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Modern engineering systems show increasing complexity
due to their high nonlinearity and large disturbances and
uncertainties introduced by them. In many cases, conven-
tional mathematical models, such as differential equations
that can accurately describe the complex systems and can be
exploited in real-life applications, do not exist. However,
with the fast development of advanced sensing, measure-
ment, and data collection technologies, a large amount of
data that represent input-output relationships of the systems
become available.%is makes data-driven modelling (DDM)
possible and practical.

Data-driven modelling aims at information extraction
from data and is normally used to elicit numerical pre-
dictive models with good generalization ability, which can
be viewed as regression problems in mathematics. It
analyses the data that characterize a system to find re-
lationships among the system state variables (input, in-
ternal, and output variables) without taking into account
explicit knowledge about physical behaviors. Many par-
adigms utilized in DDM have been established based on
statistics and/or computational intelligence. For instance,
artificial neural networks (ANNs) and fuzzy rule-based
systems (FRBSs) serve as fundamental model frameworks,
which are alternatives to statistical inference methods,
while evolutionary algorithms (EAs), swarm intelligence
(SI), and machine learning (ML) methods provide
learning and optimization abilities for calibrating and
improving the intelligent or statistical models. In recent
years, DDM has found widespread applications, ranging
across machinery, manufacturing, materials, power and
energy systems, transport, and so on.

%is special issue intends to bring together the state-of-
the-art research, applications, and reviews of DDM tech-
niques. It aims at not only stimulating deep insights into
computational intelligence approaches in DDM but also
promoting their potential applications in complex engi-
neering problems.

%is special issue has received 27 manuscripts and 9
high-quality papers have been accepted and published (33%
acceptation rate). %e accepted papers involve a variety of
data-driven modelling and data analytics techniques and
contribute to a wide range of application areas. A brief
introduction for each contribution is provided in the fol-
lowing paragraphs.

O. Meza-Cruz et al. applied the techniques of ANNs and
mathematical symmetry groups in modelling a thermo-
chemical reactor of a solid-gas cooling system, where barium
chloride (BaCl2) is the solid and ammonia (NH3) is the
refrigerant. It was found that using an alternating group of
mathematical symmetry in the input data of the ANN helped
improve modelling precision, and using the permutations of
the mathematical symmetry group in the input data helped
improve the convergence speed of the training algorithm.

L. Matindife et al. designed a deep learning-based ap-
proach for a smart home application, i.e., classification of
appliances, specifically for some equal or very close power
specification electronic appliances (EVPSAs). %ey evalu-
ated three deep learning methods for nonintrusive load
monitoring (NILM) disaggregation, including the multiple
parallel structures convolutional neural networks (MPS-
CNNs), the recurrent neural network (RNN) with parallel
dense layers for a shared input, and the hybrid convolutional
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recurrent neural network (CNN-RNN). %en, CNN and
long short-term memory (LSTM) based networks were
proposed for classification.

J. Liu et al. applied the ANN and neuro-fuzzy models
into a sport engineering problem, which relates to the
modelling the rugby players’ performance under different
moisture conditions. %e developed intelligent models
showed good performance in accuracy though using only a
small number of training data. It was anticipated that the
models would help the design of training programmes and
the better preparation for rugby games with wet conditions.

In W. He et al.’s work, predictive models for nitrogen
oxide emission were constructed and validated. In their
models, CNN was employed to extract features among
multidimensional data, in which the LSTM network was
used to approximate the relationships among different time
steps. %e combination of CNN and LSTM showed better
efficiency and accuracy than the baseline models. %e de-
veloped models would be beneficial for providing reliable
information for NOx risk assessment and management.

In H. Zhao and B. Chen’s work, a complex phenomenon
of rockburst was studied. A data-driven method using CNN
was proposed to predict the potential of rockburst. %e
method has been compared with the conventional ANNs
and shown better performance. It was assumed that such a
model would help evaluate the potential of rockburst for
rock underground excavation.

Y. Chen et al. tackled the problem of predicting the stock
price using data-driven models. %ey employed the light
gradient boosting machine (LightGBM) algorithm and
constructed the minimum variance portfolio of mean-var-
iance model with conditional value at risk (CVaR) con-
straint. %e proposed method was validated using China’s
stock market data between 2008 and 2018 and showed good
accuracy.

C. Cheng et al. employed the data-driven models into
assessing the working condition of the running gear of high-
speed trains, which is complicated due to the existence of
random noise in the monitoring data. %eir method was
developed based on a slow feature analysis-support tensor
machine (SFA-STM). It was shown the developed technique
could accurately anticipate the actual health status of the
running gear system and outperformed the other four types
of traditional data-driven models.

In the last two papers, W.Wu et al. conducted two pieces
of studies for text detection. %ey first proposed a pixelwise
technique using instance segmentation for scene text de-
tection. %e proposed method showed good performance in
the common text benchmark problems and did well in the
cases including text instance with irregular shapes. In their
second work, they proposed a new text detector based on
weakly supervised learning. %e validation results showed
that the proposed method works well in scene text detection,
especially for the curved texts.
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,e aim of this work is to present a model for heat transfer, desorbed refrigerant, and pressure of an intermittent solar cooling
system’s thermochemical reactor based on backpropagation neural networks and mathematical symmetry groups. In order to
achieve this, a reactor was designed and built based on the reaction of BaCl2-NH3. Experimental data from this reactor were
collected, where barium chloride was used as a solid absorbent and ammonia as a refrigerant. ,e neural network was trained
using the Levenberg–Marquardt algorithm. ,e correlation coefficient between experimental data and data simulated by the
neural network was r� 0.9957. In the neural network’s sensitivity analysis, it was found that the inputs, reactor’s heating
temperature and sorption time, influence neural network’s learning by 35% and 20%, respectively. It was also found that, by
applying permutations to experimental data and using multibase mathematical symmetry groups, the neural network training
algorithm converges faster.

1. Introduction

It is estimated that 15% of the electrical energy in the
world is used for cooling [1]. One way to decrease this
percentage is to use energy from alternative sources such
as geothermal or solar energy, among others [2]. In [3],
sorption cooling is proposed (adsorption) which uses low-
intensity sources such as solar energy. Sorption cooling
systems use thermal energy and apply thermodynamic
equilibrium: liquid-vapor and solid-vapor. ,e best
known liquid-vapor works are mentioned in [4, 5]. ,e
solid-vapor system is divided into physical sorption and
chemisorption. ,e main physical sorption works are
mentioned in [6, 7].

,e solids frequently used are metal salts, in particular,
alkaline metals and alkaline earth metal halides, which, in
anhydrous state, can absorb large amounts of ammonia or
other refrigerants. ,e salts that are most used as sorbents
are calcium chloride (CaCl2) [8–10], strontium chloride
(SrCl2) [11], and barium chloride (BaCl2) [12, 13]. In [14], 36
solid-gas reactions are collected, mainly chlorides reacting
with ammonia. On the contrary, composite materials are a
mixture between the aforementioned salts and inert solids
such as expanded graphite [15], vermiculite [16, 17], carbon
Sibunit, and Al2O3 [17]. Composite materials have also been
used as solid sorbents as they increase thermal conductivity
and prevent agglomeration and swelling. ,e disadvantage
of these composite materials is the low solid-gas ratio and
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the reactor’s increased volume due to the addition of new
materials, compared to the use of pure salts. On the contrary,
the predominant refrigerant in solid-gas systems is ammonia
due to its vaporization properties, high availability, and
minimal environmental impact.

A thermodynamic solid-gas sorption cycle is composed
primarily of four elements: an evaporator, an absorber/
generator, a condenser, and an expansion device. ,is cycle
works intermittently; when the absorber/generator gener-
ates, it cannot absorb and vice versa.,e reactor is the device
where the phenomena of heat transfer occur by mass and
kinetic reactions. In [18], the phenomena of heat and mass
transfer are modeled, as well as the kinetic reaction by means
of differential equation systems, in order to have a better
knowledge in solid-gas reactors.

Mathematical models for studying solid-gas reactors are
classified as local, global, and analytical. Local models deal
with the phenomena of heat and mass transfer and are
numerically solved. Global models deal with thermal con-
ductivity, specific heat, and permeability averages. Analytical
models consider reaction times and geometrical configura-
tions [19]. ,ere are also approaches where phenomena
within the reactor have been analyzed at different scales [20]
and different materials are used as sorbents [21]. It is also
reported that the kinetic reaction in thermochemical reactors
is complicated and has not been precisely modeled yet [6].

As it has beenmentioned before, very complete studies on
the phenomena of heat and mass transfer in solid-gas systems
in numerical and analytical modalities with different salts
have been carried out. ,ere are also reports on intermittent
cooling systems that use artificial neural networks (ANNs) to
determine the performance in thermochemical reactors
during the solid-gas sorption process [22, 23] and show that
they are a promising technique in this area [24]. In this work,
artificial neural networks andmathematical symmetry groups
were used to model a thermochemical reactor of a solid-gas
cooling system, where the solid is barium chloride (BaCl2)
and the refrigerant is ammonia (NH3).

A thermochemical reactor working with the BaCl2-NH3
pair was designed and built. Experimental data were col-
lected from this reactor in order to obtain a mathematical
prediction based on neural networks that model such a
reactor. ,is provides an artificial intelligence tool that
contributes to the design of reactors used in solid-gas
sorption cooling.

,e rest of this work is organized as follows: Section 2
describes the experimental setup and the influence of the
heating fluid on the thermochemical reactor. Section 3
shows the modeling of the thermochemical reactor using
neural networks and mathematical symmetry groups. Sec-
tion 4 shows the obtained results. Section 5 shows the most
relevant variables in ANN learning. ,en, Section 6 shows
the results of the uncertainty analysis followed by the main
conclusions and a list of references.

2. System’s Description and Experiments

Figure 1 shows the intermittent solid-gas sorption refrig-
eration cycle used in this work; this is composed as follows:

the thermochemical reactor that acts as a generator/ab-
sorber, the condenser, the refrigerant storage tank, an ex-
pansion valve, and the evaporator. ,e system was built in
stainless steel [12].

In addition, the following subsystems were built: (1)
water supply to heat/cool the thermochemical reactor and to
remove heat from the condenser. Both temperatures are
controlled by this subsystem consisting of a thermal bath
(heat), a vapor compression cooler (cool), and a water
pumping system (remove heat); (2) ammonia supply to the
thermodynamic cycle; and (3) a data acquisition system.

Figure 2 depicts an intermittent cooling system. ,e
systemworks in two stages: (a) generation-condensation and
(b) evaporation-sorption. In the former, the VA and VC ball
valves are closed, and theVB ball valve is open. Subsequently,
the generator/absorber containing the BaCl2-NH3 pair is
heated (QG) to a temperature where the refrigerant (NH3) is
desorbed. ,e refrigerant in the vapor state passes to the
condenser where heat (QC) is extracted, becomes a liquid,
and is stored in the condensate tank.

In the latter, VB closes, and VA and VC open. Subse-
quently, the expansion valve opens and regulates the re-
frigerant to enter the evaporator where it absorbs heat from
the medium to be cooled (QE). ,e refrigerant then returns
to the generator/absorber where heat (QA) is removed
during the absorption process.

,ree J-type thermocouples with different radii were
installed in the generator/absorber, taking the reactor centre
as reference: r1� 0 cm, r2� 2 cm, and r3� 4 cm. ,is was
done in order to obtain the temperatures Tr1, Tr2, and Tr3 at
the respective radii, when heat (QG) is added to the reactor
by heating water at various temperatures (,f). ,ermo-
couples were calibrated with high-precision Ametek brand
electronic equipment built by Jofra Instruments model
D55SE and had a temperature range of 0 to 150°C. A Cole-
Parmer pressure sensor with an operating range of 0 to
20.68 bar (g) and 4 to 20mA output was also installed to
measure the generated pressure (Pg). Tomeasure the volume
of condensed or desorbed ammonia (Vd), an external glass

2

1

5

3

6

8

7

4

Figure 1: ,ermochemical refrigerator system: 1, generator/ab-
sorber, 2, condenser, 3, ammonia condensate tank, 4, expansion
valve, 5, evaporator, 6, auxiliary systems for heat and cold water
supply, 7, data acquisition system, and 8, ammonia supply tank
[12].
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meter of 38.1mm (1½ ”) diameter was installed, coupled to
their respective valves as can be seen in Figure 1 (3). To
measure the amount of desorbed ammonia (accumulated
volume), readings were taken every 5 minutes from the start
of the condensation until the desorption process was
completed.

2.1. Influence of the Heating Fluid on the Reactor. ,e de-
sorption process was carried out in order to determine the
behavior of the temperature distribution within the reactor
and quantify the volume of the desorbed refrigerant. To
perform the desorption, the reactor was heated with water at
different ,f temperatures (70°C, 80°C, and 95° C) and at a
condensation temperature of 23°C. ,e variables recorded
were temperatures Tr1, Tr2, and Tr3, generated pressure Pg,
and the volume of desorbed ammonia in its liquid state (Vd).

Temperature distributions within the reactor (Tr1, Tr2,
and Tr3) were obtained; however, only the result of Tr2 is
shown (Figure 3(a)) as an illustrative case of the influence of
,f on the reactor’s radial temperatures. A linear behavior
can be observed in Figure 3, that is, the higher the tem-
perature of ,f, the higher the temperature of Tr2, and the
same happens with the variable Vg (Figure 3(b)). ,e
pressure Pg (Figure 3(c)) does not show an increasing be-
havior; this is because the pressure during the desorption
process (phase change) must behave as an isobaric process.

3. Neural Network Proposal for Modeling the
Thermochemical Reactor

An artificial neural network (ANN) is a set of interconnected
nodes, trying to mimic the functioning of the human brain.
An ANN is a function f: Rn⟶ Rm. Each of the nodes has
an input function and an output function. Once the ANN is
designed and trained, then given an input dataset, the ANN
can predict the values of the output variables. ANNs are used
especially to model the behavior of nonlinear systems [24].
To train the ANN, the Levenberg–Marquardt algorithm
[25, 26] was used because of its convergence speed and
precision.

Figures 4 and 5 show the network structure and its input
and output variables, which was implemented in MATLAB.
Table 1 shows the definition of the neural network’s input

and output variables. ,e ANN’s precision was determined
by using the root-mean-square error (RMSE).

For the ANN training, 2 databases were used. ,e first
database has 7637 experimental data and was generated with
the ,f fluid at 70°C. ,e second database has 8956 ex-
perimental data and was generated with the,f fluid at 95°C.
,e neural network was trained with these two merged
databases. For a better network training, the databases were
merged obtaining a single database of 16,593 records, and an
alternating group An was applied to this database [27, 28].
,en, tuples or permutations of the base 2 multibase
mathematical symmetry group (obtained from the multibase
symmetry group) were applied to the resulting database.,e
multibase mathematical symmetry groups are obtained as
follows [29].

Let G be a finite group of order N. Rename the elements
of G by the set I � 0, 1, 2, 3, . . . , N − 1{ }. Let mi be a number
that will indicate a numerical base (for example, base 10 and
base 2). ,en, G can be represented as
G � Zm1 × Zm2 × · · · × Zmk, where Zmi is a cyclic group of
order mi and N � m1 × m2 × · · · × mk.

On the contrary, each number in the set I can be rep-
resented as

t ∈ I⇒t � 
k

i�1
ti 

i−1

j�0
mj),

⎛⎝ (1)

where ti ∈ 0, 1, . . . , mi − 1  y m0 � 1.

Condenser

Evaporator

Condensate
tank

VC

VB

VA

Throttling
valve

QC

QE

Generator
QG

Absorber
QA

Figure 2: Solid-gas sorption refrigeration cycle.

Table 1: Working range of the thermochemical reactor by barium
chloride-ammonia and variables used for the ANN training.

Parameter Nomenclature Minimum Maximum Unit
Input
Radius 1 inside the
reactor r1 0 0 cm

Radius 2 inside the
reactor r2 2 2 cm

Radius 3 inside the
reactor r3 4 4 cm

Heating fluid’s
temperature ,f 22.512 95.065 °C

Volume of the
solid (BaCl2)

Vs 0.0002 0.0002 m3

Refrigerant
volume (NH3)

Vr 0.0003 0.0003 m3

Desorption time t 0 12.4375 hr
Reactor height H 0.1702 0.1702 m
Reactor nominal
diameter Dn 0.0732 0.073 2 m

Output
Temperature at
radius 1 Tr1 23.162 75.309 °C

Temperature at
radius 2 Tr2 22.866 73.992 °C

Temperature at
radius 3 Tr3 22.772 75.437 °C

Volume of the
refrigerant Vg 0 110 ml

Pressure into the
reactor Pg 2.572 11.834 bar
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Each element t in G is given by t � (t1, t2, t3..., tk) (vector
form of the number), where ti ∈ Zmi.

Let ∘ be the operation of group G and ⊕
mi

the operation
of the cyclic group Zmi. If t, g ∈ G, then

t ∘g � t1 ⊕
m1

g1, t2 ⊕
m2

g2, t3 ⊕
m3

g3, . . . tk ⊕
mk

gk , (2)

where the cyclical group operation is represented as

ti⊕
mi

gi �
ti + gi, if ti + gi <mi,

ti + gi − mi, if ti + gi ≥mi.
 (3)

,e inverse g− 1 of the element g ∈ G is defined as

g
− 1

�
0, if gi � 0,

mi − gi, if gi >mi.
 (4)

With the previous group operations, the matrix VNxN is
formed, where N is the number of columns or records in the
database used to train the ANN, and each row of this matrix
represents a permutation of this database. ,e matrix VNxN

is defined as follows:

V(k, i) � k ∘ i. (5)

On the contrary, to determine the optimal ANN ar-
chitecture, a set of various network configurations was
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Figure 3: Influence of the heating fluid on the reactor parameters. (a) Influence of ,f (70°C, 80°C, and 95°C) on Tr2. (b) Influence of ,f
(70°C, 80°C, and 95°C) on Vg. (c) Influence of ,f (70°C, 80°C, and 95°C) on Pg.
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tested, each one with different numbers of hidden layers
and different numbers of neurons in each layer. It was
found that the simplest and most accurate network model
was 9-9-5 (nine neurons in the hidden layer and 5 neurons
in the output layer) as shown in Figure 6. ,e transfer
functions used in the network training were tansig
function (hidden layer) and pureline function (output
layer).

According to Figure 6, it was concluded that the best
ANN model was achieved with 09 neurons on the hidden
layer. However, the performance in the training set is good

with more than 09 neurons, but the performance of the test
set is significantly worse, which could indicate an overfit.
,erefore, in order to improve the results, the number of
neurons in the hidden layer has been reduced to 09
neurons [30]. Consequently, the optimal network con-
figuration was approximately 09-09-05. ,is model
presents smaller values of RMSE (0.4%) and higher R2

(99.97%).
Once the ANN architecture was defined, each output

of the neural network is calculated by the following
equation:

Thermochemical
reactor

Neural network
(weightand bias)

r1
r2

r3
Thf

Vs
Vg

t
H

Dn

Tr1 exp

Optimization method
(Levenberg–marquardt)

RSME

Tr3 exp 

Tr2 exp

Vd exp

Pg exp

Pg sim

Vd sim

Tr1 sim

Tr2 sim

Tr3 sim

+

–

s’ = s + 1

Figure 4: Numerical procedure used in the ANN learning process and the iterative architecture used by the ANN model to estimate
temperatures, pressures, and ammonia production, respectively.
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Figure 5: Optimized architecture of the ANN model.
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Qi � 

N

j�1
LWij

2
1 + exp −2 

M
k�1 IWjkInk   + b1j 

− 1⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ + b2i. (6)

Explicitly, each output of the neural network is calcu-
lated by the following equations (7)–(11):

Q1 � Tr3 � 
N

j�1
LW1j

2
1 + exp −2 

M
k�1 IWjkInk   + b1j 

− 1⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ + b21, (7)

Q2 � Tr2 � 
N

j�1
LW2j

2
1 + exp −2 

M
k�1 IWjkInk   + b1j 

− 1⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ + b22, (8)

Q3 � Tr1 � 
N

j�1
LW3j

2
1 + exp −2 

M
k�1 IWjkInk   + b1j 

− 1⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ + b23, (9)

Q4 � VD � 
N

j�1
LW4j

2
1 + exp −2 

M
k�1 IWjkInk   + b1j 

− 1⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ + b24, (10)

Q5 � PG � 
N

j�1
LW5j

2
1 + exp −2 

M
k�1 IWjkInk   + b1j 

− 1⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ + b25, (11)

where N� total neurons of the hidden layer, M� total input,
LWij �weights of the output layer from neuron j of the
hidden layer to the output, IWjk �weights of the input layer
from input k to neuron j of the hidden layer, Ink � k-th input,
b1j � bias of the hidden layer of the j-th neuron, b2i � bias of
the output layer at the i-th output, and I� i-th output.

4. Results and Discussion

After training the neural network, the results were obtained
as follows (see Table 2). ,e ANN was trained with 75% of
data, and the other 25% of data were used for validation and
testing (see Section 3).

In order to verify learning of the network, a database
with 7,420 experimental data was used. ,ese data were the
heating time (t) from 0 to 10.31 h, the heating temperature
(,f) from 24.7°C to an average maximum temperature of
81.2°C, and the reactor geometry values which were con-
stant, as well as the amounts of NH3 and BaCl2 (see Table 1).

By training the network with the appended database and
verifying its learning, a correlation coefficient of r� 0.9671
was obtained (see Section 3). Applying an alternating group
to the ANN training database and checking its learning with
this new database, a correlation coefficient of r� 0.9920 was
obtained. Finally, applying an alternating group and then

applying elements from the multibase mathematical sym-
metry group to the ANN training database and verifying
their learning with the new database, a correlation coefficient
of r� 0.9957 was obtained. For a fair comparison, in all ANN
trainings with different permutations (alternating group and
multibase mathematical symmetry group) from the training
database, the network weights were initialized with a ran-
dom seed of 1230.

Figure 7(a) shows that the behavior of simulated tem-
perature Tr3 during the addition of heat to BaCl2-NH3
(sensible heat), against the experimental data, coincides with
a correlation coefficient of r� 0.9996. During the phase
change or desorption, the difference of the simulated data
against the experimental data becomes minimal.

In the Tr2 case (Figure 7(b)), it is observed that the
simulated and experimental Tr2 temperatures are consistent
and have a correlation coefficient of r� 0.9924. It should be
noted that, during desorption, there are some minimal
differences between simulated and experimental values;
however, from the experimental point of view, this is ac-
ceptable. ,e evolution of the Tr1 simulated temperature
(Figure 7(c)) coincides with a correlation coefficient of
r� 0.9953 which is acceptable from a practical point of view.

,e simulated values of the refrigerant volume versus the
experimental ones coincide with a correlation coefficient of
r� 0.99 (Figure 7(d)). It should be noted that the
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experimental data were visually recorded every five minutes.
However, it has an approximate value to the recorded final
volume at the experimental desorption.

,e simulated pressure inside the reactor
(Figure 7(e)) is consistent with the sensible heating
process, as it occurred with temperatures at different
radii, and it has a correlation coefficient of r � 0.9503.

During desorption, the pressure must have a constant
behavior; however, in the experimental stage, there is a
gradual increase. In the case of simulated pressure, the
same increase occurs, with a maximum difference of
1 bar; it must be taken into account that the pressure
values in Figure 3(c) do not show an ascending or
descending pattern when increasing ,f.
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Figure 6: ,e effect of the neuron number of the hidden layer on the correlation coefficient “R” and the mean square error “MSE” for the
ANN model.

Table 2: Weights and bias of the neural network.

Input layer
r1 r2 r3 ,f Vs Vg t H Dn

Neuron 1 3.26E+ 00 1.63E+ 00 0.00E+ 00 4.81E− 02 1.40E− 04 2.26E− 04 −9.14E− 01 1.39E− 01 5.96E− 02
Neuron 2 −1.71E+ 00 −8.56E− 01 0.00E+ 00 1.48E− 01 −7.36E− 05 −1.19E− 04 7.18E− 01 −7.29E− 02 −3.13E− 02
Neuron 3 4.29E− 01 2.15E− 01 0.00E+ 00 5.96E− 02 1.85E− 05 2.97E− 05 5.72E− 01 1.83E− 02 7.85E− 03
Neuron 4 3.90E+ 00 1.95E+ 00 0.00E+ 00 −1.75E− 01 1.68E− 04 2.70E− 04 −1.39E− 01 1.66E− 01 7.13E− 02
Neuron 5 −4.39E− 01 −2.19E−01 0.00E+ 00 1.65E− 02 −1.89E− 05 −3.04E− 05 −5.77E− 03 −1.87E− 02 −8.03E− 03
Neuron 6 3.60E+ 00 1.80E+ 00 0.00E+ 00 −3.76E− 01 1.55E− 04 2.49E− 04 1.59E+ 00 1.53E− 01 6.58E− 02
Neuron 7 3.03E− 01 1.52E− 01 0.00E+ 00 −5.32E− 03 1.30E− 05 2.10E− 05 −1.18E− 01 1.29E− 02 5.55E− 03
Neuron 8 −6.36E− 02 −3.18E− 02 0.00E+ 00 −8.44E− 02 −2.74E− 06 −4.41E− 06 1.37E− 01 −2.71E− 03 −1.16E− 03
Neuron 9 2.76E+ 00 1.38E+ 00 0.00E+ 00 −2.16E− 01 1.19E− 04 1.91E− 04 −2.28E+ 00 1.17E− 01 5.05E− 02

Hidden layer
Bias

1 2 3 4 5 6 7 8 9
b1 −1.13E+ 01 −5.76E+ 00 −9.33E+ 00 −4.22E+ 00 9.58E−01 −5.05E+ 00 −1.03E+ 00 4.56E+ 00 4.26E+ 00

Output layer
Inputs

1 2 3 4 5 6 7 8 9
Neuron 1 −5.86E− 02 4.22E+ 00 −3.83E+ 00 9.03E− 01 5.15E+ 01 6.45E− 01 −4.80E+ 00 −2.78E+ 00 −1.64E+ 00
Neuron 2 −4.09E− 01 3.27E+ 00 −3.77E+ 00 8.74E− 01 5.41E+ 01 8.69E− 01 −1.03E+ 01 −7.84E− 01 2.38E− 01
Neuron 3 −1.10E+ 01 1.05E+ 00 −9.41E− 03 8.09E− 01 −3.78E+ 00 −3.65E+ 00 −4.87E+ 00 −1.28E+ 01 −1.08E− 01
Neuron 4 3.88E+ 00 −2.67E+ 01 3.95E+ 01 −3.04E+ 01 −5.10E+ 01 9.09E−02 −6.28E+ 01 −4.04E+ 00 −7.94E+ 00
Neuron 5 8.20E− 02 4.34E− 01 −2.80E− 01 1.70E+ 00 5.02E+ 00 3.54E− 01 −2.67E+ 00 −2.41E+ 00 2.14E− 01

Output layer
Bias

b2 6.19E+ 01 6.08E+ 01 4.83E+ 01 3.76E+ 01 6.93E+ 00
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Figure 7: Testing the neural network (correlation coefficient r� 0.9957): (a) temperature near the reactor wall (Tr3); correlation coefficient
r� 0.9996, (b) temperature at the midpoint between the centre and the reactor wall (Tr2); correlation coefficient r� 0.9924, (c) temperature
at the reactor’s centre (Tr1); correlation coefficient r� 0.9953, (d) ammonia produced; desorption volume (Vg); correlation coefficient
r� 0.99, and (e) pressure into the reactor (Pg); correlation coefficient r� 0.9503.
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5. Sensitivity Analysis

In order to determine the impact of each input variable on
the outputs estimated by the neural network, a sensitivity
analysis was developed using a genetic programming al-
gorithm executed in Eureqa [31]. ,e sensitivity analysis
showed that themost used characteristic is the heating fluid’s
temperature (35%) followed by the desorption time (20%),
that is, these variables are the most important in the ANN’s
learning process.

,e sensitivity analysis for each of the input variables was
also performed by generalizing the equations of Dimopoulos
et al. [32] for M outputs, which is given as follows:

SSDq � 
N

p�1
d

p2

q , (12)

where SSDq is the sensitivity of the q-th output of the neural
network, for q � 1, 2, . . . M, N is the total input data to the
neural network, and M is the total number of outputs of the
network.

d
p
q � d

p
1q , d

p
2q , · · · , d

p
nq , (13)

where n is the total input parameters to the neural network.

d
p
eq � f

o
q x

o
q  

’


ni

i�1
W

o
qi f

h
i x

h
i  

’
W

h
ei, (14)

where ni is the number of neurons of the hidden layer,
e � 1, 2, · · · , n, fo

q is the q-th activation function of the
output layer, fh

i is the i-th activation function of the hidden
layer, Wo are the weights of the output layer, Wh are the
weights of the hidden layer, Wh

ei is the weight from the
entrance to the hidden layer, from the i-th network entrance
to the e-th neuron of the hidden layer, Wo

qi is the weight that
goes from the hidden layer to the output layer, from the i-th
neuron of the hidden layer to the q-th neuron of the output
layer, and [fo

q(xo
q)]’ and [fh

i (xh
i )]’ are those derived from

the activation functions of the neurons of the output layer
and the hidden layer, respectively.

In equation (14), the domains of the activation functions
are defined as follows:

x
h
i � 

n

j�1
W

p
ijx

p
j , (15)

where x
p
j is the p-th input to train or simulate the network.

x
o
q � 

ni

i�1
W

o
qix

h
i , (16)

where xo
q is the domain of the activation function of the q-th

neuron of the output layer.
Equations (12)–(16) were implemented in MATLAB

yielding Table 3, as in Eureqa; it is concluded that the most
important variables for the learning process of the neural
network are ,f and t.

6. Uncertainty Analysis

In order to verify the accuracy improvement of the ANN, the
uncertainties of the temperature sensors, pressure sensor,
and desorption were analyzed. Some methodologies and
standards for obtaining uncertainties are mentioned in
[33–35]. All the uncertainties calculated for the sensors used
in this research were based on evaluation of measurements
described in [35], and a probability p � 0.99 and a coverage
factor k� 3 were proposed. ,e expanded uncertainty of the
J-type class 2 temperature sensor of Ametek brand [36] is
U� 2.9°C. ,e expanded uncertainty of the pressure sensor
of Cole-Parmer brand [37] is U� 0.18 bar. On the contrary,
the desorption of the refrigerant was recorded manually, so
the fuzzy set type 2 technique [34] and the central limit
theorem were used to obtain the expanded uncertainty,
obtaining U� 4.47ml. Using these uncertainties, the cor-
relation coefficient of r� 0.9957 was obtained between the
experimental data (those never used for the network
training) and the data simulated by the neural network.

7. Conclusions

,e proposed artificial neural network allowed modeling the
behavior of a BaCl2-NH3 reactor globally with a precision of
0.9957 without using complex systems of differential
equations. However, it is still necessary to improve the
learning precision and the architecture of this neural net-
work to model the behavior of these reactors. For example, it
is necessary to improve the output of the neural network that
simulates pressure, which has a correlation coefficient of
r� 0.9503.

Applying an alternating group An of mathematical
symmetry to the input data of the neural network allowed
obtaining better precision in the learning process than only
appending the 70°C and 95°C databases. However, when
applying the permutations of the multibase mathematical
symmetry groups to the input data of the neural network, a
better precision (r� 0.9957) was obtained in the mentioned

Table 3: Result of sensitivity analysis of the input parameters of the neural network (all data are multiplied by 1e + 57).

Output
Input

r1 r2 r3 ,f Vs Vg t H Dn
Tr3 0 0 0 0.01442 0 0 0.000000000000006 0 0
Tr2 0 0 0 1.971712 0 0 0.000000000000185 0 0
Tr1 0 0 0 0.163830 0 0 0.000000000000321 0 0
Vd 0 0 0 0.576825 0 0 0.000000000001319 0 0
Pg 0 0 0 0.202679 0 0 0.000000000000003 0 0
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learning process than applying the alternating symmetry
group An.

By applying the permutations of the mathematical
symmetry group to the neural network input database, the
training algorithm (Levenberg–Marquardt) converges faster
and with greater precision compared to the appended da-
tabase. However, given the high computational complexity
of the permutations generated for the mathematical sym-
metry group, not all permutations were applied to the input
data of the neural network.

As shown by the sensitivity analysis, the most important
variables for the neural network training are heating fluid
temperature (,f) and desorption time (t). ,e analysis of
the uncertainties of experimental measurements allowed
obtaining a higher learning precision of the neural network
(r� 0.9957).
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In a smart home, the nonintrusive load monitoring recognition scheme normally achieves high appliance recognition per-
formance in the case where the appliance signals have widely varying power levels and signature characteristics. However, it
becomes more difficult to recognize appliances with equal or very close power specifications, often with almost identical signature
characteristics. In literature, complex methods based on transient event detection and multiple classifiers that operate on different
hand crafted features of the signal have been proposed to tackle this issue. In this paper, we propose a deep learning approach that
dispenses with the complex transient event detection and hand crafting of signal features to provide high performance recognition
of close tolerance appliances. ,e appliance classification is premised on the deep multilayer perceptron having three appliance
signal parameters as input to increase the number of trainable samples and hence accuracy. In the case where we have limited data,
we implement a transfer learning-based appliance classification strategy. With the view of obtaining an appropriate high
performing disaggregation deep learning network for the said problem, we explore individually three deep learning disaggregation
algorithms based on the multiple parallel structure convolutional neural networks, the recurrent neural network with parallel
dense layers for a shared input, and the hybrid convolutional recurrent neural network. We disaggregate a total of three signal
parameters per appliance in each case. To evaluate the performance of the proposed method, some simulations and comparisons
have been carried out, and the results show that the proposed method can achieve promising performance.

1. Introduction

1.1. Background and Motivations. It is now common today
to remotely monitor and control various appliances in the
smart-home [1, 2]. ,e monitoring system is often inte-
grated into the Internet of ,ings (IoTs). In addition to
standalone appliances, the smart home is composed of se-
curity, air-conditioning personalised medical equipment,
and plug-in-electrical-vehicles (PEVs) [3, 4] monitoring. In
the smart home, a convenient way to automatically establish
the on/off operational status and identity of an appliance is
through the nonintrusive load monitoring (NILM) recog-
nition method which was firstly proposed by Hart in 1992
[5–7]. ,e NILM method establishes the identity of an
appliance through the intelligent extraction of that

appliance’s specific load signal information from an ag-
gregate load profile acquired through a single signal sam-
pling unit on the main power cable into the building. In
contrast, sensors dedicated to each appliance define the
intrusive load monitoring (ILM) [5] system. However, the
ILM method involves a large number of sensors and ex-
tensive cabling in the house. Another recognition scheme
known as the semi-intrusive load monitoring (SILM) [8]
system only obtains part samples of the aggregate energy and
guesses the remainder. SILM cannot give accurate specific
load disaggregation but is appropriate for aggregate energy
forecasting and needs some sensors and cabling.

,e main thrust of the NILM systems is smart-home
demand side energy management, whether it is based on
single appliance or system based. Hence, we need to know
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which and when the appliance/system is switched on or off.
Load signal extraction and identification is achieved with
high performance when the appliance component signals are
due to large power appliances such as electric car charging
that have widely varying power differences and whose sig-
natures are very different from each other. ,e electric car
charging in the smart home is now a prominent feature
requiring consideration in the NILM recognition system
design. ,e authors in [9] showed that the electric car
charging can successfully be implemented into the NILM
system using data from the Pecan Street Inc. Dataport.,ere
are a number of challenges facing NILM recognition systems
for achieving high recognition performance and they in-
clude the follows: (1) the system includes some equal or very
close power specification electronic appliances (EVPSAs)
during steady state operation and having basically identical
signature characteristics, (2) the system has low power
appliances that are difficult to recognize and are often
interpreted as noise when the aggregate is composed of low
and high power appliances (LHPAs), (3) the system includes
continuously variable operating states’ (CVOS) appliances,
and (4) the same power appliances are switched on/off at the
same time [5–7, 10]. However, in this paper, motivated by
the need to differentiate and monitor the ever increasing
array of EVPSAs in the smart home, we limit our research
only to challenge (1) above. When summed up a large
number of same specification laptops, televisions, refriger-
ators, light-emitting diode (LED) lamps, etc. will contribute
significantly to the energy used in the smart home, and it
becomes necessary to identify the operational status for each
appliance through a deep learning NILM recognition sys-
tem. Also, a high number of appliances in the house results
in a higher overlap of their respective individual signals and
switching events. A few studies often with complex detection
algorithms [11, 12] have actively been involved in the NILM
recognition of EVPSAs. In this paper, we fill the gap in the
established literature by introducing less complex new deep
learning model configurations with enhanced computation
time and high accuracy for the NILM recognition of
EVPSAs. By proposing three deep learning disaggregation
algorithms, based on the multiple parallel structures con-
volutional neural networks (MPS-CNNs), the recurrent
neural network (RNN) with parallel dense layers for a shared
input, and the hybrid convolutional recurrent neural net-
work (CNN-RNN), we aim to achieve a considerable im-
provement in the NILM recognition of EVPSAs. In this
study, we propose to use in-house generated data from
similar low power appliances such as light-emitting diode
(LED) main lamps as opposed to the high energy con-
sumption of the electric car charging since they are more
difficult to be recognized.

1.2. Literature Survey. In the literature, we identify three
approaches to detecting similar appliance signals in the
NILM recognition systems. ,ese are (1) event detection
[13–15], (2) machine learning with hand crafted features,
multiple classifiers, and complex algorithms [11, 12, 16–19],
and (3) deep neural networks [3, 4, 10, 20–23]. Event

detection algorithms are premised on being able to extract a
large number of unique signature characteristics at the
beginning, end, and during the transient period. ,e
CUSUM and genetic algorithm have been implemented in
solving the recognition challenge due to appliance dis-
aggregated signals that are similar to each other [13]. With
reference to the NILM system, the CUSUM adaptive filter is
based on adaptive threshold (difference between maximum
andminimum value of the parameter beingmeasured within
the transient period and the starting and ending of the
transient detection [13]). By doing so the filter is capable of
extracting the signal information during fast and slow
transients. ,e Genetic Algorithm (GA) on the other hand
obtains a fitness function that converges to zero for suc-
cessful appliance signal recognition [13]. However, although
it is capable of extracting a large number of appliance sig-
natures, both the CUSUM adaptive filter and GA are
complex requiring involved design. ,e authors in [14]
proposed a high accuracy event detection algorithm (High
Accuracy NILM Detector (HAND)) characterized by low
complexity and better computation speeds. ,e HAND
monitors the standard deviation of the current signal
through the transient period and is capable of detecting
unique signal magnitudes within the transient. However,
this algorithm suffers suppressed recall value and the pre-
cision is sensitive to noise [14]. In [15], an unsupervised
clustering event detection algorithm is proposed, which
functions on noting the original signal state before and after
an event. ,e approach in [15] is incapable of high recog-
nition at low frequencies. Hence, requiring extra consid-
eration of a large count of high frequency features adds to the
complexity and cost of data acquisition.

Machine learning with hand crafted features, multiple
classifiers, and complex algorithms seeks to avail a large
number of signal features for discrimination between similar
appliance signals often through carefully designed feature
extraction algorithms for processing through various ma-
chine learning models. To date a large number of NILM
systems have been developed around Hidden Markov
models (HMMs), as HMMs achieve enhanced recognition
and reduced computational capabilities. However, HMMs
have limited discrete value modeling capability and the
algorithms are complex [6, 16]. An emerging method, the
NILM Graph Spectral Clustering aggregate energy fore-
casting method, mentioned in [17] assumes prior knowledge
of the appliances’ on/off states to provide future dis-
aggregated signal duration of each appliance. ,is method
has a deficiency in the conventional NILM system design as
it assumes that appliance will in future always operate as in
the past. In reality, appliances are randomly switched on/off
at times for varying periods spanning from their minimum
operational activation times to up to many hours, days, or
weeks depending. Hence, it becomes difficult to implement
the design for constantly changing on/off appliance states.
,e method in [17] is applicable where we have data ac-
quisition of appliances’ operating states over very long past
periods, unlike in our case where we have limited data as it is
the norm in many NILM systems. To this end, the authors in
[17] acknowledge the need to enhance the forecasting
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capability of this system. In [18], the authors proposed the
disaggregation and classification of high power resistive and
reactive appliances. ,ey consider step change in imple-
menting their disaggregation to include true and reactive
powers of appliances with widely varying signatures.
However, the NILM recognition system in [18] is incapable
of disaggregating or classifying similar signatures due to its
reliance on differentiating between active and reactive
powers and on an appreciable level difference between like
powers.

Still under machine learning with hand crafted features,
multiple classifiers, and complex algorithms, the authors in
[19] proposed to improve on the recognition of similar
appliances from previous work based only on true power
parameter level change by adding more features extracted in
total from the true power, reactive power, and power factor
of the respective signal. ,e authors in [19] went on further
to propose the MinMaxSteady-State algorithm that consti-
tutes hand crafting of the steady state features from the
power and power factor signals. By hand crafting the steady
state feature extraction, we increase the complexity of the
system and at the same time we limit the system perfor-
mance since it is difficult by trial and error to determine
exactly the number of features required to provide absolute
recognition of the appliance signals. In [18, 19], the per-
formance of various classification algorithms that include
the decision tree, 5-nearest neighbour, discriminant analysis,
and support vector machine was investigated. ,e decision
tree algorithm provided the highest identification rate of
appliances for the said classifiers.

In [11], the generalized NILM algorithm provides a
considerable improvement in the recognition of similar
appliances here given by detecting between iron and kettle.
In this algorithm, anymachine learning classifier can be used
in the recognition. However, different classifiers are assigned
to a limited number of features out of the whole set of
features under consideration. As in [18], the authors in [11]
also consider a step change in the initiation of their dis-
aggregation part of the NILM system. In the finality of the
disaggregation, they consider an elaborate design to select an
optimal number features out of possible nine features. In
[11], the selected features are mean current, DC component,
mean power, and for the first sixteen harmonics (active
power, reactive power, real and imaginary current com-
ponents, and conductance and susceptance values). Al-
though themethod in [11] gives good discrimination, among
the various appliance signals, under consideration, the
overall performance of the classifier on the identification
between similar appliances requires further improvement as
alluded to by the same authors in their conclusions. Fur-
thermore, the number of hand-crafted features under
consideration is very high, requiring a complex feature
selection and extraction algorithm. In [12], the hierarchical
support vector machine (HSVM) classifier is proposed for
the classification of the disaggregated signals. However, the
HSVM burdens the computational resources of the system.
As in [11, 18], the authors in [12] also consider a step change
in the formulation of their NILM disaggregation comprising
a host of hand-crafted features that include average, peak

value, root mean square, standard deviation, crest factor, and
form factor for analysis per appliance. In addition to for-
mulation of hand crafted event detection and hand crafted
feature extraction, in [12], we observe a slightly suppressed
average classification accuracy of 98.8% due to the HSVM.

,e advent of deep learning algorithms has allowed for
an accelerated increase in the development and performance
of NILM recognition systems. In [20], the authors propose
the following three deep learning neural networks for the
NILM recognition: (1) recurrent neural network and (2)
denoising autoencoder, and a model based on considering
the steady state operation value and appliance activation
start and end times. ,e experiments in [20] are performed
using high power appliances that have widely varying sig-
natures and result in acceptable average F-measures (F1
scores) that are however less than unity. ,e appliances
considered in [20] are kettle, dish washer, fridge, microwave
oven, and washing machine. ,e research here [20] forms
one of the basis for application of deep learning to the NILM
recognition, and as such requires further improvement as
alluded to by the authors in their conclusions. In [20],
networks (2) and (3) performed reasonably well for rec-
ognition of unseen appliance data, whilst network (1) did not
perform well on unseen data. However, all the networks in
[20] still need considerable improvement. In [21], the au-
thors propose to predict the extent to which Parkinson’s
disease is manifest from gait generated data. Just like in
NILM recognition, the system in [21] tries to infer an
outcome from a composite input of gait information. An
averaged output from the result of a parallel combination of
a long-short-term memory (LSTM) network and convolu-
tional neural network (CNN) model is obtained. ,e good
results in [21] show that both LSTM and CNNmodels can be
adopted for use in the NILM recognition system as the
formats of the power series signals are the same in both
cases.

Still under deep learning algorithms in [22] the authors
propose a CNN NILM system based on differential input,
with the aim of achieving higher performance than systems
based on “raw” data. ,is is somewhat a form of signal
preprocessing obtained by differentiating the raw data into
power change signals. An auxiliary raw data feed is then
applied in parallel to the differential input to provide ad-
ditional mean, standard deviation, and max and min signal
information. However, a well-constructed deep CNN net-
work is capable of high performance internal signal dif-
ferentiation and feature selection without the need for
preprocessing the signals. Furthermore, the authors in [22]
used a standard dataset that includes a dishwasher, fridge,
and microwave oven without articulating the similar ap-
pliances signal issue. In [23], the authors propose a deep
learning autoencoder-based NILM recognition system.
Applying the concept of noise removal from speech signal,
the authors in [23] are able to disaggregate the unique
appliance signals from the aggregate with very high per-
formance. However, in [23], the authors experiment on
appliances that do not have similar signatures, and these are
washing machine, desktop computer, electric stove, and
electric heater. In [10], the authors approach the NILM
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recognition through a convolutional neural network (CNN)
applied to appliance voltage-current (V-I) trajectories. ,e
V-I trajectories are transformed to the image form for input
to the CNN. ,e features in [10] are attributed to slope,
encapsulated area etc. of the V-I trajectory. ,e authors in
[10] consider data acquired from high frequency measure-
ments and does not sufficiently address low frequency (1Hz)
data acquisition. In [10], the authors are able to recognize a
large pool of appliances from the WHITED and PAID
datasets with macroaverage F1 scores of 75.46% and 77.60%,
respectively. Poor recognition between similar appliances is
a contribution to the low F1 score.

Analogous to detecting similar appliance signals is the
modeling of travel behavior patterns for designing a
charging strategy for plug-in electric vehicle [3, 4]. In [4],
Plug-in Electric Vehicles (PEVs) travel pattern prediction
accuracies of up to 97.6% were obtained through a hybrid
classification approach. Similar travel patterns are grouped
together and assigned to a particular forecasting network.
Using stored previous PEVs data (departure time, arrival
time, and travelled distance), the approach in [4] first runs
an unsupervised model to establish those masked travel-
behaviour patterns and assigns them to a specific group. ,e
grouped travel-behaviour patterns are then channelled to the
respective supervised model for final recognition. ,e un-
supervised and supervised operations are both performed by
LSTM networks that are characterized by enhanced feature
extraction capabilities. ,e results in [4] show that deep
learning as opposed to legacy scenario-based demand
modeling achieves very high performance in PEV systems.
In [3], PEVs travel pattern prediction was obtained through
the use of the Rough Artificial Neural Network (R-ANN)
with reference to the recurrent neural network system.
R-ANNs are capable of enhanced forecasting of the masked
travel-behaviour patterns of PEVs. In [3], the Conventional
Error Back Propagation (CEBP) and LevenbergeMarquardt
training approach was used with the LevenbergeMarquardt
achieving higher performance in training Plug-in Electric
Vehicles-Travel Behaviour (PEVs-TB). ,e outcome of the
research in [3] shows that the Recurrent Rough Artificial
Neural Network (RR-ANN) approach allows for better PEV-
TB and PEVs load forecasting than the reference Monte
Carlo Simulation (MCS). ,e overall result in [3] is a
substantial saving in the use of electricity by the PEVS. In
context of our research, we extend the application of the
LSTM model to the NILM disaggregation part.

1.3. Paper Contribution. In this paper, we address the de-
ficiencies mentioned in [11–23] of the NLM disaggregation
and classification of EVPSAs with similar signatures by
improving the deep learning approach. Deep learning neural
networks are good at mastering the complex nonlinear
connection between the source aggregate signal and the
output target appliance signal. ,e success of the NILM
recognition depends in principle on the feature extraction
capabilities of the designed system. Hence, we propose
NILM models that will attempt to extract as much feature
information as possible from the experimental signals.

Firstly, with the view of obtaining appropriate EVPSAs
overall high performing disaggregation deep learning net-
works, we propose three deep learning disaggregation al-
gorithms based on the multiple parallel structures
convolutional neural networks (MPS-CNNs), the recurrent
neural network (RNN) with parallel dense layers for a shared
input, and the hybrid convolutional recurrent neural net-
work (CNN-RNN). We then disaggregate a total of three
signal parameters per appliance in each case for a limited
number of similar signature appliances in the form of light-
emitting diode (LED) main lamps. We propose CNN- and
LSTM-based disaggregation networks. ,e CNN is a feed-
forward neural network (FFNN) modelled on the naturally
“vision perfect” biological visual cortex [24, 25] and has
achieved extremely high levels of object recognition and
classification. ,e LSTM network, on the other hand, which
accurately models short and long term trends in the ap-
pliance signals [4], is characterized by enhanced feature
extraction capabilities. Secondly, we propose an appliance
classification strategy premised on the deep multilayer
perceptron (MLP) having three appliance signal parameters
as input to increase the number of trainable samples and
hence accuracy. In the case where we have limited data, we
implement a transfer learning- (TL-) based appliance
classification strategy. In this paper, our first and second
proposals attempt to fill the knowledge gap in the established
literature by introducing less complex but powerful new
deep learning model configurations with enhanced com-
putation time and high accuracy for the NILM recognition
of EVPSAs.,eMLP feedforward neural network in its own
right is an enhanced nonlinear problem solving deep neural
network capable of high classification performance [26].
During data acquisition, we obtain three signal parameter
values for both the aggregate and appliance target signals.
We then perform a regression-based training of each dis-
aggregation model based on the target parameters. Using the
sliding window concept, we disaggregated the appliance
signals through the trained disaggregation networks. We
then use the mean summation of the part window dis-
aggregated signals to obtain the overall disaggregated sig-
nals. We also train the classification network based on the
three parameters of the ground truth signals and finally
apply the disaggregated signal sums into the trained clas-
sification network for recognition. Our proposed NILM
recognition system is tested on raw in-house generated data
from similar LED main lamps. Disaggregation is carried out
on all the appliances, and in the final analysis, we show the
classification rates of all the appliances under test. To
evaluate the performance of the proposed method, some
simulations and comparisons are carried out. In summary,
we make the following contributions in this study:

(i) Incorporate an all-encompassing disaggregation
feature extraction capability that includes step
change, transient, and steady state values deep
learning framework based on three separate deep
learning disaggregation algorithms: the multiple
parallel structure convolutional neural networks, the
recurrent neural network with parallel dense layers
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for a shared input, and the hybrid convolutional
recurrent neural network to substantially increase
the disaggregation performance of the NILM system

(ii) Increase the classification accuracy by availing three
parameters per signal into the classification network
based on a simple deep learning multilayer-per-
ceptron network

1.4. Organization of the Paper. ,e rest of this paper is
structured as follows. Section 2 details the proposed
methodology including the models, the proposed NILM
recognition theory, aspects pertaining to data, performance
metrics, verification of the proposed method performance to
include proposed model description, pseudocode for pro-
posed method, Keras model architectures, and the training
framework and procedure. Section 3 gives a discussion of the
experimental results, and Section 4 gives the conclusion.

2. Methodology

2.1. .e Proposed Models. We propose our deep learning
model structure based on the hybrid convolutional recurrent
neural network (CNN-RNN). ,e CNN-RNN approach is
referred to the GoogleNet model as done by the authors in
[27]. However, we modify the concept and break it down
into three possible networks for exploration in this paper.
,e first model in Figure 1 is premised on the multiple
parallel structure convolutional neural networks (MPS-
CNNs) disaggregation approach. In the GoogleNet model,
we basically disaggregate one input parameter with a
number of parallel feature extractors, whereas in our model,
we disaggregate three independent input parameters, as
shown in Figure 1. ,e second model in Figure 2 is a re-
current neural network in the form of an LSTM with parallel
dense layers for a shared input for enhanced sequence
prediction. ,e final model in Figure 3 is based on a hybrid
convolutional recurrent neural network (RNN-CNN) that
combines the enhanced feature extraction with ordered
sequence prediction for CNN and RNN, respectively [28].
,e authors in [29] use bidirectional LSTMs (BiLSTM or
BLSTM) that preserve past and future information from
combined hidden states for better interpretation of missing
information. A BLSTM trained on the past and future in-
formation 12.17. . .12.175 will predict a 12.1725 instead of a
likely 12.178 when trained on an LSTM. Notwithstanding
the benefits of BLSTM, we will however base our LSTM
models on forward pass ones only. Our models in this paper
have three aggregate parameters separately disaggregated to
give three individual mains lamp disaggregated signals.
,ese three disaggregated signals become three (multivar-
iate) signal inputs into the classification network with any
one target signal of Watt, I_rms, or PF. Doing so may in-
crease the appliance classification accuracy and improve on
appliance generalization.

,e idea for this research is to place a single measure-
ment piece of equipment at the mains power cable input to
the house, and to measure the current, power, and power
factor parameters of four similar LED mains to find out

which LED is on or not. ,e recognition module can be
housed in a separate meter box next to the original one, or in
the house just after the mains circuit breaker, as shown in
Figure 4.

,is system is meant to recognize similar LED mains
lamps effectively connected to an alternating current main
power supply cable, either supplied through the power grid,
standby generator, or photovoltaic inverter system, to
determine which area of the building is illuminated. ,is
project includes the hardware design, signal processing,
and signal recognition. ,e software and hardware can be
implemented on microchip or arduino microcontrollers.
Besides, the smart-home proposed project can find ap-
plication in commercial and industrial installations, where
there is a large count of similar LED main lamps. ,e
recognition project concept can be extended to other
similar electronic appliances such as laptops in a school or
company and similar televisions in a hotel. In Figure 4, the
NILM unit can then be combined with Internet of ,ings
(IoT) premised on industry 4.0 standard platform for re-
mote access.

2.2. .e Proposed NILM Recognition .eory. ,e typical
NILM appliance identification process is made up of (1)
acquisition of the composite load profile, (2) obtaining of
appliance state transitions (events), (3) feature extraction,
and (4) with reference to supervised and unsupervised
learning obtaining the disaggregated appliance signal and its
class [6]. In supervised learning, the input aggregate is
trained against each appliance signature target. In unsu-
pervised learning, there is no target training but an inter-
mediate disaggregated signal is produced which is compared
with a known signature databank for pairing; if no pairing is
possible, then the intermediate signal is labelled as a new
appliance signature. Acquisition of the composite signal can
be carried out at high sampling frequencies of 1 kHz to
100MHz [6]. However, 1Hz low sampling frequencies are
the norm as sampling integrated into smart meters requires
simple hardware [8].,e data in our study has been sampled
at this low 1Hz frequency for ease of acquisition.,e feature
extraction and disaggregated and classification appliance
signatures can either be taken as steady state or transient
state [5, 6, 8, 30]. Switching transients for each appliance are
of different amplitudes, contain unique settling times, and
harmonics thereby defining a unique signature for each
appliance. On the contrary, steady state features define the
normal operational unique signatures of appliances. ,e
mathematical expressions of the load signatures and com-
posite profiles have conveniently been represented in [31]. In
our study, the disaggregation problem stated in [31] is
tackled by implementing the “pattern recognition” approach
that allows us to use the deep learning algorithms that we
have proposed.

2.2.1. Deep Learning Algorithms. Well-configured deep
learning neural networks are capable of extracting a large
number of different features that define an input signal,
whereas some deep learning algorithms are better at
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regression-based analysis some deep learningmodels such as
the multilayer perceptron (MLP) feedforward neural net-
work is more situated to classification [26]. However, the
MLP normally forms the last stage of most CNN or RNN
(LSTM) deep neural networks. According to [32], inputs
bounded by convex polygon decision regions are sufficiently
solved by two-layer feedforward networks where the inputs
are continuous real and the outputs are discrete values. ,e
underlying layers in a CNN are convolution, pooling or
subsampling and fully connected or multilayer perceptron
[24, 25]. ,e convolution through nonlinearity (ReLU) to
pooling layers has feature extraction capabilities. Pooling
effectively reduces the dimension of the preceding feature
maps but maintaining all the important detail of the input,
while the object recognition and classification is performed

through the backpropagation algorithm in the fully con-
nected layer. CNNs also require little data preprocessing.
,e image can be a three (red, green, and blue) channel or
single (greyscale) channel matrix with pixel values 0 to 255.

In this paper, the CNN is adapted to 1D aggregate
appliance signal inputs and targets. A matrix (the filter,
kernel, or feature detector) of smaller dimension than the
input matrix is used as the feature detector. Different filter
matrix entries will extract different features of the input
image. In appliance classification, the number of outputs is
required to be equal to the number of appliances under test
[10, 29]. CNNs have recently been incorporated into Capsule
Networks (CapsNets) for significantly improved feature
extraction and recognition based on dynamic routing by
agreement rather than max pooling of image-based datasets
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Figure 1: Multiple parallel structure convolutional neural networks. Incorporating the appliance disaggregation and classification.
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[33]. However, the application of CapsNets in the NILM
scheme is not yet extensively documented and is not con-
sidered for application in this paper. Convolutional neural
network training error can be significantly reduced by the
use of a filter-based learning pooling (LEAP) CNN algo-
rithm developed by the authors in [34]. However, in this
paper, we use CNNs based on the traditional hand engi-
neered average pooling scheme.

An RNN shown in Figure 5 is a neural network for-
mulated to capture information from sequences and is based
on considering immediate and just previous inputs in its
calculations. As such the RNN has some memory attributes
to easily enable it to decide the outcome of next input
determined by the conditions of the stated present and just

previous inputs. A deep RNN is obtained by channelling
consecutive S hidden layers from previous RNNs to sub-
sequent RNN inputs. However, the RNN suffers a gradient
problem which adversely affects model performance. To this
end, the RNN-LSTM network is developed to solve the
vanishing gradient issue by putting gating functions within
its operation process [6, 10, 20, 35]. ,e RNN state ex-
pression is given infd1

St � FW WXXt + WSSt−1( , (1)

where St is hidden state at time step t; WX is weights between
hidden layer and input; WS is weights between previous and
current layers; Xt is input at time step t; FW is a recursive
function (tanh or ReLU); WY is weights between hidden and
output layers; and St−1 is previous hidden state at time t − 1.

2.2.2. Disaggregation. As opposed to Hart’s disaggregation
framework that emphasizes event detection rather than
individual appliance disaggregation from the composite
signal [27], in this paper, we focus on the latter technique.
,e authors in [22, 36] use a sliding window on the ag-
gregate. Sliding windows that partially overlap with each
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Figure 3: Hybrid convolutional recurrent neural network. Incorporating the appliance disaggregation and classification.

Figure 4: Power cables in themeter box.We show the provision for
installing the LED main lamps NILM recognition module.
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WSS

Figure 5: Recurrent neural network architecture. ,e outcome of
next input is determined by the conditions of the stated present and
just previous inputs.
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other have dimensions that depend on the appliance acti-
vation sizes. A median filter is then used to add the inter-
mediate outputs to get the final output. Kelly and
Knottenbelt [20] propose, on the contrary, the constitution
of the intermediate outputs by considering their mean
values. In this particular case, the output is recognized by the
start, end, and mean values of the target appliance from the
aggregate. While disaggregation considers on all the data
points on the target appliance, classification is based on
assigning a label value that relates the disaggregated signal to
the ground truth appliance signature. ,e authors in [27]
base their disaggregation scheme on the parallel connection
of CNN/RNN layers with varying filter sizes of 1× 1, 3× 3,
5× 5, and 7× 7 as in the GoogleLeNet structure.,ese CNN/
RNN layers are then concatenated together after having
extracted a large number of useful signal features from the
aggregate signal. In this paper, the training to validation
datasets are split in the ratio 7 : 3, respectively.

2.2.3. Transfer Learning-Based Classification. ,emethod of
using a model trained on a larger dataset which is similar to
the new smaller dataset is known as transfer-based learning.
Transfer learning allows for the speedy development of new
models on constrained datasets and allows the application of
these models in more varied situations [37, 38]. Transfer
learning is more compactly defined as follows [37].

Definition 1. Given a set of source domains DS � Ds,1,

. . . , Ds,n, where n> 0, a target domain, Dt, a set of source
tasks TS � Ts,1, . . . , Ts,n, where Ts,i ∈ TS corresponds with
Ds,i ∈ DS, and a target task Tt which corresponds to Dt,
transfer learning helps improve the learning of the target
predictive function ft in Dt, where Dt ∉ DS and Tt ∉ TS.

2.3. Aspects Pertaining to Data. We use a set of mains
lighting lamps in the form of light-emitting diodes (LEDs) in
our experiments. ,ree of the lamps are shown in Figure 6.
,e measurement setup is performed in the laboratory
where we use the same length of extension cables from the
mains to the lamps. Hence, we do not consider the effect
cable length contribution to our collected data. We obtain
three aggregate signal parameters sampled at 1 sec intervals
per mains lighting lamp using a Tektronix PA1000 Power
Analyser [39]. ,e parameters that we measured for each
light-emitting diode lamp are voltage current (I_rms), power
(Watt), and power factor (PF). We create an appliance
signature databank of all the individual mains lamps. ,ese
signals are our target data in the deep leaning training. We
will not show the individual LED lamp signatures here, but
in Section 3, when we compare these signatures (ground
truths) with the reconstructed disaggregated signals as a way
of accessing the performance of the disaggregation. Model
simulation is performed in the Python 3.5 environment with
Keras 2.2.2 TensorFlow 1.5.0 backend, Numpy, Pandas, and
scikit-learn packages, on an Intel R CPU 1.60GHz 4.00GB
Ram 64 bit HP laptop.

From the composite current (I_rms) signal, as shown in
Figure 7, a recognition strategy is developed for a set of three

5W and one 5.5W light-emitting diode (LED) lamps
numbered as LED1-1 (Philips 5W (60W) 100V–240V),
LED1-2 (Philips 5W (60W) 100V–240V), LED2-1 (Philips
5W (60W) 170–250V), and LED3-1 (Radiant 5.5W B22
Candle 230V, 50Hz, 5000K). For example, we aim to
disaggregate LED1-2 from LED1-2 and LED2-1 aggregate.
,e aggregate power (Watt) and power factor (PF) signals
equally valid also are not shown. As can be seen in a 600
seconds window in Figure 8, from the dynamics of the four
LEDs, there is an order of less than ten to the power minus 4
difference in current magnitude for three LEDs and very
close relationships in the steady state profiles of all the LEDs.
,is shows close tolerance of the LED characteristics es-
pecially for LED1-2 and LED1-1 as expected from the
specifications.

,e aspects pertaining to the selection of the training
signal points are

(i) ,e overall length of the target series (T) defines the
input and output series lengths into and out of the
network, respectively (regression training)

(ii) ,e target series data should not be too long but
enough to sufficiently define the ground truth signal

(iii) ,e on/off points should be captured in the target
and aggregate data, with the training period chosen
to be longer than the appliance activation window
that incorporates appliances’ start and end

Figure 6: Experiment LED lamps.We show three of the lamps with
the fourth being LED1-2 having the same power specification as
LED1-1 and LED2-1.
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(iv) ,e disaggregation algorithm should align the target
and the point at which target becomes active in the
aggregate signal

,e overall length of the aggregate signal should contain
all the information about the specific target appliance. We
consider the shape of the aggregate data and accordingly
reshape our input data into the DL network. We can gen-
erate artificial data where our raw data is too limited for deep
learning. CNN and LSTM are both premised on a three-
dimensional input whose shape is [number of samples,
timesteps length, and number of features].,e hybrid CNN-
LSTM system requires that we further obtain subsequences
from each sample. ,e CNN works on the subsequences
with the LSTMworking, summarizing the CNN results from
the subsequences.

,e aggregate data is normalized and then standardized
(zero mean and unit standard deviation) to improve on deep
learning (DL) gradient convergence. DL algorithms require
a large training dataset and as a result before the normal-
ization and standardization the acquired dataset (only input
training data) size is increased by considering all sections of
the entire aggregate signal where the target appliance ap-
pears. For example, the input training set for LED1-2 is
enlarged from 121 sample points to 614 (spanning 5 LED1-2
activations) sample points by considering the total aggregate
data length covered by the grey areas in Figure 7. Likewise,
for LED2-1, the total aggregate signal length is obtained by
considering the orange areas, an increase from 119 sample
points to 714 (spanning six LED2-1 activations) sample
points. ,e further addition of artificially generated data as
done by Kelly and Knottenbelt [20] in their 50 : 50 ratio of
real aggregate data to artificially generated data will improve
the ability of our network to generalize to “unfamiliar”
appliances not involved in the training.

As in [20], we created additional artificial data by syn-
thesizing random values between the maximum and min-
imum readings of the aggregate signal from the
RANDBETWEEN function in excel. Although there is a
further possibility of increasing the aggregate length by
adding generated delayed versions of the total real aggregate

signal where that appliance appears, we experimented with
only these increased real sample points plus synthesized
samples to give respective total aggregate lengths of (614
real + 614 synthetic) for LED1-2 and (714 real + 714 syn-
thetic) for LED2-1. ,e validation aggregate signal in Fig-
ure 9 is only real data without synthetic additions; however,
this data is normalized and standardized. ,e validation
dataset (containing the appliance activations) length is 441
samples in total with, for example, 121 to 363 samples for
LED1-2 and 119 to 238 samples for LED2-1.

Data trains for Watt and PF are also available and ap-
plicable to the developed algorithm evaluation.

In this paper, using the prepared data, we first train the
model in Figure 1 using only one network with varying filter
sizes, and we obtain its performance, reconstruct the dis-
aggregated signal, and compare it with the ground truth
signal. We go on to add subsequent parallel networks and
perform the overall networks’ performance evaluation until
there is no more appreciable change as we add extra parallel
arms. It is only after this do we employ the disaggregated
signal for an absolute classification test. Like other re-
searchers [22, 36], we also employ the sliding window shown
in Figure 10 based on the appliances activation size in the
disaggregation. During training and using data prepared
from Figure 5, we go on to add another network to have a
model with two parallel networks. For the second added
network, we again vary the filter sizes and evaluate the
resultant parallel networks’ performance and how good the
reconstructed disaggregated signal is compared with the
ground truth signal. In the second and final models, we
gradually vary the RNN/LSTM memory cells while noting
the performance.

We develop our recognition models in the random order
of LED1-2, LED2-1, LED1-1, and LED3-1. For LED1-2, the
actual target sample (divided by the largest value in that
sample) length is 76 with four zeroes at start and end of series
broken down as ((68×1) + (8×1)) features. ,e actual ag-
gregate length is 1224 including four aggregate signal samples
that have no information about LED1-2 at both ends of the
series, broken down as ((68×18) + (8×18)) features. It should
be noted that only one parameter is disaggregated at time, but
three parameters are used in the classification.

,e resultant disaggregated signal is obtained by finding
the mean values of the window disaggregated parts. In some
cases, the aggregate signals in Figures 7 and 9 span as little as
120 sample points with the disaggregated signal represented
by as little as 68 sample points of data after the removal of
redundancies.,is represents limited data for use during the
classification stage. Hence, we propose to use pretrained
classification networks that use data spanning as much as
600 sample points for each ground truth signal obtained
from an independent but related measurements, as shown in
Figure 11. We then train the classification using this ex-
tended time series and implement transfer learning to test
and classify the shorter disaggregated signals that are based
on shorter initial target lengths. ,e disaggregation task is
given by Pseudocode 1.

y1 = LED1-1
y2 = LED1-2
y3 = LED2-1
y4 = LED3-1

100 200 300 400 500 6000
Seconds (start at 08-20-15hrs)
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Figure 8: I_rms waveforms for the LED lamps (LED1-1, LED1-2,
LED2-1, and LED3-1), showing the close tolerance of the pa-
rameter magnitude. For the first 300 seconds, LED1-1 and LED1-2
are hardly discernable from each other.
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2.4. Performance Metrics. In this paper, for disaggregation
performance, we consider the logcosh, root-mean-square-
error (RMSE), mean_squared_error (MSE), and mean_-
absolute_error (MAE), and Coefficient of Determination
(CD) (R2) for the model evaluation. To evaluate our re-
gression models, the R2 shows the close relationships be-
tween the predicted and training values, with a good

R2⟶ 1. Logcosh is not easily affected by spurious pre-
dictions. Whilst, we consider the accuracy (Acc), recall (R),
precision (P), F-measure (f1), and confusion matrix for the
classification [6, 7, 40]. We can also compare a plot of the
reconstructed signal with the ground truth signal plot of
each appliance through superimposition of these plots to
physically see the relationship of these two signals:
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Figure 10: Sliding window in appliance disaggregation. ,e aggregate is a composite of LED1-2 and LED2-1. We disaggregate LED1-2
based on sliding window length equal to ground truth signal length.
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Figure 11: Independent classification data for LED lamps. ,is shows the LEDs series lengths for transfer learning acquired on 09 Nov.
2018. (a) LED1-1, (b) LED3-1, (c) LED1-2, and (d) LED2-1.

Simultaneous
LED2-1 & LED3-1
turn off

LED1-1 (5W)

LED2-1 (5W)

LE
D

1-
2

(5
W

)

LE
D

1-
2

(5
W

)

LE
D

1-
2

(5
W

)

LED3-1 (5.5W)

2000 300 400100
Seconds (start at 11-45-58hrs)

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

I_
rm

s

Figure 9: Disaggregation testing/validation data train acquired on 09 Nov. 2019 for the equal power appliances’ (EPAs) LEDs.,is signal is
input into the trained disaggregation models to extract the appliance activations and hence their signatures.
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where T is activation time (time-series) for each appliance,
i � 1, . . . , n is number of appliances, y is disaggregated
power signal, y is aggregate actual power at time t, Original
is target signal and Predicted is the disaggregated signal, TP
is true positives, FP is false positives, FN is false negatives,
and TN is true negatives [6, 7].

,e results and discussion may be presented separately,
or in one combined section, and may optionally be divided
into headed sections.

2.5. Verification of the Proposed Method Performance

2.5.1. Proposed Model Description. Disaggregation is per-
formed by using a sliding window on real test/validation

data. Training is performed by using a combination of real
and synthesized data to improve on the recognition gen-
eralization of the NILM system. ,e disaggregation is
performed on three parameters one at a time using the three
proposed models separately. Each model goes through three
training and disaggregation processes for the disaggregation
part, excluding the classification part. Hence, we assign the
three trained and disaggregating model outputs for model 1
in Figure 1 as mdl1I_rms, mdl1Watt, and mdl1PF. Likewise
for model 2 in Figure 2 and model 3 in Figure 3 we have
mdl2I_rms, mdl2Watt, mdl2PF, mdl3I_rms, mdl3Watt, and
mdl3PF, respectively. In summary, the number of dis-
aggregating trained model outputs are nine (three per
model), and the total number of disaggregating signals is
nine. Of the three models, under consideration, we note the
one with the higher or better disaggregation (regression
performance plot) performance and exclude the results of
the other models for further processing. ,is effectively
leaves us with only three better disaggregated signals at any
one time represented bymdlbI_rms, mdlbWatt, andmdlbPF,
where mdlb is model better output.

,e classification model is trained based on tuning the
MLP hyperparameters to provide the best performance on
the ground truth signal parameters of I_rms, Watt, and PF
for four input LED similar signature appliances. ,e total
number of parameters input into the classification network
is twelve during the training stage. However, in the rec-
ognition stage, the total number of signal parameters input
into the trained MLP is three, obtained from the best dis-
aggregating model (that is, the mdlb model output). Due to
the limited data for training the MLP deep network, we
implement transfer-based learning where we train the
classification network on a larger training dataset of the four
LEDs than the one we have acquired that is directly related to
the experiment.

2.5.2. Pseudocode for Proposed Method. ,e proposed
method evaluates the performance of the disaggregation
algorithm on three models and carries out the classification
only on one model. Although we have the same disaggre-
gation task, we have in actual fact three disaggregation

(1) Begin: obtain preprocessed, formatted, and transformed training input aggregate data of series length TTa secs according to
Figure 7

(2) Obtain training target data of series length TTt secs with redundancies removed
(3) Train the network
(4) Obtain preprocessed, formatted, and transformed validation/test input aggregate data of series length TVa secs according to

Figure 9
(5) Specify disaggregation window, TW � TTt <TVa <TTa

(6) Slide trained network input through validation/test aggregate data by amount equal to disaggregation window
(7) Repeat 6, until end of validation/test aggregate data series length
(8) Use mean method sum up all results of disaggregation window movement to obtain disaggregated signal of series length

TTtTTt secs
(9) Input 7 into trained classification network for appliance recognition
(10) Repeat 1 to 9, until performance⟶ 100%

PSEUDOCODE 1: ,e disaggregation task

Mathematical Problems in Engineering 11



algorithms due to the different model structures. Hence, we
show the pseudocodes of the training of the three disag-
gregation algorithms one for each model as Pseudocodes
2–4. Pseudocode 1, which shows the actual sliding window
disaggregation, is a common operation in the three different
disaggregation algorithms. We then add Pseudocode 5
which shows how the classification is performed.

2.5.3. Keras Model Architectures. ,e architectures for the
models we used in the disaggregation and classification are
given as follows.

(1) Disaggregation. For Model 1 (MPS-CNN), the archi-
tecture we used is detailed as follows:

(i) Input of length equal to T of target series.
(ii) ,ree parallel double layer 1D convolutional net-

works filter sizes 64 and 128, 64 and 28, and 64 and
28 but having kernel size� 1, 3, and 7 each and
activation� relu. Each network has a single
MaxPooling1D(pool_size� (2)) layer

(iii) A merge layer.
(iv) ,ree hidden dense layers with 50, 100, and 200

neurons, and activation� relu.
(v) Output dense layer of length equal to T of target

series.

For Model 2 (RNN), the architecture we used is detailed
as follows:

(i) Input of length equal to T of target series.
(ii) An LSTM layer with 500 memory cells and two

parallel dense layer networks, one with 1024 neu-
rons and the other with three layers have

(i) LSTM(500)
(ii) Dense(1024, activation� “relu”) first parallel

dense network
(iii) Dense(500, activation� “relu”) second parallel

dense network in series with two dense layers
comprising a Dense(1024, activation� “relu”),
and a Dense(500, activation� “relu”) layer

(iii) A merge layer.
(iv) An output dense layer of length equal to T of target

series.

For Model 3 (CNN-RNN(LSTM)), the architecture we
used is detailed as follows:

(i) A TimeDistributed 1D convolutional network with
128 of filter sizes 1, followed by another 1D con-
volutional layer with 256 filters and filter size 1,
activation� relu, and a single Time-
Distributed(MaxPooling1D(pool_size� 2)) layer

(ii) A flatten layer
(iii) ,ree hidden LSTM hidden layers with memory

cells of lengths 1024, 4096, and 1024, respectively
(iv) A hidden dense layers with 512 neurons, and

activation� relu

(v) Output dense layer of length equal to T of target
series.

We experimented with learning rates of the Adam op-
timizer from 0.0000001 to 0.1 and found a good compromise
for a value of 0.01. We used the logcosh to evaluate all
regression-based experiments and also included and eval-
uated other regression metrics as given in the results.

(2) Classification. We have developed the classification al-
gorithm using transfer learning and have adopted the
weights from the large dataset given in Figure 11 to our
constrained dataset. ,e MLP transfer learning model used
is shown below. ,e CNN is more appropriate when the
classification input dimension is very large. However, in our
case, for training, we format the data as a matrix of three
parameter values (multivariate time series of thirty columns
(points) per parameter for current (I_rms), power (Watt),
and power factor (PF).

,e MLP transfer learning-based classification archi-
tecture is

(i) Input into Dense layer with 8 units,
activation� “relu,” and input_dimension� 3

(ii) A hidden Dense layer with 10 units and
activation� “relu”

(iii) A hidden Dense layer with 16 units and
activation� “relu

(iv) An output Dense layer (Dense(3, activation�

“softmax”))

,e model used the Adam optimizers with a validation
split� 0.3, one hot encoded labels, and only 50 epochs to
achieve high performance. In the architecture shown, we use
only 3 classes instead of 4, and the reason is explained in
detail in Section 3. Although the classification model above
achieved good performance, we are able to reach high
validation accuracy faster by changing the input Dense layer
to 500 units.

2.5.4. Training Framework and Procedure. ,e classification
training framework is based on the Rectified Linear Unit
(ReLU) activation function, the softmax function, selecting
maximum number of epochs of 50, the Adam optimizer, and
a validation split of 0.3. We initially provisionally include the
training dropout regularization in the classification model.
,e ReLU shown in Figure 12 is an operation meant to
introduce nonlinearity in the network, and it replaces all
negative values with zero. Nonlinearity network charac-
teristics are required to solve complex nonlinear situations.
All the disaggregation networks are also based on this ReLU
[24] activation function.

Furthermore, CNN networks inherently perform linear
operations, and as such to consider nonlinearity, we in-
corporate the ReLU activation.

,e basic training procedure of the MLP is defined by

wi+1 � wi + Δw � wi + ηyi xi − wiyi( , (3)

where η is the learning rate, xi is an m-dimensional input
vector (input neuron), and yi � wT

i xiyi � xT
i wi (output
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(i) Acquire the aggregate and ground truth signals for the selected parameter (p)
(ii) Define: no. of parallel CNN networks (pn), hidden layers in each pn, filters in each pn, dense layers (ds), epochs, and early

stopping condition
(iii) Initialize all weights

While parameter (p) is True: do

(1) Epochs� 0 (train)

(i) Iterate through each pn
(ii) Concatenate all pn
(iii) Iterate through each ds
(iv) mdl1 converged⟶ stop

(2) Disaggregation

(i) Pseudocode 1

(3) mdl1 not converged

(i) epochs� epochs + 1
(ii) Return [(1) (i)]

Otherwise: do

(4) p � p + 1 (next parameter): do
(1) to (3).

(5) Train and disaggregate all parameters:

(i) p≤ 3: return [(4)]
(ii) p> 3: Exit

PSEUDOCODE 2: Training and disaggregation process of the MPS-CNN (mdl1)

(i) Acquire the aggregate and ground truth signals for the selected parameter (p)
(ii) Define: no. of LSTM memory cells, parallel MLP networks (MLPn) connected in series with LSTM layer, hidden layers in dense

parallel layers (dsp), dense layers (ds) connected to series combination of LSTM+MLPp, epochs, and early stopping condition
(iii) Initialize all weights

While parameter (p) is True: do

(1) Epochs� 0 (train)

(i) Iterate through LSTM
(ii) Iterate through LSTM+ each MLPn arm
(iii) Concatenate all MLPn layers
(iv) Iterate through each ds
(v) mdl2 converged⟶ stop

(2) Disaggregation

(i) Pseudocode 1

(3) mdl2 not converged

(i) epochs� epochs + 1
(ii) Return [(1) (i)]

Otherwise: do

(4) p � p + 1 (next parameter): do
(2) to (3).

(5) Train and disaggregate all parameters:

(i) p≤ 3: return [(4)]
(ii) p> 3: Exit

PSEUDOCODE 3: Training and disaggregation process of the RNN (LSTM) (mdl2)
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neuron) is the output. ,e new and old synapse weights are
wi+1 and wi, respectively, and the weight change is given as
Δw [41]. ,e backpropagation (Error-correction (ECL)
(supervised learning is typically used to update the learning
weights Δw)). ,e error change can be used to increase or
decrease the magnitude of the weight update component
given in equation (4). A change in the weight results in a
change in the error. Minimum error point is achieved
through gradient descent. However, gradient descent may
converge to local instead of global minima. Hence, there is
need to mitigate this shortcoming by continually randomly
selecting the initial weights during the training process [42]:

Δwkj � −η
zEk

zwkj

, (4)

where Ek with respect to node k is the resultant sum of
squares of errors (cost or loss function) between the target
output (yt) and the network output (yo). For all the weights
in the network, an update of these weights is achievable
through the backward propagation (BP) of this error
through the said network [42]. ,e backpropagation algo-
rithm is more efficient than the normal feedforward algo-
rithm. ,is is so because there are more passes to achieve
significant weight change in a normal feedforward network

(i) Acquire the aggregate and ground truth signals for the selected parameter (p)
(ii) Define: no. of CNN networks including hidden (CNNn), filters, LSTM networks including hidden and memory cells (LSTMn),

dense layers (ds), epochs, and early stopping condition
(iii) Initialize all weights

While parameter (p) is True: do

(1) Epochs� 0 (train)

(i) Iterate through each CNNn
(ii) Iterate through LSTMn
(iii) Iterate through each ds
(iv) mdl3 converged⟶ stop

(2) Disaggregation

(i) Pseudocode 1

(3) mdl3 not converged

(i) epochs� epochs + 1
(ii) Return [(1) (i)]

Otherwise: do

(4) p � p + 1 (next parameter): do
(3) to (3).

(5) Train and disaggregate all parameters:

(i) p≤ 3: return [(4)]
(ii) p> 3: Exit

PSEUDOCODE 4: Training and disaggregation process of the CNN-RNN (LSTM (mdl3))

(i) Acquire four LED ground truth extended time series signals for transfer learning (TL)
(ii) Acquire three disaggregated signals ofmdlbI_rms,mdlbWatt andmdlbPF from the best performing disaggregation model (mdlb),

no. of neurons of TL model per dense layer, and early stopping condition
(iii) Initialize all weights
(1) Epochs� 0 (train TL network)

(i) Iterate through each MLPn
(ii) TL model converged⟶ stop

(2) TL model not converged

(i) epochs� epochs + 1
(ii) Return [(1) (i)]

(3) Classification of disaggregated signals: do

(i) Input into TL
(ii) Recognize LED⟶ stop

PSEUDOCODE 5: Transfer learning-based deep MLP classification
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than there are in backpropagation. ,e algorithms of the
standard and improved backpropagation methods refer-
enced to Figure 13 are given below.

Let the same error backpropagated through the network
beE � Ek and the activation function be the sigmoidal (σ(·))

one as given in

zi � σ qi(  �
1

1 + e
−qi

. (5)

,en, the standard backpropagation error derivative
between nodes i and j is

zE

zwji

�
zE

zqj

·
zqj

zwji

� δj · zi, (6)

where

δj �
zE

zqj

� 
k

zE

zqk

·
zqk

zqj

� 
k

δk ·
zqk

zqj

,

zqk

zqj

�
zqk

zzj

·
zzj

zqj

� wkj · σ′ qj .

(7)

Node 2 delta is given as

δj � σ′ qj  · 
k

δkwkj. (8)

,e error derivative between nodes j and k is

zE

zwkj

�
zE

zqk

·
zqk

zwkj

� δk · zj. (9)

Equation (9) can be written as

zE

zwkj

�
zE

z yt − yo( 
·
z yt − yo( 

zwkj

,

zE

zwkj

�  yt − yo(  · −
z σ qk( ( 

zwkj

,

zE

zwkj

� −  yt − yo(  · yo 1 − yo(  · zj.

(10)

Comparing equations (9) and (10), the magnitude of δk is
given by (yt − yo) · yo(1 − yo):

(i) Node 1 layer error is given by jδjwji (where this
node is another hidden layer node in a two hidden
layer network)

(ii) Node 2 layer error is given by kδkwkj

(iii) Node 3 layer error is given by (y↓t − y↓o)

,e standard backpropagation algorithm is given below:

(1) Obtain initial values of weights and offsets.
(2) Establish the input vector x and target output. Also,

determine the number of hidden and output units.
(3) Find the deltas (δ) for all the output nodes.
(4) Backpropagate the deltas using

δj � σ′(qj) · kδkwkj.
(5) Evaluate the derivatives (zE/zwkj) � δk · zj for all

synapses.
(6) Update the weights according to

wkj (new)⟵wkj (old) − η (zE/zwji).
(7) Repeat (2).

In the recognition training, we experimented with
various optimizers that included the Adam, rmsprop, and
sgd.,e sgd was set to optimizers SGD((lr� 0.000001 to 0.1),
decay� 1e− 6, momentum� 0.9, netrov�True). ,e Adam
and rmsprop were set to a learning rate that varied between
0.000001 and 0.1. Both the Adam and sgd optimizers per-
formed well with a learning rate of 0.01 and 0.001 for the
disaggregation and classification algorithms, respectively.
,e categorical_crossentropy cost function was used in the
classification model training. We also experimented with
various activation functions that included the tanh (sigmoid)
(mainly used in artificial neural networks (ANNs) since its
characteristics can accommodate both linear and nonlinear
situations), relu, and the leaky_relu (an improvement over
the normal relu). We settled on the relu which achieved
acceptable performance. In the output stages of the disag-
gregation and classification models, we implanted the linear
and softmax activation functions, respectively. We also
experimented with the l1 and dropout regularizers, but
found out that due to the relatively simpler designed models
the regularization did not affect the performance of the
algorithms. Hence, there was no need to implement regu-
larization in all the models. ,e choice of the number of
hidden layers, neurons (units), number and size of CNN
filters, and memory units in the LSTMwas achieved through
trial and error.

With respect to the CNN and LSTM disaggregation
networks, we invoke the training procedure after specifying
the Keras model architectures. ,e input aggregate power
series of length (T) is trained against another power series
represented by the target series also on length
(T), X � x1, x2, x3, . . . , xT{ }. ,e objective of the training
procedure is to minimize the regression cost functions

–10 –5 0 5 10

10
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2

Figure 12: ReLU nonlinear activation function.
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represented by logcosh, root-mean-square-error (RMSE),
mean_squared_error (MSE), and mean_absolute_error
(MAE). However, another regression function, the Coeffi-
cient of Determination (CD) (R2) for the model evaluation
is required to be high. We also evaluate the training com-
putation times of the proposed models.

3. Results and Discussion

3.1. Regression Training and Disaggregation. We compare
our proposed models to each other and only use the output
from the most accurate model as input into the classifier.
Although disaggregation was carried out on all the LEDs, we
limit our analysis to one LED lamp; however, we show the
classification rates of all the LEDs. If we can achieve good
performance for one LED, then we can also achieve good
performance for other LED lamps since the features and
their relative magnitudes are almost similar. Figures 14–16
show the relative performance of the regression models for
LED1-2 I_rms signal using the data in Figure 7. ,e ground
truth signal for this LED1-2 lamp is shown in Figure 17.

We did achieve comparable results for the power and PF
signals. We experimented with different LSTM memory
lengths and we found lengths above 500 provided good
results. Furthermore, when we tried paralleling the LSTM
networks by using the API Keras structure, we did not get an
improvement in the LSTM model results. However, the
network based on a single LSTM network provided ac-
ceptable results. ,e model based on the CNN-RNN also
provided good regression results. It is, however, the MPS-
CNN structure that achieved top disaggregation in this
paper. ,e MPS-CNN structure allows us to capture a wide
range of features and detail that include the on/off edge
detection.

3.2. Classification. For the LED1-2 recognition, we apply
three disaggregated input parameters into a deep MLP
classification network. We first train the network on a larger
dataset depicted in Figure 11 than the one obtained from the
disaggregated signal in the transfer learning-based classifi-
cation scheme. We fine tune the network on the larger
dataset and when we have obtained satisfactory results, as
shown by the training Figures 18 and 19, we apply the model
on our disaggregated dataset. In Figure 18, we show that the
model accuracy achieves high value early in the training of
the TL model. From the training and validation loss char-
acteristics in Figure 19, we show that our MLP TL model is

very stable and the characteristics converge well. We tried six
different classification MLP models using the larger dataset
and all models misclassified LED1-1 and LED1-2 that have
exactly the same specifications and identical parameter
values. Also, where LED1-1 and LED1-2 appear in the
disaggregation algorithm, we were not able to separate the
two from each other.

Hence, we eliminate one of the LEDs, LED1-1, in our
analysis as there is no added useful recognition information.
So, in the whole recognition process, LED1-1 is taken as
LED1-2. ,is explains why the classification model under
Keras Models’ Architectures is based on three classes. In
future, we can detect LED1-1 and LED1-2 by considering the
actual cable lengths that are different from each other from
the main supply in a typical building installation. In the
laboratory measurement setup, we did not factor in this issue
and we just measured the appliance parameters using the
same extension cables from the mains distribution point.We
can also use deeper learning which is not possible in our
experimental CPU platform. In addition, recognition can be
based on parameter phase change and some advanced event
detection schemes. Due to the initial experimental results,
wemodify our recognition strategy to only consider LED1-2,
LED3-1, and LED2-1. In this case, for LED1-2, the class is 0,
for LED3-1 the class is 1, and for LED2-1, the class is 3.

Table 1 and Figure 20 show the classification report and
the classification matrix, respectively, of the model trained
using a larger dataset in Figure 11. We see that all the three
achieve one hundred percent classification. In Figure 20, the
history parameters are batch size-1, epochs-50, steps-None,
samples-892, verbose-2, do_validation-True, and metrics
[loss, acc, val_loss, val_acc]. ,e classification model in
Figure 20 achieved the following: Evaluation: loss-0.010676,
accuracy-1.0, Test score-0.0173, and Test accuracy-1.0. We
transfer this model without modification to the smaller
disaggregated dataset in transfer learning, where we
maintain the same class labels, as shown in the confusion
matrix in Figure 21. Table 2 shows the classification report
for Figure 21.

Table 3 gives the regression-based metrics during the
training of the disaggregation algorithms.

It is necessary to evaluate the relative computation times
of the models, especially those for the disaggregation al-
gorithms. A fast computation time allows for fast turn-
around of program development and indirectly implies less
stress on the computation processor.,e code for evaluating
the computation time of each model is given as

Input
Output

Node 1 Node 2 Node 3

qi zi

qj
wji wkj

yo

zj

qk zk

Figure 13: Cross-section of multilayer neural network.
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from timeit import default_timer as timer
from datetime import timedelta
start� timer()

history�model.fit(X, Y, epochs� 150, verbose�, vali-
dation_split� 0.3) #Any model training.
end� timer()
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Figure 14: LSTM disaggregation model plots. (a) Reconstructed signal and (b) loss.
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Figure 15: CNN-LSTM disaggregation model plots. (a) Reconstructed signal and (b) loss.
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Figure 16: MPS-CNN disaggregation model. (a) Reconstructed signal and (b) loss.
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print(timedelta(seconds� end-start))

Table 4 shows the computation times of the models in
relation to the total trainable paramaters. ,e computation
times of the models increase with an increase in the number

of trainable parameters. ,e MLP-TL classification process
is the fastest due to its simpler network structure and the
fewer number of output labels required as compared to the

0 20 30 40 5010
Epoch

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Train
Validation

Figure 18: Model accuracy for the classification TLmodel training.
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Figure 17: Ground truth signal for LED1-2.
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Figure 19: Model loss for the classification TL model training.

Table 1: Transfer learning model classification report.

Class Precision Recall F-score Support
0 1.00 1.00 1.00 175
1 1.00 1.00 1.00 175
2 1.00 1.00 1.00 175
Weighted avg 1.00 1.00 1.00 525
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Figure 20: Classification matrix for the model trained on dis-
aggregated dataset. ,is is the transfer learning stage. All base lamp
signals are accurately classified.
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Figure 21: Classification matrix for the disaggregated lamp signals.
All lamps are accurately classified.

Table 2: Disaggregated signal recognition classification report.

Class Precision Recall F-score Support
0 1.00 1.00 1.00 68
1 1.00 1.00 1.00 68
2 1.00 1.00 1.00 68
Weighted avg 1.00 1.00 1.00 204
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longer output power series signal samples required the
disaggregation algorithms. ,e MPS-CNN model is faster
than the LSTM-based models that have a larger number of
total trainable parameters. LSTM RNN networks are
adapted to capturing of information from power series data
or sequences. However, LSTM RNNs suffer degraded per-
formance [43] when the information is available in very long
power series such as the ones we have in the NILM rec-
ognition. As such, this slows down their training compu-
tation times. Large LSTM RNN blocks also have a large
number of gating functions which increases the number of
trainable parameters, hence computation time.

,e results show the ability of our proposed models to
achieve high disaggregation and classification accuracy of
the LED lamps in our experiment. It is important to take
cognizance of the fact that state-of-the-art [20, 32] systems
tested on a variety of widely deferring appliance specifica-
tions using more or less the same types of models might
outperform our recognition in accurate classification of all
test samples. In our case, we had to eliminate one highly
misclassified LED1-1 in the final analysis. However, this
paper is biased towards developing algorithms to recognize
relatively low power appliances having the same specifica-
tions. Our argument has here been that if we can accurately
classify and disaggregate low power same specification ap-
pliances, then naturally it should be a matter of fact to
achieve the same for the widely varying power levels dif-
ferent specification appliances.

4. Conclusions

,is paper evaluated three NILM disaggregation and one
classification algorithm for equal power appliances with
almost similar signatures, in the form of three 5W and one
5.5W mains LED lamps. We used the following labelled
LED lamps in our experiments: LED1-1 (Philips 5W
(60W)), LED1-2 (Philips 5W (60W)) and LED2-1 (Philips
5W (60W)), and LED3-1 (Radiant 5.5W). We show that

same specification appliances can indeed be recognized from
each other. However, we need a cautious and elaborate
approach in developing a holistic NILM recognition for
appliances that have identical specifications. In our study, we
had to eliminate in the final analysis from our experiments
LED1-1 as it grossly misclassified as LED1-2 since its
characteristics were almost identical to those of LED1-2.,e
point of divergence from the normal approaches was the
disaggregation and classification based on three appliance
parameters to substantially increase the accuracy. ,is in
itself did not cure the problem. As no two appliances are
exactly the same from manufacture, developing deeper
learning algorithms is one possible way of solving this
problem; however, the CPU platform we operated from has
limitations both in speed and processing power. ,e results
also show that equal power specification appliances should
have parameters measured whilst in the actual installation
and not in laboratory to take advantage of such issues as
contributions due to wiring where we can measure phase
change, time lag, wiring resistance etc. from the sampling
point. However, our NILM recognition strategy is promising
as we did obtain accurate recognition for some of the lamps.
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(is paper studies the effect of moisture on the handling performance of rugby balls, where different moisture conditions will
cause a change in skin friction between finger pads and rugby balls. In this study, a set of rugby ball passing tests was performed
under wet conditions to test the effect of skin hydration on the performance of ball handling. A comprehensive analysis was then
conducted to assess skin frictional properties at various moisture levels. It was observed that skin moisture is strongly associated
with the handling performance of rugby balls. Based on the collected experimental data, intelligent data-drivenmodels were finally
developed, including a neural network and a fuzzy rule-based system. (ese models will likely enhance the anticipation of the
handling performance of rugby players, which helps in designing specific training programmes and better preparing for rugby
games to cope with wet conditions.

1. Introduction

As an essential element in most sports games, sports
equipment appears to be used very regularly in a variety of
forms depending on the sport involved. Examples of the
equipment could be balls like basketballs, rugby balls, and
footballs, flying discs for freestyle and disc golf, bats for
baseball and cricket, rackets for badminton and tennis, etc.
In general, this equipment has been designed to offer a high
quality of service lives and sports performance with a
continuous exploration of new forms of design and mate-
rials. For instance, rugby balls were often made by stitching a
pig’s bladder in an oval shape in early days, and nowadays
rugby balls are only allowed to be made of leather or other
suitable synthetic materials [1]. In addition, the specification
of size, weight, and even the air pressure has been strictly
defined according to the rules of the International Rugby
Board, with the aim of enhancing the stability of hand
gripping [2].

In those sports games involving hands contact with
equipment, it is essential for players to demand effective

handling skills with the aim of achieving better performance.
For example, in rugby, handling skills consist of various
activities such as passing balls, catching balls, holding balls,
or running with balls. Regardless of position, all players are
required to perform those core skills effectively with lower
level of errors. (is is because ball handling errors are be-
lieved intimately associated with the turnover in games.
Good ball handling skills could reduce the turnover rate and
hence increase the chance of winning [3, 4]. Ball handling is
a complex activity that employs hands/fingers interacting
with ball surfaces under various conditions and can be easily
influenced by different factors. For instance, most players
find the balls become very slippery when their hands are
sweating or they are playing on raining days, which bring
difficulties for them to handle the balls with those wet
conditions [5, 6].

In this paper, we study the handling/passing perfor-
mance of rugby balls under wet conditions using data an-
alytics and data-driven modelling approaches. In recent
years, we have witnessed a dramatic increase in our ability to
collect, process, and store data, which also happens in sports
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engineering. Analysing and utilising these data, such as in
data-driven modelling, provides humans with very useful
knowledge and some practical tools. In the case that some
complicated systems cannot be described by conventional
mathematical models, people may apply data-driven mod-
elling techniques to develop practical data-driven models. In
the current study, we follow this strategy to study the
performance of the rugby sport. First, three different ex-
periments were designed and conducted, including a rugby
ball passing test, a skin friction test, and a measurement of
skin mechanical properties. Data-driven predictive models
were then developed based on the experimental data.

2. Related Work

In the recent study of Tomlinson et al. [7], they investigated
the passing accuracy of various rugby balls under both dry
and moist conditions. (e coefficient of the friction of the
balls was also measured. (e results showed that the passing
scores of the balls with a lower friction coefficient are poorer
than those balls with a higher friction coefficient. Lewis et al.
[8, 9] pointed that the accuracy of a rugby ball pass is closely
associated with the frictional behaviours between human
fingers and ball texture. High friction forces would be
beneficial for players to handle balls in games. In comparison
of balls with various textures, they noticed that the balls with
patterns of pimples could help ball gripping under dry
conditions. (is phenomenon might be attributed to the
corresponding change in skin viscoelasticity, which leads the
skin to deform around pimples and thus increases the
contact area, hence the hysteresis mechanism [7].

(e human skin is a complex material and is composed
of three different layers. (is structure gives the skin unique
physical-mechanical properties that are very similar to
rubbers [10, 11]. In past decades, the frictional behaviour of
the skin has been studied widely [12–22]. (is is because, as
the outer covering of the human body, the skin plays an
important role in preventing the risk of body damages from
skin friction due to the skin contacting with complex en-
vironments/objects. It is generally believed that the frictional
properties of the skin are owed to various physical mech-
anisms, for instance, adhesion mechanisms, interfacial shear
mechanisms, and capillary action mechanisms. [23]. In
addition, it is deemed that skin frictional properties are
closely related to the contact conditions: hydration, load,
speed, and material properties. For instance, Bowden and
Tabor [24] stated that the skin frictional properties comply
with a classical two-term model consisting of an adhesion
mechanism and a deformation mechanism. In general, it is
expected that the coefficient of the skin friction is mainly
affiliated with the adhesionmechanism under dry conditions
and can be described by a linear relationship [16, 17].

For the moisture conditions, the coefficient of the skin
friction is found to vary with different moisture conditions
[13, 15, 21, 22]. In previous studies, both a linear correlation
and a “bell-curve” correlation between the coefficient of skin
friction and the moisture level have been observed
[17, 22, 25, 26]. For example, Yoshimune et al. [25] and
Veijgen et al., [26] examined the relationship between the

skinmoisture level and the coefficient of the skin friction and
pointed that the coefficient of skin friction increases with the
moisture level following a positive linear function. However,
in recent studies, Adams et al. [17] and Tomlinson et al. [22]
found a bell-curve relationship for the coefficient of the skin
friction when hydrated fingers contacting with various
materials, in which an initial increase in the coefficient of
friction while adding water to dry skin. It was found that the
coefficient of the skin friction decreases after the moisture
level of the skin reaches a certain level.

Handling/passing under wet conditions is one of the key
research topics in rugby union; however, there is very
limited relevant work available.(is research was performed
with the aim of investigating how the handling/passing
performance is influenced by different moisture levels using
data analytics and data-driven modelling techniques. In this
study, three different experiments were designed and con-
ducted, including a rugby ball passing test, a skin friction
test, and a measurement of skin mechanical properties.
Predictive models were then developed based on the ex-
perimental data.

3. Experiments

3.1. Rugby Ball Passing Test under Different Moisture
Conditions. In this test, eight male rugby players (age 20± 2
years old) from Shandong Sport University took part, and
they all have developed similar ball passing/handling skills.
(e details of all participants were recorded, including
height, weight, wrist strength, throwing posture, and han-
dling hand preference. Prior to the test, all participants were
given a training session to familiarise the test procedure. In
order to investigate the effect of the moisture level on the
accuracy of ball handling, the participants were asked to
perform the test under four different moisture conditions: a
natural state, a medium hydration state, a high hydration
state, and an addition of water. Amoisture meter was used to
measure the moisture level of the skin on the participants’
thumb and middle fingers of their right hands (see Liu et al.
[19] for more details).

As illustrated in Figure 1, the participants were
instructed to run with a rugby ball from position E to zone
AB (the distance between E and AB is 4m) and throw the
ball to a target net when arrived at zone AB. (e target net
was located at a place 7m away from AB. (en, the par-
ticipants needed to run toward position F to pick another
ball and back to zone AB to complete another shot. Prior the
tests, all participants were required to clean their hands and
dry them with paper towels. Regarding the natural-state test,
it was performed on cleaned and dried hands. For the middle
hydration test, the participants were requested to carry out
10min warm-up activities firstly and then perform the
passing test immediately in order to minimise the loss of
water from the skin. In the third test of a relative high
hydration state, the participants were asked to perform the
passing test along 20min warm-up activities for a higher
moisture level. Finally, the participants were asked to per-
form the test using wet balls. In order to ensure all surfaces of
the balls are covered with water, the balls were soaked in
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water for 1min before the test. With regard to each moisture
condition, the participants had to complete one successful
shot. (e time taken for completing all shots successfully by
each participant was recorded for determining their final
passing scores.(e scoring scheme used in this study is given
in Table 1 [27]. During the test, if any invalid run or invalid
data were identified, the test would be repeated until getting
the valid data. After the passing test, 32 experimental data
were collected.

All obtained data from the rugby ball passing test were
entered into Microsoft Excel and analysed by the SPSS
software (version 26) using a nonparametric method
(Friedman test) and a correlation analysis method. Prior to
these inferential statistical analyses, all raw data need to be
preprocessed. In this study, the moisture readings were
processed for the average data and standard deviations using
a descriptive analysis. Due to the big varieties of the moisture
readings collected from participants, it is necessary to
normalise the data for each player. (e normalised moisture
readings were set in the range of 0.0 to 1.0.(e Friedman test
was employed to analyse the difference in the moisture
readings among four hydration conditions. In addition, the
relationship between the normalised moisture readings and
the target scores was also studied by correlation analyses. In
all statistical analyses, the p value that is less than 0.05 was
deemed to be statistically significant. (e correlation coef-
ficient R was also calculated to analyse the relationship
between the measured data and the predicted results.

3.2. Measurement of Skin Friction. A miniature force plat-
form device (Mode: HE6X6, Advanced Mechanical Tech-
nology, Inc.) was employed to measure skin friction. It is a
low-load, high-accuracy measurement device (22N in X-
and Y-axes and 44N in Z-axis with an accuracy of 1%) and
consists of a force plate, an interface box, and a computer
(see [18] for more details). (e principle of this measuring

device relies on the strain gauge flexibility technique that
allows the forces to be detected in X-, Y-, and Z-axes. During
measurement of friction coefficient, the normal force im-
plied to the force acting in the Z-axis and the corresponding
force in X-/Y-axis is considered as a friction force; hence, the
coefficient of skin friction can be obtained by the proportion
of the friction force to the normal force. In the current study,
the measurements of the coefficient of the skin friction were
performed on the middle fingers of the participants. (e
participants were instructed to slide the examined fingers
along a 5mm wide acetal strip (roughness of 0.5 μm) with a
normal force of 1.5± 0.2N. Prior the tests, all participants
were invited and requested to clean and dry their hands.
With regard to a variety of moisture levels in the skin, the
participants were asked to soak their right hands in tap water
for 20, 40, 80, 120, 160, 200, 240, 280, 320, 360, and 400 s.(e
moisture level of the skin was recorded by a moisture meter.
All friction measurements were repeated three times to
obtain average results.

3.3. Measurement of Skin Mechanical Properties. (is series
of tests aimed to explore the mechanical properties of finger-
pad skin in response to skin hydration. To achieve this, the
middle fingers on the right hands of participants were ex-
amined using a noninvasive Cutometer MPA 580 (see [19]
for more details). (e participants were asked to prepare the
examined fingers using the same method of the skin friction
measurement. (e test firstly was performed with a dry
finger and then a soaked finger (400 s of soaking time). With
the purpose of avoiding the influence of any chemical on
measurements, no treatment was given to the examined
finger in twelve hours before the test. A 2mm diameter
probe was held on the surface of the examined finger with a
constant pressure of 500mbar at a room temperature. (e
measurements were repeated three times to ensure the ac-
curacy of the results.

Net

7m

4m4m
2m

10m

A B
E F

(a) (b)

Figure 1: (a) Sketch of the passing ball test and (b) images of passing a ball to the net.
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4. Data Analysis and Discussion

4.1. Rugby Ball Passing Test. As shown in Table 2, the
moisture readings rise significantly from the “natural” state
to the “hydrated” state when the participants were involved
in warm-up activities. (is finding is also evaluated by the
Friedman test where big differences on the moisture level of
the skin were obtained under four moisture conditions
(p< 0.001). It can be observed that the moisture readings of
the examined fingers reach their maximum levels (99 au) in
the case of doing 20mwarm-up activities. With regard to the
condition of extra water, the tests were performed by sat-
urated fingers with wet balls where additional water was
added to rugby ball surfaces, prior to the tests. For the target
score, a different phenomenon was observed with respect to
various moisture conditions. An initial increase in the target
score was found when the moisture level changing from the
natural state to the Hydrated 1 state. After that, the target
score started to decrease with the increase in moisture
readings. (e lowest score was found in the case of adding
extra water, as given in Table 2. (ese findings suggest a
parabolic relationship of the target score with the moisture
level (see Figure 2). A quadratic polynomial model was
considered to provide the best fit for these changes in the
target score and expressed as y � ax2 + bx + c (R> 0.9,
p< 0.03).

Figure 2 shows the data for the passing test under four
moisture conditions. For the moisture reading, it was found
to be varied with warm-up activities. For 10min exercise, the
moisture reading has a significant increase with time. As
shown in Figure 2, the moisture reading for Participant 1 in
the natural condition was 69 au and increased to 73 au after
taking part in 10min of warm-up. A similar finding was also
noted by Tomlinson et al. [22], in which the moisture levels
of the tested fingers were found to increase from 50 au in
resting to 90 au when the participants were taking part in
various activates. (eir findings agree with this study. (e
changes in the moisture level of the skin could be attributed
to the sweating on the skin surface. During various activities,
participants’ bodies experience high temperature as a result
of body cells converting metabolic energy into thermal
energy. In order to maintain the balance of temperature,
excessive heat generated is converted into thermoregulatory
sweating and evaporated through the skin. Consequently,
the sweating accumulated on the skin surface leads to a
change in the skin moisture.

(e data of the target score with respect to different
moisture conditions are also given in Figure 2, where a bell-
curve relationship between the target score and the moisture
level is observed. (e target score is found to have an initial
increase with the increase in moisture and then a decrease
when the moisture level reaches Hydration 1, except Par-
ticipant 7. In Participant 7, the target score for Hydrated 2
shows an increasing phenomenon with the increase in the
moisture level. (is could be attributed by many factors,
such as participant’s skill, test conditions, and others. (e
bell-curve behaviour in the ball pass test was expected be-
cause of the curved relationship between skin friction and
moisture of the skin. Lewis et al. [8, 9] indicated that the

accuracy of a ball pass is closely associated with the frictional
behaviour between the finger pad and ball texture. It is
generally believed that a high friction force is desired for a
good grip and therefore a higher accuracy of pass rate. In
addition, they indicated the coefficient of the skin friction is
inversely proportional to the skin’s Young’s modulus. An
appropriate increase in the moisture level of the skin could
reduce its Young’s modulus and, therefore, result in a rise in
the coefficient of the skin friction. In the studies of Tom-
linson et al. [7], they found the target score changes with the
skin friction coefficient following a linear regression model.
In the comparison of the skin friction coefficient between the
dry balls and the wet balls, the results show that the wet balls
have relative lower coefficients than those of dry balls.
Moreover, in their passing accuracy test, the balls with
higher friction coefficient give better scores than those with
lower friction coefficient.

On the basis of the above findings, it is suggested that the
dry balls with a relative low moisture level will present a
good friction coefficient and, therefore, a good passing ac-
curacy. Oppositely, wet balls usually give a lower friction
coefficient and a lower passing accuracy. (is conclusion is
in consonance with the findings of this study. When the
participants were in activities (up to 10min), the moisture
level was found to increase due to thermoregulatory
sweating and this leads to an increase in the target score.
While increasing the warm-up time, the mechanical prop-
erties of the skin could be affected due to excessive sweating
and consequently result in a decrease in skin friction and
then a lower target score. With regard to the extra water
condition, the lowest target score is obtained. (is could be
attributed to that the additional water on the ball surface acts
as a lubricant at the contact interface. (e water-based lu-
brication film produced a lower friction between the hand
and the ball surface and led to a lower target score.

4.2. Skin Friction. A curve relationship was observed be-
tween the moisture reading and the hydration time, as
shown in Figure 3(a). It was noticed that the moisture
reading is increased by 55% with hydration. In the natural
state, the moisture reading was 53 au and rose to 82 au after
being hydrated for 80 s. After that, the moisture reading
showed a decreasing tendency with the hydration time and
reached a plateau around 200 s. Figure 3(b) shows the data of
the skin friction coefficient collected from different moisture
conditions. It indicated that the coefficient of the skin
friction varies with hydration time with an initial increase in
the coefficient of the skin friction when the examined fingers
were hydrated for around 80–120 s.(en, it is followed by an
approximately 35% of decrease in the coefficient of the skin
friction with time. (is finding conforms to the work of
Tomlinson et al. [22]. In their studies, an initial increase in
the coefficient of friction was observed with a small amount
of water added to participants’ hands, and then this was
followed by a decrease. Additionally, in some other studies,
Adams et al. [17] carried out a work on the frictional be-
haviour of the human skin where a polypropylene probe was
sliding on participant’s forearms under different moisture
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conditions. (e coefficient of the skin friction obtained was
found to be 0.2 μ for the dry skin and rose to 4.2 μ after
adding demineralised water to the examined skin. (e
friction coefficient then dropped to 0.2 μ when water was
removed. Based on those observations, they suggested that
the coefficient of the skin friction and the hydration time are
in consonance with a curve relationship (bell-shaped).

(e changes in the coefficient of the skin friction under
moisture conditions might be ascribed to the growth of the
contact area between the skin and the force probe/plate.
When adding water to the interface, some water would be
absorbed by skin tissues, which will help soften the skin and
lead to an increment in the contact area. According to
Amontons laws, the coefficient of the skin friction is pro-
portional to the contact area; thus, a rise in the coefficient of
the skin friction can be expected due to the increased contact
area. For the water remaining on the skin surface, it develops
into “liquid bridges” at the interface. (ose liquid bridges
formed might introduce viscous shear stress into the contact
and therefore lead to increases in the contact area and the
coefficient of the skin friction. (e capillary adhesion might
also be found to increase, which is attributed to the increased
contact area.

4.3. Mechanical Properties of the Skin. (e results of the
mechanical properties under hydration are shown in

Figure 4. It is noted that the skin deformation is reduced
from 0.14mm to 0.11mm with the hydration time of 120 s.
After that, it is found to gradually recede to 0.11mm. An
opposite phenomenon was found in the global elasticity of
the skin (Ur/Ue, where Ur is the immediate retraction and Ue
is the immediate distension). Figure 4(b) shows that the
global elasticity reaches to 0.7 with the hydration time of
120 s and then decreases to a steady value of 0.5 at 400 s. (e
viscoelasticity (Uv/Ue, where Uv is the delayed distension)
was found to be strongly associated with the hydration time
as there is a significant reduction observed in Figure 4(c). A
curved behaviour was also noted in the normal stiffness with
the hydration time, as shown in Figure 4(d). Similar to that
of the global elasticity, the normal stiffness has an initial
increase of 35% at 120 s, followed by a decline to 0.17 at 400 s.

In previous studies of the skin’s mechanical properties,
Yuan and Verma [28] indicated that the elastic modulus of
the stratum corneum (SC) can be obtained using a nonin-
vasive technique by using a Hysitron TriboScope. (e elastic
modulus can be defined as a function of unloading stiffness:

E �

��
π

√

2
��
A

√ ∗
dN

dL
 , (1)

where E is Young’s modulus, A is the contact area, N is the
normal load applied on the skin surface, and L is the skin
deformation subject to the normal load [28]. In their
comparative study of elastic modulus in the dry and wet
skin, the results show that the elastic modulus of the dry skin
is one order of magnitude higher than that of the wet skin.
Hendricks and Franklin [15] found that the skin stiffness for
finger pads is decreased by about an order of magnitude
while increasing its moisture level. (e results of Liu et al.’s
studies indicated that the elastic modulus and the normal
stiffness start to decrease while increasing the thicknesses of
the artificial fingers [19]. (eir further studies of rubbing
tests indicated that one of the possibilities for the reduction
in friction force is likely to be the change in SC thickness.
According to Liu et al. [19], the adhesion force is in inverse
proportion to skin stiffness. (e removal of SC does not
affect the normal stiffness of the skin, but it does affect the
lateral stiffness of the skin.(is finding is in good accordance
with our observation in Figure 4(d) as no obvious change
was noted in the normal stiffness of the skin. In a similar
study carried out by Pailler-Mattei et al. [21], they pointed
out that the lateral stiffness of the skin is decreased with the
removal of the thickness of the SC. (ey assumed that the
change in lateral stiffness might influence the global me-
chanical properties of the skin and hence influence its
friction coefficient.

From the above findings, it is concluded that the coef-
ficient of the skin friction closely correlates with the SC
thickness. (erefore, it is expected to observe a decrease in
the elastic modulus of the skin while increasing the thickness
of the skin related to hydration. Figure 4(a) shows that there
is an initial decrease and then an increase in the deformation
when the finger pads were hydrated in water up to 400 s.
However, the corresponding change in the global elasticity
of the skin is not significant. One of the possible causes could

Table 2: (e results collected from the target passing test.

Participants
Moisture levels

Natural Hydrated
1

Hydrated
2

Extra
water

1
MMR± SD

(au) 71.3± 1.8 73.0± 1.8 96.0± 2.8 99.0± 0.0

Target score 6 9 6 5

2
MMR± SD

(au) 56.3± 1.3 72.3± 1.0 99.0± 0.0 99.0± 0.0

Target score 5 7 5 4

3
MMR± SD

(au) 51.3± 2.8 69.7± 1.8 86.7± 6.9 99.0± 0.0

Target score 7 8 8 5

4
MMR± SD

(au) 56.0± 4.4 77.0± 3.6 99.0± 0.0 99.0± 0.0

Target score 7 9 7 7

5
MMR± SD

(au) 67.0± 1.6 75.0± 2.8 99.0± 0.0 99.0± 0.0

Target score 6 8 6 6

6
MMR± SD

(au) 68.0± 1.7 72.0± 0.0 99.0± 0.0 99.0± 0.0

Target score 7 8 5 4

7
MMR± SD

(au) 62.7± 4.3 71.3± 0.8 93.3± 3.9 99.0± 0.0

Target score 5 7 8 5

8
MMR± SD

(au) 66.7± 0.8 78.0± 0.4 99.0± 0.0 99.0± 0.0

Target score 7 9 6 6
Note. MMR represents a mean moisture reading collected from both ex-
amined fingers, Hydrated 1 represents a medium hydration state, and
Hydrated 2 represents a high hydration state.
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be that data of the elasticity obtained are of the global
elasticity for the whole skin. (e global elasticity is believed
to be dominated by the dermis layer of the skin, so it might
be not very accurate to describe the elastic property of the
SC. In addition, in the studies of Liu et al. [27], they indicated
that no water is transmitted into the dermis layer of the skin
during the hydration treatment.(erefore, it is reasonable to
observe that the elasticity of the skin does not have sig-
nificant changes under wet conditions.

5. Data-Driven Models

To generate predictive models for anticipating the passing
scores of athletes, two widely used data-driven modelling
techniques were employed. (e first one is a feedforward
artificial neural network (ANN) with a Levenberg–Marquardt
trainingmethod [29]. In this paper, the ANNmodel was set to

have a hidden layer with eight sigmoid neurons. (e second
method used is the adaptive neuro-fuzzy inference system
(ANFIS) [30]. It is a Sugeno fuzzy rule-based system that uses
the back-propagation gradient descent and least-squares
methods in training. In this paper, the ANFIS model con-
structed has eight fuzzy rules.

In the experiments, six variables were selected as the
inputs of models, which are athletes’ weight, height, hand
length, hand width, wrist strength, and figure moisture level.
(e output of models is the score of the passing test. (e
figure moisture level has been observed to be correlated with
the ball handling performance in Section 4. (e weight and
height represent the athletes’ physical conditions and often
reflect the strength and speed of athletes. (e hand length,
hand width, and wrist strength directly relate to the ball
handling performance of humans. (ese variables are be-
lieved to be associated with the capability of passing rugby
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Figure 2: (e moisture readings and the target scores under different hydration conditions.
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Figure 3: (a) (e moisture reading versus the hydration time and (b) the skin friction coefficient versus the hydration time.
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balls and thus are used as input variables of models. Table 3
shows the basic information about athletes, which was used
in modelling. In the experiments, 80% of the collected data
were randomly selected and used in training and the
remaining 20% of the data were utilised in testing. Table 4
and Figure 5 show the performance of the developed models
in prediction. In Table 4, RMSE represents root mean square

error and R represents Pearson product-moment correlation
coefficient.

It can be observed that both the ANN and ANFISmodels
performwell in the training data, but they are less accurate in
testing. Compared with the ANFISmodel, the ANNmodel is
less accurate in training; however, it performsmuch better in
testing. (e reason lies in that ANN has a validation
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Figure 4: (a) Skin deformation (Uf) against hydration time, (b) global elasticity (Ur/Ue) against hydration time, (c) viscoelasticity (Uv/Ue)
against hydration time, and (d) normal stiffness against hydration time.

Table 3: Basic information about athletes.

Participants Weight (kg) Height (m) Hand length (cm) Hand width (cm) Wrist strength (N)
1 73 1.77 19 20 80
2 85 1.8 19 20 85
3 61 1.78 18 21 60
4 80 1.8 19 19 80
5 75 1.8 22 19 50
6 89 1.85 18 19 60
7 64 1.7 18 20 50
8 62 1.76 18 20 60
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mechanism that can prevent overtraining, which happened
in the training of the ANFIS model.

6. Conclusion

(e aim of this study was to investigate rugby players’
performance under different moisture conditions using data
analytics and data-driven modelling methods. In the rugby
ball passing test, it has been found that higher target scores
can be obtained by increasing the skin moisture to a certain
level. When the finger pads were saturated, the passing
accuracy started to drop. A quadratic polynomial function
has been proposed to describe the relationship between the
skin moisture and the target score. (e measurement of the
skin friction coefficient showed that there is bell-shaped
behaviour between the coefficient of the skin friction and the
hydration time. Additionally, in the measurement of me-
chanical properties, the skin elasticity of the finger pads was
shown to reduce with hydration. Based on the collected
experimental data, intelligent data-driven models have then
been developed to anticipate the passing performance of
rugby players under different moisture conditions, by
employing a neural-network model and a neuro-fuzzy
model. (e constructed models showed decent accuracy,
although with limited training data.

Data Availability

(e data used in this research are available from the cor-
responding author upon request.
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Rockburst is an extremely complex dynamic instability phenomenon for rock engineering. Due to the complex and unclear
mechanism of rockburst, it is difficult to predict precisely and evaluate reasonably the potential of rockburst. With the de-
velopment of data science and increasing of case history from rock engineering, the data-driven method provides a good way to
mine the complex phenomenon of rockburst and then was used to predict the potential of rockburst. In this study, deep learning
was adopted to build the data-driven model of rockburst prediction based on the rockburst datasets collected from the literature.
+e data-driven model was built based on a convolutional neural network (CNN) and compared with the traditional neural
network. +e results show that the data-driven model can effectively mine the complex phenomenon and mechanism of
rockburst. And the proposed method not only can predict the rank of rockburst but also can compute the probability of rockburst
for each corresponding rank. It provides a promising and reasonable approach to predict or evaluate the rockburst.

1. Introduction

Rockburst is an extremely complex dynamic instability
phenomenon in rock underground excavation. It usually
causes injury to workers, damage to equipment, and eco-
nomic losses. To prevent the rockburst disaster, various
methods, such as field monitoring, laboratory test, theory
model, empirical model, numerical model, and intelligent
method, etc., were adopted to explore the mechanism of
rockburst in the last decades [1–21]. With the depth in-
creasing of mining and underground rock excavation,
rockburst is becoming more and more serious and is a
challenging rock engineering problem in China [14]. Due to
the complexity and uncertainty of rockburst, its mechanism
is not clearly understood till now. To decrease risk and losses
of rockburst, predicting precisely or estimating the rea-
sonable potential of rockburst is critical to the safety and
efficient construction of rock underground excavation and
mining engineering.

Various methods have been developed to predict or
evaluate the rockburst since Cook et al. first proposed a
method for predicting the rockburst in mining [22]. Zhou

et al. reviewed the state of the art and the prediction method
of rockburst in brief and classified the method into the
empirical method, experimental method, analytical method,
intelligent method, and numerical method [23]. Sajjad et al.
reviewed the prediction method, data preprocessing of
rockburst, and developed an intelligent classification model
for rockburst prediction [24]. But rockburst was influenced
by multiple factors such as rock mass property, in situ stress,
geology structure, and engineering position, etc.; it is dif-
ficult to predict rockburst precisely. +ough a large number
of methods were developed to predict or evaluate the
rockburst, there is not much progress in the past few decades
and not a universally accepted method which is better than
other methods to predict rockburst. Rockburst prediction
may now be a universal issue for deep buried underground
excavation.

+ough rockburst is an unsolved engineering issue for
rock underground excavation, a deluge of rockburst data
have been available; lots of case histories, monitoring in site,
and various tests were implemented, analyzed, and pub-
lished. +e mechanism of rockburst was hidden in the above
data about rockburst. Extracting the rockburst information
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and knowledge from data is a good way to predict or evaluate
rockburst. With the development of deep learning, it pro-
vides a good way to reveal the mechanism behind data [25].
Deep learning has achieved notable success in the fields of
physics [26], chemistry [27], biology [28], and geoscience
[29]. +e combination of available data, deep learning, and
the theory of rockburst offers an exciting new opportunity
for expanding our knowledge about rockburst. In this study,
deep learning was adopted to build the prediction model of
rockburst. Various rockburst data were collected from the
literature. +e data-driven model of rockburst prediction
was built based on deep learning. +e prediction rank of
rockburst was obtained and was in excellent agreement with
the real rank in the engineering practice. +e paper is
structured as follows: firstly, the idea and algorithm of deep
learning are reviewed in Section 2. Secondly, Section 3 in-
troduces the influence factors and datasets of rockburst, and
then the data-driven model was built based on deep learning
in Section 4. Finally, some conclusions are given in Section 4.

2. Deep Learning

Machine learning has proven to be powerful in capturing
subtle, complex, nonlinear relationships between predictor
and response variables in various research fields. Artificial
neural network (ANN), which mimics biological neural
networks, is a commonly used supervised machine learning
algorithm and has been widely used in rock mechanics and
engineering [30–32]. ANN is the basis of most deep learning
methods and comprises more layers containing a series of
neurons that accept inputs from neurons on the previous
layer based on activate functions. Deep learning is a kind of
representation machine learning method that demands that
a computer must have the ability to automatically reveal data
patterns needed for classification or detection [25]. +e
“deep” here represents the number of layers.With increasing
depth of network, the sufficient transformation allows in-
corporating simpler features into complex features so that
the most appropriate hierarchical representations can be
extracted from data [25, 33]. Recently, neural networks
(NNs) have been widely applied in a large amount of re-
search field by deep neural networks (DNNs). A deep neural
network can compute high-level features over data. Some
DNNs are introduced briefly in the following.

2.1. Conventional ANN. An ANN typically consists of three-
layered components: an input layer (inputs), an output layer
(outputs), and several hidden layers between them. +e
general functionality of the hidden layers is to convert the
inputs to final outputs. Each hidden layer contains a certain
number of parallel processing units, which are referred to as
neurons. A neuron is the basic unit of ANN and is used to
receive, process, and deliver signals. Figure 1 shows the
ANN architecture. ANN algorithm is used to adjust the
connected weights between two neurons in the neighbor
layer. +e weight can be considered as a measure of the
strength of the connection between the two neurons. +e
larger the weight, the stronger the connection. In the

output layer, the outputs are compared to the targets. +e
difference is called error. +e weights in the ANN are it-
eratively tuned to yield the minimum error. +e detailed
algorithm is out of the scope of this study and can be found
in the relevant literature [34].

2.2. Convolutional Neural Network. Convolutional neural
network (CNN) is a well-known deep learning architecture
inspired by the natural visual perception mechanism of the
living creatures [25]. It is a type of feed-forward neural
network. CNN neurons are only connected by a limited
subarea of the previous layer according to the design of
local receptive field (Figure 2). Aside from input and output
layers, CNN involves different types of hidden layers, i.e.,
convolutional layer, pooling layer, and fully connected
layer. Convolutional layers are used to abstract local fea-
tures at different locations among the whole raw input or
the intermediate feature maps with learnable filters (ker-
nels). +e advantage of convolution operation is reflected
mainly in the implementation of weights sharing and
spatial correlation among neighbors. Pooling layers, also
called subsampling layers, aim to reduce the size of the
input layer. Fully connected layers are added to the last
pooling layer for classification or as feature representation
for further processing and are similar to regular neural
networks and contain most of the parameters of CNN. A
deep CNN is built by stacking multiple CNNs aiming to
integrate the low-level features into a higher level of rep-
resentations. +is kind of design is powerful for seizing
local geometric features and spatial patterns and detecting
larger-scale features in deeper layers. +e advantages of
CNN come from the differences in structures and opera-
tions of the convolutional layer and pooling layer. In ad-
dition, many neurons in the same layer of CNN share the
same weight, thereby reducing the degree of freedom in the
model.

In this study, deep learning was used to build the data-
driven model for rockburst prediction. Keras is a minimalist
Python library for deep learning that can run on top of
+eano or TensorFlow [35]. It was adopted in the data-
driven model based on deep learning.

3. Data-Driven Model of Rockburst Prediction

3.1. Influence Factors and Rank of Rockburst. It is difficult to
properly evaluate rockburst because of its complicated
and indistinct mechanism. +e occurrence of rockburst
was affected by many different factors such as geologic
structure, mining and excavation methods, mechanical
property of rock mass and in situ stress, etc. To predict
precisely rockburst, it is very important to determine the
influence factor reasonably. A vast number of single in-
dicators and multi-indicators have been developed for
evaluating the occurrence and intensity of rockburst [23].
+ese indicators are mainly based on properties of rock,
energy, depth of excavation and support structure, etc. But
the two necessary conditions are the rock mass and its
environment which has the capability of accumulated
strain energy and stress concentration. +e mechanical
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property of rock mass can be characterized by uniaxial
compression and tensile strength, and the maximum shear
stress of the tunnel wall can reflect the environmental
conditions. In this study, uniaxial compression and tensile
strength of rock mass, maximum shear stress of tunnel
wall, and linear elastic energy were selected to predict the
rank of rockburst based on the previous studies in the
literature.

Various studies of the potential of rockburst have been
conducted in the last decades. Russnes proposed and clas-
sified the rockburst intensity into four ranks, i.e., none,
weak, moderate, and severe [36]. Brauner classified the
rockburst into three ranks based on the intensity of de-
struction to the surrounding rock mass [37]. Tan classified
the rockburst into four ranks based on lots of laboratory tests
and field investigations [38]. Cai et al. developed the four
ranks of rockburst to evaluate the rockburst liability [39].
+e four ranks’ method of rockburst classification has been
widely used in mining, tunnel, and other rock engineering.
So, the four ranks of rockburst were adopted in this study.
+e input of deep learning was uniaxial compression and
tensile strength of rock mass, maximum shear stress of
tunnel wall, and linear elastic energy, respectively. +e
output is the ranks of rockburst, i.e., no rockburst, moderate
rockburst, strong rockburst, and violent rockburst. Numbers

1, 2, 3, and 4 were adopted to represent the different ranks of
rockburst in deep learning model (1—no rockburst,
2—moderate rockburst, 3—strong rockburst, and 4—violent
rockburst).

3.2. Datasets. +e training data are critical to the learning
effect and are necessary to build a deep learning model. In
the literature, lots of researchers collected lots of case history
and laboratory tests and evaluated the potential of rockburst
using different predicted models such as empirical models,
numerical models, and intelligent models. In this study, the
datasets were collected from the literature based on the
previous works [19, 23]. +e datasets consist of 165 samples
which have four influence factors and a corresponding rank
(label) of rockburst. +e datasets were divided into 137
training samples and 28 test samples. Appendix listed the
training samples (Table 1).

+e relationship between each rockburst influence factor
and its rank is shown in Figure 3.We can see fromFigure 3 that
the maximum shear stress of tunnel wall (σθ) and linear stress
energy have higher impacts on the rockburst rank than uni-
axial compression strength (σc) and uniaxial tensile strength
(σt). It is quite clear that it is impossible to build the prediction
model for rockburst based on individual influence factors.
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xi
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Figure 1: Artificial neural network architecture.
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Figure 2: Convolutional neural network.
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Table 1: Training samples.

No. Maximum shear stress of tunnel wall
σθ (MPa)

Uniaxial compression strength
σc (MPa)

Uniaxial tensile strength
σt (MPa)

Linear stress
energy

Rockburst
rank

1 90.00 170.00 11.30 9 3
2 90.00 220.00 7.40 7.3 2
3 62.60 165.00 9.40 9 2
4 55.40 176.00 7.30 9.3 3
5 30.00 88.70 3.70 6.6 3
6 48.75 180.00 8.30 5 3
7 80.00 180.00 6.70 5.5 2
8 89.00 236.00 8.30 5 3
9 98.60 120.00 6.50 3.8 3
10 108.40 140.00 8.00 5 4
11 57.00 180.00 8.30 5.00 3
12 50.00 130.00 6.00 5.00 3
13 62.50 175.00 7.25 5 3
14 75.00 180.00 8.30 5 3
15 11.00 115.00 5.00 5.7 1
16 43.40 123.00 6.00 5 3
17 18.80 178.00 5.70 7.40 1
18 34.00 150.00 5.40 7.8 1
19 56.10 131.99 9.44 7.44 3
20 54.20 134.00 9.10 7.1 3
21 70.30 128.30 8.70 6.4 3
22 60.70 111.50 7.86 6.16 4
23 54.20 134.00 9.09 7.08 3
24 70.30 129.00 8.73 6.43 3
25 35.00 133.40 9.30 2.9 2
26 157.30 91.23 6.92 6.27 4
27 148.40 66.77 3.81 5.08 2
28 132.10 51.50 2.47 4.63 3
29 127.90 35.82 1.24 3.67 2
30 107.50 21.50 0.60 2.29 1
31 96.41 18.32 0.38 1.87 1
32 167.20 110.30 8.36 6.83 4
33 118.50 26.06 0.77 2.89 2
34 34.15 54.20 12.10 3.17 2
35 60.00 135.00 15.04 4.86 2
36 60.00 66.49 9.72 2.15 2
37 60.00 106.38 11.20 6.11 2
38 60.00 86.03 7.14 2.85 2
39 60.00 149.19 9.30 3.5 2
40 60.00 136.79 10.42 2.12 2
41 63.80 110.00 4.50 6.31 3
42 2.60 20.00 3.00 1.39 1
43 44.40 120.00 5.00 5.1 2
44 13.50 30.00 2.67 2.03 2
45 70.40 110.00 4.50 6.31 3
46 3.80 20.00 3.00 1.39 1
47 57.60 120.00 5.00 5.1 3
48 19.50 30.00 2.67 2.03 3
49 81.40 110.00 4.50 6.31 4
50 4.60 20.00 3.00 1.39 1
51 73.20 120.00 5.00 5.1 3
52 30.00 30.00 2.67 2.03 4
53 15.20 53.80 5.56 1.92 1
54 88.90 142.00 13.20 3.62 4
55 59.82 85.80 7.31 2.78 3
56 32.30 67.40 6.70 1.1 1
57 30.10 88.70 3.70 6.6 4
58 18.80 171.50 6.30 7 1
59 34.00 149.00 5.90 7.6 2
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Table 1: Continued.

No. Maximum shear stress of tunnel wall
σθ (MPa)

Uniaxial compression strength
σc (MPa)

Uniaxial tensile strength
σt (MPa)

Linear stress
energy

Rockburst
rank

60 38.20 53.00 3.90 1.6 1
61 11.30 90.00 4.80 3.6 1
62 92.00 263.00 10.70 8 2
63 62.40 235.00 9.50 9 4
64 43.40 136.50 7.20 5.6 4
65 11.00 105.00 4.90 4.7 1
66 46.40 100.00 4.90 2.00 2
67 23.00 80.00 3.00 0.85 2
68 46.20 105.00 5.30 2.30 2
69 13.90 124.00 4.22 2.04 1
70 17.40 161.00 3.98 2.19 2
71 19.00 153.00 4.48 2.11 2
72 19.70 142.00 4.55 2.26 2
73 18.70 82.00 10.90 1.5 1
74 28.60 122.00 12.00 2.5 3
75 29.80 132.00 11.50 4.6 3
76 33.60 156.00 10.80 5.2 3
77 26.90 92.80 9.47 3.7 3
78 55.90 128.00 6.29 8.1 4
79 59.90 96.60 11.70 1.8 2
80 68.00 107.00 6.10 7.20 4
81 105.50 187.00 19.20 7.27 3
82 105.50 170.00 12.10 5.76 3
83 105.50 190.00 17.10 3.97 3
84 47.56 58.50 3.50 5 2
85 43.62 78.10 3.20 6 2
86 25.70 59.70 1.30 1.7 1
87 26.90 62.80 2.10 2.4 2
88 40.40 72.10 2.10 1.9 2
89 39.40 65.20 2.30 3.4 3
90 38.20 71.40 3.40 3.6 3
91 45.70 69.10 3.20 4.1 3
92 35.80 67.80 3.80 4.3 3
93 39.40 69.20 2.70 3.8 3
94 40.60 66.60 2.60 3.7 3
95 39.00 70.10 2.40 4.8 3
96 57.20 80.60 2.50 5.5 4
97 55.60 114.00 2.30 4.7 3
98 56.90 123.00 2.70 5.2 3
99 62.10 132.00 2.40 5 3
100 29.70 116.00 2.70 3.7 2
101 29.10 94.00 2.60 3.2 2
102 27.80 90.00 2.10 1.8 1
103 30.30 88.00 3.10 3 2
104 55.60 114.00 2.30 4.7 3
105 41.60 67.60 2.70 3.7 3
106 40.10 72.10 2.30 4.6 3
107 58.20 83.60 2.60 5.9 4
108 56.80 112.00 2.20 5.2 3
109 89.56 190.3 17.13 3.97 3
110 89.56 170.28 12.07 5.76 3
111 89.56 187.17 19.17 7.27 3
112 48 120 1.5 5.8 3
113 63 115 1.5 5.7 3
114 49.5 110 1.5 5.7 3
115 30.9 82.56 6.5 3.2 2
116 89 128.6 13.2 4.9 4
117 12.3 237.1 17.66 6.9 1
118 55.6 256.5 18.9 9.1 3
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Table 1: Continued.

No. Maximum shear stress of tunnel wall
σθ (MPa)

Uniaxial compression strength
σc (MPa)

Uniaxial tensile strength
σt (MPa)

Linear stress
energy

Rockburst
rank

119 91.3 225.6 17.2 7.3 4
120 61 171.5 22.6 7.5 2
121 108.4 138.4 7.7 1.9 4
122 69.8 198 22.4 4.68 2
123 105 171.3 22.6 7.27 4
124 105 237.16 17.66 6.38 4
125 105 304.21 20.9 10.57 4
126 25.49 54.2 2.49 3.17 2
127 72.07 147.09 10.98 6.53 3
128 21.8 160 5.2 2.22 1
129 20.9 160 5.2 2.22 1
130 12.1 160 5.2 2.22 1
131 75 170 11.3 9 3
132 105 128.61 13 5.76 4
133 105 304 9.12 5.76 3
134 105 306.58 13.9 6.38 4
135 7.5 52 3.7 1.3 1
136 24.93 99.7 4.8 3.8 1
137 14.96 99.7 4.8 3.8 1
Note. 1: no rockburst; 2: moderate rockburst; 3: strong rockburst; 4: violent rockburst.
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Figure 3: +e relation between each rockburst influence factor and its rank, (a) σθ, (b) σc, (c) σt, (d) linear stress energy.
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Figure 4 shows the bivariate relation between each pair
of rockburst influence factor. It shows that the relationship
between rockburst and its influence factor is very complex,
uncertain, and nonlinear. +ere is no apparent dependence
between them. It is impossible to evaluate and predict the
rockburst using the bivariate relation. It is difficult to
characterize the mechanism of rockburst using the tradi-
tional statistical method. Figure 5 also shows the relationship
between rockburst rank and its influence factors. It is ob-
vious that the rockburst rank depends on the influence factor
and their relationship is very complex. For the complex and
nonlinear relationship, it is difficult to build the

mathematical model and recognize the rank of rockburst
using the traditional mathematical model.

3.3. Rockburst Prediction. In the past few decades, machine
learning such as neural network and support vector ma-
chine has been used to predict or evaluate rockburst. To
verify and illustrate the data-driven model of rockburst
prediction, NN and CNN were used to build a prediction
model and evaluate the potential of rockburst based on the
training samples in Table 2. And the comparisons have
been implemented and some results were obtained, which
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proved that deep learning is a promising tool for predicting
rockburst precisely.

3.3.1. NN Model for Rockburst Prediction. NN was built
based on the training samples in Appendix. Figure 6
shows the neural network structure trained based on

the samples in Appendix. 28 testing samples were used to
verify the NNmodel. Table 2 lists the predicted results and
their comparison with the real rank of rockburst. +e
predicted rank of 25 samples was in good agreement with
the real rank and Nos. 8, 17, and 22 were not classified
correctly. +e error ratio was about 11%. +e results were
in good agreement with the previous research using NN
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Violent rockburst
No rockburst
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Figure 5: +e relationship between rockburst rank and its influence factor.

Table 2: +e test samples and the predicted results using neural network.

No. Maximum shear stress of tunnel
wall σθ (MPa)

Uniaxial compression strength
σc (MPa)

Uniaxial tensile strength
σt (MPa)

Linear stress
energy

Rockburst rank
Real Predicted

1 34 150 5.4 7.8 1 1
2 60.7 111.5 7.86 6.16 4 4
3 54.2 134 9.09 7.08 3 3
4 70.3 129 8.73 6.43 3 3
5 35 133.4 9.3 2.9 2 2
6 157.3 91.23 6.92 6.27 4 4
7 148.4 66.77 3.81 5.08 2 2
8 132.1 51.5 2.47 4.63 3 2
9 127.9 35.82 1.24 3.67 2 2
10 107.5 21.5 0.6 2.29 1 1
11 96.41 18.32 0.38 1.87 1 1
12 167.2 110.3 8.36 6.83 4 4
13 38.2 53 3.9 1.6 1 1
14 11.3 90 4.8 3.6 1 1
15 92 263 10.7 8 2 2
16 62.4 235 9.5 9 4 4
17 43.4 136.5 7.2 5.6 4 3
18 11 105 4.9 4.7 1 1
19 90 170 11.3 9 3 3
20 90 220 7.4 7.3 2 2
21 62.6 165 9.4 9 2 2
22 55.4 176 7.3 9.3 3 4
23 30 88.7 3.7 6.6 3 3
24 48.75 180 8.3 5 3 3
25 80 180 6.7 5.5 2 2
26 89 236 8.3 5 3 3
27 98.6 120 6.5 3.8 3 3
28 108.4 140 8 5 4 4
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[17]. +is showed that NN can effectively mine the re-
lationship between rockburst and its influence factors.
Meanwhile, NN can estimate the probability of rockburst
rank. Figure 7 shows the comparison between real rank
and predicted rank for testing samples. +e error pre-
diction occurred at the neighboring rank for Nos. 8, 17,
and 22 samples. As we know, the mechanism of rockburst
is complex and not clear. +e relationship between
rockburst and its influence factors is not clear and un-
certain. It is difficult to classify the rank of rockburst
which falls in between two neighboring ranks. +e rank
probability of each sample can be obtained using the NN
model. Figure 8 shows the rank probability of rockburst
for each testing sample. +e probabilistic results were
more reasonable than the deterministic value. Figure 9
shows the probability of each rank for Nos. 1, 8, 17, and 22
testing samples. +e real rank of No. 1 is no rockburst and
is predicted correctly by the NN model. +e probabilities
of no rockburst and weak rockburst were very close to
each other and the probability of no rockburst is a little
bigger than the probability of weak rockburst. But the
ranks of Nos. 8, 17, and 22 do not classify correctly the
rank of rockburst.

3.3.2. CNN Model for Rockburst Prediction. CNN was also
adopted to build a predictionmodel of rockburst based on the
same training samples. Figure 10 shows the predicted results
and their comparison with the real rank of rockburst. It was
obvious that the predicted rank of 28 samples was in excellent
agreement with the real rank and all samples are classified
correctly.+e results are better than using the NNmodel.+is
showed that deep learning can effectively mine the rela-
tionship between rockburst and its influence factors.

Figure 11 shows the rank probability of each sample using the
CNN model. Compared with the NN model (Figure 8), the
CNN model can reduce the uncertainty of rank and improve
the predicted results. In other words, the CNN model can
distinguish effectively the neighboring rank of rockburst. +e
predicted result and rank probability of Nos. 1, 8, 17, and 22
are shown in Figure 12. It further proved the above
statement. For the NN model, the probability of no
rockburst and weak rockburst is almost the same for the
No. 1 sample. +e NN model cannot separate the proper
rank from the neighboring rank for the No. 8, 17, and 22
samples. But the CNN model can determine correctly the
rank of rockburst from the neighboring rank and the
probability of the corresponding rank was far from the
other ranks (compared with Figure 9).

3.4. Comparison. To illustrate and verify the data-driven
model of rockburst, the developed method was compared
with the traditional empirical criteria of the rockburst
including the Russenes criterion [36], the rock brittleness
coefficient criterion [40], and the elastic energy index [41].
Table 3 lists the results of 28 testing samples. Additionally,
Zhou et al. and Sajjad et al. reviewed the various pre-
diction methods of rockburst [23, 24]. +e results of this
study are of higher accuracy than other methods (in-
cluding empirical method and intelligent method). So, the
comparison shows that the data-driven model (NN and
CNN) has superiority. +e data-driven model can reveal
the complex and uncertain phenomenon behind data and
present well the relationship between rockburst and its
influence factor. With the increasing of case history, the
data-driven model provides a promising tool for rock-
burst prediction.
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(+2)

Output layer

Figure 6: Neural network structure.
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4. Conclusions

It is critical to evaluate rationally and efficiently the potential
rank of rockburst for avoiding and preventing the disaster of
rockburst. In this study, a data-driven model was developed to
evaluate the rank of rockburst and its probability of corre-
sponding rank using deep learning. Deep learning was adopted
to build the relationship between the rank of rockburst and its
influence factors based on the collected datasets.+e developed
method was used to predict the testing samples and compared
with the other method.+e results showed that the data-driven
model is reasonable and feasible to rock engineering with the
increasing of rock case history and data. It provides a scientific,
promising, and rational way to evaluate the potential of
rockburst for rock underground excavation. +e following
conclusions were obtained.

(1) Rockburst is a complex dynamic phenomenon and
engineering disaster. +e relationships between
rockburst rank and its influence factor are complex,
uncertain, and nonlinear. It is difficult to predict the
potential of rockburst and understand the mecha-
nism of rockburst using the traditional method such
as empirical method, laboratory or in-site test, nu-
merical method and intelligent method, etc.

(2) With the development of data science and deep
learning technology, a data-driven model provides

a good way to utilize lots of data in the case history
and laboratory test for mining the complex
mechanism and phenomenon of rockburst. Data-
driven models can improve our understanding and
evaluate comprehensive rockburst models and
data.

(3) A deep learning model (CNN) can represent well the
relationship between rockburst rank and its influ-
ence factors. It has been proven to be more powerful
and flexible than previous models such as the em-
pirical model, numerical model, and physical model.
+e combination of data and data-driven model
based on deep learning offers an exciting new op-
portunity for expanding our knowledge about
rockburst from data.

(4) +e data-driven model provides a promising and
challenging approach for understanding rockburst
through combining rock mechanics, engineering
geology, rockburst model, and deep learning. It also
provides a good way to solve and understand the
complex rock mechanics issue in the field of rock
engineering.

(5) +e data-driven model is a black box and of poor
interpretability. More data and expertise can im-
prove the interpretation of the model.

Table 3: Comparison with the empirical model.

Sample no. Russenes criterion Rock brittleness coefficient criterion Elastic energy index NN CNN Real
1 2 2 3 1 1 1
2 3 4 3 4 4 4
3 3 3 3 3 3 3
4 3 3 3 3 3 3
5 2 4 2 2 2 2
6 4 4 3 4 4 4
7 4 3 3 2 2 2
8 4 3 2 2 3 3
9 4 2 2 2 2 2
10 4 2 2 1 1 1
11 4 1 1 1 1 1
12 4 4 3 4 4 4
13 4 4 1 1 1 1
14 1 3 2 1 1 1
15 3 3 3 2 2 2
16 2 3 3 4 4 4
17 3 3 3 3 4 4
18 1 3 2 1 1 1
19 3 3 3 3 3 3
20 3 2 3 2 2 2
21 3 3 3 2 2 2
22 3 3 3 4 3 3
23 3 3 3 3 3 3
24 2 3 3 3 3 3
25 3 2 3 2 2 2
26 3 2 3 3 3 3
27 4 3 2 3 3 3
28 4 3 3 4 4 4
Correct rate (%) 42.86 53.57 39.29 89.29 100 —
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Fluid Catalytic Cracking (FCC), a key unit for secondary processing of heavy oil, is one of the main pollutant emissions of NOx in
refineries which can be harmful for the human health. Owing to its complex behaviour in reaction, product separation, and
regeneration, it is difficult to accurately predict NOx emission during FCC process. In this paper, a novel deep learning ar-
chitecture formed by integrating Convolutional Neural Network (CNN) and Long Short-Term Memory Network (LSTM) for
nitrogen oxide emission prediction is proposed and validated. CNN is used to extract features among multidimensional data.
LSTM is employed to identify the relationships between different time steps.$e data from the Distributed Control System (DCS)
in one refinery was used to evaluate the performance of the proposed architecture. $e results indicate the effectiveness of CNN-
LSTM in handlingmultidimensional time series datasets with the RMSE of 23.7098, and the R2 of 0.8237. Compared with previous
methods (CNN and LSTM), CNN-LSTM overcomes the limitation of high-quality feature dependence and handles large amounts
of high-dimensional data with better efficiency and accuracy. $e proposed CNN-LSTM scheme would be a beneficial con-
tribution to the accurate and stable prediction of irregular trends for NOx emission from refining industry, providingmore reliable
information for NOx risk assessment and management.

1. Introduction

Fluid Catalytic Cracking (FCC) is one of the most important
technologies for secondary processing of heavy oil in re-
fining and chemical enterprises [1]. Catalytic cracking re-
action and catalyst regeneration are the main chemical
processes of FCC. In the catalytic cracking reaction, crude oil
is transformed into gasoline and diesel under catalysis
during which 40%–50% of nitrogen in feedstock is trans-
ferred to coke and deposited on the catalyst [2–4]. $en,
coke-covered spent catalysts are burned in the reaction
regenerator for catalyst active regeneration, heat balance,
energy recovery, and stable operation. During catalyst re-
generation process, about 90% of the nitrogen in coke is
converted into N2 and the rest into NOx and other reduced
nitrogen compounds (NH3, HCN, etc.). NO and NO2 are the
most detected NOx which have potential risks to human

health. As blood poison, NO would cause hemichypoxia and
depress the central nervous system by strongly binding with
hemoglobin (HB); NO2 would cause bronchiectasis (even
toxic pneumonia and pulmonary edema) by irritating and
corroding the lung tissue [5, 6]. Furthermore, with the
development of refining chemical technology, especially
catalytic technique, more heavy oil with high percentage of
nitrogen (such as residual oil and wax oil) were utilized.
$erefore, it is urgent to accurately predict the NOx pro-
duced during FCC process so as to effectively optimize the
noxious gas discharged into the environment subject to the
technical and economic conditions.

$e FCC process is complex both from the modelling
and from the control points of view [7–11]. Fortunately,
many researchers have explored and developed semiem-
pirical models, lumped kinetic models, and molecular-based
kinetic models [12]. A comprehensive review on FCC
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process modelling, simulation, and control was reported by
[13]. Many research studies have been conducted using
different models for modelling, controlling, and optimizing
the FCC process with promising results [14–16]. With the
development statistical learning theory, machine learning
algorithms have proved effective methods for simulating
natural systems in capturing nonlinearity with limited
computation costs. $e application of machine learning
algorithms in the field of FCC is still at an early stage.
Michalopoulos et al. [17] and Bollas et al. [18] proved the
applicability of Artificial Neural Networks (ANN) in pre-
dicting the FCC products and optimized the operation
conditions by developing ANN models for determining the
steady-state behaviour of industrial FCC units. Zhang [19]
established a NOx emission model by Support Vector
Machine (SVM) and further optimized the parameters with
an improved adaptive genetic algorithm. Gu et al. [20]
constructed a boiler combustion model on the basis of Least
Support Vector Machines (LSSVM) and successfully fore-
casted NOx emissions and other parameters which were
verified by field data. Recent advantages in artificial intel-
ligence (AI) (lead by deep learning) offered powerful pre-
dictive tool for effectively solving the highly complex
chemical processes (such as FCC). Shao et al. proposed a new
fault diagnosis method of chemical process by combining
LSTM (Long Short-Term Memory) and CNN (Convolu-
tional Neural Network) [21]. Yang et al. integrated deep
neural network (“black box model”) with lumped kinetic
model (white box model) to create a novel “gray box model”
for improving the efficiency and accuracy of simulating FCC
process [22]. However, to the best of the authors’ knowledge,
there are few research studies using deep learning algorithms
for predicting the NOx emission in FCC unit. Some research
studies of pollution emission problems have been conducted
in power plants [23]. Compared to power plants, the FCC
process is relatively complex with more factors involved.
$erefore, it is of great difficulty to predict NOx emissions in
FCC units.

In this paper, a novel deep learning architecture for
predicting NOx emissions in the FCC Unit is proposed. $e
deep learning architecture is formed by integrating Con-
volutional Neural Network (CNN) and Long Short-Term
Memory Network (LSTM) (refer as CNN-LSTM hereafter)
with CNN layers extracting features among several variables
and LSTM layers learning time series dependencies.$e data
from the Distributed Control System (DCS) in one refinery
was used to demonstrate the performance of CNN-LSTM in
the FCC unit. $e main contributions of this paper are (1)
the proposal of a novel hybrid CNN-LSTM scheme which is
able to extract feature among different data sequences and
the features between different time steps; (2) the application
of the proposed scheme to predict NOx emission during the
FCC process with significant results.

2. Deep Learning Algorithms

2.1. Convolutional Neural Network Model (CNN). CNN is a
special kind of neural network which is widely used in the
field of image processing [24, 25]. In CNN, a feature map is

used to extract the features from the input of the previous
layer with a convolution operation.$e pooling layer is used
to reduce the computational complexity by reducing the size
of the output from one stack layer to the next and at the
mean time preserving important information. $ere are
many pooling techniques available, among which maximum
pooling is mainly used for pooling windows that contain
maximum elements. $e convolution layer provides the
outputs of the pooling layer and maps it to the next layer.
$e last layer of CNN is usually fully connected for data
classification. Figure 1 shows the basic architecture of CNN.

In neural network training, the accuracy and training
speed could be affected by many factors [26]. For example,
number of input layer nodes, number of hidden layers,
number of hidden layer nodes, and the Internal Covariate
Shift (ICS). $at is to say, the inputs of the current layer
would change according to the variation of parameters in the
previous layers which would lead to more training time. In
addition, if the inputs are distributed in ranges where the
gradient of activation function is low, the ICS would cause
the disappearance of gradient. In order to solve these
problems, a Dropout method was included as follows.

Dropout (Figure 2) was first proposed by Hinton et al. in
order to reduce the overfitting problem in neural networks
[27–32]. In dropout procedure, the local feature dependency
of the model will be reduced with a probability of P, and
consequently, the generalization ability of the model will be
improved effectively.

2.2. Long Short-Term Memory Network (LSTM). RNN is a
kind of deep neural network which is specially used to
process sequential data [33]. Compared with the traditional
ANN, the characteristic of RNN is the inclusion of de-
pendencies through time. $e basic structure of a RNN is
shown in Figure 3.

αt � b + Wht−1 + Uxt, (1)

ht � tan αt( , (2)

ot � c + Vht, (3)

yt � softmax ot( . (4)

$e left side and the right side in the architecture are the
folded form and the expanded form, respectively. In
equations (1)∼(4), t is time, x is the sequence of input data, h
is the hidden layer state of the network, o is the output vector
of the neuron,U is the parameter matrix from the input layer
to the hidden layer, V is the parameter matrix from the
hidden layer to the output layer, W is the parameter matrix
between the hidden layers at different times, and ŷt repre-
sents the probability output of the predicted value after
normalization. All the parameter matrices are shared matrix
of the hidden states at different times.

In order to solve the disappearance or explosion of
gradient during training RNN, researchers proposed LSTM

2 Mathematical Problems in Engineering



by introducing gate mechanism in RNN [34, 35]. $e gate
mechanism is composed of input gate, output gate, and
forgetting gate. As a special type of RNN, the neurons in the
LSTMmodel are connected to each other in a directed cycle.
$e basic structure of LSTM is shown in Figure 4.

$e LSTM model saves long-term dependencies using
three different gates in an effective way. $e structure of
LSTM (shown in Figure 4) is similar to RNN. LSTM uses

three gates to regulate and preserve information into every
node state. $e explanation of LSTM gates and cells is
provided in equations (5)∼(8):

InputGate Int � σ Win · hst − 1 , xt + bin( , (5)

Memory CellCt � tanh Wc · hst − 1 , xt + be( , (6)

Forget Gateft � σ Wf · hst − 1 , xt + bf , (7)

Output GateOt � σ W° · hst − 1 , xt + b°( , (8)

where b represents the bias vector; W is weight matrix; xt is
the input vector at time t; and In, f, C, andO represent input,
forget, cell memory, and output gates, respectively.

3. CNN-LSTM

Due to the characteristics of CNN and LSTM, a common
thought to combine the advantages is to integrate CNN and
LSTM. In this study, a new deep learning scheme was
proposed by integrating CNN and LSTM. Two layers of
CNN were used to ensure the correlation and effective
extraction of multidimensional data. $e feature sequence
from the CNN layer was considered as the input for LSTM.

3 feature
mapsInput data

Convolution
layer

Convolution
layer

Pooling
layer

Pooling
layer

Fully connected
network

5 feature
maps

5 feature
maps Output layer3 feature

maps

Figure 1: $e architecture of the CNN.
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Figure 2: Dropout schematic: (a) Standard neural network; (b) after applying dropout.
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Figure 3: $e architecture of the RNN.

Mathematical Problems in Engineering 3



$e time dependencies were further extracted in the LSTM
layer. $ree fully connected layers existed in the architecture
which refer to FC1, FC2, and FC3. FC1 and FC2 are used to
obtain the features extracted by the CNN layer, and FC3 is
used to conduct the final data prediction. Figure 5 shows the
architecture of the proposed CNN-LSTM.

3.1. CNN Layer. $e input data (train_x) and output data
(train_y) are defined as follows:

train xi �

x11 x12 · · · x1q

x21 x22 · · · x2q

· · · · · · · · · · · ·

xp1 xp2 · · · xpq

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

train yi � vart− p+3, vart− p+4, . . . , vart+1, vart+2, . . . , vart+q, 
T
,

(9)

where p represents time step and q represents data features.
$e ith sample from the training set is fed into the

network. In the first convolution layer (1stConV), the
convolution kernel size, number, and step length are
denoted as filter_size� (m, n), filter_num, and strides,
respectively.

$e jth convolution kernel Wj is defined as follows:

Wj �

w11 w12 · · · w1n

w21 w22 · · · w2n

· · · · · · · · · · · ·

wm1 wm2 · · · wmn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

$e algorithms between jth convolution kernel Wj and
input train_xi could be described as follows:

Wj ⊙ train xi � featureMap xi �

x11 x12 · · · x1b

x21 x22 · · · x2b

· · · · · · · · · · · ·

xa1 xa2 · · · xab

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(11)

$e operation for convolution layer is denoted as ⊙,
where

a �
p − m + 2 × padding

strides
+ 1,

b �
q − n + 2 × padding

strides
+ 1.

(12)

$e element x in the feature map is obtained through
multiplying Wj by Receptive Field, which is recorded as
follows:

train xi field �

x11 x12 · · · x1n

x21 x22 · · · x2n

· · · · · · · · · · · ·

xm1 xm2 · · · xmn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

x ∈ featureMap xi � Wj○train xi field � 
m
k�1 

n
l�1 wkl

xkl, where ○ means multiply the elements.
1stConV is calculated as

1stConVxi
� W⊙ trainxi

� featureMap x1, featureMap x2, . . . ,

featureMap xk,

(14)

where W� [W1, W2, . . ., Wk]
ReLU is used as the activation function:

h hh

XtXt–1

ht–1 ht+1ht

C′t–1 Ct′ C′t+1

Ct–1 Ct+1Ct

Wt∙ Wi∙ Wc∙ Wo∙ Wt∙ Wi∙ Wc∙ Wo∙ Wt∙ Wi∙ Wc∙ Wo∙

[∙, ∙] [∙, ∙] [∙, ∙]

[ht–1, Xt]

Xt+1

tanh tanh

tanh tanh tanh

σ σ σ σ σ σ tanhσ σ σ

h

C′t–1

WtWW ∙ WiWW ∙ WcW ∙ WoW ∙

[∙, ∙]

tanh

tanh

σ σ σ
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Figure 4: $e architecture of the LSTM.
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fReLU �
x, x> 0,

0, x≤ 0.
 (15)

$e output of the convolutional layer is nonlinear
mapping by the activation function. In pooling layer, the
data are compressed and recorded as pooling_size� (m′, n′).

For every feature map,

xi pool � fpool featureMap xi(  �

x11 x12 · · · x1b′
x21 x22 · · · x2b′
· · · · · · · · · · · ·

xa′1
xa′2

· · · xa′b′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(16)

where a′ � a/m′, b′ � b/n′
$us, the ith sample after convolutional, activation, and

pooling layer is

Xpool 1 � x1 pool, x2 pool, . . . , xk pool . (17)

$e convolutional, activation, and pooling in 2ndConV
are similar to those in 1stConV.

Dropout is denoted as dropout (λ); λ takes the value
between 0 and 1, whichmeans the percentage of the data that
should be discarded. For instance, dropout (0.5) means that
50% of neuron data are discarded randomly.

FC layer dense (α) is the output data in the last di-
mension. For the above input type [none, a′, b′, k], only the
last dimension [none, a′, b′, α] is changed after full
connection.

Transform [samples, height, width, channels] to [sam-
ples, timesteps, features], and then feed them in the LSTM
layer. $e modular construction of LSTM is shown as fol-
lows, in which forget, input, and output gates are included.

3.2. LSTM Layer. $e forget gate is expressed as follows:

ft � σ Wf · ht−1, xt  + bf , (18)

where Wf represents the weight matrix for the forget gate;
[ht−1, xt] means concatenation of ht−1 and xt; bf represents
the offset of the forget gate; and σ represents the sigmoid
function. $e dimensionality of input layer, hidden layer,
and cell state is dx, dh, and dc, respectively. In general, dc � dh,
the dimensionality of weight matrix for the forget gate, and
Wf is dc × (dh+ dx). Actually, the weight matrix (Wf ) is
combined by two matricesWfh (initem: ht−1; dimensionality:
dc × dh) and Wfx (initem: xt; dimensionality: dc × dx), Wf
could be written as follows:

Wf 
ht−1

xt

  � Wfh Wfx 
ht−1

xt

 

� Wfhht−1 + Wfxxt + Wfxxt.

(19)

Input gate could be expressed as follows:

it � σ Wi · ht−1, xt  + bi( , (20)

where Wi represents the weight matrix for the forget gate
and bi represents the offset of the input gate.

$e cell state for input description is calculated by the
last output data and the current input data:

ct � tanh Wc · ht−1, xt  + bc( . (21)

$e current cell state (Ct) is as follows:

Ct � ft ∘Ct−1 + it ∘ Ct, (22)

where the last cell state (Ct−1) is multiplied by forget gate (ft)
according to different element and the current input cell
state (Ct) is multiplied by input gate (it) according to dif-
ferent element.

$e new cell state (Ct) is established by current memory
(Ct) and long-term memory Ct−1. On one hand, due to the
mechanism of forget and input gate, the new cell state store
information from a long time ago or forget the irrelevant
content. On the other hand, the output gate controls the
effect of long-term memory on current output:

ot � σ Wo · ht−1, xt + bo ( . (23)

$e final output of LSTM is decided by the output gate
and cell state (equation (29):

ht � ot ∘ tanh ct. (24)

3.3.RealizationofCNN-LSTM. $eCNN-LSTMwas realized
in Keras using TensorFlow backend based on Figure 5 and the
theory described in the previous sections (shown in Algo-
rithm 1). After normalization, the training data (train_x,
train_y) was fed into the constructed CNN model (1st Con-
V_model) to train the parameters with loss function (loss_-
function which is “mae” in our case) and optimizer (optimizer,
which is “adam” in our case). $e feature map of CNN was
then extracted and reshaped to train the LSTM layer.

4. Experiments

4.1. Datasets. Several key production factors that affect the
nitrogen oxide concentration in the plant were selected from
276 kinds of production factors of catalytic cracking unit. By
inquiring experts, the key factors of production include
nitrogen content in raw materials, process control param-
eters of reactor (FCC reaction temperature, catalyst/oil ratio,
and residence time), the regeneration process control pa-
rameters (regeneration way, dense bed temperature, oxygen
content in furnace, and carbon monoxide concentration),
and catalyst species (platinum CO combustion catalyst and
nonplatinum CO combustion catalyst).

A total of 2.592×105 of samples collected in half a year
were divided into training and validation sets with the
proportion of 70% and 30%, respectively. As shown in
Table 1, the key production factors were used as input data
and the NOx emission were used as labels.

In order to eliminate the dimensional effects among dif-
ferent variables, the original data was standardized using the
MinMaxScaler function in Python (equations (25) and (26)):
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Xstd �
X − Xmin

Xmax − Xmin
, (25)

Xscaled �
Xstd

(max − min) + min
, (26)

where Xmax andXmin are the maximum and minimum
values of the data and max and min are maximum and
minimum values of the zoom range. In addition, the
problem of time prediction was reconstructed into super-
vised learning.

4.2. Hyperparameters

4.2.1. CNN. $e hyperparameters in RNN mainly contain
weight initialization, learning rate, activation function, ep-
och numbers, iteration times, etc. Several important
hyperparameters include number of convolution layers,
number of convolution kernels, and size of convolution
kernel are discussed in this study.

4.2.2. LSTM. Long-short term memory (LSTM) is a kind of
RNN, in which tanh could be replaced by sigmoid activation
function, resulting in faster training speed. In LSTM, Adam
was used as an optimizer, MSE was used as a loss function,
and identity activation function was used to complete the
weight initialization. $e hyperparameters in LSTM mainly
contain number of hidden layer nodes and the number of
batch sizes.$e number of hidden layer nodes in LSTM have
direct influences on the learning results by affecting the
ability of nonlinear mapping which is the same as in
Feedforward Neural Networks. $e batch size have an in-
fluence on the computation costs and the learning accuracy
by affecting amount of data used for updating the gradient.

4.2.3. CNN-LSTM. As a neural network model combined
CNN with LSTM, the hyperparameters of CNN-LSTM is

basically the same with CNN and LSTM which mainly in-
clude learning rate η, regularization parameter λ, the
number of neurons in each hidden layer (such as the full-
connected layer and the number of neurons in LSTM), batch
size, convolution kernel size, neuron activation function,
pool layer size, and dropout rate. All the related hyper-
parameters were investigated and analysed in Section 5.

4.3. Performance Criteria. $e performances of different
algorithms were evaluated by the Root Mean Square Error
(RMSE) (equation (27) and the coefficient of determination
(R2) (equation (28)) [36]. $e RMSE value reflects the
discrete relationship between predicted and observed values:

RMSE �

�������������


N
n�1 on − pn( 

2

N



, (27)

where N is the data length, on is the nth observed value, and
pn is the nth predicted value.

$e R2 value reflects the accuracy of the model which
ranges from 0 to 1 with 1 denotes perfect match:

R
2

�
SSR
SST

�


n
i�1 yi − y( 

2


n
i�1 yi − y)2,

(28)

where yi represents the predicted value, y is the average
value, and yi is the observed value.

5. Results and Discussion

5.1. CNN-LSTM. $e hyperparameters mentioned above
were determined by the trial-and-error method. RMSE and
R2 were considered as objective function to optimize the size
and number of convolution kernel, the number of batch size,
the number of convolution layers, and the probability of
dropout. $e results shown in Figure 6 indicate the process
of optimizing hyperparameters for the proposed method.

Input: train_x, train_y
Hyper-parameters: filters, kernel_size, pool_size, batch_size, rate
Initialize ()
Normalization (train_x, train_y)
//$e first convolution layer
1st ConV_model� Sequential ([Convolution2D (filters, kernel_size, name� “Conv2D_1”), MaxPooling2D (pool_size), Flatten (),
Dense (units, activation), Dropout (rate), Dense (units, activation)])
1st ConV_model.compile (loss_function, optimizer)
1st ConV_model.fit (train_x, train_y, epochs, batch_size)
//Extract the feature map
1st ConV_feature_model�Model (inputs, 1st ConV_model.get_layer (“Conv2D_1”).output)
1st ConV_feature_output� 1st ConV_feature_model.predict (train_x)
//LSTM layer
reshape (1st ConV_feature_output)
LSTM_model� Sequential (LSTM (units, activation, recurrent_activation), Dense (units, activation))
LSTM_model.compile (loss_function, optimizer)
LSTM_model.fit (1st ConV_feature_output, train_y, epochs, batch_size)

ALGORITHM 1: Pseudocode of CNN-LSTM.
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Table 1: $e setting of input and labels.

Data types Key production factor types Parameters Unit

Input data

Raw materials Nitrogen content %

Process control parameters of reactor
FCC reaction temperature °C

Catalyst/oil ratio %
Residence time Second (s)

Regeneration process control parameters

Regeneration way
Dense bed temperature °C

Oxygen content in furnace %
Carbon monoxide concentration % mg/m3

Catalyst species Platinum CO combustion catalyst —Nonplatinum CO combustion catalyst
Labels NOx emission data mg/m3
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Figure 6: Optimization of hyperparameters for CNN-LSTM. (a) Size of convolution kernels. (b) $e number of batch size. (c) $e number
of convolution kernels. (d) $e number of convolution layers. (e) $e probability of dropout.
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Figure 7: Continued.
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$e network structure adopts two convolutional parts as
the CNN layer; the kernel size is 1 × 5 for the first and second
CNN layer. Each convolution layer is followed by a Rectified
Linear Unit (ReLU) layer (equation (29) and a maximum
pooling layer. $e output of CNN part is a 32-dimensional
vector after operations. All the vectors form a sequence and
feed into the LSTM layer:

ai, j, k � max zi, j,k, 0 , (29)

where zi, j,k is the input of the activation function at location
(i, j) on the kth channel. ReLU allows neural networks to
compute faster than sigmoid or tanh activation functions
and train deep network more effectively. In order to train a
neural network with strict backpropagation algorithm, the
contribution of all samples to the gradient must be con-
sidered simultaneously.

With the incorporation of the LSTM network, the
proposed CNN-LSTM network can be trained with time
series data of FCC unit. A LSTM layer followed by the FC
layer is used to assign the predicted value to each frame in
the sequence.

$e output of the CNN layer passes through two
dropout layers and two FC layers to combine the features
extracted by the CNN layer. During the training stage, the
dropout layer will randomly remove the connection be-
tween the CNN layer and the FC layer in each iteration. In
our experiments, we set the dropout rate to an empirical
value of 0.25, which has shown effectiveness in perfor-
mance improvement (the experiment on the dropout rate is
shown in Figure 6(e)). $e convolution layer, convergence
layer, and activation function layer are conducted to map
the raw data to the feature space in hidden layer. And the
full-connected layer plays the role of “classifier” which

maps the learned feature representation to the memory
space of the sample.

5.2. CNN. $e hyperparameters of CNN were also de-
termined by the trial-and-error method. RMSE and R2

were considered as an objective function to optimize the
size and number of convolution kernel and the number of
convolution layers. $e results shown in Figure 7 indicate
the process of optimizing hyperparameters for CNN
from which one can conclude that the optimal values for
the number of convolution layers, the number of con-
volution kernels and the size of convolution kernel are 1,
16, and 1 × 5.

5.3. LSTM. $e optimization process of hyperparameters
for LSTM was shown in Figure 8. RMSE and R2 were used as
quantitative performance criteria to evaluate the hyper-
parameters (i.e., the number of hidden layer nodes and the
number of batch size). $e process and results shown in
Figure 8 indicated the optimal values for the number of
hidden layer nodes and the number of batch size are 40 and
500, respectively.

5.4. Experiments on Different Methods. $e accuracy of
CNN and LSTM and the proposed CNN-LSTM method
for the training stage and validation stage were evaluated
by R2 and RMSE. All methods were well tuned and ten test
runs were conducted to eliminate the random errors of
each method. $e average criteria for each method were
calculated to evaluate the performance. $e results were
presented in Tables 2 and 3 and Figure 9, respectively.
Compared with traditional CNN, the proposed CNN-
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Figure 7: Optimization process of hyperparameters for CNN. (a)$e number of convolution layers. (b)$e number of convolution kernels.
(c) Size of convolution kernel.
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LSTMwas more accurate in NOx emission prediction with
average RMSE of 23.7089 and R2 of 0.8237. $e combi-
nation of CNN and LSTM integrates the advantages of CNN
and LSTM which are capable of extracting the features among
different data sequences and the features between different time

steps. $e ability of CNN-LSTM is suitable for the charac-
teristics of datasets from refining and chemical enterprises. By
describing the local feature relationship under multidimen-
sional and long-term conditions, CNN-LSTM matches the
observations better than the other methods.
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Figure 8: Optimization process of hyperparameters for LSTM: (a) number of hidden layer nodes; (b) number of batch sizes.

Table 2: $e RMSE of different methods.

Test CNN LSTM CNN-LSTM
#1 76.4694 26.3256 22.8220
#2 68.1422 26.0771 22.2389
#3 105.1664 25.6918 22.8374
#4 66.4166 25.4898 26.5900
#5 80.0437 26.0154 23.0910
#6 66.0526 25.8325 23.9463
#7 135.0926 25.7496 27.4446
#8 95.9767 25.7942 21.9647
#9 91.5383 25.8024 23.1579
#10 53.0630 27.0787 22.9959
Average 83.7962 26.2065 23.7089

Table 3: $e R2 of different methods.

Test CNN LSTM CNN-LSTM
#1 0.4935 0.7931 0.8222
#2 0.4718 0.7912 0.7923
#3 0.3329 0.7923 0.8060
#4 0.4891 0.7946 0.8367
#5 0.1761 0.7980 0.8358
#6 0.3739 0.7900 0.8014
#7 0.4748 0.7999 0.8130
#8 0.1901 0.7964 0.8448
#9 0.1094 0.7734 0.8452
#10 0.1133 0.5345 0.8328
Average 0.3224 0.7663 0.8237
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6. Conclusions

In this paper, a novel CNN-LSTM scheme combining CNN and
LSTM was proposed for the prediction of NOx concentration
observed during FCC process. Dropout were introduced to
accelerate network training and address the overfitting issue. In
our study, a series of hyperparameters (learning rate, regula-
rization parameter, the number of neurons in each hidden layer,
small batch data size, convolution kernel size, neuron activation
function, pool layer size, and dropout rate) and conditions (raw
materials, process control parameters of reactor, regeneration
process control parameters, and catalyst species) were selected
and optimized. Experiments were conducted to evaluate the
proposed scheme with traditional methods (CNN and LSTM)
being baseline models. $e hyperparameters of all the methods
were optimized to obtain the best results. RMSE and R2 were
used to evaluate the performance of different methods. Due to

the capability of extracting features among different data se-
quences and different time steps, better efficiency and accuracy
were obtained by CNN-LSTM than baseline models. $is study
provides a potential direction of deep learning methods by
integrating different architectures for individual advantages.$e
CNN-LSTM scheme proposed in this paper would be a ben-
eficial contribution to the accurate and stable prediction of
irregular trends for NOx emission from refining industry and
providedmore reliable information forNOx risk assessment and
management. Future work will focus on attention and trans-
former mechanism to obtain better results and explore the
application of the proposed scheme on other datasets.

Data Availability

All data and program files included in this study are available
from the corresponding author upon request.
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Figure 9: Comparisons of the observed and predicted NOx concentrations of (a) CNN; (b) LSTM; (c) CNN-LSTM.
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)e long-term and short-term volatilities of financial market, combined with the complex influence of linear and nonlinear
information, make the prediction of stock price extremely difficult. )is paper breaks away from the traditional research
framework of increasing the number of explanatory variables to improve the explanatory ability of multifactor model and provides
a new financial trading strategy system by introducing Light Gradient Boosting Machine (LightGBM) algorithm into stock price
prediction and by constructing the minimum variance portfolio of mean-variance model with Conditional Value at Risk (CVaR)
constraint. )e new system can capture the nonlinear relationship between pricing factors without specific distributions. )e
system uses Exclusive Feature Bundling to solve the problem of sparse high-dimensional feature matrix in financial data, so as to
improve the ability of predicting stock price, and it can also intuitively screen variables with high impact through the factor
importance score. Furthermore, the risk assessment based on CVaR in the system is more sufficient and consistent than the
traditional portfolio theory. )e experiments on China’s stock market from 2008 to 2018 show that the trading strategy system
provides a strong logical basis and practical effect for China’s financial market decision.

1. Introduction

With the development of stock market, the efficiency of
artificial subjective investment mode is gradually reduced
due to the complex and diverse investment targets.
Benefiting from the advancement of data science and sta-
tistical method, the former subjective investment mode has
been gradually replaced by quantitative investment strategy,
which uses data and models to construct investment
strategies. New investment model, selecting stocks with
investment value by combining the open information in the
market with statistical methods, avoids the subjective impact
of human to some extent.

As the most widely used quantitative stock selection
model at present, multifactor model is based on finding out
factors with the highest correlation with the stock return
rate, which can predict the stock return to some extent.
However, in the empirical test, scholars have found that it
could not bring sustained returns to investors due to the low
prediction accuracy and the lack of stability of the prediction
results.

At the same time, through the empirical study with fi-
nancial market data, scholars found that the financial market
is a dynamic system with high complexity, including long-
term and short-term fluctuations and linear and nonlinear
information. )e formation and change of stock price in-
volve various uncertain factors, and there are complex re-
lationships among them. To further study and analyze
financial data and for more accurate prediction, the appli-
cation of machine learning algorithms in the research of
financial time series has been widely concerned by scholars.

Compared with the linear model, machine learning al-
gorithm takes the nonlinear relationship between variables
into account. It does not need to be based on the assumption
of independence and specific distribution and has higher
flexibility and efficiency, making it excel at dealing with big
data, especially the huge amount of financial data.

)e innovations of this paper are as follows: Firstly, it
breaks away from the traditional research framework of
improving the explanatory power of multifactor model by
increasing the number of explanatory variables and provides
a new trading strategy system by introducing one of the
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latest machine learning algorithms, LightGBM, into the field
of portfolio. LightGBM does not need to consider the
specific distribution form of financial data, and it can capture
the nonlinear relationship between pricing factors, and the
Exclusive Feature Bundlingmethod can solve the problem of
sparsity of high-dimensional characteristic matrix and im-
prove the prediction accuracy of stock returns. Secondly, the
new system can be used to generate importance score of
factors. It directly shows the impact variables have on stock
return, which has important practical significance for stock
selection. )irdly, for stock position allocation module, we
construct minimum-variance weight method of mean-var-
iance model with CVaR constraint and test the trading
strategy system on the real data of China’s A-share market.
)e experiment result shows that the system can bring stable
excess return to investors and provides a logical basis and
practical effect for China’s stock market.

2. Literature Review

SinceMarkowitz proposed mean-variance model to quantify
the risk in 1952, scholars have been trying to find ideal
models for stock pricing. In 1960s, the CAPM model pro-
posed by Sharpe, John Lintner, and JanMossin expresses the
relationship between expected return and expected risk as a
simple linear relationship [1, 2]; Ross [3] put forward the
Arbitrage Pricing )eory on this basis, revealing that stock
return is affected by multiple factors rather than a single
factor; Fama and French [4, 5] proposed a three-factor
model, which includes market value, book value ratio, and P/
E ratio of listed companies as compensation for the risk
factors that β cannot reflect. However, the classic models
above were lacking explanation in the empirical test. At the
beginning, scholars attributed that to the omission of ex-
planatory variables, so they successively put forward factors
that may lead to excess return: For example, Datar et al. [6]
used the data of NYSE for empirical analysis and found that
there was a significant negative correlation between stock
return and stock turnover. Piotroski [7] selected nine in-
dicators from the perspective of the company’s financial
indicators, including profitability, robustness, and growth.
By comprehensively scoring each indicator, he established a
stock pool and selected the stocks according to the scores.
Novy-Marx [8] proved that there is a strong correlation
between the company’s profitability and stock return.
Aharoni et al. [9] also found that the company’s investment
level and stock return are remarkably correlated. In 2014,
Fama and French added Robust Minus Weak (RMW) as
profit factor and Conservative Minus Aggressive (CMA) as
investment factor based on the three-factor model and put
forward five-factor model to further explain the stock return
[10].

However, none of the models above deviated from the
research framework of linear asset pricing under the
background of small sample data, that is, extract excess
return factors from historical data and then use these factors
as independent variables to construct a linear model to
evaluate the investment value of stocks.

Since the 1970s, with the increasing availability of em-
pirical data in the financial market and the improvement of
computer technology, scholars have found several abnormal
phenomena in the financial market through empirical re-
search.)ese abnormal phenomena are contrary to the basic
assumption of CAPM: financial market data obey normal
distribution, have no long memory, and satisfy the linear
model, which challenges the traditional model [11]. For the
stock market, Greene and Fielitz [12] performed a test and
confirmed that the American stock market has the feature of
long memory, which showed that even if the time interval is
very long, it still had significant autocorrelation; that is, the
historical events would affect the future for a long time. On
the one hand, it proved the importance of historical in-
formation and the predictability of return; on the other
hand, it also reflected the nature of nonlinear structure of
stock market. As for the distribution of financial data,
scholars pointed out that, in reality, the distribution of fi-
nancial data is usually characterized by thick tail and
asymmetry [13]. )erefore, the traditional use of normal
distribution to fit the actual financial data has limitations.
For example, in VaR calculation, due to the thick tail of
financial data distribution, the calculation under the as-
sumption of normal distribution will lead to huge errors
[14]. In order to find the most reasonable distribution hy-
pothesis, Mandelbrot [15] proposed replacing the normal
distribution of financial data with the stable distribution.
However, because the tail of the stable distribution is usually
thicker than the actual distribution, some scholars proposed
using the truncated stable distribution as the distribution of
securities returns [16], but where to cut off had become
another question.

In recent years, in order to analyze and predict financial
data more accurately, machine learning has received wide
attention from scholars. Compared with the traditional
model, machine learning has a unique advantage in dealing
with financial data. First of all, it can automatically identify
the hidden features behind the financial data, reducing
human intervention. Secondly, the traditional linear asset
pricing model is based on the assumption that the financial
system is linear. However, scholars’ research on the non-
linear characteristics of financial time series, such as long
memory and nonpairing distribution, indicates that the
stock market system is actually a dynamic system with linear
and nonlinear information. Machine learning models can
deal with high-dimensional and collinear factors and are not
limited to the probability distribution of investment income.
Machine learning models do not need to calculate high-
dimensional covariance matrix [17].

Mukhejee (1997) firstly proposed the application of
support vector machine in nonlinear chaotic time series,
which provided the basis for the application of stock series.
In the empirical study, Fan and Palaniswami [18] first ap-
plied the support vector machine model to stock selection.
Based on the data of Australian stock exchange, the model
they constructed could identify the stocks that outperform
the market and the five-year yield of the equal weight
portfolio constructed was 208%, which was far higher than
the benchmark return of the large market. Kim [19] used
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support vector machine (SVM) and artificial neural network
(ANN) to predict the market index and the results showed
that SVM had more advantages than ANN in stability. )ere
are also some literatures that focus on the differences be-
tween different models in variable selection and modeling
characteristics; for example, Xie et al. [20] and Huang et al.
[21] set the rise and fall of stock market as dichotomous
variables and used linear model, BP neural network, and
support vector machine model to predict them. It was found
that SVM had better classification performance than other
methods, and the combined model performed best in all
prediction methods when SVM is combined with other
models. Nair et al. [22] used C4.5 decision tree algorithm to
extract the characteristics of stock data and then applied it to
the prediction of stock trend. )ey found that the prediction
effect of C4.5 decision tree was better than neural network
and naive Bayesian model. Zhu et al. [23] applied Classi-
fication and Regression Tree (CART) algorithm and tradi-
tional linear multifactor model in North American market
during the outbreak of financial crisis and found that the
stock selection model based on CART algorithm had a
significant effect on risk dispersion. Kumar and )enmozhi
[24] used random forest model to predict the up and down
direction of Standard and Poor’s and found that the result
was better than that of SVM. Bogle and Potter [25] used
decision tree, artificial neural network, support vector
machine, and other machine learning models to predict the
stock price of Jamaica stock exchange market and found
that, in this market, the prediction accuracy of stock price
could reach 90%.

In recent years, the first mock exam has also been made
in some areas, such as the sequence dependence of financial
time series data and the local association characteristics of
different financial market time series data. For example, Xie
and Li [26] discussed the joint pricing models and Yan [27]
constructed a CNN-GRU neural network, which combines
the advantages of convolutional neural network (CNN) and
gating loop unit (GRU) neural network. )ere are also some
papers that study the computing power, time consumption,
and even hardware layout of various algorithms. For the
discussion of machine learning related hardware, refer to
Tang et al. [28, 29].

3. System Introduction

Based on machine learning algorithm, this paper constructs
an optimal trading strategy system, which aims to bring
stable excess return to investors. According to Figure 1, this
system is divided into four modules: data preprocessing,
stock pool selection, position allocation, and risk mea-
surement. )e details are as follows.

3.1. Data Preprocessing. Because of the noise and format
asymmetry in financial data, preprocessing plays an im-
portant role in getting accurate prediction results. According
to Figure 2, we preprocess the financial data according to the
following steps:

Step 1(financial data processing): due to the differences
in the format of financial statements of different
companies, the data sets have sparse data spaces. )e
financial accounts with over 20% missing values are
discarded directly. )e remaining default values are
filled with the average values of the previous and next
three quarters. Since the income statement and cash
flow statement are process quantities, representing the
accumulation of quarterly values, the data of these two
financial statements are differentially processed to
obtain quarterly data.
Step 2 (market data processing): since the stock market
data set is monthly, in order to match the data in the
financial statements, it is processed on a quarterly
average basis.
Step 3 (data screening): due to the differences in the
format of financial statements in different industries,
financial data are divided into banking, securities in-
dustry, insurance industry, and genera business. As the
banking, insurance, and security industries are all
subindustries under the financial industry, their busi-
nesses are complicated and are greatly affected by the
macro impact, resulting in the uncertainty and vola-
tility of their stock prices far greater compared to the
general business. )erefore, prediction from their fi-
nancial data alone is difficult. Moreover, after pre-
processing, it is found that the data of these industries
are too insufficient to make a prediction. In view of the
lack of reference in the forecast results, these three
industries are deleted from the data, and only the data
of general business are retained.
Step 4 (data splicing): we take the company’s stock code
as the primary key and combine the financial data with
market data of the same quarter into a wide table to
prepare for feature engineering.
Step 5 (feature engineering): this paper applied ma-
chine learning models into stock return forecasting.
)e reason why machine learning can achieve high
prediction accuracy is that it can deal with the non-
linear relationship between variables. Unlike simple
linear model, the complexity of the model leads to
machine learning being regard as a “black box.” Due to
the lack of interpretation, it is contradicted by the
traditional financial industry. In order to improve the
credibility of our model, not only do we use the im-
portance of variables to analyze the important influ-
encing factors of stock price return, but also we accord
to the previous literature and construct the charac-
teristics that have been proved to have strong signifi-
cance in the previous multifactor model. Table 1 shows
the calculation method and index implication.
Step 6 (missing value processing and standardization):
due to the high requirements of data integrity in stock
forecast, we delete the data with the missing rate more
than 10%. For the remaining missing value, based on
the idea of moving average, we take the same fields of
the three records before and after the missing record to
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calculate the moving average value, thus retaining the
trend information of the stock as much as possible.
Finally, in order to improve the convergence speed and
prediction accuracy of the model, the data are
standardized.

3.2. Stock Pool Generation. )is paper uses LightGBM al-
gorithm under the sliding time window training method to
predict the quarterly earnings of stocks and compares it with
traditional linear model, support vector machine, artificial
neural network, random forest, and other machine learning
models. )e evaluation criteria of models are R2 and RMSE.
Based on the prediction results, a stock pool composed of a
limited number of stocks is generated, and then the portfolio
is constructed according to different position allocation
methods.

3.2.1. Algorithm Principle: LightGBM. Compared with the
generalized linear model, machine learning, as a new model,
does not need to be based on the assumption that the
variables are independent and obey the distribution of
specific functions and has greater flexibility and efficiency.
Machine learning algorithms have unique advantages in

dealing with a large amount of data, such as financial market
data.

Among many machine learning algorithms, LightGBM
algorithm has the characteristics of high speed, high accu-
racy, high stability, and low memory space. It has wide
application space in the financial field with large amount of
data and high requirements for prediction accuracy and
stability. LightGBM is essentially an enhanced gradient
lifting tree that can be used for regression and classification.
Compared with the previous gradient lifting tree (GBT), it
has the following advantages: LightGBM uses the leaf-wise
(best-first) strategy to grow a tree: find the leaf with the
largest gain each time and split it while other nodes without
the maximum gain do not continue to split. LightGBM does
not need artificial trim, so the result is relatively objective
and stable. At the same time, LightGBM adopts histogram
algorithm and accumulates statistics in the histogram
according to the value after discretization as the index to
calculate the information gain. LightGBM also adopts two
new calculation methods: Gradient-Based One-Side Sam-
pling and Exclusive Feature Bundling, greatly improving the
accuracy and efficiency of calculation.

(1) Given the supervised training set X � (xi, yi) 
n

i�1,
the goal of LightGBM is to minimize the objective
function, which is
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J(ϕ) � 
i

l yi, yi( , (1)

where i denotes the i − th sample and l(yi, yi) de-
notes the prediction error of the i − th sample.

(2) For optimizing the objective function, LightGBM
uses gradient boosting method to train rather than
using bagging method to directly optimize the whole
objective function. )e gradient boosting training
method optimizes the objective function step by step.
Firstly optimize the first tree and then optimize the
second one and so on until the K tree is completed.

(3) When generating a new optimal tree, LightGBM uses
the leaf-wise algorithm with depth limitation to grow
vertically. )erefore, the leaf-wise algorithm is more
accurate compared with the level-wise algorithm
when they have the same number of splitting times.

When the T − th tree is generated, every time a newly
generated split node is added, and then the objective
function can be obtained as follows:

J �
1
2

i∈IL
gi 

2

i∈IL
hi + λ

+
i∈IR

gi 
2

i∈IR
hi + λ

−
i∈Igi( 

2

i∈Ihi + λ
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (2)

where gi � z
y

(t−1) l(yi, y(t− 1)), hi � z2
y

(t− 1) l(yi, y(t− 1)); IL and
IR are the sample sets of the left and right branches,
respectively.

3.2.2. A Method for High-Dimensional Feature Matrix
Sparsity: Exclusive Feature Bundling. In order to get the data
of each quarter, we carried out differential processing on the
financial statements of process volume during data pre-
processing. However, due to the lack of mandatory regu-
lations on the quarterly reports of listed companies in China,
some companies have the problem of time lag in the
quarterly reports, and there are a large number of zero values
in the data of nonupdated adjacent quarterly reports after
differential processing. At the same time, due to business
differences between companies, nonshared business ac-
counts in financial statements sometimes are also zero.

In conclusion, the financial data of listed companies with
large subjects and different businesses eventually form a
high-dimensional feature matrix, and a large number of zero
values in the matrix lead to the problem of data sparsity.
Traditional statistical methods are often unable to extract
enough effective information when dealing with high-di-
mensional and sparse data, which makes the prediction
results inaccurate or even wrong. In order to solve this
problem and improve the prediction accuracy, we introduce
Exclusive Feature Bundling (EFF) method of LightGBM into
the stock pool selection module.

Table 1: Features and implication.

Index Calculation method Implication

Profitability
ROE Net profit/owner’s equity Return on equity
ROA Net profit/total assets Return on assets
ROS Total profit/operating income Return on sales

Fluidity
D/E Liabilities/owner’s equity Debt to equity ratio

Cash ratio (Current assets− inventory)/current liabilities Ratio of quick assets to current liabilities
Current ratio Current assets/current liabilities Ratio of current assets to current liabilities

Operating
efficiency

Equity turnover Sales income/average shareholders’ equity )e efficiency of the company in using the
owner’s assets

Asset turnover
Sales income/average total assets

Average balance of total assets � opening
balance + closing balance/2

An important financial ratio to measure the
efficiency of enterprise asset management

Valuation
index

B/M Outstanding stock∗ closing price/shareholder
equity

Book-to-market ratio
High B/M, considered to be undervalued by the

market, resulting in high yield

P/E Market price per common share/earnings per
common share per year

Price-to-earnings ratio
)e lower the price earnings ratio is, the lower
the profitability of the market price relative to

the stock is

P/B Share price/net asset per share

Price-to-book ratio
)e higher the investment value of stocks with

low market to net ratio is, the lower the
investment value is

Market value of
listed company

Market price per share∗ total number of shares
issued

)e total value of shares issued by a listed
company at market price

Turnover Trading volume/total issued shares )e higher the turnover of a stock is, the more
active the stock is in trading

β Coefficient Systematic risk
coefficient

Regression of the historical rate of return of a single
stock asset to the index rate of return of the same

period

β describes the systemic risk of a fully
diversified portfolio
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Exclusive Feature Bundling aims to solve the problem of
data sparsity by merging mutually exclusive features to
reduce the dimension of feature matrix [30]. Since
LightGBM stores the features divided into discrete values by
constructing histogram instead of storing continuous values
directly, we can combine mutually exclusive features by
assigning them to different intervals of the same histogram.

For example, Xa and Xb are two mutually exclusive
features, where Xa ∈ [0, a) and Xb ∈ [0, b).

)e new bundling feature Xc can be obtained by adding
the value range of Xa as offset and value range of Xb, where
Xc ∈ [0, a + b):

Xa � Xc, Xb � 0 when 0≤Xc < a,

Xa � 0, Xb � Xc − a when a≤Xc < a + b.
 (3)

3.2.3. TrainingMethod: Sliding TimeWindow. Since the data
of the stockmarket is a time series, the historical information
of the company has a great influence on the future stock
price. Considering that the sequence has a great influence on
the values of the sequence nodes, the prediction model in
stock pool selection should consider the key element, “time,”
in the prediction process, instead of treating the stock prices
of all times as the same data and randomly selecting the
training set and the test set. )erefore this system does not
use cross-validation but uses sliding time window to ran-
domly simulate the prediction process.

In the experiment, suppose that the size of sliding time
window was N quarters. In a unit time window, the first N-1
quarter is the training set, and the last quarter is the test set.
)e size of the time window should take into account the
characteristics of the data set. If it is too short, the natural
time period of the test set may be outside the training set,
and the time information brought by the time window will
be greatly reduced; if it is too long, some unnecessary noise
may be introduced.

In essence, the model in each time window is a new
model and they are all independent of each other. According
to Figure 3, the stock price of each stock in the next quarter
in each time window is predicted according to all the in-
formation in the latest quarter.

3.2.4. Stock Selection. )e goal of this paper is to apply a new
machine learning model, LightGBM, to the prediction of
stock return and to construct a low-risk and high-yield
portfolio compared with the stock price prediction models
used in previous studies. In order to highlight the risk of
different portfolio construction methods, the first N stocks
are selected as the stock pool from the stock list sorted by the
yield, only the long purchase rule is allowed in this part to
ensure that the yield equals the required value. )en adjust
the position of each stock according to different weights to
find the optimal portfolio.

3.3. Stock Position Allocation Method. )is paper uses three
methods of stock position allocation: (1) equal-weight method,
(2) market-value weightingmethod, and (3) minimum-variance

method of mean-variance model with CVaR constraint.
Combined with the sliding time window training method to
predict the quarterly earnings of the stock, we useR-squared and
RMSE of the model as the evaluation criteria, while in the
traditional linearmodel, support vectormachine, artificial neural
network, random forest, and other machine learningmodels are
used. Based on the prediction results, a stock pool composed of a
limited number of stocks is generated, and then the portfolio is
constructed according to different position allocation methods.

3.3.1. Method 1: Equal-Weight Method. Each stock is
assigned the same weight. If there are n stocks in the stock
pool, the weight of each stock is wi � 1/n.

3.3.2. Method 2: Market-Value Weighting Method. )e ratio
of market value of stock i to themarket value of all n stocks in
the stock pool is taken as the weight of this stock, and the
calculation formula is as follows:

wi �
Market valuei


n
i�1 Market valuei

, (4)

where Market valuei is the market value of the company at
the closing of the previous period and it is calculated by
multiplying the market price of each share by the total
number of shares issued.

3.3.3. Method 3: Minimum-Variance Weight Method of the
Mean-Variance Model with CVaR Constraint. In 1952,
Markowitz published the beginning article of modern
portfolio theory “portfolio selection” in the financial mag-
azine, which studies how to allocate risk assets effectively.
Markowitz believed that investors only consider two factors
of expected return and standard deviation of forecast when
making portfolio decision, so portfolio decision was mainly
based on the following two points: (1) when the investment
return is the same, investors want to minimize the risk; (2)
when the risk is the same, investors want to maximize the
income. According to the principle of mean-variance effi-
ciency, the optimal portfolio can be expressed by mathe-
matical programming in the process of investing in assets.

Assuming that the return of risk assets obeys normal
distribution, consider CVaR constraint in Markowitz mean-
variance model, and then the portfolio optimization model
based on CVaR constraint is

min σ2p � minXT  X,

s.t. CVaRβ � C2(β)σp − E rp ≤L,

E rp  � XTR,

XTI � 1, I � (1, 1, . . . , 1)T,

xi∈ [0, 1],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where C2(β) � ϕ(Φ−1(β)), R � (R1, R2, . . . ,

Rn), Ri � E(ri)is the expected return of i − th stock, and X �

(x1, x2, . . . , xn)T is the weight of each portfolio. We have the
following:
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(1) According to the constraint equation, CVaRβ �

C2(β)σP − E(rP)≤ L, and we obtain

CVaRβ � C2(β)σP − E rP(  � L. (6)

(2) After transformation, we obtain

σ2P �
1

C2(β)( 
2 E rP(  + L( 

2
�

1
C2(β)( 

2

· E
2

rP(  + 2LE rP(  + L
2

 .

(7)

(3) Define RP � E(rP) � XTR and σ2P � XT  X; equa-
tion (7) can be

X
T

 X �
1

C2(β)( 
2 X

T
R 

2
+ 2L X

T
R  + L

2
 .

(8)

(4) Since the rank of the system of linear equation (8) is
n − 2, the number of its basic solutions is 1. )at is to
say, x2, x3, . . . , xn−1, can be linearly expressed by x1
(obtained by elimination method). Since 

n
i�1 xi � 1,

xn can also obviously be expressed by x1, by
substituting x2, x3, . . . , xn−1 into equation (8), we can
get a quadratic equation of x1, and then we can
obtain x2, x3, . . . , xn−1 by calculating x1.

(5) )erefore, if x1 has no solution, the constraint line
does not intersect the mean-variance effective front,
which means CVaR does not play a constraint role; if
x1 has two multiple roots, there is only one inter-
section A between the constraint line and the mean-
variance effective front, and the weight of A is x1; if
there are two different roots, the constraint line and
the mean-variance effective front have two inter-
sections, A and B. )e expected return and variance
of portfolio at A and B are RA, RB, σ2A, and σ2B.

3.4. Risk Evaluation. )is paper mainly studies how to re-
duce the risk of portfolio. At present, the most common
measurement methods of portfolio risk are sensitivity

method, volatility method, VaRmethod, and CVaR method.
)ey are introduced, respectively, as follows.

3.4.1. Method 1: Sensitivity Method. Sensitivity method is a
method to measure the risk of financial assets by using the
sensitivity of the value of financial assets to market factors.
Sensitivity refers to the percentage change in the value of
financial assets when market factors change by a percentage
unit. )e greater the sensitivity of financial assets is, the
greater the impact of market factors is and the greater the
risk is.)e sensitivity of different types of financial assets has
different names and forms, such as the duration and con-
vexity of bonds, beta of stocks, Delta, Gamma, and Vega of
derivative assets. )e problems of sensitivity method lie in
the following: (1))e sensitivity is only valid when the range
of market factors changes is very small. (2) A certain sen-
sitivity concept is only applicable to a certain class of specific
assets or a certain class of specific market factors, which
makes it difficult to compare the risks among different kinds
of assets. (3) )e sensitivity is only a relative proportion
concept, which cannot determine the risk loss of a certain
portfolio body value.

3.4.2. Method 2: Volatility Method. Volatility method is a
statistical method, which is usually described by standard
deviation or covariance. Variance represents the volatility of
the actual rate of return deviating from the average rate of
return. )e greater the volatility, the greater the uncertainty
of the actual rate of return, regardless of whether the actual
rate of return is higher than the average rate of return or
lower than the actual rate of return. One of the main defects
of variance measurement of investment risk is that variance
represents positive and negative deviation, generally
speaking, investors do not want that the actual return is less
than the expected return, but they do not refuse when the
actual return is higher than the expected return. )erefore,
Markowitz put forward the semi variance method in 1959;
that is, the part of the actual income higher than the expected
income is not included in the risk, and only the loss is
included. )ere are some problems in both variance method
and semi variance method: (1) )e method is based on the
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Figure 3: Sliding time window model.
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assumption that variance exists, but whether the variance of
return rate exists is still questionable. (2) Variance implies
the assumption of normality, so only the linear correlation
structure between risks can be analyzed. In reality, the risk
dependence structure may be a nonlinear complex structure.
(3) )e square deviation does not specifically indicate how
much the loss of the portfolio is. (4) )is method is not
suitable for comparing the risk of assets with different ex-
pected return.

3.4.3. Method 3: VaR Method. VaR is Value at Risk [31].
VaR is the maximum possible loss expected in the holding
period of an investment within a certain confidence level. Its
mathematical expression is as follows:

Prob(Δp≤VaR) � α, (9)

where Δp is the loss amount of the portfolio during the
holding periodΔt, which is the Value at Risk under the given
fixed credit level α, that is, the upper limit of possible loss.
)e meaning of the expression of the above formula is that
the risk loss of the portfolio is not less than the VaR at the
level of probability. In the research, the above expression is
regarded as a function of VaR on α, and the probability
distribution function of the portfolio return is expressed
with F(α), which means

VaRα � F
−1

(α). (10)

)e advantages of VaR method are: the following (1))e
measurement of risk is simple and clear, the risk mea-
surement standard is unified, and it is easy for managers and
investors to understand and grasp. (2) VaR can also be used
to compare the risks of different types of financial assets, but
its disadvantage lies in the inconsistency.

3.4.4. Method 4: CVaR Method. CVaR is a new risk mea-
surement method proposed by Roekafellor and Uryasev
(1999), also known as Conditional Value at Risk method,
which means that, under a certain confidence level, the loss
of portfolio exceeds themean value of a given VaR, reflecting
the average level of excess loss. Its mathematical expression
is as follows:

CVaRα � E −X | − X≥VaRα( , (11)

where −X represents the random loss of the portfolio and
VaRα is the Value at Risk under the confidence level.

)e advantages of CVaR are as follows: (1) It solves the
problem of inconsistency measurement, satisfies the addi-
tivity of risk, and improves the defect of VaR. (2) It does not
need to realize the form of assumed distribution, and, in any
case, its calculation can be realized by simulation. (3) It fully
measures tail loss and calculates the average value of tail loss,
which considers all tail information larger than VaR rather
than based on a single quantile to calculate.

)erefore, this paper mainly measures the risk of stock
portfolio based on the VaR and CVaR. Monte Carlo sim-
ulation method is used in the specific calculation method,
which is the most effective method to calculate VaR and

CVaR as it can solve the nonlinear relationship of various
targets well without making assumptions on the distribution
of portfolio income.

4. Empirical Research

4.1. Experimental Results and Analysis. )e data used in this
paper are the market data of 3676 A-share listed companies
in China from 2008 to 2018, as well as the financial data
disclosed by the company on a quarterly basis (including the
company’s balance sheet, profit statement, and cash flow
statement).

After data preprocessing and feature engineering, the
processed data from the fourth quarter of 2008 to the first
quarter of 2018 are selected as the final data set.

Based on the total split times of features, the top 20
variables in the variable importance score obtained by our
trading strategy system are as follows.

According to Figure 4, the factor affecting the next stock
pricemost significantly is the closing price of the current stock
(CLOSE_PRICE). According to Charles Dow’s technical
analysis theory, the historical price of the stock contains a lot
of information. )e price will evolve in the way of trend, and
the history will always be repeated because of human psy-
chology and market behavior. By studying the historical price
of the stock, investors can find out the current market and the
trend, so as to better detect the stock selection target and the
opportunity to build a position.)erefore, the closing price of
the current stock is highly related to the next stock price,
which is the most important variable to predict the stock
price. )e second in the list is accounts payment (AP). In
order to expand sales and increase market share, enterprises
often buy materials and accept services first and then pay
service fees and commissions. )e time difference between
sales and payment also reflects the risk that enterprises may be
short of funds and cannot pay in time. )erefore, AP is an
important reference index for investment.)e third index, the
growth rate of the previous period’s stock price (Price_rate),
has a great contribution to the prediction of the stock price. It
has a positive correlation with the growth of the current
period’s stock price. Generally, the higher the growth rate of
the previous period’s stock price is, the higher the growth of
the stock is and the greater the possibility of continuous
growth in the current period is.

Other financial indicators, such as the balance of cash
and cash equivalents at the beginning of balance
(N_CE_BEG_BAL), turnover (TURNOVER_VALUE), cash
paid for goods purchased and services received
(C_PAID_G_S), surplus reserve (SURPLUS_RESER), and
return on assets (ROA), also have impact on the stock price.
)e balance of cash and cash equivalents at the beginning of
the balance refers to the amount of cash and cash equivalents
carried over from the previous year to the current year for
current turnover. It reflects the cash stock of the enterprise.
Turnover rate measures the frequency of stock turnover in
the market within a certain period of time, reflecting the
activity of market trading investment. Its calculation for-
mula is as follows: turnover rate� trading volume/total
number of shares issued. )e higher the turnover of a stock

8 Mathematical Problems in Engineering



is, the more active the stock is. )e cash paid for purchasing
goods and receiving services is the main cash flow generated
in the business activities of industrial and commercial en-
terprises, which reflects the status of the main business. )e
surplus reserve is the accumulation of earnings that the
enterprise keeps in the enterprise from the after tax profits. It
can be used to expand production and operation, increase
capital (or share capital), or distribute dividends, which has a
direct impact on the stock price. )e return on assets is an
important index to measure the profitability of a company
relative to its total assets. )e calculation method is as
follows: return on assets� net profit/total assets. )e higher
the index is, the better the asset utilization effect of the
enterprise is, indicating that the enterprise has achieved
good results in increasing revenue and saving capital use. It
can be seen that LightGBM considers a variety of financial
indicators comprehensively, and the importance score also
provides a reference for the research and analysis of long-
term investment in enterprise value.

It is noteworthy that among the top 20 factors obtained
by the model, 40% of the factors are constructed by us
according to the fundamental theory. On the one hand, it
reflects the scientific nature of combining the fundamental
aspect theory with the pure machine learning method. On
the other hand, it can also be seen that, in the previous
literature, the prediction of stocks completely depending on
individual fundamental factors may cause inaccuracy.

4.1.1. Comparisons of Models. In order to compare the ac-
curacy of LightGBM and other algorithms, this paper uses
GLM (generalized linear model), DNN (deep neural net-
work), RF (random forest), SVM (support vector machine),

and LightGBM to predict the next stock price of each
quarter. )e results are shown in Figure 5. R-squared
measures the goodness of fit, which is equal to the ratio of the
sum of squares of regression to the total sum of squares. )e
closer R-squared is to 1, the better the fitting degree of
regression model is. RMSE represents the root mean square
error.)e smaller RMSE is, the more accurate the prediction
is. It can be seen from the left that the R-squared under
LightGBM model is 0.798; that is, this model can solve the
variation of 79.8% of the stock price, which is higher than the
other four methods and indicates that LightGBM is the best
to fit the stock price. It is noteworthy that R-squared of the
linear model is almost 0.443, and the correlation is very
weak. It is speculated that the reason is that the stock price
and a large number of factors do not satisfy the linear re-
lationship at the same time. )e linear model is only ap-
plicable to the model composed of a few fundamental
factors. Even if it contains the most influencing factors as
much as possible, such a model still lacks explanation for
excess return. It can be seen from (b) that the RMSE of
LightGBM model is 6.1829, which is lower than the other
four methods, also showing the high accuracy of LightGBM.

4.1.2. Risk Assessment of Models. In order to compare the
risk of the portfolio of GLM, DNN, RF, SVM, and LightGBM
under equal-weight allocation method, market-value
weighting method, and minimum-variance weight method
of mean-variance model with CVaR constraint, the top N
stocks with the highest investment income in stock pool are
calculated under these 15 conditions, respectively, and the
VaR and CVaR of portfolio investment are calculated at the
confidence level of α� 5%, as shown in Figure 6.
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In the selection of position allocation methods, it can be
seen from Figure 6 that, whether the risk is measured by VaR
or CVaR, minimum-variance weight method is more able to
minimize the risk of the portfolio and reduce the loss
compared to the other two allocation methods. At the same

time, the overall ranking of algorithms under VaR and CVaR
is basically the same. It is because CVaR is based on VaR and
CVaR is the optimization of VaR in risk measurement. )e
two are highly correlated andmeet the expectations; thus the
model results are reasonable.
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Figure 6: Risk assessment of 5 algorithms under 3 position allocation methods. (a) Var. (b) CVaR.
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In algorithm selection, LightGBM has lower risk com-
pared to the other four models under minimum-variance
weight method of mean-variance model with CVaR con-
straint. Its VaR is −0.0073 and CVaR is −0.02853, which
means that, under the normal fluctuation of the stock
market, the probability that the return of the optimal
portfolio declines by more than 0.73% due to market price
change is 5%, and the expected loss of the whole stock
portfolio is 2.835%. Under equal-weight allocation method,
LightGBM also has lower risk than the other four models,
VaR is −0.00124, and CVaR is −0.06324, which shows that it
can significantly reduce the risk of portfolio and make the
expected return of investors more stable than linear models
and traditional machine learning algorithms. It is note-
worthy that LightGBM is not the best under market-value
weighting method. )e reason may be that market-value
weighting method pays too much attention to the stocks

with higher market value and does not consider the in-
vestment value of small- and medium-sized stocks in the
stock market well. However, investors in real market often
tend to invest in potential stocks with small market value at
the early stage of growth, so the reference value of the result
of market-value weighting method is limited. On balance,
LightGBM has a higher risk reduction effect in a more
practical situation.

4.1.3. Yield Analysis. In this paper, we calculate the quarterly
yield of stocks in the stock pool based on LightGBM under
three position allocation methods and use it to track CSI 300
index in China’s stock market from 2009 Q4 to 2018 Q1.
From Figure 7, it is obvious that the yield obtained by three
position allocation methods can outperform the market, and
it is more likely to ensure a considerable yield in a bear
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market. Moreover, compared with market-value weighted
method and equal-weight method, the optimal portfolio
constructed by minimum-variance weight method has a
stable performance in the actual market. )e combination
tracking error constructed by market-value weighting
method is the largest, and its performance is not as good as
the other two methods in the bear market. )erefore, the
portfolio constructed by minimum-variance weight method
of mean-variance model with CVaR constraints can con-
tinuously obtain relatively stable excess income.

4.1.4. Model Robustness Comparison. )e data structure is
different for different stock markets. In order to reflect the
influence of different data structures on the model proposed
in this paper, we use stochastic simulation technology to
verify the robustness. In order to keep these dependency
structures [17], this paper uses repeated sampling technol-
ogy to do random simulation. In order to compare the
robustness and generalization ability of models, we ran-
domly select 1 year’s original data each time and conduct
repeated regression predictions1000 times, and the results
are shown in Figure 8. According to the comparison of curve
volatility, LightGBM can still maintain a lower volatility
while maintaining a higher goodness of fit; regardless of the
accuracy of prediction or the robustness of the algorithm,
LightGBM’s regression effect on this type of data set is
significantly better compared to the other models.

5. Conclusion

)is paper takes the financial risks and returns of the stock
market as the research object and uses the method of ma-
chine learning and data mining to build a financial trading
strategy system based on LightGBM. During data pre-
processing and feature engineering, we construct multiple
variables that have been proved to have strong significant
features in previous multifactor models. Experimented on
the market data of China’s A-share listed companies, the
prediction model in this system is trained to predict the
stock price of next quarter.)emethod will perform in other
stock markets. )e variable importance score affecting the
next stock price is also generated, and the accuracy of our
systems is compared with GLM, DNN, RF, and SVMmodel.
At the same time, VaR, CVaR, and quarterly return of the
portfolio based on LightGBM are calculated and compared
with the market index.

)e results show the following:

(1) Compared with the traditional linear model, ma-
chine learning models do not need to be based on the
assumption that the variables are independent and
obey the distribution of specific functions, and they
have greater advantages in dealing with big data in
financial market. )e result of LightGBM is 0.798 for
R-squared and 6.1829 for RMSE, which is much
better than GLM. )e prediction error of LightGBM
is also significantly smaller than that of the other
machine learning models, which shows that
LightGBM has high accuracy.

(2) Compared with equal-weight method and market-
value weight method, the portfolio under minimum-
variance weight method of mean-variance model
with CVaR constraint has the best risk aversion
effect. At the same time, the three position allocation
methods can outperform the market and are more
likely to ensure a considerable yield in a bear market.
In general, the portfolio, constructed by minimum-
variance weight method of mean-variance model
with CVaR constraint, has the best stability and yield,
followed by market-value weighting method and
equal-weight method.

(3) In this paper, we generate feature importance score
to find the most important factor affecting the next
stock price. )e three most influencing factors are
the closing price of the current stock, accounts
payable, and the growth rate of stock price. Other
financial indicators, like the balance of cash and cash
equivalents at the beginning of schedule, turnover
rate, and cash paid for goods and services, etc., also
have great impact on the stock price.

However, there is still room for improvement in this
paper: (1))e experimental data in this paper is the quarterly
data of stocks, which is of great value for the long-term
strategy. In the future, we can try to use the monthly data of
stocks or even the daily data. (2) When we allocate the
position of stock, we do not think about shorting, and the
weights are limited between 0 and 1, so we can try to add the
short strategy in the later research. (3) We choose the mean-
variance portfolio model with CVaR constraint for position
allocation, but the variance itself is inconsistent. In the
future, we can consider using the mean-CVaR model to
calculate the weight of the portfolio.
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It is very important for the normal operation of high-speed trains to assess the health status of the running gear system. In actual
working conditions, many unknown interferences and random noises occur during the monitoring process, which cause dif-
ficulties in providing an accurate health status assessment of the running gear system. In this paper, a new data-driven model
based on a slow feature analysis-support tensor machine (SFA-STM) is proposed to solve the problem of unknown interference
and random noise by removing the slow feature with the fastest instantaneous change. First, the relationship between various
statuses of the running gear system is analyzed carefully. To remove the random noise and unknown interferences in the running
gear systems under complex working conditions and to extract more accurate data features, the SFA method is used to extract the
slowest feature to reflect the general trend of system changes in data monitoring of running gear systems of high-speed trains.
Second, slowness data were constructed in a tensor form to achieve an accurate health status assessment using the STM. Finally,
actual monitoring data from a running gear system from a high-speed train was used as an example to verify the effectiveness and
accuracy of the model, and it was compared with traditional models.'emaximum sum of squared resist (SSR) value was reduced
by 16 points, indicating that the SFA-STM method has the higher assessment accuracy.

1. Introduction

With the continuous improvement of the safety and stability
of high-speed trains, the study of the assessment of the
health status of the running gear system has received ex-
tensive attention in recent years [1–3]. As a critical com-
ponent to withstand and transmit various loads from the
vehicle body and route, while mitigating its dynamic effect,
the running gear system is quite prone to failure after a long
period of high-speed operation. 'is requires a health status
assessment of the running part to improve its safety and
reliability. However, there are many unknown interferences
and many noises in the working environment of the running

gear system; thus, it is difficult to accurately assess the status
of the running gear system by only using the original
monitoring data. 'erefore, to reduce the influences of
unknown interference and noise under complex conditions
and to enhance the accuracy of the assessment, in this study,
we designed a data-driven health assessment model to en-
sure the safety, stability, and reliability operation of running
gear systems.

'e running gear system of high-speed trains is a
complicated electromechanical system composed of many
components. Any component may suffer from cracks,
corrosion, leakage, and other faults, which can cause its
faster degradation [4–6]. 'e extrusion wear of the wheel
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pair and the stiffness degradation of the steel spring will also
lead to the degradation of the running gear system. Addi-
tionally, the monitoring data collected by the sensor under
interference conditions contain noise, which will have a
great impact on the health status assessment of the running
gear system. 'erefore, a health assessment of the running
gear system has the following two characteristics:

(1) 'ere are a lot of random noises caused by sensor
factors and unknown interferences caused by in-
ternal or external environmental factors in the
monitoring data of the running gear system

(2) Structural complexity due to the close coupling of
components in the running gear system is difficult to
be described by precise mathematical models
through mechanism analysis, which will limit the use
of analytical models

Currently, the common methods for health status as-
sessment of complex electromechanical systems are mainly
divided into three categories: the method based on semi-
quantitative information [7–9], data-driven method [10–13],
and model-based method [14–16]. With an increase in the
number of sensors in the running gear system, it has become
very easy to obtain a large amount of data that can reflect the
actual status of the system. Additionally, with the continuous
development of feature extraction methods in recent years,
data-driven methods have been able to extract feature in-
formation from massive amounts of data. Currently, many
experts and scholars use data-driven methods to assess the
health status of complex electromechanical systems. In [17],
studies have combined the odd-even space method with the
recursive least square algorithm to propose a fault detection
and assessment method for a quadrotor UAV based on a
linear time-varying system. With the analytic hierarchy
process (AHP), which is a kind of traditional decision-
making assessment method [18], Qian et al. [19] have
suggested a kind of electric power dispatching control
scheme based on health status assessments, and through the
AHP, this was carried out to perform a wind turbine health
status assessment. 'is method can improve the operation
efficiency of a wind farm to the greatest extent and reduce
the fatigue load of the fan fault. 'rough continuous im-
provement of the hidden Markov model (HMM) [20, 21],
Liu et al. [22] proposed a discrete hidden Markov model
(DHMM) based on K-means clustering, and the K-means
clustering algorithm was adopted to filter the sample points
that are inconsistent with the actual class labels, which could
better detect and isolate faults. Recently, deep learning
technology has been widely used in status assessment
[23, 24], and Liang et al. [25] proposed a convolutional
neural network (CNN) method, which can be applied for
status assessment of a gearbox. Using a massive amount of
training data, a high assessment accuracy can be achieved.
However, none of the above methods take into account the
problem of accurate extraction of original data features. Too
many data features will generate redundant variables and
increase the complexity of the algorithm, thus affecting the
accuracy of the assessment model.

For this reason, the Hilbert–Huang transform (HHT)
and the support vector machine (SVM) have been used in
the engine fault intelligent diagnosis method (EFD), which
uses HHT to extract features and effectively and provides
engine fault diagnosis [26]. Song et al. [27] combined sta-
tistical filtering (SF) and the wavelet packet transform
(WPT) to propose a new method of signal feature extraction
and fault diagnosis for a low-speed mechanical system.
Principal component analysis (PCA) is the most classical
method used for feature extraction [28], and one study
constructed subspaces in different directions using PCA
analysis of the principal components, to divide the original
feature space into several subspaces automatically, and
developed a monitoring and assessment scheme for the
model. Moreover, Jiang et al. [29] presented a distributed
fault detection and isolation method based on fault-related
variable selection and Bayesian reasoning. 'ey use an
optimization algorithm to determine the optimal subset of
variables for each fault, build a sub-PCA model in each
subset, and combine the monitoring results of each subset
through Bayesian reasoning. 'is method significantly re-
duces the redundancy and complexity and thus improves the
monitoring performance. To sum up, there are many status
assessment methods based on data that have improved the
assessment accuracy after feature extraction, but, for actual
work environments, there are many unknown disturbances
combined with the considerable noise from the complex
electromechanical systems. 'e traditional feature extrac-
tion method is difficult to carry out accurately for feature
extraction, which affects the accuracy of the assessment
model.

'erefore, a new process monitoring method based on
SFA was applied in one study [30, 31] to extract the feature
with the slowest change from the original monitoring data,
and the process monitoring based on slow data was used to
distinguish the deviation between dynamic anomalies and
normal operating conditions. 'e purpose of the SFA
method in data processing is to find mapping functions of
instantaneous scalar input and output from multidimen-
sional monitoring data so that the output slowness data
changes as slowly as possible. Additionally, it carries in-
formation reflecting the general trend of the system change
and filters the slowness data according to the slowness. 'e
filtered data often represents the short-term noise of com-
plex system changes, and the remaining data more accu-
rately reflect the general trend of system change. 'erefore,
this paper proposes a SFA-STM method to assess the health
status of the running gear systems of high-speed trains. 'e
STM is a classification algorithm based on tensor data, which
is very suitable for dealing with nonlinear and non-Gaussian
problems. In [32, 33], bearing monitoring data was con-
structed into a tensor matrix and the method based on STM
was applied to fault diagnosis of the bearings. Because the
tensor data form retains the space and time form of the
original data, the data are fully utilized, which can prevent
information loss caused by the multidimensional feature of
vectorization, providing a good diagnosis accuracy. In [34],
the authors proposed a method based on a hybrid support
tensor for the diagnosis and positioning of open circuit faults
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of modular multilevel converters, and the classification
accuracy was better than that of the support vector machine.
'erefore, in this study, we used SFA to extract the slowness
data from the monitoring data of the running gear system
and to eliminate the noise data. 'en, the slowness data
reflecting the general trend of the process change was
constructed into a tensor matrix and input into the STM
model, to enhance the accuracy of STM for the health status
assessment of the running gears of high-speed trains. 'is
solves the problem of the many unknown interferences and
random noises in monitoring data under actual working
conditions, which affect assessment results.

'is paper is arranged as follows. Section 2 introduces
the structure of the running gear system of a high-speed
train and describes the problem. In Section 3, the health
assessment model for the running gear system in a high-
speed train based on SFA-STM is proposed. Section 4 de-
scribes a practical case to verify the method proposed in this
paper. Section 5 provides the conclusions of this paper.

2. Preliminaries

'is part briefly introduces the running department and
describes the problems to be solved.

2.1. Description of RunningGear System. As shown in Figure
1(a), the running gear system is a complex coupling system
composed of multiple components that is located between
the high-speed train body and the track and pulls the vehicle
along the track. As the core component of a high-speed train,
it is mainly composed of a frame, axle box, suspension
device, driving device, brake device, and sensor. During the
manufacturing phase, many sensors are preinstalled in the
running gear system to monitor the status of the running
gear system. Each sensor is integrated with multiple sensor
units to monitor different physical quantities and collect
different types of data, such as temperature, vibrations, and
impact. 'erefore, a single sensor is also called a composite
sensor component. A total of 11 composite sensors are
installed in the monitoring bearing support area, and the
installation direction should be consistent with the direction
of the impact signal. 'e specific distribution location is
shown in Figure 1(b). A1–A4: measurement point of the axle
box bearing. B1–B3: motor bearingmeasurement points (2 is
the measurement point of the motor drive bearing and 3 is
the measurement point of the motor rotor). C1–C4: gearbox
measurement point (3 and 4 are measuring points of small
and large gears at the motor end).'e distribution of sensors
is very complex, and the many sensors can easily obtain
considerable monitoring data reflecting the status of the
running gear system during the process of train operation.
However, because of the complex monitoring environment,
the considerable noise and interference factors cannot be
ignored; thus, it is particularly important to remove noise
and interference from the monitoring data.

To better determine the health status of a running gear
system, it is necessary to monitor the temperature, vibra-
tions, impact, speed, and other physical quantities of the

running gear system. For this reason, in this study, we
analyzed three subsystems of the running gear system, in-
cluding the axle box, gearbox, and motor, and we evaluated
the status of the running gear system by using the moni-
toring data from these three subsystems.

2.2. Problem Description. When a high-speed train runs at
high speed for a long time, the gearbox bearing is prone to
cracks and deformation. Additionally, the wheelset of the
running gear system will be squeezed and worn when it
touches the ground for a long time, and this will be corroded
by different environments while staying at a high-temper-
ature status [35]. 'e air spring also has the possibility of gas
leakage, and the stiffness degradation of the shock absorber
steel spring can occur. All these factors will cause degra-
dation of high-speed trains. From the distribution of a large
number of complex sensors, the running gear system status
can be determined based on monitoring data. However,
because the complex engineering monitoring environment
and running environment are complex, the monitoring data
is mixed with large amounts of random noise and uncer-
tainty owing to disturbances. 'is seriously affects the
monitoring data, affecting the accuracy of direction of actual
running status, and there are two key reasons for this sit-
uation [34]:

(1) Environmental factors: this is mainly due to the
operation environment of high-speed trains and the
sensor environment. In the high-speed running of
high-speed trains, it is inevitable that they will be
affected by road condition factors, interior factors,
climate factors, and other disturbances, which cause
the sensor monitoring data to fail to reflect the actual
status of the running gear system over a short period.
'is can affect the accuracy of the status assessment
of a running gear system.

(2) Sensor factor: this is mainly determined by the
sensor’s principle, material, manufacturing process,
and other physical characteristics. After long
working hours, the quality and function of a sensor
will be reduced to different degrees, and a large
amount of random noise will be generated, which
will continuously affect themonitoring performance.
As a result, some errors in the information will be
recorded, and accurate monitoring data cannot be
obtained, which will seriously affect the accuracy of
the status assessment of the running gear system.

According to the above analysis, monitoring data are
mainly affected by these two factors, while the traditional
feature extraction method has difficulty in removing the
influence of uncertainty disturbances and random noise.
'us, a new approach is therefore required to address this
issue.

3. Methodology

To accurately assess the health status of high-speed train
running gear system, a health status assessment model based
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on SFA-STM is proposed. As shown in Figure 2, the model
structure is mainly divided into three parts. First, the fea-
tures reflecting the general trend of system changes are
selected as the input for the SFA. Second, the monitoring
data processed by SFA is constructed into a tensor matrix.
'ird, the STM health status assessment model is con-
structed using the tensor matrix.

3.1. SFA. Data reflecting the changing trend of high-speed
train running gear systems is covered by random noise and
unknown interference, and when these data are used to
assess the health status of a running gear system, it will
seriously affect the accuracy of the assessment results. 'us,
SFA is the most effective method to reduce noise and
interference.

'e purpose of SFA data processing is to determine the
instantaneous scalar input-output mapping function from
the multidimensional time input signal so that the change in
the output signal is as slow as possible while carrying the
information reflecting the general trend of the system
change. Mathematically, the purpose of an SFA is for a given
m-dimensional input signal:

x(t) � x1(t), . . . , xm(t) 
T
. (1)

Find the eigenfunction gj(·) 
m

j�1 of a series of slow
feature sets so that

min
gj(·)
〈 _s2j〉t, (2)

under constraint

〈sj〉t � 0(zeromean), (3)

〈s2j〉t � 1(unit variance), (4)

∀i≠ j: 〈sisj〉t � 0(decorrelation and order), (5)

to minimize, where sj(t) � gj(x(t)) 
m

j�1 is a series of slow
features, and Δ(sj) _�〈 _s2j〉t is a measure of slowness of sj(t).

〈·〉t is the time average, and _s is the first derivative of s with
respect to time.

For SFA, each slow feature sj(t) is a linear combination
of input variables:

sj � gj(x) � wT
j x, (6)

where wj 
m

j�1 represents the coefficient vector.'emapping
from x(t) to s(t) can be abbreviated as follows:

s � Wx, (7)

where W � [w1, . . . ,wm]T is the coefficient matrix to be
optimized by SFA.

Substitute equation (6) into constraint (3), and we obtain

〈sj〉t � wT
j 〈x〉t � 0. (8)

If the input variable x is scaled to a zero mean ahead of
time, constraint (3) is automatically satisfied.

For the solution of slow feature s, the following steps are
required, after the singular value decomposition (SVD) of
the covariance matrix 〈xxT〉t, and it can be obtained:

〈xxT〉t � UΛUT
. (9)

Next, the whitening transformation can be expressed as

z � Λ− 1/2UTx _�Qx, (10)

where Q � Λ−1/2UT is the whitening matrix. You can easily
get 〈zzT〉t � Q〈xxT〉tQT � I and 〈z〉t � 0, so the purpose of
the SFA is to further translate into finding a matrix s � Pz
that satisfies P � WQ− 1 because

s � Wx � WQ− 1z _�Pz. (11)

'en, it can be seen that constraints (4) and (5) can be
simply written as follows:

〈ssT〉t � I. (12)

Take equation (11) and bring it to equation (12):

〈ssT〉t � P〈zzT〉tP
T

� PPT
� I, (13)

(a)

A4

C2
C1

C4
C3

B1

B2
B3

A1

A2

A3 B1

B2

C3 C4

(b)

Figure 1: Structure diagram of high-speed train running gear system. (a) Real structure diagram of high-speed train running gear and (b)
CATIA (computer-aided three-dimensional interactive application) structure diagram of high-speed train running section.
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so we know that P is an orthogonal matrix. 'erefore, the
optimization problem of SFA can be simplified to find the
orthogonal matrix P, thus minimizing s � Pz to 〈 _s2j〉t. Such
problems can be solved by SVD of the covariance matrix
〈 _z _zT〉t:

〈 _z _z
T〉t � PTΩP. (14)

'erefore, the orthogonal eigenvector Pj 
m

j�1 and the
corresponding eigenvalue ωj 

m

j�1 can be obtained and
verified:

〈ssT〉t � P〈zzT〉tP
T

� I,

〈 _s2j〉t � pT
j 〈 _z _z

T〉tpj � ωj.
(15)

Finally, the change matrix W can be calculated as

W � PΛ− 1/2UT
, (16)

so the slow feature s can be calculated as

s � Pz � PΛ− 1/2UTx � Wx. (17)

'e statistical characteristics of the slow feature can be
expressed by the following equation:

E s{ } � 0,

E ssT
  � I,

E _s{ } � 0,

E _s _s
T

  � Ω.

(18)

According to different slowness features, the slowness
features are extracted according to the following equation:

M � card si|Δ si( <maxq
j Δ xj   , (19)

where card ·{ } represents the number of elements in a set and
Δ(si) � 〈 _s2j〉t is the si(t) slowness measure. Set q � 0.1, and
maxq

j Δ(xj) , here as the upper quantile of the set Δ(xj) ,
is an evaluation criterion for the slowness of si(t), which can

filter out slowness of the M largest si(t), expressed as
sd � [s1, . . . , sM]T. 'ese slow features reflect the general
trend of system changes in the running gear system. For the
Me � m − M slow features screened out, they represent the
short-term noise and unknown disturbance of the system
changes. 'e above proofs have been given in [36].

3.2. STM Model. Using the SFA model in the previous
section, data reflecting the general trend of the system
change of the running gear system was successfully
extracted. 'en, the nonlinear model between the input and
output needs to be built by the STM, to achieve an accurate
assessment of the health status of running gear systems of
high-speed trains.

Consider a dichotomy problem, where the training set is

T � χ1, y1( , χ2, y2( , . . . , χl, yl(  ,

yi ∈ +1, −1{ },
(20)

where l represents the number of samples, χi ∈ RI1×I2×···×IN

represents the i input data, yi represents the class label of the
i data, and yi ∈ +1, −1{ }. 'e optimization problem of the
STM model is

min
w(n)|Nn�1 ,b,ξ

J w
(n)

|
N
n�1, b, ξ  �

1
2

N
n�1w

(n)
�����

�����
2

F
+ C 

l

i�1
ξi,

s.t.yi χi 

N

n�1
×nw

(n)
+ b⎛⎝ ⎞⎠≥ 1 − ξi,

ξi ≥ 0, i � 1, 2, . . . , l.

(21)

Based on the idea of supervised tensor learning
framework, the STM dichotomy model is decomposed into
N suboptimization problems, and the expression form of
one of its suboptimization problems after fixing w(m) 

N

m�1
and m≠ n is

min
w(n) ,b(n) ,ξ(n)

J w
(n)

, b
(n)

, ξ(n)
 

�
1
2

w
(n)

�����

�����
2

F


m≠n

1≤m≤N
w

(i)
�����

�����
2

F
+ C 

l

i�1
ξ(n)

i , s.t.yi w
(n)

 
T

χi 

m≠n

1≤m≤N
×m

w
(m)⎞⎠ + b

(n)
), ≥ 1 − ξn

i , ξ(n)
i ≥ 0, i � 1, 2, . . . , l.⎛⎝⎛⎝

(22)

Part 1: slow feature extraction

m features
Slow

feature
analysis

M features
reflecting

the general
trend of
process
change

X1

X2

Xm

S2

SM

S1

Part 2: construct a tensor matrix

Tensor
data

Part 3: build a health assessment model

STM n status
levels

Y1

Y2

Yn

Figure 2: Flow chart of the health status assessment model of high-speed train running gear system.
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In equation (22) above, w(n) ∈ RIn (1≤ n≤N) is the
weight of the n hyperplane, b(n) is the offset, b(n) ∈ R and ξ(n)

are the relaxation variables, and C is the penalty factor. What
we need to solve are N optimization problems with a similar
form to equation (22); for these N problems, we can solve
them through the optimization method of alternating
projection and finally obtain the decision function of the
model as

D(χ) � sgn χ 
N

n�1
×n

w
(n)

+ b⎛⎝ ⎞⎠. (23)

'e alternating projection algorithm requires the input
tensor to train the sample set
χi ∈ RI1×I2×···×IN , ym ∈ 1, −1{ } 

l

i�1, the iterative control
threshold ε, and the output w(n) ∈ RIn (1≤ n≤N), b ∈ R.

Step 1: w(n) is initialized as the unit vector in RIn ,
n � 1, 2, . . . , N.
Step 2: iterate through steps 3 and 4 until the algorithm
converges.
Step 3: iterate w(n) for n � 1, 2, . . . , N, fix w(m) 

N

m�1,
m≠ n, solve equation (22), and get wn.
Step 4: stop the calculation if



N

n�1
w

(n)
t 

T
w

(n)
t−1



 w
(n)
t

�����

�����
−2

F
− 1 < ε. (24)

is met. Otherwise, go to step 2, wherew
(n)
i andw

(n)
t−1 represent

the values of the previous iteration step and the current
iteration step corresponding to the n projection weight
vector, respectively.

For the STM multiclassification model, the running gear
system status label L � L1, L2, . . . , Ls  is defined, and the
label is composed of s information classes. One-against-one
(OAO) strategy is adopted to construct S(S − 1)/2 binary
STM models to model all possible paired classifications.
'en, the decision function Di,j(χ) between each possible
pair of classes Li and Lj(i≠ j) is obtained through dichot-
omy, and the fractional function

Scorej � 
s

i�1,i≠ j

Di,j(χ). (25)

of the sum of the number of labels allocated to the category
by the sample is calculated. 'e classes with the highest
scores were considered predictive labels for unclassified
samples.

3.3. 4e Steps of Health Status Assessment Model for High-
Speed Train Running Gear System. As shown in Figure 3,
according to the algorithm described above, the steps to
summarize the health status assessment algorithm of the
high-speed train running gear system are summarized as
follows:

Step 1: use SFA to extract the slow feature from the
high-speed train running gear system monitoring data.

Step 1.1: normalize the sample data.
Step 1.2: whiten the data through equations (9) and
(10).
Step 1.3: take the derivative of the matrix z.
Step 1.4: equations (14) and (16) are used to obtain the
mapping matrix.
Step 1.5: slowness data s is obtained by equation (17).
Step 1.6: the slow feature is extracted according to
equation (19).

Step 2: the filtered slowness data matrix of the running
gear system is constructed into the fourth-order tensor
form, as shown in Figure 4.
Step 3: the health status assessment model of the high-
speed train running gear system based on STM was
constructed.
Step 4: the STM multiclassification model is trans-
formed into multiple binary classification models.

Step 4.1: the optimization problem of STM is divided
into N suboptimization problems.
Step 4.2: the N suboptimization problems were solved
by alternating projection algorithm, and the decision
function Di,j(χ) was obtained.

Step 5: through equations (23) and (25), the system was
assessment.

In the assessment model, the motor temperature,
gearbox vibration, and impact of external ring friction of the
retaining frame in the axle box were set as the features to
assess the health of the running gear system. 'e specific
assessment process will be described through cases in Sec-
tion 4.

4. Case Study

To verify the accuracy of the SFA-STM assessment model
proposed in this paper, this section will describe the high-
speed train running gear system as an example for experi-
mental verification. For data collection of the running gear
system, the axle box, gearbox, and motor monitoring data of
No. 2 carriage and position running gear system of the train
during a certain month were selected. To ensure that the
collected data was the data when the high-speed train was in
operation, the monitoring data with speeds above 1000 r/
min were screened to verify the training data and test data
for the model, and a total of six monitoring indicators,
including temperature, vibrations, and impact were selected
for positions 1 and 2, respectively. Owing to the influence of
the operating environment on the running gear system of
high-speed trains during actual operation and considering
the complexity of parameters, such as weight, center of
gravity, and the suspension of each component, the health
status assessment criteria for the running gear system in the
high-speed train were set as “normal,” “general,” and “bad,”
as shown in Table 1.

Normal: under this condition, all parts of the running
gear system worked normally, fasteners were stable and
not loose, and all indicators were within factory
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requirements. 'e average temperature was less than
30°C, the average vibration peak was less than 22 Hz, the
average temperature and amplitude were at a very low
levels, and the impact data were also at normal levels, thus
ensuring the safe and smooth operation of the high-speed
train.

General: under this condition, all parts of the running
gear system still worked normally, but the parts were slightly
worn and deformed, and all indicators were slightly higher
than the factory requirements. 'e average temperature was
in the range of 30–35°C, and the average vibration peak was
in the range of 22–25Hz. Under this condition, the

Using SFA to extract the slow
feature from the high-speed
train running gear system

monitoring data

�e filtered slowness data
matrix of the running gear

system is constructed into the
fourth-order tensor

Using STM to assess the health
status of high-speed train

running gear system

Complete the assess process

Normalize the sample data

Step 1:

Step 2:

Step 3:

X = (X1, X2, X3, X4, X5, X6)

S = (S1, S2, S3, S4)

Y = (Y1, Y2, Y3)

Fourth-order tensor

Figure 3: 'e steps of the health status assessment model for the high-speed train running gear system.

Model 2
j = 1, 2, · · · , l2 Model 3

k = 1, 2, · · · , l3

Model 1
i = 1, 2, · · · , l1

Model 4
l = 1, 2, · · · , l4

Figure 4: Schematic diagram of the fourth-order tensor model.
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operation of the high-speed train is still unaffected, but the
appearance, working status, and overall performance of each
part should be checked, and preventive and corrective
maintenance work should be performed promptly.

Bad: under this condition, although all parts of the
running gear system could still maintain normal operation,
the status of some parts was not good, the operation function
decreased, and the critical point of health and failure had
been reached. 'e average temperature was higher than
35°C, and the average vibration peak was above 25Hz.
Under this condition, the system should be completely
overhauled to replace or repair the parts with a higher degree
of damage to improve the safety of the high-speed train.

4.1. Data Preprocessing. Because there are a large number of
abnormal environmental noise points in the actual moni-
toring data of high-speed train running gear systems, it is
necessary to preprocess the data. As shown in Figure 5,
among them, the short-term fluctuations of temperature,
vibration, and shock data are large, and there is much re-
peated data and abnormal data. 'erefore, as shown in
Figure 6, the temperature vibration and impact monitoring
data of the moving parts at certain positions on the train I
and II were preprocessed. 'e relevant outliers were filtered
via mean filtering, and the data were finally compressed to
800 groups. 'e trend chart is shown in Figure 7.

'e temperature sensor was in close contact with the
motor element; thus, the external interference was relatively
small, whereas the vibration and impact sensors showed
more obvious uncertainty in disturbances and random noise
owing to the influence of the train speed and acceleration.
Although the monitoring data was preprocessed to filter out
some of the abnormal value points, the data still included the
noise and disturbances as adverse factors, and this could not
simply solved by pretreatment. 'us, we needed the fol-
lowing SFA method for further data processing so that the
data actually reflected the high-speed train health status.

4.2. Assessment Model. 'e monitoring data of temperature,
vibration, shock, and a total of six characteristics at position I
and II were normalized.'e slowness data is obtained through
the SFA, and the coefficient matrix of SFA optimization is

W �

−10.37 −8.42 −0.64 0.79 7.28 −3.35

1.65 1.66 0.58 −3.15 −6.92 4.06

−13.65 4.02 −0.47 −0.37 −0.11 −0.13

27.59 4.14 0.36 −2.91 −0.03 −0.22

−4.78 −0.34 −8.85 2.69 0.39 0.34

−0.60 −0.98 9.04 2.94 −0.12 0.18

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(26)

through equation (19), the feature, Δ(si), was smaller than
the maximum Δ(xj) of 0.1 times, which was selected to
screen out four slow features that reflected the overall
changing trend of high-speed trains.

After SFA, 800 sets of monitoring data of six features
were transformed into 800 sets of slowness data of four
features; 800 sets of data were constructed into the fourth-
order tensor model of 400 sets of data. Among them, mode 1
of the tensor is the first slow feature and the second slow
feature.'emode 3 of the tensor is the third slow feature and
the fourth slow feature. Mode 2 is the slowness data of the
adjacent two mileage. Mode 4 is 400 sets of the slowness
data. 'e abovementioned information is shown in Figure 8.

'e 400 groups of the fourth-order tensor data, which
have been constructed, were divided into 150 training data
and 250 test data; then, 150 groups of training data were
divided into three groups according to the actual status to
construct the training set of the STM model. Finally, the
decision functions D1,2(χ), D1,3(χ), and D2,3(χ) between the
status of each class were obtained through the STM di-
chotomy model. 'e corresponding minimization of energy
function is J1,2 � 0.00029988, J1,3 � 0.00029980, and
J2,3 � 0.00029987, respectively.

To verify the accuracy of the model, 250 groups of
samples to be tested were input into the three decision
functions obtained in the STMmodel, and the class with the
highest score for each of them, namely, the prediction label,
was calculated through equation (25), to complete the health
status assessment of the running gear system.

As shown in Figure 9, the test samples can be accurately
classified. Although few samples were misclassified, it can be
concluded that the SFA-STM model can accurately assess
the health status of the high-speed train running gear system.

4.3. Simulation. To more intuitively represent the reliability
of the model presented in this paper, four classical data-
driven methods (i.e., SVM, naive Bayes (NB), BP neural
network, and hidden Markov model (HMM)) are used to
compare and analyze this method. 'e data adopted by the
three methods are the same as the data applied by the
method proposed in this paper. All of them are 800 groups of
monitoring data processed by mean filtering. However,
because the training samples and test samples used in the
method proposed in this paper are a total of 400 sets of data,
to reflect the authenticity of comparative simulation, it is
necessary to take the mean value of each adjacent mileage
point in the 800 sets of monitoring data and reduce it to
approximately 400 sets of training data. 'is process does
not affect the accuracy of the evaluation model because, in
engineering practice, two adjacent mileage points almost
reflect the health status of the same running gear system. At
the same time, the assessment grades of health status of the
three models were also “normal,” “general,” and “bad,” with
150 sets of training data and 250 sets of test data.

SVM is used for comparative validation, as shown in
Figure 10(a). In the beginning, the green line fits the blue line
well, but in the middle, a large number of green points leave
the blue line; in the end, the green line fits the blue line well.

Table 1: 'e referential points.

Status Normal General Bad
Temperature <30°C 30–35°C >35°C
Vibration <22Hz 22–25Hz >25Hz

8 Mathematical Problems in Engineering



'is indicates that the running gear system can be accurately
assessed by the SVM model under normal and bad statuses,
while the running gear system cannot be accurately assessed
by the model in general status and at the beginning of bad
status, which is a considerable limitation.

NB is used for comparative validation, as shown in
Figure 10(b). From the fitting degree of the green line to the
blue line in the figure, the NB model is still the same as the
SVM model, which has many misjudgments in the middle
status of the system and also has a certain degree of

misjudgments in good and bad statuses. Compared with the
SFA-STMmodel, the NBmodel still has difficultly accurately
assessing the health status of the system.

'e BP neural network is used for comparative vali-
dation, as shown in Figure 10(c).'e fluctuation of the green
line always follows that of the blue line. Although there is a
certain degree of abnormal point fluctuation, the overall
level of the BP neural network model is more accurate than
that of the SVM model and the NB model in assessing the
health status of the running gear system. However, the
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Figure 5: Trend chart of original monitoring data of the running gear system. (a) Position I temperature data trend chart. (b) Position I
vibration data trend chart. (c) Position I impact data trend chart. (d) Position II temperature data trend chart. (e) Position II vibration data
trend chart. (f ) Position II impact data trend chart.

Position II running gear system

Position I running gear system

High-speed train carriage

Figure 6: Actual position of the running gear system.
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abovementioned figure clearly shows the red line of the SFA-
STM model fits the blue line to a higher degree, which more
accurately and intuitively reflects the health status of the
system.

HMM is used for comparative validation, as shown in
Figure 10(d). From the fitting degree of the green line to the
blue line in the figure, the HMM model is still the same as
the SVMmodel, which has a large number of misjudgments
in the middle status of the system and also has a certain

degree of misjudgments in good and bad statuses. Because
both the NB and HMM models are based on Bayesian
classification algorithms, it is not surprising to obtain the
same classification results as NB. In general, the HMM
model still has difficulty accurately accessing the health
status of the running gear system compared with the SFA-
STM model.

To directly compare the accuracy of the five methods,
three indexes are used for comparison. First, the maximum
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Figure 7: Trend chart of mean filter monitoring data. (a) Average filtering position I temperature data trend chart. (b) Average filtering
position I vibration data trend chart. (c) Average filtering position I impact data trend chart. (d) Average filtering position II temperature
data trend chart. (e) Average filtering position II vibration data trend chart. (f ) Average filtering position II impact data trend chart.
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Figure 10: Simulation results of the (a) SVM model, (b) NB model, (c) BP model, and (d) HMM model.
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sum of the squared resists (SSR) index is adopted, as shown
in Table 2. According to equation (27), where yi represents
the status value obtained from the assessment of i sample
according to the model, yi represents the actual status value
of the i sample, and n represents the number of samples. 'e
SSR index of the four methods is given, among which the
SSR value of SFA-STM is the lowest, only 9; the SSR value of
SVM is 18; the SSR values of NB and HMM are 25, and the
SSR value of BP is 18.9135 [37]. Second, the true positive rate
(TPR) and false positive rate (FPR) indexes were used to
assess the accuracy of classification. Table 3 shows that the
SFA-STM model still has the best effect [38]. In the end, as
shown in Table 4, compared with the training time of each
model, the training time is relatively long because both SFA-
STM and SVM adopt the optimization algorithm. In general,
it is seen that the SFA-STM model has the highest accuracy
in assessing the health status of the high-speed train running
gear system.

SSR � 
n

i�1
yi − yi( 

2
. (27)

5. Conclusion

In this study, the SFA-STM model is proposed to assess the
health status of the high-speed train running gear system,
which solves the problem that there are many unknown

interferences and random noise in the monitoring data
under complex working conditions, which affect the as-
sessment results. Using an example, it is shown that the SFA-
STM system proposed in this study can accurately reflect the
actual health status of the running gear system. Compared
with the four types of traditional data-driven models, this
method has higher applicability to practical engineering
problems and provides a new solution to the problem that
the general trend of system changes cannot be extracted by
the traditional feature extraction method to assess the health
status of the complex system under high noise and multiple
disturbances.
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/e performance of text detection is crucial for the subsequent recognition task. Currently, the accuracy of the text detector still
needs further improvement, particularly those with irregular shapes in a complex environment. We propose a pixel-wise method
based on instance segmentation for scene text detection. Specifically, a text instance is split into five components: a Text Skeleton
and four Directional Pixel Regions, then restoring itself based on these elements and receiving supplementary information from
other areas when one fails. Besides, a Confidence Scoring Mechanism is designed to filter characters similar to text instances.
Experiments on several challenging benchmarks demonstrate that our method achieves state-of-the-art results in scene text
detection with an F-measure of 84.6% on Total-Text and 86.3% on CTW1500.

1. Introduction

Detecting text in the real world is a fundamental computer
vision task that directly determines the subsequent recog-
nition results. Many applications in the real world depend on
accurate text detection, such as photo translation [1] and
autonomous driving [2]. Now, horizontal- [3–5] and ori-
ented-[6–10] based methods no longer meet our require-
ments, and more flexible pixel-wise detectors [11, 12] have
become mainstream. However, precisely locating text in-
stances is still a challenge because of arbitrary angles, shapes,
and complex backgrounds.

/e first challenge involves text instances with irregular
shapes. Unlike other common objects, the shaped instance
often cannot be accurately described by a horizontal box
or an oriented quadrilateral. Some typical methods (e.g.,
EAST [8] and TextBox++ [10]) perform well on the common
benchmarks (e.g., ICDAR 2013 [13] and ICDAR 2015 [14])
but degrade in curved text challenges, as shown in
Figure 1(a).

/e second challenge is separating text character
boundaries. Although pixel-wise methods do not suffer from
a certain shape, they may still fail to separate text areas with
adjacent edges, as shown in Figure 1(b).

/e third challenge is that text identification may face
false positives [15] dilemma because of the lack of context
information. Some symbols or characters similar to text may
be misclassified.

To overcome the aforementioned challenges, we propose
a novel method, called TextCohesion. As shown in Figure 2,
our method treats a text instance as a combination of a Text
Skeleton and four Directional Pixel Regions, where the
previous one roughly represents the shape and profile, and
the latter is responsible for refining the original region from
four directions. Notably, a pixel belongs to more than one
Directional Pixel Regions (e.g., up, left), which means the
instance has more chances to be recovered. Furthermore, the
confidence score of every Text Skeleton is reviewed, only
higher then a threshold is considered as a candidate.

2. Related Work

Detecting text in the wild has been widely studied in the past
few years. Before deep learning era, most detectors adopt
Connected Components Analysis [16–21] or Sliding Win-
dow-based classification [22–25].

Now, detectors are mainly based on deep neural net-
works. /ere are two main trends in the field of text
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detection: regression-based and pixel-based. Inspired by the
promising of object detection architectures such as Faster
R-CNN [26] and SSD [27], a bunch of regression-based
detectors are proposed, which simply regress the coordinates
of bounding boxes of candidates as the final prediction.
TextBoxes [7] adopts SSD and adjusts the default box to
relatively long shape to match text instances. PyrBoxes [28]
proposes a SSD-based detector equipped with a grouped
pyramid to enrich feature. Sheng [29] proposes a novel text
detector with learnable anchors to cover all varieties of texts
in natural scene. Lyu [30] detects scene text by localizing
corner points of text bounding boxes and segmenting text
regions in relative positions. By modifying Faster R-CNN,
Rotation Region Proposal Networks [31] insert the rotation

branch to fit the oriented shapes of text in natural images.
/ese methods can achieve satisfying performance on
horizontal or multioriented text areas. However, they may
suffer from the shape of the bounding box, even with ro-
tations. Mainstream pixel-wise methods drew inspirations
from the fully convolutional network (FCN) [32], which
removes all fully connected layers and is widely used to
generate a semantic segmentation map. Convolution
transpose operation then helps the shirked feature restore its
original size. TextSnake [11] treats a text instance as a se-
quence of ordered, overlapping disks centered at symmetric
order, each of which is associated with potentially variable
radius and orientations. It made significant progress on
curved text benchmarks. TexeField [33] learns a direction

(a) (b)

Figure 1: Text detection challenges: (a) bounding box-based methods suffer from a fixed shape and (b) segmentation-based methods may
not separate texts with adjacent boundaries.
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Figure 2:/e overall procedure of the proposed method consists of Feature Extraction and Postprocessing. Five feature maps are generated
from the backbone (e.g., VGG16) and upsampled in the Feature Extraction step. /e DPRs and the TS regions are adopted to reconstruct
text instances in the postprocessing step.
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field pointing away from the nearest text boundary to each
text point. An image of two-dimensional vectors represents
the direction field. SPCNET [34], based on FPN [35] and
Mask R-CNN [36], inserts Text ContextModule and Rescore
mechanism to leave the lack of context information clues
and inaccurate classification score. PSENet [37] projects
feature into several maps and gradually expand the detected
areas from small kernels to large and complete instances.
/ese pixel-based methods significantly improve the per-
formance of curved benchmarks. However, detection fail-
ures are still possible in complex situations. Differs from the
previous, the proposed method has more opportunities to
recover itself. Specifically, the Text Skeleton represents the
profile of the instance, which is smaller and less sticky than
the original form. Pixels in text areas are divided into two
groups according to four directions: the up-down and left-
right. Ideally, a TS can be integrated with any group to
restore itself. When some regions fail to reproduce, there is
also an opportunity to get additional supplementary from
others. We conduct extensive experiments on standard
benchmarks, including the horizontal the oriented text, and
curved text datasets. Evaluations demonstrate that Text-
Cohesion achieves state-of-the-art or very competitive
performance.

3. Methodology

/e architecture of TextCohesion is depicted in Figure 2,
which consists of a feature extraction section and a post-
processing section. For image feature extraction, an FCN-
based convolutional backbone followed by an up-sampling
step is employed. Five feature maps containing a Text
Skeleton (TS) and four Directional Pixel Regions (DPRs) are
generated after up-sampling. /e TS features are evaluated
by a Confidence Scoring Mechanism (CSM), and finally
obtaining the predicted text regions incorporated with the
DPRs regions. To optimize the proposed network, a cor-
responding loss function of the TS and DPRs is designed.
More details are introduced in the following section.

3.1. Network. /e proposed method inherits the popular
VGG16 network by keeping the layers from Conv1 to
Conv5, converting the last fully connected layers into
convolution layers. /e input images are first downsampled
to the multilevel features with five convolution blocks, and
five feature maps (i.e., P1, P2, P3, P4, P5) are generated./en,
these features are gradually upsampled to the original size
and mixed with the corresponding output of the previous
convolution block. /e upsampled process can be described
by

O � U P1||Up P2||Up P3||Up P4||Up P5(     , (1)

where O is the output of the network, “” refers to feature
concatenation, and Up is the upsample function (i.e.,
Conv(1, 1) − Conv(3, 3) − Deconv − ReLu used to resize the
feature map matching other layers. Five feature maps with
the same resolution are leveraged as the prediction of the
network (the blue box shown in Figure 2) after the upsample
step. Each prediction is composed of a TS and four DPRs in

the postprocessing. DPRs contain four feature maps
according to different directions: R1, R2, R3, and R4. /e TS
is the skeleton of the text instance that is adopted to separate
from each other. /e CMS is introduced to reduce false
positives in terms of evaluating each TS. For clarity, we take a
curved text as an example to demonstrate the process of label
generation in the rest of Section 3.

3.2. Text Skeleton. Text Skeleton (TS) is an essential com-
ponent representing the center part of the text instance. As
shown in Figure 3(b), the gray area is the TS of the instance.
/e first step of generating TS is to find the head and tail of
the text. Similar to [11], we also use the cosine of adjacent
vertices to find the head and tail of text instance, and the
remaining two longest sides. /e longest two sides along
with the text instance (e.g., t0tn and b0bn) are called sidelines
in the proposedmethod./en, n vertices of even distribution
are sampled from the two sidelines (i.e., Top Sideline and
Bottom Sideline in Figure 3(a)), respectively. After that the
vertices in the centerline (Head − Tail in Figure 3) can be
averaged from these sampled vertices:

ci(x, y) �
ti(x, y) + bi(x, y)

2
, (2)

where t0, t1, . . . , ti, . . . , tn  and b0, b1, . . . , bi, . . . , bn  are
vertices in two sidelines of the text instance, respectively, and
c0, c1, . . . , ci, . . . , cn  are a set of vertices belong to the center
line. Finally, TS is bold by the center line infd3

ei � ci + ti − ci(  × β,

fi � ci + bi − ci(  × β,
(3)

where ei and fi are pixels that represent the expansion of the
center line to both sidelines./e region of eiei+1fifi+1 form a
part of TS, as shown in Figure 3(b). β is a parameter that
holds the bold rate, and we set it to 0.2 experimentally.When
these vertices are completely processed, TS is generated
correspondingly.

3.3. Directional Pixel Region. Directional Pixel Regions
(DPRs) are used to restore its original form, including
R1, R2, R3, and R4. Pixels in text instance but not in TS are
considered as falling into DPR. In Figure 3(b), titi+1ei+1ei and
fifi+1bi+1bi illustrate a fraction of DPR. /e direction of
every fraction is determined by the tangent angle between its
corresponding center vertices (ci) and the next (ci+1). More
specifically, the tangent angle of two adjacent center vertices
is calculated by the following equation:

tan Θi(  �
yci+1

− yci

xci+1
− xci

, (4)

where x and y refer to the coordinates of the center vertices.
By comparing the tan(Θi) of center vertices with α, the
regions of titi+1ei+1ei and fifi+1bi+1bi are labeled as DPRs
(R1, R2, R3, R4) or background. If Θi falls into a specific
range (e.g., [−30°, 30°]), the pixels within its corresponding
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DPRs (titi+1ei+1ei and fifi+1bi+1bi) are considered belonging
to the R1 or R2. /e R1 can be calculated as follows:

R1i
�

1, condition1 ∩ condition2,

0, other,


condition1: tan(−α)< tan Θi( < tan(α),

condition2: yti
+ yti+1

 < yci
+ yci+1

 ,

(5)

where condition1 is used to distinguish the angle of adjacent
center vertices and condition2 ensures the selected pixels are
above the TS. α is a parameter that controls the boundary of
specific directional regions, which is discussed in detail in
the experiment section. yti

and yci
are the vertical coordi-

nates of vertices (x, y) on the sideline and the center line,
respectively./e generating process of theR2 is similar to the
R1, but the only difference is that the pixels are located below
the TS. /erefore, condition2 is reversed naturally:

R2i
�

1, condition1 ∩ condition2,

0, other,


condition1: tan(−α)< tan Θi( < tan(α),

condition2: yti
+ yti+1

 > yci
+ yci+1

 ,

(6)

where yti
and yti+1

are logically equivalent to ybi
and ybi+1

,
which are the vertical coordinates of the sampled vertices on
the sidelines./eR3 andR4 are generated in the same way, as
shown below:

R3i
�

1, condition1 ∩ condition2,

0, other,

⎧⎪⎨

⎪⎩

condition1: tan α −
π
2

 > tan Θi(  ∩ tan Θi( > tan
π
2

− α  ,

condition2: xti
+ xti+1

 < xci
+ xci+1

 ,

R4i
�

1, condition1 ∩ condition2,

0, other,

⎧⎪⎨

⎪⎩

condition1: tan α −
π
2

 > tan Θi(  ∩ tan Θi( > tan
π
2

− α  ,

condition2: xti
+ xti+1

 > xci
+ xci+1

 ,

(7)

where xti
and xci

are the horizontal coordinates of vertices on
the sideline and the center line, respectively.

3.4. Confidence Scoring Mechanism. To filter out false pos-
itives, the confidence score is utilized to weight every TS. If
the score of TS is lower than a threshold, then all compo-
nents of this instance are discarded:

TP,


n
i�1 pi

n
> c,

FP, Other,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)
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Figure 3: Label generation: (a) specific mathematical modeling method and (b) a clear example of the TS or the DPRs.
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where n is the total number of pixels in the TS. pi is the value
of the ith pixel in the TS region. TP and FP refer to the true
positives and false positives, respectively. c is the threshold
value to filter out the TS with a lower confidence score, and
we set it to 0.6 empirically. TS with high confidence will be
retained and processed to form the final prediction with its
corresponding DPRs. Instead, TS belonging to
FP(FalsePositive) with its components are filtered directly.
/e TS, as the central area of a text instance, contains the key
features of the whole text, which are more valuable to use
than the whole features of one text instance.

3.5. Loss Function. /e proposed method is trained with the
following loss function as the three objectives:

L � λ1LTS + LDPR + LCSM, (9)

where LDPR is a smooth L1 [26] loss and LTS and LCSM are
crossentropy classification loss functions. /e loss of LTS is
computed as follows:

LTS � 
N

n�1
wiCrossEntropy TSi,

TSi , (10)

where LTS is a self-adjust crossentropy loss function and wi

in equation (10) is a self-adjust weight [9]. For the ith in-
stance with area� Si, every positive pixels within it have a
weight of wi � B/Si. B is the average area of all text instances
in one image. In that case, the pixels in text instances with
small areas have a bigger weight than the pixels in big text
areas. In our experiments, the weight λ1 is set to 3 as the TS is
essential than other components. Losses for DPR and CSM
are calculated:

LDPR� 
4

n�1


i∈DPRn

SmoothL1 DPRi,
DPRi ,

LCSM� 
N

n�1
CrossEntropy CSi,

CSi ,

(11)

where LDPR is optimized by a Smooth L1 loss, and the pixels
losses in R1, R2, R3, andR4 are calculated, respectively,
which means that one pixel can be simultaneously catego-
rized as two regions (e.g., R1 and R3). LCSM is a standard
crossentropy function. TSi,DPRi, andCSi are ground truth
labels and TSi,

DPRi, and CSi are predicted values.

3.6. Postprocessing. TextCohesion treats every text instance
as TS and four DPRs previously; hence, these components
should be grouped, forming the final prediction. /e
postprocessing algorithm is depicted in Algorithm 1:

Every TS represents a text instance, and after passing
through CSM, instances with higher confidence are reserved
as candidates. Based on these candidates, the corresponding
DPRs can be obtained. /e postprocessing mainly includes
three steps. (1) /e TS is used to differentiate the different
text instances. (2) For each TS, the outer pixels as initial
points are used to search the corresponding pixels in the
DPRs iteratively. (3) /e TS is eventually merged with

corresponding searched regions to form the final prediction.
/e entire postprocessing is shown in Algorithm 1, where
Neighbor(.) refers to a function that obtains the directional
information of the adjacent pixels.

4. Experiment

To evaluate TextCohesion, we conduct extensive experi-
ments on both oriented and curved benchmarks and give a
detailed description of these datasets for model training and
inference, experimental implementation, results with com-
parisons, and ablation study, respectively.

4.1. Datasets. SynthText [38] is a large scale dataset that
contains about 800K synthetic images that are created by
blending natural images with text rendered with random
fonts, sizes, colors, and orientations. /ese texts look real-
istic as the overlaying follows carefully set up configurations
and a well-set learning algorithm.

ICDAR2015 [14] contains 1000 training and 500 test
images captured by wearable cameras with relatively low
resolutions. Each image includes several oriented texts an-
notated by four vertices of the quadrangles.

ICDAR 2017 MLT (IC17-MLT) [39] is a large scale
multilingual text dataset, which includes 7200 training
images, 1800 validation images, and 9000 testing images./e
dataset is composed of complete scene images that come
from 9 languages. Similarly, with ICDAR 2015, the text
regions in ICDAR 2017 MLT are also annotated by four
vertices of the quadrangle.

CTW1500 [40] is a challenging dataset for curve text
detection, which is constructed by Yuliang et al. [18]. It
consists of 1000 training images and 500 testing images.
Different from traditional text datasets (e.g., ICDAR
2015 and ICDAR 2017 MLT), the text instances in
SCUT-CTW1500 are labeled by a polygon with 14
points that can describe the shape of an arbitrarily curve
text.

Total-Text [41] is another word-level-based English
curve text dataset which is split into training and testing sets
with 1255 and 300 images, respectively (Figure 4).

4.2. Implementation Details. Training TextCohesion is op-
timized by SGDwith backpropagation [42]. Momentum and
weight decay are set to 0.9 and 5 × 10− 4, respectively.
Learning rate is initialized to 10− 4 and decayed by 0.1 every
30 epochs. Following [11], all training images are augmented
online with rotated and cropped with areas ranging from
0.24 to 1.69 and aspect ratios ranging from 0.33 to 3. After
that noise, blur, and lightness are randomly adjusted and
lastly resized to 512 × 512. We ensure that the text on the
augmented images is still legible if they are legible before
augmentation. TextCohesion is firstly pretrained on Syn-
thText for 2 epochs and fine-tuned on other datasets. All
implementations are deployed on PC with (CPU: Intel(R)
Core(TM) i7-7800X CPU @ 3.50GHz; GPU: GTX 1080).

Inferencing to test the ability of detecting arbitrarily
shaped text, we evaluate our method on Total-Text and
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SCUT-CTW1500, both of them containing the curved in-
stances. Images in the test stage are also resized to 512 × 512.
We report the performance on SCUT-CTW1500 in Table 1, in

which we can find that the Precision (88.0%), Recall (84.6%),
and F-measure (86.3%) achieved by TextCohesion signifi-
cantly outperform the ones of other competitors. Remarkably,

Figure 4: Visualization of the results on curved text datasets.

Input:
ti ∈ TS,DPR

Output:
Result

(1) Function Grouping (ti)
(2) T⟵Neighbor(ti, up)

(3) B⟵Neighbor(ti, down)

(4) L⟵Neighbor(ti, left)
(5) R⟵Neighbor(ti, right)
(6) if T ! � None andDPR[T] �� up then
(7) Tcache⟵ ti ∪T

(8) Grouping (Tcache)
(9) else if B! � None andDPR[B] �� down then
(10) Bcache⟵ ti ∪B

(11) Grouping (Bcache)
(12) else if L! � None andDPR[L] �� left then
(13) Lcache⟵ ti ∪L

(14) Grouping (Lcache)
(15) else if R! � None andDPR[R] �� right then
(16) Rcache⟵ ti ∪R

(17) Grouping (Rcache)
(18) else
(19) Return ti ∪Tcache∪Bcache∪ Lcache∪Rcache
(20) end if

ALGORITHM 1: Postprocessing algorithm.
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the recall and F-measure surpass the second-best record by
4.7% and 2.7%, respectively. Besides, the inference time of the
proposed method is also compared with other methods, i.e.,
DB [43]. /e testing scale of the input image is resized to
512 × 512 pixels, and the batch size is set to 1 during all the
comparison experiments. /e main results are reported in
Tables 1–4, where an acceptable inference time can be found.

4.3. Experiments on Curved Text Benchmarks. To test the
ability to detect arbitrarily shaped text, we evaluate our

method on Total-Text and CTW1500, both of them con-
taining the curved instances. Images in the test stage are also
resized to 512 × 512. We report the performance on
CTW1500 in Table 1, in which we can find that the Precision
(88.0%), Recall (84.6%), and F-measure (86.3%) achieved by
TextCohesion significantly outperform the ones of other
competitors. Remarkably, the Recall and F-measure surpass
the second-best record by 4.7% and 2.7%, respectively.

Our method achieves 88.1%, 81.4%, and 84.6% in Pre-
cision, Recall, and F-measure, respectively, outperforming

Table 1: Experimental results on CTW1500.

Method Ext.
CTW1500

Precision Recall F-measure Time
CTPN [3] — 60.4 53.8 56.9 0.14
SegLink [44] — 42.3 40.0 40.8 0.049
EAST [8] — 78.7 49.1 60.4 0.076
TextSnake [11] — 65.4 63.4 64.4 0.909
DB-ResNet-18 [43] — 84.8 77.5 81.0 0.001
PSENet [12] √ 84.8 78.0 80.9 0.429
DB-ResNet-18 [43] — 84.8 77.5 81.0 0.018
CRAFT [45] √ 87.6 79.9 83.6 0.116
DB-ResNet-50 [43] √ 86.9 80.2 83.4 0.045
TextCohesion (ours) √ 88.0 84.6 86.3 0.206
Ext. indicates external data.

Table 2: Experimental results on Total-Text.

Method Ext.
Total-Text

Precision Recall F-measure Time
SegLink [44] — 30.0 23.8 26.7 0.049
EAST [8] — 50.0 36.2 42.0 0.076
MaskSpotter [46] — 69.0 55.0 61.3 0.208
TextSnake [11] — 61.5 67.9 64.6 0.909
PSENet [12] √ 84.0 78.0 80.9 0.429
SPCNet [47] √ 83.0 82.8 82.9 —
CRAFT [48] √ 87.6 79.9 83.6 0.116
DB-ResNet-50 [43] √ 87.1 82.5 84.7 0.031
TextCohesion (ours) √ 88.1 81.3 84.6 0.206
Ext. indicates external data.

Table 3: Experimental results on ICDAR2015.

Method Ext.
ICDAR2015

Precision Recall F-measure Time
CTPN [3] — 74.2 51.6 60.9 0.14
SegLink [44] — 73.1 76.8 75.0 0.048
EAST [8] — 83.6 73.5 78.2 0.076
PixelLink [9] — 82.9 81.7 82.3 0.333
DB-ResNet-18 [43] — 86.8 78.4 82.3 0.024
TextSnake [11] √ 84.9 80.4 82.6 0.909
Mask textspotter [46] √ 85.8 81.2 83.4 0.208
PSENet [12] √ 86.9 84.5 85.7 0.429
CRAFT [48] √ 89.8 84.3 86.9 0.116
SPCNet [15] √ 88.7 85.8 87.2 —
DB-ResNet-50 [43] √ 91.8 83.2 87.3 0.083
PMTD [49] √ 91.3 87.4 89.3 —
TextCohesion (ours) √ 89.2 90.2 89.7 0.206
Ext. indicates external data.
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the second competitor with an F-measure of 1.0% on Total-
Text. We attribute this excellence to the proposed flexible
representation. Instead of taking the text as a whole, the
representation treats text as a serial of components and
integrates them together to form the final prediction.

4.4. Experiments on Oriented Text Benchmarks. In this sec-
tion, we evaluate TextCohesion on oriented text datasets.

/e performance of ICDAR2015 and ICDAR2017 are
demonstrated in Tables 3 and 4, which also achieves
F-measure of 89.1% and 73.1%, respectively. From these
results, it can be observed that our method also achieves very
competitive performance in dealing with oriented text.
Meanwhile, thanks to the robust feature representation,
TextCohesion can as well locate the text instance with small
instances and in complex illuminations and variable scales.

Table 4: Experimental results for ICDAR2017.

Method Ext.
ICDAR2017

Precision Recall F-measure Time
Lyu et al. [30] — 83.8 55.6 66.8 0.175
FOTS [50] — 81.0 57.6 67.2 0.041
DB-ResNet-18 [43] — 81.9 63.8 71.7 0.020
PSENet [12] √ 77.0 68.4 72.5 0.429
CRAFT [51] √ 80.6 68.2 73.9 0.116
DB-ResNet-50 [43] √ 83.1 67.9 74.7 0.053
TextCohesion (ours) √ 81.8 66.0 73.1 0.206
Ext. indicates external data.

Table 5: Model results for different values of α in equation (3) and when using the CSM on CTW1500.

Dataset α CSM (c) Precision Recall F-measure
CTW1500 π/6 (30°) √(0.6) 88.0 84.6 86.3
CTW1500 π/4 (45°) √(0.6) 88.5 82.0 85.2
CTW1500 π/3 (60°) √(0.6) 89.5 81.9 85.5
CTW1500 π/6 (30°) × 85.2 84.8 85.0
CTW1500 π/6 (30°) √(0.4) 85.3 85.1 85.2
CTW1500 π/6 (30°) √(0.5) 86.3 84.9 85.6
CTW1500 π/6 (30°) √(0.6) 88.0 84.6 86.3
CTW1500 π/6 (30°) √(0.7) 88.2 83.3 85.7
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Figure 5: Ablation study on sampling number (n) and β.
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4.5. Analyses and Discussion

4.5.1. Influence of the Number of Samples (n). We sample n

points on the top sideline and bottom sideline for each text
instance, and use these points to split text instances better.
To further study the Influence of the number of points on the
sampling precision, an ablation experiment is performed, as
shown in Figure 5(a). /eoretically, the performance of the
model will improve with the increase of sampling precision.
In the experiment, we found that the performance of the
model hardly improve further (around 85%) when the
sampling number (n) is greater than 10. n is set to 40 in all
experiments.

4.5.2. Influence of β in Equation (2). β as an important
parameter is used to control the ratio of the TS area to the
DPR area. As shown in Figure 5(b), when the value of β is
within the range of [0.1, 0.6], the network performs well. In
all experiments, β is set to 0.2.

4.5.3. Influence of α in Equation (3). α is used to delineate
the top, bottom, left, and right regions. 30°, 45°, and 60° are
the three specific angles used to investigate the influence of α.
As shown in Table 1, the F-measure is relatively good when α
is 30°, so we set α to 30° in all experiments.

4.5.4. Influence of the Confidence Scoring Mechanism.
/e CSM is used to filter out the false positives (e.g., those
symbols or characters that are similar to text). /e influence
in the results of the model when using the CSM is shown in
Table 5. /e precision improves 2.8% after the CSM (0.6) is
used. To test the robustness of the proposed model while
changing the c in equation (8), a comparison experiment is
set in Table 5, and the F-measure is relatively good when c is
0.6. In all experiments, c is set to 0.6.

5. Conclusion and Outlook

In this paper, we propose a novel text detector, which
achieves upto 86.3% F-measure among common text
benchmarks, including text instance with irregular shapes.
/e text instance modeling method utilized in this detector
could precisely detect text with arbitrary boundaries by
splitting one text instance into four DPRs and a TS region.
Moreover, a Confidence ScoringMechanism is incorporated
into this detector to filter out false positives, which further
improves its detection precision. Simulation experiment
results show that the proposed text detector performs well in
scene text detection. /e proposed method might have
potential applications in the field of photo translation, au-
tonomous driving, and product identification.
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Scene text detection methods based on deep learning have recently shown remarkable improvement. Most text detection methods
train deep convolutional neural networks with full masks requiring pixel accuracy for good quality training. Normally, a skilled
engineer needs to drag tens of points to create a full mask for the curved text. .erefore, data labelling based on full masks is time
consuming and laborious, particularly for curved texts. To reduce the labelling cost, a weakly supervised method is first proposed
in this paper. Unlike the other detectors (e.g., PSENet or TextSnake) that use full masks, our method only needs coarse masks for
training. More specifically, the coarse mask for one text instance is a line across the text region in our method. Compared with full
mask labelling, data labelling using the proposed method could save labelling time while losing much annotation information. In
this context, a network pretrained on synthetic data with full masks is used to enhance the coarse masks in a real image. Finally, the
enhanced masks are fed back to train our network. Analysis of experiments performed using the model shows that the per-
formance of our method is close to that of the fully supervised methods on ICDAR2015, CTW1500, Total-Text, and MSRA-
TD5000.

1. Introduction

At present, natural scene text detection has attracted more
attention due to its practical application requirements, such as
scene understanding, visual question answering, autonomous
driving, text detection [1], and recognition [2, 3]. Text is one of
themost fundamental semantics appearing everywhere in daily
life, for example, in traffic signs, commodity packages, and
advertising posters. .ese text instances in the real world have
varying sizes, random directions, and arbitrary shapes, making
them extremely challenging to label and capture accurately.
Unlike other general objectives, scene text usually cannot be
described accurately by the axis-aligned rectangle, and most
detectors using an axis-aligned rectangle only have an
F-measure of below 65%, such as TextSnake [4]. Recently, most
scene text detectors based on deep learning have tended to
detect texts in different shapes withmany coordinates for better
performance. However, the above detectors require accurate
pixel-level labels with expensive costs..e labelling consumes a
large amount of manpower and financial resources, especially
for texts with arbitrary shapes in complex environments.

.e precision of text detection has a close connection
with the labelling methods of datasets. For example, several
common datasets, ICDAR2013 [5], ICDAR2015 [6],
ICDAR2017 [7], Total-Text [8], CTW1500 [9], and MSRA-
TD500 [10], have different labelling methods for various
texts. ICDAR2013, as one of the common datasets, was
introduced during the ICDAR Robust Reading Competition
in 2013 and mainly includes horizontal bounding boxes
made by two points at the word level. Because of this la-
belling peculiarity, text detectors [11, 12] using box re-
gression have a great performance on ICDAR2013.
ICDAR2015 was released in the ICDAR2015 Robust Reading
Competition for multioriented text detection, using quad-
rilateral boxes as the annotations, as shown in Figure 1(b).
EAST [13] and SPCNet [14], as the representatives of de-
tectors, achieved good results on ICDAR2015. ICDAR2017
was a dataset with texts in nine languages for multilingual
scene text detection, using quadrilateral boxes as the an-
notations as well as ICDAR2015. MSRA-TD500 was released
in 2012, and the annotation method is the same as that of
ICDAR2015. Unlike the above datasets, Total-Text and
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CTW1500 containmany curved texts, which aim to solve the
arbitrarily shaped text detection problem. CTW1500 has
more than 10k text annotations and at least one curved text
per image. Total-Text contains many curved and multi-
oriented texts, which require tens of points for accurate
labelling. Recently, segmentation-based text detectors
[4, 15, 16] have shown promising performance in existing
datasets with high-cost labelling. .e annotation design
becomes more complicated to fit the requirements of text
detection in the real world, and the cost also increases.

.e bounding box-based labellingmethod has low labelling
costs but cannot fit text instances accurately in the wild, as
shown in Figure 1(b). .e pixel-based labelling method
matches texts with arbitrary shapes in a complex environment
but requires high labelling costs, as shown in Figure 1(c). To
mitigate this conflict, we explore detecting texts at the pixel
level but with a low labelling cost. Precise drawings of the text
region are difficult, but using a cross-line to locate text is
simple..erefore, we seek to simplify the complex text labelling
as a line named the text line in this work. Compared with the
box or full masks, this annotation is extremely simple and
contains less pixel information, as shown in Figure 1. Hence,
the following two difficulties must be considered:

(i) A weak text line label loses the text edge information
and nearly all of the background information, which
is rather problematic for supervised training

(ii) .e loss function focuses only on the labelled area
and is not sensitive to the unlabelled ground truth

To solve the above difficulties, a scene text detector based
on weakly supervised learning is proposed in our paper. .e
model is first pretrained on SynthText to make it sensitive to
the text region. Subsequently, in the training process of real
data, the pretrained model is used to enhance the text line
label. In addition, to enhance the weak label better, a soft
label ∈ [0, 1] containing pixel location (distance) informa-
tion is used. .e contributions of this work are summarized
as follows:

(i) We first propose a scene text detector based on
weakly supervised learning that significantly sim-
plifies the annotation process without losing much
precision.

(ii) A modified crossentropy loss function named degree
crossentropy is proposed. .e loss function can
optimize the soft label containing distance
information.

2. Related Work

Scene text detection has received significant attention over
the past few years, and numerous deep learning-based
methods [17–21] have achieved great progress. Increasing

(a) (b)

(c) (d)

Figure 1: Labelling methods. (a) Original image. (b) Bounding box labelling containing a considerable amount of background noise and
interference from other text areas. (c) Visualization of segmentation annotation, requiring high labour cost. (d) Proposed annotation
methods: coloured regions represent the labelled region, including the grey background and other coloured text lines.
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detectors tend to capture texts at the pixel level to detect texts
more precisely.

2.1. Bounding Box-Level Text Detection Methods.
Bounding box regression-based methods [19, 22] are in-
spired by general object detection methods such as SSD [23]
and Faster R-CNN [24]. TextBoxes++ [25] further regresses
to quadrangles instead of horizontal bounding boxes for
multioriented text detection. RRD [26] uses rotation-in-
variant and sensitive features from two separate branches for
better long text detection. DSRN [2] maps multiscale con-
volution features onto a scale invariant space and obtains
uniform activation of multisize text instances for detecting
texts. Although regression-based methods have achieved
state-of-the-art performance, it is still difficult to capture all
text information in a bounding box without involving a large
proportion of background and even other text instances.

2.2. Pixel-Level Text Detection Methods. Pixel-level text de-
tectors draw inspirations from FCN [23] and Mask R-CNN
[27]. Using the mask as the annotation, PixelLink [28]
performs text/nontext and links prediction at the pixel level.
TextSnake [4] learns to predict local attributes, including the
text centre line, text region, radius, and orientation,
achieving improvements of up to 20% accuracy on curved
benchmarks. CRAFT [15] trains a convolutional neural
network producing the character region score and affinity
score. PSENet [16] projects the feature map into several
branches to produce multiple segmentation maps. TextField
[29] detects scene text by predicting a direction field
pointing away from the nearest text boundary to each text
point. Text mountain [30] predicts text centre-border
probability and text centre-direction to detect the scene text.
Text detectors based on instance segmentation perform
better with higher precision annotation.

2.3.Weak Supervision Semantic Segmentation. Sun et al. [31]
leveraged the power of deep semantic segmentation CNNs
while avoiding requiring expensive annotations for training.
Rtfnet [32] took advantage of thermal images and fused both
the RGB and thermal information in a novel deep neural
network. Tang et al. [33] proposed a normalized cut loss for
semisupervised learning; the loss combines partial cross-
entropy on labelled pixels and normalized cut for unlabelled
pixels. Wang et al. [1] proposed a self-supervised approach
and developed a pipeline to label drivable areas and road
anomalies using RGB-D images automatically.

2.4. Weak Supervision Text Detection Methods. WeText [34]
trains scene text detection models on a small number of
character-level annotated text images, followed by boosting
the performance with a much larger number of weakly
annotated images at the word/text line level. WordSup [35]
trains a character detector by exploiting word annotations in
rich large-scale real scene text datasets.

Recently, all detectors have been trained with fully an-
notated masks, requiring pixel-level accuracy for good

quality prediction. Motivated by weakly supervised semantic
segmentation [34, 36–38], we propose a weakly supervised
scene text detector to alleviate the labelling consumption
without losing high precision.

3. Method

In this section, we first introduce the overall pipeline of the
proposed network. Second, the label and the procedure for
enhancing the text line are described in detail. Furthermore,
the designed loss function for weakly supervised learning is
introduced. Finally, we list the simple postprocessing
mechanism.

3.1. Overview. Figure 2 shows the overall pipeline of the
proposed method, which is divided into three steps: (1) the
model pretrained on a synthetic dataset [17], (2) label en-
hanced on a real dataset, and (3) training with the enhanced
label. In the first step, the model is pretrained on a synthetic
dataset with the full mask to make our model sensitive to the
text region. In the second step, the pretrained model outputs
an activation map of a real image as a supplement to the
weakly annotated label (i.e., text line). In the final step, the
enhanced label is fed back to optimize the network pa-
rameters. .e output of the model in the final step forms the
final prediction result through a contour search.

3.2. Labelling and Label Enhancement

3.2.1. Text Line. In this paper, we define the text line as a line
across the text region, as shown in Figure 3. All characters
within this text region should be connected with a con-
tinuous line (e.g., TL-1 to TL-5). .ere are no width and
curvature requirements for these text lines. However, im-
proper annotations such as TL-6 will result in an obvious
decline in text detection accuracy. .e BG in Figure 3
represents the background annotation, which has no re-
quirements for the geometric parameters (e.g., shape, width,
length, and curvature) of the line. As a result, the TL and the
BG constitute the original annotation.

3.2.2. Soft Label. .e soft label containing the distance
(location) information is used in our method. .e shortest
distance between each text pixel and the background is
calculated..en, wemap these distance values to [0, 1] as the
soft label. For pixels concentrated in the centre of the text
instance, a strong (high) value that tends to 1 should be
given. However, for the estimated edge area, a weak (low)
value that tends to 0 should be assigned. As shown in
Figure 2 (activation map), the distance-mountain-like ac-
tivation map is predicted from the model pretrained on
SynthText. .e shape of the soft label is the same as the
distance-mountain shape. .e value Pi of the label is cal-
culated using the following equation:

Pi �
Di

Dmax
, (1)
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where Di is the shortest distance between each text pixel (i)
and the background pixels. Dmax is the maximum value for
all Dis in the same text instance.

3.2.3. Label Enhancement. As shown in Figure 2, label
enhancement is an important step in the overall pipeline.
.e detailed processing of the enhancement is as follows: the
network is first pretrained on SynthText for one epoch with
full masks, making it sensitive to text areas. .e activation
maps of real images are generated using the above pretrained
model. .en, we extract the text skeleton for the given
weakly supervised label. Finally, the intersection of the text
activation region and the text skeleton is expanded to obtain
more annotation information. .e only purpose of label
enhancement is to use the text line to locate the correct
detection text region in the activation map of the real image
and to obtain more supervision information. Enhanced
labels only work on the positive part (i.e., text line), while
background annotations are excluded.

Figure 2 (right) describes the combination of the text
skeleton and activation maps. We first use the text skeleton
to locate the corresponding text activation region in the
activation map and then attempt to seek the corresponding
text edge region through continuous dilation of the

intersection of the text activation region and the text skel-
eton. Detailed seeking refers to considering a pixel as the
edge pixel by estimating whether the pixel value approaches
0. Finally, the values of pixels deemed as edge pixels are used
as the supplement to enhance the original annotation (i.e.,
text line). Note that the values in the activation map are not
common binary probabilities (i.e., text/nontext prediction)
but represent location (distance) values. .erefore, we can
use the value of each pixel in the text region to confirm the
relative distance from the background.

3.3. Network Design. We chose VGG16 [39] as our feature
extractor for a fair comparison with other methods. .e
images are first downsampled to the multilevel features with
five convolution blocks, and five feature maps
(i.e.,P1, P2, P3, P4, P5) are generated in the step. .en, the
features are gradually upsampled to the original size and
mixed with the corresponding output of the previous
convolution block:

O � U P1 Up

����� P2 Up

����� P3 Up

����� P4 Up

����� P5(     ,

Up(p) � Deconv Conv(3,3) Conv(1,1)(p)  ,

(2)

where “‖” refers to the feature concatenation and Up is the
upsample function that is used to feed the feature map
into the Conv(1, 1)-Conv(3, 3)-Deconv-ReLU layers. .e
difference in U for Up is obtained without the ReLU layer
and reducing the channel number to 1 as the output.
Finally, the output obtained through the sigmoid function
is used to calculate the loss of the prediction. In addition
to the VGG16, other backbones (i.e., ResNet) were also
adopted in a comparative study in Section 4.6 Ablation
Study.

Text line label

Real image

Synthetic image
Activation map

Text skeleton line The final text label

Label enhancement with pretrained model

Train with synthetic image
Training with enhanced label

Image

Label

Activation map

Text skeleton line

The final text label

Label enhancement

Figure 2: .e overall procedure of the proposed method. (1) .e network pretraining on SynthText for one epoch with full masks. (2)
Enhancing the label (i.e., text line) with the pretrained model. (3).e enhanced annotation information is feedback to train the network in a
weakly supervised manner.

TL-1
TL-2

TL-3

TL-4 TL-6TL-5

BG

Figure 3: Text line labelling: a sample of text line labelling.
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3.4. Loss Function. .e prediction is a two-dimensional
feature map, and we map the value to [0, 1] using the
sigmoid function. .ese values in a text instance are not the
confidences of each pixel but represent the degrees of the
shortest distance between each pixel and the background.
.e common binary crossentropy loss function is

LCE � −  t × lny
+(1 − t) × ln1−y

 , (3)

where t is the ground truth and y is the prediction. .e
common crossentropy is used to evaluate the confidence of a
certain category but cannot calculate the loss value with
specific meanings (e.g., our distance values).

In that case, we seek to optimize the loss containing
distance values by L1 loss: |f(x) − Y| or
L2 loss: |f(x) − Y|2. However, we find that L1 and L2 are
not sensitive to the distance distribution among [0, 1]. For
instance, the L1 loss between the ground truth of 0.5 and the
prediction result of 0.55 is too small and not conducive to
backpropagation.

To solve the above difficulty, the degree crossentropy is
proposed. .e degree crossentropy can not only evaluate the
confidence of category but also deal with the distance in-
formation. Losses for the positive and negative pixels are
calculated according to

Lnegative � LCE(x, y) ×(GT(x, y) �� 0),

Lpositive � LDCE(x, y) × Uc/e ×(GT(x, y)≠ 0),
(4)

where LCE(x, y) is the traditional crossentropy loss of pixel
(x, y) and GT(x, y) is the corresponding ground truth of
pixel (x, y). Since the enhanced label may not be accurate,
we treat the given label and the postenhanced supplements
separately. Uc/e is a discriminatory mechanism that calcu-
lates the losses of the original label and postenhanced part,
respectively. LDCE(x, y) is the degree crossentropy loss:

LDCE � −ln 1 − abs GT − Predp  , (5)

where Predp is the predicted result after the sigmoid
function and GT is the ground truth. .e loss of prediction
and any goal ∈[0, 1] is calculated to help us to deal with
distance degree information of the text. .e specific
implementation of Uc/e is described by

Uc/e �

1, P(x, y) ∈ TL(x, y),

1, P(x, y) ∈ (DP(x, y)∩G),

0, others,

⎧⎪⎪⎨

⎪⎪⎩

G � abs(GT(x, y) − Pred(x, y))> ρ ,

(6)

where P(x, y) refers to pixel (x, y) in the entire prediction
map. TL(x, y) and DP(x, y) represent the annotated pixels
(x, y) and postenhanced pixels (x, y), respectively. G is one
set of pixels with a difference of more than ρ between the
ground truth and prediction..e postenhanced annotation
from the pretrained model may not be quite accurate, and
noise interference may exist. Several situations are present
in label enhancing. For instance, background pixels are
viewed as text pixels as positive annotations. .e causes are
the annotation differences in the datasets and the

unreliability of the prediction. To make our network learn
from noisy or wrong labels, we propose a discriminatory
mechanism called Uc/e, which calculates the losses of the
original label and postenhanced part. In that case, the
network performs strong-supervised learning on labelled
pixels and distribution supervised learning on post-
enhanced pixels. More specifically, the predicted pixel
values gradually decrease from the text centre to the edge
without fitting the value of the label..e difference between
the enhanced annotation and predicted results will be
considered reasonable if it is smaller than ρ. .e value of ρ
is set to 0.1 in all the experiments. .erefore, the fault
tolerance of Uc/e can enhance the robustness of the model
and avoid some mistakes from the postenhanced
annotation.

3.5. Postprocessing. Most segmentation-based methods
with segmentation have a common difficulty in which the
separation of text instances that are close to each other is
challenging. To solve this problem, we propose the apex-
edge expansion algorithm that makes full use of the text-
mountain shape. Given the prediction result, each text
instance appears as a text mountain, as shown in
Figure 4(a), where the text centre line region is the peak and
the values of the pixels tend to 1. .e text edge pixel areas
are similar to the feet of the mountain, and their contents
are mostly close to zero. Figure 4 presents a vivid example
to illustrate the detailed procedure of the apex-edge ex-
pansion algorithm.

.e detailed procedure of the apex-edge expansion
algorithm is shown in Figures 4(b) and 4(c). .e post-
processing mainly includes three parts. (1) .e peak of
each text mountain is selected to differentiate the different
text instances. .e pixel block for which the values of each
inner pixel approach 1 is the peak. (2) .e dilate in
OpenCV is used to expand the peak region continuously
until reaching the mountain foot or meeting other text
areas. .e expansion process is divided into many steps
S1, S2, . . . , Sn. Si (i ∈ [1, n]) represents the entire expansion
area in the ith step. Si − Si−1(i ∈ [2, n]) is called the ex-
tended area between two adjacent steps. .e criterion of
expansion ending is that the average score of the extended
area approaches 0 or starts to increase. .e average score
approaching 0 means that the expansion area is close to
the background. .e increase in the score means that the
expansion area begins to cover other text instances. (3)
.e contour of the whole text instance is represented
by many coordinates as the final prediction result after
the expansion. .e entire postprocessing is shown in
Algorithm 1, where Sn represents the prediction result,
and the output Dn is the set of text instances. Dilation (.)
is the dilate operation in OpenCV. .e value and size of
the expansion kernel in dilation (.) can be changed to
realize different direction expansions and different scale
expansions. Mean (.) is used to calculate the average value
of a matrix. -represents complementing the set. ⟶ and
Δ refer to tending to a number and the value increasing,
respectively.

Mathematical Problems in Engineering 5



4. Experiments

In this section, we evaluate our approach using ICDAR2015,
Total-Text, MSRA-TD500, and CTW1500..e experimental
results demonstrate that the performance of the proposed
method is comparable to those of the other methods.

4.1. Datasets. .e datasets used for testing our method are
briefly introduced below:

SynthText is a large-scale dataset that contains ap-
proximately 800K synthetic images. .ese images were
created by blending natural images with text rendered
with random fonts, sizes, colours, and orientations. We
used this dataset to pretrain our model.
ICDAR2015 is a multioriented text detection dataset for
English text that includes only 1,000 training images
and 500 testing images..e text regions were annotated
by four vertices of the quadrilateral.
MSRA-TD500 contains 500 natural images. .e indoor
images are mainly signs, doorplates, and caution plates,

while the outdoor images are mostly guided boards and
billboards in complex backgrounds.
Total-Text is a world-level English curved text dataset
that is split into training and testing sets with 1,255 and
300 images, respectively. .e text in these images in-
cludes more than 3 different text orientations: hori-
zontal, multioriented, and curved.
SCUT-CTW1500 contains 1,000 training images and
500 test images, which contain multioriented text,
curved text, and irregularly shaped text. Text regions in
this dataset are labelled with 14 scene text boundary
points at the sentence level.
Data labelling to test our method: we manually
marked Total-Text, CTW1500, and TD500. As shown
in Figure 5, the annotation method was brief and
inexpensive. For ICDAR2015, the official label was
used to fit the text line label for the further verifi-
cation experiment. .e detailed fitting method is
simple. .e text skeleton as a text line is extracted
directly from the full label. All annotations will be
released.

ImagePredicted result

(c) Apex-edge expansion

0.8

0.9

0.8

0.8

0.00.0

0.00.0

0.0

0.0

0.1

0.1

0.10.1

0.2

0.1

0.90.8

0.9 1.0

1.0

0.2

0.2

0.7

0.1

0.8

0.9

0.8

0.8

0.00.0

0.00.0

0.0

0.0

0.1

0.1

0.10.1

0.2

0.1

0.90.8

0.9

1.0

0.2

0.2

0.7

0.1

0.8

0.9

0.8

0.8

0.00.0

0.00.0

0.0

0.0

0.1

0.1

0.10.1

0.2

0.1

0.90.8

0.9

1.0

0.2

0.2

0.7

0.1

0.2

0.1… …

…

…

…

…

… …

… …

… …

…

…

…

…

…

…

…

… … …

…

…

…

…

…

1.0

0.2

0.1

0.2

0.1

1.0

(a)

(b)

(d)

Figure 4: Apex-edge expansion: the diagram shows the whole expansion postprocessing process. (a) .e original image and the predicted
result. (b) Sketch of the expansion showing how to expand from the apex to the edge of the text instance. (c) A more detailed explanation in
the two-dimensional decimal matrix. (d) .e prediction result.
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4.2. Implementation Details

4.2.1. Training. .e network was pretrained on SynthText
for one epoch and fine tuned on other datasets. We adopted
the Adam optimizer as our learning rate scheme. During the
pretraining phase, the learning rate was fixed to 0.001.
During the fine-tuning stage, the learning rate was initially
set to 0.0001 and decayed at a rate of 0.94 every 10,000
insertions. All of the experiments were conducted on a

regular workstation (CPU: Intel (R) Core (TM) i7-7800X
CPU @ 3.50GHz; GPU: GTX 1080). .e model was trained
with a batch of 4 on one GPU.

VGG16 was adopted as the backbone network for the
contrast experiment in our experiments. All of the experi-
ments use the same training strategy: (1) enhancing the text
annotation information with the model pretrained on
SynthText and (2) training network on the target dataset. To
validate the robustness of the proposed method and keep the

(a) (b) (c)

Figure 5: .e comparison between the text line label and original annotation for three benchmarks. .e row on the top is the visualization
of the original annotation on (a) CTW1500, (b) Total-Text, and (c) TD500..emiddle row is text line annotation and is labelled..e bottom
row is the visualization of detection results for the proposed method.

Input: Sn: Segmentation result
Output: Dn: Text instances

Dn⟸ ϕ
Apexs⟸ [Sn(x, y)⟶ 1]

for Apex ∈ Apexs do
if Apex>minimum then
DK(dilated kernel)⟸Apex
while iter<max iter do
next DK⟸Dilation (DK)//expansion operation
score DK⟸Mean (next DK∩DK∩Sn)
//get the average score of the extended region
if score DK⟶ 0 or score DKΔthen
Enqueue (Dn, next DK)//push result into Dn

break
end if
DK⟸ next DK

end while
end if

end for

ALGORITHM 1: Apex-edge expansion algorithm.
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same condition in the comparative experiments, all of the
models used in label enhancement were the same model
pretrained on SynthText for one epoch.

4.2.2. Data Augmentation. .e images were randomly ro-
tated, cropped, and mirrored at a probability of 0.4. .en,
colour and lightness were randomly adjusted. Finally, the
images were uniformly resized to 512× 512.

4.2.3. Postprocessing. We obtained all of the text instances
with the apex-edge expansion and then used findContours
in OpenCV to obtain a set of edge coordinates for each
text instance. Finally, the text instances of the regular text
datasets (i.e., MSRA-TD500) were described by four co-
ordinate points. Methods such as minAreaRect in
OpenCV were applied to obtain the bounding boxes of
text instances. For curved text datasets, we used a set of
coordinate points to describe the text instance (Tables 1
and 2).

4.3. Detecting Curve Text. .e CTW1500 and Total-Text
datasets were used to test the ability of curve text detection.
In the experiments, manual text line annotation is used for
training..emodel pretrained with one epoch on SynthText
had two effects: one was to heighten the annotation infor-
mation, and the other was fine-tuning the pretrained model
on other datasets.

.e training started with the pretrained model and
achieved the best result between 20 and 40 epochs. .e
F-measure showed a fluctuation of approximately 5%, while
the threshold of the peak was in [0.5, 0.8]. For comparative
experiments, the threshold of the peak in the apex-edge
expansion algorithm was set to 0.6 for CTW1500 and Total-
Text for comparative experiments. We continued to expand
the peak region until the average score of the extended area
approached 0 or met another text instance.

.e F-measure of our method with text line was 77.6%
on Total-Text, while the F-measure of our method with full
masks was 81.1%, as shown in Table 3..e performance with
full masks was close to that of the newest method. .e
difference (3.5%) shows that using the text line can still
achieve good results on the challenging poor annotation..e
recall (76.7%) was close to the values obtained for the other
methods. On CTW1500, our method showed excellent re-
sults that were very close to the results obtained by the other
strong-supervised methods with an F-measure of 82.3%..e
difference (1.9%) between the F-measure of using the text
line and that of using the full mask was also acceptable.

4.4. Detecting Long Text. TD500 contains many long text
scenes and therefore is an excellent dataset for verifying the
robustness of the network in long text cases. In the experi-
ment, text line annotation was enhanced by the model pre-
trained on SynthText. .e pretrained model was also used for
fine-tuning on TD500. .e threshold of the peak in the apex-
edge expansion algorithm was set to 0.6, which is the same
value as the experiments on CTW1500 and Total-Text. Table 4

compares the proposedmethod with state-of-the-art methods
on TD500. .e proposed method achieved an F-measure of
77.2%, which is competitive with other state-of-the-art de-
tectors trained in a strongly supervised way.

4.5. Detecting Oriented Text. All of the parameter settings
and training details for ICDAR2015 were the same as those

Table 1: Experimental results for Total-Text. “PT”refers to the
model pretrained with one epoch on SynthText. “Ext.” indicates
external data. “FM” refers to the model trained with full mask on
Total-Text. All listed results were obtained in a strongly supervised
manner.

Method Ext.
Total-Text

Precision Recall F-measure FPS
SegLink [40] — 30.0 23.8 26.7 —
EAST [13] — 50.0 36.2 42.0 —
Mask TextSpotter [12] — 69.0 55.0 61.3 —
PSENet [16] — 81.8 75.1 78.3 3.9
[41] √ 80.9 76.2 78.5 10.0
TextSnake [4] √ 82.7 74.5 78.4 —
PSENet [16] √ 84.0 78.0 80.9 3.9
SPCNet [14] √ 83.0 82.8 82.9 —
CRAFT [15] √ 87.6 79.9 83.6 8.6
FM (ours) PT 83.1 81.6 82.4 10.4
TAS (ours) PT 78.5 76.7 77.6 11.2

Table 2: Experimental results for CTW1500. “PT”refers to the
model pretrained with one epoch on SynthText. “Ext.” indicates
external data. “FM” refers to the model trained with full mask for
strong-supervised learning.

Method Ext.
CTW1500

Precision Recall F-measure FPS
CTPN [42] — 60.4 53.8 56.9 7.14
SegLink [40] — 42.3 40.0 40.8 —
EAST [13] — 78.7 49.1 60.4 —
CTD+TLOC [43] — 77.4 69.8 73.4 —
PSENet [16] — 80.6 75.6 78.0 3.9
TextSnake [4] √ 67.9 85.3 75.6 —
[41] √ 80.2 80.1 80.1 10
TextField [29] √ 79.8 83.0 81.4
PSENet [16] √ 84.8 79.7 82.2 3.9
CRAFT [15] √ 88.2 78.2 82.9 8.6
FM (ours) PT 86.2 80.5 83.2 9.0
TAS (ours) PT 83.8 80.8 82.3 9.2

Table 3: Effectiveness of label enhancement and the pretrained
model on Total-Text.

Method Pretrain-enhancement Label F-measure
Baseline +TL No TL 65.0
Baseline + FL No Full 81.1
Baseline +TL∗+PT SynthText TL∗ 77.6
Baseline +TL+PTΔ CTW1500 TL 79.1
Baseline +TL+PT SynthText TL 77.2
FL and TL refer to using full mask and text line label, respectively. TL∗ is the
synthetic text line label. PT and PTΔ are the different models pretrained on
SynthText and CTW1500, respectively.

8 Mathematical Problems in Engineering



for the experiments on the curve text datasets. .e official
label was used to fit the text line label for the further verified
experiment on ICDAR2015. Similar to the experiment on
TD500, minAreaRect in OpenCV was used to obtain the
bounding boxes of the text instance, in contrast to several
detectors listed in Table 5 that used extra datasets. For in-
stance, the F-measure of PSENet [16] was 80.5% without an
extra dataset. .e F-measure (79.4%) of our method was
already comparatively close to those of the other methods.

4.6. Ablation Study. .ree groups of comparative experi-
ments were performed to verify the effectiveness of our
method.

4.6.1. Baseline. .e baseline was trained with the text line
without label enhancement, and the F-measure of the
baseline on Total-Text was 65.0%, as shown in Table 3.

4.6.2. Label Enhancement. .e results are shown in Table 3,
which are further analysed for label enhancement of the
model on Total-Text. Training with an unenhanced text line
shows an unsatisfactory performance (65.0%), while training
with a full mask obtained an F-measure of 81.1%. .e large
difference (16.1%) indicates that the text line loses important
supervision information. After introducing the pretrained
model on SynthText to enhance the text line, the perfor-
mance of the model had an obvious improvement from
65.0% to 77.2%. In addition, using the synthetic text line
from the full mask shows better performance (77.6%). .e
main reason for this is that the manual text line had a larger
error in extracting the text skeleton compared to the syn-
thetic text line. In addition, we also compared the perfor-
mance of the model pretrained on different datasets:
synthetic data (i.e., SynthText) and realistic data (i.e., SUCT-
CTW1500). .e F-measures using SynthText and CTW1500
were 77.2% and 79.1%, respectively. Obviously, the

performance of our model pretrained with realistic data
shows a few advantages. .is also indicates an intrinsic
limitation of this method and the dependence on the pre-
trained model.

4.6.3. Geometric Parameters of the Text Line. As shown in
Table 6, the impact of the width and the offset of the text line
was evaluated. For the width of the text line, we used dif-
ferent widths of synthetic or manually marked text lines to
test our model. For the manually marked text line, we
extracted its skeleton of one-pixel width and dilated the
skeleton to different widths while the width was less than
that of the original text line. For the synthetic text line, the
skeleton of one pixel was extracted from the full mask and
used to create different widths. While the width of the text
line was the same, using the synthetic text line which usually
achieved a better performance than using the manual text
line, and the average difference was approximately 0.4%. In
addition, with increasing width, the F-measure showed a
fluctuation of approximately 1%. .e offset of the text line
was set to 0 in all experiments to evaluate the influence of the
text line width.

Apart from the evaluation of the influence of width, the
offset between the synthetic text line and centre line of the
text instance was also set to test our detection method. .e
offset in Table 6 refers to the offset error ratio: Do/Dt. Do is
the distance between the text line and text centre line, and Dt

is the width of the text region. In the experiment, we only
performed the experiment on the synthetic text line, while
the offset between the manual text line and text centre line
was difficult to calculate. .e text centre line was calculated
from the original coordinate annotation, and then we cre-
ated the text line by setting the corresponding offset ratio.
.e curvature and width of the created text line were the
same as those of the text centre line. All widths of the text

Table 4: Experimental results for SCUT-TD500. “PT”refers to the
model pretrained on SynthText. “Ext.” indicates external data. All
compared methods were trained in a strongly supervised way.
“FM” refers to the model trained with a full mask for strong-su-
pervised learning.

Method Ext.
MSRA-TD500

Precision Recall F-measure FPS
EAST [13] — 87.3 67.4 76.1 13.2
RRPN [20] — 82.0 68.0 74.0 —
DeepReg [18] — 77.0 70.0 74.0 1.1
SegLink [40] √ 86.0 70.0 77.0 8.9
PixelLink [28] √ 83.0 73.2 77.8 3.0
RRD [26] √ 87.0 73.0 79.0 10
TextSnak [4] √ 83.2 73.9 78.3 1.1
[44] √ 87.6 76.2 82.9 —
TextField [29] √ 75.9 87.4 81.3 —
CRAFT [15] √ 88.2 78.2 82.9 8.6
MCN [45] √ 79.0 88.0 83.0 —
FM (ours) PT 83.2 76.6 79.8 11.6
TAS (ours) PT 80.6 74.1 77.2 12.0

Table 5: Experimental results for ICDAR2015. “PT”refers to the
model pretrained on SynthText for one epoch. “Ext.” indicates
using external data.

Method Ext.
ICDAR15

Precision Recall F-measure FPS
CTPN [42] — 74.2 51.6 60.9 7.1
EAST [13] — 83.6 73.5 78.2 6.5
RRPN [20] — 82.0 73.0 77.0 —
PSENet [16] — 81.4 79.6 80.5 1.6
PixelLink [28] — 82.9 81.7 82.3 7.3
SegLink [40] √ 73.1 76.8 75.0 —
SSTD [46] √ 80.2 73.9 76.9 7.7
WordSup [35] √ 79.3 77.0 78.2 —
RRD [26] √ 85.6 79.0 82.2 6.5
MCN [45] √ 72.0 80.0 76.0 —
TextField [29] √ 80.5 84.3 82.4 —
TextSnake [4] √ 84.9 80.4 82.6 1.1
PAN [47] √ 84.0 81.9 82.9 26.1
PSENet [16] √ 86.9 84.5 85.7 1.6
CRAFT [15] √ 89.8 84.3 86.9 8.6
SPCNet [14] √ 88.7 85.8 87.2 —
TAS (ours) PT 81.7 77.1 79.4 8.5
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line or text centre line were one pixel in the experiment.
While the offset ratio of the text line was below 20%, the
F-measure barely fluctuated.While the offset ratio of the text
line exceeded 20%, the performance of the model started to
be affected slightly, but the fluctuation around 2% was still
acceptable.

4.6.4. Backbone. As shown in Table 7, a series of experi-
ments comparing different backbones were performed to
evaluate its influence on the proposed method. Similar to
VGG16, five feature maps generated from VGG11 were
gradually upsampled to the original size. For the ResNet

series, four feature maps were used to merge. .e F-measure
using VGG11 was similar to that of using VGG16, but the
latter had a slightly slower inference time. Due to the so-
phisticated design, the ResNet series had a longer conver-
gence time, but the performance was comparatively accurate
and stable.

4.6.5. Loss Function. As shown in Figure 6(a), due to the
instability of the enhanced annotation, the F-measure de-
creased after dozens of epochs on four common datasets,
particularly for curved text datasets. As shown in
Figure 6(b), training with the text line was unstable relative

Table 6: Effectiveness of different text line labelling qualities on Total-Text.

Width (pixel) Method F-measure Method F-measure
1 Baseline +TL 77.2 Baseline +TL∗ 77.6
3 Baseline +TL 77.8 Baseline +TL∗ 77.8
5 Baseline +TL 77.5 Baseline +TL∗ 78.4
7 Baseline +TL 78.1 Baseline +TL∗ 78.3
Method Width (pixel) Offset (%) F-measure —
Baseline +TL∗ 1 0 77.6 —
Baseline +TL∗ 1 10 77.4 —
Baseline +TL∗ 1 20 77.8 —
Baseline +TL∗ 1 30 76.4 —
Baseline +TL∗ 1 40 75.2 —
TL∗ is the synthetic text line with a full mask. TL refers to the manually marked text line.
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Figure 6: Influence of training epochs: (a) results for different datasets with the text line and (b) results for the same dataset with different
annotations. ∗ represents Uc/e used in the loss function.

Table 7: Detection results with different backbones on CTW1500.

Backbone Method Precision Recall F-measure FPS
VGG16 Baseline +TL 83.8 80.8 82.3 9.2
VGG11 Baseline +TL 82.5 81.2 81.9 11.2
ResNet-18 Baseline +TL 82.4 79.4 80.9 8.7
ResNet-50 Baseline +TL 84.5 80.8 82.7 6.9
ResNet-101 Baseline +TL 84.3 81.6 82.9 6.6
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to the method with full labelling, and the model with full
labelling showed better convergence performance with an
increasing number of training epochs. After incorporating
Uc/e into the loss function, the model with the text line
showed improved convergence, with convergence fluctua-
tion of approximately 3%.

5. Conclusion and Future Work

In this paper, we first introduced a novel text detector based
on weakly supervised learning..emost prominent feature of
the method was proposing a novel labelling named the text
line and the full use of themodel pretrained on SynthText..e
use of a text line can help the detector decrease the cost of
labelling, and the pretrained model can improve the per-
formance of the detector. .e experiments showed that the
text line with low-cost labelling can be used to train an ef-
fective text detector and further verify the feasibility of using a
synthetic text dataset to enhance weak labels. Efficient low-
cost text detectors have potential applications in the field of
photo translation. Synthetic data will play an increasingly
important role in the field of deep learning in the future. One
reason for this is that the high cost of annotation hinders the
application of actual scenes for arithmetic. Another reason is
that synthetic data are increasingly similar to real-world
images, and the development of auxiliary methods promotes
the development of synthetic text. In future work, it will be
important to train the methods with synthetic data but apply
them to the real world.

Data Availability

.edata are nowmade public at https://github.com/xingjici/
Texts-as-Lines-Text-Detection-with-Weak-Supervision and
the corresponding code is still cleaning up. Data description
can be found in Abstraction sector.
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