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Important advances in mathematics, physics, biology, economics, and engineering science
have shown the importance of the analysis of nonlinear vibrations, instabilities, and strongly
coupled dynamical behavior.

New investigation tools enable us to better understand the dynamic behavior of more
complex structures. However, the increasing interest in mechanical structures with extreme
performances has propelled the scientific community toward the search for solutions of
complex problems and systems exhibiting strong nonlinearities. As a consequence, there is
an increasing demand for both high-performance, nonlinear structural components as well
as advanced multidisciplinary and multiscale mathematical models and methods.

It should be kept in mind that linearity is one of the properties of dynamic systems
which is very rarely fulfilled. Nonetheless, if the system under consideration is not strongly
nonlinear, then the methods of spectral and correlation analysis can be applied and will lead
to sensible results describing a linear approximation of the system at hand. But there are cases
of strongly nonlinear systems for which the output signal might not be even proportional to
the input. This is a very important problem if one is trying to determine, for example, extreme
values of the system response like in cases of catastrophic structural failure prediction. In such
cases of strong nonlinear behavior, the system nonlinearities should be taken into account.
When dealing with phenomena involving large amplitude and/or high frequency vibrations
or a great number of coupled oscillators, the classical methods of linear dynamics have to be
replaced by new specific mathematical tools.

In this special issue, the current state of nonlinear structural dynamic models in
vibration analysis, stability analysis, and control has been reviewed. Known methods for
analysis of nonlinear and oscillating systems at a macroscopic scale have been explored in
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some new problems, and some new techniques have been applied to complex structures as
well.

There are thirty five papers, collected in this special issue on Nonlinear vibrations,
stability analysis, and control, that are shedding light on a wide range of topics; however,
they do not cover all rich contents of these important fields.

Mathematical models and methods for nonlinear and strongly coupled (correlated)
oscillating systems and for distributed-parameter structures have been investigated and
improved in the following main topics:

(i) vibration analysis of distributed-parameter and multibody systems, parametric
models,

(ii) global methods, wavelet methods, and fractal analysis for spatially and temporally
coupled oscillators,

(iii) nonlinear time series methods for dynamic systems,

(iv) control of nonlinear vibrations and bifurcations, control of chaos in vibrating
systems is as well as transient chaos chaotic oscillators and bifurcations.

(v) Micro- and nano-vibrating structural systems.

This special issue deals with interesting and modern problems in vibrations, stability,
and control. Some of these papers investigate theoretical problems while others are devoted
to more practical applications. Some papers deal with structural engineering methods and
applications such as stochastic finite elements, laminated composite plates, Jeffcott rotor,
Euler-Bernoulli and magnetic beams, vehicle-pipes-soil vibration, gear transmission, and
compressor vibrations. Others are devoted to biomechanical applications: cardiovascular
system, ossicular chain, and human standing model, while some papers discuss oscillations,
stability, and control problems in challenging topics, such as quantum interaction, financial
systems, and energy production.

The collection of papers in this special issue covers a very wide range of applications
ranging from purely mathematical tools for engineering problems to applications of
nonlinear dynamics tools for human and economic problems. Some of the papers are
dedicated to mathematical methods based on nonlinear dynamics tools, for example,
wavelets for solving different mathematical and engineering problems. Others concentrate
on specific nonlinear systems with well-expressed nonlinear behavior and offer methods
for their analysis. The special issue contains studies on different engineering applications of
nonlinear dynamic systems for the analysis of the behavior of essential structural components
like beams, plates, and pipes. Some papers offer nonlinear-dynamics-based analysis of
important machinery components and applications, for example, rotors, gear transmissions,
vehicle vibrations, power transmission lines, hydraulic systems, compressors, gas stations,
controllers. Medical, human, climate, and financial applications of nonlinear dynamics tools
are considered also.

In all these papers, the authors efforts succeeded in showing the importance of
nonlinear vibrations, stability, and control topics in opening new frontiers for challenging
future researches.

Carlo Cattani
Alexander Seyranian

Irina Trendafilova
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Shannon wavelets are used to define a method for the solution of integrodifferential equations.
This method is based on (1) the Galerking method, (2) the Shannon wavelet representation, (3) the
decorrelation of the generalized Shannon sampling theorem, and (4) the definition of connection
coefficients. The Shannon sampling theorem is considered in a more general approach suitable
for analysing functions ranging in multifrequency bands. This generalization coincides with the
Shannon wavelet reconstruction of L2(R) functions. Shannon wavelets are C∞-functions and their
any order derivatives can be analytically defined by some kind of a finite hypergeometric series
(connection coefficients).

1. Introduction

In recent years wavelets have been successfully applied to the wavelet representation of
integro-differential operators, thus giving rise to the so-called wavelet solutions of PDE and
integral equations. While wavelet solutions of PDEs can be easily find in a large specific
literature, the wavelet representation of integro-differential operators cannot be considered
completely achieved and only few papers discuss in depth this question with particular
regards to methods for the integral equations. Some of them refer to the Haar wavelets [1–3]
to the harmonic wavelets [4–9] and to the spline-Shannon wavelets [10–13]. These methods
are mainly based on the Petrov-Galerkin method with a suitable choice of the collocation
points [14]. Alternatively to the collocation method, there has been also proposed, for the
solution of PDEs, the evaluation of the differential operators on the wavelet basis, thus
defining the so-called connection coefficients [6, 15–21].

Wavelets [22] are localized functions which are a useful tool in many different
applications: signal analysis, data compression, operator analysis, PDE solving (see, e.g.,
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[15, 23] and references therein), vibration analysis, and solid mechanics [23]. Very often
wavelets have been used only as any other kind of orthogonal functions, without taking into
consideration their fundamental properties. The main feature of wavelets is, in fact, their
possibility to split objects into different scale components [22, 23] according to the multiscale
resolution analysis. For the L2(R) functions, that is, functions with decay to infinity, wavelets
give the best approximation. When the function is localized in space, that is, the bottom length
of the function is within a short interval (function with a compact support), such as pulses,
any other reconstruction, but wavelets, leads towards undesirable problems such as the Gibbs
phenomenon when the approximation is made in the Fourier basis. Wavelets are the most
expedient basis for the analysis of impulse functions (pulses) [24, 25].

Among the many families of wavelets, Shannon wavelets [17] offer some more specific
advantages, which are often missing in the others. In fact, Shannon wavelets

(1) are analytically defined;

(2) are infinitely differentiable;

(3) are sharply bounded in the frequency domain, thus allowing a decomposition of
frequencies in narrow bands;

(4) enjoy a generalization of the Shannon sampling theorem, which extend to all range
of frequencies [17]

(5) give rise to the connection coefficients which can be analytically defined [15–17]
for any order derivatives, while for the other wavelet families they were computed
only numerically and only for the lower order derivatives [18, 19, 21].

The (Shannon wavelet) connection coefficients are obtained in [17] as a finite series
(for any order derivatives). In Latto’s method [18, 20, 21], instead, these coefficients
were obtained only (for the Daubechies wavelets) by using the inclusion axiom but in
approximated form and only for the first two-order derivatives. The knowledge of the
derivatives of the basis enables us to approximate a function and its derivatives and it is
an expedient tool for the projection of differential operators in the numerical computation of
the solution of both partial and ordinary differential equations [6, 15, 23, 26].

The wavelet reconstruction by using Shannon wavelets is also a fundamental step
in the analysis of functions-operators. In fact, due to their definition Shannon wavelets are
box functions in the frequency domain, thus allowing a sharp decorrelation of frequencies,
which is an important feature in many physical-engineering applications. In fact, the
reconstruction by Shannon wavelets ranges in multifrequency bands. Comparing with the
Shannon sampling theorem where the frequency band is only one, the reconstruction by
Shannon wavelets can be done for functions ranging in all frequency bands (see, e.g., [17]).
The Shannon sampling theorem [27], which plays a fundamental role in signal analysis
and applications, will be generalized, so that under suitable hypotheses a few set of values
(samples) and a preliminary chosen Shannon wavelet basis enable us to completely represent,
by the wavelet coefficients, the continuous signal and its frequencies.

The Shannon wavelet solution of an integrodifferential equation (with functions
localized in space and slow decay in frequency) will be computed by using the Petrov-
Galerkin method and the connection coefficients. The wavelet coefficients enable to represent
the solution in the frequency domain singling out the contribution to different frequencies.

This paper is organized as follows. Section 2 deals with some preliminary remarks and
properties of Shannon wavelets also in frequency domain; the reconstruction of a function
is given in Section 3 together with the generalization of the Shannon sampling theorem;
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the error of the wavelet approximation is computed. The wavelet reconstruction of the
derivatives of the basis and the connection coefficients are given in Section 4. Section 5 deals
with the Shannon wavelet solution of an integrodifferential equation and an example is given
at last in Section 6.

2. Shannon Wavelets

Shannon wavelets theory (see, e.g., [16, 17, 28, 29]) is based on the scaling function ϕ(x) (also
known as sinc function)

ϕ(x) = sincx def=
sinπx
πx

=
eπix − e−πix

2πix
, (2.1)

and the corresponding wavelet [16, 17, 28, 29]

ψ(x) =
sinπ(x − 1/2) − sin 2π(x − 1/2)

π(x − 1/2)

=
e−2iπx(−i + eiπx + e3iπx + ie4iπx)

(π − 2πx)
.

(2.2)

From these functions a multiscale analysis [22] can be derived. The dilated and
translated instances, depending on the scaling parameter n and space shift k, are

ϕnk(x) = 2n/2ϕ(2nx − k) = 2n/2 sinπ(2nx − k)
π(2nx − k)

= 2n/2 e
πi(2nx−k) − e−πi(2nx−k)

2πi(2nx − k) ,

(2.3)

ψnk (x) = 2n/2 sinπ(2nx − k − 1/2) − sin 2π(2nx − k − 1/2)
π(2nx − k − 1/2)

=
2n/2

2π(2nx − k + 1/2)

2∑

s=1

i1+sesπi(2
nx−k) − i1−se−sπi(2nx−k)

(2.4)

respectively.

2.1. Properties of the Shannon Scaling and Wavelet Functions

By a direct computation it can be easily seen that

ϕ0
k(h) = δkh, (h, k ∈ Z), (2.5)
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with δkh Kroneker symbol, so that

ϕ0
k(x) = 0, x = h/= k (h, k ∈ Z), (2.6)

ψnk (x) = 0, x = 2−n
(
k +

1
2
± 1

3

)
, (n ∈ N, k ∈ Z). (2.7)

It is also

lim
x→ 2−n(h+1/2)

ψnk (x) = −2n/2δhk. (2.8)

Thus, according to (2.5), (2.8), for each fixed scale n, we can choose a set of points x:

x ∈ {h} ∪
{

2−n
(
h +

1
2
± 1

3

)}
, (n ∈ N, h ∈ Z), (2.9)

where either the scaling functions or the wavelet vanishes, but it is important to notice that
when the scaling function is zero, the wavelet is not and viceversa. As we shall see later, this
property will simplify the numerical methods based on collocation point.

Since they belong to L2(R), both families of scaling and wavelet functions have a
(slow) decay to zero; in fact, according to their definition (2.3), (2.4)

lim
x→±∞

ϕnk(x) = 0, lim
x→±∞

ψnk (x) = 0, (2.10)

it can be also easily checked that for a fixed x0

ϕnk+1(x0) < ϕnk(x0),
ϕn
k+1(x0)
ϕn
k(x0)

=
2nx − k

2nx − k + 1
< 1,

ψn
k+1(x0)
ψn
k (x0)

=
2n+1x − 2k − 1
2n+1x − 2k − 3

× 2 sin(π(2nx − k)) − 1
2 sin(π(2nx − k)) + 1

.

(2.11)

Since

lim
x→∞

2n+1x − 2k − 1
2n+1x − 2k − 3

= 1,

2 sin(π(2nx − k)) − 1 < 2 sin(π(2nx − k)) + 1,

(2.12)

it is

lim
x→∞

ψn
k+1(x)
ψn
k (x)

< 1. (2.13)
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Analogously we have

ψn+1
k (x0)
ψn
k (x0)

=

√
2
(
2n+1x − 2k − 1

)

2n+2x − 2k − 1
×

cos
(
π
(
2n+1x − k

))
− sin

(
2π
(
2n+1x − k

))

cos(π(2nx − k)) − sin(2π(2nx − k)) ,

lim
x→ 2−n(k+1/2)

ψn+1
k+1(x)
ψn
k (x)

=
2
√

2(cos kπ − sin 2kπ)
(2k − 1)π

=
(−1)k2

√
2

(2k − 1)π
,

∣
∣
∣
∣
∣
(−1)k2

√
2

(2k − 1)π

∣
∣
∣
∣
∣
< 1.

(2.14)

The maximum and minimum values of these functions can be easily computed. The
maximum value of the scaling function ϕ0

k
(x) can be found in correspondence of x = k

max
[
ϕ0
k(xM)

]
= 1, xM = k. (2.15)

The min value of ϕ0
k
(x) can be computed only numerically and it is

min
[
ϕ0
k(x)

]
∼= ϕ0

k(xm) =
sin
√

2π√
2π

, xm = k − 1 ±
√

2. (2.16)

The minimum of the wavelet ψn
k
(x) can be found in correspondence of the middle

point of the zeroes (2.7) so that

min
[
ψnk (xm)

]
= −2n/2, xm = 2−n−1(2k + 1), (2.17)

and the max values of ψn
k
(x) are

max
[
ψnk (xM)

]
= 2n/2 3

√
3

π
, xM =

⎧
⎪⎪⎨

⎪⎪⎩

−2−n
(
k +

1
6

)
,

2−n−1

3
(18k + 7).

(2.18)

2.2. Shannon Wavelets Theory in the Fourier Domain

Let

f̂(ω) = f̂(x) def=
1

2π

∫∞

−∞
f(x)e−iωx dx (2.19)

be the Fourier transform of the function f(x) ∈ L2(R), and

f(x) = 2π
∫∞

−∞
f̂(ω)eiωx dω (2.20)

its inverse transform.
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The Fourier transform of (2.1), (2.2) gives us

ϕ̂(ω) =
1

2π
χ(ω + 3π) =

⎧
⎨

⎩

1
2π

, −π ≤ ω < π

0, elsewhere,
(2.21)

and [17]

ψ̂(ω) =
1

2π
e−iω
[
χ(2ω) + χ(−2ω)

]
(2.22)

with

χ(ω) =

⎧
⎨

⎩

1, 2π ≤ ω < 4π,

0, elsewhere.
(2.23)

Analogously for the dilated and translated instances of scaling/wavelet function, in the
frequency domain, it is

ϕ̂nk(ω) =
2−n/2

2π
e−iωk/2nχ

(ω
2n

+ 3π
)
,

ψ̂nk (ω) = −
2−n/2

2π
e−iω(k+1/2)/2n

[
χ

(
ω

2n−1

)
+ χ
( −ω

2n−1

)]
.

(2.24)

It can be seen that

χ(ω + 3π)
[
χ

(
ω

2n−1

)
+ χ
( −ω

2n−1

)]
= 0 (2.25)

so that by using the function ϕ̂0
k(ω) and ψ̂nk (ω) there is a decorrelation into different non-

overlapping frequency bands.
For each f(x) ∈ L2(R) and g(x) ∈ L2(R), the inner product is defined as

〈
f, g
〉 def=

∫∞

−∞
f(x)g(x)dx, (2.26)

which, according to the Parseval equality, can be expressed also as

〈
f, g
〉 def=

∫∞

−∞
f(x)g(x)dx = 2π

∫∞

−∞
f̂(ω)ĝ(ω)dω = 2π

〈
f̂ , ĝ
〉
, (2.27)

where the bar stands for the complex conjugate.
With respect to the inner product (2.26). The following can be shown. [16, 17]
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Theorem 2.1. Shannon wavelets are orthonormal functions, in the sense that

〈
ψnk (x), ψ

m
h (x)

〉
= δnmδhk, (2.28)

With δnm, δhk being the Kroenecker symbols.

For the proof see [17]. Moreover we have [16, 17].

Theorem 2.2. The translated instances of the Shannon scaling functions ϕn
k
(x), at the level n = 0,

are orthogonal, in the sense that

〈
ϕ0
k(x), ϕ

0
h(x)

〉
= δkh, (2.29)

being ϕ0
k
(x) def= ϕ(x − k).

See the proof in [17].
The scalar product of the (Shannon) scaling functions with respect to the correspond-

ing wavelets is characterized by the following [16, 17].

Theorem 2.3. The translated instances of the Shannon scaling functions ϕn
k
(x), at the level n = 0,

are orthogonal to the Shannon wavelets, in the sense that

〈
ϕ0
k(x), ψ

m
h (x)

〉
= 0, m ≥ 0, (2.30)

being ϕ0
k
(x) def= ϕ(x − k).

Proof is in [17].

3. Reconstruction of a Function by Shannon Wavelets

Let f(x) ∈ L2(R) be a function such that for any value of the parameters n, k ∈ Z, it is

∣∣∣∣

∫∞

−∞
f(x)ϕ0

k(x)dx
∣∣∣∣ ≤ Ak <∞,

∣∣∣∣

∫∞

−∞
f(x)ψnk (x)dx

∣∣∣∣ ≤ B
n
k <∞, (3.1)

and B ⊂ L2(R) the Paley-Wiener space, that is, the space of band limited functions, that is,

supp f̂ ⊂ [−b, b], b <∞. (3.2)

According to the sampling theorem (see, e.g., [27] and references therein) we have the
following.
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Theorem 3.1 (Shannon). If f(x) ∈ L2(R) and supp f̂ ⊂ [−π,π], the series

f(x) =
∞∑

k=−∞
αkϕ

0
k(x) (3.3)

uniformly converges to f(x), and

αk = f(k). (3.4)

Proof (see also [17]). In order to compute the values of the coefficients we have to evaluate the
series in correspondence of the integer:

f(h) =
∞∑

k=−∞
αkϕ

0
k(h)

(2.5)
=

∞∑

k=−∞
αkδkh = αh, (3.5)

having taken into account (2.5).
The convergence follows from the hypotheses on f(x). In particular, the importance of

the band limited frequency can be easily seen by applying the Fourier transform to (3.3):

f̂(ω) =
∞∑

k=−∞
f(k)ϕ̂0

k(x)

(2.24)
=

1
2π

∞∑

k=−∞
f(k)e−iωkχ(ω + 3π)

=
1

2π
χ(ω + 3π)

∞∑

k=−∞
f(k)e−iωk

(3.6)

so that

f̂(ω) =

⎧
⎪⎨

⎪⎩

1
2π

∞∑

k=−∞
f(k)e−iωk, ω ∈ [−π,π]

0, ω /∈ [−π,π].
(3.7)

In other words, if the function is band limited (i.e., with compact support in the frequency
domain), it can be completely reconstructed by a discrete Fourier series. The Fourier
coefficients are the values of the function f(x) sampled at the integers.
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As a generalization of the Paley-Wiener space, and in order to generalize the Shannon
theorem to unbounded intervals, we define the space Bψ ⊇ B of functions f(x) such that the
integrals

αk
def=
〈
f(x), ϕ0

k(x)
〉 (2.27)

=
∫∞

−∞
f(x)ϕ0

k(x)dx,

βnk
def=
〈
f(x), ψnk (x)

〉 (2.27)
=
∫∞

−∞
f(x)ψnk (x)dx

(3.8)

exist and are finite. According to (2.26), (2.27), it is in the Fourier domain that

αk
def=
∫∞

−∞
f(x)ϕ0

k(x)dx
(14)
= 2π〈f̂(x), ̂ϕ0

k
(x)〉 = 2π

∫∞

−∞
f̂(ω)ϕ0

k
(ω)dω

(2.24)
= 2π

∫∞

−∞
f̂(ω)

1
2π

eiωkχ(ω + 3π)dω
(2.23)
=
∫π

−π
f̂(ω)eiωkdω,

βnk
def=
∫∞

−∞
f(x)ψnk (x)dx

(2.27)
= 2π〈f̂(x), ψ̂nk (x)〉

(2.24)
= −2π

∫∞

−∞
f̂(ω)

2−n/2

2π
eiω(k+1/2)/2n

[
χ

(
ω

2n−1

)
+ χ
( −ω

2n−1

)]
dω

(2.23)
= −2−n/2

[∫2n+1π

2nπ
f̂(ω)eiω(k+1/2)/2ndω +

∫−2nπ

−2n+1π

f̂(ω)eiω(k+1/2)/2ndω

]

,

(3.9)

so that

αk =
∫π

−π
f̂(ω)eiωkdω

βnk = −2−n/2

[∫2n+1π

2nπ
f̂(ω)eiω(k+1/2)/2ndω +

∫−2nπ

−2n+1π

f̂(ω)eiω(k+1/2)/2ndω

]

.

(3.10)

For the unbounded interval, let us prove the following.

Theorem 3.2 (Shannon generalized theorem). If f(x) ∈ Bψ ⊂ L2(R) and supp f̂ ⊆ R, the series

f(x) =
∞∑

h=−∞
αhϕ

0
h(x) +

∞∑

n=0

∞∑

k=−∞
βnkψ

n
k (x) (3.11)

converges to f(x), with αh and βn
k
given by (3.8) and (3.10). In particular, when supp f̂ ⊆

[−2N+1π, 2N+1π], it is

f(x) =
∞∑

h=−∞
αhϕ

0
h(x) +

N∑

n=0

∞∑

k=−∞
βnkψ

n
k (x). (3.12)
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Proof. The representation (3.11) follows from the orthogonality of the scaling and Shannon
wavelets (Theorems 2.1, 2.2, and 2.3). The coefficients, which exist and are finite, are given by
(3.8). The convergence of the series is a consequence of the wavelet axioms.

It should be noticed that

supp f̂ = [−π,π]
⋃

n=0,...,∞

[
−2n+1π,−2nπ

]
∪
[
2nπ, 2n+1π

]
, (3.13)

so that for a band limited frequency signal, that is, for a signal whose frequency belongs to the
band [−π,π], this theorem reduces to the Shannon sampling theorem. More in general, the
representation (3.11) takes into account more frequencies ranging in different bands. In this
case we have some nontrivial contributions to the series coefficients from all bands, ranging
from [−2Nπ, 2Nπ]:

supp f̂ = [−π,π]
⋃

n=0,...,N

[
−2n+1π,−2nπ

]
∪
[
2nπ, 2n+1π

]
. (3.14)

In the frequency domain, (3.11) gives

f̂(ω) =
∞∑

h=−∞
αh ϕ̂

0
h(ω) +

∞∑

n=0

∞∑

k=−∞
βnkψ̂

n
k (ω)

f̂(ω)
(2.24)
=

1
2π

∞∑

h=−∞
αhe

−iωhχ(ω + 3π)

− 1
2π

∞∑

n=0

∞∑

k=−∞
2−n/2βnke

−iω(k+1/2)/2n
[
χ

(
ω

2n−1

)
+ χ
( −ω

2n−1

)]
.

(3.15)

That is,

f̂(ω) =
1

2π
χ(ω + 3π)

∞∑

h=−∞
αhe

−iωh

− 1
2π

χ

(
ω

2n−1

) ∞∑

n=0

∞∑

k=−∞
2−n/2βnke

−i ω(k+1/2)/2n

− 1
2π

χ

( −ω
2n−1

) ∞∑

n=0

∞∑

k=−∞
2−n/2βnke

−i ω(k+1/2)/2n .

(3.16)

Moreover, taking into account (2.5), (2.7), we can write (3.11) as

f(x) =
∞∑

h=−∞
f(h)ϕ0

h(x) −
∞∑

n=0

∞∑

k=−∞
2−n/2fn

(
2−n
(
k +

1
2

))
ψnk (x) (3.17)
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with

fn(x)
def=

∞∑

k=−∞

〈
f(x), ψnk (x)

〉
ψnk (x). (3.18)

3.1. Error of the Shannon Wavelet Approximation

Let us fix an upper bound for the series of (3.11) in a such way that we can only have the
approximation

f(x) ∼=
K∑

h=−K
αhϕ

0
h(x) +

N∑

n=0

S∑

k=−S
βnkψ

n
k (x). (3.19)

This approximation can be estimated by the following

Theorem 3.3 (Error of the Shannon wavelet approximation). The error of the approximation
(3.19) is given by

∣∣∣∣∣
f(x) −

K∑

h=−K
αh ϕ

0
h(x) +

N∑

n=0

S∑

k=−S
βnkψ

n
k (x)

∣∣∣∣∣

≤
∣∣∣∣∣
f(−K − 1) + f(K + 1) − 3

√
3

π

[
f

(
2−N−1

(
−S − 1

2

))
+ f
(

2−N−1
(
S +

3
2

))]∣∣∣∣∣
.

(3.20)

Proof. The error of the approximation (3.19) is defined as

f(x) −
K∑

h=−K
αhϕ

0
h(x) +

N∑

n=0

S∑

k=−S
βnkψ

n
k (x)

=
−K−1∑

h=−∞
αh ϕ

0
h(x) +

∞∑

h=K+1

αhϕ
0
h(x) +

∞∑

n=N+1

[
−S−1∑

k=−∞
βnkψ

n
k (x) +

∞∑

k=S+1

βnkψ
n
k (x)

]

.

(3.21)

Concerning the first part of the r.h.s, it is

−K−1∑

h=−∞
αh ϕ

0
h(x) +

∞∑

h=K+1

αhϕ
0
h(x) ≤ max

x∈R

[
−K−1∑

h=−∞
αhϕ

0
h(x) +

∞∑

h=K+1

αhϕ
0
h(x)

]

=
−K−1∑

h=−∞
αh ϕ

0
h(h) +

∞∑

h=K+1

αh ϕ
0
h(h)

(2.5)
=

−K−1∑

h=−∞
αh +

∞∑

h=K+1

αh
(3.3)
=

−K−1∑

h=−∞
f(h) +

∞∑

h=K+1

f(h),

(3.22)
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and since f(x) ∈ L2(R) is a decreasing function,

−K−1∑

h=−∞
αhϕ

0
h(x) +

∞∑

h=K+1

αhϕ
0
h(x) ≤ f(−K − 1) + f(K + 1). (3.23)

Analogously, it is

∞∑

n=N+1

[
−S−1∑

k=−∞
βnkψ

n
k (x) +

∞∑

k=S+1

βnkψ
n
k (x)

]

≤ max
x∈R

∞∑

n=N+1

[
−S−1∑

k=−∞
βnkψ

n
k (x) +

∞∑

k=S+1

βnkψ
n
k (x)

]

(2.18)
=

∞∑

n=N+1

[
−S−1∑

k=−∞
βnkψ

n
k

(
2−n−1(18k + 7)

3

)

+
∞∑

k=S+1

βnkψ
n
k

(
2−n−1(18k + 7)

3

)]

=
∞∑

n=N+1

[
−S−1∑

k=−∞
βnk2n/2 3

√
3

π
+

∞∑

k=S+1

βnk2n/2 3
√

3
π

]

=
3
√

3
π

∞∑

n=N+1

2n/2

[
−S−1∑

k=−∞
βnk +

∞∑

k=S+1

βnk

]

(3.17)
= −3

√
3

π

∞∑

n=N+1

2n/2

[
−S−1∑

k=−∞
2−n/2f

(
2−n
(
k +

1
2

))
+

∞∑

k=S+1

2−n/2f

(
2−n
(
k +

1
2

))]

,

(3.24)

so that

∞∑

n=N+1

[
−S−1∑

k=−∞
βnkψ

n
k (x) +

∞∑

k=S+1

βnkψ
n
k (x)

]

≤ −3
√

3
π

[
f

(
2−N−1

(
−S − 1

2

))
+ f
(

2−N−1
(
S +

3
2

))]

(3.25)

from where (3.20) follows.

4. Reconstruction of the Derivatives

Let f(x) ∈ L2(R) and let f(x) be a differentiable function f(x) ∈ Cp with p sufficiently
high. The reconstruction of a function f(x) given by (3.11) enables us to compute also its
derivatives in terms of the wavelet decomposition:

d


dx

f(x) =

∞∑

h=−∞
αh

d


dx

ϕ0
h(x) +

∞∑

n=0

∞∑

k=−∞
βnk

d


dx

ψnk (x), (4.1)

so that, according to (3.11), the derivatives of f(x) are known when the derivatives

d


dx

ϕ0
h(x),

d


dx

ψnk (x) (4.2)

are given.
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Indeed, in order to represent differential operators in wavelet bases, we have to
compute the wavelet decomposition of the derivatives:

d


dx

ϕ0
h(x) =

∞∑

k=−∞
λ
(
)
hk

ϕ0
k(x),

d


dx

ψmh (x) =

∞∑

n=0

∞∑

k=−∞
γ (
)

mn

hk ψ
n
k (x),

(4.3)

being

λ
(
)
kh

def=

〈
d


dx

ϕ0
k(x), ϕ

0
h(x)

〉

, γ (
) nmkh
def=

〈
d


dx

ψnk (x), ψ

m
h (x)

〉

(4.4)

the connection coefficients [15–21, 26, 29] (or refinable integrals).
Their computation can be easily performed in the Fourier domain, thanks to the

equality (2.27). In fact, in the Fourier domain the 
-order derivative of the (scaling) wavelet
functions is

̂d


dx

ϕn
k(x) = (iω)
ϕ̂nk(ω),

̂d


dx

ψn
k (x) = (iω)
ψ̂nk (ω),

(4.5)

and according to (2.24),

̂d


dx

ϕnk(x) = (iω)


2−n/2

2π
e−iωk/2nχ

(ω
2n

+ 3π
)
,

̂d


dx

ψn
k (x) = −(iω)


 2−n/2

2π
e−iω(k+1/2)/2n

[
χ

(
ω

2n−1

)
+ χ
(
− ω

2n−1

)]
.

(4.6)

Taking into account (2.27), we can easily compute the connection coefficients in the
frequency domain

λ
(
)
kh = 2π

〈
̂d


dx

ϕ0
k(x),

̂ϕ0
h(x)

〉

, γ (
)
nm

kh = 2π

〈
̂d


dx

ψnk (x), ψ̂

m
h (x)

〉

(4.7)

with the derivatives given by (4.6).
If we define

μ(m) = sign(m) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, m > 0,

−1, m < 0,

0, m = 0,

(4.8)

the following has been shown [16, 17].



14 Mathematical Problems in Engineering

Theorem 4.1. The any order connection coefficients (4.4)1 of the Shannon scaling functions ϕ0
k(x)

are

λ
(
)
kh =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(−1)k−h
i


2π


∑

s=1


!πs

s![i(k − h)]
−s+1

[
(−1)s − 1

]
, k /=h,

i
π
+1

2π(
 + 1)

[
1 + (−1)


]
, k = h,

(4.9)

or, shortly,

λ
(
)
kh

=
i
π


2(
 + 1)

[
1 + (−1)


](
1 −
∣
∣μ(k − h)

∣
∣)

+ (−1)k−h
∣
∣μ(k − h)

∣
∣ i




2π


∑

s=1


!πs

s![i(k − h)]
−s+1

[
(−1)s − 1

]
.

(4.10)

For the proof see [17].
Analogously for the connection coefficients (4.4)2 we have the following.

Theorem 4.2. The any order connection coefficients (4.7)2 of the Shannon scaling wavelets ψn
k
(x) are

γ (
)
nm

kh = δnm
{

i

(
1 −
∣∣μ(h − k)

∣∣)π

2n
−1


 + 1

(
2
+1 − 1

)(
1 + (−1)


)

+ μ(h − k)

+1∑

s=1

(−1)[1+μ(h−k)](2
−s+1)/2 
!i
−sπ
−s

(
 − s + 1)!|h − k|s
(−1)−s−2(h+k)2n
−s−1

×
{

2
+1
[
(−1)4h+s + (−1)4k+


]
− 2s
[
(−1)3k+h+
 + (−1)3h+k+s

]}}

,

(4.11)

respectively, for 
 ≥ 1, and γ (0)
nm

kh = δkhδnm.

For the proof see [17].

Theorem 4.3. The connection coefficients are recursively given by the matrix at the lowest scale level:

γ (
)
nn

kh = 2
(n−1)γ (
)
11
kh
. (4.12)

Moreover it is

γ (2
+1)nn
kh = −γ (2
+1)nn

hk, γ (2
)
nn

kh = γ (2
)
nn

hk. (4.13)

If we consider a dyadic discretisation of the x-axis such that

xk = 2−n
(
k +

1
2

)
, k ∈ Z (4.14)
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according to (2.8), the (4.3)2 at dyadic points xk = 2−n(k + 1/2) becomes
[

d
dx

ψnk (x)
]

x=xk
= −2n/2

∞∑

h=−∞
γ ′
nn
kh. (4.15)

For instance, in x1 = 2−1(1 + 1/2)
[

d
dx

ψ1
1(x)

]

x=x1=3/4
= −21/2

∞∑

h=−∞
γ11

1h
∼= −21/2

2∑

h=−2
γ11

1h = −21/2
(

1
6
+

1
4

)
= −5

√
2

12
. (4.16)

Analogously it is

ϕnk

(
2−n
(
k +

1
2

))
=

21+n/2

π
, k ∈ Z, (4.17)

from where, in xk = (k + 1/2), it is

[
d

dx
ϕ0
k(x)

]

x=xk
=

2
π

∞∑

h=−∞
λkh. (4.18)

5. Wavelet Solution of the Integrodifferential Equation

Let us consider the following linear integrodifferential equation:

A
du
dx

= B
∫∞

−∞
k
(
x, y
)
u
(
y
)
dy + u(x) + q(x) (A,B ∈ R), (5.1)

which includes as special cases the integral equation (A = 0, B /= 0) and the differential
equation (A/= 0, B = 0). When A = B = 0, there is the trivial solution u(x) = −q(x).

It is assumed that the kernel is in the form:

k
(
x, y
)
= f(x)g

(
y
)
, (5.2)

and the given functions f(x) ∈ L2(R), g(x) ∈ L2(R), q(x) ∈ L2(R), so that, according to (3.11)

f(x) =
∞∑

h=−∞
fhϕ

0
h(x) +

∞∑

n=0

∞∑

k=−∞
fnk ψ

n
k (x),

g(x) =
∞∑

h=−∞
ghϕ

0
h(x) +

∞∑

n=0

∞∑

k=−∞
gnkψ

n
k (x),

q(x) =
∞∑

h=−∞
qhϕ

0
h(x) +

∞∑

n=0

∞∑

k=−∞
qnkψ

n
k (x),

(5.3)

with the wavelet coefficients fh, fnk , gh, g
n
k , qh, q

n
k given by (3.8).

The analytical solution of (5.1) can be obtained as follows.
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Theorem 5.1. The solution of (5.1), in the degenerate case (5.2), in the Fourier domain is

û(ω) =
2π B

〈
ĝ(ω), q̂(ω)/(Aiω − 1)

〉

(1 − 2πB)
〈
ĝ(ω), f̂(ω)/(Aiω − 1)

〉
f̂(ω)

Aiω − 1
+

q̂(ω)
Aiω − 1

. (5.4)

Proof. The Fourier transform of (5.1), with kernel as (5.2), is

A
d̂u
dx

= Bf̂(x)
∫∞

−∞
g
(
y
)
u
(
y
)
dy + û(x) + q̂(x),

Aiω û(ω) = 2πBf̂(ω)
〈
ĝ(ω), û(ω)

〉
+ û(ω) + q̂(ω),

û(ω) = 2πB
f̂(ω)

(Aiω − 1)
〈
ĝ(ω), û(ω)

〉
+

q̂(ω)
(Aiω − 1)

,

(5.5)

that is,

û(ω) = 2πB
f̂(ω)

(Aiω − 1)
〈
ĝ(ω), û(ω)

〉
+

q̂(ω)
(Aiω − 1)

. (5.6)

By the inner product with ĝ(ω) there follows

〈
ĝ(ω), û(ω)

〉
= 2πB

〈

ĝ(ω),
f̂(ω)

(Aiω − 1)

〉
〈
ĝ(ω), û(ω)

〉
+
〈
ĝ(ω),

q̂(ω)
(Aiω − 1)

〉
, (5.7)

so that

〈
ĝ(ω), û(ω)

〉
=

〈
ĝ(ω), q̂(ω)/(Aiω − 1)

〉

(1 − 2πB)
〈
ĝ(ω), f̂(ω)/(Aiω − 1)

〉 . (5.8)

If we put this equation into (5.6), we get (5.4).

Although the existence of solution is proven, the computation of the Fourier transform
could not be easily performed. Therefore the numerical computation is searched in the
wavelet approximation.
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The wavelet solution of (5.1) can be obtained as follows: it is assumed that the
unknown function and its derivative can be written as

u(x) =
∞∑

h=−∞
αhϕ

0
h(x) +

∞∑

n=0

∞∑

k=−∞
βnkψ

n
k (x),

du
dx

=
∞∑

h=−∞
αh

d
dx

ϕ0
h(x) +

∞∑

n=0

∞∑

k=−∞

d
dx

βnkψ
n
k (x)

(4.3)
=

∞∑

h=−∞
αh

∞∑

s=−∞
λ′hsϕ

0
s(x) +

∞∑

n=0

∞∑

k=−∞
βnk

∞∑

m=0

∞∑

s=−∞
γ ′
nm
sk ψ

m
s (x),

(5.9)

and the integral can be written as

∫∞

−∞
g
(
y
)
u
(
y
)
dy =

〈
g, u
〉
=

∞∑

h=−∞
αhgh +

∞∑

n=0

∞∑

k=−∞
βnkg

n
k . (5.10)

There follows the system

∞∑

h=−∞
αh

∞∑

s=−∞
λ′hsϕ

0
s(x) +

∞∑

n=0

∞∑

k=−∞
βnk

∞∑

m=0

∞∑

s=−∞
γ ′
nm
sk ψ

m
s (x)

=
∞∑

h=−∞
αhϕ

0
h(x) +

∞∑

n=0

∞∑

k=−∞
βnkψ

n
k (x)

+

[
∞∑

h=−∞
αhgh +

∞∑

n=0

∞∑

k=−∞
βnkg

n
k

][
∞∑

h=−∞
fh ϕ

0
h(x) +

∞∑

n=0

∞∑

k=−∞
fnk ψ

n
k (x)

]

+
∞∑

h=−∞
qhϕ

0
h(x) +

∞∑

n=0

∞∑

k=−∞
qnkψ

n
k (x),

(5.11)

and, according to the definition of the connection coefficients,

∞∑

h=−∞
αh

∞∑

s=−∞
λ′hsϕ

0
s(x) +

∞∑

n=0

∞∑

k=−∞

∞∑

s=−∞
βnkγ

′nn
sk ψ

n
s (x)

=
∞∑

h=−∞
αh ϕ

0
h(x) +

∞∑

n=0

∞∑

k=−∞
βnkψ

n
k (x)

+

[
∞∑

h=−∞
αhgh +

∞∑

n=0

∞∑

k=−∞
βnkg

n
k

][
∞∑

h=−∞
fhϕ

0
h(x) +

∞∑

n=0

∞∑

k=−∞
fnk ψ

n
k (x)

]

+
∞∑

h=−∞
qhϕ

0
h(x) +

∞∑

n=0

∞∑

k=−∞
qnkψ

n
k (x).

(5.12)
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By the inner product and taking into account the orthogonality conditions (Theorems 2.1, 2.2,
and 2.3) it is

∞∑

h=−∞
αhλ

′
hk = αk +

[
∞∑

h=−∞
αhgh +

∞∑

n=0

∞∑

h=−∞
βnhg

n
h

]

fk + qk, (5.13)

or

∞∑

h=−∞

(
λ′hk − δhk − ghfk

)
αh =

[
∞∑

n=0

∞∑

h=−∞
βnhg

n
h

]

fk + qk, (k ∈ Z). (5.14)

Analogously, it is

∞∑

n=0

∞∑

k=−∞
βnk γ

′nj
kr

= βjr +

[
∞∑

h=−∞
αhgh +

∞∑

n=0

∞∑

k=−∞
βnkg

n
k

]

f
j
r + q

j
r (5.15)

or, according to (4.11), and rearranging the indices

∞∑

h=−∞
βnh
(
γ ′
nn
hk − δhk

)
− fnk

∞∑

m=0

∞∑

h=−∞
βmh g

m
h = fnk

∞∑

h=−∞
αhgh + qnk. (5.16)

Thus the solution of (5.1) is (5.9)1 with the wavelet coefficients given by the algebraic system

∞∑

h=−∞

(
λ′hk − δhk − ghfk

)
αh =

[
∞∑

n=0

∞∑

h=−∞
βnhg

n
h

]

fk + qk (k ∈ Z),

∞∑

h=−∞
βnh
(
γ ′
nn
hk − δhk

)
− fnk

∞∑

m=0

∞∑

h=−∞
βmh g

m
h = fnk

∞∑

h=−∞
αhgh + qnk (n ∈ N, k ∈ Z)

(5.17)

and up to a fixed scale of approximation N,S:

S∑

h=−S

(
λ′
hk
− δhk − ghfk

)
αh =

[
N∑

n=0

S∑

h=−S
βn
h
gn
h

]
fk + qk (k ∈ Z),

S∑

h=−S
βn
h

(
γ ′nnhk − δhk

)
− fn

k

N∑

m=0

S∑

h=−S
βm
h
gm
h
= fn

k

N∑

h=−N
αhgh + qnk (n ∈ N, k ∈ Z).

(5.18)
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6. Example

Let us consider the following equation:

du
dx

=
∫∞

−∞
e−x

2−|y|u
(
y
)
dy − x

|x|u(x) − e
−x2

(6.1)

with the condition

u(0) = 1. (6.2)

The analytical solution, as can be directly checked, is

u(x) = e−|x|. (6.3)

Since

f(x) = e−x
2
, g(x) = e−|x|, q(x) = −e−x2 (6.4)

belong to L2(R), let us find the wavelet approximation by assuming that also u(x) belongs to
L2(R), so that they can be represented according to (5.3), (5.9).

At the level of approximation N = 0, S = 0, from (5.3) we have

f(x) = e−x
2 ∼= 0.97ϕ0

0(x), g(x) = e−|x| ∼= 0.80ϕ0
0(x) + 0.04ψ0

0(x),

q(x) = −e−x2 ∼= −0.97ϕ0
0(x),

(6.5)

so that

f0 = 0.97, f0
0 = 0, g0 = 0.80, g0

0 = 0.04, q0 = −0.97, q0
0 = 0. (6.6)

System (5.18) becomes

(
λ′00 − δ00 − g0f0

)
α0 = β0

0g
0
0f0 + q0,

β0
0

(
γ ′00

00 − δ00

)
− f0

0β
0
0g

0
0 = f0

0α0g0 + q0
0,

(6.7)

and, since λ′00 = 0 and γ ′00
00 = 0, according to (6.6) we have

−1 − 0.80 × 0.97α0 = −0.97,

−β0
0 = 0,

(6.8)

whose solution is

α0 = 0.548, β0
0 = 0, (6.9)



20 Mathematical Problems in Engineering

1

1−1
x

(a)

1

1−1
x

(b)

Figure 1: Wavelet approximations (shaded) of the analytical solution (plain) of (6.1) obtained by solving
(5.17).

so that

u(x) ∼= 0.548ϕ0
0(x). (6.10)

As expected, the approximation is very row (Figure 1(a)); in fact in order to get a satisfactory
approximation we have to solve system (5.18) at least at the levels N = 0, S = 5 as shown in
Figure 1(b).

7. Conclusion

In this paper the theory of Shannon wavelets combined with the connection coefficients
methods and the Petrov-Galerkin method has been used to find the wavelet approximation
of integrodifferential equations. Among the main advantages there is the decorrelation of
frequencies, in the sense that the differential operator is splitted into its different frequency
bands.
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This paper discusses the estimation of autocorrelation function (ACF) of fractional Gaussian noise
(fGn) with long-range dependence (LRD). A variance bound of ACF estimation of one block of fGn
with LRD for a given value of the Hurst parameter (H) is given. The present bound provides a
guideline to require the block size to guarantee that the variance of ACF estimation of one block of
fGn with LRD for a givenH value does not exceed the predetermined variance bound regardless of
the start point of the block. In addition, the present result implies that the error of ACF estimation
of a block of fGn with LRD depends only on the number of data points within the sample and not
on the actual sample length in time. For a given block size, the error is found to be larger for fGn
with stronger LRD than that with weaker LRD.

1. Introduction

ACF analysis, or equivalently spectral analysis according to the Wiener-Khintchine theorem,
plays a role in many areas of sciences and technologies (see, e.g., [1, 2]), such as structural
engineering [3–7]. In engineering, ACF or its Fourier transform (power spectrum density
function (PSD)) can only be estimated according to a given record length in measurement.
Note that the random load simulated in a laboratory test may be generated based on a
predetermined ACF or PSD; see, for example, [8–13]. Thus, the quality of ACF or PSD
estimation has great impact on structure analysis and design.

The literature of error analysis (mainly, bias, and variance) of ACF/PSD estimation of
an ordinary random process is quite rich; see, for example, [1, 2, 14–19]. By ordinary random
processes, we mean that the ACF and PSD of a process are ordinary functions except the
Dirac delta function that is the ACF of white noise.
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Note that processes with LRD or long-memory substantially differ from ordinary
processes [20]. By LRD, we mean that the ACF of a process is nonsummable in the discrete
case or nonintegrable in the continuous case [20]. Hence, its PSD should be considered in the
sense of generalized function over the Schwartz space of test functions. FGn introduced in
[21] is a widely used model of stationary fractal time series, which has found increasingly
wide applications in many fields of sciences and technologies, ranging from hydrology to
network traffic; see, for example, [22–45]. Note that the statistics of a zero mean Gaussian
process are completely determined in terms of its ACF. Therefore, when using fGn-type load
in structural engineering, the method to assure the quality of its ACF estimation is desired. In
passing, we mention that, in the field of the Internet, ACF estimation of fGn-type teletraffic is
utilized for detection of distributed denial-of-service flood attacks [32].

In the field, [46] discussed the statistical error of the structure function of Gaussian
random fractals, and [47] studied the bias of the sample autocorrelations of fractional noise.
This paper aims at providing a variance bound of the ACF estimation of one block of fGn.

An ACF is usually estimated on a block-by-block basis [1, 10, 13], where block size
means the number of data points of a block of sample. Note that the ACF estimation of
different blocks may be different, resulting in the estimation error caused by sectioning.
The error resulted from sectioning can be reduced by the skill of averaging [1]. Different
from conventional methods to reduce errors based on averaging, this research studies how to
determine the size of one block according to a given degree of accuracy of ACF estimation of
fGn with LRD.

Intuitively, if the size of one block is large enough, the ACF estimation will be
independent of the start point for sectioning the block. Let N be the block size of fGn with
LRD. The aim of this paper is to provide a formula to calculate the variance bound of ACF
estimation of fGn with LRD for a given N and a given value of H.

The remaining article is organized as follows. Section 2 presents an error bound of ACF
estimation of one block of fGn with LRD. Discussions are given in Section 3. Finally, Section 4
concludes the paper.

2. Variance Bound of ACF Estimation of One Block of fGn with LRD

2.1. Preliminaries

Let B(t) be ordinary Brownian motion (Bm) for t ≥ 0 and B(0) = 0 [48]. The stationary white
noise can be taken as B′(t), which is the derivative of B(t) in the domain of generalized
functions. Let 0D

−v
t be the Riemann-Liouville integral operator [49, 50]. Then,

0D
−v
t B′(t) =

1
Γ(v)

∫ t

0
(t − u)v−1dB(u), (2.1)

where Γ is the Gamma function. Replacing ν with H + 1/2 in (2.1) yields

0D
−(H+1/2)
t B′(t) =

1
Γ(H + 1/2)

∫ t

0
(t − u)H−1/2dB(u) � B0

H(t). (2.2)

In the above expression, B0
H(t) is termed the Riemann-Liouville fractional Brownian motion

(fBm) and 0 < H < 1. This fBm is self-similar but does not have stationary increments. In
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passing, it is noted that the fBm described in the sense of the Riemann-Liouville fractional
integral can be explained as the response of a fractional system, the impulse response of
which is tH−1/2/Γ(H + 1/2) under the excitation of white noise from a view of the theory of
linear fractional systems discussed in [51, 52].

Following Mandelbrot and van Ness [21], the fBm that is self-similar and has
stationary increments is defined for t > 0 by

BH(t) − BH(0) =
1

Γ(H + 1/2)

⎧
⎪⎪⎨

⎪⎪⎩

∫0

−∞

[
(t − u)H−0.5 − (−u)H−0.5

]
dB(u)

+
∫ t

0
(t − u)H−0.5dB(u)

⎫
⎪⎪⎬

⎪⎪⎭
, (2.3)

where BH(0) = b0 is the starting value at time 0. If b0 = 0, B1/2(t) = B(t). Hence, fBm
generalizes Bm. The fBm expressed by (2.3) is the fractional integral of B(t) in the sense of
Weyl (see [49, 50] for the details of the fractional Weyl integral operator).

FGn is the increment process of fBm. It is stationary and self-affine with parameter H.
Let X(t) be fGn in the continuous case. Then, the ACF of X(t) is given by

r(τ) =
σ2ε2H−2

2

[( |τ |
ε

+ 1
)2H

+
∣∣∣∣
|τ |
ε
− 1
∣∣∣∣

2H

− 2
∣∣∣∣
τ

ε

∣∣∣∣

2H
]

, τ ∈ R, (2.4)

where 0 < H < 1, σ2 = (Hπ)−1Γ(1 − 2H) cos(Hπ) is the intensity of fGn, and ε > 0 is used by
regularizing fBm so that the regularized fBm is differentiable [21, pages 427-428]. The PSD of
X(t) is given by (Li and Lim [53])

S(ω) = σ2 sin(Hπ)Γ(2H + 1)|ω|1−2H. (2.5)

Letting ε = 1 and replacing τ ∈ R by k ∈ Z in (2.4) yields the ACF of the discrete fGn (dfGn):

r(k) =
σ2

2

[
(|k| + 1)2H + ||k| − 1|2H − 2|k|2H

]
, k ∈ Z. (2.6)

Recall that a stationary Gaussian process with ACF r(τ) is of LRD if [20]

∫∞

0
r(τ)dτ =∞; (2.7)

otherwise it is of short-range dependence (SRD). Another definition of LRD is given as
follows. For asymptotically large time scales, if

r(τ) ∼ τ−β, β ∈ (0, 1) as τ −→ ∞, (2.8)

then the process is of LRD.
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Note that the expression 0.5[(k + 1)2H − 2k 2H + (k − 1)2H ] described in (2.6) is the finite
second-order difference of 0.5(k)2H . Approximating it with the second-order differential of 0.5
(k)2H yields

0.5
[
(k + 1)2H − 2k2H + (k − 1)2H

]
≈ H(2H − 1)(k)2H−2. (2.9)

Expressing β in (2.8) by the Hurst parameter H gives β = 2 − 2H, or

H = 1 −
β

2
. (2.10)

The LRD condition expressed by H therefore is 0.5 <H < 1. The larger the H value, the stronger
the long-range persistence.

FGn contains three subclasses of time series. In the case of 0.5 < H < 1, r(τ) is positive
and finite for all τ . It is monotonously decreasing but nonintegrable. In fact, from the ACF
of dfGn described by (2.9), one immediately has

∑∞
0 k2H−2 = ∞. Thus, for 0.5 < H < 1, the

corresponding fGn is of LRD. ForH ∈ (0, 0.5), the integral of r(τ) is zero. Hence, fGn is of SRD
in this case. Moreover, r(τ) changes its sign and becomes negative for some τ proportional to
ε in the parameter domain [21, page 434]. FGn reduces to white noise when H = 0.5.

Note that if r(τ) is sufficiently smooth on (0,∞) and if

r(0) − r(τ) ∼ c|τ |α for |τ | −→ 0, (2.11)

where c is a constant, then one has the fractal dimension of X(t) as

D = 2 − α
2

; (2.12)

see, for example, [54–57]. The local irregularity of the sample paths is measured by α, which
can be regarded as the fractal index of the process. Thus, the behaviour of r(τ) near the origin
determines the local irregularity or the local self-similarity of the sample paths. The larger the
D value, the higher the local irregularity.

Now, in the case of ε = 1, we apply the binomial series to r(τ). Then, one has

r(0) − r(τ) ∼ c|τ |2H for |τ | −→ 0. (2.13)

Therefore, one immediately gets

D = 2 −H. (2.14)

Hence, H measures both LRD and self-similarity of fGn. In other words, the local properties
of fGn are reflected in the global ones as remarked by Mandelbrot [58, page 27].

Figures 1(a) and 1(b) give the plots of the ACFs of fGn with LRD and SRD in the case
of ε = 1, respectively.
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Figure 1: Plots of ACF of fractional Gaussian noise. (a) ACF of fGn with LRD. Solid line is for H = 0.95, dot
line is for H = 0.75, and dadot line is for H = 0.55. (b) ACF of fGn with SRD. Solid line is for H = 0.45, dot
line is for H = 0.25, and dadot line is for H = 0.05.

2.2. Variance Bound

In practical terms, the number of measured data points within a sample of fGn is finite. Let a
positive integer N be the number of data points of a measured sample of dfGn sequence x(i).
Then, the ACF of x(i) is estimated by

R(k) =
1
N

N∑

i=1

x(i)x(i + k). (2.15)

Usually, for l,m ∈ Z+,

1
N

(m+1)N∑

i=mN

x(i)x(i + k)/=
1
N

(l+1)N∑

i=lN

x(i)x(i + k). (2.16)

Therefore, R(k) is a random variable.
Let M2(R) be the mean square error in terms of R. Denote R(k) by R(k; H, N). The aim

of the statistical error analysis in this research is to derive a relationship between M2(R) and
N as well as H so as to establish a reference guideline for requiring N under the conditions
that the bound of M2(R) and the value of H are given.

Theorem 2.1. Let x(i) be dfGn series with LRD. Let r(k) be the true ACF of x(i). Let N be the
number of data points of a sample sequence. LetR(k) be an estimate of r(k). Let Var(R) be the variance
of R. Then,

Var(R) ≤ 4|Γ(1 − 2H)|2cos2(Hπ)(2H − 1)2

π2N

N∑

i=1

(i)4H−4. (2.17)
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Proof. Mathematically, r(k) is computed over infinite interval [1, 2, 59]:

r(k) = E[x(i)x(i + k)] = lim
N→∞

1
N

N∑

i=0

x(i)x(i + k). (P-1)

In practice, r(k) can only be estimated with a finite sequence. Therefore,

r(k) ≈ R(k) = 1
N

N0+N∑

i=N0

x(i)x(i + k), (P-2)

where N0 is the start point.
Let b2(R) be the bias of R. Then, M2(R) = E[(r − R)2] = Var(R) +b2(R). Since

E[R(τ)] =
1
N

N0+N∑

i=N0

E[x(i)x(i + k)] =
1
N

N0+N∑

i=N0

r(k) = r(k), (P-3)

R(k) is the unbiased estimate of r(k) and M2(R) = Var(R) accordingly. We need to express
Var(R) by the following proposition to prove the theorem.

Proposition 2.2. Let x(i) be dfGn with LRD. Let r(k) be the true ACF of x(i). LetN be the number
of data points of a sample sequence. Let R(k) be an estimate of r(k). Let Var(R ) be the variance of R.
Suppose that r(k) is monotonously decreasing and r(k) ≥ 0. Then,

Var(R) ≤ 4
N

N∑

i=0

r2(k). (P-4)

Proof. As Var(R) = E{[R − E(R)]2} = E(R2) – E2(R), according to (P-3), one has

Var(R) = E
(
R2
)
− r2. (P-5)

Expanding E(R2) yields

E
(
R2
)
= E

⎧
⎨

⎩

[
1
N

N0+N∑

N0

x(i)x(i + k)

]2
⎫
⎬

⎭

= E

[
1
N2

N0+N∑

N0

x(i1)x(i1 + k)
N0+N∑

N0

x(i2)x(i2 + k)

]

= E

[
1
N2

N0+N∑

N0

N0+N∑

N0

x(i1)x(i2)x(i1 + k)x(i2 + k)

]

=
1
N2

N0+N∑

N0

N0+N∑

N0

E[x(i1)x(i2)x(i1 + k)x(i2 + k)].

(P-6)
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Thus,

Var(R) =
1
N2

N0+N∑

N0

N0+N∑

N0

E[x(i1)x(i2)x(i1 + k)x(i2 + k)] − r2(k). (P-7)

Let

X1 = x(n1),

X2 = x(n2),

X3 = x(n1 + k),

X4 = x(n2 + k).

(P-8)

Then,

E[x(n1)x(n2)x(n1 + k)x(n2 + k)] = E(X1X2X3X4). (P-9)

Since x is Gaussian, random variables X1, X2, X3, and X4 have a joint-normal distribution
and E(X1X2X3X4) = m12m34 +m13m24 +m14m23, where

m12 = E[x(n1)x(n2)] = r(n2 − n1),

m13 = E[x(n1)x(n1 + k)] = r(k),

m14 = E[x(n1)x(n2 + k)] = r(n2 − n1 + k),

m23 = E[x(n2)x(n1 + k)] = r(n1 − n2 + k),

m24 = E[x(n2)x(n2 + k)] = r(k),

m34 = E[x(n1)x(n2 + k)] = r(n2 − n1).

(P-10)

Therefore,

1
N2

N0+N∑

N0

N0+N∑

N0

E[x(i1)x(i2)x(i1 + k)x(i2 + k)] (P-11)

=
1
N2

N0+N∑

N0

N0+N∑

N0

E(X1X2X3X4)

=
1
N2

N0+N∑

N0

N0+N∑

N0

(m12m34 +m13m24 +m14m23)
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=
1
N2

N0+N∑

N0

N0+N∑

N0

r2(i2 − i1) + r2(k) + r(i2 − i1 + k)r(i1 − i2 + k)

=
1
N2

N0+N∑

N0

N0+N∑

N0

r2(i2 − i1) + r(i2 − i1 + k)r(i1 − i2 + k) + r2(k).

(2.18)

According to (P-6), the variance is expressed as

Var(R) =
1
N2

N0+N∑

N0

N0+N∑

N0

r2(i2 − i1) + r(i2 − i1 + k)r(i1 − i2 + k). (P-12)

Replacing (i2 − i1) with i in the above expression yields

Var(R) =
1
N2

N0+N∑

i1=N0

N0−N1+N∑

i=N0

r2(i) + r(i + k)r(−i + k) = 1
N2

N0+N∑

i1=N0

N0−N1+N∑

i=N0

f(i), (P-13)

where f(i) = r2(i) + r(i + k)r(−i + k). Without losing generality, let N0 = 0. Then, the above
becomes

Var(R) =
1
N2

N∑

i=0
(N − i)f(i) + 1

N2

0∑

i=−N
(N + i)f(i). (P-14)

Since ACF is an even function, the above expression is written by

Var(R) =
2
N2

N∑

i=0
(N − i)f(i) = 2

N2

N∑

i=0
(N − i)

[
r2(i) + r(i + k)r(−i + k)

]

≤ 2
N

N∑

i=0

∣∣∣∣1 −
i

N

∣∣∣∣

∣∣∣r2(i) + r(i + k)r(−i + k)
∣∣∣

≤ 2
N

N∑

i=0

∣∣∣r2(i) + r(i + k)r(−i + k)
∣∣∣ ≤

4
N

N∑

i=0

r2(i).

(2.19)

Therefore, Proposition 2.2 holds.
Now, replacing r(k) with (2.6) yields

Var(R) ≤ 4
N

N∑

i=0

r2(i) ≤ 4
N

N∑

i=1

r2(i) ≤ σ
4

N

N∑

i=1

[
(i + 1)2H − 2i2H + (i − 1)2H

]2
. (P-15)



Mathematical Problems in Engineering 9

×104
1.6481920

N

H = 0.6
H = 0.7

0

0.067

0.13

0.2
s(
N
,H

)

(a)

×104
1.6481920

N

H = 0.8
H = 0.9

0

0.67

1.33

2

s(
N
,H

)

(b)

Figure 2: Error bound s(N, H). (a) H = 0.60, 0.70. (b) H = 0.80, 0.90.

According to (2.9), replacing [(i + 1)2H − 2i2H + (i − 1)2H] on the right hand of the above
expression by (i)2H , we have

Var(R) ≤ 4|Γ(1 − 2H)|2cos2(Hπ)(2H − 1)2

π2N

N∑

i=1

(i)4H−4. (2.20)

Theorem results.

The above formula represents an upper bound of Var(R). Denote by s(N,H) the
bound of standard deviation. Then,

s(N,H) =
2Γ(1 − 2H) cos(Hπ)|2H − 1|

π

√√√
√ 1
N

N∑

i=1

(i)4H−4. (2.21)

We illustrate s(N, H) in terms of N by Figure 2 for H = 0.60, 0.70, 0.80, and 0.90.
From Figure 2, we see that s(N,H1) > s(N,H2) for H1 > H2, meaning that the error

of ACF estimation of fGn is larger with stronger LRD than that with weaker LRD.

3. Discussions

3.1. To Avoid Misleading Result of ACF Estimation

Recall that processes with LRD substantiality differ from those with SRD [20]. Therefore,
possible SRD signs of an ACF estimate of an fGn series that is of LRD may be taken as a
misleading result of ACF estimation.
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Figure 3: Case study. Solid line: theoretic ACF of fGn. Dot line: ACF estimate. (a) FGn with H = 0.75. (b)
AFC estimate for N = 256. (c) The first 64 points of Figure 3(b). (d) The first 128 points of Figure 3(b).

Suppose that we have a block of fGn with H = 0.75. Hence, this series is of LRD.
Figure 3(a) shows an fGn series with H = 0.75, which is synthesized with the method given
in [60].

Assume the block size N = 256. Then, we have Var(R) ≤ 0.015 according to
Theorem 2.1. The dotted line in Figure 3(b) indicates its ACF estimation with N = 256 and
the solid line in Figure 3(b) shows the theoretical ACF of fGn with H = 0.75. We note that the
error regarding the ACF estimate reflected by the dotted line in Figure 3(b) is severe because
many points of the dotted line are negative. Thus, it may probably confuse the property of
the positive correlation (i.e., LRD) of the data being processed. Consequently, by the dotted
line in Figure 3(b), one might likely be misled to take the data being processed (Figure 3(a))
as SRD. Figures 3(c) and 3(d) show the first 64 and 128 points of Figure 3(b), respectively.
They again show the possible confusions caused by severe estimation error.

Now we increase the block size such that N = 2048. Then, one has Var(R) ≤ 2.5 ×
10−3 according to (2.17). In this case, the ACF estimation is indicated by the dotted line in
Figure 4(a). Comparing Figure 4(a) to Figure 3(b), we see that the error of ACF estimation is



Mathematical Problems in Engineering 11

2048153610245120

k (lag)

−0.5

0

0.5

1
A

C
F

(a)

644832160

k (lag)

0

0.5

1

A
C

F

(b)

1289664320

k (lag)

0

0.5

1

A
C

F

(c)

256192128640

k (lag)

−0.5

0

0.5

1

A
C

F

(d)

Figure 4: Solid line: theoretic ACF of FGN. Dot line: ACF estimate. (a) ACF estimate of fGn with H = 0.75
for N = 2048. (b) The first 64 points of Figure 4(b). (c) The first 128 points of Figure 4(b). (d) The first 256
points of Figure 4(b).

considerably reduced when N increases to 2048 because most data points of the ACF estimate
are positive. Figures 4(b), 4(c), and 4(d) give the plots of the first 64, 128, and 256 points of
Figure 4(a), respectively. They evidently interpret the improvement of the quality of ACF
estimation of one block of fGn with LRD by increasing the block size.

From the above, one sees that the accuracy of ACF estimate of fGn with LRD can be
increased if the block size increases. Therefore, in addition to the direct way to increase the
record length, increasing the sampling rate in measurement of fGn to be processed may yet
be a way to increase the accuracy of the ACF estimation in the case that the block size is given.

3.2. One Block Estimation

The previous discussions regarding ACF estimation of fGn with LRD do not relate to
averaging. In fact, once the block size N is such that it meets the required accuracy according
to Theorem 2.1, the ACF estimation is independent of the start point of the block. That is, for
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anyN0 ∈ Z+, (1/N)
∑N0+N

i=N0
x(i)x(i+k) yields an ACF estimate, the error of which is bounded

based on Theorem 2.1. Further, we note that the discussed ACF estimation does not relate to
sectioning. As a matter of fact, for each m ∈ Z+, (1/N)

∑(m+1)N
i=mN x(i)x(i + k) yields an ACF

estimate, the error of which is bounded by (2.17).

3.3. Remarks

In the field of fractional order signal processing (see, e.g., [61]), [62] recently introduced
a method to obtain a reliable estimation of H based on fractional Fourier transform for
processing very long experimental time series locally. It is worth noting that the present error
bound in this paper may yet be an explanation why the reliable estimation of H discussed in
[62] requires long series.

Finally, we note that the ACF estimate expressed by (2.15) is biased one. However,
that does not matter because the present variance bound relates to the fluctuation of the ACF
estimate regardless of whether it is biased or not.

4. Conclusions

We have established an error bound of ACF estimation of one block of fGn with LRD. It has
been shown that the error does not depend on the absolute length of the sample but only
relies on the number of data points, that is, the block size N, of the sample. The error of an
ACF estimate of fGn with stronger LRD is larger than that with weaker LRD for a given N.
The discussed ACF estimation is not related to averaging. The accuracy of an ACF estimate of
a block of fGn with LRD can be guaranteed once the block size is selected according to (2.17)
without the relation to sectioning.
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The traveling wave equation is an essential tool in the study of vibrations and oscillating systems.
This paper introduces an important extension to the Fourier/Laplace transform that is needed for
the analysis of signals that are represented by traveling wave equations. Another objective of the
paper is to present a mathematical technique for the simulation of the behavior of large systems of
optical oscillators.

1. Introduction

The Fourier and the Laplace transforms are great mathematical tools that have served
science well for nearly two centuries. Recently, however, the Fourier/Laplace transform has
become increasingly inadequate for treating one specific class of signals, namely, signals
represented by traveling wave equations. The Fourier/Laplace transform is essentially a tool
for time domain to frequency domain translation, and vice versa. In that transformation,
the dependence of each component of the original signal on time is described by a time-
related constant: the angular frequency ω. The transformation then maps the time domain
into the ω domain, essentially by finding correlations between the original signal and an
infinite set of pure sinusoidal signals. Those correlations collectively become a “frequency-
domain” representation of the signal. In the class of signals represented by traveling-wave
equations, however, the signal has existence in two domains: the time domain t and the spatial
domain x. More specifically, the signal has dependence on two propagation constants: the
temporal propagation constant ω, and the spatial propagation constant k [1, 2]. Hence, a
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transformation is needed to map the behavior of the signal in the x − t domain into the k −ω
domain. The Fourier/Laplace transform only maps the t domain into the ω domain and is
incapable of performing the 2 × 2 mapping that is required in this case. Here, it is important
to point out that the transform known as the “multidimensional Fourier transform” [3], used
extensively in image processing applications, is still a 1×1 mapping process. By its definition,
the “multidimensional Fourier transform” cannot perform a transformation of a signal that
has simultaneous existence in both the time and the spatial domains.

The first objective of this paper is to present an important extension to the
Fourier/Laplace transform that will allow the 2 × 2 mapping that is required in the case of
traveling-wave signals to be performed. Another objective of the paper is to demonstrate that
certain partial fraction decomposition and differentiation techniques can obviate the need for
complex computations to simulate the behavior of large systems of optical oscillators. More
particularly, some optical phenomena, such as the phenomenon of optical echo, are very hard
to simulate without using physical variables corresponding to the internal states of a great
number of atoms. Typically, such simulations require complex (order N2, where N is the
number of atoms) computations. We demonstrate that this problem can be fundamentally
solved in a much simpler manner by using derivative-taking procedures for symbolic
polynomials.

2. A Dual-Domain Extension for the Fourier/Laplace Transform

Signals that physically propagate in various media are usually represented by traveling-wave
equations, the most basic of which is the simple sinusoidal traveling wave [1, 2]:

f(x, t) = sin(kx −ωt), (2.1)

where ω is the usual temporal propagation constant and where k = 2π/λ is the spatial
propagation constant. The usual Fourier transform for a signal that exists only in the time
domain is given by [4, 5]

f(ω) =
∫∞

−∞
f(t)e−jωtdt. (2.2)

We first define a companion to the Fourier transform for signals that are defined only in the
spatial domain:

f(k) =
∫∞

−∞
f(x)e+jkxdx. (2.3)

This transform maps the x domain into the propagation constant (k) domain. We now
introduce a 2 × 2 dual-domain transform as follows:

f(k,ω) =
∫∫∞

−∞
f(x, t)ej(kx−ωt)dx dt. (2.4)
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Notice that the Fourier transform measures the correlations between the signal f(t) and
an infinite set of pure sinusoidal signals in the time domain, while the transform of (2.4)
measures the correlations between the signal f(x, t) and an infinite set of pure sinusoidal
traveling waves. This is the main difference between the transform of (2.4) and the other
known extensions to the Fourier transform.

To write the one-sided version of the transform in (2.4) (which will be equivalent to
the Laplace transform), we first decompose the exponential term as follows:

ej(kx−ωt) = eγxe−st, (2.5)

where γ = jk and s = jω. The one-sided transform will now be written as follows:

f(k,ω) =
∫∫∞

0
f(x, t)eγxe−stdx dt. (2.6)

We can now clearly see that this dual-domain transform differs from the basic Laplace
transform in that an extra exponential term eγx is introduced, with γ being an imaginary
number representation of the spatial propagation constant k. The basic Laplace transform
contains the imaginary number s only, which is a representation of the temporal propagation
constant ω.

3. Dual-Domain Transforms of Some Well-Known Propagating Signals

We will now demonstrate how the dual-domain transform is calculated for various
propagating signals. The transforms of two well-known signals, specifically, the propagating
sinusoid and the propagating unit-step function are calculated here as examples.

3.1. Transform of f(x, t) = sin(ax − bt)

By using the well-known decomposition

sin θ =
ejθ − e−jθ

2j
(3.1)

and carrying out the integration in (2.6) in a straightforward manner, the dual-domain
transform of f(x, t) = sin(ax − bt) is found to be the following:

f(k,ω) =
as + bγ

(s2 + b2)
(
γ2 + a2

) . (3.2)

We can clearly see that if a = 0, this transform reverts to the Laplace transform, with the
presence of γ = jk in the denominator. Essentially, what we get in that case will be the Laplace
transform of sin bt, mapped into the k domain.
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u(x, t)

1

Xx = ct 0

Figure 1: A propagating unit step function.

3.2. Transform of a Propagating Unit Step Function f(x, t) = u(x − ct)

A propagating unit step function u(x − ct) is shown in Figure 1. The velocity of propagation
of the wave is c.

Here, due to the positive exponent of eγx in (2.6), we will reverse the order of the limits
on the integrals in order to obtain a meaningful result. Specifically, the time domain will be
assumed to extend from −∞ to 0 and the x domain will be assumed to extend from −∞ to ct.
The transform of (2.6) will now be written as

f(k,ω) =
∫ t=0

t=−∞

∫x=ct

x=−∞
1 · eγxe−stdx dt. (3.3)

The result is

f(k,ω) =
1

γ
(
γc − s

) . (3.4)

We can again easily observe that if the propagation velocity c = 0, the Laplace transform of
a stationary unit step function is obtained, with the presence of an extra factor of 1/γ that
represents the mapping into the k domain.

4. Dual-Domain Transform Theorems

We will now present two important theorems related to the dual-domain transform. Those
theorems, namely, the phase-shift theorem and the convolution theorem, are straightforward
extensions to the corresponding theorems of the Fourier/Laplace transforms.

4.1. The Phase-Shift Theorem

The dual-domain transform of a signal that is phase shifted by a phase φ = kΔx−ωΔt, where
Δx and Δt are shifts along the x and t dimensions, respectively, is given by

D
[
f(x −Δx, t −Δt)

]
= ejφf(k,ω), (4.1)

where f(k,ω) = D[f(x, t)] is the dual-domain transform of f(x, t).
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Proof. One has

D
[
f(x −Δx, t −Δt)

]
=
∫∫∞

0
f(x −Δx, t −Δt)eγxe−stdx dt. (4.2)

Let (t −Δt) = τ and (x −Δx) = δ, so that dt = dτ and dx = dδ. Hence

D
[
f(x −Δx, t −Δt)

]
=
∫∫∞

0
f(δ, τ)eγ(δ+Δx)e−s(τ+Δt)dτ dδ

= e(γΔx−sΔt)
∫∫∞

0
f(δ, τ)eγδe−sτdτ dδ

= ej(kΔx−ωΔt)f(k,ω).

(4.3)

4.2. The Convolution Theorem

A signal z(x, t), the dual-domain transform of which is given by z(k,ω) = y(k,ω)h(k,ω),
where y(k,ω) and h(k,ω) are the transforms of another signal and a transfer function,
respectively, is given by

z(x, t) =
∫∫∞

−∞
y(δ, τ)h(x − δ, t − τ)dδ dτ. (4.4)

Proof. z(x, t) will be given by the inverse dual-domain transform of y(k,ω)h(k,ω), that is,

z(x, t) = D−1[y(k,ω)h(k,ω)
]

=
∫∫∞

−∞
y(k,ω)h(k,ω)e−j(kx−ωt)dk dω.

(4.5)

But

y(k,ω) =
∫∫∞

−∞
y(δ, τ)ej(kδ−ωτ)dδ dτ. (4.6)

Hence

z(x, t) =
∫∫∞

−∞

∫∫∞

−∞
y(δ, τ)ej(kδ−ωτ)dδ dτh(k,ω)e−j(kx−ωt)dk dω. (4.7)
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By interchanging the order of the double integrals, we have

z(x, t) =
∫∫∞

−∞
y(δ, τ)

[∫∫∞

−∞
h(k,ω)e−j[k(x−δ)−ω(t−τ)]dk dω

]
dδ dτ

=
∫∫∞

−∞
y(δ, τ)h(x − δ, t − τ)dδdτ.

(4.8)

5. Example Application: Transfer Function of a Wireless
Communication Channel with Multiple Phase Shifts

The transfer function characteristics of urban wireless communications channels are very
important for cellular phone and wireless multimedia applications [6–8]. The high-frequency
signals that travel through such channels are all represented by traveling wave equations,
and each signal suffers from various phase shifts that collectively result in “fading effects”
as the signal travels through the channel. Characterizing the behavior of a channel by
means of a transfer function has always been a challenging problem, mainly because
the Fourier/Laplace transform can only provide a transfer function representation in the
frequency domain, that is, the ω domain, while the behavior of the channel in reality must
ultimately be described in both the ω and the k domains. We will now proceed to obtain such
a dual-domain transfer function for a wireless communication channel by using the dual-
domain transform, and important new conclusions about the behavior of such channels will
be reached.

According to the phase-shift theorem (4.1), a signal that encounters multiple phase
shifts in a wireless communication channel will be represented by the sum

A0e
jφ0f(k,ω) +A1e

jφ1f(k,ω) +A2e
jφ2f(k,ω) + · · · (5.1)

at the output of the channel, where φi are the various phase shifts and where Ai are the
amplitudes of the phase-shifted components. The transfer function (TF) of the channel is
therefore given by

TF =
Channel Output

f(k,ω)
= A0e

jφ0 +A1e
jφ1 +A2e

jφ2 + · · · . (5.2)

By expanding each exponential term as a power series and rearranging the equation, we get

TF = (A0 +A1 + · · · ) + j
(
A0φ0 +A1φ1 + · · ·

)
+
j2

2!

(
A0φ

2
0 +A1φ

2
1 + · · ·

)
+ · · · . (5.3)

For comparison, the single-domain Laplace transform of a rectangular pulse in the time
domain is given by [5]

f(ω) = C0 − C1s + C2s
2 − · · · , (5.4)
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f(k)

k

Figure 2: Behavior of the multipath wireless channel in the k domain.

whereCi are constants. It is clear that while (5.4) is a power series in jω, (5.3) is a power series
in jφ. This means that (5.3) is the transform of pulse-like characteristics in the time domain
and pulse-like characteristics in the spatial domain. This is a very important conclusion, since
it was previously assumed that multipath wireless channels exhibit pulse-like characteristics
in the time domain only [6]. The pulse-like behavior of the channel in the spatial domain will
be then described by a sinc function in the k domain, as shown in Figure 2.

The conclusion therefore is that the channel acts as a band-pass filter in both the
frequency domain and the propagation constant k domain. This conclusion has substantial
implications for the analysis of multipath wireless channels and will be further developed
and investigated in a subsequent report in a specialized communications journal.

6. Aspects Regarding the Propagation of
Traveling Waves Corresponding to Wave Functions.
Phase Loss due to Multiple Quantum Interaction

We can extend our study at quantum phenomena by taking into account the fact that
the expression (kx − ωt) corresponds also to the phase of a wave function describing the
propagation of a free quantum particle.

According to the statistical interpretation of quantum theory, the wave function is
representing just a mathematical model suitable for statistical interpretation. In the David
Bohm interpretation of quantum theory, the wave function is a real wave in configuration
space. This interpretation is also in accordance with measurements aspects of interaction of
wave-trains with observer’s material medium [9]. Due to these reasons, the phase of the
traveling quantum wave requires a more detailed analysis, the dynamical aspect having to
be taken into consideration.

Let us consider the propagation of an electron in a central symmetric electrostatic
(Coulomb) field. According to the standard quantum analysis (based on second quan-
tification theory, describing creation and annihilation of particles) the central symmetric
electrostatic field should be decomposed (using the Fourier transformation) in a set of waves
with a certain angular frequency ω and a certain wave vector k:

Ae
μ(x0, 
x) =

1

(2π)2

∫
dqAe

μ

(
q
)

exp−iqx, (6.1)
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where the product qx stands for

qx = q0x0 − 
q
x (6.2)

with x0 representing the time coordinate, 
x = x1, x2, x3 representing to the vector of
position, q0 representing the angular frequency ,and 
q = q1, q2, q3 representing the wave
vector. The measurement system is chosen so as c = 1, h/(2π) = 1 for performing a better
correspondence from the angular frequency to the energy and from the wave vector to the
momentum of the quantum particle (see [10] for more details).

The quantities Ae
μ(x) and Ae

μ(p) do not correspond to standard photons, and for this
reason they cannot be substituted by operators as required by second quantification theory.
However, experimental facts have shown that the electromagnetic field effect can be studied
using the perturbations method from quantum theory.

Using this method [10] the matrix element (for the first-order of perturbation) cor-
responding to the electromagnetic interaction between the electron and the electromagnetic
field is represented by,

S
(1)
fi = −ie

∫
dxv

(+)
r ′

(

pf
)

exp ipfx
∫
dqAe

μ

(
q
)
γμ exp−iqxv(−)

r

(

pi
)

exp−ipix, (6.3)

which can be also written as,

S
(1)
fi = −ie

∫
dqv

(+)
r ′

(

pf
)
γμA

e
μ

(
q
)
v
(−)
r

(

pi
)
δ
(
q − pf + pi

)
. (6.4)

In both previous equations the expression Ae
μγμ corresponds to the sum:

Ae
μγμ = Ae

0γ0 +
3∑

n=1

Ae
nγn, (6.5)

where Ae
μ represents the cuadrivector of the electromagnetic field and γμ represents the Dirac

matrices (its argument corresponds to the energy and momentum conservation laws).
If the electromagnetic field does not depend on time, the cuadripotential Ae

μ(x) can be
presented as

Ae
μ(x) = A

e
μ(
x) =

1

(2π)3/2

∫
dq exp i
q
xAe

μ

(

q
)
, (6.6)

which shows that the virtual photons composing the electromagnetic field have a nonzero
value just for the momentum (the energy corresponding to quantity q0 being equal to zero).
As a consequence, the matrix element for the first-order of perturbation can be written as

S
(1)
fi = −ie

∫
dqv

(+)
r ′

(

pf
)
γμA

e
μ

(

q
)
v
(−)
r

(

pi
)
δ
(

q − 
pf + 
pi

)
δ
(
pf0 − pi0

)
. (6.7)
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By performing the integration on dq, it results

S
(1)
fi

= −iev(+)
r ′

(

pf
)
γμA

e
μ

(

q
)
v
(−)
r

(

pi
)
δ
(
pf0 − pi0

)
. (6.8)

For the coulombian electrostatic field with central symmetry Ae
μ(
x) = 0; it results

eAe
0(r) = −

Q

r
, (6.9)

where Q represents the electrical negative charge. The previous equation can be also written
(in p representation) as

eAe
0(r) = −

∫
Q

r
exp iqr dr =

4πQ

q2

. (6.10)

As a consequence, the matrix element for the first-order of perturbation in case of coulombian
field with central symmetry can be written as:

S
(1)
fi

= −iev(+)
r ′

(

pf
)
γ0A

e
0

(

q
)
v
(−)
r

(

pi
)
δ
(
pf0 − pi0

)
, (6.11)

which can be also written as

S
(1)
fi = −iv(+)

r ′
(

pf
)
γ0v

(−)
r

(

pi
)[
eAe

0

(

q
)]
δ
(
pf0 − pi0

)
. (6.12)

According to standard interpretation of quantum theory, this first-order element from
perturbation method is connected to the probability of an interaction between an electron
with initial momentum 
pi and energy pi0 and a virtual photon with momentum 
q so as to
result an electron with momentum 
pf and energy pf0. This interaction can be also represented
using Feynman diagrams. By analyzing higher orders of matrix element (presented in
an intutive manner using the same Feynman diagrams) some supplementary phenomena
can be also explained, as elastic diffusion of photons by electrons, the annihilation of an
electron-positron pair in two photons, the generation of an electron-positron pair by photons,
the emission of two photons by an electron, the emission of brehmstrahlung radiation by
electrons and positrons and so on.

However, for describing the whole interaction of an electron in a central symmetrical
electrostatic field (so as to determine the trajectory of the associated wave-train) we can
consider that the electron has to undergo multiple interactions with such virtual photons
until the action of the exterior field vanishes (such multiple interactions being allowed by
quantum mechanics). According to the quantum laws, each interaction transform the initial
electron (corresponding to a certain wave train) into a new wave-train (the final electron)
with different characteristics (another momentum and energy), and so on.

However, we should take also into account the fact that the wave-train associated to
a quantum particle has not just a statistical interpretation. The Bohm-Aharonov effect has
shown that a certain phase should also be associated to such a wave-train. Considering
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that the wave-train corresponding to an electron undergoes a set of interactions with
virtual photons, it results that a certain transient time is required by each interaction, so
as physical quantities as wavelength and angular fequency to be defined on a certain time
interval (these quantities being used by the formula of matrix elements of interaction). This
transient time causes a phase-loss for the initial wave-train, while the timelength of stabilized
oscillations (corresponding to the new-generated wave-train associated to the final photon)
is represented (in a classical dynamical model) by the difference between the timelength of
the initial wave-train and the transient time. Considering that no supplementary stabilized
oscillations are added by each interaction (this means that quantum interaction does not
generate any output wave-train after the input wave-train has vanished) it results that a
very great number of interactions of the initial electron in a central symmetrical electrostatic
(coulombian) field would cause a great number of phase loss (each interaction substracting
a certain transient time), and, finally, the timelength of the wave-train associated to the final
electron tends to zero. This corresponds to a vanishing phenomena for the initial electron in
contradiction with experimental facts.

7. Nonlinear Phenomena of Phase-Loss Compensation for
Propagating Wave-Trains in Quantum Physics: The Need of
a Certain Material Reference System

At an extended analysis of propagating phenomena in quantum physics, we can notice that
an approach based on second quantification laws leads to the same aspects of phase-loss
(or shortened timelength) of a propagating wave-train due to multiple interactions along
its trajectory in different situations, such as the interaction of a propagating free electron
with its own electromagnetic field (implying renormalization of electron mass using higher
orders of perturbation theory) and the generation of virtual electron-positron pairs due to the
interaction of an electron with a weak exterior electromagnetic field (analyzed by taking into
account higher order of perturbation theory, implying renormalization of electron charge)
[10].

For justifying the fact that the phase-loss does not appear in experimental phenomena
of such propagating beams (as presented above), we can take into consideration a possible
phenomenon of phase-addition, consisting in an addition of supplementary oscillations
after the initial wave-train has vanished. According to mathematical dynamical models, this
corresponds to a dead-time transient phenomenon. As a consequence, a kind of internal
memory should be associated to the space interval where the interaction occurs, generating
an output signal even after the input signal has disappeared.

Another possibility consists in taking into account (from the same dynamical point
of view) a resonance phenomena, considering that the initial wave-train can generate (as
in a resonant phenomenon) oscillations with amplitude above a certain threshold. When
the initial wave-train (similar to an input signal) disappears, these oscillations will become
damped oscillations able to generate a final wave-train (similar to an output signal) as long
as their amplitude is above a certain threshold. As in the case of the previous dynamical
model, this mathematical model requires also an internal memory of the threshold level and
of certain state variables able to generate resonant oscillations.

Both possibilities previously presented have a common feature: a certain delay time
appears at each interaction, and thus the overall delay time should be connected with the
wave-train velocity.
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However, the phase-loss phenomenon can be avoided (as a theoretical result) if the
whole trajectory is considered to be determined by just one Lagrangean function for the
whole interaction of the electron with the electromagnetic field, implying the dynamical
equations:

(

− ∂
2

∂t2
+∇2

)

Aμ(x) = −eψγμψ,

(

iγμ
∂

∂xμ
− eγμAμψ(x)

)

−mψ(x) = 0,

ψ(x)

(

iγμ
∂

∂xμ
+ eγμAμ

)

+mψ(x) = 0

(7.1)

[10]. Thus the wave-function corresponding to the electron and the electromagnetic field
is modified in a continuous manner along its trajectory. However, this possible solution
is based on quantum laws of first quantification theory, all phenomena corresponding to
second quantification (involving creation and annihilation of particles) being neglected. Yet
we have to take into account the fact that the exterior electromagnetic field has usually
a higher magnitude and a slow time variation as compared to the energy and velocity
of the interacting electron. So it is quite naturally to consider that a certain exterior field
(more important at a macrosopic scale) is determining the evolution of the electron wave-
train, and thus appears the need of a certain reference system which acts upon the wave-
trains corresponding to quantum particles. This assumption is supported also by the lack
of reversibility for diffraction phenomena in quantum physics. We can notice an electron
diffraction phenomenon when an electron beam interacts with a motionless crystal lattice,
but we cannot imagine a diffraction phenomenon for the atoms of a crystal lattice when a
moving lattice interacts with a motionless spatial distribution of electrons.

8. Phase Aspects and Quantum Dynamics of Cooperative Phenomena:
Formal Logic Problems for Cooperative Quantum Phenomena

Our study upon quantum dynamics and phase aspects should be extended by taking
into consideration multiparticle cooperative phenomena in quantum physics involving
emission of electromagnetic field, while key issues as transition from a set of single particle
quantum states to a global cooperative state can be noticed. For example, the photonic echo
phenomenon is based on the rephasing that can occur in an inhomogeneously broadened
atomic system, when the motion of the Bloch vectors is reversed following the initial
dephasing of the atomic dipoles. For the beginning, we consider a group of atoms whose
Bloch vectors in the rotating frame have the direction along the y′ axis at the zero moment
of time. We consider also that the rotating frame has the angular frequency ω0 (the central
frequency of the inhomogeneous line). In time, the Bloch vectors of the atoms will precess
clockwise or counter-clockwise around the z′ axis, depending whether their natural angular
frequencies are either greater or less than ω0. In time a dephasing phenomenon occurs, the
atomic Bloch vectors being distributed almost uniformly around the x′, y′ plane. The initial
macroscopic moment becomes zero, and the system does not radiate.
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By applying a short, intense π pulse at time moment τ a reversal of the y′ coordinate
appears, the motion of the atomic Bloch vectors is reversed, and the vectors would be
aligned again at a certain time moment 2τ . As a consequence, the atomic system generates
a high-intensity echo pulse at time moment 2τ . This is the basic principle of both spin echo
phenomenon and photon echo phenomenon [11].

Usually, a preparatory π/2 pulse (from the superradiance states point of view) is
applied to the active medium at the initial moment of time. Mathematically, the property
of the reference pulse of being a π/2 pulse is represented by the relation

ηEIΔtI =
π

2
, (8.1)

where EI stands for the amplitude of the electric field, ΔtI stands for its timelength and η
represents a parameter depending on frequency. The condition for the main optical pulse of
being a π pulse is represented by the relation

ηEMΔtM = π, (8.2)

where EM stands for the electric field of this signal, ΔtM stands for its timelength, and η
represents the same parameter depending on frequency.

A basic feature of the high-intensity pulse (the photonic echo pulse) is represented
by its power. Unlike amplified optical pulses by stimulated emission (with the power of
emergent pulse proportional to N), the power of the photonic echo pulse is proportional to
N2 where N represents the number of atoms involved in the emission of this high-intensity
pulse. This feature can be derived using the formalism of superradiant states |r,m〉, where
r stands for the cooperative quantum number and m is proportional to the unperturbed
Hamiltonian function for the ensemble of atoms (due to the the similarities with quantic
angular momentum theory, |m| < r < N/2). According to this similarities, when the state of
the atomic system is described by the state |r,m〉, the intensity of the emitted pulse is

I(r,m) = (r +m)(r −m + 1)I0. (8.3)

If all atoms involved in light emission are in excited state, r = m = N/2 and the intensity of
emitted pulse is equal to

I

(
N

2
,
N

2

)
=NI0, (8.4)

where I0 stands for the intensity of an optical pulse emitted by a single atom ( r = m = 1/2 ).
It can be shown that the maximum for the emission rate is obtained for m = 1/2 and greater
values of r; while m is also equal to (N+ − N−) (N+ representing the number of atoms in
excited state and N− representing the number of atoms in ground state) it results that m = 0
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or m = 1 and r =N/2. In this case the intensity of emitted pulse is

I

(
N

2
, 0
)

= I
(
N

2
, 1
)

=
(
N

2

)(
N

2
+ 1

)
I0 (8.5)

being proportional (for large N ) with N2.
These aspects can be also explained (in an intuitive manner) using classical

electromagnetics. When all atoms radiate independently, it can be considered that the phase
φ and angular frequency ω of emitted electric field are not the same and thus the average
value of the intensity corresponds to a sum of a2

k
E2
k
/2 terms (all terms having the form

aiakEiEk/2 vanish while they correspond to alternating functions). It can be also argued that
different orientation of Bloch vectors for a great number of atoms imply a null result for the
sum of these vectors from the very beginning. On the contrary, when all atoms radiate in a
cooperative manner, it can be considered that their emitted electric field has the same phase
and angular frequency and thus the electric field E generated by all atoms is represented
by a sum E1 + E2 + · · · + EN and the intensity of the emitted electric field is represented by
(E1 + E2 + · · · + EN)2. For E1 = E2 = · · · = EN it results that the intensity of the emitted
electric field is proportional to N (in the first case) and to N2 (in the second case). It can
be also argued that the situation when all Bloch vectors are aligned corresponds to a great
global dipole momentum for the entire system of atoms, and thus the emitted radiation has
the same phase.

However, an important question regarding phase appears for these cases: which is
the angular frequency of the emitted field for the photonic echo phenomenon? Is there a
certain angular frequency or should we consider the emitted field as a mixture of waves
with different characteristics? If we consider that we deal with a cooperative phenomenon,
it seems logical to search for a certain angular frequency and a certain phase for the whole
emitted field (as in the case of correlated photon emission, when two photons act as a single
entity even when they are situated at large distances). Thus the emission would be similar
to a single photon emission and interference phenomena could be noticed further (according
to the Dirac principle that a photon interacts just with itself). Yet this affirmative answer
generates another question: under which circumstances an ensemble of atoms can be studied
using the quantum formalism of superradiant states, instead of analyzing a superposition
of atoms with independent emission? According to formal logic in physics, an interference
phenomenon can either occur or not. However, it is quite difficult to imagine that a certain
parameter of the ensemble could suddenly generate the transition to a single quantum
state when it reaches a specific value (so as interference phenomena to occur). This aspect
is similar to the problem of defining a certain material reference system which performs
the Lorentz transformation upon a received wave-train [9]: which are the requirements
for a certain material reference system (as related to the parameters of the received wave-
train)? (see [12] for the theoretical case when the energy of the received wave is comparable
to the rest energy of the atoms composing the material medium). More probably, some
correlation techniques with past events are required, and thus phase correlation aspects could
appear. The phase correlation represents also the main technique for creating and controlling
cooperative phenomena (when some spatially distributed particles or atoms can be described
by a single quantum function at a certain moment of time, and possible transitions are
controlled by imposing phase coincidence).
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9. Simulating High-Intensity Superradiant Pulses Using Derivative
Procedures and Partial Fraction Decomposition

A step forward in looking for an adequate mathematical model should consist in finding
a mathematical quantity proportional to (N/2)(N/2 − 1); this step must be performed
in a similar manner used for passing from coordinates representation to momentum
representation in quantum theory, by the aid of Fourrier transformation (the basic variables
being changed) [13]. We can easily notice that the derivatives of different order for f = pN/2

are direct proportional to N/2, (N/2)(N/2 − 1), . . . . according to

df

dp
=
(
N

2

)
pN/2−1 ,

d2f

dp2
=
(
N

2

)(
N

2
− 1

)
pN/2−2.

(9.1)

It can be noticed that the coefficient of final monomial pN/2−2 equals (N/2)(N/2 − 1) which
represents the ratio of the intensity I(N/2,N/2) of the photonic echo pulse emitted from
the state r = m = N/2 to the intensity I0 of the pulse emitted independently by a single
atom (similar to derivative procedures presented in [14]). In an intuitive manner, p can be
considered as an operator of creation (as in second quantification formula) and the N/2
exponent symbolizes the creation of the quantum superradiant state with quantum number
r = N/2 as a result of N/2 successive application of p operator upon an initial preliminary
state (with r = 0). The same derivative procedure could be used for obtaining the eigenvalue
of the square of the angular momentum L̂2 = L(L + 1) according to

(
∂2

∂p2

)

pL+1 = (L + 1)LpL−2 (9.2)

and considering an eigenvalue the coefficient of the resulting monomial.
For the case of nonsuperradiant states the ensemble of atoms could be described using

a function f as

f =
∑

i

(
p − ϕi

)
, (9.3)

where ϕi stands for the specific phase difference for each atom. While the power of p equals
unity, a second-order differentiation ∂2f/∂p2 yields zero, and no superradiant pulse appears.

10. Conclusions

This paper has presented an important extension to the Fourier/Laplace transform that
is needed for the analysis of signals that are represented by traveling wave equations.
Specific mathematical technique for the simulation of the behavior of large systems of
optical oscillators was obtained. Signals described by traveling wave equations are typically
characterized by a spatial propagation constant, k, in addition to the usual temporal



Mathematical Problems in Engineering 15

propagation constant ω. The Fourier/Laplace transform can only perform mapping of the
time domain t into the ω domain (or frequency domain), and is incapable of performing the
more general 2 × 2 mapping of the x − t domain into the k − ω domain. The new extension
introduced here allows for that general 2 × 2 mapping to be performed. This study has also
emphasized the importance of phase dynamics aspects for traveling wave-trains in multiple
interaction phenomena in quantum physics. It was shown that a phase-loss phenomenon
should appear due to transient time, implying an annihilation of the quantum particle due to
multiple interactions. The absence of this phenomenon in experimental results is explained
by a possible correlation between the trajectory and phase of the quantum wave-train before
interaction and the trajectory and phase of the quantum wave-train after the corresponding
quantum particle has undergone the interaction. The need of a certain exterior reference
system acting upon the quantum wave-train is also presented (based on some diffraction
aspects). Finally it is shown that some interference aspects of the photonic echo phenomenon
imply the need of considering that superradiant quantum states for an ensemble of atoms
can either exist or not. Using a specific differentiation technique for symbolic polynomials
corresponding to phase difference of each atom, a useful formalism for determining the
condition for generating a superradiant pulse and its intensity is obtained.
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This paper proposes a new method of calculating stochastic field. It is an improvement of the
midpoint method of stochastic field. The vibration equation of a system is transformed to a static
problem by using the Newmark method and the Taylor expansion is extended for the structural
vibration analysis with uncertain factors. In order to develop computational efficiency and allow
for efficient storage, the Conjugate Gradient method (CG) is also employed. An example is given,
respectively, and calculated results are compared to validate the proposed methods.

1. Introduction

Material properties, geometry parameters, and applied loads of the structure are assumed
to be stochastic. Although the finite element method analysis of complicated structures has
become a generally widespread and accepted numerical method, regarding the given factors
as constants cannot apparently correspond to the reality of a structure. In order to enhance
computational accuracy, the influence of random factors must be considered.

Many physics parameters of material possess spatial variability, such as Young’s
modulus and Poisson’s ratio, so we should regard them as stochastic fields. Stochastic
field discretization is the problem that various stochastic finite element methods need to
resolve, but discrete form of stochastic field plays the decisive influence on the calculation
and computational accuracy of stochastic finite element. The simplest discretization is the
midpoint method (MSF) [1]. The stochastic field is described by a single random variable
replacing the value of the field at a central point of the mesh. The local average method of the
stochastic field describes the stochastic field of an element in terms of the spatial average. The
local average method of rectangle element is described by the mean, variance, and covariance
[2]. It can be extended for 3D [3]. The stochastic field of nonrectangular element is described
by the mean vector and covariance matrix using Gaussian quadrature [4]. The stochastic
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field can be described by the shape function and nodal values, and it is necessary to know
the related function [5]. Making use of the Karhunen-Loeve expansion, stochastic field is
represented by series expansion [6]. When stiffness matrices are deduced, a weighted integral
method is adopted to consider stochastic field of material parameters [7, 8]. When stochastic
field is expressed by series expansion, the optimal linear-estimation method is applied to
make the error of variance minimum [9].

The direct Monte Carlo simulation of the stochastic finite element method (DSFEM)
requires a large number of samples, which requires much calculation time [10]. Monte
Carlo simulation by applying the Neumann expansion (NSFEM) enhances computational
efficiency and saves storage in such a way that the NSFEM combined with Monte Carlo
simulation enhances the finite element model advantageously [11]. The preconditioned
Conjugate Gradient method (PCG) applied in the calculation of stochastic finite elements can
also enhance computational accuracy and efficiency [12]. According to first-order or second-
order perturbation methods, calculation formulas can be obtained [5, 11, 14–16, 18–20, 22].
The result is called the PSFEM and has been adopted by many authors.

The PSFEM is often applied in dynamic analysis of structures and the second-order
perturbation technique has been proved to be efficient [5]. Dynamic reliability of a frame
is calculated by the SFEM and response sensitivity is formulated in the context of stiffness
and mass matrix condensation [16]. When load actions are treated as stochastic processes,
vibration of the structure is resolved by the PSFEM [17]. The PSFEM is an adequate tool
for nonlinear structural dynamics. Nonlinearities due to material and geometrical effects
have also been included [18]. By forming a new dynamic shape function matrix, dynamic
analysis of the spatial frame structure is presented by the PSFEM [19]. The NSFEM is
introduced in dynamic analysis within the framework of a Monte Carlo simulation [20].
The NSFEM is applied to the dynamic response of a random structure system and results
are compared with those from the PSFEM and the DSFEM [21]. With the aid of the
PSFEM, a stochastic formulation for nonlinear dynamic analysis of a structure is presented
[22].

An improved midpoint method of stochastic field (IMSF) is presented. The IMSF
is more accurate than the MSF. The Newmark method transforms differential equations
into linear equations. The IMSF is used and the structural vibrations for a linear system
are computed by the Taylor expansion method, the CG method, and the PCG method of
stochastic finite element (TSFEM, CG, PCG). The TSFEM, the CG, and the PCG based on
the MSF are called the MTSFEM, the MCG, and the MPCG. An example demonstrates the
superiority of the proposed methods.

2. Improved Midpoint Method of Stochastic Field

When finite element method is used, structure is divided into small elements whose number
is appropriate. In this paper, Young’s modulus is assumed to be a Gaussian process. When
element is appropriately small, Young’s modulus of an element is described by a variable. The
Young’s modulus of structure is described by a group of variables. Without loss of generality,
it is supposed that the structure is divided into elements of m nodes and n nodes. The
Young’s modulus of node within element e of m nodes is expressed by aem1, aem2, . . . , aemm.
The Young’s modulus of midpoint within element e of m nodes is expressed by aeml. The
Young’s modulus of node within element f of n nodes is expressed by afn1, afn2, . . . , afnn.
The Young’s modulus of midpoint within element f of n nodes is expressed by afnl.
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The Young’s modulus within element e is defined as

ae =
aem1 + aem2 + · · · + aemm + aeml

m + 1
. (2.1)

Its mean is

μe = μ
(
aem1 + aem2 + · · · + aemm + aeml

m + 1

)

=
μaem1 + μaem2 + · · · + μaemm + μaeml

m + 1
,

(2.2)

where the means of Young’s modulus at the first node, the second node,. . ., the mth node
of element e are expressed by μaem1, μaem2, . . . , μaemm.The mean of Young’s modulus at the
midpoint of element e is expressed by μaeml.

The Young’s modulus within element f is defined as

af =
afn1 + afn2 + · · · + afnn + afnl

n + 1
. (2.3)

Its mean is

μf = μ
(
afn1 + afn2 + · · · + afnn + afnl

n + 1

)

=
μafn1 + μafn2 + · · · + μafnn + μafnl

n + 1
,

(2.4)

where the means of Young’s modulus at the first node, the second node,. . .,the nth node
of element f are expressed by μafn1, μafn2, . . . , μafnn. The mean of Young’s modulus at the
midpoint of element f is expressed by μafnl.
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The covariance of Young’s modulus between two elements that each has m nodes is
obtained by

Cov(ae, ae′) = Cov
(
aem1 + aem2 + · · · + aemm + aeml

m + 1
,
ae′m1 + ae′m2 + · · · + ae′mm + ae′ml

m + 1

)

=
1

(m + 1)2 [Cov(aem1, ae′m1 + ae′m2 + · · · + ae′mm + ae′ml)

+Cov(aem2 + · · ·aemm + aeml, ae′m1 + ae′m2 + · · · + ae′mm + ae′ml)]

=
1

(m + 1)2 [Cov(aem1, ae′m1) + Cov(aem1, ae′m2)

+ · · · + Cov(aem1, ae′mm) + Cov(aem1, ae′ml)]

+
1

(m + 1)2
Cov(aem2 + · · · + aemm + aeml, ae′m1 + ae′m2 + · · · + ae′mm + ae′ml)

=
1

(m + 1)2

⎛

⎝
m∑

g1=1

m∑

g2=1

Cov
(
aemg1 , ae′mg2

)
⎞

⎠ +
1

(m + 1)2

⎛

⎝
m∑

g1=1

Cov
(
aemg1 , ae′ml

)
⎞

⎠

+
1

(m + 1)2

⎛

⎝
m∑

g2=1

Cov
(
aeml, ae′mg2

)
+ Cov(aeml, ae′ml)

⎞

⎠,

(2.5)

where Cov(aemg1 , ae′mg2) = the covariance of Young’s modulus between node g1(g1 =
1, 2, . . . , m) of element e and node g2 (g2 = 1, 2, . . . , m) of element e′, Cov(aemg1 , ae′ml) = the
covariance of Young’s modulus between node g1 of element e and the midpoint of element
e′, Cov(aeml, ae′mg2) = the covariance of Young’s modulus between the midpoint of element e
and node g2 of element e′, and Cov(aeml, ae′ml) = the covariance of Young’s modulus between
the midpoint of element e and the midpoint of element e′.

The covariance of Young’s modulus between two elements is given in Appendix A.
Using covariance matrix, the correlation of Young’s modulus between any two

elements is given by

Caa =

⎛

⎜⎜⎜
⎝

Cov(a1, a1) Cov(a1, a2) · · · Cov(a1, aN)
Cov(a2, a1) Cov(a2, a2) · · · Cov(a2, aN)

...
...

...
Cov(aN, a1) Cov(aN, a2) · · · Cov(aN, aN)

⎞

⎟⎟⎟
⎠
. (2.6)

A Gaussian vector
⇀
a= [a1, a2, . . . , aN]T is generated

⇀
a = LZ. (2.7)
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Z = [Z1, Z2, . . . , ZN]T consists of N Gaussian random variables with mean zero and unit
standard deviation. The Cholesky matrix L can be obtained through a decomposition of the
covariance matrix; therefore,

μ
[
ZZT

]
= I,

LLT = Caa.

(2.8)

I is the identity matrix. The generation of vector
⇀
a must satisfy the covariance matrix

μ

[
⇀
a

⇀
a
T
]
= μ
[
LZ(LZ)T

]

= Lμ
[
ZZT

]
LT = Caa.

(2.9)

Once the decomposition has been completed, different samples of vector
⇀
a can be

acquired easily by (2.7). Thus, it is possible that Monte Carlo simulation resolves problem of
stochastic finite element.

3. Dynamic Analysis of Finite Element

For a linear system, the dynamic equilibrium equation is given by

[M]
{
δ̈
}
+ [C]

{
δ̇
}
+ [K]{δ} = {F}, (3.1)

where {δ̈}, {δ̇}, {δ} are the acceleration, velocity, and displacement vectors. [M], [K], and
[C] are the global mass, stiffness, and damping matrices obtained by assembling the element
variables in global coordinate system.

By using the Newmark method, (3.1) becomes

{δt+Δt} =
[
K̃
]−1{

F̃t+Δt
}
, (3.2)

where {δt+Δt}[K̃] and {F̃t+Δt} indicate the displacement vector, stiffness matrix and load
vector at time t + Δt. [K̃] and {F̃t+Δt} are given in Appendix B.

4. Dynamic Analysis of Structure Based on CG

Equation (3.2) can be rewritten as

[
K̃
]
{δt+�t} =

{
F̃t+�t

}
. (4.1)

Using (2.7), (2.8), and (2.9), N1 samples of vector
⇀
a are produced. N1 matrices [K̃] and N1

(4.1) are generated. For linear vibrations, (4.1) is a system of linear equations. The CG is



6 Mathematical Problems in Engineering

an adequate method for solving large systems of linear equations. It can be accomplished as
follows.

first, select appropriate solution as initial values

{δt+Δt}(0) =
(
δ(0)(t+Δt)1

, δ(0)(t+Δt)2
, . . . , δ(0)(t+Δt)N1

)T
; (4.2)

calculate the first residual vector

r(0) =
{
F̃t+Δt

}
−
[
K̃
]
{δt+Δt}(0) (4.3)

and vector

p(0) =
[
K̃
]T
r(0) (4.4)

where [K̃]
T

is the transposed matrix;
for ĩ = 0, 1, 2, . . . , n2 − 1, iterate step by step as follows:

αĩ =

([
K̃
]
p(̃i), r (̃i)

)

([
K̃
]
p(̃i),
[
K̃
]
p(̃i)
) =

(
p(̃i),
[
K̃
]T
r (̃i)
)

([
K̃
]
p(̃i),
[
K̃
]
p(̃i)
)

=

([
K̃
]T
r (̃i),
[
K̃
]T
r (̃i)
)

([
K̃
]
p(̃i),
[
K̃
]
p(̃i)
) ,

{δt+�t}(̃i+1) = {δt+�t}(̃i) + αĩp
(̃i),

r (̃i+1) = r (̃i) − αĩ
[
K̃
]
p(̃i),

βĩ+1 =

([
K̃
]T
r (̃i+1),

[
K̃
]T
r (̃i+1)

)

([
K̃
]T
r (̃i),
[
K̃
]T
r (̃i)
) ,

p(̃i+1) =
[
K̃
]T
r (̃i+1) + βĩ+1p

(̃i).

(4.5)

This process stops only if rn2 is small enough.
Vectors {δt+Δt}1, {δt+Δt}2, . . . , {δt+Δt}N1

are solutions of N1 (4.1).
The mean of {δt+Δt} is given by

μ{δt+Δt} =
{δt+Δt}1 + {δt+Δt}2 + · · · + {δt+Δt}N1

N1
. (4.6)
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The variance of {δt+Δt} is given by

Var{δt+Δt} =
1

N1 − 1

N1∑

i=1

(
{δt+Δt}i − μ{δt+Δt}

)2
. (4.7)

Similarly, the mean and variance of vector {δt+i1Δt} can be solved at time t+ i1Δt step by step.
At time t′ = t + i2Δt (i2 = 1, 2, . . . , n1), the stress for element d is given by

{σ} = [D][B]
{
δdt′
}
, (4.8)

where [D] = the material response matrix of element d, [B] = the gradient matrix of element
d and {δt′d} = the element d nodal displacement vector at time t′.

Substituting N1 samples of vector
⇀
a into (4.8), vectors {σ}1, {σ}2, . . . , {σ}N1

can be
obtained.

The mean of {σ} is given by

μ{σ} =
{σ}1 + {σ}2 + · · · + {σ}N1

N1
. (4.9)

The variance of {σ} is given by

Var{σ} = 1
N1 − 1

N1∑

i=1

(
{σ}i − μ{σ}

)2
. (4.10)

The CG belongs to methods of iteration that converge quickly. For practical purposes, PCG is
applied to accelerate convergence.

5. Dynamic Analysis of Structure Based on the TSFEM

Young’s modulus of the structure is given as function of N random variables a1, a2, . . . , aN .
The partial derivative of (4.1) with respect to ai is given by

∂{δt+�t}
∂ai

=
[
K̃
]−1

⎛

⎜
⎝
∂
{
F̃t+�t

}

∂ai
−
∂
[
K̃
]

∂ai
{δt+�t}

⎞

⎟
⎠, (5.1)
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where

∂
{
F̃t+Δt

}

∂ai
=
∂{Ft+Δt}
∂ai

+
∂[M]
∂ai

(
b0{δt} + b2

{
δ̇t
}
+ b3
{
δ̈t
})

+ [M]

(

b0
∂{δt}
∂ai

+ b2
∂
{
δ̇t
}

∂ai
+ b3

∂
{
δ̈t
}

∂ai

)

+
∂[C]
∂ai

(
b1{δt} + b4

{
δ̇t
}
+ b5
{
δ̈t
})

+ [C]

(

b1
∂{δt}
∂ai

+ b4
∂
{
δ̇t
}

∂ai
+ b5

∂
{
δ̈t
}

∂ai

)

.

(5.2)

After ∂{δt}/∂ai = q0, ∂{δ̇t}/∂ai = q̇0, and ∂{δ̈t}/∂ai = q̈0 are given, (5.2) can be calculated.
The partial derivative of (5.1) with respect to aj is given by

∂2{δt+Δt}
∂ai∂aj

=
[
K̃
]−1

⎛

⎜
⎝
∂2
{
F̃t+Δt

}

∂ai∂aj
−
∂
[
K̃
]

∂ai

∂{δt+Δt}
∂aj

−
∂
[
K̃
]

∂aj

∂{δt+Δt}
∂ai

−
∂2
[
K̃
]

∂ai∂aj
{δt+Δt}

⎞

⎟
⎠, (5.3)

where

∂2
{
F̃t+Δt

}

∂ai∂aj
=
∂2{Ft+Δt}
∂ai∂aj

+
∂2[M]
∂ai∂aj

(
b0{δt} + b2

{
δ̇t
}
+ b3
{
δ̈t
})

+
∂[M]
∂ai

(

b0
∂{δt}
∂aj

+ b2
∂
{
δ̇t
}

∂aj
+ b3

∂
{
δ̈t
}

∂aj

)

+
∂[M]
∂aj

(

b0
∂{δt}
∂ai

+ b2
∂
{
δ̇t
}

∂ai
+ b3

∂
{
δ̈t
}

∂ai

)

+ [M]

(

b0
∂2{δt}
∂ai∂aj

+ b2
∂2{δ̇t

}

∂ai∂aj
+ b3

∂2{δ̈t
}

∂ai∂aj

)

+
∂2[C]
∂ai∂aj

(
b1{δt} + b4

{
δ̇t
}
+ b5
{
δ̈t
})

+
∂[C]
∂ai

(

b1
∂{δt}
∂aj

+ b4
∂
{
δ̇t
}

∂aj
+ b5

∂
{
δ̈t
}

∂aj

)

+
∂[C]
∂aj

(

b1
∂{δt}
∂ai

+ b4
∂
{
δ̇t
}

∂ai
+ b5

∂
{
δ̈t
}

∂ai

)

+ [C]

(

b1
∂2{δt}
∂ai∂aj

+ b4
∂2{δ̇t

}

∂ai∂aj
+ b5

∂2{δ̈t
}

∂ai∂aj

)

.

(5.4)
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Table 1: Comparison of error.

The mean of vertical
displacement at node

505

The variance of
vertical displacement

at node 505

The mean of horizontal
stress at node 5

The variance of
horizontal stress at

node 5
PCG 2.95% 3.42% 4.31% 5.07%
CG 3.11% 3.84% 4.57% 5.24%
TSFEM 5.12% 6.01% 6.28% 7.17%
MPCG 7.14% 7.02% 8.67% 9.94%
MCG 7.23% 7.63% 8.82% 10.17%
MTSFEM 12.76% 13.27% 14.47% 16.53%

Figure 1: A cantilever beam.

After ∂{δt}/∂aj = q1, ∂{δ̇t}/∂aj = q̇1, ∂{δ̈t}/∂aj = q̈1, ∂2{δt}/∂ai∂aj = r0, and ∂2{δ̇t}/
∂ai∂aj = ṙ0, ∂2{δ̈t}/∂ai∂aj = r̈0 are given, (5.4) can be calculated.

The displacement is expanded at the mean value point a = (a1, a2, . . . , ai, . . . , an1)
T by

means of a Taylor series. the mean of δt+�t is obtained as

μ{δt+Δt} ≈ {δt+Δt}|a=a +
1
2

N∑

i=1

N∑

j=1

∂2{δt+Δt}
∂ai∂aj

∣∣∣∣∣
a=a

Cov
(
ai, aj

)
, (5.5)

where μ{δt+Δt} expresses mean value δt+Δt and Cov(ai, aj) is the covariance between ai and
aj .

The variance of δt+�t is given by

Var{δt+Δt} ≈
N∑

i=1

N∑

j=1

∂{δt+Δt}
∂ai

∣∣∣∣
a=a
· ∂{δt+Δt}

∂aj

∣∣∣∣∣
a=a

· Cov
(
ai, aj

)
. (5.6)

The velocity vector {δ̇t+�t} and the acceleration vector {δ̈t+�t} are given in Appendix B. The
partial derivative of δ̈t+�t with respect to ai is given by

∂
{
δ̈t+Δt

}

∂ai
= b0

(
∂{δt+Δt}
∂ai

− ∂{δt}
∂ai

)
− b2

∂
{
δ̇t
}

∂ai
− b3

∂
{
δ̈t
}

∂ai
. (5.7)
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Figure 2: The mean of vertical displacement at node 505.
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Figure 4: The mean of horizontal stress at node 5.
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Figure 5: The variance of horizontal stress at node 5.

Table 2: Comparison of CPU time.

DSFEM PCG CG TSFEM MPCG MCG MTSFEM
CPU time 4 h 32 m 47 s 1 h 15 m 43 s 1 h 47 m 36 s 10 h 45 m 34 s 1 h 7 m 23 s 1 h 36 m 31 s 4 h 12 m 17 s

h: hour; m: minute; s: second.
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Figure 8: The mean of horizontal stress at node 5 for larger covariances.

Table 3: Comparison of error for larger covariances.

The mean of vertical
displacement at node

505

The variance of
vertical displacement

at node 505

The mean of horizontal
stress at node 5

The variance of
horizontal stress at

node 5
PCG 9.27% 12.15% 11.43% 14.16%
CG 9.53% 12.37% 11.67% 14.41%
TSFEM 43.19% 64.28% 56.42% 76.39%
MPCG 31.42% 45.13% 47.16% 63.17%
MCG 31.75% 45.41% 47.43% 63.42%
MTSFEM 94.27% 125.74% 125.41% 162.43%

The partial derivative of δ̇t+�t with respect to ai is given by

∂
{
δ̇t+�t

}

∂ai
=
∂
{
δ̇t
}

∂ai
+ b6

∂
{
δ̈t
}

∂ai
+ b7

∂
{
δ̈t+�t

}

∂ai
. (5.8)

The partial derivative of (5.7) with respect to aj is given by

∂2{δ̈t+Δt
}

∂ai∂aj
= b0

(
∂2{δt+Δt}
∂ai∂aj

− ∂
2{δt}
∂ai∂aj

)

− b2
∂2{δ̇t

}

∂ai∂aj
− b3

∂2{δ̈t
}

∂ai∂aj
. (5.9)
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Figure 9: The variance of horizontal stress at node 5 for larger covariances.

The partial derivative of (5.8) with respect to aj is given by

∂2{δ̇t+�t
}

∂ai∂aj
=
∂2{δ̇t

}

∂ai∂aj
+ b6

∂2{δ̈t
}

∂ai∂aj
+ b7

∂2{δ̈t+�t
}

∂ai∂aj
. (5.10)

Equations (5.7), (5.8), (5.9) and (5.10), must be calculated for the following iteration.
Then, the mean and variance of displacement are obtained at time t + i1Δt (i1 =

2, 3, . . . , n1) step by step.
The partial derivative of (4.8) with respect to ai is given by

∂{σ}
∂ai

=
∂[D]
∂ai

[B]
{
δdt′
}
+ [D]

∂[B]
∂ai

{
δdt′
}
+ [D][B]

∂
{
δdt′
}

∂ai
. (5.11)

The partial derivative of (5.11) with respect to aj is given by

∂2{σ}
∂ai∂aj

=
∂2[D]
∂ai∂aj

[B]
{
δdt′
}
+
∂[D]
∂ai

∂[B]
∂aj

{
δdt′
}
+
∂[D]
∂ai

[B]
∂
{
δdt′
}

∂aj

+
∂[D]
∂aj

∂[B]
∂ai

{
δdt′
}
+ [D]

∂2[B]
∂ai∂aj

{
δdt′
}
+ [D]

∂[B]
∂ai

∂
{
δdt′
}

∂aj

+
∂[D]
∂aj

[B]
∂
{
δdt′
}

∂ai
+ [D]

∂[B]
∂aj

∂
{
δdt′
}

∂ai
+ [D][B]

∂2
{
δdt′
}

∂ai∂aj
.

(5.12)
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The stress is expanded at mean value point a = (a1, a2, . . . , ai, . . . , an1)
T by means of a Taylor

series. By taking the expectation operator for two sides of the above (4.8), the mean of stress
is obtained as

μ{σ} ≈ {σ}|a=a+
1
2

N∑

i=1

N∑

j=1

∂2{σ}
∂ai∂aj

∣
∣
∣
∣
∣
a=a

Cov
(
ai, aj

)
, (5.13)

where μ{σ} expresses the mean of σ and Cov(ai, aj) is the covariance between ai and aj .
The variance of σ is given by

Var{σ} ≈
N∑

i=1

N∑

j=1

∂{σ}
∂ai

∣
∣
∣
∣
a=a
· ∂{σ}
∂aj

∣
∣
∣
∣
∣
a=a

· Cov
(
ai, aj

)
. (5.14)

6. Numerical Example

Figure 1 shows a cantilever beam. The length is 1 m, the width is 0.2 m, and the height is
0.05 m. The load subjected to the cantilever beam is 100sin(100t)N. Its material is the concrete.
It is divided into 400 rectangle elements that have 505 nodes and 400 midpoints. Young’s
modulus is regarded as a stochastic process. For numerical calculation, the means of Young’s
modulus at each node and the midpoint within an element are c1(1.0 + θ1x

′
i/L). Horizontal

coordinates of each node and the midpoint within an element are x′i. The covariance of
Young’s modulus between any two nodes, between two midpoints and between each node
and each midpoint are c2(1.0 + θ2xi/l). c1, c2, θ1, θ2, l, L are constants. The distances between
any two nodes, between two midpoints, and between each node and each midpoint are
xi. Figure 2 shows the mean of vertical displacement at node 505. the DSFEM simulates
100 samples. It is common knowledge that The DSFEM approaches the accurate solution
gradually with the increase of the number of simulations. The DSFEM uses the Cholesky
decomposition to solve linear equations and provides the reference solution. Figure 3 shows
the variance of vertical displacement at node 505. Figure 4 shows the mean of horizontal
stress at node 5. Figure 5 shows the variance of horizontal stress at node 5. Table 1 shows
results obtained from the PCG, the CG, the TSFEM, the MPCG, the MCG and the MTSFEM
compare with those of the DSFEM within six seconds. The PCG adopts the preconditioned
Conjugate Gradient method to solve linear equations. The errors of the PCG, the CG and the
TSFEM are smaller than those of the MPCG, the MCG, and the MTSFEM. The maximum error
is obtained by the MTSFEM.The minimum error is produced by the PCG.Table 2 compares
the CPU times of the above-mentioned methods when the cantilever beam has vibrated for six
seconds.The PCG requires the least amount of CPU time. The MTSFEM requires the greatest
amount of CPU time.

In order to test accuracy and computational efficiency of the above-mentioned
methods, larger covariances of Young’s modulus are selected. Figure 6 shows the mean of
vertical displacement at node 505. Figure 7 shows the variance of vertical displacement at
node 505. Figure 8 shows the mean of horizontal stress at node 5. Figure 9 shows the variance
of horizontal stress at node 5.Table 3 indicates the errors of the above-mentioned methods
compare to results of the DSFEM. The results produced by the PCG and the CG are close
to those produced by the DSFEM. The TSFEM and the MTSFEM cannot achieve satisfactory
results.
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7. Conclusion

In this paper, improved midpoint method has the advantage of high accuracy. It can be
conveniently applied to DSFEM, PSFEM, NSFEM, and CG. The mechanical vibration in
a linear system is investigated by using the Taylor expansion. When Young’s modulus is
assumed to be a stochastic process, different samples of random variables are simulated. The
combination of the CG method and Monte Carlo method makes this an effective method
for analyzing a large vibration problem with the characteristics of high accuracy and quick
convergence.

Appendices

A. Covariance of Young’s Modulus between Two Elements

The covariance of Young’s modulus between one element containing m nodes and another
element containing n nodes is obtained by

Cov
(
ae, af

)
= Cov

(
aem1 + aem2 + · · · + aemm + aeml

m + 1
,
afn1 + afn2 + · · · + afnn + afnl

m + 1

)

=
1

(m + 1)(n + 1)
[
Cov

(
aem1, afn1 + afn2 + · · ·afnn + afnl

)

+Cov
(
aem2 + · · · + aemm + aeml, afn1 + afn2 + · · ·afnn + afnl

)]

=
1

(m + 1)(n + 1)
[
Cov

(
aem1, afn1

)
+ Cov

(
aem1, afn2

)

+ · · · + Cov
(
aem1, afnn

)
+ Cov

(
aem1, afnl

)]

+
1

(m + 1)(n + 1)
Cov

(
aem2 + · · · + aemm + aeml, afn1 + afn2 + · · · + afnn + afnl

)

=
1

(m + 1)(n + 1)

⎛

⎝
m∑

g1=1

n∑

g3=1

Cov
(
aemg1 , afng3

)
⎞

⎠

+
1

(m + 1)(n + 1)

⎛

⎝
m∑

g1=1

Cov
(
aemg1 , afnl

)
⎞

⎠

+
1

(m + 1)(n + 1)

⎛

⎝
n∑

g3=1

Cov
(
aeml, afng3

)
⎞

⎠

+
1

(m + 1)(n + 1)
Cov

(
aeml, afnl

)
,

(A.1)

where Cov(aemg1 , afng3) = the covariance of Young’s modulus between node g1 (g1 =
1, 2, . . . , m) of element e and node g3 (g3 = 1, 2, . . . , n) of element f , Cov(aemg1 , afnl) = the
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covariance of Young’s modulus between node g1 of element e and the midpoint of element
f , Cov(aeml, afng3) = the covariance of Young’s modulus between the midpoint of element e
and node g3 of element f , and Cov(aeml, afnl) = the covariance of Young’s modulus between
the midpoint of element e and the midpoint of element f .

The covariance of Young’s modulus between two elements that each has n nodes is
given by

Cov
(
af , af ′

)
=

1

(n + 1)2

⎛

⎝
n∑

g3=1

n∑

g4=1

Cov
(
afng3 , af ′ng4

)
⎞

⎠

+
1

(n + 1)2

⎛

⎝
n∑

g3=1

Cov
(
afng3 , af ′nl

)
⎞

⎠

+
1

(n + 1)2

⎛

⎝
n∑

g4=1

Cov
(
afnl, af ′ng4

)
+ Cov

(
afnl, af ′nl

)
⎞

⎠,

(A.2)

where Cov(afng3 , af ′ng4) = the covariance of Young’s modulus between node g3 (g3 =
1, 2, . . . , n) of element f and node g4 (g4 = 1, 2, . . . , n) of element f ′, Cov(afng3 , af ′nl) = the
covariance of Young’s modulus between node g3 of element f and the midpoint of element
f ′, Cov(afnl, af ′ng4) = the covariance of Young’s modulus between the midpoint of element f
and node g4 of element f ′, and Cov(afnl, af ′nl) = the covariance of Young’s modulus between
the midpoint of element f and the midpoint of element f ′.

B. Newmark Method

For ease of programming, the comprehensive calculation steps of the Newmark method are
as follows.

In the initial calculation the matrices [K], [M], and [C] are formed. The initial values
{δt}, {δ̇t}, {δ̈t} are given. After selecting step Δt and parameters γ, β, the following relevant
parameters are calculated:

γ ≥ 0.50, β ≥ 0.25
(
0.5 + γ

)2
,

b0 =
1

β(Δt)2
, b1 =

γ

βΔt
, b2 =

1
βΔt

,

b3 =
1

2β
− 1, b4 =

γ

β
− 1, b5 =

Δt
2

(
γ

β
− 2
)
,

b6 = Δt
(
1 − γ

)
, b7 = γΔt.

(B.1)

The stiffness matrix is defined as

[
K̃
]
= [K] + b0[M] + b1[C]. (B.2)

The stiffness matrix inversion [K̃]
−1

is solved.
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Calculation of each step time At time t+ � t, the load vector is defined as

{
F̃t+Δt

}
= {Ft+Δt} + [M]

(
b0{δt} + b2

{
δ̇t
}
+ b3
{
δ̈t
})

+ [C]
(
b1{δt} + b4

{
δ̇t
}
+ b5
{
δ̈t
})
.

(B.3)

At time t + Δt, the displacement vector is given by

{δt+Δt} =
[
K̃
]−1{

F̃t+Δt
}
. (B.4)

At time t + Δt, the velocity vector and acceleration vector are obtained as

{
δ̈t+�t

}
= b0({δt+Δt} − {δt}) − b2

{
δ̇t
}
− b3
{
δ̈t
}
,

{
δ̇t+�t

}
=
{
δ̇t
}
+ b6
{
δ̈t
}
+ b7
{
δ̈t+�t

}
.

(B.5)

Vectors {δt+i1Δt}, {δ̇t+i1�t}, and {δ̈t+i1�t} are solved at time t + i1Δt (i1 = 2, 3, . . . , n1) step by
step.
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The nonlinear free vibration for viscoelastic cross-ply moderately thick laminated composite
plates under considering transverse shear deformation and damage effect is investigated. Based
on the Timoshenko-Mindlin theory, strain-equivalence hypothesis, and Boltzmann superposition
principle, the nonlinear free vibration governing equations for viscoelastic moderately thick
laminated plates with damage are established and solved by the Galerkin method, Simpson
integration, Newton-Cotes, Newmark, and iterative methods. In the numerical results, the effects
of transverse shear, material viscoelasticity, span-thickness ratio, aspect ratio, and damage effect
on the nonlinear free vibrating frequency of the viscoelastic cross-ply moderately thick laminated
plates are discussed.

1. Introduction

The structure will present the resonance phenomenon when the external excitation frequency
is near to a certain natural frequency of the structure during the service life of the structures.
Structure destructions caused by the resonance are prevalent in the practical engineering. The
damage will emerge in the viscoelastic composite structures during the process of vibration
and lead to the change of the dynamic behavior. When the damage develops, the structure
will probably enter into the resonant state. As soon as the resonance appears, the stress values
in the structure will increase, which will cause the development of the damage accelerate.
Therefore, it is a very important research field to investigate the nonlinear dynamic behavior
of viscoelastic laminated plates with damage effect.

Extensive studies have been made in dynamics of viscoelastic homogeneous struc-
tures. On the basis of the linear theory and the concept of the Lyapunov exponents, Aboudi
and Cederbaum [1] investigated the dynamic stability of viscoelastic rectangular plates.
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Librescu and Chandiramani [2] analyzed the dynamic stability of transversely isotropic
viscoelastic plates. Sun and Zhang [3] investigated the chaotic behaviors of viscoelastic
rectangular plates subjected to an in-plane periodic load and pointed out that the stability of
the structure could be increased by adjusting the material parameters. Chen et al. [4] analyzed
the steady-state response of the parametrically excited axially moving string constituted by
the Boltzmann superposition principle. T. W. Kim and J. H. Kim [5] applied finite element
analysis and the method of multiple scales to investigate the nonlinear vibrating frequency
of viscoelastic laminated plates. Yu and Huang [6] presented a mathematical model for the
vibration of a three-layered sandwich circular plate with viscoelastic core and discussed the
effect of viscoelasticity on the frequency and amplitude. Relatively, few works have been
devoted to study the effects of local damage and defects on the static and dynamic behavior
of plates. Prabhakara and Datta [7, 8] analyzed the effect of the structural flaw on the natural
frequency and buckling load of elastic plates subjected to a uniform in-plane load. Laura
and Gutierrez [9] presented the linear fundamental frequency of transverse vibration for a
damaged circular annular plate. However, the materials of the composite laminated plates
have the property of viscoelasticity with the apparent creep phenomenon and relaxation
characteristic, so it is very necessary to examine the influences of the damage effect on the
nonlinear dynamics of viscoelastic laminated plates. Sheng and Cheng [10] used the history
curve, phase trajectory diagram, Poincare map, bifurcation figure, and power spectrum to
analyze the nonlinear dynamical properties of viscoelastic thick plate with damage. Fu et
al. [11, 12] studied the nonlinear dynamic response of viscoelastic composite plate with
transverse matrix cracks based on Schapery’s 3D constitutive relationship. To author’s work,
Zheng and Fu [13] have studied the effect of local damage on the bifurcation and chaos of
viscoelastic isotropic plates, and the nonlinear dynamic properties of viscoelastic isotropic
plates and laminated plates with considering damage evolution [14–16].

In the present study, the nonlinear free vibration equations of the viscoelastic cross-ply
moderately thick laminated composite plates with damage effect are established by applying
Timoshenko-Mindlin theory, strain equivalence hypothesis, and Boltzmann superposition
principle. By employing the standard linear solid model to express the viscoelastic material
properties, Kachanov’s approach to describe the damage evolution, and using the Galerkin
method, Simpson integration, Newton-Cotes, Newmark method, and iterative procedure,
the solutions of the problem are obtained. Numerical results are presented for different
parameters.

2. Basic Equations

Consider a viscoelastic cross-ply rectangular plate having length a in the x direction, width
b in the y direction, and thickness h in the z direction. The middle plane of the undeformed
plate contains the x, y axes and the origin of the coordinate system is taken at the upper left
corner of the plate. Based on Timoshenko-Mindlin kinematic hypotheses taking into account
the transverse normal deformation, the displacement components u1, u2, and u3 that include
the effect of transverse shear deformation may be described by the following expressions
[17]:

u1
(
x, y, z, t

)
= u
(
x, y, t

)
+ zϕ

(
x, y, t

)
,

u2
(
x, y, z, t

)
= v
(
x, y, t

)
+ zψ

(
x, y, t

)
,

u3
(
x, y, z, t

)
= w

(
x, y, t

)
,

(2.1)



Mathematical Problems in Engineering 3

where t is the time, u, v, andw are the values of u1, u2, and u3 at the middle surface, and ϕ and
ψ are rotation angles of the normal to the middle surface in the xz and yz planes, respectively.
The nonlinear strain-displacement relationship can be written as

εx = ε0
x + zκx, εy = ε0

y + zκy, εxy = ε0
xy + zκxy,

εxz = ϕ +w,x, εyz = ψ +w,y,
(2.2)

where a comma denotes partial differentiation with respect to the corresponding coordinates
and where

ε0
x = u,x +

1
2
w2
,x, κx = ϕ,x,

ε0
y = v,y +

1
2
w2
,y, κy = ψ,y,

ε0
xy = u,y + v,x +w,xw,y, κxy = ϕ,y + ψ,x.

(2.3)

By applying the loading equivalent principle and assuming that the internal forces
acting on any damaged section are the same as the ones before damage, the relationship
between the effective stresses σ̃ij and the Cauchy stresses σij is given as [18]

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

σ̃x

σ̃y

σ̃xy

σ̃xz

σ̃yz

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1
1 −D1

0 0 0 0

0
1

1 −D2
0 0 0

0 0
1

√
(1 −D1)(1 −D2)

0 0

0 0 0
1

√
1 −D1

0

0 0 0 0
1

√
1 −D2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

σx

σy

σxy

σxz

σyz

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (2.4)

where the anisotropic damage variables D1 and D2 are similarly defined as in [15, 16].
The above relation is expressed as follows:

σ̃ = Λσ. (2.5)

Employing the strain energy equivalence principle [19] and Boltzmann superposition
principle [20], the stress-strain constitutive equations of the coupled viscoelastic/damage
cross-ply laminated plates for the kth layer can be obtained in the following form:

σ(k)(t) = T (k)T
Λ(k)−1

Q(k)(0)Λ(k)−1
T (k)ε(k)(t) + T (k)T

Λ(k)−1
∫ t

0
Q̇(k)(t − τ)Λ(k)−1

T (k)ε(k)(τ)dτ

(2.6)

in which Q(k)(t) is the time-dependent relaxation function and Q(k)(0) is the initial Young’s
modulus of materials for the kth layer. For orthotropic viscoelastic materials and considering
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that Poisson ratio contains constant, T (k) is the strain transformation relation for the kth layer,
having

Q(k)(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

E
(k)
1 (t)

1 − ν(k)12 ν
(k)
21

ν
(k)
12 E

(k)
2 (t)

1 − ν(k)12 ν
(k)
21

0 0 0

ν
(k)
12 E

(k)
2 (t)

1 − ν(k)12 ν
(k)
21

E
(k)
2 (t)

1 − ν(k)12 ν
(k)
21

0 0 0

0 0 G
(k)
12 (t) 0 0

0 0 0 G
(k)
13 (t) 0

0 0 0 0 G
(k)
23 (t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

T(k) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

cos2θk sin2θk sin θk cos θk 0 0

sin2θk cos2θk − sin θk cos θk 0 0

−2 sin θk cos θk 2 sin θk cos θk cos 2θk 0 0

0 0 0 cos θk sin θk

0 0 0 − sin θk cos θk

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

(2.7)

where c = cos θk and s = sin θk. θk is the angle measured from the fibre direction to coordinate
axis ox for the kth layer; here θk = 0 or 90◦

For simplification, (2.6) is rewritten as

σ(k)
1 = Qd(k) ⊗ ε(k)1 ,

σ(k)
2 = Qd(k)

∗ ⊗ ε(k)2 ,
(2.8)

where the symbol (⊗) is the Stieltjes convolution operation symbol, which is defined as

f ⊗ g =
∫ t

−∞
f(t − τ)dg(τ) = f(0)g(t) +

∫ t

0
ḟ(t − τ)g(τ)dτ,

σ(k)
1 =

{
σ
(k)
x , σ

(k)
y , σ

(k)
xy

}T
, σ(k)

2 =
{
σ
(k)
xz , σ

(k)
yz

}T
,

ε1
(k) =

{
R

(k)
1 εx, R

(k)
2 εx, R

(k)
3 εx, R

(k)
1 εy, R

(k)
2 εy, R

(k)
3 εy, R

(k)
1 εxy, R

(k)
2 εxy, R

(k)
3 εxy

}T
,

ε
(k)
2 =

{
R

(k)
4 εxz, R

(k)
5 εxz, R

(k)
4 εyz, R

(k)
5 εyz

}T
,

Qd(k) =
[
Q
d(k)
ij

]
,
(
i = 1, 2, 3, j = 1, 2, . . . , 9

)
, Qd(k)

∗ =
[
Q
d(k)
ij

]
,
(
i = 4, 5, j = 1, 2, 3, 4

)
,

R
(k)
1 = 1 −D(k)

1 , R
(k)
2 = 1 −D(k)

2 , R
(k)
3 =

√(
1 −D(k)

1

)(
1 −D(k)

2

)
,

R
(k)
4 =

√(
1 −D(k)

1

)
, R

(k)
5 =

√(
1 −D(k)

2

)
.

(2.9)
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The nonzero elements in Qd(k) and Qd(k)
∗ are given as

Q
d(k)
11 = c4R

(k)
1 Q

(k)
11 , Q

d(k)
12 = s4R

(k)
2 Q

(k)
22 , Q

d(k)
14 = s4R

(k)
2 Q

(k)
12 , Q

d(k)
15 = c4R

(k)
1 Q

(k)
12 ,

Q
d(k)
21 = c4R

(k)
2 Q

(k)
12 , Q

d(k)
22 = s4R

(k)
1 Q

(k)
12 , Q

d(k)
24 = s4R

(k)
1 Q

(k)
11 , Q

d(k)
25 = c4R

(k)
2 Q

(k)
22 ,

Q
d(k)
39 =

(
c2 − s2

)2
R

(k)
3 Q

(k)
66 , Q

d(k)
41 = c2R

(k)
4 Q

(k)
44 , Q

d(k)
42 = s2R

(k)
5 Q

(k)
55 ,

Q
d(k)
53 = s2R

(k)
4 Q

(k)
44 , Q

d(k)
54 = c2R

(k)
5 Q

(k)
55 .

(2.10)

As the classical plate theory, the stress resultants and couples are defined by

[
Nx,Ny,Nxy

]
=
∫h/2

−h/2

[
σ
(k)
x , σ

(k)
y , σ

(k)
xy

]
dz,

[
Qx,Qy

]
=
∫h/2

−h/2

[
ksσ

(k)
xz , ksσ

(k)
yz

]
dz,

[
Mx,My,Mxy

]
=
∫h/2

−h/2

[
σ
(k)
x , σ

(k)
y , σ

(k)
xy

]
zd,

(2.11)

where, Nx,Ny, and Nxy are the membrane stress resultants per unit length, Qx and Qy are
the transverse shear stress resultants per unit length, Mx,My, and Mxy are the bending and
twisting moments per unit length, and ks is the shear correction factor taking ks = 5/6.
Substituting (2.8) into (2.11), we can obtain

{
N

M

}

=
n∑

k=1

[
A(k) B(k)

B(k) D(k)

]

⊗
{
ε0(k)

κ0(k)

}

,

{
Qx

Qy

}

=
n∑

k=1

ksC(k) ⊗ ε(k)2 ,

(2.12)

where

N =
{
Nx,Ny,Nxy

}T
, M =

{
Mx,My,Mxy

}T
,

ε0(k) =
{
R

(k)
1 ε0

x, R
(k)
2 ε0

x, R
(k)
3 ε0

x, R
(k)
1 ε0

y, R
(k)
2 ε0

y, R
(k)
3 ε0

y, R
(k)
1 ε0

xy, R
(k)
2 ε0

xy, R
(k)
3 ε0

xy

}T
,

κ0(k) =
{
R

(k)
1 κx, R

(k)
2 κx, R

(k)
3 κx, R

(k)
1 κy, R

(k)
2 κy, R

(k)
3 κy, R

(k)
1 κxy, R

(k)
2 κxy, R

(k)
3 κxy

}T
,

(2.13)
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and the elements in the coupled damaged stiffness tensors A(k), B(k), D(k), and C(k) are
determined as

(
A

(k)
ij , B

(k)
ij , D

(k)
ij

)
=
∫zk

zk−1

Q
d(k)
ij

(
1, z, z2

)
dz

(
i = 1, 2, 3, j = 1, 2, . . . , 9

)
,

C
(k)
ij =

∫zk

zk−1

Q
d(k)
ij dz

(
i = 4, 5, j = 1, 2, 3, 4

)
.

(2.14)

Neglecting the effects of in-plane inertia, rotary inertia, and coupled normal-rotary
inertia, the nonlinear equilibrium equations for moderately thick laminated plates are [21]

Nx,x +Nxy,y = 0,

Nxy,x +Ny,y = 0,

Qx,x +Qy,y +
[
Nxw,x +Nxyw,y

]
,x
+
[
Nxyw,x +Nyw,y

]
,y
= ρ0hẅ,

Mx,x +Mxy,y −Qx = 0,

My,y +Mxy,x −Qy = 0,

(2.15)

where ρ0 is the mass of unit volume. By substituting (2.12) into (2.15), and introducing the
following dimensionless parameters:

ξ =
x

a
, η =

y

b
, λ =

a

b
, ρ =

ρ0a
2

t21E
, H =

a

h
, τ =

t

t1
, U =

au

h2
,

V =
av

h2
, W =

w

h
, Λ = Hϕ, Ψ = Hψ, A

(k)
ij =

A
(k)
ij

Eh
, B

(k)
ij =

B
(k)
ij

Eh2
,

D
(k)
ij =

D
(k)
ij

Eh3s
(
i = 1, 2, 3, j = 1, 2, . . . , 9

)
, C

(k)
ij =

C
(k)
ij

Eh

(
i = 4, 5, j = 1, 2, 3, 4

)
,

e
(k)
1 =

E
(k)
1 (τ)
E

, e
(k)
2 =

E
(k)
2 (τ)
E

, e
(k)
12 =

G
(k)
12 (τ)
E

, e
(k)
13 =

G
(k)
13 (τ)
E

, e
(k)
23 =

G
(k)
23 (τ)
E

,

(2.16)
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then, the dimensionless equilibrium equations of cross-ply laminated plates with the coupled
effects of viscoelasticity and damage can be expressed as

n∑

k=1

{
2∑

i=1

A
(k)
1i ⊗ R

(k)
i

(
U,ξξ +W,ξW,ξξ

)
+

5∑

i=4

λA
(k)
1i ⊗ R

(k)
i−3

(
V,ξη + λW,ηW,ξη

)
+

2∑

i=1

B
(k)
1i ⊗ R

(k)
i Λ,ξξ

+ λ
5∑

i=4

B
(k)
1i ⊗ R

(k)
i−3Ψ,ξη + λA

(k)
39 ⊗ R

(k)
3

(
λU,ηη + V,ξη + λW,ηW,ξη + λW,ξW,ηη

)

+ λB
(k)
39 ⊗ R

(k)
3

(
λΛ,ηη + Ψ,ξη

)
}

= 0,

n∑

k=1

{

A
(k)
39 ⊗ R

(k)
3

(

λU,ξη + V,ξξ + λW,ηW,ξξ + λW,ξW,ξη

)

+ B
(k)
39 ⊗ R

(k)
3

(
λΛ,ξη + Ψ,ξξ

)

+ λ
2∑

i=1

A
(k)
2i ⊗ R

(k)
i

(
U,ξη +W,ξW,ξη

)
+ λ2

5∑

i=4

A
(k)
2i ⊗ R

(k)
i−3

(
V,ηη + λW,ηW,ηη

)

+λ
2∑

i=1

B
(k)
2i ⊗ R

(k)
i Λ,ξη + λ2

5∑

i=4

B
(k)
2i ⊗ R

(k)
i−3Ψ,ηη

}

= 0,

n∑

k=1

{

H2ks
2∑

i=1

C
(k)
4i ⊗ R

(k)
i+3

(
Λ,ξ +W,ξξ

)
+H2λks

4∑

i=3

C
(k)
5i ⊗ R

(k)
i+1

(
Ψ,η + λW,ηη

)

+

[
2∑

i=1

A
(k)
1i ⊗ R

(k)
i

(
U,ξ +

1
2
W2

,ξ

)
+

5∑

i=4

A
(k)
1i ⊗ R

(k)
i−3

(

λV,η +
λ2

2
W2

,η

)

+
2∑

i=1

B
(k)
1i ⊗ R

(k)
i Λ,ξ + λ

5∑

i=4

B
(k)
1i ⊗ R

(k)
i−3Ψ,η

]

W,ξξ

+ 2λ
[
A

(k)
39 ⊗ R

(k)
3

(
λU,η + V,ξ + λW,ξW,η

)
+ B

(k)
39 ⊗ R

(k)
3

(
λΛ,η + Ψ,ξ

)
]
W,ξη

+ λ2

[
2∑

i=1

A
(k)
2i ⊗ R

(k)
i

(
U,ξ +

1
2
W2

,ξ

)
+

5∑

i=4

λA
(k)
2i ⊗ R

(k)
i−3

(
V,η +

λ

2
W2

,η

)

+
2∑

i=1

B
(k)
2i ⊗ R

(k)
i Λ,ξ + λ

5∑

i=4

B
(k)
2i ⊗ R

(k)
i−3Ψ,η

]

W,ηη

}

− ρH2Ẅ = 0,

n∑

k=1

{
2∑

i=1

B
(k)
1i ⊗ R

(k)
i

(
U,ξξ +W,ξW,ξξ

)
+

5∑

i=4

λB
(k)
1i ⊗ R

(k)
i−3

(
V,ξη + λW,ηW,ξη

)

+
2∑

i=1

D
(k)
1i ⊗ R

(k)
i Λ,ξξ + λ

5∑

i=4

D
(k)
1i ⊗ R

(k)
i−3Ψ,ξη

+ λB
(k)
39 ⊗ R

(k)
3

(
λU,ηη + V,ξη + λW,ηW,ξη + λW,ξW,ηη

)

+λD
(k)
39 ⊗ R

(k)
3

(
λΛ,ηη + Ψ,ξη

)
−H2ks

2∑

i=1

C
(k)
4i ⊗ R

(k)
i+3

(
Λ +W,ξ

)
}

= 0,
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n∑

k=1

{

B
(k)
39 ⊗ R

(k)
3

(
λU,ξη + V,ξξ + λW,ηW,ξξ + λW,ξW,ξη

)
+D

(k)
39 ⊗ R

(k)
3

(
λΛ,ξη + Ψ,ξξ

)

+ λ
2∑

i=1

B
(k)
2i ⊗ R

(k)
i

(
U,ξη +W,ξW,ξη

)
+ λ2

5∑

i=4

B
(k)
2i ⊗ R

(k)
i−3

(
V,ηη + λW,ηW,ηη

)

+λ
2∑

i=1

D
(k)
2i ⊗ R

(k)
i Λ,ξη + λ2

5∑

i=4

D
(k)
2i ⊗ R

(k)
i−3Ψ,ηη −H2ks

4∑

i=3

C
∗(k)
5i ⊗ R

(k)
i+1

(
Ψ + λW,η

)
}

= 0.

(2.17)

Suppose that all of the boundary conditions of the plate are simply supported. In such
case, the dimensionless boundary conditions can be written as

ξ = 0, 1: U = V =W = Ψ =Mξξ = 0,

η = 0, 1: U = V =W = Λ =Mηη = 0.
(2.18)

3. Solution Methodology

A solution for (2.17) in conjunction with the boundary condition (2.18) is sought in the
following separable form:

U =
∞∑

m=1

∞∑

n=1,3,...

fu(τ) sin(2πmξ) sin
(
πnη

)
,

V =
∞∑

m=1,3,...

∞∑

n=1

fv(τ) sin(πmξ) sin
(
2πnη

)
,

W =
∞∑

m=1,3,...

∞∑

n=1,3,...

fw(τ) sin(πmξ) sin
(
πnη

)
, (3.1)

Λ =
∞∑

m=1,3,...

∞∑

n=1,3,...

fϕ(τ) cos(πmξ) sin
(
πnη

)
,

Ψ =
∞∑

m=1,3,...

∞∑

n=1,3,...

fψ(τ) sin(πmξ) cos
(
πnη

)
.

Substituting (3.1) into the governing equations (2.17) and making use of the one-
term approximation of the Galerkin method, we can transform the nonlinear integral-partial
differential equations into the nonlinear integral-ordinary differential equations in terms of
fu(τ), fv(τ), fw(τ), fϕ(τ), and fψ(τ). The domain is divided by square mesh into M ×M
divisions and the time τ is equally divided into small time segments Δτ . The Simpson integral
formula is used to compute the integrations with respect to the spatial coordinates and the
Newton-Cotes trapezoidal rule is used to compute the integrations with respect to time.
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Moreover, using the Newmark scheme, the acceleration item f̈w and velocity item ḟw can
be expressed as follows:

f̈
(N)
w =

4
(
f
(N)
w − f (N−1)

w

)

(Δτ)2
−

4ḟ (N−1)
w

Δτ
− f̈ (N−1)

w ,

ḟ
(N)
w = ḟ (N−1)

w +
1
2

[
f̈
(N−1)
w + f̈ (N)

w

]
Δτ,

(3.2)

where f (N)
w denotes the value of fw(τ) at the timeNΔτ . Through these treatings, (2.17) can be

transformed into the nonlinear algebraic equations only with time. And the whole equations
are iterated to seek solutions. At each step of the iteration, the nonlinear items are linearized.
For example, at the step J , the nonlinear items may be transformed to

(X · Y )J = (X)J · (Y )JP , (3.3)

where (Y )JP is the average value of those obtained in the preceding two iterations. For the
initial step of the iteration, it can be determined by using the quadratic extrapolation, that is,

(Y )JP = AA(Y )J−1 + BB(Y )J−2 + CC(Y )J−3. (3.4)

And for the different step of the iteration, the coefficients AA,BB, and CC can be expressed
as follow:

J = 1: AA = 1, BB = 0, CC = 0,

J = 2: AA = 2, BB = −1, CC = 0,

J ≥ 3: AA = 3, BB = −3, CC = 1.

(3.5)

For every time step, the iteration lasts until the difference of the present value and the former
is smaller than 0.1%; then continue the calculation of the next step.

4. Damage Evolution Equation

In the present research, the following damage evolution equation is employed [19, 22]:

dD(k)
i

dτ
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Bi

(
σ
(k)
i

1 −D(k)
i

)mi

, σ
(k)
i ≥ σ(k)

Di
,

0, σ
(k)
i < σ

(k)
Di
.

(i = 1, 2) (4.1)
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Table 1: Comparison of fundamental linear frequencies of laminated elastic plates (a/h = 10).

Reference [23] Reference [24] Present
SOT CPT FOT TOT FOT
12.527 15.104 12.163 11.958 12.2233

Here Bi and mi are the material constants. σ(k)
Di

is the stress threshold value in the i direction

at which the damage D(k)
i begins to grow, and

σ
(k)
1 =

1
h(k)

∫zk

zk−1

σ̃
(k)
x dz, σ

(k)
2 =

1
h(k)

∫zk

zk−1

σ̃
(k)
y dz. (4.2)

Assume that there is no damage at initial time; thus, the damage values of all points are
D

(k)
1 (0) = 0 and D

(k)
2 (0) = 0. When stopping iterative step J , we can obtain the five function

values fu(τ), fv(τ), fw(τ), fϕ(τ), and fψ(τ). Before continuing the next iterative step, it must
determine whether the damage values of an arbitrary point of the plate develop. Therefore,
firstly, the displacements of an arbitrary point of the plate can be obtained by using (3.1).
Calculate the strains of an arbitrary point of the plate by using (2.2) and (2.3). Then, using
(2.5), (2.8) and (4.2), σ(k)

1 and σ
(k)
2 can be obtained. Finally, use (4.1) to determine whether the

damage grows. Suppose that D(k)
i (J) is the damage value of an arbitrary point for the kth

layer in the i direction at the time JΔτ . If σ(k)
i ≥ σ(k)

Di
, then the damage value at the time JΔτ

is

D
(k)
i (J) = D(k)

i (J − 1) + Ḋ(k)
i

(
D

(k)
i (J − 1), σ(k)

i

)
Δτ. (4.3)

and if σi(k) < σ
(k)
Di

, then

D
(k)
i (J) = D(k)

i (J − 1). (4.4)

5. Numerical Results

To ensure the accuracy and effectiveness of the present method, the fundamental frequencies
of a three-layer symmetric cross-ply [0◦/90◦/0◦] laminated elastic plate without considering
damage effect are solved firstly and the materials properties [23, 24] are given as E1 = 25E2,
G12 = G13 = 0.5E2, G23 = 0.2E2, and ν12 = 0.25. Define ω0 = (ω0a

2/h)
√
ρ0/E2, in which ω0

and ω0 are the dimensionless and dimensional linear frequencies of laminated elastic plates
without damage, respectively. The fundamental frequencies are calculated and compared in
Table 1 with those of [23, 24]. Table 1 shows that the present result approximately agrees with
the result in [24] by the first-order shear-deformation theory (FOT). And for the moderately
thick laminated plates, the FOT solution has small difference compared with the second-order
shear-deformation theory (SOT) solution and third-order shear-deformation theory (TOT)
solution, but large difference is compared with the classical plate theory (CPT). It is noted
that the effect of the transverse shear deformation cannot be neglected for the moderately
thick laminated plates.



Mathematical Problems in Engineering 11

Table 2: Effect of transverse shear on the nonlinear vibrating frequency Ω∗ of laminated plates.

wmax/h Case a/h

5 10 15 20

1

Ts = 0, Td = 0 2.73182 1.33970 0.883711 0.677714
Ts = 0, Td = 1 2.38090 1.30900 0.872317 0.670063
Ts = 1, Td = 0 2.15917 1.21767 0.847933 0.649089
Ts = 1, Td = 1 1.90400 1.20830 0.840535 0.64502

2

Ts = 0, Td = 0 3.92699 2.02683 1.36591 0.998917
Ts = 0, Td = 1 2.84119 1.74745 1.30736 0.991473
Ts = 1, Td = 0 3.69599 1.92329 1.32000 0.987922
Ts = 1, Td = 1 2.68778 1.65347 1.27967 0.981748

Consider the amplitudes and the frequencies varying with time and the viscoelasticity
and damage developing with the increase of time, so we must elect the later vibrating period
to be analyzed. Hence, the relationship of the average frequency and the maximum amplitude
in the 20th period are presented. Also, assume that every layer has the same material and the
identical thickness. The parameters used in numerical calculation are taken as

e1 = 9.75 + 0.25e−α1τ , α1 = 0.022,

e2 = 0.32 + 0.68e−α2τ , α2 = 0.024, ν12 = 0.4,

e12 = 0.07 + 0.16e−α12τ , α12 = 0.026,

e13 = 0.07 + 0.16e−α13τ , α13 = 0.026,

e23 = 0.05 + 0.12e−α23τ , α23 = 0.026,

B1 = 3.7 × 10−12 MPa−m1 , B2 = 4.8 × 10−11 MPa−m2 , m1 = m2 = 3.

(5.1)

Define

Ω∗ = Ω

√
ρ0a

2

E
, (5.2)

where Ω∗ and Ω are the dimensionless and dimensional nonlinear free vibrating frequency
of viscoelastic plates with damage, respectively.

Table 2 shows the effect of transverse shear deformation on the nonlinear free vibrating
frequency of the viscoelastic cross-ply [0◦/90◦/0◦] laminated square plate with considering
damage effect or without considering damage effect, in which wmax/h is the dimensionless
maximum vibration amplitude of the center point of the plate (similarly below), Ts is the
tracing constant which represents the influence of transverse shear when Ts = 1 and the effect
is neglected when Ts = 0, as well as Td is the tracing constant which represents the influence
of damage when Td = 1 and the effect is neglected when Td = 0. From Table 2 it may be
observed that the thicker the thickness of the laminated plate, the more significant the effect
of transverse shear on the nonlinear free vibrating frequency of the laminated plate. And in
all cases transverse shear results in a decrease of the vibrating frequency. Therefore, the effect
of transverse shear deformation is considered in the following calculated examples.
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Figure 1: Effect of span-thickness ratio on the nonlinear amplitude-frequency curves of viscoelastic
laminated plate.

Figure 1 shows the effect of span-thickness ratio a/h on the nonlinear free vibrating
amplitude-frequency response curves of the viscoelastic cross-ply [0◦/90◦/0◦] laminated
square plate. In Figure 1, the solid line denotes the undamaged condition, while the dashed
line denotes the condition with damage evolution. It can be observed that with the decrease
of the span-thickness ratio, namely, the increase of thickness of the plate, the nonlinear
free vibrating frequency of the plate becomes bigger under a given vibration amplitude.
Meanwhile, the frequency increases with increase of the vibration amplitude under a fixed
span-thickness ratio. It can be also seen that the two curves with/without damage agree very
well where the vibration amplitude is small. But with the increase of the vibration amplitude,
the damage begins to appear and the accumulation velocity of the damage increases, which
results in the stiffness of the plate becoming smaller. Accordingly, the nonlinear vibration
frequency considering damage reduces remarkably than the result neglecting damage.
Moreover, the less the span-thickness ratio of the plate is, the more the damage becomes,
then the more the frequency descends.

Figure 2 displays the effect of aspect ratio λ on the nonlinear free vibrating amplitude-
frequency response curves of the viscoelastic cross-ply [0◦/90◦/0◦] laminated plate. With
the increase of the aspect ratio, that is, the width decreases under the condition that the
length remains constant, the nonlinear free vibrating frequency of the plate becomes bigger.
Similarly, under the given aspect ratio λ, the increase of the amplitude will expedite the
accumulation velocity of the damage which will cause the more reduction in the stiffness
of the plate. Consequently, the reduction of frequency caused by the damage will be more
remarkable. The more the aspect ratio is, the more the frequency reduces.

The effect of material viscoelasticity parameter α(= α1 = α2 = α12 = α13 = α23) on
the nonlinear free vibrating frequency of the viscoelastic cross-ply [0◦/90◦/0◦] laminated
square plate is listed in Table 3. The nonlinear free vibrating frequency of the laminated
plate decreases with the higher value of the material viscoelasticity parameter. Due to the
fact that viscoelastic material possesses dissipative nature and it acts as damping in the
dynamic problems, it can improve the stability of the structure. Therefore, at the same
condition, the higher viscoelasticity parameter can suppress the emergence of damage and



Mathematical Problems in Engineering 13

32.521.510.50

wmax/h

0.8

1.2

1.6

2

2.4

2.8

3.2

Ω∗

λ = 1.2
λ = 1

λ = 0.8

Figure 2: Effect of aspect ratio on the nonlinear amplitude-frequency curves of viscoelastic laminated plate
(a/h = 10).

Table 3: Effect of viscoelasticity parameter on the nonlinear vibrating frequency Ω∗ of laminated plates
(a/h = 15).

α Case wmax/h

1 1.5 2 2.5 3

0 Td = 0 0.850871 1.07477 1.35062 1.61494 1.85181
Td = 1 0.837562 1.04704 1.28289 1.46316 1.49701

0.5 Td = 0 0.846744 1.06551 1.31475 1.56880 1.84306
Td = 1 0.838762 1.05061 1.25715 1.42693 1.49761

2 Td = 0 0.820509 1.04718 1.28120 1.53075 1.79590
Td = 1 0.820229 1.04668 1.25565 1.42815 1.47021

cause the difference of the vibrating frequency between the damaged plate and undamaged
plate decrease.

6. Conclusions

The nonlinear free vibration for viscoelastic cross-ply laminated composite plates under
considering transverse shear deformation and damage effect has been investigated. The
effects of transverse shear, material viscoelasticity, span-thickness ratio, aspect ratio, and
damage effect on the nonlinear vibration of laminated plates have been discussed. In
summary, the transverse shear effect on the nonlinear vibration of the viscoelastic laminated
plates with damage is significant, especially, for the laminates with large thickness. This effect
decreases the nonlinear frequency but does not change the general behavior of the nonlinear
vibration in all cases. With the decrease of span-thickness ratio or increase of aspect ratio,
the vibrating frequency increases, as well as the difference of vibration frequency between
considering damage and neglecting damage becomes bigger. In addition, with the increase
of the vibration amplitude, the damage begins to appear, the accumulation velocity of the
damage increases, and the reduction of the vibrating frequency becomes more significant.
The larger the material viscoelasticity, the smaller the reduction of the vibrating frequency.
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In many engineering applications the dynamics may significantly be affected by nonlinear effects,
which must be accounted for in order to accurately understand and robustly model the dynamics.
From a practical point of view, it is very important to solve the inverse problem related to system
identification and output prediction. In this paper the recently developed Nonlinear Subspace
Identification (NSI) method is presented and applied to an oscillator described by the Duffing
equation, with different types of excitation including random forces, which are demonstrated to be
very suitable for the identification process. The estimates of system parameters are excellent and,
as a consequence, the behaviour of the system, including the jump phenomena, is reconstructed
to a high level of fidelity. In addition, the possible memory limitations affecting the method are
overcome by the development of a novel algorithm, based on a specific computation of the QR
factorisation.

1. Introduction

In many applications nonlinear effects may affect significantly the dynamics, even when the
amplitude of the motion is sufficiently small. These dynamical effects must be accounted for
in order to accurately understand and robustly model the dynamics.

In general, bifurcations of equilibrium positions or periodic orbits of nonlinear
systems are the source of additional nonlinear features in the dynamics [1], which result
in a qualitative change in the response and also in a substantial quantitative variation in
oscillatory behaviour of the system. For example [2], in the externally excited pendulum a
relatively small amplitude periodic attractor, under the variation of a control parameter (such
as the frequency), may lose its stability at a saddle-node bifurcation in which the system may
then start to oscillate with a relatively large amplitude.
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Among essentially nonlinear dynamics caused by bifurcations [1], such as the
possibility of multiple coexisting stable equilibrium positions (each with its own separate
domain of attraction), this paper focuses on sudden nonlinear transitions between stable
attractors (jumps) caused by nonlinear hysteresis phenomena.

Moving to the inverse problem of nonlinear systems, many studies have been recently
conducted: in this case, system parameters are unknown and have to be estimated through an
identification procedure, consisting in the development of mathematical models from input
and output measurements performed on the real system.

Nonlinear system identification has been thoroughly investigated in recent years and
many efforts have been spent leading to a large number of methods. An exhaustive list of the
techniques elaborated to identify the behaviour of nonlinear dynamical systems is hard to
write and, moreover, there is no general analysis method that can be applied to all systems in
all circumstances. A comprehensive list describing the past and recent developments is given
in [1].

One of the established techniques is the Restoring Force Surface (RFS) method, firstly
introduced by Masri and Caughey [3]: this simple procedure allows a direct identification
for single-degree-of-freedom (SDOF) nonlinear systems. There exist in the literature several
applications of RFS method to experimental systems: in a recent paper [4], it is applied for
the analysis of a nonlinear automotive damper. A similar approach is the Direct Parameter
Estimation (DPE) method, which may be applied to multidegree-of-freedom (MDOF)
nonlinear systems: a practical implementation of the procedure was made by Mohammad
et al. [5].

Recent methods are suitable for identification of more complex nonlinear systems, in
particular MDOF systems. One of them is the Conditioned Reverse Path (CRP) method,
developed by Richards and Singh [6, 7]: this technique is based on the construction of
a hierarchy of uncorrelated response components in the frequency domain, allowing the
estimation of the coefficients of the nonlinearities away from the location of the applied
excitation. One of the examples of experimental application is given by Kerschen et al. [8].

More recently, Adams and Allemang [9] proposed a frequency-domain method called
Nonlinear Identification through Feedback of the Outputs (NIFO), which has demonstrated
[10] some advantages with respect to the CRP, mainly due to the lighter conceptual and
computing effort. This method exploits the spatial information and interprets nonlinear forces
as unmeasured internal feedback forces.

Starting from the basic idea of NIFO, the Nonlinear Subspace Identification (NSI)
method has been developed by Marchesiello and Garibaldi [11], showing a higher level of
accuracy with respect to NIFO. NSI is a time-domain method which exploits the robustness
and the high numerical performances of the subspace algorithms.

In this paper the NSI method is applied to a Duffing oscillator, which has been
studied for many years as representative of many nonlinear systems [12]. This system can
be considered in order to simply describe the sudden transitions between coexisting stable
branches of solutions. For this type of system there are frequencies at which the vibration
suddenly jumpsup or down, when it is excited harmonically with slowly changing frequency.

One of the main topics about the study of the Duffing oscillator consists in searching
for analytical expressions of the jump frequencies and the amplitudes of vibration at these
frequencies. For example, Worden [13] and Friswell and Penny [14] computed these points
by using the harmonic balance method, while Malatkar and Nayfeh [15] determined the
minimum excitation force required for the jump phenomenon to appear, by using a method
based on the elimination theory of polynomials. A recent paper by Brennan et al. [16]
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provides a full set of expressions determined by using the harmonic balance approach, as
a link between the earlier analytical work and the later numerical studies.

In this paper the NSI estimates of system parameters are excellent and, as a
consequence, the behaviour of the Duffing oscillator, including the jump phenomena, is
reconstructed to a high level of fidelity.

In addition, the NSI method is enforced by the development of a new algorithm to
compute the QR factorisation in a Matlab environment, in those cases in which the data matrix
is too large to be stored or factorised. This new algorithm, which exploits some useful features
of the Householder transformations, allows the NSI method to reach more accurate results in
the parameter estimation.

2. Nonlinear Subspace Identification

2.1. Nonlinear Model

The adopted mathematical approach follows the one used in [11], in order to derive a
mathematical model for a nonlinear dynamical system. The expression for a linear time-
invariant system is first considered, as described by the following continuous state-space
model:

ẋ = Acx + Bcu,

y = Cx +Du,
(2.1)

where the output y(t) is a q-dimensional column vector, t is time, the input u(t) is an m-
dimensional column vector, and the order of the model, that is, the dimension of the state
vector x(t), is n.

A dynamical system with h degrees of freedom and with lumped nonlinear springs
and dampers can be described by the following equation of motion:

Mz̈(t) + Cvż(t) +Kz(t) = f(t) −
p∑

j=1

μjLnjgj(t) = f(t) + fnl(t), (2.2)

where M,Cv, and K are the mass, viscous damping, and stiffness matrices, respectively,
z(t) is the generalised displacement vector, and f(t) is the generalised force vector, both of
dimension h, at time t. Each of the p nonlinear components depends on the scalar nonlinear
function gj(t), which specifies the class of the nonlinearity (e.g., Coulomb friction, clearance,
quadratic damping, etc.), and on a scalar nonlinear coefficient μj. The vector Lnj , whose
entries may assume the values 1, −1, or 0, is related to the location of the nonlinear element:
it specifies the degrees-of-freedom joint by the jth nonlinear component and the sign of the
term appearing in the equation of motion (2.2).

Written as in (2.2), the original system may be viewed as subjected to the external
forces f(t) and the internal feedback forces due to nonlinearities fnl(t), expressed as the
sum of the p nonlinear components. This concept, already used in [9] to derive the NIFO
frequency-domain method, is also on the basis of the present time-domain identification
method.
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Assuming that the measurements concern displacements only, the state-space
formulation of the equation of motion, corresponding to a state vector chosen as x =
[zT żT ]T ∈ Rn×1 and to an input vector u = [f(t)T − g1(t) · · · − gp(t)]T ∈ Rm×1, is

{
ż
z̈

}
=
[

0h×h Ih×h
−M−1K −M−1Cv

]{
z
ż

}
+
[

0h×h 0h×1 · · · 0h×1

M−1 M−1μ1Ln1 · · · M−1μpLnp

]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f(t)
−g1(t)

...
−gp(t)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (2.3)

y =
[
Ih×h 0h×h

]
{
z
ż

}
+
[
0h×h 0h×1 · · · 0h×1

]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f(t)
−g1(t)

...
−gp(t)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (2.4)

and matrices Ac ∈ Rn×n, Bc ∈ Rn×m,C ∈ Rl×n, and D ∈ Rl×m of (2.1) are consequently defined.
Then the continuous model of (2.1) may be converted [11] into the following discrete

state-space model:

xr+1 = Axr + Bur,

yr = Cxr +Dur,
(2.5)

where A = eAcΔt ∈ Rn×n and B = (eAcΔt − I)A−1
c Bc ∈ Rn×m.

2.2. Subspace Identification

Given a deterministic-stochastic state-space model with s measurements of the input and of
the output

xr+1 = Axr + Bur +wr,

yr = Cxr +Dur + νr,
(2.6)

wherewr and νr are unmeasurable vector signals called process error and measurement error,
respectively, the subspace identification problem consists in estimating the model order n and
the system matrices A,B,C, and D up to within a similarity transformation, which does not
affect the parameter estimation.

In the “data-driven approach” [17] the input data are gathered in a block Hankel
matrix

U0|2i−1
def=

⎡

⎢⎢⎢
⎣

u0 u1 · · · uj−1

u1 u2 · · · uj
...

...
. . .

...
u2i−1 u2i · · · u2i+j−2

⎤

⎥⎥⎥
⎦
∈ R2mi×j , (2.7)
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Figure 1: The nonlinear system described by the Duffing equation.

Table 1: System parameters.

m (kg) k (N/m) c (Ns/m) k3 (N/m3)
1.3 800 1.3 1.5 × 106

where the number of block rows i is a user-defined index. The number of columns j is
typically equal to s − 2i + 1, which implies that all given data are used. The output block
Hankel matrix Y0|2i−1 ∈ R2li×j is defined in a similar manner by replacing u with y in (2.3).

Subspace methods take advantage of robust numerical techniques such as QR
factorisation and Singular Value Decomposition (SVD) by using geometric tools such as the
oblique projections of the row space of matrices. For a complete description of the estimating
procedure see [17].

The nonlinear identification procedure is based on the computation of system
parameters, once the state-space matrices A,B,C, and D have been estimated by a subspace
method in the time domain. In fact, system parameters (included in M,Cv,K, and μj) are
contained in the matrix

HE(ω) = D + C(iωI −Ac)−1Bc, (2.8)

which is invariant under the similarity transformation corresponding to the application of a
subspace method [11].

3. Application: The Duffing Equation

Consider the SDOF system with cubic hardening stiffness depicted in Figure 1, whose motion
is described by the following Duffing equation:

mz̈(t) + cż(t) + kz(t) + k3z
3(t) = f(t) (3.1)

with system parameters summarized in Table 1. The strength, the type, and the location of
the nonlinearity are defined respectively by the three scalar quantities μ1 = k3, g1(t) = −z3(t),
and obviously Ln1 = 1. The system is excited by two different types of force.
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Table 2: Identification results: percentage error (100 · |estimated–actual|/actual).

m k c k3

(Case 1-up) Upward sweep 4.63 4.01 4.04 5.86
(Case 1-down) Downward sweep 1.71 1.30 2.64 3.97
(Case 2) Random 0.13 0.54 0.73 0.73

Case 1. The first one is a linearly varying frequency sweep (of amplitude A = 1) between 3
and 6 Hz, applied for an upward (up) and a downward (down) frequency sweep.

Case 2. The second one is a zero-mean Gaussian random input whose r.m.s. is 20 N, selected
so that the r.m.s. of the nonlinear force is equal to 67% of the corresponding linear stiffness
force.

A fourth-order Runge-Kutta numerical integration (with a time step Δt = 10−3 s) of
the equation of motion has been performed and a total number of s = 105 samples has been
generated (so tfin = 100 s) and then corrupted by adding a zero-mean Gaussian noise (1% of
the r.m.s. value of the output).

3.1. Identification

The invariant matrix HE(ω), defined in (2.8), can be easily computed for ω = 0:

HE(0) = D − CA−1
c Bc =

[
0 0
]
−
[
1 0
]
⎡

⎣
− c
k
−m
k

1 0

⎤

⎦

⎡

⎣
0 0
1
m

k3

m

⎤

⎦ =
[

1
k

k3

k

]
. (3.2)

From the eigenvalues of the system matrix Ac it is possible to obtain [18] estimates for the
angular frequency ωn of the undamped system and for the damping factor ζ, so that all
system parameters can be estimated from (3.2) and from the following relationships:

ωn =

√
k

m
, ζ =

c

ccrit
=

c

2
√
km

. (3.3)

It is observed here that in each of the identification procedures performed, the model order
n = 2 is determined by inspecting a singular value plot (with i = 60 block rows), as shown in
[11].

The identification results for all system parameters are presented in Table 2: the best
estimates are obtained by applying a random input. In fact, for Case 1, it should be observed
that the added noise is related to the r.m.s. of the entire time history, which is nonstationary;
so, samples corresponding to small displacements are more deeply corrupted by noise
and are consequently counterproductive for the identification procedure. This is shown in
Figure 2 for Case 1-up, in which this concept is more evident because the system reaches
higher values of response amplitudes (and then a higher r.m.s. of the time histories).

A slightly better result for Case 1 can be obtained by considering k3 as depending on
ω: for each ω, matrix HE(ω) defined in (2.8) simply reduces to a vector hE with two elements
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Figure 2: Effect of noise corruption for Case 1-up. The r.m.s. of the entire time history is 0.0088 m. (a) Zoom
just before the jump-down (large amplitudes). (b) Zoom after the jump (small amplitudes).
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Figure 3: Real part of the estimated nonlinear coefficient k3, in the frequency range considered.

as in (3.2), and it is possible to compute k3 = hE(2)/hE(1). The estimated coefficient of the
nonlinear term is frequency dependent and complex, albeit its imaginary part is some orders
of magnitude smaller than the real part. A single value can be obtained by performing a
spectral mean in the frequency range from 3 to 6 Hz (Figure 3). In this way, the percentage
errors related to the k3 estimates become 2.74 for Case 1-up and 1.78 for Case 1-down. Note
that this procedure is not applicable to get a spectral mean for k, because for ω > 0 vector hE
is not defined as in (3.2).
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Figure 4: (a) Frequency response curves. The crosses and the circles denote the responses at the jump-up
and jump-down frequencies, respectively. The dashed lines denote unstable solutions. (b) Zoom near the
jump-up.

In Figure 4(a) the true Frequency Response Functions (FRFs) of the nonlinear and
underlying linear system are shown in comparison with the NSI estimates, computed from
the identified system parameters in Case 2. As a consequence of the results reported in
Table 2, the curves are almost overlaid: an excellent agreement can be observed, even in
estimating the jump-up and jump-down frequencies and responses. The values for the jump-
down and the jump-up (Figure 4(b)) have been obtained from the approximate expressions
derived in [16]: the approximation of the true jump is obtained with the real system
parameters of Table 1 while the approximation of the estimated jump is obtained with the
NSI estimates of Case 2.

3.2. Output Prediction

The NSI method presented in this paper is also attractive for its predictive capability. In fact,
once the system matrices A,B,C, and D in (2.5) have been estimated, it is possible to predict
the system behaviour when it is subject to a different type of excitation.

It is important to remark that recent methods such as CRP [6, 7] and NIFO [9] would
require a second step to perform output prediction in a general case of MDOF systems. In
fact, these methods only produce estimates of the underlying linear FRFs and of nonlinear
coefficients. On the contrary, the NSI capability of predicting the output is intrinsic in its
formulation, since a state-space model is used. In other words, system parameter estimation
is not strictly necessary and this represents a great advantage of NSI in case of MDOF systems.
However, for simplicity’s sake, in this paper an SDOF numerical example is considered,
so estimating system parameters out of state-space matrices is both possible and easy to
perform.

Starting from the best estimates of system parameters, obtained through Case 2
identification procedure, it is possible to generate new time histories considering the system
as excited by the frequency sweeps described in Case 1. Now the numerical integration has
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Figure 5: Downward prediction. (a) Comparison between true and predicted output, near the jump-up.
(b) Zoom just after the jump.

been performed for tfin = 1000 s, in order to have a slower frequency sweep and to obtain a
more accurate representation of jump phenomena.

In Figure 5 the results are shown, in terms of a comparison between the true (i.e.,
system parameters as in Table 1) and the predicted (i.e., identified system parameters) time
histories, for Case 1-down. In Figure 5(a) it can be observed that the predicted jump-up
occurs at a higher frequency (at a lower time instant in the downward sweep), as expected
from the FRFs zoom shown in Figure 4(b). After the jump-up, this slight shift has no longer
effect on the prediction: as shown in Figure 5(b), the true and the predicted output are almost
overlaid just a few seconds after the jump. Notice the high global level of accuracy of the
prediction results, albeit system parameters have been estimated starting from a time history
corrupted by measurement noise.

4. QR Factorisation

A common feature in the implementation of all algorithms concerning the subspace methods
is the following QR factorisation of a block Hankel matrixH ∈ Rj×2(m+l)i, constructed from all
input and output measurements:

H =
1
√
j

[
UT

0|2i−1 YT
0|2i−1

]
=

1
√
j

[
UT

0|i−1 UT
i|i UT

i+1|2i−1 YT
0|i−1 YT

i|i Y T
i+1|2i−1

]
= QR, (4.1)

where R ∈ R2(m+l)i×2(m+l)i is an upper triangular matrix; note that, as shown in [17], the
computation of the orthonormal matrix Q ∈ Rj×2(m+l)i is not needed.
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Figure 6: Flow chart representation of the new algorithm, from step (3) to step (8).

4.1. Memory Limitations

Assuming to work in a Matlab environment, matrix R in (4.1) should easily be computed
through the standard “qr” function, after constructing the block Hankel matrixH ∈ Rj×2(m+l)i.
This procedure is certainly valid and efficient for linear systems, because an accurate
identification does not require the values of i and j to be so large to fall into the problem
described below (typically j ∼ 104 and i do not exceed some tens).

In order to apply subspace methods to nonlinear systems with satisfactory results, it is
necessary to consider as many samples s as possible (so j ≈ s should be of the order of 105 or
106) and in particular to extend the index i to some hundreds, especially in presence of noisy
measurements. The consequent problem consists in dealing with a matrixHwhich results in
being too large to be stored nor factorised.

Therefore, it is clear that the NSI method undergoes severe limitations in its
applicability, in particular as regards MDOF systems (increasing l) or systems having many
nonlinear terms (increasing m).

4.2. New Algorithm

It is then necessary to conceive a new algorithm to compute the QR factorisation. This
algorithm is based on Matlab commands “save” and “load”, which allow to save and load
variables directly from the hard disk, and the command “clear”, useful to clean virtual
memory.

Moreover, it is observed that the development of this new procedure exploits the
particular structure of the matrixH to be factorised and the useful features of Householder
transformations: in particular, from now on, Algorithms 1 and 2 reported in the appendix
will be considered.

The new algorithm is described in the following and a flow chart representation is
given in Figure 6.

(1) Load measured data y, representing the l system outputs, and the values of the
external force f ; compute from these data the vector u of the m system inputs.

(2) Choose the number of samples s for the identification procedure and the number
of block rows i; this choice determinates the number of rows and columns of matrix
H, respectively, j = s − 2i + 1 and d = 2(l +m)i.
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(3) Start a Cycle 1, k = 1, . . . , d; define δ as the kth column of matrixH. δ is constructed
by using the input (if it is a column of submatrix UT

0|2i−1) or output (if it is a column
of submatrix YT

0|2i−1) data, as defined in (4.1).

(4) Start a Cycle 2, g = 1, . . . , k − 1; for each iteration g:

(a) “load” from the hard disk vector Qg = [vg, . . . , vj]
T ;

(b) execute, on part δ̃ = [δg, . . . , δj]
T of vector δ, the transformations defined in

Algorithm 2, also using number βg ; vector δ is obtained;
(c) “clear” vector Qg from virtual memory.

End of Cycle 2.

(5) Subdivide vector δ into two vectors γ = [δ1, . . . , δk−1]
T

and ξ = [δk, . . . , δj]
T
. Make

a copy ψ of vector ξ.

(6) Apply Algorithm 1 to vector ψ,which becomes the newQk = [vk, . . . , vj]
T obtaining

also number βk.

(7) Execute, on vector ξ, the transformations defined in Algorithm 2, in order to obtain
the new vector ξ = [ξ1, 0, . . . , 0].

(8) Attain the kth column of matrix R, denoted here as Rk:

(a) construct vector R̃ = [γ ξ]
T
∈ Rj ;

(b) truncate vector R̃, by eliminating all unnecessary zeros and keeping only the
first d elements, in order to obtain Rk ∈ Rd.

(9) “save” vectors Qk and Rk on the hard disk, and “clear” them from the virtual
memory.

End of Cycle 1.

(10) Reconstruct matrix R, by loading (load) the d columns Rk from the hard disk.

At the end of the algorithm, all saved vectors Qk and Rk (and β also) will be deleted
from the hard disk.

Note (referring in particular to step (3) of the above algorithm) that in this way it is
not necessary to store the entire matrixH, and the already discussed memory problems can
be avoided. It is indeed sufficient to construct and factorise a new column for each iteration
k of Cycle 1.

As a final consideration, it should be observed that this new algorithm does not present
any limitations about the choice of index i and the number of samples s to be considered in the
NSI procedure. The only limitation may be represented by a larger (depending on the system
considered and on the choice of i and s) amount of time requested for the computation of
matrix R.

4.3. Application

In order to test the new algorithm and to analyse the results of the NSI procedure exploiting
it, the numerical application described in Section 3 is considered. Note that the previously
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Table 3: Identification results (noise 1%): percentage error (100 · |estimated–actual|/actual).

i m k c k3

60 0.13 0.54 0.73 0.73
90 0.13 0.33 0.57 0.49
120 0.08 0.13 0.15 0.21
180 0.07 0.11 0.33 0.18

Table 4: Identification results (noise 3%): percentage error (100 · |estimated–actual|/actual).

i m k c k3

60 0.68 1.87 1.54 2.98
90 0.76 1.37 1.22 2.32
120 0.57 0.74 0.80 1.37
180 0.51 0.66 0.63 1.20

adopted i = 60 is the maximum index (for the calculator used for the computations) which
allows to avoid the memory limitation problems described in Section 4.1. In fact, for larger
values of i, Matlab goes out of memory and the NSI procedure with the standard “qr”
function fails.

The same time histories (s = 105 samples) as in Section 3 are considered, and the NSI
procedure with the novel algorithm is performed for higher values of the number of block
rows i.

Since Table 2 shows that the best parameter estimations are obtained in Case 2
(Gaussian random input), the results presented in this section refer only to Case 2. Note also
that in all the following tables the results obtained by choosing i = 60 are also reported for
comparison purposes. For this value of i the results are the same as in Table 2, as expected:
the novel algorithm does not alter the NSI results, it just proposes a useful way to compute
matrix R in those cases in which Matlab produces an “out of memory” message. However it is
observed that, when the standard Matlab “qr” function is still applicable, the novel algorithm
is about 26 times slower because of its many savings and loadings from the hard disk.

Table 3 shows the identification results relative to an output corrupted by 1% of noise:
it is clear that the percentage error in the estimates of k and k3 decreases as i increases. This
trend is not so evident for the estimates ofm and c: this is due to the fact that these parameters
are not directly estimated from matrix HE(ω = 0), as k and knl in (3.2), but they depend on
the estimates of k,ωn, and ζ through the relationships of (3.3); this may cause a sort of error
propagation or compensation. This remark is also valid for Tables 4 and 5.

From Table 3 it can also be observed that a value of i = 60 is anyway sufficient to obtain
an excellent level of accuracy in the estimates, so the application of the new algorithm is not
necessary.

The new algorithm appears to be more appealing when the output is corrupted by a
higher level of noise: in this case it is necessary to increase the value of i in order to attain
acceptable accuracy in the estimates, in particular as regards the nonlinear coefficient k3.

For this reason, the previously generated output is corrupted by adding a higher
percentage of zero-mean Gaussian random noise, and the results of the identification
procedures are shown in Tables 4 and 5 for 3% and 5% noise, respectively. It can be observed
that the index i required in order to obtain the same level of accuracy increases as the noise
percentage increases.
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Table 5: Identification results (noise 5%): percentage error (100 · |estimated–actual|/actual).

i m k c k3

60 1.19 3.08 0.53 6.24
90 1.60 2.62 0.15 5.29
120 1.41 1.84 0.73 3.82
180 1.26 1.61 1.59 3.34

5. Conclusions

In this paper the NSI method is presented and applied to an oscillator described by the
Duffing equation, in order to handle the inverse problem related to identification and output
prediction.

It is shown that the best results in parameter estimation are obtained when the system
is excited by a Gaussian random input, in particular in presence of a measurement noise.
However, the NSI method is also applicable in case of a linearly varying frequency sweep:
with this type of excitation jump phenomena are highlighted, but a reduced level of accuracy
is attained.

The best parameter estimates are then exploited in order to predict the system
behaviour when it is subject to a frequency sweep excitation: the output reconstruction
is excellent, in particular as regards the amplitudes and the frequencies at which jump
phenomena occur.

The predictive accuracy depends on the quality of parameter estimates, but their
improving implies the need of processing a larger amount of data. To this purpose, the NSI
method is enforced by the development of a new algorithm to compute the QR factorisation
in a Matlab environment, in those cases in which the data matrix is too large to be stored or
factorised.

Appendix

Householder Transformations

In this appendix some concepts, exploited in Section 4.2 to conceive a new useful algorithm
to compute the QR factorisation of a matrix, are presented. For a detailed overview of
Householder transformations (also known as elementary reflectors), see [19]. In particular,
the algorithms presented below are a revised form of those contained in [19, pages 40-41].

Given a generic vector x different from zero, the Householder transformation

U = I − βuuT (A.1)

with u = x + σ · e1, e1 = [1, 0, . . . , 0]T , σ = ±||x||2 and β = 2/||u||22 yields the following relation:

Ux = −σ · e1. (A.2)

It can be observed that the couple (u, β), formed of n+1 real numbers, is sufficient to uniquely
determine matrixU, having n2 elements. Thus, given a vector x = [ξ1, ξ2, . . . , ξn]

T , it is possible
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to write an efficient algorithm providing the quantities u (which is overwritten to x) and β
(and also σ).

Algorithm 1. We have the following:

(1) η ← max{|ξi|, i = 1, . . . , n}
(2) σ ← 0

(3) cycle 1: i = 1, . . . n

(4) if |ξi| ≥ η
√eps then σ ← σ + (ξi/η)

2

(5) end of cycle 1

(6) σ = sgn(ξ1)η
√
σ

(7) ξ1 ← ξ1 + σ

(8) β ← 1/(σ · ξ1).

Note that eps stands for the lowest possible machine number, and that this algorithm
avoids possible phenomena of overflow, underflow, and numerical cancellation.

The couple (u, β) determined through the above algorithm is sufficient to construct
products of the form

UA = U[a1, a2, . . . , an] = [Ua1, Ua2, . . . , Uan]. (A.3)

In fact, given the two vectors u = [v1, v2, . . . , vn]
T and a = [α1, α2, . . . , αn]

T , and the number β,
the substitution of a with vector Ua can be computed in the following way.

Algorithm 2. We have the following:

(1) τ ← β
∑n

i=1 viαi

(2) αi ← αi − τ · vi, i = 1, . . . , n.

As an application of the concepts introduced above, it is possible to construct n − 1
elementary reflectors U1, U2, . . . , Un−1 such that the new matrix

Un−1 · · ·U2U1A = QTA = R (A.4)

is upper triangular; note the orthogonality of Q, which is a product of orthogonal matrices.
As a final observation, the QR factorisation can be computed even if matrix A is

rectangular m × n; in this case A = QR with Q ∈ Rm×m and R ∈ Rm×n and the factorisation is
attained with r = min{m − 1, n} elementary reflectors U1, U2, . . . , Ur .
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The nonlinear coupling vibration and bifurcation of a high-speed centrifugal compressor with a
labyrinth seal and two air-film journal bearings are presented in this paper. The rotary shaft and
disk are modeled as a rigid Jeffcott rotor. Muszynska’s model is used to express the seal force with
multiple parameters. For air-film journal bearings, the model proposed by Zhang et al. is adopted
to express unsteady bearing forces. The Runge-Kutta method is used to numerically determine the
vibration responses of the disk center and the bearings. Bifurcation diagrams for transverse motion
of the rotor are presented with parameters of rotation speed and pressure drop of the seal. Multiple
subharmonic, periodic, and quasiperiodic motions are presented with two seal-pressure drops. The
bifurcation characteristics show inherent interactions between forces of the air-film bearings and
the seal, presenting more complicated rotor dynamics than the one with either of the forces alone.
Bifurcation diagrams are obtained with parameters of pressure drop and seal length determined
for the sake of operation safety.

1. Introduction

The motion stability of high-speed rotor systems has drawn extensive attention throughout
the past several decades. It is now well known that the stability of the rotor’s equilibrium
can be lost as a result of the Hopf bifurcation, which leads to finite-amplitude whirls of oil-
film inside the bearings. The mechanism of oil whips developed from escalating whirling
motions has been thoroughly investigated both experimentally and theoretically (see, e.g.,
[1–4]). Several models have been developed to investigate oil-film forces of short bearings
and bearings with finite lengths [5–9]. Various studies of the oil-film forces were carried out
to present nonlinear vibrations, for example, super- and subharmonic motions, of the rotor
system related to the bearing dynamics [10–12]. Aside from the bearing forces, seal forces
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Figure 1: A Jeffcott rotor-seal-bearing system.

play significant roles in vibration and stability of air compressors and steam turbines. Seal
forces are usually generated due to the fluid-solid interaction in the clearance between the
shaft and the stator which may cause self-excited motions of the rotor. Previous investigations
showed that the seal force provides not only supportive reactions to the rotor in the
radial direction but also cross-coupling forces in the tangential direction that excites severe
vibrations in some occasions. An effective model was proposed by Muszynska to express
nonlinear seal forces based on experimental results [13, 14]. This model was later adopted by
Ding et al. [15] in their study on the Hopf bifurcation of a symmetric rotor-seal system and
by Hua et al. who numerically obtain the nonlinear vibration and bifurcation characteristics
of an unbalanced rotor-seal system [16]. Similar research was provided in Zhang et al. [17]
where subharmonic motions and bifurcation diagrams were demonstrated with parameter of
rotation speed. In spite of the numerous publications that separately dealt with rotor-bearing
and rotor-seal systems, very few literatures have been focused on the dynamics of rotor-seal-
bearing systems which is a great concern of air-compressor and steam turbine engineers. It
is worth emphasizing that the interaction between the seal and bearing excitations should
not be ignored since complicated, large-amplitude motions can be developed for rotors of
compressors and turbines.

The numerical analysis for nonlinear vibration and bifurcation behavior of a high-
speed centrifugal compressor with a labyrinth seal and two journal bearings is presented
in this paper. What differentiates the current rotor system from others is the application of
air-film bearings rather than conventional oil-film journal bearings. Practically, compressors
supported by this kind of bearings operate under circumstance where only inflammable
lubricants (i.e., air or pure water) are allowed. It should be noticed that the air-film bearings
complicate the dynamics of the rotor in two aspects: (1) since the viscosity of the air is
very small, the amplitude of whirling orbit is remarkably large, which brings rich nonlinear
characteristics into the rotor response; (2) the airflow inside the clearance of journals is much
more irregular and turbulent than the oil-film bearings, which makes most of existent theories
unable to provide realistic prediction of the bearing dynamics. In the first case, the vibration
response is strongly nonlinear and must be solved numerically with consideration of both
bearing and seal forces. In the second case, an effective model for unsteady air-film force
should be adopted to express time-varying boundaries of the film that whirls rapidly around
the journal center. In the present study, the oil-film force proposed by Zhang et al. [18, 19]
is used to model the nonlinear, unsteady air-film excitation in the current study. For the
seal force Muszynska’s model is adopted with parameters of pressure drop, rotation speed,
and seal length. The complexity in the rotor motion is demonstrated through bifurcation
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diagrams with those parameters as well as through the Poincaré maps, time history of
displacement, and rotor orbits. For seal pressure drop of 0.2 MPa the bifurcation sequence
is given with increasing rotation speed, showing subharmonic motions of periodic-1, 12, 11,
10, 9, 8, 7 and quasiperiodic motions. The results are compared to the ones without bearing
forces to present the interaction between the air-film bearing and the seal forces. Periods-4
and -11 bifurcations and quasiperiodic motion are observed with a 0.4 MPa pressure drop.
The bifurcation diagrams of motion with parameters of pressure drop and length of the
seal provide suitable values of these quantities for improvement of operation safety of the
machinery. The intricacy in the motion’s bifurcation presents complicated dynamics of the
system in contrast to the rotors with either of bearing forces or of the seal excitations.

2. Problem Modeling

A Jeffcott rotor with a rigid disk, a segment of labyrinth seal, and two supporting air-film
journal bearings is shown in Figure 1, where o1 is the geometric center of the disk; o2 and
o3 are centers of the left and right bearings. Denote by (x1, y1), (x2, y2), and (x3, y3) the
displacements of the disk center, the left bearing, and the right journal bearing, respectively.
The equation of motion of the system is expressed as follows:

m1ẍ1 +De(ẋ1 − ẋ2) +De(ẋ1 − ẋ3) +Ke1(x1 − x2) +Ke2(x1 − x3) = Fx +m1eω
2 cos ωt,

m1ÿ1 +De

(
ẏ1 − ẏ2

)
+De

(
ẏ1 − ẏ3

)
+Ke1

(
y1 − y2

)
+Ke2

(
y1 − y3

)
= Fy −m1g +m1eω

2 sin ωt,

m2ẍ2 +De(ẋ2 − ẋ1) +Ke1(x2 − x1) = fx2,

m2ÿ2 +De

(
ẏ2 − ẏ1

)
+Ke1

(
y2 − y1

)
= fy2 −m2g,

m3ẍ3 +De(ẋ3 − ẋ1) +Ke2(x3 − x1) = fx3,

m3ÿ3 +De

(
ẏ3 − ẏ1

)
+Ke2

(
y3 − y1

)
= fy3 −m3g,

(2.1)

where m1 is the mass of the disk; m2 and m3 are masses of the left and the right bearings. Ke1

and Ke2 are equivalent stiffness coefficients of the left and the right shafts; De is the factor of
viscous damping; e is the mass unbalance of the disk; Fx and Fy are directional components
of the seal force; fx2,x3 and fy2,y3 are directional force components of the left and the right
bearings, respectively. ω is the rotation speed and g is the gravitational acceleration. The
symmetry of the fluid field inside the seal clearance is destroyed as the rotor is perturbed
from its equilibrium position with a nonzero rotation speed. Muszynska’s model [13, 14] is
used to express the seal forces in both x- and y-directions, as

{
Fx

Fy

}

= −
[
K −mfτ

2ω2 τωD

−τωD K −mfτ
2ω2

]{
x1

y1

}

−
[

D 2τmfω

−2τmfω D

]{
ẋ1

ẏ1

}

−
[
mf 0

0 mf

]{
ẍ1

ÿ1

}

,

(2.2)
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where K and D are coefficients of stiffness and damping of the air that flows through the seal
clearance, respectively; mf is the effective mass of the air; τ is the factor of average angular
speed of fluid that rotates along with the rotor, determined by

τ = τ0(1 − ε)b, (2.3)

where τ0 is the average angular speed for the unperturbed rotor; b is an empirical coefficient;

ε =
√
x3

2,3 + y
2
2,3 is the nondimensional amplitude of whirling motion of the bearings. The

model of the bearing force adopted in the current study is the one proposed by Zhang et al.
[18, 19] for unsteady oil-film journal bearings, expressed as follows:

fx = −C1ε̇ − C2

(
ϕ̇ − ω

2

)
ε, fy = −C2ε̇ − C3

(
ϕ̇ − ω

2

)
ε, (2.4)

where ϕ̇ is the whirling speed of the journal; C1, C2, and C3 are damping coefficients of the
lubricant [20]. Unlike most existent bearing theories that handle time-invariant boundaries of
the lubricant film with, for example, the Gümbel condition and the π-oil-film assumption, the
unsteady force model of (2.4) is capable of dealing with time-varying boundary of the film
arising from large whirling velocity of the journal center, which is appropriate for weakly
viscous systems with air- or water-film bearings such as the present one. Introducing the
following nondimensional parameters:

T = ωt, X1 =
x1

c
, Y1 =

y1

c
,

X2,3 =
x2,3

δ
, Y2,3 =

y2,3

δ
,

X′1 =
ẋ1

(ωc)
, Y ′1 =

ẏ1

(ωc)
,

X′2,3 =
ẋ2,3

(ωδ)
, Y ′2,3 =

ẏ2,3

(ωδ)
,

(2.5)

where (·)′ � d(·)/dT denotes the derivative of a quantity with respect to T, and c and δ are
clearances of the seal and the journal bearings, respectively, the equation of motion is then
rewritten as

X′′1 +
2De +D(
m1 +mf

)
ω
X′1 +

2τmf

m1 +mf
Y ′1 −

Deδ(
m1 +mf

)
ωc

(
X′2 +X

′
3
)
+
Ke1 +Ke2 +K −mfτ

2ω2

(
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)
ω2

X1

+
τD

(
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)
ω
Y1 −

Ke1δ(
m1 +mf

)
ω2c

X2 −
Ke2δ(

m1 +mf

)
ω2c

X3 =
m1e(

m1 +mf

)
c

cos T,
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(2.6)

where l and r are length and radius of the bearing, respectively; μ is the dynamic viscosity of
the lubricant; superscripts L and R represent the left and the right bearings, respectively, and

C11 = C1cos2ϕ + C3sin2ϕ − 2C2 sinϕ cosϕ,

C12 = C21 = C2

(
cos2ϕ − sin2ϕ

)
+ (C1 − C3) sinϕ cosϕ,

C22 = C1sin2ϕ + C3cos2ϕ + 2C2 sinϕ cosϕ,

S0 = 6μωlr3δ−2.

(2.7)

3. Subharmonic Motions and Bifurcation Behavior

Notice that parameters K, D, and τ and coefficients C1, C2, and C3 are functions of
displacements of the disk centers and the bearings. Hence, (2.6) is a group of highly nonlinear
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Figure 2: Bifurcation diagrams of the rotor system with seal and air-film excitations. ΔP = 0.2 MPa.

ordinary differential equations that can hardly be solved through conventional perturbation
methods [21]. Instead, the vibration responses of the disk center and the two bearings are
computed by using the fourth-order Runge-Kutta method with adaptive-step control to
reduce local truncation error of every single step. The parameters selected for the current
study are

m1 = 50 kg, m2 = 3.5 kg, m3 = 3.5 kg, De = 3000 N · s/m,

Ke1 = 3.4635 × 106 N/m, Ke2 = 3.8127 × 106 N/m,

e1 = 0.2 mm, r = 0.035 m, l = 0.06 m, c = 0.3 mm, δ = 0.3 mm,

μ = 1.47 × 10−5 Pa · s, τ0 = 0.4, b = 0.45.

(3.1)

Additionally, the length and radius of the seal are 0.102 m and 0.067 m, respectively.
The system’s parameters are chosen based on a single-staged centrifugal compressor
manufactured by Shenyang Turbo-machinery Cooperation. To investigate the bifurcation we
chose the rotation speed as the parameter under two pressure drops of the seal, that is, the
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Figure 3: Motions of the rotor system with rotation speed S = 3.355.

pressure differences between the entrance and the exit of the seal. The initial displacements
and velocities of the disk center and the two are (0.01, 0).

Let pressure drop ΔP be 0.2 MPa. The bifurcation diagrams of displacement x are
illustrated in Figure 2, where S = ω/

√
(Ke1 +Ke2)/m1 is the nondimensional rotation speed.

In the current computation S = 1 corresponds to a rotation speed of 60.71 Hz or 3642.77 rpm.
It can be seen that the disk and the bearings are in motions of period-1, that is, motions

with the same frequency as the rotation speed, when the rotation is slow. The primary
resonance happens at S = 1.1272. The stability of the period-1 motions is lost at S = 2.1496,
and the motion becomes quasiperiodic. Various subharmonic motions can be observed when
the rotation speed is increased. A period-12 bifurcation takes place at S = 3.1457. Following
that, the motions become quasiperiodic again with escalating rotation speed. At S = 3.2505
the displacements undergo a period-11 bifurcation and return quasiperiodic with higher S
afterwards. A period-10 bifurcation is encountered with speed S = 3.355. The Poincaré map
of displacement x1 is presented in Figure 3(a) to show the existence of a periodic-10 motion.
The time history of x1 is illustrated in Figure 3(b), and the orbits of the disk center and the
left bearing are shown in Figures 3(c) and 3(d), respectively. Further, a period-9 bifurcation
is observed at S = 3.5389 followed by a period-8 bifurcation at S = 3.8010. The bifurcation
cascade continues at S = 4.0632 when a period-7 bifurcation takes place. Following that,
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Figure 4: Motions of the rotor system with rotation speed S = 4.352.
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Figure 5: Bifurcation diagram of the disk center with rigid supports.

quasiperiodic motions are obtained with higher rotation speed. Figures 4(a), 4(b), and 4(c)
depict the orbits of the disk center and the right bearing as well as the Poincaré map of
displacement x1 at S = 4.352, respectively.

To investigate the interaction between the bearing and the seal forces a comparative
computation is carried out for a Jeffcott rotor with two rigid supports (hence, the seal force
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Figure 6: Bifurcation diagrams of the rotor system with seal and air-film excitations. ΔP = 0.4 MPa.

is the only excitation of the system) and exactly the same geometrical and seal properties
as aforementioned. The bifurcation diagram is shown in Figure 5. For rotation speed less
than S = 1.432, the motion is period-1 with the same frequency as the rotation speed. With
an increasing speed, the motion remains quasiperiodic up to S = 3.52, where a period-8
bifurcation is observed from the disk’s displacements. The motions turns into quasiperiodic
again with advancing rotation speed. The comparison between the responses to the coupling
forces and to the seal force alone reveals rich bifurcating behavior of the system vibration: the
interaction of the seal and the air-film forces results in more period-multiple bifurcations (see
Figures 2(a) and 5).

We now change the pressure drop of the seal to 0.4 MPa. The bifurcation diagrams of
displacement x of the disk and the two journal bearings are presented in Figure 6.

It is found that the x-directional displacements of the disk and the bearings are
period-1 with small rotation speed. The primary resonance in the motion is found at
S = 1.2582. Then, the bifurcation starts and the motions become quasiperiodic. A period-
4 bifurcation takes place with speed S = 2.0709 followed by quasiperiodic motions as
the rotor is accelerated. For speed S ∈ [3.2243, 3.3816] ∪ [3.4340, 3.6437] the motions are
period-4. Figures 7(a) and 7(b) show the orbits of the disk center and the left bearing at
S = 3.4340. Figure 7(c) depicts the Poincaré map of the disk motion. The motions become
quasiperiodic with higher rotation speed. Figures 8(a) and 8(b) plot the orbits of the disk
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Figure 7: Motions of the rotor system with rotation speed S = 3.434.

center and the right bearing at S = 3.8797. The Poincaré maps of displacements x1 and x3 are
shown in Figures 8(c) and 8(d), respectively. A period-11 bifurcation is observed at S = 4.2204
followed by another series of quasiperiodic motions. With higher pressure-drop from the
entrance to the exit of the seal, some previously notified bifurcations are not observed again.
Nevertheless, the bifurcation behavior is still more complicated than the one with the seal
force only.
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Figure 8: Motions of the rotor with rotation speed S = 3.8797.

In the following analysis we adopt the pressure drop as the bifurcation parameter.
Let rotation speed ω be 1200 rad/s. The bifurcation diagrams of x-displacements of the disk
center and the left and the right bearings are presented in Figure 9. For low-pressure drops
the motions are found quasiperiodic with large amplitude until �P up to 0.048 MPa. The
motions of the disk center and the bearings then become period-1, and the amplitudes step up
with the advancing pressure drop. The synchronous motions are lost at a critical drop ΔP =
0.168 MPa without undergoing primary resonances in the motions. The vibrations afterwards
are basically quasiperiodic, and it is very difficult to distinguish the bifurcation points. The
average amplitudes of the displacements remain almost unchanged with increasing pressure
drops, showing the remarkable air-film whip in the journal bearings. This implies that the
whole system cannot be stabilized by increasing the pressure drops larger than the critical
value.

Finally, the evolution of the bifurcation in the rotor motions is investigated by taking
the length of the seal as the control parameter. Let rotation speed ω be 1200 rad/s and let
pressure drop ΔP be 0.2 MPa. The bifurcation diagrams of x-displacements of the disk center
and the left and the right bearings are depicted in Figure 10. The period-1 motion is found for
length: 0.082 m ≤ l ≤ 0.098 m, where the orbital whirling motions grow monotonously with
the increasing seal-length. Beyond this range of length, the motions are mainly quasiperiodic
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Figure 9: Bifurcation diagram of the rotor with varying pressure drop. ω = 1200 rad/s.

with considerably large amplitudes. Therefore, a suitable length of seal should be chosen
between 0.082 m and 0.098 m to keep the rotor distant from strong vibration responses that
may jeopardize the safety of the machine in operation. From the manufacturer’s point of
view, a labyrinth seal with a medium length of between 0.082 m and 0.098 m is feasible for it
can be conveniently processed, assembled, and positioned by using conventional tools.
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Figure 10: Bifurcation diagram of the rotor with varying seal-length. ω = 1200 rad/s; ΔP = 0.2 MPa.

4. Conclusions

The nonlinear coupling vibration excited by a labyrinth seal and two air-film journal bearing
is investigated through numerical simulations for high-speed centrifugal compressors. The
results obtained with various rotation speeds and seal pressure drops show complexity
of nonlinear vibration and bifurcation behavior in the displacements of the rotor system.
Further, the motions of the system reveal period-multiple bifurcations compared to the
system excited only by the seal force, presenting an intricate interaction between the seal
and the bearing forces. Suitable seal pressure drop and seal length are determined for the
sake of operation safety through the bifurcation analysis for rotor displacements as well.
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This paper presents a new semianalytical approach for geometrically nonlinear vibration
analysis of Euler-Bernoulli beams with different boundary conditions. The method makes use
of Linstedt-Poincaré perturbation technique to transform the nonlinear governing equations
into a linear differential equation system, whose solutions are then sought through the use of
differential quadrature approximation in space domain and an analytical series expansion in
time domain. Validation of the present method is conducted in numerical examples through
direct comparisons with existing solutions, showing that the proposed semianalytical method has
excellent convergence and can give very accurate results at a long time interval.

1. Introduction

Geometrically nonlinear vibration of beams with different boundary conditions has long
been a subject receiving numerous research efforts, as evidenced by many analytical and
numerical studies reported in the open literature. Woinowsky-Krieger [1] used the elliptic
integral function to solve the nonlinear equation of motion for simply supported beams with
immovable ends. Lewandowski [2] applied the Rayleigh-Ritz technique to the nonlinear
vibration of beams. A comprehensive review in this field was given by Sathyamoorthy
[3]. Sze et al. [4] applied incremental harmonic balance method for nonlinear vibration of
axially moving beams. Gadagi and Benaroya [5] studied the dynamic response of an axially
loaded tendon of a tension leg platform. Ibrahim and Somnay [6] solved the nonlinear
dynamic analysis of an elastic beam isolator sliding on frictional supports. Ozkaya and Tekin
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[7] analyzed the nonlinear vibrations of stepped beam system under different boundary
conditions. Chen et al. [8] put forward the multidimensional Lindstedt-Poincare method for
nonlinear vibration of axially moving beams. It is noted that many numerical investigations
published so far employed step-by-step iterative time integration schemes to calculate the
dynamic deflection response which requires a very small time step size in order to achieve
the response with sufficient accuracy. This is inevitably computationally expensive. Another
big concern associated with these iterative schemes is the error accumulation in each time step
which may cause a huge loss of accuracy and sometimes numerical stability problem of the
results in later time steps. To overcome this problem, several analytical and semianalytical
approaches to the nonlinear vibration of beams which do not involve step-by-step time
integration have been proposed; see, for example, those by Azrar et al. [9, 10], Leung and
his coworkers [11–13], Lewandowski [14, 15], Nayfeh and his associates [16–18], and Ribeiro
[19], to name just a few.

The differential quadrature method (DQM) is an efficient numerical approach
developed by Bellman et al. [20] to solve linear and nonlinear differential equations. This
method was later introduced to the structural analysis by Bert and his coworkers [21]
and has been widely used in many structural engineering problems, including those in
the nonlinear vibration of beams, plates, and shells; see, for example, the work by Zhong
and Guo [22], Yang et al. [23, 24], Manaoach and Ribeiro [25], Hsu [26], and Tomasiello
[27], among many others. Based on DQM approximation, this paper proposes a new
semianalytic method for the geometrically nonlinear vibration of Euler-Bernoulli beams
with different boundary conditions. The proposed method overcomes the disadvantage of
error accumulation that occurs in conventional numerical methods involving iterative time
integration and is therefore accurate and numerically stable even for a long time interval. The
present paper is structured as follows: Section 2 briefly outlines the DQM rules. Section 3
gives a detailed description of mathematic formulations of the proposed semianalytical
approach, starting with the transformation of the nonlinear governing equations into a
group of linear differential equations by Linstedt-Poincare perturbation procedure which
is followed by the semianalytical solution process for each perturbation equation by using
DQM in space domain and an analytical series in the time domain. Section 4 presents
some numerical results to validate the proposed method in both accuracy and convergence
aspects through direct comparisons between the present results and existing solutions. Some
concluding remarks are summarized in Section 4.

2. Mathematical Formulations

2.1. Perturbation Equations

Consider an isotropic, homogeneous slender beam of length L with uniform cross-section
area subjected to a dynamic transverse load q(x, t). Let u and w be the displacements
parallel to the x- and y-axes, t the time, and m denote the mass density. Based on classical
Euler-Bernoulli beam theory and von-Karman nonlinear displacement-strain relationship,
the geometrically nonlinear governing equations for flexural vibration of the beam can be
derived as

∂

∂x

[

EA

(
∂u

∂x
+

1
2

(
∂w

∂x

)2
)]

= 0,

EI
∂4w

∂x4
− EA

[
∂u

∂x
+

1
2

(
∂w

∂x

)2
]
∂2w

∂x2
+m

∂2w

∂t
2

= q
(
x, t
)
,

(2.1)
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where E is the elastic modulus of the beam, and A and I are the area and the second moment
of the cross section. The present analysis considers general boundary conditions, that is,
the beam end may be either simply supported or clamped, with the following boundary
conditions:

u = 0, w = 0, Mx = 0
(
simply supported

)
,

u = 0, w = 0,
dw

dx
= 0

(
clamped

)
,

(2.2)

where Mx is the bending moment of the beam. To facilitate the solution process of (2.1)
by using the differential quadrature method in space domain, the following quantities are
introduced:

u =
u

η
, w =

w

ρ
, ξ =

x

L
, t = ωt, q =

L4q

ρEI
, q = εF,

p =
ω

ωL
, ωL =

(
1
L

)2
√
EI

m
, ρ2 =

I

A
,

(2.3)

where ωL and ω refer to the linear and nonlinear frequencies of the beam, respectively,
and ε is the small perturbation parameter. Substituting these quantities into (2.1) leads to
dimensionless nonlinear governing equations as below

∂2u

∂ξ2
+
∂w

∂ξ

∂2w

∂ξ2
= 0,

∂4w

∂ξ4
−
[
∂u

∂ξ
+

1
2

(
∂w

∂ξ

)2
]
∂2w

∂ξ2
+ p2 ∂

2w

∂t2
= εF.

(2.4)

Deflection w, axial displacement u, and frequency parameter p can be expanded into
series forms in terms of a small perturbation parameter ε

w = w1ε +w3ε
3 +w5ε

5 + · · · , (2.5)

u = u2ε
2 + u4ε

4 + · · · , (2.6)

p2 = 1 + ε2σ2 + ε4σ4 + · · · . (2.7)

Inserting (2.5)–(2.7) into (2.4), and equating the terms of the same power of ε yield a series
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of perturbation equations

ε1:
∂4w1

∂ξ4
+
∂2w1

∂t2
= F, (2.8)

ε2:
∂2u2

∂ξ2
+
∂w1

∂ξ

∂2w1

∂ξ2
= 0, (2.9)

ε3:
∂4w3

∂ξ4
− ∂u2

∂ξ

∂2w1

∂ξ2
− 1

2

(
∂w1

∂ξ

)2 ∂2w1

∂ξ2
+
∂2w3

∂t2
+ σ2

∂2w1

∂t2
= 0, (2.10)

ε4:
∂2u4

∂ξ2
+
∂w1

∂ξ

∂2w3

∂ξ2
+
∂w3

∂ξ

∂2w1

∂ξ2
= 0. (2.11)

The initial conditions considered in the present study are

w1(ξ, 0) = w10,
∂w1(ξ, 0)

∂t
= 0, (2.12)

w3(ξ, 0) = 0,
∂w3(ξ, 0)

∂t
= 0, (2.13)

wherew10 refers to initial vibration amplitude. By making use of the dimensionless quantities
and perturbation series defined above, the dimensionless form of the associated boundary
conditions in each perturbation can also be obtained.

2.2. Differential Quadrature Method

According to the DQM rule, an unknown function g(x) and its nth order derivative with
respect to x can be approximated as the weighted linear sums of its function values at a
number of sampling points in the x-axis as

g(x) =
N∑

i=1

g(xi)Li(x), (2.14)

dng(x)
dxn

∣∣∣∣
x=xi

=
N∑

j=1

C
(n)
ij g
(
xj
)

(n = 1, . . . ,N − 1), (2.15)

where N is the total number of sampling points, Li(x) are Lagrange interpolation
polynomials, and the weighting coefficients C(n)

ij can be calculated from recursive formulae
[20, 21].
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2.3. Semianalytical Solution of the 1st-Order Perturbation Equation

This study is focused on the nonlinear vibration due to an initial deflection. In such a case,
the right-hand-side term in (2.8) F = 0. Hence, the first-order perturbation becomes

∂4w1

∂ξ4
+
∂2w1

∂t2
= 0. (2.16)

The solution of (2.16) can be readily obtained by separation of variables

w1(ξ, t) =
Ns∑

m=0

T1m(t)φ1m(ξ), (2.17)

where Ns is the number of terms in the truncated time series,

T1m(t) = cos
(
pmt
)

(2.18)

is the solution in the time domain for the first-order perturbation equation, and pm and δ1m(ξ)
are the frequency parameter and the associated mode shape function.

The transient deflection at an arbitrary sampling point “i” can be expressed as a cosine
series with a supplementary term as

w1(ξi, t) = δi0 +
Ns∑

m=1

T1m(t)δi1m (i = 1, . . . ,N), (2.19)

where δi1m = φ1m(ξi) needs to be determined. The frequency parameter pm of beams with
different boundary conditions can be written in a general form as

pm =
[
(m + j)π

]2 (2.20)

in which j = 0 for a simply supported beam, j = 1/2 for a clamped beam, j = −1/2 for a beam
clamped at one end and free at the other end, and j = 1/4 for a beam clamped at one end but
simply supported at the other end.

Since w1(ξi, t) needs to satisfy the initial conditions in (2.12), one has

δi0 = wi
10 −

N∑

m=1

δi1m. (2.21)

The time domain function in (2.19) can be readily obtained as

w1(ξi, t) = wi
10 +

Ns∑

m=1

(
cos pm1t − 1

)
δi1m (i = 1, . . . ,N). (2.22)
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Differentiation of (2.22) with respect to time twice gives

ẅ1(ξi, t) = −
Ns∑

m=1

p2
m

(
cos pm1t

)
δi1m (i = 1, . . . ,N). (2.23)

The deflection response of the 1st-order perturbation equation can be determined by

w1(ξ, t) =
N∑

i=1

w1(ξi, t)Li(ξ). (2.24)

Substitution of (2.23) and application of DQM approximation (2.15) to (2.16) result in
a semianalytical algebraic equation at an arbitrary sampling point

N∑

j=1

C
(4)
ij

Ns∑

m=1

(
cos pmtk − 1

)
δ
j

1m − p
2
1

Ns∑

m=1

p2
m cos

(
pmtk

)
δi1m = −

N∑

j=1

C
(4)
ij w

j

10

(i = 1, . . . ,N; k = 1, . . . ,Ns).

(2.25)

This linear equation system can be written in a matrix form as

[D1]{δ1} =
{
f1
}
, (2.26)

where [D1] and {δ1} are the coefficient matrix and unknown vector to be solved, and {f1}
is the generalized load vector due to initial deflection. Once {δ1} is determined from (2.26),
the deflections at all of the sampling points can be calculated from (2.22) and the 1st-order
deflection solution of the beam is then obtained from (2.24).

2.4. Semianalytical Solution of the 2nd-Order Perturbation Equation

To solve the 2nd-order perturbation equation (2.9), the unknown axial displacement u2 is
expressed as

u2(ξ, t) =
Ns∑

m=1

T2m(t)φ2m(ξ). (2.27)

Substituting the 1st-order deflection solution and (2.27) into (2.9) yields

Ns∑

m=1

T2m(t)
d2φ2m

dξ2
= −

NS∑

m=1

NS∑

n=1

T1m(t)T1n(t)
dφ1m

dξ

d2φ1n

dξ2
. (2.28)
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This gives

T2m = −
∑Ns

n=1 T1mT1n
(
dφ1m/dξ

)(
d2φ1n/dξ

2)

d2φ2m/dξ2
. (2.29)

Therefore, (2.27) becomes

u2(ξ, t) =
Ns∑

m=1

Ns∑

n=1

T1mT1nψ2mn(ξ) (2.30)

with

ψ2mn(ξ) = −
(
dφ1m/dξ

)(
d2φ1n/dξ

2)

d2φ2m/dξ2
φ2m. (2.31)

From (2.30), the axial displacement u2 at an arbitrary sampling point “i” is

u2(ξi, t) =
Ns∑

m=1

Ns∑

n=1

T1m(t)T1n(t)δi2mn. (2.32)

Putting (2.30) into (2.9) and then applying DQM approximation, one has

N∑

j=1

C
(2)
ij

Ns∑

m=1

Ns∑

n=1

T1mT1nδ
j

2mn = −
N∑

j=1

C
(1)
ij

Ns∑

m=1

T1mδ
j

1m

N∑

k=1

C
(2)
ik

Ns∑

n=1

T1nδ
k
1n (i = 1, . . . ,N) (2.33)

in a matrix form

[D2] · {δ2} =
{
f2
}
. (2.34)

Note that the right-hand-side term {f2} is the pseudodynamic force vector totally dependent
on the 1st-order deflection solution already obtained. After the unknown vector {δ2}
composed of δj2mn is determined from (2.34), u2 can be calculated from the relationship

ψ2mn(ξ) =
N∑

i=1

δi2mnLi(ξ) (2.35)

and (2.30).
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2.5. Semianalytical Solution of the 3rd-Order Perturbation Equation

The 3rd-order perturbation equation (2.10) can be rewritten as

∂4w3

∂ξ4
+
∂2w3

∂t2
= f(ξ, t), (2.36)

where the right-hand-side term

f(ξ, t) =

{[
∂u2

∂ξ
+

1
2

(
∂w1

∂ξ

)2
]}

∂2w1

∂ξ2
− σ2

∂2w1

∂t2
. (2.37)

Substituting (2.17) and (2.30) into (2.37) gives

f(ξ, t) =
Ns∑

l=1

NS∑

m=1

Ns∑

n=1

T1lT1mT1nϕlmn +
Ns∑

n=1

p2
nσ2T1nφ1n, (2.38)

where

ϕlmn(ξ) =
{
dψ2lm

dξ
+

1
2

[
dφ1l

dξ

dφ1m

dξ

]}
d2φ1n

dξ2
. (2.39)

The solution of (2.36) can be readily obtained by the method of separation of variables

w3(ξ, t) =
Ns∑

r=1

T3r(t)φ3r(ξ). (2.40)

It is evident from (2.16) and (2.36) that φ3m(ξ) is the same as φ1m(ξ). Therefore,

w3(ξ, t) =
Ns∑

r=1

T3r(t)φ1r(ξ), (2.41)

and (2.36) becomes

Ns∑

r=1

T3r(t)
∂4φ1r

∂ξ4
+

Ns∑

r=1

∂2T3r

∂t2
φ1r = f(ξ, r). (2.42)

From (2.16)–(2.18), one has

∂4φ1r

∂ξ4
= P 2

r φ1r . (2.43)
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Expanding f(ξ, t) into Fourier series in function φ1m, (2.42) becomes

Ns∑

r=1

[
T ′′3r + T3rp

2
r

]
φ1r(ξ) =

Ns∑

r=1

fr(ξ, t)φ1r(ξ) (2.44)

which yields

T ′′3r + T3rp
2
r = fr(ξ, t), (2.45)

where right-hand-side term

fr(t) =
1
N2

3r

∫1

0
f(ξ, t)φ1r(ξ)dξ =

Ns∑

l=1

Ns∑

m=1

Ns∑

n=1

almnrT1lT1mT1n +
Ns∑

n=1

σ2bnrp
2
nT1n,

N2
3r =
∫1

0
φ2

1r(ξ)dξ, almnr =
1
N2

3r

∫1

0
ϕlmn(ξ)φ1r(ξ)dξ, bnr =

1
N2

3r

∫1

0
φ1n(ξ)φ1r(ξ)dξ.

(2.46)

Since φ1r are orthogonal functions, we have

bnr =

⎧
⎪⎪⎨

⎪⎪⎩

0, n /= r,

1
N2

3r

∫1

0
φ1r · φ1r(ξ)dξ = 1, n = r.

(2.47)

To remove the secular terms in (2.43), f3m(t) is expanded as

fr(t) =

{
Ns∑

l=1

Ns∑

m=1

Ns∑

n=1

cos
(
pl + pm + pn

)
talmnr +

Ns∑

l=1

Ns∑

m=1

Ns∑

n=1
l /=n,n/=m cos

(
pl + pm − pn

)
talmnr

+
Ns∑

l=1

Ns∑

m=1

Ns∑

n=1
l /=m,m/=n cos

(
pl − pm + pn

)
talmnr

+
Ns∑

l=1

Ns∑

m=1

Ns∑

n=1
l /=m,l /=n cos

(
pl − pm − pn

)
talmnr

}

+

{

2
Ns∑

l=1

Ns∑

m=1
l=n cos pmtalmlr + 2

Ns∑

l=1

Ns∑

m=1
m=n cos pltalmmr + 2

Ns∑

l=1

Ns∑

n=1
l=m cos pntallnr

+3
Ns∑

l=1
l=m=n cos pltalllr

}

+ p2
rσ2r cos prt.

(2.48)



10 Mathematical Problems in Engineering

The following condition must be satisfied in order to remove the last two terms in (2.48),

{

2
Ns∑

l=1

Ns∑

m=1
l=n cos pmtalmlr + 2

Ns∑

l=1

Ns∑

m=1
m=n cos pltalmmr + 2

Ns∑

l=1

Ns∑

n=1
l=m cos pntallnr

+3
Ns∑

l=1
l=m=n cos pltalllr

}

+ p2
rσ2r cos prt = 0.

(2.49)

The sum of the coefficients for cos(prt) must be zero, which gives the expressions of σ2 for
different values of m as

σ2r =
−1
p2
r

{

2
Ns∑

m=1

[amrmr + armmr + ammrr] + 3arrrr

}

. (2.50)

Thus the term f3m(t) without secular terms is

fr(t) =

{
Ns∑

l=1

Ns∑

m=1

Ns∑

n=1

cos
(
pl + pm + pn

)
talmnr +

Ns∑

l=1

Ns∑

m=1

Ns∑

n=1
l /=n,n/=m cos

(
pl + pm − pn

)
talmnr

+
Ns∑

l=1

Ns∑

m=1

Ns∑

n=1
l /=m,m/=n cos

(
pl − pm + pn

)
talmnr

+
Ns∑

l=1

Ns∑

m=1

Ns∑

n=1
l /=m,l /=n cos

(
pl − pm − pn

)
t · almnr

}

.

(2.51)

Equation (2.45) can then be rewritten as

T ′′3r + T3rp
2
r = fr(t). (2.52)

From (2.13), the initial condition for (2.52) can be derived by using separation of variable
method

T3r(0) =
dT3r(0)
dt

= 0. (2.53)
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The solution of (2.52) under the given initial condition (2.53) can be obtained through Laplace
transform as

T3r(t) =
M∑

l=1

M∑

m=1

M∑

n=1

cos
(
prt
)
− cos

((
pl + pm + pn

)
t
)

(
pl + pm + pn

)2 − p2
r

γlmnr

+
M∑

l=1

M∑

m=1

M∑

n=1
l /=n,n/=m

cos
(
prt
)
− cos

((
pl + pm − pn

)
t
)

(
pl + pm − pn

)2 − p2
r

γlmnr

+
M∑

l=1

M∑

m=1

M∑

n=1
l /=m,m/=n

cos
(
prt
)
− cos

((
pl − pm + pn

)
t
)

(
pl − pm + pn

)2 − p2
r

γlmnr

+
M∑

l=1

M∑

m=1

M∑

n=1
l /=m,l /=n

cos
(
prt
)
− cos

((
pl − pm − pn

)
t
)

(
pl − pm − pn

)2 − p2
r

γlmnr

(
where γlmnr =

1
4
almnr

)
.

(2.54)

Finally, we have

w3(ξ, t) =
Ns∑

r=1

T3r(t)φ1r(ξ). (2.55)

The deflections response of nonlinear free vibration of the beam is then calculated from

w = w1ε +w3ε
3 + · · · (2.56)

while the nonlinear frequency response, with higher-order terms being neglected, is given by
(2.50) and (2.7) as

p2
r = 1 + ε2σ2r , (2.57)

and the nonlinear frequency response can be obtained from

(
ωr

ωA

)2

= 1 − ε2 1
p2
r

{

2
Ns∑

m=1

[amrmr + armmr + ammrr] + 3arrrr

}

. (2.58)

3. Numerical Results

To illustrate its efficiency and accuracy, the proposed semianalytical approach is used to
study the nonlinear frequency and dynamic response of Euler-Bernoulli beams of rectangular
cross section (b × h = 0.01 m × 0.02 m) under various boundary conditions with a given
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Table 1: Normalized frequency ratio ωn/ωL for a simply supported beam.

A N = 9 N = 11 N = 13 Woinowsky-Krieger [1] Mei [28]
0.1 1.0009 1.0009 1.0009 1.0008 1.0009
0.2 1.0037 1.0037 1.0037 1.0038 1.0037
0.4 1.0149 1.0149 1.0149 1.0150 1.0148
0.6 1.0331 1.0331 1.0334 1.0380 1.0339
0.8 1.0580 1.0581 1.0588 1.0580 1.0578
1.0 1.0891 1.0893 1.0908 1.0890 1.0889
1.5 1.1893 1.1910 1.1932 1.1900 1.1902
2.0 1.3140 1.3201 1.3300 1.3160 1.3022

Table 2: Normalized frequency ratio ωn/ωL for a clamped beam.

A N = 9 N = 11 N = 13 Mei [28]
0.1 1.0003 1.0003 1.0003 1.0003
0.2 1.0012 1.0012 1.0012 1.0012
0.4 1.0050 1.0047 1.0048 1.0048
0.6 1.0112 1.0106 1.0107 1.0107
0.8 1.0198 1.0187 1.0190 1.0190
1.0 1.0307 1.0290 1.0295 1.0296
1.5 1.0676 1.0640 1.0650 1.0653
2.0 1.1169 1.1100 1.1125 1.1135

initial vibration amplitude and zero-valued initial velocity. The dimensionless vibration
amplitude is defined as A = W/ρ (or A = 6W/

√
3h for a rectangular beam) where W

is the vibration amplitude at the midpoint of the beam. The parameters used herein are
L = 0.5 m, E = 150 GPa, and m = 8 × 103 kg/m3. The results are presented in both tabular
and graphical forms in terms of the normalized frequency ratio ωn/ωL and dimensionless
dynamic deflections at the midpoint of the beam.

Among the sampling point distribution schemes available, a nonuniform distribution
is chosen in the present analysis due to its excellent convergence [21, 26], that is,

xk =
1
2

(
1 − cos

kπ

N − 1

)
(k = 0, 1, . . . ,N − 1). (3.1)

In what follows, the total number of sampling points in the space domain is N = 11,
unless stated otherwise.

In Figures 1–3, the present solutions and exact solutions are represented by solid lines
and circular dots, respectively.

3.1. Nonlinear Vibration Frequency

Tables 1, 2, and 3 list, respectively, the normalized fundamental frequency ratios ωn/ωL for
a simply supported beam, a clamped beam, and a beam simply supported at one end but
clamped at the other end at varying dimensionless vibration amplitudes A = 0.1 ∼ 2.0. All
beams exhibit typical “hard-spring” behavior, that is, the frequency ratio increases with an
increase in vibration amplitude. Comparisons between the results with varying total number
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Figure 1: Nonlinear fundamental frequency versus dimensionless central amplitude relationship of beams
with different boundary conditions.

of sampling points N = 9, 11, 13 show that the present method converges very well to
produce very accurate results when N ≥ 11. Our results are compared with the existing
results obtained by using elliptic function [1] and the finite element method [28]. The relative
errors, defined as

(
Present Solution − Existing Solution

)

Existing Solution
× 100%, (3.2)

are also provided. Excellent agreement can be observed in these tables. The relationship
between nonlinear fundamental frequency and dimensionless vibration amplitude (A =
0.0 ∼ 6.0) of these three beams are shown in Figure 1 where curves a, b, and c are for a
simply supported beam, a beam simply supported at one end but clamped at the other
end, and a clamped beam. The scatter points represent the elliptical function results using
the formulae provided by Woinowsky-Krieger [1]. As can be seen, the present results
and the elliptical function results are almost identical. The clamped beam has the highest
fundamental frequency with the lowest deflection while the simply supported beam has the
smallest fundamental frequency and the largest deflection. This is because the end support
of the clamped beam is much stronger than its simply supported counterpart.

3.2. Nonlinear Dynamic Response

Convergence study on the nonlinear dynamic response is conducted in both Tables 4 and 5
where central deflections of a simply supported beam at different time (in sec), calculated
by using different total number of sampling points N in the space domain and different
number of truncated series terms Ns in the time domain, are given and compared with the
results calculated by using the formulae given by Woinowsky-Krieger [1]. The dimensionless
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Figure 2: Nondimensional central deflection response of a simply supported beam under different initial
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Figure 3: Nondimensional central deflection response of a simply supported beam.

Table 3: Normalized frequency ratio ωn/ωL for a beam simply supported at one end and clamped at the
other end.

A N = 9 N = 11 N = 13 Mei [28]
0.1 1.0006 1.0006 1.0006 1.0006
0.2 1.0026 1.0026 1.0026 1.0026
0.4 1.0103 1.0103 1.0103 1.0106
0.6 1.0230 1.0231 1.0231 1.0238
0.8 1.0404 1.0406 1.0407 1.0418
1.0 1.0624 1.0627 1.0628 1.0647
1.5 1.1346 1.1353 1.1355 1.1404
2.0 1.2272 1.2283 1.2286 1.2385
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Table 4: Nonlinear central deflection response of a simply supported beam: solutions with varying number
of terms in time domain series Ns.

Time (s) Ns = 1 Ns = 3 Ns = 5 Woinowsky-Krieger [1] Error 1 Error 2 Error 3
0.0050 0.8622 0.8566 0.8553 0.8533 1.0505 0.3895 0.2405
0.0100 0.4811 0.4720 0.4700 0.4665 3.1360 1.1828 0.7540
0.0150 −0.0420 −0.0398 −0.0395 −0.0404 3.7991 −1.6178 −2.2036
0.0300 −0.9965 −0.9939 −0.9942 −0.9963 0.0134 −0.2437 −0.2146
0.0400 −0.4060 −0.3952 −0.3938 −0.3928 3.3588 0.6230 0.2717
0.0450 0.1259 0.1240 0.1231 0.1210 4.0692 2.4780 1.7217
0.0550 0.9335 0.9300 0.9297 0.9286 0.5294 0.1543 0.1177
0.0650 0.7672 0.7596 0.7574 0.7545 1.6804 0.6677 0.3804
0.0750 −0.2086 −0.2022 −0.2010 −0.2009 3.8259 0.6691 0.0613
0.0850 −0.9596 −0.9547 −0.9549 −0.9566 0.3065 −0.2001 −0.1767
0.0900 −0.9698 −0.9655 −0.9657 −0.9676 0.2261 −0.2173 −0.1960
0.0950 −0.7113 −0.6999 −0.6983 −0.6974 1.9872 0.3496 0.1245
0.1000 −0.2477 −0.2404 −0.2390 −0.2387 3.7615 0.7006 0.1317

vibration amplitude is A = 1.0. Error 1, Error 2, and Error 3 in Table 4 indicate the relative
error percentages between the exact solutions and the present results with N = 9 and Ns = 1,
N = 9 and Ns = 3, N = 9 and Ns = 5 while Error 4, Error 5, and Error 6 in Table 5 are the
relative error percentages between the exact solutions and the present results with N = 9 and
Ns = 3, N = 11 and Ns = 3, N = 13 and Ns = 3. Our semianalytical solutions converge
monotonically as Ns increases but nonmonotonically with an increasing N. However, the
present method is capable of giving very accurate results with relative error less than 1.5%
when Ns ≥ 3 and N ≥ 11. We have calculated the nonlinear dynamic response of beams
with other end supports as well and found that the results exhibit the same convergence
characteristics as observed in Tables 4 and 5. These results are, therefore, not detailed here.

Figure 2 depicts the nonlinear dynamic central deflection response of a simply sup-
ported beam with dimensionless initial deflection w10 = 0.5 sin(πξ), 0.8 sin(πξ), 1.0 sin(πξ),
and 1.4 sin(πξ). The time interval in this example is relatively short, that is, t = 0 ∼ 0.1 sec.
The result within a much longer time interval t = 0 ∼ 1 sec is displayed in Figure 3 where
w10 = 1.0 sin(πξ). N = 11 and Ns = 3 are used in these two examples. Again, the present
results agree very well with the elliptical function solutions by Woinowsky-Krieger [1]. It is
also seen that a bigger initial deflection magnitude results in larger vibration amplitude.

It is worthy of noting that unlike the conventional numerical integration schemes
commonly used to calculate dynamic response whose accuracy is quickly degraded at later
time steps due to the accumulation of numerical errors, the proposed technique does not
involve iterative time integration and accumulative errors and is therefore able to give results
with excellent accuracy even for a very long time interval, as demonstrated in Figure 3.

4. Conclusions

A new semianalytical method for geometrically nonlinear vibration analysis of Euler-
Bernoulli beams with different boundary conditions is presented in this paper. The proposed
method is based on the perturbation technique, differential quadrature approximation,
and an analytical series expansion in the time domain. Numerical results show that this
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Table 5: Nonlinear central deflection response of a simply supported beam: solutions with varying total
number of sampling points N.

Time (s) N = 9 N = 11 N = 13 Woinowsky-Krieger [1] Error 4 Error 5 Error 6
0.0050 0.8566 0.8562 0.8562 0.8533 0.3895 0.3458 0.3484
0.0100 0.4720 0.4711 0.4712 0.4665 1.1828 0.9922 1.0026
0.0150 −0.0398 −0.0410 −0.0410 −0.0404 −1.6178 1.4624 1.4228
0.0300 −0.9939 −0.9967 −0.9967 −0.9963 −0.2437 0.0411 0.0378
0.0400 −0.3952 −0.3969 −0.3970 −0.3928 0.6230 1.0606 1.0657
0.0450 0.1240 0.1223 0.1223 0.1210 2.4780 1.0651 1.0839
0.0500 0.6106 0.6097 0.6097 0.6048 0.9513 0.7984 0.8054
0.0650 0.7596 0.7585 0.7586 0.7545 0.6677 0.5300 0.5335
0.0750 −0.2022 −0.2033 −0.2033 −0.2009 0.6691 1.1924 1.1903
0.0850 −0.9547 −0.9580 −0.9579 −0.9566 −0.2001 0.1391 0.1377
0.0900 −0.9655 −0.9687 −0.9687 −0.9676 −0.2173 0.1140 0.1122
0.0950 −0.6999 −0.7017 −0.7017 −0.6974 0.3496 0.6071 0.6093
0.1000 −0.2404 −0.2415 −0.2415 −0.2387 0.7006 1.1716 1.1717

method has excellent accuracy and convergence characteristics. Compared with other
numerical approaches that use step-by-step time integration, the present method has a unique
advantage of being capable of producing results with very good and stable accuracy at a long
time interval because the error accumulation is avoided due to the use of the analytical time
series.
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Generally speaking, a vibration system consists of three parts: vibration resource, vibration transfer
path, and vibration receiver. Based on the dynamic sensitivity technique, this paper proposes a
method for evaluating the contribution of each vibration transfer path to the dynamic response
of the vibration receiver. Nonlinear stiffness is an important factor in causing the nonlinearity of
vibration systems. Taking sensitivity as the evaluation criteria, we present an effective approach for
estimating the influence of nonlinear stiffness in vibration transfer paths on the dynamic response
of the vibration receiver. Using the proposed method, the sensitivity of the vibration system with
multiple and/or multidimensional transfer paths could be determined in the time domain.

1. Introduction

The level of vibration and noise relates to the quality of mechanical products and equipments.
That is to say mechanical products with proper vibration and noise characteristics are prone
to be favored by customers and are prone to make more profits for the enterprise. Therefore,
the study of the transfer of vibration and noise in vibration systems with multiple and/or
multi-dimensional transfer paths is of significant value. As well known, the technology
of vibration and noise control plays an important role both in the improvement of the
comprehensive property and technical index of mechanical products and in the advancement
of the scientific and technical grade of mechanical equipments. The conventional conception
of vibration and noise control in practical engineering projects is to cut off the transfer
path of vibration and noise so as to reduce vibration and noise disturbance. However,
in practical applications, it is out of the question to completely cut off the vibration
transfer path. And an engineer can only try to minimize the energy transfer in vibration
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Figure 1: The model of 5-DOF vibration transfer path systems.

transfer paths while the vibration transfer paths in vibration systems are precisely identified.
Therefore, the researches on the interaction of the vibration source, vibration transfer path,
and vibration receiver are mainly focused on energy transfer techniques and physical
experiments. The methods based on energy (or power) transfer and dynamic tests have been
widely used to investigate the dynamic characteristics of vibration transfer path systems [1–
5].

When conducting a dynamic design or modification, a designer always needs to know
which parameters have more significant effects on the dynamic performance of the system.
Therefore, dynamic sensitivity analysis has turned to be a powerful and multipurpose design
tool in optimum structural design, structural parameter identification, system dynamic
control, and so forth. Generally speaking, vibration tests are needed in dynamic design
of a practical engineering project. Once the design scheme is changed, the whole process
of the vibration test should be performed once again, which wastes great expenditures
of resources, both human and material. In this case, a designer relies largely upon his
experiences and past works, which is blind to some extent. Therefore, we need to study the
sensitivity of vibration systems with respect to path parameters. In this way, the performance
variation of the dynamic system following the change of path parameters can be figured
out.

On the basis of the basic conception of vibration theories, this paper presents a method
to quantify the contribution of each vibration transfer path to the dynamic response of the
vibration transfer path system by employing the dynamic sensitivity as an evaluation index.
Especially, a method for sensitivity analysis of nonlinear vibration transfer path systems
with respect to different kinds of non-linear stiffness is also explored in the time domain.
In view of the above studies, the designer can figure out which kind of non-liner stiffness
has more significant influence on the dynamic response of the vibration transfer path system.
Then precautionary measures can be taken to reduce the energy transfer of vibration and
noise by modifying the structural parameter and topology or by changing components in the
significant transfer paths.
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2. Vibration Transfer Path Systems

Generally speaking, every vibration engineering problem can be rationalized into three
parts: vibration source (i.e., what is the dynamic loading), vibration path (i.e., what is
the structural mass, stiffness, and damping), and vibration response and its effects on the
“receiver” (typically, the receiver is humans, occupying the structure but could also be
vibration sensitive equipment). As shown in Figure 1, a five-degree-of-freedom (5-DOF)
vibration transfer path system with non-linear stiffness is subjected to a dynamic excitation.
Newton’s law can be applied to obtain the vibration differential equations of the 5-DOF
vibration transfer path system as follows:

Mẍ + Cẋ + K(x)x = F(t), (2.1)

where

M = diag
[
ms mp1 mp2 mp3 mr

]
,

C =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

cs + csp1 + csp2 + csp3 −csp1 −csp2 −csp3 0

−csp1 csp1 + crp1 0 0 −crp1

−csp2 0 csp2 + crp2 0 −crp2

−csp3 0 0 csp3 + crp3 −crp3

0 −crp1 −crp2 −crp3 cr + crp1 + crp2 + crp3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

K =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

ks + ksp1 + ksp2 + ksp3 −ksp1 −ksp2 −ksp3 0

−ksp1 ksp1 + krp1 0 0 −krp1

−ksp2 0 ksp2 + krp2 0 −krp2

−ksp3 0 0 ksp3 + krp3 −krp3

0 −krp1 −krp2 −krp3 kr + krp1 + krp2 + krp3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

F(t) = {F0 sin(ωt)0000}T , x(t) =
{
xsxp1xp2xp3xr

}T
.

(2.2)

In this paper, ksp1 is supposed to be non-linear stiffness. In general, there are two kinds of non-
linear elastic forces, which are called the material non-linear force and the piecewise linear
force. ke(i)sp1 (i = 1, 2) is used to denote the equivalent linear stiffness of the above mentioned
two kinds of non-linear stiffness. In engineering practice, the non-linear stiffness is usually
approximately described by equivalent linear stiffness as

Ke =
∂F(x)
∂xT

=
∂[K(x)x]
∂xT

= K(x) +
∂K(x)
∂xT

(In ⊗ x), (2.3)
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where F(x) = K(x)x denotes the non-linear elastic force, In is a identity matrix with n × n
dimensions, and the symbol ⊗ represents Kronecker product, which can be defined as

Ap×q ⊗ Bs×t =

⎡

⎢
⎢
⎢
⎣

a11B a12B · · · a1qB
a21B a22B · · · a2qB

...
...

. . .
...

ap1B ap2B · · · apqB

⎤

⎥
⎥
⎥
⎦

ps×qt

. (2.4)

3. Nonlinear Stiffness in Vibration Transfer Path Systems

In most cases, the elastic force is non-linear. When dealing with a specific problem, based
on experiments, the non-linear elastic force can always be expressed as a function of motion
parameters after some simplifications. This approach is often an important step in dealing
with vibration engineering problems with non-linear stiffness.

3.1. Material Non-Linear Stiffness

In actual engineering materials, the stress-strain relation is nonlinear and follows Hook’s
law only up to a certain deformation (displacement of one end with respect to the other).
Beyond the deformation, the stress exceeds the yield point of the material and the stress-
strain relation becomes nonlinear. This kind of non-linear stiffness is usually called material
non-linear stiffness, which can be roughly divided into two types. (1) If the slope of the force-
deflection curve increases with the increase of the deformation, the spring element is said to
be hardening or hard. (2) If the slope of the force-deflection curve decreases with the increase
of the deformation, the spring element is softening or soft. In many practical applications, the
non-linear elastic force can be approximately denoted as

F
(1)
sp1(x) = k

1(1)
sp1

(
xp1 − xs

)
± k2(1)

sp1

(
xp1 − xs

)3
, (3.1)

where k1(1)
sp1 > 0, k2(1)

sp1 > 0 and xp1 − xs is the displacement of the spring from its free length,

k
1(1)
sp1 (xp1 − xs) denotes the linear elastic force, k2(1)

sp1 (xp1 − xs)3 denotes the non-linear elastic
force, and the non-linear elastic force is often much smaller than the linear elastic force.
Therefore the non-linear elastic force can be regarded as a correction term. Sign “±” indicates
the character of stiffness, which is “+” or “−” depending on whether the character of the
stiffness is hard or soft. Consequently, the coefficient of the equivalent linear stiffness, ke(1)sp1 ,

of material non-linear stiffness can be represented as

k
e(1)
sp1 = k1(1)

sp1 ± 3k2(1)
sp1

(
xp1 − xs

)2
. (3.2)

As shown in (3.2), a nonlinear spring element does not have a single stiffness value because
its slope is variable. For a hard spring, its slop and thus its stiffness increase with deflection.
The stiffness of a soft spring decreases with deflection.
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3.2. Piecewise Linear Stiffness

Sometimes a nonlinear model is unavoidable. This is the case when a system is designed
to utilize two or more spring elements to achieve a spring constant that varies with the
applied load. Even if each spring element is linear, the combined system will be nonlinear.
An example of such a system is the vehicle suspension with a main spring and an auxiliary
spring. Furthermore, some vibrating machineries, such as the vibrating screen and the
oscillating conveyer, use the spring set to get the desired dynamic characteristics. As for
this kind of non-linear elastic model, under certain circumstances, two or more groups of
springs work together in the form of parallel or series to increase or decrease the stiffness of
the system. From statics, we know that the non-linear restoring force of the piecewise linear
stiffness vibration system can be represented as

F
(2)
sp1(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

k
2(2)
sp1

(
xp1−xs

)
−
(
k

1(2)
sp1 −k

2(2)
sp1

)(
xp1 − xs

)
0, −

(
xp1 − xs

)
0 ≥
(
xp1 − xs

)
,

k
1(2)
sp1

(
xp1 − xs

)
, −

(
xp1 − xs

)
0≤
(
xp1 − xs

)
≤
(
xp1−xs

)
0,

k
2(2)
sp1

(
xp1 − xs

)
+
(
k

1(2)
sp1 − k

2(2)
sp1

)(
xp1 − xs

)
0,
(
xp1 − xs

)
0≤
(
xp1 − xs

)
.

(3.3)

Therefore, for the non-linear stiffness of piecewise linearity, the equivalent stiffness ke(2)sp1 of
ksp1 is

k
e(2)
sp1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k
1(2)
sp1 , −

(
xp1 − xs

)
0 ≤
(
xp1 − xs

)
≤
(
xp1 − xs

)
0.

k
2(2)
sp1 , otherwise.

(3.4)

To investigate the influences of different kinds of non-linear stiffness on the dynamic
response of the vibration transfer path system, we present a method for sensitivity analysis of
the dynamic response of the vibration receiver with respect to the equivalent linear stiffness
coefficients (ke(1)sp1 and k

e(2)
sp1 ) of material non-linear stiffness and piecewise linear stiffness. In

this way, which kind of nonlinear stiffness has more significant influence on the dynamic
responses of vibration transfer path systems can be accurately judged.

4. Sensitivity with Respect to Path Parameters and
Non-Linear Stiffness

Sensitivity analysis plays an important role in optimization design and dynamic modifi-
cation. Based on design sensitivity results, an engineer can decide on the direction and
amount of design change needed to improve the performance measures. In addition,
design sensitivity information can provide answers to “what if” questions by predicting
performance measure perturbations when the perturbations of design variables are provided.
The dynamic sensitivity analysis provides a theoretical basis for identifying the parameter
contribution of each transfer path to the dynamic response of vibration transfer path systems.
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Based on Kronecker algebra and matrix calculus, we can obtain general sensitivity equations
through partial differential vector calculus of (2.1):

M
Dẍ
DVT

+ C
Dẋ
DVT

+ K
Dx
DVT

=
F(t)
∂VT

− ∂M
∂VT

(Is ⊗ ẍ) − ∂C
∂VT

(Is ⊗ ẋ) − ∂K
∂VT

(Is ⊗ x), (4.1)

where Is is a identity matrix with s × s dimensions, signal “⊗” is the Kronecker
product, V = (mp1 mp2 mp3 csp1 csp2 csp3 crp1 crp2 crp3 ksp1 ksp2 ksp3 krp1 krp2 krp3)

T , and
Dx/DVT , Dẋ/DVT ,
Dẍ/DVT are Jacobian matrices, namely, the parameter sensitivity matrices. And the
parameter sensitivity matrices can be obtained by substituting the solutions of (2.1), x, ẋ, ẍ
into (4.1). Then the sensitivity of dynamic response of the vibration transfer path system with
respect to each path parameter can be solved as follows:

Dx
Dmp

=
∂x
∂mp1

+
∂x
∂mp2

+
∂x
∂mp3

, (4.2a)

Dx
Dcsp

=
∂x
∂csp1

+
∂x
∂csp2

+
∂x
∂csp3

, (4.2b)

Dx
Dcrp

=
∂x
∂crp1

+
∂x
∂crp2

+
∂x
∂crp3

, (4.2c)

Dx
Dksp

=
∂x
∂ksp1

+
∂x
∂ksp2

+
∂x
∂ksp3

, (4.2d)

Dx
Dkrp

=
∂x
∂krp1

+
∂x
∂krp2

+
∂x
∂krp3

, (4.2e)

where Dx/Dmp, Dx/Dcsp, Dx/Dcrp, Dx/Dksp, and Dx/Dkrp are the sensitivity of the
dynamic response of the vibration receiver with respect to the mass, damping and stiffness
of the vibration transfer path system, respectively. These sensitivity matrices can be used
to judge the contribution of each path parameter to the dynamic response of the vibration
receiver. The sign of sensitivity can be positive or negative. When a sensitivity coefficient is
positive, an increase in the model parameter leads to an increase in the corresponding state
variable, and when it is negative, the opposite is true. Moreover, the larger the absolute value
of sensitivity is, the more significant is the factor for the response of the vibration transfer
path system.

Sensitivity analysis of a vibration transfer path system with respect to non-linear path
stiffness provides a theoretical basis for identifying the parameter contribution of each kind of
non-linear stiffness to the dynamic response of the vibration receiver. Through the differential
of (2.1) with respect to ke(i)sp1 , we get the following sensitivity function:

M
dẍ

dke(i)sp1

+ C
dẋ

dke(i)sp1

+ K
dx

dke(i)sp1

= − dK

dke(i)sp1

x (i = 1, 2), (4.3)
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Figure 2: Sensitivity with respect to mass.
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Figure 3: Sensitivity with respect to damping.

where dx/dke(i)sp1 , dẋ/dke(i)sp1 , and dẍ/dke(i)sp1 are sensitivity matrices of the dynamic response of
the vibration receiver with respect to the coefficient of non-linear path stiffness. In order to
identify the contribution of different kinds of non-linear stiffness in transfer paths, we present
a sensitivity analysis model by which the sensitivity of the vibration transfer path system with

respect to the coefficients of different kinds of non-linear stiffness, V = (k2(1)
sp1 k

2(2)
sp1 )

T
, can be

obtained. Obviously, we can get the dynamic response of the vibration transfer path system,
x, ẋ, and ẍ, from (2.1). Then, substituting the results of (2.1) into (4.1) and (4.3), we can get
the sensitivity of the vibration transfer path system with respect to linear equivalent stiffness
coefficients k2(1)

sp1 and k
2(2)
sp1 to evaluate the effects of the non-linear stiffness on the dynamic

response of the vibration receiver.
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Figure 4: The curve of the sensitivity with respect to stiffness.
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Figure 5: Sensitivity with respect to equivalent stiffness.

5. Numerical Examples

As the 5-DOF vibration transfer path system shown in Figure 1, the mass of the vibration
resource is ms = 0.5 kg, the damping coefficient of the vibration resource system is cs = 1 N ·
s/m, and the stiffness coefficient of the vibration resource system is ks = 500 N/m, the mass of
the vibration receiver is mr = 0.5 kg, the damping coefficient of the vibration receiver system
is cr = 1.0 N · s/m, the stiffness of the vibration receiver system is kr = 1000 N/m. In the three
transfer paths, the masses and the coefficients of the damping and stiffness are mp1 = 0.4 kg,
mp2 = 0.5 kg,mp3 = 0.6 kg, csp1 = crp1 = 6 N ·s/m, csp2 = crp2 = 4 N ·s/m, csp3 = crp3 = 8 N ·s/m,
ksp1 = krp1 = 800 N/m, ksp2 = krp2 = 600 N/m, and ksp3 = krp3 = 400 N/m, respectively. Try
to figure out the sensitivity of the vibration transfer path system with respect to each path
parameter when subjected to dynamic excitation, F = 10 sin(10t) or F = 10 exp(−0.2t).
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Figure 6: Sensitivity with respect to the material non-linear coefficient k2(2)
sp1 .

The sensitivity of the vibration transfer path system with respect to the mass, damping
and stiffness of the vibration transfer path system can be depicted in Figures 2–4. From the
results of sensitivity analysis, we can draw the conclusion that under the same excitation,
the mass has the strongest influence on the vibration transfer path system, followed by the
damping, and the stiffness. Besides, the damping and stiffness near the vibration receiver
have stronger effect on the dynamic response of the vibration receiver at the transient
vibration stage. Therefore, while modifying structural parameters or replacing components,
the mass, damping and stiffness of the 5-DOF vibration transfer path system need to be
sequentially considered, so that the transfer of vibration and noise in vibration transfer path
systems can be decreased efficiently.

In the above mentioned 5-DOF vibration transfer path system, ksp1 is non-linear
stiffness, and the liner parts of the non-linear stiffness are k1(1)

sp1 = k1(2)
sp1 = 800 N/m. The turning

point of the piecewise linear stiffness is (xp1 − xs)0 = 1.5 × 10−3 m, and k
2(1)
sp1 = 80 N/m3. The

nonlinear correction term of the non-linear material stiffness is k2(2)
sp1 = 8 N/m. Try to figure

out the sensitivity of the dynamic response of the 5-DOF vibration transfer path system with
respect to each kind of non-linear stiffness.

(1) The sensitivity of the dynamic response of the vibration receiver in the 5-DOF
vibration transfer path system with respect to the linear equivalent stiffness coefficient of the
non-linear stiffness ke(i)sp1 (i = 1, 2) is depicted in Figure 5:

From Figure 5, we can draw the conclusion that although the linear parts of non-
linear stiffness are equal, the sensitivity with respect to the linear equivalent stiffness of
material nonlinear stiffness and piecewise linear stiffness is different. The reason is that the
dependency relationship between the non-linear part of different kinds of non-linear stiffness
and the dynamic response of the vibration transfer path system is different. In comparison,
the sensitivity with respect to the equivalent linear stiffness of the piecewise linear stiffness
is bigger than that of the material non-linear stiffness.

(2) The sensitivity of the dynamic response of the vibration receiver in the 5-DOF
vibration transfer path system with respect to the coefficients of the non-linear part of the
material non-linear stiffness and piecewise stiffness, k2(1)

sp1 and k
2(2)
sp1 , is depicted in Figures 6

and 7.
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Figure 7: Sensitivity with respect to the piecewise linear coefficient k2(2)
sp1 .

From the results shown in Figures 6 and 7, we can draw the conclusion that in the
above mentioned 5-DOF vibration transfer path system, the non-linear part of the piecewise
stiffness, k2(2)

sp1 , is more sensitive to the dynamic responses of the vibration transfer path

system than that of the material non-linear stiffness, k2(1)
sp1 . However these two non-linear

stiffness parameters have different units; the results drawn above can only be used as a
reference to decrease the transfer of vibration or noise in the vibration transfer path system.

6. Conclusion

The effects of non-linear stiffness parameters on vibration transfer path systems are discussed
in this paper. Based on the sensitivity technology, sensitivity scheduling of dynamic responses
of vibration transfer path systems with respect to path parameters and non-linear stiffness is
provided in the time-domain. The units of mass and the coefficients of different kinds of non-
linear stiffness are different; therefore the results drawn in this paper can only be used as a
reference to decrease the transfer of vibration and noise in vibration transfer path systems.
However, without a doubt, this paper provides an effective way to analyze the sensitivity
of non-linear vibration transfer path systems with respect to path parameters and non-linear
stiffness.
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In the theory of hyperbolic PDEs, the boundary-value problems with conditions on the entire
boundary of the domain serve typically as the examples of the ill-posedness. The paper shows
the unique solvability of the Dirichlet problem in the cylindric domain for the multidimensional
wave equation. We also establish the criterion for the unique solvability of the equation.

One of the fundamental problems of mathematical physics—the analysis of the behavior of
the vibrating string—has been shown to be ill-posed when the boundary-value conditions
are defined on the entire boundary ([1]). Furthermore, this problem (known as Dirichlet
problem) has been shown to be ill-posed not only for the wave equation but for hyperbolic
PDEs more generally (see [2, 3]). Some progress was done in [4] which showed that for some
rectangles the solution of this problem existed under sufficient differentiability conditions.
Further analyses of this problem reverted to functional analysis methods (see, e.g., [5]),
which has the serious shortcoming of making the applications of such results in physics and
engineering highly difficult. Moreover, most studies have concentrated so far on the 2D wave
equation.

This paper studies the Dirichlet problem, using the classical methods, in the cylindric
domain for the multidimensional wave equation. We show that the problem is well-posed.
We also establish the criterion for the unique solvability of the problem.

Let Ωα be the cylindric domain of the Euclidean space Em+1 of points (x1, . . . , xm, t),
bounded by the cylinder Γ = {(x, t) : |x| = 1}, the planes t = α > 0 and t = 0, where |x| is the
length of the vector x = (x1, . . . , xm).
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Let us denote, respectively, with Γα, Sα, and S0 the parts of these surfaces that form the
boundary ∂Ωα of the domain Ωα.

We study, in the domain Ωα, the multidimensional wave equation

Δxu − utt = 0, (1)

where Δx is the Laplace operator on the variables x1, . . . , xm, m ≥ 2.
Hereafter, it is useful to move from the Cartesian coordinates x1, . . . , xm, t to the

spherical ones r, θ1, . . . , θm, t, r ≥ 0, 0 ≤ θ1 < 2π, 0 ≤ θi ≤ π, i = 2, 3, . . . , m − 1.

Problem 1 (Dirichlet). Find the solution of (1) in the domain Ωα, in the class C(Ωα) ∩ C2(Ωα),
that satisfies the following boundary-value conditions:

u|Sα = ϕ(r, θ), u|Γα = ψ(t, θ), u|S0
= τ(r, θ). (2)

Let {Yk
n,m(θ)} be a system of linearly independent spherical functions of order n, 1 ≤

k ≤ kn, (m − 2)!n!kn = (n +m − 3)!(2n +m − 2), and let Wl
2(S0), l = 0, 1, . . . be Sobolev spaces.

The following lemmata hold ([6]).

Lemma 1. Let f(r, θ) ∈Wl
2(S0). If l ≥ m − 1, then the series

f(r, θ) =
∞∑

n=0

kn∑

k=1

fkn (r)Y
k
n,m(θ), (3)

as well as the series obtained through its differentiation of order p ≤ l−m+ 1, converge absolutely and
uniformly.

Lemma 2. For f(r, θ) ∈ Wl
2(S0), it is necessary and sufficient that the coefficients of the series (3)

satisfy the inequalities

∣
∣∣f1

0 (r)
∣∣∣ ≤ c1,

∞∑

n=0

kn∑

k=1

n2l
∣
∣∣fkn (r)

∣∣∣
2
≤ c2, c1, c2 = const. (4)

Let’s denote as ϕkn(r), ψ
k
n(t), and τkn(r) the coefficients of the series (3), respectively, of

the functions ϕ(r, θ), ψ(t, θ), and τ(r, θ).

Theorem 3. If ϕ(r, θ) ∈Wl
2(Sα), ψ(t, θ) ∈W

l
2(Γα), τ(r, θ) ∈W

l
2(S0), l > 3m/2, and

sinμsα/= 0, s = 1, 2, . . . , (5)

then Problem 1 is uniquely solvable, where μs are the positive nulls of the Bessel function of first type
Jn+(m−2)/2(z).

Theorem 4. The solution of Problem 1 is unique if and only if condition (5) is satisfied.
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Proof of Theorem 3. In the spherical coordinates, (1) takes the form

urr +
m − 1
r

ur −
1
r2
δu − utt = 0,

δ ≡ −
m−1∑

j=1

1

gjsinm−j−1θj

∂

∂θj

(

sinm−j−1θj
∂

∂θj

)

, g1 = 1, gj =
(
sin θ1 · · · sin θj−1

)2
, j > 1.

(6)

It is known (see [6]) that the spectrum of the operator δ consists of eigenvalues λn =
n(n + m − 2), n = 0, 1, . . . , to each of which correspond kn orthonormalized eigenfunctions
Yk
n,m(θ).

Given that solution of the problem that we are looking for belongs to the class C(Ωα)∩
C2(Ωα), we can look for it in the form of the series

u(r, θ, t) =
∞∑

n=0

kn∑

k=1

ukn(r, t)Y
k
n,m(θ), (7)

where ukn(r, t) are the functions to be determined.
Substituting (7) into (6) and using the orthogonality of the spherical functions Yk

n,m(θ)
([6]), we get

uknrr +
m − 1
r

uknr − u
k
ntt −

λn
r2
ukn = 0, k = 1, kn, n = 0, 1, . . . , (8)

and given this, the boundary-value conditions (2), taking into account Lemma 1, will take
the form

ukn(r, 0) = τ
k
n(r), ukn(r, α) = ϕ

k
n(r), ukn(1, t) = ψ

k
n(t), k = 1, kn, n = 0, 1, . . . . (9)

In (8) and (9), making the substitution of variables

ϑ
k

n(r, t) = u
k
n(r, t) − ψkn(t), (10)

we get

ϑ
k

nrr +
m − 1
r

ϑ
k

nr − ϑ
k

ntt −
λn
r2
ϑ
k

n = f
k

n(r, t),

ϑ
k

n(r, 0) = τ
k
n(r), ϑ

k

n(r, α) = ϕ
k
n(r), ϑ

k

n(1, t) = 0, k = 1, kn, n = 0, 1, . . . ,

f
k

n(r, t) = ψ
k
ntt +

λn
r2
ψkn, τkn (r) = τ

k
n(r) − ψkn(0), ϕkn(r) = ϕ

k
n(r) − ψ

k
n(α).

(11)



4 Mathematical Problems in Engineering

Making the substitution of the variable ϑ
k

n(r, t) = r(1−m)/2ϑkn(r, t), we can reduce the
problem (11) to the following problem

Lϑkn ≡ ϑknrr − ϑkntt +
λn
r2
ϑkn = fkn (r, t),

ϑkn(r, 0) = τ̃
k
n (r), ϑkn(r, α) = ϕ̃

k
n(r), ϑkn(1, t) = 0,

λn =
(m − 1)(3 −m) − 4λn

4
, fkn (r, t) = r

(1−m)/2f
k

n(r, t),

τ̃kn (r) = r
(1−m)/2τkn (r), ϕ̃kn(r) = r

(1−m)/2ϕkn(r).

(12)

We look for the solution of the problem (12) in the form ϑkn(r, t) = ϑk1n(r, t) + ϑ
k
2n(r, t),

where ϑk1n(r, t) is the solution of the problem

Lϑk1n = fkn (r, t),

ϑk1n(r, 0) = 0, ϑk1n(r, α) = 0, ϑk1n(1, t) = 0
(13)

whereas ϑk2n(r, t) is the solution of the problem

Lϑk2n = 0,

ϑk2n(r, 0) = τ̃
k
n (r), ϑk2n(r, α) = ϕ̃

k
n(r), ϑk2n(1, t) = 0.

(14)

We analyze the solutions of the above problems, analogously to [7], in the form

ϑkn(r, t) =
∞∑

s=1

Rs(r)Ts(t); (15)

moreover, let

fkn (r, t) =
∞∑

s=1

as(t)Rs(r), τ̃kn (r) =
∞∑

s=1

bsRs(r), ϕ̃kn(r) =
∞∑

s=1

dsRs(r). (16)

Substituting (15) into (13) and taking into account (16), we get

Rsrr +
λn
r2
Rs + μRs = 0, 0 < r < 1, (17)

Rs(1) = 0, |Rs(0)| <∞, (18)

Tstt + μTs = −as(t), 0 < t < α, (19)

Ts(0) = Ts(α) = 0. (20)
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The bounded solution of the problems (17) and (18) is (see [8])

Rs(r) =
√
rJυ

(
μsr

)
, (21)

where υ = n + (m − 2)/2, μ = μ2
s.

The general solution of (19) can be represented in the form (see [8])

Ts(t) = c1s cosμst + c2s sinμst +
cosμst
μs

∫ t

0
as(ξ) sinμsξ dξ −

sinμst
μs

∫ t

0
as(ξ) cosμsξ dξ, (22)

where c1s and c2s are arbitrary constants; satisfying the condition (20), we will get

c1s = 0,

c2sμs sinμα = − cosμsα
∫α

0
as(ξ) sinμsξ dξ − sinμsα

∫α

0
as(ξ) cosμsξ dξ.

(23)

Substituting (21) into (16), we get

r−1/2fkn (r, t) =
∞∑

s=1

as(t)Jυ
(
μsr

)
, r−1/2τ̃kn (r) =

∞∑

s=1

bsJυ
(
μsr

)
,

r−1/2ϕ̃kn(r) =
∞∑

s=1

dsJυ
(
μsr

)
, 0 < r < 1.

(24)

Series (24) are the decompositions into the Fourier-Bessel series (see [9]), if

as(t) =
2

[
Jυ+1(μs)

]2

∫1

0

√
ξfkn (ξ, t)Jυ

(
μsξ

)
dξ, (25)

bs =
2

[
Jυ+1(μs)

]2

∫1

0

√
ξτ̃kn (ξ)Jυ

(
μsξ

)
dξ, ds =

2
[
Jυ+1(μs)

]2

∫1

0

√
ξϕ̃kn(ξ)Jυ

(
μsξ

)
dξ, (26)

μs, s = 1, 2, . . . are positive nulls of the Bessel functions, set in the increasing order.
From (21)–(23) we get the solution of the problem (13):

ϑk1n(r, t) =
∞∑

s=1

√
r

μs

{[∫α

0
as(ξ) cosμsξdξ − cotμsα

∫α

0
as(ξ) sinμsdξ

]
sinμst

+ cosμst
∫ t

0
as(ξ) sinμsξdξ − sinμst

∫ t

0
as(ξ) cosμsdξ

}

Jυ
(
μsr

)
,

(27)

where as(t) is determined from (25).
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Next, substituting (15) into (14) and taking into account (16), we will get

Tstt + μ2
sTs = 0, 0 < t < α, (28)

Ts(0) = bs, Ts(α) = ds. (29)

The general solution of (28) will become

Ts(t) = c′1s cosμst + c′2s sinμst; (30)

satisfying the condition (29), we will get

c′1s = bs,

c′2s =
ds

sinμsα
− bs cotμsα.

(31)

From (21), (30), and (31) we find the solution of the problem (14):

ϑk2n(r, t) =
∞∑

s=1

√
r

[
bs cosμst −

(
ds

sinμsα
− bscotμsα

)
sinμst

]
Jυ
(
μsr

)
, (32)

where bs and ds are found from (26).
Thus, the unique solution of Problem 1 is the function

u(r, θ, t) =
∞∑

n=0

kn∑

k=1

{
ψkn(t) + r

(1−m)/2
[
ϑk1n(r, t) + ϑ

k
2n(r, t)

]}
Yk
n,m(θ), t > 0, (33)

where ϑk1n(r, t) and ϑk2n(r, t) are determined from (27) and (32).
Taking into account the formula (see [9]) J ′υ(z) = Jυ−1(z) + Jυ+1(z), the estimates (see

[6, 9])

|Jυ(z)| ≤
1

Γ(1 + υ)

(z
2

)υ
, kn ≤ c1n

m−2,

∣∣∣∣∣∣

∂q

∂θ
q

j

Yk
n,m(θ)

∣∣∣∣∣∣
≤ c2n

m/2−1+q, j = 1, m − 1, q = 0, 1, . . . ,

(34)

where Γ(z) is the gamma-function, the lemmata, and the bounds on the given functions
ϕ(r, θ), ψ(t, θ), and τ(r, θ), we can show that the obtained solution (33) belongs to the class
C(Ωα) ∩ C2(Ωα).

Theorem 3 is proven.

Proof of Theorem 4. If condition (5) is satisfied, then from Theorem 3, it follows that the
solution of Problem 1 is unique.
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Now, suppose condition (5) does not hold, at least for one s = 1.
Then, if we look for the solution of the homogeneous problem, corresponding to

Problem 1, in the form (7), then we get to the problem

Lϑkn = 0,

ϑkn(r, 0) = 0, ϑkn(r, α) = 0, ϑkn(1, t) = 0, k = 1, kn, n = 0, 1, . . . ,
(35)

the solution of which is the function

ϑkn(r, t) =
√
r sinμltJn+(m−2)/2

(
μlr

)
. (36)

Therefore, the nontrivial solution of homogeneous Problem 1 is written as

u(r, θ, t) =
∞∑

n=2

kn∑

k=1

n−lr(2−m)/2 sinμltJn+(m−2)/2
(
μlr

)
Yk
n,m(θ). (37)

From estimates (34) it follows that u ∈ C(Ωα) ∩ C2(Ωα), if l > 3m/2.
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The nonlinear dynamic response of functionally graded rectangular plates under combined
transverse and in-plane excitations is investigated under the conditions of 1 : 1, 1 : 2 and 1 : 3
internal resonance. The material properties are assumed to be temperature-dependent and vary
along the thickness direction. The thermal effect due to one-dimensional temperature gradient
is included in the analysis. The governing equations of motion for FGM rectangular plates are
derived by using Reddy’s third-order plate theory and Hamilton’s principle. Galerkin’s approach
is utilized to reduce the governing differential equations to a two-degree-of-freedom nonlinear
system including quadratic and cubic nonlinear terms, which are then solved numerically by using
4th-order Runge-Kutta algorithm. The effects of in-plane excitations on the internal resonance
relationship and nonlinear dynamic response of FGM plates are studied.

1. Introduction

Functionally graded materials (FGMs) are new engineering materials. Due to their
advantages of being able to withstand severe high-temperature gradient while maintaining
structural integrity, FGMs are considered to be advanced composite materials in high
temperature and vibration environments [1, 2].

With the increasing use of FGMs, it is important to understand the nonlinear vibration
behavior of FGM structures. Quite a few studies in this area have been conducted. Praveen
and Reddy [3] analyzed the nonlinear static and dynamic response of functionally graded
ceramic-metal plates in a steady temperature field based on the first-order shear deformation
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plate theory.Sundararajan et al. [4] carried out finite element analysis of nonlinear-free
vibration of both rectangular and skew FGM plates. Yang et al. [5] investigated the large
amplitude vibration of pre-stressed FGM plates composed of a functionally graded layer and
two surface-mounted piezoelectric actuator layers.

A semi analytical method and Galerkin technique were employed to predict the
nonlinear vibration behavior of FGM-laminated plates. The parametric resonance of
functionally graded rectangular plates under harmonic in-plane loading was investigated by
Ng et al. [6]. Using a higher-order shear and normal deformable plate theory (HOSNDPT)
and a meshless local Petrov-Galerkin (MLPG) method, Qian et al. [7] analyzed the static
deformation, and free and forced vibrations of a thick rectangular functionally graded
plate.Vel and Batra [8] gave a three-dimensional exact solution for the linear free and
forced vibration of simply supported FGM rectangular plates. Woo and Meguid [9] studied
the nonlinear deflection of FGM plates and shells under transverse mechanical loads and
a temperature field. Hao et al. [10] reported a nonlinear dynamic analysis of a simply
supported FGM rectangular plate subjected to transversal and in-plane excitations. The
resonant case considered in their work is 1 : 1 internal resonance and principal parametric
resonance. The asymptotic perturbation method is used to obtain four-dimensional nonlinear
averaged equation. It was found that periodic, and quasiperiodic solutions and chaotic
motions occur under some conditions. It is known that for a two-degree-of-freedom nonlinear
vibration system, different internal resonance between two modes, such as 1 : 1, 1 : 2, and
1 : 3 internal resonances, can exist in some cases. To the best of the authors’ knowledge, there
is still no literature concerning nonlinear dynamic behavior of FGM plates with different
cases of internal resonances.

The present work aims to investigate the nonlinear dynamic response of a simply
supported FGM rectangular plate subjected to transversal and in-plane excitations in a
thermal environment. The cases considered in this paper include 1 : 1, 1 : 2, and 1 : 3 internal
resonances and principal parametric resonance-1/2 subharmonic resonance. It is assumed
that the material properties of the plate are graded in the thickness direction according to a
power-law distribution. The analysis is based on the nonlinear dynamic governing equations
derived in our previous work [10]. The influences of the in-plane excitations on the internal
resonance relationship and nonlinear dynamic response of the FGM plate are studied in
numerical examples.

2. Theoretical Formulation

2.1. Material Properties

It is assumed that the bottom surface of the plate is metal rich, whereas the top surface is
ceramic rich. The material properties P , such as Young’s modulus E, the coefficient of thermal
expansion α, thermal conductivity κ, and mass density ρ, can be expressed as a function of
temperature as [11]

Pi = P0

(
P−1T

−1 + 1 + P1T + P2T
2 + P3T

3
)
, (2.1)

where P0, P−1, P1, P2, and P3 are temperature coefficients.
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The effective material properties P of the FGM plate can be expressed as

P = PtVc + PbVm, (2.2)

where subscripts “t” and “b” represent the top and bottom surfaces of the FGMs plate,
respectively, and Vc and Vm are the volume fraction of ceramic and metal which add to unity

Vc + Vm = 1. (2.3)

The metal volume fraction Vm is defined as

Vm(z) =
(

2z + h
2h

)N

, (2.4)

where exponent N is a real number that characterizes the material profile along plate
thickness.

From (2.2)–(2.4), the effective values of E, α, ρ, and κ at an arbitrary point of the plate
can be expressed as

E = (Eb − Et) Vm + Et,

α = (αb − αt) Vm + αt,

ρ =
(
ρb − ρt

)
Vm + ρt,

κ = (κb − κt) Vm + κt.

(2.5)

It is also assumed that the plate is initially stress free at T0 and is subjected to a uniform
temperature variation ΔT = T − T0 that is constant in the xy plane of the plate while varies in
the thickness direction only. In this case, the temperature distribution along plate thickness
can be obtained from a steady-state heat transfer equation:

− d
dz

[
κ(z)

dT

dz

]
= 0. (2.6)

This equation is solved by imposing boundary condition of T = Tb at z = h/2 and
T = Tt at z = −h/2. As a special case, the solution of (2.6) for isotropic homogeneous material,
may be expressed as

T(z) =
Tt + Tb

2
+
Tb − Tt
h

z. (2.7)

2.2. Equations of Motion

A simply supported four-edges FGMs rectangular plate of length a, width b and thickness
h, which is subjected to the in-plane and transversal excitations is considered, as shown in
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F(x, y) cosΩ1t −(P0 − P1 cosΩ2t)

zy
b

xao

Figure 1: The model of a FGMs rectangular plate and the coordinate system.

Figure 1. The in-plane excitation of the FGMs plate is distributed along the y direction at
x = 0 and x = a and is of the form p0 − p1 cosΩ2t. The transversal excitation subject to the
FGMs plate is represented by F(x, y) cosΩ1t. Here the Ω1 and Ω2 are the frequencies of the
transversal excitation and the in-plane excitation, respectively.

As usual, the coordinate Oxyz has its origin at the corner of the plate on the middle
plane. Assume that (u, v,w) and (u0, v0, w0) represent the displacements of an arbitrary
point and a point in the middle surface of the FGMs rectangular plate in the x, y and z
directions, respectively. It is also assumed that φx and φy, respectively, represent the mid-
plane rotations of two transverse normals about the x and y axes. With Reddy’s third-order
shear deformation plate theory [12], the displacements of the FGM plate can be expressed as
follows:

u
(
x, y, t

)
= u0

(
x, y, t

)
+ zφx

(
x, y, t

)
− z3 4

3h2

(
φx +

∂w0

∂x

)
,

v
(
x, y, t

)
= v0

(
x, y, t

)
+ zφy

(
x, y, t

)
− z3 4

3h2

(
φy +

∂w0

∂y

)
,

w
(
x, y, t

)
= w0

(
x, y, t

)

(2.8)

Based on the nonlinear strains-displacement relation and the above displacement field,
we obtain

εxx =
∂u

∂x
+

1
2

(
∂w

∂x

)2

, εyy =
∂v

∂y
+

1
2

(
∂w

∂y

)2

,

γxy =
1
2

(
∂u

∂x
+
∂v

∂y
+
∂w

∂x

∂w

∂y

)
,

γyz =
1
2

(
∂v

∂z
+
∂w

∂y

)
, γzx =

1
2

(
∂u

∂z
+
∂w

∂x

)
,

(2.9)

⎧
⎪⎪⎨

⎪⎪⎩

εxx

εyy

γxy

⎫
⎪⎪⎬

⎪⎪⎭
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε
(0)
xx

ε
(0)
yy

γ
(0)
xy

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

+ z

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε
(1)
xx

ε
(1)
yy

γ
(1)
xy

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

+ z3

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε
(3)
xx

ε
(3)
yy

γ
(3)
xy

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

{
γyz

γzx

}

=

⎧
⎨

⎩

γ
(0)
yz

γ
(0)
zx

⎫
⎬

⎭
+ z2

⎧
⎨

⎩

γ
(2)
yz

γ
(2)
zx

⎫
⎬

⎭
,

(2.10)
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where

⎧
⎨

⎩

γ
(0)
yz

γ
(0)
zx

⎫
⎬

⎭
=

⎧
⎪⎪⎨

⎪⎪⎩

φy +
∂w0

∂y

φx +
∂w0

∂x

⎫
⎪⎪⎬

⎪⎪⎭
,

⎧
⎨

⎩

γ
(2)
yz

γ
(2)
zx

⎫
⎬

⎭
= −c2

⎧
⎪⎪⎨

⎪⎪⎩

φy +
∂w0

∂y

φx +
∂w0

∂x

⎫
⎪⎪⎬

⎪⎪⎭
,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ε
(0)
xx

ε
(0)
yy

γ
(0)
xy

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u0

∂x
+

1
2

(
∂w0

∂x

)2

∂v0

∂y
+

1
2

(
∂w0

∂y

)2

∂u0

∂y
+
∂v0

∂x
+
∂w0

∂x

∂w0

∂y

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ε
(1)
xx

ε
(1)
yy

γ
(1)
xy

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

= −c1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂φx
∂x

∂φy

∂y

∂φx
∂y

+
∂φy

∂x

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ε
(3)
xx

ε
(3)
yy

γ
(3)
xy

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

= −c1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂φx
∂x

+
∂2w0

∂x2

∂φy

∂y
+
∂2w0

∂y2

∂φx
∂y

+
∂φy

∂x
+ 2

∂2w0

∂x∂y

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

c2 = 3c1, c1 =
4
3
h2.

(2.11)

Taking into account the thermal effects, the linear stress-strain constitutive relationship
is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

σxx

σyy

σyz

σzx

σxy

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q11 Q12 0 0 0

Q21 Q22 0 0 0

0 0 Q44 0 0

0 0 0 Q55 0

0 0 0 0 Q66

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

εxx

εyy

γyz

γzx

γxy

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

−

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

αxx

αyy

0

0

2αxy

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

ΔT

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (2.12)

where Q are elastic stiffness elements [12].
According to Reddy’s third-order shear deformation theory and Hamilton’s principle,

the nonlinear governing equations of motion for the FGM rectangular plate are given as [10]

Nxx, x +Nxy, y = I0ü0 + (I1 − c1I3)φ̈x − c1I3
∂ẅ0

∂x
,

Nyy, y +Nxy,x = I0v̈0 + (I1 − c1I3)φ̈y − c1I3
∂ẅ0

∂y
,
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Nyy, y
∂w0

∂y
+Nyy

∂2w0

∂y2
+Nxy, x

∂w0

∂y
+Nxy, y

∂w0

∂x
+ 2Nxy

∂2w0

∂y∂x

+Nxx, x
∂w0

∂x
+Nxx

∂2w0

∂x2
+ c1

(
Pxx, xx + 2Pxy,xy + Pyy, yy

)

+ (Qx, x − c2Rx, x) +
(
Qy, y − c2Ry, y

)
+ F − γẇ0

= I0ẅ0 + c1I3

(
∂ü0

∂x
+
∂v̈0

∂x

)
+ c1(I4 − c1I6)

(
∂φ̈x
∂x

+
∂φ̈y

∂y

)

,

Mxx, x +Mxy, y − c1Pxx, x − c1Pxy, y − (Qx − c2Rx)

= (I1 − c1I3)ü0 +
(
I2 − 2c1I4 + c2

1I6

)
φ̈x − c1(I4 − c1I6)

∂ẅ0

∂x
,

Myy, y +Mxy, x − c1Pyy, y − c1Pxy, x −
(
Qy − c2Ry

)

= (I1 − c1I3)v̈0 +
(
I2 − 2c1I4 + c2

1I6

)
φ̈y − c1(I4 − c1I6)

∂ẅ0

∂y
,

(2.13)

where γ is the damping coefficient, a comma denotes the partial differentiation with respect
to a specified coordinate, and a super dot implies the partial differentiation with respect to
time.

All kinds of inertias in (2.13) are calculated by

Ii =
∫h/2

−h/2
zip(z)dz, (i = 0, 1, 2, 3, 4, 6). (2.14)

the stress resultants are represented as follows

⎧
⎪⎪⎨

⎪⎪⎩

N

M

P

⎫
⎪⎪⎬

⎪⎪⎭
=

⎧
⎪⎪⎨

⎪⎪⎩

A B E

B D F

E F H

⎫
⎪⎪⎬

⎪⎪⎭

⎧
⎪⎪⎨

⎪⎪⎩

ε(0)

ε(1)

ε(3)

⎫
⎪⎪⎬

⎪⎪⎭
+

⎧
⎪⎪⎨

⎪⎪⎩

NT

MT

PT

⎫
⎪⎪⎬

⎪⎪⎭
,

{
Q

R

}

=

{
A D

D F

}{
γ (0)

γ (2)

}

,

(2.15)

where the membrane stress resultants, moments, higher-order moments, transverse shear
stress resultants, and their higher-order counterparts are represented as follows:

N =
[
Nxx,Nyy,Nxy

]T
, M =

[
Mxx,Myy,Mxy

]T
,

P =
[
Pxx, Pyy, Pxy

]T
, Q =

[
Qyy,Qxx

]T
, R =

[
Ryy, Rxx

]T
.

(2.16)
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The stiffness elements of the FGMs plate are denoted by

(
Aij , Bij , Dij , Eij , Fij ,Hij

)
=
∫h/2

−h/2
Qij

(
1, z, z2, z3, z4, z6

)
dz,

(
i, j = 1, 2, 6

)
,

(
Aij ,Dij , Fij

)
=
∫h/2

−h/2
Qij

(
1, z2, z4

)
dz,

(
i, j = 4, 5

)
.

(2.17)

And the thermal stress resultants in (2.16) can be represented as

{
NT ,MT ,PT

}
=

⎧
⎪⎪⎨

⎪⎪⎩

NT
xx MT

xx PTxx

NT
yy MT

yy PTyy

NT
xy MT

xy PTxy

⎫
⎪⎪⎬

⎪⎪⎭
=
∫h/2

−h/2

[
Axx,Ayy,Axy

]
T(

1, z2, z3
)
ΔT dz, (2.18)

where

⎧
⎪⎪⎨

⎪⎪⎩

Axx

Ayy

Axy

⎫
⎪⎪⎬

⎪⎪⎭
= −

⎡

⎢⎢
⎣

Q11 Q12 0

Q21 Q22 0

0 0 Q66

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

1 0

0 1

0 0

⎤

⎥⎥
⎦

[
α

α

]

. (2.19)

The nonlinear governing equations of motion for the FGM rectangular plate can be expressed
in ters of displacements (u0, v0, w0, φx, φy) by substituting for the force and moments
resultants. The equations of motion are very complicate nonlinear partial differential
equations that can be seen in the conference [10].

The boundary conditions for the simply supported FGM plate requires that
at x = 0 and x = a,

w = φy =Mxx = Pxx =Nxy = 0, (2.20)

at y = 0 and y = b,

w = φx =Myy = Pyy =Nxy = 0, Nyy

∣∣
y=0,b = 0,

∫b

0
Nxx|x=0,a dy = −

∫b

0

(
p0 − p1 cosΩ2t

)
dy.

(2.21)

The present study focuses on the nonlinear transverse oscillations of FGM plates in the first
two modes. It is then reasonable to construct deflection functions as a combination of the first
two vibration mode shapes as follows:

w
(
x, y, t

)
= w1(t) sin

πx

a
sin

3πy
b

+w2(t) sin
3πx
a

sin
πy

b
, (2.22)

where w1 and w2 are the amplitudes of two modes, respectively.
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The transverse excitation can be represented as

F
(
x, y, t

)
= F1(t) sin

πx

a
sin

3πy
b

+ F2(t) sin
3πx
a

sin
πy

b
, (2.23)

where F1 and F2 represent the amplitudes of the transverse forcing excitation corresponding
to the two nonlinear modes.

Based on research given in [13, 14], neglecting all inertia terms on u, v, φx, and φy
in (2.13), we can obtain the displacements u, v, φx, and φy with respect to w. Then by the
Galerkin procedure, the governing differential equations of transverse motion of the FGMs
rectangular plate are obtained

ẅ1 +ω2
1w1 + a1ẇ1 + a2w1 cosΩ2t + a3w

2
1 + a4w

2
2 + a5w1w

2
2

+ a6w
3
1 + a7w1w2 = f1 cosΩ1t,

ẅ2 +ω2
2w2 + b1ẇ2 + b2w2 cosΩ2t + b3w1w2 + b4w

2
1 + b5w

2
2

+ b6w2w
2
1 + b7w

3
2 = f2 cosΩ1t,

(2.24)

where w1 and w2 are the vibration amplitudes of the first two modes, respectively. f1 and
f2 are the amplitudes of the transverse excitation force corresponding to the two nonlinear
modes. The lengthy expressions of constants a1−a7, b1−b7 and the transverse excitation force
f1 and f2 are not given here for brevity.

The present study focuses on the transverse nonlinear oscillations of a simply
supported FGM rectangular plate in the first two modes.

The first two linear frequencies of this nonlinear dynamic system can be rewritten as

ω2
1 = −

m007 + p0m008

m001
,

ω2
2 = −n007 + P0n008

n002
,

(2.25)

where p0 is the static component in the in-plane excitation. The other coefficients in (2.13) are
functions of geometric and physical parameters, in-plane excitations, and temperature field.
That means that under different conditions, the system can have different internal resonance
and exhibit different dynamic response.

It is seen that the in-plane stationary excitation p0 can change the type of internal
resonance.

When ω1 is close to ω2, the one-to-one internal resonance occurs and p0 is as follows:

p01 =
m007n002 −m001n007

m001n008 −m008n002
. (2.26)

When ω2 ≈ 2ω1 or ω2 ≈ 3ω1, the one-to-two or one-to-three internal resonance occurs.
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Figure 2: Effect of in-plane excitation on the dynamic response of the FGM plate with 1 : 1 internal
resonance.

The in-plane forces in these cases are given by (2.27)

p02 =
m007n002 − 4m001n007

4m001n008 −m008n002
,

p03 =
m007n002 − 9m001n007

9m001n008 −m008n002
.

(2.27)

3. Numerical Results

The influence of in-plane stationary excitation on internal resonance is studied. The fourth-
order Runge-Kutta algorithm is employed to numerically solve (2.11) and (2.12) to obtain
the nonlinear dynamic response of the FGM rectangular plate subjected to thermal and
mechanical loads with various internal resonance and primary parametric resonance.

Aluminum oxide and Ti-6Al-4V are chosen to be the constituent materials of the
plate (a = b = 1 m, h = a/20). The volume fraction exponent is n = 0.2. The transverse load
amplitude is −106 N/m2. In addition, the plate is subjected to a temperature field where the
aluminum oxide rich top surface is held at 900 K and the Ti-6Al-4V rich bottom surface is
held at 300 K. Their temperature-dependent material properties evaluated at T0 = 300 K are
as follows.

Ti-6Al-4V:

E = 105.7 GPa, ν = 0.2981, ρ = 4429
kg
m3

. (3.1)

Aluminum oxide:

E = 320.24 GPa, ν = 0.2600, ρ = 3750
kg
m3

. (3.2)

Figures 2–4 depict, respectively, nonlinear dynamic response of FGM plates. The plots
of phase portrait for the cases of 1 : 1, 1 : 2 and 1 : 3 internal resonance with different in-plane
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Figure 3: Effect of in-plane excitation on the dynamic response of the FGM plate with 1 : 2 internal
resonance.
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Figure 4: Effect of in-plane excitation on the dynamic response of the FGM plate with 1 : 3 internal
resonance.

stationary loading are shown in Figures 2(a), 3(a), and 4(a) and the central deflection versus
time curve is displayed in Figures 2(b), 3(b), and 4(b). The combinational resonance of the
additive type is

ω1 =
Ω1

2
, Ω2 = Ω1. (3.3)

It is observed that the central deflections are reduced by increasing the ratio of the
two frequencies. In the case of 1 : 2 internal resonance the amplitude of the central deflection
is larger than the one at other two frequency ratios. The case of internal resonance can be
controlled by changing the in-plane excitation force, indicating that in the different case of
internal resonance there is a different fundamental frequency.
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Obviously, Figure 2 illustrates that the periodic response of the FGM rectangular plate
occurs at 1 : 1 internal resonance when the p0 is as 7.33 × 109 N/m. Figures 3 and 4 show that
the beat vibration and quasiperiod dynamic response take place at 1 : 2 internal resonance
when p0 is as 6.24 × 1010 N/m and 1 : 3 internal resonance when p0 is as 1.11 × 1011 N/m,
respectively.

4. Conclusions

The nonlinear dynamics response of FGM rectangular plates under combined transverse and
in-plane excitations is investigated in the cases of 1 : 1, 1 : 2 and 1 : 3 internal resonance. The
material properties are assumed to be temperature-dependent. Based on Reddy’s third-order
shear deformation plate theory, the governing equations of motion for the FGMs rectangular
plate are derived using Hamilton’s principle. Galerkin’s approach is used to reduce the
governing equations of motion to a two-degree-of-freedom nonlinear system including the
quadratic and cubic nonlinear terms. 1 : 1, 1 : 2 and 1 : 3 internal resonance and principal
parametric resonance-1/2 subharmonic resonance are considered and solutions are obtained
by using fourth-order Runge-Kutta method.

Numerical results show that plate geometry parameter, in-plane excitation and
temperature field play important role in the internal resonance relationship and the nonlinear
dynamic behavior of the FGM plate. In the case of 1 : 2 internal resonance and principal
parametric resonance-1/2 subharmonic resonance, the vibration amplitude at the plate center
is much greater than the one at other two cases of internal resonance. So in the actual
condition, it is necessary to analyze what kinds of internal resonance may occur and how
to control them.
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The vehicle driving comfort has become one of the important factors of vehicle quality and
receives increasing attention. In this paper, the mechanical and mathematical models of the half-
car, five degrees of freedom (DOF) of a vehicle were established, as well as the pseudoexcitation
model of road conditions for the front wheel and the rear wheel. By the pseudoexcitation
method, the equations of transient response and power spectrum density were established. After
numerical simulation to vehicle vibration response of changeable driving, the results show that the
pseudoexcitation method is more convenient than the traditional method and effectively solves
the smoothness computation problems of vehicles while the pseudoexcitation method is used to
analyze vehicle vibration under nonstationary random vibration environments.

1. Introduction

The mechanical and mathematical model of vehicle systems is usually simplified as a
multiple-mass, complicated vibration system. Due to road excitation, vehicles may come into
complicated vibration, which is disadvantageous to passenger health and goods protection
[1, 2]. Therefore, it is important and necessary to control the vehicle’s vibration within a
limited and comfortable grade in order to ensure safety steering and physical health of
drivers and passengers, as well as the operating stability of man-vehicle-road system. In
the process of automobile moving, the random and changeable road surface is the main
factor to induce vehicle vibration. Therefore, investigation of vehicle’s stochastic vibration
[3, 4] induced by road excitation has been a significant problem of vehicle design and its
performance simulation.

At present, for this kind of problems, the Fourier transform analysis is used to
investigate the dynamic characteristics of constant driving problems of automobiles based
on stationary random vibration theory. After finishing vibration model of vehicles, it is
important to derive the frequency characteristic of vehicle vibration responses and to
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establish power spectrum density function of road excitation and vehicle vibration responses
[5]. Then it can be used to analyze the influence of vehicle structural parameters and road
excitation on vehicle random vibration [6]. Although this method was relatively simple,
its derivation process is too complicated, that is, this method needs not only to derive
the frequency response characteristics of vehicle vibration system, but also to derive the
frequency response characteristics of vehicle vibration response values.

However, in some circumstances, vehicles are running in changeable speeds, such as
in accelerating starting period and decelerating stopping period. In these cases, the road
excitation and the vehicle dynamic response in time domain are nonstationary [7, 8]. The
stochastic vibration analysis method based on Fourier transform and its inverse transform
has been used to study the changeable speed response of vehicles in unevenness roads,
but its computation work is enormous. The pseudoexcitation method was used to analyze
the stochastic vibration of structural systems [9–11]. By pseudoexcitation method, stochastic
vibration analysis was carried on a two-DOF system vibration of a quarter-vehicle model [12–
14], in which the vibration response of a constant speed moving vehicle was investigated to
a stationary random road excitation. The changeable speed vehicle vibration response was
also conducted under one-point road excitation [15]. In addition, some last investigations
[16, 17] have dealt with a quarter-car model with a harmonic excitation while the study [18]
considers the additional stochastic component in the road surface roughness. In this study,
the time-space frequency relationship of vehicle vibration under changeable speed moving
was derived by pseudoexcitation method, and then the equation of transient power spectrum
density of vehicle vibration response under nonstationary random road excitation input was
obtained. At the end, we also conducted the numerical simulations to the vibration responses
of a half-car, five-DOF vehicle system under changeable speed moving conditions.

2. Theory of Pseudoexcitation Method

When a linear system is randomly excited by self-spectrum density Sxx(w), the self-power
spectrum of its response y is

Syy(w) = |H(w)|2Sxx(w), (2.1)

where H(w) is the frequency response function, and its meaning is shown in Figure 1 [19],
that is, the corresponding harmonic response is y = H(w)eiwt when the random excitation
is replaced by harmonic excitation eiwt. From Figure 1, it can be seen that if it multiplies a
constant

√
Sxx before the excitation eiwt, it can create a pseudoexcitation,

x̃(t) =
√
Sxxe

iwt. (2.2)

After multiplying a same constant to its response value, it can give the following
equations:

ỹ∗ỹ =
∣∣ỹ
∣∣2Sxx = Syy,

x̃∗ỹ =
√
Sxxe

−iwt ·
√
Sxxe

iwt = SxxH = Sxy,

ỹ∗x̃ =
√
Sxxe

−iwt ·
√
SxxHeiwt = SxxH = Ssy.

(2.3)
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(a) Sxx H(w) Syy = |H|2Sxx

(b) x = eiwt H(w) y = Heiwt

(c) x̃ =
√
Sxxe

iwt H(w) ỹ =
√
SxxHeiwt

(d) x̃ =
√
Sxxe

iwt H(w)

ỹ1 =
√
SxxH1e

iwt

ỹ2 =
√
SxxH2e

iwt

Figure 1: The principle of pseudoexcitation method.

The last formula in the above 3 equations is the conventional expressions of self-spectrum
density or mutual spectrum density.

If the pseudoresponse values ỹ1 and ỹ2 are considered in the above system, the
following equations can be validated:

ỹ∗1ỹ2 = H1
∗√Sxxe−iwt ·H2

√
Sxxe

iwt = H1
∗SxxH2 = Sy1y2,

ỹ∗2ỹ1 = H2
∗SxxH1 = Sy2y1.

(2.4)

Then the matrixes of power spectrum density are as follows:

[
Syy
]
=
{
ỹ
}∗ ·
{
ỹ
}T
,

[
Sxy
]
= {x̃}∗ ·

{
ỹ
}T
,

[
Syx
]
=
{
ỹ
}∗ · {x̃}T .

(2.5)

If the pseudoexcitation of a random process is x̃(t) =
√
Sxxe

iwt, then it can give

˙̃x = iw
√
Sxxe

iwt, ¨̃x = −w2
√
Sxxe

iwt, (2.6)

Sẍẍ = w4Sxx. (2.7)

That is the power spectrum density of accelerations, and in the same way, we can
obtain the following equations:

S ¨̃y ¨̃y =
{ ¨̃y
}∗ ·
{ ¨̃y
}T
, (2.8)

S ¨̃y1 ¨̃y2
=
{ ¨̃y1

}∗ ·
{ ¨̃y2

}T
, (2.9)

where ∗ is a complex conjugate, and T is a matrix transfer.
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Figure 2: The mechanical model of a half-car, five-DOF automobile system.

After computing the vibration response of the system in the case of the pseudo
harmonic excitation, all the power spectrum densities of them can be solved according to
(2.5)–(2.9). Then the self-spectrum density and mutual spectrum density of them can also be
obtained.

3. Vibration Analysis of the Half-Car, Five-DOF Vehicle System in
Changeable Speeds

3.1. Mechanical and Mathematical Models of the System

For analyzing automobile vibration, it is important to establish its mechanical and
mathematical model of the automobile structural system, so that the vibration characteristic
response value of the mathematical model of vehicle vibration can be solved and obtained.
For the mechanical modeling of automobiles, a seven-DOF mechanical model [20] has been
developed to investigate the influence of active and semiactive suspension to automobile
dynamic performance. In addition, the moving smartness and operating stability of
automobiles were also investigated by spatial mechanical models of automobiles [21]. In
this study, a half-car, five-DOF linear mechanical model [22] of an automobile system was
developed as shown in Figure 2.

In Figure 2, ms is the mass of driver and chair and mb is the mass of automobile
structure. mf,mr are the nonspring supported mass of front and rear suspensions,
respectively. ks and cs are the rigidity coefficient and damping coefficient of the chair,
respectively. kf , kr are the rigidity coefficient of front and rear suspensions, respectively.
ktf , ktr are the rigidity coefficient of front and rear wheels, respectively. qf , qr are the road
excitation forces at front and rear wheels, respectively. l1 is the distance between chair and
vehicle mass center. l2, l3 are the distances from the vehicle mass center to front and rear
wheel axles, respectively.
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By Lagrange equations, the mathematical model of the vehicle mechanical model in
Figure 2 is as follows:

[M]
{
Z̈
}
+ [C]

{
Ż
}
+ [K]{Z} = [F]{Q}, (3.1)

where

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ms 0 0 0 0

0 mb 0 0 0

0 0 mp 0 0

0 0 0 mf 0

0 0 0 0 mr

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

C =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

cs −cs csl1 0 0

−cs cs + cf + cr −csl1 − cf l2 + crl3 −cf −cr
csl1 −csl1 − cf l2 + Crl3 csl

2
1 + cf l

2
2 + crl

2
3 cf l2 −Crl3

0 −cf cf l1 cf 0

0 −cr −crl3 0 cr

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

K =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

ks −ks ksl1 0 0

−ks ks + kf + kr −ksl1 − kf l2 + krl3 −kf −kr
ks −ksl1 − kf l2 + krl3 ksl

2
1 + kf l

2
2 + krl

2
3 kf l2 −krl3

0 −kf kf l2 kf + ktf 0

0 −kr −krl3 0 kr + ktr

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

F =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 0

0 0

0 0

ktf 0

0 ktr

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, {Z} =
{
zs zb zp zf zr

}T
, {Q} =

{
qf qr

}T
.

(3.2)

3.2. Road Excitation

The unevenness degree of road profile can be generally described by power spectrum density.
The international GB7031 recommends that the power spectrum density of road profile is
described by

Sq(n) = Sq(n0)
(
n

n0

)−w
, (3.3)



6 Mathematical Problems in Engineering

where Sq(n0) is the unevenness coefficient of road profile. n0 is the referenced spatial
frequency, n0 = 0.1 (m−1). n is the spatial frequency (m−1). w is the frequency exponent
of the graded road spectrum and generally chosen as 2. In this study, Sq(n0) is set as
Sq(n0) = 64 × 10−6 (m2/m−1), that is, Grade B road condition.

When automobiles move in changeable speeds, the excitations of automobile systems
are different in time domain and space domain. It is not stationary in space domain but
in time domain. However, the automobile’s mechanical responses are all nonstationary. By
the inherent characteristics of frequency response function H(w) of vehicle system in time
domain and the relation of time frequency w and space frequency n, the transient frequency
response function H(s, n) can be obtained, then we can solve the stochastic vibration of the
vehicle system in changeable speed moving [11, 23].

The unevenness degree of roads in time domain is shown as follows [24]:

q(t) = h0e
jwt, (3.4)

where h0 is the amplitude of unevenness degree of roads. The expression of unevenness
degree of roads in space domain is as follows:

q = h0e
jΩs, (3.5)

wt = Ωv, (3.6)

where Ω is the spatial angular frequency.
When the automobile is moving in a constant speed, s = vt, it has the following

relation, w = Ωs or f = nv.
When the automobile is moving in a changeable speed, it has

s = v0 +
at2

2
, (3.7)

where v0 is the initial velocity of the automobile and a is its acceleration. Then (3.6) can be
rewritten as

wdt = Ωds,

w = Ω
ds

dt
= 2nπ(v0 + at) = 2nπ

(
2as + v0

2
)1/2

.
(3.8)

Equation (3.8) reflects the time-space frequency relation of automobiles in an
accelerated moving.

3.3. Pseudoexcitation of Random Road at Front and Rear Wheels

By the time-frequency expression of unevenness degree of roads, a pseudoexcitation of road
q̃(t) can be built which is corresponding with the road excitation q(t), as follows:

q̃(t) =
√
Sq(n)eiwt. (3.9)
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Hypothesize that the road excitations on four wheels of the automobile are the same
and the delay relation [14] between front wheel excitation qf(t) and rear wheel excitation
qr(t) is as follows:

qr(t) = qf(t − τ), (3.10)

where τ = l/v, l is the distance between two wheel axles, then it has

q̃f(t) =
√
Sq(n)eiwt,

q̃r(t) = q̃f(t − τ) =
√
Sq(n)eiw(t−τ) = e−iwtτ q̃(t).

(3.11)

Therefore, the excitation input is written as follows:

{
q̃(t)
}
=

[
q̃f(t)

q̃r(t)

]

=

[
1

e−iwτ

]

q̃(t) =
{
Hq(w)

}
q̃(t). (3.12)

The road excitations from front wheel and rear wheel can be simplified as an excitation
input {q̃(t)}, and its frequency response characteristic is {Hq(w)}. Thus, the two-point
excitations are simplified as one-point excitation.

3.4. Formulation of System Response

For a multiple degrees-of-freedom system, its frequency response characteristic is the
complex number ratio of response vector and excitation vector. For the half-car, five-DOF
vehicle system in this study, if we supposed that its frequency response is [H(w)], then the
relation of pseudoresponse and pseudoexcitation is

{z̃(t)} = [H(w)]
{
q̃(t)
}
. (3.13)

Substituting (3.12) into (3.13) gives

{z̃(t)} = [H(w)]
{
Hq(w)

}
q̃(t) =

{
hg(w)

}
q̃(t). (3.14)

Since {hg(w)} = [H(w)]{Hq(w)}, then

{ ˙̃z(t)
}
=
{
hg(w)

} ˙̃q(t) = iw
{
hg(w)

}
q̃(t), (3.15)

{ ¨̃z(t)
}
= −w2{hg(w)

}
q̃(t). (3.16)

Substitute (3.15) and (3.16) into the system equation, then the system frequency
response function can be obtained as follows:

[H(w)] =
[
[K] −w2[M] + iw[C]

]−1
F, (3.17)
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where

[H(w)]5×2 =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

H(w)s
H(w)b
H(w)p
H(w)f
H(w)r

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

. (3.18)

The frequency response functions of the relative displacement of suspension and the
dynamic loads of tires are as follows, respectively:

Hrd(w) =
zb(w) − l2zp(w) − zf(w)

qf(w)
,

Htf(w) =
zf(w) − zr(w)

qf(w)
ktf .

(3.19)

By substituting (3.13) into (3.19), it gives the frequency response functions of the
relative displacement of suspension and the dynamic loads of tires as follows:

Hrd(w) = Hb(w) − l2Hp(w) −Hf(w),

Htf(w) =
[
Hf(w) −Hr(w)

]
ktf .

(3.20)

It can be found that the system response result by pseudoexcitation method is the
same as the result obtained by Fourier transform analysis. After obtaining the automobile
structural parameters and the road excitation parameters, the pseudoexcitation responses
{z̃(t)} and { ¨̃z(t)} can be solved in accordance with (3.14) and (3.16). The response power
spectrum can be achieved according to (2.5) and (2.6).

The power spectrum matrix of vertical acceleration of the system is

{Sz̈z̈(w)} =
{ ¨̃z(t)

}∗ ·
{ ¨̃z(t)

}T
= w4{hg(w)

}√
Sq(n)e−iwt

{
hg(w)

}T√
Sq(n)eiwt

= w4{hg(w)
}{
hg(w)

}T
Sq(n)

= w4[H(w)]
{
Hq(w)

}{
Hq(w)

}T [H(w)]TSq(n).

(3.21)

By substituting w = 2nπ(2as + v0
2)1/2 into (3.21), the spatial acceleration power

spectrum density of system responses can be obtained as follows:

{Sz̈z̈(s, n)} = (2πn)4
(

2as + v0
2
)2
[H(s, n)]

{
Hq(s, n)

}{
Hq(s, n)

}T [H(s, n)]TSq(n), (3.22)
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Figure 3: 3D spectrum of body acceleration.
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Figure 4: 2D spectrum of body acceleration.

where

H(s, n) =
[
[K] − 4n2π2

(
2as + v0

2
)
[M] + i

(
2nπ

√
2as + v0

2[C]
)]−1

F,

{
Hq(s, n)

}
=

⎡

⎣
1

e−i(2nπ
√

2as+v0
2τ)

⎤

⎦
√
Sq(n)e−i(2nπ

√
2as+v0

2t).

(3.23)

In the same way, according to the frequency response function of relative displacement
of suspensions and dynamic loads of tires, we can obtain the transient spatial power spectrum
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Figure 5: 3D spectrum of relative displacement of vehicle suspension.
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Figure 6: 2D spectrum of relative displacement of vehicle suspension.

density functions. It is important to substitute w = 2nπ(2as + v0
2)1/2 into them to get the

corresponding power spectrum density as follows:

Srd(s, n) = Hrd(s, n)Sq(n)[Hrd(s, n)]T ,

Stf(s, n) = Htf(s, n)Sq(n)
[
Htf(s, n)

]T
.

(3.24)

By means of computing {Sz̈z̈(s, n)}, Srd(s, n), and Stf(s, n), we can obtain the dynamic
characteristics of vehicles and driving comfort of vehicles.
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Figure 7: 3D spectrum of seat acceleration.

−1

0.2

0.4

0.6

0.8

1

1.2
×10−5

Se
at

ac
ce

le
ra

ti
on

0 0.5 1 1.5 2 2.5 3

Spatial frequency (1/m)

Figure 8: 2D spectrum of seat acceleration.

4. Computing Case

In order to check the validation of the above mathematical models of transient response
analysis of the half-car, five-DOF automobile system based on pseudoexcitation, we carried
out the simulations as follows. To mimic an accelerating process of the automobile, set the
acceleration as a = 1.0 ms and the running distance as s = 150 m, respectively. The other
mechanical model parameters of the five-DOF automobile system are shown in Table 1.

Figures 3 and 4 show the 3D (three-dimensional) and 2D (two-dimensional)
spectrums of body acceleration, respectively. Figures 5 and 6 show the 3D and 2D spectrums
of relative displacement of vehicle suspension, respectively. Figures 7 and 8 show the 3D
and 2D spectrums of seat acceleration, respectively. Figures 9 and 10 show the 3D and
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Table 1: Mechanical model parameters of the five-DOF automobile system.

Items ms(kg) mb(kg) mp(kg.m2) mf (kg) mr(kg)
Values 70 2100 3500 140 210
Items ks kf kr ktf ktr
Values 12200 74000 120000 520000 520000
Items cs cf cr
Values 550 1800 1200

2D spectrums of tire acceleration, respectively. Figure 11 shows the 2D spectrum of tire
dynamic load. The nonstationary response spectrum analysis of the vehicle system shows
that the low-spatial frequency ingredient has a main role with vehicle speed increasing when
the vehicle moves in a constant acceleration. With the speed increasing, the peak values
of power spectrum of seat and body acceleration, as well as the low frequency values of
power spectrum of dynamic tire loads, are not monotonously increasing, and some local
values are decreasing. The changing of relative displacement of vehicle suspensions is not
large. The nonlinearity of the vehicle suspension is not included in the current study, this
is the limitation of this vehicle dynamic model, and it will be considered in the coming
study.

5. Conclusion

By pseudoexcitation method, the vibration response characteristics of the half-car, five-DOF
automobile system were obtained. The results show that the pseudoexcitation method is more
convenient than the traditional method and effectively solves the smoothness computation
of vehicles while the pseudoexcitation method is used to analyze vehicle vibration under
nonstationary random vibration.
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Figure 11: 2D spectrum of tire dynamic load.
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Dynamic analysis of supported pipes conveying pulsating fluid is investigated in Hamiltonian
system using precise integration method (PIM). First, symplectic canonical equations of supported
pipes are deduced with state variable vectors composed of displacement and momentum. Then,
PIM with linear interpolation formula is proposed to solve these equations. Finally, this approach’s
precision is testified by several numerical examples of pinned-pinned pipes with different fluid
velocities and frequencies. The results show that PIM is an efficient and rapid approach for flow-
induced dynamic analysis o f supported pipes.

1. Introduction

As the pipes are widely used in many industrial fields, flow-induced vibration analysis of
pipes conveying fluid has been one of the attractive subjects in structural dynamics. It is
well known that pipeline systems may undergo divergence and flutter types of instabilities
generated by fluid-structure interaction. Over the last sixty years, extensive studies have been
carried out on dynamic analysis of pipeline systems subject to different boundary conditions
and loadings. Notable contributions in this area include the works of Chen [1] and Paidoussis
[2, 3]. At present, most of the research is concentrated on nonlinear dynamic analysis of pipes
conveying pulsating fluid. A recent survey on bifurcations for supported pipes can be found
in [4]. Folley and Bajaj [5] considered nonlinear spatial dynamic characteristics of cantilever
pipes conveying fluid.

In most cases, the corresponding ordinary differential motion equations of fluid-
conveyed pipes are deduced using Galerkin’s method in Lagrange system. Then many
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numerical methods, such as transfer matrix method, finite element method, perturbation
method, Runge-Kutta method, and differential quadrature method, are applied to solve these
equations.

For example, Jensen [6] analyzed dynamic behaviors of vibrating pipe containing fluid
subject to lateral resonant base excitation using the perturbation method of multiple scales.
Yang et al. [7] investigated the effect of fluid viscosity and mass ratio on instability regions of
a Kelvin-type viscoelastic pipe conveying harmonically pulsating fluid using multiple scales
method. Wang et al. [8] studied the nonlinear dynamics of curved fluid conveying pipe with
differential quadrature method.

Jeong et al. [9] proposed a finite element model of pipes conveying periodically
pulsating fluid and analyzed the influence of fluid velocities on pipe’s stability. Stangl et al.
[10] solved the extended version of Lagrange nonlinear equations for cantilevered pipes
using implicit Runge-Kutta solver HOTINT. Wang [11] explored numerically the effect of the
nonlinear motion constraints on dynamics of simply supported pipes conveying pulsating
fluid via the fourth-order Runge-Kutta scheme.

Nikolić and Rajković [12] used Lyapunov-Schmidt reduction and singularity theory
to investigate the behaviors of extensive fluid-conveying pipe supported at both ends
around the neighborhood of the bifurcation points. Furthermore, Modarres-Sadeghi and
Paı̈doussis [13] studied the possible postdivergence flutter instabilities of this complete
nonlinear supported pipe’s model with Houbolt’s finite difference method [14] and AUTO
Software package. Xu et al. [15] proposed the analytical expression of natural frequencies
of fluid-conveying pipes with the help of homotopy perturbation method. Those calculated
frequencies were in good agreement with experiment results.

Considering the effect of the internal and external fluids, the three-dimensional
nonlinear differential equations of a fluid-conveying pipe undergoing overall motions were
derived based on Kane’s equation and the Ritz method [16]. Moreover, the time histories
for the displacements were obtained using the incremental harmonic balance method. Based
on Timoshenko beam model, Shen et al. [17] studied the band gap properties of the flexural
vibration for periodic pipe system conveying fluid using the transfer matrix method. These
methods have proved to be effective in analyzing flow-induced vibration of certain pipes.

It is well known that analysis of pipe dynamics could be conducted based on
the energy-based approach according to Hamiltonian principle [18, 19]. However, these
approximation methods mentioned above are not ideal for Hamiltonian systems [20],
because they are not structurally stable, which means that the Hamiltonian system will
become dissipative.

Recently, many numerical algorithms, which can inherit the symplectic structure of
Hamiltonian system, have been studied. Especially, Zhong and Williams [21] have proposed
the precise integration method, which can give the highly precise numerical integration result
and approach the full computer precision for these homogeneous equations. Moreover, this
approach has been applied to solving complicated inhomogeneous problems with nonlinear
time-variant item, for example, Floquet transition matrix, control problems, and so on
[22–25].

In this paper, a Hamiltonian model of nonlinear flow-induced dynamics of supported
pipes is analyzed numerically using precise integration method. Firstly, nonlinear equations
of supported pipes conveying harmonically fluctuating fluid are deduced to two-order
ordinary differential equations using the Galerkin’s method. Then the equations are
transformed into symplectic canonical equations composed of displacement and momentum.
Moreover, PIM with linear interpolation formula is proposed. Finally, several numerical
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examples of pinned-pinned pipe conveying pulsating fluid are used to testify the precision of
this approach. The results are compared with those using traditional Runge-Kutta method.
The influence of different fluid parameters on nonlinear behaviors of supported pipes is also
discussed.

2. Formulation of Problem in Hamiltonian System

In this section, typical governing equations of supported pipe conveying fluid are deduced
in Hamiltonian system.

2.1. Equation of Motion

We consider a straight supported pipe conveying the harmonically pulsating flow (Figure 1).
It is assumed that the motion is planar, and the pipe is nominally horizontal. The cross-
sectional area of the flow is assumed constant. The effects of gravity and external tension
are ignored. Moreover, the pipe behaves like an Euler-Bernoulli beam in transverse vibration
and the fluid is assumed to be incompressible.

The transverse motion equation of the pipe is given by Paı̈doussis and Issid [26],

∂2M

∂x2
+m1(L − x)

∂u

∂t

∂2y

∂x2
+
(
m1u

2 + pA
)∂2y

∂x2
+ 2m1u

∂2y

∂x∂t
+ (m1 +m2)

∂2y

∂t2
= 0, (2.1)

where x is the longitudinal coordinate, y the transverse deflection, M the moment of flexure
of the pipe, L the pipe length, m1 the mass of the fluid conveyed per unit length, m2 pipe
mass per unit length, u the fluid velocity, p the fluid pressure, and A the cross-sectional area
of the flow.

Then the viscoelastic Kelvin-Voigt damping model is introduced,

M =
(
E + η

∂

∂t

)
Iy′′, (2.2)

where EI is the flexural stiffness of the pipe material, and η is the coefficient of Kelvin-Voigt
viscoelastic damping.

Moreover, the velocity u(t) of pulsating fluid is assumed to be harmonically
fluctuating, and has the following form:

u(t) = u0
(
1 + μ cosωt

)
,

u2(t) ≈ u2
0
(
1 + 2μ cosωt

)
,

(2.3)

where u0 is the mean flow velocity, μ the amplitude of the harmonic fluctuation (assumed
small), and ω the fluid pulsating frequency. This fluctuating flow velocity appears as
parametric excitation term in the equation of motion and may lead to parametric instabilities.
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Substituting (2.2) and (2.3) into (2.1) yields that

(
E + η

∂

∂t

)
I
∂4y

∂x4
+
[
−m1u0(L − x)μω sinωt +m1u

2
0
(
1 + 2μ cosωt

)
+ pA

]∂2y

∂x2

+ 2m1u0
(
1 + μ cosωt

) ∂2y

∂x∂t
+ (m1 +m2)

∂2y

∂t2
= 0.

(2.4)

Incorporate the following dimensionless quantities:

ξ =
x

L
, W =

y

L
, τ =

t

L2

(
EI

m1 +m2

)0.5

, v = u0L
(m1

EI

)0.5
, T = pA

L2

EI
,

β =
m1

m1 +m2
, H =

η

L2

(
I

E(m1 +m2)

)0.5

, ω = ωL2
(m1 +m2

EI

)0.5
.

(2.5)

Then the equation of motion can be nondimensionalized as

H
∂5W

∂ξ4∂τ
+
∂4W

∂ξ4
+
[
v2(1 + μ cosωτ

)2 − vβ0.5(1 − ξ)μω sinωt + T
]∂2W

∂ξ2

+ 2vβ0.5(1 + μ cosωτ
)∂2W

∂ξ∂τ
+
∂2W

∂τ2
= 0.

(2.6)

The motion equation above is inhomogeneous, as the derivative coefficients of W are
explicit functions of ξ and τ .

Then we discretize (2.6) using the Galerkin’s method. Let

W(ξ, τ) =
n∑

r=1

φr(ξ)qr(τ), (2.7)

where qi(τ) (i = 1, 2, . . . , n) are generalized coordinates of the discretized pipe and φi(ξ) are
eigenfunctions of the beam with the same boundary conditions.

It has been pointed out that instability boundaries for supported pipes could be
determined with adequate precision using the two-mode expansion [2]. So the two-mode
expansion of (2.7) is used in the analytical model for simplicity to investigate qualitative
behaviors of supported pipes conveying fluid.

Substitute (2.7) with n = 2 into (2.6). Then according to the orthogonal property of
modal modes, the partial differential equation could be transformed into the second-order
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ordinary differential equation

q̈ +
(
HΛ + 2β0.5vB

)
q̇ +
[
Λ +
(
v2 + T

)
C
]
q

= −
(

2β0.5vμ cosωτB
)
q̇ −
[
v22μ cosωτ

)
C + β0.5vμ sinωτ(D − C)

]
q,

(2.8)

q̈ +Gq̇ +Kq = f1(τ)q̇ + f2(τ)q, (2.9)

where

G = HΛ + 2β0.5vB, K = Λ +
(
v2 + T

)
C,

f1(τ) = −2β0.5vμ cosωτB,

f2(τ) = −2v2μ cosωτC − β0.5vμω sinωτ(D − C).

(2.10)

In (2.9), G and K denote the structural damping matrix and stiffness matrix,
respectively. These two matrices are associated with systematic parameters, such as
dimensionless flow velocity v and mass ratio β. λi (i = 1, 2) are the ith eigenvalues of the
supported pipe and Λ is the diagonal matrix with elements λ4

i .
Moreover, B, C, and D are matrices with elements bsr , csr , and dsr (s, r = 1, 2),

respectively. They are defined as

bsr =
∫1

0
φsφrdξ, csr =

∫1

0
φsφ

′′
rdξ, dsr =

∫1

0
φsξφη

′′
rdξ. (2.11)

Different value should be taken for those three parameters depending on different
boundary conditions of the pipe. For the pinned-pinned pipe, we have

bsr =

⎧
⎪⎪⎨

⎪⎪⎩

2λrλs
λ2
r − λ2

s

{
(−1)r+s − 1

}
s /= r,

0 s = r,

csr =

⎧
⎨

⎩

0 s /= r,

−λ2
r s = r,

dsr =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

4λ3
rλs

(
λ2
r − λ2

s

)2

{
1 − (−1)r+s

}
s /= r,

1
2
crr s = r.

(2.12)
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y(x, t)

x

u(t)

Figure 1: The simply supported pipe conveying fluid.

2.2. Symplectic Canonical Equation

According to Hamiltonian principle, the nonlinear equation of supported pipe conveying
pulsating fluid can be transformed into symplectic canonical equation with state variable
vectors composed of displacement Q and corresponding momentum P ,

V̇ = HV + F, (2.13)

where

V =
{
Q P

}T
,

Q =
{
q1 q2

}T
, P =

{
p1 p2

}T = Q̇ +
GQ

2
,

H =

⎡

⎢⎢⎢
⎣

−G
2

I

−K − G
TG

4

(
G

2

)T

⎤

⎥⎥⎥
⎦
,

F =
{

0 0 f1P + (f2 − f1G)Q
}T
.

(2.14)

So, we can see that H is a 4 × 4 Hamiltonian symplectic matrix and F is a time-variant
matrix related to state variable vectors.

3. Precise Integration Method with
Linear Interpolation Approximation

In this section, the principle of precise integration method is briefly introduced. For a more
detailed explanation, it is suggested that [21, 22] are consulted.

The precise integration method for homogeneous equations with initial value is
fundamental, so it is described in the next subsection firstly.

3.1. Integration of Homogeneous Equation

The general solution of homogeneous equation V̇ = HV (V0 = V (0)) can be expressed as

V (t) = eHt · V0. (3.1)
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Suppose that the time step is τ = tk+1 − tk, and then we have the following recursive
steps:

V1 = TV0, V2 = TV1, . . . , Vk+1 = TVk, (3.2)

where T = eHτ . It is seen that how to compute the exponential matrix T is essential for the
integration precision.

Then split the time interval τ into a smaller one. Define Δt = τ/m and m = 2N . For
example, m = 1048576 when N = 20. As τ is small, Δt is an extremely small time interval.

Assume that Ta = (HΔt)(I +HΔt)/2, execute the cycle

For (i = 0; i < N; i + +) {Ta = 2Ta + Ta × Ta}, (3.3)

where I is the identity matrix.
So Ta is no longer a very small matrix. It could be computed by the following function:

T = I + Ta. (3.4)

The algorithm given above is called precise integration method. It has no serious
numerical round-off error and could approach full computer precision [20].

3.2. Integration of Inhomogeneous Equation

In this subsection, PIM with linear interpolation formula would be proposed to solve
inhomogeneous equations.

With the solution of homogeneous equation, (2.13) could been written as

V̇ (t) = HV (t) + F(V, t). (3.5)

Then its solution could be given by the Duhamel’s integration as

V (t) = eHtV0 +
∫ t

0
eH(t−τ)F(V, τ)dτ. (3.6)

Similarly, the duration of structural dynamic response is also divided into small time
intervals. The response between (tk, tk+1) can be written as

V (tk+1) = TVk +
∫ tk+1

tk

eH(tk−τ)F(V, τ)dτ. (3.7)

To solve this inhomogeneous equation, the analytical expression of the time-variant
item F(V, t) is required. But it is not always available.

In this study, the linear interpolation formula is used to approximate this nonlinear
item.
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Assume that

Fk+1 = Fk + (t − tk)Ḟk, (3.8)

where

Fk = F(V, tk), Ḟk =

(
∂F

∂t
+
∑

n

∂F

∂Vi

∂Vi
∂t

)

t=tk

. (3.9)

Substituting (3.8) into (3.7) gives the linear interpolation expression

V (tk+1) = T
[
Vk +H−1

(
Fk +H−1Ḟk

)]
−H−1

[
Fk +H−1Ḟk + τḞk

]
. (3.10)

Thus, we have the numerical expression of symplectic canonical equation using PIM
with linear interpolation formula.

In the next section, this method would be used to investigate the motion of supported
pipes conveying pulsating fluid under different conditions.

4. Numerical Examples

In this section, several numerical examples of pinned-pinned pipes are used to testify the
effectiveness of precise integration method.

4.1. Dynamic Response of Pipes Conveying Stable Fluid

In this subsection, this approach is used to analyze the dynamic response of stable fluid-
conveying pipes, especially for their computation stability after a long period. In this case,
the pipe’s dynamic function is a homogeneous equation. The results are compared with those
using traditional forth-order Runge-Kutta method.

Consider that the dimensionless mean flow velocity v is 2.0, the mass ratio β is 0.32
and the fluid pressure T = 1. The initial conditions are chosen to be [q1 q2 q̇1 q̇2]

T =
[−0.1 0.2 0.1 0.4]T . Time increases from 0 to 1000 s and the time step Δt is selected as 0.2 s.

Figure 2 illustrates time history of four state variables (q1 q2 p1 p2) of pipe’s middle
point using the Runge-Kutta method, while Figure 3 shows the results calculated by precise
integration method.

It can be found that there are evident differences for four state variables’ amplitudes
using two methods. The amplitudes in Figure 2 decrease gradually with time. When the
simulation time is long enough, state variables may converge to zero. However, those in
Figure 3 still keep constant with time, which are almost unaffected by the time step.

So we can conclude that there is the energy dissipation using traditional Runge-
Kutta method, which cannot get the accurate numerical results. However, precise integration
method is an energy conservative method and could maintain the stability of the numerical
simulation in the long period of time.
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Table 1: Computation time needed using two methods.

Method Δt = 0.2 s Δt = 0.5 s
Runge-Kutta Method 90 s 80 s
Precise Integration Method 5 s 4 s

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

q 1

0 200 400 600 800 1000

t

(a)

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

q 2
0 200 400 600 800 1000

t

(b)

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

p
1

0 200 400 600 800 1000

t

(c)

−8

−6

−4

−2

0

2

4

6

8

p
2

0 200 400 600 800 1000

t

(d)

Figure 2: Time history of four state variables using Runge-Kutta method.

Table 1 lists the computation time needed for two methods, as two different time
intervals are selected. It can be noted that precise integration method needs much less
computing time than Runge-Kutta method.

4.2. Dynamic Response of Pipes Conveying Pulsating Fluid

In this subsection, PIM with linear approximation is used to analyze the dynamic response of
supported pipes conveying harmonically pulsating fluid. Similarly, the results are compared
with those using forth-order Runge-Kutta method.

Consider the dimensionless mean flow velocity v is 1, the amplitude μ = 0.4, the
frequency ω = 2.5, the mass ratio β = 0.32, and the fluid pressure T = 1. The initial conditions
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Figure 3: Time history of four state variables using precise integration method.

are chosen to be [q1 q2 q̇1 q̇2]
T = [−0.001 0.001 0 0]T . Time increases from 0 to 100 s, and

two time steps involved in this example are selected as Δt = 0.01 s and 0.05 s, respectively. By
the way, the relative stable dynamic response after 20 s is considered.

Figure 4 illustrates time history of displacement response and phase planes of pipe’s
middle point using the forth-order Runge-Kutta method, while Figure 5 shows the results
calculated by PIM, when the time step is 0.01 s. Figures 6 and 7 show the results with time
step 0.05 s using two methods, respectively.

These figures show that phrase planes of two modes would shrink gradually with time
and converge to a point if time is long enough. The precise integration method shows nearly
the same precision during calculating the dynamic response of supported pipes conveying
pulsating fluid.

Furthermore, Table 2 lists the computation time needed for two methods. Similarly,
PIM with linear interpolation formula need much less computing time than Runge-Kutta
method. This approach is very quick to obtain dynamic response because of running a
number of cycles during the computation, which is shown in (3.3). So it is suitable for long-
term dynamic analysis of fluid-conveyed pipes.
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Figure 4: Displacement response and phase diagram of pipe’s middle point using Runge-Kutta (Δt = 0.01).
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Figure 5: Displacement response and phase diagram of pipe’s middle point using PIM (Δt = 0.01).

Table 2: Computation time needed using two methods.

Method Δt = 0.01 Δt = 0.05
Runge-Kutta Method 16 s 12 s
Precise Integration Method 2 s 0.9 s

4.3. Stability Analysis of Pipes under Different Fluid
Velocities and Frequencies

In this subsection, the influence of different fluid parameters on nonlinear behaviors of
pinned-pinned pipes is discussed using PIM with linear interpolation formula.

The dimensionless fluid frequency ω increases from 0 to 70, and three fluid velocities
in this example are selected as v = 1.0, 1.5, and 2.0. The fluid frequency step and the time step
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Figure 6: Displacement response and phase diagram of pipe’s middle point using Runge-Kutta (Δt = 0.05).
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Figure 7: Displacement response and phase diagram of pipe’s middle point using PIM (Δt = 0.05).

are selected as Δω = 0.4 and Δt = 0.01 s, respectively. Others parameters are the same with
the preceding Section 4.2.

The displacement response q0 of the pipe’s middle point under different fluid
parameters is calculated. Figure 8 shows the displacement responses of the middle point
versus the pulsating fluid frequency. It can be seen that the pipe keeps stable at most
frequencies domain. For example, as ω = 5, the pipe behaves stable on the limit loop
condition, which is shown as Figure 9(a). However, when the frequencies lie between (16, 18)
and (46, 49), the pipes are unstable. For example, the pipe will be divergent as Figure 9(b)
shows when ω = 17. So, it is very dangerous for pipes’ operating safety.

Figures 10 and 11 show the displacement response variations of the middle point
versus the pulsating fluid frequency as v = 1.5 and 2.0, respectively. It can be shown that
the instable zone is changing with fluid frequencies. As v = 1.5, the instable zones are at
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Figure 8: Displacement response of pipe’s middle point as the function of the dimensionless pulsating
fluid frequency (v = 1.0).
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Figure 9: Phase diagram of pipe’s middle point as v = 1.0. (a) ω = 5; (b) ω = 17.

(14, 18), (44, 51), and (68, 70). As v = 2.0, the instable zones lie at (6, 7), (11, 16), (42, 50), and
(65, 70).

It can be seen that with the increasing of fluid velocity, the critical fluid frequency gets
smaller and the pipe shows complicated nonlinear vibration.

5. Conclusion

In this study, PIM with linear interpolation formula is presented to analyze nonlinear
dynamics of Hamiltonian model of supported straight pipe conveying pulsating fluid.
Several numerical examples are used to testify the effectiveness of this approach. The results
show this approach could keep stable even for long period of time, and is much more rapid
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Figure 10: Displacement response of pipe’s middle point as the function of the dimensionless pulsating
fluid frequency (v = 1.5).
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Figure 11: Displacement response of pipe’s middle point as the function of the dimensionless pulsating
fluid frequency (v = 2.0).

than traditional Runge-Kutta method. Moreover, the pipe’s nonlinear behaviors under the
condition of different fluid parameters are discussed.

The work presented here provides an alternative approach for investigating the
nonlinear dynamic response of the pipes conveying fluid. However, it should be pointed
out that linear interpolation formula is a rough approximation method, and more accurate
methods should be studied to analyze nonlinear flow-induced dynamics in Hamiltonian
system.
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The behavior of power transmission tower-line system subjected to spatially varying base
excitations is studied in this paper. The transmission towers are modeled by beam elements while
the transmission lines are modeled by cable elements that account for the nonlinear geometry of the
cables. The real multistation data from SMART-1 are used to analyze the system response subjected
to spatially varying ground motions. The seismic input waves for vertical and horizontal ground
motions are also generated based on the Code for Design of Seismic of Electrical Installations.
Both the incoherency of seismic waves and wave travel effects are accounted for. The nonlinear
time history analytical method is used in the analysis. The effects of boundary conditions, ground
motion spatial variations, the incident angle of the seismic wave, coherency loss, and wave travel
on the system are investigated. The results show that the uniform ground motion at all supports
of system does not provide the most critical case for the response calculations.

1. Introduction

In China, the west-to-east power transmission project will play an important role in changing
the uneven distribution of our country’s energy resources. Transmission projects extend
thousands of kilometers and cost billions of dollars to construct and maintain, and most of
them will cross high-intensity earthquake zones. However, most of research attentions on
it have been paid on the actions of static load, impulsive load, equivalent static wind load
and so forth. There are no code provisions for earthquake design of transmission tower-line
system. It is unrealistic to assume that the transmission towers and lines are safe to go through
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Figure 1: Transmission tower-line system of Sichuan electric network damaged by the Wenchuan
earthquake.

earthquakes without adequate analysis. There are several recent cases of damage to power
lines during earthquakes. In the 1999 CHI-CHI earthquake, transmission towers and lines
was damaged most severely, and a lot of lines were broken and some towers collapsed [1].
Sichuan electric network were damaged by the Wenchuan earthquake in China, and some
pictures are shown in Figure 1. Therefore, earthquake forces may govern the design in high-
intensity earthquake zones.

In the past one or two decades, researchers have done some earthquake dynamic
analysis on the transmission tower-line system. Noteworthy contributions to the related
study of transmission towers include some work that has developed effective approaches
to deal with the actual problems. Li et al. [2–4] have completed a number of investigations
on seismic problems of coupled system of long-span transmission towers. Ghobarah et al. [5]
investigated the effect of multisupport excitations on the lateral responses of overhead power
transmission lines. Transmission towers were modeled by space truss elements and the cables
were modeled by straight two-node elements. In all these studies, longitudinal and transverse
response under uniform excitation and lateral response under multiple-support excitations
are obtained.

A major problem that arises in the analysis of the long span structures such as
transmission tower-line system is the difference among the ground motion components
affecting various support points of the structure. The system response using uniform support
excitation is compared with the response using multiple support excitations which is a more
realistic assumption. In this paper, spatially varying ground motions of real data from the
dense digital arrays of strong motion seismographs in SMART-1 are selected. The seismic
input waves for vertical and horizontal ground motions are also generated based on Code
for Design of Seismic of Electrical Installations [6]. Both the incoherency of seismic waves
and wave travel effects are accounted for. Three-dimensional finite tower-line system models
are considered in studying the response of this system. The transmission towers are modeled
by beam elements while the transmission line is modeled by cable elements that account for
the nonlinear geometry of the cable. The primary differences between the present work and
previous work include the following: (1) the effect of the boundary condition is studied by
three towers and two-span line and three towers and four-span line; (2) the effects of spatially
varying ground motions which are obtained from real data are considered in this study;
(3) the effect of incident angle of the seismic wave is considered in this paper; (4) the effects
of coherency loss and wave travel are also investigated, respectively, in this paper. It should
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Figure 2: Finite element model of three towers and four-span lines coupled system.

be noted that geometric nonlinear responses are considered but material nonlinear is not
included.

2. Power Transmission Tower-Line System Model and
Geometric Stiffness Matrix of Cable Element

2.1. Power Transmission Tower-Line System Model

Three-dimension finite element tower-line system according to practical project is estab-
lished. A finite-element computer program SAP2000 is selected to establish the model. As
shown in Figure 2, the power transmission tower-line system includes three towers (1#, 2#,
and 3#) and four-span line. The tower is 45.5 m high, and its weight is approximately 9.2 t. The
structural members of the tower are made of angle steel with the elastic modulus of 206 GPa.
The tower is modeled by 1369 space beam members and 107 nodes, and the connections
of members are rigid. The transmission line is modeled by 200 two-node isoparametric cable
elements with three translational DOFs at each node. The upper 8 cables are ground lines and
lower 24 cables are single bundled conductor. The spans to adjacent towers are all 200 m. The
base points of the transmission tower are fixed on the ground, and the connections between
transmission towers and lines are hinged, and the side spans of the lines are hinged at the
same height of middle tower.

The initial axial force and large deformation effect of cable are taken into consideration.
Under self weight, the cable spatial configuration is a catenary. Based on the coordinate
system illustrated in Figure 3, the mathematical expression used to define the initial geometry
of the cable profile is given in the following form [7]:

z =
H

q

∣∣∣∣cosh(α) − cosh
∣∣∣∣

2βx
l
− α
∣∣∣∣

∣∣∣∣, (2.1)
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where α = sinh−1|β(c/l)/ sin(β)| + β, β = ql/2H, in which H represents initial horizontal
tension which can be obtained from a preliminary static analysis, and q denotes uniformly
distributed gravity loads along the transmission line.

2.2. Geometric Stiffness Matrix of Cable Element

The fundamental equation for geometric stiffness for a cable is very simple to drive. Consider
the horizontal cable shown in Figure 4 of length L with an initial tension T. If the cable is
subjected to lateral displacements, Vi and Vj , at both ends, as shown, then additional forces, Fi
and Fj , must be developed for the cable element to be in equilibrium in its displaced position.
Note that we have assumed that all forces and displacements are positive in the up direction.
We have also made the assumption that the displacements are small and do not change the
tension in the cable. The lateral forces can be expressed in terms of the lateral displacements
by the following matrix equation [8]:

[
Fi
Fj

]
=
T

L

[
1 −1
−1 1

][
vi
vj

]
= kg

[
vi
vj

]
. (2.2)

Note that the 2-by-2 geometric stiffness matrix, kg , is not a function of the mechanical
properties of the cable and is only a function of the element’s length and the force in the
element. The cables have geometric nonlinearity because large displacement of the cable
changes its stiffness and its frequencies of free vibration [5]. Therefore, transmission lines
should be treated as nonlinear structures.
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3. Simulation of Spatially Varying Ground Motions

Spatially varying ground motions can be available directly from the seismometer arrays
data if the distance between the supports of the structure under investigation is equal to
that between the stations of the array considered [9]. Otherwise, when the properties of the
ground motion have to be known at each point of the field, the simulation of the excitation,
as a nonstationary random process, is needed [10].

3.1. SMART-1 Array, Taiwan

The SMART-1 array was the first large array of digital accelerometers specially designed
to investigate the near-field properties of earthquake ground motion. It was located in the
northeast corner of Taiwan near city of Lotung on the Lanyang plain. The array consists of 12
triaxial strong-motion accelerometers located in each of three concentric circular rings having
radius of 200 m, 1000 m, and 2000 m and one triaxial accelerometer located at the center of the
array. Figure 5 shows the location map of SMART-1, Taiwan [11].

This paper will use the data from the largest event recorded that had an epicenter
within close proximity to the array, event 45, the earthquake of 14 November 1986 [12]. Its
epicentral direction almost coincided with the diameter from I06 to I12, that is, close to the
N-S direction. Here, only data from the inner ring are considered. Figure 6 shows the event
45 of SMART-1 array.

Results are presented in the following for the application of the proposed approach to
data recorded at the centre station C00, two inner stations (I06 and I12). Figure 7 shows the
displacement time-history of each station at a distance of 200 meters under earthquake event
45. The records include one vertical and two horizontal ground motions. The three stations
are set in line, 200 meters apart from each other. Distinct differences can be found among the
3 records, in terms of the shape of the curve, the value of peak ground displacement, as well
as the arrival time of the ground motion.

3.2. Simulation of Spatially Varying Ground Motions

The variation in seismic ground motion affecting different supports of a long-span structure
is influenced by three main factors. The first factor is the wave travel effect that results from
the finite speed of seismic waves. The second factor is the coherency effect that results from
the reflection and refraction of seismic waves. The third factor is the site effect. The first two
factors are accounted for in this simulation while the site specific effects are beyond the scope
of this study.

To account for the variation in seismic ground motion, a seismological approach based
on the seismic wave propagation from the epicenter to the supporting structure may be used.
Alternatively, a stochastic approach based on random vibration analysis may be adopted.
The ground motion cross-power spectral density function of spatial ground motions at point
i and j on ground surface can be written as

Sij(ω) = Sg(ω)γij
(
ω, dij

)
, (3.1)
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Figure 5: The location map of SMART-1, Taiwan.
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Figure 6: Event 45 of SMART-1, Taiwan.

where

Sg(ω) =
ω4
g + 4ξ2

gω
2
gω

2

(
ω2
g −ω2

)2 + 4ξ2
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2
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Figure 7: Displacement time-history of each station at a distance of 200 meters under event 45.

is a filtered Tajimi-Kanai power spectral density function [13], in which S0 is a scale factor
depending on the ground motion intensity, ωg and ξg are the predominant frequency and
damping ratio of the first filter, ωf and ξf are those of the second filter, and

γij
(
ω, dij

)
=
∣∣γij
(
ω, dij

)∣∣e−iωdij/v (3.3)

is an empirical coherency function. In the present paper, the coherency loss function at points
i and j was derived from SMART-1 array data by Hao et al. [12] and is modeled in the
following form:

∣∣γij
(
ω, dij

)∣∣ = exp−
(
βdij
)
· exp

{

−a(ω)
√
dij

(
ω

2π

)2
}

(3.4)
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in which dij is the projected distance in the wave propagation direction between points i and
j on ground surface, β is a constant, and α(ω) is a function with the following form:

a(ω) =

⎧
⎪⎨

⎪⎩

2πa
ω

+
bω

2π
+ c, 0.314 rad/s ≤ ω ≤ 62.83 rad/s,

0.1a + 10b + c, ω ≥ 62.83 rad/s,
(3.5)

where the constants a, b, c, and β can be obtained by least-squares fitting the coherency
function of recorded motions. Here, the apparent velocity v = 800 m/s is assumed [14]. The
constants in coherency function are a = 3.583 × 10−3, b = −1.811 × 10−5, c = 1.177 × 10−4, and
β = 1.019 × 10−4, which were obtained by processing recorded motions during event 45 at the
SMART-1 array.

According to Penzien and Watabe’s research [15], the three components of ground
motions along a set of principal axes are uncorrelated. These components, directed along
the principal axes, are usually such that the major principal axis is directed towards the
expected epicenter, the moderate principal axis is directed perpendicular to it, and the minor
principal axis is directed vertically. In this study, the three components of the ground motion
are assumed to be directed along the principal axes.

In this study, the transmission tower-line system is assumed to locate in the Chinese
Seismic Intensity Zone 8 with peak longitudinal ground acceleration 0.2 g and locate in the
medium firm soil. The intensity of the transverse component and vertical component, as
stated in the code, is 0.85 and 0.65 times of the longitudinal component. Figure 8 shows the
corresponding 2% damped longitudinal, transverse, and vertical code response spectrums
for medium firm soil condition defined in the Code for design of seismic of electrical
installations.

The generated ground displacements considering both incoherency and wave travel
effects are shown in Figure 9. It is seen from the figure that the three generated records, 200 m
apart, are well correlated at v = 800 m/s. The coherency loss between tower 1# and tower 2#

is also calculated and compared to the model coherence loss function in Figure 10; it is seen
from the figure that the simulated result is well. The response of a typical set of longitudinal,
transverse, and vertical simulated ground motions and the corresponding response spectrum
specified in the design code are shown in Figure 11. It can be seen from the figure that the
simulated ground motions are compatible with the target response spectrum.

4. Analytical Method

Most of the commonly available computer programs for the seismic analysis of structures do
not allow the introduction of multiple acceleration time histories. The use of the displacement
time history of the ground motion instead of the acceleration time history may be appropriate
for long-span structures [5]. The equations of motion for the structure due to the multiple
support excitations are derived. The n-degree-of-freedom linear system subjected to m
support motions can be written in the matrix form [13]:

[
Maa Mab

Mba Mbb

]{
ẍa
ẍb

}
+
[

Caa Cab

Cba Cbb

]{
ẋa
ẋb

}
+
[

Kaa Kab

Kba Kbb

]{
xa
xb

}
=
{

0
Pb(t)

}
, (4.1)



Mathematical Problems in Engineering 9

0

1

2

3

4

5

6

7

Longitudinal
Transverse
Vertical

A
cc

el
er

at
io

n
(m

/
s2 )

0 0.5 1 1.5 2

Time

Figure 8: Code response spectrums with 2% damping for Chinese Seismic Intensity Zone 8.

−15

0

15

D
is

pl
ac

em
en

t(
cm

)

0 10 20 30

Time (s)

(a) Longitudinal component

−15

0

15

D
is

pl
ac

em
en

t(
cm

)

0 10 20 30

Time (s)

(b) Transverse component

−15

0

15

D
is

pl
ac

em
en

t(
cm

)

200 10 30

Time (s)

d = 0
d = 200 m
d = 400 m

(c) Vertical component

Figure 9: Generated ground displacement considering both wave travel and incoherency effects.



10 Mathematical Problems in Engineering

0

0.2

0.4

0.6

0.8

1

Simulated
Target

C
oh

er
en

cy

0 2 4 6 8 10

Frequency (Hz)

Figure 10: Coherency function of the generated ground motion comparison with model.
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where xa = [xa1, . . . , xan]
T denotes the n-vector of displacements at the unconstrained degrees

of freedom; xb = [xb1, . . . , xbn]
T means the m-vector of prescribed support displacements;

Maa, Caa, and Kaa are the n × n mass, damping, and stiffness matrices associated with the
unconstrained degrees of freedom, respectively; Mbb, Cbb, and Kbb are the m × m matrices
associated with the supported degrees of freedom; Mab, Cab, and Kab are the n ×m coupling
matrices associated with the both sets of degrees of freedom; Pb(t) is the m-vector of the
reacting forces at the support degrees of freedom.

The equation defining the response degrees of freedom “a” is given by

Maaẍa + Caaẋa + Kaaxa = −Mabẍb − Cabẋb −Kabxb. (4.2)

The solution of (4.2) depends on how the earthquake motion is defined in the right-hand side
of the equation.
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Assuming that the mass matrix is diagonal and Cab is neglected, (4.2) is reduced to

Maaẍa + Caaẋa + Kaaxa = Kabxb. (4.3)

Equation (4.3) can be extended to three components:

Maaüa + Caau̇a + Kaaua = Kab

(
xb + yb + zb

)
, (4.4)

where xb, yb, and zb are the input ground motion displacements in two horizontal and one
vertical directions, respectively. According to [16], the problem of current input displacement
model cannot be ignored. Thus, the appended massless rigid element method is adopted
here, which was put forward by Liu et al. [17]. Owing to the space limitations, the appended
massless rigid element method is described by Figure 12.

The current versions of SAP2000 can accommodate multiple excitation analysis only if
excitations are defined as displacements and not accelerations. Furthermore, if displacement
is applied to a node which is part of an integrated system such as a set of interconnected
plate elements representing the mat foundation, only the node excited would move and the
other nodes connected to it are not displaced. The two horizontal and one vertical ground
displacement histories are applied to the bottom end of these rigid pedestals and the supports
of every tower are subjected to different displacements.

5. Numerical Results and Discussions

To analyze the response of transmission lines to spatial ground motion, the model shown in
Figure 2 for the transmission tower-line system is used in the analysis. The system is subjected
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Model I

Model II

Figure 14: Finite element model of transmission tower-line coupled system.

Table 1: Maximum response of Model I and Model II.

Tower Model I Model II Cable Model I Model II
Axial force (N) 85776 66643 Cable 1 (N) 4938 5238
Moment (N·m) 1661 1134 Cable 2 (N) 9342 9646
Shear force (N) 948 668 Cable 3 (N) 9499 9613
Displacement (cm) 6.33 4.63 Cable 4 (N) 9612 9849

to the real data from arrays in SMART-1 and the artificially generated ground motions. The
supports of tower 1# are subjected to the generated ground displacement at 0 m, the supports
of tower 2# are subjected to the generated ground displacement at 200 m, and the supports of
tower 3# are subjected to the generated ground displacement at 400 m.

The dynamic performance is analyzed in terms of axial force, shear force, and moment
at the tower bases as well as the displacement of tower and cables. The first, second, third, and
forth layers of cables are called cable 1, cable 2, cable 3, and cable 4, respectively. The numbers
of cables and top node of tower are shown in Figure 13. The current work mainly concentrates
on the effect of the boundary condition, spatially varying ground motions, incident angle of
the seismic wave, coherency loss, and wave travel.

5.1. Effect of Boundary Condition

Currently, most researchers established three towers and two-span model and focused on the
response of middle tower. Here, comparisons for the model of three towers and two spans
(Model I) with the model of three towers and four spans (Model II) are done. Figure 14 shows
the finite element models of Model I and Model II. In Model II, the side spans of the lines are
hinged at the same height of middle tower.

In order to study the effect of the boundary condition, I06-C00-I12 of event 45 is
selected. Table 1 gives the maximum responses of Model I and Model II. It can be seen from
the table that the tower’s results of Model I are larger than Model II’s while the cable’s results
of Model I are smaller than Model II’s. The results in Table 1 also show that the force and
displacement differences in tower using Model I and Model II are obvious.

Figure 15 shows longitudinal displacement of top node of transmission tower. The
reasons for the response differences between two models are due to the effect of boundary
condition. In order to obtain accurate results, three towers and four-span model (Model II)
must be considered.
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5.2. Effect of Spatially Varying Ground Motions

In order to study the effect of the spatially varying ground motions, I06-C00-I12 and I07-C00-
I01 of event 45 are selected. Figure 16 shows the map of I06-C00-I12 and I07-C00-I01 of event
45.

The results in Table 2 show the maximum responses of towers under I06-C00-I12 and
I07-C00-I01 excitations. The results in Table 3 show the maximum responses of cables under
I06-C00-I12 and I07-C00-I01 excitations. It is evident from these tables that for two cases of
input ground motions considered, the assumption of uniform ground motion at all supports
does not represent the most critical case for the responses of tower and cable. For example, the
magnification in tower’s axial force is larger for this case; that is, the response increases from
40.58 kN for the uniform ground motion to 70.02 kN for the multiple support excitations. The
maximum force in the cable is 86.51 kN for the uniform ground motion while for the multiple
support excitations the response is 98.61 kN.

Figure 17 shows the longitudinal displacement of the top node of transmission tower.
The effect of spatially varying ground motions is very important. The uniform ground motion
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Table 2: Maximum response of tower under I06-C00-I12 and I07-C00-I01 excitations.

Tower I06-C00-I12 I07-C00-I01
Uniform Multiple Uniform Multiple

Axial force (N) 48073 66643 40580 70020
Moment (N ·m) 858 1134 786 1091
Shear force (N) 491 668 465 628
Displacement (cm) 3.14 4.63 3.14 4.59

Table 3: Maximum response of cable under I06-C00-I12 and I07-C00-I01 excitations.

Cable I06-C00-I12 I07-C00-I01
Uniform Multiple Uniform Multiple

Cable 1 (N) 4679 5238 4598 5162
Cable 2 (N) 8888 9646 8745 9642
Cable 3 (N) 8692 9613 8661 9579
Cable 4 (N) 8704 9849 8651 9861

assumption cannot give the critical response. This observation indicates that the influence
of ground motion spatial variation is significant in the considered transmission tower-line
system example.

5.3. Effect of Incident Angle of the Seismic Wave

The angle of incidence of the seismic wave is investigated by varying the direction of wave
propagation with respect to the longitudinal direction of the system as shown in Figure 18.
The longitudinal direction of system is assumed to coincide with the array direction. Five
different cases are considered in the study, namely, (I) I06-C00-I12, (II) I07-C00-I01, (III) I05-
C00-I11, (IV) I08-C00-I02, and (V) I09-C00-I03. Figure 18 shows the various angle directions
of earthquake wave of event 45.

Table 4 shows the maximum responses of tower under various angle excitations.
Table 5 shows the maximum responses of cables under various angle excitations. It is seen
from the table that the variation of the incident angle of seismic wave has a slight effect on
the responses, especially for the tower axial force. Assuming that the longitudinal direction of
the ground motion and the direction of the wave propagation coincide with the longitudinal
direction of the system could not obtain the maximum responses of the system.

The above analyses demonstrated the importance of boundary conditions, ground
motion spatial variation, and the incident angle of seismic wave on the transmission tower-
line system responses. As discussed above, ground motion spatial variation is induced by
wave passage and coherency loss. In the following, these two effects on ground motion spatial
variations are investigated separately in detail to examine their influence on the transmission
tower-line system.

5.4. Effect of Coherency Loss

To investigate the influence of spatially varying ground motions on the middle tower,
highly, intermediately, weakly correlated, and uncorrelated ground motions are considered.
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Figure 18: Various angle earthquake wave of Event 45.

Table 4: Maximum response of tower under various angle excitations.

Number Degree Axial force (N) Moment (N ·m) Shear force (N) Displacement (cm)
I 9◦ 66643 1134 668 4.63
II 21◦ 70020 1091 628 4.59
III 39◦ 58945 1100 641 4.28
IV 51◦ 66532 1159 666 4.65
V 81◦ 58065 966 552 3.64

Table 5: Maximum response of cable under various angle excitations.

Number Degree Cable 1 (N) Cable 2 (N) Cable 3 (N) Cable 4 (N)
I 9◦ 5238 9646 9613 9849
II 21◦ 5162 9642 9579 9861
III 39◦ 5830 10416 9915 9816
IV 51◦ 5644 10667 9603 10105
V 81◦ 5219 9665 9326 10218
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Table 6: Parameters for coherency loss functions.

Coherency loss β a b c

Highly 1.109 × 10−4 3.583 × 10−3 −1.811 × 10−5 1.177 × 10−4

Intermediately 3.697 × 10−4 1.194 × 10−2 −1.811 × 10−5 1.177 × 10−4

Weakly 1.109 × 10−3 3.583 × 10−2 −1.811 × 10−5 1.177 × 10−4
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Figure 19: Coherency functions of the simulated spatially varying ground motions.

It should be noted that the correlation as low as uncorrelated does not usually occur at short
distances, unless there are considerable changes in the local geology from one support to
the other. The parameters are given in Table 6 [18]. The coherency functions for three cases
are shown in Figure 19. The Uniform ground motion is also considered and v = 800 m/s is
used in this section. It should be noted that ground motions are generated with the same
apparent velocity. Therefore the only differences are cross correlations between the spatial
ground motions.

The maximum response of tower under various degrees of coherency is shown in
Table 7. Figure 20 shows the cable displacement ratios. Cable displacement ratio is defined
as ratio between multiple excitation and uniform excitation. It is noted from the table and
figure that for the case of uncorrelated ground motion the responses are higher than those
for the case of intermediately, weakly, or highly correlated ground motion. For the uniform
ground motion, the responses are the lowest of all cases. Various degrees of coherency used
to generate the ground motion may have a significant influence on the response of system.
For example, the maximum axial force in the tower is 23.7 kN for the uniform ground motion
while for the uncorrelated case of multiple support excitations the response is 83.3 kN. The
reasons for these are attributed to the contribution of the quasistatic part of the response.

In order to obtain a representative analysis, various degrees of coherency of spatial
ground motions should be considered. Neglecting loss of coherency between spatial ground
motions may result in substantial underestimations of system responses.
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Table 7: Maximum response of tower under various degrees of coherency.

Coherency Axial force (N) Moment (N ·m) Shear force (N) Displacement (cm)
Uniform 23704 562 318 2.44
Highly 34578 929 515 3.75
Intermediately 46670 1170 656 5.18
Weakly 69875 1415 813 6.86
Uncorrelated 83342 2037 1157 9.41
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Figure 20: Cable’s displacement ratio.

5.5. Effect of Wave Travel

Wave propagation will cause a phase delay between spatial ground motions. The phase delay
depends on the separation distance and the wave propagation apparent velocity. Previous
study revealed that wave propagation apparent velocity is quite irregular [10]. There is no
general consent yet on how the apparent velocities should be modeled. In most studies of
ground motion spatial variations, constant apparent velocities are often assumed [19, 20]. In
this study, constant apparent velocities are also assumed. To study the effect of wave travel,
four different velocities of wave propagation are considered in the analysis, 200, 400, 800, and
1600 m/s, to cover the range of practical propagation velocities in the engineering. The case
of uniform ground motion at all supports corresponds to a wave propagating with infinite
velocity. In all these cases, the ground motion is also assumed to be highly correlated.

Maximum response of tower under different wave travel excitations is shown in
Table 8. As can be seen, increasing the spatial ground motion phase delay, that is, reducing the
seismic wave apparent velocity from uniform to 1600 m/s, 800 m/s, 400 m/s, and to 200 m/s
increases the response of transmission tower, indicating that the structure is sensitive to
earthquake ground motion phase delay. In general, the more significant is the phase delay
between spatial ground motions, the larger is the structural response. Figure 21 shows cable
axial force ratios. Cable axial force ratio is defined as ratio between multiple excitation and
uniform excitation. The figure indicates that as the velocity of propagation increases, the
responses become close to the case of uniform excitation. When the apparent velocity is
1600 m/s, the spatial ground motion has smaller ratio than other cases.
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Table 8: Maximum response of tower under different wave travel excitations.

Apparent velocity Axial force (N) Moment (N ·m) Shear force (N) Displacement (cm)
Uniform 23704 562 318 2.44
200 m/s 90550 2969 1716 12.3
400 m/s 68679 2185 1262 8.39
800 m/s 34578 929 515 3.75
1600 m/s 27173 667 381 2.46
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Figure 21: Cable’s axial force ratio.

The above results demonstrate that the spatial ground motion phase difference has
a significant effect on the structural responses. Neglecting spatial ground motion phase
difference may lead to erroneous estimation of system responses. As shown in Table 8, the
maximum axial force in the tower in the case of uniform ground motion is 23.7 kN. It is
evident from the table that considering multiple support excitation increases the response
in the tower for all cases. The maximum increase is about 3.8 times for wave propagation
velocity of 200 m/s. Therefore, in order to obtain a reliable seismic response analysis of
transmission tower-line system, spatial ground motion phase difference should not be
neglected. These conclusions, particularly to the numerical example selected for the study,
may vary with the tower dimensions, cable geometry, and generated ground motion.

6. Conclusions

The effect of the spatial variation of earthquake ground motion on the response of the
transmission tower-line system has been investigated in this paper. The members of
transmission tower are modeled by beam elements and the nonlinear dynamic behavior
of cables is taken into account. The input of ground motion is taken as displacement time
histories. The real data from the close digital arrays of strong motion seismographs in
SMART-1 are selected. Artificial ground displacement records are also developed and used
in the analysis. The nonlinear time history analytical method is used in the analysis. The
influence of the boundary condition, spatially varying ground excitations, incident angle
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of the seismic wave, coherency, and wave travel on the system are considered. Following
conclusions can be obtained based on the above studies.

(1) The boundary condition has an obvious effect on the response of the system. In
order to obtain accurate results, three towers and four-spans model must be taken
in the analysis.

(2) The case of uniform support excitation does not produce the maximum response in
the system. The multiple support excitations, which is a more realistic assumption,
can result in larger response. The effect of spatially varying ground motions cannot
be neglected.

(3) The incident angle of the seismic wave has a slight effect on the responses of system.
Assuming that the longitudinal of the ground motion and the direction of the wave
propagation coincide with the longitudinal direction of the system could not obtain
the maximum responses of the system.

(4) The coherency loss has a significant effect on the response of the system. The
uncorrelated ground motion gives bigger responses than other cases. In order
to obtain a representative analysis, the various degrees of coherency should be
considered.

(5) The assumed velocity of propagation of seismic waves has a significant effect on the
response of system to seismic ground motion. In order to obtain a representative
analysis of the system, an accurate estimation of the wave velocity is required.

Based on the obtained results, uncorrelated ground motion and the apparent velocity
of 200 m/s provide the most critical case for the response calculations. It should be noted that
many studies have been reported on the ground motion spatial variation effect on bridges,
viaducts, pipelines, and dams; very limited study on transmission tower-line system can be
found in the literature. This study demonstrates that the ground motion spatial variation
effect is very important to transmission tower-line system. As many cat head type towers, cup
towers, and guyed towers are of transmission systems, more studies are deemed necessary to
further investigate the ground motion spatial variation effects on responses of these systems.
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This article deals with the application of the periodized harmonic wavelets for solution of integral
equations and eigenvalue problems. The solution is searched as a series of products of wavelet
coefficients and wavelets. The absolute error for a general case of the wavelet approximation was
analytically estimated.

1. Introduction

Mathematical models describe a variety of physical and engineering problems and processes
which can be represented by integral equations (IEs). The homogeneous Fredholm IE is
written as follows:

λf(x) −
∫b

a

K(x, t)f(t)dt = 0, (1.1)

where a and b are finite numbers, the kernelK(x, t) is known function, and λ and f(x) are the
unknown eigenvalue and associated eigenfunction. Equation (1.1) has a nontrivial solution
only for some values of λ.

There exist two different methods to solve IEs numerically. The first one is to expand
the equation by the appropriate set of basis functions, such as the classical orthogonal
polynomials [1] or wavelets (e.g. [2, 3]), and to reduce the equation to simultaneous
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equations with respect to the expansion coefficients. The second method is to use the
trapezoidal formula for integration [4]. Since we are interested in application of periodic
harmonic wavelets (PHWs) as basis functions, we will focus our attention on the first
approach.

These methods have their own advantages and disadvantages. The main advantage
of our approach over the existing wavelet methods is that the wavelet expansion coefficients
can be computed analytically. In addition, it will be shown that the computational cost of our
approach is low and the accuracy is high. It is worth to be mentioned that the application
of wavelets takes a special place in the modern computational methods thanks to quick
convergence of a series of wavelets and the possibility to find the solution with a low
approximation error.

The pioneering contribution into the wavelet approach for solution of IEs belongs to
Beylkin et al. [5]. There were many other approaches by, for example, [2, 6, 7] towards this
problem. The interest in the wavelet approach for solution of IEs is popular nowadays [8].

The most part of the existing research programs is devoted to solution of the Fredholm
and Volterra-type IEs. The Galerkin and collocation methods are mainly used in such papers
[2, 6, 7, 9], where besides the well-known Daubechies wavelets many other wavelets have
been used, such as the Haar wavelets [2, 8, 9], CAS-wavelets [3], and so forth.

In our opinion, the attention to the PHW and its application for solution of IEs have
not been sufficiently paid, although there were attempts to use this basis for solution of
partial differential equations (e.g., [10–12]). The advantage of our choice is that PHWs are
continuous and differentiable functions everywhere.

It is known that the wavelet approach offers an alternative route for a signal and
function decomposition in the time-frequency domain. Recent applications of the wavelet
transform to engineering and applied problems can be found in several studies [13]. In order
to analyze some applied engineering problems, Newland proposed [13, 14] wavelets whose
spectrum is confined exactly to an octave band. It was suggested that the “level” of a signal’s
multiresolution would be interchangeable with its frequency band and the interpretation of
the frequency content would be easier for engineers.

In addition, for the convenience of the further analysis it would be better to operate
with such functions, whose Fourier transform was compact and which could, if possible, be
constructed from simple functions. The wavelets considered in our paper are called PHW and
they possess all mentioned properties and constitute a specific but a representative example
of wavelets in general.

The main purpose of the present work is to propose for numerical solution of IEs a
simple approach based on periodized harmonic wavelets. This technique is also applicable
with minor changes to the Fredholm, Volterra, and integro-differential equations. In Section 2
of the paper we show that PHWs satisfy the axioms of the multiresolution analysis and can
be used as basis functions in solution of IEs. An illustrative example is presented in Section 3.
The generalized error estimation is given in Section 4 and it shows that the accuracy of
computations is very high even when the approximation level is small.

2. Periodized Harmonic Wavelets

It is known [13–15] that PHWs are defined as follows:

ψ
(

2jx − k
)
= 2−j

2j+1−1∑

m=2j
e2πim(x−(k/2j )), (2.1)
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Figure 1: Real (solid line) and imaginary (dashed line) parts of the periodic harmonic wavelets ψ0,0(x),
ψ1,0(x), ψ2,2(x), and ψ3,3(x).

where the scaling parameter k = 0, . . . , 2j − 1 and the dilation parameter j = 0, . . . ,N − 1. The
1-periodicity of function (2.1) can be demonstrated as follows:

ψ
(

2j(x + 1) − k
)
= 2−j

2j+1−1∑

m=2j
e

2πim((x+1)−
k

2j
)
= ψ

(
2jx − k

)
. (2.2)

The plots for several values of the scaling parameter j are shown on Figure 1 for selected
positions k.

According to [14, 16], PHWs construct basis for 1-periodic functions from L2([0; 1]).
The orthogonal projection of the function f(x) onto the space of wavelets VN of the level N
is written as follows:

PVNf(x) = a0ϕ(x) +
N−1∑

j=0

2j−1∑

k=0

{
aj,kψj,k(x) + ãj,kψ∗j,k(x)

}
, (2.3)

where the harmonic scaling function is ϕ(x) = 1 [14] and the “∗” over ψj,k stands for its
complex conjugate. If N → ∞, then limN→∞PVNf(x) = f(x) and expansion (2.3) becomes

f(x) = a0ϕ(x) +
∞∑

j=0

∞∑

k=0

{
aj,kψj,k(x) + ãj,kψ∗j,k(x)

}
. (2.4)
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Thus, we have a set of functions, which form basis for the L2([0; 1]) functions. It means
that we can substitute the expansion (2.3) into (1.1) and reduce it to a system of equations
with respect to wavelet coefficients.

3. Eigenvalues and Eigenfunctions

Let us consider the homogeneous Fredholm integral equation

f̂(x̂) − λ
∫π

0
cos

(
x̂ + t̂

)
f̂
(
t̂
)
dt̂ = 0. (3.1)

In order to deal with 1-periodic functions, it is convenient to introduce new variables as
follows: x̂ = 2πx and t̂ = 2πt. And we get the new equation

f(x) − 2πλ
∫0.5

0
cos[2π(x + t)]f(t)dt = 0, (3.2)

which we will solve by the collocation method. Denote the collocation points by

a ≤ x1 < x2 < · · · < xl < · · · ≤ b. (3.3)

Recalling the decomposition of a real periodic function (2.3) on the space of PHW, we have

PV1f(x) = a0 + ψ0,0(x) + ã0,0ψ
∗
0,0(x), (3.4)

for N = 1. Also, a0,0 = ã0,0 for a real function. The corresponding choice of the collocation
points {xl} leads us to a system of linear algebraic equations with the parameter λ and
unknowns {a0;a0,0; ã0,0} as

a0 + a0,0e
2πixl + ã0,0e

−2πixl − 2πλ
∫1/2

0
cos[2π(xl + t)]

(
a0 + a0,0e

2πit + ã0,0e
−2πit

)
dt = 0. (3.5)

The solution of this system of equations gives us two pairs of coefficients {0; 0.5; 0.5} and
{0;−i/2; i/2}. Thus, we can find parameters λ1 = 2/π, λ2 = −2/π and the eigenfunctions
f̂1(x̂) = cos x̂, f̂2(x̂) = sin x̂.

We obtained the projection of the solution of the unknown eigenfunctions f1, f2 on
the first level of approximation. Note that the obtained projection for N = 1 coincides with
the analytical solution. If we have continued to search for the solution on the other levels of
approximation, the connection coefficients {aj,k}would be zeros.
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4. Approximation Properties of Multiresolution Spaces

Let us now consider the approximation error for the periodic wavelets. Let f(x) ∈ L2([0; 1])
and assume that its periodic expansion (2.4) is P times differentiable everywhere. Denote the
approximation error as follows:

e
per
N (x) = f(x) − PVNf(x), x ∈ [0; 1], (4.1)

wherePVNf(x) is the orthogonal projection of f(x) onto the space of PHW. The symbol “per”
over eN assumes that the error is a periodic function. The derivation of the value of eper

N (x) is
presented in the following theorem.

Theorem 4.1. The approximation error (4.1) is bounded by the exponential decay |eperN (x)| =
O(2−NP ).

Proof. Using the wavelet periodic expansion (2.4), we find that

PVNf(x) =
∞∑

k=0

aϕ,kϕ(x − k) +
N−1∑

j=0

2j−1∑

k=0

aj,kψj,k(x). (4.2)

At any given scale, the projection of the function on the subspace of wavelets of the certain
scale approaches to the function as the number of zero wavelet moments P tends to infinity,
that is, N → ∞ and we get f(x) itself:

f(x) =
∞∑

k=0

aϕ,kϕ(x − k) +
∞∑

j=0

∞∑

k=0

aj,kψj,k(x). (4.3)

Then, by subtracting (4.2) from (4.3), we obtain an expression for the error eper
N in terms of

the wavelets at scales j ≥N:

e
per
N (x) =

∞∑

j=N

2j−1∑

k=0

aj,kψj,k(x). (4.4)

Define

Cψ = max
x∈Ij,k

∣∣∣ψ
(

2jx − k
)∣∣∣ = max

y∈[0,D−1]

∣∣ψ
(
y
)∣∣. (4.5)

Since maxx∈Ij,k |ψj,k(x)| = 2j/2Cψ and according to the Theorem of decay of wavelet coefficients
[17], it is

∣∣aj,kψj,k(x)
∣∣ ≤ CP2−jPmax

ξ∈Ij,k

∣∣∣f (P)(ξ)
∣∣∣Cψ. (4.6)
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Recall that

supp
(
ψj,k

)
= Ij,k =

[
k

2j
;
k +D − 1

2j

]
. (4.7)

Hence, there are at most D − 1 intervals Ij,k containing a given value of x. Thus, for any x
only D − 1 terms in the inner summation in (4.4) are nonzero. Let Ij be a union of all these
intervals, that is,

Ij(x) =
⋃

{l:x∈Ij,l}
Ij,l, (4.8)

and let

μPj (x) = max
ξ∈Ij (x)

∣∣∣fP (ξ)
∣∣∣. (4.9)

Then we can find a common bound for all terms in the inner sum:

∞∑

k=−∞

∣∣aj,kψj,k
∣∣ ≤ CψCP2−jP (D − 1)μPj (x). (4.10)

The outer sum over j can be evaluated using the fact that

μPN(x) ≥ μPN+1(x) ≥ μ
P
N+2(x) ≥ . . ., (4.11)

and we establish the bound

∣∣∣e
per
N (x)

∣∣∣ ≤ CψCP (D − 1)μPN(x)
∞∑

j=N

2−jP

= CψCP (D − 1)μPN(x)
2−NP

1 − 2−P
.

(4.12)

Thus, we see that for an arbitrary, but fixed x, the approximation error will be bounded as
follows:

∣∣∣e
per
N (x)

∣∣∣ = O
(

2−NP
)
, (4.13)

where O only denotes an upper bound. This is an exponential decay with respect to the
resolution N. Furthermore the greater number of vanishing moments P of a periodic wavelet
increases the rate of the decay.

Let us compare the approximation error of wavelets with the error of the Fourier
approximation for N terms. In order to do this, we need to introduce a smooth function
of the order q.
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Definition 4.2. A smooth function is a function that has continuous derivatives up to some
desired order q over some domain. A function can, therefore, be said to be smooth over a
restricted interval such as [a; b].

According to [18], we can find that the approximation error of the Fourier series is

∣
∣
∣eF

(
q,N

)∣∣
∣ = max

a≤x≤b

∣
∣F(N,x) − f(x)

∣
∣ = O

(
N−q−0.5

)
. (4.14)

This is also an exponential decay with respect to the number of terms in the series and the
level of smoothness of a function. In order to give a more detailed comparison of these two
methods, it is necessary to consider specific examples.

5. Concluding Remarks

In this work we have proposed PHWs as basis functions for solution of IEs. The approach was
verified by solving a test problem and its approximation error was analytically estimated
for periodized wavelets. The assumption of 1-periodicity of solution does not restrict the
generality of the problem, since we can always make the substitutional change of variables.

There are several important facts to remember about the wavelet approximation.

(1) The goal of the wavelet expansion of a function or signal is to obtain the coefficients
of the expansion aj,k.

(2) The second goal is to have the most zero coefficients or very small. This is called
a sparse representation and it is very important in applications for statistical
estimation and detection, data compression, noise reduction, and fast algorithms.

(3) The fact that the error is restricted to a small neighborhood of the discontinuity is
the result of the “locality” of wavelets. The behavior of f(x) at one location affects
only the coefficients of wavelets close to that location.

(4) Most of the linear part of f(x) is represented exactly.

We can infer from the example that the present approach is applicable to a large class
of problems, where the expected solution is a periodic function. It should be also mentioned
that any differential equation can be transformed into an integral equation. It means that it
might be solved a large class of eigenvalue equations derived by differential equations.
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A human quiet standing stability is discussed in this paper. The model under consideration is
proposed to be a delayed differential equation (DDE) with multiplicative white noise perturbation.
The method of the center manifold is generalized to reduce a delayed differential equation to
a two-dimensional ordinary differential equation, to study delay-induced instability or Hopf
bifurcation. Then, the stochastic average method is employed to obtain the Itô equation. Thus, the
top Lyapunov exponent is calculated and the necessary and sufficient condition of the asymptotic
stability in views of probability one is obtained. The results show that the exponent is related to
not only the strength of noise but also the delay, namely, the reaction speed of brain. The effect of
the strength of noise on the human quiet standing losing stability is weak for a small delay. With
the delay increasing, such effect becomes stronger and stronger. A small change in the strength
of noise may destabilize the quiet standing for a large delay. It implies that a person with slow
reaction is easy to lose the stability of his/her quiet standing.

1. Introduction

The human quiet standing model is complex neuromuscular control biological system with
time delay. The time delay reflects finite transmission related to the transport or processing
of matter, energy, and signals through the systems [1, 2]. Noise is an immanent property
in biological systems, and such stochasticity may arise from muscle contractions as well
as imperfections, and nervous system operates under the very noisy environment in the
balance control system. Previous experimental studies have shown that the movement of
the pressure center during quiet standing is stochastic and obeys a correlated random
walk [3, 4]. For healthy people, balancing body stability is an easy task. However, older
people or some patients often find walking difficult and need to put more effort in quiet
standing. To help these groups, the principles making quiet standing must be discovered
firstly. As the gravitational force destabilizes the inverted-pendulum-like skeletal system,
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the study of human balance stability is extremely essential. However, serious difficulties
will be encountered because of the combination of delay and stochastic processes when the
qualitative stochastic differential delay system is investigated in human quiet standing.

In recent years, many researchers have studied the postural control system in quiet
standing [5–21]. Experimentally, human quiet standing has most often been investigated
in terms of the center of pressure (COP) trajectories [3, 10]. The time-delayed model is
studied by the measurements of the transfer function which is based on statistical quantities
such as the root mean square of the COP trajectory [9, 11]. In 2004, Verdaasdonk et al.
[12] have computed the branches of fold and Hopf bifurcation by numerical bifurcation
analysis of the inverted pendulum human model indicated that the period of the stable
limit cycles, emerging beyond the Hopf branch, will increase with increasing time delay.
Bottaro et al. [13] have indicated that the control in postural sway during quiet standing
is intermittent, but not continuous. The effects of delay for the human reaction during
balancing system without stochastic perturbation have been studied in [5–7]. In 2002, based
on the investigation of a delayed random walk with an unstable fixed point, it has been
observed that the random walker with delay moves away from the unstable fixed point
more slowly than with the absence of delay [15]. The deterministic Hopf bifurcation has been
qualitatively discussed with the help of stochastic delayed differential equations (DDEs) by
Yao et al., but the stochastic effect was only made by numerical analysis [18]. In [19], a novel
modeling approach to such two-feedback posture control has been proposed using a system
of stochastic delay differential equations with two delays and noise as well as a drifting fixed
point meant to represent the slower fluctuation of the COM. Effects of time delay on the
dynamics behavior of the human quiet standing systems are a subject of many experimental
studies, while the study on simultaneous consideration of time delay and stochastic excitation
is very limited. Most of researches about the time-delay human standing model still with
stochastic perturbation are studied by numerical simulation.

In this paper, we consider the single inverted pendulum model proposed by Eurich
et al. [9, 11, 18, 19]. The single inverted pendulum with an antagonistic muscle pair
represents a person who tries to maintain an upright position by flexing and extending
the ankles. Influence of delay and noise on the Hopf bifurcation and asymptotic stability
will be analyzed theoretically. However, it becomes infinite-dimensional problem due to
considering the time delay in quiet standing system, which increases work difficulty. In
stochastic systems, theoretically studied methods about bifurcation and stability are rare.
Existing research methods are limited, such as the stability of a linearly controlled system
with time delay subjected to Gaussian white noise which has been investigated using the
top Lyapunov exponent calculated from Monte Carlo simulation by Grigoriu [22]. The
asymptotic Lyapunov stability with probability one for quasi-integrable and nonresonant
Hamiltonian systems with time-delayed feedback control has been studied in terms of the
stochastic average method [23]. Asymptotic techniques, such as Taylor series expansion,
integral averaging method, Fourier series, and perturbation methods, are often used under
the assumption of small delays. However, these methods will be invalid for a large delay.
Therefore, we will reduce a stochastic DDE to a stochastic ordinary differential equation
(ODE) on the center manifold by adopting the center manifold method which has been
proved by Arnold and Boxler [24]. The existence of the stochastic center manifold has been
also proved in [24–26]. If a stochastic DDE is reduced to a stochastic ODE, then this ODE on
the centre manifold may be converted into amplitude and phase relations and corresponding
scalar bifurcation equations of amplitude may be obtained in terms of the integral averaging
method [27].
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The paper is organized as follows. In Section 2, the human quiet standing model is
introduced and the conditions of Hopf bifurcation are computed in order to obtain regions
of stability and instability. Section 3 is devoted to effects of time delay and noise on the
asymptotic stability of the human dynamics with stochastic perturbation. Section 4 analyzes
the application to balance. Finally, we draw conclusions.

2. The Model and Linearized Analysis

In this paper, we use a simplified single inverted pendulum model for the human in quiet
standing with stochastic perturbation [6, 8, 16]:

Iθ̈ + γθ̇ −mgL sin θ = f̃(θ(t − τ)) + c̃η(t)θ(t), (2.1)

where I represents the moment of inertia of human body around the ankle, θ the tilt angle,
g the gravity acceleration, m the body mass, L the distance from the ankle joint to the
body COM (Center of Mass), γ the damping coefficient, f(x(t)) the postural sway feedback
function, τ the time delay, and η(t) a stochastic process of zero mean value Gauss white
noise.

Let q = L sin θ, where x is the transverse displacement of the gravity center. Then (2.1)
can be rewritten as follows:

q̈ =
mgL

I
q − r

I
q̇ + f + ˜̃bη(t)q(t). (2.2)

Then (2.2) can be written as

ẋ(t) = ax(t) + bf(x(t − τ)) + cη(t)x(t), (2.3)

where

x(t) = q + dq̇, a =
mgL

I

⎛

⎝r

I
+

√
r2

I2
+ 4

mgL

I

⎞

⎠ > 0, d =
r

I
+

√
r2

I2
+ 4

mgL

I
, (2.4)

and b < 0 is the feedback coefficient. The feedback function f(x(t)) should be in the form of a
smoothed on-off switch at some delayed time τ0 for proprioception at the ankles, so we take
f(x(t − τ)) = tanh[x(t − τ)] in this paper. Since tanh[x(t)] = x(t) − (1/3)x3(t) + o(x4) by the
Taylor expansion, then (2.2) becomes

ẋ(t) = ax(t) + bx(t − τ) − b
3
x3(t − τ) + cη(t)x(t) + o

(
x4
)
. (2.5)

The linear part of (2.2) is given by

ẋ(t) = ax(t) + bx(t − τ). (2.6)
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Figure 1: The critical values of τ0 under Hopf bifurcation.

Trial exponential solutions of the form x(t) = eλt, x(t− τ) = eλ(t− τ) yield the transcendental
characteristic equation

Δ(λ, τ) = a + be−λτ − λ = 0. (2.7)

The stability of system (2.3) depends on the real parts sign of the roots in (2.5). Let λ = v + iw
be a root of the characteristic equation (2.7), where v and w take real values. Substituting this
expression into (2.7), and equating the real and imaginary parts to zero, we have a pair of
algebraic equations

v = a + be−vτ coswτ, w = −be−vτ sin wτ. (2.8)

The transversality condition by the implicit function theorem is

Re
(
dv

dτ

)
= be−vτ

(
−∂v
∂τ

τ − v
)

coswτ −wbe−vτ sinwτ /= 0. (2.9)

As a necessary condition for Hopf bifurcation, we have to put v = 0 in (2.8). The following
algebraic equations are obtained:

w = ±
√
b2 − a2, a + b cos τ

√
b2 − a2 = 0. (2.10)

Varying the coefficient a and keeping a = 1.6, one can draw the parametric place (b, τ)
as Figure 1, namely, stability region diagram.

3. Stability of the Hopf Bifurcation

We have obtained the conditions that system (2.3) undergoes a Hopf bifurcation at the
equilibrium point (0, 0) when bifurcation parameter τ passes through the critical value.
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In this section, the bifurcating stability of system (2.3) at τ0 will be presented by employing
the central manifold reduction and stochastic average method.

3.1. The Stochastic ODE

In this section, we derive the center manifold of the nonlinear stochastic ODEs which reduce
the DDE with infinite dimension to ODE with two dimension. To this end, let t = τs, u(t) =
x(tτ). By rescaling the time to normalize the delay, system (2.5) is equivalent to the following
equation

u̇(t) = τ
(
au(t) + bu(t − 1) − b

3
u3(t − 1) + cu(t)η(t)

)
+ o
(
u4(t − 1)

)
. (3.1)

We choose the delay τ as bifurcation parameter, which is subject to a small change εμ from
its critical value τ0, namely, τ = τ0 + εμ. The values of u, c have been rescaled, and we obtain
u → ε1/2u, c → ε1/2c, 0 < ε � 1. Then (3.1) can be rewritten as follows:

u̇t(0) = τ0(aut(0) + but(−1)) + εμ(aut(0) + but(−1)) + g
(
μ, ut(−1)

)
, (3.2)

where ut(θ) = u(t + θ), θ ∈ [−τ, 0].
The linear part of (3.2) is given by

u̇(t) = τ0(au(t) + bu(t − 1)) + εμ(au(t) + bu(t − 1)). (3.3)

Since 0 < ε � 1, the nonlinear part is given by

g
(
μ, ut

)
= −b

3
τu3

t (−1) + ε−1/2τcη(t)ut(0). (3.4)

Let Lμ : C[−1, 0] → R, which is a one-parameter family of bounded continuous linear
operator. Then

L(0)ut = τ0(aut(0) + but(−1)), L
(
μ
)
ut = μ(aut(0) + but(−1)). (3.5)

By Riesz representation theorem, there exists a bounded function ζ(θ, μ) in [−1, 0] → R for
any φ ∈ C[−1, 0], such that

L(0)φ =
∫0

−1
[dζ(θ)]φ(θ), L

(
μ
)
φ =
∫0

−1

[
dζ
(
θ, μ
)]
φ(θ), (3.6)
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where

ζ
(
θ, μ
)
= τ0(aδ(θ) + bδ(θ + 1)) (δ(θ) is Dirac function),

A(0)φ =

⎧
⎪⎨

⎪⎩

dφ(θ)
dθ

for θ ∈ [−1, 0),

L(0)φ for θ = 0,

A
(
μ
)
φ =

⎧
⎪⎨

⎪⎩

dφ(θ)
dθ

for θ ∈ [−1, 0),

L
(
μ
)
φ for θ = 0,

Dφ =

⎧
⎨

⎩

0 for θ ∈ [−1, 0),

g
(
t, φ
)

for θ = 0.

(3.7)

In order to study Hopf bifurcation problem conveniently, we can rewrite (3.2) as a
function differential equation (FDE)

u̇t = A(0)ut + εA
(
μ
)
ut + εDut. (3.8)

The adjoint equation of (3.3) is given by

ẇ
(
t̂
)
= −τ0

(
aw
(
t̂
)
+ bw

(
t̂ + 1

))
Ĉ := ([0, 1], R). (3.9)

The corresponding operator A
∗

of A is defined by

A
∗(
μ
)
ψ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−
dψ(s)
ds

, s ∈ (0, 1],
∫0

−1

[
dζT
(
s, μ
)]
ψ(−s), s = 0,

(3.10)

and the bilinear relation

(
ψj(s), φk(θ)

)
=
(
ψj(0), φk(0)

)
+ τ0b

∫0

−1
ψj(ξ + 1)φk(ξ)dξ,

ψj(s) ∈ Ĉ, φk(θ) ∈ C, j, k = 1, 2,

(3.11)

where Ĉ is the dual space of C, Φ ∈ C,Ψ ∈ Ĉ. Hale and his colleagues have shown that
there exist two disjoint subspaces P, Q as C = P ⊕ Q. From the Hopf bifurcation conditions
given in the previous section, we know the subspace P is the eigenspace corresponding to
the eigenvalues ±wi of Δ(λ, τ) = 0 at Hopf bifurcation, and Q is the infinite-dimensional
complementary subspace associated with the remaining eigenvalues Δ(λ, τ) = 0. For the
particular eigenvalues λ1,2 = ±wi, we have φ(θ) = Φ(θ)β ∈ C (−1 ≤ θ ≤ 0) and ψ(s) =
Ψ(s)β̂ ∈ Ĉ (0 ≤ s ≤ 1), where the values Φ(θ) = [φ1(θ), φ2(θ)] and Ψ(s) = [ψ1(s), ψ2(s)]

T.
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We define the elements of the initial continuous function φ(θ) ∈ C, projections φP (θ), φQ(θ)
onto the center, and stable subspaces P,Q ∈ C. Through the initial function φ(θ) ∈ C, suppose
xt(φ(θ), μ, ε) ∈ C be the unique solution of (2.1). Then we have the representations

ut
(
φ(θ), μ, ε

)
= uPt

(
φ(θ), μ, ε

)
+ uQt

(
φ(θ), μ, ε

)
, (3.12)

and φ(θ) = φP (θ) + φQ(θ), where xPt (φ(θ), μ, ε), φP (θ) ∈ P and x
Q
t (φ(θ), μ, ε), φ

Q(θ) ∈ Q.
Making a change of variables xPt (θ) = Φ(θ)y(t) + xQt (θ) with y(t) = (Ψ(s), φ(θ)) ∈ R2, then
the center manifold stochastic ODEs of the generalized eigenspace P ∈ C can be obtained:

ẏ(t) = By(t) + εΨ(0)g
(
μ, y(t)

)
, (3.13)

where the values B and Ψ(0) are obtained in Appendix A.
We obtain

ẏ1(t) = −wy2 − εp1

(
aμy1(t) + bμ

(
y1(t) coswθ + y2(t) sinwθ

)

−1
3
bτ
(
y1(t) coswθ − y2(t) sinwθ

)3 + ε−1/2τcη(t)y1(t)
)
,

ẏ2(t) = wy1 − εp2

(
aμy1 + bμ

(
y1(t) coswθ + y2(t) sinwθ

)

− 1
3
bτ
(
y1(t) coswθ + y2(t) sinwθ

)3 + ε−1/2τcη(t)y1(t)
)
,

(3.14)

where

p1 =
−ψ22

ψ11ψ22 − ψ2
12

, p2 =
ψ12

ψ11ψ22 − ψ2
12

. (3.15)

Carrying out a change of variables from (y1, y2) to (z1, z2), namely,

z1 = y1 −
p1

p2
y2, z2 = y2 −

p1

p2
wy1. (3.16)

we obtain expressions for (y1, y2)

y1 =
p2

2

p2
2 + p

2
1w

2

(
z1 +

p1

p2
wz2

)
,

y2 =
p2

2

p2
2 + p

2
1w

2

(
z2 −

p1

p2
wz1

)
.

(3.17)
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Then the centre manifold stochastic ODEs (3.14) become

ż1(t) = −wz2,

ż2(t) = wz1 − ε
p2

2 + p
2
1w

p2

(
−1

3
bτ
(
p11z1(t) + p12z2(t)

)3

+ μ
(
q11z1(t) + q12z2(t)

)
+ ε−1/2τcη(t)

(
g11z1(t) + g12z2(t)

)
)
,

(3.18)

where

p11 =
p2

2

p2
2 + p

2
1w

2

(
cosw −

p1

p2
w sinw

)
, p12 =

p2
2

p2
2 + p

2
1w

2

(
sinw +

p1

p2
w cosw

)
,

q11 =
p2

2

p2
2 + p

2
1w

2

(
a + b cosw −

bp1

p2
w sinw

)
, g11 =

p2
2

p2
2 + p

2
1w

2
,

q12 =
p2

2

p2
2 + p

2
1w

2

(
p1

p2
(a + bw cosw) + sinw

)
, g12 =

p2p1w

p2
2 + p

2
1w

2
.

(3.19)

Then, using the relations z1 = β(t) sinΘ, z2 = −β(t) sinΘ, and Θ = wt + ϕ(t), (3.18) is
transformed to the following system with polar coordinates:

β̇(t) = ε
p2

2 + p
2
1w

p2
2

β

(
−1

3
bβ2τ

(
p11 sinΘ − p12 cosΘ

)3

+ μ
(
q11 sinΘ − q12 cosΘ

)
+ ε−1/2τcη(t)

(
g11 sinΘ − g12 cosΘ

)
)

cosΘ,

ϕ̇(t) = −ε
p2

2 + p
2
1w

p2
2

(
−1

3
bτβ2(p11 sinΘ − p12 cosΘ

)3

+ μ
(
q11 sinΘ − q12 cosΘ

)
+ ε−1/2τcη(t)

(
g11 sinΘ − g12 cosΘ

)
)

sinΘ.

(3.20)

3.2. The Maximum Lyapunov Exponent

In the above subsection, we reduce the system to a two-dimensional ordinary differential
equation (3.20). According to the Khasminskii limit theorem, we obtain the averaging Itô
stochastic equations of (3.20) as follows:

dβ(t) =
p2

2 + p
2
1w

p2
2

εβ

(
1
8
bτ
(
p2

11p12 + p3
12

)
β2 − 1

2
q12μ +

p2
2 + p

2
1w

4p2
2

τ2
(
g2

11 + g
2
12

)
c2

)

dt

+ ε1/2

√
2
(
g2

11 + 3g2
12

)(
p2

2 + p
2
1w
)

4p2
2

τβcdw1,

(3.21a)
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dϕ(t) = ε
p2

2 + p
2
1w

p2
2

(
1
8
bτ
(
p3

11 + p11p
2
12

)
β2 − 1

2
q11μ

)
dt

+ ε1/2

√
2
(
3g2

11 + g
2
12

)(
p2

2 + p
2
1w
)

4p2
2

τcdw2,

(3.21b)

where w1, w2 are independent standard Wiener processes. The averaged amplitude and
phase of (3.21a) and (3.21b) are uncoupled, so we study stability using the averaged
amplitude equation (3.21a). To examine the stability of β0(t), let β(t) = β0(t) + r(t) and
ρ(t) = ln r(t), where r(t) represents a small variation around the stationary solution β0(t)
when dβ(t) = 0, and using the stochastic differential rule to Itô, we will obtain the linearized
Itô equation governing r(t) and ρ(t), namely,

dr(t) =
p2

2 + p
2
1w

p2
2

εr

(
3
8
bτ
(
p2

11p12 + p3
12

)
β2

0 −
1
2
q12μ +

p2
2 + p

2
1w

4p2
2

τ2
(
g2

11 + g
2
12

)
c2

)

dt

+ ε
1
2

√
2
(
g2

11 + 3g2
12

)(
p2

2 + p
2
1w
)

4p2
2

τrcdw1,

dρ(t) =
p2

2 + p
2
1w

p2
2

ε

(
3
8
bτ
(
p2

11p12 + p3
12

)
β2

0 −
1
2
q12μ +

p2
2 + p

2
1w

4p2
2

τ2
(
g2

11 + g
2
12

)
c2

)

dt

+ ε1/2

√
2
(
g2

11 + 3g2
12

)(
p2

2 + p
2
1w
)

4p2
2

τcdw1.

(3.22)

Sample stability of the stochastic dynamical system is determined by the qualitative
evaluation of the Lyapunov exponents. According to the multiplicative ergodic theorem [28],
the top Lyapunov exponent λ of the amplitude process is obtained as

λ =
p2

2 + p
2
1w

p2
2

ε

[
3
8
bτ
(
p2

11p12 + p3
12

)
E
[
β2

0

]
− 1

2
q12μ +

p2
2 + p

2
1w

4p2
2

τ2
(
g2

11 + g
2
12

)
c2

]

, (3.23)

where E[β2
0] denotes the expected value of β2

0. For the trivial solution β2
0 = 0, (3.23) gives

λ = −(1/2)q12μ+((p2
2+p

2
1w)/4p2

2)τ
2(g2

11+g
2
12)c

2 = 0. Thus, the trivial solution is asymptotically
stable with probability one (w.p.1) if λ < 0, that is, μ < (g2

11 +g
2
12)τ

2c2((p2
2 +p

2
1w)/2p2

2q12) and
q12 > 0 and unstable when q12 < 0.
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Figure 2: The top Lyapunov exponent λ max of system (2.1) versus noise intensity for different values of
time delay, τ · a = 1, b = −2, ε = 0.1, μ = 0.1.

From Figure 2, we can observe that the top Lyapunov exponent λ increases as the
excitation intensity c or time delay τ increases. The original system is stable if λ < 0 and
unstable if λ > 0. When τ = 1.0, the system (2.1) becomes unstable at c = 0.447214. The
effect of the strength of noise on the human quiet standing losing stability is weak when time
delay τ = 0.10. Obviously, the systems (2.1) is easily unstable if time delay τ is larger for the
fixed excitation intensity c. A small change in the strength of noise may destabilize the quiet
standing for a large delay.

4. Conclusions

The primary purpose of this paper is to study effects of delay and noise on asymptotic
stability of the human quiet standing system with stochastic excitation. For the deterministic
quiet standing system, its stable conditions, namely, the Hopf bifurcation, are presented and
the regions of stability and instability are discussed. On one hand, by using proper variable
transform, the second model for the human standing is changed into a first one. The given
relation expressions between coefficients and physical quantities are practically significant
too. On the other hand, the method of the center manifold reduction is generalized to
investigate the asymptotic stability when the quiet standing system is subjected to a stochastic
perturbation or the white noise. Compared to numerical methods, this analytical method
permits some general conclusions for the classes of feedback functions. The necessary and
sufficient conditions of the stability are obtained approximately by computing the largest
Lyapunov exponent of the linearized stochastic ordinary differential system. The relation
among the delay, the strength of noise, and the top Lyapunov exponent is represented in
the parameter figure. The results show that the exponent is related not only to the strength of
noise but also to the delay, namely, the reaction speed of brain, but such relation is not linear.
In fact, the effect of the strength of noise on the human quiet standing losing stability is weak
for a small delay. With the delay increasing, such effect becomes stronger and stronger. A
small change in the strength of noise may destabilize the quiet standing for a large delay. It
implies that a person with slow reaction easily lose the stability of his/her quiet standing.
This conclusion is in agreement with observation in the real life.
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This may be of great help in diagnosing and treating some disease in this paper.
However, noise is not always bad for cognitive performance, and moderate noise is beneficial
for cognitive performance. Recently, it has been shown that noise can enhance human body
balance via a mechanism known as stochastic resonance (SR) [29–31]. In the future, we will
demonstrate the facilitating effects of SR by qualitative mathematical method.

Appendix

A. The Computation of the B and Ψ(0)

The values of the basis Φ(θ) ∈ C for P is given by

φ(θ) = Φ(θ)β =
[
φ1(θ), φ2(θ)

]
= α1e

iwθ + α2e
−iwθ

= [(α1 + α2) coswθ, i(α1 − α2) sinwθ] = [coswθ,− sinwθ]
[
β1

β2

]
,

(A.1)

where

α1 = p + iq, α2 = p − iq, α1 + α2 = 2p = β1, i(α1 − α2) = −2q = β2. (A.2)

Similarly, the basis ψ(s) ∈ Ĉ for P̂ is of the form

Ψ(s) =
(
ψ1(s)
ψ2(s)

)
=

(
cosws

− sinws

)

, 0 ≤ s ≤ 1. (A.3)

The inner product matrix (ψ(s), φ(θ)) = (ψj(s), φk(θ)), i, j = 1, 2 is given by

(
ψ(s), φ(θ)

)
=

(
cosws coswθ − cosws sin wθ

sinws coswθ sinws sin wθ

)

. (A.4)

The elements (ψj(s), φk(θ)) substitute into the bilinear relation (3.11), which gives the
nonsingular matrix

(Ψ,Φ)nsg =

(
ψ11 ψ12

ψ21 ψ22

)

, (A.5)
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where

ψ11 = 1 + bτ0

∫0

−1
cosw(ξ + 1) coswξdξ = 1 +

bτ0

2

(
1
w

sinw + cosw
)
,

ψ12 = −bτ0

∫0

−1
cosw(ξ + 1)(sinwξ)dξ =

bτ0

2
sinw,

ψ21 = −bτ0

∫0

−1
sinw(ξ + τ) coswξdξ = −b

2
sinw,

ψ22 = bτ0

∫0

−1
sinw(ξ + 1) sinwξdξ =

bτ0

2

(
− 1
w

sinw + cosw
)
.

(A.6)

Then, the basis Ψ(s) ∈ P̂ in Ĉ of the adjoint (3.9) is normalized to Ψ(s) = [ψ1(s), ψ2(s)]
T ∈ Ĉ.

By computing

(Ψ,Φ)−1
nsg =

1
det (Ψ,Φ)nsg

(
ψ22 −ψ21

−ψ12 ψ11

)

=
1

ψ11ψ22 − ψ2
12

(
ψ22 −ψ21

−ψ12 ψ11

)

, (A.7)

we obtain

Ψ(s) = (Ψ,Φ)−1
nsgΨ(s) =

1
ψ11ψ22 − ψ2

12

(
ψ22 −ψ21

−ψ12 ψ11

)(
ψ1(s)

ψ2(s)

)

=

(
ψ1(s)

ψ2(s)

)

, (A.8)

where

ψ1(s) =
1

ψ11ψ22 − ψ2
12

(
ψ22 cosws − ψ21 sinws

)
,

ψ2(s) =
1

ψ11ψ22 − ψ2
12

(
−ψ12 cosws − ψ11 sinws

)
.

(A.9)

Then, we have

Ψ(0) =
1

ψ11ψ22 − ψ2
12

(
ψ22

−ψ12

)

. (A.10)

The substitution of the elements (ψj(s), φk(θ)), j, k = 1, 2 into the bilinear relation
(3.11) will yield the 2 × 2 identity matrix, namely,

(Ψ,Φ)id =
1

ψ11ψ22 − ψ2
12

(
ψ11ψ22 − ψ2

12 0

0 ψ11ψ22 − ψ2
12

)

=

(
1 0

0 1

)

. (A.11)
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Defining the constant matrix B ∈ C, B̂ ∈ Ĉ, the elements of B, B̂ at Hopf bifurcation are
B ≡ B̂ =

(
0 −w
w 0

)
, which satisfy A(μ)Φ(θ) = Φ(θ)B, Â(μ)Ψ(s) = Ψ(s)B̂. On the basis of

algebraic simplifications

eBθ = I + Bθ +
(Bθ)2

2!
+
(Bθ)3

3!
+ · · · =

(
coswθ − sinwθ

sinwθ coswθ

)

, (A.12)

the following formulas can be easily obtained

Φ(θ) = Φ(0)eBθ =
(
coswθ − sinwθ

)
, −1 ≤ θ ≤ 0,

Ψ(s) = Ψ(0)e−B̂S =
(
coswθ − sinwθ

)T
, 0 ≤ s ≤ 1.

(A.13)
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The model predictive control (MPC) subject to control and state constraint is studied. Given a
terminal cost, a terminal region is obtained through iterative estimation by using support vector
machine (SVM). It is proved that the obtained terminal region is the largest terminal region
when the terminal cost is given. The relationships between terminal cost and terminal region and
between terminal cost and total cost are discussed, respectively. Based on these relationships, a
simple method to get a suitable terminal cost is proposed and it can be adjusted according to our
need. Finally, some experiment results are presented.

1. Introduction

Model predictive control also known as receding horizon control has become quite popular
recently. The key advantage is its ability to handle control and state constraints. It was pointed
out in [1] that what MPC solves is the standard optimal control (SOC) problem except that
it uses the finite-horizon optimization (some paper used quasi-infinite horizon optimization,
such as [2, 3]) to replace the infinite-horizon optimization of SOC and the control is computed
online.

Generally, to say that an MPC is good or bad, it is contrasted with SOC from two
aspects: the domain of attraction and the total cost (the wasted performance index from initial
time to infinity). If an MPC has a larger domain of attraction and for any initial state point
the total cost is fewer than those of another MPC, it is considered as a better MPC. In MPC,
there are three factors playing important roles in its performances on the two aspects as just
mentioned: the prediction horizon, the terminal region, and the terminal cost. As known to
all, lengthening the prediction horizon, the domain of attraction will be enlarged and the
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total cost will decrease, but the computation burden of online optimization will increase.
Recently, many attentions have concentrated on the latter two factors: (I) how to get a large
terminal region? (II) and how to get a suitable terminal cost? Here, only some typical papers
are listed. Chen and Allgöwer [2] presented a terminal cost by using SOC method based on
the linearized model of system and took an ellipsoidal set in which the state can be drived to
the equilibrium point by linear feedback control as the terminal region. Cannon et al. [4] used
a polytopic set to replace the ellipsoidal set. De Doná et al. [5] took the stabilizable region
of using saturated control as the terminal region. Ong et al. [6] got a very large stabilizable
region and a terminal cost of using linear feedback control via support vector machine. Limon
et al. [7] proved that, for MPC without terminal state constraint in its on-line optimization, the
terminal region will be enlarged by weighting the terminal cost. Most of these papers have
a common shortage; the terminal region is computed under a precondition; some explicit
controller was given in advance, like linear feedback controller and saturated controller. So,
the computed terminal region is somewhat conservative, in other words, it is not the largest
one.

In this paper, a novel method is proposed to get a terminal state region. Given a
terminal cost, a set sequence is obtained by using one-step set contraction iteratively. It is
proved that, when the iteration time goes to infinity, this set sequence will converge to the
maximal terminal region. In this sequence, each set is estimated by using support vector
machine (SVM, see [7, 8] for details). Next, the relationships between terminal cost and
terminal region and between terminal cost and total cost are discussed, respectively. Then,
a simple method to get a suitable terminal cost according to our need is given. Finally, some
experiment results are presented.

2. The Relationship between SOC and MPC

As mentioned, MPC is an approximation to SOC, and SOC is the counterpoint to evaluate
MPC. Here, the study on MPC begins with the comprehension of SOC. Consider the discrete-
time system as follows:

xk+1 = f(xk, uk), (2.1)

where xk ∈ Rn, uk ∈ Rm are the state and the input of the system at sampling time t = k,
respectively. xk+1 ∈ Rn is the successor state and the mapping f : Rn+m �→ Rn with f(0, 0) = 0
is known. The system is subject to constraints on both state and control action, and they are
given by xk ∈ X, uk ∈ U, where X is a closed set and U a compact set, both of them containing
the origin. The control objective is usually to steer the state to the origin.

The optimization problem P∞(x0) of SOC at the initial state x0 can be stated as follows:

min
u(i,x0)∈U

J∞(u, x0) =
∞∑

i=0

q(x(i, x0), u(i, x0)),

s.t. x(i + 1, x0) = f(x(i, x0), u(i, x0)),

x(i + 1, x0) ∈ X, u(i, x0) ∈ U,

(2.2)

where x(0, x0) = x0, q(x, u) is the stage cost and its form is chosen as q(x, u) = xTQx + uTRu
in which Q,R are positive definites.
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It is well known that the stability is guaranteed if P∞(x0) has feasible solution. Here,
assume that the solution of P∞(x0) is known if it has the following. J∗∞(x0) is defined
as the solution, u∗∞(i, x0), i = 1, 2, . . . ,∞, the optimal control trajectory and x∗∞(i, x0), the
corresponding state trajectory. As is well known, J∗∞(x0) is the total cost of using u∗∞(i, x0)
to drive x0 to 0.

But solving P∞(x0) is not an easy job, especially when f is nonlinear. To avoid this
problem, the infinite-horizon optimization of SOC can be approximated by the finite-horizon
optimization of MPC (As mentioned, quasi-infinite horizon optimization was used in [2, 3].
For convenience, we consider it to belong to the frame of finite-horizon optimization).

Similarly, the optimization problem PN(x0) of MPC at the initial state x0 can be
stated as

min
u(i,x0)∈U

JN(u, x0) =
N−1∑

i=0

q(x(i, x0), u(i, x0)) + F(x(N,x0)),

s.t. x(i + 1, x0) = f(x(i, x0), u(i, x0)),

x(i + 1, x0) ∈ X, u(i, x0) ∈ U, x(N,x0) ∈ Xf,

(2.3)

where N is prediction horizon, Xf is terminal region, and F is terminal cost satisfying F(0) =
0 and F(x) ≥ α(‖x‖), (the mapping α : R+ �→ R+ satisfying α(0) = 0 is continuous and strictly
increasing, where R+ = {x ∈ R | x > 0}).

There exist many optimization algorithms to compute the solution of PN(x0). Let
J∗N(x0) be the solution, u∗N(x0)={u∗N(0, x0), . . . , u∗N(N−1, x0)}, x∗N(x0)={x∗N(0, x0), . . . , x∗N(N−
1, x0)} be the optimal control trajectory and corresponding predicted state trajectory of
PN(x0), respectively.

At sampling time t = 0, u∗N(0, x0) is inputted to the system. At the next sampling time
t = 1, x1 = f(x0, u

∗
N(0, x0)) is outputted, and the control input u∗N(0, x1) can be computed by

solving the optimization problem PN(x1). By repeating this procedure, two trajectories can
be obtained: uRH(x0)={u∗N(0, x0), u∗N(0, x1), . . .}, xRH(x0)={x0, x1, . . .}. Here, for convenience,
they are called as the receding horizon control trajectory and the receding horizon state
trajectory of MPC with PN(x0), respectively.

The introduction ofXf and F in (2.3) is to guarantee the closed loop stability of system.

Lemma 2.1. Define ΓN := {x0 ∈ X | x∗N(N,x0) ∈ Xf}. For any x0 ∈ ΓN if Xf and F satisfy two
conditions as follows:

(C1) F being a Lyapunov function, more strictly, for any x ∈ Xf , there exists

F(x) ≥ min
u∈U

{
q(x, u) + F

(
f(x, u)

)}
, (2.4)

(C2) Xf being an invariant set. In other words, one has f(x, u) ∈ Xf. Here, u is the control
in (C1).

It is guaranteed that, x will be led to 0 by using uRH(x0). ΓN is called the domain of
attraction.

The proof can be found in [1].
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Obviously, the optimal choice of F(x(N,x0)) is J∞(x(N,x0)). The total cost with this
choice is J∞(x0), namely it is the least one. But, as mentioned, J∞ can not be obtained
generally, so other ways should be found to get F. Certainly, the closer it approaches to J∞,
the better it is. When F is given, Xf can be found to satisfy the conditions (C1) and (C2).
There are many Xf satisfying the conditions and different Xf will be obtained by different
methods. But, to make the domain of attraction the largest, it is wished that the largest Xf

can be obtained. Here, define Xf,max as the largest terminal region when F is given, and in the
next section, a novel method to get Xf,max will be proposed.

3. Maximizing the Terminal Region for MPC

Until now, there exist many methods to construct Xf . As mentioned, these methods have a
common basic idea: some controller like linear feedback controller or saturation controller
is given in advance, then a stabilizable domain of using this controller is computed and
works as the terminal region of MPC. It is obvious that this kind of construction is somewhat
conservative and the Xf computed by using this method does not approximate to Xf,max to
the largest extent.

In this paper, a novel method is proposed in which Xf is constructed directly from
conditions (C1) and (C2).

3.1. Approximating the Largest Terminal Region Asymptotically

Define Xf as

Xf :=
{
x ∈ X | F(x) ≥ F∗Xf

(x)
}
, (3.1)

where F∗Xf
(x) = minFXf (x) is the solution of the following optimization problem:

min
u∈U

FXf (x) = q(x, u) + F
(
f(x, u)

)
,

s.t. f(x, u) ∈ Xf.

(3.2)

Obviously, for an x ∈ X, it cannot be decided whether x belongs to Xf from
(3.1) and (3.2) when Xf is unknown. The difficulty is that the state constraint in the
optimization (3.2) uses the Xf itself. To avoid it, the method of asymptotic approximation
is adopted. Firstly, an initial set X0

f which can be obtained by the following discriminant is
given:

X0
f :=

{
x ∈ X | F(x) ≥ F∗

X0
f

(x)
}
, (3.3)
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Figure 1: The approximation of Xf,max.

where F∗
X0
f

(x) is the solution of

min
u∈U

FX0
f
(x) = q(x, u) + F

(
f(x, u)

)
,

s.t. f(x, u) ∈ X.
(3.4)

Then, using X0
f instead of X in the state constraint in optimization of (3.4), X1

f can be

obtained. One by one, X2
fX

3
f , . . . will be obtained. The whole procedure can be pictured as in

Figure 1.
In Figure 1, X1

f is defined as

X1
f :=

{
x ∈ X0

f | F(x) ≥ F
∗
X1
f

(x)
}
, (3.5)

where F∗
X1
f

(x) is the solution of

min
u∈U

FX1
f
(x) = q(x, u) + F

(
f(x, u)

)
,

s.t. f(x, u) ∈ X0
f .

(3.6)

Similarly, Xj

f can be defined as?

X
j

f
:=

{
x ∈ Xj−1

f
| F(x) ≥ F∗

X
j

f

(x)
}
, (3.7)

and F∗
X
j

f

(x) is the solution of

min
u∈U

F
X
j

f
(x) = q(x, u) + F

(
f(x, u)

)
,

s.t. f(x, u) ∈ Xj−1
f
.

(3.8)
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Obviously, as Figure 1 shows, there exists X0
f ⊇ X1

f ⊇ · · · ⊇ X
j

f ⊇ Xf . As j increases,

X
j

f
will converge to a set denoted by X+∞

f
. But, whether is X+∞

f
the terminal region we want?

Theorem 3.1 provides the answer to this question.

Theorem 3.1. For Xj

f
defined in (3.7), when j goes to infinity, Xj

f
will converge to Xf,max, namely,

as j → +∞, one has Xj

f → Xf,max.

This theorem is proved by contradiction.

Proof. (A) Assume that there exists Xspo which satisfies Xspo ⊃ Xf,max and X
j

f
→ Xspo, as j →

+∞ then for any x ∈ Xspo, we have F(x) ≥ minu∈U{q(x, u) + F(f(x, u))} and f(x, u) ∈ Xspo.
Obviously this is contradicted with Xf,max being the largest one satisfying (C1) and (C2).

(B) Similarly, assume that there exists Xspo which satisfies Xspo ⊂ Xf,max and X
j

f
→

Xspo, as j → +∞, then there exists N with 0 ≤ N < +∞ satisfying XN
f
⊇ Xf,max and

Xf,max \ XN+1
f /=Φ, where Φ denotes the empty set. Choose any x ∈ Xf,max \ XN+1

f
,

it is obviouse that, x satisfies F(x) ≥ minu∈U{q(x, u) + F(f(x, u))} and f(x, u) ∈
Xf,max ⊆ XN

f
. On the other hand, we know that x ∈ XN

f
, so x meets the conditions

in the definition of XN+1
f

and we have x ∈ XN+1
f

. This is contradicted with x ∈
Xf,max \XN+1

f
.

Remark 3.2. Generally, in the computation ofXf,max, it is impossible to keep computation until
j → +∞. So, when the iteration goes to j =N, if XN

f is equal to XN−1
f in principle, XN

f can be
taken as the terminal region we want.

Remark 3.3. The terminal region computed through the method in Remark 3.2 is not Xf,max

itself, but its enclosing set. Then, the corresponding domain of attraction may include some
points which should not be in the real domain of attraction. To avoid this problem, the
outspread skill from smaller region to larger one can be used to turn¡?ehlt?¿ the contraction
skill from larger region to smaller one in this paper. The concrete algorithm is not presented
here, just the general idea is stated; giving a known subset of Xf,max, denoted by Xf,0 in
advance and using Xf,0 to serve as the state constraint in (3.4), then a larger region Xf,1 will
be computed. By the same procedure as presented in Section 3.1, a terminal region which is a
subset of Xf,max will be gotten.

To obtain X
j

f is not an easy job. The only tool is statistical learning method. Here, the
SVM is used.

3.2. Support Vector Machine

SVM (see [8, 9]) is the youngest part of statistical learning theory. It is an effective approach
for pattern recognition. In SVM approach, the main aim of an SVM classifier is obtaining a
function, which determines the decision boundary or hyperplane. This hyperplane optimally
separates two classes of input data points.

Take the example of separating X into A and X \ A. For each xi ∈ A, an additional
variable yi = +1 is introduced. Similarly, for each xi ∈ X \ A, yi = −1 is introduced. Define
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I+ := {i : yi = +1}, I− := {i : yi = −1}. SVM is used to find a separating hyperplane O(x) :=
w · φ(xi) + b = 0, between A and X \A. Then, we obtain an estimated set of A, Â = {x ∈ X |
O(x) ≥ 0}. O(x) can be obtained by solving the following problem:

min
α

1
2

∑

i

∑

j

αiαjyiyj ker
(
xi, xj

)
−
∑

i

αi,

s.t.
∑

i

αiyi = 0,

0 ≤ αi ≤ C, ∀i ∈ I+, αi ≥ 0, ∀i ∈ I−,

(3.9)

where ker denotes the kernel function.
In this paper, the following Gaussian kernel is used:

ker(x, xi) = exp

(

−‖x − xi‖
2

2σ2

)

, (3.10)

with σ being the positive Gaussian kernel width.
There are many software packages of SVM available on internet. They can be

downloaded and used directly. By using SVM, the support vectors are extracted from {xi}
and their relevant weights are exported. Denote Ps as the number of support vectors and Xs

as the support vectors set, the optimal hyperplane is described as follows:

O(x) =
Ps∑

i=1

wi · ker(xi, x) + b, (3.11)

where xi ∈ Xs is a support vector, and wi = αiyi satifying
∑Ps

i=1 wi = 0 is the relevant weight.

3.3. Estimating the Largest Terminal Region

In SVM classifier, the training data is inputted and the hyperplane will be outputted. To us,
the training of data is the only job.

Take the separation of X0
f from X as an example. Firstly, choose arbitrary points

xi ∈ X, i = 1, 2, . . . ,Np (Np is the number of training points) then decide the value of yi
corresponding to xi by using the following procedure

If F(xi) ≥ F∗X0
f

(xi),

yi = +1; else yi = −1
endif.
When all the yi for all the xi are gotten, they can be packed to constitute the training

data. Then, by inputting the training data into SVM classifier, an optimal hyperplane O0(x) =
0 and an estimated set of X0

f , X̂0
f = {x ∈ X | O0(x) ≥ 0} will be obtained.

When X̂0
f is known, the training data for separating X1

f from X0
f can be known by the

similar procedure. By inputting them into SVM classifier, a hyperplane O1(x) = 0 and an
estimated set of X1

f
, X̂1

f
= {x ∈ X | O1(x) ≥ 0}will be gotten.
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Repeatedly, a hyperplane series Oj(x) = 0, j = 1, 2, . . . will be obtained. When j = N if
it is satisfied that, for xi ∈ Xsup,N−1, i = 1, 2, . . . ,Nsup,N−1, there exists

Nsup,N−1∑

i=1

∥
∥
∥ON(xi) −ON−1(xi)

∥
∥
∥ ≤ εNsup,N−1, (3.12)

it is deemed that X̂N
f

is equal to X̂N−1
f

in principle and X̂N
f

is taken as the final estimation
of Xf,max. Where Xsup,N−1 is the support vectors set at j = N − 1, Nsup,N−1 is the number of
support vectors and ε is a tunable threshold. The smaller it is, the higher the precision of X̂N

f

approximating to Xf,max is.

Remark 3.4. Here, we used the information that, in SVM classifier, the hyperplanes are
decided just on the support vectors.

4. Choosing an Appropriate Terminal Cost

In the previous chapter, a method to maximize the terminal region was proposed, but the
method has a premise: the terminal cost is given in advance. In this chapter, how to get a
terminal cost will be shown. Before this, some properties of terminal cost will be analyzed.

4.1. Weighting Terminal Cost, the Domain of Attraction Will Be Enlarged

From conditions (C1) and (C2), it is known that the terminal region is based on the choice
of the terminal cost. We want to know what the relationship between them is and this
relationship will give us what messages when we choose terminal cost. Theorem 4.1 will give
us the answer.

Denote Xf,max, Xλ,max as the terminal regions of PN(x0) and PN,λ(x0) with a weighted
terminal cost λF, λ ≥ 1, respectively. Limon et al. [7] proved that the terminal region will be
enlarged by weighting the terminal cost for MPC without terminal constraint in its on-line
optimization. Here, we will show that, this property will also hold water in our case.

Theorem 4.1. Consider F andXf,max satisfying conditions (C1) and (C2). When a weighted terminal
cost λF, λ ≥ 1 is used, the corresponding terminal region Xλ,max is larger than Xf,max, namely,
Xf,max ⊆ Xλ,max.

Proof. For any x0 ∈ Xf,max, the conditions of (C1) and (C2) are equivalent to the fact that there
exists a control trajectory u = {u0, u1, u2, . . .} to make the following inequalities stand up:

F(xi) ≥ q(xi, ui) + F(xi+1), i = 0, 1, 2, . . . , (4.1)

where xi+1 = f(xi, ui).
It is obvious that, when the terminal cost is λF, these inequalities also stand up using

the same control trajectory

λF(xi) ≥ q(xi, ui) + λF(xi+1). (4.2)

So, we can see that x0 ∈ Xλ,max, namely, Xf,max ⊆ Xλ,max.
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Remark 4.2. When the prediction horizon is given, the larger the terminal region is, the larger
the domain of attraction is. So Theorem 4.1 shows that, giving the prediction horizon, by
weighting terminal cost, the domain of attraction will be enlarged.

4.2. Weighting Terminal Cost, the Total Cost Will Increase

It is known from the last section that, when the terminal cost is weighted, the terminal region
is enlarged. So, can we weight the terminal cost arbitrarily? The answer is no. This section
will tell us the reason the total cost will be increased by weighting the terminal cost.

Let J∗
N,λ

(x0) be the solution of PN,λ(x0), u∗
N,λ

(x0) = {u∗
N,λ

(0, x0), . . . , u∗N,λ
(N,x0)},

x∗
N,λ

(x0) = {x∗
N,λ

(0, x0), . . . , x∗N,λ
(N,x0)} be the optimal control trajectory and corresponding

state trajectory, respectively, and let uRH,λ(x0) = {u∗N(0, x0), u∗N(0, x1,λ), . . .}, xRH,λ(x0) =
{x0, x1,λ, x2,λ, . . .} be the receding horizon control trajectory and receding horizon state
trajectory of using MPC with PN,λ(x0), respectively. Define JRH,λ(x0), JRH(x0) as the total costs
of using MPC with PN,λ(x0) and with PN(x0), respectively.

For convenience, consider an assumption.

Assumption 1. For any x0 ∈ ΓN , where ΓN is the domain of attraction of MPC with PN(x0),
the terminal state by solving PN,λ(x0) belongs to Xf,max, that is to say x∗N,λ(N,x0) ∈ Xf,max.

Remark 4.3. Assumption 1 means, for any x0 ∈ ΓN , that the solution of PN,λ(x0) with Xλ,max

as its terminal region is equal to that with Xf,max as its terminal region. A few points in ΓN
may not satisfy this assumption, for convenience, their influence is neglected. Under this
assumption, it is obviouse that J∗N,λ(x0) ≥ J∗N(x0) and the following lemma holds water.

Lemma 4.4. For any x0 ∈ ΓN , there exists

(
J∗N−1,λ − J

∗
N−1

)(
x∗N(1, x0)

)
≥
(
J∗N−1,λ − J

∗
N−1

)(
x∗N,λ(1, x0)

)
. (4.3)

Proof. From the view of optimality, J∗N(x0) can be expressed as

J∗N(x0) = q
(
x0, u

∗
N(0, x0)

)
+ J∗N−1

(
x∗N(1, x0)

)
. (4.4)

Considering Assumption 1 and by optimality, there exists

J∗N(x0) ≤ q
(
x0, u

∗
N,λ(0, x0)

)
+ J∗N−1

(
x∗N,λ(1, x0)

)
. (4.5)

Similarly, J∗N,λ(x0) can be expressed as

J∗N,λ(x0) = q
(
x0, u

∗
N,λ(0, x0)

)
+ J∗N−1,λ

(
x∗N,λ(1, x0)

)
. (4.6)

And by optimality, there exists

J∗N,λ(x0) ≤ q
(
x0, u

∗
N(0, x0)

)
+ J∗N−1,λ

(
x∗N(1, x0)

)
. (4.7)
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Obviously, the result of subtracting J∗N(x0) from the right hand of (4.7) is bigger than
the result of subtracting the right hand of (4.5) from J∗

N,λ
(x0), in other words,

(
q
(
x0, u

∗
N(0, x0)

)
+ J∗N−1,λ

(
x∗N(1, x0)

))
− J∗N(x0)

≥ J∗N,λ(x0) −
(
q
(
x0, u

∗
N,λ(0, x0)

)
+ J∗N−1

(
x∗N,λ(1, x0)

))
.

(4.8)

Finally, the following result can be obtained:
(
J∗N−1,λ − J

∗
N−1

)(
x∗N(1, x0)

)
≥
(
J∗N−1,λ − J

∗
N−1

)(
x∗N,λ(1, x0)

)
. (4.9)

Define FK as a kind ofK functions satisfying the following: for any F1, F2 ∈ FK, and
x1, x2 ∈ X, there exists the following: if F1(x1) ≥ F1(x2), the inequality F2(x1) ≥ F2(x2) stands
up.

To continue discussion, another assumption is needed.

Assumption 2. All of the positive cost functions used in this paper like J∗N−1, J∗N , J∗
N−1,λ, and

J∗
N,λ

and the results of the addition or subtraction between them like J∗
N−1,λ − J

∗
N−1, J∗

N−1,λ + J
∗
N

belong to FK.

Based on Assumption 2 and Lemma 4.4, it is known that, for any x0 ∈ ΓN and FK,
there exists

FK
(
x∗N(1, x0)

)
≥ FK

(
x∗N,λ(1, x0)

)
. (4.10)

Then, by using (4.10) and Assumptions 1 and 2, another lemma which is a key for our
study on this issue can be gotten.

Lemma 4.5. Under Assumptions 1 and 2, for any x0 ∈ ΓN and any positive cost function Ftra ∈ FK
satisfying Ftra ≤ J∗N−1, there exists

q
(
x0, u

∗
N(0, x0)

)
+ Ftra(x1) ≤ q

(
x0, u

∗
N,λ(0, x0)

)
+ Ftra(x1,λ). (4.11)

Proof. Here, x1 means x∗N(1, x0) and x1,λ means x∗N,λ(1, x0). From Assumption 2, it is known
that (J∗N−1 − Ftra) ∈ FK, so there exists

q
(
x0, u

∗
N(0, x0)

)
+ Ftra(x1)

= q
(
x0, u

∗
N(0, x0)

)
+ J∗N−1(x1) −

(
J∗N−1 − Ftra

)
(x1)

≤ q
(
x0, u

∗
N,λ(0, x0)

)
+ J∗N−1(x1,λ) −

(
J∗N−1 − Ftra

)
(x1,λ)

= q
(
x0, u

∗
N,λ(0, x0)

)
+ Ftra(x1,λ).

(4.12)

Here, we used the fact that J∗N(x0) ≤ J∗N,λ(x0) and (J∗N−1 −Ftra)(x1) ≥ (J∗N−1 −Ftra)(x1,λ).
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Then, the reason why we cannot weight the terminal cost arbitrarily can be presented.

Theorem 4.6. Under Assumptions 1 and 2, for any x0 ∈ ΓN , the following inequality stands up:

JRH(x0) ≤ JRH,λ(x0). (4.13)

Proof. It is obvious that J∗N meets the condition in Lemma 4.5 because of J∗N ≤ J
∗
N−1. Choose

Ftra = J∗N in Lemma 4.5. There exists

q
(
x0, u

∗
N(0, x0)

)
+ J∗N(x1) ≤ q

(
x0, u

∗
N,λ(0, x0)

)
+ J∗N(x1,λ). (4.14)

Similarly, for any x ∈ ΓN , the following result can be obtained:

q
(
x, u∗N(0, x)

)
+ J∗N

(
x∗N(1, x)

)

≤ q
(
x, u∗N(0, x)

)
+ J∗N−1

(
x∗N(1, x)

)
= J∗N(x) ≤ J∗N−1(x).

(4.15)

So, choose

Ftra(x) = q
(
x, u∗N(0, x)

)
+ J∗N

(
x∗N(1, x)

)
. (4.16)

By using x1, x1,λ to replace x, respectively, there exists

q
(
x0, u

∗
N(0, x0)

)
+ q

(
x1, u

∗
N(0, x1)

)
+ J∗N(x2)

= q
(
x0, u

∗
N(0, x0)

)
+ Ftra(x1)

≤ q
(
x0, u

∗
N,λ(0, x0)

)
+ Ftra(x1,λ)

= q
(
x0, u

∗
N,λ(0, x0)

)
+ q

(
x1,λ, u

∗
N(0, x1,λ)

)
+ J∗N

(
x∗N(1, x1,λ)

)
.

(4.17)

From Assumption 1, it is known that, for x0 ∈ ΓN , there exists x1,λ ∈ ΓN . Replacing x0

with x1,λ in (4.14), the following inequality can be gotten:

q
(
x1,λ, u

∗
N(0, x1,λ)

)
+ J∗N

(
x∗N(1, x1,λ)

)
≤ q

(
x1,λ, u

∗
N,λ(0, x1,λ)

)
+ J∗N(x2,λ). (4.18)

So, there exists

q
(
x0, u

∗
N(0, x0)

)
+ q

(
x1, u

∗
N(0, x1)

)
+ J∗N(x2)

≤ q
(
x0, u

∗
N,λ(0, x0)

)
+ q

(
x1,λ, u

∗
N,λ(0, x1,λ)

)
+ J∗N(x2,λ)

≤ q
(
x0, u

∗
N,λ(0, x0)

)
+ q

(
x1,λ, u

∗
N,λ(0, x1,λ)

)
+ J∗N,λ((x2,λ)).

(4.19)
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Repeating this procedure, there exists

q
(
x0, u

∗
N(0, x0)

)
+ · · · + q

(
xj , u

∗
N

(
0, xj

))
+ J∗N

(
xj+1

)

≤ q
(
x0, u

∗
N,λ(0, x0)

)
+ · · · + q

(
xj,λ, u

∗
N,λ

(
0, xj,λ

))
+ J∗N,λ

((
xj+1,λ

))
.

(4.20)

Let j → +∞, the final result can be obtained as follows:

JRH(x0) ≤ JRH,λ(x0). (4.21)

Theorem 4.6 shows that, weighting the terminal cost, the total cost will be increased.
So, when choosing a terminal cost, people should not only take into account the need of
enlarging the terminal region.

4.3. Getting an Appropriate Terminal Cost

It was pointed out from Theorems 4.1 and 4.6 that the terminal cost is a double-edged sword.
On its choice, two factors, the terminal region and the total cost, must be considered. With
different emphasis, different terminal cost should be chosen.

Here, a simple method to get a terminal cost is presented, whose basic idea is getting
an initial terminal cost in advance then adjusting it according to our need.

As mentioned, a good terminal cost should approximate to J∗∞ as close as possible.
People can only achieve it in a small neighborhood around the origin by using SOC method,
see [2] for continuous-time system.

Consider the linearization of the system (2.1) at the origin

xk+1 = Axk + Buk, (4.22)

with A = (∂f/∂x)(0, 0) and B = (∂f/∂u)(0, 0).
Here, assume that (4.22) is stabilizable, then a terminal cost which serves as an initial

candidate can be found through the following procedure.

Step 1. Solving the Riccati equation to get a preparatory G0,

G0 = ATG0A −
(
ATG0B

)(
BTG0B + R

)−1(
BTG0A

)
+Q. (4.23)

Step 2. Getting a locally stabilizing linear state feedback gain K,

K = −
(
BTG0B + R

)−1(
BTG0A

)
. (4.24)
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Step 3. Computing GK by solving the following Riccati equation:

(αAK)TGK(αAK) −GK = −QK, (4.25)

where AK = A + BK, QK = Q +KTRK, and α ∈ [1,+∞) is an adjustable parameter satisfying
α|λmax(AK)| < 1.

Then, F(x) = xTGKx can serve as an initial terminal cost. According to our need and
the properties of terminal cost, the initial one can be adjusted to get an appropriate one,
F(x) = xT (λGK)x, λ > 0. For example, if a larger terminal region is wanted and the total cost
is not cared, λ can be set to be a larger number; otherwise, if a lower total cost is demanded
and the domain of attraction already covers the operating region of system, a small one can
be used.

5. Simulation Experiment

The model is an approximate discrete-time realization from a continuous-time system used
in [2] as follows:

[
x1(k + 1)

x2(k + 1)

]

=

[
1 T

T 1

][
x1(k)

x2(k)

]

+

[
Tμ

Tμ

]

uk +

[
T
(
1 − μ

)
0

0 −4T
(
1 − μ

)

][
x1(k)

x2(k)

]

uk, (5.1)

where μ = 0.5, T = 0.1 s, and the state constraint and control constraint are X = {x | ‖x‖1 ≤ 4},
U = {u | |u| ≤ 2}, respectively.

The stage cost is chosen as q(x, u) = xTQx + uTRu with Q = 0.5I and R = 1. By
using SOC method, the locally linear feedback gain is adopted as K = −[2.0107 2.0107] and
|λmax(AK)| = 0.9000 is obtained. Then, choose α = 1.11 and get the terminal cost as F(x) =
xTGx with G = [1107.356 857.231; 857.231 1107.356].

To estimate each X
j

f , 4000 training points are generated. Set ε = 1, when j = 15, there
exists

Nsup,14∑

i=1

∥∥∥O15(xi) −O14(xi)
∥∥∥ ≤ εNsup,14, (5.2)

where xi ∈ Xsup,14, Xsup,14 is the support vectors set at j = 14, and Nsup,14 is the number of
support vectors. Then, it is deemed that X̂15

f
is equal to X̂14

f
in principle and X̂15

f
can be taken

as the final estimation ofXf,max. Figure 2 shows the approximation process ofXf,max. The blue
line is the hyperplane at j = 1, the black dot line is that at j = 15, and the red lines between
them are those at j = 2, 3, . . . , 14. Let the prediction horizon be N = 3. Figure 3 shows the
closed-loop trajectories of some points chosen from the domain of attraction arbitrarily.

When the terminal cost is enlarged to F(x) = xT (10G)x, a new terminal region larger
than the old one can be obtained. Figure 4 shows it. The red line is the new hyperplane and
the black dot line is the old one.

For convenience, let (A) denote the MPC using xTGx as its terminal cost and (B) the
MPC using xT (10G)x. For some points chosen from Γ3 of (A) arbitrarily, Figure 5 shows their
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Figure 2: The approximation process of terminal region.
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Figure 3: The closed-loop trajectories of points in Γ3.

Table 1: Comparison of the total costs.

Initial points
[ 2
−1

] [
1
−2

] [ −1
2

] [ −1
1

]

(A) 34.7915 18.2460 16.4528 7.9936
(B) 37.0120 20.6714 23.2854 23.8467

closed-loop trajectories of using (A) and (B), respectively, where red lines denote the results
of using (A), and blue dash-dotted lines denote the results of using (B). Table 1 shows the
comparison of the total costs. Obviously, for the same point, the total cost of using (A) is
smaller than that of using (B).
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Figure 4: Comparison of the terminal regions.
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Figure 5: Comparison of the closed-loop trajectories.

6. Conclusion

This paper discussed the relationships between terminal cost and terminal region and
between terminal cost and total cost, respectively. It showed that, by enlarging the terminal
cost, terminal region will be enlarged, but the total cost will be increased too. A simple
method to get a suitable terminal cost was proposed, it can be adjusted according to our
need. For example, to get a larger terminal region, it can be weighted; to reduce the total
cost, it can be unweighted. When a terminal cost was given, a novel method was proposed
to receive a maximal terminal region by using SVM. With the same prediction horizon, its
corresponding domain of attraction is the largest one.
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An array of nonidentical and locally connected chaotic biological neurons is modelled by a single
representative chaotic neuron model based on an extension of the Hindmarsh-Rose neuron. This
model is then employed in conjunction with the unscented Kalman filter to study the associated
state estimation problem. The archetypal system, which was deliberately chosen to be chaotic,
was corrupted with noise. The influence of noise seemed to annihilate the chaotic behaviour.
Consequently it was observed that the filter performs quite well in reconstructing the states of
the system although the introduction of relatively low noise had a profound effect on the system.
Neither the noise-corrupted process model nor the filter gave any indications of chaos. We believe
that this behaviour can be generalised and expect that unscented Kalman filtering of the states of a
biological neuron is completely feasible even when the uncorrupted process model exhibits chaos.
Finally the methodology of the unscented Kalman filter is applied to filter a typical simulated ECG
signal using a synthetic model-based approach.

1. Introduction

Oscillatory signals in the cardiovascular region either originate directly from the sinoatrial
node or one of the neurons as an action potential traverses to the ventricle myocytes.
Alternatively they are functions or weighted sums of action potentials arising at spatially
distributed points. To consider a range of oscillatory measurements in the cardiovascular
region, it is important to consider the output of typical neuronal cell.

Neural information is mainly encoded in various firing patterns of a neuron, such as
periodic spiking (or bursting) and chaotic spiking (or bursting), travelling among coupled
neurons within a physiological domain of neurons such as the heart. The “action potential”
is a spontaneously and rhythmically produced electrical impulse in a membrane of neuron
cell that occurs during the firing of the neuron due to an exchange of charged ions inside
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and outside a neural cell. Although not a definition, a dynamic system may be considered
chaotic if it exhibits (i) sensitive dependence on the initial conditions and (ii) a number of
dense orbits with a multiplicity of periods for a range of parameters. Two nonlinear dynamic
systems with chaotic responses can sometimes exhibit the phenomenon of synchronization
when the responses of the two lock in and seem to drive each other with a common feature
such as the phase, phase-lag, amplitude, and envelope or even some generalised property
that can be described in terms of a functional of the features of the response. Physiological
observations have confirmed the existence of synchronous motion of neurons in different
areas of the heart (Elson et al. [1], Pinto et al. [2], and Szucs et al. [3]). Synchronization of
neurons is possible when a single neuron faithfully encodes the timing of successive peaks,
burst, or spikes and a group of neurons can respond collectively to a common synaptic
current. Moreover, a group of interacting coupled neurons can display various synchronous
cardio-vascular rhythms. Several types of synchronization of coupled neurons have been
studied under the influence of parameter changes and it is observed that when the coupling
strength is above a critical value, certain synchronization mechanisms between neurons can
be achieved. This applies both to bursting neurons as well as to neurons exhibiting periodic
spikes. The presence of noise can have a profound effect and can enhance synchronization
between neurons under certain conditions. Thus it was felt that one could employ a nonlinear
filter such as the unscented Kalman filter (UKF) to estimate the states and parameters of an
archetypal neuron.

In this paper the state and parameter estimation of an array of nonidentical, locally
connected chaotic biological neuronal models is considered. It is known that, under certain
conditions, even a single biological neuron can exhibit chaotic behaviour. Chaos may be
achieved by introducing the nonlinear effects of the chemical and electrical synapses.
Alternately, the chaotic behaviour of the single biological neuron is achieved by driving it
with periodic excitations. The global behaviour of an array of biological neurons may then be
investigated by considering a spatial distribution of identical neurons, where spatiotemporal
chaos emerges, as well as in presence of spatial diversity, generated by a distribution law
which could be stochastic or chaotic. In the latter case, it has been observed that the
introduction of spatial disorder enhances the self-organization or synchronisation capability.
In particular, in agreement with the results presented in the works of Elson et al. [1],
Pinto et al. [2], and Szucs et al. [3], the introduction of spatial diversity generated by
such a distribution leads to an improvement in synchronization. While the phenomenon
of synchronization in dynamics has been observed over a long time, two or more chaotic
systems can be synchronized by linking them with mutual coupling or with a common signal
or signals. Ideal synchronisation could be induced by mutually coupling a pair of identical
chaotic systems when all trajectories converge to the same value and remain in step with
each other during further evolution. Linking chaotic systems given by identical differential-
dynamic models but with different system parameters can lead to practical synchronization
involving phase synchronization. Initially unexcited biological neural models, subsequently
externally excited by periodic oscillators, can synchronize both in chaotic and periodic
regimes. Provided the amplitudes and frequencies of certain modes are within certain
limits, it has been observed that a number of independent neurons can exhibit periodic
or chaotic behaviour and achieve a regime of complete synchronization including phase
synchronization.

In this paper, we consider a typical extended four-state Hindmarsh-Rose (HR) model
(Hindmarsh and Rose, [4]) as a representation of an ensemble of biological neurons. This is
preferred over the two-dimensional map model of Rulkov [5] and Shilnikov and Rulkov
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[6] although the map may be easier to implement in a filter. The neuron model was
subjected to the same type of periodic forcing as the biological neurons. The autonomous
periodic bursting pattern of the four-dimensional neuron model was observed to be similar
to a biological neuron. The fact that HR model represents an ensemble of biological
models is accounted for by introducing low-level process noise. Thus both the process and
measurement were assumed to be corrupted by the introduction of very low levels of white
noise. The noise had a profound effect on the response of the model as it seemed to annihilate
the chaos. The unscented Kalman filtering method was applied to estimate the states of the
model. It was observed that the filter performs quite well in reconstructing the states the
system, which was deliberately chosen to be chaotic. Neither the filter nor the noise corrupted
process model gave any indications of chaos.

Finally the methodology is applied to the Electro-cardiogram (ECG) measurements
which are modelled as oscillatory signals using a synthetic model first proposed by McSharry
et al. [7]. Like the Hindmarsh-Rose model, it exhibits limit cycle oscillations and chaos and
can represent the primary characteristic (P, Q, R, S, T) points in an ECG. The methodology
of the UKF is used to filter and reconstruct a measured ECG signal and validated by
simulation.

2. Chaotic Model of a Neuron

The analysis of biological neurons had that shown they could be modelled with only three or
four states, we chose initially to use a familiar simplified model put forward by Hindmarsh
and Rose [4]. The general form of this model contains three terms:
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It is hard to establish a one-to-one correspondence between the states of the HR neuron and
the states of a biological neuron. Yet the HR neuron model seems to reproduce the overall
behaviour of the action potential fairly accurately. After appropriate scaling, the output of the
HR neuron model can be made to lie within the same nominal limits as a biological neuron,
−65 mV < V < 20 mV. Furthermore the other principal states of the HR neuron show the
same behaviour as the principal compartmental currents and gating variables that can be
established by considering the diffusion of ionic charge carriers from one compartment to the
other. The net result of this type of diffusion is the generation of a potential difference, across
the two compartments which can be described by the Nernst equation. For this reason the HR
neuron may be employed as a representative model for constructing reduced order observers
of the neuron dynamics. The three equations in (2.1) represent the original HR model where
x(t) corresponds to membrane voltage, y(t) represents a “fast” current and by making μ� 1,
z(t) a “slow” current. These three equations (the 3-state model) can produce several modes
of spiking-bursting activity including a regime of chaos that appears similar to that seen in
biological neurons. However, the parameter space for the chaotic behaviour is much more
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restricted than that we observe in real neurons. Following Szucs et al. [3], the chaotic regime
is greatly expanded by incorporation of the fourth term into the model:
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where, Isin(t) = A sin(2ft) and ν = 0.0004.
Adding the term w(t) to introduce an even slower process (ν < μ � 1) is

intended to represent the dynamics of intracellular Calcium2+ (Ca2+) ions. To couple the
additional equation to the original three-state HR model, a −g∗w(t) term is included in the
second equation. When this term is taken into account, the model produces simulations of
intracellular activity that are even more similar to the biological observations. However it is
not known yet if the w(t) term actually represents Ca2+ ion kinetics in sinoatrial node (SAN)
and ventricular neurons and numerical simulations are currently under way to compare Ca2+

transients in HR neurons using realistic biological models. Because of its relative simplicity,
the extended HR model was extremely useful in constructing a simulation model that could
perform the computations necessary to emulate SAN neurons in real-time. A similar model
has been employed by Mayer et al. [8] to model thalamocortical circuits. Although this
simplified model is difficult to compare with biological neurons which are made up of a
multitude of individual conductance and compartments, we expect the model to provide us
with the experience in estimating the states of a real biological model. Since the estimation
of these states and parameters is crucial in establishing physiological mechanisms, we also
developed several multicompartmental type models that provide a more biologically realistic
representation of the nonlinear voltage-current relations than that of Hindmarsh and Rose.
Röbenack and Goel [9], and Goel and Röbenack [10] demonstrated that it was possible to
reconstruct the currents and gate dynamics from measurements of the action potential by
using a “reduced order observer.” An observer is an electronic circuit that is expected to
reconstruct the internal dynamics of a system, whatever the nature of the dynamics may
be, solely from the measurements, in such way that the error between the actual signal
and its reconstruction is asymptotically stable. Goel and Röbenack employed a four- and
a six-state model to construct their observer. While in this work the HR neuron model has
been employed to demonstrate the viability of successfully observing the state of a neuron,
the application of the methodology to a multicompartmental biologically inspired model
will presumably facilitate the reconstruction of the internal dynamics within the cell using
measurements of the action potential. We accordingly employed a modified Hodgkin and
Huxley type (Hodgkin and Huxley, [11]) seven-state model to reconstruct all the states of
the system. When this model, as well as several other biologically inspired models, was
used to construct UKF-based state estimators from a biological neural measurement in
our first attempt, all of these models exhibited filter instability. Further analysis indicated
that this could be due to one of three reasons: (i) the chaotic nature of the dynamics (ii)
unobservability due to inadequate measurements, and (iii) the nonlinear functions arising
from the Nernst equations for the compartmental currents due to the ionic concentrations
and the sigmoid-like functions associated with the gate time constants and final values,
which must lie within the prescribed final values. The question of unobservability was



Mathematical Problems in Engineering 5

dealt with by including a range of simulated measurements. It was essential to identify
which of the remaining reasons was the predominant cause for the filter instability. So it
was decided to first eliminate the possibility of the chaotic dynamics being the primary
factor in causing the filter instability. For this reason before employing these models it
was decided to apply the UKF to the simplified extended HR model. In this context we
note that observers and the extended Kalman filtering have been applied in the past to
construct neural estimators by Cruz and Nijmeijer [12]. The reconstruction of the neural
dynamics has been considered by Steur et al. [13] and Tyukin et al. [14] have considered
the application of adaptive observers to neural systems. However, our objective is to
reconstruct the action potential and its features such as the duration, particularly of a group
of spatially distributed neurons, over an extended time frame, and to ultimately extend
the application to complex multicompartmental models of biological neurons. An adaptive
nonlinear observer wherein the gain of the observer is continually modified in accordance
with the magnitude of the measurements and noise statistics by an appropriate adaption
law would be more suitable in this case than a conventional nonlinear observer like the
UKF.

The neuron model described by (2.2), which represents a typical nonlinear oscillator,
is described in the parameter plane with the coordinates as the amplitude and frequency of
the forcing (Glass and Mackey [15]). A study of the response characteristics of this model
reveals subharmonic and superharmonic synchronization or chaotic behaviour, depending
on the amplitude and frequency of the forcing. In some cases the chaos occurs after a period-
doubling bifurcation. For the parameter set considered in (2.2), the response is chaotic.
However, the addition of a relatively small level of noise to the initial conditions seemed
to completely annihilate the chaos. A typical response of the model is shown in Figure 1(a)
and the magnified plot in Figure 1(b), and it illustrates the fact that the response is chaotic.
In Figure 1(a) the second state is scaled down by 400 to plot it on the same figure. This
can be demonstrated by a one-dimensional Poincaré plot (Abarbanel [16]). The Poincaré
map corresponding to Figure 1(b) shows that the system is chaotic, and it is shown in
Figure 1(c).

3. The Unscented Kalman Filter

Most dynamic models employed for purposes of estimation neural action potential signals
are generally not linear. To extend and overcome the limitations of linear models, a number
of approaches such as the extended Kalman filter (EKF) have been proposed in the literature
for nonlinear estimation using a variety of approaches. Unlike the Kalman filter, the EKF may
diverge, if the consecutive linearizations are not a good approximation of the linear model
over the entire uncertainty domain. Yet the EKF provides a simple and practical approach to
dealing with essential nonlinear dynamics.

The main difficulty in applying the EKF algorithm to problems related to the
estimation of a neural action potential signal is in determining the proper Jacobian matrices.
The UKF is a feasible alternative that has been proposed to overcome this difficulty, by Julier
et al. [17] as an effective way of applying the Kalman filter to nonlinear systems. It is based
on the intuitive concept that it is easier to approximate a probability distribution than to
approximate an arbitrary nonlinear function or transformation of a random variable.

The UKF gets its name from the unscented transformation, which is a method
of calculating the mean and covariance of a random variable undergoing nonlinear
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Figure 1: (a) Extended HR neuron: state-response plot comparing response of three states to input. (b)
Extended HR neuron: close-up of state-response plot of the first two states illustrating chaos. (c) Extended
HR neuron: close-up of the Poincaré map of the chaotic first state corresponding to Figure 1(b).

transformation y = f(w). Although it is a derivative-free approach, it does not really
address the divergence problem. In essence, the method constructs a set of sigma vectors
and propagates them through the same nonlinear function. The mean and covariance of the
transformed vector are approximated as a weighted sum of the transformed sigma vectors and
their covariance matrices.

Consider a random variable w with dimension L which is going through the nonlinear
transformation y = f(w). The initial conditions are that w has a mean w and a covariance
Pww. To calculate the statistics of y, a matrix χ of 2L+1 sigma vectors is formed. Sigma vector
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points are calculated according to the following equations:

χ0 = w,

χi = w +
(√

(L + λus)Pww

)

i

, i = 1, 2, . . . , L,

χi = w −
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)

i

, i = L + 1, L + 2, . . . , 2L,

(3.1)

where λus = α2
us(L + κ) − L, αus is a scaling parameter between 0 and 1 and κ is a secondary

scaling parameter. (
√
(L + λus)Pww)i is the ith column of the matrix square root. This matrix

square root can be obtained by Cholesky factorization. The weights associated with the sigma
vectors are calculated from the following [18]:
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where β is chosen as 2 for Gaussian distributed variables. We have chosen to use the
scaled unscented transformation proposed by Julier [18], as this transformation gives one
the added flexibility of scaling the sigma points to ensure that the covariance matrices are
always positive definite. The mean, covariance, and cross-covariance of y calculated using
the unscented transformation are given by
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)
,
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(3.3)

where W
(m)
i and W

(c)
i are the set of weights defined in a manner so approximations

of the mean and covariance are accurate up to the third order for Gaussian inputs for
all nonlinearities, and to at least the second order for non-Gaussian inputs. The sigma
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points in the sigma vectors are updated using the nonlinear model equations without any
linearization.

Given a general discrete nonlinear dynamic system in the form

xk+1 = fk(xk,uk) + wk, yk = hk(xk) + vk, (3.4)

where xk ∈ Rn is the state vector, uk ∈ Rr is the known input vector, and yk ∈ Rm is the output
vector at time k, wk and vk are, respectively, the disturbance or process noise and sensor
noise vectors, which are assumed to be Gaussian white noise with zero mean. Furthermore
Qk and Rk are assumed to be the covariance matrices of the process noise sequence, wk and
the measurement noise sequence vk, respectively. The unscented transformations of the states
are denoted as

fUT
k = fUT

k (xk,uk), hUT
k = hUT

k (xk) (3.5)

while the transformed covariance matrices and cross-covariance are, respectively, denoted as

Pff

k
= Pff

k (x̂k,uk),

Phh−
k = Phh

k

(
x̂−k
)
,

Pxh−
k = Pxh−

k

(
x̂−k,uk

)
.

(3.6)

The UKF estimator can then be expressed in a compact form. The state time-update equation,
the propagated covariance, the Kalman gain, the state estimate, and the updated covariance
are, respectively, given by,

x̂−k = fUT
k−1(x̂k−1),

P̂−k = Pff

k−1 + Qk−1,

Kk = P̂xh−
k

(
P̂hh−
k + Rk

)−1
,

x̂k = x̂−k + Kk

[
yk − hUT

k

(
x̂−k
)]
,

P̂k = P̂−k −Kk

(
P̂hh−
k + Rk

)−1
KT
k .

(3.7)

Equations (3.7) in the same form as the traditional Kalman filter and the EKF. Thus higher
order nonlinear models capturing significant aspects of the dynamics may be employed to
ensure that the Kalman filter algorithm can be implemented to effectively estimate the states
in practice. For our purposes we adopt the UKF approach to estimate the neuron states in the
process model.

The UKF is based on approximating the probability distribution function than on
approximating a nonlinear function as in the case of EKF. The state distributions are
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approximated by a Gaussian probability density, which is represented by a set of determinis-
tically chosen sample points. The nonlinear filtering using the Gaussian representation of the
posterior probability density via a set of deterministically chosen sample points is the basis
for the UKF. It is based on statistical linearization of the state dynamics rather than analytical
linearization (as in the EKF). The statistical linearization is performed by employing linear
regression using a set of regression (sample) points. The sigma points are chosen as the
regression points. The mean and covariance at the sigma points then represent the true mean
and covariance of the random variable with the particular Gaussian probability density. Thus
when transformed to the nonlinear systems, they represent the true mean and covariance
accurately only to the second order of the nonlinearity. Thus this can be a severe limitation of
the UKF unless the nonlinearities can be limited to the first and second order in the process
model.

4. UKF Estimation Applied to a Neuron Model

The success of the application of the UKF depends largely on the approximation to the
covariance which is estimated as a weighted linear sum of the covariance at the sigma
points. When this approximation is such that the covariance is not positive definite, the
UKF algorithm fails as the Cholesky decomposition is not possible. To ensure that this
covariance is essential, adjust the scaling parameter αus, if and when necessary. In the example
illustrated, αus was chosen to be very small positive number. First, to see the need for the
UKF, the traditional extended Kalman filter (EKF) is also applied to the same responses and
the two sets of results are compared. These comparisons are shown in Figure 2. Figure 2
also illustrates the simulated neuron model states plotted to the same scale. While the state
estimates obtained by the UKF and EKF are almost the same in the case of the first state
(which was measured), the EKF estimates of all the other states tend to zero. Although in the
case of the third state z, the EKF seems to perform better than the UKF, the state estimate
in this case as well tends to zero in steady state. This may be due to the inadequacy of
the number of measurements but it is natural to assume that the internal states cannot be
measured. Given that only the first state can be measured, the UKF definitely tends to perform
better than the traditional EKF.

Figure 3 shows the corresponding errors in the simulated states and UKF estimated
states over the same time frame. Figure 4 shows the simulated measurement error of a
typical sensor. Finally it must be said that the filter was run over a much longer time frame
and the performance of the filter did not deteriorate in spite of this long-term operation.
Thus the implementation of an UKF-based state estimator for the HR neuron is successfully
demonstrated over a relatively long time frame.

In particular we observe the relatively large error in the third state, z. We also note
that this error does not significantly influence the error in the estimate of the first state. The
addition of a relatively small level of noise to the initial conditions seems to have the effect
of generating a response that completely shrouds and annihilates the chaotic behaviour and
this appears to be a consequence of the sensitive dependence of the initial conditions as well.
What appears to be noise in the response may well be a combination of both noise and chaos,
but it is not possible to distinguish between the two. This significant change in the response
of z in the estimator, which can be recognized by comparing Figures 1 and 2, explains the
reason for the chaos to be annihilated as this state plays a key role in the appearance of the
chaotic response in the first state. In fact it acts like a switch or gate and the addition of noise
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Figure 2: Neuron model states: plots of the simulated and estimated states on the same scale versus the
time in seconds.

to the equation for z changes the dynamics of its mean value quite significantly which in turn
is responsible for switching off the chaos. However, we also observe that this is not a feature
of the estimator but a result of the addition of noise to the Hiindmarsh-Rose model of the
dynamics of the neuron. We had also observed that when no chaos was present and z was
already well behaved, the introduction of noise was not so significant.
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Figure 3: Neuron model states: plots of the UKF estimate errors in the state variables versus the time in
seconds.
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5. Application to ECG Estimation

McSharry et al. [7] have proposed a theoretical nonlinear dynamic model that is capable
of emulating an ECG, which is characterised by several parameters that are adaptable to
many measured ECG signals. A typical ECG signal, shown in Figure 5, is characterised by
six important points labelled as P, Q, R, S, T, or U. These points define the “fiducial” points
which are the landmarks on the ECG signal such as the isoelectric line (PQ junction), the
onset of individual waves such as QRS complex and the P and T waves, and the PQ, QT,
and ST time intervals. The ECG signal is periodic and the period is the elapsed time between
two R-R peaks. The circular radian frequency ω = 2π/TR-R is related to the Heart Rate. The
heart rate is by no means steady as several rhythmic variations are known to influence it.
Coupling between the heart rate and the respiratory cycle causes oscillations in the heart
rate at about 0.25 Hz and is termed as the respiratory sinus arrhythmia. Heart Rate Variability
(HRV) influences the fiducial points and is controlled by the baroreflex regulatory feedback.
The baroreflex feedback mechanism is modelled by a nonlinear delay-differential equation
by McSharry et al. [19] based on a model by Fowler and McGuinness [20] to capture and to
describe the interactions between the heart rate and blood pressure. The model gives rise to
the oscillations in the blood pressure known as Mayer waves with a time period ranging from
10 to 25 seconds, due to the presence of a time delay. The model maintains an intrinsically
stable heart rate in the absence of nervous control and features baroreflex influence on both
heart rate and peripheral resistance. Irregularities in the baroreflex feedback which can create
disturbances in the blood pressure such as the Mayer waves manifest themselves in some form
in the ECG signal. The Mayer waves and the heart rate variability modelling have also been
studied by Seydnejad and Kitney [21]. Analysis of Heart rate variability is also the basis for
the assessment of the sympathetic and parasympathetic responses of the autonomic nervous
system, with the sympathetic tone influencing the low-frequency spectrum only while both
the sympathetic and parasympathetic responses influence the high frequency component of
the ECG spectrum. Consequently the heart rate estimation generally involves both ECG and
additional measurements of the arterial blood pressure and/or features associated with the
respiratory system. For this reason, in this paper, the heart rate is assumed to be either known
or independently estimated.
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The original model proposed by McSharry et al. [7] generates a trajectory in a three-
dimensional state space with coordinates (x, y, and z). The ECG is plot of the z coordinate
with respect to time. An observation of the responses shows that they exhibit a limit-cycle
behaviour and that it is not sinusoidal. The dynamical equations of motion are given by a set
of three ordinary differential equations

ẋ = (1 − r)x −ω1y, (5.1a)

ẏ = (1 − r)y +ω1x, (5.1b)

ż = −
5∑

1=1

aiΔθi exp

(
−Δθ2

i

2b2
i

)

− (z − z0), (5.1c)

where r =
√
x2 + y2, Δθi = (θ − θi) mod 2π , θ = atan 2(y, x) is the four-quadrant inverse

tangent (arctangent) given the sine (y) and cosine (x) of the angle θ defined in the range
−π < θ ≤ π , and ω1 is the angular velocity of the trajectory as it moves around the limit
cycle which is assumed to be either measured or estimated adaptively and hence is treated
as a known parameter. The baseline value of z0 in (5.1c) is assumed to be driven by the
respiratory circular frequency ω2 according to

z0(t) = A0 sin(ω2t), (5.2)

where the constant A0 = 0.15 mV. These equations of motion may be integrated numerically
using the MATLAB built-in m-file ode45.m which is based on an explicit Dormand-Prince
Runge-Kutta ((3.2), (3.3)) pair of formulae over each fixed time step Δt = 1/fs where fs is
the sampling frequency. Equation (5.1c) may be expressed as

ż = −
5∑

i=1

aiΔθi exp
(
−γiΔθ2

i

)
− (z − z0), γi =

1
(
2b2

i

) . (5.3)

The parameters of the modified representation of the (5.1c) given by (5.3) are defined in
Table 1.

As rightly pointed by Sameni et al. [22], the first two equations (5.1a) and (5.1b) could
be transformed two other dynamic equations in terms of

r =
√
x2 + y2,

θ = atan 2
(
y, x
)
.

(5.4)
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Table 1: Parameters of the ECG model given by (2.1).

Index (i) 1 (P) 2 (Q) 3 (R) 4 (S) 5 (T)
Time (secs) −0.2 −0.05 0 0.05 0.3

θi (radians) −1
3
π − 1

12
π 0

1
12
π

1
2
π

ai 1.2 −5.0 30.0 −7.5 0.75
γi 8.000 50.00 50.00 50.0 3.125

Table 2: Typical initial conditions for the states in (3.3).

θ 1.5π a1 1.2 γ1 50.0
Z −0.0110 a2 −5.0 γ2 34.7222
φ1 0 a3 15.0 γ3 55.4017

a4 −7.5 γ4 78.1250
a5 0.75 γ5 8.0

The r-dynamics take the form ṙ = f(r) and are essentially unobservable. Consequently
(5.1a) and (5.1b) may be replaced by θ̇ = ω1. Thus (5.1a), (5.1b), and (5.3) may now be
augmented by additional state equations and expressed as

θ̇ = ω1, (5.5a)

ż = −
5∑

i=1

aiΔθi exp
(
−γiΔθ2

i

)
−
(
z −A0 sinφ2

)
, (5.5b)

ȧi = 0, γ̇i = 0, i = 1, 2, . . . , 5, φ̇2 = ω2. (5.5c)

Equations (5.5a) and (5.5b) represent a classic pair of the first-order equations that exhibit
both limit cycle and chaotic behaviour. The complete set of 13 equations characterised by
eight parameters θi, i = 1, 2, . . . , 5, ω1, ω2, and A0 represents a dynamic model of the ECG
with typical initial conditions as illustrated in Table 2. In addition one could assume that the
state space dynamics include a number of disturbances. The state space equations including
the random white noise disturbances are given by (5.6) as

θ̇ = ω1 +w1,

ż = −
5∑

i=1

aiΔθi exp
(
−γiΔθ2

i

)
−
(
z −A0 sinφ2

)
+w2,

φ̇2 = ω2 +w3, ȧi = wi+3, γ̇i = wi+8, i = 1, 2, . . . , 5,

(5.6)

with the set wj i = 1, 2, . . . , 13 being zero mean white noise process disturbances with a
known covariance matrix.
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Figure 6: Comparison of simulated and estimated responses of the states θ, z plotted against the number
of time steps.

Given a set of continuously sampled ECG measurements, the measurements may be
expressed by the equation

zm = z + v (5.7)

with v being a zero mean white noise measurement disturbance with a known covariance.
The UKF may be employed to estimate the states θ, z and the augmented states φ1, ai, γi,
i = 1, 2, . . . , 5.

In Figure 6 a typical set of simulated and estimated responses of the states θ, z is
compared. In Figure 7 the errors in the estimate over 10 000 time steps, Δt = 0.0002 s are
shown.

In Figure 8 a typical estimated error in the measurement is shown. Thus the UKF is
capable of performing extremely well given the measurements with well-behaved covariance
characteristics. When the noise covariance matrices are unknown, it is possible to estimate the
states adaptively. The filter is currently undergoing extensive tests with actual measured ECG
data and in this case the adaptive estimation appears not only to be more appropriate but also
performs better than the nonadaptive UKF. A complete discussion of the application of the
adaptive UKF to ECG measurements, where the process and measurement noise covariance
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Figure 7: Errors in the estimated responses of the states θ, z, plotted against the number of time steps.
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matrices are recursively updated, is beyond the scope of this paper and will be presented
elsewhere.

6. Conclusions and Discussion

The unscented Kalman filtering method was applied to estimate the states of an HR-like
neuron model which in the absence of noise were deliberately chosen to be chaotic. The
process and measurement was then corrupted by the introduction of very low levels of
white noise. The noise had a profound effect on the response of the model as it seemed to
annihilate the chaos. It was observed that the filter performs quite well in reconstructing
the states of the system. Neither the filter nor the noise corrupted process model gave any
indications of chaos. Moreover, the exercise gave us valuable experience in applying the
UKF to a biological neuron. Preliminary studies of the application of the UKF to a Hodgkin-
Huxley type model indicated that the successful application of the unscented approach to an
ensemble of biological neurons was feasible, provided the sigma points were scaled according
to certain scaling laws related to the gate constants. Finally the methodology of the unscented
Kalman filter is successfully applied to filter a typical simulated ECG signal using a synthetic
model-based approach.
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A theoretical model of multistep gear transmission dynamics is presented. This model is based on
the assumption that the connection between the teeth of the gears is with properties within the
range from ideal clasic to viscoelastic so that a new model of connection between the teeth was
expressed by means of derivative of fractional order. For this model a two-step gear transmision
with three degrees of freedom of motion has been used. The obtained solutions are in the analytic
form of the expansion according to time. As boundary cases this model gives results for the case
of ideally elastic connection of the gear teeth and for the case of viscoelastic connection of the gear
teeth, as well. Eigen fractional modes are obtained and a vizualization is done.

1. Introduction

Gear transmissions have a long history dating back since the time of the first engineering
systems. Their practical usage in the present day modern engineering systems is enormous.
In accordance with contemporary development of mechanical engineering technics ever
growing requirements have been imposed concerning characteristics and working specifica-
tions. The machines which utilize high-power duty gear transmissions (excavating machines,
crushing mashines, rolling machines, ships, etc.) operate under nonstationary conditions
so that the loads of the elements of these gear transmissions are variable. For example,
abrupt accelerations and abrupt decelerations of machine parts, that is, masses of the gear
transmissions cause inertial forces which, in addition to the conditions of operation, influence
the magnitude of actual leads of the elements of gear transmissions. All this, together with
the changes of the torque of drive and operating machine, the forces induced by dynamic
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Figure 1: Two models of the gear power transmission with visco-elastic fractional order tooth coupling.

behaviours of the complete system, and so forth, lead to the simulation where the stresses in
the gears are higher than critical stresses; after certain time this may result in breakage of the
teeth.

1.1. Introduction into Nonlinear Dynamics of the Rotors

Dynamics of coupled rotors (see Figure 1) and of gyrorotors are very old engineering
problems with many different research results and discoveries of new nonlinear phenomena,
and of stationary and no stationary vibrations regimes with different kinetic parameters of
the dynamical system (see [1–14]). However, even nowadays many researchers pay attention
to this problem again.

Chaotic clock models, as well as original ideas on a paradigm for noise in machines
were presented by Moon (see [15]): “All machines exhibit a greater or lesser amount of
noise. The question arises as to whether a certain level of noise is natural or inevitable in a
complex assembly of mechanical or electromechanical devices?” In the cited paper, the nature
of noise or chaos in a specific class of complex multibody machines, namely the clock was
examined. For examining natural clocks of reductors (power transmission), as well as source
of nonlinear vibrations and noise in its dynamics, it is necessary to investigate properties of
nonlinear dynamics, and phase portraits, as well as structures of homoclinic orbits, layering
and sensitivity of this layering of homoclinic orbits and bifurcation of homoclinic points, as
it is presented in [6, 9–11].
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Following up the idea of Mossera that the distance between trajectories be measured
maintaining different time scales or “clock” with which time is measured along each
motion, Leela (see [16]) defines the new concepts of orbital stability in terms of given
topology of the function space. Leela’s paper pointed out the different kind of clock. Perfect
clock corresponds to stable system dynamics, entire clock space corresponds to the chaotic
topology and chaotic-like dynamics of the system.

By using examples of the rotor system which rotates about two axes with section
or without section, we applied the vector method of the kinetic parameters analysis of the
rotors with many axes which is done in [12, 13, 17–28]. In the previous listed papers, the
expressions for the corresponding linear momentum and angular momentum, as well as their
derivatives in time for the rotors with coupled rotation are used in the vector form. By these
expressions, the vector equations of the gyrorotor system dynamics are derived, as well as
the expression for the kinetic pressures on the gyro rotor system bearings. The mass moment
vectors introduced and defined by first author (see [6, 7, 17, 18, 29–36]), are used to present
a vector method for the analysis of kinetic parameter of coupled rigid rotors dynamics with
deviational mass properties of rotor, as well as of the dynamics of rotor with changeable mass
distribution (see [32, 32]).

By using vector equations (see [21, 22, 24, 25]), two scalar differential equations of
the heavy rotor system nonlinear dynamic for the case that disc is skewly eccentrically
positioned on the own polhode shaft axis (gyrodisk-rotor) is studied. For the case when one
rotation about axis is controlled by constant angular velocity, the nonlinear dynamics of the
rotation about other axis is studied. Non-linear gyrodisc-rotor system dynamics is presented
by phase portrait in the phase plane, with trigger of the coupled singularities, as well as with
homoclinic orbits and homoclinic points of the no stable type saddle. For the case of gyrodisc-
rotor system dynamics under the action of the perturbed couple the sensitive dependence in
the vicinity of the equilibrium no stable position which corresponds to homoclinic point of
the type no stable saddle, the possibility of the chaotic character behavior is pointed out.

Expressions of the kinetic pressures of shaft bearing are determined.
The analogy between motions of heavy material point: on the circle in vertical plane

which rotates around vertical axis in the plane (see [37, 38]) and corresponding motions case
of the heavy rotor around two axes with cross section, as well as of the gyrodisc-rotor which
rotates around two axes is pointed out (see [5, 21, 24, 25, 39, 40]).

Dynamics of disc on the one, or more, shaft is a classical engineering problem.
This problem attracts attention of many researchers and permanently takes place in world
scientific and engineering professional literature (see [3, 41, 42]). Some of these problems
are classical and can be found in university text books of mechanics (see [42]). As we
can see, these problems are in the nonlinear dynamics described by nonlinear differential
equations without analytical solutions. In present time these problems were conditionally
and approximately solved by approximate solutions or by linearizations (first by Simes,
Stodola, Rubanik and others [38, 43]). Problem of dynamics of the eccentric, skewly
positioned disc on one-shaft rotation is classical problem with gyroscopic effect (see classical
text books [17, 38, 43, 44]) which takes place in all text books of Dynamics and Theory of
Oscillations with applications in engineering, but their presentations are finished only by
nonlinear differential equations without their solutions and expression for kinetic pressures.
Nowadays, numerous new published papers containing different approximations of the
solutions of different classes of the mathematical descriptions of rotor dynamics are not
enough to take are into account all real influential factors to describe real system dynamics.
This is inspiration for new research in this area.
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By using knowledge of nonlinear mechanics (see [37, 45]), as well as by using
introduced mass moments vectors and vector rotators in the series of the published papers
[8, 19, 23–25, 34, 36, 46–49] phase portrait of gyrorotor dynamics with analysis of static and
dynamical equilibrium positions depending on system kinetic parameters are presented in
new light and new approach.

Using new knowledge in the nonlinear mechanics, theory of chaos and dynamical
systems published in [19, 50, 51], the sensitive dependence of the initial conditions and of
the forced motion—oscillation/rotation/stochasticlike-chaoticlike motion of the heavy rotor
with vibrating axis as well as gyrorotor in the “vicinity” of the homoclinic point and orbit are
analyzed. We followed the ideas of Holmes from [52] on the example pendulum excited by
one frequency force, and which showed us that Poincare maps contain the Smale horseshoe
map as well as global analysis processes of the dynamical systems which posses on the
homoclinic orbit is suitable for applying to study of the rotor dynamic. By using ideas of
Holmes from [52], it is easy to prove that forced dynamic of the heavy gyrorotor has in the
vicinity of homoclinic point sensitive dependence of initial conditions.

In the paper [6] the motion of a heavy body around a stationary axis in the field with
turbulent damping [53] is investigated and kinetic pressures on bearings are expressed by
mass moment vectors for the pole in the stationary bearing and for the axis of the body
rotation. The motion equations of a variable mass object rotating around a fixed axis are
expressed by mass moment vector for the pole and the axis and presented in [20].

A trigger of coupled singularities, on an example of coupled rotors with deviational
material particles are presented in [54]. Non-linear phenomena in rotor dynamics were
investigated in the series of [6].

From time to time it is useful to pay attention again to classical models of dynamics
of mechanical systems and evaluate possibilities for new approaches to these classical results
by using other than the methods usually used in the classical literature.

The interest in the study of vector and tensor methods with applications in the
Dynamics especially in Kinetics of rigid and solid body rotational motions and deformation
displacements as a new qualitative approach to the optimization of the time for study process
grew exponentially over the last few years because theoretical challenges involved in the
study of technical sciences need such optimization of university systems study. Short time
for fundamental knowledge transfer during one term (semester) courses with high level
of apparent study results requires the optimization of the time for introducing new basic
high level scientific ideas (logic and philosophical) which are easy to understand to most of
students in the study process and for engineering applications this is very important.

Also, we can conclude that the impact of different possibilities to establish the
phenomenological analogy of different model dynamics expressed by vectors connected to
the pole and the axis and the influence of such possibilities to applications allows professors,
researchers and scientists to obtain larger views within their specialization fields.

This is the reason to introduce mass moment vectors to presentation of the kinetic
parameters of the rotor dynamics and multistep gear transmission. On the basis of this
approach we built the first model presented in this paper.

In industry there is an increased need for detailed investigation of the toothed coupling
through models that involute the coupling of more than two teeth and for more than two, the
systems which give high revolution numbers and others. Relatively new models (see [1–
4, 14, 15, 26–28, 41, 55, 56]) have been established to study numerous problems in the gear
transmission dynamics.
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1.2. Introduction into Fractional Order Dynamics of the Rotors

In use, gear transmissions are very often exposed to action of forces that change with time
(dynamic load). There are also internal dynamic forces present. The internal dynamic forces
in gear teeth meshing, are the consequence of elastic deformation of the teeth and defects
in manufacture such as pitch differences of meshed gears and deviation of shape of tooth
profile. Deformation of teeth results in the so-called collision of teeth which is intensified
at greater difference in the pitch of meshed gears. Occurrence of internal dynamic forces
results in vibration of gears so that the meshed gears behave as an oscillatory system. This
model consists of reduced masses of the gear with elastic and damping connections (see
[2, 4, 55]). By applying the basic principles of mechanics and taking into consideration initial
and boundary conditions, the system of equation is established which describes physicality
of the gear meshing process. On the other hand, extremely cyclic loads (dynamic forces) can
result in breakage of teeth, thus causing failure of the mechanism or system.

Primary dependences between geometrical and physical quantities in the mechanics of
continuum (and with gear transmissions as well) include mainly establishing the constitutive
relation between the stress state and deformation state of the tooth’s material in the two teeth
in contact for each particular case.

Thus, solving this task, it is necessary to reduce numerous kinetic parameters to
minimal numbers and obtain a simple abstract model describing main properties for inves-
tigation of corresponding dynamical influences. Analytic methods include determination of
mathematical functions which detemine the solution in closed form. They are based on the
constitutive laws and relations of the stress-strain states in gear’s materials, and they can give
solutions for a very small number of boundary tasks. But, always each aproach needs certain
assumotions-approximations concerning description of real contours, properties of teeth is
contacts and initial conditions. For this reason numerous researchers resort to application of
numeric method in solving differential equation of the gear transmission motion. The basic
characteristic of the numeric methods is that the fundamental equations of the Elasticity
theory, including the boundary conditions, are solved by approximative numeric methods.
The solutions obtained are approximate.

Based on previous analysis at starting this part, we take into account that contact
between two teeth is possible to be constructed by standard light element with constitutive
stress—strain state relations which can be expressed by fractional order derivatives.

For that Reason, Let us make a short survey of the present results published in the
literatute.

The monographs [57, 58] contain a basic mathematical description of fractional
calculus and some solutions of the fractional order differential equations necessary for
applications of the corresponding mathematical description of a model of gear transmission
based on the teeths coupling by standard light fractional order element.

In series of the papers (see [59–62]) and in the monograph [63] analytical mechanics
of discrete hereditary systems is constructed and based on the standard light hereditary
elements in the form of neglected mass and with viscoelastic properties with corresponding
constitutive relations between forces and element deformations. Special case are constitutive
relations expressed by fractional order derivatices.

In [61] discrete continuum method was presented by use of the system of the material
particles coupled viscoelastically or creeping mass less standard light elements with different
stress-strain constitutive relations expressed by corresponding mathematical relations.
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Standard light element with constitutive stress-strain relation expressed by members with
fractional order derivatives are also used.

In the series of [45, 64–69] a series of the mixed discrete-continuum or continuum
mechanical systems with fractional order creep properties are mathematically described
by members contained in fractional order derivatives and analytically solved. These
examples with mathematical descriptions and solutions are basic for new model of the gear
transmission with fractional order properties.

2. Model of the Gear Transmission of the Fractional Order
Tooth Coupling

2.1. Description of the Gear Transmission Model of the Fractional
Order Tooth Coupling

Let us consider a model who is based on the three-step coupled rigid rotors but couplings
between gear teeth are realized by standard light elements fractional order constitutive stress-
strain relations, Figure 1(a). The second model of gear transmissions dynamics consists of
three rigid disks coupled by two standard light fractional order elements, as it is presented in
Figure 1(b). (see Appendix B).

2.2. Standard Light Fractional Order Element

Basic elements of multistep gear transmission system are

(i) gears in the form of disks with mass axial inertia moments Jk, k = 1, 2, 3,

(ii) standard light coupling elements of negligible mass in the form of axially stressed
rod without bending, and which has the ability to resist deformation under
static and dynamic conditions; Constitutive stress-strain relation between resti-
tution force P and element elongation x can be written in the general form
fpsr(P, Ṗ, x, ẋ, xαt ,D,Dα

t ,J, n, c, c̃, μ, α, cα, T,U, . . .) = 0, where D, Dα
t and J are

differential, fractional order and integral operators (for detail see monographs
[45, 58–67, 70, 71]) which find their justification in experimental verifications of
material behavior, while n, c, c̃, μ, cα, α, . . . are material constants, which are also
determined experimentally.

For each single standard coupling light element of negligible mass, we shall define
a particular stress-strain constitutive relation-law of material properties. This means that
we will define stress-strain constitutive relation as description relation between forces and
deformations of two gears teeth in contact determined and constrained by rotation angles of
the gear model in the form of disk and with changes of distances in time, with accuracy up to
constants which depend on the accuracy of their determination through experiment.

The accuracy of those constants laws and with them the relation between forces and
elongations will depend not only on knowing the nature of object, but also on our having the
knowledge necessary for dealing with very complex stress-strain relations in the coupling
gears teeth (for details see [2, 4, 55]). In this paper we shall use three types of such light
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standard constraint elements: light standard creep constraint element for which the stress-strain
relation for the restitution force in the function of element elongation is given by fractional
order derivatives (see [62]) in the form

P(t) = −
{
c0x(t) + cαDt

α[x(t)]
}
, (2.1)

where Dα
t [·] is fractional order differential operator of the αth derivative with respect to time

t in the following form:

Dt
α[x(t)] =

dαx(t)
dtα

= x(α)(t) =
1

Γ(1 − α)
d

dt

∫ t

0

x(τ)
(t − τ)α

dτ, (2.2)

where c, cα are rigidity coefficients is momentary and prolonged one, and α a rational number
between 0 and 1, 0 < α < 1.

2.3. Governing Equations of the Two-Step Gear Transmission with
Fractional Order Tooth Coupling

For defined model of the two-step gear transmission fractional order system vibrations, we
use three generalized coordinates—angle of gear disks rotation ϑi, i = 1, 2, 3, and we take into
account that defined system poses three degrees of freedom.

Kinetic energy of the of the two-step gear transmission fractional order system
vibrations is in the form

Ek =
1
2

k=2∑

k=1

Jkϑ̇2
k +

1
2

J3ϑ̇
2
2 +

1
2

J4ϑ̇
2
3. (2.3)

The first standard light fractional order coupling element is between first gear disk and
second and is strained for x1 = R1((R2/R1)ϑ2 − ϑ1), and the second standard light fractional
order coupling element is between the third gear disk and fourth and is strained for x2 =
R3((R4/R3)ϑ3 − ϑ2). On the basis of the previous constitutive stress-strain relation of the first
and second standard light fractional order coupling elements between geared disks in the
two-step gear power transmission are

P1 = −cx1 − cαDt
α[x1] = −cR1

(
R2

R1
ϑ2 − ϑ1

)
− cαDt

α

[
R1

(
R2

R1
ϑ2 − ϑ1

)]
,

P2 = −cx2 − cαDt
α[x2] = −cR3

(
R4

R3
ϑ3 − ϑ2

)
− cαDt

α

[
R3

(
R4

R3
ϑ3 − ϑ2

)]
.

(2.4)
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Governing system of the double gear transmission fractional order differential
equations is in the following form:

J1ϑ̈1 = −P1 = cR1

(
R2

R1
ϑ2 − ϑ1

)
+ cαDt

α

[
R1

(
R2

R1
ϑ2 − ϑ1

)]
,

(J2 + J3)ϑ̈2 = P1 − P2 = −cR1

(
R2

R1
ϑ2 − ϑ1

)
− cαDt

α

[
R1

(
R2

R1
ϑ2 − ϑ1

)]

+ cR3

(
R4

R3
ϑ3 − ϑ2

)
+ cαDt

α

[
R3

(
R4

R3
ϑ3 − ϑ2

)]
,

J4ϑ̈3 = P2 = −cR3

(
R4

R3
ϑ3 − ϑ2

)
− cαDt

α

[
R3

(
R4

R3
ϑ3 − ϑ2

)]
.

(2.5)

After introducing the following notations:

ω2
0 =

c

J1
R1, ω2

0α =
cα
J1
R1, k21 =

R2

R1
, k31 =

R3

R1
, k41 =

R4

R1
, λ23,1 =

(J2 + J3)
J1

, λ4,1 =
J4

J1
(2.6)

governing system of the l fractional order differential equations is possible to write in the
following form:

ϑ̈1 −ω2
0k21ϑ2 +ω2

0ϑ1 = ω2
0α1D

t
α[(k21ϑ2 − ϑ1)],

ϑ̈2 −ω2
0λ23,1ϑ1 +ω2

0λ23,1(k21 + k31)ϑ2 −ω2
0λ23,1k41ϑ3 = ω2

0αλ23,1Dt
α[ϑ1 + (k21 + k31)ϑ2 − k41ϑ3],

ϑ̈3 +ω2
0λ413(k41ϑ3 − k31ϑ2) = −ω2

0αλ4,1Dt
α[(k41ϑ3 − k31ϑ2)].

(2.7)

2.4. Solutions of the Governing System of Differential Equations of Two-Step
Gear Transmission Dynamics, with Fractional Order Tooth Coupling

Now, for beginning let us consider corresponding basic systems of the differential equations
in linear form:

ϑ̈1 −ω2
0k21ϑ2 +ω2

0ϑ1 = 0,

ϑ̈2 −ω2
0λ23,1ϑ1 +ω2

0λ23,1(k21 + k31)ϑ2 −ω2
0λ23,1k41ϑ3 = 0,

ϑ̈3 +ω2
0λ413(k41ϑ3 − k31ϑ2) = 0,

(2.8)

and with proposed solutions in the following form:

ϑk(t) = Ak cos(ωt + α), (2.9)
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and taking the following notation u = ω2/ω2
0, we can write the following systems of algebra

of algebra equations with respect to unknown amplitudes Ak in the matrix form

⎛

⎝
(1 − u) −k21 0
−λ23,1 [λ23,1(k21 + k31) − u] −λ23,1k41

0 −λ413k31 (λ413k41 − u)

⎞

⎠

⎧
⎨

⎩

A1

A2

A3

⎫
⎬

⎭
= {0}, (2.10)

and corresponding frequency equation in the developed form

f(u) = (1 − u)[λ23,1(k21 + k31) − u](λ413k41 − u)

− k21λ23,1(λ413k41 − u) − λ413k31λ23,1k41(1 − u) = 0.
(2.11)

From the previous frequency equation, we can obtain the following three roots us, s =
1, 2, 3 and corresponding eigen circular frequencies: ω2

s = usω
2
0, s = 1, 2, 3, and corresponding

cofactors are: K(s)
31 = −k21(λ413k41 − us); K(s)

32 = −λ23,1k41(1 − u); K(s)
33 = −k21λ23,1k41. Then,

solution of the basic linear differential equations is

ϑk(t) =
s=3∑

s=1

ϑ
(s)
k (t) =

s=3∑

s=1

A
(s)
k

cos(ωst + αs) =
s=3∑

s=1

K
(s)
3k Cs cos(ωst + αs) =

s=3∑

s=1

K
(s)
3k ξs, (2.12)

where ξs = Cs cos(ωst + αs), s = 1, 2, 3 are main coordinates of the linear system.
By using the expression for generalized coordinates ϑi, i = 1, 2, 3 by normal coordinates

of the linear system, the governing system of the fractional differential equations (2.12) is
possible to be transform as in the following form:

ξ̈s +ω2
sξs = −ω2

αsD
t
α[ξs], s = 1, 2, 3, (2.13)

where

ω2
s =

∑i=3
i=1
∑j=3

j=1 cijK
(s)
3i K

(s)
3j

∑i=3
i=1
∑j=3

j=1 aijK
(s)
3i K

(s)
3j

, s = 1, 2, 3, ω2
αs =

∑i=3
i=1
∑j=3

j=1 cαijK
(s)
3i K

(s)
3j

∑i=3
i=1
∑j=3

j=1 aijK
(s)
3i K

(s)
3j

, s = 1, 2, 3.

(2.14)

Obtained system of the three fractional order differential equations (2.14) present three
uncoupled fractional order differential equations independent along normal coordinates ξs,
s = 1, 2, 3 of the considered fractional order model of the gear transmission dynamics. All
three fractional order differential equations are of the same type and each presents one mode
of the fractional order mode vibrations. Analytical solution is easy to obtain by using one of
[58] or [42] or [69] or [62]. Solutions of here fractional order differential equation is possible
to solve by using the approach presented in the Appendix A. (It is possible to solve these
fractional order differential equation by using the approach presented in the Appendix A).
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Then, for the solutions of the each fractional order differential equations (2.13), we can
write the following expressions:

ξs(t) = ξ0s

∞∑

k=0

(−1)kω2k
αst

2k
k∑

j=0

(
k
j

)
(∓1)jω2j

αst
−αj

ω
2j
s Γ
(
2k + 1 − αj

)

+ ξ̇0s

∞∑

k=0

(−1)kω2k
αst

2k+1
k∑

j=0

(
k
j

)
(∓1)jω−2j

αs t
−αj

ω
2j
s Γ
(
2k + 2 − αj

) , s = 1, 2, 3,

(2.15)

where ξs(0) = ξ0s and ξ̇s(0) = ξ̇0s are initial values of these main coordinates defined by initial
conditions. Expressions (2.15) for main system coordinates present fractional order models
like one frequency vibration modes.

Now, we can separate three sets of the two fractional order time components ηs(t)
and ζs(t), s = 1, 2, 3 and in the expression of the solutions along normal coordinates of the
governing system of fractional differential equations describing our second model of the gear
transmission fractional order dynamics we can write in the following forms:

ηs(t) =
∞∑

k=0

(−1)kω2k
αst

2k
k∑

j=0

(
k

j

)
(∓1)jω2j

αst
−αj

ω
2j
s Γ
(
2k + 1 − αj

) , s = 1, 2, 3, (2.16)

ζs(t) =
∞∑

k=0

(−1)kω2k
αst

2k+1
k∑

j=0

(
k

j

)
(∓1)jω−2j

αs t
−αj

ω
2j
s Γ
(
2k + 2 − αj

) , s = 1, 2, 3. (2.17)

These three series of the two fractional order time components ηs(t) and ζs(t), s = 1, 2, 3
present series of the six fractional order modes like one frequency modified cos as well as sin
vibration mode components.

Then the solution of the basic system of the fractional order differential equations (2.7)
along generalized coordinates ϑi, i = 1, 2, 3 contain sixth time functions in the forms (2.16) and
(2.17). Finally for the solution of the basic system of the fractional order differential equations
(2.7) describing dynamics of the fractional order two-step gear transmission it is possible to
express in the following form:

ϑk(t) =
s=3∑

s=1

K
(s)
3k ξs(t) =

s=3∑

s=1

K
(s)
3k ξ0s

∞∑

k=0

(−1)kω2k
αst

2k
k∑

j=0

(
k
j

)
(∓1)jω2j

αst
−αj

ω
2j
s Γ
(
2k + 1 − αj

)

+
s=3∑

s=1

K
(s)
3k ξ̇0s

∞∑

k=0

(−1)kω2k
αst

2k+1
k∑

j=0

(
k
j

)
(∓1)jω−2j

αs t
−αj

ω
2j
s Γ
(
2k + 2 − αj

) , k = 1, 2, 3.

(2.18)

2.5. Numerical Analysis of the Solutions of the Governing System of
Fractional Order Differential Equations of Two-Step Gear Transmission
Dynamics, with Fractional Order Tooth Coupling

We can see that for fractional order model of the double gear transmission vibrations was
transformed by eigen normal coordinates ξs, s = 1, 2, 3 of the corresponding linear system
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Figure 2: Relations between eigen amplitudes of eigen main normal modes of corresponding system of the
basic linear differential equations (2.12), (a) for first, (b) for second, and (c) for third mode.

into three separate independent fractional order oscillators, each with one degree of freedom,
and each fractional order differential equation contain only one main coordinate of the system
dynamics.

Relations between eigen amplitudes of eigen main normal modes of corresponding
system of the basic linear differential equations (2.8) are given on Figure 2(a) for first, 2(b)
for second and 2(c) for third mode.

By using different numerical values of the kinetic and geometrical parameters of the
two-step gear transmission model, the series of the graphical presentation of the three sets
of the two-time components ηs(t) and ζs(t), s = 1, 2, 3 of the solutions, by using expressions
(2.15) and (2.16), are obtained. In the series Figures 3–7 are presented characteristic modes for
different values of the α coefficient of the fractional order of the used standard light fractional
order element for describing teeth coupling between gears (see Appendix B).

In Figure 3, first eigen fractional order time components η1(t) and ζ1(t) for different
system kinetic and geometric parameter values are presented.

In Figure 4, first eigen fractional order mode ξ1(t) with corresponding first eigen
fractional order time components η1(t) and ζ1(t) for different system kinetic and geometric
parameter values are presented. First eigen fractional order mode is like one frequency
vibration mode similar to first single frequency eigen mode of the corresponding linear
system.

In Figure 5, second eigen fractional mode ξ2(t) with corresponding second fractional
order time components η2(t) and ζ2(t) for different system kinetic and geometric parameter
values, are presented. Second eigen fractional order mode is like one frequency vibration
mode similar to second single frequency eigen mode of the corresponding linear system.

In Figure 6, third eigen fractional mode ξ3(t) with corresponding third fractional order
time components η3(t) and ζ3(t) for different system kinetic and geometric parameter values
are presented. Third eigen fractional order mode is like one frequency vibration mode similar
to third single frequency eigen mode of the corresponding linear system.

In Figure 7, first and second eigen fractional modes, ξ1(α, t) and ξ2(α, t) are presented
by surfaces with corresponding first and second fractional order time components, η1(α, t)—
surfaces in left column and η2(α, t)—surfaces in right column for same system kinetic and
geometric parameter values are presented.

The third eigen fractional mode ξ3(α, t) is not presented by surfaces with corre-
sponding third fractional order time components η3(α, t) by the reason that corresponding
surfaces qe similar as two previous first and second eigen fractional modes, ξ1(α, t) and ξ2(α, t)
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Figure 3: First eigen fractional order time components η1(t) and ζ1(t) for different system kinetic and
geometric parameter values.

presented in Figure 7, and some characteristic properties are visible in the graph presented in
Figure 6.

3. Concluding Remarks

Two approaches to the models of the gear transmission system dynamics with possibility of
investigate different properties of the very complex dynamics of the corresponding real gear
transmission system are possible.
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Figure 4: First eigen fractional mode ξ1(t) with corresponding first fractional order time components η1(t)
and ζ1(t) for different system kinetic and geometric parameter values. Eigen fractional order mode is like
one frequency vibration mode similar to first single frequency eigen mode of the corresponding linear
system.
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Figure 5: Second eigen fractional mode ξ2(t) with corresponding second fractional order time components
η2(t) and ζ2(t) for different system kinetic and geometric parameter values. Eigen fractional order mode
is like one frequency vibration mode similar to second single frequency eigen mode of the corresponding
linear system.
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Figure 6: Third eigen fractional mode ξ3(t) with corresponding third fractional order time components
η3(t) and ζ3(t) for different system kinetic and geometric parameter values. Eigen fractional order mode
is like one frequency vibration mode similar to third single frequency eigen mode of the corresponding
linear system.
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Figure 7: First and second eigen fractional modes, ξ1(α, t) and ξ2(α, t) presented by surfaces with
corresponding first and second fractional order time components η1(α, t)—surfaces in left column and
η2(α, t)—surfaces in right column for same system kinetic and geometric parameter values.

First approach give a model based on the rigid rotors coupled with rigid gear teeth,
with mass distributions not balanced and in the form of the mass particles as the series of the
mass debalances of the gears in multistep gear transmission. By very simple model is possible
and useful investigation of the nonlinear dynamics of the multistep gear transmission and
nonlinear phenomena in free and forced dynamics. This model is suitable to explain source
of vibrations and big noise, as well as no stability in gear transmission dynamics. Layering
of the homoclinic orbits in phase plane is source of a sensitive dependence nonlinear type of
regime of gear transmission system dynamics.

Second approach give a model based on the two-step gear transmission taking
into account deformation and creeping and also visco-elastic teeth gears coupling. Our
investigation was focused to a new model of the fractional order dynamics of the gear
transmissiont. For this model we obtain analytical expressions for the corresponding
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fractional order modes like one frequency eigen vibrational modes. Generalization of this
model to the similar model of the multistep gear transmission is very easy.

Appendices

A. Solution of a Fractional Order Differential Equation of a Fractional
Order Creep Oscillator with Single Degree of Freedom

The fractional order differential equations from all three (79) obtained and considered cases
of eigen fractional order partial-particular oscillators of the hybrid fractional order gear
transmission system are in mathematical analogy same type of fractional order differential
equation with corresponding unknown time-function, ξs(t), s = 1, 2, 3. For all these time
functions ξs(t), s = 1, 2, 3, we can use notation T(t) and all previous derived fractional order
differential equations (79) of eigen fractional order partial oscillators with one degree of
freedom, correspond to the fractional order model dynamics of the gear transmission system
dynamics with three degree of freedom, we can rewrite it in the following form:

T̈(t) ±ω2
αT

(α)(t) +ω2
0T(t) = 0. (A.1)

This fractional order differential equation (A.1) on unknown time-function T(t), can
be solved by applying Laplace transforms (see [42, 58] or [67, 69]). Upon that fact Laplace
transform of solution is in the form

T
(
p
)
= L[T(t)]

pT(0) + Ṫ(0)

p2 +ω2
0

[
1 ±
(
ω2
α/ω

2
0

)
R
(
p
)] , (A.2)

where L�Dt
α[T(t)]� = R(p)L[T(t)] is Laplace transform of a fractional derivative dαT(t)/dtα

for 0 ≤ α ≤ 1. For creep rheological material those Laplace transforms are of the form:

L
[
Dt
α[T(t)]

]
= R
(
p
)
L[T(t)] − dα−1

dtα−1
T(0) = pαL[T(t)] − dα−1

dtα−1
T(0) (A.3)

where the initial value are

dα−1T(t)
dtα−1

∣∣∣∣∣
t=0

= 0, (A.4)

so, in that case Laplace transform of time-function is given by the following expression:

L{T(t)} =
pT0 + Ṫ0

[
p2 ±ω2

αpα +ω2
0

] . (A.5)
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Table 1: The datas of gear box.

Pinion Middle 1 Middle 2 Output gear
Number of the teeth 51 72 19 73
Modulus, mm 1,405 1,405 2,2175 2,2175
Face whith, mm 22,5 29 20 20
Inertias 0 01837 0 03837 0 00071 0 1740
Contact ratio 1,60 1,7
Mean stiffness 4, 24 × 109 3, 45 × 109

Mesh Phasing 0 257
Torque T , Nm 100 0 0 258,4

For boundary cases, when material parameters α take the following values: α = 0
and α = 1 we have the two special simple cases, whose corresponding fractional-differential
equations and solutions are known. In these cases fractional-differential equations are:

(1∗) T̈(t) ± ω̃2
0αT

(0)(t) +ω2
0T(t) = 0 for α = 0, (A.6)

where T (0)(t) = T(t), and

(2∗)
...
T (t) ±ω2

1αT
(1)(t) +ω2

0T(t) = 0 for α = 1, (A.7)

where T (1)(t) = Ṫ(t).
The solutions to equations (C.6) and (C.7) are

(1∗) T(t) = T0 cos t
√
ω2

0 ± ω̃
2
0α +

Ṫ0√
ω2

0 ± ω̃
2
0α

sin t
√
ω2

0 ± ω̃
2
0α (A.8)

for α = 0.

(
2∗(a)
)

T(t) = e∓(ω
2
1/2)t

⎧
⎪⎨

⎪⎩
T0 cos t

√

ω2
0 −

ω4
1α

4
+

Ṫ0√
ω2

0 −ω
4
1α/4

sin t

√

ω2
0 −

ω4
1α

4

⎫
⎪⎬

⎪⎭
(A.9)

for α = 1 and for ω0 > (1/2)ω2
1α, (for soft creep) or for strong creep:

(
2∗(b)
)

T(t) = e∓(ω
2
1α/2)t

⎧
⎪⎨

⎪⎩
T0Ch t

√
ω4

1α

4
−ω2

0 +
Ṫ0√

ω4
1α/4 −ω2

0

Sh t

√
ω4

1α

4
−ω2

0

⎫
⎪⎬

⎪⎭
(A.10)

for α = 1 and for ω0 < (1/2)ω2
1α.

For kritical case

(
2∗(c)
)

T(t) = e∓(ω
2
1α/2)t

{

T0 +
2Ṫ0

ω2
1α

t

}

za α = 1, za ω0 =
1
2
ω2

1α. (A.11)
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Fractional-differential equation (A.1) for the general case, when α is real number from
interval 0 < α < 1 can be solved by using Laplace’s transformation. By using that is

L
{
dαT(t)
dtα

}
= pαL{T(t)} − dα−1T(t)

dtα−1

∣
∣
∣
∣
∣
t=0

= pαL{T(t)}, (A.12)

and by introducing for initial conditions of fractional derivatives in the form (A.3), and after
taking Laplace’s transform of (A.1) we obtain the equation (A.2) with respect to the Laplace
transform of solution, or in the following form:

L{T(t)} =
pT0i + Ṫ0i

2
(
p2 ±ω2

αpα +ω2
0

) . (A.13)

For the case when ω2
0 /= 0, the Laplace transform of the solution can be developed into

series by following way:

L{T(t)} =
pT0 + Ṫ0

p2
[
1 +
(
ω2
α/p2

)(
±pα +ω2

0/ω
2
α

)]

=
(
T0 +

Ṫ0

p

)
1
p

1
1 +
(
ω2
α/p2

)(
±pα +ω2

0/ω
2
α

) ,

(A.14)

L{T(t)} =
(
T0 +

Ṫ0

p

)
1
p

∞∑

k=0

(−1)kω2k
α

p2k

(

±pα +
ω2

0

ω2
α

)k

,

L{T(t)} =
(
T0 +

Ṫ0

p

)
1
p

∞∑

k=0

(−1)kω2k
α

p2k

k∑

j=0

(
k
j

)
(∓1)jpαjω2(j−k)

α

ω
2j
o

.

(A.15)

In writing (A.15) it is assumed that expansion leads to convergent series. The inverse
Laplace transform of previous Laplace transform of solution (A.15) in term-by-term steps is
based on known theorems, and yield the following solution of differential equation (A.1) of
time function in the following form of time series:

T(t) = L−1L{T(t)} = T0

∞∑

k=0

(−1)kω2k
α t

2k
k∑

j=0

(
k
j

)
(∓1)jω2j

α t
−αj

ω
2j
o Γ
(
2k + 1 − αj

)

+ Ṫ0

∞∑

k=0

(−1)kω2k
α t

2k+1
k∑

j=0

(
k
j

)
(∓1)jω−2j

α t−αj

ω
2j
o Γ
(
2k + 2 − αj

) .

(A.16)

B. Example of Numerical Experiment

See Table 1.
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[11] K. Hedrih (Stevanović), “Homoclinic orbits layering in the coupled rotor nonlinear dynamics and
chaotic clock models,” in Proceedings of the 21st International Congress of Theoretical and Applied
Mechanics (ICTAM ’04), W. Gutkowski and T. A. Kowalewski, Eds., vol. 2, p. 421, Springer, Warsaw,
Poland, August 2004.
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[49] K. Hedrih (Stevanović), “Nonlinear dynamics of rotor with a vibrating axis and sensitive dependence
on initial conditions of forced vibration/rotation/stochasticlikechaoticlike motion of a heavy rotor,”
in Proceedings of the 3rd Bogoliubov Readings: Asymptotic and Qualitative Methods of Nonlinear Mechanics
(ASYM ’97), pp. 73–74, Tezi dopovidey, Mezhdunarodnaya konferenciya, Inst. Math. NANU, Kiev,
Russia, September 1997.
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[51] K. Hedrih (Stevanović), “Nonlinear Dynamics of a Rotor with a vibrating axis, and sensitive
dependence on the initial conditions of the forced vibration of a heavy rotor,” International Journal
Nonlinear Oscillations, vol. 3, no. 1, pp. 129–145, 2000.

[52] Ph. Holmes, “Nonlinear oscillations and the smale horseshoe map,” in Proceedings of Symposium in
Applied Mathematics, vol. 39, pp. 81–88, American Mathematical Society, Providence, RI, USA, 1989.

[53] J. J. Stoker, Nonlinear Vibrations, Interscience, New York, NY, USA, 1950.
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[55] V. Nikolić, Mechanical Analysis of the Gear Transmission, Monograph, Mašinski fakultet u Kragujevcu,
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[67] K. Hedrih (Stevanović), “Partial fractional order differential equations of transversal vibrations of
creep connected double plates systems,” in Proceedings of 1st IFACWorkshop on Fractional Differentiation
and Its Application (FDA ’ 04), vol. 10, pp. 299–304, Bordeaux, France, July 2004.
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On account of the complex structure of the middle ear and that it is more difficult to carry
out experiments to test the nature of the mechanical components, the relevant data is hard to
obtain, which has become an obstacle restricting analysis of the middle ear mechanic. Based
on spatial structure and mechanical properties of ossicular chain, the paper has established
functional relationship between load and members displacement with elastic principles and
variation principles, in order that experimental results will be reflected in mechanical model. In
the process of solving equations, we use the experimental data of a known special point or the
various components function of statistical regression method and then combine them with the
time shift function, so that the analytical solution of the various components will be achieved. The
correctness of equation derived in this paper is verified by comparing the experimental data. So
the model has provided a convenient way to obtain date in the future research analysis.

1. Introduction

Recently, with the rapid development of biological science, there is a growing concern about
the research on human organs. So the research on middle ear structure and function has
started in the ascendant. From different views, many scholars have been studying on middle-
ear and sound conduction with different methods [1–20]. Abel et al. have obtained the
geometry of ossicular in order to establish the finite element model in magnetic resonance
microimaging [21]. Sun et al. have created middle ear FEM by a cross-calibration technique,
and applied it to predicate stapes footplate displacement and the ossicular mechanics
character of the human middle ear [22]. In the same year, in Takuji Koike’s study, a three-
dimensional FEM of the human middle ear has been established, including features of
the middle ear which were not considered in the previous model, that is, the ligaments,
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Figure 1: Spatial structure of ossicular chain [25].

tendons, I–S joint, loading of the cochlea, external auditory meatus, middle-ear cavities, and
so forth. The validity of this model was confirmed by comparing the motion of the tympanic
membrane and ossicular obtained by this model with the measurement data [23]. In Gan et al.
study, they proposed a three-dimensional finite element model of the human ear. This model
was constructed based on a complete set of histological section images of a left ear temporal
bone. The FEM of the human ear was used to simulate ossicular joint to sound conduction
affect [24].

Although these achievements are of great significant, the question of research process
can not be ignored. For example, early research results were almost done on the cadaveric
head or living animal; only observation experiment of some part in middle ear was done
on normal human and lacked measurement of the whole member motion. Therefore, the
quantity of measurement data was less than numerical simulation requirement. This limits
the development numerical simulation method which was applied on middle ear research.
In order to solve the problem, we have established mechanical model of ossicular and given
its mathematical expression. The model can be used to test numerical simulation results.

2. Spatial Structure of Ossicular Chain

The ossicular chain is the smallest group of bones in human body, three bones together,
they are the hammer (malleus), the anvil (incus), and the stirrup (stapes). These bones are
connected and composition of a tiny link chain; see Figure 1. The ossicular chain comprises
incudomalleolar joint and incudostapedial joint. Incudomalleolar joint is comprised of
malleus and incus. Incudostapedial joint is comprised of incus and stapes. In general
conditions, incudomalleolar joint and incudostapedial joint are immovable. Only in high
sound pressure, the relative motion could occur. The ossicular chain is fixed the middle
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Table 1: Parameters.

Name Length Area Displacement Elastic modulus
Anterior malleus ligament l1 sl1 w1 kl1
Lateral malleus ligament l2 sl2 w2 kl2
Superior malleus ligament l3 sl3 w3 kl3
Tensor tympani muscle l4 sl4 w4 kl4
Superior incus ligament l5 sl5 w5 kl5
Posterior incus ligament l6 sl6 w6 kl6
Stapedius muscle l7 sl7 w7 kl7

Table 2: Parameters.

Name Area Displacement Elastic modulus Density
Stapes footplate sl8 w10 kst —
Malleus — w8 — ρma

Incus — w9 — ρin

Stapes — w10 — ρst

Load on malleus w8 |x=q frequency �

ear cavity depending on ligaments and tendons. Fixed malleus ligaments include superior,
anterior and lateral ligament. Another tensor tympani muscle can help ligament fix malleus.
Fixed incus ligaments include superior and posterior ligament. Fixed stapes include annular
ligament and stapedius muscle. These ligaments and muscles can determine spatial position
of ossicular chain in the middle ear cavity and affect motion states of ossicular chain under
external dynamic loads.

3. Establishing Mechanics Model of Ossicular Chain

The length axis of ligament and muscle was defined to parallel coordinated axis in order to
be simplified to derive formula. Tables 1 and 2 gave displacement and physics property of
ligament, muscle, and ossicular chain.

Energy expressions of ossicular chain, ligament, and muscle be follows.

Malleus Kinetic Energy:

Tma =
∫∫∫

Ω

1
2
ρma�

2w2
8dΩ. (3.1)

Incus Kinetic Energy:

Tin =
∫∫∫

Ω

1
2
ρin�

2w2
9dΩ. (3.2)

Stapes Kinetic Energy:

Tst =
∫∫∫

Ω

1
2
ρst�

2w2
10dΩ. (3.3)
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Elastic potential energy of anterior malleus ligament:

El1 =
1
2

∫∫∫

Ω
kl1

[(
∂w1

∂x

)2

+
(
∂w1

∂y

)2

+
(
∂w1

∂z

)2
]

+
kl1

2
(
1 + μ

)

[(
∂w1

∂x
+
∂w1

∂y

)2

+
(
∂w1

∂y
+
∂w1

∂z

)2

+
(
∂w1

∂x
+
∂w1

∂z

)2

dΩ

]

.

(3.4)

Elastic potential energy of lateral malleus ligament:

El2 =
1
2

∫∫∫

Ω
kl2

[(
∂w2

∂x

)2

+
(
∂w2

∂y

)2

+
(
∂w2

∂z

)2
]

+
kl2

2
(
1 + μ

)

[(
∂w2

∂x
+
∂w2

∂y

)2

+
(
∂w2

∂y
+
∂w2

∂z

)2

+
(
∂w2

∂x
+
∂w2

∂z

)2

dΩ

]

.

(3.5)

Elastic potential energy of superior malleus ligament:

El3 =
1
2

∫∫∫

Ω
kl3

[(
∂w3

∂x

)2

+
(
∂w3

∂y

)2

+
(
∂w3

∂z

)2
]

+
kl3

2
(
1 + μ

)

[(
∂w3

∂x
+
∂w3

∂y

)2

+
(
∂w3

∂y
+
∂w3

∂z

)2

+
(
∂w3

∂x
+
∂w3

∂z

)2

dΩ

]

.

(3.6)

Elastic potential energy of tensor tympani muscle:

El4 =
1
2

∫∫∫

Ω
kl4

[(
∂w4

∂x

)2

+
(
∂w4

∂y

)2

+
(
∂w4

∂z

)2
]

+
kl4

2
(
1 + μ

)

[(
∂w4

∂x
+
∂w4

∂y

)2

+
(
∂w4

∂y
+
∂w4

∂z

)2

+
(
∂w4

∂x
+
∂w4

∂z

)2

dΩ

]

.

(3.7)

Elastic potential energy of superior incus ligament

El5 =
1
2

∫∫∫

Ω
kl5

[(
∂w5

∂x

)2

+
(
∂w5

∂y

)2

+
(
∂w5

∂z

)2
]

+
kl5

2
(
1 + μ

)

[(
∂w5

∂x
+
∂w5

∂y

)2

+
(
∂w5

∂y
+
∂w5

∂z

)2

+
(
∂w5

∂x
+
∂w5

∂z

)2

dΩ

]

.

(3.8)
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Elastic potential energy of posterior incus ligament:

El6 =
1
2

∫∫∫

Ω
kl6

[(
∂w6

∂x

)2

+
(
∂w6

∂y

)2

+
(
∂w6

∂z

)2
]

+
kl6

2
(
1 + μ

)

[(
∂w6

∂x
+
∂w6

∂y

)2

+
(
∂w6

∂y
+
∂w6

∂z

)2

+
(
∂w6

∂x
+
∂w6

∂z

)2

dΩ

]

.

(3.9)

Elastic potential energy of stapedius muscle:

El7 =
1
2

∫∫∫

Ω
kl7

[(
∂w7

∂x

)2

+
(
∂w7

∂y

)2

+
(
∂w7

∂z

)2
]

+
kl7

2
(
1 + μ

)

[(
∂w7

∂x
+
∂w7

∂y

)2

+
(
∂w7

∂y
+
∂w7

∂z

)2

+
(
∂w7

∂x
+
∂w7

∂z

)2

dΩ

]

.

(3.10)

Elastic potential energy of stapes footplate:

Est =
1
2

∫∫

s
kstw

2
10ds (3.11)

External loads do work:

W =
1
2
Pw8

∣∣∣∣
x=q

. (3.12)

Structure strain energy:

V = El1 + El2 + El3 + El4 + El5 + El6 + El7 + Est −W. (3.13)

Potential energy of structure:

U = V − T = El1 + El2 + El3 + El4 + El5 + El6 + El7 + Est −W − Tma − Tin − Tst. (3.14)

When the load was applied on ossicular chain, all members were together moving.
Moreover displacement direction was the same in interface of two members. So displacement
relationship in members is as follows.

Displacement Relationship between anterior malleus ligament and malleus:

w8 −w1 | s1 = 0. (3.15)

Displacement Relationship between lateral malleus ligament and malleus:

w8 −w2 | s2 = 0. (3.16)
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Displacement Relationship between superior malleus ligament and malleus:

w8 −w3 | s3 = 0. (3.17)

Displacement Relationship between tensor tympani muscle and malleus:

w8 −w4 | s4 = 0. (3.18)

Displacement Relationship between superior incus ligament and incus:

w9 −w5 | s5 = 0. (3.19)

Displacement Relationship between posterior incus ligament and incus:

w9 −w6 | s6 = 0. (3.20)

Displacement Relationship between stapedius muscle and stapes:

w10 −w7 | s7 = 0. (3.21)

Displacement Relationship between malleus and incus:

w9 −w8 | s8 = 0. (3.22)

Displacement Relationship between incus and stapes:

w10 −w9 | s9 = 0, (3.23)

where s1 · · · s9 is the area of interface.

Boundary Constraint

Displacement of the fixed end in anterior malleus ligament:

w1 | s10 = 0. (3.24)

Displacement of the fixed end in lateral malleus ligament:

w2 | s11 = 0. (3.25)

Displacement of the fixed end in superior malleus ligament:

w3 | s12 = 0. (3.26)
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Displacement of the fixed end in tensor tympani muscle:

w4 | s13 = 0. (3.27)

Displacement of the fixed end in superior incus ligament:

w5 | s14 = 0. (3.28)

Displacement of the fixed end in posterior incus ligament:

w6 | s15 = 0. (3.29)

Displacement of the fixed end in stapedius muscle:

w7 | s16 = 0, (3.30)

where s10 · · · s16 is the area of the fixed end in ligament and muscle.
Because elastic modulus of bone is ten thousand times than soft tissue, bone strain is

less than soft tissue under loads and can be ignored. So bone displacement can be seen as rigid
displacement caused by soft tissue motion. According to the published literature, when soft
tissue strain is in elastic range, load and displacement will show linear relationship in terms
of mechanical principle [26, 27]. Therefore, the whole structure displacement will show in
linear relationship in the low stress conditions.

Based on the above analysis, the paper makes the two following assumptions:

(a) when load is fixed, the relationship between member displacement and spatial
coordinate will be linear;

(b) when point is chosen, the point displacement will relate to load.

Based on the assumption, the composition of member displacement is coordinate and load.
Moreover, the displacement of coordinate and load is independent. Member displacement
expression:

Displacement of anterior malleus ligament

w1 =
(
a11x + b11y + c11z + d11

)
· f. (3.31)

Displacement lateral malleus ligament:

w2 =
(
a21x + b21y + c21z + d21

)
· f. (3.32)

Displacement of superior malleus ligament:

w3 =
(
a31x + b31y + c31z + d31

)
· f. (3.33)
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Displacement of tensor tympani muscle:

w4 =
(
a41x + b41y + c41z + d41

)
· f. (3.34)

Displacement of superior incus ligament:

w5 =
(
a51x + b51y + c51z + d51

)
· f. (3.35)

Displacement of posterior incus ligament:

w6 =
(
a61x + b61y + c61z + d61

)
· f. (3.36)

Displacement of stapedius muscle:

w7 =
(
a71x + b71y + c71z + d71

)
· f. (3.37)

Malleus displacement:

w8 =

{(
a81x + b81y + c81z + d81

)
· f x < x1,

(
a82x + b82y + c82z + d82

)
· f x > x1.

(3.38)

Incus displacement:

w8 =

{(
a91x + b91y + c91z + d91

)
· f x < x2,

(
a92x + b92y + c92z + d92

)
· f x > x2.

(3.39)

Stapes displacement:

w10 =
(
a101x + b101y + c101z + d101

)
· f, (3.40)

where x1, x2 is the interface of variable malleus section or variable incus section. a, b, c, d are
coefficient and they have subscript. f is a function to relate with load.

w1, w2 · · ·w7, expression including f is solved by knowing boundary conditions and
testing results of key points. And then based on relationship of ossicular and ligament,
w8, w9, w10 expression including f is solved. Finally all expressions are substituted to
potential energy of structure U. Applying on variation principles to f , getting δU = 0, f
is solved and is substituted to displacement expression of members (ossicular, ligament and
muscle).

Another method is that displacement function expressions of member were obtained
by linear regression based on similar results. The geometrical size of finite element model
based on the images of CT in healthy human by Zhongshan Hospital affiliated to Fudan
University. All patients were scanned with a 64-slice multiple spiral CT scanner (GE
lightspeed VCT) using the following parameters: 0.625 mm collimation, 0.42 second per
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Table 3: Material properties of ossicular chain [22].

Name Density (kg/m3) Elastic modulus (Pa)
malleus
for head 2.55e3 1.41e10
for neck 4.53e3 1.41e10
for handle 3.7e3 1.41e10
for body 2.36e3 1.41e10
Superior ligament 2.5e3 4.9e4
lateral ligament 2.5e3 6.7e4
anterior ligament 2.5e3 2.1e6
incus
for short process 2.26e3 1.41e10
for long process 5.08e3 1.41e10
superior ligament 2.5e3 4.9e4
posterior ligament 2.5e3 6.5e5
Stapes 2.2e3 1.41e10
tympani muscle 2.5e3 2.6e6
stapedius muscle 2.5e3 5.2e5
cochlea impedance — 60

wrap, 0.625 mm reconstruction slice thickness, and 0.5–0.625 mm reconstruction increment.
The scan images were managed with self-edit program to form a geometric model. The
model was reconstructed for optimizing meshes, setting boundary conditions and material
properties in ANSYS. Finally, the 3D fluid-solid coupling finite element model of ossicular
chain was established successfully; see Figure 2. Finite element model of ossicular chain
referred to Zhai et al.’s results [28]. Ligament dimension in ossicular chain referred to
Lemmerling et al.’s results [29]. The dimension of stapedius muscle and tensor tympani
muscle referred to Beer et al.’s data [30]. Table 3 gave material properties of ossicular chain,
which referred to Sun et al.’s data [22].

Figure 3 gave the simulation result of the displacement in different sound pressure
levels: 50 dB, 70 dB, 90 dB, 105 dB, and 120 dB. The conclusions were obtained from similar
results. Members were together moving, and moving direction was shown in Figure 3.
Displacement direction was the same in interface of members in Figure 3; The result tested the
hypothesis of theoretical derivation to be valid. Coordinate function of member displacement
of linear regression by similar data was done.

Then the function was multiplied by f function. Expression is as follows.

Displacement of anterior malleus ligament:

w1 =
(
0.001351x − 0.000685y + 0.002547z − 0.00000044

)
· f. (3.41)

Displacement of lateral malleus ligament:

w2 =
(
−0.002916x + 0.001829y + 0.000761z + 0.0000134

)
· f. (3.42)
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z

Figure 2: Finite element model of ossicular chain.
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z

Figure 3: Moving direction of ossicular chain.

Displacement of superior malleus ligament:

w3 =
(
−0.008318x − 0.007172y − 0.0025405z + 0.0000997

)
· f. (3.43)

Displacement of tensor tympani muscle:

w4 =
(
−0.000432x − 0.001813y + 0.000575z + 0.00000506

)
· f. (3.44)

Displacement of superior incus ligament:

w5 =
(
−0.006154x − 0.005452y + 0.000487z + 0.0000736

)
· f. (3.45)

Displacement of posterior incus ligament:

w6 =
(
0.000493x + 0.001017y − 0.003073z + 0.0000159

)
· f. (3.46)

Displacement of stapedius muscle:

w7 =
(
−0.000633x − 0.00299y − 0.007289z + 0.0000131

)
· f. (3.47)
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Malleus displacement:

w8 =

{(
−0.001699x − 0.000251y + 0.000848z + 0.0000572

)
· f x < 0.00267

(
0.001409x + 0.000777y − 0.000617z − 0.00000392

)
· f x > 0.00267.

(3.48)

Incus displacement:

w9 =

{(
−0.001567x + 0.001242y + 0.000268z + 0.00000207

)
· f x < 0.00256

(
0.001020x + 0.001420y − 0.000488z − 0.000004510

)
· f x > 0.00256.

(3.49)

Stapes displacement:

w10 =
(
−0.000204x + 0.000541y − 0.002076z + 0.00000566

)
· f. (3.50)

Front displacements were substituted to energy equation. Finally energy equations were
substituted to potential energy of structure U. Applying on variation principles to f , getting
δU = 0, f was solved and was substituted to displacement expression of members (ossicular,
ligament, and muscle).

4. Example

The curve that displacement of umbo and footplate centre was changed with frequency under
105 dB was computed. Load and displacement equations of linear regression by similar data
were substituted to potential energy of structure U. Applying on variation principles to f ,
getting δU = 0, f was solved:

f =
1.56 ∗ 10−10

2 ∗ 3.39 ∗ 10−9 − 2 ∗ 1.01 ∗ 10−15�2
, (4.1)

f and relating to coordinate were substituted to displacement expression of umbo and
footplate centre Expression is as follows.
Footplate centre displacement:

w10 =
2.63 ∗ 10−16

2 ∗ 3.39 ∗ 10−9 − 2 ∗ 1.01 ∗ 10−15�2
. (4.2)

Umbo displacement:

w9 =
3.83 ∗ 10−16

2 ∗ 3.39 ∗ 10−9 − 2 ∗ 1.01 ∗ 10−15�2
. (4.3)

Computing results were compared with the data in published paper; see Figure 4 [31]. The
curves of analytical solution were similar to those of experiment. This showed that analytical
solution is valid. The difference of two curves was little in low and high frequency and big in
700–2000 Hz from Figure 4. It was caused by geometry size of model.
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Figure 4: Comparing the amplitude of stapes and umbo under 105 dB (units: m)

5. Conclusion

The equation in the paper was one of the valid methods of obtaining experiment data. It
could determinate function relationship based on experiment data of special point, and then
experiment data of unknown point were computed according to the function relationship.
This could get a large number of experiment data and solve difficulty of getting data. In
addition, the model can analyze the effect which was caused by members’ injury in motion
or material changes to stapes displacement. For example, these problems were some lesions
of middle ear, joint injury, ligament sclerosis, or tendon sclerosis.
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The interactive behaviors between transverse magnetic fields and axial loads of a magnetoelastic
(ME) beam subjected to general boundary conditions are investigated. In particular, the instability
criterion for the magneto-mechanical buckling problem is intricately discussed based on the
structure characteristics and the initial conditions. The equation of motion for the proposed
physical model is introduced according to the Hamilton’s principle, and the stability criterion is
obtained by using the method of multiple scales implemented on both spatial and time domains.
Eventually a so-called Schrodinger equation with cubic nonlinearity (NLS) can be generated by
suitably changing the variables; as a result, the stable criterion for the magnetoelastic beam can
be acquired after dissecting the nonlinear Schrodinger equation and requiring the imaginary part
of the time domain solution to be vanished. Stability criterion curve for the dispersion equation
of the ME beam is firstly depicted in order to reveal the magnificent influence of the structure
characteristic itself, followed by the instability constraint due to the variation of initial conditions
and the observation locations. The results indicate that the prior one actually denotes a parabola,
whereas the latter one is sometimes a diamond-like or ellipse-like region spotting along the prior
one.

1. Introductions

The electromagnetic phenomena which arose from electrical machinery, communicating
equipments, and computer chips have addressed wide attention in the past years due its
significant role on human’s daily life. and diamagnetic structures such as beams, plates, and
shells are extensively employed in the modern electromagnetic equipments, and accordingly
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provide a real understanding for the mechanism of electricity and magnetism coexisting in
the conventional elasticity.

Since the structures are often set in high magnetic fields, they are correspondingly
subjected to strong magnetic forces resulting from the applied magnetic fields, however, the
magnetic force not only causes the structural deformation but also respectively changes with
the deformation itself. Therefore, when the induced magnetization is under consideration, the
analysis of the magnetoelastic structures with multiphases coupling effects becomes more
complicated, and indeed requires further examination either on the dynamical behavior or
stability issues.

In this paper, the interactive behaviors between transverse magnetic fields and axial
loads of a magnetoelastic beam subjected to general boundary conditions are investigated. In
specific, the instability criterion for the magnetomechanical buckling problem is intricately
discussed according to the structure characteristics as well as the initial conditions. The
fundamental concepts and relations about the electro-magnetic theory are adopted in this
paper based on the content written in [1], and some other systematic references for the
theory of magnetoelastic solid mechanics found in [2] are also contained. Inspections on the
behavior of interaction between magnetic field and mechanical deformation for the structures
made of magnetoelastic materials have been conducted by many researchers and engineers.
Some of them are briefly described in the next paragraph.

Moon and Pao [3] proposed a mathematical model for the buckling problem of a
cantilever beam-plate in a transverse magnetic field with distributed magnetic forces and
torques. Wallerstein and Peach [4] studied the magnetoelastic buckling of beams and plates
with magnetically soft material. Miya et al. [5] investigated the magnetoelastic buckling of
a cantilevered beam-plate by applying the experimental and finite element methods. Moon
and Pao [6] presented the vibration and parametric instability of a cantilevered beam-plate
in a transverse magnetic field and also provided the theoretical and experimental results.
In Moon-Pao’s theoretical analysis, the magnetic torque without axial load was considered;
therefore, the axial load studied in this paper does not apply to their discussion. Kojima et al.
[7] investigated the parameter nonlinear forced vibrations of a beam with a tip mass subjected
to alternating electromagnetic forces acting on the tip mass. Shin et al. [8] have studied the
transient vibrations of a simply supported beam with axial loads and transverse magnetic
fields. Liu and Chang [9] performed the vibration analysis of a beam with general boundary
conditions in a magnetic field subjected to axial load and external force by introducing the
orthogonal characteristic polynomial. Wu [10] performed the analysis of dynamic instability
and vibration motions of a pinned beam with transverse magnetic field and thermal loads.
Pratiher and Dwivedy [11] studied the parametric instability of a cantilever beam with
magnetic field and periodic axial load.

In view of the fact that the interactions among axial load, magnetic force, and magnetic
couples are complicated, yet, important to the dynamical analysis of structural instability, a
magnetoelastic (ME) beam system involving axial load, transverse magnetic field, and spring
foundation is considered in the present paper. For simplicity, the axial force and transverse
magnetic field are assumed to be static, that is, independent of time variable; however, this
paper is aiming at finding out the stability criterions under which the magnetoelastic beam
can be dynamically stabilized; therefore, it is suggested that neither the magnitude of axial
force nor that of the transverse magnetic field should exceed the parameters restrained by the
criterion even though they are set to be periodical or other else.

The equation of motion for the proposed physical model is introduced based on the
authors’ previous work, and some of the quantities related to magnetic field are evaluated
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by adopting reasonable assumptions and approximations. The stability criterion for an
ME beam subjected to both transverse magnetic field and axial load can be obtained by
using the method of multiple scales implemented on both spatial and time variables. After
collecting the small perturbed parameter ε with the same order, a set of relevant partial
differential equations resulting from the perturbation process can thus be derived. Based on
some assumptions dedicating to simplify the mathematical modeling of the whole system,
the analytic solutions of the respective perturbed equations can be solved one by one
successively. As a result of suitably changing the variables, a so-called Schrodinger equation
with cubic nonlinearity (NLS) will be generated from the evaluation of perturbation equation
for O(ε3). By sophisticated technique dissecting the above nonlinear Schrodinger equation,
the criterion for stable condition to the whole system can be acquired by requiring the
imaginary part of the time domain solution to be vanished.

2. Formulations

2.1. Statement of the Problem

In this paper, the physical model of a magnetoelastic (ME) beam system rested upon a
Winkler-type foundation and subjected to axial applied force and transverse magnetic field
as shown in Figure 1 is investigated. The beam is made of linearly magnetoelastic material

with width d, thickness h, length L and is subjected to an applied axial force
⇀

P = P0
⇀
i in the x-

direction and a transverse magnetic field
⇀

B = B0

⇀
j , linear viscous damper in the y-direction,

and attached by the linear springs with constant K. In order to simplify the analysis, the
proposed beam is assumed as Euler-Bernoulli type.

2.2. Mathematical Modeling

Hamilton’s principle [8] is adopted to derive the equation of motion of the beam as follows:

m
∂2w

∂t2
+ Cd

∂w

∂t
+ YI

∂4w

∂x4
+Kw + P

∂2w

∂x2
=
∂c

∂x
+

∂

∂x

[(∫x

0
pdξ

)
∂w

∂x

]
, (2.1)

wherew(x, t) denotes the transverse displacement of the middle plane,m is the mass per unit
length, Cd is the damping coefficient, Y is the Young’s modulus, I is the moment of inertia
of the cross section, K is the constant of spring, P is the axial load per unit length along x
direction, c represents the induced couple per unit length due to the existence of magnetic
field, and p is the body force per unit length contributed by the magnetic force.

For the dia- and para-magnetoelastic material, the magnetization M of the medium
due to the existence of auxiliary magnetic field H can be defined as M = χmH and H can be
determined by the relation B = μ0H with B being the externally applied magnetic field. Thus
the induced couple or magnetic torque can be read as

c =
∫
(M × B)dV, (2.2)
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⇀
p

⇀
p

⇀

B0

K,Cd

Figure 1: Physical model for a magnetoelastic (ME) beam subjected to axial load and magnetic field.

in which χm ≡ (μ0 − μ)/μ0 = 1 − μr is the magnetic susceptibility with μ being the material
permeability and μ0 the permeability of free space. The magnetization M can be rewritten
as M = (χm/μ0)B = (χm/μ0)|B0|

⇀
n and is also called volume density of magnetic moment,

meanwhile, the magnetic field B is sometimes called the magnetic displacement or the
induced magnetic field.

According to the small deformation theory, it can be shown [9] that the velocity term,
ẋ, for the magnetoelastic beam can be simplified into

ẋ ≡ dx
dt
≈ −

∫x

0

∂w

∂ξ

∂2w

∂t∂ξ
dξ. (2.3)

As a result, the component of the body force contributed by the magnetic field B can be
written as

p = component
∫
σ

(
⇀
ṙ ×

⇀

B0

)
×
⇀

B0 dV = σB2
0hd

dx

dt
= −σB2

0hd

∫x

0

∂w

∂ξ

∂2w

∂t∂ξ
dξ. (2.4)

Mean while, the component of the magnetic couple induced by the applied magnetic field
can be expressed as

c = component
∫

⇀

M ×
⇀

B0dV =MB0hd sin θ ≈MB0hdθ =MB0hd
∂w

∂x
, (2.5)

in which σ is the electrical conductivity of the ME beam and h and d represent the thickness
and the depth of the beam, respectively.

2.3. Perturbation and Multiscale Method

For the nonlinear differential system stated in (2.1), the solutions in a form of harmonic wave
propagation are permitted, however, with the restriction that the bending wave is slowly
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changed in spatial and time domain than the carrying wave [12]. Therefore, it is fairly feasible
to practice the solution of (2.1) in the following form at the vicinity of the equilibrium state:

w = εw1 + ε2w2 + ε3w3 + · · · , (2.6)

in which the small perturbed parameter can be taken as ε ≡ λc/λe � 1 with λc and λe
indicating the wave lengths of carrying and bending waves, respectively.

By adopting x and t as usual space and time variables for carrying wave, and
performing the method of multiple scales, a set of “slow” time and space variables: Tn = εnt,
Xn = εnx, are introduced in the present study. Due to the principle of chain rule, the operators
of differentiation ∂/∂x and ∂/∂t in (2.1) should be accordingly modified in order to account
for the dependence of “slow” variables Tn and Xn on regular x and t variables; therefore,
these derivatives are transformed into the following operators:

∂

∂x
≡ ∂

∂X0
+
∑

n=1

εn
∂

∂Xn
,

∂

∂t
≡ ∂

∂T0
+
∑

n=1

εn
∂

∂Tn
.

(2.7)

It should be noted that the variables X0 ≡ ε0x = x, Xn, T0 ≡ ε0t = t, and Tn stated above are all
independent variables with respect to each other, and, for the sake of briefness, the variables
T0 and X0 will be replaced by x and t correspondingly in the following derivations and for
the rest of the paper.

Substituting (2.6) and (2.7) into (2.1) and equating the terms with the same order of ε,
one can obtain

O(ε): L0w1 = 0, L0 ≡ m
∂2

∂t2
+ Cd

∂

∂t
+ YI

∂4

∂x4
+K + (P −MB0hd)

∂2

∂x2
, (2.8)

O
(
ε2
)

: L0w2 = −2m
∂2w1

∂t∂T1
− Cd

∂w1

∂T1
− 4YI

∂2w1

∂3x∂X1
− 2(P −MB0hd)

∂2w1

∂x∂X1
, (2.9)

O
(
ε3
)

: L0w3 = −m
(

2
∂2w1

∂t∂T2
+
∂2w1

∂T2
1

+ 2
∂2w2

∂t0∂T1

)

− Cd

(
∂w2

∂T1
+
∂w1

∂T2

)

− YI
[

4
∂4w1

∂x3
0∂X2

+ 6
∂4w1

∂x2∂X2
1

+ 4
∂4w2

∂x3∂X1

]

− (P −MB0hd)

(

2
∂2w1

∂x0∂X2
+
∂2w1

∂X2
1

+ 2
∂2w2

∂x∂X1

)

−
(
σB2

0hd
)(∫x0

0

∂w1

∂ξ

∂2w1

∂t∂ξ
dξ · ∂w1

∂x0

)

−
(
σB2

0hd
)(∫x0

0

∫ ξ

0

∂w1

∂η

∂2w1

∂t∂η
dη dξ · ∂

2w1

∂x2
0

)

.

(2.10)
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It is noticed that (2.8) is actually a homogenous version of the governing equation, say (2.1),
and one can easily express the solution of (2.8) in the form of harmonic waves with the
amplitude depending on slow variables, that is,

w1 = A(X1, T1, X2, T2, . . .) exp(iθ) + c.c.,

θ = kx −ωt,
(2.11)

wherein c.c. stands for the complex conjugate and θ can be thought as the phase angle of the
propagating wave. To assure that the net axial load appeared in (2.8), say (P −MB0hd), is of
the compressive type, it is required that this term should be positive in the present study.

According to (2.8), the dispersion equation will have the following form:

mω2 + iCdω +
[
YIk4 − (P −MB0hd)k2 +K

]
= 0, (2.12)

and after imposing implicit differentiation with respect to k on the dispersion equation and
suppose ω = ω(k), the relation between ω and k can be expressed implicitly as

dω

dk
=

4YIk3 − 2k(P −MB0hd)
2mω + iCd

. (2.13)

Substituting (2.11) into (2.9) gives

L0w2 = eiθ
{
∂A

∂T1
[2mωi − Cd] + i

∂A

∂X1

[
4YIk3 − 2(P −MB0hd)k

]}
+ c.c. (2.14)

The first term in (2.14) is secular term or sometimes called the small divisor term, and for the
applicability of theory for excitation, we should demand the elimination of this term, that is,

∂A

∂T1
[2mωi − Cd] + i ∂A

∂X1

[
4YI k3 − 2(P −MB0hd)k

]
≡ 0. (2.15)

Since no other term left in (2.14) after imposing (2.15), there is no particular solution as
a result, the general solution of (2.14) thus can be determined to be identical with the
homogeneous solution, that is,

w2 = A(X1, T1, X2, T2)eiθ = w1. (2.16)
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By taking the same token, substituting (2.11) and (2.16) into (2.10) and demanding the vanish
of secular terms will result in the following expression:

(2miω − Cd) ∂A
∂T2

+ (−m)
∂2A

∂T2
1

+
∂A

∂X2

[
−4YI(ik)3 − 2(P −MB0hd)(ik)

]

+
∂2A

∂X2
1

[
−6YI(ik)2 − (P −MB0hd)

]

−A|A|2
{(

σB2
0hd

)[

(ik)3(−iω)e
2iθ − e−2iωt

2ik
+ (ik)4(−iω) 1

2ik

(
e2iθ − e−2iωt

2ik
− x

e2iωt

)]}

= 0.
(2.17)

Meanwhile, by taking differentiation on (2.15) with respect to k, we have

∂A

∂T1

(
mi

dω

dk

)
+ i

∂A

∂X1

[
6YIk2 − (P −MB0hd)

]
= 0; (2.18)

furthermore, differentiating (2.18) with respect to T1 gives

∂2A

∂T2
1

[
−mdω

dk

]
− ∂2A

∂T1X1

[
6YIk2 − (P −MB0hd)

]
= 0; (2.19)

similarly, differentiating (2.18) with respect to X1 gives

∂2A

∂X1∂T1

[
mi

dω

dk

]
+ i

∂2A

∂X2
1

[
6YIk2 − (P −MB0hd)

]
= 0. (2.20)

Adding the above two equations gets

∂2A

∂T2
1

(−m) +
∂2A

∂X2
1

[
6YIk2 − (P −MB0hd)

]
=

∂2A

∂T1∂X1

[
6YIk2 − (P −MB0hd)

dω/dk
−mdω

dk

]

;

(2.21)

also we have the following results after taking derivative with respect to X1 on (2.15):

∂2A

∂T1∂X1
= −∂

2A

∂X2
1

4YIk3 − 2(P −MB0hd)k
2mω + iCd

= −∂
2A

∂X2
1

dω

dk
; (2.22)



8 Mathematical Problems in Engineering

thus (2.21) becomes

∂2A

∂T2
1

(−m) +
∂2A

∂X2
1

[
6YIk2 − (P −MB0hd)

]
= −∂

2A

∂X2
1

[

6YIk2 − (P −MB0hd) −m
(
dω

dk

)2
]

.

(2.23)

Therefore, (2.17) can be reduced into

(2miω − Cd) ∂A
∂T2

+
∂A

∂X2

[
−4YI(ik)3 − 2(P −MB0hd(ik))

]

− ∂
2A

∂X2
1

[

6YIk2 − (P −MB0hd) −m
(
dω

dk

)2
]

+A|A|2
[
f(x, t)

]
= 0,

(2.24)

where

f(x, t) ≡ −
(
σB2

0hd
)[

(ik)3(−iω)e
2iθ − e−2iωt

2ik
+ (ik)4(−iω) 1

2ik

(
e2iθ − e−2iωt

2ik
− x

e2iωt

)]

.

(2.25)

In order to eliminate some variables, we now introduce a new variable T as

T ≡ T2 +
dk

dω
X2, (2.26)

which implies

∂

∂T
≡ ∂

∂T2

∂T2

∂T
+

∂

∂X2

∂X2

∂T
=

∂

∂T2
+
dω

dk

∂

∂X2
. (2.27)

With the differential operator defined in (2.27), we can rewrite the first two terms in (2.24),
say

(2miω − Cd) ∂A
∂T2

+
∂A

∂X2

[
4YIik3 − 2ik(P −MB0hd)

]
, (2.28)

into the following expression in term of X:

(2miω − Cd)
[
∂A

∂T2
+
dω

dk

∂A

∂X2

]
= (2miω − Cd)∂A

∂T
. (2.29)
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Therefore, the following Schrodinger-type equation can then by obtained as a result

i
∂A

∂T
=

6YIk2 − (P −MB0hd) −m(dω/dk)2

2mω + iCd
∂2A

∂X2
1

+

[
f(x, t)

]

2mω + iCd
A|A|2, (2.30)

which can be simplified as

i
∂A

∂T
= β

∂2A

∂X2
1

+ γA|A|2, (2.31)

where β and γ are complex, and can be expressed as follows:

β ≡ 6YIk2 − (P −MB0hd) −m(dω/dk)2

2mω + iCd
, (2.32)

γ ≡
−
(
σB2

0hd
)

2mω + iCd

[

(ik)3(−iω)e
2iθ − e−2iωt

2ik
+ (ik)4(−iω) 1

2ik

(
e2iθ − e−2iωt

2ik
− x

e2iωt

)]

. (2.33)

By now we have the Schrodinger equation with complex coefficient as mentioned above; if
the viscosity is neglected (Cd = 0), then the Schrodinger-type equation with real coefficients
can then be obtained.

2.4. Stable Criterion for Schrodinger Equation

Equation (2.31) describes a behavior of modulated waves and is commonly referred to as
the nonlinear Schrodinger (NLS) equation with cubic nonlinearity. Even though it has been
proved that there is a solution for the NLS equation with real coefficient [13], however, the
complex coefficients for NLS equation as stated in (2.31) make the analysis become more
difficult, yet no related report can be found up to date.

In the following, an attempt to find the stable criterion for the NLS equation as stated
in (2.31) is conducted; as a first step, we can express the solution for A(X1, T) in the following
form:

A
(
X1, T

)
= A0 exp(iΘ) = A0 exp

[
i
(
κX1 −ΩT

)]
. (2.34)

Substituting it into (2.31) leads to

Ω = −βκ2 + γA2
0; (2.35)
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thus we can have

A
(
X1, T

)
= A0 exp

{
i
[
κX1 +

(
βκ2 − γA2

0

)
T
]}

= A0 exp(iκX1) · exp
[
i
(
βκ2 − γA2

0

)
T
]
.

(2.36)

For the above solution to be stable in the time domain, it is required that the imaginary part
of the frequency should be greater than zero; therefore, the stability criterion would be given
by the following inequality:

Im
(
βκ2 − γA2

0

)
> 0, (2.37)

where A0 can be indicated by the amplitude given in the initial conditions.
However, as we can detect from (2.32) and (2.33) that the value for β is purely real if

damping coefficient Cd is neglected, and the value for γ is definitely complex with strong
dependence on the slow variables, namely, x and t. This phenomenon suggests that the
criterion for stability should be determined not only by the beam characteristics but also
by the initial conditions it was provoked by, namely, the catching time t and the observation
location x as well as the initial amplitudeA0. In the present study, the initial conditions (t = 0)
at a specific location (x = x0) will be accordingly imposed in order to see the spectacular
influence caused by the value of γ , and by substituting related values into the inequality in
(2.37), the diagrams for the stability region subjected to various beam characteristics can be
depicted.

It should be noted that (2.37) shows how initial conditions can affect the stability of the
wave propagation; nevertheless, the stable criterion for the whole system, say the differential
equation, is actually dominated by the dispersion equation stated in (2.12). Therefore, as
far as the stability problem is concerned, we should first examine the stability region for
the dispersion equation with respect to different boundary conditions, and then carefully
point out the instability criterions caused by the initial conditions as well as the observation
location, which are expected to be some subdomains among the prior one or just on the
border.

3. Numerical Examples

For the purpose of demonstration, a low-carbon steel is considered in this study, of which
the material constants [9] are respectively Y = 194 GPa, m = 0.03965 kg/m, L = 0.5 m, h =
0.005 m, d = 0.001 m, μr = 1.00001, μ0 = 4π × 10−7 Hm−1, σ = 107 Sm−1, and K = 1.0 N/m.
To account for the effects of both initial conditions and boundary conditions on the stability
criterion of the ME beam, several cases involving various combinations of these conditions
have been examined. For the convenience of comparison, the catching time for all cases is set
to be t = 0 whereas the magnitude of initial displacement is set to the same with the beam
thickness, that is, A0 = h is chosen for all stability discussions in following examples.

Four kinds of commonly seen boundary conditions are implemented; they are,
respectively, simply supported on both end (S-S), fixed at left and simply supported at right
(C-S), cantilever beam (C-F), and fixed on both ends (C-C). The wave numbers with respect
to the corresponding boundary conditions are stated is Table 1 as a reference despite the fact
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Table 1: The first three wave numbers corresponding to various boundary conditions.

Boundary condition Mode number
N = 1 N = 2 N = 3

S-S
π

L

2π
L

3π
L

C-S
3.926602

L

7.068583
L

10.210176
L

C-F (Cantilever)
1.875104

L

4.694091
L

7.854757
L

C-C
4.730041

L

7.853205
L

10.995607
L

∗S stands for Simply supported, C is for clamped, F is for free end
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Figure 2: Stability Region for an ME beam with simply supported boundary conditions subjected to axial
load and magnetic; with no spring support.

that they can still be found in any textbook related to the structure vibration problems. Due to
the different beam characteristics with respect to different boundary conditions, the location
for stable observation is properly pinpointed according to the imposed boundary conditions
for each specific case. The observation location x0 for the stability criterion of a cantilever
beam is pinpointed at the right end (x0 = L) of the ME beam; however, for the other cases,
the location is fixed to be at the center point of the beam length, that is, x0 = L/2.

Figure 2 presents the stability region for a magnetoelastic beam with S-S boundary
conditions subjected to axial external force and transverse magnetic field; the effect of spring
foundation is here neglected. Three modes of wave number are calculated; magnetic field is
ranging from −500 Tesla to 500 Tesla whereas the axial external force is from −10 N to 30 N.
The signs for magnetic fields and axial forces simply indicate the direction these forces are
applying to, that is, positive axial force means compression while negative implies tension,
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Figure 3: Stability Region for an ME beam with clamped-hinged boundary conditions subjected to axial
load and magnetic field with no spring support.

positive magnetic field represents upward, and negative denotes downward. As it can be
detected from Figure 2, the stability criterion curve for the dispersion equation, say (2.12),
is indeed a parabola, and the instability constraint due to the initial condition, say (2.33), is
presented in the shaded region, in which the parameters reside will incur imaginary parts of
(2.37) to be negative. It should be noted that due to the numerical discreteness, the latter one
looks like a shape of diamond; however, it is not necessarily a diamond and might be a circle
or ellipse.

Figures 3–5 demonstrate the stability regions for a magnetoelastic beam with other
boundary conditions subjected to the same setting as in Figure 2. Parabola for criterion curve
can be observed again and the shaded regions are sometimes replaced by the lined regions,
which indicate that the parameters for instability might not be compact on a bounded zone.
By the fact that the strong instability due to the initial conditions and observation points
makes the analysis become more complicated, a slight change in the number of shaded
regions can be noticed, and a new added ellipse centered in the vicinity of zero magnetic field
is detected. This incident reminds us that even though no external magnetic field is applied,
that is, pure buckling problem for the ME beam is under consideration, yet we must be careful
on examining the initial conditions in addition to the buckling criteria, so that accidentally
invoking the instability of the system can be avoided. However, due to the distinct natures
with respect to different boundary conditions, the aforementioned instability ellipses can be
found to be centered along different modes of dispersion curves.

As it can be seen from Figure 3, the instability ellipse is center at the dispersion curve of
the first mode for an ME beam with clamped-hinged boundary conditions. Also it is noticed
that the instability diamonds become more frequently appeared along the curves than the
simply supported case. Nevertheless, unlike the clamped-hinged case, the instability ellipses
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Figure 4: Stability Region for an ME beam with cantilever boundary conditions subjected to axial load and
magnetic field with no spring support.
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Figure 5: Stability Region for an ME beam with fixed-fixed boundary conditions subjected to axial load
and magnetic field with no spring support.
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Figure 6: Stability Region for an ME beam with simply supported boundary conditions subjected to axial
load and magnetic field with various spring constants.

for the cantilever ME beam, see Figure 4, can be found to seat on the dispersion curve of the
third mode. In particular, the number of instability diamond is dramatically soaring so that
almost every mode possesses at least 8 of the particular zones. Similar situation can also be
observed in the case of fixed-fixed ME beam as shown in Figure 5, except that a remarkable
instability ellipse resides on the dispersion curve of the second mode. It seems that on the
curve of the second mode the instability restraints due to the initial conditions are compactly
revealed, that is, we should put more attention when dealing with the instability problem for
the second mode than the others.

Figure 6 demonstrates the dispersion curves of a simply supported ME beam subjected
to external axial load and magnetic field with respect to various spring constant as
foundation. As we expected, the larger value of spring constant results in the wider stability
region to the ME beam system, that is, spring foundation plays a role in stabilizing the system,
that is, if some certain axial load and magnetic field are necessarily imposed on the EM beam
system, one way to promote the stability region, or to avoid instability, is to put the system
on the Wrinkler-type foundation, thus system stability can still be retained.

At last, in order to verify the correctness of the results obtained by using the proposed
method, the time responses of the system are presented for the stable and unstable regions
individually. If we take simply supported ME beam as an example, adopting sinusoidal
functions to be the mode shapes of the system, a set of temporal equations can be achieved
after imposing Galerkin’s procedure on (2.1); therefore, by performing Runge-Kutta method,
the time responses of the system at middle point of the beam can be carried out for any
desired modes.

Figure 7 depicts the ratio of displacement to beam thickness when the magnetic field
and axial load are taken from the stable region as shown in Figure 2, while Figure 8 shows the
results taken from the unstable region as a comparison. As it can be detected from Figure 7,
when B = 10 Tesla and P = 3.0 N, the time responses of the system for the first, second, and
third modes are plotted and the total deflection is calculated, all of which can be found to be
of stable state. On the other hand, as B = 10 Tesla and P = 4.0 N are chosen in Figure 8, the
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Figure 7: Transit response for an ME beam with simply supported boundary conditions subjected to axial
load and magnetic field within stable region.

time response for the first mode is divergent, and those for the second and third modes are
convergent; thus the total deflection is unstable as a result.

4. Conclusions

In this paper, the interactive behaviors between transverse magnetic fields and axial loads
of a magnetoelastic (ME) beam subjected to general boundary conditions are investigated. In
particular, the instability criterion for the magneto-mechanical buckling problem is intricately
discussed according to the structure characteristics as well as the initial conditions. The
equation of motion for the proposed physical model is introduced based on the Hamilton’s
principle, and the stability criterion is obtained by using the method of multiple scales
implemented on both spatial and time domains. By performing the perturbation procedure,
a set of relevant partial differential equations can thus be derived with respect to different
collecting order; meanwhile the analytic solutions for the respective perturbed equations can
be resolved order by order successively based on some simplifications. Eventually a so-called
Schrodinger equation with cubic nonlinearity (NLS) can be generated by suitably changing
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Figure 8: Divergent response for an ME beam with simply supported boundary conditions subjected to
axial load and magnetic field outside the stable region.

the variables; as a result, the stable criteria for the magnetoelastic beam can be acquired
after dissecting the nonlinear Schrodinger equation and requiring the imaginary part of
the time domain solution to be vanished. Four kinds of boundary conditions are imposed
to a low-carbon steel beam structure as examples in order to implement the proposed
methodology, and the effects of both initial conditions and boundary conditions on the
stability criterion of the ME beam are examined in detail. Stability criterion curve for the
dispersion equation of the ME beam is firstly depicted in order to reveal the magnificent
influence of the structure characteristic itself, followed by the instability constraint due to
the variation of initial conditions and the observation locations. The prior one is actually
denoting a parabola, whereas the latter one is sometimes a diamond-like or ellipse-like region
spotting along the prior one. By the fact that the strong instability due to the initial conditions
and observation points makes the analysis become more complicated, a slight change in the
number of instability diamond can be noticed with respect to different boundary conditions,
and an extra added instability ellipse centered in the vicinity of zero magnetic field is also
detected for the cases other than simply supported beam. As we expected, the larger value
of spring constant results in the wider stability region to the ME beam system, that is, spring
foundation plays a role in stabilizing the system.
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The fuzzy Lyapunov method is investigated for use with a class of interconnected fuzzy systems.
The interconnected fuzzy systems consist of J interconnected fuzzy subsystems, and the stability
analysis is based on Lyapunov functions. Based on traditional Lyapunov stability theory, we
further propose a fuzzy Lyapunov method for the stability analysis of interconnected fuzzy
systems. The fuzzy Lyapunov function is defined in fuzzy blending quadratic Lyapunov functions.
Some stability conditions are derived through the use of fuzzy Lyapunov functions to ensure that
the interconnected fuzzy systems are asymptotically stable. Common solutions can be obtained by
solving a set of linear matrix inequalities (LMIs) that are numerically feasible. Finally, simulations
are performed in order to verify the effectiveness of the proposed stability conditions in
this paper.

1. Introduction

In the recent years, a number of research activities have been conducted concerning stability
analysis and the stabilization problems of large-scale systems, including electric power
systems, nuclear reactors, aerospace systems, large electrical networks, economic systems,
process control systems, chemical and petroleum industrial systems, different societal
systems, ecological systems, and transportation systems. The interconnected models can
be used to represent practical large-scale systems. Moreover, the field of interconnected
systems is so broad as to cover the fundamental theory of modeling, optimization and
control aspects, and such applications. Therefore, the methodologies used when dealing
with interconnected models provide a viable technique whereby the manipulation of
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system structure can be used to overcome the increasing size and complexity of the
relevant mathematical models. Additionally, the fields of analysis, design, and control
theory relating to interconnected systems have attained a considerable level of maturity
and sophistication. They are currently receiving increasing attention from theorists and
practitioners because they are methodologically interesting and have important real-life
applications. Such systems comprise numerous interdependent subsystems which serve
particular functions, share resources, and are governed by a set of interrelated goals and
constraints. Recently, various approaches have been employed to elucidate the stability and
stabilization of interconnected systems, as proposed in the literature and the references
therein [1–3].

Since Zadeh [4] and Takagi and Sugeno [5] proposed a new concept for a fuzzy
inference system which combines the flexibility of fuzzy logic theory and rigorous
mathematical analysis tools into a unified framework, the application of fuzzy models has
attracted great interest from the engineering and management community (e.g., see [6–
20] and the references therein). This kind of fuzzy model suggests an efficient method to
represent complex nonlinear systems via fuzzy reasoning. This has enabled the stability
issues of fuzzy systems to be extensively applied in system analysis (see [21–26] and the
references therein). Similarly, the stability criteria and stabilization problems have been
discussed for fuzzy large-scale systems in Wang and Luoh [27], and Hsiao and Hwang [28],
where the fuzzy large-scale system consists of J subsystems.

In the aforementioned results for T-S fuzzy models, most of the stability criteria
and controller design have usually been derived based on the usage of a single Lyapunov
function. However, the main drawback associated with this method is that the single
Lyapunov function must work for all linear models of the fuzzy control systems, which
in general leads to a conservative controller design [29]. Recently, in order to relax this
conservatism, the fuzzy Lyapunov function approach has been proposed in [24, 29–33].
To the best of my knowledge, the stability analyses of interconnected systems based on
fuzzy Lyapunov functions have not been discussed yet. Therefore, some novel sufficient
conditions are derived from fuzzy Lyapunov functions for stability guarantees by fuzzy for
interconnected fuzzy systems in this work.

The organization of the paper is presented as follows. First, the T-S fuzzy modeling
is briefly reviewed and the interconnected scheme is used to construct a fuzzy dynamic
model. Then, the stability conditions for the fuzzy Lyapunov functions are proposed
which guarantee the stability of the interconnected fuzzy systems. In this section, the
stability problems can be reformulated into a problem for solving a linear matrix
inequality (LMI).

2. System Descriptions and Preliminaries

A fuzzy dynamic model was proposed in the pioneering work of Takagi and Sugeno [5]
where complex nonlinear systems could be represented using local linear input/output
relations. The main feature of this model is that each locally fuzzy implication (rule) is a
linear system and the overall system model is achieved through linear fuzzy blending. This
fuzzy dynamic model is described by fuzzy IF-THEN rules and are utilized in this study to
deal with the stability analysis issue of an interconnected fuzzy system S that is composed
of J subsystems Si (j = 1, . . . , J). The ith rule of the interconnected fuzzy model of the jth
subsystem is proposed as having the following form.
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Plant Rule i:

IF x1j(t) is Mi1j , . . . , xgj(t) is Migj ,

THEN ẋj(t) = Aijxj(t) +
J∑

n=1
n/= j

Âinjxn(t), i = 1, 2, . . . , rj ,
(2.1)

where rj is the IF-THEN rule number; Aij and Âinj are constant matrices with appropriate
dimensions; xj(t) is the state vector of the jth subsystem; xn(t) is the interconnection between
the nth and jth subsystems; Mipj(p = 1, 2, . . . , g) are the fuzzy sets; x1j(t) ∼ xg j(t) are the
premise variables. Through the use of “fuzzy blending,” the overall fuzzy model of the jth
fuzzy subsystem can be inferred as follows [13]:

ẋj(t) =

∑rj
i=1 wij(t)

[
Aijxj(t) +

∑J
n=1,n /= j Âinjxn(t)

]

∑rj
i=1 wij(t)

=
rj∑

i=1

hij(t)

⎡

⎢⎢
⎣Aijxj(t) +

J∑

n=1
n/= j

Âinjxn(t)

⎤

⎥⎥
⎦,

(2.2)

with

wij(t) ≡
g∏

p=1

Mipj

(
xpj(t)

)
, hij(t) ≡

wij(t)
∑rj

i=1 wij(t)
, (2.3)

in which Mipj(xpj(t)) is the grade of membership of xpj(t) in Mipj . In this study, it is assumed
that wij(t) ≥ 0, i = 1, 2, . . . , rj ; j = 1, 2, . . . , J . Therefore, the normalized membership function
hij(t) satisfies

hij(t) ≥ 0,
rj∑

i=1

hij(t) = 1, ∀t. (2.4)

In the following, we state the lemmas which are useful to prove the stability of the
interconnected fuzzy system S which consists of J closed-loop subsystems described in (2.1).

Lemma 2.1 (see [13]). For any A, B ∈ Rnand for any symmetric positive definite matrix G ∈ Rn×n,
one has

2ATB ≤ ATGA + BTG−1B. (2.5)

Lemma 2.2 (see [34]). (Schur complements) One has

The LMI

[
Q(x) S(x)

S(x) R(x)

]

> 0, (2.6)
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where Q(x) = QT (x), R(x) = RT (x), and S(x) depends on x that is equivalent to

R(x) > 0, Q(x) − S(x)R−1(x)ST (x) > 0. (2.7)

In other words, the set of nonlinear inequalities (2.7) can be represented as the LMI (2.6).

3. Stability Analysis by a Fuzzy Lyapunov Function

Here we define a fuzzy Lyapunov function and consider the stability conditions for the jth
fuzzy subsystem (2.2).

Definition 3.1. Equation (3.1) is said to be a fuzzy Lyapunov function for the T-S fuzzy system
(2.2) if the time derivative of V (t) is always negative

V (t) =
J∑

j=1

vj(t) =
J∑

j=1

rj∑

l=1

hlj(t)xTj (t)Pljxj(t), (3.1)

where Plj is a positive definite matrix.

Because the fuzzy Lyapunov function shares the same membership functions with the
T-S fuzzy model of a system, the time derivative of the fuzzy Lyapunov function contains
the time derivative of the premise membership functions. Therefore, how to deal with the
time derivative of the time derivative of the premise membership functions is an important
consideration.

By taking the time derivative of (3.1), the following stability condition of open-loop
system (2.7) will be obtained.

Theorem 3.2. The fuzzy system (2.7) is stable in the large if there exist common positive definite
matrices P1, P2, . . . , Pr such that the following inequality is satisfied:

rj∑

ρ=1

ḣρj(t)Pρj +
rj∑

l=1

rj∑

i=1

hlj(t)hij(t)

[

AT
ijPli + PliAij + α(J − 1)I +

J∑

n=1

α−1PjÂinjÂ
T
injPj

]

< 0.

(3.2)

Proof. Consider the Lyapunov function candidate for the fuzzy system (2.2)

V (t) =
J∑

j=1

vj(t) =
J∑

j=1

rj∑

l=1

hlj(t)xTj (t)Pljxj(t). (A1)
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The time derivative of V is

V̇ (t) =
J∑

j=1

rj∑

ρ=1

ḣρj(t)xTj (t)Pρjxj(t) +
J∑

j=1

rj∑

l=1

hlj(t)
{
ẋTj (t)Pljxj(t) + x

T
j (t)Plj ẋj(t)

}
(A2)

=
J∑

j=1

rj∑

ρ=1

ḣρj(t)xTj (t)Pρjxj(t)

+
J∑

j=1

rj∑

l=1

hlj(t)

⎧
⎪⎪⎨

⎪⎪⎩

⎡

⎢
⎢
⎣

rj∑

i=1

hij(t)

⎛

⎜
⎜
⎝Aijxj(t) +

J∑

n=1
n/= j

Âinjxn(t)

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

T

Plixj(t)

+xTj (t)Plj

⎡

⎢⎢
⎣

rj∑

i=1

hij(t)

⎛

⎜⎜
⎝Aijxj(t) +

J∑

n=1
n/= j

Âinjxn(t)

⎞

⎟⎟
⎠

⎤

⎥⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

(A3)

=
J∑

j=1

rj∑

ρ=1

ḣρj(t)xTj (t)Pρjxj(t) +
J∑

j=1

rj∑

l=1

rj∑

i=1

hlj(t)hij(t)xTj (t)
[
AT
ijPli + PliAij

]
xj(t)

+
J∑

j=1

rj∑

l=1

rj∑

i=1

J∑

n=1
n/= j

hlj(t)hij(t)
[
xTn(t)Â

T
injPjxj(t) + x

T
j (t)PjÂinjxn(t)

]
.

(A4)

Based on Lemma 2.1, we have

J∑

j=1

rj∑

l=1

rj∑

i=1

J∑

n=1
n/= j

hlj(t)hij(t)
{
xTn(t)Â

T
injPjxj(t) + x

T
j (t)PjÂinjxn(t)

}

≤
J∑

j=1

rj∑

l=1

rj∑

i=1

J∑

n=1
n/= j

hlj(t)hij(t)
{
α
[
xTn(t)xn(t)

]
+ α−1

[
xTj (t)PjÂinjÂ

T
injPjxj(t)

]}
(A5)

=
J∑

j=1

rj∑

l=1

rj∑

i=1

J∑

n=1

hlj(t)hij(t)
{
α

[(
1 − 1

J

)
xTj (t)xj(t)

]

+α−1
[
xTj (t)PjÂinjÂ

T
injPjxj(t) −

1
J
xTj (t)PjÂijj Â

T
ijjPjxj(t)

]}
.

(A6)
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(Based on the concept of interconnection, the matrix Âijj is equal to zero.) From (A4) and
(A6), we obtain

V̇ (t) ≤
J∑

j=1

rj∑

ρ=1

ḣρj(t)xTj (t)Pρjxj(t) +
J∑

j=1

rj∑

l=1

rj∑

i=1

hlj(t)hij(t)xTj (t)

×
[

AT
ijPli + PliAij + α(J − 1)I +

J∑

n=1

α−1PjÂinjÂ
T
injPj

]

xj(t).

(A7)

Therefore, V̇ (t) < 0 if (3.2) holds.However, condition (3.2) cannot be easily solved
numerically because we need to consider the term of the time derivative ḣρj(t). Eq. (3.2)
is thus transformed into numerically feasible conditions described in Theorem 3.3 and upper
bounds of the time derivative are used in place of the hρ(t).

Theorem 3.3. The fuzzy system (2.7) is stable in the large if there exist common positive definite
matrices P1j , P2j , . . . , Prj such that inequality |ḣρj(t)| ≤ φρj is satisfied and

rj∑

ρ=1

φρjPρj +AT
ijPli + PliAij + α(J − 1)I +

J∑

n=1

α−1PjÂinjÂ
T
injPj . (3.3)

Proof.

V̇ (t) ≤
J∑

j=1

rj∑

ρ=1

ḣρj(t)xTj (t)Pρjxj(t)

+
J∑

j=1

rj∑

l=1

rj∑

i=1

hlj(t)hij(t)xTj (t)

[

AT
ijPli + PliAij + α(J − 1)I +

J∑

n=1

α−1PjÂinjÂ
T
injPj

]

xj(t)

≤
J∑

j=1

rj∑

l=1

rj∑

i=1

hlj(t)hij(t)

⎧
⎨

⎩

rj∑

ρ=1

xTj (t)
[
φρjPρj

]
xj(t)

⎫
⎬

⎭

+
J∑

j=1

rj∑

l=1

rj∑

i=1

hlj(t)hij(t)xTj (t)

[

AT
ijPli + PliAij + α(J − 1)I +

J∑

n=1

α−1PjÂinjÂ
T
injPj

]

xj(t)

=
J∑

j=1

rj∑

l=1

rj∑

i=1

hlj(t)hij(t)xTj (t)

⎡

⎣
rj∑

ρ=1

φρjPρj +AT
ijPli + PliAij + α(J − 1)I

+
J∑

n=1

α−1PjÂinjÂ
T
injPj

]

xj(t),

(A8)

V̇ (t) < 0 if (3.3) holds.
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Figure 1: The state response of subsystem 1.

Remark 3.4. A special case of sufficient conditions without φρj is proposed to guarantee
the asymptotically stability of fuzzy large-scale system S. If there exist symmetric positive
definite matrices Pj which satisfy that each isolated subsystem is asymptotically stable as
described in (3.4), the trajectories of the interconnected system are stable:

Aij
TPj + PjAij +

J∑

n=1

α−1PjÂinjÂ
T
injPj + α(J − 1)I < 0 (3.4)

for i = 1, 2, . . . , rj ; j = 1, 2, . . . , J.

Remark 3.5. Equation (3.4) can be recast as an LMI problem based on Lemma 2.2. Therefore,
new variables Wj = P−1

j and α = α−1 are introduced and (3.4) is rewritten as

⎡

⎢
⎣
WjA

T
ij +AijWj +

∑J

n=1
αÂinjÂ

T
inj Wj

Wj −α
(

1
J − 1

)
I

⎤

⎥
⎦ < 0 for i = 1, 2, . . . , rj . (3.5)

4. A Numerical Example

Consider a interconnected fuzzy system S which consists of two fuzzy subsystems described
by (2.2) with one rule.

Subsystem 1:

ẋ1 (t) = h11 (t)�A11 x1 (t) + Â121 x2 (t)	,

Subsystem 2:

ẋ2(t) = h12(t)�A12x2(t) + Â112x1(t)	,
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Figure 2: The state response of subsystem 2.

in which

xT1 (t) = [x11(t)x21(t)], xT2 (t) = [x12(t)x22(t)], A11 =

[
−16.252 −6.222

−6.084 −24.674

]

,

Â121 =

[
0.3 0.2

0.1 0.4

]

, A12 =

[
−21.800 −7.710

−7.150 −23.210

]

, Â112 =

[
0.3 0.3

0.3 0.3

]

.

(4.1)

At first, based on (3.5), we can get the common solutions Wj and α via the Matlab LMI
optimization toolbox

W1 =

[
0.811 −0.2411

−0.2411 0.342

]

, W2 =

[
2.9482 1.1952

1.1952 3.1873

]

, α = 1. (4.2)

Then, the following positive definite matrices Pj(= W−1
j ) and α can be obtained such

that (3.4) is satisfied

P1 =

[
1.5601 1.1002

1.1002 3.7001

]

, P2 =

[
0.4002 −0.1511

−0.1512 0.3703

]

, α = 1. (4.3)

Therefore, based on the theorem, the interconnected fuzzy system S described in (4.1)
is guaranteed to be asymptotically stable. From the simulation of Figures 1 and 2 and given
the initial conditions, x11(0) = 2, x21(0) = −2, x12(0) = 4, x22(0) = −4, we observe that
the interconnected fuzzy system S is asymptotically stable, because the trajectories of two
subsystems starting from non-zero initial states both approach close to the origin.
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5. Conclusions

For the class of continuous interconnected fuzzy system S, LMI-based stability conditions
have been derived based on the new fuzzy Lyapunov function. Sufficient stability conditions
were derived based on the asymptotically stability of the existence of a common positive
definite matrix Pi which is able to satisfy the Lyapunov equation or the LMI for each
subsystem Si. Finally, a numerical example was given to illustrate the effectiveness and ease
of implementation of this approach.
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This paper deals with the PI control of a highly simplified dynamic model of a hydraulic cylinder.
It is assumed that the hydraulic fluid is incompressible and that the pump provides constant flow
rates, which results in the possibility of velocity control. Two types of anomalies are taken into
account: (a) the time delay due to the controller computations and the internal pressure dynamics
and (b) the dead zone of the controller valve. This results in a nonlinear system are described
by a piecewise linear discontinuous map. Nonlinear behavior of the system is explored and the
practically globally stable parameter domains are identified.

1. Introduction

Hydraulic systems are widely used in heavy-duty industrial applications, where the exertion
of high forces with large stiffness is needed in a robust way. Although there is a considerable
effort on developing advanced control strategies (see e.g., [1–4]), PID control still remains the
most popular choice. However, it is well known that strong nonlinearities are present in these
systems, such as pressure-flow rate relationship, dead zone of the control valves (see e.g., [1]),
dry friction [3] or impact dynamics [5]. The discrete sampling time of the closed-loop control
introduces additional complexity together with the response lag due to internal (mostly
pressure) dynamics. Thus designing and tuning a PID controller of a hydraulic system is
a highly challenging task mostly because the conventional ways are based on linear system
theory. Moreover, some of the above-mentioned nonlinearities (e.g., dead zone or impact
dynamics) cannot be coped with using linearization techniques.
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Figure 1: The hydraulic positioning system. 1: hydraulic cylinder, 2: position transducer, 3: PC on which the
PI controller is implemented, 4: proportional directional valve, 5: electromotor, 6: gear pump, 7: pressure
limiting valve.

The mathematical modelling of these systems often leads to equations with nonsmooth
or even discontinuous right-hand side. Fortunately the progress in the theory of non-smooth
dynamical systems (see e.g., [6] for an overview) provides a toolbox, albeit it is still far
from being general. This is especially true for systems of higher dimensions (three, four,
etc.) with several regions of different dynamics. For example, [7] gives a general theory on
the existence of periodic and dense orbits for a bilinear one-dimensional map with a slight
extension towards two-dimensional maps with delay and backlash. In [8], the authors study
the border collision bifurcation in n-dimensional maps with two regions. Chaotic oscillations
are also identified in these systems [9]. Based on numerical simulations, [10] describes an
example on the effect of delay and backlash together.

This paper studies a highly simplified model of a hydraulic positioning system, which,
despite its simplicity (from the engineering point of view) and linearity, poses interesting
mathematical problems.

2. Mathematical Model

The subject of our investigation is a digitally controlled hydraulic system that consists of
a differential hydraulic cylinder, a proportional directional valve, a linear potentiometer as
position transducer, a gear pump, and a PC. The PC provides the PI (proportional-integral)
controller. It receives the signal from the position transducer, calculates the error signal, and
drives the hydraulic valve; see Figure 1. A typical characteristic of a directional proportional
valve is shown in Figure 2.

The mass of the piston is neglected in this study, and the Newtonian dynamics of the
system is further simplified by not considering frictional forces at the sealing of the piston
rod. Clearly, the latter one has an essential influence on the nonlinear dynamics of the system
due to small positive or even negative damping values. When we carry out the investigation
with zero damping, we analyze the critical case which already presents an intricate dynamics
due to the modeled delay, dead zone, and sampling.

The continuous physical process is sampled in time intervals ts (sampling time), thus
the position of the piston rod x(t) is discretized in time as xn = x(nts). This position is fed into
the PC which computes the error signal h. The time needed for this computation is denoted
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Figure 2: Dead zone in a typical flow rate/control signal characteristics of a directional proportional
hydraulic valve. In the interval (−umin,umin) there is no fluid flow.
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Figure 3: Scheme of the control. Instants signed with green circles represent the sampling; red circles
show the moments of velocity actuations. For hn, see equation (2.2); tc stands for computational time,
tid represents the internal dynamics of the hydraulic system (see text for details), td = tc + tid is the overall
delay, and ts denotes sampling time.

by tc. Due to the internal dynamics of the hydraulic system-(notably pressure dynamics),
the variation of the velocity of the piston rod follows a second (or even higher) order lag
system that is approximated by another delay denoted by tid, with subscript referring to
internal dynamics. Thus, the overall delay between the previous sampling instant and its
effect is td = tc + tid. Note that the actual values and ratio of tc and tid are irrelevant. Since the
Newtonian dynamics is neglected, the velocity of the piston is piecewise constant, and it can
be discretized in the following way: vn(t) ≡ v((n − 1) ts + td), t ∈ [(n − 1) ts + td, n ts + td),
accordingly, subscripts n refer to different time instants for positions and velocities as it is
represented in the controlling scheme of Figure 3.

Assume the cases when we have 0 ≤ td ≤ ts. Integrating the piecewise constant
velocities, we arrive at a relationship between two neighbouring sampled piston rod
positions, which can be expressed as

xn+1 = xn + vntd + vn+1(ts − td). (2.1)

Although this expression is similar to the Euler-discretization of the governing equations, this
discrete form is the exact solution of the real physical system controlled digitally. Considering
the proportional-integral controller, the error signal hn is calculated in the following form:

hn = Pxn + Iyn, (2.2)
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Figure 4: Simplified, saturation-free valve characteristics. In the interval (−Δ,Δ) there is no fluid flow.

where P is the proportional gain I is the integral one, and

yn = yn−1 + tsxn−1 (2.3)

is the discrete integral of the position function. The piston rod velocities vn+1 and vn
are calculated from hn and hn−1, respectively, according to the simplified characteristics
of the proportional directional valve. Figure 4 represents this reduced, saturation-free
characteristics. The interval of closure is (−Δ,Δ) and the slope is characterized by −α.

We introduce the dimensionless variables by means of

x̂ =
x

L
, v̂ =

v

L
, ŷ =

y

L
, δ =

αΔ
L

, ĥn =
αhn

L
, P̂ = αP, Î = αI (2.4)

and by abuse of the notation we drop the hats immediately. According to Figure 4, the
velocity is a piecewise function of the error signal. With dimensionless quantities,

vn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δ − hn−1,

0

−δ − hn−1,

hn−1 > δ,

if |hn−1| ≤ δ,

hn−1 < −δ.

(2.5)

In the subsequent sections, we are going to construct a 4-dimensional linear mapping
for the backlash-free system. In the presence of backlash, we derive a piecewise linear
mapping which is compiled from 9 linear maps of dimension 4. If one also investigates the
case td > ts, then similar linear and piecewise linear mappings can be constructed, but their
dimensions increase extremely. In order to represent the method in a compact mathematical
form, we restrict the description to the basic case 0 ≤ td ≤ ts.
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3. Stability Analysis of the Linear System

Eliminating the valve dead zone (δ = 0), a linear valve characteristic means regarding to the
piston rod velocity:

vn = − hn−1, (3.1)

from equation (2.1):

xn+1 = xn − hn−1td − hn(ts − td). (3.2)

Introducing zn, that consists of the actual and the previous piston positions, and integral
values:

zn =
(
xn xn−1 yn yn−1

)T
, (3.3)

with matrix formalism:

zn+1 = Azn, (3.4)

⎛

⎜⎜
⎝

xn+1

xn
yn+1

yn

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

1 − P(ts − td) −Ptd −I(ts − td) −Itd
1 0 0 0
ts 0 1 0
0 0 1 0

⎞

⎟⎟
⎠

︸ ︷︷ ︸
A

⎛

⎜⎜
⎝

xn
xn−1

yn

yn−1

⎞

⎟⎟
⎠. (3.5)

The stability of the system depends on the eigenvalues of matrix A, all of the absolute values
of the eigenvalues have to be less than 1:

det
(
−μI + A

)
= 0,

∣∣μi
∣∣ < 1, i = 1, . . . , 4.

(3.6)

The characteristic polynomial of matrix A is

μ4 + (P (ts − td) − 2)μ3 +
(

1 + 2Ptd − (P + Itd)ts + It2s

)
μ2 + td(Its − P)μ = 0.

(3.7)

The polynomial has one root that equals to zero; therefore; it can be divided by μ/=μ4 = 0.
Since the stability criteria of polynomials are determining the coefficients of polynomial so
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that all of the roots should be on the left side of the complex plain, Moebius transformation
has been applied:

μ =
1 + η

1 − η . (3.8)

As a consequence of the transformation, the case of the absolute values of the eigenvalues of
matrix A less than one is equal to the case of the roots of the transformed polynomial on the
left side of the complex plain:

∣
∣μi
∣
∣ < 1, i = 1, . . . , 4 ⇐⇒ Re

(
ηi
)
< 0, i = 1, . . . , 3. (3.9)

The transformed characteristic polynomial is

a3η
3 + a2η

2 + a1η + a0 = 0 (3.10)

and the coefficients are

a3 = 4 − (ts − 2td)(2P − Its),

a2 = 4(1 − Ptd) + Its(4td − ts),

a1 = (2P − I(2td + ts))ts,

a0 = It2s.

(3.11)

According to Routh-Hurwitz stability criterion, all of the polynomial coefficients (3.11) and
the determinant of matrix H2 (3.13) should be positive:

ai > 0, i = 0, . . . , 3,

det(H2) > 0,
(3.12)

where

H2 =
(
a2 a0

a3 a1

)
. (3.13)

Extracting the determinant,

a1a2 − a0a3 > 0. (3.14)

Considering 0 < td < ts, P > 0 and I > 0, the necessary condition is:

0 < td
(
P(td + ts) − 2Itst2d − 1

)
− ts +

√

(Ptd − 1)2
(
(ts − td)2 − 4tdts

Ptd − 1

)
, (3.15)
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Figure 5: Linear stability chart at sampling time ts = 0.1 s and time delay td = 0, td = ts/7, td = ts/5,
td = ts/4, td = ts/3, td → ts/2, td = ts.

in addition, one of conditions (3.16)–(3.18) should be also satisfied for the stability:

4td = ts, P <
4(ts − 3td)

(ts − 2td)2
, (3.16)

or

4td < ts, P <
4(ts − 3td)

(ts − 2td)2
, I <

4 + 2P(2td − ts)
ts(ts − 2td)

, (3.17)

or

4td > ts, P <
1
td
. (3.18)

In the above formulas, the continuous extension is to be used, when td → ts/2. Figure 5
shows parametric stability charts of the linear system at sampling time ts = 0.1 s and for
various time delays in the range td ∈ [0, ts]. It is easy to prove that the stability boundaries
are straight lines when td = 0. On the left stability boundary, |μ1| < 1 and |μ2,3| = 1. It can
also be shown that only this type of stability boundary exists when td ≥ ts/4. The rightmost
stability boundary for td < ts/4 is always a straight line, where |μ1| < 1, |μ2| < 1, and |μ3| = 1.
As the system is overdetermined, μ4 ≡ 0.

4. Dynamics of the Piecewise Linear System

According to equation (2.1), the upcoming value of xn+1 depends on the actual vn+1 and
the previous vn values of velocities. Considering Equation (2.5), xn+1 is the piecewise linear
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Table 1: Linear operator selection based on the error signals.

hn > δ |hn| ≤ δ hn < −δ
hn−1 > δ F1 F4 F7

|hn−1| ≤ δ F2 F5 F8

hn−1 < −δ F3 F6 F9

function of two previous error signals hn and hn−1. Since each past value can fall into 3 cases,
our system is described by 9 scalar equations:

xn+1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xn + (δ − hn−1) td + (δ − hn)(ts − td),

xn + (δ − hn)(ts − td)

xn + (−δ − hn−1)td + (δ − hn)(ts − td),

if

hn−1 > δ,

|hn−1| ≤ δ, hn > δ,

hn−1 < −δ,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xn + (δ − hn−1)td,

xn

xn + (−δ − hn−1)td

if

hn−1 > δ,

|hn−1| ≤ δ, |hn| ≤ δ,

hn−1 < −δ,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xn + (δ − hn−1) td + (−δ − hn)(ts − td),

xn + (−δ − hn)(ts − td)

xn + (−δ − hn−1)td + (−δ − hn)(ts − td),

if

hn−1 > δ,

|hn−1| ≤ δ, hn < −δ,

hn−1 < −δ.

(4.1)

The piecewise system can be written in a compact form, where Fi is a linear operator, that
shortens the matrix formalism:

zn+1 = Ai zn + bi = Fi(zn), i = 1, . . . , 9. (4.2)

In (4.2), the elements of Ai matrices and bi vectors (i = 1, . . . , 9) can be calculated as the
coefficients of scalar equations listed in (4.1). See Appendix (A.1) for details. The appropriate
Fi is selected according to the previous two error signals, shown in Table 1.

Extracting hn according to (2.2), the 3 intervals of hn result in 3 domains in the x-y
plane:

Pxn + Iyn < −δ,

−δ ≤ Pxn + Iyn ≤ δ,

δ < Pxn + Iyn,

(4.3)

bordered by 2 lines:

y = −P
I
x ± δ

I
. (4.4)
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x

y

Fixed points

hn > δ

hn < −δ

|hn| ≤ δ

Figure 6: Three domains of the x-y plane, in the middle region the error signal is less then the threshold of
the valve, there is no piston motion.

Figure 6 represents the x-y plane with the dead zone in the middle region. In the dead zone,
x is constant, meaning that the piston rod is stopped, since the proportional directional
valve is closed. Fixed points are on the y axis in the interval of [−δ/I, δ/I]. This invariant
set corresponds to the trivial solution of the backlash-free linear system. From practical
viewpoint, we are interested in the stability of the invariant set, since the actual value of
y has no importance if we managed to reach the desired x = 0 position.

4.1. Periodic Orbits

Numerical simulations were carried out with sampling time ts = 0.1 s, time delay td = 0.04 s,
and dimensionless dead zone δ = 12. By solving the system of algebraic equations shown
in (4.8), starting the system from initial condition z2 = (x2 x1 y2 y1)

T = (1 1 1 1)T , one finds
that at the values of integral gain Icr = 24.982 and proportional gain Pcr = 3.5714, a periodic
orbit exists, and the invariant set is stable for Pcr < P stable, and unstable for P < Pcr. This
behavior is similar to a degenerate Hopf bifurcation, being neither sub- nor supercritical.
Figure 7 represents the stable, unstable runs and one periodic orbit from those, which exist in
the critical case.

According to the simulation results shown in Figure 8 for different modified dead zone
sizes, the periodic orbit remains either periodic or it becomes a quasiperiodic dense orbit.

Figure 9 represents a periodic orbit in a general case. The numbering of the points
starts from the first step outside the dead zone region; k is the number of steps in the upper
region; j is half of the number of the steps inside the dead zone. Due to being a symmetric
system, the examination of the half of the periodic orbit is satisfactory, with the end point
subscript k + j + 2.

Initial conditions are arbitrarily chosen:

z2 =
(
x2 x1 y2 y1

)T
. (4.5)

For a symmetric half-orbit, we have

zk+j+2 =
(
−x2 − x1 − y2 − y1

)T = −z2. (4.6)
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Figure 7: Three simulation results, both with initial conditions z2 = (1 1 1 1)T , ts = 0.1 s, td = 0.04 s, δ =
12,and Icr = 24.982. Periodic orbit occurs at Pcr = 3.5714 (black); the control is stable at P = 4.1 (green),
unstable at P = 3.3 (red).

The first step is from point number 2 to number 3. In this case, both h2 > δ and h1 > δ,
therefore operator F1 is used to calculate point number 3, just as on the next k − 1 steps. As
we reach the dead zone, according to Table 1, F4 is applied on the border, and then F5 j − 1
times. The last step until the half-cycle is made with operator F8. Therefore, the half-cycle is
formed in general:

zk+j+2 = F8(F5(· · · (F5(F4(F1(· · · (F1(z2))))))))
def.−−−→ F8

(
F
(j−1)
5

(
F4

(
F
(k−1)
1 (z2)

)))
, (4.7)

where F
(k)
i means applying Fi operator k times. Extracting (4.7),

zk+j+2 = −z2 = A8(A5(· · · (A5(A4(A1(· · · (A1z2 + b1) + · · · ) + b1) + b4) + b5) + · · · ) + b5) + b8.
(4.8)

Using (4.8), one can generate periodic orbits as follows. We fix td, ts, and δ, furthermore, the
initial condition x1, y1 and the “shape” of the orbit with k and j, then by solving the second
and fourth components of (4.8) P and I can be calculated, with which x2 and y2 can be easily
determined. In Figure 10, three optional periodic orbits are shown.

4.2. Stability of Periodic Orbits

We can reduce equation (4.8) to one single operation, introducing Ã and b̃:

zk+j+2 = Ã z2 + b̃, (4.9)



Mathematical Problems in Engineering 11

y

x
−6 −4 −2 2 4 6

−1.5

−1

−0.5

1.5

1

0.5

Figure 8: Three simulation results, both with initial conditions z2 = (1 1 1 1)T , ts = 0.1 s, td = 0.04 s, Icr =
24.982 and Pcr = 3.5714. Periodic orbit occurs at δ = 12 (black), dense orbits with increased period length
at different dead zone sizes, δ = 20 (green) and δ = 4 (red).

where

Ã = A8Aj−1
5 A4Ak−1

1 ,

b̃ = A8Aj−1
5 A4Ak−2

1 b1 + A8Aj−1
5 A4Ak−3

1 b1 + · · · + A8Aj−1
5 A4b1

+ A8Aj−1
5 b4 + A8Aj−2

5 b5 + · · · + A8A5b5 + A8b5 + b8.

(4.10)

The stability of this reduced dynamical system shown in (4.9) depends on the eigenvalues of
matrix Ã. Since δ does not appear explicitly in Ã, the stability boundary of the invariant set
including the desired x = 0 position in the system with dead zone coincides with the stability
boundary of the linear system with linear valve characteristics derived in Section 3. However,
the structure of Ã could change if δ is large enough, and this way it can still affect the stability
regions.
In the left panel of Figure 11, three pairs of those control parameters (P, I) are denoted at the
limit of linear stability, where the periodic orbits exist as presented in Figure 10. Note that
their numerical values were calculated with the previously described method (solving (4.8)).

Figure 12 shows the behavior of three periodic or dense orbits for three different values
of P represented in the right panel of Figure 11. As it was shown above, the stability of the
linear system is preserved by the invariant set including x = 0 in the system with dead zone.
This means that all orbits will spiral outwards or inwards corresponding to the unstable or
stable linear behavior independently whether the orbits are periodic or dense at the critical
values of P . In other words, for each combination of the matrices Ai corresponding to any
kinds of orbits, the eigenvalues of Ã behave similarly in terms of stability. In the phase space
this means that the trajectories inside the dead zone are purely vertical and do not change
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Figure 9: General periodic orbit, k is half of the number of steps outside the middle region, j is half of the
number of steps inside the middle region.
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Figure 10: Three optional periodic orbits, both orbits step through xn = 1 and yn = 1, and have ts =
0.1 s sampling time, td = 0.04 s time delay, and δ = 12 dead zone width. Black colored orbit is produced
with Pcr = 3.5714 and I = 24.982, red one is with parameters Pcr = 3.1859, I = 22.968, green one is with
parameters Pcr = 4.6586 and I = 32.259.

the value of x—apart from the steps when the trajectory enters and leaves the dead zone.
Roughly speaking, the dead zone only “cuts” and “extracts” an already existing orbit. This
also explains why the orbits with dead zone behave similarly to the backlash-free case.
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Figure 11: Left: linear stability chart at ts = 0.1 s, td = 0.04 s. Black colored point shows Pcr = 3.5714 and
I = 24.982; blue one shows parameters Pcr = 3.1859, I = 22.968; red one shows parameters Pcr = 4.6586 and
I = 32.259, both with δ = 12. Right: one point is picked on the boundary of linear stability, one inside the
stable, one in the unstable region: (a) P = 3.3, I = 24.982, (b) P = 3.5714, I = 24.982, (c) P = 3.9, I = 24.982.

y

x
−6 −4 −2 2 4 6

−2

−1

2

1

(a)

y

x
−6 −4 −2 2 4 6

−2

−1

2

1

(b)

y

x
−6 −4 −2 2 4 6

−2

−1

2

1

(c)

Figure 12: Simulation results with δ = 12 corresponding to the parameters (a), (b), and (c) in Figure 11.

Further investigation is needed to study how these dynamical properties will change
with slight perturbation caused by the damping. It is likely that the above structure of
periodic and dense orbits will not survive, but some of them may exist either in the
linearly stable or unstable domain, depending on whether the damping is slightly positive
or negative.

5. Conclusions

In this paper, the PI control of a hydraulic positioning system with cylinder was studied with
an emphasis on the interaction of digital sampling, time delay due to finite computational
time and internal dynamics, and backlash due to valve characteristics affecting the global
dynamics of the controlled system. The stability boundary of the backlash-free system was
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computed analytically and represented on the (P, I) control parameter plane. Then, it was
shown that the dynamics is described by a piecewise linear system with 9 possible states
caused by the presence of backlash. It was shown that both periodic and dense orbits
are present in the system when the parameters are tuned to the stability boundary of the
backlash-free system.

An analytical method was presented which, for a given sequence of switchings, initial
conditions, sampling and delay time, and dead zone width, allows the computation of the
corresponding P and I parameters ensuring the existence of a periodic orbit. Moreover, it was
shown that as the linear coefficient matrices of the piecewise linear system are independent
of the dead zone width, so does the stability of the periodic or dense orbits. In other words,
the stability boundary of the linear system provides a practical stability margin for the system
with backlash, too.

Appendix

List of Ai matrices and bi vectors.

A1 =

⎛

⎜⎜
⎝

1 − P (ts − td) −Ptd −I (ts − td) −Itd
1 0 0 0
ts 0 1 0
0 0 1 0

⎞

⎟⎟
⎠, b1 =

(
δts 0 0 0

)T
,

A2 =

⎛

⎜⎜
⎝

1 − P (ts − td) 0 −I(ts − td) 0
1 0 0 0
ts 0 1 0
0 0 1 0

⎞

⎟⎟
⎠, b2 =

(
δ(ts − td) 0 0 0

)T
,

A3= A1, b3 =
(
δ (ts − 2td) 0 0 0

)T
,

A4 =

⎛

⎜⎜
⎝

1 −Ptd 0 −Itd
1 0 0 0
ts 0 1 0
0 0 1 0

⎞

⎟⎟
⎠, b4 =

(
δtd 0 0 0

)T
,

A5 =

⎛

⎜⎜
⎝

1 0 0 0
1 0 0 0
ts 0 1 0
0 0 1 0

⎞

⎟⎟
⎠, b5 = 0,

A6 = A4, b6 = −b4,

A7 = A1, b7 = −b3,

A8 = A2, b8 = −b2,

A9 = A1, b9 = −b1,

(A.1)
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An unsteady nonlinear and extended version of the Moore-Greitzer model is developed to
facilitate the synthesis of a quasilinear stall vibration controller. The controller is synthesised in two
steps. The first step defines the equilibrium point and ensures that the desired equilibrium point
is stable. In the second step, the margin of stability at the equilibrium point is tuned or increased
by an appropriate feedback of change in the mass flow rate about the steady mass flow rate at the
compressor exit. The relatively simple and systematic non-linear modelling and linear controller
synthesis approach adopted in this paper clearly highlights the main features on the controller that
is capable of inhibiting compressor surge and rotating stall vibrations. Moreover, the method can
be adopted for any axial compressor provided its steady-state compressor and throttle maps are
known.

1. Introduction

Compressor surge and rotating stall vibrations place fundamental limitations on aircraft
engine performance and remain persistent problems in the development of axial compressor
and fan stages. Compressor surge and rotating stall are purely fluid mechanic instabilities,
while blade flutter, stall flutter, and surge flutter and their variants are aeroelastic instabilities
involving both blade vibrations and fluid motion. Although both rotating stall flutter and
rotating stall tend to occur when the blades of a compressor or fan are operating at high-
incidence angles and/or speed, and unsteady viscous flow separation plays a key role in
both of these phenomena, the various fluttering phenomena are precursors to compressor
surge.

Surge is characterized by large amplitude fluctuations of the pressure in unsteady,
circumferentially uniform, annulus-averaged mass flow. It is a one-dimensional instability
that spreads through the compression system as a whole and culminates in a limit cycle
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oscillation in the compressor map. In most situations surge is initiated in a compressor when
the compressor mass flow is obstructed and throttled. The frequency of surge oscillations
is relatively in a low-frequency band (<25–30 Hz) which could couple with the aeroelastic
modes of vibration. The performance of the compressor in surge is characterised by a loss
in efficiency leading to high-aeroelastic vibrations in the blade as well as influence the stress
levels in the casing. In jet engines, surge can lead to the so-called flame-out of the combustor
which could involve reverse flow and chaotic vibrations.

Based on the amplitude of mass flow and pressure fluctuations, surge was classified
into four distinct categories: mild surge, classical surge, modified surge, and deep surge by
de Jager [1]. This classification is now widely accepted and is used to differentiate between
different forms of surge and rotating stall vibrations. During mild surge, the frequency
of oscillations is around the Helmholtz frequency associated with the resonance within a
cavity, that is, the resonance frequency of the compressor duct and the plenum volume
connected to the compressor. This frequency is typically over an order of magnitude smaller
than the maximal rotating stall frequency which is normally of the same order as the rotor
frequency. Classical surge is a nonlinear phenomenon such as bifurcation and chaos with
larger oscillations and at a lower frequency than mild surge, but the mass flow fluctuations
remain positive. Modified surge is a mix of both classical surge and rotating stall. Deep surge,
which is associated with reverse flow over part of the cycle, is associated with a frequency
of oscillation well below the Helmholtz frequency and is induced by transient nonlinear
processes within the plenum. Mild surge may be considered as the first stage of a complex
nonlinear phenomenon which bifurcates into other types of surge by throttling the flow to
compressor to lower mean mass flows. Mild surge is generally a relatively low-frequency
phenomenon (≈5–10 Hz) while rotating stall is a relatively higher-frequency phenomenon
(≈25–30 Hz).

There are two modes of stable control of a compressor, the first is based on surge
avoidance which involves operating the compressor in a instability free domain (Epstein et
al. [2], and Gu et al. [3]). Most control systems currently used in industry are based on this
control strategy. In this simple strategy, a control point is defined in parameter space with a
redefined stability margin from the conditions for instability defined in terms of stall point.
This stability margin is defined by (i) typical uncertainties in the location of the stall point, (ii)
typical disturbances including load variations, inlet distortions, and combustion noise, and
(iii) a consideration of the available sensors and actuators and their limitations. Generally, a
bleed valve or another form of bleeding or recycling of the flow is used to negate the effect
of throttling the flow. The control is either the valve position or if one employs an on/off
approach as in pulse width modulation, the relative full opening times of the bleed valve in
a cycle. Such an approach achieves stability at the expense of performance and the approach
is not particularly suitable when the flow is compressible. In short, the surge avoidance
approach is not performance optimal. There are also problems associated with the detection
of instability. The second mode of control involves continuous feedback control of the mass
flow by introducing a control valve or an independently controlled fan. This method involves
stability augmentation as the changes in the mass flow will effectively change the conditions
for instability and thus increase the stability margin. Rather than operating away from the
domain of instability, the domain is pushed further away from the operating point. Based on
the experiments performed by a number of earlier researchers (see, e.g., Greitzer [4]), a 20%
increase in mass flow is deemed achievable by this means of stability augmentation.

Several attempts have been made to incorporate the influence of blade dynamics
into model for stall prediction. Compressor surge by itself places a fundamental limitation
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on performance. Hence active control methods that tend to suppress the various forms of
stall will allow the system to be effectively employed over the parameter space prior to
the occurrence of surge. Moreover, it is important to consider the various forms of stall in
a holistic and integrated fashion as it would be quite impossible to design individual control
systems to eliminate each of the individual instabilities. To this end it is also important
to develop a holistic and integrated dynamic model. The model developed by Moore and
Greitzer [5] based on the assumptions that the system is incompressible except in a plenum
which is assumed to enclose the compressor and turbine stages, and that radial variations are
unimportant, represents the compressor surge as a Helmholtz-type hydrodynamic instability.
In the original Moore and Greitzer model, an empirical, semiactuator disk representation of
the compressor was used, incorporating Hawthorne and Horlock’s [6] original actuator disc
model of an axial compressor and it served as the basic model incorporating rotating stall. By
introducing a semiempirical actuator disk theory into the model, Moore and Greitzer were
able to predict rotating stall and surge. The advantage of the Moore and Greitzer model is the
analyst ability to incorporate a host of hysteresis models into the compressor characteristics
that permit the prediction of a variety of limit cycle response characteristics. Gravdahl and
Egeland [7] extended the Moore and Greitzer model by including the spool dynamics and the
input torque into the same framework as the original model, thus permitting the inclusion of
the control inputs into the dynamics. The models may be derived by the application of finite
volume type analysis and may also be extended to the case of rotating stall instability and
rotating stall-induced flutter. In the Moore and Greitzer model, the downstream flow field is
assumed to be a linearized flow with vorticity, so a solution of a form similar to the upstream
solution can be found. The plenum chamber is assumed to be an isentropic compressible
chamber in which the flow is negligibly small and perturbations are completely mixed and
distributed. Thus the plenum acts merely as a “fluid spring”. The throttle is modelled as a
simple quasisteady device across which the drop in pressure is only a function of the mass
flow rate. Flow variations across the compressor are subject to fluid-inertia lags in both the
rotor and the stator, and these lags determine the rotation rate of rotating stall. Stability of
rotating stall is determined by the slope of the compressor total-to-static pressure rise map.
Greitzer [4] discussed the possibility of the active control of both stall and rotating stall by
controlling the relevant Helmholtz cavity resonance frequencies which could be achieved by
structural feedback.

Apart from the numerous methods of synthesizing control laws that have been
proposed by the application of linear control law synthesis methods, which are only suitable
for the guaranteed stabilisation of mild surge, a few nonlinear control law synthesis methods
have also been proposed. In order to design an active feedback controller that can control
deep surge, an inherently nonlinear surge-control model is essential. A number of nonlinear
models have been proposed (Chen et al. [8], Krstic et al. [9], Nayfeh and Abed [10], Paduano
et al. [11], and Young et al. [12]), and but almost all of these are oriented towards rotating stall
control synthesis and include the dynamics of the amplitude of the leading circumferential
mode. Many of these models (Gu et al. [13] and Hõs et al. [14]) have been employed to
perform a bifurcation analysis to explore the behaviour of the postinstability dynamics.

In this paper, an unsteady nonlinear and extended version of the Moore-Greitzer
model is developed to facilitate the synthesis of a surge and stall controller. The motivation is
the need for a comprehensive and yet low-order model to describe the various forms of stall
as well as the need to independently represent the transient disturbance and control inputs
in the compressor pressure rise dynamics. Furthermore, the extended version of the Moore-
Greitzer model is developed by reducing the number of independent model parameters to a
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minimum. Our preliminary studies indicate that model can effectively capture the dynamics
of the phenomenon of compressor surge and that its poststall instability behaviour is a well
representative of the observed behaviours in real axial flow compressors. The controller is
synthesised in two steps. In the first step, the desired equilibrium throttle position and the
desired equilibrium value of the ratio of the nondimensional pressure rise at minimum flow
to a quarter of the peak to peak variation of the pressure fluctuation at the compressor exit
are established. This defines the equilibrium point and ensures that the desired equilibrium
point is stable. In the second step, the margin of stability at the equilibrium point is tuned
or increased by an appropriate feedback of change in the mass flow rate about the steady
mass flow rate at the compressor exit. The first step may be considered to be an equilibrium
point controller while the second corresponds to stability augmentation. Such a two-step
process then ensures that both the desired equilibrium solution is reachable and that any
perturbations about the equilibrium point are sufficiently stable.

2. Fundamental Model Equations

The unsteady and steady fluid mechanics of the flow upstream and downstream of the
compressor is considered while the viscous effects are limited to within the actuator disc
of the compressor which allows one to define nondimensional total to static pressure rise
map. Compressibility is assumed to be confined to the plenum chamber downstream of the
compressor where the compression is assumed to be uniform and isentropic. The throttle
map sets the mass flow through the system and is a function of the plenum pressure and
the throttle opening. It is essential in defining the flow characteristics of the compressor. The
rate of change of the plenum pressure is determined from the one-dimensional continuity
conditions and is a function of difference in the compressor flow averaged over the face of
the compressor and the throttle flow. The second equation is defined by the one-dimensional
rate of change of momentum which relates to the dynamic pressure. Two other equations
complete the definition of the complete dynamics of the Moore-Greitzer model; the first
relates to the rate of change of the throttle flow and the second defines the compressor
dynamics and is based on an unsteady adaptation of the actuator disc model. These equations
were first proposed by Greitzer [15] in 1976.

The dimensionless compressor mass flow is assumed to be φc and ψ is the
dimensionless plenum pressure rise. Furthermore, Ψc,ss is the dimensionless steady-state
compressor pressure rise given in the compressor map, whereas Ψc is the dimensionless
dynamic compressor pressure rise. The dimensionless throttle mass flow is φt and
dimensionless pressure drop across the throttle is Ψt

1
B

d

dτ
φc = Ψc − ψ,

G

B

d

dτ
φt = ψ −Ψt,

B
d

dτ
ψ = φc − φt,

τc
d

dτ
Ψc = Ψc,ss −Ψc,

(2.1)
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where φc = ṁc/(ρaAcUt), φt = ṁt/(ρaAcUt), Ψc = 2Δpc/(ρaU2
t ), Ψt = 2Δpt/(ρaU2

t ), B

is the Greitzer parameter given by B = Ut/2ωHLc, ωH = a
√
Ac/(VpLc) is the Helmholtz

cavity resonance frequency for the plenum, τ is the non-dimensional time defined in terms
of the Helmholtz frequency and the time t, in seconds as, τ = ωHt, G is the geometry ratio
parameter of the throttle duct and control volume given by G = (Lt/At)/(Lc/Ac), and τc is
the time constant of the compression system that would be different for stall and for rotating
stall. In the preceding definitions of the model parameters, ṁc is the mass flow rate through
the compressor, ṁt is the mass flow rate through the throttle, Δpc is the pressure rise across
the compressor, Δpt is the pressure drop across the throttle, ρa is the ambient air density, a
is the speed of sound corresponding to ambient conditions, Ac is the cross-sectional area of
the control volume, Lc is the length of the control volume, At is the cross-sectional area of the
throttle duct, Lt is the length of the throttle duct, Vp is the volume of the plenum chamber,
and Ut is the rotor tip speed.

The compressor map in steady flow is a plot of the non-dimensional pressure with the
non-dimensional mass flow rate through the compressor for each rotation speed. However,
the plots are self-similar and can be reduced to single plot by scaling the non-dimensional
mass flow rate and the non-dimensional dynamic pressure rise. The compressor surge line
is obtained simply by linking the maximum point on each compressor characteristic for a
particular rotational speed. Representing the compressor characteristics in a non-dimensional
manner for each rotation speed and appropriately scaling the axes simply reduces the “surge
line” to a single point which is the maximum point on the characteristic. Following, Hõs et
al. [14], the scaled compressor map in steady flow when φc = φcs is assumed to be

Ψc,ss

(
φcs
)
= Ψc0 +

H

2

(

2 + 3
(
φcs
F
− 1
)
−
(
φcs
F
− 1
)3
)

. (2.2)

In (2.2), H defines half the peak-to-peak variation of the pressure fluctuation at the
compressor exit or the amplitude of the pressure fluctuation while F is half the change in
the steady mass flow rate, φcs is required for the pressure to change from the minimum to the
maximum. The definitions of the parameters H and F are illustrated in Figure 1.

The throttle map in steady flow when φt = φts is taken to be

Ψt,ss =
(
φts
Ctγ

)2

, (2.3)

where the dimensionless throttle parameter Ct is a coefficient defining the capacity of the
fully opened throttle and γ is the dimensionless throttle position.

Following Gravdahl and Egeland [7], the input torque to the compressor may be
included and the dynamics of the spool as another state equation is given by

I

(
dω

dt

)
= Text − Tc, (2.4)

where I is the mass moment of inertia of the compressor rotor, ω the angular velocity
which may be expressed in terms of the Greitzer parameter and tip radius as ω = Ut/Rt =
2ωHLcB/Rt, Text is the external torque input, and Tc is the torque necessary to drive the
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Figure 1: Definitions of the compressor characteristic parameters H and F.

compressor which may be expressed in terms of the slip ratio σ, as Tc = ρaAcU
2
t Rtφcσ.

The slip ratio σ can be defined as the ratio of the tangential velocity of the fluid at the
compressor exit guide vanes and the tip speed. The external torque may be expressed in a
non-dimensional form as, Γext = Text/ρaAcU

2
t Rt. Hence (2.4) may be expressed in a non-

dimensional form as

dB

dτ
=
B2(Γext − φcσ

)

μ
, (2.5)

where μ = I/2ρaR2
t AcLc is the non-dimensional inertia parameter, and Γext is the non-

dimensional torque input.
In this analysis all controls are initially assumed to be fixed as the uncontrolled

dynamics is considered first. For this reason, any bleed valve that may have been included is
closed and all control pressure perturbations are assumed to be equal to zero.

3. Steady Flow Analysis

Assuming the conditions of steady flow, the equations are

1
B

d

dτ
φc = Ψc − ψ = 0, (3.1a)

G

B

d

dτ
φt = ψ −Ψt = 0, (3.1b)

B
d

dτ
ψ = φc − φt = 0, (3.1c)

τc
d

dτ
Ψc = Ψc,ss −Ψc = 0, (3.1d)

dB

dτ
=
B2

μ

(
Γext − φcσ

)
= 0. (3.1e)
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From the third of the above equations, (3.1c), in steady flow, let

φcs = φts = φs0. (3.2)

The steady flow conditions are obtained from the first two of the above equations, (3.1a) and
(3.1b), and are given by Ψc,ss = Ψt,ss; that is,

Ψc,ss

(
φs0
)
= Ψc0 +

H

2

(

2 + 3
(
φs0

F
− 1
)
−
(
φs0

F
− 1
)3
)

=
(
φs0

Ctγ

)2

. (3.3)

A parameter p is defined as

p =
(

2
H

)(
F

Ctγn

)2

, (3.4)

where p is the throttle non-dimensional pressure rise at minimum flow and a parameter p0

p0 =
2
H

Ψc0 + 2 (3.5)

which is the ratio of the non-dimensional pressure rise at minimum flow to a quarter of the
peak-to-peak variation of the pressure fluctuation at the compressor exit, then (3.3) reduces
to

Ψc,ss

(
φs0
)
=
H

2

(
p0 + 3x − x3

)
= p

H

2
(1 + x)2, (3.6a)

where the variable x is

x =
(
φs0

F

)
− 1. (3.6b)

If one assumes that with the minimum flow through the compressor and the throttle, the flow
is always steady, then with φs0/F = 1, one obtains from (3.4),

p0 = p. (3.7)

Assuming that the position of the throttle γ is set to a nominal value γ = γn when (3.6a)-(3.6b),
and (3.7) are satisfied, (3.6a)-(3.6b) may be rearranged and written as

Ψc0 =
H

2
(
p − 2

)
. (3.8)
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Eliminating Ψc0, the steady flow characteristic may be defined entirely in terms of the
compressor and throttle map parameters, H,F and the product γ nCt and is

3x − x3 = px(x + 2), (3.9)

and (3.8) may be expressed as

x
(
x2 + px + 2p − 3

)
= 0. (3.10)

From the first factor of (3.10) the assumed solution, φs0/F = 1, is recovered. Assuming x /= 0
and solving for p

p =

(
3 −
(
φs0/F − 1

)2
)

(
φs0/F + 1

) . (3.11)

If one assumes that with the flow through the compressor and the throttle either minimum
or below minimum, it is always steady, then x = x0. Then it follows that,

H

2

(
p0 + 3x0 − x3

0

)
= p

H

2
(1 + x0)2. (3.12)

Eliminating p0, one obtains

(
3(x − x0) −

(
x3 − x3

0

))
= 2p(x − x0) + p

(
x2 − x2

0

)
. (3.13)

Solving for p, one obtains

p =

(
3 −
(
x2 + xx0 + x2

0

))

(x + x0 + 2)
. (3.14)

When x0 = 0, (3.14) reduces to (3.11).

4. Unsteady NonLinear Extended Moore-Greitzer Model

Rather than combining the quasisteady and transient components of compressor pressure
rise, the independent contributions from these two components of the pressure rise are
separately identified. If one defines ΔΨc = Ψc −Ψc,qs as the transient disturbance and control
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pressure component of the compressor pressure rise, the first three unsteady equations may
be expressed as

dφc
Bdτ

= Ψc,qs − ψ + ΔΨc, (4.1a)

Gdφt
Bdτ

= ψ −Ψt,qs, (4.1b)

Bdψ

dτ
= φc − φt. (4.1c)

The compressor transient disturbance and control dynamics, in the absence of a control
pressure input, is defined entirely in terms of ΔΨc as

τcdΔΨc

dτ
= −ΔΨc + Ψc,ss −Ψc,qs, (4.2)

where the unsteady compressor characteristics, Ψc,qs, and the unsteady throttle map, Ψt,qs,
are assumed to satisfy the quasisteady model equations given by

Ψc,qs

(
φc
)
= Ψc0 +

H

2

(

2 + 3
(
φc
F
− 1
)
−
(
φc
F
− 1
)3
)

, (4.3a)

Ψc0 =
H

2
(
p − 2

)
, Ψt,qs =

(
φt
Ctγ

)2

. (4.3b)

Furthermore

Ψc,ss

(
φs0
)
=
H

2

(

p + 3
(
φs0

F
− 1
)
−
(
φs0

F
− 1
)3
)

. (4.4)

Further from the definition of the parameter, p, one may write

C2
t γ

2
n =

2F2

pH
. (4.5)

In (4.5) one considers the throttle’s non-dimensional nominal position, γ = γn, to be fixed and
any perturbations to it must be considered as a deviation. If Δγ is the deviation of the throttle
position from the nominal position, γ = γn, then in the general case (4.5) may be written as

C2
t γ

2 =

⎛

⎝

√
2F2

pH
+ CtΔγ

⎞

⎠

2

. (4.6)
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Considering the last equation for the dynamics of the compressor spool, one assumes that
that the non-dimensional torque input, Γext, is provided by a non-dimensional power input
and can be defined by Γext = Πext/B. The equation for the spool dynamics is

dB

dτ
=
B

μ

(
Πext − Bφcσ

)
, (4.7)

where the non-dimensional power input is related to the real power, Pext, by the equation

Πext =
Pext

2ρaU2
t

AcωHLc. (4.8)

In most practical situations involving jet engines, it is power that is delivered to a turbine
driving the compressor by a combustor and this can be modelled independently.

Using (3.14) to (4.7), the complete unsteady nonlinear equations not including the
control inputs may be expressed in terms of the five states φc, φt, ψ, ΔΨc, and B, as

dφc
dτ

= BΨc,qs + B
(
ΔΨc − ψ

)
,

d

dτ
φt = −

B

G

φ2
t

(√
2F2/pH + CtΔγ

)2
+
Bψ

G
,

d

dτ
ψ =

(
φc − φt

)

B
,

dΔΨc

dτ
+
ΔΨc

τc
=

(
Ψc,ss −Ψc,qs

)

τc
,

dB

dτ
=
B

μ

(
Πext − Bφcσ

)

(4.9)

with

p =

(
3 −
(
φs0/F − 1

)2
)

(
φs0/F + 1

) . (4.10)

The eight model parameters are φs0/F,H,G, τc, F,CtΔγ , μ, and σ. The input to the model is
defined by Πext, the non-dimensional power input to the compressor.

5. Application to Rotating Stall Vibrations

Equations (4.9) describe surge in our one-dimensional model but do not include rotating
stall. The extension needed is derived and explained in detail by Moore and Greitzer [5]
by Galerkin projection, and only the essence of the method is presented here. The Galerkin
projection procedure represents the reduction of the differential equation by a set of basic or
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coordinate functions to capture the behaviour in the circumferential direction with a finite set
of modes. One-mode truncation via Galerkin projection results in an additional equation in
terms of a new variable J that must be included with (4.9). The square of the new variable J
represents the amplitude of the first Galerkin mode. Following Hõs et al. [14], the dynamics
of J is described by

τJ
dJ

dτ
=
H

F
J

(

1 −
(
φc
F
− 1
)2

− 1
4
J

)

, (5.1)

where the time constant τJ is related to the time constant of an N-stage compressor τc and the
slope of the compressor duct flow parameter m, by the relations

τJ =
ωHR(1 +ma)

3aUt
, with a =

R

τcUt
. (5.2)

The presence of rotating stall influences the compressor characteristic (2.3), and following
Hõs et al. [14], it is modified as

Ψc,ss

(
φcs
)
= Ψc0 +

H

2

(

2 + 3
(
φcs
F
− 1
)(

1 − J
2

)
−
(
φcs
F
− 1
)3
)

. (5.3)

Conditions for steady flow now require additionally that either J = Js = 0, corresponding
to an equilibrium with no rotating stall disturbance, or J = Js = 4(1 − x2), corresponding to
an equilibrium with a rotating stall disturbance. Since J represents the amplitude of rotating
stall amplitude, to avoid rotating stall J must tend to zero. If it tends to any other finite value
the rotating stall amplitude is nonzero, implying that rotating stall exists. In the case when
the rotating stall amplitude is nonzero, (3.4) and (3.5) are unchanged but (3.10) and (3.11)
are, respectively, modified, in case J is given by the latter non-zero equilibrium point as

5x2 − xp − 3 − 2p = 0,

p =

(
5
(
φs0/F − 1

)2 − 3
)

(
φs0/F + 1

) ,

(5.4)

where the definition of the parameter p is unchanged. In the model, it should be noted
that the Greitzer parameter B is no longer a parameter but a slowly varying state. In this
respect, our analysis is different from that of Moore and Greitzer [5] who treated it as
a parameter and stated the conditions for surge in terms of this parameter. For control
applications, particularly when the external control input is due to a control torque, it is
most appropriate to allow the Greitzer parameter B to vary. However, when the Greitzer
parameter B is assumed to be variable, it is essential that both the compressor steady
characteristic parameters, H and F, are not constant but functions of B. Based on a set of
typical characteristics, the parameters, H and F, are assumed to be linear functions of the
Greitzer parameter B and given by

H = H0 +HBB, F = FBB, (5.5a)
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where H0, HB, and FB are assumed to be constants. Thus in steady state, when B = B0, H and
F are given by

Hs = H0 +HBB0, Fs = FBB0. (5.5b)

If one defines the change in J by ΔJ = J − Js in the unsteady case, (4.9) are now modified as

dφc
dτ

= BΨc,qs + B
(
ΔΨc − ψ

)
, (5.6a)

d

dτ
φt = −

B

G

φ2
t

(√
2F2/pH + CtΔγ

)2
+
Bψ

G
, (5.6b)

d

dτ
ψ =

(
φc − φt

)

B
, (5.6c)

dΔΨc

dτ
+
ΔΨc

τc
=

(
Ψc,ss −Ψc,qs

)

τc
, (5.6d)

dB

dτ
=
B

μ

(
Πext − Bφcσ

)
, (5.6e)

τJ
dΔJ
dτ

=
H

F
(Js + ΔJ)

(

1 −
(
φc
F
− 1
)2

− 1
4
(Js + ΔJ)

)

(5.6f)

with

Js = 0 (5.7)

or

Js = 4

((
1 −
(
φs0

F

)
− 1
)2
)

, (5.8)

where the parameter F is evaluated under steady conditions. Only the former is used and
it also required the equilibrium point to be stable. Moreover, there is now an additional
parameter τJ , which may be related to τc as

τJ =
τcωH(1 +mRτc/Ut)

3
, (5.9)

but will be treated as an independent parameter. Equations (5.6a)–(5.6f) represent a six-state
dynamic model of the dynamics of the compressor system.
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Table 1: Typical parameter and initial state values for simulation.

Parameter Primary value State/input Initial value
φs0 0.375 φc 0.4
FB 0.625 φt 0.3
H0 0.06 ψ 0.0
HB 0.3 ΔΨc 1.0
G 2 B 0.4
σ 0.9 ΔJ 3.1 or 0.1
CtΔγ 0.0 Js 0
μ 40 Πext 0.17
τc 0.05 τJ 0.5

6. Model Response and Instability

Although our primary interest is in establishing a nonlinear model for synthesizing an active
surge controller, one needs to understand the dynamic response of the uncontrolled model
not only in the vicinity of the domain of instability but also in the postinstability domains
in the parameter space. For this reason, the dynamic response of the model proposed in the
preceding section is considered, without including any controls which could include a bleed
valve or a feedback controller that influences the transient dynamics of the compressor. The
rotating stall dynamics is ignored in the first instance.

Table 1 lists the nominal typical values of the parameters, initial values of the states,
and the inputs used in the simulation of the dynamic response, for which the system was
stable. The parameter p is not shown in Table 1 as it is computed from the parameters in
the table. It is however an important parameter as a high value represents greater levels of
throttling and a reduced mass flow rate through the throttle. The system was not unstable
unless either H was negative or γ < γn. A typical example of a stable response is shown in
Figure 2.

The first case considered was with CtΔγ = 0. In this case, no chaotic behaviour
was observed although both stable and unstable behaviours were observed. When the
compressor was stable, the behaviour was always lightly damped and oscillatory. Choosing
the parameter γ = γn represents a case of tuning or matching the throttle to the compressor.
In most cases the instability could be eliminated by proper tuning of the parameters and no
active stabilisation was deemed necessary.

When H is locally negative, it corresponds to the case of negative slope in the
characteristic that was considered by Hõs et al. [14]. When H is negative and the parameter,
γ > γn, the throttle mass flow is not matched to the compressor mass flow. Although the
system was unstable, no chaos was observed. When H is negative and γ < γn, there was
a clear incidence of chaos in the flow through the compressor, which was identified by a
one-dimensional Poincaré map. The chaotic response with a negative H is significant as it
represents the case of flame-out in jet-engines. However, this case is not of much practical
importance for controller synthesis as the compressor becomes unstable before it becomes
chaotic.

The responses of B and J, when H is negative and γ > γn in the rotating stall case,
are illustrated in Figure 3. Apparently the Greitzer “parameter” is itself stable in this case but
the sustained response in J away from the trivial equilibrium solution (J = 0) represents the
presence of rotating stall disturbances.
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Figure 2: Stable responses of states to disturbance, for the nominal typical values of the parameters.

Considering the case of rotating stall with H positive and CtΔγ = 0, the system always
exhibited stability in the sense that the response converged to a steady state. With γ /= γn or
γ = γn, H positive, and φs0/F < 2, the equilibrium solution jumps from one with Js = 0 to
one with Js = 1 and this is followed by the pressure in the plenum chamber falling to zero.
The state responses in this case are illustrated in Figure 4(a). The corresponding unsteady
compressor map and the operating point on the map are shown in Figure 4(b).

Although, when the compressor flow and throttle flow were matched, that is, with
γ = γn, the system is stable; it is also important to maintain J at zero, as it represents the
amplitude of the rotating stall disturbance amplitude. It can be concluded that open-loop
stability is not enough to drive the operating point to γ = γn and also suppress rotating stall
disturbances, by using a controller such as an automatically controlled bleed valve. The bleed
valve by itself is not always adequate to maintain J at zero and additional feedback is essential
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Figure 3: Typical responses of B and J when H is negative and γ < γn in the rotating stall case.

to suppress the rotating stall disturbance by changing the operating equilibrium point. Some
authors (Gu et al. [13]) have referred to this requirement as “bifurcation control”.

7. Control Law for Throttle Setting

To design the throttle controller, one rewrites (5.6b) as

d

dτ
φt = −

B

G

φ2
t

(√
2F2/pdH + CtΔγ

)2
+
Bψ

G
, (7.1)

where pd is the desired set value for p. The first step in designing a controller is to choose
an appropriate value for pd. The next step is to gradually wash out Δγ according to some
dynamic law such as

τu
dΔγ
dτ

= −Δγ, (7.2)

where τu is an appropriate time constant so the washout does not interfere with the plant
dynamics.

If one further chooses x > 1, the equilibrium with J = Js = 0 is stable. To establish the
controller parameter pd, a suitable choice may be made by first choosing x0 and the operating
point x and using (3.14). A typical choice could be x0 = 0 and x > 1 giving a value for
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Figure 4: (a) Typical open-loop state responses when H is positive and φs0/F < 2 in the rotating stall case.
(b) Unsteady, quasisteady and steady characteristics of the compressor corresponding to (a).

pd < 0.666. If the initial value of p is p0 and is greater than this value, then the steady state
value of ΔΨc must be increased by

ΔΨc,ss =
H

2
(
pd − p0

)
=
HΔp

2
. (7.3)

The corresponding initial condition for Δγ is then given by

Δγ(t)
∣∣
t=0 = γ − γn = γ −

√
2F2/pdH

Ct
. (7.4)
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8. Control of the Rotating Stall Vibration Amplitude

To increase the steady state value of ΔΨc, it is important to increase the steady flow delivered
by the compressor. This can be done by increasing the input to the compressor. To incorporate
such a feature in our model, one assumes a distribution of pressure sources at the inlet to the
compressor and write the compressor unsteady pressure dynamics equation with a source
control term included as

dΔΨc

dτ
+
ΔΨc

τc
=

(
Ψc,ss −Ψc,qs

)

τc
+
Δu0

τc
, (8.1a)

where the control input is a distribution of pressure sources which are integrated over the
inlet area of the compressor and chosen according to the control law

Δu0 =
H

2
(
pd − p0

)
+ Δu =

HΔp
2

+ Δu, (8.1b)

where Δu is the control input perturbation to provide feedback. The complete model
equations (5.6a)–(5.6f) including the controller may be expressed as

dφc
dτ

= BΨc

(
p0, φc

)
+ B
(
ΔΨc − ψ

)
, (8.2a)

d

dτ
φt = −

B

G

φ2
t

(√
2F2/pdH + CtΔγ

)2
+
Bψ

G
, (8.2b)

d

dτ
ψ =

(
φc − φt

)

B
, (8.2c)

dΔΨc

dτ
+
ΔΨc

τc
=

(
Ψc,ss

(
p0, φcs

)
−Ψc

(
p0, φc

))

τc
+
Δu0

τc
, (8.2d)

dB

dτ
=
B

μ

(
Πext − Bφcσ

)
, (8.2e)

τJ
dΔJ
dτ

=
H

F
(Js + ΔJ)

(

1 −
(
φc
F
− 1
)2

− 1
4
(Js + ΔJ)

)

, (8.2f)

τu
dCtΔγ
dτ

= −CtΔγ, (8.2g)
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Figure 5: Root locus plot illustrating the effect of the negative feedback of Δφc.

where

Ψc

(
p0, φc

)
=
H

2

(

p0 +
(
φc
F
− 1
)(

1 − J
2

)
−
(
φc
F
− 1
)3
)

,

Ψc,ss

(
p0, φcs

)
= Ψc

(
p0, φc

)∣∣
t→∞,

Δu0 =
H

2
(
pd − p0

)
+ Δu =

HΔp
2

+ Δu.

(8.3)

To implement such a controller the parameter p0 must be known. This parameter must
therefore be identified offline a priori or adaptively, so the control input can be synthesised.

9. Stability of Controlled Equilibrium

An important step in the validation of the controller is the assessment of the stability of the
closed loop equilibrium. To determine the stability of the controlled equilibrium, one first
linearises (8.2a)–(8.2f), about the controlled equilibrium solution which is characterised by
p = pd and φc = φt = φsd. Perturbing the state vector and the control input and linearising
(8.2a)–(8.2g) about the equilibrium states result in

dΔφc
dτ

=

(

Ψc

(
pd, φsd

)
+ B0

dΨc

(
pd, φsd

)

dB

)

ΔB

+ B0

(
dΨc

(
pd, φsd

)

dφc
Δφc +

dΨc

(
pd, φsd

)

dJ
ΔJ + ΔΨc −Δψ

)

,
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dΔφt
dτ

=
B0Δψ
G

− B0

G

pdHsφsd

2F2
s

⎛

⎜
⎝2Δφt −

2φsdCtΔγ
√

2F2
s/pdHs

−
(
FB
Fs
− HB

2Hs

)
φsd

√
2F2

s/pdHs

ΔB

⎞

⎟
⎠,

d

dτ
Δψ =

(
Δφc −Δφt

)

B0
,

dΔΨc

dτ
+
ΔΨc

τc
= − 1

τc

(
dΨc

(
pd, φsd

)

dφc
Δφc +

dΨc

(
pd, φsd

)

dJ
ΔJ +

dΨc

(
pd, φsd

)

dB
ΔB

)

+
Δu
τc
,

dΔB
dτ

+
ΔB
μ

(
2B0φsdσ −Πext

)

= −
B2

0Fsσ

μ

Δφc
Fs

,

τJ
dΔJ
dτ

= −Hs

Fs

(
2Js
(
φcs
Fs
− 1
)
Δφc
Fs

)

− Hs

Fs

(((
φcs
Fs
− 1
)2

− 1 +
Js
4

)

Js

(
HB

Hs
− FB
Fs

)
ΔB

+

((
φcs
Fs
− 1
)2

− 1 +
Js
2

)

ΔJ,

)

τu
dCtΔγ
dτ

= −CtΔγ,

(9.1)

where Δu is the control input perturbation and Δφc, Δφt, Δψ, ΔΨc, ΔJ , and ΔB are the
perturbations to the corresponding states.

From (9.1) observe that the last three of the linearised perturbation equations are only
weakly coupled with the first four. An analysis of the stability indicates that the controlled
system is stable. Assume that the compressor perturbation mass flow (Δφc) is measured; the
root locus plot is obtained and shown in Figure 5. The two lightly damped poles correspond
to modes associated primarily with Δφc and Δψ. To increase the stability margins, one
could include stability augmentation negative feedback (gain = 3.3) and this is implemented
in calculating the closed loop response in the next section. The chosen value of the gain
corresponds to the maximum stability margin based on root locus plot.

The controller can now be tested by simulating it and the complete nonlinear plant.
The case of a compressor with the parameters as listed in Table 1 is considered. The desired
compressor flow ratio is chosen to be φsd/F = 2.1. The desired value of the parameter p = pd
is then estimated from (3.14). The initial value for Δγ is chosen to be −0.2. The results of
the closed loop simulation including negative feedback are illustrated in Figure 6(a) which
corresponds to the same case as the one shown in Figure 4(a) without feedback.
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Figure 6: (a) Typical closed-loop state responses when H is positive and φsd/F > 2 in the rotating stall case.
(b) Unsteady, quasisteady and steady characteristics of the closed-loop compressor.

Figure 6(b) illustrates the unsteady characteristics of the closed-loop compressor
which are compared with the steady-state characteristics. Also shown in the figure is the
steady-state closed loop operating point. The results clearly indicate that the compressor now
operates with the equilibrium J = Js = 0 being stable. Thus the rotating stall disturbance is
eliminated.

10. Conclusions

The dynamics of compressor stall has been reparameterised in a form that would facilitate the
construction of a nonlinear control law for the active nonlinear control of compressor stall.
The regions of stable performance in parameter space (γ = γn, H > 0, J = Js = 0) and unstable
performance (γ /= γn or H < 0, J /= 0) were identified. This has led to the belief that a control
law that maintains both γ = γn, H > 0 and J = Js = 0 would actively stabilize the compressor.
One observes that by merely setting the throttle at its optimum equilibrium position does
not maintain, J = Js = 0. An additional control input must aim to manipulate the transient
and control pressure dynamics defined by (8.2d) which would involve control inputs to
the compressors inlet guide vanes or some other means of feedback control. That in turn
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points to a need for a better compressor pressure rise model incorporating the control input
dynamics. Yet the relatively simple and systematic approach adopted in this paper clearly
highlights the main features on the controller that is capable of inhibiting compressor surge
and rotating stall. Moreover, the method can be adopted for any axial compressor provided its
steady-state compressor and throttle maps are known. Furthermore, the linear perturbation
controller synthesised in the previous section could be substituted by a nonlinear controller
synthesised by applying the backstepping approach as demonstrated by Krstic et al. [9].
Preliminary implementations of such a controller have supported the view that there is
a need for an improved, matching, nonlinear compressor pressure rise model including
disturbance and uncertainty effects and the results of this latter study involving a robust
complimentary nonlinear H∞ optimal control law will be reported elsewhere. Coupled with
the views expressed by Greitzer [4], the active structural control of surge and rotating stall
could be effectively achieved by realistic low-order modelling of the compressor dynamics.
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Fractional-order financial system introduced by W.-C. Chen (2008) displays chaotic motions at
order less than 3. In this paper we have extended the nonlinear feedback control in ODE systems
to fractional-order systems, in order to eliminate the chaotic behavior. The results are proved
analytically by applying the Lyapunov linearization method and stability condition for fractional
system. Moreover numerical simulations are shown to verify the effectiveness of the proposed
control scheme.

1. Introduction

Nonlinear chaotic systems have attracted more attention of researchers in various fields
of natural sciences. This is because these systems are rich in dynamics, and possess great
sensitivity to initial conditions. Since the chaotic phenomenon in economics was first found in
1985, great impact has been imposed on the prominent western economics at present, because
the chaotic phenomenon’s occurring in the economic system means that the macroeconomic
operation has in itself the inherent indefiniteness. Although the government can adopt
such macrocontrol measures as the financial policies or the monetary policies to interfere,
the effectiveness of the interference is very limited. The instability and complexity make
the precise economic prediction greatly limited, and the reasonable prediction behavior
has become complicated as well. In the fields of finance, stocks, and social economics,
because of the interaction between nonlinear factors, with all kinds of economic problems
being more and more complicated and with the evolution process from low dimensions to
high dimensions, the diversity and complexity have manifested themselves in the internal
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structure of the system and there exists extremely complicated phenomenon and external
characteristics in such a kind of system. So it has become more and more important to
study the control of the complicated continuous economic system, and stabilize the instable
periodic or stationary solutions, in order to make the precise economic prediction possible
[1, 2].

Great interest has been paid to the application of fractional calculus in physics,
engineering systems, and even financial analysis [3, 4]. The fact that financial variables
possess long memories makes fractional modelling appropriate for dynamic behaviors in
financial systems. Moreover, the control and synchronization of fractional-order dynamic
systems is also performed by various researchers [5–10]. Fractional-order financial system
proposed by Chen in [11] displays many interesting dynamic behaviors, such as fixed points,
periodic motions, and chaotic motions. It has been found that chaos exists in this system with
orders less than 3, period doubling, and intermittency routes to chaos were found. In this
paper, we propose to eliminate the chaotic behaviors from this system, by extending the non-
linear feedback control in ODE systems to fractional-order systems. This paper is organized
as follows. In Section 2, we present the financial system and its fractional version. In Section 3
general approach to feedback control scheme is given, and then we have extended this control
scheme to fractional-order financial system, numerical results are shown. Finally, in Section 4
concluding comments are given.

2. Financial System

2.1. Integer-Order Financial System

Recently, the studies in [1, 2] have reported a dynamic model of finance, composed of
three first-order differential equations. The model describes the time-variation of three state
variables: the interest rate x, the investment demand y, and the price index z. The factors
that influence the changes of x mainly come from two aspects: firstly, it is the contradiction
from the investment market, (the surplus between investment and savings); secondly, it is the
structure adjustment from goods prices. The changing rate of y is in proportion with the rate
of investment, and in proportion by inversion with the cost of investment and the interest
rate. The changes of z, on one hand, are controlled by the contradiction between supply and
demand of the commercial market, and on the other hand, are influenced by the inflation
rate. Here we suppose that the amount of supplies and demands of commercials is constant
in a certain period of time, and that the amount of supplies and demands of commercials is
in proportion by inversion with the prices. However, the changes of the inflation rate can in
fact be represented by the changes of the real interest rate and the inflation rate equals the
nominal interest rate subtracts the real interest rate. The original model has nine independent
parameters to be adjusted, so it needs to be further simplified. Therefore, by choosing the
appropriate coordinate system and setting an appropriate dimension to every state variable,
we can get the following more simplified model with only three most important parameters:

ẋ = z +
(
y − a

)
x,

ẏ = 1 − by − x2,

ż = −x − cz,

(2.1)
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where a ≥ 0 is the saving amount, b ≥ 0 is the cost per investment, and c ≥ 0 is the elasticity
of demand of commercial markets. It is obvious that all three constants, a, b, and c, are
nonnegative, For more detail about the study of the local topological structure and bifurcation
of this system; see [1, 2]. We assume that a is control parameter and b = 0.1, c = 1.

2.1.1. Analysing the System

(i) If a ≥ 9, system (2.1) has one fixed point:

p1 = (0, 10, 0). (2.2)

(ii) If a < 9, system (2.1) has three fixed points:

p1 = (0, 10, 0), p2,3 =

⎛

⎝∓

√
9 − a

10
, a + 1,±

√
9 − a

10

⎞

⎠. (2.3)

To study the stability of equilibrium points we apply the Lyapunov’s first (indirect)
method [12] so we have the following theorem.

Theorem 2.1. Let x = x∗ be an equilibrium point of a nonlinear system:

ẋ = f(x), (2.4)

where f : D → R
n is continuously differentiable and D ⊂ R

n is the neighborhood of the equilibrium
point x∗. Let λi denote the eigenvalues of the Jacobian matrix A = ∂f/∂x|x∗ then the following are
considered.

(i) If Reλi < 0 for all i, then x = x∗ is asymptotically stable.

(ii) If Reλi > 0 for one or more i, then x = x∗ is unstable.

(iii) If Reλi ≤ 0 for all i and at least one Reλj = 0, then x = x∗ may be either stable,
asymptotically stable, or unstable.

Since A is only defined at x∗, stability determined by the indirect method is restricted
to infinitesimal neighborhoods of x∗.

To study the signs of the real parts of eigenvalues, we have the following famous
criterion [13].
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Criterion 1 (Routh-Hurwitz). Given the polynomial P(λ) = λn+a1λ
n−1+ · · ·+an−1λ+an, where

the coefficients ai, i = 1, 2, . . . , n, are real constants, define the n Hurwitz matrices

H1 = (a1),

H2 =
(
a1 1
a3 a2

)

...

Hn =

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎝

a1 1 0 0 · · · 0
a3 a2 a1 1 · · · 0
a5 a4 a3 a2 · · · 0
...

...
...

... · · ·
...

0 0 0 0 · · · an

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎠

,

(2.5)

where ai = 0 if i > n.
All of roots of the polynomial have negative real part if and only if the determinants

of all Hurwitz matrices are positive: detHi > 0, i = 1, 2, . . . , n.

Routh-Hurwitz criteria for n = 3 are a1 > 0, a3 > 0 and a1a2 − a3 > 0.

Stability of p1

The Jacobian matrix of system (2.1) at the equilibrium point p1 is

Jp1 =

⎛

⎜⎜⎜⎜⎜
⎝

10 − a 0 1

0 − 1
10

0

−1 0 −1

⎞

⎟⎟⎟⎟⎟
⎠
, (2.6)

its characteristic polynomial is

P(λ) = λ3 +
(
a − 89

10

)
λ2 +

(
11a − 99

10

)
λ +
(
a − 9

10

)
. (2.7)

By applying the Routh-Hurwitz criterion we find that the real parts of these
eigenvalues are all negative if and only if

a − 89
10

> 0,

a − 9 > 0,
(
a − 89

10

)(
11a − 99

10

)
−
(
a − 9

10

)
> 0.

(2.8)
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Figure 1: (a) Largest Lyapunov exponent according to a. (b) Chaotic attractor for a = 3.

Then it follows that a > 9, and thus p1 is locally asymptotically stable if and only if a > 9.

Stability of p2,3

The Jacobian matrix of system (2.1) at the equilibrium points p2,3 is

Jp2,3 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

1 ±
√

9 − a
10

1

∓2
√

9 − a
10

−0.1 0

−1 0 −1

⎞

⎟⎟⎟⎟⎟⎟
⎠

, (2.9)

and its characteristic polynomial is

p̃(λ) = λ3 +
1

10
λ2 +

(
−1

5
a +

18
10

)
λ +
(
−1

5
a +

18
10

)
. (2.10)

The real parts of these eigenvalues are all negative if and only if

−1
5
a +

18
10

> 0,

1
10

(
−1

5
a +

18
10

)
−
(
−1

5
a +

18
10

)
> 0.

(2.11)
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Then it follows that

a < 9,

a > 9.
(2.12)

So p2,3 are unstable for every value of a.
In order to detect the chaos we calculate the largest Lyapunov exponent λmax using the

scheme proposed by Wolf et al. [14]. The initial states are taken as x(0) = 2, y(0) = 3, z(0) = 2,
Figure 1(a) displays the evolution of λmax according to a and Figure 1(b) displays chaotic
attractor for a = 3. System (2.1) displays chaotic behavior in the windows 0 < a < 7 (λmax > 0),
periodic behavior in 7 ≤ a ≤ 9 (λmax ≈ 0) and stationary behavior for a > 9 (λmax < 0).

2.2. Fractional-Order Financial System

Chen has introduced in [11] the generalization of system (2.1) for fractional incommensurate-
order model which takes the form

Dq1x = z +
(
y − a

)
x,

Dq2y = 1 − by − x2,

Dq3z = −x − cz.

(2.13)

Fractional calculus is a generalization of ordinary differentiation and integration to arbitrary
order but there are several definitions of fractional derivatives.

In this paper, we use the Caputo-type fractional derivative defined in [15] by:

Dqf(t) =
1

Γ
(
n − q

)
∫ t

0
(t − τ)n−q−1f (n)(τ)dτ

= jn−q
(
dn

dtn
f(t)
)
,

(2.14)

where n = [q] is the value of q rounded up to the nearest integer, Γ is the gamma function
and jα is the Riemann-Liouville integral operator defined by

jαf(t) =
1

Γ(α)

∫ t

0
(t − τ)α−1f(τ)dτ. (2.15)

For the numerical solutions of system (2.13) we use the Adams-Bashforth-Moulton predictor-
corrector scheme [16].

We assume that q (q1 = q2 = q3 = q) is the control parameter, and c = 1, b = 0.1, a = 3.
Fractional system (2.13) has the same fixed points p1,2,3 as integer system (2.1), but for the
stability analysis we have this theorem introduced in [17, 18].
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Theorem 2.2. The fractional linear autonomous system

DαX = AX

X(0) = X0

X ∈ Rn, 0 < α < 2, A ∈ Rn × Rn, (2.16)

is locally asymptotically stable if and only if

min
i

∣
∣arg(λi)

∣
∣ > α

π

2
, i = 1, 2, . . . , n. (2.17)

Proposition 2.3. Let x = x∗ be an equilibrium point of a fractional nonlinear system

Dαx = f(x), 0 < α < 2. (2.18)

If the eigenvalues of the Jacobian matrix A = ∂f/∂x|x∗ satisfy

min
i

∣∣arg(λi)
∣∣ > α

π

2
, i = 1, 2, . . . , n, (2.19)

then the system is locally asymptotically stable at the equilibrium point x∗.

Proof. Let x = x∗ + δx. Substituting in (2.18), we find

Dα(x∗ + δx) = f(x∗ + δx). (2.20)

so

Dα(δx) = f(x∗) +Aδx +©
(
‖δx‖2

)
. (2.21)

Since f(x∗) = 0 (x∗ is the equilibrium point of system (2.18)) and
lim‖δx‖→ 0(©(‖δx‖2)/‖δx‖) = 0, then

Dαδx ≈ Aδx. (2.22)

Taking into account Theorem 2.2, we deduce that If the eigenvalues of the matrix A satisfy

min
i

∣∣arg(λi)
∣∣ > α

π

2
, i = 1, 2, . . . , n, (2.23)

then x∗ is locally asymptotically stable.
This completes the proof.
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Stability of p1

The Jacobian matrix of system (2.13) at the equilibrium point p1 is

Jp1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

7 0 1

0 − 1
10

0

−1 0 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎠
, (2.24)

and its characteristic polynomial is

P(λ) = λ3 − 59
10
λ2 − 66

10
λ − 6

10
. (2.25)

its eigenvalues are λ1 ≈ −0.87298, λ2 = −1/10, λ3 ≈ 6.8730, we note that λ3 is real positive
then | arg(λ3)| = 0 < q(π/2), for all q ∈]0, 2[, so p1 is unstable for all q ∈]0, 2[.

Stability of p2,3

The Jacobian matrix of system (2.13) at the equilibrium point p2,3 is

Jp2,3 =

⎛

⎜⎜⎜⎜⎜⎜
⎝

1 ±
√

3
5

1

∓2
√

3
5
− 1

10
0

−1 0 −1

⎞

⎟⎟⎟⎟⎟⎟
⎠

, (2.26)

its characteristic polynomial is

p̃(λ) = λ3 +
1
10
λ2 +

6
5
λ +

6
5
, (2.27)

and its eigenvalues are λ1 ≈ 0.31278 + 1.2474i, λ2 ≈ 0.31278 − 1.2474i, and λ3 ≈ −0.72556, we
have

∣∣arg(λ1,2)
∣∣ ≈ 1.3251,

∣∣arg(λ3)
∣∣ = π, (2.28)

so mini| arg(λi)| ≈ 1.3251, then the critical value of q is

qc =
2 mini

∣∣arg(λi)
∣∣

π
≈ 0.8436, (2.29)

(i) If q < 0.8436, then p2,3 are locally asymptotically stable.
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Figure 2: (a) Largest Lyapunov exponent according to q. (b) Phase diagram for some values of q.

(ii) If q > 0.8436, then p2,3 are unstable.

In order to detect the chaos, we calculate the largest Lyapunov exponent λmax.
The initial states are taken as x(0) = 2, y(0) = 3, z(0) = 2, Figure 2(a) shows the

evolution of λmax according to q. System (2.13) exhibits chaotic behaviors for q ≥ 0.86.

3. Feedback Control

3.1. Integer Case

A general approach to control a nonlinear dynamical system via feedback control can be
formulated as follows:

ẋ(t) = f(x, u, t), (3.1)

where x(t) is the system state vector, and u(t) the control input vector. Given a reference
signal x̃(t), the problem is to design a controller in the state feedback form:

u(t) = g(x, t), (3.2)
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where g is vector-valued function, so that the controlled system

ẋ(t) = f
(
x, g(x, t), t

)
(3.3)

can be driven by the feedback control g(x, t) to achieve the goal of target tracking so we must
have

lim
t→ tf
‖x(t) − x̃(t)‖ = 0. (3.4)

Proposition 3.1. Let us consider the nonlinear system

ė = F(e, t), (3.5)

where e = x − x̃, x̃(t) is a periodic orbit (or fixed point) of the given system (3.1) with u = 0, and
F(e, t) = f(x, g(x, t), t) − f(x̃, 0, t).

If 0 is a fixed point of system (3.5) and all eigenvalues of the jacobian matrix A = ∂F/∂x|0
have negative real parts then the trajectory x(t) of system (3.3) converge to x̃(t)

Proof. Since x̃(t) is a periodic orbit (or fixed point) of the given system (3.1) with u = 0, so it
satisfies

˙̃x(t) = f(x̃, 0, t), (3.6)

a subtraction of (3.6) from (3.1) gives

ẋ(t) − ˙̃x(t) = f
(
x, g(x, t), t

)
− f(x̃, 0, t), (3.7)

so

ė = F(e, t). (3.8)

Since all eigenvalues of the jacobian matrix A have negative real parts, it follows from
Theorem 2.1 that 0 is asymptotically stable, so we have limt→+∞‖e(t)‖ = 0 then limt→+∞‖x(t)−
x̃(t)‖ = 0, finally x(t) →

t→ tf
x̃(t).

3.2. Fractional Case

Let us consider the fractional system

Dαx(t) = f(x, u, t). (3.9)

We proceed as in the integer case. the controlled system can be written as

Dαx(t) = f
(
x, g(x, t), t

)
. (3.10)
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Figure 3: (a) Stabilizing the equilibrium point p1 for q = 0.9. (b) Evolution of the perturbation u(t).

Let x̃(t) be a periodic orbit (or fixed point) of the given system (3.9) with u = 0, then we
obtain the system error

Dαe(t) = F(e, t) (3.11)

Proposition 3.2. If 0 is a fixed point of system (3.11) and the eigenvalues of the jacobian matrix
A = ∂F/∂x|0 satisfies the condition

min
i

∣∣arg(λi)
∣∣ > α

π

2
, i = 1, 2, . . . , n (3.12)

then the trajectory x(t) of system (3.10) converge to x̃(t).

Proof. It follows directly from Proposition 2.3.



12 Mathematical Problems in Engineering

−2

−1

0

1

2

3

4

5

x
,y

,z

0 50 100 150 200 250 300

t

x2

y2

z2

(a)

−2

−1

0

1

2

3

4

5

x
,y

,z

0 50 100 150 200 250 300

t

x3

y3

z3

(b)

Figure 4: (a) Stabilizing the equilibrium point p2 for q = 0.95. (b) Stabilizing the equilibrium point p3 for
q = 1.4.

3.3. Application to the Fractional Financial System

Let us consider the fractional financial system (2.13), we propose to stabilize unstable periodic
orbit (or fixed point) (x̃, ỹ, z̃), the controlled system is as follows:

Dq1x = z +
(
y − a

)
x + u1(t),

Dq2y = 1 − by − x2 + u2(t),

Dq3z = −x − cz + u3(t).

(3.13)

Since (x̃, ỹ, z̃) is solution of (2.13), then we have:

Dq1 x̃ = z̃ +
(
ỹ − a

)
x̃,

Dq2 ỹ = 1 − bỹ − x̃2,

Dq3 z̃ = −x̃ − cz̃.

(3.14)
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Figure 5: Selecting an unstable periodic orbit in the chaotic attractor of period T = 9 for q = 0.97.

Subtracting (3.14) from (3.13) with notation, e1 = x − x̃, e2 = y − ỹ, e3 = z − z̃, we obtain the
system error:

Dq1e1 = e3 − ae1 + xy − x̃ỹ + u1(t),

Dq2e2 = −be2 − e1(x + x̃) + u2(t),

Dq3e3 = −e1 − ce3 + u3(t).

(3.15)

We define the control functions as follow:

u1(t) = −
(
xy − x̃ỹ

)
,

u2(t) = e1(x + x̃),

u3(t) = e1.

(3.16)

So the system error (3.15) becomes

Dq1e1 = e3 − ae1,

Dq2e2 = −be2,

Dq3e3 = −ce3.

(3.17)
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Figure 6: Stabilizing unstable periodic orbit of period T = 9 for q = 0.97.

The Jacobian matrix is
[ −a 0 1

0 −b 0
0 0 −c

]
and its characteristic polynomial is:

p(x) = x3 + (a + b + c)x2 + (ab + c(a + b))x + abc (3.18)

so we have the eigenvalues λ1 = −a, λ2 = −b, λ3 = −c. Since all eigenvalues are real negatives
one has arg(λi) = π , therefore | arg(λi)| > q(π/2), for all q satisfies 0 < q < 2, it follows from
Proposition 3.2 that the trajectory x(t) of system (3.13) converges to x̃(t) and the control is
completed.

3.4. Simulation Results

In this section we give numerical results which prove the performance of the proposed
scheme. As mentioned in Section 2.3 we have implemented the improved Adams-Bashforth-
Moulton algorithm for numerical simulation.
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The initial states are taken as x(0) = 2, y(0) = 3, z(0) = 2.

3.4.1. Stabilizing the Unstable Fixed Points

The control can be started at any time according to our needs, so we choose to activate the
control when t ≥ 20, in order to make a comparison between the behavior before activation
of control and after it.

For q = 0.9 unstable point p1 has been stabilized, as shown in Figure 3(a), note that
u1(t) = −(x(t)y(t) − 0 × 10) = −x(t)y(t), so the control is activated when t ≥ 20 and
|x(t)y(t)| ≤ 0.2 (more precisely t = 22.5) in order to make the perturbation u1(t) smaller.
firstly the evolution of x(t), y(t), z(t) is chaotic, then when the control is started at t = 22.5 we
see that p1 is rapidly stabilized.

In Figure 3(b) we observe the evolution of the perturbation u(t), when the control
is started we see that u2(t) and u3(t) are very small but u1(t) is a bit larger, after that the
perturbation u(t) becomes close to zero rapidly.

For q = 0.95, the unstable point p2 has been stabilized, as shown in Figure 4(a).
For q = 1.4 the fixed point p3 was stabilized, Figure 4(b) shows the results of control.
When t is less than 20, there is a chaotic behavior, but when the control is activated at

t = 20, the two points p2 and p3 are rapidly stabilized.
In the real world of finance if we want to have a good investment demand we can

choose to stabilize p1, and in this case the interest rate and price index will be near zero.
During the recent financial crisis in 2009 many banks decided to reduce interest rates to nearly
zero in order to control this situation.
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Figure 8: Stabilization an unstable periodic orbit of period T = 16.05 for q = 1.1.

3.4.2. Stabilizing Unstable Periodic Orbit

Although the unstable periodic orbits are dense in the chaotic attractor, we can choose one of
them (which represent the performance of the system), by analyzing data experimental, after
that we stabilize it. In this paper the close-return (CR) method [19] is used for the detection
of UPO embedded in the attractor.

For q = 0.97 we choose an unstable periodic orbit with period T = 9, localized in
the interval [78.2, 87.2] as shown in Figure 5, then the control is started at t = 87.2, when
the trajectory x(t) begins to emerge from the unstable orbit, Figure 6 displays the results of
control, if t is less then 78.2 there is chaotic behavior (the error e(t) is large), after the activation
of control, this chaotic behavior is replaced by a periodic behavior and we note that the error
e(t) becomes very close to zero.

For q = 1.1 we choose an unstable periodic orbit with period T = 16.05, localized in the
interval [71.45, 87.5] as shown in Figure 7, the control is started at t = 20, Figure 8 displays the
results of control. Although the control is executing at t = 20, it does not give effect rapidly,
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and the orbit is stabilized at t = 63, when the control is activated the error begins to diminish,
and becomes close to zero after t = 63.

The stabilization of the periodic orbits is very important, because it permits, on the one
hand to make some predictions, and secondly, it is more realistic than the stabilization of the
stationary points in the financial circle, where one cannot generally fix the interest rate and
the investment demand as well as the price index, for a long period.

4. Conclusions

Chaotic phenomenon makes prediction impossible in the financial world; then the deletion
of this phenomenon from fractional financial system is very useful, the main contribution of
this paper is to this end.

Nonlinear feedback control scheme has been extended to control fractional financial
system. The results are proved analytically by applying the Lyapunov linearization method
and stability condition for fractional system. Numerically the unstable fixed points p1,2,3 have
been successively stabilized for different values of q; moreover unstable periodic orbit has
stabilized. This proves the performance of the proposed scheme.
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A two-bar linkage, which is described in differential dynamical equations, can perform nonlinear
behaviors due to system parameters or external input. As a basic component of robot system,
the investigation of its behavior can improve robot performance, control strategy, and system
parameters. An open-plus-close-loop (OPCL) control method therefore is developed and applied
to reveal and classify the complicated behaviors of a two-bar linkage. In this paper, the conception
and stability of OPCL are addressed firstly. Then it is applied to the dynamical equations of two-
bar linkage. Different motions including single-periodic, multiple-periodic, quasiperiodic, and
chaotic motions are unfolded by numerical simulations when changing the controller parameters.
Furthermore, the obtained chaotic motions are sorted out for qualitative and quantificational study
using Lyapunov exponents and hypothetic possibilities of surrogate data method.

1. Introduction

A two-bar linkage, as a basic component of mechanical system, can perform nonlinear
motions, among which chaotic motion is the most typically complicated one. It is known that
the performance of such a mechanism is influenced by system parameters such as mass and
friction coefficient, the initial states, and external input such as driving torque controlled by
specially designed controller. Conversely, study on these motions can provide a novel way to
improve system’s performance, optimize structure design, and develop new control strategy.

For a two-bar linkage, the motions of its two rotating links can be single periodic,
multiple periodic, quasiperiodic, and chaotic. In the past decades, many control strategies
were explored to obtain certain motions of a two-bar linkage mechanism. A neural controller
was employed to achieve two typical synchronous motions, that is, giant rotating motion and
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small swing motion as stated in [1, 2]. A PD feedback controller to obtain chaotic motions for
a two-bar linkage was reported in [3, 4]. The bifurcation characteristics of motions of a two-
bar linkage were presented in [5]. The transferring process of a two-bar linkage from period-
doubling bifurcation to chaotic motions was studied by changing control variables in [6]. In
recent research, it is known that the open-plus-close-loop (OPCL) control strategy is powerful
for complicated dynamic systems, as stated in [7, 8], which has been used for chaotic control
of chaotic systems [9] and synchronous systems [10, 11]. Besides, the parametric OPCL
method [12] and the nonlinear OPCL method were also applied for motion control of some
dynamic systems [13].

In this paper, an OPCL controller is proposed for a two-bar linkage to achieve different
motions as stated above. The dynamics of the two-bar linkage is modeled with nonlinear
differential equations, followed by the Lyapunov stability analysis of the controlled system.
By changing the two coefficient matrices A and B of the OPCL controller, we obtain typical
motions of the two-bar linkage in numerical simulations including single-periodic, multiple-
periodic, quasiperiodic, as well as chaotic motions. These different motions are described in
both qualitative and quantificational ways, such as phase-space portraits, frequency spectra,
Lyapunov exponents, and the hypothetic possibilities of surrogate data.

2. Dynamical Equations of a Two-Bar Linkage with OPCL Controller

2.1. A Dynamical System with an OPCL Controller

Let a typical dynamical system be as follows:

θ̈ = F
(
θ, θ̇, t

)
, (2.1)

where θ = {θ1, θ2, . . . , θn}T is the state variable, and n is the number of DOF of the system.
The given motion goal of the system is

g =
{
g1, g2, . . . , gn

}T
. (2.2)

Define a tracking error of the two-bar linkage as

e = θ − g =
{
θ1 − g1, θ2 − g2, . . . , θn − gn

}T = {e1, e2, . . . , en}T . (2.3)

Equation (2.1) is linearized and expanded in the neighborhood of the goal via Taylor
series and it becomes

θ̈ = F
(
θ, θ̇, t

)
=F(g+e, ġ+ė, t)=F(g, ġ, t)+

(
∂F(g, ġ, t)

∂g

)
e+
(
∂F(g, ġ, t)

∂ġ

)
ė+o2(g, ġ)

= F(g, ġ, t) + Jge + Jġė + o2(g, ġ),

(2.4)

where Jg and Jġ are Jacobian matrices of F(g, ġ, t) with respect to g and ġ, respectively.
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An OPCL controller for the system is designed as [8]

U = g̈ − F(g, ġ, t) − Jge − Jġė + Aė + Be, (2.5)

where the term of g̈ − F(g, ġ, t) is the open-loop part, and the term of −Jge − Jġė + Aė + Be
is the closed-loop part. In this controller, the coefficient matrices A and B are assumed to be
diagonal.

The controlled system, that is, the dynamical system with its OPCL controller, is re-
written as follows:

θ̈ = F
(
θ, θ̇, t

)
+ U

= F(g, ġ, t) + Jge + Jġė + o2(g, ġ) + g̈ − F(g, ġ, t) − Jge − Jġė + Aė + Be

= g̈ + Aė + Be + o2(g, ġ).

(2.6)

The tracking error equation defined as (2.3) can be deduced as follows with omitting higher-
order term:

ë = θ̈ − g̈ = g̈ + Aė + Be + o2(g, ġ) − g̈ = Aė + Be. (2.7)

It is noticed that, if the controlled system of (2.6) is asymptotically stable when
coefficient matrices A and B are constant and with negative real parts of eigenvalues, that
is, their elements aii and bii should be negative, (2.7) can be rewritten in an expanded form as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ë1

ë2
...
ën

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= diag(a11, a22, . . . , ann)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ė1

ė2
...
ėn

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

+ diag(b11, b22, . . . , bnn)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e1

e2
...
en

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a11ė1 + b11e1

a22ė2 + b22e2
...

annėn + bnnen

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

(2.8)

Thus, if ëi = aiiėi+biiei (i = 1, 2, . . . , n) is asymptotically stable, the system is also stable.
Therefore, the aforementioned assumption is true.

A Lyapunov function V is defined as

V (ėi, ei) =
bii

2aii
e2
i −

1
2aii

ė2
i > 0. (2.9)

Then

V̇ (ėi, ei) =
biieiėi − ėiëi

aii
=
biieiėi − ėi(aiiėi + biiei)

aii
= −ė2

i < 0. (2.10)
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According to the Lyapunov stability theory, it is proved that the error equation of (2.7)
is asymptotically stable if the real parts of the eigenvalues of the coefficient matrices A and
B are negative. It can be found that such an OPCL controller is reliable enough to be applied
on a two-bar linkage in order to get different motions as expected and these motions are
asymptotically stable.

2.2. Dynamic Equations of Two-Bar Linkage

A two-bar linkage is shown in Figure 1. Its two joints can be driven, respectively, at o1 and
o2, so that the upper link (Link 1) and the lower link (Link 2) can rotate, respectively, around
their own joints of o1 and o2 within the range of [-π ,π]. The upper joint o1 is fixed on the
ground.

In coordinate system O1xy, as shown in Figure 1, θ1 is the rotating angle of Link 1 with
respect to y-axis, and θ2 is the rotating angle of Link 2 with respect to the centerline of Link 1.
The dynamical equations of the two-bar linkage are given as follows:

[
M11 M12

M21 M22

]{
θ̈1

θ̈2

}
+
{
C1
(
θ1, θ2, θ̇1, θ̇2

)

C2
(
θ1, θ2, θ̇1, θ̇2

)
}
+
{
K1(θ1, θ2)
K2(θ1, θ2)

}
=
{
τ1

τ2

}
, (2.11)

where

M11 = m1d
2
1 +m2

(
l21 + d

2
2 + 2l1d2 cos θ2

)
+ I1 + I2,

M21 = m2

(
d2

2 + l1d2 cos θ2

)
+ I2,

M12 = m2

(
d2

2 + l1d2 cos θ2

)
+ I2,

M22 = m2d
2
2 + I2,

C1
(
θ1, θ2, θ̇1, θ̇2

)
= −m2l1d2θ̇

2
2 sin θ2 − 2m2l1d2θ̇1θ̇2 sin θ2,

C2
(
θ1, θ2, θ̇1, θ̇2

)
= m2l1d2θ̇

2
1 sin θ2,

K1(θ1, θ2) = (m1d1 +m2l1)g sin θ1 +m2d2g sin(θ1 + θ2),

K2(θ1, θ2) = m2gd2 sin(θ1 + θ2).

(2.12)

In (2.11), mi is the mass of Link i, i = 1, 2; Ii is the moment of inertia of Link i with
respect to its mass center, i = 1, 2; di is the distance between Link i and joint i, i = 1, 2; g is the
acceleration of gravity; τi is driving moment in joint i, i = 1, 2.

Equation (2.11) can be rewritten in the following form, which is also in the form of
(2.1):

{
θ̈1

θ̈2

}

=

[
H11 H12

H21 H22

]{
R1

R2

}

, (2.13)
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Figure 1: The schematic diagram of a two-bar linkage.

Table 1: The values of structural parameters of the two-bar linkage.

Parameter m1 m2 I1 I2 lc1 lc2 l1 l2 g

Value 1 1 0.083 0.33 0.5 1 1 2 9.8

where

[
H11 H12

H21 H22

]

=

[
M11 M12

M21 M22

]−1

,

{
R1

R2

}

=

{
τ1 − C1

(
θ1, θ2, θ̇1, θ̇2

)
−K1(θ1, θ2)

τ2 − C2
(
θ1, θ2, θ̇1, θ̇2

)
−K2(θ1, θ2)

}

. (2.14)

3. Simulations on Different Motions of Two-Bar Linkage

3.1. Conditions and Simulation Steps

In numerical simulations, the dimensionless structural parameters of the two-bar linkage are
used and listed in Table 1.

The goal trajectories of the two rotating angles of the two links, θ1 and θ2, are designed
as

θ1(t) = sin(t), θ2(t) = sin(t). (3.1)

The simulation steps, mainly referring to the system of (2.6), are listed herein.

(1) Set the initial states and the structural parameter values of the two-bar linkage and
the total number of simulation n.

(2) Set the control parameter matrices A and B of the OPCL controller of (2.5).

(3) Set the goal trajectory of (3.1).

(4) Calculate the joint angles based on (2.6) using the fourth-order Runge-Kutta
method.
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Table 2: The values of control parameters for different motions.

Control parameter A Control parameter B Motion patterns Simulation results
A = diag(−10,−10) B = diag(−20,−20) Single-periodic motions Section 3.2
A = diag(−16,−16) B = diag(−3,−9) Multiple-periodic motions Section 3.3
A = diag(−8,−8) B = diag(−4,−8) Quasiperiodic motions Section 3.4
A = diag(−2.5,−2.5) B = diag(−7,−7) Chaotic motions Section 3.5

With different values of A and B of the OPCL controller, the two-bar linkage can
achieve different motions including single-periodic, multiple-periodic, quasiperiodic, and
chaotic motions. The typical parameter values of A and B and their corresponding motions
are listed in Table 2. They are illustrated in the following sections, which are also listed in the
fourth column of Table 2.

The obtained motions of link joints can be investigated qualitatively and quantifi-
cationally in different ways, including observation of frequency spectra and estimation
of nonlinear parameters. Single- or multiamplitude lines in frequency spectra indicate a
periodic motion or a multiple-periodic motion. Wide-range frequency distributions are
often generated from quasiperiodic motion and chaotic motion. In Poincare mapping plots,
one single point or some scattered points are often mapped by periodic motions whereas
attractors with concentrated area and so-called strange attractors are mostly from either
quasiperiodic or chaotic motions. In addition, for chaotic motions, there are also some critical
methods to judge, for example, the well-known nonlinear parameter estimation of positive
maximum Lyapunov exponent [14, 15] and the checking possibility of surrogate data method
[16] which is powerful to distinguish a chaotic motion from a random one.

3.2. Single-Periodic Motions

Given A = diag(−10,−10) and B = diag(−20,−20), the two-bar linkage can achieve single-
periodic motions. The simulated motions with initial conditions of θ1 = 1, θ̇1 = 0, θ2 = 1, and
θ̇2 = 0 are shown in Figure 2.

In Figures 2(a) and 2(b), the motions of θ1 and θ2 are obviously periodic, that is,
harmonic. The two phase plane portraits of θ1 and θ2, shown in Figures 2(c) and 2(d), are
closed curves, which prove that the motions of the two-bar linkage are stable. Furthermore,
the Poincare mapping portrait of each has only one isolated point, as shown in Figures 2(e)
or 2(f). The frequency spectra of the two rotating angles show that there exists only single
dominant frequency of about 0.16 Hz, as shown in Figures 2(g) and 2(h). The simulations
can also show that periodic motions of the two-bar linkage are stable in this case.

3.3. Multiple-Periodic Motions

Given A = diag(−16,−16) and B = diag(−3,−9), the two-bar linkage can realize multiple-
periodic motions. The typical simulated motions of the two rotating angles are shown in
Figure 3 with initial conditions of θ1 = 1, θ̇1 = 0, θ2 = 1, and θ̇2 = 0.

In Figures 3(a) and 3(b), the motions of θ1 and θ2 are also periodical but with other
harmonic components. The two phase plane portraits of θ1 and θ2, shown in Figures 3(c) and
3(d), are closed curves, which can indicate that the motions of the two-bar linkage are stable.
Accordingly, the Poincare mapping portrait of each, shown in Figure 3(e) or 3(f), has some
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Figure 2: Single-periodic motions.

isolated points. There also exist more than two and four obvious frequency lines, as shown in
Figures 3(g) and 3(h), which show that the multiperiodic motions of the two-bar linkage are
stable in this case.

3.4. Quasiperiodic Motions

Given A = diag(−16,−16) and B = diag(−3,−9), the two-bar linkage can realize quasiperiodic
motions. The simulated motions of the two joints are shown in Figure 4 with the initial
conditions of θ1 = 1, θ̇1 = 0, θ2 = 1, and θ̇2 = 0.

It can be seen from Figure 4 that the motions of θ1 and θ2 are complex. Both the time
histories and the phase plane portraits of θ1 and θ2 are difficult to distinguish the motion type
rather than traditional harmonics. The Poincare mapping portrait of each, shown in Figures
4(e) and 4(f), is the concentrated stick-like area. More than six and eight frequency lines
appear in the corresponding frequency spectra of θ1 and θ2 shown in Figures 4(g) and 4(h).
The simulations can also show that the motions of the two-bar linkage are quasiperiodic in
this case.

3.5. Chaotic Motions

Given A = diag(−2.5,−2.5) and B = diag(−7,−7), the two-bar linkage can realize chaos
motions. The simulated chaotic motions are shown in Figure 5, in the case of the initial
conditions of θ1 = 1, θ̇1 = 0, θ2 = 1, and θ̇2 = 0.

From Figures 5(a) and 5(b), the simulated responses of θ1 and θ2 are irregular without
obvious periods. The two phase plane portraits (shown in Figures 5(c) and 5(d)) and the
Poincare mapping (shown in Figures 5(e) and 5(f)) of θ1 and θ2 illustrate irregular shape or
strange attractors. Their corresponding amplitude spectra also unfold multifrequency lines
and explicit broadband ranges. According to the qualitative theory of chaos, these motions
are chaotic in this case.
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Figure 3: The simulated multiple-periodic motions.

Table 3: The Lyapunov exponents of the simulated chaotic motions of Figure 5.

First Second Third Fourth Fifth

θ1 0.5496 0.0960 −0.0027 −0.1008 −2.0600

θ2 0.1431 −0.0371 −0.0787 −0.1567 −2.4240

According to the above simulation results, even for the same initial conditions,
controlled behaviors vary with the parameters in the controllers. This is because the basins of
entrainment, whose counterparts in maps are addressed in [9, 10], depend on the parameters
of controller.

4. Discussion on the Simulated Chaotic Motions

In order to quantitatively describe the simulated chaotic motions of the two-bar linkage,
Lyapunov exponent and the hypothesis possibility with surrogate data method are used
based on nonlinear theory [14–17]. The first five order Lyapunov exponents of the time series
of θ1 and θ2 are calculated according to algorithm in [14] and shown in Table 3. The calculated
hypothesis possibilities with the surrogate data method [17] for the time series of θ1 and θ2

are shown in Table 4.
As shown in Table 3, the maximum Lyapunov exponents of the motions of angle θ1

and θ2 are 0.5496 and 0.1431, respectively. The positive values indicate that the motions of the
two angles are chaotic.

From the calculated hypothesis possibilities with the surrogate data method for the
motions of θ1 and θ2, that is, 6.3252 × 10−6 and 3.8644 × 10−19, it is demonstrated that both of
them are chaotic due to the checking possibility values which are smaller than .05, referring
to an empirical value in [17].
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Figure 4: The simulated quasiperiodic motion.

Table 4: The calculated values with surrogate data method for chaotic motions.

QD μs χ P

θ1 5.5241 1.5851 4.5152 6.3252 × 10−6

θ2 8.9715 1.5561 8.9408 3.8644 × 10−19

5. Conclusions

In this paper, the dynamical model of a two-bar linkage with OPCL controller is proposed
in order to obtain different motions. It is verified that the OPCL controlled system is
asymptotically stable based on the Lyapunov theory, when the control coefficient matrices
of A and B are diagonal and with negative real parts of eigenvalues. It is reliable to force a
two-bar linkage to achieve different stable motions of θ1 and θ2.

Numeral simulations are conducted to demonstrate that the two-bar linkage can
achieve single-periodic, multiple-periodic, quasiperiodic, and chaotic motions by changing
the control parameters of A and B of the OPCL controller for θ1 and θ2 successfully. The
proposed OPCL approach works on the given conditions.

Furthermore, for the simulated chaotic motions, the maximum Lyapunov exponents
are positive, that is, 0.5496 and 0.1431, respectively. The calculated hypothesis possibilities
of them with the surrogate data method for the same chaotic motions are 6.3252 × 10−6 and
3.8644 × 10−19, smaller than .05.
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Figure 5: The simulated chaotic motions.

References

[1] K. Matsuoka, N. Ohyama, A. Watanabe, and M. Ooshima, “Control of a giant swing robot using a
neural oscillator,” in Proceedings of the 1st International Conference on Natural Computation (ICNC ’05),
vol. 3611 of Lecture Notes in Computer Science, pp. 274–282, August 2005.

[2] Q. Han, Z. Qin, X. Yang, and B. Wen, “Rhythmic swing motions of a two-link robot with a neural
controller,” International Journal of Innovative Computing, Information and Control, vol. 3, no. 2, pp. 335–
342, 2007.

[3] S. Lankalapalli and A. Ghosal, “Possible chaotic motions in a feedback controlled 2R robot,” in
Proceedings of the 13th IEEE International Conference on Robotics and Automation, pp. 1241–1246, IEEE,
April 1996.

[4] A. S. Ravishankar and A. Ghosal, “Nonlinear dynamics and chaotic motions in feedback-controlled
two- and three-degree-of-freedom robots,” International Journal of Robotics Research, vol. 18, no. 1, pp.
93–108, 1999.

[5] F. Verduzco and J. Alvarez, “Bifurcation analysis of A 2-DOF robot manipulator driven by constant
torques,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 9, no. 4,
pp. 617–627, 1999.

[6] K. Li, L. Li, and Y. Chen, “Chaotic motion of a planar 2-dof robot,” Machine, vol. 29, no. 1, pp. 6–8,
2002 (Chinese).

[7] E. A. Jackson and I. Grosu, “An open-plus-closed-loop (OPCL) control of complex dynamic systems,”
Physica D, vol. 85, no. 1-2, pp. 1–9, 1995.

[8] L.-Q. Chen and Y.-Z. Liu, “A modified open-plus-closed-loop approach to control chaos in nonlinear
oscillations,” Physics Letters A, vol. 245, no. 1-2, pp. 87–90, 1998.

[9] L.-Q. Chen, “An open-plus-closed-loop control for discrete chaos and hyperchaos,” Physics Letters A,
vol. 281, no. 5-6, pp. 327–333, 2001.

[10] L.-Q. Chen and Y.-Z. Liu, “An open-plus-closed-loop approach to synchronization of chaotic and
hyperchaotic maps,” International Journal of Bifurcation and Chaos, vol. 12, no. 5, pp. 1219–1225, 2002.

[11] Q.-K. Han, X.-Y. Zhao, and B.-C. Wen, “Synchronization motions of a two-link mechanism with an
improved OPCL method,” Applied Mathematics and Mechanics, vol. 29, no. 12, pp. 1561–1568, 2008.

[12] L.-Q. Chen, “The parametric open-plus-closed-loop control of chaotic maps and its robustness,”
Chaos, Solitons and Fractals, vol. 21, no. 1, pp. 113–118, 2004.
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Natural gas is currently the natural substitute of petroleum as an energy source, since the foreseen
ending up of this latter in the next decades. As a matter of fact, natural gas is easier to handle,
less dangerous to be transported, somehow environmentally more friendly. The gas ducts operate
with large flow rates over very long distances at high pressures, which are usually lowered in
proximity of the final substations by lamination valves which, in fact, dissipate energy. However,
a careful management of the pressure reduction may allow an energy recovery while using the gas
expansion to operate a turbine. In this case, gas must be preheated to compensate for the energy
required by the expansion. A proper control of all the parameters involved becomes crucial to an
intelligent use of these resources. In this paper, the possibility of using a pre-heating system has
been examined as a way to intensify the energy cycle in an expansion substation of the city gas
network. Fuzzy logic has been used to optimize the natural gas expansion in a turbine to produce
electrical energy. A fuzzy system has been designed and realized to control the whole process of
gas expansion, from the gas pre-heating to the pressure reduction. The system operates over the
whole year, accounting for the pressure, temperature, and gas flow rate variations experienced in
the gas line. The exit values of the latter and the inlet value of the gas pressure are selected as input
variables, being the output variable the temperature of the pre-heating water at the heat exchanger
inlet.

1. Introduction: The Quest for Energy

It is a fact that the world has changed in the last 20 years. In the 70s and 80s, industries were
somehow coal and nuclear oriented, the greenhouse effect was not scaring the earth, and
Chernobyl disaster was far on the horizon. Today, petroleum is claimed to be over, biomasses
are then particularly considered, wind-operated generators are more and more installed [1].
In this new scenery, every possibility of saving energy, either improving a process efficiency
or reusing the waste, is appreciated.



2 Mathematical Problems in Engineering

Natural gas ducts—substations system can be seen as the current largest network of
energy microgenerators in the world. It reaches almost every place, is easy to operate, does
not need specialized personnel, and it is relatively safe.

Gas is transported by the pressure gradient necessary to accomplish the equation
energy. Detailed first principles modelling based upon fundamental mass, momentum, and
energy balances is reported by Fawke [2] and Schobeiri [3]. At the substations where the gas
is withdrawn, pressure has to be decreased. This is usually done by simply dissipating the
pressure energy in a lamination valve. Gas pressure and, consequently, temperature decrease
as an effect of the isoenthalpic expansion, according to the Joule-Thomson coefficient value.
Sometimes, gas needs to be preheated to compensate for the temperature decrease occurring
[4, 5].

Apparently, there is no way to improve the process, nor to recover anything out of it.
However, at a more accurate analysis of the energy balance, something can be done. Actually,
velocity of the expanded gas increases during lamination, and turbulence phenomena occur.
Part of the energy is thus lost in a useless noisy flux. On the other hand, pressures in the ducts
range from 70 to 40 bars, down to 20 in the local distribution, whereas 5 bars are typically
requested as a final value in a city network. Variability of pressure associates with similar
behaviours of gas temperature and flow rate. All of them change either during the day and
in the course of the whole year, without any reproducibility.

Note that the gas final pressure has to be kept stable and the final temperature under 5
centigrades not to have formation of methane hydrates, whatever the temperature, pressure,
and flow rate of the inlet gas. An intelligent design of the plant expansion process used to
drive a turbine and to produce electrical energy could lead to an energy recovery as large as
15% without interfering with the required stability of the exit pressure [6–15].

It is aim of this paper to design the optimal gas expansion process to achieve the
objective of transforming a gas substation in an energy generator.

2. The Real Case

The gas substation selected for this paper has to respect some crucial requirements to be
eligible for a case study.

(1) The power production has to be at least as large as 50 kW.

(2) The pre-heater system available has to be large enough to support the pretreatment
necessary for the gas turboexpansion.

(3) The substation itself has to be large enough to allow the installation of a turbine.

(4) The access points of the National Electricity Board where to send the electrical
energy produced have to be near.

Based on data available from the Gas Company, the substation named F in the list supplied
by the Company was selected, serving the east side of the city.

For this substation, the gas flow rate ranges during the day as shown in Figures 1 and
2, for a summer and a winter day, respectively. The data point out that differences of an order
of magnitude are experienced during the year. As a matter of fact, the gas flow rate ranges in
a year from about 400 to 12000 m3h−1.

The behaviour of gas temperature is not different, even if on a less dramatic range of
variability.
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Figure 1: Variability of gas flow rate during a day in summer.
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Figure 2: Variability of gas flow rate during a day in winter.

Moreover, in the case study input pressure of natural gas, far from being constant at an
expected value of 24 bar, ranges from 22 to 25 bar, whereas input temperature varies between
5 and 30◦C .
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Figure 3: Flow diagram of the natural gas substation.

3. The Approach to the Optimal Design

In this paper an analysis of the city gas distribution net together with data of operative
conditions of the substations is used to investigate the thermodynamic and economic
feasibility of applying a turboexpander for energy recovery by designing and building-up
a controlled gas substation. The control system had to ensure that both temperature and
pressure of natural gas at the exit are constant whatever the pressures and temperatures at
the inlet and whatever the gas flow rate. An intelligent connection between heaters and input
values of gas temperature, pressure, and flow rates will save energy [16].

4. The Plant and the Alternatives

The original scheme of the expansion section of the plant before the intervention described in
the present paper consisted only of a lamination valve. This is the most frequent arrangement
as is the less expensive. However, no energy recovery is planned nor gas temperature or
pressure control is installed. This, as above reported, may even lead to methane hydrates
formation.

The first alternative examined in this paper is based on the use of a pre-heater section
in the gas line. On the scale pan are put the pre-heater cost, the relevant operating costs, the
money-saving deriving from the gas better quality due to the absence of methane hydrates.

Finally, the introduction of a turbine to recover energy during the gas expansion and
of a fuzzy controller to manage the gas pre-heating before expansion certainly increases the
fixed costs, especially when compared to the investments for the typical scale of the gas
substations, but allows a significant saving in the plant operating costs, even leading to the
sale of the recovered energy.

5. The Plant

The plant in its final arrangement is sketched in Figure 3. The pre-heater section of the plant
includes an industrial boiler that burns natural gas from the station and provides hot water
at a temperature based on the pressure drop caused by the gas lamination.
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A control system has to be designed for the plant, as it is necessary to easy decide
whether to increase or decrease the pre-heating temperature and of what amount, to have the
maximum electricity production with a minimum output temperature of 5◦C and a maximum
output pressure of 5 bars. This will also guarantee the electrical energy production stability

In conventional applications, operative variables depend on mathematical models
related to gas combustion, heat transfer, and turbine fluid dynamics, that are all fairly
complicated, especially in systems where a large number of parameters is either hidden or
has to be accounted for. The ability to use simple linguistic variables rather than numerical
variables in order to work more easily with systems too complex for mathematical modeling
is the main objective of fuzzy logic-based controllers.

6. The Fuzzy System

It is a while that fuzzy logic is successfully used in the process industry. Whatever the reason,
either its ability to model imprecise and subjective notions or the easiness of building up
controllers that do not need mathematical modeling of the process, fuzzy logic is nowadays
applied in virtually all sectors of industry and science in the western world.

The basis of a fuzzy logic controller is the representation of linguistic descriptions as
membership functions indicating the degree to which a value belongs to the class labeled
by linguistic description. In fuzzy logic control algorithms, degree of membership serves as
inputs. The determination of appropriate degree of membership is the part of the design
process. Once the membership functions are defined, the actual input values are transformed
to degree of membership (varying from 0 to 1) of linguistic descriptors. This process is called
fuzzification. The resulting fuzzified data is passed through an inference mechanism that
contains the rules for the output. After the rules are applied, the combined effect of all
rules will be evaluated according to a proper weightage for each rule. The weightage will
be generally used to fine-tune the fuzzy controller and this process is defuzzification [17–19].

Examples of applications can be found in literature, ranging from aircraft engine con-
trol to locomotive wheel sleep control, steam turbine start-up, SEP (symbol error probability)
of HS-MRC (hybrid selection/maximal-ratio combining power supplier controller), up to
domestic or industrial scale microwave ovens. Fuzzy logic is even used to the fed-batch
cultures of microorganisms and for the on-line control of feeding rate of substrate [20].

Gas turbines controlled via neurofuzzy systems have been used in biomasses-based
electric power plants and adaptive fuzzy logic controller developed for turbine generator
systems [5].

In the fuzzy system designed for this plant, as input variables gas temperature,
pressure, and flow rate will be considered, whereas the output variable will be the pre-
heating water temperature T ∗ at the heat exchanger inlet, that will range from 75 to 95◦C.
The controlled parameters are the output temperature T , the gas flow rate Q, and the gas
input pressure P .

As for any fuzzy control, the rules adopted are logical rather than mathematical.
Seven labels have been used to define the conditions of the system. The state of a variable
is described as follows:

(i) NL : negative large,

(ii) NM: negative medium,

(iii) NS: negative small,
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Table 1: FAM (Fuzzy Associative Memory) matrix.

T Q
NL NM NS M PS PM PL

NL PS PS PM PM PM PL PL
N M M PS PS PS PS PM
M NS M M M M PS PS
P NM NM NM NS NS M M
PL NL NL NM NM NS NS NS

(iv) M : medium,

(v) PS: positive small,

(vi) PM: positive medium,

(vii) PL: positive large.

A triangular membership function (MF) has been used for the input variables, having
experienced that this simple shape is satisfyingly accurate. The membership function of the
output variable is a singleton, that is, a series of unit pulses, since in this way the center of
gravity can be easier calculated when defuzzyfying [21, 22].

The input and output variation intervals are.

(i) 10◦ < T < 20◦ [◦C];

(ii) 1000 < Q < 12000 [m3/h];

(iii) 22 < P < 25 [bar];

(iv) 75◦ < T ∗ < 95◦ [◦C].

Seven membership functions are assigned to Q and T ∗. Five functions are instead assigned
to T . Functions overlap is necessary to let the system to have a fuzzy rather than a boolean
behavior. Figures 4, 5, and 6 report the membership functions of T , Q, and T ∗, respectively.

In Figure 7 is reported the correction of the range of variability of temperature as a
function of inlet gas pressure P . As P changes, the temperature range, that is, the subject of
the fuzzy membership functions, has to be modified to best accomplish the energy balance.

In this system, 7 MFs have been adopted for Q and 5 MFs for T . We could thus have 35
input combinations and 245 different rules, using 7 output functions. Actually, the number of
necessary rules is quite smaller. In our case, an FAM (Fuzzy Associative Memory) matrix has
been used. In the matrix, first line and first column report the input variables, whereas the
output variable is derived according to the rule

T and Q −→ T ∗ (6.1)

The matrix is reported in the above table.

7. Results

As previously pointed out, the gas outlet temperature is the crucial variable and the one
monitored as marker of the efficacy of the control system designed. It has to be outlined that
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each of the parameters considered concurs to complicate the whole picture: variability of the
gas flow rate interferes with the plant energy balance as much as environmental conditions
and adduction gas ducts temperature themselves.

Figure 8 shows that the outlet temperature continuously changes during a winter
day when no control systems are applied to the plant. Figures 9 and 10 show the effect
of introducing the pre-heating system and eventually the fuzzy control to manage the gas
expansion.

It is remarkable the effect of the optimization performed in smoothing the outlet gas
temperature, that tends to flatten on the 5◦C value desired.

Note that the more the outlet temperature approaches 5◦C from the above, the larger
is the amount of energy saved, the better is the efficiency of the fuzzy control realized.
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8. Conclusions

The radial flow turbine selected for this work can handle a large flow rate variability at
variable inlet gas temperature at an affordable price. The investment costs of the fuzzy
system are negligible, being basically related to the measurement equipments, whereas the
energy recovery is larger than 15%. The fuzzy control system also helps in decreasing the
maintenance costs of about 15% and allows to save up to 3 T.E.P. in a year, producing up
to 450000 kWh. The payback of the investment cost is reached in less than 8 years, against
an expected 25 years life-cycle. The turboexpander driven by fuzzy logic as above allows to
recover and to sell to the National Electricity Board up to 450,000 kWh per year.

When considering that the size of the substation selected for this case study is
considered representative of the Italian gas net, the existing network of gas distribution
substations once fuzzy controlled becomes a network of electricity generators of 200 to
500 kW.

Combined use of fuzzy logic and neural networks would lead to autoadaptive
intelligent systems, which actually appear to be the future.
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An 8-DOF (degrees-of-freedom) nonlinear dynamic model of a spiral bevel gear pair which
involves time-varying mesh stiffness, transmission error, backlash, and asymmetric mesh stiffness
is established. The effect of the asymmetric mesh stiffness on vibration of spiral bevel gear
transmission system is studied deliberately with numerical method. The results show that the
mesh stiffness of drive side has more effect on dynamic response than those of the coast side. Only
double-sided impact region is affected considerably by mesh stiffness of coast side while single-
sided impact and no-impact regions are unchanged. In addition, the increase in the mesh stiffness
of drive side tends to worsen the dynamic response of the transmission system especially for light-
load case.

1. Introduction

Spiral bevel gear has been widely used in many power transmission systems due to its
considerable technical advantages. Owing to backlash, time-varying mesh stiffness, and
many other nonlinear factors, gear transmission system produces complex dynamic behavior
which has aroused wide attention from scholars around the world. Since the first gear
dynamic model was proposed by Tuplin in 1950s, considerable progress has been made
in parallel axis gear dynamics [1–4]. However, the dynamics of a spiral bevel-geared
system is lack of investigations when compared with the parallel system. Liangyu et al.
[5] derived a twelve-degrees-of-freedom vibration model of a pair of Spiral bevel gears.
Meanwhile an 8-DOF and a 2-DOF simplified model and a modified model with mesh
error are given, which provides a theoretical foundation for studying dynamic response
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of Spiral bevel gears. Gosselin et al. [6] proposed a general formula and applied it to
analyze the load distribution and transmission error of spiral bevel gear pair and hypoid
gear pair. Bibel et al. [7] studied the three-dimensional stress of a spiral bevel gear pair
with finite element method. Fujii et al. [8] carried out analysis of dynamic behaviors
of straight bevel-geared shaft supported on tapered roller and angular contact bearings,
respectively, and then they measured the torsional and bending vibrations of the geared
rotor and the vibrating displacement in the axial direction under a constant transmitted
torque by using straight and skew bevel gears with a power circulating-type bevel-gear
testing machine [9]. Xu et al. [10] analyzed the coupled lateral-torsional vibration behavior
of the rotors with the engagement of spiral bevel gears by means of the transfer matrix
method, which neglected the relationships of the generalized displacements between two
bevel gears. Donley et al. [11] developed a dynamic model of a hypoid gear set for use
infinite element analysis of gearing systems. In their gear mesh model, the mesh point
and line-of-action are time invariant. Fang [12] developed a lumped parameter vibration
model of a spiral bevel gear transmission to compute dynamic load and gear response.
His mesh model is based on the classical gear mesh force equations that produce a
simple unidirectional gear-mesh-coupling vector. Cheng and Lim [13] proposed a hypoid
gear dynamic model based on exact gear geometry for analyzing gear mesh mechanism
and applied the corresponding linear dynamic model to study the hypoid gear pair
dynamics with transmission error excitation. In recent years, spiral bevel gear dynamics has
gained extensive attention from many scholars and many relevant investigations have been
published [14–17].

Unlike spur or helical gears, the mesh couplings in spiral bevel gears are not
symmetric, due to the complex curvilinear features of the spiral bevel gear tooth geometry.
That is, their mesh parameters for the drive and coast sides are very different. Most of the
previous studies on the dynamics of spiral bevel gear transmissions focus on backlash and
time-varying mesh stiffness, assuming symmetric mesh parameters for simplicity.

In this paper, we focus mainly on the dynamics of high-speed, precision spiral
bevel gear pairs often used in automotive and aerospace power transmission systems.
An 8-DOF nonlinear dynamic model of a spiral bevel gear pair which involves time-
varying mesh stiffness, transmission error, backlash, and mesh stiffness asymmetry is
proposed. Compared to mesh stiffness, the mesh damping with time-varying and asymmetric
has less effect on dynamic response. Therefore, the study focuses on the effect of the
asymmetric mesh stiffness on the vibration characteristics of spiral bevel gear transmission
system, and the mesh damping parameter is assumed to be constant as in references
[13, 14].

2. Dynamic Model

The proposed nonlinear dynamic model of a spiral bevel gear pair is shown in Figure 1.
Three-dimensional Cartesian coordinate is set up, which uses the theoretical intersection
of the two bevel gear axis for the origin. The two gear bodies are considered as
rigid cone disks and bending rotation can be neglected for the bearing layout in
Figure 1. Then the model includes transverse and torsion coordinates as shown in
Figure 1.

The coordinate vector of the system can be expressed with [X1, Y1, Z1, θ1x, X2, Y2,
Z2, θ2y]

T .
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The normal dynamic load of pinion and its components along axis can be calculated
as

Fn = kh
(
λn
)
f
(
λn
)
+ chλ̇n,

Fx = Fn
(
sinαn sin δ1 + cosαn sin βm cos δ1

)
,

Fy = −Fn
(
sinαn cos δ1 − cosαn sin βm sin δ1

)
,

Fz = −Fn cosαn cos βm,

(2.1)
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(
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)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

kh1, λn > b,

0, −b ≤ λn ≤ b,

kh2, λn < −b,

kh1 = khm1 +
∞∑

r=1

khar1 cos
(
rωht + φhr1

)
,

kh2 = khm2 +
∞∑

r=1

khar2 cos
(
rωht + φhr2

)
,

f
(
λn
)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λn − b, λn > b,

0, −b ≤ λn ≤ b,

λn + b, λn < −b,

(2.2)

where kh1, kh2—mesh stiffness of drive side and coast side, respectively; λn—Dynamic
transmission error; kh(λn), f(λn)—Nonlinear displacement function; ch—Mesh damping
coefficient; αn—Normal surface pressure angle; δ1—Pitch cone angle of the pinion; βm—
Helix angle at meshing point; khm1, khm2—Mean mesh stiffness of drive side and coast side,
respectively; khar1, khar2—Fourier series coefficients; b—Half of the gear backlash.

Dynamic transmission error can be defined with

λn = (−X1 +X2)a1 + (Y1 − Y2)a2 +
(
Z1 − Z2 + rm1θ1x − rm2θ2y

)
a3 + e

(
t
)
, (2.3)

where

a1 = sinαn sin δ1 + cosαn sin βm cos δ1,

a2 = sinαn cos δ1 − cosαn sin βm sin δ1,

a3 = cosαn cos βm,

(2.4)

e(t) is the static transmission error on normal direction of meshing surface. It can be expressed
in a Fourier series form: e(t) =

∑∞
r=1 er sin(rωht + φer), where rm1, rm2—mean radius at

meshing point; er—amplitude of the r-order harmonic; φer—phase angle of the r-order
harmonic.
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Figure 1: Dynamic model of a spiral bevel gear pair.

The equations of the dynamic model can be described as

m1Ẍ1 + C1xẊ1 +K1xX1 = Fx,

m1Ÿ1 + C1yẎ1 +K1yY1 = Fy,

m1Z̈1 + C1zŻ1 +K1zZ1 = Fz,

I1xθ̈1x = T1 + Fzrm1,

m2Ẍ2 + C2xẊ2 +K2xX2 = −Fx,

m2Ÿ2 + C2yẎ2 +K2xY2 = −Fy,

m2Z̈2 + C2zŻ2 +K2zZ2 = −Fz,

I2yθ̈2y = −T2 − Fzrm2,

(2.5)

T1 = T1m + T1v, T2 = T2m, (2.6)

where m1, m2—Mass of pinion and gear, respectively; I1x, I2y—Mass moments of inertias
of pinion and gear, respectively; Kij , Cij—Bearing stiffness and damping along the three
coordinate axis, respectively; T1, T2—Load torques on pinion and gear, respectively; T1m,
T2m—Mean load torques on pinion and gear, respectively; T1v—Ripple torque on pinion.
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Using λn as a new freedom degree, the two rigid-body rotation equations of the
original model can be changed into a single one:

mea1Ẍ1 −mea2Ÿ1 −mea3Z̈1 −mea1Ẍ2 +mea2Ÿ2 +mea3Z̈2

+meλ̈n + cha2
3λ̇n + kh

(
λn
)
a2

3f
(
λn
)
= a3(F1m + F1v) +meën

(
t
)
,

me =
I1xI2y

(
I1xr

2
m2 + I2yr

2
m1

) ,

F1m =
T1m

rm1
=
T2m

rm2
,

F1v =
T1vrm1me

I1x
=
∞∑

r=1

Fr cos
(
rωT1t + φT1r

)
,

(2.7)

where me—Equivalent mass of the gear pair; F1v, F1m—Ripple and mean force on pinion,
respectively.

Next, introducing the parameters

xi =
Xi

l
, yi =

Yi
l
, zi =

Zi

l
, b =

b

l
,

λn =
λn
l
, ωn =

√
khm
me

, ωij =

√
kij

mi
,

ςij =
cij

(2miωn)
, ςih =

ch
(2miωn)

,

kij =
ω2
ij

ω2
n

, kih =
kh
(
λn
)

(
miω

2
n

) ,

t = ωnt, ωh =
ωh

ωn
, ωT =

ωT

ωn
,

khm =

(
khm1 + khm2

)

2
,

g1 =
kh1

khm
= khm1 +

∞∑

r=1

khr1 cos
(
rωht + φhr1

)
,

g2 =
kh2

khm
= khm2 +

∞∑

r=1

khr2 cos
(
rωht + φhr2

)
,
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g(λn) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g1, λn > b,

0, −b ≤ λn ≤ b,

g2, λn < −b,

f(λn) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λn − b, λn > b,

0, −b ≤ λn ≤ b,

λn + b, λn < −b,

f1m =
F1m

melω
2
n

, f1v =
F1v

melω
2
n

,

fe =
∞∑

r=1

Fhr(rωh)2 cos
(
rωht + φer

)
,

(2.8)

where i = 1, 2; j = x, y, z.
The dimensionless form of (2.5) can be obtained as

ẍ1 + 2ς1xẋ1 + k1xx1 − 2a1ς1hλ̇n − a1k1hf(λn) = 0,

ÿ1 + 2ς1yẏ1 + k1yy1 + 2a2ς1hλ̇n + a2k1hf(λn) = 0,

z̈1 + 2ς1zż1 + k1zz1 + 2a3ς1hλ̇n + a3k1hf(λn) = 0,

ẍ2 + 2ς2xẋ2 + k2xx2 + 2a2ς2hλ̇n + a2k2hf(λn) = 0,

ÿ2 + 2ς2yẏ2 + k2yy2 − 2a2ς2hλ̇n − a2k2hf(λn) = 0,

z̈2 + 2ς2zż2 + k2zz2 − 2a3ς2hλ̇n − a3k2hf(λn) = 0,

a1ẍ1 − a2ÿ1 − a3z̈1 − a1ẍ2 + a2ÿ2 + a3z̈2 + λ̈n + 2a2
3ςhλ̇n + a

2
3g(λn)f(λn) = a3f1m + a3f1v + fe.

(2.9)

3. Numerical Results

As there is no analytical method existing for (2.9), the equation is solved by applying the
explicit Runge-Kutta integration routine with variable step that is generally applicable to
strong nonlinear equation. The effect of tooth mesh stiffness asymmetry on dynamic response
of spiral bevel gear system for both light and heavy loads is studied here. For subsequent
numerical study, the baseline data used are

Z1 = 36, Z2 = 40, αn = 20◦, βm = 35◦, b = 35μm. (3.1)
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Figure 2: Effect of mean mesh stiffness of coast side for lightly loaded case. ∗—single-sided impact ◦—no
impact +—double-sided impact.

In this part, it is focused on effect of mean mesh stiffness khm1, khm2, assuming that
khr1 = khr1, φhr1 = φhr2 for simplicity.

3.1. Effect of Mesh Stiffness Asymmetry for Lightly Loaded Case

Dimensionless dynamic parameters set in the system are as follows:

ςij = 0.01, ςih = 0.0125, ςih = 0.0125,

kih = 0.25, khr1 = khr2 = 0.2,

φhr1 = φhr2 = 0,

f1m = 0.25, f1v = 0 ωh = 0.7,

fe = 0.5ω2
h cosωht, i = 1, 2, j = x, y, z.

(3.2)
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Figure 3: Effect of mean mesh stiffness of drive side for lightly loaded case. ∗—single-sided impact ◦—no
impact +—double-sided impact.

The effect of the mean mesh stiffness of coast side on dynamic response for lightly
loaded case is shown in Figure 2. The horizontal axis represents excitation frequency ωh and
the vertical axis represents peak-peak value of the dynamic transmission errorA. As shown in
Figure 2(a), when khm2 = 0.5, single-sided impact response and double-sided impact response
alternate in the low-frequency regions. And the max of A occurs at ωh = 0.9. In the region
ωh ∈ [0.96, 1.06], there are no impact responses, and the gear pair running smoothly as khm2 is
increased to 1 in Figure 2(b); the max of A 8.5 moves to the frequency ωh = 0.52. The dynamic
response in no-impact and single-sided impact regions ωh ∈ [0.96, 1.5] keeps unchanged.
When khm2 is increased further to 1.5 and 2, the peak-peak value A in double-sided impact
region changes obviously while the location and vibration response of single-sided impact
and no-impact regions are nearly unchanged. The above results show that the mesh stiffness
of coast side only affects double-sided tooth impact region.

Figure 3 shows the effect of mean mesh stiffness of drive side for lightly loaded case. It
can be seen from Figure 3(a) that double-sided impacts dominate the range ωh ∈ [0.67, 0.79].
And four response jump discontinuities can be seen at frequency ωh = 0.67, 0.79, 0.97, 1.25.
It can be observed that response jump discontinuities appear at these frequencies. As khm1 is
increased to 1, it can be observed that more double-sided impacts appear and the location of
each impact region shifts obviously. As khm1 is further increased to 1.5 and 2, both response
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Figure 4: Bifurcation diagram for lightly loaded case.

jumps and single-sided impacts increased considerably, and response in the whole excitation
frequency areas changes significantly. As can be seen in Figure 3(c), except the two narrow
bands ωh ∈ [1.03, 1.17] and ωh ∈ [1.36, 1.5], the rest excitation frequencies are all double-
sided impact regions. When khm1 = 2, width of double-sided tooth impact region is further
increased.

To further explain the effect of the mean mesh stiffness of drive side on dynamic
response, bifurcation diagram is introduced in Figure 4. For the current light-load case,
it can be observed that, as khm1 is increased from 1 to 2, chaotic motion regions increase
considerably. From above observations, it can be concluded that the mesh stiffness of drive
side affects dynamic response greatly in the whole excitation frequency region. Furthermore,
the increase of drive side mesh stiffness tends to worsen dynamic response.

3.2. Effect of Mesh Stiffness Asymmetry for Heavily Loaded Case

Dimensionless dynamic parameters set in this part are as follows:

ςij = 0.01, ςih = 0.0125, ςih = 0.0125, kih = 0.25, khr1 = khr2 = 0.2,

φhr1 = φhr2 = 0, f1m = 1, f1v = 0, fe = 0.5ω2
h cosωht,

i = 1, 2, j = x, y, z.

(3.3)

When khm1 = 1, the effect of khm2 for heavy-load case is shown in Figure 5. No-
impact region ωh ∈ [0.74, 1.18] is far wider than double-sided impact region ωh ∈ [0.5, 0.61]
in Figure 5(a). And the max of A = 15.9 which comes at ωh = 0.52 is much larger than
that of 6 for light-load case. There are three single-sided impact regions ωh ∈ [0.62, 0.73],
ωh ∈ [1.19, 1.27], and ωh ∈ [1.32, 1.5], and little response jump can be seen. As khm2

is increased to 1, dynamic response in double-sided impact region changes greatly while
responses in single-sided impact and no-impact regions remain the same. And the max of A
is increased to 24. As khm2 is increased further to 1.5 and 2, only double-sided impact region
is affected. The results show that double-sided impact region becomes obviously narrower
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Figure 5: Effect of mean mesh stiffness of coast side for heavily loaded case. ∗—single-sided impact ◦—no
impact +—double-sided impact.

and response jumps diminish considerably for heavily loaded case. Although the peak-peak
value of dynamic transmission error in double-sided impact region is larger than that of
light-load case, response jump discontinuities and double-sided tooth impacts for heavily
loaded case are far fewer. As light-load condition, only double-sided impact region is affected
considerably by mesh stiffness of coast side. This is because khm2 only takes effect for double-
sided impact condition.

Figure 6 shows dynamic response for different mean mesh stiffness of drive side while
leaving mean mesh stiffness of coast side unchanged. In Figure 6(a), there are three no-impact
regions ωh ∈ [0.98, 1.33], ωh ∈ [0.57, 0.79], and ωh ∈ [1.44, 1.5], one double-sided impact
region ωh ∈ [0.8, 0.91], and three response jump frequencies ωh = 0.8, ωh = 0.91, and ωh =
0.97. The max of A = 32 occurs at ωh = 0.92. As khm1 is increased to 1, no-impact regions are
reduced to two ωh ∈ [0.74, 1.18] and ωh ∈ [1.28, 1.31], and the location of each impact region
changes significantly. For khm1 = 1.5 in Figure 6(c), the number of double-sided impact region
is increased to two ωh ∈ [0.57, 0.76] and ωh ∈ [1.31, 1.41], and more response jumps appear.
When khm1 is increased to 2, double-sided impact region becomes wider and response in
double-sided impact region takes significant changes from Figure 6(c).

Figure 7 shows response bifurcation for different khm1, while khm2 is fixed to 1. For
khm1 = 1 in Figure 7(a), no chaotic motion can be seen. However, as khm1 is increased to 2,
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Figure 6: Effect of mean mesh stiffness of drive side for heavily loaded case. ∗—single-sided impact ◦—no
impact +—double-sided impact.

there are two obvious chaotic motion areas. Comparing with Figure 4, it can be seen that
chaotic motion areas diminish considerably in Figure 7. From these results we can conclude
that mesh stiffness of drive side also affects dynamic response greatly for heavy-load case. In
addition, the increase of khm1 will worsen the dynamic response of the system especially for
light-load case. Compared with light-load condition, the degree of gear backlash nonlinearity
is lower for heavy-load case. This is because mesh force under heavy-load condition is large
and hence mesh teeth are difficult to separate.

4. Conclusions

A nonlinear dynamic model of a spiral bevel gear pair which involves time-varying mesh
stiffness, transmission error, backlash, and mesh stiffness asymmetry is proposed. The effect
of tooth mesh stiffness asymmetry on vibration of spiral bevel gear transmission system is
studied deliberately. Some important conclusions are obtained.

Firstly, the mesh stiffness for drive side has more effect on dynamic response than
those of the coast side. Only double-sided impact region is affected considerably by mesh
stiffness of coast side while single-sided impact and no-impact regions are unchanged.
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Figure 7: Bifurcation diagram for heavily loaded case.

Secondly, the dynamic response of the system is very sensitive to mesh stiffness of
drive side. The change of mesh stiffness of drive side will affect response in the whole
excitation frequency areas. Furthermore, the increase of drive side mesh stiffness tends to
worsen dynamic response especially for lightly loaded case.

Thirdly, the vibration characteristic for heavily loaded case is far better than that for
lightly loaded case. And the mesh stiffness asymmetry affects the dynamic response more
compared with heavy-load case.

Acknowledgments

This paper is supported by National Natural Science Foundation of China (Grant no.
50875270), Key Scientific Projects of Ministry of Education of China (Grant no. 108108) and
Natural Science Foundation of Chongqing (CSTC, 2008BA6025).

References

[1] L. Runfang and W. Jianjun, Dynamics of Geared System—Vibration, Impact, Noise, Science Publishing
House, Beijing, China, 1997.

[2] A. Kahraman and R. Singh, “Non-linear dynamics of a spur gear pair,” Journal of Sound and Vibration,
vol. 142, no. 1, pp. 49–75, 1990.

[3] A. Kahraman and R. Singh, “Non-linear dynamics of a geared rotor-bearing system with multiple
clearances,” Journal of Sound and Vibration, vol. 144, no. 3, pp. 469–506, 1991.

[4] W. Jianjun, L. Qihan, and L. Runfang, “Research advances for nonlinear vibration of gear transmission
system,” Advances In Mechanics, vol. 35, no. 1, pp. 37–51, 2005 (Chinese).

[5] C. Liangyu, C. Chunyuan,, and E. Zhongkai, “A vibration model spiral bevel gears,” Journal of
Northeast University of Technology, vol. 14, no. 2, pp. 146–149, 1993 (Chinese).

[6] C. Gosselin, L. Cloutier, and Q. D. Nguyen, “A general formulation for the calculation of the load
sharing and transmission error under load of spiral bevel and hypoid gears,” Mechanism and Machine
Theory, vol. 30, no. 3, pp. 433–450, 1995.

[7] G. D. Bibel, A. Kumar, S. Reddy, and R. Handschuh, “Contact stress analysis of spiral bevel gears
using finite element analysis,” Journal of Mechanical Design, vol. 117, no. 2 A, pp. 235–240, 1995.

[8] M. Fujii, Y. Nagasaki, M. Nohara, and Y. Terauchi, “Effect of bearing on dynamic behaviors of straight
bevel gear,” Transactions of the Japan Society of Mechanical Engineers. Part C, vol. 61, no. 581, pp. 234–238,
1995 (Japanese).



Mathematical Problems in Engineering 13

[9] M. Fujii, Y. Nagasaki, and M. Nohara, “Differences in dynamic behavior between straight and skew
bevel gears,” Transactions of the Japan Society of Mechanical Engineers. Part C, vol. 63, no. 613, pp. 3229–
3234, 1997 (Japanese).

[10] l. Z. Xu, M. Zhao, P. Z. Ren, and W. D. Chai, “Method for analyzing the vibration behavior of rotor
with the engagement of spiral bevel gears,” Mechanical Science and Technology, vol. 16, pp. 668—673,
1997.

[11] M. G. Donley, T. C. Lim, and G. C. Steyer, “Dynamic analysis of automotive gearing systems,” Journal
of Passenger Cars, vol. 101, no. 905, pp. 77–87, 1992.

[12] Z. D. Fang, “Dynamic analysis of spiral bevel gears in assembly,” in Proceedings of the International
Gearing Conference, vol. 43, pp. 389–392, Newcastle, UK, 1994.

[13] Y. Cheng and T. C. Lim, “Vibration analysis of hypoid transmissions applying an exact geometry-
based gear mesh theory,” Journal of Sound and Vibration, vol. 240, no. 3, pp. 519–543, 2001.

[14] J. Wang, T. C. Lim, and M. Li, “Dynamics of a hypoid gear pair considering the effects of time-varying
mesh parameters and backlash nonlinearity,” Journal of Sound and Vibration, vol. 308, no. 1-2, pp. 302–
329, 2007.

[15] S. Wang, Y. Shen, and H. Dong, “Nonlinear dynamical characteristics of a spiral bevel gear system
with backlash and time-varying stiffness,” Chinese Journal of Mechanical Engineering, vol. 39, no. 2, pp.
28–32, 2003.

[16] L. Wang, Y. Huang, R. Li, and T. Lin, “Study on nonlinear vibration characteristics of spiral bevel
transmission system,” China Mechanical Engineering, vol. 18, no. 3, pp. 260–264, 2007 (Chinese).

[17] M. Li and H. Y. Hu, “Dynamic analysis of a spiral bevel-geared rotor-bearing system,” Journal of Sound
and Vibration, vol. 259, no. 3, pp. 605–624, 2003.



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2010, Article ID 379472, 21 pages
doi:10.1155/2010/379472

Research Article
Analysis of a Nonlinear Aeroelastic System
with Parametric Uncertainties Using Polynomial
Chaos Expansion

Ajit Desai and Sunetra Sarkar

Department of Aerospace Engineering, IIT Madras, Chennai 600036, India

Correspondence should be addressed to Sunetra Sarkar, sunetra.sarkar@gmail.com

Received 10 January 2010; Revised 30 April 2010; Accepted 14 June 2010

Academic Editor: Carlo Cattani

Copyright q 2010 A. Desai and S. Sarkar. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Aeroelastic stability remains an important concern for the design of modern structures such
as wind turbine rotors, more so with the use of increasingly flexible blades. A nonlinear
aeroelastic system has been considered in the present study with parametric uncertainties.
Uncertainties can occur due to any inherent randomness in the system or modeling limitations,
and so forth. Uncertainties can play a significant role in the aeroelastic stability predictions in
a nonlinear system. The analysis has been put in a stochastic framework, and the propagation
of system uncertainties has been quantified in the aeroelastic response. A spectral uncertainty
quantification tool called Polynomial Chaos Expansion has been used. A projection-based
nonintrusive Polynomial Chaos approach is shown to be much faster than its classical Galerkin
method based counterpart. Traditional Monte Carlo Simulation is used as a reference solution.
Effect of system randomness on the bifurcation behavior and the flutter boundary has been
presented. Stochastic bifurcation results and bifurcation of probability density functions are also
discussed.

1. Introduction

Fluid-structure interaction can result in dynamic instabilities like flutter. Nonlinear param-
eters present in the system can stabilize the diverging growth of flutter oscillations to
a limit cycle oscillation (LCO). Sustained LCO can lead to fatigue failure of rotating
structures such as wind turbine rotors. Hence, it is an important design concern in aeroelastic
analysis. Moreover, there is a growing interest in understanding how system uncertainties
in structural and aerodynamic parameters and initial conditions affect the characteristics of
such dynamical response.

Uncertainty quantification in a stochastic framework with stochastic inputs has
traditionally been analyzed with Monte Carlo simulations (MCSs). To apply this procedure
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one should use the distribution of the input parameters to generate a large number of
realizations of the response. Probability density function (PDF) and other required statistics
are then approximated from these realizations; however, it is computationally expensive,
especially for large complex problems. Hence, there is a need to develop alternate approaches
which are computationally cheaper than direct MCS procedure. Perturbation method is
a fast tool for obtaining the response statistics in terms of its first and second moments
[1]. The statistical response is determined by expanding the stochastic parameters around
their mean via a Taylor series [2]. The application of this method is, however, limited to
small perturbations and does not readily provide information on high-order statistics [3, 4].
The resulting system of equations becomes extremely complicated beyond second-order
expansions as shown in the literature. Sensitivity method is a more economical approach,
based on the moments of samples, but it is less robust and depends strongly on the modeling
assumptions [5]. Another approach based on expanding the inverse of the stochastic operator
in a Neumann series is also limited to small fluctuations only; even combining with the Monte
Carlo method also seems to result in a computationally prohibitive algorithm for complex
systems [4].

Polynomial chaos expansion (PCE) is a more effective approach, pioneered by
Ghanem and Spanos [4], proposed first in the structural mechanics finite elements area. It is a
spectral representation of the uncertainty in terms of orthogonal polynomials. The stochastic
input is represented spectrally by employing orthogonal polynomial functionals from the
Askey scheme as basis in the random space. The original homogeneous PCE was based on
Hermite polynomials from the Askey family [6]. It can give optimal exponential convergence
for Gaussian inputs [7]. A standard Galerkin projection is applied along the random
dimensions to obtain the weak form of the equations. The resulting deterministic systems are
solved using standard techniques to solve for each random mode [8]. Galerkin polynomial
chaos expansion (Galerkin PCE) based approaches have been examined extensively with
different basis functions to model several uncertain flow and flow-induced instability
problems [9, 10].

Galerkin PCE (also called intrusive approach) modifies the governing equations
to a coupled form in terms of the chaos coefficients. These equations are usually more
complex and arriving at them is quite often a tedious task for some choices of the uncertain
parameters. In order to avoid these, several uncoupled alternatives have been proposed.
These are collectively called nonintrusive approaches. In a nonintrusive polynomial chaos
method a deterministic solver is used repeatedly as in Monte Carlo simulation. The
Probabilistic Collocation (PC) method is such a nonintrusive polynomial chaos method in
which the problem is collocated at Gauss quadrature points in the probability space [11, 12].
The deterministic solutions are performed at these collocation points. The nonintrusive
polynomial chaos method proposed by Walters and coworkers [13–15] is based on
approximating the polynomial chaos coefficients. A similar approach called nonintrusive
Spectral Projection has been used by Reagan et al. [16]. Pettit and Beran [17, 18] have also
used a stochastic projection technique to compute the chaos expansion coefficients in an
aeroelastic system. When multiple uncertain parameters are involved the collocation grids are
constructed using tensor products of one-dimensional grids. Thus, the number of collocation
points and therefore the number of required deterministic solutions increases rapidly. As an
alternative, sparse grid collocation approaches can be implemented [19–21].

The intrusive and nonintrusive PCE approaches and their implementation to an
aeroelastic model with structural nonlinearity are discussed in detail in the subsequent
sections.
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2. Nonlinear Aeroelastic Model

Figure 1 shows a schematic plot of the two degree-of-freedom pitch-plunge aeroelastic system
and also the notations used in the analysis. The aeroelastic equations of motion for the linear
system have been derived by Fung [22]. For nonlinear restoring forces such as with cubic
springs in both pitch and plunge, the mathematical formulation is given by Lee et al. [23] as
follows:

ε′′ + xαα′′ + 2ζε
ω

U
ε′ +
(
ω

U

)2(
ε + βεε3

)
= − 1

πμ
CL(τ),

xa

r2
α

ε′′ + α′′ + 2
ζα
U
α′ +

1
U2

(
α + βαα3

)
=

2
πμr2

α

CM(τ).

(2.1)

The above equations are shown in the nondimensional form. The nondimensional parameters
are given below. The plunge deflection is considered positive in the downward direction
and the pitch angle about the elastic axis is denoted positive nose up. Elastic axis is located
at a distance ahb from the midchord where b is the half chord. Let us also use v as the
wind velocity h as the plunge deflection. Among the nondimensional quantities, ε = h/b
= nondimensional displacement of the elastic axis point; τ = vt/b = nondimensional time;
U = v/(bωα)= the nondimensional velocity (also called reduced velocity); ω = ωε/ωα,
ωε and ωα are the natural frequencies of the uncoupled plunging and pitching modes
respectively. In the structural part, ζε and ζα are the damping ratios in plunge and pitch
respectively, rα is the radius of gyration about the elastic axis, and μ is the airfoil mass
ratio defined as m/(πρv). βα and βε denote coefficients of cubic spring in pitch and plunge
respectively. For incompressible, inviscid flow, Fung [22] gives the expressions for unsteady
lift and pitching moment coefficients, CL(τ) and CM(τ):

CL(τ) = π
(
ε′′ − ahα′′ + α′

)
+ 2π

{
α(0) + ε′(0) +

[
1
2
− ah

]
α′(0)

}
φ(τ)

+ 2π
∫ τ

0
φ(τ − σ)

[
α′(σ)ε′′(σ) +

[
1
2
− ah

]
α′′(σ)

]
dσ,

CM(τ) = π
[

1
2
+ ah

]
×
{
α(0) + ε′(0) +

[
1
2
− ah

]
α′(0)

}
φ(τ)

+ π
[

1
2
+ ah

]
×
∫ τ

0
φ(τ − σ)

{
α′(σ) + ε′′(σ) +

[
1
2
− ah

]
α′′(σ)

}
dσ

+
π

2
ah
(
ε′′ − ahα′′

)
−
[

1
2
− ah

]
π

2
α′ − π

16
α′′

(2.2)

The Wagner function φ(τ) is given by:

φ(τ) = 1 − ψ1e−ε1τ − ψ2e−ε2τ . (2.3)
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Figure 1: The schematic of a symmetric airfoil with pitch and plunge degrees-of-freedom.

Values for the constants are, ψ1 = 0.165, ψ2 = 0.335, ε1 = 0.0455 and ε2 = 0.3 [24]. Introducing
the following new variables w1, w2, w3, and w4 [23], the original integrodifferential equa-
tions for aeroelastic system given by (2.1) are reformulated:

w1 =
∫ τ

0
e−ε1(τ−σ)α(σ)dσ,

w2 =
∫ τ

0
e−ε2(τ−σ)α(σ)dσ,

w3 =
∫ τ

0
e−ε1(τ−σ)ε(σ)dσ,

w4 =
∫ τ

0
e−ε2(τ−σ)ε(σ)dσ.

(2.4)

Now a set of autonomous differential equations of the form X′ = f(X) are obtained as, X =
{x1, x2, x3, x4, x5, x6, x7, x8} = {α, α′, ε, ε′, w1, w2, w3, w4}.

Explicitly, the system looks like,

x′1 = x2,

x′2 =
(c0N − d0M)
(c1d0 − c0d1)

,

x′3 = x4,

x′4 =
(−c1N + d1M)
(c1d0 − c0d1)

,

x′5 = x1 − ε1x5,

x′6 = x1 − ε2x6,

x′7 = x3 − ε1x7,

x′8 = x3 − ε2x8,

(2.5)

where

M = c2x4 + c3x2 + c4x3 + c5x
3
3 + c6x1 + c7x5 + c8x6 + c9x7 + c10x8 − f(τ),

N = d2x2 + d3x1 + d4x
3
1 + d5x4 + d6x3 + d7x5 + d8x6 + d9x7 + d10x8 − g(τ).

(2.6)
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The coefficients c0 · · · c10 and d0 · · ·d10 depend on the system parameters, and their
expressions along with f(τ) and g(τ) are given in the appendix.

3. Uncertainty Quantification and Polynomial Chaos Expansion

It is increasingly being felt among the aeroelastic community that aeroelastic analysis should
include the effect of parametric uncertainties. This can potentially revolutionize the present
design concepts with higher rated performance and can also reshape the certification criteria.
Nonlinear dynamical systems are known to be sensitive to physical uncertainties, since they
often amplify the random variability with time. Hence, quantifying the effect of system
uncertainties on the aeroelastic stability boundary is crucial. Flutter, a dynamic aeroelastic
instability involves a Hopf bifurcation where a damped (stable response) oscillation changes
to a periodic oscillatory response at a critical wind velocity. In a linear system the post
flutter response can grow in an unbounded fashion [22]. System parametric uncertainties can
significantly affect the onset and properties of bifurcation points. The importance of stochastic
modeling of these uncertainties is that they quantify the effect of the uncertainties on flutter
and bifurcation in a probabilistic sense and gives the response statistics in a systematic
manner.

The original homogeneous polynomial chaos expansion [4] is based on the homo-
geneous chaos theory of Wiener [6, 25]. This is based on a spectral representation of the
uncertainty in terms of orthogonal polynomials. In its original form, it employs Hermite
polynomials as basis from the generalized Askey scheme and Gaussian random variables.
Spectral polynomial chaos-based approaches with other basis functions have also been used
in the recent past in various unsteady flow and flow-structure interaction problems of
practical interest [8, 26, 27].

3.1. Classical Galerkin Polynomial Chaos Approach

In the classical Galerkin-PCE approach, the polynomial chaos expansion of the system
response is substituted into the governing equation and a Galerkin error minimization in
the probability space is followed. This results in a set of coupled equations in terms of the
polynomial chaos coefficients. The resulting system is deterministic, but it is significantly
modified to a higher order and complexity depending on the order of chaos expansion and
system nonlinearity. After solving this set of coefficient equations, they are substituted back
to get the system response.

As per the Cameron-Martin theorem [28], a random process X(t, θ) (as function of
random event θ) which is second-order stationary can be written as

X(t, θ) = â0ψ0 +
∞∑

i1=1

âi1ψ1(ξi1(θ)) +
∞∑

i1=1

i1∑

i2=1

âi1i2ψ2(ξi1(θ), ξi2(θ))

+
∞∑

i1=1

i1∑

i2=1

i2∑

i3=1

(âi1i2i3)ψ3(ξi1(θ), ξi2(θ), ξi3(θ)) + · · · ,

(3.1)

where ψn(ξi1 , ξi2 , . . . , ξin) denotes the Hermite polynomial of order n in terms of n-dimensional
independent standard Gaussian random variables ξ = (ξi1 , ξi2 , . . . , ξin) with zero mean and
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unit variance. The above equation is the discrete version of the original Wiener polynomial
chaos expansion, and the continuous integrals are replaced by summations. For notational
convenience equation (3.1) can be rewritten as

X(t, θ) =
∞∑

j=0

aj(t)Φj(ξ(θ)). (3.2)

There is an one-to-one relationship between the ψ’s and Φ’s and also âj ’s and aj ’s in (3.1) and
(3.2). In the original form, chaos expansion uses Hermite polynomials (ψns). The form of the
one-dimensional Hermite polynomials is given as follows.

ψ0 = 1,

ψ1 = ξ,

ψ2 = ξ2 − 1,

ψ3 = ξ3 − 3ξ,

ψ4 = ξ4 − 6ξ2 + 3,

ψn = ξψn−1 − (n − 1)ψn−2.

(3.3)

One can also use orthogonal polynomials from the generalized Askey scheme for some
standard nonGaussian input uncertainty distributions such as gamma and beta [8]. For any
arbitrary input distribution, a Gram-Schmidt orthogonalization can be employed to generate
the orthogonal family of polynomials [29].

Any stochastic process α(t, ξ(θ)), governed by Gaussian random variables ξ (ξ can
always be normalized as a standard Gaussian one), can be approximated by the following
truncated series:

α(t, ξ(θ)) =
p∑

j=0

α̂j(t)Φj(ξ(θ)) (3.4)

Note that, here the infinite upper limit of (3.2) is replaced by p, called the order of the
expansion. For n number of random variable and polynomial order np, p is given by the
following [26]:

p =

(
n + np

)
!

n!np!
− 1. (3.5)

We demonstrate the Galerkin-PCE approach for a generalized dynamical system for a single
random variable case, that is, with a random cubic stiffness. Let us write the governing
equation with cubic nonlinearity in the following form [27]:

£[α(t, θ)] + βα[α(t, θ)]
3 = 0, (3.6)

here £ is a linear differential operator.
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Equation (3.4) is now rewritten for a single random variable ξ as

α(t, ξ(θ)) =
p∑

j=0

α̂j(t)Φj(ξ(θ)). (3.7)

Here Φj ’s are now Hermite polynomials ψj as shown in (3.3).
If the cubic spring constant βα is assumed to be a Gaussian random variable with mean

βα and standard deviation β̃α, it can be characterized by

βα = βα + ξβ̃α =
1∑

l=0

βαlΦl, (3.8)

with, βα0 = βα and βα1 = β̃α.
Substituting the chaos expansion terms, (3.7) and (3.8) in (3.6),

£

⎡

⎣
p∑

j=0

α̂j(t)Φj

⎤

⎦ +
1∑

l=0

βαlΦl

⎡

⎣
p∑

j=0

α̂j(t)Φj

⎤

⎦

3

= 0. (3.9)

The cubic nonlinear function can be expressed in the following form:

⎡

⎣
p∑

j=0

α̂j(t)Φj

⎤

⎦

3

=
p∑

i=0

p∑

m=0

p∑

n=0

α̂iα̂mα̂nΦiΦmΦn. (3.10)

Substituting (3.10) into (3.9) and simplifying, we get,

£

⎡

⎣
p∑

j=0

α̂j(t)Φj

⎤

⎦ +
1∑

l=0

βαlΦl

[
p∑

i=0

p∑

m=0

p∑

n=0

α̂iα̂mα̂nΦiΦmΦn

]

= 0. (3.11)

Using Galerkin projection on (3.11) by taking 〈·,Φk〉, for k = 0, 1, . . . , p,

£[α̂k(t)] +
1
〈
Φ2
k

〉

[
1∑

l=0

p∑

i=0

p∑

m=0

p∑

n=0

βαlα̂iα̂mα̂n〈ΦlΦiΦmΦnΦk〉
]

= 0. (3.12)

The expected value operator 〈·〉, called the inner product, is defined as,

〈Φl · · ·Φk〉 =
∫∞

−∞
Φl · · ·Φk ω(ξ)dξ. (3.13)
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Table 1

〈Φ1Φ1〉 = 1 〈Φ0Φ0Φ0Φ0Φ0〉 = 1
〈Φ2Φ2〉 = 2 〈Φ0Φ0Φ1Φ1Φ2〉 = 2
〈Φ3Φ3〉 = 6 〈Φ0Φ1Φ1Φ2Φ2〉 = 10
〈Φ4Φ4〉 = 24 〈Φ0Φ1Φ2Φ2Φ3〉 = 48

For Hermite polynomials the weighting function ω(ξ) is the Gaussian probability density
function. For single random variable case it is given as

ω(ξ) =
(

1√
2π

)
e−((1/2)ξ2). (3.14)

The Hermite polynomials are orthogonal with respect to this weighting function in the
Hilbert space. The polynomial chaos forms a complete orthogonal basis in the L2 space of
real-valued functions depending on the Gaussian random variables; hence the inner product
of two orthogonal polynomial can be replaced by the identity

〈ΦlΦk〉 =
〈
Φ2
l

〉
δlk, (3.15)

δlk is the Kronecker delta function, given as:

δlk =

⎧
⎨

⎩

1 if l = k,

0 otherwise.
(3.16)

The inner product terms in (3.12) 〈ΦlΦiΦmΦnΦk〉 and 〈Φ2
k
〉 can be evaluated analytically

before-hand and substituted in the equation. The resulting system becomes a deterministic
differential equation in terms of the chaos coefficients. Depending on the type of nonlinearity,
the number of random variables and the number of expansion terms, evaluating the
inner products could be tedious. In the present study, they are computed by numerical
integration by using Gauss-Hermite quadrature rule and verified analytically by using
symbolic mathematical solver Mathematica. Some typical nonzero inner-products are given
in Table 1.

The Galerkin approach is also called the intrusive approach as it modifies the system
governing equations in terms of the chaos coefficients. The modification results into a higher
order and much more complex form. As a result, this approach may become computationally
quite expensive.

3.2. Nonintrusive Projection Method

A number of nonintrusive variants of PCE have been developed to counter the disadvantages
of the classical Galerkin method. Stochastic projection is one of them [4, 30]. In the present
study, a stochastic projection-based approach is used to evaluate the chaos coefficients. Here,
the chaos expansions are not substituted in the governing equations; instead samples of the
solutions are used (using low-order deterministic simulations) to evaluate the coefficients
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directly using a projection formula. As a result, this approach can utilize the existing
deterministic code and hence the name nonintrusive. The random process is approximated
by a truncated series, as shown in (3.7).

The Hermite polynomials are statistically orthogonal, that is, they satisfy 〈ΦiΦj〉 = 0
for i /= j, hence the expansion coefficients can be directly evaluated as

α̂j(t) =

〈
α(t, ξ(θ))Φj

〉

〈
Φ2
j

〉 . (3.17)

The denominator in (3.17) can be shown to satisfy 〈Φ2
j 〉 = j! for nonnormalized Hermite

polynomials [31]. So the key step in projecting α(t, ξ(θ)) along the polynomial chaos basis is
the evaluation of 〈α(t, ξ(θ))Φj〉. The inner product is given by the following integral:

〈
α(t, ξ(θ))Φj

〉
=
∫∞

−∞
α(t, ξ(θ))Φjω(ξ)dξ. (3.18)

A Gauss-Hermite quadrature will be suitable for evaluating the above as the domain is
(−∞,∞) and the weight function is Gaussian PDF. The quadrature points are the zeros of
the Hermite polynomials of chosen order. A number of deterministic runs are performed at
the quadrature points which is much lower than the full Monte Carlo simulations. We refer
to this step as a pseudo-Monte Carlo simulation approach. In the pseudo-MCS approach the
samples of βα are generated from the corresponding ξ values which are the Gauss-Hermite
quadrature points. The realizations of the system response α(t, θ) are then used to estimate
the deterministic coefficients, α̂j(t)’s, in (3.17) using the Gauss-Hermite quadrature rule. It
should also be noted that for each evaluation of the inner product integral a convergence
study is done by gradually increasing the number of quadrature points.

4. Results and Discussions

The main focus of the present study is quantifying the effect of system uncertainties on the
bifurcation behavior and the flutter boundary of the nonlinear aeroelastic system. A fourth
order variable step Runge-Kutta method is employed for the time integration. The main
bifurcation parameter in a flutter system is the nondimensional wind velocity, also called
the reduced velocity. In a linear aeroelastic system, the response changes to an exponentially
growing solution from a stable damped oscillation at some critical wind velocity, known as
the linear flutter speed. Nonlinear aeroelastic system can stabilize the response at the post-
flutter regime to limit cycle oscillations [23] and the critical point becomes a Hopf bifurcation
point. With a cubic nonlinearity, both supercritical and subcritical Hopf bifurcations are
possible [32]. The latter case is observed for a softening cubic spring. Here in the stochastic
analysis, we focus on the supercritical case. A deterministic bifurcation diagram with the
following parameter values [23] is shown in Figure 2: μ = 100, ω = 0.2, ah = −0.5, xα =
0.25, ζα = 0, ζε = 0, rα = 0.5, βα = 3, βε = 0. The variation of the limit cycle oscillation (LCO)
amplitude is plotted with reduced velocities. Bifurcation occurs at the corresponding linear
flutter speed of 6.285, and the observation match well with the earlier results [33]. At the post
flutter velocities, limit cycle oscillations are observed and the amplitude of the LCOs increase
as the reduced velocity increases.
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Figure 2: Deterministic flutter and bifurcation diagram with cubic nonlinearity (supercritical Hopf
bifurcation).

We now consider random variations in the system parameters and investigate the
influence on the overall dynamics. We consider only single uncertain parametric variation in
this paper, that is, a single random variable model. First, the hardening cubic spring constant
is considered to be a Gaussian random variable with mean βα = 3 and standard deviation
β̃α = 0.3. All other parameters are assumed to be deterministic. Figure 3 shows bifurcation
behavior with the cubic stiffness as random, it now has a range of possible LCO amplitudes
for each reduced velocity and the onset of flutter is unaffected. The standard deviation, that
is, the amplitude variation range increases as reduced speed increases.

A Galerkin PCE approach is used to quantify the propagation of this uncertainty on
the response. The Galerkin approach modifies the 8th-order flutter system to an 8 × (p + 1)
order system. It also involves calculating the complex fifth-order inner product terms as
shown earlier. As a result, the solution process is computationally intensive for the nonlinear
system in question. After solving for the chaos coefficients, in the post processing stage,
the coefficients are substituted back to the expansion form to get the stochastic response.
Probability density functions (PDFs) and other required statistics can then be readily
obtained. The time histories of the first few random modes in pitch are plotted in Figure 4. The
zeroth-order mode is the mean; one can also see that the contribution of higher-order random
modes is gradually diminishing. A representative PDF is shown in Figure 5 for increasing
order of chaos expansion terms. PDFs are calculated at time t = 7000 at which the solutions
are well past their transients and stationary. The reduced speed considered here is U = 6.42,
close to the deterministic bifurcation point. The figure also presents results from a standard
MCS with 12000 samples as a comparison reference. One can see how increasing the order
of expansion the CPU time for the solution is getting magnified. Results are presented up to
the 12th order of expansion at which the PCE results match well with that of MCS. However,
the simulation time also approaches to that of the reference MCS. While calculating the CPU
time for the Galerkin-PCE approach the inner products computation and post processing of
results are not taken into account.
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Figure 3: Uncertain nonlinear stiffness: stochastic bifurcation diagram.
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Figure 4: Galerkin-PCE: behavior of the first few random modes.

Now the nonintrusive projection approach is followed using a Gauss-Hermite
quadrature. Galerkin-PCE and nonintrusive results are compared in terms of their accuracy
and simulation time in Figure 6. A good match with MCS is seen for the 12th order
of expansion. Once again a standard MCS with 12000 samples is used as a reference
solution (in other cases too we have used a standard 12000 samples MCS as reference).
However, nonintrusive approach is seen to be much faster than Galerkin-PCE for the same
level of accuracy as indicated in Figure 6. With this, the computational disadvantage of
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Figure 5: Galerkin-PCE: PDF comparisons for increasing order of chaos expansions, at t = 7000 with U =
6.42.
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Figure 6: Galerkin-PCE: PDF comparisons for intrusive and nonintrusive PCE, at t = 7000 with U = 6.42.

the conventional Galerkin based PCE for nonlinear systems is demonstrated. Henceforth,
this approach will not be used for further simulations in this paper.

The response realization time histories for a few samples of random variable ξ are
plotted in Figure 7. The response time histories show difference in amplitude but not in
phase. A typical realization time history obtained with the 12th order PCE along with its
deterministic counterpart is compared in Figure 8. The match is perfect even at long time.
Amplitude response PDFs as a function of reduced velocities (bifurcation parameter) are
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Figure 7: Uncertain nonlinear stiffness: five different realizations time histories at U = 6.42.
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Figure 8: Uncertain nonlinear stiffness: comparison of a typical time history with 12th order PCE and MCS
for ξ = 1.5 and U = 6.42.

shown in Figure 9. They represent single peak monotonic behavior as all the realizations give
finite amplitude LCOs. Effectively, the PDFs are not undergoing any qualitative change or
bifurcations. Close to U = 6.4 the PDF looks sharper and narrower as most realizations are
going towards the same limit cycle amplitude. As the speed increases, the PDF is broader
and less sharp, indicating that the realization amplitudes are spread over a wider band of
amplitudes.
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Figure 10: Uncertain viscous damping: stochastic bifurcation diagram.

Next, we consider the viscous damping ratio in pitch (ζα) to be uncertain (in the
earlier part damping was put to be zero) and all the other parameters deterministic. This
case is potentially more interesting than the earlier one. The damping ratio is assumed
to be a Gaussian random variable with mean ζα =0.1 and standard deviation ζ̃α = 0.01.
Figure 10 shows the bifurcation behavior with random damping ratio. The firm line gives the
deterministic bifurcation behavior. The other bifurcation branches are for the two different
extreme realizations of the random damping. Thus they represent the boundaries of the
possible random variations of the bifurcation behavior (stochastic).

The major difference between the uncertain damping and the earlier considered
uncertain stiffness is that, variation in damping can show phase shifting behavior in the
response realizations. This is presented in Figure 11 where five different realizations are
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Figure 11: Uncertain viscous damping: five different realizations time history at U = 6.52.
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Figure 12: Uncertain viscous damping: comparison of the PDFs with increasing order of PCE at
nondimensional time 1400 at U = 6.52.

shifted in phase from each other. This behavior becomes more pronounced as time increases.
As a result, response PDFs can now show bimodal behavior especially at large times. A
few representative PDFs are plotted now at different reduced velocities. Figure 12 shows
the response PDF at U = 6.52 and time = 1400. Though the time level is past the
transients it is not large and the phase shift is not yet very pronounced. The response
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Figure 13: Uncertain viscous damping: comparison of the PDFs with increasing order of PCE at U = 6.52
with nondimensional time (a) t = 5000, (b) t = 7800.
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Figure 14: Uncertain viscous damping: a typical time history with (a) The 15th order PCE and MCS at
ξ = 2.3 and reduced speed U = 6.52. (b) A close-up of (a).

PDF shows a single peak pattern. A reasonably good match with MCS is obtained within
the 12th order of chaos expansion. However, at higher time levels as the phase shifting
becomes stronger, the PDFs start to look distorted from their single peak behavior and
goes towards a double peak pattern. Figure 13 shows the PDF at U = 6.52 and time
5000 and 7800. In the first case, a double-peak bimodal PDF is just emerging as shown in
Figure 13(a). In this case a 12th order expansion is not sufficient to capture the response
accurately; a 15th order expansion gives better accuracy. At higher time 7800, the response
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PDF is more towards a two-peak bimodal shape as is seen in Figure 13(b). However,
even a 15th order chaos expansion does not give the required accuracy. If one considers a
different reduced velocity, the bimodal behavior can appear at some different time levels.
The important observations from these figures are two-fold. First is the gradual double-
peak behavior with increasing time. The second one is the apparent mismatch between
the MCS and PCE results which seems to be increasing again with time. The reason
for the first is nothing but the increasing phase shifting between the realizations time
histories. However, for the second, the reason for the mismatch is the long time degeneracy
which is shown in Figure 14. This mismatch can be improved by using higher order chaos
expansions.

A typical realization time history with PCE along with its deterministic counterpart
are presented in Figure 14. One can clearly see a degeneracy in the time history which starts
around time levels close to 6000. PCE can show such type of degenerate behavior in capturing
LCO response [17], especially at large times. As a counter measure, one can increase the order
of the chaos expansion. However, this can only push the degeneracy to a later time but can
not solve it entirely. Nonpolynomial based chaos approaches have been attempted in the
recent past towards this end [17]. An unsteady adaptive stochastic finite elements method,
developed by Witteveen and Bijl [34–36] has also been used successfully. This approach is
based on time-independent parametrization. This achieves a constant accuracy in time with
a constant number of samples. In this method interpolation of oscillatory samples is based on
constant phase instead of a constant time.

The amplitude response PDFs for the uncertain damping case is shown in Figure 15 for
different reduced velocities. Here the LCO amplitudes are captured after the initial transients
have died down but before the time degeneracy has started. A nonmonotonic behavior is
clearly indicated; some realizations are going to damped oscillation and others give LCO
amplitudes scattered within the domain boundary. At U = 6.5, the double-peak behavior of
the PDF indicates the two different LCO amplitudes around which most of the realizations
are concentrated. TowardsU = 6.6, all realizations give finite amplitude LCO, thus essentially
they are of the same type. The PDF shows a single-peak monotonous behavior. Therefore, the
PDFs of the response amplitude have clearly gone through a qualitative change here, in other
words, a bifurcation.
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Figure 16: Uncertain viscous damping: (a) CDF, (b) PDF of the critical flutter point.

For the uncertain damping case, we also see that the critical reduced velocity at which
flutter can occur, has come down from its corresponding deterministic value. This value can
be read off the bifurcation plot (Figure 10) as U = 6.35. This is the lowest extrema of the
critical points. The cumulative distribution function (CDF) and the PDF of the critical points
are shown in Figure 16. The CDF can directly give the probability of flutter (in other words,
probability of failure) at any given reduced velocity.

5. Conclusions

The bifurcation behavior of a nonlinear pitch-plunge flutter problem with uncertain system
parameters has been studied. The problem is a simple model problem to understand the
mechanism of nonlinear flutter in a stochastic framework. The parameters which have been
assumed to be random could attribute their uncertainties to laboratory testing conditions.
Moreover, a cubic nonlinear stiffness is used for various sources of analytic nonlinearities;
they often represent different control mechanisms and could face modeling uncertainties.

The classical Galerkin Polynomial Chaos method and the nonintrusive Projection
method are applied to capture the propagation of uncertainty through the nonlinear
aeroelastic system. The focus of this work is to investigate the performance of these
techniques and to see how the aeroelastic stability characteristics are altered due to the
random effects. The Monte Carlo solution is used as reference solution. The computational
cost of the Galerkin Polynomial Chaos method is seen to be very high and subsequently only
the Projection method based on Gauss-Hermite quadrature is used for the analysis. The effect
of uncertain cubic structural nonlinearity and viscous damping parameter are investigated.
Uncertainty in the cubic stiffness does not alter the bifurcation (flutter) point, it only affects
the amplitudes of the periodic response in the post flutter stage. The PDF behavior also does
not show any qualitative changes. On the other hand, uncertainty in damping affects the
bifurcation point. It can lower the onset of flutter; the PDF of the response amplitude also
undergoes a qualitative change. In other words, a bifurcation of the response PDF takes
place. The results highlight the risk induced by parametric uncertainty and importance of
uncertainty quantification in nonlinear aeroelastic systems.
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The uncertain damping case by polynomial chaos suffer from long time degeneracy,
as is also discussed in the literature. The degeneracy can be controlled by using higher order
chaos expansions, though this cannot be a permanent solution. For the uncertain nonlinear
stiffness, the problem of time degeneracy is not encountered.

Appendix

The coefficients introduced in Section 2 are used from [23] and are reproduced here for the
sake of completeness:
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Items with irregular and sporadic demand profiles are frequently tackled by companies, given the
necessity of proposing wider and wider mix, along with characteristics of specific market fields
(i.e., when spare parts are manufactured and sold). Furthermore, a new company entering into
the market is featured by irregular customers’ orders. Hence, consistent efforts are spent with
the aim of correctly forecasting and managing irregular and sporadic products demand. In this
paper, the problem of correctly forecasting customers’ orders is analyzed by empirically comparing
existing forecasting techniques. The case of items with irregular demand profiles, coupled with
seasonality and trend components, is investigated. Specifically, forecasting methods (i.e., Holt-
Winters approach and (S)ARIMA) available for items with seasonality and trend components
are empirically analyzed and tested in the case of data coming from the industrial field and
characterized by intermittence. Hence, in the conclusions section, well-performing approaches are
addressed.

1. Introduction

In the recent competitive environment, where manufacturing and service companies operate
in unstable sectors, managing irregular and sporadic demand patterns represents an
increasingly frequent and complex issue. Startup productions, multiechelon supply chains
or spare parts production, and selling are some examples of market fields characterized by
intermittent demand profiles.
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The complexity of dealing with these kinds of demand patterns lies in finding the best
tradeoff between negative effects related with high storage levels, such as high amount of
space and resources for keeping large warehouse areas, high holding costs, as well as high
risks and cost due to items obsolescence, and negative effects related with low storage levels,
such as lost demand and customers.

Therefore, when treating irregular and sporadic demand patterns, two relevant issues
are discussed:

(i) demand forecasting in the future periods,

(ii) utilization of demand forecasting obtained for managing stocks. Hence issues
related with when and how much it costs to create stocks for satisfying the
forecasted customers’ orders are faced.

The focus of this paper is on the first issue, which represents an unforgettable
prerequisite for the second one and could become a needful competitive leverage for
companies.

2. Literature Review

Croston [1] has published a pioneer work concerning forecast of irregular and sporadic
demand (successively improved by Rao [2]). He observes that single exponential smoothing,
even if frequently used for forecasting in inventory control systems, reaches inappropriate
results when applied to intermittent demand patterns. Otherwise, computing both the
average size of not-null demand occurrences and the average intervals between such
occurrences is the intuition of Croston in order to achieve the estimator of mean demand
per period. In particular, Croston considers customers’ order series with demand occurrences
generated by a Bernoulli process and with demand sizes (when not null) following a normal
distribution. Then, he applies separately a single exponential smoothing to not-null demand
sizes and interdemand intervals. Finally he combines them.

Successively, modifications of Croston’s approach are proposed. Johnston and Boylan
[3, 4] analyse demand patterns with the order arrival process modelled as a Poisson stream.
Therefore, a negative exponential distribution is supposed to represent interorder arrivals.
The authors propose a model to estimate the variance of demand and use it in a forecasting
demand approach, whose performance is tested by considering a wide variety of operative
conditions (i.e., many different average interdemand intervals, negative exponential, Erlang,
and rectangular as distributions of order size). Syntetos and Boylan [5] explain the detection
of a mistake in Croston’s mathematical derivation of the expected estimate of demand per
time period and propose an alternative approach, based again on the concept of forecasting
demand from its constituent events. Subsequently, Syntetos and Boylan [6] introduce a
factor equal to (1 − α/2) applied to Croston’s original estimator of mean demand, with α
being equal to the smoothing parameter in use for updating the interdemand intervals, in
order to obtain a theoretically unbiased estimator. The derivation of the new estimator is
based on Croston’s assumptions of stationary, identically, independently distributed series
of demand sizes and demand intervals, geometrically distributed interdemand intervals,
and independence of demand sizes and intervals. Segersted [7] has proposed an alternative
Croston’s approach modification, adopted in sporadic demand inventory control by coupling
it to the computation of probability of stock shortage, supposing demand following an Erlang
distribution. An experimental analysis of the reachable performance is reported by Levén and
Segersted in [8].
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Recently, original contributions are published. Willemain et al. [9] forecast the
cumulative distribution of demand over a fixed lead time using a new type of time series
bootstrap. Specifically, the hypothesis of demand independence among subsequent time
periods is disregarded and the existence of autocorrelation is considered. In the study by
Gutierrez et al. in [10] the problem of forecasting lumpy demand series is analysed and a
Neural Network (NN) approach is proposed. NN outperforms single exponential smoothing,
Croston’s approach, as well as Syntetos and Boylan approach in most of the analysed series
and forecasting environments. Nevertheless, a consistent amount of data is required for
setting the estimator and this is not the case treated in what follows in the paper. Keeping
our attention on methodologies requiring a low amount of data to be set (i.e., moving
averages, exponential smoothing, Croston’s approach, Syntetos and Boylan modifications,
as well as time series bootstrap), several works publish results obtained by comparing their
performance in a wide variety of alternative operative conditions (i.e., Willemain et al. [11],
Johnston and Boylan [3, 4], Sani and Kingsman [12], Strijbosch et al. [13], Willemain et al. [9],
Syntetos and Boylan [6], Regattieri et al. [14], and given specifications reported by Syntetos
in [15]).

Since Syntetos et al. [16] published their work, experimental analyses on alternative
forecasting methods have been carried out by following the steps described in the sequel:
firstly data categorization based on characteristics chosen by the management in respect
to its needs and then finding the more appropriate forecasting methods for the different
categories. Otherwise, Syntetos et al. [16] propose to categorize the demand patterns by
following an alternative procedure: firstly analysing the optimal performance areas of several
forecasting methods and then categorizing the demand patterns in accordance with results
obtained. Even if, on one hand, these pioneering passes in the direction of demand patterns’
categorizing are very interesting, on the other hand, the study by Syntetos et al. in [16]
is based on assumptions not always confirmed by real-life data (i.e., demand occurring
as a Bernoulli process or independence of demand values, as commented by [17–19]).
Moreover, the proposed categorization methodology, even if it achieves satisfying results
in the applied statistical fitting tests, does not describe the behaviour of the whole of the
data series introduced in the experimentation. Hence, when complex data coming from real-
life industrial contexts are managed, the definition of a pool of well-performing forecasting
techniques still remains an interesting result to be investigated. Specifically, in this paper
sporadic and irregular demand patterns with seasonality and trend components are studied.

Forecasting methods for demand patterns with seasonality and trend components are
proposed by several authors. The focus in the following brief overview is on two techniques:
the Holt-Winters (HW) approach [20], (see [21]), and ARIMA model, which is identified
and then applied through the Box-Jenkins procedure [22]. Such a choice is justified by
their applicability in real-life environments, mainly due to the great multitude of available
statistical commercial softwares and expected good results, justified by past studies cited in
the sequel. Furthermore, whilst HW is a useful forecasting tool addressed for its simplicity,
(S)ARIMA is a robust approach appreciable due to its applicability to a wide variety of
operative conditions.

HW is an extrapolative technique that isolates level, trend, and seasonal components
of a time series regardless of the nature of the time series data being collected. It presents
both a multiplicative and an additive version. ARIMA model is an integrated technique
of auto-regressive (AR) models and moving average models, capable of finding a fitting
function in an iterative way through the Box-Jenkins procedure. In the following, the acronym
(S)ARIMA is used in place of ARIMA to specify the possibility that seasonality is present in
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analysed time series. For a more detailed discussion on the application of (S)ARIMA models
see the studies by Jarrett in [23] and Bowerman and O’Connell in [24].

Several authors investigate HW and (S)ARIMA performances in a wide variety of
operating conditions [25–28], and [29]. Nevertheless the analysis of reachable forecasting
results on irregular and sporadic time series with trend and seasonal components still
remains a field to be widely investigated.

Hence, the purpose of the paper is to present results obtained by comparing HW and
(S)ARIMA forecasting performances when applied to a set of real-life sporadic and irregular
time series with seasonality and trend components.

The paper is organized as described in the sequel. A synthesis of the methodology
implemented in the experimental analysis and then the first step of the project, concerning
the collection and preliminary analysis of data, are presented, respectively, in Sections 3 and
4. In Section 5 the selection of the best (S)ARIMA model is carried out and then compared
in Section 6 with the Holt-Winters method in terms of forecasting performances. Finally,
conclusions and some guidance for practitioners are given in Section 7.

3. Framework of the Experimental Analysis

As aforementioned, the aim of the paper is the comparison between the Holt-Winters
exponential smoothing with (S)ARIMA in cases of erratic and sporadic demands with
seasonal and trend components.

Holt-Winters method manages three components of demand per period: a level
component, a trend component, and a seasonal component. Each of them is estimated by
exponential smoothing and successively opportunely weighted and combined in order to
predict demand. In particular, two versions of HW components compositions are available:
additive and multiplicative, but the presence of time periods with null demand does not
allow the multiplicative version to be applied in this paper [20] (Winters, 1960) . A linear
regression on time values is used to define the initial level and trend components while a
dummy-variable regression on detrended time values is used to estimate the initial seasonal
component.

While HW is simply applied by commercial softwares (in the sequel EViews 5 is
adopted), which allow the solution to be achieved without any intervention of the user,
(S)ARIMA models require the optimal definition of a set of parameters in accordance with
results obtained in fitting tests. In Figure 1 the Box-Jenkins procedure [22] is briefly depicted
and then explained in the sequel.

The flow diagram depicted in Figure 1 is an iterative decisional framework finalized
firstly to find a (S)ARIMA model and then to apply it for demand forecasting. The Box-
Jenkins procedure starts from the collection of data and preliminary analysis, which allow
the identification of the preferable (S)ARIMA model to be achieved quickly. The first step of
the preliminary analysis regards the stationarity of the time series, in terms of both mean and
variance, required as a prerequisite for the application of the auto-regressive (AR) models
and moving average (MA) models [22]. In case of nonstationarity, the procedure suggests
the introduction of two differentiation orders, that is, d and D, that are, respectively, the non-
seasonal and seasonal differentiation orders. A first order d of differentiation is applied in
case of linear trend while a second order makes the time series stationary in case of quadratic
trends and so on. In the same way D regards the seasonal component and it can be chosen by
several tests, such as the Canova and Hansen test [30].



Mathematical Problems in Engineering 5

Data collection and
preliminary analysis

Graphics

Correlograms
Statistics indexes

Identification of (S)ARIMA models:

Correlograms of the models

Confidence bands

Correlograms of the models

Diagnostic check
Correlograms of the residuals

N

Y

Forecast

- Duration of seasonality (S);

- Seasonal differentiation order (D);

- Number of autoregressive seasonal terms (P);

- Number of moving average seasonal terms (Q);

Ok

Estimation of the parameters and
choice of the (S)ARIMA model

Ljung-Box Q-test of the residuals

- Nonseasonal differentiation order (d);

- Number of autoregressive nonseasonal terms (p);

- Number of moving average nonseasonal terms (q);

Fitting tests (i.e., max likelihood,
Akaike’s criteria, Schwarz’s criteria, . . .)

Figure 1: The Box-Jenkins procedure.

Graphics, statistical indexes, and correlograms support this phase. In particular, the
more useful indicators are the distribution of the global autocorrelation coefficients (ρk, for
k = 1, . . . , T with T being equal to the number of time periods constituting the time series)
and the distribution of the partial correlation coefficients, which emerge, respectively, from
the analysis of the global correlogram (ACF) and the partial correlogram (PACF). When a
time series is stationary, autocorrelation coefficients in ACF and PACF tend to zero after
two or three time lags. Some tests are available in order to check the stationarity of the
series, such as the Durbin-Watson test and the Ljung-Box Q-test. Moreover, ACF and PACF
provide guidance both in extrapolating trend and seasonal components and then in selecting
parameters (S, p, q, P,Q) for the complete (S)ARIMA specification in respect of the adherence
to theoretical models. In synthesis, the seven parameters (S, d,D, p, q, P,Q) uniquely define
each (S)ARIMA model that is suitable for fitting the original time series.

In order to chose the best (S)ARIMA model avoiding overfitting occurrence (the
necessity of testing too many parameters), many techniques and methods have been
suggested to add mathematical rigor to the search process, including Akaike’s criterion
[31] or Schwarz’s criterion [32]. Each of them works by penalizing models based on the
number of their parameters. Anyway, since nowadays statical commercial softwares allow
the user to test different (S)ARIMA models very quickly, in the present paper the choice
of the best (S)ARIMA model is based on its forecasting performances uniquely. Moreover,
the identification of the best (S)ARIMA model throughout the whole application of the Box-
Jenkins procedure for decades has required specific statistical knowledge, finalized to define
the seven (S)ARIMA parameters by graphics, statistical indexes, and correlograms analysis,
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which in real industrial implementations are available rarely. Nevertheless, nowadays, the
purpose in the market of commercial softwares quickly testing different (S)ARIMA models
guarantees the introduction of such procedure in a wide variety of real-life contexts.

After the identification of the (S)ARIMA model, a diagnostic check must be conducted
(see Figure 1) for assessing that the model does not neglect any component. Thus, if
residuals are correlated, then the Box-Jenkins procedure restarts from the (S)ARIMA model
identification until the residuals are uncorrelated and normally distributed. The Ljung-BoxQ-
test helps the user to check the uncorrelation of the residuals. Finally, after a positive response
given by the diagnostic check, demand forecast via (S)ARIMA can be made.

Several accuracy measures are presented in literature for comparing the performances
of forecasting methods. For a more detailed discussion about them, see the study by
Makridakis in [33].

Define T as the number of forecasted time periods, Ft as the forecasted demand size in
time period t, A as the mean demand size occurring in the forecasted time periods, and Dt as
the real demand size occurring in time period t, for t = 1, . . . , T .

Accuracy measures adopted in this paper are described in (3.1), (3.2), and (3.3), in
accordance with guidelines reported by Regattieri et al. In [14].

MAD/A

It represents the Mean Absolute Deviation (MAD) divided by the average demand size. This
index, by describing the incidence of the mean absolute forecasting error on the mean existing
demand, allows the evaluation of forecasting approaches performance on time series with
very different mean values, as introduced by Regattieri et al. [14]:

MAD/A =
∑T

t=1|Ft −Dt|/T
A

. (3.1)

MSE/A

It represents the arithmetic Mean of the Sum of the Squares of the forecasting Errors
(MSE) divided by the average demand size. Low values of MSE/A address the adoption of
forecasting approaches with a high incidence of low errors between true values and estimated
ones. Otherwise, high MSE/A indicates that high errors sometimes occur. Specifically, the
ratio with A is proposed again in order to compare values obtained in series characterized by
consistent differences in the mean demand size:

MSE/A =
∑T

t=1 (Ft −Dt)2/T

A
. (3.2)

ME/A

It represents the Mean Error (ME) divided by the average demand size. This index permits to
define the estimation behavior of forecasting methods and specifically to understand whether
an overestimation or an underestimation of the prediction data occurs:

ME/A =
∑T

t=1(Ft −Dt)/T
A

. (3.3)
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Specifically, in this proposed paper, the goodness of forecasting is evaluated by
computing MAD/A, ME/A and MSE/A on 5 and 12 future time periods.

4. Collection and Preliminary Analysis of Data

Twelve data series describing demand of twelve spare parts have been collected from real
industrial applications, each of them composed by 36 time periods. In detail, the data are
related to several high-value minuteria products, like precision screws and small spare
parts for transmission and hydraulic units. They are all characterized by erratic patterns
because of their variability in demand sizes while some data series are sporadic too due to
the presence of time periods in which demand does not occur. Therefore, two coefficients
are computed (CV and ADI) in accordance with definitions reported by Willemain et
al. In [11]. Specifically, CV represents the coefficient of variation of not-null demands,
while ADI represents the average number of time periods between two successive not-null
demands. Alternatively, in accordance with definitions reported by Syntetos and Boylan in
[5], CV2 can be computed, that is, the squared version of CV. Hence CV and ADI establish
the marks, respectively, of demand sizes variability and of the intermittence of demand
pattern.

In the following sections forecast will concern five and twelve periods ahead; thus
CV and ADI are calculated both for 31 time periods, from period 1 to period 31 (CV31,
ADI31) and for 24 time periods (CV24, ADI24), from period 1 to period 24. Respectively, 5
and 12 disregarded data are adopted as benchmark for testing the forecasting performance
of the analyzed approaches (HW and (S)ARIMA). Moreover, the statistical analysis leads to
deny the aprioristic assumption of Croston [1]; in fact demand sizes (when demand occurs)
are not normally distributed and they are not mutually independent due to the presence of
autocorrelation, as outlined below.

The analysis based on the Box-Jenkins procedure (see Figure 1) begins by investigating
the more useful characteristics of time series for the declared purposes, such as firstly
the extrapolation both of a trend and of a seasonal and then the identification of an
adequate (S)ARIMA model capable of fitting the series. These characteristics are related
with the distribution of the global autocorrelation coefficients (ρk) and the distribution of
the partial correlation coefficients, which emerge, respectively, from the analysis of the global
correlogram (ACF) and the partial correlogram (PACF). All demand patterns are generated
by nonstationary processes, since their autocorrelation coefficients in ACF and PACF do not
tend to zero after two or three time lags. Hence, parameters d andD of the (S)ARIMA models
must be achieved for each time series in order to make them stationary. Moreover, some series
are mainly influenced by seasonality while others present both seasonality and a consistent
trend. In fact, in both cases ρk are different to zero or present peeks every S time lag. But,
in the former case they are characterized by disregardable increases or decreases by varying
time lag, while in the latter case, when both seasonality and a consistent trend are registered,
increases or decreases clearly appear.

Table 1 reports the summary of the main characteristics for each time series: CV, ADI,
the best distribution functions that are not rejected in fitting demand sizes (ddp), and finally
the presence of both seasonality and consistent trend components.

The software AutoFit has been used. It evaluates all the best fitting distribution
functions in descending order of ranking. Sometimes it does not find any fitting function.
Such cases are traced in column ddp of Table 1, by indicating the label reject.
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Table 1: Data collection and preliminary analysis.

Series Group CV31 ADI31 CV24 ADI24 ddp Seasonality Trend
s1

1

1.80 1.35 1.79 1.26 reject x
s2 1.54 1.11 1.45 1.09 Geometric (6.34e − 002) x
s3 1.30 1.19 1.35 1.09 Neg. Binomial (1, 4.75e − 002) x
s4 1.09 1.48 1.01 1.33 Neg. Binomial (3, 7.76e − 002) x
s5 1.22 1.19 1.21 1.14 Neg. Binomial (2, 4.11e − 002) x
s6 1.25 1 1.30 1 reject x
s7 2.40 1.29 2.36 1.33 reject x
s8

2

1.11 1.41 1.33 1.50 reject x x
s9 2.38 1.35 1.77 1.14 Neg. Binomial (2, 4.88e − 002) x x
s10 1.63 1.41 1.69 1.41 Neg. Binomial (1, 9.88e − 002) x x
s11 1.28 1 1.42 1 Neg. Binomial (1, 4.7e − 002) x x
s12 1.30 1 1.34 1 Neg. Binomial (2, 1.6e − 002) x x

Time series are grouped into two sets: Group 1 and Group 2. The former includes series
from s1 to s7, mainly characterized by seasonal component, while the latter includes series
from s8 to s12, with both seasonal and consistent trend components.

5. Identification of Possible (S)ARIMA Models and Choice of
the Best One

The implementation of the Holt-Winters method does not require any discretional
intervention of the user because the commercial software adopted in this paper finds the best
smoothing parameters in an iterative way. For this reason, the main portion of this section is
focused on (S)ARIMA models identification.

In order to reduce the number of tested (S)ARIMA models, the differentiation orders
(d and D) are initially set and kept unmodified in the following steps. They represent,
respectively, the non seasonal and the seasonal differentiation orders finalized to make the
series stationary. By analyzing the patterns, on one hand, only linear trends emerge; therefore
a first order of non seasonal differentiation is necessary (d = 1). On the other hand, D
could be chosen through several tests, such as the Canova and Hansen test [30], but in the
proposed experimentation a stable seasonal pattern is always present; thus the seasonality is
effectively handled by stationary seasonal AR and MA terms (D = 0). Moreover the duration
of seasonality of each time series is 4 time periods; hence S is set to 4.

Since a (S)ARIMA model is uniquely defined by seven parameters (p, d, q)×(P,D,Q)S,
the number of possible (S)ARIMA models to be tested is reduced for the assumptions above
in the following way: (p, 1, q) × (P, 0, Q)4, where p, q, P , and Q change from one to three.

Note that each (S)ARIMA model could generate negative forecasted values, which
are practically inconsistent. Thus, a null demand is imposed every time a negative value is
forecasted.

In order to compare the different (S)ARIMA models, their forecasting performance
is evaluated in terms of MAD/A, as underlined in Section 3. In particular, the selection of
each (S)ARIMA model is based on the minimization of MAD/A. The selected models for
forecasting both 5 and 12 time periods ahead are reported in Table 2.
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Table 2: Selected (S)ARIMA models for 5 and 12 time periods ahead.

Series Group 5 time periods ahead 12 time periods ahead
s1

1

(3,1,1) × (2,0,2)4 (2,1,3) × (2,0,2)4

s2 (2,1,2) × (3,0,1)4 (1,1,3) × (2,0,2)4

s3 (3,1,1) × (3,0,2)4 (3,1,2) × (2,0,2)4

s4 (1,1,2) × (2,0,3)4 (1,1,3) × (2,0,2)4

s5 (2,1,2) × (2,0,2)4 (3,1,2) × (2,0,1)4

s6 (1,1,2) × (2,0,2)4 (3,1,2) × (2,0,1)4

s7 (2,1,2) × (3,0,1)4 (1,1,1) × (3,0,1)4

s8

2

(3,1,2) × (2,0,2)4 (1,1,1) × (3,0,1)4

s9 (2,1,2) × (3,0,1)4 (2,1,2) × (2,0,1)4

s10 (1,1,2) × (3,0,1)4 (2,1,3) × (2,0,1)4

s11 (2,1,2) × (3,0,3)4 (1,1,1) × (2,0,2)4

s12 (2,1,2) × (2,0,1)4 (3,1,2) × (2,0,1)4

Table 3: Comparison between (S)ARIMA and HW based on MAD/A.

Series Group
MAD/A 5 time periods ahead MAD/A 12 time periods ahead

(S)ARIMA HW (S)ARIMA HW
s1

1

4.9% 4.9% 9.3% 8.9%
s2 9.7% 14.2% 13.8% 13.8%
s3 13.2% 11% 33.5% 21.5%
s4 7.3% 6.9% 8.9% 21.1%
s5 2.3% 4.8% 4.7% 7.6%
s6 1.4% 1.8% 4.1% 2.8%
s7 1.4% 0.2% 5.3% 5.5%
s8

2

14.9% 21.6% 35% 40.9%
s9 8.3% 66.7% 53.6% 92.9%
s10 5.3% 26.7% 16.5% 32.5%
s11 4.0% 11.1% 8.5% 24.6%
s12 10.7% 10.4% 10.4% 21.7%

Subsequently, selected (S)ARIMA models are also compared with those of HW in
terms of MSE/A and ME/A in order to evaluate their capability of often generating low
errors along with indicating their potential overestimation or underestimation.

6. Experimental Analysis: Comparison Between (S)ARIMA and HW

The results obtained by HW method are directly comparable with those achieved through
selected (S)ARIMA model.

In Table 3 the comparison between HW model and selected (S)ARIMA model is
carried out in terms of MAD/A for each time series. In particular, only the lower MAD/A
achieved by the two methods are reported in percentage values.

In Figures 2 and 3, the achieved MAD/A values are plotted, respectively, for 5 and 12
time periods ahead, divided into groups defined before for series with seasonal component
(Group 1) and for series with both seasonal and consistent trend components (Group 2).
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Figure 3: MAD/A values for each time series: forecasts on 12 time periods ahead.

In cases of forecasts on 5 time periods ahead and for time series belonging to Group
1 (from s1 to s7), the Holt-Winters method gives comparable results in respect of the best
(S)ARIMA model found. In series s2, s5, s6, (S)ARIMA outperforms; in series s3, s4, s7, HW
outperforms; in series s1, the same value of MAD/A is registered. Furthermore, the worst
performing approach (HW for series s2, s5, s6 and (S)ARIMA for series s3, s4, s7) gives results
not far from the best registered. Otherwise, when both seasonality and consistent trend occur
(from s8 to s11), (S)ARIMA model guarantees performances better than those obtained by
the Holt-Winters method. Time series s12 is the only case belonging to Group 2 in which
Holt-Winters outperforms; however improvement induced is negligible.

Increasing the number of the forecasted time periods from 5 to 12, the same guidelines
can be traced. For time series belonging to Group 1, (S)ARIMA outperforms in s4, s5, s7, and
HW outperforms in s1, s3, s6. The same MAD/A is reached in s2. Furthermore, except in
the case of time series s3, best MAD/A registered with HW and (S)ARIMA are comparable.
Otherwise, in time series belonging to Group 2, (S)ARIMA outperforms and best MAD/A
registered are consistent. In synthesis, the more complex the demand data series become,
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Table 4: Comparison between (S)ARIMA and HW based on MSE/A.

Series Group
MSE/A 5 time periods ahead MSE/A 12 time periods ahead

(S)ARIMA HW (S)ARIMA HW
s1

1

6.8% 6.8% 27.0% 22.4%
s2 59.3% 79.6% 73.0% 74.2%
s3 33.0% 41.8% 469.9% 111.5%
s4 35.1% 28.2% 43.8% 48.9%
s5 5.1% 20.2% 12.9% 34.5%
s6 2.6% 5.1% 22.0% 7.9%
s7 434.4% 3.9% 10361.6% 10675.5%
s8

2

268.9% 424.1% 801.5% 953.2%
s9 8.3% 666.7% 217.9% 678.6%
s10 9.9% 435.9% 80.8% 502.4%
s11 60.3% 463.0% 172.9% 1424.8%
s12 529.8% 286.0% 439.7% 1369.8%

Table 5: Comparison between (S)ARIMA and HW based on ME/A.

Series Group
ME/A 5 time periods ahead ME/A 12 time periods ahead

(S)ARIMA HW (S)ARIMA HW
s1

1

2.9% 1.0% −1.7% 0.4%
s2 −4.4% 1.8% −5.0% −6.3%
s3 2.2% −6.6% 6.7% 18.7%
s4 0.8% 0.4% 1.3% 9.5%
s5 −1.7% −1.4% −3.5% −5.1%
s6 −0.2% −1.8% −2.2% −2.3%
s7 −1.1% −0.2% 5.1% 5.2%
s8

2

1.0% 0.6% −32.0% −32.8%
s9 0.0% 33.3% −25.0% 64.3%
s10 0.8% −13.0% 4.7% −5.1%
s11 −0.9% 0.2% −1.4% 24.6%
s12 −7.9% −0.4% −4.5% 21.7%

the more useful the application of (S)ARIMA models is. In fact, even if the parsimony of the
identified model is an issue dealt with extensively in literature, nowadays the availability
of several commercial statistical software programs, which allow the user to test different
(S)ARIMA models very quickly, let them become useful tools to be applied in different
industrial contexts also for sporadic and irregular time series that present both seasonal and
trend components.

Tables 4 and 5 show calculated values of MSE/A and ME/A indices for each time
series, for forecasting of both 5 and 12 time periods ahead, divided into the aforementioned
groups. Bold values are related with the best-performing approach.

MSE/A values obtained enforce considerations traced by analyzing MAD/A results.
Otherwise, ME/A do not address an over- or underestimation. Sometimes the former
behavior occurs, sometimes the latter.
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The results obtained corroborate the experimental analysis carried out by Bianchi et
al. [28], which indicate that ARIMA is better than the best of additive or multiplicative
Holt-Winters in more than three-fourths of the sample outcomes, and extend it in cases of
sporadic and irregular time series. Specifically, this paper highlights that the performances
of the (S)ARIMA models significantly improve when both seasonal and consistent trend
components are present in time series.

7. Conclusions

The issue dealt with in the present paper is the comparison between the Holt-Winters method
and the (S)ARIMA model for forecasting real life time series. In particular, the analyzed series
present a high level of variability in terms of demand size and several null-demand time
periods. Moreover, all of the time series reveal a clear seasonality while only several of these
present a consistent trend component. On one hand, sporadic and irregular time series are
extensively treated in literature, while on the other hand several authors compared the two
methods above for seasonal and trendy time series. However, sporadic and irregular time
series that present both trend and seasonal components are still neglected. Hence, evaluating
the applicability of the (S)ARIMA and the Holt-Winters methods in forecasting sporadic
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demand time series with seasonality and trend components is the aim of the present paper in
order to establish some useful guidelines for practitioners. The methodology applied consists
of testing several (S)ARIMA models and then choosing the best model only in terms of
forecasting performances, which is subsequently compared with the Holt-Winters method.
In fact, statistical software programs also let the user test a robust and complex method like
the (S)ARIMA very quickly and therefore the results from the comparison between the two
methods can give a guidance for their applicability.

In particular, in the case of seasonality without a consistent trend component, the best
(S)ARIMA model found and the Holt-Winters exponential smoothing model give similar
results in terms of MAD/A, but when also a consistent trend component is present, the
performances of (S)ARIMA model are more appreciable. These results are enforced by the
evaluation of MSE/A. Hence, when the sporadic demand data series structure becomes more
complex because of the relevant presence of both seasonal and consistent trend components,
the (S)ARIMA model, which is more adaptive than the Holt-Winters method, is also more
effective.

This observation represents a useful decision-making guideline in plant management.
In fact, several real contexts present these characteristics, such as startup productions, multi-
echelon supply chains or spare parts production, and selling, where demand forecasting
constitutes an unforgettable prerequisite for an efficient production or selling management
and could become a needful competitive leverage for companies.

As underlined in the introduction, when treating sporadic and irregular time series,
two relevant issues refer to forecasting and inventory management. Further researches are
addressed in the field of order and inventory management when sporadic demand data series
with seasonality and consistent trend components are present. Furthermore, a comparative
analysis on reachable performances when previously cited methodologies for sporadic
demand forecasting with specifical hypothesis (i.e., demand distribution, time periods with
zero demand distribution, . . .) are applied to forecasting intermittent series with seasonality
and consistent trend components is addressed.
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A new high-speed foreign fiber detection system with machine vision is proposed for removing
foreign fibers from raw cotton using optimal hardware components and appropriate algorithms
designing. Starting from a specialized lens of 3-charged couple device (CCD) camera, the system
applied digital signal processor (DSP) and field-programmable gate array (FPGA) on image
acquisition and processing illuminated by ultraviolet light, so as to identify transparent objects
such as polyethylene and polypropylene fabric from cotton tuft flow by virtue of the fluorescent
effect, until all foreign fibers that have been blown away safely by compressed air quality can
be achieved. An image segmentation algorithm based on fast wavelet transform is proposed
to identify block-like foreign fibers, and an improved canny detector is also developed to
segment wire-like foreign fibers from raw cotton. The procedure naturally provides color image
segmentation method with region growing algorithm for better adaptability. Experiments on a
variety of images show that the proposed algorithms can effectively segment foreign fibers from
test images under various circumstances.

1. Introduction

Before cotton fiber can be spun, the raw cotton must be sorted to remove any foreign particles
and fibers. While foreign particles can be clearly distinguished from the raw cotton by color,
contrast, and structure, foreign fibers such as polypropylene (PP) or polyethylene (PE) films
are often light and transparent, making them difficult to detect using conventional foreign
fiber separators. Even very low content of foreign fibers in cotton, such contaminants often
appear as a discoloration in the fabric, reducing its value when they end up in finished cotton
products, and this may lead to great economic loss for cotton textile enterprises [1].

The nature and extent of foreign fiber contamination are strongly dependent on
the origin of the cotton [2]. US and Australian cotton, which are 100% machine picked,
do not have significant problems with foreign fiber. Cotton from Turkey contains many red
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ribbon-shaped contaminants. In China, mills are battling threads from bleached cotton as
well as white fluorescent PP ribbons. Cotton from Central Asia is contaminated with white,
nontransparent packaging residues. These are just a few examples.

Currently, foreign fibers are generally eliminated by hand-picking method using
human eyes inspection in most Chinese textile mills; this is inefficient and laborious. Various
techniques have been developed to implement automatic inspection and elimination of
foreign fibers in cotton, including ultrasonic-based inspection, sensor-based inspection, and
machine-vision-based inspection [3, 4]. Earlier research work on foreign fiber detection
in cotton was designed for cotton grading. The recent research efforts at improving the
sensitivity of these systems have generated a few improvements [5, 6]. These include better
separation machinery, use of more sophisticated image analysis technique, and more effective
sample preparation mechanisms. In the recent years, some machine vision techniques have
been applied to textile industries for inspection and elimination of foreign fibers in cotton.

A traditional machine-vision-based foreign fiber detection system mainly consists of
line scan camera, frame-grabber, personal computer (PC), and high-pressure gas nozzle [7].
Images of cotton layer are first acquired through camera and then are manipulated to reduce
noise and to enhance contrast. After that, images are segmented to distinguish foreign fibers
from the cotton background according to the differences of image features. The positions of
the foreign fibers in processed images are transmitted to the separator to control the solenoid
valves, which switch the high-pressure compressed air on or off to blow the foreign fibers
off the cotton tufts. However, this device suffers from fundamental limitation of PC such as
central processing unit’s (CPU-) long-time overload, and it will frequently lead to undetected
foreign fibers in real-time inspection.

Modern manufacturing processes must produce right first time. This is of the highest
importance in fiber opening and preparation. In spinning, second-quality or contaminated
yarns must be avoided. One obstacle for top-quality yarn is the increasing amount of foreign
fibers. This paper, based on experience and information of traditional foreign fiber separator,
presents a new high-speed foreign fiber detection system with machine vision to solve the
problem of foreign fibers in ginning and spinning.

Image segmentation is the primary stage in image processing of the machine-vision-
based foreign fiber detection system. The aim of image segmentation is to partition the image
into meaningful connected-components to extract the features of the objects. In the recent
years, many segmentation methods have been developed such as segmentation based on
fuzzy C means and its variants, mean shift filters, and nonlinear diffusion [8–11].

In our research, a specialized lens with lateral chromatic aberration correction and
ultraviolet light illumination for transparent foreign fiber detection were firstly introduced;
and then a high-performance embedded controller based on digital signal processor (DSP)
and field-programmable gate array (FPGA) was designed to perform all the complex
computations of image acquisition and processing freeing the host PC from time-consuming
task. A rectangular chute cooperating with specially designed compressed air nozzles
perpendicular to it was finally selected to separate foreign fibers from cotton tufts. To
overcome disadvantage of the undefined velocity of cotton tufts and foreign objects, some
nonlinear control methods should be needed in such circumstance [12–22]. In order to
improve detection speed and accuracy, an image segmentation algorithm based on fast
wavelet transform is proposed to identify block-like foreign fibers, and an improved canny
detector is also developed to segment wire-like foreign fibers from raw cotton. The procedure
also provides color image segmentation method with region growing algorithm for better
adaptability.
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Figure 1: Cameras with specialized lenses.

Figure 2: Ultraviolet light.

2. The System

2.1. Sensors

Photo sensors are relatively cheap sensors that are arranged in-line and detect differences in
brightness in the passing flow of fibrous tufts. Ultrasonic sensors, also arranged in-line, detect
foreign parts with solid, sound-reflecting surfaces but cannot detect foreign fibers, threads,
and strings [23].

Color sensors, or 1-CCD (charged couple device) cameras, are line-scan cameras with
a single CCD chip. Sensitivity depends on the resolution of these cameras and the scanning
width. Because these cameras work with three adjacent scan lines—red, green, and blue—
with a certain offset, the color recognition of moving objects is limited and results in a so-
called color noise effect.

Much more effective, although more expensive, are 3-CCD cameras. The three basic
colors—red, green, and blue—are separated by a prism and simultaneously directed onto
three CCD chips [24]. This system is also called a true-color system. Thanks to this
simultaneous process, the variable speed of objects in the material flow no longer has
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Image acquisition and processing controller

SRAM

FPGA

DSP

CCD
CPLD video

decoder
PCI bus

controller

I/O controller

Figure 3: Architecture of image acquisition and processing controller (CCD: charged couple device, CPLD:
complex programmable logic device, PCI: peripheral component interconnect, SRAM: static random access
memory, FPGA: field-programmable gate array, DSP: digital signal processor, and I/O: input and output).

Figure 4: Assembly status of acquisition and processing controllers.

a negative effect. Currently, 3-CCD cameras represent the high-end approach to foreign fiber
detection.

To correct for the possible aberrations of the triple-channel prism used in the camera,
we used a specialized lens design. Lateral chromatic aberration was minimized by aligning
within less than 2 microns. Another central aspect is appropriate color splitting in the
triple prism by dielectric color-splitting coatings. To produce high-fidelity color images, two
coatings were used in the beamsplitter. While the first coating reflects blue and lets red and
green pass, the second reflects red and lets green pass. Figure 1 illustrates mounting location
of cameras with specialized lenses.

2.2. Illumination

Another important factor in determining object detectability is the type of illumination.
Cameras, as well as the human eye, can detect only objects that distinguish themselves in
color, contrast, structure, or luster from cotton tufts. For this reason, the type of illumination
applied in foreign fiber detection system plays an essential role. Today’s standard is
illumination units with fluorescent tubes operating in reflected light mode.

Polarized transmitted light is the ideal system for detecting transparent and
semitransparent objects, such as PE foil or PP fabric from bale packaging. To detect such
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Rectangular chute

Figure 5: The rectangular chute of tuft flow.

foreign fibers and separate them safely, the raw cotton is illuminated under polarized light,
ultraviolet (UV) light, for instance, as showed in Figure 2, making the foreign plastic fibers
appear colored. In this way, the foreign fibers can be distinguished from the raw cotton and
separated. Such objects may include pieces of polyester (PET), PP, or even bleached cotton
treated with optical brighteners [25]. With polarized reflected light and the corresponding
camera filters, differences in surface luster of foreign objects can be detected. The system
reaches its limits with dull objects. The presence of these particles often results in the dreaded
foreign fiber claim.

2.3. Image Acquisition and Processing Controller

High-performance embedded controller, which features a TMS320DM648 DSP (TI Corp)
and an XC2S300E-7PQ208C FPGA (Xilinx Corp) is designed to significantly reduce image
acquisition and processing times for PC-based platform. With its 8800 MIPS processor, 5
configurable video ports, and 1 GBps total system bandwidth, the embedded controller is
ideal for high-speed image acquisition and processing systems in foreign fiber detection.
The controller performs all the complex computations of image acquisition and processing,
freeing the host PC from this time intensive task. Figure 3 illustrates the architecture of image
acquisition and processing controller, and Figure 4 shows the assembly status of controllers
in industrial PC (IPC). The detailed designing method will be introduced in another paper.

2.4. Material Presentation

The presentation of the fibrous material to the sensors also affects the performance of foreign
fiber separators. Almost all systems on the market monitor the tuft flow in a rectangular
chute. One major disadvantage is the undefined velocity of cotton tufts and foreign objects.
Because the velocity is not constant, the downstream separation nozzles must be activated
for a longer period of time. This inevitably results in an increasing loss of good fibers.
However, one advantage that should not be underestimated is the gentle treatment of cotton
fibers, which are not mechanically stressed. Systems that feature detection on or close to the
surface of a rotating needle roll have three very important advantages. First is the accurately
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Figure 6: Compressed air tank.

defined material velocity and, hence, the minimal loss of good fibers during removal. Second,
accurately detecting the position of foreign objects is advantageous, as there are no problems
due to differences in illumination intensity depending on chute depth, as is the case with
chute-based systems. The third advantage lies in the high degree of material opening and the
associated excellent exposure of the foreign objects. Figure 5 shows the rectangular chute of
tuft flow.

2.5. Foreign Fiber Blowing

The designed air scavenging system and a separation device provided with at least eight
compressed air nozzles which are perpendicular to pneumatic cotton tufts conveying conduit
are successively mounted in a direction of conveyance, wherein said fiber conveying conduit
is provided with a removing opening arranged in front of the compressed air nozzles.
Contrary to state of the art of actual methods and devices, the foreign fibers are not removed
to a substantially pressure-tight separation container. According to our design, the removing
opening is connected to a derivation in which a permanent airflow for transporting separated
foreign fibers away is maintained. Figure 6 illustrates the compressed air tank, and Figure 7
illustrates the solenoid valves at the right side.

3. Foreign Fiber Detection Methods

3.1. Image Segmentation Algorithm Based on Fast Wavelet Transform

In the original image, cotton can be treated as background, while foreign fibers are expressed
as foreground. Consequently, edge detection is a feasible way to our problem. When digital
images are to be viewed or processed at multiple resolutions, the discrete wavelet transform
(DWT) is the mathematical tool of choice [26–29]. In this paper, the fast wavelet transform
(FWT) is adopted to achieve the edge feature extraction. It is defined as

ϕ(x) =
∑

n

hϕ(n)
√

2ϕ(2x − n),

ψ(x) =
∑

n

hψ(n)
√

2ϕ(2x − n),
(3.1)
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Figure 7: Solenoid valves.
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Figure 8: The 2D fast wavelet transform (FWT) filter bank. Each pass generates one DWT scale. In the first
iteration, wϕ(j + 1,m, n) = f(x, y).

where hϕ and hψ—the expansion coefficients—are called scaling and wavelet vectors,
respectively. They are the filter coefficients of the FWT, an iterative computational approach
to the DWT shown in Figure 8.

2D wavelet transform is a direct promotion of 1D wavelet transform [30–32]. It is one
of the most prevalent techniques for edge detection and texture extraction. Through the 2D
wavelet decomposition, symlets wavelet in this paper, the original cotton imagewϕ(j+1, m, n)
is transformed to 4 parts, wD

ψ (j,m, n) denotes the detail component in diagonal orientation,
wV
ψ (j,m,n) denotes the detail component in vertical orientation, wH

ψ (j,m, n) denotes the detail
component in horizontal orientation, wϕ(j,m, n) denotes the morphology component. In
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three detail components, high frequency features are enhanced and the contrast is indicated
by the wavelet coefficients.

Here, we propose an algorithm based on FWT to segment foreign fiber from input
image. The algorithm can be described as follows.

(1) Input the original input image, denoted as f.

(2) The horizontal, vertical, and directionality of the single-scale wavelet transform of
f with respect to “sym4” wavelets, described as f2.

(3) To merge above information into a single edge image, just zero the approximation
coefficients of the generated transform, compute its inverse, and take the absolute
value. The resulting edge image is f3. The inverse FWT uses the equivalent
computation as follows:

[
WD

ψ

(
j,m, n

)
↑2m ∗ hψ(m)

]
↑2n ∗ hψ(n) +

[
WV

ψ

(
j,m, n

)
↑2m ∗ hϕ(m)

]
↑2n ∗ hψ(n), (3.2)

where ↑2m and ↑2n denote upsampling along m and n, respectively.

(4) Region growing is used to segment the foreign fiber from f3. The values of initial
seed points S0 and threshold T0 are empirical data, in general S0 is between 10 and
20, and T0 is between 20 and 40. The resultant image is f4.

Figure 9 illustrates the segmentation process of the given algorithm.

3.2. An Improved Canny Detector

The canny detector is the most powerful edge detector provided by function edge [33]. Here,
the improved edge feature extraction algorithm can be summarized as follows.

(1) Instead of using Gaussian smoothing filter, the improved algorithm carries on the
smoothing operation by an adaptive median filter for the characteristics of input
image.

(2) The local gradient, g(x, y) = [G2
x +G

2
y]

1/2, and edge direction, α(x, y) = tan−1(Gy/
Gx), are computed at each point. An edge point is defined to be a point whose
strength is locally maximum in the direction of the gradient.

(3) The edge points determined in (2) give rise to ridges in the gradient magnitude
image. The algorithm then tracks along the top of these ridges and sets to zero all
pixels that are not actually on the ridge top so as to give a thin line in the output, a
process known as nonmaximal suppression. The ridge pixels are then thresholded
using two thresholds, T1 and T2, with T1 < T2. Ridge pixels with values greater than
T2 are said to be “strong” edge pixels. Ridge pixels with values between T1 and T2

are said to be “weak” edge pixels.

(4) The algorithm performs edge linking by incorporating the weak pixels that are 8
connected to the strong pixels.

(5) Finally, a modified closing operation in mathematics morphology is applied to fill
up gaps in detection result.
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(a) (b) (c)

(d) (e) (f)

Figure 9: Images segmentation: (a) original image; (b) proposed algorithm in Section 3.1; (c) sobel
operator; (d) prewitt operator; (e) log operator; (f) canny operator.

The morphological closing ofA by B denotedA ·B is a dilation followed by an erosion:

A · B = (A ⊕ B)ΘB. (3.3)
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(a) (b) (c)

Figure 10: Images segmentation: (a) original image; (b) canny operator; (c) proposed algorithm in
Section 3.2.

Geometrically,A ·B is the complement of the union of all translations of B that do not overlap,
and it generally joins narrow breaks fills long thin gulfs, and fills holes smaller than the
structuring element. However wire-like foreign fibers are relatively difficult to be processed
by virtue of their narrow and twining objects. To make the wire-like foreign fibers more clear,
a modified closing operation is given by

A · B =
(
A ⊕ BL

)
ΘBS, (3.4)

where BL is a larger structuring element for dilation and BS is relatively a smaller one for
erosion.

Figure 10 illustrates the result of the above algorithm.

3.3. Region Growing Color Image Segmentation Algorithm

The aim is to segment the color image and extract foreign fiber regions. Suppose that the
objective is to segment objects of a specified color range in an RGB image. Given a set
of sample color points representative of a color of interest, we obtain an estimate of the
“average” or “mean” color that we wish to segmentation. Let this average color be denoted
by the RGB pixel in an image as having a color in the specified range or not. To perform this
comparison, we need a measure of similarity. One of the simplest measures is the Euclidean
distance. Let z denote an arbitrary point in the RGB space. We say that z is similar to m
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(a) (b) (c)

Figure 11: Processed images using region growing color image segmentation algorithm: (a) original image;
(b)m = 50; (c)m = 90.

if the distance between them is less than a specified threshold, T . The Euclidean distance
between z and m is given by [26]

D(z,m) = ‖z −m‖

=
[
(z −m)T (z −m)

]1/2

= [(zR −mR)
2 + (zG −mG)

2 +
(
zB −mB)

2
]1/2

,

(3.5)

where ‖ · ‖ is the norm of the argument, and the subscripts R, G, and B, denote the RGB
components of vectors m and z. The locus of points such that D(z,m) ≤ T is a solid sphere
of radius T . By definition, points contained within, or on the surface of the sphere, satisfy the
specified color criterion; points outside the sphere do not.

The algorithm starts with a seed pixel, examines local pixels around it, determines the
most similar one, which is then included in the region if it meets certain criteria. This process
is followed until no more pixels can be added. The definition of similarity may be set in any
number of different ways. Figure 11 illustrates the images segmentation.

4. Results and Discussion

The close examination of the different sensors, illumination systems, and methods of material
presentations clearly shows that there is no single ideal system. However, by using systems
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precisely adapted to the actual requirements, one can come very close to this ideal. An
optimum solution consists of an intelligent combination of different systems.

To balance quality and cost, we used two 3-CCD cameras illuminated by UV lights
and two gray cameras with fluorescent lights. Some typical foreign fibers like PP twine, color
thread, and hair were selected for the experiments. The foreign fibers were mixed into pure
cotton and then made into uniform thin layer. The test images were captured by a 24-bit
scanner with nearly 17 million colors offline, and some of them were transformed into gray
images before image processing. Matlab 7.04 was used to implement and validate algorithms
before the final burn program gets close to real environment. An Intel Pentium IV 2.66 GHz
CPU personal computer with 1 GB SDRAM was chosen as the test environment and Windows
XP sp2 was selected as the operation system.

4.1. Deficiency of Edge Feature Extraction Algorithms

Three tests were performed to evaluate the segmentation performance of the foreign fiber
detection. In test 1 (Section 3.1), the original gray image was used, and segmentation results
of the images listed in Figure 9. The results indicated that different segmentation results
occurred when different types of algorithms were used. The images of block-like foreign
fibers received good segmentation in Figure 9(b) by the proposed algorithm, while the other
algorithms did not obtain the expected results. It informs that the proposed algorithm in
Section 3.1 is more suitable for block-like foreign fibers detection than the traditional edge
detectors.

In test 2 (Section 3.2), the original gray image was processed first by an adaptive
median filter, and then it was segmented by the canny operator; finally it was enhanced by
the modified closing operation. The result indicates that the canny operator is very useful for
wire-like foreign fiber detection. As other edge operators such as sobel and prewitt are not as
good as canny operator and the algorithm proposed in Section 3.1 cannot segment wire-like
foreign fiber at all; the comparative segment results are not list in this paper.

4.2. About Color Image Segmentation

A large variety of segmentation methods are available at present, but speed and accuracy of
an algorithm are key factors for the online visual inspection system [34]. Hence, in addition
to ensuring the segmentation accuracy, algorithms with faster speed are more attractive.
Therefore, in most cases the methods of foreign fiber detection are not suitable for using the
color image segmentation algorithm. However ultraviolet light can make the PE or PP foreign
plastic fibers appear colored as the above mentioned in Section 2.2, under such circumstance,
color image is very useful and necessary.

Common approaches for color image segmentation are clustering algorithms such
as k-means [35] or Mixture of Principal Components [36]; however these algorithms do
not take spatial information into account. Furthermore, clustering algorithms require prior
information regarding number of clusters, which is a difficult or ambiguous task, requiring
the assertion of some criterion on the very nature of the clusters being formed. Some
progress has been made on this issue; however much experimentation still needs to be
done [37]. An alternative set of algorithms exists which uses color similarity and a region-
growing approach to spatial information [38]. Region-growing algorithms have been used
mostly in the analysis of grayscale images, and some significant work has been completed
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in the color realm by Tremeau and Borel [39]. They discuss the segmentation of color
regions which are homogeneous in color (i.e., no illumination effects are considered) thus
restricting the application domain. They use a set of thresholds when calculating whether a
color pixel is part of a region or not, and the Euclidean distance is used as the measure of
similarity between two color vectors. It is well established [40] that the human perception
of color similarity is poorly modeled by the Euclidean distance. More researches about color
segmentation will be carried out in the future work.

5. Conclusion

A new high-speed foreign fiber detection system has been developed in this research, and
images of foreign fibers can be processed more effectively and efficiently using optimal
hardware components and appropriate algorithms designing. An image segmentation
algorithm based on fast wavelet transform is proposed to identify block-like foreign fibers,
and an improved canny detector is also developed to segment wire-like foreign fibers from
raw cotton. The color image segmentation with region growing algorithm is introduced for
better adaptability. The effectiveness of foreign fiber detection algorithms is demonstrated on
a variety of test images. Some quantitative image segmentation methods are used to assess
the results.

More rapid and stable foreign-fiber detection methods are now being considered.
The useful and effective algorithms will be burned to the designed image acquisition and
processing controller soon. A complete system debugging for cotton foreign fibers detection
will be carried out very shortly.
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Autonomous road following is one of the major goals in intelligent vehicle applications. The
development of an autonomous road following embedded system for intelligent vehicles is the
focus of this paper. A fuzzy logic controller (FLC) is designed for vision-based autonomous road
following. The stability analysis of this control system is addressed. Lyapunov’s direct method
is utilized to formulate a class of control laws that guarantee the convergence of the steering
error. Certain requirements for the control laws are presented for designers to choose a suitable
rule base for the fuzzy controller in order to make the system stable. Stability of the proposed
fuzzy controller is guaranteed theoretically and also demonstrated by simulation studies and
experiments. Simulations using the model of the four degree of freedom nonholonomic robotic
vehicle are conducted to investigate the performance of the fuzzy controller. The proposed fuzzy
controller can achieve the desired steering angle and make the robotic vehicle follow the road
successfully. Experiments show that the developed intelligent vehicle is able to follow a mocked
road autonomously.

1. Introduction

Intelligent transportation systems (ITSs) are an emerging global phenomenon benefiting
public and private sectors alike. ITSs and intelligent vehicles can relieve congestion,
improve safety, and enhance productivity. The field of intelligent vehicles is rapidly growing
worldwide. Technologies involved with intelligent vehicles include sensing and control
technologies, communications, and computer informatics. Intelligent vehicles offer the
potential to significantly enhance safety and operational efficiency. As one component of
ITSs, intelligent vehicles use sensing and intelligent algorithms to understand the vehicle’s
immediate environment, either assisting the driver or fully controlling the vehicle [1].
Intelligent vehicles function at the control layer to enable the driver vehicle subsystem to
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operate more effectively. Intelligent vehicles can help drivers in various ways: (1) collision
warning—to advise or warn the driver; (2) driver assistance—to partially control the vehicle
as an emergency intervention to avoid a collision; (3) automated driving—to fully control the
vehicle. Vehicles that can navigate autonomously in everyday traffic will become a reality in a
few decades. In this paper, we will focus on the development of embedded systems to realize
automated road following for intelligent vehicles.

A lot of highway accidents are caused by deviation from the road. Autonomous road
following is one of the major research topics in the area of intelligent vehicles. Because
of its potential in preventing accidents caused by human fatigue and performing tasks in
environments unreachable by human beings, a lot of road following methods for intelligent
vehicles have been proposed in the recent decades. Intelligent vehicles are robotic systems
that perceive the driving environment to assist the driver in safe vehicle operation by
providing driving assistance or full control of the vehicle. With the proposed research, we will
be able to develop an autonomous control system that can be used on cars to assist driving
or take the control of driving in order to avoid fatal accidents. Furthermore, the developed
intelligent vehicles can be used to perform tasks in an environment that is unreachable by
human beings.

Generally speaking, autonomous road following requires two major steps: road
feature extraction, and speed/steering control of the vehicles. The success of autonomous
road following requires the ability to continuously detect and extract useful road features, to
analyze road features, and to perform steering and speed control based on road conditions.

Computer-vision-based road feature extraction has been applied in intelligent vehicles
for road following widely because of its advantages in low-power consumption, compact
size, availability as a commercial product, cost effectiveness, and robustness [2]. Numerous
image processing and feature extraction methods can be found in [3–7].

Control algorithms should be considered as an important issue in road following to
ensure safe and smooth rides. Although a lot of researches have been done on this topic, most
of them are based on traditional control theories such as PID [2] and nonlinear controllers [8].
The kinematic behavior of autonomous road following is typically nonlinear. Therefore linear
models usually fail to describe these systems efficiently. However, it is difficult to analyze
nonlinear mathematical models for autonomous road following schemes. Other methods
such as neural networks [9, 10] and reinforcement learning (RL) [11] approaches have
also been used in road following, but these approaches require learning procedures which
consume extra computation time.

Human drivers can drive a car smoothly with their driving expertise rather than
knowledge on control theories. This fact leads us to the fuzzy logic solution. Fuzzy logic
control is known to be an organized method to emulate human expertise in dealing with
imprecise data. It attempts to apply a human-like way of thinking in the application areas
and allows intermediate values to be defined with linguistic terms besides conventional
evaluations. It has been proven to be an effective and active method in solving control
problems during the past decades. Fuzzy logic is a logic much closer to human thinking
than traditional logic. It is a precise logic of imprecision and approximate reasoning. Fuzzy
logic controllers provide a means of converting a linguistic control strategy based on expert
knowledge into an automatic control strategy [12]. In areas where conventional control
methods have difficulties because of the lack of precise quantitative data regarding the system
inputs and outputs, fuzzy logic controllers can process imprecise data and make rational
decisions by emulating human thinking and decision making capabilities. Fuzzy logic control
has been applied for intelligent vehicles in many areas such as car parking and vehicle
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guidance. Various applications of fuzzy logic control in the field of intelligent vehicles can
be found in [13–17].

Safety and reliability are of great importance for intelligent vehicles especially if the
vehicles are used for transportation. Therefore, before applying any dynamical systems
to intelligent vehicles, the stability of these dynamical systems should be studied to
make sure they are stable. Several well-known methods could be used to analyze the
stability of a system, such as the Routh-Hurwitz stability criterion, the Lyapunov stability
criterion, the Nyquist criterion, finding poles directly, the root locus method, or the
Jury stability test for discrete-time control systems. Lyapunov stability theory is probably
the most used tool for stability analysis. A dynamic system is Lyapunov stable if all
solutions of the system which start near an equilibrium point remain near the point for
all time. However, it is difficult to find the suitable Lyapunov functions. There is no
general method to construct a Lyapunov function. Trial-and-error or mathematical/physical
methods are often used. Some useful approaches for finding Lyapunov functions are Sum
of Squares Decomposition [18, 19], convex search for storage functions [20], and variable
gradient method [21]. However, these methods do not always lead to a desired Lyapunov
function.

In this paper, we will design an autonomous road following embedded system
for multiple intelligent vehicles. An intelligent vehicle which is capable of moving
between two lines on the road will be designed. A fuzzy logic controller (FLC) will be
developed to control the steering wheel of the vehicle for autonomous road following.
An FLC on a nonlinear system requires less computational power compared to traditional
nonlinear system applications. The resources required for building the embedded system
will be significantly reduced. Lyapunov’s direct method will be used to analyze the
stability of the control system. The “variable gradient” approach proposed in [21] will
be used to construct the Lyapunov function of this system. This control system will be
implemented on a vision-based intelligent vehicle which is able to perform road following
autonomously.

The rest of the paper is organized as follows. The kinematic model of the
vehicle is studied in Section 2. Section 3 presents the design of the FLC. Section 4
provides the proof of the stability using Lyapunov’s direct method. Experimental setup
for the vision-based intelligent vehicle is described in Section 5. Section 6 discusses
the simulation and experimental results. The last section of this paper concludes the
research.

2. Kinematic Model of the Car

The road following problem of the intelligent vehicle with kinematic constraints in the
two-dimensional workspace is studied. A nonholonomic constraint for a robotic vehicle
is a nonintegrable equation involving the configuration parameters and their derivatives
(velocity parameters) [22]. Such a constraint does not reduce the dimension of the space
of configurations attainable by the robot but reduces the dimension of the space of possible
motions at any given configuration. Considering the robotic vehicle modeled as Figure 1,
the rear wheels are aligned with the vehicle while the front wheels are allowed to pivot
about the axes. In a sufficiently large empty space, a robotic vehicle can be driven to any
position with any orientation, hence the robot’s configuration space has four dimensions,
two for translation, one for rotation and one for the steering angle. Let (x, y, φ, θ) denote the
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Figure 1: Kinematic model of the car.

configuration of the robot, parameterized by the location of the front wheels. The kinematic
model of the robotic vehicle can be represented as

ẋ = u3 cos θ,

ẏ = u3 sin θ,

θ̇ =
u3

l
tanφ,

(2.1)

where u3 corresponds to the forward velocity of the vehicle and the angle of the vehicle body
with respect to the horizontal line is θ, the steering angle with respect to the vehicle body is φ,
(x, y) is the location of the center point of the front wheels, l is the length between the front
and the rear wheels.

Since the turn radius of the robot is quite large compared with the radius of the wheels,
referring to Figure 1, we have the following relations:

S1 =
(
R − w

2
cosφ

)
φ,

Sm = Rφ,

S2 =
(
R +

w

2
cosφ

)
φ,

(2.2)

where S1 and S2 give the displacement (distance traveled) of the front left and front right
wheel, respectively, R is the turn radius of the center point of the front wheels, w is the
distance between wheels (from center-to-center along the length between the two font wheels
or two back wheels), and φ is the angle of the turn in radians. Sm is the displacement at the
center point of the front wheels. Once we have established the simple geometry for the robotic
vehicle system, it is easy to develop algorithms for controlling the robot’s steering angle φ,
thus controlling the robot’s orientation θ. As the robot is considered as having a rigid body, to
develop a forward kinematic equation for the steering system, we start by specifying a frame
of reference in which an arbitrarily chosen point is treated as stationary. All other points in
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the system are treated as moving relative to the reference point. Here we treat the center point
of the front wheels as the origin of the simulated robot’s frame of reference.

For the robotic vehicle that we are modeling, the turn angle of the front wheels has a
range of [−π/6, π/6], that is, −π/6 ≤ φ ≤ π/6. By adjusting the steering angle φ, we can
control the velocity of both the front wheels

Ṡ1 = φ̇
(
R − w

2
cosφ

)
+
w

2
φφ̇ sinφ,

Ṡ2 = φ̇
(
R +

w

2
cosφ

)
− w

2
φφ̇ sinφ,

(2.3)

so that

u2 − u1 = φ̇w
(
cosφ − φ sinφ

)
, (2.4)

where u1 and u2 correspond to the forward velocity of the front left wheel and the front right
wheel, respectively.

The real-time path of the vehicle can be obtained by integrating (2.1). The angle of the
vehicle body with respect to the horizontal line at time (t+Δt) could be derived first. If φ̇ /= 0,
that is, u2 /=u1, the angle of the vehicle body with respect to the horizontal line at time (t+Δt)
is given as

θ(t + Δt) = θ(t) +
u3

l

∫ t+Δt

t

tanφdt

= θ(t) +
u3

lφ̇

(
− ln

∣∣cosφ
∣∣)∣∣t+Δt

t

= θ(t) +
u3

lφ̇

(
− ln

∣∣cosφ(t + Δt)
∣∣ + ln

∣∣cosφ(t)
∣∣),

(2.5)

and if φ̇ = 0, that is, u2 = u1, the angle of the vehicle body at time (t + Δt) is given as

θ(t + Δt) = θ(t) +
u3

l
tanφΔt. (2.6)

Next the position of the vehicle at time (t + Δt) could be derived. If θ̇ /= 0, that is, φ/= 0,
the position of the moving vehicle at time (t + Δt) is given as

x(t + Δt) = x(t) +
u3

θ̇
(sin θ(t + Δt) − sin θ(t)),

y(t + Δt) = y(t) − u3

θ̇
(cos θ(t + Δt) − cos θ(t)),

(2.7)
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and if θ̇ = 0, that is, φ = 0, the position of the vehicle at time (t + Δt) is given as

x(t + Δt) = x(t) + u3 cos θΔt,

y(t + Δt) = y(t) + u3 sin θΔt.
(2.8)

3. Design of the FLC

In this section, the general structure of the proposed FLC is presented first. Then based
on simulation and experiments, the FLC is designed to perform the road following task.
The developed FLC not only enhances performance for road following but also saves
computational resources.

3.1. The Structure of the FLC

Figure 2 shows the structure of the proposed FLC which has four layers: input processing
layer, fuzzification layer, decision-making layer, and defuzzification layer. These layers form
an FLC following the Mamdani model. There are M inputs and N outputs for the FLC. Each
rule in the system has the following form:

Rule k: IF x1 is S(k)
1 AND . . . AND xm is S(k)

m . . . AND xM is S(k)
M , THEN y1 is R(k)

1

AND . . . yn is R(k)
n . . . AND yN is R(k)

N (k = 1, 2, . . . , K),

where xm is the mth input, m = 1, 2, . . . ,M, yn is the nth output, n = 1, 2, . . . ,N, S(k)
m is the

fuzzy linguistic sets for input xm,R(k)
n is the fuzzy rule sets for output ym, andK is the number

of rules in the rule base. The design of each layer is presented as follows.
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Input Processing Layer

The inputs of the FCL are crisp values. The input vector can be presented as

[
x1 x2 · · · xM

]
. (3.1)

Each input is adjusted by a weight factor. Then the input vector can be presented as

[
w1x1 w2x2 · · · wMxM

]
, (3.2)

where w1, w2, . . . , wm are weight factors.

Fuzzification Layer

It converts the weighted crisp inputs to fuzzy variables. This layer has three nodes for each
input: one node defines the fuzzy membership functions (MFs) for the input; the other two
nodes represent the two triggered MFs for the input. Triangle MFs are used for fuzzy sets
except for the leftmost and the rightmost fuzzy set. The leftmost and rightmost MFs are
trapezoidal. Without loss of generosity, MFs for different fuzzy sets can have different triangle
or trapezoidal shapes. We constrain the maximum overlapping degree of two MFs to 50%.
Therefore the maximum number of triggered MFs is 2 and these two MFs must be adjacent.
An example of the MFs with five fuzzy sets is shown in Figure 3. We define MF(1) and MF(2)

as the first and second triggered MF, and μ
(1)
m and μ

(2)
m as the membership value of the first

and second triggered MF of the input xm, respectively, then μ(1)
m and μ

(2)
m can be calculated as

μ
(1)
m = 1, μ

(2)
m = 0, xm ≤ Cl,

μ
(1)
m = 0, μ

(2)
m = 1, xm ≥ Cr,

μ
(1)
m = max

(

0, 1 − wmxm − C(1)
m

b
(1)
m

)

,

μ
(2)
m = max

(

0, 1 − C
(2)
m −wmxm

b
(2)
m

)

, C
(1)
m ≤ xm ≤ C(2)

m ,

(3.3)
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where C(1)
m and C

(2)
m are the centers of the two triggered MFs and C

(1)
m < C

(2)
m , Cl and Cr are the

leftmost and the rightmost limits, respectively, b(1)m is the width of the right-half base of MF(1),
and b

(2)
m is the width of the left half base of MF(2). If one of the membership values is zero, the

MF with respect to this membership value is not triggered, then there is only one triggered
MF. The outputs of this layer are membership values of triggered MFs for all inputs.

Decision-Making Layer

For every output, each node in this layer selects a fuzzy control rule from the rule base
of this output and obtains the antecedent value of this rule based on triggered input MFs.
Each output has one rule base, which means in the case of N outputs there are N different
rule bases in total. For each output, rules are selected according to the predefined rule base
corresponding to this output. Thus, each node in this layer selects N rules from N different
rule bases. Each control rule is selected based on a combination of MFs. Each of these MFs is
one of the triggered MFs of an input. For example, if there are three inputs, two of which have
two triggered MFs while the other input has only one triggered MF, the number of selected
rules for each output is 4 (2 × 2 × 1). The antecedent value of the selected rule k is computed
usingAND fuzzy logic. Therefore, “min” operation is considered for composition of the FLC:

F(k) = min
(
μ1, μ2, . . . , μm, . . . , μM

)
, (3.4)

where μm is one of the triggered input MFs (either μ(1)
m or μ(2)

m ) of xm, k = 1, 2, . . . , K∗, and K∗

is the number of selected rules.

Defuzzification Layer

This layer converts fuzzy values to crisp values and send them out as control outputs of the
FLC. Each node in this layer performs defuzzification for an output. Triangles are used for
the output MFs. Figure 4 shows an example of MFs for an output with three fuzzy sets. The
center of gravity (COG) algorithm is used to compute output crisp values. Let C(k)

n be the
center of the kth triangle. The output yn can be computed as

yn =
∑

k C
(k)
n

∫
F
(k)
n dt

∑
k

∫
F
(k)
n dt

, (3.5)
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where F(k)
n is the antecedent value of the kth selected fuzzy rule for yn. As all the output MFs

are triangles,
∫
F
(k)
n dt can be obtained by computing the area of the trapezoid under the line

f = F(k)
n . Thus, (3.5) can be modified as

yn =

∑
k C

(k)
n b

(k)
n

(
F
(k)
n −

(
F
(k)
n

)2
/2

)

∑
k b

(k)
n

(
F
(k)
n −

(
F
(k)
n

)2
/2

) (3.6)

where b(k)n is the base length of the kth output MF. Equation (3.6) simplifies the defuzzification
calculation by replacing derivatives with the computation of trapezoid areas.

3.2. The Developed FLC for Road following

A block diagram of the specified FLC for the road following task is shown in Figure 5. The
desired orientation of the center line of the car should be aligned with the road centroid. The
error is the angle between the desired orientation of the center line and the actual center line
of the car. The error is represented by e = θd − θ. To reduce the error to zero, the steering
angle should be equal to φ. φ is determined by the FLC. The error and the change-in-error are
calculated and fed into the FLC. The FLC is designed to output control signals corresponding
to the control torque to the front steering motor to control the front wheels’ steering angle φ.

The fuzzification procedure maps the crisp input values to the linguistic fuzzy terms
with the membership values between 0 and 1. In this study, we use five MFs for both error e =
θd − θ and change-in-error ė = θ̇d − θ̇ because five MFs can balance between the performance
and the complexity of the FLC. The isosceles triangle membership function (MF) is used
except for the leftmost and the rightmost input MF which are trapezoidal. Each MF has a
50% overlapping with its neighboring MFs. Figure 6 illustrates the input MFs for e and ė,
respectively. Note that the scale for the X coordinate can be changed easily in the program.

The inference engine is responsible for decision making in the control system using
approximate reasoning. The fuzzy control rules are designed based on expert knowledge
and testing. Furthermore, the control rules also meet the stability requirements derived from
Lyapunov’s direct method. Table 1 represents abstract knowledge that an expert uses to
control the steering angle given information about the error and its derivative. For example, if
e is positive large “PL” and is increasing rapidly (ė is positive large), then the vehicle should
turn left sharply, that is, φ should be left large (LL). The rule base stores rules which define
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Table 1: Fuzzy rule base.

ėφ
PL PS ZO NS NL

eφ

PL RL RL RL RS MD
PS RL RL RS MD LS
ZO RL RS MD LS LL
NS RS MD LS LL LL
NL MD LS LL LL LL

Note: PL: Positive Large; PS: Positive Small; ZO: Zero; NS: Negative Small; NL: Negative Large; RL: Right Large (turn right
sharply); RS: Right Small (turn right gently); MD: Middle (no turn); LL: Left Large (turn left sharply); LS: Left Small (turn
left gently).

the relation between the inputs and the output. Based on the membership functions of the
error and the change in error, twenty-five fuzzy rules are obtained.

Figure 7 shows output MFs. All MFs for the output are isosceles triangles with 50%
overlap between two neighboring MFs.

The defuzzification procedure maps the fuzzy output from the inference mechanism
to a crisp signal. We use the COG defuzzification method to combine the recommendations
represented by the implied fuzzy sets from all the rules. The crisp value is computed
according to (3.6).

4. Stability Analysis Using Lyapunov’s Direct Method

The autonomous road following system can be represented as

e = θ − θd = x1,

ė = θ̇ − θ̇d = x2,
(4.1)
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where θd is the desired angle, and θ is the actual angle. From (2.1), we know that we need
to design the FLC to control the steering wheel so that θ can approach θd. The output of the
fuzzy controller Φ(·) is a function of x1 and x2 that can be represented by Φ(x1, x2). On the
intelligent vehicle, the control signal Φ(x1, x2) is used to steer the front wheels. We assume
that the low-level tracking controller can output the motor torque to steer the front wheels
accordingly. Recall (2.1), we have

ẋ1 = x2 = θ̇ − θ̇d =
u3

l
tanφ − θ̇d,

ẋ2 = θ̈ − θ̈d =
u3

l

1
cos2φ

φ̇ − θ̈d.
(4.2)

Assume that at the equilibrium point e = 0 and ė = 0, so that the equilibrium is
preserved. The main shortcoming of Lyapunov theory is the difficulty associated with the
construction of Lyapunov functions [21]. To overcome this problem, we use the “variable
gradient” approach proposed in [21] to construct the Lyapunov function. The essence of this
method is to assume the gradient of the unknown Lyapunov function V (·) is known up to
some adjustable parameters. Then finding V (·) becomes integrating the assumed gradient.

The system can be represented as

ẋ = f(x) =
[
ẋ1 ẋ2

]T
=
[
x2 ẋ2

]T
. (4.3)

We proceed to find a suitable Lyapunov function for this system as follows.

Step 1. Assume that ∇V (x) = g(x) has the form

g(x) =
[
h1

1x1 + h2
1x2 h1

2x1 + h2
2x2

]
. (4.4)

Step 2. Impose the symmetry conditions

∂2V

∂xixj
=

∂2V

∂xjxi
, (4.5)
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or equivalently,

∂gi
∂xj

=
∂gj

∂xi
. (4.6)

In our case, the symmetry condition is

∂g1

∂x2
= x1

∂h1
1

∂x2
+ h2

1 + x2
∂h2

1

∂x2
,

∂g2

∂x1
= h1

2 + x1
∂h1

2

∂x1
+ x2

∂h2
2

∂x1
.

(4.7)

To simplify the solution, we assume that gi’s are constant. Then we have

∂h1
1

∂x2
=
∂h2

1

∂x2
=
∂h1

2

∂x1
=
∂h2

2

∂x1
= 0,

∂g1

∂x2
=
∂g2

∂x1
⇐⇒ h2

1 = h1
2 = k

=⇒ g(x) =
[
h1

1x1 + kx2 kx1 + h2
2x2

]
.

(4.8)

If we choose k = 0, we have

g(x) =
[
g1 g2

]
=
[
h1

1x1 h2
2x2

]
. (4.9)

Step 3. Find V̇ :

V̇ (x) = ∇V · f(x)

= g(x) · f(x)

=
[
h1

1x1 h2
2x2

]
[
x2

ẋ2

]

= h1
1x1x2 + h2

2x2ẋ2.

(4.10)

Step 4. Find V from ∇V by integration:

V (x) =
∫x1

0
g1(s1, 0)ds1 +

∫x2

0
g2(x1, s2)ds2

=
∫x1

0
h1

1s1ds1 +
∫x2

0
h2

2s2ds2

=
1
2
h1

1x
2
1 +

1
2
h2

2x
2
2.

(4.11)
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Therefore, we have

V (x) =
1
2
h1

1x
2
1 +

1
2
h2

2x
2
2, (4.12)

V̇ (x) = h1
1x1x2 + h2

2x2ẋ2. (4.13)

Step 5. Find h1
1 and h2

2 that make V > 0. From (4.12), V (x) > 0 only if h1
1, h

2
2 > 0. Let h1

1 = h2
2 =

1, then we have

V̇ (x) = x1x2 + x2ẋ2 =
(
θ̇ − θ̇d

)(
θ + θ̈ − θd − θ̈d

)
. (4.14)

Based on the “variable gradient” approach, we can derive the following Lyapunov
function:

V (x) =
1
2
x2

1 +
1
2
x2

2, (4.15)

where V : B(ε) → R for some ε > 0, where B(ε) = {x ∈ R2 : |x| < ε} is a ball centered at the
origin with a radius of ε and | · | is a norm on R2. Then the gradient of the Lyapunov function
is

∇V (x(t)) = [ x1 x2], (4.16)

V̇ = [ x1 x2]

[
x2

ẋ2

]

= x2(x1 + ẋ2)

=
(
θ̇ − θ̇d

)(
θ + θ̈ − θd − θ̈d

)

=
(u3

l
tanφ − θ̇d

)(
θ − θd +

u3

l

1
cos2φ

φ̇ − θ̈d
)
.

(4.17)

We would like V̇ ≤ 0, to prove stability, that is, to show that the fuzzy controller can achieve
and maintain the desired θd. In (4.17), u3/l > 0, cos2φ > 0. We assume that θ̇d is bounded,
and θ̈d = 0. On the RC car, the steering angle −30◦ ≤ φ ≤ 30◦.

We can always design the FLC, Φ(x1, x2), to adjust φ and φ̇ to achieve the following
conditions:

u3

l

1
cos2φ

φ̇ ≥ θd − θ if
u3

l
tanφ − θ̇d > 0

u3

l

1
cos2φ

φ̇ ≤ θd − θ if
u3

l
tanφ − θ̇d < 0.

(4.18)

Therefore, V̇ ≤ 0 can always be achieved and hence the stability holds.
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Figure 8: The steering mechanism of the RC car.

5. Experimental Setup

In this section, the hardware setup of the prototype vehicle for autonomous road following is
presented. A fully automated robotic system is designed to control a motor vehicle using an
on board camera. The hardware system includes a camera associated with a frame grabber.
The camera is then connected to a Microchip PIC controller which controls the vehicle motion.
This system utilizes the camera with a frame-grabber and a built-in processor to grab pictures
of the road and to find the center of the road. Then it calculates the deviation between the
center of the car and the center of the road, and sends the result to an FLC. The FLC decides
how to turn the vehicle and sends out control signals to control the steering wheel. This
is implemented in a way that the vehicle can remain between two lines while simulating
highway motion.

5.1. The Remote Control Car

The Audi S4 radio control (RC) car platform is chosen because it offers a fully functional
steering and drive system. The control signal for the steering and drive system is generated
by the microcontroller which emulates the car’s control signals. The speed and steering of
the car are controlled by varying the pulse-width modulation (PWM) signals. The steering
mechanism of the RC car is shown in Figure 8.

5.2. The Mocked Road

The lane used in this project is the space between two lines as shown in Figure 8. To illustrate
the control process, we use a red line and a yellow line. The distance between these two lines
is constant.

5.3. Computer Vision

The CMUCam3 camera is chosen for the project. The camera uses a built in microcontroller
and a frame grabber to allow postprocessing on each captured image. As the two lines which
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Figure 10: Error eφ and change-in-error ėφ.

mark the road are in different colors from the rest of the road, using a multiple color tracking
algorithm, we are able to track each line individually. The minimum and maximum RGB
values for each line color are set in the camera code. Pixels within the RGB value range are
regarded as a part of the line. A filter is applied to filter out noise. The camera finds the
location and the width of each colored line in terms of pixels and calculates the centroid of
each colored line. The centroid of two colored lines is then used to calculate the position
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Actual trajectory

Figure 12: The road following result using the proposed method.

error which is sent to the microcontroller. Since the vehicle is supposed to remain in the
center of the two colored lines, error can be calculated if the centroid is not at the center
of the image. The camera is programmed using a variation of the C language. The error is
calculated according to one of the states described in Table 2. Centroids in the table refer to
the x coordinate of the image only. In the table, Cr represents the centroid of the red line,
Cy represents the centroid of the yellow line, Cw represents the centroid of the image, C
represents the centroid of the two lines, respectively.

5.4. Microcontroller

The PIC18F4431 microcontroller is used to interface with the camera and the car’s existing
circuitry. It receives the incoming position error from the RS-232 port located on the
CMUCam3 board. The microcontroller then uses the error to calculate the appropriate
steering signal, using the proposed FLC written in C language. The steering signal is then
output to the RC car’s circuit.
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6. Simulation Studies and Experiment Results

In order to verify the performance of the proposed FLC and the system, simulations and
experiments have been conducted.

Simulations have been done to test the performance of the fuzzy controller. The results
show that the intelligent vehicle is able to follow the road with a speed of 13 m/s. Figure 9
shows the tracking performance of the robotic vehicle in the Cartesian space. The road has
two sharp curves and the robot starts from (0, 1) which is off the center of the road. The robot
is capable of following the road. It can respond to sudden changes on the road by changing
its steering angle accordingly.

Figure 10 shows the steering error and the change-in-error. Figure 11 shows the output
of the fuzzy controller. It can be seen that the fuzzy controller can output smooth control
signals to sudden changes in e and ė to make the system stable.

Experiments have been performed to verify the fuzzy logic controller design. In our
experiments, we use a mocked road with two lines to guide the navigation of the robot. The
actual trajectory of the robot is marked on the road using white powder dropping from a
container attached to the rear end of the robot. Figure 12 shows the robot performing the
autonomous road following task on the mocked road with curves. The robot moves at a speed
of 0.9 m/s. In the figure, the line in the center of the road is the trajectory marked by the
powder.

In our experiments, all data, such as errors and mean square errors, are calculated
based on four trials. Sample points on the actual trajectories are recorded and compared with
the desired trajectory which is the center line of the road. One sample point is taken for
every inch along the road. Figure 13 shows the desired trajectory and the actual trajectory
we have recorded during the experiment. In the figure, the dashed line represents the desired
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Figure 15: Error and change in error in the experiment.

Table 2: Error calculation table.

Red centroid Yellow centroid Error
Cr! = 0 Cy! = 0 Error = C − Cw
Cr! = 0 Cy = 0 Error = 176 − Cr
Cr = 0 Cy! = 0 Error = 0 − Cy

trajectory while the dotted line represents the actual trajectory. The maximum absolute error
between the center line of the road and the actual trajectory of the intelligent vehicle is 1.55
inches. The root mean square error is 0.73 inches which is relatively small compared with the
width of the road which is 8 inches.

As a comparison, we also obtained simulation results for the vehicle moving at
0.9 m/s. Figure 14 shows the tracking performance of the vehicle. The desired trajectory is
the one used in the experiment. It can be seen that experiment results in Figure 13 match the
simulation results in Figure 14 very well. The maximum error in the experiment results is a
little larger. This is because in the real world, the camera takes some time to process the raw
data in order to obtain the error while in simulation the error is calculated instantaneously.

The error and change in error for both the experiment and the simulation are plotted
in Figures 15 and 16. From the figures, it can be seen that the error is larger when there is
a curve in the desired trajectory. This is because the desired trajectory is changing while the
actual trajectory is deviated from the desired trajectory. The designed fuzzy controller adjusts
to the changes and controls the vehicle to follow the trajectory successfully. It is also noted
that in the experiment results, the change in error is filtered thus it is smoother than the
simulated change in error.
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Figure 16: Error and change in error in the simulation.

7. Conclusion

In this paper, an intelligent robotic vehicle which is capable of performing autonomous
road following is successfully developed. A vision system installed on the vehicle is used
to detect a curved road. An FLC is developed to control the steering wheel of the robotic
vehicle according to the deviation from the rods. The deviation of the vehicle from the road
is regarded as the error. The error and the change-in-error are used as the input of the
FLC. Based on human driving experience and experiments, the FLC makes decision on the
steering angle accordingly. An analysis and design of fuzzy control laws for steering control
of the nonholonomic robotic vehicle are presented. Lyapunov’s direct method is used to
guarantee the convergence of the steering error. Simulations using the four degree of freedom
nonholonomic robotic vehicle model are also conducted to investigate the performance and
stability of the fuzzy controller. Experiments demonstrate that the vehicle with the proposed
fuzzy controller can automatically follow the curved road.
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Greenhouses crops in Italy are made by using prefabricated structures, leaving out the preliminary
study of optical and thermal exchanges between the external environment and the greenhouse,
dealing with heating and cooling and the effects of air conditioning needed for plant growth. This
involves rather significant costs that directs the interest of designers, builders, and farmers in order
to seek constructive solutions to optimize the system of such emissions. This work was done by
building a model of gases using TRNSYS software, and these gases then have been checked for
compliance. The model was constructed considering an example of a prefabricated greenhouse,
located in central of Italy. Aspects of the structural components, and thermal and optical properties
are analyzed in order to achieve a representation of reality.

1. Introduction

The aim of this study is to test the response of the software TRNSYS simulation of climate
parameters in a greenhouse. To create a template for:

(i) detailed design of structures,

(ii) optimizing resources,

(iii) verifying the use of new energy systems for agricultural activities [1–3].

To simulate the greenhouse, several studies have been proposed in order to obtain
forecasts values or simulations of influential variables for protected crops, such as ventilation
[4, 5], water temperature for hydroponic systems [6], control of CO2 for the carbon
fertilization [7, 8], moisture budget [9], climate control [10], and heat exchange [11]. Recently,
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the thermal behavior of the greenhouses was studied using dynamic thermal simulation tool,
TRNSYS 15.1. [12, 13].

Suppose that one has created a model that includes all greenhouse influential variables
on microclimate. Values are obtained for climatic parameters representative of reality by
allowing the search for optimal solutions for the use of resources [14].

Creating a greenhouse model in the software, one can simulate constructive solutions
or air conditioning. One can also create new components to include models that simulate as
closely as possible the biological activities of plants.

2. Preliminary Remarks

2.1. Exchange of Heat

The climatic parameters affecting the growth of greenhouse plants are [15]:

(i) radiation entering the greenhouse in the ultraviolet band (290 to 380 nm), visible
(380 to 760 nm) and near infrared (760–3000 nm),

(ii) temperature of air, soil and plants,

(iii) air humidity,

(iv) air composition (particularly the concentration of CO2).

Solar radiation inside the greenhouse is less than the outer coating material which
reflects and absorbs solar radiation; one also needs a ventilation system that ensures the
movement of air between the plants and facilitates the transpiration; the lower is the air
movement, and the smaller is the concentration gradient of CO2.

One needs to assess the detailed exchange of energy between internal and external and
to have accurate values of climatic parameters in the greenhouse. It is necessary to study the
temperatures that influence the thermal freight exchange [16]:

(i) air temperature,

(ii) soil temperature (or substrate for soilless),

(iii) plants temperature,

(iv) temperature of the greenhouse cover.

The flow of heat in the greenhouse is a function of time and is calculated using (2.1)
which represents the heat balance [17]

∂Q(t)
∂t

= qent(t) − qusc(t) +Wint, (2.1)

where Q: flow thermal, t: time, qent: heat flows in, qusc: heat flows out, and Wint: thermal
power in the greenhouse.

Cp: heat capacity of the greenhouse, the heat balance of systems (2.1)

Cp
∂T

∂t
= qent(t) − qusc(t) +Wint. (2.2)
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2.2. Thermal Balance

To calculate the heat balance in emissions is necessary to examine the individual energy input
[18]:

(1) solar radiation transmittance and reflectance of the cover to the incident radiation,

(2) heat transfer, conduction, convention, and radiation,

(3) condensation heat,

(4) heat of evapotranspiration,

(5) loss of heat of ventilation.

2.2.1. Solar Radiation

The amount of heat which determines the solar radiation [19] depends on:

(i) radiation incident to the ground,

(ii) orientation of the greenhouse,

(iii) type of structure,

(iv) absorption and reflection of the coating material,

(v) share, size, and position of the opaque structure,

(vi) dust on the cover,

(vii) cover condensation.

The incident radiation to the ground, with clear skies, [20] can be calculated with the
following relations:

Rb = direct radiation to the ground = Reτb cos θz [W/m2],

Rd = diffuse radiation to the ground = Reτd cos θz [W/m2],

Rg = global radiation to the ground = Rb + Rd [W/m2],

where Re = outer radiation [W/m2], cos θz = cosine zenith angle = senφ senδ +
cosφ cos δ cosω, φ = local latitude [◦].

Inclination of the sun = δ = 23.45·sen·[360/365·(284+n)] [◦], hour angleω = (360/24)·
(12 − h) [◦], τb = transmissivity of the atmosphere [21] to the direct radiation = Ao + A1 ×
e−k/ cos θz , τd = transmissivity of the atmosphere [21] to the diffuse radiation = 0.271− 0.294τb,
A0 = [0.4237 − 0.00821(6 −A)2][1 + 0.03sen(π Error!)], A1 = [0.5055 + 0.00595(6.5−A)2][1 +
0.01sen(π Error!)], K = [0.2711 + 0.01858(2.5−A)2][1.01 − 0.01sen(π Error!)], n = julian day,
h = hour days [h], and A = altitude [km].

If the surface is inclined, there will be two angle: Z = inclination of the surface normal
with respect to zenith and ψ = angle between the horizontal projection of the surface normal
and the south.

The angle between the direction of the sun and the surface normal is

cos I = senλ senδ cosZ − cos λ senδ senZ cosψ + cos λ cosδ cosω cosZ

+ senλ cos δ cosω senZ cosψ + cos δ senω senZ senψ.
(2.3)
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The components of radiation are [22]

RbI = direct radiation on inclined surface = Reτb cos I,

RdI = diffuse radiation on inclined surface = Reτd cos I.

Radiation throughout the cover is

RbI = direct radiation = Reτb transmittance (I),

RdI = diffuse radiation = Reτd transmittance (I).

To calculate the solar transmittance, I must have the total reflectance of the surface
[23]. The reflectance is calculated from the angle of radiation and the angle of refraction of
the surface

n1

n2
=

sen θr
sen θi

, (2.4)

where s = thick coverture, n = refracting index, k = coefficient absorption, and (ad es.glass:
n = 1.526 and K = 0.032 mm−1)

The refractive index of air is approximately 1 [24]; there is n2 = n (refractive index of
the second half): θr = refraction angle = arcsen(sen θi/n), θi: incidence angle of solar radiation
as a function of latitude and exposure greenhouse [25].

Surface reflectance = r⊥ = sen2(θr − θi)/sen2(θr + θi).

Surface reflectance = r‖ = tan2(θr − θi)/tan2(θr + θi).

Total surface reflectance = r = Ir/Ii = (1/2)(r⊥ + r‖).

The transmittance value of the perpendicular component whereas the only loss by reflection

τ⊥ = (1 − r⊥)2
∞∑

n=0

r2n
⊥ =

(1 − r⊥)2

(
1 − r2

⊥
) =

1 − r⊥
1 + r⊥

. (2.5)

Transmittance to the parallel component whereas the only losses for reflection

τ‖ =
1 − r‖
1 + r‖

. (2.6)

Transmittance with the only losses for global reflection

τr =
1
2

[
1 − r⊥
1 + r⊥

+
1 − r‖
1 + r‖

]
, (2.7)

whereas the overall transmittance only losses for absorption

τa = e(−K·s)/ cos θr . (2.8)
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The transmittance, reflectance, and absorbance of a greenhouse, with the losses by reflection
and absorption are determined

τ‖ =
τa(1 − r‖)2

1 − (r‖τa)2 = τa ·
1 − r‖
1 + r‖

·
1 − r2

‖

1 − (r‖τa)2
∼= τa ·

1 − r‖
1 + r‖

,

τ⊥ ∼= τa ·
1 − r⊥
1 + r⊥

,

τ =
1
2
(
τ‖ + τ⊥

) ∼=
1
2

(
τa ·

1 − r‖
1 + r‖

+ τa ·
1 − r⊥
1 + r⊥

)
,

τ ∼= τa ·
1
2

(1 − r‖
1 + r‖

+
1 − r⊥
1 + r⊥

)
∼= τa · τr.

(2.9)

The global transmittance is

τ ∼= τa · τr. (2.10)

The reflectance greenhouse is [26]

ρ‖ = r‖ +
(1 − r‖)2τ2

ar‖

1 − (r‖τa)2 = r‖
(
1 + τaτ‖

)
. (2.11)

The absorbency is

α‖ = (1 − τa)
( 1 − r‖

1 − r‖τa

)
,

α⊥ = (1 − τa)
(

1 − r⊥
1 − r⊥τa

)
,

α =
1
2
(
α‖ + α⊥

)
.

(2.12)

The transmittance of the diffuse radiation is assumed to be equal to the transmittance of direct
radiation with II = 60◦m.

With the overcast sky [27], one can estimate the average daily radiation (J/m2d) that
reaches the earth’s surface in a certain place (see Table 1).

Definition:

No: the length of day

No =
2
15
· arcos

(
−tgφ · tgδ

)
, (2.13)
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Table 1: The coefficient depends on a number of factor [30].

αi (W/m2K) In dependency of:

Inside the greenhouse 4–30 Wind Speed (Vvento < 10 m/s 3.85 Vvento)

Outside the greenhouse 2–5 Heating System
Temperature coverage

External heating pipes (air) 4.5–9 Pipe diameter
Pipe temperature

Internal heating pipes (water) 400–4830 Water speed
Pipe diameter

N: hours when the sun is actually visible on the horizon. The ratio N/No is called for
sunshine or daylight on. The daily global radiation is related all’eliofania on the report of
Angstrom

Rg

Ro
= A + B

N

No
,

Ro =
1367 · 3600 · 24

π
·
(

1 + 0.033 · cos
360 · n

365

)
·
(

cosφ · cos δ · senωs +
π · ωs

180
· senφ · senδ

)
,

(2.14)

where ωs is the hour angle at sunset

cosωs = − tanφ · tanδ, (2.15)

A and B coefficient of the place (see [28]).
The components of direct and diffuse radiation on an inclined surface can be calculated

[29] as a function of I and Q multiplied by the transparency measured at normal incident
radiation (Table 1). The components of radiation are:

RbI = direct radiation on the inclined surface = Reτb cos I,
RdI = diffuse radiation on the inclined surface = Reτd cos I.

2.2.2. Thermal Exchange

A contribution to the heat of the greenhouse is the thermal exchange between inside and
outside [31].

Heat Conduction

Q =
λ

s
· S · (T1 − T2), (2.16)

where Q = heat [W], s = thick [m], S = surface [m2], T1 = inside temperatures of the surface
wall, and T2 = outer temperature surface of the wall.
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If the surface S is composed with more elements, the flow through each element is
constant

Q =
λ1

s1
· S · (Ti − T2) =⇒ Q · s1

λ1
= S · (Ti − T1),

Q =
λ2

s2
· S · (T1 − T2) =⇒ Q · s2

λ2
= S · (T1 − T2),

...

Q =
λn
sn
· S · (Tn−1 − Te) =⇒ Q · sn

λn
= S · (Tn−1 − Te),

(2.17)

adding

Q ·
(
s1

λ1
+
s2

λ2
+ · · · + sn

λn

)
= S · (Ti − Te),

Q =
1

(s1/λ1 + s2/λ2 + · · · + sn/λn)
· S · (Ti − Te),

(2.18)

to Kt = 1/(s1/λ1 + s2/λ2 + · · · + sn/λn) [W/m2 K] thermal conductance

Q = Kt · S · (Ti − Te). (2.19)

Heat Convection

Q = αi · S ·
(
Tfluido − Tparete

)
, (2.20)

where Q: heat convection, αi: coefficient convective exchange, S: surface, and T : temperature.

Irradiation

Wien’s law for the maximum emission is at a wavelength λmax = 2885000/T (nm).
Temperature

Tvc = 0.0552 · T3/2
a ,

Tvc = 0.0552 · (Ta + 273.16)3/2 − 273.16.
(2.21)

The total radiative flow radiated between two gray surfaces facing for the low Stefan-
Boltzman

φrad,12 = ε12 · �12 · σ ·
(
T4

1 − T
4
2

) (
W/m2

)
, (2.22)
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where σ = 5.6699 × 10−8 (W/m2 K4), ε12 = emissivity between the surface areas 1 and 2;
assuming opaque bodies facing a series of reflections between two surfaces leads to

ε12 =
1

1/ε1 + 1/ε2 − 1
. (2.23)

If you think you do not have reflection: ε12 = ε1 · ε2. �12, the view factor is the fraction of the
total radiation emitted by a surface that affects surface 2 in many cases, the greenhouse is
next to 1.

For a surface issues, one will have

ε + τ + ζ = 1, (2.24)

where ε = emissivity in the infrared, τ = transmissivity in the infrared, and ρ = reflectivity in
the infrared.

Obviously, for opaque bodies, τ = 0, and therefore, ε + ζ = 1.
Considering a flat wall, thickness s (m), of the surface S (m2), which defines the

interior of a generic building, indoor and outdoor air temperatures are required Ti and Te
different but constant over time (steady) (see Figure 1).

The flow of heat Qt (W) takes the following path [32]:

(1) adduction

Qt = αiS(Ti − T1), (2.25)

where αi = factor adduction internal [W m−2 K−1],

(2) conductivity

Qt = λ
S

s
(T1 − T2), (2.26)

where: λ = Thermal conductivity of wall (W/m K), S = surface wall (m2), and s =
thick (m),

(3) adduction

Qt = αeS(T2 − Te), (2.27)

where αe = factor adduction external (W/m2 K).
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Steady thermal power transmitted in the three steps must be constant; the thermal flows Qt

of the three terms must be equal, and therefore, solving the above equations according to
differences in temperature, one has

(Ti − T1) = Qt
1
αiS

,

(T1 − T2) = Qt
s

λS
,

(T2 − Te) = Qt
1
αeS

,

(Ti − Te) =
Qt

S

(
1
αi

+
s

λ
+

1
αe

)
,

(2.28)

where R = thermal resistance (m2 K/W),

R =
(

1
αi

+
s

λ
+

1
αe

)
,

(Ti − Te) =
Qt

S
R,

Qt =
S

R
(Ti − Te),

(2.29)

where K = 1/R global factor transmission (W/m2 K),

K =
1

(1/αi + s/λ + 1/αe)
. (2.30)

The flow heat through a flat, steady wall

Qt = KS(Ti − Te),

Qt = KSΔT .
(2.31)

The total energy lost (kJ h−1) in transmission result in an hour

Etr = 3, 6 ·
n∑

1
iQti ,

Etr = 3, 6 ·
n∑

1
iSi ki(Ti − Te).

(2.32)
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2.2.3. Heat of Condensation

To calculate the heat of condensation [33]

Q = g · λ ·A [W], (2.33)

where g = grams of water condensed [g s−1 m−2], λ = latent heat of vaporization [J g−1], and
A = surface cover [m2].
The report on the convective exchanges between the air inside and the inside surface of the
cover

Q = Q′ +Q′′ = αint ·A ·
(
Taria int − Tparete int

)
+ g · λ ·A. (2.34)

Rearranging the terms

Q · 1
αint
−
g · λ ·A
αint

= A ·
(
Taria int − Tparete int

)
,

Q · 1
Kt

= A ·
(
Tparete int − Tparete est

)
,

Q · 1
αest

= A ·
(
Tparete est − Taria est

)
,

Q ·
(

1
αint

+
1
Kt

+
1
αest

)
−
g · λ ·A
αint

= A · (Taria int − Taria est),

(2.35)

with: K = 1/(1/αint + 1/Kt + 1/αest), we have

Q = K ·A · (Taria int − Taria est) +
K

αint
· g · λ ·A. (2.36)

2.2.4. Heat Ventilation

The functions of ventilation in a greenhouse are:

(i) replacement of oxygen and CO2,

(ii) temperature regulation,

(iii) humidity control in greenhouses.

The requirements to be met are as follows [34]:

(i) there must be direct air currents on plants, although there must be good air near the
plants,

(ii) incoming air flow should not move immediately on plants,
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(iii) ventilation equipment should be modular and should be able to seal to hold heat
loss,

(iv) fans must be water-resistant,

(v) the construction of the fans should allow operation in all weather conditions,

(vi) the size of the fans must be sufficiently large.

The heat dispersed by ventilation is

Ev = V (Hi −He). (2.37)

3. The Basic Model of Simulation Greenhouse

The simulation of climate parameters of the greenhouse is made with a model that calculates
the thermal exchanges in nonstationary [35]. Depending on the parameter, one can highlight
energy waste and improve the design of the greenhouse. The created model can be applied
in any type of greenhouse changing design parameters in the TYPE 56.

3.1. Model Creation

The greenhouse considered is a prefabricated construction in steel used as a greenhouse for
growing flowers and plants. It is covered with glass cover, horizontal beam pattern, and small
flat foot north and south.

The approach of the model was carried out by using the program TRNSYS Simulation
Studio. It was done starting with the path leading to the construction of a multizone building,
which is divided into multiple steps, where the user enters the data on building and its
location in space [36]. The data required by the software at this stage will be used for the
automatic construction of the project and its connections between the components will be
divided into nine steps in which one inserts the following:
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(i) the indication of the areas, the number, and the arrangement with each other
identify the adjacent walls and their arrangement with respect to north,

(ii) the name of each area and plant size, height of walls and eaves, and length and
width of each zone. Software automatically calculates the volume of each zone,

(iii) the percentage of windows on each exterior wall of the building. This indicates
the ratio of surface area between the windows and the wall multiplied by one
hundred, in addition to adding the rotation angle of the building than the north
and the source of meteorological data that will be used in the simulation. This is
indeed a link with the Type 109 (Weather Data Processor), and in this case study,
the meteorological station of Ancona-Falconara (Airport) was selected.

The meteorological station of Ancona is the weather station of reference for the Air Force
Meteorological Service and the World Meteorological Organization concerning the city of
Ancona and its coastline. The distance as the crow flies from this weather station and location
of the emissions test is about 25 km. With the various components of TRNSYS have been
created on the basis of meteorological data coordinates of the site and its features, the
availability of measured values within a small radius improves performance [37].

The seepage goes through building walls, values, and modes of natural and
mechanical ventilation for the building. These reported values in terms of number of air
changes per hour (1/h). The inclusion of these data can still be changed later in the settings
of each area. Natural ventilation was set by a temperature sensor that, for given temperature,
regulates the process of opening the window (opens and closes at 25◦C to 15◦C).

The values of heating or cooling include the following. One must put the specific
thermal power (W/m2) component and radiant temperature values for which the process
begins and ends. In this case, there has been nothing since the emissions in question does not
have such means. These values apply to the whole building and can be changed later in the
description of each area [38].

Other values of thermal power for people, accessories, and lighting include the
following. The lighting can be managed according to the brightness outside. Even in this
case, it was not included at all, because it was not present in the greenhouse test. These values
apply to the whole building and can be changed later in the description of each area.

The values of external shading projections for each exterior wall oriented include the
following. These projections are divided between the top or side windows. The greenhouse
has no such means of external shading.

The values of shading means for shading furniture inside or outside each exterior
wall oriented include the following. Their operation is controlled according to the brightness
outside. They can also be inserted values for maximum shading external and internal
components.

In the window on the last step, we must not put anything but only to confirm data. At
this point, the software creates a description of the building in a data file (∗.blinds), opens
TRNBuild and translates the data file formats needed for the simulation (.bld and .Trn),
and finally create a simulation project automatically saving a file (.TMF) and opens in
the Simulation Studio. At this point, it is already possible to test the project by running a
simulation.

This procedure simplifies the model construction, since the opening of the Simulation
Study of climatic data processor [39] (Type 109) is already connected to the components of
solar radiation, air temperature, psychrometric data processor, and these in turn are related
to the greenhouse. It is also established a conversion system orientation of the greenhouse
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(Turn) which is connected to the processor of climatic data for the management of the
greenhouse, and they are designed to control artificial lighting and natural ventilation related
to each pavilion. There are no regulators of heating and cooling because they were not
expected during project creation.

After creating the preliminary draft, changed data is placed within the individual
components of the Simulation Study that those inside the TRNBuild were opening directly
from the icon building. This work is necessary because the description of the walls and
windows of the building is set automatically to a dwelling and not for a greenhouse; in
addition, there will be no roof, let alone the calculations of the radiation incident on the roof
itself.

To change the initial project, it was started by a description of the greenhouse through
the opening of TRNBuild. Through dialog boxes, it was done by adding the orientation of
the water and the software automatically included the presence of cover. So, we changed the
descriptions of each area. We changed the volume of each zone to also consider the space
under the foot and have changed the properties of building walls to fit with those of the
greenhouse test [40].

It should be noted that despite the walls and ground that the greenhouse comprises,
besides the metal structure, through the windows, they were not included in the description
of the external walls but in the windows. This is because the lighting calculations are
performed inside the greenhouse through the indices of transmission of solar radiation of
their windows, while the walls are not done as thoroughly described in the paragraphs
relating to optical properties and thermal windows. Setting windows as external walls would,
therefore, lead light inside the greenhouse.

That said, in describing the external walls and ground are included the values of the
metal structure. To this end, we created a new type of material (galvanized steel), and its
geometric and thermodynamic data are reported by the manufacturer.

Even the windows have created a new type that reflects that of a single-glass
greenhouse. The type and properties of glass were in the library of the program, but it was
necessary to correct the size and relationship frame/window (the area of the casing split
window area) [41].

Regarding the “wall” soil, values of the different layers were included that make up
the ground as instructed by the owners of the greenhouse working to run the nursery.

The “wall” soil can also be treated as wall bound (boundary) or linked to soil
temperature simulator creating an input to the Type 56.

For each wall must be shown the value of GEOSURF, which may be a fixed value
(automatically set as the preliminary description) or an input or a tab. Given the extreme
importance that the radiation in this study, it was decided to link data on areas of direct
radiation generated by the Type 109 as input to each wall (Figure 2) where weather date:
weather generator, Psychrometrics: processor psychrometric, Sky Temp: CPU temperature
sky, Radiation: radiation converter, Greenhouse: Greenhouse (Type 56), Nat. Vent. 1 and 2:
controllers of ventilation, Turn: unit converters, and Charts: Online Plotter.

For each wall must be shown the value of GEOSURF, which may be a fixed value
(automatically set as the preliminary description) or an input or a tab. Given the extreme
importance of the radiation in this study, it was decided to link data on areas of direct
radiation generated by the Type 109 as input to each wall.

For a correct simulation of humidity inside the greenhouse, one must consider the
input of water due to transpiration of plants. Since the calculation of the transpiration of
plants is extremely complex, models should be entrusted to a specific type to run which is
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Figure 2: Graphic display of the project.

not one of those available in the program. To simplify the introduction of these constants of
transpired water found in the bibliography, the constancy of these values depends on the
type of nursery practice and short cycle of the plants.

After finishing the detailed description of the greenhouse, we saved the changes and
updated the list of variables (inputs) of the Type 56. This helps to find new items to be served,
on the data of solar radiation incident on the slopes of the greenhouse [42].

These data were to be created, however, the Type 109 by inserting two new surfaces
on which to assess the components of the radiation, further defining their azimuth and
inclination (which is that of water). So, by this component, outputs are automatically
generated to ground, which must be connected to the component “Radiation” and then to the
greenhouse. Even through the component “Radiation” was necessary to arrange the transfer
of this information by creating input and output.

3.2. General Mathematical Description of the Thermal Model

The general case, which does not include the simplified model of the heating and cooling
equipment, is presented first. If separate equipment components are used, they can be
coupled to the zones as either internal convective gains or ventilation gains [43]. Following
this, the simplified method of providing heating and cooling equipment within the TYPE 56
component is described.

Another section will cover the use of a simulation timestep that is not equal to the
time base on which the wall transfer function relationships are based. Finally, descriptions
of the optical and thermal window model, the way in which solar and internal radiation are
distributed within each zone; the moisture balance calculations and the integrated model for
thermo-active walls are given (see Figure 3).
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Figure 3: Interzonal air change, cross ventilation, and ventilation circle.

3.2.1. Thermal Zone

The building model in TYPE 56 is a nongeometrical balance model with one air node per
zone, representing the thermal capacity of the zone air volume and capacities which are
closely connected with the air node (furniture, e.g.) [44]. Thus, the node capacity is a separate
input in addition to the zone volume.

Convective Heat Flux to the Air Node

Qi = Qsurf,i +Qinf,i +Qvent +Qg,c,i +Qcp lg,i, (3.1)

where Qsurf,i = convective heat flow from all inside surfaces, Qsurf,i = Uw,i ∗Aw,i(Twall,i − Tair),
Qinf,i = infiltration gains (air flow from outside only), Qinf,i = V ∗ ρ ∗ cp(Testerna − Tair), Qvent

= ventilation gains (air flow from a user defined, source like an HVAC system), Qvent = V ∗
ρ ∗ cp(Tventilation,i −Tair), Qg,c,i = internal convective gains (by people, equipment, illumination,
radiators, etc.), Qg,c,i = [kJ/h], Qcp lg,i = gains due to (connective) air flow from zone i or
boundary condition, and Qcp lg,i = V ∗ ρ ∗ cp(Tzone,i − Tair).

Coupling

The coupling statement allows the definition an air mass flow a zone receives from another
zone, considered as a heat flow from or to the air node. The statement does not automatically
define the air flow back to the adjacent zone as would occur in an interzonal air exchange
[11]. To consider this return flow, the corresponding coupling must be defined in the adjacent
zone to receive the same air flow in return. The reason for this convention is to allow the user
to describe cross ventilation or a ventilation circle within 3 or more zones (thermosyphon
through a 2-story winter-garden, e.g.).
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Figure 4: Radiative energy flows considering one wall with its surface temperature node.

Note: There is no air balance check in TYPE 56. The user can empty or overload a zone by
couplings. We are sure that the specified air flows into a zone by coupling, ventilation, and
infiltration are physically meaningful (see Figure 5).

3.2.2. Radiative Heat Flows (Only) to the Walls and Windows

Qr,wi = Qr,wi +Qg,r,i,wi +Qsol,wi +Qlong,wi +Qwall-gain, (3.2)

where Qr,wi = radiative gains for the wall surface temperature node [kJ/h], Qgr,i,wi =
radiative zone internal gains received by wall [kJ/h], Qsol,wi = solar gains through zone
windows received by wall [kJ/h], Qlong,wi = long-wave radiation exchange between this wall
and all other walls and windows (εi = 1) [kJ/h], and Qwall-gain = surface or window wall the
to flow heat specified user [kJ/h].

In the following subsections, [9], the expressions used for the calculation of these
energy quantities are given. The procedures for calculating floating temperatures and energy
demands follow.

3.2.3. Integration of Walls and Windows

Figure 5 shows the heat fluxes and temperatures [10] that characterize the thermal behavior
of any wall or window. The nomenclature used in Figure 4 is defined as follows: Ss,i =
radiation heat flux absorbed at the inside surface (solar and radiative gains), Ss,o = radiation
heat flux absorbed at the outside surface (solar gains), qr,s,i = net radiative heat transfer with
all other surfaces within the zone, qr,s,o = net radiative heat transfer with all surfaces in view
of the outside surface, qw,g,i = user defined heat flux to the wall or window surface, qs,i =
conduction heat flux from the wall at the inside surface, qs,o = conduction heat flux into the
wall at the outside surface, qc,s,i = convection heat flux from the inside surface to the zone air,
qc,s,o = convection heat flux to the outside surface from the boundary/ambient, Ts,i = inside
surface temperature, Ts,o = outside surface temperature, Ti = temperature of zone i (air node),
and Ta,s = temperature of ambient air at the outer boundary of surface.
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Figure 5: Surface heat fluxes and temperatures.

Table 2: Example wall for calculate the transfer function coefficient.

Material data Thickness [m] Conductivity
[kJ/h m K]

Capacity
[kJ/kg K]

Density
[kg/m3]

Concrete 0.025 7.56 1.0 2400
Mineral wool 0.08 0.144 1.0 40
Gypsum 0.02 2.52 1.0 1400

The walls are modelled according to the transfer function relationships of Mitalas and
Arseneault defined from surface to surface. For any wall, the heat conduction at the surfaces
are

q̇s,i =
nbs∑

k=0

bksT
k
s,o =

ncs∑

k=0

cks T
k
s,i =

nds∑

k=1

dks q̇
k
s,i,

q̇s,0 =
nas∑

k=0

aksT
k
s,o =

nbs∑

k=0

bks T
k
s,i =

nds∑

k=1

dks q̇
k
s,o.

(3.3)

3.2.4. Transfer Function Method by Mitalas

The method of the transfer function or response factors can be described as the method to
tell the “thermal history” of the wall [7]. The wall is considered as a black box. The number
of timesteps (k) related to the time base (defined by the user) shows whether the wall is a
heavy wall with a high thermal mass (k 20) or if only a few timesteps have to be considered
to describe the thermal behavior of this wall. If the time base of the considered wall is higher
than the time constant, the calculation of the Transfer-function matrix coefficients is stopped.
Therefore, such a “thin” wall can be replaced by a resistance definition neglecting the thermal
mass. As an example, Figure 6 shows the different material layers of a wall.

The wall example consists of three layers with concrete, mineral wool, and gypsum
from outside to inside (see Tables 2 and 3).



18 Mathematical Problems in Engineering

25 mm 20 mm

80 mm

Gypsum

Concrete
Mineral wool

Ts,o

Ts,i

q̇s,o

q̇s,i

Figure 6: Real wall and black box model of the wall.

Table 3: Thermal conductance, U = 1.76429 KJ/h m2 K; k-Wert = 0.45239 W/m2 K.

Transfer function coefficients
K A B C D

0 3.0402072E + 01 8.6597596E − 01 6.2473097E + 01 1.0000000E + 00
1 −2.8791436E + 01 8.7958309E − 01 −6.1044043E + 01 −5.5725114E − 03
2 1.4382785E − 01 8.9032318E − 03 3.2541274E − 01 1.0083948E − 07
3 −1.0589132E − 06 4.0042651E − 07 −4.7183532E − 06
SUM 1.7544627E + 00 1.7544627E + 00 1.7544627E + 00 9.9442759E − 01

Using the transfer function method, the TRNBUILD program calculates the transfer
function coefficients, listed below for the example wall.

For the test wall, the coefficient table looks like that in Table 3. In addition to the
transfer function coefficients, the listing contains a calculation of the heat conduction value
U of the wall construction and the total heat transfer coefficient k considering a constant
combined (convective + radiative) heat transfer ( i, o) for the inside and outside surface.

3.2.5. The Long-Wave Radiation

The long-wave radiation exchange between the surfaces within the zone and the convective
heat flux from the inside surfaces to the zone air are approximated using the star network
given by Seem [3] and represented in Figure 7. This method uses an artificial temperature
node (Tstar) to consider the parallel energy flow from a wall surface by convection to the
air node and by radiation to other wall and window elements. Comparisons to the detailed
building model JOULOTTA from the University of Lund, Sweden, done by S. Holst, ZAE
Munich, show a good agreement for the surface temperatures. A single node model using a
combined convective and radiative heat transfer coefficient shows much higher differences
(IEA Task 13 report)

RSTAR,i = f(αi, ASurf,i) =
1

Qsurf,i
(TStar − Ti). (3.4)
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Figure 7: Star network for a zone with three surfaces.

Methods to calculate the resistances Requiv,i and Rstar,i can be found in reference. Area
ratios are used in these calculations to find the absorption factors between all surfaces.
The star temperature can be used to calculate a net radiative and convective heat flux from
the inside wall surface

q̇comb,s,i = q̇c,s,i + q̇r,s,i, (3.5)

then,

q̇comb,s,i =
1

Requiv,iAs,i
(Ts,i − Tstar), (3.6)

where qcomb,s,i = combined convective and radiative heat flux and As,i = inside surface area.
For external surfaces the long-wave radiation exchange at the outside surface is

considered explicitly using a fictive sky temperature, Tsky, which is an input to the TYPE
56 model and a view factor to the sky, fsky, for each external surface. The total heat transfer
qcomb,s,i is given as the sum of convective and radiative heat transfer

q̇comb,s,o = q̇c,s,o + q̇r,s,o, (3.7)
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with,

q̇c,s,o = hconv,s,o · (Ta,s − Ts,o),

q̇r,s,o = σ · εs,o ·
(
T4
s,o − T4

fsky

)
,

Tfsky =
(
1 − fsky

)
· Ta,s + fsky · Tsky,

(3.8)

where qcomb,s,o = combined convective and radiative heat flux to the surface, qc,s,o = convective
heat flux to the surface, qr,s,o = radiative heat flux to the surface, hconv,s,o = convective heat
transfer coefficient at the outside surface, fsky = fraction of the sky seen by the outside surface
(for a vertical wall with no buildings nearby, a reasonable value for fsky is 0.5. If there are
buildings in front of the wall obstructing the view of the sky, the value for fsky would be
lower than 0.5. For a horizontal roof with only the sky in view, fsky would be 1.0), Tsky =
fictive sky temperature used for long-wave radiation exchange, εs,o = long-wave emissivity
of outside surface (ε = 0.9 for walls, value read from window library for windows), and σ =
Stephan-Boltzman costant.

Energy balances at the surfaces give

q̇s,i = q̇comb,s,i + Ss,i + Wall-gain,

q̇s,o = q̇comb,s,o + Ss,o.
(3.9)

For internal surfaces, Ss,i can include both solar radiative and long-wave radiation generated
form internal objects such as people or furniture.

Wall-gain is a user-defined energy flow to the inside wall or window surfaces. It can
describe solar gains changing during the day due to different sun positions or might be used
as a simple way to model a floor heating or a ceiling cooling system. For external surfaces,
Ss,o consists of solar radiation only.

3.2.6. Infiltration, Ventilation, and Convective Coupling

Infiltration and ventilation rates are given in terms of air changes per hour for each zone.
The mass flow rate is the product of the zone air volume, air density, and air change rate.
Infiltration occurs always from outdoor conditions, while ventilation occurs from a specified
(possibly variable) temperature. Equal amounts of air are assumed to leave the zone at the
zone [45] temperature. The energy gains to any zone i due to infiltration and ventilation are

Q̇inf,i = ṁinf,iCp(Ta − Ti),

Q̇v,i =
n vent∑

k

ṁv,k,iCp(Tv,k − Ti),
(3.10)

where minf,i = mass flow rate of infiltration air, mv,k,i = mass flow rate of ventilation air
of ventilation type k, Cp = specific heat of the air, Tv,k = temperature of ventilation air of
ventilation type k, and Ta = ambient air temperature.
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For each wall or window separating zones of floating temperature or each wall having
a known boundary condition, it is possible to specify a convective coupling. This coupling is
the mass flow rate that enters the zone across the surface. An equal quantity of air is assumed
to leave the zone at the zone temperature. The energy gain due to the convective coupling is
the sum of all such gains for all walls or windows in the zone

Q̇cp lg,i =
adj zones∑ surfaces sito j∑

ṁcp lg,sCp

(
Tj − Ti

)
+ · · · +

Known bound∑
ṁcp lg,sCp(Tb,s − Ti), (3.11)

where mcp lg,s = the mass flow rate of air entering zone i across walls or windows.

3.2.7. Distribution of Solar Radiation

The incoming (primary) direct solar radiation is distributed according to the distribution
coefficients (GEOSURF) defined in the building description. These values are distribution
factors related to the total direct solar radiation entering the zone and not related to a surface
area. The sum of GEOSURF values given for all inside surfaces of a zone should sum up to
1 at all times. The fraction of incoming direct solar that is absorbed by any surface i is given
by the product of solar absorptance s value times the GEOSURF value given for this surface
s. If the GEOSURF values for all surfaces of a zone are set to zero, all direct solar radiation
entering this zone is treated as diffuse radiation (like in TRNSYS 14.2) and distributed with
the absorptance weighted area ratios described below. Note: as for the distribution of primary
direct solar radiation there is no dependence on the surface area, it is possible to concentrate
all direct solar to a small surface by giving it a high value of GEOSURF. This would result in
very high surface temperatures and possible.

Instabilities in Solving the Energy Balance Equations of TYPE 56

After passing the second internal window, all solar radiation is treated as diffuse radiation.
To pass direct solar radiation over several zones like in a atria from the top zone to the middle
zone to the bottom zone a fictive window between top and bottom zone might be used. The
incoming diffuse solar radiation and reflected primary direct solar radiation is distributed
according to absorptance-weighted area ratios. The fraction of diffuse solar that is absorbed
by any surface s is

fdif,s,s =
αsAs

∑surfaces(1 − ρd,s
)
As

, (3.12)

where αs = the solar absorptance of the surface (defined in the building description), and
ρd,s = the reflectance for diffuse solar of the surface for wall surfaces where τs = 0, ρd,s =
(1−αs). For windows, the transmission losses are considered by τs = (1−αs −ρd,s), and ρd,s =
reflectance for diffuse solar from inside.
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3.2.8. Distribution of Long-Wave Radiation

All surfaces are assumed to be black for long-wave radiative exchange and radiative internal
gains. These gains are distributed according to area ratios. The fraction of the internal
radiative gains for any zone that is adsorbed by a surface s is

fl,s =
As

∑surfaces As

. (3.13)

3.2.9. Moisture Balance

In parallel with the sensible energy balance calculation, TYPE 56 calculates a moisture balance
considering free floating humidity ratios or humidification/dehumidification to a certain
setpoint. In this case, TYPE 56 calculates the latent load. There are two models for the
calculation of the moisture balance available in TYPE 56. The first model considers sorption
effects with an enlarged moisture capacity of the zone air the second, more sophisticated,
model offers a surface and a deep moisture buffer in the walls of the zone.

3.2.10. Effective Capacitance Humidity Model

In the first model, the buffer effect of adsorptive and desorptive materials, soil areas, or plants
is considered by an effective moisture capacitance which is defined as the product of the zone
air mass and a moisture capacitance ratio [4]

Meff,i = Ratio ∗Mair,i, (3.14)

where Meff,i = effective moisture capacitance of the zone, Mair,i = the mass of air in the zone,
Ratio = multiplication factor generally in the range of 1 to 10, and A moisture balance for any
zone results in the following differential equation.

Meff,i
dωi

dt
= ṁinf,i(ωa −ωi) +

n vent∑

k

mv,k,i(ωv,k,i −ωi) +Wg,i +
surfaces i−j∑

mcp lg,s
(
ωj −ωi

)
, (3.15)

where: ωi = the humidity ratio of the zone, ωa = the ambient humidity ratio, ωv,k,i = the
humidity ratio of the ventilation air from ventilation type k, Wg,i = internal moisture gains,
and ωj = the humidity ratio of an adjacent zone j.

In order to simplify the solution of the simultaneous set of differential equations, the
values of ω at the end of the previous timestep are used in the above expression. Subroutine
DIFFEQ is then used to independently solve for the final and average values of the humidity
ratio over each timestep for each zone. If the average humidity ratio of the zone falls below
or rises above a setpoint for humidification or dehumidification, then latent energy is added
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or removed to maintain the humidity ratio at the setpoint. It is assumed that the change in
zone humidity ratio occurs instantly so that ωi = ωi. In this case,

Qlat,i = hv
[
ṁinf,i

(
ωa −ωreq,i

)
+

n vent∑

k

mv,k,i

(
ωv,k,i −ωreq,i

)
+Wg,i

+
surfaces i−j∑

mcp lg,s
(
ωf,i,M −ωi,s,M

)
−
Meff,s

(
ωreq,i −ωi,M

)

Δt

]

,
(3.16)

where Qlat,i = latent energy removed (+dehumidification, −humidification), hv = the heat of
vaporization of water, and ωreq,i = the setpoint for humidification or dehumidification

Between the two setpoints, the humidity ratio is free floating.

3.3. Simulation Result

With the model designed, it is able to simulate the parameters of the greenhouse climate,
check the energy required for conditioning the glass or the ideal conditions for the cultivation
of a species. Thus, in the planning stages, you can optimize the construction parameters of
the greenhouse according to the following:

(i) climatic growing demands identified,

(ii) the climatic parameters of the geographical [46].

With simulation one can find the best building materials for the needs of crops. In particular,
the following were simulated:

(i) solar radiation inside a function of incident radiation,

(ii) internal temperature in the outside temperature,

(iii) relative humidity.

3.3.1. Simulation of Annual Solar Radiation Inside the Greenhouse (W/m2)

The solar radiation arrives in the greenhouse and affects the inside temperature.
In particular, the characteristics constructive of the greenhouse is 97% of the radiation

incident reaches the ground and increases the internal temperature (Figure 8).
In Figure 9, we have compared the solar radiation inside with the incident one [47].
Checking on the low resistance of the solar radiation structure, which results to be an

advantage during the winter months, with the only problem of a high energetic consumption
for the cooling system.

During the cold months, the internal radiation is almost equal to the outside, while in
the summer transmission of solar radiation falls on the most important reflection of the glass.
This is due to the increased presence of direct radiation and different angles of incidence.

3.3.2. Simulation of Annual Temperature

Blue is outdoor temperature; indoor temperature is red (see Figure 10). During the winter
months, the temperature is almost identical to the external light and low thermal capacity of
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Figure 8: Simulation of annual solar radiation inside the greenhouse (W/m2).
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Figure 9: Simulation of annual solar radiation inside the greenhouse (W/m2) in blue and external red.

the structure (infiltration losses of 1/h). During the warm months, open windows operated
with a controller on/of (Type 2) to open windows when the temperature exceeds 30 degrees
and provides an air supply of 20/h.

3.3.3. Simulation of Annual Relative Humidity (%)

In red and blue indoor humidity and external, the image is not very representative in the
sense that the evapotranspiration is considered constant throughout the year and added to
its average value, which is never verifiable as it varies from hour to hour and from day to
night, depending the size of the leaves of plants (see Figures 11 and 12).

It is therefore more appropriate to show the graph of a typical day summer crop of
tomatoes, with values of daily evapotranspiration inserted into a card.
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Figure 10: Simulation of annual temperature.
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Figure 11: Simulation of annual relative humidity (%).

During the month of June, we have compared the value of internal and external
humidity, with a result of superior humidity inside than outside, without considering the
evapotranspiration of the plants.

This parameter is important for the plant growth and requires a constant control.

4. Conclusions

TRNSYS software has demonstrated an extreme flexibility to allow development of the
project emissions. The construction of the model has been simplified by the procedures
explained in a comprehensive manner in the various manuals provided with the software
without showing any particular difficulties in communications between the constituent
subprograms.
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Figure 12: Simulation of relative humidity (%) inside (red) and outside (blue) emissions in the hottest day
of the year (July 27).

As for the light component of the simulations, the solution found to allow the passage
of long-wave radiation through the windows of the greenhouse modeled as “windows” has
perhaps shown a factor critical TRNBuild, or if we do not have the model for reporting
light energy to the walls of buildings, this did not affect in any way the results. Moreover,
this solution has improved the simulation of moisture for the cold bridge effect. From this
model, it might be interesting to continue to work on projects for energy systems applied
to agriculture, being able to predict the indoor climatic conditions, and from this starting to
figure out which crops are actually achievable [6].

In addition, this program offers many opportunities to improve systems made:
insertion of cooling and heating, dehumidification, the total consumption of electricity and
machinery for the exercise of individual farming, the heat emitted the various electrical
components inside the greenhouse, and everything else necessary to simulate the best
situations in the various case studies. In order to build easily new components (type) on
variables purely “agricultural” as the evaporator plant transpiration of water from soil.
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A micro comb resonator loaded by alternating electric field is modeled by finite element method,
The damping is analyzed by both Couette flow model and Stokes flow model. Structure faults are
researched its effects on the dynamic characteristics of the micro comb resonator. The result shows
that adhesion fault makes the resonance frequency higher and sensitivity reduction, while crack
fault debases the resonance frequency and amplitude. When the crack is located near the end,
the stress concentration at the crack location is highest, which is easy to induce the support beam
broken.

1. Introduction

With the fabrication processes trending to be more mature, the requirement of reliability and
production ability of MEMS increases more. Relative to design, the problems during MEMS
fabrication process, especially the problems of defect and fault are serious, which will been
the bottleneck of MEMS application. So, simulations and experiments of the movement for
microdevices with defects are necessary. Using the stable model of fault and testing method
to detect the fault, the quality and reliability of MEMS products can be improved. There
are many sources for MEMS defects, such as particle contaminants, adhesion, undersigned
bend, insufficient or excess etch, sidewall inclination, and notching [1]. In recent years, the
fault simulation of MEMS has been investigated by some researchers. An MEMS affected
by particulate contaminations was simulated by Deb and Blanton, the relationship between
defect location and performance parameter of structure was analyzed [2]. The structure fault
of MEMS was also modeled and simulated by Reichenbach et al. [3]. The broken beam fault
and unwanted anchor fault of a micromirror were simulated by Chen et al. [4]. The fault-
based testing technology for MEMS was illustrated by Mir et al. [5].
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Electrostatic-comb structure has been successfully applied to many microsystems such
as microsensors, microaccelerometers, microdrives, due to its simple structure and superior
performance [6]. The motion of the devices is greatly influenced by fabricating error, variety
of parameters, and deformation as well, especially the faults of structure, which make the
kinetic accuracy become reduced [7–9]. In this paper, a dynamic model is built to research the
dynamic performance of microcomb resonator under alternating electric field, in which both
Couette flow model and Stokes flow model are applied to the damping. Structures with point
adhesion or beam crack are analyzed for the dynamic characteristics using finite element
method.

2. Dynamic Model of a Microcomb

A typical microcomb resonator usually has two sets of fingers, the one which is connected to
the substrate is called fixed fingers (or stationary electrode), and the other which is released
from the substrate is called movable fingers (see Figure 1). When two different voltages are
applied to these two sets of fingers, the resulting electrostatic force drives the movable fingers
toward or apart from the fixed ones. When an alternating voltage is applied, the movable
electrode oscillates under the electrostatic force and elastic restoring force, which can be
designed for a resonator.

Figure 1 shows the schematic of a typical microresonator. Its finite element dynamic
equation is:

[M]{ü} + [C]{u̇} + [K]{u} = {F} sinωt (2.1)

where [K], [M] is the structural stiffness matrix and mass matrix, which can be obtained by
finite element method. [C] is the air damping matrix, which will be derived later. {u} is the
node displacement vector. {F} is the electrostatic force, which can be derived by the finite
element method of electrostatic field. ω is the alternating frequency of electric field.

The electrostatic potential in uniform medium has

∇2V = 0 (2.2)

where V is the distribution of electric potential. Equation (2.2) is called Laplace Equation. In
the Cartesian coordinate, (2.2) can be write as

∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= 0 (2.3)

when the V is solved from (2.3), the electric field intensity vector {E} can be attained from:

{E} = −∇V. (2.4)

Then, the electrostatic force on the movable finger has:

F = ε
∫

s

(∇V )2ds (2.5)
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Figure 1: Schematic of microcomb resonator.

where S is the surface of movable finger, and the ε is dielectric coefficient of air, which is
8.854 × 10−6 pF/μm.

The finite element method is applied to analyze the electrostatic field and comb
structure. 4-node tetrahedral elements are used to generate meshes. For electrostatic field,
the electric potential V at any point can be written as:

V = [N]T [Ve] (2.6)

where [N] is the shape function matrix. [Ve] is the node electric potential. According to the
principle of minimum potential energy, we have

{
∂U

∂Ve

}
= 0 (2.7)

where

U =
1
2
ε

∫∫∫
(∇V )2dx dy dz. (2.8)

Substituting (2.6) into (2.8), combining with (2.7), adding the electric field boundary
condition, the {Ve} can be solved. Then from (2.5) and (2.6), the electrostatic force at any
point can be obtained. For the comb structure, 4-node tetrahedral elements are also used.
The electrostatic force is substituting into (2.1), then the subspace iterate method was used
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Stokes flow damping

u = u0 sin ωt

Couette flow damping

Substrate
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Figure 2: The sketch of damping model.

to obtain the natural frequency and the Newmark integral method was used to obtained
vibration response.

Air damping is crucial to the dynamic characteristics of microcomb resonator. For the
laterally oscillating resonator, the slide film damping is more significant than the squeeze film
damping. So, only the slide film damping is considered here. The air damping of the comb
can be divided into three parts, air damping layer (a) between the movable fingers and the
base, (b) between the fingers and (c) above the movable fingers. Figure 2 shows the sketch of
damping model. For the (a) and (b), air layers are only several microns, so the Couette flow
model was applied [10, 11], the damping coefficients can be written as,

Ca =
μA

d
,

Cb =
μAc

g
.

(2.9)

Because the Couette flow model does not take the media inertial effects into consideration.
It can be used under the assumption that the feature distance δ =

√
2μ/ρω is much larger

than the gap d between the plate and the substrate [12]. Where μ is viscosity coefficient of air,
μ = 0.185 × 10−10 kg/s/μm, ρ is the density of air, ρ = 1.29 × 10−18 kg/μm3, h = 2μm in this
paper. So, it can be obtained that the vibration frequency f = ω/2π should be much less than
1 × 106 Hz.

For the (c), air layer is relative thick, so Stokes flow model was applied [11]. The damp
coefficient was

Cc = μβA
sinh

(
2βh

)
+ sin

(
2βh

)

cosh
(
2βh

)
− cos

(
2βh

) ,

β =

√
πf

ν

(2.10)

where μ is viscosity coefficient of air, μ = 0.185 × 10−10 kg/s/μm, f is vibration frequency of
the resonator, ν is motion viscous ratio, ν = 0.157 × 10−8 μm2/s, A is the lower surface area
of the movable finger structure, Ac is the sum of the fingers’ side face area, d is the clearance
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Y
X

Figure 3: The first vibrational mode of microresonator.

between the microcomb and the base, g is the clearance between the fingers, h is the thickness
of the finger. Then the whole damping is the summation of the three parts:

C = Ca + Cb + Cc =
μA

d
+
μAc

g
μβA

sinh
(
2βh

)
+ sin

(
2βh

)

cosh
(
2βh

)
− cos

(
2βh

) . (2.11)

3. Dynamic Characteristics Analysis of
Faulted Micro-Comb Resonator

Movable structure adhesion and support beam crack are two typical faults of microcomb
resonator. Adhesion indicates the movable part fixed, because the clearance in MEMS is very
small, during the fabrication process, the movable part is easy to be blocked and stuck by
microparticle mass, which leads to the needless structure mounting. The crack usually occurs
in the support beam or fingers, which is induced by residual stress or repeated motion. Other
defects, such as the mass and stiffness change or asymmetric distribution of the support
beam caused by contamination during the fabrication process, perhaps does not bring on
the beam cracks or broken, but affect the dynamic performance of the MEMS. In this paper,
two typical faults are analyzed their effects on the dynamic performance of microcomb
resonator.

3.1. Natural Characteristics of the Micro-Comb Structure

The structural parameters used in this paper are shown in Table 1. The dynamic performance
of a microcomb includes natural frequencies, vibration amplitude, response time, quality
factor, and so on. From the homogeneous equation of (2.1), by subspace iterative method,
the first natural frequency and mode can be obtained, which is the structure’s sensitivity
work mode. The first natural frequency is fn = 11881 Hz, and the 1st mode is shown in
Figure 3. For this structure, the damping coefficient can be obtained from (2.11), which is
C = 1.76 × 10−7 kg/s at resonator frequency.

When offset voltage Vp = 50 V and driven alternating voltage Vd = 25 sin(2πft)V is
loaded, where f is the driving frequency, the amplitude frequency response characteristics
are analyzed, the maximal amplitude is Am = 12.785μm at natural frequency fn =
11881 Hz. The sensitivity of microcomb resonators is defined as the ratio of vibration
amplitude of structure and the driven voltage, so at the natural frequency, the sensitivity
s = 0.5114μm/V.



6 Mathematical Problems in Engineering

Table 1: The structural parameters of microcomb resonator.

Parameter Size

Finger gap: g/μm 2.88

Finger length: l/μm 40.05

Finger width: w/μm 2

Gap of comb: c/μm 20.61

Beam length: bl/μm 151

Beam width: bw/μm 1.1

Thickness: h/μm 1.96

Area of the lower surface of the movable Finger structure: A/μm2 5.1 × 103

Sum of the fingers’ side face area: Ac/μm2 2.35 × 103

Substrate gap: d/μm 2

Truss length: tl/μm 78

Truss width: tw/μm 13

Support beam

Partical adhesion

BaseModelingZ
X

Fixed restriction

Figure 4: The model of adhesion fault.

3.2. Analysis of Particle Adhesion Fault

The most typical defect which can be encountered in the microcomb resonators is stiction
of the suspended beams to the substrate surface. Stiction can mostly occur during MEMS
processing (e.g., wet etching). During wet chemical etching, removal of a chip from the liquid
etchant often pulls suspended parts towards the substrate surface where they remain stuck
due to capillary forces and Van der Waals force. Once in contact, and even after the chip has
been dried up, suspended parts may remain stuck due to different types of adhesion forces.
In this case, the microresonator will be failure due to the movable part fixed. In this paper,
another adhesion case caused by the exterior particle is considered, which will not lead to the
failure of the resonator, so is easier to be neglected.

When the exterior particle comes into the structure, rests between the movable part
and the fixed part, which will lead to the point adhesion due to the molecular force and so
on. Electric particle will cause the resonator short circuit and failure. Insulative particle may
not lead the structure entire failure, but may cause the dynamic characteristics change. In this
section, the adhesion fault due to insulative particle is analyzed, we assume the particle is
rigid, the movable part cannot move relative to the substrate at the adhesion point. Figure 4
shows the simple model of the resonator with an adhesion point.
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Figure 5: Natural frequencies change with the adhesive locations.

Support beam of the resonator is a folded symmetric structure, where B1 and B2 are
two parallel beams of them, as shown in Figure 1(b). One end of B1 is fixed on the substrate.
The adhesion at different location of B1 or B2 has different effect on the natural characteristics
of the resonator.

Figure 5 shows that the natural frequency change with the location of adhesion, the
abscissa is relative location of the adhesion. Where define relative location of adhesion at
B1 beam as the ratio of distance from adhesion to the fixed end and the length of B1, and
the relative location at B2 is the ratio of distance from adhesion to the folded end and
the length of B2, as shown in Figure 1(b). It can be seen from Figure 5 that the natural
frequency becomes higher due to the adhesion fault, and increases with the adhesion location
ratio growing. Adhesion at B2 has more greatly effect on natural frequency than adhesion
at B1. As the relative location ratio at B2 increases, the natural frequency increases more
quickly.

Because the adhesion fault is difficult to be predicted in advance, the loaded voltage
is usually kept on the faultless resonant frequency fn = 11881 Hz, which is called operating
frequency. In case the adhesion fault occurs, driving frequency does not change, then the
vibration amplitude (working amplitude) changes, lead to reduction of the sensitivity.

When offset voltage 50 V and driven alternating voltage of amplitude 25 V and
frequency 11881 Hz is loaded, the relationship of sensitivity and the location of adhesion
are shown in Figure 6. It can be seen that the adhesion fault makes the sensitivity lower. As
the adhesion relative location ratio at B1 increases, the sensitivity reduces quickly. Adhesion
fault at B2 makes the sensitivity reduces too, obviously the resonator is not working on the
resonant state here. When the adhesion is located at 10% of B1, sensitivity s = 0.4144μm/V,
however when it is located at 70% of B2, the sensitivity has reduced to s = 0.0032μm/V.
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Figure 6: Sensitivity change with the adhesive locations.

3.3. Analysis of the Beam Crack Fault

Crack is a common fault in MEMS. Some microcrack influences not only on the structure
performance, but also results in the structure failure when the crack expands with the motion.
Beam structure is often used in microresonator. A crack could easily occur due to the stress
concentration during fabrication process. In addition, during DRIE process, if the impurity
adheres to the etching model, mass lack could occurred, which will cause such faults as crack
or perforation.

In this paper, we only analyzed the support beam crack fault, because the support
beam stiffness has crucial influence on the dynamic performance of the resonator. The
beam crack is simplified as the square groove here. Based on Saint-Venant’s Principle,
the width of crack is set to 0.1μm, which is much smaller than the length of support
beam. The depth of crack is set to half of the thickness of the beam. The FEM mesh of
cracked beam is shown in Figure 7. 4-node tetrahedral elements are applied here. Figure 8
shows the relationship of resonant frequency and the crack location. The curve for B1
and B2 are similar. The crack causes the resonant frequency lower. The crack located
in the middle of B1 and B2 has fewer effect on the resonator frequency, but the crack
located near the end of B1 or B2 has more effect on it. The frequency for B2 crack is
somewhat higher than that in B1. Comparing with the adhesion fault, the beam crack
fault has smaller influence on the resonator frequency. Figure 9 shows the relationship of
sensitivity and the crack locations. It can be seen the crack fault causes the sensitivity to
be lower, especially for the crack near beam end. When the crack is located in 10% of
B1, sensitivity s = 0.5072μm/V, for crack located in 10% of B2, it is s = 0.5091μm/V.
Comparing with the adhesion fault, crack has smaller effect on the resonator’s dynamic
performance.
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Figure 7: Support beam crack model with FEM.
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Figure 8: Natural frequencies change with the beam crack locations.

However, crack could cause the stress concentration, sometimes makes the beam
broken, and leads to severity failure. Figure 10 shows the maximal stress along B1 and B2,
at different crack location. The maximal stress is almost at the crack location. When the crack
is located near the end, the maximal stress is highest, which is easy to cause the support beam
broken.

4. Conclusion

In this paper, a microcomb resonator with faults was simulated, air damping was considered.
The influence of faults on the dynamic performance of microresonator is analyzed. The results
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Figure 10: The maximal stresses change with the crack locations.

show that adhesion fault makes the frequency higher, while crack fault reduces the natural
frequency. Both faults reduce the sensitivity. The adhesion fault has more obvious effect on
the dynamic characteristics than the crack fault, However, if the crack is located near the end,
the stress concentration at the crack location is highest, which is easy to cause the support
beam broken.
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Nomenclature

[K]: Structural stiffness matrix
[M]: Structural mass matrix
[C]: Air damping matrix
{u}: Node displacement vector
{F}: The electrostatic force vector
{E}: Electric field intensity vector
ω: Alternating frequency of electric field
V : Electric potential
ε: Dielectric coefficient of air, pF/μm
μ: Viscosity coefficient of air, kg/s/μm
ρ: Density of air, kg/μm3

ν: Motion viscous ratio of air, μm2/s
f : Vibration frequency of the microresonator, Hz
A: The lower surface area of the movable finger structure, μm2

Ac: The sum of the fingers’ side face area, μm2

d: The clearance between the microcomb and the base, μm
g: The clearance between the fingers, μm
h: The thickness of the finger, μm
l: Finger length, μm
w: Finger width, μm
c: Gap of comb, μm
bl: Beam length, μm
h: Thickness of comb structure, μm
tl: Truss length, μm
tw: Truss width, μm
Vp: Offset voltage, V
Vd: Driven alternating voltage, V
Am: Maximal vibration amplitude, μm
s: Sensitivity of microcomb resonators, μm/V.
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The reasonability of artificial multi-point ground motions and the identification of abnormal
records in seismic array observations, are two important issues in application and analysis of multi-
point ground motion fields. Based on the dynamic time warping (DTW) distance method, this
paper discusses the application of similarity measurement in the similarity analysis of simulated
multi-point ground motions and the actual seismic array records. Analysis results show that
the DTW distance method not only can quantitatively reflect the similarity of simulated ground
motion field, but also offers advantages in clustering analysis and singularity recognition of actual
multi-point ground motion field.

1. Introduction

Considerable research studies have shown that nonuniform ground motion input has a
significant influence on dynamic response of large scale structures [1, 2]. The influence of
multi-point ground motion must be taken into account when analyzing the seismic response
of large scale structures. Ground motion records from common stations only reflect one- or
multidimension vibration of sites, while multi-point ground motion fields are often obtained
from seismic arrays. For lack of actual records of seismic arrays, attenuation rules of actual
multi-point ground motion field are usually used to synthesize multi-point ground motions
for specific site conditions and distances. In this process, the traveling wave effect and
coherence of multi-point ground motions recorded in seismic arrays with various distances
are first analyzed, and then the coherence corresponding to various points are obtained
through statistical analysis. Finally, the method for synthesizing spatial ground motions
with the coherence effect and traveling effect of multi-point earthquake ground motions
considered can be established [3–5]. In this method, the variations of ground motions with
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Figure 1: Multi-point ground motion field simulated using actual initial phase.

site conditions and motion propagation can be controlled in a certain range in the extent
of engineering scales for both actual array records and artificially synthesized multi-point
earthquake ground motions. Multi-point ground motion field in the engineering scale may
have a certain degree of similarity. Moreover, if the site condition is homogeneous, the degree
of similarity will gradually decrease with the increase in distance [6].

Based on the knowledge that multi-point ground motion fields have similarity in
engineering scale, there are at least two issues that can be addressed by determining the
similarity of ground motions. First, the reliability of actual array records can be ensured.
Since all actual array records are obtained from ground motion recording instruments,
the reliability of records from all stations cannot be guaranteed in a particular triggering
earthquake. Due to equipment failure or equipment differences some station records may
be seriously distorted. When to use seismic array records for analyzing the propagation of
multi-point ground motions, the distorted data should be removed to ensure the reasonability
of array records and such distorted data can be excluded by using similarity test of actual
multi-point ground motions. Second, the reasonability of artificially synthesized multi-point
ground motions can also be tested. By judging whether the artificial multi-point ground
motion field is similar to actual ground motion field, the efficiency and rationality of the
synthesis method for multi-point ground motions can be tested.

For this reason, it is necessary to establish a standardized and efficient similarity
test method for multi-point ground motions. For similarity judgment of ground motions,
correlation coefficients are frequently used. However, correlation coefficients are mainly
defined as a measurement of linear feature of two variables, and they are not suitable for
similarity judgment between two sequences with nonlinear correlations. Spatial multi-point
earthquake ground motions are often influenced by site conditions, coherence effect and
traveling effect, therefore the use of the correlation coefficient is insufficient to reflect the
similarity of ground motions. Figures 1 and 2 show two sets of multi-point ground motions
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Figure 2: Multi-point ground motion field simulated using random initial phase.

synthesized using the trigonometric series method [7] with two different initial phase values.
For condition 1, the initial phase is the actual ground motion phase, and for condition 2,
the initial input phase is random. In both cases, the distance interval of synthesized ground
motions is 200 m. Figure 3 shows the correlation coefficients between the artificial ground
motion and the actual ground motions. For condition 2, due to the impact of the random
initial phase value, the nonlinear relationships among ground motions of various points are
more prominent, which indicates less correlations among various points. It is clear that in
condition 2 the similarity among multi-point ground motions is not correctly presented.

Similarity measurement of time series is an important problem in data mining.
By using the basic theory of similarity measurement, it not only can reflect the intrinsic
similarity of time series or eigenvectors but also can quantitatively evaluate their similarity
features. Similarity measurement has been an important tool in series clustering, pattern
matching, classification, rule identification and anomaly detection [8, 9]. Among the methods
commonly used for similarity measurement, the dynamic time warping distance (DTW)
method proposed by Berndt and Clifford [10] is the most widely used, which can effectively
determine the similarity between two series under the circumstances of shift and stretching
of amplitude, and the bending of time axis [11]. In this study, the DTW method is applied to
the similarity determination and singularity recognition of multi-point ground motions.

2. The Basic Principle of Similarity Measurement Method

In general, the similarity measurement between series means that a function Sim(X,Y ) can
be defined where X and Y are two different time series of the same type of data set. The
value of the function Sim lies in (0, 1], that is, the bigger the value is, the higher the similarity
degree between two series is, and vice versa. In particular, two series are completely similar
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Figure 3: Correlation coefficient of multi-point ground motion field simulated under different conditions.

when Sim = 1. For simple time series, the similarity measurement function can be represented
using correlation coefficients or cosine value between two series, while for the complex data,
it is difficult to accurately represent the similarity degree using above function. Therefore, the
similarity degree between the series is generally represented by defining a specific distance
between two series called similarity distance. There are several methods available to define
the similarity distance and the Minkowski distance is most frequently used, which is defined
as follows:

d(X,Y ) =

(
n∑

i=1

∣∣xi − yi
∣∣P
)1/P

. (2.1)

When P = 2, the distance between two series is called Euclidean Distance.
Referring to formula (2.1), if two series are equal, their distance is zero, which means

two series are completely similar. The larger difference between two series yields larger
distance and less similarity. When to calculate the Minkowski distance, it is required that two
series have the same length, the values of two series have point-to-point correspondence, and
the weight of each pair of difference is equal. Due to such a correspondence, the Minkowski
distance cannot be applied to the similarity measurement of complex series with shift and
stretching of amplitude. To solve this problem, the dynamic time warping distance method is
often used. In this method, the distance is designated to depict the greatest similarity between
series by calculating the minimum distance between them, which is defined as follows.

Let X(x1, x2, . . . , xn) and Y (y1, y2, . . . , ym) be two series with the length of n and
m, respectively, and an n × m matrix M can be defined to represent the point-to-point
correspondence relationship between X and Y , where the element Mij indicates the
distance d(xi, yj) between xi and yj . Then the point-to-point alignment and matching
relationship between X and Y can be represented by a time warping path W =
〈w1, w2, . . . , wK〉,max(m,n) ≤ K < m + n − 1, where the element wk = (i, j) indicates
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the alignment and matching relationship between xi and yj . If a path is the lowest cost path
between two series, the corresponding dynamic time warping distance is required to meet

DTW(X,Y ) = min
W

{
K∑

k=1

dk,W = 〈w1, w2, . . . , wK〉
}

, (2.2)

where dk = d(xi, yj) indicates the distance represented as wk = (i, j) on the path W .
Then the formal definition of dynamic time warping distance between two series is

described as

DTW(〈 〉, 〈 〉) = 0,

DTW(X, 〈 〉) = DTW(〈 〉, Y ) =∞,

DTW(X,Y ) = d
(
xi, yj

)
+ min

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

DTW(X,Y [2 : −]),

DTW(X[2 : −], Y ),

DTW(X[2 : −], Y [2 : −]),

(2.3)

where 〈 〉 indicates empty series, [2 : −] indicates a subarray whose elements include the
second element to the final element in an one-dimension array, d(xi, yj) indicates the distance
between points xi and yj which can be represented by the different distance measurements,
for example, Euclidean Distance. The DTW distance of two-time series can be calculated
by the dynamic programming method based on accumulated distance matrix [10], whose
algorithm mainly is to construct an accumulated distance matrix:

r
(
i, j
)
= d
(
xi, yj

)
+ min

{
r
(
i − 1, j

)
, r
(
i, j − 1

)
, r
(
i − 1, j − 1

)}
. (2.4)

Any element r(i, j) in the accumulated matrix indicates the dynamic time warping
distance between series X1:i and Y1:j . Series with high similar complexity can be effectively
identified because the best alignment and matching relationship between two series is
defined by the dynamic time distance.

3. Similarity Analysis of the Simulated Multi-Point Ground Motions

For structural dynamic analysis, artificial multi-point ground motion field plays a significant
role. Current methods of artificial ground motion mainly cover triangular series method and
Green function method [3]. According to the general rule of multi-point ground motion
field in engineering scale, the multi-point ground motion fields simulated using above
methods are of high similarity. Due to site effect, wave propagation and other factors,
multi-point ground motions often show relatively more complex nonlinear relationships
such as time shift and stretching. The correlation coefficient method shown in Figure 3
cannot accurately represent the similarity of simulated ground motions. For ground
motions at the points with different distances, the corresponding dynamic warping time
distances between them and the input ground motion can be calculated via the method



6 Mathematical Problems in Engineering

0
10

20
30

40
50

60
70
80
90

100

D
T

W

200 400 600 800 1000 1200 1400 1600 1800 2000
Distance (m)

Figure 4: The dynamic warping time distance between the points of the synthesized ground motion in
Figure 2 and the input ground motion.

discussed above. Figure 4 shows the dynamic time warping distance between the points
and the input ground motion under condition 2 (Figure 2). It can be seen that the
dynamic time warping distances between the points and input ground motion is basically
around 40, indicating that ground motions of the points have an identical degree of
similarity.

However, because different multi-point ground motion fields have different dynamic
time warping distances, the degree of similarity between ground motions of various points
cannot be intuitively presented. If a maximum distance (or lowest similarity) can be
approximately defined between the input ground motion and a assume time series, the
similarity degree of ground motions can be calculated numerically. That is to say, if regard
the dynamic time warping distance between a particular time series and the input ground
motion as a reference standard of maximum distance, the similarity degree of the particular
time series and input ground motion can be consider as zero. In this paper, according to the
basic understanding that the values of ground motion are not always maintained at the peak
value as time increasing, a particular time series can be approximately assumed whose values
are constantly the peak value of input ground motion as time increasing. If the dynamic
time warping distance between the particular series and the input ground motion is define
as D (the maximum distance), then according to the dynamic time warping distance d(i)
between the points and input ground motions, the approximate degree of similarity between
the points and input ground motions can be calculated as follows:

Sim(ai, a1) = 1 − d(i)
D

. (3.1)

Figure 5 shows the degree of similarity between the points of simulated multi-point
ground motion filed in Figure 2 and the input ground motion. By comparing with the results
of similarity degree of multi-point ground motion using correlation coefficient as shown in
Figure 3, it can be found the degree of similarity via dynamic warping time distance is more
reasonable.
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Figure 5: The similar degrees of similarity between the points of the synthesized ground motion filed in
Figure 2 and the input ground motion.
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Figure 6: Time history curve of El Centro NS.

4. Clustering Analysis and Singularity Recognition of
Multi-Point Ground Motions

More generally, for ground motions in an unknown multi-point ground motion field, if a
certain ground motion is seriously distorted, it can also be effectively identified using the
dynamic time warping distance. The DTW method provides a basis for clustering analysis
and singularity recognition of multi-point ground motion data. To validate the efficiency of
this method, the real ground motion (El Centro 1940) recorded at Imperial Valley, California,
USA is used whose time history of acceleration is shown in Figure 6.

Firstly, an experiment is performed using the artificially simulated ground motion
field with multi-point similarity. Figures 7 and 8 show the time-history curves of artificial
ground motions at some points as shown in Figures 1 and 2. By comparing the propagation
rule and waveform of El Centro NS and the artificial motions, we can see there are
obvious differences. If substitute El Centro wave for the original input seismic wave,
a multi-point ground motion field including artificial singular ground motion can be
established. Obviously, in this artificially synthesized ground motion field, El Centro
wave should be the singular seismic wave. Using the dynamic warping distance method,
the similarities of multi-point ground motion field in Figures 1 and 2 are calculated,
respectively, and the results are shown in Tables 1 and 2. It can be seen in both Tables
the dynamic warping distances between El Centro wave and all other points (indicated
in the table as bold characters) show consistent anomalies. It can be concluded that El
Centro is the singular seismic wave while the rest are in the same type of ground motion
field.



8 Mathematical Problems in Engineering

−2
−1

0
1

A
cc

el
er

at
io

n
(m

.s
−2
)

0 5 10 15 20 25
Time (s)

400 m

(a)

−2
−1

0
1

A
cc

el
er

at
io

n
(m

.s
−2
)

0 5 10 15 20 25
Time (s)

800 m

(b)

−2
−1

0
1

A
cc

el
er

at
io

n
(m

.s
−2
)

0 5 10 15 20 25
Time (s)

1200 m

(c)

−2
−1

0
1

A
cc

el
er

at
io

n
(m

.s
−2
)

0 5 10 15 20 25
Time (s)

1600 m

(d)

Figure 7: Time history curve of artificial ground motion at some points as shown in Figure 1.

Secondly, the data recorded at the SMART1 Array located in Lotung, Taiwan during
Event 40 are used (Figure 9). Similarly, the El Centro wave was introduced in the array
records to calculate the dynamic time warping distance between various points. The values
are shown in Table 3. It is seen that the singular earthquake ground motion can be accurately
determined via dynamic time warping distance calculation.

5. Conclusion

There exists similarity among the ground motions of multi-point ground motion filed and the
degree of similarity can be accurately evaluated using the dynamic time warping distance
method.

The dynamic time warping distance method is an efficient method for singularity
recognition of actual array data, and it can be used in the preprocessing and clustering
analysis of actual array data of multi-point ground motion field.
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Figure 8: Time history curve of artificial ground motion at some points as shown in Figure 2.

Table 1: The dynamic time warping distance between each point after mixing singular ground motion into
the artificial multi-point ground motion field in Figure 1.

DTW
distance

El Centro 200 m 400 m 600 m 800 m 1000 m 1200 m 1400 m 1600 m 1800 m 2000 m

El Centro 0 104 106 109 111 114 114 115 115 114 108

200 m 104 0 28 33 37 45 49 54 56 52 67

400 m 106 28 0 21 28 35 38 42 43 57 65

600 m 109 33 21 0 19 24 29 31 45 55 64

800 m 111 37 28 19 0 18 18 31 40 50 60

1000 m 114 45 35 24 18 0 19 25 35 45 58

1200 m 114 49 38 29 18 19 0 17 27 38 53

1400 m 115 54 42 31 31 25 17 0 19 31 48

1600 m 115 56 43 45 40 35 27 19 0 23 41

1800 m 114 52 57 55 50 45 38 31 23 0 33

2000 m 108 67 65 64 60 58 53 48 41 33 0
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Figure 9: Time history curve of SMART1-40.
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Table 2: The dynamic time warping distance between each point after mixing singular ground motion into
the artificial multi-point ground motion field in Figure 2.

DTW
distance

El Centro 200 m 400 m 600 m 800 m 1000 m 1200 m 1400 m 1600 m 1800 m 2000 m

El Centro 0 75 77 79 78 85 85 84 85 88 83

200 m 75 0 41 41 42 41 41 43 41 41 40

400 m 77 41 0 42 43 44 44 45 42 44 43

600 m 79 41 42 0 45 45 46 46 45 44 45

800 m 78 42 43 45 0 47 50 49 49 49 49

1000 m 85 41 44 45 47 0 50 50 52 49 52

1200 m 85 41 44 46 50 50 0 52 52 52 51

1400 m 84 43 45 46 49 50 52 0 51 52 49

1600 m 85 41 42 45 49 52 52 51 0 53 50

1800 m 88 41 44 44 49 49 52 52 53 0 51

2000 m 83 40 43 45 49 52 51 49 50 51 0

Table 3: The dynamic time warping distance between each point after mixing singular ground motion into
SMART1-40 multi-point ground motion field.

DTW distance C00 E01 I01 I07 M01 M07 O01 O07 El Centro
C00 0 12 9 9 13 10 14 12 28
E01 12 0 10 11 9 9 12 8 22
I01 9 10 0 9 11 11 12 12 26
I07 9 11 9 0 10 11 11 12 22
M01 13 9 11 10 0 9 8 7 19
M07 10 9 11 11 9 0 10 10 23
O01 14 12 12 11 8 10 0 11 25
O07 12 8 12 12 7 10 11 0 18
El Centro 28 22 26 22 19 23 25 18 0
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