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Transportation is currently facing significant challenges from
a variety of factors including growing populations and
number of vehicles, rising urbanization, negligent driving,
and environmental issues. An interdisciplinary approach is
needed to address these complex problems, and information
and communications technologies (ICT) are emerging as
leading contributors to the future of transport. With more
than one million victims in road accidents annually, the
improvement in safety and efficiency of the transportation
system is of major interest for industrial and academic
research. �e use of ICT in development of intelligent
safety systems, driver assistance systems, cooperative driving
networks, and smart transport infrastructure is expected
to contribute to significant reduction of road accident and
traffic congestion. In this context, this special issue aims at
providing a collection of innovative and high-quality research
contributions focusing on smart technologies for vehicle
safety and driver assistance. 28 papers were submitted for
this issue; 12 of them were accepted for publication and were
summarized below.

�e paper by P. Das et al. demonstrates a proof of
concept of simulation-based framework for evaluating safety
performances of Intelligent Transportation System (ITS)
countermeasures. �e traffic microsimulation model and
surrogate safety assessment model are used to estimate crash
modification factors while a case study is used to calibrate the
model to real-world scenario. �is approach can investigate
the combined effect of multiple proposed countermeasures
and improve traffic safety management.

�e paper by K. Shaaban explores drivers’ perceptions on
smartphone applications for driving assistance. �e survey

was conducted on 421 participants from Qatar with respect
to their interests and perceptions in the installation and use
of two smartphone applications for real-time route planning
and distracted driving prevention. �e results can be used
by companies and government agencies for development of
road safety and efficiency applications, as well as for safety
campaign and awareness programs.

�e paper by X. Wang et al. addresses active warning
systems for highway-rail grade crossings (HRGC) using
connected vehicle technologies. To mitigate the risk of
collisions at HRGC, a novel active warning system was
designed, implemented, and tested based on readily available
connected vehicle technologies and devices. �e results from
simulations and field tests show that the proposed system
offers a better estimation of risk probability, which enhances
the system effectiveness and reliability, while the warning
messages decrease the collision risk compared to the pre-
dicted risk probability.

�e paper by K. Kurec et al. presents models and sim-
ulations of various controlling aspects of car aerodynamic
characteristics by actuating movable aerodynamic adds-on
on the car body to increase the traction, braking, and lateral
force in road conditions requiring such action. �e purpose
of this work was to extend the safety limits of fast moving cars
by controlling the moving aerodynamic elements.

�e paper by D. He et al. is on detecting obstacles quickly
and accurately during metro operation by using Google’s
Inception v3 deep convolution neural networks to classify the
common facility images from metro tunnels. �e developed
module provides better quality than other existing methods
chosen for comparison while using fewer model parameters
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and reducing computational costs. �e use of this approach
for metro intelligent monitoring systems could improve the
safety of metro operation.

�e paper by S. Zheng et al. aims to develop a prediction
model for car body vibration acceleration by taking into
account railway parameters collected by various sensors and
the previous vibration acceleration. �e model was based on
several training algorithms and neural network structures
and was successfully applied to predict the car body vibration
acceleration of test datasets on different railway segments.
�is approach overcomes the complexity and uncertainty
of the multiparameters coupling analysis used in traditional
models and offers an important instrument to assist the driver
in ensuring a smooth operation of the train.

�e paper by H.-K. Kim et al. provides a guideline
for designing a traffic light recognition system which is
useful for advanced driving assistance systems, as well as for
autonomous vehicles. �e investigation is focused on two
main components of the traffic light detection system: the
color space of the input video and the network model of deep
learning, by considering six color spaces and three types of
network models and by comparing the results of all possible
combinations on a traffic light dataset.

�e paper by K. Lee et al. proposes a novel approach
to remotely estimating the heart rate in actual driving
environments by using facial images. �e driver face region
is first detected, and the components related to heart rate are
then extracted by using ensemble empirical mode decompo-
sition and analyzed in frequency domain. Based on public
human-computer-interface dataset, the method was tested
and compared to previous studies. In addition, the method
was applied to data obtained from an actual driving situation.
�is work can be used to prevent accidents due to acute
heart rate disease by remotely estimating the heart rate and
judicially controlling the vehicle.

�e paper by S. Tak et al. investigates the corelation
between collision risk and driver behavior by analyzing
three surrogate safety measures (SSM) in two car-following
scenarios. �is study provides solutions to improve the
current advanced driver assistance systems. Among three
analyzed SSM, the one based ondeceleration (DSSM) features
similarities to human behavior shows a balanced perfor-
mance to estimate the collision risks in both deceleration
and acceleration phase, thus providing enhanced driver’
compliance to the ADAS.

�e paper by S. Tian et al. proposes a novel algorithm
for predicting bus rollover, providing a faster solution to
this problem compared to existing estimation algorithms and
thus offering additional time for response. �e enhanced
method predicts the lateral load transfer ratio (LTR), themost
common rollover index, and proves its effectiveness in two
standard handling tests (“sine with dwell” and “double lane
change”).

�e paper by J. Masino et al. develops two classifiers
of road condition by using mining techniques on data
provided by acceleration sensors and gyroscopes installed
in vehicles. Due to its modular design, the system can be
extended and adapted to multiple and various sensors. A

detailed presentation of this system design and capabilities is
presented in the article.

In the paper by S. Jaktheerangkoon et al., the authors pro-
posed and tested a blind-corner propagation model for inter-
vehicular communication in order to enhance the standard
simulation models used in vehicular ad hoc network. �e
distance calculation for signals traveling through blind corner
is properly adjusted by taking into account IEEE 802.11p
blind-corner experiments, and an additional parameter that
adjusts the standard model to the degree of the obstruction
is introduced. Additional real-life experiments are performed
to prove the better performance of the developedmodelwhen
compared to existing obstacle ones. �is result can be used
to realistically test intervehicle communication protocols and
applications for blind-corner scenario.

Taken together, these 12 papers provide key ICT solutions
to various challenges faced by the developers of technologies
used for vehicle safety and driver assistance.
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The efficientmovement of users and goods is the primary purpose of the surface transportation system. Roadway traffic crashes have
devastating impacts on quality of life of the users as well as health of the system.While researchers are utilizing advanced computing
and communication tools to reduce number of crashes on the roadways, there is still an absence of appropriate method to evaluate
the safety performances of these advanced technologies in the planning stage. Development of crashmodification factors (CMFs) is
a standardmethod to evaluate the safety effect of proposed countermeasures.Though, the current practices of developing CMFs are
not efficient and cost-effective in case of addressing impacts of Intelligent Transportation System (ITS) countermeasures.This study
demonstrated a proof of concept of simulation-based framework for determining CMFs for ITS countermeasures. The proposed
framework includes the application of traffic microsimulation model and Surrogate Safety Assessment Model (SSAM) developed
by Federal Highway Administration (FHWA). The integration of these two models is suggested to estimate CMFs efficiently.
However, the calibration of traffic microsimulation model and SSAM model is essential to portrait the real-world scenarios. A
case study for estimating CMFs of ITS countermeasures was conducted to validate the proposed simulation-based approach. Four
ITS countermeasures were considered: ramp metering, variable speed limit, junction control, and dynamic lane assignment. They
were coded in traffic microsimulation environment and vehicle trajectory files were generated to import into SSAM model. After
analyzing these trajectory files in SSAM tool, it was found that all proposed ITS countermeasures, except variable speed limit
assignment, could reduce the number of crashes at crash prone locations.

1. Introduction

The traffic fatality rate on United States highways and free-
ways presented a declining trend from 2006 to 2014 after
deploying safety initiatives, such as mandatory seat belt use
and strict law imposition against driving under influence
of drugs. Furthermore, advance technologies installed on
vehicles (e.g., air bags, lane departure warning, blind spot
warning, and adaptive cruise control) had contributed to
decreasing the traffic fatalities [1]. Fatality rate has increased
5.6 percentages to 37,461 people in 2016, after exhibiting the
highest increase rate of last three decades in 2015 which
was 8.4 percentages increase [2]. To date, several researchers
are working on developing crash prediction models and
finding countermeasures to eradicate the traffic crashes on

our roads [3, 4]. However, an appropriate scientific method
is essential to evaluate these proposed countermeasures prior
to the actual implementation that usually requires significant
budget and time.

To introduce a science-based technical approach that can
assess safety performance of proposed countermeasures in
planning stage, the Highway Safety Manual (HSM) was pub-
lished by the cooperative efforts of the American Association
of State Highway and Transportation Officials (AASHTO),
Federal Highway Administration (FHWA), and Transporta-
tion Research Board [5]. HSM allows users to prioritize the
countermeasures based on the changes in crash frequency
and severity. In HSM, a catalog of safety performance func-
tions (SPFs) and crash modification functions (CMFs) for
different geometric and operational countermeasure types is
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included to predict safety performance of any facility [5].
In addition to planning, the HSM can provide quantitative
safety performance and assistance to select countermeasures
for design, and operational phases of the project. However,
the successes in safety performance predictions depend on
the methodological and statistical validation of CMF values
and functions [6]. Many potential CMFs are excluded from
first HSM edition due to the failure of implicating proper
validations and justifications [7]. While researchers are foc-
suing on parameters such as crash types and severity [8],
roadway types [9], different socioeconomic conditions [10],
and time changes [11] to investigate the variability of CMFs,
variables such as vehicle types, driver ages and characteristics,
and weather conditions have not been examined so far [12].
On the other hand, estimating combined safety impacts of
multiple countermeasures remain an unresolved key issue
in HSM and just multiplication of the CMFs may lead to
an over- or underestimation of combined effects [13]. In
addition, AASHTO has addressed the failure in considering
the local impact of different factors inHSM [14].The duration
of study for developing CMFs is another drawback, in that
the research process requires data of traffic crashes before
and after implementation of countermeasures. The further
discussion regarding study duration continues, as discussed
in literature review. Finally and most importantly, the imple-
mentation of countermeasures could demand a huge amount
of investment, and once it is built, additional money could be
wasted to undo in case of errors thatmay increase the number
of traffic crashes. For example, installation of ramp meter
on multilane highway could cost approximately 1 million
excluding right of way acquisition.

The objectives of this study are to (i) develop a step-
by-step traffic microsimulation-based method for develop-
ing CMFs which could be used to predict potential crash
reduction benefit of proposed countermeasures, and (ii)
provide a proof of concept of proposedmethod. Additionally,
this proposed simulation-based method could be utilized
to improve the local representation of existing CMFs. The
remaining of this study is organized as follows. Section 2
discusses the current practices and their shortcomings, and
Section 3 presents proposed method for developing CMFs.
A case study is presented in Section 4 to investigate the
proposed method with Section 5 focuses on the results of the
case study and statistical analysis, and Section 6 concentrates
on validation of the method. Then concluding remarks and
future research direction are presented in Section 7.

2. Literature Review

The before-after, cross-sectional, and case-control studies
are widely used methods to estimate/develop CMS [15]. In
observational before–after study, it is required to implement
a countermeasure at crash prone region and then over a
period of time, crash frequency at that location is recorded.
The comparison between before and after implementation
provides the observed CMF value of that countermeasure.
There are many approaches to perform observational before-
after evaluations including but not limited to

(a) naı̈ve before-after,
(b) before-after with comparison group,
(c) empirical Bayes,
(d) full Bayes.

Among the above listed approaches, naı̈ve before-after is the
simplest method, although this method fails to contemplate
“regression toward the mean” effects [16]. As a result, this
method overestimates the effect of countermeasure. Before-
after method with comparison group compares the after
implementation crash frequency with similar untreated loca-
tions [17]. Empirical Bayes method to calculate CMFs has
been the most common and rigorous approach in last ten
years [18]. This method overcomes the regression toward the
mean effect and also considers the effect of the change in
traffic volume over the period of study. Recently, empirical
Bayes has been applied using negative binomial regression
models to overcome the challenge of heterogeneity in traffic
crash data [19, 20]. The full Bayes is a statistical inference
method which is similar to empirical Bayes. However, this
method uses the expected value and its variance to generate
a predictive distribution of crash frequency [21]. Another
advantage of this method is that CMFs can be determined
using small sample size.

One of the disadvantages of the carefully designed obser-
vational before–after study method is that it fails to identify
confounding factors [18]. Furthermore, the collection of traf-
fic crash data after implementation could be time consuming
and expensive [16]. The cross-sectional method is an obser-
vational study which isolates the magnitude of implementing
a selected countermeasure upon crash frequencies from the
effect of other treatments applied at the specific study regions
in a prescribed time period. Researchers applied this method
to calculate CMFs for the effects of lane width, shoulder
width, and presence of edge-line marking for frontage roads,
and median width for freeways and rural multilane high-
ways [22]. However, the cross-sectional method sometimes
overestimates the effect of the countermeasure due to the
presence of confounding variables, whereas case-control
method estimates the casual-effects while controlling impacts
of confounding variables [23]. Although this method can be
used to investigate the effect ofmultiple countermeasures, the
data collection and sample selection become very complex
in case of multiple countermeasures [24]. However, all these
observational studies require high quality crash data of before
and after implementation of countermeasures. To prove sta-
tistical significance, this data collection sometimes continues
over multiple years. Table 1 presents the study duration of
previous studies for developing different countermeasures’
CMFs.

Recently, Banihashemi used four years rural highway
crash data including about 5000 miles road geometry data
and annual average daily traffic (AADT) and then proposed
a heuristic method to calculate CMFs [33]. Researchers
investigated the safety effectiveness of the seatbelt and driver
training using cohort method [34].The change in probability
of crash occurring after implementation of countermeasure
is estimated through the steps of this method. Meta-analysis
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Figure 1: Proposed method for estimating CMFs.

method and expert panel survey were also proposed to
estimate CMFs [35]. Furthermore, researchers have been
exploring the global application of the HSM crash prediction
algorithm, hence transferability of CMFs to different road
networks in other countries, such as Italy, Canada, Denmark,
Germany, and New Zealand [36]. However, Gettman and
Head found that traffic simulation platforms could be poten-
tial resources for evaluating vehicle interactions regarding
safety aspects [37]. Meanwhile, other researchers criticized
this simulation-based approach arguing that built-in evasive
algorithms in simulation platforms prevent modeling crash
scenarios, and this can lead to the failure of developing
the relation between risk behaviors and traffic crashes [38].
However, Sacchi et al. [39] utilized video based traffic con-
flict analysis and found similarity in results with previous
observation study. Recently, Shahdah et al. [40] developed an
integrated method by combining observational before-after
method and simulation-basedmethod and drew a conclusion
that the estimated CMFs by using simulation could match
with the outcomes of observational studies. However, this
study failed to develop an independent system for estimating
CMFs using simulation. Table 2 summarizes the methods
used in previous studies and their limitations.

This paper aims to provide detailed step-by-step proce-
dures for calculating CMFs of ITS countermeasures using
simulation-based method and demonstrate the proof of
concept in applying this method in real-world scenarios.

3. Proposed Method

A unique approach is proposed in this study, where estima-
tion of CMFs could be conducted through four intercon-
nected but distinct steps. The steps are (a) identification of
countermeasures, (b) traffic simulation modeling, (c) conflict
analysis, and (d) factor calculation. The overall method
proposed in this research is illustrated in Figure 1.

To improve the safety aspects of a study location, the first
step is to identify possible implementable countermeasures.

Previous studies on similar locations and experts’ opinion can
be used to identify countermeasures for the study location.
Then the study site is modeled in traffic microsimulation
software. It is important to note that several studies were
conducted to evaluate the performances of traffic simulation
modeling and study results showed that the simulation
outputs were a statistically significant representation of the
real-world [44]. However, the traffic simulation models
need to be calibrated and validated using collected actual
traffic data to mimic the real-world traffic operation [45].
In this study, the calibration is performed using real-world
data and then the outputs from traffic microsimulation are
considered as a satisfactory representation of the real-world.
After developing base model, the necessary algorithms for
simulation representation of proposed countermeasures are
developed and coded.The simulations are runmultiple times
with different seed values to capture variability and initialize
randomness in simulation traffic patterns [46]. The vehicle
trajectory files, which is a binary file containing the course
of vehicle positions in the simulation network, are generated
while running the simulation model.

The next step is conflict analysis, where improvements in
safety after implementing countermeasures can be inspected.
Researchers defined conflict as an intersection of the trajec-
tories of two or more vehicles and collision can happen if
their movements remain unchanged [47]. After a thorough
research on the relation between crash and conflicts, a conflict
analysis tool called “Surrogate Safety Assessment Model
(SSAM)” was developed by FHWA [48].This conflict analysis
tool uses the trajectory files imported from the runs of traffic
microsimulation models. Five parameters are considered in
SSAM tool to estimate the frequency of simulated conflicts;
they are time-to-collision (TTC), postencroachment time
(PET), deceleration rate (DR), maximum speed (MaxS),
and speed difference (DeltaS). The threshold values of these
parameters need to be adjusted with the driving behaviors of
study locations. Then the number of conflicts is estimated by
analyzing the trajectory files in SSAM tool. Figure 2 shows
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Traffic Simulation Tool SSAM

- Create roadways
- Model ITS components

- Multiple runs with
different seed numbers

- Export trajectory files
from traffic simulation

- Run simulation
- Estimate number of
frequencies

-TTC = 1.5 & PET = 5.0

Formulate
Algorithms

Run
Simulation

Import
Trajectories

Estimate
Conflicts

Figure 2: Integration platform of traffic simulation tool and SSAM.

the integration platform of traffic simulation software and the
conflict analysis tool.

Finally, the numbers of conflicts calculated for base
model (i.e., existing condition) and alternative models (i.e.,
proposed countermeasures) are compared to calculate the
change in conflict frequency, i.e., CMFs after implementation
of countermeasures. The following equation, proposed by
[18], is utilized to estimate the CMFs of proposed counter-
measures. A statistical analysis, Student’s t-test, is preformed
to establish the statistical validation of calculated CMFs.

𝐶𝑀𝐹

=
# 𝑜𝑓 𝑐𝑟𝑎𝑠ℎ𝑒𝑠 𝑎𝑓𝑡𝑒𝑟 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠
# 𝑜𝑓 𝑐𝑟𝑎𝑠ℎ𝑒𝑠 𝑏𝑒𝑓𝑜𝑟𝑒 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠

(1)

4. Case Study for ITS Countermeasures

A case study was performed to validate the proposed
simulation-based method and also to compute the values
of CMFs when Intelligent Transportation Systems (ITS)
countermeasures are being considered to lower crash severity
and improve safety. Transportation professionals, automotive
industry, and decision-makers throughout the world con-
sider ITS measures as the viable solutions for traffic con-
gestion reduction and safety improvement [49]. Researchers
categorized different ITS measures into six major cate-
gories: advanced traffic management systems, advanced trav-
elers information systems, commercial vehicles operation,
advanced public transportation systems, advanced vehicles
control systems, and advanced rural transports systems [49].
Examples of advanced traffic management systems include,
but not limited to, ramp metering (RM), variable speed
limit (VSL) assignments, junction controls (JC), dynamic
lane assignment (DLA), automated warning system (AWS),
arterial management (AM), traffic signal monitoring (TSM),
road weather information system (RWIS), and incident mon-
itoring (IM). In this research, RM, VSL, JC, and DLA were
contemplated. The descriptions of these countermeasures are
provided in Table 3.

There are multiple traffic simulation tools (e.g., VISSIM,
Paramics, CORSIM, SimTraffic, and AIMSUN) currently
available, which can be integrated with SSAM tool for safety
evaluation. In this study, VISSIM was selected for modeling

ITS countermeasures as the corresponding software allows
users to simulate user-defined driving behavior for modeling
ITS equipment representations in simulation environment
[50].

4.1. Traffic Simulation. In this study, a roadway segment of
Interstate-76 (I-76), also known as Schuylkill Expressway, was
modeled in microsimulation environment. This expressway
has been experiencing significant traffic congestion since
the traffic demand has almost doubled after the completion
of this highway in 1960. A 15 mile long segment of I-
76 (from the intersection of Schuylkill Expressway (I-76)
and Pennsylvania Turnpike (I-276) to the intersection of
Schuylkill Expressway (I-76) and U.S. Route-1) was coded in
VISSIM simulation environment. In this network segment,
43% of total length had 2 lanes in both directions: 26%
had 3 or more lanes and the rest had single lane roadway.
Based on DVRPC’s (Delaware Valley Regional Planning
Commission) 2016 traffic counts dataset, the study site carried
approximately 163,705 average annual daily traffic (AADT)
in both directions [51]. In this study, morning rush hours
(6:30 AM to 8:30 AM) traffic volumes were projected as
simulation traffic volume over a period of two simulation
hours. Researchers have utilized the peak hour volume(s)
of study region for predicting crash frequency due to time
consuming nature of the traffic simulation runs [52]. The
results of simulation crash analysis using peak hour volume
were utilized to develop statistically significant prediction
models [53]. The traffic model was calibrated using observed
speed distributions and travel time data collected from field
visits. A map presenting the study area is shown in Figure 3.

After developing base model of the study area, ITS
countermeasures were coded in simulation environment. As
mentioned earlier, RM,VSL, JC, andDLAwere contemplated
in this study and programmed in four separate model
files using VISSIM VAP (Vehicle Actuated Programming)
platform. The authors proposed to replace 22 static speed
limit signs in the study region by a variable speed limit system.
Based on the downstream congestion level, the upstream
speed limit will be adjusted to improve the safety of travelers.
The speed limit values displayed in a variable speed limit
system were assigned as speed distribution to grasp drivers’
stochastic behaviors in simulation. For example, assume, due
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Figure 3: Study area, I-76 (source: Microsoft’s Bing Maps).

to downstream congestions, the speed limit for upstream
segment was estimated to 45 mph. Then 22% of all vehicles
crossing the speed limit displaywillmaintain a speed between
38 and 42.5 mph. Another 42% will drive at a speed between
42.5 and 47 mph, and the remaining will continue between
47 and 55 mph. Three ramp meters were recommended to
implement on three entrance ramps along the study corridor.
For each simulation model scenario (base model and four
alternatives’ models), 10 simulation runs were generated with
linearly incremented random seed values starting from 5 and
ending at 45. As a result, each simulation model yielded 10
trajectory files to be exported into SSAM tool.

4.2. Conflict Simulation. Calibration of SSAM model is
essential for integration of the real-world time-space dis-
tributions for the safety evaluation. This calibration task is
conducted by adjusting its five parameters (i.e., time-to-
collision (TTC), postencroachment time (PET), deceleration
rate (DR), maximum speed (MaxS), and speed difference
(DeltaS)) based on field collected data. Researchers found
that the threshold values of SSAM parameters could vary
depending onmany factors, i.e., time of day, highway geome-
try, driving behavior, and drivers’ age [54]. For example, TTC
threshold could be lower when significant numbers of the
drivers in study area are more likely to drive aggressively,
i.e., urban highways. However, due to data unavailability,
SSAM model was not calibrated in this study. The default
values of TTC and PET are 1.5 sec and 5.0 sec, respectively,
which means when TTC ≤ 1.5 sec and PET ≤ 5.0 sec, this
tool considers the events as the possibility of potential
conflicts. These default values of TTC and PET are utilized
bymany other researchers [55] and thus applied in this study.
Furthermore, there are three types of conflicts considered in
SSAM tool. These types of conflicts are separated based on
the conflict angles between the vehicles. They are (a) crossing
collisions (when conflict angle between vehicles > 85∘), (b)

rear end collisions (when conflict angle < 30∘), and (c) lane-
changing conflicts (when conflict angle ≥ 30∘ and conflict
angle ≤ 85∘).

The trajectory files imported from five VISSIM simu-
lation models were analyzed in SSAM tool. The estimated
total conflicts for each model were distinguished into three
conflicts types, i.e., crossing collisions, rear end collisions, and
lane-changing conflicts. Each type of conflicts was averaged
over 10 runs for base model and four alternatives. The
comparisons of the estimated conflicts between base model
and different ITS alternatives are shown in Figure 4.

5. Results and Discussion

There were 40,332 total conflicts (i.e., traffic crashes) iden-
tified after analyzing base model. Each conflict was then
categorized based on its conflict angle between vehicles. It was
found that among the total of 40,332 conflicts therewere 7,304
crossing conflicts, 12,914 lane change conflicts, and 20,114 rear
end conflicts. However, after implementing Ramp Metering,
the crossing conflicts increased by about 1,300, while other
two conflict types were decreased from base scenario. Total
39,045 conflicts were found after implementing RM. The
deployment of JC reduced the total number of conflicts
from base condition by around 250 conflicts. Other ITS
countermeasure, DLA reduced all types of conflicts from
the existing conditions. However, the number of identified
conflicts after implementation of VSL was found higher than
base model, since lane change and rear end conflicts were
increased by around 3,300 conflicts. Dynamic changes of
speeds, i.e., speed limit of road segment, within a short time
interval (each 15-minute interval) could be the reason of
increasing conflict frequencies in simulation models. This
sudden change provoked the drivers in simulation to perform
lane change more frequently than before. As a result, the
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Table 4: Conflict reduction percentage after implementation of ITS countermeasures.

Countermeasures Total Conflicts % Conflicts Reduction∗
Base Model 40,332 --
Alt 1: Ramp Metering 39,045 3.2%
Alt 2: Variable Speed Limit Assignments 43,543 − 7.9%
Alt 3: Junction Controls 40,083 0.6%
Alt 4: Dynamic Lane Assignment 38,267 5.1%
∗Negative percentage of conflict represents the increase of conflicts after countermeasure implementation.

Conflict Frequency for Base and Alternative Models
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Figure 4: Conflict frequency for base model and proposed ITS countermeasures.

number of lanes change and rear end conflicts were increased
afterDLS implementation.The total conflicts after implemen-
tation of these four ITS countermeasureswere comparedwith
base model. The percentage changes of conflicts from base
model are tabulated in Table 4.

It is found that the number of injurious crashes could be
reduced by 3.20%, 0.60%, and 5.10% from the base scenario
after implementing RM, JC, and DLA, respectively. However,
conflict frequencies were increased by 7.90% after imple-
menting VSL. Finally the CMF values for these proposed
ITS countermeasures were calculated. The calculated CMFs
would be 0.97, 0.99, 0.95, and 1.08 after accomplishing RM,
JC, DLA, and VSL on the roadways in selected study region,
respectively.

6. Validation of Proposed Method

It is recommended that the proposed method needs to
be validated either qualitatively or quantitatively. Qualita-
tive validation examines the relationship between output(s)
and variables, where quantitative validation compares the
predicted values of output(s) against the values of similar
output(s) calculated using a well-established method. In
this study, a quantitative approach was applied during the
validation process by comparing the calculated CMFs with
the values estimated in previous research studies. Though,

the technological feasibility of DLA and JC is under thorough
investigations till today and they are not installed in different
areas. So, there is limitation of crash data availability to
validate the calculated CMFs of these two countermeasures.
But the validation of other two countermeasures, i.e., RM and
VSL, was performed in this study.

Researchers evaluated the safety effects of ramp meter
implementation on a 9.2 miles segment of I-880 in Hayward,
California [56].They utilized a crash prediction model devel-
oped by Lee et al. (2002) [57] where the crash frequency was
estimated using trafficflow characteristics of the study region.
It was found that 5% of total crashes could be eliminated after
implementation of ramp metering on the segment of I-880.
Kansas Department of Transportation (KDOT) conducted a
safety evaluation of its ramp meters in 2010, and it was found
that the crash rate dropped by 24% on roads where ramp
meter was implemented earlier on I-435 [58]. While they
performed an observational before-after study to evaluate the
ramp meters, there was no statistical evidence to validate
the result of the study. Recently Chen et al. (2016) utilized
a hypothetical traffic network to inspect the influence of
rampmetering on safety improvement and observed 1.65% of
the total crashes reduced after application of ramp metering
[59]. Another research [60] was conducted to investigate the
application of variable speed limits using the same crash pre-
diction model developed by Lee et al. (2002). After analysis,
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Table 5: Validation of proposed simulation-based method for estimating CMFs.

Countermeasures

Using
simulation-based
method proposed

in this paper

Using crash
prediction model Percentage error

Ramp Metering: Study 1 [56]
% Reduction 3.2% 5% --

CMF 0.97 0.95 2.1%

Ramp Metering: Study 2 [59]
% Reduction 3.2% 1.65% --

CMF 0.97 0.98 1.0%

Variable Speed Limit Assignment: Study 3 [60]
% Reduction 7.9% 3.14∼4.94% --

CMF 1.08 1.04 3.8%

Variable Speed Limit Assignment: Study 4 [61]
% Reduction 7.9% 24.0% --

CMF 1.08 0.76 42.0%

the researchers concluded that the variable speed limit could
increase the crash potential when duration of intervention
is low; i.e., frequency of speed limit changes. They found
that variable speed limit could increase traffic crash by 3.14
to 4.94% depending on variations in road geometry. Saha
et al. (2015) examined variable speed limits implemented in
Wyoming and suggested that these variable speed limits could
reduce crashes by minimum 24% [61]. However the scope
of this study was limited, and researchers only considered
crashes that occurred during adverse weathers. These results
were compared with the estimated CMFs using proposed
simulation-based method. For this purpose, the percentage
error was calculated using the equation given below:

Percentage error (%)

=


estimated value − theoretical value
theoretical value


× 100

(2)

Table 5 represents the comparison between proposed
method and crash prediction model. For calculating percent-
age error, the CMFs estimated using proposed simulation-
based method were considered as “estimated value”. On the
other hand, the similar values calculated using crash predic-
tion model, i.e., developed by Lee et al. (2002), were tagged as
“theoretical value”, since the authors utilized these values as
references for validation. In Table 5, it is shown that CMFs
calculated using proposed simulation-based method were
slightly different than the same values calculated using crash
prediction model, except study 4 cited for variable speed
limit implementation. The percentage error for ramp meter
was found to be 2.1% and 1.0% based on the data collected
from study 1 and study 2, respectively. On the other hand,
this percentage error for variable speed limit was 3.8% based
on study 3. However, an error value of 42% was estimated
in case of study 4. This significant difference between CMF
values estimated using simulation-based method and crash
prediction model could happen due to the limited number of
crashes examined in study 4, since that study considered only
crashes that occurred in adverse weathers.

7. Conclusion

Development of CMFs could be useful for the practitioners
to perform safety evaluation, since significant statistical
knowledge is required for utilizing HSM practically. The
proposed simulation-based approach for estimating CMFs
will provide a vital tool to them and assist them in traffic
safety management. The application of this method could
reduce the time dependency of developing CMFs over con-
ventional observational method. Another benefit of using the
proposed method is to achieve the ability of investigating
the combined effect of multiple countermeasures. At present,
the expected combined effects, i.e., combined CMF, are
calculated by combining (for example: multiplication) the
individual CMFs of proposed multiple countermeasures.
Though, the validity of this method has not rigorously inves-
tigated. The simulation-based method proposed in this study
can be used tomodelmultiple countermeasures in simulation
environment and evaluate their combined safety effect. Fur-
thermore, traditional method of safety evaluation requires
installation of countermeasures at crash prone locations, and
the installation of ITS countermeasures could demand a
“significant” investment. But the proposed simulation-based
method could be used for evaluating ITS countermeasures
before implementation at crash prone locations. As a result,
potential errors in design could be avoided during planning
stage. Additionally the impacts of geometric changes, for
example, implementation of bus priority lanes [62], could be
evaluated using proposedmicrosimulation method. Also, the
proposed method could be utilized to validate existing CMFs
for local representation, a validation process recommended
by AASHTO [36]. As a result, the practitioners can comfort-
ably transfer the prior developed CMFs and apply those at
different problematic regions.

In this study, the proposed simulation-based approach
was used to calculate CMFs for four ITS countermeasures:
ramp metering, variable speed limit assignment, junction
control, and dynamic lane assignment. These countermea-
sures were coded in traffic simulation environment. The
simulation models were run to generate the trajectory files
including binary information of the course of vehicles in
simulation. Then these trajectory files were imported to
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SSAM tool. In SSAM tool, the default values of TTC (=
1.5 sec) and PET (= 5.0 sec) were utilized to analyze the
trajectory files. After analyzing, it is found that except
variable speed limit assignment the proposed ITS coun-
termeasures could reduce the number of crashes at crash
prone location. Finally the CMFs for rampmetering, variable
speed limit assignment, junction control, and dynamic lane
assignment were estimated as 0.97, 1.08, 0.99, and 0.95,
respectively.

7.1. Limitations of �is Research. Even though the proposed
approach could be performed in less time duration than
current practices, the success of estimating CMFs using this
method depends on the calibration of both traffic simulation
and SSAM models. Another limitation of this method was
lack of crash severity prediction. SSAM tool cannot draw
a relation between trajectory information and severity of
crashes due to evasive measures of traffic simulation. In this
study, the traffic simulation model was calibrated, though
SSAM model was not calibrated due to data unavailability.
Furthermore, default thresholds of parameters were utilized.
It is recommended to evaluate the change in conflict fre-
quency with respect to change in these parameter values.
The outcomes of the proposed method were compared with
the CMF values developed for the proposed ITS counter-
measures implemented in different study sites. However, the
proposed method could not be validated with real-world
traffic crash data of the study location, since the proposed
countermeasures were in concept development stage at the
time of this paper publication. As a result, the spatial depen-
dency could not be evaluated in this study, and furthermore
different time frames, i.e., midday rush hours, afternoon rush
hours, and weekends traffic, were not modeled other than
morning rush hours.

In future, the crash frequencies estimated using SSAM
will be compared with available real-world crash records to
validate the implementation of selected ITS countermeasures
in the study region. Furthermore, a methodology will be
developed to determine crash severity based on TTC, DR,
and DeltaS thresholds.
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Given the increasing importance and availability of traffic-related smartphone applications, understanding their potential use is
vital, especially in developing countries. This research explores motorist perceptions of the installation and use of two smartphone
applications—a distraction-prevention application and a real-time traffic information and navigation application—in Qatar, a
rapidly developing country in the Arabian Gulf region.This study represents the first attempt to investigate the potential market for
these types of applications in a region with a unique social and cultural environment. A questionnaire-based survey was conducted
to examine the drivers’ interest in using both applications, their willingness to buy the applications, and their data privacy concerns.
The results indicated that the potential market for these types of smartphone applications in Qatar is high. The potential for the
real-time route planning application was found to be much higher than that of the antidistraction application, especially among
female drivers. A high percentage of the drivers, especially younger and local drivers, were less enthusiastic about installing and
using the distracted driving prevention application. Most of the participants willing to use both smartphone applications did not
have data privacy concerns, but in return for allowing the applications to access their data, they expected some reduction in travel
time and a safer trip. These findings provide a direction for the development of future policies and smart solutions in this region.

1. Introduction

With the high increase in the use of smartphones and mobile
applications, more drivers are taking more risks by utilizing
their mobile phones while driving [1, 2]. Qatar, a wealthy and
rapidly developing country, is first among Arab countries and
second in the world (behind only South Korea) in terms of
engagement with mobile services and applications [3]. The
continuous growth in mobile phone usage in Qatar is due
to its consumers’ high purchasing power. This high level
of mobile phone ownership contributes to the high rate of
mobile phone use while driving in Qatar [4]. Over the past
few decades, Qatar has had a huge increase in the number
of vehicles, traffic violations, and collisions; many of these
are fatal, and they aggravate congestion problems on road
networks [5].

Therefore, it is necessary to find new solutions to improve
driver safety and network efficiency in Qatar.Throughout the

last decade, there has been an increase in the use of traffic-
related smartphone applications. These types of applications
have made an astonishing difference in the way information
is transmitted to people, making them better informed about
traffic conditions and helping them make safer, faster, and
smarter use of transportation networks. Given the increasing
availability of smartphone applications and the potential
for this technology to improve traffic safety and efficiency
in Qatar, this study aims to examine public perception of
different types of smartphone traffic applications, which is
timely and much-needed information.

Two types of smartphone applications were investigated.
The first application aims at assisting drivers by providing
a navigation system and real-time information about traffic
conditions to improve motorway efficiency, and the second
aims to restrict mobile phone usage while driving to improve
drivers’ behavior and provide a safe trip. The investigation of
two applications that serve different functions was important
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to investigate the drivers’ interest in and perspective towards
two different issues: traffic safety and time-saving. This
study represents the first attempt to investigate the public
perception of these types of applications in this region.

2. Related Work

Smartphone applications have increasingly been utilized
for different applications in transportation. In the area of
navigation, different smartphone applications are available in
the market to help the drivers by displaying their existing
locations and directing them to their target locations using
voice information in different languages, graphics, and text.
Drivers can save time and fuel by using these navigation sys-
tems, especially when in an unknown area. Lee and Cheng [7]
examined the navigation performance of drivers using smart-
phone applications and those using printed directions. They
found better driving performance and increased efficiency
when drivers used a smartphone application for navigation.
The benefits are even more significant if the applications
can provide real-time information about impending traffic
conditions, which also has clear links to reducing congestion.

A study investigated route choice behavior in the case of
a traffic information system using revealed-preference data.
The study revealed that different factors affected the decisions
of the drivers, including the characteristics of the trip; the
perceptions of the traffic reports reliability [8]. Another study
shows that providing high-quality information has a high
impact on the compliance behavior of the drivers [9]. A
study investigated the impact of real-time traffic information
on traveler behavior by using repeated day-to-day revealed-
preference observations. It was found that the drivers who
received access to real-time traffic information through their
smartphone reacted to the daily variations in travel times
stronger than the way they reacted in the before case (without
traffic information). The results indicated that providing real-
time traffic information affects driver behavior [10]

Despite the abovementioned advantages of mobile
phones in the area of navigation and real-time traffic
information, some activities associated with the mobile
phone use can distract a driver or a pedestrian. These
activities include talking, dialing, browsing, texting, hanging
up a call, reaching for the phone, picking up a dropped
phone, dialing, or answering the phone. These types of
activities cause drivers to take their hands off the steering
wheel and both drivers and pedestrians to take their eyes off
of the road.These types of inattention are the primary causes
of crashes. An estimated 20% to 30% of all road crashes
occurred because of driver distraction [11]. Furthermore,
the risk of being involved in a traffic collision is four times
higher in the case of using a mobile phone while driving
[12]. Even receiving a mobile phone notification without
interacting with the phone was found to significantly disrupt
the performance of the driver [13].

Many applications are available to restrict the mobile
phone use while driving. Some applications work automat-
ically by detecting the movement of the car, then different
actions can be taken after that. For example, calls can

be automatically sent to voicemail, access to the keyboard
and screen can be blocked, or all notifications including
alerts, texts, emails, and incoming calls can be blocked.
Other applications are less sophisticated and require the
driver input. In this case, the driver has to enable it every
time before driving. Some applications restrict the use of
mobile phones in addition to other equipment in the car.
Other applications promote hands-free usage as a solution
[14–20].

There are also other applications related to road safety.
For speed detection, a smartphone application collects speed
and location data. If the driver increases the speed near a
school zone, a sound alarm will be triggered [21]. For drunk
driving, a smartphone application calculates the different
accelerations of the vehicle and then compares them with
a typical drunk driving pattern stored on the application.
If a match is confirmed, the phone will automatically alert
the driver or call the police to seek help before being
involved in a crash [22]. For pedestrians, a smartphone
application is able to detect the approaching vehicles when
pedestrians use their phones while walking using the back
camera of the phone. The application alerts the pedestrian
in case of anticipated conflict with an approaching vehicle
[23].

In summary, no studies in the literature have investigated
the willingness of drivers to install these types of applications.
Furthermore, no studies were conducted throughout the
Arabian Gulf region where the drivers have different culture,
language, and habits. Given the increasing availability of
smartphone applications and the potential for technology
to improve traffic safety and efficiency in Qatar, the present
study aims to examine the public perception of two different
smartphone applications. The first application aims to assist
drivers by improving motorway efficiency by providing real-
time information on the traffic conditions, and the latter
aims at restricting smartphone usage to improve the driver
behavior.

3. Smartphone Traffic
Applications in Transportation

3.1. Smartphone Applications for Navigation and Real-Time
Route Planning. Smartphone applications have increasingly
been utilized for navigation purposes. This type of appli-
cations helps drivers by displaying their existing locations
and directing them to their target locations using voice
information in different languages, graphics, and text. Many
drivers receive driving directions using their mobile phones.
Many free services currently exist to provide drivers with
navigation directions, including Google Maps, Waze, and
MapQuest. Paid applications include Navigon, Sygic, and
MapsWithMe Pro. Drivers can also save time and fuel by
using these navigation systems when in an unknown area.
These systems have additional benefits, including improving
driving performance. This is true even for those with small
display screens. The benefits are even more significant if
the applications can provide real-time information about
impending traffic conditions, which also has clear links to
reducing congestion. Different applications currently offer
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this service. For example, INRIX Traffic provides a color-
coded signal of existing traffic conditions versus the typical
traffic and an indication to recommend the best time to travel.
It depends on users to improve its data and to provide updates
to fellow users on topics such as police presence, accidents,
and incorrect traffic assessments. The application is free, but
users have to pay if they want to use the route planning
features [24].

3.2. Smartphone Application for Distracted Driving Preven-
tion. Many applications are available to reduce the mobile
phone use while driving. Some applications work automat-
ically by detecting the movement of the car. For example,
Spring’s Driver First application is a monthly paid smart-
phone application that locks phones when a car is moving
faster than 10 mph, using the phone’s accelerometer but not
GPS to prevent battery drain. This application is targeted at
parents who want to enable restrictions on their driving-age
children. When using the application, calls are automatically
sent to voicemail. Audio tones for email and text messages
are silenced.The application also triggers autoreply messages.
When the application detects that the vehicle has stopped
moving for a few minutes (i.e., not at stop signs or traffic
lights), all phone functions return to normal automatically.
The device can be unlocked by using the exit and 911 buttons,
which can override the application, but parents can choose to
be notified when this occurs [25]. Another application with
similar capabilities is bSafeMobile. This application identifies
the driving condition and then automatically switches the
device to safe mode. During this stage, access to the keyboard
and screen is blocked. Furthermore, all notifications and
alerts, texts, emails, and incoming calls are blocked [26].

Other applications are less sophisticated and require
driver input. For example, DriveMode is a free application
that helps to keep drivers’ attention on the road, but the driver
has to enable it every time before driving. It automatically
replies to any incoming text messages; silences audio tones
for texts, emails, and phone calls; and blocks web browsing
and outgoing phone calls [27]. Some applications restrict
the use of mobile phones in addition to other equipment
in the car. For example, Cellcontrol uses Bluetooth-enabled
technology in the vehicle instead of using GPS to detect
vehicle movements and then apply the policy. Cellcontrol
prevents distracted driving by disabling mobile phones and
also mobile devices such as tablets and laptops [28]. Other
applications promote hands-free usage as a solution. For
example, the DriveSafely application reads to the driver
the received emails and text messages and then responds
automatically without the user having to touch the phone
[29].

4. Methods

The present study aims to examine the public perception of
two smartphone applications: iTraffic and Salamtek. The first
application aims to assist drivers by real-time traffic infor-
mation for route planning, and the latter aims at restricting
mobile phone usage to limit distraction and improve driver
behavior. Two applications were selected for the study based

on their local availability, free cost, and availability in the
Arabic language to ensure that users can easily understand
and use them. Both applications were developed by the
Qatar Mobility Innovations Center, which is a local research
center that was initiated to develop and deploy different
smart applications and intelligent solutions in different areas,
including road safety, transportation, smart city platforms,
and environment [6]. Figure 1 shows screenshots of the two
smartphone applications.

4.1. iTraffic Smartphone Application. iTraffic is a real-time
traffic information and navigation smartphone application. It
is the first smartphone application developed in Qatar with
a comprehensive traveler information system. It is available
in both Arabic and English languages for free. It enables the
user to monitor traffic conditions and receive real-time traffic
information on Qatar’s streets. A pictorial representation of
the congestion rate on various streets of Qatar is included.
This makes it easier to identify the fastest and/or shortest
routes, depending on traffic conditions. Voice alerts for
roadblocks and congested roads are also available.

4.2. Salamtek Smartphone Application. Salamtek is a smart-
phone application that limits the use of mobile phones
while driving to reduce driver distraction. This application is
available in English and Arabic languages for downloading
from any country. It manages all distracting smartphone
functions by eliminating all of them except the ability to
receive calls from up to three contacts. The driver can
also set the minimum driving speed upon which the safety
measures will be activated. The application also keeps a log
of all calls that have been automatically blocked, and callers
are automatically notified via an autoreply message once a
message is blocked.

4.3. Data Collection. The data for this study was collected
using a questionnaire survey conducted at several loca-
tions such as shopping malls, universities, libraries, colleges,
high schools, and sports clubs. The main questions of the
questionnaire form addressed (1) whether the participants
were willing to install these free smartphone applications
and why, (2) would they purchase the applications if they
were not free, (3) would they install the applications if
these collected private data from their mobile, (4) whether
the driver antidistraction application should be enforced
by the government, (5) any comments, recommendations,
and suggestions for the enhancement of these applications,
and (6) demographic questions, including gender, age, and
nationality.

The data collection process involved three phases. The
first phase included selecting the participants. The partici-
pation in this study was voluntary and anonymous and was
limited to people who were at or above 18 years old, had a
valid driving license, and owned a smartphone at the time
of the interview. To ensure randomization, the trained inter-
viewers approached every 10th person entering, explained the
importance of the questionnaire, and asked them if they met
the criteria and if they were willing to do the survey. In the
second phase, the participants who agreed to participate were
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Figure 1: Screenshots of iTraffic (top) and Salamtek (bottom) [6].

shown (via a demonstration) how to operate the applications.
A group of interviewers was trained to present a demo of the
two applications. The interviewers showed the demo of the
first smartphone application, explained its advantages, and
answered any questions the participants had.These stepswere
repeated for the second application. In the third phase, the
participants were provided with the questionnaire form. The
interviewers explained the form to each participant in person.
Theparticipantswere asked to complete the formbyhand and
return them then and there. The participants were allowed to
ask any questions during the process if any parts of the form
were not clear. The minimum sample size required for the
study was calculated as follows:

SS = Z2 ∗ p (1 − p)
C2

(1)

where

SS = sample size,

Z = Z-value,

p = percentage of population picking a choice
expressed as a decimal,

C = confidence interval expressed as decimal.

Assuming a 95% confidence level (Z=1.96) and 5% confidence
interval (C=0.05), the minimum sample size was found to be
385. In this study, 450 survey forms were handed out to the
participants. All 450 forms were returned. Only 421 forms
were considered complete and used for the analysis.Theother
forms had a high percentage of missing responses and were
not used during the analysis.
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Table 1: Characteristics of the participants.

Gender Frequency Percentage
Male 266 63.2%
Female 155 36.8%
Age
18-25 197 46.8%
26-50 178 42.3%
51 or more 46 10.9%
Nationality
Qatari 128 30.4%
Non-Qatari Arab 247 58.7%
Other 46 10.9%
Total 421 100.0%

The distribution of data collected is given in Table 1.
The characteristics of the participants were generally repre-
sentative of the characteristics of the population in Qatar;
however, there were some differences. Male respondents were
the majority with 63.2%, (females 36.8%). This ratio reflects
the imbalanced gender population in Qatar (which is 75.5%
male and 24.5% female) [30]. As the sample selected were
for drivers who own and use smartphones; the percentage of
participants older than 50 was low (10.9%). The rest of the
respondents were less than 25, 46.8%, and 26-50, 42.3%. The
sample consisted of Qatari nationals (30.4%) and non-Qatari
Arabs (58.7%) and other nationalities (10.9%). It should be
noted that only 14.3% of the general population are Qataris
[31]. Consideration of driver nationality was important due
to the cultural diversity across the country. The oversampling
of the female and Qatari participants in this study was
necessary to ensure that there are enough members of these
two subgroups within the population so that more reliable
estimates can be reported for both groups.

4.4. Logistic Regression. Logistic regression was utilized for
the analysis throughout this study.This type of analysis is one
of the most useful assessment methods to determine which
factors influence the outcome response of participants, given
that it intrinsically adjusts each factor considered for the pres-
ence of the other factors. As shown in Table 2, the response
variable (install application) is binary with two levels: 0 for
not installing and 1 for installing.Three independent variables
were used in the analysis. These variables include the driver
age (18–25=1, 26–50=2, and 51 or older=3), driver nationality
(1=Qatari, 2=non-Qatari Arab, 3=other), and driver gender
(1=male and 2=female). In the used model, the probability
(P1) of installing application Y1 [32] is as follows:

𝑌1 = 𝑙𝑜𝑔𝑖𝑡 (𝑃1) = ln( 𝑃11 − 𝑃1)

= 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋅ ⋅ ⋅ + 𝛽𝑗𝑥𝑗
(2)

where

Y1: latent variable for install application,
xj: value of j

th independent variable,

𝛽j: corresponding coefficient for the jth independent
variable.

The comparison between the referred group can be indicated
by the odds ratio, which is given by

𝑂𝑅 = exp (𝛽𝑗) (3)

Anodds ratio that is greater than 1 indicates that the condition
to install the application is more likely to occur in the first
group, and vice versa.

5. Results

5.1. Installing versus Not Installing. A central question was
asked to the participants to explore their willingness to
install the two studied smartphone applications. As shown in
Figure 2, 321 (76.2%) participants liked the iTraffic applica-
tion, and they were willing to install it. The remaining 100
participants mentioned that they are not willing to install
the application. Most of this group (46%) mentioned that
it is not needed because they know the streets well in the
city in terms of traffic conditions during the day. The rest of
the participants mentioned that they would not install it to
avoid distraction (28%), due to data privacy concerns (22%),
or other reasons such as difficulties to position the phone
inside the vehicle (4%). Non-Qatari Arabs and others showed
more willingness to install the applications than Qataris.
Also, female participants were more willing to install the
application than male participants. Table 3 lists the model
estimation and the odds ratio for the independent variables.
Based on the effect model, the binary logistic regression
model identified significant factors directly associated with
installing the two applications. In order to take theBonferroni
correction into consideration, a critical value was calculated
by dividing the familywise error rate by the number of tests.
For iTraffic, the model showed that the odds of the non-
Qatari Arab drivers to install iTraffic were 2.41 times of the
odds for Qatari drivers. Themodel also showed that the odds
of the female drivers to install iTraffic were 1.88 times of the
odds for male drivers.

5.2. Installation of Salamtek. Two-hundred and forty-one
(221) participants (52.5%) were willing to install the Salamtek
application as indicated in Figure 2. The remaining 200
participants indicated that they are not willing to install the
application because it is not needed (73.5%). This group
of participants mentioned they want to keep using their
phone while driving, and they do not see a problem with
it. The rest of the participants mentioned that they would
not install it due to privacy concerns (23%) or other reasons
such as must use my phone for work purposes (3.5%).
Some participants mentioned that the application was not
important, or necessary as most of them were aware of
the danger of mobile use while driving. Also, blocking the
incoming calls except for three VIP numbers, made a few
participants concerned they might miss an emergency call
from an unknown person or situation.

Elder participants (participants with an age greater than
50) were more willing to install this application. Fewer
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Table 2: Variable coding and definitions.

Variable Description
Dependent Variable
Install Application Not Installing:0, Installing:1
Independent Variable
Gender Male∗:1, Female:2
Age Group 18-25∗:0, 26-50:1, 51 or more:2
Nationality Qatari∗:1, Non-Qatari Arab:2, Others:3
∗Reference group for binary logistic analysis.
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Table 3: Drivers’ choice of installing/not installing iTraffic and logistic model results.

iTraffic Total Gender Age Nationality
Male Female 18-25 26-50 51+ Qatari Non-Qatari Arab Others

Installing 321 193 128 152 135 34 86 204 31
Not Installing 100 73 27 45 43 12 42 43 15
% Installing 76.2% 72.6% 82.6% 77.2% 75.8% 73.9% 67.2% 82.6% 67.4%

Variable
B S.E. Wald df Sig. Odds Ratio 95% C.I. for

Exp(B) EXP(B)
Lower Upper

Gender [Female vs Male]∗ 0.631 0.257 6.014 1 0.014 1.880 1.135 3.113
Age [26-50] vs [18-25] 0.027 0.259 0.011 1 0.918 1.027 .618 1.707
Age [51 or more] vs [18-25] -0.171 0.389 0.193 1 0.660 .843 0.393 1.806
Nationality [Non-Qatari Arab vs Qatari]∗ 0.878 0.255 11.835 1 0.001 2.406 1.459 3.967
Nationality [Others vs Non-Qatari Arab] 0.016 0.383 0.002 1 0.967 1.016 0.479 2.153
Constant 0.494 0.241 4.212 1 0.040 1.639
∗ refers to significance at 5 percent level.

Table 4: Drivers’ choice of installing/not installing Salamtek and logistic model results.

Salamtek Total Gender Age Nationality
Male Female 18-25 26-50 51+ Qatari Non-Qatari Arab Others

Installing 221 137 84 81 111 29 53 135 33
Not Installing 200 129 71 116 67 17 75 112 13
% Installing 52.5% 51.5% 54.2% 41.1% 62.4% 63.0% 41.4% 54.7% 71.7%

Variable B S.E. Wald df Sig. Odds Ratio 95% C.I. for
Exp(B) EXP(B)

Lower Upper
Gender [Female vs Male] 0.167 0.210 0.628 1 0.428 1.181 0.782 1.784
Age [26-50] vs [18-25]∗ 0.779 0.219 12.614 1 0.000 2.180 1.418 3.351
Age [51 or more] vs [18-25]∗ 0.836 0.342 5.966 1 0.015 2.308 1.180 4.515
Nationality [Non-Qatari Arab vs Qatari]∗ 0.530 0.225 5.555 1 0.018 1.699 1.093 2.640
Nationality [Others vs Non-Qatari Arab]∗ 1.013 0.384 6.975 1 0.008 2.755 1.299 5.844
Constant -0.796 0.228 12.165 1 0.000 0.451
∗ refers to significance at 5 percent level.

younger participants (41.1%) were willing to install the
application. A possible explanation is that young drivers are
more attached to the new social media culture and not as
prepared to get disconnected from their mobile phone. The
other nationality participants who included drivers other
than Qataris and non-Qataris Arab were more willing to
install the application than other nationalities. Qataris were
the least willing to install Salamtek.

Table 4 lists the model estimation and the odds ratio for
the independent variables. Based on the effect model, the
binary logistic regression model identified significant fac-
tors directly associated with installing Salamtek. The model
showed that the odds of the non-Qatari Arab drivers to install
Salamtek were 1.7 times of the odds for the Qatari driver. For
other than Qataris and non-Qataris Arab drivers, the odds
to install Salamtek were 2.8 times of the odds of the Qatari
drivers. The model also showed that the odds of the middle-
aged drivers to install Salamtek were 2.2 times of the odds for
young drivers. The odds of older drivers were 2.3 times the
odds of young drivers.

5.3. Buying versus Not Buying. A second central question was
to examine participants’ willingness to purchase the applica-
tions. Additionally, participants were also asked how much
they were willing to pay for the purchase of the applications.
This information can provide an indication of the importance
of the applications to the participant and can also provide
guidance to the developers of these types of applications.
Three options were given: (i) less than 5 US dollars, (ii) 6-
10 US dollars, and (iii) US 11 to 20 dollars. Approximately
54% (174 participants out of 321) were willing to buy the
iTraffic application if it was not free (Figure 2). Male, middle-
aged, and Qatari drivers showed more willingness to buy the
iTraffic application. The results showed that 122 participants
were willing to pay $5 or less, 32 participants were willing
to spend $6 to $10, and 8 of them were willing to buy the
application for the higher cost of 11- 20 dollars. One hundred
and twenty-six (126) participants (58.3%) were willing to buy
the Salamtek application out of the 221 that are going to install
even if it was not free (Figure 2). Female, young and middle-
aged, and Qatari drivers showed more willingness to buy the
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Salamtek application. Ninety-five (95) participants (86.4%)
were willing to pay $5 or less, 13 participants were willing
to spend $6 to $10, and 2 of them were willing to buy the
application for the higher cost of 11-20 dollars.

5.4. Data Privacy Concerns. Another question of interest was
related to examining the level of concern regarding data
privacy. Only participants who reported a willingness to
install the application answered this question. The question
highlighted that data collected would be used to improve the
applications, which would reflect on providing better service
for the users. Out of the 345 participants who were willing to
install the iTraffic application, 250 participants (77.9%) were
willing to install the application even if it collected the data
such as the location and phone ID as shown in Figure 2. For
Salamtek, out of the 241 of the participants who were willing
to install the Salamtek application, 173 participants (80.1%)
were willing to install the application even if it collected the
same sort of data.The remaining participants were concerned
about privacy and were against the collection of data.

5.5. Enforcement versus Motivation. A high percentage of
the participants who were willing to install the Salamtek
application (52%) responded that the government should
enforce these types of traffic safety applications to enhance
road safety when asked about their preference.The rest men-
tioned that there was no need for compulsory enforcement
for these types of applications. One of the reasons provided
was that enforcement hinders personal freedom and that
using amobile phone is an individual choice. Another reason
was that enforcing the use of the application would result in
buying smartphones by all drivers; that might not be a cost-
effective or realistic solution.

6. Discussion and Conclusions

Aquestionnaire-based survey was conductedwith 421 partic-
ipants to understand their perceptions towards two different
types of traffic-related smartphone applications: a driver
antidistraction application and a real-time traffic information
and navigation application. The results indicated that 321
(76.2%) participants were willing to install the real-time
traffic application; female drivers (82.6%) were especially
interested in this application. Furthermore, 188 (54.2%)
participants were willing to buy the application in the future.
Most of the participants willing to install the application
(77.9%) were open to sharing their personal data to improve
the performance of the application. The remaining partici-
pantswilling to install the application (22.1%)were concerned
about the security and privacy of their personal details.

On the other hand, 221 (52.5%) participants were willing
to install the driver antidistraction application. This appli-
cation was not popular among young and Qatari drivers.
More than half this group (58.3%) were willing to buy the
application, and 80.1% of this group were willing to use the
application even if it collected personal data. In summary,
the potential market for the real-time traffic application was
higher than that of the antidistraction application. In general,
the participants willing to use the applications did not have

privacy concerns, but in return for sharing their personal
data, they expected some reduction in travel time and a safer
trip.

These results can provide guidance for safety campaigns
and awareness programs that focus on motivating drivers
to make smart travel choices. Changing drivers’ methods of
selecting specific routes to be based on real-time information
can substantially improve the performance of the trans-
portation network and reduce costs and vehicle emissions.
Similarly, promoting the use of distraction-prevention smart-
phone applications through awareness programs, especially
among young drivers, can have significant safety benefits for
all road users; solutions such as driver education and stricter
punishments or fines for mobile phone use while driving are
not enough.

These results are useful for policymakers and government
agencies and can be used to appropriately promote these types
of smartphone applications in Qatar. Although this study was
conducted in Qatar, the findings can be applied throughout
the Arabian Gulf region, which includes Kuwait, the United
Arab Emirates, Oman, and Saudi Arabia. These countries
share similar social and cultural environments.

6.1. Applications of the Findings. In conclusion, there is a
potential market for these types of smartphone applications
inQatar. Once they become popular, these applications could
provide important benefits for drivers and transportation
networks. Drivers can benefit from efficient route planning
and travel information, which can reduce their travel time
and fuel consumption costs. This, in turn, can reduce travel
times, costs, and vehicle emissions for the entire road trans-
portation network. In addition, distraction-prevention appli-
cations can improve driver safety by preventingmobile phone
distractions, which could significantly reduce the incidences
of distracted driving and consequently the number of road
collisions.

There are also many other possibilities for public agencies
to effectively benefit from these applications. These applica-
tions could be used to collect traffic data and information,
such as vehicle speeds and counts. However, before utilizing
these applications for data collection, their accuracy must be
evaluated, and data obtained from these applications must be
compared with real-life data obtained from trusted sources.
Such comparisons will also assist developers in calibrating
and validating their applications. These applications can also
be used to conduct before and after studies to evaluate the
impact of different traffic-related policies.

There is also potential for these applications to provide
real-time traffic information for incidents and congestion.
This information can be used by public agencies to make
rapid decisions and to provide information to drivers via
dynamic message signs, for example. It can also be used by
public transportation agencies to provide real-time arrival
and departure information.

6.2. Limitations and Future Studies. Although the objectives
of the study were achieved, there were a few limitations.
The participants did not actually experience the applications
under real driving conditions; therefore, they had limited
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experience to guide their responses. In addition, the study
only investigated the potential market for these types of
applications without investigating how the applications may
influence driver behavior in the future. Therefore, follow-up
studies are necessary to find the actual number of instal-
lations. In addition, postinstallation preference studies are
needed to measure user perceptions and preferences, as well
as gaps between the number of installations and frequency of
use. Several studies have shown that only a limited number of
installed applications are being frequently used. Finally, there
is a need to measure the impact of these types of applications
on driver behavior to discover whether drivers make changes
to their commutes based on the information provided by
these applications and to reveal the degree to which they rely
on the applications.
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Highway-rail grade crossing (HRGC) collisions are a significant safety concern around the world. HRGC collisions have a high risk
of injuries and fatalities. To mitigate that risk, safety countermeasures for both active and passive HRGCs have been implemented.
Leveraging the latest developments in connected vehicle (CV) technologies, CV-based warning systems perform well in safety
applications for roadway networks. However, few have been developed to focus on safety improvements specifically for HRGCs.
To bridge this gap, this paper proposes a novel active warning system that was created with readily available CV technologies and
devices. A crossing risk assessment model was developed and evaluated in simulation and field applications. The proposed model
predicts the crossing risk probabilities in the near future. When road users are in great risk of a collision, the warning system sends
out auditory and visual alerts and displays the estimated waiting time. The test results reveal that the proposed warning system is
promising for field implementation to improve safety at grade crossings.

1. Introduction

Highway-rail grade crossing (HRGC) collisions are a primary
concern for railway authorities and the public at large. The
Canadian Transportation Safety Board [1] reported that more
than 240 fatalities and 260 serious injuries took place in
Canada as a result of grade-crossing collisions over the past
decade. Grade crossings can be classified as active HRGCs
or passive HRGCs. Usually, more incidents, injuries, and
fatalities occur at active HRGCs than in passive HRGCs.
ActiveHRGC incidents aremainly caused by drivers violating
or ignoring the control devices meant to keep them safe
as trains arrive at the crossing [2]. Thus, safety measures
at active HRGCs, such as signals and automatic gates, have
been meticulously investigated [3–12] from which safety risk
countermeasures have been implemented to provide dynamic
train information to drivers and pedestrians.

In recent years, the emergence of connected vehicle (CV)
technologies has enabled vehicle-to-infrastructure (V2I),
vehicle-to-vehicle (V2V), and vehicle-to-pedestrian (V2P)
communication applications. In mitigating the risk of grade-
crossing collisions, CV-based active warning systems have

shown great promise because they incorporate the latest
advances in CV technologies. CV-based active warning
systems apply CV technologies to remind crossing road users
of the right-of-way on railroads. It warns road users to stop
for crossing or approaching trains regardless of whether the
safety devices installed at the crossing are passive or active.

Previous research has validated the use of CV technolo-
gies in various safety applications [2, 9, 10, 12–16]; however,
few studies have focused on CV-based applications in rail
safety management. There is a significant need to design
and evaluate CV-based warning systems at grade crossings
in a multimodal user environment. Therefore, the primary
focus of this study was to develop and evaluate an active
warning system for grade crossings. The proposed active
warning system is promising in real-world applications to
reduce grade crossing incidents.

The remainder of this paper is organized into sections: the
next section reviews the existing conventional and advanced
warning applications to improve grade crossing safety;
the Methodology section describes the system framework,
probabilistic kinematic model, and crossing risk assessment
method; the Case Study section presents the simulation and
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field test results of the proposed active warning system;
and the last section discusses the concluding remarks and
suggests future work.

2. Literature Review

Signs are the first line of defense but also the most marginal
measure in terms of warning devices that prevent HRGC
violations and collisions. Regulated by Transport Canada
[17], the installation of grade crossing signs is mandatory
in Canada. A STOP AHEAD sign or a YIELD sign must
be installed along with a warning sign to enhance safety.
However, these signs provide no information on the actual
presence of a train to vehicle drivers and pedestrians.

Additional devices, such as obstacle detectors, signals,
law enforcement cameras, and horn systems, have been
implemented to provide real-time warning of the presence
of trains. Existing studies [3–8] have confirmed that these
devices improve safety performance at HRGCs. Unfortu-
nately, a communication failure between control devices and
road users often causes collisions at passive grade crossings.
Thus, many studies have been devoted to enhancing commu-
nication by updating control devices. Noyce and Fambro [3]
installed a vehicle-activated strobe light and a supplemental
sign. The sign tells drivers the desired action at grade cross-
ings. The before-and-after tests showed that the enhanced
sign system increased drivers’ caution at grade crossings. Sim-
ilarly, Gent et al. [4] implemented an automated-horn system
to alert road users at crossings. Two horns were mounted at a
crossing and activated using the track-signal circuitry for the
gate arms and bells. The system proved to be less annoying
for nearby residents and slightly safer from the locomotive
drivers’ perspective than the previously installed measures.
Moreover, Gilleran [5] discussed the use of presignals at grade
crossings. The author found that proper implementation
of presignals effectively prevents vehicles from crossing the
track area when trains are approaching. To compare the effec-
tiveness of different warning control devices, Hu and Lin [6]
conducted a before-and-after study using 15-year data. They
found that both the LED approaching train indicator and
the law enforcement camera are more effective than obstacle
detectors in reducing collisions and improving safety. In
addition, other studies attempted to enhance the operational
policy of control devices. For example, Moon and Coleman
[7] presented an operating policy for a four-quadrant gate,
which determines a dynamic dilemma zone and gate opera-
tion parameters to reduce grade crossing collisions. Likewise,
Siques [8] defined the four phases of pedestrian behaviours
at crossings: Pedestrians must (1) be aware of the crossing;
(2) take the appropriate path; (3) be aware of an approaching
train; and (4) understand potential hazards. Siques then pro-
posed amelioration measures, including passive signs, pedes-
trian channelization and gates, audio warnings, and public
education.

Advanced driver or pedestrian assistance systems
improve traffic safety from the road users’ perspective.
Alerting drivers through in-vehicle systems was proposed
as early as 1975 [18]. Since then, several tests have been
conducted for in-vehicle warning systems, in which trains

send signals to alert vehicles within the radio range
[19, 20]. However, these systems lacked vehicle-to-train
communication, and they were not in control of drivers’
dangerous crossing behaviours. Thus, Hartong et al. [9]
integrated positive train control systems with vehicular
ad-hoc networks to fulfill their communication. To avoid
HRGC incidents, they provided integration architectures
and identified protocols. Following this, several studies
focused on different aspects of grade crossing warning based
on wireless communication. To evaluate the feasibility of
wireless communication, Ku [10] established a detecting
and warning system. The system shows grade crossings in
real-time video to the train drivers through an onboard
unit and alerts road users about the train’s distance through
a roadside unit. These components are linked by wireless
communication. Ku’s subsequent field tests prove that the
system is feasible, and live videos help train drivers react fast.
As for auditory alerts, Landry et al. [11] conducted driving
simulator experiments to investigate the effectiveness of
in-vehicle auditory alert systems at grade crossings. Their
experiment results show that human voices, especially female
voices, are more effective than text-to-speech voices. In-
vehicle auditory alerts improve driver compliance. In terms of
stopping distance, Hsu and Jones [2] conducted a sensitivity
analysis on stopping distance at grade crossings. Field data
from two sites was used for the non-CV case while data from
a driving simulator was used for the CV case. The sensitivity
analysis shows that the initial speed and perception-reaction
time are the most sensitive safety factors at grade crossings.
Earlier onboard warning in CVs reduces the initial speed
and thus improves safety at grade crossings. In addition,
for signal propagation, Tedesso et al. [12] investigated the
dedicated short range communications (DSRC) signal propa-
gation conditions encountered in a railroad environment.
The train-to-infrastructure communication in both clear and
cluttered environments was set up. They proved that DSRC
signals can handle relatively long-distance communica-
tion.

Existing studies have examined the feasibility of CV-
based warning at grade crossings. When the warning sys-
tem is properly designed, it addresses the non-line-of-sight
problem and improves safety at grade crossings. However,
throughout the related literature, few studies have been
devoted to developing a risk assessment method for grade
crossings and evaluating its safety performance in simulation
or in the field. To bridge this research gap, this study included
the development of a novel probabilistic kinematic model
that replicates the motion of road users and rail trains
and applies a crossing risk assessment model to evaluate
crossing risk in real time. There were three objectives of
this study: (1) developing an active warning system for road
users at grade crossings; (2) validating the developed warning
system in simulation and field tests; and (3) assessing the
sensitivity of the model parameters. This paper presents the
proposed system’s design. The system was evaluated through
simulation and field tests conducted in Edmonton, Alberta,
Canada. The developed warning system is promising for field
implementation to reduce collisions and improve safety at
grade crossings.



Journal of Advanced Transportation 3

3. Methodology

3.1. System Framework. Enhancing communication between
railway warning systems and road users can reduce collision
probability and improve overall safety at HRGCs. The main
function of the proposed active warning system is to alert
road users of crash-imminent situations at a grade crossing
through CV technologies. The system includes a wireless
connection via DSRC between roadside equipment (RSE)
and onboard equipment (OBE) to activate crucial warning
messages about an approaching train. The warning messages
can be either visual or auditory. While the system may not
prevent all crashes, it is expected that, with an effective
warning system, the number of violations will decrease,
which will in turn reduce the number and severity of crashes
at railroad crossings.

Figure 1 illustrates the basic components, conceptual
communication framework, and system framework of the
proposed active warning system. On one end of the com-
munication pathway, RSE is installed at the grade crossing
and OBE is placed on trains. The basic parameters of the
grade crossing and the train need to be written into the
RSE and OBE in advance, respectively. On the other end of
the communication pathway, road users (i.e., vehicles and
pedestrians) equipped with OBE can receive grade crossing
and train information in real time when they are in proximity
to the grade crossing. The system evaluates the collision risk
and sends out warning messages by smart devices when
required.

Specifically, the RSE archives basic static information of
the grade crossing and receives real-time information from
any control devices. The static information includes geomet-
ric characteristics and positioning accuracy parameters for
collision risk assessment. Additional information, such as
real-time control device status and communication latency,
can be customized in the RSE. In the meantime, the OBE
obtains location information from its Global Position System
(GPS)module and thus derives the approach speed and travel
direction. Together with the information archived in the
RSE, the system first estimates actual locations considering
communication latency and user reaction behaviours. Then,
the actual locations are formulated as probabilistic kinematic
models to account for positioning inaccuracy. The system
then assesses the collision probability through a crossing risk
assessment model. Once the collision probability between a
road user and a train is larger than a predetermined threshold,
the warning is activated and sent to road users immediately.
At the same time, the road user can also receive the estimated
waiting time for the train to pass.

3.2. Probabilistic Kinematic Model of Highway-Rail Crossing
System. This study included the development of a proba-
bilistic kinematic model to assess the actual locations of
trains and road users with positioning accuracy. The model
was extended and modified from the one proposed by He
et al. [21] and adapted to reduce grade crossing collisions.
The model proposed by He et al. [21] is for vehicle-to-
pedestrian system so the following extensions and mod-
ifications have been made to adapt the characteristics of

highway-rail crossing system. First, the vehicle-to-pedestrian
system involves the locations of pedestrians in order to
prevent vehicle-pedestrian collisions. However, the highway-
rail crossing warning system needs to prevent not only colli-
sions between vehicles and rail trains but also those between
vehicles and gates at grade crossings. Thus, the extended
probabilistic kinematic model also involves gate operation
when gates are present. Second, the walking behaviours
of pedestrians are highly dynamic and hard to predict,
leading to the uncertainty of pedestrian location estimation,
whereas rail trains travel along rail tracks so that the location
estimation of trains is more certain compared with that of
pedestrians. The modified model excludes the uncertainty of
behaviors, which was done in the model of the vehicle-to-
pedestrian system. Third, as the motions of trains are more
certain than pedestrians, the time when trains leave grade
crossings is predictable. The highway-rail crossing system
provides remaining waiting time for road users.

The extended model quantifies collision risk in real
time in consideration of the road user’s reaction behaviours,
communication latency, uncertainty of positioning accuracy,
and grade crossing control system. Figure 2 demonstrates
the relative motion between trains and other road users. It
is important to note that road users include vehicles and
pedestrians. Figure 2 uses a vehicle to represent all road users.
In addition, the arrows in Figure 2 only indicate the travel
directions of trains and road users but their real trajectories
do not have to be always straight.

A probabilistic model describes the motions shown in
Figure 2. As shown in Figure 2, the train is approaching the
origin 𝑂(0, 0). First, at time instant 𝑡0, the initial locations of
the rail train and road users are measured as 𝑝𝑟,0(𝑥𝑟,0, 𝑦𝑟,0)
and 𝑝𝑢,0(𝑥𝑢,0, 𝑦𝑢,0). However, the delay caused by the road
user’s behaviours influences the positioning measurements.
Additionally, data is transmitted by vehicle-to-everything
(V2X) communication, which may experience communica-
tion latency thereby affecting position measurements. Hence,
the actual locations of the train and road users𝑝𝑟,0 and 𝑝𝑢,0 in
consideration of user behaviours and communication latency
are given in the equations below:

𝑥𝑟,0 = 𝑥𝑟,0 − V𝑟,𝑥,0 (𝑡𝑝𝑟𝑡 + 𝑡𝑐𝑙) (1)

𝑦𝑟,0 = 𝑦𝑟,0 − V𝑟,𝑦,0 (𝑡𝑝𝑟𝑡 + 𝑡𝑐𝑙) (2)

𝑥𝑢,0 = 𝑥𝑢,0 + V𝑢,𝑥,0 (𝑡𝑝𝑟𝑡 + 𝑡𝑐𝑙) (3)

𝑦𝑢,0 = 𝑦𝑢,0 + V𝑢,𝑦,0 (𝑡𝑝𝑟𝑡 + 𝑡𝑐𝑙) (4)

where 𝑥𝑟,0, 𝑦𝑟,0, 𝑥𝑢,0, and 𝑦𝑢,0 are the actual location coor-
dinates of the train and road user in meters (m); 𝑥𝑟,0, 𝑦𝑟,0,𝑥𝑢,0, and 𝑦𝑢,0 are the measured location coordinates of the
train and road user in m; V𝑟,𝑥,0, V𝑟,𝑦,0, V𝑢,𝑥,0, and V𝑢,𝑦,0 are the
measured velocity components on 𝑥 and 𝑦 axes in meters per
second (m/s); and 𝑡𝑝𝑟𝑡 and 𝑡𝑐𝑙 are the road user’s perception-
reaction time and communication latency in seconds (s),
respectively.

Then, the locations of the train and road users after time
period 𝑡 (𝑝𝑟,𝑡 and 𝑝𝑢,𝑡) can be predicted. Assuming that
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both the road segment and the rail track are straight, the
corresponding coordinates of the train and road user at time
instance 𝑡 are as shown in the following equations:

𝑥𝑟,𝑡 = 𝑥𝑟,0 − V𝑟,𝑥,0𝑡 (5)

𝑦𝑟,𝑡 = 𝑦𝑟,0 − V𝑟,𝑦,0𝑡 (6)

𝑥𝑢,𝑡 = 𝑥𝑢,0 + V𝑢,𝑥,0𝑡 (7)

𝑦𝑢,𝑡 = 𝑦𝑢,0 + V𝑢,𝑦,0𝑡 (8)

However, the positioning accuracy is limited by the efficiency
or inefficiency of the GPS service. Inaccuracy may result
from device problems and environmental factors. Therefore,
positioning uncertainty was considered in this research
because the positioning accuracy plays a critical role in the
activewarning application.This study assumed that the actual
locations of trains and road users were normally distributed:𝑝 ∼ 𝑁(𝑝, 𝛿2). By this means, their probability density
functions were formulated as follows:

𝑓 (𝑝𝑟,𝑡)

= 1
2𝜋𝛿𝑟,𝑥𝛿𝑟,𝑦 exp

{{{
−12 [[

(𝑥𝑟 − 𝑥𝑟,𝑡)2𝛿2𝑟,𝑥 + (𝑦𝑟 − 𝑦𝑟,𝑡)2
𝛿2𝑟,𝑦 ]

]
}}}

(9)

𝑓 (𝑝𝑢,𝑡)

= 1
2𝜋𝛿𝑢,𝑥𝛿𝑢,𝑦 exp

{{{
−12 [[

(𝑥𝑢 − 𝑥𝑢,𝑡)2𝛿2𝑢,𝑥 + (𝑦𝑢 − 𝑦𝑢,𝑡)2
𝛿2𝑢,𝑦 ]

]
}}}

(10)

where𝑓(𝑝𝑟,𝑡) and𝑓(𝑝𝑢,𝑡) are the probability density functions
for the actual locations of the train and road user at time
instant 𝑡, respectively; 𝑝𝑟(𝑥𝑟, 𝑦𝑟) and 𝑝𝑢(𝑥𝑢, 𝑦𝑢) are coordi-
nates of any location along the railway track and the roadway;
and 𝛿𝑟,𝑥, 𝛿𝑟,𝑦, 𝛿𝑢,𝑥, and 𝛿𝑢,𝑦 are the standard deviations of
position measurements on 𝑥 and 𝑦 axes (in m).

3.3. Probabilistic Kinematic Model Considering Gate Opera-
tion. Transport Canada regulates that grade crossings that
meet certain criteria must be equipped with awarning system

with gates. The detailed criteria are listed in [17, 22]. For
grade crossings with gates, the active warning system works
to prevent the collision through gate operation. Thus, gate
operation was also considered in the proposed model. First,
road users who enter the grade crossing during the gate
operation time 𝑡𝑔 are regarded as collisions. As such, (1)–(4)
were modified as follows. The locations after time period 𝑡
(𝑝𝑟,𝑡 and 𝑝𝑢,𝑡) are still predicted by (5)–(8):

𝑥𝑟,0 = 𝑥𝑟,0 − V𝑟,𝑥,0 (𝑡𝑝𝑟𝑡 + 𝑡𝑐𝑙 + 𝑡𝑔) (11)

𝑦𝑟,0 = 𝑦𝑟,0 − V𝑟,𝑦,0 (𝑡𝑝𝑟𝑡 + 𝑡𝑐𝑙 + 𝑡𝑔) (12)

𝑥𝑢,0 = 𝑥𝑢,0 + V𝑢,𝑥,0 (𝑡𝑝𝑟𝑡 + 𝑡𝑐𝑙 + 𝑡𝑔) (13)

𝑦𝑢,0 = 𝑦𝑢,0 + V𝑢,𝑦,0 (𝑡𝑝𝑟𝑡 + 𝑡𝑐𝑙 + 𝑡𝑔) (14)

where 𝑡𝑔 is gate operation time (𝑡𝑔 = 𝑡𝑑 + 𝑡𝑖, in s); 𝑡𝑑 is gate
delay time, which is the time between the initiation of flashing
lights and entry gate descent (in s); and 𝑡𝑖 is gate interval time,
which is the time between entry and exit gate descent (in s)
[7]. 𝑡𝑑 is the necessary stopping time for vehicles to stop safely
in front of the stop bar [23] and 𝑡𝑖 is the necessary time for
vehicles to completely pass the grade crossing. 𝑡𝑑 and 𝑡𝑖 can be
determined by the following equations. For grade crossings
without gate control, 𝑡𝑑 and 𝑡𝑖 are set zeros:

𝑡𝑑 = 𝑡𝑝𝑟𝑡 + V
2 (𝑎 + 𝐺 ∙ 𝑔) +

𝐷𝑠2𝑔
V

(15)

𝑡𝑖 = 𝐷𝑔2𝑔
V𝑐𝑟

(16)

where 𝑎 is the deceleration rate in meters per second2 (m/s2);𝑔 is the acceleration of gravity in m/s2; 𝐺 is the grade in
percent/100; V is the road user’s approach speed (inm/s);𝐷𝑠2𝑔
is the distance between the stop bar and gate (in m); 𝐷𝑔2𝑔 is
the distance between the entry and exit gates (in m); and V𝑐𝑟
is the critical minimum speed of a road user in the track zone
(in m/s). These parameters are predetermined, while 𝑡𝑑 and𝑡𝑖 can be measured from the field.
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Likewise, the warning system calculates the relative dis-
tance of road users from the gates instead of the trains.
Hence, in addition to the probabilities of the train and road
user locations calculated in (9)-(10), the probability of the
gate status is also taken into account. The gate status can
be derived from the real-time train locations because the
relationship between the gate operation and train arrival is
fixed. As regulated by Transport Canada, gate arms must
be horizontal at least five seconds before the train’s arrival
where trains travel faster than 25 kilometers per hour (km/h)
[22]. Considering this relationship, the probability of the gate
status𝑓(𝑝𝑔,𝑡) is given as the following conditional probability:

𝑓 (𝑝𝑔,𝑡) = 𝑓 (𝑝𝑔,𝑡 | 𝑌 < 0) ∙ 𝐹 (𝑌 < 0) (17)

where𝑌 = 𝑑𝑟2𝑔,𝑡−V𝑟,𝑡 ∙𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑; 𝑑𝑟2𝑔,𝑡 is the distance between
the train and the centre of the gate zone; (𝑑𝑟2𝑔,𝑡 = ‖𝑝𝑟,𝑡 −𝑝𝑔‖2, 𝑝𝑔 was assumed to be 𝑂(0, 0) in this study); V𝑟,𝑡 is the
approaching speed of the train at time instant 𝑡; and 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
is the time gap from gate descent and train arrival, which is a
fixed value from standards and guidelines.

Equation (17) can be degenerated to an equation for a no-
gate grade crossing. In this case, the model assumes that a
virtual gate exists. The virtual gate is equivalently open all the
time and thus 𝑓(𝑝𝑔,𝑡) = 1. Consequently, the probability of
the gate status in (17) in the no-gate scenario is degenerated
as below:

𝑓 (𝑝𝑔,𝑡) = 𝑓 (𝑝𝑔,𝑡) ∙ 𝐹 (𝑌) = 𝐹 (𝑌) (18)

3.4. Crossing Risk Assessment. To assess the collision risk, the
target roadway𝑍was divided into𝑀 subsegments.Thewidth
of the railroad track was 𝑊𝑟 and road length was 𝐿, so 𝑀
equaled 𝐿/𝑊𝑟. Also, the width of the road user (e.g., vehicles
and pedestrians) was𝑊𝑢. Thus, the mth subsegment 𝑍𝑚 was
defined as a region with 𝑥0𝑚 = −(1/2)𝑊𝑢 to 𝑥1𝑚 = (1/2)𝑊𝑢 for
its 𝑥 coordinates, and 𝑦0𝑚 = (𝑚 − 1)𝑊𝑟 to 𝑦1𝑚 = 𝑚𝑊𝑟 for its𝑦 coordinates. The collision risk was defined as the collision
probability 𝑃𝑡𝑘𝑍𝑚 over 𝑍𝑚 at the time instant 𝑡𝑘 (𝑡𝑘 = 𝑡0 + 𝑘𝑡
and 𝑘 is the prediction time step) as follows:

𝑃𝑡𝑘𝑍𝑚 = ∫
𝑦1
𝑚

𝑦0
𝑚

∫𝑥
1

𝑚

𝑥0
𝑚

𝑓 (𝑝𝑔,𝑡) ∙ 𝑓 (𝑝V,𝑡)𝑡=𝑡𝑘 𝑑𝑥𝑑𝑦 (19)

where the double integral indicates the generic description
of 𝑍𝑚 in the approaching rail track. The information of
coordinates can be obtained fromMAP data.

As mentioned in the System Framework subsection,
when collision risk 𝑃𝑡𝑘𝑍𝑚 at time instant 𝑡𝑘 was larger than
a predetermined threshold, a warning to road users was
activated. In this study, the scenario that caused the most
devastating collision was selected to calculate the collision
probability 𝑃𝑍𝑚 in the collision moment. The threshold was
determined as a certain percentage (e.g., 50%) of 𝑃𝑍𝑚 .
3.5. Waiting Time Estimation. When a crossing warning is
activated, the active warning system also provides estimated
waiting time at grade crossings. The gate arm starts to ascend

after the train leaves by a safe distance, which was assumed to
be V𝑟,0 ∙𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑.The safe point𝑝𝑠 is (−V𝑟,0 ∙𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 0). After
then, the time for the gate arm to ascend to vertical (𝑇𝑎𝑠𝑐𝑒𝑛𝑡)
must be 6 to 12 seconds, as regulated in [22].Thus, the waiting
time (𝑇𝑤) was estimated as follows. Once the waiting time is
estimated, the waiting time will be counted down:

𝑇𝑤 =
𝑝𝑟,0 − 𝑝𝑠2

V𝑟,0
+ 𝑇𝑎𝑠𝑐𝑒𝑛𝑡 (20)

4. Case Study

4.1. Study Site. Thegrade crossing at 82 Avenue and 114 Street
in Edmonton, Alberta, Canada (as shown in Figure 3) was
selected as the test site.This intersection is located at the south
side of Health Sciences Jubilee Station. There are two light
rail transit (LRT) lines running across. This location already
had treatments to improve the grade crossing. Passive railway
warning signs visually alert vehicle drivers and pedestrians
of an imminent LRT crossing. Pedestrian paths across the
tracks guide pedestrians to pass through the crossing in a safe
manner. Horizontal entry gates and flashing lights prevent
road users from entering the crossing when a train is in
hazardous proximity. Moreover, LRT trains have the priority
of the signal control to ensure safety.The tested grade crossing
is close to the University of Alberta and experiences heavy
traffic during AM and PM peaks. Although the treatments
were well designed and well implemented, alerts for road
users can still be improved in terms of the communication
between the railway warning and road users to improve
safety. Therefore, the proposed active warning system was
applied to this grade crossing.

4.2. Simulation Results. Prior to the field tests, simulation
tests were conducted by coding the collision risk assessment
model in MATLAB to evaluate the model effectiveness and
parameter sensitivity. It was assumed that there was no
other road user in front of the target user. To simplify
the computation of crossing risk, a random location, which
obeyed the normal distribution of the location measurement,
was assumed to be the actual location of a train or a road
user. In this study, at each time instant 𝑡0 , 20 random locations
were selected for each train and each vehicle, separately. The
crossing risk was calculated as the average collision frequency
based on the 20 × 20 random location combinations.

Two scenarios were tested: no-control and control. The
signal and gate control were operated for the control sce-
nario, while no controls were operated for the no-control
scenario. The two scenarios were designed to show the safety
performance difference resulting from traditional control
treatments. Three specific cases were simulated for one-
parameter sensitivity analysis: Case 1 varied the road user’s
initial speed and fixed the other parameters; Case 2 varied the
vehicle’s initial locations and fixed the other parameters; Case
3 changed the communication latency only but fixed the other
parameters; and Case 4 changed the standard deviations of
GPS position measurements while other parameters were
fixed. Table 1 lists the model parameter values used in the
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Figure 4: Crossing risk probability for different initial road user speeds. (a) No-control scenario. (b) Control scenario.

simulation. The three cases show how the crossing risk varies
for road users in different conditions.

Figures 4–7 show the simulation results for the three
cases, respectively. Throughout the contour maps, the high-
risk areas in parts (a) in all figures are the collisions with
the train, while those in parts (b) are the collisions with

the gate. Obviously, the high-risk areas in parts (a) are all
larger than those in parts (b). These results show that the
traditional control equipment at the grade crossing can keep
road users away from trains. In this way, the traditional
control equipment effectively reduces collision frequency and
severity.
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Figure 5: Crossing risk probability for different initial locations. (a) No-control scenario. (b) Control scenario.

Table 1: Model parameter values in simulation. (a) Location parameters. (b) Speed parameters. (c) Communication latency parameter. (d)
Other parameters.

(a)

Parameter 𝑝𝑟,0(𝑥𝑟,0, 𝑦𝑟,0) [m] 𝑝𝑢,0(𝑥𝑢,0, 𝑦𝑢,0) [m]

Value (500, 0)

Case 1: (0, -500)
Case 2: (0, -500 ∼ -100)

Case 3: (0, -500)
Case 4: (0, -500)

(b)

Parameter V𝑟,𝑥,0 [m/s] V𝑟,𝑦,0 [m/s] V𝑢,𝑥,0 [m/s] V𝑢,𝑦,0 [m/s]

Value -15 0 0

Case 1: 0 ∼ 20
Case 2: 15
Case 3: 15
Case 4: 15

(c)

Parameter 𝑡𝑐𝑙 [s]

Value

Case 1: 0.1
Case 2: 0.1
Case 3: 0∼1
Case 4: 0.1

(d)

Parameter 𝑡𝑝𝑟𝑡 [s] 𝑡𝑔 [s] 𝑇𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 [s] 𝛿𝑟,𝑥, 𝛿𝑟,𝑦, 𝛿𝑢,𝑥, 𝛿𝑢,𝑦 [m] 𝑡 [s]

Value 2 3 10

Case 1: 3

0.2Case 2: 3
Case 3: 3

Case 4: 0∼10

In addition to the high-risk conditions, there are other
conditions that will not cause a collision. For example, if a
pedestrian walks at 1m/s in the control scenario of Case 1 (see
Figure 4(b)), the pedestrian has no collision risk as predicted
by the model. As a result, the model can predict the collision
risk at grade crossings. Road users and trains have collision
risks only under certain conditions, which are combinations
of real-time road user and train travel speeds, locations, and
other environmental factors. Only the road users who are in
risk of collision will be alerted to the impending collision. In
contrast, road users who do not have a collision risk will not

receive a warning. Additionally, the model estimates waiting
time so that road users can plan their travel behaviours.
By these means, the model improves the warning system
reliability and user compliance.

Moreover, as shown in Figure 4, the collision risk
decreased with a decrease in speed. This means that early
speed reduction can remarkably reduce collision probability
and severity. As for communication latency, as shown in
Figure 6, considering communication latency in the model
provides earlier warning. Thus, the consideration of commu-
nication latency in themodel has a positive impact on the risk



Journal of Advanced Transportation 9

Time (s)
0 10 20 30 40 50 60 70 80

C
om

m
un

ic
at

io
n 

La
te

nc
y 

(s
) 1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

(a)

Time (s)
0 10 20 30 40 50 60 70 80

C
om

m
un

ic
at

io
n 

La
te

nc
y 

(s
) 1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

(b)

Figure 6: Crossing risk probability for different communication latencies. (a) No-control scenario. (b) Control scenario.
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Figure 7: Crossing risk probability for different GPS accuracy. (a) No-control scenario. (b) Control scenario.

assessment and system effectiveness. For GPS accuracy, when
crossing risk probability is about to increase, compared with a
smaller standard deviation of GPS position measurements, a
larger one generates a lower risk probability. As the system
predetermines a warning threshold, the warning delay is
minor even when the standard deviation is 10 m, which is the
positioning accuracy obtained from nearly the least accurate
GPS devices in practice.

4.3. Field Test Results. After the model performance was
confirmed in simulation, the active warning system was
tested in the field. During the field tests, the OBE devices,
which are self-contained portable units, were placed on LRT
trains and in the test vehicle. The OBE devices transmitted
messages between one another via DSRC.The active warning
system described in the last section was coded in C++
for the field test. The location-specific parameters of the
grade crossing were input into the model beforehand. The
field tests were conducted from 1 PM to 2 PM on July 13,
2018. During the tests, the test vehicle with OBE and smart
devices travelled across the intersection. Using the real-time
information from the test vehicle and trains collected every
1 s, the risk assessment model in the system predicted the
collision risk 30 s in advance. The communication latency
value in themodelwas 0.1 s and the standard deviation ofGPS
position measurements was 3 m. Once the model obtained a
high-risk probability, the system sent out the warning to the
vehicle driver. Along with auditory alerts, the smart devices
displayed warning messages and waiting times when an LRT

Figure 8: User interface on smart devices.

approached or crossed (as displayed in the interface shown
in Figure 8). Real-time location and speed data from both
the LRT and the vehicle was collected to evaluate the CV
technologies and improve the safety of grade crossings.

Figure 9 shows the results from the two field tests. In
the first test (Figure 9(a)), the test vehicle travelled from the
west to the east along University Avenue, while an LRT train
travelled from the north to the south. At the time of 13:17:20,
thewarning systempredicted that the vehicle and trainwould
have a high collision risk at 13:17:31 under their current speed
and location combination. The system alerted the vehicle
driver by auditory and visual warnings. After the warning,
the vehicle driver decelerated and stopped behind the stop
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Figure 9: Field test results. (a) Test 1. (b) Test 2.

line. With the help of the warning system, the crossing risk
remained at zero during the test. Likewise, in the second test
(Figure 9(b)), another train travelled from the north to the
south while the test vehicle travelled from the east to the
west. At the time of 13:22:23, the warning system sent out a
warning message to alert the driver of the potential collision
risk. After the driver decelerated gradually, the predicted
risk decreased. Based on the observations from the two
tests, it can be concluded that the proposed grade crossing
warning system forecasts collision risk, alerts road users to
take proactive driving behaviours, and decreases collision
risk.

5. Conclusions and Future Work

Traffic safety at highway-rail grade crossings is a major con-
cern for transportation authorities and the public at large. CV
technologies have performed well in active driver assistance
systems. This paper presented an active warning system,
which aims at eliminating collisions at grade crossings. The
proposedmodel and systemwere evaluated in simulation and

field tests. The simulation and field tests revealed several key
findings.

(a)The proposed model predicts the crossing risk in near
future based on real-time information from road users and
trains. The developed system sends auditory and visual alerts
to road users who are at risk of a collision. Results from the
simulation and field tests show that the accurate estimation
of risk probability enhances the system effectiveness and
reliability.

(b) When road users have collision probabilities with
trains, the collision risk decreases with a decreased speed.The
early deceleration alert given by the proposed active warning
system effectively mitigates collision risk.

(c) The proposed active warning system performed well
in field tests. After the drivers responded to the warning
messages, the collision risk decreased remarkably compared
with the predicted risk probability.

Based on the findings, future work will make effort
to evaluate the warning system in various grade crossing
locations and traffic scenarios. In the present study, only
communication latency was considered in the proposed
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model, future work will also analyse the system performance
based on other important communication parameters, for
example, packet loss rate. In addition, more field tests are
required to assess the model parameter relationships, system
performance, and reliability.
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The aim of this study was to extend the safety limits of fast moving cars by the application, in a controlled way, of aerodynamic
forces which increase as the square of a car’s velocity and, if left uncontrolled, dramatically reduce car safety.This paper presents the
methods, assumptions, and results of numerical and experimental investigations by modeling and simulation of the aerodynamic
characteristics and dynamics of a small sports car equipped with movable aerodynamic elements operated by an electronic
subsystem for data acquisition and aerodynamics active automatic control.

1. Introduction

Currently, the trend to minimize emissions by limiting
fossil fuel consumption leads to lighter cars with a low
drag coefficient. This situation introduces new challenges
for car designers. They need to ensure that stability will be
good enough to allow safe driving in all road conditions
(wind gusts, moving obstacles, etc.). Studies found in the
literature mainly focus on sensitivity to lateral wind. These
methods attempt to reproduce the test procedure according
to the ISO 12021:2010 standard [1]. However, it is rather
rare to take into account the coupling of car dynamics and
aerodynamics. Very often, it is assumed that car movement
will not affect aerodynamic forces.The study presented in [2]
is in contrast to this assumption. The authors have shown
that the inclusion of a bidirectional fluid structure interac-
tion can lead to a significant change in the aerodynamics
forces.

The development of the quality of highways together with
the increase in the potential maximum speed of cars has
turned the attention of car designers towards the dynamic
features of cars at high speeds. The external shapes of cars are
typically optimized for low aerodynamic drag. Unfortunately,

such action has drawbacks in the form of car bodies gener-
ating aerodynamic lift forces at high speed, together with a
decrease in a car’s directional stability and reduction of safety
limits during fast cornering. The frailty of the car body shape
is typically compensated by fixed or movable aerodynamic
elements activated at high speed. Typically, such aerodynamic
elements have the form of a wing, generating downforce
which compensates the lift force generated by the car body.
The additional aerodynamic elements generate additional
drag, so it is desirable to activate the movable elements only
when necessary. Some sports cars such as, for example, the
Porsche 918 Spyder [3], have predefined aerodynamic settings
for a specific range of speeds which make it possible to either
minimize drag or maximize downforce, while the active
aerodynamics of the McLaren Senna additionally enables it
to shift the aerodynamics balance towards the rear of the car
to enhance braking. These two examples relate to a case when
the active aerodynamics is used to support the maneuvers
performed by the driver.However, with the increased number
of different types of sensors [4] that can be mounted on a car,
it is possible to design a driver assistance system that is able
to evaluate the current road conditions [5] and automatically
modify the aerodynamic properties. One example where
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Figure 1: Scheme of the data flow in the project of vehicle active aerodynamic safety, where CAD is computer aided design, CFD is computer
fluid dynamics, and FSI is fluid structure interaction.

a driver can be assisted during a rapid maneuver could
be the use of machine vision technology to estimate the
road curvature [6] and utilize the driving assistance system
to assess not only whether the speed is within the safety
margin but also whether the vehicle’s aerodynamic setup is
the most appropriate for the car’s safety. This could also give
the time essential to perform more significant movements
of the active aerodynamic surfaces so that a higher value
of the aerodynamic forces can be utilized, even before the
driver realizes that some kind of action needs to be taken.
The introduction of autonomous driving itself can make it
possible to increase safety limits during rapid maneuvers [7].
The development of such systems needs to rely on model
based validation due to the costs and complexity, which
was emphasized by researchers developing a highway pilot
assisting the driver [8].

An aerodynamic active control system requires infor-
mation about the actual state of the car, the position of
the movable aerodynamic elements located on the car body
and the steering algorithms. This paper presents information
about the methods used for modeling and simulation to
develop an active system extending the safety limits of a
fast moving car. The electronic control system is the key to
the integration of many aspects of scientific and technical
activity.

It was considered that information can be collected from
sensors located inside the car and that a set of movable
aerodynamic elements would be attached to the car body
to form a control loop. The control part of the system was
assumed to be open for programming taking into account
information about the characteristics of the sensors, the
actuators and the aerodynamic characteristics of the added
aerodynamic elements. The general scheme of data flow in
the project is presented in Figure 1.

2. System of Data Acquisition and Active
Control of Movable Aerodynamic Elements

Ameasurement and control system was developed to achieve
the project goals. It was decided that, for research purposes,
the system should be flexible and easy to modify. The other
requirement for the hardware was immunity to vibrations
and an ability to work in a broad range of environmental
conditions. For those reasons, an industrial real-time con-
troller was selected as the core of the system. The controller
was fitted with a set of different types of communication
interfaces, which enabled the connection of different sensors
and devices.The general architecture of the developed system
is presented in Figure 2. The whole system is divided into
three subsystems: the measurement subsystem, the actuation
(control) subsystem, and the user interface.

The measurement subsystem consists of several sensors
together with their interfaces. In the current configuration,
all the sensors were connected to the system controller
via RS-232C interfaces. The main sensor is an integrated
GPS (Global Positioning System) and AHRS (Attitude and
Heading Reference System) sensor. This sensor provides
navigation and vehicle state data: linear acceleration, linear
velocity components, inertial position, angular rates, and
attitude angles in three perpendicular axes. All the data was
collected at a frequency of 200Hz. The next sensor is the
vehicle control measurement sensor. This sensor provides
data of the vehicle steering wheel angle and the throttle
and brake pedal positions at a frequency of 100Hz. These
two sensors are sufficient for the control of the vehicle
aerodynamic surfaces. For some parts of this research, the
system may also use suspension deflection sensors which use
linear potentiometer sensors in each of the vehicle shock
absorbers.
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Figure 2: Hardware architecture of the measurement and control system.

The actuation subsystem consists of two parts, actua-
tion of aerodynamic elements and suspension control. The
aerodynamic surfaces are fitted with PWM (Pulse Width
Modulation) signal controlled servomechanisms. An RS-485
interface is used to control those servomechanisms and all
servomechanisms are connected to the RS-485 control line
via signals converters. All servomechanisms are controlled at
a frequency of 20Hz.

The third subsystem is the user interface. The GUI is
installed on the notebook connected to the system controller
via an Ethernet interface. The GUI allows the operator
to observe the measurement data, configure the controller
(different modes of operation are possible), and manually
control the aerodynamic surfaces.The RT controller may also
be configured to operate in a fully automatic way without the
user control interface panel connected.

The system software was developed using National
Instruments LabVIEW software. The main objective of the
application was to ensure real-time operation of the system.
Several parallel modules are defined in the architecture of
the software (see Figure 3). The system processes module
is responsible for governing the operation of the system.
The user interface communication module exchanges data
with the user control panel by sending sensor readings and
receiving commands and instructions from the user. The
data acquisition module ensures communication with the
sensors and is responsible for the synchronous reading of

System processes User interface
communication Data acquisition

Control algorithms Actuation Logger

Figure 3: System software modules.

data from all sensors.The control algorithms module receives
data from the data acquisition module and processes the data
according to defined control laws and sends commands to
the actuation module which then sends the commands to all
control elements. The logger module records both data from
all sensors and all control commands during operation of the
system.

3. Models and Simulations

The aim of the presented study was to extend the safety limit
of a fast moving vehicle in conditions of strong changes to
the atmospheric and physical environment and the rapid
reactions of the driver. Widely used ESP systems for vehicle
stabilization use forces generated during braking of selected
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vehicle wheels. In this analysis, it is proposed to use aero-
dynamic forces for this purpose. The results of the active
actions of moving aerodynamic elements aimed at stabilizing
vehicle motion are discussed below. During the development
of a new aerodynamic solution, it is necessary to identify the
problems to be solved and the tools needed to achieve the
goal. The final solution should be tested in real life on a test
car; however, a wide range of modeling techniques can be
utilized to aid development.

3.1. The Use of a Variety of Different Modeling Techniques.
In the analyzed case, the objective is to actively control the
aerodynamic properties of a light sports car such as the
Honda CRX del Sol. It was recognized that the conclusions
resulting from the flow analysis of this car could be extended
tomany other high-speed designs. The geometry of this car is
presented in Figure 4 which shows the car used during track
tests together with its wind tunnel model and CAD model
incorporated into the CFD calculations.

The most important data was recorded during the test
rides and gave the answer to the question of which aero-
dynamic setups were the most efficient to control the car’s
dynamics, while the results from the CFD calculations were
used to complement the data acquired during wind tunnel
tests andwere used to gain additional knowledge of the nature
of the flow around the car body. Each of the described actions
is shown in Figure 4 to emphasize the fact that a very wide
range of data can be obtained by employing them all together.
The use of modeling techniques makes it possible to study
many different scenarios, including scenarios that could be
dangerous to test on a real car.

Below, a brief review of the modeling techniques used is
presented, starting with the wind tunnel tests through to the
different kinds of modeling based on CFD calculations. In
each consecutive case, the CFD calculations were expanded
by additional elements. In most cases of traditional auto-
motive aerodynamics, stationary and solid bodies are being

investigated. This paper describes more advanced techniques
that are essential to accurately predict the behavior of a car
subjected to active control by moving aerodynamic surfaces.
This includes studies of such cases as the movement of the
rear wing, the behavior and influence of deformable surfaces
attached to the car body, as well as a complete simulation of
a moving car. Apart from the simulations, the development
of an algorithm enabling the control of moving aerodynamic
elements is presented as well.

To carry out the proposed activities, the following soft-
ware was selected:

(1) to construct the 3D geometry of a vehicle and mov-
ing aerodynamic elements installed on its body; it
was assumed that SolidWorks, Unigraphics software,
and software included in the ANSYS-Fluent package
would be used;

(2) for vehicle body flow analysis; it was assumed that
CFD ANSYS-Fluent commercial software would be
used together with the freely available OpenFOAM
software;

(3) for vehicle dynamics; it was assumed that
MCS.Adams/Car would be used alongside Matlab/
Simulink as an interface between MCS.Adams and
ANSYS-Fluent;

(4) in-house software for analyzing the motion of
deformable elastic car body parts and simulating the
dynamics of vehicle body motion.

Taking into account the multidisciplinary problems accom-
panied by the main and general problem, some new ideas of
transferring expert knowledge to the engineering level can
be applied. An example is the SORCER software [9] used by
some team members for the solution of other problems. The
idea of preparing software blocks by experts to solve separate
detailed problems and integrating individual solutions into
a bigger and wider problem consideration is the basis of the
SORCER software. Due to the personal limitation of the team
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Figure 5: Model of the vehicle in the wind tunnel.
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Figure 6: Characteristics of the downforce and the servo angle for (a) a slow movement of the wing and (b) quick changes of the wing’s
placement from -5∘ up to 50∘.

engaged in problem development it was finally decided to use
a more conventional approach.

3.2. Investigations of the Flow in the Wind Tunnel on a Scaled
Down Model. As the flow around a vehicle equipped with
additional aerodynamic surfaces has a sophisticated nature,
experimental fluid mechanics is the best way to acquire
knowledge about the aerodynamic forces acting on a car
body. In the presented study, the experimental measurements
of the aerodynamic forces were collected during the wind
tunnel tests performed on a model of the Honda CRX del
Sol. The model of the car body was prepared at a 1:2.5 scale
and was thoroughly tested in the wind tunnel at an inflow
velocity of 23m/s and at a turbulence intensity equal to 3.5%,
whereas the Reynolds number exceeded two million. The
experimental set-up was equipped with four load cells, each
installed below a wheel of the vehicle, measuring appropriate
forces and momentums. The model was laid on a separation
plate to reduce the influence of the boundary layer generated
on the wind tunnel’s walls [10], as can be seen in Figure 5.
The model was tested for various configurations, starting
with a clean body, without any additional aerodynamics
surfaces, and finishing with over six surfaces provided with

servomechanisms. Additionally, the flow was visualized with
the use of a Ti

2
O oil mixture and minitufts. The results

obtained for the clean configuration (see Figure 7) were
the reference for further more complicated geometrical
configurations, also calculated by means of numerical fluid
mechanics. Such a configuration makes it possible to receive
both time dependent results for force values and typical static
measurements, which were recalculated to nondimensional
coefficients of downforce (see Figure 8) and drag force
(Figure 8).

The other feature of the wind tunnel results, apart from
the ability to study the characteristics of a stationary rigid
geometry, is the ability to perform tests of fast and time
dependent changes of the airfoil and spoiler attached to
the model of the car. Moreover, the typical characteristic of
downforce coefficient as a function of the angle of attack
is presented (see Figure 8(a)), and information about the
forces as a function of time are also provided. The flow
response to the vehicle aerodynamic configuration changes
is presented in Figures 6(a) and 6(b).The maximum increase
of the downforce is generated in less than two seconds for
the wing movement from about 20∘ to the value of maximum
angle of attack. Several configurations were tested achieving a
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Figure 7: Comparison of the experimental visualization of the oil flow over a clean configuration of the car body (left) and from the CFD
calculations (right).
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Figure 8: Characteristics of (a) the downforce coefficient and (b) the drag coefficient obtained during the wind tunnel measurements of a
car with a mounted rear wing and a spoiler, compared with the CFD results acquired for a wide range of angles of attack.

minimum time to reachmaximum increase of the downforce
in around 0.6 seconds by the movement of a special spoiler.

3.3. Validation of the CFD Calculations. The values of the
aerodynamic forces, as well as some of the flow features
recorded during wind tunnel testing, were used to perform
validation of the CFD methods. A comparison of the flow
features on the surface of the car body is presented in
Figure 7, whereas in Figure 8 the values of the downforce
coefficient together with the drag coefficient obtained during
the experiments and the CFD calculations are presented
together. It was established that, for a wide range of studied
cases, the SST k-𝜔 turbulence model [11] makes it possible
to achieve CFD results close to the experimental data. As
can be observed in Figures 7 and 8, a good agreement with
the wind tunnel tests was achieved. The SST k-𝜔 turbulence
model is one of the most commonly used turbulence models
in the field of automotive aerodynamics [12], however, it is
best practice to check it for every specific case being studied.

3.4. The Unsteady Aerodynamics: The Search for the Flow
Response Time to the Movement of the Active Aerodynamic

Elements. One of the most commonly used active aerody-
namic elements in the field of the automotive design is a
rear wing [13]. The main advantage of such a device is its
high efficiency, which makes it possible to achieve a high
downforce in a trade-off for a relatively low increase of drag.
The rear wing is mounted near the trunk at such a distance
from the rest of the car body so that it should not create any
negative aerodynamic interferences with the car’s silhouette.
The area of the wing is proportional to the forces that it
can generate, so the larger the wing the higher the values of
downforce that can be achieved. Unfortunately, the addition
of the rear wing can be seen as a disturbance of a car’s
aesthetics which leads designers to reduce its size, or to create
a mechanism to enable the wing to hide within the car’s
silhouette or even to completely remove it. Currently, most
sports cars have some sort of rear wing, which is used to
enhance the car’s handling at high speeds. In the case of
some cars, for example, the Bugatti Veyron, the rear wing also
works in braking mode, by rotating to a high angle of attack,
creating additional drag that slows the car down.

If the rear wing is designed to be an active aerodynamic
element, apart from its aerodynamic characteristics, it is very
important to know how it will be controlled and adjusted to
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(a) (b) (c)

Figure 9: The car body with the rear wing set to the three different angles of attack: (a) 0∘, (b) 20∘, and (c) 50∘.

Boundary conditions: velocity inlet pressure outlet symmetry wall interface

(b)(a)

Figure 10: (a) Geometry of the computational domain. (b) Close-up on the car body with mesh on the symmetry plane.

the desired angle of attack or moved to a specific location
relative to the car’s silhouette. For this purpose, in this
research, it was decided to use electric servomechanisms
due to their ability to perform fast movements that allow
adjustments of the car’s aerodynamic properties in a short
time.

The aim of the study presented in this section was to
show the unsteady flow features developing over time due
to a change of the rear wing’s angle of attack (see Figure 9).
This research was performed by means of CFD calculations
in ANSYS Fluent. Due to the analysis of the unsteady
phenomena, a transient solver was utilized together with the
SST k-𝜔 turbulence model. Two cases were studied. The first
case was for the change of the rear wing’s angle of attack
from 0∘ to 20∘, which corresponds to a scenario in which
an additional downforce needs to be generated by the car
body to improve the car’s handling. The second case was
for the change of the angle of attack from 0∘ to 50∘, which
significantly increases not only the downforce but also the
drag force by raising the frontal area of the car by 14%, which
is beneficial during braking maneuvers. The most important
difference between those two cases is that for the change of the
angle of attack to 20∘, the flow only slightly adjusts to the new
orientation of the rear wing, whereas for the case in which the
angle of attack is changed to 50∘, the flow separates from the

wing right at its tip, which creates a separation zone behind
it.

The 1:1 scale model of the Honda del Sol was studied
within the flow field of the velocity equal to 40m/s. The
domain used in the CFD calculations is presented in Fig-
ure 10(a), whereas a close-up of the car itself can be seen
in Figure 10(b). The mesh consisted of 11 million tetrahedral
elements.The use of the symmetry boundary condition made
it possible to perform the calculations only on half of the
geometry and thus reduce the total number of elements. To
make it possible to change the rear wing’s angle of attack, the
whole wing together with the side plate was placed inside
a cylinder. The cylinder was connected with the rest of the
computational domain via a sliding interface. To enable the
use of this kind of interface, the rear wing could not include
any elements directly connected with the car body. For this
reason, the rear wing’s mounting was not included in the
model. However, the mountings designed for the test car
had a “swan shape”, which minimized their influence on the
downforce generated on the wing, and their omission from
the CFD model should not lead to significant discrepancies.

The change of the rear wing’s angle of attack over time
is depicted in Figures 11(a) and 11(b), the angular velocity of
the wing’s rotation is the same for both studied cases, which
results in the wing reaching an angle equal to 20∘ in 0.1 s
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Figure 11: (a), (b) Plots of the rear wing’s angle of attack. (c) The characteristics of the lift coefficient over time. (d) The characteristics of the
drag coefficient over time.
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Figure 12: Contours of the velocity in the symmetry plane while the wing is moved to 20∘ at the following time frames: (a) 0.25 s, (b) 0.35 s,
(c) 0.40 s, and (d) 0.45 s.

whereas it takes another 0.15 s for it to rotate up to 50∘. The
characteristics of the lift coefficient and the drag coefficient
(see Figures 11(c) and 11(d)) are the same until 0.35 s, which is
the time frame when the wing which was rotated to 20∘ stops
moving and the flow conditions for this case stops changing,
whereas for the other case, the wing stops rotating at 0.50
s. In both cases, it takes approximately 0.5 s after the wing
stops moving for the flow to fully adapt. It should be noted
that, due to the unsteady phenomena, the peak of the absolute
values of the lift coefficient as well as the drag coefficient are
higher than when the flow settles down, which means that
with the fast movement of the active aerodynamic elements
it is possible to generate an additional aerodynamic force,
although only for a very short duration.

The flow features during the different time frames for
both of the studied cases are presented in Figures 12 and 13,
where it can be seen that the flow only needs to slightly adapt
when the wing is set to 20∘, whereas after rotation to 50∘ a
recirculation zone is formed behind it and the flow features
change significantly. It should also be noticed that there is
a spoiler underneath the wing which is redirecting the flow
towards it and makes it possible for the air to “stick” to it at
higher angles of attack reaching up to 20∘.

The data presented above proves that the unsteady
phenomena must be taken into account in the control
mechanism of the active aerodynamic elements to accurately
predict the aerodynamic load that the car body is subjected
to.
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Figure 13: Contours of the velocity in the symmetry plane while the wing is moved to 50∘ at the following time frames: (a) 0.25 s, (b) 0.50 s,
(c) 0.55 s, and (d) 0.60 s.

Table 1: A comparison of the aerodynamic coefficient values for different variants of the tested car model.

Drag coefficient Lift coefficient
Base model 0.506 −0.101
Model with an active airbag 0.557 −0.212
Model with an active airbag and side curtains 0.572 −0.312

3.5. Untypical Movable Add-Ons: Elastic Type of the Active
Aerodynamic Elements. Typically, rigid elements are used
as movable elements. The motion of such an element is
achieved by electric servomechanisms with complicated
mechanical elements. A pneumatic system of actuation of
flexible movable aerodynamic elements was considered. One
such solution is presented below.

As described in previous sections of this paper, a rear
wing can be used to generate aerodynamic forces, whereas the
value of the force is dependent on the wing’s angle of attack. A
different kind of solution is also proposed in this study, which
incorporates the use of flexible deformable surfaces placed in
various locations on the vehicle. These deformable surfaces
can have the form of airbags, which in an inactive state adhere
closely to the body of the vehicle, whereas in an active state
(inflated) change their shape and at the same time modify the
shape of the vehicle. Such a change in shape would change
the value of the aerodynamic forces acting on the car while
driving. Controlling the shape of such surfaces consists of
supplying compressed air to their interior, and so the material
of the airbag stretches and bulges. Once the air is released the
elastic resilientmaterial returns to its original shape, adhering
to the car’s body.The vehicle model tested was equipped with
a splitter partially blocking the inflow of air under the car.The
main deformable element used was an airbag placed under
the splitter. Additionally, to increase its efficiency, deformable
side curtains were used [14], whose task was to block the
inflow of air under the car from the outside, i.e., from the
external environment (see Figure 14(a)).

It was assumed that compressed air would be used to
control the shape of the flexible aerodynamic elements with
a much higher pressure when compared with the ambient
pressure. Thanks to this, these elements would have a fixed
shape, regardless of the speed at which the car moves. To
determine the shape that the inflated pneumatic side curtains
and the airbag under the splitter would take, FEM numeric
simulation was performed using the ANSYS software. The
surface of the deformable elements was loaded with air at

constant pressure, under which they assumed the target
shape (see Figure 14(b)). It was assumed that the shape
changes associated with the dynamic pressure acting on these
elements are negligibly small. The values of the forces and
aerodynamic coefficients acting on the car were obtained by
means of CFD based numerical simulation using the Open-
FOAM software (see Figure 14(c)). The results obtained (see
Table 1) confirm the possibility of using flexible deformable
elements attached to the car to control the value of the
downforce acting on it.

To prepare an appropriate algorithm to control the
position of aerodynamic movable elements, it is necessary to
predict the way these elements change the motion of a car
equipped with such elements. To perform such tests, separate
software modeling the dynamics of the car influenced by
additional aerodynamic elements was designed.

3.6. Numerical Simulation of Car Dynamics Influenced by the
Active Aerodynamic Elements. On the one hand, road test
data are the deciding data but, on the other hand, the car
dynamics are influenced by a lot of unpredictable factors
such as tire pressure and temperature, mistakes in suspension
geometry, side wind, road inclination, predisposition of the
driver, etc. Therefore, independent software for car dynamic
analysis was developed and validated by comparison with
known solutions [15–17].

Information about the aerodynamic characteristics of
the car body had to be transferred to the car dynamic
analysis software to check the influence of the proposed
modifications. The intention was to have the model with all
mechanical coefficients precisely defined and check the car’s
reaction only for the chosen parameters.

The 6DOF (six degrees of freedom) car dynamic model
that was developed employed the Segel model of lateral forces
generated by the tire [17, 18]. This model is relatively old
(it was developed in the early 1970s). However, the Segel
model is fairly easy to use and useful for the planned tests.
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Figure 14: (a) Car with additional aerodynamic elements.The splitter is marked blue. Number 1 is a pneumatic side curtain. Number 2 is the
airbag under the splitter. (b) An example of simulation results obtained using the OpenFOAMprogram. (c) Deformation of the airbag under
the splitter. Numerical simulation carried out using the ANSYS program.

It is a function of the slip angle, cornering stiffness, tire
vertical load, friction coefficient, and longitudinal force. A
6DOF model takes into account the possible rotation of
the car body along the main 3 axes as well as vertical and
horizontal body motion. This takes into account the lateral
forces generated during acceleration and braking, defines
the tire road contact forces, lateral forces and slip angles
influenced by additional aerodynamic forces generated by
movable aerodynamic elements. The action of suspension
stabilizers is also taken into account. The scheme of forces
and body movement definition is shown in Figure 15. The
algorithm was coded in Fortran 95.

The software delivers information about the temporal
car body position (rolling; pitching), tire slip angles, and
forces. It can help develop algorithms for the electronic
control system to steer the movable aerodynamic elements.
Figure 16(a) depicts the variation of the longitudinal and
lateral acceleration during cornering with an initial speed of
50m/s, the “low aero” corresponds to a drag coefficient equal
to 0.40 and the lift coefficient equal to −0.45, whereas the
“high aero” corresponds to a drag coefficient equal to 0.75 and
the lift coefficient equal to −0.75. The steering wheel changes
the angle of the front wheels sinusoidally in 2 seconds from
0∘ to 15∘.

Figure 16(b) presents some results showing differences in
car motion with and without the action of the aerodynamic

elements. The observed car motion is characteristic for a
case with high slip angles on the rear tires which cause
oversteer when the aerodynamic downforce is not sufficient
(“low aero”), when the aerodynamic load is high enough
the balance of the car changes to neutral (“high aero”). This
proves that relatively small changes in car dynamics can
generate large changes in car position.

Each of the models and solutions presented so far
were created separately without a direct two-way interaction
between the fluid flow and the car body dynamics. Knowing
the results of the investigation of coupled FSI problems [19],
the simultaneous simulation of flow problems connection
with car body motion caused by aerodynamic forces was also
undertaken.

3.7. Coupled FSI Simulation of the Car Braking Process Assisted
and Strengthened by Movable Aerodynamic Elements: Fully
Coupled Analysis of the Braking Process. Designing lighter
cars with lower drag coefficients requires an assurance of car
stability in all road conditions. In simulations, it is rather
rare to take into account coupling between car dynamics and
aerodynamics. Very often, it is assumed that car movement
will not affect aerodynamic forces. As shown in [2], this
assumption is not correct. The authors showed that including
bidirectional fluid structure interaction can lead to significant
changes in aerodynamic forces.
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Figure 15: Scheme of forces and body movement definition.
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Figure 16: (a) Variation of the longitudinal and lateral acceleration during cornering. (b) Car position influenced by the aerodynamic forces.

Thephysics is complicated during the car braking process.
A braking car generates a transfer of load to the front axis (see
Figure 17), pressing the suspension springs and changing the
inclination of the body resulting in a change of aerodynamic
forces. During braking, the car slows down and this reduces
the aerodynamic forces again thus changing the car body
position. This is a fully coupled FSI process which had to be
modeled and simulated.

In the case of braking (or accelerating), the car body
pitches due to the elastic suspension system and the acting
inertia forces. The pitch angle can be treated as an angle
of attack for the car body. At the same time, the clearance

between the car and the ground also changes. Figure 17
illustrates the possible configurations. This situation causes
a change in the pressure distribution over the entire body.
Furthermore, a change in pressure distribution affects the
pitch angle and clearance. In other words, there is a strong
coupling between the car behavior and the aerodynamic
forces.

In this research, fully coupled analyses were performed
to check if it is possible to predict car dynamic behavior
during braking. The obtained results were validated against
a full car experiment as described in Section 3.3. Currently,
very few of the published papers refer to a fully coupled
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Figure 17: Pitching of the car body due to the elastic suspension system during braking or acceleration.
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Figure 18: Scheme of the connections of the programs and exchange of data.

car analysis in which the vehicle speed significantly varies
over time (such as during the acceleration/braking pro-
cess). The method presented in this study to simulate the
braking process utilizes a combination of high-end software
for CFD modeling (Ansys� FLUENT�), vehicle dynamics
(MSC.ADAMS/Car�), and a block diagram environment for
multidomain simulation (MATLAB/Simulink�) which acts
as an interface to exchange data between the first two tools. To
allow communication with FLUENT�, it is launched in “as-a-
server” mode.This option creates a COMport which enables
remote connection to and control of FLUENT� sessions from
an external application. Connection to MSC.ADAMS� is
achieved via the “Adams Plant” option. On the Matlab side,
dedicated Level 2 S-Functions were created. These functions
are responsible for driving the CFD and dynamics analyses.
The data workflow is presented in Figure 18.

The coupling procedure was validated against the wind
tunnel experimental data. In this case self-excited vibration
of square beam in crossflow was used. The set-up of the test
stand is presented in Figure 11(a). Corresponding models
were built for CFD and dynamic analyses (Figure 11(b)). The
obtained results show that frequency and amplitude were
captured with a high level of accuracy. With a validated
coupling mechanism and the selected turbulence model – k-
𝜔 SST – which assures a good correlation to the wind tunnel

(see Section 3.3), a coupled analysis of the full car dynamics
was performed.

During the research, it was concluded that the reference
frame needed to be changed to simulate velocity change
in the CFD analysis. Instead of a classical reference frame
with an observer at rest, the reference frame with a moving
observer was used. In this case, the whole computational
domain was moved during the analysis with velocity which
varies over time. The car instantaneous speed is calculated
using MSC.Adams/Car�. The overset mesh was used to allow
the movement of the car body and additional aerodynamics
surfaces.The split into subdomains was performed according
to elements which can be moved independently (car body,
wheels, and rear airfoil). Based on the grid convergence study,
for the steady state case, the hybrid hexa/polyhedra mesh
used contained 7.7 million elements. Flow symmetry was
assumed and a half car model was used. The analysis was
performed in double precision, and the second-order spatial
discretization schemes were used. The full car MSC.Adams�
dynamic model (Figure 19) was fed with the measured data:
suspension stiffness and damping nonlinear characteristics.

Mass properties were estimated based on “Measured
vehicle inertial parameters” by NHTSA [20]. Friction coef-
ficient between the tires and the road was set to 0.71 which
corresponds to dry road conditions and is in line with the
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Table 2: A comparison of the numerical and experimental data.

Value Unit Experiment Analysis Difference %
Traveled Distance m 111 112 1 0.90
Time to Stop s 5.34 5.29 0.05 −0.94
Max Deceleration g 1.0 0.95 0.05 −5

post_brake Time= 0.4200 Frame=030

z
xy

Figure 19: MSC.Adams/Car model used in the analysis.

Jones and Childers report [21].The initial velocity for braking
was 40.31m/s (145 km/h). Based on [15], it was assumed that
0.5 s is needed to achieve full braking torque after the decision
for emergency braking. The rear airfoil in the investigated
configuration was in position “zero”. Figure 20(a) shows the
pressure distribution on the car body and the isosurface of
Q-Criterion colored with velocity magnitude at the starting
point for braking.

The obtained braking characteristics presented in Fig-
ure 21 show a good agreement between the numerical
prediction and the experimental data. The discrepancy in
the traveled distance and time to stop is less than 1%.
The mismatch in maximum deceleration is 5%. However,
this value can be affected by the irregular shape of the
experimental characteristic. A summary of the results is
presented in Table 2.

The current research activities also focused on cornering
analysis. The aim of this part of the study was to check the
impact of aerodynamic configuration on cornering critical
speed. It was necessary to switch the reference frame to a
moving observer. With such an approach it was possible to
simulate cornering and take into account all car movements
associated with this maneuver. Figure 20(b) presents the
initial CFD solution for quasi steady condition. It is clearly
visible that flow symmetry is broken, especially on the rear
part of the car body.

4. Road Tests

The final part of the presented study includes real vehicle
road tests performed on a Honda CRX del Sol with some
custom modifications. The test took place on a training
track which was suitable for evaluating how the designed
active control system can enhance emergency car maneuvers
that sometimes need to be performed while driving on city
roads. The radius of the curves and the length of the longest
straight were insufficient to test the scenarios of emergency
maneuvers during a very high-speed drive which could occur

on a highway. It should be noted that the aerodynamic forces
aiding the drive were limited by the fact that lower ranges
of speed were achieved during the tests. The test car was
driven by an experienced rally driver, Arkadiusz Nowikow,
whose driving technique made it possible to complete all
test scenarios in a highly repetitive manner. He also gave
invaluable insight about the car’s handling and its change
with different aerodynamics and suspension settings. The
passenger of the car who was also the operator of the control
system when it was tested in semiautomatic mode was a
source of information about the driving comfort. In this way,
the data acquired by the sensors was enriched by subjective
human experiences.

The active aerodynamic elements mounted on the rear
side of the test car can be seen in Figure 22. They include
a pair of moving wings and spoilers which can work inde-
pendently and enable an asymmetrical configuration to be
set. The active suspension and the aerodynamics play an
important role in the distribution of force while the vehicle
is moving. The system described in Section 2 was developed
and thoroughly tested. Part of the data acquired is presented
below.

With known values of the aerodynamic forces, which
depend on the flow around the vehicle and knowledge of
the vehicle dynamics, a set of track tests was conducted.
The control and acquisition system was tested by means of
active aerodynamic and suspension control for predefined
scenarios, as well as being controlled, in a dynamic way,
by software algorithms. Several different scenarios were
executed during the track tests which included rapid braking,
slalom and tight turns. For a braking scenario, detection of
the braking pedal being pushed was the onset value of the
aerodynamic brake activation, the rear wing and spoilers
were set to the maximum angle of attack to maximize drag
produced by the car body. Slalom involved slight adjustments
of the rear wings that could be undertaken in split seconds
before the turning direction was changed to the other side.
For the scenario of driving into a tight curve, the system
was activated when the values of the side (Y component)
acceleration (see Figure 23) as well as the angular position
of the steering wheel exceeded predetermined values. In this
case, the active aerodynamic elements were configured to
maximize the downforce on the car’s side closer to the inside
of the curve, whereas the aerodynamic properties of the other
side of the car remained neutral. Additionally, the suspension
on the outer side was stiffened to limit the negative effects
caused by body roll.

A comparison of two configurations is presented in
Figure 24 and Figure S1. The red color is data for the con-
figuration with active aerodynamics and active suspension
turned on, whereas the blue data is for static positions of the
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Figure 20: (a) Starting point for braking analysis. Car body colored with static pressure and iso-surface of Q-Criterion colored with velocity
magnitude. (b) Initial CFD results for cornering analysis. Streamlines colored with velocity magnitude (upper) and static.
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Figure 21: A comparison of the data from the simulations and the road tests.
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Figure 22: Snapshot from a test drive with the active aerodynamics deployed, where Lw/Rw – active left/right wing, Ls/Rs – active left/right
spoiler.
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Figure 23: Set of data obtained from acquisition system, vehicle acceleration plot.

aerodynamic surfaces. Selected data, such as speed, lateral
acceleration, steering wheel position and suspension deflec-
tion is presented in Figure 24, whereas the data presented in
Figure S1 is supplemented by the GPS position noted on the
map. Moreover, the gathered data also included information
about throttle, braking, pitch, yaw and roll angles, as well
as settings of the suspension stiffness and the aerodynamic
surfaces configurations.

The data obtained from the tests made it possible to
verify all of the preceding stages of the work. The track test
can specify those points where, for example, the theoretical
assumptions, the road conditions (roughness) and wind tun-
nel results were not enough to maintain a steady equilibrium
and the assumed conditions. In Figure 24(b), it can be seen
that, for the red line, the Y component of acceleration changes
have an oscillatory character, which means that the car’s
suspension is at its limit. In other words, the car is moving in
themanner of small jumps in a direction perpendicular to the
driving direction. Moreover, it is clearly noticeable that there
is a difference in the velocity reached at the fastest corner,
with the configuration using active aerodynamics having the
highest velocity.

5. Conclusions

The realization of the optimal design of the geometry and
control system of movable aerodynamic devices increasing
the safety of fast moving cars requires multidisciplinary
synchronized action correlating the weak and strong points
of the considered solutions.

This paper presented a range of methods of modeling and
simulating different aspects of controlling car aerodynamic
characteristics by actuating movable aerodynamic adds-on
on the car body to increase the traction, braking and lateral
force in road conditions requiring such action. The reaction

time required by the flow structure to change after a change
of the car body geometry is an important factor. On the
one hand, mechanical elements require fast movement but
on the other hand the flow around the car body needs time
to accommodate the new flow conditions. Different physical
processes exist simultaneously in the considered problem
and, especially, FSI problems required the use of different
software for modeling and simulation.

The synchronized action of specialists in unsteady flow
simulations, flexible material FSI simulations, car dynamic
simulations, coupled FSI car aerodynamics and car dynamics,
experimental tests in wind tunnel, and road tests can lead to
a solution of electronically controlled movable aerodynamic
elements activated and controlled in a manner to extend the
driving limits of fast cars.
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Figure 24: (a) Speed. (b) Lateral acceleration.The suspension instability is marked with a circled area. (c) Steering wheel position. (d) Rear
right suspension deflection. The differences in the deflections are marked with a circled area.

Supplementary Materials

The supplementary material consists of a movie called
“track test data.mp4” which is sample data acquired during
the track test drive; one time frame from this movie is
presented in Figure S1. The movie contains plots of such data
as speed, lateral acceleration, steering wheel position, and
suspension deflection, matched with the car’s position on the
test track. (Supplementary Materials)
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Metro barrier-detection has been one of the most popular research fields. How to detect obstacles quickly and accurately during
metro operation is the key issue in the study of automatic train operation. Intelligent monitoring systems based on computer
vision not only complete safeguarding tasks efficiently but also save a great deal of human labor. Deep convolutional neural
networks (DCNNs) are the most state-of-the-art technology in computer vision tasks. In this paper, we evaluated the effectiveness
in classifying the common facility images in metro tunnels based on Google’s Inception V3 DCNN. The model requires fewer
computational resources. The number of parameters and the computational complexity are much smaller than similar DCNNs.
We changed its architecture (the last softmax layer and the auxiliary classifier) and used transfer learning technology to retrain the
common facility images in the metro tunnel.We use mean average precision (mAP) as the metric for performance evaluation.The
results indicate that our recognitionmodel achieved90.81%mAP.Comparedwith the existingmethod, thismethod is a considerable
improvement.

1. Introduction

With the rapid development of urban public transport in
recent years, urban rail transport has become the preferred
choice for many people because of its various advantages,
such as high speed, punctuality, and environmental friendli-
ness. Urban rail transit in China is developing at an amazing
pace.Themetro is an important part of urban rail transit. On
pace with the improvement of metro train design, commu-
nication technology, and automation technology, the metro
has seen immediate development. Its advanced technology
with high safety makes it effective for solving saturated line
conditions and enhances transport capacity. However, the
main problem that influences driverless metro operation
is obstacles. A collision with an obstacle will cause train
impulses, derailments, vehicle equipment damage, and other
problems. Thus, how to detect obstacles on the track quickly
and accurately during operation has become a key issue in
the study of safe metro operation. Currently, the detection
of obstacles in metro tunnels is performed through manual
observation. Detection that is dependent on manual labor
has many drawbacks, including a high rate of missed detec-
tion, low efficiency, and low reliability. An improvement is

automatic detection based on object detection and recog-
nition. However, there are too many metro tunnel images,
and this detection method has very high requirements for
the efficiency and accuracy of the algorithm. The current
research status of object detection and recognition technol-
ogy can be classified into two categories. One is based on
traditional methods [1] in image processing. The other uses
DCNNs [2]. Traditional methods have three steps: target
feature extraction, target recognition, and target location.
The features used in this method can be categorized into
two groups: global features including a color histogram [3]
or circular shapes [4] and local features such as pixel color
[5] or SIFT [6] features, which are all designed manually.
Reference [7] proposed a method for visualizing pedestrian
traffic flow using SIFT feature point tracking. Reference
[8] used the strongly supervised deformable part models
for object detection. Due to the diversity of features, it is
difficult to extract features standardly and find the best way
to represent them [9]. However, this problem could be solved
if there were a general method to learn how to extract features
automatically. Thus, the advantages of DCNNs have received
more attention. A DCNN has recently developed a new kind
of method for classification and recognition. It is a multilayer
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cascade consisting of linear and nonlinear processing units
that are able to extract features automatically and integrate
with the process of classification and recognition and then
learn by themselves. Reference [10] proposed a DCNN
for the detection of arcs in pantograph-catenary systems.
Reference [11] used a DCNN for car detection. Although the
DCNN has shown impressive results, limited data and high
computational resources are barriers to its use [2].Therefore,
this is a barrier in metro obstacle detection. In this paper, we
studied the detection of obstacles in metro tunnels using a
modified DCNN. In view of a few appropriate examples, we
used a common facility image in ametro tunnel to replace the
obstacles.

2. Methodology

To achieve high performance with the DCNN, an extremely
common practice increases the size of layers or widths [12].
In theory, with a higher width and depth of the DCNN, it has
a stronger learning capacity and higher forecasting precision.
However, this method may have several drawbacks. The first
is that a large DCNN has more convolutions and more
layers, which means that the network requires training more
parameters. It requires tremendous computational resources
and makes the whole network more prone to overfitting
the training set, especially if the training data are limited
[13]. The second is that changes in feature distributions
lead to model failure. In most cases where the DCNN
achieved good performance, both the training set and the
testing set were obtained from the same feature space and
the same distribution. This easily causes the model to fail
where feature distributions have large changes. Thus, before
the application, the above issues must be settled. Based on
massive experimentation with various convolutional network
structures, GoogLeNet designers provided several general
guiding principles [14]:

(1) Avoid representational bottlenecks, especially early in
the network. The representation size should gently decrease
from the inputs to the outputs rather than being extremely
compressed before reaching the final representation used for
the current task

(2) Higher dimensional representations are easier to
process locally within a network

In the CNN, increasing the activations per tile can obtain
more disentangled features. This allows resulting networks to
be trained faster.

(3) Spatial aggregation can be performed over lower
dimensional embedding without much or any loss in repre-
sentational power

(4) When designing the network structure, one must
consider the balance of the width and depth of the network. A
reasonable network structure shoulder distributes computa-
tional resources on its structure, which contributes to higher
quality networks

2.1. GoogLeNet. GoogLeNet first appeared in the ILSVRC
2014 competition and won first place by a wide margin.
The first version is often called Inception V1 [15]. The main
feature of Inception V1 is that it showed good results while
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Figure 1: Inception module.

limiting the number of computations and parameters—
by 93.33% as top 5, which is less than half of AlexNet.
Inception V1 proposed a module named Inception. This
module contains four branches (the architecture is given in
Figure 1): the first branch makes convolution with inputs
by a 1∗1 size convolution kernel that is also an important
structure proposed in the NIN (network in network) [16].
The 1∗1 convolution kernel, an excellent structure, adds a
layer for feature transformation and nonlinear changes with
few computational resources, which enhances the ability
of the expression of the whole network and increases or
decreases the dimension of the outputs. As Figure 1 shows, all
branches use a 1∗1 size convolution kernel for low-cost cross-
channel feature transformation. The second branch first uses
a convolution of 1∗1 and then connects to a convolution of
3∗3, which is equivalent to twice the feature transformations.
The third one is similar to the second, but it connects to
a 5∗5 size convolution kernel, and the last one has a 3∗3
max pooling and 1∗1 size convolution. The Inception module
allows the depth and width of the network to be extended
efficiently, improving the accuracy and avoiding overfitting.

Inception V2 [17], the second version of GoogLeNet,
replaces the 5∗5 size convolution kernels with two 3∗3
convolution kernels to reduce the number of parameters and
overfitting. It proposed a very effective regularization method
called batch normalization (BN). BN speeds up the training
rate of large-scale convolutional networks bymany times, and
the classification accuracy after convergence is also greatly
improved. When used in the network layers, BN normalizes
the interior of the mini-batch data to output the normally
distributed data and decreases internal covariate shift. In
traditional deep neural networks, the input distribution of
each layer varies during training, making it difficult to train.
Therefore, only by setting a small learning rate can the train-
ing process continue. However, using batch normalization in
each layer of the network could solve this problem because
the training allows a high learning rate to run, in which
the number of iterations is considerably reduced. After this
measure was employed, the training time of Inception V2
was fourteen times faster compared to Inception V1 and had
higher convergence accuracy.

The third version, Inception V3 [14], had two major
improvements. One was the introduction of the thought of
factorization into small convolutions. The other was that the
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Figure 4: Mini-network replacing the 3 × 3 convolutions. The lower layer of this network consists of a 3 × 1 convolution with 3 output units.

Inception module was optimized. The visualization of the
model architecture is given in Figure 2.

The ideal of factorization into small convolutions is a large
improvement of Inception V3. As shown in Figure 3, a large
convolution layer can be replaced by a multilayer network
with fewer parameters.

For example, a 5 × 5 convolution with n filters over a
grid with m filters is 25/9 = 2.78 times more computationally
expensive than a 3 × 3 convolution with the same number
of filters. Thus, two 3 × 3 convolutions replace one 5 × 5
convolution having (9 + 9)/25 × reduction with a relative
gain of 28% [14]. Furthermore, spatial factorization into
asymmetric convolutions can factorize a convolution into
smaller convolutions. For instance, using a 3 × 1 convolution
followed by a 1 × 3 convolution is equivalent to a two-layer
network with the same 3 × 3 receptive field (Figure 4).

If the number of input and output filters is equal, the two-
layer solution is 33% cheaper for the same number of output
filters.

The Inception model helps to reduce computational
complexity and increase the width and number of stages. It
has 1×1, 3×3, and 5×5 convolution layers.The 1× 1 convolution
layers are used to increase the network depth and improve
the network nonlinearity. It also reduces the number of 3×3
and 5×5 convolution layers, which is the main reason that the
GoogLeNet networkmodel is expanded in terms of depth and
width, but the total number of parameters is smaller than that
of the classical VGG network. The Inception module accepts
the previous input and forms the output of the Inception
module through the parallel processing of different scales and
functional branches, thus achieving multiscale feature fusion
in Inception V3 that was achieved by setting a top 5 error rate
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Table 1: The outline of the proposed network architecture.

Type Patch size/stride or remarks Input size
conv 3×3 / 2 299×299×3
conv 3×3 / 1 149×149×32
conv padded 3×3 / 1 147×147×32
pool 3×3 / 2 147×147×64
conv 3×3 / 1 73×73×64
conv 3×3 / 2 71×71×80
conv 3×3 /1 35×35×192
Inception module 3×Inception 35×35×288
Inception module 5×Inception 17×17×768
Inception module 2×Inception 8×8×1280
pool 8×8 8×8×2048
linear logits 1×1×2048
softmax classifier 1×1×1000

Tasks

Learning systems

t1 t2 t3

l
1

l
2

l
3

Figure 5: Traditional machine learning.

of 3.64% on the 2012 validation dataset. Ourmeasure is based
on Inception V3.

2.2. Transfer Learning. In network training procedures, there
is an important hypothesis that the training and testing
dataset must be in the same feature space and have the same
distribution. However, it cannot be held inmany applications.
For example, we sometimes have a classification task in a
domain of interest, but we have sufficient training data in
another domain, and the latter datamay be in different feature
spaces or follow different data distributions. In this case, the
successful transfer of knowledge will avoid a large amount
of expensive data markup work and greatly improve the
performance of learning. Transfer learning [18], as the name
implies, simply transfers learned-trained model parameters
to a new model to help train the model. Because most of
the data or tasks are related, a trained model can share its
parameters (also understood as knowledge learned by the
model) to a newmodel in a way that expedites and optimizes
the learning rate of the new model without starting over as is
required in most other networks. Thus, transfer learning is a
simple method to transfer knowledge between task domains.
The following is the difference between traditional machine
learning and transfer learning. Traditional machine learning
needs to be retrained for different target tasks, while transfer
learning is not necessary (see Figures 5 and 6).

Source tasks

Knowledge
Learning 
systems

Target tasks

t1 t2 t3

Figure 6: Transfer learning.

In transfer learning, the network weights and biases are
initialized with existing useful values, which can obviously
reduce the training time to finish the final training task
and significantly lower the required amount of training data.
Deep convolutional networks with transfer learning are the
best way to solve this detection problem and achieve the
most advanced performance with the lowest computational
requirements.

2.3. Model. The layout of the entire network is given in
Table 1.

The output size of each module is the input size of the
next module. To keep the size of the grid, the convolution is
marked with zero padding, and the inside of the Inception
modules also uses zero padding for the same purpose. The
network uses softmax for classification. The original architec-
ture has 1,000 object classes, so we adjusted its structure to
fit our project. We changed the final classification layer (the
last softmax layer and the auxiliary classifier) on a pretrained
Inception V3 network and retrained it with our dataset, fine-
tuning the parameters across all layers.

3. Experiments

3.1. Data Collection and Processing. Our dataset was col-
lected during a metro inspection, authorized by Nanning
Rail Transit Co. It contains 6000 original images that were



Journal of Advanced Transportation 5

Figure 7: A few examples.

divided into 6 classes: distribution box (DB), jet fan (JF),
wireless communication base stationmodule (AP), passenger
information system wireless terminal box (PIS), radio trans-
mission equipment (TRE), and billboard (BI). Figure 7 shows
a few examples.

We extended the dataset by applying a series of methods,
as follows:

(1) Randomly rotating each image; the number of images
doubled

(2) Resizing each image to 299×299
(3) Adjusting the brightness of the image
(4) Adjusting the image contrast
(5) Adjusting the image saturation
To evaluate the results, each category was divided into a

training set and a testing set: 75% for the training set and 25%
for the testing set.

We use mean average precision (mAP) [19] as the metric
for performance evaluation. The average precision (AP) is the
area under the precision-recall curve. It is widely used for
object detection and is calculated by averaging the precision
over a group of spaced recall levels [0,0.1,...,1], and the mAP
is the AP calculated over all classes.The details are as follows:

𝐴𝑃 = 1
11
∑

𝑟∈{0,0.1,...1}

𝑝𝑖𝑛𝑡𝑒𝑟𝑝 (𝑟) . (1)

Theprecision at each recall level r is interpolated by taking
themaximumprecisionmeasured for amethod for which the
corresponding recall exceeds r:

𝑝int𝑒𝑟𝑝 (𝑟) = max
𝑟:𝑟≥𝑟
(𝑟) , (2)

where 𝑝(𝑟) is the measured precision at recall 𝑟.

3.2. Training Methodology. Our experiment was conducted
on Google’s TensorFlow [20]. TensorFlow is an open source
software library for machine learning of various perception
and language comprehension tasks. It aims to promote the
study ofmachine learning and the rapid and simple transition
from prototype research to production.

It is challenging to train deep neural networks on smaller
datasets. However, by transfer learning, a large number of
acquired feature parameters are extracted from one of the
largest datasets—ImageNet—that can be transferred to our
new model, which provided better results in detection. The
whole network was trained using backpropagation and used
a global learning rate of 0.001 using RMSProp with a decay of

0.9 and amomentum of 0.9.The training stopped when there
were no more obvious improvements.

3.3. Experimental Results and Comparisons. The probability
that a photo belongs to a category was given by the multi-
nomial logistic regression. The category with the highest
probability was taken as the predicted category. Parts of the
results are shown in Figure 8, and category predictions are
accompanied by probabilities.

This work aims at classifying the common facility images
in metro tunnels. To the best of our knowledge, this is
the first work for this task. There are limited approaches
that we could compare in the literature. We resort to other
image classification approaches for comparison. Since ran-
dom forest has been widely used in image classification and
object detection [21], we compare our model with random
forest. This approach first appeared in [22] and was further
developed in [23]. Random forest for this experiment is
provided by [23]. We also compare the proposed method
with deformable partmodels (DPM) [1], which have achieved
state-of-the-art results on the PASCAL and INRIA person
datasets. It is based on mixtures of multiscale deformable
part models to represent highly variable object classes. The
original implementation of DPM provided by [1] is used
for this experiment. Since both random forest and DPM
are traditional image recognition, we compare with another
method based on a plain CNN.The architecture we used was
introduced by [2], which won the 2012 ILSVRC competition.

The experimental data are the same as the data used by
Inception V3 and are also divided into 75% for the training
set and 25% for the testing set. Parts of the experimental
examples are shown in Figures 9–11. Table 2 shows the
experimental results.

In Table 2, the first two lines show the results obtained by
the traditional method. The performance of the DPM-based
method is poor; it only achieves 27.94%mAP. Although DPM
has achieved state-of-the-art performance in general object
detection, the performance of metro detection is not satisfac-
tory. Random forest is better than DPM, but it only achieves
45.17%.The reason for the low mAP of these two methods is
that both methods are based on traditional image processing.
Such methods need to manually select the filters that require
multiple experiments to determine satisfied filters in type
and quantity. The variety of features, rich color changes, and
complex environmental backgrounds make such traditional
methods difficult to correctly identify. The mAP was better
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jet fan (score = 0.84325)
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Figure 8: A few results.

Figure 9: A few results by DPM.

Table 2: Experimental results.

Method DB(%) JF(%) AP(%) PIS(%) TRE(%) BI(%) mAP(%)
DPM 28.56 27.62 29.53 21.27 29.41 31.24 27.94
Random forest 45.27 41.38 45.79 50.45 42.35 45.78 45.17
CNN 60.92 58.14 55.47 53.33 51.67 53.95 55.58
Inception V3 90.65 88.30 93.09 93.78 85.49 93.55 90.81
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Class: distribution box, probability: 0.8731 Class: jet fan, probability: 0.8924 Class: billboard, probability: 0.8817

Class: tre, probability: 0.8614 Class: pis, probability: 0.8918 Class: wbs, probability: 0.9011

Figure 10: A few results by the CNN.

jet fan billboard distribution box

pis tre wbs

Figure 11: Results by random forest.

when the convolutional neural network was applied, espe-
cially using the deep convolution neural network. Instead
of manual feature extraction, the feature extraction layer of
the CNN learns features directly when training the data,
which means that it can avoid the limitations of manual
feature extraction. A plain CNN achieves an mAP of 55.58%,
and Inception V3 achieves 90.81%. In contrast to the plain
CNN, Inception V3 factorizes the convolution filter into a
small filter. It reduces many parameters and accelerates the
calculation and adds a nonlinear layer extending the whole

network expression ability. Such a feature made Inception V3
perform much better than the plain CNN.

4. Conclusion

In this paper, we used a deep convolutional neural network
model, Inception V3, devised by Google. By this module, a
very deep network can be built with fewer parameters, thus
reducing computational resources. The final classification
layer of the network was removed and retrained with our
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dataset to construct a satisfactory structure. The application
of transfer learning trained a very deep model rapidly from
scratch and with a small dataset. Our modified Inception V3
achieved impressive results on the datasets, 90.81%, which
were much better than published methods. Considering the
number of parameters and the consequent computational
cost, this approach could actually be a viable choice for metro
intelligent monitoring systems.
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This paper aims to create a prediction model for car body vibration acceleration that is reliable, effective, and close to real-world
conditions. Therefore, a huge amount of data on railway parameters were collected by multiple sensors, and different correlation
coefficients were selected to screen out the parameters closely correlated to car body vibration acceleration. Taking the selected
parameters and previous car body vibration acceleration as the inputs, a prediction model for car body vibration acceleration was
established based on several training algorithms and neural network structures.Then, themodel was successfully applied to predict
the car body vibration acceleration of test datasets on different segments of the same railway. The results show that the proposed
method overcomes the complexity and uncertainty of the multiparameter coupling analysis in traditional theoretical models. The
research findings boast a great potential for application.

1. Introduction

Passenger comfort is an important indicator of the operation
quality of passenger trains. Previous studies [1, 2] have
shown that passenger comfort can be estimated indirectly by
parameters like vibration acceleration of the car body. Based
on the estimated passenger comfort, it is possible to identify
the warning signals or system statuses needed to ensure the
smooth operation of the train.

Much research has been done to forecast the vibration
acceleration of trains. For instance, Shafiullah et al. [3]
predicted the forward and backward vertical acceleration
conditions by popular regression algorithms. Zhai et al.
[4] created a comprehensive train-track dynamics model to
predict the ground vibrations of high-speed trains. Inspired
by the dynamics model, Czop et al. [5] proposed a rail
irregularity detection method based on the bearing box
acceleration during train operation and successfully applied
the method to recognize the rail regularities of a typical
railway in Poland. Qian et al. [6] established a model to
predict the vibration acceleration of high-speed trains based
on nonlinear autoregressive neural network with exogenous
inputs (NARX NN) and multibody dynamic model and

proved the prediction accuracy of the model through experi-
mental analysis.

In addition, some scholars have attempted to infer impor-
tant parameters of railways from vibration acceleration of
the car body. For example, Connolly et al. [7] assessed the
effects of vibration acceleration on passenger comfort and
track performance. Koo et al. [8] put forward theoretical
derailment coefficients for single wheel pairs, considering the
impacts from lateral vibration acceleration and gyroscopic
factors as well as flange angle, friction coefficient, wheel
unloading, wheel radius, gauge, and bearing position. Navik
et al. [9] developed a new sensor system that captures the
dynamic behaviour of high-speed rail with several sensors
placed at an interval of 150m and predicted the maximum
vertical displacement, train speed, dynamic behaviour, and
quantification modal parameters with vibration acceleration
time series.

In general, the previous research into vibration accelera-
tion had concentrated on the traditionalmultibody dynamics
modelling, and the research results were mainly derived
through simulation. In actual operation, the train is faced
with a complex environment and uncertain track conditions.
Thus, there is always some gap between the simulated state
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and the actual state of railway track and train operation. This
calls for a new theoretical model that can accurately reflect
the actual conditions of the train and the track.

In light of the above, this paper aims to propose a predic-
tion model for car body vibration acceleration that is reliable,
effective, and close to real-world conditions. Therefore, a
huge amount of data on railway parameters were collected by
multiple sensors, and different correlation coefficients were
selected to screen out the parameters closely correlated to car
body vibration acceleration. Taking the selected parameters
and previous car body vibration acceleration as the inputs,
a prediction model for car body vibration acceleration was
established based on several training algorithms and neural
network structures.Then, the model was successfully applied
to predict the car body vibration acceleration of test datasets
on different segments of the same railway. The results show
that the proposed method overcomes the complexity and
uncertainty of the multiparameter coupling analysis in tradi-
tional theoretical models. The research findings boast a great
potential for application.

The remainder of this paper is organized as follows:
Section 2 introduces the data preprocessing and feature
selection methods; Section 3 describes the structures of the
neural networks and several popular training algorithms;
Section 4 verifies the effect of the proposed model on
different datasets, and the results under different structures
are discussed and compared; Section 5 wraps up this paper
with some meaningful conclusions.

2. Data Preprocessing and Feature Selection

2.1. Data Preprocessing. The research data are a collection of
useful data from actual railways. The sensors were subjected
to noise reduction and antijamming processing, aiming to
enhance the readability and usability of the collected data. In
addition, the data underwent a multistep preprocessing.

Firstly, time synchronization was performed on the huge
amount of data captured by multiple sensors to remove time
points with missing or abnormal values and eliminate the
variables of constant values. In this way, the data containing
useful information were screened out.

Secondly, the modelling variables were determined,
excluding those rarely used, irrelevant to mechanics, or
difficult to measure in actual conditions.

Thirdly, the influencing factors of the relevant variables
in the transfer part were minimized, e.g., the angular accel-
eration at different positions of car body, as the prediction
variables were expected to consider such parameters as train
structure, track state, and operation state. Note that the
minimization only treats the transfer process as a black
box, rather than overlooking the impacts of the influencing
factors. The treatment simplifies the modelling process.

Finally, the preprocessed data were normalized for fur-
ther use.

2.2. Variable Selection

2.2.1. Linear Correlation. The linear correlation of two ran-
dom variables can be measured by the Pearson’s correlation

coefficient (P). If each variable has 𝑁 scalar observations,
then the Pearson’s correlation coefficient 𝜌𝑃 can be defined
as [10–12]𝜌𝑃 (𝑀1,𝑀2)

= 1𝑁 − 1 𝑁∑
𝑖=1

(𝑀1𝑖 − 𝜇𝑀1𝜎𝑀
1

)(𝑀2𝑖 − 𝜇𝑀2𝜎𝑀
2

) (1)

where 𝜇𝑀
1

and 𝜎𝑀
1

are the mean and standard deviations of𝑀1, respectively, and 𝜇𝑀
2

and 𝜎𝑀
2

are the mean and standard
deviations of𝑀2, respectively.

The Pearson’s correlation coefficient can also be described
based on the covariance of𝑀1 and𝑀2 as follows.

𝜌𝑃 (𝑀1,𝑀2) = cov (𝑀1,𝑀2)𝜎𝑀
1

𝜎𝑀
2

(2)

2.2.2. Nonlinear Correlation. The linear correlation coeffi-
cient cannot fully reflect the relationship between variables,
owing to the possible existence of nonlinear correlations.
Thus, the Spearman’s rank correlation coefficient (S) [13]
was employed to analyze the nonlinear correlations between
variables. This coefficient 𝜌𝑆 can be defined as follows.

𝜌𝑆 (𝑀1,𝑀2) = ∑
𝑖
(𝑀1𝑖 −𝑀1) (𝑀2𝑖 −𝑀2)√∑
𝑖
(𝑀1𝑖 −𝑀1)2∑𝑖 (𝑀2𝑖 −𝑀2)2 (3)

By this definition, 𝑀1 and 𝑀2 are fully correlated as long
as they share a monotonic functional relationship. This is
different from Pearson’s correlation, in which only linearly
correlated variables are considered as relevant to each other.

Then, the correlation coefficient matrix 𝐶𝑓 of 𝑛 random
variables is a matrix of correlation coefficients for each pair
of variable combinations.

𝐶𝑓 = (𝜌 (𝑀1,𝑀1) ⋅ ⋅ ⋅ 𝜌 (𝑀1,𝑀𝑛)... d
...𝜌 (𝑀𝑛,𝑀1) ⋅ ⋅ ⋅ 𝜌 (𝑀𝑛,𝑀𝑛)) (4)

Since𝑀1 and𝑀2 are always directly correlated, the diagonal
entries are 1, that is,

𝐶𝑓 = ( 1 ⋅ ⋅ ⋅ 𝜌 (𝑀1,𝑀𝑛)... d
...𝜌 (𝑀𝑛,𝑀1) ⋅ ⋅ ⋅ 1 ) . (5)

Through the above calculation, the variables with the
greater values under the two types of correlation coefficients,𝐶𝑓
𝑃
and 𝐶𝑓

𝑆
, can be selected as predictor variables.

3. Method of Prediction Model

3.1. Training Algorithms. The training algorithms pursue the
minimum gap between the predicted value and themeasured
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value. In most cases, the minimization is achieved by adjust-
ing the weights of each layer in the neural networks. Below
is a brief introduction to the training algorithms adopted for
our research.

(1) Broyden–Fletcher–Goldfarb–Shanno (BFGS)Quasi-Newton
Backpropagation (BQ). The BQ is an alternative to the
conjugate gradient methods for fast optimization. The basic
formula [14] is as follows:𝑑𝑘+1 = 𝑑𝑘 −H𝑘

−1𝑔𝑘 (6)

where 𝑑𝑘+1 is the step distance of 𝑘 + 1; 𝑑𝑘 is the step
distance of 𝑘;H𝑘−1 is the Hessian matrix (second derivatives)
of performance index at the current weights and biases; and𝑔𝑘 is the gradient of step 𝑘.
(2) Conjugate Gradient Backpropagation with Powell-Beale
Restarts (CGB). For all conjugate gradient algorithms, the
search direction is periodically reset to the negative of the
gradient. The reset happens whenever there is too little
orthogonality left between the current and the previous gra-
dients. This condition is tested with the following inequality
[15]. 𝑔𝑇𝑘−1𝑔𝑘 ≥ 0.2 𝑔𝑘2 (7)

(3) Conjugate Gradient Backpropagation with Fletcher-Reeves
Updates (CGF). The optimal distances to move along the
current search direction, the new search direction, and the
conjugate weight adjustment coefficient are, respectively,
computed by the following equations [16]:𝑑𝑘+1 = 𝑑𝑘𝛼𝑘𝑝𝑘 (8)𝑝𝑘 = −g𝑘 + 𝛽𝑘𝑝𝑘−1 (9)

𝛽𝑘 = 𝑔𝑇
𝑘
𝑔𝑘𝑔𝑇

𝑘−1
𝑔𝑘−1 (10)

where 𝛼𝑘 is a variable to minimize the performance along
the current search direction; 𝑝𝑘 is the next search direction,
which is conjugate to the previous search direction; and𝛽𝑘 is a constant that adjusts the conjugate weights. Most
conjugate gradient algorithms differ only in the calculation
of the constant 𝛽𝑘.
(4) Conjugate Gradient Backpropagation with Polak-Ribiére
Updates (CGP). For this algorithm, the search direction in
each iteration is the same as the new search direction in the
CGF algorithm [16]. The constant 𝛽𝑘 can be obtained by

𝛽𝑘 = �𝑔𝑇
𝑘−1

𝑔𝑘𝑔𝑇
𝑘−1

𝑔𝑘−1 (11)

where �𝑔𝑇
𝑘−1

= (𝑔𝑘 − 𝑔𝑘−1)𝑇 is the change transposing form
in the gradient from the previous iteration.

(5) One-Step Secant Backpropagation (OSS). The OSS algo-
rithm is an approximate secant method with relatively small

storage and computing load [17]. By this method, the weights
can be adjusted in the following manner:𝑝𝑘+1 = −𝑔𝑘 + 𝑎𝑘𝑠𝑘 + 𝑏𝑘�𝑔𝑘 (12)

where 𝑎𝑘 is the weight adjustment coefficient; 𝑠𝑘 is the change
in the weights of the previous iteration; and 𝑏𝑘 is the gradient
adjustment coefficient.

(6) Resilient Backpropagation (RB). The RB is a local learn-
ing algorithm that is easy to implement and compute. In
this algorithm, the weights are updated according to the
behaviour of the sign sequence for the partial derivatives in
each dimension of the weight space [18]:

�w𝑘 = −𝜖 𝜕𝐸𝑘𝜕w𝑘 + 𝜇�w𝑘−1 (13)𝜕𝐸𝑘−1𝜕w𝑘−1 ∙ 𝜕𝐸𝑘𝜕w𝑘 = 0 (14)

where 𝜇 is a parameter to scale the influence of the previous
iteration and 𝜖 is the learning rate.
(7) Scaled Conjugate Gradient Backpropagation (SCG). The
SCG is a step-size scaling algorithm [19, 20] created to expand
the applicable scope of conjugate gradient (CG) algorithm
from the functions with positive definite Hessian matrices.
The SCGworks faster than other second-order algorithms, as
it prevents the time-consuming search in each iteration.

(8) Levenberg-Marquardt Backpropagation (LM). The LM
algorithm uses the approximate Hessianmatrix in the follow-
ing Newton-like update [21, 22]:

H = J𝑇J (15)𝑑𝑘+1 = 𝑑𝑘 − [J𝑇J + 𝜇I]−1 J𝑇e (16)

where H is the Hessian matrix; J is the Jacobian matrix
containing the first-order derivatives of network errors with
respect to the weights and biases; and e is a vector of network
errors. When the scalar 𝜇 is zero, the LM algorithm is
essentially a Newton’s method using the approximate Hessian
matrix.

(9) Bayesian Regularization Backpropagation (BR). Besides
reducing the sum of squared errors, 𝐸𝐷, the regularization
adds an additional term. Thus, the objective function 𝐸(w)
can be expressed as 𝐸 (w) = 𝛽𝐸𝐷 + 𝛼𝐸𝑊 (17)

where 𝐸𝑊 is the sum of squares of network weights and 𝛼
and 𝛽 are two parameters of the objective function. Under
the Bayesian framework [23, 24], this method can optimize
the regularization parameters.

With different weight adjustment mechanisms, the above
algorithms differ in training accuracy, storage, and running
time. Their performance will be compared in the following
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Figure 1: Structure of the TSNF.

section. In addition, the functions of the output layer and the
hidden layer are as follows.

𝑓𝐻 (𝑥) = 𝑡𝑎𝑛𝑠𝑖𝑔 (𝑥) = 21 + exp (−2 ∗ 𝑥) − 1 (18)𝑓𝑂 (𝑥) = 𝑝𝑢𝑟𝑒𝑙𝑖𝑛 (𝑥) = 𝑥 (19)

3.2. Structures of Neural Networks

3.2.1. Feedforward Neural Networks (FFNN). The FFNN is
one of the most popular neural networks. The networks
have multiple layers, including an input layer, several hidden
layers, and an output layer. Layers are connected to each other
by nodes or neurons. The input layer is connected to the
inputs, while the output layer exports the predicted results.
Each hidden layer treats the output of the previous layer as its
input.

3.2.2. Time-Series Neural Network without Feedback Time
Delays (TSNF). The parameters like vibration and body
attitude are often affected by relevant factors and the existing
states. This type of variable often uses more accurate time-
series neural network prediction methods. A typical time-
series neural network structure is as shown in Figure 1, where
the input vectors are formed by the input variables and their
delays.

Other than the input layer, the other parts of the TSNF are
similar to those of the FFNN. In other words, the TSNF also
has multiple hidden layers and one output layer. Each hidden
layer contains a certain number of neurons.

3.2.3. Time-Series Neural Networks with Feedback TimeDelays
(TSF). TSF is another common time-series neural network
(Figure 2). The structure of TSF originates from the NARX.
Unlike the TSNF, the TSF contains both input delayed
variables and feedback delays.

The introduction of delayed feedback is equivalent to
taking the states of the target close to the next predicted
moment as the input variables. According to the analysis in
the previous section, the TSF structure is expected to further
improve the prediction accuracy. Hence, the performance of
the prediction model can be optimized by this structure. Of

course, the other two structures cannot be neglected in actual
practice; it is sometimes necessary to make predictions based
on predictors with or without feedback.

3.3. Model Construction Process. The optimal prediction
model can be constructed in two phases, namely, data prepro-
cessing and variable selection, and the model construction
based on neural networks. Figure 3 is the flow chart of the
model construction.

In the data preprocessing and variable selection block,
firstly the dataset applied here is from GJ-5 track inspection
car. To make the following process more effective, we screen
the missing and singular values and delete the corresponding
sampling points that may deteriorate the analysis results.
Then the target variables are defined as the vibration accel-
eration of car body from three directions, i.e., horizontal,
vertical, and lateral directions.The rest measured parameters
(139 other parameters in our dataset) are all considered
as the predictors at this step. However, under reasonable
deduction, there must be a big mount of the predictors being
redundant and almost having no impact on the vibration
of car body. To solve this problem, next, the correlation
analysis between the predictors and the response parameters
is carried out. Specifically, the Pearson’s correlation coefficient
and Spearman’s rank correlation coefficient were adopted to
select the predictor variables. Since the accuracy of car body
vibration forecast model is one of the common key indices,
all the predictors with absolute correlation coefficient over
0.1 are taken into consideration as inputs in the following
model building process. It should be noted that if the data
is very large or selected predictors are still redundant, the
chosen bound of the correlation coefficient could be changed
to improve the efficiency.

Next, in the building the prediction model block, the
selected variables were used to generate themodels trained by
different algorithms under three neural network structures.
The algorithms chosen arewidely verified effectively in neural
network method and briefly introduced in Section 3.1, which
contains LM, BR, BFG, RP, SCG, CGB, CGF, CGP, and
OSS, respectively. The three neural networks structures are
FF, TSNF, and TSF, respectively, which are illustrated in
Section 3.2. The performance evaluation indices of these
models were compared to determine the optimal prediction
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Figure 3: Flow chart of model construction.

model for car body vibration acceleration. In this work,
the accuracy is defined as the priority pursuing goal of the
ranking as we want to improve the suitability of the proposed
forecast model, and the real measured values of car body
vibration acceleration are very low, normally less than 0.1.
Under such consideration, the MSE is set to be the main
index of the comparison. If the MSE values are very close,

the R and MAE values are compared as the auxiliary indices.
Once the data are large and the running times of algo-
rithms are obviously different, amore comprehensive ranking
equation should be designed containing both the three
indices and the running time with reasonable corresponding
weights. Finally, the forecast model of car body vibration is
obtained.
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Table 1: Main parameters of track inspection and test accuracy of the inspection vehicle.

Test items Accuracy Range
Gauge ±0.8mm 1420∼1480 mm
Rail direction (left & right, 𝜆 ≤ 30m) ±1.0mm ±100mm
Rail direction (left & right, 𝜆 ≤ 50m) ±2.0mm ±100mm
Height (left & right, 𝜆 ≤ 30m) ±1.0mm ±100mm
Height (left & right, 𝜆 ≤ 50m) ±2.0mm ±100mm
Horizon ±1.5mm ±50mm
Super elevation ±1.5mm ±50mm
Triangle pit ±1.5mm ±220mm
Curve 1.2 × 10−4 m-1 −−
Body acceleration ±0.01 g ±1 g
Rail bottom slope ±0.25 deg −−
Rail cross section (left & right) ±0.5mm −−

Table 2: The prediction variables selected through correlation analysis.

Car body HACCEL (g) Car body VACCEL (g) Car body LACCEL (g)𝜌𝑃 𝜌𝑆 𝜌𝑃 𝜌𝑆 𝜌𝑃 𝜌𝑆
Superelev (mm) -0.50 -0.25 L Surf 1 (mm) -0.23 -0.20 Mileage (km) -0.49 -0.49
Curve (rad/km) -0.14 -0.18 R Surf 1 (mm) -0.27 -0.22 Gauge (mm) 0.16 0.11
C IRREG LEFT (mm) 0.31 0.19 L Surf 2 (mm) -0.29 -0.24 Superelev (mm) 0.26 0.24
C IRREG RIGHT (mm) 0.30 0.18 R Surf 2 (mm) -0.32 -0.26 Curve (rad/km) 0.29 0.26
CURVE RATE (rad/km/m) -0.15 -0.11 L Surf 3 (mm) -0.31 -0.25 Speed(kph) -0.48 -0.60
LOFFSET (mm) -0.22 0.05 R Surf 3 (mm) -0.35 -0.29 CURVE RATE (rad/km/m) -0.11 -0.09
ROFFSET (mm) -0.27 0.04 L Surf 4 (mm) -0.17 -0.12 LOFFSET (mm) 0.25 0.20
LSURFACE (mm) -0.43 -0.31 R Surf 4 (mm) -0.21 -0.16 ROFFSET (mm) 0.23 0.20
RSURFACE (mm) 0.39 0.26 - - - LSURFACE (mm) -0.18 -0.15
YAW (deg/s) 0.12 0.14 - - - YAW (deg/s) -0.21 -0.19
- - - - - - BOGIE FRAME HACCEL (g) 0.43 0.44
- - - - - - BOGIE FRAME VACCEL (g) 0.41 0.42

Total number 10 Total number 8 Total number 12

4. Results and Discussion

4.1. Measurement System. The training data were collected by
a GJ-5 track inspection vehicle of ImageMap, Inc., between
Shenzhen and Guangzhou, two first-tier cities in China.
The verification data were acquired on the return section.
The main test items include geometry inspection items,
on-board dynamics test items, and ground dynamics test
items. Specifically, the track geometry inspections include
different wavelengths and gauge, track pitch variation rate,
level, triangle pit twisting curvature, and curvature change
rate; on-board dynamics test items mainly include wheel
rail force and left and right wheel vertical forces, lateral
force, derailment coefficient, deceleration rate, three-section
acceleration reduction rate of wheel load, lateral stability
index of the structure, stability and the vehicle body vertical
and lateral acceleration of the left and right axle box, frame,
and body of the vehicle left and right axle boxes, vertical
and lateral acceleration of the frame, car body vertical and
lateral acceleration of the left and right axle boxes, frames,
and bodywork of the middle car; ground dynamics test items
include derailment coefficient, load shedding rate, lateral

force, vertical force, and vertical rail displacement horizontal.
The main parameters of track inspection and test accuracy of
the inspection vehicle are listed in Table 1.

Through the correlation analysis, the predictor variables
for car body vibration acceleration were selected by the
absolute values of coefficients falling between 0.1 and 0.9.This
interval was chosen to exclude parameters loosely correlated
with or similar to the target variable, making it possible to
obtain a practical analysis of the impact of each track factor on
the target variable.The selected variables are listed in Table 2.

As shown in Table 2, it is clear that the vertical vibration
acceleration of the car body directly hinges on the surface
conditions of the track. The horizontal and lateral acceler-
ation are affected by relatively more factors, owing to the
track state and train operation. Moreover, there are some
repeated variables, which is not out of expectation. Through
the above processes, the main influencing factors of car body
vibration acceleration were all identified, laying the basis for
subsequent improvement of train structure and passenger
comfort. Finally, the repeated variables were eliminated,
leaving a total of 23 predictor variables.



Journal of Advanced Transportation 7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.1

Ca
r b

od
y

H
or

iz
on

ta
l

Ac
ce

le
ra

tio
n 

(g
)

Sampled values
Predicted values

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.05

Ca
r b

od
y

Ve
rt

ic
al

Ac
ce

le
ra

tio
n 

(g
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
No. of Samples

0

0.05

Ca
r b

od
y

La
te

ra
l 

Ac
ce

le
ra

tio
n 

(g
)

−0.1

−0.05

−0.05

×104

×104

×104

Figure 4: Comparison between the predicted values of the FFNN-structure prediction model trained by BR with the measured values.

4.2. Performance Evaluation Indices. Three indices were
selected to evaluate the performance of our predictionmodel:
the mean square error (MSE), mean absolute error (MAE),
and regression coefficient (R). The MSE served as the main
index and the other two as the auxiliary indices.

The MSE can be calculated by the equation below:

𝑀𝑆𝐸 = 1𝑁 𝑁∑
𝑖=1

(𝑒𝑖)2 = 1𝑁 𝑁∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2 (20)

where 𝑦𝑖 is a vector of 𝑁 predictions; 𝑦𝑖 is the vector of
observed values corresponding to the inputs; and 𝑒𝑖 is the
square of the errors. When the MSE is close to zero, it means
the model is suitable for prediction when it is not overfitted.

The MAE is a yardstick of the accuracy of evaluation and
prediction [25, 26]. The definition of the MAE is as follows.

𝑀𝐴𝐸 = 1𝑁 𝑁∑
𝑖=1

𝑦𝑖 − 𝑦𝑖 (21)

The R indicates the amount of variance explained by the
prediction model. This index can be expressed as

𝑅 = ∑𝑁
𝑖=1

(𝑦𝑖 − 𝑦𝑖) (𝑦𝑖 − 𝑦𝑖)√∑𝑁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2√∑𝑁𝑖=1 (𝑦𝑖 − 𝑦𝑖)2 (22)

where 𝑦
𝑖
is the mean value of the measured data; 𝑦𝑖 is the

mean value of the predicted data;∑𝑁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2is the residual
sum of squares; and ∑𝑁

𝑖=1
(𝑦𝑖 − 𝑦𝑖)2 is the explained sum of

squares. The value of R falls between 0 and 1. If the R is close
to one, it means the model has explained the majority of the
variance [27, 28].

4.3. Model Performance. Our prediction models were built
on the Matlab software with some codes in the neural
network toolbox.The program runs on a Lenovo workstation
(CPU: Intel� Xeon� Processor E5-2623 v3; 3.00GHz; RMB:
64GB). To compare the models based on the said three
neural network structures, the number of hidden layers
and the number of hidden layer nodes were set to 1 and
15, respectively. The number of hidden layer nodes was
determined because the FFNN structure can achieve the
optimal performance with 15 hidden layer nodes through
10∼20 traversal iterations.
4.3.1. Training Performance. As mentioned before, the mod-
elling data were captured at the interval of 0.25m by a
GJ-5 track inspection vehicle moving from Shenzhen to
Guangzhou. In total, 50,000 sample points which are contin-
uous in time series were selected for modelling. eX replaces10𝑋. It can be seen that the models trained with LM and BR
outperformed those trained by other algorithms, but the run
times of the two models were relatively long.

For better understanding, the predicted values of the
FFNN-structure model trained by BR were compared with
the measured values in Figure 4, where the horizontal axis
is the total number of samples and the vertical axis is the
target variable (i.e., the car body vibration acceleration in
three directions).

As shown in Figure 4, the predicted acceleration in all
three directions basically conformed to the trend of the
target variables. However, only the predicted acceleration
in the horizontal direction was entirely consistent with the
measured value, while that in the other two directions merely
approximated the mean value of the target variables. The
magnitude and range of the measured values were not well
reflected.
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Table 3: Performance of the FFNN-structure prediction model.

Method Set MSE R MAE Running time (s)

BQ
Training 1.67e-04 0.21 0.0095

4.04Validation 1.88e-04 -0.10 0.0105
Test 5.43e-04 0.21 0.0191

CGB
Training 5.29e-05 0.75 0.0053

2.21Validation 4.81e-05 0.58 0.0052
Test 1.15e-04 0.71 0.0085

CGF
Training 1.42e-04 0.25 0.0089

1.52Validation 1.94e-04 0.24 0.0112
Test 3.71e-04 0.38 0.0163

CGP
Training 1.01e-04 0.52 0.0077

1.81Validation 8.24e-05 0.34 0.0068
Test 3.38e-04 0.33 0.0136

OSS
Training 5.79e-04 -0.22 0.0196

1.68Validation 4.04e-04 -0.44 0.0174
Test 5.77e-04 -0.43 0.0208

RB
Training 2.91e-05 0.89 0.0040

1.77Validation 2.52e-05 0.80 0.0038
Test 7.86e-05 0.71 0.0057

SCG
Training 1.32e-04 0.43 0.0088

1.09Validation 1.31e-04 0.53 0.0094
Test 7.86e-05 0.30 0.0213

LM
Training 2.61e-05 0.92 0.0038

16.20Validation 4.91e-05 0.87 0.0053
Test 2.21e-04 0.86 0.0134

BR Training 1.77e-05 0.94 0.0031 289.73
Test 2.38e-05 0.78 0.0033

Table 4: Performances of the TSNF-structure prediction model.

Method MSE R MAE Running time (s)
BQ 1.51e-05 0.94 0.0029 2.01e+03
CGB 1.40e-05 0.95 0.0028 244.87
CGF 1.44e-05 0.94 0.0028 252.16
CGP 1.41e-05 0.95 0.0028 237.03
OSS 1.81e-05 0.92 0.0032 299.56
RB 2.03e-05 0.91 0.0034 27.15
SCG 1.41e-05 0.95 0.0028 119.79
LM 1.19e-05 0.96 0.0026 5.64e+04
BR 1.20e-05 0.96 0.0026 8.76e+03

Theperformance of theTSNF-structure predictionmodel
is presented in Table 4. It can be seen that the three indices
were all improved from the levels in Table 3, indicating that
it is meaningful to consider the time delays. This is because
the car body has some time delays in its response to the
relevant factors, such as track surface and driver’s operation.
Nonetheless, it is also learned that the TSNF increased the
run time from that of the FFNN.

The predicted values of the TSNF-structure model
trained by BR were compared with the measured values in
Figure 5. It is clear that the TSNF-structure model reflected

the magnitude and range of the measured values more
accurately than the FFNN-structure model.

Finally, the performance of the TSF-structure model
(Table 5) shows that the model performance changed little
with the training algorithms. The order of magnitude of the
MSE was always at 10−6; the R value remained near 0.99.
Therefore, the TSF structure can bless the model with a good
performance with a short run time.

The predicted values of the TSF-structure model trained
by LM were compared with the measured values in Figure 6.
It can be seen that the predicted values were highly consistent
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Table 5: Performance of the TSF-structure prediction model.

Method MSE R MAE Running time (s)
CGB 2.27e-06 0.9898 0.0012 257.82
CGF 2.29e-06 0.9897 0.0012 263.01
CGP 2.29e-06 0.9897 0.0012 258.24
OSS 3.18e-06 0.9876 0.0014 321.94
BQ 2.54e-06 0.9890 0.0012 1.91e+03
RB 7.67e-06 0.9618 0.0021 36.37
SCG 2.39e-06 0.9895 0.0012 81.06
LM 2.02e-06 0.9910 0.0011 5.26e+04
BR 2.05e-06 0.9908 0.0011 1.14e+04

−0.1

−0.05

−0.05

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.1

Ca
r b

od
y

H
or

iz
on

ta
l

Ac
ce

le
ra

tio
n 

(g
)

Sampled values
Predicted values

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.05

Ca
r b

od
y

Ve
rt

ic
al

Ac
ce

le
ra

tio
n 

(g
)

0 0.5 1 1.5 2 2.5 3 3.5 4
No. of Samples

0

0.05

Ca
r b

od
y

La
te

ra
l

Ac
ce

le
ra

tio
n 

(g
)

×104

×104

×104

Figure 5: Comparison between the predicted values of the TSNF-structure prediction model trained by BR with the measured values.

with the measured values. Compared to the other two
structures, the TSF managed to reflect the actual magnitude
and range of the measured values.

4.3.2. Additional Dataset Verification. To verify the univer-
sality of the proposed model, another 40,000 sample points
were selected from the data acquired by the GJ-5 track
inspection vehicle on the return journey. Table 6 compares
the performances of the FFNN-, TSNF-, and TSF-structure
models on the additional dataset. Figures 7–10 display the
best performing model of each structure on the test dataset.

As shown in Figures 7, 8, 9, and 10, the predicted values
of FFNN- and TSNF-structure models deviated significantly
from themeasured results in some intervals.The possible rea-
sons are as follows: First, the target variables may be affected
by other implicit variables. Second, the correlation analysis
fails to screen out all the representative predictor variables.
Before applying the models of these two structures to actual
projects, it is necessary to expand the dataset to include
various situations and calculate correlation coefficients in a

proper manner. These are the necessary steps to acquire the
typical influencing factors of the target variables.

Besides, the predicted values of the TSF-structure model
trained by CGB and CGP were basically consistent with
the measured values, which are obviously better than those
of the other two structure models. In some stationary
phases, however, there was a constant deviation between the
predicted and measured values. A possible reason lies in
the fact that the predicted values are less affected by other
influencing factors in relatively stable phases and are only
determined by the impacts from delayed feedback values. By
contrast, the constant deviation did not appear in the FFNN-
structure model. Thus, the FFNN structure might be helpful
to eliminate the deviation in the TSF-structure model. This
idea will be examined in future research.

Given the accurately predicted vibration acceleration of
the car body, the passenger comfort can be derived according
to international standards like ISO2631 or UIC513. Thus, the
proposed prediction model lays the basis for early warning
and fault detection in operation and maintenance processes.
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Table 6: Performances of the FFNN-, TSNF-, and TSF-structure models on the new dataset.

Method FF TSNF TSF
MSE R MAE MSE R MAE MSE R MAE

BQ 1.31e-03 -0.37 3.07 6.61e-04 0.2305 0.0213 4.83e-04 0.61 1.86
CGB 1.30e-03 -0.16 2.97 0.0020 0.3609 0.0413 1.06e-04 0.78 0.81
CGF 7.14e-03 -0.25 7.95 0.0029 0.4036 0.0376 9.35e-04 0.95 2.76
CGP 1.01e-03 0.39 2.84 0.0011 0.2284 0.0275 1.53e-04 0.91 1.03
OSS 4.28e-03 0.09 5.63 0.0011 -0.0584 0.0275 1.71e-03 0.80 3.79
RB 2.35e-03 -0.06 3.61 0.0021 0.2364 0.0351 4.50e-04 0.42 1.72
SCG 3.85e-03 0.69 4.36 3.05e-04 0.0131 0.0128 4.06e-04 0.79 1.64
LM 1.02e-03 0.66 2.76 0.0122 -0.3984 0.0864 5.50e-03 0.04 4.52
BR 3.74e-04 0.68 1.27 0.0111 -0.0890 0.0696 1.01e-03 0.84 2.93
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Figure 6: Comparison between the predicted values of the TSNF-structure prediction model trained by LM with the measured values.
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Figure 7: FFNN-structure model trained by BR.
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Figure 8: TSNF-structure model trained by SCG.
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Figure 9: TSF-structure model trained by CGB.

5. Conclusions

This paper establishes a prediction model for car body vibra-
tion acceleration. In the beginning, the various parameters
related to the track and the train were filtered by correla-
tion analysis based on both Pearson’ correlation coefficient
and Spearman’s rank correlation coefficient. The parameters
closely correlated with the target variable were selected as
predictor variables. Then, the selected variables were used to
construct prediction models with three different neural net-
work structures, namely, the FFNN, the TSNF, and the TSF.
To verify the performance, the proposedmodels were applied

to predict the car body vibration acceleration with actual
railway datasets. The following phenomena were observed
from the predicted results.

During the training process and new prediction, accord-
ing to the obtained values of indices, the BR training
algorithm achieved very good performances both on the
training dataset and the new dataset under FFNN and TSNF
structures, but it consumed too much time. The LM boasted
the best performance under the TSF structure but performed
poorly on the new test dataset. The TSF-structure models
trained by CGB and CGP achieved even more accurate
prediction on the new dataset.
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Figure 10: TSF-structure model trained by CGP.

The future research will further improve the adaptability
of the proposed model and apply the predicted values to
enhance passenger comfort.

Nomenclature

NN: Neural networks
P: Pearson correlation

coefficient
S: Spearman correlation

coefficient
BFGS: Broyden–Fletcher–Goldfarb

–Shanno
BQ: BFGS Quasi-Newton

backpropagation
CGB: Conjugate gradient

backpropagation with
Powell-Beale restarts

CGF: Conjugate gradient
backpropagation with
Fletcher-Reeves updates

CGP: Conjugate gradient
backpropagation with
Polak-Ribiére updates

OSS: One-step secant
backpropagation

RB: Resilient backpropagation
SCG: Scaled conjugate gradient

backpropagation
LM: Levenberg-Marquardt

backpropagation
BR: Bayesian regularization

backpropagation
FF: Feedforward net

TS NF: Time-series neural networks
without feedback time delays

TS F: Time-series neural networks
with feedback time delays

Superelev: Superelevation
C IRREG LEFT: Left complex irregularity
C IRREG RIGHT: Right complex irregularity
LOFFSET: Left offset
ROFFSET: Right offset
LSURFACE: Left surface
RSURFACE: Right surface
BOGIE FRAME HACCEL: Horizontal acceleration of

bogie framework
BOGIE FRAME VACCEL: Vertical acceleration of bogie

framework
L Surf 1: Left vertical irregularity of

long wave
R Surf 1: Right vertical irregularity of

long wave
L Surf 2: Left vertical irregularity of

medium wave
R Surf 2: Right vertical irregularity of

medium wave
L Surf 3: Left vertical irregularity

under 20 cm chord
R Surf 3: Right vertical irregularity

under 20 cm chord
L Surf 4: Left vertical irregularity

under 10 cm chord
R Surf 4: Right vertical irregularity

under 10 cm chord
CURVE RATE: Curvature change rate
MSE: Mean square error
R: Regression coefficient
MAE: Mean absolute error.
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Traffic light recognition is an essential task for an advanced driving assistance system (ADAS) as well as for autonomous vehicles.
Recently, deep-learning has become increasingly popular in vision-based object recognition owing to its high performance of
classification. In this study, we investigate how to design a deep-learning based high-performance traffic light detection system.
Twomain components of the recognition system are investigated: the color space of the input video and the networkmodel of deep
learning. We apply six color spaces (RGB, normalized RGB, Ruta’s RYG, YCbCr, HSV, and CIE Lab) and three types of network
models (based on the Faster R-CNN and R-FCNmodels). All combinations of color spaces and network models are implemented
and tested on a traffic light dataset with 1280×720 resolution. Our simulations show that the best performance is achieved with the
combination of RGB color space and Faster R-CNN model. These results can provide a comprehensive guideline for designing a
traffic light detection system.

1. Introduction

Over the past few years, various advanced driving assistance
system (ADAS) have been developed and commercialized.
In particular, most automotive companies are now doing
their best to launch autonomous vehicles as soon as possible.
According to the society of automotive engineers (SAE),
the international standard defining the six levels of driving
automation requires the autonomous driving to achieve level
3 and higher [1]. Obviously, the traffic light recognition is an
essential task for ADAS as well as for autonomous vehicle.

For traffic light recognition, various methods have been
proposed. These can be analyzed from three aspects such as
color space, feature extraction, and verification/classification.
Different color spaces, namely, gray scale [2, 3], RGB [4, 5],
normalized RGB [6], Ruta’s RGB [7], YCbCr [8, 9], HSI
[10], HSV [11, 12], HSL [13], and CIE Lab [14], have been
used. Moreover, some studies [15–18] have used more than
one color spaces. For feature extraction, Haralick’s circularity
measure [19], Sobel edge detection [20], circle Hough trans-
form [21], 2DGabor wavelets [22], Haar-likes [23], histogram

of oriented gradients (HOG) [24], and geometric features
[25] have been applied. For verification/classification, various
conventional classifiers have been used, e.g., k-means cluster-
ing [26], templatematching [27], 2D independent component
analysis (ICA) [28], linear discriminant analysis (LDA) [29],
decision-tree classifier, k-nearest neighbor (kNN) classifier
[30], adaptive boosting algorithm (Adaboost) [31], and sup-
port vector machine (SVM) [32]. Recently, some basic deep-
learning networks such as LeNet [33], AlexNet [34], and
YOLO [35, 36] have been applied to traffic light recognition.
Other approaches using visual light road-to-vehicle com-
munication have been developed. LED-typed traffic lights
broadcast the information, then photo-diode [37, 38] or high-
frame-rate image sensor [39, 40] receives the optical signal.
In this paper, we mainly focus on vision-based traffic light
recognition using deep-learning.

In the last couple of years, deep-learning has achieved a
remarkable success in various artificial intelligence research
areas. In particular, deep-learning has become very popular
in vision-based object recognition due to its high perfor-
mances of classification. One of the first advances is OverFeat
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that applies the convolutional neural network (CNN) [34]
to multiscale sliding window algorithm [41]. Girshick et
al. proposed a region with CNN (R-CNN), which achieves
up to almost 50% improvement on the object detection
performance [42]. In R-CNN, object candidate regions are
detected and features are extracted using CNN, while objects
are classified using SVM. Girshick proposed a Fast R-CNN,
which uses selective search to generate object candidates
and applies fully connected neural network to classify the
objects [43]. However, the selective search algorithm slows
down the object detection system performance. Redmon et
al. proposed YOLO, which uses a simple CNN approach to
achieve real-time processing by enhancing detection accu-
racy and reducing computational complexity attaining [35].
Ren et al. proposed a Faster R-CNN which replaces the
selective search by region proposal network (RPN) [44]. The
RPN is a fully convolutional network that simultaneously
predicts the object bounds and object/objectless scores at
each position. This method makes it possible to imple-
ment the end-to-end training. Recently, two notable deep-
learning network models were proposed, single shot detector
(SSD) and region-based fully convolutional networks (R-
FCN). SSD uses multiple sized convolutional feature maps
to achieve a better accuracy and higher speed than YOLO
[45]. R-FCN is a modified version of Faster R-CNN, which
consists of only convolutional networks [46]. It is to be
noted that the feature extraction is included in deep-learning
detection network in the cases of Fast R-CNN, YOLO,
Faster R-CNN, SSD, and R-FCN frameworks. The above-
mentioned deep-learning methods have been widely applied
to detect objects such as vehicle and pedestrian [47–51].
However, only a few deep-learning based network models
have been applied to traffic light detection system [52–
55].

From the viewpoints of color representation, various
color spaces of input video data have been used in con-
ventional traffic light recognition methods. However, only a
few color spaces have been applied in deep-learning based
methods. Because color information plays an important role
in the performance of traffic light detection, it is necessary
to select the color space carefully in deep-learning based
methods. In this study, we focus on how to design a high-
performance deep-learning based traffic light recognition
system. To find color space most suitable to deep-learning
based traffic light recognition, six color spaces such as RGB,
normalized RGB, Ruta’s RYG, YCbCr, HSV, and CIE Lab
are investigated. For deep-learning network models, three
models based on the Faster R-CNN and R-FCN are applied.
All combinations of color spaces and network models are
implemented and compared.

The rest of this paper is organized as follows. Second
section discusses the previous research works on traffic light
detection system. In third section, we describe various color
spaces and deep-learning network models. All combinations
of color spaces and network models have been designed in
this study. In fourth section, we explain the configurations
such as parameter and data set for the performance eval-
uation. Fifth section presents the simulation results. Final
section draws the conclusions.

2. Related Works

In this section, we briefly introduce the work done so far on
traffic light detection. These works are categorized into two
groups, namely, deep-learning based and conventional classi-
fication methods, depending on whether the deep-learning is
used or not.They are investigatedmainly from the viewpoints
of color representation and verification/classification. The
analysis is summarized in Table 1.

2.1. Conventional Classification Based Methods. In general,
conventional traffic light recognition methods mainly consist
of two steps, candidate detection, and classification. Var-
ious color representations have been used. Charette and
Nashashibi did not use any color information [2, 3]. They
proposed to use the gray-scale image as input data. After the
top-hat morphological filtering, adaptive template matching
with geometry and structure information was applied to
detect the traffic lights. Park and Jeong used color extraction
and k-means clustering for candidate detection [4]. The
average and standard deviation of each component in RGB
color space were then calculated and used. Here, Haralick’s
circularity was used for verification. Yu et al. used the
difference of each pair of components in RGB space to
extract the dominant color [5]. They applied region growing
and segmentation for candidate detection. For verification,
the information of shape and position was used. Omachi
and Omachi used normalized RGB for color segmentation
[6]. The edge detection and circle Hough transform were
applied for verification of traffic light. Kim et al. used
Ruta’s RGB based color segmentation for the detection of
traffic light candidates at night [7]. Some geometric and
stochastic features were extracted and used in SVM classifier.
Kim et al. used YCbCr color-based thresholding and shape
filtering for candidate detection [8]. Here, Haar-like features
and Adaboost were used for classification. Kim et al. used
YCbCr color segmentation for candidate detection [9]. Here,
candidate blobs with red and green lights were detected by
thresholding Cb and Cr components. Various shape and
modified Haar-like features were extracted and used in
decision-tree classifier. Siogkas et al. used the CIE Lab color
space [14], where the multiplications of L and a components
(RG), and L and b components (YB) are used to enhance the
discrimination of red and green regions. They used fast radial
symmetry transform and persistency to identify the color
of traffic lights. Cylindrical color spaces such as HSI, HSV,
and HSL have also been used [10–13]. Hwang et al. used HSI
color-based thresholding, morphological filtering, and blob
labeling for candidate detection [10]. For verification, they
used convolution of the candidate region with Gaussian mask
using existence-weight map. HSV color space was also used,
where the histograms of hue and saturation components
are used for candidate extraction [11]. Probabilistic template
matching was applied for classification. Recently, it has been
reported that the detection performance of traffic lights can
be improved by using the 3D geometry map that are prebuild
fromGPS, INS/IMU, and range sensors such as stereo camera
or 2D/3D range lidar [12, 13]. Jang et al. usedHaar-like feature
based Adaboost with 3D map information for candidate
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Table 1: Color space and verification/classification used in previous traffic light detection.

Ref. # Color space Verification / Classification
[2], [3] Gray-scale Template matching
[4] RGB K-means clustering, Circularity check
[5] RGB Region growing, Color segmentation
[6] Normalized RGB Color segmentation, Circle Hough transform
[7] Ruta’s RGB SVM
[8] YCbCr Adaboost
[9] YCbCr Decision-tree classifier
[10] HSI Gaussian mask, Existence-WeightMap
[11] HSV Template matching
[14] CIE Lab Fast radial symmetry transform
[12] HSV SVM
[13] HSL SVM
[15] Normalized RGB, RGB Color clustering
[16] Normalized RGB, RGB Fuzzy logic clustering
[17] RGB, YCbCr Nearest neighbor classifier
[18] RGB, HSV LDA, kNN, SVM
[53] CIE Lab SVM, LeNet, AlexNet
[52] HSV SVM, Simple CNN
[54] RGB YOLO v1
[55] RGB YOLO 9000

detection [12]. HOG and HSV color histogram were applied
to SVM classifier. Moreover, traffic light candidates are
detected by using HOG features based linear SVM classifier
with the uncertainty of 3D prior that constrains the search
regions [13]. For classification, image color distribution in
HSL color space is used.

Some researchers used two color spaces [15–18]. Omachi
and Omachi used RGB and normalized RGB color spaces to
find candidates, and circle Hough transform was applied for
verification [15]. Combination of RGB and normalized RGB
was also used for color segmentation based on fuzzy logic
clustering, where some geometric and stochastic features
were used as primary clues to discriminate traffic lights
from others [16]. Cai et al. used RGB and YCbCr color
spaces for candidate extraction and classification, respectively
[17]. Gabor wavelet transform and ICA based features were
extracted and applied to the nearest neighbor classifier.
Furthermore, red, yellow and green traffic light regions are
detected by thresholding based HSV color segmentation and
geometrical features [18]. HOG features were extracted in
RGB space and used to determine whether arrow sign is on
the light or not. Three different classification algorithms such
as LDA, kNN, and SVM were applied, respectively.

Since the selection of color space plays the most impor-
tant role in traffic light detection performance, past studies
have explored all the possible options. Clearly, it is important
to identify the best among all these color spaces.

2.2. Deep-Learning Based Methods. Deep-learning has been
also used for traffic light detection and classification [52–
55]. At first, deep learning was applied only in the clas-
sification of traffic lights, where candidates were detected

by conventional method [52, 53]. Saini et al. used HSV
color space-based color segmentation, aspect ratio, and area-
based analysis and maximally stable extremal region (MSER)
to localize the candidates [52]. HOG features and SVM
were used for verification, whereas simple CNN was used
for classification. Lee and Park used CIE Lab color space-
based segmentation to find the candidate regions [53]. To
reduce false regions, they use SVM with size, aspect ratio,
filling ratio and position. The classification was performed
by two cascaded CNN which consists successively of LeNet
and AlexNet. LeNet quickly differentiates between traffic
lights and background. AlexNet classifies traffic light types.
Recently, deep-learning has been applied both to candidate
detection and classification. Behrendt et al. [54] and Jensen et
al. [55] applied YOLO-v1 [35] and YOLO-9000 [36] for traffic
light detection/classification.

As discussed, only a few color spaces have been applied
in deep-learning based traffic light detection. Because color
information plays an important role in the performance of
detection, it is necessary to select the color space carefully.
It is also required to apply more sophisticated and efficient
deep-learning network models to traffic light detection and
classification.

3. Deep-Learning Based Traffic
Light Detection

In this section, we present a deep-learning based traf-
fic light detection system that consists of the preprocess-
ing, deep-learning based detection, and postprocessing as
shown in Figure 1. In preprocessing, the input video data is
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Figure 1: Method overview of deep-learning based traffic light
detection.

transformed to other color space. Six color spaces are con-
sidered. The deep-learning based detection uses ensemble of
feature extraction network model and detection one. Here,
we consider three kinds of network models based on the
Faster R-CNN and R-FCN which can perform localization
and classification. In postprocessing, redundant detection
is removed by using the nonmaximum suppression (NMS)
technique [56, 57].

We focus on the combination of the color spaces and
the ensemble networks which can achieve high performance
of the traffic light detection. The color spaces and ensemble
network models to be considered are described below.

3.1. Color Spaces. In the vision-based object detection and
classification, it is necessary to determine the color space in
which the characteristic of the object appears well. The RGB
color space is defined by the three chromatics, red (𝑅), green
(𝐺), and blue (𝐵) [58]. For robustness under changes in the
lightning condition, normalized RGB has often been used.
The normalized RGB denoted as 𝑅𝑛, 𝐺𝑛, and 𝐵𝑛 are obtained
by 𝑅/𝑆, 𝐺/𝑆, and 𝐵/𝑆, respectively, where 𝑆 = 𝑅 + 𝐺 + 𝐵 [59].
At low illumination, it is difficult to distinguish between the
normalizedRGB colors [60]. To overcome this difficulty, Ruta
et al. proposed the new red and blue color transform for traffic
sign detection [60]. Since the traffic lights are red, green, and
yellow, we modify Ruta’s color representation for the same.
Ruta’s red, green, and yellow, denoted as 𝑓𝑅, 𝑓𝑦, and 𝑓𝐺 are
obtained as below.

𝑓𝑅 = max (0,min (𝑅𝑛 − 𝐺𝑛, 𝑅𝑛 − 𝐵𝑛)) (1)

𝑓𝑌 = max (0,min (𝑅𝑛 − 𝐵𝑛, 𝐺𝑛 − 𝐵𝑛)) (2)

𝑓𝐺 = max (0,min (𝐺𝑛 − 𝑅𝑛, 𝐺𝑛 − 𝐵𝑛)) (3)

The YCbCr color space is obtained from the RGB [61].
Y component is luma signal, and 𝐶𝑏 and 𝐶𝑟 are chroma
components. The color space can also be represented in
cylindrical coordinates such asHSV color space [62].The hue
component, H, refers to the pure color it resembles. All tints,
tones, and shades of red have the same hue. The saturation,
𝑆, describes how white the color is. The value component, 𝑉,
also called lightness, describes how dark the color is. The CIE
Lab color space consists of one component for luminance, 𝐿,
and two color components, 𝑎 and 𝑏 [63]. It is known that
the CIE Lab space is more suitable to many digital image
manipulations than RGB color space.

In this paper, the six kinds of color spaces are considered
in preprocessing of the traffic light detection system as shown
in Figure 1. Each color representation is applied and its
performance is compared.

3.2. Deep-Learning Based Ensemble Networks. It is known
that the end-to-end trainable deep-learning models are more
efficient than othermodels in general object detection [35, 36,
44–46], because it allows a sophisticated training by sharing
the weights between feature extraction and detection. YOLO
[35, 36], Faster R-CNN [44], SSD [45], and R-FCN [46] have
been developed for the end-to-end model. In our traffic light
detection system, we only consider the end-to-end deep-
learning network models that can perform feature extraction
and detection.

According to COCO [64], a dataset is divided into three
groups depending on the size of the object to be detected;
small (𝑎𝑟𝑒𝑎 < 322), medium (322 ≤ 𝑎𝑟𝑒𝑎 ≤ 962), and large
(962 ≤ 𝑎𝑟𝑒𝑎), where area denotes the number of pixels the
object occupies. Therefore, the detection performance of a
system can be different for different object sizes. Traffic lights
are relatively smaller in size than other objects such as vehicle
and pedestrian. For example, almost 90 % of traffic lights in
our evaluation dataset belong to small-size group (𝑎𝑟𝑒𝑎 <
322) as shown in Table 2. Therefore, it is necessary to deter-
mine a deep-learning network model which is suitable for
small-size object detection.

Huang et al. applied various network models to general
object detection using COCOdataset and their performances
are compared [65]. Fourteen kinds ofmeta-architectures with
feature extractors and network models are analyzed. Five
feature extractors such as VGGNet [66], MobileNet [67],
Inception-v2 [68], Resnet-101 [47], and Inception-Resnet-v2
[69] are compared. Three kinds of network models based
on the Faster-RCNN, R-FCN, and SSD are compared. They
show that SSD (similar to YOLO) has higher performance
for medium and large sized objects, but significantly lower
performance than Faster R-CNN and R-FCN for small
objects. They show that three ensemble networks such as
Faster-RCNN with Inception-Resnet-v2, Faster R-CNN with
Resnet-101, and R-FCN with Resnet-101 have higher perfor-
mances than others for the small-size object detection. This
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Table 2: The number (%) of small, medium, and large sizes traffic lights dataset.

Types # of small (%) # of medium (%) # of large (%) Total
green 7,192 (86.83) 1,091 (13.17) 0 (0.00) 8,283
red 4,694 (95.37) 226 (4.59) 2 (0.04) 4,922
yellow 652 (92.22) 55 (7.78) 0 (0.00) 707
red left 1,429 (82.17) 308 (17.71) 2 (0.12) 1,739
green left 225 (75.50) 62 (20.81) 11 (3.69) 298
off 1,031 (89.42) 122 (10.58) 0 (0.00) 1,153
Total 15,223 (89.01) 1,864 (10.90) 15 (0.09) 17,102
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Figure 2: Block diagram of Faster R-CNN network model with Inception-Resnet-v2.
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Figure 3: Block diagram of Faster R-CNN network model with Resnet-101.

is the reason why these three ensemble networks are applied
in our traffic light detection method.

In Faster R-CNN [44], the selective search is replaced
by very small convolutional network called RPN to generate
regions of interest (RoI). To handle the variations in aspect
ratio and scale of objects, Faster R-CNN introduces the idea
of anchor boxes. At each location, three kinds of anchor boxes
are used for scale 128×128, 256×256, and 512×512. Similarly,
three aspect ratios 1:1, 2:1, and 1:2 are used. RPN predicts
the probability of being background or foreground for nine
anchor boxes at each location. The remaining network is
similar to the Fast-RCNN model. It is known that Faster-
RCNN is 10 times faster than Fast-RCNN while maintaining
a similar accuracy level [44].

R-FCN [46] is a region-based object detection framework
leveraging deep fully convolutional networks. In contrast
to other region-based detectors such as Fast R-CNN and
Faster R-CNN that apply per-region subnetwork hundreds

of times, the region-based detector of R-FCN uses fully
convolutional network that applies on the entire image.
Instead of RoI pooling at the end layer of Faster R-CNN,
R-FCN uses position-sensitive score maps and position-
sensitive RoI pooling layer to address a dilemma between
translation-invariance in image classification and translation-
variance in object detection.

The fully convolutional image classifier backbones, such
as Resnet-101 [47] and Inception-Resnet-v2 [69], can be used
for object detection. Resnet [47] is a residual learning frame-
work to make the training easy for deeper neural network. It
is reported that the residual network with 101 layers (Resnet-
101) has the best performance for object classification [47].
Inception-Resnet-v2 [69] is a hybrid inception version which
combines residual network and inception network.

In this paper, three kinds of deep-learning based ensem-
ble network models are considered for the traffic light detec-
tion (see Figures 2–4).Thefirst networkmodel, Faster-RCNN
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Figure 4: Block diagram of R-FCN network model with Resnet-101.

with Inception-Resnet-v2, consists of Inception-Resnetv2 for
feature extraction, RPN for candidate extraction, and RoI
pooling of Fast R-CNN for classification. The second one,
Resnet-101 with Faster R-CNN, consists of Resnet-101 for fea-
ture extraction, RPN, and RoI pooling. R-FCN with Resnet-
101 consists of Resnet-101, RPN, and position-sensitive score
map and position-sensitive RoI pooling for classification.
Each network model is applied and its performance is
compared.

4. Configuration for Evaluation

In this section, we introduce the dataset and data augmenta-
tion method for traffic light detection, parameter tuning, and
measurement metrics.

4.1. Dataset and Data Augmentation. For the simulations, we
use Bosch Small Traffic Lights Dataset (BSTLD) offered by
Behrendt et al. [54]. To use the same types of traffic lights
both for training and test, we use only training data set of
BSTLD which consists of 5,093 images. Among them, 2,042
images containing 4,306 annotated traffic lights are randomly
selected and used as the test data set. The training data set
consists of 6,102 images containing 12,796 annotated traffic
lights. For testing set, 3,051 images are obtained from BSTLD
training set and the others are generated using the following
data augmentation techniques.

(i) Additional Noise and Blur. Random addition of
Gaussian, speckle, salt and pepper noise, and genera-
tion of an imagewith signal-dependent Poisson noise.

(ii) Brightness Changes in the Lab Space. Addition of
random values to luminance (lightness) component.

(iii) Saturation and Brightness Changes in the HSV
Space. Additive jitter which is generated at randomby
means of exponentiation, multiplication and addition
of random values to the saturation and value chan-
nels.

Both training and testing data sets consist of 1,280×720
size images with annotations including bounding boxes of
traffic lights as well as the current state of each traffic light.
An active traffic light is annotated by one of six kinds of traffic

red red leftgreen green leftyellow off

Figure 5: Types of traffic lights.

light states (green, red, yellow, red left, green left, and off) as
shown in Figure 5. Detail descriptions of training and testing
data sets are summarized in Table 3.

4.2. Parameter Tuning for Training. All three ensemble net-
works are trained until a maximum of 20,000 epochs using
the pretrained weights are obtained from the COCO dataset
[64]. The Faster R-CNN and R-FCN networks are trained by
stochastic gradient descent (SGD) with momentum [70, 71],
where the batch size is 1 and the momentum optimizer value
is 0.9. We manually tune the learning rate schedules individ-
ually for each feature extractor. In our implementation, the
tuning parameters of learning rate for SGD with momentum
optimizer are set as follows:

(i) Initial learning rate: 0.0003
(ii) Learning rate of 0 ≤ Step < 900,000: 0.0003
(iii) Learning rate of 900,000 ≤ Step < 1,200,000: 0.00003
(iv) Learning rate of 1,200,000 ≤ Step: 0.000003

As suggested by Huang et al. [65], we limit the number of
proposals to 50 in all three networks to attain similar speeds
of traffic light detection.

4.3. Measurement Metrics. To evaluate the performances of
traffic light detection, we use measurement metrics such
as average precision (AP), mean average precision (mAP),
overall AP, and overall mAP that have been widely used
in VOC challenge [72, 73] and the COCO 2015 detection
challenge [74].
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Table 3: Descriptions of training and testing sets.

Dataset # of images # of annotated traffic lights Ratio
Training set 6,102 12,796 (Total classes: 6 ea) 75 %

(1) green (6,152)
(2) red (3,730)
(3) yellow (526)
(4) red left (1,294)
(5) green left (240)

(6) off (854)
Testing set 2,042 4,306 (Total classes: 6 ea) 25 %

(1) green (2,131)
(2) red (1,192)
(3) yellow (181)
(4) red left (445)
(5) green left (58)

(6) off (299)

Table 4: Detection performances (overall mAP and overall AP) of combination methods on test set.

Combination Method Overall mAP (%) Overall AP (%)
Ensemble Network Model Color Space total small non small green red yellow red left green left off

Faster R-CNNwith Inception-Resnet-v2

RGB 20.40 15.85 36.15 33.46 23.81 4.75 34.69 17.59 8.08
Normalized RGB 19.81 15.16 38.10 32.15 22.29 6.06 38.28 11.43 8.65

Ruta’s RYG 18.07 13.54 33.33 28.58 20.05 2.39 35.30 17.98 4.11
YCbCr 16.50 12.71 31.31 29.51 15.25 4.67 31.17 14.33 4.07
HSV 19.70 15.41 37.06 29.23 16.91 6.74 36.00 23.54 5.77

CIE Lab 17.64 13.31 34.30 26.62 18.27 5.41 34.63 15.82 5.09

Faster R-CNNwith Resnet-101

RGB 19.24 14.67 37.91 31.21 20.73 3.79 36.92 14.34 8.44
Normalized RGB 17.57 13.54 32.86 29.70 18.20 4.87 33.67 11.99 6.98

Ruta’s RYG 14.72 11.21 28.42 26.55 16.62 4.71 26.27 10.14 4.05
YCbCr 12.36 9.49 25.02 24.03 10.02 2.83 26.36 8.84 2.05
HSV 15.76 11.11 32.24 25.07 14.77 5.64 23.06 17.99 8.01

CIE Lab 10.90 7.63 23.73 19.98 13.79 3.67 20.43 5.28 2.28

R-FCN with Resnet-101

RGB 16.63 11.85 37.27 28.47 13.00 4.92 30.19 18.32 4.85
Normalized RGB 14.50 10.95 29.97 23.57 14.41 2.50 27.87 14.59 4.08

Ruta’s RYG 14.21 10.33 26.66 20.89 9.08 3.01 32.75 13.77 5.72
YCbCr 13.06 9.44 25.05 21.43 10.01 2.50 24.49 14.63 5.28
HSV 14.66 10.59 29.52 25.40 9.99 3.17 28.39 15.23 5.78

CIE Lab 12.24 9.06 23.51 14.58 12.43 1.93 27.87 11.80 4.85

AP is precision averaged across all values of recall
between 0 and 1. Here, AP is calculated by averaging the inter-
polated precision over eleven equally spaced interval of recall
value [0, 0.1, 0.2, . . .0.9, 1.0] [75]. To evaluate the performance
for two or more classes, the average of AP, mAP is calculated
by averaging APs over every class. We also use overall AP and
overall mAP that are obtained by averaging APs and mAPs,
respectively, over the IoU=[0.5, 0.55, 0.60, . . ., 0.90, 0.95],
where IoU stands for interval of intersection over union [73].

5. Simulation Results

In this section, we analyze the simulation results and detec-
tion examples. For the evaluation, we use measurement

metrics such as overall mAP, overall AP, mAP, and AP. For
analysis of the detection examples, we apply NMS.

5.1. Simulation Results. Every eighteen methods combined
with six different color spaces and three network models are
implemented and compared. Tables 4 and 5 show the detec-
tion performances where every combination methods are
listed in the left columns. In the tables, bold and underlined
numbers indicate the top-rankedmethod, bold for the second
ranked and underlined for the third ranked.

The first two network models, Faster R-CNNmodel with
Inception-Resnet-v2 and Faster R-CNN model with Resnet-
101, have roughly better performances than R-FCN model
with Resnet-101 in terms of mAP. In all three networks,
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Table 5: Detection performances (mAP@0.5 and AP@0.5) of combination methods on test set.

Combination Method mAP@0.5 (%) AP@0.5 (%)
Ensemble Network Model Color Space total small non small green red yellow red left green left off

Faster R-CNNwith Inception-Resnet-v2

RGB 38.48 31.27 57.79 70.56 52.12 8.49 59.11 27.13 13.44
Normalized RGB 38.24 31.42 59.87 70.43 52.09 10.98 63.94 17.39 14.60

Ruta’s RYG 35.94 29.16 52.99 65.02 49.77 06.03 57.87 28.76 8.16
YCbCr 35.55 29.32 51.83 68.68 41.30 9.53 58.91 26.07 8.83
HSV 35.13 28.82 56.76 58.55 38.50 12.94 57.89 32.88 10.04

CIE Lab 32.19 25.45 53.05 54.26 41.84 8.47 55.71 24.00 8.84

Faster R-CNNwith Resnet-101

RGB 37.24 30.25 61.45 65.23 47.68 6.82 63.11 24.37 16.23
Normalized RGB 34.24 28.32 51.82 64.11 43.46 8.20 57.30 19.63 12.72

Ruta’s RYG 31.96 26.14 50.63 61.55 41.21 13.01 50.04 18.11 7.85
YCbCr 26.17 21.44 42.64 56.82 27.16 5.52 47.45 15.57 4.48
HSV 30.30 22.69 54.00 52.50 34.45 11.02 41.49 27.88 14.44

CIE Lab 24.71 18.86 41.38 46.99 33.59 6.56 46.18 9.48 5.48

R-FCN with Resnet-101

RGB 34.88 27.33 62.19 64.76 36.48 10.07 55.44 30.93 11.57
Normalized RGB 32.16 26.18 52.80 58.86 38.17 5.99 54.03 26.46 9.43

Ruta’s RYG 31.21 24.78 47.20 55.03 30.14 7.13 60.38 23.28 11.29
YCbCr 30.42 23.18 50.18 57.18 29.10 5.45 49.49 30.42 10.87
HSV 30.05 23.25 51.61 56.33 28.48 7.58 50.58 26.10 11.25

CIE Lab 27.33 21.63 44.38 46.86 32.74 4.41 48.95 21.54 9.50

RGB and normalized RGB have high performance than other
colors. There is no method having good performance over
every type of traffic light.

In Table 4, from the view point of color space, RGB, nor-
malized RGB, and HSV spaces have higher mAP in Faster-
RCNNwith Inception-Resnet-v2. RGB and normalized RGB
have good performance in Faster R-CNN with Resnet-101. In
the case of yellow traffic light, normalized RGB and HSV in
Faster R-CNN with Inception-Resnet-v2 and HSV in Faster
R-CNNmodelwithResnet-101 have higher performance than
other methods, but most methods have limited overall mAPs
depending on sizes of traffic light, small and nonsmall. The
medium and large size data are combined into nonsmall set,
because our dataset has very limited number of large size
traffic light data. The top-ranked three methods such as RGB
based Faster R-CNN with Inception-Resnetv2, normalized
RGB based Faster R-CNN with Inception-Resnet-v2, and
HSV based Faster R-CNN with Inception-Resnet-v2 retain
their good performances in the small-size object.

Table 5 shows the detection performances in terms of AP
andmAPwhen IoU is fixed to 0.5.The top-ranked twometh-
ods such as RGB based Faster R-CNNwith Inception-Resnet-
v2 and normalized RGB based Faster R-CNNwith Inception-
Resnet-v2 have also better performance than others, even
though the ranking order is slightly changed depending
on the object size. Ruta’s RYG and HSV in Faster-RCNN
model with Resnet-101 and HSV in Faster R-CNN with
Inception-Resnet-v2 have significantly high performance for
yellow traffic light. Similar to Table 4, CIE Lab color space
has relatively poor performance regardless of the network
models. As shown in Table 5, the performances of mAP
depending on the size are similar to Table 4.

5.2. Detection Examples. After the traffic light detection
procedure, we use NMS to remove the redundant detections.
At final test process, IoU threshold of NMS is fixed to 0.5.
The traffic light detection examples of the top-ranked two
methods are shown in Figures 6 and 7. Six example images
are selected to show detection results for six types of traffic
lights. The traffic lights with object score being greater than
0.5 are detected and classified. True positives are indicated
by the corresponding traffic light symbol. False positives and
false negatives are noted by FP and FN, respectively. As
shown in Figure 6, the top-ranked method, RGB color-based
Faster R-CNNwith Inception-Resnet-v2, has twenty-six true
positives, three false positives, and four false negatives in
six images. Figure 7 shows that normalized RGB color-based
Faster R-CNNwith Inception-Resnet-v2 has twenty-four true
positives, two false positives, and seven false negatives. Both
methods cannot detect the yellow traffic lights well.

5.3. Summary. Based on the performance analysis, the Faster
R-CNN model is more suitable to traffic light detection
than R-FCN. Inception-Resnet-v2 shows better performance
for feature extraction than Resnet-101 in Faster R-FCN
framework. From view point of color space, the use of
RGB has highest performance in all ensemble networks. The
normalized RGB is also a good color space for Inception-
Resnet-v2 model.

6. Conclusions

In this paper, we present a deep-learning based traffic light
detection system that consists mainly of color space trans-
form and ensemble networkmodel.Through the simulations,



Journal of Advanced Transportation 9

Figure 6: Traffic light detection examples of top-ranked RGB based Faster R-CNNmodel with Inception-Resnet-v2.

Figure 7: Traffic light detection examples of the second-ranked normalized RGB based Faster R-CNNmodel with Inception-Resnet-v2.
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it is shown that Faster R-CNN with Inception-Resnet-v2
model is more suitable to traffic light detection than others.
Regardless of the networkmodels, RGB and normalized RGB
color spaces have high performance. However, mostmethods
have limited performance to detect yellow traffic lights. It
is observed that yellow lights are often misclassified into
red lights because the amount of yellow lights is relatively
much smaller in training dataset. The performance can be
improved, if yellow light training data is large enough as
other colors. The results can help developers to choose
appropriate color space and network model when deploying
deep-learning based traffic light detection.

Data Availability

For the simulations, Bosch Small Traffic Lights Dataset
offered by Behrendt et al. is used: https://hci.iwr.uni-heidel-
berg.de/node/6132.
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We propose a novel remote heart rate (HR) estimation method using facial images based on video analytics. Most of previous
methods have been demonstrated inwell-controlled indoor environments. In contrast, this paper proposes a practical video analytic
framework under actual driving conditions by extracting key HR inducing features. In particular, when cars are driven, effective
and stable HR estimation becomes challenging as there are many dynamic elements, such as rapid illumination changes, vibrations,
and ambient lighting that can exist in the vehicle interior. To overcome those disturbances of HR estimation, the driver face region
is first detected and cropped to the region of interest (RoI). Second, the components related to HR are extracted frommixed noisy
components using ensemble empirical mode decomposition (EEMD). Finally, the extracted signal is analyzed in frequency domain
and smoothed with temporal filtering. To verify our approach, the proposed method is compared with recent prominent methods
employing a public HCI dataset. It has been demonstrated that the proposed approach delivers superior performance under driving
conditions using Bland-Altman plots.

1. Introduction

Traffic accidents occur due to acute driver heart rate (HR) dis-
ease. These accidents can develop into dangerous situations
that threaten not only the driver but also the lives of others. If
the driver’s HR is known in advance, it is possible to prevent
the accident by judicially controlling the vehicle. Methods,
such aswired contact sensors, have beenproposed tomeasure
the driver’s HR. However, due to the invasive nature of the
in situ sensors, such methods have not gained much interest.
For less intrusive and accurate measurements of driver HR,
this research proposes a remote estimation method based on
a video analytic framework focused on capturing key HR
inducing features.

Nowadays, some systems monitor a driver’s condition
by placing a camera on the vehicle frame or the windshield
of the vehicle. Furthermore, since image based remote HR
estimation has been shown possible [1], a series of related
studies have been subsequently proposed.

Poh et al. demonstrated the HR estimation technique
by separating the observed signal into independent source
signals [2, 3]. A bandpass filter is applied to each of the signal
and the result was analyzed in frequency domain. Zhao et
al. proposed an estimation technique for respiration as well
as HR using a delay matrix [4]. Another study estimated
the pulse rate by amplifying the frequency of the signal
usingminutemovements of the face associatedwith vibration
associated with human pulses [5]. However, these methods
can be successful only if the subject is in a static state and any
changes in the environment are limited.

In [6], Li et al. proposed a new approach which made
slightly different assumptions compared to the previous stud-
ies. By assuming that light change to the face is the same as
the light change to the background area, HR can be estimated
through the difference between these two areas. Wang et
al. demonstrated a pruning architecture using CHROM that
removes pixels with values that do not correspond to skin
tones and pixels distorted by motion [7, 8]. Also based on
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CHROM, Tulyakov et al. improved on previous methods
by cropping and warping certain facial regions using a self-
adaptive matrix [9]. Similar to the assumption of [6], Xu et
al. analyzed the background region as the noise reference to
the facial region and then applied blind source separation
approach. Even though the result was shownquite impressive,
the variation of the result was large, making stable detection
difficult in a dynamic environment [10]. Cheng et al. also
applied an approach to Poh et al. by extracting unique pulse
signals through ensemble empirical mode decomposition
(EEMD) for the input signal analyzed by joint blind source
separation (JBSS) based on the same assumptions [11, 12].
On the other hand, Huan et al. analyzed the input signal
using JBSS in a similarway but exploited correlations between
them by dividing the face region into several subregions
and applied it to a learning based method [13]. However, in
the test data, obstruction caused by wires and tapes in skin
region was suggested as a challenging point and there was
no significant innovation since the authors did not consider
rapidly changing environment. In [14], a deep learning based
remote photoplethysmography (rPPG) approach that detects
skin regions using convolutional neural network (CNN) was
proposed. Although it was a unique method of applying deep
learning, there is a disadvantage that data must be learned in
a new environment every time in terms of machine learning.

These previous studies have steadily improved the tech-
nology, but most estimate pulses from a distance in an indoor
environment. In each of these papers, experiments have
used well-controlled data and been conducted in controlled
environments. Only few studies have addressed extreme illu-
mination changes and vibrations associated with automotive
environments. Although, Kuo et al. proposed an HR esti-
mation framework under driving conditions, the approach
was conventional and suffered very poor performance [15]. In
this paper, the proposed method shows stable HR estimation
results in indoors aswell as in awide range of outdoormoving
environments.

The structure of this paper is as follows. The framework
of the proposed method is shown in detail in Section 2.
In Section 3, our proposed algorithm is applied to a public
human-computer-interface (HCI) dataset to verify its validity
and the results compared with those of previous studies. The
experimental results of our driving dataset are presented by a
Bland-Altman plot. Finally, the conclusions are discussed in
Section 3.

2. Proposed Method

In this section, the proposed method can be divided into
three stages: (1) region of interest (RoI) selection, (2) pulse
signal extraction, and (3) power spectral density (PSD)
analysis and temporal filtering. The overall flow is illustrated
in Figure 1.

2.1. Region of Interest Selection. Kumar et al. demonstrated
that the color changes due to pulsation are different for each
region of the face, and as a result, the forehead and cheek
region represent the strongest PPG signal [16]. Based on

this result, the cheek region is selected as the RoI. While
the forehead region depends on hair style, the cheek region
provides robust features insensitive to facial expressions. In
order to extract the RoI, unnecessary background regions
are excluded based on the assumption that the driver’s facial
position is somewhat fixed. A total of 66 facial landmark
points are extracted for the remaining facial regions by using
discriminative response map fitting (DRMF) to extract both
cheek regions as illustrated in Figure 2 [17].

However, in the case of varying driving situations, not
only the rotation and movement of the face but also face
detection per video frame slows the processing speed,making
the camera-based method ineffective for real-time HR esti-
mation. To mitigate such problems, face tracking is applied
using a kernelized correlated filter (KCF) [18]. Therefore,
facial landmark point extraction is performed only at the first
frame, after which the detected cheek region is tracked.

Nevertheless, the tracked RoI may still be incomplete. If
the face is rotated or shaken, a background region may be
included within the tracked RoI. Furthermore, as the vehicle
runs, numerous illumination changes can cause skin region
pixel values saturated such that the HR signal disappears. To
prevent this, a skin detection scheme is employed using the
hue channel in the HSV color model as in

𝑝𝑖𝑗 = {
{
{
𝑠𝑘𝑖𝑛, ℎ < 𝜏
𝑛𝑜𝑛 − 𝑠𝑘𝑖𝑛, ℎ ≥ 𝜏, (1)

where 𝑝𝑖𝑗 denotes the pixel value in 𝑖th row and 𝑗th column
and ℎ denotes the hue channel value. In our method, we set
the threshold of 90 for the hue channel as 𝜏 and selected pixels
less than 90 as skin regions. The value was determined to be
the best choice for the set of facial image data collected and
used in this study. According to the work by [19], a value of
threshold was used for the similar purpose.

2.2. Feature Extraction and Source Separation. Assuming that
the ambient light signal has properties such as white noise
of uniform magnitude in all frequency bands, the observed
signal S from the RoI can be described as

𝑆 = 𝑆𝐻𝑅 + 𝑆𝑚𝑜𝑡𝑖𝑜𝑛 + 𝑆𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 + 𝑆𝑎𝑚𝑏𝑖𝑒𝑛𝑡, (2)

where 𝑆𝑚𝑜𝑡𝑖𝑜𝑛, 𝑆𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛, and 𝑆𝑎𝑚𝑏𝑖𝑒𝑛𝑡 are motion-induced
changes, illumination changes, and changes in the ambient
light signal, respectively. As shown in Figure 3, the frequency
of illumination changes and vibration in the automotive
driving environment appears in a fairly low frequency band
compared with HR. Thus, the noise signals caused by illu-
mination change and vibration can be significantly excluded
using bandpass filtering. However, given the assumption that
ambient light is white noise, it cannot be easily filtered out by
the bandpass filter, and so may interfere with the HR signal.
Therefore, it is necessary to extract the prominent feature
signal of the HR and to separate it into each source signal
from a feature that contains various components.

Based on the property that the signal of PPG is different
for each channel, the RoverG feature that maximizes HR can
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Figure 1: Conceptual overview of the proposed heart rate estimation method under driving environment.

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15

16

17

18
19 20 21

22 23 24 25 26
27

28

29

30

31

32 33 34 35 36

37
38 39

404142
43

44 45
464748

49

6 0

51
50

52 53
54

55

56
57

5859

61
62 63 64

65
666768

(a) (b) (c)

Figure 2: Extraction of facial landmark points. (a) The unique number of each of the 66 facial landmark points and the 6 selected points (4
contour points on the cheek and 2 points on the nose). (b) Detected result of the driving dataset. (c) Result of skin detection.

be obtained by taking a ratio from an RGB signal from the
RoI as

𝑅𝑜V𝑒𝑟𝐺 = 𝐺𝑛
𝑅𝑛 , (3)

where 𝐺𝑛 and 𝑅𝑛 are the normalized green and red signals
[20, 21].

However, RoverG is an unstable HR feature because it
takes a fraction of the purely observed signal without any
filtering. Therefore, this feature also includes variations due
to illumination change and motion and should be separated
into pure HR signals.

Before extracting the HR signal, a detrending method
was applied to remove the nonstationary component with the
smoothing parameter 𝜆 = 10 [22]. Then ensemble empirical
mode decomposition (EEMD) is employed to separate the
HR source signal from a number of noisy components in
RoverG [11]. EEMD is a noise assisted data analysis method
that separates the Intrinsic Mode Function (IMF) from the
data. The IMF extraction process, called sift, is accomplished
by averaging the trials with the signal plus white noise, which
is newly generated at every trial. If enough trials are carried
out andmorewhite noise is added, the components thatmake
up the observed signal can be separated. In [15], which IMF
is close to HR is determined through EEMD, and the fourth
IMF is extracted as the HR component.
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Figure 3: Frequency (in Hz) analysis of (a) illumination change and (b) vibration under automotive driving conditions.

However, since the automotive driving environment is
very dynamic, several estimated HRs are derived as candi-
dates for one estimation window for a stable HR estimation.
Thus, the RoverG feature signal conversion and EEMD
IMF extraction is iteratively performed in a window. The
𝑘th window, denoted as 𝐼𝑘, is divided into 𝑚 periods by
accumulating one second intervals from the first starting
point to 𝑝1, 𝑝2, . . . , 𝑝𝑚(= 𝐼𝑘). Then, the HR for each period
is estimated, and 𝑚 estimated HRs are derived from the
window. However, since all of the 𝑚 estimated HRs have dif-
ferent inconsistent results, Mahalanobis distance is employed
to exclude the result that is the furthest from most of the 𝑚
results as

𝑑 (𝐻𝑅𝑐𝑎𝑛𝑑, 𝜇𝑐𝑎𝑛𝑑)
= [(𝐻𝑅𝑐𝑎𝑛𝑑 − 𝜇𝑐𝑎𝑛𝑑)𝑇 𝑆−1 (𝐻𝑅𝑐𝑎𝑛𝑑 − 𝜇𝑐𝑎𝑛𝑑)]1/2 ,

(4)

where 𝐻𝑅𝑐𝑎𝑛𝑑 and 𝜇𝑐𝑎𝑛𝑑 are 𝑚 × 1 vectors consisting of
𝑚 estimated candidate results and the mean of 𝐻𝑅𝑐𝑎𝑛𝑑,
respectively, and 𝑆−1 is the covariance matrix. The candidate
estimated HRs left after this exclusion are averaged and
adopted as a result at the 𝑘 second.
2.3. Power Spectral Density Analysis and Temporal Filtering.
In order to calculate the final HR perminute, PSD is analyzed
using the Welch method [23]. The cutoff frequency is set
as (0.7, 4) HZ, corresponding to (42, 240) beats/min (bpm)
and 128-order hamming window is used as the bandpass
filter. However, the ambient light of the external noise in the
cutoff frequency band may still cause intermittent peaking of
the estimate. In order to cope with this problem, temporal
filtering is applied to smooth the estimate trend as

𝐻𝑅𝑡 = 1
𝑠
𝑡−1

∑
𝑟=𝑡−𝑠

𝐻𝑅𝑟 𝑤ℎ𝑒𝑛 𝐻𝑅𝑡 − 𝐻𝑅𝑡−1 ≥ 𝛼, (5)

where 𝐻𝑅𝑡 denotes the HR at time 𝑡. Threshold 𝛼 denotes
the allowable maximum value for the difference between
the previous HR estimate and the current estimate. The
parameter s determines the number of frames used for
smoothing. These parameters (𝛼 and s) were chosen for
optimal performance from the data set collected based
on the assumption that HR does not change substantially
in one second. The overall algorithm flow is shown in
Algorithm 1.

3. Experiments and Results

In this section, we compare the performance of the proposed
features against those presented in recent studies with the
public HCI dataset.

3.1. Comparative Analysis of Features. As mentioned in Sec-
tion 2, the green channel has the strongest PPG signal [6, 20].
On the other hand, Haan et al. proposed XminY with RoverG
and proved that XminY has the highest performance in terms
of experimental results [7]. Thus, it is necessary to determine
which of the various feature signals produces the best HR
signal.

For stable analysis, the MAHNOB-HCI dataset [24], a
public indoor environment dataset, was used to compare the
results of the five features, and the results are shown inTable 1.

Several commonly used performance indicators are
employed to compare the performance of each feature [6].𝑀𝑒
and 𝑆𝐷𝑒 are the mean and standard deviation, respectively,
of the difference between ground truth and the obtained
estimate,𝐻𝑅𝑑𝑖𝑓 = 𝐻𝑅𝑒𝑠𝑡 −𝐻𝑅𝑔𝑡. Additionally, the root mean
square error (RMSE) and 𝑀𝑒𝑅𝑎𝑡𝑒, which is the percentage of
∑𝑁𝑛=1(|𝐻𝑅𝑑𝑖𝑓(𝑛)|/𝐻𝑅𝑔𝑡(𝑛)), are employed to measure preci-
sion. Finally, r is the Pearson correlation coefficient that can
evaluate the correlation between the two values.
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Input: Image frame consist of RGB channel
Output: Estimated heart rate
Initialization: A video sequence within sliding window
For 𝑓𝑟𝑎𝑚𝑒 = 1, 2, . . ., N

If 𝑓𝑟𝑎𝑚𝑒 == 1
Detect a facial landmark points
Select 6 facial landmark points for cheek and nose

End
Track the detected region of interest
Detect skin region within region of interest
If mod(𝑓𝑟𝑎𝑚𝑒, frame rate) == 0 and 𝑓𝑟𝑎𝑚𝑒 >= length of window

For 𝑝𝑒𝑟𝑖𝑜𝑑 = 𝑝1, 𝑝2, . . . , 𝑝𝑚
RGB normalization
Calculate feature signal, 𝑅𝑜V𝑒𝑟𝐺 = 𝐺𝑛/𝑅𝑛
Extract intrinsic mode function for heart rate from 𝑅𝑜V𝑒𝑟𝐺
Power spectral density analysis

End
Filtering outlier using Mahalanobis distance, 𝑑(𝐻𝑅𝑒𝑠𝑡, 𝜇𝑒𝑠𝑡)
Obtain heart rate result𝐻𝑅𝑡𝑎V𝑟 by averaging remaining estimates
If 𝐻𝑅𝑡𝑎V𝑟 − 𝐻𝑅𝑡−1 > 𝛼

Temporal filtering with estimated result
End

End
End

Algorithm 1: Heart rate estimation algorithm.

Table 1: Comparison of heart rate estimation using different features
(best performance in bold).

Feature 𝑀𝑒(𝑆𝐷𝑒)
(bpm)

RMSE
(bpm) 𝑀𝑒𝑅𝑎𝑡𝑒 𝑟

Green -10.6(4.19) 11.3 14.22% -0.35
Green mah -10.33(10.17) 14.45 13.71% -0.20
Green mah TF -6.63(7.21) 13.68 15.84% -0.50
XminY -20.1(6.54) 21.0 27.2% -0.32
XminY mah -11.93(9.91) 15.3 16.11% 0.07
XminY mah TF -12.07(5.15) 13.22 15.11% 0.39
RoverG -2.43(7.27) 7.27 4.93% 0.59
RoverG mah -0.57(5.94) 3.26 5.58% 0.59
RoverG mah TF 0.80(3.35) 3.26 3.68% 0.75

Of the features, Green and RoverG are the signal from the
pure green channel value in the RGB image and the feature
from (2), respectively. XminY is the difference between X and
Y, which is a linear combination feature of the RGB signal as
described in (6)

X = 3𝑅𝑛 − 2𝐺𝑛
Y = 1.5𝑅𝑛 + 𝐺𝑛 − 1.5𝐵𝑛.

(6)

𝑅𝑜V𝑒𝑟𝐺 𝑚𝑎ℎ is a method of removing the peak candidate
estimation value by applying the Mahalanobis distance to the
estimated values of RoverG, and RoverG mah TF is the result
of smoothing the outlier through temporal filtering.

As shown in Table 1, of the five metrics, RoverG mah TF
shows the best performance. Although RoverG without any
postprocessing shows a considerable fluctuation in its the
result, the RoverG mah with the statistical exclusion method
of candidates has a relatively stable result. On the other
hand, XminY, which showed the highest performance in [7],
shows a lower performance than the other features with the
MAHNOB-HCI dataset.

3.2. Validation Using Public Indoor Dataset. To validate
the proposed method, its performance was compared with
the recently proposed methods using a public dataset. The
MAHNOB-HCI dataset is a publicHCI dataset captured with
several vital signals in the indoor environment. The dataset
consists of two experiments containing emotion elicitation
and implicit tagging. The subjects consist of 12 males and
15 females, each of whom was synchronized with the image
by attaching an electrocardiography (ECG) sensor to their
body.The ECG and image are recorded at 256Hz and a frame
rate of 61, respectively, and the resolution of the image is 780
by 580. Since it is of interest to estimate HR change over
time, emotion elicitation data is adopted in the experiment.
Emotion elicitation data is a data recording the vital signal
and the facial image according to the stimulus by showing
some videos (e.g., nature documentary or horror movie) to
the subject. A comparison of the performance of the related
methods on the MAHNOB-HCI dataset is shown in Table 2.
For the previous methods, while the MAHNOB-HCI dataset
was quite a challenging dataset, Li2014 and Tulyakov2016
achieved substantial accuracy with marginal improvement
thereafter. Nevertheless, our algorithm, which is proposed to
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Table 2: Comparison of the performance of related methods with
the MAHNOB-HCI dataset (best performance in bold).

Feature 𝑀𝑒(𝑆𝐷𝑒)
(bpm)

RMSE
(bpm) 𝑀𝑒𝑅𝑎𝑡𝑒 𝑟

Poh2010 -8.95(24.3) 25.9 25.0% 0.08
Poh2011 2.04(13.5) 13.6 13.2% 0.36
De Haan2013 4.62(6.50) 6.52 6.39% 0.82
Balakrishman2013 -14.4(15.2) 21.0 20.7% 0.11
Li2014 -3.30(6.88) 7.62 6.87% 0.81
Tulyakov2016 3.19(5.81) 6.23 5.93% 0.83
Ours 0.80(3.35) 3.26 3.68% 0.75

target a dynamic environment (e.g., the automobile driving
environment), shows very high accuracy performance in this
indoor environment. In terms of the Pearson correlation
coefficient, its performance is comparable to the best per-
forming previous method (e.g., Tulyakov2016). Except for
this indicator, given the residual performance results related
to the error, the estimate result of the proposed method is
shown to outperform over all previous methods.

3.3. Demonstration on Dynamic Driving Dataset. To demon-
strate the proposed method under a driving scenario, a real
driving dataset was collected under driving condition with 19
subjects in their 20s and 30s. The subjects included men and
women of different ethnic backgrounds from countries such
as Korea, China, and theMiddle East.The driving dataset was
captured by an action camera, Go-pro HERO 3+, fixed on a
windscreen recording at a 30 frames per second rate and a
resolution of 1920-by-1080. The ground truth was obtained
by attaching a contact based pulse sensor to the earlobe of
the subjects and synchronized with the captured dataset (the
MP507 model of MEK was used as the earlobe pulse sensor).
In order to securely obtain the dataset, the subject in the
passenger seat was recorded instead of the actual driver, and
they were asked to move their head up and down sometimes
during the course of the driving. The subjects were also asked
to rush up a hill before boarding the vehicle to check for pulse
rate changes. It was recorded as naturally as possible without
any additional constraints on the experiment. The driving
course included a variety of actual driving road elements such
as shade, curved sections, hills, and speed bumps.The ground
truth is recorded in synchronization with the dataset using an
earlobe attached sensor.

In order to address the stable performance of the pro-
posed method, a Bland-Altman plot is employed. A Bland-
Altman plot is a statistical plotting method that represents
the agreement between two measurements. Each coordinate
of the plot is denoted as in

𝐵𝐴 (𝑥, 𝑦) = (𝐻𝑅𝑒𝑠𝑡 + 𝐻𝑅𝑔𝑡2 ,𝐻𝑅𝑒𝑠𝑡 − 𝐻𝑅𝑔𝑡) . (7)

The agreement 𝐴 at the 95% confidence interval is shown in

𝐴 = 1
𝑁
𝑛

∑
𝑖=1

𝑎𝑖 × 100,

𝑤𝑖𝑡ℎ 𝑎𝑖 = {
{
{
1, 𝑖𝑓 𝐻𝑅𝑒𝑠𝑡 − 𝐻𝑅𝑔𝑡 > 1.96 × 𝜎
0, 𝑖𝑓 𝐻𝑅𝑒𝑠𝑡 − 𝐻𝑅𝑔𝑡 < 1.96 × 𝜎,

(8)

where𝑁 is the total number of measurements and 𝜎 denotes
the standard deviation between the two data sample sets.
Figure 4 shows the Bland-Altman plot results of our proposed
method with four randomly selected subjects from the
driving dataset. The red and green line denotes the mean
and standard deviation of the measurements, respectively.
Eachmeasurement is a combination of the estimated HR and
ground truth per second. Figure 4 shows that although the
results are applied to all four driving data sets, the mean of the
errors is substantially small and a high agreement is obtained.

In order to visualize the tendency of the estimated HR
and ground truth over time, the result is shown in Figure 5.
Although the estimated value is slightly fluctuated compared
with the ground truth, the difference is maintained within
a maximum of 3 beats per minute. Moreover, it maintains
similar stability to the normal interval even in the interval of
fluctuation caused by speed bump and the rapid illumination
change.

3.4. Performance Analysis Based on Execution Speed. Our
proposed method is applied to vehicle environment. There-
fore, fast performance is required even if some performance
degradation occurs using constrained resources. By Huang et
al. [11], the true IMF can be defined as an ensemble of many
trials as shown in

𝐸𝐸𝑀𝐷 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 = 𝑠𝑡𝑑 (𝑥)
𝑁
𝑁

∑
𝑖=1

{𝐸𝑀𝐷(𝑥 + 𝑛𝑖)} . (9)

𝑁 is the number of trials and 𝑥, 𝑛 denote the observation sig-
nal and noise, respectively. However, this approach requires a
very large 𝑁 resulting a large number of EMD calculations.
Our proposed approach here limits the number of EMD
calculations by exploiting independent identically distributed
(iid) property of thewhite noise. Self-cancellation of thewhite
noise can be accomplished by

𝐸𝐸𝑀𝐷 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 = 𝑠𝑡𝑑 (𝑥)
𝑀
𝑀

∑
𝑖=1

[𝐸𝑀𝐷{𝑥

+ (mod (𝑖, 2)) ∙ 𝑛𝑖 − (mod (𝑖, 2) − 1) ∙ 𝑛𝑖}] .
(10)

mod is a function to obtain the remainder and𝑀 denotes the
number of limited trials. However, based on the characteristic
that noise 𝑛 is iid like in theoretical EEMD, the process of
adding noise in (10) was performed only in𝑀/2 trials (𝑀 ≈
𝑀/2 ≪ 𝑁). This method and (9) are called EEMD n1 and
EEMD, respectively, and 10 and 100 trials are performed,
respectively, to compare with EEMD which is commonly
used as [12].
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Figure 4: Bland-Altman plot analyzed at a 95% confidence interval. Each agreement of plot: (a) 95.9%; (b) 93.2%; (c) 93.5%; (d) 90%.
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Figure 5: Heart rate trend between estimation and ground truth on
challenging driving course. Red box: speed bump. Yellow box: rapid
illumination change.

On the other hand, in case of RoI selection, the previously
proposed method that detects face per frame instead of face

Table 3: The time it takes to operate once for each method.

Method Operation time (second)
DRMF detection 0.86
KCF tracking 0.27
EEMD n1 0.33
EEMD 4.52

tracking takes a considerable amount of time to process. It
also presents a challenge when facial motion takes place.
The time taken to operate each module is analyzed and
shown in Table 3. While DRMF detection and KCF tracking
are performed at every frame, EEMD n1 and EEMD are
performed as many as the number of candidate occurrences
when an image frame is presented as input by the sliding
window length.

Based on the result, four approaches are constructed as
shown in Table 4, and their performance is compared to
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Table 4: Comparison of heart rate estimations using different
features (best performance in bold).

Approach Absolute mean Standard deviation RMSE
DRMF+EEMD 4.35 2.29 4.89
DRMF+EEMD n1 4.75 1.82 5.08
KCF+EEMD 3.66 2.42 4.37
KCF+EEMD n1(ours) 3.71 3.07 4.74

determine the most efficient algorithm. Overall, the perfor-
mance is betterwhenusingKCF thanwhenusingDRMF.This
is because DRMF has difficulty in detecting the correct RoI
corresponding to the cheek region when a part of the face
is occluded due to shaking or facial motion. In the case of
EEMD n1, although the operation time is greatly reduced, the
performance decline is very small.

4. Conclusions

This paper proposed a novel approach to estimating HR
remotely in actual driving environments.Most previous stud-
ies have been proposed under indoor environments, which
often lead to high implied levels of performance based on
a well-controlled practical application context. On the other
hand, the proposed method showed attaining the highest
practical applicability by demonstrating its ability under
the most challenging environment, the automotive driving
environment. Before testing the proposed method under the
automotive driving environment with various obstacles, it
was compared to othermethods using the same indoor public
dataset as previous studies and using the same performance
index to validate its effectiveness. The proposed method
was then applied to data from an actual driving situation
and a fairly stable result was obtained. For automotive
driver HR estimation, estimating the HR instantaneously is
necessary to prevent accidents. Focusing on this issue, an
appropriate approach was sought to maximize performance
while reducing operation time. Hence, the performance was
also analyzed in terms of processing time by comparing
the proposed method with the conventional algorithms and
themodified algorithm. The proposedmethod demonstrated
a considerably superior performance and yet had a short
processing time.
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Surrogate Safety Measure (SSM) is one of the most widely used methods for identifying future threats, such as rear-end collision.
Various SSMs have been proposed for the application of AdvancedDriver Assistance Systems (ADAS), including ForwardCollision
Warning System (FCWS) and Emergency Braking System (EBS). The existing SSMs have been mainly used for assessing criticality
of a certain traffic situation or detecting critical actions, such as severe braking maneuvers and jerking before an accident. The
ADAS shows different warning signals or movements from drivers’ driving behaviours depending on the SSM employed in the
system, which may lead to low reliability and low satisfaction. In order to explore the characteristics of existing SSMs in terms
of human driving behaviours, this study analyzes collision risks estimated by three different SSMs, including Time-To-Collision
(TTC), Stopping Headway Distance (SHD), and Deceleration-based Surrogate Safety Measure (DSSM), based on two different
car-following theories, such as action point model and asymmetric driving behaviour model. The results show that the estimated
collision risks of the TTC and SHD only partially match the pattern of human driving behaviour. Furthermore, the TTC and SHD
overestimate the collision risk in deceleration process, particularly when the subject vehicle is faster than its preceding vehicle.
On the other hand, the DSSM shows well-matched results to the pattern of the human driving behaviour. It well represents the
collision risk even when the preceding vehicle moves faster than the follower one. Moreover, unlike other SSMs, the DSSM shows
a balanced performance to estimate the collision risk in both deceleration and acceleration phase. These research findings suggest
that the DSSM has a great potential to enhance the driver’s compliance to the ADAS, since it can reflect how the driver perceives
the collision risks according to the driving behaviours in the car-following situation.

1. Introduction

Rear-end collision is one of themost frequent traffic accidents
on the roads. Common contributing factors for the rear-end
crashes include driver’s inattention and humanmisjudgments
on the amount of required deceleration in car-following
situation. In efforts to prevent the rear-end crash and improve
vehicular safety, drivers’ judgments must be assisted and
guided based on current or upcoming traffic situations. For
such matter, various Advanced Driver Assistance Systems
(ADAS) such as Forward Collision Warning System (FCWS)
and Emergency Braking System (EBS) have been developed
based on different data sources, including camera, radar,

LIDAR, GPS, and connected vehicle network. The FCWS
and EBS are designed to give warning signals or implement
braking autonomously by detecting hazardous situations
before a collision ahead of vehicle even occurs. One of major
concerns to provide the collision warning or implement the
autonomous braking in the ADAS is how the criticality of
a certain traffic situation for a vehicle is assessed. To deal
with the related problems, various assessment approaches
have been proposed. One of the representative methods for
identifying the rear-end collision risk is Surrogate Safety
Measure (SSM). The SSM calculates the collision risk of a
certain traffic situation with microscopic traffic parameters
such as vehicle speed, acceleration, time headway, and space
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headway.There have been various efforts in developing SSMs
for the FCWS or EBS based on the parametric method. The
previous studies on the SSMs can be classified into two types.
One is the perceptual approach and the other is the kinematic
approach [1].Theperceptual approach-based SSM is designed
to measure the collision risk based on the thresholds of
perception. The representative of such approach is Time-
To-Collision (TTC) [2], which estimates the expected time
for two successive vehicles to collide. Some modified TTCs
have been proposed, such as Inverse TTC [3], Time Exposed
TTC [4], Time Integrated TTC [5], and Modified TTC [6].
On the other hand, the kinematic approach-based SSM is to
estimate the rear-end collision risk based on the difference
between the required stopping distances of two consecutive
vehicles. There have been numerous SSMs based on this
this approach, such as Potential Index for Collision with
UrgentDeceleration (PICUD)[7–9], StoppingDistance Index
(SDI) [10, 11], Stopping Headway Distance (SHD) [12], Crash
Index (CI) [13], and Deceleration Rate to Avoid the Crash
(DRAC) [14]. More recently, Deceleration-based Surrogate
Measure (DSSM) was proposed by considering a human-
centered design [15], and such design significantly affects
the performance of the risk evaluation since the human-
related parameters are strongly related to the situational
awareness measure [16]. Similar to the perceptual approach-
based SSMS, the kinematic approach-based SSMs are also
used for assessing the safety of a vehicle and giving warning
signals to the driver. The previous researches demonstrate
that these SSMs show good performances in detecting critical
events such as severe braking or jerk maneuvers before a
collision.

On the other hand, one of the most critical factors of the
SSMs employed in the FCWS and EBS is driver’s compliance,
which is highly correlated with the system reliability [17].
For example, a conservative SSM designed particularly for
passive drivers will give frequent alerts to aggressive drivers
in most cases. Then, the driver can become desensitized to
the nuisance warnings [18]. On the other hand, imminent
threat alerts given by an aggressive SSM may lead to missed
alarms, which may not provide enough time to avoid an
upcoming collision risk [19].Therefore, drivers becomemore
intended to ignore such system and they can nullify the effects
of potential benefits from the system [20]. However, most
of the previous studies on the SSMs applied to the FCWS
and EBS have focused on discriminating possible collision
situations in a subsequent few seconds, rather than tracking
the estimated collision risk according to the drivers’ driving
behaviours in the entire car-following process. Therefore,
there may exist inconsistency between the driver’s perception
of risk and the actual level of hazard.

Thus, there is a need for exploring the characteristics of
existing SSMs particularly in terms of such inconsistency.
For such purpose, this study aims to analyse and compare
the collision risks estimated by different SSMs based on
two different car-following theories, such as action point
model and asymmetric driving behaviour model. DSSM
is specifically is selected as the representative of human-
centered design that considers the inconsistency between the
driver’s perception of risk and the actual level of hazard. TTC

and SHD are selected as the representatives of each of the
perceptual approach and kinematic approach, respectively,
and they are used as the benchmarking points to be compared
with DSSM. In fact, DSSM is basically based on the kinematic
approaches like SHD.Compared to the SHD,which calculates
the collision risk based on the variables obtained from sensor
equipped in the vehicle, DSSM calculates the collision risk
with more variables such as jerk rate, acceleration, and tran-
sition time for the application in Vehicle-to-Vehicle (V2V)
communication environment. By comparing the SHD and
DSSM, the characteristics of risk estimation with different
technology bases (sensor-based and V2V communication-
based) can be shown.

Considering the relationship between the driving
behaviours and the collision risk estimated by the SSMs
provides a foundation for monitoring the reaction of
drivers to the collision risk, which can reflect the different
preferences of drivers on the collision risk. The detailed
explanation on the analysis method is provided in the
following section. Then, Sections 3 and 4 describe the
comparison results of the three SSMs according to the action
point model and asymmetric driving behaviour model,
respectively. Finally, brief concluding remarks are provided
in the last section.

2. Analysis Approach

2.1. Car-Following Models for Analysis. To analyze the rela-
tionship between driving behaviour and collision risk in car
following situation, several traffic variables are considered
in this study. The traffic variable includes speed of a subject
vehicle, spacing between the subject vehicle and preceding
vehicle, and the relative speed between the two consecutive
vehicles. There are two types of car-following processes
discussed in this paper to examine the different levels of
collision risk with the actual driver behaviour.

First one is analyzed in the spacing-relative speed plane,
which adopts the perspectives used in action point model
[21]. The action point model, which is also known as psycho-
physiological car-following model, considers drivers’ percep-
tion thresholds for a certain minimum value of the stimulus
based on the spacing and relative speed [22]. This analysis
would show how drivers react differently to the collision
risk according to the changes in the spacing and relative
speed. In the action point model-based analysis, the state of a
vehicle is defined by using both the spacing and relative speed.
Therefore, the state of a subject vehicle is not defined solely
by the speed in a car-following situation of two consecutive
vehicles.

Nonetheless, the speed of subject vehicle shows an impor-
tant aspect of vehicle’ state in a car-following process since the
driver determines the acceleration depending on not only the
relative speed but also the speed of the subject vehicle [23,
24]. Hence, the second method of analyzing car-following
process is suggested to show a different aspect of the car-
following process by focusing on a speed of subject vehicle
and spacing based on the asymmetric driving behaviour [24].
The car-following process of asymmetric driving behaviour
can show how a driver differently reacts to the collision risk
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when the vehicle is in acceleration phase and deceleration
phase.

These two types of car-following processes describe how
drivers perceive the collision risk in terms of the spacing,
speed of subject vehicle, and relative speed. It is expected
that the results of the analysis can explain why drivers show
inconsistent choices of headway in car-following situations.
However, these two types of car-following processes can
describe only some parts of the highly complex human driv-
ing behaviours. These two types of car-following processes
suit for the human driving behaviours in the stationary traffic
state, particularly with the situations that both lead and
following vehicles’ speed are less than the free flow speed
(or speed limit). Since the scope of this study is within
such specific cases that have the high possibility of rear-
end collision, we extract the car-following cases without any
disturbances such as a vehicle cutting in or changing lane for
the SSMs analysis.

2.2. Safety Surrogate Measures for Comparison. For analysis
on the relationship between driving behaviour and colli-
sion risk, investigating different SSMs are necessary to be
compared. This study considers three SSMs to estimate the
collision risks at a given traffic situation, which includes the
TTC, SHD, and DSSM. Since these three SSMs have different
perspectives on the collision risk, their performances may be
different from each other, even in identical traffic situations.

First introduced by Hayward [2], the TTC is one of
the most representative indicators for judging the dan-
gerous situation [25, 26]. It estimates the collision risk
between two consecutive vehicles by calculating the remain-
ing time before following vehicle crashes into a front vehi-
cle with the assumption that the path and speed of two
consecutive vehicles are maintained. The TTC is defined
by

𝑇𝑇𝐶 = [𝑥𝑛−1 (𝑡) − 𝑥𝑛 (𝑡) − 𝑠𝑛−1][V𝑛 (𝑡) − V𝑛−1 (𝑡)] (1)

where V𝑛−1(𝑡) is the speed of leader vehicle at time t, V𝑛(𝑡)
is the speed of following vehicle at time t, 𝑥𝑛−1(𝑡) is the
location of leader vehicle at time t, 𝑥𝑛(𝑡) is the location of
following vehicle at time t, and 𝑠𝑛−1 is the length of leader
vehicle. For example, a pre-determined TTC threshold value
is 2.0 seconds. The current car-following situation is safe
when the TTC value is greater than or equal to the threshold
value, while the TTC value gets closer to zero as the rear-end
collision risk increases.

For evaluating the collision risk, the concept of safe
stopping distance has also been used. Methods with this
concept calculate the collision risk based on the difference
between stopping distances of two consecutive vehicles with
full deceleration rate. The methods with such concept cal-
culate the collision risk by assuming that the leader vehicle
suddenly brakes with the maximum deceleration rate. The
condition that the stopping distance of leader is smaller
than sum of stopping distance of the following vehicle
and space headway of following vehicle is considered as
a dangerous situation. The SHD is a representative safe

stopping distance-based method, which can be formulated as
follows:

𝑆𝐻𝐷 = max[−1.47 × (V𝑛−1 (𝑡) × ℎ𝑛 (𝑡) − V𝑛 (𝑡) × 𝜏)

+ [ V𝑛−1 (𝑡)2 − V𝑛 (𝑡)230 × (𝑎𝑐𝑐/𝑔 ± 𝐺𝑟)] , 0]
(2)

where ℎ𝑛(𝑡) is the time headway of the following vehicle at
time t, 𝜏 is the perception reaction time, acc is the deceleration
rate, g is the gravity acceleration, and Gr, the grade expressed
as a percentage. For example, a predetermined SHD threshold
value is 20. It is risky situation when the SHD value is
greater than or equal to the threshold value, while the current
situation is safe when the SHD value is less than the threshold
value.

The DSSM is also one of the concepts using the safe stop-
ping distance-based method, which can well represent the
individual collision risk in both acceleration and deceleration
phases compared to other SSMs by adopting the transition
time [15]. The DSSM is a ratio of the required deceleration
and maximum deceleration performance of a subject vehicle,
which is defined as follows:

𝐾 = [𝑥𝑛 (𝑡) − 𝑥𝑛−1 (𝑡) + 𝑠𝑛−1]
+ [2 ⋅ V𝑛 (𝑡) + 𝑎𝑛 (𝑡) ⋅ 𝜏] ⋅ 𝜏2 −𝑀𝑛−1,𝑇𝑟𝑎𝑛
+𝑀𝑛,𝑇𝑟𝑎𝑛

(3)

𝑏𝑛 (𝑡) = 𝑏𝑚𝑎𝑥,𝑛−1 ⋅ [V𝑛 (𝑡) + 𝑎𝑛 (𝑡) ⋅ 𝜏]
2

[2 ⋅ 𝐾 ⋅ 𝑏𝑚𝑎𝑥,𝑛−1 + V𝑛−1 (𝑡)2] < 0 (4)

𝐷𝑆𝑆𝑀 = 𝑏𝑛 (𝑡)𝑏𝑚𝑎𝑥.𝑛 (5)

where 𝑎𝑛(𝑡) is the acceleration rate of following vehicle
at time t, 𝑎𝑛−1(𝑡) is the acceleration rate of leader vehicle
at time t, 𝑏𝑚𝑎𝑥.𝑛−1 is the maximum braking rate of leader
vehicle, which represents the vehicle’s mechanical deceler-
ation performance, 𝑏𝑛(𝑡) is the needed deceleration rate of
following vehicle to avoid the accident at time t, 𝑏𝑚𝑎𝑥.𝑛 is
the maximum braking rate of following vehicle, 𝑀𝑛−1 is
the stopping distance of leader vehicle during transition
time, and 𝑀𝑛 is the stopping distance of following vehicle
during transition time, 𝜏 is the perception reaction time. For
instance, a predetermined DSSM threshold value is 1. It is an
unsafe situationwhen theDSSMvalue is greater than or equal
to the threshold value, while the DSSM value is less than the
threshold value when the current driving situation is safe.

2.3. Data Description. For analysis on the relationship
between the driving behaviours and the collision risks esti-
mated by the different SSMs, this research uses one of the
Next Generation Simulation (NGSIM) trajectory datasets,
which is collected from a segment of U.S. Highway 101 in
Los Angeles, California, between 7:50 a.m. and 08:35 a.m.
on 15 June 2005 [27]. The length of the study site in the
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Figure 1: The Classification of driving state of subject vehicle.

NGSIM dataset is 640m with five main lanes. The data
contains microscopic traffic information on individual vehic-
ular movements’ trajectories, which includes location, speed,
space headway, acceleration/deceleration, and vehicle type at
0.1 sec time intervals. Among the car-following cases in the
dataset, 143 car-following cases that do not experience any
disturbance such as cut-in and cut-out vehicle when passing
through the study site are extracted, excluding motorcycles
and trucks.

3. Comparison Analysis in Spacing-Relative
Speed Plane

3.1. Action Point Model Perspective. As the first step of
conducting comparison study, this study compares the SSMs
with each other from the perspectives of the action point
model. In other words, the collision risks estimated by the
three SSMs will be described in the spacing-relative speed
plane. As stated earlier, the car-following process of the
action point model represents the driving behaviour with the
psychophysical basis and shows how the driver of subject
vehicle adjusts the differences in the locations and speeds
between the leader and subject vehicle. In the action point
model, a driver’s decision is made upon certain perception
threshold values. When the speed of preceding vehicle is
much greater than the subject vehicle, the state of subject
vehicle exceeds the perception threshold of relative speed.
Then, the driver of the subject vehicle decides to accelerate.

On the other hand, when the speed of preceding vehicle
is much less than the subject vehicle, the state of subject
vehicle exceeds the perception threshold of relative speed
in negative direction. Then, the subject vehicle decreases
its speed. The spacing adjustment procedure is arranged
similarly in the action point model. When the spacing is
much greater than the desired spacing, the state of the
subject vehicle exceeds the perception threshold of spacing.
Then, the subject vehicle increases the speed to reduce the
spacing. In contrast, the state of the subject vehicle exceeds
the perception threshold of spacing in negative direction
when the spacing is much less that the desired spacing. Then,
the subject vehicle reduces its current speed. Based on the
two kinds of perception thresholds and driving behaviour,
the driver in the subject vehicle makes a decision for either
accelerating or decelerating.

Hence, in the action point car-following process, the spac-
ing and relative speed are important variables that directly
affect the decision on acceleration and deceleration action. By
using these two variables, the state of the subject vehicle can
be defined as shown in Figure 1.

The state of the subject vehicle can be described by eight
states. The states 1, 2, and 8 represent the situations of when
the preceding vehicle is faster. And in states 4, 5, and 6, the
preceding vehicle is slower than the subject vehicle.The states
1 and 5 are also the points that the driver makes the decision
on acceleration and deceleration. After the state 1, which is
called as “catch up” action point, the collision risk is increased
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Figure 2: The example case for the analysis.

due to the acceleration actions. After the state 5, which is
called as “release” action point, the collision risk is decreased
due to the deceleration actions. In other states, the driver
maintains the decision made in the states 1 and 5.

An example case of car-following for the analysis is
depicted in Figure 2. In the figure, the black and red lines are
the trajectories of the leader and subject vehicle, respectively.
One can easily observe that the car-following case meets a
shockwave and shows the both acceleration and deceleration
behaviours.

3.2. Car-Following and Collision Risk by TTC. According
to the example case shown in Figure 2, the collision risks
estimated by the TTC are shown in Figure 3. This figure
shows the relationship between the vehicle spacing and the
relative speed.The points in the plane represent the temporal
measurements of the two properties and the solid lines with
arrows connect the sequence of these points. As we can
see in the figure, the temporal measurements draw circles
recurrently on the plane during the car-following situation,
and it is shown that the low relative speed values with the
low spacing values tend to have the high collision risk. In
this paper, the collision risks are discretionarily classified into
four situations for the quantitative analysis. By the concept of
TTC, the risk is considered to be high when the TTC value
is low. Thus, the four classified situations considered in this
paper are High Risk (TTC ≤ 2.5), Medium Risk (2.5 < TTC≤ 5.0), low risk (5.0 < TTC ≤ 7.0), and Safe (TTC > 7.0).
Note that since there have not been any previous efforts for
defining the exact thresholds of the high or low risk at the
current stage, the thresholds classifying the risk levels in this
study are defined based on the empirical understandings with
the given data. In fact, such thresholds may vary depending
on the road characteristics or driving environments. Hence,
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Figure 3: Collision risk estimated with the temporal spacing and
relative speed (TTC).

some sensitivity analyses are required to investigate the issue
further, but they go beyond the scope of this paper.

As shown in Figure 3, the TTC generally considers that it
is safe when the preceding vehicle is faster than the subject
vehicle. Hence, it only classifies the states 4, 5, and 6 into the
dangerous situations. In TTC, at the similar level of spacing,
the collision risk consistently increases as the relative speed
decreases. At the similar level of relative speed, the collision
risk also consistently increases as the spacing decreases. The
level of collision risk is also indicated with different colours
in the spacing and relative speed plane. Particularly, the
red coloured region indicates that the driving situation is
dangerous by the TTC estimation.

In terms of the action point car-following perspective,
the collision risks estimated by the TTC do not match well
to the action points where a driver changes acceleration
and deceleration. In the near perception thresholds, which
correspond to the states 1, 2, 3, and 7, the changes in the action
are rarely observed. Furthermore, the TTC is not a sensitive
measure that has a lack of reflecting the dynamic changes of
driving situation, and it misses out some parts of the action
points.

3.3. Car-Following and Collision Risk by SHD. Similar to the
method of using the action point model above, the collision
risks estimated by the SHD are shown in Figure 4. Unlike
TTC, the risk is considered to be high when the TTC value is
also high in SHD. In this paper, the four classified situations
based on SHD are High Risk (SHD > 40), Medium Risk
(40 ≥ SHD > 0), Low Risk (0 ≥ SHD > -50), and Safe (-
50 ≥ SHD). The SHD generally considers that it is not safe
when the subject vehicle is faster than the preceding vehicle.
The situations with high collision risks determined by the
SHD are the states 4, 5, and 6. However, unlike the TTC that
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Figure 4: Collision risk estimated with the temporal spacing and
relative speed (SHD).

considers high risk only when the subject vehicle is faster, the
high collision risk is determined by the SHD also when the
preceding vehicle is faster than the subject vehicle. In terms
of the spacing, there is a significant difference between the
SHD and the TTC.The high collision risk in the TTCmainly
occurs when the spacing is small, but it is widely distributed
over the entire spacing regions in the SHD. As the result,
the SHD can evaluate the collision risk in the wider range of
vehicle states in the spacing and relative speed plane.

Compared to the TTC, the collision risk in the SHD
is more dynamically changed during the car-following pro-
cess shown in Figure 4. Some corresponding points with
the action points are observed, where the driver’s driving
behaviour is changed due to the excess of perception thresh-
old. The observed action points are marked with the black
dotted circles in Figure 4. Before and after the observed action
points, the SHD shows approximately one-step difference
in terms of collision risk. However, the changing trends of
estimated collision risk of the SHD do not match well to the
action points of the human driver overall.

3.4. Car-Following andCollision Risk by DSSM. Similar to the
TTC and SHD, the DSSM considers also that it is dangerous
when the subject vehicle is faster than the preceding vehicle,
as shown in Figure 5. For the DSSM cases in this paper, the
four classified situations are HighRisk (DSSM ≥ 1.1), Medium
Risk (1.1 > DSSM ≥ 0.9), Low risk (0.9 > DSSM ≥ 0.75), and
Safe (0.75 > DSSM). The high collision risk situations are
shown in the states 4, 5, and 6. Nonetheless, DSSM shows
distinctive differences from other SSMs.

First, the DSSM does not show increasing or decreasing
trend only with the relative speed or spacing respectively.
In the TTC, the collision risk increases as the relative speed
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Figure 5: Collision risk estimated with the temporal spacing and
relative speed (DSSM).

and spacing decrease overall, so that the high collision risk
does not occur when there is a large value of the relative
speed and spacing. In the SHD, the collision risk generally
increases as the relative speed decreases, while it decreases
as the spacing decreases overall. Therefore, the high collision
risk hardly occurs when there is large relative speed value.
On the other hand, the DSSM shows that a high collision risk
occurs in all regions, even when the preceding vehicle is faster
than the subject vehicle, as shown in Figure 5. Consequently,
the DSSM can identify more various dangerous situations
than other SSMs in all states of the action point car-following
process.

Second, DSSM shows more well-matched results to the
human driving behaviour in terms of the action point car-
following process. As shown in Figure 5, the collision risk
estimated by the DSSM is significantly changed before and
after the action points, which are marked with the black
dotted circles. After the action points where the preceding
vehicle is slower than the subject vehicle, the estimated colli-
sion risk is sharply decreased. After the action points, which
occur when the preceding vehicle is faster than the subject
vehicle, the estimated collision risk of the DSSM shows
increasing trend and high collision risk is also observed. This
wide perceiving capability of the DSSM beyond the TTC and
SHD is from the consideration of vehicles’ acceleration in the
evaluation of the risk.

3.5. Comparison of Average Collision Risk and High Collision
Risk. Based on the classified states described as Figure 1, the
trends of the estimated average collision risk and frequency
of high collision risks are analyzed.The average collision risks
of each SSM are calculated with the four classified situations:
safe situation, low risk situation, medium risk situation, and
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Figure 6: The TTC trends on the average collision risk and frequency of high collision risks.

high risk. The four classified situations are graded as 1, 2,
3, and 4, discretionary for the quantitative analysis. The
frequency of high collision risks is computed by the same
criteria used in average collision risk evaluation, but only the
high-risk situations are counted. The number of high-risk
situations is divided by the total number of exposure for each
classified states.

Figure 6 shows the average collision risk and the fre-
quency of high collision risks of the TTCbased on the 143 car-
following cases. As depicted in Figures 6(a) and 6(b), it can
be seen that the TTCs do not show any common behaviours
with the action points of the drivers.The average collision risk
estimated by the TTC does not show any variations near the

states 1 and 5, which are the situationswhen the drivers decide
and change the actions of acceleration and deceleration. No
specific relationship between the collision risk and driving
actions is observed in the trend of collision risk estimated by
the TTC.

Similarly, the SHD can evaluate collision risk in more
various states compared to the TTC, as shown in Figure 7.

However, the high collision risks estimated by the SHD
are concentrated when the subject vehicle is faster than the
preceding vehicle. Moreover, the SHD tends to overestimate
the collision risk in these situations, such as state 4. In terms
of the action point car-following perspective, the estimated
collision risk of the SHD is partially matched to the action



8 Journal of Advanced Transportation

Ap
pr

oa
ch

in
g 

ra
te

 (Δ
v)

(L
ea

de
r v

eh
ic

le
 sp

ee
d 

- F
ol

lo
w

in
g 

ve
hi

cle
 sp

ee
d)

 

1. Δspeed difference
=Constant

Δh=Increasing

2. Δspeed difference
= Decreasing

Δh=increasing

3. Δspeed difference=Decreasing
Δh=Constant

4. Δspeed difference 
= Decreasing

Δh=Decreasing

6. Δspeed difference
= Increasing

Δh=Decreasing

7. Δspeed difference
= Increasing

Δh=Constant

8. Δspeed difference
= Increasing

Δh=Increasing 1.34

1.32

2.13

2.90
2.78

2.80

1.54

1.29

5. Δspeed difference
= Constant

Δh=Decreasing

Spacing

(a) Average collision risk

Ap
pr

oa
ch

in
g 

ra
te

 (Δ
v)

(L
ea

de
r v

eh
ic

le
 sp

ee
d 

- F
ol

lo
w

in
g 

ve
hi

cle
 sp

ee
d)

 

1. Δspeed difference
=Constant

Δh=Increasing

2. Δspeed difference
= Decreasing

Δh=increasing

3. Δspeed difference=Decreasing
Δh=Constant

4. Δspeed difference 
= Decreasing

Δh=Decreasing

6. Δspeed difference
= Increasing

Δh=Decreasing

7. Δspeed difference
= Increasing

Δh=Constant

8. Δspeed difference
= Increasing

Δh=Increasing

5. Δspeed difference
= Constant

Δh=Decreasing

103/6923
= 1.5 %

161/15116
= 1.1 %

927/5291
= 17.5 %

1311/2669
= 49.1 %1880/4936

= 38.1 %

3927/10655
= 36.9 %

438/8147
= 5.4 %

35/5745
= 0.7 %

Spacing

(b) Frequency of high collision risks

Figure 7:The SHD trends on the average collision risk and frequency of high collision risks.

point behaviours of the drivers. In the action point car-
following behaviour, the driver decides and changes the
actions of acceleration and deceleration near the perception
thresholds, which leads to the changes in the collision risks
near state1 and state 5.Near state 5, the SHD shows the similar
trend to the driving action of human. When the state is
changed from4 to 5, the SHDvalue decreases even though the
variation is not significantly large. When the state is changed
from 5 to 6, the SHD value increases. Near the state 1, SHD
shows the dissimilar trend to human behaviour. When the
state is changed from 1 to 2, the SHD decreases even though
the driver is catching up the speed.

In Figures 8(a) and 8(b), the DSSM can evaluate collision
risk from more states compared to TTC and SHD. For both
analyses, the maximum values are observed in state 4, while
the minimum values are observed in state 8. Near these
two states, the average collision risk and frequency of high
collision risk show the same increasing and decreasing trends.
Given this result, the DSSM is the only SSM, in which the
severity grade of the collision risk is divided in balance.
Therefore, it can be said that the collision risk byDSSM is well
matched to the action point behaviour. Overall, the DSSM
continuously increases when the state is changed from 1 to 5.
And it continuously decreases when the state is changed from
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Figure 8: The DSSM trends on the average collision risk and frequency of high collision risks.

5 to 1. In detail, near the action points, which are states 1 and
5, the estimated collision risk of DSSM is changed with the
similar process of the action point car-following behaviour.
After the catch-up action points, which is state 1, the DSSM
value rapidly increases. Conversely, near the release action
point, which is state 5, the DSSM decreases. Especially, when
the state is changed from 5 to 6, more significant decreasing
trend of DSSM value is observed compared to that of SHD
value due to the release action in state 5.These results coincide
with the previous research findings in other car-following
models, which is based on the action point driving behaviour
[21, 28–32].

4. Comparison Analysis in
Speed-Spacing Plane

4.1. Analysis from Asymmetric Behaviour Perspective. The
action point model-based analysis shows well how a driver
reacts to the external stimuli by focusing on the relationship
between the leader and subject vehicle. However, in the
spacing and relative speed plane, it still has a limitation to
fully describe the human driving behaviour since it does not
consider the absolute speed of the subject vehicle. In order to
investigate the effect of such property, we analyze the relation-
ship between the collision risk and the asymmetric driving
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behaviour. In the asymmetric theory, drivers show different
patterns in the acceleration and deceleration phases, and
such phenomenon has been observed by several researchers
since the 1960’s [33–38]. In this theory [24, 39, 40], drivers
show two different curves of acceleration curve (A-curve)
and deceleration curve (D-curve) with different spacing for
the same speed. The A-curve is the boundary curve in the
acceleration phase and the D-curve is the boundary curve
in the deceleration phase of the car-following situations. In
the A-curve, the two consecutive vehicles maintain larger
spacing than in the D-curve for the same corresponding
speed. The A-curve can be found by connecting the ending
points of accelerating actions, and the D-curve can be found
by connecting the ending points of decelerating actions. In
addition, near the each of the A-curve and D-curve, an
acceleration action point line and a deceleration action point
line can be observed as well, respectively. The acceleration
action point line can be found by connecting the starting
points of accelerating actions, and the deceleration action
point line can be found by connecting the starting points of
decelerating actions.

These accelerating and decelerating actions in the A-
curve and D-curve are highly related to the collision risk of
the driver. When a driver accelerates to catch up with the
leader vehicle’s speed during the acceleration process, the
driver increases the speed until the collision risk becomes
larger than a certain threshold or the desired speed is reached.
After that, if the spacing increases and the collision risk drops
below certain threshold again, the driver takes acceleration
again in order to keep the appropriate spacing. The accelerat-
ing actions appear repeatedly to keep the appropriate spacing
and collision risk. On the other hand, during deceleration
process, the driver reduces the speed until the collision
risk is smaller than a certain threshold. After that, if the
spacing decreases again and the collision risk is higher than
a certain threshold value, the driver decelerates again. The
decelerating actions also appear repeatedly in order the keep
the appropriate level of collision risk. Based on such logic,
a high collision risk would appear near the acceleration
and deceleration action point line. Therefore, the estimated
collision risk may indicate the timings of the acceleration and
deceleration actions.

4.2. TTC in Speed-Spacing Plane. Based on the basic rela-
tionship between the collision risk and asymmetric driving
behaviour, we analyze the three SSMs in the spacing-speed
plane. Figure 9 shows the collision risks estimated by the
TTC in the spacing-speed plane. The example case shown in
Figure 2 is used in these analyses as well.

In the figure, the blue stars, green stars, yellow circles,
and red circles represent the safe situation, low risk situation,
medium risk situation, and high risk situation, respectively.
The dashed lines represent the virtual deceleration action
point line, D-curve, A-curve, and acceleration action point
line, respectively, from left to right. The dashed lines shift to
right or left depending on the driver’s psychology on external
stimuli and traffic state.

Figure 9 shows the collision risks estimated by the TTC
in the spacing-speed plane. As shown in Figure 9, a variation
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Figure 9: Collision risk estimated with the temporal spacing and
speed (TTC).

of the collision risks estimated by the TTC is not large as
much as the variation of driver’s acceleration behaviours.This
result shows that TTC is not a sensitive measure to driving
actions. Some high and medium collision risk of TTC is
only occurred in the deceleration process. Among these high
and medium collision risk of TTC, only the three situations,
which are marked with black dotted circles in Figure 9, can
describe the human driving behaviour in the deceleration
process. In these circled areas, it is observed that the collision
risk is high until the state of driver reaches deceleration
action point line. After that, the risk decreases as the driver
reduces the speed overall. In the acceleration process, the
high or medium level of collision risks is not observed, and
most of the acceleration processes are considered as the safe
situation. In the acceleration process, the leader vehicle is
generally faster than the subject vehicle since the subject
vehicle accelerates after the preceding vehicle accelerates with
response-time delay.Therefore, in this process, the TTC does
not properly evaluate the collision risk, because the TTC only
evaluates the collision risk when the subject vehicle is faster
than the preceding vehicle.

4.3. SHD in Speed-Spacing Plane. Figure 10 shows the colli-
sion risks estimated by the SHD. Compared to the TTC, the
SHD value is more dynamically changed according to the
driving action.

The SHD can identify the high collision risk during the
acceleration process contrarily to what the TTC can identify
only during the deceleration process. The matched results
to the driving behaviour during both the acceleration and
the deceleration processes are observed and they are marked
by the solid and black dotted circles, respectively. In black
dotted circled areas, the collision risk is decreased as the
driver reduces the speed. After the state of vehicle reaches
to D-curve, the driver maintains constant speeds and the
SHD value is increased again. In black solid circled areas, the
collision risk is increased as the driver increases the speed.
After the state of vehicle reaches the A-curve, the driver
maintains the constant speed and the collision risk shows the
decreasing trend.
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Figure 10: Collision risk estimated with the temporal spacing and
speed (SHD).
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Figure 11: Collision risk estimated with the temporal spacing and
speed (DSSM).

Even though the collision risks estimated by the SHD
show more matched results to the asymmetric driving
behaviour, they still show biased results due to several
reasons. First, the SHD always considers the deceleration
process as more dangerous situation than the acceleration
process. The high collision risk is mainly distributed in the
deceleration process and the sensitivity of collision risk to
driving action is also high in the deceleration process. Second,
the SHD is highly affected by the speed of subject vehicle
itself. The collision risk estimated by the SHD generally
increases as the speed of the subject vehicle increases overall.
Due to these influences, the high collision risk is not observed
when the speed of the subject vehicle is low, even though the
state of the subject vehicle is near the acceleration action point
line and deceleration action point line.

4.4. DSSM in Speed-Spacing Plane. Compared to other SSMs,
the DSSM shows the most sensitive and well-matched results
to the asymmetric driving behaviour, as shown in Figure 11.

The black dotted circles and black solid circles are the
representative cases of the matched situations during the

acceleration and the deceleration processes, respectively. In
the areas near the black dotted circles in the deceleration
process, the high collision risks occur right before the state
reaches to the deceleration action point line. The collision
risks sharply decrease after the driver starts deceleration
action. In the areas near the black solid circles in the
acceleration process, the high collision risks occur right
before the state of the subject vehicle reaches A-curve. The
collision risks decrease right after the state of the subject
vehicle reaches the A-curve and as it maintains a constant
speed. The collision risks gradually decrease until the state
of the subject vehicle reaches to the acceleration action point
line.

4.5. Comparison of Average Collision Risk and Frequency of
High Collision Risk. Figure 12 compares the average collision
risk and the frequency of high collision risk of each SSM.
The DSSM well captures the high collision risk particularly
in acceleration process compared to other SSMs. Except
for the DSSM, the TTC and SHD consider the decelera-
tion process as more dangerous situation than acceleration
process. The SHD shows the highest average collision risk
in both acceleration process and deceleration process with
approximately three or four times higher frequency of high
collision risk than the TTC and the DSSM. Considering the
slightly low successful alarm ratio of the SHD compared to
the DSSM in previous research [15], the SHD has a tendency
of overestimating the collision risk.

5. Conclusion

In order to investigate the relationship between collision
risk and human driving behaviour, this study analyzes three
different SSMs based upon two different car-following the-
ories, including the action point model and asymmetric
driving behaviourmodel.The three SSMs, including theTTC,
SHD, and DSSM, show different characteristics and trend in
estimating the collision risk. In the analysis with the action-
point model, the estimated collision risks of the TTC and
SHD only partially match with the pattern of driver’s driving
behaviour.Thehigh collision risks are concentratedwhere the
subject vehicle is faster than preceding vehicle, so both SSMs
overestimate the collision risk particularly in such situations.
On the other hand, one could observe that the DSSM shows
well-matched results to action point behaviour of the driver.
After the catch up action point, the collision risks estimated
by the DSSM rapidly increase. Conversely, near the release
action point, the DSSM value shows a decreasing trend. In
the analysis with asymmetric driving model, the TTC and
SHD show biased collision risks in the deceleration process.
Especially, the SHD is highly affected by the speed of subject
vehicle itself, so the high collision risk is rarely observedwhen
the speed of subject vehicle is low. DSSM equally evaluates
the collision risk during acceleration process and deceleration
process and it shows well-matched results to acceleration
and deceleration actions near acceleration and deceleration
action point line.

This study provides ample opportunities to design
human-centered services of the FCWS and EBS in two
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Figure 12: Each SSM trends on their average collision risks and frequencies of high collision risks.

aspects. First, it can provide an opportunity for significantly
reducing the false-alarm ratio of a collision warning system.
The SSMs can estimate a more detailed state of a subject
vehicle in terms of the collision risks in various traffic situ-
ations. The effect of small changes in the collision risks varied
with different driving behaviours can be tracked and analyzed
continuously. Based on the research findings of this study,

not only dangerous situations but also the trend of increasing
(or decreasing) collision risks can be identified. By providing
warnings before collision risk reaches a higher level, safety-
related services can significantly improve the accuracy and
give enough time for drivers to prepare for a harsh braking.
Second, it can render safety-related services more acceptable
to drivers. In order to make a collision warning system be
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acceptable to human drivers, the judgment on dangerous
situations of the system needs to be similar to that of the
human drivers. Microscopic analyses on SSMs and driving
behaviours would provide the foundation for monitoring the
reaction of human drivers to the collision risk. Furthermore,
by analyzing the relationship between driving behaviour and
collision risk estimated by SSMs, the safety-related services
can reflect the different preferences of drivers on the collision
risk.

However, this current paper still has a limitation in that
the thresholds classifying the risk levels are given based
on the empirical understandings with the given data. It
is due to that there has not been a previous effort for
defining the exact thresholds of the high or low risk so far.
In fact, such thresholds for the SSMs may vary depending
on the road characteristics like the nature of traffic flow
(uninterrupted or interrupted flow) and the free flow speed
(or speed limit). The thresholds may vary by different regions
or even by different countries. Hence, the results of this
current paper shall be revisited later, by considering the
variations of the thresholds. Thus, the sensitivity analysis of
the thresholds is an essential research topic to be addressed
in further studies. Furthermore, the comparative analyses in
this paper were done only with the representative SSMs of the
perceptual approach (TTC) and kinematic approach (SHD
and DSSM). It is suggested also to try other various SSMs
while conducting further sensitivity analysis. In addition, the
difference among the kinematic approaches like the SHD and
DSSM is the selection of the obtainable microscopic variables
to be used for the risk calculation, such as the spacing and
relative speed, and these variables must be obtainable in real-
time. Considering the application of the autonomous vehicles
in the near future, in which more detailed information can
be obtained in real-time, it is also suggested to develop the
existing SSMs further into the more advanced form that can
take account into various safety-related variables, such as
real-time jerk rate and acceleration.
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As vehicle rollovers annually cause a great deal of traffic-related deaths, an increasing number of vehicles are being equipped with
rollover prevention systems with the aim of avoiding such accidents. To improve the functionality of active rollover prevention
systems, this study provided a potential enhanced method with the intention to predict the tendency of the lateral load transfer
ratio (LTR), which is the most common rollover index. This will help provide a certain amount of lead time for the control system
to respond more effectively. Before the prediction process, an estimation equation was proposed to better estimate the LTR; the
equation was validated using Simulink and TruckSim. Further, to eliminate the influence of drawbacks and make this method
practical, a buffer operator was added. Simulation results showed that grey LTR (GLTR) was able to roundly predict the future trend
of the LTR based on current and previous data. Under the tests of “Sine with Dwell” (Sindwell) and double lane change (DLC), the
GLTR could provide the control system with sufficient time beforehand. Additionally, to further examine the performance of the
GLTR, a differential systemmodel was adopted to verify its effectiveness.Through the Sindwell maneuver, it was demonstrated that
the GLTR index could improve the performance of the rollover prevention systems by achieving the expected response.

1. Introduction

Among traffic issues, bus rollover is a huge problem for
bus manufacturing enterprises and traffic administration. To
solve this problem, researchers and engineers have developed
many kinds of rollover prevention systems [1]. However, once
the phase of the impending rollover begins, there is not
enough time left for the actuators to act accurately, espe-
cially during extremely dangerous situations [2]. Therefore,
being able to predict the rollover tendency beforehand and
to produce a suitable compensation time are essential for
preventing bus rollover situations.

Currently, the load transfer ratio (LTR) is a widely used
reference parameter for rollover detection [3], having been
used as the rollover index for antirollover bars [4] and differ-
ential braking systems [5]. Commonly, a rollover prevention
system initiates the actuators once the LTR exceeds a certain

threshold. If an algorithm could predict the LTR, then the
lead time could increase the gap between the predicted LTR
and the actual LTR. As a result, there would be enough
time for the actuator to initiate an effective countermeasure,
therefore increasing its effectiveness.

There are many kinds of prediction methods used for
different purposes [6, 7]. Deep learning methods are com-
monly used prediction tools, which have been used among
many fields including car risk prediction [8]. However, LTR
prediction is a real-time process; only the newly transitory
acquired data can be used.Therefore, since LTR prediction is
a real-time process, a potential prediction algorithm should
have the following characteristics: a small sample size, fast
computation, and small internal storage requirements. One
suitable method is the grey model, coined by Deng in the
1980s [9].This model is good at solving uncertainty problems
with small samples and poor information. Vehicle motion is
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a rapid course; therefore, old data is not useful for the real
prediction and has a side effect on the results because the
data is not new enough. Hence, we developed a grey-model-
based prediction method to conduct LTR prediction to form
an early rollover index. The grey model has achieved great
success inmany fields and has been used in offline prediction.
Using fatal crash data from the United Kingdom, Mao et al.
[10] applied the grey model to future risk estimation and
found that the predicted value approached the actual value.
The grey model was applied to predict the vehicle’s wheel slip,
and then the predicted slip was transferred to a sliding mode
controller, which strengthened the controller’s robustness
[11]. The grey model has also been used to predict the lateral
distance between approaching vehicles to provide drivers
with extra time to react to an impending collision [12]. In
terms of real-time LTR simulation, Chou et al. [13] combined
a grey model and a rollover index to detect the rollover of a
14-degree-of-freedom tractor-trailer. The results showed that
the grey rollover index achieved an earlier detection of the
rollover threat than the rollover index alone; furthermore,
the lead time was sufficient for the actuator to be involved.
However, the vehicle model they used was an ideal Simulink
model, which is largely different from a real bus, and its
LTR estimation did not match well with the TruckSim LTR.
In this study, a more accurate estimation model was used,
and the outputs from TruckSim were directly adopted. In
addition, to mitigate the LTR’s shock data, a buffer operator
was employed to ensure the effectiveness of the grey LTR
(GLTR) throughout a wider speed range. Furthermore, a
rollover prevention system model was built to examine the
function of the GLTR.

The main contributions of this paper are the following:

(1) A predictive LTR, which can be regarded as an earlier
rollover detection index, was introduced to achieve
rollover prediction.

(2) The GLTR was effective at making predictions dur-
ing two standard handling tests, “Sine with Dwell”
(Sindwell) and double lane change (DLC), proving
that GLTR can cope with different kinds of lateral
motions.

(3) A considerable lead time was generated to increase
the working time available for initiating a rollover
prevention action.

(4) GLTR index was brought into rollover prevention.
The effectiveness in reducing the rollover risks was
further verified via TruckSim–Simulink cosimulation
by building a differential braking system.

The rest of the paper is organized as follows: Section 2
presents the bus rollover model, tier model, and its LTR
estimation. Section 3 introduces the LTR prediction method-
ology, including the grey model (first-order one variable)
known as GM(1, 1), as well as the buffer operator. Section 4
presents the simulation results of the LTR prediction.
Section 5 offers a further simulation study, which fused
the GLTR with a differential-based braking system. Finally,
Section 6 offers our conclusions.
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2. Bus Dynamic Model

2.1. LTR Estimation. It is not easy to detect the real force
acting on tires since the necessary sensors are extremely
expensive. Therefore, a bus rollover dynamic model was
constructed to establish a suitable LTR estimation equation.

Figure 1 illustrates the lateral dynamics of a bus. The
diagram includes the bus yaw angle direction and yaw rate,
velocity, and slip angle. Figure 2 shows the roll dynamics of
the bus. The effect of the bus’s unsprung mass on the roll
dynamics was neglected. The road bank angle and the bus
roll angle and distance associated with the roll center are also
indicated in this diagram.

In Figures 1 and 2, d is the bus width; h is the vertical
distance from the sprungmass CG to the assumed roll axis; 𝛾
is the yaw rate; ß is the bus’s slip angle; 𝛿 is the steering wheel
angle; Fxfl, xfr are the front left and the front right longitudinal
forces; Fyfl, yfr are the front left and the front right lateral
forces; af and ar are the front tire’s slip angle and rear tire’s
angle; and finally, 𝜙𝑏 and 𝜙V are the road bank angle and the
vehicle roll angle, respectively.
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The bus lateral dynamics can be written as

∑ 𝐹𝑦 = 𝑚𝐴𝑦
= 𝐹𝑦𝑟𝑙 + 𝐹𝑦𝑟𝑟 + (𝐹yfl + 𝐹yfr) . cos 𝛿

+ (𝐹xfl + 𝐹xfr) . sin 𝛿
(1)

and

(𝐼𝑥𝑥 + 𝑚ℎ2) . ( ̈𝜙𝑟 − ̈𝜙𝑏) = (𝐹𝑧𝐿 − 𝐹𝑧𝑅) . 𝑑
2

+ ∑ 𝐹𝑦.ℎ. cos 𝜙𝑟 + 𝑚𝑔ℎ. sin 𝜙𝑟. cos 𝜙𝑏
− 𝑚𝑔ℎ. cos 𝜙𝑟. sin 𝜙𝑏
+ [(𝐼𝑦𝑦 − 𝐼𝑧𝑧) − 𝑚ℎ2] .𝛾2. sin (𝜙𝑟 − 𝜙𝑏) . cos (𝜙𝑟 − 𝜙𝑏)

(2)

where 𝐴𝑦 = V̇ + 𝑟𝑢 − 𝑔. sin 𝜙𝑏 + ℎ𝜙𝑟2. sin 𝜙𝑟 + ℎ𝛾2. sin 𝜙𝑟 −
ℎ. ̈𝜙𝑟. cos 𝜙𝑟; Ay is the lateral acceleration; Ixx,yy,zz are the
moments of inertia about the respective axes; u is the bus’s
longitudinal velocity; v is bus’s lateral velocity.

The vertical dynamics of the sprung mass can be shown
as

𝑚�̈� = 𝑚. ( ̇𝜙2𝑟ℎ. cos𝜙𝑟 + ̈𝜙𝑟ℎ sin 𝜙𝑟)
= (𝐹𝑧𝐿 + 𝐹𝑧𝑅) − 𝑚𝑔. cos 𝜙𝑟

(3)

where m is the sprung mass; Ay is the lateral acceleration.
If the road bank angle is zero, (1)–(3) can be expressed as

follows:

∑ 𝐹𝑦 = 𝑚. (V̇ + 𝑟𝑢 + ℎ𝛾2. sin 𝜙𝑟 + ℎ ̇𝜙𝑟2. sin 𝜙𝑟 − ℎ ̈𝜙𝑟. cos 𝜙𝑟) (4)

(𝐼𝑥𝑥 + 𝑚ℎ2) . ̈𝜙𝑟 = (𝐹𝑧𝐿 − 𝐹𝑧𝑅) . 𝑑
2 + . . . ∑ 𝐹𝑦.ℎ. cos 𝜙𝑟

+ 𝑚𝑔ℎ . sin 𝜙𝑟 + [(𝐼𝑦𝑦 − 𝐼𝑧𝑧) − 𝑚ℎ2] .𝛾2. sin 𝜙𝑟. cos 𝜙𝑟
(5)

𝑚�̈� = 𝑚. ( ̇𝜙2𝑟ℎ. cos 𝜙𝑟 + ̈𝜙𝑟ℎ sin 𝜙𝑟) = (𝐹𝑧𝐿 + 𝐹𝑧𝑅) − 𝑚𝑔 (6)

The LTR, which estimates the difference in the tire’s nor-
mal forces acting on each side of the bus, is a commonly used
load transfer metric [14]. Equation (7) gives the expression of
the LTR:

LTR = 
𝐹𝑧𝑅 − 𝐹𝑧𝐿𝐹𝑧𝑅 + 𝐹𝑧𝐿

 (7)

where FzR and FzL represent the vertical force of the right tire
and the left tire, respectively, and 𝐹𝑧𝑅 + 𝐹𝑧𝐿 = 𝑚𝑔. The LTR
varies from 0 to 1, where 1 represents one side of bus tires
losing contact with the ground.

Solving the simultaneous equations, assuming that ̈𝜙𝑟 anḋ𝜙𝑟 are zero and substituting them into (7), the following LTR
expression is obtained, as shown below:

𝐿𝑇𝑅
=


2
𝑑 . ℎ. (cos 𝜙𝑟. (V̇ + 𝛾𝑢) + ℎ𝛾2. sin 𝜙𝑟 + 𝑔. sin 𝜙𝑟)

𝑔


(8)

(1)Ramp entering

(2)Obstacle avoidance

Figure 3: Bus rollover conditions.
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Figure 4: Steering wheel angle with 89 km/h Sindwell at 90∘ steering
amplitude.

Further assumptions were adopted as follows: cos2𝜙𝑟 ≈1, ℎ𝛾2 ≈ 0, and V̇ + 𝛾𝑢 = 𝐴𝑦 ⋅ cos 𝜙𝑟 Therefore, the final
expression of the estimated LTR is

𝐿𝑇𝑅𝑒 = 
2ℎ
𝑑𝑔 [𝐴𝑦 + 𝑔. sin 𝜙𝑟]

 . (9)

The results using (9) were abbreviated as Est-LTR.Abuilt-
in bus model provided by TruckSim can output each tire’s
vertical force; thus, the real LTR value can be calculated by (7)
with these tire forces.The calculated result of (7) was referred
to as the actual LTR, abbreviated as Act-LTR.

Some parameters of the bus are listed in Table 1.
To verify the effectiveness of (9), simulation works were

carried out by comparing the estimated LTR (Est-LTR)
and the actual LTR (Act-LTR) models. The road adhesion
coefficient was set as 0.85, ensuring the lateral risk of rollover,
but not of lateral slip. Figure 3 shows the common situations
in which the rollover happens easily. In order to simulate
these two conditions, we used the more complex maneuvers
of Sindwell and DLC, which are often utilized for vehicles’
lateral performance tests, to reproduce the rollover situations.

Figure 4 shows the steering angle of the 89-km/h Sindwell
test where the steering amplitude was 90∘. Results of the
comparison under this test are demonstrated in Figure 5,
which indicate that the trends of the two curves matched
well. Figure 6 illustrates the steering wheel angle of the DLC
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Table 1: Some parameters of the bus in TruckSim.

Sprung mass (m/kg) 7690
Bus width (d/m) 1.93
Distance from the sprung mass CG to the assumed roll axis (h/Vertical/m) 0.563
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Figure 5: Estimated versus TruckSim load transfer ratio (LTR) with
89 km/h Sindwell at 90∘ steering amplitude.
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Figure 6: Steering wheel angle with 105 km/h double lane change
(DLC).
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Figure 7: Estimated versus TruckSim LTR with 105 km/h DLC.

test, which was conducted according to ISO 3888-2:2002 [15].
Figure 7 demonstrates the comparison of the Est-LTR and
Act-LTR under a test of a 105-km/h DLC; the figure indicates
a slight lead time, with the Est-LTR reaching 0.7 at 3.841
s and Act-LTR reaching at 3.852 s. Hence, the estimation
equation was valid as the reference formulation for a rollover

prevention system. As a result, in the following sections, we
considered the Est-LTR as the actual LTR.

2.2. TireModel. To calculate the tire forces, this study utilized
the Dugoff tire model, which is a nonlinear tire model. Com-
pared with some empirical tire models, such as the “magic
formula” (MF) model, which require a large number of tire-
specific parameters that are probably unknown, the Dugoff
model, by simple equations, can acquire the longitudinal and
lateral tire-road forces under different wheel slip conditions
[16].

Lateral and longitudinal tire-road forces can be defined as

𝐹𝑦𝑖 = 𝐶𝑦𝑖 tan 𝛼𝑖
1 − 𝜆𝑖 𝑓 (𝑆)

𝐹𝑥𝑖 = 𝐶𝑥𝑖𝜆𝑖1 − 𝜆𝑖𝑓 (𝑆)
𝑆 = 𝜇𝐹𝑧𝑖

2√𝐶2𝑥𝑖𝜆2𝑖 + 𝐶2𝑦𝑖tan2𝛼𝑖
(1 − 𝜆2𝑖 )

𝑓 (𝑆) = {{{
1 S > 1
𝑆 (2 − 𝑆) S < 1.

(10)

Cxi and Cyi are the longitudinal and lateral corner stiffness of
the tire, 𝜇 is the road adhesion coefficient maximum friction
coefficient, 𝜆i is the slip ratio, and ai is the slip angle of the
wheels. In this study, the value of 𝜇 is 0.85; therefore, the
bus lateral motion risk is the rollover rather than sideslip.
The longitudinal wheel slip ratio 𝜆i can be obtained from
TruckSim.

3. LTR Prediction Methodology

3.1. Grey Model. Among the grey model types, the one suit-
able for LTR prediction is the GM(1, 1) type, meaning “first-
order one variable” [9].This model is a time series forecasting
model. The differential equations of the GM(1, 1) model are
renewed as data becomes available to the prediction.

The grey prediction model’s advantage is that just a
few discrete data are necessary to characterize an unknown
system. The GM(1, 1) steps are as follows [17]:

(1) Sort the initial series of 𝑋(0) as 𝑋(0) = (𝑋(0)(1),𝑋(0)(2), 𝑋(0)(3), . . . , 𝑋(0)(𝑛)). 𝑋(0) is the series of LTR values
that can be obtained by the tapped delay block in Simulink.
In this study, we set n as equal to 10.(2) Generate the first-order accumulated generating an
operation (1-AGO) sequence. The general form of 𝑋(1) is



Journal of Advanced Transportation 5

𝑋(1)(1), 𝑋(1)(2), 𝑋(1)(3), . . . , 𝑋(1)(𝑛) and the definition of 1-
AGO of 𝑋(0) is

𝑋(1) (𝑘) = 𝑘∑
𝑖=1

𝑋(0) (𝑖) = 𝑋(1) (𝑘 − 1) + 𝑋(0) (𝑘) . (11)

(3) Set the first-order original differential equation of𝑋(1). Suppose 𝑋(1) meets the equation below:

𝑑𝑋(1)
𝑑𝑡 + 𝑎𝑋(1) = 𝑏 (12)

This is the basic form of GM(1, 1), where variable a and
variable b are coefficients. Define variable 𝑎 = [𝑎, 𝑏]𝑇.

Its difference equation is

𝑋(0) (𝑘) + 𝑎𝑍(1) (𝑘) = 𝑏 𝑘 = 2, 3, . . . , 𝑛. (13)

𝑍(1)(𝑘) is called the background value, and its equation
is 𝑍1(𝑘) = 𝛼𝑋1(𝑘 − 1) + (1 − 𝛼)𝑋1(𝑘).𝛼 is often set to 0.5.
Therefore, according to the roots of this differential equation,
the particular solution of (10) can be described as

𝑋(0) (𝑘) = (𝑋(0) (1) − 𝑏
𝑎 ) 𝑒−𝑎𝑘 + b

𝑎 (14)

where 𝑋(0)(𝑘) is the predictive value of the series.(4) Use the least square to obtain parameters a and b.
Equation (15) can be written as

𝑋(0) (𝑘 + 1) = 𝑎 [− 1
2 (𝑋 (1) (𝑘 + 1) + 𝑋 (1) (𝑘))] + 𝑏,

𝑘 ≥ 𝑛
[𝑎

𝑏 ] = (𝐵𝑇𝐵)−1 𝐵𝑇𝑌𝑛,
(15)

where

𝐵 =
[[[[[[
[

− (𝑋(1) (1) + 𝑋(1) (2))
− (𝑋(1) (2) + 𝑋(1) (3))

. . .
− (𝑋(1) (𝑛 − 1) + 𝑋(1) (𝑛))

]]]]]]
]

(16)

and

Yn = (𝑋(0) (2) , 𝑋(0) (3) , . . . , 𝑋(0) (𝑛)) (17)

(5) Estimate the AGO value X1(1) and insert a and b into
(8) in order to obtain the particular solution of the differential
equation.

As a result, the recovery of the predictive value can be
acquired by the following equation:

𝑋(0) (𝑘) = 𝑋(1) (𝑘) − 𝑘−1∑
𝑖=1

𝑋(0) (𝑖) (18)

3.2. Buffer Operator. During some severe handling tests, the
LTR value changes rapidly. This results in the predictive
values growing fast and causing unintended local peaks in the
prediction curve. For this reason, it is necessary to mitigate
the growth trend among the time sequence to obtain smooth
predictive curves.

X(0) is the delayed LTR data series, D is the grey
buffer operator applied to X(0), and XD = (X(1)d1,X(2)d2,. . . ,X(n)dn) is the sequence after the function of the operator
D on X. D is called the sequence operator and XD is the first-
order operator acting sequences 𝐷 = (𝑑1, 𝑑2, . . . , 𝑑𝑛).

Basic knowledge about the weakening buffer operator:
when D meets the three conditions below, D can be called
a weakening buffer operator [18]; otherwise, it cannot be:

(a) If X is a monotonic increasing series:

B is a weakening buffer operator ⇐⇒ X(k)≤
X(k)dk

(b) If X is a monotonic decreasing series:

D is a weakening buffer operator ⇐⇒ X(k)≥
X(k)dk

(c) If X is a vibrational series:

min
1≤𝑘≤𝑛

{𝑥 (𝑘)} ≤ min
1≤𝑘≤𝑛

{𝑥 (𝑘) 𝑑𝑘}
and max
1≤𝑘≤𝑛

{𝑥 (𝑘)} ≥ max
1≤𝑘≤𝑛

{𝑥 (𝑘) 𝑑𝑘} (19)

D is a weakening buffer operator.
In this study, a buffer operator was utilized as below:𝑋(𝑘)𝐷 = (𝑋(𝑛))𝜌(𝑋(𝑘))(1 − 𝜌), 𝑘 = 1, 2, 3, . . . , 𝑛; D is

a buffer operator and 𝜌 is the weight of X(n). In this paper,
the prediction results could reach a balance between the ideal
lead time and the smoothness of the prediction curve when
the value of the weight variable 𝜌 was 0.8.

3.3. Real-Time LTR Prediction. The simulation works of LTR
prediction were implemented in the TruckSim and Simulink
co-atmosphere. The TruckSim software can provide a built-
in bus model with dynamic outputs that are very close to the
filtered data acquired from a real running bus. Figure 8 shows
the LTR prediction process using the grey model, which is
an open loop. The lateral acceleration and roll angles -𝐴𝑦
and 𝜙𝑟 were exported in real time from TruckSim and then
utilized by the LTR equation to obtain an estimated LTR.
The tapped delay block was utilized to delay and save the
LTR values of a continuous time period, and the LTR series
was sent to the next process. At first, 10 continuous data
were acquired in real time. To avoid the results being infinity
or not being a number, we set the initial LTR data as 0.01.
We used a heuristic method to find that 10 was a suitable
number. If n is over 10, the series contains too much old
information which will have a side effect on the prediction
result; if n is less than 10, the number is not enough to give a
reasonable prediction result. Before the grey model process,
the buffer operator was used on (𝑋(0)(1), 𝑋(0)(2), . . . , 𝑋(0)(𝑛))
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and the buffered sequence D∗(𝑋(0)(1), 𝑋(0)(2), . . . , 𝑋(0)(𝑛))
was generated.On the basis of the new sequence, the five steps
of GM(1, 1) were implemented to get the predicted series
(𝑋(0)(1), 𝑋(0)(2), . . . , 𝑋(0)(𝑛), . . . , 𝑋(0)(𝑛+𝑓)), and 𝑋(0)(𝑛+𝑓)
is the predicted LTR value. During the predicted sequence,
the preferred lead time is f∗Ts, where f and Ts represent the
forward steps and the sample interval separately. Hence, if
it is assumed that Ts is 0.02 s and f is 10, then the preferred
lead time is 0.2 s. After the grey model process, the future
LTR was obtained and stood as the reference value of earlier
rollover detection.When a processing cycle ends, the old data
are released, and a new cycle begins. The predicted LTR value
produced by the grey model is called the GLTR.

4. LTR Prediction Results

To examine how long the lead time can be generated by the
GLTR index, some comparison simulations are reported in
this section. Under the cosimulation atmosphere, high-risk
rollover maneuvers were carried out to examine the different
performances between the GLTR and LTR. The chosen
tests were the Sindwell and DLC maneuvers. Sindwell is a
typical maneuver for testing a vehicle’s lateral performance,
which was established by the National Highway Traffic
Safety Administration (NHTSA). Concurrently, the double
lane change maneuver has been adopted by many vehicle
companies as another typical lateral procedure.

In this part, the forward prediction steps were all 10, and
the interval time was 0.02 s. As a result, the corresponding
preferred lead time was 0.2 s.

4.1. Limiting Factor of GM(1,1). This part discusses the LTR
prediction results without the buffer operator process. The
prediction results for more complex handling tests such as
the DLC and Sindwell tests proved that GM(1, 1) had a
severe limitation. The drawback was that if the predicted LTR
was saturated by the physical threshold, the algorithm may
generate a wrong warning or activate the control system, even
at a safe driving speed.

To demonstrate this issue, a typical example of the
85-km/h DLC test is presented in Figure 9. During this
maneuver, the LTR threshold we set for rollover prevention
was 0.7. Nevertheless, the actual LTR was about 0.6, meaning
that there was no actual rollover risk. Under this practical
circumstance, there is no need to initiate the rollover preven-
tion systems at this relatively safe driving speed. However, the
peak points of the prediction curves were (3.82, 0.985) and
(5.86, 1.031), which were all above the threshold. Due to the
peak point being over 0.7, the prediction curve will lead to the
unnecessary initiation of the prevention system.
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Figure 9: Prediction results in 85-km/h DLC using GM(1, 1).
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Figure 10: Prediction result for 85-km/h DLC using the grey LTR
(GLTR).

As a result, particularly at a lesser high speed, the use
of basic GM(1, 1) in the LTR prediction has limiting factors
in serious rollover risk conditions where these prediction
mutations will cause the unintended initiation of the rollover
prevention system. This limiting factor prevents the grey
model from extending its application to the entire speed
range.

To overcome this issue, first, the trend development in the
old data series needed to be reduced. As shown in Figure 10,
we used a buffer to shrink the data tendency before we
applied GM(1, 1) to the real-time data series. Therefore, after
combining GM(1, 1) with the proposed buffer, the GLTR
algorithm was formed.

Figure 10 displays the effectiveness of the GLTR in the
85-km/h DLC test. Compared with Figure 9, the weakening
effect was obvious, causing the peak position to reduce from
(5.86, 1.031) to (6.04, 0.661), which was very close to the peak
position (6.14, 0.623) of the Est-LTR. As a result, after the
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Figure 11: Prediction results for the 105-km/h DLC test.
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Figure 12: Prediction results for the 89-km/h Sindwell test.

Table 2: Prediction of GLTR efficacy.

Tests T1 T1’ ΔT1
A. 105 km/h DLC 3.841 s 3.634 s 0.207 s
B. 89 km/h Sindwell 1.698 s 1.521 s 0.177 s

addition of a buffer operator, the GLTR can overcome the
limiting factor of GM(1, 1) by giving a reasonable prediction
performance at a secondary high speed for rollover-risk
maneuvers.

4.2. Prediction Results of the GLTR. In order to verify the
effectiveness of the GLTR for the target lead time, 105-km/h
DLC and 89-km/h Sindwell simulation tests were conducted
using the GLTR index. The prediction results of these two
maneuvers are shown in Figures 11 and 12. T1 and T1’ are
the time points at which the Est-LTR and the GLTR reach
the threshold. Table 2 provides a detailed description of the
prediction results for these two maneuvers where the lead
times were substantial. During the 105-km/h DLC, with the
rollover threshold set as 0.7, the lead time was 0.207 s.
Concurrently, during the 89-km/h Sindwell, the lead timewas
0.177 s.

Therefore, after applying the GLTR index, with the suffi-
cient lead time, the activation command could be triggered in
advance about 0.2 s. GLTR performed better thanGM(1, 1) in
LTR prediction by acquiring enough lead time and reducing
the prediction crests. Furthermore, the new threshold signal

can be useful for additional warning systems or differential-
based systems, which will highly reduce the rollover risks.

To further illustrate the efficacy of the GLTR, the results
were compared with other works. We still use a 89-km/h
Sindwell maneuver as an example. In [19], a predictive LTR
index PLTR was introduced. Equation (20) is the basic
expression for the PLTR. In the test, future time Δt is 0.2 s,
corresponding to the preferred lead time in this study.

𝑃𝐿𝑇𝑅𝑡0 (Δ𝑡) = 𝐿𝑇𝑅 (𝑡0) + 𝐿�̇�𝑅 (𝑡0) ⋅ Δ𝑡 (20)

The lead time of PLTRwas 0.163s, which is less than 0.177s
(using GLTR), proving GLTR’s efficacy.

5. Further Verification

In addition, to further examine the actual effectiveness of this
new rollover index, a Simulink model (an active differential
braking system) was added to function as the rollover pre-
vention system. GLTR works as the threshold of the rollover
prevention action. Figure 13 shows the control structure of
the differential braking system. Once the system detects that
the GLTR has exceeded the threshold, the actuator will begin
to provide differential braking forces as the yawing moment
intervention. Fflb , Ff rb are the front left and front right braking
forces. Frlb, Frrb are the rear left and rear right braking forces.
Once GLTR is over 0.7, the antirollover countermeasure
begins by adding an additional yawing moment.

A 2-DOF vehicle model, which is the so-called “bicycle
model”, was used as the reference model.

Based on the 2-DOF model and Formula (10), the
reference yawing moment can be calculated as below:

∑ 𝑀𝑧𝑟 = 𝑎𝐹𝑦1 − 𝑏𝐹𝑦2 = 𝑎𝐶𝑦1𝛼1 − 𝑏𝐶𝑦2𝛼2 (21)

Therefore, the additional moment can be obtained by the
equation as below:

Δ𝑀𝑧 = 𝑀𝑧 − 𝑀𝑧𝑟 (22)

The differential braking is achieved by establishing a
PID controller. Aproportional–integral–derivative controller
(PID controller) is a control loop feedbackmechanism widely
used in industrial control systems and a variety of other
applications requiring continuously modulated control [20].
The distinguishing feature of the PID controller is the ability
to use the three control terms of the proportional, integral,
and derivative influence on the controller output to apply
accurate and optimal control.

The overall control function can be expressed mathemat-
ically as

𝑈 (𝑠) = 𝐾𝑝 (1 + 1
𝑘𝑖.𝑠 + 𝐾𝑑.𝑠) .𝐸 (𝑠) (23)

where

Kp is the proportional gain, a tuning parameter,
Ki is the integral gain, a tuning parameter,
Kd is the derivative gain, a tuning parameter.
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Figure 13: GLTR control system using PID controller.

𝐸(𝑠) = 𝛾𝑒 − 𝛾𝑟 is the error of yaw rate, where 𝛾𝑒 and 𝛾𝑟 are
the measured raw rate and reference yaw rate.

We used the yaw rate error as the control goal to calculate
the target yawing moment. In (23), Kp = 290, Ki = 120, and
Kd = 2.4.

According to steering characteristic of a bus, Table 3 is
listed for the selection of the braking wheel to achieve the
required yawing moment.

To better understand the effectiveness ofGLTR, estimated
LTR was also used as the threshold in the comparison sim-
ulation tests. This simulation tested the performances of the
prevention system after the application of the GLTR and LTR.

This part demonstrates the simulation results acquired
from the closed-loop cosimulation utilizing the GLTR index
studied in this paper. The cosimulation model included the
bus model in TruckSim, an active differential braking system
built in Simulink. The active differentials obtained opposite
moment by adding extra braking torque on a certain wheel,
so that the vehicle was able to effectively control the roll and
yaw motions.

We used LTR and GTR as the threshold in the controllers
separately. To validate theGLTR, comparison simulation tests
were carried out with TruckSim to find the impact of the
new controller. The comparison was conducted among a bus
with the control system off, a bus with the LTR active, and
a bus with the GLTR active. The simulation test was for the
100-km/h “Sindwell” maneuver with a 90∘ amplitude. First,
Figure 14 shows the LTR prediction result using LTR. The
peak points of LTR and GLTR curves are (1.608, 0.775) and
(1.802, 0.758), where there are 0.2 s between the two peak
points.

From Figure 15, the buses with the LTR and the GLTR
matched well until the midpoint of the second turn when the
GLTR systems activated prior to the LTR.The peak points of
GLTR control and LTR control were reduced to (1.639, 0.671)
and (1.727, 0.691) separately. We could see that the GLTR
control could help the bus reach a steady state prior to the
bus under LTR control. The two curves reached zero at 2.55
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Figure 14: Prediction results for the 100-km/h Sindwell test.

Time (s)

LTR control
GLTR control

LT
R

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0 0.5 1 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Figure 15: Comparison result in the 100-km/h Sindwell test using
differential controllers.

s and 2.72 s, showing that the GLTR control could make the
bus steady 0.17 s in advance.

Figure 16 shows the comparison result of the roll angles
between the LTR control and GLTR control. The GLTR
could help the bus reduce the yawing rate about 0.035 rad/s,
remarkably reducing the possibilities of rollover.
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Table 3: Braking strategy of a bus.

Steering angle Δ𝛾 Steering property Braking wheel

> 0 > 0 oversteer Right front
< 0 understeer Left rear

< 0 > 0 understeer Right rear
< 0 oversteer Left front
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Figure 16: Comparison result of the yaw rate in the 100-km/h
Sindwell test.

6. Conclusions

This study demonstrated an LTR prediction algorithm for
bus rollover systems. Unlike existing methods that are based
on estimation algorithms, the proposed algorithm could
generate a considerable lead time for rollover prevention sys-
tems or warning systems. This rollover index was the fusion
of the grey model and a buffer operator that was introduced
for bus rollover detection. The simulation study aimed at
examining the prediction effectiveness of the GLTR and
its application possibility. Some conclusions regarding this
approach can be made as follows.

(1) An LTR estimation equation was developed and then
verified to have a rather suitable agreement with the
LTR definition formula that directly makes use of the
vertical tire forces from TruckSim.

(2) Lead times produced by the GLTR help the warning
systems activate in advance, which will reduce the
possible risks of bus rollover.

(3) Further simulation verification was carried out by
applying the GLTR in a differential-based system.
Compared with the traditional LTR index, the GLTR
could help the differential-based system have better
performance and efficacy.

(4) In the future, for further promotion, this new rollover
index should be applied to a real rollover prevention
system to conduct hardware in loop tests or road
assessments.
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This work aims at classifying the road condition with data mining methods using simple acceleration sensors and gyroscopes
installed in vehicles. Two classifiers are developed with a support vector machine (SVM) to distinguish between different types of
road surfaces, such as asphalt and concrete, and obstacles, such as potholes or railway crossings. From the sensor signals, frequency-
based features are extracted, evaluated automatically with MANOVA.The selected features and their meaning to predict the classes
are discussed. The best features are used for designing the classifiers. Finally, the methods, which are developed and applied in this
work, are implemented in a Matlab toolbox with a graphical user interface. The toolbox visualizes the classification results on
maps, thus enabling manual verification of the results. The accuracy of the cross-validation of classifying obstacles yields 81.0% on
average and of classifying road material 96.1% on average.The results are discussed on a comprehensive exemplary data set.

1. Motivation

In 2006, bad conditions of road infrastructure were one of
the causes of 50% of fatal accidents in France [1]. In 2016, four
accidents inGermanywere caused exclusively by road surface
damage [2]. Road traffic authorities are aimed to improve and
automate monitoring the road state to detect and repair road
damages to enhance the safety of road traffic. Based on the
detection results, specific and cost-optimized maintenance of
roads can be ensured. Furthermore, suppliers of navigation
systems can profit from the available information of the road
state, because roads in bad condition may be neglected in
route planning [3]. Automotive manufacturers can use the
collected data to control adaptive vehicle suspensions and to
display warnings in real time [4].

Contrary to physical modeling, data-based estimation
of the road state does not require any comprehensive
system characterization, such as vehicle, road, sensor, and
environment. Moreover, modeling of a full vehicle requires
five acceleration sensors or gyroscopes to measure vertical

accelerations of unsprung masses and accelerations and
rotations of the vehicle body [5]. To monitor road sections,
a vehicle can be used as a mobile sensor platform that records
both vehicle dynamics and the environment, such as the
road state. The road state can be estimated using cameras
or inertial measurement units to record rotation speeds
and accelerations of the vehicle. Such sensors are already
integrated into modern vehicles having an active or adaptive
body control or new lighting systems. Inertial sensors are
even part of the standard equipment of new vehicles and data
can be fused with GPS data for more accurate positioning,
an example being the new Audi A7. Previous studies revealed
that measurements made by these sensors allow for the
derivation of road features, such as potholes or mends of
asphalt roads [6–8].

The inertial sensor is inexpensive and part of the standard
equipment of many vehicles. Its data include information of
minor unevenness of road surfaces that causes the vehicle
to vibrate. Inertial sensors, however, only provide data on
the road section just crossed. Cameras, by contrast, record
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the complete road section in front of the vehicle, including
the neighboring lane. However, they are integrated into high-
class vehicles only. Cameras currently used in vehicles are of
limited accuracy and can detect potholes with a minimum
depth of about 3 cm only.

Presently, the state of motorways is measured automat-
ically using expensive and complex measurement vehicles,
while that of roads in urban and rural areas is determined
manually [9]. These methods are associated with a high
expenditure. Due to manual evaluation, it takes a long time
until the road network quality is updated. Safety-relevant
damage may be detected too late. This may have severe
consequences, such as traffic accidents or cost-intensive and
complete renewal of the road.

For road maintenance, some countries determine the
stochastic road profile depth or international roughness
index (IRI), as outlined in [10]. However, the latter is often
calculated for 100m intervals only. As a result, certain
obstacles, such as potholes, are not detected. In countries
pursuing a systematic roadmaintenance scheme, not only the
IRI but also individual obstacles aremeasured.This also is the
objective of the present study.

Approaches to automatic road state monitoring using
inertial sensors exist, e.g., [6, 11–13]. They only concentrate
on single road features (such as potholes), do not have any
representative dataset, or are based on data measured under
restricted conditions, e.g., in speed limit areas or on certain
sections only. Moreover, the validation phase only covers
checks as to whether the road damage detected actually is
damage or not (true or false positives), but not whether road
damage was overseen (false negatives).

Road construction offices also need to know the material
(road surface), as repairs on different surfaces produce
different results andmay cause different types of damage [14].
It is also important to distinguish between safety-relevant
damage that has to be repaired within 24 hours and damage
that is not relevant to safety and the repair of which can be
planned and postponed.

The main contribution of this paper is to evaluate the
principle feasibility of automatic road surface and road
damage measurement with an inertial sensor in the vehicle
body. Therefore, this work is aimed at

(i) designing a processing chain to evaluate road data
based on measurements of inertial sensors,

(ii) automatically recording an adequate dataset,

(iii) developing and evaluating a method to estimate road
surfaces and damage, and at

(iv) integrating the algorithms developed into a graphic
user interface for evaluation of datasets with alterna-
tive parameterizations by nonexperts as well.

Themethodology will be presented in Section 2. Section 3
will outline the implementation derived, while Section 4
will explain the results based on a first dataset. The result,
its applicability, and open problems will be discussed in
Section 5.
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Figure 1: Overview of method.

2. Methods

2.1. Design. Figure 1 presents an overview of the method to
evaluate the road state [15]. In a first step, the road state is to
be measured by suitable sensors. For measurement, acoustic
sensors, such as the sensors described in [16], acceleration
sensors and gyroscopes, cameras, and similar devices, can
be used. As a result, several synchronized time series will be
obtained. To obtain a representative reference data set, sensor
data have to cover a maximum of framework conditions, e.g.,
variations of external temperature, driver, and speed. Every
point of time/road section has to be assigned a label, e.g. type
of road surface, simultaneously or afterwards. In this way, a
data set with correct allocations of sensor data to labels is
obtained (ground truth). By means of data mining, models
can be designed (offline) for retrospective evaluation (offline)
or classification during driving operation (online).The results
of the classification models then have to be visualized and
evaluated on the basis of map material. To estimate the
information on the road surface and event or damage that
is of relevance to road construction offices, two separate
classification routines have to be developed.

2.2. Data Acquisition. The data measured by the sensors
installed in the vehicle, e.g., GPS and inertial sensors, are
encoded on the CAN bus and cannot be read without
the communication matrix that is available to the control
system developer and automotive manufacturer only. Hence,
an inexpensive measurement system similar to the inertial
sensor incorporated in the vehicle is proposed for the easy
measurement and readout of data. Measurements cover the
position and dynamics of the vehicle, in particular vertical
dynamics caused by unevenness [17]. In addition, the data
may be assigned labels during measurement already. The
measurement system (Figure 2) mainly consists of a GPS
receiver (Adafruit ultimate GPS Hat) and a MEMS inertial
sensor (LSM9DS1)measuring accelerations and rotation rates
of the vehicle along all three axes. The sensor data are
acquired using a Raspberry Pi and stored as a csv-table in
fused form. As soon as the engine of the vehicle is turned off,
the UPS is activated and data can be transmitted viaWiFi to a
central data base, if the Raspberry Pi is connected to a known
WiFi network.

The GPS receiver has a sample rate of 10Hz, a position
resolution of 3m, and a speed resolution of 0.1m/s. As the
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Figure 2: Measurement unit, consisting of Raspberry Pi, inertial
sensor, Adafruit ultimate GPS Hat, UPS Hat, and two buttons for
labeling the data. In service, the inertial sensor is fixed under the
Raspberry Pi on the bottom of the case. The case is cut open for
visualization purposes.

Table 1: Code and corresponding name of the classes for material
and event.

𝑚-Material 𝑒-Event
0- Unknown 0- Unknown
1- Smooth surface 1- Good
2- Damaged asphalt 2- Light damages
3- Damaged concrete 3- Pothole
4- Cobblestone 4- Manhole cover

5- Railway crossing
6- Speed bump

inertial sensor is a low-cost MEMS sensor, the sample rate is
not uniform. This has to be compensated by a filter in data
processing. The sample rate is about 220Hz. The accuracy
of the acceleration sensor is 0.05m/s2 and of the gyroscope
0.003 degree/s. Without data transfer, a 32GB memory card
can record data for up to 1000 h.

For allocating labels to data, different approaches are
presented in literature. For example, a microphone records
the (road) damage report of the passenger [13]. This method,
however, is subject to several deficiencies. Among others, the
labels are recorded much later than the actual road damage
and the soundtrack is not synchronized with the sensor data.
Reference [6] uses “loosely labeled” training data. Here, only
the number of classes but not the exact position is recorded
for large road segments.

The measurement system developed for this study is
based on two buttons. A pressed button annotates the damage
class (event) or the change of road surface (material). For
every measurement drive, data with a certain material (e.g.,
if asphalt 1, otherwise 0) and an event (e.g., if pothole 1,
otherwise 0) are recorded. After the measurement drives,
binary coding of the data of the respective files is transformed
into the coding given in Table 1.

The unix time 𝑡, ID for the sensor, speed V, position
and time stamp of the GPS 𝑙𝑎𝑡, 𝑙𝑜𝑛, and 𝑡𝐺𝑃𝑆, accelerations
𝑎 and rotation rates 𝜔 along all three axes, and the two
labels for the event 𝑒 and material 𝑚 are recorded and stored
in a csv-table on the measurement system (Figure 2). The

measurement system is installed near the static center ofmass
of a BMW 116d in the console between the driver’s seat and
passenger’s seat. Orientation of the sensor axes corresponds
to the vehicle axes according to ISO8855:2011. For themethod
to be generally applicable, measurement data are recorded on
randomly selected roads in the region of Karlsruhe, Germany.
The speed, road condition, and environmental conditions
(e.g., measurement drives in good and rainy weather) are
varied strongly. In total, reference data are recorded for a
period of three months on a distance of more than 200 km.
The data are recorded on eight days (three times a whole
day) by three different drivers. Acquisition of reference data
is a time-consuming process, as the materials and events
have to be crossed under variable environmental conditions
and at variable speeds. In particular, individual events, such
as potholes, of various types have to be found in the road
network and crossed several times with variable approach
angles and vehicle tracks.

Lacking GPS data due to variable scanning rates are
reconstructed by linear interpolation. As the measurement
series are not recorded at a constant sample rate, resampling
is required. By resampling, the data are converted from the
time domain (s−1) to the space domain (m−1). In [18, 19], it
was shown that the response of the vehicle to the excitation of
the road depends on speed and that presentation in the space
domain reduces this effect. All-time series are resampled
with a (spatial) frequency of 100m−1. The section driven is
calculated from the time stamp and speed with the help of
the implicit Euler method. Calculation via GPS would also
be possible but lacks precision.

The classes of materials 𝑚 and events 𝑒 are encoded by
natural numbers (Table 1). Light damages are general types of
unevenness, which are not safety-relevant and include minor
faults and repairs.Manhole cover, railway crossing, and speed
bump are construction obstacles. A speed bump is defined as
an elevated construction transverse to the driving direction.
The pothole represents a fault of at least 2 cm in depth. The
latter event is safety-relevant and should be repaired within a
maximum of 24 h. For every sample point 𝑘 of the reference
data set, two labels are annotated for the material 𝑚[𝑘] and
event 𝑒[𝑘].

2.3. Signal Processing

2.3.1. Overview. To derive information on the road surface
or material and event/damage from the sensor data recorded,
the data streams first have to be transferred to a feature
space. Feature extraction calculates representative and useful
individual features from complete or partial measurement
series. Without knowing the physical model of effects of
asphalt changes or road damage on the sensor, it is recom-
mended to calculate a large set of features and to check their
suitability for the classification problem based on data with
the corresponding labels (ground truth). Efficient feature
calculation is needed for calculation on mobile devices (e.g.,
microcontrollers).

2.3.2. Generation of New Time Series. To describe the road
state, acceleration in vertical direction (𝑎𝑧) and rotation
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speeds in longitudinal and transverse direction (𝜔𝑥 and 𝜔𝑦)
are very important [6]. Furthermore, the roll and pitch
acceleration (�̇�𝑥 and �̇�𝑦) as well as the jerk ( ̇𝑎𝑧) of the vehicle
are done using the derivation of the vertical acceleration
in time domain. The space series data of the vertical roll
and pitch acceleration is transformed into frequency domain
with the short-time Fourier transform, which contains the
short-termdistance-localized frequency content of the signal.
Hereby, features based on specific frequency bands can
be investigated. Hence, the three distance series data are
extended by the following data streams, which lead us to 7
data streams in total:

(i) vertical acceleration,
(ii) roll acceleration,
(iii) pitch acceleration,
(iv) deviation of vertical acceleration,
(v) short-time Fourier transformed vertical acceleration,
(vi) short-time Fourier transformed pitch acceleration

and
(vii) short-time Fourier transformed roll acceleration.

2.3.3. Feature Extraction. The features are calculated for
windows with a specific length in distance domain and a
specific overlap. Awindow𝑈𝑖 denotes all indexes [𝑛𝑖−𝐿/2, 𝑛𝑖+
𝐿/2 − 1] with the running index 𝑛, window index 𝑖, and
window length 𝐿.Thewindow overlap 𝑟 corresponds to those
values from the window𝑈𝑖 that are contained in the previous
window 𝑈𝑖−1, i.e., 𝑛𝑖+1 = 𝑛𝑖 + 𝐿(1 − 𝑟). If a longer distance is
chosen, short amplitudes, for example, due to potholes, have
a weaker impact on the value of features, which incorporate
the overall signal, such as the standard deviation. These short
amplitudes can be captured by shortening the window size or
using features, which calculate extrema.

For the feature extraction for material and events we use
window sized of 50m or 5m, respectively, and an overlap of
20%.

From the distance series data, we calculate the standard
deviation as well as peak-to-peak. The root mean square
value or effective value for specific frequencies and the
spectral centroid is extracted from the short-time Fourier
transformed data streams for the following spatial frequency
bands (1m−1):

[0.1, 0.5] [0.5, 15] [15, 20] [0.1, 25] [0.1, 50] (1)

The vehicle velocity has a strong sensitivity on the vehicle
vibration. Previous research suggests performing a linear
regression with each feature as the dependent variable and
the velocity as the independent variable [12]. The velocity
dependency is then removed by subtracting the estimated
linear equation from the corresponding feature. However, the
vehicle vibration and the extracted features are not linear
dependent on the velocity. The dependent parameters are
incorporated and the mean velocity is calculated for each
window as additional feature. To allow nonlinear relation-
ships a kernel function of higher order can be applied for the
classification.

Of the GPS latitude 𝑙𝑎𝑡 and longitude 𝑙𝑜𝑛 time series, the
medians in every window are used for later visualization.

2.3.4. Classification. Based on the extracted individual fea-
tures and the corresponding labels, two classifiers are
designed for material and event. For the design and appli-
cation of classification, a combination of feature selection,
feature aggregation, and classifier is chosen.

For the surface classification, the five best individual
features each are determined using the multivariate analysis
of variances (MANOVA) method, for event classification the
ten best features are selected. For visualization purposes,
the selected individual features are then aggregated to two
features using linear discriminant analysis (DA), which can
also minimize the calculation expenditure. A support vector
machine (SVM) classifier with polynomial kernel function
with order 2 is used. Validation is carried out with the help
of cross-validation with 5-folds.

2.3.5. Performance Measures. From the correct and false
predicted instances, we can calculate a confusion matrix𝑀 =
(𝑚𝑖𝑗) ∈ N𝑘×𝑘 for classes 𝐾𝑖, 𝑖 = 1, . . . , 𝑘. In the confusion
matrix, 𝑚𝑖𝑖 presents the true positives for class 𝑖. The other
elements in column 𝑗 are called false negatives, in row 𝑖 false
positives and in the diagonal true negatives.

From the confusion matrix, one can calculate multiple
performance measures to evaluate the model, such as recall
with 𝑚𝑖𝑖/∑

𝑛
𝑗=1𝑚𝑗𝑖 for class 𝐾𝑖, the overall accuracy of

the classifier with ∑𝑛𝑖=1𝑚𝑖𝑖/∑
𝑛
𝑖=1∑
𝑛
𝑗=1𝑚𝑖𝑗, or the precision

𝑚𝑖𝑗/∑
𝑛
𝑗=1𝑚𝑖𝑗 = 𝜋𝑖𝑗. The precision presents the fraction of

retrieved instances that are relevant and can be seen as the
probability 𝜋𝑖𝑗 of the classifier to predict class 𝑖 as class 𝑗 for
𝑖, 𝑗 = 1, . . . , 𝑙. An overview for performance measures for
different calculation problems can be found in [20].

3. Implementation

To facilitate operation by non-experts, the methods are
implemented in a graphical user interface called Vehicle
Learner Toolbox, which is available in [21]. It is based on
Matlab and implements several machine learning opera-
tions of the freely available toolbox SciXMiner [22] (formerly,
Gait-CAD [23]). The Vehicle Learner Toolbox provides the
possibility to

(i) import vehicle sensor data in different file formats,
(ii) compress the imported data and automatically extract

various features,
(iii) train a classifier model with a wide-ranging set of

options,
(iv) test the trained classifier with a test set,
(v) visualize the results with the help of plots and maps.

A project folder can be selected and sensor data can
be imported in the corresponding frame Data (Figure 3).
There is the option to assign the sensor data to specific
vehicles, since they vary in suspensions, damping, and other
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Figure 3: The import data frame of the Vehicle Learner Toolbox.
Different vehicles can be chosen and the data type can be set.

parameters, which have an impact on the vibration behaviour.
Therefore, in the following data processing, feature selection
and classification can be performed for data from specific
vehicles.The import allows .csv and .xlsx file format with the
following column headers:

(i) timestamp (unix timestamp)
(ii) x-, y-, z-accel (the acceleration values in each direc-

tion)
(iii) x-, y-, z-gyro (the gyroscope values in each direction)
(iv) gps-timestamp (format: YYYY-MM-DDThh:mm:ss,

000Z)
(v) lat, lon (position in latitude and longitude)
(vi) speed (in m/s)
(vii) m, e (material𝑚 and event 𝑒 labeling, if the data is not

labeled, these columns should only contain zeros).

Since the GPS data is acquired with a lower sample rate
compared to the inertial sensor, these data are automatic
interpolated. Furthermore, the sensor signals are subject to
noise [24] and are automatic smoothed during the import
process with the following filters. Despite the noise of a
MEMS gyroscope visible as spikes in the signal, it is well
known for its good accuracy in short term [25]. A suitable
filter for this purpose is the median filter, which is robust
against outliers and removes noise while preserving high fre-
quency content. Since the data from theMEMSaccelerometer
do not show such spikes but contains more noise in the short
term [25], a Savitzky-Golay FIR smoothing filter is applied.
It fits a polynomial of a specified degree to frames of noisy
data and minimizes the least-squares error [26]. Therefore,
the filter outperforms standard averaging FIR filters, which
might remove high frequency content with the noise.

There is also the possibility to import tire cavity sound
data along the inertial sensor data for road roughness esti-
mation, as presented in [16, 27], but is not substance in this
paper. Moreover, the imported data set can be categorized as
training, testing or unlabeled data.

Figure 4: The train classifier frame of the Vehicle Learner Toolbox.
Multiple classifiers can be trained with a wide range of options.

Furthermore, the parameters for the window profile,
such as length of road segments and overlapping factor of
these windows, can be determined, as well as the resampling
frequency. The standard window profiles are material with a
window length of 50m and event with a window length of
5m.

After the import and preprocess of the data, new time
series data are calculated and features are automatically
extracted, as proposed in Sections 2.3.2 and 2.3.3. The code
to calculate new data series or features can be easily added in
the corresponding Matlab function.

The proposed data mining methods (Section 2.3.4) can
be applied in the toolbox under the menu Supervised Learn-
ing (Figure 4). In the first step, a training data set must
be generated. There are two different ways to accomplish
this. Either an external data set containing features can be
imported or the imported data within the toolbox can be
used and modified by choosing the time interval of the data
acquisitions or the area. Furthermore, data annotated with
specific labels can be excluded from the classification. For
our example, all data with labels 0-unknown were deleted
(Table 1). Another option is to thin out classes with significant
more data points than other classes to allow an approximately
uniform distribution of data points among the classes to pre-
vent over-fitting of specific classes. Furthermore, systematic
errors during labeling the data can be removed; e.g., if the
trigger to annotate the data was activated too early or too
late the annotation can be moved or data points with the
wrong annotation can be excluded. After the generation of
the data set to be processed, the settings for the classifier can
be determined under the tab Train Classifier (Figure 4).

In the first step the vehicle and the training data set
must be set. Afterwards a new classifier model can be created
or an existing model can be selected. The next section
contains the settings of feature selection (e.g,. MANOVA)
and aggregation (e.g., discriminant analysis), as proposed
in Section 2.3.4. Reducing the amount of features highly
influences the classification result by reducing the chances for
overfitting. It is possible to cross-validate the training process
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(b) Classification of events 𝑒

Figure 5: Classification results with two aggregated features and borders of the classifier in black.

by setting the k-folded-cross-validation value to higher than
1. The last section offers a variety of settings for the classifier,
e.g. for a SVM, including the kernel function and penalty
term. Afterwards, the classifier can be trained and data can
be plotted on open street maps. Furthermore, the confusion
matrix and the total loss is shown in the Matlab console.

For testing new data, a data set with modifications in time
range and area to be analyzed can be generated as described
for training, and a trained classifier must be selected. If the
test data set is labeled, the output of the prediction is again
a confusion matrix and the classification error. Moreover, the
results can be visualized and plotted on open street maps, as it
will be presented in Section 4.The trajectories will be cut into
segments of different color referring to the corresponding
classes, which are predicted.

4. Results

4.1. Event Classification. The accuracy of the cross-validation
of classifying events yields 81% on average without feature
aggregation. The aggregated feature space and the lines of the
function to classify the events is shown in Figure 5(b).

The illustration of the classification shows that road
segments in good condition, with light damages, speed bumps,
and potholes, can be separated well.This indication is proofed
by the quantitative results, listed in Table 2.

Theprecision and recall for thementioned classes is above
70%, whereas the performance measures for manhole cover
and railway crossing is below 62% on average.

The most important features, determined with
MANOVA, are

(i) peak-to-peak of pitch acceleration
(ii) peak-to-peak of roll acceleration
(iii) maximum of jerk in vertical direction
(iv) root mean square (RMS) of the vertical acceleration
(v) speed

By comparing each class with each other, it emerges that
the peak-to-peak value of pitch and roll acceleration are
mainly responsible to separate events, which occur on

(i) both vehicle lanes (railway crossing, speed bump),
(ii) on only one side of the vehicle (manhole cover,

pothole),
(iii) or have only little impact on the vehicle vibration

(light damages, road segments in good condition).

In addition, the average RMS of the vertical acceleration
is important to separate light damages and road segments in
good condition. Furthermore, potholes and manhole covers
are dividable through the maximum RMS of the roll accel-
eration for the frequency range 15 to 25m−1. However, latter
events are often misclassified as segments in good condition
or light damages. Speed bumps and railways crossings are
separable by the value of the peek-to-peek of the pitch rate,
whereas railways crossings are also often misclassified as light
damages.

To test the classifier, a data set of more than 200 km of
street data is classified and plotted on open street maps. The
results are promising and represent the actual street condition
in many occasions. A few examples of classified areas are
shown below.
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Table 2: Results of single features classification.

Material Precision Recall Events Precision Recall
(% ± SD) (% ± SD) (% ± SD) (% ± SD)

smooth surf. 95.8 ± 0.7 97.6 ± 0.7 good 83.9 ± 1.5 92.4 ± 2.7
damaged asph. 97.3 ± 2.0 94.9 ± 1.4 light dam. 78.5 ± 3.8 70.8 ± 3.3
damaged con. 95.6 ± 0.8 92.9 ± 1.1 pothole 85.3 ± 6.6 77.4 ± 7.2
cobblestones 99.1 ± 1.8 100.0 ± 0.0 manhole 40.9 ± 13.6 29.1 ± 15.7

railway cro. 61.6 ± 4.9 57.0 ± 7.9
speed bump 94.9 ± 7.1 91.0 ± 12.2

Average 96.4 ± 0.8 96.4 ± 0.8 74.2 ± 6.3 69.6 ± 8.1
Accuracy 96.1 ± 0.4 81.0 ± 1.7

2
1

good
light damages

potholes
railway crossing

Figure 6: Event classification results of two high speed roads in the
south west of Karlsruhe, Germany.

The first example shows the event classification results
on two different high speed roads (Figure 6). The upper
one with Label 1 is a freshly renovated asphalt highway with
close to no damages and the lower one with Label 2 is a
poorly patched asphalt road with a lot of medium and severe
damages. The classification successfully predicted the upper
roadway as good street. Most parts of the lower street were
predicted as light damage and some points even as potholes.
The results represent the road condition very accurate. The
only noticeable misclassification is railway crossing that was
predicted once (Label 3).

The second example presents data acquired in an urban
area in Karlsruhe, the predictions are shown in Figure 7. The
roads in this area are poorly preserved and there is a speed
bump at a pedestrian crossing (Label 1). The classification
model correctly predicts the speed bump (Label 1) for all
overdrives and a pothole (Label 2) on both driving directions.

The third interesting sector is shown in Figure 8. Potholes
(Labels 2 and 3), which were at the edge of the driving line,
were overdriven multiple times and the classifier predicts the
severe damage accordingly. Sometimes the output at the road
segments is not pothole but light damages or even good road
condition. The reason might be that the pothole was avoided
by the driver.

1

2

good
light damages

potholes
speed bump

Figure 7: Event classification results for road segments in the city of
Karlsruhe, Germany.
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railway crossing

Figure 8: Event classification results of road segments outside of
Karlsruhe, Germany, for the events potholes and railways crossing.
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Figure 9: Material classification of an aged concrete highway.

The railway crossing (Label 1) is more elevated than other
crossings and miss-classified as speed bump in few cases.

4.2. Road Surface Classification. When classifying road sur-
faces, cross-validation yields 96.1% accuracy on average
without aggregation of features. The aggregated feature space
is shown in Figure 5(a). The figure indicates, that the
misclassifications are asphalt classified as damaged asphalt
or damaged concrete and vice versa. The illustrated results
are underlined by Table 2, where the precision and recall
for cobblestone is above 99.0%, whereas the performance
measures for asphalt, damaged asphalt, and damaged concrete
are between 92.0 and 97.6% percent.

The three best individual features for the classification of
road surface according to MANOVA are

(i) RMS of the roll acceleration for frequency range from
5 to 15m−1 on average

(ii) standard deviation of the pitch rate

(iii) stand deviation of the RMSof the vertical acceleration
for frequency range 15 to 25m−1

The values of RMS of the roll acceleration and vertical
acceleration separate the classes smooth surfaces, damaged
asphalt and cobbled stone. The values are greatest for cobbled
stone and low for smooth surface.

Standard deviation of pitch rate separates the classes
damaged concrete from all other classes. The reason are
probably poor and aged concrete joints.
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Figure 10: Material classification of cobblestone and road segments
in urban area.

The material classifier was applied to the same data set
described for event classification. The classifier was able to
reflect the road surface very precisely. The following figures
display the performance on different surfaces. Analog to the
event classification shown in Figure 6, the material classifier
could distinguish between both roads and correctly classified
them as smooth surface and damaged asphalt, respectively.

In contrast, Figure 9 shows a long highway segment with
aged concrete and distinctive concrete joints, which have to
be maintained shortly. Except for one short segment, which
was classified as smooth surface, the road state was correctly
predicted.

The classification results of data acquired in the urban
area of Karlsruhe (Figure 10) show two correctly predicted
areas of cobblestone (Label 1 and 2). The remaining road
segments are correctly classified as segments with light
damages or in good condition. Especially latter class was
correctly predicted for a road segment, which was recently
renewed (Label 3). One miss-classification of cobblestone can
be found close to Label 1. However, this road segment is
highly damaged with multiple potholes, which have a high
impact on the vehicle vibration similar to cobblestones.

5. Conclusions and Outlook

The results show that the system presented in this paper can
classify both road materials and events. The features selected
by MANOVA are in agreement with the theory of vehicle
excitation. Material classification performs well according to
the results of the cross-validation and the test data.

There are multiple miss-classifications of the prediction
of events, especially for structural obstacles, such asmanhole
covers and railway crossing. However, these events might
be marked on a map and excluded from classification and
investigation, as the main objective is to detect road damage.

One reason for misclassifications of the events good
condition, light damages, and pothole might be false manual
annotating, since there is sometimes only a fine line between
the degree of damages, or the events were not fully over-
driven, especially for potholes.

As the system is of modular design, the number and
type of sensors and sensor modality can be varied. When
adapting feature extraction, also camera recordings might be
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useful. Transferability to other vehicles with different chassis
and dimensions has not been examined so far. Presumably,
the algorithms of parameters are adapted to the vehicle with
which the learning data set was recorded. Here, fusion of
learning data sets from several vehicles and an accordingly
adapted classification routine might help. It can be assumed
that the results will be slightly worse.

Generally, the inertial sensor represents a very good
option to collect information on the tire/road contact at low
costs and over wide areas. Use of information of several vehi-
cles can compensate the drawback of some drivers passing
by safety-relevant damage that, hence, is not measured by the
sensor. Moreover, obstacles at the roadside are not crossed
and, hence, cannot be detected.

Fusion of camera and inertial sensor data probably would
be the optimum solution for a mobile determination of the
state of road traffic infrastructure. For road construction
offices, use of a low-cost and computationally efficient system,
consisting of an inertial sensor, Raspberry Pi, and simple
signal processing, is sufficient and can be recommended.
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The raw data used to support the findings of this study
have been deposited in http://doi.org/10.5281/zenodo.1461243
[28]. The data can be processed with the presented toolbox
available in http://doi.org/10.5281/zenodo.1216187 [21].
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Vehicular Ad Hoc Network (VANET) has been developed to enhance quality of road transportation. The development of safety
applications could reduce number of road accidents. IEEE 802.11p is a promising standard for intervehicular communication, which
would enable the connected-vehicle applications. However, in the well-known network simulators such as NS3 and Omnet, there
is no propagation model that can simulate the IEEE 802.11p communication at blind corner realistically. Thus, in this paper, we
conducted the real-world experiments of IEEE 802.11p in order to construct the model to describe the characteristics of the IEEE
802.11p communication at the blind corners. According to the experimental results, we observe that theminimumdistance between
the vehicle and the corner can effectively be represented as the key parameter in the model. Moreover, we have a variable parameter
for adjusting the impact of the obstruction which could be different at each type of blind corners. The simulation results using our
proposed model are compared with those using the existing obstacle model. The results showed that our proposed model is much
more closely aligned with the real experimental results.

1. Introduction

World Health Organization (WHO) reported that 1.2 million
people from all over the world die and 20 to 50 million
people suffer from injuries because of road accidents each
year [1]. According to [2], a lot of accidents occurred at the
intersections. Blind corner is one type of the intersections
where the accidents occur easily. This is because one vehicle
fromone side of the corner cannot see the other vehicles from
the other side of the corner. We consider the blind corners
as the corners with obstacles and they rarely have space for
sidewalk. The blind corners can be generally found in many
locations, for example, in the cities of Asian countries, in
small alley, in local way, and inside the organization area.
These locations are surrounded by buildings that obstruct
the driver’s line of sight as shown in Figure 1. Not only
can the buildings cause the blind corner, but also walls,
trees, and construction sites can also cause the blind corner.
Furthermore, the traffic lights are rarely found in such
locations. That is why the accidents could occur easily at the
blind corners.

Even though the line of sight of the driver at the blind
corners is blocked by the obstacles, wireless communication
can partially pass through the obstacles. As a result, the vehi-
cles can sense other vehicles around. The wireless commu-
nication network among vehicles is introduced as Vehicular
Ad Hoc Network (VANET). VANET has been developed to
enhance the quality of road transportation and Intelligent
Transportation System (ITS). VANET consists of 2 types of
communications: vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I). One of the major ITS applications is
the safety application, in which some warning signals can be
sent to other vehicles in case there are vehicles or pedestrians
nearby. By receiving the signals, the intelligent vehicle can
decide if it canmove on or it needs to brake.This could reduce
the number of accidents.

The IEEE developed the 802.11p Wireless Access for
Vehicular Environment (WAVE) standard as a support for
VANET applications [3]. The IEEE 802.11p has the commu-
nication range up to 1,000 m if the vehicle speed is less
than 200 km/h. As the blind corner is one of the critical
locations where the accidents can occur easily, the VANET
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Figure 1: Sample building that causes blind corner.

communication could help notify the driver. Nevertheless,
the obstacles at the blind corner not only obstruct the sight
of the driver but also obstruct the wave propagation signal.
Consequently, the communication could fail easily. In other
words, the performance of IEEE 802.11p can be degraded
when the communication occurs at the blind corner. This is
one of the vulnerabilities of IEEE 802.11p communications for
safety applications [4].

The effect of the obstruction leads to the decreased com-
munication range of IEEE 802.11p and the performance
degradation of the protocols and applications that rely on
VANET. To consider this issue, researchers and developers
evaluate their work using both real-world experiment and
simulation. The real-world experiment is the evaluation
method that uses real equipment running in real scenarios.
Although this method provides the testing performance
accurately, it is time-consuming, expensive, and difficult to
reproduce the test cases and it is difficult to scale to large
scenarios. Thus, the simulation is an alternative method for
performance evaluation.

To enable realistic simulation, the propagationmodels are
applied to the nodes in the simulation. Recently, there have
been researches about the propagation models for each kind
of obstructions such as vehicle obstruction [5, 6] and building
obstruction [7–12]. These models have been evaluated by
comparison to the results from the real experiments. As the
models are applied, the simulation results can become more
realistic in each specific scenario. However, to the best of our
knowledge, the existing models are not suitable for applying
in blind corner scenario.

In our previous works, we conducted the real-world
experiment to study the performance of IEEE 802.11p in blind
corner scenario [12]. The experiment was conducted using
Denso Wireless Safety Unit (WSU), which is IEEE 802.11p
communication module. Each vehicle was equipped with
the WSU module. The results showed that two vehicles at
different sides of the corner can communicatewith each other
when the minimum distance between the vehicle and the
corner is less than 60 m.The results emphasized that the per-
formance at the blind corner should be taken into a serious
consideration when developing any safety applications.

In this paper, our contribution is twofold. The first
contribution is that we extend our previous work to cover
more blind corners in order to investigate and generalize the
characteristics of the blind corners regardless of the specific
corners. The second contribution is that we propose a novel
blind corner model, which is implemented as an extension
of the well-known models in the network simulators. This
model can represent the characteristics of IEEE 802.11p
communication at blind corners realistically.

There are two methods to construct a new model which
are ray tracingmethod and flat propagationmethod [10].The
ray tracing method has a complex computation, consumes a
lot of resources and time, and is difficult to parameterize the
parameters. On the other hand, the flat propagation method
normally calculates some values and uses some probabilistic
functions to represent signal propagation loss. Our design
concern is that the model has to be simple in order to con-
sume less timewhen it is applied in the simulation.Therefore,
we use the flat propagationmethod. Ourmodel can be imple-
mented as an extension of the two-ray ground model and the
Nakagami model, the well-known propagation models in the
network simulators, so it is easily applied to any network sim-
ulators.The network simulator that we use in this work is NS-
3 [13], which is open source software for network simulation
and is very popular as a network platform in research and
education. For performance evaluation, we conduct extensive
real-world experiments and compare the results from the
experiments to the results from our proposed model.

The following of this paper is organized as follows: the
background knowledge and related works about propagation
models are described in Section 2.Then, our field experiment
settings and results are shown in Section 3. In Section 4, our
model is elaborated. The discussion and comparison with
other related works are shown in Section 5. Finally, Section 6
concludes our work.

2. Background Knowledge and Related Works

The blind corner is a critical scenario for the safety applica-
tions, so the performance of the safety application should be
considered. Althoughwe can install the infrastructure such as
Roadside Unit (RSU) at the corner to improve the communi-
cation performance, it consumes a lot of cost for deployment.
Moreover, it is not cost-effective to deploy the RSUs at all
corners in the city because there are too many blind corners
in most of the countries, especially the countries in Asia.
Therefore, the scenario where the communication occurs
at the blind corners without any additional infrastructures
should be taken into consideration. Such scenario can be
considered as beneficial to the safety applications because it
can help reduce the accidents at any corners.

One method that can help simulate the communication
effectively is to add the propagation loss models or signal
attenuation models. There are two methods to construct
propagation models, which are ray tracing method [14, 15]
and flat propagation method [8–11]. The ray tracing method
traces the signal from source to destination using the charac-
teristics of signals like reflection, diffraction, and interference.
Then, the loss of the signal is calculated. Although this



Journal of Advanced Transportation 3

Table 1: Comparison of the models.

Issue Obstacle model
[8, 9]

CORNER model
[10, 11]

Blind corner model
(our model)

(i) Signal attenuation ✓ ✓ ✓
(ii) Simulator used NS-3, Omnet QualNet NS-3
(iii) Communication module used in the
real experiments IEEE 802.11p IEEE 802.11b/g IEEE 802.11p

(iv) Characteristics of the corner used in the
experiment Not blind corner Not blind corner

Blind corner (the corner with no
space for side walk or the side

walk less than 1 m)
(v) Parameters used in path loss calculation
approach

Number of walls
penetrated

Wave characteristics
parameter Minimum distance

method can give an accurate signal strength at the destination
as an output of the model, it is not widely used because the
obstacle topologies and the signal attenuation characteristics
for each obstacle have to be collected and set in advance.
Moreover, it consumes a lot of resource and simulation time.

Researchers mostly use the flat propagation method
instead of the ray tracing method. The flat propagation
method utilizes values that can be obtained from the topology
easily as inputs for the formula. The formula will give a
result as attenuated signal strength. The most common value
that is used as an input is distance. This method consumes
less resource and simulation time. The examples of the
models using this method are two-ray ground model and
Nakagami model.These twomodels are embedded into most
of the network simulators. However, many researchers still
introduce new models based on the flat propagation method
for more realistic simulation in some specific scenarios.

The obstacle model [8, 9] uses number of walls where
the signal has to penetrate as a main variable for formula
calculation. As a result, the obstruction amount of the signal
depends on number of walls the signal is passing through.
This model focuses mainly on building obstacles, while the
CORNERmodel [10, 11] uses the wave characteristics such as
reflection and diffraction as a main variable for formula cal-
culation. The CORNER model classifies the scenarios into 3
categories: line of sight (LOS), non-line of sight with 1 corner
(NLOS1), and non-line of sight with 2 corners (NLOS2).

Our work focuses on blind corners, which are the corners
that have no space for sidewalk or the corner with the
sidewalk less than 1 meter. At the corner with no space
for sidewalk, the signal from the transmission node will
penetrate to the wall, leading tomore signal obstruction. Our
model is different from the obstacle model and the CORNER
model in that we use the minimum distance between the
vehicles to the corner as the main parameter to calculate in
our formula. We explain the rationale behind our design in
Section 4.

Our model, the obstacle model, and the CORNERmodel
are compared as shown in Table 1. All of the models per-
form signal attenuation when the transmitted signal travels
through the obstacles. In order to calculate the path loss,
the obstacle model uses number of walls penetrated, the
CORNER model uses wave characteristics such as reflection
and diffraction effects, and our model uses the minimum

Antennas

Power source connector
Wireless Access Point (AP)

GPS Receiver

PowerAntennasGPS LAN
USB

power
for AP

Figure 2: Denso WSU experiment set.

distance as the main parameter. The obstacle model and our
model are implemented in the NS-3 simulator, whereas the
CORNER model is implemented in the QualNet simulator.
The obstacle model is also embedded in Veins framework
based on Omnet simulator [16]. For the communication
module used in the real experiments, IEEE 802.11p is used in
our model and the obstacle model, whereas IEEE 802.11b/g is
used for the CORNER model.

3. Field Experiment

We set up field experiment to study the characteristics of
real IEEE 802.11p communication devices in blind corner
scenario [12]. Our previous work reveals the performance
of IEEE 802.11p where the communication range among 2
vehicles in blind corner scenario is less than 6% of full
specification of IEEE 802.11p, which is 1,000 m. In order
to investigate the performance in more details, we extend
the experiment to cover more samples of blind corners and
propose the model for using in the simulators.

3.1. Field Experiment Settings. We set up the experiment
scenario using 2 vehicles on different side of the blind corner.
Each vehicle is equipped with Denso Wireless Safety Unit
(WSU), which is connected to 2 external antennas (see
Figure 2).The antennas are placed at 1.2m fromground. IEEE
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Figure 3: The experiment scenario: (a) bird view and (b) perspective view.

Table 2: The experiment settings.

Settings Values
(i) Data transmission device Denso WSU 5001-T

(ii) Antennas 2 external antennas at 1.2 m from
ground

(iii) Transmission power 20 dBm
(iv) Beacon interval 10 Hz
(v) Total number of packets
sent each experiment case Approximately 100 beacons

(vi) Number of experiments 4 blind corners

802.11p is used as a communication module in Denso WSU.
Because GPS does not provide accurate position information,
we have measured and recorded the location manually with
a standard measuring wheel. As a result, we can obtain an
accurate position of the vehicle which leads to more accurate
result.

The network traffic generated in the experiment is 10
Hz beacon, which is the minimum transmission frequency
required for safety applications [17]. The attached antennas
transmit the signal with 20 dBm power. In each experiment
case, one vehicle is fixed at distance d1 on one side of the
blind corner. The other vehicle is moving between d2 – 1
m and d2 + 1 m on the other side of the blind corner.
Then, we calculate the average value of the results for that
point. We send approximately 100 beacons for each case and
calculate the packet delivery ratio and average RSSI. The
experiment scenario is depicted in Figure 3 and the settings
are summarized in Table 2.

We did experiments at 4 blind corners: Electrical Engi-
neering Lab (see Figure 4), Mechanical Engineering Lab
(see Figure 5), Civil Engineering Lab (see Figure 6), and
Centennial Building (see Figure 7) in Faculty of Engineering,
Chulalongkorn University. These 4 blind corners represent
different types of blind corners. We divide the blind corners
into 2 types, which are the corner with large obstruction
(Electrical Engineering Lab and Mechanical Engineering

Figure 4: Electrical Engineering Lab.

Figure 5: Mechanical Engineering Lab.

Lab) and the corner with small obstruction (Civil Engineer-
ing Lab and Centennial Building). The corner with large
obstructions is the corner with concrete building, which has
a lot of large machines made of metal inside.The corner with
small obstruction is the corner with concrete building which
has a wide free space inside and mostly contains tables and
chairs. The locations of all blind corners in our experiment
are shown in bird’s eye view in Figure 8. Because the range
of each corner is different, the maximum distance between
the vehicles and the corner is differently set for each blind
corner. The range for each experiment is shown in Table 3.
We conducted extensive experiments and found out that
the results have the same trend regardless of the day of
the experiment and distance step. In order to conduct the
experiment with less time, we increase the distance step in
our later experiments.
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Table 3: Experiment distance for each blind corner.

Location Vehicle 1 distance (𝑑1) Vehicle 2 distance (𝑑2)
Electrical Engineering Lab 0, 5, 10, 15, 20, 30, 40 m 1 – 55 m (step every 2 m)

Mechanical Engineering Lab 0, 5, 10, 15, 20, 30, 40 m 1 – 30 m (step every 3 m)
30 – 58 m (step every 4 m)

Civil Engineering Lab 0, 5, 10, 15, 20, 30, 40 m
1 – 15 m (step every 2 m)
15 – 39 m (step every 3 m)
39 – 55 (step every 4 m)

Centennial Building 0, 5, 10, 20, 30 m 1 – 30 m (step every 3 m)
30 – 42 m (step every 4 m)

Figure 6: Civil Engineering Lab.

Figure 7: Centennial Building.

3.2. Field Experimental Results. Packet delivery ratio (PDR)
and average Received Signal Strength Indicator (RSSI) are
our evaluation metrics. The PDR is calculated from the ratio
between number of packets received at the destination node
and number of packets sent by the source node. The average
RSSI is calculated by averaging RSSI of all the received
packets at the destination node. The results for each blind
corner are shown in 3-dimensional graph. For the PDR, the
3 dimensions are the distance between the first vehicle and
the corner, the distance between the second vehicle and the
corner, and PDR. For the average RSSI, the 3 dimensions
are the distance between the first vehicle and the corner, the
distance between the second vehicle and the corner, and the
average RSSI.

Figure 9 shows the real experimental results for all blind
corners. Figures 9(a) and 9(b) show PDR and RSSI results
of the first blind corner (Electrical Engineering Lab). Figures
9(c) and 9(d) show PDR and RSSI results of the second blind
corner (Mechanical Engineering Lab). Figures 9(e) and 9(f)
show PDR and RSSI results of the third blind corner (Civil
Engineering Lab). Figures 9(g) and 9(h) show PDR and RSSI

1
3

2

4

Figure 8:The bird’s eye view of the blind corners in our experiment.(1) Electrical Engineering lab. (2)Mechanical Engineering Lab. (3)
Civil Engineering Lab. (4) Centennial Building.

results of the fourth blind corner (Centennial Building). As
can be seen from the results, both PDR and RSSI are an
inverse variation to the distance from the corner.

According to the results from 4 blind corners, we can
divide the blind corners into 2 typeswhich are the cornerwith
large obstruction (the first and the second blind corners) and
the corner with small obstruction (the third and the fourth
blind corners). The first and the second blind corners are
concrete buildings with a lot of largemachines inside, leading
to a lot of signal attenuations, while the third and the fourth
blind corners are concrete buildings with a wide free space
inside, leading to less signal attenuation.

Moreover, it can be noticed that all the results shown in
the graphs are quite symmetric.Therefore, PDR and the aver-
age RSSI are associated with the minimum distance between
the vehicles and the corner. This is because the closer the
vehicle to the corner is, the smaller effect of blind corner the
communication experiences. More discussion can be found
in our previous work [12].

From the experimental results, we also observe the laten-
cy of the transmission between 2 nodes.The latency is around
89-95 ms for all distances at all blind corners. This latency
value can be considered as a parameter in the simulation
setup.

4. Blind Corner Propagation Loss Model

4.1. Study of NS-3 Propagation Model. Network simulator
is a tool that is very popular in education and research
field. The network simulator allows researchers to simulate
various kinds of networks and various kinds of scenarios
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Figure 9: Results from real experiments. (a) PDR for Electrical Engineering Lab. (b) RSSI for Electrical Engineering Lab. (c) PDR for
Mechanical Engineering Lab. (d) RSSI for Mechanical Engineering Lab. (e) PDR for Civil Engineering Lab. (f) RSSI for Civil Engineering
Lab. (g) PDR for Centennial Building. (h) RSSI for Centennial Building.

which are convenient for simulating a large-scale network.
One of the most popular network simulators is NS-3, which
is open-sourced software. Moreover, NS-3 also supports
simulation over vehicular network that uses IEEE 802.11p as
wireless interface. Using the simulator, we have to consider
which propagation model is suitable to simulate packet
loss.

Normally, for vehicular network, the well-known propa-
gation model setting is to use two-ray ground model coupled
with Nakagami model. These two models result from the
Euclidean distance between transmission node and receive
node. By using NS-3, the results of PDR and the average
RSSI when applying these models are shown in Figure 10. We
observe that the graph characteristics of the simulation results
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Figure 10: Simulation results when applying two-ray ground model coupled with Nakagami model. (a) PDR. (b) RSSI.
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Figure 11: Results from real experiments for Electrical Engineering Lab. (a) PDR. (b) RSSI.

are similar to the results from real blind corner experiments.
For more clarification, we simplify the result from real
experiments in Figures 9(a) and 9(b) to 2-dimensional graph
as shown in Figures 11(a) and 11(b). Each graph shows the
result for different distances of vehicle 1. As can be seen, all
the graphs have the same trend, similarly to S-shaped curve.
Each point in the real experiment result in Figure 11 can be
mapped to the result in Figure 10 by increasing the distance.
On the other words, the signal characteristics when travelling
through the blind corner behave the same as the signal when
the vehicles are in line of sight at longer distance. As a result,
we modify the distance calculation when the signals travel
through blind corner. Since distance is the most important
factor for calculation in the propagation models, modifying
distance calculation is like modifying the characteristics of
the models applied. This can represent characteristics of the
communication at blind corners.

Referring to the variables depicted in Figure 3, wemodify
the distance calculation and use the summation of distances

between the vehicles and the corner (𝑑1 + 𝑑2) instead of
using the Euclidean distance (𝑑). This is because in the case
of the blind corner this summation represents the distance
the signal really travels. Moreover, as we discussed that the
minimum distance is associated with the result, we add the
minimum distance factor to the distance calculation. This
factor represents that the closer the vehicle to the corner
is, the smaller effect of blind corner the communication
experiences. This leads to the higher PDR. As a result, the
estimated distance is formulated as shown in the following
equation:

Estimated Distance = (𝑑1 + 𝑑2) ×min (𝑑1, 𝑑2) (1)

In order to investigate the PDR and RSSI results when
applying our estimated distance equation, we set up the
simulation scenario the same as the real experiment scenario
which is shown in Table 2. There are 2 vehicles on different
side of blind corners. The 2 vehicles are transmitting and
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Figure 12: Results for preliminary simulation. (a) PDR. (b) RSSI.

Input: Location of vehicle V1 and V2, Obstacles list, 𝛼
Output: Distance(1) Distance = UNKNOWN(2) if there are obstacles between V1 and V2 then(3) d1 = Distance of V1 from corner(4) d2 = Distance of V2 from corner(5) Distance = (𝑑1 + 𝑑2) ×min(𝑑1, 𝑑2) × 𝛼(6) else do(7) Distance = Distance between V1 and V2(8) end if(9) return Distance

Algorithm 1: Blind corner model.

receiving IEEE 802.11p signal.The transmitted signal strength
is 20 dBm.The traffic generated is 10 Hz beacon.

The result from the preliminary simulation is shown
in Figure 12. As can be seen, the graph characteristics in
Figure 12 are similar to the results from real experiments
shown in Figure 9. The packet delivery ratio and the average
RSSI have inverse variation to the distance. So we consider
this method to be used in our model.

4.2. Proposed Blind Corner Model. From the experimental
results in Figure 9, each type of blind corners does not
obstruct the transmitted signal equally.ThePDR ratio and the
average RSSI are not the same for all blind corners. According
to this reason, it can be seen that only the minimum distance
is not enough for the model. Therefore, we add a parameter𝛼 in order to adjust the degree of the obstruction. Equation
(2) formulates the modified version of the estimated distance
from (1).

Estimated Distance = (𝑑1 + 𝑑2) ×min (𝑑1, 𝑑2) × 𝛼 (2)

The parameter 𝛼 is used to adjust the degree of the
obstruction, which represents low obstruction to high
obstruction. 𝛼 must be greater than or equal to 0.4. If 𝛼 is
less than 0.4, it cannot be used because it makes the estimated
distance lower than the real Euclidean distance.This will lead
to nonrealistic simulation result.

The distance calculation can be divided into 2 cases: (1)
line of sight and (2) non-line of sight. If the vehicles are in
line of sight, it is not necessary to use our distance calculation

model.The real Euclidean distance can be used as an input in
Nakagami or two-ray groundmodels.However, if the vehicles
are in non-line of sight, our distance calculation model is
useful.The estimated distance calculated according to (2) can
be used as an input in Nakagami or two-ray ground models
instead.The algorithm that describes our distance calculation
is shown in Algorithm 1.

5. Results and Discussion

In this section, we show the results from the simulation using
ourmodel and suggest the appropriate range of the parameter𝛼. We simulate the scenarios using the simulation setting as
shown in Table 2, so that all the settings will be the same
as the real experiments. Then, we vary the value of 𝛼. We
compare the results from the simulation and those from
the real experiments for each blind corner. We calculate the
root-mean-square error (RMSE) between the results from the
simulation and those from the real experiments using (3).
Equation (3) shows RMSE calculation, where 𝑖 is the distance
between the first vehicle and the corner, 𝑗 is the distance
between the second vehicle and the corner, 𝑥𝑖,𝑗 is the PDR
of the distance pair 𝑖, 𝑗 from the real experiment, 𝑠𝑖,𝑗 is the
PDR from the simulation, and 𝑛 is number of distance pairs.
The RMSE for each 𝛼 and each blind corner are shown in
Figure 13.

RMSE = √∑Each pair of distance 𝑖,𝑗 (𝑥𝑖,𝑗 − 𝑠𝑖,𝑗)2𝑛 (3)
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Figure 13: RMSE between simulation result and real experiment
result.
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Figure 14: Results from the simulation with 𝛼 = 1.1 for blind corner
with large obstruction. (a) PDR. (b) RSSI.

According to Figure 13, we suggest the weight factor 𝛼 for
each type of blind corners as follows.

For the first and the second blind corners of the building
with large obstruction, we use 𝛼 between 1.1 and 1.3. The
simulation results using the recommended values 1.1 and 1.3
are shown in Figures 14 and 15, respectively. As can be seen,
Figure 14 provides similar results to Figures 9(a) and 9(b).
Figure 15 provides similar results to Figures 9(c) and 9(d).
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Figure 15: Results from the simulation with 𝛼 = 1.3 for blind corner
with large obstruction. (a) PDR. (b) RSSI.

For the third and the fourth blind corners of the building
with small obstruction, we use 𝛼 between 0.4 and 0.5. The
simulation results using the recommended values 0.4 and 0.5
are shown in Figures 16 and 17, respectively. As can be seen,
Figure 16 provides similar results to Figures 9(e) and 9(f).
Figure 17 provides similar results to Figures 9(g) and 9(h).

The results from the simulation are close to the results
from real experiments. However, the results from the simu-
lation have a higher PDR and average RSSI, and the graph
trends are smoother than the graph for real experiments.
This is because in real experiments there might be some
other factors that we cannot detect or some factors that are
difficult to produce in simulations such as environmental
interferences.

We also compare our work with the obstacle model [8, 9]
which is implemented in NS-3. The obstacle model is also
embedded in Veins framework based on Omnet simulator,
which is another popular network simulator. Therefore, we
use the obstacle model as our baseline. The simulation
scenario is set the same as the real experiment scenario,
which is shown in Table 2. The results using the obstacle
model are shown in Figure 18. As can be seen, the graph
characteristics of PDR reduce rapidly at a specific range. The
result does not reflect communication in real world, where
PDR gradually reduces. Compared to our results shown in
Figures 14–17, it can be seen that ourmodel can providemuch
more similar results to the real world and better represents the
real characteristics of IEEE 802.11p at blind corners.
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Figure 16: Results from the simulation with 𝛼 = 0.4 for blind corner with small obstruction. (a) PDR. (b) RSSI.
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Figure 17: Results from the simulation with 𝛼 = 0.5 for blind corner with small obstruction. (a) PDR. (b) RSSI.

0
510152025303540

0 10 20 30 40 50 60
Vehicle 1 distance from corner (m)Vehicle 2 distance from corner (m)

 0
10
20
30
40
50
60
70
80
90

0
20
40
60
80

100

Pa
ck

et
 D

el
iv

er
y R

at
io

 (%
)

(a) PDR

0
510152025303540

0 10 20 30 40 50 60 Vehicle 1 distance from corner (m)Vehicle 2 distance from corner (m)
 −95

−90
−85
−80
−75
−70
−65
−60
−55
−50
−45
−40
−35
−30

−100
−90
−80
−70
−60
−50
−40
−30

RS
SI

 (d
bm

)

(b) RSSI

Figure 18: Results from the simulation when simulating with obstacle model. (a) PDR. (b) RSSI.

6. Conclusion

In this paper, we propose the blind corner model that
represents the characteristics of IEEE 802.11p communication
at blind corners. We modify the distance calculation when
the signals travel through blind corner. Our model utilizes
the minimum distance between the vehicles to the corner,
which is the most important variable for propagation model
calculation. Moreover, our model has a parameter to adjust
the degree of the obstruction. We also conduct extensive real
experiments with IEEE 802.11p communication devices and

do comparison to the simulation result. According to the
experimental results and the simulation results, we suggest
that the parameter should be set between 1.1 and 1.3 for the
buildings with large obstruction and between 0.4 and 0.5
for the buildings with small obstruction. The comparison
result shows that our proposedmodel can represent the char-
acteristics of IEEE 802.11p communication at blind corners
better than the obstacle model. Therefore, our research is
useful in research field. The protocols and applications can
be tested realistically in blind corner scenarios by using our
model.
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