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In order to reveal the influence of magnetic field on electrochemical machining, a research method of the influence of rotating
magnetic field on hydrogen production from electrolytic water is proposed in this paper. Firstly, taking pure water as electrolyte,
this paper selects rigid SPCE water molecular model, constructs the molecular dynamics model under the action of magnetic field,
and simulates it. In this paper, the thermodynamics, electric power principle, and electrolytic reaction of hydrogen production
from electrolytic water are analyzed, and the working processes of alkaline electrolytic cell, solid oxide electrolytic cell, and solid
polymer electrolytic cell are analyzed. Based on solid polymer electrolytic cell, the effects of membrane electrode performance,
diffusion layer material, contact electrode plate, electrolytic temperature, and electrolyte types on hydrogen production are
analyzed. +e experimental results show that the heteroions in the lake electrolyte significantly affect the performance of the
membrane electrode, and the number of heteroions in the electrolyte should be controlled during the experiment. +e hydrogen
production capacity and energy efficiency ratio of the unit are basically not affected by different water flow dispersion.When dilute
sulfuric acid electrolyte is selected in the experiment, the concentration should be 0.1%–0.2%; After the proton exchange
membrane enters the stable period after the activation period, with the increase of the electrolysis time of tap water, (24 h) the
membrane electrode will weaken the catalyst activity and reduce the electrolysis efficiency in the electrolysis process. Furthermore,
the correctness of rotating magnetic field on hydrogen production from electrolytic water is verified.

1. Introduction

Developing sustainable energy strategies and solving future
energy problems have become the consensus of all countries.
Among them, the important thing is to use sustainable fuels
or energy instead of traditional energy such as oil, natural
gas, and coal, change the energy structure based on limited
fossil fuels, and strive to move towards a sustainable and
sustainable energy structure [1]. Hydrogen energy is an
efficient, clean, and environment-friendly energy. +e de-
velopment of hydrogen energy in China has important
strategic significance. Hydrogen storage, especially in the
form of compounds, is rich in water on Earth. By integrating
hydrogen into the current energy system, we can solve the
problems of fuel resistance, waste emission, and waste, meet

the high energy demand of modern society, reduce previous
energy resources, and deal with the serious environmental
problems caused by fossil fuel combustion. Hydrogen is the
lowest density gas on Earth. Under standard conditions, the
density of hydrogen is 0.0899 g/L, which is 1/14 of the air
quality. Hydrogen is the lightest and most common element
in nature [2]. Under normal temperature, the nature of
hydrogen is very stable, it is not easy to dissolve in water, and
it is not easy to have chemical reaction with other substances.
Under some conditions, such as adsorption on metals such
as handlebars or platinum, hydrogen has a strong effect and
is easy to explode when touching flame. Hydrogen energy
has high energy density. When it is used as a fuel carrier to
provide energy, it does not produce air pollutants and can
realize carbon-free emission [3, 4].
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In order to improve the accuracy of ECM, compound
ECM is proposed, which includes laser assisted electro-
chemical spraying technology and magnetic field assisted
ECM technology. Magnetic field assisted electrochemical
machining technology is proposed based on the principle of
the interaction between magnetic field and electric field.
Because adding an external magnetic field is equivalent to
adding Lorentz force, at this time, Lorentz force can change
the physical characteristics of charged particles in electro-
lyte, such as velocity and position. Secondly, there is always
an electric field in the electrochemical machining process. At
this time, the external magnetic field and electric field in-
teract to improve the machining accuracy by changing the
movement direction and trajectory of ions. According to the
current experimental research results, through the magnetic
circuit design, magnetic field assisted electrochemical ma-
chining can effectively reduce stray corrosion, improve
surface roughness, shape and position accuracy, and im-
prove the material removal rate. However, this technology is
only studied from the perspective of technology, and the
research object is also for specific shape workpieces or
workpiece materials, so the research results have great
limitations. Moreover, this technology faces some short-
comings, such as lack of micromechanism research and
difficulty to control precision. +erefore, based on the
microbasic theoretical research of this technology, this
subject plans to build themicrostructuremodel of electrolyte
under the condition of magnetic field, study the influence of
microdiffusion characteristics of electrolyte under the action
of magnetic field by using molecular dynamics simulation
technology, reveal the microbehavior mechanism of elec-
trolyte in magnetic field assisted electrochemical machining,
and finally verify and modify the model through experi-
mental methods to provide theoretical basis and process
scheme for magnetic field assisted electrochemical ma-
chining technology [5, 6]. In the conceptual distributed clean
energy production, conversion, storage, and community use
system shown in Figure 1, hydrogen produced by electrolytic
water can play an important role as an energy storage
medium in the system.

2. Literature Review

+e advantages of ECM are that it can process difficult
materials, no cathode loss, high machining efficiency, and no

residual stress on the machined surface. Because the ma-
chining process of ECM corrodes material ions, it has the
ability of precision machining. However, due to many
influencing factors, including electrochemical reaction, flow
field, and electric field, it is difficult to control effectively and
the machining accuracy is not easy to control. +erefore,
more and more experimental studies tend to composite field
assisted electrochemical machining technology. PR and
others applied the rotating magnetic assisted ultrasonic
electrochemical finishing technology and obtained that this
technology helps to reduce the processing time andmake the
workpiece surface smooth and bright [7]. Koponen and
others used the electrochemical machining technology
embedded in magnetic circuit to improve the ability of
centralized etching and effectively reduce stray corrosion.
Water is the raw material of hydrogen production from
electrolytic water. Because it is colorless and pollution-free
in the process of production, its development prospect will
be wider and wider with the development of science and
technology and the treatment of air. Hydrogen production
from electrolytic water originates from alkaline electrolytic
cell. +e technology is relatively simple and the cost of
hydrogen production is low, but the efficiency of hydrogen
production is low and the purity of hydrogen is not high. At
the same time, there are safety problems in alkaline elec-
trolyte. +e current research mainly focuses on the inte-
gration of electrode and membrane, ensuring the close
connection between anode and cathode, replacing toxic
cotton, and improving the activity of electrocatalyst to re-
duce the reaction overpotential [8]. +e diaphragm of the
electrolytic cell is made of polyimide membrane to separate
the high concentration of alkali and acid in the electrolytic
cell. Proost proposed the hydrogen production method of
acid-base amphoteric electrolytic water by membrane
method. +is method improves the electrochemical reaction
activity, reduces the overpotential of hydrogen evolution,
and reduces the energy consumption of hydrogen pro-
duction [9]. Based on the battery theory, the step-by-step
method of electrode reaction, that is, the highly reversible
charging and discharging process of secondary battery
electrode, is used to realize the cache of ions and electrons.
Wang and others proposed to split the electrolytic water
process into separate steps of hydrogen and oxygen pro-
duction, so as to realize the production of hydrogen and
oxygen without membrane [10]. Koponen and others

Solar energy

Renewable
energy

Intermittent
power supply

Wind energy

Electrolysis
of water

The hydrogen

High purity hydrogen
terminal utilization

Power terminal
utilization

Hydrogen
fuel cell

Figure 1: Distributed continuous clean energy supply system with hydrogen production from electrolytic water as the medium.
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pointed out that the calcite type oxide material can greatly
reduce the traditional fuel reaction activity range by re-
ducing the polarity resistance of the material, greatly im-
prove the catalytic activity of oxygen at medium and low
temperature, and guide the electrode electrolytic gas to the
full electrode interface. +e material also has excellent ox-
ygen mobility, low coefficient of thermal expansion, ab-
normal catalytic activity, higher antioxidant substances, and
higher resistance [11]. Horikoshi and others systematically
summarized the research progress of disulfide key based
hydrogen evolution catalysts, compared pure disulfide key,
base electrocatalyst and self-supporting electrocatalyst, and
analyzed the two ways of active site regulation and im-
proving conductivity. It shows that the disulfide key has
great potential as an electrocatalyst for hydrogen evolution
under acidic conditions [12].

Based on this research, a study on the effect of rotating
magnetic field on hydrogen production from electrolytic
water is proposed in this paper. +is topic plans to build the
potential energy model of electrolyte in ECM under the
action of external magnetic field, that is, adding electrostatic
field and different magnetic field strength to the potential
energy model. +e electrolyte adopts pure aqueous solution
and NaCl solution with mass fraction of 3.5%.+emolecular
dynamics simulation method is used to analyze the influence
of the microdiffusion characteristics of the electrolyte under
the action of external magnetic field and complete the
calculation of the properties of the electrolyte under the
action of magnetic field. Finally, the experimental verifica-
tion is carried out through macroexperiment (i.e., infrared
spectroscopy technology), so as to provide theoretical basis
and process scheme for magnetic field assisted electro-
chemical machining technology.

3. Research Methods

3.1. Basic $eory of Hydrogen Production from Electrolytic
Water. Hydrogen is a renewable and clean energy, which
can be widely used in all walks of life as industrial raw
materials and energy carriers. +erefore, low-cost and ef-
ficient hydrogen production technology from electrolytic
water is extremely important and has a very broad market
prospect and research value.

3.1.1. Hydrogen Production RawMaterials. +ermodynamic
principles: hydrogen production by electrolyzing water is
powered by electric energy to electrolyze water molecules
into hydrogen and oxygen at the anode and cathode of the
device. +e reaction equations are as follows:

Anodic reaction : ·H2O − 2e⟶ O2 + H
+
, (1)

Cathodic reaction : ·2H
+

+ 2e⟶ H2. (2)

If the electrolytic cell works at a certain temperature and
pressure, the energy required for the reaction of electrolytic
water is determined by baking ΔH. +e Gibbs-free energy
ΔG is equivalent to the necessary heat Q and the external
electric energy. +e heat Q is equal to the product of the

temperature T in the reaction process and the direct change
ΔS before and after the reaction. +en the thermodynamic
equation can be expressed as follows:

ΔG � ΔH − Q � ΔH − T
∗ΔS, (3)

where, at 298.15K and 1 atm, the enthalpy change ΔH is
285.84 kJ/mol, the entropy change ΔS is 163.1 J/mol, the free
energy ΔG is 237.2 1 kJ/mol, and the unit of process tem-
perature T is kelvin K.

+e external power supply provides power for the
electrolytic reaction. +e minimum voltage required for the
electrolytic reaction of water molecules in the electrolytic cell
is the equilibrium potential Vrev. +e relationship between
Gibbs-free energy ΔG and the equilibrium potential Vre is
shown in the following:

Vrev �
ΔG

z∗F

� 226.21 ×
102(J/mol)
2 × 95376

� 1.218V,

(4)

where Z is the number of electrons required for each mole of
hydrogen produced by the reaction and F is Faraday con-
stant, 95374C/mol.

If the phase state of water changes from liquid to gas due
to the change of temperature in the electrolytic reaction, the
heat Q required in the phase state transformation process is
provided by electric energy. At 298.15K, 1 atm, for the
electrolytic cell with phase change process, the minimum
voltage required for electrolytic reaction is recorded as
thermal neutral electrolytic voltage Vtn, as shown in the
following:

Vtn � VΔH

�
ΔH

(z∗F)

� +
274.73(kJ/mol)

2 × 95376

� 1.371V.

(5)

3.1.2. Principles of Electricity. +e completion of electrolytic
reaction requires electric energy from external power supply.
When the generation rate of hydrogen in the cell increases or
the electrolytic current increases, the cell voltage Vcell of the
cell will also increase. Moreover, due to the electrolytic cell
device and equipment, the electrolytic cell has the contact
resistance between various components and the activation
resistance generated by the energy barrier in the electron
migration process during the electrolytic reaction between
the anode and the cathode electrodes. Due to the different
transmission dispersion of electrolyte in the electrolytic
reaction, the concentration at the interface of two electrodes
and in the solvent is inconsistent, and the resulting
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concentration polarization will affect the actual voltage, so
that the voltage value of the cell in the electrolytic process is
greater than the voltage value required for water electrolysis
in theory [13, 14]. +e relationship of various voltage values
in the electrolytic cell is shown in the following:

Vcell � Vrev + Vohm + Vact + Vcon, (6)

where Vrev is equilibrium voltage of electrolytic cell reaction,
unit: V; Vohm is contact resistance voltage of electrolytic cell,
unit: V; Vact is activated overpotential of electrolytic cell,
unit: V; and Vcon is concentration overpotential of elec-
trolytic cell, unit: V.

+eoretically, the concentration overpotential Vcon is
often small in the electrolytic cell and is much smaller than
the contact resistance voltage Vohm and the activation
overpotential Vact .

When studying the energy efficiency of the electrolytic
cell, the current efficiency of the electrolytic cell can be
calculated by comparing the output of hydrogen per unit
time with the electrolytic current per unit time. Ideally,
according to Faraday’s law, the generation rate of hydrogen
should be in direct proportion to the input electrolytic
current [15]. +erefore, under a certain electrolytic current,
the hydrogen generation rate fH2 (unit: m3/h) of the elec-
trolytic cell can be shown in the following:

fH2
� ηF × Ncell ×

Icell
z × F

􏼠 􏼡 × 21.31 ×
3500
1000

􏼒 􏼓, (7)

where ηg is current efficiency of electrolytic cell; Ncell is
number of electrolytic cells, unit: piece; and Icell is input
current of electrolytic cell, unit: a.

Considering the actual influencing factors, the electric
energy consumed by the actual electrolytic reaction of the
electrolytic cell is compared with the electric energy con-
sumed by the electrolytic reaction in the ideal state, which is
recorded as the electrolytic efficiency of the actual electro-
lytic cell. +e formula is expressed as

ηE �
CF

CE

, (8)

where ηg is overall electrolytic efficiency of electrolytic cell;
CF is electric energy required to produce hydrogen per unit
time when the electrolytic cell reacts; and CE is electric
energy consumed by hydrogen production per unit time in
the actual electrolysis process.

3.1.3. Type of Electrolytic Cell. Hydrogen production from
electrolytic water starts from alkaline electrolysis technol-
ogy. +e hydrogen production equipment from electrolytic
water in front of mouth mainly includes alkaline electrolytic
cell, polymer film electrolytic cell, and solid oxide electrolytic
cell. Hydrogen production by alkaline electrolytic cell is the
longest and most mature technology. Hydrogen production
from solid oxide is still in the research and development
stage because the electrolysis process requires high tem-
perature conditions and relatively harsh application con-
ditions. Hydrogen production by solid polymer electrolysis

has attracted more and more attention because of its
compact structure, small volume, and high adaptability to
electrolysis conditions [16].

3.2. Effect of Magnetic Field on Water Electrolysis Process.
In industrial electrolytic cells, the electrode layout and
electrode form are generally optimized, or the flow of
electrolyte is mechanically driven to accelerate mass transfer
and discharge of gaseous products, so as to reduce ohmic
voltage drop and electrode overpotential. In recent years,
with the demand of industrial application and the in-depth
development of relevant scientific research, more and more
new methods have garnered increasing attention. +e most
significant methods include the use of catalysts to reduce the
activation energy of hydrogen electrolysis reaction and the
methods of external energy field, such as ultrasonic oscil-
lation and hypergravity field. It has been found that the effect
of magnetic field outside the electrolytic cell can significantly
affect the mass transfer process and change the movement of
gas-phase products, resulting in the reduction of electrode
potential. +e provision of static magnetic field does not
require additional energy input. NdFeB permanent magnet
can produce a strong enough magnetic field to meet the
requirements. At the same time, the magnetic field device is
cheaper and easier to use than electrocatalyst. In the process
of water electrolysis, different electrode forms, magnetic
fields, and different electrode layout can introduce different
forms of electromagnetic forces into the electrolyte, mainly
manifested in MHD (magnetohydrodynamic) and micro-
MHD (micro-magneto-hydrodynamic) effects driven by
Lorentz force [17].

3.2.1. Simulation of Bubble Growth Behavior on Electrode
Surface. +e formation of bubbles on the electrode surface
will have a direct impact on the whole electrochemical re-
action process, whether it is the gas-phase product or side
reaction product we want to obtain by electrolysis. Bubble
growth is a mass transfer process through the phase in-
terface. Simulating its evolution behavior from the single
bubble scale can help us deeply understand the gas-liquid
mass transfer process on the electrode surface and the in-
fluence of bubble formation on the local flow field and
concentration field. +e bubble core initially growing on the
electrode surface carries out interphase mass transfer driven
by the concentration difference inside and outside the gas-
liquid interface. In this process, it involves the control of the
electrochemical reaction rate of hydrogen on the electrode
surface, the transmission of hydrogen components in the
liquid phase, and a reasonable mass transfer rate model at
the gas-liquid interface. With the growth of bubbles, bubbles
are subject to the combined action of two forces that inhibit
their detachment and promote their detachment. When
bubbles grow in acidic environment, their contact angle
changes constantly, so the simulation of bubble growth
needs to provide reasonable contact angle change input as
boundary conditions. For the simulation of single bubble
growth, VOF method and gas-liquid mass transfer rate
model are used to compile the changes of electrode surface
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electrochemical reaction rate, interfacial mass transfer rate,
and dynamic contact angle into fluent computing platform
through UDF. +e mass transfer model and bubble evolu-
tion behavior are compared with the experimental results
[18–20]. For the observation of bubble behavior and the
influence of magnetic field on electrode potential difference,
the experiment is carried out on the same experimental
platform. +e experimental platform includes the experi-
mental section composed of permanent magnet and elec-
trolytic cell, power control system, and bubble behavior
recording system. Different electrolytic cells and electrodes
are used for different experiments, and the layout direction
of magnetic field, electrolytic cell, and electrode needs to be
changed. +e experimental system is shown in Figure 2.

3.3. Molecular Dynamics Simulation of the Effect of Magnetic
Field on the Microstructure of Electrolyte in Electrochemical
Machining. According to the results of molecular dynamics
simulation, a trajectory related to the velocity and position of
particles in the simulation system can be obtained, and
various physical quantities can be extracted through this
trajectory. In the third chapter, the influence of magnetic
field on themicrodiffusion characteristics of water molecules
and ions in pure aqueous solution and NaC1 solution in
ECM is obtained by using this simulation method. It is
pointed out that the effect of external magnetic field has a
certain influence on its diffusion coefficient. +is chapter
attempts to further explain this phenomenon by using the
influence of law of magnetic field on the radial distribution
function of electrolyte and the number of hydrated ions in
ECM [21, 22].

3.3.1. Simulation Results and Discussion of Radial Distri-
bution Function of Magnetic Field on Electrolyte in ECM.
Radial distribution function (RDF), also known as pair
correlation function, can be defined as the average number
density of molecules in the volume element with a distance
of r + δr from the central ion. +erefore, the radial distri-
bution function describes the aggregation characteristics of
molecules or ions in the solution, so we can understand the
structure of the liquid. +en the expression of the function is
as follows:

g(r) �
1

ρ4πr
2δr

􏽐
T
T�1 􏽐

t
j�1 ΔN(r⟶ r + δt)

N × T
, (9)

where N is number of molecules in the system and T is total
number of simulated steps.

3.3.2. Effect of Magnetic Field Intensity on Radial Distribution
Function of Pure Water. In ECM, the radial distribution
functions gO−H(r) and gO−O(r) of pure water under the
action of magnetic field are shown in Figures 3 and 4. In
gO−H(r), the first peak represents the hydrogen oxygen
covalent bond within water molecules in pure aqueous
solution, while the second peak represents the hydrogen
bond between water molecules in pure aqueous solution. It

can be seen from the figure that when R< 1.55a, gO−H(r) � 0,
indicating that the distance between water molecules in the
simulation system should be 1.55 larger. When r� 5.75A,
gO−H(r) � 1, indicating that when the distance between two
water molecules is greater than 5.75, it has the same
properties as a uniform liquid [23, 24].

In Figure 4, the main peak represents the nearest dis-
tance between two water molecules. +e secondary peak
represents the distance between two water molecules con-
nected to the same water molecule through hydrogen bond.
It can be seen from the figure that the nearest distance
between two water molecules is 3.35A. Under the action of
magnetic field, the first peak of the two diagrams of gO−H(r)

and gO−O(r) is obviously large, which leads to the increase of
the number of water molecules in the first coordination ring,
the enhancement of structural stability, and the decrease of
the diffusion coefficient of water molecules in the solution.
However, the first peak position does not change, indicating
that the nearest distance between the two water molecules to
form hydrogen bond has little effect on the external field.

3.3.3. Effect ofMagnetic Field Intensity on Radial Distribution
Function of 3.5% NaC1 Solution. Analyze the radial dis-
tribution function between ions and water molecules in
NaC1 solution with mass fraction of 3.5% under the action
of magnetic field (0 T and 5 T), as shown in Figures 5 and 6.
+e maximum peak of the radial distribution function
appears at r� 2.25A and r� 2.7 A, which indicates that it is
most likely to present other molecules or atoms near
molecules r� 2.25A and r� 2.7 A. When r< 1.9 A, the radial
distribution function is zero, indicating that the nearest
distance between two atoms should be greater than 1.9A.
+e first peak value of gNa−o(r) is obviously greater than
gCl−H(r) under the action of magnetic field or no magnetic
field, indicating that sodium ions have strong hydration
ability. However, under the action of magnetic field, the first
peak value of radial distribution function curve between ions
and water molecules decreases, indicating that the inter-
action between ions and water molecules decreases and the
number of ion hydration decreases; this is because the
mobility of ions is enhanced, the number of hydrogen bonds
between water molecules in the solution is reduced, the
action is weakened, and the relatively stable structure of
water molecules is destroyed [25].

+e radial distribution function gNa−Cl(r) of sodium
ion and chloride ion in the solution is shown in Figure 7.
When the magnetic field intensity is 5 T, the first peak
value of gNa−Cl(r) is at the same position as that without
external magnetic field; that is, both are at r � 2.7 A.
Under the action of magnetic field, the first peak value of
radial distribution function gNa−Cl(r) of electrolyte in-
creases, which is because the mobility of ions is increased
under the stirring of Lorentz force, the possibility of ions
appearing around them is increased, and the interaction
with water molecules is weakened. +e second peak
decreased significantly, which means that the interaction
between ions and water molecules in the solution is
weakened.

Shock and Vibration 5
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3.4. Ion Hydration Number. In fact, the number of ions in
the hydration solution can be calculated by simulating the
number of ions in the water around NaC1, which is the first
number of ions in the hydration solution. Integrating the
radial distribution function of sodium ion oxygen to the first
peak and valley, the hydrate number of the first hydration
circle of ions can be calculated, and the expression is as
follows:

n � ρω 􏽚
r

0
gio(r)4πr

2dr, (10)

where n is the hydration number, ρω is the density of the
solution, and R is the first minimum value of gio(r); the
hydration number of sodium ions without and with mag-
netic field is obtained from formula (10), as shown in Table 1.

It is found that the number of sodium ions hydrated
decreases under the action of magnetic field. +is is because
the Lorentz force has a stirring effect on the ions in the
solution, which increases the probability of collision between

ions, weakens the interaction with water molecules, reduces
the number of hydrogen bonds formed between water
molecules, qualitatively destroys the stability of water
molecules, and then increases its diffusion coefficient.

4. Result Discussion

4.1. Comparative Analysis of Tap Water and Lake Water.
It can be seen from Figure 8 that the hydrogen production
amount is in direct proportion to the current, and the water
quality does not affect the linear growth relationship be-
tween the hydrogen production amount and the current
during the electrolysis process. After standing, the lake water
is full of miscellaneous ions. Although the amount of hy-
drogen production increases linearly, it is significantly lower
than that of tap water, and the increase of temperature has
little effect on the difference of hydrogen production be-
tween them. +erefore, the amount of miscellaneous ions
affects the hydrogen production rate of the electrolytic cell.

4.2. Influence Analysis of Acid Solution at Different
Temperatures. +e same set of electrolytic device is used in
the experiment. +e dilute sulfuric acid solution with the
concentration of 0.5% is used as the electrolyte. +e input
current of the system is changed to 0.13A–0.9A. the elec-
trolyte temperature is adjusted and set through the constant
temperature water bath. +e electrolyte temperature is set to
30°C� 40°C and 50°C, respectively. +e average value of the
three groups is taken, and the voltage and electrolytic water
loss rate of the device are recorded.

It can be seen from Figure 9 that, under the working
condition of 0.5% dilute sulfuric acid, when the electrolysis
temperature is 30°C, 40°C, and 50°C, there is basically no
difference in the hydrogen production capacity of the
electrolytic cell. Changing the temperature of acid electrolyte
has little effect on hydrogen production.

It can be seen from Figure 10 that the energy efficiency
ratio of the same concentration of sulfuric acid at different
temperatures varies greatly. When the current is in the range
of 0.13A–0.5 A, the influence of temperature on the energy
efficiency ratio is obvious. +e energy efficiency ratio at 40°C
and 50°C is high, and the energy efficiency ratio at 30°C is the
lowest. In the current region of 0.6aA0.9 A, the influence of
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Figure 2: Experimental system diagram.
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Figure 3: Effect of magnetic field on microstructure of pure water
gO−H(r).
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Figure 5: Effect of magnetic field on microstructure of 3.5% NaCl solution gNa−o(r).
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temperature on the energy efficiency ratio is not obvious,
and the energy efficiency ratio corresponding to the three
temperatures has little difference. In conclusion, under low
electrolytic current, the increase of temperature is conducive
to hydrogen production reaction, and the hydrogen pro-
duction rate of electrolytic cell is improved, but, under high
electrolytic current, the influence of temperature on hy-
drogen production rate is weakened. In the experiment, the

increase of acid and electrolyte temperature should not be
considered, and the corrosion of electrolyte at room tem-
perature should not be considered.

By controlling the electrolyte temperature, membrane
electrode, diffusion layer, and contact electrode plate, the
hydrogen production capacity of high-purity water and 1%
acid solution is large, but the energy efficiency ratio is low.
When the concentration is 0.1%–0.5%, there is basically no
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Figure 7: Effect of magnetic field on microstructure of 3.5% NaC1 solution gNa−Cl(r).

Table 1: Ion hydration number of salt ion pairs in solution.

Magnetic field intensity (T) 0 5
Ion hydration number 6.54 6.34
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Figure 8: Variation of hydrogen production from electrolytic water with tap water and lake water.
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difference in hydrogen production, but the difference in
energy efficiency ratio is large. +e increase of acid tem-
perature has little effect on hydrogen production and energy
efficiency ratio. Comprehensively, the concentration of acid
electrolyte in the experiment should be 0.1%–0.2%, and it is
more suitable at room temperature.

5. Conclusion

+is paper mainly focuses on the generation and movement
of hydrogen bubbles in the process of water electrolysis, and
the driving mechanism of external magnetic field for gas
products. +rough experiments and numerical simulation,
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Figure 9: Variation of hydrogen production from electrolytic water with temperature under the condition of 0.5% dilute sulfuric acid.
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the effects of different scale magnetic convection on the
growth behavior of single bubble and the distribution of gas
products are revealed. It involves many aspects, such as
electrochemical reaction kinetics, gas-liquid two-phase flow,
interphase mass transfer, and bubble dynamics. In this
paper, the microchannel membrane SPE electrolytic water
hydrogen production system is used, and the influencing
factors of electrolytic water hydrogen production are ana-
lyzed and studied by using the method of controlling var-
iables. +e influencing factors of electrolytic water hydrogen
production are analyzed and studied by changing the
electrolytic current, electrolytic temperature, material of
contact electrode plate and channel slot width, material of
diffusion layer, water flow confusion, electrolyte type, and
concentration of dilute sulfuric acid of the experimental
system. +e following conclusions are drawn.

Electrolyte solution: the hydrogen production rate and
energy efficiency ratio of lake water are lower than those of tap
water. +e heteroions in lake water electrolyte significantly
affect the performance of membrane electrode, so the number
of heteroions in electrolyte should be controlled during the
experiment.When dilute sulfuric acid is used as acid electrolyte,
considering the factors of hydrogen production and energy
efficiency ratio, the optimal concentration is 0.1%–0.2%. When
the electrolysis temperature is 30°C–50°C, the temperature rise
has a positive impact on the hydrogen production efficiency
under the current of 0.13 a–0.5 a, and the hydrogen production
efficiency under the current of 0.6 a–0.9A is not obvious. +e
simulation results show that the diffusion coefficient of water
molecules in pure water decreases with the increase of magnetic
field intensity. +is is because the combination of external
magnetic field and electric field makes many water molecules
combine through hydrogen bonds to form different forms of
watermolecular chains or rings and then form a hydrogen bond
grid composed of many water molecules, making the structure
of water molecules more compact. +erefore, the diffusion
coefficient of water molecules in pure water decreases with the
increase of magnetic field intensity.

As hot clean energy, hydrogen is of great significance for
new energy vehicles and oxyhydrogen fuel cells to study the
influencing factors of hydrogen production from electrolytic
water. In this paper, some influencing factors of electrolytic
water device are experimentally studied. +ere are still many
factors to be deeply studied in SPE electrolytic water hy-
drogen production system.
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In order to improve the accuracy of bolt positioning for industrial robots, this paper studies the bolt positioning system of
industrial robots combined with multieye vision technology. +is paper introduces three reconstruction algorithms ART, SIRT,
and SART from the perspective of theory and implementation. Moreover, the projection matrix calculated with 0, 1 weighting,
length weighting, and linear interpolation weighting is used for three reconstruction algorithms to carry out reconstruction
experiments. In addition, this paper combines the actual working conditions of bolt positioning to construct the system of this
paper and conducts system simulation research combined with the working conditions of the robot. +e research shows that the
bolt positioning system based on the multieye vision industrial robot proposed in this paper has a good performance in
bolt positioning.

1. Introduction

Robots are mechanical devices that perform work auto-
matically. It can either obey human commands, run pre-
programmed programs, or act according to principles and
programs formulated with artificial intelligence technology.
Moreover, its task is to assist or replace human work in
production, construction, and other works.

Literature [1] developed a bolt-fastening system for
automotive engine end covers. +e system takes the robot as
the core, adopts an intelligent robot, and is equipped with a
corresponding tightening mechanism, jacking mechanism,
and pressing mechanism to ensure that the production
qualification rate reaches more than 99%. At the same time,
it can be applied to the tightening of bolts at other types of
end caps, with high flexibility. . A bolt replacement robot for
replacing the isolation switch on the high-voltage line of the
power station is designed. +e robot is equipped with a
vision sensor, a four-axis mobile platform, and an end ef-
fector [2]. +rough visual positioning, the bolts that need to
be replaced can be found on the isolation plate, and me-
chanical disassembly and replacement of new bolts can be

performed at the end. +is design replaces manual work on
high-voltage wires using robot operation, improves effi-
ciency, reduces the danger of manual high-altitude work,
and improves the automatic maintenance level of the power
station [3]. A wind turbine tower connecting bolt inspection
robot is designed, which improves the working condition of
manual tightening of the connecting bolts of the wind
turbine tower. Its structure consists of three parts: a cir-
cumferential motion mechanism, an adaptive mechanism,
and a three-point clamping mechanism. +e mechanism
consists of an electric push rod and a clamp, which drives a
torque wrench for maintenance [4]. +is design solves the
maintenance problem of wind turbines and greatly reduces
maintenance costs; a bolt-tightening robot for tightening
bolts has been developed. +e robot is a high-power robot
equipped with a 170 F gasoline engine, an electromagnetic
clutch, coupling, energy storage body, reversing mechanism,
etc. [5], built a control system for the robot, and completed
the actual test. +is design improves the work efficiency of
rail fastening in railway maintenance work. Many excellent
results have been achieved in the research of bolt assembly
robots, but there are few types of research on light-load
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vision-guided robots in production lines. At the same time,
further research and development are needed for the flexible
adaptive structure in the process of helical motion. Research
design.

Literature [6] proposes a stereo vision ranging system
integrated into a humanoid robot.+e system uses the image
processing library OpenCV and OpenGL to design a cor-
responding automatic recognition software system accord-
ing to the requirements of automatic feature recognition and
detection of corresponding points and uses OpenGL. Open
Graphics Library shows the 3D model obtained from the
reconstruction. It was finally used in the actual test of the
robot and got good results, which improved the work ef-
ficiency. Literature [7] developed and tested a vision-guided
grasping system for Phalaenopsis tissue culture seedlings.
+e system applies a binocular stereo vision algorithm to
calculate the 3D coordinates of the grasping point and uses
an image processing algorithm that locates the grasping
point to determine the appropriate grasping point on the
root. Meanwhile, his research team developed and tested a
device suitable for gripping Phalaenopsis tissue culture
seedlings. Finally, the binocular vision localization algorithm
is integrated with the robotic grasper to construct an au-
tomatic grasping system.+e experimental results show that
the automatic grasping system has a success rate of 78.2% in
grasping the seedlings in the proper position. +e welding
seam tracking and feedback technology of the welding robot
are researched, and computer vision is used to identify and
find the position of the welding crease and then weld the
position of the crease.+e system is a binocular system based
on two CCD cameras. +e cameras are installed on opposite
sides of the outer hollow shaft to capture images of the
welding seam [8]. At the same time, the electromagnetic air
valve and two cylinders are used to work with the welding
device. +e research solves the problem of weld positioning
accuracy during mechanical welding and improves the level
of welding automation [9].

For the production line where the robot base and the RV
reducer are connected, a binocular vision guidance scheme
for assembly is designed. +e scheme uses HALCON for
binocular vision processing and camera calibration at the
same time. +rough median filtering, adaptive K-means
segmentation of lab color space, template matching based on
image pyramid, subpixel edge detection, and so on, the
collected images are contour fitted, and the coordinates of
feature points of threaded holes are obtained [10]. Finally,
guide the robot to assemble; after completing the algorithm
development, use VisualStudio to design control software
and finally complete the research and development of the
entire assembly system.

Literature [11] designed and developed a part recogni-
tion and detection system under the binocular camera and
used the system to combine with an industrial robot to
complete the actual grasping measurement. In this system,
the contour of the part edge is identified by the improved
Canny algorithm, and the feature point extraction and stereo
matching are carried out by using the scale-invariant feature
conversion method; the mathematical model of the pose
detection system is established by using the stereo vision 3D

reconstruction method. +e coordinates of the parts on the
worktable are obtained, and the parts are grasped through
the control of programmed software. +is research plays a
very important role in the field of automatic loading and
unloading of industrial robots [12]. In-depth research on the
visual guidance technology of the bolt tightening robot was
carried out, and the design of binocular software was
completed on the VisualStudio platform; the three parts of
the binocular target, image correction, bolt feature point
extraction, and pose measurement were completed [13]. In
the process of feature extraction, image preprocessing, dy-
namic threshold segmentation, Minkowski addition and
expansion, Minkowski subtraction and erosion, subpixel
precision contour, and rammer edge fitting are adopted, and
finally, the six corner coordinates of the bolt are extracted to
guide the robot to grasp [14].

In this paper, multi-eye vision technology is used to
study the bolt positioning system of industrial robots to
improve the bolt positioning effect of industrial robots.

2. Basic Principles of Binocular Vision Imaging

2.1. Physical Basis of Binocular Vision Imaging. Robotic vi-
sion light is a high-energy electromagnetic wave with a
certain energy and penetrating ability, which can penetrate
some substances (such as human tissue) that visible light
cannot pass through, as shown in Figure 1. Generally,
visible light has a longer wavelength, and when a photon
hits an object, part of it is reflected and most of it is
absorbed, while the wavelength of the robot’s vision light is
extremely short, and the photon contains high energy. +e
penetration of the robot’s visual light is related to infor-
mation such as the equivalent atomic number and density
of the irradiated material, and the transmittance of the
robot’s visual light is stronger for the material with a lower
atomic number and vice versa. +e transmission of robot
vision light is an important basis for binocular vision
imaging.

A beam of robotic vision rays injected into a homoge-
neous material is considered, as shown in Figure 2(a).
Considering Beer’s theorem, we have

I � I0 exp(−μΔx)⇒μΔx � ln
I

I0
􏼠 􏼡. (1)

It can be seen from formula (1) that the object with a high
μ value causes more attenuation of the robot’s visual photons
than the object with a low μ value. For example, the μ of bone
is higher than that of soft tissue, indicating that it is more
difficult for robotic vision photons to penetrate bone than
soft tissue. On the other hand, the μ value of air is almost 0,
indicating that the input and output of X rays hardly change
on the path through the air.

When the material scanned by the X-ray is inhomo-
geneous, the medium distributed along path 1 can be dis-
cretized into several continuous small blocks. When these
small pieces are small enough, the medium inside the small
pieces can be considered to be homogeneous and have the
same attenuation coefficient. +e thickness of each discrete
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small block is assumed to be Δx, and the attenuation co-
efficients of each discrete small block are μ0, μ1, μ2, μ3,
. . . , μn, respectively, as shown in Figure 2.

+e ray intensity of the robot vision light after passing
through the first small block is I1, and the ray intensity after
passing through the second block is I2 . . ..

+e final transmission intensity is In, then there are

I1 � I0 exp −μ1Δx( 􏼁, (2)

I2 � I1 exp −μ2Δx( 􏼁. (3)

Substituting formulas (2) into (3), we get

I2 � I0 exp − μ1 + μ2( 􏼁Δx( 􏼁. (4)

It continues to accumulate attenuation values along the
propagation direction of the robot’s vision light until the
final transmission intensity In of the robot’s vision light
when it leaves the illuminated object, as shown in the fol-
lowing equation:

In � I0 exp − μ1 + μ2 + · · · + μn( 􏼁Δx( 􏼁. (5)

We take the positive exponent of formula (5) and express
it in summed form, we get

p � 􏽘
n

i�1
μiΔx � ln

I0

In

􏼠 􏼡. (6)

p in formula (6) is the projection. If the incident intensity
I0 and outgoing intensity In of the X ray are known, a linear
formula with μi(i � 1, 2, . . . , n) as the last known is obtained
according to formula (6). When Δx⟶ 0, formula (6) can
represent the summation of continuous variation, and its
integral form is

p � ln
I0

In

􏼠 􏼡 � 􏽚
L
μ(l). (7)

In formula (7), μ(l) is a continuous function of the decay
rate with respect to path l. +e process of finding the at-
tenuation coefficient function μ(l) by projection is called
back projection. If the two-dimensional density function f (x,
y) is used to describe the attenuation rate of the two-di-
mensional plane, then the problem of binocular vision

Scrttered
photon Scrttered

photon

Scrttered
photon

Probe plane

A�er attenuation
x-ray

Figure 1: Schematic diagram of the material that transmits light to the robot vision.

u

I

∆x

I0

(a)

Δx

II0
u0 u1 u2 un

(b)

Figure 2: Schematic diagram of visual light passing through. (a) Schematic diagram of robot vision light passing through homogeneous
material. (b) Schematic diagram of the robot’s vision of light passing through inhomogeneous materials.
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imaging can be expressed as the measured linear integral of
an object is given, and the decay rate at each point is cal-
culated to produce two-dimensional density data.

2.2. Analytical Reconstruction Algorithm.
Two-dimensional Radon transform is a projection transform
of straight line integral, and it can be defined in many forms.
+is paper takes the most commonly used case as an
example.

We assume that in the plane area R2, any point (x, y) can
be represented by polar coordinates (ρ, θ), ρ represents the
distance from the line to the origin, θ represents the angle
between the straight line l and the positive y-axis, and the
function f (x, y) is the image to be reconstructed. We assume
that any straight line l ∈ R2, then the two-dimensional
Radon transform of the function f (x, y) is defined as

p � 􏽚
l
f(x, y)dl � 􏽚

l

􏽢f(r, θ)dl

� 􏽚
+∞

−∞
􏽢f

������

L
2

+ l
2

􏽱

, ϕ + tan− 1 l

L
􏼠 􏼡dl.

(8)

+e formula of the straight line can be expressed as ρ �

x cos β + y sin β in polar coordinates, then formula (8) can
be further expressed as

p � 􏽚
+∞

−∞
f(x, y)dl

� 􏽚
+∞

−∞
􏽚

+∞

−∞
f(x, y)δ(x cos β + y sin β − ρ)dxdy.

(9)

Among them, (x, y) represents the position of the
reconstructed pixel in the Cartesian coordinate system, and
δ(x) represents the sampling function. +is process is the
integration of the image in a straight line. According to the
previous physical principle of the X-ray, we can abstract the
attenuation process of the X-ray into this integration pro-
cess, and the projection value of the X-ray is the value of the
Radon transform at angle β. If the projection is performed at
multiple angles, the Radon value of each angle can be ob-
tained, and the two-dimensional image f (x, y) of the original
plane can be reconstructed by performing the Radon inverse
transformation on these obtained Radon values.

+e formula for the two-dimensional inverse Radon
transform is

f(x, y) � 􏽢f(r, θ) �
1
2π2

􏽚
π

0
􏽚

+∞

−∞

1
r cos(θ − β) − ρ

zp

zρ
dρdβ. (10)

+ree-dimensional Radon transform is a generalization
of two-dimensional, extending the line integral in two-di-
mensional to an area integral, each area integral corresponds
to a point in Radon space.+is point is the intersection of the
plane with the normal to the plane through the origin. +e
three-dimensional Radon transform space is composed of all
transform values.

Figure 3 shows the Fourier reconstruction method,
which is also the derivation basis of the commonly used
filtered back projection (FBP) reconstruction algorithm. As
can be seen from the figure, one-dimensional Fourier
transform is first performed for each projection data:

f(x, y) � 􏽚
+∞

−∞
Pβ(t)e− j2πωtdt. (11)

Pβ(t) in formula (11) is to calculate the projection of f (x,
y) on the β direction according to the Radon transform:

Pβ(t) � 􏽚
+∞

−∞
􏽚

+∞

−∞
f(x, y)δ(x cos β + y sin β − ρ)dxdy.

(12)

2.3. Iterative Reconstruction Algorithm. +e filtered back
projection (FBP) algorithm has certain limitations in
practical application. For example, it requires that the
projection data must be completely and uniformly distrib-
uted, the formula of the filtered back projection is contin-
uous, and the image must be discretized during
implementation. In this case, an iterative algorithm is a good
choice.

+e biggest difference between the concept of the iter-
ative reconstruction algorithm and the analytical recon-
struction algorithm is that the former discretizes continuous

y

x
β

u

v

F(u,v)

Pβ(t)

xr

One-dimensional
Fourier transform

Two-
dimensional

Fourier
transform

Figure 3: Schematic diagram of the central slice theorem.
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P5
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Figure 4: Schematic diagram of discretized image projection.
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images f(r, θ). +e algorithm divides the entire image area
into J � n × n finite number of pixels, which are represented
by 􏽢f(r, θ). Figure 4 shows the process of reconstructing the
image after the ray is discretized:

Among them, x1, x2, . . . , x9 represent the corresponding
pixel values. It can be seen from the figure that the sum of the
rays is

p1 � w11x1 + w12x2 + · · · + w19x9,

p2 � w21x1 + w22x2 + · · · + w29x9,

p3 � w31x1 + w32x2 + · · · + w39x9,

· · ·

p6 � w61x1 + w62x2 + · · · + w69x9.

(13)

Formula (13) can be expressed in a more compact form:

pi � 􏽘
9

j�1
wijxj i � 1, 2, . . . , 6. (14)

Alternatively, it can be expressed in matrix
representation:

p � Wx. (15)

In formula (15), p � [p1, p2, . . . , p6]
T, x � [x1, x2, . . . ,

x9]
T, W is the matrix of 6 × 9. Formulas (13) to (15) are

derived from the special case of 9 pixels and 6 rays. We then
generalize it to the general case and assume the general case
of J pixels and I rays. At this time, x is the J-dimensional
vector, which is called the image vector, I is the I-dimen-
sional vector, which is called the measurement vector, and
W is the I × J matrix, which is called the projection matrix.

+e task of iterative reconstruction is to find x according
to the measured p, and the known projection matrixW(W)

can be determined according to the system geometry, focal
spot shape, detector response, and other physical parameters
of the binocular vision system). wij in (13 to (15) represents
the weighting factor of i-ray to j pixel, and there are many
ways to calculate the weighting factor. In the simplest case,
the weighting factor is set to 0 or 1 according to whether the
ray passes through the pixel, as shown in the following
formula:

wij �
1, I − ray passes through j − pixel,

0, other.
􏼨 (16)

+e ray can also be regarded as having a certain width,
and the width is assumed to be τ (usually taking the pixel
width δ). +is thick line covers a part of the area of the pixel,
and the ratio of the coverage area to the area of the pixel is
the weighting factor of the pixel to the projection of the ray.
For example, the gray value of the j pixel is xi, the area of the
overlapping area between the i ray and the j pixel is Δs, and
the ratio of it to the pixel area δ2 is wij � Δs/δ2, which is the
weighting factor of the i ray to the j pixel.

With the above foundation, the reconstruction problem
of the binocular visual image can be transformed into a

linear formula-solving process. +e most intuitive way is to
find the inverse matrix W− 1 of matrix W, so as to get

x � W
− 1p. (17)

+e second solution is to accumulate all the ray values
passing through the j pixel to get the j pixel value:

xi � 􏽘
I

i�1
wijpi, j � 1, 2, . . . , J. (18)

It can be written as a matrix problem as

x � WTp. (19)

Formula (19) is the form of back-projection recon-
struction in the case of discrete pixels, and artifacts are very
serious when using this reconstruction formula. However,
formula (19) helps us understand the iterative reconstruc-
tion algorithm. So far, the main problems encountered by
iterative reconstruction may be (1) generally, the number of
pixels and the number of rays are extremely large, and it is
difficult to directly find W− 1. Even if W− 1 is stored as a
sparse matrix, it still requires a large amount of calculation;
(2) in some cases, the number of projections is much smaller
than the number of pixels, and the linear formula system
may have an infinite number of solutions; (3) in the actual
acquisition process, it may be affected by factors such as
physical deviation or projection noise, and the recon-
struction result cannot be obtained.+erefore, it is necessary
to introduce an error value and estimate a set of solutions to
make it optimal under a certain optimal criterion.+erefore,
formula (15) can be modified as follows:

p � Wx + e. (20)

Here, e is the error vector, which can be measurement
deviation and additional noise, such as detector electronics
noise. According to the principle of numerical calculation
and optimization, the estimation process can be imple-
mented iteratively, which generally includes the following
steps: (1) the image is discrete and initialized; (2) selection of
iterative methods; (3) selection of optimal criteria. +e it-
erative methods are as described above, mainly including
classical iterations (such as ART, SIRT, and others) and
statistical-based iterations (such as EM, MAP, and others).
Step 3 also has more options: least squares criterion,
maximum uniformity and smoothing criterion, maximum
entropy criterion, and Bayesian criterion.

2.4. Evaluation Criteria for Reconstruction Algorithms.
When using simulated data for testing, since the exact pa-
rameters of the simulated data are known, the reconstructed
data can be accurately numerically compared with the
original data to make an objective evaluation of the re-
construction quality. A commonly used simulation data
model is the Shepp. LogaJl standard head model, which is
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composed of many ellipses with different sizes and densities.
Common image numerical evaluation criteria are

(1) +e measured value ε of the image similarity coef-
ficient is as follows:

ε �
􏽐

N
i�1 xi − x( 􏼁 x

∗
i − x
∗

􏼐 􏼑

􏽐
N
i�1 xi − x( 􏼁

2
􏽐

N
i�1 x∗i − x∗)2􏼐 􏽩

1/2
.􏼔

(21)

(2) +e normalized RMS distance measurement d is as
follows:

d �
􏽐

N
i�1 xi − x∗i( 􏼁

2

􏽐
N
i�1 xi − x( 􏼁

2
⎡⎣ ⎤⎦

1/2

. (22)

(3) +e normalized mean absolute distance measure-
ment r is

r �
􏽐

N
i�1 xi − x

∗
i

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽐
N
i�1 xi

. (23)

(4) +e image signal-to-noise ratio (SNR) is

Pj

xi

wij=1

(a)

A

B

Pj

xi

wij=length(A,B)

(b)

A

B

wij=
C

D

Pj

xi

∆(A,B,C,D)
Elemental area

(c)

Figure 5: +ree basic projection matrix calculation methods. (a) Projection matrix based on 0, 1. (b) Length-based projection matrix. (c)
Area-based projection matrix.
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snr � 10 × lg
􏽐

N
i�1 x

2
i

􏽐
N
i�1 xi − xi

′( 􏼁
2

⎛⎝ ⎞⎠. (24)

Among them, N is the number of pixels in the recon-
structed image; xi is the gray value of the $x_{i}$ pixel in the
model image; x∗i is the gray value of the $x_{i}$ pixel in the
reconstructed image; x is the average gray value in the model
image; x∗ is the average gray value in the reconstructed
image.

+e four measurements above highlight different as-
pects of image quality. +e image similarity coefficient ε
reflects the similarity between the reconstructed image and
the simulated image. +e larger the ε is, the more similar
the two images are, and when ε is 1, the two images are
identical. +e normalized RMS distance measurement
value d is more sensitive to reflect the error of the local
situation, and if there is a large deviation of individual
pixels, it will lead to a large d. +e normalized mean ab-
solute distance measurement value r is more sensitive to
reflect the small error situation of most points. Contrary to
d, it emphasizes the importance of more small errors rather
than a small number of large errors. +e signal-to-noise
ratio (SNR) measures the ratio of the image signal to the
noise signal, often expressed in decibels.

2.5. Calculation of Projection Matrix. +e exact projection
matrix plays a decisive role in reconstructing an image.
Among all the methods for calculating projection matrices,
the simplest model is the 0,1 model, as shown in Figure 5(a).
We assume that the projection matrix entry wij is 1 when the
ray pj passes through the pixel, xi, and 0 otherwise.
Figure 5(b) shows the projection matrix calculation based on
length weighting. +e value of the projection matrix entry
wij is the value of the length of the ray pj intercepted by the
pixel xi. Figure 5(c) shows the projection matrix calculation
based on area weighting. In this model, the ray is regarded as
having a certain width, and the value of the projectionmatrix
item wij is the ratio of the area covered by the ray pj of the
pixel xi to the pixel area. In practical applications, the in-
ternal attenuation of objects is continuous, and the atten-
uation values inside the discrete pixel cells are not
completely equal. +erefore, the reconstructed image is only
a discretized approximation of the real image, and the
reconstructed image may be grainy. In theory, we can re-
construct a continuous description of the original image by
using interpolation methods.

As shown in Figure 6, a ray pi is injected into the re-
construction area and is sampled at equal intervals, and the
center of the interpolation kernel function h(u, v) is placed
on the sampling point. All reconstructed pixels in the range
of the revalued kernel are accumulated and appropriately
weighted with the revalued kernel. Figure 6 shows that the
sampled value sik at the point (X(sik), Y(sik)) is calculated
from the adjacent pixel values. +e value of sik is calculated
by formula (6):

sik � 􏽘
i

h X sik( 􏼁 − X xi( 􏼁, Y sik( 􏼁 − Y xj􏼐 􏼑􏼐 􏼑 × xi. (25)

sik � 􏽘
j

h X sik( 􏼁 − X xj􏼐 􏼑, Y sik( 􏼁 − Y xj􏼐 􏼑􏼐 􏼑 × xj. (26)

+e value of the projected pixel value pi corresponding
to the ray pi is the accumulation of all the sampling values sik

along the ray:

pi � 􏽘
k

􏽘
j

h X sik( 􏼁 − X xj􏼐 􏼑, Y sik( 􏼁 − Y xj􏼐 􏼑􏼐 􏼑 × xj. (27)

Formula (26) is a discrete approximation of formula
(27):

pi � 􏽚 􏽘
j

h X sik( 􏼁 − X xj􏼐 􏼑, Y sik( 􏼁 − Y xj􏼐 􏼑􏼐 􏼑 × xj
⎛⎝ ⎞⎠dsi.

(28)

Formula (27) is rearranged, and we get

pi � 􏽘
j

xj 􏽚 h X sik( 􏼁 − X xj􏼐 􏼑, Y sik( 􏼁 − Y xj􏼐 􏼑􏼐 􏼑dsi. (29)

Formula (28) is shown in Figure 7. Similar to formula
(14), a projected pixel value pi is calculated as follows:

pi � 􏽘
k

xj · wij. (30)

+erefore, the weights are calculated by integrating the
value kernel along the ray:

wij � 􏽚 h X sik( 􏼁 − X xj􏼐 􏼑, Y sik( 􏼁 − Y xj􏼐 􏼑􏼐 􏼑dsi. (31)

pi

Sk

xj

h(u,v)

Figure 6: Schematic diagram of the calculation of the sampling
value sik at the point (X(sik), Y(sik)).
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2.6. Algebraic Reconstruction Method (ART). +e algebraic
reconstruction algorithm (ART) is proposed to solve the
problem of 3D object reconstruction. ART can be written as
a linear geometry problem with Wx � p. Here, x is an
unknown (N× 1-dimensional) column vector to hold all
N � n3 voxels in the reconstruction region of size n × n × n.
p is an R-dimensional column vector, and $R$ is obtained by
multiplying the number of pixels of each projection Rm by
the number of projections M in the set of total projected
images Pψ, that is, R � Rm × M. Pψ refers to the set of all
projected images during one scan. $W$ is aR × N projection
matrix, and the element wij inW represents the influence of
the voxel vj on the ray ri.Wx � p can be written in the form
of a linear system of formulas in formula (13). As mentioned
above, it is very difficult to solve this linear system of for-
mulas directly. So, here we introduce Kaczmarz’s method of
solving this system of linear formulas.

+e expression for the update process of the recon-
struction region x is shown in formula (31):

x
k+1
j � x

k
j + λ

pi − 􏽐
N
n�1 winx

k
n

􏽐
N
n�1 w

2
in

wij. (32)

λ in formula (31) is a relaxation factor whose value range
is in the (0,1] interval. But in general, if the λ value is too
close to 0, it will lead to overoptimization. +e algorithm
calculates the formulas in formula (18) in sequence. After

completion, some reconstructed pixels may not necessarily
meet the convergence conditions, and the next iteration can
be performed in the same way. Figure 8 shows the geometric
process of the Kaczmarz method. +e two straight lines in
the figure can be expressed as two linear formulas, and the
process shown in the figure is the solution process.

2.7. Combined Reconstruction Method (SIRT). +e joint it-
eration method (SIRT) was proposed by Gilbert shortly after
ARTwas proposed, and it is a parallel computing form of the
ART algorithm. In this method, all the pixels of a certain

L1

x2

L2

x(1)

x(3)
x(2)

x(0) x1

Figure 8: Schematic diagram of the solution process of the
Kaczmarz method.

xj
pi

h(u,v)

xj∫h(X(si)-X(xj),Y(si)-Y(xj))dsi

Figure 7: Schematic diagram of interpolation calculation of pixel
xj and ray pi.

pi

pφ

xj

wij

Figure 9: Schematic diagram of SART projection matrix
calculation.
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projection p are calculated first, and then the voxels of the
entire reconstruction area are updated. Before the updated
value is added to the voxel value, it needs to be weighted and
normalized with the weighted value.

As shown in formula (19), ifw is a nonsingular matrix, its
least squares solution is

x � WTW􏼐 􏼑
− 1
WTp. (33)

Among them, WTp represents the back-projection op-
eration of p. If (WTW)− 1 is viewed as a two-dimensional
filter, formula (32) is the aforementioned two-dimensional
filtered back-projection. Formula (32) can be transformed
into

x � WT WWT
􏼐 􏼑

− 1
p. (34)

In formula (33), (WWT)− 1 is a one-dimensional ρ filter,
which filters p. Formula (33) is solved iteratively:

Robot

End effector

Control system

Visual
positioning

system

Exercise function realization

Position attitude implementation

Bolt grab

Bolt pre-screw

Track planning

Motion program
generation

Pre-screw working
programming

Development of
the bolt positioning

algorithm

Light-load bolt
assembly robot

system

Figure 10: Robot system scheme composition.

Table 1: Statistical table of the accuracy of bolt positioning based
on multivision industrial robots.

Num Accuracy (%)
1 98.6
2 97.8
3 97.4
4 99.2
5 99.5
6 97.9
7 97.2
8 99.7
9 97.2
10 97.9
11 98.0
12 99.1
13 98.9
14 100.0
15 97.2
16 97.3
17 99.5
18 98.6
19 98.5
20 98.7
21 99.4
22 98.0
23 98.9
24 97.1
25 98.1
26 97.7
27 97.8
28 98.9
29 97.8
30 97.9
31 99.9
32 99.9
33 98.3
34 98.8
35 98.1
36 98.2

PC

PAMCcontrol
card

Robot

Work piece Production
line

Bolt plate

Light
resource

Binocular
CCD

Image
processing
algorithm

Hydraulic oil tank

Figure 11: Schematic diagram of the workflow of the robot.
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x0 � WTp,

xk+1
� xk

+ λk WTp − WTWxk
􏼐 􏼑

� xk
+ λkWT p − Wxk

􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(35)

In formula (34), the projection value p is used as the
initial value of the back projection. At the k + 1-th iteration,
the algorithm uses the k-th iteration result xk to add the
correction value to obtain xk+1, which is the back projection
WT(p − Wxk) of the correction value and the kth-estimated
error vector. +us, the correction value for each voxel is the
sum of the error values for all rays passing through that
voxel, not just one ray. +erefore, the correction process of
SIRT is called a point-by-point correction. +is is the
biggest difference from the ART algorithm and the fun-
damental reason why the SIRT algorithm can suppress
noise; some random errors are averaged out by the com-
mon contribution of all rays passing through the voxel. In
order to facilitate the iterative calculation, SIRT can also be
rewritten as

x
k+1
j � x

k
j + λ 􏽘

pi∈Pφ

pi − 􏽘
N

n�1
winx

k
n

⎛⎝ ⎞⎠wij. (36)

2.8. Joint Algebraic Reconstruction Method (SART). +e
SART algorithm does not correct each pixel (each ray) of
the projected image, but it first calculates the projected
image of the entire reconstructed area (denoted as Pφ at the
angle φ). Each pixel value in Pφ contributes to the corrected
value of each voxel, and the updated value of each voxel is
obtained by accumulating these contributions on each
voxel. If the correction terms are simply added, the noise
that may exist in the projected image will be added to the
reconstructed image to produce artifacts, so weighting
needs to be performed when updating. Figure 9 is a
schematic diagram of the SART projection matrix
calculation.

+e way SART updates the reconstruction area x can be
expressed in the following form:

x
k+1
j � x

k
j +

􏽐
pi∈Pφ

λ pi − 􏽐
N
n�1 winx

k
n􏼐 􏼑/􏽐

N
n�1 win􏼐 􏼑􏼐 􏼑wij

􏽐pi∈Pφ
wij

. (37)

+ere are two significant differences between formulas
(36) and (31) :1.+e correction term for a particular voxel xj

is calculated by calculating the adjacent pixels pi in the
projected image and weighting the influence of the pixel pi

on each voxel by the coefficient wij. 2. Although the ART
method guided by Kaczmarz’s method requires the sum of
squared weights, the idea of SARTregards ARTas the inverse
process of volume rendering.

3. Bolt Positioning of Industrial Robots
Based on Multieye Vision

+e whole scheme is centered on the robot, with the end
effector with grasping and prescrewing functions. +e
control system is responsible for the implementation of
trajectory motion, grasping, and prescrewing, and the vision
system realizes the positioning of parts. +e whole scheme is
shown in Figure 10.

Common robot types include Cartesian robots, cylin-
drical coordinate robots, articulated robots, SCARA robots,
spherical robots, and so on, as shown in Figure 11. +e
articulated six-degree-of-freedom robot is the most com-
mon one and plays an important role in industrial pro-
duction. +e SCARA plane articulated robot has the least
interference in space and has the optimal structural solution.

Based on the above, the effect of the bolt positioning
system based on the multivision industrial robot proposed in
this paper is verified, and the bolt positioning accuracy is
calculated. A total of 36 groups were marked with 1000 bolts
in each group, and the test results were obtained as shown in
Table 1 and Figure 12.

From the above research, it can be seen that the bolt
positioning system based on the multieye vision industrial
robot proposed in this paper has a good performance in bolt
positioning.

96.5
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100.5
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Figure 12: Statistical diagram of the accuracy of bolt positioning based on multieye vision industrial robots.
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As the most basic component of rotating machinery, rolling bearing frequently works in harsh environments and complex
working conditions, and its health status a�ects seriously the working e�ciency.�e health statuses of rolling bearing can not only
reduce equipmentmaintenance costs but also contribute to reducingmajor accidents. Based on this, an adaptive diagnosis method
that combines deep gated recurrent unit (DGRU) with wavelet packet decomposition (WPD) and extreme learning machine
(ELM) is proposed for rolling bearing. Firstly, WPD is utilized to eliminate the noise of data. Secondly, DGRU is designed to
extract the representative features of denoised data. Finally, ELM is utilized to output the diagnosis results. Massive results prove
that the superiority and robustness of our approach outperform existing popular methods. Additionally, the proposedmethod can
also achieve powerful antinoise ability.

1. Introduction

�e health state of rotating parts directly a�ects the oper-
ation reliability of the whole mechanical system [1–3]. Once
the rotating parts fail, it will cause serious accidents. Ma-
chinery and equipment are widely used in various industrial
scenarios and electri�ed transmission systems, and some-
times, this equipment may run under unfavorable condi-
tions, such as high temperature, high humidity, and high
load environment, which will eventually lead to equipment
failure and cause high maintenance of high maintenance
cost, serious property loss, and safety hazards. �e faults of
mechanical equipment can usually be attributed to di�erent
types of faults, including driving inverter faults, stator faults,
rotor faults, and bearing failures. According to statistics,
bearing faults are the most common types of faults, and the
incidence of failure reaches 30% to 40% [4–6]. Since bearing
is the most vulnerable parts of mechanical equipment, the
diagnosis of accurate bearing faults has been a study of

engineers and scientists in the past few decades. �erefore,
an e�ective rotating machinery condition monitoring and
fault identi�cation system are established to ensure the safe
operation of equipment and personnel safety. As the most
basic component, bearings frequently work in harsh envi-
ronments and complex working conditions, and its health
status a�ects seriously the working e�ciency [7–10]. �e
health statuses of rolling bearing can not only reduce
equipment maintenance costs but also contribute to re-
ducing major accidents [11, 12].

Fault diagnosis methods based on deep learning are
booming. �is method is based on data-driven methods and
integrates feature learning and intelligent recognition.
Compared with traditional methods, it gets signal pre-
processing and expert knowledge, especially when analyzing
massive monitoring data. Bearing fault diagnosis has long
been a hot topic of research [13–15]. Deep learning methods
have made lots of achievements on the advent of avoiding
extracting manually features [16–19]. However, most of
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these models can exhibit excellent performance under the
premise that the data have the same data distribution.
Unfortunately, it is difficult or even unrealistic to meet the
premise when considering complicated operating condi-
tions, the degradation of equipment performance [20–23].
+e diagnosis performance of most deep learning models
will be greatly reduced when the premise is not accessible.
Some researchers try to use fine-tuning algorithm or
retraining model strategy to tackle the above issue, but a few
labeled target data still need to be provided. Collecting la-
beled data requires lots of expenses or is even impossible in
actual scenarios. Hence, it is very necessary to explore some
promising methods that can apply the knowledge from
relevant areas to solve problems. +e generative adversarial
network (GAN) was innovatively designed by Goodfellow
et al., which utilizes the adversary between generators and
discriminators for generating data with the same distribu-
tion as the raw. However, the adversarial mechanism renders
the model challenging to be in equilibrium. Hence, many
scholars have offered research solutions for further im-
proving the GAN model. Radford et al. [24] proposed deep
convolutional generative adversarial networks (DCGANs)
fusing CNN with GAN, which avoids the GAN model to
converge the learned data distribution to the same one.

Unlike DAE, DBN, CNN, and GAN, RNN is still in its
infancy in diagnosis field. +e main reason is conventional
RNN that has an unignored problem-gradient vanishing
[25]. Gated recurrent unit (GRU) can solve this problem
[26]. GRU, as the newest variant of RNN, has achieved huge
success in fault diagnosis issues [27, 28]. +us, in this paper,
GRU-based network is developed to effectively solve
problems. However, the vibration signals are always con-
taminated by the noise that heavily influence the diagnosis
performance of network [29]. +us, wavelet packet de-
composition (WPD) that has been recognized as an effective
vibration signals denoising method is used for eliminating
the noise of vibration signals [30–34].

An adaptive diagnosis method that combines deep gated
recurrent unit (DGRU) with wavelet packet decomposition
(WPD) and extreme learning machine (ELM) is proposed
for rolling bearing. Firstly, WPD is utilized to eliminate the
noise of data. Secondly, DGRU is designed to extract the
representative features of denoised data. Finally, ELM is
utilized to output the diagnosis results. Massive results prove
that the superiority and robustness of our method outper-
form existing popular methods. Additionally, the proposed
method can also achieve powerful antinoise ability.

+e specific arrangements of this paper are as follows:
Section 2 describes basic theoretical knowledge. A concrete
introduction of our method is given in Section 3. Section 4
analyzes the effectiveness. Conclusions are generalized in
Section 5.

2. The Brief Theory of Gated Recurrent Unit

Similar to long short-termmemory neural network (LSTM),
gated recurrent unit (GRU) is also a method proposed to
solve the problem, but it is simpler than LSTM [25, 26]. GRU
uses an update gate and a reset gate.+ese two gates together

determine the output of GRU [35]. +e specific structure is
shown in Figure 1.

zt � σ EzXt + FzYt−1( 􏼁,

rt � σ ErXt + FrYt−1( 􏼁,

Ht � tanh Ext + F rtYt−1( 􏼁( 􏼁,

Yt � 1 − zt( 􏼁Yt−1 + ztHt,

(1)

where σ and tanh denote the sigmoid and tangent activation
functions. Ez, Er, E, Fz, Fz, and F are the weight matrices
and element-wise multiplications.yt is an activation at time
t, and ht means a candidate activation.

3. The Proposed Method

Rotating machinery is applied to many fields. Rolling
bearing is a necessary component to ensure the normal
operation of rotating machinery. It has a direct impact on
the accuracy and reliability of rotating machinery equip-
ment. +erefore, rolling bearing faults are one of the most
common reasons for rotatingmechanical failures. Due to the
long-term operation of rotating machinery under harsh and
complex conditions, it is inevitable that faults will occur.
+erefore, the state of machinery must be monitored in time
to diagnose faults as soon as possible. One of the four key
tasks is to find out whether the rotation of the machine is
abnormal or not, and to predict the severity of the rotation of
the machine. Due to the higher requirements for high
performance, safety, and reliability, fault diagnosis of ro-
tating machinery becomes not only more and more im-
portant but alsomore andmore difficult.+erefore, in recent
decades, rotating machinery fault diagnosis has received
more and more attention and considerable development.
+is paper develops a new rotating machinery fault diag-
nosis method that combines a deep gated recurrent unit
(DGRU) with wavelet packet decomposition (WPD) and
extreme learning machine (ELM) to identify locomotive
bearing fault conditions.

3.1. Wavelet Packet Decomposition Denosing. WPD is gen-
erally used to deal with nonstationary signals. It can analyze
both time domain and frequency domain, and analyze the
characteristics of signals locally. Wavelet transform de-
composition mainly focuses on low-frequency signals and
cannot decompose high-frequency signals containing a large
amount of detailed information, such as rolling bearing
vibration signals, remote sensing images, seismic signals,
and biomedical signals. WPD is based on the idea of
multiresolution analysis, that is, the signal can be decom-
posed and reconstructed in different frequency bands under
the wavelet basis, which is suitable for dealing with dis-
continuous and nonstationary signals. WPD makes up for
the shortcomings of wavelet transform. It can solve the
signal energy from different decomposition scales. +e
multilevel division of frequency band can decompose not
only low-frequency signals but also high-frequency signals,
making the division of signals more precise. +e signal
decomposition process reflects the relationship between the
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wide-band signal and the fine band signal.+e nonstationary
vibration signal can approach the fault characteristic fre-
quency of the system through WPD to obtain the instan-
taneous signal containing stationary signal components.+e
decomposition algorithm principle is to calculate the average
and the difference between the first number and the average,
and the system fault can be detected by analyzing the energy
distribution in different frequency bands; WPD has neither
redundancy nor omission. +e vibration signals often
contain noise that greatly influences the diagnosis accuracy.
+us, it is essential to eliminate the noise firstly. WPD is
viewed as an effective method for vibration signal denoising
[31]. WPD splits into two branches, low and high fre-
quencies at all decomposition processes [36].+e three-layer
binary trees of WPD are shown in Figure 2. +e steps of
signals denoising using WPD is illustrated in Table 1.

3.2. Deep Gated Recurrent Unit Construction. +e operating
conditions of mechanical equipment are changing, and the
data label information of the training set data under most of
the working conditions is unknown, and it is difficult to
effectively train intelligent identification models. However,
the training process of the above methods uses a small
amount of labeling data, so it cannot be used to solve the
problem of health status recognition under the case of
unknown label information. Rotatingmachinery plays a vital
role in the application of coal industry. Due to the long-term
operation of rotating machinery under harsh and complex
conditions, it is inevitable that faults will occur. +erefore,
the state of machinery must be monitored in time to di-
agnose faults as soon as possible. One of the four key tasks is
to find out whether the rotation of the machine is abnormal
or not, and to predict the severity of the rotation of the
machine. Due to the higher requirements for high perfor-
mance, safety, and reliability, fault diagnosis of rotating
machinery becomes not only more and more important but
also more and more difficult. +erefore, in recent decades,
rotating machinery fault diagnosis has received more and
more attention and considerable development.

+e health state of rotating parts such as bearings and
gears directly affect the operation reliability of the whole
mechanical system. Once the rotating parts fail, it will

cause serious safety accidents and huge economic losses.
+erefore, the establishment of an effective rotating
machinery condition monitoring and fault identification
system is of great significance to ensure the safe operation
of equipment and personnel safety. Signal processing
technology is an important subject of rotating machinery
fault diagnosis, which has been widely used in various
industrial fields. In addition, due to more and more at-
tention, artificial intelligence technology has also been
applied to rotating machinery fault diagnosis. Based on
this, the illustration of DGRU is presented in Figure 3.
X(s) means the denoised data processed by WPD. Y(s) and
Z(s) represent the extracted first-layer and second-layer
features.

σ(t) �
1

1 + e
− t. (2)

+e loss function is cross-entropy loss function that
estimates the difference between the predicted label and
actual label.

L(x, y) � − 􏽘
N

i�1
yilog2xi, (3)

where xi denotes the actual label and yi is the predicted label.

3.3. Extreme Learning Machine Classification. ELM is the
result of improving the algorithm [37]. +e structure is
shown in Figure 4. x and t are the input vectors and output
labels respectively, (W, b) are the weights and bias of input
layer and hidden layer, β is the value of the implication
layer and the output layer. +e difference from the BP
neural network trained by gradient descent is that the
weights generated during the training of the limit learning
machine, and there is no need to adjust after generation.
+e specific calculation formulas are shown in equations
(4), (5), and (6), the hidden layer vector hi (i � 1, 2, . . ., n),
where n is the number of input samples. T is the matrix
composed of sample label vector, and H+ is the gener-
alized inverse matrix of H. Based on the principle of the
least square method, the whole process does not need
feedback iterative adjustment.

× +

× 1-

σ σ
tanh

×

Yt–1
Yt

Ht

rt

Xt

zt

Figure 1: Structure of GRU.
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H �
F β1, c1, y1( ) · · · F βK, cK, y1( )
⋮ ⋮ ⋮

F β1, c1, yM( ) · · · F βK, cK, yM( )



M×K

, (4)

β �
α1
⋮
αK



K×N

, andT �
t1
⋮
tM



M×N

. (5)

Known from Reference [38], β can be represented by

β � H+T, (6)

where H+ is the Moore–Penrose generalized inverse of H.

3.4. General Steps. �e health state of rotating parts directly
a�ects the operation reliability of the whole mechanical
system. Once the rotating parts fail, it will cause serious
accidents. �erefore, the establishment of an e�ective ro-
tating machinery condition monitoring and fault identi�-
cation system is to ensure the safe operation of equipment
and personnel safety. An adaptive diagnosis method that
combines DGRU with WPD and ELM is proposed. �e
updating process of our method is described in Figure 5 with
the following three steps.

(i) Step 1: measure data from rotating machinery
(ii) Step 2: eliminate the noise of vibration signals by

using WPD
(iii) Step 3: divide the denoised signals into trained and

tested samples
(iv) Step 4: DGRU with ELM is constructed to diagnose

railway locomotive bearing faults

X(s)
Input
layer

Hidden
layer1

Hidden
layer2

Y(s)

Z(s)

Learned
features

Figure 3: Structure of DGRU.

Learned features

Hidden layer

Diagnosis result

Figure 4: �e basic framework.

S

A1 D1

AA2

AAA3

DA2 AD2 DD2

DAA3 ADA3 DDA3 AAD3 DAD3 ADD3 DDD3

Figure 2: �ree-layer binary trees WPD.

Table 1: �e steps of signals denoising using WPD.

Steps Detailed description
A. Signal
decomposition

Select the wavelet function to decompose the noisy signals. �erefore, the wavelet packet coe�cients at each level
are obtained.

B. �resholding A threshold rule is used to decompose the coe�cients to eliminate most of noisy coe�cients
C. Signal
reconstruction

�e inverse WPD of each scale is performed by using the obtained approximate coe�cients and the detailed
coe�cients of denoising.
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(v) Step 5: the constructed model is used for learning
the trained-samples features and verified by the
tested-samples features

(vi) Step 6: output the diagnosis result.

4. Experimental Verification

4.1. Experimental Data Description. Because rotating ma-
chinery under harsh and complex conditions, it is

inevitable that faults will occur. +erefore, the state of
machinery must be monitored in time to diagnose faults
as soon as possible. One of the four key tasks is to find out
whether the rotation of the machine is abnormal or not,
and to predict the severity of the rotation of the machine.
Due to the higher requirements for high performance,
safety, and reliability, fault diagnosis of rotating ma-
chinery becomes not only more and more important but
also more and more difficult.

Use WPD for signals denosing

Feature learning layer by layer

Vibration signals acquisition Railway locomotive bearings

Vibration signals acquisition and signals denosing

Trained sam
ples

Tested sam
ples

D
e-noised signals

 Deep features

Condition 1

Condition 1

Train the ELM classifier

 Deep features

ELM classifier
(already trained)

 fault diagnosis result

Bearing condition Output ELM classifier

S

A1 D1

AA2

AAA3

DA2 AD2 DD2

DAA3 ADA3 DDA3 AAD3 DAD3 ADD3 DDD3

100
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70
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40
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Figure 5: +e framework of our approach.
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In this section, a representative simulating high-speed
bearings dataset is selected to validate the feasibility of the
proposed method. Various indicators are adopted to prove
the effectiveness of data augmentation. Simulated fault di-
agnosis experiments are conducted separately with other
approaches to corroborate the superiority of the algorithm in
this paper. +e simulated high-speed bearing dataset is
applied to the laboratory dataset. +e dataset is provided by
railway locomotive bearing. According to different health
conditions and three damage levels, 9 health categories with
12.8 kHz sampling frequency are obtained to form the
dataset. +e experimental platform presented in Figures 6
and 7 represents the specific faults of rolling bearings.

4.2. Compared with Traditional Methods. To evaluate the
effectiveness of our approach for noisy signals, the collected
data are added white Gaussian noise (WGN) in this part as
shown in Figure 8. +e noisy signals are described as

V(s) � v(s) + k × n(s), (7)

where V(s) represents the noisy signals, v(s) is the collected
vibration signals, n(s) is the WGN, and k is the coefficient.
Larger k means heavier noise.

In this part, k is 0.4 and then we obtain the noisy signals.
+en, the noisy signals are one input. +e denoised signals
that are processed by WPD are another input. Figure 9
describes the noisy data and the denoised data of each
condition, each condition contains 8,192 data points. +ere
are two important points to be explained: (1) For the pro-
posed method and DGRU with SVM classifier, the only
input is the noisy signals. (2) SVM and ANN both have two
inputs, the noisy signals and the denoised signals.

To demonstrate the superiority of our, six methods are
considered as the comparison methods. More details about
these methods are provided as follows. As in this article, the
optimization algorithm is the Adam algorithm. +e learning
rate is 0.0002 in all experiments. +e relevant parameters of
these methods are determined by relevant literature and ex-
periments so that these methods could achieve the best rec-
ognitionperformancefordifferentdiagnosis tasks.+eseresults
are depicted in Figure 10.+e confusionmatrix is illustrated in
Figure 11. Table 2 shows the results per method in all tasks.

It is obviously observed from Table 3 that the average
accuracy of the proposed method is 94.98%, which is ob-
viously higher than the other five methods, which are
78.64%, 55.47%, 73.95%, 44.61%, and 58.85%, respectively.
+e standard deviation is only 1.10, obviously lower than the
other five methods which are 2.35, 3.28, 2.25, 3.96, and 3.22.
+e results present that: (1) Comparing all the methods, we
can clearly observe that DGRU, SVM, and ANN are all
sensitive about the noise. (2) Comparing Method 1 with
Method 2, it can be known that the denoised signals could
make much better diagnosis accuracy. It also proves the
necessity and effectiveness of the noisy signals processed by
WPD. (3) By comparing Method 1, Method 4, and Method
6, it can be seen that the proposed method has much more
accurate and robust performance than SVM and ANN. +e

main reason is that the deep architecture has a more
powerful ability to learn functions. +erefore, it can auto-
matically learn more appropriate internal error character-
istics from the inputs and provide more reliable conclusions.

4.3.:eAntinoiseAbility of the ProposedMethod. +is part is
mainly to research the influence of different noisy signals
and the antinoise ability of the proposed method. To avoid
the chance of result, each condition runs 5 times. +e de-
scription of each condition and the average accuracy is
shown in Table 4. +e noisy signals represent the signals
contain noise; the denoised signals represent the noisy
signals processed by WPD. +e concrete diagnosis result of
each trail is shown in Figure 12.

+e average accuracy and standard deviation of each
condition are shown in Table 4. It can be known that for
the DGRU with ELM classifier, the denoised signals could
lead to much better accuracy and robust performance
than the noisy signals. With more noise of the vibration
signals, the diagnosis accuracy becomes lower and more
and more unstable. No matter how powerful the
denoising method is, the denoised signals could not be
better than the normal vibration signals. It also can be
found that with the increase of noise, the result of WPD
dealing with noisy signals is also getting worse. However,

Accelerometer

Load

Figure 6: Experimental locomotive bearing device.

Inner race Roller race

Serious outer race Slight outer race

Figure 7: Four types of rolling bearing faults.

6 Shock and Vibration



the diagnosis result is also higher than 90%. According to
the above-mentioned and diagnosis results, it can be
confirmed that the proposed method has a powerful
antinoise ability.

+e classifiers with the identical parameters are employed
for the same purpose. Ablation experiments are required for
the CNN classifier to ensure that it is resistant to engineering
noise interference. +e settings and results of the ablation
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Table 2: Comparison of methodologies.

Method Description Inputs
1 Suggested technique Noisy signals
2 DGRU+ELM classifier Noisy signals
3 SVM Noisy signals
4 SVM Denoised signals
5 ANN Noisy signals
6 ANN Denoised signals

Table 3: +e concrete classification accuracy and standard deviation per method.

Method Average accuracy (%) Standard deviation
1 94.98 1.10
2 78.64 2.35
3 55.47 3.28
4 73.95 2.25
5 44.61 3.96
6 58.85 3.22
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experiments are listed in Table 5. CNNs with different
frameworks and parameters are adopted to fault diagnose on
the dataset to select the best CNN diagnostic model. From
Table 5, it is clear that framework A is more robust for better
fault diagnosis compared to other structures. Accordingly, an
alternative ablation experiment is conducted on the key pa-
rameters of CNN with framework A as the basis.

5. Conclusion

In this paper, an adaptive diagnosis method that combines deep
gated recurrent unit (DGRU) with wavelet packet

decomposition (WPD) and extreme learning machine (ELM) is
proposed for rolling bearing. Firstly, WPD is utilized to elim-
inate the noise of data. Secondly, DGRU is designed to extract
the representative features of denoised data. Finally, ELM is
utilized to output the diagnosis results. Massive experimental
results prove that the superiority and robustness of the proposed
method outperform existing popularmethods. Additionally, the
proposed method can also achieve powerful antinoise ability.

In conclusion, we will further improve our model to deal
with the challenge of transfer experimental data knowledge
to diagnose practical engineering equipment faults in future
research [39].

Table 5: +e framework of CNN for ablation experiment.

Parameter profile Framework A Framework B Framework C Framework D
Input 1024 1024 1024 1024
Convolution 32, 3, 1, same 32, 5, 1, same 32, 3, 2, same 48, 3, 1, same
Maxpooling 2 2 — 2
Convolution 64, 3, 1, same 64, 5, 1, same 64, 3, 2, same 96, 3, 1, same
Maxpooling 2 2 — 2
Convolution 128, 3, 1, same 128, 5, 1, same 128, 3, 2, same 192, 3, 1, same
Maxpooling 2 2 — 2
Fully connection 1024 1024 1024 1024
Fully connection 9 9 9 9
Keep_prob 0.9 0.9 0.9 0.9
Learning rate 0.1 0.1 0.1 0.1
Accuracy 95.18%±1.64 94.22%± 1.84 93.16%± 1.86 92.52%± 1.98

Table 4: Average accuracy and standard deviation of each condition.

Condition k Inputs Average accuracy (%) Standard deviation
1 0 Collected signals 96.69 1.47
2 0.2 Noisy signals 82.46 2.45
3 Denoised signals 92.39 1.17
4 0.4 Noisy signals 79.57 2.57
5 Denoised signals 95.03 1.10
6 0.6 Noisy signals 74.15 2.93
7 Denoised signals 91.93 1.10
8 0.8 Noisy signals 67.80 6.31
9 Denoised signals 90.36 1.25
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Figure 12: Diagnosis accuracy of the 5 trials.
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In order to further improve the collaborative control efficiency of the electrical system of the laser CNCmachine tool, an electrical
system based on the ultrafast laser CNC machine tool is proposed. +e design of the collaborative control scheme is discussed
from three aspects: the overall control scheme design, hardware structure design, and control software implementation of the
electrical system of the laser numerical control machine tool. +e experimental results show that the length of the metal sheet
processed by the electrical system of the laser CNCmachine tool is 5.3 cm and the width is about 3.6 cm, and the actual processing
aperture size will also change according to the set number of variable radius turns, and more precise processing can be enabled in
the online test. +e research results show that this electrical collaborative control system scheme has strong practicability and
feasibility. With the help of system upgrades and optimization, the efficient integration of laser processing technology and
numerical control technology can be better achieved. It should be noted that the machining process of the machine tool is also
required to make in-depth improvements, which can maximize the operating efficiency and machining accuracy of the electrical
system of the CNC machine tool. +e laser CNC machine tool researched and developed in this paper verifies the rationality and
feasibility of the collaborative control scheme through practical experiments, which can meet the processing requirements and
realize the integration of laser processing technology and numerical control technology. High machining efficiency and
machining accuracy.

1. Introduction

Computer engineering has gradually replaced modern work
tools, and office equipment has never been adapted to
current work needs. While the development of computer
technology and its application in the field of the machinery
industry have changed the traditional processing methods,
the work efficiency of the equipment has been further im-
proved by integrating computer technology, automated
control systems, and CNC machine tool technology.
Compared with traditional CNC machine tool technology,
with the improvement of computer technology, on the basis
of the full integration of automation control technology,
computer technology, and CNC machine tool technology,
laser CNC machine tools integrate optical, mechanical,
electrical, detection, and other technologies into one. Based

on the integration of laser processing and CNC machine
tools, compared with traditional CNC machine tools, laser
CNC machine tools have many advantages and character-
istics of traditional CNC machine tools and laser
manufacturing machine tools and can better replace the
work of traditional props.+e machining speed of the tool is
faster, the surface deformation of the machined workpiece is
smaller, and a wider variety of complex workpieces can be
machined. On the basis of synthesizing a variety of tech-
nologies, laser CNC machine tool technology has higher
processing efficiency, greatly improved processing accuracy,
and a higher degree of automation. Based on these char-
acteristics, a control system for CNCmachine tools based on
ultrafast laser is proposed, which can better realize the
coordinated control of the electrical system of CNCmachine
tools.
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2. Literature Review

Macmammah et al. said that the application range of CNC
machine tools in the industry is constantly expanding, and it
has many advantages compared with ordinary machine
tools, but at present, CNC machine tools cannot completely
replace ordinary machine tools, nor can they be the most
economical way to solve all problems in the machining
process [1]. Klausen et al. said that CNC machine tools are
mainly suitable for processing complex shapes and high
precision requirements while producing parts with small
batches but many varieties [2]. Singh and Kedia said that a
large number of CNC machine tools are needed to support
their production in the automobile manufacturing industry,
machinery industry, and military industry [3]. Singh et al.
said that CNC machine tools, as the working machine of
equipment manufacturing, are the mainstay of a country’s
industrial development [4]. Lee and others said that due to
the continuous advancement of industrial modernization,
the requirements of modern manufacturing for CNC ma-
chine tools have long been no longer focused on simple
automated processing but have put forward more advanced
processing accuracy, processing speed, and processing
technology for high demands [5]. Lan et al. stated that from
the perspective of these needs, high-end CNCmachine tools
would be a good choice, but the actual processing of high-
end CNC machine tools is only used to complete the pro-
cessing process and for the similarity processing of
microholes. While precision cutting requires precision, it is
difficult for high-end CNC machine tools to meet the re-
quirements [6]. At this time, it is necessary to find a more
suitable processing method and processing technology, and
laser processing is the best choice for this kind of processing.
Compared with traditional machine tool processing, laser
processing has the following advantages: Lui et al. said that
laser processing has high production efficiency, reliable
workpiece processing quality, and processing accuracy that
can reach the order of microns [7]. During the laser pro-
cessing, there is no contact with the workpiece to be pro-
cessed, which will not bring about “tool” wear, and at the
same time, there is no direct impact on the workpiece, so
there is no mechanical deformation; it is suitable for the
processing of somemetals and nonmetals, especially for high
hardness and processing of materials with high brittleness
and high melting point; Gupta and Paliwal said that the
beam guidance and focusing of the laser are simple in the
processing process, which can easily realize the transfor-
mation of all directions, which is very suitable for the
processing of complex workpieces with the numerical
control system [8]. As can be seen from the advantages of
laser processing, laser processing is a very simple process.
Zahedmanesh et al. said that the combination of laser
processing and CNC machine tools and the use of lasers to
convert the machine tools into laser CNC machine tools for
operation is not only the function of CNCmachine tools but
also the quality of laser processing [9]. +erefore, laser CNC
machine tools will have the advantages of CNC machine
tools and laser processing at the same time. For precision
processing such as microhole processing, it can not only

achieve a high degree of automation of processing but also
achieve higher processing accuracy and processing effi-
ciency. Sanjareh et al. said that although the current ap-
plications of laser CNC machine tools in China’s processing
industry are mostly special-purpose mid-to-low-end ma-
chine tools, mainly used for laser cutting, cladding, heat
treatment, laser welding, etc. with the development of laser
processing technology and the continuous improvement of
CNCmachine tools and the deepening of technical research,
laser CNC machine tools will have a wide range of appli-
cations [10]. Laser CNC machine tools combine the ad-
vantages of CNC machine tools and laser processing, are
necessary to improve the efficiency of the processing process,
and are an important part of the development and adjust-
ment of CNC machine tools. At present, the development of
laser CNCmachine tools is still in its infancy, but it has been
widely used in production. It can be seen that laser CNC
machine tools can be improved.+e next step in the research
of laser CNCmachine tools will only focus on the integration
of CNCmachine tools and laser processing equipment in the
processing process to improve the process and make tool
making and setting easy so that the advantages of CNC
machine tools and laser processing can be effectively utilized
to implement manufacturing innovation. +e electrical
system of the CNC machine tool is shown in Figure 1.

3. Methods

In the CNCmachining system, the processing of the corners
of the motion segment is the key issue to improve the
smoothness of the motion trajectory. +e problem includes
two aspects: first, the determination of the corner speed. +e
smoothness of the motion is significantly reduced; secondly,
the smoothness of the trajectory at the corner is improved.
Under the condition of ensuring the trajectory error, a
motion segment with smooth characteristics is added to the
corner to satisfy the better trajectory smoothness [11]. In
order to solve the above problems, this chapter has carried
out research on the transition technology at the corner of the
motion segment. +e basic idea is shown in Figure 2.

+e technical introduction is shown in Figure 3.
Set points, Pi− 1, Pi, Pi+ 1, are the endpoint positions of

the two motion segments of sequential processing, as shown
in

Q0Q1Q2. (1)

It is the transition arc that is tangent to the two line
segments at the same time, wherein Q0 and Q2 are the
tangent points of the transition arc and the adjacent motion
segments Pi− 1Pi and PiPi+ 1, respectively, and Q1 is the
midpoint of the transition arc. +e geometric relationship
between the transition arc and the two adjacent motion
segments is analytically represented, as shown in Figure 4.

In the figure, ΔQ0OQ2 is easily known as an isosceles
triangle according to the knowledge of plane geometry.
According to the basic properties of the tangent, it can be
concluded that ΔQ0PiQ2 is also an isosceles triangle.
+erefore, the corner point Pi of the two motion segments
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and the starting point Q0 and the end of the transition arc of
the points Q2 are equidistant, and the above distance is
defined here as the transition distance, that is, the distance

from Pi to the starting point Q0 and the ending point Q2.
Assuming that the lengths of two adjacent motion segments
Pi− 1Pi and PiPi+ 1 are represented as Si and Si+ 1,
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Figure 1: Cooperative control of the electrical system of the laser CNC machine tool.
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respectively, and the included angle between the two motion
segments is α, according to the knowledge of plane geom-
etry, the following relationship can be obtained as follows:

ϕ � α,

r

e + r
� cos

ϕ
2

,

l

e + r
sin

ϕ
2

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

It can be further deduced through the above formula
relationship. According to the angle α between adjacent
motion segments and the contour error determined by the
machining accuracy, the transition distance l between the
two motion segments and the radius r of the transition arc
are, respectively, related to α and α. +e relationship of e is
shown in formulas (3) and (4):

l �
sin(α/2)

1 − cos(α/2)
, (3)

r �
cos (α/2)

1 − cos(α/2)
e. (4)

When the transition arc is used to achieve a smooth
transition between adjacent motion segments, there is a
fitting error between the actual path and the original path.
First, considering the requirements of contour error after
fitting the motion segment, according to the geometric
relationship between the contour error, the angle between
the two motion segments, and the length of the motion
segment, the radius of the transition arc and the start and
end points of the transition arc are determined. Second, it is
necessary to consider that the feed rate on the transition arc
must meet the maximum acceleration performance of the
machine tool, and the maximum feed rate of the transition
arc is determined by the maximum acceleration.

3.1. Determine the TransitionArc Radius, Start Point, andEnd
Point. In order to meet the requirements of contour ma-
chining accuracy, the requirements of contour error must be
met first when determining the radius, starting point, and
end point of the transition arc. +erefore, the maximum
contour error Em needs to be used as a constraint to de-
termine other parameters of the transition arc. Substituting
Em into equations (3) and (4), the transition distance lc that
satisfies the maximum contour error can be obtained

lc �
sin(α/2)

1 − cos(α/2)
Em. (5)

Since the above formula is obtained according to the
geometric relationship, for the motion segment under
normal circumstances, Em is much smaller than the length of
the motion segment, so the transition distance lc under the
constraint of Em must be smaller than the length of the
adjacent motion segment. Taking any three adjacent motion
segments to form 2 corner points, the situation in the figure
may occur because the middle motion segment is the upper
transition distance, as shown in Figure 5.

+at is, the two transition arcs before and after do not
intersect, which means that the radius of the transition is too
large, and the transition distance does not satisfy the con-
nection relationship, so not only the contour error but also
the length of the motion segment itself determine the radius
of the transition arc and the transition distance and other
parameters [12, 13]. In order to ensure that two adjacent
transition arcs can intersect, it must be ensured that the
transition distance on each motion segment cannot exceed
half the length of the motion segment

ls � min
Si

2
,
Si+1

2
􏼒 􏼓. (6)

Consider the case of lc ≤ ls, in which the transition
distance can satisfy the constraint condition of the length of
the motion segment, and the parameters of the transition arc
are completely determined by the maximum contour error,
as shown in formulas (7)–(9):

r �
cos(α/2)

1 − cos(α/2)
Em, (7)

Q0 �
lc

Si

Pi+1 +
Si − lc

Si

Pi, (8)

Q2 �
Si+1 − lc

Si+1
Pi +

lc

Si+1
Pi+1. (9)

When considering the case of lc > ls, in this case, the
transition distance cannot meet the constraint condition of
the length of the motion segment. According to the
aforementioned method, the problem of overlapping tran-
sition distances will occur. +erefore, in this case, the pa-
rameters of the transition arc should first consider the
motion segment and the constraints of its own length, as
shown in formula (10)–(12):

Y Y

0
Pi-1

Pi+1

Z

Pi

Figure 3: Schematic diagram of arc transition.
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r �
cos(α/2)

sin(α/2)
ls, (10)

Q0 �
lc

Si

Pi−1 +
Si − lc

Si

Pi, (11)

Q2 �
Si+1 − lc

Si+1
Pi +

lc

Si+1
Pi+1. (12)

3.2. Determination of the Maximum Feed Rate of the Tran-
sition Arc Segment. From the centripetal acceleration for-
mula, the constraint relationship between the maximum
feed rate vm and the maximum acceleration of the machine
tool is am, and the radius r of the transition arc is shown in

vm �
����
amr

√
. (13)

+erefore, in order to ensure that the transition arc
processing canmeet both the requirements of the machining
accuracy and the acceleration and deceleration performance
of themachine tool, the maximum speed of the transition arc
segment processing should be selected from the maximum
processing speed set by the workpiece program and the
speed constrained by the maximum acceleration of the
machine tool. +e smaller value in vm is

v � min F, vm( 􏼁. (14)

In order to meet the feed rate when processing the
transition arc segment, before the transition arc segment, the
feed rate is planned based on the forward-looking algorithm,
so that the feed rate of the starting point of the transition arc

is v, and the transition arc is guaranteed. +e speed remains
constant during the processing.

Pi− 1, Pi, and Pi+ 1 are the endpoints of adjacent arc
segments and straight-line segments, and the arc Q0Q1Q2 is
the transition curve inserted between the program segments.
It can be divided into two cases as shown in the figure, and
the processing method is similar, as shown in Figure 6.

Similar to the transition processing between two
straight-line segments, the length of Pi from the tangent
point between the transition arc and the two adjacent
program segments is called the transition distance. +e
distance e between Pi and the transition arc vertex is the
shortest distance from Pi to the transition arc Q0Q1Q2,
which is called the contour error, as shown in Figure 7.

Assume that the central angle of the transition arc is ϕ,
the error between the transition arc and the original tra-
jectory is e, the distance between Pi and O1 is h, and the
length between Pi and the tangent point is d:

θ �
π − ϕ
2

,

h �
e

1 − sin θ
,

d � h · cos θ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

Considering the limitation of the length of the motion
segment itself, the transition distance on each line segment
does not exceed half of its own length, as shown in

ls � min
Si

2
,
Si+1

2
, d􏼒 􏼓. (16)

And the radius is determined after trimming as shown in

R1 � ls · tan θ. (17)

And the processing of the transition arc needs to meet
the normal acceleration requirements. Let the radius that
meets the requirements be R2, the processing speed that
meets the process requirements is v, and the normal ac-
celeration is an

R2 �
v
2

an

. (18)
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Figure 4: Arc transition coordinate system.
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Figure 5: Schematic diagram of transition distance overlap.

Shock and Vibration 5



RE
TR
AC
TE
D

+e radius R satisfying the above constraints is

R � min R1, R2􏼈 􏼉. (19)

+e transition length l1 of the straight-line segment
satisfying the constraints is shown in

l1 �
R

tan θ
. (20)

Let O2O1, O1P be a unitized vector, and the transition
length of the arc segment that satisfies the constraints is
shown in

l2 � arccos O2O1 · O1P( 􏼁. (21)

Machining speed and precision are the key factors that
affect the machining performance of CNC machine tools.
+e two restrict each other, and the optimal effect of the two
cannot be obtained at the same time. Usually, the machining
speed is maximized under the condition of ensuring the
machining accuracy. From this point of view, the machining
accuracy has a decisive effect on the machining speed, and
the machining accuracy depends on the ability of the
controller’s trajectory to follow. +erefore, factors such as
the accuracy of acceleration and deceleration of each axis of
the machine tool, as well as the sudden change of feed rate
and feed rate, have resulted in the reduction of the precision
of CNC machine tools.

In the CNC system in the form of front acceleration and
deceleration, since the theoretical trajectory error is zero, the
machining accuracy is relatively high. +e sudden change of
feed is the main factor of machining error [14, 15].
+erefore, in this form of acceleration and deceleration, in
order to minimize the machining error, the feed rate must be
adjusted smoothly, and the axis speedmust be limited within
the allowable value range. In order to adjust the change of
feed smoothly, it is necessary to ensure sufficient accelera-
tion value of each axis, so as to maximize the acceleration
and deceleration performance of CNCmachine tools. When
two shorter program segments are connected one after the
other, since the length of the two programs is too short, the
acceleration distance required by the commanded speed
cannot be reached, and the obtained speed curve shows a
special shape similar to the sawtooth. +erefore, it is nec-
essary to comprehensively consider the commanded speed
and the length of subsequent blocks to minimize the fluc-
tuation of the feed speed.

4. Experiments and Analysis

Laser CNC machine tools not only include processing
equipment but also monitoring and testing equipment. At
the same time, because the laser processing equipment is
different from the tools of general machine tools, its

X Y X

Y

0
0

Z Z

Q1
Q1

P1
P1

Q2
Q2

QP

QP

Figure 6: Schematic diagram of the transition between the arc and straight line.
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Figure 7: Arc and straight-line transition coordinate system.
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composition includes laser, light guide system, and moni-
toring system. +erefore, compared with the general CNC
machine tool processing technology, the operation mech-
anism of the laser CNC machine tool will include additional
processing technology [16]. In response to this problem,
according to the research on the control system of the laser
numerical control machine tool in Figure 7, the actual
operation process can be divided into different functions
according to the different operations, which can be obtained
from the processing process which is independent, as shown
in Figure 8.

According to the above processing flow, it can be seen
that the software modules included in the actual demand
functions of the collaborative control system software design
include three-dimensional measurement, focal length
measurement, process database, laser and processing head
adjustment, terminal monitoring, pointing monitoring, and
power monitoring [17]. According to the processing flow, it
can be seen that the collaborative control system software
needs the coordination and cooperation of various func-
tional modules in the specific processing process, so the
design of the entire control system is also designed in ac-
cordance with the collaborative control scheme. According
to the hardware structure of the machine control system,
software integration can be divided into two parts by
function: industrial computer control software and nu-
merical control system software. All software design ar-
chitecture of the integrated control system is shown in [18].
+e CNC system part of the control system software adopts
the open-source existing CNC system, which was approved
as the Linux system platform at that time, realizes the
functions of task control, motion control, and PLC through
the software, and provides a human-computer interaction
interface for display processing. information. In the actual
processing process, the numerical control system is mainly
responsible for realizing the axis motion control and focal
length measurement module, the communication between

the industrial computer and the numerical control system is
realized through the serial port, and the coordinated control
system can directly send the control to the numerical control
system through the industrial computer to control the
movement of the machine tool axis. +e command is then
handed over to the CNC system to complete. +erefore, the
development environment of other functional modules has
nothing to do with the operating environment of the CNC
system. +e computer software industry is developed and
used by Qt. Qt is a cross-platform C++ GUI application
development framework that supports Linux, Mac OS X,
Windows, Linux, Android, and other platforms. It can
design GUI services as well as non-GUI services such as
console tools and servers. Qt is not only easy to connect but
also allows the latest component programming. With Qt,
you can create an application that does not change the code
and can be used on multiple platforms, which reduces the
installation time of the application.+is topic choosesQt4 to
realize the development of industrial computer software
man-machine interface and processing auxiliary module
software, and the development tool chooses Qt Creator. Qt
Creator is a lightweight integrated development environ-
ment (IDE) that supports the cross-platform operation and
supports multiple operating systems [19].

In order to achieve higher benefits and reduce research
costs, the CNC system part of the collaborative control
system of this project adopts the GJ430 system developed by
High Precision CNC Intelligent Technology Co., Ltd., which
avoids the redevelopment of CNC system software. +ere-
fore, the main task of collaborative control system software
development is to complete the development of other
specific functional modules based on the industrial com-
puter platform on the basis of the existing CNC system and
to realize the entire CNC machine tool electrical system in
the processing process through the operation of these
functional modules. According to the analysis of the laser
CNCmachine tool processing process and the overall design

Collaborative control
system so�ware

CNC system so�ware

IPC so�ware

Interactive
interface

Sport control

Mission control

PLC

Interactive
interface

Each functional
module program

Process database

Figure 8: Overall design structure diagram of collaborative control system software.
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planning of the collaborative control system software, the
functional module structure diagram of the industrial
computer software is shown in Figure 9.

+e following introduces the realization of the main
functional modules in the process of IPC control software
processing.

+e process database is used to store the processing
parameters. According to the processing requirements, the
processing parameters, data types, units, and values in the
process database are shown in Table 1.

Among them, the serial numbers 2 to 6 in the parameter
table of the process database are the coordinate parameters
of the hole-making machine tool; the serial numbers 7 to 10
are the Z-axis feed process parameters for the helical
scanning; the serial number 11 is the laser output power
value during hole making (when the actual setting is ready,
the output power value is converted into a percentage for
display); serial numbers 12 to 17 are the parameters of the
four-beam beam scanningmodule whenmaking holes; serial
number 18 is the process identification, which is used to
mark the scanning track of the four-beam wedge scanning
head during laser hole making, including helix line scan (ID:
0), circle scan (ID: 1), and selection processing (ID: 2)
methods, which can be defined or modified according to the
configuration file. Each vertex of the special-shaped hole in
the selected processing method is determined by separate
software. +e interface is defined in polar coordinates, and
the center point of the polar coordinate system is concentric
with the center of the circular hole nested in the special-
shaped hole. Among them, the coordinates of the hole-
making machine tool from 2 to 6 are the parameters

obtained automatically by the 3D detection auxiliary posi-
tioning module, and the other parameters are obtained by
the operator manually editing the data table [20–22].

+e function of the 3Dmeasurement module is to realize
the auxiliary positioning of the workpiece processed by the
machine tool, determine the accurate representation of the
workpiece in the machine tool coordinate system, and save
the final measured processing position information to the
database. It can be seen from Chapter 2 that there are two
main methods for the 3D measurement module, one is line
laser scanning assisted positioning, and the other is point
laser six-point assisted positioning [23, 24]. +e software
realization of the three-dimensional measurement module
of this subject adopts the method of point laser six-point
auxiliary positioning. +e working flow chart of the 3D
measurement module using the point laser six-point assisted
positioning measurement method is shown in Figure 10.

According to the workflow of the 3D measurement
module, it can be known that the function realization of the
3Dmeasurement module needs to be completed through the
cooperation of the numerical control system and the 3D
measurement software. +e 3D measurement software is
provided with a supporting executable program by the 3D
measurement equipment provider. +e executable program
runs on the industrial computer. +e industrial computer
communicates with the 3D measurement equipment
through the RS232 serial port. +erefore, the 3D mea-
surement software realizes the control of the 3D measure-
ment equipment through this connection and acquisition of
measurement data. During the execution of the 3D mea-
surement module, the CNC system mainly obtains the axis
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Figure 9: Structure diagram of IPC software module.

Table 1: Process database parameter table.

Serial number Parameter Type of data Unit Scope
1 Hole serial number Unsigned int — 1∼1 0000
2 X coordinate Float mm 0∼1 000.000
3 y coordinate Float mm 0∼450.000
4 Z coordinate Float mm 0∼500.000
5 A coordinate Float deg −95.000∼95.000
6 C coordinate Float deg 0∼359.999
7 Feed rate Unsigned int mm/min 0∼2000
8 Single layer feed Float mm 0∼1.00
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position information and sends the axis position informa-
tion to the 3D measurement software of the industrial
computer and at the same time moves the machine tool
coordinate axis to the target position according to the
command of the industrial computer [25, 26].

+e main purpose of focal length measurement is to
ensure that the focus of the laser beam falls on the center of
the workpiece during processing. +e realization is based
only on the input data of the measuring sensors and the axis
movements of the CNC system. +e computer focal length
measurement module includes a comprehensive axis dis-
play, measurement axis measurement, and measurement
results. +e function of the data table is similar to the
function of the data table in the database module process,
and the data in the database can be selected for analysis

[27–29]. +e workflow of focal length measurement is
shown in Figure 11.

+e focal length measurement function of the industrial
computer software makes it possible to measure the focal
length of all the machined holes directly from the human-
machine interface during specific operations, save the
measurement results in the process database, and directly
load the process database during processing to obtain the
processing parameters and speed up processing [30].

+e Modbus protocol adopts a master-slave commu-
nication method and is a question-and-answer communi-
cation protocol. A communication station can connect one
or more slave communication stations through an inter-
connection line. Among them, the master station of the
station gives the address of the slave station, starts to ask the

Measurement
starts

�e measurement so�ware sends the coordinate
value of the first measurement point of the 6-point

positioning measurement to the CNC system

A�er the CNC system receives the coordinate value
of the target position, it starts the NC program and

moves each axis to the target position

�e CNC system sends the machine tool positioning
end signal to the 3D measurement so�ware, and sends

the actual position of the self-marking to the 3D
measurement so�ware

3D measurement so�ware confirms whether the
positioning of each axis is within the error range

Start measuring the actual
coordinate value of the

current position

�e three-dimensional measurement 
so�ware judges whether the 

measurement is over at 6 points

Send the new measurement point
target position coordinate value

to the CNC system

Finish

Send the new
measurement point target
position coordinate value

to the CNC system

Figure 10: Workflow of the 3D measurement module.
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slave station, sends information, and so on. +e slave re-
ceives the information sent by the master and sends a re-
sponse to the master. Figure 12 shows the comparison of the
connection mode between the point-to-point communica-
tion and the multipoint communication mode of the
Modbus protocol using the serial port [31].

+e general frame format structure of the Modbus
protocol is shown in Figure 13.

+e Modbus protocol consists of 4 types of registers and
multiple function numbers, each function representing a
different function of data in different registered entities. +e

Measurement
starts

�e CNC system calls the NC
program according to the parameters

of the industrial computer

�e program positions the Z
axis and sends a reading request

to the sensor

�e sensor sends the current
reading to the CNC

Whether the
measurement is

complete

Correct the compensation
amount to the process database

Whether the number of holes to
be measured has been measured

Finish

Z uranium incremental
feed measurement

feedback value

Figure 11: Flow chart of focal length measurement.

Main site Slaves

Main site

Slaves Slaves Slaves
RS232/RS422

RS485 RS486 RS485

Figure 12: Comparison of Modbus protocol point-to-point communication and multipoint communication.

Address field Function code Data segment Check code

ADU

PDU

Figure 13: Modbus general frame format.
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general statement of the Modbus model is as follows: the
master sends a command according to the slave product
created in the initial command and requests to read or write
the record in the registration area. +is time, after each slave
device receives the statement, it compares the device address
in the statement with its own address. If similar, it will accept
the post and respond accordingly. If it is different, it discards
the message frame and continues to wait for the command
from the master [32].

In using this software, in order to facilitate the com-
munication between computerized business and digital
management, two types of communication based on com-
puterized and digital business were developed. At the same
time, the serial communication control class of the CNC
terminal also provides a connection for receiving CNC
system information and sending commands to the CNC
system. +e software implementation process of the com-
munication between the CNC system and the industrial
computer is shown in Figure 14.

After completing the absent initialization and the files
required for Modbus communication, the communication
class of the CNC terminal starts to patrol the serial port to
check whether the Modbus frame is issued by the owner and
whether the frame file is available. +en, it will receive the
frame data and store it in the specified array, parse the data
in the array to get data such as function code and offset
address, and then determine what to do according to the
function code. +ese operations include reading CNC sys-
tem parameters and retrieval, and providing CNC system
commands so that the CNC system can complete corre-
sponding tasks according to the commands and responses.
Figure 15 shows the flow chart of serial communication on
the CNC system side.

Since the computer can be used as a proprietary device,
the computer only needs to determine the slave address of
the received data when sending the actual data. +e serial
communication class on the computer side sets the Modbus
communication address of the CNC system through macro
definitions. Each function module of the software provides
the communication function with the CNC system and
encapsulates the parameters and user operation commands
obtained from the interface [33].

+e kinematic model of the ultrafast laser CNC machine
tool needs to verify the algorithm of the control strategy of
the rotary axis, so it is necessary to simulate the tool attitude
and attitude error of the three interpolation methods, re-
spectively. +e attitude error corresponding to the improved
vector interpolation method is the smallest., the linear

interpolation mode is the largest, and the error is 44°, which
meets the requirements of the system error, as shown in
Figure 16.

As can be seen from Figure 16, during the interpolation
process of vector interpolation, the speed of the C-axis will
change drastically at the singular point, far exceeding the
maximum acceleration performance of the machine tool.
+e linear interpolation method produces a larger tool at-
titude error. +e advantages are proposed in this research.

In the interpolation process, the speed change is rela-
tively gentle and meets the requirements of machining
accuracy.

It is important to note that when assembling a Modbus
frame, the internal computer industry determines the
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Figure 14: +e realization process of communication between a CNC system and an industrial computer.
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location in the Modbus frame based on the type of opera-
tions registered and invoked. In the above rule, since the
final call is to record multiple registry functions, the base
functions are assembled in Modbus. When framing, the job
number is set to 16 (multiple names assigned). +e software
application process of other functions and control signal
communication in the computer software industry is similar
to the communication process using the optical modification
process and will not be explained one by one.

5. Conclusion

+e combination of CNC technology and laser processing
technology is a new direction for the development of CNC
machine tools in the future. +rough laser processing, CNC
machine tools can further improve the power addition ac-
curacy and processing efficiency and make it possible for
CNC machine tools to complete finer processing. +e re-
search results show that this electrical collaborative control
system scheme has strong practicability and feasibility. With
the help of system upgrades and optimization, the efficient
integration of laser processing technology and numerical
control technology can be better achieved. It should be noted
that the machining process of the machine tool is also re-
quired. In-depth improvements should be made, which can
maximize the operating efficiency and machining accuracy
of the electrical system of the CNC machine tool. Although
CNC technology and laser technology are still relatively
mature at present, there are still many problems in the
development of more general laser CNC machine tools, and
further exploration and research are needed. Compared with
general machine tools, the research and development of laser
CNCmachine tools are still in the preliminary stage.+ere is
no relatively unified manufacturing standard. More research
and development are carried out to meet specific processing
needs. +e experience and results will provide a certain
reference for further in-depth research and development in
the future.

+is research focuses on the research and imple-
mentation of electrical system cooperative control in ul-
trafast laser CNC machine tools, mainly from three aspects:

(1) Research and design of the overall control scheme.
By analyzing the equipment composition and
functions of the laser CNC machine tools, combined
with the processing requirements and the control
relationship between the equipment, in order to
better meet the processing requirements, a collab-
orative control scheme for the electrical system of the
machine tool based on the industrial computer is
proposed, and this collaborative control scheme is
used as a guide for machine tool hardware structure
design and software design.

(2) Hardware structure design, based on the control re-
lationship between laser numerical control machine
tool equipment analyzed in the first part and the
proposed collaborative control scheme to complete
the overall hardware structure design of the machine
tool, and introduce the hardware structure design of
the numerical control system and collaborative
control unit in detail, and finally complete the ma-
chine tool equipment intercommunication design.

(3) +e software management department was in-
formed. As the basis for the hardware components of
the machine tool, an integrated control unit inte-
grated with the computer was developed, including
the main control unit. +e integrated control system
consists of two parts: the industrial computer control
software and the digital control system. Among
them, the CNC system software is famous for con-
trolling the movement of the machine tool axis, and
the industrial computer software is used for real-time
operation and comprehensive control. Finally, the
realization of the main function modules of the
control system software and the software realization
of the communication between the numerical con-
trol system and the industrial computer are intro-
duced in detail.

+e laser CNC machine tool researched and developed
verifies the rationality and feasibility of the collaborative
control scheme through practical experiments, which can
meet the processing requirements and realize the integration
of laser processing technology and numerical control
technology. +ere are high machining efficiency and ma-
chining accuracy. In general, although the machine tools
studied in this topic are highly specialized, they still have
certain reference value for future related research. +e main
development trend of the laser industry in the future is as
follows: ultrafast laser will become the future development
trend of the laser industry, the industry will continue to
develop in the direction of high precision, and the industry
will continue to develop in the direction of flexibility. +e
laser processing control system is the brain of the laser
processing equipment. With the continuous development of
the laser processing equipment, the performance require-
ments of the laser processing control system are increasing
day by day. In the future, the application of the laser pro-
cessing control system will develop in the direction of high
precision.
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Developing the parameter estimation, particularly direction of arrival (DOA), utilizing the swarming intelligence-based flower
pollination algorithm (FPA) is considered an optimistic solution. 0erefore, in this paper, the features of FPA are applied for
viable DOA in the case of several robust underwater scenarios. Moreover, acoustic waves impinging from the far-field multitarget
are evaluated using the different number of hydrophones of uniform linear array (ULA). 0e measuring parameters like ro-
bustness against noise and element quantity, estimation accuracy, computation complexity, various numbers of hydrophones,
variability analysis, frequency distribution and cumulative distribution function of root mean square error (RMSE), and res-
olution ability are applied for analyzing the performance of the proposed model with additive white Gaussian noise (AWGN). For
this purpose, particle swarm optimization (PSO), minimum variance distortion-less response (MVDR), multiple signal clas-
sification (MUSIC), and estimation of signal parameter via rotational invariance technique (ESPRIT) standard counterparts are
employed along with Crammer–Rao bound (CRB) to improve the worth of the proposed setup further. 0e proposed scheme for
estimating the DOA generates efficient outcomes compared to the state-of-the-art algorithms over the Monte Carlo simulations.

1. Introduction

Swarming intelligence of evolutionary algorithms is a sig-
nificant development in signal processing for direction of

arrival (DOA) estimation of underwater multitargets [1, 2].
For solving such problems, subspace-based methods were
used like multiple signal classification (MUSIC) [3]. If used
in a constraint environment like assuming incoherent
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sources, with a specified number of snapshots and high SNR
signals, these methods give good results. But due to these
limitations, it can only be applied to very few scenarios and
problems. Parametric methods like maximum likelihood
(ML) [4, 5] are also used to address such issues, but they are
computationally complex, which impedes the fertility of
application. Previously, most of the published research
validated the performance of DOA estimators using as-
ymptotic assumptions, which requires either a high signal-
to-noise ratio or a more significant number of samples,
which are not specific in many real-life problems [6, 7].
DOA estimator accuracy is dependent on the signal power
and the rate of transmission, which are beyond the control
of the system designer [8]. 0erefore, such systems operate
in a low SNR, estimating accurate angular localization, a
challenging task [9]. New intelligent optimization algo-
rithms have been proposed recently for estimation of DOA
like genetic algorithm (GA) [9], differential evolution (DE)
method [8], particle swarm optimization (PSO), seeker
optimization algorithm (SOA), sine cosine algorithm
(SCA), invasive weed optimization (IWO) [10], and squirrel
search algorithm (SSA) [11]. In [12], GA is proposed with
accurate and reliable results for the estimation of the pa-
rameters of DOA problems, and the performances of the
GA, ML, and MUSIC algorithm have been compared with
different variants of SNR, computational cost, and the
number of snapshots. 0e detection probability is modeled
in [13], through the active sonar equation for probability
hypothesis density (PHD) and cardinalized PHD (CPHD).
Novel complexity measure is proposed in [14] for im-
proving permutation entropy (PE) and analyzing the time
series. Similarly, missing amplitude information and single
scale problem in PE are addressed in [15] through refined
composite multiscale reverse weighted PE (RCMRWE). A
modified version of the GA is applied to the nonlinear and
highly nonlinear function to estimate the parameters of
DOA as presented in [16]. In [17, 18], PSO algorithm and
pattern search algorithm were developed to estimate the
parameters of the multimodal function. In [19], the PSOML
estimator shows very healthy and reliable results as com-
pared to conventional parameter estimation techniques for
DOA. Using the ant colony optimization (ACO) by
extending the pheromone, DOA parameters are estimated
in [20], with outstanding results and low computational
complexity. In [21], the artificial bee colony (ABC) algo-
rithm is used to achieve higher statistical performance. A
high degree of freedom for DOA is studied in [22] using
Cuckoo search algorithm. 0e analytical model was dis-
cussed for the proposed approach in terms of fitness
function, SNR, and cumulative distributive function. In

[23], the authors have proposed adaptive FPA mechanism
in order to localize the nodes in wireless sensor networks.
Back in 2019, a Squirrel Search Algorithm (SSA) was
proposed, which is a novel numerical optimization algo-
rithm. It focuses on the foraging and gliding behavior of
flying squirrels to determine their efficient way of loco-
motion. Gliding is a powerful technique used by small
mammals for traveling long distances. 0e present work
mathematically models this behavior to realize the process
of optimization. 0ese features may be helpful to improve
convergence and reduce the number of iterations of the SSA
algorithm to determine the ML DOA estimate [24].

In this study, optimization strength of nature-inspired
heuristics of flower pollination algorithm (FPA) is exploited
for possible DOA estimation in case of different scenarios of
the underwater environment using a uniform linear array
(ULA) of hydrophones for influencing acoustic waves from
far-field multitargets. 0e high resolution for close space
targets is achieved using fewer snapshots viably with FPA by
investigating the global minima of the highly nonlinear cost
function of ULA with multiple local minima. Performance
analysis is conducted for different number of targets
employing estimation accuracy, robustness against noise,
and number of hydrophones in the presence of additive
white Gaussianmeasurement noise, and comparative studies
with MVDR, MUSIC, Root MUSIC, and ESPRIT counter-
parts along with Crammer–Rao bound analysis reveals the
worth of the scheme for estimating DOA parameters, which
are further endorsed from the results of Monte Carlo
simulations.

0e rest of the paper is arranged as follows: Section 2
defines the mathematical model for ULA. 0e conventional
beamforming (CBF) algorithm, MVDR, MUSIC, Root
MUSIC, and ESPRIT are explained with their procedure for
the DOA problem in Section 3. Performance analysis of
algorithms concerning RMSE is illustrated in Section 4.
Finally, Section 5 explains the main contributions of the
proposed study.

2. Mathematical Model

In this study, the ULA of hydrophones is used for 1D-DOA
estimation. So, according to the characteristics of ULA, the
impinged plane waves from the far-field region are phase-
shifted versions of consecutive hydrophones as explained in
Figure 1. 0e angle of arrival [25, 26] can be denoted as

θ � θ1, θ2, θ3, . . . , θD􏼂 􏼃. (1)

Here, θD is the associated angle to the Dth acoustic source.

z(t) � z1(t), z2(t), . . . , zW(t)􏼂 􏼃,

g θi( 􏼁 � 1, e
− jkd sin θi( )( ), e

− jk2d sin θi( )( ), . . . , e
− jk(W− 1)d sin θi( )􏼔 􏼕

T

,

G(θ) � g θ1( 􏼁, g θ2( 􏼁, . . . , g θD( 􏼁􏼂 􏼃.

(2)
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Here, k � 2π/λ, while λ is the wave length. z(t) is the
hydrophone’s output vector with dimension W × 1 and can
be known as array response.

z(t) � G(θ)y(t) + v(t). (3)

0e steeringmatrixG of dimensionW × D comprises the
time delay entities of signals for each hydrophone. Here, v(t)
is additive white Gaussian noise of zero mean with a di-
mension of W × 1. 0e covariance matrix [27, 28] is defined
as

R � E z(t)zH
(t)􏽨 􏽩. (4)

0e previous equation can be written when a finite
number of snapshots are available:

R �
1
K

􏽘

K

n�1
z(n)zH

(n), (5)

where E[.] and [.]H are ensemble average and Hermitian
operators, respectively. So the correlationmatrix [29, 30] can
be written as

R � GRsG
H

+ σ2ID. (6)

where Ry is the correlation associated with signal and σ2ID is
the noise correlation matrix.

3. DOA Estimation

Generally, DOA estimation algorithms are divided into
two categories, i.e., CBF techniques and subspace-based
techniques. In this work, the performance analysis has
been taken for both the CBF and subspace-based algo-
rithms under varying noise levels for different acoustic
sources.

3.1. Particle SwarmOptimization. 0e heuristics of PSO was
proposed by Kennedy and Eberhart having motivation from
the pool of birds congregating for food in a random manner
[31].0e idea of seeking food is a heuristic approach because
all the birds have the information of distance but are not
familiar with the explicit location of food.0ey seek the food
by exchanging their search information via crossover and
kid production method. 0e PSO is introduced for the pool
of applications almost in every walk of engineering [32, 33].
In this work, PSO performs searching via a swarm of par-
ticles that updates recursively. To approach the optimal
solution, each particle (DOAs) moves in the direction to its
previously best (pbest) position and the global best (gbest)
position in the swarm.

vi(n + 1) � ωvi(n) + c1r1 θi(n) − θpbest􏼐 􏼑

+ c2r2 θi(n) − θgbest􏼐 􏼑.
(7)

θi(n + 1) � θi(n) + vi(n + 1). (8)

Here, θpbest and θgbest can be calculated as

θpbest(i) � argmini�1,...,Kf θn(i)( 􏼁,

θgbest(i) � argminn�1,...,Nf θn(i)( 􏼁.
(9)

Here, i denotes the particle index, n is the current it-
eration number, and f(θn(i)) is the fitness function that can
be defined as

f θe( 􏼁 � zθe(t) − zθa(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
. (10)

And, the parameters ω, c1, c2, r1, and r2 are inertia
weight, two positive constants, and two random parameters
within [0, 1], respectively. 0e velocity v and positions
(DOAs) of particles are updated with equations (9) and (10).

3.2. Basis Principle of FPA. 0e features of pollination
scheme, flower reliability, and behavior of the pollinator can
be analyzed efficiently by the following principles:

(1) 0e global pollination scheme consists of cross-
pollination and biotic methods, while pollinators
perform levy flights with pollen (global
optimization)

(2) 0e local pollination mechanism consists of self-
pollination and abiotic methods (local optimization)
[34]

(3) A switch probability p ϵ [0, 1] is designed to control
global pollination and local pollination schemes

Plane Waves from Far Field Region

θ1
θ2

y1 (t) y2 (t)

zw (t) z5 (t) z4 (t) z3 (t) z2 (t) z1 (t)

DOAs

DOA Algorithm

Figure 1: DOA estimation model.
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In the complete pollination process, the local pollination
scheme can experience a large quantity of fraction p. Its
reason can be environmental factors like wind and physical
proximity. Generally, many flowers can grow on a plant, and
pollen gametes from each flower can be released in billions.
However, here we suppose that every plant has the ability to
harvest only one flower and only one pollen gamete can be
produced from each flower. 0erefore, plant, flower, and

pollen gamete are easy to identify for finding the solution to
a problem. 0e above assumption develops the most
straightforward way that solution can be equal to a pollen
gamete and a flower. In future research, especially for
multiobjective optimization problems, different numbers of
flowers can be associated with each plant andmultiple pollen
gametes can be assigned to each flower. A flower-based
algorithm, known as flower pollination algorithm (FPA), can

Randomly Initialize the population of solutions

Start

calculate the cost of each solution using
fn (θn) = |zθn (t)-zθa (t)|2

Pick the best solution from population according
to minimum fitness

Update the solution of population using Levy
Flights (Global Search)

Θi (n+1) = Θi (n) + 0.01.s. (Θi (n) - Θbest)

Calculate the cost of updated solutions
fn+1 (θe) = |zθ(n+1)e (t)-zθa (t)|2

Compare the previous and current best and
update according the Fmin

Update the solution of population using random
walk (Local Search)

Θi (n+1) = Θi (n) + rand. (Θj - Θk)

Maximum Iterations Reached?

Yes

No

Take Best as a Solution 

if rand < p

Cross Pollination Self Pollination
Yes No

Figure 2: Flow chart of FPA.
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be designed from the above principles and arguments.
Global pollination and local pollination are two major stages
of this algorithm [35]. In the phase of global pollination,
insects work as pollinators for carrying flower pollens over
long distances because of their capability to move and fly for
a more extended range. In this way, fittest reproduction and
pollination can be ensured. Flower reliability phenomena
and the first rule of global pollination step can be mathe-
matically [36, 37] described as

θi(n + 1) � θi(n) + L θi(n) − θbest( 􏼁. (11)

Here, pollen i is represented by θi(n) at iteration n, while
at current iteration, the best value among all values is
denoted by θbest. Pollination strength is shown with pa-
rameter L, which represents step size. Levy flight mechanism
can be used accurately to analyze the property of insects to
travel over long distances using many steps.0us, from Levy
distribution, we develop L> 0. In the end, the best result can
be referred to as the best approximated angle.

L � λΓ(λ)sin
πλ
2

􏼠 􏼡 π.s
(1+λ)

􏼐 􏼑
− 1

. (12)

0e standard gamma function is represented by Γ(λ)

with λ � 1.5, and s consists of Gaussian distributions U and
V described as

s � U.|V|
− 1/λ

, (13)

where U ∼ N(0, σ2) and V ∼ N(0, 1), and σ2 can be com-
puted as

σ2 �
Γ(1 + λ)

λΓ[(1 + λ)/2]
.
sin(πλ/2)

2(λ−1)/2􏼨 􏼩

1/λ

. (14)

Local pollination step and flower reliability phenomena
can be written as

θi(n + 1) � θi(n) + ε θj(n) − θk(n)􏼐 􏼑. (15)

Two arbitrary pollens produced from unlike flowers of
the similar plant are denoted with θj(n) and θk(n) in the
above mathematical model. 0is behavior shows the reli-
ability of a flower in a limited community. Mathematically,
these solutions are selected from the same population with a
random walk of ϵ drawn from a uniform distribution in [0,
1]. Many of the flower pollination processes happen at both
global and local levels. Practically local flower pollens pol-
linate the nearby flowers and flower patches or those not so
from them. 0us, using this property, a switch or proximity
probability ps (Rule 3) is developed to shift among global
mutual pollination and complete local pollination. By ap-
plying switch probability, ps � 0.5 can be used as starting
value, and after this, a suitable range of parameters can be
developed. 0e literature shows that ps � 0.8 is appropriate
for many practical applications.

3.3. DOA Estimation Using FPA. 0e general goal of DOA
estimation is a continuous optimization that is used to find
the θbest which satisfies

f θbest( 􏼁 � minθϵSf(θ), (16)

where S ϵRD and f(θ) comprise the cost values of the
corresponding solution θ. 0e cost function of DOA esti-
mation can be defined as

f(θ) � ze(θ) − z θa( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2
, (17)

where ze(θ) is the estimated (approximated using optimized
parameters) array output and z(θa) is the actual array out.
0erefore, the actual goal of the optimizer is to compute the
associated argument for the minimum cost of the cost
function as shown in Figure 2. Hence, the population of N

individuals will be used to solve the optimization problem
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Iterations
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Figure 3: Convergence analysis of FPA for two sources.

Convergence Analysis of FPA and PSO for three sources
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Figure 4: Convergence analysis of FPA for three sources.
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having T iterations (trials). 0e set of D-dimensional vectors
(total N vectors) for i iteration can be denoted as

θ1(i), θ2(i), θ3(i), . . . , θN(i). (18)

Hence, the best solution at iteration i can be found
as

θbest(i) � argminn�1,...,Nf θn(i)( 􏼁. (19)

Table 1: Estimation accuracy for two sources.

SNR� 5 dB, snapshots� 20, hydrophones� 8, d� λ/2
Algorithms FPA ESPRIT RMUSIC MUSIC MVDR PSO

θ1 � 30 Mean 30.005 29.680 26.125 31.980 32.036 33.549
Variance 0.0162 5.490 347.70 1.932 0.869 33.549

θ1 � 35 Mean 34.953 35.693 35.246 32.993 33.036 278.68
Variance 0.008 12.373 33.661 1.960 0.869 476.42

Table 2: Estimation accuracy for three sources.

SNR� 5 dB, snapshots� 20, hydrophones� 8, d� λ/2
Algorithms FPA ESPRIT RMUSIC MUSIC MVDR PSO

θ1 � 30 Mean 29.999 29.099 11.961 38.710 39.666 37.447
Variance 0.0188 46.4054 854.4187 55.3792 46.2022 439.3751

θ2 � 40 Mean 39.998 39.792 38.310 41.033 41.153 47.041
Variance 0.0205 14.4508 47.6986 53.7322 44.8432 345.3394

θ1 � 50 Mean 50.007 50.686 48.330 42.483 42.920 51.160
Variance 0.0295 14.3758 19.3924 51.7431 40.6736 138.6291

Table 3: Estimation accuracy for four sources.

SNR� 5 dB, snapshots� 20, sydrophones� 8, d� λ/2
Algorithms FPA ESPRIT RMUSIC MUSIC MVDR PSO

θ1 � 10 Mean 10.798 6.754 −23.206 21.393 23.207 9.859
Variance 63.4 137.7 753.8 98.5 97.0 1224.0

θ2 � 20 Mean 20.248 18.989 14.247 24.713 25.583 41.079
Variance 16.3 18.9 58.3 102.3 94.3 1032.8

θ3 � 30 Mean 30.001 30.628 25.541 28.473 27.853 39.7725
Variance 0.0204 21.7581 69.7347 93.6560 89.8585 550.2132

θ4 � 40 Mean 39.995 41.852 37.238 31.137 29.893 47.3674
Variance 0.0274 29.1674 35.1613 75.3313 78.6620 391.5863
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Figure 5: Performance against independent Monte Carlo runs for two sources with 5 dB of SNR.

6 Shock and Vibration



RE
TR
AC
TE
D

4. Experimental Results and Comparison

In this section, numerous simulations have been carried
out to analyze the performance of the FPA against
the state-of-the-art algorithms. 0e performance has
been studied in terms of estimation accuracy, convergence
analysis, robustness against noise, and the robustness
against the number of hydrophones used in the
array. 0e conditions for FPAs are also depicted in this
section. 0e measures of performance illustrate the com-
prehensive analysis of FPAs as explained in the following
areas.

4.1. Convergence Analysis. In this section, we examined the
performance of FPA and PSO in terms of convergence. 0e
performance is analyzed for two and three sources with the
varying noise level. Figures 3 and 4 show that the FPA
converged towards the minimum cost as compared to that of
PSO.

4.2. Estimation Accuracy. 0e estimation accuracy of
MVDR, MUSIC, Root MUSIC, ESPRIT, PSO, and FPA is
examined here by taking signal sources with different po-
sitions and different noise levels. 0e noise is assumed to be

Performance against the Independent Monte Carlo runs (Three Sources)
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Figure 6: Performance against independent Monte Carlo runs for
three sources with 5 dB of SNR.

-15 -10 -5 0 5
SNR (dB)

Performance of RMSE VS SNR for two Sources

FPA (Proposed)
PSO
MUSIC
ROOT MUSIC

MVDR
ESPRIT
CRLB

RM
SE

10-2

10-1

100

101

102

Figure 7: Performance of RMSE vs SNR for two sources.
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Figure 8: Performance of RMSE vs SNR for three sources.
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Figure 9: Robustness against the number of elements for two
sources of 5 dB of SNR.
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additive white Gaussian with zero means. 0e statistical
measures of the mean and variance have been calculated
from 300 independent Monte Carlo simulations as discussed
in the tables for each algorithm. It can be seen from
Tables 1–3 that the best performance is for FPAs in all
different noise levels and in all two cases of Monte Carlo
simulations (mean, variance).

4.3. Performance against the Independent Monte Carlo Runs.
0e performance metrics are analyzed by calculating RMSE
that is defined as follows:

RMSE �

�������������������

􏽘
K

􏽘

D

i�1

1
KD

θi(a) − θi(e)􏼐 􏼑
2

􏽶
􏽴

. (20)

Here, θi(a) is the actual DOA and θi(e) is the estimated DOA.
In this section, the performance has been analyzed

against the independent Monte Carlo runs. 0e simulation
results show that the oscillations of the maximum and
minimum of RMSE describe the best and worst performance
of the algorithm. Hence, the reliability of the FPA outper-
forms that of the MVDR, MUSIC, RMUSIC, and ESPRIT
and PSO algorithm for independent Monte Carlo runs as
shown in Figures 5 and 6.
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Figure 10: Robustness against the number of elements for two
sources of 10 dB of SNR.
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Figure 11: Robustness against the number of elements for three
sources of 5 dB of SNR.
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Figure 12: Robustness against the number of elements for three
sources of 10 dB of SNR.
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Figure 13: Robustness against snapshots for two sources.
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Robustness against number of snapshots for three Sources
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Figure 14: Robustness against snapshots for three sources.
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Figure 15: CDF of RMSE for two sources.
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4.4. Robustness against Noise. In this section, the perfor-
mance of these algorithms is measured by calculating the
RMSE under varying levels of additive white noise. 0e
convergence of RMSE also depicts performance analysis of
such algorithms with the different number of signal sources
having different DOAs.

We have used eight hydrophones, and the number of
snapshots is 20 for two sources located at 30° and 35° and for
three sources situated at 30°, 34°, and 50°. 0e result analysis
in Figures 7 and 8 presents that the RMSE is a function of
SNR. As the SNR increases, the RMSE decreases substan-
tially. It can be seen that the FPA is robust enough to
produce excellent results even in the presence of low SNR as
compared to the other algorithms. CRB has also validated
the performances of the algorithms.

4.5. Robustness against the Number of Hydrophones. 0e
results in Figures 9–12 plotted the RMSE as a function of the

number of hydrophones. As the number of hydrophones
increases, the directivity also increases and hence RMSE
decreases significantly. It can be seen that the FPA produces
even for fewer hydrophones than the other algorithms in
both cases of 5 and 10 dB of SNR.

4.6. Robustness against Snapshots. Another parameter to be
considered is the impact of snapshots on RMSE. In this
simulation, the SNR at 5 dB is fixed and the number of
snapshots from 5 to 200 is varied with a step size of 5.
Figures 13 and 14 show that as the number of snapshots
increases, the RMSE decreases towards zero. 0e FPA out-
performs the MVDR, MUSIC, RMUSIC, and ESPRIT al-
gorithms. 0e worst performance of MUSIC and MVDR is
due to low SNR, which results in a distorted spatial spectrum.

4.7.Analysis of EmpiricalCumulativeDistributionFunctionof
RMSE. In this section, the observations of the RMSE are
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Figure 16: CDF of RMSE for three sources.
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depicted in the order from least to greatest. 0is analysis
corresponds to the survival and failure times of the algo-
rithms over the Monte Carlo runs. It can be seen from
Figures 15 and 16 that the FPA gives a significant amount of
the Monte Carlo runs having the least RMSE. MVDR and
MUSIC algorithms depict a colossal number of Monte Carlo
trials with the most incredible value of RMSE that leads to
the failure of the algorithm for DOA estimation. More
specifically, the FPA and ESPRIT algorithms also give a
remarkable amount of Monte Carlo trials the least RMSEs
compared to PSO, MUSIC, Root MUSIC, and MVDR al-
gorithms. Ultimately, the noteworthy performances are
possessed by the FPA.

4.8. Frequency Distribution of RMSE. In this section, the
histogram provides a visual interpretation of RMSE

observations by showing the number of RMSE observations
that fall within a specified range of RMSE values. 0is
analysis also explains the skewness of the RMSE observa-
tions to validate the performance of the algorithms. It can be
seen from Figures 17 and 18 that most of the occurrences
underlie the least values of the RMSE for FPA. Furthermore,
the ESPRIT algorithm gives a fair distribution of frequency
of RMSE over the Monte Carlo runs compared to PSO, Root
MUSIC, MUSIC, and MVDR algorithms.

4.9. Variability Analysis of the RMSE. In this section, the
spread-out of the RMSE is analyzed in the five pieces of the
information (minimum, first quartile, median, third
quartile, and maximum) over the Monte Carlo trials.
“Minimum” depicts the minimum value of the RMSE from
Monte Carlo observations. In comparison, the first and
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Figure 17: Histogram analysis of RMSE for two sources.
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third quartiles describe 25 and 75 percent of the RMSE
observations (Monte Carlo runs). 0is measure of the
spread-out is a comprehensive description of the RMSE
distribution to validate the performance of the algorithms. It
can be seen from Figures 19 and 20 that FPA displays the
distribution of RMSE with the least values of the RMSE,
which reveals it is outperforming the other algorithms.
Furthermore, the ESPRIT algorithm also gives significant
performance compared to the PSO, Root MUSIC, MUSIC,
and MVDR algorithms.

4.10.Ce ResolutionAbility for Closely Spaced Targets. In this
section, the simulation background is estimated for the
proposed structure to check the superresolution perfor-
mance. 0e probability of resolution is defined as

Pr � Prob θe − θa

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤
△θ
2

􏼢 􏼣, (21)

where △θ � |θ1 − θ2|. 0e resolution ability of both closely
spaced sources is shown in Figures 21–24. 0e performance
is analyzed based on different DOA positions. It can be seen
that the FPA outperforms the others but the PSO performs
significantly too for closely spaced sources. Simulation is
carried out by fixing the first source and moving the second
source from 35 to 34 degrees. 0e resolution ability is an-
alyzed for each separation for both sources independently.

4.11. Computational Complexity Analysis. In this, the
computation loading performance is analyzed using MU-
SIC, MVDR, and RMUSIC algorithms, which are highly
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Figure 18: Histogram analysis of RMSE for three sources.

12 Shock and Vibration



RE
TR
AC
TE
D

5dB 10dB

0

0.05

0.1

0.15

0.2

0.25

0.3
RM

SE

RM
SE

RM
SE

RM
SE

RM
SE

RM
SE

FPA

5dB 10dB

0

5

10

15

20

25

30
ESPRIT

5dB 10dB

0

10

20

30

40

50

60

70

80

Root MUSIC

5dB 10dB

0

1

2

3

4

5

MUSIC

5dB 10dB

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

MVDR

5dB 10dB

0

10

20

30

40

50

60

PSO
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computational practical algorithms due to their spectral
search approach to estimate the DOA. Moreover, the ES-
PRIT algorithm neither includes the extrema search opti-
mization nor the spectral search approach; hence, it results
in better computational complexity than the other algo-
rithms as mentioned in Table 4. 0e FPA also outperforms
the MUSIC, MVDR, and RMUSIC algorithm but is not
better than the ESPRIT algorithm due to its extrema
searching approach to optimize the cost function. 0e ex-
trema searching approach of FPA and PSO to optimize the
cost function increases the computational complexity that
sometimes restrain the application of swarming intelligent
algorithms.

5. Conclusion

0e simulation results demonstrate that the FPA outper-
forms the conventional beamforming and conventional
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Figure 21: Probability of resolution for the source at 30 degrees.
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Figure 22: Probability of resolution for the source at 35 degrees.
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Figure 23: Probability of resolution for the source at 30 degrees.
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Figure 24: Probability of resolution for the source at 34 degrees.

Table 4: Computational loading analysis.

Algorithm Complexity
MVDR W2(K + 6) + W + 4∗D∗P

MUSIC 5/3W3 + W2(K + 1 + D + W) + 4∗D∗P

RMUSIC 11/3W3 + W2(K + D − 1) + 2(W − 1)

ESPRIT W2(K + 2∗W + 1) + D(D + 1)

PSO K∗T∗N∗W∗D

FPA D∗T∗K∗N∗W(1 − ps)
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subspace-based algorithms in most situations. 0e perfor-
mance improvement is more significant when multiple
signals are incident at closely spaced angles at a low signal-
to-noise ratio and when a small number of snapshots are
used to estimate direction of arrival (DOA). Statistical
analysis of the RMSE in Monte Carlo trials, that is, ECDF of
RMSE, variability analysis of RMSE, frequency distribution
of RMSE, and the probability of resolution, witnesses the
strength of FPA in the challenging environment of low SNR
using less number of snapshots. In the future, the estimation
of 2D-DOA of underwater multitargets using 2D arrays
should be investigated with modern heuristic algorithms to
achieve high accuracy and resolution. Moreover, the pro-
posed flower pollination heuristics look promising to deal
with the optimization problems in diversified fields.
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In order to solve the problem of machining error of noncircular gears, a method based on the analysis and research of the accuracy
of noncircular gears based on CNCmachining technology under the cloud computing platform is proposed to further improve the
technical accuracy of noncircular gears. )e error and error items are analyzed mainly, and a model framework based on cloud
computing platform is proposed on this basis. )e architecture of the system is deeply analyzed, focusing on the dynamic
integration method of gear cloud measurement system resources based on cloud platform, building a gear cloud measurement
system based on cloud computing platform, and testing needs to use Hadoop to install the software that needs to be prepared:
virtual machine version, VMwareWorkstation-14.0.0 build-6661328, Linux version.)e results show that the technical support of
the cloud computing platform can effectively improve the accuracy of noncircular gears.

1. Introduction

)e development of industrialization and the emergence of
digital industrialization are inseparable from the progress of
technology. Especially for the construction and
manufacturing industry, the emergence of technologies such
as intelligent manufacturing and intelligent processing
provides technical support for industry transformation and
technological progress. Noncircular gears have been widely
used in modern aviation, instrumentation, machinery, and
other related fields. )roughout the development history of
gear measurement technology, with the advancement of
technology, from the measurement principle, measurement
technical means, to the measurement results, it shows the
progress and leap of technology. )e noncircular gear
mainly transfers the motion and power between any two
shafts in the space by converting the transmission ratio. On
this basis, it also has the advantages of the cam mechanism
and the cylindrical gear structure, which can be better
through technical optimization. It is precisely based on this
advantage that noncircular gears have been widely used in

many mechanical-related fields. However, from the per-
spective of noncircular gear processing, there are still
transmission errors, rotary axis position errors, tool errors,
and other errors. )ese errors can be summarized as sys-
tematic errors and random errors. )erefore, how to reduce
the machining error of noncircular gears and improve the
operation accuracy with the help of technological progress
and optimization is the focus of this paper. )erefore, based
on the cloud computing platform, this paper deeply analyzes
themachining error of noncircular gears and proposes a gear
cloud measurement technology model and data processing
dynamic integration method based on the cloud computing
platform.

2. Literature Review

Gear measurement is based on the theory of precision. Fan
and Ye said that gear accuracy theory covers gear error
dynamics theory, gear error kinematics theory, and gear
error geometry theory [1]. Wei et al. said that Chinese and
foreign scholars and scientific researchers have developed
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nearly a hundred kinds of gear measuring instruments based
on the above three theories: in the early days, the German
universal involute inspection instrument and the universal
helical inspection instrument, the British grating type single
represented by the gear overall error measurement tech-
nology proposed by NieYi and China Chengdu Tool Re-
search Institute, the high-precision measurement of gears,
and the overall control of gear quality are realized [2]. Li and
others said that in the development process of the gear
measurement principle, it was first “comparative measure-
ment,” then “measuring motion measurement,” and then
“modeled measurement” [3]. Zheng et al. said that for the
realization of the measurement principle, the early stage was
“mechanical-based,” followed by “electromechanical inte-
gration,” and finally developed into the comprehensive
integration of “optical-mechanical-electrical” and “infor-
mation technology” [4]. Li et al. said that the acquisition of
measurement results: from “reading from the indicator table
with the naked eye” to “the recorder records the processing
reading” until “the computer automatically analyzes and
feeds the results back to the manufacturing system” [5]. Li
et al. said that the cloud manufacturing model is an inno-
vative application of cloud computing in the manufacturing
field, and it is also the development of the network
manufacturing model [6]. Fan and others said that in 2010,
some scholars proposed cloud manufacturing based on the
concept of cloud computing [1]. Chinese foreign research
institutes and universities have systematically studied a
series of issues such as the intervention and adaptation of
cloud manufacturing service platforms, the perception of
manufacturing equipment, the virtualization of
manufacturing resources, and the establishment of cloud
manufacturing systems. Research on cloud manufacturing
platform for gear industry, it provides new ideas for cloud
manufacturing research from the aspects of manufacturing
mode, manufacturing strategy, and mode architecture.
Compared with traditional measurement methods, net-
work-based gear measurement has great advantages, but
there are still some shortcomings in the current measure-
ment methods; especially, it is difficult to achieve precise
measurement, evaluation, measurement services and col-
laboration for machining process analysis, in-service dy-
namic characteristics, etc. Soyoye said that in China, the
research on the measurement of noncircular gears has used
the double-sided meshing method, the single-sided whistle
method, and the polar coordinate method for measurement
[7]. Hao et al. said that the biggest difference between the
gear single-sided whistle method and the double-sided
meshing method is whether the tested gear has backlash
during the whistle-coupling transmission process [8].
Among them, the measurement method of gear single-sided
congruence is to use two gears that are in contact with each
other, one is the measured noncircular gear, and the other is
an ideal and accurate standard cylindrical gear. Under the
nominal center distance, only one-sided, side the meshing
transmission of the gap reflects the tangential comprehen-
sive error of themeasured noncircular gear bymeasuring the
angle error of the measured noncircular gear. Han et al. said
that the noncircular gear double-sided whistle-fit

measurement method is to use the above two gears, under
the nominal center distance, to perform meshing trans-
mission with both surfaces in contact and without backlash,
by measuring the actual center distance of the measured
gear. Corresponding changes are generated according to the
change of the pole diameter of the pitch curve of the
noncircular gear, reflecting the radial comprehensive error
of the measured noncircular gear. )e polar coordinate
measurement method is a method of measuring the polar
coordinates established by the polar diameter and polar
angle [9]. )e precision analysis and research of noncircular
gears based on CNC machining technology under the cloud
computing platform is shown in Figure 1.

3. Methods

According to the form of error, the machining error of
noncircular gear is mainly divided into systematic error and
random error, and its specific classification is shown in
Figure 2.

According to the noncircular gear machining process,
the nature of the coupling between the tool and the gear and
the variation law are classified, as shown in Figure 3.

)e process of gear hobbing processing spur noncir-
cular gears can be regarded as the whistling of the rack and
the processed noncircular gears. During the whistling
process, the two pitch curves are pure rolling without
sliding, and the tooth profile of the noncircular gear is the
relative motion of the two is enveloped by the tooth profile
of the rack, and the principle of hobbing is shown in
Figure 4.

In the process of cutting with a gear hob, the movement
of the hobbing is as follows: the gear hob rotates to form the
cutting speed, and the tool translates along the axial di-
rection to form the translation of the tool rack; while the
teeth are still rotating, its center moves up and down in the
direction perpendicular to the pitch line of the rack,
changing the center distance. )e whole machining process
can be abstracted into themachining process of the tool rack.
)e schematic diagram is shown in Figure 5.

In the above figure, the pitch line of the rack is x, and it
moves horizontally to the left during processing. In order to
ensure the tangent pure rolling of the pitch curves of the rack
and the noncircular gear, the center of the gear is 01 up and
down while the gear is rotating.)emachine tool coordinate
system is Pxy, and the polar coordinate equation of the
noncircular gear pitch curve is shown in

r � r(ϕ). (1)

When set at the starting position, the pitch curve of the
noncircular gear and the rack is tangent at point a, and the
coordinate of point a is (r0, ϕ0), and μ0 is the angle between
the tangent line at point a and the radius vector of the
noncircular gear pitch curve 01a. As shown in formula (2),

μ0 � arctan
r0

dr1/dϕ1( 􏼁r0

, (2)

where dr/dϕ is the value of the derivative of the r pair at r0.
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Figure 1: Analysis and research on the accuracy of noncircular gears.
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At the starting position, the tangent of point a com-
pletely coincides with the x-axis, so the distance from point a
to axis y1 is shown in

r0 cos μ0. (3)

At any position, suppose the noncircular gear rotates
through the angle θ1, and the tangent point of the two curves
is b, then the angle between the tangent at point b and the
radial vector is shown in

μ1 � arctan
ri

(dr/dϕ)ri

, (4)

bP � ri cos μ1. (5)

)e instantaneous center distance is shown in

ai � ri sin μi. (6)

)e arc length between a and b is shown in

li � 􏽚
ϕ1

ϕ0

������������

r
2

+
dr

dϕ
􏼠 􏼡

2

dϕ

􏽶
􏽴

. (7)

As can be seen from the figure, the rotated θ1 angle is
shown in

θi � ϕi + μi − ϕ0 + μ0( 􏼁. (8)
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Figure 4: Schematic diagram of gear hobbing.
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Figure 5: Schematic diagram of noncircular gear machining.
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)e horizontal distance that the rack moves to the left
from the starting position is shown in

xi � li + r0 cos μ0 − ri cos μi. (9)

Combining formulas (8) and (9), it can be seen that the
machining model of the hob machining noncircular gear is
completely determined by the pitch curve of the noncircular
gear.

Machining errors in noncircular gears and installation
errors in transmission mechanismsmainly affects the quality
of use of noncircular gears. In the process of processing
noncircular gears, the combination of various errors will
cause errors in the final noncircular gears manufactured.
)ese errors include machine tool error, tool error, fixture
error, tooth return error, and thermal error. Based on the
reason that the processing methods of noncircular gears and
cylindrical gears are basically the same, by analogy to cy-
lindrical gears, the machining errors of noncircular gears can
also be considered to be summarized from the following four
aspects, as shown in Figure 6 [10, 11].

In the working state, on the circumference where O is the
center of the circle, the distribution of the teeth of the gear is
not as uniform as in the nonworking state, which leads to the
unevenness of the rotation angle and errors [12]. )e angle
error can be represented by the meshing line increment of
the left and right tooth surfaces of the gear. )is is because
the variation law between the two has a certain quantitative
relationship, and the meshing line increment of the left and
right tooth surfaces can be obtained by the following
formula:

Δ1FL � e sin(φ + α),

Δ1FR � −e sin(φ − α).
􏼨 (10)

Among them, Δ1FL is the left meshing line increment,
Δ1FR is the right meshing line increment, e is the geometric
eccentricity, φ is the rotation angle of the gear, and α is the
pressure angle of the gear.

When the measured noncircular gear meshes with the
ideal gear on both sides, due to the geometric eccentricity of
the measured noncircular gear, fixing the axis position of
the measured noncircular gear and the ideal gear will
produce radial displacement as shown in the following
formula:

ΔR �
Δ1FL + Δ1FR

2 sin α
�

e sin(ϕ + α) − e sin(ϕ − α)

2 sin α
� e cos ϕ.

(11)

When the rotated angle of the tested gear satisfies the
following conditions,

ϕ � 0∘,ϕ � 180∘. (12)

)e radial runout of the gear will be generated as shown
in the following equation:

ΔFr � 2e. (13)

)e resulting radial runout can be used to represent the
geometric eccentricity in the radial machining error as
shown in Figure 7.

)e installation error on the hobbing tool is mostly
reflected in the runout in a single radial direction and a
certain amount of skew [13, 14]. When the hobbing cutter is
processing spur gears, the installation error of the hobbing
cutter usually leads to the tooth profile error. In the process
of gear operation, the tooth profile error will reduce the
stability of the gear transmission and also reduce the contact
area of the tooth height when the gear meshes. When
machining helical gears, the waviness of the contact line
between the tool and the helical gear is shown in Figure 8.

)e tangential machining error is for a machine tool
working with the generation method. )e tangential ma-
chining error is mainly caused when the generative motion
of the tool and tooth is destroyed. Some tangential ma-
chining errors may also be caused by indexing errors, be-
cause some machine tools have their own indexing
mechanisms [15]. )e transmission error and difference of
the rod in the processing process, or the error of the machine
tool indexing plate, and the final error of the indexing pot
and rod pair are the main sources of tangential errors in the
kinematic chain of the machine tool.)e tangential error is a
constant value along each contact line. It is the characteristic
of gear hobbing to process by means of continuous indexing
motion and generating motion. In such a processing
method, from the tool to the gear burr, the tangential error
of gear hobbing is caused by the accumulation of errors in
the entire kinematic chain [16]. )e main reason for the
tangential error is the pot wheel and rod pair that performs
indexing motion. )e error generated by the pan wheel pot
rod pair causes the noncircular gear to be processed to move
eccentrically. )e movement eccentricity is caused by the
periodic change of the speed of the tooth return and the tool
during the machining process compared with the speed of
the generating movement. )e movement eccentricity is
reflected on the tooth return as shown in Figure 9.

In the longitudinal plane, the inclination error of the tool
post guide of the machine tool will mainly cause a certain
taper of the machined gear, as well as the contact line error
and the helical line error.)e existence of the guide rail error
of the tool post of the machine tool will ultimately affect the
stability of the gear transmission process and the uniformity
of the load distribution, as shown in Figure 10.

)e contact line error of the guide rail caused by the
inclination amount y in the longitudinal plane is given by

ΔFb �
y

l
b sin αn. (14)

)e tooth orientation error caused by the inclination
amount y is shown in

ΔFβ �
y

l
b tan αn. (15)

)e taper on the gear width caused by the inclination
amount y is given by
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ΔH �
y

l
b. (16)

In the transverse plane of the machine tool, the error
caused by the inclination of the tool holder guide rail in the
direction of the contact line is shown in Figure 10, as shown
in

ΔFb �
x

l
b cos αn. (17)

)en, the tooth direction error of the processed gear is
shown in

ΔFβ �
y

l
b. (18)

)erefore, the expression of tooth direction error caused
by inclination x and y is shown in

ΔFβz �

�����������

ΔF2
βx + ΔF2

βy

􏽱

. (19)

Although the tooth direction error of the gear is constant
in one revolution of the gear, the errors caused by x and y can
be distinguished. )e tooth direction error caused by x
shows that the left and right tooth surfaces are equal, and the
symbols are the same; Unlike the tooth alignment error
caused by x, the symbol of the tooth alignment error caused
by y is no longer the same [17, 18]. )erefore, when the two
appear at the same time, they are offset on one tooth surface
and strengthened on the other tooth surface, as shown in
Figure 11.

When the tooth reduction axis is skewed relative to the
gear machine tool, the runout of the tooth reduction ref-
erence end face is generated. )e runout error of the tooth
reference end face will produce a variable tooth direction
error of the cut gear, and the tooth direction error has a great
impact on the longitudinal contact of the gear, as shown in
Figure 12.

4. Experiment and Analysis

We completed the construction of the gear cloud mea-
surement platform, in which the cloud computing platform
is realized by Hadoop technology. Because the distributed

operation has not been fully applied in the Windows system,
the Linux system is used to provide support for platform
development. Among them, the experimental network to-
pology of Hadoop cluster fully distributed mode in cloud
platform is shown in Figure 13.

According to the specific architecture of Hadoop, when
building clusters, they can be divided into master and slave
roles. Master mainly manages namenode nodes and job-
tracker nodes, while slave mainly manages datanode and
tasktracker nodes [19].

)is paper uses VMwareWorkstation virtual machine to
provide Linux environment in the Windows system, then
deploys Hadoop cluster in the Linux operating system, and
uses Hadoop cluster with high availability to build a small
cloud computing platform. Software to be prepared for
Hadoop installation: virtual machine version: VMware
workstation-14.0.0 build-6661328; Linux version: centos-
6.8-x86_ 64-bin-DVD1. Iso; JDK version: jdk-8u144-linux-
x64.0 tar. gz; Hadoop version: hadoop-2.7.2 tar. gz; You also
need to install ssh and rsync software. )e cloud platform is
built in the fully distributed mode of Hadoop cluster. )e
cluster is composed of three Linux system servers created by
virtual machines. )e relevant environment and configu-
ration information of each server node are shown in Table 1.

First prepare 3 clients in the virtual machine, set static IP
and host name, then install JDK and Hadoop, respectively,
and configure their environment variables; finally, configure
ssh, group, and test the cluster [20].

In the Linux system, after the Hadoop cluster is built, it
can provide distributed storage, computing services, and
corresponding resource management services. In order to
realize the functions of data collection, analysis, and storage
of cloud platform, it is also necessary to build other services
supporting Hadoop cluster to improve the development
environment. )e planning of other services supporting
Hadoop cluster in the three nodes is shown in Table 2.

In order to enable the cloud platform to meet the data
entry requirements of as diverse data sources as possible, the
cloud data acquisition module deploys Flume, Sqoop
components, and custom interceptors, respectively. )e
biggest feature of Flume component is that it can read the
data from the local disk of the server in real time and write
the data to HDFS.)rough the configuration of the Agent in
Flume, it helps to realize the rapid entry into the cloud of the
log files and sensor network port data generated by the
measurement site in the data collection link of the cloud
platform. Sqoop component can make data migrate back
and forth between traditional relational database and HDFS,
Hive, and HBase, so as to ensure safe and efficient import
and export of data in different systems [21].)e user-defined
interceptor is used to preprocess the collected data and
prepare for subsequent data analysis. )is part of the work is
introduced below. )e data acquisition module deploys
Flume to collect multiple data sources, including text data,
port monitoring data, and console data. After Flume is
successfully deployed, Sqoop is used to export and store the
traditional relational database My SQL and Oracle data as
HDFS or data warehouse Hive. Next, test it, import the new
table companydatas of My SQL database into the HDFS file

Service Registry

Service Requestor Service Provider

Find Publish

Bind

Figure 8: Tooth profile error and contact line error caused by hob
installation error.
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system, and save it in the path of/user/hpu. Hive has built a
set of data warehouse based on cloud distributed storage.
)e data enter the distributed storage through the cloud
platform data acquisition channel, and then extract and
process the collected data in the data warehouse. Infor-
mation about hive startup. Among them, it contains the
version information of Hive and the version information of
Hive running engine tez. To verify Hive’s availability, per-
form the following tests. )e data in the txt file of the
distributed system are loaded into the data table of the data
warehouse, and the first ten data in the table are queried
through the query statement. Put the custom parsing
function in cloud distributed parsing into the Java project
built with maven, make a jar package, deploy it to the hive
folder in the main node, add the jar package to Hive’s class
path through instructions, and create a temporary function
to associate with the Java class developed by the user. In the
cloud distributed data retrieval module, deploy and test
Elasticsearch and Kibana. )e Elasticsearch version is
elasticsearch-7.4.2, and Kibana version is kibana-7.4.2. )e
distributed search engine deployed in this paper is an
Elasticsearch cluster composed of three nodes. After its

installation, configuration, and deployment, you can access
the corresponding service port through the browser to view
the health and node status of the test cluster. )e config-
uration of the gear measuring system is mainly verified by
uploading the data generated by the three probe measuring
system and the gear measuring system to the cloud mea-
suring system. )e CMM system is mainly composed of
measuring probe, measuring machine host, control system,
and computer [22].

)e gear cloud measurement system processes the
measurement data in the cloud based on the cloud platform.
)e service process of the gear cloud measurement system is
that the user logs in through the browser, controls the user’s
operation and access rights to the page content in the system
according to the user role relationship and role menu re-
lationship, and fills in the resource information, supplier
information, measurement items, and measurement content
according to the measurement resource information table
provided on the terminal page, and publish resources on
cloud platform [23]. Inside the enterprise, you can enter the
data monitoring interface to view the measurement data in
real time by clicking the corresponding data directory, or
retrieve and view the historical data and the monitoring
standards in international and Chinese enterprises. In ad-
dition to online verification of measurement data, when the
CMM detects one or a batch of gears, it can also upload the
data file. Users can view the comprehensive measurement
results or single measurement indicators of a measurement
item through the terminal page. )e terminal system pro-
vides cloud storage service. )e data generated by CMM and
other gear measurement instruments are stored on the cloud
platform and stored in different areas according to time or
content classification, and Users can also access, use, and
view data in corresponding ways through the cloud [24].

Measurement data integration management is a multi-
user oriented data resource sharing service and a hetero-
geneous data processing service. )e data processing service
includes data classification and definition, source data
characteristic coding, model and diagram document man-
agement service, etc. For the measuring instruments con-
nected to the platform, users can log in to the client of the
cloud platform to view the corresponding content [25, 26].

Web
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Dispatch
Servlet Controller

View
Temp late Model

Figure 9: Motion eccentricity.

oracle mysql hbase
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Figure 10: Inclination of the tool holder guide towards the front of
the workpiece.
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In this section, the data collection of the laboratory CMM by
the cloud platform is realized by uploading text files. )e
specific steps are to log in to the gear cloud measurement

terminal system by using the user account and password.
After logging in, click the “gear measurement data inte-
grationmanagement” column of the navigationmenu on the
side bar of the page to enter the data upload directory. )e
measurement data generated by the CMM is uploaded to the
server by dragging the file or clicking the select File button.
)e data acquisition channel collects the data through the
monitoring of the server disk folder and then completes the
data acquisition, processing, and processing in turn through
the system data process designed by the cloud platform
transmission and storage processes. During data transmis-
sion on the web page, the JSON format is used to define the
measurement data. After processing the data uploaded by
the CMM, enter the measurement index analysis directory.
On this page, you can click the gear error item according to
the different measurement indexes to access the error
monitoring status, data, and content. )e user can select the
date through the date and time selector in the upper left
corner of the page, by calling the error curve generation
service, the measurement results of gear radial runout are
obtained, with the tooth number as the abscissa and the
radial distance of the stylus center as the ordinate.

Upload, analyze, and store the data collected fromCMM,
which provides support for the management of measure-
ment data.)e processed data information has the same data
structure and standard, which can be operated and pro-
cessed through the page.)e data management service in the
data integration of the gear cloud measurement platform
manages it through a specific database according to the
name, data content, and data type of the measurement

Web
Server

Source

Channel

Sink

HDFS

Figure 11: Inclination of tool rest guide rail to the left and right of workpiece.
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Figure 12: Tooth profile error caused by circular runout of
workpiece end face.
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Figure 13: Experimental network topology of Hadoop cluster fully
distributed mode in cloud platform.

Table 1: Environment configuration information of each service
node in the cluster.

Type of
environment Master node Slave node① Slave node②

Operating
system CentOS-6.8 CentOS-6.8 CentOS-6 8

CPU 8 Nuclear 8 Nuclear 8 Nuclear
RAM 7G 4G 4G
Disk 50GB 50GB 50GB
JDK Version 1.8 1.8 1.8
IP Address 192.168.174.102 192.168.174.103 192.168.174.104
Hadoop
Version hadoop-2.7.2 hadoop-2.7.2 hadoop-2.7.2
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platform. )e data obtained by the cloud platform from the
CMM are placed in different data tables of the same data-
base. )e user invokes the encapsulated service instructions
in the form of buttons on the page to realize the operation of
data management.

When the cloud platform collects measurement data
through CMM and other measurement resources, in order
to ensure the integrity of the data, it also encapsulates and
manages the measurement resources. In addition, the re-
sources in the cloud platform are jointly maintained by
registered users with a basic material database, such as in-
tegrated measurement data, gear part library, equipment
resource information, and document information, to pro-
vide support for all stages of gear measurement [27].

In the process of gear measurement, various problems
may be encountered. At this time, the retrieval module of the
terminal system can be used to search for specific solutions
or relevant information, such as the retrieval of gear parts
information or measurement methods. )e retrieval process
is a process in which users actively pull data from the system.
)e terminal system will also provide offline recommen-
dation service and real-time recommendation service
according to different recommendation algorithms, so as to
realize auxiliary decision-making and improve measure-
ment efficiency.

Firstly, this chapter introduces the deployment of cloud
platform development environment, including the hardware
facilities and software configuration built by distributed
cluster, and gives the operation status of each node. )en,
the deployment and testing of relevant functional modules
are carried out to prepare for the data acquisition, data
analysis, and data retrieval of the platform. Finally, the case
application of the terminal system is carried out, and the
functions of the terminal system are verified according to
some functional modules.

5. Conclusion

Under the background of the continuous integration and
development of traditional industry services and new gen-
eration information technology, this paper studies the gear
cloud measurement technology based on cloud platform.
Taking the cloud platform as the carrier, this paper proposes
a gear cloud measurement solution based on big data cloud
computing platform, which realizes the collection, storage,
and analysis of measurement data in different places, as well

as the management and visual display of error parameters in
measurement indicators. Firstly, from the perspective of the
overall requirements of the gear cloud measurement system,
the functional requirements and overall architecture of the
gear cloud measurement platform are analyzed and
designed. According to the corresponding functional level,
the cloud platform is divided into cloud data acquisition and
transmission module, cloud data analysis and conversion
module, and cloud data retrieval and push module. Next, the
above modules are developed, deployed, and implemented
one by one.)emain research contents and achievements of
this paper are as follows:

(1) )e architecture of the gear measurement terminal
system based on cloud platform is studied
Under the traditional mode, the information ex-
change in gear measurement and other links in its life
cycle is usually within the department and enterprise.
At the same time, the traditional software develop-
ment adopts the chimney system architecture, which
also increases the difficulty of data sharing. )rough
cloud computing technology, the contradiction be-
tween the global optimization requirements of gear
measurement and fragmented collection can be well
solved. )e service-oriented cloud architecture and
cloud data center solve the problems of software
system closure, data fragmentation, and data island,
promote the sharing of data, the unification of
system technical architecture, and the agile devel-
opment and deployment of applications, and realize
rapid response and service innovation through rich
front-end applications.

(2) )e resource dynamic integrationmethod of the gear
cloud measurement system based on cloud platform
is given
In resource collaboration, application collaboration,
and data collaboration, it is necessary to integrate the
distributed resources of enterprises and institutions
into one by some means to form a cloud data center
and provide data and other services uniformly and
transparently. )e cloud data center gathers the
resources of different enterprises and institutions to
analyze and manage the received data through
certain rules. Moreover, the virtualization of the
cloud data center encapsulates the distributed
physical resources of network, computing, and
storage for the use of the cloud platform.

(3) )e information retrieval technology of gear mea-
surement terminal based on cloud platform is
introduced
Firstly, this paper discusses the resource retrieval and
recommendation technology of the gear cloud
measurement system based on cloud platform, de-
scribes the retrieval process of surveyors on cloud
platform, and analyzes several mainstream retrieval
strategies and calculation methods of sorting re-
trieval results. Finally, the recommendation tech-
nology of the gear cloud measurement system based

Table 2: Construction and testing of the gear cloud measurement
system based on cloud platform.

Service name Master
node

Slave
node① Slave node②

K afka ✔ ✔ ✔
Flume(collection) ✔
Zo okeeper ✔ ✔ ✔
Flume(Consumption) ✔
Hive ✔
MySQL ✔
Sqoop ✔
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on cloud platform is discussed, and the cloud plat-
form recommendation model and collaborative fil-
tering recommendation algorithm based on argot
model are analyzed.

(4) Implementation of the gear cloud measurement
system based on cloud platform
Finally, the experimental environment, deployment,
and testing of the cloud platform in this paper are
introduced, the functional modules and components
of the gear cloudmeasurement system are tested, and
the final effect of the gear cloud measurement
platform is summarized.
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As an entropy representing the complexity of sequence, slope entropy (SloE) is applied to feature extraction of bearing signal for
the �rst time. With the advantage of slope entropy in feature extraction, the e�ectiveness of bearing fault signal diagnosis can be
veri�ed. Five di�erent kinds of entropy are selected to be comparative methods for experiments, and they are permutation entropy
(PE), dispersion entropy (DE), a version of entropy adapted by PE, which is weighted permutation entropy (WPE), and two
versions of entropy adapted by DE, which are �uctuating dispersion entropy (FDE) and reverse dispersion entropy (RDE). A
method of extracting a single feature of bearing fault signals based on SloE is carried out. Firstly, the features of the bearing signals
are extracted by the six kinds of entropy. en, some relevant data are computed, and the identi�cation ratios are calculated by the
K-nearest neighbor (KNN) algorithm.  e experimental result indicated that the identi�cation ratio of SloE is the highest at
97.71% by comparing with the identi�cation ratios of the other �ve kinds of entropy, which is higher by at least 13.54% than the
others and 27.5% higher than the lowest one.

1. Introduction

Bearing is an indispensable part of modern mechanical
equipment, and its roles in modern mechanical equipment
are the support of the mechanical rotating body, the sliding
part in motion, and the guarantor of rotation accuracy [1–3].
Self-aligning ball bearing is the research object of this paper,
which is a kind of rolling bearing equipped with spherical
balls installed between the inner race with two raceways and
the outer race with a spherical raceway. Its curvature center
of the outer race is consistent with the bearing center, so it
has the same centering function as the automatic centering
ball bearing. It can be adjusted automatically when the shaft
and housing de�ect, and this process will not increase the
bearing burden. Self-aligning ball bearing ball bearings can
bear the loads in two directions, which are radial and axial.
Compared with the axial bearing capacity, the self-aligning
ball bearing has a greater radial bearing capacity, so it can
well deal with heavy load and impact load.  e self-aligning
ball bearing belongs to the bearing that has tapered holes in
the inner diameter of the inner race. It can be installed

directly or installed on the cylindrical shaft with a remove
pipe or fastening sleeve.  e cage is stamped with a steel
plate and formed with polyamide. Due to its strong ability to
bear heavy load and impact load, self-aligning ball bearings
are used in sugar pressing, papermaking, precision instru-
ment, petroleum, cement, metallurgy, mines, low noise
motor, motorcycle, rolling mill, automobile, and such in-
dustries.  erefore, as such a widely used, �ne, and im-
portant component, bearing fault diagnosis is a subject that
needs to be studied carefully [4–6].

Due to the nonlinear sti�ness and bearing clearance of
rolling bearing [7, 8], the vibration signal generated by its
operation often shows nonstationary and nonlinear.
 erefore, extracting useful fault feature information from
nonstationary and nonlinear signals is the focus and di¢-
culty of rolling bearing fault diagnosis. Aiming at the
problem of bearing fault, many scholars have done lots of
research on the early diagnosis of bearing fault [9, 10].

Many scholars apply the methods commonly used in
signal processing to bearing fault diagnosis. Many methods
of nonlinear dynamic are proposed [11], such as fuzzy
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entropy (FE) [12], permutation entropy (PE) [13], Rényi
entropy (RE) [14], dispersion entropy (DE) [15], sample
entropy (SE) [16], Wiener entropy (WE) [17], and instanta-
neous spectral entropy (ISE) [18], which can extract the
nonlinear feature of the signals and characterize the health state
of the equipment. For SE, its calculation time is long, real-time
performance is poor, and similarity measurement is prone to
mutation [19]. PE has the advantage of simple calculation, but it
ignores the amplitude information of dynamic number se-
quences [20–25]. Although FE is obtained by improving SE, it
still has the disadvantages of slow calculation speed and so on
[26–28]. DE has the advantages of small in�uence by burst
signals and better stability, which make up for the problem of
PE [29–32]. WE is very sensitive to small alterations. ISE has
the relatively low computational burden and fast execution
time. Reverse dispersion entropy (RDE) [33] as an improved
version of DE has the advantages of both PE and DE and has
stronger stability and noise robustness [34, 35]. Similarly, FDE
[36] is also an improved version of DE [37], andWPE [38] is an
improved version of PE [39, 40].  ere are also many other
kinds of entropy that are not listed here [41–44].

Slope entropy (SloE) [45] is a new entropy estimator
proposed in recent years, which is based on only the vi-
bration amplitude of dynamic number sequences and �ve

symbol patterns. In the three years since it came out, it has
been used in many �elds, such as medicine and underwater
acoustic signal, and achieved excellent results. SloE is applied
to the �eld of medicine by David Cuesta-Frau in 2020
[46, 47], and it is applied to the underwater acoustic signal
processing �eld by Li et al. in 2021 [48]. SloE has a good
feature extraction e�ect in various �elds, so it is introduced
into the �eld of fault diagnosis for the �rst time in this paper.

SloE is applied to the �eld of bearing fault diagnosis for
the �rst time in this paper.  e remaining of the paper is
structured as follows: the speci�c calculation steps of SloE
are introduced, and an example of the algorithm is given in
Section 2. Section 3 introduces the detailed steps of the
experiment and gives a �ow chart of the steps. In Section 4,
the graphs of the six types of signals are given, the single
feature extraction experiment is carried out, and KNN is
used for classi�cation. Section 5 is the summary, where the
main innovations and conclusions of this paper are given.

2. Slope Entropy

2.1. Basic Principle. SloE is a new algorithm put forward in
2019, which can indicate dynamic number sequence com-
plexity. It is founded on both the vibration amplitude of the

di+1 - di > β

α < di+1 - di ≤ β

di+1 - di < -β

-β ≤ di+1 - di < -α

|di+1 - di| ≤ α

+2

-2

+1

-1
0

Figure 1: Symbol allotment of SloE.

Input signals
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Extract the features of WPE

Extract the features of DE
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Figure 2:  e �ow chart of the single feature extraction method.
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Figure 3:  e normalized six types of bearing signals. (a) 100, (b) 108, (c) 121, (d) 133, (e) 147, (f ) 160.

Table 1: Types and codes of the signals.

Type Normal Inner race Ball
Outer race

Centered Orthogonal Opposite
Code 100 108 121 133 147 160
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Figure 4: Feature distribution of six types of bearing signals. (a) PE, (b) WPE, (c) DE, (d) FDE, (e) RDE, (f ) SlOE.
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dynamic number sequence and the five symbol patterns that
have been set. Each symbol pattern is allocated according to
the difference between the vibration amplitude of the input
dynamic number sequences. *e calculation process of the
SloE algorithm is simple and easy to understand, whose main
operation has only addition and subtraction calculations. SloE
is calculated as follows.

(1) For given dynamic number sequences D � di,􏼈

i � 1, 2, . . . , N}, the number of subsequences of D is
extracted in the light of the embedding dimensionm,
D1 � d1, d2, . . . , dn􏼈 􏼉, D2 � d2, d3, . . . , dn+1􏼈 􏼉, . . .,
Dk � dk, dk+1, . . . , dN􏼈 􏼉, where k � N − n + 1.

(2) Diverse symbol modes (+2, +1, 0, −1, −2) are par-
titioned by the positive and negative values of the
two threshold parameters (β and α). Figure 1 is the
symbol allotment of SloE.
*e specific symbol modes of SloE are assigned in a
very unequivocal way. *e vertical increments of
SloE are decided by β and α, and the horizontal
increment between the samples of the continuous
dynamic number sequence is always set up as 1. If
β � 0.296, the inclination of the borderlines is 16.5°
and −16.5°. And if α � 0.09, the boundaries slope of
the region of symbol “0” is 5° and -5°.
*e specific distribution principles are as follows: if
di+1 − di > β, the symbol mode is +2; if α< di+1−

di ≤ β, the symbol mode is +1; if |di+1 − di|≤ α, the
symbol mode is 0; if −β≤di+1 − di < − α, the symbol
mode is -1; if di+1 − di < − β, the symbol mode is -2,
where β> α> 0.

(3) Mode sequences M1, M2, . . . , Mk, which are corre-
sponding to D1, D2, . . . , Dk, are gained after symbol
allotment, M1 � m1, m2, . . . , mn−1􏼈 􏼉, M2 � m2, m3,􏼈

. . . , mn}, . . ., Mk � mk, mk, . . . , mN−1􏼈 􏼉, where
k � N − n + 1, m1, m2, . . . , mN−1 are the symbol
modes calculated by d2 − d1, d3 − d2, . . ., dN − dN−1
through step (2).

(4) Mode sequences have x � 5n− 1 diverse forms. *e
quantity of each form is f1, f2, . . . , fn. *e fre-
quencies of the mode sequences are the proportions
of the number of times they appear: R1 � f1/f,

R2 � f2/f, . . ., Rn � fn/f. *e calculation formula
of SloE is defined as follows in view of the classical
Shannon entropy:

Es(m) � − 􏽘
n

j�1
Rj ln Rj. (1)

2.2. Example. Here is a dynamic number sequence
D � 9, 7, 6, 4, 2, 1, 7, 8, 6, 4, 2, 1, 6, 4, 2, 1{ }, sequence length
N � 16. Set up the delay time ε � 1, the embedding di-
mension m � 4, and the two threshold parameters β � 1 and
α � 0.001. *e specific steps of calculating SloE are as
follows:

(1) According toD, get the subsequencesD1 � 9, 7, 6, 4{ },
D2 � 7, 6, 4, 2{ }, D3 � 6, 4, 2, 1{ }, D4 � 4, 2, 1, 7{ },
D5 � 2, 1, 7, 8{ }, D6 � 1, 7, 8, 6{ }, D7 � 7, 8, 6, 4{ },
D8 � 8, 6, 4, 2{ }, D9 � 6, 4, 2, 1{ }, D10 � 4, 2, 1, 6{ },
D11 � 2, 1, 6, 4{ }, D12 � 1, 6, 4, 2{ }, D13 � 6, 4, 2, 1{ }.

(2) *en, according to the subsequences, obtain the mode
sequences: M1 � −2, −1, −2{ }, M2 � −1, −2, −2{ },
M3 � −2, −2, −1{ }, M4 � −2, −1, +2{ }, M5 � −1, +2,{

+1},M6 � +2, +1, −2{ },M7 � +1, −2, −2{ },M8 � −2,{

−2, −2},M9 � −2, −2, −1{ },M10 � −2, −1, +2{ },M11 �

−1, +2, −2{ }, M12 � +2, −2, −2{ }, M13 � −2, −2, −1{ }.
(3) *ere are 10 types of mode sequences. *e frequency

of −2, −2, −1{ } is 3, the frequency of −2, −1, +2{ } is 2,
and the frequency of other types is all 1. *erefore,
the probabilities are R1 � 1/13, R2 � 1/13, R3 � 3/13,
R4 � 2/13, R5 � 1/13, R6 � 1/13, R7 � 1/13,
R8 � 1/13, R9 � 1/13, R10 � 1/13.

(4) Finally, the value of SloE obtained by equation (1) is
Es(m)

� ﹣(8 × 1/13 × ln 1/13 + 3/13 × ln 3/13 + 2/13 ×

ln 2/13) � 2.2048.

3. Proposed Method

A single feature extraction method is put forward for the six
types of bearing signals in this experiment. As shown in

Table 2: *e mean and AMMD of different features.

Entropy Type 100 108 121 133 147 160

PE Mean 2.4693 2.9093 2.6961 2.8296 2.4503 2.7676
AMMD 0.019

WPE Mean 0.6214 0.8406 0.7852 0.8016 0.7414 0.7856
AMMD 0.0004

DE Mean 0.7635 0.8968 0.8452 0.6769 0.7302 0.8086
AMMD 0.0366

FDE Mean 0.5751 0.7666 0.7435 0.6117 0.6624 0.7192
AMMD 0.0231

RDE Mean 0.0302 0.0122 0.0169 0.1134 0.0312 0.026
AMMD 0.001

SloE Mean 0.1529 4.3098 3.7154 4.0954 3.3072 3.9055
AMMD 0.1901
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Figure 5: Feature classi�cation and recognition distribution. (a) PE, (b) WPE, (c) DE, (d) FDE, (e) RDE, (f ) SLoE.
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Figure 2 is the flow chart of the single feature extraction
method, the particular procedures of the method are as
follows.

(1) *e six types of bearing signals are imported after
being normalized.

(2) For the normal bearing signals or each type of
bearing fault signals, which are normalized, 120
samples are selected, where each sample contains
1000 sample points. *e features of PE, WPE, DE,
FDE, RDE, and SloE are extracted.

(3) K-nearest neighbor (KNN) is chosen as the classifier
to classify the features of six kinds of bearing signals.
For each type, 40 groups of sample signals are se-
lected as training samples, and 80 groups of sample
signals are selected as test samples. *e number of
nearest samples is set as k� 3.

(4) *e identification ratios are obtained by operation.

*rough these steps, we can conclude that SloE is ef-
fective in single-feature classification by comparing the
identification ratio calculated by SloE and the others of the
five other kinds of entropy.

4. Feature Extraction

4.1. Six Types of Signals. *e features of the six types of
signals are extracted, which are normal signals, bearing inner
race, ball, and outer race fault signals [49]. According to the
position relative to the load zone, which is centered, or-
thogonal, and opposite, there are three types of bearing outer
race faults signals. *e signals come from the same website,
and they are acquired under the same fault diameter, motor
load, and motor speed. *e names of these signals are
replaced by 100, 108, 121, 133, 147, and 160 in the paper.
Types and codes of the signals are shown in Table 1.

*e lengths of sampling points for them are 485643,
122917, 121556, 122571, 122281, and 122136. *e normal-
ized six types of bearing signals are shown in Figure 3.

4.2. Extraction Method. In the feature extraction experi-
ment, for normal signals or each type of bearing fault signal,
120 samples are chosen, and every sample includes 1000
sampling points. *ese samples almost contain all sampling
points of the five bearing fault signals.

For reasonable and scientific comparison, because all
kinds of entropy have the same settable parameters the
embedding dimension and the delay time, set up them as
m � 4 and ε � 1. *e number of categories is the same

settable parameters of DE and two changed versions of DE,
set up it as c� 3. DE and FDE have the same mapping
format, which is the normal cumulative distribution func-
tion (NCDF). *e two threshold parameters of SloE are set
up as β � 0.296 and α � 0.09. Feature distribution of six
types of bearing signals is shown in Figure 4.

It can be inferred from Figure 4, for PE distribution, the
entropy points of 100 and 147 and the entropy points of 108,
121, 133, and 160 are near to each other; for WPE distri-
bution, almost all entropy points of 121, 133, and 160 are
mixed together; for DE and FDE distribution, the entropy
points of all types of signals intersect in varying degrees; for
RDE distribution, only the entropy points of 133 are sig-
nificantly distinguished from those of the other five types of
signals; for SloE distribution, only a few entropy points of
160 are close to those of 121 and 133. It indicates that SloE
has better classification ability on the six types of bearing
signals.

For proving the validity of SloE, the mean and the ab-
solute minimum mean difference (AMMD) of diverse fea-
tures are computed. AMMD is set to the absolute value of the
minimummean difference, and it can intuitively express the
distance between the entropy points of the two types of
signals, whose entropy points are the closest to each other in
the six types of signals. *e larger the MMD, the more
reliable the interclass separability of the entropy. Table 2
shows the mean and AMMD of different features.

As Table 2 shows, with regard to the six kinds of entropy,
the average value of each type of signal has diverse degrees of
diversity. RDE has the minimum AMMD of 0.001, and the
AMMD of SloE is the maximum, which is 0.1901. It is
preliminarily judged that RDE has the worst interclass
separability and SloE has the better.

4.3. Feature Classification. For proving the better effect of
bearing fault signals feature extraction and classification
based on SloE, KNN classification is led into this experiment.
For the normal bearing signals or each type of bearing fault
signals, which are normalized, 120 samples are selected,
where each sample contains 1000 sample points. For each
type, 40 groups of sample signals are chosen as training
samples, and 80 groups of sample signals are classified as test
samples. *e feature classification and recognition distri-
bution are shown in Figure 5.

As shown in Figure 5, for these six types of signals, PE
andDE have diverse quantities of wrongly classified samples,
where the ones of 100 and 160 are separately the largest;
WPE, FDE, and RDE only correctly classify the samples of

Table 3: Identification ratios of the feature.

Signals 100 (%) 108 (%) 121 (%) 133 (%) 147 (%) 160 (%) Average (%)
PE 60 91.25 77.5 63.75 62.5 66.25 70.21
WPE 100 96.25 43.75 58.75 97.5 48.75 74.17
DE 90 96.25 80 93.75 87.5 57.5 84.17
FDE 76.25 85 67.5 88.75 100 72.5 81.67
RDE 47.5 83.75 67.5 100 57.5 30 64.38
SloE 100 100 95 100 100 91.25 97.71
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100, 147, and 133, respectively, but a large number of
samples in other signals are classified wrongly; SloE has only
a few misclassified samples for 121 and 160, which are
classified to 160, 121, and 133, and the other four types of
signals are classified correctly; among the six feature ex-
traction methods, 160 has the worst classification effect,
while SloE has the best average classification effect. Iden-
tification ratios of the feature are shown in Table 3.

As shown in Table 3, for 100, WPE and SloE have the
highest classification and identification ratio of 100%, that of
DE is 90%, and those of PE, FDE, and RDE are less than 80%;
for 108, the classification and identification ratios are more
than 90% expect FDE and RDE, where that of SloE is 100%;
for 121 and 160, only the classification and C of SloE are
more than 90%, and the other kinds of entropy have the
classification and identification ratios less than or equal to
80%; for 133, SloE and RDE have the highest classification
and identification ratio of 100%, andWPE has the lowest one
of 58.75%; for 147, SloE and FDE have the highest classi-
fication and identification ratio of 100%, and RDE has the
lowest one of 57.5%; for the six types of signals, SloE has the
maximum average identification ratio of 97.71%. *e mean
identification ratios of the other five kinds of entropy are
lower than 85%.

*e results show that the SloE classification of six kinds
of signal samples is the most accurate, and the average
identification ratio is the highest.

5. Conclusions

SloE is applied to the field of bearing fault diagnosis, and a
new method of extracting features is put forward. *e
practicability of the proposed method is proved by the
feature distribution and the recognition distribution of the
six types of measured bearing signals. *e main innovations
and conclusions are as follows.

(1) SloE is applied to the field of bearing fault diagnosis
for the first time.

(2) A new single feature extraction method based on
SloE is proposed, and all methods in the paper adopt
single feature extraction, which saves a lot of time.

(3) *e proposed single feature extraction method based
on SloE in this paper has larger AMMD than the
single feature extraction method of the six signals
based on PE,WPE, DE, FDE, and RDE, which proves
that the interclass separability of SloE is better.
Moreover, it has the highest average identification
ratio of 97.71%, which is higher by at least 13.54%
than the others of the other five kinds of entropy.

Data Availability

*e data supporting the findings of this study are available
within the reference [49].

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

References

[1] Z. Chen, A. Mauricio, W. Li, and K. Gryllias, “A deep learning
method for bearing fault diagnosis based on cyclic spectral
coherence and convolutional neural networks,” Mechanical
Systems and Signal Processing, vol. 140, Article ID 106683,
2020.

[2] K. Kaplan, K. Y. Lmaz, K. Melih, M. N. M. Recep, and
E. H. Metin, “An improved feature extraction method using
texture analysis with LBP for bearing fault diagnosis,” Applied
Soft Computing, vol. 87, Article ID 106019, 2020.

[3] S. Haidong, C. Junsheng, J. Hongkai, Y. Yu, and W. Zhantao,
“Enhanced deep gated recurrent unit and complex wavelet
packet energy moment entropy for early fault prognosis of
bearing,” Knowledge-Based Systems, vol. 188, Article ID
105022, 2020.

[4] Y. Li, S. Wang, and Z. Deng, “Intelligent fault identification of
rotary machinery using refined composite multi-scale Lem-
pel-Ziv complexity,” Journal of Manufacturing Systems,
vol. 61, pp. 725–735, 2021.

[5] B. Cai, H. Liu, and M. Xie, “A real-time fault diagnosis
methodology of complex systems using object-oriented
Bayesian networks,” Mechanical Systems and Signal Process-
ing, vol. 80, pp. 31–44, 2016.

[6] Y. Li, X. Wang, Z. Liu, X. Liang, and S. Si, “*e entropy
algorithm and its variants in the fault diagnosis of rotating
machinery: a review,” IEEE Access, vol. 6, Article ID 66723,
2018.

[7] T. Han, C. Liu, L. Wu, S. Sarkar, and D. Jiang, “An adaptive
spatiotemporal feature learning approach for fault diagnosis
in complex systems,” Mechanical Systems and Signal Pro-
cessing, vol. 117, pp. 170–187, 2019.

[8] T. Han, Y. Li, and M. Qian, “A hybrid generalization network
for intelligent fault diagnosis of rotating machinery under
unseen working conditions,” IEEE Transactions on Instru-
mentation and Measurement, vol. 70, Article ID 3520011, 2021.

[9] A. Lempel and J. Ziv, “On the complexity of finite sequences,”
IEEE Transactions on Information 4eory, vol. 22, no. 1,
pp. 75–81, 1976.

[10] Z. Zhang, A. Verma, and A. Kusiak, “Fault analysis and con-
dition monitoring of the wind turbine gearbox,” IEEE Trans-
actions on Energy Conversion, vol. 27, no. 2, pp. 526–535, 2012.

[11] L. Zhang, J. Lin, and R. Karim, “Adaptive kernel density-based
anomaly detection for nonlinear systems,” Knowledge-Based
Systems, vol. 139, pp. 50–63, 2018.

[12] M. Zair, C. Rahmoune, and D. Benazzouz, “Multi-fault di-
agnosis of rolling bearing using fuzzy entropy of empirical
mode decomposition, principal component analysis, and
SOM neural network,” Proceedings of the Institution of Me-
chanical Engineers - Part C: Journal of Mechanical Engineering
Science, vol. 233, no. 9, pp. 3317–3328, 2019.

[13] C. Bandt and B. Pompe, “Permutation entropy: a natural
complexity measure for time series,” Physical Review Letters,
vol. 88, Article ID 174102, 2002.

[14] Y. Yin, K. Sun, and S. He, “Multiscale permutation Rényi
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 e classi�cation and recognition of ship-radiated noise (SRN) is of great signi�cance to the processing of underwater acoustic
signals. In order to improve the stability of recognition and more accurately identify SRN, single feature extraction and dual
feature extraction based on hierarchical dispersion entropy (HDE) are proposed. For single feature extraction, HDE of the best
node among the eight nodes of the third layer decomposition is extracted. For dual feature extraction, HDE of the best two nodes
among the 14 nodes of the �rst-, second-, and third-layer decompositions are required.  e results show that the recognition rate
of single and dual feature extraction originated from the method based on HDE reaches 85% and 100%, respectively, better than
the method of hierarchical reverse dispersion entropy (HRDE) and hierarchical permutation entropy (HPE).

1. Introduction

SRN is the signal generated by engine vibration during ship
navigation, which contains a lot of feature information about
the ship underway [1–3].  e commonly used features are
time-domain features [4], frequency-domain features [5],
and auditory features [6]. However, a�ected by the complex
marine environment, the collected SRN signals often have
the characteristics of nonlinearity and nonstationary, and
the traditional features cannot guarantee the separability and
stability [7–12].  erefore, it is very important to �nd a
feature suitable for characterizing the SRN.

In recent years, the characteristics of nonlinear dynamics
have attracted many scholars’ attention because of their
advantages in representing nonlinear signals. e commonly
used nonlinear dynamics features include Lyapunov index
[13], fractal dimension [14], Lempel-Ziv complexity [15, 16]
and entropy algorithm [17], among which entropy algorithm
can be used to represent the amount of information in a
period of time, and has been widely used in many �elds due
to its simplicity of calculation [18, 19]. In 2002, Bandt and
Pompe �rst proposed permutation entropy (PE) and applied
it to the detection of biomedical signals [20]. Later, Li et al.
improved PE and applied it to the feature extraction of SRN

signals, and achieved good results in classi�cation [8]. In
2016, Rostaghi and Azami proposed dispersion entropy
(DE) to solve the defect that PE did not take into account the
relationship between the amplitudes of time series [21].
Later, Jiao et al. proposed Fluctuation-based reverse dis-
persion entropy (FRDE) on the basis of DE, which was used
in ship signal classi�cation and achieved high recognition
rate [22]. In 2019, Cuesta Frau proposed slope entropy
(SlEn) based on relative frequency of simple symbol patterns
[23], after that, Li combined SlEn with PE to improve the
classi�cation and recognition rate of ship signals through the
double feature extraction method [24]. In conclusion, it is of
great signi�cance to further extract the features of SRN
signals based on entropy.

Although these aforementioned entropies have achieved
good results in feature extraction of SRN, they all ignore the
hierarchical information between signals. HDE can obtain
the hierarchical information of signals obtained in the full
frequency band. Xue et al. applied HDE to the �eld of rolling
bearing fault diagnosis [25], Ke et al. applied HDE to the
weak fault diagnosis scheme of common rail injectors [26],
and Song et al. also applied HDE to the fault diagnosis of
high pressure common rail injectors [27], and all these paper
have achieved good results. In¦uenced by that, HDE is
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applied to SRN recognition in this paper, which fills the gap
of HDE application in underwater acoustic field.

In this paper, HDE is introduced into the field of un-
derwater acoustics to identify and classify SRN, hierarchical
decomposition of SRN is carried out, and DE features are
extracted from the obtained nodes. Section 2 introduces
HDE, including hierarchical decomposition and DE. Section
3 represents the proposed method. Section 4 illustrates
feature extraction of SRN. Section 5 shows some conclusions
obtained from the experiment.

2. Methodology

2.1. Hierarchical Decomposition

(1) For a time series u(i), i � 1, 2, . . . , N{ }, define the
two operators Q0 and Q1, as

Q0(u) �
u(2j) + u(2j + 1)

2
, j � 1, 2, . . . , 2n− 1

,

Q1(u) �
u(2j) − u(2j + 1)

2
, j � 1, 2, . . . , 2n− 1

,

(1)

where Q0(u) and Q1(u) represent the low and high-
frequency components of signal decomposition; for
j � 0, 1 the matrix form of Qj can be shown as

Qj �

1
2

−
1
2

􏼒 􏼓
j

0 0 · · · 0 0

0 0
1
2

−
1
2

􏼒 􏼓
j

· · · 0 0

0 0 0 0 · · ·
1
2

−
1
2

􏼒 􏼓
j

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2n− 1×2n

. (2)

(2) Construct an n-dimensional vector
[c1, c2, . . . , cn] ∈ 0, 1{ }, the integer e can be
expressed as

e � 􏽘
n

j�1
cj2

n− j
. (3)

(3) According to vector [c1, c2 . . . , cn], the decompo-
sition nodes of each layer of the signal are

uk,e � Qcn
· Qcn− 1

· · · · Qc1
(u). (4)

2.2. Hierarchical Dispersion Entropy. DE is an index to
measure the irregularity of time series. A larger value of this
indicates a higher irregularity of this time series. On the
contrary, a smaller value means a smaller irregularity.

For a time series x(i), i � 1, 2, . . . , N{ }, the DE was
calculated as follows:

(1) Mapping time series x(i) to x(j), j � 1, 2, . . . , N􏼈 􏼉

through a normal distribution function,
y(j) ∈ (0, 1)

y(j) �
1

σ
���
2π

√ 􏽚
x(i)

− ∞
e

− (t− μ)2/2σ2( )dt, (5)

where μ and σ represent the expectation and variance
of x, respectively.

(2) Mapping y(j) to an integer between 1 and c by the
following formula:

z
c
j � Round(c · y(j) + 0.5), (6)

where Round is an integer function and c is the
number of mapped categories.

(3) Calculating embedded vector zm,c
i ,

z
m,c
i � z

c
i , z

c
i+d, . . . , z

c
i+(m− 1)d􏽮 􏽯, (7)

where m is the embedded dimension and d is the
time delay constant.

(4) Calculating the dispersion pattern
πv0v1...vm− 1

(v � 1, 2, . . . c) for each time series zm,c
i , the

number of dispersion patterns are cm,
zc

i � v0, zc
i+d � v1, · · · zc

i+(m− 1)d � vm− 1.
(5) For these patterns, the probability p(πv0v1...vm− 1

) of
each dispersion pattern πv0v1...vm− 1

is

p πv0v1...vm− 1
􏼐 􏼑 �

Number πv0v1...vm− 1
􏼐 􏼑

N − (m − 1)d
, (8)

where Number(πv0v1...vm− 1
) is the number of disper-

sion patterns.
(6) DE of time series is defined as

DE(x, m, c, d) � − 􏽘
cm

π�1
p πv0v1...vm− 1

􏼐 􏼑 ln p πv0v1...vm− 1
􏼐 􏼑􏼐 􏼑. (9)

For each node obtained by hierarchical decomposition,
its DE is calculated, and all the results obtained are HDE.

3. Proposed Method

)is paper recognizes SRN by extracting HDE feature of the
signal, and two feature extraction methods, single feature
extraction and dual feature extraction are used. )e method
of identifying SRN using HDE features is shown in Figure 1.
)e specific steps for single feature extraction are as follows:

(1) Input SRN as the signal to be identified.
(2) Hierarchical decomposition of the signal at the third

level, the signal is decomposed into eight nodes.
(3) Selecting the optimal node and calculating its DE as

the feature of SRN.
(4) Classify and recognize the obtained features by

k-nearest neighbor (KNN) to get the recognition
result of the signal.

Dual feature extraction and single feature extraction are
the same except for the second and third steps; in the second
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step, dual feature extraction requires fourteen nodes derived
from the first-, second-, and third-level decomposition of the
signal; in the third step, two optimal nodes are selected.

4. Feature Extraction of Ship-Radiated Noise

4.1. Ship-Radiated Noise. Feature extraction and classifica-
tion recognition of four types of SRN are carried out. )ese
four types of signals are identified as SRN1, SRN2, SRN3,
and SRN4.)e signal lengths of the first and second types are
1380000, the third type are 2828835, and the fourth type are
1641600, and the sampling frequency is 44.1 kHz. Take data
points from 1 to 1200000 of the four types of SRN. Figure 2
presents four types of SRN after normalization.

4.2. Feature Extraction Experiment

4.2.1. Single Feature Extraction. In this section, we extract
the features of four types of SRN. First, hierarchical de-
composition of SRN is carried out, then take eight nodes of
the third-level decomposition and extract their DE features.
)is is called HDE of the third-level decomposition of SRN.
)en, as a comparison, we extract the reverse dispersion
entropy and PE of the nodes separately, these are called
HRDE and HPE of the third-level decomposition,
respectively.

)e HDE of eight nodes for four types of SRN is
extracted, and the sample distribution is observed. )e HDE
of eight nodes for four types of SRN is shown in Figure 3.

It can be seen from the diagram that the HDE of the four
types of SRN in the Node 1 is quite different. )ere are

duplicate parts of the HDE of SRN1 and SRN4, and the same
is true of SRN2 and SRN3; there is no significant difference
in HDE between the four types of SRN in Node 2 to Node 7;
HDE of SRN2 in Node 8 differs significantly from the other
three types. )e HRDE of eight nodes for four types of SRN
can be seen in Figure 4.

)e results of feature extraction show that there is no
obvious difference among the four types of SRN samples
under the same node; the difference of HRDE is obvious only
under Node1; of the remaining seven nodes, a few samples of
SRN 3 had significant differences in HRDE; in Node 2,
HRDE of SRN1 is somewhat different from the other three
types of SRN. Figure 5 displays the HPE of eight nodes for
four types of SRN.

It can be seen from the figure that there are many dif-
ferences in HPE for the four types of SRN only in the first
node, but the range of entropy values for each type of SRN
sample still has a large repetition; the sample entropy values
of SRN2 and other SRN in the eighth node are different; the
entropy values of four types of SRN from Node 2 to Node 7
differ little except for a small number of samples; differences
of HPE between the four types of SRN are small, making it
difficult to distinguish them effectively.

4.2.2. Results of Classification. Using k-nearest neighbor to
recognize the results of feature extraction, the value of K was
1. Fifty training samples are used for each type of SRN, and
the rest are used as test samples to classify and identify the
four types of SRN. )e validity of the feature extraction
method proposed in this paper is verified by comparing the

Input SRN

Hierarchical decomposition

Start

Single feature extraction of DE

KNN classification and recognition

End

Eight nodes

Dual feature extraction of DE

KNN classification and recognition

End

Fourteen nodes

Third level First, second, and third level

Select the best node Select the best two nodes

Figure 1: )e method of identifying SRN using HDE features.
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recognition rates of the four feature extraction methods.)e
HDE recognition rate for four types of SRN is shown in
Table 1.

It can be seen from Table 1 that the recognition results of
four types of SRN are not good, and the highest average
recognition rate is 85%; the highest recognition rate is 96% of
the eight nodes for four types of SRN, and the lowest rec-
ognition rate is only 16%. )e recognition rate of each node
of SRN3 and SRN4 is less than 90%. Node 4 and Node 7 have
recognition rates of less than 50%, and the HRDE recog-
nition rates for four types of SRN are presented in Table 2.

As can be seen from Table 2, the HRDE of the eight
nodes for four types of SRN has the highest recognition rate
of 100% and the lowest recognition rate of 22%; the average
recognition rate of Node 1 is 82.5%, but the average rec-
ognition rate of the remaining seven nodes is not more than
50%; the highest recognition rate of SRN2 appeared in Node
8, and the highest recognition rate of the other three types of
SRN appeared in Node 1; the identification rate of all nodes
in SRN3 is lower than 80%. In general, the recognition
results are not good for distinguishing the four types of SRN.
Table 3 shows the HPE recognition rate for four types of
SRN.

According to Table 3, the results of HPE recognition of
eight nodes for four types of SRN are poor, with the highest
average recognition rate is only 60.5%; the recognition rate
of the four types of SRN from Node 2 to Node 7 is less than
60%; in SRN2, the recognition rate of Node 1 and Node 8 is
significantly higher than that of other nodes; besides SRN2,
the highest recognition rate of all nodes of the three types of
SRN is only 54%; it is difficult to distinguish four kinds of
SRN by HPE.

Because the recognition results obtained by single fea-
ture extraction for eight nodes after three-level decompo-
sition are not obvious, which is difficult to distinguish four
types of SRN, consider adding more nodes and improving
the feature extraction method. Dual feature extraction ex-
periments are performed on fourteen nodes of the first-,
second-, and third-level decomposition results.

4.3. Dual Feature Extraction Experiment. )e results of hi-
erarchical decomposition consist of fourteen nodes, third-
level decomposition as the first to eight nodes, second-level
decomposition as the ninth to twelfth nodes, and first-level
decomposition as the thirteenth and fourteenth nodes.
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Figure 2: Four types of SRN after normalization. (a) SRN1. (b) SRN2. (c) SRN3. (d) SRN4.
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Feature distribution and recognition rate of the optimal
result of dual feature recognition of four types of SRN are
shown in Figure 6 and Table 4.

From Figure 6, we can see that the dual feature distri-
bution of the same feature of the four types of SRN is
significantly different, and the general distribution range of
the four types of SRN can be clearly identified besides a very
small number of samples.

It can be seen from Table 4 that in the dual feature
extraction experiment, the recognition effect of the HDE is
the best, and the highest recognition rate reaches 100%;
among the three, the HPE has the worst recognition effect,
and the highest recognition rate is 98.5%; the combination
with the highest HDE recognition rate is Node 6 and Node
13, and the combination with the highest HRDE and HPE
recognition rate is Node 1 and Node 13.
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Figure 3: HDE of eight nodes for four types of SRN. (a) Node 1. (b) Node 2. (c) Node 3. (d) Node 4. (e) Node 5. (f ) Node 6. (g) Node 7.
(h) Node 8.
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Figure 4: HRDE of eight nodes for four types of SRN. (a) Node 1. (b) Node 2. (c) Node 3. (d) Node 4. (e) Node 5. (f ) Node 6. (g) Node 7.
(h) Node 8.
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Figure 5: HPE of eight nodes for four types of SRN. (a) Node 1. (b) Node 2. (c) Node 3. (d) Node 4. (e) Node 5. (f ) Node 6. (g) Node 7.
(h) Node 8.

Table 1: HDE recognition rates for four types of SRN.

SRN1 (%) SRN2 (%) SRN3 (%) SRN4 (%) Average (%)
Node 1 92 86 76 86 85
Node 2 56 42 16 52 41.5
Node 3 40 64 38 42 46
Node 4 44 36 40 38 39.5
Node 5 50 72 50 64 59
Node 6 58 34 56 52 50
Node 7 24 42 28 22 29
Node 8 48 96 38 34 54
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Figure 6: Continued.

Table 2: HRDE recognition rates for four types of SRN.

SRN1 (%) SRN2 (%) SRN3 (%) SRN4 (%) Average (%)
Node 1 92 78 74 86 82.5
Node 2 42 40 30 46 39.5
Node 3 42 64 40 54 50
Node 4 48 26 38 56 42
Node 5 24 56 40 58 44.5
Node 6 48 48 48 56 50
Node 7 36 40 22 28 31.5
Node 8 40 100 26 32 49.5

Table 3: HPE recognition rates for four types of SRN.

SRN1 (%) SRN2 (%) SRN3 (%) SRN4 (%) Average (%)
Node 1 54 82 54 52 60.5
Node 2 26 20 52 26 31
Node 3 26 36 18 22 25.5
Node 4 20 34 36 36 31.5
Node 5 24 56 38 22 35
Node 6 28 40 48 30 36.5
Node 7 36 24 20 24 26
Node 8 34 80 32 36 45.5

Table 4: Recognition rate of the optimal result of dual feature recognition for four types of SRN.

HDE HRDE HPE
Recognition rate 100% 99% 98.5%
Node 6, 13 1, 13 1, 13
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5. Conclusions

In this paper, HDE is introduced into the feature extraction
field of SRN, and single feature extraction and double feature
extraction methods based on HDE are proposed. )e final
recognition rate reaches 100%, which verifies the effec-
tiveness of HDE, and the main conclusions of the experi-
ments are as follows:

(1) HDE can show the high-frequency and low-frequency
feature of signals, and it is often used in fault diagnosis
of rolling bearings. )is paper introduces it into the
field of SRN recognition as a new feature of SRN.

(2) Compared with the extractions of HRDE and HPE,
the recognition result of HDE single feature recog-
nition can better distinguish SRN.

(3) In order to further improve the performance ofHDE in
feature extraction, a dual feature extraction method is
proposed. )e recognition rate is significantly im-
proved compared with the single feature, and the
recognition effect is better than the dual feature rec-
ognition of the other two feature extraction methods.
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Rotating machinery has played an enormous role in industrial production, and its stable operation is related to whether
production can proceed smoothly. At present, multichannel entropy-based methods are usually be adopted to analyze multi-
channel vibration signals. However, the collected signal may only have one channel in the actual situation. At this time, analyzing
only a single channel signal cannot effectively utilize the advantages of multivariate analysis. For this reason, this paper presents a
novel multivariate analysis approach and applies it to the fault diagnosis of machinery. Firstly, the parameter-optimized resonance
sparse decomposition (RSSD) algorithm is adopted to decompose the single-channel vibration signal into high and low resonance
components. +en, the two components are regarded as dual-channel vibration signals and input into the refined composite
generalized multivariate multiscale amplitude aware permutation entropy (RCGmvMAAPE) method to gain fault features.
Eventually, the features are input to the deep belief network (DBN) classifier to perform fault judgment. +e experiments of
rotating machinery are carried to verify the effectiveness of the developed approach. +e results display that the proposed fault
diagnosis method can achieve the classification accuracy of 100% and 98% when only a single-channel vibration signal is used,
which is better than the fault diagnosis method based on a multichannel vibration signal and enjoys strong stability.

1. Introduction

Rotating machinery is the most widely adopted me-
chanical equipment in the industrial sector. However,
since the working environment of rotating machinery is
mostly harsh, various types of faults are prone to occur,
resulting in serious personal and property losses [1, 2].
+erefore, it is necessary to study the general diagnostic
techniques for rotating machinery. +e internal structure
of the rotating machinery will change if there are the
faults, which exacerbate internal vibration. Consequently,
the vibration signal of the rotating machinery contains
information that can characterize the current state, which
indicates that the signals can be used for analysis to de-
termine the present status [3, 4].

+e operating conditions of rotating machinery can be
characterized by vibration during operation, but the vi-
bration is nonlinear data [5]. In order to extract the state
feature from the vibration data, effective methods must be

adopted to amplify the characteristic information and
eliminate the interference [6]. Signal decomposition algo-
rithms are typical methods for processing this kind of sig-
nals. By decomposing raw signal into several components,
these methods analyze the complexity of the signal on
multiple time scales and reduce the interference of distur-
bance components such as noise on feature extraction [7]. In
the current signal decomposition algorithms, the more
typical ones include wavelet transform (WT) and empirical
mode decomposition (EMD). Both of the above two algo-
rithms have obvious defects, which affect the reliability of
analysis. For example, WT cannot analyze the high fre-
quency components. In addition, it lacks ability to adaptively
process signals since its reliability is influenced by the
wavelet basis function. EMDdecomposes the signal based on
the local characteristics of the signal itself, so it can realize
the analysis without manually setting parameters, thereby
has the advantage of adaptive analysis. However, EMD has
serious modal aliasing and end effect defects, and the
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physical meaning of some components is not obvious, which
affects its reliability [8].

Resonance-based sparse signal decomposition (RSSD) is
a signal decomposition method based on resonance prop-
erties of signals, which can realize accurate analysis and
complexity measurement for nonlinear signals with complex
components [9, 10]. Based on the tunable Q-factor wavelet
transform (TQWT), RSSD uses the difference of quality
factor Q between the continuous oscillation signal and the
transient impact component to represent the complex signal
sparsely with high quality factor and low quality factor [11].
Different from signal decomposition approaches based on
frequency or time scale such as EMD, RSSD combines the
frequency and bandwidth of the signal simultaneously, so it
can perfectly separate the periodic pulse component and the
transient nonoscillating component in the vibration signal
[12]. Based on different quality factors, the approach divides
the composition of the signal into periodic harmonics, fault
impact, and noise and divides them into high resonance
components and low resonance components [13].+erefore,
the RSSD algorithm has a significant advantage for analyzing
the impact fault signals. Nevertheless, the excellent per-
formance of the RSSD algorithm is influenced by the quality
factor, the weight coefficient and the Lagrangian operator.
+e improper parameter settings will interfere with the
performance of RSSD [14]. +e Harris Hawk algorithm
(HHO) is a novel heuristic optimization algorithm proposed
by Mirjalili, which mainly simulate predation behavior of
Harris Hawk in nature. Compared with several other typical
optimization algorithms, the HHO algorithm performs
better and has higher search efficiency [15]. Considering the
excellent performance of HHO in the optimization problem,
combined with the RSSD algorithm, this paper proposes an
optimized RSSD based on HHO. +is method not only can
adaptively find the best combination of RSSD parameters,
but also has high optimization efficiency and excellent
generalization.

After processing the vibration signals, how to extract the
highly distinguishable features is the key to the fault diag-
nosis of rolling bearings. With the development of nonlinear
science, the feature extraction technology based on entropy
theory, such as permutation entropy (PE), amplitude-aware
permutation entropy (AAPE), and multiscale amplitude-
aware permutation entropy (MAAPE) had been favored by a
large number of researchers due to the good nonlinear data
processing performance [16, 17]. Because of the good ability
to extract the nonlinear fault information hidden in the
vibration signal, Wu used multiscale permutation entropy
(MPE) for the health detection of rolling bearings and
obtained ideal results [18]. However, the permutation en-
tropy does not consider the contribution of the amplitude of
the time series to the entropy value in the calculation, which
leads to inaccurate and sufficient analysis [19]. In this regard,
Chen proposed multiscale AAPE (MAAPE) by replacing PE
with AAPE and used it to excavate the fault characteristics of
rolling bearings [20]. Although MAAPE has better feature
extraction performance, there are still two shortcomings in
the application process as follows: (1) the coarse-grained
method adopted by MAAPE is achieved by calculating the

mean value of each coarse-grained time series, which slows
down the dynamic mutation trend of the original time series
to some extent; (2) the stability of MAAPE will decrease
significantly when the time series is short [21]. In view of the
abovementioned shortcomings, this paper proposes a re-
fined composite generalized coarse grained technology and
thus proposes refined composite generalized multiscale
amplitude aware permutation entropy (RCGMAAPE)
method.

Although RCGMAAPE enjoys excellent performance, it
is only applied to a single channel vibration data, thereby has
insufficient characterization capacity for multichannel data,
which reduces the quality of the fault information obtained
to a certain extent [22]. Reasonable use of multiple channel
fault information can achieve a more comprehensive di-
agnosis of rotating machinery faults. Based on the theory of
multidimensional embedding reconstruction, RCGMAAPE
is extended to multivariate, that is, the refined composite
generalized multivariate multiscale amplitude aware per-
mutation entropy (RCGmvMAAPE), which is adopted to
realize the complexity measurement of multichannel data.
At present, most of the feature extraction approaches based
on vibration signals are univariate analysis techniques.+ese
methods extract the single-entropy or multiscale entropy of
multiple components to mine the fault characteristics of
vibration signals, which can only effectively use the signal of
a single channel. It has been proved by experiments that
these methods also have good results and can achieve ac-
curate classification of rotating machinery fault types.
However, it can be noted that the features composed of
multiscale entropy of multiple components usually are high-
dimensional and contain more redundant information, so it
is necessary to reduce the dimensionality to improve the
classification efficiency and accuracy. To this end, this paper
develops a new feature extraction model that can realize
multivariate analysis using only a single-channel signal. +e
principle is to disintegrate the fault signal into a pair of high
and low resonance components through the parameter
optimized resonance sparse decomposition algorithm. After
that, these two components are employed as multichannel
data to form a multivariate signal. Finally, the proposed
RCGmvMAAPE method is applied to extract the fault
feature of the signal.

After obtaining the fault characteristics of rotating
machinery, selecting a suitable classifier for fault identifi-
cation is the very critical part. At present, the commonly
used classifiers include support vector machine (SVM) and
extreme learning machine (ELM), which are widely used in
pattern recognition because of their good generalization and
reliability. Nevertheless, the performance of SVM is easily
affected by the parameters, which need to be optimized [23].
ELM has high classification efficiency and excellent per-
formance. However, it is prone to large errors when dealing
with high-dimensional nonlinear classification problems
since the kernel function is not used [24]. With the con-
tinuous development of deep learning, the application of
deep learning to deal with classification problems has
gradually become a feasible solution. However, deep
learning is mainly aimed at the classification and
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identification of large batches of data, so the performance of
classification problems for small samples is not as good as
machine learning. Deep belief network (DBN) is an atypical
structure of deep learning in the processing of small samples,
which is composed of multilayer restricted Boltzmann
machines [25, 26]. DBN can effectively avoid the problem of
parameter selection by using pretraining and repeated fine-
tuning. In addition, it can be effectively used for the pattern
recognition problem of small samples, so this paper employs
it for the fault recognition of rotating machinery.

In conclusion, the main contribution of this paper is to
propose a new multivariate feature extraction method,
RCGmvMAAPE, and apply it to the fault diagnosis of ro-
tating machinery. In addition, considering that the vibration
signal may have only one channel, it cannot effectively take
advantage of the multivariate analysis method.+erefore, an
optimized RSSD is proposed to convert single-channel vi-
bration signals into dual channel signals, so as to make full
use of the advantage that the multivariate analysis method
can extract fault information from multichannel vibration
signals synchronously. +e structure of this paper is as
follows: Sections 2.1 and 2.2 mainly introduce the principle
of RSSD and the specific implementation process of opti-
mized RSSD. Sections 2.3 mainly introduces the theory of
RCGmvMAAPE and compares it with RCmvMPE,
RCmvMSE and mvMAAPE. Sections 3 introduces the
specific steps of the proposed fault diagnosis method. Sec-
tions 4 validates the effectiveness of the proposed method by
using two typical rotating machinery data. Section 5 draws
the conclusion of this paper.

2. Modified RSSD Method

2.1. Principle of RSSD. Resonance is a property of the signal.
+e larger the resonance property, the better the frequency
aggregation of the signal; the smaller the resonance property,
the better the time aggregation of the signal. +e signal
resonance sparse decomposition method sparsely decom-
poses a complex signal into high and low resonance com-
ponents according to the different signal resonance
properties. +e resonance property is represented by Q, and
the formula is as follows:

Q �
fc

BW

, (1)

where fc is the center frequency of the signal and BW is the
bandwidth.

+e resonant sparse signal decomposition method
combines the influence of frequency and bandwidth on the
signal. It can effectively separate the signals with overlapping
frequency bands and similar center frequencies using dif-
ferent quality factors. +is method first uses the two-channel
filter bank shown in Figure 1 to perform TQWTon the signal
to obtain a base function library with high and low-quality
factors. Here, H0(w) and H1(w) are low-pass and high-pass
filters, respectively; v0(n) and v1(n) are the filtered subband
signals, respectively. +e low-pass scale factor α and the

high-pass scale factor β can be obtained through the quality
factor Q and the redundancy r, as shown in (2).

β �
2

(Q + 1)α
� 1 −

β
r
. (2)

+en, the corresponding coefficients were obtained by
iteration, and the sparse decomposition objective function
was established by morphological analysis method, as
follows:

J W1, W2( 􏼁 � x − S1W1 − S2W2
����

����
2
2 + λ1 W1

����
����1 + λ2 W2

����
����1,

(3)

where J is the objective function; W1 and W2 are the
transformation coefficients of the subband signals x1 and x2
under the frameworks S1 and S2, respectively; and λ1 and λ2
are the regularization parameters.

+e different values of λ1 and λ2 affect the energy dis-
tribution of sparse components. If only λ1 increases, the
energy of the corresponding component of λ1 decreases, and
the same is true for λ2. If λ1 and λ2 are increased at the same
time, the residual component energy will increase. In
equation (3), the first norm is not differentiable, making it
challenging to solve. For this reason, this paper adopts the
split augmented Lagrangian search algorithm. +e objective
function is minimized by iterative updating, and finally, the
high and low resonance components are separated.

􏽢x1 � S1W
∗
1 ,

􏽢x2 � S2W
∗
2 ,

⎧⎨

⎩ (4)

where W∗1 and W∗2 are, respectively, the transformation
matrix of the high and low resonance components when the
objective function J is the minimum; 􏽢x1 and 􏽢x2 are the
estimated values of high and low resonance components,
respectively.

2.2. HHO-RSSD Decomposition

2.2.1. Fitness Function. Correlation kurtosis is an index used
to evaluate the impact component content [27]. Compared
with a single kurtosis index, correlation kurtosis introduces a
correlation function based on kurtosis to perform auxiliary
operations, which can characterize the transformation of
shock components in a shock signal.+e correlation kurtosis
can be expressed as follows.

x (n)

H0 (w)

H1 (w)

v0 (n)

v1 (n)

Low scale α

High scale β

Figure 1: +e two-channel filter banks.
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CKM(T) � 􏽐
N
n�1

􏽑
M
m�0 xn− MT􏼑

􏽐
N
n�1 x2

n􏼐 􏼑
M+1

,

⎛⎝ (5)

where xn represents the initial time series;N is the number of
data points contained in the signal; T indicates the period of
the required pulse signal; M is the number of offset periods.

+e correlation kurtosis index is sensitive to the impact
component in the signal, and its sensitivity is related to the
settings of the parameters T and M. For a vibration signal,
when the given parameter Tmatches the period of the initial
signal, at this time, as the impact component in the signal
increases, the magnitude of the correlation kurtosis also
increases. In addition, in the decomposition process of
RSSD, more identical components may be decomposed
between high and low resonance components. To avoid this
situation, the constraint condition of cross-correlation is
introduced. Assuming there are two signals X and Y, the
correlation coefficient between the two signals is expressed
as follows:

C �
􏽐

n
i�1 xi − x( 􏼁 yi − y( 􏼁

�������������������������

􏽐
n
i�1 xi − x( 􏼁∗

������������

􏽐
n
i�1 yi − y( 􏼁

2
􏽱􏽲 ,

(6)

where C represents the correlation coefficient of the two
signals, and the value range is [− 1,1]. When C is − 1, the two
signals are negatively correlated; when C is 0, the two signals
are not correlated; when C is 1, the two signals are positively
correlated, and the two signals can be considered the same
signal. +erefore, combining the advantages of the corre-
lation kurtosis and the correlation coefficient, the maximum
ratio of the correlation kurtosis value of the low resonance
component to the correlation coefficient of the high reso-
nance component is used as the fitness function K, as
follows:

K �
CKM

C
. (7)

2.2.2. HHO Algorithm. +e Harris Hawk optimization al-
gorithm is an intelligent optimization algorithm that sim-
ulates the predation behavior of Harris Hawk. It mainly
consists of three parts: the search phase; and the conversion
and development phase.

(1) Search Phase. Harris Hawks randomly roost somewhere
and find their prey through two strategies:

X(t + 1) �
Xrand(t) − r1 Xrand(t) − 2r2X(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, q≥ 0.5,

Xrabbit(t) − Xm(t)􏼂 􏼃 − r3 lb + r4(ub − lb)􏼂 􏼃, q< 0.5,

⎧⎨

⎩

(8)

where X(t) and X(t + 1) are the positions of the individuals
in the current and next iteration respectively; t is number of
iterations; Xrand(t) is the position of the randomly selected
individual, Xrabbit(t) is the position of the prey, that is, the
position of the individual with the best fitness; r1, r2, r3, r4,
and q are all random numbers between [0,1]. q is used to

select the strategy to be adopted, Xm(t) is the average po-
sition of the individual; (ub, lb) refers to the range of the
initial random position of the eagle and the expression is as
follows:

Xm(t) � 􏽘

M

k�1

Xk(t)

M
, (9)

where Xk(t) is the position of the k-th individual in the
population and M is the population size.

(2) Search and Development Conversion Phase. +e HHO
algorithm can switch between different development be-
haviors according to the escape energy of the prey. During
the flight, the energy of the prey will be greatly reduced. In
order to simulate this situation, the energy of the prey can be
expressed as

E � 2E0 1 −
t

T
􏼒 􏼓, (10)

where E0 is the initial energy of the prey, which is a random
number between [− 1,1], which is automatically updated at
each iteration, t is the number of iterations, and T is the
maximum number of iterations.

(3) Development Phase. Define r as a random number be-
tween [0,1], used to select different development strategies.
When 0.5≤ |E|< 1 and r≥ 0.5, the soft siege strategy is
adopted for position update:

X(t + 1) � ΔX(t) − E JXrabbit(t) − X(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (11)

where ΔX(t) � Xrabbit(t) − X(t) represents the difference
between the position of the prey and the current position of
the individual, and J is a random number between [0, 2].

When |E|< 0.5 and r≥ 0.5, a hard siege strategy is
adopted to update the position:

X(t + 1) � Xrabbit(t) − E|ΔX(t)|. (12)

When 0.5≤ |E|< 1 and r< 0.5, the asymptotic fast
swooping soft siege strategy is adopted for position update:

X(t + 1) �
Y, f(Y)<f(X(t)),

Z, f(Z)<f(X(t)),
􏼨 (13)

Y � Xrabbit(t) − E JXrabbit(t) − X(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (14)

Z � Y + S∗ LF(2), (15)

where f is the fitness function, S is a two-dimensional
random vector, the elements are random numbers between
[0,1], and LF is the mathematical expression of Levi flight.

When |E|< 0.5 and r< 0.5, the position is updated by the
hard encircling strategy of asymptotic fast swooping:

X(t + 1) �
Y, f(Y)<f(X(t)),

Z, f(Z)<f(X(t)),
􏼨 (16)

Y � Xrabbit(t) − E JXrabbit(t) − Xm(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, (17)
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Z � Y + S∗LF(2). (18)

Algorithm steps:

Step 1: population initialization. According to the
upper and lower bounds of each dimension of the
search space, initialize each individual.
Step 2: calculate the initial fitness. Set the position of the
individual with the best fitness as the current prey
position.
Step 3: location update. First, update the escape energy
of the prey, and then execute the corresponding lo-
cation update strategy in the search or development
behavior according to the escape energy and the
generated random number.
Step 4: calculate fitness. Calculate the fitness of the
individual after the location update, and compare it
with the fitness value of the prey. If the fitness value of
the individual after the location update is better than
the prey, the individual location with the better fitness
value is used as the new prey location.

Repeat Steps 3 and 4, when the number of iterations of
the algorithm reaches the maximum number of iterations.
Output the current position of the prey as the estimated
position of the target.

2.2.3. HHO-Optimized RSSD Algorithm Steps. +e technical
flowchart of the proposed HHO optimization RSSD is
shown in Figure 2，and the specific optimization steps are
as follows:

(1) +e random position of the eagle was initialized, the
number of iterations T� 50, the population size
N� 20, and the three parameters were set between
0.001 and 200, and determine the fitness evaluation
function K.

(2) Preset the value range of the parameters to be op-
timized, such as the quality factor Q, the weight
coefficient A, and the Lagrangian multiplier u, and
give an initial value randomly.

(3) +e RSSD is used to decompose the vibration signal,
and the three parameters of the RSSD are optimized
through the HHO algorithm. After iteration, the
local optimal parameters are retained.

(4) HHO updates the position of the eagle through
different strategies, introduces it into the RSSD,
obtains the fitness function value, compares it with
the optimal fitness function value obtained in the
previous iteration, and obtains the optimal pa-
rameters corresponding to this optimal fitness
function.

(5) When the number of algorithm iterations reaches the
maximum number of iterations, the global optimal
fitness function value and the optimal parameter
value are output.

(6) Substitute the optimal parameter combination into
the RSSD to realize the decomposition of the vi-
bration signal.

2.3. RCGmvMAAPE

2.3.1. AAPE. AAPE is based on PE [28].+erefore, its theory
is very similar to PE similarity, and it is necessary to explain
the specific improvement method of AAPE after describing

Start

Input the vibration signal of rotating
machinery

Initialize the position of the eagle and pre-set
the value range of the parameters

Choose the range of parameters to be
optimized and select the fitness function

Use HHO to optimize RSSD parameters

Compute correlation kurtosis

Whether the
maximum number

of iterations is reached

Get the optimal parameter combination

Use the optimized RSSD to decompose the
vibration signal to obtain high and low

resonance components

End

N

Y

Figure 2: +e technical flowchart of the proposed HHO optimi-
zation RSSD.
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the theory of PE. +e foundation principle of PE is as
follows:

(1) For a one-dimensional time series x � x1, x2, . . . xi,􏼈

. . . xN} of length N, at any time point t, the recon-
struction vector ofm dimension can be generated by
the reconstruction of x

X
m,d
t � xt, xt+d, . . . , xt+(m− 2)d, xt+(m− 1)d􏽮 􏽯

t � 1, 2, . . . , N − (m − 1)d,
(19)

where m indicates the embedding dimension and d
indicates the time delay.

(2) In each reconstruction vector, according to the size
of each element, in ascending order, the permutation
of πr0 ,r1 ,···,rm− 1

can be obtained, which fulfills:

xt+ j1− 1( )d, xt+ j2− 1( )d, . . . , xt+ jm− 1− 2( )d, xt+ jm − 1( )d􏼚 􏼛, (20)

where j∗ denote the index of the column of each
element in the reconstructed component. +us,
when the embedding dimension is m, there are m!
possible ordinal patterns, of which the ith permu-
tation is marked as πi.

(3) +e relative frequency of occurrence of πi in each
permutation pattern is described as

p πi( 􏼁 �
g πi( 􏼁

N − (m − 1)d
, (21)

where g(πi) indicate a function that counts the
number of occurrences of πi in Xm,d

t . Whenever the
permutation order of the internal elements of Xm,d

t is
πi, the value of g(πi) linearly increases by 1.

(4) +erefore, according to the definition of entropy, PE
can be described as

PE(x, m, d) � − 􏽘

πi�m!

πi�1
p πi( 􏼁ln p πi( 􏼁. (22)

Although PE has excellent performance, it is still found
to have more serious defects, which makes it less reliable in
quantifying the complexity of time series. First of all, based
on the above description, PE only considers the contribution
of the ordering structure of the time series to the complexity
when calculating the probability, while the influence of the
amplitude information of each data point in the time series
on the entropy value is not calculated. Secondly, when there
are components with equal amplitude in the time series, the
influence of this group of elements on the entropy value is
not clearly stated. For this reason, by enhancing the sen-
sitivity to the amplitude and frequency of the time series,
AAPE is more comprehensive and accurate in measuring the
complexity of the time series. +e principle of AAPE is
reviewed as follows:

Supposing that the starting value of p(πm,d
i ) is 0, for the

reconstruction vector Xm,d
t , when the time t adds from 1 to

N-m+1 increasingly, the value of p(πm,d
i ) is updated when

the permutation πm,d
i changed.

p
update πm,d

i􏼐 􏼑 � p πm,d
i􏼐 􏼑 +

α
m

􏽘

m

k�1
xt+(k− 1)d

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

1 − α
m − 1

􏽘

d

k�2
xt+(k− 1)d − xt+(k− 2)d

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠, (23)

where α ∈ [0, 1] denotes the adjustment coefficient, which is
used to adjust the weight of the time series amplitude mean
and the deviation between the amplitudes. +us, the

probability of p(πm,d
i ) occurring in the whole time series is

πm,d
i .

p πm,d
i􏼐 􏼑 �

p
update πm,d

i􏼐 􏼑

􏽐
N− m+1
t�1 α/m 􏽐

m
k�1 xt+(k− 1)d

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 1 − α/m − 1􏽐

m
k�2 xt+(k− 1)d − xt+(k− 2)d

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

. (24)

+e AAPE of time series can be computed as follows:

AAPE(x, m, d, α) � − 􏽘

πk�m!

πk�1
p πk( 􏼁ln p πk( 􏼁. (25)

2.3.2. mvAAPE. In this part, the multivariate amplitude
perception permutation entropy is developed to quantify the

complexity of multichannel time series. +e principle of
mvAAPE can be expressed as follows [29]:

(1) Given the multivariate data X � Xc,1, Xc,2, . . . ,􏽮

Xc,i, . . . , Xc,L}c � 1, 2, . . . , q of q channels of length L
to be analyzed. Perform phase space reconstruction
on each sample, and the resulting matrix is as
follows:
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Z � Xc,i, Xc,i+d, . . . , Xc,i+(m− 2)d, Xc,i+(m− 1)d􏽮 􏽯. (26)

(2) Rearrange the reconstruction vector Z into
xc,i+(j1− 1)d≤ xc,i+(j2− 1)d≤ · · · ≤xc,i+(jm− 1− 1)d≤xc,i+􏽮

(jm − 1)d} in ascending order. At this time, the
possible sorting mode πi exists m!

(3) Assume that the starting value of p(πm,d
c,i ) is zero. For

the reconstruction vector Z, when the time i grad-
ually increases from 1 to L− m+1, the value of p(πm,d

c,i )

is updated every time πm,d
c,i appears.

p
update πm,d

c,i􏼐 􏼑 � p πm,d
c,i􏼐 􏼑 +

α
m

􏽘

m

k�1
xc,t+(k− 1)d

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

1 − α
m − 1

􏽘

m

k�2
xc,t+(k− 1)d − xc,t+(k− 2)d

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠. (27)

(4) Compute the probability of i-th sorting pattern
πi(1≤ i≤m!) in c-th channel as

p πm,d
c,i􏼐 􏼑 �

p
update πm,d

c,i􏼐 􏼑

􏽐
N− m+1
t�1 α/m 􏽐

m
k�1 xc,t+(k− 1)d

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 1 − α/m − 1􏽐

m
k�2 xc,t+(k− 1)d − xc,t+(k− 2)d

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑

. (28)

For q-channel time series, p(πc,i) satisfies
􏽐

q
c�1 􏽐

m!
i�1p(πc,i) � 1.

(5) +e probability of the i-th pattern πi in q-channel
time series can be computed as follows:

p πi( 􏼁 � 􏽘

q

c�1
p πc,i􏼐 􏼑. (29)

(6) According to the definition, mvAAPE can be
expressed as

mvAAPE(X, m, d, α) � − 􏽘
m!

i�1
p πi( 􏼁ln p πi( 􏼁. (30)

mvAAPE mainly integrates data from multiple channels
so that AAPE can extract more features, making the analysis
more comprehensive and accurate. However, mvAAPE can
only extract the features of the signal on a single scale. But,
the effective information contained in the actual vibration
signal is often presented on multiple scales, and it is difficult
to fully extract the fault characteristics in the vibration signal
by only carrying out a single-scale analysis. +erefore, in
order to mine the fault information of the vibration signal
from multiple scales and enhance the robustness of the
analysis, the multivariate multiscale amplitude aware per-
mutation entropy was developed.

2.3.3. mvMAAPE. +e realization principle of mvMAAPE is
to obtain multiple coarse-grained time series by performing
coarse-grained processing on the multichannel time series.
+ese coarse-grained time series respectively represent the
vibration information of the original multichannel signal at
various scales. Subsequently, based on mvAAPE to mine the

fault information in these coarse-grained time series to
realize mvMAAPE analysis. +e basic implementation
principle of mvMAAPE is described as follows.

(1) For q channel time series U � uk,1, uk,2, . . . ,􏽮

uk,i, . . . , uk,L} with data points L. +e multivariate
coarse-grained time series at scale factor τ is com-
puted as

y
τ
k,j �

1
τ

􏽘

jτ

i�(j− 1)τ+1
uk,i 1≤ j≤

L

τ
, 1≤ k≤p, (31)

Where τ is the scale factor, the coarse grained time
series is the raw time series when τ � 1.When τ > 1,
the original time series is divided into coarse-grained
time series of length L/τ.

(2) Compute the mvAAPE of each multivariate coarse-
grained time series, and get the mvMAAPE of U as
follows:

mvMAAPE � mvAAPE y
τ
k,j, m, d, α􏼐 􏼑. (32)

By extending mvAAPE from single-scale analysis to
multiscale, more information can be obtained from multi-
variate coarse-grained time series of different scales, which is
called multivariate multiscale amplitude aware permutation
entropy analysis. However, in the abovementioned multi-
variate coarse-grained time series with a scale factor of τ,
only the information of the multivariate coarse-grained time
series starting from uk,1 is considered, and the information of
the remaining τ − 1 multivariate time series is not used.
mvMAAPE does not consider the relationship between
adjacent coarse-grained time series, resulting in a lack of
statistical information.
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2.3.4. RCGmvMAAPE. To overcome the shortcomings of
mvMAAPE, a new entropy method is proposed, which is
called RCGmvMAAPE. Compared with mvMAAPE,
RCGmvMAAPEmainly made two improvements. Firstly, to
reduce the large variance of mvFE when the scale factor is
large, this paper adopts refined composite analysis to achieve
coarse graining of time series, which can reduce the de-
pendence of entropy value on the length of time series data
and achieve stable results even when the length of time series
to be analyzed is short. Secondly, in order to accurately
describe the dynamic changes of the time series, the second-
order moment (root mean square) is used to replace the first-
order moment (mean) used in the traditional coarse-
graining method, so that it has a stronger fault feature
extraction ability. +e principle of RCGmvMAAPE is as
follows:

(1) For the n-channel multivariate time series
X � xk,b􏽮 􏽯

L

b�1, k � 1, 2, . . . , n with data point L, the
multivariate coarse grained time series is calculated
by using root mean square instead of mean value at
scale factor τ. +e elements in the a-th coarse-
grained time series Yτ

a � yτ
k,i,1, yτ

k,i,2, . . .􏽮 􏽯 are
expressed as follows:

y
τ
k,i,a �

������������

1
τ

􏽘

a+iτ− 1

b�a+τ(i− 1)

x
2
k,b

􏽶
􏽴

1≤ i≤
L

τ
, 1≤ k≤ n, 1≤ a≤ τ.

(33)

For a scale factor τ, there will be τ diverse coarse-
grained multivariate time series, as present in
Figure 3.

(2) For each coarse-grained multivariate time series,
calculate the marginal relative frequencies
p(πj).+en the average relative frequency p(πj) can
be calculated as follows

p πj􏼐 􏼑 �
1
τ

􏽘

τ

a�1
pa πj􏼐 􏼑. (34)

(3) +erefore, the RCGmvMAAPE of the multichannel
time series can be described as follows:

RCGmvMAAPE � − 􏽘

πj�m!

πj�1
p πj􏼐 􏼑 lnp πj􏼐 􏼑. (35)

2.3.5. Parameter Selection and Performance Analysis. In the
RCGmvMAAPE algorithm, there are five parameters that
need to be set in advance, namely the embedding dimension
m, the time delay d, the adjustment coefficient a, the length
of the time seriesN and the scale factor S. For the embedding
dimension m, too small value will result in too few states
contained in the reconstruction vector, and the algorithm
losses its effectiveness, making it impossible to detect dy-
namic mutations in the time series. Conversely, if m is too
large, the reconstruction of the phase space will homogenize

the time series, which not only increases the amount of
calculation but also fails to highlight subtle changes in the
time series. +erefore, consider setting the embedding di-
mension m as 5. +e time delay has little effect on the
performance of the algorithm, so set it as d� 1. +e value of
the adjustment coefficient is usually a� 0.5. In addition, the
scale factor S cannot be set too large; otherwise, it will
produce more redundant information and affect the effi-
ciency of the analysis. On the contrary, too small value will
make the information extraction insufficient and affect the
effectiveness of the analysis, so this article is set as S� 20.+e
length of the time series also has a certain degree of influence
on the performance of the algorithm. Without loss of
generality, three-channel Gaussian white noise signals are
used for analysis, the lengths are respectively
N � 256, 512, 1024, 2048, 4096, 8192, and their
RCGmvMAAPE is calculated under the condition that other
parameters are the same. Figure 4 shows the entropy values
under different lengths. From Figure 1, when the length
N≥ 2048, the entropy curve is smoother and the fluctuation
is small. At this time, the RCGmvMAAPE of the white noise
signals of different lengths has a small difference and the
performance is relatively stable, so N� 2048 is selected.

+is part is mainly based on simulation signals to verify
the excellent performance of RCGmvMAAPE in measuring
the complexity of multichannel vibration signals. +e
RCGmvMAAPE method is compared with other typical
multivariate analysis methods through four different mul-
tichannel signals. White Gaussian noise (WGN) and 1/f
noise are two time series used to construct multichannel
simulation signals.+e irregularity ofWGN is higher than 1/
f. Compared with WGN, the power spectrum of 1/f noise is
more complex, so more mode information is integrated.+e
generation of WGN is random, so the probability of its state
transition matrix is approximately equal. On the contrary, 1/
f is a long-range correlation signal, and the irregularity of 1/f
noise is low than that of WGN. +erefore, 1/f noise is more
complicated than WGN.

Without loss of generality, multichannel signals with
three different channels are generated based on WGN and
1/f noise, which are (a) three channel WGN; (b) two
channel WGN and one channel 1/f; (c) one channel WGN
and two channel 1/f; (d) three channel 1/f.
RCGmvMAAPE, RCmvMPE, RCmvMSE and mvMAAPE
were studied, respectively. +e data length of each channel
is N � 2 048. +e mean and standard deviation curves of
RCGmvMAAPE, RCmvMPE, RCmvMSE and mvMAAPE
of the four synthetic signals are shown in Figure 3. It can
be seen from Figure 5 that compared with the other three
methods, the standard deviation of RCGmvMAAPE is
significantly smaller, which shows that RCGmvMAAPE is
more stable when measuring the complexity of multi-
channel time series. In addition, RCGmvMAAPE and
RCmvMPE methods can clearly distinguish four kinds of
multichannel synthetic signals, while mvMAAPE method
cannot effectively separate (a), (b), and (c), which indi-
cates that the coarse grainization method based on refined
composite generalized processing can obtain more ac-
curate results, thus effectively measuring the complexity
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Figure 3: Continued.
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Figure 3: Illustration of refined composite coarse-grained approach for multivariate time series with scale factor 2. (a) First coarse-grained
time series; (b) second coarse-grained time series. Figure is reproduced from Fuming Zhou 2020.
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of time series. Besides, RCmvMSE has a poor distinction
between (c) and (d), which is mainly because the method
is mainly based on multivariate sample entropy to realize
its function, and sample entropy has many defects when
processing time series, so RCmvMSE has a poor perfor-
mance. In conclusion, compared with the other three
multivariate analysis methods, RCGmvMAPE improves
its ability to extract feature information from multi-
channel vibration signals by adopting refined generalized
composite coarsing processing, so it can better measure
the complexity of multichannel signals.

3. The Proposed Fault Diagnosis Model

According to the previous analysis, RCGmvMAAPE can
effectively measure the complexity of multichannel time
series. +e HHO-RSSD can adaptively decompose the vi-
bration signal into high and low resonance components, and
has excellent time-frequency analysis performance. +ere-
fore, a new fault diagnosis technology for rotatingmachinery
was developed. First, HHO-RSSD and RCGmvMAAPE are
adopted to extract high-quality features that characterize the
fault state from the signals of rotating machinery.
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Figure 5: RCGmvMAAPE, RCmvMPE, RCmvMSE, and mvMAAPE of four multichannel synthetic signal.
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Subsequently, a deep belief network classifier with excellent
generalization performance is used to identify the types of
faults. +e technical implementation process is shown in
Figure 6. +e detailed steps are as follows:

(1) Under a given sampling frequency, the vibration data
of the rotating machinery in different fault states are
collected through the accelerometer and divided into
training samples and test samples.

(2) HHO algorithm is used to optimize the key pa-
rameters of RSSD and find the best combination of
parameters. Subsequently, the optimized RSSD is
used to decompose the vibration signal to obtain
high and low resonance components containing rich
vibration information to highlight the fault
components.

(3) +e high and low resonance components are used as
multichannel data to construct a multivariate time
series, and then the RCGmvMAAPE of the multi-
variate time series is calculated to generate fault
features.

(4) +e deep belief network classifier is trained through
the training data set to obtain the best classifier
model.

(5) +e remaining test data set is input to the trained
DBN classifier model for fault identification.
According to the output result of the DBN classifier,
the fault type of the rotating machinery is judged.

4. Experimental Verification

To validate the validity and reliability of the approach raised
in this paper for the health recognition of general rotating
machinery, experiments were carried out using two typical
rotating machinery vibration data, rolling bearings and
gears. +e rolling bearing data is offered by the public data
set, and the gear vibration data is collected on the QPZZ-II
vibration test platform.

4.1. Case 1

4.1.1. Data Collection. To test the effectiveness of the raised
approach of fault diagnosis for rotating machinery, firstly,
experiments are carried out adopting rolling bearing data.
+e experimental data used the typical vibration data set of
rolling bearings offered by the Electrical Laboratory of Case
Western Reserve University [30]. +e structure of the
platform is shown in Figure 7. Seen from Figure 7, the vi-
bration acquisition platform is composed of components
such as a motor, a drive end bearing, a fan end bearing, and
an accelerometer. +e bearing model adopted in the ex-
periment is 6205-2RS-JEM SKF. +e running power of the
motor is 0 horsepower and the rotating speed is 1797 rpm.
+e vibration data is collected by sensors installed at the
drive end and the fan end.+e sampling frequency is 12 kHz,
and the sampling time for each working condition is 10 s.
Different types of single-point faults are set up on the rolling
bearings by EDM. +e fault diameters are 0.1778mm,

0.3556mm and 0.5334mm, and the fault depth is
0.2794mm. +e fault diameter represents the severity of the
fault of the rolling bearing. Experiments were performed for
both fan and drive end bearings with outer race faults lo-
cated at 6 o’clock. +e fault data used in this experiment
includes four types of normal, inner race fault, outer race
fault, and ball fault. Each fault type contains three different
severity, so a total of ten types of vibration data are included.
+e vibration data of each working condition is divided into
58 groups of nonoverlapping samples, and the number of
data points contained in each sample is 2048. Randomly
select 28 groups of samples as the training set, and the
remaining 30 groups as the test set. +e brief information of
the data used is displayed in Table 1.

4.1.2. Analysis and Feature Extraction. Figure 8 presents the
waveform of the vibration data adopted in the experiment.
+e waveform is a nonlinear modulation signal with
complex components and contains a large number of ir-
regular impact components. +erefore, it is hard to easily
judge the status of fault of the rolling bearing by observing
the waveform of the vibration signal, and further processing
of the vibration signal is required to obtain more failure
information.

+is part mainly studies how to obtain the best RSSD
algorithm. First input the rolling bearing vibration signal to
HHO-RSSD to perform signal decomposition. Taking the
normal state as an example, the iterative process ends when
the value of the correlation kurtosis is the smallest.

Rotating machinery vibration signal

Training sample set Testing sample set

Decompose vibration signal based
on HHO-RSSD

Select high and low resonance components as
multi-channel data

Use RCGmvMAAPE to extract fault features
from multi-channel data

Train the DBN
classifier

Testing the DBN
classifier

Output the fault
severity

Figure 6: +e technical implementation process.

12 Shock and Vibration



Subsequently, after HHO optimized RSSD, a set of best
parameter combinations were obtained, which are
Q1 � 11.206, Q2 � 0.958, A1 � 0.92, A2 � 0.16, u� 0.456.
Figure 9 is the evolution curve of fitness value in the op-
timization process of HHO. Seen from Figure 9, HHO can
reach the local optimum relatively quickly, and then jump
out quickly and reach the global optimum, and the final
convergence value is also small, which shows that HHO has
higher optimization performance. +en, the optimal pa-
rameter combination obtained by optimization is input into
the RSSD, and the vibration signal is decomposed to acquire
the high and low resonance components. +e RSSD de-
composition result of Nor is shown in Figure 10.

+e high and low resonance components are taken as a
multichannel time series, and then RCGmvMAAPE is
adopted to excavate the fault features of the constructed
multivariable data to construct the fault samples. In addi-
tion, to validate the effectiveness of the raised
RCGmvMAAPE approach, it is compared with RCmvMPE,
RCmvMSE, mvMAAPE and RCGMAAPE. +e entropy
results of seven methods are displayed in Figures 11(a)∼
Figures 11(g). Here, Figures 11(a)–11(d) are the analysis

results of four multivariate analysis methods on multivariate
data composed of high resonance components and low
resonance components; Figure 11(e) and Figure 11(f ) are the
results of using the univariate analysis method RCGMAAPE
to analyze the high and low resonance components, re-
spectively; Figure 11(g) is the analysis result of
RCGmvMAAPE on the multivariate data composed of the
vibration signals of the drive end bearing and the fan end
bearing. By comparing Figures 11(a)–11(d), the advantages
of RCGmvMAAPE in measuring the complexity of multi-
channel data over the other three methods can be validated.
By comparing Figure 11(a) and Figures 11(e) and 11(f), it
can be proved that using RCGmvMAAPE to analyze mul-
tichannel data is better than RCGMAAPE to analyze single-
channel data. In addition, the comparison between
Figure 11(a) and Figure 11(g) can prove that after proper
processing, only a single-channel vibration signal can also
achieve good results. Seen from Figure 11, compared with
several other feature extraction models, the standard devi-
ation of the entropy value of Figure 11(a) is smaller and the
performance is more stable. On most scales, the ability of
Figure 11(b) to distinguish between bearing faults is not

Fan end bearing Electric motor Drive end bearing Torque sensor Power tester

Figure 7: +e fault simulation test platform of rolling bearing.

Table 1: +e brief information of the data.
Working condition Fault Diameter (mm) Abbreviation Training Sample Testing Sample Label
Normal Nor 28 30 1

Inner race fault

0.1778 IRF1 28 30 2
0.3556 IRF2 28 30 3
0.5334 IRF3 28 30 4
0.1778 ORF1 28 30 5

Outer race fault
0.3556 ORF2 28 30 6
0.5334 ORF3 28 30 7
0.1778 BF1 28 30 8

Ball fault 0.3556 BF2 28 30 9
0.5334 BF3 28 30 10
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satisfactory. Especially for IRF1 and BF1 samples, the curves
of these two samples have obvious aliasing, so it is difficult to
distinguish these two fault states. Figure 11(c) has a relatively
obvious degree of discrimination, but its entropy deviation is

obviously larger, that is, the error is larger. Compared with
Figure 11(a), Figure 11(d) has significantly worse ability to
distinguish samples from each state, and the entropy de-
viation is also larger, which indicates that its performance is
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Figure 11: Continued.
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unstable and its reliability is low. +e entropy curves of the
six samples in Figure 11(e) are obviously aliased, and the
ability to distinguish these samples is very poor. Figure 11(f )
has excellent performance, but it can be found that its
entropy deviation is slightly larger than that of Figure 11(a),
and the stability is insufficient, so its performance is weaker
than Figure 11(a). Figure 11(g) can effectively distinguish
between ORF1 and ORF3 samples, while the ability to
distinguish other samples is weaker than Figure 11(a). But it
can be found that the entropy deviation of Figure 11(g) is
smaller, that is, the stability and reliability are better. +is is
mainly because the vibration signal of the fan end also
contains the vibration information of the bearing during
operation. As the Figure 11(g) integrates the information of
two bearings, it has a relatively excellent effect. In summary,
using RCGmvMAAPE to analyze multichannel data com-
posed of high and low resonance components can achieve
very excellent results, and the effect is even better than that of
data composed of vibration signals from the drive end and
the fan end.

To compare the performance of the abovementioned
seven feature extraction models from a more intuitive
perspective, the t-stochastic neighbor embedding (t-SNE)
method is used for auxiliary analysis. +e t-SNE approach is
adopted to project the original features into a two-dimen-
sional space. +e visualization of the features extracted by
the seven methods is 1 in Figure 12. Observed from Fig-
ure 12, the features of the same category in Figure 12(a) are
accurately clustered, and samples of different categories are
separated from each other, that is, the features are highly
distinguishable. However, the distinguishability of features
extracted based on other six models is weak, and some

samples are aliased with each other, which makes it difficult
to distinguish their categories. Comparing Figures 12(e) and
12(f), It can be observed that the visualization effect of
Figure 12(f ) is better than Figure 12(e), which shows that the
low resonance component contains more fault information,
so the extracted quality is higher. In addition, by comparing
Figures 12(a) and 12(g), it can be found that the visualization
effect of Figure 12(a) is better, while the BF2 and BF3
samples in Figure 12(g) show obvious aliasing, and the
distribution of samples in the same category is relatively
scattered, without obvious clustering center. +erefore, by
visualizing the features, it can be proved that using
RCGmvMAAPE to extract features from multivariate data
composed of high resonance components and low resonance
components has a better effect, which proves the reliability
and effectiveness of the raised approach.

4.1.3. Fault Recognition. To quantify the performance of the
above seven feature extraction models on rolling bearing
fault diagnosis, the state features excavated by the seven
approaches are input into the DBN recognizer for fault
classification. +e confusion matrix is a tool for describing
the performance of a classification model. It contains in-
formation about the actual and predicted classifications
completed by the classification model, which can be used to
evaluate the performance of the classification model. By
observing the confusion matrix, the detailed classification
results of each category can be clear.+e confusion matrix of
the seven feature extraction models is displayed in Figure 13.
Observed from Figure 13, the proposed fault diagnosis
method achieves the best fault recognition rate, and samples
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Figure 11: +e entropy results of rolling bearing data analyzed by using seven methods.

Shock and Vibration 17



-30

-20

-10

0

10

20

30

40

50

Y

-30 -20 -10 0 10 20 30-40
X

IRF1
BF1
ORF1
IRF2
BF2

ORF2
IRF3
BF3
ORF3
Nor

(a)

-50

-40

-30

-20

-10

0

10

20

30

40

Y

-50 -30 -20 -10 0 10 20 30-40
X

IRF1
BF1
ORF1
IRF2
BF2

ORF2
IRF3
BF3
ORF3
Nor

(b)

-50

-40

-30

-20

-10

0

10

20

30

Y

-30 -20 -10 0 10 20 30-40
X

IRF1
BF1
ORF1
IRF2
BF2

ORF2
IRF3
BF3
ORF3
Nor

(c)

-50

-40

-30

-20

-10

0

10

20

30

Y

-30 -20 -10 0 10 20 30-40
X

IRF1
BF1
ORF1
IRF2
BF2

ORF2
IRF3
BF3
ORF3
Nor

(d)

Figure 12: Continued.

18 Shock and Vibration



of all categories are accurately classified. However, the
classification accuracy of several other feature extraction
models is lower than the proposed method. Corresponding
to the previous analysis, the classification accuracy of
Figure 13(e) is poor, and only a fault recognition rate of
90.33% has been achieved. Except for the Nor, IRF3 and
ORF1 samples, the fault recognition rates of the other
categories of samples are all lower than 100%.+is is because

after RSSD decomposes the vibration signal, most of the
vibration information is concentrated in the low resonance
component, and the high resonance component contains
less fault information, so the features extracted from the high
resonance component have lower quality. In addition, by
comparing Figures 13(a) and 13(g), it can be noticed that the
multichannel data composed of vibration signals from the
driver end and fan end does not achieve the best recognition
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Figure 12: +e two-dimensional feature visualization map obtained by t-SNE.
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effect, and its performance is weaker than the multichannel
data composed of high resonance components and low
resonance components. +is proves that the RSSD de-
composition can eliminate the interference in the signal. In
summary, the proposed feature extraction model has ex-
cellent performance and can accurately identify various
types of faults.

+ere may be errors in performing only a single clas-
sification experiment, and the performance of the proposed
method cannot be reliably evaluated. +erefore, 20 trials was
repeated to reduce the deviation caused by randomness and
other factors. +e results of seven feature extraction models
in 20 trials are shown in Figure 14 and Table 2. Seen from
Figure 14 and Table 2, the raised approach has the highest
accuracy rate, and the average accuracy rate is 100%, that is,
there are no misclassified samples in each classification.
However, the classification accuracy of the other methods
fluctuates, and the effect of each classification cannot be
accurately estimated, that is, the stability is poor. Besides,
comparing the feature extraction methods based on
RCmvMSE and mvMAAPE, it can be found that the per-
formance of the latter is better than the former. +is shows
that although the former adopts a fine composite coarse-
graining process with excellent performance, mvAAPE has a
stronger feature extraction performance thanmvSE, so it can
make up for the shortcomings of the traditional coarse-
graining process. In addition, the diagnostic performance of
each model is consistent with the previous visual analysis,
that is, the performance of the model can be roughly judged
by observing the distribution of each feature. In general, the
proposed feature extraction model still has the best per-
formance after many experiments, which proves its
reliability.

+is part mainly verifies the advantages of using RSSD to
preprocess the signal. Typical signal decomposition

techniques such as EEMD, LMD, and LCD are used to
process vibration signals. Here, the first two components
decomposed by each method are regarded as the compo-
nents containing the main fault information to construct a
multivariate signal. +e subsequent processing steps are
same with the presented approach. +e diagnostic results of
the four signal decomposition approaches under 20 trials are
shown in Figure 15. Seen from Figure 15, the signal de-
composition method based on HHO-RSSD achieves the best
results, proving that the parameter-optimized RSSD has
great application potential. +e accuracy of the other three
methods fluctuates, and the possibility of misclassification
appears in each trial. +e reason for this phenomenon is that
the components decomposed by these three methods are of
low quality, which affects the quality of extracted features. In
short, as long as the parameters of the RSSD are reasonably
selected, it can achieve very excellent results.

To explore the superiority of the DBN over other
typical classifiers, the state features excavated by the
proposed method are input into the typical recognizer.
+e selected classifiers are SVM, ELM, and Back Propa-
gation Neural Network (BP). For convenience, the pre-
vious seven feature extraction models are marked as
(a)–(g). +e number of training samples and test samples
remains the same. +e results of these seven feature ex-
traction models using different classifiers are shown in
Table 3. Seen from Table 3, the DBN recognizer used is the
best. +e average recognition accuracy of DBN for the
seven feature extraction models is 96.38%, which is higher
than the other three classifiers, which proves its effec-
tiveness and advantages. In addition, no matter what
classifier is used, the recognition rate of the feature ex-
traction model (a) is also the highest, with an average
accuracy rate of 99.34%, which proves the advantages of
this model over other models once again.
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Figure 13: +e confusion matrix of the seven feature extraction models.
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4.2. Case 2

4.2.1. Data Acquisition. +e gearbox vibration data was
collected on the QPZZ experimental platform [31]. +e
appearance and structure of the gearbox platform are dis-
played in Figure 16. +e platform is made up of gearboxes,
motors, bases and sensors. +e sensor is arranged directly
above the gear box. +e rotating speed of the motor is set to
880 rpm. Five operating states were set up in the experiment:
normal, gear pitting fault, gear broken tooth fault, gear
wearing fault, gear pitting fault coupling with wearing fault.
+e brief information of the experimental data is displayed
in Table 4. +e sampling frequency of the sensor is set to
5.12 kHz, and the sampling time is 6 s. Due to the small
amount of data, to ensure the accuracy of analysis, a sliding
sampling method is adopted to select samples. +e signal of
the bearing Y on the motor side of the input shaft is used for
analysis. In the subsequent multichannel analysis, the

vibration signals of the input shaft motor side bearing Y and
the output shaft load side bearing Y are selected for analysis.
+e collected vibration signals are divided into 52 groups of
samples after sliding sampling. Each group contains 2048
data points, of which 22 groups are adopted as the training
data, and the remaining samples are adopted as the test data.
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Figure 14: +e diagnostic result of the seven feature extraction models in 20 trials.

Table 2: Recognition result of seven methods in 20 trials.

Methods

Accuracy obtained
using diverse
approaches (%) SD

Max Min Mean
+e presented approach 100 100 100 0
RCmvMPE 100 97 98.42 0.786
RCmvMSE 94.67 92.33 93.55 0.744
mvMAAPE 97 95 96.08 0.639
RCGMAAPE_High 92 89 90.63 0.885
RCGMAAPE_Low 98 96.33 97.08 0.483
RCGmvMAAPE_Drive_Fan 100 98 99.02 0.669
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4.2.2. Feature Excavation. Figure 17 shows the waveforms of
vibration data in five states of the gearbox. Similarly, due to
the lack of obvious rules and characteristics of the waveform,
it is hard to easily judge the fault status. +erefore, it is
necessary to carry out subsequent processing on the data to
acquire more and more distinguishable features.

Similarly, this part first studies how to obtain the best
parameters of RSSD. First, input the gear vibration signal
into HHO-RSSD for decomposition, and execute the pa-
rameter optimization process. Taking the Nor signal as an
example, the optimization process ends when the correlation
kurtosis value is the smallest. +en, after parameter opti-
mization, a set of optimal parameters was obtained,
Q1 � 9.336, Q2 � 1.319, A1 � 1.23, A2 � 0.11, and
u � 0.377,respectively. Figure 18 is the evolution curve of
fitness value in the optimization procedure of HHO. Seen
from Figure 18, HHO could quickly reach a local optimal
value, and this value is finally determined to be the global
optimal value. +erefore, this shows that HHO can optimize
the target from the global scope, so as to find an optimal

solution.+en, the optimal parameter combination obtained
by optimization is input into the RSSD, and the vibration
signal is decomposed to acquire the high and low resonance
components. +e RSSD decomposition result of Nor is
shown in Figure 19.

+e high and low resonance components are taken as a
multichannel time series. +en, RCGmvMAAPE is adopted
to excavate the fault features of the constructedmultivariable
data to construct the fault samples. Moreover, to validate the
superiority of the raised RCGmvMAAPE approach, it is
compared with RCmvMPE, RCmvMSE, mvMAAPE, and
RCGMAAPE. +e entropy results of seven methods are
displayed in Figures 20(a)∼20(g). Here, the method used in
each figure is consistent with the previous experiment. Seen
from Figure 20, compared with several other feature ex-
traction models, the standard deviation of the entropy value
of Figure 20(a) is smaller and the performance is more stable.
+e distinguishability of several other features is also very
strong, but the entropy deviation is generally large, and the
error bar has obvious aliasing.+is phenomenon proves that

Table 3: +e diagnostic results obtained by combining seven models with four classifiers.

Classifier model +e accuracy of test sample with different feature extraction model (%) Average accuracy(a) (b) (c) (b) (e) (f ) (g)
DBN 100 98.67 93.33 96 91.33 96.67 98.67 96.38
SVM 100 97.67 94.67 93.33 90 95.33 97.33 95.48
ELM 99.67 95.33 91 95.33 88.67 94.67 97 94.52
BP 97.67 92 89.33 92.67 90.67 93.33 96 93.10
Average accuracy 99.34 95.92 92.08 94.33 90.18 95 97.25 _

AC motor Iron base Gearbox Sensor position MPB

Figure 16: +e gearbox test platform.

Table 4: +e brief information of gear vibration data.
Fault state Abbreviation Training sample Testing sample Label
Normal Nor 22 30 1
Gear wearing fault WF 22 30 2
Gear pitting fault PF 22 30 3
Gear tooth breaking fault TBF 22 30 4
Gear pitting & wearing fault PWF 22 30 5
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although the features have obvious discrimination, the
performance fluctuates greatly, which is not conducive to
subsequent classification. +e proposed model can distin-
guish each fault state better, and has a small entropy de-
viation on most scales, so it has not only strong separability,
but also has stable performance.

Similarly, t-SNE is used for auxiliary analysis to intui-
tively compare the performance of the above seven feature
extraction models.+e visualization of the features extracted
by the seven methods is displayed in Figure 21. Observed
from Figure 21, the WF sample and the TBF sample in
Figure 21(a) are partially aliased, and the distribution of
these two categories is relatively scattered, that is, the
samples of these two categories have poor separability. +e
distinguishability of features extracted based on other

feature extraction models is worse, and some samples do not
even have cluster centers. Comparing Figures 21(a) and
21(g), Figure 12(g) has a better visualization effect. +e
clusters of the five categories are relatively scattered, but the
distribution of samples of the same category is relatively
scattered, and there is no obvious cluster center. By visu-
alizing the features, the quality of the features extracted by
each model can be roughly judged, and then the perfor-
mance of the model can be judged. +erefore, it can be
verified that the features of Figure 21(a) have better quality,
which proves the superiority of the presented approach.

4.2.3. Fault Recognition. For the sake of quantifying the
performance of the above seven fault feature extraction
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Figure 20: +e entropy results of gearbox data analyzed by adopting seven approaches.
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models on rolling bearing fault diagnosis, the features ex-
cavated by the seven approaches are input into the DBN
recognizer for fault classification. +e confusion matrix of
the seven feature extractionmodels is presented in Figure 22.
Observed from Figure 22, some WF samples and TBF
samples were misclassified. One WF sample was mis-
classified to TBF, and two TBF samples were misclassified to
WF. +e accuracy of a single classification is 98%, which is
still reliable. +e performance of several other feature ex-
traction models is weaker than the proposed model, which is
also consistent with the previous t-SNE analysis. In addition,
the fault recognition rate of Figure 22(g) is better than
Figure 21(a), reaching 98.67%. +is is mainly because the
gear vibration data usually includes multiple channels, and
its operating information is distributed in multiple direc-
tions. Key feature will inevitably be missed when the signal
of a single channel is used for analysis. Although
Figure 22(g) only analyzes the original multichannel vi-
bration signal without corresponding processing, the rich
vibration information contained in the multichannel signal
can provide enough features for judging the fault state. +e
proposed feature extraction model only uses a single-
channel vibration signal, but can achieve a fault recognition
rate of 98%, which is satisfactory to a certain extent.
Comparing Figure 22(e) and Figure 22(f), the analysis of low
resonance components has achieved better results, which is
also consistent with the results of the previous experiment.
+is shows that the main fault information after RSSD
decomposition is concentrated on the low resonance
component, while the high resonance component contains
less fault information.

By comparing Figures 22(a) and 22(f), it can be found
that only a single experiment may not be able to estimate the
effectiveness of the approach reliably, that is, a single

experiment has strong randomness. +erefore, 20 trials was
repeated to reduce the deviation caused by randomness and
other factors. +e results of seven feature extraction models
in 20 trials are shown in Figure 23 and Table 5. Seen from
Figure 23 and Table 5, the proposed model achieves the best
classification results, with an average accuracy rate of
98.10%, of which the highest is 100% and the lowest is 96%.
Although the recognition rate has obvious fluctuations, it is
generally reliable. +e other six methods fluctuate sharply,
especially the fifth feature extraction model, with a standard
deviation as high as 2.191. Such a high deviation proves that
the performance of the method is quite unstable, and the
classification result is not very reliable. In addition, it can be
found that the performance of the method proposed in this
paper is better than that of the seventh model, which is
consistent with the previous analysis, that is, a single ex-
periment is not convincing. As the number of classifications
increases, the proposed model has higher stability and
performance. +erefore, it can be guaranteed that it is re-
liable in most classifications, while the performance stability
of the seventh model is weaker than the proposed model, so
the overall performance of the proposed method is excellent.

+is part mainly verifies the advantages of using RSSD to
preprocess the signal. Typical signal decomposition tech-
niques such as EEMD, LMD, and LCD are used to process
vibration signals. Here, the first two components decom-
posed by each method are regarded as the components
containing the main fault information to construct a mul-
tivariate signal. +e subsequent processing steps are same
with the presented approach. +e diagnostic results of the
four signal decomposition approaches under 20 trials are
shown in Figure 24. Seen from Figure 24, the signal de-
composition method based on HHO-RSSD achieves the best
results, proving that the parameter-optimized RSSD has
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Figure 21: +e two-dimensional feature visualization map obtained by t-SNE.
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Figure 22: Continued.
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great application potential. +e accuracy of the other three
methods fluctuates, and the possibility of misclassification
appears in each trial. +is proves that HHO-RSSD has ex-
cellent signal analysis performance. By decomposing the
signal, it can reduce the influence of interference compo-
nents in the signal on feature extraction. +erefore, it is
necessary and effective to use HH0-RSSD to process the
signal.

Similarly, this part is used to study the advantages of
choosing DBN as a classifier, so three typical classifiers are
also selected for comparison. Here, the ratio of the test and
training samples remains the same. Similarly, for

convenience, the previous seven feature extraction models
are marked as (a)–(g). +e results of these seven feature
extraction models using different classifiers are shown in
Table 6. Seen from Table 6, the DBN recognizers obtain the
highest recognition rate.+e average recognition accuracy of
DBN for the seven feature extraction models is 93.71%,
which is higher than the other three classifiers, which proves
its effectiveness and advantages. In addition, no matter what
classifier is used, the recognition rate of the feature ex-
traction model (a) is also the highest, with an average ac-
curacy rate of 99%, which proves the advantages of this
model over other models once again.
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Figure 22: +e confusion matrix of the seven feature extraction models.
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Table 5: Recognition result of seven methods in 20 trials.

Methods Accuracy obtained using diverse approaches (%) SDMax Min Mean
+e presented approach 100 96 98.10 1.247
RCmvMPE 96.67 92 94.73 1.400
RCmvMSE 92 87.33 89.73 1.520
mvMAAPE 90 83.33 86.70 2.124
RCGMAAPE_High 90.67 82.67 87.47 2.191
RCGMAAPE_Low 96.67 91.33 93.73 1.696
RCGmvMAAPE_Drive_Fan 99.63 94.67 96.88 1.701
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5. Conclusion

At present, typical health detection approach on the basis of
signal processing and entropy are usually as follows: (1)
Multiscale entropy of a single component; (2) Single entropy
of multiple components; (3) Multiscale entropy of multiple
components;+ese three types have some defects that can be
improved. For example, the fault features extracted by the
first two approaches are not comprehensive and sufficient,
which may cause information omission. Although the third
method can extract very comprehensive features, it may
cause the dimensionality to be too large, and usually requires
dimensionality reduction. +us, a novel multiscale feature
extraction method is proposed. First, the RSSD algorithm
optimized by HHO is adopted to decompose the single-
channel signal into high and low resonance components.
+en use these two components as multichannel data and
perform RCGmvMAAPE analysis to extract fault features.
Eventually, the features are input to the DBN classifier for
identification. Based on two rotating machinery vibration
data sets, six different feature extraction models are utilized
to compare with the presented approach. Experimental
results show that the raised model can obtain a higher fault
recognition rate and a higher utilization rate of information
when only using a single channel vibration signal. Subse-
quently, to prove the superiority of the RSSD, three classic
signal decomposition algorithms were used for comparative
analysis, and the results proved that HHO-RSSD has sat-
isfactory performance.
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