with
medium or large descriptor size. +is strategy not only
achieves better results than other feature fusion algorithms,
but also solved the limitations of existing scene classification
algorithms applied to interior scenes.

Future research will focus on the improvement of the
image feature extraction algorithm and the efficiency of
constructing visual words by clustering features in the visual
BoW model by other clustering algorithms. More attention
will be paid to enhance the effectiveness of descriptors when
describing image information. At the same time, the im-
provement of the quality of the depth image will be taken
into account so as to make more efficient use of depth data in
the process of descriptor filtering and descriptor combination.
Alternatively, a more complete data set can be adopted.
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Among the many deep learning methods, the convolutional neural network (CNN) model has an excellent performance in image
recognition. Research on identifying and classifying image datasets using CNN is ongoing. Animal species recognition and
classification with CNN is expected to be helpful for various applications. However, sophisticated feature recognition is essential
to classify quasi-species with similar features, such as the quasi-species of parrots that have a high color similarity. )e purpose of
this study is to develop a vision-based mobile application to classify endangered parrot species using an advanced CNN model
based on transfer learning (some parrots have quite similar colors and shapes). We acquired the images in two ways: collecting
them directly from the Seoul Grand Park Zoo and crawling them using the Google search. Subsequently, we have built advanced
CNNmodels with transfer learning and trained them using the data. Next, we converted one of the fully trained models into a file
for execution on mobile devices and created the Android package files. )e accuracy was measured for each of the eight CNN
models.)e overall accuracy for the camera of the mobile device was 94.125%. For certain species, the accuracy of recognition was
100%, with the required time of only 455ms. Our approach helps to recognize the species in real time using the camera of the
mobile device. Applications will be helpful for the prevention of smuggling of endangered species in the customs clearance area.

1. Introduction

With the development of information technology, deep
learning-based image processing and classification is widely
used in various applications [1]. In particular, the demand
for image classification is increasing [2]. Deep learning-
based classifiers, such as a convolutional neural network
(CNN), increase the classification performance for various
objects [2]. A common task in image processing is identi-
fying similar types of objects with machine learning methods
to classify and cluster animals [3]. Systems that automati-
cally identify and classify animal species have become es-
sential, particularly for the study of endangered species [4].
During the customs clearance of animals and plants, humans
can directly examine the species to identify individual
species, but this can be inefficient in terms of time and cost.

To improve the efficiency, automated classification of species
can be conducted on mobile devices. However, this would
require solving the problems of classifying species with
similar shades of colors and shapes. Hence, custom machine
learning models are needed to classify endangered species
and address the complicated characteristics of animal images
for specific applications.

Although various machine learning models can classify
images of different animals, it remains a challenge to dis-
tinguish animal species. )is is because there are some
species with a high color similarity. It is a complicated
process that requires expertise even for human beings. )e
CNN models are efficient modern recognition methods.
Unlike the traditional image classification methods [5], a
convolutional neural network uses multilayer convolution to
automatically extract and combine features. )ese
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algorithms are designed to be performed independently and
are trained to solve specific tasks. Moreover, the neural
network models have to be rebuilt once the feature-space
distribution changes. To overcome these disadvantages, we
adopted the transfer learning method to classify the en-
dangered parrot quasi-species in this study. Transfer
learning is a machine learning technique in which a model
trained for one task is reused for another related task [6].
Among many ways to deploy deep learning models in
production, one of the easiest ways is to deploy it on mobile
devices. )e advantages are that mobile devices are popular
and easy to use. Users can get an answer in a few touches.
Moreover, deep learning models can receive large amounts
of data in real time thanks to the camera of the mobile
device. When deploying a deep learning model on a mobile
device, two aspects should be considered: model file size and
process speed. If the size is too large, it is impossible to
deploy the model on a mobile device. If the process is slow, it
will cause inconvenience for the users.

In this study, a real-time mobile application was de-
veloped to classify endangered parrot quasi-species using the
CNN models based on transfer learning. To clarify the
purpose of this study, we suggested the following
hypotheses:

(i) )e designed CNN-based transfer learning models
can classify endangered parrot quasi-species with
high color similarity

(ii) )e developed application can embed the designed
CNN-based training

)e rest of this paper is organized as follows. Section 2
presents related work on transfer learning with CNN
models. Section 3 explains our real-time mobile application.
Section 4 presents the experimental results of the classifi-
cation of endangered parrot species for the designed mobile
application. Section 5 discusses the contribution of the
designed mobile application and the classification results.
Finally, Section 5 concludes this study.

2. Related Work

2.1. CNN Models and Image Classification for Animals.
Many well-known CNN model architectures exist for var-
ious applications. In 2016, Microsoft Research presented a
solution for the problem of building deep models with
shortcut connections [7]. Zoph and Le also presented a
method to automatically find a new, optimized model ar-
chitecture based on policy gradients called neural archi-
tecture search at ICLR 2017 [8]. Szegedy et al. have won the
ILSVRC 2014 with a top-5 test error of 6.7% with a model
built on the concept of “network in network.” )e idea of
this model is to reduce the computing cost using dimen-
sionality reduction, constructing the network by stacking
convolution operations, using filters of various sizes, and
then combining them later [9]. Another model created by
Szegedy et al. is Inception-ResNet, which combines the
residual connections presented by Microsoft Research [10].

Many relevant studies exist to preserve the diversity of
species. To acquire the data necessary for these studies,

unmanned cameraswere installed to acquire images of the
creatures. However, human resources are wasted on pro-
cessing the obtained data. Because human’s judgment is
subjective, the accuracy is inevitably deteriorated. )erefore,
it is essential to create a system that automatically processes
and classifies animal images. Norouzzadeh et al., in the
“Snapshot Serengeti Project,” said that processing of in-
formation from animal image datasets by human beings is
time-consuming; hence, much data remains unprocessed.
)ey presented a system in which a machine can determine
where the images belong to and check the number of entities
and their behaviors in images [3]. Nguyen et al. also created a
CNNmodel to classify three of themost commonly observed
animal species in Victoria, Australia, and showed the real
test results [11]. Zhuang et al. introduced a deep learning
model that automatically annotates marine biological image
data without relying on human experts. )ey experimented
with their model with data from SeaCLEF2017 [12]. In this
study, we also propose a system to classify image data ac-
quired in real time using the camera of a mobile device.

2.2. Transfer Learning. Transfer learning is a state-of-the-art
technique in deep learning research. Before the advent of
this technique, people had to create and train a model from
scratch. It was difficult to invent a model with remarkable
performance on a specific task because of the lack of
computing infrastructure. Moreover, it was impossible to
collect enough meaningful data required to train a model,
although many researchers attempted to gather them.
However, various transfer learning methods have been
proposed for transferring knowledge in the context of
features, instant weights, parameters, or relationship in-
formation between data samples in a domain [13–16].

Figure 1 shows four steps of creating a complete model
using transfer learning. First, we build an architecture of the
model and train it on a large representative dataset. Second,
we delete the final layer (known as “loss output”). )ird, we
replace it with another layer whose job is to finish the specific
task. Fourth, we train a new model with a relatively small
dataset suitable for the purpose. Transfer learning is literally to
transfer the job of extracting features from data to the pre-
trained model. For example, a model pretrained on the
ImageNet dataset can detect low-level features on a bird image
(such as curves, outlines, and lines) because these low-level
features are almost the same in other animal images. )e
remaining task is to tune the high-level layers of the feature
extractor and the final layer that classifies the bird (the process
is called fine tuning). Some studies have already applied
transfer learning [17, 18]. Transfer learning is expected to
compensate for the lack of data, time, and computing.

3. Implementation of a Real-Time Mobile
Application to Classify Endangered
Parrot Quasi-Species

3.1. SystemDesign and Image Classification inMobileDevices.
)e system is divided into four parts, as shown in Figure 2.
First, we preprocess the data to prepare it for deep learning.

2 Mobile Information Systems



Second, we create and train a classifier using the pre-
processed data.)ird, we convert the generated model into a
file that can be deployed on a mobile device. Finally, we
deploy the model. In this section, we describe data pre-
processing and the process of creating and training the deep
learning model.

In our study, we used Python (Anaconda) for the third
step and Android Studio for the final step. Data were pre-
processed using a Python library called “imgaug” [19] that
provides image preprocessing methods (“Image-
Transformation,” “AdditiveGaussianNoise,” “CoarseDrop-
out,” “BilateralBlur,” etc.). We imported the “imgaug”
library into our project in the Anaconda Jupyter notebook
environment and performed data augmentation for the
original images. )e obtained images were saved in the
folders together with the original images.

To develop an application, TensorFlow Lite provides a
method that converts the generated model into a Tensor-
Flow Lite FlatBuffer format file (.tflite), which can be
deployed on a mobile device. According to the official
TensorFlow Lite website, FlatBuffer is an open-source cross-
platform serialization library that serializes data efficiently.
TensorFlow Lite supports the conversion of files created by
TensorFlow, concrete functions, and Keras [20]. We inserted
this converted file into the demo project provided by
TensorFlow Lite and then built the project. After this step,
we created an Android package file (APK) and installed the
application on a device. Figure 3 shows the overall process.
Li et al. developed an optimized modeling technique for
mobile devices using their reduction module, group con-
volution, and self-attention module. )ey claimed that this
model was efficient for mobile applications compared with
other models [21]. Subsequently, we explain how to deploy a
CNN model created by TensorFlow Lite on a mobile device.

We use the Keras library to create and train deep
learning models. Keras is a high-level open-source neural
network API written in Python. It was developed as a part of
the Open-Ended Neuro-Electronic Intelligent Robot Op-
erating System (ONEIROS) project. A model produced by

Keras is built using a fast and intuitive interface based on
TensorFlow, CNTK, and )eano [22]. In the field of com-
puter vision, some model architectures that can effectively
classify images have been previously introduced, and Keras
provides them as open-source code [23]. In this study, we
propose a way to customize these models, train them, and
verify their performance.

3.2. Data Augmentation. One of the biggest limitations in
deep learning model development is that it requires a large
dataset. )ousands, millions, or even more data samples are
required to create a reliable deep learning model. )ese
limitations can be overcome by manipulating and trans-
forming a small amount of data. )is is called data aug-
mentation. Data augmentation techniques have been used in
many studies [24, 25]. )e techniques include random
cropping, horizontal flipping, brightness modification, and
contrast modification. As illustrated in Figure 4, we extended
the dataset by the horizontal and vertical flipping. Figure 4
shows the extended dataset as a result of four parrot species’
data augmentation. For this task, we imported “imgaug”
Python library (as explained in Section 3.1). It contains the
“Sequential” method, and manipulation techniques can be
set as the parameters of this method [19]. In this study,
because we only wanted to augment the images by the
horizontal and vertical flipping, to check if the model can
classify the quasi-species of parrots with a high color sim-
ilarity, we inserted “Fliplr” and “Flipud” objects. Finally,
14,000 images including the original data were gathered (see
the details in Section 3.5).

3.3. Feature Extraction and theCNNModel. Nguyen et al. set
the two experimental scenarios on themodel architectures of
Lite AlexNet, VGG-16, and ResNet50 to classify wildlife
images [11]. )e first scenario was to train the model from
scratch, and the second one was to use a technique called
“feature extraction” that imports weights that had been
pretrained on large images in ImageNet. To monitor and
classify enormous animal image data, some pretraining
techniques are needed to familiarize the model with
extracting local features of a new image. Feature extraction
solves the problem. It customizes the top layer of a model
(fully connected layer) and lets the pretrained CNN extract
the characteristics of the image. For our study, we used the
feature extraction technique; we validated its performance
by comparing it with the model with randomly initialized
weights. )e first model was generated with the pretrained
weights in ImageNet. Our purpose was to verify if the model
can capture the local differences of two species which are
very similar such as “Cacatua galerita” and “Cacatua
goffiniana.”

According to Lin et al., the fully connected layer com-
monly used in traditional CNN models is likely to overfit
despite using the dropout. )ey proposed a global average
pooling (GAP) technique that inserts the average value of
each feature map into a vector and links it into the input of
the SoftMax layer directly instead of a fully connected
layer [26]:

Conv1
Conv1

Conv2
Conv2

Max pooling
Max pooling

Fully connected
Fully connected

Softmax
Softmax

Data and labels
(e.g., ImageNet)

Output Output

Transfer

Features

Target
data and labels

Figure 1: Diagram of the transfer learning.
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Formula (1) presents the approach suggested in their
study. GAP is a vector of the average values of feature maps
from the last convolutional layer. GAPi indicates an element
of the vector. Here,m is the number of rows in a feature map
and n is the number of columns in a feature map. )e
meaning of the left term is summing all values in the feature
map and then dividing them by m multiplied by n. )e
purpose is to obtain the average value of the feature map.
GAP calculates averages of feature maps that are the out-
comes of the convolutional process (Figure 5). Next, it
creates a vector that consists of the average values.

According to their proposal, GAP has the following
advantages over a fully connected layer. First, the compu-
tational cost can be reduced by decreasing the number of
parameters to be handled by a human (hyperparameters).
Second, some model parameters can be eliminated to reduce
overfitting.)erefore, there is no need to rely on dropout. In
this study, we will use GAP instead of a traditional fully
connected layer to take advantage of this technique.

We imported the ResNet50, NASNetMobile, Incep-
tionResNetV2, and InceptionV3 models from the Keras
library for feature extraction. )e imported models used

convolutional layers initialized with weights that had been
pretrained on ImageNet. A global average pooling layer and
a dense layer with SoftMax were added after the convolu-
tional layers (Figure 6). )e experiment compared two types
of initialization: weights of ImageNet and random values.
Moreover, we use a hyperparameter search library called
“Hyperas” to optimize hyperparameters (such as optimizer
and learning rate) without the researcher’s effort.

3.4. Transfer Learning. As explained in Section 2, we can
apply the convolutional layers of a pretrained model to
another classifier. Because an image consists of pixels, the
local features of the image are almost the same as in other
images. )e convolutional layers can capture these patterns
using the pretrained weights. At this point, the model’s
ability to perform the abstraction of local parts affects the
model’s performance. According to Krizhesky et al., the test
results for the models with transfer learning showed that
their top-5 accuracy was higher than in other cases [27].
Transfer learning does not train the convolutional layers but
only lets them extract the features and then passes the
extracted features to the classification layers. Moreover,
there is an advanced technique to improve the model (called
fine tuning) that trains the high-level layers of the con-
volutional layers and the classification layer together. In our
study, we experimented with themodels described in Section
3.3 (ResNet50, NASNetMobile, InceptionResNetV2, and
InceptionV3) trained by transfer learning using the weights
of ImageNet (Figure 7).

3.5. Experiments. Parrots are among the most common
endangered species in South Korea because of social
problems such as smuggling. Moreover, parrots are included
in the list of the most endangered species by the Convention
on International Trade in Endangered Species of Wild Flora
and Fauna (CITES) (Table 1). We have previously studied
parrots of distinct colors and shapes with conventional CNN
models [28]. However, in this study, we hypothesize that the
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classifies the species

Display the results

New image recognition using the camera

Figure 2: System configuration and scenario for classifying endangered parrot species using a mobile device.
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Figure 3: TensorFlow Lite conversion process graph.
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CNN models with transfer learning can classify the quasi-
species well despite similar colors and patterns. )is ex-
periment used 14420 parrot images.)e parrots were of four
species, and we used 3605 images per species. As shown in
Table 1, the four parrot species are Cacatua goffiniana,
Cacatua galerita, Ara chloroptera, and Psittacus erithacus.
Among these species, Cacatua goffiniana and Cacatua
galerita have a high color similarity. Morphological infor-
mation is very important to classify the parrot images using
CNN. )e morphological features of each species are shown
in Table 1 [29]. Parrot images were divided into three
subsets: training, validation, and test sets. )ey were crawled
from Google and YouTube. )ere were 980 images per
species originally, but we divided these into two groups and
use only 875 for training because of the information leak.
3500 images were produced by data augmentation. 2800
images were for training and 700 images were for validation.
)e test set has 420 images, including 100 crawled images
and 5 images provided by the Seoul Grand Park per each
species. Because we focused on the color similarity of two
species, we did not do any data augmentation affecting the
color of images. )us, 2800 images for the training set and
700 images for the validation set were provided to the
models for each species. )e test set did not undergo the
process of data augmentation because it is not effective to use
the augmented data not affecting the color for the actual test.
)e testing is divided into two steps. After the training, we
carried out the test of each model’s performance by com-
paring the confusion matrix and F1-score values for 420 test
samples. Next, we converted the file into a FlatBuffer format,
deployed it on a mobile device, and then verified the results
by using the video data obtained from the Seoul Grand Park.

Figure 8 depicts the entire experiment process. Original
data were augmented using the “imgaug” library, as

described in Section 3.2. )e image classifier was created
using the Keras API in TensorFlow, a powerful tool to
construct a deep learning model.We focused on a pretrained
model for transfer learning; hence, we imported the
models as shown in Figure 7. For example, “tensor-
flow.keras.applications.resnet.ResNet50” can set the
weights initialization type [30]. We can obtain the desired
results by setting the keyword parameter “weights” to
“imagenet.” )e models were completed with stacking a GAP
layer and a dense layer. Once themodels’ trainingwas complete,
we evaluated their performancewith the test data using t “scikit-
learn” Python library [31, 32]. Next, we converted it into a
“FlatBuffer” file to be deployed on a mobile device [33]. Finally,
we can see the result on a device, as illustrated in Figure 9.

4. Results

4.1. Experimental Results. Figure 10 shows the learning
curves of training accuracy for eight models: ResNet50,
NASNetMobile, InceptionResNetV2, and InceptionV3 with
two types of initialization: pretrained ImageNet weights or
random numbers (as described in the previous section). )e
horizontal axis shows the number of training iterations on
the complete train dataset. )e vertical axis shows the
training accuracy (0.5 means the model correctly classified
half of the data, and 1 means a perfect classification). As
depicted in Figure 10, performance of the models was poor
after the first epoch, but additional iterations improved the
accuracy. After approximately twenty epochs, the accuracy
of each model converged at 1, with no noticeable im-
provement afterward. Notably, the models that were ini-
tialized with the ImageNet weights and had nontrainable
convolutional layers outperformed the others (we can check
that the curves are located higher). Besides, their accuracy

Augmentation

Augmentation

Augmentation

Augmentation

Figure 4: Data augmentation for images of endangered parrot species.
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converged faster. Figure 11 illustrates the learning curves of
validation accuracy for the models. )e models were evalu-
ated on the validation data after each epoch. )erefore, the
accuracymeasures the quality of predictions for the validation
data. )e curves look relatively uneven compared with the
prior ones. )is is because the models had never seen these
data before. )e models learned some features of parrots
using the training images, and we tested what they learned
using the validation data. )e models experienced some

failures repeatedly. However, their accuracy converged to a
point of minimal error. Likewise, the accuracy of ImageNet-
initialized models is typically better than the others. Both
graphs do not show any obvious drop as time passes (look at
both graphs after twenty epochs). )us, overfitting did not
occur. Overfitting refers to the models that perform well on
the training set but not on the validation set.

)e reason why epoch number is thirty is because we
checked that it is useless to exceed thirty. We set some

[Featuremap calculation using Relu]

Featuremapa,b,c = max((Weightc)T ∗ xa,b, 0) 

where (a, b) is a pixel index and c indicates a index of the channels 

[Global Average Pooling]

where m is the number of rows, n is the number of columns in a featuremap

1 3 2
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Figure 5: Concept diagram of global average pooling.
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Figure 6: Convolutional layers and feature maps for feature extraction of endangered parrot species.
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Figure 7: Convolutional layers and feature maps for feature extraction of endangered parrot species.

Table 1: Examples of four endangered parrot species.

Picture

Name Red and green macaw Sulphur-crested cockatoo Goffin’s cockatoo Gray parrot
Scientific
name Ara chloroptera Cacatua galerita Cacatua goffiniana Psittacus erithacus

Appearance

Flight feathers, back, rump:
darker red

Tail-coverts: blue
Median wing-coverts,
scapulars, tertials: green
Tail: dark red tipped blue
Bare face with conspicuous

lines of red feathers

Little yellow on ear-coverts or
bases to feathers of head and

underparts

Short, blunt bill
Lores and bases to feathers of
head salmon-pink: palest blue

Almost white eye-ring

Gray parrot with short,
squarish red tail

Cites
appendices Appendix II Appendix II Appendix I Appendix I
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Figure 9: Graphical user interface example of the designed system.
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Figure 10: Learning curves of each model’s train accuracy.
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callback functions when we called the “model.fit()” in our
experiment, “EarlyStopping()”and “ReduceLROnPlateau().”
It would have been stopped if the validation accuracy had
not been improved during five epochs. We saw that the
training epoch never exceeded twenty-five, so we set the
number of epochs to thirty. Learning rate started from 0.001
and decreased gradually by 0.03 if the validation accuracy
had not been improved during three epochs until the

termination of training. When we called “model.compile(),”
we set loss equals to “categorical_crossentory,” metrics
equals to “acc”, and optimizer equals to “Adam.”

Table 2 shows the confusion matrix for all models. A
confusion matrix is an evaluation approach that checks the
performance of a classifier for all labels. Every model in
this study is included, and each row shows the perfor-
mance of the model depending on the labels. For instance,

1

0.9

0.8

0.7

0.6

0.5

Epoch
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Learning curves for validation accuracy
ResNet50 (ImageNet)
NASNetMobile (ImageNet)
InceptionResNetV2 (ImageNet)
InceptionV3 (ImageNet)

ResNet50 (random)
NASNetMobile (random)
InceptionResNetV2 (random)
InceptionV3 (random)

Figure 11: Learning curves of each model’s validation accuracy.

Table 2: Confusion matrix.

ResNet50 (ImageNet/random) Prediction
Actual Ara chloroptera Cacatua galerita Cacatua goffiniana Psittacus erithacus

Ara chloroptera 100/92 0/1 0/3 5/10
Cacatua galerita 0/1 98/66 6/38 1/0
Cacatua goffiniana 0/2 15/40 88/55 2/8
Psittacus erithacus 5/4 1/5 10/6 89/90

NASNetMobile (ImageNet/random) Prediction
Actual Ara chloroptera Cacatua galerita Cacatua goffiniana Psittacus erithacus

Ara chloroptera 99/95 0/1 5/1 1/8
Cacatua galerita 0/0 100/76 2/23 3/6
Cacatua goffiniana 0/3 12/32 89/54 4/16
Psittacus erithacus 3/0 0/4 1/11 101/90
InceptionResNetV2 (ImageNet/random) Prediction

Actual Ara chloroptera Cacatua galerita Cacatua goffiniana Psittacus erithacus
Ara chloroptera 103/85 0/7 1/2 1/11
Cacatua galerita 0/0 98/74 5/29 2/2
Cacatua goffiniana 0/4 8/19 95/72 2/10
Psittacus erithacus 8/5 0/4 1/4 96/92

InceptionV3 (ImageNet/random) Prediction
Actual Ara chloroptera Cacatua galerita Cacatua goffiniana Psittacus erithacus

Ara chloroptera 100/99 0/1 3/1 2/4
Cacatua galerita 0/0 94/77 3/28 8/0
Cacatua goffiniana 1/2 8/10 97/89 0/4
Psittacus erithacus 8/6 0/1 0/2 97/96
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100/92 in the first row means that the number of correct
predictions is 100 and 92 for the models initialized by the
ImageNet weights and random weights, respectively. )e
number of test images for each species is 105, as mentioned
earlier. Hence, ResNet50 with the ImageNet weights
correctly classified 100 out of 105 samples. )e confusion
matrix is an important measure of the true performance of
each model. Because the models were evaluated on

previously unseen data, we can verify whether they can
recognize general features of the species. )e results show
that the models can classify the images in the training and
validation sets with more than 90% of accuracy (learning
curves of training and validation) but it does not seem to
apply to the confusion matrix of random-number-ini-
tialized models (right-side values of the confusion matrix).
)erefore, some pieces of information for validation were

0.94

A. chloroptera C. galerita C. goffinianan P. erithacus

0.9

ResNet50

0.59

0.84
0.89

0.81

0.56

0.94

ResNet50 image
ResNet50 random

Figure 12: F1-score of RestNet50 for four different endangered parrot images.
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Figure 13: F1-score of InceptionResNetV2 for four different endangered parrot images.
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Figure 14: F1-score of NASNetMobile for four different endangered parrot images.
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leaked out during the training; hence, the models mem-
orized the features of validation instead of general features
of species. According to our results, the models with
ImageNet weights classify the images better than the other
methods, even though the images are completely new. For
example, the results are 98/66 and 88/55 for ResNet50 in
Table 2. )is finding stands not only for ResNet50 but also
for the other models. )e number of correct predictions
for each model is 100 out of 105, 98 out of 105, and 94 out
of 105 for Cacatua galerita; 88 out of 105, 89 out of 105, 95
out of 105, and 97 out of 105 for Cacatua goffiniana,
respectively.

Figures 12–15 show F1-scores of the models. F1-score is
a way to quantify the results of the confusion matrix. F1-
score is calculated using precision and recall by

F1 � 2∗
Precision∗Recall
Precision + Recall

. (2)

Precision reflects how many predicted items are correct.
Recall reflects how many correct items are predicted. Pre-
cision can be calculated by dividing the number of true
positives by the number of positive predictions. For instance,
ResNet50 with ImageNet classified 105 images as Ara
chloroptera in the test set. )e number of true positives is
100. )erefore, the precision of ResNet50 is 100 out of 105.
Recall can be calculated by dividing the number of true
positives by the number of true cases. For ResNet50, the total
number of true cases is 105; hence, the recall of the model is
100 out of 105. We can calculate the F1-score by substitution
of the results:

2∗
(100/105)∗(100/105)

(100/105) +(100/105)
≈ 0.95. (3)

Figure 12 shows the F1-score of Ara chloroptera. )e F1-
score is more effective than simple accuracy when we
measure the model’s performance because it considers the
data distribution (unlike the accuracy). Let us suppose that
we have 90 images with the first label and ten images with the
second label. We can obtain 90% of accuracy if we classify all
images as “the first label.. F1-score avoids this problem.
Overall, we conclude that the ImageNet-based models are
superior to the random-number-initialized models for
quasi-species of parrots.

4.2. Mobile Application. )e graphical user interface of the
real-time mobile application developed in this study is
shown in Figure 9. NASNetMobile model with ImageNet
weights was converted into a FlatBuffer file (.tflite) and
added to the application. Subsequently, we used Android
Studio to edit the code and add visual elements. First, we
checked that Android Studio, SDK version, and depen-
dences were compatible with TensorFlow Lite. After the
model in a FlatBuffer file was located in a project, we built it,
and then an APK was created. Finally, the application was
installed on a device.

)e parrot images were captured by the mobile device’s
camera. Next, the trained model classified the image. Finally,
the application showed the result of the model. We can
check the result at the bottom of the screen, as seen in
Figure 9. )e first image of Figure 9 shows a preview of a
parrot image: a text line presents that this parrot is “Ara
chloroptera” as one hundred percent. “345ms” is seen at the
lowest part of the image: it means that it took 345ms to
classify this image.)e average turnaround time was 460ms,
the minimum time was 229ms, and the maximum time was
671ms for 50 iterations. According to our findings, the
application processed jobs under 1 second.

5. Discussion

In this paper, we proposed classifiers for endangered parrot
species. )e models extract the features of the parrot ap-
pearances at the convolutional layer, which has been pre-
trained on a large amount of data, and then we classify the
images at the last layer. Our proposed models require a
relatively short time to conduct their job. )ey are more
accurate than the models trained from scratch, especially for
the species that have a similar color. )is is because the
pretrained models can already extract the low-level features
of a new image. Another advantage of the models trained by
transfer learning is that the model does not need to draw a
bounding box to train the last layer. )is approach will
greatly reduce the inconvenience for humans by eliminating
manual processes. We expect that the accuracy will be in-
creased if fine tuning is applied. Finally, Tf.keras-based
model can be easily deployed on an Android mobile device
using the FlatBuffer file converter provided by TensorFlow
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Figure 15: F1-score of InceptionV3 for four different endangered parrot images.
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Lite. To clarify the key points of this study, we suggest the
following highlights:

(i) CNN models with transfer learning can be trained
without any special difficulty

(ii) )e designed advanced CNNmodels do not require
any manual preprocessing (such as labeling or
drawing bounding boxes on the images)

(iii) )e CNN models can be easily converted into a file
for deploying in a mobile application using Ten-
sorFlow Lite framework

(iv) )e mobile application can classify endangered
quasi-species of parrots having a high color simi-
larity in real time

6. Conclusions and Future Work

In our proposed system, the mobile application classifies the
image acquired from the device camera in real time. To sum
up, our system works as follows. We used two methods to
create a high-quality model with a small amount of original
data. First, we used data augmentation to increase the
amount of data by manipulating the original data. Second,
we used transfer learning to extract the characteristics of the
image smoothly. Specifically, we used the convolutional
layers pretrained on a large amount of data. Next, we used
the FlatBuffer file converter provided by TensorFlow Lite to
deploy this model on a mobile device. For quasi-species of
parrots, the accuracy of the classification models with
transfer learning is approximately 20% higher than that of
the models trained from scratch.

Based on this study, we also expect that further studies
on advanced topics could be explored as follows. First, the
results can be improved when a fine-tuning process is added,
as mentioned in Section 5. Second, in addition to the
classification of the four species of parrots in this study, it is
possible to carry out accurate classifications for parrots on
more than ten species.
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Nowadays, Internet of ,ings (IoT) gives rise to a huge amount of data. IoTnodes equipped with smart sensors can immediately
extract meaningful knowledge from the data through machine learning technologies. Deep learning (DL) is constantly con-
tributing significant progress in smart sensing due to its dramatic superiorities over traditional machine learning. ,e promising
prospect of wide-range applications puts forwards demands on the ubiquitous deployment of DL under various contexts. As a
result, performing DL on mobile or embedded platforms is becoming a common requirement. Nevertheless, a typical DL
application can easily exhaust an embedded or mobile device owing to a large amount of multiply and accumulate (MAC)
operations and memory access operations. Consequently, it is a challenging task to bridge the gap between deep learning and
resource-limited platforms.We summarize typical applications of resource-limited deep learning and point out that deep learning
is an indispensable impetus of pervasive computing. Subsequently, we explore the underlying reasons for the high computational
overhead of DL through reviewing the fundamental concepts including capacity, generalization, and backpropagation of a neural
network. Guided by these concepts, we investigate on principles of representative research works, as well as three types of
solutions: algorithmic design, computational optimization, and hardware revolution. In pursuant to these solutions, we identify
challenges to be addressed.

1. Introduction

,e last decade has witnessed exciting development of deep
learning (DL) technologies, which contributes dramatic
progress in signal and information processing applications
including IoT and smart sensing. A deep neural network
(DNN) comprises multiple neuron layers organized in a
hierarchical structure. Parameters of every layer can be
learned through iterative training. A well-trained DNN can
distill useful features from raw data. All training samples are
manually labeled. In one layer, input data can be mapped
into a low-dimensional space through feature extraction.
Subsequently, output features of the current layer are
exported into the next layer. Outputs of the last layer imply
the learned labels. A DNN can be fine-tuned through

minimizing the error between manual labels and learned
labels [1].

Deep learning enjoys significant advantages over tra-
ditional machine learning [2, 3]. First, deep learning can
achieve superior performance when data volume is massive.
,is means that deep learning can fully benefit from the
huge amount of data collected by IoT. Traditional machine
learning techniques are preferable when data volume is
small. However, the performance prominently degrades
when data volume is extremely large. In contrast, deep
learning exhibits advantageous scalability with massive data.
Second, deep learning relies less on feature engineering. IoT
can gather diversified categories of data that are distinct in
nature. Manually extracting features of heterogeneous data
is a daunting task. Traditional machine learning requires a
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domain expert to extract features. ,e manually identified
features expose underlying patterns to algorithms. Never-
theless, deep learning autonomously extract features in a
layer-wise manner to represent input samples with a nested
hierarchy of features. Every layer defines higher-level fea-
tures based on lower-level features extracted by the previous
layer. ,ird, deep learning techniques can outperform tra-
ditional ones in terms of various smart-sensing-related tasks,
such as computer vision, speech recognition, and human
behavior understanding.

By contrast with traditional machine learning solutions,
deep learning techniques are undergoing rapid develop-
ment. Applications of deep learning involve information
retrieval [4], natural language processing [5], human voice
recognition [6], computer vision [7], anomaly detection [8],
recommendation systems [9], bioinformatics [10], medicine
[11, 12], crop science [13], earth science [14], robotics
[15–18], transportation engineering [19], communication
technologies [20–22], and system simulation [23, 24].

Deep learning is permeating into diversified aspects of
human society, which puts forwards urgent demand on the
ubiquitous deployment of DL-powered applications. In
other words, deep learning is required to be fit into resource-
limited platforms like smartphones or wearable devices.
Nevertheless, matching DL and resource-limited platforms
is a challenging task. Inferencing with DL is extremely re-
source-consuming (processor, memory, energy, etc) even
though the more resource-consuming training phase can be
offloaded onto high-performance-computing-powered
mainframes. We investigate on typical resource-limited DL
inferencing solutions by categorizing the solutions and
discussing open questions.,e rest of this paper is organized
as follows. Section 2 clarifies impetus of developing re-
source-limited DL. Representative solutions are discussed in
Section 3. Section 4 points out the challenges to be
addressed. Section 5 concludes our work.

2. Computational-Resource-Limited Context of
Deep Learning

2.1. Application Scenarios. Figure 1 shows typical applica-
tions of computational-resource-limited DL in the smart
sensing context, including self-driving [25, 26], artificial
intelligence APPs of smartphones [27], health/homecare
robots [28–31], and intelligent wearable devices [32]. ,e
DNN can be pretrained on remote cloud while the mobile
DL platforms communicate with the cloud and perform
inference based on local computational and energy resources
[33]. All these applications rely on embedded computer with
limited onboard resources such as processor, memory, and
battery. Two fundamental technologies of such applications
are sensor data processing and computer vision.

Recognizing and feeding back to user behavior and
surrounding environment are the core functionalities of
state-of-the-art Internet-of-,ings (IoT) and mobile sensing
applications. Nevertheless, raw sensor data are inevitably
mixed with noise and uncertainty due to the complicated
deployment environment. As a result, distilling precise and
meaningful knowledge from raw sensor data is a challenging

task. DL is one of the most competitive methods to conquer
this challenge [34].

,e prevalence of wearable (head-mounted) augmented
reality (AR) devices has open a way to a novel class of mobile
computer vision applications, including the Microsoft
HoloLens [35] and the Google Glass [36]. ,ese applications
vary from real-time traffic signal identification for naviga-
tion to human recognition for healthcare APPs. All these
application scenarios propose the common demand to
process continuous video streams in real time. ,e current
leading-edge technology of video stream processing is DL,
which handles video streams using a large-scale and pre-
trained convolutional neural network (CNN) or recurrent
neural network (RNN) [37].

2.2. APerspective of Pervasive Computing. Deep learning can
automatically extract features and achieve higher accuracy
than traditional artificial intelligence techniques. As a result,
deep learning is applicable to a broad range of scenarios.
Additionally, open-source development tools like Tensor-
Flow and Caffe are also speeding up progresses in deep
learning. Research works on fitting deep learning into re-
source-limited mobile or embedded platforms will un-
doubtedly push a huge step forward towards the pervasive
deep learning.

Deep learning is currently an indispensable impetus that
advances the progress of pervasive computing. As shown in
Figure 2, we summarize the development of pervasive
computing into three stages. ,e hardware and software
solutions of a former stage are incorporated into the latter
stages. In the 1990s, researchers in this area try to facilitate
the daily life of humans through Internet-interconnected
desktops and mainframes. TCP/IP protocols account for the
backbone of networks and the software layer of pervasive
applications typically focuses on network organization and
data delivery. In the following stage, the mobile Internet
provides network access to users at any time and any place.
IoT interconnects almost all digital sensors to collect raw
data from diversified sources, which results in large data
volume and puts forward high demand on the computing
power of the data processing platform. ,us, distributed or
parallel middleware like Hadoop aggregates the computing
power of huge amounts of commodity servers. Additionally,
cloud computing provides the aggregated supercomputing
power to customers throughWeb Service. Data transmission
between IoT and cloud platforms is further supported by
WIFI and 3G/4G. However, applications of this stage mainly
adopt traditional machine learning solutions, which cannot
achieve constantly advancing performance with the con-
tinuous increase of input data volume. Nowadays, the
learning and inference accuracy of DNN can efficiently scale
with the input data amount. However, high time and
memory overheads impede the deployment of DL on re-
source-limited platforms. Matching deep learning and
hardware platforms is an active research area. Software layer
solutions mainly focus on simplifying the trained DNN to
approximate a full-status DNN. Hardware layer solutions
involve embedded GPUs, artificial intelligence chips, or even
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analog computing based on new nonvolatile memory. Ad-
ditionally, 5G will meet even higher bandwidth
requirements.

3. Investigation on Existing Solutions

3.1. Computational Predicament of DNN: A Perspective of
Underlying Principles. Classification is a typical application
scenario of DNNs. Under this scenario, the target is to
establish a mapping from input samples to corresponding
labels. ,e following concepts are the cornerstones to
exploit the learning and inference of DNNs: hypothesis
space, capacity, stochastic gradient descent, and general-
ization [38].

Hypothesis space is the set of all functions generated by a
neural network. One function is obtained by fitting part of
parameters of the neural network and can map homoge-
neous samples to the same label. Training a neural network is
to search the optimal functions in the hypothesis space,
which can build mapping relationships specified by the
training data (in other words, minimizing the training er-
ror). As a result, the size of hypothesis space determines the
potential ability of a neural network to find optimal
functions.

Capacity of a neural network reflects the size of hy-
pothesis space, as well as the upper bound of ability to fit
functions. ,e optimal functions may be beyond the hy-
pothesis space, if the capacity is not sufficiently large. In this
case, the neural network can only search in the limited
hypothesis space and find functions that approximate the
optimal functions with best efforts. Consequently, under-
fitting is inevitable.

A trained neural network is expected to correctly predict
the label of previously unseen samples. Generalization re-
flects this kind of ability. Lower generalization error means
higher generalization ability. Underfitting during the
training phase can result in large generalization error in the
inference phase.

Capacity sets the limit of the fitting ability, while
generalization can measure the ability of scaling with
unknown samples. Another vital issue with neural net-
works is the mechanism of searching the hypothesis space
in the training phase. Conventionally, the searching is
manipulated by stochastic gradient descent; searching is
always along the direction in which training error drops
fastest. ,e gradients are backpropagated from the deepest
layer to the first layer to update weights in a layer-wise
manner. Backpropagation converges when the difference
of train errors between two successive iterations is smaller
than a threshold. However, stochastic gradient descent
commonly cannot reach the global optima. Despite that a
near-optimal solution is generally sufficient to train a low-
error neural network, this method typically requires a long
time to converge. Moreover, parameters like step length
should be carefully selected to avoid fluctuation of the
gradient.

From the perspective of underlying principles, the
computational predicament of DNNs is due to the following
reasons.

,e first is memory overhead. Oversized network is a
conventional method to achieve low generalization error. A
large capacity does not necessarily result in low general-
ization error. However, a large hypothesis space raises the
upper bound of the generalization ability and thus increases
the possibility of reaching a low error, especially when the
target functions are not excessively complex.

,e second is time and energy overhead. Back-
propagation is inherently iterative and time-consuming.,e
gradient is calculated by minimizing the training error. ,e
training error is a function of weights and other parameters.
,e huge number of weights leads to a slow convergence
speed. Moreover, these weights need to be frequently
transmitted between processing units and memory. Con-
sequently, the long-time computation and intensive memory
operations raise high demand on the processing ability and
energy duration. In addition, values of hyperparameters are
conventionally selected through fine-tuning, which multi-
plies the time overhead.

,e third is the curse of dimensionality. High dimen-
sionality of data aggravates the computational resource
consumption. DNNs commonly need a large volume of
training data to guarantee the generalization ability of the
trained network. Higher dimensionality requires denser
samples. If A1 is the number of necessary training data
points in the one-dimensional sample space, then the
number of training data points is An

1 in n-dimensional
sample space [38]. More training data points of higher di-
mension inevitably exacerbate overheads of memory, time,
and energy.

3.2. Challenges to Be Investigated. Deep learning is currently
more art than a science. Neural networks are inherently
approximate models and can often be simplified [39].

In spite of the dramatic learning power of deep learning,
computational cost has impeded their portability to re-
source-limited platforms [40]. DL algorithms are facing
three kinds of barriers to optimize computational perfor-
mance.,e first barrier is the resource-consuming iterative
nature of DL training. Moreover, the experiential nature
aggravates this kind of iterative cost. Up to now, the success
of deep learning mainly relies on empirical designs and
experimental evaluations. ,eoretical principles are still to
be exploited. As a result, optimizing the performance of deep
learning requires implementing and executing various
possible models within the computational resource con-
straints to empirically recognize the optimal one [41].
Extracting meaningful knowledge from a single input
sample can require enormous MAC operations.,e number
of MAC operations can reach the magnitude of billion [42].
Additionally, a single deep learning network can contain
over a million parameters [43]. As a result, deep learning
proposes high demands on processing ability, memory ca-
pacity, and energy efficiency. It is a vital issue to optimize
deep learning networks by eliminating ineffectual MAC
operations and parameters [42].,e second barrier is fitting
DNNs into diversified modern hardware platforms. Dif-
ferent hardware platforms can be distinct in terms of clock
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frequency, memory access latency, intercore communica-
tion latency, and parallelism mode. Designer of DL model
can be categorized into two different types: data scientist and
computer engineer. Data scientists mainly concentrate on
optimizing training and inference accuracy through data
and neural network techniques. However, they have little or
even no concern with computational cost. Efforts to upgrade
accuracy do not necessarily result in smaller network size
and higher speed. Computer engineers focus on accelerating
deep learning based on hardware platforms. ,ey fine-tune
or even reform DNNs to match the models to the design
requirements for resource-constrained applications. ,e
third barrier is lack of dedicated hardware. Traditional
general-purpose digital computing hardware such as CPU,
GPU, and FPGA neglect some unique characteristics of deep
learning. For example, deep learning only involves limited
kinds of computational operations. Additionally, deep
learning is significantly tolerant to noise and uncertainty.
Dedicated hardware may trade off universality for perfor-
mance [44–48].

Cloud-powered DL has been an active research area.
Such solutions can offload heavy computation onto the
remote cloud hosts. Such methods assemble data from
mobile or embedded devices, transfer the data to cloud, and
perform deep learning algorithms (both training and
inferencing) on cloud. Users are facing the risk of privacy
leakage due to data transmission through computer net-
works, particularly if the data contain sensitive information.
In addition, the reliability of cloud-based deep learning may
be affected by network package loss or even network failure.
In this paper, we focus on three issues: first, trade-off between
neural network capacity and generalization error using al-
gorithmic design; second, fitting DNN into digital hardware
through computational design; and third, next-generation
hardware to cope with the computational predicament of
DNN.We categorize the existing solutions into three layers:
the algorithmic, computational, and hardware layers.

Figure 3 summarizes typical solutions. A practical
method may integrate more than one solutions.

3.3. Algorithmic Design. Algorithmic designs focus on re-
ducing resource consumption through mathematically
adjusting or reforming the DNN model and algorithm.
Typical simplification techniques include depthwise sepa-
rable convolution, matrix factorizing, weight matrix spar-
sification, weight matrix compression, data dimension
reduction, and mathematical optimization.

Howard et al. designed a series of neural network models
(MobileNets) to facilitate machine vision applications on
mobile platforms [49]. MobileNets represent a kind of
lightweight deep neural network based on depthwise sep-
arable convolutions. ,e main goal of MobileNets is to
construct real-time and low-space-complexity models to
satisfy the demands raised by mobile machine vision ap-
plications. ,e contributions of MobileNets are summarized
as follows. First, core layers of MobileNets are derived from
the depthwise separable convolution.,e core concept of the
depthwise separable convolution is to factorize a

conventional convolution into a depthwise separable con-
volution layer and a pointwise convolution layer [50].
MobileNets adopt this core concept to reduce themodel size,
as well as the total number of multiplication and addition
operations. Second, pointwise convolutions account for 95%
of the total computation while the im2col reordering op-
timization is unnecessary for pointwise convolutions [51].
,us, MobileNets avoid massive computation of im2col
reordering.,ird, since MobileNets generate relatively small
models and require comparatively few parameters, con-
ventional anti-overfitting measures are adjusted. For in-
stance, less regularization and data augmentation are used.
Additionally, minimal weight decay (L2 regularization) is
adopted on the depthwise filter. Fourth, two hyper-
parameters called width multiplier and resolution multiplier
are applied to further shrink the model size.

,e core concept of [49] is factorizing a conventional
convolution to lower the computation complexity. ,is
factorization does not affect the inference accuracy and thus
is a lossless simplification method. However, lossy simpli-
fication is necessary if superior simplification effect is
demanded. Samraph et al. customize DL network to match
FPGA platform [39]. ,is method simplifies the weight
matrix through clustering and encoding. Additionally,
matrix-vector multiplication operations are factorized to
decrease computational complexity. First, elements of the
weight matrix are clustered by k-means intoK clusters.,us,
every element is affiliated to a cluster, and the center of every
cluster is the mean of its affiliated elements. Consequently,
every element in the weight matrix is replaced with the
corresponding center. In other words, every weight is ap-
proximated with the center of its affiliated cluster. Second,
the approximate weights are encoded with a bit width of
logK. And all cluster centers form a dictionary vector. As a
result, encoding can significantly lower memory overhead.
,ird, thematrix-vector multiplication can be factorized due
to the fact that the encoded matrix has abundant repetitive
elements. ,erefore, the number of floating-point multi-
plication operations is dramatically reduced, which means
lower computational complexity. In addition to the afore-
mentioned three basic steps, this method faces another
problem: replacing weights with cluster centers inevitably
induces numerical error to the DL network. ,is error can
affect the inference accuracy. ,e method of [39] adopts two
solutions to handle this error. One is increasing the length of
the dictionary vector (in other words, designating a larger K
to k-means).,e other is to iteratively cluster and retrain the
weights. ,e method of [39] focuses on compressing the
already trained weight matrix. By contrast, methods like
lasso regularization can sparsify the weight matrix during
training [52].

Lane et al. propose a software framework namedDeepX

to reshape the DNN reference model under limited resource
constraints [53]. By contrast to the clustering method of
[39], DeepX uses SVD decomposition and reconstruction
error minimization to compress the DNN model. On the
first level, they adopt SVD decomposition to reconstruct and
approximate the weight matrix of every DNN layer. ,us,
DeepX dramatically reduces the amount of DNN
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parameters in each layer. Additionally, the accuracy of this
approximation is measured and tuned in pursuant to the
reconstruction error. As a result, this reconstruction method
avoids the predicament of retraining. On the second level,
DeepX quantizes the computation loads of every neuron
and formalizes workload scheduling as a constrained dy-
namic programming problem. In this manner, computation
load can be automatically scheduled onto processors to meet
energy and time constraints.

Pruning or compressing an already-trained DNN could
result in large approximation error [54–57]. One alternative
is to train a sparse DNN. Lin et al. propose a method named
structured sparsity regularization (SSR) to achieve weight
matrix sparsification during training [58]. ,ey introduce
two distinct structured-sparsity regularizers into the object
function of matrix weight sparsification. ,ese two regu-
larizers can constrain the intermediate status of DNN filter
matrix to be sparse. Subsequently, they adopt an Alternative
Updating with Lagrange Multipliers (AULM) scheme to
alternatively optimize the sparsification objective function
and minimize recognition loss. ,e SSR method enjoys
significantly lower time andmemory overhead than state-of-
the-art weight matrix pruning methods. Nazemi et al.
propose a DNN training method to remove redundant
memory access operations. ,is method utilizes Boolean

logic minimization [59]. In the training process, the sign

function is adopted as the activation. Consequently, acti-
vations are confined to binary values. Every layer of the
DNN (except the first layer and the last layer) is modeled as a
multi-input multioutput Boolean function. In the inference
process, outputs of the DNN are obtained through syn-
thesizing a Boolean expression other than computing the dot
product of the input and weight. In other words, enormous
memory accessing operations are avoided, which removes
vast memory access latency and energy consumption.

,e aforementioned algorithmic solutions focus on
simplifying the DNNmodel so as to reduce MAC operations
and memory consumption. Nevertheless, physical durabil-
ity, especially energy efficiency, is still a daunting barrier to
benefit various practical applications through deep learning.
DeLight is a low-overhead framework that capacitates effi-
cient training and execution of deep neural networks under
low-energy constraints [60]. Authors of [60] restrain the DL
network size through energy characterization in pursuant to
pertinent physical resources. ,ey design an automatic
customization methodology to adaptively fit the DNN into
the specific hardware while inducing minimum degradation
of learning accuracy. ,e core concept of DeLight is to
project data to low-dimensional embeddings (subspaces) in
a context-and-resource-aware manner. Consequently,
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insights into data samples can be achieved through dra-
matically less neurons. Moreover, trained models in every
embedding are integrated to enhance learning accuracy.

,e core concept of De Light is fine-grained energy
consumption control based on data dimension reduction.
,e framework HyperPower proposes to bound energy and
memory consumption from the point of hyperparameter
optimization [41]. ,is is a hyperparameter optimization
framework based on Gaussian process (GP) and Bayesian
optimization [61, 62]. ,is framework denotes test error as a
function f(x), where x is a data point in the design space of
hyperparameters. Additionally, power and memory over-
head is denoted as a function g(x). Subsequently, hyper-
parameter tuning is formalized as an optimization problem:
minimizing f(x) under the constraint that g(x) is lower
than a threshold. Minimizing f(x) is costly due to the fact
that f(x) has no close form. Consequently, HyperPower

adopts GP to approximate distributions of f(x). Moreover,
the framework leverages Bayesian optimization to iteratively
select optimal hyperparameters and update distribution of
f(x). f(x) is assumed to obey Gaussian distribution. Let y
denote the observations of f(x). At the very beginning, an
initial approximation of f(x) can be resolved as pM(y | x)

based on the assumption and a set of known (x, y) values
(Gaussian process regression). Every iteration includes the
following operations.,e primary task is to select an optimal
value of x from the design space to refine pM(y | x). And the
selected x should push the f(x) value along a direction of
decrease. ,is value of x is identified through maximizing an
expectation-improvement-based acquisition function. In
addition, the acquisition function incorporates the con-
straint using an indicator function. ,e indicator function
equals to one if the constraint is satisfied and zero if not.
Second, the neural network is configured in accordance with
the new design parameter (the newly identified x) and
trained to obtain the test error (a new value of y). ,ird, the
mean and covariance are updated using the new (x, y), and
thus, pM(y | x) is updated to pM(y).

3.4. Computational Optimization. Computational optimi-
zation relies on reengineering the algorithm implementation
in accordance with a specific hardware architecture. Some
conventional optimization techniques are code parallelizing,
fine-tuning of parallel code, data caching, and fine-grained
memory utilization.

Huynh et al. developed a tool DeepMon for continuous
vision applications based on commodity mobile GPUs [37].
Large deep neural networks (DNNs) powered by commodity
mobile GPU commonly cannot achieve strict real-time
performance due to limited computational resources.
However, the frame rate can be low (one to two frames per
second) under some use cases, such as speaker recognition
and elder nursing care. ,ese application scenarios put
forward comparatively low demands on real-time perfor-
mance. DeepMon implements large DNNs for such appli-
cations based on commodity mobile GPUs and achieves near
real-time performance. In the aforementioned applications,
first-person-view images are not apt to exhibit significant

changes during a short time span. DeepMon divides each
frame of image into equal-size blocks. DeepMon cached the
intermediate results of each block when calculating the
convolution of one frame. Subsequently, similar blocks are
identified between this frame and the next frame. Conse-
quently, the cached results can be directly utilized to cal-
culate convolution of the next frame. Additionally, cached
results expire after a certain time period. Similarity between
two images is identified based on color distribution histo-
gram and chi-square distance metric. In addition to this
caching mechanism, DeepMon leverages Tucker-2 de-
composition convolution layers [63] to factorize a tradi-
tional convolution layer into several small convolution
layers. As a result, computation cost of convolution is re-
duced. Finally, DeepMon tunes GPU codes on various
mainstream commodity mobile GPUs. Tuned and optimized
GPU codes are encapsulated into separate kernels for each
GPU model. As a result, DeepMon can adaptively adopt
appropriate kernels at runtime so as to fit into a specific GPU
with best efforts.

,e main idea of DeepMon is caching the intermediate
result to eliminate redundant computation. Another typical
technique is GPGPU acceleration. Cao et al. proposed a
GPGPU-powered RNN model that executes locally on
mobile devices [64]. Recurrent neural network (RNN) can
find wide applications such as speech recognition and robot
chatting. Traditional mobile applications of RNN generally
offload main computation onto the cloud. However, the
cloud-based implementation induces security and efficiency
issues. Cao et al. pointed out that existing GPGPU-
accelerated methods for convolutional neural network
(CNN) cannot directly be transplanted to mobile-device-
based RNN. On the one hand, RNN inherently contains
many sequential operations, which constrains the parallel-
ism of RNN. On the other hand, existing GPGPU-powered
RNN methods are specially designed for desktop GPGPUs.
Such methods can not directly fit into mobile GPGPUs due
to the fact that the mobile GPGPU possesses significantly
less memory capacity and processing cores. In a RNN, the
inevitable dependencies between adjacent cells dramatically
increase the difficulty in exploiting parallelism among cells.
Nevertheless, operations within a cell still exhibit consid-
erable parallelism. In the work of [64], computation of the
cell is factorized in fine granularity and elegantly fits into the
mobile GPGPU.

,e adaptive platform DL framework Deep3 still adopts
the idea of GPGPU-powered computing. However, Deep3

exploit parallelism from three levels: data, network, and
hardware. ,e ultimate goal of Deep3 is to bridge the gap
between data science perspective design of deep learning and
computer engineering perspective optimization of deep
learning. First is hardware parallelism. Deep3 extracts basic
operations (layers) of a deep learning network, including
convolution, maximum pooling, mean pooling, matrix
multiplication, and nonlinearities. Optimized implementa-
tion of a basic operation can be dramatically distinct with
regard to the hardware platform. For example, by altering
the dimensionality of matrices, we can observe that matrix
multiplication is computation-intensive or data-intensive on
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a specific platform. Deep3 employs subroutines to perform
hardware profiling. Each subroutine runs a specific opera-
tion with varying sizes on different platforms, separately. In
this manner, Deep3 recognizes the optimal size of a specific
operation regarding a target platform. ,ese optimal sizes
are vital instructions to split an entire deep learning network
into subnetworks, which adapt the computational, memory,
and bandwidth resources of the target platform. Second is
network parallelism. Deep3 breaks down the entire deep
learning network into overlapped subnetworks using a
depth-first method. Each subnetwork has the same depth as
the original network with significantly fewer edges. Every
subnetwork can be independently updated, and such local
updates are periodically collected by a parameter coordi-
nator to optimize the entire network. ,ird is data paral-
lelism. Deep3 decomposes the high-dimensional input data
into several low-dimensional subspaces through dictionary
learning. Dictionary learning can be efficiently performed by
machine learning algorithms like spectral clustering [65–67].
Subsequently, each subnetwork is dedicated to handling a
specific subspace and different subspaces are processed in
parallel.

Wu et al. exploit mobile deep learning in the joint
perspective of software-and-hardware architecture. ,ey
propose a platform named De epShark to capacitate
commercial-off-the-shelf (COTS) mobile devices with the
capability of adaptive resource scheduling [68]. Methods
like DeepX try to compress the deep model. By contrast,
DeepShark seeks trade-off between response speed and
memory consumption. It splits a pretrained DNN into code
blocks and incrementally runs the blocks on system-on-
chip (SoC) to accomplish inference. Consequently,
DeepShark only needs to load currently required data from
external storage into memory rather than hold entire data
in memory throughout the execution period. ,us,
DeepShark remarkably lowers memory consumption. In
addition, DeepShark induces no accuracy loss due to the
absence of model compression or approximation. More-
over, privacy risks are avoided due to the fact that all user-
relevant data are processed locally. Eventually, DeepShark

is transparent to deep learning developers. It overloads
default system functions of TensorFlow and Caffe. De-
velopers can invoke DeepShark APIs in the same way as
calling TensorFlow or Caffe APIs. By contrast, the work of
[59] eliminates redundant memory operations in an al-
gorithmic manner.

3.5. Hardware Revolution. Haensch et al. point out that the
aspiration to apply DL to all fields of daily life is an inheritage
of pervasive computing. However, academia and industry
are facing challenging barriers to scale DL to fit DL into
pervasive applications [69]. Overhead is a vital problem
regarding pervasive application of DL, where overhead re-
fers to time and computational resources required to con-
struct, train, and run the model. Prior-art research works
show that GPUs take a step further towards pervasive DL,
whereas it is confirmed that customized hardware dedicated
to DL can outperform general-purpose GPUs.

Han et al. design a dedicated processor for DNN-based
real-time object tracking [70]. ,is processor achieves low
power consumption through a DNN-specific processor
architecture and a specialized algorithm. However, this
dedicated processor still relies on digital computing.

A DL network only requires limited kinds of mathe-
matical operations (for example, matrix multiplication).
And such operations frequently reoccur in model training or
inference. ,ese two characteristics enable efficient execu-
tion of DL algorithms on not only GPUs but also analog
computing circuits. Additionally, DL algorithms are highly
tolerant to noise and uncertainty, which opens a way to trade
numerical precision for algorithmic accuracy. Analog
computing discussed byHaensch et al. [69] is an extension of
in-memory computing. Prior-art nonvolatile memory ma-
terials cannot efficiently accommodate analog in-memory
computing. Reengineering memory materials is a chal-
lenging task. A new generation of DL accelerating hardware
has entered the vision of academia and industry.,is kind of
hardware trades versatility for low overhead. Nevertheless,
complexity of constructing and training DL models is be-
yond the capacity of any single kind of hardware. As a result,
researchers need to consider the solution in a systematic
perspective and aggregate several kinds of accelerators into a
perfect system. Vitality of new accelerators heavily depends
on this issue. Moreover, Haensch et al. declare that analog
accelerators will not completely replace the digital ones.
Both digital and analog accelerators should be continuously
developed to the maximum possible extent. ,e analog
accelerators should be capable of seamless integration into
digital ones.

Analog computing can be implemented based on
electrochemical reactions. Such a mechanism has been
investigated to establish hardware foundations for DL-
related problems. For example, neuromorphic computing
can circumvent immanent performance bottlenecks of
traditional computing via parallel processing and crossbar-
memory-enabled data accessing. Fuller et al. link a redox
transistor to a conductive-bridge memory (CBM) and thus
establish an ionic floating-gate memory (IFG) array [71].
,e working life of redox transistors can reach up to over
one billion “read-write” operations. Additionally, data
access frequencies can achieve more than one megahertz.
,is IFG-based neuromorphic system shows that in-
memory learning and inference can efficiently perform
based on low-voltage electrochemical systems. ,e adap-
tive electrical features of IFG can hopefully pioneer neu-
romorphic computers that can significantly outperform
conventional digital computers in power efficiency. Such
neuromorphic analog computers could adjust deep
learning to power-limited context, or even capacitate
persistent lifelong learning of a product. Another elec-
trochemistry-based hardware prototype is proposed in
[72]. Tsushiya et al. design a solid-state ionic device to
address decision-making issues like the multiarmed bandit
problem (MBPs). ,is device opens a way to achieve de-
cision-making through motion of ions, which could con-
tribute to mobile artificial chips and find various
applications including deep learning.
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In addition to analog computing, photonic (or optical)
computing is also a promising hardware solution. Currently,
mainstream photonic computers replace components of
electric digital computers with photonic equivalents, which
can achieve higher speed and bandwidth. Some pioneering
research works have adopted photonic computing to sup-
port DL-related computations. Rios et al. achieve all-pho-
tonic in-memory computations through combining
integrated optics with collocated data storage and processing
[73]. ,ey fabricate nonvolatile memory using the phase-
change material Ge2Sb2Te5 and perform direct scalar and
matrix-vector multiplications based on this nonvolatile
photonic memory. ,e computation results are represented
by the output pulses. ,is photonic computing system offers
a promising shift towards high-speed and large bandwidth
on-chip photonic computing, which circumvents electro-
optical conversions. Such a system could be the cornerstone
of the purely photonic computers. Feldmann et al. point out
that conventional computing architectures differentiate real
neural tissue by physically separating the functionalities of
data memory and processing [74]. ,is separated design
places a daunting barrier to achieving high-speed and
power-efficient computing systems like human brains. A
promising solution to conquer this barrier is to elaborate
novel hardware to simulate neurons and synapses of human
brains. Consequently, they investigate on wavelength divi-
sion multiplexing techniques to implement a photonic
neural network based on a scalable circuit, which can mimic
the neurosynaptic system in an all-optical manner. ,is
circuit maintains the intrinsic high-speed and large band-
width characteristics of an optical system and capacitates
efficient execution of machine learning algorithms.

Quantum computing is another prospective solution to
support DL. Gao et al. adopt a quantum generative model to
design quantum algorithm of machine learning. ,is model
enjoys superior ability of representing probability distri-
butions over conventional generative models. In addition,
the model can achieve a speedup of exponential magnitude
at least in some application scenarios that a quantum
computer cannot be fully simulated through conventional
digital computing paradigm.,ework of [75] opens a way to
quantum machine learning and demonstrates a dramatic
instance where a quantum algorithm of both theoretical and
practical values can reach exponentially higher performance
over conventional algorithms.

Novel hardware paradigms like ionic memory, pho-
tonic computing, and quantum computing could set in-
dispensable stages for resource-limited deep learning.
Despite that these hardware evolutions may be initially
motivated by facilitating deep learning applications, the
next-generation hardware could find much broader ap-
plications in future.

3.6. Discussion. Table 1 summarizes representative works in
the perspective of underlying principles that account for the
computational predicament of DNNs. Existing research
works commonly aim at dealing with one or more of the
causes of the computational predicament.

,e first is memory overhead induced by oversized
network. Earlier algorithmic solutions tend to compress or
prune the weight matrix of a pretrained DNN. Compressing
or pruning is a trade-off between the capacity (or general-
ization ability) and memory efficiency. However, directly
modifying a pretrained network inevitably results in
unexceptable error. Despite that retraining is a choice, it will
induce remarkable extra time overhead.

As a result, recent algorithmic solutions propose to
achieve a sparse network through training. ,e core idea is
to elaborately select a regularization item for the error
function, which forces the network to form sparse weight
matrices yet at little or even no loss in generalization ability.
In addition to algorithmic solutions, digital computers can
also capacitate large pretrained networks in the inference
phase through fine-grained utilization of memory.

,e second is time or energy overhead induced by
backpropagation, memory operations, and hyperparameter
tuning. From the point of algorithmic view, dramatic re-
dundant computation can be eliminated, especially in ma-
trix-matrix or matrix-vector multiplications. In this manner,
time overhead as well as energy consumption is reduced.
Time efficiency can also be promoted by reusing interme-
diate results of convolution, parallelization on digital pro-
cessors, and code fine-tuning on digital processors. Unlike
overhead caused by arithmetic processing, time consump-
tion induced by memory operations is difficult to handle.
,e reason is that traditional digital computers adopt von
Neumann architecture and thus have independent pro-
cessing and memory units. Due to the statistical and ap-
proximate nature of DNNs, Boolean logic minimization can
contribute to the reduction of memory operations, as well as
energy consumption. ,is solution achieves efficient per-
formance in handwritten digital recognition. However, it
confines the activation functions to be sign functions, which
limits the generalization ability. Regarding energy-related
hyperparameter tuning, mathematical methods like
Gaussian process can point out a more efficient searching
path in the parameter space, other than merely rely on
human experience or even random searching.

Energy consumption is mainly caused by arithmetic
processing and memory operations. Consequently, the latter
two are key problems. Regarding time overhead, most
existing solutions focus on periphery issues like redundant
computations. However, the problem roots in stochastic
gradient descent. ,e training time will drop dramatically if
we could fabricate an improved gradient that can lead to
convergence more rapidly. With regard to memory opera-
tion overhead, it is an inherent problem of the von Neumann
architecture. Resolving this problem requires new com-
puting paradigms like in-memory computing.

,e third is the curse of dimension. Conventional so-
lutions like weight matrix decomposition and data em-
bedding can reduce the feature dimension. As far as we
know, there are limited research works of feature dimension
reduction in the computational-resource-limited context.
Relevant topics are to be investigated.

It should be noted that the above discussed aspects are
not isolated to each other. A systematic view may imply a
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more efficient solution. For example, a pretrained sparser
network undoubtedly demands less inference time than a
denser network. Another instance, reading/writing weights
will induce less time and energy consumption if the weight
matrix is sparser. Table 1 does not cover innovative com-
puting paradigms like analog computing and quantum
computing. We will discuss such computing paradigms in
more detail later.

Table 2 provides more details on the representative
research works. ,ree categories of solutions are all under
rapid development.,e overall motivation is to apply DL to
mobile/embedded context efficiently. Algorithmic solu-
tions are at the core position due to the fact that they
directly cope with business logic of real applications and
aim to reduce time and memory complexity on the
mathematical logic layer. Existing solutions mainly focus
on simplifying matrix-and-vector operations, data/net-
work embedding, hyperparameter tuning, and sparsifica-
tion through regularization. Further research is still needed
to explore reducing computational overhead through ac-
tivation function.

In addition to the mathematical logic layer, traditional
general-purpose digital hardware bridges the gap between
mathematical algorithms and real applications. To the best of
our knowledge, most practical mobile/embedded DL-based
applications are based on traditional hardware. In this case,
classical computational optimization methods can be
adopted to fully utilize computational resources, including
data caching, parallelization, and code fine-tuning. How-
ever, many existing DNNs are designed by AI experts, who
place little or even no concern on the adaptiveness of DNNs
to hardware. As a result, the DNNs may need some
reshaping to efficiently fit into a specific hardware device. In

view of this, we expect that researchers can design DNNs in a
joint view of both AI experts and computer engineers.

Currently, representative computational performance
metrics include memory overhead, memory access latency,
parallelism (full utilization of processors), and power con-
sumption. However, some topics still remain to be inves-
tigated. For instance,DeepShark uses external storage as the
cache to support fine-grained memory utilization. Power
consumption caused by data I/O is to be discussed. In
addition, the balance between cache size and cache hit rate is
also an interesting topic. Table 3 shows the datasets that were
used to evaluate a DNN in pursuant to more than one
performance metrics.,ese datasets and relevant algorithms
are favourable choices to serve as benchmarks.

Nevertheless, traditional general-purpose digital hard-
ware may be still inefficient under certain scenarios. Con-
sequently, DL-dedicated digital hardware is becoming
increasingly popular, whereas the computational perfor-
mances of digital hardware are facing bottleneck due to
physical constraints. Next-generation computing technol-
ogies such as quantum computing are promising solutions to
conquer such constraints. Next-generation computing
technologies will undoubtedly boost the progress of deep
learning even if they are now in their infancies.

4. Challenges to Be Addressed

Despite the promising prospect of existing solutions, we are
still facing some considerable challenges to be addressed.

4.1. Fundamental Support for Hardware Revolution.
Analog computing is a promising technology to facilitate DL
due to the fact that DL is tolerant to numerical errors.

Table 1: Representative research works in the perspective of underlying principles.

Representative
research works Techniques

Memory overhead induced by oversized network

[39] Weight matrix compression of a pretrained network through
clustering: merging similar functions in the hypothesis space

[56] Weight pruning of a pretrained network: removing the weights
that contribute little to fitting functions in the hypothesis space

[39, 58] Sparse training: lasso regularization, structured sparsity
regularization

[68] Computational optimization on digital computers: fine-
grained utilization of memory

Time or energy overhead induced by
backpropagation, memory operations, and
hyperparameter tuning

[37, 39, 49]

Algorithmic design to avoid computation redundancy: depth
separable convolution, avoidance of im2col reordering,
factorized matrix-vector multiplication based on SVD and

Tucker-2

[37] Caching of digital computers: reuse intermediate results of
convolution to avoid redundant computation

[39, 40] Parallelization on digital processors: FPGA, GPGPU

[37, 40, 53] Full utilization of digital processors: profiling and fine-tuning
of CPU or GPGPU codes

[59] Avoidance of frequent memory operations through Boolean
logic minimization

[41] Hyperparameter tuning using Gaussian process

Curse of dimension [53] SVD decomposition of the weight matrix
[60] Data embedding
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Table 2: Details of representative research works.

Date Name (ref. no.) Resource Representative
method

Architecture of NN
or topic of machine

learning

Application
scenario Dataset

Algorithmic

2016-4-11 DeepX[53]
Memory
capacity,
power

Inference phase: SVD
decomposition-based
weight matrix

compression, fine-
grained task
scheduling to
processors

AlexNet [76],
2-hidden layer
DNN for

SpeakerID, SVHN
CNN, 2-hidden
layer DNN for
Audio Scene

Recognition of
objects, human
voice, audio
environment

ImageNet [76], Speaker
Verification Spoofing,
and Countermeasures
Challenge Dataset [77],
SVHN dataset [78],
Audio Scene dataset

[79]

2016-8-8 DeLight[60] Power

Training phase:
data projection
under energy
constraint

4-Layer DNN
Imaging, smart
sensing, speech
recognition

Hyperspectral Remote
Sensing Scenes [80],
UCI Daily and Sports
Activities [81], UCI
ISOLET [82]

2017-4-17 MobileNets[49] Memory
capacity

Training phase:
depthwise separable

convolution,
avoidance of im2col

reordering,
hyperparameter

tuning

A 28-layer
convolution neural
net, PlatNet

[87, 88], FaceNet
[89, 90]

Large-scale
geolocation, fine-
grained image
recognition, face
recognition, object

detection

ImageNet, Im2GPS
[83], Stanford Dogs
[84], YFCC100M [85],

COCO [86]

2017-4-30 [39] Memory
capacity

Inference phase:
weight encoding,
weight sharing,
factorization of
vector-matrix
multiplication

2-Hidden layer
DNN

Speech
recognition,
indoor

localization,
human activity
recognition,

handwritten digital
recognition

UCI ISOLET, UCI
UJIIndoorLoc [87],
UCI Daily and Sports
Activities, MNIST [88]

2018-3-19 HyperPower[41] Power

Training phase:
hyperparameter

tuning, GP-Bayesian
optimization

Variants of AlexNet
for MNIST and
CIFAR-10

Handwritten
digital recognition,

image
classification

MNIST,CIFAR-10 [89]

2019-1-21 [59]

Memory
access
latency,
power

Training phase:
transform the DNN
realization problem
into a Boolean logic

optimization
problem, Boolean
logic minimization

Multiple layer
perception [92],

CNN

Handwritten
digital recognition MNIST

2019-2-28 [52] Memory
capacity

Training phase: group
lasso regularization,
intergroup lasso
regularization

Fully convolutional
network with 7
convolution layer
initialized with

pretrained VGG16

Face recognition LFW face dataset [93]

2019-4-12 [58] Memory
capacity

Training phase:
structured sparsity
regularization,

Alternative Updating
with Lagrange

Multipliers (AULM)

LeNet [94],
AlexNet, VGG-16
[95], ResNet-50
[96], GoogLeNet

[97]

Handwritten
digital recognition,

image
classification

MNIST, ImageNet
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Table 2: Continued.

Date Name (ref. no.) Resource Representative
method

Architecture of NN
or topic of machine

learning

Application
scenario Dataset

Computational

2017-6-18 Deep3[40] Processor

Training and
inference phases:

enhancing parallelism
through computing
load granularity
altering, network
splitting through
depth-first traversal
methodology, data
dimension reduction
using dictionary

learning, parallelizing
with GPU

Establish an
universal

framework for
fitting DL network
into specific

hardware, AlexNet
was used as an
example

Imaging, smart
sensing, speech
recognition

Hyperspectral Remote
Sensing Scenes, UCI
Daily and Sports

Activities, UCI ISOLET

2017-6-19 DeepMon[37] Processor,
power

Inference phase: data
caching, hardware-
specific code fine-
tuning, Tucker-2

matrix decomposition

VGG-Verydeep-16
[95], YOLO [98]

Continuous vision
application

ILSVRC2012 train
dataset [99], Pascal

VOC 2007 train dataset
[100], UCF101 dataset
[101], LENA dataset

[102]

2017-6-23 MobiRNN[64] Processor

Inference phase: fine
granularity code
execution,

parallelizing with
GPU

LSTM model [103] Smart sensing Mobile phone sensor
dataset [104]

2019-2-1 deepshark[68] Memory
capacity

Inference phase: fine-
grained memory
utilization

VGG, CaffeNet
[105], GoogLeNet,

AlexNet
Imaging ILSVRC2012

Hardware

2018-10-4 [70]
Computing
power,
power

Training and
inference phases: a
unified core

architecture, binary
feedback alignment
(BFA), dynamic fixed-
point-based run-
length compression
(RLC), dropout
controller

MDNet [106] Real-time object
tracking

Object tracking
benchmark (OTB)
dataset [107]

2018-9-7 [72] Computing
power

Adopt voltage-charge
relationship of

electrochemical cells
to achieve forgetting
parameters, describe
the decision-making
problem using motion

of ions

Multiarmed bandit
problems (MBPs)

Reinforcement
learning —

2018-12-7 [75] Computing
power

Quantum computing,
model the correlation

in data with
underlying
probability

amplitudes of a many-
body entangled state

Generative model Generative model —

2019-2-15 [73] Computing
power Electrochemical cells

Matrix-vector
multiplications
based on
nonvolatile

photonic memory

Basic arithmetic
operations for
machine learning
or AI algorithms

—

2019-5-9 [74]
Processing
power,
power

Separating the
functionalities of data

memory and
processing, mimic the
neurosynaptic system
in an all-optical

manner

Neural network
consisting of four
neurons and sixty
synapses (and 140
optical elements in

total)

Letter recognition —
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However, analog computing is a kind of in-memory com-
puting and raises the demand for novel nonvolatile memory
material. Analog-computing-powered DL calls for long-
term joint efforts of computer scientists and material
scientists.

Compared to the other innovative types of hardware,
analog computing is temporarily taking the leading position.
,e analog array technology has been successfully applied to
DNN to processing common datasets [108], while other
innovative hardware technologies such as photonic com-
puting and quantum computing are still to be applied to
DNN [73, 75]. Superiority of the analog array lies in the fact
that it adopts analog circuit to compute matrix-vector
multiplication with constant time overhead irrelevant to size
of the matrix. However, it is a predicament to straightly map
convolutional neural network onto conventional analog
arrays due to the fact that kernel matrices are commonly
small and the constant-time multiplication operation has to
be iterated for many times in a sequential manner. Rasch
et al. parallelize the training through duplicating the kernel
matrix of a convolution layer on different analog arrays and
stochastically dispatching parts of the computation onto the
arrays. As a result, the speedup ratio is proportional to the
amount of kernel matrices per layer [106].

In addition to the high speed-up ratio, another advan-
tage of analog computing is the splitting of processing and
memory. Under a traditional von Neumann architecture,
processing units and memory are separate. Data transmis-
sion between processing units and memory can consume
orders of magnitude more energy than conventional
arithmetic operations. In addition, a typical deep learning
application routinely demands enormous data transmission
operations, which raises dramatically higher energy con-
sumption than that of computation. One promising solution
is collocating processing units and memory using phase-
change memory [109].

Despite that analog computing hardware has exhibited
promising potential to outperform traditional vonNeumann
architecture hardware like GPUs, most existing research
works focus on the functionality of such analog hardware.
Efficiency and reliability issues like stability and durability
are yet to be investigated before moving out of the lab to real
applications [110].

4.2. More Efficient Algorithmic Solutions. Some algorithmic
solutions like weight matrix compression and weight matrix
decomposition are approximating the original pretrained
neural network with a simplified one. Nevertheless, em-
pirical nature of DL hinders solving an exact theoretical
upper bound of approximation error. ,e absence of this
upper bound makes it difficult to prove the robustness of
such approximations. Additionally, due to the lack of the-
oretical principles, many algorithmic techniques require
iterative tuning and running the model to select the optimal
one. Nevertheless, the design space of model parameters is
large. As a result, implementing such algorithmic techniques
to large-scale real applications may be a daunting task, es-
pecially when we need to deal with hyperparameters within
large ranges.

Posttraining simplification of the DNN may result in
large error. Moreover, a large number of parameters hinder
the stochastic gradient descent to achieve a near-optimal
solution. Sparse training is a promising method to cope with
these two problems.

Achieving high capacity of a deep neural network is a
conventional solution to guarantee low generalization er-
ror. However, most deep neural networks obtain high
capacity through harnessing a large number of weights,
which means dense connections between consecutive
layers. ,is explains the reason that many existing deep
neural networks adopt fully connected layers. Nevertheless,
real biological scale-free neural networks can significantly
outperform state-of-the-art deep learning networks yet
with sparse connections. Inspired by this observation,
Mocanu et al. construct a sparse scale-free network to-
pology with two consecutive layers [111]. ,is topology
substitutes sparse layers for fully connected layers before
training. ,eir sparse evolutionary training method qua-
dratically decreases the amount of parameters, inducing no
loss in accuracy. ,is sparse training method opens a way
to lower the barrier to fitting deep learning into traditional
hardware.

Based on the method of [111], Liu et al. train a sparse
MLP (multiple layer perception) model with a million
neurons to classify microarray genes [110]. ,is MLP model
can be trained within the time of 101 seconds magnitude and
achieve lower generalization error than traditional models

Table 3: Datasets relevant to more than one performance metrics.

Performance metric Relevant research work

UCI Daily and Sports Activities, UCI ISOLET
Processor utilization rate [40]
Memory overhead [39]
Power consumption [60]

ILSVRC2012
Processor utilization rate [37]
Power consumption [37]
Memory overhead [68]

MNIST
Memory overhead [39, 59]

Memory access latency [59]
Power consumption [41]

Hyperspectral Remote Sensing Scenes Processor utilization rate [40]
Power consumption [60]
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(dataset: Leukemia, dimension: 26, 1397 training data
samples and 699 testing data samples).

,e method of [111] mainly focuses on building a novel
network topology, yet still adopts conventional stochastic
gradient descent to train the model [111]. Dettmers et al.
harness exponentially smoothed gradients to recognize
layers and weights that efficiently decrease the training error
of a sparse model. As a result, the model can converge
significantly faster. In addition, the trained network is in-
sensitive to hyperparameters.

In recent years, a rapidly increasing number of research
works are investigating on sparse training of DNN
[112–116]. ,ese research works typically concentrate on
sparse training of several types of DNN. In view of the
diversity and complexity of DNNs, it is a highly valuable yet
challenging job to exploit sparse training for various types of
DNNs under specific application requirements.

4.3. Systematic Integration. As discussed in Section 2, the
ultimate goal of resource-limited DL is ubiquitous deploy-
ment of DL. Diversified applications can put forward various
requirements on ubiquitous DL. As a result, we need to
systematically integrate various types of solutions.

Next-generation computing hardware should seamlessly
collaborate with traditional digital hardware, with the ul-
timate target of accommodating the tachytely evolving
DNNs.

Gil and Green argue that the future computing hardware
is based on intersections of three aspects: mathematics and
information, neuron-inspired biology and information, and
physics and information. ,ese intersections give rise to the
concepts of digital computing, neural computing, and
quantum computing, respectively. Gil and Green denote the
three concepts as bit, neuron, and qubit, respectively. As
shown in Figure 4, the next-generation AI-enabled com-
puting system requires integration of the three [117]. In this
figure, we adopt quantum computing (qubits) to represent
future computing paradigms. Novel computing paradigms
like analog computing should be also taken into consider-
ation. We discuss this integration in detail as follows.

4.3.1. Digital Computing. ,e advantage of digital com-
puting lies in its stable binary nature. With the same binary
input, a digital computing system should always generate the
same output. ,is nature is the cornerstone of building
robust and stable systems for data storage and processing.
Classical digital computing is still an efficient solution to not
only mathematical and logical operations but also persistent
data storage. In the future computing system, digital
computing will still occupy an indispensable position due to
its robust and reliable nature.

4.3.2. Neuron Computing. Despite the advantages of digital
computing, current DNN-based AI methods require
reshaping or even innovating this computing paradigm. AI
has achieved dramatic progress in the last decade. AI is still
in the phase of narrow AI, which demands large amount of

manually labeled data to acquire knowledge of specialized
tasks. In the next phase, we are expecting the broad AI that
can adaptively and autonomously adapt to diversified tasks
of various domains. Narrow AI is already computationally
expensive in enormous scenarios.,e vision of broad AI will
even aggravate the computational predicament. Building
efficient computing systems for such AI workload requires
innovative reengineering of materials, architecture, and
software.

,e first category of solutions to AI-specific computing
system stems from statistical and error-tolerant nature of
deep learning. Such solutions sacrifice numerical precision
for computational performance, yet generally achieve sim-
ilar or even equivalent classification accuracy to the full-
precision implementations [118–121]. We will witness a
continuous decline in the precision demands of DNN
training and inference in the coming decade. ,is trend is
driven by the constant renovations of AI-specific digital
hardware and matching algorithms, which will result in
significant improvement in the performance of AI hardware.

As is previously discussed, another category of solutions
lies in the idea of eliminating the overhead of data trans-
mission between processing units and memory.

We can envision the high demands raise by DNN-based
AI in the near future. Quantum computing enjoys the
greatest computing power among almost all existing com-
puting paradigms and thus has the potential to boost high-
time-complexity deep learning applications that are knotty
to the other computing paradigms.

4.3.3. Quantum Computing. Quantum computing generates
an exponential state space of qubits (quantum bit) through
exploring quantum superposition and entanglement.
Computing power exponentially scales with the number of
qubits: one additional qubit means doubled computing
power. Prototypes of quantum computers have come out in
the lab of hardware vendors like IBM [122, 123]. ,e next
topic is to bridge the gap between the technical prototype

Next-
generation
hardware

Broad AI

Bits

NeuronsQubits

Future
AI

Narrow AI

Figure 4: Road map to establish the next-generation AI-enabled
computing systems.
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and real applications. For instance, quantum error correc-
tion (QEC) codes are indispensable for fault-tolerant
quantum computing. Quantum computers will be a core
accelerator of future AI-enabled computing systems. Nev-
ertheless, currently, the cost of building a fault-tolerant
quantum computing is beyond the reasonable range [124].
Further in-depth investigation is urgent.

4.3.4. Integration of Bits, Neurons, and Qubits. As afore-
mentioned, a deep-learning-enabled computing system
relies on three cornerstones: digital computing (bits),
neural computing (neurons), and quantum computing
(qubits). Systematic solutions to computational-re-
source-limited deep learning will require the integration
of bits, neurons, and qubits. Bits can provide funda-
mental data storage and guarantee the robustness of
underlying hardware. However, bits alone can only
support programmed tasks for specific narrow purposes.
Integrating neurons with bits generates narrow AI or
even broad AI, which can not only distill insightful
knowledge from unimaginably huge amount of data but
also assist humans in a collaborative and more human-
like manner. Various science and engineering problems
are hopefully to be resolved with the assistance of AI. ,e
core principle of a neural network is to search a function
in the hypothesis space of the network and thus map a
category of samples to a corresponding output label. Due
to the large scale and complexity of science and engi-
neering problems, a typical neural network necessarily
requires a high capacity to generate a large hypothesis
space. A large hypothesis space can possibly contribute
to reducing the generalization error. Nevertheless, a
large hypothesis space means more degree of freedom
and demands a long time to let the stochastic-gradient-
descent-impelled backpropagation find an approxima-
tion to the optimal solution. ,e exponentially scaling
computing power just matches the time overhead of the
similar order of magnitude.

Digital hardware like GPGPU and FPGA currently ac-
count for the mainstream accelerator of DNNs. Time-
consuming manual fine-tuning of parallel code is an un-
avoidable operation to achieve optimal performance, with
regard to every “DNNmodel-GPGPU type” pair. As a result,
digital-hardware-accelerated DL is facing a barrier to effi-
cient and agile programming. Moreover, the developing
toolkit of analog-computing-enabled or quantum-comput-
ing-based deep learning is undoubtedly an essence when we
someday handover analog computers or quantum com-
puters to investigators, programmers, and computing re-
source providers.

5. Conclusion

In this paper, we investigate typical solutions of resource-
limited deep learning and point out the open problems.

Existing solutions have achieved successes under specific
scenarios. However, we expect future breakthroughs in the
following two aspects.,e first aspect is dedicated hardware.

Most existing solutions depend on general-purpose digital
hardware. Dedicated hardware, which takes into consider-
ation unique characteristics of deep learning, is a promising
direction to achieve further performance enhancements.,e
second aspect is the theoretical principles of deep learning.
Simplifying the DNN is almost an inevitable method to
reduce resource consumption. Nonetheless, such methods
currently rely on empirical and iterative tuning. Addition-
ally, the robustness of simplification is not theoretically
guaranteed. Clarifying the theoretical principles of deep
learning will enable more efficient simplification and
guarantee robustness.
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As a lightweight deep neural network, MobileNet has fewer parameters and higher classification accuracy. In order to further
reduce the number of network parameters and improve the classification accuracy, dense blocks that are proposed in DenseNets
are introduced into MobileNet. In Dense-MobileNet models, convolution layers with the same size of input feature maps in
MobileNet models are taken as dense blocks, and dense connections are carried out within the dense blocks. 1e new network
structure can make full use of the output feature maps generated by the previous convolution layers in dense blocks, so as to
generate a large number of feature maps with fewer convolution cores and repeatedly use the features. By setting a small growth
rate, the network further reduces the parameters and the computation cost. Two Dense-MobileNet models, Dense1-MobileNet
and Dense2-MobileNet, are designed. Experiments show that Dense2-MobileNet can achieve higher recognition accuracy than
MobileNet, while only with fewer parameters and computation cost.

1. Introduction

Computer image classification is to analyze and classify
images into certain categories to replace human visual in-
terpretation. It is one of the hotspots in the field of computer
vision. Because the features are very important to classifi-
cation, most of the researches on image classification focus
on image feature extraction and classification algorithms.
Traditional image features such as SIFT and HOG are
designed manually. Convolutional neural networks have the
ability of self-learning, self-adapting, and self-organizing; so,
it can automatically extract features by using the prior
knowledge of the known categories, and avoid the com-
plicated process of feature extraction in traditional image
classification methods. At the same time, the extracted
features are highly expressive and efficient.

Deep convolutional neural network (CNN) has achieved
significant success in the field of computer vision, such as
image classification [1], target tracking [2], target detection
[3], and semantic image segmentation [4, 5]. For example, in

the ImageNet Large Scale Visual Recognition Challenge 2012
(ILSVRC2012), Krizhevsky et al. won the championship with
an AlexNet [1] model of about 60 million parameters and
eight layers. In addition, VGG [6] with 16-layer, GoogleNet
[7] with Inception as the basic structure, and ResNet [8] with
residual blocks that can alleviate the problem of gradient
disappearance have also achieved great success. However,
the deep convolutional neural network itself is a dense
computational model. 1e huge number of parameters,
heavy computing load, and large number of memory access
lead to huge power consumption, which makes it difficult to
apply the model to portable mobile devices with limited
hardware resources.

In order to apply the deep convolutional neural network
model to real-time applications and low-memory portable
devices, a feasible solution is to compress and accelerate the
deep convolutional neural networks to reduce parameters,
computation cost, and the power consumption. Denil et al.
[9] proved that the parameters of deep convolutional neural
network have a lot of redundancy, and these redundant
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parameters have little influence on the classification accu-
racy. Denton et al. [10] found an appropriate low-rank
matrix to estimate the information parameters of deep
CNNs by singular value decompositions. 1e method re-
quires high computational cost and more retraining to
achieve convergence. Han et al. [11] deleted the unimportant
connections in the pretrained network by parameter
pruning, retrained and quantized the remaining parameters,
and then encoded the quantized parameters by Hoffman
coding to further reduce the compression rate. However, the
method requires manual adjustment of superparameters.
Chen et al. [12] used a low-cost Hash function to group the
weights between the two adjacent layers into a Hash bucket
for weight sharing, which reduces the storage of additional
positions and realizes parameter sharing. Hinton et al. [13]
compressed the network model by knowledge distillation,
and extracted useful information. 1e useful information is
migrated to a smaller and simpler network, which made the
simple network and the complex network have similar
performance.

In addition, many related researches have improved
network models to compress networks. For example,
SqueezeNet [14] is a network model based on fire module,
MobileNets [15] is a network model based on depthwise
separable filters, and ShuffleNet [16] is improved on the basis
of residual structure by introducing group pointwise con-
volution and channel shuffle operation.

Compared with VGG-16 network, MobileNet is a
lightweight network, which uses depthwise separable con-
volution to deepen the network, and reduce parameters and
computation. At the same time, the classification accuracy of
MobileNet on ImageNet data set only reduces by 1%.
However, in order to be better applied tomobile devices with
limited memory, the parameters and computational com-
plexity of the MobileNet model need to be further reduced.
1erefore, we use dense blocks as the basic unit in the
network layer of MobileNet. By setting a small growth rate,
the model has fewer parameters and lower computational
cost. 1e new models, namely Dense-MobileNets, can also
achieve high classification accuracy.

2. Fundamental Theory

2.1.MobileNet. MobileNet is a streamlined architecture that
uses depthwise separable convolutions to construct light-
weight deep convolutional neural networks and provides an
efficient model for mobile and embedded vision applications
[15]. 1e structure of MobileNet is based on depthwise
separable filters, as shown in Figure 1.

Depthwise separable convolution filters are composed of
depthwise convolution filters and point convolution filters.
1e depthwise convolution filter performs a single convo-
lution on each input channel, and the point convolution
filter combines the output of depthwise convolution linearly
with 1∗ 1 convolutions, as shown in Figure 2.

2.2. Dense Connection. DenseNet [17] proposed a new
connection mode, connecting each current layer of the

network with the previous network layers, so that the
current layer can take the output feature maps of all the
previous layers as input features. To some extent, this kind
of connection can alleviate the problem of gradient dis-
appearance. Since each layer is connected with all the
previous layers, the previous features can be repeatedly
used to generate more feature maps with less convolution
kernel.

DenseNet takes dense blocks as basic unit modules, as
shown in Figure 3. In Figure 3, a dense block structure
consists of 4 densely connected layers with a growth rate of 4.
Each layer in this structure takes the output feature maps of
the previous layers as the input feature maps. Different from
the residual unit in ResNet [8], which combines the sum of
the featuremaps of the previous layers in one layer, the dense
block transfers the feature maps to all the subsequent layers,
adding the dimension of the feature maps rather than adding
the pixel values in the feature maps.

In Figure 4, the dense block only superimposes the
feature maps of the previous convolution layers and in-
creases the number of feature maps. 1erefore, only the
magnitude of xl and xl+1 is required to be equal, and the
number of feature maps does not need to be the same.
DenseNet uses hyperparameter growth rate to control the
number of feature map channels in the network. 1e growth
rate k indicates that the output feature maps of each network
layer is k. 1at is, for each convolution layer, the input
feature maps of the next layer will increase k channels.

3. Dense-MobileNet

Dense-MobileNet introduces dense block idea into Mobi-
leNet. 1e convolution layers with the same size of input
feature maps in MobileNet model are replaced as dense
blocks, and the dense connections are carried out within the
dense blocks. Dense block can make full use of the output
feature maps of the previous convolution layers, generate
more feature maps with fewer convolution kernels, and
realize repeated use of features. By setting a small growth
rate, the parameters and computations in MobileNet models
are further reduced, so that the model can be better applied
to mobile devices with low memory.

In this paper, we design two different Dense-MobileNet
structures: Dense1-MobileNet and Dense2-MobileNet.

3.1. Dense1-MobileNet. MobileNet model is a network
model using depthwise separable convolution as its basic
unit. Its depthwise separable convolution has two layers:
depthwise convolution and point convolution. Dense1-
MobileNet model considers the depthwise convolution layer
and the point convolution layer as two separate convolution
layers, i.e., the input feature maps of each depthwise con-
volution layer in the dense block are the superposition of the
output feature maps in the previous convolution layer, and
so is the input feature maps of each deep convolution layer,
as shown in Figure 5. Because depthwise convolution is a
single channel convolution, the number of output feature
maps of the middle depthwise convolution layer is the same
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as that of the input feature maps, which is the sum of the
output feature maps of all the previous layers.

DenseNet contains a transition layer between two
consecutive dense blocks. 1e transition layer reduces the
number of input feature maps by using 1∗ 1 convolution

kernel and halves the number of input feature maps by using
2∗ 2 average pooling layer. 1e above two operations can
ease the computational load of the network. Different from
DenseNet, there is no transition layer between two con-
secutive dense blocks in Dense1-MobileNet model, the
reason are as follows: (1) in MobileNet, batch normalization
is carried out behind each convolution layer, and the last
layer of the dense blocks is 1∗ 1 point convolution layer,
which can reduce the number of feature maps; (2) in ad-
dition, MobileNet reduces the size of feature map by using
convolution layer instead of pooling layer, that is, it directly
convolutes the output feature map of the previous point
convolution layer with stride 2 to reduce the size of feature
map.

3.2. Dense2-MobileNet. Dense2-MobileNet takes depthwise
separable convolution as a whole, called a dense (depthwise
separable convolution) block, which contains two point
convolutional layers and a depthwise convolutional layer.
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�e input feature maps of depthwise separable convolution
layer is the accumulation of output feature maps generated
by point convolutions in all previous depthwise separable
convolution layers, while the input feature map in point
convolution layer is only the output feature map generated
by the depthwise convolution in the dense block, not the
superposition of the output feature maps of all the previous
layers. So, the dense block structure in this model only has
one dense connection, as shown in Figure 6.

In Dense2-MobileNet model, only one input featuremap
needs to overlay the output feature map of point convolution
in the upper depthwise separable convolution layer. Because
of the fewer cumulative times of structural feature maps, the
number of output feature maps of all layers in a dense block
is also less cumulative; so, it is not necessary to reduce the
channel of feature maps by a 1∗ 1 convolution. After
superimposing the output feature maps generated by the
previous separable convolutions, the size of the feature map
can be reduced by the depthwise convolution with stride 2;
so, the Dense2-MobileNet model does not add other tran-
sition layers too. �e MobileNet model is �nally pooled
globally and connected directly to the output layer. Ex-
periments show that the classi�cation accuracy of the global
average prepooling depthwise separable convolution with
dense connection before the global average pooling is higher
than that of two-layer depthwise separable convolution
without dense connection.�erefore, the depthwise separable

convolution layer before global average pooling is also densely
connected.

3.3. Dense-MobileNet Performance Analysis.
Dense-MobileNet model is constructed by adding dense
connections in MobileNet. By setting a small hyper-
parameter growth rate, it achieves less parameters and
computational complexity than that in the MobileNet
model. In the MobileNet model, every 2 depthwise separable
convolution layers need to reduce the dimension of the
feature map by depth convolution with stride of 2. Since the
sizes of the input feature maps in same dense blocks need to
be the same, there are only 2 depthwise separable convo-
lution layers included in a dense block. �e growth rate in
Dense-MobileNet is set by using the least di�erence between
the number of input feature maps of each layer in Mobi-
leNets and that in Dense-MobileNet. In fact, other optimal
growth rates can be selected based on the balance between
the compression rate and the accuracy rate of the model.

In this paper, the Dense1-MobileNet model decomposes
depthwise separable convolution into 2 separate layers, and
uses 4 convolutions as a dense block. �e growth rate of
dense blocks in Dense1-MobileNet is {32, 64, 64, 128, 128,
128, 256}. When the parameters of the Dense1-MobileNet
model decrease to 1/2 of MobileNet, its calculation decreases
to 5/11 of MobileNet.

�e Dense2-MobileNet model takes depthwise separable
convolution as a whole and 4 convolution layers as a dense
block, but only one dense connection is used. �e Dense2-
MobileNet model has a growth rate of {32, 64, 128, 256, 256,
256, 512} for dense blocks. When its model parameters drop
to 1/3 of MobileNet, its calculation decreases to 5/13 of
MobileNet. �e parameters and calculation of each model
are shown in Table 1.

�e DenseNet121 model in Table 1 contains 121 con-
volutional layers. With 16 as growth rate, the compression
ratio of transition layer is set to 0.5.�at is, all output feature
maps in the previous dense block are used as input feature
maps in transition layer, and the number of output feature
maps in this layer is half of the number of input feature
maps. As can be seen from Table 1, DenseNet121 model is
a�ected by dense connections, which has fewer parameters
but a large amount of computation. At the same time,
the parameters and computations of the two improved
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Dense-MobileNets models are less than those of the
MobileNet model.

4. Experiments and Result Analysis

In order to prove the validity of D-MobileNet models, we
carry out classification experiments on Caltech-101 [18]
and Uebingen Animals with Attributes, and compare the
experimental results with those of the MobileNet model
and the DenseNet121 model.

1e Caltech-101 data set contains 9145 images in 102
classes, including 101 object classes and one background
class. 1e number of images in each class ranges from 40 to
800. Figure 7 shows some samples in the Caltech-101 data
set. In the experiments, the images in the data set are firstly
labeled, and then fully scrambled. 1500 pictures are ran-
domly selected as testing images, and the remaining pictures
are used as training images.

1e Uebingen Animals with Attributes database has
30475 pictures in 50 animal classes. Because the picture
number in not the same in different classes, 21 largest animal
classes with little difference in sample numbers are selected
as our data set. 1ere are 22742 pictures in the data set. 1e
picture numbers in each class range from 850 to 1600.
Figure 8 shows the samples in Uebingen Animals data set.
Before training network, pictures in the data set are labeled
and 2,000 of them are randomly selected as the test set. 1e
rest of the pictures are used as the training data set.

1e experiment uses Python language under TensorFlow
framework. 1e model is implemented on a server equipped
with NVIDIA TITAN GPU. RMSprop optimization algo-
rithm with an initial learning rate of 0.1 is used to optimize
the experiment. Depending on the number of training
samples, we set different epoch numbers to reduce the
learning rate. 1e weight initialization adopts the Xavier
initialization method, which can determine the random
initialization distribution range of parameters according to
the number of inputs and outputs at each level. It is a
uniform distribution with zero initial deviation. A total of
50,000 batches are trained, with 64 samples in each batch.
ReLU is used as the activation function.

Table 2 shows the classification accuracy of four clas-
sificationmethods on the Caltech-101 data set. From Table 2,
we can see that after 30,000 iterations, the accuracy of the 4
classification models has reached a balance, and the accuracy
of our 2 improved structures is higher than that of Den-
seNet121. Compared with the accuracy of the standard
MobileNet model, the accuracy of the Dense1-MobileNets

model is lower than that of the standard MobileNet model,
while the accuracy of the Dense2-MobileNets model is
higher than that of the standardMobileNet model.When the
number of iterations is 50000, the accuracy of the Dense1-
MobileNet model decreases by 0.13%, and the structure
reduces less parameters and computation. When the
number of iterations is 50000, the accuracy of the Dense2-
MobileNet model increases by 1.2%, and its parameters and
computation are reduced relatively.

Table 3 shows the classification accuracy of 4 classifi-
cation methods on the Uebingen Animals data set. From
Table 3, we can see that after 30,000 iterations, the accuracy
of the 4 classification models also has reached a balance, and
the accuracy of our 2 improved structures is higher than that
of DenseNet121. Compared with the accuracy of the stan-
dard MobileNet model, the accuracy of the Dense1-Mobi-
leNets model is lower than that of the standard MobileNet
model, while the accuracy of the Dense2-MobileNets model
is higher than that of the standard MobileNet model. When
the number of iterations is 5000, the accuracy of the Dense1-
MobileNet model decreases by 0.1%, while the accuracy of
the Dense2-MobileNet model increases by 1.2%.

1e above two experiments were conducted under the
same hyperparameter conditions. When the number of it-
erations is 5000, the classification accuracy of dense network
on the Uebingen Animals data set is 0.4% higher than that of
the MobileNet model, but it is 4.7% lower than that of the
MobileNet model on the Caltech-101 data set. From the
above two experiments, it can be seen that the classification
accuracies of dense connection in the Dense1-MobileNet
model are lost about 1% in both data sets, while they are
improved in the Dense2-MobileNet mode. 1e main reason
is that depthwise convolution and point convolution in
depthwise separable convolution realize spatial correlation
and channel correlation in standard convolution, respec-
tively. However, Dense1-MobileNet using depthwise con-
volution and point convolution as the separate convolution
layers will destroy channel correlation and reduce classifi-
cation accuracy. 1e input feature map of the average
pooling layer in Dense2-MobileNet is the superposition of
the output feature maps of the previous 2 deep separable
convolutions. It makes full use of the previous feature maps,
reduces the parameters and computation, and improves the
classification accuracy.

In order to further illustrate the performance of our
method, we tested different methods in real data and other
experimental environment. In the experimental comparison,
we added the comparison with DenseNet161 and Mobile-
NetV2 [19], and the experimental settings are shown in
Table 4.1e data set is our own children’s colonoscopy polyp
data set. 1ere are two types of samples. One includes the
samples with polyps, and the other includes the samples
without polyp. As shown in Figure 9, the upper row is the
samples with polyps, and the lower row is the samples
without polyp.

1e expanded training set contains 31450 samples, in-
cluding 4005 polyp samples. 1e test set contains 4005
samples, including 1005 polyp samples. 1e size of each
sample is 260∗ 260. 1e batch size of test set is set to 10, and

Table 1: 1e parameters and calculation of each model.

Network model Calculations
(millions)

Parameters number
(millions)

DenseNet121 1364.7 1.78
MobileNet 568 3.21
Dense1-
MobileNet 258 1.51

Dense2-
MobileNet 217 1.12
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the initial learning rate is 0.1. Every network trains 200 epochs
in total, and the learning rate decreases to half of the previous
in the 50th epoch and then decays by half every 20 epoch.1e
average recognition accuracy of the last 100 epochs is taken as
the final recognition result, as shown in Table 5.

Because there are only two types of test data sets, the
classification accuracy of all methods is relatively high, all
of which are over 96%. As can be seen from Table 5, the
accuracy of Dense2_MobileNet (using full connection
layer) is a little better than those of DenseNet121, Mobi-
leNet, and MobileNetV2, and slightly lower than that of
DenseNet161. However, DenseNet161 is a deeper network
with a large amount of parameters and calculation. In our
experiments, the parameters and calculation of Dense-
Net161 are about 26.48M and 10360.23M, respectively,
and the parameters of MobileNetV2 are about 2.23M and
479.28M, respectively. Although MobileNetV2 makes the
network more lightweight, its parameter amount and
calculation amount are still more than twice of our Den-
se_MobileNets. 1erefore, the Dense_MobileNets still has
certain advantages in the comprehensive evaluation of the

Figure 8: Samples in the Uebingen Animals (21) data set.

Figure 7: Samples in the Caltech-101 data set.

Table 2: Classification accuracy (%) on the Caltech-101 data set.

Number of iterations 30000 35000 40000 45000 50000
DenseNet 72.07 72.27 72.07 72 71.9
MobileNets 76.73 76.6 76.6 76.8 76.6
Dense1_MobileNet 76.6 76.53 76.47 76.4 76.47
Dense2_MobileNet 77.6 77.67 77.87 77.8 77.8

Table 3: Classification accuracy (%) on the Uebingen Animals data set (21classes).

Number of iterations 30000 35000 40000 45000 50000
DenseNet 91.85 92.15 91.95 92 92
MobileNets 91.6 91.6 91.6 91.55 91.6
Dense1_MobileNet 90.65 90.6 90.6 90.6 90.65
Dense2_MobileNet 92.1 92.05 92.1 92.05 92.05

Table 4: Experimental settings on children’s colonoscopy polyp
data set.

Attribute Configuration information
OS Ubuntu 14.04.5 LTS
CPU Intel® Xeon® CPU E5-2670 v3 @ 2.30GHz
GPU Nvidia GeForce GTX TITAN X
CuDNN CuDNN 6.0.21
CUDA CUDA 18.0.61
Framework PyTorch
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accuracy of classification, the number of parameters, and
the amount of calculation.

5. Conclusions

1e memory intensive and highly computational intensive
features of in deep learning restrict its application in portable
devices. Compression and acceleration of network models
will reduce the classification accuracy.

1is paper introduces the Dense-MobileNet model
with dense blocks for image classification. 1e dense
blocks are used as the basic structure to improve the
structure of MobileNet, and two improved models are
proposed. 1ese two models can reduce the parameters
and calculation by setting the hyperparameter growth rate.
At the same time, experiments show that Dense2-Mobi-
leNet can also increase the accuracy of classification.
Compared with the MobileNet model, although the
classification accuracy of Dense1-MobileNet is reduced, it
reduces the number of parameters by at least half and the
amount of calculation by nearly half. Generally speaking,
the models proposed in this paper can be better applied to
mobile devices.

Data Availability

All data sets are public data sets that can be downloaded
online.
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Hand gesture recognition is an intuitive and effective way for humans to interact with a computer due to its high processing speed
and recognition accuracy. -is paper proposes a novel approach to identify hand gestures in complex scenes by the Single-Shot
Multibox Detector (SSD) deep learning algorithm with 19 layers of a neural network. A benchmark database with gestures is used,
and general hand gestures in the complex scene are chosen as the processing objects. A real-time hand gesture recognition system
based on the SSD algorithm is constructed and tested.-e experimental results show that the algorithm quickly identifies humans’
hands and accurately distinguishes different types of gestures. Furthermore, the maximum accuracy is 99.2%, which is sig-
nificantly important for human-computer interaction application.

1. Introduction

With the rapid development of computer technology and
artificial intelligence, noncontact gesture recognition plays
important roles in human-computer interaction (HCI)
applications [1–4]. Due to its natural human-computer
interaction characteristics, the hand gesture recognition
system allows users to interact intuitively and effectively
through a computer interface [5, 6]. Additionally, gesture
recognition based on vision is widely applied in artificial
intelligence, virtual reality, multimedia, and natural lan-
guage communication [7–10].

However, traditional hand gesture recognition based on
image processing algorithms was not widely applied in HCI
because of its poor real-time capacity, low recognition accu-
racy, and complex algorithm. Recently, gesture recognition
based on machine learning has been developed rapidly in HCI
due to the introduction of the graphics processor unit (GPU)
and the artificial intelligence (AI) image processing [11, 12].
-e machine learning algorithms such as local orientation
histogram, support vector machine (SVM) [13], neural net-
work, and elastic graph matching are widely used in gesture

recognition systems [14–16]. Owning to its learning ability, the
neural network does not need manual feature setting during
the simulating human learning process and can carry out
training the gesture samples to form a network classification
recognitionmap [17, 18]. Deep learningmodels are inspired by
information processing and communication patterns devel-
oped from biological nervous systems, which involve neural
networks with more than one hidden layer. -ey can acquire
the characteristics of the learning object easily and accurately
under the complex object and exhibit superior performance in
computer vision (CV) and natural language processing (NLP)
[19–21]. Current state-of-the-art object detection systems are
variants of Faster R-CNN [22]. -e Single-Shot Multibox
Detector (SSD) further optimizes object detection [23, 24]. As
compared to Faster R-CNN, SSD is more simple and efficient
as it completely eliminates proposal generation subsequent
pixel and feature resampling stages, and it also encapsulates all
computation in a single network which makes SSD easily
trainable and straightforward to integrate into systems [5,
25–28].

-is paper discusses hand gesture recognition in com-
plex environments based on the Single-Shot Multibox
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Detector. -e approach is different from the work [28]. -e
image pyramid method is adapted to gesture recognition.
More accurately, the system crops the image into blocks to
detect far and small hand gestures. -e experiment results
show the SSD overcomes the interference signals in complex
backgrounds and improves the accuracy and processing
speed of gesture recognition.

2. Related Work

Generally, the process of vision-based hand gesture recog-
nition system includes three steps which are hand seg-
mentation, gesture model building, and hand gesture
classification. To increase the efficiency, we simplify the
process into two steps by using the SSD network. More
precisely, we just need a convolutional neural network such
as VGG16 [29] as a model system to identify the gesture
features and then proceed with hand segmentation and
gesture classification simultaneously by the SSD network.
-is makes our architecture much simpler and much faster
than other methods based on the Faster R-CNN model.

-e main purpose of gesture model building is to obtain
useful semantic features, separate them from the complex
backgrounds, and provide effective input information source
for the following stage. In the stage of hand segmentation
and hand gesture classification, hand postures with different
sizes will be located with different bounding boxes. For these
bounding boxes, simultaneously, we acquire the confidence
for all gesture categories. Training is used for this unified
framework to acquire an effective recognition model; rec-
ognition output is based on the model that has been trained
to identify the gesture categories of input data. In other
words, given an input image, we can acquire the location and
classification score of hand gesture in this image end-to-end.

-e standard hand gesture database is important for the
hand gesture recognition system. Figure 1(a) shows the 36
hand gestures from the Massey University’s 2D Static hand
gesture image dataset which is about standard numbers and
letters [30]. Note that some gestures are rather difficult to
distinguish from each other. For example, “a” and “e,” “d”
and “l,” “m” and “n,” or “i” and “j.” In this paper, we have
chosen the characters of “w,” “o,” “r,” and “k” as the study
objects which are shown in Figure 1(b). -e Canon EOS 6D
camera was employed to capture the gesture with an EF
24–105mm/4L IS USM lens and a shutter time of 1/100 S.
And the maximum distance is about five meters. Each hand
gesture sample was obtained under three different complex
backgrounds, aiming to prove the applicability and reli-
ability of the hand gesture recognition system.

-e hand gesture model building plays a vital role in a
gesture recognition system that is regarded as the first step
for processing the original input gestures. -e inputs of this
stage are images. When seeing an image, from the per-
spective of human beings, we can catch the sight of the scene
described in the picture. However, the computer cannot
capture these scenes from an original picture. -e computer
thinks an image is just a matrix with a variety of values in
different spatial locations and channels. In other words, the
computer can only obtain pixel-level information of an

image. Obviously, it is difficult to distinguish different ob-
jects using low-level information such as pixel values.
-erefore, if we want to recognize hand gestures, one of the
most efficient methods is extracting and summarizing high-
level information such as their features and structures from
the original image. -is is exactly what gesture modeling
does in our framework. We use the VGG16 convolutional
neural network, which uses 13 convolutional layers and is
deep enough to obtain high-level information of hand
gestures. Given the original image as the input, the VGG16-
Net will output feature maps of different resolutions which
contain high-level information of the image. -e reason for
choosing 19 layers is that it is enough to extract high-level
semantic information for classification and regression. And
limited by the size of our dataset, using high-level layers can
easily lead to overfitting.

-e VGG-Nets are a series of convolutional neural
networks with different depths which all use very smaller
(3 × 3) convolution filters. -e VGG16-Net (16 weight
layers) is one of them which has 13 convolutional layers and
3 fully connected layers. -e structure of VGG16 is shown in
Figure 2. In this figure, the convolutional layer parameters
are denoted as “conv< receptive field size> − <number of
channels>.” -e ReLU activation function is not shown for
brevity. -e original image is passed through a stack of
convolutional layers, which use filters with a small receptive
field: 3 × 3 (which is the smallest size for capturing the
notion of the left, right, up, down, and center). -e con-
volution stride is fixed to 1 pixel; the spatial padding of a
convolutional layer is such that the spatial resolution is
preserved after convolution, i.e., the padding is 1 for 3 × 3
convolution filters. Spatial pooling is carried out by five
maxpooling layers, which follow some of the convolutional
layers (not all the convolutional layers are followed by
maxpooling layers). Maxpooling is performed over a 2 × 2
pixel window, with stride 2.

All convolutional layers are equipped with the rectification
nonlinearity (ReLU) [31]. After a stack of convolutional,
maxpooling, and ReLU layers, we get feature maps with lower
resolution and stronger semantic information. -ere are also
fully connected layers and a soft max layer which are used for
image classification in the original VGG16-Net. We replace
these layers with SSD layers to implement hand segmentation
and hand gesture classification.

-e second stage, i.e., using the SSD network to perform
hand segmentation and hand gesture classification, is the
most important part in our framework. We have chosen the
SSD model because it is both accurate and fast. -e core of
SSD is predicting category scores and bounding box offsets
for a fixed set of default bounding boxes using very small
(3 × 3) convolutional filters applied to feature maps. Beyond
that SSD produces predictions of different scales from
feature maps of different scales and separates predictions by
aspect ratio. -is architecture leads to simple end-to-end
training and high accuracy, further improving the speed
versus accuracy trade-off [5].

SSD is based on a feed-forward convolutional neural
network (VGG16) that produces a fixed-size collection of
bounding boxes and scores for the presence of object class
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instance in those boxes. -is approach will produce a large
number of bounding boxes, and most of them are covered
by each other. -erefore, a nonmaximum suppression step

is executed to discard repetitive bounding boxes and pro-
duce the final detections. -e structure of SSD is shown in
Figure 3. -e input image is an image with 300 × 300 pixels
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Figure 1:-e graphs of hand gesture information: (a) standard library of hand gestures and (b) four hand gestures graphs in different backgrounds.
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Figure 2: VGG16 Conv-Net structure.
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and RGB channels. -e part in the dotted box is the truncated
VGG16 network.-e SSDmodel adds several feature layers of
different scales to the truncated VGG16 network. -ese layers
decrease in size as depth increases and allow predictions of
detections at multiple scales. -en, small convolutional filters
apply to every position in selected feature maps. More pre-
cisely, these filters apply to a set of default boxes of different
aspect ratios at each location in several selected featuremaps to
predict the shape offsets and the confident scores for all object
categories. In our work, object categories include four hand
gestures and the background.

Noting that we have the SSD framework, the next thing
we need is an objective function to train the model end-to-
end. -e overall objective function is a weighted sum of the
localization loss (loc) and the confidence loss (conf):

L(x, c, l, g) �
1
N

Lconf(x, c) + αLloc(x, l, g)( , (1)

where N is the number of default boxes that match to ground
truth boxes. -e localization loss is a smooth L1 loss between
the ground truth box (g) and the predicted box (l) parameters.
-ese parameters are offsets for the center coordinate (cx, cy)
of the default bounding box (d) and for its width (w) and
height (h), which is similar to Faster R-CNN [22]:
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-e confidence loss is the soft max loss over multiple
class confidences (c), as is usually used in multiple classi-
fication tasks:
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During training, we match the default boxes to the
ground truth boxes to calculate and reduce the loss of ob-
jective function. We do this recursively to optimize the
parameters of the SSD model and finally get an ideal model.
By using k-means clustering to guide the aspect ratio of
anchor boxes, we get three different ratios. After that the
ratios are 1.9, 1.6, and 1.1 with slight adjustment, respec-
tively. Furthermore, the used optimizer is Adam with an
initial learning rate of 0.0001.

3. Results and Discussion

-e hand gesture recognition system was built by the SSD
algorithm and training each character gesture with 1070
images with three different complex backgrounds. -en, we
used 268 images which were not in the training set to test the
building recognition model. -e testing results of the rec-
ognition model on characters “w,” “o,” “r,” and “k” show
good performance. In all 268 images, 261 of them are
recognized correctly, with an accuracy of more than 93.8%
and the highest recognition accuracy of 99.2%. -e average
prediction confidence for the 261 images recognized suc-
cessfully is up to 0.96, which is very close to 1. Examples of
visualization results are shown in Figures 4–7 with the
character “w,” “o,” “r,” and “k,” respectively.

To evaluate the comprehensive performance of the
gesture recognition system, the recognition accuracy for
each hand gesture and response time was tested.-e average
accuracy of the gesture recognition system and response
time are shown in Table 1. All the accuracies are more than
93.8%, and the character “o” owns higher accuracy. All
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(a) (b) (c)

Figure 4: -e automatic recognition result of character “w.”

(a) (b) (c)

Figure 5: -e automatic recognition result of character “o.”

(a) (b) (c)

Figure 6: -e automatic recognition result of character “r.”

(a) (b) (c)

Figure 7: -e automatic recognition result of character “k.”
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response times are less than 20ms which shows that the
system exhibits high real-time performance.

-e proposed work contributes to promote the accuracy of
the hand gestures recognition as alphabets (“w,” “o,” “r,” and
“k”) with the employment of SSD and image cropping. -e
results show that the adopted classification approach exhibits
superior performance, which clearly indicates that the pro-
posed system is an effective method for the hand gestures
recognition. It is found, by comparing with other works, that
the accuracy of the proposed method adopted in our work is
higher than that of others which are listed in Table 2.

4. Conclusion

-e Single-Shot Multibox Detector (SSD) deep algorithm is
proposed to apply to the hand gesture recognition. We chose
four character’s hand gestures under three different complex
backgrounds as the investigated objects. -e 19-layer con-
volutional neural network is used as a recognition model
with learning and training the selected characters end-to-
end. -e system test results show that the hand gesture
recognition system based on the SSD model performs ef-
ficiently, reliably, quickly, and accurately. -e response time
of the system is less than 20ms revealing high real-time
performance. -e minimum accuracy is more than 93.8%,
and the maximum is 99.2%. -e research results show that
the SSD algorithm can be used in the hand gesture recog-
nition system for the human-computer interaction
application.
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