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Black hole (BH) is perhaps the most fascinating object in
the research fields of astrophysics and gravitational physics.
This mysterious object is predicted by the general theory of
relativity (GTR), but such a classical theory cannot explain all
its properties. It is believed that only amore general, definitive
theory of quantum gravity, which should unify GTR with
quantum mechanics, should clarify all the mysteries of BH
physics, starting from the unsolved problem of the singularity
in the BH’s core to arrive to the BH information puzzle and
to the last stages of the BH evaporation, where very high
energies are involved. In fact, it is general conviction that
black holes result in highly excited states representing both
the “hydrogen atom” and the “quasi-thermal emission” in
quantum gravity. On this issue we recall that an exciting con-
sequence of TeV-scale quantum gravity could be the potential
production of mini-BHs in high-energy experiments, like the
LHC and beyond.

This special issue on BH physics consists of 17 interesting
and well written papers.

The paper “A little quantum help for cosmic censorship and
a step beyond all that”, by N. Pappas, discusses the weak and
strong versions of the cosmic censorship conjecture and also
deals with the well-known problem of naked singularities.

The paper “On the critical phenomena and Thermody-
namics of the Reissner-Nordstrom-de Sitter black hole,” by R.
Zhao et al., deals with the effective thermodynamic quantities
in Reissner-Nordstrom-de Sitter BH by also discussing its
thermodynamic stability.

The paper “Intermediate mass black holes: their motion
and associated energetics,” by C. Sivaram and A. Kenath,
is devoted to exploring the astrophysical signatures and
evidences for the intermediate mass BHs. Especially authors
describe the specific features of their motion and energetics,
related with the Bondi accretion.

The paper “Energy Loss of a heavy particle near 3d rotating
hairy black hole,” by J. Naji and H. Saadat, considers rotating
BH in 3 dimensions with a scalar charge and discusses energy
loss of heavy particle moving near the BH horizon.

The paper “Holographic screens in ultraviolet self-complete
quantum gravity,” by P. Nicolini and E. Spallucci, investigates
the idea of a short distance fundamental scale below which
it is not possible to probe and analyzes the geometry and
thermodynamics of a holographic screen in the framework
of the ultraviolet self-complete quantum gravity.

The paper “Black holes and quantummechanics,” by B. G.
Sidharth, reconsiders BHs in the context of general relativity
critically reviewing all problems relating these phenomena.

The paper “Magnetic string with a nonlinear U(1) source,”
by Seyed H. Hendi, deals with the study of magnetic string
solutions in Einstein gravity in the presence of nonlinear
electrodynamics. Also the effects of these nonlinear fields
as well as other properties of the solutions are investigated,
precisely.

The paper “Researching on Hawking effect in a Kerr space
time via open quantum system approach,” by X.-M. Liu and
W.-B. Liu, investigates theHawking effect in aKerr space time
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in the framework of open quantum systems, showing that
Hawking effect of the Kerr space time can also be understood
as the manifestation of thermalization phenomena via open
quantum system approach.

The paper “Holograghic Brownian motion in three dimen-
sional Gödel black hole,” by J. Sadeghi et al., uses the AdS/CFT
correspondence and Gödel BH background to study the
dynamics of heavy quark under a rotating plasma.

The paper “Entropy spectrum of a KS black hole in IR
modified Hovrava-Lifshitz gravity,” by S. Zhou et al., discusses
the entropy spectrum and area spectrum of a KS BH based
on the proposal of adiabatic invariant quantity. It is found
that that the entropy spectrum is discrete and equidistant
spaced and the area spectrum is not equidistant spaced,
which depends on the parameter of gravity theory.

The paper “Particle collisions in the lower dimensional
rotating black hole space-time with the cosmological constant,”
by J. Yang et al., deals with the effect of ultrahigh energy
collisions of two particles with different energies near the
horizon of a 2 + 1 dimensional BTZ BH (BSW effect), finding
that the particle with the critical angular momentum could
exist inside the outer horizon of the BTZ BH regardless of the
particle energy.

The paper “The geometry of black hole singularities,” by O.
C. Stoica, is a review about singularity problem in general and
BH singularity in particular. The importance of dimensional
reduction effects is also stressed.

The paper “State-space geometry, statistical fluctuations
and black holes in string theory,” by S. Bellucci and B. N.
Tiwari, considers statistical properties of the charged and
anticharged BH configurations by using the notion of the
thermodynamic geometry. The authors highlight the utility
of thermodynamic geometry in understanding the state space
correlations and fluctuations in BHs in string theory while
treating them thermodynamically.

The paper “Quantum tunnelling for Hawking radiation
from both static and dynamic black hole,” by S. Chakraborty
and S. Saha, deals with the well-known Hawking radiation
and quantum corrections in order to further improve the
theory from the semiclassical approach.The authors specially
study the Hawking radiation from both static and nonstatic
spherically symmetric BHs.

The paper “Electrostatics in the surroundings of a topolog-
ically charged black hole in the brane,” by A. Larrañaga et al.,
studies the EM properties of 4D BH due to brane contribu-
tions, determining the electrostatic potential generated by a
static point-like charge in the brane-world space-time of a BH
with topological (or tidal) charge.

The paper “Analyzing black hole super-radiance emission
of particles/energy from a black hole as a Gedankenexper-
iment to get bounds on the mass of a graviton,” by A.
Beckwith, discusses the process of particles emission and
adopted a standard approach proposed by Padmanabhan. In
the author’s point of view “super-radiance allows massive
gravity to be consistent with BH physics and general relativ-
ity.”

The paper “Hawking radiation-quasi-normal modes cor-
respondence and effective states for non-extremal Reissner-
Nordstrom black holes,” by C. Corda et al., investigates

the correspondence between Hawking radiation and BH
quasi-normal modes and defines the concept of “effective
state” for the non-extremal Reissner-Nordstrom black holes.
The work is the extension of earlier works of the same
research group and contributes to the understanding of the
quantum properties of BHs.

Xiaoxiong Zeng
Christian Corda

Deyou Chen
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We study the state-space geometry of various extremal and nonextremal black holes in string theory. From the notion of the
intrinsic geometry, we offer a state-space perspective to the black hole vacuum fluctuations. For a given black hole entropy,
we explicate the intrinsic geometric meaning of the statistical fluctuations, local and global stability conditions, and long range
statistical correlations. We provide a set of physical motivations pertaining to the extremal and nonextremal black holes, namely,
the meaning of the chemical geometry and physics of correlation. We illustrate the state-space configurations for general charge
extremal black holes. In sequel, we extend our analysis for various possible charge and anticharge nonextremal black holes. From
the perspective of statistical fluctuation theory, we offer general remarks, future directions, and open issues towards the intrinsic
geometric understanding of the vacuum fluctuations and black holes in string theory.

1. Introduction

In this paper, we study statistical properties of the charged
and anticharged black hole configurations in string theory.
Specifically, we illustrate that the components of the vacuum
fluctuations define a set of local pair correlations against
the parameters, for example, charges, anticharges, mass,
and angular momenta. Our consideration follows from the
notion of the thermodynamic geometry, mainly introduced
by Weinhold [1, 2] and Ruppeiner [3–9]. Importantly, this
framework provides a simple platform to geometrically
understand the statistical nature of local pair correlations
and underlying structures pertaining to the vacuum phase
transitions. In diverse contexts, the state-space geometric
perspective offers an understanding of the phase structures
of mixtures of gases, black hole configurations [10–26],
generalized uncertainty principle [27], strong interactions,
for example, hot QCD [28], quarkonium configurations [29],
and some other systems, as well.

The main purpose of the present paper is to consider
the state-space properties of various possible extremal and

nonextremal black holes in string theory, in general. String
theory [30], as the most promising framework to understand
all possible fundamental interactions, celebrates the physics
of black holes, in both the zero and the nonzero temperature
domains. Our consideration hereby plays a crucial role
in understanding the possible phases and stability of the
string theory vacua. A further motivation follows from the
consideration of the string theory black holes; namely,N = 2

supergravity arises as a low energy limit of the Type II string
theory solution, admitting extremal black holes with the zero
Hawking temperature and a nonzero macroscopic attractor
entropy.

A priori, the entropy depends on a large number of
scalar moduli arising from the compactification of the 10-
dimensional theory down to the 4-dimensional physical
spacetime. This involves a 6-dimensional compactifying
manifold. Interesting string theory compactifications involve
𝑇

6, 𝐾
3
× 𝑇

2, and Calabi-Yau manifolds. The macroscopic
entropy exhibits a fixed point behavior under the radial
flow of the scalar fields. In such cases, the near horizon
geometry of an extremal black hole turns out to be an
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𝐴𝑑𝑆
2
× 𝑆

2 manifold which describes the Bertotti-Robinson
vacuum associated with the black hole. The area of the black
hole horizon is 𝐴 and thus the macroscopic entropy [31–
42] is given as 𝑆macro = 𝜋|𝑍

∞
|

2. This is known as the
Ferrara-Kallosh-Strominger attractor mechanism, which, as
the macroscopic consideration, requires a validity from the
microscopic or statistical basis of the entropy. In this concern,
there have been various investigations on the physics of black
holes, for example, horizon properties [43, 44], counting
of black hole microstates [45–47], spectrum of half-BPS
states in N = 4 supersymmetric string theory [48], and
fractionation of branes [49]. From the perspective of the
fluctuation theory, our analysis is intended to provide the
nature of the statistical structures of the extremal and nonex-
tremal black hole configurations.The attractor configurations
exist for the extremal black holes, in general. However, the
corresponding nonextremal configurations exist in the throat
approximation. In this direction, it is worth mentioning that
there exists an extension of Sen entropy function formalism
for 𝐷

1
𝐷
5
and 𝐷

2
𝐷
6
𝑁𝑆
5
nonextremal configurations [50–

52]. In the throat approximation, these solutions, respectively,
correspond to Schwarzschild black holes in 𝐴𝑑𝑆

3
× 𝑆

3
× 𝑇

4

and 𝐴𝑑𝑆
3
× 𝑆

2
× 𝑆

1
× 𝑇

4. In relation with the intrinsic state-
space geometry, we will explore the statistical understanding
of the attractor mechanism and the moduli space geometry
and explain the vacuum fluctuations of the black brane
configurations.

In this paper, we consider the state-space geometry of
the spherical horizon topology black holes in four spacetime
dimensions. These configurations carry a set of electric mag-
netic charges (𝑞

𝑖
, 𝑝
𝑖
). Due to the consideration of Strominger

and Vafa [53], these charges are associated with an ensemble
of weakly interacting D-branes. Following [53–59], it turns
out that the charges (𝑞

𝑖
, 𝑝
𝑖
) are proportional to the number of

electric andmagnetic branes, which constitute the underlying
ensemble of the chosen black hole. In the large charge limit,
namely, when the number of such branes becomes large,
we have treated the logarithm of the degeneracy of states
of the statistical configuration as the Bekenstein-Hawking
entropy of the associated string theory black holes. For the
extremal black holes, the entropy is described in terms of
the number of the constituent D-branes. For example, the
two charge extremal configurations can be examined in terms
of the winding modes and the momentum modes of an
excited string carrying 𝑛

1
windingmodes and 𝑛

𝑝
momentum

modes. Correspondingly, the state-space geometry of the
nonextremal black holes is described by adding energy to
the extremal D-branes configurations. This renders as the
contribution of the clockwise and anticlockwise momenta in
the Kaluza-Klein scenarios and that of the antibrane charges
in general to the black hole entropy.

From the perspective of black hole thermodynamics, we
describe the structure of the state-space geometry of four-
dimensional extremal and nonextremal black holes in a given
duality frame. Thus, when we take arbitrary variations over
the charges (𝑞

𝑖
, 𝑝
𝑖
) on the electric and magnetic branes, the

underlying statistical fluctuations are described by only the
numbers of the constituent electric and magnetic branes.

From the perspective of the intrinsic state-space geometry,
if one pretends that the notion of statistical fluctuations
applies to intermediate regimes of the moduli space, then
the attractor horizon configurations require an embedding
to the higher dimensional intrinsic Riemanian manifold.
Physically, such a higher dimensionalmanifold can be viewed
as a possible blow-up of the attractor fixed point phase-
space to a nontrivial moduli space. From the perspective
of thermodynamic Ruppenier geometry, we have offered
future directions and open issues in the conclusion. We leave
the explicit consideration of these matters open for further
research.

In Section 2, we define the general notion of vacuum
fluctuations. This offers the physical meaning of the state-
space geometry. In Section 3, we provide a brief review of
statistical fluctuations. In particular, for a given black hole
entropy, we firstly explicate the statistical meaning of state-
space surface and then offer the general meaning of the
local and global stability conditions and long range statistical
correlations. In Section 4, we provide a set of physical
motivations pertaining to the extremal and nonextremal
black holes, the meaning of Wienhold chemical geometry,
and the physics of correlation. In Section 5, we consider
state-space configurations pertaining to the extremal black
holes and explicate our analysis for the two and three charge
configurations. In Section 6, we extend the above analysis for
the four, six, and eight charge-anticharge nonextremal black
holes. Finally, Section 7 provides general remarks, conclusion
and outlook, and future directions and open issues towards
the application of string theory.

2. Definition of State-Space Geometry

Considering the fact that the black hole configurations in
string theory introduce the notion of vacuum, it turns out
for any thermodynamic system, that there exist equilibrium
thermodynamic states given by the maxima of the entropy.
These states may be represented by points on the state-space.
Along with the laws of the equilibrium thermodynamics,
the theory of fluctuations leads to the intrinsic Riemannian
geometric structure on the space of equilibrium states [8, 9].
The invariant distance between two arbitrary equilibrium
states is inversely proportional to the fluctuations connecting
the two states. In particular, a less probable fluctuationmeans
that the states are far apart. For a given set of states {𝑋

𝑖
}, the

state-space metric tensor is defined by

𝑔
𝑖𝑗 (
𝑋) = −𝜕𝑖

𝜕
𝑗
𝑆 (𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
) . (1)

A physical motivation of (1) can be given as follows. Up to
the second order approximation, the Taylor expansion of the
entropy 𝑆(𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑛
) yields

𝑆 − 𝑆
0
= −

1

2

𝑛

∑

𝑖=1

𝑔
𝑖𝑗
Δ𝑋

𝑖
Δ𝑋

𝑗
, (2)

where

𝑔
𝑖𝑗
:= −

𝜕

2
𝑆 (𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
)

𝜕𝑋

𝑖
𝜕𝑋

𝑗
= 𝑔
𝑗𝑖

(3)
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is called the state-space metric tensor. In the present investi-
gation, we consider the state-space variables {𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑛
}

as the parameters of the ensemble of the microstates of
the underlying microscopic configuration (e.g., conformal
field theory [60], black hole conformal field theory [61], and
hidden conformal field theory [62, 63]), which defines the
corresponding macroscopic thermodynamic configuration.
Physically, the state-space geometry can be understood as the
intrinsic Riemannian geometry involving the parameters of
the underlying microscopic statistical theory. In practice, we
will consider the variables {𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑛
} as the parameters,

namely, charges, anticharges, and others if any, of the corre-
sponding low energy limit of the string theory, for example,
N = 2 supergravity. In the limit, when all the variables,
namely, {𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑛
}, are thermodynamic, the state-space

metric tensor equation (1) reduces to the corresponding
Ruppenier metric tensor. In the discrete limit, the relative
coordinates Δ𝑋𝑖 are defined as Δ𝑋𝑖 := 𝑋𝑖 − 𝑋𝑖

0
, for given

{𝑋

𝑖

0
} ∈ 𝑀

𝑛
. In the Gaussian approximation, the probability

distribution has the following form:

𝑃 (𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
) = 𝐴 exp(−1

2

𝑔
𝑖𝑗
Δ𝑋

𝑖
Δ𝑋

𝑗
) . (4)

With the normalization

∫∏

𝑖

𝑑𝑋
𝑖
𝑃 (𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
) = 1, (5)

we have the following probability distribution:

𝑃 (𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
) =

√𝑔 (𝑋)

(2𝜋)

𝑛/2
exp(−1

2

𝑔
𝑖𝑗
𝑑𝑋

𝑖
⊗ 𝑑𝑋

𝑗
) , (6)

where 𝑔
𝑖𝑗
now, in a strict mathematical sense, is properly

defined as the inner product 𝑔(𝜕/𝜕𝑋𝑖, 𝜕/𝜕𝑋𝑗) on the corre-
sponding tangent space 𝑇(𝑀

𝑛
) ×𝑇(𝑀

𝑛
). In this connotation,

the determinant of the state-space metric tensor,

𝑔 (𝑋) :=







𝑔
𝑖𝑗







, (7)

can be understood as the determinant of the corresponding
matrix [𝑔

𝑖𝑗
]
𝑛×𝑛

. For a given state-space manifold (𝑀
𝑛
, 𝑔), we

will think of {𝑑𝑋𝑖} as the basis of the cotangent space𝑇⋆(𝑀
𝑛
).

In the subsequent analysis, by taking an account of the fact
that the physical vacuum is neutral, we will choose𝑋𝑖

0
= 0.

3. Statistical Fluctuations

3.1. Black Hole Entropy. As a first exercise, we have illustrated
thermodynamic state-space geometry for the two charge
extremal black holes with electric charge 𝑞 and magnetic
charge 𝑝. The next step has thence been to examine the
thermodynamic geometry at an attractor fixed point(s) for
the extremal black holes as the maxima of their macro-
scopic entropy 𝑆(𝑞, 𝑝). Later on, the state-space geometry
of nonextremal counterparts has as well been analyzed.
In this investigation, we demonstrate that the state-space
correlations of nonextremal black holes modulate relatively
more swiftly to an equilibrium statistical basis than those of
the corresponding extremal solutions.

3.2. State-Space Surface. The Ruppenier metric on the state-
space (𝑀

2
, 𝑔) of two charge black holes is defined by

𝑔
𝑞𝑞
= −

𝜕

2
𝑆 (𝑞, 𝑝)

𝜕𝑞

2
, 𝑔

𝑞𝑝
= −

𝜕

2
𝑆 (𝑞, 𝑝)

𝜕𝑞𝜕𝑝

,

𝑔
𝑝𝑝
= −

𝜕

2
𝑆 (𝑞, 𝑝)

𝜕𝑝

2
.

(8)

Subsequently, the components of the state-space metric
tensor are associated with the respective statistical pair
correlation functions. It is worth mentioning that the coor-
dinates on the state-space manifold are the parameters of
the microscopic boundary conformal field theory which is
dual the black hole space-time solution. This is because
the underlying state-space metric tensor comprises of the
Gaussian fluctuations of the entropy which is the function
of the number of the branes and antibranes. For the chosen
black hole configuration, the local stability of the underly-
ing statistical system requires both principle minors to be
positive. In this setup, the diagonal components of the state-
space metric tensor, namely, {𝑔

𝑥𝑖𝑥𝑖
| 𝑥
𝑖
= (𝑛,𝑚)}, signify the

heat capacities of the system. This requires that the diagonal
components of the state-space metric tensor

𝑔
𝑥𝑖𝑥𝑖
> 0, 𝑖 = 𝑛,𝑚, (9)

be positive definite. In this investigation, we discuss the
significance of the above observation for the eight parameter
nonextremal black brane configurations in string theory.
From the notion of the relative scaling property, we will
demonstrate the nature of the brane-brane pair correlations;
namely, from the perspective of the intrinsic Riemannian
geometry, the stability properties of the eight parameter black
branes are examined from the positivity of the principle
minors of the space-state metric tensor. For the Gaussian
fluctuations of the two charge equilibrium statistical configu-
rations, the existence of a positive definite volume form on
the state-space manifold (𝑀

2
(𝑅), 𝑔) imposes such a global

stability condition. In particular, the above configuration
leads to a stable statistical basis if the determinant of the state-
space metric tensor,






𝑔






= 𝑆
𝑛𝑛
𝑆
𝑚𝑚
− 𝑆

2

𝑛𝑚
, (10)

remains positive. Indeed, for the two charge black brane
configurations, the geometric quantities corresponding to the
underlying state-space manifold elucidate typical features of
the Gaussian fluctuations about an ensemble of equilibrium
brane microstates. In this case, we see that the Christoffel
connections on the (𝑀

2
, 𝑔) are defined by

Γ
𝑖𝑗𝑘
= 𝑔
𝑖𝑗,𝑘
+ 𝑔
𝑖𝑘,𝑗
− 𝑔
𝑗𝑘,𝑖
. (11)

The only nonzero Riemann curvature tensor is

𝑅
𝑞𝑝𝑞𝑝

=

𝑁

𝐷

, (12)



4 Advances in High Energy Physics

where

𝑁 := 𝑆
𝑝𝑝
𝑆
𝑞𝑞𝑞
𝑆
𝑞𝑝𝑝
+ 𝑆
𝑞𝑝
𝑆
𝑞𝑞𝑝
𝑆
𝑞𝑝𝑝

+ 𝑆
𝑞𝑞
𝑆
𝑞𝑞𝑝
𝑆
𝑝𝑝𝑝
− 𝑆
𝑞𝑝
𝑆
𝑞𝑞𝑞
𝑆
𝑝𝑝𝑝

− 𝑆
𝑞𝑞
𝑆

2

𝑞𝑝𝑝
− 𝑆
𝑝𝑝
𝑆

2

𝑞𝑞𝑝
,

(13)

𝐷 := (𝑆
𝑞𝑞
𝑆
𝑝𝑝
− 𝑆

2

𝑞𝑝
)

2

. (14)

The scalar curvature and the corresponding 𝑅
𝑖𝑗𝑘𝑙

of an
arbitrary two-dimensional intrinsic state-space manifold
(𝑀
2
(𝑅), 𝑔)may be given as

𝑅 (𝑞, 𝑝) =

2






𝑔






𝑅
𝑞𝑝𝑞𝑝

(𝑞, 𝑝) . (15)

3.3. Stability Conditions. For a given set of variables
{𝑋

1
, 𝑋

2
, . . . , 𝑋

𝑛
}, the local stability of the underlying state-

space configuration demands the positivity of the heat
capacities:

{𝑔
𝑖𝑖
(𝑋

𝑖
) > 0; ∀𝑖 = 1, 2, . . . , 𝑛} . (16)

Physically, the principle components of the state-spacemetric
tensor {𝑔

𝑖𝑖
(𝑋

𝑖
) | 𝑖 = 1, 2, . . . , 𝑛} signify a set of defi-

nite heat capacities (or the related compressibilities), whose
positivity apprises that the black hole solution complies an
underlying, locally in equilibrium, statistical configuration.
Notice further that the positivity of principle components
is not sufficient to insure the global stability of the chosen
configuration and thus one may only achieve a locally
stable equilibriumstatistical configuration. In fact, the global
stability condition constraint over the allowed domain of the
parameters of black hole configurations requires that all the
principle components and all the principle minors of the
metric tensor must be strictly positive definite [6]. The above
stability conditions require that the following set of equations
must be simultaneously satisfied:

𝑝
0
:= 1,

𝑝
1
:= 𝑔
11
> 0,

𝑝
2
:=










𝑔
11
𝑔
12

𝑔
12
𝑔
22










> 0,

𝑝
3
:=














𝑔
11
𝑔
12
𝑔
13

𝑔
12
𝑔
22
𝑔
23

𝑔
13
𝑔
23
𝑔
33














> 0,

...

𝑝
𝑛
:=






𝑔






> 0.

(17)

3.4. Long Range Correlations. The thermodynamic scalar
curvature of the state-space manifold is proportional to the
correlation volume [6]. Physically, the scalar curvature sig-
nifies the interaction(s) of the underlying statistical system.

Ruppenier has in particular noticed for the black holes in
general relativity that the scalar curvature

𝑅 (𝑋) ∼ 𝜉

𝑑
, (18)

where 𝑑 is the spatial dimension of the statistical system
and the 𝜉 fixes the physical scale [6]. The limit 𝑅(𝑋) →

∞ indicates the existence of certain critical points or phase
transitions in the underlying statistical system. The fact that
“all the statistical degrees of freedom of a black hole live
on the black hole event horizon” signifies that the state-
space scalar curvature, as the intrinsic geometric invariant,
indicates an average number of correlated Plank areas on
the event horizon of the black hole [8]. In this concern, [9]
offers interesting physical properties of the thermodynamic
scalar curvature and phase transitions in Kerr-Newman black
holes. Ruppeiner [6] has further conjectured that the global
correlations can be expressed by the following arguments: (a)
the zero state-space scalar curvature indicates certain bits of
information on the event horizon, fluctuating independently
of each other; (b) the diverging scalar curvature signals a
phase transition indicating highly correlated pixels of the
information.

4. Some Physical Motivations

4.1. Extremal Black Holes. The state-space of the extremal
black hole configuration is a reduced space comprising of
the states which respect the extremality (BPS) condition.The
state-spaces of the extremal black holes show an intrinsic
geometric description. Our intrinsic geometric analysis offers
a possible zero temperature characterization of the limiting
extremal black brane attractors. From the gauge/gravity
correspondence, the existence of state-space geometry could
be relevant to the boundary gauge theories, which have
finitely many countable sets of conformal field theory states.

4.2. Nonextremal Black Holes. We will analyze the state-
space geometry of nonextremal black holes by the addition
of antibrane charge(s) to the entropy of the corresponding
extremal black holes. To interrogate the stability of a chosen
black hole system, we will investigate the question that the
underlying metric 𝑔

𝑖𝑗
(𝑋
𝑖
) = −𝜕

𝑖
𝜕
𝑗
𝑆(𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
) should

provide a nondegenerate state-space manifold. The exact
dependence varies case to case. In the next section, we will
proceed in our analysis with an increasing number of the
brane charges and antibrane charges.

4.3. Chemical Geometry. The thermodynamic configurations
of nonextremal black holes in string theory with small
statistical fluctuations in a “canonical” ensemble are stable if
the following inequality holds:







𝜕
𝑖
𝜕
𝑗
𝑆 (𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
)







< 0. (19)

The thermal fluctuations of nonextremal black holes, when
considered in the canonical ensemble, give a closer approxi-
mation to the microcanonical entropy:

𝑆 = 𝑆
0
−

1

2

ln (𝐶𝑇2) + ⋅ ⋅ ⋅ . (20)
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In (20), the 𝑆
0
is the entropy in the “canonical” ensemble

and 𝐶 is the specific heat of the black hole statistical
configuration. At low temperature, the quantum effects
dominate and the above expansion does not hold anymore.
The stability condition of the canonical ensemble is just
𝐶 > 0. In other words, the Hessian function of the inter-
nal energy with respect to the chemical variables, namely,
{𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}, remains positive definite. Hence, the energy

as the function of the {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} satisfies the following

condition:






𝜕
𝑖
𝜕
𝑗
𝐸 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)







> 0. (21)

The state-space coordinates {𝑋𝑖} and intensive chemical
variables {𝑥

𝑖
} are conjugate to each other. In particular, the

{𝑋

𝑖
} are defined as the Legendre transform of {𝑥

𝑖
}, and thus

we have

𝑋

𝑖
:=

𝜕𝑆 (𝑥)

𝜕𝑥
𝑖

. (22)

4.4. Physics of Correlation. Geometrically, the positivity of
the heat capacity𝐶 > 0 turns out to be the positivity condition
of 𝑔
𝑖𝑗
> 0, for a given 𝑖. In many cases, the state-space stability

restriction on the parameters of the black hole corresponds
to the situation away from the extremality condition; namely,
𝑟
+
= 𝑟
−
. Far from the extremality condition, even at the

zero antibrane charge or angular momentum, we find that
there is a finite value of the thermodynamic scalar curvature,
unlike the nonrotating or only brane-charged configurations.
It turns out that the state-space geometry of the two charge
extremal configurations is flat. Thus, the Einstein-Hilbert
contributions lead to a noninteracting statistical system.
At the tree level, some black hole configurations turn out
to be ill-defined, as well. However, we anticipate that the
corresponding state-space configuration would become well-
defined when a sufficient number of higher derivative cor-
rections [64–67] are taken into account with respect to the
𝛼

-corrections and the string loop 𝑙
𝑠
corrections. For the BTZ

black holes [13], we notice that the large entropy limit turns
out to be the stability bound, beyond which the underlying
quantum effects dominate.

For the black hole in string theory, the Ricci scalar of
the state-space geometry is anticipated to be positive definite
with finitely many higher order corrections. For nonextremal
black brane configurations, which are far from the extremal-
ity condition, such effects have been seen from the nature
of the state-space scalar curvature 𝑅(𝑆(𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑛
)).

Indeed, [12, 14] indicate that the limiting state-space scalar
curvature 𝑅(𝑆(𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑛
))|no anticharge ̸=0 gives a set of

stability bounds on the statistical parameters. Thus, our
consideration yields a classification of the domain of the
parameters and global correlation of a nonextremal black
hole.

4.5. String Theory Perspective. In this subsection, we recall
a brief notion of entropy of a general string theory black
brane configuration from the viewpoint of the counting of
the black hole microstates [53, 53–59, 68]. Given a string

theory configuration, the choice of compactification [30]
chosen is the factorization of the type M

(3,1)
× 𝑀
6
, where

𝑀
6
is a compact internal manifold. From the perspective of

statistical ensemble theory, we will express the entropy of a
nonextremal black hole as the function of the numbers of
branes and antibranes. Namely, for the charged black holes,
the electric and magnetic charges (𝑞

𝑖
, 𝑝
𝑖
) form a coordinate

chart on the state-space manifold. In this case, for a given
ensemble of 𝐷-branes, the coordinate 𝑞

𝑖
is defined as the

number of the electric branes and 𝑝
𝑖
as the number of the

magnetic branes. Towards the end of this paper, we will
offer further motivation for the consideration of the state-
space geometry of large charged nonspherical horizon black
holes in spacetime dimensions 𝐷 ≥ 5. In this concern,
[68] plays a central role towards the formation of the
lower dimensional black hole configuration. Namely, for the
torus compatifications, the exotic branes play an important
role concerning the physical properties of supertubes, the
𝐷
0
-𝐹
1
system and associated counting of the black hole

microstates.
In what follows, we consider the four-dimensional string

theory black holes in a given duality basis of the charges
(𝑞
𝑖
, 𝑝
𝑖
). From the perspective of string theory, the exotic

branes and nongeometric configurations offer interesting
fronts for the black holes in three spacetime dimensions. In
general, such configurations could carry a dipole or a higher
pole charge, and they leave the four-dimension black hole
configuration asymptotically flat. In fact, for the spacetime
dimensions 𝐷 ≥ 4, [68] shows that a charge particle
corresponds to an underlying gauge field, modulo 𝑈-duality
transformations. From the perspective of nonextremal black
holes, by taking appropriate boundary condition, namely,
the unit asymptotic limit of the harmonic function which
defines the spacetime metric, one can choose the spacetime
regions such that the supertube effects arising fromnonexotic
branes can effectively be put off in an asymptotically flat
space [68]. This allows one to compute the Arnowitt-Deser-
Misner (ADM) mass of the asymptotic black hole. From the
viewpoint of the statistical investigation, the dependence of
the mass to the entropy of a nonextremal black hole comes
from the contribution of the antibranes to the counting
degeneracy of the states.

5. Extremal Black Holes in String Theory

5.1. Two Charge Configurations. The state-space geometry of
the two charge extremal configurations is analyzed in terms of
the winding modes and the momentum modes of an excited
string carrying 𝑛

1
windingmodes and 𝑛

𝑝
momentummodes.

In the large charge limit, the microscopic entropy obtained
by the degeneracy of the underlying conformal field theory
states reduces to the following expression:

𝑆micro = 2√2𝑛1𝑛𝑝. (23)

The microscopic counting can be accomplished by consid-
ering an ensemble of weakly interacting D-branes [54]. The
counting entropy and the macroscopic attractor entropy of
the two charge black holes in string theory which have a 𝑛

4
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number of 𝐷
4
branes and a 𝑛

0
number of 𝐷

0
branes match

and thus we have

𝑆micro = 2𝜋√𝑛0𝑛4 = 𝑆macro. (24)

In this case, the components of underlying state-space metric
tensor are

𝑔
𝑛0𝑛0

=

𝜋

2𝑛
0

√

𝑛
4

𝑛
0

, 𝑔
𝑛0𝑛4

= −

𝜋

2

1

√𝑛0
𝑛
4

,

𝑔
𝑛4𝑛4

=

𝜋

2𝑛
4

√

𝑛
0

𝑛
4

.

(25)

The diagonal pair correlation functions remain positive
definite:

𝑔
𝑛𝑖𝑛𝑖
> 0 ∀𝑖 ∈ {0, 4} | 𝑛𝑖

> 0, 𝑔
𝑛4𝑛4

> 0, ∀ (𝑛
0
, 𝑛
4
) .

(26)

For distinct 𝑖, 𝑗 ∈ {0, 4}, the state-space pair correlation
functions admit

𝑔
𝑖𝑖

𝑔
𝑗𝑗

= (

𝑛
𝑗

𝑛
𝑖

)

2

,

𝑔
𝑖𝑗

𝑔
𝑖𝑖

= −

𝑛
𝑖

𝑛
𝑗

. (27)

The global properties of fluctuating two charge 𝐷
0
-𝐷
4

extremal configurations are determined by possible principle
minors. The first minor constraint 𝑝

1
> 0 directly follows

from the positivity of the first component of metric tensor:

𝑝
1
=

𝜋

2𝑛
0

√

𝑛
4

𝑛
0

. (28)

The determinant of the metric tensor 𝑝
2
:= 𝑔(𝑛

0
, 𝑛
4
) vanishes

identically for all allowed values of the parameters. Thus,
the leading order large charge extremal black branes having
(i) a 𝑛

0
number of 𝐷

0
-branes and a 𝑛

4
number of 𝐷

4
or

(ii) excited strings with a 𝑛
1
number of windings and a

𝑛
𝑝
number of momenta, where either set of charges forms

local coordinates on the state-spacemanifold, find degenerate
intrinsic state-space configurations. For a given configuration
entropy 𝑆

0
:= 2𝜋𝑐, the constant entropy curve can be depicted

as the rectangular hyperbola

𝑛
0
𝑛
4
= 𝑐

2
. (29)

The intrinsic state-space configuration depends on the
attractor values of the scalar fields which arise from the
chosen string compactification. Thus, the possible state-
space Ruppenier geometry may become well-defined against
further higher derivative 𝛼-corrections. In particular, the
determinant of the state-space metric tensor may take
positive/negative definite values over the domain of brane
charges. We will illustrate this point in a bit more detail in the
subsequent consideration with a higher number of charges
and anticharges.

5.2. Three Charge Configurations. From the consideration of
the two derivative Einstein-Hilbert action, [53] shows that the
leading order entropy of the three charge 𝐷

1
-𝐷
5
-𝑃 extremal

black holes is

𝑆micro = 2𝜋√𝑛1𝑛5𝑛𝑝 = 𝑆macro. (30)

The concerned components of state-space metric tensor are
given in Appendix A. Hereby, it follows further that the local
state-space metric constraints are satisfied as

𝑔
𝑛𝑖𝑛𝑖
> 0 ∀𝑖 ∈ {1, 5, 𝑝} | 𝑛

𝑖
> 0. (31)

For distinct 𝑖, 𝑗 ∈ {1, 5} and 𝑝, the list of relative correlation
functions is depicted in Appendix A. Further, we see that the
local stabilities pertaining to the lines and two-dimensional
surfaces of the state-space manifold are measured as

𝑝
1
=

𝜋

2𝑛
1

√

𝑛
5
𝑛
𝑝

𝑛
1

, 𝑝
2
= −

𝜋

2

4𝑛
1
𝑛

2

5
𝑛
𝑝

(𝑛

2

𝑝
𝑛
1
+ 𝑛

3

5
) . (32)

The stability of the entire equilibrium phase-space configura-
tions of the 𝐷

1
-𝐷
5
-𝑃 extremal black holes is determined by

the 𝑝
3
:= 𝑔 determinant of the state-space metric tensor:






𝑔






= −

1

2

𝜋

3
(𝑛
1
𝑛
5
𝑛
𝑝
)

−1/2

. (33)

The universal nature of statistical interactions and the other
properties concerning Maldacena, Strominger, and Witten
(MSW) rotating black branes [55] are elucidated by the state-
space scalar curvature:

𝑅 (𝑛
1
, 𝑛
5
, 𝑛
𝑝
) =

3

4𝜋
√
𝑛
1
𝑛
5
𝑛
𝑝

. (34)

The constant entropy (or scalar curvature) curve defining the
state-space manifold is the higher dimensional hyperbola:

𝑛
1
𝑛
5
𝑛
𝑝
= 𝑐

2
, (35)

where 𝑐 takes respective values of (𝑐
𝑆
, 𝑐
𝑅
) = (𝑆

0
/2𝜋, 3/4𝜋𝑅

0
).

In [12, 14, 17, 18], we have shown that similar results hold
for the state-space configuration of the four charge extremal
black holes.

6. Nonextremal Black Holes in String Theory

6.1. Four Charge Configurations. The state-space configura-
tion of the nonextremal𝐷

1
–𝐷
5
black holes is consideredwith

nonzero momenta along the clockwise and anticlockwise
directions of the Kaluza-Klein compactification circle 𝑆1.
Following [56], themicroscopic entropy and themacroscopic
entropy match for given total mass and brane charges :

𝑆micro = 2𝜋√𝑛1𝑛5 (√𝑛𝑝 + √𝑛𝑝) = 𝑆macro. (36)

The state-space covariant metric tensor is defined as a nega-
tive Hessianmatrix of the entropy with respect to the number
of 𝐷
1
, 𝐷
5
branes {𝑛

𝑖
| 𝑖 = 1, 5} and clockwise-anticlockwise
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Kaluza-Klein momentum charges {𝑛
𝑝
, 𝑛
𝑝
}. Herewith, we find

that the components of the metric tensor take elegant forms.
The corresponding expressions are given in Appendix B. As
in the case of the extremal configurations, the state-space
metric satisfies the following constraints:

𝑔
𝑛𝑖𝑛𝑖
> 0, ∀𝑖 = 1, 5; 𝑔

𝑛𝑎𝑛𝑎
> 0, ∀𝑎 = 𝑝, 𝑝. (37)

Furthermore, the scaling relations for distinct 𝑖, 𝑗 ∈

{1, 5} and 𝑝, concerning the list of relative correlation
functions, are offered in Appendix B. In this case, we
find that the stability criteria of the possible surfaces and
hypersurfaces of the underlying state-space configuration
are determined by the positivity of the following principle
minors:

𝑝
0
= 1, 𝑝

1
=

𝜋

2

√

𝑛
5

𝑛

3

1

(
√
𝑛
𝑝
+ √𝑛
𝑝
) ,

𝑝
2
= 0, 𝑝

3
= −

1

2𝑛
𝑝

𝜋

3

√𝑛1
𝑛
5

(
√
𝑛
𝑝
+ √𝑛
𝑝
) .

(38)

The complete local stability of the full nonextremal 𝐷
1
–𝐷
5

black brane state-space configuration is ascertained by the
positivity of the determinant of the metric tensor:

𝑔 (𝑛
1
, 𝑛
5
, 𝑛
𝑝
, 𝑛
𝑝
) = −

1

4

𝜋

4

(𝑛
𝑝
𝑛
𝑝
)

3/2
(
√
𝑛
𝑝
+ √𝑛
𝑝
)

2

. (39)

The global state-space properties concerning the four charge
nonextremal 𝐷

1
–𝐷
5
black holes are determined by the

regularity of the invariant scalar curvature:

𝑅 (𝑛
1
, 𝑛
5
, 𝑛
𝑝
, 𝑛
𝑝
) =

9

4𝜋√𝑛1
𝑛
5

(
√
𝑛
𝑝
+ √𝑛
𝑝
)

−6

𝑓 (𝑛
𝑝
, 𝑛
𝑝
) ,

(40)

where the function 𝑓(𝑛
𝑝
, 𝑛
𝑝
) of two momenta (𝑛

𝑝
, 𝑛
𝑝
) run-

ning in opposite directions of the Kaluza-Klein circle 𝑆1 has
been defined as

𝑓 (𝑛
𝑝
, 𝑛
𝑝
) := 𝑛

5/2

𝑝
+ 10𝑛

3/2

𝑝
𝑛
𝑝
+ 5𝑛

1/2

𝑝
𝑛
𝑝

2

+ 5𝑛

2

𝑝
𝑛
𝑝

1/2
+ 10𝑛

𝑝
𝑛
𝑝

3/2
+ 𝑛
𝑝

5/2
.

(41)

By noticing the Pascal coefficient structure in (41), we see that
the above function 𝑓(𝑛

𝑝
, 𝑛
𝑝
) can be factorized as

𝑓 (𝑛
𝑝
, 𝑛
𝑝
) = (𝑛

𝑝
+ 𝑛
𝑝
)

5

. (42)

Thus, (40) leads to the following state-space scalar curvature:

𝑅 (𝑛
1
, 𝑛
5
, 𝑛
𝑝
, 𝑛
𝑝
) =

9

4𝜋√𝑛1
𝑛
5

×(

1

√
𝑛
𝑝
+ √𝑛𝑝

). (43)

In the large charge limit, the nonextremal 𝐷
1
–𝐷
5
black

branes have a nonvanishing small scalar curvature function

on the state-space manifold (𝑀
4
, 𝑔). This implies an almost

everywhere weakly interacting statistical basis. In this case,
the constant entropy hypersurface is defined by the curve

𝑐

2

𝑛
1
𝑛
5

= (
√
𝑛
𝑝
+ √𝑛
𝑝
)

2

. (44)

As in the case of two charge 𝐷
0
-𝐷
4
extremal black holes

and 𝐷
1
-𝐷
5
-𝑃 extremal black holes, the constant 𝑐 takes the

same value of 𝑐 := 𝑆

2

0
/4𝜋

2. For a given state-space scalar
curvature 𝑘, the constant state-space curvature curves take
the following form:

𝑓 (𝑛
𝑝
, 𝑛
𝑝
) = 𝑘√𝑛1

𝑛
5
(
√
𝑛
𝑝
+ √𝑛
𝑝
)

6

. (45)

6.2. Six Charge Configurations. Wenow extrapolate the state-
space geometry of four charge nonextremal𝐷

1
–𝐷
5
solutions

for nonlarge charges, where we are no longer close to an
ensemble of supersymmetric states. In [57], the computation
of the entropy of all such special extremal and near-extremal
black hole configurations has been considered. The leading
order entropy as a function of charges {𝑛

𝑖
} and anticharges

{𝑚
𝑖
} is

𝑆 (𝑛
1
, 𝑚
1
, 𝑛
2
, 𝑚
2
, 𝑛
3
, 𝑚
3
)

:= 2𝜋 (√𝑛1
+ √𝑚1

) (√𝑛2
+ √𝑚2

) (√𝑛3
+ √𝑚3

) .

(46)

For given charges 𝑖, 𝑗 ∈ 𝐴
1
:= {𝑛
1
, 𝑚
1
}; 𝑘, 𝑙 ∈ 𝐴

2
:= {𝑛
2
, 𝑚
2
};

and 𝑚, 𝑛 ∈ 𝐴
3
:= {𝑛

3
, 𝑚
3
}, the intrinsic state-space pair

correlations are in precise accordance with the underlying
macroscopic attractor configurations which are being dis-
closed in the special leading order limit of the nonextremal
𝐷
1
–𝐷
5
solutions. The components of the covariant state-

spacemetric tensor over generic nonlarge charge domains are
not difficult to compute, and, indeed, we have offered their
corresponding expressions in Appendix C.

For all finite (𝑛
𝑖
, 𝑚
𝑖
), 𝑖 = 1, 2, 3, the components involving

brane-brane state-space correlations 𝑔
𝑛𝑖𝑛𝑖

and antibrane-
antibrane state-space correlations 𝑔

𝑚𝑖𝑚𝑖
satisfy the following

positivity conditions:

𝑔
𝑛𝑖𝑛𝑖
> 0, 𝑔

𝑚𝑖𝑚𝑖
> 0. (47)

The distinct {𝑛
𝑖
, 𝑚
𝑖
| 𝑖 ∈ {1, 2, 3}} describing six charge string

theory black holes have three types of relative pair correlation
functions. The corresponding expressions of the relative
statistical correlation functions are given in Appendix C.

Notice hereby that the scaling relations remain similar to
those obtained in the previous case, except that (i) the num-
ber of relative correlation functions has been increased, and
(ii) the set of cross ratios, namely, {𝑔

𝑖𝑗
/𝑔
𝑘𝑙
, 𝑔
𝑘𝑙
/𝑔
𝑚𝑛
, 𝑔
𝑖𝑗
/𝑔
𝑚𝑛
}

being zero in the previous case, becomes ill-defined for the six
charge state-space configurations. Inspecting the specific pair
of distinct charge sets 𝐴

𝑖
and 𝐴

𝑗
, there are now 24 types of

nontrivial relative correlation functions. The set of principle
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components denominator ratios computed from the above
state-space metric tensor reduces to

𝑔
𝑖𝑗

𝑔
𝑘𝑘

= 0, ∀𝑖, 𝑗, 𝑘 ∈ {𝑛
1
, 𝑚
1
, 𝑛
2
, 𝑚
2
, 𝑛
3
, 𝑚
3
} . (48)

For given 𝑖, 𝑗 ∈ 𝐴
1
:= {𝑛
1
, 𝑚
1
}; 𝑘, 𝑙 ∈ 𝐴

2
:= {𝑛
2
, 𝑚
2
}; 𝑚, 𝑛 ∈

𝐴
3
:= {𝑛
3
, 𝑚
3
}, and 𝑔

𝑛𝑖𝑚𝑖
= 0, there are the total 15 types of

trivial relative correlation functions.There are five such trivial
ratios in each family {𝐴

𝑖
| 𝑖 = 1, 2, 3}.The local stability of the

higher charged string theory nonextremal black holes is given
by

𝑝
1
=

𝜋

2𝑛

3/2

1

(√𝑛2
+ √𝑚2

) (√𝑛3
+ √𝑚3

) ,

𝑝
2
=

1

4

𝜋

2

(𝑛
1
𝑚
1
)

3/2
(√𝑛2

+ √𝑚2
)

2
(√𝑛3

+ √𝑚3
)

2
,

𝑝
3
=

1

8

𝜋

3

(𝑛
1
𝑚
1
𝑛
2
)

3/2
√𝑚2

(√𝑛3
+ √𝑚3

)

3

× (√𝑛2
+ √𝑚2

) (√𝑛1
+ √𝑚1

) ,

𝑝
4
= 0.

(49)

The principleminor𝑝
5
remains nonvanishing for all values of

charges on the constituent brane and antibranes. In general,
by an explicit calculation, we find that the hyper-surface
minor 𝑝

5
takes the following nontrivial value:

𝑝
5
= −

1

8

𝜋

5

(𝑛
1
𝑚
1
𝑛
2
𝑚
2
)

3/2
𝑛
3

(√𝑛1
+ √𝑚1

)

3

× (√𝑛2
+ √𝑚2

)

3
(√𝑛3

+ √𝑚3
)

3
.

(50)

Specifically, for an identical value of the brane and antibrane
charges, the minor 𝑝

5
reduces to

𝑝
5 (
𝑘) = −64

𝜋

5

𝑘

5/2
.

(51)

The global stability on the full state-space configuration is
carried forward by computing the determinant of the metric
tensor:






𝑔






= −

1

16

𝜋

6

(𝑛
1
𝑚
1
𝑛
2
𝑚
2
𝑛
3
𝑚
3
)

3/2
(√𝑛1

+ √𝑚1
)

4

× (√𝑛2
+ √𝑚2

)

4
(√𝑛3

+ √𝑚3
)

4
.

(52)

The underlying state-space configuration remains nonde-
generate for the domain of given nonzero brane antibrane
charges, except for extreme values of the brane and antibrane
charges {𝑛

𝑖
, 𝑚
𝑖
}, when they belong to the set

𝐵 := {(𝑛
1
, 𝑛
2
, 𝑛
3
, 𝑚
1
, 𝑚
2
, 𝑚
3
) |

(𝑛
𝑖
, 𝑚
𝑖
) = (0, 0) , (∞,∞) , some 𝑖} ,

(53)

among the given brane-antibrane pairs {(𝑛
1
, 𝑚
1
), (𝑛
2
,

𝑚
2
), (𝑛
3
, 𝑚
3
)}. The component 𝑅

𝑛1𝑛2𝑚3𝑚4
diverges at the roots

of the two variables polynomials defined as the functions of
brane and antibrane charges:

𝑓
1
(𝑛
2
, 𝑚
2
) = 𝑛

4

2
𝑚

3

2
+ 2(𝑛
2
𝑚
2
)

7/2
+ 𝑛

3

2
𝑚

4

2
,

𝑓
2
(𝑛
3
, 𝑚
3
) = 𝑚

9/2

3
𝑛

4

3
+ 𝑛

4

3
𝑚

9/2

3
.

(54)

However, the component 𝑅
𝑛3 ,𝑚3,𝑛3 ,𝑚3

with an equal number
of brane and antibrane charges diverges at a root of a single
higher degree polynomial:

𝑓 (𝑛
1
, 𝑚
1
, 𝑛
2
, 𝑚
2
, 𝑛
3
, 𝑚
3
)

:= 𝑛

4

2
𝑚

3

2
𝑛

9/2

3
𝑚

4

3
+ 𝑛

4

2
𝑚

3

2
𝑛

4

3
𝑚

9/2

3

+ 2𝑛

7/2

2
𝑚

7/2

2
𝑛

9/2

3
𝑚

4

3
+ 2𝑛

7/2

2
𝑚

7/2

2
𝑛

4

3
𝑚

9/2

3

+ 𝑛

3

2
𝑚

4

2
𝑛

9/2

3
𝑚

4

3
+ 𝑛

3

2
𝑚

4

2
𝑛

4

3
𝑚

9/2

3
.

(55)

Herewith, from the perspective of state-space global invari-
ants, we focus on the limiting nature of the underlying ensem-
ble. Thus, we may choose the equal charge and anticharge
limit by defining𝑚

𝑖
:= 𝑘 and 𝑛

𝑖
:= 𝑘 for the calculation of the

Ricci scalar. In this case, we find the following small negative
curvature scalar:

𝑅 (𝑘) = −

15

16

1

𝜋𝑘

3/2
. (56)

Further, the physical meaning of taking an equal value of
the charges and anticharges lies in the ensemble theory,
namely, in the thermodynamic limit, all the statistical fluctu-
ations of the charges and anticharges approach to a limiting
Gaussian fluctuations. In this sense, we can take the average
over the concerned individual Gaussian fluctuations. This
shows that the limiting statistical ensemble of nonextremal
nonlarge charge 𝐷

1
–𝐷
5
solutions yields an attractive state-

space configuration. Finally, such a limiting procedure is
indeed defined by considering the standard deviations of the
equal integer charges and anticharges, and thus our interest
in calculating the limiting Ricci scalar in order to know
the nature of the long range interactions underlying in the
system.

For a given entropy 𝑆
0
, the constant entropy hypersurface

is again some nonstandard curve:

(√𝑛1
+ √𝑚1

) (√𝑛2
+ √𝑚2

) (√𝑛3
+ √𝑚3

) = 𝑐, (57)

where the real constant 𝑐 takes the precise value of 𝑆
0
/2𝜋.

6.3. Eight Charge Configurations. From the perspective of the
higher charged and anticharged black hole configurations in
string theory, let us systematically analyze the underlying sta-
tistical structures. In this case, the state-space configuration
of the nonextremal black hole involves finitely many non-
trivially circularly fibered Kaluza-Klein monopoles. In this
process, we enlist the complete set of nontrivial relative state-
space correlation functions of the eight charged anticharged
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configurations, with respect to the lower parameter configu-
rations, as considered in [12, 14].There have been calculations
of the entropy of the extremal, near-extremal, and general
nonextremal solutions in string theory; see, for instance,
[58, 59]. Inductively, the most general charge anticharge
nonextremal black hole has the following entropy:

𝑆 (𝑛
1
, 𝑚
1
, 𝑛
2
, 𝑚
2
, 𝑛
3
, 𝑚
3
, 𝑛
4
, 𝑚
4
) = 2𝜋

4

∏

𝑖=1

(√𝑛𝑖
+ √𝑚𝑖

) .

(58)

For the distinct 𝑖, 𝑗, 𝑘 ∈ {1, 2, 3, 4}, we find that the compo-
nents of the metric tensor are

𝑔
𝑛𝑖𝑛𝑖
=

𝜋

2𝑛

3/2

𝑖

∏

𝑗 ̸= 𝑖

(
√
𝑛
𝑗
+
√
𝑚
𝑗
) ,

𝑔
𝑛𝑖𝑛𝑗
= −

𝜋

2(𝑛
𝑖
𝑛
𝑗
)

1/2
∏

𝑖 ̸=𝑘 ̸=𝑗

(√𝑛𝑘
+ √𝑚𝑘

) ,

𝑔
𝑛𝑖𝑚𝑖

= 0,

𝑔
𝑛𝑖𝑚𝑗

= −

𝜋

2(𝑛
𝑖
𝑚
𝑗
)

1/2
∏

𝑖 ̸=𝑘 ̸=𝑗

(√𝑛𝑘
+ √𝑚𝑘

) ,

𝑔
𝑚𝑖𝑚𝑖

=

𝜋

2𝑚

3/2

𝑖

∏

𝑗 ̸= 𝑖

(
√
𝑛
𝑗
+
√
𝑚
𝑗
) ,

𝑔
𝑚𝑖𝑚𝑗

= −

𝜋

2(𝑚
𝑖
𝑚
𝑗
)

1/2
∏

𝑖 ̸=𝑘 ̸=𝑗

(√𝑛𝑘
+ √𝑚𝑘

) .

(59)

From the above depiction, it is evident that the principle
components of the state-space metric tensor {𝑔

𝑛𝑖𝑛𝑖
, 𝑔
𝑚𝑖𝑚𝑖

|

𝑖 = 1, 2, 3, 4} essentially signify a set of definite heat
capacities (or the related compressibilities) whose positivity
in turn apprises that the black brane solutions comply with
an underlying equilibrium statistical configuration. For an
arbitrary number of the branes {𝑛

𝑖
} and antibranes {𝑚

𝑖
}, we

find that the associated state-space metric constraints as the
diagonal pair correlation functions remain positive definite.
In particular, ∀𝑖 ∈ {1, 2, 3, 4}; it is clear that we have the
following positivity conditions:

𝑔
𝑛𝑖𝑛𝑖
> 0 | 𝑛

𝑖
, 𝑚
𝑖
> 0, 𝑔

𝑚𝑖𝑚𝑖
> 0 | 𝑛

𝑖
, 𝑚
𝑖
> 0. (60)

As observed in [12, 14], we find that the ratios of diagonal
components vary inversely with a multiple of a well-defined
factor in the underlying parameters, namely, the charges and
anticharges, which changes under the Gaussian fluctuations,
whereas the ratios involving offdiagonal components in effect
uniquely inversely vary in the parameters of the chosen set𝐴

𝑖

of equilibrium black brane configurations. This suggests that
the diagonal components weaken in a relatively controlled
fashion into an equilibrium, in contrast with the off diagonal
components, which vary over the domain of associated
parameters defining the𝐷

1
-𝐷
5
-𝑃-𝐾𝐾 nonextremal nonlarge

charge configurations. In short, we can easily substantiate,
for the distinct 𝑥

𝑖
:= (𝑛

𝑖
, 𝑚
𝑖
) | 𝑖 ∈ {1, 2, 3, 4} describing

eight (anti)charge string theory black holes, that the relative

pair correlation functions have distinct types of relative
correlation functions. Apart from the zeros, infinities, and
similar factorizations, we see that the nontrivial relative
correlation functions satisfy the following scaling relations:

𝑔
𝑥𝑖𝑥𝑖

𝑔
𝑥𝑗𝑥𝑗

= (

𝑥
𝑗

𝑥
𝑖

)

3/2
√
𝑛
𝑗
+
√
𝑚
𝑗

√𝑛𝑖
+ √𝑚𝑖

,

𝑔
𝑥𝑖𝑥𝑗

𝑔
𝑥𝑘𝑥𝑙

= (

𝑥
𝑖
𝑥
𝑗

𝑥
𝑘
𝑥
𝑙

)

−1/2
∏
𝑖 ̸=𝑝 ̸=𝑗

(
√
𝑛
𝑝
+
√
𝑚
𝑝
)

∏
𝑘 ̸=𝑞 ̸=𝑙

(
√
𝑛
𝑞
+
√
𝑚
𝑞
)

,

𝑔
𝑥𝑖𝑥𝑖

𝑔
𝑥𝑖𝑥𝑘

= − √(

𝑥
𝑘

𝑥

2

𝑖

)

∏
𝑝 ̸=𝑖
(
√
𝑛
𝑝
+
√
𝑚
𝑝
)

∏
𝑖 ̸=𝑞 ̸=𝑘

(
√
𝑛
𝑞
+
√
𝑚
𝑞
)

.

(61)

As noticed in [12, 14], it is not difficult to analyze the statistical
stability properties of the eight charged anticharged nonex-
tremal black holes; namely, we can compute the principle
minors associated with the state-space metric tensor and
thereby argue that all the principle minors must be positive
definite, in order to have a globally stable configuration. In
the present case, it turns out that the above black hole is
stable only when some of the charges and/or anticharges
are held fixed or take specific values such that 𝑝

𝑖
> 0 for

all the dimensions of the state-space manifold. From the
definition of the Hessian matrix of the associated entropy
concerning the most general nonextremal nonlarge charged
black holes, we observe that some of the principle minors 𝑝

𝑖

are indeed nonpositive. In fact, we discover a uniform local
stability criteria on the three-dimensional hypersurfaces,
two-dimensional surface, and the one-dimensional line of
the underlying state-space manifold. In order to simplify the
factors of the higher principle, we may hereby collect the
powers of each factor (√𝑛𝑖+√𝑚𝑖) appearing in the expression
of the entropy. With this notation, Appendix D provides
the corresponding principle minors for the most general
nonextremal nonlarge charged anticharged black hole in
string theory involving finitely many nontrivially circularly
fibered Kaluza-Klein monopoles.

Notice that the heat capacities, as the diagonal com-
ponents 𝑔

𝑖𝑖
, surface minor 𝑝

2
, hypersurface minors 𝑝

3
, 𝑝
5
,

𝑝
6
, and 𝑝

7
, and the determinant of the state-space metric

tensor, as the highest principle minor 𝑝
8
are examined as the

functions of the number of branes 𝑛 and antibranes𝑚. Thus,
they describe the nature of the statistical fluctuations in the
vacuum configuration. The corresponding scalar curvature
is offered for an equal number of branes and antibranes
(𝑛 = 𝑚), which describes the nature of the long range
statistical fluctuations. As per the above evaluation, we have
obtained the exact expressions for the components of the
metric tensor, principle minors, determinant of the metric
tensor, and the underlying scalar curvature of the fluctuating
statistical configuration of the eight parameter black holes
in string theory. Qualitatively, the local and the global
correlation properties of the limiting vacuum configuration
can be realized under the statistical fluctuations. The first
seven principle minors describe the local stability properties,
and the last minor describes the global ensemble stability.
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The scalar curvature describes the corresponding phase
space stability of the eight parameter black hole configura-
tion. In general, there exists an akin higher degree polynomial
equation on which the Ricci scalar curvature becomes null,
and exactly on these points the state-space configuration of
the underlying nonlarge charge nonextremal eight charge
black hole system corresponds to a noninteracting statistical
system. In this case, the corresponding state-space manifold
(𝑀
8
, 𝑔) becomes free from the statistical interaction with a

vanishing state-space scalar curvature. As in case of the six
charge configuration, we find interestingly that there exists
an attractive configuration for the equal number of branes
𝑛 := 𝑘 and antibranes 𝑚 := 𝑘. In the limit of a large 𝑘, the
corresponding system possesses a small negative value of the
state-space scalar curvature:

𝑅 (𝑘) = −

21

32

1

𝜋𝑘

2
. (62)

Interestingly, it turns out that the system becomes noninter-
acting in the limit of 𝑘 → ∞. For the case of the 𝑛 = 𝑘 = 𝑚,
we observe that the corresponding principle minors reduce
to the following constant values:

{𝑝
𝑖
}

8

𝑖=1
= {4𝜋, 16𝜋

2
, 32𝜋

3
, 0, −2048𝜋

5
, −16384𝜋

6
,

−163840𝜋

7
, −1048576𝜋

8
} .

(63)

In this case, we find that the limiting underlying statistical
system remains stable when at most three of the parameters,
namely, {𝑛

𝑖
= 𝑘 = 𝑚

𝑖
}, are allowed to fluctuate. Herewith,

we find for the case of 𝑛 := 𝑘 and 𝑚 := 𝑘 that the state-
space manifold of the eight parameter brane and antibrane
configuration is free from critical phenomena, except for the
roots of the determinant. Thus, the regular state-space scalar
curvature is comprehensively universal for the nonlarge
charge nonextremal black brane configurations in string
theory. In fact, the above perception turns out to be justified
from the typical state-space geometry, namely, the definition
of the metric tensor as the negative Hessian matrix of the
duality invariant expression of the black brane entropy. In this
case, we may nevertheless easily observe, for a given entropy
𝑆
0
, that the constant entropy hypersurface is given by the

following curve:

(√𝑛1
+ √𝑚1

) (√𝑛2
+ √𝑚2

) (√𝑛3
+ √𝑚3

) (√𝑛4
+ √𝑚4

) = 𝑐,

(64)

where 𝑐 is a real constant taking the precise value of
𝑆
0
/2𝜋. Under the vacuum fluctuations, the present analysis

indicates that the entropy of the eight parameter black
brane solution defines a nondegenerate embedding in the
viewpoints of intrinsic state-space geometry.The above state-
space computations determine an intricate set of statistical
properties, namely, pair correlation functions and correlation
volume, which reveal the possible nature of the associated
parameters prescribing an ensemble of microstates of the
dual conformal field theory living on the boundary of the
black brane solution. For any black brane configuration,
the above computation hereby shows that we can exhibit

the state-space geometric acquisitions with an appropriate
comprehension of the required parameters, for example, the
charges and anticharges {𝑛

𝑖
, 𝑚
𝑖
}, which define the coordinate

charts. From the consideration of the state-space geometry,
we have analyzed state-space pair correlation functions and
the notion of stability of the most general nonextremal black
hole in string theory. From the perspective of the intrinsic
Riemannian geometry, we find that the stability of these black
branes has been divulged from the positivity of principle
minors of the space-state metric tensor.

Herewith, we have explicitly extended the state-space
analysis for the four charge and four anticharge nonextremal
black branes in string theory. The present consideration of
the eight parameter black brane configurations, where the
underlying leading order statistical entropy is written as a
function of the charges {𝑛

𝑖
} and anticharges {𝑚

𝑖
}, describes

the stability properties under the Gaussian fluctuations. The
present consideration includes all the special cases of the
extremal and near-extremal configurations with a fewer
number of charges and anticharges. In this case, we obtain
the standard pattern of the underlying state-space geometry
and constant entropy curve as that of the lower parameter
nonextremal black holes. The local coordinate of the state-
space manifold involves four charges and four anticharges
of the underlying nonextremal black holes. In fact, the
conclusion to be drawn remains the same, as the underlying
state-space geometry remains well-defined as an intrinsic
Riemannian manifold 𝑁 := 𝑀

8
\
̃
𝐵, where ̃𝐵 is the set of

roots of the determinant of the metric tensor. In particular,
the state-space configuration of eight parameter black brane
solutions remains nondegenerate for various domains of
nonzero brane antibrane charges, except for the values, when
the brane charges {𝑛

𝑖
} and antibrane charges {𝑚

𝑖
} belong to

the set

̃
𝐵 := {(𝑛

1
, 𝑛
2
, 𝑛
3
, 𝑛
4
, 𝑚
1
, 𝑚
2
, 𝑚
3
, 𝑚
4
) |

(𝑛
𝑖
, 𝑚
𝑖
) = (0, 0) , (∞,∞)} ,

(65)

for a given brane-antibrane pair, 𝑖 ∈ {1, 2, 3, 4}. Our analysis
indicates that the leading order statistical behavior of the
black brane configurations in string theory remains intact
under the inclusion of the Kaluza-Klein monopoles. In short,
we have considered the eight charged anticharged string
theory black brane configuration and analyzed the state-space
pair correlation functions, relative scaling relations, stability
conditions, and the corresponding global properties. Given
a general nonextremal black brane configuration, we have
exposed (i) for what conditions the considered black hole
configuration is stable, (ii) how its state-space correlations
scale in terms of the numbers of branes and antibranes.

7. Conclusion and Outlook

The Ruppenier geometry of two charge leading order
extremal black holes remains flat or ill-defined. Thus, the
statistical systems are, respectively, noninteracting or require
higher derivative corrections. However, an addition of the
third brane charge and other brane and antibrane charges
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indicates an interacting statistical system. The statistical
fluctuations in the canonical ensemble lead to an interacting
statistical system, as the scalar curvature of the state-space
takes a nonzero value. We have explored the state-space
geometric description of the charged extremal and associated
charged anticharged nonextremal black holes in string the-
ory.

Our analysis illustrates that the stability properties of the
specific state-space hypersurface may exactly be exploited
in general. The definite behavior of the state-space prop-
erties, as accounted in the specific cases, suggests that the
underlying hypersurfaces of the state-space configuration
include the intriguing mathematical feature. Namely, we find
well-defined stability properties for the generic extremal and
nonextremal black brane configurations, except for some
specific values of the charges and anticharges. With and
without the large charge limit, we have provided explicit
forms of the higher principle minors of the state-space
metric tensor for various charged, anticharged, extremal and
nonextremal black holes in string theory. In this concern, the
state-space configurations of the string theory black holes are
generically well-defined and indicate an interacting statistical
basis. Interestingly, we discover the state-space geometric
nature of all possible general black brane configurations.
From the very definition of the intrinsic metric tensor, the
present analysis offers a definite stability character of string
theory vacua.

Significantly, we notice that the related principle minors
and the invariant state-space scalar curvature classify the
underlying statistical fluctuations. The scalar curvature of
a class of extremal black holes and the corresponding
nonextremal black branes is everywhere regular with and
without the stringy 𝛼-corrections. A nonzero value of
the state-space scalar curvature indicates an interacting
underlying statistical system. We find that the antibrane
corrections modify the state-space curvature, but do not
induce phase transitions. In the limit of an extremal
black hole, we construct the intrinsic geometric realiza-
tion of a possible thermodynamic description at the zero
temperature.

Importantly, the notion of the state-space of the con-
sidered black hole follows from the corresponding Wald
and Cardy entropies. The microscopic and macroscopic
entropies match in the large charge limit. From the
perspective of statistical fluctuations, we anticipate the
intrinsic geometric realization of two point local corre-
lation functions and the corresponding global correlation
length of the underlying conformal field theory config-
urations. In relation to the gauge-gravity correspondence
and extremal black holes, our analysis describes state-space
geometric properties of the corresponding boundary gauge
theory.

General Remarks. For distinct {𝑖, 𝑗}, the state-space pair
correlations of an extremal configurations scale as

𝑔
𝑖𝑖

𝑔
𝑗𝑗

= (

𝑋
𝑗

𝑋
𝑖

)

2

,

𝑔
𝑖𝑗

𝑔
𝑖𝑖

= −

𝑋
𝑖

𝑋
𝑗

. (66)

In general, the black brane configurations in string the-
ory can be categorized as per their state-space invariants.
The underlying subconfigurations turn out to be well-
defined over possible domains, whenever there exists a
respective set of nonzero state-space principle minors. The
underlying full configuration turns out to be everywhere
well-defined, whenever there exists a nonzero state-space
determinant. The underlying configuration corresponds to
an interacting statistical system, whenever there exists a
nonzero state-space scalar curvature. The intrinsic state-
space manifold of extremal/nonextremal and supersym-
metric/nonsupersymmetric string theory black holes may
intrinsically be described by an embedding:

(𝑀
(𝑛)
, 𝑔) → (𝑀

(𝑛+1)
, 𝑔) . (67)

The extremal state-space configuration may be examined as
a restriction to the full counting entropy with an intrinsic
state-space metric tensor 𝑔 → 𝑔|

𝑟+=𝑟−
. Furthermore, the

state-space configurations of the supersymmetric black holes
may be examined as the BPS restriction of the full space
of the counting entropy with an understanding that the
intrinsic state-space metric tensor is defined as 𝑔 := 𝑔|

𝑀=𝑀0
.

From the perspective of string theory, the restrictions 𝑟
+
=

𝑟
−

and 𝑀 = 𝑀
0
(𝑃
𝑖
, 𝑄
𝑖
) should be understood as the

fact that it has been applied to an assigned entropy of the
nonextremal/nonsupersymmetric (or nearly extremal/nearly
supersymmetric) black brane configuration. This allows one
to compute the fluctuations in ADM mass of the black hole.
In the viewpoint of the present research on the state-space
geometry, it is worth mentioning that the dependence of
the mass to the entropy of a nonextremal black hole comes
from the contribution of the antibranes, see, for instance,
Section 4.5, and so we may examine the corresponding
Weinhold chemical geometry, as mentioned in Section 4.3.

Future Directions and Open Issues. The state-space instabili-
ties and their relation to the dual microscopic conformal field
theories could open up a number of new realizations. The
state-space perspective includes the following issues.

(i) MulticenterGibbons-Hawking solutions [69, 70]with
generalized base space manifolds having a mixing
of positive and negative residues, see [71, 72] for
a perspective development of state-space geometry
by invoking the role of foaming of black holes and
plumbing the Abyss for the microstates counting of
black rings.

(ii) Dual conformal field theories and string duality
symmetries, see [61] for a quantum mechanical per-
spective of superconformal black holes and [73, 74]
for the origin of gravitational thermodynamics and
the role of giant gravitons in conformal field theory.

(iii) Stabilization against local and/or global perturba-
tions, see [75–80] for black brane dynamics, sta-
bility, and critical phenomena. Thus, the consid-
eration of state-space geometry is well-suited for
examining the domain of instability. This includes
Gregory-Laflamme (GL) modes, chemical potential
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fluctuations, electric-magnetic charges and dipole
charges, rotational fluctuations, and the thermody-
namic temperature fluctuations for the near-extremal
and nonextremal black brane solutions. We leave this
perspective of the state-space geometry open for a
future research.

In general, various𝐷dimensional black brane configurations,
see, for instance, [75–80] for black rings in 𝐷 > 5 spacetime
dimensions with 𝑆1 × 𝑆𝐷−3 horizon topology, and the higher
horizon topologies, for example, 𝑆1 × 𝑆1 × 𝑆2, 𝑆3 × 𝑆3, and so
forth offer a platform to extend the consideration of the state-
space geometry.

On the other hand, the bubbling black brane solutions,
namely, Lin, Lunin, and Maldacena (LLM) geometries [81],
are interesting from the perspective of Mathur’s Fuzzball
conjecture(s). From the perspective of the generalized hyper-
Kähler manifolds, Mathur’s conjecture [82–85] reduces to
classifying and counting asymptotically flat four-dimensional
hyper Kähler manifolds [71] which have moduli regions of
uniform signature (+, +, +, +) and (−, −, −, −).

Finally, the new physics at the length of the Planck scale
anticipates an analysis of the state-space configurations. In
particular, it materializes that the state-space geometry may
be explored with the parameters of the foam geometries
[71], and the corresponding empty space virtual black holes,
see [81] for the notion of bubbling AdS space and 1/2 BPS
geometries. In such cases, the local and global statistical
correlations, among the parameters of the microstates of the
black hole conformal field theory [60, 61], would involve the
foams of two spheres. From the perspective of the string
theory, the present exploration thus opens up an avenue
for learning new insights into the promising structures of
the black brane space-time configurations at very small
scales.

Appendices

In these appendices, we provide explicit forms of the state-
space correlation arising from the metric tensor of the
charged (non)extremal (non)large black holes in string the-
ory. In fact, our analysis illustrates that the stability prop-
erties of the specific state-space hypersurface may exactly
be exploited in general. The definite behavior of state-space
properties, as accounted in the concerned main sections,
suggests that the various intriguing hypersurfaces of the state-
space configuration include the nice feature that they do have
definite stability properties, except for some specific values of
the charges and anticharges.

As mentioned in the main sections, these configura-
tions are generically well-defined and indicate an interact-
ing statistical basis. Herewith, we discover that the state-
space geometry of the general black brane configurations
in string theory indicates the possible nature of the under-
lying statistical fluctuations. Significantly, we notice from
the very definition of the intrinsic metric tensor that the
related statistical pair correlation functions and relative
statistical correlation functions take the following exact
expressions.

A. Correlations for Three
Charge Configurations

Following the notion of the fluctuations, we see from the
Hessian of the entropy equation (30) that the components of
state-space metric tensor are

𝑔
𝑛1𝑛1
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(A.1)

For distinct 𝑖, 𝑗 ∈ {1, 5} and 𝑝, the list of relative
correlation functions follows the scaling relations:
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(A.2)

B. Correlations for Four
Charge Configurations

For the given entropy as in (36), we find that the components
of the metric tensor are
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For distinct 𝑖, 𝑗 ∈ {1, 5}, and 𝑘, 𝑙 ∈ {𝑝, 𝑝} describing four
charge nonextremal 𝐷

1
–𝐷
5
-𝑃-𝑃 black holes, the statistical

pair correlations consist of the following scaling relations:
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Notice that the list of other mixed relative correlation func-
tions concerning the nonextremal 𝐷

1
–𝐷
5
-𝑃-𝑃 black holes

read as
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C. Correlations for Six Charge Configurations

Over generic nonlarge charge domains, we find from the
entropy equation (46) that the components of the covariant
state-space metric tensor are given by the following expres-
sions:
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In this case, from the definition of the relative statistical
correlation functions, for 𝑖, 𝑗 ∈ {𝑛

1
, 𝑚
1
}, and 𝑘, 𝑙 ∈ {𝑛

2
, 𝑚
2
},

the relative correlation functions satisfy the following scaling
relations:
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The other concerned relative correlation functions are
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D. Principle Minors for Eight
Charge Configurations

For the entropy equation (58) of the most general nonex-
tremal nonlarge charged anticharged black hole in string

involving finitelymany nontrivially circularly fibered Kaluza-
Klein monopoles, the principle minors take the following
expressions:

𝑝
1
=

𝜋

2𝑛

3/2

1

(√𝑛2
+ √𝑚2

) (√𝑛3
+ √𝑚3

) (√𝑛4
+ √𝑚4

) ,

𝑝
2
=

𝜋

2

4(𝑛
1
𝑚
1
)

3/2
(√𝑛2

+ √𝑚2
)

2
(√𝑛3

+ √𝑚3
)

2

× (√𝑛4
+ √𝑚4

)

2
,

𝑝
3
=

𝜋

3

8(𝑛
1
𝑚
1
𝑛
2
)

3/2
(√𝑛3

+ √𝑚3
)

3
(√𝑛4

+ √𝑚4
)

3

× (√𝑛2
+ √𝑚2

)√𝑚2
(√𝑛1

+ √𝑚1
) ,

𝑝
4
= 0,

𝑝
5
= −

𝜋

5

8(𝑛
1
𝑛
2
𝑚
2
𝑚
1
)

3/2
𝑛
3

(√𝑛2
+ √𝑚2

)

3

× (√𝑛3
+ √𝑚3

)

3
(√𝑛4

+ √𝑚4
)

5
(√𝑛1

+ √𝑚1
)

3
,

𝑝
6
= −

𝜋

6

16(𝑛
1
𝑛
2
𝑚
1
𝑚
2
𝑛
3
𝑚
3
)

3/2
(√𝑛2

+ √𝑚2
)

4

× (√𝑛3
+ √𝑚3

)

4
(√𝑛4

+ √𝑚4
)

6
(√𝑛1

+ √𝑚1
)

4
,

𝑝
7
= −

𝜋

7

32(𝑛
1
𝑚
1
𝑛
2
𝑚
2
𝑛
3
𝑚
3
𝑛
4
)

3/2
(√𝑛2

+ √𝑚2
)

5

× (√𝑛3
+ √𝑚3

)

5
(√𝑛4

+ √𝑚4
)

5
(4√𝑛4

+ √𝑚4
)

× (√𝑛1
+ √𝑚1

)

5
,

𝑝
8
= −

𝜋

8

16(∏

4

𝑖=1
𝑛
𝑖
𝑚
𝑖
)

3/2
(√𝑛2

+ √𝑚2
)

6

× (√𝑛3
+ √𝑚3

)

6
(√𝑛4

+ √𝑚4
)

6
(√𝑛1

+ √𝑚1
)

6
.

(D.1)

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work has been supported in part by the European
Research Council Grant no. 226455, “SUPERSYMMETRY,
QUANTUM GRAVITY AND GAUGE FIELDS (SUPER-
FIELDS).” Bhupendra Nath Tiwari would like to thank Prof.
V. Ravishankar for his support and encouragements towards
the research in string theory.Thisworkwas conducted during



Advances in High Energy Physics 15

the period Bhupendra Nath Tiwari served as a postdoctoral
research fellow at the INFN-Laboratori Nazionali di Frascati,
Roma, Italy.

References

[1] F. Weinhold, “Metric geometry of equilibrium thermodynam-
ics,” The Journal of Chemical Physics, vol. 63, no. 6, pp. 2479–
2483, 1975.

[2] F. Weinhold, “Metric geometry of equilibrium thermodynam-
ics. II. Scaling, homogeneity, and generalized Gibbs-Duhem
relations,” The Journal of Chemical Physics, vol. 63, no. 6, pp.
2484–2487, 1975.

[3] G. Ruppeiner, “Thermodynamics: a Riemannian geometric
model,” Physical Review A, vol. 20, no. 4, pp. 1608–1613, 1979.

[4] G. Ruppeiner, “Thermodynamic critical fluctuation theory?”
Physical Review Letters, vol. 50, no. 5, pp. 287–290, 1983.

[5] G. Ruppeiner, “New thermodynamic fluctuation theory using
path integrals,” Physical Review A, vol. 27, no. 2, pp. 1116–1133,
1983.

[6] G. Ruppeiner, “Riemannian geometry in thermodynamic fluc-
tuation theory,” Reviews of Modern Physics, vol. 67, p. 605,
1995, Erratum in “Riemannian geometry in thermodynamic
fluctuation theory”, Reviews of Modern Physics, vol. 68, pp. 313,
1996.

[7] G. Ruppeiner and C. Davis, “Thermodynamic curvature of the
multicomponent ideal gas,” Physical Review A, vol. 41, no. 4, pp.
2200–2202, 1990.

[8] G. Ruppeiner, “Stability and fluctuations in black hole thermo-
dynamics,” Physical Review D, vol. 75, no. 2, Article ID 024037,
2007.

[9] G. Ruppeiner, “Thermodynamic curvature and phase transi-
tions in Kerr-Newman black holes,” Physical Review D, vol. 78,
no. 2, Article ID 024016, 2008.
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The paper deals with Hawking radiation from both a general static black hole and a nonstatic spherically symmetric black hole.
In case of static black hole, tunnelling of nonzero mass particles is considered and due to complicated calculations, quantum
corrections are calculated only up to the first order. The results are compared with those for massless particles near the horizon.
On the other hand, for dynamical black hole, quantum corrections are incorporated using the Hamilton-Jacobi method beyond
semiclassical approximation. It is found that different order correction terms satisfy identical differential equation and are solved
by a typical technique. Finally, using the law of black hole mechanics, a general modified form of the black hole entropy is obtained
considering modified Hawking temperature.

1. Introduction

Hawking radiation is one of the most important effects in
black hole (BH) physics. Classically, nothing can escape from
the BH across its event horizon. But in 1974, there was a
dramatic change in view when Hawking and Hartle [1, 2]
showed that BHs are not totally black; they radiate analogous
to thermal black body radiation. Since then, there has been
lots of attraction to this issue and various approaches have
been developed to derive Hawking radiation and its corre-
sponding temperature [3–7]. However, in the last decade, two
distinct semiclassical methods have been developed which
enhanced the study of Hawking radiation to a great extent.
The first approach developed by Parikh and Wilczek [8, 9]
is based on the heuristic pictures of visualisation of the
source of radiation as tunnelling and is known as radial null
geodesic method. The essence of this method is to calculate
the imaginary part of the action for the s-wave emission
(across the horizon) using the radial null geodesic equation
and is then related to the Boltzmann factor to obtainHawking
radiation by the relation:

Γ ∝ exp {−2
ℎ

(Im 𝑆

out
− Im 𝑆

in
)} = exp{− 𝐸

𝑇
𝐻

} , (1)

where 𝐸 is the energy associated with the tunnelling particle
and 𝑇

𝐻
is the usual Hawking temperature.

The alternative way of looking into this aspect is known as
complex paths method developed by Srinivasan et al. [10, 11].
In this approach, the differential equation of the action 𝑆(𝑟, 𝑡)
of a classical scalar particle can be obtained by plugging the
scalar field wave function 𝜙(𝑟, 𝑡) = exp{−(𝑖/ℏ)𝑆(𝑟, 𝑡)} into the
Klein-Gordon (KG) equation in a gravitational background.
Then, the Hamilton-Jacobi (HJ) method is employed to solve
the differential equation for 𝑆. Finally, Hawking temperature
is obtained using the “principle of detailed balance” [10–12]
(time-reversal invariant). It should be noted that the first
method is limited tomassless particles only. Also, thismethod
is applicable to such coordinate system only in which there
is no singularity across the horizon. On the other hand, in
complex paths method, the emitted particles are considered
without self-gravitation and the action is assumed to satisfy
the relativistic HJ equation. Here tunnelling of both massless
and massive particles is possible and it is applicable to any
coordinate system to describe the BH.

Most of the studies [13–18] dealing with the Hawking
radiation are connected to semiclassical analysis. Recently,
Banerjee and Majhi [19] and Corda et al. [20, 21] initiated

Hindawi Publishing Corporation
Advances in High Energy Physics
Volume 2014, Article ID 168487, 9 pages
http://dx.doi.org/10.1155/2014/168487

http://dx.doi.org/10.1155/2014/168487


2 Advances in High Energy Physics

the calculation ofHawking temperature beyond the semiclas-
sical limit. Mostly, both groups have considered tunnelling
of massless particle and evaluated the modified Hawking
temperature with quantum corrections.

In the present work, at first we consider a general
nonstatic metric for dynamical BH. HJ method is extended
beyond semiclassical approximation to consider all the terms
in the expansion of the one particle action. It is found
that the higher order terms (quantum corrections) satisfy
identical differential equations as the semiclassical action
and the complicated terms are eliminated considering BH
horizon as one way barrier. We derive the modified Hawking
temperature using both the above approaches which are
found to be identical at the semiclassical level. Also, modified
form of the BH entropy with quantum correction has been
evaluated.

Subsequently, in the next section, we consider tun-
nelling of particles having nonzeromass beyond semiclassical
approximation. Due to nonzero mass, the imaginary part
of the action cannot be evaluated using first approach; only
HJ method will be applicable. Further, the complicated form
of the equations involved restricted us to only first order
quantum correction.

2. Method of Radial Null Geodesic:
A Survey of Earlier Works

This section deals with a brief survey of the method of radial
null geodesicsmethod [8] considering the picture ofHawking
radiation as quantum tunnelling. In a word, the method
correlates the imaginary part of the action for the classically
forbidden process of s-wave emission across the horizon
with the Boltzmann factor for the black body radiation at
the Hawking temperature. We start with a general class of
nonstatic spherically symmetric BH metric of the form

𝑑𝑠

2
= −𝐴 (𝑟, 𝑡) 𝑑𝑡

2
+

𝑑𝑟

2

𝐵 (𝑟, 𝑡)

+ 𝑟

2
𝑑Ω

2

2
, (2)

where the horizon 𝑟
ℎ
is located at 𝐴(𝑟

ℎ
, 𝑡) = 0 = 𝐵(𝑟

ℎ
, 𝑡)

and the metric has a coordinate singularity at the horizon.
To remove the coordinate singularity, we make the following
Painleve-type transformation of coordinates:

𝑑𝑡 → 𝑑𝑡 −
√

1 − 𝐵

𝐴𝐵

𝑑𝑟
(3)

and as a result metric (2) transforms to

𝑑𝑠

2
= −𝐴𝑑𝑡

2
+ 2
√
𝐴(

1

𝐵

− 1)𝑑𝑡𝑑𝑟 + 𝑑𝑟

2
+ 𝑟

2
𝑑Ω
2

2
.

(4)

This metric (i.e., the choice of coordinates) has some distinct
features over the former one, as follows.

(i) The metric is singularity free across the horizon.
(ii) At any fixed time, we have a flat spatial geometry.
(iii) Both the metric will have the same boundary geome-

try at any fixed radius.

The radial null geodesic (characterized by 𝑑𝑠2 = 0 =

𝑑Ω
2

2) has the differential equation (using (3)):

𝑑𝑟

𝑑𝑡

=
√

𝐴

𝐵

[±1 − √1 − 𝐵 (𝑟, 𝑡)] ,
(5)

where outgoing or ingoing geodesic is identified by the + or
− sign within the square bracket in (4). In the present case,
we deal with the absorption of particles through the horizon
(i.e., + sign only) and according to Parikh and Wilczek [8],
the imaginary part of the action is obtained as

Im 𝑆 = Im∫

𝑟out

𝑟in

𝑝
𝑟
𝑑𝑟 = Im∫

𝑟out

𝑟in

∫

𝑝𝑟

0

𝑑𝑝



𝑟
𝑑𝑟

= Im∫

𝑟out

𝑟in

{∫

𝐻

0

𝑑𝐻



𝑑𝑟/𝑑𝑡

} 𝑑𝑟.

(6)

Note that in the last step of the above derivation we have
used the Hamilton’s equation ̇𝑟 = (𝑑𝐻/𝑑𝑝

𝑟
)|
𝑟
, where (𝑟,𝑝

𝑟
)

are canonical pair. Further, it is to be mentioned that in
quantum mechanics, the action of a tunnelled particle in a
potential barrier having energy larger than the energy of the
particle will be imaginary as 𝑝

𝑟
= √2𝑚(𝐸 − 𝑉). For the

present nonstatic BH, the mass of the BH is not constant
and hence the 𝑑𝐻 integration extends over all the values of
energy of outgoing particle, fromzero to𝐸(𝑡) [22] (say). Aswe
are dealing with tunnelling across the BH horizon, so using
Taylor series expansion about the horizon 𝑟

ℎ
we write

𝐴(𝑟, 𝑡)|𝑡
=

𝜕𝐴(𝑟, 𝑡)

𝜕𝑟








𝑡

(𝑟 − 𝑟
ℎ
) + 𝑂(𝑟 − 𝑟

ℎ
)

2



𝑡
,

𝐵(𝑟, 𝑡)|𝑡
=

𝜕𝐵(𝑟, 𝑡)

𝜕𝑟








𝑡

(𝑟 − 𝑟
ℎ
) + 𝑂(𝑟 − 𝑟

ℎ
)

2



𝑡
.

(7)

So, in the neighbourhood of the horizon, the geodesic
equation (4) can be approximated as

𝑑𝑟

𝑑𝑡

≈

1

2

√𝐴


(𝑟
ℎ
, 𝑡) 𝐵


(𝑟
ℎ
, 𝑡) (𝑟 − 𝑟

ℎ
) . (8)

Substituting this value of 𝑑𝑟/𝑑𝑡 in the last step of (5) we have

Im 𝑆 =

2𝜋𝐸 (𝑡)

√𝐴


(𝑟
ℎ
, 𝑡) 𝐵


(𝑟
ℎ
, 𝑡)

, (9)

where the choice of contour for 𝑟-integration is on the upper
half complex plane to avoid the coordinate singularity at 𝑟

ℎ
.

Thus, the tunnelling probability is given by

Γ ∼ exp {−2
ℏ

Im 𝑆} = exp{− 4𝜋𝐸 (𝑡)
ℏ
√
𝐴


𝐵


} , (10)

which in turn equateswith the Boltzmann factor exp{𝐸(𝑡)/𝑇};
the expression for the Hawking temperature is

𝑇
𝐻
=

ℏ√𝐴


(𝑟
ℎ
, 𝑡) 𝐵


(𝑟
ℎ
, 𝑡)

4𝜋

.

(11)
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From the above expression, it is to be noted that 𝑇
𝐻
is time

dependent.
Recently, a drawback of the above approach

has been noted [23–25]. It has been shown that
Γ ∼ exp{−(2/ℏ) Im 𝑆} = exp{−(2/ℏ) Im∫

𝑟out

𝑟in
𝑝
𝑟
𝑑𝑟} is not

canonically invariant and hence is not a proper observable; it
should be modified as exp{− Im∮𝑝

𝑟
𝑑𝑟/ℏ}. The closed path

goes across the horizon and back. For tunnelling across the
ordinary barrier, it is immaterial whether the particle goes
from the left to the right or the reverse path. So in that case

∮𝑝
𝑟
𝑑𝑟 = 2∫

𝑟out

𝑟in

𝑝
𝑟
𝑑𝑟 (12)

and there is no problem of canonical invariance. But difficulty
arises for BH horizon which behaves as a barrier for particles
going from inside of the BH to outside but it does not act
as a barrier for particles going from outside to the inside.
So relation (12) is no longer valid. Also, using tunnelling the
probability is Γ ∼ exp{− Im∮𝑝

𝑟
𝑑𝑟/ℏ}, so there will be a

problem of factor two in Hawking temperature [24, 26, 27].
Further, the above analysis of tunnelling approach

remains incomplete unless effects of self-gravitation and back
reaction are taken into account. But unfortunately, no general
approaches to account for the above effects are there in the
literature; only few results are available for some known BH
solutions [26–32].

Finally, it is worth mentioning that so far the above
tunnelling approach is purely semiclassical in nature and
quantum corrections are not included. Also, this method is
applicable for Painleve-type coordinates only; one cannot use
the original metric coordinates to avoid horizon singularity.
Lastly, the tunnelling approach is not applicable for massive
particles [19].

3. Hamilton-Jacobi Method:
Quantum Corrections

We will now follow the alternative approach as mentioned in
the introduction, that is, the HJ method to evaluate the imag-
inary part of the action and hence the Hawking temperature.
We will analyze the beyond semiclassical approximation by
incorporating possible quantum corrections. As this method
is not affected by the coordinate singularity at the horizon so
we will use the general BH metric (2) for convenience.

In the background of the gravitational field described
by the metric (2), massless scalar particles obey the Klein-
Gordon equation

ℏ

2

√−𝑔

𝜕 [𝑔

𝜇]
√−𝑔𝜕]] 𝜓 = 0. (13)

For spherically symmetric BH, as we are only considering
radial trajectories, so we will consider (𝑡, 𝑟)-sector in the
spacetime given by (2); that is, we concentrate on two-
dimensional BH problems. Using (2), the above Klein-
Gordon equation becomes

𝜕

2
𝜓

𝜕𝑡

2
−

1

2𝐴𝐵

𝜕 (𝐴𝐵)

𝜕𝑡

𝜕𝜓

𝜕𝑡

−

1

2

𝜕 (𝐴𝐵)

𝜕𝑟

𝜕𝜓

𝜕𝑟

− 𝐴𝐵

𝜕

2
𝜓

𝜕𝑟

2
= 0.

(14)

Using the standard ansatz for the semiclassical wave function,
namely,

𝜓 (𝑟, 𝑡) = exp {− 𝑖
ℏ

𝑆 (𝑟, 𝑡)} , (15)

the differential equation for the action 𝑆 is

(

𝜕𝑆

𝜕𝑡

)

2

− 𝐴𝐵(

𝜕𝑆

𝜕𝑟

)

2

+ 𝑖ℏ [

𝜕

2
𝑆

𝜕𝑡

2
−

1

2𝐴𝐵

𝜕 (𝐴𝐵)

𝜕𝑡

𝜕𝑆

𝜕𝑡

−

1

2

𝜕 (𝐴𝐵)

𝜕𝑟

𝜕𝑆

𝜕𝑟

− 𝐴𝐵

𝜕

2
𝑆

𝜕𝑟

2
] .

(16)

To solve this partial differential equation we expand the
action 𝑆 in powers of Planck’s constant ℏ as

𝑆 (𝑟, 𝑡) = 𝑆0 (
𝑟, 𝑡) + Σℏ

𝑘
𝑆
𝑘 (
𝑟, 𝑡) , (17)

with 𝑘 being a positive integer. Note that, in the above
expansion, terms of the order of Planck’s constant and its
higher powers are considered as quantum corrections over
the semiclassical action 𝑆

0
. Now substituting ansatz (17) for 𝑆

into (16) and equating different powers of ℏ on both sides, we
obtain the following set of partial differential equations:

ℏ

0
: (

𝜕𝑆

𝜕𝑡

)

2

− 𝐴𝐵(

𝜕𝑆

𝜕𝑟

)

2

= 0, (18)

ℏ

1
:

𝜕𝑆
0

𝜕𝑡

𝜕𝑆
1

𝜕𝑡

− 𝐴𝐵

𝜕𝑆
0

𝜕𝑟

𝜕𝑆
1

𝜕𝑟

+

𝑖

2

[

𝜕

2
𝑆
0

𝜕𝑡

2
−

1

2𝐴𝐵

𝜕 (𝐴𝐵)

𝜕𝑡

𝜕𝑆
0

𝜕𝑡

−

1

2

𝜕 (𝐴𝐵)

𝜕𝑟

𝜕𝑆
0

𝜕𝑟

− 𝐴𝐵

𝜕

2
𝑆
0

𝜕𝑟

2
] = 0,

(19)

ℏ

2
: (

𝜕𝑆
1

𝜕𝑡

)

2

+ 2

𝜕𝑆
0

𝜕𝑡

𝜕𝑆
2

𝜕𝑡

− 𝐴𝐵(

𝜕𝑆
1

𝜕𝑟

)

2

− 2𝐴𝐵

𝜕𝑆
0

𝜕𝑟

𝜕𝑆
2

𝜕𝑟

+ 𝑖 [

𝜕

2
𝑆
1

𝜕𝑡

2
−

1

2𝐴𝐵

𝜕 (𝐴𝐵)

𝜕𝑡

𝜕𝑆
1

𝜕𝑡

−

1

2

𝜕 (𝐴𝐵)

𝜕𝑟

𝜕𝑆
1

𝜕𝑟

− 𝐴𝐵

𝜕

2
𝑆
1

𝜕𝑟

2
] = 0,

(20)

and so on.
Apparently, different order partial differential equations

are very complicated but fortunately there will be lot of
simplifications if, in the partial differential equation corre-
sponding to ℏ𝑘, all previous partial differential equations
are used and finally we obtain identical partial differential
equation, namely,

ℏ

𝑘
:

𝜕𝑆
𝑘

𝜕𝑡

= ±√𝐴 (𝑟, 𝑡) 𝐵 (𝑟, 𝑡)

𝜕𝑆
𝑘

𝜕𝑟

, (21)

for 𝑘 = 0, 1, 2, . . ..
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Thus, quantum corrections satisfy the same differential
equation as the semiclassical action 𝑆

0
. Hence, the solutions

will be very similar. To solve 𝑆
0
, it is to be noted that due to

nonstatic BHs the metric coefficients are functions of 𝑟 and
𝑡 and hence standard HJ method cannot be applied; some
generalization is needed. We start with a general metric [22]

𝑆
0 (
𝑟, 𝑡) = ∫

𝑡

0

𝜔
0
(𝑡


) 𝑑𝑡 + 𝐷

0 (
𝑟, 𝑡) . (22)

Here 𝜔
0
(𝑡) behaves as the energy of the emitted particle

and the justification of the choice of the integral is that the
outgoing particle should have time-dependent continuum
energy.

Now substituting the above ansatz for 𝑆
0
(𝑟, 𝑡) into (18) and

using the radial null geodesic in the usual metric from (2),
namely,

𝑑𝑟

𝑑𝑡

= ±
√
𝐴𝐵, (23)

we have

𝜕𝐷
0

𝜕𝑟

+

𝜕𝐷
0

𝜕𝑡

𝑑𝑡

𝑑𝑟

= ∓𝜔
0 (
𝑡)

𝑑𝑡

𝑑𝑟

. (24)

that is,

𝑑𝐷
0

𝑑𝑟

= ∓

𝜔
0 (
𝑡)

√
𝐴𝐵

, (25)

which gives

𝐷
0
= ∓𝜔
0 (
𝑡) ∫

𝑟

0

𝑑𝑟

√
𝐴𝐵

. (26)

Hence, the complete semiclassical action takes the form

𝑆
0 (
𝑟, 𝑡) = ∫

𝑡

0

𝜔
0
(𝑡


) 𝑑𝑡


∓ 𝜔
0 (
𝑡) ∫

𝑟

0

𝑑𝑟

√
𝐴𝐵

. (27)

Here the − (or +) sign corresponds to absorption (or emis-
sion) particle. As solution (27) contains an arbitrary time-
dependent function 𝜔

0
(𝑡), so a general solution for 𝑆

𝑘
can be

written as

𝑆
𝑘 (
𝑟, 𝑡) = ∫

𝑡

0

𝜔
𝑘
(𝑡


) 𝑑𝑡


∓ 𝜔
0 (
𝑡) ∫

𝑟

0

𝑑𝑟

√
𝐴𝐵

, 𝑘 = 1, 2, 3, . . . .

(28)

Thus, from (15), using solutions (27) and (28) into (17), the
wave functions for absorption and emission of scalar particle
can be expressed as

𝜓emm. (𝑟, 𝑡) = exp{− 𝑖
ℏ

[(∫

𝑡

0

𝜔
0
(𝑡


) 𝑑𝑡



+Σ
𝑘
ℏ

𝑘
∫

𝑡

0

𝜔
𝑘
(𝑡


) 𝑑𝑡


)

− (𝜔
0 (
𝑡) + Σ𝑘

ℏ

𝑘
𝜔
𝑘 (
𝑡)) ∫

𝑟

0

𝑑𝑟

√
𝐴𝐵

]} ,

𝜓abs. (𝑟, 𝑡) = exp{− 𝑖
ℏ

[(∫

𝑡

0

𝜔
0
(𝑡


) 𝑑𝑡



+Σ
𝑘
ℏ

𝑘
∫

𝑡

0

𝜔
𝑘
(𝑡


) 𝑑𝑡


)

+ (𝜔
0 (
𝑡) + Σ𝑘

ℏ

𝑘
𝜔
𝑘 (
𝑡)) ∫

𝑟

0

𝑑𝑟

√
𝐴𝐵

]} ,

(29)

respectively. Due to tunnelling across the horizon, there will
be a change of sign of the metric coefficients in the (𝑟, 𝑡)-part
of the metric and as a result, function of 𝑡 coordinate has an
imaginary part which will contribute to the probabilities. So
we write

𝑃abs. =





𝜓abs. (𝑟, 𝑡)





2

= exp{2 Im
ℏ

[(∫

𝑡

0

𝜔
0
(𝑡


) 𝑑𝑡


+ Σ
𝑘
ℏ

𝑘
∫

𝑡

0

𝜔
𝑘
(𝑡


) 𝑑𝑡


)

+ (𝜔
0 (
𝑡) + Σ𝑘

ℏ

𝑘
𝜔
𝑘 (
𝑡)) ∫

𝑟

0

𝑑𝑟

√
𝐴𝐵

]} ,

(30)

𝑃emm. =





𝜓emm. (𝑟, 𝑡)





2

= exp{2 Im
ℏ

[(∫

𝑡

0

𝜔
0
(𝑡


) 𝑑𝑡


+ Σ
𝑘
ℏ

𝑘
∫

𝑡

0

𝜔
𝑘
(𝑡


) 𝑑𝑡


)

− (𝜔
0 (
𝑡) + Σ𝑘

ℏ

𝑘
𝜔
𝑘 (
𝑡)) ∫

𝑟

0

𝑑𝑟

√
𝐴𝐵

]} .

(31)

To have some simplification, we will now use the physical fact
that all incoming particles certainly cross the horizon; that is,
𝑃abs. = 1. So from (30),

Im(∫

𝑡

0

𝜔
0
(𝑡


) 𝑑𝑡


+ Σ
𝑘
ℏ

𝑘
∫

𝑡

0

𝜔
𝑘
(𝑡


) 𝑑𝑡


)

= − Im (𝜔
0 (
𝑡) + Σ𝑘

ℏ

𝑘
𝜔
𝑘 (
𝑡)) ∫

𝑟

0

𝑑𝑟

√
𝐴𝐵

(32)

and hence 𝑃emm. simplifies to

𝑃emm. = exp{−4
ℏ

(𝜔
0 (
𝑡) + Σ𝑘

ℏ

𝑘
𝜔
𝑘 (
𝑡)) Im∫

𝑟

0

𝑑𝑟

√
𝐴𝐵

} . (33)
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Then from the principle of “detailed balance” [10–12] (which
states that transitions between any two states take place with
equal frequency in either direction at equilibrium), we write

𝑃emm. = exp{−
𝜔
0 (
𝑡)

𝑇
ℎ

}𝑃in = exp{−
𝜔
0 (
𝑡)

𝑇
ℎ

} . (34)

So, comparing (33) and (34), the temperature of the BH is
given by

𝑇
ℎ
=

ℏ

4

[1 + Σ
𝑘
ℏ

𝑘𝜔𝑘
(𝑡)

𝜔
0
(𝑡)

]

−1

[Im∫

𝑟

0

𝑑𝑟

√
𝐴𝐵

]

−1

, (35)

where

𝑇
ℎ
=

ℏ

4

[Im∫

𝑟

0

𝑑𝑟

√
𝐴𝐵

]

−1

(36)

is the usual Hawking temperature of the BH. Thus, due to
quantum corrections, the temperature of the BH is modified
from the Hawking temperature and both temperatures are
functions of 𝑡 and 𝑟. Note that (36) is the standard expression
for semiclassical Hawking temperature and it is valid for
nonspherical metric also. However, for spherical metric, one
can use the Taylor series expansions (7) near the horizon
and obtain 𝑇

𝐻
as given in (11) by performing the contour

integration. The ambiguity of factor of two (as mentioned
earlier) in the Hawking temperature does not arise here.

Further, one may note that solutions (27) or (28) are the
unique solutions to (18) or (21) except for a premultiplication
factor. This arbitrary multiplicative factor does not appear in
the expression for Hawking temperature; only the particle
energy (𝜔

0
) or 𝜔

𝑘
is rescaled. As quantum correction term

contains𝜔
𝑘
/𝜔
0
, so it does not involve the arbitrarymultiplica-

tive factor and hence it is unique.
To have some interpretation about the arbitrary functions

𝜔
𝑘
(𝑡) appearing in the quantum correction terms, we make

use of dimensional analysis. As 𝑆
0
has the dimension ℏ, so the

arbitrary function 𝜔
𝑘
(𝑡) has the dimension ℏ−𝑘. In standard

choice of units, namely, 𝐺 = 𝑐 = 𝐾
𝐵
= 1, ℏ ∼ 𝑀

2

𝑝
and so

𝜔
𝑘
∼ 𝑀

−2𝑘, where𝑀 is the mass of the BH.
Similar to the Hawking temperature, the surface gravity

of the BH is modified due to quantum corrections. If 𝜅
𝑐
is

the semiclassical surface gravity corresponding to Hawking
temperature, that is, 𝜅

𝑐
= 2𝜋𝑇

𝐻
, then the quantum corrected

surface gravity 𝜅 = 2𝜋𝑇
𝐻
is related to the semiclassical value

by the relation:

𝜅 = 𝜅
𝑐
[1 + Σ

𝑘
ℏ

𝑘𝜔𝑘
(𝑡)

𝜔
0
(𝑡)

]

−1

. (37)

Moreover, based on the dimensional analysis, if we choose,
for simplicity,

𝜔
𝑘 (
𝑡) =

𝑎

𝑘
𝜔
0 (
𝑡)

𝑀

2𝑘
, “𝑎” is a dimensionless parameter,

(38)

then expression (37) is simplified to

𝜅 = 𝜅
0
(1 −

ℏ𝑎

𝑀

2
)

−1

. (39)

This is related to the one loop back reaction effects in the
spacetime [6, 33] with the parameter 𝑎 corresponding to trace
anomaly. Higher order loop corrections to the surface gravity
can be obtained similarly by suitable choice of the functions
𝜔
𝑘
(𝑡). For static BHs, Banerjee and Majhi [19] have studied

these corrections in detail. Lastly, it is worth mentioning that
identical result for BH temperature may be obtained if we use
the Painleve coordinate system as in the previous section.

4. Entropy Function and Quantum Correction

We will now examine how the semiclassical Bekenstein-
Hawking area law, namely, 𝑆BH = (𝐴/4ℏ) (𝐴 is the area of the
horizon) is modified due to quantum corrections described
in the previous section. The first law of the BH mechanics,
which is essentially the energy conservation relation, related
the change of BHmass (𝑀) to the change of its entropy (𝑆BH),
electric charge (𝑄), and angular momentum (𝐽) as

𝑑𝑀 = 𝑇
ℎ
𝑑𝑆BH + Φ𝑑𝑄 + Ω𝑑𝐽. (40)

Here, Ω is the angular velocity and Φ is the electrostatic
potential. So, for nonrotating uncharged BHs, the entropy has
the simple form

𝑆BH = ∫
𝑑𝑀

𝑇
ℎ

, (41)

or using (35) for 𝑇
ℎ
, we get

𝑆BH = ∫[1 + Σ𝑘ℏ
𝑘𝜔𝑘 (

𝑡)

𝜔
0 (
𝑡)

]

𝑑𝑀

𝑇
𝐻

. (42)

For choice (38) corresponding to one loop back reaction
effects, we have from (42) the quantum corrected BH entropy
as

𝑆BH = ∫[1 +
𝑎ℏ

𝑀

+

𝑎

2
ℏ

2

𝑀

2
+ ⋅ ⋅ ⋅ ]

𝑑𝑀

𝑇
𝐻

. (43)

The first term is the usual semiclassical Bekenstein-Hawking
entropy and the subsequent terms are the quantum cor-
rections of different order. For static BHs, Banerjee and
Majhi [19] have shown the correction terms of which the
leading one gives the standard logarithmic correction. On the
other hand, for nonstatic BHs, as the proportionality factors
are time-dependent and arbitrary (see (42)) so the leading
order correction term may not be logarithmic. For future
work, we will attempt to determine physical interpretation of
the arbitrary time-dependent proportionality factors so that
quantum corrections may be evaluated.

5. Hamilton-Jacobi Method for Massive
Particles: Quantum Corrections

The KG equation for a scalar field 𝜓 describing a scalar
particle of mass𝑚

0
has the form [10]

(◻ +

𝑚

2

0

ℏ

2
)𝜓 = 0, (44)
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where the box operator "◻" is evaluated in the background of
a general static BH metric of the form

𝑑𝑠

2
= −𝐴 (𝑟) 𝑑𝑡

2
+

𝑑𝑟

2

𝐵 (𝑟)

+ 𝑟

2
𝑑Ω
2

2
. (45)

The explicit form of the KG equation for the metric (45) is

−

1

𝐴

𝜕

2
𝜓

𝜕𝑡

2
+ 𝐵

𝜕

2
𝜓

𝜕𝑟

2
+

1

2𝐴

𝜕 (𝐴𝐵)

𝜕𝑟

𝜕𝜓

𝜕𝑟

+

2𝐵

𝑟

𝜕𝜓

𝜕𝑟

+

1

𝑟

2 sin 𝜃
𝜕

𝜕𝜃

(sin 𝜃
𝜕𝜓

𝜕𝜃

)

+

1

𝑟

2sin2𝜃
𝜕

2
𝜓

𝜕𝜙

2
=

𝑚

2

0

ℏ

2
𝜓 (𝑡, 𝑟, 𝜃, 𝜙) .

(46)

Due to spherical symmetry, we can decompose 𝜙 in the form

𝜓 (𝑡, 𝑟, 𝜃, 𝜙) = Φ (𝑡, 𝑟) 𝑌

𝑚

𝑙
(𝜃, 𝜙) , (47)

where 𝜙 satisfies [10]

1

𝐴

𝜕

2
𝜓

𝜕𝑡

2
− 𝐵

𝜕

2
𝜓

𝜕𝑟

2
−

1

2𝐴

𝜕 (𝐴𝐵)

𝜕𝑟

𝜕𝜓

𝜕𝑟

−

2𝐵

𝑟

𝜕𝜓

𝜕𝑟

+ {

𝑙 (𝑙 + 1)

𝑟

2
+

𝑚

2

0

ℏ

2
}Φ (𝑡, 𝑟) = 0.

(48)

If we substitute the standard ansatz for the semiclassical wave
function, namely,

𝜙 (𝑡, 𝑟) = exp {− 𝑖
ℏ

𝑆 (𝑟, 𝑡)} , (49)

then the action 𝑆 will satisfy the following differential equa-
tion:

[

1

𝐴

(

𝜕𝑆

𝜕𝑡

)

2

− 𝐵(

𝜕𝑆

𝜕𝑟

)

2

− 𝐸

2

0
(𝑟)]

−

ℏ

𝑖

[

1

𝐴

𝜕

2
𝑆

𝜕𝑡

2
− 𝐵

2 𝜕
2
𝑆

𝜕𝑟

2
− {

1

2𝐴

𝜕 (𝐴𝐵)

𝜕𝑟

+

2𝐵

𝑟

}

𝜕𝑆

𝜕𝑟

] = 0,

(50)

where 𝐸2
0
= 𝑚

2

0
+ (𝐿

2
/𝑟

2
) and 𝐿2 = 𝑙(𝑙 + 1)ℏ2 is the angular

momentum. To incorporate quantum corrections over the
semiclassical action, we expand the actions in powers of
Planck constant ℏ as

𝑆 (𝑟, 𝑡) = 𝑆0 (
𝑟, 𝑡) + Σ𝑘

ℏ

𝑘
𝑆
𝑘 (
𝑟, 𝑡) , (51)

where 𝑆
0
is the semiclassical action and 𝑘 is a positive integer.

Now substituting this ansatz for 𝑆 in the differential equation

(50) and equating different powers of ℏ on both sides, we
obtain the following set of partial differential equations:

ℏ

0
:

1

𝐴

(

𝜕𝑆

𝜕𝑡

)

2

− 𝐵(

𝜕𝑆

𝜕𝑟

)

2

− 𝐸

2

0
(𝑟) = 0, (52)

ℏ

1
:

2

𝐴

𝜕𝑆
0

𝜕𝑡

𝜕𝑆
1

𝜕𝑡

− 2𝐵

𝜕𝑆
0

𝜕𝑟

𝜕𝑆
1

𝜕𝑟

−

1

𝑖

[

1

𝐴

𝜕

2
𝑆
0

𝜕𝑡

2
− 𝐵

2 𝜕
2
𝑆
0

𝜕𝑟

2

−{

1

2𝐴

𝜕 (𝐴𝐵)

𝜕𝑟

+

2𝐵

𝑟

}

𝜕𝑆
0

𝜕𝑟

] = 0,

(53)

ℏ

2
:

1

𝐴

(

𝜕𝑆
1

𝜕𝑡

)

2

+

2

𝐴

𝜕𝑆
0

𝜕𝑡

𝜕𝑆
2

𝜕𝑡

− 𝐵(

𝜕𝑆
1

𝜕𝑟

)

2

− 2𝐵

𝜕𝑆
0

𝜕𝑟

𝜕𝑆
2

𝜕𝑟

−

1

𝑖

[

1

𝐴

𝜕

2
𝑆
1

𝜕𝑡

2
− 𝐵

2 𝜕
2
𝑆
1

𝜕𝑟

2

−{

1

2𝐴

𝜕 (𝐴𝐵)

𝜕𝑟

+

2𝐵

𝑟

}

𝜕𝑆
1

𝜕𝑟

] = 0,

(54)

and so on.
To solve the semiclassical action 𝑆

0
, we start with the

standard separable choice [10]

𝑆
0 (
𝑟, 𝑡) = 𝜔0

𝑡 + 𝐷
0 (
𝑟) . (55)

Substituting this choice in (52), we obtain

𝐷
0
= ±∫

𝑟

0

√

𝜔

2

0
− 𝐴𝐸

2

0

𝐴𝐵

𝑑𝑟 = ±𝐼
0

(say) , (56)

where + or − sign corresponds to absorption or emission of
scalar particle. Now substituting this choice for 𝑆

0
in (53), we

have the differential equation for first order corrections 𝑆
1
as

𝜕𝑆
1

𝜕𝑡

∓
√
𝐴𝐵
√
1 −

𝐴𝐸

2

0

𝜔

2

0

𝜕𝑆
1

𝜕𝑟

∓

√
𝐴𝐵

𝑖

[

[

[

−

1

𝑟

√

1 −

𝐴𝐸

2

0

𝜔

2

+

(𝜕𝐴/𝜕𝑟) (𝐸

2

0
/𝜔

2
) − (2𝐴𝐿

2
/𝜔

2

0
𝑟

3
)

4√1 − (𝐴𝐸

2

0
/𝜔

2
)

]

]

]

= 0.

(57)

As before, 𝑆
1
can be written in separable form as

𝑆
1
= 𝜔
1
𝑡 + 𝐷
1 (
𝑟) , (58)
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where

𝐷
1
= ∫

𝑟

0

𝑑𝑟

√
𝐴𝐵√1 − (𝐴𝐸

2

0
/𝜔

2

0
)

×

[

[

[

± 𝜔
1
−

√
𝐴𝐵

𝑖

×

{
{

{
{

{

−

1

𝑟

√

1 −

𝐴𝐸

2

0

𝜔

2

+

(𝜕𝐴/𝜕𝑟) (𝐸

2

0
/𝜔

2
) − (2𝐴𝐿

2
/𝜔

2

0
𝑟

3
)

4√1 − (𝐴𝐸

2

0
/𝜔

2
)

}
}

}
}

}

]

]

]

= ±𝐼
1
− 𝐼
2
.

(59)

Now due to complicated form, if we retain terms up to first
order quantum corrections, that is,

𝑆 = 𝑆
0
+ ℏ𝑆
1
= (𝜔
0
+ ℏ𝜔
1
) 𝑡 + {𝐷

0
+ ℏ𝐷
1 (
𝑟)} , (60)

then the wave function denoting absorption and emission
solutions of the KG equation (48) using (49) are of the form

𝜙abs. = exp {− 𝑖
ℏ

(𝜔
0
+ ℏ𝜔
1
𝑡 + 𝐼
0
+ ℏ𝐼
1
− ℏ𝐼
2
)} ,

𝜙emm. = exp {− 𝑖
ℏ

(𝜔
0
+ ℏ𝜔
1
𝑡 − 𝐼
0
+ ℏ𝐼
1
− ℏ𝐼
2
)} .

(61)

It is to be noted that in course of tunnelling across the hori-
zon, the coordinate nature changes; that is, more precisely
the signs of themetric coefficients in the (𝑟, 𝑡)-hyperplane are
altered.Thus, we can interpret this as that the time coordinate
has an imaginary part in crossing the horizon and accordingly
the temporal part has contribution to the probabilities [19,
33]. Thus, absorption and emission probabilities are given by

𝑃abs. =





𝜙in





2
= exp {2

ℏ

(Im 𝜔
0
+ ℏ𝜔
1
𝑡)

+ Im 𝐼
0
+ ℏ𝐼
1
− Im ℏ𝐼

2
} ,

(62)

𝑃emm. =





𝜙out





2
= exp {− 𝑖

ℏ

(Im 𝜔
0
+ ℏ𝜔
1
𝑡)

− Im 𝐼
0
+ ℏ𝐼
1
− Im ℏ𝐼

2
} .

(63)

In the classical limit ℏ → 0, there is no reflection, so all
ingoing particles should be absorbed and hence [33]

lim
ℏ→0

𝑃abs. = 1. (64)

So, from (62), we must have

Im 𝜔
0
𝑡 = Im 𝐼

0
, Im (𝜔

1
𝑡 − 𝐼
2
) = Im 𝐼

1 (65)

and as a result 𝑃emm. simplifies to

𝑃emm. = exp[[

[

−

4𝜔
0

ℏ

× Im
{
{

{
{

{

∫

𝑟

0

𝑑𝑟

√
𝐴𝐵

(
√
1 −

𝐴𝐸

2

0

𝜔

2

0

+

ℏ (𝜔
1
/𝜔
0
)

√1 − (𝐴𝐸

2

0
/𝜔

2

0
)

)

}
}

}
}

}

]

]

]

.

(66)

Using the principle of “detailed balance” [10, 11, 20, 21],
namely,

𝑃emm. = exp{− 𝐸
𝑇
ℎ

}𝑃in = exp{− 𝐸
𝑇
ℎ

} , (67)

the temperature of the BH is given by

𝑇
ℎ
=

ℏ𝐸

4𝜔
0

[

[

[

Im
{
{

{
{

{

∫

𝑟

0

𝑑𝑟

√
𝐴𝐵

× (
√
1 −

𝐴𝐸

2

0

𝜔

2

0

+

ℏ(𝜔
1
/𝜔
0
)

√1 − (𝐴𝐸

2

0
/𝜔

2

0
)

)

}
}

}
}

}

]

]

]

−1

,

(68)

where the semiclassical Hawking temperature of the BH has
the expression

𝑇
𝐻
=

ℏ𝐸

4𝜔
0

[

[

Im∫

𝑟

0

𝑑𝑟

√
𝐴𝐵

√
1 −

𝐴𝐸

2

0

𝜔

2

0

]

]

−1

. (69)

Now, to obtain themodified form of the surface gravity of the
BH, we start with the usual relation between surface gravity
and Hawking temperature, namely,

𝜅
𝐻
= 2𝜋𝑇

𝐻
, (70)

where 𝑇
𝐻
is given by (69).

So the quantum corrected surface gravity is given by

𝜅QC = 2𝜋𝑇ℎ. (71)

Further, for the present nonrotating, uncharged, static BHs,
using the law of BH thermodynamics 𝑑𝑀 = 𝑇

ℎ
𝑑𝑆, we have

the expression for the entropy of the BH as

𝑆BH = ∫
4𝜔
0

ℏ𝐸

(1 +

ℏ𝜔
1

𝜔
0

)𝑑𝑀∫

𝑟

0

𝑑𝑟

√
𝐴𝐵

. (72)

Finally, it is easy to see from (68) that near the horizon
the presence of 𝐸2

0
term can be neglected as it is multiplied
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by themetric coefficient𝐴.Therefore, the quantum corrected
(up to first order) temperature of the BH (in (68)) reduces to

𝑇
ℎ
=

ℏ𝐸

4𝜔
0

(1 +

ℏ𝜔
1

𝜔
0

)

−1

[∫

𝑟

0

𝑑𝑟

√
𝐴𝐵

]

−1

(73)

and the Hawking temperature (given in (69)) becomes

𝑇
𝐻
=

ℏ𝐸

4𝜔
0

[∫

𝑟

0

𝑑𝑟

√
𝐴𝐵

]

−1

. (74)

So we have

𝑇
ℎ
= (1 +

ℏ𝜔
1

𝜔
0

)

−1

𝑇
𝐻
. (75)

We see that if the energy of the tunnelling particle is chosen as
𝜔
0
(i.e., 𝐸 = 𝜔

0
) and 𝜔

1
= 𝛽
1
/𝑀 (for notations see Banerjee

and Majhi [19]) then the Hawking temperature given by
(74) is the usual one derived for massless particles and
the quantum corrected temperature 𝑇

ℎ
given in (75) agrees

with that of Banerjee and Majhi [19] for massless particle.
Therefore, Hawking temperature near the horizon remains
the same for both massless and nonzero mass tunnelling
particles and it agrees with the claim of Srinivasan and
Padmanabhan [10] and Banerjee and Majhi [19]. For future
work, it will be interesting to calculate the temperature of the
BH for tunnelling nonzero mass particle with full quantum
corrections and examine whether the result agrees with that
of Banerjee andMajhi [19] near the horizon. Finally, it will be
nice to determine quantum corrected entropy of the BH in a
convenient form.

6. Summary of the Work

This work is an attempt to study quantum corrections to
Hawking radiation of massless particle from a dynamical BH
as well as for massive particle from a static BH. At first,
radial null geodesic tunnelling approach has been used with
Painleve-type choice of coordinate system to derive semiclas-
sical Hawking temperature. Then full quantum mechanical
calculations have performed writing action in a power series
of the Planck constant ℏ to evaluate the quantum correc-
tions to the Hawking temperature. Subsequently, quantum
corrected surface gravity has been calculated and it is found
that one loop back reaction effects in the spacetime can be
obtained by suitable choice of the arbitrary functions and
parameters. Finally, an expression for the quantum corrected
entropy of the BH has been evaluated. It is found that, due
to the presence of the arbitrary functions in the expression
for entropy, the leading order quantum correction may not
be logarithmic in nature. On the other hand, in the case
of Hawking radiation of massive particle from static BH, it
is found that Hawking temperature near the horizon does
not depend on the mass term as predicted by Srinivasan
and Padmanabhan [10] and Banerjee et al. [16–18]. For
future work, we will try to find a solution for the partial
differential equation (18) in a more simple form so that more
physical interpretations can be done from the BHparameters.

Also, it will be interesting to calculate temperature of the
BH for tunnelling nonzero mass particle with full quantum
correction and examine whether the result agrees with that
of Banerjee andMajhi [19] near the horizon. Finally, it will be
nice to determine quantum corrected entropy of the BH in a
convenient form.
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Use of super-radiance in BH physics, so 𝑑𝐸/𝑑𝑡 < 0 specifies conditions for a mass of a graviton being less than or equal to
1065 grams, allows for determing what role additional dimensions may play in removing the datum that massive gravitons lead
to 3/4th the bending of light past the planet Mercury. The present document makes a given differentiation between super-radiance
in the case of conventional BHs and Braneworld BH super-radiance, which may delineate whether Braneworlds contribute to an
admissible massive graviton in terms of removing the usual problem of the 3/4th the bending of light past the planet Mercury
which is normally associated with massive gravitons. This leads to a fork in the road between two alternatives with the possibility
of needing a multiverse containment of BH structure or embracing what Hawkings wrote up recently, namely, a redo of the event
horizon hypothesis as we know it.

1. Introduction: Massive Gravity and
How to Get It to Commensurate with Black
Hole Physics

We are now attempting to come up with criteria for either
massless or massive gravitons. Our preferred way to do it
distinguishing between the two forms of super-radiance. One
built about Kerr black holes [1], and the other involving
brane theory [2]; with the brane theory version of super-
radiance, perhaps correcting a problem as to when a massive
graviton would, without brane theory, lead to 3/4th the
angular bending of light and be seen experimentally. We
briefly allude to both of these cases in the introduction below,
before giving more details to this phenomenon in Sections 2
and 3.

In general, relativity of the metric 𝑔
𝑎𝑏
(𝑥, 𝑡) is a set of

numbers associated with each point which gives the distance
to neighboring points. That is, general relativity is a classical
theory. As it is designated by GR traditionalists [3], the
graviton is usually stated to be massless, with two spin
states and with two polarizations. Adding a mass to the

graviton results in 5 polarizations plus other problems [4,
5]; that is, in [4], there is a description of how a massive
graviton leads to 3/4th the calculated bending of light pass the
mass of Mercury, as seen in the 1919 experiment. Reference
[5] has details on the five polarization states, which are
another problem. One cannot go from amassive graviton and
eliminate mass from the graviton and then neatly recover the
easier spin dynamics (2 polarization states) and vastly simpler
situation where one has recovered the Schwartzshield metric.
As [5] discusses, in its page 92, that this easy recovery of
the Schwartzshield metric, if a graviton mass goes to zero,
is impossible. Also note that note [4] has a discussion on
how the bending of light is not commensurate with GR for
massive graviton, which is equivalent to a discussion on a
phenomenological ghost state for the trace of ℎ, which is
given by [6] and occurs regardless of whether the mass for
graviton nearly goes to zero. In [7], Csáki et al., have given
a temporary fix to restore the bending of light for massive
gravitons and to remove the 3/4th angle deflection from the
1919 GR test value, and this is by the use of brane theory.
What this document will do will be to try to establishmassive
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gravitons as super-radiant emission candidates from black
holes [8] and, in doing so, provide another framework for
their analysis which would embed them in GR. In doing so,
one should keep in mind that this is a thought experiment
and that the author is fully aware of how hard it would
be to perform experimental measurements. In coming up
with criteria as to graviton mass, we are also, by extension,
considering the Myers-Perry higher dimensional model of
black holes [9] and commenting upon its applications, some
ofwhich are in [10] and all ofwhich startwith the implications
of 𝑑𝐸/𝑑𝑡 < 0, leading to “leakage” from a black hole. That
is, energy of the black hole “decreases” in time. That is, there
are ghost states, where ℎ is the trace of ℎ(𝑖, 𝑗) which is a GW
perturbation of the flat Euclidian metric, a possibility that
brane theory and higher dimensions may remove the 3/4th
angle of bent light calculated for massive gravitons, and a
suitable thought experiment as given below may allow for
𝑑𝐸/𝑑𝑡 allowing us to determine whether higher dimensional
models are justifiable. This is the reason why the super-
radiance phenomenology is being investigated, that is, of
bending of angle of light divergence from GR models using
massiveGravitons. Does𝑑𝐸/𝑑𝑡 < 0 imply that there are brane
theory states which may remove the 3/4th bending of light
divergence from GR by massive gravitons? And can a super-
radiance model for when 𝑑𝐸/𝑑𝑡 < 0 imply conditions for
which brane worlds have to be considered [2], as opposed to
the simpler model proposed by Padmanabhan [1].

The paper will differentiate between Kerr BH [1] versions
of super-radiance and brane theory BH super-radiance [2]
and, secondly, afterwards, inquire about whether a BH in
brane theory configuration is satisfied, if the simper Kerr
BH super-radiance criteria is not satisfied. After these two
versions are distinguished, we will then discuss experimental
criteria which may result in determining whther Kerr BH
super-radiance occurs [1] or brane theory super-radiance
occurs [2]; if only Kerr BH super-radiance occurs, the
likelihood of massive Gravitons is remote. If brane theory BH
super-radiance occurs, then there may [2] be conditions for
which the 3/4th error in light bending is removed, permitting
massive Gravitons.

2. What is Super-Radiance in Black Hole
Physics? First: The Padmanabhan
Treatment for Kerr BHs

We, first of all, consider a simplified version of super-
radiance. In simple language, super-radiance involves having
incoming radiation scattered off the horizon of a BH and
radiated outward, so the net flow of energy is 𝑑𝐸/𝑑𝑡 < 0

radiation energy with a frequency bounded by 0 < 𝜔 <

𝑚⋅Ω
𝐻
[1]. In this case𝑚 is a quantum number, the frequency

𝜔 is for radiation infalling to the event horizon of the BH,
and the term Ω

𝐻
is the angular velocity of a KERR black

hole [2]. This paper, first of all, examines Padmanabhan’s
derivation of super-radiance [2] stating its application to
the graviton, with mass, and making then a referral to the
likelihood of measurement which ties in with the metric 𝑔

𝜇]
being perturbed from flat space values by ℎ

00
, ℎ
0𝑖
, and ℎ

𝑖𝑗
[7],

thereby making the case, due to the mass dependence of the
black hole, that super-radiance would almost certainly not be
observable but would firmly embed massive gravitons in GR
in spite of the view point offered in [3]. Doing so wouldmean
that [1] has the following formulation; with respect to when
𝑑𝐸/𝑑𝑡 < 0, which occurs for super radiance; in (1) below;
we set c1 as a constant, radiation frequency omega as the
frequency of radiation approaching a black hole, the number
𝑚 as a quantum number, and a definite given value for the
angular velocity of a black hole. Here, after the Padmanabhan
derivation of what 𝑑𝐸/𝑑𝑡 < 0means, there will be a separate,
brane theory derivation of BH super-radiance [2] which has
provisionally 0 < 𝜔 < ∑

𝑁/2

𝐽=1
𝑚
𝐽
⋅ (Ω
𝐻
)
𝐽
[2], where 𝑁 is

the number of dimensions. The 2nd frequency dependence
for when 𝑁 can go up to at least 10 or so will be remarked
after we finish the Padmanabhan frequency dependence for
super-radiance, as given below for a “classical” Kerr BH. To
initiate our analysis of the physics happening in due to [1], we
formulate super-radiance by (1) given below

𝑑𝐸

𝑑𝑡

= 𝑐
1
⋅ 𝜔 ⋅ [𝜔 − 𝑚 ⋅ Ω

𝐻
] . (1)

In this case, according to Padmanabhan, 𝑐
1
is a constant,

which is defined via writing (1) via [1]. Consider

𝑑𝐸

𝑑𝑡

=

𝑀 ⋅ 𝑟
𝐻

2𝜋

⋅ [∫ (𝑆

2
(𝜃) ⋅ sin2𝜃 ⋅ 𝑑𝜃) ⋅ 𝑑𝜙]

⋅ 𝜔 ⋅ [𝜔 − 𝑚 ⋅ Ω
𝐻
]

= flux-of-energy-through-horizon

⇐⇒ 𝑐
1
≡

𝑀 ⋅ 𝑟
𝐻

2𝜋

⋅ [∫ (𝑆

2
(𝜃) ⋅ sin2𝜃 ⋅ 𝑑𝜃) ⋅ 𝑑𝜙] = const.,

(2)

where, for a massless scalar field, one has the function 𝑆 for a
“surface area” function, defined as follows [1]:

∃𝑆

2
(𝜃) ⇐⇒ (−𝑔)

−1/2
𝜕
𝑏
[(−𝑔)

−1/2
⋅ 𝑔

𝑎𝑏
⋅ 𝜕
𝑎
Φ] = 0

⇐⇒ Φ ≡ 𝑒

−𝑖𝜔𝑡
𝑒

𝑖𝑚⋅𝜙
⋅ 𝑅 (𝑟) ⋅ 𝑆 (𝜃) .

(3)

In this case, mass 𝑀 is for the source, that is, later for the
mass 𝑀 of a GW generator, in this case a BH. Also, here,
𝑟
𝐻
is the horizon radius, as specified. And this will have its

application to the issue of gravitons of a small mass spirialing
into a BH, with the BH subsequently releasing radiation via
𝑑𝐸/𝑑𝑡 < 0, with the given versions of a BH set of parameters
[1] for a KERR BH.The following (4) comes as far as angular
velocity of the BH, as well as the following sets of parameters.
Here, the phenomenon of super-radiance is impossible, if (6)
below is zero. More on this point about when super-radiance
is impossible will be discussed later in the text. Consider

Ω
𝐻
=

𝑎

2𝑀BH ⋅ 𝑟𝐻
, (4)

𝑟
𝐻
= 𝑀BH − √𝑀BH

2
− 𝑎

2
,

(5)

𝑎 = √𝑥

2
+ 𝑦

2
.

(6)
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Then,

0 <

𝜔

𝑚

< Ω
𝐻
. (7)

Note that there are conditions, based upon (4) above, which
go to zero, due to the numerator, in a manner which means
when there is no angular velocity for the black hole; that the
frequency of the incoming radiation is set equal to zero and
that there is, effectively no super-radiance.This will obviously
lead to the classical description of BH physics. A problem,
though, is that, recently, Hawkings has stated that not all is
well in BH event horizons and that scrambled information
could possibly leave a BH, in opposition.

2.1. Examining Super-Radiance When There Is More than 4
Dimensions as to BH Physics. As said before [2],

0 < 𝜔 <

𝑁/2

∑

𝐽=1

𝑚
𝐽
⋅ (Ω
𝐻
)

𝐽
. (8)

In doing so, 𝑁 as given above is a measure of dimensions as
to the BH, and the difference in this from (7) in part is also
due to

Ω
𝐻
=

𝑎

2𝑀BH ⋅ 𝑟𝐻








Kerr-BH

→

Kerr-BH→Myers-Perry-BH

𝑎

𝑎

2
+ 𝑟

2

𝐻









Myers-Perry-BH

.

(9)

The numerator of the above is still defined by the square root
of 𝑥2 +𝑦2 and could go to zero for certain quantum numbers,
𝑚
𝐽
, and we would then paraphrase the right hand side of (9)

as functionally being

Ω
𝑗
=

𝑎
𝐽

𝑎

2

𝐽
+ 𝑟

2

𝐻

(10)

as frequency of BH arises due to the jth component of BH
angular Momentum 𝐽

𝑗
.

So, then, one has a rewrite of (8) as given, with a slightly
different angular frequency for BHs as by [2],

0 < 𝜔 <

𝑁/2

∑

𝑗=1

𝑚
𝑗

𝑎
𝑗

𝑎

2

𝑗
+ 𝑟

2

𝐻










Myers-Perry-BH

⋅ (11)

This is to be compared with the Padmanabhan version of
super-radiance as given by [1]:

0 < 𝜔 < 𝑚 ⋅

𝑎

2𝑀BH ⋅ 𝑟𝐻








Kerr-BH

. (12)

We will be commenting upon what the experimental sig-
natures of both (11) and (12) could be and why in the next
section.

3. Could Super-Radiance Be Observed
Experimentally, and What Good Is This
Thought Experiment?

Super-radiance is really about the same as particle production
from a BH. From Padmanabhan [1] is a vital result which is
given in the following quote.

If we think of super-radiance as stimulated emis-
sion of radiation by the black hole in certain
modes, owing the presnce [sic] of the incoming
wave, it seems natural to expect spontaneous
emission of radiation in various modes by the
black hole in quantum field theory. The black
hole evaporation (then) can be thought of as
spontaneous emission of particles that survives
even in the limit of zero angular momentum of the
black hole.

Furthermore, on the same page, page 623 of [1] states the
following.

It seems natural to assume that this source of
energy radiated to infinity is the mass of the
collapsing structure.

Leading to Formula 14.143 of [1] that the “entropy” of a
BH is given by, where 𝑀 is the mass of the BH, 𝐿

𝑃
is the

Plamck length, and 𝐴hor is the area of the Event horizon of
a black hole. This area of a BH event horizon is relevant since
it directly connects, as we will mention later, to [2] version of
super-radiance. Reference [1] version of entropy would also
hold for [2] as well, and we state the entropy as

𝑆 = 4𝜋𝑀

2
=

1

4

⋅ (

𝐴hor
𝐿

2

𝑃

) . (13)

Here, in [2] we have (27), that its main result is about the
differential of the area of an event horizon which is given as
follows, if there is a brane theory connection to the formation
of BHs:

𝑑𝐴hor =
8𝜋𝑟
𝐻

𝐵

𝑑𝑀BH ⋅ (1 −
1

𝜔

𝑁/2

∑

𝑗=1

𝑚
𝑗
⋅ Ω
𝑗
) . (14)

The positive definite nature of this expression for the differ-
ential of the area of an event horizon would then be [2] since
𝑑𝑀 < 0, then by [2], so then by (15) below, we recover (11),
by [2]; if 𝑑𝐴 > 0, then

𝑑𝑀BH ⋅ (1 −
1

𝜔

𝑁/2

∑

𝑗=1

𝑚
𝑗
⋅ Ω
𝑗
) > 0

⇐⇒ (1 −

1

𝜔

𝑁/2

∑

𝑗=1

𝑚
𝑗
⋅ Ω
𝑗
) < 0.

(15)

We make the following 3 claims as for the analogy to BH
physics.
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Claim 1. Entropy in both Kerr and Myers-Perry BHs has
𝑑𝐴 > 0, where 𝐴 is the event horizon, and

(i) for Myers-Perry BHs, the following are true (dimen-
sions up to 10, say, i.e.,𝑁 = 10):

𝑆 = 4𝜋𝑀

2
=

1

4

⋅ (

𝐴hor
𝐿

2

𝑃

)

𝑑𝐴hor =
8𝜋𝑟
𝐻

𝐵

𝑑𝑀BH ⋅ (1 −
1

𝜔

𝑁/2

∑

𝑗=1

𝑚
𝑗
⋅ Ω
𝑗
)

(1 −

1

𝜔

𝑁/2

∑

𝑗=1

𝑚
𝑗
⋅ Ω
𝑗
) < 0;

(16)

(ii) for Kerr BH, one could arguably have much the same
thing; that is,

𝑆 = 4𝜋𝑀

2
=

1

4

⋅ (

𝐴hor
𝐿

2

𝑃

)

𝑑𝐴hor =
8𝜋𝑟
𝐻

𝐵

𝑑𝑀BH ⋅ (1 −
1

𝜔

𝑚 ⋅ Ω
𝐻
)

(1 −

1

𝜔

𝑚 ⋅ Ω
𝐻
) < 0.

(17)

Proof. By (15), (9), (10), and (11), we next consider the
following.

Claim 2. If 𝑎 is zero, then super-radiance as made possible in
Claim 1 part (ii) is impossible for Kerr Black holes.

Proof. 𝑎 goes to zero andmean numerator of (9) goes to zero.
Hence, (1 − (1/𝜔)𝑚 ⋅ Ω

𝐻
) < 0 does not happen. Hence, for

nonzero frequency of incoming radiation, 0 < 𝜔 < 𝑚 ⋅ Ω
𝐻

does not hold. Hence, there is no BH super-radiance.

Claim 3. One could have the following: Claim 1 part (ii) may
be false, but Claim 1 part (i) may be true.

Proof. For𝑁 ≥ 4 or so, the following decomposition may be
true:

(1 −

1

𝜔

𝑁/2

∑

𝑗=1

𝑚
𝑗
⋅ Ω
𝑗
) = [1 −

1

𝜔

𝑚 ⋅ Ω
𝐻
] −

1

𝜔

𝑁/2

∑

𝑗=2

𝑚
𝑗
⋅ Ω
𝑗
< 0.

(18)

If the first term in [ ] in the RHS of the above formula is equal
to 0, Claim 1 part (ii) is false, but one could still have Claim 1
part (i) as true. That is, one could write the following.

Consider 0 < 𝜔 < ∑

𝑁/2

𝐽=2
𝑚
𝐽
⋅ (Ω
𝐻
)
𝐽
. Then, Claim 1 part (i)

will be true, that is, super-radiance for brane theory BHs.

The significance of the three claims is as follows. As
given by [4], there is a problem, if a massive graviton exists,
the bending of light, say about Mercury, the Eddinton 1919
experiment is calculated to be 3/4th the value seen in the 1919
experiment which proved classical GR. By [7], there can be a

situation for which if there exists higher than 4 dimensional
brane theory, one may correct the 3/4th deficiency. But if
Claim 1 part (i) is not true, then the solution allowing for [7]
is likely not to be true.

Note that the super-radiance phenomenon as referenced
in Claim 1 part (i) and part (ii) has its roots in entropy. Note
that entropy of a black hole with its surface area is stated to be
a precondition for initial conditions for super-radiance. And,
more than that, one needs a spinning black hole. No black
hole spin, with a commensurate treatment, could lead to just
black hole evaporation, as noted above, but BH evaporation
is not the same as the super-radiance phenomenon.

3.1. Minimum Experimental Bounds Which Can Affect the
Results of our Inquiry, Provided That Claim 1 Is True (as
well as That Claim 3 Holds). That Is, Myers-Perry as a
Higher Representation of Black Holes. Presumably Allowing
Massive Gravitons. IMO, as stated above, the Meyers-Perry
condition for BHs is, as a gateway, a probable candidate to
experimental observations for BHs. As mentioned earlier,
for higher dimensional BHs which may allow for massive
gravitons, here are the perturbations due toGWdue to higher
dimensional black holes. We state these as follows.

The subsequent values by ℎ
00
, ℎ
0𝑖
, and ℎ

𝑖𝑗
make the case,

due tomass dependence of the black holes in theMyers-Perry
black holes, has an explicit mass dependence on the mass of
the black hole included. [4] has

ℎ
00
≈

16𝜋𝐺

(𝑑 − 2) ⋅ Ω𝑑−2

⋅

𝑀BH
𝑟

𝑑−3
,

ℎ
𝑖𝑗
≈

16𝜋𝐺

(𝑑 − 2) ⋅ (𝑑 − 3) ⋅ Ω𝑑−2

⋅

𝑀BH
𝑟

𝑑−3
⋅ 𝛿
𝑖𝑗
,

ℎ
𝑜𝑖
≈ −

8𝜋𝐺

Ω
𝑑−2

⋅

𝑥

𝑘

𝑟

𝑑−1
⋅ 𝐽

𝑘𝑖
.

(19)

The coefficient 𝑑 is for dimensions, 4 or above, and in this
situation, with angular momentum 𝐽

𝑘𝑖. Here, the term put in,
namely (20) is for angular area, and it has no relationshipwith
the formula for angular velocity of BHs; namely, (20) has no
relations with (4) and (9) above.

Ω
𝑑−2

=

2𝜋

(𝑑−1)/2

Γ ((𝑑 − 1) /2)

, (20)

𝐽

𝑘𝑖
= 2 ⋅ ∫ 𝑥

𝑘
⋅ 𝑇

𝑖0
⋅ 𝑑

𝑑−1
𝑥. (21)

The 𝑇

𝑖0 above is a stress energy tensor as part of a 𝑑

dimensional Einstein equation given in [5] as

𝑅
𝑗𝑙
−

1

2

⋅ 𝑔
𝑗𝑙
⋅ 𝑅 = 8𝜋𝐺𝑇

𝑗𝑙
. (22)

Also, the mass of the black hole is, in this situation scaled as
follows: if 𝜇 is a rescaled mass term [5],

𝑀BH = 𝜇 ⋅ Ω
𝑑−2

⋅

(𝑑 − 2)

16𝜋𝐺

. (23)
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More generally, the mass of the black hole is written as

𝑀BH ≡ ∫𝑇
00
𝑑

𝑑−1
𝑥. (24)

We will next go to the minimum size of a black hole which
would survive as up to 13.6 billion years and then say
something about the relative magnitude of the terms in (22)
and then their survival today. The variance of black hole
masses, from super massive BHs to those smaller than 1015
grams will be discussed, in the context of (19), and stress
strength, with commentary as to what we referred to earlier,
namely, strain for detecting GW, is given by ℎ(𝑡) given below,
with𝐷𝑖𝑗 as the detector tensor, that is, a constant term, so that,
by [4, page 336], we write

ℎ (𝑡) = 𝐷

𝑖𝑗
ℎ
𝑖𝑗
. (25)

Equation (25) means that the magnitude of strain, ℎ, is
effected by (19), (20), and (21) and its magnitude, seen next.
Note that the magnitude of the strain, ℎ, as being brought up,
may be affected by the mass of a graviton, due to 𝑇, which is a
feed into (19) above. Namely, consider that the mass assumed
for the graviton is of the order of 10−65 grams, which is given
by [5]; if ℎ does not equal zero, then the stress energy tensor
of the massive graviton is for nonzero 𝑇

𝑢V which corresponds
to a nonzero concentration in interstellar space, with [5]

𝑚

2

𝑔
= −

𝜅

6ℎ

𝑇

𝑇 = trace 𝑇
𝑢V.

(26)

We will get explicit upper bounds to (26) and use them as
commentary in the conclusion of this paper. That will affect
the infalling frequency 𝜔 which will be part of the super-
radiance discussion.

3.2. Values of the Meyers-Perry ℎ
00
, ℎ
0𝑖
, and ℎ

𝑖𝑗
in Magnitude

Lead to Nominal ℎ Values. If 𝐷 below is redshift corrected
distance, in a rough sense, it leads to an approximation of ℎ
as roughly proportional to ℎ

00
with the roughly scaled results

of

ℎ ∼

𝐺𝑀

𝑐

2
𝐷

. (27)

Note that the tensor 𝐷𝑖𝑗 is approximately unity, with the
results as given by

𝑀BH



min-life.time∝ 10

15 grams ⇐⇒ ℎ
00
, ℎ
𝑖𝑖
∝ 10

−40

for BHs; 𝑍 (redshift) ∼ 10.
(28)

whereas super massive black holes of about 100 times the
mass of our sun, at Z(redshift) of about 10 lead to significantly
larger values of ℎ

𝑖𝑖
as seen below,

𝑀BH



100-solar-mass ⇐⇒ ℎ

00
, ℎ
𝑖𝑖
∝ 10

−20
. (29)

It is easy from inspection to infer from this that the most
early formed black holes would not be accessible and that

only the giant ones would do.With that, we next then explore
the frequency ranges which could lead to certain Graviton
masses, as could be linked to super-radiance.That is, it would
mean that a very large SMBH, of about 100 solar masses of a
redshift of the order of 𝑍 ∼ 10 at or less than a billion years
after the creation of the universe, would lead to the values of
(29) above, which could be conceivably detected, which then
leads us to the question of what frequencies of the graviton,
if presumably massive, would be involved. This would then
allow us to make inquiry as to what the Meyers-Perry values
for super-radiance and absorption/subsequent reflection of
GW radiation which could conceivably be detected for strain
values of the order given by (29) above.

3.3. Frequency and Wavelengths for Ultra Low “Massive
Graviton” Masses. To get the appropriate estimates, we turn
to [11], by Goldhaber and Nieta, which can be used to give
a set of frequency and mass equivalences for the “massive”
graviton; on the order of having the following equivalent
values as paired together, namely, starting off, with graviton
mass, graviton wavelength, and resulting graviton frequency,
we observe the dual pairing of the following, if one also looks
at Valev’s estimates [12],

𝑚
𝑔
∼ 2 × 10

−65 grams𝜆
𝑔

∼ 2 × 10

22 meters

∼ 10

−4
⋅ radius-of-universe𝜔

𝑔

∼ (

3

2

) × 10

−14
/second.

(30)

Obviously, with regard to this, if such an extremely low value
for resultant frequency is obtained, and then one is obtaining
the value that is inevitable, just in terms of frequency, to have
for any spinning Kerr BH,

𝜔
𝑔
∼ (

3

2

) × 10

−14
/second < Ω

𝐻
. (31)

If we evaluate further for any reasonable value of 𝑎, we will
find that, for a SMBH of about 100 solar masses, one will still
have, realistically, 𝜔

𝑔
∼ (3/2) × 10

−14
/second ≪ Ω

𝐻
. The

author has found that for supermassive black holes formasses
up to a million times the mass of the sun, the freauency the
becomes, 𝜔

𝑔
∼ (3/2) × 10

−14
/second ≤ Ω

𝐻
which leads to

Claim 4.

Claim 4. For super-radiance (Kerr style), 𝜔
𝑔

∼ (3/2) ×

10

−14
/second ≪ Ω

𝐻
(easy super-radiance), for SMBH

100 times solar mass and 𝜔
𝑔
∼ (3/2) × 10

−14
/second ≤

Ω
𝐻
(problematic super-radiance), for SMBH 106 times solar

mass.
The proof is in the definition of

Ω
𝐻
= (𝑎/(2𝑀BH ⋅ 𝑟𝐻))|Kerr-BH, with a very small numerator.

Claim 4 means that, before the formation of massive
spiral galaxies, the super-radiance is doable. However, the
author fails to understand how it is possible on another
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theoretical ground; that is, what does super-radiance mean
for BHs for which

𝜆
𝑔
∼ 2 × 10

22 meters

∼ 10

−4
⋅ radius-of-universe.

(32)

On the face of it, this is absurd.That is, how couldwavelengths
1/10,000 the size of the universe interact with a Kerr Black
hole?

We claim that the embedding of black holes in five or
higher dimensional space time is a way to make a connection
with a multiverse, as given in the following supposition [13],
and that this may be the only way to reconcile what seems
to be an absurd proposition. That is, graviton wavelengths
1/10,000 the size of the standard 4 dimensional universe is
interacting with spinning black holes in 4 dimensional space-
time, whereas that moderate 100 times the mass of the sun
BHs easily satisfy 𝜔

𝑔
∼ (3/2) × 10

−14
/second ≪ Ω

𝐻
.

4. Conclusion

In one way, it is ridiculously easy to obtain super-radiance
for massive gravitons, and, in another sense, it is an absurd
proposition. Could a multiverse embedding of BHs be a way
out of what otherwise seems an impossible Dichotomy? Or
will we have to embrace Hawkings’ suggestion that the event
Horizon has foundationally crippling flaws?

To address this problem, the author looks at two sugges-
tions. Either that the BH is really embedded in a multiverse
and has a different geometry in higher dimensions than is
supposed, or one goes to the recent Hawkings’ hypothesis
which changes entirely the supposition of the event horizon.
Namely

We will first of all give a brief introduction to the Penrose
CCC hypothesis generalized to a multiverse.

4.1. Extending Penrose’s Suggestion of Cyclic Universes, Black
Hole Evaporation, and the Embedding Structure our Universe
Is Contained within, That Is, Using the Implications of (32) for
a Multiverse. This Multiverse Embeds BHs and May Resolve
What Appears to Be an Impossible Dichotomy. There are
no fewer than 𝑁 universes undergoing Penrose “infinite
expansion” (Penrose, 2006) [13] contained in amega universe
structure. Furthermore, each of the 𝑁 universes has black
hole evaporation, with theHawkings radiation fromdecaying
black holes. If each of the 𝑁 universes is defined by a par-
tition function, called {Ξ

𝑖
}

𝑖≡1

𝑖≡𝑁
, then there exists information

ensemble ofmixedminimum information correlated as about
10

7-108 bits of information per partition function in the set
{Ξ
𝑖
}

𝑖≡1

𝑖≡𝑁
|before, so minimum information is conserved between

a set of partition functions per universe. Consider

{Ξ
𝑖
}

𝑖≡1

𝑖≡𝑁





before

≡ {Ξ
𝑖
}

𝑖≡1

𝑖≡𝑁





after

. (33)

However, there is nonuniqueness of information put into
each partition function {Ξ

𝑖
}

𝑖≡1

𝑖≡𝑁
. Furthermore, Hawkings’

radiation from the black holes is collated via a strange
attractor collection in the mega universe structure to form

a new big bang for each of the 𝑁 universes represented by
{Ξ
𝑖
}

𝑖≡1

𝑖≡𝑁
. Verification of this mega structure compression and

expansion of information with nonuniqueness of informa-
tion placed in each of the𝑁 universes favors ergodic mixing
treatments of initial values for each of𝑁 universes expanding
from a singularity beginning.The 𝑛

𝑓
value, will be using (Ng,

2008) 𝑆entropy ∼ 𝑛𝑓. [14]. How to tie in this energy expression,
as in (33), will be to look at the formation of a nontrivial
gravitational measure as a new big bang for each of the 𝑁
universes as by 𝑛(𝐸

𝑖
). The density of states at a given energy

𝐸
𝑖
for a partition function (Poplawski, 2011) [15]. Consider

{Ξ
𝑖
}

𝑖≡𝑁

𝑖≡1
∝ {∫

∞

0

𝑑𝐸
𝑖
⋅ 𝑛 (𝐸
𝑖
) ⋅ 𝑒

−𝐸𝑖
}

𝑖≡𝑁

𝑖≡1

. (34)

Each of 𝐸
𝑖
, identified with (34) above, is with the iteration for

𝑁 universes (Ng, 2008) [14]. Then the following claim holds.

Claim 5. Consider

1

𝑁

⋅

𝑁

∑

𝑗=1

Ξ
𝑗





𝑗-before-nucleation-regime

→

vacuum-nucleation-tranfer
Ξ
𝑖




𝑖-fixed-after-nucleation-regime.

(35)

For𝑁 number of universes, with each Ξ
𝑗
|

𝑗-before-nucleation-regime
for 𝑗 = 1 to 𝑁 being the partition function of each
universe just before the blend into the RHS of (35) above
for our present universe. Also, each of the independent
universes given by Ξ

𝑗
|

𝑗-before-nucleation-regime are constructed by
the absorption of one to ten million black holes taking in
energy. That is,(Ng, 2008) [14]. Furthermore, the main point
is similar to what was done in [16] in terms of general ergodic
mixing.

Claim 6. Consider

Ξ
𝑗





𝑗-before-nucleation-regime

≈

Max
∑

𝑘=1

̃
Ξ
𝑘





black-holes-𝑗th-universe

. (36)

What is done in Claims 5 and 6 is to come up with a protocol
as to how a multidimensional representation of black hole
physics enables continual mixing of space and time [17]
largely as a way to avoid the Anthropic principle, as to a
preferred set of initial conditions. With investigations, this
complex multiverse may allow bridging what seems to be an
unworkable dichotomy between ultralow graviton frequency,
corresponding roughly to 10

−65 grams in rest mass, easily
satisfied by Kerr black holes with rotational frequencies, as
given in our text as many times greater, combined with
the absurdity of what (32) is. How can a graviton with a
wavelength 10−4 the size of the universe interact with a Kere
black hole, spatially? Embedding the BH in a multiverse
setting may be the only way out.

Claim 5 is particularly important. The idea here is to use
what is known as CCC cosmology, which can be thought of
as follows.



Advances in High Energy Physics 7

First. Have a big bang (initial expansion) for the universe.
After redshift 𝑧 = 10, a billion years ago, SMBH formation
starts. Matter-energy is vacuumed up by the SMBHs, which
at a much later date than today (present era) gather up all
the matter-energy of the universe and recycle it in a cyclic
conformal translation as follows:

𝐸 = 8𝜋 ⋅ 𝑇 + Λ ⋅ 𝑔 (37)

𝐸 = source for gravitational field
𝑇 = mass energy density
𝑔 = gravitational metric
Λ = vacuum energy, rescaled as follows

Λ = 𝑐
1
⋅ [Temp]𝛽, (38)

where 𝑐
1
is a constant. Then

Themain methodology in the Penrose proposal has been
in (38) evaluating a change in the metric 𝑔

𝑎𝑏
by a conformal

mapping ̂Ω to

𝑔
𝑎𝑏
=
̂
Ω

2
𝑔
𝑎𝑏
. (39)

Penrose’s suggestion has been to utilize the following [18]

̂
Ω →

ccc
̂
Ω

−1
. (40)

Infall into cosmic black hopes has been the main mechanism
which the author asserts would be useful for the recycling
apparent in (40) above with the caveat that ℎ is kept constant
from cycle to cycle as represented by

ℎold-cosmology-cycle = ℎpresent-cosmology-cycle. (41)

Equation (40) is to be generalized, as given by a weighing
averaging as given by (35) where the averaging is collated over
perhaps thousands of universes, call that number𝑁, with an
ergodicmixing of all these universes, with the ergodicmixing
represented by (35) to generalize (40) from cycle to cycle.

4.2. Conclusion, Future Prospects. If this does not work, and
the multiverse suggestion is unworkable, there, then, has to
be a consideration of the zero option, namely, Hawkings
throwing out the event horizon as we know it in BH physics.
See this reference, namely, [16].

We are in for interesting times. I see turbulence and
interesting results ahead.
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Considering the Einstein gravity in the presence of Born-Infeld type electromagnetic fields, we introduce a class of 4-dimensional
static horizonless solutions which produce longitudinal magnetic fields. Although these solutions do not have any curvature
singularity and horizon, there exists a conic singularity. We investigate the effects of nonlinear electromagnetic fields on the
properties of the solutions and find that the asymptotic behavior of the solutions is adS. Next, we generalize the static metric to the
case of rotating solutions and find that the value of the electric charge depends on the rotation parameter. Furthermore, conserved
quantities will be calculated through the use of the counterterm method. Finally, we extend four-dimensional magnetic solutions
to higher dimensional solutions. We present higher dimensional rotating magnetic branes with maximum rotation parameters and
obtain their conserved quantities.

1. Introduction

One of the interesting topological defects is cosmic string
which may be originated during the early universe phase
transitions [1] (see Kibble mechanism for more details [2]).
Furthermore, considering the inflationary models [3, 4], it
has been proposed that cosmic strings can form at the end
of inflation. Moreover, one of the predictions of supersym-
metric hybrid inflation [5] (and also grand unified models
of inflation [6]) is the cosmic string. Interesting properties
and interaction of the superconducting cosmic string with
astrophysical magnetic fields have been found in [7–9].
Besides, magnetic strings have been studied in Brans-Dicke
theory as well as dilaton gravity [10–13]. From cosmological
point of view, one can find the properties of the magnetic
(cosmic) string in various literatures [14–16].

In addition to cosmic strings, other kinds of strings may
be considered in QCD and also gravity. Properties of the
QCD static strings have been investigated extensively in [17–
20] and it has been shown that QCD magnetic string can
contribute to hadron dynamics [21]. Applications ofmagnetic
string in quantum theories have been presented in [22–24].
Magnetic strings in antiferromagnetic crystals have been
investigated in [25]. Application of the (chromo)magnetic

stringmodel to some experimental data on the inclusive pion
asymmetries has been studied in [26, 27]. Some arguments
about the magnetic strings in the Yang-Mills plasma have
been found in [28].

On gravitational aspect, the horizonless solutions and
spacetime with conical singularity have been investigated in
gravitating electromagnetic field background (see [7, 8, 29–
49] and references therein). Interesting properties of the
magnetic string in branes, M-theory, and string theory have
been investigated [50, 51]. Calculations of the vacuum energy
of two different fields in the background of a magnetic string
have been analyzed in [52, 53].

One of the generalizations of the Einstein-Maxwell field
equations is gravitating nonlinear electrodynamics (NLED),
whose most popular theory is Born-Infeld [54–59]. In addi-
tion to Lorentz and 𝑈(1) gauge invariances, we know that
the Lagrangian of theMaxwell electrodynamics contains only
quadratic forms of gauge potential and its first derivative.
One can consider both invariances and leave out the third
condition to obtain NLED [60]. From historical point of
view, NLED were introduced to eliminate infinite quantities
in theoretical analysis of charged point-like particles [54–
59]. Recently, we have more motivations for considering
NLED theories, for example, various limitations of the linear
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electrodynamics [61, 62], clarification of the self-interaction
of virtual electron-positron pairs [63–65], explanation of
electrodynamics on D-branes [66–68], and description of
radiation propagation inside specific materials [69–72]. In
addition, from astrophysical viewpoint, we know that the
effects of NLED become indeed quite important in super-
strongly magnetized compact objects, such as pulsars, and
particular neutron stars (some examples include the so-called
magnetars and strange quark magnetars) [73–75]. Moreover,
NLED modifies in a fundamental basis the concept of
gravitational redshift and its dependency on any background
magnetic field as compared to the well-established method
introduced by standard general relativity. Furthermore, it has
been recently shown that NLED objects can remove both of
the big bang and black hole singularities [76–78].

Amongst the nonlinear generalization of Maxwell elec-
trodynamics, the so-called BI type NLED, whose first non-
linear correction is quadratic function of Maxwell invariant,
is completely special. It has been shown that BI type NLED
may be arisen as a low energy limit of heterotic string
theory [66, 68, 79–83], which led to an increased interest
for BI type NLED theories. In addition, BI type theories
have some interesting properties; for example, these theories
enjoy the birefringence phenomena, free of the shock waves
[84, 85] and electric-magnetic duality [86]. Furthermore,
considering the relation between AdS/CFT correspondence
and superconductivity phenomenon, it was shown that the BI
type theories make a crucial effect on the condensation, the
critical temperature, and energy gap of the superconductors
[87].

In this paper, we investigate the horizonless magnetic
strings in the presence of two kinds of the BI type NLED
[88, 89]. One of the elemental motivations for analyzing the
horizonless string solutions is that they may be interpreted as
cosmic strings.

2. Basic Field Equations

Our goal in this work is to construct a class of four-
dimensional solutions to the Einstein equations with negative
cosmological constant in the presence of nonlinear electro-
magnetic source, 𝐿(F), which describes a magnetic string.
The Euler-Lagrange equations of motion for the metric 𝑔

𝜇]
and the gauge potential 𝐴

𝜇
may be written as [90]

𝑅
𝜇] −

1

2

𝑔
𝜇] (𝑅 − 2Λ) = 𝑇

𝜇], (1)

𝜕
𝜇
(√−𝑔𝐿F𝐹

𝜇]
) = 0, (2)

where Λ = −3/𝑙

2, 𝐿F = 𝑑𝐿(F)/𝑑F, F = 𝐹
𝜇]𝐹
𝜇] denotes

the Maxwell invariant, and the energy-momentum tensor is
given by

𝑇
𝜇] = (

1

2

𝑔
𝜇]𝐿 (F) − 2𝐿F𝐹

𝜇𝜆
𝐹

𝜆

] ) . (3)

It is notable that these field equations can be obtained from
variation of the following action:

𝐼
𝐺

= −

1

16𝜋

∫

M

𝑑

4
𝑥√−𝑔 [𝑅 − 2Λ + 𝐿 (F)]

−

1

8𝜋

∫

𝜕M

𝑑

3
𝑥√−𝛾Θ (𝛾) ,

(4)

where the bulk action (first term) is supplemented with a
Gibbons-Hawking surface term (second term) whose varia-
tion will cancel the extra normal derivative term in deriving
the equation of motion. The quantities Θ and 𝛾 denote the
trace of the extrinsic curvature and the induced metric for
the boundary 𝜕M, respectively.

In this work, we take into account the recently proposed
BI type models of NLED [88, 89].They have been nominated
the Exponential form of Nonlinear Electromagnetic Field
(ENEF) and the Logarithmic form of Nonlinear Electromag-
netic Field (LNEF), in which their Lagrangians are

𝐿 (F) =

{
{
{
{

{
{
{
{

{

𝛽

2
(exp(−

F

𝛽

2
) − 1) , ENEF,

−8𝛽

2 ln(1 +

F

8𝛽

2
) , LNEF.

(5)

Here, we want to obtain magnetic solutions. It is well
known that the electric field comes from the time component
of the vector potential (𝐴

𝑡
), while the magnetic field is

associated with the angular component (𝐴
𝜙
). Hence one

expects that a magnetic solution may be written in a metric
gauge in which the components 𝑔

𝑡𝑡
and 𝑔

𝜙𝜙
interchange

their roles relatively to that present in the Schwarzschild
gauge used to describe electric solution. Therefore, we start
with a class of the four-dimensional metrics which produces
longitudinal magnetic fields along the 𝑧 direction [48]:

𝑑𝑠

2
= −

𝜌

2

𝑙

2
𝑑𝑡

2
+

𝑑𝜌

2

𝑓 (𝜌)

+ 𝑙

2
𝑓 (𝜌) 𝑑𝜑

2
+

𝜌

2

𝑙

2
𝑑𝑧

2
, (6)

where 𝑓(𝜌) is an arbitrary function of coordinate 𝜌. It is
notable that this metric may be obtained from the horizon
flat Schwarzschild-like metric:

𝑑𝑠

2
= −𝑓 (𝜌) 𝑑𝑡

2
+

𝑑𝜌

2

𝑓 (𝜌)

+ 𝜌

2
𝑑𝜑

2
+

𝜌

2

𝑙

2
𝑑𝑧

2
, (7)

with the following local transformation:

𝑡 → 𝑖𝑙𝜑, 𝜑 →

𝑖𝑡

𝑙

. (8)

Since the mentioned transformation is not a global mapping
and metric (7) can be locally mapped to metric (6), one can
find that both (6) and (7) do not describe a unique spacetime.
Using the nonlinearMaxwell equation (2) with themetric (6),
one can obtain

[1 − (

2𝐹
𝜙𝜌

𝛽𝑙

)

2

]𝐹



𝜙𝜌
+

2𝐹
𝜙𝜌

𝜌

= 0, ENEF,

[1 − (

𝐹
𝜙𝜌

2𝛽𝑙

)

2

]𝐹



𝜙𝜌
+ [4 + (

𝐹
𝜙𝜌

𝛽𝑙

)

2

]

𝐹
𝜙𝜌

2𝜌

= 0, LNEF

(9)
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Figure 1: 𝑇
�̂��̂�

versus 𝜌 for 𝑙 = 1, 𝑞 = 1, and 𝛽 = 1 (solid line), 𝛽 = 1.3 (bold line), and 𝛽 = 3 (dashed line). “ENEF branch (a) and LNEF
branch (b).”

with the following solutions:

𝐹
𝜙𝜌

=

{
{
{
{

{
{
{
{

{

2𝑞𝑙

2

𝜌

2
exp(−

1

2

𝐿
𝑊
) , ENEF,

𝛽

2
𝜌

2

𝑞

(1 − Γ) , LNEF,
(10)

where the prime denotes differentiation with respect
to 𝜌, the parameter 𝑞 is an integration constant,
𝐿
𝑊

= Lambert𝑊(−16𝑙

2
𝑞

2
/𝛽

2
𝜌

4
) which satisfies

Lambert𝑊(𝑥) exp[Lambert𝑊(𝑥)] = 𝑥 [91, 92], and
Γ =

√
1 − (2𝑙𝑞/𝛽𝜌

2
)

2. It is worthwhile to note that in order to
have a real electromagnetic field, we should consider 𝜌 > 𝜌

0
,

where

𝜌
0
= √

2𝑙𝑞

𝛽

×

{

{

{

√
2 exp(

1

4

) , ENEF,

1, LNEF.
(11)

Here, we use the orthonormal contravariant (hatted) basis
vectors to study the effect of nonlinearity on the energy
density. Considering the mentioned diagonal metric in this
basis, one should apply e

�̂�
= (𝑙/𝜌)(𝜕/𝜕𝑡) and therefore the ̂

𝑡
̂
𝑡

component of the stress-energy tensor is

𝑇
�̂��̂�

=

{
{
{
{
{

{
{
{
{
{

{

𝛽

2

2

[1 − exp(−

2𝐹

2

𝜙𝜌

𝑙

2
𝛽

2
)] , ENEF,

𝛽

2 ln(1 +

𝐹

2

𝜙𝜌

4𝑙

2
𝛽

2
) , LNEF.

(12)

We plot 𝑇
�̂��̂�
versus 𝜌 > 𝜌

0
in Figure 1 and find that, for a fixed

value of 𝜌, as nonlinearity parameter increases, the energy
density of the spacetime decreases and therefore, in order to

reduce the concentration volume of the energy density, we
should increase the nonlinearity parameter.

Now, we should obtain the metric function 𝑓(𝜌). One
can take into account (6) and (10) in the gravitational field
equation (1) to obtain its nonzero components as

(Ψ (𝜌)+𝜌𝛽

2
) exp(−

1

2

𝐿
𝑊
)−𝜌𝛽

2
[1+𝐻

2
(𝜌)] = 0, ENEF,

Ψ (𝜌) + 8𝜌𝛽

2 ln[1+(

𝛽𝜌

2
(1 − Γ)

2𝑞𝑙

)

2

]−𝐽 (𝜌) = 0, LNEF,

(13)

where Ψ(𝜌) = 2𝑓


(𝜌) + 𝑔(𝜌) − (6𝜌/𝑙

2
) and

𝑔 (𝜌) =

{
{
{

{
{
{

{

𝜌𝑓


(𝜌) , 𝑡𝑡 (𝑧𝑧) component,

2𝑓 (𝜌)

𝜌

, 𝜌𝜌 (𝜑𝜑) component,

𝐻 (𝜌) =

{

{

{

0, 𝑡𝑡 (𝑧𝑧) component,
4𝑞𝑙

𝛽𝜌

2
exp (−

1

2

𝐿
𝑊
) , 𝜌𝜌 (𝜑𝜑) component,

𝐽 (𝜌) =

{
{

{
{

{

0, 𝑡𝑡 (𝑧𝑧) component
4𝜌

5
𝛽

4
(1 − Γ)

2

𝑙

2
𝑞

2
[1 + (𝛽𝜌

2
(1 − Γ) /2𝑞𝑙)

2

]

, 𝜌𝜌 (𝜑𝜑) component.

(14)

After some calculations one can show that these equations
have the following solutions:

𝑓 (𝜌) =

𝜌

2

𝑙

2
+

2𝑚𝑙

3

𝜌

−

𝜒𝛽

2
𝜌

2

6

−

2𝛽𝑞𝑙

𝜌

Υ (𝜌) , (15)
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where 𝑚 is the integration constant which is related to mass
parameter, 𝜒 is equal to 1 and −16 for ENEF and LNEF
branches, respectively, and

Υ (𝜌) =

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

∫(−𝐿
𝑊
)

−1/2
[1 − 𝐿

𝑊
] 𝑑𝜌, ENEF,

2𝛽

𝑞𝑙

∫ [𝜌

2 ln(

𝛽

2
(1 − Γ) 𝜌

4

2𝑙

2
𝑞

2
)

+

4𝑞

2
𝑙

2

𝛽

2
𝜌

2
(1 − Γ)

] 𝑑𝜌, LNEF,

(16)

where one may calculate these integrations. We should note
that the obtained solutions are the same as asymptotically
anti-de Sitter magnetic solution of Einstein-Maxwell gravity
[49], asymptotically (large values of radial coordinate). In
addition, one may expect to recover the solution of [49] for
𝛽 → ∞.

Taking into account the metric (6), it is clearly desirable
to have an examination on the geometric structure of the
solutions. The first step is investigation of the spacetime
curvature. It is easy to show that the Kretschmann scalar is

𝑅
𝜇]𝜆𝜅𝑅
𝜇]𝜆𝜅

= (

𝑑

2
𝑓 (𝜌)

𝑑𝜌

2
)

2

+ 4(

1

𝜌

𝑑𝑓 (𝜌)

𝑑𝜌

)

2

+ 4(

𝑓 (𝜌)

𝜌

2
)

2

.

(17)

Numerical calculations show that the Kretschmann is finite
for nonzero 𝜌. Furthermore, we can show that

lim
𝜌→0

𝑅
𝜇]𝜆𝜅𝑅
𝜇]𝜆𝜅

=

48𝑀

2
𝑙

6

𝜌

6
+

𝐴 (𝑀, 𝑞, 𝛽, 𝑙)

𝜌

5
+ 𝑂(

1

𝜌

4
) ,

(18)

lim
𝜌→∞

𝑅
𝜇]𝜆𝜅𝑅
𝜇]𝜆𝜅

=

8Λ

2

3

+

48𝑀

2
𝑙

6

𝜌

6
−

384𝑀𝑙

5
𝑞

2

𝜌

7

+

𝐵 (𝑀, 𝑞, 𝛽, 𝑙)

𝜌

8
+ 𝑂(

1

𝜌

11
) ,

(19)

where 𝐴 and 𝐵 are different functions of metric parameters
𝑀, 𝑞, 𝑙, and 𝛽. Equation (19) confirms that the asymptotic
behavior of the solutions is adS. In addition, one may take
into account (18) to think about the existence of a curvature
singularity located at 𝜌 = 0 and therefore conclude that there
are magnetically charged black hole solutions. Since 𝜌 > 𝜌

0
,

one concludes that, for charged solutions with finite 𝛽, the
spacetime never achieves 𝜌 = 0. In addition, we should obtain
the zeroes of the function 𝑓(𝜌) = (𝑔

𝜌𝜌
)

−1. Considering the
largest positive real root of 𝑓(𝜌) = 0 by 𝑟

0
(suppose 𝑟

0
> 𝜌
0
;

for 𝑟
0
< 𝜌
0
, themetric function𝑓(𝜌) is positive definite which

we are not interested in), one can find that the function 𝑓(𝜌)

is negative for 𝜌 < 𝑟
0
. We should note that 𝑔

𝜌𝜌
and 𝑔

𝜙𝜙
are

related by 𝑓(𝜌) = 𝑔

−1

𝜌𝜌
= 𝑙

−2
𝑔
𝜙𝜙
, and therefore negativity

of 𝑔
𝜌𝜌

(which occurs for 𝜌 < 𝑟
0
) leads to negativity of 𝑔

𝜙𝜙

and hence the signature of the metric changes from +2 to −2.
This indicates that we could not extend the spacetime from

𝜌 > 𝑟
0
to 𝜌 < 𝑟

0
. In order to get rid of this incorrect extension,

one may introduce a new radial coordinate 𝑟 in the following
form:

𝑟

2
= 𝜌

2
− 𝑟

2

0
,

𝑑𝜌

2
=

𝑟

2

𝑟

2
+ 𝑟

2

0

𝑑𝑟

2
.

(20)

Considering this suitable coordinate transformation, the
electromagnetic field can be written as

𝐹
𝜙𝑟

=

{
{
{
{
{

{
{
{
{
{

{

2𝑞𝑙

2

𝑟

2
+ 𝑟

2

0

exp (−

1

2

𝐿



𝑊
) , ENEF,

𝛽

2
(𝑟

2
+ 𝑟

2

0
)

𝑞

(1 − Γ


) , LNEF,

(21)

where 𝐿



𝑊
= Lambert𝑊(−16𝑙

2
𝑞

2
/𝛽

2
(𝑟

2
+ 𝑟

2

0
)

2

) and Γ


=

√
1 − (2𝑙𝑞/𝛽(𝑟

2
+ 𝑟

2

0
))

2. Moreover, the metric (6) in the new
coordinate is

𝑑𝑠

2
= −

𝑟

2
+ 𝑟

2

0

𝑙

2
𝑑𝑡

2
+ 𝑙

2
𝑓 (𝑟) 𝑑𝜙

2
+

𝑟

2

(𝑟

2
+ 𝑟

2

0
)

𝑑𝑟

2

𝑓 (𝑟)

+

𝑟

2
+ 𝑟

2

0

𝑙

2
𝑑𝑧

2
,

(22)

with 0 ≤ 𝑟 < ∞, and 𝑓(𝑟) is now given as

𝑓 (𝑟) =

𝑟

2
+ 𝑟

2

0

𝑙

2
+

2𝑚𝑙

3

√𝑟

2
+ 𝑟

2

0

−

𝜒𝛽

2
(𝑟

2
+ 𝑟

2

0
)

6

−

2𝛽𝑞𝑙

√𝑟

2
+ 𝑟

2

0

Υ (𝑟) ,

(23)

where

Υ (𝑟)

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

∫

[1 − 𝐿



𝑊
] 𝑟

√− (𝑟

2
+ 𝑟

2

0
) 𝐿



𝑊

𝑑𝑟, ENEF,

2𝛽

𝑞𝑙

∫ (

ln ((𝛽

2
(1 − Γ


) (𝑟

2
+ 𝑟

2

0
)

2

) /2𝑙

2
𝑞

2
)

(𝑟

2
+ 𝑟

2

0
)

−1/2

+

4𝑞

2
𝑙

2

𝛽

2
(1 − Γ


) (𝑟

2
+ 𝑟

2

0
)

3/2
)𝑟𝑑𝑟 LNEF.

(24)

Numerical calculations show that not only Kretschmann
scalar but also other curvature invariants are finite in the
range 0 ≤ 𝑟 < ∞ (𝑟

0
≤ 𝜌 < ∞) and therefore the

mentioned spacetime has no curvature singularity and no
horizon. It is notable that the above-mentioned magnetic
solutions differ from the electric solutions and the properties
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Figure 2: The deficit angle versus 𝛽 for 𝑟
0
= 1, 𝑙 = 1, and 𝑞 = 1. “ENEF branch (a) and LNEF branch (b).”

of electric and magnetic solutions are distinct. For example,
the electric solutions lead to black objects interpretation,
while the magnetic solutions do not.

In spite of the fact that the obtained magnetic solu-
tions have no essential singularity, one can show that
lim
𝑟→0

(1/𝑟)√𝑔
𝜙𝜙

/𝑔
𝑟𝑟

̸=1 and so, when 𝑟 goes to zero, the
limit of the ratio “circumference/radius” is not 2𝜋. This
indicates that there is a conic singularity located at 𝑟 = 0.
In order to remove the conic singularity, one can identify the
angular coordinate 𝜙 with the period

Period
𝜙
= 2𝜋( lim

𝑟→0

1

𝑟

√

𝑔
𝜙𝜙

𝑔
𝑟𝑟

)

−1

= 2𝜋 (1 − 4𝜇) ,
(25)

where the conical singularity has a deficit angle 𝛿𝜙 = 8𝜋𝜇.
Expanding the metric function for 𝑟 → 0, one can show that

𝑓 (𝑟)




𝑟=0

=

𝑑𝑓 (𝑟)

𝑑𝑟








𝑟=0

= 0,

𝑓


(0) =

𝑑

2
𝑓 (𝑟)

𝑑𝑟

2









𝑟=0

̸=0,

(26)

and therefore 𝜇 is given by

𝜇 =

1

4

(1 −

2

𝑙𝑟
0
𝑓


(0)

) . (27)

It is easy to show that the near origin metric can be written as

𝑑𝑠

2
= −

𝑟

2

0

𝑙

2
𝑑𝑡

2
+

𝑟

2
𝑙

2

2

𝑑

2
𝑓 (𝑟)

𝑑𝑟

2









𝑟=0

𝑑𝜙

2

+

2

𝑟

2

0

𝑑𝑟

2

(𝑑

2
𝑓 (𝑟) /𝑑𝑟

2
)




𝑟=0

+

𝑟

2

0

𝑙

2
𝑑𝑧

2
.

(28)

Following the Vilenkin procedure [93], one can identify the
near origin metric (28) with a cosmic string and interpret 𝜇
as the mass per unit length of the string [93].

Here, we are in a position to investigate the effect of
nonlinearity parameter on the deficit angle 𝛿𝜙. At first, we
should note that 𝛿𝜙 is a smooth real function for >𝛽ext, where

𝛽ext =
2𝑙𝑞

𝑟

2

0

×

{

{

{

2 exp(

1

2

) , ENEF,

1, LNEF.
(29)

Second, it is interesting to note that the minimum and
maximum values of the deficit angle are

𝛿𝜙




Min = lim

𝛽→∞

𝛿𝜙,

𝛿𝜙




Max = lim

𝛽→𝛽
+

ext

𝛿𝜙,

(30)

which means that increasing the nonlinearity parameter 𝛽

leads to decreasing the deficit angle (see Figure 2 for more
clarifications).

3. Spinning Magnetic String

In this section, we apply a local rotation boost to the static
metric (22) to obtain rotating spacetime solutions. In 4-
dimensional spacetime the rotation group is 𝑆𝑂(3), and so
one can find that there is only one independent rotation
parameter. In order to apply rotation, one may use the
following local transformation in the 𝑡 − 𝜙 plane:

𝑡 →
√

1 +

𝑎

2

𝑙

2
𝑡 − 𝑎𝜙, 𝜙 →

√
1 +

𝑎

2

𝑙

2
𝜙 −

𝑎

𝑙

2
𝑡,

(31)
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where 𝑎 is a rotation parameter. Taking into account the static
metric (20) and applying (31), we can obtain

𝑑𝑠

2
= −

𝑟

2
+ 𝑟

2

0

𝑙

2
(

√
1 +

𝑎

2

𝑙

2
𝑑𝑡 − 𝑎𝑑𝜙)

2

+

𝑟

2
𝑑𝑟

2

(𝑟

2
+ 𝑟

2

0
) 𝑓 (𝑟)

+ 𝑙

2
𝑓 (𝑟)(

𝑎

𝑙

2
𝑑𝑡 −

√
1 +

𝑎

2

𝑙

2
𝑑𝜙)

2

+

𝑟

2
+ 𝑟

2

0

𝑙

2
𝑑𝑧

2
,

(32)

where the metric function 𝑓(𝑟) is the same as that in (23).
According to the mentioned transformation, one can find
that, in spite of the static case, 𝐹

𝑟𝑡
does not vanish for

rotating solutions. Straightforward calculations show that the
nonvanishing components of the electromagnetic fields are

𝐹
𝑟𝑡

= −

𝑎

𝑙

2
√1 + 𝑎

2
/𝑙

2
𝐹
𝑟𝜙

=

𝑎

√1 + 𝑎

2
/𝑙

2

×

{
{
{
{

{
{
{
{

{

2𝑞

𝑟

2
+ 𝑟

2

0

exp(−

1

2

𝐿



𝑊
) , ENEF,

𝛽

2
(𝑟

2
+ 𝑟

2

0
)

𝑞𝑙

2
(1 − Γ


) , LNEF.

(33)

Considering (22), (31), and (32), one may think that there
is a one-to-one correspondence between static and rotating
spacetimes and so they are the same. But this statement is
not correct. It is worthwhile to mention that the coordinate
𝜙 is periodic and therefore (31) is not a proper coordinate
transformation on the entire manifold. In other words, the
metrics (22) and (32) can be locally mapped into each other
but not globally, and so (31) generates a newmetric (for some
details about this local transformation see, e.g., [94]).

In order to finalize this section, we should discuss
the conserved quantities of the magnetic string. Using the
countertermmethod [95–98] and following the procedure of
magnetic solutions papers [7, 8, 29–49], one can find that the
mass and angularmomentumper unit length of the string can
be written as

𝑀 =

𝜋

2

(1 +

3𝑎

2

𝑙

2
)𝑚, (34)

𝐽 =

3𝜋𝑚𝑎

2

√
1 +

𝑎

2

𝑙

2
.

(35)

Equation (35) shows that considering 𝑎 = 0 leads to vanishing
angular momentum and it confirms that 𝑎 is the rotational
parameter of the spacetime. In addition, it is interesting to
calculate the electric charge of the solutions.UsingGauss’s law
and calculating the flux of the electric field at infinity, we find
that the electric charge per unit length 𝑄 can be given by

𝑄 = 𝜋𝑞𝑎. (36)

We should note that the electric charge may be originated
from the electric field. Since, for rotating solutions, besides
the magnetic field along the 𝜙 coordinate, there is also a
radial electric field 𝐹

𝑡𝑟
(see (33)), one may expect to obtain

an electric charge which is related to the rotating parameter.

4. Magnetic Brane Solutions

Here, we start with a class of the (𝑛 + 1)-dimensional metrics
to obtain magnetic brane solutions with the following ansatz:

𝑑𝑠

2
= −

𝜌

2

𝑙

2
𝑑𝑡

2
+

𝑑𝜌

2

𝑓 (𝜌)

+ 𝑙

2
𝑓 (𝜌) 𝑑𝜑

2
+

𝜌

2

𝑙

2
𝑑𝑋

2

1
, (37)

where 𝑑𝑋

2

1
= ∑

𝑛−2

𝑖=1
(𝑑𝑥

𝑖
)

2 is the Euclidean metric on the (𝑛 −

2)-dimensional submanifold. Using the nonlinear Maxwell
equation (2) with the metric (37), we find that the nonzero
components of Maxwell field are

𝐹
𝜙𝜌

= −𝐹
𝜌𝜙

=

{
{
{
{

{
{
{
{

{

2𝑞𝑙

𝑛−1

𝜌

𝑛−1
exp(−

1

2

𝐿
𝑊
) , ENEF,

𝛽

2
𝜌

𝑛−1

𝑞

(1 − Γ) , LNEF,
(38)

where 𝐿
𝑊

= Lambert𝑊(−16𝑙

2(𝑛−2)
𝑞

2
/𝛽

2
𝜌

2(𝑛−1)
) and Γ =

√
1 − (2𝑙𝑞/𝛽𝜌

𝑛−1
)

2. It is notable that considering the real
electromagnetic field leads to 𝜌 > 𝜌

0
, where

𝜌

2𝑛−2

0
= (

2𝑙𝑞

𝛽

)

2

× {

4𝑙

2(𝑛−3) exp (1) , ENEF,
1, LNEF.

(39)

Now, we are in a position to obtain the metric function
𝑓(𝜌). Considering (37) with (38), we find that the solution of
the gravitational field equation (1) is

𝑓 (𝜌) =

𝜌

2

𝑙

2
+

2𝑚𝑙

3

𝜌

𝑛−2
−

𝜒𝛽

2
𝜌

2

𝑛 (𝑛 − 1)

−

4𝛽𝑞𝑙

𝑛−2

(𝑛 − 1) 𝜌

𝑛−2
Υ (𝜌) ,

(40)

where

Υ (𝜌) =

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

∫(−𝐿
𝑊
)

−1/2
[1 − 𝐿

𝑊
] 𝑑𝜌, ENEF,

2𝛽

𝑞𝑙

𝑛−2
∫[𝜌

𝑛−1 ln(

𝛽

2
(1 − Γ) 𝜌

2(𝑛−1)

2𝑙

2
𝑞

2
)

+

4𝑞

2
𝑙

2

𝛽

2
𝜌

𝑛−1
(1 − Γ)

𝑑𝜌] LNEF.

(41)

It is easy to show that the Kretschmann scalar diverges when
𝜌 → 0 and is finite for 𝜌 ̸=0. Following the samemethod, we
find that one could not extend the spacetime from 𝜌 > 𝑟

0
to

𝜌 < 𝑟
0
in which 𝑟

0
is the largest positive real root of 𝑓(𝜌) = 0.

Therefore, we can use radial coordinate transformation (20)
to obtain a real well-defined spacetime for 0 ≤ 𝑟 < ∞. Here,
we leave details for reasons of economy.

Final step is generalization of static magnetic branes to
spinning ones. We know that the rotation group in 𝑛 +

1 dimensions is 𝑆𝑂(𝑛) and hence the maximum number
of independent rotation parameters is integer part of 𝑛/2.
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Generalization of static solutions to the spinning case with
𝑘 ≤ [𝑛/2] rotation parameters leads to the following metric:

𝑑𝑠

2
= −

𝑟

2
+ 𝑟

2

0

𝑙

2
(Ξ𝑑𝑡 −

𝑘

∑

𝑖=1

𝑎
𝑖
𝑑𝜙

𝑖
)

2

+ 𝑓 (𝑟)(
√

Ξ

2
− 1𝑑𝑡 −

Ξ

√
Ξ

2
− 1

𝑘

∑

𝑖=1

𝑎
𝑖
𝑑𝜙

𝑖
)

2

+

𝑟

2
𝑑𝑟

2

(𝑟

2
+ 𝑟

2

0
) 𝑓 (𝑟)

+

𝑟

2
+ 𝑟

2

0

𝑙

2
(Ξ

2
− 1)

𝑘

∑

𝑖<𝑗

(𝑎
𝑖
𝑑𝜙
𝑗
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𝑗
𝑑𝜙
𝑖
)

2

+

𝑟

2
+ 𝑟

2

0

𝑙

2
𝑑𝑋

2

2
,

(42)

where Ξ =
√

1 + ∑

𝑘

𝑖
𝑎

2

𝑖
/𝑙

2; 𝑑𝑋2
2
is the Euclideanmetric on the

(𝑛−𝑘−1)-dimensional submanifold with volume𝑉
𝑛−𝑘−1

.The
nonvanishing components of electromagnetic field tensor
and the metric function are, respectively,

𝐹
𝑟𝑡
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(Ξ
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Ξ𝑎
𝑖

𝐹
𝑟𝜙
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{
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𝛽
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2
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(43)

𝑓 (𝑟) =
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2
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𝑙
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2𝑚𝑙
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2
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2

0
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(𝑛−2)/2
−

𝜒𝛽
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(𝑟

2
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2

0
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𝑛 (𝑛 − 1)

−

4𝛽𝑞𝑙
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Υ (𝑟)

(𝑛 − 1) (𝑟

2
+ 𝑟

2

0
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(𝑛−2)/2
,

(44)

where 𝐿
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𝑞

2
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2
(𝑟

2
+ 𝑟

2

0
)

𝑛−1, and the function Υ(𝑟) is
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{
{
{
{
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{
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{
{
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{
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0
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)𝑟𝑑𝑟 LNEF.

(45)

Following the known counterterm procedure and Gauss’s
law, it is easy to calculate the conserved quantities of the
magnetic brane solutions. Straightforward calculations show

that the mass, angular momentum, and electric charge per
unit volume of the magnetic branes may be written as

𝑀 =

(2𝜋)

𝑘

4

[𝑛 (Ξ

2
− 1) + 1]𝑚,

𝐽
𝑖
=

(2𝜋)

𝑘

4

𝑛Ξ𝑚𝑎
𝑖
,

𝑄 =

(2𝜋)

𝑘
𝑞𝑙

2

√
Ξ

2
− 1.

(46)

We should note that the electric charge is proportional
to the rotation parameter and is zero for the case of static
magnetic branes. This is due the fact that radial electric field
𝐹
𝑡𝑟
vanishes for the static solutions.

5. Conclusions

At the first step, we introduced a class of static magnetic
string solutions in Einstein gravity in the presence of negative
cosmological constant with two types of NLED. In order to
have real solutions, we obtained a lower limit for the radial
coordinate, 𝜌. Furthermore, we nominated the largest real
root of the metric function as 𝑟

0
and, in order to get rid of

signature changing, we introduced a new radial coordinate 𝑟.
Calculations of geometric quantities showed that

although these solutions do not have curvature singularity,
there is a conical singularity at 𝑟 = 0 with a deficit angle
𝛿𝜙 = 8𝜋𝜇, where one can interpret 𝜇 as the mass per unit
length of the string. Moreover, we found that, unlike the
power Maxwell invariant solutions [45–47], the nonlinearity
does not have any effect on the asymptotic behavior of
the solutions and, in other words, obtained solutions are
asymptotically adS.

In addition, we investigated the effects of nonlinearity
parameter on the energy density and deficit angle, separately,
and found that when one increases the nonlinearity param-
eter, the concentration volume of the energy density and the
deficit angle reduce.

Using a suitable local transformation, we added an angu-
lar momentum to the spacetime and found that for rotating
solutions there is an electric field in addition to the magnetic
one.

Next, we used the countertermmethod andGauss’s law to
obtain conserved quantities and electric charge, respectively.
It is interesting to note that these quantities depend on the
rotation parameter and the static string has no net electric
charge.

At the final step, we studied magnetic solutions in
higher dimensions. We generalized static magnetic branes to
spinning ones and obtained consistent electromagnetic field
as well as metric function. Moreover, we obtained conserved
quantities of the magnetic branes and found that the electric
charge vanishes for the staticmagnetic branes. In addition, we
found that, for 𝑛 = 3, the conserved quantities of themagnetic
branes reduce to those of magnetic string, as we expected.
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By using the AdS/CFT correspondence and Gödel black hole background, we study the dynamics of heavy quark under a rotating
plasma. In that case we follow Atmaja (2013) about Brownian motion in BTZ black hole. In this paper we receive some new results
for the case of 𝛼2𝑙2 ̸= 1. In this case, we must redefine the angular velocity of string fluctuation. We obtain the time evolution of
displacement square and angular velocity and show that it behaves as a Brownian particle in non relativistic limit. In this plasma, it
seems that relating the Brownian motion to physical observables is rather a difficult work. But our results match with Atmaja work
in the limit 𝛼2𝑙2 → 1.

1. Introduction

In the last several years, the holographic AdS/CFT [1–4] has
been exploited to study strongly coupled systems, in par-
ticular quark gluon plasmas [5–7]. The quark gluon plasma
(QGP) is produced, when two heavy ions collide with each
other at very high temperature. A relatively heavy particle,
for example, a heavy quark, immerses in a soup of quarks
and gluons with small fluctuations due to its interaction with
constituent ofQGP.The randommotion of this particle is well
known as Brownianmotion [8–10].TheBrownianmotion is a
universal phenomenon in finite temperature systems and any
particle immersed in a fluid at finite temperature undergoes
Brownian motion. The Brownian motion opens a wide view
from microscopic nature. It offers a better understanding of
the microscopic origin of thermodynamics of black holes.
Therefore, it is a natural step to study Brownianmotion using
the AdS/CFT correspondence. Particularly, the AdS/CFT
correspondence can be utilized to investigate the Brownian
motion for a quark in the quark gluon plasma.

In the field theory or boundary side of AdS/CFT story, a
mathematical description of Brownianmotion is given by the

Langevin equation which phenomenologically describes the
force acting on Brownian particles [10–12] which is given by

̇𝑝 (𝑡) = −𝛾0
𝑝 (𝑡) + 𝑅 (𝑡) , (1)

where 𝑝 is momentum of Brownian particle and 𝛾
0
is the

friction coefficient.These forces originate from losing energy
to medium due to friction term (first term) and getting a
random kick from the thermal bath (second term). One
can learn about the microscopic interaction between the
Brownian particle and the fluid constituents, if these forces
be clear. By assuming ⟨𝑚 ̇𝑥

2
⟩ = 𝑇, the time evolution of

displacement square is given as follows [10]:

⟨𝑠(𝑡)

2
⟩ = ⟨[𝑥 (𝑡) − 𝑥 (0)]

2
⟩ ≈

{
{
{

{
{
{

{

𝑇

𝑚

𝑡

2
, (𝑡 ≪

1

𝛾
0

) ,

2𝐷𝑡, (𝑡 ≫

1

𝛾
0

) ,

(2)

where𝐷 = 𝑇/𝛾
0
𝑚 is diffusion constant, 𝑇 is the temperature,

and 𝑚 is the mass of Brownian particle. At early time, 𝑡 ≪
1/𝛾

0
(ballistic regime), the Brownian particle moves with

constant velocity ̇𝑥 ∼ √𝑇/𝑚, while at the late time, 𝑡 ≫ 1/𝛾
0

(diffusive regime), the particle undergoes a random walk.
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In the gravity or bulk side of AdS/CFT version for
Brownian motion, we need a gravitational analog of a quark
immersed in QGP. This is achieved by introducing a bulk
fundamental string stretching between the boundary at infin-
ity and event horizon of an asymptotically AdS black hole
background [13–17].The dual statement of a quark inQGP on
the boundary corresponds to the black hole environment that
excites the modes of string. In the context of this duality, the
end of string at the boundary corresponds to the quark which
shows Brownian motion and its dynamics is formulated by
Langevin equation. In the formulation of AdS/CFT corre-
spondence, fields of gravitational theory would be related to
the corresponding boundary theory operators [3, 4]. In this
way, instead of using the boundary field theory to obtain the
correlation function of quantum operators, we can determine
these correlators by the thermal physics of black holes and
use them to compute the correlation functions. In [14–
17], the Brownian motion has been studied in holographic
setting and the time evolution of displacement square. If
we consider different gravity theories, we know that strings
live in a black hole background and excitation of the modes
is done by Hawking radiation of black hole. So, different
theories of gravity can be associated with various plasma
in the boundary. In this paper we follow different works
to investigate Brownian motion of a particle in rotating
plasmas. We try to consider the motion of a particle in two-
dimensional rotating plasma whose gravity dual is described
by three-dimensional Gödel metric background. In this case,
we will see that, for the 𝛼 parameter in the Gödel metric,
new conditions for Brownian motion will be provided. As we
know, the Brownian motion of a particle in two-dimensional
rotating plasma with the corresponding gravity of BTZ black
hole has been studied in [16]. The Gödel metric background
in the special case receives to the BTZ black hole [18], so the
comparison of our results with [16] gives us motivation to
understanding the Brownian motion in rotating plasmas in
general form of background as Gödel black hole.

This paper is arranged as follows. In Section 2, we give
some review of three-dimensional Gödel black hole and
derive string action from thismetric background. Section 3 is
devoted to investigate a holographic realization of Brownian
motion and obtain the solution for equation of motion of
string in Gödel black hole geometry. We study the Hawking
radiation of the transverse modes near the outer horizon
of Gödel black hole to describe the random motion of the
external quark in Section 4. In Section 5, we make some
summery about our results.

2. Background and String Action

2.1. Gödel Black Hole. Three-dimensional Gödel spacetime
is an exact solution of Einstein-Maxwell theory with a
negative cosmological constant and a Chern-Simons term
[19]. When the electromagnetic field acquires a topological
mass 𝛼 Maxwell equation will be modified by an additional
term. In that case, we receive to Einstein-Maxwell-Chern-
Simons system, and the geometry is the Gödel space time
[20]. This theory can be viewed as a lower dimensional toy

model for the bosonic part of five-dimensional supergravity
theory, so it can be an advantage in development of string
theory. Three-dimensional Gödel black holes are like their
higher dimensional counterparts in special properties. The
action of Einstein-Maxwell-Chern-Simons theory in three
dimensions is given by [21]

𝐼=

1

16𝜋𝐺

∫𝑑

3
𝑥 [√−𝑔(𝑅 +

2

𝑙

2
−

1

4

𝐹
𝜇]𝐹

𝜇]
) −

𝛼

2

𝜖

𝜇]𝜌
𝐴

𝜇
𝐹]𝜌] .

(3)

A general spherically symmetric static solution to the above
action in various cases for the 𝛼 parameter can be written by
[22]

𝑑𝑠

2
=

𝑑𝑟

2

ℎ

2
− 𝑝𝑞

+ 𝑝𝑑𝑡

2
+ 2ℎ𝑑𝑡𝑑𝜙 + 𝑞𝑑𝜙

2
, (4)

where 𝑝, 𝑞, and ℎ are functions of 𝑟 as

𝑝 (𝑟) = 8𝐺𝜇,

𝑞 (𝑟) =

−4𝐺𝐽

𝛼

+ 2𝑟 − 2

𝛾

2

𝑙

2
𝑟

2
,

ℎ (𝑟) = −2𝛼𝑟,

(5)

with

𝛾 =
√

1 − 𝛼

2
𝑙

2

8𝐺𝜇

.
(6)

The gauge potential is given by

𝐴 = 𝐴
𝑡 (
𝑟) 𝑑𝑡 + 𝐴𝜙 (

𝑟) 𝑑𝜙, (7)

with

𝐴
𝑡 (
𝑟) =

𝛼

2
𝑙

2
− 1

𝛾𝛼𝑙

+ 𝜀, 𝐴
𝜑 (
𝑟) =

−4𝐺𝑄

𝛼

+ 2

𝛾

𝑙

𝑟. (8)

The parameters 𝜇 and 𝐽 are mass and angular momentum.
Thearbitrary constant 𝜀 is a pure gauge.We can rewritemetric
(4) in the ADM form as follows:

𝑑𝑠

2
= −

Δ

𝑞

𝑑𝑡

2
+

𝑑𝑟

2

Δ

+ 𝑞(𝑑𝜙 +

ℎ

𝑞
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2

, (9)

where

Δ = ℎ

2
− 𝑝𝑞 = 𝜆 (𝑟 − 𝑟

+
) (𝑟 − 𝑟

−
) , 𝜆 =
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2
𝑙

2
)
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,
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±
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[

[

𝜇 ±
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−

𝜇𝐽𝜆

2𝛼

]

]

.

(10)

The Hawking temperature that gives the temperature of the
plasma is [23]

𝑇
𝐻
=

𝜆 (𝑟
+
− 𝑟

−
)

8𝜋𝛼𝑟
+

. (11)
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Here 𝑟
−
is the inner horizon and 𝑟

+
is the outer horizon. In

the sector 𝛼2𝑙2 > 1, we have real solution only for 𝜇 negative.
In this regime, there are Gödel particles and theory supports
time-like constants fields. When 𝛼

2
𝑙

2
< 1, 𝜇 has positive

values. In this case black hole will be will be constructed and
theory supports space-like constants fields. For 𝛼2𝑙2 = 1,
metric (4) reduces to BTZ metric as can be explicitly seen
by transforming to the standard frame that is nonrotating at
infinity with respect to anti-de Sitter space:

𝜙 → 𝜙 + 𝛼𝑡, 𝑟 →

𝑟

2

2

+

2𝐺𝐽

𝛼

.
(12)

In the standard frame, energy and angular momentum
become 𝑀 = 𝜇 − 𝛼𝐽 and 𝐽, instead of 𝜇 and 𝐽 in rotating
frame.

2.2. String Action. In the general case for a 𝑑+2-dimensional
black hole metric background is

𝑑𝑠

2
= 𝑔

𝜇] (𝑥) 𝑑𝑥
𝜇
𝑑𝑥

]
+ 𝐺

𝐼𝐽 (
𝑥) 𝑑𝑥

𝐼
𝑑𝑥

𝐽
. (13)

Here 𝑥𝜇 = 𝑟, 𝑡 stands for the string worldsheet coordinates
and 𝑋

𝐼
= 𝑋

𝐼
(𝑥) (𝐼, 𝐽 = 1, . . . , 𝑑 − 2) for the spacetime

coordinates. If we stretch a string along the 𝑟 direction and
consider small fluctuation in the transverse direction𝑋𝐼, the
dynamics of this string follows from the Nambu-Goto action
[14]:

𝑆NG = −

1

2𝜋 ́𝛼

∫𝑑𝑥

2
√
(
̇

𝑋𝑋


)

2

−
̇

𝑋

2
𝑋

2
.

(14)

If the scalars 𝑋𝐼 do not fluctuate too far from their equilib-
rium values (𝑋𝐼

= 0), we can expand the above action up to
quadratic order in𝑋𝐼:

𝑆NG ≈ −

1

4𝜋 ́𝛼

∫𝑑𝑥

2
√−𝑔 (𝑥)𝑔

𝜇]
𝐺
𝐼𝐽
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𝐼
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𝜇
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𝐽

𝜕𝑥

] .
(15)

In fact, this quadratic fluctuation Lagrangian can be inter-
preted as taking the nonrelativistic limit, so we must use the
dual Langevin dynamics on boundary in the nonrelativistic
case.

3. Strings in Gödel Black Hole

As we said in the Introduction, an external quark is dual
to an open string that extends from the boundary to the
horizon of the black hole [24]. We can obtain the dynamics
of this string in a threedimensional Gödel black hole with the

metric background (9) by the Nambu-Goto action (14) in the
following form:

𝑆NG = −

1

2𝜋 ́𝛼
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)

2

)
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.

(16)

We have obtained the above relation in the standard frame.
The equation of motion for 𝜙 derived from (16) is

−

𝜕

𝜕𝑡

[

𝑟

2
𝑞

Δ√−𝑔

(
̇

𝜙 + 𝛼 +

ℎ

𝑞
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𝜕
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[

Δ𝜙



√−𝑔

] = 0. (17)

3.1. Trivial Solution. TheNambu-Goto action up to quadratic
terms after subsisting the small fluctuation 𝜙 → 𝐶+𝜙 under
Gödel metric background in the standard frame is given by

𝑆

(2)
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𝜙

2

𝑟[Δ/𝑞 − 𝑞(ℎ/𝑞 + 𝛼)

2
]

3/2
.

(18)

By changing coordinate to 𝑠 = 𝑥 − 𝑥
+
(where 𝑥 = 𝑟

2
/2 +

2𝐺𝐽/𝛼) and defining 𝜙(𝑡, 𝑠) = 𝑒

−𝑖𝜔𝑡
𝑓
𝜔
(𝑠), one can write the

equation of motion as follows:

𝑊(𝑠)𝑍 (𝑠) 𝜕

2

𝑠
𝑓
𝜔
+

1

2

[3𝜕𝑍 (𝑠)𝑊 (𝑠) − 𝜕𝑊 (𝑠) 𝑍 (𝑠)] 𝜕𝑠
𝑓
𝜔

+ 𝜔

2
𝑓
𝜔
= 0,

(19)

where

𝑊(𝑠) =

Δ (𝑠)

𝑞 (𝑠)

− 𝑞 (𝑠) (

ℎ (𝑠)

𝑞 (𝑠)

+ 𝛼)

2

, 𝑍 (𝑠) = Δ (𝑠) .

(20)

The solution for this equation of motion is the trivial solution
for the relation (17). In general, solution of this equation is
very complicated. However, for the extremal case 𝜇 = 𝐽(1 +

𝛼

2
𝑙

2
)/𝛼𝑙

2, we can find an analytical solution as

𝑓

±

𝜔
= 𝑠

−1±𝐷
𝑌 (𝑠) ,

where 𝐷 =
√
1 +

𝜔

2
𝑙

2

16𝐺𝑀

with 𝑀 =

𝜇

1 + 𝛼

2
𝑙

2
,

(21)
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where 𝑌(𝑠) is obtained from the following relation:

𝑠 (𝑐𝑠

2
+ 4𝑧 (𝑠 −

1

4

𝑧

𝛼

2
))

𝑑

2

𝑑𝑠

2
𝑌 (𝑠)

+ (2𝜒(𝑐𝑠

2
+ 4𝑧 (𝑠 −

1

4

𝑧

𝛼

2
))

+2𝑐𝑠

2
+ 10𝑠𝑧 − 3

𝑧

2

𝛼

2
)

𝑑

𝑑𝑠

𝑌 (𝑠)

+ 𝜒 ((𝜒 − 1) (𝑐𝑠 + 4𝑧) + 2𝑐𝑠 + 10𝑧) 𝑌 (𝑠) = 0,

(22)

where 𝜒 = −1 ± 𝐷 and 𝑧 = 2𝑥
+
/𝑙

2. The complete solution
of 𝑌(𝑠) is derived in the Appendix. With similar argument
as in [16], this solution is not acceptable, because it does
not have oscillatory modes in radial coordinates and also,
for this trivial constant solution, one can investigate that the
square root determinant of the worldsheet metric is not real
everywhere; therefore, it is not a physical solution. Due to
nonphysical motivation about the mentioned solution, we
have to consider another approach, which is linear solution.

3.2. Linear Solution. We can take the linear ansatz for the
small fluctuation in the transverse direction 𝜙 to achieve a
nontrivial solution, so we expand it as

𝜙 (𝑡, 𝑟) = 𝑤𝑡 + 𝜂 (𝑟) , (23)

where 𝑤 is a constant angular velocity. By replacing this
relation into (17), the solution for 𝜂 is obtained as follows:

𝜂


(𝑟) = −

𝜋
𝜙

Δ

√

(𝑟

2
/𝑞) (Δ − 𝑞

2
(ℎ/𝑞 + 𝛼 + 𝑤)

2
)

Δ − 𝜋

2

𝜙

,
(24)

where 𝜋
𝜙
is a constant which has a concept as the total force

to keep string moving with linear angular velocity𝑤 and also
is related to momentum conjugate of 𝜙 in 𝑟 direction. At 𝑟 =
𝑟NH, the numerator becomes zero, so the denominator should
also vanish there, because the string solution (23)must be real
everywhere along the worldsheet. For𝑤 = 0 and 𝛼2𝑙2 ̸= 1, 𝑟NH
is given by

𝑟

2

NH = −

𝑙

2

𝛾

2

[

[

1 ±
√
1 +

8𝐺𝛾

2

𝑙

2
𝛼

2
(2𝜇 − 𝐽𝛼)

]

]

−

4𝐺𝐽

𝛼

. (25)

When𝑤 ̸= 0 and 𝛼2𝑙2 = 1, we receive the excepted relation for
BTZ black hole [16]. For 𝑤 ̸= 0 and 𝛼2𝑙2 ̸= 1, we obtain

𝑟

2

NH =

𝑙

2

𝛾

2
(𝛼 + 𝑤)

×
[

[

(𝑤 − 𝛼) ±
√
(𝑤 − 𝛼)

2
+

16𝐺𝛾

2

𝑙

2
>(𝜇 −

𝐽(𝛼 + 𝑤)

2

2𝛼

)
]

]

−

4𝐺𝐽

𝛼

.

(26)

According to [16] we set dominator to zero, so we have

𝜋

2

𝜙
= Δ = (

ℎ𝛼 + 𝑝

𝛼

)

2

, ℎ = ℎ (𝑟

2

NH|𝑤=0) . (27)

The external force 𝐹ext can be obtained by considering the
rotation and the topological mass of black hole which is given
by

𝐹ext =
𝜋
𝜙

2𝜋 ́𝛼

=

ℎ𝛼 + 𝑝

2𝜋 ́𝛼𝛼

. (28)

After extracting this external force, we can derive the friction
coefficient 𝛾

0
for nonzero𝑤, by considering the relation 𝑝

𝜙
=

𝑚
0
𝑤, as

𝛾
0
𝑚

0
=

𝑞NH
2𝜋 ́𝛼

=

𝑟

2

NH − (2𝛾
2
/𝑙

2
) (𝑟

2

NH/2 + 2𝐺𝐽/𝛼)
2

2𝜋 ́𝛼

.

(29)

With 𝛼2𝑙2 = 1 this coefficient reduces to the excepted value
𝛾
0
= 𝑟

2

NH/2𝜋 ́𝛼𝑚
0
for BTZ black hole [16].

TheNambu-Goto action, with the small fluctuation, 𝜙 →

𝑤𝑡 + 𝜂(𝑟) + 𝜙, under the Gödel background becomes

𝑆

(2)

NG = −

1

4𝜋 ́𝛼

∫𝑑𝑡𝑑𝑟

Δ

3/2
𝜙

2

𝑟

3
[Δ/𝑞 − 𝑞(ℎ/𝑞 + 𝛼 + 𝑤)

2
]

1/2

−

Δ

1/2
̇

𝜙

2

𝑟[Δ/𝑞 − 𝑞(ℎ/𝑞 + 𝛼 + 𝑤)

2
]

3/2
.

(30)

The equation of motion from the above Nambu-Goto action
is given by

−𝑟Δ

1/2
̈

𝜙

[Δ/𝑞 − 𝑞(ℎ/𝑞 + 𝛼 + 𝑤)

2
]

3/2

+

𝜕

𝜕𝑟

Δ

3/2
𝜙

2

𝑟[Δ/𝑞 − 𝑞(ℎ/𝑞 + 𝛼 + 𝑤)

2
]

1/2
= 0.

(31)

Solving this equation is quite complicated for more values of
𝑤. However, one can find that there are some values like

𝑤 =

𝑥
−
+ (𝑥

+
− 𝑥

−
) ((1 − 𝛼

2
𝑙

2
) /2)

𝛼𝑥
+
𝑙

2

=

𝑟
−
+ (𝑟

+
− 𝑟

−
) ((1 − 𝛼

2
𝑙

2
) /2)

𝛼𝑟
+
𝑙

2
,

(32)

where this makes it possible to solve the equation of motion.
In derivation of the right-hand side of the above relation we
use 𝑟

−
𝑟
+
= 4𝐺𝐽/𝛼. The special radius 𝑟NH approaches the

outer horizon of the Gödel black hole for this value of angular
velocity 𝑤, where Δ(𝑟

+
) = 0 (and 𝜋

𝜙
= 0); then the steady

state solution is the case that 𝑟NH = 𝑟
+
. From relation (32)

for the angular velocity, it is evident that we can receive to
𝑤 = 𝑟

−
/𝑟

+
for BTZ black hole (𝛼2𝑙2 = 1). Furthermore, for



Advances in High Energy Physics 5

(𝛼

2
𝑙

2
> 1), we can check that 𝑤2

< 𝛼

2, but there must be
some condition on 𝜇 and 𝐽 to have𝑤2

< 𝛼

2 for (𝛼2𝑙2 < 1). We
can write the equation of motion for this terminal angular
velocity with changing coordinate to 𝑠 = 𝑥 − 𝑥

+
as

𝑊(𝑠)𝑍 (𝑠) 𝜙



𝑠
+

1

2

[3𝜕𝑍 (𝑠)𝑊 (𝑠) − 𝜕𝑊 (𝑠) 𝑍 (𝑠)] 𝜙



𝑠
−

̈
𝜙
𝑠
= 0,

(33)

where

𝑊(𝑠) =

𝑝

(2𝛼𝑥
+
)

2
[𝑠 (𝑐𝑠 + 𝜆𝜁)] , 𝑍 (𝑠) = 𝜆𝑠 (𝑠 + 𝜁) ,

𝑐 = 𝜆 − 4𝛼

2
, 𝜁 = 𝑥

+
− 𝑥

−
.

(34)

As before, we take 𝜙(𝑡, 𝑠) = 𝑒−𝑖𝜔𝑡𝑓
𝜔
(𝑠), so (33) reduce to

𝑊(𝑠)𝑍 (𝑠) 𝑓



𝜔
+

1

2

[3𝑍


(𝑠)𝑊 (𝑠) − 𝑊


(𝑠) 𝑍 (𝑠)] 𝑓



𝜔
+ 𝜔

2
𝑓
𝜔

= 0.

(35)

Consequently, the independent linear solutions to the above
equation are obtained as below:

𝑓

±

𝜔
(𝑠) = (𝜆𝜁𝑠)

±𝑖𝜗

2𝐹1
(±𝑖𝜗,

3

2

± 𝑖𝜗; 1 ± 2𝑖𝜗,

(−𝜆 + 𝑐) 𝑠

𝑐𝑠 + 𝜆𝜁

)

× (𝑐𝑠 + 𝜆𝜁)

∓𝑖𝜗
,

(36)

where

𝜗 =

2𝛼𝜔𝑥
+

𝜆𝜁√𝑝

, (37)

or with 𝜉 = 2𝜁 = 𝑟2
+
−𝑟

2

−
and 𝑥

+
/√𝑝 = 4𝐺𝐽/(𝛼𝑟−

√
𝜆), we have

𝜗 = 16𝐺𝐽𝜔/𝜆

3/2
𝜉𝑟

−
. By considering the following relation

for hypergeometric functions,

2
𝐹
1
(𝜅, 𝜅 +

3

2

, 2𝜅 + 1, 𝑧)

=

2

2𝜅

𝜅 + 1/2

[1 + (1 − 𝑧)

1/2
]

−2𝜅

[

1

2

+ 𝜅(1 − 𝑧)

−1/2
] ,

(38)

(36) reduces as

𝑓

±

𝑤
(𝑠) =

(4𝜆𝜁)

±𝑖𝜗

1 ± 2𝑖𝜗

[1 ± 2𝑖𝜗/√1 + (𝜆 − 𝑐) 𝑠/ (𝑐𝑠 + 𝜆𝜁)]

[1 + √1 + (𝜆 − 𝑐) 𝑠/ (𝑐𝑠 + 𝜆𝜁)]

±2𝑖𝜗

× (𝑐𝑠 + 𝜆𝜁)

∓𝑖𝜗
𝑠

±𝑖𝜗
,

(39)

which gives oscillationmodes.We have the following asymp-
totic behavior from the solutions near the outer horizon (𝑠 →
0) and the boundary (𝑠 → ∞):

𝑓

±

𝑤
(𝑠) ∼

{
{
{

{
{
{

{

𝑒

±𝑖𝜔𝑠⋆
(𝑠 → 0)

(4𝜆𝜁)

±𝑖𝜗
(1 ± 2𝑖𝜗/√𝜆/𝑐)

(1 ± 2𝑖𝜗) (1 + √𝜆/𝑐)

±2𝑖𝜗
(𝑠 → ∞) ,

(40)

with 𝑠
⋆
= (𝜗/𝜔) ln(𝑠) = (16𝐺𝐽/𝜆3/2𝜉𝑟

−
) ln(𝑠).

4. Displacement Square

So far, we have succeeded to drive oscillation modes for a
string moving in the Gödel black hole background. In the
following, we follow the same procedure as in [14, 16] to
compute the displacement square for Brownian motion. In
order to achieve this, we write the solutions for bulk equation
of motion as a linear combination of 𝑓±

𝜔
:

𝑓
𝜔 (
𝑠) = 𝐴 [𝑓

+

𝜔
(𝑠) + 𝐵𝑓

−

𝜔
(𝑠)] 𝑒

−𝑖𝜔𝑡
, (41)

where 𝐴 and 𝐵 are constants. By exerting the Neumann
boundary condition near the boundary, 𝜕

𝑠
𝑓
𝑠
(𝜔) = 0 with

𝑠 = 𝑠
𝑐
≫ 0, to put the UV-cutoff, we obtain

𝐵 =

(4𝜆𝜁)

2𝑖𝜗
(𝑐𝑠

𝑐
+ 𝜆𝜁)

−2𝑖𝜗
𝑠

2𝑖𝜗

𝑐
(1 − 2𝑖𝜗)

[1 + √1 + (𝜆 − 𝑐) 𝑠𝑐
/ (𝑐𝑠

𝑐
+ 𝜆𝜁)]

4𝑖𝜗

(1 + 2𝑖𝜗)

×

[1 + 2𝑖𝜗√1 + (𝜆 − 𝑐) 𝑠𝑐
/ (𝑐𝑠

𝑐
+ 𝜆𝜁)]

[1 − 2𝑖𝜗√1 + (𝜆 − 𝑐) 𝑠𝑐
/ (𝑐𝑠

𝑐
+ 𝜆𝜁)]

≡ 𝑒

𝑖𝜃𝜔
.

(42)

Note that the constant 𝐵 is a pure phase, so by using (40) in
the near horizon we can write

Φ (𝑡, 𝑠) = 𝑓𝜔 (
𝑠) 𝑒

𝑖𝜔𝑡
∼ 𝑒

−𝑖𝜔(𝑡−𝑠⋆)
+ 𝑒

𝑖𝜃𝜔
𝑒

−𝑖𝜔(𝑡+𝑠⋆)
. (43)

To regulate the theory, we implement another cutoff near the
outer horizon at 𝑠

ℎ
= 𝜖, 𝜖 ≪ 1, which is called IR-cutoff; we

obtain

𝐵 ≈ 𝜖

2𝑖𝜗
= 𝑒

−2𝑖𝜗 ln(1/𝜖)
. (44)

If we take 𝐵 in the terms of 𝜔 by relation (41) only, then
𝐵 has continuous values, since the 𝜔 can have any value.
Using relation (43) for 𝐵will satisfy our requirements to have
discrete values in 𝜖 ≪ 1. In this case, the discreteness is [14, 16]

Δ𝜗 =

𝜋

ln (1/𝜖)
, (45)

where, in terms of 𝜔, it is given by

Δ𝜔 =

𝜆

3/2
𝜋𝑟

−
𝜉

16𝐺𝐽 ln (1/𝜖)
. (46)

Following the above processes and using IR-cutoff to discrete
the continuous spectrum makes it easy to find normalized
bases of modes and to quantize 𝜙(𝑡, 𝑟) by extending in these
modes.

4.1. Brownian Particle Location. In this section we are going
to use quantized modes of the string near the outer horizon
of Gödel black hole to describe the Brownian motion of
an external quark. Therefore we consider the Nambu-Goto
action for certain amount of terminal angular velocity, near
the outer horizon (𝑠 → 0):

𝑆

2

NG ∼

1

2

∫𝑑𝑡𝑑𝑠
⋆
(
̇
Φ

2
− Φ

2

) , (47)



6 Advances in High Energy Physics

where Φ ≡ (8𝐺𝐽/(𝑟
−
√
2𝜋𝜆 ́𝛼))𝜙. Thus, according to the

same procedure for standard scalar fields, we introduce the
following mode expansions:

Φ (𝑡, 𝑠) = ∑

𝜔>0

[𝑎
𝜔
𝑢
𝜔 (
𝑡, 𝑠) + 𝑎

†

𝜔
𝑢
𝜔(
𝑡, 𝑠)

∗
] , (48)

with

𝑢
𝜔 (
𝑡, 𝑠) =

√

𝜆

3/2
𝜉𝑟

−

32𝐺𝐽𝜔 ln (1/𝜖)
[𝑓

+

𝜔
(𝑠) + 𝐵𝑓

−

𝜔
(𝑠)] 𝑒

−𝑖𝜔𝑡
,

[𝑎
𝜔
, 𝑎

†

́𝜔
] = 𝛿

𝜔 ́𝜔
.

(49)

Now, by considering the above quantummodes on the probe
string in the bulk, we want to work out the dynamics of
the endpoint which corresponds to an external quark. We
investigate the wave-functions of the world-sheet fields in
the two interesting regions: (i) near the black hole horizon
and (ii) close to the boundary. From (40), near the horizon
(𝑆 ∼ 0), expansion (48) becomes

𝜙 (𝑡, 𝑆 → 0) =

𝑟

3/2

−
√
2𝜋 ́𝛼

𝜆
5/2

𝜉

(16𝐺𝐽)

3/2
√ln (1/𝜀)

×

∞

∑

𝜔=−∞

1

√𝜔

(𝑒

−𝑖𝜔(𝑡−𝑆⋆)
+ 𝑒

𝑖𝜃𝜔
𝑒

−𝑖𝜔(𝑡+𝑆⋆)
) 𝑎

𝜔
.

(50)

We used 𝑆 = 2𝑠 = 𝑟2 − 𝑟2
+
. On the other hand, expansion (48)

at 𝑆 = 𝑅 (the location of the regulated boundary) is given by

𝜙 (𝑡, 𝑆 = 𝑅)

=

𝑟

3/2

−
√
2𝜋 ́𝛼

𝜆
5/2

𝜉

(16𝐺𝐽)

3/2
√ln (1/𝜖)

× ∑

𝜔>0

1

√𝜔

×
[

[

( 2

1+2𝑖𝜗
(𝜆𝜉𝑅)

𝑖𝜗
(𝑐𝑅 + 𝜆𝜉)

−𝑖𝜗
(1 − 2𝑖𝜗)

× ([1 + √1 +

(𝜆 − 𝑐) 𝑅

𝑐𝑅 + 𝜆𝜉

]

2𝑖𝜗

× [1 − 2𝑖𝜗√1 +

(𝜆 − 𝑐) 𝑅

𝑐𝑅 + 𝜆𝜉

] )

−1

)

× 𝑒

−𝑖𝜔𝑡
𝑎
𝜔
+ ℎ.𝑐.

]

]

.

(51)

One can see that there are two modes in the solutions. The
outgoing modes (𝜔 > 0) that are excited because of Hawking

radiation [25, 26] and incomingmodes (𝜔 < 0) which fall into
black hole.The outgoing mode correlators are determined by
the thermal density matrix:

𝜌
0
=

𝑒

−𝛽𝐻

𝑇𝑟 (𝑒

−𝛽𝐻
)

, 𝐻 = ∑

𝜔>0

𝜔𝑎

†

𝜔
𝑎
𝜔
, (52)

and the expectation value of occupation number is given by
the Bose-Einstein distribution:

⟨𝑎

†

𝜔
𝑎

́𝜔
⟩ =

𝛿𝜔 ́𝜔

𝑒

𝛽𝜔
− 1

, (53)

with 𝛽 = 1/𝑇. Using the knowledge of relation (52) about
outgoing modes correlators in the bulk, we can investigate
the motion of the endpoint of the string at 𝑆 = 𝑅 ≫ 1. We
can also determine the behavior of the Brownian motion, by
computing displacement square, as came in (2). So we can
predict the nature of Brownian motion of external particle
on the boundary. For this purpose, we compute the modes
correlators at 𝑆 = 𝑅 ≫ 1 as

⟨𝜙
𝑅 (
𝑡) 𝜙𝑅 (

0)⟩ = ∑

𝜔>0

𝑟

3

−
𝜋 ́𝛼𝜆

5/2
𝜉

(16𝐺𝐽)

3
𝜔 ln (1/𝜖)

×

[1 + 4𝜗(𝜔)

2
]

[1 + 4𝜗(𝜔)

2
(𝜆 (𝑅 + 𝜉) / (𝑐𝑅 + 𝜆𝜁))]

× [

2 cos𝜔𝑡
𝑒

𝛽𝜔
− 1

+ 𝑒

−𝑖𝜔𝑡
] .

(54)

By utilizing (46), we can write the above relation in the
integral form. We see that the integral is diverging. So we
regularize it by normally ordering the 𝑎, 𝑎† oscillators: 𝑎

𝜔
𝑎

†

𝜔
≡

𝑎

†

𝜔
𝑎
𝜔
; then we have

⟨: 𝜙
𝑅 (
𝑡) 𝜙𝑅 (

0) :⟩

=

8𝜆𝑟

2

−
́𝛼

(16𝐺𝐽)

2

× ∫

∞

0

𝑑𝜔

𝜔

(1 + 4

(16𝐺𝐽)

2
𝜔

2

𝜆

3
𝜉

2
𝑟

2

−

)

× (1 + 4

(16𝐺𝐽)

2
𝜔

2

𝜆

3
𝜉

2
𝑟

2

−

(

𝜆 (𝑅 + 𝜉)

𝑐𝑅 + 𝜆𝜉

))

−1

× [

2 cos (𝜔𝑡)
𝑒

𝛽𝜔
− 1

] ,

(55)

and the displacement square becomes

𝑆reg(𝑡)
2
≡ ⟨: [𝜙

𝑅 (
𝑡) − 𝜙𝑅 (

0)]

2
:⟩

=

16𝜆𝑟

2

−
́𝛼

(16𝐺𝐽)

2
[

(𝜆 − 𝑐) 𝑅

𝜆 (𝑅 + 𝜉)

𝐼
1
+

𝑐𝑅 + 𝜆𝜉

𝜆 (𝑅 + 𝜉)

𝐼
2
] ,

(56)
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with

𝐼
1
= 4∫

∞

0

𝑑𝑦

𝑦 (1 + 𝑎

2
𝑦

2
)

sin2 (𝑘𝑦/2)
𝑒

𝑦
− 1

,

𝐼
2
= 4∫

∞

0

𝑑𝑦

𝑦

sin2 (𝑘𝑦/2)
𝑒

𝑦
− 1

,

(57)

and we have defined

𝑦 = 𝛽𝜔, 𝑘 =

𝑡

𝛽

, 𝑎

2
= 4(

16𝐺𝐽

𝜆𝜉𝑟
−
𝛽

)

2

(

𝑅 + 𝜉

𝑐𝑅 + 𝜆𝜉

) .

(58)

The evaluation of these integrals and their behavior for𝑅 ≫ 1

and 𝑎 ≫ 1 can be found in Appendix B of [14]. From relation
(58), we can see that when 𝑅 ≫ 1, we have 𝑎 ∝ 1/𝑐. Thus in
general case for 𝑎, we use the following relations for integrals
(57):

𝐼
1
=

1

2

[𝑒

𝑘/𝑎
𝐸𝑖 (−

𝑘

𝑎

) + 𝑒

−𝑘/𝑎
𝐸𝑖 (

𝑘

𝑎

)]

+

1

2

[𝜓(1 +

1

2𝜋𝑎

) + 𝜓(1 −

1

2𝜋𝑎

)]

−

𝜋

2

(1 − 𝑒

|𝑘|/𝑎
) cot 1

2𝑎

+ log(2𝑎 sinh𝜋𝑘
𝑘

) +

𝑒

−2𝜋|𝑘|

2

× [

2
𝐹
1
(1, 1 + 1/2𝜋𝑎, 2 + 1/2𝜋𝑎; 𝑒

−2𝜋|𝑘|
)

1 + 1/2𝜋𝑎

+

2
𝐹
1
(1, 1 − 1/2𝜋𝑎, 2 − 1/2𝜋𝑎; 𝑒

−2𝜋|𝑘|
)

1 − 1/2𝜋𝑎

] ,

𝐼
2
= log( sinh𝜋𝑘

𝜋𝑘

) .

(59)

However, for 𝑅 ≫ 1 and ≪ 1(𝛼

2
𝑙

2
→ 1), then 𝑎 ≫ 1, one

can utilize the following relation for 𝐼
1
and 𝐼

2
:

𝐼
1
=

{
{

{
{

{

𝜋𝑘

2

2𝑎

+ 𝑂 (𝑎

−2
)

𝜋𝑘 + 𝑂 (log 𝑘) ,

𝐼
2
= {

𝑂(𝑎

0
) , (𝑘 ≪ 𝑎)

𝜋𝑘 + 𝑂 (log 𝑘) , (𝑘 ≫ 𝑎) .

(60)

Therefore, 𝑆reg(𝑡)
2 has the following form:

⟨𝑆reg(𝑡)
2
⟩ =

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

16𝑟

3

−
𝜆𝜋 ́𝛼

(16𝐺𝐽)

3
𝛽

[

𝜉 (𝜆 − 𝑐) (𝑐𝑅 + 𝜆𝜉)

1/2

4(𝑅 + 𝜉)

1/2
] 𝑡

2

+𝑂(

𝑐𝑅 + 𝜆𝜉

𝑅 + 𝜉

) , (𝑡 ≪ 𝛽) ,

16𝑟

2

−
𝜆𝜋 ́𝛼

(16𝐺𝐽)

2
𝛽

𝑡 + 𝑂(log 𝑡

𝛽

) , (𝑡 ≫ 𝛽) .

(61)

One can check that the displacement square (61) is consistent
with BTZ black hole in [16] by setting 𝑐 = 0 or 𝛼2𝑙2 = 1.
In that case, the 𝑤 vanishes for 𝐽 = 0 (or 𝑟

−
= 0), but when

𝛼

2
𝑙

2
̸= 1, the𝑤will have zero value only for 𝐽/𝛼𝑙2 = (𝛼2𝑙2−1)𝜇

(see relation (32)).Then our static solution is achieved by this
condition. The diffusion constant from (61) is given by

𝐷 =

𝜆𝜋 ́𝛼𝛼

2

2𝑟

2

+

𝑇. (62)

So, the relaxation time of Brownian particle is as follows:

𝑡
𝑐
=

1

𝛾
0

=

𝜆𝑚
0
𝜋 ́𝛼𝛼

2

2𝑟

2

+

. (63)

The mass of external particle, 𝑚
0
, can be computed by using

the total energy and momentum of string [27] under the
metric background (4):

𝐸 =

1

2𝜋 ́𝛼

∫𝑑𝑟𝜋

0

𝑡
, 𝑝

𝜙
=

1

2𝜋 ́𝛼

∫𝑑𝑟𝜋

0

𝜙
, (64)

with

𝜋

0

𝑡
=

𝜙

2

√−𝑔

(𝑔

2

𝑡𝜙
− 𝑔

𝑡𝑡
𝑔
𝜙𝜙
) −

𝑔
𝑟𝑟

√−𝑔

(𝑔
𝑡𝑡
+ 𝑔

𝑡𝜙
̇

𝜙) ,

𝜋

0

𝜙
=

𝑔
𝑟𝑟

√−𝑔

(𝑔
𝑡𝜙
+ 𝑔

𝜙𝜙
̇

𝜙) .

(65)

Then we have

𝐸 =

𝛼

2𝜋 ́𝛼

∫𝑑𝑠

𝑐 (𝑠 + 𝑥
+
) + 𝜆𝑥

+

√𝜆𝑝 (𝑠 + 𝜁) (𝑐𝑠 + 𝜆𝜁)

,

𝑝
𝜙
=

1

2𝜋 ́𝛼

∫𝑑𝑠

−𝑐 (𝑠 + 𝑥
+
) + 𝜆𝑥

−

√𝜆𝑝 (𝑠 + 𝜁) (𝑐𝑠 + 𝜆𝜁)

.

(66)

One can check that, after putting 𝑐 = 0 in the above relation,
the result of integral is as excepted for BTZ black hole.
However, for 𝑐 ̸= 0 we obtain

𝐸 = 𝛼

√(𝑐𝑅 + 𝜆𝜉) (𝑅 + 𝜉) − √𝜆𝜉

2

√𝜆𝑝

+ 2𝛼

𝜆 + 𝑐

𝜆

√

𝑝

𝜆𝑐

ln[
√𝑐𝑅 + 𝜆𝜉 + √𝑐 (𝑅 + 𝜉)

√𝑐𝜉 + √𝜆𝜉

] ,

𝑝
𝜙
= −

√(𝑐𝑅 + 𝜆𝜉) (𝑅 + 𝜉) − √𝜆𝜉

2

√𝜆𝑝

+ 2

𝜆 − 𝑐

𝜆

√

𝑝

𝜆𝑐

ln[
√𝑐𝑅 + 𝜆𝜉 + √𝑐 (𝑅 + 𝜉)

√𝑐𝜉 + √𝜆𝜉

] ,

(67)

where√𝑝/𝜆 = (𝑟
+
+ 𝑟

−
)/2. Then the mass is defined as

𝑚

2

0
= 𝐸

2
− 𝑝

2

𝜙
. (68)

From the above relations, we see that relating the physical
mass to displacement square is difficult.
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5. Summary

In this paper, by using AdS/CFT correspondence, we studied
the Brownian motion of an external quark in plasma. It is
corresponded to a string stretched from horizon of AdS to
boundary. By using the Nambu-Goto action, we obtained the
equation of motion for this string in the Gödel background.
For an acceptable solution with oscillatory modes, we had to
redefine the terminal angular velocity. We found that turning
on a finite density for a conserved 𝑈(1) charge (reflected
by a CS term in the bulk) and the rotation of black hole
influence oscillatory modes. For realization of the Brownian
motion, we derived the time evolution of the displacement
square from themodes correlators.We showed that in general
case (𝛼2𝑙2 ̸= 1 Gödel black hole), our results for displacement
square are different in comparison with [16]. However, in
𝛼

2
𝑙

2
= 1 limit (BTZ black hole), we confirmed that our

results agree with the work of Atmaja [16]. We derived the
physical mass, but we found that relating the displacement
square to physical observables is a difficult work. This is
the problem that we would like to consider in future work.
Also we would like to investigate the Brownian motion
of external quarks in different environments, in particular
plasmas which correspond to metric backgrounds as Lifshitz
geometry [28] and metric backgrounds with hyperscaling
violation [29, 30].

Appendix

The solution to the following differential equation

𝑠 (𝑐𝑠

2
+ 4𝑧 (𝑠 −

1

4

𝑧

𝛼

2
))

𝑑

2

𝑑𝑠

2
𝑌 (𝑠)

+ (2𝜒(𝑐𝑠

2
+ 4𝑧 (𝑠 −

1

4

𝑧

𝛼

2
))

+ 2𝑐𝑠

2
+ 10𝑠𝑧 − 3

𝑧

2

𝛼

2
)

𝑑

𝑑𝑠

𝑌 (𝑠)

+ 𝜒 ((𝜒 − 1) (𝑐𝑠 + 4𝑧) + 2𝑐𝑠 + 10𝑧) 𝑌 (𝑠)

= 0

(A.1)

can be obtained analytically as

𝑌 (𝑠) = 𝐶1
𝑠

−3/2−𝜒 4
√
𝑠 (𝑐𝑠 + 4𝑧) 𝛼

2
− 𝑧

2

× (

𝑠

−𝑐𝛼𝑠 − 2𝑧𝛼 + 𝑧
√
𝜆

)

(1/2)(1−𝑝(𝛼)/𝑟(𝛼)𝑞(𝛼))

× (

−𝛼
√
𝜆𝑠 + 2𝑠𝛼

2
− 𝑧

−𝑧
√
𝜆 + 𝛼 (𝑐𝑠 + 2𝑧)

)

(1/2)(1+3√−𝑐
2
/4𝑟(𝛼)𝑞(𝛼))

× (−𝑐𝛼𝑠 − 2𝑧𝛼 + 𝑧
√
𝜆)

×
2
𝐹
1
(𝐸 (𝛼) (𝑇 (𝛼) + 𝑈 (𝛼)) ,

𝐸 (𝛼) (𝑇 (𝛼) + 𝑈 (𝛼)) ,

(1 −

𝑝 (𝛼)

𝑞 (𝛼) 𝑟 (𝛼)

) ;

𝑐𝛼
√
𝜆𝑠

(−𝑧
√
𝜆 + 𝛼 (𝑐𝑠 + 2𝑧)) 𝑟 (𝛼)

)

+ 𝐶
2
𝑠

−3/2−𝜒 4
√
𝑠 (𝑐𝑠 + 4𝑧) 𝛼

2
− 𝑧

2

× (

𝑠

−𝑐𝛼𝑠 − 2𝑧𝛼 + 𝑧
√
𝜆

)

(1/2)(1+𝑝(𝛼)/𝑟(𝛼)𝑞(𝛼))

× (

−𝛼
√
𝜆𝑠 + 2𝑠𝛼

2
− 𝑧

−𝑧
√
𝜆 + 𝛼 (𝑐𝑠 + 2𝑧)

)

(1/2)(1+3√−𝑐
2
/4𝑟(𝛼)𝑞(𝛼))

× (−𝑐𝛼𝑠 − 2𝑧𝛼 + 𝑧
√
𝜆)

×
2
𝐹
1
( 𝐸 (𝛼) (𝑇 (𝛼) + 𝑅 (𝛼)) ,

𝐸 (𝛼) (𝑇 (𝛼) + 𝑅 (𝛼)) ,

(1 +

𝑝 (𝛼)

𝑞 (𝛼) 𝑟 (𝛼)

) ;

𝑐𝛼
√
𝜆𝑠

(−𝑧
√
𝜆 + 𝛼 (𝑐𝑠 + 2𝑧)) 𝑟 (𝛼)

) ,

(A.2)

where 𝐸, 𝑅, 𝑇, 𝑈, 𝑟, 𝑞, and 𝑝(𝛼) are given by relations (A.2)–
(A.6):

𝐸 (𝛼) =

1

2
√
−𝑐 − 8𝛼

2
+ 4𝛼

√
𝜆 (𝛼 + 1/2

√
𝜆) (2𝛼

√
𝜆 + 𝜆)

=

1

4
√
𝜆𝑟

2
(𝛼) 𝑞 (𝛼)

,

(A.3)

𝑟 (𝛼) =

√

−𝑐 − 8𝛼

2
+ 4𝛼

√
𝜆,

𝑞 (𝛼) = (𝛼 +

1

2

√
𝜆) ,

𝑝 (𝛼) =
√
−(𝜒 + 1)

2
𝑐

2
,

(A.4)

𝑇 (𝛼) = ((2𝛼

2
+

1

4

𝑐)
√
𝜆 + 𝛼𝜆)

√

−𝑐 − 8𝛼

2
+ 4𝛼

√
𝜆, (A.5)
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𝑈 (𝛼) = (

3

2

𝛼 +

3

4

√
𝜆)

√
−𝑐

2
𝜆

−
√
−(𝜒 + 1)

2
𝑐

2
(2𝛼

√
𝜆 + 𝜆) ,

(A.6)

𝑅 (𝛼) = (

3

2

𝛼 +

3

4

√
𝜆)

√
−𝑐

2
𝜆

+
√
−(𝜒 + 1)

2
𝑐

2
(2𝛼

√
𝜆 + 𝜆) .

(A.7)
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This paper studies the geometry and the thermodynamics of a holographic screen in the framework of the ultraviolet self-complete
quantum gravity. To achieve this goal we construct a new static, neutral, nonrotating black holemetric, whose outer (event) horizon
coincides with the surface of the screen.The spacetime admits an extremal configuration corresponding to theminimal holographic
screen and having both mass and radius equalling the Planck units. We identify this object as the spacetime fundamental building
block, whose interior is physically unaccessible and cannot be probed even during the Hawking evaporation terminal phase.
In agreement with the holographic principle, relevant processes take place on the screen surface. The area quantization leads
to a discrete mass spectrum. An analysis of the entropy shows that the minimal holographic screen can store only one byte of
information, while in the thermodynamic limit the area law is corrected by a logarithmic term.

1. Introduction

“Quantum gravity” is the common tag for any attempt
to reconcile gravity and quantum mechanics. Since the
early proposals by Wheeler [1, 2] and DeWitt [3], up to
the recent ultraviolet (UV) self-complete scenario [4], the
diverse formulations of a would-be quantum theory of
gravity have shown a common feature, that is, a fundamen-
tal length/energy scale where the smooth manifold model
of spacetime breaks down. Let us refer to this scale as
the “Planck scale” irrespectively whether it is 1019 GeV or
10−102 TeV. The very concept of distance becomes physically
meaningless at the Planck scale and spacetime “evaporates”
into something different, a sort of “foamy” structure, a
spin network, a fractal dust, and so forth, according to the
chosen model [5]. As a matter of fact, one of the most
powerful frameworks for describing the Planckian phase
of gravity is definitely (Super) String Theory. The price to
pay to have a perturbatively finite, anomaly-free quantum

theory is to give up the very idea of point-like building
blocks of matter and replace them with one-dimensional
vibrating strings. As there does not exist any physical object
smaller than a string; there are no physical ways to probe
distances smaller than the length of the string itself. In
this regard two properties of fundamental strings are worth
mentioning:

(i) string excitations correspond to different mass and
spin “particle” states;

(ii) highly excited strings share various physical proper-
ties with black holes.

Thus, we infer that string theory provides a bridge between
particle-like objects and black holes (see for instance [6]).
However, it is important to remark that while the Comp-
ton wavelength of a particle-type excitation decreases by
increasing the mass, the Schwarzschild radius of a black hole
increases with its mass. Thus, the first tenet of high energy
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particle physics, which is “the higher the energy the shorter
the distance,” breaks down when gravity comes into play
and turns a “particle” into a black hole. The above remark
is the foundation of the UV self-complete quantum gravity
scenario, where the Planckian and sub-Planckian length
scales are permanently shielded from observation due to the
production of black hole excitations at Planck energy scatter-
ing [7]. Accordingly the Planck scale assumes the additional
meaning of scale at which matter undergoes a transition
between its two admissible “phases,” that is, the particle phase
and the black hole phase [8–10]. From this perspective, trans-
Planckian physics is dominated by larger and larger black hole
configurations. It follows that only black holes larger than, or
at most equal to, Planck size objects can self-consistently fit
into this scheme. However, classical black hole solutions do
not fulfill this requirement, that is, the existence of a lower
bound for their mass and size (see Figure 1).

A first attempt to overcome this limitation is offered
by the noncommutative geometry inspired solutions of the
Einstein equations [11].The latter are a family of regular black
holes which span all possible combinations of parameters,
such as mass [12], charge [13], and angular momentum
[14, 15]. In addition such regular geometries admit a vari-
ety of complementary gravitational configurations such as
traversable wormholes [16], dirty black holes [17], dilaton
gravity black holes [18], and collapsing matter shells [19].
Recently this family of black holes has been recognized as
viable solutions of nonlocal gravity [20, 21], that is, a set of
theories exhibiting an infinite number of derivative terms of
the curvature scalar [22–24] in place of the mere Ricci scalar
as in the standard Einstein-Hilbert action. More importantly
extensions of noncommutative geometry inspired metrics to
the higher dimensional scenario [25, 26] are currently under
scrutiny at the LHC for their unconventional phenomenology
[27]: specifically the terascale black holes described by such
regular metrics tend to have a slower evaporation rate [28]
and emit only soft particles mainly on the four-dimensional
brane [29]. A characteristic feature of this type of solutions
is that the minimum size configuration is given by the
extremal black hole configuration which exists even in the
neutral nonspinning case [30–32]. This fact automatically
implies a minimum energy for black hole production in
particle collisions [33] without any further need of correcting
formulas of cross sections with ad hoc threshold functions.
Extremal configurations play a crucial role in the physics
of the decaying de Sitter universe via the nucleation of
microscopic black holes. It has been shown that Planck
size noncommutative inspired black holes might have been
copiously produced during inflationary epochs [34].This fact
has further phenomenological repercussions: being stable,
noninteracting objects, extremal black holes turn out to be
a reliable candidate for dark matter component. On the
theoretical side, extremal configurations in the presence
of a negative cosmological term can provide a short scale
completion of the Hawking-Page diagram which switches to
a more realistic Van der Waals phase diagram [35].

Extremal configurations can be either descending from
the introduction of a fundamental length in the line element
and can alternatively be interpreted as a phenomenological
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Figure 1: The dotted and the solid curves represent the particle
Compton wavelength 𝜆

𝐶
and the Schwarzschild radius as a function

of the energy 𝑀 in Planck units (quantities are rescaled). The
squared bullet is the Planck scale. The grey area of the diagram is
actually excluded, meaning that a particle cannot be compressed
at distances smaller than the Planck length: at trans-Planckian
energy only black hole form. The arrow shows the inadequacy of
the Schwarzschild metric: black holes have no lower mass bounds,
can have size smaller than the Planck length, and can expose the
curvature singularity by decaying through the Hawking process.

input from quantum gravity: in the latter case it has been
shown that such extremal black holes fit pretty well in the
UV self-complete scenario providing a stable, minimum size
probe at the transition point betweenparticles andblack holes
[36].

In this paper we want to take a step further in the
realization of this program by avoiding the introduction of
an additional principle to justify the presence of a minimal
length, rather we demand the radius of a Planck size extremal
black hole to provide the natural UV cutoff of a quantum
spacetime. In this framework gravity is expected to be self-
regular in the sense that the actual regulator cutting off sub-
Planckian length scales is given in terms of the gravitational
coupling constant; that is,√𝐺 = 𝐿

𝑃
.The paper is organized as

follows. In Section 2 we derive a black hole metric, consistent
with the above discussion and the concept of holographic
screen. The latter coincides with the outer horizon of the
black hole whose mass spectrum is bounded from below by
the mass of the extremal configuration equalling the Planck
mass. Once trans-Planckian length scales are cut-ff, the
“interior” of the black hole loses its physical meaning in the
sense that all the relevant degrees of freedom are necessarily
located on the horizon itself. In Section 3 we discuss the
thermodynamics of the screen. We find that the area law
is modified by logarithmic corrections and that there exists
a minimal holographic screen with zero thermodynamic
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entropy. Finally we propose a “holographic quantization”
schemewhere the area of the extremal configuration provides
the quantumof surface. In Section 4we offer the reader a brief
summary of the main results of this work.

2. Self-Regular Holographic Screen

A simple but intriguing model of singularity-free black hole
has been “guessed” in [37], in the sense that the metric was
assigned as an input for the Einstein equations. Sometimes
this inverted procedure is called “engineering” because the
actual source term of field equations is not known a priori.
The distinctive feature of the solution is the presence in
the line element of a free parameter with dimension of a
length, acting as a short distance regulator for the spacetime
curvature, allowing a safe investigation of back-reaction
effects of theHawking radiation. In [38] a higher dimensional
extension of this model has been proposed; it was also shown
that, by a numerical rescaling of the short-distance regulator,
it is possible to identify this fundamental length scale with
the radius of the extremal configuration. With hindsight,
we are going to take a step forward to improve this inverse
procedure. Specifically, we want to follow the “direct way”
by building up a consistent source for Einstein equations: we
introduce a physically motivated energy momentum tensor
which allows for transitions between particle-like objects and
black holes as consistently required by UV self-complete
quantum gravity.

We start from the energy density for a point-particle in
spherical coordinates as

𝜌
𝑝 (

𝑟) =

𝑀

4𝜋𝑟

2
𝛿 (𝑟) , (1)

where 𝛿(𝑟) is the Dirac delta. The energy distribution (1)
implies a black hole for any value of mass 𝑀 even for sub-
Planckian values where one expects just particles. Before
proceeding, we would like to recall that a Dirac delta function
can be represented as the derivative of a Heaviside step-
function Θ:

𝛿 (𝑟) =

𝑑

𝑑𝑟

Θ (𝑟) . (2)

Against this background, we want to accommodate both
particles and black holes by a suitable modification of the
energy distribution in order to overcome the ambiguities
of the Schwarzschild metric in the sub-/trans-Planckian
regimes (see also Figure 1). This can be done by considering
a “smooth” function ℎ(𝑟) in place of the Heaviside step:

Θ (𝑟) → ℎ (𝑟) . (3)

The new profile 𝜌(𝑟) of the energy density is defined through
ℎ(𝑟) by the relation

𝜌 (𝑟) =

𝑀

4𝜋𝑟

2

𝑑

𝑑𝑟

ℎ (𝑟) ≡ 𝑇

0

0
. (4)

By means of the conservation equation ∇
𝜇
𝑇

𝜇]
= 0 one can

determine the remaining components of the stress tensor,
which turns to be out of the form

𝑇

]
𝜇
= diag (−𝜌, 𝑝

𝑟
, 𝑝
⊥,
𝑝
⊥
) . (5)

The condition for the metric coefficients 𝑔
00

= −𝑔

−1

11

determines the equation of state, namely, the relation between
the energy density and the radial pressure, 𝑝

𝑟
= −𝜌. The

angular pressure is specified by the conservation of the stress
tensor and reads 𝑝

⊥
= 𝑝
𝑟
+ (𝑟/2)𝜕

𝑟
𝑝
𝑟
.

By plugging the tensor (5) in Einstein equations, one finds
that the metric reads (𝐺 = 1)

𝑑𝑠

2
= − (1 −

2𝑚 (𝑟)

𝑟

) 𝑑𝑡

2

+ (1 −

2𝑚 (𝑟)

𝑟

)

−1

𝑑𝑟

2
+ 𝑟

2
𝑑Ω

2
,

(6)

with

𝑚(𝑟) = 4𝜋∫𝑑𝑟


(𝑟


)

2

𝜌 (𝑟


) . (7)

At large distances 𝑟 ≫ 𝐿
𝑃
, the above energy density has

to quickly vanish; that is, 𝜌(𝑟) → 0 in order to match the
“vacuum” Schwarzschild metric. Conversely, at shorter scales
𝑟 ≳ 𝐿

𝑃
, the density 𝜌(𝑟) (and accordingly ℎ(𝑟)) has to depart

from the point-particle profile in order to fulfill the following
requirements:

(i) no curvature singularity in the origin;
(ii) self-implementation of a characteristic scale 𝑙

0
in the

spacetime geometry by means of the radius of the
extremal configuration 𝑟

0
; that is, 𝑟

0
= 𝑙
0
.

The latter condition is crucial. For instance noncommutative
geometry inspired black holes [11] are derived by the direct
way; they enjoy (i) but fail to fulfill the condition (ii). This
means that the characteristic length scale of the system
𝑙
0
and the extremal configuration radius 𝑟

0
are indepen-

dent quantities. Indeed noncommutative geometry is the
underlying theory which provides the scale 𝑙

0
in terms

of an “external” parameter, namely, the noncommutative
parameter 𝜃. In other words one needs to invoke a principle,
like a modification of commutators in quantum mechanics,
or the emergence of a quantum gravity induced fundamental
length to achieve the regularity of the geometry at short
scales. Against this background, we want just to use 𝑟

0
as

fundamental scale, getting rid of any 𝑙
0
as emerging from any

theory or principle not included in Einstein field equations.
This is a step forward since it opens the possibility for
Einstein gravity to be self-protected in the ultraviolet regime.
To emphasize this point, we introduced the word “self -
implementation” in (ii). Since there exists actually only one
additional scale beyond 𝑟

0
, that is, the Planck length 𝐿

𝑃
=

√
𝐺, or the Planck mass 𝑀

𝑃
= 1/

√
𝐺, we can implement the

condition (ii) in the most natural way by setting 𝑟
0
= 𝐿
𝑃
and

accordingly 𝑀
0
= 𝑀
𝑃
, where 𝑀

0
≡ 𝑀(𝑟

0
) is the extremal

black hole mass.
Despite the virtues of the above line of reasoning, we feel

that the set of conditions (i) and (ii) can be relaxed and a
further simplification is possible. Having in mind that for
extremal black hole configurations the Hawking emission
stops we just need to find a metric for which only the
condition (ii) holds. This would be enough for completing
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the program of the UV self-complete quantum gravity by
protecting the short distance behavior of gravity during the
final stages of the evaporation process. In this regard, the
resulting extremal black hole is just the smallest object one
can use to probe short-distance physics. In other words, in
the framework of UV self-complete quantum gravity, it is
not physically meaningful to ask about curvature singularity
inside the horizon as the very concept of spacetime is no
longer defined below this length scale.

According with such a line of reasoning, we can deter-
mine the function ℎ(𝑟) by dropping the condition (i) and
keeping just the condition (ii). Inside the class of all admis-
sible profiles for ℎ(𝑟), the most natural and algebraically
compact choice is given by

ℎ (𝑟) = 1 −

𝐿

2

𝑃

𝑟

2
+ 𝐿

2

𝑃

. (8)

A similar procedure has been already used in [33] and
accounts for the fact that in the presence of 𝐿

𝑃
the step cannot

be any longer sharp. Thus, the smeared energy density 𝜌(𝑟)

turns out to be

𝜌 (𝑟) =

𝑀

2𝜋𝑟

𝐿

2

𝑃

(𝑟

2
+ 𝐿

2

𝑃
)

2
. (9)

As a result we find the followingmetric which is derived from
a stress tensor modeling a particle-black hole system (5):

𝑑𝑠

2
= − (1 −

2𝑀𝐿

2

𝑃
𝑟

𝑟

2
+ 𝐿

2

𝑃

)𝑑𝑡

2

+ (1 −

2𝑀𝐿

2

𝑃
𝑟

𝑟

2
+ 𝐿

2

𝑃

)

−1

𝑑𝑟

2
+ 𝑟

2
𝑑Ω

2
,

(10)

where the arbitrary constant𝑀 is defined as follows:

𝑀 ≡

1

2𝐿

2

𝑃
𝑟
ℎ

(𝑟

2

ℎ
+ 𝐿

2

𝑃
) . (11)

We give 𝑀 the physical meaning of mass for a spherical,
holographic screen with radius 𝑟

ℎ
. The basic idea is that gravi-

tational phenomena taking place in three-dimensional space
can be projected on a two-dimensional “viewing screen” with
no loss of information [39]. The idea of holographic screen
has been proposed in [40] and it hasmathematically been for-
mulated in [41]: the holographic screen plays the role of “basic
constituent of space where the Newton potential is constant.”
Along this line of reasoning, the idea of holographic screen
has been used also in the context of noncommutative inspired
metric to derive compelling deviations to Newton’s law [42].
For what concerns the current discussion, however, we just
need to recall that a special case of holographic screen is given
by an event horizon where the entropy is maximized.

Several remarks are in order.

(i) It is easy to show that𝑀 ≥ 𝑀
𝑃
and equals the Planck

mass only for 𝑟
ℎ
= 𝐿
𝑃
.

(ii) The line element (10) admits a pair of horizons
provided 𝑀 ≥ 𝑀

𝑃
. The radii 𝑟

±
of the horizons are

given by

𝑟
±
= 𝐿

2

𝑃
(𝑀 ± √𝑀

2
− 𝑀

2

𝑃
) . (12)

For 𝑀 = 𝑀
𝑃
the two horizons merge into a single

(degenerate) null surface at 𝑟
±
= 𝑟
0
= 𝐿
𝑃
. For 𝑀 ≫

𝑀
𝑃
the outer horizon approaches the conventional

value of the Schwarzschild geometry; that is, 𝑟
+

≃

2𝑀𝐿

2

𝑃
.

(iii) By inserting (11) into (12) one finds 𝑟
+

= 𝑟
ℎ
, 𝑟
−

=

𝐿

2

𝑃
/𝑟
ℎ
. We see that the holographic screen surface

coincides with the (outer) black hole horizon 𝑟
+
,

while the inner Cauchy horizon has a radius which
is always smaller or equal to the Planck length. This
fact lets us circumvent the issue of potential blue shift
instabilities [43, 44] (see, i.e., recent analyses for non-
commutative inspired [45, 46] and other quantum
gravity corrected metrics [47, 48]) because 𝑟

−
simply

loses its physical meaning being not accessible to any
sort of measurement process. In what follows we can
identify the holographic screen with the black hole
outer horizonwithout distinguishing between the two
surfaces any longer.

(iv) “Light” objects, with 𝑀 < 𝑀
𝑃
, are “particles”

rather than holographic screens. By particles wemean
localized lumps of energy of linear size given by the
Compton wavelength 𝜆

𝐶
= 1/𝑀 that can never

collapse into a black hole. Rather they give rise to
horizonless metrics (see Figure 2) and cannot probe
distances smaller than 𝜆

𝐶
. The “transition” particle

→ black holes is discussed below in terms of critical
surface density.

As a further analysis of this result, it is interesting to consider
the surface energy density of the holographic screen which is
defined as

𝜎
ℎ
≡

𝑀

4𝜋𝑟

2

ℎ

=

1

8𝜋𝐿

2

𝑃

𝑟

2

+
+ 𝐿

2

𝑃

𝑟

3

+

. (13)

From the above relation we see that 𝜎
ℎ
is a monotonically

decreasing function of the screen radius.We notice that there
exists a minimal screen encoding the physically maximum
attainable energy density, that is, the Planck (surface) density:

𝜎
ℎ
(𝑟
+
= 𝐿
𝑃
) =

1

4𝜋𝐿

3

𝑃

=

𝑀
𝑃

4𝜋𝐿

2

𝑃

. (14)

We stress that there is no physically meaningful “interior” for
the minimal screen; that is, the “volume” of such an object
is not even defined, in the sense that it can never be probed.
Thus, we can only consider energy per unit area, rather than
per unit volume. If we, formally, define a surface energy for a
particle as

𝜎
𝑝
≡

𝑀

4𝜋𝜆

2

𝐶

=

1

4𝜋𝜆

3

𝐶

(15)
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we see that the two curves (13) and (15) cross at 𝜆
𝐶

=

𝐿
𝑃

= 𝑟
+
. This result offers an additional interpretation for

the Planck length which consistently turns to be the minimal
size for a particle as well for a black hole (see Figure 2).
Accordingly, the Planck density (14) is the critical density for a
particle to collapse into a black hole.This argument is usually
formulated in terms of volume energy density having inmind
the picture of macroscopic body gravitationally collapsing
under their ownweight. Fromour holographic vantage point,
where “surfaces” are the basic dynamical objects, it is natural
to reformulate this reasoning in terms of areal densities
[39]. In addition holography offers a way to circumvent
potential conflicts between the mechanism of spontaneous
dimensional reduction [49, 50] and the UV self-complete
paradigm. If we perform the limit for 𝑟 → 0 the metric (10)
would apparently reduce into an effective two-dimensional
spacetime:

𝑑𝑠

2
→ − (1 − 2𝑀𝑟) 𝑑𝑡

2
+ (1 − 2𝑀𝑟)

−1
𝑑𝑟

2
+ O(

𝑟

2

𝐿

2

𝑃

) .

(16)

As explained in [51], this mechanism would lead the for-
mation of lower dimensional black holes for length scales
below the Planck length, in contrast with the predicted
semiclassical regime of trans-Planckian black holes in four
dimensions. However, contrary to the Schwarzschild metric
that eventually reduces into dilaton gravity black holes when
𝑟 ≃ 𝐿

𝑃
(for reviews of the mechanism see [52, 53]), the

presence of the holographic screen forbids the access to
length scales 𝑟 < 𝐿

𝑃
and safely protects the arguments at the

basis of the UV self-complete quantum gravity.

3. Thermodynamics, Area Quantization, and
Mass Spectrum

In this section we would like to investigate the thermody-
namics of the black hole described by (10) and determine
the relation between entropy and area of the event horizon.
It is customary to consider the area law for granted in any
case, but this assumption leads to an inconsistency with the
third law of thermodynamics: extremal black holes have zero
temperature but nonvanishing area. Here, we stick to the
textbook definition of thermodynamical entropy and not to
more exotic quantity like Rényi, or entanglement entropy. To
cure this flaw, we will derive the relation between entropy and
area from the first law, rather than assuming it. The Hawking
temperature associated to themetric (10) can be calculated by
evaluating the surface gravity 𝜅:

𝑇
𝐻

=

𝜅

2𝜋

=

1

4𝜋

(

𝑑𝑔
00

𝑑𝑟

)

𝑟=𝑟+

=

1

4𝜋𝑟
+

(1 −

2𝐿

2

𝑃

𝑟

2

+
+ 𝐿

2

𝑃

) , (17)

while the heat capacity 𝐶 ≡ 𝜕𝑈/𝜕𝑇
𝐻
is

𝐶 ≡

𝜕𝑀

𝜕𝑇
𝐻

= −2𝜋𝑟
+
(

𝑟

2

+
− 𝐿

2

𝑃

𝐿

2

𝑃

)

(𝑟

2

+
+ 𝐿

2

𝑃
)

2

𝑟

4

+
− 4𝐿

2

𝑃
𝑟

2

+
− 𝐿

4

𝑃

.
(18)

4

3

2

1

0

4321

𝜆
C

Particle

Sub-Planckian Trans-Planckian 
regimeregime

Black holes

M

Figure 2: The plot shows a length/energy relation consistent with
the self-complete quantum gravity arguments in Planck units.
Particles (dotted line) and black holes (solid line) cannot probe
length shorter than the Planck length. The grey area is permanently
inaccessible and accordingly represents the minimal spacetime time
region or fundamental constituent, that is, the “atom” the spacetime
is supposed to be made of.

One can check that for large distances, that is, 𝑟
+
≫ 𝐿
𝑃
, both

(17) and (18) coincide with the conventional results of the
Schwarzschild metric; that is, 𝑇

𝐻
≈ 1/4𝜋𝑟

+
and 𝐶 ≈ −2𝜋𝑟

2

+

(see Figures 3 and 4). On the other hand at Planckian scales,
contrary to the standard result for which a Planckian black
hole has a temperature 𝑇

𝐻
= 𝑀
𝑃
/8𝜋, we have that 𝑇

𝐻
→ 0

as 𝑟
+

→ 𝑟
0
= 𝐿
𝑃
as expected for any extremal configurations.

This discrepancy with the classical picture is consistent with
the genuine quantum gravitational character of the black
hole and is reminiscent of the modified thermodynamics of
noncommutative inspired black holes [54, 55].

The Hawking emission is a semiclassical decay where
gravity is considered just in terms of a classical spacetime
background. Such a semiclassical approximation convention-
ally breaks down as the Planck scale is approached. On the

other hand for our metric, at 𝑟
+

= 𝑟
𝑀

=
√
2 + √5𝐿

𝑃
≃

2.058𝐿
𝑃
the temperature admits a maximum corresponding

to a pole in the heat capacity. In the final stage of the
evaporation, that is, 𝐿

𝑃
< 𝑟
+

< 𝑟
𝑀
, the heat capacity is

positive; the Hawking emission slows down and switches off
at 𝑟
+

= 𝐿
𝑃
. From a numerical estimate of the maximum

temperature one finds 𝑇
𝐻
(𝑟
𝑀
) = 0.0239𝑀

𝑃
. This implies that

the ratio temperature/mass is𝑇
𝐻
/𝑀 < 𝑇

𝐻
(𝑟
𝑀
)/𝑀
0
≃ 0.0239.

As a consequence, no relevant back reaction occurs during
all the evaporation processes and the metric can consistently
describe the system “black hole + radiation” for all 𝑟

+
≥ 𝐿
𝑃
.

We can summarize the process with the following
scheme:
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Figure 3: The solid curve represents the Hawking temperature 𝑇
𝐻

and as a function of the horizon radius 𝑟
+
in Planck units.The dotted

curve represents the corresponding classical result in terms of the
Schwarzschild metric.

(i) “large”, far-from-extremality, black holes are semiclas-
sical objects which radiate thermally;

(ii) “small”, quasi-extremal, black holes are quantum
objects;

(iii) 𝑟 = 𝑟
𝑀

is “critical point” where the heat capacity
diverges (see Figure 4). Since 𝐶 > 0 for 𝑟

0
< 𝑟
+
< 𝑟
𝑀

and 𝐶 < 0 for 𝑟
𝑀

< 𝑟
+
, we conclude that a phase

transition takes place from large thermodynamically
unstable black holes to small stable black holes.

As a matter of fact, the black hole emission preceding the
evaporation switching off (often called “SCRAM phase” [11])
might not be thermal. It has been argued that such a quantum
regime might be characterized by discrete jumps towards the
ground state [7, 56]. To clarify the nature of this mechanism
we proceed by studying the black hole entropy profile and the
related area quantization. By integrating the first law, taking
into account that no black hole can have a radius smaller than
𝑟
0
= 𝐿
𝑃
, that is,

𝑆 (𝑟
+
) = ∫

𝑟+

𝑟0

𝑑𝑀

𝑇
𝐻

=

𝜋

𝐿

2

𝑃

(𝑟

2

+
− 𝐿

2

𝑃
) + 2𝜋 ln(

𝑟
+

𝐿
𝑃

) , (19)

we can cast the entropy in terms of the area of the event
horizonA

+
≡ 4𝜋𝑟

2

+
as

𝑆 (A
+
) =

𝜋

A
0

(A
+
−A
0
) + 𝜋 ln(

A
+

A
0

) , (20)

where A
0
= 4𝜋𝐿

2

𝑃
is the area of the extremal event horizon.

We remark that the modifications to the Schwarzschild
metric, encoded in our model, are in agreement with all

the major approaches to quantum gravity, which universally
foresee a logarithmic term as a correction to the classical area
law. For brevity we recall that this is the case for string theory
[57, 58], loop quantum gravity [59–61], and other results
based on generic arguments [62, 63], on Cardy’s formula
[64], conformal properties of spacetimes [65], and other
mechanisms for counting microstates [66–68]. We can check
that this is the case for themetric (10) by performing the limit
𝑟
+
≫ 𝐿
𝑃
for (20) to obtain

𝑆 (A
+
) ≈

A
+

4𝐿

2

𝑃

+ 𝜋 ln(

A
+

4𝜋𝐿

2

𝑃

) . (21)

Conversely for 𝑟
+

→ 𝐿
𝑃
the entropy vanishes; that is,

𝑆 (A
+
) ≈

4𝜋

𝐿
𝑃

(𝑟
+
− 𝐿
𝑃
) + 𝑂 ((𝑟

+
− 𝐿
𝑃
)

2
) . (22)

This result is consistent both with the third law of thermo-
dynamics and the entropy statistical meaning. The Planck
size, zero temperature, black hole configuration is the unique
ground state for holographic screens.Thus, it is a zero entropy
state as there is only one way to realize this configuration. To
see this we promote the extremal configuration area to the
fundamental quantum of area:

A
+
≡ A
𝑛−1

= 𝑛A
0
= 4𝜋𝑛𝐿

2

𝑃
, (23)

where 𝐿

2

𝑃
represents the basic information pixel and 𝑛 =

1, 2, 3 . . . is the number of bytes (we borrow here the names
of some units of digital information. In the present context,
each byte consists of 4𝜋 bits. Each bit, represented by 𝐿

2

𝑃

is the basic capacity of information of the holographic
screen. In the analogy with the theory of information for
which a byte represents the minimum amount of bits for
encoding a single character of text, here the byte represents
the minimum number of basic pixel 𝐿2

𝑃
for encoding the

smallest holographic screen). From the above condition one
obtains

𝑟
𝑛−1

≡ 𝑛

1/2
𝐿
𝑃
,

𝑀
𝑛−1

≡

1

2

(𝑛

1/2
+ 𝑛

−1/2
)𝑀
𝑃
.

(24)

Consistently the ground state of the system is 𝑟
0
= 𝐿
𝑃
and

𝑀
0
= 𝑀
𝑃
, while for 𝑛 ≫ 1 one finds a continuous spectrum

of values.This can be checked through the following relation:

Δ𝑀
𝑛
≡ 𝑀
𝑛
− 𝑀
𝑛−1

∼

1

4

𝑛

−1/2
𝑀
𝑃
. (25)

We notice that for 𝑛 ≤ 4 we are in the regime of positive
heat capacity 𝐶 > 0 and discrete mass spectrum, while for
𝑛 > 4 we approach the semiclassical limit characterized by
negative heat capacity 𝐶 < 0 and continuous mass spectrum;
that is, Δ𝑀

𝑛
/𝑀
𝑛

≤ 1/12. This confirms that at 𝑟
+

= 𝑟
𝑀
,

the system undergoes a phase transition from a semiclassical
regime to a genuine quantum gravity regime. As a conclusion
we have that large black holes decay thermally, while small
objects decay quantum mechanically, by emitting quanta of
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Figure 4: The solid curve represents the black hole heat capacity 𝐶

as a function of the horizon radius 𝑟
+
in Planck units. The dotted

curve represents the corresponding classical results in terms of the
Schwarzschild metric.

energy (for a recent phenomenological analysis of such kind
of decay see [69]).The end point of the decay is a Planckmass,
holographic screen.

The quantization of the area of the holographic screen lets
us disclose further features of the informational content of the
holographic screen. We have that the surface density can be
written as

𝜎
ℎ (

𝑛) =

1

2

(

1

𝑛

1/2
+

1

𝑛

3/2
)

𝑀
𝑃

4𝜋𝐿

2

𝑃

, (26)

while the entropy reads 𝑆(𝑛) = 𝜋(𝑛 + ln(𝑛) − 1). From
this relation we learn that, while the entropy increases with
the number 𝑛 of bytes, the surface density decreases. This
confirms that the extremal configuration is nothing but
a single byte, zero entropy, Planckian density holographic
screen.

4. Discussion and Conclusions

In this paper we have presented a neutral nonspinning
black hole geometry admitting an extremal configuration
whose mass and radius coincide with the Planck units.
We have reached this goal by suitably modelling a stress
tensor able to accommodate both the particle and black hole
configurations, undergoing a transition at the Planck scale.
We showed that the horizon of the degenerate black hole
represents the minimal holographic screen, within which
we cannot access any information about the matter-energy
content of spacetime.

We showed that a generic holographic screen is described
in terms of the outer horizon of the metric (10), while the
inner horizon lies within the prohibited region, that is, inside
the minimal holographic screen. The whole scheme fits into
the gravity self-completeness scenario. For sub-Planckian

energy scales one has just a quantum particle able to probe at
the most distances of the order of its Compton wavelength.
By increasing the degree of compression of the particle,
one traverses the Planck scale where a collapse into a black
hole occurs, before probing a semiclassical regime at trans-
Planckian energies. The virtual curvature singularity of the
geometry in 𝑟 = 0 is therefore wiped out since in such
a context sub-Planckian lengths have no physical meaning.
From this vantage point spacetime stops to exist beyond the
Planck scale as there is no physical way to access this regime.
Thus, the curvature singularity problem is ultimately resolved
by giving up the very concept of spacetime at sub-Planckian
length scales.

The study of the associated thermodynamic quantities
confirmed that at trans-Planckian energies black holes radiate
thermally before undergoing a phase transition to smaller,
quantum black holes. The latter decay by emitting a discrete
spectrum of quanta of energy and reach the ground state of
the evaporation corresponding to the minimal holographic
screen. We came to this conclusion by quantizing the black
hole horizon area in terms of theminimal holographic screen
which actually plays the role of a basic information byte. We
showed that in the thermodynamic limit, the area law for
the black hole entropy acquires a logarithmic correction in
agreement with all the major quantum gravity formulations.

In conclusion, we stress that the line element (10) not only
captures the basic features of more “sophisticated” models of
quantumgravity improved black holes (e.g., noncommutative
geometry inspired black holes [11], loop quantum gravity
black holes [70, 71], asymptotically safe gravity black holes
[72, 73], and other studies about collapses in quantum gravity
[74, 75]) but overcomes some of their current weak points:
specifically there is no longer any concern for potential
Cauchy instabilities or for conflicts between the gravity self-
completeness and the Planck scale spontaneous dimensional
reduction mechanism, as well as the scenario of the terminal
phase of the evaporation for static, nonrotating, neutral black
holes. In addition, for its compact form the newmetric allows
straightforward analytic calculations and opens the route to
testable predictions.
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We look at black holes from different, novel perspectives.

1. Introduction

We will first show that black holes, generally, thought to be
a general relativistic phenomena could also be understood
without invoking general relativity at all. (Indeed, Laplace had
anticipated these objects.)

We start by defining a black hole as an object at the surface
of which the escape velocity equals the maximum possible
velocity in the universe, namely, the velocity of light. We next
use the well-known equation of Keplerian orbits [1]

1

𝑟

=

𝐺𝑀

𝐿

2
(1 + 𝑒 cos 𝜃) , (1)

where𝐿, the so-called impact parameter, is given by𝑅𝑐, where
𝑅 is the point of closest approach, in our case a point on the
surface of the object, and 𝑐 is the velocity of approach, in our
case the velocity of light.

Choosing 𝜃 = 0 and 𝑒 ≈ 1, we can deduce from (1)

𝑅 =

2𝐺𝑀

𝑐

2
. (2)

Equation (2) gives the Schwarzschild radius for a black hole
and can be deduced from the full general relativity theory as
well.

Wewill nowuse (2) to exhibit black holes at three different
scales, the micro-, the macro-, and the cosmic scales.

2. Black Holes

Our starting point is the observation that a Planck mass,
10

−5 gms at the Planck length 10

−33 cms, satisfies (2) and
as such a Schwarzschild black hole is. Rosen has used
nonrelativistic quantum theory to show that such a particle
is a mini universe [2].

We next come to stellar scales. It is well known that for an
electron gas in a highly dense mass we have [3, 4]

𝐾(

𝑀

4/3

𝑅

4
−

𝑀

2/3

𝑅

2
) = 𝐾

𝑀

2

𝑅

4
, (3)

where

(

𝐾

𝐾


) = (

27𝜋

64𝛼

)(

ℏ𝑐

𝛾𝑚

2

𝑃

) ≈ 10

40
, (4)

𝑀 =

9𝜋

8

𝑀

𝑚
𝑃

, 𝑅 =

𝑅

(ℏ/𝑚
𝑒
𝑐)

, (5)

𝑀 is the mass, 𝑅 the radius of the body, 𝑚
𝑃
and 𝑚

𝑒
are

the proton and electron masses, and ℏ is the reduced Planck
constant. From (3) and (4), it is easy to see that for 𝑀 <

10

60, there are highly condensed planet sized stars. (In fact
these considerations lead to theChandrasekhar limit in stellar
theory.) We can also verify that for 𝑀 approaching 10

60

corresponding to a mass ∼1036 gms, or roughly a hundred to
a thousand times the solarmass, the radius𝑅 gets smaller and
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smaller and would be ∼108 cms, so as to satisfy (2) and give a
black hole in broad agreement with theory and observation.

Finally for the universe as a whole, using only the theory
of Newtonian gravitation, we had deduced [5]

𝑅 ∼

2𝐺𝑀

𝑐

2
; (6)

that is, (2) where this time 𝑅 ∼ 10

28 cms is the radius of
the universe and 𝑀 ∼ 10

55 gms is the mass of the universe.
(6) can be deduced alternatively from general relativistic
considerations also as noted.

Equation (6) is the same as (2) and suggests that the
universe itself is a black hole. (This will still be true if there
is dark matter.)

It is remarkable that if we consider the universe to be a
Schwarzschild black hole as suggested by (6), the time taken
by a ray of light to traverse the universe, that is, from the
horizon to the singularity, namely, 10−5(𝑀/𝑀

0
), equals the

age of the universe ∼1017 secs as shown elsewhere [5]. 𝑀
0
is

the mass of the sum. We will deduce this result alternatively
a little later.

3. Micro Black Holes

Attempts have been made to express elementary particles
as tiny black holes by several authors, notably, Markov and
Recami [6, 7]. These black holes do not reproduce charge or
spin which are so essential.

Let us, instead, observe that if we treat an electron as a
Kerr-Newman black hole, then we get the correct quantum
mechanical 𝑔 = 2 factor, but the horizon of the black hole
becomes complex [4, 8]. Consider

𝑟
+
=

𝐺𝑀

𝑐

2
+ 𝚤𝑏, 𝑏 ≡ (

𝐺

2
𝑀

2

𝑐

4
−

𝐺𝑄

2

𝑐

4
− 𝑎

2
)

1/2

(7)

with 𝐺 being the gravitational constant, 𝑀 being the mass,
and 𝑎 ≡ 𝐿/𝑀𝑐, 𝐿 being the angular momentum. While
(7) exhibits a naked singularity and as such has no physical
meaning, we note that from the realm of quantummechanics
the position coordinate for a Dirac particle is given by

𝑥 = (𝑐

2
𝑝
1
𝐻

−1
𝑡) +

𝚤

2

𝑐ℏ (𝛼
1
− 𝑐𝑝
1
𝐻

−1
)𝐻

−1 (8)

an expression that is very similar to (7). In the above, the
various symbols have their usual meaning. In fact as was
argued in detail [4], the imaginary parts of both (7) and (8)
are the same, being of the order of the Compton wavelength.

It is at this stage that a proper physical interpretation
begins to emerge. Dirac himself observed that to interpret
(8) meaningfully it must be remembered that quantum
mechanical measurements (unlike classical ones) are really
averaged over the Compton scale. Within the scale there are
the unphysical Zitterbewegung effects: for a point electron the
velocity equals that of light.

Once such a minimum spacetime scale is invoked, then
we have a noncommutative geometry as shown by Snyder [9,
10]

[𝑥, 𝑦] = (

𝚤𝑎

2

ℏ

)𝐿
𝑧
, [𝑡, 𝑥] = (

𝚤𝑎

2

ℏ𝑐

)𝑀
𝑥
, etc,

[𝑥, 𝑝
𝑥
] = 𝚤ℏ [1 + (

𝑎

ℏ

)

2

𝑝

2

𝑥
] .

(9)

The relations (9) are compatible with special relativity.
Indeed, such minimum spacetime models were studied
for several decades, precisely to overcome the divergences
encountered in quantum field theory [4, 10–13].

All this is symptomatic of the fact that we cannotmeasure
arbitrary small intervals of spacetime in quantum theory, as
indeed argued by Dirac himself [14]. Indeed subsequently
Salecker and Wigner argued that time within the Compton
scale has no physical meaning [15] (and for a detailed
discussion cf. [16]). Indeed this quantum mechanical feature
explains what Misner et al. termed the greatest crisis of
physics [8], namely, the singularity of the black hole. All this
has been the matter of detailed study (cf. [16]).

4. Black Hole Thermodynamics

The author has approached this problem from the point of
view of oscillations at the Planck scale [16]. Briefly, if there
are𝑁 such oscillators with an amplitude Δ𝑥, then we have

𝑅 =
√
𝑁Δ𝑥

2
. (10)

This leads to

𝑅 =
√
𝑁𝑙
𝑃
, 𝑀 =

𝑚
𝑃

√
𝑁

, (11)

where𝑀 is the arbitrarymass,𝑅 the extent, and 𝑙
𝑃
and𝑚

𝑃
are

the Planck length and Planck mass, respectively. We now use
the fact that 𝑙

𝑃
is the Schwarzschild radius of the Planck mass

as was shown by Rosen [2]. Substitution in the above gives us
the Schwarzschild radius; that is (4)

𝑅 =

2𝐺𝑀

𝑐

2
. (12)

It can be immediately seen from (11) that

𝑅𝑀 = 𝑙
𝑃
𝑚
𝑃
. (13)

It must be mentioned that the above is completely consistent
with the mass and radius of an arbitrary black hole, including
the universe itself.

From the theory of black hole thermodynamics we have
as it is well known [17]

𝑇 =

ℏ𝑐

3

8𝜋𝑘𝑚𝐺

,
(14)

namely, the Beckenstein temperature. Interestingly, (14) can
be deduced alternatively fromour above theory of oscillations
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at the Planck scale. For this we use the following relations for
a Schwarzschild black hole [17]

𝑑𝑀 = 𝑇𝑑𝑆, 𝑆 =

𝑘𝑐

4ℏ𝐺

𝐴, (15)

where 𝑇 is the Bekenstein temperature, 𝑆 the entropy, and 𝐴
is the area of the black hole. In our case, themass𝑀 =

√
𝑁𝑚
𝑃

and𝐴 = 𝑁𝑙

2

𝑃
, where𝑁 is arbitrary for an arbitrary black hole.

This follows from (11). Whence,

𝑇 =

𝑑𝑀

𝑑𝑆

=

4ℏ𝐺

𝑘𝑙

2

𝑃
𝑐

𝑑𝑀

𝑑𝑁

. (16)

If we use the fact that 𝑙
𝑃
is the Schwarzschild radius for the

Planck mass 𝑚
𝑃
and use the expression for 𝑀, the above

reduces to (14), the Bekenstein formula.
Equation (14) gives also the thermodynamic temperature

of a Planck mass black hole. Further, in this theory as it is
known [17],

𝑑𝑀

𝑑𝑡

= −

𝛽

𝑀

2
, (17)

with 𝑀 being the mass. Before proceeding, we observe that
we have deduced a string of𝑁 Planck oscillators,𝑁 arbitrary,
form a Schwarzschild black hole of mass √𝑁𝑚

𝑃
= 𝑀. We

can now deduce that

𝑑𝑀

𝑑𝑡

=

𝑚
𝑃

𝑡
𝑃

,

𝑀 = (

𝑚
𝑃

𝑡
𝑃

) ⋅ 𝑡,

(18)

where 𝑡 is the “Hawking-Bekenstein decay time.” For the
Planck mass, 𝑀 = 𝑚

𝑃
, the decay time is the Planck time

𝑡 = 𝑡
𝑃
. For the universe, the above gives the life time 𝑡 as

∼1017 sec, the age of the universe again.
Further, we have also seen the emergence of the quantum

of area [18] as it is evident from the𝑁 elementary Planck areas
𝑙

2

𝑃
for the black hole (cf. also [18]).
It has also been argued that not only does the universe

mimic a black hole but also the black hole is a two dimen-
sional object [16, 19]. Indeed, the interior of a black hole is in
any case inaccessible and the two dimensions follow from the
area of the black hole which plays a central role in black hole
thermodynamics. We have already seen that the area of the
black hole is given by

𝐴 = 𝑁𝑙

2

𝑝
. (19)

For these quantum gravity considerations, we have to deal
with the quantum of area [16, 18]. In other words, we have
to consider the black hole to be made up of𝑁 quanta of area.
It is remarkable that we can get an opportunity to test these
quantum gravity features in two-dimensional surfaces such
as graphene.

That is, we could model a black hole as a “graphene” ball.
Indeed, in the case of graphene as it is well known, and as

the author deduced in 1995 [20, 21], this behaviour in two
dimensions is given by

]
𝐹

→

𝜎 ⋅

→

∇ 𝜓 (𝑟) = 𝐸𝜓 (𝑟) ,
(20)

where ]
𝐹
∼ 10

6m/s is the Fermi velocity replacing 𝑐, the
velocity of light, and 𝜓(𝑟) is a two-component wave function,
→

𝜎 and 𝐸, denoting the Pauli matrices and energy.
Though this resembles the neutrino equation, ]

𝐹
is some

three hundred times less than the velocity of light. However
the author has argued that for a sufficiently large sheet of
graphene, this would approximate the neutrino equation
itself, that is, the usualMinkowski spacetime. From this point
of view, a black hole can be simulated by a “graphene ball.”

It may be mentioned that very recently Hawking has
proposed rather shockingly that black holes may not have
event horizons [22].
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We study the effect of ultrahigh energy collisions of two particles with different energies near the horizon of a 2 + 1 dimensional
BTZ black hole (BSW effect). We find that the particle with the critical angular momentum could exist inside the outer horizon of
the BTZ black hole regardless of the particle energy. Therefore, for the nonextremal BTZ black hole, the BSW process is possible
on the inner horizon with the fine tuning of parameters which are characterized by the motion of particle, while, for the extremal
BTZ black hole, the particle with the critical angular momentum could only exist on the degenerated horizon, and the BSWprocess
could also happen there.

1. Introduction

In the recent paper [1], Banãdos, Silk, and West proposed a
mechanism (BSW process) that two particles may collide on
the horizon of an extremal Kerr black hole with ultrahigh
center-of-mass (CM) energy, although it was pointed out
in [2, 3] that the collision in fact takes an infinite proper
time.Moreover, there are astrophysical limitations preventing
a Kerr black hole from being an extreme one, and the
gravitational radiation and backreaction effects should also
be included in this process. Due to the potential interest
in exploring ultrahigh energy physics, the BSW process has
been studied extensively in other kinds of black holes or
naked singularities [4–29]. To achieve ultrahigh CM energy
under the astrophysical limitation of maximal spin, the
multiple scatteringwas taken into account in the nonextremal
Kerr black hole [7, 15]. Another more direct application is to
consider different extreme rotating black holes, such as the
Kerr-Newman black holes and the Sen black hole [8, 11]. On
the other hand, a general explanation of this BSW process
was tried to give for a rotating black hole [19] and for other
black holes [20, 21]. Some efforts had also been made to draw
some implications concerning the effects of gravity generated
by colliding particles in [23].

However, all of the works mentioned above have been
focused on the black holes embedded in the asymptotically
flat space-time without cosmological constant. In our pre-
vious work [30], we had considered the BSW process in
the background of the Kerr- (anti-) de Sitter black hole
with nonzero cosmological constant and had found that the
cosmological constant has an important effect on the result.
For the case of the general Kerr-de Sitter black hole (with
positive cosmological constant), the collision of two particles
can take place on the outer horizon of the nonextremal
black hole and the CM energy of collision can blow up
arbitrarily if one of the colliding particles has the critical
angular momentum. In the present paper, we extend the
investigation of the BSW process to the background of a 2
+ 1 dimensional BTZ black hole [31], and our motivation is to
examine whether the BSW effect remains valid in the lower
dimensional case. Actually, in [5, 6], Lake had pointed out
the divergence of the CM energy of particle collision on the
inner horizon of the BTZ black hole, but the process was not
discussed in detail. In this paper, we study this process in the
BTZ black hole with circumstances.

This paper is organized as follows. In Section 2, we give a
brief review of the BTZ black hole. In Section 3, we study the
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CM energy of the particle collision on the horizon and derive
the critical angular momentum to blow up the CM energy.
In Section 4, we investigate the radial motion of colliding
particles with the critical angular momentum in detail. The
extremal and nonextremal cases are examined, respectively.
The conclusion is given in the last section.

2. The 2 + 1 Dimensional BTZ Black Hole

In this section we would like to study the horizon structure of
the 2 + 1 dimensional BTZ black hole. The metric of the BTZ
black hole is usually written as [31] (with units 𝑐 = 𝐺 = 1)

𝑑𝑠

2
= −𝑁

2

𝑟
𝑑𝑡

2
+ 𝑁

−2

𝑟
𝑑𝑟

2
+ 𝑟

2
(𝑁
𝜙
𝑑𝑡 + 𝑑𝜙)

2 (1)

with

𝑁

2

𝑟
(𝑟) = −𝑀 +

𝑟

2

𝑙

2
+

𝐽

2

4𝑟

2
,

𝑁
𝜙 (
𝑟) = −

𝐽

2𝑟

2
,

(2)

where 𝑀 and 𝐽 are the mass and spin angular momentum
of the black hole, respectively, and 𝑙

2 is related to the
cosmological constant Λ by 𝑙−2 = −Λ.

The horizons can be solved from𝑁
𝑟
|
𝑟=𝑟ℎ

= 0, and they are
given by

𝑟
±
=
√

𝑙

2

(𝑙𝑀 ±
√
𝑙

2
𝑀

2
− 𝐽

2
).

(3)

Here, 𝑟
+
is the outer horizon and 𝑟

−
is the inner horizon. The

existence of the horizon requires

|𝐽| ≤ 𝑀𝑙. (4)

The horizon of the extremal black hole (corresponding to
|𝐽| = 𝑀𝑙) is read as

𝑟
𝑒
=
√

𝑀

2

𝑙.
(5)

3. The Center-of-Mass Energy for
the On-Horizon Collision

To investigate the CM energy of the collision on the horizon
of the BTZ black hole, we have to derive the 2 + 1 dimensional
“4-velocity” component of the colliding particle in the back-
ground of the 2 + 1 dimensional BTZ black hole.

The generalized momentum 𝑃
𝜇
is

𝑃
𝜇
= 𝑔
𝜇] ̇𝑥

]
, (6)

where the dot denotes the derivative with respect to the affine
parameter 𝜆 and 𝜇, ] = 𝑡, 𝑟, 𝜙. Thus, the components 𝑃

𝑡
and

𝑃
𝜙
of the momentum are turned out to be

𝑃
𝑡
= 𝑔
𝑡𝑡
̇
𝑡+ 𝑔
𝑡𝜙

̇
𝜙,

𝑃
𝜙
= 𝑔
𝜙𝜙

̇
𝜙+ 𝑔
𝑡𝜙

̇
𝑡.

(7)

𝑃
𝑡
and 𝑃

𝜙
are constants of motion. In fact, they correspond

to the test particle’s energy per unit mass 𝐸 and the angular
momentum parallel to the symmetry axis per unit mass 𝐿,
respectively. And in the following discussion we will just
regard these two constants of motion as −𝐸 ≡ 𝑃

𝑡
and 𝐿 ≡ 𝑃

𝜙

[24].
The affine parameter 𝜆 can be related to the proper time

by 𝜏 = 𝜇𝜆, where 𝜏 is given by the normalization condition
−𝜇

2
= 𝑔
𝜇] ̇𝑥

𝜇
̇𝑥

] with 𝜇

2
= 1 for time-like geodesics and

𝜇

2
= 0 for null geodesics. For a time-like geodesic, the affine

parameter can be identified with the proper time, and thus,
from (7), we can solve the 2 + 1 dimensional “4-velocity”
components ̇

𝑡 and ̇
𝜙 (where the dot denotes a derivative with

respect to the proper time now) as

𝑑𝑡

𝑑𝜏

=

2𝐸 − (𝐽𝐿/𝑟

2
)

2𝑁

2

𝑟

,

𝑑𝜙

𝑑𝜏

=

𝐽 (−𝐽𝐿 + 2𝐸𝑟

2
) + 4𝐿𝑟

2
𝑁

2

𝑟

4𝑟

4
𝑁

2

𝑟

.

(8)

For the remaining component ̇𝑟 = 𝑑𝑟/𝑑𝜏 of the radialmotion,
we can obtain it from the Hamilton-Jacobi equation of the
time-like geodesic:

𝜕𝑆

𝜕𝜏

= −

1

2

𝑔

𝜇] 𝜕𝑆

𝜕𝑥

𝜇

𝜕𝑆

𝜕𝑥

]
(9)

with the ansatz

𝑆 =

1

2

𝜏 − 𝐸𝑡 + 𝐿𝜙 + 𝑆
𝑟 (
𝑟) , (10)

where 𝑆
𝑟
(𝑟) is a function of 𝑟. Inserting the ansatz into (9),

with the help of the metric (1), we get

(

𝑑𝑆
𝑟
(𝑟)

𝑑𝑟

)

2

=

𝐽

2
𝐿

2
− 4𝐸𝐽𝐿𝑟

2
− 4𝑟

2
[𝐿

2
𝑁

2

𝑟
+ (−𝐸

2
+ 𝑁

2

𝑟
) 𝑟

2
]

4𝑁

4

𝑟
𝑟

4
.

(11)

On the other hand, we have

𝑑𝑆
𝑟 (
𝑟)

𝑑𝑟

= 𝑃
𝑟
= 𝑔
𝑟𝑟

̇𝑟 =

̇𝑟

𝑁

2

𝑟

. (12)

Thus we get the square of the 4-velocity radial component:

(

𝑑𝑟

𝑑𝜏

)

2

=

𝐾

2
− 4𝑟

2
𝑁

2

𝑟
(𝐿

2
+ 𝑟

2
)

4𝑟

4
,

(13)

where

𝐾 = 𝐽𝐿 − 2𝐸𝑟

2
. (14)

Here we have obtained all nonzero 2 + 1 dimensional “4-
velocity” components for the geodesic equation. Next we
would like to study the CM energy of the two-particle
collision in the background of the BTZ black hole. Here
we consider a more general case that the two colliding
particles have different energies 𝐸

1
and 𝐸

2
and different



Advances in High Energy Physics 3

angularmomenta per unit mass 𝐿
1
and 𝐿

2
. For simplicity, the

particles under consideration have the same rest mass𝑚
0
.We

can compute theCMenergy𝐸CM of this two-particle collision
by using

𝐸CM =
√
2𝑚
0
√1 − 𝑔

𝜇]𝑢
𝜇

1
𝑢

]
2
, (15)

where 𝑢

𝜇

1
and 𝑢]
2
are the “4-velocity” vectors of the two

particles (𝑢 = (
̇
𝑡, ̇𝑟,

̇
𝜙)). With the help of (8) and (13), we

obtain the CM energy:

𝐸

2

CM
2𝑚

2

0

=

1

4𝑟

4
𝑁

2

𝑟

[(𝐽𝐿
1
− 2𝐸
1
𝑟

2
) (𝐽𝐿
2
− 2𝐸
2
𝑟

2
)

+ 4𝑟

2
𝑁

2

𝑟
(−𝐿
1
𝐿
2
+ 𝑟

2
) − 𝐻

1
𝐻
2
] ,

(16)

where

𝐻
𝑖
=
√
(𝐽𝐿
𝑖
− 2𝐸
𝑖
𝑟

2
)

2
− 4𝑟

2
𝑁

2

𝑟
(𝐿

2

𝑖
+ 𝑟

2
)

(𝑖 = 1, 2) .

(17)

For simplicity, we can rescale the CM energy as 𝐸

2

CM ≡

(1/2𝑚

2

0
)𝐸

2

CM. We would like to study 𝐸

2

CM for the case that
the particles collide on the black hole’s horizon, which means
𝑁
𝑟
= 0. The denominator of the expression on the right hand

of (16) is zero, and the numerator of it is

𝐾
1
𝐾
2
− √𝐾

2

1
√𝐾

2

2
,

𝐾
𝑖
= 𝐾|
𝐸=𝐸𝑖 ,𝐿=𝐿 𝑖

, 𝑖 = 1, 2.

(18)

When𝐾
1
𝐾
2
≥ 0, the numerator will be zero and the value of

𝐸

2

CM on the horizon will be undetermined, but when𝐾
1
𝐾
2
<

0, the numerator will be a negative finite value and𝐸2CM on the
horizon will be negative infinity. So it should have𝐾

1
𝐾
2
≥ 0,

and, for the CM energy on the horizon, we have to compute
the limiting value of (16) as 𝑟 → 𝑟

ℎ
, where 𝑟

ℎ
is the horizon

of the black hole.
After some calculations, we get the limiting value of (16):

𝐸

2

CM (𝑟 → 𝑟
ℎ
)

= 2 +

(𝐿
1
− 𝐿
2
)

2
− 𝑙

2
(𝐸
1
− 𝐸
2
)

2
− 2 (𝐿

1
− 𝐿
2
) (𝐿
𝐶1

− 𝐿
𝐶2
)

2 (𝐿
1
− 𝐿
𝐶1
) (𝐿
2
− 𝐿
𝐶2
)

+

𝑙 [(𝐸
2
𝐿
1
− 𝐸
1
𝐿
2
)

2
+𝑀𝑙

2
(𝐸
1
− 𝐸
2
)

2
] (𝑙𝑀 + √𝑙

2
𝑀

2
− 𝐽

2
)

𝐽

2
(𝐿
1
− 𝐿
𝐶1
) (𝐿
2
− 𝐿
𝐶2
)

,

(19)

which can also be rewritten as

𝐸

2

CM (𝑟 → 𝑟
ℎ
) = 2 +

𝐴

2𝐾
1
𝐾
2

, (20)

where

𝐴 = 𝐽

2
[(𝐿
1
− 𝐿
2
)

2
− (𝐸
1
− 𝐸
2
)

2
𝑙

2

− 2 (𝐿
1
− 𝐿
2
) (𝐿
𝐶1

− 𝐿
𝐶2
) ]

+ 2𝑙 [(𝐸
2
𝐿
1
− 𝐸
1
𝐿
2
)

2
+ (𝐸
1
− 𝐸
2
)

2
𝑙

2
𝑀]

× (𝑙𝑀 +
√
𝑙

2
𝑀

2
− 𝐽

2
) .

(21)

So it can be seen that when 𝐾
𝑖
= 0, the CM energy on the

horizon will blow up. Solving 𝐾
𝑖
= 0, we get the critical

angular momentum:

𝐿
𝐶𝑖

=

2𝑟

2

ℎ
𝐸
𝑖

𝐽

=

𝐸
𝑖
𝑙 (𝑙𝑀 + √𝑙

2
𝑀

2
− 𝐽

2
)

𝐽

, 𝑖 = 1, 2.

(22)

It is easy to prove that when 𝐾
1
= 0 and 𝐾

2
= 0, the CM

energy is finite. So in order to obtain an arbitrarily high CM
energy, one and only one of the colliding particles should have
the critical angular momentum. For the extremal BTZ black
hole 𝐽 = 𝑙𝑀, the 𝐸2CM on the extremal horizon is

𝐸

2

CM (𝑟 → 𝑟
𝑒
)

= 2 +

𝑀[(𝐿
1
− 𝐸
1
𝑙) − (𝐿

2
− 𝐸
2
𝑙)]

2
+ 2(𝐸

2
𝐿
1
− 𝐸
1
𝐿
2
)

2

2𝑀 (𝐿
1
− 𝐸
1
𝑙) (𝐿
2
− 𝐸
2
𝑙)

.

(23)

Obviously, when one particle has the critical angularmomen-
tum 𝐿C1 = 𝐸

1
𝑙 (or 𝐿C2 = 𝐸

2
𝑙) and the other does not, the CM

energy on the extremal horizon could be infinite.
From the above derivation, it seems that the CM energy

could blow up on the horizon. However, in order to get
arbitrarily high CM energy on the horizon of the BTZ
black hole, the colliding particle with the critical angular
momentum must be able to reach the horizon of the black
hole. We will investigate this part in the next section.

4. The Radial Motion of the
Particle with the Critical Angular
Momentum near the Horizon

In this section, we will study the radial motion of the particle
with the critical angular momentum and find the region
where it can exist. In order for a particle to reach the
horizon of the black hole, the square of the radial component
of the “4-velocity” (𝑑𝑟/𝑑𝜏)

2 in (13) has to be positive in
the neighborhood of the black hole’s horizon. Obviously,
𝑅(𝑟)|
𝐿=𝐿𝐶𝑖

= 0 on the horizon of the BTZ black hole. For a
particle with arbitrary energy 𝐸 and angular momentum 𝐿,
the explicit form of (𝑑𝑟/𝑑𝜏)2, which is denoted by 𝑅(𝑟), reads

𝑅 (𝑟) ≡ (

𝑑𝑟

𝑑𝜏

)

2

= 𝐸

2
−

𝐿

2

𝑙

2
+𝑀

+

1

𝑟

2
(𝐿

2
𝑀− 𝐸𝐽𝐿 −

𝐽

2

4

) −

𝑟

2

𝑙

2
.

(24)
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Figure 1: Behaviors of 𝑅(𝑟) for (a) 𝐿2𝑀− 𝐸𝐽𝐿 − (𝐽

2
/4) > 0 and (b) 𝐿2𝑀− 𝐸𝐽𝐿 − (𝐽

2
/4) < 0.

We draw 𝑅(𝑟) in Figure 1. It can be seen that, when 𝐿

2
𝑀 −

𝐸𝐽𝐿−𝐽

2
/4 > 0,𝑅(𝑟 → 0) → +∞ and𝑅(𝑟 → +∞) → −∞,

so there is only one positive root for 𝑅(𝑟) = 0 and the particle
can exist in the region inside of the root. When 𝐿

2
𝑀−𝐸𝐽𝐿 −

𝐽

2
/4 < 0, 𝑅(𝑟 → 0) → −∞ and 𝑅(𝑟 → +∞) → −∞, and

there are two positive roots and the particle can exist in the
region between the two roots. The bigger root of 𝑅(𝑟) = 0 is

𝑟
2
= (𝑙

2
(𝐸

2
+𝑀) − 𝐿

2

+√[𝑙

2
𝑀− 𝐽𝑙 + (𝐿 − 𝐸𝑙)

2
] [𝑙

2
𝑀+ 𝐽𝑙 + (𝐿 + 𝐸𝑙)

2
])

1/2

× (
√
2)

−1

.

(25)

We find that it increases with 𝐸 and 𝐿, which means that the
particle can move arbitrarily far from black hole’s horizon
with its energy and angular momentum’s increase.

Next, we will study the radial motion of the particle with
the critical angular momentum:

𝑅 (𝑟) |𝐿=𝐿c
=

𝑊

𝑟

2
−

𝑟

2

𝑙

2
+ 2𝐸

2
+𝑀

−

2𝐸

2
𝑙

2
𝑀

2
+ 2𝐸

2
𝑙𝑀√𝑙

2
𝑀

2
− 𝐽

2

𝐽

2
,

(26)

where

𝑊 =

𝐸

2
𝑙 [2𝑙𝑀 (𝑙

2
𝑀

2
− 𝐽

2
) + (2𝑙

2
𝑀

2
− 𝐽

2
)√𝑙

2
𝑀

2
− 𝐽

2
]

𝐽

2

−

𝐽

2

4

.

(27)

By solving𝑊 = 0 we get the critical energy 𝐸
0
:

𝐸
0
=

𝐽

2

2
√
2𝑙

2
𝑀(𝑙

2
𝑀

2
− 𝐽

2
) + (2𝑙

3
𝑀

2
− 𝐽

2
𝑙) √𝑙

2
𝑀

2
− 𝐽

2

.

(28)

When 𝐸 > 𝐸
0
, 𝑅(𝑟) = 0 has one root

𝑟
0
=

1

√
2𝐽

{𝑙

2
[𝐽

2
𝑀+ 2𝐸

2

× (𝐽

2
− 𝑙𝑀(𝑙𝑀 +

√
𝑙

2
𝑀

2
− 𝐽

2
))]

+ 𝑙 [ (𝑙

2
𝑀

2
− 𝐽

2
)

× [𝐽

4
+ 8𝐸

4
𝑙

3
𝑀(𝑙𝑀 +

√
𝑙

2
𝑀

2
− 𝐽

2
)

+ 4𝐸

2
𝐽

2
𝑙 (𝑙𝑀 − 𝐸

2
𝑙

+
√
𝑙

2
𝑀

2
− 𝐽

2
)]]

1/2

}

1/2

(29)

and the particle with the critical angularmomentum can exist
inside of it. When 𝐸 < 𝐸

0
, 𝑅(𝑟) = 0 has two roots

𝑟
0+

=

1

√2𝐽

{𝑙

2
[𝐽

2
𝑀+ 2𝐸

2

× (𝐽

2
− 𝑙𝑀(𝑙𝑀 +

√
+𝑙

2
𝑀

2
− 𝐽

2
))]

+ 𝑙 [ (𝑙

2
𝑀

2
− 𝐽

2
)

× (𝐽

4
+ 8𝐸

4
𝑙

3
𝑀(𝑙𝑀 +

√
𝑙

2
𝑀

2
− 𝐽

2
)

+ 4𝐸

2
𝐽

2
𝑙 (𝑙𝑀 − 𝐸

2
𝑙

+
√
𝑙

2
𝑀

2
− 𝐽

2
))]

1/2

}

1/2

,

(30)



Advances in High Energy Physics 5

2 4 6 8 10 12

0.5

1.0

1.5

2.0

−0.5
r

R
(
r
)

(a)

2 4 6 8 10 12

0.5

−0.5

−1.0

−1.5

r

R
(
r
)

(b)

Figure 2: The variation of 𝑅(𝑟) versus radius 𝑟 for the case of the nonextremal BTZ black hole (𝑙 = 10, 𝑀 = 1, and 𝐽 = 1), 𝐸 > 𝐸
0
((a)

𝐸 = 0.003) and 𝐸 < 𝐸
0
((b) 𝐸 = 0.002). The vertical lines denote the locations of the outer and inner horizons.
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√
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× (𝐽

4
+ 8𝐸

4
𝑙

3
𝑀(𝑙𝑀 +

√
𝑙
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𝑀
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− 𝐽
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)
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𝐽
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𝑙 (𝑙𝑀 − 𝐸

2
𝑙

+
√
𝑙

2
𝑀

2
− 𝐽

2
))]

1/2

}

1/2

,

(31)

and the particle with the critical angular momentum can
exist between them. The above discussion only concerns the
square of the ”4-velocity” radial component. To find whether
the particle with the critical angular momentum can reach
the horizon of the BTZ black hole, we should investigate
the roots of 𝑅(𝑟) = 0 and the horizons of the black hole.
The nonextremal and extremal cases will be considered in the
following.

4.1. Nonextremal BTZ Black Hole. For the nonextremal BTZ
black hole case, we can prove that the solution (for 𝐸 > 𝐸

0

case) or the bigger solution (for 𝐸 < 𝐸
0
case) of 𝑅(𝑟) = 0 is

just the outer horizon of black hole:

𝑟
0
= 𝑟
+
=
√

𝑙

2

(𝑙𝑀 +
√
𝑙

2
𝑀

2
− 𝐽

2
).

(32)

Thatmeans that the particle with the critical angularmomen-
tum can exist inside the outer horizon of the nonextremal
BTZ black hole.
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Figure 3: The variation of 𝑅(𝑟) versus radius 𝑟 for the case of the
extremal BTZ black hole (𝑙 = 1,𝑀 = 1, and 𝐽 = 1). The vertical line
denotes the locations of the degenerated horizon.

4.2. Extremal BTZ Black Hole. For the extremal BTZ black
hole case, 𝑅(𝑟) for particle with the critical angular momen-
tum becomes very simple:

𝑅 (𝑟) = 𝑀 −

𝑟

2

𝑙

2
−

𝐽

2

4𝑟

2
.

(33)

We solve 𝑅(𝑟) = 0 and get

𝑟
0
=
√

𝑀

2

𝑙.
(34)

It is just the degenerated horizon of the extremal black hole.
The behaviors of 𝑅(𝑟) for the particle with the critical

angular momentum are plotted in Figure 2 for the nonex-
tremal black hole and Figure 3 for the extremal black hole.
For the nonextremal black hole, we find that the particle with
the critical angular momentum can exist inside the outer
horizon. So particle collision on the inner horizon could
produce unlimited CM energy. For the extremal black hole,
the particle with the critical angular momentum could only
exist on the degenerated horizon, so if such particle exists,
then unlimited CM energy will be approached.
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5. Conclusion

In this work, we have analyzed the possibility that the 2 + 1
dimensional BTZ black holes can serve as particle acceler-
ator. We first calculate the CM energy for the two-particle
collision. In order to obtain unlimited CM energy, one of
the particles should have the critical angular momentum.
Next, we study the radial motion for the particle with the
critical angularmomentum. For the extremal BTZ black hole,
particles with critical angular momentum can only exist on
the outer horizon of the BTZ black hole. So if such particle
exists, then unlimited CM energy will be approached. For
the nonextremal BTZ black hole, particles can collide on the
inner horizon with arbitrarily high CM energy.
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[31] M. Bañados, C. Teitelboim, and J. Zanelli, “Black hole in three-
dimensional spacetime,” Physical Review Letters, vol. 69, no. 13,
pp. 1849–1851, 1992.



Research Article
Entropy Spectrum of a KS Black Hole in IR Modified
Holava-Lifshitz Gravity

Shiwei Zhou,1,2 Ge-Rui Chen,1 and Yong-Chang Huang1

1 Institute of Theoretical Physics, Beijing University of Technology, Beijing 100124, China
2Department of Foundation, Academy of Armored Forces Engineering, Beijing 100072, China

Correspondence should be addressed to Shiwei Zhou; zhousw783@163.com

Received 6 January 2014; Accepted 10 February 2014; Published 13 March 2014

Academic Editor: Xiaoxiong Zeng

Copyright © 2014 Shiwei Zhou et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The
publication of this article was funded by SCOAP3.

As a renormalizable theory of gravity, Hořava-Lifshitz gravity,might be an ultraviolet completion of general relativity and reduces to
Einstein gravitywith a nonvanishing cosmological constant in infrared. Kehagias and Sfetsos obtained a static spherically symmetric
black hole solution called KS black hole in the IR modified Hořava-Lifshitz theory. In this paper, the entropy spectrum and area
spectrum of a KS black hole are investigated based on the proposal of adiabatic invariant quantity. By calculating the action of
producing a pair of particles near the horizon, it is obtained that the action of the system is exactly equivalent to the change of black
hole entropy, which is an adiabatic invariant quantity. With the help of Bohr-Sommerfeld quantization rule, it is concluded that
the entropy spectrum is discrete and equidistant spaced and the area spectrum is not equidistant spaced, which depends on the
parameter of gravity theory. Some summary and discussion will be given in the last.

1. Introduction

In the 1970’s, with the discovery of Hawking radiation
and Bekenstein’s proposal of black hole entropy, black hole
thermodynamics has been built up successfully, which has
opened a new field to study quantum theory and gravity
theory [1–4]. Nowadays there has been some trouble on the
statistic origin and quantization of black hole entropy for
physicists on black hole thermodynamics. Since Bekenstein
proposed that the horizon area of a nonextremal black hole
is an adiabatic invariant classically and the horizon area
of black hole is quantized in units of 𝑙2

𝑝
[5–8], there has

been much attention paid to the quantization of black hole
entropy spectrum and area spectrum. Hod proposed that if
one employs Bohr’s corresponding principle, the real part of
the quasinormal mode frequency is responsible for the area
spectrum of black hole [9, 10]. Combining the proposal by
Bekenstein for the adiabaticity of black hole horizon area
andHod’s proposal, Kunstatter proved that entropy spectrum
of a 𝑑-dimensional black hole is quantized and the result is
in agreement with that of Hod and Bekenstein [11]. Later,

Maggiore gave a new interpretation of black hole quasinormal
modes in connection to the quantization of black hole
horizon area. An important statement in Maggiore’s work is
that the periodicity of a black hole in Euclidean time may
be the origin of area quantization [12]. It is well known that
for any background spacetime with a horizon in Kruskal
coordinates, the period with respect to Euclidean time takes
the form of 𝑇 = 2𝜋/𝜅, where 𝜅 is the surface gravity
of the horizon. Vagenas exclusively used the fact that the
black hole horizon area is an adiabatic invariant quantum
and derived an equally spaced entropy spectrum of a black
hole with its value to be equal to that of Bekenstein [13].
Zeng et al. considered that the action 𝐼, action variable 𝐼V,
and Hamiltonian𝐻 of any single periodic system satisfy the
relation 𝐼 = 𝐼V − ∫𝐻𝑑𝑡. They proposed that the action
variable can be quantized with the equally spaced form
𝐼V = 2𝜋𝑛ℎ. Once the action and Hamiltonian are given, the
quantization action variable can be obtained. With the help
of Bohr-Sommerfeld quantization rule, they proved that the
quantized action variable is nothing but the entropy of black
hole; thus the entropy and the horizon area of a black hole
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can be quantized. They emphasized that the action variable
should be adiabatic invariant [14–16]. Recently, Jiang andHan
argued that the adiabatic invariant quantity ∫𝑝

𝑖
𝑑𝑞
𝑖
is not

canonically invariant, and the adiabatic invariant quantum
should be of the covariance form ∮𝑝

𝑖
𝑑𝑞
𝑖
= 𝑛ℎ. They also

obtained the equally spaced entropy spectrum with the form
of Δ𝑆 = 2𝜋 [17]. Some more works on the quantization of
entropy spectrum of a black hole can be seen in the paper
[18–23].

Hořava gravity is a nonrelativistic renormalizable theory
of gravitation [24], which is inspired by the anisotropic
scaling between time and space in condensed matter systems
in particular in the theory of quantum critical phenomena,
where the degree of anisotropy between space and time
is characterized by the “dynamical critical exponent” 𝑧. It
is well known that relativistic systems automatically satisfy
𝑧 = 1 as a consequence of Lorentz invariance. In Hořava-
Lifshitz theory, systems’ scaling at a short distance exhibits a
strong anisotropy between space and time with 𝑧 > 1. This
will improve the short-distance behavior of the theory. The
anisotropy at short distance can be lost for long distancewhile
the Lorentz symmetry will appear as an emergent symmetry.
The black hole solution of original Hořava-Lifshitz gravity
does not recover the usual Schwarzschild-anti-de Sitter black
hole with the detailed-balance condition. A relevant operator
proportional to the 3𝐷 geometry Ricci scalar of the original
Hořava-Lifshitz theory action was introduced [25] and it
deviated from detailed balance. This does not modify the
ultraviolet properties of the theory. However, it modifies the
infrared Hořava-Lifshitz gravity theory. So a Schwarzschild-
anti-de Sitter solution can be realized in infrared modified
Hořava-Lifshitz gravity theory and the Minkowski vacuum
is also allowed. On the limit of vanishing Λ

𝜔
, a spherically

symmetric black hole solution has been obtained by Kehagias
and Sfetsos [25], which is the analogy of Schwarzschild black
hole in general relativity and is exactly asymptotically flat.
After Hořava-Lifshitz gravity was proposed, much attention
has been paid to it [26–31].

In this paper, based on Vagenas’ proposal of adiabatic
invariant quantity, we investigate entropy spectrum of a KS
black hole in IR modified Hořava-Lifshitz gravity. Vagenas
pointed that the general coordinates 𝑞

𝑖
contain 𝑞

0
= 𝜏 and

𝑞
1
= 𝑟, and the contribution of the two parts to the adiabatic

invariant quantity are equivalent with each other by defining
̇𝑟 = 𝑑𝑟/𝑑𝜏. Thus the integration result of adiabatic invariant
quantity was directly given by the 𝜏-integration, where the
period 𝑇 of gravity system satisfies 𝑇 = 2𝜋/𝜅. We find that
the periodicity of gravity system can conveniently be used to
calculate the entropy spectrum.However, the physical picture
of periodicity is not clear. We give our explanation about it by
considering a process that a pair of particles create outside the
horizon. One period of the system corresponds to the process
with the outgoing positive energy particle crossing outwards
the horizon while the negative energy particle tunnels into
the black hole. The movement of the two particles can be
described as a tunneling process proposed by Parikh and
Wilczek’s Hawking radiation [32]. After calculating, we find
that the action of the system is exactly the black hole entropy

which is the adiabatic invariant quantity. With the help of
Bohr-Sommerfeld quantization rule, we obtain the quantized
entropy and area spectrum. Some summary and discussion
will be given in the latter.

2. Review of a KS Black Hole in IR Modified
Holava-Lifshitz Gravity

Using the ADM decomposition of the metric

𝑑𝑠

2
= −𝑁

2
𝑑𝑡

2
+ 𝑔
𝑖𝑗
(𝑑𝑥

𝑖
+ 𝑁

𝑖
𝑑𝑡) (𝑑𝑥

𝑗
+ 𝑁

𝑗
𝑑𝑡) , (1)

where𝑁 and𝑁𝑖 are the “lapse” and “shift” variables, respec-
tively, and 𝑔

𝑖𝑗
is the spatial metric. On the limit of Λ

𝜔
→ 0,

the action of IR modified Hořava-Lifshitz gravity theory can
be given by

𝑆 = ∫𝑑𝑡𝑑

3
𝑥√𝑔𝑁

× [

2

𝜅

2
(𝐾
𝑖𝑗
𝐾

𝑖𝑗
− 𝜆𝐾

2
)

−

𝜅

2

2𝜔

4
𝐶
𝑖𝑗
𝐶

𝑖𝑗
+

𝜅

2
𝜇

2𝜔

2
𝜖

𝑖𝑗𝑘
𝑅

(3)

𝑖𝑙
∇
𝑗
𝑅

(3)𝑙

𝑘

−

𝜅

2
𝜇

2

8

𝑅

(3)

𝑖𝑗
𝑅

(3)𝑖𝑗

+

𝜅

2
𝜇

2

8 (1 − 3𝜆)

1 − 4𝜆

4

(𝑅

(3)
)

2

+ 𝜇

4
𝑅

(3)
] ,

(2)

which is obtained by introducing a term proportional to the
Ricci scalar of the three-geometry𝜇4𝑅(3) to the original action
of Hořava-Lifshitz gravity [26, 27]. Here 𝐾

𝑖𝑗
is the extrinsic

curvature, defined by

𝐾
𝑖𝑗
=

1

2𝑁

( ̇𝑔
𝑖𝑗
− ∇
𝑖
𝑁
𝑗
− ∇
𝑗
𝑁
𝑖
) , (3)

where the dot denotes a derivative with respect to 𝑡, 𝐶𝑖𝑗 is the
Cotton tensor defined by

𝐶

𝑖𝑗
= 𝜖

𝑖𝑘𝑙
∇
𝑘
(𝑅

(3)𝑗

𝑙
−

1

4

𝑅

(3)
𝛿

𝑗

𝑙
) , (4)

and 𝑅

(3) is the 3-dimensional curvature scalar for 𝑔
𝑖𝑗
;

𝜅, 𝜆, 𝜔, 𝜇 are all coupling constant parameters.
Comparing the action for the case of 𝜆 = 1 with the

standard Einstein-Hilbert action, we find that the Lagrangian
will become the usual Einstein-Hilbert Lagrangian when the
speed of light 𝑐, Newton’s constant 𝐺, and the cosmological
constant Λ are given by

𝑐

2
=

𝜅

2
𝜇

4

2

, 𝐺 =

𝜅

2

32𝜋𝑐

, Λ =

3

2

Λ
𝑊
.

(5)

The spherically symmetric asymptotically flat black hole
solution has been obtained by Cai et al. [27], which is the
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analogy of Schwarzschild black hole in general relativity. The
metric can be written as

𝑑𝑠

2
= −𝑓 (𝑟) 𝑑𝑡

2
+

1

𝑓 (𝑟)

𝑑𝑟

2
+ 𝑟

2
(𝑑𝜃

2
+ sin2𝜃𝑑𝜑2) , (6)

with

𝑓 (𝑟) = 1 + 𝜔𝑟

2
− √𝑟 (𝜔

2
𝑟

3
+ 4𝜔𝑀),

(7)

where𝑀 is an integration constant corresponding to themass
of black hole, and 𝜔 is a coupling constant parameter.

The condition 𝑓(𝑟
±
) = 0 gives the outer and inner

horizons at

𝑟
±
= 𝑀(1 ±

√
1 −

1

2𝜔𝑀

2
) . (8)

To avoid naked singularity, we should have𝜔𝑀2 ≥ 1/2. In
the regime of traditional general relativity, we have 𝜔𝑀2 ≫
1, so the outer horizon approaches the usual Schwarzschild
horizon 𝑟

+
≃ 2𝑀, whereas the inner one approaches the

singularity 𝑟
−
≃ 0.

3. Entropy Quantization via Adiabatic
Invariant Action

We consider a process that a pair of particles create near the
horizon.While the outgoing positive energy particle crossing
outwards the horizon, the negative energy particle ingoing
towards the black hole along the radial direction.We describe
the movement of the two particles as a tunneling process
proposed by Parikh and Wilczek’s proposal [32].

The action of the system is

𝐼 = ∫𝑝
𝑟
𝑑𝑟 = ∫

𝑟out

𝑟in

𝑝
𝑟
𝑑𝑟 + ∫

𝑟in

𝑟out

𝑝
𝑟
𝑑𝑟

= ∫

𝑟out

𝑟in

∫

𝑝𝑟

0
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𝑟
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𝑟in

𝑟out

∫

𝑝𝑟

0

𝑑𝑝



𝑟
𝑑𝑟.

(9)

The first term is corresponding to the particles with positive
energy, and the second term is the negative energy one.When
energy conservation is considered, the black hole mass will
decrease with the outgoing particle emitting. The Hamilton
𝐻, ADM energy 𝑀, and the particle’s energy 𝑚 satisfy the
relation 𝐻 = 𝑀 − 𝑚

; that is, 𝑑𝐻 = −𝑑𝑚

. Then by use
of Hamilton’s equation ̇𝑟 = 𝑑𝐻/𝑑𝑝

𝑟
, the first term of (9)

becomes

𝐼
1
≡ ∫

𝑟out

𝑟in

∫

𝑝𝑟

0

𝑑𝑝



𝑟
𝑑𝑟 = ∫

𝑟out

𝑟in

∫

𝑀−𝑚

𝑀

𝑑𝐻

̇𝑟

𝑑𝑟
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𝑚

0

∫

𝑟out

𝑟in

𝑑𝑟

̇𝑟

(−𝑑𝑚


) ,

(10)

where 𝑟in = 𝑟ℎ(𝑀) − 𝜖, 𝑟out = 𝑟


ℎ
(𝑀 − 𝑚) + 𝜖, for the reason

of that the black hole horizon will decrease with the particle
emitting out.

When considering ̇𝑟 = 𝑑𝑟/𝑑𝜏 = 𝑓(𝑟), we get

𝐼
1
= ∫

𝑚

0

∫

𝑟out

𝑟in

𝑑𝑟

1 + 𝜔𝑟

2
− 𝑟 [𝜔

2
𝑟

3
+ 4𝜔 (𝑀 − 𝑚


)]

𝑑𝑚


. (11)

It is easily found that there is a pole at 𝑟
ℎ
= (𝑀 − 𝑚


) +

√
(𝑀 − 𝑚


)

2
− 1/2𝜔. We do the integration as follows:

𝐼
1
= ∫

𝑚

0

∫

𝑟out

𝑟in
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×

[

[

[

2𝜔𝑟

−

2𝜔

2
𝑟

3
+ 2𝜔 (𝑀−𝑚
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]

]

]
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)

2
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)
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[

[

[

∫
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= 2𝜋[
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2
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] .

(12)

The second term of (9) corresponds to ingoing particles
with negative energy. After similar calculation as the first
term, we find that the contribution is equivalent to that of 𝐼

1
.

That is,

𝐼 = 2𝐼
1
. (13)

On the other hand, the Hawking temperature of the outer
event horizon has been obtained as [31]

𝑇
𝐻
=

2𝜔𝑟

2

+
− 1

8𝜋 (𝜔𝑟

3

+
+ 𝑟
+
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2𝜋 (2𝑀
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+ 2𝑀√𝑀

2
− 1/2𝜔 + 1/2𝜔)

,

(14)

which is proportional to the surface gravity 𝜅 =

(1/2)(𝜕𝑓(𝑟)/𝜕𝑟)|
𝑟=𝑟+

on the event horizon of black hole.
Considering the first law of thermodynamics and substituting
the expression of temperature of black hole, we can obtain
the entropy

𝑆BH =
𝐴

4

+

𝜋

𝜔

ln 𝐴
4

, (15)

where 𝐴 = 𝜋𝑟2
+
is the area of event horizon.

After calculation, we find that the change of black hole
entropy Δ𝑆, when a particle with energy of𝑚 emits out of the
black hole, is exactly equivalent to the action 𝐼; that is,

Δ𝑆 = 𝜋 [𝑟

2

+
(𝑀) − 𝑟

2

+
(𝑀 − 𝑚)] = 𝐼. (16)

Now, using the periodicity of the black hole, we calculate
the adiabatic invariant quantity. According to the dimen-
sional reduction technique, the two-dimensional spacetime
of a KS black hole can be given by

𝑑𝑠
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When defining the tortoise coordinate as
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surface gravity on the outer (inner) horizon. Using the null

coordinates 𝑢 = 𝑡 − 𝑟
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∗
, we can get the coordinates
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where 𝑇, 𝑅 are the Kruskal-like coordinates.
Different from (18), that is,

𝑑𝑟
∗
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−1
𝑑𝑟; (20)

the two-dimensional KS metric becomes
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Transforming the time coordinate as 𝑡 → −𝑖𝜏, we have
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It is easily found that both 𝑇, 𝑅 are periodic functions
with respect to the Euclidean time 𝜏 with the period of
2𝜋/𝜅
+
. Since we only consider the case of outer horizon, for

simplicity we write 𝜅
+
for 𝜅 from now on.

When utilizing Vagenas’s adiabatic invariant quantity
with the following form:

𝐼 = ∫𝑝
𝑖
𝑑𝑞
𝑖
= ∫∫

𝑝𝑖

0

𝑑𝑝



𝑖
𝑑𝑞
𝑖
= ∫∫

𝐻

0

𝑑𝐻



̇𝑞
𝑖

𝑑𝑞
𝑖

= ∫∫

𝐻

0

𝑑𝐻


𝑑𝜏 + ∫∫

𝐻

0

𝑑𝐻



̇𝑟

𝑑𝑟,

(23)

where 𝑝
𝑖
are the conjugate momentum of the general coor-

dinate 𝑞
𝑖
with 𝑖 = 0, 1 for 𝑞

0
= 𝜏 and 𝑞

1
= 𝑟. Considering

̇𝑟 = 𝑑𝑟/𝑑𝜏, we have

𝐼 = 2∫∫

𝐻

0

𝑑𝐻


𝑑𝜏. (24)

Because of the periodicity of 𝜏 with 𝑇 = 2𝜋/ℎ𝜅, the adiabatic
invariant quantity can be calculated as

𝐼 = 2𝜋∫

𝐻

0

𝑑𝐻



𝜅

= ℎ∫

𝐻

0

𝑑𝐻



𝑇BH
= ℎ𝑆BH. (25)
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Implementing the Bohr-Sommerfeld quantization condi-
tion

∮𝑝𝑑𝑞 = 2𝜋𝑛ℎ, (26)

the black hole entropy spectrum can be given as

𝑆BH = 2𝜋𝑛, 𝑛 = 1, 2, 3, . . . , (27)

and the entropy spectrum is discrete and equidistant spaced
with

Δ𝑆BH = 2𝜋. (28)

To get the area spectrum, differentiate (15),

Δ𝑆BH =
1

4

Δ𝐴 +

𝜋

𝜔

4

𝐴

Δ𝐴, (29)

we have

Δ𝐴 =

Δ𝑆BH
1/4 + 4𝜋/𝐴𝜔

≃ 8𝜋(1 −

4

𝜔𝑟

2

+

) . (30)

We find that area spectrum is not equidistant spaced.

4. Summary and Conclusion

In this paper, based on the idea of adiabatic invariant
quantity, we have investigated entropy spectrum of a KS
black hole in IR modified Hořava-Lifshitz gravity. As a
modified gravity theory, the entropy of a KS black hole
does not satisfy Bekenstein’s entropy-area relation. It consists
of two terms: one is the Bekenstein-Hawking entropy, the
other is a logarithmic term. The discrepancy between the
entropy and the Bekenstein-Hawking entropy is the reflection
of differences between this modified gravity theory and
general relativity. After calculating, we find that the black
hole entropy is an adiabatic invariant quantity. With the
help of Bohr-Sommerfeld quantization rule, we obtain the
quantized entropy and area spectrum. It is concluded that
the entropy spectrum can be given as 𝑆BH = 2𝜋𝑛 with
𝑛 = 1, 2, 3, . . ., which is discrete and equidistant spaced
with Δ𝑆BH = 2𝜋; and the area spectrum is not equidistant
spaced, which depends on the parameter of gravity theory.
In addition, by calculating the action of a production of a
pair of particles near the horizon, we find that the action
of the system is exactly equivalent to the change to black
hole entropy, which is an adiabatic invariant quantity. The
procession of the particle producing, with positive energy
outgoing towards the horizon while the one with negative
energy is ingoing the horizon, can give a clear explanation to
the periodicity of gravity system.
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It is wellknown that there are two horizons for the Reissner-Nordstrom-de Sitter spacetime, namely, the black hole horizon and the
cosmological one. Both horizons can usually seem to be two independent thermodynamic systems; however, the thermodynamic
quantities on both horizons satisfy the laws of black hole thermodynamics and are not independent. In this paper by considering
the relations between the two horizons we give the effective thermodynamic quantities in Reissner-Nordstrom-de Sitter spacetime.
The thermodynamic properties of these effective quantities are analyzed; moreover, the critical temperature, critical pressure, and
critical volume are obtained. We also discussed the thermodynamic stability of Reissner-Nordstrom-de Sitter spacetime.

1. Introduction

Black hole physics, especially the black hole thermodynamics,
refer directly to the theories of gravity, statistical physics,
particle physics, field theory, and so forth. This makes the
field concerned by many physicists [1–6]. Although the com-
plete statistical description of black hole thermodynamics
is still unclear, the research on the properties of black hole
thermodynamics is prevalent, such as Hawking-Page phase
transition [7], and critical phenomena.More interestingly, the
research on the charged and nonrotating RN-AdS black hole
shows that there exists a similar phase transition to the van
der Waals-Maxwell vapor-liquid phase transition [8, 9].

Motivated by the AdS/CFT correspondence [10], where
the transitions have been related with the holographic super-
conductivity [11, 12], the subject of the phase transitions of
black holes in asymptotically anti-de Sitter (AdS) spacetime
has received considerable attention [13–17]. The underlying
microscopic statistical interaction of the black holes is also
expected to be understood via the study of the gauge theory
living on the boundary in the gauge/gravity duality.

Recently, by considering the cosmological constant corre-
spond to pressure in general thermodynamic system, namely,

𝑃 = −

1

8𝜋

Λ =

3

8𝜋

1

𝑙

2
, (1)

the thermodynamic volumes in AdS and dS spacetime are
obtained [18–24]. The studies on phase transition of black
holes have aroused great interest [25–31]. Connecting the
thermodynamic quantities of AdS black holes to (𝑃 ∼ 𝑉) in
the ordinary thermodynamic system, the critical behaviors of
black holes can be analyzed and the phase diagram like van
der Waals vapor-liquid system can be obtained. This helps
to further understand the black hole entropy, temperature,
heat capacities, and so forth. It also has a very important
significance in completing the geometric theory of black hole
thermodynamics.

As is well known, there are black hole horizon and cosmo-
logical horizon in the appropriate range of parameters for de
Sitter spacetime. Both horizons have thermal radiation, but
with different temperatures. The thermodynamic quantities
on both horizons satisfy the first law of thermodynamics,
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and the corresponding entropy fulfills the area formula [23,
32, 33]. In recent years, the research on the thermodynamic
properties of de Sitter spacetime has drawn a lot of attention
[23, 32–36]. In the inflation epoch of early universe, the
universe is a quasi-de Sitter spacetime. The cosmological
constant introduced in de Sitter space may come from
the vacuum energy, which is also a kind of energy. If the
cosmological constant is the dark energy, the universe will
evolve to a new de Sitter phase. To depict the whole history of
evolution of the universe, we should have some knowledge
on the classical and quantum properties of de Sitter space
[23, 33, 37, 38].

Firstly, we expect the thermodynamic entropy to satisfy
the Nernst theorem [34, 35, 39]. At present a satisfactory
explanation to the problem in which the thermodynamic
entropy of the horizon of the extreme de Sitter spacetime does
not fulfill the Nernst theorem is still lacking. Secondly, when
considering the correlation between the black hole horizon
and the cosmological horizon whether the thermodynamic
quantities in de Sitter spacetime still have the phase transition
and critical behavior like in AdS black holes. Thus it is
worthy of our deep investigation and reflection to establish
a consistent thermodynamics in de Sitter spacetime.

Because the thermodynamic quantities on the black hole
horizon and the cosmological one in de Sitter spacetime are
the functions of mass𝑀, electric charge𝑄, and cosmological
constant Λ. The quantities are not independent of each
other. Considering the relation between the thermodynamic
quantities on the two horizons is very important for studying
the thermodynamic properties of de Sitter spacetime. Based
on the relation we give the effective temperature and pressure
of Reissner-Nordstrom-de Sitter(R-NdS) spacetime and ana-
lyze the critical behavior of the equivalent thermodynamic
quantities. It is shown that when considering the relation
between the two horizons in RN-dS spacetime there is the
similar phase transition like the ones in van derWaals liquid-
gas system and charged AdS black holes.

The paper is arranged as follows. In Section 2 we intro-
duce the Reissner-Nordstrom-de Sitter(R-NdS) spacetime
and give the two horizons and corresponding thermody-
namic quantities. In Section 3 by considering the relations
between the two horizons we obtain the effective temperature
and the equivalent pressure. In Section 4 the critical phe-
nomena of effective thermodynamic quantities are discussed.
Finally we discuss and summarize our results in Section 5 (we
use the units 𝐺

𝑛+1
= ℎ = 𝑘

𝐵
= 𝑐 = 1).

2. RN-dS Spacetime

The line element of the R-N SdS black holes is given by [32]

𝑑𝑠

2
= −𝑓 (𝑟) 𝑑𝑡

2
+ 𝑓

−1
𝑑𝑟

2
+ 𝑟

2
𝑑Ω

2
, (2)

where

𝑓 (𝑟) = 1 −

2𝑀

𝑟

+

𝑄

2

𝑟

2
−

Λ

3

𝑟

2
.

(3)

The above geometry possesses three horizons: the black hole
Cauchy horizon located at 𝑟 = 𝑟

−
, the black hole event

horizon (BEH) located at 𝑟 = 𝑟
+
, and the cosmological event

horizon (CEH) located at 𝑟 = 𝑟
𝑐
, where 𝑟

𝑐
> 𝑟
+
> 𝑟
−
, the only

real, positive zeroes of 𝑓(𝑟) = 0.
The equations 𝑓(𝑟

+
) = 0 and 𝑓(𝑟

𝑐
) = 0 are rearranged to

𝑄

2
= 𝑟
+
𝑟
𝑐
(1 −

𝑟

2

𝑐
+ 𝑟
𝑐
𝑟
+
+ 𝑟

2

+

3

Λ) ,

2𝑀 = (𝑟
𝑐
+ 𝑟
+
) (1 −

𝑟

2

𝑐
+ 𝑟

2

+

3

Λ) .

(4)

The surface gravity on the black hole horizon and the
cosmological horizon is, respectively,

𝜅
+
=

1

2

𝑑𝑓 (𝑟)

𝑑𝑟








𝑟=𝑟+

=

𝑟

2

+
− 𝑄

2
− 𝑟

4

+
Λ

2𝑟

3

+

=

(𝑟
+
− 𝑟
𝑐
)

2𝑟

2

+

(1 −

(𝑟

2

𝑐
+ 2𝑟
+
𝑟
𝑐
+ 3𝑟

2

+
) (𝑟
𝑐
𝑟
+
− 𝑄

2
)

𝑟
𝑐
𝑟
+
(𝑟

2

𝑐
+ 𝑟
+
𝑟
𝑐
+ 𝑟

2

+
)

) ,

𝜅
𝑐
=

1

2

𝑑𝑓 (𝑟)

𝑑𝑟








𝑟=𝑟𝑐

=

𝑟

2

𝑐
− 𝑄

2
− 𝑟

4

𝑐
Λ

2𝑟

3

𝑐

=

(𝑟
𝑐
− 𝑟
+
)

2𝑟

2

𝑐

(1 −

(𝑟

2

+
+ 2𝑟
+
𝑟
𝑐
+ 3𝑟

2

𝑐
) (𝑟
𝑐
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+
− 𝑄

2
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𝑟
𝑐
𝑟
+
(𝑟

2

𝑐
+ 𝑟
+
𝑟
𝑐
+ 𝑟

2

+
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) .

(5)

The thermodynamic quantities on the two horizons satisfy
the first law of thermodynamics [23, 33, 40, 41]:

𝛿𝑀 =

𝜅
+

2𝜋

𝛿𝑆
+
+ Φ
+
𝛿𝑄 + 𝑉

+
𝛿𝑃,

𝛿𝑀 =

𝜅
𝑐

2𝜋

𝛿𝑆
𝑐
+ Φ
𝑐
𝛿𝑄 + 𝑉

𝑐
𝛿𝑃,

(6)

where 𝑆
+
= 𝜋𝑟

2

+
, 𝑆
𝑐
= 𝜋𝑟

2

𝑐
, Φ
+
= 𝑄/𝑟

+
, Φ
𝑐
= −(𝑄/𝑟

𝑐
), 𝑉
+
=

(4𝜋/3)𝑟

3

+
, 𝑉
𝑐
= (4𝜋/3)𝑟

3

𝑐
, 𝑃 = −(Λ/8𝜋).

3. Thermodynamic Quantity of
RN-dS Spacetime

In Section 2, we have obtained thermodynamic quantities
without considering the relationship between the black
hole horizon and the cosmological horizon. Because there
are three variables 𝑀, 𝑄, and Λ in the spacetime, the
thermodynamic quantities corresponding to the black hole
horizon and the cosmological horizon are functional with
respect to 𝑀, 𝑄, and Λ. The thermodynamic quantities
corresponding to the black hole horizon are related to the
ones corresponding to the cosmological horizon. When the
thermodynamic property of charged de Sitter spacetime is
studied, we must consider the relationship with the two
horizons. Recently, by studyingHawking radiation of de Sitter
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spacetime, [42, 43] obtained that the outgoing rate of the
charged de Sitter spacetime which radiates particles with
energy 𝜔 is

Γ = 𝑒

Δ𝑆++Δ𝑆𝑐
, (7)

where Δ𝑆
+
and Δ𝑆

𝑐
are Bekenstein-Hawking entropy dif-

ference corresponding to the black hole horizon and the
cosmological horizon after the charged de Sitter spacetime
radiates particles with energy 𝜔. Therefore, the thermody-
namic entropy of the charged de Sitter spacetime is the sumof
the black hole horizon entropy and the cosmological horizon
entropy:

𝑆 = 𝑆
+
+ 𝑆
𝑐
. (8)

Substituting (6) into (8), one can obtain

𝑑𝑆 = 2𝜋(

1

𝜅
+

+

1

𝜅
𝑐

)𝑑𝑀

− 2𝜋(

𝜑
+

𝜅
+

+

𝜑
𝑐

𝜅
𝑐

)𝑑𝑄 +

𝜋

3

(

𝑟

3

+

𝜅
+

+

𝑟

3

𝑐

𝜅
𝑐

)𝑑Λ.

(9)

For simplicity, we consider the case with constant. In this case
the equation above turns into

𝑑𝑆 = 2𝜋(

1

𝜅
+

+

1

𝜅
𝑐

)𝑑𝑀 +

𝜋

3

(

𝑟

3

+

𝜅
+

+

𝑟

3

𝑐

𝜅
𝑐

)𝑑Λ. (10)

From (4) and (5), we derive

𝑑𝑟
𝑐
=

𝑑𝑀

𝑟
𝑐
𝜅
𝑐

+

(𝑟

3

𝑐
/3)

2𝑟
𝑐
𝜅
𝑐

𝑑Λ, 𝑑𝑟
+
=

𝑑𝑀

𝑟
+
𝜅
+

+

(𝑟

3

+
/3)

2𝑟
+
𝜅
+

𝑑Λ.

(11)

Recently, the thermodynamic volume of RN-dS spacetime
[23, 34] is given as

𝑉 =

4𝜋

3

(𝑟

3

𝑐
− 𝑟

3

+
) . (12)

Substituting (11) into (12), one gets

𝑑𝑉 = 4𝜋(

𝑟
𝑐

𝜅
𝑐

−

𝑟
+

𝜅
+

)𝑑𝑀 +

2𝜋

3

(

𝑟

4

𝑐

𝜅
𝑐

−

𝑟

4

+

𝜅
+

)𝑑Λ. (13)

Substituting (13) into (10), one can derive the thermodynamic
equation of thermodynamic quantities in de Sitter spacetime
[34]:

𝑑𝑀 = 𝑇eff𝑑𝑆 − 𝑃eff𝑑𝑉, (14)

where the effective temperature is

𝑇eff =
(𝑥

4
+ 𝑥

3
− 2𝑥

2
+ 𝑥 + 1)

4𝜋𝑟
𝑐
𝑥 (𝑥 + 1) (𝑥

2
+ 𝑥 + 1)

−

𝑄

2
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3

𝑐
𝑥

3
(𝑥 + 1) (𝑥

2
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× (1 + 𝑥 + 𝑥

2
− 2𝑥

3
+ 𝑥

4
+ 𝑥

5
+ 𝑥

6
) .

(15)

The effective pressure is

𝑃eff =
(1 − 𝑥) (1 + 3𝑥 + 3𝑥

2
+ 3𝑥

3
+ 𝑥

4
)

8𝜋𝑟

2

𝑐
𝑥 (1 + 𝑥) (1 + 𝑥 + 𝑥

2
)

2

−

𝑄

2
(1 − 𝑥) (1 + 2𝑥 + 3𝑥

2
− 3𝑥

5
− 2𝑥

6
− 𝑥

7
)

8𝜋𝑟

4

𝑐
𝑥

3
(1 + 𝑥) (1 − 𝑥

3
) (1 + 𝑥 + 𝑥

2
)

,

(16)

where 𝑥 := 𝑟
+
/𝑟
𝑐
and 0 < 𝑥 < 1.

From (15) and (16), when𝑄 = 0, the effective temperature
and pressure are both greater than zero.This fulfills the stable
condition of thermodynamic equilibrium. If considering the
black hole horizon and the cosmological one as independent
of each other, because of the different radiant temperatures
on the two horizons, the spacetime is instable.

Another problem of considering the black hole horizon
and the cosmological one as independent of each other is that
when the two horizons coincide, namely,

𝑟

2

+/𝑐
=

1 ± √1 − 4𝑄

2
Λ

2Λ

= 𝑟

2

0
,

(17)

from (4), the surface gravity 𝜅
+/𝑐
= 0; thus the temperature

on the black hole horizon and the temperature on the
cosmological horizon are both zero. However, both horizons
have nonzero area, which means that the entropy for the two
horizons should not be zero. This conclusion is inconsistent
with Nernst theorem. In the extreme case 𝑟2

+/𝑐
= 𝑟

2

0
, the

effective temperature from (15) is

𝑇eff =
1

12𝜋𝑟
0

(1 −

5𝑄

2

2𝑟

2

0

) . (18)

The effective pressure is

𝑃eff = 0. (19)

In this case the volume-thermodynamic system becomes
area-thermodynamic one. According to (19) the pressure of
thermodynamic membrane is zero. However from (18), the
temperature of thermodynamic membrane is nonzero. This
can partly solve the problem that extreme de Sitter black holes
do not satisfy the Nernst theorem, when 𝑄 = 0, (15) and (16)
return to the known result [34].

4. Critical Behaviour

To compare with the van der Waals equation, we set 𝑃eff →
𝑃, V → V and discuss the phase transition and the critical
phenomena when 𝑟

𝑐
is invariant.The van derWaals equation

is

(𝑃 +

𝑎

V2
) (V − ̃𝑏) = 𝑘𝑇. (20)

Here, V = 𝑉/𝑁 is the specific volume of the fluid, 𝑃 is
its pressure, 𝑇 is its temperature, and 𝑘 is the Boltzmann
constant.

Substituting (15) into (16), we obtain

𝑃eff = 𝑇eff
𝐵
4

2𝑟
𝑐
𝐵
2

+

𝐵
2
𝐵
3
− 𝐵
1
𝐵
4

8𝜋𝑟

2

𝑐
𝑥 (1 + 𝑥) 𝐵2

, (21)
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where

𝐵
1
=

1 + 𝑥 − 2𝑥

2
+ 𝑥

3
+ 𝑥

4

1 + 𝑥 + 𝑥

2
,

𝐵
2
=

1 + 𝑥 + 𝑥

2
− 2𝑥

3
+ 𝑥

4
+ 𝑥

5
+ 𝑥

6

1 + 𝑥 + 𝑥

2
,

𝐵
3
=

1 + 2𝑥 − 2𝑥

4
− 𝑥

5

(1 + 𝑥 + 𝑥

2
)

2
,

𝐵
4
=

1 + 2𝑥 + 3𝑥

2
− 3𝑥

5
− 2𝑥

6
− 𝑥

7

(1 + 𝑥 + 𝑥

2
)

2
.

(22)

According to (21), combing dimensional analysis [22]
with (12), we conclude that we should identify the specific
volume V with

V = 𝑟
𝑐 (
1 − 𝑥) . (23)

From the two equations

𝜕𝑃eff
𝜕V

= 0,

𝜕

2
𝑃eff
𝜕V2

= 0,
(24)

we first calculate the position of critical points.Then, one can
derive

(

𝜕𝑃eff
𝜕V
)

𝑇eff

= −1 × (8𝜋𝑟𝑐

5
(1 + 𝑥) (1 + 𝑥 + 𝑥

2
)

3

× (1 + 𝑥 + 𝑥

2
− 2𝑥

3
+ 𝑥

4
+ 𝑥

5
+ 𝑥

6
) )

−1

× [𝑟𝑐

2
𝑥

2
(−6 − 21𝑥 − 38𝑥

2
− 45𝑥

3
− 30𝑥

4
− 10𝑥

5

+ 6𝑥

6
+ 7𝑥

7
+ 4𝑥

8
+ 𝑥

9
)

× 𝑄

2
𝑥 (15 + 54𝑥 + 98𝑥

2
+ 104𝑥

3
+ 59𝑥

4
+ 18𝑥

5

− 9𝑥

6
− 12𝑥

7
− 10𝑥

8
− 4𝑥

9
− 𝑥

10
)] = 0

(

𝜕

2
𝑃eff
𝜕V2

)

𝑇eff

= 1 × (4𝜋𝑟𝑐

6
(1 + 𝑥) (1 + 𝑥 + 𝑥

2
)

4

× (1 + 𝑥 + 𝑥

2
− 2𝑥

3
+ 𝑥

4
+ 𝑥

5
+ 𝑥

6
)

2

)

−1

× [−𝑟𝑐

2
𝑥 (6 + 36𝑥 + 115𝑥

2
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3
+ 486𝑥

4
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5
+ 203𝑥

6
− 357𝑥

7
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8

− 854𝑥

9
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10
− 375𝑥

11
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+3𝑥
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+ 32𝑥
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+ 18𝑥
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+ 6𝑥

16
+ 𝑥
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)

+ 𝑄

2
(30 + 165𝑥 + 456𝑥

2
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3
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4
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5
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6
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7
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8

− 2113𝑥

9
− 1743𝑥
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11
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12
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13
+ 63𝑥

14
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+ 6𝑥

17

+ 𝑥
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)] = 0.

(25)

When 𝑟
𝑐
= 1, from (15), (16), and (25) one can obtain the

position of critical point

𝑥

𝑐
= 0.871992. (26)

The critical electric charge, specific volume, temperature, and
the critical pressure are, respectively,

𝑄

𝑐
= 0.60395, V𝑐 = 0.128008,

𝑇

𝑐
= 0.00436559, 𝑝

𝑐
= 0.0000145468.

(27)

In Figure 1 we give the figure of 𝑃eff with the change of V
at the constant effective temperature near the critical point.

To reflect the influence of 𝑟
𝑐
on the spacetime, we set 𝑟

𝑐
=

5, from which we derived the position of the critical point

𝑥

𝑐
= 0.871992. (28)

The critical electric charge, specific volume, temperature, and
the critical pressure are, respectively,

𝑄

𝑐
= 3.01975, V𝑐 = 0.640038,

𝑇

𝑐
= 0.000873119, 𝑝

𝑐
= 5.8187 × 10

−7
.

(29)

The diagram of the effective 𝑃eff with the change of V is
depicted in Figure 2.

For the van der Waals fluid and the RN-AdS black hole,
the relation 𝑃

𝑐
V
𝑐
/𝑇
𝑐
is a universal number and is independent

of the charge 𝑄. For the RN-dS black hole, according to the
effective thermodynamic quantities, numerical calculation
shows that 𝑃

𝑐
V
𝑐
/𝑇
𝑐
still has a 𝑄-independent universal value.

Certainly, the universal value is no more than 3/8, but
∼0.0004265.

5. Discussion and Conclusions

From above we can find out that the value of 𝑟
𝑐
does

not influence the critical point 𝑥; namely, for the RN-dS
spacetime, the position of critical point is irrelevant to the
value of the cosmological horizon. This indicates that 𝑥 =

𝑟
𝑐
/𝑟
+
is fixed; however the critical effective temperature,

critical volume, and critical pressure are dependent on the
value of 𝑟

𝑐
. The critical effective temperature and pressure for

the RN-dS system will decrease as the values of 𝑟
𝑐
increase,

while the critical electric charge and the critical volume will
increase as the values of 𝑟

𝑐
increase.

By Figures 1 and 2, the 𝑃eff − V curve at constant
temperature of RN-dS spacetime is different from the ones
of van der Waals equation and charged AdS black holes.
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Figure 1: 𝑃eff − V diagram of RN-dS black holes. The temperature
of isotherms decreases from top to bottom and corresponds to 𝑇𝑐 +
0.004, 𝑇𝑐 + 0.002, 𝑇𝑐, 𝑇𝑐 − 0.002.
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Figure 2: 𝑃eff − V diagram of RN-dS black holes. The temperature
of isotherms decreases from top to bottom and corresponds to 𝑇𝑐 +
0.00004, 𝑇𝑐 + 0.00002, 𝑇𝑐, 𝑇𝑐 − 0.00002.

(1) The first difference lies at the critical pressure 𝑃eff
of RN-dS spacetime which increases as the volume
increases at the constant temperature when 𝑇eff > 𝑇

𝑐,
and themaximal value turns up at 𝑥 → 0, namely, de
Sitter spacetime.

(2) The first difference is that the critical pressure 𝑃eff
of RN-dS spacetime may be negative at the constant
temperature when 𝑇eff < 𝑇

𝑐, which means the system
is not stable. From (15) and (16) we can obtain the
parameters𝑥 and𝑄when the system is in the unstable
state.

(3) On the 𝑃eff − V curves with 𝑇eff > 𝑇
𝑐 the system lies

in a phase; on the 𝑃eff − V curves with 𝑇eff < 𝑇
𝑐 the

same pressure will correspond to two different values
of 𝑥, namely, two-phase coexistence region. Using the
equal area criterion we can find out the proportion of
the two phases for the RN-dS system.

From the above discussion, in RN-dS spacetime when
considering the relation between the two horizons there is
the similar phase transition like the one in van der Waals
equation and charged AdS black holes. The reason is still
unclear. This deserves further study. If the cosmological
constant is just the dark energy, the universe will evolve into
a new de Sitter phase. According to Figures 1 and 2 the RN-
dS system can evolve into de Sitter phase along isothermal
curve. However, along the different isothermal curves, which
processes will be the evolution of the universe to a new de
Sitter phase needs further consideration according to the
observations.
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It has been proposed that Hawking radiation from a Schwarzschild or a de Sitter spacetime can be understood as the manifestation
of thermalization phenomena in the framework of an open quantum system. Through examining the time evolution of a detector
interacting with vacuummassless scalar fields, it is found that the detector would spontaneously excite with a probability the same
as the thermal radiation at Hawking temperature. Following the proposals, the Hawking effect in a Kerr space time is investigated
in the framework of an open quantum systems. It is shown that Hawking effect of the Kerr space time can also be understood as the
the manifestation of thermalization phenomena via open quantum system approach. Furthermore, it is found that near horizon
local conformal symmetry plays the key role in the quantum effect of the Kerr space time.

1. Introduction

Hawking radiation arising from the quantization of matter
field in a curved background space-time with the event
horizon is a prominent quantum effect. The research to
understand Hawking radiation, which is related to gen-
eral relativity, quantum theory, and thermodynamics, has
attractedwidespread interest in the physics community. Since
Hawking’s original derivation of black hole thermal radiation
[1–3], several alternative methods have been proposed, such
as Damour-Ruffini method [4, 5], the tunneling method [6–
11], and gravitational anomaly method [12, 13].

However, from a physical viewpoint, the black hole
thermodynamics system should be more like a nonequilib-
rium system rather than an equilibrium system. Hawking
effect should be investigated in the frame of nonequilibrium
statistics physics. In quantummechanics and nonequilibrium
statistics physics, the open quantum theory system has gotten
a lot of successful development [14]. The quantum dynamics
of an open quantum system characterized by the effects of
decoherence and dissipation cannot be represented in terms
of a unitary time evolution. It has been applied to quantum

information science, modern quantum optics, atomic and
many-body systems, soft condensed matter physics, and
biophysics. Recently, in the paradigm of open quantum
system, based on [15], Yu and Zhang proposed a new insight
to understand Hawking radiation in a Schwarzschild space
time [16].Through examining the time evolution of a detector
interacting with vacuum massless scalar field, they got a
conclusion that the detector in both Unruh and Hartle-
Hawking vacua would spontaneously excite with a nonva-
nishing probability the same as Hawking thermal radiation
from the black hole. This new approach has been extended
to understand the Gibbons-Hawking effect of de Sitter space-
time [17]. However, there remain some challenges to study
Hawking radiation from a generic Kerr space time under
the manifestation of thermalization phenomena in an open
quantum system.

Ourmotivation comes from the fact that the near-horizon
geometry plays the key role to the character of a black hole
space time [18–29]. In 1998, Strominger [18] discussed the
near-horizon asymptotic symmetry in a Kerr black hole and
found that there was a holographic duality between extremal
and near-extremal Kerr black hole and a 2-dimensional
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conformal field theory. In [23, 24], it was shown that around
the horizon of a Kerr space time, the scalar field theory can
be reduced to a 2-dimensional effective field theory. Now, the
thermal radiation of scalar particles from a Kerr black hole
can be derived on the basis of a conformal symmetry arising
from the near-horizon geometry [29].

Using the near-horizon geometry and open quantum
system approach, Hawking effect in a Kerr space time will
be investigated. We will examine the time evolution of a
static detector (modeled by a two-level atom) outside a Kerr
space time immersed in a vacuum massless scalar field.
The dynamics of the detector can be obtained from the
complete time evolution describing the total system (detector
plus external field) by integrating over the field degrees of
freedom. Our results show that the detector would sponta-
neously excite in the Unruh vacuum state with a probability
the same as the thermal radiation at Hawking temperature,
indicating that Hawking radiation from a Kerr space time
can be understood as the manifestation of thermalization
phenomena in the framework of open quantum systems.The
conformal invariance of thewave equation near the horizon is
at the key point of Hawking quantum effect in the Kerr space
time.

The organization of our paper is as follows. In Section 2,
we will review the basic formulae, including the master equa-
tion describing the system of the detector plus external vac-
uum scalar field in the weak-coupling limit and the reduced
dynamical equation for the finite time evolution of the
detector. In Section 3, the dimensional reduction technique
is used to investigate the massless scalar field in a Kerr space
time, and the Wightman function is obtained. In Section 4,
applying the method and results of the preceding sections to
calculate the probability of a spontaneous transition of the
detector from the ground state to the excited state outside a
Kerr space time. Finally, some discussions and conclusions
will be given in Section 5.

2. Review of the Open Quantum
System Approach

In this section, we will review the open quantum system
approach to get themaster equation describing the combined
system 𝐵 + 𝑆, where a static detector (two-level atom) as an
open system 𝑆 which is coupled to another quantum system
𝐵 of a vacuum massless scalar field in a Kerr space time. Our
derivation mostly follows the works in [15–17]. Here, we will
consider the evolution of the static detector in the proper
time and assume the combined system (𝐵 + 𝑆) to be initially
prepared in a factorized state, with the detector keeping static
in the exterior region of the Kerr black hole and the field
keeping in vacuum state. The static detector is a two-level
simplest quantum system whose Hilbert space is spanned
over just two states, an excited state |+⟩, and a ground state
|−⟩. The Hilbert space of such a system is equivalent to that
of a spin-(1/2) system. So the states of the detector can be
represented by a 2 × 2 density matrix, which is Hermitian
𝜌

†
= 𝜌, and normalized Tr(𝜌) = 1 with det(𝜌) ⩾ 0. For

simplicity, the Hamiltonian of the detector 𝐻
𝑆
may be taken

as

𝐻
𝑆
=

𝜔
0

2

𝜎
3
, (1)

where𝜎
3
is the Paulimatrix and𝜔

0
is the energy level spacing.

The standard Hamiltonian of massless, free scalar field in a
Kerr space time can be denoted as𝐻

𝐵
, whichwill be discussed

in detail in Section 3. The interaction Hamiltonian of the
detector with the scalar field can be denoted as

𝐻



𝐼
= 𝜎

3
𝜙 (𝑥) . (2)

Therefore, the Hilbert space of the total system 𝑆 + 𝐵 is given
by the tensor product space H = H

𝑆
⊗ H

𝐵
. The total

Hamiltonian 𝐻(𝑡) can be taken as

𝐻 = 𝐻
𝑆
⊗ 𝐼

𝐵
+ 𝐼

𝑆
⊗ 𝐻

𝐵
+ 𝜆𝐻



𝐼
, (3)

where 𝜆 is the coupling constant and, 𝐼
𝑆
and 𝐼

𝐵
denote the

identity operators inH
𝑆
andH

𝐵
, respectively.

Now in order to get the reduced dynamics of the subsys-
tem 𝑆, we assume that the interaction between the detector
and the scalar field is weak as 𝜆 is small and the finite time
evolution describing the dynamics of the detector takes the
form of a one-parameter semigroup of completely positive
map.

Initially, the complete system is described by the total
density matrix 𝜌tot = 𝜌(0) ⊗ |0⟩⟨0|, where 𝜌(0) is the initial
reduced density matrix of the detector and |0⟩ is the Kerr
space-time vacuum state of field 𝜙(𝑥). In the frame of the
atom, the evolution in the proper time 𝜏 of the total density
𝜌tot of the complete system satisfies

𝜕𝜌tot (𝜏)

𝜕𝜏

= −𝑖𝐿
𝐻

[𝜌tot (𝜏)] , (4)

which is often referred to the von Neumann or Liouville-
von Neumann equation, where 𝐿

𝐻
represents the Liouville

operator associated with 𝐻 as follows:

𝐿
𝐻 [𝑆] ≡ [𝐻, 𝑆] . (5)

The dynamics of the detector can be obtained by summing
over the degrees of freedom of the field 𝜙; that is, by applying
to 𝜌tot(𝜏) with the trace projection operator 𝑃 as follows:

𝜌 (𝜏) = 𝑃 [𝜌tot (𝜏)] ≡ Tr
𝜙
[𝜌tot (𝜏)] . (6)

In the limit of weak coupling, we can find that the reduced
density obeys an equation in the Kossakowski-Lindblad form
[30–32] as follows:

𝜕𝜌 (𝜏)

𝜕𝜏

= −𝑖 [𝐻eff, 𝜌 (𝜏)] + L [𝜌 (𝜏)] , (7)

where

L [𝜌] =

1

2

3

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
[2𝜎

𝑗
𝜌𝜎

𝑖
− 𝜎

𝑖
𝜎
𝑗
𝜌 − 𝜌𝜎

𝑖
𝜎
𝑗
] . (8)
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The matrix 𝑎
𝑖𝑗
and the effective Hamiltonian 𝐻eff are deter-

mined by the Fourier transform G(𝜆) and Hilbert transform
K(𝜆) of the vacuum field correlation function (the Wight-
man function) as follows:

𝐺

+
(𝑥 − 𝑦) = ⟨0 | 𝜙 (𝑥) 𝜙 (𝑦) |0⟩ , (9)

and they are defined as

G (𝜆) = ∫𝑑𝜏 𝑒

𝑖𝜆𝜏
𝐺

+
(𝑥 (𝜏)) ,

K (𝜆) =

𝑃

𝜋𝑖

∫ 𝑑𝜔

G (𝜔)

𝜔 − 𝜆

.

(10)

The coefficients of the Kossakowski matrix 𝑎
𝑖𝑗
can be written

as

𝑎
𝑖𝑗

= 𝐴𝛿
𝑖𝑗
− 𝑖𝐵𝜖

𝑖𝑗𝑘
𝛿
𝑘3

+ 𝐶𝛿
𝑖3
𝛿
𝑗3
, (11)

with

𝐴 =

1

2

[G (𝜔
0
) + G (−𝜔

0
)] ,

𝐵 =

1

2

[G (𝜔
0
) − G (−𝜔

0
)] ,

𝐶 = G (0) − 𝐴.

(12)

The effective Hamiltonian 𝐻eff contains a correction term,
the so-called Lamb shift, and one can find that it can be
obtained by replacing 𝜔

0
in 𝐻

𝑠
with a renormalized energy

level spacing Ω as follows:

𝐻eff =

Ω

2

𝜎
3
= 𝜔

0
+ 𝑖 [K (−𝜔

0
) − K (𝜔

0
)] 𝜎

3
, (13)

where a suitable subtraction is assumed in the definition of
K(−𝜔

0
)−K(𝜔

0
) to remove the logarithmic divergencewhich

would otherwise be presented.
To facilitate the discussion of the properties of solutions

for (7) and (8), let us express the density matrix in terms of
the Pauli matrices as follows:

𝜌 (𝜏) =

1

2

(1 +

3

∑

𝑖=1

𝜌
𝑖 (
𝜏) 𝜎𝑖

) . (14)

Substituting (14) into (8), the Bloch vector |𝜌(𝜏)⟩ of compo-
nents 𝜌

1
(𝜏), 𝜌

2
(𝜏), 𝜌

3
(𝜏) satisfies

𝜕

𝜕𝜏






𝜌 (𝜏)⟩ = −2H





𝜌 (𝜏)⟩ +






𝜂⟩ , (15)

where |𝜂⟩ denotes a constant vector {0, 0, −4𝐵}. The exact
form of the matrixH reads

H = (

2𝐴 + 𝐶

Ω

2

0

−

2

Ω

2𝐴 + 𝐶 0

0 0 𝐴

). (16)

Equation (15) can be solved exactly and its solution is





𝜌 (𝜏)⟩ = 𝑒

−2H𝜏 




𝜌 (0)⟩ + (1 − 𝑒

−2H𝜏
)






𝜌
∞

⟩ , (17)

where






𝜌
∞

⟩ =

1

2

H
−1 





𝜂⟩ = −

𝐵

𝐴

(

0

0

1

) , (18)

thematrix 𝑒

−2H𝜏 is defined by series expansion as usual.How-
ever, H obeys a cubic eigenvalue equation, so powers of H
higher than 2 can always be written in terms of combinations
of H2, H, and 𝐼. Actually, three eigenvalues of H are 𝜆

1
=

2𝐴, 𝜆
±
= (2𝐴 + 𝐶) ± 𝑖Ω/2. We can write

𝑒

−2H𝜏
=

4

Ω

2
+ 4𝐶

2
{𝑒

−2𝐴𝜏
Λ
1
+ 2𝑒

−2(2𝐴+𝐶)𝜏

× [Λ
2
cos (Ω𝜏) + Λ

3

sin (Ω𝜏)

Ω

]} ,

(19)

where

Λ
1
= [(2𝐴 + 𝐶)

2
+

(Ω)

2

4

] 𝐼 − 2 (2𝐴 + 𝐶)H + H
2
,

Λ
2
= −2𝐴 (𝐴 + 𝐶) 𝐼 + (2𝐴 + 𝐶)H −

1

2

H
2
,

Λ
3
= 2𝐴[

Ω

2

4

− 𝐶 (2𝐴 + 𝐶)] 𝐼

+ [𝐶 (4𝐴 + 𝐶) −

Ω

2

4

]H − 𝐶H
2
.

(20)

Equation (19) reveals that a freely falling atom in a Kerr space
time is subjected to the effects of decoherence and dissipation
by the exponentially decaying factors including the real parts
of the eigenvalues ofH and oscillating terms associated with
the imaginary part. These nonunitary effects can be analyzed
by examining the evolution behavior in time of suitable atom
observable. For any observable of the atom represented by
a Hermitian operator O, the behavior of its mean value is
determined by

⟨O⟩ = Tr [O𝜌 (𝜏)] . (21)

Let the observable O be an admissible atom state 𝜌
𝑓
, the

probabilityP
𝑖→𝑓

, that the atom evolves to the expected state
represented by density matrix 𝜌

𝑓
(𝜏) from an initial one 𝜌

𝑖
≡

𝜌(0), should be

P
𝑖→𝑓 (𝜏) = Tr [𝜌

𝑓
𝜌 (𝜏)] . (22)

If initially the atom is in the ground state, its Bloch vector
|𝜌(0)⟩ is {0, 0, −1}, and the final state 𝜌

𝑓
is the excited state

given by the Bloch vector |𝜌
𝑓
⟩ = {0, 0, 1}, according to (17)–

(22), we have

P
𝑖→𝑓

=

1

2

(1 − 𝑒

−4𝐴𝜏
) (1 −

𝐵

𝐴

) . (23)
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The probability per unit time of the transition from the
ground state to the excited state, in the limit of infinitely slow
switching on and off the atom-field interaction, that is, the
spontaneous excitation rate, can be calculated by taking the
time derivative ofP

𝑖→𝑓
(𝜏) at 𝜏 = 0 as

Γ
𝑖→𝑓

=

𝜕

𝜕𝜏

P
𝑖→𝑓 (𝜏)








𝜏=0

= 2𝐴 − 2𝐵 = 2G (−𝜔
0
) . (24)

3. Scalar Wave Equation Near the Event
Horizon in a Kerr Space-Time

3.1. Dimensional ReductionNear theHorizon. In order to find
out how the reduced density evolves with proper time from
(7), we will investigate the scalar wave equation of the Kerr
space time. In Boyer-Lindquist coordinates, the stationary
Kerr space time can be written as

𝑑𝑠

2
= −

Δ

𝜌

2
(𝑑𝑡 − 𝑎 sin2 𝜃 𝑑𝜑)

2

+

sin2 𝜃
𝜌

2
[(𝑟

2
+ 𝑎

2
) 𝑑𝜑 − 𝑎 𝑑𝑡]

2

+

𝜌

2

Δ

𝑑𝑟

2
+ 𝜌

2
𝑑𝜃

2
,

(25)

where Δ = (𝑟 − 𝑟
+
)(𝑟 − 𝑟

−
), 𝜌2 = 𝑟

2
+ 𝑎

2 cos2 𝜃 and 𝑟
±

=

𝑀 ± (𝑀

2
− 𝑎

2
)

1/2. The parameters 𝑀 and 𝑎 represent the
mass and the angular momentum per unit mass of the black
hole, respectively. The event horizon of the Kerr black hole is
located at 𝑟 = 𝑟

+
. The line element in (25) is stationary and

axisymmetric, with 𝜕

𝜇

𝑡
and 𝜕

𝜇

𝜑
as the corresponding Killing

vector fields.
And then, we will show that the scalar field theory in

the background (25) can be reduced to a 2-dimensional
field theory in the near-horizon region with the dimen-
sional reduction technique. This technique firstly has been
employed for the Kerr black hole by Murata and Soda [24]
anddevelopedwith amore general technique by Iso et al. [23].

The action for the scalar field in a Kerr space time is

𝑆 =

1

2

∫𝑑𝑥

4
√−𝑔𝑔

𝜇]
𝜕
𝜇
𝜙𝜕]𝜙 + 𝑆int, (26)

where the first term is the kinetic term and the second term
𝑆int represents the mass, potential, and interaction terms.

By substituting (25) into (26), we obtain

𝑆 = −

1

2

∫𝑑𝑟 𝑑𝑡 𝑑𝜃 𝑑𝜑 sin 𝜃𝜙
[

[

−(

(𝑟

2
+ 𝑎

2
)

2

Δ

− 𝑎

2sin2 𝜃)𝜕

2

𝑡

−

2𝑎 (𝑟

2
+ 𝑎

2
− Δ)

Δ

𝜕
𝑡
𝜕
𝜑

+ (

1

sin2 𝜃
−

𝑎

2

Δ

)𝜕

2

𝜑
+ 𝜕

𝑟
Δ𝜕

𝑟

+

1

sin 𝜃

𝜕
𝜃
sin 𝜃 𝜕

𝜃
]

]

𝜙 + 𝑆int.

(27)

Now, we transform the radial coordinate 𝑟 into the tortoise
coordinate 𝑟

∗
defined by

𝑑𝑟
∗

𝑑𝑟

=

1

𝐹 (𝑟)

≡

𝑟

2
+ 𝑎

2

Δ

. (28)

After the transformation, the action (27) can be written as

𝑆 = −

1

2

∫𝑑𝑟
∗
𝑑𝑡 𝑑𝜃 𝑑𝜑 sin 𝜃𝜙

× [ − ((𝑟

2
+ 𝑎

2
) − 𝐹 (𝑟) 𝑎

2sin2 𝜃) 𝜕

2

𝑡

− 2𝑎 (1 − 𝐹 (𝑟)) 𝜕𝑡
𝜕
𝜑
+ (

𝐹 (𝑟)

sin2 𝜃
−

𝑎

2

𝑟

2
+ 𝑎

2
)𝜕

2

𝜑

+ 𝜕
𝑟∗

(𝑟

2
+ 𝑎

2
) 𝜕

𝑟∗
+

𝐹 (𝑟)

sin 𝜃

𝜕
𝜃
sin 𝜃 𝜕

𝜃
]𝜙 + 𝑆int.

(29)

Now we consider this action in the region near the horizon.
Since 𝐹(𝑟

+
) = 0 at 𝑟 → 𝑟

+
, we only retain dominant terms in

(29). We have

𝑆 = −

1

2

∫𝑑𝑟
∗
𝑑𝑡 𝑑𝜃 𝑑𝜑 sin 𝜃𝜙

× [ − (𝑟

2
+ 𝑎

2
) 𝜕

2

𝑡
− 2𝑎𝜕

𝑡
𝜕
𝜑

−

𝑎

2

𝑟

2
+ 𝑎

2
𝜕

2

𝜑
+ 𝜕

𝑟∗
(𝑟

2
+ 𝑎

2
) 𝜕

𝑟∗
]𝜙,

(30)

where we have ignored 𝑆int by using 𝐹(𝑟
+
) = 0 at 𝑟 →

𝑟
+
. Because the theory becomes high-energy case near the

horizon and the kinetic term dominates, we can ignore all the
terms in 𝑆int. After this analysis, we return to the expression
written in terms of 𝑟. So, we have

𝑆 = −

1

2

∫𝑑𝑡 𝑑𝑟 𝑑𝜃 𝑑𝜑 sin 𝜃 (𝑟

2
+ 𝑎

2
) 𝜙

× [−

1

𝐹 (𝑟)

𝜕

2

𝑡
−

2𝑎

Δ

𝜕
𝑡
𝜕
𝜑

−

𝑎

2

Δ (𝑟

2
+ 𝑎

2
)

𝜕

2

𝜑

+ 𝜕
𝑟
𝐹 (𝑟) 𝜕𝑟

] 𝜙.

(31)

Following Murata and Soda’s method [24], we transform
the coordinates to the corotating coordinate system. They
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employed a locally corotating coordinate system, and we will
use a globally corotating coordinate system as

𝜓 = 𝜑 −

𝑎

𝑟

2
+ 𝑎

2
𝑡,

𝜉 = 𝑡.

(32)

Under these new coordinates, we can rewrite the action (31)
as

𝑆 [𝜙] = −

1

2

∫𝑑𝜉 𝑑𝑟 𝑑𝜓𝑑𝜃 (𝑟

2
+ 𝑎

2
)

× sin 𝜃 𝜙(−

1

𝐹 (𝑟)

𝜕

2

𝜉
+ 𝜕

𝑟
𝐹 (𝑟) 𝜕𝑟

)𝜙,

(33)

so the angular terms disappear completely. Using the spher-
ical harmonics expansion 𝜙 = Σ

𝑙,𝑚
𝜙
𝑙𝑚

(𝜉, 𝑟)𝑌
𝑙𝑚

(𝜃, 𝜓), we
obtain the effective 2-dimensional action

𝑆 [𝜙] = ∑

𝑙,𝑚

1

2

∫ (𝑟

2
+ 𝑎

2
) 𝑑𝜉 𝑑𝑟𝜙

𝑙𝑚

× (−

1

𝐹 (𝑟)

𝜕

2

𝜉
+ 𝜕

𝑟
𝐹 (𝑟) 𝜕𝑟

)𝜙
𝑙𝑚

,

(34)

where we have used the orthonormal condition for the
spherical harmonics as follows:

∫𝑑𝜓𝑑𝜃 sin 𝜃𝑌

∗

𝑙

𝑚
𝑌𝑙𝑚

= 𝛿
𝑙

,𝑙
𝛿
𝑚

,𝑚

. (35)

From the action (34), it is obvious to find that 𝜙 can be
considered as a (1 + 1)-dimensional massless scalar field in
the backgrounds of the dilatonΦ.The effective 2-dimensional
metric and the dilaton Φ can be written as

𝑑𝑠

2
= −𝐹 (𝑟) 𝑑𝜉

2
+

1

𝐹 (𝑟)

𝑑𝑟

2
, (36)

Φ = 𝑟

2
+ 𝑎

2
. (37)

So far, we have reduced the 4-dimensional field theory
to a 2-dimensional case. This is consistent with [23]. This
2-dimensional metric tells us that, near the horizon, the
geometry of a Kerr space time can be regarded as a Rindler
space time when 𝑟

+
> 𝑟

−
. In the extremal case 𝑟

+
= 𝑟

−
, the

near horizon geometry reduces to 𝐴𝑑𝑆
2
which is consistent

with [19, 23]. The same as the Schwarzschild space time [33],
we will define two vacuum states by using the two natural
notions of time translation of this effective 2-dimensional
metric, namely, the Killing time and the proper time as
measured by a congruence of freely falling observers.

3.2. The Boulware Vacuum. Using the tortoise coordinate in
(28), the effective 2-dimensional metric (36) can be changed
into

𝑑𝑠

2

𝐼
= −𝐹 (𝑟) (𝑑𝜉

2
+ 𝑑𝑟

2

∗
) . (38)

We can see that the (𝜉, 𝑟
∗
) part of the metric has the form

of Minkowski metric. Now in this 2-dimensional space time,
the wave equation of 𝜙(𝜉, 𝑟

∗
) can be written as

[𝜕

2

𝜉
− 𝜕

2

𝑟∗
] 𝜙 (𝜉, 𝑟

∗
) ≡ 𝜕

𝑢
𝜕V𝜙 (𝑢, V) = 0. (39)

Its standard ingoing and outgoing orthonormal mode
solutions are

𝜙 (𝜉, 𝑟
∗
) ∼ (𝑒

−𝑖𝜎(𝜉+𝑟∗)
, 𝑒

−𝑖𝜎(𝜉−𝑟∗)
) ∼ (𝑒

−𝑖𝜎V
, 𝑒

−𝑖𝜎𝑢
) , (40)

where V = 𝜉+𝑟
∗
, 𝑢 = 𝜉−𝑟

∗
are null coordinates.These modes

are positive frequencymodeswith respect to the killing vector
field 𝜕/𝜕𝜉 for 𝜎 > 0, and they satisfy

𝐿
𝜕/𝜕𝜉

𝜙 = −𝑖𝜎𝜙. (41)

It is obvious that the wave equation (39) is manifestly
invariant under the infinite-dimensional group of conformal
transformation in two dimensions 𝑢 → 𝑢


(𝑢), V → V(V).

In the following, we will show how this conformal symmetry
does play the key role in the quantum effect of a Kerr space
time.

Near the event horizon, we only consider the outgoing
modes

𝜙

out
(𝜉, 𝑟

∗
) =

1

√4𝜋𝜔

𝑒

−𝑖𝜎(𝜉−𝑟∗)
=

1

√4𝜋𝜔

𝑒

−𝑖𝜎𝑢
, (42)

along the rays 𝑢 = constant. Quantizing the field 𝜙

out in the
exterior of the black hole, we can expand it as follows

̂
𝜙

𝐼
= ∑

𝜎

[𝑎

𝐼

𝜎
𝜙

out
𝜎

(𝜉, 𝑟
∗
) + 𝑎

𝐼†

𝜎
𝜙

out†
𝜎

(𝜉, 𝑟
∗
)] , (43)

where 𝑎

𝐼

𝜎
and 𝑎

𝐼†

𝜎
are the annihilation and creation operators

acting on the 𝐼 vacuum state, which corresponds to the
Boulware vacuum. The Fock vacuum state can be defined as
𝑎

𝐼

𝜎
|0⟩ = 0. So, with the proper 𝑖𝜖 prescription, the Wightman

function of 𝐼 state can be written as

𝐺

𝐼+

Kerr (𝑥, 𝑥

) = −

1

4𝜋

2

1

(𝑥

0
− 𝑖𝜖)

2
− (𝑥

1
)

2
= −

1

4𝜋

2

1

(Δ𝜉 − 𝑖𝜖)

2
,

(44)

where 𝑥

0
= 𝜉, 𝑥1 = 𝑟

∗
.

3.3. The Unruh Vacuum. In order to define the Unruh
vacuum state, one can write the Kerr line element in the near-
horizon region in terms of Kruskal-like coordinates defined
as

𝑈 = 𝑇 − 𝑅 = −𝜅

−1
𝑒

−𝜅𝑢
,

𝑉 = 𝑇 + 𝑅 = 𝜅

−1
𝑒

𝜅V
,

(45)

where 𝑇 = 𝜅

−1
𝑒

𝜅𝑟∗ sinh 𝜅𝜉, 𝑅 = 𝜅

−1
𝑒

𝜅𝑟∗ cosh 𝜅𝜉 and 𝜅 = (𝑟
+
−

𝑟
−
)/2(𝑟

2

+
+ 𝑎

2
) is the surface gravity of the event horizon. The

effective 2-dimensional space time (36) becomes

𝑑𝑠

2

𝐼𝐼
= 𝐶 (𝑟) [−𝑑𝑇

2
+ 𝑑𝑅

2
] , (46)

where 𝐶(𝑟) = 𝑒

−2𝜅𝑟∗
𝐹(𝑟), which is a finite constant near the

event horizon 𝑟 = 𝑟
+
. The (𝑇, 𝑅) part of the metric also has

the form of Minkowski metric. The interval of time Δ𝑇 then
corresponds to the interval of proper time of a radial freely
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falling observer crossing the horizon. The 2-dimensional
space time in the (𝑇, 𝑅) coordinates is well-behaved near the
event horizon. One can obtain the wave equation of 𝜙(𝑇, 𝑅)

as

[𝜕

2

𝑇
− 𝜕

2

𝑅
] 𝜙 (𝑇, 𝑅) ≡ 𝜕

𝑈
𝜕
𝑉
𝜙 (𝑈,𝑉) = 0. (47)

Similar to previous proceeding, we can obtain the out-
going wave solution as 𝜙

out
(𝑇, 𝑅) ∼ 𝑒

−𝑖𝜔(𝑇−𝑅)
= 𝑒

−𝑖𝜔𝑈. These
modes are positive frequencymodes with respect to the freely
falling observer for 𝜔 > 0, satisfying

𝐿
𝜕/𝜕𝑇

𝜙 = −𝑖𝜔𝜙. (48)

As pointed in previous subsection, there are conformal
transformations from 𝜙(𝑈,𝑉) to 𝜙(𝑢, V), as (45).

Subsequently, quantizing the field 𝜙

out
(𝑇, 𝑅) in the exte-

rior of the black hole, we can expand it as follows:

̂
𝜙

𝐼𝐼
= ∑

𝜔

[𝑎

𝐼𝐼

𝜔
𝜙

out
𝜔

(𝑇, 𝑅) + 𝑎

𝐼𝐼†

𝜔
𝜙

out†
𝜔

(𝑇, 𝑅)] , (49)

where 𝑎𝐼𝐼
𝜔
and 𝑎

𝐼𝐼†

𝜔
are the annihilation and creation operators

acting on the 𝐼𝐼 vacuum state, which can be defined as
𝑎

𝐼𝐼

𝜔
|0⟩ = 0. This vacuum state is just the so-called Unruh

vacuum defined in the maximally extended geometry. So,
with the proper 𝑖𝜖 prescription, theWightman function of the
𝐼𝐼 state can be written as

𝐺

𝐼𝐼+

Kerr (𝑥, 𝑥

) = −

1

4𝜋

2

1

(𝑥

0
− 𝑖𝜖)

2
− (𝑥

1
)

2

= −

1

16𝜋

2
𝜅

−2sinh2 [(𝜉 − 𝜉


) 𝜅/2 − 𝑖𝜖]

,

(50)

where 𝑥

0
= 𝑇, 𝑥1 = 𝑅.

4. Probability of Spontaneous Transition of
the Detector in a Kerr Space-Time

In what follows, we will calculate the spontaneous excitation
rate in the two vacuum states with the open quantum system
approach.

4.1. The 𝐼 State-Boulware Vacuum. Firstly, let us turn to
the 𝐼 state-Boulware vacuum case. Thinking of the relation
between the proper time and the coordinate time,

𝑑𝜏 = √𝐹 (𝑟)𝑑𝜉, (51)

the Fourier transform of the Wightman function (44) with
respect to the proper time can be expressed as

GKerr (𝜆) = ∫

+∞

−∞

𝑑𝜏 𝑒

𝑖𝜆𝜏
𝐺

𝐼+

Kerr (𝑥, 𝑥

)

= −∫

+∞

−∞

𝑑𝜉√𝐹 (𝑟)𝑒

𝑖𝜆√𝐹(𝑟)𝜉
[

1

4𝜋

2

1

(Δ𝜉 − 𝑖𝜖)

2
] = 0.

(52)

According to (12), we have

𝐴 = 𝐵 = 0. (53)

So the spontaneous excitation rate can be obtained as

Γ
𝑖→𝑓

= 2 (𝐴 − 𝐵) = 0. (54)

Therefore, no spontaneous excitation would ever occur in
the 𝐼 state-Boulware vacuum. In fact, the Boulware vacuum
corresponds to our familiar notion of a vacuum state. This
result is consistent with the conclusion in [16].

4.2. The 𝐼𝐼 State-Unruh Vacuum. Using the Wightman func-
tion (50) and the relation between the proper time and
coordinate time (51), the Fourier transform can be given as

GKerr (𝜆) = ∫

+∞

−∞

𝑑 𝜏𝑒

𝑖𝜆𝜏
𝐺

𝐼𝐼+

Kerr (𝑥, 𝑥

) =

𝜆

2𝜋

𝑒

2𝜋𝜅
−1

𝑟
𝜆

𝑒

2𝜋𝜅
−1

𝑟
𝜆
− 1

,

(55)

where 𝜅
𝑟
= 𝜅/√𝐹(𝑟) = 𝜅√(𝑟

2
+ 𝑎

2
)/Δ.

According to (12), we have

𝐴 =

1

2

[GKerr (𝜔0) + GKerr (−𝜔
0
)] =

𝜔
0
coth (𝜋𝜔

0
/𝜅
𝑟
)

4𝜋

,

𝐵 =

1

2

[GKerr (𝜔0) − GKerr (−𝜔
0
)] =

𝜔
0

4𝜋

,

𝐶 = GKerr (0) −
𝜔
0
coth (𝜋𝜔

0
/𝜅
𝑟
)

4𝜋

.

(56)

Using (23) and (24), we have

P
𝑖→𝑓

=

1

2

(1 − 𝑒

−(𝜔0 coth(𝜋𝜔0/𝜅𝑟)/𝜋)𝑡
)

× (1 −

1

coth (𝜋𝜔
0
/𝜅
𝑟
)

) ,

(57)

and the spontaneous excitation rate is

Γ
𝑖→𝑓

=

𝜕

𝜕𝑡

P
𝑖→𝑓 (𝑡)








𝑡=0

=

𝜔
0

𝜋 (𝑒

2𝜋𝜔0/𝜅𝑟
− 1)

, (58)

which reveals that, the ground state detector in the 𝐼𝐼 vacuum
would spontaneously excite with an excitation rate that one
would expect in the case of a flux of thermal radiation at the
temperature

𝑇 =

𝜅
𝑟

2𝜋

. (59)

It is obvious that there is a near horizon conformal symmetry
from 𝜙(𝑈,𝑉) to 𝜙(𝑢, V) as (45), which is just the reason of
the nonvanishing spontaneously excitation. This proposal is
similar to [29]. In fact, the effective temperature 𝑇 in (59)
approaches to Hawking temperature 𝑇 = 𝜅/2𝜋 = (𝑟

+
−

𝑟
−
)/4𝜋(𝑟

2

+
+ 𝑎

2
) as 𝑟 → ∞. This suggests that the thermal

radiation emanating from the horizon of a Kerr black hole is
just Hawking radiation, which is in agreement with [16, 17].
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5. Conclusions and Discussions

In brief, we have investigated the Hawking radiation from
a Kerr space time through examining the evolution of a
detector (modeled by a two-level atom) interacting with
the vacuum massless scalar field in the framework of open
quantum systems.

First of all, using the dimensional reduction technique,
the 4-dimensional spherically nonsymmetric Kerr metric
can be regarded as a 2-dimensional effective spherically
symmetricmetric near the event horizon. Sowe can construct
two conformal vacuum states in this 2-dimensional effective
space time: one is the 𝐼 state-Boulware vacuum, the other
is the 𝐼𝐼 state-Unruh vacuum. Then we give the Wightman
functions of the two vacuum states, respectively.

On the basis of these, we have calculated the time
evolution of the detector in the two vacuum states. It is
found that the detector in the 𝐼𝐼 state-Unruh vacuum would
spontaneously excite with a nonvanishing probability the
same as thermal radiation at Hawking temperature from
a Kerr black hole. Hawking-Unruh effect of a Kerr space
time can be understood as a manifestation of thermalization
phenomena in an open quantum system.Meanwhile, it is also
found that the probability of spontaneous transition of the
detector would be vanishing in the 𝐼 state-Boulware vacuum.
It suggests that near horizon conformal symmetry plays the
key role in the full quantum phenomena in the Kerr space
time.
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Recent results show that important singularities in General Relativity can be naturally described in terms of finite and invariant
canonical geometric objects. Consequently, one can write field equations which are equivalent to Einstein’s at nonsingular points
but, in addition remain well-defined and smooth at singularities. The black hole singularities appear to be less undesirable than it
was thought, especially after we remove the part of the singularity due to the coordinate system. Black hole singularities are then
compatible with global hyperbolicity and do not make the evolution equations break down, when these are expressed in terms of
the appropriate variables. The charged black holes turn out to have smooth potential and electromagnetic fields in the new atlas.
Classical charged particles can be modeled, in General Relativity, as charged black hole solutions. Since black hole singularities
are accompanied by dimensional reduction, this should affect Feynman’s path integrals. Therefore, it is expected that singularities
induce dimensional reduction effects in QuantumGravity.These dimensional reduction effects are very similar to those postulated
in some approaches to make Quantum Gravity perturbatively renormalizable. This may provide a way to test indirectly the effects
of singularities, otherwise inaccessible.

1. Introduction

For millennia, space was considered the fixed background
where physical phenomena took place. Special Relativity
changed this, by proposing spacetime as the new arena.Then,
while trying to extend the success of Special Relativity to
noninertial frames and gravity, Einstein realized that one
should let go the idea of an immutable background, and
General Relativity (GR) was born. There is a very deep inter-
dependence between matter and the geometry of spacetime,
encoded in Einstein’s equation. Its predictions were tested
with high accuracy and confirmed.

However, the task of decoding the way our universe
works from something as abstract as Einstein’s equation is
not easy, and we are far from grasping all of its consequences.
For instance, even from the beginning, when Schwarzschild
proposed his model for the exterior of a spherically sym-
metric object, Einstein’s equations led to infinities [1, 2]. The
Schwarzschild metric tensor becomes infinite at 𝑟 = 0 and on
the event horizon, where 𝑟 = 2𝑚. The big bang also exhibited
a singularity [3–10].

The first reaction to the singularities was to somehow
minimize their importance, on the grounds that they are
exceptions due to the perfect symmetry of the solutions.This
hope was ruined by the theorems of Penrose [11, 12] and
Hawking [13–16], showing that the singularities are predicted
to occur in GR under very general conditions and are not
caused by the perfect symmetry.

Singularities, hidden by the event horizon or naked, are
very well researched in the literature (e.g., [12, 17–25] and
references therein).

Interesting results concerning singularities were obtained
in some modified gravity theories, for example, 𝑓(𝑅) gravity
([26–30] and references therein). Another way to avoid
singularities was proposed in nonlinear electrodynamics [31].

In addition to the singularities, infinities occur in GR
when we try to quantize gravity, because gravity is perturba-
tively nonrenormalizable [32, 33]. It is expected by many that
a solution to the problem of quantization will also remove the
singularities. For example, Loop quantum cosmology obtained
significant positive results in showing that quantum effects
may prevent the occurrence of singularities [34–37].

Hindawi Publishing Corporation
Advances in High Energy Physics
Volume 2014, Article ID 907518, 14 pages
http://dx.doi.org/10.1155/2014/907518

http://dx.doi.org/10.1155/2014/907518


2 Advances in High Energy Physics

There is another possibility: the problem of singularities
may be in fact not due toGRbut to our limited understanding
of GR. Therefore, it would be useful to better understand
singularities, even in the eventuality that a better theory will
replace GR. In the following we review some recent results
showing that by confronting singularities, we realize that they
are not that undesirable [38]. Moreover, new possibilities
open also for the Quantum Gravity problem.

2. The Problem of Singularities in
General Relativity

2.1. Two Types of Singularities. Not all singularities are born
equal. We can roughly classify the singularities in two types:

(1) Malign singularities: some of the components of the
metric are divergent: 𝑔

𝑎𝑏
→ ∞.

(2) Benign singularities: 𝑔
𝑎𝑏

are smooth and finite but
det 𝑔 → 0.

Benign singularities turn out to be, in many cases,
manageable [39–41]. The infinities simply disappear, if we
use different geometric objects to write the equations and
describe the phenomena. At points where the metric is
nondegenerate, the proposed description is equivalent to the
standard one. But, in addition, it works also at the points
where the metric becomes degenerate.

Malign singularities appear in the black hole solutions.
They appear to be malign because the coordinates in which
they are represented are singular. In nosingular coordinates,
they become benign [42–44].This is somewhat similar to the
case of the apparent singularity on the event horizon, which
turned out to be a coordinate singularity and not a genuine
one [45, 46].

2.2. What Is Wrong with Singularities? The geometry of
spacetime is encoded in themetric tensor. Towrite downfield
equations, we have to use partial derivatives. In curved spaces,
partial derivatives are replaced by covariant derivatives. They
are defined with the help of the Levi-Civita connection, which
takes into account the parallel translations, to compare fields
at infinitesimally closed points. The covariant derivative is
written using the Christoffel symbol of the second kind,
obtained from the metric tensor by

Γ

𝑐

𝑎𝑏
=

1

2

𝑔

𝑐𝑠
(𝜕

𝑎
𝑔
𝑏𝑠
+ 𝜕

𝑏
𝑔
𝑠𝑎
− 𝜕

𝑠
𝑔
𝑎𝑏
) . (1)

It can be used to define the Riemann curvature tensor:

𝑅

𝑑

𝑎𝑏𝑐
= Γ

𝑑

𝑎𝑐,𝑏
− Γ

𝑑

𝑎𝑏,𝑐
+ Γ

𝑑

𝑏𝑠
Γ

𝑠

𝑎𝑐
− Γ

𝑑

𝑐𝑠
Γ

𝑠

𝑎𝑏
. (2)

It plays a major part in the Einstein equation:

𝐺
𝑎𝑏
+ Λ𝑔

𝑎𝑏
= 𝜅𝑇

𝑎𝑏
, (3)

since

𝐺
𝑎𝑏
= 𝑅

𝑎𝑏
−

1

2

𝑅𝑔
𝑎𝑏
, (4)

Table 1: Singular objects and their nonsingular equivalents.

Singular Nonsingular When 𝑔 is
Γ

𝑐

𝑎𝑏
(2nd) Γ

𝑎𝑏𝑐
(1st) Smooth

𝑅

𝑑

𝑎𝑏𝑐
𝑅
𝑎𝑏𝑐𝑑

Semiregular

𝑅
𝑎𝑏

𝑅
𝑎𝑏
√






det𝑔


𝑊

,𝑊 ≤ 2 Semiregular

𝑅 𝑅√






det𝑔


𝑊

,𝑊 ≤ 2 Semiregular
Ric Ric ∘ 𝑔 Quasi-regular
𝑅 𝑅𝑔 ∘ 𝑔 Quasi-regular

where 𝑅
𝑎𝑏
= 𝑅

𝑠

𝑎𝑠𝑏
is the Ricci tensor and 𝑅 = 𝑅𝑠

𝑠
is the scalar

curvature.
In the case of malign singularities, since some of metric’s

components are singular, the geometric objects like the Levi-
Civita connection and the Riemann curvature tensor are
singular too. Therefore, it seems that the situation of malign
singularities is hopeless.

Even in the case of benign singularities, when the metric
is smooth, but its determinant det 𝑔 → 0, the usual
Riemannian objects are singular. For example, the covariant
derivative cannot be defined, because the inverse of the
metric, 𝑔𝑎𝑏, becomes singular (𝑔𝑎𝑏 → ∞when det 𝑔 → 0).
This makes Christoffel’s symbols of the second kind (1) and
the Riemann curvature (2) singular.

It is therefore understandable why singularities were
considered unsolvable problems for so many years.

2.3. From Singular to Nonsingular: A Dictionary. The main
variables which appear in the equations are indeed singular.
But we can replace them with new variables, which are
equivalent to the original ones on the domain where both are
defined. Sometimes, we can choose the new variables so that
the equations remain valid at points where the original ones
were singular.

The geometric objects of interest that become singular
when the metric is degenerate are the Levi-Civita connection
(1), the Riemann curvature (2), and the Ricci and the scalar
curvatures. If the metric is nondegenerate, the Christoffel
symbols of the first kind are equivalent to those of the second
kind, in the sense that by knowing one of them, we can
obtain the other one. Similarly, the Riemann curvature 𝑅𝑎

𝑏𝑐𝑑

is equivalent to 𝑅
𝑎𝑏𝑐𝑑

, and the Ricci and scalar curvatures are
equivalent to their densitized versions and to their Kulkarni-
Nomizu products (see (30)) with the metric. In some impor-
tant cases, these equivalent objects remain nonsingular even
when the metric is degenerate [39, 41]. We summarize these
cases in Table 1.

3. The Mathematical Methods: Singular
Semi-Riemannian Geometry

3.1. Singular Semi-Riemannian Geometry. We review the
main mathematical tool on which the results presented
here are based, named Singular Semi-Riemannian Geometry
[39, 40]. Singular Semi-Riemannian Geometry is mainly
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concerned with the study of singular semi-Riemannianman-
ifolds.

Definition 1 (see [39, 47]). A singular semi-Riemannian man-
ifold (𝑀, 𝑔) consists in a differentiable manifold 𝑀 and a
symmetric bilinear form 𝑔 on 𝑀, named metric tensor or
metric.

If 𝑔 is nondegenerate, then (𝑀, 𝑔) is just a semi-
Riemannian manifold. If in addition 𝑔 is positive definite,
(𝑀, 𝑔) is named Riemannian manifold. In General Relativity
semi-Riemannian manifolds are normally used, but when we
are dealing with singularities, it is natural to use the Singular
Semi-Riemannian Geometry, which is more general.

3.2. Properties of the Degenerate Inner Product. Let (𝑉, 𝑔) be
an inner product vector space. Let ♭ : 𝑉 → 𝑉

∗ be the
morphism defined by 𝑢 → 𝑢

∙
:= ♭(𝑢) = 𝑢

♭
= 𝑔(𝑢, −). We

define the radical of 𝑉 as the set of isotropic vectors in 𝑉:
𝑉
∘
:= ker ♭ = 𝑉

⊥. We define the radical annihilator space
of 𝑉 as the image of ♭, 𝑉∙

:= im ♭ ⊂ 𝑉

∗. The inner product
𝑔 induces on 𝑉∙ an inner product, defined by 𝑔

∙
(𝑢

♭

1
, 𝑢

♭

1
) :=

𝑔(𝑢
1
, 𝑢

2
). This one is the inverse of 𝑔 if and only if det 𝑔 ̸=0.

The coannihilator is the quotient space 𝑉
∙
:= 𝑉/𝑉

∘
, given by

the equivalence classes of the form𝑢+𝑉
∘
. On the coannihilator

𝑉
∙
, themetric𝑔 induces an inner product𝑔∙(𝑢

1
+𝑉

∘
, 𝑢

2
+𝑉

∘
) :=

𝑔(𝑢
1
, 𝑢

2
).

Let 𝑝 ∈ 𝑀. In the following, we will denote by 𝑇
∘𝑝
𝑀 ≤

𝑇
𝑝
𝑀 the radical of the tangent space at 𝑝, by 𝑇∙

𝑝
𝑀 ≤ 𝑇

∗

𝑝
𝑀

the radical annihilator and by 𝑇
∙𝑝
𝑀 the coannihilator.

We have seen that one important problem which appears
when the metric becomes degenerate is that it does not
admit an inverse 𝑔𝑎𝑏, and fundamental tensor operations like
raising indices and contractions between covariant indices
are no longer defined. But we can use the reciprocal metric
𝑔
∙
to define metric contraction between covariant indices,

for tensors that live in tensor products between 𝑇
𝑝
𝑀 and

the subspace 𝑇∙
𝑝
𝑀. This turned out to be enough for some

important singularities in General Relativity.

3.3. Covariant Derivative. Because at points where themetric
is degenerate there is no inverse metric, the Levi-Civita
connection is not defined. Then, how can we derivate? We
will see that in some cases, which turn out to be enough for
our purposes, we still can derivate.

3.3.1.TheKoszul Object. Let𝑋,𝑌, 𝑍 be vector fields on𝑀.We
define the Koszul object as

K (𝑋, 𝑌, 𝑍) :=

1

2

{𝑋 ⟨𝑌, 𝑍⟩ + 𝑌 ⟨𝑍,𝑋⟩ − 𝑍 ⟨𝑋, 𝑌⟩

− ⟨𝑋 [𝑌, 𝑍]⟩ + ⟨𝑌 [𝑍,𝑋]⟩ + ⟨𝑍 [𝑋, 𝑌]⟩} .

(5)

Its components in local coordinates are just Christoffel’s
symbols of the first kind:

K
𝑎𝑏𝑐

=K (𝜕
𝑎
, 𝜕

𝑏
, 𝜕

𝑐
) =

1

2

(𝜕
𝑎
𝑔
𝑏𝑐
+ 𝜕

𝑏
𝑔
𝑐𝑎
− 𝜕

𝑐
𝑔
𝑎𝑏
) = Γ

𝑎𝑏𝑐
.

(6)

If themetric is nondegenerate, one defines the Levi-Civita
connection uniquely, by raising an index of the Koszul object:

∇
𝑋
𝑌 =K(𝑋, 𝑌,

−
)

♯
. (7)

But if the metric is degenerate, one cannot raise the
index, and we will have to avoid the usage of the Levi-Civita
connection. Luckily, we can do what we do with the Levi-
Civita connection and more, just by using the Koszul object
instead.

3.3.2. The Covariant Derivatives. We define the lower covari-
ant derivative of a vector field 𝑌 in the direction of a vector
field𝑋 by

(∇

♭

𝑋
𝑌) (𝑍) :=K (𝑋, 𝑌, 𝑍) . (8)

This is not quite a true covariant derivative, because it does
notmap vector fields to vector fields but to 1-forms. However,
we can use it to replace the covariant derivative of vector
fields, and it is equivalent to it if the metric is nondegenerate.

If the Koszul object satisfies the condition that
K(𝑋, 𝑌,𝑊) = 0 for any𝑊 ∈ Γ(𝑇

∘
𝑀), then the singular semi-

Riemannian manifold (𝑀, 𝑔) is named radical stationary.
In this case, it makes sense to contract in the third slot of
the Koszul object and define by this covariant derivatives
of differential forms. The covariant derivative of differential
forms is defined by

(∇
𝑋
𝜔) (𝑌) := 𝑋 (𝜔 (𝑌)) − 𝑔∙

(∇

♭

𝑋
𝑌, 𝜔) , (9)

if 𝜔 ∈ A∙
(𝑀) := Γ(𝑇

∙
𝑀). More general,

∇
𝑋
(𝜔

1
⊗ ⋅ ⋅ ⋅ ⊗ 𝜔

𝑠
)

:= ∇
𝑋
(𝜔

1
) ⊗ ⋅ ⋅ ⋅ ⊗ 𝜔

𝑠
+ ⋅ ⋅ ⋅ + 𝜔

1
⊗ ⋅ ⋅ ⋅ ⊗ ∇

𝑋
(𝜔

𝑠
) .

(10)

The covariant derivative of a tensor 𝑇 ∈ Γ(⊗

𝑘

𝑀
𝑇

∙
𝑀) is

defined as

(∇
𝑋
𝑇) (𝑌

1
, . . . , 𝑌

𝑘
) = 𝑋 (𝑇 (𝑌

1
, . . . , 𝑌

𝑘
))

−

𝑘

∑

𝑖=1

K (𝑋, 𝑌
𝑖
,
∙
) 𝑇 (𝑌

1
, , . . . ,

∙
, . . . , 𝑌

𝑘
) .

(11)

3.4. Riemann Curvature Tensor: Semi-Regular Manifolds. Let
(𝑀, 𝑔) be a radical stationary manifold. Then, the Riemann
curvature tensor is defined as

𝑅 (𝑋, 𝑌, 𝑍, 𝑇)

= (∇
𝑋
∇

♭

𝑌
𝑍) (𝑇) − (∇𝑌

∇

♭

𝑋
𝑍) (𝑇) − (∇

♭

[𝑋,𝑌]
𝑍) (𝑇) .

(12)
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The components of the Riemann curvature tensor in local
coordinates are

𝑅
𝑎𝑏𝑐𝑑

= 𝜕
𝑎
K

𝑏𝑐𝑑
− 𝜕

𝑏
K

𝑎𝑐𝑑
+ (K

𝑎𝑐∙
K

𝑏𝑑∙
−K

𝑏𝑐∙
K

𝑎𝑑∙
) . (13)

The Riemann curvature tensor has the same symmetry
properties as in Riemannian geometry and is radical anni-
hilator in each of its slots.

A singular semi-Riemannian manifold is called semireg-
ular [39] if

∇
𝑋
∇

♭

𝑌
𝑍 ∈ A

∙
(𝑀) . (14)

An equivalent condition is

K (𝑋, 𝑌,
∙
)K (𝑍, 𝑇,

∙
) ∈ F (𝑀) . (15)

It is easy to see that the Riemann curvature of semiregular
manifolds is smooth.

3.5. Examples of Semiregular Semi-Riemannian Manifolds.
We present some examples of semi-Riemannian manifolds
[39, 40].

3.5.1. Isotropic Singularities. Isotropic singularities have the
form

𝑔 = Ω

2
𝑔, (16)

where 𝑔 is a nondegenerate bilinear form on𝑀.
Such singularities were studied in connection to some

cosmological models [48–56].

3.5.2. Degenerate Warped Products. Warped products are
products of two semi-Riemannian manifolds (𝐵, 𝑔

𝐵
) and

(𝐹, 𝑔
𝐹
), so that the metric on the manifold 𝐹 is scaled by a

scalar function𝑓 defined on themanifold 𝐵 [57].The warped
product has the form

d𝑠2 = d𝑠2
𝐵
+ 𝑓

2
(𝑝) d𝑠2

𝐹
. (17)

Normally, the warping function 𝑓 is taken to be strictly
positive at all points of 𝐵. However, it may happen to vanish
at some points, and in this case the result is a singular semi-
Riemannian manifold. The resulting manifold is semiregular
[40].Moreover, if themanifolds𝐵 and𝐹 are radical stationary
and if d𝑓 ∈ A∙

(𝑀), their warped product is radical
stationary. If 𝐵 and 𝐹 are semiregular, d𝑓 ∈ A∙

(𝑀), and
∇
𝑋
d𝑓 ∈ A∙

(𝑀) for any vector field 𝑋, and then 𝐵 ×
𝑓
𝐹 is

semiregular [40].

4. Einstein Equations at Singularities

We discuss now two equations which are equivalent to
Einstein’s when the metric is nondegenerate but remains
smooth andfinite also at some singularities.Thefirst equation
remains smooth at semiregular singularities, while the second
at quasi-regular singularities.

4.1. Einstein’s Equation on Semi-regular Spacetimes

4.1.1. The Densitized Einstein Equation. Consider the follow-
ing densitized version of the Einstein equation:

𝐺 det𝑔 + Λ𝑔 det𝑔 = 𝜅𝑇 det𝑔, (18)

or, in coordinates or local frames:

𝐺
𝑎𝑏
det 𝑔 + Λ𝑔

𝑎𝑏
det𝑔 = 𝜅𝑇

𝑎𝑏
det𝑔. (19)

If the metric is nondegenerate, this equation is equivalent
to the Einstein equation, the only difference is the factor
det 𝑔 ̸=0. But what happens if the metric becomes degener-
ate? In this case, it is not allowed to divide by det 𝑔, because
this is 0.

On four-dimensional semi-regular spacetimes Einstein
tensor density 𝐺 det 𝑔 is smooth [39]. Hence, the pro-
posed densitized Einstein equation (18) is smooth, and non-
singular. If the metric is regular, this equation is equivalent to
the Einstein equation.

4.1.2. FLRW Spacetimes. To better understand black hole
singularities, whichwill be discussed later, we start by taking a
look at the Friedmann-Lemaı̂tre-Robertson-Walker (FLRW)
singularities, which are benign. Black hole singularities are
malign but can be made benign by removing the coordinate
singularity (see Sections 5, 6, and 7).

FLRW spacetimes are examples of degenerate warped
products, with the metric defined by

d𝑠2 = −d𝑡2 + 𝑎2 (𝑡) dΣ2, (20)

where

dΣ2 = d𝑟2

1 − 𝑘𝑟

2
+ 𝑟

2
(d𝜃2 + sin2𝜃d𝜙2) , (21)

where 𝑘 = 1 for 𝑆3, 𝑘 = 0 forR3, and 𝑘 = −1 for𝐻3. It follows
that they are semiregular.

Since the FLRW singularities are warped products, they
are semiregular. Therefore, we can expect that the densitized
Einstein equation holds. In fact, in [58] more is shown than
that, as we will see now.

The FLRW stress-energy tensor is

𝑇

𝑎𝑏
= (𝜌 + 𝑝) 𝑢

𝑎
𝑢

𝑏
+ 𝑝𝑔

𝑎𝑏
, (22)

where 𝑢𝑎 is the time-like vector field 𝜕
𝑡
, normalized. The

scalar 𝜌 represents the mass density and 𝑝 the pressure
density. From the stress-energy tensor (22), in the case of a
homogeneous and isotopic universe, follow the Friedmann
equation:

𝜌 =

3

𝜅

̇𝑎

2
+ 𝑘

𝑎

2
,

(23)

and the acceleration equation:

𝜌 + 3𝑝 = −

6

𝜅

̈𝑎

𝑎

. (24)
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Equations (23) and (24) show that the scalars 𝜌 and
𝑝 are singular for 𝑎 = 0. But 𝜌 and 𝑝 represent the
mass and pressure densities the orthonormal frame obtained
by normalizing the comoving frame (𝜕

𝑡
, 𝜕

𝑥
, 𝜕

𝑦
, 𝜕

𝑧
), where

(𝑥, 𝑦, 𝑧) are coordinates on the space manifold 𝑆. The mass
and pressure density can be identifiedwith the scalars 𝜌 and𝑝
only in an orthogonal frame. But at the singularity 𝑎 = 0 there
is no orthonormal frame, so we should not normalize the
comoving frame. In general, nonnormalized case, the actual
densities contain in fact the factor√−𝑔(= 𝑎3√𝑔Σ):

𝜌 = 𝜌√−𝑔 = 𝜌𝑎

3
√𝑔Σ

,

𝑝 = 𝑝√−𝑔 = 𝑝𝑎

3
√𝑔Σ

.

(25)

The Friedmann and the acceleration equations become

𝜌 =

3

𝜅

𝑎 ( ̇𝑎

2
+ 𝑘)√𝑔Σ

,

𝜌 + 3𝑝 = −

6

𝜅

𝑎

2
̈𝑎√𝑔Σ

.

(26)

We see that 𝜌 and 𝑝 are smooth and so is the densitized
stress-energy tensor:

𝑇
𝑎𝑏√

−𝑔 = (𝜌 + 𝑝) 𝑢
𝑎
𝑢
𝑏
+ 𝜌𝑔

𝑎𝑏
. (27)

We obtain a densitized Einstein equation, from which (18)
follows by multiplying with√−𝑔.

Hence, the FLRW solution is described by smooth den-
sities even at the big bang singularity. Moreover, the solution
extends beyond the singularity.

4.2. Einstein’s Equation on Quasi-Regular Spacetimes

4.2.1. The Ricci Decomposition. Let (𝑀, 𝑔) be an 𝑛-
dimensional semi-Riemannian manifold. The Riemann
curvature decomposes algebraically [59–61] as

𝑅
𝑎𝑏𝑐𝑑

= 𝑆
𝑎𝑏𝑐𝑑

+ 𝐸
𝑎𝑏𝑐𝑑

+ 𝐶
𝑎𝑏𝑐𝑑

, (28)

where

𝑆
𝑎𝑏𝑐𝑑

=

1

𝑛 (𝑛 − 1)

𝑅(𝑔 ∘ 𝑔)

𝑎𝑏𝑐𝑑
,

𝐸
𝑎𝑏𝑐𝑑

=

1

𝑛 − 2

(𝑆 ∘ 𝑔)

𝑎𝑏𝑐𝑑
,

𝑆
𝑎𝑏
:= 𝑅

𝑎𝑏
−

1

𝑛

𝑅𝑔
𝑎𝑏
,

(29)

where ∘ denotes the Kulkarni-Nomizu product:

(ℎ ∘ 𝑘)𝑎𝑏𝑐𝑑
:= ℎ

𝑎𝑐
𝑘
𝑏𝑑
− ℎ

𝑎𝑑
𝑘
𝑏𝑐
+ ℎ

𝑏𝑑
𝑘
𝑎𝑐
− ℎ

𝑏𝑐
𝑘
𝑎𝑑
. (30)

If the Riemann curvature tensor on a semiregular man-
ifold (𝑀, 𝑔) admits such a decomposition so that all of its
terms are smooth, (𝑀, 𝑔) is said to be quasi-regular.

4.2.2.The Expanded Einstein Equation. For dimension 𝑛 = 4,
in [41] we introduced the expanded Einstein equation:

(𝐺 ∘ 𝑔)

𝑎𝑏𝑐𝑑
+ Λ(𝑔 ∘ 𝑔)

𝑎𝑏𝑐𝑑
= 𝜅(𝑇 ∘ 𝑔)

𝑎𝑏𝑐𝑑
(31)

or, equivalently,

2𝐸
𝑎𝑏𝑐𝑑

− 6𝑆
𝑎𝑏𝑐𝑑

+ Λ(𝑔 ∘ 𝑔)

𝑎𝑏𝑐𝑑
= 𝜅(𝑇 ∘ 𝑔)

𝑎𝑏𝑐𝑑
. (32)

It is equivalent to Einstein’s equation if the metric is
nondegenerate but in addition extends smoothly at quasi-
regular singularities.

4.2.3. Examples of Quasi-Regular Singularities. As shown in
[41], the following are examples of quasi-regular singularities:

(i) isotropic singularities,

(ii) degenerate warped products 𝐵 ×
𝑓
𝐹 with dim𝐵 = 1

and dim𝐹 = 3,

(iii) FLRW singularities, as a particular case of degenerate
warped products [62],

(iv) Schwarzschild singularities (after removing the coor-
dinates singularity, see Section 5). The question
whether the Reissner-Nordström and Kerr-Newman
singularities are quasi-regular, or at least semi-regular,
is still open.

4.2.4. The Weyl Curvature Hypothesis and Quasi-Regular
Singularities. To explain the low entropy at the big bang and
the high homogeneity of the universe, Penrose emitted the
Weyl curvature hypothesis, stating that the Weyl curvature
tensor vanishes at the big bang singularity [18].

From (28), theWeyl curvature tensor is

𝐶
𝑎𝑏𝑐𝑑

= 𝑅
𝑎𝑏𝑐𝑑

− 𝑆
𝑎𝑏𝑐𝑑

− 𝐸
𝑎𝑏𝑐𝑑

. (33)

In [63] it was shown that when approaching a quasi-
regular singularity, 𝐶

𝑎𝑏𝑐𝑑
→ 0 smoothly. Because of this,

any quasi-regular big bang satisfies the Weyl curvature
hypothesis. In [63] it has also been shown that a very large
class of big bang singularities, which are not homogeneous or
isotropic, are quasi-regular.

4.3. Taming a Malign Singularity. We have seen that when
the singularity is benign; that is, the singularity is due to the
degeneracy of the metric tensor, which is smooth; there are
important cases when we can obtain a complete description
of the fields and their evolution, in terms of finite quantities.

But what can we do if the singularities are malign? This
case is important, since all black hole singularities aremalign.
In [42–44] we show that although the black hole singularities
appear to be malign, we can make them benign, by a proper
choice of coordinates.This is somewhat analog to themethod
used in [45, 46] to show that the event horizon singularity
is not a true singularity, being due to coordinates. In the
following sections, we will review these results.
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5. Schwarzschild Singularity Is Semi-Regular

The Schwarzschild metric is given in Schwarzschild coordi-
nates by

d𝑠2 = −(1 − 2𝑚
𝑟

) d𝑡2 + (1 − 2𝑚
𝑟

)

−1

d𝑟2 + 𝑟2d𝜎2, (34)

where

d𝜎2 = d𝜃2 + sin2𝜃d𝜙2. (35)

Let us change the coordinates to

𝑟 = 𝜏

2
, 𝑡 = 𝜉𝜏

4
. (36)

The four-metric becomes

d𝑠2 = − 4𝜏

4

2𝑚 − 𝜏

2
d𝜏2 + (2𝑚 − 𝜏

2
) 𝜏

4
(4𝜉d𝜏 + 𝜏d𝜉)2 + 𝜏4d𝜎2,

(37)

which is analytic and semiregular at 𝑟 = 0 [42].
Theproblemswere fixed by a coordinate change.Does not

this mean that the singularity depends on the coordinates?
Well, this deserves an explanation. Changing the coordinates
does not make a singularity appear or disappear, if the
coordinate transformation is a local diffeomorphism. But
a regular tensor can become singular or a singular tensor
can become regular, if the coordinate transformation itself
is singular. This situation is very similar to that of the event
horizon singularity 𝑟 = 2𝑚 of the Schwarzschild metric,
in Schwarzschild coordinates (34). This singularity vanishes
when we go to the Eddington-Finkelstein coordinates. This
proves that the Eddington-Finkelstein coordinates are from
the correct atlas, while the original Schwarzschild coordinates
were in fact singular at 𝑟 = 2𝑚. In our case, the coordinate
transformation (36) allows us to move to an atlas in which
the metric is analytic and semiregular, showing that the
Schwarzschild coordinates were in fact singular at 𝑟 = 0.

6. Charged and Nonrotating Black Holes

Charged nonrotating black holes are described by the
Reissner-Nordström metric:

d𝑠2 = −(1 − 2𝑚
𝑟

+

𝑞

2

𝑟

2
) d𝑡2

+ (1 −

2𝑚

𝑟

+

𝑞

2

𝑟

2
)

−1

d𝑟2 + 𝑟2d𝜎2.

(38)

To make the singularity benign, we choose the new
coordinates 𝜌 and 𝜏 [43]; so that

𝑡 = 𝜏𝜌

𝑇
, 𝑟 = 𝜌

𝑆
. (39)

In the new coordinates, themetric has the following form:

d𝑠2 = −Δ𝜌2𝑇−2𝑆−2(𝜌d𝜏 + 𝑇𝜏d𝜌)2 + 𝑆
2

Δ

𝜌

4𝑆−2d𝜌2 + 𝜌2𝑆d𝜎2,
(40)

where

Δ := 𝜌

2𝑆
− 2𝑚𝜌

𝑆
+ 𝑞

2
. (41)

To remove the infinity of the metric at 𝑟 = 0 and ensure
analiticity, we have to choose

𝑆 ≥ 1, 𝑇 ≥ 𝑆 + 1. (42)

In the Reissner-Nordström coordinates (𝑡, 𝑟, 𝜙, 𝜃), the
electromagnetic potential is singular at 𝑟 = 0,

𝐴 = −

𝑞

𝑟

d𝑡. (43)

But in the new coordinates (𝜏, 𝜌, 𝜙, 𝜃), the electromagnetic
potential is

𝐴 = −𝑞𝜌

𝑇−𝑆−1
(𝜌d𝜏 + 𝑇𝜏d𝜌) , (44)

and the electromagnetic field is

𝐹 = 𝑞 (2𝑇 − 𝑆) 𝜌

𝑇−𝑆−1d𝜏 ∧ d𝜌, (45)

and they are analytic everywhere, including at the singularity
𝜌 = 0 [43].

The proposed coordinates define a space + time foliation
only if 𝑇 ≥ 3𝑆 [43].

7. Rotating Black Holes

Electrically neutral rotating black holes are represented by the
Kerr solution. If they are also charged, they are described by
the very similar Kerr-Newman solution.

Consider the space R × R3, where R represents the time
coordinate and R3 the space, parameterized by the spherical
coordinates (𝑟, 𝜙, 𝜃). The rotation is characterized by the
parameter 𝑎 ≥ 0, 𝑚 ≥ 0 is the mass, and 𝑞 ∈ R the charge.
The following notations are useful:

Σ (𝑟, 𝜃) := 𝑟

2
+ 𝑎

2cos2𝜃,

Δ (𝑟) := 𝑟

2
− 2𝑚𝑟 + 𝑎

2
+ 𝑞

2
.

(46)

The nonvanishing components of the Kerr-Newman metric
are [64]

𝑔
𝑡𝑡
= −

Δ (𝑟) − 𝑎

2sin2𝜃
Σ (𝑟, 𝜃)

,

𝑔
𝑟𝑟
=

Σ (𝑟, 𝜃)

Δ (𝑟)

,

𝑔
𝜃𝜃
= Σ (𝑟, 𝜃) ,

𝑔
𝜙𝜙
=

(𝑟

2
+ 𝑎

2
)

2

− Δ (𝑟) 𝑎

2sin2𝜃
Σ (𝑟, 𝜃)

sin2𝜃,

𝑔
𝑡𝜙
= 𝑔

𝜙𝑡
= −

2𝑎 sin2 𝜃 (𝑟2 + 𝑎2 − Δ (𝑟))
Σ (𝑟, 𝜃)

.

(47)
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Figure 1: Schwarzschild solution, analytically extended beyond the 𝑟 = 0 singularity.

In [44] it was shown that in the coordinates 𝜏, 𝜌, and 𝜇,
are defined by

𝑡 = 𝜏𝜌

T
, 𝑟 = 𝜌

S
,

𝜙 = 𝜇𝜌

M
, 𝜃 = 𝜃,

(48)

where S, T ,M ∈ N are positive integers so that

S ≥ 1,

T ≥ S + 1,

M ≥ S + 1,

(49)

and the metric is analytic.
Not only the metric becomes analytic in the proposed

coordinates, but also the electromagnetic potential and elec-
tromagnetic field. The electromagnetic potential of the Kerr-
Newman solution is, in the standard coordinates, the 1-form:

𝐴 = −

𝑞𝑟

Σ (𝑟, 𝜃)

(d𝑡 − 𝑎 sin2𝜃d𝜙) . (50)

In the proposed coordinates

𝐴 = −

𝑞𝜌

S

Σ (𝑟, 𝜃)

(𝜌

Td𝜏 + T𝜏𝜌
T−1d𝜌 − 𝑎 sin2 𝜃𝜌Md𝜇) . (51)

which is smooth [44]. The electromagnetic field 𝐹 = d𝐴 is
smooth too.

8. Global Hyperbolicity and Information Loss

8.1. Foliations with Cauchy Hypersurfaces. While Einstein’s
equation describes the relation between geometry andmatter
in a block-world view of the universe, there are equivalent
formulations which express this relation from the perspective
of the time evolution. Einstein’s equation can be expressed in
terms of a Cauchy problem [65–70].

The standard black hole solutions pose two main prob-
lems to the Cauchy problem. First, the solutions have malign
singularities. Second, they have in general Cauchy horizons.
Luckily, there is more than one way to skin a black hole.

The evolution equations make sense at least locally, if the
singularities are benign. The black hole singularities appear
to be malign in the coordinates used so far, but by removing
the coordinate’s contribution to the singularity, they become
benign. Even so, to formulate initial value problems globally,
spacetime has to admit space + time foliations. The space-
like hypersurfaces have to be Cauchy surfaces; in other
words, the global hyperbolicity condition has to be true.
The topology of the space-like hypersurfaces must remain
independent on the time 𝑡, although the metric is allowed
to become degenerate. This seems to be prevented in the
case of Reissner-Nordström and Kerr-Newman black holes,
by the existence of Cauchy horizons. As shown in [71],
the stationary black hole singularities admit such foliations
and are therefore compatible with the condition of global
hyperbolicity.

8.2. Schwarzschild Black Holes. In the proposed coordinates
for the Schwarzschild black hole, the metric extends analyti-
cally beyond the 𝑟 = 0 singularity (Figure 1).
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Figure 2: Reissner-Nordström black holes. (a) Naked solutions (𝑞2 > 𝑚2). (b) Extremal solution (𝑞2 = 𝑚2). (c) Solutions with 𝑞2 < 𝑚2.

This solution can be foliated in space + time and therefore
is globally hyperbolic.

8.3. Space-Like Foliation of the Reissner-Nordström Solution.
Figure 2 shows the standard Penrose diagrams for the Reiss-
ner-Nordström spacetimes [72].

The Penrose diagram 3 shows how our extensions beyond
the singularities allow the Reissner-Nordström solutions to
be foliated in Cauchy hypersurfaces. In Figures 3(b) and 3(c),
in addition to extending the solution beyond the singularity,
we cut out the spacetime along the Cauchy horizons. This is
justified if the black holes form by collapse at a finite time and
then evaporate after a finite lifetime [43, 71].

For the Kerr-Newman black holes, the foliations are
similar to those for the Reissner-Nordström solutions [71],
especially because the extension proposed in [44] can be
chosen so that the closed time-like curves disappear.

8.4. Black Hole Information Paradox. Bekenstein and Hawk-
ing discovered that black holes obey laws similar to those
of thermodynamics and proposed that these laws are in fact
thermodynamics (see [73–75], also [76, 77], and references
therein). Hawking realized that black holes evaporate, and
the radiation is thermal. This led him to the idea that
after evaporation, the information is lost [78–80]. Many
solutions were proposed, such as [81–94]. It was proposed

that QuantumGravity would naturally cure this problem, but
it has been suggested that in fact it would make the problem
exist even in the absence of black holes [95].

Since the extended Schwarzschild solution can be foliated
in space + time (Sections 5 and 8.2), it can be used to
represent evaporating electrically neutral nonrotating black
holes.The solution can be analytically extended beyond 𝑟 = 0,
and hence the affirmation that the information is lost at the
singularity is no longer supported. In Figure 4, it can be seen
that our solution extends through the singularity and allows
the existence of globally hyperbolic spacetimes containing
evaporating black holes.

9. Possible Experimental Consequences and
Quantum Gravity

9.1. CanWe Do Experiments with Singularities? We reviewed
the foundations of Singular General Relativity (SGR) and
its applications to black hole singularities. SGR is a natural
extension of GR, but, nevertheless, it would be great to be
able to submit it to experimental tests. We have seen that
the solutions are the same as those predicted by Einstein’s
equation, as long as the metric is nondegenerate. The only
differences appear where the metric is degenerate, at singu-
larities. But how can we go to the singularities, or how can we
generate singularities, and test the results at the singularities?
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Figure 3: Reissner-Nordström black hole solutions, extended beyond the singularities and restricted to globally hyperbolic regions. (a) Naked
solutions (𝑞2 > 𝑚2). (b) Extremal solution (𝑞2 = 𝑚2). (c) Solutions with 𝑞2 < 𝑚2.
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Figure 4: (a) Standard evaporating black hole, whose singularity destroys the information. (b) Evaporating black hole extended through the
singularity preserves information and admits a space + time foliation.
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How could we design an experimental apparatus which is not
destroyed by the singularity? It seems that a direct experiment
to test the predictions of SGR is not possible.

What about indirect tests? For example, if information
is preserved, this would be evidence in favor of SGR. But
how can we test this? Can we monitor a black hole, from
the time when it is formed to the time when it evaporates
completely, and check that the information is preserved
during this entire process? The current knowledge predicts
that this information will be anyway extremely scrambled.
Even if we would be able to do this someday, the conservation
of information is predicted by a long list of other approaches
to Hawking’s information loss paradox (see Section 8.4).

In General Relativity, classical elementary particles can
be considered small black holes. If they are pointlike and
have definite trajectories, then they are singularities, like
the Schwarzschild, Reissner-Nordström, and Kerr-Newman
singularities. To go from classical to quantum, one applies
path integrals over the classical trajectories. In this way,
possible effects of the singularities may also be present at the
points where the metric is nonsingular.

In [96] we suggested that the geometric and topological
properties we identified at singularities have implications to
Quantum Gravity (QG), as we shall see in the following.This
suggests that it might be possible to test our approach by
QG effects. One feature that seems to be required by most, if
not all approaches to QG, is dimensional reduction. Singular
General Relativity shows that singularities are accompanied
in a natural way by dimensional reduction.

9.2. Dimensional Reduction in QFT And QG. Various results
obtained in Quantum FieldTheory (QFT) and in QG suggest
that at small scales a dimensional reduction should take place.
The definition and the cause of this reduction differ from one
approach to another. Here is just a small part of the literature
using one formof dimensional reduction or another to obtain
regularization in QFT and QG:

(i) fractal universe [97, 98], based on a Lebesgue-Stieltjes
measure or a fractional measure [99], fractional
calculus, and fractional action principles [100–109];

(ii) topological dimensional reduction [110–114];
(iii) vanishing dimensions at LHC [115];
(iv) dimensional reduction in QG [116–118];
(v) asymptotic safety [119];
(vi) Ho ̆rava-Lifschitz gravity [120];
(vii) other approaches to Quantum Gravity based on

dimensional reduction including [121–126].

Some of these types of dimensional reduction are very
similar to those predicted by SGR to occur at benign singu-
larities.

9.3. Is Dimensional Reduction due to the Benign Singularities?
Quantum Gravity is perturbatively nonrenormalizable, but it
can bemade renormalizable by assuming one kind or another
of dimensional reduction. The above mentioned approaches

did this, by modifying General Relativity. In this section
we point that several types of dimensional reduction, which
were postulated by various authors, occur naturally at our
semiregular and quasi-regular singularities [96].

9.3.1. Geometric Dimensional Reduction. First, at each point
where the metric becomes degenerate, a geometric or metric
reduction takes place, because the rank of the metric is
reduced:

dim 𝑇
𝑝∙
𝑀 = dim 𝑇

∙

𝑝
𝑀 = rank 𝑔

𝑝
. (52)

9.3.2. Topological Dimensional Reduction. From the Kupeli
theorem [47] follows that for constant signature, themanifold
is locally a product 𝑀 = 𝑃 ×

0
𝑁 between a manifold of

lower dimension 𝑃 and another manifold 𝑁 with metric 0.
In other words, from the viewpoint of geometry, a region
where themetric is degenerate and has constant signature can
be identified with a lower dimensional space. This suggests
a connection with the topological dimensional reduction
explored by Shirkov and Fiziev [110–114].

9.3.3. Vanishing of Gravitons. If the singularity is quasi regu-
lar, the Weyl tensor 𝐶

𝑎𝑏𝑐𝑑
→ 0 as approaching a quasi-

regular singularity. This implies that the local degrees of free-
dom, that is, the gravitational waves for GR and the gravitons
for QG, vanish, allowing by this the needed renormalizability
[116].

9.3.4. Anisotropy between Space and Time. In [43] we
obtained new coordinates, which make the Reissner-Nord-
ström metric analytic at the singularity. In these coordinates,
the metric is given by (40). A charged particle with spin 0 can
be viewed, at least classically, as a Reissner-Nordström black
hole. The above metric reduces its dimension to dim = 2.

To admit space + time foliation in these coordinates, we
should take 𝑇 ≥ 3𝑆. An open research problem is whether
this anisotropy is connected to the similar anisotropy from
Hořava-Lifschitz gravity, introduced in [120].

9.3.5. Measure Dimensional Reduction. In the fractal universe
approach [97, 98, 127], one expresses the measure in the
integral

𝑆 = ∫

M

d (𝑥)L, (53)

in terms of some functions 𝑓
(𝜇)
(𝑥), some of them vanishing

at low scales:

d (𝑥) =
𝐷−1

∏

𝜇=0

𝑓
(𝜇) (

𝑥) d𝑥𝜇. (54)

In Singular General Relativity,

d (𝑥) = √− det 𝑔d𝑥𝐷. (55)
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If the metric is diagonal in the coordinates (𝑥𝜇), then we can
take

𝑓
(𝜇) (

𝑥) = √







𝑔
𝜇𝜇 (

𝑥)







.
(56)

This suggests that the results obtained by Calcagni by
considering the universe to be fractal follow naturally from
the benign metrics.

9.4. Dimensional Reduction and Quantum Gravity. The Sin-
gular General Relativity approach leads, as a side effect,
to various types of dimensional reduction, which are sim-
ilar to those proposed in the literature to make Quantum
Gravity perturbatively renormalizable. By investigating the
nonrenormalizability problems appearing when quantizing
gravity, many researchers were led to the conclusion that the
problem would vanish if one kind of dimensional reduction
or another is postulated (sometimes ad hoc). By contrary, our
approach led to this as a natural consequence of understand-
ing the singularities.

Of course, in SGR the dimensional reduction appears at
the singularity, while QG is expected to be perturbatively
renormalizable everywhere. But if classical particles are sin-
gularities, quantum particles behave like sums over histories
of classical particles. Thus, at any point there will be virtual
singularities to contribute to the Feynman integrals. This
means that the effects will be present everywhere. They are
expected as a reduction of the determinant of the metric,
and of the Weyl curvature tensor, which allows the desired
regularization. Moreover, as the energy increases, the order
of the Feynman diagrams in the same region increases, and
we expect that the dimensional reduction effects induced
by singularities become more significant too. It is an open
question at this time whether this dimensional reduction is
enough to regularize gravity, but this research is just at the
beginning.

10. Conclusions

We reviewed some of our results of Singular General Rel-
ativity [38], concerning the black hole singularities. Some
singularities allow the canonical and invariant construction
of geometric objects which remain smooth and nonsingular.
By using these objects, one can write equations which are
equivalent to Einstein’s equations outside singularities but
in addition extend smoothly at singularities. The FLRW big
bang singularities turn out to be of this type. The black
hole singularities can be made so by removing the coor-
dinate singularity for the charged black hole singularities,
the electromagnetic potential and field become smooth. The
singularities of the black hole having a finite life span are com-
patible with global hyperbolicity and conservation of infor-
mation. Such singularities are accompanied by dimensional
reduction, a feature which is desired by many approaches to
Quantum Gravity. While in these approaches dimensional
reduction is obtained by modifying General Relativity, these
singularities lead naturally to it, within the framework of GR.

There is a rich literature concerning gravity, black holes,
and singularities in lower or higher dimensions (see e.g.,
[76, 128–130] and references therein). While the geometric
apparatus of Singular Semi-Riemannian Geometry reviewed
in Section 3 works for other dimensions too, in this review
we focused only on four-dimensional spacetimes, and some
of the results do not work in more dimensions.
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There is a lot of current astrophysical evidence and interest in intermediate mass black holes (IMBH), ranging from a few hundred
to several thousand solar masses. The active galaxy M82 and the globular cluster G1 in M31, for example, are known to host such
objects. Here, we discuss several aspects of IMBH such as their expected luminosity, spectral nature of radiation, and associated
jets. We also discuss possible scenarios for their formation including the effects of dynamical friction, and gravitational radiation.
We also consider their formation in the early universe and also discuss the possibility of supermassive black holes forming from
mergers of several IMBH and compare the relevant time scales involved with other scenarios.

1. Introduction

Intermediate mass black holes (IMBH) are those black holes
havingmass between that of stellar black holes and supermas-
sive black holes, that is, in the range of 500 to 104M

Θ
. Recent

observations indicate an intermediate mass black hole in the
elliptical galaxy NGC 4472, with an X-ray luminosity of 4 ×

1032 J/s [1].
The Schwarzschild radius corresponding to these masses

is of the order of

𝑅
𝑆
=

2𝐺𝑀

𝑐

2
≈ 1.5 × 10

3
− 3 × 10

4 km. (1)

An accretion disc is formed by material falling into a
gravitational source. Conservation of angular momentum
requires that, as a large cloud of material collapses inward,
any small rotation it may have will increase. Centrifugal force
causes the rotating cloud to collapse into a disc, and tidal
effects will tend to align this disc’s rotation with the rotation
of the gravitational source in the middle.

The Bondi accretion rate for a black hole (of mass M
moving with a velocity V in a medium of density 𝜌 = 𝑛𝑚

𝑃
),

is given by [2]:

𝑚 = 4𝜋𝑅

2
𝑛𝑚
𝑃
𝑉, (2)

where 4𝜋𝑅

2 is the cross section and it is given by 4𝜋𝑅

2
=

4𝜋(𝐺𝑀/𝑉

2
)

2.
The velocity is given by

𝑉

2
= 𝑐

2

𝑆
+ V2, (3)

where 𝑐
𝑆
is the velocity of sound in the medium of density

𝜌 and it is given by 𝑐
𝑆
= √𝛾𝑇𝑅, and 𝛾 = 5/3 is the ratio of

specific heats and 𝑅 is the universal gas constant.
The equation describing the velocity of isothermal winds

has many solutions depending on the initial conditions at the
base of the wind.There is only one critical solution for which
the velocity increases from subsonic at the base to supersonic
far out. This velocity passes through the critical point and
implies one particular value of the initial velocity at the lower
boundary of the isothermal region.
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If the density at this point is fixed, the mass loss rate
is fixed by (2) as 𝑚 = 4𝜋𝑅

2

0
𝑛𝑚
𝑃
𝑉. The total energy

increases from negative at the base of the wind to positive
in the supersonic region, so the flow requires the input
of energy into the wind. This energy input is needed to
keep the flow isothermal and it is this energy that is
transferred into kinetic energy of the wind through the gas
pressure.

As we will see in the next section, for an intermediate
mass black hole, the temperature is typically of the order of
10

4 K. In this case, the velocity of sound 𝑐
𝑆
= √𝛾𝑇𝑅 is of the

order of 104m/s.
Also we have 𝑅 = 2𝐺𝑀/𝑉

2; hence, the accretion rate is
given by

𝑚 =

4𝜋𝑛𝑚
𝑃(
𝐺𝑀)

2

𝑉

3
.

(4)

For a typical number density of 𝑛 ≈ 10

20
/𝑚

3, and
the IMBH mass of 𝑀 = 10

4M
Θ
, the accretion rate is:

𝑚=10

17 kg/s.
The above expression implies that the higher the density

of the medium through which the black hole is travelling, the
more the accretion rate. Also, the accretion rate is inversely
related to the velocitywithwhich the black hole is travelling in
themedium. Although there is notmuch conclusive evidence
for the IMBH, there is indirect evidence.

For a given mass of luminous object, there is a maximum
value for its luminosity (Eddington luminosity), as the radia-
tion pressure would tend to push the matter apart exceeding
the gravitational force supporting it. This is the luminosity
a body would have to have so that the force generated
by radiation pressure exceeds the gravitational force. Thus,
observed luminosity can set a lower limit on the mass of an
accreting black hole.

Chandra and XMM-Newton observations in the nearby
spiral galaxy have detected X-ray sources of luminosities of
the order of 1033W,with the source away from the centre [3].
In Section 4, we will discuss the dynamics of the IMBH.

The X-ray luminosity corresponding to the accretion rate
of 𝑚 = 10

17 kg/s is given by 𝐿
𝑋
= 𝜀𝑚𝑐

2
≈ 5 × 10

31W. This
matches with recent observed results [4].

The Eddington luminosity (for an IMBHofmass 104M
Θ
)

is given by:

𝐿Edd =
4𝜋𝑐𝐺𝑀𝑚

𝑃

𝜎
𝑇

≈ 10

35W, (5)

where, the Thomson cross section is given by:

𝜎
𝑇
=

8𝜋

3

(

𝑒

2

𝑚
𝑒
𝑐

2
)

2

≈ 10

−28m2. (6)

A possible candidate for the IMBH is the globular cluster
G1 inM31, which is themostmassive stellar cluster in the local
group, with a mass of the order of 107M

Θ
.

Due to a large number of field stars contained within
the accretion radius the Bondi accretion by an IMBH is
complicated [4]. The accretion radius is given by

𝑅acc =
2𝐺𝑀BH

V2
≈ 0.4 pc, for 𝑀BH = 10

4M
Θ
;

V ≈ 15 km/s.
(7)

In the case of globular cluster G1 in M31, there are more
than 10

5 stars within 0.4 pc of the centre [5]. The dynamical
effects of these stars should also be considered.

Many more such dense stellar clusters are known to exist.
For instance, a recently recognised super star cluster in our
own galaxy is the Westerlund I. Most of its estimated half a
million stars are crowded in a region hardly 3 parsecs wide.
Several dozen of these stars are among the most massive and
luminous superhot Wolf-Rayet stars, LBV, red supergiants,
yellow hypergiants, and so forth. Also, near the Milky Way
centre, we have the well-known Arches and Quintuplet
clusters.

In the centre of M15 there are approximately five million
stars per cubic parsec, having hundred million times more
stellar density than the solar neighbourhood. Also galaxies
like M31, M33, and the Milky Way itself have comparable
central stellar densities. However M32 (satellite galaxy of
Andromeda) has thirty million stars in a cubic parsec at its
core. Even HST cannot resolve individual stars in this region.

More andmoremassive binary stars are being found, like,
for instance, WR20a (>80M

Θ
each, with 3.7-day period). As

discussed above, IMBH is likely to form in dense clusters
containing young massive stars. IMBH is believed to power
ultraluminous X-ray sources (ULXs). IMBH can capture
companion stars, which provide accreting material to sustain
ULX. These stars may be blue giants, white dwarfs, and so
forth.

Tidal forces can rip giants and the material can fall into
the IMBH. To rip apart these stars themass of the black hole is
around themass of the IMBH [6].The energy released during
this process will be the binding energy of the stars which is
given by

𝐸BE =

3

5

𝐺𝑀

2

𝑅

≈ 10

42 J. (8)

Several ULXs are identified in the Antenna, a pair of
colliding galaxies, producing several stars in dense cluster.
Stellar collisions lead to formation of so-called megastars
(∼103M

Θ
), which collapses on short time scales to form

IMBH.Clusters inM82 have such stellar densities. Binary and
multiple IMBH can also form.

2. Black Body Considerations of IMBH

We have already obtained the Eddington luminosity as

𝐿Edd =
4𝜋𝑐𝐺𝑀𝑚

𝑃

𝜎
𝑇

. (9)
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By considering the black hole emission to obey black body
radiation, we can use Stefan’s law to relate the luminosity to
the temperature, 𝑇, as

4𝜋𝑐𝐺𝑚
𝑃
𝑀

𝜎
𝑇

= 𝜎𝐴𝑇

4

max, (10)

where 𝜎 is Stefan’s constant and area of the black hole and it
is given by

𝐴 = 𝑓 (4𝜋𝑅

2

𝑆
) , (11)

where 𝑅
𝑆

= 2𝐺𝑀/𝑐

2 is the Schwarzschild radius and 𝑓

indicates the size of the ambient gas around the black hole.
Making use of this in (10) we get

𝑇

4

max = (

𝑐

5

𝐺

𝑚
𝑃

𝑓𝜎
𝑇
𝜎

)𝑀 ⇒ 𝑇max ∝ 𝑀

−1/4
. (12)

This implies that the temperature of the IMBH (accretion
disk) of mass of the order of 500 to 10

4M
Θ
and 𝑓 ranging

from 10 to 100 is

𝑇max ≈ 3 × 10

6 K. (13)

From Wien’s law the corresponding wavelength is given
by

The corresponding wavelength is

𝜆 =

(2.898 × 10

−3 Km)

𝑇

≈ 10

−9m.

(14)

This lies in the soft X-ray region of the spectrum [7].
During the earlier epochs of the universe, the density was

much larger; hence, the ambient density is also larger by the
same factor of (1 + 𝑧)

3.
The present density of the universe is of the order of

one proton per cubic metre. As we will see in Section 5, the
maximum redshift up to which we can detect supermassive
black hole is of the order of 𝑧 = 12.

The number density at this epoch is given by

𝑛 = 1 p/m3(1 + 𝑧)

3
≈ 10

3 p/m3. (15)

The temperature corresponding to this redshift and this
number density is of the order of

𝑇 ≈ 2 × 10

7 K. (16)

And the corresponding wavelength is of the order of
10

−10m.
This falls in the X-ray region of the spectrum.
This wavelength is further red-shifted by a factor of (1 +

𝑧). Hence, the observed wavelength will be of the order of
7 × 10

−8m.
This lies in the UV region of the spectrum.

3. Jets from the Black Hole

One of the manifestations of this accretion energy release
is the production of so-called jets: the collimated beams
of matter that are expelled from the innermost regions of
accretion disks. These jets shine particularly brightly at radio
frequencies. In rotating black holes, the matter forms a disk
due to the mechanical forces present. In a Schwarzschild
black hole, the matter would be drawn in equally from all
directions and thus would form an omnidirectional accretion
cloud rather than disk. Jets form in Kerr black holes (rotating
black holes) that have an accretion disk [8].

Black holes convert a specific fraction of accretion energy
into radiation, which is traced by the X-ray luminosity and
jet kinetic energy, which is traced by the radio-emission
luminosity [9]. The matter is funnelled into a disk-shaped
torus by the black hole’s spin and magnetic fields, but, in
the very narrow regions over the black hole’s poles, matter
can be energized to extremely high temperatures and speeds,
escaping the black hole in the form of high-speed jets.
Inferred jet velocities close to the speed of light suggest that
jets are formed within a few gravitational radii of the event
horizon of the black hole.

The horizon for the Kerr black hole is given by

𝑟 = 𝑚 ±
√
𝑚

2
− 𝑎

2
. (17)

Here, 𝑚 = 𝐺𝑀/𝑐

2 is the geometric mass and 𝑎 =

𝐽max/𝑀𝑐

2 is the geometric angular momentum.
From the condition that 𝑟 should be real, the limiting case

is given by𝑚 = 𝑎.
From this, the maximum angular momentum is given by

𝐽max =
𝑀

2
𝐺

𝑐

.
(18)

From the classical expression for the angular momentum
associated with a jet of length 𝑙, assuming the particles to be
travelling at near speed of light, the expression becomes

𝐽 = 𝑚𝑐𝑙. (19)

Considering a conical jet with base radius r and density
𝜌, the mass of the jet is given by

𝑚 =

1

3

𝜋𝑟

2
𝑙𝜌. (20)

Then the angular momentum becomes

𝐽 =

1

3

𝜋𝑙

2
𝑟

2
𝑐𝜌. (21)

From the geometry of the jet, we can relate the length of
the jet to the radius r as 𝑟 = 𝑙 tan 5∘. Here, we have assumed
the small opening angle of the jet to be 5∘.

Length of the jet is

𝑙 = (

3𝐺𝑀

2

𝜋𝜌𝑐

2
(tan 5)2

)

1/4

. (22)

For typical densities of the ambient gas and for the IMBH
of mass 104M

Θ
, the length is of the order of 20 pc.
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4. Evolution of a Star Cluster and Possible
Scenario for IMBH Formation

One of the possible models for the formation of an IMBH is
the collapse of a cluster of stars [10]. The collapsed core can
accrete matter ejected during the formation. If a collection of
a thousand 10 solar mass stars in a volume of a parsec cube
collapses, ejecting 30% of its mass, then the total mass of the
ambient gas is given by

𝑛𝑚
𝑃
= 0.3 × 10

3
× 10M

Θ
≈ 6 × 10

33 kg. (23)

The accretion rate is given by (4) as

𝑚 =

16𝜋𝑛𝑚
𝑃
𝐺

2
𝑀

2

𝑐

3
.

(24)

If 30% of the mass of each star is ejected, then this implies
an accretion rate of𝑚 ≈ 4× 10

7 kg/s. And the corresponding
(Eddington) luminosity is

𝐿Edd =
𝐺𝑀𝑚

𝜎
𝑇
𝑅

2

𝑆
𝑛

≈ 10

24W. (25)

Dynamical friction is related to loss of momentum and
kinetic energy ofmoving bodies through a gravitational inter-
actionwith surroundingmatter in space.The effectmust exist
if the principle of conservation of energy and momentum is
valid since any gravitational interaction between two ormore
bodies corresponds to elastic collisions between those bodies.
For example, when a heavy body moves through a cloud of
lighter bodies, the gravitational interaction between this body
and the lighter bodies causes the lighter bodies to accelerate
and gain momentum and kinetic energy.

Since energy and momentum are conserved, this body
has to lose a part of its momentum and energy equal to
the sums of all momenta and energies gained by the light
bodies. Because of the loss of momentum and kinetic energy
of the body under consideration, the effect is called dynamical
friction. Of course the mechanism works the same way for
all masses of interacting bodies and for any relative velocities
between them.

However, while in the above case the most probable out-
come is the loss of momentum and energy by the body under
consideration, in the general case it might be either loss or
gain. In a case when the body under consideration is gaining
momentum and energy, the same physical mechanism is
called sling effect.

The full Chandrasekhar dynamical friction formula for
the change in velocity of the object involves integrating over
the phase space density of the field ofmatter [11]. By assuming
a constant density, though, a simplified equation for the force
from dynamical friction, 𝑓

𝑑
, is given as

𝑓
𝑑
≈ 𝐶

(𝐺𝑀)

2
𝜌

V2
𝑀

, (26)

where 𝐺 is the gravitational constant, 𝑀 is the mass of the
moving object, 𝜌 is the density, and V

𝑀
is the velocity of the

object in the frame in which the surrounding matter was
initially at rest.

In this equation, 𝐶 is not a constant but depends on how
V
𝑀

compares to the velocity dispersion of the surrounding
matter. The greater is the density of the surrounding media,
the stronger will be the force from dynamical friction.
Similarly, the force is proportional to the square of themass of
the object.The force is also proportional to the inverse square
of the velocity. This means the fractional rate of energy loss
drops rapidly at high velocities.

Dynamical friction is, therefore, unimportant for objects
thatmove relativistically, such as photons. Dynamical friction
is particularly important in the formation of planetary sys-
tems and interactions between galaxies.

During the formation of planetary systems, dynamical
friction between the protoplanet and the protoplanetary disk
causes energy to be transferred from the protoplanet to the
disk. This results in the inward migration of the protoplanet.

When galaxies interact through collisions, dynamical
friction between stars causes matter to sink toward the centre
of the galaxy and for the orbits of stars to be randomised.The
dynamical friction comes into effect in the evolution of cluster
between the ambient gas and dust and the central IMBH.

If an IMBHofmass𝑀BH ismoving with a velocity of V
𝑏
in

a uniform background of “fixed” lighter stars of equal masses
𝑚. Then as the IMBHmoves, a star approaching with impact
parameter 𝑏, will have a velocity change given by:

ΔV ≈ 𝑎Δ𝑡, (27)

where Δ𝑡 is the encounter duration and 𝑎 is the acceleration.
They are given by

𝑚𝑎 =

𝐺𝑚𝑀BH
𝑏

2
; Δ𝑡 =

𝑏

V
𝑏

. (28)

The change in velocity becomes

ΔV ≈ 𝑎Δ𝑡 ≈

𝐺𝑀BH
𝑏

2

𝑏

V
𝑏

. (29)

The kinetic energy gained by the star corresponding to
this change in velocity is given by

Δ𝐸 =

1

2

𝑚(ΔV)2 ≈
1

2

𝑚(

𝐺𝑀BH
𝑏V
𝑏

)

2

. (30)

If 𝑛 is the number density of the stars, then the number
of encounters with impact parameter between 𝑏+Δ𝑏 and 𝑏 is
given by

Δ𝑁 ≈ 𝑛 (VBHΔ𝑡) Δ (𝜋𝑏

2
) . (31)

The total change in velocity is given by

𝑑VBH
𝑑𝑡

≈

1

𝑀BHVBH
∫

𝑑𝐸

𝑑𝑡

𝑑𝑁 ≈

𝜋𝐺

2
𝑛𝑀BH
V2BH

∫

𝑏2

𝑏1

𝑑𝑏

𝑏

, (32)

where 𝑏
1
, the lower bound on 𝑏, is given for the case where

the gravitational energy is of the order of the kinetic energy
of the black hole. That is,

𝐺𝑚𝑀BH
𝑏
1

≈

1

2

𝑚V2BH. (33)
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And the upper limit 𝑏
2
is the size of the system. Let

∫

𝑏2

𝑏1

(𝑑𝑏/𝑏) = lnΛ.
Then the total change in velocity of the black hole is given

by

𝑑VBH
𝑑𝑡

≈

𝜋𝐺

2
𝑛𝑀BH
V2BH

lnΛ. (34)

In the above discussionwe have assumed that the stars are
stationary. This need not be true. If the stars have a velocity
dispersion of 𝜎 and the black hole is moving at a slower
velocity than this, that is, VBH ≪ 𝜎, then the dynamical
friction force is given by

𝐹DF = 𝑚𝑎DF ≈
−3𝜋𝐺

2
𝑛𝑚𝑀

2

BH lnΛ

(√2𝜎)

3
VBH = −𝛾VBH, (35)

where

𝛾 =

−3𝜋𝐺

2
𝑛𝑚𝑀

2

BH lnΛ

(
√
2𝜎)

3
. (36)

In the case of the velocity of the black hole being faster
than 𝜎, the dynamical friction will be reduced and the black
hole will slide through the cluster.

Theblack hole is also subjected to a gravitational force due
to the star cluster, which is given by

∇

2
𝜙 (𝑟) = 4𝜋𝐺𝜌 (𝑟) = 4𝜋𝐺𝑚𝑛 (𝑟) , (37)

where 𝑛(𝑟) is the density distribution of stars and 𝑚 is the
typical mass of the star (assuming all stars are of the same
mass).

For a constant density, 𝜌(𝑟) = 𝜌
0
, the potential is given by

𝜙 (𝑟) = −2𝜋𝐺𝜌
0
(𝑅

2
−

1

3

𝑟

2
) , (38)

where 𝑅 is the radius of the cluster.
The gravitational force on the black hole is given by

𝐹
𝑔
= −𝑀BH∇𝜙 (𝑟) = −

4

3

𝜋𝐺𝜌
0
𝑀BH𝑟 = −𝑘𝑟. (39)

(The particle inside a homogenous gravitational system
performs simple harmonic motion!)

The equation ofmotion of the black hole in the star cluster
is given by

𝑀BH
𝑑

2
𝑟

𝑑𝑡

2
+ 𝑘𝑟 + 𝛾

𝑑𝑟

𝑑𝑡

= 0.
(40)

This corresponds to a damped oscillator. And the solution
is given by [12]

𝑟 = 𝑀BH exp(−
𝛾𝑡

2𝑀BH
) cos((√ 𝑘

𝑀BH
) 𝑡 + 𝛾) . (41)

The black hole undergoes a damped oscillation in the star
cluster. The damping time corresponding to the system is
given by

𝑡 =

𝑀BH
𝛾

, (42)

where

𝛾 =

−3𝜋𝐺

2
𝑛𝑚𝑀

2

BH lnΛ

(
√
2𝜎)

3
. (43)

In the case of the system M82, which harbours an IMBH
of mass in the range of 500 to 10

4M
Θ
, the black hole is not

found at the centre but displaced by about one kilo-parsec
from the centre.

The period corresponding to the oscillation is given by

𝑇 =

2𝜋

𝜔

; 𝜔 = √

𝑘

𝑀BH
≈ 10

−13 s−1. (44)

From (37), we can work out the time taken for the BH to
shift by this distance. Using this equation along with (32) and
(35), we get the time of the order of 106 years.

For the system under consideration, the number density
of the stars in the cluster is 𝑛 ≈ 10

4
/(pc)3, typical mass of the

star in the cluster is about one solar mass, and the velocity
dispersion is of the order of 𝜎 ≈ 30 km/s.

We get the damping time for the system as

𝑡 =

(
√
2𝜎)

3

3𝜋𝐺

2
𝑛𝑚𝑀BH lnΛ

≈ 4 × 10

12 s. (45)

This works out to be of the order of 105 years.
Taking the effects of dynamical friction into considera-

tion, the relaxation time for the system to form the IMBH is
given by

𝑡 =

V3

𝑛𝐺

2
𝑀

2

BH ln𝑁
≈ 10

7 years. (46)

For a denser core, that is, about 103 stars/(0.01 pc)3, the
time taken to form the IMBH is given by

𝑡 =

V3

𝑛𝐺

2
𝑀

2

BH ln𝑁
≈ 4 × 10

12 s = 10

6 years. (47)

5. Formation of Supermassive Black Hole
(SBH): Merger of IMBH

Zwart et al. [13] propound that dense star densities near
galactic centres can lead to runaway stellar mergers thus
efficiently producing IMBH. Indeed they suggest that the
inner most ten parsecs of our galaxy can contain about 50
IMBH each of about thousand solar masses. These can sink
towards the core as they interact with the stars. Every time an
IMBH has a stellar encounter, the stars’ velocity is boosted.
This reduces the potential energy making the IMBH sink to
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the galactic core.These IMBH can thus ultimatelymerge with
the galaxy’s supermassive black hole.

However if there are not enough stars very near to the
galaxy’s SBH, then the IMBHmay stop falling inward, halting
at about 0.01 light years from the centre. However if there are
several IMBH near the galactic core, they can interact with
one another and once everymillion years an IMBHcanmerge
with the SBH.

It has been suggested that the presence of several IMBH
near the galactic centre might explain why there are so many
clusters of young stars (like S2, the B type star) in the galactic
core, where tidal forces should rip apart the gas clouds from
which the stars form.

These stars could have formedmuch further away and the
IMBH could have shepherded them inwards, much like the
thin rings of Uranus or Saturn that are kept in place by being
“shepherded” by tiny satellites.

This IMBH can merge with the stars in the surrounding
volume (∼106M

Θ
/(1 pc)3) to give a supermassive black hole

in the time scale given by

𝑡 =

V3

𝑛𝐺

2
𝑀

2 ln𝑁
≈ 10

15 s = 10

8 years. (48)

This is the time scale for relaxing in a cluster of𝑁 objects
of averagemass𝑀movingwith amean velocity of V. If𝜎 is the
average cross section for interaction,𝜎 ≈ (𝐺𝑀/V2)

2

; (𝐺𝑀/V2)
gives the “radius” of the sphere of influence around a given
individual object and the mean free path is 1/𝑛𝜎, and 𝑛

is the number density of objects. Then the “collision” or
“interaction” time scale is given by

𝑡 ≈

1

𝑛𝜎V
=

1

𝑛(𝐺𝑀/V2)2V
=

V3

𝑛𝐺

2
𝑀

2
. (49)

The ln𝑁 term comes from many body effects (i.e.,
∫(𝑑𝑁/𝑁), the so-called Coulomb logarithm in plasma
physics). This leads to (48). Note the sharp V3 dependence as
well as 1/𝑛𝑀2.

Themaximum redshift observed till now is of the order of
𝑧 = 6.3.The age of the universe corresponding to this redshift
is given by

𝑡 =

1

𝐻
0

(

1 − (1 + 𝑧)

−1/2

1 + 𝑧

) ≈ 10

9 yrs. (50)

The above equation is the standard formula for the age
of the universe, corresponding to any redshift 𝑧. Higher 𝑧
implies younger objects. So 𝑧 = 6.3 corresponds to ∼109
years. Now, recent supermassive black holes are claimed to
have been observed at 𝑧 ≈ 10, hardly ∼5 × 108 years after the
big bang [14].

We estimate the time to form the black hole from the
accretion time scale, corresponding to Eddington luminosity.
This gives a logarithmic time scale of 𝑡

0
≈ 𝑐𝜎
𝑇
/4𝜋𝐺𝑚

𝑝
≈

5 × 10

8 years. These are typical time scales for growth of
massive black holes in the early universe.

Essentially we have (with𝑀 as the initial mass) accretion
power ≈ 𝐺𝑀

̇
𝑀/𝑅 ≤ 4𝜋𝐺𝑀𝑚

𝑝
𝑐/𝜎
𝑇
, with 𝑅 ≈ 𝑓(𝐺𝑀/𝑐

2
),

𝑓 is a numerical parameter, and integrating we get 𝑀 =

𝑀
0
exp((4𝜋𝐺𝑀𝑚

𝑝
/𝑐𝜎
𝑇
)𝑡) = 𝑀

0
exp(𝑡/𝑡

0
). This time can be

translated into corresponding redshift.
According to the model suggested above, the time taken

for the formation of SBH is of the order of 108 years. The
corresponding redshift is of the order of 𝑧 = 12. For redshifts
above this limit, as per this model, we should not be able to
detect any supermassive black holes.

Other possible ways in which SBH can form are the
following. (1)Thefirst is by themerger of two ormore IMBH.
Moving masses like black holes produce gravitational waves
in the fabric of space-time. A more massive moving object
will produce more powerful waves, and objects that move
very quickly will produce more waves over a certain time
period. (2)The second is by accretion of matter by the IMBH
in systems such as AGNs and quasars.

Gravitational waves are usually produced in an interac-
tion between two or more compact masses. Such interactions
include the binary orbit of two black holes orbiting each other.
As the black holes orbit each other, they send out waves of
gravitational radiation that reaches the Earth; however, once
the waves do get to the Earth, they are extremely weak.

This is because gravitational waves decrease in strength as
they move away from the source. Even though they are weak,
the waves can travel unobstructed within the fabric of space-
time.

From Kepler’s third law, the period is related to the
separation by

𝑃

2
=

4𝜋

2

𝐺 (𝑀
1
+𝑀
2
)

𝑅

3
. (51)

Knowing the period, we can determine the orbital veloc-
ity from V𝑃 = 2𝜋𝑅.

Power lost by gravitational waves (quadrupole formula
for gravitational waves) is given by (for objects of mass 𝑀
with separation of 𝑅)

̇
𝐸GW =

32

5

𝐺

𝑐

5
𝑀

2
𝑅

4
𝜔

6
. (52)

This emission results in the objects coming closer. The
merger time is obtained by integrating the rate of binding
energy change as follows:

𝐺𝑀

2

𝑅

2

𝑑𝑅

𝑑𝑡

=

32

5

𝐺

𝑐

5
𝑀

2
𝑅

4
𝜔

6
.

(53)

This implies a merger time for two objects separated by
an initial distance 𝑅

0
of

𝜏mer = 𝐾𝑅

4

0
. (54)

With the constant, 𝐾 = (5/256)(𝑐

5
/𝐺

3
)(1/𝑀

3
), for equal

mass objects.
So a larger initial separation would imply a longer merger

time. So for themerger time to be≈109 years or less, the initial
separation can be precisely calculated.
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For two IMBH of mass 𝑀 = 10

4M
Θ
each, to merge in

𝜏mer ≈ 10

9 years, the distance of separation should be of the
order of

𝑅 =

𝐺𝑀

2

𝜏mer ̇
𝐸GW

, (55)

where

̇
𝐸GW =

128V10

5𝐺𝑐

5
, V =

2𝜋𝑅

𝑃

,

𝑃 = (

4𝜋

2

𝐺 (𝑀
1
+𝑀
2
)

𝑅

3
)

1/2

⇒ V = √

2𝐺𝑀

𝑅

.

(56)

And the energy loss due to the gravitational waves
emission is given by

̇
𝐸GW =

128

5𝐺𝑐

5
(

2𝐺𝑀

𝑅

)

5

.
(57)

Therefore, the distance of separation is given by

𝑅 ≈ (8 × 10

2 (𝐺𝑀)

3
𝜏mer

𝑐

5
)

1/4

≈ 2 × 10

12m.
(58)

The corresponding orbital frequency is given by

𝑓 =

V
2𝜋𝑅

. (59)

The orbital velocity is of the order of

V = √

2𝐺𝑀

𝑅

≈ 10

6m/s. (60)

This implies that the frequency is 𝑓 ≈ 10

−7Hz, and hence
the period will be given by 𝑃 = 10

7 s = 1 year.
For two IMBH with separation of about 10−4 parsecs, the

time taken tomerge is of the order of Hubble time. For such a
model to produce an SBH, we need about 103 IMBHmerging
together.

Hence, the model discussed earlier, with the IMBH
merging with the surrounding stars, gives a much more
efficient way of generating a supermassive black hole.

In the case of accretion of matter by IMBH to form SBH,
the increase in mass is exponential with time

𝑀 = 𝑀
0
exp (𝑘𝑡) , (61)

where 𝑘

−1
= 𝑡
0
≈ 6 × 10

8 years is the characteristic time
required for the mass to increase 𝑒-fold, with the accreting
disk emitting at maximum luminosity.

For the IMBH to accrete enough matter to become SBH
of mass say 108M

Θ
, we have

exp (𝑘𝑡) = 𝑀

𝑀
0

= 10

4
. (62)

The corresponding time scale is of the order of

𝑡 ≈ 5 × 10

9 years. (63)

This implies that the mass will have to increase ≈ 𝑒

10-fold
by accretion for the IMBH to become an SBH. Hence, even
this model does not provide an efficient way of formation of
SBH from an IMBH.

IMBH would have formed in the early universe. Owing
to low metal content, the earliest stars would have been very
massive, a few hundred solar masses [15]. Such stars would
end up in a pair-instability supernova (around oxygen-neon
burning temperature of 2 billion degrees) and would collapse
into a black hole (if their mass exceeds 250 solar masses).

Oxygen-neon burning occurs at ∼2 × 109 K. At this stage,
temperatures are high enough for the electron-positron pair
production processes (𝛾 → 𝑒

+
+ 𝑒

−
). At ∼6 × 109 K, it

is maximal. Now if the nature of the black body radiation
changes from photons to electron-positron pairs (which are
fermions) the energy density is no longer 𝑎𝑇4 but (7/8)𝑎𝑇4.
So once the pairs are forming, the radiation pressure drops
by (1/8)𝑎𝑇

4. So there is less support against gravitational
collapse or gravitational contraction.

The balance between the two (or the “stability condition”)
can be expressed as

1

8

𝑎𝑇

4
≥

𝐺𝑀

2

𝑅

4
.

(64)

Now, 𝑇 ∼ 2 × 10

9 K, 𝑅 ∼ 2 × 10

8m (appropriate density
for oxygen-neon burning); this implies a limiting mass 𝑀
of 250 solar masses, beyond which the gravitational energy
density is higher. This result in the context of population III
supermassive stars is discussed by Heger and Woosley [16].

Signatures of such explosions of supermassive stars at
𝑧 ≈ 10 (when the universe was only half a billion years old
and eleven times smaller) could be sought with future space
telescopes [17, 18].

Observations of galaxy core show correlation between
black hole masses and the spheroidal (bulge) component of
the host galaxy. Thus, the primordial low mass galaxies (blue
galaxies) would host low mass central black holes, which just
correspond to the IMBHmass (about 10−5 to 10−6 the galaxy
mass). There is a well-known relation between black hole
mass and spheroidal bulge componentmass of the host galaxy
[19].

Typically, the black hole mass is 10

−3 the bulge mass.
Primordial galaxies (so-called blue galaxies as seen, e.g., in
Hubble deep field) have a lower mass ∼108 solar mass. This
would give a central black hole mass of ∼104 solar mass,
corresponding to a typical IMBH.

Merger of these primeval galaxies would lead to larger
galaxies and cluster and the IMBHwould alsomerge and sink
to the core forming an SBH (like, e.g., M87 has a 3 × 10

9M
Θ

black hole).

6. Concluding Remarks

We have discussed several aspects of the expected character-
istics of IMBH like their luminosity, accretion rate, formation,
and so forth. They are likely to have formed in the early
universe, around 𝑧 = 12. This redshift corresponds to a
minimal time scale for formation (and growth) of a massive
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black hole. Beyond 𝑧 = 12, the mass would not be large
enough, as not enough time would have elapsed for the
growth of black holes by accretion or merger. Supermassive
black holes are not likely to form from merger of IMBH.
Other possible scenarios are also discussed.
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Copyright © 2014 Alexis Larrañaga et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited. The publication of this article was funded by SCOAP3.

We determine the expression for the electrostatic potential generated by a point charge held stationary in the topologically charged
black hole spacetime arising from the Randall-Sundrum II braneworld model. We treat the static electric point charge as a linear
perturbation on the black hole background and an expression for the electrostatic multipole solution is given: PACS: 04.70.-s,
04.50.Gh, 11.25.-w, 41.20.-q, 41.90.+e.

1. Introduction

The idea of our universe as a brane embedded in a higher
dimensional spacetime has recently attracted attention.
According to the braneworld scenario, the physical fields
(electromagnetic, Yang-Mills, etc.) in our 4-dimensional
universe are confined to the three-brane and only gravity
propagates in the bulk spacetime. One of themost interesting
scenarios is Randall-Sundrum II model in which it is consid-
ered aZ

2
-symmetric, 5-dimensional, asymptotically anti-de-

Sitter bulk [1] and our brane is identified as a domain wall.
The 5-dimensional metric can be written in the general form
𝑑𝑠

2
= 𝑒

−𝐹(𝑦)
𝜂
𝜇]𝑑𝑥
𝜇
𝑑𝑥

]
+ 𝑑𝑦

2 and due to the appearance of
the warp factor, it reproduces a large hierarchy between the
scale of particle physics and gravity. Moreover, even if the
fifth dimension is uncompactified, standard 4-dimensional
gravity on the brane is reproduced. However, due to the cor-
rection terms coming from the extradimensions, significant
deviations from general relativity may occur at high energies
[2–4].

As is well known, in general relativity the exterior
spacetime of a spherical compact object is described by
Schwarzschild solution. In the braneworld scenario, the
high energy corrections to the energy density together with
Weyl stresses from bulk gravitons imply that the exterior

metric of a spherical compact object on the brane is no
longer described by Schwarzschild metric. In fact, black hole
solutions in the braneworldmodel are particularly interesting
because they have considerably richer physical aspects than
black holes in general relativity [5–11]. The first solutions
describing static and spherically symmetric exterior vacuum
solutions of the braneworldmodelwere proposed byDadhich
et al. [12] and Germani andMaartens [13] and later they were
generalised by Chamblin et al. [14] and revisited by Sheykhi
and Wang [15]. This kind of solutions carries a topological
charge arising from the bulkWeyl tensor and the line element
resembles Reissner-Nördstrom solution, with the tidal Weyl
parameter playing the role of the electric charge. In order
to obtain this solution, there was the null energy condition
imposed on the three-brane for a bulk having nonzero Weyl
curvature.

On the other hand, the generation of an electromagnetic
field by static sources in black hole backgrounds has been
considered in several papers beginning with the studies of
Copson [16], Cohen and Wald [17], and Hanni and Ruffini
[18] where they discussed the electric field of a point charge
in Schwarzschild background. Afterwards, Petterson [19]
and later Linet [20] studied the magnetic field of a current
loop surrounding a Schwarzschild black hole. More recently,
similar studies have been performed in other background
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geometries including charged black holes of general relativity
and black holes with Brans-Dicke modifications or with
conical defects [21–25].

In this paper we are interested in obtaining an expression
for the electrostatic potential generated by a point charge
held stationary in the region outside the event horizon of a
braneworld black hole.There are several vacuum solutions of
the spherically symmetric static gravitational field equations
on the brane with arbitrary parameters which depend on
properties of the bulk or that are simply put in by using gen-
eral physical considerations. At the present, it is theoretically
not known whether these parameters should be universal
over all braneworld black holes, or whether each separate
black hole may have different values of them. Similarly,
there is not a single complete solution in the sense that the
metric in the bulk is uniquely known. Since this situation
is unsatisfactory from a theoretical point of view, it may be
useful to investigate more closely the observational effects
of the black hole properties. Specifically, we consider the
effects due to the projections of theWeyl tensor and how they
specify the corrections on the electrostatic potential. Since
the generic form of the Weyl tensor in the full 5-dimensional
spacetime is yet unknown, the effects of known solutions
must be studied on a case-by-case basis. Although one can,
in principle, constrain the projections, this only yields very
mild constraints on the 5-dimensional Weyl tensor [26, 27].
Therefore we decided to derive the electrostatic potential
generated by a point charge held stationary in the outside
region of the event horizon of the particular solution in the
Randall-Sundrum braneworld model obtained by Dadhich
et al. [12] and revisited by Sheykhi and Wang [15]. In this
case, tidal charge is arising via gravitational effects from
the fifth dimension; that is, it is arising from the projection
onto the brane of free gravitational field effects in the bulk,
and is this term the one that will modify the electrostatic
potential produced by the particle.We obtain the corrections,
due to the topological charge arising from the bulk Weyl
tensor, to the electrostatic potential and deduce the necessary
correction to incorporate Gauss’s law. Finally we also present
the solution of Maxwell equations in the form of series of
multipoles.

2. The Topologically Charged Black Hole in
the Braneworld

The gravitational field on the brane is described by the Gauss
and Codazzi equations of 5-dimensional gravity [2],

𝐺
𝜇] = −Λ𝑔𝜇] + 8𝜋𝐺𝑇𝜇] + 𝜅

4

5
Π
𝜇] − 𝐸𝜇], (1)

where 𝐺
𝜇] = 𝑅

𝜇] − (1/2)𝑔𝜇]𝑅 is the 4-dimensional Einstein
tensor and 𝜅

5
is the 5-dimensional gravity coupling constant,

𝜅

4

5
= (8𝜋𝐺

5
)

2
=

48𝜋𝐺

𝜏

, (2)

with 𝐺
5
the gravitational constant in five dimensions and Λ

is the 4-dimensional cosmological constant that is given in

terms of the 5-dimensional cosmological constantΛ
5
and the

brane tension 𝜏 by

Λ =

𝜅

2

5

2

(Λ
5
+

𝜅

2

5

6

𝜏

2
) . (3)

𝑇
𝜇] is the stress-energy tensor of matter confined on the

brane, Π
𝜇] is a quadratic tensor in the stress-energy tensor

given by

Π
𝜇]

=

1

12

𝑇𝑇
𝜇] −

1

4

𝑇
𝜇𝜎
𝑇

𝜎

] +
1

8

𝑔
𝜇] (𝑇𝛼𝛽𝑇

𝛼𝛽
−

1

3

𝑇

2
)

(4)

with 𝑇 = 𝑇

𝜎

𝜎
, and 𝐸

𝜇] is the projection of the 5-dimensional
bulk Weyl tensor 𝐶

𝐴𝐵𝐶𝐷
on the brane (𝐸

𝜇] = 𝛿

𝐴

𝜇
𝛿

𝐵

]𝐶𝐴𝐵𝐶𝐷

𝑛

𝐴
𝑛

𝐵 with 𝑛𝐴 the unit normal to the brane). 𝐸
𝜇] encompasses

the nonlocal bulk effect and it is traceless, 𝐸𝜎
𝜎
= 0.

Considering the Randall-Sundrum scenario with

Λ
5
= −

𝜅

2

5

6

𝜏

2 (5)

which implies

Λ = 0, (6)

the four-dimensional Gauss and Codazzi equations for an
arbitrary static spherically symmetric object have been com-
pletely solved on the brane, obtaining a black hole type
solution of the field equations (1) with 𝑇

𝜇] = 0, given by the
line element [12, 14, 15, 28]

𝑑𝑠

2
= ℎ (𝑟) 𝑑𝑡

2
−

𝑑𝑟

2

ℎ (𝑟)

− 𝑟

2
𝑑Ω

2
, (7)

where 𝑑Ω2 = 𝑑𝜃2 + sin2𝜃𝑑𝜑2 and

ℎ (𝑟) = 1 −

2𝐺𝑀

𝑟

+

𝛽

𝑟

2
. (8)

For this model, the expression of the projected Weyl
tensor transmitting the tidal charge stresses from the bulk to
the brane is

𝐸

𝑡

𝑡
= 𝐸

𝑟

𝑟
= −𝐸

𝜃

𝜃
= −𝐸

𝜑

𝜑
=

𝛽

𝑟

4
. (9)

This result shows that the parameter 𝛽 can be interpreted
as a tidal charge associated with the bulk Weyl tensor and
therefore, there is no restriction on it to take positive as
well as negative values (other interpretations consider 𝛽 as
a five-dimensional mass parameter as discussed in [14]). The
induced metric in the domain wall presents horizons at the
radii (taking 𝐺 = 1). Consider the following:

𝑟
±
= 𝑀 ± √𝑀

2
− 𝛽.

(10)
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For 𝛽 ≥ 0 there is a direct analogy to the Reissner-
Nördstrom solution, showing two horizons that, as in general
relativity, both lie inside the Schwarzschild radius 2𝑀; that is,

0 ≤ 𝑟
−
≤ 𝑟
+
≤ 𝑟
𝑠
. (11)

Clearly, there is an upper limit on 𝛽, namely,

0 ≤ 𝛽 ≤ 𝑀

2
. (12)

However, there is nothing to stop us choosing 𝛽 to be
negative. This intriguing new possibility is impossible in
Reissner-Nördstrom case and leads to only one horizon, 𝑟

∗
,

lying outside the corresponding Schwarzschild radius,

𝑟
∗
= 𝑀 + √𝑀

2
+






𝛽






> 2𝑀.
(13)

In this case, the single horizon has a greater area that
its Schwarzschild counterpart. Thus, one concludes that the
effect of the bulk producing a negative 𝛽 is to strengthen the
gravitational field outside the black hole (obviously it also
increases the entropy anddecreases theHawking temperature
but these facts are not important in this paper).

3. The Electrostatic Field of a Point Particle

Copson [16] and Linet [20] found the electrostatic potential
in a closed formof a point charge at rest outside the horizon of
a Schwarzschild black hole and that the multipole expansion
of this potential coincides with the one given by Cohen and
Wald [17] and by Hanni and Ruffini [18]. In this section
we will investigate this problem in the background of the
topologically charged black hole (7).

According to the braneworld scenario, we will consider
that the physical fields are confined to the three brane and
if the electromagnetic field of the point particle is assumed
to be sufficiently weak so its gravitational effect is negligible,
and the Einstein-Maxwell equations reduce to Maxwell’s
equations confined in the curved backgroundof the brane (7).
These are written as

∇
𝜌
𝐹

𝜌𝜇
= 4𝜋𝐽

𝜇
, (14)

where

𝐹
𝜇] = 𝜕𝜇𝐴] − 𝜕]𝐴𝜇 (15)

with 𝐴

𝜇 the electromagnetic vector potential and 𝐽

𝜇 the
current density. Considering that the test charge 𝑞 is held
stationary at the point (𝑟

0
, 𝜃
0
, 𝜑
0
), the associated current

density 𝐽𝑖 vanishes while the charge density 𝐽0 is given by

𝐽

0
=

𝑞

𝑟

2

0
sin 𝜃

𝛿 (𝑟 − 𝑟
0
) 𝛿 (𝜃 − 𝜃

0
) 𝛿 (𝜑 − 𝜑

0
) . (16)

From now on, we will assume that the charge 𝑞 is held
outside the black hole; that is, 𝑟

0
> 𝑟
+
in the case 𝛽 ≥ 0

and 𝑟
0

> 𝑟
∗
in the case 𝛽 < 0. We will not consider

here the possibility of having the charge inside the event
horizon because; as well known, this construction leads to
the description of a charged black hole of the Reissner-
Nördstrom type [15].

The spatial components of the potential vanish, 𝐴𝑖 = 0,
while the temporal component 𝐴0 = 𝜙 is determined by the
𝜇 = 0 component of (14), giving the differential equation:

𝜕

𝜕𝑟

(𝑟

2 𝜕𝜙

𝜕𝑟

)

+ (1 −

2𝑀

𝑟

+

𝛽

𝑟

2
)

−1

× [

1

sin 𝜃
𝜕

𝜕𝜃

(sin 𝜃
𝜕𝜙

𝜕𝜃

) +

1

sin2𝜃
𝜕

2
𝜙

𝜕𝜑

2
]

= −𝑟

2
4𝜋𝐽

0
.

(17)

In order to solve this equation we will perform the
substitutions

𝑟 = 𝑟 + 𝑟
−
,

𝜙 (𝑟, 𝜃, 𝜑) =

𝑟 − 𝑟
−

𝑟

̃
𝜙 (𝑟 − 𝑟

−
, 𝜃, 𝜑)

(18)

which turn the differential equation into

𝜕

𝜕𝑟

(𝑟

2 𝜕
̃
𝜙

𝜕𝑟

)

+ (1 −

2𝑚

𝑟

)

−1

[

1

sin 𝜃
𝜕

𝜕𝜃

(sin 𝜃
𝜕
̃
𝜙

𝜕𝜃

) +

1

sin2𝜃
𝜕

2
̃
𝜙

𝜕𝜑

2
]

= −

4𝜋𝑞

sin 𝜃
𝛿 (𝑟 − 𝑟

0
) 𝛿 (𝜃 − 𝜃

0
) 𝛿 (𝜑 − 𝜑

0
) ,

(19)

where𝑚 = √𝑀

2
− 𝛽 and 𝑞 = 𝑞𝑟

0
/(𝑟
0
+ 𝑟
−
). Note that, in the

extremal case 𝑚 = 0, or equivalently𝑀2 = 𝛽, (19) becomes
Laplace’s equation in Minkowski spacetime. On the other
hand, when𝑚 ̸=0 (including values with 0 ≤ 𝛽 < 𝑀

2 as well
as 𝛽 < 0), (19) is formally identical to the partial differential
equation for the electrostatic potential in the Schwarzschild
spacetime. Hence, assuming 𝜃

0
= 0, 𝜑

0
= 0 and proceeding

in analogy with Copson [16], we find that the solution of (17),
after using the substitutions (18), is

𝜙
𝐶 (
𝑟, 𝜃) =

𝑞

𝑟
0
𝑟

(𝑟 − 𝑀) (𝑟0
−𝑀) − (𝑀

2
− 𝛽) cos 𝜃

√
(𝑟 −𝑀)

2
+ (𝑟
0
−𝑀)

2
− 2 (𝑟 −𝑀) (𝑟0

−𝑀) cos 𝜃 − (𝑀2 − 𝛽) sin2𝜃
. (20)
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This solution describes, as stated before, the potential for a
charge 𝑞 situated at the point (𝑟

0
, 0, 0) and it is regular for any

value of 𝑟 outside the event horizon, except at the position of
the point charge. However, as shown by Linet [20] and Léauté
and Linet [21], it is easy to see that this solution includes
another source. Note that, for 𝑟 → ∞, the potential 𝜙

𝐶
takes

the asymptotic form

𝜙
𝐶 (
𝑟, 𝜃) →

𝑞

𝑟

(1 −

𝑀

𝑟
0

) , (21)

and consequently, by virtue of Gauss’s theorem, there is a
second charge with value −𝑞𝑀/𝑟

0
. Solution (20) has only the

source 𝑞 outside the horizon and thus the second chargemust
lie inside the horizon. Moreover, since the only electric field
which is regular outside the horizon is spherical symmetric
[29], the electrostatic potential for our physical system will
be of the form

𝜙 (𝑟, 𝜃) = 𝜙𝐶 (
𝑟, 𝜃) +

𝑞

𝑟

𝑀

𝑟
0

. (22)

The electrostatic solution can be analysed for all values 𝑟.
Considering this equation, it is clear that when the charge 𝑞
is approaching the outer horizon 𝑟

+
in the case 𝛽 ≥ 0 or the

horizon 𝑟
∗
in the case𝛽 < 0, the electrostatic potential𝜙 tends

to become spherically symmetric, recovering a charged black
hole of the Reissner-Nördstrom type as stated before.

When 𝑟
0
> 2𝑀, there is only one charge 𝑞 in the case

𝛽 ≥ 0 as well as in the case 𝛽 < 0. However, when 𝑟
+
≤ 𝑟
0
<

2𝑀 in the case 𝛽 ≥ 0, there are also two other charges 𝑞
1
=

𝑞(1−2𝑀/𝑟
0
) and 𝑞

2
= −𝑞
1
located at (𝑟 = 2𝑀−𝑟

0
, 𝜃 = 𝜋) and

𝑟 = 0, respectively.This behaviour is obviously not present for
𝛽 < 0 because 𝑟

∗
> 2𝑀 as shown in Section 2 of this paper.

Finally, in order to write formally the electrostatic poten-
tial of a charge 𝑞 located at the arbitrary point with coor-
dinates (𝑟

0
, 𝜃
0
, 𝜑
0
), we simply replace the term cos 𝜃 by the

function 𝜆(𝜃, 𝜑) = cos 𝜃 cos 𝜃
0
+ sin 𝜃 sin 𝜃

0
cos(𝜑 − 𝜑

0
). This

gives the general solution

𝜙 (𝑟, 𝜃, 𝜑) =

𝑞

𝑟
0
𝑟

(𝑟 − 𝑀) (𝑟0
−𝑀) − (𝑀

2
− 𝛽) 𝜆 (𝜃, 𝜑)

√
(𝑟 −𝑀)

2
+ (𝑟
0
−𝑀)

2
− 2 (𝑟 −𝑀) (𝑟0

−𝑀)𝜆 (𝜃, 𝜑) − (𝑀

2
− 𝛽) [1 − 𝜆

2
(𝜃, 𝜑)]

+

𝑞

𝑟

𝑀

𝑟
0

. (23)

3.1. Multipole Expansion. If the angular part of the potential
in (19) is expanded in terms of Legendre polynomials in cos 𝜃,

one may obtain the well-known electric multipole solutions.
Using again the substitutions (18), the radial parts of the two
linearly independent multipole solutions of (17) are

𝑔
𝑙 (
𝑟) =

{
{
{
{

{
{
{
{

{

1 for 𝑙 = 0

2

𝑙
𝑙! (𝑙 − 1)!(𝑀

2
− 𝛽)

𝑙/2

(2𝑙)!

𝑟

2
− 2𝑀𝑟 + 𝛽

𝑟

𝑑𝑃
𝑙

𝑑𝑟

(

𝑟 −𝑀

√𝑀

2
− 𝛽

) for 𝑙 = 1, 2, . . . ,
(24)

𝑓
𝑙 (
𝑟) = −

(2𝑙 + 1)!

2

𝑙
(𝑙 + 1)!𝑙!(𝑀

2
− 𝛽)

(𝑙+1)/2

𝑟

2
− 2𝑀𝑟 + 𝛽

𝑟

𝑑𝑄
𝑙

𝑑𝑟

(

𝑟 −𝑀

√𝑀

2
− 𝛽

) for 𝑙 = 0, 1, 2, . . . , (25)

where 𝑃
𝑙
and 𝑄

𝑙
are the two types of Legendre functions.

These functions satisfy the following:

(1) for 𝑙 = 0, 𝑔
0
(𝑟) = 1 and 𝑓

0
(𝑟) = 1/𝑟;

(2) for all values of 𝑙, as 𝑟 → ∞, the leading term of 𝑔
𝑙
(𝑟)

is 𝑟𝑙 while the leading term of 𝑓
𝑙
(𝑟) is 𝑟−(𝑙+1);

(3) as 𝑟 → 𝑟
+
, 𝑔
𝑙
(𝑟) → 0 (for 𝑙 ̸=0) while 𝑓

𝑙
(𝑟) →

finite constant. However, 𝑑𝑓
𝑙
/𝑑𝑟 blows up for 𝑙 ̸=0

when 𝑟 → 𝑟
+
.

The above properties let us infer that only the set of solutions
(25) has the correct behaviour at infinity and only the
multipole term 𝑙 = 0 does not produce a divergent field at the
horizon 𝑟 = 𝑟

+
. This set of solutions reproduces Israel’s result

[29] when 𝛽 = 0 (i.e., for the Schwarzschild black hole).

As is well known, the gravitational field modifies the
electrostatic interaction of a charged particle in such a way
that the particle experiences a finite self-force [22, 23, 30–34]
whose origin comes from the spacetime curvature associated
with the gravitational field. However, even in the absence of
curvature, it was shown that a charged point particle [35, 36]
or a linear charge distribution [37] placed at rest may become
subject to a finite repulsive electrostatic self-force (see also
[24]). In these references, the origin of the force is the distor-
tion in the particle field caused by the lack of global flatness
of the spacetime of a cosmic string. Therefore, one may
conclude that the modifications of the electrostatic potential
come from two contributions: one of geometric origin and
the other of a topological one. In a forthcoming paper we will
show that, considering the topologically charged black hole
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described by the line element (7) as the background metric,
both kinds of contributions appear in the electrostatic self-
force of a charged particle.
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[27] C. S. J. Pun, Z. Kovács, and T. Harko, “Thin accretion disks
onto brane world black holes,” Physical Review D, vol. 78, no.
8, Article ID 084015, 2008.
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We consider rotating black hole in 3 dimensions with a scalar charge and discuss energy loss of heavy particle moving near the
black hole horizon. We find that drag force was increased by scalar charge while it was decreased due to the rotation of black hole.
We also study quasnormal modes.

1. Introduction

The lower dimensional theories may be used as toy models to
study some fundamental ideas which yield to better under-
standing of higher dimensional theories, because they are eas-
ier to study [1]. Moreover, these are useful for application of
AdS/CFT correspondence [2–5]. This paper is indeed an
application of AdS/CFT correspondence to probe moving
charged particle near the three-dimensional black holes
which are recently introduced by Xu et al. [6, 7] where
charged black holes with a scalar hair in (2 + 1) dimensions
and rotating hairy black hole in (2 + 1) dimensions are con-
structed, respectively. Here, we are interested in the case of
rotating black hole with a scalar hair in (2 + 1) dimensions.
Recently, a charged rotating hairy black hole in 3 dimensions
corresponding to infinitesimal black hole parameters was
constructed [8]. Also, thermodynamics of such systems is
recently studied in [9, 10]. We consider this background in
AdS side as a dual picture of a QCD model as CFT side.

In this paper, wewould like to study themotion of a heavy
charged particle near the black hole horizon and calculate the
energy loss.The energy loss ofmoving heavy charged particle
through a thermal medium is known as the drag force. One
can consider amoving heavy particle (such as charm and bot-
tom quarks) near the black hole horizon with themomentum
𝑃, mass𝑚, and constant velocity V, which is influenced by an
external force 𝐹. So, one can write the equation of motion as

̇
𝑃 = 𝐹 − 𝜁𝑃, where in the nonrelativistic motion 𝑃 = 𝑚V,
and in the relativistic motion 𝑃 = 𝑚V/√1 − V2; also 𝜁 is called
the friction coefficient. In order to obtain drag force, one
can consider two special cases. The first case is the constant
momentum which yields to obtain 𝐹 = (𝜁𝑚)V for the norela-
tivistic case. In this case, the drag force coefficient (𝜁𝑚)will be
obtained. In the second case, the external force is zero, so one
can find 𝑃(𝑡) = 𝑃(0) exp(−𝜁𝑡). In other words, by measuring
the ratio ̇

𝑃/𝑃 or ̇V/V, one can determine friction coefficient 𝜁
without any dependence onmass𝑚.Thesemethods lead us to
obtain the drag force for amoving heavy particle.Themoving
heavy particle in context ofQCDhas dual picture in the string
theory in which an open string is attached to the D-brane and
stretched to the horizon of the black hole. Therefore, we can
apply AdS/CFT correspondence to probe a charged particle
(such as a quark) moving through 3D hairy black hole
background.

Similar studies are already performed in several back-
grounds [11–22]. Most of them consideredN = 2 andN = 4

super Yang-Mills plasma with asymptotically AdS geome-
tries. Also [20] considered 4DKerr-AdS black holes. All of the
mentioned studies used AdS

5
/CFT
4
correspondence. Now,

we are going to consider the same problem in a rotating hairy
3D background and use AdS

3
/CFT
2
correspondence [23–25].

This paper is organized as follows. In the next section,
we review rotating hairy black hole in (2 + 1) dimensions. In
Section 3, we obtain equation of motion and in Section 4,
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we try to obtain solution and discuss about drag force. In
Section 5, we give linear analysis and discuss quasinormal
modes. Finally, in Section 6, we summarized our results.

2. Rotating Hairy Black Hole in
(2 + 1) Dimensions

Rotating hairy black hole in (2 + 1) dimensions is described by
the following action:

𝑆 =

1

2

∫𝑑

3
𝑥√−𝑔 [𝑅 − 𝑔

𝜇]
∇
𝜇
𝜙∇]𝜙 −

𝑅

8

𝜙

2
− 2𝑉 (𝜙)] , (1)

which yields to the following line element [1]:

𝑑𝑠

2
= −𝑓 (𝑟) 𝑑𝑡

2
+

1

𝑓 (𝑟)

𝑑𝑟

2
+ 𝑟

2
(𝑑𝜓 + 𝜔 (𝑟) 𝑑𝑡)

2
, (2)

where

𝑓 (𝑟) = 3𝛽 +

2𝛽𝐵

𝑟

+

(3𝑟 + 2𝐵)

2
𝑎

2

𝑟

4
+

𝑟

2

𝑙

2
,

(3)

where𝑎 is a rotation parameter related to the angularmomen-
tum of the solution and 𝑙 is related to the cosmological con-
stant via Λ = −1/𝑙2. 𝛽 is integration constants depending on
the black hole mass:

𝛽 = −

𝑀

3

, (4)

and scalar charge 𝐵 is related to the scalar field as

𝜙 (𝑟) = ±
√

8𝐵

𝑟 + 𝐵

.
(5)

Also, one can obtain

𝜔 (𝑟) = −

(3𝑟 + 2𝐵) 𝑎

𝑟

3
,

𝑉 (𝜙) =

2

𝑙

2
+

1

512

[

1

𝑙

2
+

𝛽

𝐵

2
] 𝜙

6
.

(6)

Ricci scalar of this model is given by

𝑅 = −

6𝑟

6
+ 36𝐵𝑙

2
𝑎

2
𝑟 + 30𝑙

2
𝑎

2
𝐵

2

𝑙

2
𝑟

6
.

(7)

We can see that Ricci scalar is singular at the origin.
Black hole horizon, which is obtained by𝑓(𝑟) = 0, may be

written as follows:

𝑟
ℎ
=

4𝑙

2𝐶

(1 +
√
1 −

𝐵𝐶

3𝑙

2
) , (8)

where we defined

𝐶 ≡

2𝐵𝑀

27𝑎

2
−

3𝑙

𝐵

. (9)

3. The Equations of Motion

The moving heavy particle near the black hole may be des-
cribed by the following Nambu-Goto action:

𝑆 = −

1

2𝜋𝛼


∫𝑑𝜏 𝑑𝜎

√
−𝐺, (10)

where 𝑇
0
= 1/2𝜋𝛼

 is the string tension. The coordinates 𝜏
and 𝜎 are corresponding to the string world-sheet. Also, 𝐺

𝑎𝑏

is the inducedmetric on the string world-sheet with determi-
nant 𝐺 obtained as follows:

𝐺 = −1 − 𝑟

2
𝑓 (𝑟) (𝑥


)

2

+

𝑟

2

𝑓 (𝑟)

( ̇𝑥)

2
, (11)

where we used static gauge in which 𝜏 = 𝑡, 𝜎 = 𝑟, and the
string only extends in one direction𝑥(𝑟, 𝑡).Then, the equation
of motion is obtained as follows:

𝜕
𝑟
(

𝑟

2
𝑓 (𝑟) 𝑥



√
−𝐺

) −

𝑟

2

𝑓 (𝑟)

𝜕
𝑡
(

̇𝑥

√
−𝐺

) = 0. (12)

We should obtain canonical momentum densities associated
with the string as follows:

𝜋

0

𝜓
=

1

2𝜋𝛼


√−𝐺

𝑟

2

𝑓 (𝑟)

̇𝑥,

𝜋

0

𝑟
= −

1

2𝜋𝛼


√−𝐺

𝑟

2

𝑓 (𝑟)

̇𝑥𝑥


,

𝜋

0

𝑡
= −

1

2𝜋𝛼


√−𝐺

(1 + 𝑟

2
𝑓 (𝑟) (𝑥


)

2

) ,

𝜋

1

𝜓
=

1

2𝜋𝛼


√
−𝐺

𝑟

2
𝑓 (𝑟) 𝑥


,

𝜋

1

𝑟
= −

1

2𝜋𝛼


√−𝐺

(1 −

𝑟

2

𝑓 (𝑟)

̇𝑥

2
) ,

𝜋

1

𝑡
=

1

2𝜋𝛼


√
−𝐺

𝑟

2
𝑓 (𝑟) ̇𝑥𝑥


.

(13)

The simplest solution of the equation ofmotion is static string
described by 𝑥 = constant with total energy of the form,

𝐸 = −∫

𝑟𝑚

𝑟ℎ

𝜋

0

𝑡
𝑑𝑟 =

1

2𝜋𝛼


(𝑟
ℎ
− 𝑟
𝑚
) = 𝑀rest, (14)

where 𝑟
𝑚
is an arbitrary location of D-brane. As we expected,

the energy of static particle is interpreted as the remaining
mass.

4. Time Dependent Solution

In the general case, we can assume that the particle moves
with constant speed ̇𝑥 = V; in that case, the equation of
motion (12) reduces to

𝜕
𝑟
(

𝑟

2
𝑓 (𝑟) 𝑥



√
−𝐺

) = 0, (15)
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where

𝐺 = −1 − 𝑟

2
𝑓 (𝑟) (𝑥


)

2

+

𝑟

2

𝑓 (𝑟)

V2. (16)

Equation (15) gives the following expression:

(𝑥


)

2

=

𝐶

2
(𝑟

2V2 − 𝑓 (𝑟))

𝑟

2
𝑓(𝑟)

2
(𝐶

2
− 𝑟

2
𝑓 (𝑟))

, (17)

where 𝐶 is an integration constant which will be determined
by using reality condition of √−𝐺. Therefore, we yield to the
following canonical momentum densities:

𝜋

1

𝜓
= −

1

2𝜋𝛼


𝐶,

𝜋

1

𝑡
=

1

2𝜋𝛼


𝐶V.

(18)

These give us loosing energy andmomentum through an end-
point of string:

𝑑𝑃

𝑑𝑡

= 𝜋

1

𝜓
|
𝑟=𝑟ℎ

= −

1

2𝜋𝛼


𝐶,

𝑑𝐸

𝑑𝑡

= 𝜋

1

𝑡
|
𝑟=𝑟ℎ

=

1

2𝜋𝛼


𝐶V.

(19)

As we mentioned before, reality condition of √−𝐺 gives us
constant 𝐶. The expression√−𝐺 is real for 𝑟 = 𝑟

𝑐
> 𝑟
ℎ
. In the

case of small V, one can obtain

𝑟
𝑐
= 𝑟
ℎ
+

𝑟

2V2

𝑓(𝑟)


|
𝑟=𝑟ℎ

+ O (V4) , (20)

which yields to

𝐶 = V𝑟2
ℎ
+ O (V3) . (21)

Therefore, we can write drag force as follows:

𝑑𝑃

𝑑𝑡

= −

V𝑟2
ℎ

2𝜋𝛼


+ O (V3) . (22)

Wedrawdrag force in terms of velocity and in agreementwith
the previous works such as [11–22]; the value of drag force
increased by V. In Figure 1, we can see behavior of drag force
with rotation parameter and scalar charge. It is shown that the
scalar charge increases the value of drag force but the increas-
ing rotational parameter decreases the value of the drag force.

5. Linear Analysis

Motion of string yields to small perturbation after late time
due to the drag force. In that case, the speed of particle is
infinitesimal and one can write 𝐺 ≈ −1. Also, we assume that
𝑥 = 𝑒

−𝜇𝑡, where 𝜇 is the friction coefficient. Therefore, one
can rewrite the equation of motion as follows:

𝑓 (𝑟)

𝑟

2
𝜕
𝑟
(𝑟

2
𝑓 (𝑟) 𝑥


) = 𝜇

2
𝑥. (23)
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Figure 1: Drag force in terms of 𝐵 for𝑀 = 1, 𝑙 = 1, and V = 0.1;
𝑎 = 1.8 (dotted line), 𝑎 = 3 (solid line), and 𝑎 = 4.2 (dashed line).

We assume outgoing boundary conditions near the black hole
horizon and use the following approximation:

(4𝜋𝑇)

2
(𝑟 − 𝑟
ℎ
) 𝜕
𝑟
(𝑟 − 𝑟
ℎ
) 𝑥


= 𝜇

2
𝑥, (24)

which suggests the following solutions:

𝑥 = 𝑐(𝑟 − 𝑟
ℎ
)

−𝜇/4𝜋𝑇
, (25)

where𝑇 is the black hole temperature. In the case of infinites-
imal 𝜇, we can use the following expansion:

𝑥 = 𝑥
0
+ 𝜇

2
𝑥
1
+ ⋅ ⋅ ⋅ . (26)

Inserting this equation in the relation (24) gives𝑥
0
= constant,

and

𝑥



1
=

𝐴

𝑟

2
𝑓 (𝑟)

∫

𝑟𝑚

𝑟ℎ

𝑟

2

𝑓 (𝑟)

𝑑𝑟, (27)

where𝐴 is a constant. Assuming near horizon limit enables us
to obtain the following solution:

𝑥
1
≈

𝐴

4𝜋𝑇𝑟

2

ℎ
(𝑟 − 𝑟
ℎ
)

(−𝑟
𝑚
+

𝑟

2

ℎ

4𝜋𝑇

ln (𝑟 − 𝑟
ℎ
)) . (28)

Comparing (25) and (27) gives the following quasinormal
mode condition:

𝜇 =

𝑟

2

ℎ

𝑟
𝑚

. (29)

It is interesting to note that these results recover drag force
(22) for infinitesimal speed. In Figure 2, we can see behavior
of 𝜇with rotational parameter and scalar charge.We find that
scalar charge increases the value of friction coefficient, but the
effect of rotation decreases 𝜇.
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Figure 2: 𝜇 in terms of 𝑟
𝑚
: 𝐵 = 0.5 and 𝑎 = 2 (blue dashed line),

𝐵 = 1 and 𝑎 = 2 (blue solid line), 𝐵 = 2 and 𝑎 = 2 (blue dotted line),
and 𝐵 = 1 and 𝑎 = 0.2 (green dashed line), and 𝐵 = 1 and 𝑎 = 0.4
(green solid line).

5.1. Low Mass Limit. Low mass limit means that 𝑟
𝑚
→ r
ℎ
,

and we use the following assumptions:

𝑓 (𝑟) ≈ 4𝜋𝑇 (𝑟 − 𝑟ℎ
) ,

𝑟

2
= 𝑟

2

ℎ
+ 2𝑟
ℎ
(𝑟 − 𝑟
ℎ
) + ⋅ ⋅ ⋅ ,

(30)

so, by using relation (23) we can write

𝑥 (𝑟) = (𝑟 − 𝑟ℎ
)

−𝜇/4𝜋𝑇
(1 + (𝑟 − 𝑟

ℎ
) 𝐴 + ⋅ ⋅ ⋅ ) . (31)

Then, we can obtain constant 𝐴 as follows:

𝐴 =

𝜇

2𝜋𝑇𝑟
ℎ
− 𝜇𝑟
ℎ

. (32)

It tells that 𝜇 = 2𝜋𝑇 yields to divergence; therefore we called
this a critical behavior of the friction coefficient and found
that

𝜇
𝑐
=

3𝑟

6

ℎ
+ 𝐵𝑀𝑙

2
𝑟

3

ℎ
− 27𝑎

2
𝑙

2
𝑟

2

ℎ
− 54𝐵𝑎

2
𝑙

2
𝑟
ℎ
− 24𝐵

2
𝑎

2
𝑙

2

𝑟

5

ℎ

.

(33)

Figure 3 shows behavior of critical friction coefficient with
the black hole parameters.

6. Conclusions

In this paper, we considered rotating 3D black hole together
with a scalar charge as a background where a charged particle
moves with speed V and then calculated drag force. We used
motivation of AdS/CFT correspondence and string theory
method to study motion of charged particle.This is indeed in
the context of AdS

3
/CFT
2
where drag force on moving heavy

B

60

20

0

−20

𝜇
c

Figure 3: 𝜇
𝑐
in terms of 𝐵 for𝑀 = 1 and 𝑙 = 1; 𝑎 = 1 (blue line),

𝑎 = 2 (black line), and 𝑎 = 4 (red line).

particle is calculated. Numerically, we found that the scalar
charge increases the value of drag force but rotational param-
eter decreases the value of the drag force. Therefore, in order
to have the most free motion we need to increase 𝑎 and
decrease𝐵. It means that 𝑎 and𝐵may cancel the effect of each
other on the drag force. We can find critical values of scalar
charge and rotational parameters in which the value of drag
force will be infinite as

𝑎
𝑐
=
√

2𝑀

81𝑙

𝐵
𝑐
.

(34)

Then, we studied quasinormal modes and obtained friction
coefficient 𝜇 which was enhanced by the black hole charge
and reduced by rotation. Quasinormal mode analysis also
reproduced drag force at slow velocities. It is also possible
to study dispersion relations which again reproduce the drag
force which was obtained in (22). For the future work, we will
consider charged rotating 3D hairy black hole and study drag
force.
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[18] E. Cáceres and A. Güijosa, “Drag force in a charged N = 4
SYM plasma,” Journal of High Energy Physics A, vol. 2006, no.
11, article 077, 2006.

[19] J. F. Vazquez-Poritz, “Drag force at finite ’t Hooft coupling from
AdS/CFT,” In press, http://arxiv.org/abs/0803.2890.

[20] A. N. Atmaja and K. Schalm, “Anisotropic drag force from 4D
Kerr-AdS black holes,” http://arxiv.org/abs/1012.3800.

[21] B. Pourhassan and J. Sadeghi, “STU-QCD correspondence,”
Canadian Journal of Physics, vol. 91, no. 12, pp. 995–1019, 2013.

[22] E. Caceres and A. Guijosa, “On drag forces and jet quenching in
strongly coupled plasmas,” Journal of High Energy Physics, vol.
2006, no. 12, article 068, 2006.

[23] P. Kraus, “Lectures on black holes and the 𝐴𝑑𝑆
3
/𝐶𝐹𝑇

2
corre-

spondence,” in SupersymmetricMechanics. Vol. 3, vol. 755 ofLec-
ture Notes in Physics, pp. 193–247, Springer, Berlin, Germany,
2008.

[24] R. Borsato, O. Ohlsson Sax, and A. Sfondrini, “All-loop
Bethe ansatz equations for 𝐴𝑑𝑆

3
/𝐶𝐹𝑇

2
,” Journal of High

Energy Physics, vol. 4, article 116, 2013.
[25] D. Momeni, M. Raza, M. R. Setare, and R. Myrzakulov, “Ana-

lytical holographic superconductor with backreaction using
𝐴𝑑𝑆
3
/𝐶𝐹𝑇

2
,” International Journal ofTheoretical Physics, vol. 52,

no. 8, pp. 2773–2783, 2013.



Research Article
Hawking Radiation-Quasi-Normal Modes
Correspondence and Effective States for Nonextremal
Reissner-Nordström Black Holes

C. Corda,1,2,3 S. H. Hendi,4,5 R. Katebi,6 and N. O. Schmidt7
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It is known that the nonstrictly thermal character of theHawking radiation spectrumharmonizesHawking radiationwith black hole
(BH) quasi-normal modes (QNM).This paramount issue has been recently analyzed in the framework of both Schwarzschild BHs
(SBH) and Kerr BHs (KBH). In this assignment, we generalize the analysis to the framework of nonextremal Reissner-Nordström
BHs (RNBH). Such a generalization is important because in both Schwarzschild and Kerr BHs an absorbed (emitted) particle
has only mass. Instead, in RNBH the particle has charge as well as mass. In doing so, we expose that, for the RNBH, QNMs can be
naturally interpreted in terms of quantum levels for both particle emission and absorption. Conjointly, we generalize some concepts
concerning the RNBH’s “effective states.”

1. Introduction

A RNBH of mass𝑀 is identical to a SBH of mass𝑀 except
that a RNBHhas the nonzero charge quantity𝑄. In this paper,
we are interested in RNBHs with the nonextremal constraint
𝑀 > 𝑄 [1]. The quantity 𝑄 is the physical mechanism for the
RNBH’s dual horizons from (1) in [1]:

𝑟
±
= 𝑅
±RNBH

(𝑀,𝑄) = 𝑀 ±
√
𝑀

2
− 𝑄

2
,

(1)

because the RNBHouter (event) horizon radius𝑅
+RNBH

(𝑀,𝑄)

and the RNBH inner (Cauchy) horizon radius 𝑅
−RNBH

(𝑀,𝑄)

are clearly functions of both𝑀 and 𝑄, not just𝑀, as in the
well known case of the SBH horizon radius

𝑟
𝑠
= 𝑅SBH (𝑀) = 2𝑀. (2)

Energy conservation plays a fundamental role in BH radiance
[2] because the emission or absorption of Hawking quanta
with mass 𝑚 and energy-frequency 𝜔 causes a BH of mass
𝑀 to undergo a transition between discrete energy spectrum
levels [3–7], where

𝐸 = 𝑚 = 𝜔 = Δ𝑀 (3)

for 𝐺 = 𝑐 = 𝑘
𝐵
= ℎ = 1/4𝜋𝜖

0
= 1 (Planck units).

Given that emission and absorption are reverse processes
for the quantized energy spectrum conservation [3–7], we
consider this pair of transitions as being equal in magnitude
but opposite in direction from the neutral radius perspective
of 𝑟
0
= (𝑟
+
+ 𝑟
−
)/2.

It is known that the countable character of successive
emissions of Hawking quanta which is a consequence of
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the nonstrictly thermal character of the Hawking radiation
spectrum (see [3–12]) generates a natural correspondence
between Hawking radiation and BH QNMs [3–7]. Moreover,
it has also been shown that QNMs can be naturally inter-
preted in terms of quantum levels, where the emission or
absorption of a particle is interpreted as a transition between
two distinct levels on the discrete energy spectrum [3–7].The
thermal spectrum correction is an imperative adjustment to
the physical interpretation of BHQNMs because these results
are important to realize the underlying unitary quantum
gravity theory [3–7].Hod’s intriguingworks [13, 14] suggested
that BH QNMs carry principle information regarding a BH’s
horizon area quantization. Hod’s influential conjecture was
later refined and clarified by Maggiore [15]. Moreover, it is
also believed that QNMs delve into the microstructure of
spacetime [16].

To make sense of the state space for the energy spectrum
states and the underlying BH perturbation field states, an
effective framework based on the nonstrictly thermal behavior
of Hawking’s framework began to emerge [3–7]. In the midst
of this superceding BH effective framework [3–7], the BH
effective state concept was originally introduced for KBHs
in [6] and subsequently applied through Hawking’s period-
icity arguments [17, 18] to the BH tunneling mechanism’s
nonstrictly black body spectrum [7]. The effective state is
meaningful to BH physics and thermodynamics research
because one needs additional features and knowledge to
consider in future experiments and observations.

In this paper, our objective is to apply the nonstrictly
thermal BH effective framework of [3–7] to nonextremal
RNBHs. Thus, upon recalling that a RNBH of mass 𝑀 is
identical to a SBH of mass 𝑀 except that a RNBH has the
charge 𝑄, we prepare for our BH QNM investigation by
reviewing relevant portions of the SBH effective framework
[3–7] for quantities related to SBH states and transitions in
Section 2. Then in Section 3, we launch our RNBH QNM
exploration by introducing a RNBH effective framework
for quantities pertaining to RNBH states and transitions.
Finally, we conclude with a brief comparison between the
fundamental SBH and RNBH results in Section 4 followed by
the recapitulation in Section 5.

2. Schwarzschild Black Hole Framework:
Background and Review

2.1. Schwarzschild Black Hole States and Transitions. Here, we
recall some quantities that characterize the SBH.

First, consider a SBH of initial mass 𝑀, when the SBH
emits or absorbs a quantum of energy-frequency 𝜔 (for
particlemass𝑚 and SBHmass changeΔ𝑀, such that𝑚 = 𝜔 =

Δ𝑀) to achieve a finalmass of𝑀−𝜔 or𝑀+𝜔, respectively, for
the SBHmass-energy transition between states in state space.
Thus, we follow [3–5], where the SBH initial and final horizon
area are

𝐴SBH (𝑀) = 16𝜋𝑀

2
= 4𝜋𝑅

2

SBH (𝑀) ,

𝐴SBH (𝑀 ± 𝜔) = 16𝜋(𝑀 ± 𝜔)

2
= 4𝜋𝑅

2

SBH (𝑀 ± 𝜔) ,

(4)

respectively, for the SBH area quanta number

𝑁SBH (𝑀, 𝜔) =

𝐴SBH (𝑀)






Δ𝐴SBH (𝑀, 𝜔)






, (5)

such that the SBH horizon area change for the corresponding
mass change Δ𝑀 is

Δ𝐴SBH (𝑀, 𝜔) = 𝐴SBH (𝑀 ± 𝜔) − 𝐴SBH (𝑀)

= 32𝜋𝑀𝜔 + 𝑂(𝜔

2
) ∼ 32𝜋𝑀Δ𝑀

= 32𝜋𝑀Δ𝐸,

(6)

because the transition’s minus (−) and plus (+) signs depend
on emission and absorption, respectively. Next, in [3–5], the
Bekenstein-Hawking SBH initial and final entropy are

𝑆SBH (𝑀) =

𝐴SBH (𝑀)

4

,

𝑆SBH (𝑀 ± 𝜔) =

𝐴SBH (𝑀 ± 𝜔)

4

,

(7)

respectively, where the corresponding SBH entropy change is

Δ𝑆SBH (𝑀, 𝜔) =

Δ𝐴SBH (𝑀, 𝜔)

4

. (8)

Subsequently, the SBH initial and final total entropy are [3–5]

𝑆SBH−total (𝑀) = 𝑆SBH (𝑀) − ln 𝑆SBH (𝑀)

+

3

2𝐴SBH (𝑀)

,

𝑆SBH−total (𝑀 ± 𝜔) = 𝑆SBH (𝑀 ± 𝜔) − ln 𝑆SBH (𝑀 ± 𝜔)

+

3

2𝐴SBH (𝑀 ± 𝜔)

,

(9)

respectively. Additionally, the SBH initial and final Hawking
temperature are [3–5]

𝑇
𝐻SBH

(𝑀) =

1

8𝜋𝑀

,

𝑇
𝐻SBH

(𝑀 ± 𝜔) =

1

8𝜋 (𝑀 ± 𝜔)

,

(10)

respectively. Therefore, the quantum transition’s SBH emis-
sion tunneling rate is [3–5]

ΓSBH (𝑀, 𝜔) ∼ exp [−8𝜋𝑀𝜔(1 −

𝜔

2𝑀

)]

∼ exp[− 𝜔

𝑇
𝐻SBH

(𝑀)

(1 −

𝜔

𝑅SBH (𝑀)

)]

∼ exp [+Δ𝑆SBH (𝑀, 𝜔)] .

(11)
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2.2. Schwarzschild Black Hole Effective States and Transitions.
Here, we recall some effective quantities that characterize the
SBH.

Given that 𝑀 is the mass state before and 𝑀 ± 𝜔 is the
mass state after the quantum transition, the SBHeffectivemass
and SBH effective horizon are, respectively, identified in [3–5]
as

𝑀
𝐸 (
𝑀, 𝜔) =

𝑀 + (𝑀 ± 𝜔)

2

= 𝑀 ±

𝜔

2

,

𝑅
𝐸SBH

(𝑀, 𝜔) = 2𝑀𝐸 (
𝑀, 𝜔) ,

(12)

which are average quantities between the two states before and
after the process [3–5]. Consequently, using (4) and (12) we
define the SBH effective horizon area as

𝐴
𝐸SBH

(𝑀, 𝜔) ≡

𝐴SBH (𝑀) + 𝐴SBH (𝑀 ± 𝜔)

2

= 16𝜋𝑀

2

𝐸
(𝑀, 𝜔) = 4𝜋𝑅

2

𝐸SBH
(𝑀, 𝜔) ,

(13)

which is the average of the SBH’s initial and final horizon
areas. Subsequently, utilizing (7), the Bekenstein-Hawking
SBH effective entropy is defined as

𝑆
𝐸SBH

(𝑀, 𝜔) ≡

𝑆SBH (𝑀) + 𝑆SBH (𝑀 ± 𝜔)

2

, (14)

and consequently employs (13) and (14) to define the SBH
effective total entropy as

𝑆
𝐸SBH−total

(𝑀, 𝜔)

≡ 𝑆
𝐸SBH

(𝑀, 𝜔) − ln 𝑆
𝐸SBH

(𝑀, 𝜔) +

3

2𝐴
𝐸SBH

(𝑀, 𝜔)

.

(15)

Thus, employing (3) and (10), the SBH effective temperature is
[3–5]

𝑇
𝐸SBH

(𝑀, 𝜔) = (

𝑇

−1

𝐻SBH
(𝑀) + 𝑇

−1

𝐻SBH
(𝑀 ± 𝜔)

2

)

−1

= (8𝜋 [

𝑀 +𝑀 ± 𝜔

2

])

−1

=

1

4𝜋 (2𝑀 ± 𝜔)

=

1

8𝜋𝑀
𝐸 (
𝑀, 𝜔)

,

(16)

which is the inverse of the average value of the inverses of
the initial and final Hawking temperatures. Consequently,
(16) lets one rewrite (11) to define the SBH effective emission
tunneling rate (in the Boltzmann-like form) as [3–5]

Γ
𝐸SBH

(𝑀, 𝜔) ∼ exp[− 𝜔

𝑇
𝐸SBH

(𝑀, 𝜔)

]

= exp [+Δ𝑆
𝐸SBH

(𝑀, 𝜔)] ,

(17)

such that (14) defines the SBH effective entropy change as

Δ𝑆
𝐸SBH

(𝑀, 𝜔) = 𝑆SBH (𝑀 ± 𝜔) − 𝑆SBH (𝑀) =

Δ𝐴
𝐸SBH

(𝑀, 𝜔)

4

(18)

because the SBH effective horizon area change is

Δ𝐴
𝐸SBH

(𝑀, 𝜔) = 16𝜋𝑀𝐸 (
𝑀, 𝜔) 𝜔 (19)

and the SBH effective area quanta number is

𝑁
𝐸SBH

(𝑀, 𝜔) =

𝐴
𝐸SBH

(𝑀, 𝜔)

Δ𝐴
𝐸SBH

(𝑀, 𝜔)

. (20)

2.3. Effective Application of Quasi-Normal Modes to the
Schwarzschild Black Hole. Here, we recall how the SBH
perturbation field QNM states can be applied to the SBH
effective framework.

The quasi-normal frequencies (QNFs) are typically
labeled as 𝜔

𝑛𝑙
, where 𝑙 is the angular momentum quantum

number [3–5, 15, 19]. Thus, for each 𝑙, such that 𝑙 ≥ 2 for
gravitational perturbations, there is a countable sequence of
QNMs labeled by the overtone number 𝑛, which is a natural
number [3–5, 15].

Now |𝜔
𝑛
| is the damped harmonic oscillator’s proper

frequency that is defined as [3–5, 15]






𝜔
𝑛






= (𝜔
0
)

𝑛
= √𝜔

2

𝑛R
+ 𝜔

2

𝑛I
. (21)

Maggiore [15] articulated that the establishment |𝜔
𝑛
| = 𝜔
𝑛R

is
only correct for the very long-lived and lowly excited QNMs
approximation |𝜔

𝑛
| ≫ 𝜔

𝑛I
, whereas for a lot of BH QNMs,

such as those that are highly excited, the opposite limit is
correct [3–5, 15]. Therefore, the 𝜔 parameter in (12)–(20) is
substituted for the |𝜔

𝑛
| parameter [3–5] because we wish to

employ BH QNFs. When 𝑛 is large, the SBH QNFs become
independent of 𝑙 and thereby exhibit the nonstrictly thermal
structure [3–5]

𝜔
𝑛
= ln 3 × 𝑇

𝐸SBH
(𝑀,






𝜔
𝑛






) + 2𝜋𝑖 (𝑛 +

1

2

) × 𝑇
𝐸SBH

(𝑀,






𝜔
𝑛






)

+ O (𝑛
−1/2

) =

ln 3
4𝜋 [2𝑀 −






𝜔
𝑛






]

+

2𝜋𝑖

4𝜋 [2𝑀 −






𝜔
𝑛






]

× (𝑛 +

1

2

) + O (𝑛
−1/2

) =

ln 3
8𝜋𝑀
𝐸
(𝑀,






𝜔
𝑛






)

+

2𝜋 (𝑛 + 1/2)

8𝜋𝑀
𝐸
(𝑀,






𝜔
𝑛






)

𝑖 + O (𝑛
−1/2

) ,

(22)

where

𝑚
𝑛
≡ 𝜔
𝑛R
=

ln 3
8𝜋𝑀
𝐸
(𝑀,






𝜔
𝑛






)

,

𝑝
𝑛
≡ 𝜔
𝑛I
=

2𝜋

8𝜋𝑀
𝐸
(𝑀,






𝜔
𝑛






)

(𝑛 +

1

2

) .

(23)
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Thus, when referring to highly excited QNMs one gets
|𝜔
𝑛
| ≈ 𝑝

𝑛
[3–5], where the quantized levels differ from [15]

because they are not equally spaced in exact form.Therefore,
according to [3–5], we have






𝜔
𝑛






=

√
(ln 3)2 + 4𝜋2(𝑛 + 1/2)2

8𝜋𝑀
𝐸
(𝑀,






𝜔
𝑛






)

= 𝑇
𝐸SBH

(𝑀,






𝜔
𝑛






)
√
(ln 3)2 + 4𝜋2(𝑛 + 1

2

)

2

,

(24)

which is solved to yield






𝜔
𝑛






= 𝑀 −

√

𝑀

2
−

√
(ln 3)2 + 4𝜋2(𝑛 + 1/2)2

4𝜋

(25)

when we obey |𝜔
𝑛
| < 𝑀 because a BH cannot emit more

energy than its total mass.

3. Reissner-Nordström Black Hole
Framework: An Introduction

We note that for this framework we consider the RNBH event
horizon features, which are derived from the 𝑅

+RNBH
(𝑀,𝑄) in

(1).

3.1. Reissner-Nordström Black Hole States and Transitions.
Here, we recall some quantities that characterize the RNBH.

First, consider a RNBH of initial mass 𝑀 and initial
charge𝑄. Using (1), we define the RNBH initial event horizon
area as

𝐴
+RNBH

(𝑀,𝑄) = 4𝜋(𝑀 +
√
𝑀

2
− 𝑄

2
)

2

= 4𝜋𝑅

2

+RNBH
(𝑀,𝑄) ,

(26)

the Bekenstein-Hawking RNBH initial entropy as

𝑆
+RNBH

(𝑀,𝑄) =

𝐴
+RNBH

(𝑀,𝑄)

4

,
(27)

and the RNBH initial electrostatic potential as

Φ
+ (
𝑀,𝑄) =

𝑄

4𝜋𝑅
+RNBH

(𝑀,𝑄)

=

𝑄

4𝜋 (𝑀 + √𝑀

2
− 𝑄

2
)

.

(28)

Consequently, (17) of [2] identifies the RNBH initial Hawking
temperature as

𝑇
+𝐻RNBH

(𝑀,𝑄) =

√𝑀

2
− 𝑄

2

2𝜋(𝑀 + √𝑀

2
− 𝑄

2
)

2

=

𝑅
+RNBH

(𝑀,𝑄) − 𝑅−RNBH
(𝑀,𝑄)

𝐴
+RNBH

(𝑀,𝑄)

.

(29)

Second, consider when the RNBH emits or absorbs a quan-
tum of energy-frequency 𝜔 with charge 𝑞 to achieve a final

mass of𝑀−𝜔 or𝑀+𝜔 and a final charge of 𝑄 − 𝑞 or 𝑄 + 𝑞,
respectively, for the RNBH mass-energy transition between
states in state space. For this, all we need to do is replace the
RNBH’s mass and charge parameters in (26) and (29). Thus,
(26) establishes the RNBH final event horizon area as

𝐴
+RNBH

(𝑀 ± 𝜔,𝑄 ± 𝑞)

= 4𝜋𝑅

2

+RNBH
(𝑀 ± 𝜔,𝑄 ± 𝑞)

= 4𝜋((𝑀 ± 𝜔) +
√
(𝑀 ± 𝜔)

2
− (𝑄 ± 𝑞)

2
)

2

.

(30)

Equation (27) presents the Bekenstein-Hawking RNBH final
entropy as

𝑆
+RNBH

(𝑀 ± 𝜔,𝑄 ± 𝑞) =

𝐴
+RNBH

(𝑀 ± 𝜔,𝑄 ± 𝑞)

4

,
(31)

and (28) defines the RNBH final electrostatic potential as

Φ
+
(𝑀 ± 𝜔,𝑄 ± 𝑞)

=

𝑄

4𝜋𝑅
+RNBH

(𝑀 ± 𝜔,𝑄 ± 𝑞)

=

𝑄

4𝜋((𝑀 ± 𝜔) +
√
(𝑀 ± 𝜔)

2
− (𝑄 ± 𝑞)

2
)

(32)

for usage in (29) of [20], where it is proposed that the RNBH
adiabatic invariant is

𝐼
+RNBH

(𝑀, 𝜔, 𝑄, 𝑞) = ∫

𝜔 − Φ
+ (
𝑀 ± 𝜔,𝑄) 𝑞

𝜔

= ∫

Δ𝑀 − Φ
+ (
𝑀 ± Δ𝑀,𝑄)Δ𝑄

Δ𝑀

(33)

because Δ𝑄 = 𝑞. Hence, (29) identifies the RNBH final
Hawking temperature as

𝑇
+𝐻RNBH

(𝑀 ± 𝜔,𝑄 ± 𝑞)

=

𝑅
+RNBH

(𝑀 ± 𝜔,𝑄 ± 𝑞) − 𝑅
−RNBH

(𝑀 ± 𝜔,𝑄 ± 𝑞)

𝐴
+RNBH

(𝑀 ± 𝜔,𝑄 ± 𝑞)

=

√
(𝑀 ± 𝜔)

2
− (𝑄 ± 𝑞)

2

2𝜋((𝑀 ± 𝜔) +
√
(𝑀 ± 𝜔)

2
− (𝑄 ± 𝑞)

2
)

2
.

(34)

Next, upon generalizing (16) in [2] and the work [21], we
define the RNBH tunneling rate as

Γ
+RNBH

(𝑀, 𝜔, 𝑄, 𝑞)

∼ exp [−4𝜋 (2𝜔(𝑀 ±

𝜔

2

)

− (𝑀 ± 𝜔)
√
(𝑀 ± 𝜔)

2
− (𝑄 ± 𝑞)

2

+𝑀
√
𝑀

2
− 𝑄

2
)]

∼ exp [Δ𝑆
+RNBH

(𝑀, 𝜔, 𝑄, 𝑞)] ,

(35)
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wherewe utilize (30) to define theBekenstein-Hawking RNBH
entropy change as

Δ𝑆
+RNBH

(𝑀, 𝜔, 𝑄, 𝑞) =

Δ𝐴
+RNBH

(𝑀, 𝜔, 𝑄, 𝑞)

4

,
(36)

such that the RNBH event horizon area change is

Δ𝐴
+RNBH

(𝑀, 𝜔, 𝑄, 𝑞) = 𝐴
+RNBH

(𝑀 ± 𝜔,𝑄 ± 𝑞)

− 𝐴
+RNBH

(𝑀,𝑄)

(37)

so we can define theRNBH event horizon area quanta number
as

𝑁
+RNBH

(𝑀, 𝜔, 𝑄, 𝑞) =

𝐴
+RNBH

(𝑀,𝑄)







Δ𝐴
+RNBH

(𝑀, 𝜔, 𝑄, 𝑞)







. (38)

3.2. Reissner-Nordström Black Hole Effective States and Tran-
sitions. Here, we define some effective quantities that charac-
terize the RNBH.

TheRNBH effectivemass is equivalent to the SBH effective
mass component of (12), which is

𝑀
𝐸 (
𝑀, 𝜔) ≡

𝑀 + (𝑀 ± 𝜔)

2

. (39)

Next, we define the RNBH effective charge as

𝑄
𝐸
(𝑄, 𝑞) ≡

𝑄 + (𝑄 ± 𝑞)

2

,
(40)

which is the average of the RNBH’s initial charge 𝑄 and final
charge 𝑄 ± 𝑞. From this, (1), (39), and (40) are used to define
the corresponding RNBH effective event horizon and RNBH
effective Cauchy horizon as

𝑟
±𝐸
≡ 𝑅
±𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞) ≡ 𝑀
𝐸 (
𝑀, 𝜔)

± √𝑀

2

𝐸
(𝑀, 𝜔) − 𝑄

2

𝐸
(𝑄, 𝑞),

(41)

with respect to the energy conservation and pair production
neutrality of (39). Next, we employ (26), (39), and (41) to
define the RNBH effective event horizon area as

𝐴
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞)

≡ 4𝜋𝑅

2

+𝐸RNBH
(𝑀, 𝜔, 𝑄, 𝑞)

≡ 4𝜋(𝑀
𝐸
(𝑀, 𝜔) + √𝑀

2

𝐸
(𝑀, 𝜔) − 𝑄

2

𝐸
(𝑄, 𝑞))

2

,

(42)

which is then used to define the RNBH effective entropy as

𝑆
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞) ≡

𝐴
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞)

4

.
(43)

Afterwards, we use (28) and (42) to define the RNBH effective
electrostatic potential as

Φ
+𝐸
(𝑀, 𝜔, 𝑄, 𝑞)

≡

𝑄
𝐸
(𝑄, 𝑞)

4𝜋𝑅
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞)

≡

𝑄
𝐸
(𝑄, 𝑞)

4𝜋 (𝑀
𝐸 (
𝑀, 𝜔) + √𝑀

2

𝐸
(𝑀, 𝜔) − 𝑄

2

𝐸
(𝑄, 𝑞))

(44)

so we can utilize the 𝑇
𝐸SBH

(𝑀, 𝜔) in (16) along with (39), (40),
and (44) to define the RNBH effective adiabatic invariant as

𝐼
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞)

≡ ∫

𝑑𝑀
𝐸 (
𝑀, 𝜔) − Φ+𝐸

(𝑀, 𝜔, 𝑄, 𝑞) 𝑑𝑄
𝐸
(𝑄, 𝑞)

𝑇
𝐸SBH

(𝑀, 𝜔)

.

(45)

At this point, (16) and (35) let us introduce and define the
RNBH effective temperature as

𝑇
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞)

≡

√
(𝑀 ± 𝜔/2)

2
− (𝑄 ± 𝑞/2)

2

2𝜋[(𝑀 ± 𝜔/2) +
√
(𝑀 ± 𝜔/2)

2
− (𝑄 ± 𝑞/2)

2
]

2

≡

√𝑀

2

𝐸
(𝑀, 𝜔) − 𝑄

2

𝐸
(𝑄, 𝑞)

2𝜋(𝑀
𝐸
(𝑀, 𝜔) + √𝑀

2

𝐸
(𝑀, 𝜔) − 𝑄

2

𝐸
(𝑄, 𝑞))

2

≡

𝑅
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞) − 𝑅
−𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞)

𝐴
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞)

,

(46)

which authorizes us to exercise (36) and (46) to rewrite (35)
to define the RNBH effective tunneling rate as

Γ
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞) ∼ exp[ ±𝜔

𝑇
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞)

]

∼ exp [Δ𝑆
+RNBH

(𝑀, 𝜔, 𝑄, 𝑞)] ,

(47)

such that the RNBH effective entropy change is defined as

Δ𝑆
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞) ≡

Δ𝐴
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞)

4

(48)

for the RNBH effective event horizon area change

Δ𝐴
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞) ≡

2𝜔𝑞 + 𝑄

3
𝜋

(𝑀

2
− 𝑄

2
)

3/2
(49)

and the RNBH effective event horizon area quanta number

𝑁
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞) ≡

𝐴
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞)







Δ𝐴
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞)







. (50)
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4. Effective Application of Quasi-Normal
Modes to the Reissner-Nordström
Black Hole

Here, we explain how the RNBH perturbation field QNM
states can be applied to the RNBH effective framework.

Similarly to SBH QNFs, the RNBH QNFs become inde-
pendent of 𝑙 for large 𝑛 [22]. Thus, for large 𝑛, we have two
families of the QNM:

𝜔
𝑛
= ln 3 × 𝑇

+𝐻SBH
(𝑀,𝑄) − 2𝜋 (𝑛 +

1

2

) 𝑖 × 𝑇
+𝐻SBH

(𝑀,𝑄)

+

𝑞𝑄

𝑅
+SBH

(𝑀,𝑄)

,

(51)

𝜔
𝑛
= ln 2 × 𝑇

+𝐻RNBH
(𝑀,𝑄) − 2𝜋 (𝑛 +

1

2

) 𝑖 × 𝑇
+𝐻RNBH

(𝑀,𝑄)

+

𝑞𝑄

𝑅
+RNBH

(𝑀,𝑄)

=

ln 2√𝑀2 − 𝑄2

2𝜋(𝑀 + √𝑀

2
− 𝑄

2
)

2

−

(𝑛 + 1/2)√𝑀

2
− 𝑄

2

(𝑀 + √𝑀

2
− 𝑄

2
)

2
𝑖 +

𝑞𝑄

𝑅
+RNBH

(𝑀,𝑄)

.

(52)

Now the approximation of (51) and (52) is only relevant
under the assumption that the BH radiation spectrum is
strictly thermal [3–5] because they both use the Hawking
temperature 𝑇

+𝐻RNBH
in (29). Hence, to operate in compliance

with [3–5] and thereby account for the thermal spectrum
deviation of (35), we opt to select the (52) case and upgrade
it by effectively replacing its 𝑇

𝐻RNBH
in (29) with the 𝑇

+𝐸RNBH
in

(46).Therefore, the corrected expression for the RNBHQNFs
of (52) which encodes the nonstrictly thermal behavior of the
radiation spectrum is defined as

𝜔
𝑛
≡ ln 2 × 𝑇

+𝐸RNBH
(𝑀,






𝜔
𝑛






, 𝑄, 𝑞)

− 2𝜋 (𝑛 +

1

2

) 𝑖 × 𝑇
+𝐸RNBH

(𝑀,






𝜔
𝑛






, 𝑄, 𝑞)

+

𝑞𝑄
𝐸
(𝑄, 𝑞)

𝑅
+𝐸RNBH

(𝑀,






𝜔
𝑛






, 𝑄, 𝑞)

≡

ln 2√𝑀2
𝐸
(𝑀,






𝜔
𝑛






) − 𝑄

2

𝐸
(𝑄, 𝑞)

2𝜋(𝑀
𝐸
(𝑀,






𝜔
𝑛






) + √𝑀

2

𝐸
(𝑀,






𝜔
𝑛






) − 𝑄

2

𝐸
(𝑄, 𝑞))

2

−

(𝑛 + 1/2)√𝑀

2

𝐸
(𝑀,






𝜔
𝑛






) − 𝑄

2

𝐸
(𝑄, 𝑞)

(𝑀
𝐸
(𝑀,






𝜔
𝑛






) + √𝑀

2

𝐸
(𝑀,






𝜔
𝑛






) − 𝑄

2

𝐸
(𝑄, 𝑞))

2
𝑖

+

𝑞𝑄
𝐸
(𝑄, 𝑞)

𝑅
+𝐸RNBH

(𝑀,






𝜔
𝑛






, 𝑄, 𝑞)

.

(53)

From (39), (41), and (46) we define the effective quantities
associated with the QNMs as

𝑀
𝐸
(𝑀,






𝜔
𝑛






) ≡

𝑀 + (𝑀 −






𝜔
𝑛






)

2

,
(54)

𝑟
±𝐸
≡ 𝑅
±𝐸RNBH

(𝑀,






𝜔
𝑛






, 𝑄, 𝑞) =

= 𝑀
𝐸
(𝑀,






𝜔
𝑛






) ± √𝑀

2

𝐸
(𝑀,






𝜔
𝑛






) − 𝑄

2

𝐸
(𝑄, 𝑞),

(55)

𝑇
+𝐸RNBH

(𝑀,






𝜔
𝑛






, 𝑄, 𝑞)

≡

√
(𝑀 −






𝜔
𝑛






/2)

2
− (𝑄 − 𝑞/2)

2

2𝜋[(𝑀 −






𝜔
𝑛






/2)+
√
(𝑀 −






𝜔
𝑛






/2)

2
− (𝑄 − 𝑞/2)

2
]

2

=

√𝑀

2

𝐸
(𝑀,






𝜔
𝑛






) − 𝑄

2

𝐸
(𝑄, 𝑞)

2𝜋(𝑀
𝐸
(𝑀,






𝜔
𝑛






) + √𝑀

2

𝐸
(𝑀,






𝜔
𝑛






) − 𝑄

2

𝐸
(𝑄, 𝑞))

2

=

𝑅
+𝐸RNBH

(𝑀,






𝜔
𝑛






, 𝑄, 𝑞) − 𝑅
−𝐸RNBH

(𝑀,






𝜔
𝑛






, 𝑄, 𝑞)

𝐴
+𝐸RNBH

(𝑀,






𝜔
𝑛






, 𝑄, 𝑞)

,

(56)

respectively, for the quantum overtone number 𝑛 in (53).
Hence, (53) lets us rewrite the SBH case of (23) to present
the RNBH case

𝑚
𝑛
≡ ln 2 × 𝑇

+𝐸RNBH
(𝑀,






𝜔
𝑛






, 𝑄, 𝑞)

+

𝑒𝑄
𝐸
(𝑄, 𝑞)

𝑅
+𝐸RNBH

(𝑀,






𝜔
𝑛






, 𝑄, 𝑞)

=

ln 2√𝑀2
𝐸
(𝑀,






𝜔
𝑛






) − 𝑄

2

𝐸
(𝑄, 𝑞)

2𝜋(𝑀
𝐸
(𝑀,






𝜔
𝑛






)+√𝑀

2

𝐸
(𝑀,






𝜔
𝑛






) − 𝑄

2

𝐸
(𝑄, 𝑞))

2

+

𝑞𝑄
𝐸
(𝑄, 𝑞)

𝑅
+𝐸RNBH

(𝑀,






𝜔
𝑛






, 𝑄, 𝑞)

,

𝑝
𝑛
≡ −2𝜋(𝑛 +

1

2

) × 𝑇
+𝐸RNBH

(𝑀,






𝜔
𝑛






, 𝑄, 𝑞)

=−

(𝑛 + 1/2)√𝑀

2

𝐸
(𝑀,






𝜔
𝑛






) − 𝑄

2

𝐸
(𝑄, 𝑞)

(𝑀
𝐸
(𝑀,






𝜔
𝑛






)+√𝑀

2

𝐸
(𝑀,






𝜔
𝑛






) − 𝑄

2

𝐸
(𝑄, 𝑞))

2
.

(57)
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Thus, we recall that if |𝜔
𝑛
| ≈ 𝑝

𝑛
, then we are referring to

highly excited QNMs [3–5]. Therefore, the SBH case of (24)
becomes the RNBH case






𝜔
𝑛






≡

√𝑀

2

𝐸
(𝑀,






𝜔
𝑛






) − 𝑄

2

𝐸
(𝑄, 𝑞)

√
(ln 2)2 − 4𝜋2(𝑛 + 1/2)2

2𝜋(𝑀
𝐸
(𝑀,






𝜔
𝑛






) + √𝑀

2

𝐸
(𝑀,






𝜔
𝑛






) − 𝑄

2

𝐸
(𝑄, 𝑞))

2

+

𝑞𝑄
𝐸
(𝑄, 𝑞)

𝑅
+𝐸RNBH

(𝑀,






𝜔
𝑛






, 𝑄, 𝑞)

= 𝑇
+𝐸RNBH

(𝑀,






𝜔
𝑛






, 𝑄, 𝑞)

×
√
(ln 2)2 − 4𝜋2(𝑛 + 1

2

)

2

+

𝑞𝑄
𝐸
(𝑄, 𝑞)

𝑅
+𝐸RNBH

(𝑀,






𝜔
𝑛






, 𝑄, 𝑞)

.

(58)

Hence, upon considering (40) and (54), one can rewrite (58)
as

𝜔𝑛
 ≡

√(𝑀−
𝜔𝑛
 /2)
2
− (𝑄− 𝑞/2)

2
√(ln 2)2 − 4𝜋2(𝑛 + 1/2)2

2𝜋[(𝑀−
𝜔𝑛
 /2) +
√(𝑀−

𝜔𝑛
 /2)
2
− (𝑄− 𝑞/2)

2
]

2

+
𝑞 (𝑄− 𝑞/2)

(𝑀−
𝜔𝑛
 /2) +
√(𝑀− |𝜔𝑛|/2)

2
− (𝑄− 𝑞/2)

2

,

(59)

where the solution of (59) in terms of |𝜔
𝑛
| will be the answer

of |𝜔
𝑛
|. Therefore, given a quantum transition between the

levels 𝑛 and 𝑛 − 1, we define |Δ𝜔
𝑛,𝑛−1

| ≡ |𝜔
𝑛
− 𝜔
𝑛−1
| where

(41)–(45) are rewritten as

𝑟
±𝐸
≡ 𝑅
±𝐸RNBH

(𝑀,






Δ𝜔
𝑛,𝑛−1






, 𝑄, 𝑞)

≡ 𝑀
𝐸
(𝑀,






Δ𝜔
𝑛,𝑛−1






)

± √𝑀

2

𝐸
(𝑀,






Δ𝜔
𝑛,𝑛−1






) − 𝑄

2

𝐸
(𝑄, 𝑞),

𝐴
+𝐸RNBH

(𝑀,






Δ𝜔
𝑛,𝑛−1






, 𝑄, 𝑞)

≡ 4𝜋𝑅

2

+𝐸RNBH
(𝑀,






Δ𝜔
𝑛,𝑛−1






, 𝑄, 𝑞)

≡ 4𝜋 (𝑀
𝐸
(𝑀,






Δ𝜔
𝑛,𝑛−1






)

+ √𝑀

2

𝐸
(𝑀,






Δ𝜔
𝑛,𝑛−1






) − 𝑄

2

𝐸
(𝑄, 𝑞))

2

,

𝑆
+𝐸RNBH

(𝑀,






Δ𝜔
𝑛,𝑛−1






, 𝑄, 𝑞) ≡

𝐴
+𝐸RNBH

(𝑀,






Δ𝜔
𝑛,𝑛−1






, 𝑄, 𝑞)

4

,

Φ
+𝐸
(𝑀,






Δ𝜔
𝑛,𝑛−1






, 𝑄, 𝑞)

≡

𝑄
𝐸
(𝑄, 𝑞)

4𝜋𝑅
+𝐸RNBH

(𝑀,






Δ𝜔
𝑛,𝑛−1






, 𝑄, 𝑞)

≡

𝑄
𝐸
(𝑄, 𝑞)

4𝜋 (𝑀
𝐸
(𝑀,






Δ𝜔
𝑛,𝑛−1






) + √𝑀

2

𝐸
(𝑀,






Δ𝜔
𝑛,𝑛−1






) − 𝑄

2

𝐸
(𝑄, 𝑞))

,

𝐼
+𝐸RNBH

(𝑀,






Δ𝜔
𝑛,𝑛−1






, 𝑄, 𝑞)

= ∫

𝑑𝑀
𝐸
(𝑀,






Δ𝜔
𝑛,𝑛−1






) − Φ
+𝐸
(𝑀,






Δ𝜔
𝑛,𝑛−1






, 𝑄, 𝑞) 𝑑𝑄
𝐸
(𝑄, 𝑞)

𝑇
𝐸SBH

(𝑀,






Δ𝜔
𝑛,𝑛−1






)

,

(60)

and (47)–(50) become

Γ
+𝐸RNBH

(𝑀,






Δ𝜔
𝑛,𝑛−1






, 𝑄, 𝑞)

∼ exp[
±






Δ𝜔
𝑛,𝑛−1






𝑇
+𝐸RNBH

(𝑀,






Δ𝜔
𝑛,𝑛−1






, 𝑄, 𝑞)

]

∼ exp [Δ𝑆
+RNBH

(𝑀,






Δ𝜔
𝑛,𝑛−1






, 𝑄, 𝑞)] ,

Δ𝑆
+𝐸RNBH

(𝑀,






Δ𝜔
𝑛,𝑛−1






, 𝑄, 𝑞)

≡

Δ𝐴
+𝐸RNBH

(𝑀,






Δ𝜔
𝑛,𝑛−1






, 𝑄, 𝑞)

4

,

Δ𝐴
+𝐸RNBH

(𝑀,






Δ𝜔
𝑛,𝑛−1






, 𝑄, 𝑞) ≡

2






Δ𝜔
𝑛,𝑛−1






𝑞 + 𝜋𝑄

3

(𝑀

2
− 𝑄

2
)

3/2
,

𝑁
+𝐸RNBH

(𝑀,






Δ𝜔
𝑛,𝑛−1






, 𝑄, 𝑞)

≡

𝐴
+𝐸RNBH

(𝑀,






Δ𝜔
𝑛,𝑛−1






, 𝑄, 𝑞)







Δ𝐴
+𝐸RNBH

(𝑀,






Δ𝜔
𝑛,𝑛−1






, 𝑄, 𝑞)







,

(61)

respectively.

5. A Brief Comparison

Here, we will show that the SBH results of Section 2 are in
fundamental agreement with the RNBH results of Section 3
for small 𝑄, where we recall that the RNBH of mass 𝑀 is
identical to a SBH of mass 𝑀 except that a RNBH has the
nonzero charge quantity 𝑄.

First, for small 𝑄, the SBH’s 𝑇
𝐸SBH

(𝑀, 𝜔) of (16) is related
to the RNBH’s 𝑇

+𝐸RNBH
(𝑀, 𝜔, 𝑄, 𝑞) of (46) as

𝑇
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞)

≡ 𝑇
𝐸SBH

(𝑀, 𝜔) −

3𝑞

2
𝑄

2

8(2𝑚 ± 𝜔)

5
𝜋

+ O (𝑄
4
, 𝑞

4
) .

(62)
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Second, for small 𝑄, the SBH’s 𝐴
𝐸SBH

(𝑀, 𝜔) of (13) complies
with the RNBH’s 𝐴

+𝐸RNBH
(𝑀, 𝜔, 𝑄, 𝑞) of (42) as

𝐴
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞) ≡ 𝐴
𝐸SBH

(𝑀, 𝜔) − 8𝜋𝑄

2
+ O (𝑄

4
) .

(63)

Third, for small𝑄, the SBH’s 𝑆
𝐸SBH

(𝑀, 𝜔) of (14) corresponds
with the RNBH’s 𝑆

+𝐸RNBH
(𝑀, 𝜔, 𝑄, 𝑞) of (43) as

𝑆
+𝐸RNBH

(𝑀, 𝜔, 𝑄, 𝑞) ≡ 𝑆
𝐸SBH

(𝑀, 𝜔) − 2𝜋𝑄

2
+ O (𝑄

4
) . (64)

Fourth, for small 𝑄, the SBH’s QNF |𝜔
𝑛
| of (24) is consistent

with the RNBH’s QNF |𝜔
𝑛
| of (58) and (59) as






𝜔
𝑛






≡

√ln 22 − 4𝜋2(𝑛 + 1/2)2

4 (2𝑀 −






𝜔
𝑛






) 𝜋

+

𝑞𝑄

2𝑀 −






𝜔
𝑛






= ( (3 (16𝜋𝑀

2
− 16𝜋






𝜔
𝑛






𝑀 + 4𝜋






𝜔
𝑛






2

+√− (ln 2 + 𝜋 + 2𝜋𝑛) (− ln 2 + 𝜋 + 2𝜋𝑛)))

×(8(2𝑀 −






𝜔
𝑛






)

5
𝜋)

−1

)𝑄

2
𝑞

2

=

𝑞

2

4𝑀 −






𝜔
𝑛






+ O (𝑄
4
, 𝑞

4
) ,

(65)

which can be applied to (62)-(63) by replacing the 𝜔 param-
eter with the pertinent |𝜔

𝑛
|. Hence, (62)–(65) indicate that

in general the SBH results of Section 2 are fundamentally
consistent with the RNBH results of Section 3 for small 𝑄.
Moreover, in (65) for large 𝑛, the result is consistent with
the SBH because ln 2 is negligible, but for small 𝑛 there is an
argument between scientists regarding ln 2 and ln 3 because
these refer to the two distinct QNM families of (51) and (52).

Here, we provide the physical answer of (65) for the case
of emission by using the fact that𝑄 is small, so the termwhich
includes 𝑄2 is also very small and therefore negligible:

(𝜔
0
)

𝑛
≡






𝜔
𝑛






≈ 𝑀

−

√

𝑀

2
+

𝑞

2

2

− 𝑄𝑞 −

1

4𝜋

√ln 22 − 4𝜋2(𝑛 + 1

2

)

2

.

(66)

Thus, by setting (𝜔
0
)
𝑛
≡ |𝜔
𝑛
| we obtain

Δ𝑀
𝑛
≡ −Δ𝜔

𝑛,𝑛−1
= (𝜔
0
)

𝑛−1
− (𝜔
0
)

𝑛

≡

√

𝑀

2
+

𝑞

2

2

− 𝑄𝑞 −

1

4𝜋

√
(ln 2)2 + 4𝜋2(𝑛 + 1

2

)

2

−

√

𝑀

2
+

𝑞

2

2

− 𝑄𝑞 −

1

4𝜋

√
(ln 2)2 + 4𝜋2(𝑛 − 1

2

)

2

(67)

for an emission involving quantum levels 𝑛 and 𝑛 − 1, which
becomes

Δ𝑀
𝑛
≈
√
𝑀

2
+

𝑞

2

2

− 𝑄𝑞 −

1

2

(𝑛 +

1

2

)

−
√
𝑀

2
+

𝑞

2

2

− 𝑄𝑞 −

1

2

(𝑛 −

1

2

)

(68)

for large 𝑛.

6. Conclusion Remarks

We began our paper by summarizing some basic similarities
and differences between SBHs and RNBHs in terms of charge
and horizon radii. Moreover, we briefly explored the Parikh-
Wilczek statement that explains how energy conservation and
pair production [2, 23] are fundamentally related to suchBHs.
For a BH’s discrete energy spectrum, the emission or absorp-
tion of a particle yields a transition between two distinct
levels, where particle emission and absorption are reverse
processes [3–7]. For this, we touched on the important issue
that the nonstrictly thermal character of Hawking’s radia-
tion spectrum generates a natural correspondence between
Hawking’s radiation and BHQNMs, because these structures
exemplify features of the BH’s energy spectrum [3–5], which
has been recently generalized to the emerging concept of a
BH’s effective state [6, 7].

Next, we prepared for our nonextremal RNBH QNM
investigation by first reviewing relevant portions of the SBH
effective framework [3–5] in Section 2. There, we listed the
noneffective and effective quantities for SBH states and tran-
sitions, with direct application to the QNM characterization
and framework of [3–5]. Subsequently, in Section 3, we iden-
tified some existing noneffective quantities and introduced
new effective quantities for RNBH states and transitions so
we could apply the BH framework of [3–5] to implement
a RNBH framework. These results are crucial because the
effective quantities in [3–5] have been achieved for the
stable four-dimensional RNBH solution in Einstein’s general
relativity—now effective frameworks exist for the SBH, KBH,
and (nonextremal) RNBH solutions.

Ultimately, the RNBH effective quantities permitted us to
utilize both the KBH’s effective state concept [6, 7] and the
BH QNMs [3–5] to construct a foundation for the RNBH’s
effective state in this developing BH effective framework.
The RNBH effective state concept is meaningful because,
as scientists who wish to demystify the BH paradigm, we
need additional features and knowledge to consider in future
experiments and observations.

Finally, we stress that the nonstrictly thermal behavior
of the Hawking radiation spectrum has been recently used
to construct two very intriguing proposals to solve the
BH information loss paradox. The first one received the
First Award in the 2013 Gravity Research Foundation Essay
Competition [12]. The latter won the Community Rating at
the 2013 FQXi Essay Contest—It from Bit or Bit from It [24].
We are working to extend this second approach to the RNBH
framework [25].
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The hypothesis of cosmic censorship (CCH) plays a crucial role in classical general relativity, namely, to ensure that naked
singularities would never emerge, since it predicts that whenever a singularity is formed an event horizon would always develop
around it as well, to prevent the former from interacting directly with the rest of the Universe. Should this not be so, naked
singularities could eventually form, in which case phenomena beyond our understanding and ability to predict could occur, since at
the vicinity of the singularity both predictability and determinism break down even at the classical (e.g., nonquantum) level. More
than 40 years after it was proposed, the validity of the hypothesis remains an open question. We reconsider CCH in both its weak
and strong versions, concerning point-like singularities, with respect to the provisions of Heisenberg’s uncertainty principle. We
argue that the shielding of the singularities from observers at infinity by an event horizon is also quantummechanically favored, but
ultimately it seems more appropriate to accept that singularities never actually form in the usual sense; thus no naked singularity
danger exists in the first place.

1. Introduction

Singularities, conceived as spacetime regions, where cur-
vature (as described by scalar invariant quantities like
𝑅
𝜇]𝜌𝜎𝑅
𝜇]𝜌𝜎) blows up to exceed any possible upper bound,

are one of the most problematic notions in Physics. After
all, strictly speaking, if the spacetime metric is ill-behaved
at a certain point, then the latter should not be considered
as part of that spacetime in the first place. Nevertheless,
it is this metric that we rely on to try to describe the
properties of that point. We overcome this incoherence by
considering an augmented spacetime that contains such
singular points as ideal boundary points attached to the
ordinary, well-behaved manifold. Since the spacetime struc-
ture breaks down at singularities while, at the same time,
physical laws presuppose space and time to develop and
manifest themselves, naked singularities would be sources
of lawlessness, absurdity, and uncontrollable information,
therefore an anathema for our perception of the Universe.
Even worse, Hawking and Penrose have shown that the
emergence of singularities is inevitable in a very large class of
universe types, where sufficiently reasonable conditions are

satisfied (the theorem actually goes as follows: let𝑀, 𝑔
𝑎𝑏
be a

time-oriented spacetime satisfying the following conditions.
(A) 𝑅

𝑎𝑏
𝑉

𝑎
𝑉

𝑏
≥ 0 for any nonspace-like 𝑉𝑎. (B) The time-

like and null generic conditions are fulfilled. (C) There is no
closed time-like curve. (D)At least one of the following holds:
(Da) there exists a compact achronal set without edge; (Db)
there exists a trapped surface; (Dc) there is a 𝑝 ∈ 𝑀 such that
the expansion of the future directed null geodesics through 𝑝
becomes negative along each geodesic. Then𝑀, 𝑔

𝑎𝑏
contains

at least one incomplete time-like or null geodesic) [1]. Since
all of them are redeemed in our Universe too, singularities
are expected with certainty to form in the latter as well. In
order to deal with these “monsters,” Penrose proposed the
famous cosmic censorship hypothesis (CCH) [2]. The weak
version of the hypothesis (w-CCH) suggests that observers at
infinity can never directly see a singularity, the latter being
at all times clothed by an absolute event horizon, whereas its
strong version (s-CCH) states that an observer cannot have
any direct interaction with a singularity at any time or place
[3]. Because of cosmic censorship, then, a naked singularity
should never occur except, conceivably, for some special
configurations, which are not expected to occur in an actual
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astrophysical circumstance (for a thorough and enlightening
presentation of the issues concerning singularities and CCH
see [4–6]).

It should be noted here that CCH does not stem from
somewell-established physical law ormathematical theorem.
Rather, it is a convenient hypothesis that, considering the
catastrophic impact of the alternative, we gladly accept as
(probably) true. Soon after it was proposed, it was declared as
one of the most important open questions in classical general
relativity [3], whose derivation remains obscure until now
(see [7–13] for reviews on thework done sofar). Initially, argu-
ments supporting the idea were based largely on geometry
and issues concerning causality, usually expressed in terms
of TIFs and TIPs (terminal indecomposable futures/pasts,
resp.) [14] (see again [6]). Penrose was able to derive
inequalities involving black hole masses and horizon radii
[15] in support of his hypothesis, which interestingly enough
were shown to hold true in a series of different situations
[16–21]. Moreover, CCH was proven to be valid in various
specific spacetimes [22–28]. At the same time, sceptics
were trying to construct counterexamples in which naked
singularities could emerge [29–37]. However, the majority
of those examples presupposed very special and idealized
conditions to hold (thus least possible to occur in a realistic
universe) to hold, so the credibility of CCH was far from
being fatally undermined by them. Soon it was evident that
a quantum treatment was necessary. Besides, the problematic
way we describe singularities represents much more our
lack of understanding their true nature, namely, the laws
of quantum gravity that presumably take over when radii
of spacetime curvature of the order of Planck length are
attained, rather than their actual behavior. It was proposed
(and hoped) bymany scientists that the inclusion of quantum
phenomena in the picture of gravitational collapse would be
the answer to all our difficulties to cope with singularities. In
fact, quantum mechanics has been proven very successful in
resolving many of the counterexample gedankenexperiments
in favor of CCH. More specifically it was used to show that
it is impossible to overspin or overcharge a maximal Kerr
black hole to produce a naked singularity (a procedure first
considered in [38]) [39–41]. In this framework, recent results
on the correspondence betweenHawking radiation and black
holes quasinormal modes [42–45] look to be particularly
interesting since they stress too the need for a quantum
mechanical approach to the black hole properties if we are
to gain a deeper understanding of the latter.

Following this line of thinking we try here to engage
quantum mechanics in the treatment of point-like singulari-
ties lying at a finite distance (as opposed to singularities lying
at infinity or thunderbolts).The key idea proposed is to make
appeal to Heisenberg’s uncertainty principle,

Δ𝑥 ⋅ Δ𝑝 ≥ 1 (in natural units where 𝐺 = 𝑐 = ℎ = 1) (1)

whichwe consider themost fundamental feature of every nat-
ural system, and check the constraints it imposes, concerning
the properties of systems that involve singularities.

2. Weak Censorship Revisited

Point-like singularities are expected to form because of the
unstoppable collapse of matter that occurs when a too large
mass is concentrated in a too small volume. The volume of
these singularities would effectively tend to zero by definition;
thus they should occupy a single point of spacetime. In
the case of a naked singularity, an observer at infinity
(i.e., at sufficiently large distance away from it so as to
be in an asymptotically flat region of spacetime) would in
principle be able to determine its position with arbitrarily
high accuracy by, for example, direct observation. When we
make a measurement with uncertainty Δ𝑥 → 0 concerning
the position of a quantum system, however, the uncertainty
principle states that we have to end up with complete lack of
knowledge about its momentum (i.e., Δ𝑝 → ∞), therefore
about its energy as well. We argue, though, that this is not the
case with naked singularities. Since in principle they can be of
arbitrarily large mass, one reasonably expects that the actual
procedure of determining their position could not change
their momentum significantly. Furthermore, even though
quantum gravity is necessary to describe the singularity
per se, it is legitimate to anticipate that general relativity is
sufficiently accurate to describe spacetime at macroscopic
distances away from it. Then, it would be possible to “weigh”
the singularity by observing potential gravitational lensing
effects or through measuring the trajectory, speed, and
acceleration of test bodies that get attracted by it and so forth.
This way the mass/energy of the singularity would be known
with uncertainty atmost of the order of themass itself (Δ𝑀 ∼
𝑀). All these mean that the existence of a naked singularity,
apart from all other undesired consequences, would also
violate the uncertainty principle.The conundrum gets settled
when the provisions of the w-CCH are taken into account.
The existence of an event horizon of radius 𝑟

ℎ
∼ 𝑀, which

emerges because of the warping of the spacetime continuum
by the singularity mass itself and thus exists in every kind
of black hole type, means that the actual position of the
singularity can be determined with uncertainty at least Δ𝑥 ∼
𝑟
ℎ
. Then we get from (1) that Δ𝑝 ≳ 1/𝑀 and consequently

we find for the singularity energy the inequality 𝐸 ≳ 1/𝑀3,
which obviously is perfectly compatible with measuring its
mass/energy with Δ𝑀 ∼ 𝑀. In this sense w-CCH not only is
necessary to make general relativity self-consistent, but has a
strong quantum support as well.

3. Strong Censorship Revisited

What about s-CCH then? It is not hard to imagine a situation
where a very large and massive system is in question (e.g.,
the central region of a galaxy); a trapped surface has already
formed while observers living on a planet within the trapped
region exist and expect quantum mechanics to hold at all
times until they crash into the singularity that will develop
some time in their future. Even though the soon-to-form
singularity would remain unseen by observers at infinity
(so w-CCH is satisfied), an observer inside the horizon
would actually encounter a naked singularity (being at the
same time at a significantly large distance away from it).
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All arguments presented in the paragraphs above hold true
for this observer too, so a paradox a rises. The s-CCH is
established to resolve the paradox by predicting that an
observer would never actually see the singularity, but since
it does not provide us with a mechanism capable of deterring
this interaction, it looks more like the expression of a hope
than a constraint imposed by some physical law. The only
way out, then, is to admit that the notion of unstoppable
collapse is wrong and, consequently, no point-like singularity
is formed at all. Quantum effects should get so enhanced,
at Planck scales, that they would manage to counterbalance
the gravitational contracting forces to stop the collapse and
prevent singularities from forming in the way we consider
them to do today (e.g., the confinement of matter in an ever-
decreasing volume, which means that it would acquire an
ever-increasingmomentum/energy, according, once again, to
the uncertainty principle, so that it would end up behaving
like a highly energetic gas whose pressure would constantly
grow to counterbalance eventually the contraction, is a
plausible mechanism to be explored in a work to come).

This approach, namely, the expectation that no singularity
forms eventually, finds good support from a very interesting
result by Geroch which crudely goes as follows: when a
manifold admits a Cauchy surface (as is the case for the
majority of physically reasonable spacetimes), then it also
admits a global time function 𝑡 that increases along every
future-oriented time-like curve, which can be chosen so that
every 𝑡 = const. surface is a Cauchy one. However, Cauchy
surfaces cannot intersect the singularity and thus there is no
time at which the singularity exists [46].

To sum up, revisiting CCH on the grounds of the
uncertainty principle, we arrive at the conclusion thatw-CCH
should hold true. However, since, by itself, it is insufficient to
make the overall picture self-consistent, it is needed that s-
CCH also applies. Yet the latter in its turn imposes so strict
restrictions; that is, as a way out, one quite naturally arrives
to admit that singularities never emerge in the usual sense,
rendering CCH, in all its versions, unnecessary in the first
place.
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