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As the Internet applications are growing rapidly, the intrusion detection system is widely used to detect network intrusion
effectively. Aiming at the high-dimensional characteristics of data in the intrusion detection system, but the traditional frequent-
pattern-based outlier mining algorithm has the problems of difficulty in obtaining complete frequent patterns and high time
complexity, the outlier set is further analysed to get the attack pattern of intrusion detection. /e NSL-KDD dataset and UNSW-
NB15 dataset are used for evaluating the proposed approach by conducting some experiments. /e experiment results show that
the method has good performance in detection rate, false alarm rate, and recall rate and effectively reduces the time complexity.

1. Introduction

1.1. IntrusionDetection System. With the rapid development
of modern information technology, network security has
become the focus of attention. How to effectively detect the
types of intrusion attacks, as well as the security of the early
warning and protection system, has become one of the
research directions of network security. Intrusion detection
systems (IDSs) are most widely used in the world for
identifying and detecting the intruders in computer net-
works, Internet, and cloud networks./e intrusion detection
system analyses the network data collected by the computer
system and the key points in the network, so as to find out
the behaviour of violating the security policy and the traces
of attacks andmonitor and detect the network intruders./e
IDS can be used to detect different types of attacks on the
network, but the traditional firewall cannot perform these
attacks well.

Generally, the intrusion detection system can be roughly
divided into two categories according to its detection
methods, namely, an anomaly detection system and de-
tection system. Anomaly detection is also known as be-
haviour-based system detection, which detects the abnormal

behaviour of the system to discover intrusion behaviour.
Misuse detection is a knowledge-based detection or feature-
based detection technology, whose premise is that intrusion
behaviour and normal network access have different data
characteristics. /e intrusion detection system is divided
into two stages, namely, the preprocessing stage and in-
trusion detection stage. By developing the intrusion detec-
tion system, the intrusion behaviour can be identified
effectively.

1.2. Outlier Detection. Outlier mining is an important re-
search direction in the field of data mining. Outlier data do
not conform to the general rules of data and are not con-
sistent with other parts of the data. It is those small-scale
objects that are far away from other objects in the dataset.
Although outlier data are “abnormal data” which are in-
consistent with normal data, outlier detection can provide
important information in some applications.

/ere are many reasons for outliers. Generally speaking,
they can be divided into two situations: first, they are indeed
caused by human or detection equipment errors; second,
they are caused by the nature of things themselves, and they
are the data reflection of the real nature of things./e outlier
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analysed in this paper belongs to the second case./e outlier
data generated by human operation are significantly dif-
ferent from the normal network behaviour, in order to find
the real potential valuable knowledge through outlier
mining.

In the real network activities, most of the network be-
haviours are normal, the intrusion behaviour can be
regarded as the abnormal phenomenon of the amount of
data far less than the normal behaviour, and the data cor-
responding to the normal behaviour and the intrusion be-
haviour have different data characteristics. Based on the
characteristics of intrusion behaviour data, intrusion be-
haviour can be regarded as “outlier” data [1].

1.3. Association RuleMining. Association rule mining, as an
important part of data mining, has been a hot research topic.
Association rules are a collection of items in the database
that exceed the specified minimum support and minimum
confidence. Association rules are usually expressed asX⇒Y,
support� s, and confidence� c, in which X is the precon-
dition of the rule, Y is the conclusion of the rule, the support
s represents the frequency of the rule, and the confidence c
represents the strength of the rule.

/e goal of association rule mining is to find out all the
strong association rules. /e mining process is divided into
two steps:

Step 1: all rules that are not less than the minimum
support threshold s are found, i.e., all frequent patterns
Step 2: by setting the confidence threshold c, the
conversion rule is used to filter out the set of items less
than theminimum confidence c, and the corresponding
association rules are obtained

In this paper, it is only needed to get the maximum
frequent patterns based on frequent pattern, so it is only
needed to complete Step 1 to get the frequent pattern.

1.4. Maximum Frequent Pattern. If the maximum frequent
pattern needs to be explained, the concept of supersets must
be introduced first, which is defined as follows: if every
element in set S2 is in set S1 and set S1 may contain elements
that are not in S2, then set S1 is a superset of set S2. If set S1 is a
superset of set S2, then set S2 is a true subset of set S1, and vice
versa.

With the superset, the maximum frequent pattern is
defined as follows: if all supersets of frequent pattern X are
nonfrequent patterns, then X is called as a maximum fre-
quent pattern.

With the increasing number and dimension of collected
data in the intrusion detection system, researchers have
proposed a variety of typical high-dimensional outlier
mining algorithms for the complexity, sparsity, and diversity
of high-dimensional data. Among them, outlier mining
based on frequent pattern is widely used in intrusion de-
tection because of its easy-to-understand nature and low
time complexity. On the basis of frequent-pattern-based
outlier mining algorithm, using the concept of maximum

frequent pattern in association rules, an improved high-
dimensional outlier mining algorithm based on the maxi-
mum frequent pattern is proposed in this paper. /e al-
gorithm transforms frequent pattern mining into maximum
frequent pattern mining. On the premise of good detection
performance, the time complexity is reduced.

2. Literature Survey

In the real network, the data are high dimensional in the
intrusion detection system. Some researchers proposed the
means to reduce the dimension of high-dimensional data
with the way of feature extraction or feature selection and
then analysed the processed data with the traditional data
mining methods.

Ganapathy [2] proposed an intelligent algorithm for
feature selection and classification to design an effective
intrusion detection system, which can be used to provide
security to networks effectively.

Tian et al. [3] proposed a hierarchical outlier detection
model based on PCA, an anomaly data model based on PCA
was established based on normal data to filter data firstly,
and then, the abnormal data types were analysed to detect
both anomaly and misuse attack.

Zyad et al. [4] proposed a way to use the trimmed av-
erage vector to estimate the average vector on the basis of
PCA, so as to make the trimmed PCA have better
robustness.

To solve the problem of high-dimensional data in IDS,
Riyaz and Ganapathy [5] proposed a new fuzzy rule and
information gain ratio-based feature selection algorithm
(FRFSA), and the existing classifiers called SVM and LSSVM
were used for effective classification./e experimental result
shows that the proposed work exceeds the performance
measure when compared to the existing algorithms on
classification for feature selection.

Nancy et al. [6] proposed a dynamic recursive feature
selection algorithm for feature selection and then used an
intelligent fuzzy temporal decision tree algorithm to effec-
tively detect intruders, which can effectively reduce the false
positive rate, energy consumption, and delay of the system.

/e method of dimension reduction can eliminate some
features and reduce the time complexity, but each feature
represents a different outlier value. If the features are selected
incorrectly, it will get the wrong outlier value, which will
produce an approximate result that is not suitable for future
calculation [7]. /e complexity, sparsity, and diversity of
high-dimensional data restrict the traditional mining al-
gorithm. When dealing with high-dimensional data, data
mining algorithms suitable for low-dimensional data usually
encounter the problems of algorithm efficiency reduction
and the traditional definition based on distance and density
is invalid, which reduces the accuracy of intrusion detection
[8].

Researchers have proposed intrusion detection methods
for high-dimensional data. Zhang et al. [9] proposed SPOT
technology for anomaly detection in a high-dimensional
data network data stream, which has good detection effect.
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Prajapati and Bhartiya [10] proposed a nearest neigh-
bour search algorithm based on the advantages of K-mean
algorithm and fuzzy C-mean (FCM) algorithm to solve the
problem of uneven data and rigid clustering in high-di-
mensional data, which can realize nearest neighbour search
in a shorter time.

In general, the “attack” data in intrusion behaviour are
regarded as abnormal data, and outlier mining is to mine
those abnormal data which deviate from normal behaviour
in large-scale data, so outlier mining is very important for
analysing intrusion behaviour. For high-dimensional outlier
mining, researchers have proposed several typical mining
algorithms: outlier mining algorithm based on spatial
projection [11, 12], outlier mining algorithm based on a
hypergraph model [13, 14], and outlier mining algorithm
based on frequent patterns. /e outlier mining algorithm
based on frequent patterns is simple, easy to understand, and
has lower time complexity than the previous two algorithms,
so researchers have conducted extensive research.

In the early stage, He et al. [15] proposed an outlier
mining algorithm based on frequent patterns (FindFPOF)
and proposed a measurement factor of frequent pattern
outlier factor (FPOF). It is believed that the less frequent the
patterns contained in a data record, the more likely they
would be an outlier, so outliers could be found by calculating
the frequent pattern factor of each data.

Zhou [16] proposed a new metric called weighted fre-
quent pattern outlier factor for categorical data streams
based on FindFPOF and proposed a fast outlier detection
method for high-dimensional categorical data streams based
on frequent pattern (FODFP-Stream), which has good ap-
plicability and validity.

Wang and Tang [17] proposed an algorithm based on
frequent patterns-NFPOF, which further accurately locates
abnormal properties of each outlier data through the related
attributes of frequent patterns.

Yuan et al. [18] proposed a weighted frequent-pattern-
based outlier (WFP-Outlier) to solve the problem whose
weights seriously affect outlier detection results, which can
find implicit outliers from weighted data streams.

To solve the problem of being incapable of detecting new
type of attacks, Jaisankar [19] proposed a new intelligent-
agent-based IDS using Fuzzy rough-set-based outlier de-
tection and Fuzzy rough-set-based SVM. /e system
adopted Fuzzy rough-based SVM in our system to classify
and detect anomalies efficiently. /e experimental result
shows that the proposed intelligent-agent-based model
improves the overall accuracy and reduces the false alarm
rate.

In order to solve the problem of high false positives,
Ganapathy [20] proposed a new intrusion detection model
using a new Weighted-Distance-Based Outlier Detection
(WDBOD) algorithm and an Enhanced Multiclass Support
Vector Machine algorithm, which has low false alarm rate
and high accuracy.

Combined with attribute selection, outlier detection, and
the enhanced multiclass support vector machine classifi-
cation method, Ganapathy et al. [21] proposed a new in-
telligent-agent-based intrusion detection model for mobile

ad hoc networks. Using the proposed Intelligent Agent
Weighted Distance Outlier Detection algorithm and Intel-
ligent-Agent-based Enhanced Multiclass Support Vector
Machine algorithm, the proposed model can detect
anomalies with low false alarm rate and high accuracy.

To sum up, high-dimensional outlier mining based on
frequent patterns plays a very important role in intrusion
detection, but there are two problems in the algorithms
based on frequent patterns. First, it needs to mine the
complete frequent patterns in the dataset, but it is very
difficult to find the complete set of frequent patterns in high-
dimensional data. Second, the time complexity of mining
algorithm for frequent patterns is exponentially related to
the dimension of data, the higher the dimension, the greater
the time complexity. High-dimensional outlier mining al-
gorithm based on frequent patterns has the problems of
difficulty in obtaining complete frequent patterns and high
time complexity. So, a high-dimensional outlier mining
algorithm based on the maximum frequent pattern factor is
proposed in this paper using the concept of maximum
frequent pattern factor in association rules. Also, the al-
gorithm is applied in intrusion detection, which reduces the
time complexity on the premise of ensuring good detection
performance.

3. Proposed Work

3.1. Relevant /eories. We let D� {tl, t2,. . .,tn} be a dataset
containing n network behaviour records t, and tk is called a
transaction. Also, I� {il, i2,. . .,ip} is the collection of all at-
tributes in the network behaviour record, and im is called an
item.

Definition 1. Itemset: any subset X of I is called the itemset
ofD. We let tk be a transaction ofD, and X is a itemset ofD; if
X ⊆ tk, then the itemset D is contained in the transaction tk.

Definition 2. Support: the support number of itemset X is
represented as the number of transactions that contain
itemset X in dataset D and is recorded as X. /e support of
itemset X is recorded as

support(X) �
X

D
× 100%, (1)

where D is the total number of transactions in dataset D.

Definition 3. Frequent pattern: if the support (X) is not less
than the minimum support (MinSP) which is specified by
the user, then X is a frequent pattern; otherwise, it is an
infrequent pattern.

Theorem 1. X, Y are set as itemsets in dataset D; then,

(1) If X⊆Y, then support (X)≥ support(Y)
(2) If X⊆Y and X is not a frequent pattern, then Y is not a

frequent pattern
(3) If X⊆Y and Y is a frequent pattern, then X is a fre-

quent pattern
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Y is set as a maximum frequent pattern because X⊆Y,
and Y must be a frequent pattern; it can be seen from
/eorem 1 that X must be a frequent pattern, that is to say,
all frequent patterns have been implied in the maximum
frequent patterns. /erefore, the problem that the complete
set of frequent patterns must be found in the outlier mining
algorithm based on frequent patterns can be transformed
into finding the maximum frequent patterns. It not only
solves the difficulty of finding the complete frequent pattern
sets but also greatly reduces the number of frequent patterns
n, thus reducing the time complexity of the algorithm.

3.2. Data Discretization. /e data types of attributes in a
dataset can be divided into textual data and numerical data,
and numerical data also can be divided into discrete data and
continuous data. /e data type in outlier mining based on
maximum frequent patterns must be discrete data, so it is
necessary that continuous attributes are converted to reliable
accurate data suitable for data mining by data discretization.

/e discretization of numerical attribute is to divide the
continuous data into a number of finite discretization in-
tervals. /e usual discretization methods include the equal-
width method, the equal-frequency method, and the method
based on clustering. Clustering is an unsupervised algo-
rithm; according to the distribution characteristics of data to
determine how to divide the interval of attribute values, as
far as possible to reduce manual intervention, it has been
widely used in practice. After clustering, the objects in the
same clustering pattern have a high similarity and are quite
different from the objects that do not belong to the same
clustering pattern, and data in a same clustering pattern are
often treated as a whole in many practical applications. In
order to minimize the intervention of human factors, the
method based on clustering is adopted for data discretization
in this paper.

/e discretization method based on clustering has two
steps:

(1) Continuous attributes are clustered by the clustering
algorithm

(2) Patterns obtained by clustering are processed, and
continuous attribute values in the same clustering
pattern are uniformly marked as one value

Among them, clustering is the key step in discretization.
K-means is a classical clustering algorithm based on parti-
tion, which has good effect and is widely used in practice.
However, K-means algorithm is very sensitive to the number
of clustering K and the selection of initial clustering centre.

For the sensitive problem of K value, the elbow method
can be used to determine the optimal K value because K
value is not fixed and unique in the process of discretization.
/e core idea of the elbow method is when K is less than the
optimal number of clustering, an increase in K value will
greatly increase the degree of aggregation of each clustering,
so the decrease range of SSE will be very large. When K
reaches the true number of clustering, the return of ag-
gregation degree obtained by an increase in K will decrease
rapidly, so the decrease degree of SSE will decrease sharply,

and if K value is increased continuously, the change of SSE
will tend to be gentle, that is to say, the relationship graph
between SSE and K is the shape of an elbow, and the cor-
responding K value of this elbow is the optimal number of
clusters.

/e square sum of error (SSE) of the core index of the
elbow method is defined as

SSE � 􏽘
K

i�1
􏽘

p∈Ci

p − mi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
, (2)

where Ci: the ith clustering, p: sample points in Ci, mi: the
centroid of Ci (mean value of all samples in Ci), and SSE:
clustering error of all samples, representing the quality of the
clustering effect.

For the sensitive problem of the selection of an initial
cluster centre, the maximum distance method is used to
select K samples as the initial centre points based on the fact
that the farthest sample points are most unlikely to be di-
vided into the same cluster.

3.3. /e Proposed Algorithm. /e concept of maximum
frequent pattern factor (MFPOF) is proposed based on the
frequent pattern factor (FPOF) in FindFPOF algorithm.

Definition 6. Maximum frequent pattern factor (MFPOF):
MFPS (D, MinSP) is the maximum frequent pattern sets in
dataset D that meets a given minimum support threshold.
/eMFPOF of each network behaviour record t is defined as

MFPOF(t) �
􏽐X⊑t, X∈MFPS(D,MinSP)support(X)

‖MFPs(D,MinSP)‖
, (3)

where ‖MFPs(D,MinSP)‖ is the number of the maximum
frequent patterns in frequent patterns and the support(X) is
the support of a maximum frequent pattern X.

/e description of the high-dimensional outlier mining
algorithm based on maximum frequent patterns (MFPOF-
OM) is shown as Algorithm 1.

3.4. Automatically Constructing Intrusion Detection Patterns
BasedonAssociation. Association analysis can automatically
discover the data characteristics of network behaviour. /e
maximum frequent patterns generated by association
analysis can reflect the maximum common characteristics of
network behaviour data, which are expressed by the attribute
values of network behaviour data. So, these attribute values
can be used to build intrusion detection patterns with strong
classification ability [22].

Taking the outlier dataset obtained by MFPOF-OM
algorithm as input and setting a minimum support
threshold, the maximum frequent patterns of the outlier
dataset can be obtained referring to Step 1–3 of Algorithm 1,
which are the intrusion detection patterns of network attack.

3.5. System Architecture. According to the abovementioned
analysis, the architecture of the system proposed in this work
consists of six major modules such as data preprocessing, an
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outlier mining module, constructing intrusion detection
patterns, attack patterns base, pattern match, and an alarm
system, as shown in Figure 1.

/e data preprocessing module is for performing pre-
processing activities, but its main function is to discretize the
data and make it suitable for the proposed algorithm. /e
outlier mining module is used to obtain the outlier data by
the proposed algorithm. On the basis of acquiring outlier
data, an intrusion detection pattern module is used to obtain
intrusion detection patterns, so as to construct the attack
pattern library module. /e pattern match module is used to
match the testing data with the attack rule base. If the match
is successful, it indicates that there is an intrusion attack and
transfers to the alarm module to trigger the alarm.

4. Results and Discussion

4.1. Dataset and Experimental Environment. /e specifica-
tions of the hosts adopted in the experiments are Core Intel
Core i5-6300HQ, 2.3GHz CPU, 16GB RAM, and Windows
7. /e proposed method is verified in MATLAB 2012. /e
NSL-KDD dataset [23] and UNSW-NB 15 dataset [24] are
used as the experimental datasets to verify the proposed
method in this paper.

First, the experimental results of the proposed algorithm
are analysed in the NSL-KDD dataset, and then, the pro-
posed algorithm is compared with other researchers’ algo-
rithms to verify the effectiveness it; lastly, the experimental
results in the NSL-KDD dataset and UNSW-NB 15 dataset
are compared to verify the applicability of the proposed
algorithm.

/e NSL-KDD dataset is an effective benchmark dataset
to help researchers compare different intrusion detection
methods. /ere are 125,973 connection records in the NSL-
KDD dataset. Each connection record is described by 41

attributes about the network packet, network traffic, host
traffic, and content information. /e 22 categories of attacks
are from the following four classes: DoS, R2L, U2R, and
Probing. Also, the 20th attribute (num_outbound_files) can
be deleted because its attribute value is all 0, so its infor-
mation entropy is 0 according to information theory.

/e raw network packets of the UNSW-NB15 dataset are
created for generating a hybrid of real modern normal
activities and synthetic contemporary attack behaviours. It is
suitable for researchers to study the intrusion detection
system. /ere are 175,341 records in the training set and
82,332 records in the testing set. /is dataset has totally 49
features with the class label and 9 families of attacks, namely,
Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, Re-
connaissance, Shellcode, and Worms.

/e NSL-KDD dataset is a factual benchmark in the field
of network intrusion detection, which lays a foundation for
the research of network intrusion detection based on
computational intelligence. First, the NSL-KDD dataset
eliminates duplicate records and classifiers that prefer more
duplicate records. Second, it eliminates the imbalance be-
tween the number of records and reduces the false positive
rate. /erefore, although the NSL-KDD dataset is older, it is
widely used to evaluate the performance of the IDS. /e
UNSW_NB15 dataset is a comprehensive network attack
traffic dataset, which combines the real normal network
traffic attack activities and modern network traffic com-
prehensive attack activities and can better reflect the real
environment of the network, so it is widely used in abnormal
intrusion detection [25, 26].

/e proposed algorithm needs to mine the maximum
frequent pattern, which requires that the data type must be
discrete. Taking the NSL-KDD dataset as an example, the
dataset values’ processing is introduced, which is suitable for
the proposed algorithm. According to the analysis of the

Input: D//network behaviour dataset
MinSP//minimum support threshold
k//number of outliers threshold

Output: k network behaviour outlier data records
Begin
// Stpe 1–3: mining the maximum frequent item sets based on PF-Tree Algorithm
Step 1: To D, the HeaderTable (D) is generated to satisfy the MinSP;//Calculating the header table of PF-tree
Step 2: ToD, the frequent item set tree is generated to satisfy the givenMinSP by using the PF-Tree Algorithm, and denoted as: T;//

Obtains frequent item set tree according to the PF-Tree algorithm
Step 3: Obtains maximum frequents item sets based on an improved PF-Tree, and obtains MFPs (D, MinSP) and support (X)//

Obtains maximum frequents item sets
//Stpe 4–7: Mine k outliers data with minimum MFPOF value based on the obtained MFPs
Step 4: foreach t in D
According to formula (3), calculates the maximum frequent patterns factor of each record t: MFPOF(t);
end foreach//Calculating maximum frequent factor of each transaction t
Step 5: Obtains a MFPOF value of each network behaviour records t;
Step 6: For all t, they are sorted in ascending order according to MFPOF (t);
Step 7: Return the first k network behaviour record with the minimum MFPOF value, and they are k outlier data in the network

behaviour data.
End

ALGORITHM 1: MFPOF-OM algorithm.
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NSL-KDD dataset, the attribute data type of the dataset can
be divided into the text type and numerical type, and the
numerical type can be divided into the discrete type and
continuous type. /e types of data are shown in Table 1 for
the text-type and numerical discrete-type data which have
met the data requirements. However, the continuous nu-
merical data represented by columns 1, 5, and 6 are dis-
cretized using the discretization algorithm given in Section
3.2 and transformed into reliable and accurate data suitable
for data mining.

4.2. Experiments in the NSL-KDD Dataset. Experiment A:
the experimental results of the proposed algorithm in the
NSL-KDD dataset are analysed in the experiment. /e ac-
curacy, false positive rate, and complexity analysis are used
as the performance evaluation criteria to determine the
results. Four groups of sample data were extracted from the
dataset: Normal +DoS, Normal + Probing, Normal +R2L,
and Normal +U2R.

4.2.1. Experiment Results of Four Network Attack Patterns.
By comparing the detection rate and false positive rate under
different MinSP thresholds of four groups of sample data,
Normal +DoS, Normal +Probing, Normal +R2L, and Nor-
mal +U2R, the detection effect of the proposed algorithm is
illustrated, and then, the feasibility of the proposed algorithm
is verified./e experimental results of DoS, Probing, R2L, and
U2R intrusion detection patterns obtained from the analysis
of four groups of sample data are shown in Figure 2.

Probing attack detection patterns are taken as an ex-
ample for data analysis. /e Normal + Probing sample set
contains 62000 pieces of data, the threshold value of MinSP
is different, and the detection patterns are also different in
the experiment. /e experimental results are shown in
Figure 2(b), which shows the detection patterns acquired
under the MinSP thresholds of 58500, 59000, and 60000 and
uses the acquired Probing detection patterns to detect five
data types (DoS, Probing, R2L, U2R attack data, and Normal
data), respectively. It is found that when the threshold value
is 59000, the accuracy of Probing detection patterns to
Probing data is 88%, and the false alarm rate is 2% to Normal
data, 4% to DoS, 1% to R2L, and 10% to U2R data. When the
threshold values are 58000 and 60000, the results are as
shown in Figure 2(b) and will not be described one by one.

By comparing the four intrusion detection attack modes in
Figure 2, it is found that the accuracy will be better when the
minimum support threshold is larger, and the detection error

of other data is basically the same, although the size varies. It is
determined by the characteristics of outlier mining. /e larger
the threshold is, the fewer the number of outliers is, which can
better reflect the characteristics of attack-type data. Of course,
the threshold should not be too large, and the accuracy will be
reduced if the threshold is too large. /rough the compre-
hensive analysis of detection rate and false detection rate under
multiple thresholds, the intrusion detection mode with the best
comprehensive detection result is selected as the acquired
intrusion detectionmode, and the threshold value at this time is
taken as the acquired intrusion detection pattern threshold: the
threshold of DoS attack is 59100, the threshold of Probing
attack is 59000, the threshold of R2L attack is 59600, and the
threshold of U2R attack is 59500. /e evaluation parameters
are shown in Table 2.

Comparing the four subgraphs in Figure 2, it is found
that U2R-type data have the highest detection errors in DoS,
Probing, and R2L attack intrusion detection patterns, which
are 4%, 10%, and 33%, respectively, and compared with the
other three attack intrusion detection patterns, the accuracy
of U2R attack intrusion detection mode is relatively low,
only 87%, which is determined by the number of U2R, only
52 pieces of U2R data in the NSL-KDD dataset, so data
mining cannot fully discover its data characteristics,
resulting in incomplete detection performance.

Comparing Figure 2(c) with Figure 2(d), it is found that
there are higher errors in the detection ofU2Rdata by usingR2L
attack intrusion detection patterns and R2L data by using U2R
attack intrusion detection patterns, which shows that R2L-type
data and U2R-type data have higher data similarity compared
with other three types of data, which is consistent with the
characteristics of two kinds of network attacks in reality.

4.2.2. Complexity Analysis. In this section, the complexity of
4 groups of sample data, Normal +DoS, Normal + Probing,
Normal + R2L, and Normal +U2R, will be analysed. /e
FindFPOF algorithm based on frequent patterns and other
outlier mining algorithms based on weighted frequent
patterns need to mine frequent patterns first, and the time
complexity is similar. Here, FindFPOF algorithm is taken as
an example to illustrate.

Preprocessing 
module

Training 
dataset

Outlier mining 
module 

Testing
dataset

Attack patterns 
base

Pattern match
module  

Constructing intrusion 
detection patterns module

Alarm
system

Figure 1: System architecture.

Table 1: NSL-KDD dataset attribute data types.

Attribute types Column
Text type 2, 3, and 4
Numerical discrete type 7, 12, 14, 15, 21, and 22
Continuous numerical data 1, 5, 6, and other columns
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/e total time complexity of FindFPOF algorithm is O
(m2 +m∗n+m∗logm), where m is the amount of data and n
is the amount of frequent patterns.

/e MFPF-OM algorithm has three steps: (1) mining
maximum frequent patterns from the dataset, the time
complexity is O (m2); (2) calculating the MFPOF(t) of each
network behaviour record, the time complexity is O (m∗l);
and (3) discovering K network behaviour outliers, the time
complexity is O (m∗logm). /erefore, the time complexity
from the abovementioned three steps is proved as follows:
T(MFPOF-OM)�O (m2 +m∗l+m∗logm), where m is the
number of data and l is the number of maximum frequent
patterns.

/e number of frequent patterns (n) in FindFPOF al-
gorithm and the number of maximum frequent patterns (l)
in MFPF-OM algorithm for 4 groups of sample are shown in
Table 3.

For massive data, the value of m is large enough, and in
theory, the time complexity of the two algorithms can be
simplified to O (m2). But in practice, when the value of m is
not large enough, the proposed algorithm only needs to
mine the maximum frequent patterns in Step 3, and l≪ n, as
shown in Table 3, so MFPOF-OM algorithm has a better
time complexity than the FindFPOF algorithm when cal-
culating MFPOF (t) in Step 4 of the algorithm.

4.3. Comparative Experiments between the Proposed Algo-
rithm and Other Algorithms. Experiment B: in order to
verify the accuracy of the proposed method, it is compared
with the SVM method, Intelligent DT method [6],
LSSVM+FRFSA method [5], and Outlier Detec-
tion + EMSVW method [20]. /e accuracy is used as the
performance evaluation criteria to determine the results./e
evaluation parameters are shown in Table 4.

/e results are shown in Figure 3, in which M1 repre-
sents the SVM method, M2 represents the Intelligent DT
method, m3 represents the LSSVM+FRFSA method, M4
represents the Outlier Detection + EMSVWmethod, andM5
represents the proposed method in this paper. /e results
show that the MFPOF-OMmethod is very close to the other
methods in accuracy of Probing and DoS, but slightly in-
ferior. However, it has a great advantage in the accuracy of
R2L and U2R, which shows that the improved dimensional
outlier mining method has good characteristics in dealing
with outlier data because of the small amount of R2L and
U2R attack data in the NSL-KDD dataset. /e accuracy data
of R2L and U2R are empty in Figure 3 because there are no
relevant data in [20]./e overall performance analysis shows
that the performance of the proposed method is reliable, can
effectively detect the intrusion behaviour in network data,
and can meet the actual operation requirements.

DoS Normal Probing R2L U2R
0

20

40

60

80

100
88% 92% 90%

1% 1% 1% 2% 2% 2% 0% 1% 1% 2% 4% 3%

D
et

ec
tio

n 
ra

te
 (%

)

Threshold 58500

Threshold 59100

Threshold 60000

(a)

Probing DoS Normal R2L U2R

88%
95%92%

2% 2% 2% 3% 3% 2% 1% 1% 1%
10% 10%10%

Threshold 58000

Threshold 59000

Threshold 61000

0

20

40

60

80

100

D
et

ec
tio

n 
ra

te
 (%

)

(b)

D
et

ec
tio

n 
ra

te
 (%

)

R2L DoS Normal Probing U2R
0

20

40

60

80

100
87%

95% 93%

0% 0% 0% 3% 6% 7%
0% 2% 2%

31%33% 35%

Threshold 59000

Threshold 59600

Threshold 60000

(c)

D
et

ec
tio

n 
ra

te
 (%

)

0

20

40

60

80

100

U2R DoS Normal Probing R2L

77%
87% 83%

0% 0% 1% 3% 3% 4%
0% 2% 2%

48% 50% 50%

Threshold 59000

Threshold 59500

Threshold 60500

(d)

Figure 2: Test results of four network attacks. (a) Test results of DoS misuse detection patterns. (b) Test results of Probing misuse detection
patterns. (c) Test results of R2L misuse detection patterns. (d) Test results of U2R attack misuse detection patterns.
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4.4. Comparative Experiments between the NSL-KDDDataset
andUNSW-NB15Dataset. Experiment C: in this experiment,
the proposed method is tested and compared in the NSL-KDD
dataset and UNSW-NB15 dataset, and the performance of the
proposed algorithm is estimated by using the performance
metrics, namely, precision, recall, and F1-measure and ROC.
/e two datasets have different attack patterns and data
characteristics, so it is impossible to compare each pattern
separately, and only the overall performance index is analysed
in two datasets in this paper. /e overall performances of
precision, recall, and F1-measure in the two databases are
shown in Table 5. Figure 4 shows the comparison results of
precision, recall, and F1-measure in two different databases.

Figure 5 shows the ROC curves in two different data-
bases. It is found that although the detection results of the
UNSW-NB15 dataset are better than those of the NSL-KDD
dataset in some values, the detection results of the NSL-KDD
dataset are generally better than those of the UNSW-NB15
dataset from the whole ROC curve.

By comprehensively comparing the performance indexes
in Figures 4 and 5, it is found that the proposed method’s
technique achieves better performances for the NSL-KDD
dataset. /e reason is that some malicious records in the
UNSW-NB15 one are not high because of the lower

variances between them and normal records, and the data
are optimized in the NSL-KDD database, which is more
suitable for the detection of malicious records. But on the
whole, it shows very good performance in the NSL-KDD
dataset and UNSW-NB15 dataset, which proves the effec-
tiveness of the proposed method in high-dimensional
anomaly detection.

Table 3: /e result of two mining algorithms.

Sample dataset Number of samples (m) Number of FP (n) Number of MFP(l)
Normal +DoS 63000 23 4
Normal + Probing 62000 19 1
Normal +R2L 60900 21 3
Normal +U2R 60052 23 2

Table 4: Comparison of detection rates of different algorithms.

SVM Intelligent DT LSSVM+FRFSA Detection + EMSVW Proposed method
Probing 95.42 99.59 92 99.1 95
DoS 94.29 99.2 95 99.2 92
R2L 45.34 50.88 38 Null 95
U2R 31.34 35.88 38 Null 87
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Figure 3: Comparison between other intrusion detection methods
and the method proposed.

Table 2: /e result of two mining algorithms.

Sample set (sample size) /reshold value Accuracy (%)
False positive rate (%)

Normal DoS Probing R2L U2R

Normal +DoS (63000)
58500 88 1 Null 2 0 2
59100 92 1 Null 2 1 4
60000 90 1 Null 2 1 3

Normal + Probing (62000)
58000 88 2 3 Null 1 10
59000 95 2 4 Null 1 10
61000 92 2 2 Null 1 10

Normal +R2L (60900)
59000 87 3 0 2 Null 31
59600 95 6 0 2 Null 33
60000 93 7 0 2 Null 35

Normal +U2R (60052)
59000 77 3 0 0 48 Null
59500 87 3 0 2 50 Null
60500 83 4 1 2 50 Null
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5. Conclusions

In this paper, a high-dimensional outlier mining algorithm
based on the maximum frequent pattern factor (MFPOF-
OM) has been proposed by using the related technology of
high-dimensional outlier mining based on frequent patterns.
/is work has two advantages: first, the MFPOF-OM al-
gorithm only needs to mine the maximum frequent pattern
set, which solves the problem of mining completely frequent
patterns in frequent pattern outlier algorithm; second, it can
greatly reduce the number of maximum frequent patterns,
thus reducing the time complexity of the algorithm. Ex-
perimental results show that the proposed method is fea-
sible, which can further reduce the time complexity while
ensuring the excellent detection performance compared
with the contrast algorithms.

Data Availability

/e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

/e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

/is work was supported by the National Natural Science
Foundation of China (No. 61772450) and Hebei Province
Natural Science Foundation of China (F2017203307).

References

[1] B. Huang, “Intrusion detection technology based on outlier
mining,” Computer Engineering, vol. 3, pp. 88–90, 2008.

[2] S. Ganapathy, “Intelligent feature selection and classification
techniques for intrusion detection in networks: a survey,”
EURASIP Journal on Wireless Communications and Net-
working, vol. 2013, no. 1, 16 pages, 2013.

[3] B. Tian, K. Merrick, S. Yu, and J. Hu, “A hierarchical pea-
based anomaly detection model,” in Proceedings of the 2013
International Conference on Computing, Networking and
Communications (ICNC), pp. 621–625, IEEE, San Diego, CA,
USA, January 2013.

[4] E. Zyad, A. Taha, and B. Mohammed, “Improve R2L attack
detection using trimmed PCA,” in Proceedings of the 2019
International Conference on Advanced Communication

Table 5: Performance comparison between the two databases.

Precision (100%) Recall (100%) F1-measure (100%)
NSL-KDD 94 91 92
UNSW-NB15 91 89 90

Precision Recall F1-measure
0

20

40

60

80

100

Pe
rfo

rm
an

ce
 in

de
x 

(%
)

NSL-KDD
UNSW-NB15

Figure 4: Comparison between the NSL-KDD dataset and UNSW-
NB15 dataset.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

Tu
re

 p
os

iti
ve

 ra
te

ROC curve

NSL-KDD
UNSW-NB15

Figure 5: ROC curve of the NSL-KDD dataset and UNSW-NB15
dataset.

Mathematical Problems in Engineering 9



Technologies and Networking (CommNet), pp. 1–5, IEEE,
Rabat, Morocco, April 2019.

[5] B. Riyaz and S. Ganapathy, “An intelligent fuzzy rule based
feature selection for effective intrusion detection,” in Pro-
ceedings of the 2018 International Conference on Recent Trends
in Advance Computing (ICRTAC), pp. 207–211, IEEE,
Chennai, India, September 2018.

[6] P. Nancy, S. Muthurajkumar, S. Ganapathy, S. V. N. Santhosh
Kumar, M. Selvi, and K. Arputharaj, “Intrusion detection
using dynamic feature selection and fuzzy temporal decision
tree classification for wireless sensor networks,” IET Com-
munications, vol. 14, no. 5, pp. 888–895, 2020.

[7] G. L. Prajapati and R. Bhartiya, “High dimensional nearest
neighbor search considering outliers based on fuzzy mem-
bership,” in Proceedings of the 2017 Computing Conference,
Bologna, Italy, July 2017.

[8] S. Zhou, Research on Algorithm of High Dimensional Outlier
Detection, MS thesis, Jiangsu University, Zhenjiang, China,
2007.

[9] J. Zhang, Q. Gao, and H. Wang, “Anomaly detection in high-
dimensional network data streams: a case study,” in Pro-
ceedings of the 2008 IEEE International Conference on Intel-
ligence and Security Informatics, pp. 251–253, IEEE, Taipei,
Taiwan, June 2008.

[10] G. L. Prajapati and R. Bhartiya, “High dimensional nearest
neighbor search considering outliers based on fuzzy mem-
bership,” in Proceedings of the 2017 Computing Conference,
pp. 363–371, IEEE, London, UK, July 2017.

[11] P. Guo, J.-y. Dai, and Y.-X. Wang, “Outlier detection in high
dimension based on projection,” in Proceedings of the 2006
International Conference on Machine Learning and Cyber-
netics, pp. 1165–1169, IEEE, Dalian, China, August 2006.

[12] H. Liu, “Efficient outlier detection for high-dimensional data,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems,
vol. 48, no. 12, pp. 2451–2461, 2017.

[13] Y. Z. Li, “An improved outlier detection method in high-
dimension based on weighted hypergraph,” in Proceedings of
the 2009 Second International Symposium on Electronic
Commerce and Security, pp. 159–163, IEEE, Lyon, France,
August 2009.

[14] N. Wang, Z. Zhang, X. Zhao, Q. Miao, R. Ji, and Y. Gao,
“Exploring high-order correlations for industry anomaly
detection,” IEEE Transactions on Industrial Electronics,
vol. 66, no. 12, pp. 9682–9691, 2019.

[15] Z. He, X. Xu, Z. Huang, and S. Deng, “FP-outlier: frequent
pattern based outlier detection,” Computer Science and In-
formation Systems, vol. 2, no. 1, pp. 103–118, 2005.

[16] X.-Y. Zhou, “A fast outlier detection algorithm for high di-
mensional categorical data streams,” Journal of Software,
vol. 18, no. 4, pp. 933–942, 2007.

[17] Q. Wang and R. Tang, “Application of frequent pattern based
outlier mining in intrusion detection,”Application Research of
Computers, vol. 30, no. 4, pp. 1208–1211, 2013.

[18] G. Yuan, S. Cai, and S. Hao, “A novel weighted frequent
pattern-based outlier detection method applied to data
stream,” in Proceedings of the 2019 IEEE 4th International
Conference on Cloud Computing and Big Data Analysis
(ICCCBDA), pp. 503–510, IEEE, Chengdu, China, April 2019.

[19] N. Jaisankar, “An intelligent agent based intrusion detection
system using fuzzy rough set based outlier detection,” Soft
Computing Techniques in Vision Science, Springer, Berlin,
Heidelberg, 2012.

[20] S. Ganapathy, “An intelligent intrusion detection system
using outlier detection and multiclass SVM,” International

Journal on Recent Trends in Engineering & Technology, vol. 5,
no. 1, 1953.

[21] S. Ganapathy, P. Yogesh, and A. Kannan, “Intelligent agent-
based intrusion detection system using enhanced multiclass
SVM,” Computational Intelligence and Neuroscience,
vol. 2012, Article ID 850259, 2012.

[22] W. Lee, S. J. Stolfo, and K. W. Mok, “A data mining
framework for building intrusion detection models,” in
Proceedings of the 1999 IEEE Symposium on Security and
Privacy (Cat. No. 99CB36344), pp. 120–132, IEEE, Oakland,
CA, USA, May 1999.

[23] Canadian Institute for Cybersecurity, “/e NSL-KDD data-
set,” 2020, http://www.unb.ca/cic/datasets/nsl.html.

[24] Unsw.adfa.au, “/e UNSW-NB15 dataset,” 2020, http://www.
cybersecurity.unsw.adfa.edu.au/ADFA%20NB15%20.

[25] N. Moustafa, J. Slay, and G. Creech, “Novel geometric area
analysis technique for anomaly detection using trapezoidal
area estimation on large-scale networks,” IEEE Transactions
on Big Data, vol. 5, no. 4, p. 1, 2017.

[26] N. Moustafa and S. Jill, “UNSW-NB15: a comprehensive data
set for network intrusion detection systems (UNSW-NB15
network data set),” in Proceedings of the 2015 military com-
munications and information systems conference (MilCIS),
IEEE, Canberra, Australia, November 2015.

10 Mathematical Problems in Engineering

http://www.unb.ca/cic/datasets/nsl.html
http://www.cybersecurity.unsw.adfa.edu.au/ADFA%20NB15%20
http://www.cybersecurity.unsw.adfa.edu.au/ADFA%20NB15%20


Research Article
Nonlinear Contour Tracking of a Voice Coil Motors-Driven
Dual-Axis Positioning Stage Using Fuzzy Fractional PID
Control with Variable Orders

Syuan-Yi Chen 1 and Meng-Chen Yang2

1Department of Electrical Engineering, National Taiwan Normal University, Taiwan, China
2Department of Hardware Design, Imagination Broadway Ltd., New Taipei City, China

Correspondence should be addressed to Syuan-Yi Chen; chensy@ntnu.edu.tw

Received 4 November 2020; Revised 1 December 2020; Accepted 2 March 2021; Published 25 March 2021

Academic Editor: Guoqiang Wang

Copyright © 2021 Syuan-Yi Chen and Meng-Chen Yang. +is is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

+is study aims to develop a variable-order fuzzy fractional proportional-integral-differential (VOFFPID) control system for controlling
themover position of a newly designed voice coil motors- (VCMs-) driven dual-axis positioning stage. First, the operation principle and
dynamics of the stage are analyzed. After that, the design of a fuzzy fractional proportional-integral-differential (FFPID) control system
is introduced on the basis of a fractional calculus and fuzzy logic system.With an additional degree of freedom to the control parameters
and fuzzy operation, the FFPID control system can upgrade the contour tracking performance of a conventional proportional-integral-
differential (PID) control systemwith respect to the specified dynamics of the stage.Moreover, the VOFFPID control system is designed
to further improve the tracking responses of the FFPID control system. In this system, the five control parameters are optimizedwith the
cuckoo search algorithm via an adaptive strategy. Lastly, nominal and payload conditions attributed to two nonlinear contour demands
are provided to evaluate the contouring performance of the PID, FFPID, and VOFFPID control systems. +e experimental results
subjected to different performance measures demonstrate that the proposed VOFFPID controller outperforms PID and FFPID
controllers in terms of the designed VCMs-driven dual-axis positioning stage under both conditions.

1. Introduction

Although control engineers prefer a conventional propor-
tional-integral-differential (PID) controller because of its
easy implementation, low cost, and uncomplicated struc-
ture, they cannot use it to achieve a high-precision control
level in a highly nonlinear and disturbed situation. To ad-
dress this problem, a fractional-order (FO) PID (FPID)
control method was developed by adding fractional differ-
ential and integral operations. With the consideration of
more degrees of freedom for the selection of control pa-
rameters, the FPID controller can obtain better control
responses and anti-interference characteristic over the in-
teger-order (IO) counterparts because of the additional
flexibility to the design of a control system [1]. However,
accurately determining numerous control parameters in

practical applications is difficult. +erefore, many intelligent
strategies were designed for FPID control [2, 3].

+e introduction of a fuzzy logic system (FLS) to a PID
controller has been widely explored because it provides a
flexible and model-free way to determine the PID control
parameters through engineering intuitions and experiences
[4, 5]. In addition, fuzzy FPID (FFPID) control systems were
further developed to enhance the control performances of a
FPID controller [1, 6–9]. In the FFPID, the fractional op-
eration of errors introduces an extra degree of flexibility in
the input variables of FLS, and it can be tuned similarly to the
input-output scaling factors of the FLS to enhance the
closed-loop performance. Some experimental results have
verified that the FFPID control system outperforms classical
PID, fuzzy PID, and FPID control systems because of its FLS
and higher degrees of freedom for tuning.
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Swarm intelligence algorithms have been widely applied
to solve many real-world problems, such as control system
design [2], path planning [10], parameter estimation [11],
and energy management [12], because these algorithms can
obtain a global optimal solution for multidimensional op-
timization problems by relying on colony behaviors in
nature. For example, inspired by the aggressive reproduction
behavior of cuckoo bird species, cuckoo search algorithms
(CSAs) were developed in [2, 13–16]. In cuckoo repro-
duction, female cuckoos fly from one nest to another and
randomly lay their fertilized eggs inside other host birds’
nests instead of building their own nests. +us, host birds
may unknowingly raise these eggs. In general, female
cuckoos choose the best nest so that their eggs have the best
chance of hatching and creating a new generation. To en-
hance the hatching chance, some cuckoo birds strategically
lay their eggs in a good position or drop the host bird’s eggs
outside its nest. Some cuckoo species even evolve to produce
eggs similar to those of other bird species. However, if an
alien egg is found, host birds throw it out or even transfer to
a new nest with their own brood elsewhere. In this case, the
eggs of cuckoo fail to hatch. In the CSA algorithm, cuckoo
birds represent the particles assigned to find the optimal
solution, while cuckoo eggs and host birds’ eggs represent
the new and old solutions for the current iteration process,
respectively. If a new solution is better than the old one, the
worse one is replaced.

A linear voice coil motor (VCM) is a direct drive and
hysteresis-free device, which utilizes a magnetic field gen-
erated by a permanent magnet with a coil wire to produce an
electric driving force [17, 18]. +is device has a compact
structure, high acceleration, and no hysteresis features, so it
has been extensively used in various small range positioning
applications, such as servo valves [17], hard disk drives
[19, 20], automatic transmitters [21], autofocus actuators
[22], and ultrasound scanners [23], which demand high-
precision and high-speed control levels. However, effective
controls for this device should be designed because external
disturbances and operational changes instantly act on a
direct drive system. For instance, an intelligent FO sliding-
mode control was proposed to control a linear voice coil
actuator for the tracking of a reference trajectory [18]. In this
control scheme, a fuzzy neural network was designed to
compensate for system uncertainties, thereby reducing the
chattering phenomena. Moreover, a coupling controller
design was proposed by considering the interaction between
a VCM and a piezoactuator of a head positioning control
system [20]. In another study [24], a direct amplitude
control strategy was developed to improve the amplitude
accuracy of a reciprocating rig in a high-frequency band
compared with that given by a traditional proportional-
integral control strategy.

In the direct drive VCM system, there are no mechanical
reduction and transmission components so that the mover is
directly coupled to the payload. Compared with the con-
ventional rotary motor using mechanical components to
translate the rotary motion into linear motion, direct drive
device apparently reduces mechanical loss, system nonlin-
earities, and backlash [25]. +us, the control accuracy of the

VCM system can be enhanced in practical applications.
However, it also loses the advantage of using mechanical
components attenuating the effects of system parameter
variations and external disturbances. With this structure, the
system uncertainties are directly transmitted to the payload
and then unavoidably affect the control performance of the
payload. On the other hand, any change or disturbance in
the payload will be directly reflected back to the VCM.
Although many control methods have been proposed to
control the single-axis VCM systems [17, 18, 21–24], de-
signing effective and robust control methods to meet high-
precision requirements for the multi-axis VCM systems is
still required. As a result, this study aims to develop a
variable-order FFPID (VOFFPID) control strategy for
controlling the mover position of a VCM-based dual-axis
positioning stage with a high-precision contouring perfor-
mance. In the VOFFPID controller, control parameters are
self-tuned to deal with system uncertainty so that the trivial
trials of control parameters are unnecessary. Furthermore,
good stability and robustness during the control process can
be ensured. Experiments involving the tracking of two
nonlinear contour demands were conducted by using PID,
FFPID, and VOFFPID under nominal and payload condi-
tions to demonstrate the different control performance and
robustness levels.

From the aforementioned studies, the main academic
and industrial contributions of this study are summarized as
follows: (i) the new VOFFPID controller that optimizes the
conventional FFPID controller online is successfully de-
veloped; (ii) the new VCMs-driven dual-axis positioning
stage is made with operation and dynamic analyses; (iii) the
PID, FFPID, and VOFFPID controllers for the VCMs-driven
dual-axis positioning stage control system are successfully
implemented; and (iv) the experimental results of the three
controllers associated with two nonlinear contour tracking
commands under two test conditions are compared. +e
remaining parts of this study are organized as follows. +e
operation principle of VCMs-driven dual-axis positioning
stage is described in Section 2. +e CSA with the adaptive
strategy used for optimizing the control parameters of the
VOFFPID is presented in Section 3. +e designs of contour
tracking controllers are introduced in Section 4. +e ex-
perimental setup and results are discussed in Section 5. +e
conclusions of the proposed work are provided in Section 6.

2. Operation Principle of the VCMs-Driven
Dual-Axis Positioning Stage

A circular moving coil-type single-axis VCM that is com-
posed of a moving coil winding and a stationary permanent
magnet within a soft iron shell is utilized in this study as
shown in Figure 1. In accordance with the interaction be-
tween the permanent magnetic field and a drive current
perpendicular to the field, the mover of the VCM moves
along the direction of the electric driving force, which can be
determined with Fleming’s left-hand rule [7]. If the direction
of the drive current changes, the moving direction also
reverses. Moreover, the generated electric driving force is
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proportional to the product of the permanent magnetic field
and the drive current [18].

In this study, a VCMs-driven dual-axis positioning
stage is newly designed and implemented as shown in
Figure 2. +e dimension of the whole stage is 230mm ×

194mm × 100mm. It is composed of three VCMs
(Akribis, AVM 40-20), namely, a VCM in the Y-axis and
two parallel VCMs in the X-axis. A 100mm2 moving
platform is placed on the mover of the Y-axis VCM, and
the stator of the Y-axis VCM is mounted on a moving
base. With the design of this stage, two VCMs in the X-
axis can generate a stronger electromagnetic force to push
the moving platform, moving base, Y-axis VCM, and
payload along the X-axis. +ey can even create rotational
motion according to the specified mechanism design and
different displacements of X-axis VCMs. Two high-res-
olution linear scales measure the mover displacements for
high-precision and repeatability applications. Specifica-
tions of the adopted VCMs are listed in Table 1 [26]. +e state-space model is given below to describe the

dynamics of the VCMs-driven dual-axis positioning stage
[17]:

€x � −
kkx + Δkkx

mb + mp + ml

x −
kbx + Δkbx

mb + mp + ml

_x +
cxkix + Δcxkix

mb + mp + ml

ux −
Ffx + Fdx

mb + mp + ml

,􏼨

€y � −
kky + Δkky

mp + ml

y −
kby + Δkby

mp + ml

_y +
cykiy + Δcykiy

mp + ml

uy −
Ffy + Fdy

mp + ml

, (1)

where x and y are the mover positions in X-axis and Y-axis,
respectively; ux and uy indicate the control signals of the
VCMs; cx and cy represent the linear gains of the current
amplifiers; kix and kiy are the force-current coefficients of the
VCMs; kbx and kby are the equivalent damping coefficients;
kkx and kky denote the equivalent elastic coefficients; Δkkx,
Δkky, Δkbx, Δkby, Δcxkix, and Δcykiy represent the unknown
parameter variations of kkx, kky, kbx, kby, cxkix, and cykiy,

respectively;mb,mp, andml denote the masses of the moving
base, platform, and payload, respectively; Ffx and Ffy are the
friction forces; and Fdx and Fdy denote the unmodeled
system uncertainties, comprising internal cross-coupled
interferences and external disturbances. +us, the dynamic
model of the VCMs-driven dual-axis positioning stage can
be reexpressed as

€x � −
kkx

Mx

x −
kbx

Mx

_x +
cxkix

Mx

ux −
Lx

Mx

, €y � −
kky

My

y −
kby

My

_y +
cykiy

My

uy −
Ly

My

,􏼨 (2)

Figure 2: Structure of the VCMs-driven dual-axis positioning
stage.

Table 1: Specifications of the adopted VCMs.

Specifications Value Unit
Diameter 40 mm
Stroke 20 mm
Force-current coefficient 12.90 N/A
Back electromotive force constant 12.90 V/m/s
Continuous force 9.93 N
Peak force 58.05 N
Continuous current 0.77 A
Peak current 4.5 A
Continuous power 7.17 W
Coil assembly mass 67.0 g
Core assembly mass 226.2 g

Permanent
magnet 

Magnetic
flux 

Moving
coil 

Stator

Displacement

Load

N
S

N

Mover

Electric
driving force 

S

Iron shell

Figure 1: Structure of the VCM.
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whereMx �mb+mp+ml andMy �mp+ml; Lx and Ly are the
lumped uncertainties regarded as follows:

Lx � Δkkxx + Δkbx _x − Δcxkixux + Ffx + Fdx,

Ly � Δkkyy + Δkby _y − Δcykiyuy + Ffy + Fdy.

⎧⎨

⎩ (3)

In equation (1), the practical control characteristics of the
VCMs are nonlinear because the system coefficients described
above may vary due to the changes in operating temperature
and duration, though the VCMs-driven dual-axis positioning
stage can be presented with a state-space model. Moreover,
the lumped uncertainties Lx and Ly cannot be measured
exactly. +erefore, designing a model-free control method is
important to control the VCMs-driven dual-axis positioning
stage with a stable and precise nonlinear contour tracking
performance for the practical applications.

3. CSA with an Adaptive Strategy

CSA is a metaheuristic evolutionary algorithm based on the
aggressive reproduction of a cuckoo species with a Lévy
flight behavior. +ree idealized characteristic rules are as-
sumed as follows to formulate the CSA [13–16]:

(a) Each cuckoo bird lays one egg in a randomly selected
host nest, representing a solution to the optimization
problem.

(b) Some of these nests contain high-quality eggs, rep-
resenting good solutions, which are preserved for the
next generation.

(c) +e number of available host nests is fixed in the
ecosystem, and the probability of alien eggs discov-
ered by the host bird is Pa∈[0, 1]. When the host bird
finds the alien eggs, it destroys the egg or abandons
the old nest and builds a new one in another place.

3.1. Principle of CSA. From the optimization perspective,
cuckoo birds correspond to the particles assigned to find so-
lutions, and cuckoo eggs indicate the candidate solutions for an
optimization problem. In the CSA, the random step of cuckoo
birds is characterized by a Lévy flight, indicating that the step
length of the flight behavior follows the Lévy distribution;
consequently, the CSA realizes a “random walk” and a “long
jump” among their flights [15]. In this regard, the CSA can avoid
obtaining an unreliable local optimal solution and shorten the
convergence time required to reach a global optimal solution.

An unconstrained optimization problem can be stated as
follows:

find x � x1, x2, . . . , xD􏼂 􏼃, whichmaximizes J(x), (4)

where x is the individual nest position, D is the optimized
variable dimension, and J is an objective function. In the
CSA, the update of the egg position is given according to a
Lévy flight as follows [13–16]:

xi,k+1 � xi,k + α⊕ Lévy(β), (5)

where i� 1, 2, . . ., Np is the population size, k is the current
index for the generation iteration, ⊕ is entry-wise

multiplication, α> 0 is a step size related to the scales of the
problem of interest, and 1≤ β≤ 3 is a parameter used to
formulate the Lévy distribution and it is considered to be 1.5
in this study. +en, the step length ς is defined as

ς �
μ

|v|
(1/β)

, (6)

where µ and v are random numbers derived from normal
distribution as

μ ∼ N 0, σ2μ􏼐 􏼑,

v ∼ N 0, σ2v􏼐 􏼑,
(7)

σμ �
Γ(1 + β) × sin(πβ/2)

Γ[(1 + β)/2] × β × 2(β− 1)/2􏼨 􏼩

(1/β)

,

σv � 1.

(8)

where σμ is derived by using Mantegna’s algorithm for
symmetric distributions and Γ(·) is a Gamma function.+en,
the step size s is calculated as

si,k � α · ς · xi,k − xb􏼐 􏼑, (9)

where xb is the current best solution. +us, the update of the
egg position as shown in equation (5) can be formulated:

xi,k+1 � xi,k + r · si,k, (10)

where r is a random value following the normal distribution
N(0, 1). Figure 3 shows the typical trajectory of a three-
dimension random Lévy flight path by using equations
(5)–(10). Afterward, the fitness values of J(xi,k+1) and J(xi,k)
are compared. If J(xi,k+1)> J(xi,k) holds, the ith solution is
replaced, and the new solution is accepted as xi,k+1. In ad-
dition, the parameter Pθ is set as the threshold of discovery
probability that the cuckoo’s eggs are found by a host bird.
+e host bird builds nests at new locations according to

xi,k+1 �
xi,k + r · xq,k − xj,k􏼐 􏼑, if P>Pθ,

xi,k, else,

⎧⎨

⎩ (11)

where xq,k and xj,k are two randomly selected different so-
lutions in the kth iteration and P is a uniform random
number distributed in [0, 1]. Similarly, if the fitness value of
the new solution is better than the old one, then the new
solution xi,k+1 is used to replace the old one xi,k.

3.2. Adaptive Strategy of theCSA. An adaptive strategy based
on Rechenberg’s 1/5 criteria is utilized to enhance the
evolution and adaptation efficiency of the CSA [14]. With
the adaptive strategy, step size and discovery probability are
dynamically tuned during optimization. First, the im-
provement rate ζ is defined as follows:

ζ �
Nr

Np

, (12)

where Nr is the number of all cuckoo birds whose fitness
values are improved after evolution.+us, the step size α and
discovery probability Pθ can be further updated as
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αk+1 �

αk × fα, ζ > αu,

αk, αl ≤ ζ ≤ αu,

αk

fα
, ζ < αl,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(13)

Pθ,k+1 �

Pθ,k × fp, ζ >Pu,

Pθ,k, Pl ≤ ζ ≤Pu,

Pθ,k

fp

, ζ <Pl,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(14)

where αu and αl are the upper and lower thresholds of ζ with
respect to α; Pu and Pl are the upper and lower thresholds of
ζ with respect to the discovery probability; and 1≤ fα≤ 2 and
1≤ fP≤ 2 are the learning factors of α and Pθ, respectively.

According to equations (13) and (14), α and Pθ are
increased to strengthen the global exploration ability when ζ
is large. +is result indicates that the current solution space
is relatively monotonous and smooth. On the contrary, α
and Pθ are decreased to enhance the local exploitation ability
when ζ is small.+is result suggests that the optimal solution
may be in the surrounding search area near the current
solution. In this regard, the local exploitation and global
exploration abilities of the CSA can be well balanced to deal
with the diversification and intensification of a population,
thereby avoiding the premature convergence.

4. Control System Designs of the VCMs-Driven
Dual-Axis Positioning Stage

First, typical PID and FFPID control strategies are adopted
in this study to control the VCMs-driven dual-axis posi-
tioning stage for nonlinear contour tracking. Subsequently, a
VOFFPID is proposed to improve the stability and accuracy
of the contour tracking performance under system uncer-
tainties, including parameter variations, cross-coupled in-
terferences, and friction forces [27]. With the help of online-
tuned control parameters, the system uncertainties can be
compensated, and the high-precision nonlinear contour
tracking performance can be guaranteed.

4.1. Typical PID Control. +e popularity of IO PID (IOPID)
controllers as expressed in equation (15) can be attributed
partly to their favorable performance in a wide range of
applicability and partly to their functional simplicity, which
allows engineers to operate them in an easy and straight-
forward manner. As for PID controller, the proportional (P)
action amplifies errors, the integral (I) action accumulates
errors, and the differential (D) action calculates the change in
errors. In this study, the PID controller compares the actual
mover positions x and y with the reference contour positions
xd and yd to obtain the error signals ex and ey. After that, it
accumulates the results of the P, I, and D actions as below [7]:

uj(t) � KPjej(t) + KIj 􏽚
t

0
ej(τ)dτ + KDj

d
dt

ej(t), (15)

where t denotes the current time; j� x, y represent the X-axis
and Y-axis of the VCMs-driven dual-axis positioning stage,
respectively; ux and uy denote the control signals; KPj, KIj,
and KDj denote the P, I, and D control parameters, re-
spectively; and ex and ey indicate the tracking errors defined
as ex � xd − x and ey � yd − y, respectively.

4.2. FO Integral andDifferential Definitions. FO integral and
differential operators are defined in the following [7, 18, 25]:

aD
λ
t �

dλ

dt
λ, λ> 0,

1, λ � 0,

􏽚
t

a
(dτ)

− λ
, λ< 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(16)

in which D is the fractional calculus operator; λ is the
fractional order; and a and t represent the operation range.
+e three major FO integral and differential definitions are
the Caputo, Grunwald-Letnikov (GL), and Riemann–Liou-
ville (RL) definitions. +e operator given in equation (16)
applied to the f(t) function leads to an extended Caputo form,
which can be derived as follows [28, 29]:
tcusts6 50

aD
λ
t f(t) �

1
Γ(m − λ)

􏽚
t

a

f
(m)

(τ)

(t − τ)
λ+1− m

dτ, m − 1≤ λ<m, (17)

where m is an integer such that m> λ. Moreover, the λth-
order RL FO integral of f(t) is defined as follows [30]:

aD
− λ
t f(t) �

1
Γ(λ)

􏽚
t

a
(t − τ)

λ− 1
f(τ)dτ. (18)

Similarly, the RL FO differential of f(t) is defined as

aD
λ
t f(t) �

1
Γ(m − λ)

dm

dt
m 􏽚

t

a

f(τ)

(t − τ)
λ+1− m

dτ. (19)

By contrast, the λth-order GL FO operation based on
finite differences is defined as follows [29]:

aD
λ
t f(t) � lim

h⟶0
h

− h
􏽘

[t− a/h]

j�0
(− 1)

j
λ

j
􏼠 􏼡f(t − jh), (20)
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Figure 3: Typical trajectory of a three-dimension random Lévy
flight path.
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where [.] is the integer part, h is the time increment, and () is
the fractional binomial coefficient defined as

λ

j
􏼠 􏼡 �

Γ(λ + 1)

Γ(j + 1) · Γ(λ − j + 1)
. (21)

Intuitively, integral and differential operations with
fractional orders can provide a higher degree of freedom to
the control parameters than those with integer orders. As a
result, the control performance of PID control system can be
enhanced by properly selecting fractional integral and dif-
ferential orders. For convenience, the FO operator aDλ

t is
noted as Dλ in the subsequent sections.

4.3. Developed FFPID Control System. In the case of a
nonlinear and disturbed system, the conventional IOPID
control strategy is difficult to concurrently obtain a high
control performance level and maintain good robustness
because of its linear structure [7]. To improve the control
performances, smoothness and robustness of the PID
control system, the FFPID control, which combines the
merits of PID control, FO operations, and FLS, is adopted
and illustrated in Figure 4 in this study. In Figure 4, aj and bj
are the fractional differential and integral orders, respec-
tively; KPj and KDj can be considered the input scaling
factors; and KIj can be regarded as the output scaling factor.
+e inputs of the FLS are the tracking error ej multiplied by
KPj and the fractional differential of the tracking error Dajej
multiplied by KDj, which can be regarded as a FO pro-
portional-differential (FOPD) controller. +e relationship
between the inputs and output of the FLS is specified with
the table of the fuzzy rules as given in Table 2 in which the
fuzzy linguistic values NL, NM, NS, ZO, PS, PM, and PL
indicate negatively large, negatively medium, negatively
small, zero, positively small, positively medium, and posi-
tively large, respectively [7]. Figure 5 illustrates the mem-
bership functions for the inputs and output of FLS in which
the horizontal range was designed on the basis of the prior
experimental tests to effectively cover the input and output
signals [7]. In this study, the triangular membership func-
tions, which can be easily configured with regard to the
linear shape and fewer parameters, were selected to ease the
computational burden and speed up the control process.
+us, the output of the FLS uFPDj can be derived according to
the designed fuzzy rules with the center of gravity defuz-
zification method as follows:

uFPDj �
􏽐

n
k�1 μc σk( 􏼁σk

􏽐
n
k�1 σk

, (22)

where c indicates a logical union set of the conclusion fuzzy
sets of the fired fuzzy rules; σk is a value between the
minimum and maximum values of the abscissa of c defined
on the universe of discourse; μc(σk) is the firing strength of c
for the point σk; and n is the number of the samples.

+e final control signal of the FFPID control system uj is
the sum of the output of FLS uFPDj multiplied by λj and the
fractional integral of the output of FLS uFPDjmultiplied byKIj:

uj(t) � λjuFPDj(t) + KIjD
− bj

uFPDj(t). (23)

In equations (22) and (23), the whole FFPID controller
can be considered a combination of the fuzzy FOPD con-
troller uFPDj in the first half and the FO proportional-integral
(FOPI) controller uj in the second half. +e benefits of the
FFPID controller are adjustability and flexibility when these
two controllers are combined. On the other hand, as seen
from Figure 4, the integral operator D− bjej can be regarded a
low-pass filter of the error signal ej. When bj is appropriately
selected, the steady-state error can be suppressed effectively
[18]. Besides, the differential operatorDajej can be regarded a
high-pass filter of ej. A proper aj can accelerate the dynamic
response of the VCMs-driven dual-axis positioning system.
+erefore, the contour tracking responses with a conven-
tional IOPID controller can be enhanced by adding the well-
defined fractional orders aj and bj regarding the specified
dynamics of the VCMs-driven dual-axis positioning stage.

4.4. Proposed VOFFPID Control System. +e control gains
(i.e., KPj, KIj, and KDj), along with fractional orders of dif-
ferentiation (i.e., aj) and integration (i.e., bj), are tuned to
obtain the optimum contour tracking performance of the
VCMs-driven dual-axis positioning system. Hence, a
VOFFPID controller is further proposed, in which the control
parameters {KPj, KIj, KDj, aj, bj} are dynamically tuned with
the CSAwith an adaptive strategy. In the CSA application, the
most crucial step is to choose the objective function for
evaluating the fitness value of each host nest. In this study, an
absolute tracking error is employed to design the objective
function.+us, the optimization problem arising in this study
can be expressed by rewriting equation (4) as follows:

Find x � KPj, KIj, KDj, aj, bj􏽨 􏽩, whichmaximizes J(x) �
1

ε + ec(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
,

(24)

where ε is a small positive constant and ec is a contour
tracking error defined as follows:

ec(x) �

�������������

ex(x)
2

+ ey(x)
2

􏽱

. (25)

According to the design of the object function shown in
equation (24), KPj, KIj, KDj, aj, and bj can be updated dy-
namically tominimize the contour tracking error ec via the CSA.

In the beginning of the VOFFPID control system, several
nest positions x are selected randomly within the specific
searching ranges. +en, each vector x is sequentially applied
to the VOFFPID controller, and the corresponding tracking
performance is evaluated via the object function J. Lastly, the
vector with the highest fitness value is selected for the
VCMs-driven dual-axis positioning system. As a result, the
VOFFPID controller can achieve favorable robustness
against uncertainties and external disturbances.

5. Experimental Results

5.1. Experimental Setup. Figure 6 shows the experimental
setup of the VCMs-driven dual-axis positioning system,
which consists of a newly developed dual-axis positioning
stage, power supplies, servo drivers (Elmo Cello 5/60), and a
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TMS320F28377 digital signal processor (DSP; Texas Instru-
ments) [7]. +e real-time control software developed in the
DSP comprises one main program and one interrupt service
routine (ISR). In the main program, parameters and I/O
initializations are initially established, and the interrupt in-
terval for the ISR is set.When the interrupt is enabled, the ISR,
with 1ms execution frequency, calculates the mover position
from the encoder interfaces and then determines the control
signals through the designed PID, FFPID, and VOFFPID
control systems. After that, the control signals are sent to the
servo drivers via the 14-bit resolution digital-to-analog

converters (DACs) of the DSP. Afterward, the servo drivers
convert the control signals to drive currents so that the VCMs
can produce the required thrust force for high-precision
contour tracking. In this study, a flower contour and a
window contour are designed for the reference nonlinear
contour commands as shown in Figures 7 and 8, respectively.
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Figure 4: Control diagram of the VCMs-driven dual-axis positioning control system using FFPID controller.

Table 2: Fuzzy rule table.

NL NM NS ZR PS PM PL

PL ZR PS PM PL PL PL PL

PM NS ZR PS PM PL PL PL

PS NM NS ZR PS PM PL PL

ZR NL NM NS ZR PS PM PL

NS NL NL NM NS ZR PS PM

NM NL NL NL NM NS ZR PS

NL NL NL NL NL NM NS ZR

KDjDajej
Kpjej

NL NM NS ZR PS PM PL

–2 2–1.2 1.2–0.6 0.60

Figure 5: Membership functions of the input and output variables
of FLS.

Digital
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Power
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Figure 6: Experiment setup of the VCMs-driven dual-axis posi-
tioning stage.
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Table 3: Formulas An(z− 1, λ) for n� 0, 1, 3, and 5.

n An(z− 1, λ)

0 1
1 − λz− 1 + 1
3 − (1/3)λz− 3 + (1/3)λ2z− 2 − λz− 1 + 1
5 − (1/5)λz− 5 + (1/5)λ2z− 4 − ((1/3)λ + (1/15)λ3)z− 3 + (2/5)λ2z− 2 − λz− 1 + 1
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Figure 7: Design of flower contour command. (a) Flower contour inX-Y-axes; (b) mover commands of flower contour inX-axis and Y-axis.

8 Mathematical Problems in Engineering



+e maximum, average, and standard deviation of the
contour tracking error Tm, TA, and TS are measured as
follows to compare the different positioning performance
levels of the PID, FFPID, and VOFFPID control systems [7]:

TM � max
I

ec(I),

TA � 􏽘

NT

I�1

ec(I)

NT

,

TS �

��������������

􏽘

NT

I�1

ec(I) − TA􏼂 􏼃
2

NT

,

􏽶
􏽴

(26)

where I is the current iteration number and NT is the total
number of iterations. Moreover, two conditions are tested in
this study: nominal (Case 1) and payload (Case 2) cases. In
Case 2, one payload with a 5 kg weight is added to the mover.

5.2. Discretization of FO Integral and Differential. As seen
from the FO definitions shown in (17)–(20), the Laplace
transform of the FO differential and integral of function f(t)
can be represented by sλ F(s), where s� jω is the Laplace
transform operator. Hence, the Tustin method is used to

obtain the coefficients and the form of the direct dis-
cretization of sλ. To simplify the presentation, only the re-
cursive formula for a positive λ is considered. +us, the
continuous Laplace operator can be replaced by a generating
function as follows [18, 25]:

s
λ

� ω z
− 1

􏼐 􏼑􏼐 􏼑
λ

�
2
T

􏼒 􏼓
λ 1 − z− 1

1 + z− 1􏼠 􏼡

λ

�
2
T

􏼒 􏼓
λ
lim

n⟶∞

An z
− 1

, λ􏼐 􏼑

An z
− 1

, − λ􏼐 􏼑
,

(27)

where z is the shifting operator and T is the sampling period:

Ao z
− 1

, λ􏼐 􏼑 � 1,

An z
− 1

, λ􏼐 􏼑 � An− 1 z
− 1

, λ􏼐 􏼑 − cnz
n
An− 1(z, λ),

cn �

λ
n

, n is odd;

0, n is even.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(28)

Consequently, the Laplace operator can be approximated
to derive the FO integral and differential based on any given
order of approximation n, as follows:
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Figure 9: Flower contour tracking results of the VCMs-driven dual-axis positioning stage using PID, FFPID, and VOFFPID controllers in
Case 1. (a) Tracking errors; (b) drive currents.
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s
λ ≈

2
T

􏼒 􏼓
λ An z

− 1
, λ􏼐 􏼑

An z
− 1

, − λ􏼐 􏼑
. (29)

+us, the FO operations can be realized via the digital
implementation. Table 3 lists the expressions of An(z− 1, λ)

for n� 0, 1, 3, and 5.

5.3. Experimental Results. In the experiment, the control
parameters of the PID controller were chosen as KPx � 25,
KIx � 110, KDx � 10, KPy � 25, KIy � 110, and KDy � 12, re-
spectively. Moreover, the control parameters of the FFPID
controller are selected as KPx� 25, KIx � 100, KDx � 9, λx � 1,
ax � 0.6, bx � 0.5, KPy � 25, KIy � 100, KDy � 11, λy � 1,
ay � 0.5, and by � 0.5, respectively. In addition, a third-order
approximation was used for the FO digital realization; that
is, n� 3. In this study, the control parameters were selected
on the basis of several trials to achieve the favorable transient
responses, considering the requirement of steady-state
stability. However, designing an optimal set for all the
control parameters is difficult because of the occurrence of
uncertainties. Additionally, the PID and FFPID controllers
cannot maintain ideal positioning performances by adopting
the constant control parameters.

5.3.1. Flower Contour Tracking Results. +e experimental
results, including the tracking errors and drive currents of
the VCMs-driven dual-axis positioning stage controlled by
the PID, FFPID, and VOFFPID control systems due to the
flower contour tracking in Cases 1 and 2, are shown in
Figures 9 and 10, respectively. As can be seen from
Figures 9(a) and 10(a), the mover of the stage can be suc-
cessfully controlled by all the controllers to track the ref-
erence nonlinear contour shown in Figure 7. Furthermore,
the drive currents in Case 2 are larger than those in Case 1, so
a higher thrust force for the additional payload can be
generated. +e maximum tracking errors obtained in Case 1
for the PID, FFPID, and VOFFPID control systems were
0.2807mm, 0.2363mm, and 0.1752mm, respectiely, whereas
those obtained in Case 2 were 0.3973 mm, 0.2986 mm, and
0.2731 mm, respectively.

+e tracking errors of the PID control system were
unfavorable because of the large tracking errors. Although
selecting larger control gains can diminish the amplutide of
tracking errors, the excessive aggressive control gains may
result in the oscillation of control responses.

As seen in Figures 9 and 10, the FFPID with two well-
designed variables a and b and FLS can derive more effective
and smooth control signals to restrain the contouring errors
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Figure 10: Flower contour tracking results of the VCMs-driven dual-axis positioning stage using PID, FFPID, and VOFFPID controllers in
Case 2. (a) Tracking errors; (b) drive currents.
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related to the specified dynamics of VCMs and the possible
occurrence of uncertainties during the flower contour
tracking. +e corresponding tracking errors were reduced
compared with those of the PID controller. Moreover, the
FFPID controller has a good ability to diminish the effect of
the disturbance, as shown in Figures 9(a) and 10(a). Al-
though the control parameters of the FFPID controller were
selected with several trials, the maximum and average
tracking errors in the nominal and payload conditions are
obviously reduced by the self-tuned strategy.

5.3.2. Window Contour Tracking Results. +e experimental
results due to the window contour tracking in Cases 1 and 2
are shown in Figures 11 and 12, respectively. Similar be-
haviors on the tracking responses of flower contour tracking
can be observed. As seen from Figures 11(a) and 12(a), the
maximum tracking errors obtained in Case 1 for the PID,
FFPID, and VOFFPID control systems were 0.4877mm,
0.2843mm, and 0.2344mm, respectively, whereas those
obtained in Case 2 were 0.5944mm, 0.3512mm, and
0.3098mm, respectively. From the comparison in
Figures 11(a) and 12(a), the tracking performances of the
PID are evidently deteriorated when the contour command

changes instantaneously. In contrast, the proposed VOFF-
PID demonstrates its robustness in the tracking perfor-
mance during both test conditions. On the other hand, the
control oscillations in the PID control system as shown in
Figures 11(b) and 12(b) are evident due to its inefficient
tracking ability. As opposed to the PID, more effective and
smooth control signal was derived by the proposed
VOFFPID to carry out the best control performance.

+e experimental results and observations reveal that the
optimized control parameters can improve the tracking
performance in practical control applications. In
Figures 9–12, the best control performance of the VOFFPID
controller due to the flower and window contours under the
nominal and payload conditions can be clearly observed.+e
improvement of the proposed VOFFPID controller in terms
of the contour tracking accuracy is significant compared
with that given by traditional PID and FFPID controllers.

+e contour tracking performance measures of the PID,
FFPID, and VOFFPID control systems for the tracking of the
flower and window reference nonlinear contours are shown
in Tables 4 and 5, respectively. +ey indicate that the FFPID
controller with the integration of the PID control, FO op-
eration, and FLS outperforms the conventional PID con-
troller. Moreover, the proposed VOFFPID controller further
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Figure 11: Window contour tracking results of the VCMs-driven dual-axis positioning stage using PID, FFPID, and VOFPID controllers in
Case 1. (a) Tracking errors; (b) drive currents.
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improves the tracking performance of the FFPID controller
because all the control parameters were globally and dy-
namically optimized by the CSA algorithm. +e VOFFPID

controller apparently exhibits a high-precision contour
tracking performance by effectively handling the payload
and uncertainty during control processes.
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Figure 12: Window contour tracking results of the VCMs-driven dual-axis positioning stage using PID, FFPID, and VOFFPID controllers
in Case 2. (a) Tracking errors; (b) drive currents.

Table 4: Contour tracking performance measures of Case 1.

Controllers
Commands

Flower contour (mm) Window contour (mm)
TM TA TS TM TA TS

PID 0.2807 0.1316 0.0336 0.4877 0.1389 0.0555
FFPID 0.2363 0.0791 0.0233 0.2843 0.0756 0.0263
VOFFPID 0.1752 0.0649 0.0210 0.2344 0.0471 0.0249

Table 5: Contour tracking performance measures of Case 2.

Controllers
Commands

Flower contour (mm) Window contour (mm)
TM TA TS TM TA TS

PID 0.3973 0.1312 0.0490 0.5944 0.1355 0.0597
FFPID 0.2986 0.0921 0.0383 0.3512 0.0908 0.0253
VOFFPID 0.2731 0.0682 0.0233 0.3098 0.0535 0.0289
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6. Conclusions

In this study, a VOFFPID control system is successfully
developed and applied to control the mover position of a
new VCMs-driven dual-axis positioning stage for tracking
nonlinear reference contours. First, the structural and op-
erating principles of the stage are introduced. +en, the CSA
with the adaptive strategy for the optimization of control
parameters is described. Subsequently, the theoretical bases
of the PID, FFPID, and VOFFPID control systems are given
in detail. With an additional degree of freedom to the control
parameters and FLS operation, the FFPID controller can
upgrade the contouring performances of the PID controller.
Moreover, in the proposed VOFFPID controller, the CSA
with the adaptive strategy can enhance the robustness of the
FFPID controller by tuning the control parameters online.
+e experimental results subjected to different performance
measures are given to verify the effectiveness of the proposed
VOFFPID controller.
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gorithm with Lévy flights for global-support parametric
surface approximation in reverse engineering,” Symmetry,
vol. 10, no. 3, p. 58, 2018.

[17] S. Wu, Z. Jiao, L. Yan, R. Zhang, J. Yu, and C.-Y. Chen,
“Development of a direct-drive servo valve with high-frequency
voice coil motor and advanced digital controller,” IEEE/ASME
Transactions on Mechatronics, vol. 19, no. 3, pp. 932–942, 2014.

[18] S. Y. Chen and C. Y. Lee, “Digital signal processor based
intelligent fractional-order sliding-mode control for a linear
voice coil actuator,” IET Control Reory & Applications,
vol. 11, no. 8, pp. 1282–1292, 2017.

[19] D. Huang, V. Venkataramanan, J.-X. Xu, and T. C. T. Huynh,
“Contact-induced vibration in dual-stage hard disk drive
servo systems and its compensator design,” IEEE Transactions
on Industrial Electronics, vol. 61, no. 8, pp. 4052–4060, 2014.

[20] S. Yabui, T. Atsumi, and T. Inoue, “Coupling controller
design for MISO System of head positioning control systems
in HDDs,” IEEE Transactions on Magnetics, vol. 56, no. 5,
pp. 1–9, 2020.

[21] C. E. Kim and Y. R. Kim, “Design and analysis of linear voice
coil motor for automatic transmission,” in Proceedings of the
International Conference on Electrical Machines and Systems
(ICEMS), College Station, TX, USA, February 2017.

[22] Y.-H. Chang, C.-S. Liu, I.-W. Chen, M.-S. Tsai, and
H.-C. Tseng, “Open-loop control of voice coil motor with

Mathematical Problems in Engineering 13



magnetic restoring force using high-low frequency composite
signals,” IEEE Access, vol. 7, pp. 146258–146263, 2019.

[23] K. J. Smith, D. J. Graham, and J. A. Neasham, “Design and
optimization of a voice coil motor with a rotary actuator for
an ultrasound scanner,” IEEE Transactions on Industrial
Electronics, vol. 62, no. 11, pp. 7073–7078, 2015.

[24] R. Wang, X. Yin, Q. Wang, and L. Jiang, “Direct amplitude
control for voice coil motor on high frequency reciprocating
rig,” IEEE/ASME Transactions on Mechatronics, vol. 25, no. 3,
pp. 1299–1309, 2020.

[25] S.-Y. Chen, T.-H. Li, and C.-H. Chang, “Intelligent fractional-
order backstepping control for an ironless linear synchronous
motor with uncertain nonlinear dynamics,” ISA Transactions,
vol. 89, pp. 218–232, 2019.

[26] Akribis Systems Pte Ltd. AVM Series, http://www.akribis-sys.
com/.

[27] M. C. Yang, “Optimal fractional-order PID control for a
VCMs-based X-Y motion stage,” M.S. thesis, Department.
Electric. Eng., National Taiwan Normal University, Taipei,
Taiwan, 2020.
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In this paper, we investigate the optimization problem of the transmitter-receiver pairing of spaceborne cluster flight netted radar
(SCFNR) for area coverage and target detection. First of all, we propose the novel concept of SCFNR integrated cluster flight
spacecraft with netted radar, the mobility model for bistatic radar pair with twin-satellite mode, and formulate the radar-target
distance distribution function and radar-target distance product distribution function with geometric probability method.
Secondly, by dividing surveillance region into grids, we define the 0-1 grid coverage matrix for bistatic radar and the transmitter-
receiver pairing matrix for SCFNR with using radar equation and the radar-target distance distribution function, and we describe
the optimal problem of transmitter-receiver pairing of SCFNR for area coverage and target detection by defining K-grid coverage
matrix. /irdly, we propose a new algorithm integrated particle swarm optimization with Hungarian algorithm (PSO-HA) to
address the optimal problem, which is actually one-to-one pairing problem. Finally, we validate the effectiveness and reasonability
of the proposed algorithm through numerical analysis.

1. Introduction

As a distributed space system, the spaceborne netted radar is
composed of several spatially separated, mutually in-
dependent, and cooperative radars in space. Compared with
the traditional radar, spaceborne netted radar has advan-
tages of high flexibility, reliability, and antistealth ability
[1–3]. In addition, it also has the advantage of being all-
weather, wide coverage, and satisfying specific coverage
requirements due to its location in outer space [4, 5]. On the
other hand, the cluster flight spacecraft has been one of the
hot issues regarding the distributed space network, because
of its advantages of flexibility, rapid response, low cost,
strong scalability, and long lifetime [6–8]. Unlike traditional
satellite formation flying applications, cluster flight space-
craft requires nodes to maintain bounded relative distances
between tens or hundreds of kilometers and to keep loose

geometry for the entire mission lifetime, so that orbit
controlling and relative position sensing for the spacecraft
can be performed well [6–8]. Some researches are mentioned
cluster flight spacecraft. /e paper [6] presents cluster-
keeping algorithms aimed at minimizing fuel consumption.
/e paper [9] provides a cooperative control framework
aimed at synchronizing the mean-orbital element conver-
gence among cluster-flying satellites. /e paper [10] studies
the relationship between first docking time and spatial initial
distribution and the relationship between first separating
time and spatial initial distribution for cluster flight
spacecraft. /e influence of node transmit power on the QoS
performance of cluster flight spacecraft network is analyzed
in [11]. In order to improve the performance of cluster flight
spacecraft network, the nodal distance distributions are
studied in [12]. Hence, we propose the novel concept of
SCFNR integrated cluster flight spacecraft with the

Hindawi
Mathematical Problems in Engineering
Volume 2021, Article ID 8863000, 21 pages
https://doi.org/10.1155/2021/8863000

mailto:1592624854@qq.com
mailto:hsb@nssc.ac.cn
https://orcid.org/0000-0003-0807-2327
https://orcid.org/0000-0002-7891-2451
https://orcid.org/0000-0001-7835-2354
https://orcid.org/0000-0003-2224-2353
https://orcid.org/0000-0002-0521-3246
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/8863000


spaceborne netted radar, and the optimization problem of
SCFNR on coverage is addressed.

Coverage is one of the important issues about radar for
target detection, localization, and tracking. According to radar
equations, the coverage problem of the spaceborne netted radar
is related to many factors such as orbit, antenna gain, trans-
mitted power, and radar cross section. To meet the need of
improving the target detection and position, it expects that
more radars of SCFNR can cover the surveillance region on the
earth, which is completely different from line-of-sight (LOS)
coverage of satellite constellation [13, 14]. When the antenna
gain, the transmitted power, and radar cross section are
constant, the coverage of SCFNR completely depends on the
product of transmitter-target and target-receiver distance and
the spacecraft orbit. Our previous research shows that the
geometry configuration of SCFNR is characterized by high
spatiotemporal dynamic and random, which complicates
coverage problem of SCFNR. So, the problem about the
coverage about SCFNR is more challenging.

/e netted radar is a case of multistatic radar [15–19], where
transmitters can collaborate with several receivers at different
locations. According to the pairing method of transmitter-re-
ceiver, the netted radar is mainly classified into three categories:
a group of bistatic radars, a single transmitter with several re-
ceivers, and a single receiver with several transmitters. To improve
the performance of SCFNR, it expects thatmore radars of SCFNR
can cover the surveillance region, and this can be described by the
maximum intersection coverage. Actually, the maximum in-
tersection coverage is the classical maximum k-subset intersection
(MSI) in graph theory, and it is also a combinatorial optimization
problem [20]. To the best of our knowledge, there is not seen
much on solving MSI problems. In [21], the authors introduce
a GRASP heuristic and propose an integer programming for-
mulationMSI problem.However, to solve theMSI problemabout
SCFNR is more difficult due to the geometry configuration with
spatiotemporal dynamic and random.

To the best of our knowledge, this makes the first paper
to investigate the SCFNR coverage problem. /e main
contributions of our work are summarized as follows:

(1) We propose the novel concept of SCFNR integrated
cluster flight spacecraft with netted radar, and the mo-
bility model for bistatic radar pair is established by twin-
satellite mode. /e distribution function of the product
of transmitter-target and receiver-target distance is de-
rived using the method of geometric probability.

(2) According to radar equation, we propose the concept
of 0-1 grid coverage matrix for bistatic radar by
dividing the surveillance region into grids, and the
definition of the transmitter-receiver pairing matrix
for SCFNR is given using bistatic radar pairs. /ese
provide an important theoretical basis for optimizing
the transmitter-receiver pairing of SCFNR for area
coverage and target detection.

(3) Wedescribe the optimal problemof transmitter-receiver
pairing of SCFNR for area coverage and target detection
by defining K-grid coverage matrix. Also, we propose
a new algorithm integrated PSO-HA to address the

optimal problem. We validate the effectiveness of the
proposed algorithms through numerical calculation.

/e rest of the paper is organized as follows: Section 2
reviews the related work. Section 3 proposes the novel
concept of SCFNR, establishes mobility model for bistatic
radar pair, and derives the distribution function of the
product of transmitter-target and receiver-target distance.
Section 4 defines the coverage matrix of bistatic radar and
pairing matrix of SCFNR based on Section 3 and describes
the optimal problem of transmitter-receiver pairing of
SCFNR for area coverage and target detection. Section 5
presents the PSO-HA algorithm. Section 6 verifies the ef-
fectiveness of the proposed algorithm, and coverage and
detection results using numerical calculation are given.
Finally, we conclude the paper in Section 7.

2. Related Works

In recent years, with continuing advances in communication
technology and micro-electromechanical systems (MEMS)
technology, multistatic radar sensing technology has re-
ceived considerable attention, especially bistatic radar
sensing coverage. For instance, in [22], the authors con-
sidered the problem of deploying a network of bistatic radars
in a region to maximize the worst-case intrusion de-
tectability. /ey studied the coverage problem of a bistatic
radar sensor network and the optimal placement of bistatic
radars on a line segment to minimize its vulnerability. In
[23], Wang et al. studied the belt barrier coverage with the
minimum total placement cost in bistatic radar sensor
networks. /ey proposed a line-based equipartition place-
ment strategy such that all radars placed on a deployment
line can form a barrier with some breadth and one or more
such placement lines can form a belt barrier with the re-
quired breadth. In [24], the authors studied area coverage in
bistatic radar sensor networks. /ey investigated the geo-
metrical relationship between the c-coverage area of
a bistatic radar and the distance between its component
transmitter and receiver. /en, they reduced the problem
dimension by transforming the area coverage problem to
point coverage problem by employing the intersection point
concept. In [25], the authors studied the worst-case coverage
under deterministic deployment, aiming to find optimal
deployment locations of radar transmitters and receivers
such that the worst-case intrusion detectability was maxi-
mized. /en, by developing a novel 2-site Voronoi diagram
with graph search techniques, they designed an algorithm to
find approximate worst-case intrusion detectability. In [23],
the authors studied the belt barrier coverage in bistatic radar
sensor networks, which was dependent on the distance
between a pair of radar transmitter and receiver. In [26],
Wang et al. studied barrier coverage in bistatic radar sensor
networks. /ey formulated the barrier coverage problem as
minimum weight barrier coverage problem. By constructing
a directed coverage graph, minimum weight barrier cov-
erage problem was transformed into finding k node-disjoint
shortest paths. Next, they proposed an energy-efficient al-
gorithm to solve the problem within polynomial.
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In addition, intelligent coverage becomes a practical research
topic in dynamic sensors network. /e paper [27] provided
wireless signal coverage schemes for point-to-point and point-
to-region and determined the required horizontal rotation angle
and pitch rotation angle of the directional antenna intelligent
coverage. In [28], the authors established themobile sensor non-
cooperative game model. /en, a local information-based to-
pology control (LITC) algorithm based on this model was
proposed, in which sensors move to enhance coverage by ex-
changing information with neighbors. Also, the application of
PSO is wide in complex system. In [29], a systematic data-driven
adaptive neuro-fuzzy inference system (ANFIS) modelling
methodology was proposed, and a high-performance PSO-LSE
method was developed to improve the structure and to identify
the consequent parameters of ANFISmodel. In [30], the authors
proposed an algorithm combined with belief-desire-intention
agent with a quantum-behaved particle swami optimization
(QPSO) algorithm to optimize a marine generator excitation
controller, and the QPSO algorithm was highly robust because
its performance was insensitive to the accuracy of system pa-
rameters. For intelligent coverage in complex dynamic envi-
ronment, in [31], a novel trajectory scheduling method based on
coverage rate for multiple mobile sinks was presented, especially
for large-scale wireless sensor networks, and an improved PSO
combined with mutation operator was introduced to search the
parking positions with optimal coverage rate. Predictably,
considering complex dynamic sensor network, PSO in in-
telligent coverage is helpful.

For a long time, some works on spaceborne radar coverage
are mainly focused on optimizing the orbital design according
to the observation and detection requirements. For example, in
[32], the authors presented a feasibility analysis of a spaceborne
bistatic radar mission for soil moisture retrieval, and they
studied the assessment of the spatial coverage from orbital
design. In [33], the authors adopted bistatic geometry from
space platforms, and they implemented bistatic synthetic ap-
erture radar observation. In [34], based on the analysis of radar
cross-section (RCS) characteristic of geostationary orbital
targets, the orbital altitude and revisiting period of space-based
radar was designed in detail, and they discussed the re-
lationship between image’s resolutions of spaceborne inverse
synthetic aperture radar and system parameters. In [35], the
authors established a spaceborne-airborne bistatic radarmodel,
and then they analyzedmoving target detecting performance of
the space-time adaptive processing technology.

For cluster flight spacecraft, related researches focus more
on orbital control and node connection. /e paper [6] pre-
sented a methodological development of cluster flight algo-
rithms for disaggregated satellite systems in lowEarth orbits. To
obtain distance-bounded relative motion, a new constraint on
the initial conditions of the modules was developed. In [9], the
authors developed the implementable cluster flight-control
methods with realistic orbital and actuator modelling. /ey
offered two distributed orbit control laws with fixed-magnitude
thrust for satellite cluster flight based onmean-orbital elements.
Recently, the team of this paper has done some works on the
cluster flight spacecraft network. For example, in [10], the
authors proposed the constraint condition of orbital elements
for noise-limited fractionated spacecraft network percolating

and path formation time. /e numerical results showed that
the network topology for fractionated spacecraft is time varying
and dynamic. /e paper [11] investigated the transmit power
allocation problem tominimize the average packet error rate at
the access point in the cluster flight spacecraft network. Due to
the complexity of the calculation, the probability density
function of the distance between nodes was fitted using eighth-
order polynomial.

3. The Concept of SCFNR

As mentioned above, the spaceborne netted radar is com-
posed of several spatially separated, mutual independent,
and cooperative radars in space./e spaceborne netted radar
has the advantages of high flexibility, reliability, and anti-
stealth ability. In addition, it also has the advantage of being
all-weather, wide coverage, and satisfying specific coverage.
On the other hand, the cluster flight spacecraft has many
advantages such as flexibility, rapid response, low cost,
strong scalability, and long lifetime. What’s more, cluster
flight spacecraft can perform orbit controlling and relative
position sensing easily. Hence, we propose the novel concept
of SCFNR integrated advantages of both cluster flight
spacecraft and the spaceborne netted radar.

Generally, netted radar has the following three cases: (1)
a group of bistatic radars, where the output of the bistatic radars
are processed centrally to obtain a decision regarding the
presence of a target and to estimate parameters. In this case, it is
assumed that the transmitters do not interfere with each other,
which is typically achieved either by using separate frequency
bands or orthogonal transmitted waveforms. At the same time,
each receiver is assumed to be able to receive the signals from
each transmitter; (2) a single transmitter with several receivers,
typically in the case of a high-value unit equipped with the
transmitter, for instance an airborne warning and control
system, and receivers cooperating to achieve the detection; (3)
a single receiver with several transmitters, where a single re-
ceiver receives waveforms from several transmitters in different
frequency bands to information fusion.

In this paper, we adopt SCFNR with bistatic radar pairs. It
is assumed that one-to-one pairing method is taken by SCFNR
in any slot of the orbital hyperperiod. So, we assume that each
pair of transmitter and receiver can potentially form a bistatic
radar. We further assume that orthogonal transmissions are
used for interference avoidance. In view of this, we assume that
one transmitter can only be connected to one receiver, and the
corresponding bistatic radar is formed in any slot of the orbital
hyperperiod. /erefore, given a SCFNR consisting ofN radars,
ifN is even, then the pairing of bistatic radars isN/2 pairs, and if
N is odd, then the pairing of bistatic radars is (N− 1)/2 pairs
and a monostatic radar. Since the monostatic radar can be
considered as a bistatic radar with a baseline length 0, it can also
be considered that (N+1)/2 pairs of bistatic radars is formed.

Based on the above, this paper focuses on the optimi-
zation problem of the transmitter-receiver pairing of SCFNR
for area of interest coverage and target detection, that is, how
to pair transmitter-receiver properly to satisfy the re-
quirements of area coverage and detection in any slot of the
orbital hyperperiod. First, the mobility model for SCFNR is
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presented and analyzed. Of course, the mobility model for
bistatic radar pair can be given, and also the distribution
function of the product of transmitter-target and receiver-
target distance needs to be derived.

3.1. ,e Mobility Model for Bistatic Radar Pair. To accom-
plish the cluster flight model within bounded distance, the
twin-satellite model is adopted to study the mobility model
for bistatic radar pair. As shown in Figure 1, the transmitter
or receiver position is uniformly distributed on sphere
within (M−m)/4. M is the upper bound of transmitter-
receiver distance in SCFNR, and m is the lower bound.

Based on orbit dynamics theory, the orbital hyperperiod
can be divided into T0,T1,T2, . . . ,TT, times for frac-
tionated spacecraft [7, 36]. So, there are T time slots in an
orbital period. /e orbital hyperperiod is H � (TT − T0),
time slot σk � [Tk−1,Tk)(k � 1, 2, . . . ,T) [7]. So, the
mobility model of SCFNR can be defined as follows.

Definition 1. In earth-centered inertial (ECI) coordinates, if the
position set of N transmitters and receivers in CFSNR is S(0) �

S1(0), S2(0), . . . , SN(0)􏼈 􏼉 at initial timeT0, the position set is
S(k) � S1(k), S2(k), . . . , SN(k)􏼈 􏼉, and the positions are uni-
formly distributed within sphere B(Si(0), R)(i � 1, 2, . . . , N)

at time k, where Si(0) and R � (M − m)/4 are the center and
radius of the sphere, respectively. Moreover, positions among all
transmitters and receivers are mutually independent and in-
dependent of all previous locations.

3.2. ,e Probability Distribution Function of the Distance
Product. We consider a SCFNR scenario as shown in Fig-
ure 2. Let T be the transmitter set and R be the receiver set.
Transmitters and receivers are located at different locations.
We use TR to denote all transmitter-receiver pairs. If
transmitter Ti ∈ T and receiver Rj ∈ R choose the same
channel, then the bistatic radar TiRj ∈ TR is formed by Ti

and Rj, and different channels can be considered as or-
thorhombic channels to avoid interference. Without am-
biguity, in any time slot of orbital hyperperiod for SCFNR,
the position of transmitter and receiver is denoted by SiT and
SjR, respectively, where i≠ j.

/us, in SCFNR scenario, let P be a target position in the
surveillance region. According to [37], for a bistatic radar
TiRj ∈ TR, the signal-to-noise ratio (SNR) of P can be given as

SNR �
KB

SiTP
����

����
2

PSjR

�����

�����
2, (1)

where ‖SiTP‖ and ‖PSjR‖ denote transmitter-target and
target-receiver distances, respectively. KB is a constant re-
lated to the physical-layer parameters of the bistatic radar,
such as transmit power, antenna gains of transmitter and
receiver, and radar cross-section. However, we are not in-
terested in the abovementioned physical-layer parameters,
but transmitter-target and target-receiver distances. For
convenience, we assume that the constant is identical for any
bistatic radar, i.e., homogeneous bistatic radar also.

As seen from equation (1), the SCFNR performance is
determined by ‖SiTP‖‖PSjR‖, i.e., the product of transmitter-
target and target-receiver distances. According to Definition
1, the product is random. /erefore, we need to analyze its
distribution.

For convenience, the 2D scenario about transmitter Ti

and target P in SCFNR is described in Figure 3. Ti is
assumed to be uniformly located in a circle of the two-
dimensional plane, and the P is assumed to be fixed. In
Figure 3, let ‖SiTP‖ � di, hi be the distance between P and
initial orbital position of Ti, where
di ∈ [hi − R, hi + R](hi >R). Actually, if P is a target po-
sition of earth surface, then hi can be considered as the
orbit height of Ti at initial time.

/erefore, the transmitter-target distance di has the
distance function given by probability distribution, that is,

FDi
di( 􏼁≜P Di ≤di􏼈 􏼉, hi − R≤di ≤ hi + R, hi >R. (2)

Here, FDi
(di) is calculated with geometric probability

method [38, 39].
Now, we extend the 2D scenario in Figure 3 into 3D

scenario. Let Ω be the sphere O and C0 be the intersection
volume between sphere O and the sphere of radius di

centered at P. Equation (2) can be rewritten as

FDi
di( 􏼁 �

μ C0( 􏼁

μ(Ω)
, (3)

where μ(Ω) � 4πR3/3 is the measure of Ω.
In order to calculate FDi

(di), μ(C0) can be divided into
two cases: (1) di ∈ [hi − R, hi); (2) di ∈ di ∈ [hi, hi + R]./us,
/eorem 1 about distribution function of di can be proved.
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Figure 2: /e SCFNR scenario.
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Figure 1: /e mobility model for bistatic radar pair.
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Theorem 1. In SCFNR, if the initial position of transmitter
SiT(0) and mobility model M (t) are given, then the distri-
bution function of random variable di is

FDi
di( 􏼁 �

0, di < hi − R,

2d
3
i + h

3
a − 3had

2
i + 2R

3
+ h

3
b − 3hbR

2

4R
3 , hi − R≤ di < hi,

2d
3
i + h

3
a − 3had

2
i + 2R

3
− h

3
c + 3hcR

2

4R
3 , hi ≤ di ≤ hi + R,

1, hi + R< di,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where di is the radar-target distance, ha � (h2
i − R2 + d2

i /2hi),
hb � (h2

i + R2 − d2
i /2hi), and hc � (−h2

i − R2 + d2
i /2hi).

Proof of ,eorem 1. /e proof of /eorem 1 is given in
Appendix A.

Similarly, if ‖PSjR‖ � dj is the distance between target P

and receiver Rj, then ‖SiTP‖‖PSjR‖ � didj � dij is the
product of transmitter-target and target-receiver distances.
Since di and dj are independent, /eorem 2 about distri-
bution function of dij can be proved. □

Theorem 2. In SCFNR, if the initial positions of transmitter
SiT(0), receiver SjR(0), and mobility model M (t) are given,
then distribution function of random variable dij is

FDij
dij􏼐 􏼑 �

0, dij < h1 − R( 􏼁 h2 − R( 􏼁,

F
1
Dij

dij􏼐 􏼑, h1 − R( 􏼁 h2 − R( 􏼁≤dij < h1 + R( 􏼁 h2 − R( 􏼁,

F
2
Dij

dij􏼐 􏼑, h1 + R( 􏼁 h2 − R( 􏼁≤dij < h1 − R( 􏼁 h2 + R( 􏼁,

F
3
Dij

dij􏼐 􏼑, h1 − R( 􏼁 h2 + R( 􏼁≤dij ≤ h1 + R( 􏼁 h2 + R( 􏼁,

1, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where h1 � max hi, hj􏽮 􏽯, h2 � min hi, hj􏽮 􏽯, and hj is the orbit
height of radar receiver Rj at initial time,

Surveillance region A

Grid coordinate (gx, gy)
Coverage region

Ti

Rj

Figure 4: Sketch of coverage region in SCFNR scenario.

P
R

hi

di

O

SiT

Figure 3: /e transmitter-target distance distribution in SCFNR.
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Proof of ,eorem 2. the proof of /eorem 2 is given in
Appendix A. □

4. The Area of Interest Coverage of SCFNR

According to equation (1), the larger the product of
transmitter-target and target-receiver distance ‖SiTP‖‖PSjR‖,

the smaller the received SNR, and the probability of the P

detected by transmitter-receiver is smaller too. Conversely,
the smaller the ‖SiTP‖‖PSjR‖, the larger the probability will
be.

So, we define point coverage of SCFNR for target
detection.
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Definition 2. Given a threshold value c and a point target P,
if there exists a bistatic radar TiRj ∈ TR(i≠ j) and the
product of transmitter-target and target-receiver distances
in any time slot of orbital hyperperiod is satisfied

SiTP
����

���� PSjR

�����

�����< c, (7)

then the bistatic radar TiRj ∈ TR can provide point coverage
to point P.

For the sake of analysis, according to the idea of grid, the
surveillance region is divided into grids with equal borders, the
border length of the grid is able to be elected in accordance with
the range resolution of radar. /at is, in ECI coordinate, the
surveillance region of interest A (see Figure 4) is encoded in
accordance with horizontal encoding gx(1≤gx ≤Nx) and
vertical encoding gy(1≤gy ≤Ny); the grid coordinate
(gx, gy) is denoted by Agxgy

./us, the region of interestA can
be determined uniquely by all grids and expressed as follows:

A � Agxgy
|1≤gx ≤Nx, 1≤gy ≤Ny􏼚 􏼛. (8)

So, for a bistatic radar TiRj ∈ TR, SNR of each grid can
be given as follows:

SNRgxgy
�

KB

SiTAgxgy

�����

�����
2

Agxgy
SjR

�����

�����
2. (9)

Let Γ be the SNR threshold, then c �
�����
KB/Γ

􏽰
, and a grid

target is covered by a bistatic radar TiRj ∈ TR, if
SNRgxgy

≥ Γ. /en, the definition of 0-1 grid coverage matrix
on SCFNR can be described as follows:

Definition 3. For a bistatic radarTiRj ∈ TR in SCFNR, given
Agxgy
∈ A, the 0-1 grid coverage matrix is denoted by

Uij � [uij,gxgy
]Nx×Ny

, where

uij,gxgy
�

1, FDij
SiTAgxgy

�����

����� Agxgy
SjR

�����

�����􏼒 􏼓≤FDij
(c),

0, others.

⎧⎪⎨

⎪⎩

(10)

If uij,gxgy
� 1 in equation (10), it indicates that the grid

Agxgy
can be covered by the bistatic radar TiRj ∈ TR.

Additionally, to analyze the impact of transmitter-re-
ceiver pairs on coverage, 0-1 pairing matrix, which describes
the transmitter-receiver pairs selected in SCFNR, can be
defined as follows.

Definition 4. For SCFNR, suppose the cardinalities both T
and R are N. If Ti and Rj are selected as a bistatic radar, let
mij � 1; otherwise, mij � 0. /en, 0-1 pairing matrix of
transmitter-receivers is denoted by M � [mij]N×N.

Note that same grids may be covered by different bistatic
radar pairs. /us, based on Definitions 2 and 4, the in-
troduction of cumulative coverage times wgxgy

describes the
coverage level of SCFNR at grid Agxgy

, that is,

wgxgy
� 􏽘

N

i�1
􏽘

N

j�1
mijuij,gxgy

. (11)

As seen from equation (11), wgxgy
∈ 0, 1, . . . , N{ }. On the

basis of this, K-grid coverage matrix of SCNFR can be
defined as follows.

Definition 5. For SCFNR, given a value K(K≤N), if the
variable cgxgy

is satisfied as

cgxgy
�

1, wgxgy
≥K,

0, otherwise,

⎧⎪⎨

⎪⎩
(12)

then the matrix C ∈ RNx×Ny ; C � [cgxgy
] is called K-grid

coverage matrix.
In equation (12), the total number of elements with 1 in

C represents the grid number satisfyingK-grid coverage, and
the total number of elements with 0 in C represents the grid
number unsatisfying K-grid coverage, that is,

g0 � NxNy − 􏽘

Nx

gx�1
􏽘

Ny

gy�1
cgxgy

. (13)

From the point of optimizing system, there is g0⟶ 0.
If the values of g0 approach 0, then SCFNR can provide
completely K-grid coverage to the region A; otherwise,
SCFNR fails to provide K-grid coverage to the region A.
/erefore, the normalized g0 is taken as g1 to measure
coverage performance of SCFNR, that is,

g1 � 1 −
1

NxNy

􏽘

Nx

gx�1
􏽘

Ny

gy�1
cgxgy

. (14)

Also, using the radar equation and conditional proba-
bility, let lij � ‖SiTAgxgy

‖‖Agxgy
SjR‖; the detection proba-

bility of bistatic radar TiRj ∈ TR to grid Agxgy
is given by

pij,gxgy
� Pr dij ≥ lij|dij ≤ c􏽮 􏽯. (15)

/us, the detection probability of SCFNR radar to grid
Agxgy

is as follows:

pgxgy
� 1 − 􏽙

N

i�1
􏽙

N

j�1
1 − mijpij,gxgy

􏼒 􏼓. (16)

For the sake of optimization analysis, the worst-case
detection probability of all grids is taken as the second
objective function to measure the region detection perfor-
mance of SCFNR, that is,

pnet ≜ min
gx,gy

pgxgy
􏼒 􏼓. (17)

To sum up, in SCFNR coverage scenario, K-grid cov-
erage and detection probability (e.g., g1 and pnet) are
functions of pairing matrix M. /erefore, pairing trans-
mitter-receivers with minimum g1 and maximum pnet can
be optimized as follows:
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ming1(M) � 1 −
1

NxNy

􏽘

Nx

gx�1
􏽘

Ny

gy�1
cgxgy

⎛⎜⎝ ⎞⎟⎠

ming2(M) � 1 − pnet( 􏼁

s.t.
C1: 􏽘

N

i�1mij � 1, ∀j ∈ 1, . . . , N{ },

C2: 􏽘
N

j�1mij � 1, ∀i ∈ 1, . . . , N{ }.

(18)

/e constraints C1 and C2 denote that each selected
transmitter or receiver can only be associated to one receiver
or transmitter. /is is actually one-to-one pairing problem
[40].

5. Algorithm Design

Obviously, the problem described in equation (18) is
a multiobjective optimization problem. Due to the con-
flicting nature of the two objectives, no solution optimizing
all objective functions simultaneously exists in general.
Instead, balance among objective functions is taken into
account, which is called trade-off analysis in multiobjective
optimization, i.e., Pareto optimal solutions [41]. /e basic
idea is based on a distancemeasure to determine the solution
near by the ideal solution. Here, the weighted Lp norm is
taken as the distance measure, that is,

gM � 􏽘
2

ib�1
ζ ib

gib
− g
∗
ib

􏼐 􏼑
p⎡⎢⎢⎣ ⎤⎥⎥⎦

1/p

, (19)

where g∗ib is the ideal value of ib-th goal, and g∗1 � g∗2 � 0,
and ζ ib

is the weight factor of the ib-th goal.
/e problem described in equation (19) is a combina-

torial optimization problem. For this problem, particle
swarm optimization (PSO) has been proved as an effective
tool [42–44]. PSO is based on the behavior of birds flocking

[45]. Each particle represents a potential solution to opti-
mization task and all particles fly in the search space to find
the optimal solution. But, its solution does not satisfy the
constraints C1 and C2. As mentioned before, the constraints
C1 and C2 described in equation (18) are a one-to-one paring
problem, which can be solved using Hungarian algorithm
(HA) [40]. As a combinatorial optimizationmethod, HA can
finish the one-to-one paring task in polynomial time.
/erefore, the PSO-HA integrated PSO with HA is pro-
posed. /e outline of PSO-HA is given as follows.

Step 1. Initialization.
Suppose swarm size is L, particle is 1(1≤ l≤ L), the

maximum number of iterations is Tmax, iteration time is
t(1≤ t≤Tmax), acceleration factors are c1 and c2, and the
position and velocity of l-th particle are Ml and vl, re-
spectively. Let t� 1, and set the parameter values: L, Tmax,
Ml(t), vl(t), c1, and c2.

As a note, Ml and vl are both N × N matrixes, in which
each element of matrixes is generated randomly. Here, each
element of Ml and vl is set in the range [0, 1] and [−0.5, 0.5],
respectively.

Step 2. Update position Ml by using PSO.
In each iteration, Ml and vl are updated as follows:

vl(t + 1) � ω(t) × vl(t) + c1r1(t) ρl(t) − Ml(t)( 􏼁 + c1r1(t) ρg(t) − Ml(t)􏼐 􏼑,

Ml(t + 1) � Ml(t) + vl(t + 1),
(20)

where ρl is the current position of l-th particle, ρg is the best
position of all particles it has visited so far, ω(t) is the inertia
weight which decreases with iteration time as ω(t) � 0.9 −

0.5 × (t/Tmax) [46], and r1(t) and r2(t) are random in-
dependent variables in the range [0, 1].

Step 3. Generate one-to-one paring matrixMl by using HA.
/e updating result Ml is taken as the cost matrix of l-th

particle in HA, and then the optimization problem on one-
to-one paring is formulated as follows:

min􏽘
N

i�1
􏽘

N

j�1
m

l
ijm

l
ij

s.t.
C1: 􏽘

N

i�1mij � 1, ∀j ∈ 1, . . . , N{ },

C2: 􏽘
N

j�1mij � 1, ∀i ∈ 1, . . . , N{ },

(21)

where ml
ij is the element of matrix Ml, ml

ij is the element of
matrix Ml, and ml

ij is either 0 or 1.
Note that the paring matrix Ml, which satisfies con-

straints C1 and C2, is obtained by using HA.
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Step 4. Calculate the fitness function gl
M of l-th particle and

determine the best solutionMg (i.e., optimal paring matrix).
Taking the objective function, i.e., equation (19), as the

fitness function of l-th particle (denoted by gl
M), the current

paring matrix Ml of l-th particle and optimal paring matrix
Mg of all particles are updated as follows:

Ml(t + 1) �
Ml(t + 1), if g

l
M(t + 1)≤g

l
M(t),

Ml(t), others,

⎧⎨

⎩

Mg(t + 1) � Ml(t + 1)whenming
l
M(t + 1)1≤ l≤L.

(22)

Step 5. If t≤Tmax, then increment t and go to Step 2;
otherwise, end.

6. Simulation Analysis

In order to simulate and analyze multiobjective pairing
optimization, i.e., coverage and detection performances of
SCFNR, in time slot of the orbital hyperperiod, we establish
the SCFNR scenario by STK (Satellite Tool Kit) first. /en,
we use PSO-HA to find optimal pairing matrix in Windows
10 and MATLAB R2017b environment. At the same time,
area of interest coverage and detection probability are an-
alyzed numerically.

6.1. Parameters Setting

6.1.1. Orbital Elements in SCFNR. Suppose SCFNR is
composed of 4 pairs of homogeneous bistatic radars. Let
T � T1, T2, T3, T4􏼈 􏼉, R � R1, R2, R3, R4􏼈 􏼉,m � 30 km, and
M � 850 km. According to the orbit design of cluster flight
spacecraft proposed in [10], all near circular orbital elements
of SCFNR are listed in Table 1.

According to Table 1, all orbital periods can be calculated
and are approximated as 6310 seconds using STK, so we
believe the orbital hyperperiods of the SCFNR are also
6310 s. In addition, as shown in Figure 5, we can also cal-
culate all relative distances between transmitters and re-
ceivers in 172 days by STK. It is observed that the relative
distance between any transmitter-receiver always remains
below 850 km and above 30 km.

6.1.2. ,e Target Grid and Other Parameters. Suppose that
the longitude and latitude of surveillance regions are in the
range [0, 0.07865345] (rad) and [0, 0.07865345] (rad), re-
spectively. /at is, surveillance region is set as square with
the size of 500 × 500km on the earth surface./e region with
longitude and latitude can be divided into Nx × Ny grids.
Let Nx � 100 and Ny � 100. So, according to coordinate
transforming relations between spherical coordinates and
rectangular coordinates, each grid can be computed in the
ECI coordinate.

For radar equation and PSO-HA, the parameters are
listed in Table 2. In this case, the distribution function of dij

for SCFNR in equation (5) can be calculated, as presented in
equation (23). At the same time, as shown in Figure 6, we
give the curve of distribution function of dij for SCFNR.

FDij
dij􏼐 􏼑 �

0, dij < 7.04878 × 105,

F1 dij􏼐 􏼑, 7.04878 × 105 ≤ dij < 1.04910 × 106,

F2 dij􏼐 􏼑, 1.04910 × 106 ≤ dij ≤ 1.56142 × 106

1, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(23)

where

F1 dij􏼐 􏼑 ≈ 8.30169 × 10− 9
× d

2
ij − 7.33464 × 10− 15

×

d
3
ij − 6.49148 × 10− 21

× d
4
ij + 3.82234 × 10− 9

× d
2
ij × log

dij

7.04878 × 105
􏼠 􏼡 + 1.01050 × 10− 14

× d
3
ij×

log
dij

7.04878 × 105
􏼠 􏼡 + 1.73646 × 10− 21

× d
4
ij × log

dij

7.04878 × 105
􏼠 􏼡 + 46.52592,

F2 dij􏼐 􏼑 ≈ − 1.14225 × 10− 8
× d

2
ij − 5.97942 × 10− 16

× d
3
ij + 5.07373 × 10− 21

× d
4
ij − 3.82234 × 10− 9

× d
2
ij×

log
dij

1.56143 × 106
􏼠 􏼡 − 1.01050 × 10− 14

× d
3
ij × log

dij

1.56143 × 106
􏼠 􏼡 − 1.73646 × 10− 21

× d
4
ij × log

dij

1.56143 × 106
􏼠 􏼡 − 32.88394.

(24)
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Table 1: All near circular orbital elements of SCFNR.

Parameter Semimajor axis
(km)

Eccentricity
(deg)

Inclination
(deg)

Argument of perigee
(deg)

True anomaly
(deg)

Right ascension of ascending
node (deg)

T1 7378.14 0.02 35 0.00000 0.00000 0.00000
T2 7378.14 0.02 35 0.00163 1.13947 3.38820
T3 7378.14 0.02 35 0.00068 0.47630 1.82400
T4 7378.14 0.02 35 359.997 −2.1650 1.70983
R1 7378.14 0.02 35 0.00106 2.50602 2.50602
R2 7378.14 0.02 35 0.00022 0.15383 1.08022
R3 7378.14 0.02 35 359.999 −0.79763 4.02245
R4 7378.14 0.02 35 0.00344 2.39289 −1.18115

Table 2: Parameter setting.

Parameter Value
KB 45M4

Γ 12.5 dB
h1 1044.5702 km
h2 1044.5702 km
c 1.14932 × 106
FDij

(c) 0.62269
L 10
Tmax 100
P 2
c1 1.49445
c2 1.49445
R 205 km
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Figure 5: /e relative distance between any transmitter-receiver within 172 days.
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Table 3: gM for 24 cases of pairing schemes.

Paring scheme ζ1 � 0.7 ζ1 � 0.5 ζ1 � 0.3
ζ2 � 0.3 ζ2 � 0.5 ζ2 � 0.7

T1R1, T2R2, T3R3, T4R4 0.15540 0.25500 0.35597
T1R1, T2R2, T3R4, T4R3 0.16469 0.24026 0.32681
T1R1, T2R3, T3R4, T4R2 0.13368 0.19492 0.26509
T1R1, T2R3, T3R2, T4R4 0.15069 0.24229 0.33688
T1R1, T2R4, T3R2, T4R3 0.15501 0.22166 0.29994
T1R1, T2R4, T3R3, T4R2 0.12747 0.19374 0.26614
T1R2, T2R1, T3R3, T4R4 0.09853 0.15754 0.21879
T1R2, T2R1, T3R4, T4R3 0.11394 0.13584 0.17271
T1R2, T2R4, T3R3, T4R1 0.11183 0.18308 0.25544
T1R2, T2R4, T3R1, T4R3 0.11765 0.14436 0.18576
T1R2, T2R3, T3R1, T4R4 0.09844 0.15016 0.20646
T1R2, T2R3, T3R4, T4R1 0.11829 0.18977 0.26374
T1R3, T2R1, T3R2, T4R4 0.10855 0.17487 0.24324
T1R3, T2R1, T3R4, T4R2 0.10459 0.15033 0.20370
T1R3, T2R2, T3R4, T4R1 0.14080 0.23239 0.32475
T1R3, T2R2, T3R1, T4R4 0.12640 0.20594 0.28708
T1R3, T2R4, T3R1, T4R2 0.13627 0.21010 0.28956
T1R3, T2R4, T3R2, T4R1 0.12935 0.21310 0.29770
T1R4, T2R3, T3R2, T4R1 0.14810 0.24148 0.33667
T1R4, T2R3, T3R1, T4R2 0.11359 0.15552 0.20788
T1R4, T2R1, T3R2, T4R3 0.12759 0.16616 0.21857
T1R4, T2R1, T3R3, T4R2 0.09847 0.13839 0.18638
T1R4, T2R2, T3R1, T4R3 0.13989 0.19168 0.25627
T1R4, T2R2, T3R3, T4R1 0.15399 0.25457 0.35585
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Figure 7: /e distributions of coverage level and detection probability with ζ1 � 0.7, ζ2 � 0.3, and Γ � 12.5 dB in grids. (a)wgxgy
. (b)pgxgy
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Figure 6: /e distance distribution function (equation (23)) associated with dij in SCFNR.
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6.2. Numerical Result and Analysis

6.2.1. Transmitter-Receiver Pairing Scheme.
Case1: gM with different weight values in the slot 1 for
the 1st orbital hyperperiod.
Considering three conditions, i.e., ζ1 > ζ2, ζ1 � ζ2, and
ζ1 < ζ2, we calculate the optimal pairing matrix in the
same slot of its orbital hyperperiod under the same
simulation environment as described in Section 6.1.
Let ζ1 � 0.7 and ζ2 � 0.3; the optimal pairing matrix is
given as follows:

Mg �

0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (25)

Equation (25) indicates that optimal pairing scheme of
bistatic radars is T1R2, T2R3, T3R1, T4R4, and
gM � 0.098349 with g1 � 0.06270 and g2 � 0.29371.
Let ζ1 � 0.5 and ζ2 � 0.5; the optimal pairing matrix is
given as follows:

Mg �

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (26)

Equation (26) indicates that optimal pairing scheme of
bistatic radars is T1R2, T2R1, T3R4, T4R3, and
gM � 0.135841 with g1 � 0.1259 and g2 � 0.24075.
Let ζ1 � 0.3 and ζ2 � 0.7; the optimal pairing matrix is
given as follows:

Mg �

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (27)

Equation (27) indicates that the optimal pairing scheme
of bistatic radars is T1R2, T2R1, T3R4, T4R3, and gM �

0.172705 with g1 � 0.1259 and g2 � 0.24075.
For the sake of comparison, Table 3 lists all pairing
schemes for 4 pairs of homogeneous bistatic radars, i.e.,
24 cases of pairing schemes and corresponding gM
using the same parameters.
As shown in Table 3, wemark the gM in bold font. It can
be seen that, under conditions of same weight values,
the corresponding paring schemes are consistent with
equations (25) and (26), respectively. /erefore, PSO-
HA is effective and reasonable.
Case 2: gM with different weight values in the slots 1
and 2 of different orbital hyperperiods.

When ζ1 � 0.7 and ζ2 � 0.3, the optimal pairing scheme
and corresponding gM can be listed in Table 4, and when
ζ1 � 0.5 and ζ2 � 0.5, the optimal pairing scheme and
corresponding gM can be listed in Table 5.

As Tables 4 and 5 show, the optimal pairing schemes are
various in different slots of different orbital hyperperiods,
andζ2 � 0.3 is different as well. From this result, we conclude
that geometric topology of SCFNR with high dynamic and
random leads to optimal pairing scheme with dynamic and
random.

6.2.2. Coverage Level and Detection Probability.
Case 1: when Γ � 12.5 dB,
Using the optimal pairing matrices given by equations
(25)–(27), we calculate the corresponding distributions
of coverage level and detection probability as shown in
Figures 7 and 8. /e coverage level and detection
probability corresponding to equations (26) and (27)
are the same due to the same optimal pairing matrices
in equations (26) and (27). So, we only need to give the
two distributions with ζ1 � 0.7, ζ2 � 0.3 and ζ1 � 0.5,
ζ2 � 0.5, respectively.
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Figure 8: /e distributions of coverage level and detection probability with ζ1 � 0.5, ζ2 � 0.5, and Γ � 12.5 dB in grids. (a)wgxgy
. (b)pgxgy
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In Figures 7 and 8, it is observed that either the dis-
tribution of coverage level or the distribution of de-
tection probability is roughly the same. Besides, the
higher the coverage level, the higher the detection
probability.
Case 2: when Γ � 12.0 dB,

In this case, keeping other parameters unchanged, the
distributions of coverage level and detection probability are
shown in Figures 9–11.

In Figures 9–11, it is observed that the three dis-
tributions of coverage level and detection probability are
roughly the same with different weight values. However,
there is considerable difference between the

distributions with Γ � 12.5 dB and Γ � 12.0 dB, and we
find that the SNR threshold has a great influence on
coverage level and detection probability in SCFNR. We
also observe that the smaller the threshold Γ, the larger
the coverage level and detection probability. /ese show
that the proposed PSO-HA, coverage, and detection
probability model are reasonable and effective, espe-
cially for coverage and detection performance measured
by distance function.

In addition, using PSO-HA to solve optimal pairing
matrix, considering three weight values, we give the re-
lationship between iteration and gM in slot 1 for the 1st
orbital hyperperiod. As shown in Figure 12, the iterative
process has good convergence.

Table 4: Optimal pairing scheme and corresponding gM with ζ1 � 0.7 and ζ2 � 0.3.

Orbital hyperperiod Time slot Optional pairing scheme gM

/e 2nd orbital hyperperiod 1 T1R2, T2R1, T3R3, T4R4 0.063586
2 T1R1, T2R2, T3R3, T4R4 0.139745

/e 3th orbital hyperperiod 1 T1R2, T2R1, T3R3, T4R4 0.047843
2 T1R3, T2R4, T3R1, T4R3 0.123073

/e 12th orbital hyperperiod 1 T1R2, T2R3, T3R4, T4R1 0.009715
2 T1R1, T2R4, T3R3, T4R2 0.198599

/e 16th orbital hyperperiod 1 T1R2, T2R3, T3R4, T4R1 0.068867
2 T1R1, T2R3, T3R4, T4R2 0.295543

Table 5: Optimal pairing scheme and corresponding gM with ζ1 � 0.5 and ζ2 � 0.5.

Orbital hyperperiod Time slot Optional pairing scheme gM

/e 2nd orbital hyperperiod 1 T1R3, T2R1, T3R4, T4R2 0.098536
2 T1R2, T2R1, T3R3, T4R4 0.072687

/e 3th orbital hyperperiod 1 T1R3, T2R4, T3R2, T4R1 0.156137
2 T1R2, T2R4, T3R1, T4R3 0.156137

/e 12th orbital hyperperiod 1 T1R2, T2R3, T3R4, T4R1 0.015381
2 T1R1, T2R4, T3R3, T4R2 0.251995

/e 16th orbital hyperperiod 1 T1R4, T2R3, T3R1, T4R2 0.090544
2 T1R1, T2R3, T3R4, T4R2 0.380717
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Figure 9: /e distributions of coverage level and detection probability with ζ1 � 0.7, ζ2 � 0.3, and Γ � 12.0 dB in grids. (a)wgxgy
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Figure 12: Continued.
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Figure 11: /e distributions of coverage level and detection probability with ζ1 � 0.3, ζ2 � 0.7, and Γ � 12.0 dB in grids. (a)wgxgy
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Figure 10: /e distributions of coverage level and detection probability with ζ1 � 0.5, ζ2 � 0.5, and Γ � 12.0 dB in grids. (a)wgxgy
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Figure 12: /e relationship between iteration and objective function with different weight values.
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7. Conclusions

In this paper, we study the optimization problem of the
transmitter-receiver pairing of SCFNR for area coverage and
target detection. Firstly, the novel concept of SCFNR in-
tegrated cluster flight spacecraft with netted radar is pro-
posed. By establishing the mobility model for bistatic radar
pair with twin-satellite mode, we have derived the radar-
target distance distribution function and radar-target dis-
tance product distribution function with geometric proba-
bility method. Secondly, the radar-target distance
distribution function and radar-target distance product
distribution function with geometric probability method are
proposed; we present the 0-1 grid coverage matrix for the
bistatic radar and the transmitter-receiver paring matrix for
SCFNR using the radar equation and the radar-target dis-
tance distribution function. Next, we describe the optimal
problem of transmitter-receiver pairing of SCFNR for area
coverage and target detection by defining K-grid coverage
matrix. Finally, we propose new PSO-HA for the problem.
We validate the effectiveness and reasonability of the pro-
posed algorithm through numerical analysis. /e numerical
results can also be concluded as follows:

(1) Geometric topology of SCFNR with characteristic
great dynamic and random leads to optimal paring
scheme with characteristic time varying and random;

(2) When the paring matrix is optimal, the coverage
level and detection probability with different weigh
values had a slight change;

(3) SNR threshold had a great discernible impact on
coverage and detection. In other words, the smaller
the SNR threshold, the more achievable its coverage
and detection will be.

In the future, to further develop the theory and appli-
cation of SCFNR, we will study problems on target detection,
localization, and tracking.

Appendix

Proof of ,eorem 1. For distance distribution FDi
(di), we

can obtain using equation (3), where μ(Ω) � 4πR3/3 and
intersection volume μ(C0) is unknown. In order to calculate
μ(C0), we categorize as follows:

(1) When di ∈ [hi − R, hi), as shown in Figure 13(a),
there exists ha + hb � hi, d2

i − h2
a � R2 − h2

b, thus
ha � (h2

i − R2 + d2
i /2hi), hb � (h2

i + R2 − d2
i /2hi), and

the intersection volume μ(C0) � μ(Ca) + μ(Cb).
Actually, in Figure 13(a), μ(Ca) and μ(Cb) are one
part of sphere P with di radius and sphere O with R

radius, respectively. /e methods to calculate μ(Ca)

and μ(Cb) are the same.
For μ(Ca), let x2 + y2 + z2 � d2

i (see Figure 13(a)
again); using triple integral, we can calculate it as
follows:

μ Ca( 􏼁 � 􏽚
di

ha

dxBdydz � 􏽚
di

ha

π d
2
i − x

2
􏼐 􏼑dx �

2πd
3
i

3
+
πh

3
a

3
− πd

2
1ha. (A.1)

In the same way, analogous, we can get μ(Cb), that is,

μ Cb( 􏼁 �
2πR

3

3
+
πh

3
b

3
− πR

2
hb. (A.2)

Hence, we have

μ C0( 􏼁 �
2πd

3
i

3
+
πh

3
a

3
− πd

2
i ha +

2πR
3

3
+
πh

3
b

3
− πR

2
hb.

(A.3)

/en, substituting equation (A.3) and
μ(Ω) � 4πR3/3 into equation (3), FDi

(di) can be
calculated as

FDi
di( 􏼁 �

2d
3
i + h

3
a − 3had

2
i + 2R

3
+ h

3
b − 3hbR

2

4R
3 .

(A.4)

(2) When di ∈ [hi, hi + R], as shown in Figure 13(b),
there exists ha − hc � hi, d2

i − h2
a � R2 − h2

c , thus

ha � (h2
i − R2 + d2

i /2hi), hc � (−h2
i − R2 + d2

i /2hi).
/e intersection volume μ(C0) � μ(Ca) + μ(Cc). In
the same way described in equation (A.1), we can
calculate μ(Cc) as follows:

μ Cc( 􏼁 �
2πR

3

3
−
πh

3
c

3
+ πR

2
hc. (A.5)

Hence, we have

μ C0( 􏼁 �
2πd

3
i

3
+
πh

3
a

3
− πd

2
i ha +

2πR
3

3
−
πh

3
c

3
+ πR

2
hc.

(A.6)

/en, substituting equation (A.6) and μ(Ω) � 4πR3/3
into equation (3), FDi

(di) can be calculated as

FDi
di( 􏼁 �

2d
3
i + h

3
a − 3had

2
i + 2R

3
− h

3
c + 3hcR

2

4R
3 . (A.7)

To sum up, FDi
(di) is given by
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FDi
di( 􏼁 �

0, di < hi − R,

2d
3
i + h

3
a − 3had

2
i + 2R

3
+ h

3
b − 3hbR

2

4R
3 , hi − R≤ di < hi,

2d
3
i + h

3
a − 3had

2
i + 2R

3
− h

3
c + 3hcR

2

4R
3 , hi ≤ di ≤ hi + R,

1, hi + R< di.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A.8)

□
Proof of ,eorem 2. Let ‖PSjR‖ � dj be the distance between
target P and receiver, then ‖SiTP‖‖PSjR‖ � didj � dij is the
product of transmitter-target and target-receiver distances.
To calculate the distribution function of dij, the accurate
probability density functions of di and djare indispensable.

In/eorem 1, we have got the distance function FDi
(di),

so the probability density function of di is

fDi
di( 􏼁 �

zFDi
di( 􏼁

zdi

. (A.9)

In the same way, we can also get fDj
(dj). Since the two

random variables di and dj are independent, the probability
density function of dij can be obtained by

fDij
dij􏼐 􏼑 � 􏽚

∞

−∞

1
di

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
fDi

di( 􏼁fDj

dij

di

􏼠 􏼡ddi. (A.10)

For convenience, let h1 � max hi, hj􏽮 􏽯 and
h2 � min hi, hj􏽮 􏽯. Obviously, di > 0; thus, fDij

(dij) can be
rewritten as follows:

fDij
dij􏼐 􏼑 � 􏽚

+∞

−∞

1
di

fDi
di( 􏼁fDj

dij

di

􏼠 􏼡ddi, (A.11)

where

fDi
di( 􏼁 �

3 R
2

− h
2
1􏼐 􏼑di + 6h1d

2
i − 3d

3
i

4R
3
h1

, h1 − R≤ di ≤ h1 + R,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

fDj
dj􏼐 􏼑 �

3 R
2

− h
2
2􏼐 􏼑dj + 6h2d

2
j − 3d

3
j

4R
3
h2

, h2 − R≤ dj ≤ h2 + R,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(A.12)

/us, the distribution function of dij is

FDij
dij􏼐 􏼑 � 􏽚

dij

h1−R( ) h2−R( )
fDij

dij􏼐 􏼑ddij

� 􏽚
dij

h1−R( ) h2−R( )
􏽚

+∞

−∞

1
di

fDi
di( 􏼁fDj

dij

di

􏼠 􏼡ddiddij.

(A.13)

When equation (A.13) is not equal to 0, the feasible
region with respect to di and dij is shown in Figure 14.
/erefore, for equation (A.13), we categorize as follows:

(1) When (h1 − R)(h2 − R)≤dij < (h1 + R)(h2 − R), we
get
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F
1
Dij

dij􏼐 􏼑 � 􏽚
dij

h1−R( ) h2−R( )
􏽚

dij/ h2−R( )

h1−R( )
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di
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dij

di
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C
1
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1
2d

2
ij + C

1
3d

3
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C
1
4dij ln

dij

h1 − R( 􏼁 h2 − R( 􏼁
+ C

1
5d

2
ij ln

dij

h1 − R( 􏼁 h2 − R( 􏼁
􏼠 􏼡ddij

+ 􏽚
dij

h1−R( ) h2−R( )
C
1
6d

3
ij ln

dij

h1 − R( 􏼁 h2 − R( 􏼁
ddij

�
C
1
1d

2
ij

2
+

C
1
2d

3
ij

3
+

C
1
3d

4
ij

4
+

C
1
4d

2
ij

4
2 ln

dij

h1 − R( 􏼁 h2 − R( 􏼁
− 1􏼠 􏼡

+
C
1
5d

3
ij

9
3 ln

dij

h1 − R( 􏼁 h2 − R( 􏼁
− 1􏼠 􏼡

+
C
1
6d

4
ij

16
4 ln

dij

h1 − R( 􏼁 h2 − R( 􏼁
− 1􏼠 􏼡 + C

1
0,

(A.14)

where

C
1
1 �

9 h1 − R( 􏼁 h2 − R( 􏼁 3h1h2 + 2h1R + 2h2R + R
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16h1h2R
6 ,

C
1
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16h1h2R
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9
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C
1
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9
16h1h2R
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C
1
0 � −

h1 − R( 􏼁
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h2 − R( 􏼁
3

h1 + 3R( 􏼁 h2 + 3R( 􏼁

256h1h2R
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(A.15)

(2) When (h1 + R)(h2 − R)≤ dij < (h1 − R)(h2 + R), we
get

F
2
Dij

dij􏼐 􏼑 � 􏽚
dij

h1+R( ) h2−R( )
􏽚
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C
2
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4
ij
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(A.16)

where
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(A.17)
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(3) When (h1 − R)(h2 + R)≤ dij < (h1 + R)(h2 + R), we
get
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(A.18)

where

C
3
1 � −

9 h1 + R( 􏼁 h2 + R( 􏼁 3h1h2 − 2h1R − 2h2R + R
2

􏼐 􏼑

16h1h2R
6 ,

C
3
2 � −

9 h1 + h2( 􏼁

4h1h2R
5 ,

C
3
3 �

1
16h1h2R

6
27h1 + 9R

2h1 + 2R
+
27h2 + 9R

2h2 + 2R
􏼠 􏼡,

C
3
4 � −

9 h
2
1 − R

2
􏼐 􏼑 h

2
2 − R

2
􏼐 􏼑

16h1h2R
6 ,

C
3
5 � −

9
4R

6,

C
3
6 � −

9
16h1h2R

6,

C
3
0 � F

2
Dij

h1 − R( 􏼁 h2 + R( 􏼁( 􏼁 −
C
3
1 h1 − R( 􏼁

2
h2 + R( 􏼁

2

2
−

C
3
2 h1 − R( 􏼁

3
h2 + R( 􏼁

3

3

−
C
3
3 h1 − R( 􏼁

4
h2 + R( 􏼁

4

4
−

C
3
4d

2
ij

4
2 ln

h1 − R( 􏼁

h1 + R( 􏼁
− 1􏼠 􏼡 +

C
3
5d

3
ij

9
3 ln

h1 − R( 􏼁

h1 + R( 􏼁
− 1􏼠 􏼡 +

C
3
6d

3
ij

16
3 ln

h1 − R( 􏼁

h1 + R( 􏼁
− 1􏼠 􏼡.

(A.19)
□
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+is paper explains a region-division-linearization algorithm for solving a class of generalized linear multiplicative programs
(GLMPs) with positive exponent. In this algorithm, the original nonconvex problem GLMP is transformed into a series of linear
programming problems by dividing the outer space of the problem GLMP into finite polynomial rectangles. A new two-stage
acceleration technique is put in place to improve the computational efficiency of the algorithm, which removes part of the region
of the optimal solution without problems GLMP in outer space. In addition, the global convergence of the algorithm is discussed,
and the computational complexity of the algorithm is investigated. It demonstrates that the algorithm is a complete polynomial
time approximation scheme. Finally, the numerical results show that the algorithm is effective and feasible.

1. Introduction

Consider a class of generalized linear multiplicative pro-
grams (GLMPs):

(LFP):
min f(x) � 􏽙

p

i�1
c

T
i x + di􏼐 􏼑

αi

s.t. x ∈ X � x ∈ Rn
|Ax≤ b, x≥ 0􏼈 􏼉.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

Here, p≥ 2, X is a nonempty bounded closed set,
A ∈ Rm×n, b ∈ Rm, ci ∈ Rn, di ∈ R, and αi > 0. T represents
the transpose of a vector (e.g., cT

i represents the transpose of
a vector ci). Besides, we assume that for any x ∈ X, all make
cT

i x + di > 0, i � 1, 2, . . . , p.
+e problem GLMP usually has multiple nonglobal local

optimal solutions and is a class of NP-hard problems [1],
which can be widely used in the fields of finance optimi-
zation [2, 3], robust optimization [4], microeconomics [5],
and multiobjective decision making [6, 7]. In addition, the
GLMP also includes a wide range of mathematical pro-
gramming categories, such as linear multiplicative

programming, quadratic programming, bilinear program-
ming, and so on. +erefore, for these and various other
reasons, GLMP has caught the attention of many experts,
scholars, and engineering practitioners who have studied
this theory and set off a new wave of global optimization
learning. With the increasing dependence of practical
problems on modeling optimization, local optimization
theory and global optimization algorithms have made re-
markable progress. However, compared with local optimi-
zation algorithm, the theory of global optimization
algorithm is still quite insufficient. +ere are many methods
to study this kind of problems, such as level set algorithm [8],
heuristic algorithm [9, 10], branch and bound algorithm
[11–13], outer approximation algorithm [14], parametric
simplex algorithm [15], and so on, but these methods do not
give the computational complexity of the algorithm. In
addition, Depetrini and Locatelli [16] considered the
problem of minimizing the product of two affine functions
over a polyhedron set and proposed a polynomial time
approximation algorithm. Locatelli [17] presented an ap-
proximate algorithm for solving more general types of global
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optimization problems and deduced the computational
complexity of the algorithm, but the numerical results of the
algorithm are lacking. Recently, Shen and Wang [18] also
proposed a full polynomial time approximation algorithm
for resolving the problem GLMP globally, but there is no
acceleration technique. Moreover, for a more comprehen-
sive overview of the GLMP, we encourage the readers to go
through the more detailed literature [8, 19–21].

In this paper, in order to solve the GLMP, two approxi-
mation algorithms are proposed, which is mainly by estab-
lishing a nonuniform grid; the process of solving the original
problem is transformed into the process of solving a series of
linear problems; it is proved that the proposed algorithm can
obtain a global ε−approximation solution for GLMP. Besides,
we put forward a two-stage acceleration technique to speed up
Algorithm 1, which yields Algorithm 2.+en, by discussing the
computational complexity of the algorithm, it is shown that the
two algorithms are polynomial time approximation algorithms.
Numerical experiments show that the performance of Algo-
rithm 2 is obviously better than that of Algorithm 1, and the
numerical results in Table 2 show that in solving problem 1-3,
Algorithm 2 uses less CPU running time and iterations than
[17, 18].

+e rest of this paper is organized as follows. In Section
2, we first transform the problem GLMP into its equivalent
optimization problem EOP and give its region-decompo-
sition-linearization technique. Section 3 presents the global
ε−approximation algorithm for problem GLMP and obtains
the convergence for the proposed algorithm. In Section 4, we
give the computational complexity for the proposed algo-
rithm and carry out some numerical experiments in Section
5 to verify the feasibility and effectiveness of the algorithm.
+e concluding section is a simple summary.

2. Equivalence Problem and Its
Linearization Technique

In this section, we will give the equivalent optimization
problem EOP of the problem GLMP, then give the corre-
sponding properties by studying the objective function of the
EOP, and then explain the linearization technique of the
equivalent problem.

2.1. Equivalent Problems and 0eir Properties. In order to
solve the problem GLMP, the definition of global
ϵ−approximation solution is given below.

Definition 1. Let x∗ be a global optimal solution to the
problem GLMP at a given precision ε ∈ (0, 1). If 􏽢x ∈ X

satisfies f(􏽢x)≤ (1 + ε)f(x∗), 􏽢x is referred to as the global
approximation of the problem GLMP.

To obtain the global ε−approximation solution for
GLMP, let fi(x) � cT

i x + di, li � minx∈Xfi(x).

Theorem 1. For each i � 1, 2, . . . , p, let
􏽥xi � argminx∈Xfi(x), Q � ∪ p

i�1􏽥xi, �x � argminx∈Qf(x),
􏽥U � f(�x). 0en, for each i ∈ 1, 2, . . . , p􏼈 􏼉, let
Mi � 􏽑

p
j�1,j≠ i l

αj

j ; then, fi(x∗)≤ ui with ui � ( 􏽥U/Mi)
(1/αi).

Proof. It is easy to know that for any i ∈ 1, 2, . . . , p􏼈 􏼉, there
are li ≤fi(x∗); thus,

􏽙

p

j�1,j≠i
l
αj

j fi x
∗

( 􏼁( 􏼁
αi ≤􏽙

p

i�1
fi x
∗

( 􏼁( 􏼁
αi � f x

∗
( 􏼁≤f(�x) � 􏽥U.

(2)

+erefore, fi(x∗)≤ ( 􏽥U/Mi)
(1/αi) � ui and then the

conclusion holds.
Next, according to +eorem 1, for each i � 1, 2, . . . , p,

ui � ( 􏽥U/Mi)
(1/αi) provide an upper bound for every fi(x∗).

On the basis of the above definition of li and ui, define
the rectangle H as follows.

H � l1, u1􏼂 􏼃 × l2, u2􏼂 􏼃 × · · · × lp, up􏽨 􏽩. (3)

Moreover, the rectangle H is also called the outer space
of the GLMP. +us, by introducing variable
y � (y1, y2, . . . , yp)T ∈ H, the problem GLMP is equivalent
to the following problem P1.

(P1)

min h(y) � 􏽙

p

i�1
y
αi

i ,

s.t.
fi(x)≤yi, i � 1, 2, . . . , p

x ∈ X, y ∈ H.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

Next, the equivalence of problems GLMP and P1 is
explained by +eorem 1. □

Theorem 2. x∗ is a global optimal solution of problemGLMP
if and only if (x∗, y∗) is an optimal solution of problem P1
and y∗i � fi(x∗), i � 1, 2, . . . , p.

Proof. Let y∗i � fi(x∗), i � 1, 2, . . . , p if x∗ is a global op-
timal solution of the problemGLMP.+en, then it is obvious
that (x∗, y∗) is a feasible solution to P1. Suppose (x∗, y∗) is
not an optimal solution of P1; then, there is at least one
feasible solution (x, y) of P1, which makes

f(x) � 􏽙

p

i�1
fi(x)( 􏼁

αi ≤􏽙

p

i�1
y
αi

i <􏽙

p

i�1
y
∗
i( 􏼁

αi � 􏽙

p

i�1
fi x
∗

( 􏼁( 􏼁
αi � f x

∗
( 􏼁,

(5)

which contradicts the optimality of the x∗, so the hypothesis
does not hold, and then (x∗, y∗) is an optimal solution of P1.

Conversely, if (x∗, y∗) is an optimal solution for P1 and
if there is a i ∈ 1, 2, . . . , p􏼈 􏼉 that makes fi(x∗)<y∗i , let
􏽥yi � fi(x∗), then (x∗, 􏽥y) is a feasible solution for P1 and

􏽙

p

i�1
􏽥y
αi

i <􏽙

p

i�1
y
∗
i( 􏼁

αi , (6)

which contradicts the optimality of (x∗, y∗), so
y∗i � fi(x∗), i � 1, 2, . . . , p. Suppose x∗ is not a global op-
timal solution of the problem GLMP; then, there must be a
x ∈ X that makes f(x)<f(x∗). Let yi � fi(x); obviously,
(x, y) is a feasible solution to P1, so we have

2 Mathematical Problems in Engineering



􏽙

p

i�1
yi( 􏼁

αi � f(x)<f x
∗

( 􏼁 � 􏽙

p

i�1
y
∗
i( 􏼁

αi , (7)

which contradicts the optimality of (x∗, y∗). +erefore, x∗ is
the global optimal solution of the problem GLMP, which
proves to be completed.

It is easy to understand from +eorem 2 that the
problems GLMP and P1 are equivalent and have the same
global optimal value.

+en, for a given y ∈ H, define the set

D(y) � x ∈ X|fi(x)≤yi, i � 1, 2, . . . , p􏼈 􏼉, (8)

and function

g(y) �
h(y), D(y) ≠∅,

+∞, D(y) � ∅.
􏼨 (9)

+en, the problem P1 is equivalent to the following
equivalent optimization problem.

(EOP)
min g(y)

s.t. y ∈ H.
􏼨 (10)

□

Theorem 3. y∗ is the global optimal solution of the problem
EOP if and only if (x∗, y∗) is the optimal solution of P1 and
y∗i � fi(x∗), i � 1, 2, . . . , p.

Proof. Suppose (x∗, y∗) is an optimal solution of P1; then,
according to +eorem 2, we can know
y∗i � fi(x∗), i � 1, 2, . . . , p and y∗ ∈ H. In addition,
h(y∗) � g(y∗) � 􏽑

p
i�1 (y∗i )αi . Suppose that y∗ is not the

global optimal solution of the problem EOP; there must be a
y ∈ H such that g(y)<g(y∗) and D(y)≠∅; then, there
must also be a x ∈ D(y) such that fi(x)≤yi, i � 1, 2, . . . , p.
+en, (x, y) is a feasible solution of P1; there is
h(y) � g(y)<g(y∗) � h(y∗), which contradicts the opti-
mality of (x∗, y∗), so the hypothesis does not hold, so y∗ is
the global optimal solution of the problem.

On the other hand, if y∗ is a global optimal solution of
the problem EOP, then D(y∗)≠∅, and there must be a
x∗ ∈ D(y∗) such that (x∗, y∗) is a feasible solution of P1.
Suppose (x∗, y∗) is not the global optimal solution of the
problem P1; then, there must be an optimal solution (x, y)

to the problem P1 such that
h(y)< h(y∗), yi � fi(x), i � 1, 2, . . . , p, so D(y)≠∅ and
g(y) � h(y)< h(y∗) � g(y∗), which contradicts the fact
that y∗ is the global optimal solution of the problem EOP.

+erefore, (x∗, y∗) is the global optimal solution of P1, and
y∗i � fi(x∗), i � 1, 2, . . . , p can be obtained from+eorem 2
and then proved to be over.

+rough +eorem 3, the problems EOP and P1 have the
same global optimal value, so combined with+eorem 2, the
problems EOP and GLMP are also equivalent. +erefore, we
can solve the equivalent problem EOP instead of addressing
the problem GLMP.

Next, we consider the following linear programming
problem:

LPy

min 􏽘

p

i�1

αifi(x)

yi

s.t.x ∈ D(y).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(11)

If D(y) ≠∅, the optimal solution to the problem LPy is
recorded as xy, and let 􏽥yi � fi(xy), ρ � 􏽐

p
i�1 αi > 0; then,

ρ � 􏽘

p

i�1

αiyi

yi

≥ 􏽘

p

i�1

αifi(x)

yi

, ∀x ∈ D(y). (12)

Furthermore, according to the Jensen inequality, we have

􏽘

p

i�1

αifi xy􏼐 􏼑

yi

≥ ρ 􏽙

p

i�1

fi xy􏼐 􏼑

yi

⎛⎝ ⎞⎠

αi

⎞⎠

(1/ρ)

� ρ
g(􏽥y)

g(y)
􏼠 􏼡

(1/ρ)

,⎛⎜⎜⎝

(13)

and then

ρ≥ ρ
g(􏽥y)

g(y)
􏼠 􏼡

(1/ρ)

, g(􏽥y)≤g(y). (14)

□

Theorem 4. Suppose x∗ ∈ X is a global optimal solution of
the original problem GLMP; let y∗i � fi(x∗), i � 1, 2, . . . , p;
then, y∗ � (y∗1 , y∗2 , . . . , y∗p)T ∈ H and x∗ is also a global
optimal solution of the problem (LPy∗).

Proof. Firstly, according to+eorems 2 and 3, we know that y∗

is a global optimal solution of the problem EOP.+en, by using
formula (14) and the optimality of the global optimal solution
y∗ of the EOP, we can see that x∗ is an optimal solution of the
problem (LPy∗).

Next, the properties of the function g(y) over H are
given by +eorem 5. □

Theorem 5. For a given precision ε ∈ (0, 1), let
δ � (1 + ε)(1/ρ); then, for any y ∈ H, there is

(1) Step 0 (initialization). Set ε ∈ (0, 1), δ � (1 + ε)(1/ρ), F � +∞, k � 0. By using formulas (22) and (23), the ratio used for the two
consecutive segments in each dimension is δ, which subdivides H into smaller rectangles. Represent the vertex of each small
rectangle as ] � (]1, ]2, . . . , ]p), which is stored in the set Bδ.

(2) Step 1. Select a point ] from the Bδ, solve the linear programming problem (LP]), and let Bδ � Bδ\].
(3) Step 2. If the problem (LP]) is solvable, then D(])≠∅, and let g(]) � 􏽑

p

i�1 (vi)
αi ; if g(])<F, let F � g(]), ] � ], x] � x]; if

Bδ ≠∅, set k � k + 1 and go to Step 1; otherwise, the algorithm terminates; let

ALGORITHM 1: Original algorithm.
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g(y)≤ (1 + ε)g(y), ∀y ∈
y

δ
, y􏼔 􏼕. (15)

In addition, if D(y)≠∅, the optimal solution to the
problem (LPy) is recorded as x; then, let
􏽥yi � fi(x)(i � 1, 2, . . . , p); there is also

g(􏽥y)≤g(y)≤ (1 + ε)g(y), ∀y ∈
y

δ
, y􏼔 􏼕. (16)

Proof. For all y ∈ H, according to the definition of D(y)

and δ � (1 + ε)(1/ρ) > 1, one can know D(y/δ)⊆D(y).
If D(y/δ)≠∅, for any y ∈ [(y/δ), y], we have D(y)≠∅;

obviously, g(􏽥y)≤g(y) and yi ≥ (yi/δ) for each
i � 1, 2, . . . , p. +us,

􏽙

p

i�1

yi

δ
􏼒 􏼓

αi

≤􏽙

p

i�1
y
αi

i . (17)

Moreover, according to the definition of function g(y),
g(y) � 􏽑

p
i�1 y

αi

i ; thus,

g
y

δ
􏼒 􏼓 � 􏽙

p

i�1

yi

δ
􏼒 􏼓

αi

�
1
δρ

􏽙

p

i�1
y
αi

i �
1
δρ

g(y). (18)

And in combination with the formulas (17) and (18), we
have

g(y)≥g
y

δ
􏼒 􏼓 �

1
δρ

g(y), ∀y ∈
y

δ
, y􏼔 􏼕. (19)

Further, through formula (19) and combined with the
definition of δ, we can understand that formula (16) is
formed, and formula (15) is of course also true.

If D(y/δ) � ∅, D(y)≠∅, it is clear that the inequality
g(􏽥y)≤g(y) is established.

For all y ∈ [(y/δ), y], if D(y)≠∅, we have
yi ≥ (yi/δ)(i � 1, 2, . . . , p), and y≠ (y/δ); then,

􏽙

p

i�1

yi

δ
􏼒 􏼓

αi

≤g(y) � 􏽙

p

i�1
y
αi

i . (20)

Besides,

g(y) � 􏽙

p

i�1
y
αi

i � δρ􏽙
p

i�1

yi

δ
􏼒 􏼓

αi

. (21)

By using the definition of δ and formulas (20) and (21),
one can infer that formulas (15) and (16) hold.

If D(y) � ∅ and g(y) � +∞, then formulas (15) and
(16) obviously hold.

If D(y) � ∅, the problem (LPy) is not solved, and for
any y ∈ [(y/δ), y], there is D(y) � ∅, then g(y) � +∞, so
formula (15) is clearly established and the proof of the
conclusion is completed.

+eorem 5 shows that for any y ∈ H, we can determine
whether the D(y) is not empty by solving the linear pro-
gramming problem (LPy) and then determine whether
formula (16) holds. □

2.2. Linearization Techniques. +e objective function of the
problem EOP is still nonconvex compared to the problem
GLMP. But the space H in which the variable y of the
objective function is located is p dimensions. +erefore,
based on the above discussion, in order to solve the EOP, for
a given ε ∈ (0, 1), we first split the outer space H on each
dimension at a ratio of δ � (1 + ε)(1/ρ), thus producing
several small rectangles.

To do this, let

ci � argmax σ ∈ N|liδ
σ ≤ ui􏼈 􏼉, i � 1, 2, . . . , p, (22)

whereN represents a non-negative integer set.+erefore, the
number of these small rectangles is finite, and the set of all
their vertices is

B
δ

� ]1, ]2, . . . , ]p|]i ∈ P
δ
i , i � 1, 2, . . . , p􏽮 􏽯, (23)

where Pδ
i � li, liδ, . . . , liδ

ci􏼈 􏼉. Obviously, for each y ∈ H,
there must be a vertex (]1, ]2, . . . , ]p) ∈ Bδ making
yi ∈ []i, δ]i], i � 1, 2, . . . , p. +en, it can be concluded that
the rectangle H can be approximated by the set Bδ.

Next, by using the set Bδ, the process of solving the
problem EOP can be transformed into solving a series of
subproblems. To this end, for each ] ∈ Bδ, we need to
consider the value of the g(]), that is, we need to determine
whether the set D(]) is not empty. According to+eorem 5,
we can determine whether D(]) is not empty by solving the
linear programming problem (LP]). +erefore, for each
vertex ] ∈ Bδ, the following linear programming subproblem
needs to be solved here, that is,

LP]( 􏼁

min 􏽘

p

i�1

αifi(x)

]i

s.t.
fi(x)≤ ]i, i � 1, 2, . . . , p,

x ∈ X.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(24)

On the basis of the conclusion of+eorem 5, if the problem
(LP]) can be solved (its solution is recorded as x]), then

􏽥] � f1 x]( 􏼁, f2 x]( 􏼁, . . . , fp x]( 􏼁􏼐 􏼑
T
∈ H, (25)

and thus

g(􏽥])≤g(])≤ (1 + ε)g(y), ∀y ∈
]
δ
, ]􏼔 􏼕. (26)

3. Analysis of Algorithm and Its
Computational Complexity

+is section brings an approximate algorithm based on
linearization-decomposition to solve the problem EOP.
After that, the analysis of its computational complexity is
proved accordingly.

3.1.ApproximateAlgorithm. To solve the EOP, we subdivide
the external space H into a finite number of small rectangles
with ratio δ and put all the vertices of these small rectangles
into the set Bδ.
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+en, for each vertex ] ∈ Bδ, by solving the linear
programming problem (LP]), if (LP]) is feasible and has an
optimal solution x], then D(])≠∅, and we can obtain a
feasible solution 􏽥] (formula (25)) of the EOP according to x],
which makes

g(􏽥])≤g(])≤ (1 + ε)g(y), ∀y ∈
]
δ
, ]􏼔 􏼕. (27)

If there is a 􏽥] that satisfies g(􏽥])≤ (1 + ε)g(y∗), then

f x]( 􏼁 � 􏽙

p

i�1
fi x]( 􏼁( 􏼁

αi � 􏽙

p

i�1
􏽥]αi

i � g(􏽥])≤ (1 + ε)g y
∗

( 􏼁 � (1 + ε)f x
∗

( 􏼁, (28)

and thus x] is a global ε−approximation solution of the
problem GLMP. +e specific algorithm steps are as follows.

(1) Step 0 (initialization). Set
ε ∈ (0, 1), δ � (1 + ε)(1/ρ), F � +∞, k � 0. By using
formulas (22) and (23), the ratio used for the two
consecutive segments in each dimension is δ, which
subdivides H into smaller rectangles. Represent the
vertex of each small rectangle as ] � (]1, ]2, . . . , ]p),
which is stored in the set Bδ.

(2) Step 1. Select a point ] from the Bδ, solve the linear
programming problem (LP]), and let Bδ � Bδ\].

(3) Step 2. If the problem (LP]) is solvable, then
D(])≠∅, and let g(]) � 􏽑

p
i�1 (vi)

αi ; if g(])<F, let
F � g(]), ] � ], x] � x]; if Bδ ≠∅, set k � k + 1 and
go to Step 1; otherwise, the algorithm terminates; let

􏽥]i � fi x]( 􏼁, i � 1, 2, . . . , p, 􏽥] � 􏽥]1, 􏽥]2, . . . , 􏽥]p􏼐 􏼑
T

,

(29)

and then x], 􏽥] is a global ε−approximation solution to
problems GLMP and EOP, respectively.

Theorem 6. For a given precision ε ∈ (0, 1), let
δ � (1 + ε)(1/ρ), ] � argmin g(])|] ∈ Bδ􏼈 􏼉, and x] be an

optimal solution of the linear programming problem (LP]).
0en, Algorithm 1 will get a global ε−approximation solution
x] for problem GLMP, i.e.,

f x]( 􏼁≤ (1 + ε)f x
∗

( 􏼁, (30)

where x∗ is the global optimal solution to the original problem
GLMP.

Proof. Let

y
∗
i � fi x

∗
( 􏼁, i � 1, 2, . . . , p. (31)

According to +eorem 1, we have

li ≤y
∗
i ≤ ui, i � 1, 2, . . . , p. (32)

+en, formula (32) implies that
y∗ � (y∗1 , y∗2 , . . . , y∗p)T ∈ H, so there must be a ]∗ ∈ Bδ

which makes

]∗i
δ
≤y
∗
i ≤ ]
∗
i , i � 1, 2, . . . , p. (33)

So, using +eorem 5 on the small rectangle [(]∗/δ), ]∗],
there will be

f x
∗

( 􏼁 � 􏽙

p

i�1
y
∗
i( 􏼁

αi � g y
∗

( 􏼁≥􏽙

p

i�1

]∗i
δ

􏼠 􏼡

αi

�
1
δ

􏼒 􏼓
Σp

i�1αi

􏽙

p

i�1
]∗i( 􏼁

αi �
1
δρ

g ]∗( 􏼁. (34)

+us,

δρf x
∗

( 􏼁 � δρg y
∗

( 􏼁≥g ]∗( 􏼁. (35)

Noting that ] � argmin g(])|] ∈ Bδ􏼈 􏼉, we can know

g ]∗( 􏼁≥g(]). (36)

Since x] is the optimal solution to the linear pro-
gramming problem (LP]), let

􏽥]i � fi x]( 􏼁, i � 1, 2, . . . , p. (37)

Apparently, 􏽥] � (􏽥]1, 􏽥]2, . . . , 􏽥]p) ∈ H. So, by taking ad-
vantage of the formula (16) in +eorem 5, we have

g(])≥g(􏽥]) � 􏽙

p

i�1
􏽥]i( 􏼁

αi � 􏽙

p

i�1
fi x]( 􏼁( 􏼁

αi � f x]( 􏼁. (38)

+erefore, by integrating formulas (35) and (38) and
combining the δ � (1 + ε)(1/ρ), we can obtain

f x]( 􏼁≤ (1 + ε)f x
∗

( 􏼁, (39)

and this proof is completed. □

Remark 1. According to +eorem 6, if y∗ ∈ Bδ, then from
+eorem 5, the optimal solution xy∗ of the linear pro-
gramming problem (LPy∗ ) is exactly the global optimal
solution of the original problem GLMP.
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+rough+eorem 6, we can see that for a given precision
ε ∈ (0, 1), Algorithm 1 will obtain a global ε−approximation
solution to the problem GLMP. Moreover, Remark 1 also
shows that if y∗ ∈ Bδ, then Algorithm 1 will find a global
optimal solution of the problem GLMP exactly.

3.2. Accelerating Techniques. Algorithm 1 shows that, for
any ] ∈ Bδ, it is required to solve the linear programming
problem (LP]), in order to verify that the D(]) is nonempty.
Hence, the computational cost of Algorithm 1 depends on
the number of points within the set Bδ, respectively. +en,
the proposal of the acceleration technique will discard some
points that are not necessary to consider the set Bδ and only
consider the region that contains the global optimal solution
of the problem EOP. +e detailed process is given below.

If ] is the best known solution to the problem EOP, x] is
the optimal solution to the linear programming problem
(LP]); for each i � 1, 2, . . . , p, let
􏽥]i � fi(x]), 􏽥] � (􏽥]1, 􏽥]2, . . . , 􏽥]p)T; obviously g(􏽥])≤g(]);
then, 􏽥]may be a better solution than ]. Well, using 􏽥]may be
able to remove more vertices from Bδ that do not need to be
explored. To give the acceleration technique for Algorithm 1,
we first need to specify a necessary condition that the points
in each subrectangle Hk⊆H0 � H(k≥ 1) containing the
global optimal solution of the problem EOP must be sat-
isfied, that is,

􏽙

p

i�1
l
αi

i ≤g y
∗

( 􏼁≤g(y)≤g(􏽥]), ∀y ∈ H
k
, (40)

where Hk � [l, uk], uk � (uk
1, uk

2, . . . , uk
p)T, uk

i ≤ uk−1
i ≤ ui,

i � 1, 2, . . . , p. Similarly, if δ � (1 + ε)(1/ρ) are used to seg-
ment rectangles Hk on each dimension, this will produce a
limited number of small rectangles. For this purpose, let

c
k
i � argmax σ ∈ N|liδ

σ ≤ u
k
i􏽮 􏽯, i � 1, 2, . . . , p. (41)

+en, a set of vertices of a finite number of small
rectangles will also be generated on a rectangular Hk, that is,

B
δ
k � ]1, ]2, . . . , ]p|]i ∈ P

δ
ki, i � 1, 2, . . . , p􏽮 􏽯, (42)

where Pδ
ki � li, liδ, . . . , liδ

ck
i􏼚 􏼛. Clearly, Bδ

k⊆B
δ
0 � Bδ and

Bδ
k ⊂ Hk⊆H0 � H.
Based on the above discussion, we will give Propositions

1 and 2 to clarify the acceleration techniques of the
algorithm.

Proposition 1. 0e global optimal solution of the problem
EOP cannot be obtained on the set B

δ
ki if a i ∈ 1, 2, . . . , p􏼈 􏼉

makes (g(􏽥])/Mi)
(1/αi) < liδ

ck
i , of which

B
δ
ki � ] ∈ B

δ
k|

g(􏽥])

Mi

􏼠 􏼡

1/αi( )

< ]i

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, i ∈ 1, 2, . . . , p􏼈 􏼉.

(43)

Proof. If ] ∈ B
δ
ki, then there must be

(g(􏽥])/Mi)
(1/αi) < ]i ≤ liδ

ck
i , and thus there is

g(􏽥]) �
g(􏽥])

Mi

􏼠 􏼡

1/αi( )
⎛⎝ ⎞⎠

αi

Mi < ]i( 􏼁
αi Mi � ]i( 􏼁

αi 􏽙

p

j�1,j≠i
l
αj

j ≤􏽙

p

j�1
]j􏼐 􏼑

αj
� g(]), (44)

which contradicts the inequality chain (40), so the con-
clusion is valid.

With Proposition 1, we generate a new rectangle Hk+1

and vertex set Bδ
k+1, i.e., for each i � 1, 2, . . . , p, let

u
k+1
i �

g(􏽥])

Mi

􏼠 􏼡

1/αi( )

,
g(􏽥])

Mi

􏼠 􏼡

1/αi( )

< liδ
ck

i ,

u
k
i ,

g(􏽥])

Mi

􏼠 􏼡

1/αi( )

≥ liδ
ck

i ,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(45)

as well as

c
k+1
i �

argmax σ ∈ N|liδ
σ ≤ u

k+1
i􏽮 􏽯,

g(􏽥])

Mi

􏼠 􏼡

1/αi( )

< liδ
ck

i ,

c
k
i ,

g(􏽥])

Mi

􏼠 􏼡

1/αi( )

≥ liδ
ck

i .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(46)

Well, uk+1 � [l, uk+1] with uk+1 � (uk+1
1 , uk+1

2 , . . . , uk+1
p ).

Moreover, the above rules may produce a small rect-
angular vertex set Bδ

k+1 with relatively few new elements, but
there is still 􏽥] ∈ Bδ

k+1, so we then give Proposition 2 to delete
the other unconsidered elements in Bδ

k+1. □

Proposition 2. If ] is the best known solution to the problem
EOP, x] is the optimal solution to the linear programming
problem (LP]); for each i � 1, 2, . . . , p, let
􏽥]i � fi(x]), 􏽥] � (􏽥]1, 􏽥]2, . . . , 􏽥]p)T, and define the set

B
δ
k+1 � ] ∈ B

δ
k+1|􏽥]i ≤ ]i, i � 1, 2, . . . , p􏽮 􏽯. (47)

+en, for any ] ∈ B
δ
k+1, the EOP cannot get a better

solution than 􏽥].

Proof. Since x] is the optimal solution to a linear pro-
gramming problem (LP]), then there is at least one point x]
in the set D(􏽥]), so D(􏽥])≠∅. For arbitrary ] ∈ B

δ
k+1, obvi-

ously D(􏽥])⊆D(]), and thus D(])≠∅. According to the
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definition of the function g(y), for each ] ∈ B
δ
k+1, the ob-

jective function value of the EOP meets

g(]) � 􏽙

p

i�1
]i( 􏼁

αi ≥􏽙

p

i�1
􏽥]i( 􏼁

αi � g(􏽥]), (48)

and this conclusion is proved.
Next, for a given ε ∈ (0, 1), δ � (1 + ε)(1/ρ), make use of

Proposition 2; let

τk+1
i � argmin σ ∈ N|􏽥]i ≤ liδ

σ ≤ u
k+1
i􏽮 􏽯. (49)

+rough the expression of ck+1
i in (46), the set B

δ
k+1 is

defined as follows.

B
δ
k+1 � liδ

σ1 , liδ
σ2 , . . . , liδ

σp |σi􏼈

∈ τk+1
i , τk+1

i + 1, . . . , c
k+1
i􏽮 􏽯, i � 1, 2, . . . , p􏽯.

(50)

+erefore, for the convenience of narration, let
Sδk+1 � Bδ

k+1∖B
δ
k+1. +is means that in order to obtain a global

ε−approximation solution for problem EOP, it is only
necessary to calculate up to |Sδk+1| linear programming
subproblems (LP]) to determine whether the D(]) is not
empty, which determines the function value g(]) at each
vertex ] ∈ Sδk+1. +en, by using the set Sδk+1, the computa-
tional efficiency of Algorithm 1 will be improved, leading to
the following algorithm.

􏽥]i � fi x]( 􏼁, i � 1, 2, . . . , p,

􏽥] � 􏽥]1, 􏽥]2, . . . , 􏽥]p􏼐 􏼑
T
,

(51)

and then x], 􏽥] is a global ε−approximation solution to the
problems GLMP and EOP, respectively.

Note that the Algorithm 2 simply removes the set of
vertices that do not contain a global optimal solution;
therefore, it is similar to +eorem 6; Algorithm 2 will also
return a global ε−approximation solution of the problem
GLMP and EOP as well. □

4. Analysis of Computational Complexity of
the Algorithm

We first give Lemma 1 to discuss the computational com-
plexity of the two algorithms.

Lemma 1 (see [22]). Let λ be the maximum of the absolute
values of all the elements A, b, ci, di in problem GLMP; then,
each component x0

j of any pole x0 of X can be expressed as
x0

j � (pj/q), where 0≤pj ≤ (nλ)n, 0< q≤ (nλ)n,
j � 1, 2, . . . , n.

Because for each i � 1, 2, . . . , p, the solution 􏽥xi to the
linear programming problem li � minx∈Xfi(x) is the pole of
X, by Lemma 1, we have 􏽥xi

j � (pi
j/qi), where 0≤pi

j ≤ (nλ)n,

0< qi ≤ (nλ)n, j � 1, 2, . . . , n. +us,
li � 􏽐

n
j�1 cij(pi

j/q
i) + di, i � 1, 2, . . . , p. Moreover, let

􏽥q � max
1
q

i
|i � 1, 2, . . . , p􏼨 􏼩,

ω � min li|i � 1, 2, . . . , p􏼈 􏼉,

(52)

􏽥U � f(�x) � min
1≤i≤p

f 􏽥x
i

􏼐 􏼑, (53)

and for the sake of the following smooth description of
+eorem 7, here �x is defined in +eorem 1.

Theorem 7. For a given p≥ 2, in order to obtain a global
ε−approximation solution to the problem GLMP, the upper
limit of the time required for the proposed Algorithm 1 is

O
2􏽥αρ2

ε
[(n + 1)ln(nλ) − lnω] + 1􏼠 􏼡

p

· T(m + p, n)􏼠 􏼡,

(54)

where 􏽥α � max (1/αi)|i � 1, 2, . . . , p􏼈 􏼉, ρ � 􏽐
p
i�1 αi, and

T(m + p, n) represents the upper limit of the time used to
solve a linear programming problem with m + p linear
constraints and n variables at a time.

Proof. From the formulas (22) and (23), we can see that the
maximum number of midpoint of the set Bδ is

􏽙

p

i�1
logδ

ui

li
+ 1􏼠 􏼡. (55)

Using the definition of 􏽥q,ω in formula (52) and Lemma
1, we have

ω≤ li ≤ 􏽥qnλ(nλ)
n

+ λ≤ 2􏽥q(nλ)
n+1

, i � 1, 2, . . . , p. (56)

Furthermore, we also have

􏽥U � 􏽙

p

i�1
c

T
i �x + di􏼐 􏼑

αi ≤􏽙

p

i�1
2􏽥q(nλ)

n+1
􏼐 􏼑

αi
� 2􏽥q(nλ)

n+1
􏼐 􏼑

􏽘
p

i�1
αi

,

(57)

by using formula (53) and the above inequality (56). Of
course, according to the definition of Mi and ui in +eorem
1, and in conjunction with ρ � 􏽐

p
i�1 αi, there will be

ui �
􏽢U

Mi

􏼠 􏼡

1/αi( )

≤ 2􏽥q(nλ)
n+1

􏼐 􏼑
2􏽥q(nλ)n+1

ω
􏼠 􏼡

ρ/αi( )− 1

. (58)

By means of above formulas (56) and (58), we can have

ui

li
≤

2􏽥q(nλ)n+1

ω
􏼠 􏼡

ρ/αi( )

, (59)

and thus

ln
ui

li
≤
ρ
αi

[ln 2􏽥q +(n + 1)ln(nλ) − lnω]

≤ ρ􏽥α[ln 2􏽥q +(n + 1)ln(nλ) − lnω].

(60)
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Using ε ∈ (0, 1), δ � (1 + ε)(1/ρ) in Algorithm 1 and
(ε/2)< ln(1 + ε)< ε, then there will be

logδ
ui

li
� ρ log(1+ε)

ui

li
� ρ

ln ui/li( 􏼁

ln(1 + ε)
<
2ρ ln ui/li( 􏼁

ε
. (61)

+en, by using the above formulas (55), (60), and (61),
the upper limit of the number (expressed in |Bδ|) of interior
points of Bδ is

B
δ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤
2􏽥αρ2

ε
[ln 2􏽥q +(n + 1)ln(nλ) − lnω] + 1􏼠 􏼡

p

, (62)

in the utilized formula (55), (60), (61). From the above
formula (62), we can see that the running time of Algo-
rithm 1 is at most

O
2􏽥αρ2

ε
[(n + 1)ln(nλ) − lnω] + 1􏼠 􏼡

p

· T(m + p, n)􏼠 􏼡,

(63)

when the global ε−approximation solution is obtained, and
then the proof of the conclusion is completed. □

Remark 2. Propositions 1 and 2 show that we can accelerate
Algorithm 1 by removing the vertices of the small rectangle
that needs not be considered, which leads to Algorithm 2
that is more resource-efficient than Algorithm 1; in other
words, Algorithm 2 is an improvement on Algorithm 1.
+en, the upper bound of the CPU running time required by
Algorithm 2 is the same as that of Algorithm 1 in the most
extreme cases (where acceleration techniques always fail).
+erefore, Algorithm 2 is likewise a polynomial time ap-
proximation algorithm.

5. Numerical Experiments

+is section will test the performance of the algorithm
through several test problems. All of our testing procedures
were performed via MATLAB (2012a) on computers with
Intel(R) Core(TM)i5-2320, 3.00GHz power processor,
4.00GB memory, and Microsoft Win7 operating system.

Problem 1 (see [17, 18])

min
0.813396x1 + 0.67440x2 + 0.305038x3 + 0.129742x4 + 0.217796( 􏼁

× 0.224508x1 + 0.063458x2 + 0.932230x3 + 0.528736x4 + 0.091947( 􏼁

s.t.

0.488509x1 + 0.063565x2 + 0.945686x3 + 0.210704x4 ≤ 3.562809,

−0.324014x1 − 0.501754x2 − 0.719204x3 + 0.099562x4 ≤ − 0.052215,

0.445225x1 − 0.346896x2 + 0.637939x3 − 0.257623x4 ≤ 0.427920,

−0.202821x1 + 0.647361x2 + 0.920135x3 − 0.983091x4 ≤ 0.840950,

−0.886420x1 − 0.802444x2 − 0.305441x3 − 0.180123x4 ≤ − 1.353686,

−0.515399x1 − 0.424820x2 + 0.897498x3 + 0.187268x4 ≤ 2.137251,

−0.591515x1 + 0.060581x2 − 0.427365x3 + 0.579388x4 ≤ − 0.290987,

0.423524x1 + 0.940496x2 − 0.437944x3 − 0.742941x4 ≤ 0.373620,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(64)

(1) Step 0 (initialization). Set ε ∈ (0, 1), δ � (1 + ε)(1/ρ). By using formulas (22) and (23), H0 � H is subdivided into smaller
rectangles, such that the ratio of two consecutive segments is δ in each dimension. Represent the vertex of each small rectangle as
] � (]1, ]2, . . . , ]p), which is stored in the set Bδ. Let F � +∞, T � ∅, Bδ

0 � Bδ, Ξ0 � Bδ
0, k � 0.

(2) Step 1. Select a point ] � (]1, ]2, . . . , ]p)T from the Ξk, solve the linear programming problem (LP]), and let T � T∪ ].
(3) Step 2. If the problem (LP]) is solvable, then D(])≠∅, and let g(]) � 􏽑

p

i�1 (]i)
αi ; if g(])<F, let ] � ], x] � x],

􏽥] � (􏽥]1, 􏽥]2, . . . , 􏽥]p)T � (f1(x]), f2(x]), . . . , fp(x]))
T, F � g(􏽥]). Use rules (45) and (46) to produce Hk+1 and Bδ

k+1 and use
formulas (49) and (50) to obtain set B

δ
k+1; let Sδk+1 � Bδ

k+1∖B
δ
k+1, Ξ

k � Sδk+1∖T. If Ξ
k ≠∅, set k � k + 1 and go to Step 1; otherwise, the

algorithm terminates; let

ALGORITHM 2: Improved algorithm.
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Problem 2 (see [17, 18])

min 3x1 − 2x2 − 2( 􏼁
(2/3)

x1 + 2x2 + 2( 􏼁
(2/5)

s.t.
2x1 − x2 ≥ 2, x1 − 2x2 ≤ 2,

x1 + x2 ≤ 5, 3≤x1 ≤ 5, 1≤ x2 ≤ 3.
􏼨

(65)

Problem 3 (see [8, 17, 18])

min x1 + x2 + 1( 􏼁
2.5 2x1 + x2 + 1( 􏼁

1.1
x1 + 2x2 + 1( 􏼁

1.9

s.t.

x1 + 2x2 ≤ 6,

2x1 + x2 ≤ 8,

1≤x1 ≤ 3,

1≤x2 ≤ 3.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(66)

Problem 4 (see [20])

min x1 + x2( 􏼁 x1 − x2 + 7( 􏼁

s.t.

2x1 + x2 ≤ 14,

x1 + x2 ≤ 10,

−4x1 + x2 ≤ 0,

2x1 + x2 ≥ 6,

x1 + 2x2 ≥ 6,

x1 − x2 ≤ 3,

1.99≤ x1 ≤ 2.01,

7.99≤ x2 ≤ 8.01.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(67)

Problem 5 (see [19])

min c
T
1 x + d1􏼐 􏼑 c

T
2 x + d2􏼐 􏼑

s.t. Ax � b, x≥ 0,
(68)

where

A �

9 9 2 1 0 0 0 0 0 0 0

8 1 8 0 1 0 0 0 0 0 0

1 8 8 0 1 0 0 0 0 0 0

7 1 1 0 0 0 −1 0 0 0 0

1 7 1 0 0 0 0 −1 0 0 0

1 1 7 0 0 0 0 0 −1 0 0

1 0 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

b � (81, 72, 72, 9, 9, 9, 8, 8)
T
,

c1 � 1, 0,
1
9
, 0, 0, 0, 0, 0, 0, 0, 0􏼒 􏼓

T

,

c2 � 0, 1,
1
9
, 0, 0, 0, 0, 0, 0, 0, 0􏼒 􏼓

T

,

d1 � 0,

d2 � 0.

(69)

Obviously, Problem 5 can be transformed into the fol-
lowing forms:

min x1 +
1
9
x3􏼒 􏼓 x2 +

1
9
x3􏼒 􏼓

s.t.

9x1 + 9x2 + 2x3 ≤ 81,

8x1 + x2 + 8x3 ≤ 72,

x1 + 8x2 + 8x3 ≤ 72,

7x1 + x2 + x3 ≥ 9,

x1 + 7x2 + x3 ≥ 9,

x1 + x2 + 7x3 ≥ 9,

0≤ x1 ≤ 8,

0≤ x2 ≤ 8,

0≤ x3 ≤ 9.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(70)

Problem 6 (see [8])

min
3x1 − 4x2 + 5( 􏼁 x1 + 2x2 − 1( 􏼁

0.5 2x1 − x2 + 4( 􏼁

× x1 − 2x2 + 8( 􏼁
0.5 2x1 + x2 − 1( 􏼁

s.t.

5x1 − 8x2 ≥ − 24,

5x1 + 8x2 ≤ 44,

6x1 − 3x2 ≤ 15,

4x1 + 5x2 ≥ 10,

1≤ x1 ≤ 3,

0≤ x2 ≤ 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(71)

Problem 7

min􏽙

p

i�1
c

T
i xj + di􏼐 􏼑

αis.t. Ax≤ b, x≥ 0, (72)

where p≥ 2, ci ∈ Rn(i � 1, 2, . . . , p) are pseudo-random
numbers in [0, 1], αi(i � 1, 2, . . . , p) are pseudo-random
numbers in [0.00001, 1], di � 1, constraint matrix elements
aij are generated in [−1, 1] via aij � 2∗ϖ − 1, in which ϖ are
pseudo-random numbers in [0, 1], and the right-hand side
values are generated via bi � 􏽐

n
j�1 aij + 2βi, in which βi are

pseudo-random numbers in [0, 1].
+e numerical results in Tables 1 and 2 show that Al-

gorithms 1 and 2 can effectively solve the three test problems
known in the literature and get an approximate solution, so
both algorithms are feasible.

Further, we do the corresponding random numerical
experiments through Problem 7, which is utilized to explore
the performance of the two algorithms. We determine the
convergence accuracy of the algorithm to 0.05. For each set
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of fixed parameters (p, m, n), we run the two algorithms 10
times for numerical comparison, and the numerical results
are given in Table 3. In Table 3, Avg (Std) time and Avg (Std)
Iter represent the average (standard deviation) of the CPU
running time and the average (standard deviation) of iter-
ations, respectively, after the algorithm has run 10 times.
Table 3 shows that the computation effect of Algorithm 2 is
better than that of Algorithm 1, mainly because our ac-
celeration technique plays a significant role by deleting the

vertices of small rectangles that do not need to be consid-
ered. Hence, we believe that this acceleration technique may
be generalized on other approximation algorithms such as
[17, 18, 20].

Moreover, under the condition that the fixed parameters
(p, m) are invariant, the CPU running time of the two al-
gorithms will increase with the scale n of Problem 7. Under
the condition that the prefixed parameters (m, n) are in-
variant, the CPU running time and iterations of the two

Table 1: Comparison of results in Problems 1–6.

Problem Reference Optimal solution Optimal optimum

1

Locatelli [17] (1.3148, 0.1396, 0.0000, 0.4233) 0.890190
Shen and Wang [18] (1.3148, 0.1396, 0.0000, 0.4233) 0.890190
Liu and Zhao [8] (1.3148, 0.13955, 2.6891 × 10− 14, 0.42329) 0.890190
Algorithms 1/2 (1.3148, 0.1396, 0.0000, 0.4233) 0.890190

2

Locatelli [17] (3.000, 2.000) 5.014514
Shen and Wang [18] (3.000, 2.000) 5.009309
Liu and Zhao [8] (3.000, 2.000) 5.009309

Algorithm 1 (3.000, 2.000) 5.009309
Algorithm 2 (3.000, 2.000) 5.009309

3

Liu and Zhao [8] (1, 1) 997.661265
Locatelli [17] (1, 1) 997.661265

Shen and Wang [18] (1, 1) 997.661265
Algorithm 1/2 (1, 1) 997.661265

4 Shen and Hang [20] (2, 8) 10
Algorithm 1/2 (2, 8) 10

5
Zhang et al. [19] (0.0, 8.0, 1.0, . . .) 0.91235
Algorithm 1 (0.0, 8.0, 1.0, . . .) 0.91235
Algorithm 2 (0.0, 8.0, 1.0, . . .) 0.91235

6
Liu and Zhao [8] (1.25, 1) 263.785989

Algorithm 1 (1.25, 1) 263.785989
Algorithm 2 (1.25, 1) 263.785989

Table 2: Comparison of results in Problems 1–6.

Problem Reference Iter Time ε

1
Locatelli [17] 404 9.606 0.05

Shen and Wang [18] 3 0.047 0.05
Algorithm 1/2 1 0.0149 0.05

2

Locatelli [17] 69 2.4960 0.15009
Shen and Wang [18] 4 0.0800 0.15009

Algorithm 1 6 0.1024 0.15009
Algorithm 2 4 0.0657 0.15009

3
Locatelli [17] 5 1.126 0.2

Shen and Wang [18] 4 0.085 0.2
Algorithm 1/2 1 0.0116 0.2

4 Algorithm 1/2 1 0.0241 0.01

5 Algorithm 1 797 47.5367 0.2
Algorithm 2 507 30.2111 0.2

6 Algorithm 1 63 59.4304 0.2
Algorithm 2 37 35.6072 0.2
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algorithms will grow with the number (p) of linear functions
in the objective function of Problem 7.

6. Concluding Remarks

In this paper, we mainly propose two polynomial time
approximation algorithms that can be utilized to solve the
problem GLMP globally, where Algorithm 2 is obtained by
accelerating Algorithm 1 by the proposed acceleration
technique. +e numerical results show that both algorithms
are effective and feasible, but the overall calculation effect of
Algorithm 2 is better than that of Algorithm 1, which shows
that our acceleration technique is efficient and may be ex-
tended to some approximation algorithms such as
[17, 18, 20].
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Magnetic beads and magnetic Raman technology substrates have good magnetic response ability and surface-enhanced Raman
technology (SERS) activity.-erefore, magnetic beads exhibit high sensitivity in SERS detection. In this paper, DNA cycle hybridization
and magnetic bead models are combined to solve 0-1 integer programming problems. First, the model maps the variables to DNA
strands with hairpin structures and weights them by the number of hairpin DNA strands. -is result can be displayed by the specific
binding of streptavidin and biotin. Second, the constraint condition of the 0-1 integer programming problem can be accomplished by
detecting the signal intensity of the biological barcode to find the optimal solution. Finally, thismodel can be used to solve the general 0-1
integer programming problem and has more extensive applications than the previous DNA computing model.

1. Introduction

With the development of science and technology, traditional
computing has been unable tomeet people’s requirements when
dealing with massive data and information processing, and
people have started to explore new fields of computing. Since
Adleman proposed the use of DNA computing to solve the
directed Hamilton path in 1994, DNA computing has received
increasing attention from researchers [1]. In 2000, Head et al.
proposed a new method of computing by using DNA plasmids
and reported the NP-complete problem concerning the cardi-
nality of the largest independent subset of the vertex set of the
computing graph [2]. In 2011, Zhang et al. designed a DNA
word set based on minimum free energy [3]. In 2017, Yin and
Cui reported the integer programming problem based on the
plasmid DNA computing model [4]. In 2018, Ramanamurthy
introduced the basic structure of DNA and DNA processing
tools [5]. In 2019, Tang established a dynamic NAND com-
puting model using DNA origami [6]. In the same year, Yang
et al. used DNA origami and hybridization chain reaction to
solve a new computational model for solving the knapsack
problem [7].

DNA cycle hybridization chain reaction is a process of
alternating hybridization of two DNA molecules with dif-
ferent hairpin structures induced under the induction of a
trigger strand. -is process is spontaneous and does not
require the involvement of enzymes. With the development
of science and technology, DNA cycle hybridization chain
reaction has been applied to many fields, such as biosensing,
biomedicine, proteins, and others. In 2004, Dirks first
proposed the concept and indicated that DNA can be used as
an amplified transducer for biosensing applications [8]. In
2016, Guo proposed a new chemical immunoassay method
for signal amplification that can detect multiple tumor
biomarkers simultaneously [9]. In the same year, Yang
designed an Aptamer-Binding Directed DNA Origami
Pattern for logic gates [10]. In 2018, Li et al. proposed a
method for label-free lighting of fluorescent sensors using
hybrid chain reaction and DNA triple-strand assembly [11].
In 2018, Xiao designedmultiple chemiluminescence imaging
and used it for sensitive screening and detection of protein
biomarkers through the use of DNA microarray and hy-
bridization chain reaction amplification integration induced
by adjacent binding [12].
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0-1 integer programming is a special type of integer
programming problem, and its variable values are only 0 and
1. It is widely used in a variety of problems, such as line
design, backpack problems, and dispatch problems [13–17].
In 2006, Yin et al. designed a molecular beacon model for
solving integer linear programming problems [13]. In 2010,
Huang used the advantage of DNA tiles to build a molecular
computing system to solve the 0-1 programming problem
[14]. In 2017, Li devised a new DNA computing method to
solve the 0-1 programming problem.-emethod is based on
a self-assembled nanoparticle probe, which reduces the cost
of the model and improves the sensitivity and accuracy of
detection [17].

In this paper, based on DNA cycle hybridization chain
reaction, a magnetic bead model is constructed to solve the
general 0-1 integer programming problem. -is magnetic
bead model maps variables into the hairpin structure DNA
strands and maps weights according to the number of
hairpin structure DNA strands. -is structure can be dis-
played according to the specific combination of streptavidin
and biotin, and SERS detection has been used [18–20]. -e
general structure of this paper is as follows. First, the basic
principle of the DNA cycle hybridization chain reaction and
the general form of the 0-1 integer programming problem
are given. Second, the magnetic bead model is constructed,
and the algorithm steps of the model and a concrete example
are given. Finally, this paper uses Visual DSD software to
simulate and analyze the optimal solution of the 0-1 integer
programming problem and then provides the conclusion.

2. DNA Cycle Hybridization and the 0-1 Integer
Programming Problem

2.1. DNA Cycle Hybridization. DNA cycle hybridization
refers to the process in which DNA molecules with com-
plementary base sequences form hydrogen bonds between
base pairs to achieve a stable structure. DNA cycle hy-
bridization induces two different types of hairpin structure
DNA by using a trigger strand, making the two hairpin
structures open alternately and then forming a double-
stranded DNA product with a gap. -e process of obtaining
the DNA product does not require the involvement of
enzymes. -e reaction principle of DNA cycle hybridization
is shown in Figure 1. Two different types of hairpin struc-
tures, H1 and H2, coexist stably in solution without any
reaction. H1 consists of four parts: 5′ − l − m − n − m∗ − 3′
(m and m∗ base pairs are complementary). It is called the
stem of the hairpin. Region n is called the loop of the hairpin
structureH1, and l is the single-stranded sticky end extended
from the stem of H1. Similarly, H2 consists of four parts:
5′ − n∗ − m − l∗ − m∗ − 3′ (m and m∗ base pairs are com-
plementary). It is called the stem of the hairpin, and n∗ is the
single-stranded sticky end extended from the stem of H2. At
the same time, l − l∗, m − m∗, and n − n∗ satisfy the principle
of complementary base pairing. -e trigger strand T is a
single strand of DNA composed of two parts
(5′ − m∗ − l∗ − 3′). When the trigger strand T is added to the

solution, the trigger strand Twill have base complementary
pairing with the sticky end of l − m of the hairpin structure
of H1. -e resulting hairpin structure H1 is opened, ex-
posing the gap n − m∗. -is exposed gap region n − m∗

happens to have complementary base pairing with n∗ − m

from the H2 region. Opening the structure of H2 to expose
the area l∗ − m∗, the exposed area l∗ − m∗ from H2 will
continue to pair with the next base complement of H1.
Opening the structure of H1 to expose the area n − m∗, this
exposed gap region will continue to have complementary
base pairing with n∗ − m from the H2 region. Opening the
structure of H2, H1 and H2 are turned on alternately in turn
until the sum in the solution is used up. A double-stranded
DNA product that hybridizes H1 and alternately H2 with a
gap is generated.

2.2. Integer Programming Problem. 0-1 integer program-
ming is a special type of integer programming problem, and
its variable values are only 0 and 1. -e general form of 0-1
programming is given as follows:

max(min)z � c1x1 + c2x2 + · · · + cnxn

a11x1 + a12x2 + · · · + a1nxn ≤ (�, ≥ )b1

a21x1 + a22x2 + · · · + a2nxn ≤ (�, ≥ )b2

· · · · · · · · · · · · · · · · · · · · ·

am1x1 + am2x2 + · · · + amnxn ≤ (�, ≥ )bm

x1, x2, . . . , xn � 0 or 1

aij and ci are any integer

i � 1, 2, . . . , m; j � 1, 2, . . . , n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

-e most commonly used method for solving the 0-1
integer programming problem is the exhaustive method
(also known as the forced search method), which traverses
the entire search space, but this method is time- and labor-
consuming.

In this paper, the general 0-1 integer programming
problem is solved based on the DNA cyclc hybridization
chain reaction, which is a generalization of the assignment
problem.

-e algorithm steps of the general 0-1 integer pro-
gramming problem are discussed as follows:

Step 1. All possible solutions to the problem with
variables equal to 0 or 1 are given
Step 2. According to the Raman signal intensity, the
nonfeasible solutions in the first constraint condition
are eliminated, and the feasible solutions are retained
Step 3. Repeat step 2 with the reserved feasible solu-
tions; then, all nonfeasible solutions can be eliminated,
and all feasible solutions of the problem can be
obtained
Step 4. -e corresponding objective function values of
each feasible solution are compared to obtain the
optimal solution of the objective function.
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3. Magnetic Bead Model of the 0-1 Integer
Programming Problem Based on DNA
Cycle Hybridization

3.1. Building a Magnetic Bead Computing Model. In this
paper, we study a new magnetic bead computing model for
0-1 integer programming problems. -e magnetic bead
computing model effectively utilizes the specific binding
effect of streptavidin and biotin through DNA cycle hy-
bridization technology and Raman technology to detect the
signal released by the biological barcode. Table 1 shows the
coding sequences of the three DNA molecules. Figure 2
shows the DNA cycle hybridization process.

As shown in Figure 2, at the optimal experimental
conditions of 37°C and a pH of 7.4, the concentration of the
captured stranded DNA was 1.0 × 10− 7M [21]. -e single
strand of capture DNA was fixed on the magnetic bead by
means of the amide bond between -COOH modified by the
magnetic bead and -NH2 on the DNA strand. -e single
strand of capture DNA fixed on the magnetic bead was
complementarily paired with the base at the sticky end of the
strand of the hairpin DNA1 strand, thus opening the hairpin
structure DNA1 strand. When the hairpin structure DNA1
is opened, it is complementary with the sticky end base of the
hairpin structure DNA2, thus opening the hairpin structure
of DNA2. After the hairpin structure DNA2 is opened, it
continues to be complementary to the sticky end of the
hairpin structure of DNA1. In this way, the hairpin structure
DNA1 strand and DNA2 strand cycle hybridizes succes-
sively, forming “magnetic bead-capture DNA-DNA1-
DNA2-DNA1-...-DNA2-DNA1-DNA2,” a special double-
stranded DNA molecule. Until DNA1 and DNA2 are
consumed in the solution, the sticky end of DNA1 and the
sticky end of DNA2 are both modified by biotin and bind to
the strepavidin-modified nanobiotic barcode specifically to
achieve signal release.

In summary, for the 0-1 integer programming problem
with n variables (x1, x2, . . . , xn) andm constraint equations,
the specific algorithm of the general 0-1 integer program-
ming computing model is as follows:

Step 1. First, for n variables in each constraint condi-
tion, n magnetic beads with capture DNA were
designed (magnetic beads with different radii represent
different variables). Second, two types of hairpin
structure DNA strands were designed, which were

named DNA1 and DNA2. -e capture DNA fixed on
the magnetic bead can open the hairpin structure
DNA1. A gap appeared after the hairpin structure
DNA1 was opened, which could be further opened to
design the hairpin structure DNA2. In this way, DNA1,
DNA2, DNA1, DNA2... cyclically cross each other in
turn. Until DNA1 and DNA2 in the solution are
consumed (the specific coding sequence design of
DNA1 andDNA2 is shown in Table 1), when xi � 1, the
sticky ends of the DNA1 strand and the sticky ends of
the DNA2 strand were modified with biotin; when
xi � 0, the sticky ends of the DNA1 strand and the
sticky ends of the DNA2 strand did not need to be
modified with biotin, as shown in Figure 3.
Step 2. First, a proper number of biological barcodes
were placed in the data pool and mixed evenly. Second,
a set of test tubes was prepared for each constraint
condition, and each set of test tubes had 2n test tubes
(where n represents the number of variables in the
constraint condition). Finally, equal amounts of the
solution were placed in the desired tubes.
Step 3. For the first constraint, according to the number
of possible solutions k, take out the test tubes according
to step 2 and group them and place a magnetic bead
with capture DNA in each test tube of each group. After
that, put equal amounts of DNA1 and DNA2 into the
solution according to the weight coefficients of the
variables in the constraint condition. -at is, the total
amounts of DNA1 and DNA2 are the same as the
weight coefficients of the variables. At the same time,
according to the characteristics of DNA cycle hy-
bridization, we alternately put DNA1 and DNA2 into
the solution every time and put the DNA1 strand first.
Step 4. When the biological barcode in the solution is
combined with the sticky ends of the biotin of DNA1
and DNA2, the cycle hybridization signal will be
amplified, and the feasibility solution will be judged by
the intensity of amplification of the cycle hybridization
signal. Here, it is stated that, when there is no biotin at
the sticky ends of DNA1 andDNA2, the signal intensity
is 0, when 1 biological barcode in the solution binds to 1
biotin, the signal intensity is 1, and so on, and when
biological barcodes bind to biotin in the solution, the
signal intensity is a, where a represents the coefficient in
front of each variable, namely, the weight.
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Figure 1: -e basic principle of DNA cycle hybridization.
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Step 5. Find a feasible solution satisfying the first
constraint condition by detecting the number of bio-
logical barcodes.
Step 6. Repeat steps 4–6 above for the feasible solution
obtained from the previous constraint condition, and
we can obtain the feasible solution that satisfies all of
the constraints.
Step 7. Calculate each feasible solution corresponding
to the objective function value and, finally, judge the
optimal integer programming solution.

3.2. Example Analysis. A general 0-1 integer programming
problem is discussed in detail as follows:

minw � 4x1 + 3x2 + 5x3

3x1 + 2x2 + 4x3 ≥ 5

2x1 + 3x2 ≤ 3

x2 + 2x3 ≤ 2

x1, x2, x3 � 0 or 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

Step 1. For the variables in each constraint condition,
magnetic beads with capture DNA were designed. In this

problem, 3, 2, and 2 magnetic beads with capture DNA
were designed for the three constraints, with magnetic
bead radii of 2 nm, 4nm, and 6nm, respectively. -en,
two types of hairpin structure DNA strands were
designed, known as DNA1 andDNA2.When the value of
variable xi is 1, the sticky ends of the DNA1 and DNA2
strands are modified with biotin. When the value of the
variable xi is 0, the sticky ends of the DNA1 and DNA2
strands do not need to be modified with biotin.
Step 2. An appropriate amount of the biological bar-
code was placed in the solution and mixed evenly.
-ree sets of test tubes were prepared, and the number
of each set of test tubes was 8, 4, and 4. -e correct
amount and equal amount of solution were placed into
the test tubes.
Step 3. All possible solutions of the objective function
variables are denoted as 1(0, 0, 0), 2(0, 0, 1), 3(0, 1, 0),
4(0, 1, 1), 5(1, 0, 0), 6(1, 0, 1), 7(1, 1, 0), and 8(1, 1, 1).
For the first constraint condition, prepare 8 sets of test
tubes, which are labeled 1, 2, 3, 4, 5, 6, 7, and 8, corre-
sponding to the 8 possible solutions of the previous step.
-ere are three test tubes in each set of test tubes, each of
which is put into a magnetic bead with captured DNA,
which are recorded as x1, x2, x3, respectively, and the
radii of the magnetic beads are 2nm, 4nm, and 6nm, Put
DNA1 and DNA2 into the respective test tubes according
to the x1, x2, x3 coefficients in the constraint condition.
Step 4. -e specific process is shown in Figure 4.
Step 5. -e signal intensities in the 8 test tubes are 0, 4,
2, 6, 3, 7, 5, and 9. -e feasible solutions that satisfy the
first constraint condition are 4(0, 1, 1), 6(1, 0, 1),
7(1, 1, 0), and 8(1, 1, 1).
Step 6. Because the second constraint does not involve x3,
we only need to consider x1 and x2. For the feasible so-
lutions obtained in step 6, the 4th, 6th, 7th, and 8th groups

Table 1: -e coding sequences of DNA molecules.

Name Coding sequence
Capture DNA 3-ATAAGGGGGAAAAGATTTGATTTGTT-NH2-5
DNA1 5-Biotin- TATTCCCCCTTTTCTAAACTAAACAA GCTATTGTTTAGTTTAGAAAAGGG-3
DNA2 3-Biotin-CGATCCCTTTTCTAAACTAAACAAATAAGGTTGTTTAGTTTAGAAAAGGG-5

DNA1

DNA2

Capture DNA Biological barcode
Biotin

Magnetic bead

DNA1 DNA1

DNA2 DNA2

DNA1

DNA2

DNA1 DNA1

DNA2

DNA1

DNA2

DNA2

Streptaridin

Figure 2: -e process of DNA cycle hybridization.

DNA1 DNA1DNA1

DNA2 DNA2DNA2

DNA1 DNA1DNA1

DNA2 DNA2DNA2
Xi = 0

Xi = 1

Figure 3: -e structure diagram of variables xi � 1 and.xi � 0.
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of solutions, the values are 4(0, 1), 6(1, 0), 7(1, 1), and
8(1, 1). Among them, the 7th and 8th solutions have the
same values, and only the 7th solution (1,1) is considered
here. Continue to steps 4 and 5, as shown in Figure 5.
-e signal intensities of these three groups of test tubes,
4, 6, and 7, are 3, 2, and 5, respectively. Only group 4
(0,1) and 6 (1,0) test tubes meet the second constraint.
-us, the feasible solutions satisfying the first two
constraints are 4 (0,1,1) and 6 (1,0,1).
Because the third constraint condition does not involve
variable x1, we only need to consider the values x2 and x3,
and the values are 4 (1, 1) and 6 (0, 1). Continue to steps 4
and 5. -e specific process is shown in Figure 6 below.
Step 7. Finally, group 6 of solutions (1, 0, 1) is a feasible
solution that satisfies all constraints. Substituting the
feasible solution into the objective function, the min-
imum objective function of the 0-1 integer program-
ming problem can be obtained as 9.

4. Discussion

Visual DSD is a simulation software commonly used in
DNA computing and hybridization chain reaction. -is
paper uses Visual DSD software to simulate and analyze the

optimal solution of the 0-1 integer programming problem.
-e optimal solution of the example integer programming
problem is (x1, x2, x3) � (1, 0, 1). For variables x1 � 1, add
the hairpin structure DNA1 strand and DNA2 strand, and
because the reaction is just started, the concentration of
reactants is higher and the reaction speed is faster. -e
concentration of the hairpin structure DNA1 and DNA2
strands decreases rapidly in a short time and eventually
gradually approaches 0. For sp5, the intermediate product of
the reaction, because the cycle hybridization reaction is
carried out step by step, the concentration of the strand first
increases and then decreases before finally approaching 0.
-e concentration of the final product sp4 gradually in-
creases and finally tends to be stable. -e specific reaction
process is shown in Figure 7. -e simulation results show
that the model is feasible and consistent with the expected
results.

Previous models, such as the DNA origami base,
circular logic gate, and others, cannot solve the weighted
integer programming problem, which increases the un-
derstanding space virtually. -e magnetic bead model
proposed in this paper, which can solve the 0-1 integer
programming problem with weight, can solve the general
0-1 integer programming problem, so it is more widely
used.
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Figure 4: -e structure diagram of 8 solutions.
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5. Conclusion

In this paper, a magnetic bead model for solving the 0-1
integer programming problem was established based on the
DNA cycle hybridization chain reaction and the specific
binding effect of streptavidin and biotin. Compared with the
previous DNA computing model, this model has the fol-
lowing advantages. First, there is no requirement for en-
zymes in the operation process, which can reduce the
experimental cost and improve the versatility of the model.
Second, the intensity of the signal is used to judge the

feasibility of the solution.-is can improve the accuracy and
practicability of the detection results. Finally, this model can
be used to solve the general 0-1 integer programming
problem and has more extensive applications than the
previous DNA computing model. However, this method still
has some shortcomings, such as a large number of steps and
long operation time. -erefore, these aspects still need to be
studied further.
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In this paper, a branching tree evolution is established, in which the birth rate and the death rate are both dependent on node’s age.
+e extinction probability and the t-pre-extinction (extinct before time t) probability are studied, by which the distribution of the
extinction moment can be given. +e analytical formula and the approximation algorithm for the distribution of extinction
moment are given; furthermore, the analytical formula and the approximation algorithm of extinction probability are given, and a
necessary and sufficient condition of extinction with probability 1 is given. It is the first time to study the distribution of extinction
time for the branching process with birth rate and the death rate both depending on node’s age, and the results will do great help in
the theory of branching process. It is expected to be applied in the fields of biology, genetics, medicine, epidemiology, de-
mography, nuclear physics, actuarial mathematics, algorithm, and data structures, etc.

1. Introduction

+e classical biological reproduction model G-W branching
process [1] has been extended to different biological re-
production models, such as branching processes in random
environments [2–4] and branching population evolution
models [5–11]. +e age-dependent branching process was
introduced by Bellman and Harris [6]. In branching models,
the population extinction problem is one of the primary
research contents. Many problems in branching models
related to the population extinction are studied, but the
distribution of extinction moment is hardly involved. In this
paper, a branching tree evolution is established, in which the
birth rate and death rate are both dependent on node’s age.
+e extinction probability and the t-pre-extinction (extinct
before time t) probability are studied, by which the distri-
bution of the extinction moment can be given.

+e paper is organized as follows.+emodel is described
and the existence theorem is presented in Section 2. In
Section 3, the extinction probability is studied, and the
analytical formula and the approximation algorithm of the

extinction probability are given. A necessary and sufficient
condition of extinction with probability 1 is also given. In
Section 4, the t-pre-extinction probability is studied, the
iterative integral equation with unique solution is estab-
lished, which is satisfied by the t-pre-extinction probability,
and the analytical formula and the approximation algorithm
of t-pre-extinction probability are given. +e stochastic
order of extinction moment is studied in Section 5. +e
conclusions are presented in Section 6.

2. Description and Existence Theorem for
the Model

In this paper, based on the mechanism of asexual repro-
duction of biological population, a continuous time random
graph evolution is constructed, in which a node’s birth rate
and death rate are both dependent on the node’s age.

Given a population is composed of biological individuals
(nodes). +e evolution of the population is based on the
following basic assumptions:
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(1) All nodes in the population are homogeneous and
mutually independent

(2) +e node’s death rate in the population is a non-
negative function α(·) dependent on the node’s age,
such that 􏽒

∞
0 α(t)dt � +∞

(3) +e node’s birth rate in the population is a non-
negative function β(·) dependent on the node’s age

(4) Conditioned under a node being alive, the node’s
reproduction behaviors in the future are conditional
independent

(5) Conditioned under a node being alive, the node’s
death is conditional independent with the node’s
reproduction

(6) At initial time t � 0, there is only one initial node in
the population (this condition is not essential, only
for convenience of presentation)

(7) In addition to the initial node, each of other nodes in
the population has only one parent node

Based on the above assumptions, the branching tree
evolution is described as follows.

Given a node i in the population, its age is s at time t. For
a sufficiently small period Δt> 0, conditioned under node i

being alive at time t, the conditional probability for node i

being dead in the period [t, t + Δt) is α(s)Δt + o(Δt), the
conditional probability for node i producing one child node
in the period [t, t + Δt) is β(s)Δt + o(Δt), and the condi-
tional probability for node i producing more than one child
node in the period [t, t + Δt) is o(Δt).

In the population, if node j is a child of node i, then there
is a directed link from node i to node j. When at least one of
the parent and child dies, the link between them is a virtual
(dotted) line, and the dead node is called a virtual node.
Otherwise, it is called a real node, and so on. At time t≥ 0, all
nodes (real and virtual) and directed links (real and virtual)
construct a directed random tree, denoted by Gt(·). And
thus, the process of reproduction is an evolution of random
trees, denoted by Gt(·)􏼈 􏼉t≥ 0. As the evolution is charac-
terized by the birth rate β(·) and the death rate α(·),
therefore, the model is referred to as “branching tree evo-
lution with birth rate and death rate both depending on age,”
denoted by Gt(β(·), α(·))􏼈 􏼉t≥ 0.

According to the definition of the model, ∀t≥ 0, the
number of offspring born in period (0, t] is finite, and no
more than one offspring will be born at the same time.
+erefore, the initial node and all its offspring nodes can be

ordered as 1, 2, . . . , n, . . . according to the order of birth
time.
∀n≥ 1, denote

n
→

� (1, 2, . . . , n),

f
→

(n) � f1, f2, . . . , fn( 􏼁: f1 � 0, 1≤fk ≤ k − 1, 2≤ k≤ n,

i
→

(n) � i1, i2, . . . , in( 􏼁: ik ∈ 0, 1{ }, 1≤ k≤ n,

b
→

(n) � b1, b2, . . . , bn( 􏼁: bi ∈ R+, 1≤ i≤ n,

and 0 � b1 < b2 < · · · < bn,

(1)

where n
→ is the vector of the labeled nodes; f

→
(n) is the

vector of the adjacency relation (parent-child relation) be-
tween nodes: f1 � 0 means that the initial node has no
parent node. fk � j, 1≤ j≤ k − 1 indicates that node j is the
parent of node k, 2≤ k≤ n; i

→
(n) is the vector of node’s alive-

death status: ik � 1 denotes that node k is alive and ik � 0
denotes that node k is dead, 1≤ k≤ n; and b

→
(n) is the birth

time vector: b1 � 0 represents there is an initial node at time
t � 0, bj is the time when node j is born, 2≤ j≤ n, and
b1 < b2 < · · · < bn implies that no more than one node is born
at the same time.
∀n≥ 1, denote

Fn � f
→

(n)􏼚 􏼛,

En � i
→

(n)􏼚 􏼛,

Bn � b
→

(n)􏼚 􏼛,

C3×n � ( n
→

, f
→

(n), i
→

(n))
T
,

S
(3)
n � n

→
􏼈 􏼉 × Fn × En,

C4×n � ( n
→

, f
→

(n), i
→

(n), b
→

(n))
T
,

Sn � n
→

􏼈 􏼉 × Fn × En × Bn,

S � 􏽛

∞

n�1
Sn.

(2)

∀C4×n � ( n
→

, f
→

(n), i
→

(n), b
→

(n))T, denote I(C4×n) �

k: ik � 1􏼈 􏼉. ∀k ∈ I(C4×n), denote

Dk C4×n( 􏼁 � C4×(n+1) � (n + 1
����→

, f
→

(n + 1), r
→

(n + 1), b
→

(n + 1))
T
:􏼚

b
→

(n + 1) � b
→

(n), bn+1􏼒 􏼓; f
→

(n + 1) � f
→

(n), fn+1􏼒 􏼓, fn+1 � k; rj ≤ ij, 1≤ j≤ n􏼛.

(3)
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∀C4×n � ( n
→

, f
→

(n), i
→

(n), b
→

(n)), and bn ≤ s< t, define
the function f(k)

n (s, t, C4×(n+1)|C4×n) on Sn+1.

∀C4×(n+1) � (n + 1
����→

, f
→

(n + 1), r
→

(n + 1), b
→

(n + 1)),

f
(k)
n s, t, C4×(n+1)|C4×n􏼐 􏼑 � 􏽥IDk C4×n( ) C4×(n+1)􏼐 􏼑 􏽙

j∈I C4×n( )

j≠k,rj�0

􏽚
t

s
e

− 􏽒
y− bj

s− bj

β(u)du

α(y)e
− 􏽒

y

s
α(u)dudy

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

× 􏽙

j∈I C4×n( )

j≠k,rj�1

e
− 􏽒

t− bj

s− bj

β(u)du

e
− 􏽒

t

s
α(u)du

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

× β bn+1 − bk( 􏼁g1 t, bk, rk( 􏼁g2 t, bn+1, rn+1( 􏼁,

(4)

where 􏽥IA(·) is a indicative function, and

g1 t, bk, rk( 􏼁 �

e
− 􏽒

t

s
α(u)du

e
− 􏽒

t− bj

s− bj

β(u)du

, rk � 1,

e
− 􏽒

bn+1 − bk

s− bk

β(u)du
􏽚

t

bn+1

e
− 􏽒

y− bk

bn+1 − bk

β(u)du
α(y)e

− 􏽒
y

s
α(u)dudy, rk � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

g2 t, bk, rn+1( 􏼁 �

e
− 􏽒

t

bn+1
α(u)du

e
− 􏽒

t

bn+1
β(u)du

, rn+1 � 1,

􏽚
t

bn+1

e
− 􏽒

y

bn+1
β(u)du

α(y)e
− 􏽒

y

bn+1
α(u)du

dy, rn+1 � 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(5)

∀C4×n � ( n
→

, f
→

(n), i
→

(n), b
→

(n)), and bn ≤ s< t, define
the function fn(s, t, C4×(n+1)|C4×n) on Sn+1:

fn s, t, C4×(n+1)|C4×n􏼐 􏼑 � 􏽘

k∈I C4×n( )

f
(k)
n s, t, C4×(n+1)|C4×n􏼐 􏼑.

(6)
Let dbn+1 be a Lebesgue measure on (s, t], for a given

b
→

(n), and bn ≤ s, then δ
b

→
(n)􏽮 􏽯

× dbn+1 is a measure on

(Bn+1,B(Bn+1)). Let μn+1(·) be a count measure on
(S

(3)
n+1,B(S

(3)
n+1)), denote vn+1(·) � μn+1 × (δ

b
→

(n)􏽮 􏽯
× dbn+1)

(·), and then vn+1(·) is a measure on (Sn+1,B(Sn+1)). Define
∀Dn+1 ∈B(Sn+1),

Qn s, t, Dn+1|C4×n( 􏼁 � 􏽚
Dn+1

fn s, t, C4×(n+1)|C4×n􏼐 􏼑vn+1

dC4×(n+1)􏼐 􏼑.

(7)

+en, ∀0≤ s< t, C4×n ∈ Sn, Qn(s, t, ·|C4×n) is a measure
on (Sn+1,B(Sn+1)), ∀0≤ s< t, Dn+1 ∈B(Sn+1),
Qn(s, t, Dn+1|·) is a measurable function on (Sn,B(Sn)).

Let

A2×n �
n
→

f
→

(n)
⎛⎝ ⎞⎠,

B2×n �
i

→
(n)

b
→

(n)

⎛⎝ ⎞⎠,

C4×n �
A2×n

B2×n

􏼠 􏼡.

(8)

Let N(t) be the number of nodes in the random
branching tree Gt(β(·), α(·)), then Gt(β(·), α(·)) can be
expressed by a 2 × N(t) matrix, i.e.,

Gt(β(·), α(·)) � A2×N(t). (9)
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+e birth time and the alive-death status of the N(t)

nodes in Gt(β(·), α(·)) can be expressed by the 2 × N(t)

matrix B2×N(t), and denote

Xt �
A2×N(t)

B2×N(t)

⎛⎝ ⎞⎠ � C4×N(t). (10)

We have the following theorem.
+eorem (existence) Gt(β(·), α(·))􏼈 􏼉t≥0 is the marginal

process of the nonhomogeneous Markov process Xt􏼈 􏼉t≥0 in
the state space S, where the transfer function of Xt􏼈 􏼉t≥0 is
∀D ∈B (S), 0≤ s< t, n≥ 1, C4×n � ( n

→
, f
→

(n), i
→

(n), b
→

(n))T ∈ Sn, here Dm ∈B(Sm)

P X(t) ∈ D|X(s) � C4×n( 􏼁

� 􏽘
∞

m�1
P X(t) ∈ D, N(t) � m|X(s) � C4×n( 􏼁

� 􏽘
∞

m�1
P X(t) ∈ Dm|X(t) � C4×n( 􏼁

� P X(t) ∈ Dn|X(s) � C4×n( 􏼁 + 􏽘
∞

m�n+1
P X(t) ∈ Dm|X(s) � C4×n( 􏼁,

(11)

where

P X(t) ∈ Dn|X(s) � C4×n( 􏼁 � 􏽘

r
→

(n)∈􏽢Dn

􏽙

j∈I C4×n( )
rj�0

􏽚
t

s
e

− λ y− bj( 􏼁− λ s− bj( 􏼁􏼂 􏼃αe
− α(y− s)dy × 􏽙

j∈I C4×n( )
rj�1

e
− λ t− bj( 􏼁− λ s− bj( 􏼁􏼂 􏼃

e
− α(t− s)

,

(12)

P X(t) ∈ Dn+k|X(s) � C4×n( 􏼁 � P X(t) ∈ Dn+k|X(s) � C4×n( 􏼁

� 􏽚
Sn+1

· · · 􏽚
Sn+k− 1

􏽚
Dn+k

Qn s, bn+1, dC4×(n+1)|C4×n􏼐 􏼑 · · ·

× Qn+k− 2 bn+k− 2, bn+k− 1, dC4×(n+k− 1)|C4×(n+k− 2)􏼐 􏼑

× Qn+k− 1 bn+k− 1, t, dC4×(n+k)|C4×(n+k− 1)􏼐 􏼑, k≥ 1,

(13)

where 􏽢Dn � r
→

(n): ( n
→

, f
→

(n), r
→

(n), b
→

(n)) ∈ Dn􏼚 􏼛.

Substituting (12) and (13) into (11), the transfer function of
Xt􏼈 􏼉t≥ 0 is obtained.

It is not difficult to prove that S is a Borel subset of the
separable complete distance space R∞, and the existence
theorem of Xt􏼈 􏼉t≥ 0 can be proved by the existence theorem
of Markov process. Gt(β(·), α(·))􏼈 􏼉t≥ 0 is a marginal process
of Xt􏼈 􏼉t≥ 0, and thus, the existence of Gt(β(·), α(·))􏼈 􏼉t≥ 0 is
proved.

3. The Extinction Probability

Define

T(ω) � inf t> 0: population extinction in the period[0, t)􏼈 􏼉;

P(t) � P T(ω)≤ t{ }, 0≤ t<∞;

P(∞) � P T(ω)<∞{ }.

(14)

T(ω) is called the extinction moment, at which the
population extinct. +e probability P(t) is called t-pre-
extinction probability, which is the probability of the
population extinct before time t, and the probability P(∞)

is called extinction probability. +e distribution of ex-
tinction moment T(ω) is given by t-pre-extinction prob-
ability and P(T(ω) �∞) � 1 − P(T(ω) <∞) � 1 − P(∞).
If P(∞) � 1, i.e., P(T(ω) �∞) � 0. +en, T(ω) is a real-
valued random variable, so the t-pre-extinction probability
P(t), t≥ 0 is the distribution function of T(ω).

In this section, the extinction probability for the
branching tree evolution Gt(β(·), α(·))􏼈 􏼉t≥ 0 is studied, the
analytical formula and the approximation algorithm of
extinction probability are given, and a necessary and suf-
ficient condition of extinction with probability 1 is also
given.

Let η(t) be the number of nodes that are alive in the
population at time t, then P(t) � P(η(t) � 0), 0≤ t<∞.
Obviously, η(s) � 0􏼈 􏼉⊆ η(t) � 0􏼈 􏼉 when s≤ t, and
P(∞) � limt⟶∞P(η(t) � 0).
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It is obvious that P(t) has the following properties:

(1) ∀0< s< t, 0 � P(0)<P(s)<P(t)<P(∞)

(2) P(t) is continuous on [0,∞)

Lemma 1. Given a node i in the population, its lifespan is Y,
and then Y has the probability density function:

fY(t) �
α(t)e− 􏽒

t

0
α(u)du

, t≥ 0,

0, t< 0,

⎧⎪⎨

⎪⎩
(15)

where α(·) is the node’s death rate.
It is easy to prove Lemma 1.

Theorem 1. 2e following iterative integral equation is
satisfied by the t-pre-extinction probability P(t), 0< t<∞

P(t) � 􏽚
t

0
e

− 􏽚
s

0
(1 − P(t − u))β(u)du

· α(s)e
− 􏽚

s

0
α(u)du

ds, 0< t<∞,

(16)

where β(·) is the node’s birth rate and α(·) is the node’s death
rate.

Proof. ∀0< t<∞, 0<P(t)< 1, Let Y be the node’s lifespan,
then we get

P(t) � P(η(t) � 0) � P(η(t) � 0, Y≤ t)

� 􏽚
t

0
P(η(t) � 0|Y � s) · α(s)e

− 􏽒
s

0
α(u)duds.

(17)

In the following, we first calculate P(η(t) � 0|Y � s).
Equally divide the interval [0, s] into n intervals, denote
δ � (s/n), and let Ak be the random event: the initial node
produces a child node in the period (kδ, (k + 1)δ] and the
offspring of this child node extinct before time t or the initial
node does not produce a child node in the period
(kδ, (k + 1)δ], 0≤ k≤ n − 1.

When δ is sufficiently small, the probability that the
initial node does not produce a child node in the period
(kδ, (k + 1)δ] is 1 − β(kδ) · δ + o(δ); the probability of
producing more than one child node is o(δ); the probability
of producing one child node is β(kδ) · δ + o(δ), and this
child node’s offspring extinct before time t with probability
P(t − kδ), 0≤ k≤ n − 1, so

P Ak|Y � s( 􏼁 � β(kδ) · δ · P(t − kδ) + 1 − β(kδ)

· δ + o(δ), 0≤ k≤ n − 1.
(18)

Noting the independent assumptions of the model, we
have

P(η(t) � 0|Y � s) � lim
δ⟶0

P ∩
n− 1

k�0
Ak|Y � s􏼒 􏼓 � lim

δ⟶0
􏽙

n− 1

k�0
P Ak|Y � s( 􏼁

� lim
δ⟶0

􏽙

n− 1

k�0
[β(kδ) · δ · P(t − kδ) +(1 − β(kδ) · δ) + o(δ)]

� lim
δ⟶0

􏽙

n− 1

k�0
[1 − β(kδ) · (1 − P(t − kδ)) · δ + o(δ)].

(19)

+en,

ln P(η(t) � 0|Y � s) � lim
δ⟶0

􏽘

n− 1

k�0
ln[1 − β(kδ) · (1 − P(t − kδ)) · δ + o(δ)]

� − lim
δ⟶0

􏽘

n− 1

k�0
β(kδ) · (1 − P(t − kδ)) · δ + o(δ).

(20)

+at is

P(η(t) � 0|Y � s) � e
− 􏽒

s

0
(1− P(t− u))β(u)du

. (21)

So

P(t) � 􏽚
t

0
e

− 􏽒
s

0
(1− P(t− u))β(u)du

· α(s)e
− 􏽒

s

0
α(u)duds. (22)

+us, the theorem is proved.
Denote
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g(x) � 􏽚
∞

0
e

− 􏽒
s

0
(1− x)β(u)du

· α(s)e
− 􏽒

s

0
α(u)duds, 0≤x≤ 1. (23)

□

Lemma 2. 2e extinction probability P(∞) is a solution of
the equation

x � g(x), 0≤ x≤ 1. (24)

Proof. 0< t0 < t<∞,

|P(t) − g(P(∞))|

� 􏽚
t

0
e

− 􏽒
s

0
(1− P(t− u))β(u)du

· α(s)e
− 􏽒

s

0
α(u)duds − 􏽚

∞

0
e

− 􏽒
s

0
(1− P(∞))β(u)du

· α(s)e
− 􏽒

s

0
α(u)duds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ 􏽚
t0

0
e

− 􏽒
s

0
(1− P(t− u))β(u)du

· α(s)e
− 􏽒

s

0
α(u)duds − 􏽚

t0

0
e

− 􏽒
s

0
(1− P(∞))β(u)du

· α(s)e
− 􏽒

s

0
α(u)duds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ 􏽚
t

t0

e
− 􏽒

s

0
(1− P(t− u))β(u)du

· α(s)e
− 􏽒

s

0
α(u)duds − 􏽚

t

t0

e
− 􏽒

s

0
(1− P(∞))β(u)du

· α(s)e
− 􏽒

s

0
α(u)duds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ 􏽚
∞

t
e

− 􏽒
s

0
(1− P(t− u))β(u)du

· α(s)e
− 􏽒

s

0
α(u)duds,

(25)

∀ε> 0,∃t0, 0< t0 < t, and let t be large enough, such that

􏽚
t0

0
e

− 􏽒
s

0
(1− P(t− u))β(u)du

· α(s)e
− 􏽒

s

0
α(u)duds − 􏽚

t0

0
e

− 􏽒
s

0
(1− P(∞))β(u)du

· α(s)e
− 􏽒

s

0
α(u)duds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
<
ε
3
,

􏽚
t

t0

e
− 􏽚

s

0
(1 − P(t − u))β(u)du

· α(s)e
− 􏽚

s

0
α(u)du

ds − 􏽚
t

t0

e
− 􏽚

s

0
(1 − P(∞))β(u)du

· α(s)e
− 􏽚

s

0
α(u)du

ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

<
ε
3
,

􏽚
∞

t
e

− 􏽚
s

0
(1 − P(∞))β(u)du

· α(s)e
− 􏽚

s

0
α(u)du

ds<
ε
3
,

(26)

i.e., limt⟶∞P(t) � g(P(∞)), which imply P(∞) � g

(P(∞)).
+us, Lemma 2 is proved.
It is easy to prove that the function g(x) has the fol-

lowing properties. □

Lemma 3

(1) g(0)> 0, g(1) � 1
(2) g(x) is increasing on [0, 1]

(3) g(x) is a strictly concave function on [0, 1]

Theorem 2. 2e extinction probability P(∞) is the smallest
solution of the equation

x � g(x), 0≤ x≤ 1. (27)

Proof. By Lemma 3, g(x) is a strictly concave function on
[0, 1], and thus, 􏽥g(x) � g(x) − x is also a strictly concave
function on [0, 1]. It is easy to see that any strictly concave
function has at most two different roots in its definition
domain; hence, 􏽥g(x) � 0 has at most two different solutions
on [0, 1], one of which is x � 1. Let x � q be the smallest
solution of the equation x � g(x).

(1) If q � 1, since q � 1 is the smallest solution of the
equation, then the equation has no solution in (0, 1).
But, by Lemma 2, P(∞) is the solution of the
equation, infer that P(∞) � 1, i.e., P(∞) is the
smallest solution of the equation x � g(x).
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(2) 0< q< 1, let x such that q<x< 1, since q is the
unique solution of the equation x � g(x) in (0, 1), it
is easy to see that x>g(x).

It is easy to prove ∀t> 0, P(t)≤ q. In fact, suppose
contrarily ∃ t> 0, such that P(t)> q, then

P(t)>g(P(t)). (28)

Noting that P(t) is increasing, then

P(t) � 􏽚
t

0
e

− 􏽚
s

0
(1 − P(t − u))β(u)du

· α(s)e
− 􏽚

s

0
α(u)du

ds

≤ 􏽚
t

0
e

− 􏽚
s

0
(1 − P(t))β(u)du

· α(s)e
− 􏽚

s

0
α(u)du

ds

≤ 􏽚
∞

0
e

− 􏽚
s

0
(1 − P(t))β(u)du

· α(s)e
− 􏽚

s

0
α(u)du

ds

� g(P(t)).

(29)

+is contradicts P(t)>g(P(t)), so the above assump-
tion is not true. By Lemma 2, P(∞) is the solution of the
equation, i.e., P(∞) � g(P(∞))≤ q. By the fact that q is the
smallest solution of the equation, imply that P(∞) � q. So
P(∞) is the smallest solution of the equation. +erefore, the
theorem is proved. □

Corollary 1. If β(·) � β> 0, then

P(∞) �
α
β
∧1. (30)

Furthermore, P(∞) � 1⇔α≥ β.

Proof. If β(·) � β> 0, then

g(x) � 􏽚
∞

0
e

− (1− x) 􏽚
s

0
β(u)du

· αe
− αsds

� 􏽚
∞

0
αe

− [(1− x)β+α]sds

�
α

(1 − x)β + α
.

(31)

Let g(x) � x, that is,

α
(1 − x)β + α

� x,

βx
2

− (β + α)x + α � 0.

(32)

Obviously, Δ � (β + α)2 − 4βα � (β − α)2 ≥ 0; the two
roots of the above equation are as follows:

x1,2 �
(β + α) ± |β − α|

2β
. (33)

+en,

P(∞) �
α
β
∧1, (34)

thus,

P(∞) � 1⇔α≥ β. (35)

+e proof is completed.
As a consequence of +eorem 2, a sufficient condition

for P(∞) � 1 is given. □

Corollary 2. ∀s> 0, if 􏽒
s

0 β(u)du≤ 􏽒
s

0 α(u)du, then
P(∞) � 1.

Proof. According to the assumptions, there is

g(x) � 􏽚
∞

0
e

− (1− x) 􏽚
s

0
β(u)du

· α(s)e
− 􏽚

s

0
α(u)du

ds

≥ 􏽚
∞

0
e

− (1− x) 􏽚
s

0
α(u)du

· α(s)e
− 􏽚

s

0
α(u)du

ds

�
1

2 − x
􏽚
∞

0
(2 − x)α(s)e

− (2− x) 􏽚
s

0
α(u)du

ds

�
1

2 − x
.

(36)

If 0<x≤ 1 is a solution of the equation x � g(x), then x

satisfies

g(x) � x≥
1

2 − x
. (37)

+us, x2 − 2x + 1≤ 0, i.e., (x − 1)2 ≤ 0, so x � 1, deduce
P(∞) � 1.

Corollary 2 shows that when the death rate is greater
than the birth rate, the population is certainly extinct, which
is intuitive. □

Corollary 3. Let Gt(β1(·), α(·))􏼈 􏼉t≥ 0 and Gt(β2(·), α􏼈

(·))}t≥ 0 be two branching tree evolutions with different birth
rates and the same death rate. 2e corresponding extinction
probabilities are denoted by P1(∞) and P2(∞), respectively.
If β1(u)≥ β2(u), u≥ 0, then P1(∞)≤P2(∞).

Proof. ∀0≤ x≤ 1, gi(x) � 􏽒
∞
0 e

− (1− x) 􏽒
s

0
βi(u)du

· α(s)e
− 􏽒

s

0

α(u)duds, i � 1, 2.
If β1(u)≥ β2(u), u≥ 0, then by the definition of

gi(x), i � 1, 2, it is easy to see that g1(x)≤g2(x), 0≤x≤ 1,
and g1(x) − x≤g2(x) − x, 0≤ x≤ 1.

Since gi(x) − x is a continuous function with at least one
smallest root on [0, 1](i � 1, 2), and 0<g1(0)≤g2(0),
therefore, the smallest root of g1(x) − x on (0, 1] is less than
or equal to the smallest root of g2(x) − x on (0, 1], and by
+eorem 2, there is

P1(∞)≤P2(∞). (38)

+e proof is completed.
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Corollary 3 implies that, for two models with the same
death rate, the higher the birth rate is, the lower the ex-
tinction probability is, which is intuitive. □

Corollary 4. Let Gt(β(·), α1(·))􏼈 􏼉t≥ 0 and Gt(β(·)α2(·))􏼈 􏼉t≥ 0
be two branching tree evolutions with different death rates but
with the same birth rate. 2e corresponding extinction
probabilities are denoted by P1(∞) and P2(∞), respectively,
∀s≥ 0, if 􏽒

s

0 α1(u)du≤ 􏽒
s

0 α2(u)du, then P1(∞)≤P2(∞).

Proof. Denote Fi(s) � 1 − Fi(s) � e− 􏽒
s

0
αi(u)du

, i � 1, 2, ∀s≥
0, if 􏽒

s

0 α1(u)du≤ 􏽒
s

0 α2(u)du, then F1(s)≥F2(s).
So 􏽒
∞
0 A(s)dF1(s)≤ 􏽒

∞
0 A(s)dF2(s) for any decreasing

function A(·).
+e corresponding functions to g(x) are denoted by

g1(x) and g2(x), respectively. Noting that e− (1− x) 􏽒
s

0
β(u)du is

a decreasing function with s, so by the definition of

gi(x) � 􏽚
∞

0
e

− (1− x) 􏽚
s

0
β(u)du

dFi(s), i � 1, 2.
(39)

imply g1(x)≤g2(x), 0≤ x≤ 1, then g1(x) − x≤g2(x) − x,
0≤ x≤ 1,

Since gi(x) − x is a continuous function with at least one
smallest root on [0, 1], i � 1, 2, and 0<g1(0)≤g2(0),
therefore, the smallest root of g1(x) − x on (0, 1] is less than
or equal to the smallest root of g2(x) − x on (0, 1], and by
+eorem 2,

P1(∞)≤P2(∞). (40)

Corollary 4 shows that, for two models with the same
birth rate, the randomly longer the lifespan is, the smaller the
extinction probability is, which is intuitive. □

Theorem 3. P(∞) � 1⇔g′(x)< 1, 0<x< 1.

Proof

(1) Sufficiency: assume g′(x)< 1, 0< x< 1, let
􏽥g(x) � g(x) − x, 0≤ x≤ 1, then 􏽥g′(x) � g′(x) − 1
< 0, 0<x< 1; i.e., 􏽥g(x) is the decreasing function on
[0, 1]. Noting that 􏽥g(0) � g(0)> 0, 􏽥g(1) � g(1)−

1 � 0, thus x � 1 is the smallest root of 􏽥g(x) on
[0, 1], and by +eorem 2, we get P(∞) � 1.

(2) Necessity: assume P(∞) � 1, because g(x) is a
strictly concave function on [0, 1], 􏽥g(x) is also a
strictly concave function on [0, 1], and
􏽥g(0) � g(0)> 0. In addition, by +eorem 2 and the
assumptions, it is obvious that x � 1 is the smallest
root of 􏽥g(x) on [0, 1], so 􏽥g(x) is decreasing on [0, 1].
Hence, 􏽥g′(x)< 0, that is, g′(x)< 1, 0< x< 1.

+us, the theorem is proved.

For g(x) � 􏽒
∞
0 e− (1− x) 􏽒

s

0
β(u)du

· α(s)e− 􏽒
s

0
α(u)duds, 0≤x

≤ 1 introduced above, noting that ∀0≤ x≤ 1, 0<g(x)≤ 1,
denote

g0(x) � x, 0≤ x≤ 1,

g1(x) � g(x),

gn(x) � g gn− 1(x)( 􏼁, n≥ 2,

(41)

i.e., gn(·) is the n times iteration of g(·), and then, there is the
following conclusion. □

Theorem 4. ∀0≤x< 1, there is limn⟶∞gn(x) � P(∞).

Proof

(1) If P(∞) � 1, by g(0)> 0 and +eorem 2, we have
∀0≤ x< 1, x<g(x). For the increasing property of
g(·), so gn(x)<gn+1(x), n≥ 1, in addition, g(·) is
continuous, then

q � lim
n⟶∞

gn(x) � lim
n⟶∞

g gn− 1(x)( 􏼁 � g lim
n⟶∞

gn− 1(x)􏼒 􏼓,

(42)

i.e., q � g(q), and then, we can get q � 1 by+eorem
2, i.e., limn⟶∞gn(x) � P(∞).

(2) If 0<P(∞)< 1, ∀0≤x<P(∞), then x<g(x), and
gn(x)<gn+1(x), n≥ 1; thus,

q � lim
n⟶∞

gn(x) � lim
n⟶∞

g gn− 1(x)( 􏼁

� g lim
n⟶∞

gn− 1(x)􏼒 􏼓 � g(q).
(43)

By +eorem 2, q � P(∞), i.e.,
limn⟶∞gn(x) � P(∞).

(3) If 0<P(∞)< 1, ∀P(∞)≤ x< 1, then x≥g(x), and
gn(x)≥gn+1(x), n≥ 1, and thus,

q � lim
n⟶∞

gn(x) � lim
n⟶∞

g gn− 1(x)( 􏼁

� g lim
n⟶∞

gn− 1(x)􏼒 􏼓 � g(q).
(44)

Noting that the equation x � g(x) has no root on the
interval (P(∞), 1), so q � P(∞), i.e.,

lim
n⟶∞

gn(x) � P(∞). (45)

Note: the significance of +eorem 4 is obvious. It gives a
numerical method to calculate the asymptotic value of ex-
tinction probability. For any initial value x0(0≤ x0 < 1),
iteration value gn(x0) is the asymptotic value of the ex-
tinction probability P(∞). □
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4. The t-Pre-Extinction Probability

In this section, the analytic formula and the approximation
algorithm of t-pre-extinction probability are given, and the
iterative integral equation with unique solution is estab-
lished, which is satisfied by the t-pre-extinction probability.

Let t> 0, n≥ 1, denote Δn � (t/2n). Divide the interval
(0, t] equally into 2n intervals (kΔn, (k + 1)Δn], k � 0, 1, 2,

. . . , 2n − 1. Step function is defined as follows:

Hn(s) �

0, 0≤ s≤Δn,

Hn Δn( 􏼁, Δn < s≤ 2Δn,

· · · · · ·

Hn kΔn( 􏼁, kΔn < s≤ (k + 1)Δn,

· · · · · ·

Hn t − Δn( 􏼁, t − Δn < s≤ t,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(46)

where

Hn Δn( 􏼁 � 􏽚
Δn

0
e

− 􏽚
s

0
1 − Hn Δn − u( 􏼁( 􏼁β(u)du

· α(s)e
− 􏽚

s

0
α(u)du

ds;

Hn kΔn( 􏼁 � 􏽚
kΔn

0
e

− 􏽚
s

0
1 − Hn kΔn − u( 􏼁( 􏼁β(u)du

· α(s)e
− 􏽚

s

0
α(u)du

ds, k

(47)

We always assume that the birth rate function β(·) is
bounded in any finite interval; denote

β � sup
0≤u≤t

β(u). (48)

Theorem 5

(1) ∀n≥ 1, Hn(·) is nondecreasing on [0, t]

(2) Hn(·)􏼈 􏼉n≥ 1 is a monotonic increasing sequence of
functions

(3) ∀t≥ 0, limn⟶∞Hn(t) � P(t)

Proof

(1) To prove Hn(·) is a nondecreasing function on [0, t]

because

Hn Δn( 􏼁 � 􏽚
Δn

0
e

− 􏽚
s

0
1 − Hn Δn − u( 􏼁( 􏼁β(u)du

· α(s)e
− 􏽚

s

0
α(u)du

ds

≥ 􏽚
Δn

0
α(s)e

− 􏽚
s

0
α(u)du

ds> 0.

(49)

So, Hn(·) is nondecreasing on [0, 2Δn]; suppose
inductively that Hn(·) is nondecreasing on [0, kΔn],
then

Hn kΔn( 􏼁 � 􏽚
kΔn

0
e

− 􏽚
s

0
1 − Hn kΔn − u( 􏼁( 􏼁β(u)du

· α(s)e
− 􏽚

s

0
α(u)du

ds

≥ 􏽚
(k− 1)Δn

0
e

− 􏽚
s

0
1 − Hn kΔn − u( 􏼁( 􏼁β(u)du

· α(s)e
− 􏽚

s

0
α(u)du

ds

≥ 􏽚
(k− 1)Δn

0
e

− 􏽚
s

0
1 − Hn (k − 1)Δn − u( 􏼁( 􏼁β(u)du

· α(s)e
− 􏽚

s

0
α(u)du

ds

� Hn (k − 1)Δn( 􏼁.

(50)

+us, Hn(·) is nondecreasing on [0, (k + 1)Δn]. It is
deduced by mathematical induction that Hn(·) is
nondecreasing on [0, t].

(2) ∀n≥ 1, to prove Hn(·)≤Hn+1(·) on [0, kΔn],
k � 1, 2, . . . , 2n.

0≤ s≤Δn, Hn(s) � 0,

0≤ s≤
Δn

2
� Δn+1, Hn+1(s) � 0,

Δn

2
< s≤Δn � 2Δn+1, Hn+1(s) � Hn+1 Δn+1( 􏼁> 0.

(51)

Mathematical Problems in Engineering 9



Hence, Hn(·)≤Hn+1(·) on [0,Δn]. Suppose induc-
tively that Hn(·)≤Hn+1(·) on [0, kΔn], by the defi-
nitions of Hn(·) and Hn+1(·), we have

Hn(s) � Hn kΔn( 􏼁, kΔn < s≤ (k + 1)Δn,

Hn+1(s) � Hn+1 2kΔn+1( 􏼁, 2kΔn+1 � kΔn < s≤ kΔn + Δn+1,

Hn+1(s) � Hn+1 (2k + 1)Δn+1( 􏼁, (2k + 1)Δn+1 < s≤ (k + 1)Δn,

(52)

where

Hn+1 (2k + 1)Δn+1( 􏼁≥Hn+1 2kΔn+1( 􏼁 � Hn+1 kΔn( 􏼁

� 􏽚
kΔn

0
e

− 􏽚
s

0
1 − Hn+1 kΔn − u( 􏼁( 􏼁β(u)du

· α(s)e
− 􏽚

s

0
α(u)du

ds

≥ 􏽚
kΔn

0
e

− 􏽚
s

0
1 − Hn kΔn − u( 􏼁( 􏼁β(u)du

· α(s)e
− 􏽚

s

0
α(u)du

ds � Hn kΔn( 􏼁.

(53)

+us, it can be proved by mathematical induction
that Hn(s)≤Hn+1(s), s ∈ [0, t], n≥ 1, i.e., Hn(·)􏼈 􏼉n≥ 1
is a monotonic increasing sequence of functions.

(3) For simplicity, denote Δ � Δn, H(·) � Hn(·). Be-
cause P(·) is uniform continuous on [0, t], so ∀ε> 0,
when n is sufficiently large, that is Δ � Δn sufficiently
small.

|P(u) − P(v)|< ε,

|u − v|<Δ.
(54)

+e following conclusion can be deduced by mathe-
matical induction:

0≤P(kΔ) − H(kΔ)≤ kεβΔ + o(εβΔ), k � 1, 2, . . . , 2n
.

(55)

It is easy to prove that H(kΔ)≤P(kΔ), k � 1, 2, . . . , 2n.

P(Δ) − H(Δ) � 􏽚
Δ

0
e

− 􏽚
s

0
(1 − P(Δ − u))β(u)du

− e
− 􏽚

s

0
(1 − H(Δ − u))β(u)du⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ · α(s)e
− 􏽚

s

0
α(u)du

ds

� 􏽚
Δ

0
e
􏽚

s

0
(P(Δ − u))β(u)du

− 1⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ · e

− 􏽚
s

0
β(u)du

· α(s)e
− 􏽚

s

0
α(u)du

ds

≤ 􏽚
Δ

0
[εβΔ + 0(εβΔ)] · α(s)e

− 􏽚
s

0
α(u)du

ds

≤ εβΔ + o(εβΔ),

P(2Δ) − H(2Δ)≤ 􏽚
2Δ

0
e
􏽚

s

0
(P(2Δ − u) − H(2Δ − u))β(u)du

− 1⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ · α(s)e

− 􏽚
s

0
α(u)du

ds

� 􏽚
Δ

0
e
􏽚

s

0
(P(2Δ − u) − H(2Δ − u))β(u)du

− 1⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ · α(s)e

− 􏽚
s

0
α(u)du

ds

+ 􏽚
2Δ

Δ
e
􏽚

s

0
(P(2Δ − u) − H(2Δ − u))β(u)du

− 1⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ · α(s)e

− 􏽚
s

0
α(u)du

ds.

(56)
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When 0≤ s≤Δ,

􏽚
s

0
(P(2Δ − u) − H(2Δ − u))β(u)du

≤ 􏽚
s

0
(P(2Δ − u) − P(Δ) + P(Δ) − H(Δ))β(u)du

≤ εβΔ + o(εβΔ)≤ 2εβΔ + o(2εβΔ).

(57)

When Δ≤ s≤ 2Δ,

􏽚
s

0
(P(2Δ − u) − H(2Δ − u))β(u)du

� 􏽚
Δ

0
(P(2Δ − u) − H(2Δ − u))β(u)du + 􏽚

s

Δ
(P(2Δ − u)

− H(2Δ − u))β(u)du

≤ εβΔ + o(εβΔ) + 􏽚
s

Δ
(P(2Δ − u) − P(Δ)

+ P(Δ) − H(Δ))β(u)du

≤ 2εβΔ + o(2εβΔ).

(58)

So,

P(2Δ) − H(2Δ)

≤ 􏽚
Δ

0
(2εβΔ + o(2εβΔ)) · α(s)e

− 􏽚
s

0
α(u)du

ds + 􏽚
2Δ

Δ
(2εβΔ + o(2εβΔ)) · α(s)e

− 􏽚
s

0
α(u)du

ds

� 􏽚
2Δ

0
(2εβΔ + o(2εβΔ)) · α(s)e

− 􏽚
s

0
α(u)du

ds

≤ 2εβΔ + o(2εβΔ).

(59)

Suppose inductively that P(jΔ) − H(jΔ) ≤ jεβΔ + o

(jεβΔ), 1≤ j≤ k − 1.
+en,

P(kΔ) − H(kΔ)≤ 􏽚
kΔ

0
e
􏽚

s

0
(P(kΔ − u) − H(kΔ − u))β(u)du

− 1⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ · α(s)e

− 􏽚
s

0
α(u)du

ds

� 􏽘
k− 1

j�0
􏽚

(j+1)Δ

jΔ
e
􏽚

s

0
(P(kΔ − u) − H(kΔ − u))β(u)du

− 1⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ · α(s)e

− 􏽚
s

0
α(u)du

ds.

(60)
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When (k − 1)Δ≤ s≤ kΔ,

􏽚
s

0
(P(kΔ − u) − H(kΔ − u))β(u)du

� 􏽘
k− 2

j�0
􏽚

(j+1)Δ

jΔ
(P(kΔ − u) − H(kΔ − u))β(u)du + 􏽚

s

(k− 1)Δ
(P(kΔ − u) − H(kΔ − u))β(u)du,

(61)

∀0≤ j≤ k − 2,

􏽚
(j+1)Δ

jΔ
(P(kΔ − u) − H(kΔ − u))β(u)du

� 􏽚
(j+1)Δ

jΔ
[P(kΔ − u) − P((k − j − 1)Δ) + P((k − j − 1)Δ) − H((k − j − 1)Δ)]β(u)du

< εβΔ + o(εβΔ),

􏽚
s

(k− 1)Δ
(P(kΔ − u) − H(kΔ − u))β(u)du ≤ εβΔ + o(εβΔ).

(62)

So

􏽚
s

0
(P(kΔ − u) − H(kΔ − u))β(u)du ≤ kεβΔ + o(kεβΔ).

(63)

It is obvious that when s1 ≤ s2, there is

􏽚
s1

0
(P(kΔ − u) − H(kΔ − u))β(u)du

≤ 􏽚
s2

0
(P(kΔ − u) − H(kΔ − u))β(u)du.

(64)

So

P(kΔ) − H(kΔ)

≤ 􏽘
k− 1

j�0
􏽚

(j+1)Δ

jΔ
[kεβΔ + o(kεβΔ)] · α(s)e

− 􏽚
s

0
α(u)du

ds

� 􏽚
kΔ

0
[kεβΔ + o(kεβΔ)] · α(s)e

− 􏽚
s

0
α(u)du

ds

≤ kεβΔ + o(kεβΔ).
(65)

It is proved deductively that 0≤P(kΔ) − H(kΔ) ≤
kεβΔ + o(kεβΔ), k � 1, 2, . . . , 2n.

Especially, 0≤P(t) − H(t)≤ εβt + o(εβt).
+at is,

lim
n⟶∞

Hn(t) � P(t). (66)

+e proof is complete. □

Theorem 6. 2e t-pre-extinction probability P(t) is the
unique solution of the iterative integral equation in2eorem 1.

Proof. According to +eorem 1, the t-pre-extinction
probability is the solution of the iterative integral equation in
+eorem 1, and it is not difficult to deduce by+eorem 5 that
the solution of the iterative integral equation is unique.
+erefore, the t-pre-extinction probability is the unique
solution of the iterative integral equation. +e theorem is
proved. □

5. The Stochastic Order of Extinction Moment

If P(∞) � 1, then the extinction moment T(ω) is a real-
valued random variable, and the t-pre-extinction probability
P(t) is the distribution function of T(ω). In this section, we
study the stochastic order of the extinction moment for
different branching tree evolutions.

Theorem 7

(1) Let P1(∞) and T1(ω) be, respectively, the extinction
probability and extinction moment for the branching
tree evolutions Gt(β1(·), α(·))􏼈 􏼉t≥ 0; let P2(∞) and
T2(ω) be, respectively, the extinction probability and
extinction moment for the branching tree evolutions
Gt(β2(·), α(·))􏼈 􏼉t≥ 0. If P1(∞) � 1, P2(∞) � 1, and
β1(·)≤ β2(·), then T1(ω) is stochastically smaller than
T2(ω), that is T1(ω) ≤ s.t.T2(ω).

(2) Let 􏽥P1(∞) and 􏽥T1(ω) be, respectively, the extinction
probability and extinction moment for the branching
tree evolutions Gt(β(·), α1(·))􏼈 􏼉t≥ 0; let 􏽥P2(∞) and
􏽥T2(ω) be, respectively, the extinction probability and
extinction moment for the branching tree evolutions
Gt(β(·), α2(·))􏼈 􏼉t≥ 0. If 􏽥P1(∞) � 1, 􏽥P2(∞) � 1, and
∀t> 0, 􏽒

t

0 α1(s)ds≤ 􏽒
t

0 α2(s)ds, then 􏽥T2(ω) is sto-
chastically smaller than 􏽥T1(ω), that is
􏽥T2(ω) ≤ s.t. 􏽥T1(ω).
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Proof

(1) Corresponding to the branching tree evolution
Gt(β1(·), α(·))􏼈 􏼉t≥ 0 and Gt(β2(·), α(·))􏼈 􏼉t≥ 0, simi-
larly to +eorem 5, define the step function series as
H(1)

n (·)􏼈 􏼉n≥ 1 and H(2)
n (·)􏼈 􏼉n≥ 1, respectively.

By the hypothesis of β1(·)≤ β2(·) and the definition
of H(i)

n (·), i � 1, 2, applying the mathematical in-
duction, it is easy to prove that
H(1)

n (kΔn)≥H(2)
n (kΔn), 1≤ k≤ 2n, n≥ 1, and thus

H(1)
n (·)≥H(2)

n (·). By +eorem 5,

P1(t) � P T1(ω)≤ t( 􏼁 � lim
n⟶∞

H
(1)
n (t), t≥ 0,

P2(t) � P T2(ω)≤ t( 􏼁 � lim
n⟶∞

H
(2)
n (t), t≥ 0.

(67)

+us, P1(t)≥P2(t), t≥ 0.
Because T1(ω) ≤ s.t.T2(ω)⇔P1(t)≥P2(t), t≥ 0, so
T1(ω) ≤ s.t.T2(ω). +us, (1) is proved.

(2) Corresponding to the branching tree evolution
Gt(β(·), α1(·))􏼈 􏼉t≥ 0 and Gt(β(·), α2(·))􏼈 􏼉t≥ 0, simi-
larly to +eorem 5, define the step function series as

􏽥H
(1)

n (·)􏼚 􏼛
n≥ 1

and 􏽥H
(2)

n (·)􏼚 􏼛
n≥ 1

, respectively, and

denote Fi(t) � 1 − e− 􏽒
t

0
αi(u)du

, t≥ 0, i � 1, 2; then
F1(t)≤F2(t), 0≤ t<∞. Denote Di(s) � I[0,k△n]

(s)e− 􏽒
s

0(1 − 􏽥H
(i)

n (k△n − u))β(u)du, s⟶ 0, i �

1, 2; then Di(s) is a decreasing function of s. Ap-
plying the mathematical induction, we have

􏽥H
(1)

n k△n( 􏼁 � 􏽚
k△n

0
e

− 􏽚
s

0
1 − 􏽥H

(i)

n k△n − u( 􏼁􏼒 􏼓β(u)du
dF1(s)

� 􏽚
∞

0
D1(s)dF1(s)≤ 􏽚

∞

0
D1(s)dF2(s)

≤ 􏽚
∞

0
D2(s)dF2(s) � 􏽥H

(2)

n k△n( 􏼁, 1≤ k≤ 2n
.

(68)

+us, 􏽥H
(1)

n (·)≤ 􏽥H
(2)

n (·), and by +eorem 5,

􏽥P1(t) � P 􏽥T1(ω)≤ t􏼐 􏼑 � lim
n⟶∞

􏽥H
(1)

n (t), t≥ 0,

􏽥P2(t) � P 􏽥T2(ω)≤ t􏼐 􏼑 � lim
n⟶∞

􏽥H
(2)

n (t), t≥ 0.
(69)

+en, 􏽥P1(t)≤ 􏽥P2(t), so 􏽥T1(ω) ≥ s.t. 􏽥T2(ω). +us, (2) is
proved and theorem is proved. □

6. Conclusions

+is paper addresses an important problem in the field of
branching process. +e extinction probability and the t-pre-
extinction probability are studied by constructing a
branching tree evolution model in which the birth rate and
the death rate are both dependent on node’s age. +e an-
alytical formula and the approximation algorithm for the
distribution of extinction moment are given; furthermore,

the analytical formula and the approximation algorithm of
extinction probability are given, and a necessary and suf-
ficient condition of extinction with probability 1 is given.

Due to publishing constraints, only the population ex-
tinction is studied, the graph-topological properties and the
age structure of nodes will be studied in subsequent papers.

Data Availability

No data were used to support the findings of this study.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

Acknowledgments

+is study was supported by Shanghai Natural Science
Foundation (no. 16ZR1414000).

References

[1] T. E. Harris, 2e 2eory of Branching Processes, Springer-
Verlag, Berlin, Germany, 1963.

[2] W. L. Smith andW. E. Wilkinson, “On branching processes in
random environments,” 2e Annals of Mathematical Statis-
tics, vol. 40, no. 3, pp. 814–827, 1969.

[3] H.-X. Wang and D. Fang, “Asymptotic behaviour of pop-
ulation-size-dependent branching processes in Markovian
random environments,” Journal of Applied Probability,
vol. 36, no. 02, pp. 611–619, 1999.

[4] H.-x. Wang, “Extinction of population-size-dependent
branching processes in random environments,” Journal of
Applied Probability, vol. 36, no. 01, pp. 146–154, 1999.

[5] P. Haccou, P. Jagers, and V. A. Vatubin, “Branching processes:
variation, growth, and extinction of populations,” in Cam-
bridge Studies in Adaptive DynamicsCambridge University
Press, Cambridge, UK, 2005.

[6] R. Bellman and T. Harris, “On age-dependent binary
branching processes,” 2e Annals of Mathematics, vol. 55,
no. 2, pp. 280–295, 1952.

[7] J. Peter and F. C. Klebaner, “Population-size-dependent and
age-dependent branching processes,” Stochastic Processes and
2eir Applications, vol. 87, pp. 235–254, 2000.

[8] C. D. Greenman, “A path integral approach to age dependent
branching processes,” Journal of Statistical Mechanics: 2eory
and Experiment, vol. 2017, Article ID 033101, 2017.

[9] D. Kajunguri, E. B. Are, and J. W. Hargrove, “Improved
estimates for extinction probabilities and times to extinction
for populations of tsetse (glossing spp),” PLoS Neglected
Tropical Diseases, vol. 13, no. 4, Article ID e0006973, 2019.

[10] D. Anna and F. Vadillo, “Extinction-time for stochastic
population models,” Journal of Computational and Applied
Mathematics, vol. 295, pp. 159–169, 2016.

[11] O. Aydogmus, “On extinction time of a generalized endemic
chain-binomial model,” Mathematical Biosciences, vol. 279,
pp. 38–42, 2016.

Mathematical Problems in Engineering 13



Research Article
An Ensemble of Adaptive Surrogate Models Based on Local
Error Expectations

Huanwei Xu , Xin Zhang, Hao Li, and Ge Xiang

School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, China

Correspondence should be addressed to Huanwei Xu; zhangxin96428@163.com

Received 1 September 2020; Revised 5 January 2021; Accepted 28 January 2021; Published 10 February 2021

Academic Editor: Guoqiang Wang

Copyright © 2021 Huanwei Xu et al. 0is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

An ensemble of surrogate models with high robustness and accuracy can effectively avoid the difficult choice of surrogate model.
However, most of the existing ensembles of surrogate models are constructed with static sampling methods. In this paper, we
propose an ensemble of adaptive surrogate models by applying adaptive sampling strategy based on expected local errors. In the
proposed method, local error expectations of the surrogate models are calculated. 0en according to local error expectations, the
new sample points are added within the dominating radius of the samples. Constructed by the RBF and Kriging models, the
ensemble of adaptive surrogate models is proposed by combining the adaptive sampling strategy. 0e benchmark test functions
and an application problem that deals with driving arm base of palletizing robot show that the proposed method can effectively
improve the global and local prediction accuracy of the surrogate model.

1. Introduction

In the engineering design problem, computer simulation is
usually applied to replace the real physics experiments. For
complex engineering problems, sometimes the performance
function is implicit, or due to cost and time limit, the
surrogate model is often applied to approximate the real
physical model. Commonly used surrogate models mainly
include Kriging [1], artificial neural network [2], radial basis
function (RBF) [3], support vector regression(SVR) [4], and
polynomial response surface(PRS) [5].

When surrogate model is applied, how to find a suitable
surrogate model is a difficult task. In order to improve the
adaptability of the surrogate model, a reasonable choice is to
use a linear weighted combination of different surrogate
models, that is, an ensemble of surrogate models. Compared
with the single surrogate model, an ensemble of surrogate
models can save a lot of time wasted in screening the sur-
rogate models. Many scholars have conducted in-depth
research on it and have obtained many good achievements.
Huang [6] found that the ensemble of surrogate models has
higher prediction accuracy than the single surrogate model.

Yan [7] proposed a new weight function construction
method, which has the same accuracy as the optimal sub-
model and can improve the approximation of the true re-
sponse distribution. Lu [8] found that the multisurrogate
model has better optimization results than the single sur-
rogate model’s. Pan [9] applied the ensemble of surrogate
models to the lightweight design of the car body, and the
results achieved a better optimization effect. Liu [10]
established the ensemble of surrogate models to solve the
structure optimization of car parts. Xing [11] assigned
weights to three single surrogate models by using the
adaptive metropolis-Markov chain Monte Carlo method.
Yin [12] compared the application of a single surrogate
model and an ensemble of surrogate models in groundwater
restoration design optimization problems, and the results
showed that the ensemble of surrogate models is more
robust. Li [13] proposed a surrogate-assisted particle swarm
algorithm, which can effectively balance the global search
and local search. Donncha [14] successfully used the en-
semble of surrogate models to improve the forecasting
system with significant effects. Ouyang [15] used the analysis
of variance method to determine the weights of ensemble of
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surrogate models. 0e comparison results show that the
proposed method can not only improve the prediction
performance of surrogate model, but also obtain a reliable
solution. Chen [16] presented a new ensemble model which
combines the advantages of global and local measures. 0e
results show that the proposed ensemble model has satis-
factory robustness and accuracy. Zhang [17] proposed a
unified ensemble of surrogates with global and local mea-
sures for global metamodeling. It is concluded that the
proposed model has superior accuracy while keeping
comparable robustness and efficiency.

Although some progress has been made in the research of
the ensemble of surrogate models, most of the current methods
for constructing the ensemble of surrogate models are sta-
tionary sampling.0e problem with stationary sampling is that,
in order to obtain an ensemble of surrogate models that meets
the accuracy requirements, the sample size must be large
enough. Adaptive sampling can obtain new samples that benefit
the quality of the surrogatemodel, which canminimize the total
sample size. However, the current adaptive sampling is often
applied for a single surrogate model [18–21]. Only a few
scholars combine the adaptive sampling strategy with the en-
semble of surrogate models [22, 23]. 0e remainder of this
paper is organized as follows. Section 2 briefly reviews the main
steps to establish the ensemble of surrogatemodels. In Section 3,
the ensemble of surrogate models using adaptive sampling
strategy based on local error expectations is described. 0e
proposed method is verified by numerical examples and
compared with the three classical ensembles of surrogate
models in Section 4. Section 5 applies the proposed method to
the engineering design problem of driving arm base of pal-
letizing robot. Finally, the conclusions are given.

2. Establishment of the Ensemble of
Surrogate Models

0ere are three main steps to establish the ensemble of
surrogate models:

(1) Design of experiment: the experiment design
methods are applied to determine the spatial dis-
tribution of sample points. Experiment design
methods mainly include Central Composite Designs
(CCDs) [24], Orthogonal Design [25], and Latin
Hypercube Design (LHD) [26]. LHD is the most
popular sampling method due to good spatial uni-
formity. 0e experiment design method used in this
paper is also LHD.

(2) Establishment of the ensemble of surrogate models:
the surrogate models can be divided into two cate-
gories. One is interpolation methods, such as RBF
and Kriging. For these methods, the prediction er-
rors of the sample points are zeroes, which has good
unbiasedness. 0e other is the noninterpolation
methods, such as PRS and SVR. 0e non-
interpolation methods have certain fitting capabil-
ities, but the surrogate models do not go through all
sample points. 0erefore, enough sample points are
needed to ensure the high accuracy of the surrogate

models, which has extremely high uncertainty. In
view of the advantages and disadvantages of different
surrogate models, the most commonly used surro-
gate models are the RBF model and the Kriging
model. In this paper, these two surrogate models are
combined to establish the ensemble of surrogate
models. 0e expression of the ensemble of surrogate
models is as follows [27]:

􏽢ye(x) � 􏽘
N

i�1
ωi 􏽢yi(x), 􏽘

N

i�1
ωi � 1. (1)

where y
⌢

e is the predicted response value of the
ensemble of surrogate models andN is the number of
surrogate models. ωi is the ith weight coefficient. 􏽢yi is
the predicted response value of the ith surrogate
model. Generally speaking, the higher the prediction
accuracy, the larger the weight coefficient of the
corresponding surrogate model.

(3) Accuracy verification: accuracy verification of sur-
rogate model mainly includes two aspects: global
accuracy and local accuracy. root mean square error
(RMSE) [28] and coefficient of determination (R2)
[29] are two main global accuracy evaluation
methods. 0e corresponding expressions are as
follows:

RMSE �

������������

1
n

􏽘

n

i�1
yi − 􏽢yi( 􏼁

2

􏽶
􏽴

,

R
2

� 1 −
􏽐

n
i�1 yi − 􏽢yi( 􏼁

2

􏽐
n
i�1 yi − y)

2
,􏼐

(2)

where yi is the actual response value of the ith test
sample and 􏽢yi is the predicted response value of the
surrogate model of the ith test sample. y is the mean
value of the actual response value, and n is the size of
test sample points. For RMSE, the smaller the value, the
higher the global prediction accuracy.0e range of R2 is
not greater than 1.0e value of R2 can be negative if the
fitting quality of the surrogate model is extremely low.
0e closer the value ofR2 to 1, the higher the accuracy of
the global approximation of the surrogate model. Al-
though RMSE can evaluate the prediction accuracy of
the surrogate model, the magnitude of the specific
problem greatly affects the value of RMSE, which is not
as intuitive and easy to understand as R2. 0e global
accuracy evaluation method applied in this paper is the
coefficient of determination R2.

0e local prediction accuracy evaluation method is
maximum absolute error (MAE). 0e expression of MAE is
as follows:

MAE � max yi − 􏽢yi|.
􏼌􏼌􏼌􏼌 (3)

Similar to RMSE, the smaller the MAE, the higher the
local prediction accuracy of the surrogate model. In this

2 Mathematical Problems in Engineering



paper, MAE is also used to evaluate the local prediction
accuracy of the surrogate model.

3. The Ensemble of Adaptive Surrogate Models
Based on Local Error Expectations

0e existing adaptive sampling strategy of sample points is
mainly for a specific surrogate model, which has poor
versatility. In addition, due to the inconsistency of the
existing adaptive sampling strategies, it will be very com-
plicated to combine the ensemble of surrogate models with
the adaptive sampling strategy. In this section, a universal
adaptive sampling strategy based on local errors is proposed.
By combining the new adaptive sampling strategy, the
method to construct the ensemble of surrogate models is
proposed.

3.1. Adaptive Sampling Based on Local Error Expectations.
Since Kriging and RBF models usually can provide good
accuracy for fitting highly nonlinear behaviors, so these two
surrogate models are used in general engineering problems.
At present, the most commonly used adaptive sampling
method is the maximin distance approach proposed by
Johnson [30]. Jin and Chen [31] made corresponding im-
provements and proposed the Maximin Scaled Distance
Approach. In this paper, we also propose a universal
adaptive sampling strategy based on the local error expec-
tations named LEE strategy for different surrogate models
and it is proposed to serve the construction of the ensemble
of adaptive surrogate models. 0e process is shown in
Figure 1.

0e following are main steps of the LEE strategy:

(1) Build an initial surrogate model. First, LHD is used
to obtain the initial sample points and obtain their
response values. Since high accuracy is not required
at the beginning of sampling, for different dimen-
sional surrogate models, the initial number of sample
points can be 5nd, 10nd, and 20nd (nd is the number
of design variables).

(2) Calculate the expected value E[AE] of the local error.
Use the existing sample points and their response
values to construct a surrogate model, and use cross-
validation error method (LOO-leave one method) to
obtain the local error of each point. 0e local error of
ith sample point is evaluated by the absolute error
AEi � |􏽢yi − yi|. 0en the local error expectation E
AE] can be obtained by the following expression:

E[AE] �
􏽐

n
i�1 AEi

n
. (4)

By using cross-validation error method, each sample
point serves as a test point, and the other sample
points serve as the sample points that constitute the
surrogate model. When each sample point serves as
the test point, it can reflect its importance for
modeling and the uncertainty around the sample
point’s location. 0e absolute error AEi can reflect

the uncertainty around this location, and the ex-
pected absolute error E[AE] of all sample points can
reflect the uncertainty of the overall sample points.

(3) Calculate the dominating radius of the sample
points. Since the initial sample points determined by
LHD have certain uniformity, the same radius can be
set for each sample point. n sample points can divide
the design space into n− 1 part. In order to ensure
that the radius of each sample point does not in-
tersect as much as possible, we propose the concept
of the dominating radius of the sample point. Rj is
the dominating radius of the jth dimension

Getinitial sample points
by using Latin hypercube

sampling

Calculate the response
values of the real model

corresponding to the
sample points

Database

Construct the surrogate
model

Calculate values of
surrogate model’s
AEi, E[AE], R2

R2 > η ?

Add sample
points wherethe
existing points’
AEi > E[AE]

The final
surrogate model

Yes

No

Save

Save

Extract

Figure 1: 0e adaptive sampling process based on local error
expectations.
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coordinate of the sample point; the expression is as
follows:

Rj �
xjmax − xjmin

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

n − 1
, j � 1, 2, . . . , nd( 􏼁, (5)

where nd is the size of the dimension and xjmax and
xjmin are the upper and lower bounds of the jth
dimension. 0en, R � (R1, R2, . . . , Rnd) is domi-
nating radius of each sample point.

(4) Obtain new sample points. When AEi> E[AE], the
prediction uncertainty near ith sample point is
greater than the average prediction uncertainty of the
existing sample points. It means the degree of
nonlinearity near ith sample point is relatively large.
So a sample point is randomly added within the
dominating radius of ith sample point with equal
probability. In order to avoid the added sample point
being too close to the existing sample points, the
sample point that meets the following condition is
not added to the sample database:

X∗(j) − Xclosest(j)􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌<
Rj

10
, j � 1, 2, . . . , nd( 􏼁, (6)

where X∗ stands for the point to be added and Xclosest
represents the sample point closest to point X∗.
Formula (6) means that if the sample points X∗ and
Xclosest are too close, they will influence the condition
of the correlation matrix of the surrogate model, so
the added sample point should be invalid.

(5) If the value of R2 is greater than the preset value η, the
final surrogate model is obtained; otherwise update
the surrogate model. 0e new acquired sample
points are added to the sample database. 0e cor-
responding response values of these new sample
points are calculated. 0en the surrogate model is
updated according to the current database of sample
points. Calculate the determination coefficient R2. If
the value of R2 is greater than the preset value η, the
adaptive sampling process ends; otherwise, return to
step 2.

In order to illustrate the feasibility of LEE strategy, the
one-dimensional test function in [32] is selected and its
expression is

f(x) � (6x − 2)
2 sin(12x − 4), x ∈ [0, 1]. (7)

Figures 2–4 are initial Krigingmodel, the absolute errors,
and the updated Kriging model. Figure 2 shows that the
overall prediction accuracy of the initial Kriging surrogate
model is low, and the local errors near point 5 and point 6 are
very large. It can be seen from Figure 3 that errors of sample
points 5 and 6 of the initial Kriging model exceed E[AE], so
random sample points are added in the dominating radius of
points 5 and 6. It can be seen from Figure 4 that the added
Kriging surrogate model has higher prediction accuracy.
After adding the sample points, the prediction error in this
area is significantly reduced, and the prediction accuracy is

higher, which proves the effectiveness and feasibility of
adaptive sampling based on LEE strategy.

In order to prove the versatility of LEE strategy for
different surrogate models, the RBF surrogate model is also
constructed based on the existing sample points and their
response values. Figures 5–7 are initial RBF model, the
absolute errors, and the updated RBF model. It can be seen
from Figure 5 that the overall prediction accuracy of the
initial RBF surrogate model is low, and the local errors near
points 1 and 6 are the largest. It can be seen from Figure 6
that local errors of sample points 1 and 6 of the initial RBF
model exceed E[AE], so random sample points are added in
the dominating radius of sample points 1 and 6. It can be
seen from Figure 7 that the overall prediction accuracy of
updated RBF surrogate model with two new sample points
has been greatly improved, which further proves the fea-
sibility and versatility of adaptive sampling based on LEE
strategy.

0e proposed LEE strategy is also compared with an-
other adaptive sampling strategy called the Maximin Scaled
Distance Approach (MSDA) [31] through the classic test
functions. 0e specific information of the test functions is
shown in Table 1.

0e initial Kriging and RBF surrogate models are
established, respectively, according to a certain number of
initial sample points. 0e proposed LEE strategy and MSDA
are applied to improve the accuracy of surrogate models.0e
convergence condition is R2> 0.8. Comparison results of
Kriging and RBF surrogate models are listed in Table 2.

It can be seen from Table 2 that when the numbers of
initial sample points of the two methods are the same, the
numbers of total sample points used by LEE strategy are less
than MSDA’s. At the same time, except for CN function, the
final values of R2 of the LEE strategy are greater than those of
the MSDA in most functions, which means that surrogate
models constructed by LEE strategy can achieve higher
prediction accuracy than those constructed by MSDA.

3.2. ,e Ensemble of Adaptive Surrogate Models. In this
section we construct the ensemble of surrogate models with
LEE strategy. 0e flowchart is shown in Figure 8.

0e main steps are as follows:

(1) Build Kriging and RBF surrogate models. Existing
researches [8–12] prove that, in most cases, inter-
polation type (Kriging and RBF) surrogate models
are more suitable for engineering problems. 0ere-
fore, this paper chooses Kriging and RBF models to
form the ensemble of surrogate models. Construct
Kriging and RBF models by using the initial sample
points. 0en, obtain the predicted error sum of
square (PRESS) [33], MAE, and R2 values of Kriging
and RBFmodels by applying CV verification method
(LOO-leave one method). 0e absolute errors (AEs)
of each sample point of Kriging and RBF models are
calculated. Since Forrester [34] has already proved
that the surrogate model has better predictive ability
when the coefficient of determination R2 is greater
than 0.8, we use R2> 0.8 as convergence conditions.
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(2) Obtain new sample points. 0e new sample points are
generated by applying adaptive samplingmethod based
on LEE strategy. 0e sample database is updated.

(3) Update the Kriging and the RBF models. Calculate the
true response values of the newly added sample points
and reconstruct the Kriging and the RBF models. As
long as the R2 of one of the two surrogate models is
greater than 0.8, the operation of adding sample points
is ended, and the final Kriging model and RBF model
are obtained. Otherwise return to step 2.

(4) Calculate the weight coefficients of the Kriging and
the RBF models and get the final ensemble of
adaptive surrogate models. Cross validation (CV)
[35] is performed to obtain the respective PRESS
values of Kriging and RBF models. When there are n
sample points in the database, all sample points
except the ith point are used to construct the single

surrogate model, and the ith point is used as a test
point. 0e prediction error of the ith sample point is

ei � yi − 􏽢y− i, (8)

where yi is the true response value of the ith sample point
and 􏽢y− i is the predicted response value of the ith sample
point in the single surrogate model composed of all sample
points except ith sample point. 0e prediction sum of
squares is the sum of the prediction errors of all sample
points, as shown in the following formula:

PRESS � 􏽘
n

i�1
e
2
i . (9)

0e weight coefficient corresponding to each single
surrogate model is calculated by the inverse proportional

Table 1: Test function expression.

Test function Dimension Test function expression

Branin (BN) 2 f(x) � (x2 − (5.1/4π2)x2
1 + (5/π)x1 − 6)2 + 10(1 − (1/8π))cos(x1) + 10

x1 ∈ [− 5, 10], x2 ∈ [0, 15]

Hartmann3 (H3) 3

f(x) � − 􏽐
4
i�1 αi exp(− 􏽐

3
j�1 Aij(xj − Pij)

2)

α � (1.0, 1.2, 3.0, 3.2)T

A �

3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

P � 10− 4

3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xi ∈ [0, 1]

Colville (CV) 4

f(x) � 100(x
2
1 − x2)

2
+ (x1 − 1)

2
+ (x3 − 1)

2
+ 90(x

2
3 − x4)

2

+10.1((x2 − 1)
2

+ (x4 − 1)
2
) + 19.8(x2 − 1)(x4 − 1)

xi ∈ [− 10, 10], i � 1, 2

Six-Hump Camel (SHC) 2 f(x) � (4 − 2.1x2
1 + (x4

1/3))x2
1 + x1x2 + (− 4 + 4x2

2)x
2
2

x1 ∈ [− 3, 3], x2 ∈ [− 2, 2]

Table 2: Comparison results of Kriging surrogate model.

Test
function Approach 0e number of initial

samples

Kriging model RBF model
0e number of total

samples
Final value of

R2
0e number of total

samples
Final value of

R2

BN LEE 10 18 0.946 15 0.908
MSDA 27 0.899 27 0.873

H3 LEE 15 26 0.896 35 0.902
MSDA 34 0.837 39 0.879

CV LEE 20 29 0.909 30 0.934
MSDA 44 0.943 41 0.901

SHC LEE 10 25 0.920 21 0.941
MSDA 36 0.883 29 0.866
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averaging method, and the weight coefficient calculation
formula is

ωi �
1/Pi( 􏼁

􏽐
N
j�1 1/Pj􏼐 􏼑

, (10)

where Pi is the PRESS value at the ith sample point. In this
paper, N is equal to 2. 0en the final ensemble of adaptive

surrogate models is obtained by linearly weighting each
surrogate model.

4. Numerical Example Analysis

In order to verify the versatility and effectiveness of the
ensemble of adaptive surrogate models based on local error

Getinitial sample points by
using Latin hypercube 

sampling

Calculate the response
values of the real model

corresponding to the
sample points

Database

Construct the RBF
surrogate model

Construct the Kriging
surrogate model

Calculate values of RBF
surrogate model’s

AEi, E[AE], R2

Calculate values of
Kriging surrogate model’s

AEi, E[AE], R2

Is there a surrogate
model’s R2 > 0.8?

Add sample
points wherethe
existing points’
AEi > E[AE] of
RBF surrogate

model

Add sample
points wherethe
existing points’
AEi > E[AE] of

Kriging surrogate
model

Calculate the weight coefficients
corresponding to the RBF surrogate

model and the Kriging surrogatemodel
using PRESS as the measurement

index

Get the final ensemble
of surrogatemodel

Yes

No No

SaveSave Extract

Save

Figure 8: 0e construction of the ensemble of adaptive surrogate model based on LEE strategy.
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expectations, we compare the proposed method (ensemble
of adaptive surrogate model, EOASM) with three typical
ensemble of surrogate model construction methods: PRESS
method, BestPRESS method, and PWS (PRESS Weighted
Surrogate) method [36].

Among the three most widely used methods for con-
structing an ensemble of surrogate model, the most classic
one is to use PRESS as a measure of the weight coefficient
calculation. If the PRESS value of a certain surrogate model
is larger, the weight coefficient is smaller, also known as an
inverse proportional averaging method, and its weight co-
efficient calculation formula is

ωi �
1/Pi( 􏼁

􏽐
N
j�1 1/Pj􏼐 􏼑

. (11)

0e BestPRESS method selects the single surrogate
model with the smallest PRESS value as the final surrogate
model, which is essentially a single surrogate model. An-
other method is the heuristic calculation weight coefficient
algorithm proposed by Goel [36], and its calculation formula
is

ωi �
ω∗i

􏽐
n
j�1 ω
∗
j

, (12)

where ω∗i � (Ei + αEavg)
β and Eavg � (􏽐

n
j�1 Ej)/n. Ei is the

PRESS of the ith surrogate model. 0e recommended pa-
rameter values are α � 0.05, β � − 1.

4.1. Benchmark Functions. In this paper, six benchmark
functions from low dimension to high dimension are se-
lected. 0e information of benchmark functions is shown in
Table 3.

0e Branin, Hartmann-3, and Hartmann-4 functions are
low-dimensional. Latin hypercube sampling with 5n sample
points is enough, which meet the accuracy requirements.
Since the Hartmann-6, Styblinski-Tang8, and Styblinski-
Tang10 are high dimensional, the Latin hypercube sampling
with 20n sample points is used.

4.2. ,e Analysis of Global Prediction Accuracy. 0e global
prediction accuracies of different ensembles of surrogate
models are compared. 0e total number of samples is
recorded when the EOASMmethod reaches the convergence
condition. For the other three ensembles of surrogate
models constructed by the PRESS method, BestPRESS
method, and PWS method, the Latin hypercube sampling
method is used to generate the same total sample size. So the
number of sample points in the four methods is the same.
After 20 comparative experiments, the average values of the
determination of coefficient R2 of each ensemble of surro-
gate models are shown in Table 4.

It can be seen from Table 4 that when the total number of
sample points is the same, the prediction accuracy of the
ensemble of surrogate model constructed by the EOASM
method is the highest. For example, for the Branin function,
the average value of determination coefficient R2 of EOASM

is 0.9446. Among the other three ensembles of surrogate
models, the PRESS method has the largest average value of
R2, which is much lower than that of the EOASM method.
0e results of the other test functions are similar to the
Branin function.

4.3.,eAnalysis ofLocalPredictionAccuracy. 0emaximum
absolute error (MAE) is used to evaluate the local accuracy.
0e maximum absolute error of the ensemble of surrogate
model constructed by each method is compared when the
number of sample points is the same. Table 5 shows the
mean values of MAE of different ensembles of surrogate
models.

It can be seen from 6 benchmark functions that EOASM
method has the smallest average value of the MAE among
four ensembles of surrogate models, which means that the
proposed method has the highest predict accuracy among
four methods.

4.4. Robustness Analysis. Robustness is an important indi-
cator for evaluating surrogate models. 0e robustness refers
to the insensitivity of the prediction accuracy of the sur-
rogate model to random sampling of sample points. In order
to compare the robustness of each surrogate model intui-
tively, 20 sampling experiments are performed for each
benchmark function. 0e distribution results of the deter-
mination coefficient R2 are presented in box plot [37], which
are shown in Figure 9.

In Figure 9, the box length indicates whether the sur-
rogate model’s determination coefficient R2 fluctuates
greatly. 0e smaller the box length, the stronger the ro-
bustness of the surrogate model. It can be clearly seen that
the box length of the ensemble of surrogate model con-
structed by the EOASM method is the shortest in each
benchmark function, which indicates the EOASM method
has the strongest robustness.

5. Engineering Application

In the design of the palletizing robot, the design of the
driving arm base plays a key role.0e overall assembly of the
palletizing robot is shown in Figure 10.

0e driving arm base bears large load. When it is as-
sembled with the boom, it will deform to a certain extent,
which will cause strain and stress. However, these physical
quantities are difficult to express using explicit functions. It
is often necessary to obtain their data through a large
number of simulation tests. 0e specific material properties
are shown in Table 6.

0e structure of the driving arm base is shown in
Figure 11. Considering the assembly relationship of each
part, four nonassembly dimensions are selected as design
variables, which are shown in Table 7. When the force
and torque of the driving arm base reach the maximum,
the generated stress is the largest. 0e fatigue damage is
more likely to be caused. Power is carried out through
UG software simulation to obtain the maximum force
and torque of the assembly hole of the driving arm base.
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0e curve of the force and torque with time is shown in
Figure 12. It can be seen that, at 3 seconds, the driving
arm base bears the maximum force and the maximum
torque.

Since themaximum stress is difficult to calculate directly,
it is selected as the object function, and its true response
value is obtained by simulation with Ansys finite element
software, as shown in Figure 13.

Table 4: Mean values of R2.

Benchmark test function Total sample PRESS BestPRESS PWS EOASM
Branin 15 0.7351 0.7089 0.7364 0.9446
Hartmann-3 23 0.6934 0.6643 0.6935 0.9007
Hartmann-4 30 0.6549 0.5847 0.6547 0.9313
Hartmann-6 189 0.6884 0.6612 0.6883 0.9797
Styblinski-Tang8 240 0.4310 0.3903 0.4413 0.9514
Styblinski-Tang10 299 0.2931 0.2588 0.2931 0.9624

Table 3: Test function expression.

Test function expression Dimension Test function expression

Branin 2 f(x) � (x2 − (5.1/4π2)x2
1 + (5/π)x1 − 6)2 + 10(1 − (1/8π))cos(x1) + 10

x1 ∈ [− 5, 10], x2 ∈ [0, 15]

Hartmann-3 3

f(x) � − 􏽐
4
i�1 αi exp(− 􏽐

3
j�1 Aij(xj − Pij)

2)

α � (1.0, 1.2, 3.0, 3.2)T

A �

3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

P � 10− 4

3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xi ∈ [0, 1]

Hartmann-4 4

f(x) � (1/0.839)[1.1 − 􏽐
4
i�1 αi exp(− 􏽐

4
j�1 Aij(xj − Pij)

2)]

|α � (1.0, 1.2, 3.0, 3.2)T

A �

10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

P � 10− 4

1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xi ∈ [0, 1]

Hartmann-6 6

f(x) � − 􏽐
4
i�1 αi exp(− 􏽐

6
j�1 Aij(xj − Pij)

2)

α � (1.0, 1.2, 3.0, 3.2)T

A �

10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

P � 10− 4

1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xi ∈ [0, 1]

Styblinski-Tang8 8 f(x) � (1/2) 􏽐
8
i�1(x4

i − 16x2
i + 5xi), xi ∈ [− 5, 5]

Styblinski-Tang10 10 f(x) � (1/2)􏽐
10
i�1(x4

i − 16x2
i + 5xi), xi ∈ [− 5, 5]
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Figure 9: R2 box diagram of the ensembles of surrogate models. (a) Branin function, (b) Hartmann-3 function, (c) Hartmann-4 function,
(d) Hartmann-6 function, (e) Styblinski-Tang8 function, and (f) Styblinski-Tang10 function.

Table 5: Mean values of MAE.

Benchmark test function Total sample PRESS BestPRESS PWS EOASM
Branin 15 108.8272 83.2561 108.7975 38.8241
Hartmann-3 23 1.2506 1.1722 1.2516 0.9772
Hartmann-4 30 2.2512 2.0696 2.2534 0.7489
Hartmann-6 189 0.4521 0.6021 0.4524 0.1578
Styblinski-Tang8 240 370.6343 331.6834 370.5411 91.3723
Styblinski-Tang10 299 330.5281 308.0860 330.7615 76.8565
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0e proposed method in this paper is used to construct
the ensemble of surrogate model of maximum stress. 0e
Latin hypercube sampling is initially adopted. 0e number
of initial sample points is 10nd, which is 40 sample points.

0e values of global accuracy evaluation index R2 and the
local accuracy evaluation index MAE of surrogate model
constructed by the EOASM method are shown in Table 8. It
can be seen that the number of total sample points after
convergence is 60. 0e CPU of the simulation platform is
Intel Core i5-4590 3.30GHz, the memory is 16G, and the
operating system is Windows 10. It takes 6minutes to
perform a static structural simulation.0e traditional design
requires thousands of simulation experiments to roughly
find the optimal value; optimization based on surrogate
model only requires 60 simulation experiments, which
greatly reduces computational cost of the simulation. 0e

initial value of R2 increases from 0.3822 to 0.8979.0e global
prediction accuracy is increased by 135%. Meanwhile, the
value of MAE reduces from 4.1565 to 0.5007. 0e local

Wrist axis
Central axis of wrist

Big arm

Flange cover on axle

Chassis rotating turbine box

Box base

Rotating arm
motor

Arm base

Link

Connecting rod
servomotor

Driving arm base

Small electric box

Connecting rod
servo motor

Figure 10: Overall assembly drawing of palletizing robot.

Table 6: Material properties of QT500-7.

Physical quantity Unit Value
Density kg/m3 7×103

Elastic modulus Pa 1.62×1011

Poisson’s ratio — 0.28
Yield strength Pa 3.2×108

Tensile strength Pa 5×108

Shear modulus Pa 6.27×1010

x1

x2x3

x4

Figure 11: Driving arm base of palletizing robot.
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prediction accuracy is significantly improved. In summary,
the EOASM method has good applicability to engineering
problems and can greatly reduce the calculation cost of
physical experiments.

6. Conclusion

(1) 0e adaptive sampling based on LEE strategy can
greatly improve the prediction accuracy of the
surrogate model based on as few sample points as
possible, and it also has strong applicability to dif-
ferent types of surrogate models.

(2) 0e EOASM method based on LEE strategy can
greatly improve the global prediction accuracy, local
prediction accuracy, and the robustness of the en-
semble of surrogate models.

Table 7: Design variables of driving arm base.

Design variables Name Unit Ranges
x1 0ickness of front plate mm 13–18
x2 0ickness of back plate mm 8–13
x3 0ickness of left and right board mm 20–25
x4 0ickness of rib mm 8–13
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Figure 12: 0e force and torque of the driving arm base. (a) 0e force changes with time. (b) 0e torque changes with time.

6.8438 Max

6.0836

5.3234

4.5632

3.003

3.0420

2.2826

1.5224

0.76224

0.0020469 Min

Figure 13: Stress cloud diagram of driving arm base.

Table 8: Prediction accuracy of ensemble of surrogate model
constructed by EOASM method.

Evaluation
perspective

0e initial
samples

0e total
samples

Initial
data

EOASM
data

R2 average 40 60 0.3822 0.8979
MAE average 4.1565 0.5007
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(3) Although the prediction accuracy and robustness of
the ensemble of surrogate models constructed by the
EOASM method have been improved to some ex-
tent, it still has not escaped the high-dimensional
curse of the surrogate model. Under the condition
that the sample size is already large, it is possible that
the accuracy of the surrogate model is extremely low.
0erefore, the high-dimensional problem of the
surrogate model is still a problem to be solved.
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In this paper, a weighted second-order cone (SOC) complementarity function and its smoothing function are presented.+en, we
derive the computable formula for the Jacobian of the smoothing function and show its Jacobian consistency. Also, we estimate
the distance between the subgradient of the weighted SOC complementarity function and the gradient of its smoothing function.
+ese results will be critical to achieve the rapid convergence of smoothing methods for weighted SOC
complementarity problems.

1. Introduction

+e weighted second-order cone complementarity problem
(WSOCCP) is, for a given weight vector w ∈K and a
continuously differentiable function F: Rn × Rn × Rm⟶
Rn+m, to find vectors (x, s, y) ∈ Rn × Rn × Rm such that

x ∘ s � w,

F(x, s, y) � 0,

x ∈K,

s ∈K,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where ∘ represents the Jordan product and K is the Car-
tesian product of second-order cone, that is, K � Kn1 ×

Kn2 × · · · × Knr with 􏽐
r
i�1 ni � n, i � 1, . . . , r. +e set

Kni (i � 1, . . . , r) is the second-order cone (SOC) of di-
mension ni defined by

K
ni ≔ xi � xi0, xi1( 􏼁 ∈ R × R

ni − 1
: xi0 − xi1

����
����≥ 0􏽮 􏽯, (2)

and the interior of the SOC Kni is the set

intKni � xi � xi0, xi1( 􏼁 ∈ R × R
ni − 1

: xi0 − xi1
����

����> 0􏽮 􏽯.

(3)

Here ‖·‖ is the Euclidean norm, and

intK � intKn1 × intKn2 × · · · × intKnr . (4)

Obviously, if w � 0, WSOCCP (1) reduces to second-order
cone complementarity problem (SOCCP). In this article, we
may assume that r � 1 andK � Kn in the following analysis,
since it can easily be extended to the general case.

In order to reformulate several equilibrium problems in
economics and study highly efficient algorithms to solve
these problems, Potra [1] introduced the notion of a
weighted complementarity problem (WCP). He showed that
the Fisher market equilibrium problem can be modeled as a
monotone linear WCP. Moreover, the linear programming
and weighted centering (LPWC) problem, which was in-
troduced by Anstreicher [2], can also be formulated as a
monotone linear WCP. And Potra [1] analyzed two interior-
point methods for solving the monotone linear WCP over
the nonnegative orthant. Since then, many scholars are
dedicated to investigating the theories and solution methods
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of WCP. Tang [3] gave a new nonmonotone smoothing-type
algorithm to solve the linear WCP. Chi et al. [4] studied the
existence and uniqueness of the solution for a class of WCPs.

As is well known, smoothing methods have superior
theoretical and numerical performances. For solving the
SOCCP by smoothing methods, we usually reformulate the
SOCCP as a system of equations based on parametric
smoothing functions of SOC complementarity functions
[5, 6]. +e smoothing parameter involved in smoothing
functionsmay be treated as a variable [7] or a parameter with
an appropriate parameter control [8]. In the latter case, the
Jacobian consistency is important to achieve a rapid con-
vergence of Newton methods or Newton-like methods.
Hayashi et al. [8] proposed a combined smoothing and
regularized method for monotone SOCCP, and based on the
Jacobian consistency of the smoothing natural residual
function, they proved that the method has global and
quadratic convergence. Krejić and Rapajić [9] gave a non-
monotone Jacobian smoothing inexact Newton method for
nonlinear complementarity problem and proved the global
and local superlinear convergence of the method. Chen et al.
[10] presented a modified Jacobian smoothing method for
the nonsmooth complementarity problem and established
the global and fast local convergence for the method.

In this paper, we consider the function φ: Rn × Rn⟶
Rn for WSOCCP

φ(x, s, w) ≔ x + s −

���������������

x
2

+ s
2

+ x ∘ s + w

􏽱

, (5)

with a given vector w ∈Kn. If w � 0, φ (5) reduces to the
SOC complementarity function [6] with τ � 3:

φ(x, s, 0) ≔ x + s −

�����������

x
2

+ s
2

+ x ∘ s
􏽱

. (6)

Since φ is nonsmooth, we define the following
smoothing function φμ:

φμ(x, s, w) ≔ x + s −

�������������������

x
2

+ s
2

+ x ∘ s + w + μ2e
􏽱

, (7)

where μ ∈ R is a smoothing parameter.
+e main contribution of this paper is to show the Ja-

cobian consistency of the smoothing function (7) and esti-
mate the distance between the subgradient of the weighted
SOC complementarity function (5) and the gradient of its
smoothing function (7). +ese properties will be critical to
solve weighted SOC complementarity problems by smooth-
ing methods.

+e paper is organized as follows. In Section 2, we review
some concepts and properties. In Section 3, we derive the
computable formula for the Jacobian of the smoothing
function in WSOCCP. In Section 4, we show the Jacobian
consistency of the smoothing function and estimate the
distance between the gradient of smoothing function and the
subgradient of the weighted SOC complementarity function.
Some conclusions are reported in Section 5.

+roughout this paper, R+ denotes the set of non-
negative numbers. Rn and Rm×n denote the space of
n-dimensional real column vectors and the space of ma-
trices, respectively. We use ‖ · ‖ to denote the Euclidean

norm and define ‖x‖ ≔
����
xTx

√
for a vector x or the cor-

responding induced matrix norm. For simplicity, we often
use x � (x0; x1) instead of the column vector x � (x0, xT

1 )T.
intKn and bdKn mean the topological interior and the
boundary of the SOC Kn, respectively. For a given set
S ⊂ Rm×n, convS denotes the convex hull of S in Rm×n, and
for any matrix X ∈ Rm×n, dist(X, S) denotes inf ‖X − Y‖:{

Y ∈ S}.

2. Preliminaries

In this section, we briefly recall some definitions and results
about the Euclidean Jordan algebra [11] associated with the
SOC Kn and subdifferentials [12].

For any x, s ∈ Rn, their Jordan product is defined as
x ∘ s � (xTs; x0s1 + s0x1), and e � (1, 0, . . . , 0) ∈ Rn is unit
element of this algebra. Given an element x � (x0; x1) ∈
R × Rn− 1, we define the symmetric matrix

L(x) �
x0 x

T
1

x1 x0I

⎛⎝ ⎞⎠, (8)

where I represents the (n − 1) × (n − 1) identity matrix. It is
easy to verify that x ∘ s � L(x)s for any s ∈ Rn. Moreover,
L(x) is positive definite (and hence invertible) if and only if
x ∈ intKn.

For each x � (x0; x1) ∈ R × Rn− 1, let λ1, λ2 and u(1), u(2)

be the spectral values and the associated spectral vectors of x,
given by

λi � x0 +(− 1)
i

x1
����

����,

u
(i)

�

1
2

1; (− 1)
i x1

x1
����

����
􏼠 􏼡, if x1 ≠ 0,

1
2

1; (− 1)
i
x1􏼐 􏼑, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(9)

for i � 1, 2, with any x1 ∈ Rn− 1 such that ‖x1‖ � 1. +en, x

admits a spectral factorization associated with SOC Kn in
the form of

x � λ1u
(1)

+ λ2u
(2)

. (10)

For any x � (x0; x1) ∈ R × Rn− 1, let x′ � (x0; − x1)[13].
+en, x″ � x, (x + s)′ � x′ + s′, and (cx)′ � cx′ for any
c ∈ R. Moreover, x°x′ � x20 − ‖x1‖

2 � 0 if x ∈ bdKn.
Suppose that G: Rm⟶ Rn is a locally Lipschitzian

function; then, from Rademacher’s theorem [14], G is dif-
ferentiable almost everywhere. +e Bouligand (B-) sub-
differential and the Clarke subdifferential of G at z are
defined by

zBG(z) ≔ lim
􏽢z⟶z

G′(􏽢z): 􏽢z ∈ DG􏼨 􏼩 and zG(z)

� convzBG(z),

(11)

where DG denotes the set of points at which G is differ-
entiable. Obviously, zG(z) � G′(z)􏼈 􏼉 if G is continuously
differentiable at z.
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Definition 1 (see [12]). Let G: Rm⟶ Rn be a locally
Lipschitzian function and Gμ: Rm⟶ Rn be a continuously
differentiable function for any μ> 0, and for any z ∈ Rm, we
have limμ⟶0 Gμ(z) � G(z). +en, Gμ satisfies the Jacobian
consistency property if for any z ∈ Rm, limμ⟶0dist
(Gμ′(z), zG(z)) � 0.

3. Smoothing Function

In this section, we study the properties of the smoothing
function (7).

Definition 2 (see [8]). For a nondifferentiable function
f: Rm⟶ Rn, we consider a function fμ: Rm⟶ Rn with
a parameter μ> 0 that has the following properties:

(i) fμ is differentiable for any μ> 0
(ii) limμ⟶0 fμ(x) � f(x) for any x ∈ Rm

Such a function fμ is called a smoothing function of f.

Lemma 1. For any w ∈Kn and μ ∈ R, one has

φμ(x, s, w) � 0⇔x ∘ s � w + μ2e, x ∈Kn
, s ∈Kn

.

(12)

Proof. We first suppose that x ∘ s � w + μ2e, x ∈Kn, s ∈Kn.
+en,

0 � x ∘ s − w − μ2e

� (x + s)
2

− x
2

+ s
2

+ x ∘ s + w + μ2e􏼐 􏼑,
(13)

and hence

x + s �

�������������������

x
2

+ s
2

+ x ∘ s + w + μ2e
􏽱

. (14)

+at is, φμ(x, s, w) � 0.
Conversely, suppose that φμ(x, s, w) � 0; then, it follows

from (7) that

x + s �

�������������������

x
2

+ s
2

+ x ∘ s + w + μ2e
􏽱

∈Kn
. (15)

Upon squaring both sides of it, we obtain

x ∘ s � w + μ2e ∈Kn
. (16)

Let

ω ≔ x + s �

�������������������

x
2

+ s
2

+ x ∘ s + w + μ2e
􏽱

∈Kn
, (17)

which implies

ω ∈Kn
,

ω2
� x

2
+ s

2
+ x ∘ s + w + μ2e ∈Kn

.
(18)

+erefore,

ω2
− s

2
� x

2
+ x ∘ s + w + μ2e ∈Kn

,

ω2
− x

2
� s

2
+ x ∘ s + w + μ2e ∈Kn

.
(19)

Further, it follows from Proposition 3.4 [15] that

x � ω − s ∈Kn
,

s � ω − x ∈Kn
.

(20)

□

Let w � (w0;w1) ∈K
n, μ ∈R, x � (x0;x1), s � (s0;s1) ∈

R×Rn− 1, and the mapping υμ: R2n⟶R×Rn− 1 be defined
by

υμ � υμ0; υμ1( 􏼁 � υμ(x, s, w) ≔ x
2

+ s
2

+ x ∘ s + w + μ2e,

(21)

For simplicity, we use υ to denote υμ when μ � 0, that is,

υ � υ0; υ1( 􏼁 � υ(x, s, w) ≔ x
2

+ s
2

+ x ∘ s + w. (22)

By direct calculations, we have

υμ0 � ‖x‖
2

+‖s‖
2

+ x
T
s + w0 + μ2 � υ0 + μ2,

υμ1 � 2x0x1 + 2s0s1 + x0s1 + s0x1 + w1 � υ1.
(23)

+erefore, υμ � (υμ0; υ1). From the definition of spectral
factorization, υμ can be decomposed as

υμ � λ1 υμ( 􏼁u1(υ) + λ2 υμ( 􏼁u2(υ), (24)

where λ1(υμ), λ2(υμ), and u1(υ), u2(υ) are the spectral values
and the associated spectral vectors of υμ given by

λi υμ( 􏼁 � ‖x‖
2

+‖s‖
2

+ x
T
s + w0 + μ2

+(− 1)
i 2x0x1 + 2s0s1 + x0s1 + s0x1 + w1
����

����,
(25)

and

ui(υ) �
1
2

1; (− 1)
iυ1􏼐 􏼑, (26)

for i � 1, 2, where

υ1 ≔
υ1
υ1

����
����

�
2x0x1 + 2s0s1 + x0s1 + s0x1 + w1

2x0x1 + 2s0s1 + x0s1 + s0x1 + w1
����

����
, (27)

if υ1 ≠ 0; otherwise, υ1 is any vector in Rn− 1 such that
‖υ1‖ � 1. For any given w � (w0; w1) ∈K

n and any
(x, s) ∈ Rn × Rn, it can be verified that

υμ � x
2

+ s
2

+ x ∘ s + w + μ2e

� x +
s

2
􏼒 􏼓

2
+
3
4
s
2

+ w + μ2e

� s +
x

2
􏼒 􏼓

2
+
3
4
x
2

+ w + μ2e ∈ intKn
,

(28)

for any μ> 0, and

υ � x
2

+ s
2

+ x ∘ s + w

� x +
s

2
􏼒 􏼓

2
+
3
4
s
2

+ w

� s +
x

2
􏼒 􏼓

2
+
3
4
x
2

+ w ∈Kn
.

(29)
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Given μ ∈ R and x � (x0; x1), s � (s0; s1) ∈ R × Rn− 1,
we define

ωμ
� ωμ

0;ωμ
1( 􏼁 � ωμ

(x, s, w) ≔
�������������������

x
2

+ s
2

+ x ∘ s + w + μ2e
􏽱

,

(30)

and when μ � 0,

ω � ω0;ω1( 􏼁 � ω(x, s, w) ≔
���������������

x
2

+ s
2

+ x ∘ s + w

􏽱

. (31)

+e spectral factorization of ωμ and ω is as follows:

ωμ
�

������

λ1 υμ( 􏼁

􏽱

u1(υ) +

������

λ2 υμ( 􏼁

􏽱

u2(υ),

ω �

�����

λ1(υ)

􏽱

u1(υ) +

�����

λ2(υ)

􏽱

u2(υ).

(32)

By (29), we can partitionR2n asR2n � O∪I∪B, where

O ≔ (x, s) ∈ R2n
: υ ∈ 0{ }􏽮 􏽯

� (x, s) ∈ R2n
: λ2(υ) � λ1(υ) � 0􏽮 􏽯,

I ≔ (x, s) ∈ R2n
: υ ∈ intKn

􏽮 􏽯

� (x, s) ∈ R2n
: λ2(υ)≥ λ1(υ)> 0􏽮 􏽯,

B ≔ (x, s) ∈ R2n
: υ ∈ b dK

n/ 0{ }􏽮 􏽯

� (x, s) ∈ R2n
: 2υ0 � λ2(υ)> λ1(υ) � 0􏽮 􏽯.

(33)

Lemma 2. For any given w ∈Kn and any (μ, x, s) ∈
R × Rn × Rn, let φ and φμ be defined as (5) and (7), re-
spectively. 7en, we have

(i) 7e function φμ is continuously differentiable ev-
erywhere with any μ> 0, and its Jacobian is given by

φμ′(x, s, w) �

I − L x +
s

2
􏼒 􏼓L

− 1 ωμ
( 􏼁

I − L s +
x

2
􏼒 􏼓L

− 1 ωμ
( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (34)

Here L− 1(ωμ) � (1/
��

υμ0
􏽱

)I if υ1 � 0; otherwise,

L
− 1 ωμ

( 􏼁 � L1 υμ( 􏼁 + L2 υμ( 􏼁

�
bμ cμυ

T
1

cμυ1 aμI + bμ − aμ􏼐 􏼑υ1υ
T
1

⎛⎝ ⎞⎠,
(35)

with

L1 υμ( 􏼁 �
1

2
������
λ1 υμ( 􏼁

􏽱
1 − υT

1

− υ1 υ1υ
T
1

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, (36)

L2 υμ( 􏼁 �
1

2
������
λ2 υμ( 􏼁

􏽱
1 υT

1

υ1 υ1υ
T
1

⎛⎝ ⎞⎠ + aμ
0 0T

0 I − υ1υ
T
1

􏼠 􏼡,

(37)

where

aμ �
2

������
λ1 υμ( 􏼁

􏽱
+

������
λ2 υμ( 􏼁

􏽱 ,

bμ �
1
2

1
������
λ1 υμ( 􏼁

􏽱 +
1

������
λ2 υμ( 􏼁

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

cμ �
1
2

1
������
λ2 υμ( 􏼁

􏽱 −
1

������
λ1 υμ( 􏼁

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(38)

(ii) For any (x, s) ∈ Rn × Rn, we have limμ⟶0 φμ(x, s,

w) � φ(x, s, w). 7us, φμ is a smoothing function of
φ.

(iii) For any μ, ] ∈ R+,

φμ(x, s, w) − φ](x, s, w)
�����

�����≤
�
r

√
|μ − ]|. (39)

Proof

(i) For any (x, s) ∈ Rn × Rn and any μ> 0, according to
Corollary 5.4 [15] and (28), formula (34) holds. By
Proposition 5.2 and its proof [15], we get formula
(35).

(ii) Given any x � (x0; x1), s � (s0; s1) ∈ R × Rn− 1. For
any μ> 0, we obtain from the spectral factorization
of υμ and υ that

φμ(x, s, w) � x + s −

������

λ1 υμ( 􏼁

􏽱

u1(υ) +

������

λ2 υμ( 􏼁

􏽱

u2(υ)􏼒 􏼓,

φ(x, s, w) � x + s −

�����

λ1(υ)

􏽱

u1(υ) +

�����

λ2(υ)

􏽱

u2(υ)􏼒 􏼓,

(40)

where

λi(υ) � ‖x‖
2

+‖s‖
2

+ x
T
s + w0 +(− 1)

i 2x0x1 + 2s0s1
����

+ x0s1 + s0x1 + w1
����,

(41)

and λi(υμ) and ui(υ) are, respectively, given by (25)
and (26) for i � 1, 2. It is obvious that

λi υμ( 􏼁 � λi(υ) + μ2, (42)

for i � 1, 2. +en,

· lim
μ⟶0

������

λ1 υμ( 􏼁

􏽱

u1(υ) +

������

λ2 υμ( 􏼁

􏽱

u2(υ)􏼒 􏼓

� lim
μ⟶0

���������

λ1(υ) + μ2
􏽱

u1(υ) +

���������

λ2(υ) + μ2
􏽱

u2(υ)􏼒 􏼓

�

�����

λ1(υ)

􏽱

u1(υ) +

�����

λ2(υ)

􏽱

u2(υ),

(43)
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and limμ⟶0 φμ(x, s, w) � φ(x, s, w). +us, by (i)
and Definition 2, φμ is a smoothing function of φ.

(iii) By following the proof of Proposition 5.1 [15], we
obtain the desired result. □

Next, we study some properties of φ, which will be used
in the subsequent analysis.

Lemma 3. For any x � (x0; x1), s � (s0; s1), 􏽥w � (􏽥w0;

􏽥w1) ∈ R × Rn− 1, let x2 + s2 + 􏽥w2 ∈ bdKn. 7en, we have

x
2
0 � x1

����
����
2
,

s
2
0 � s1

����
����
2
,

􏽥w
2
0 � 􏽥w1

����
����
2
,

x0s0 � x
T
1 s1,

x0 􏽥w0 � x
T
1 􏽥w1,

s0 􏽥w0 � s
T
1 􏽥w1,

x0s1 � s0x1,

x0 􏽥w1 � 􏽥w0x1,

s0 􏽥w1 � 􏽥w
T
0 s1.

(44)

Proof. We can obtain the desired result by following the
proof of Lemma 2 [16]. □

Lemma 4. For any x � (x0; x1), s � (s0; s1) ∈ R × Rn− 1, let
υ � (υ0; υ1) � x2 + s2 + x ∘ s + w ∈ bdKn. 7en, one has

x ∘ x′ � 0,

s ∘ s′ � 0,
(45)

x ∘ s′ � 0,

x ∘ 􏽥w′ � 0,
(46)

s ∘ 􏽥w′ � 0,

􏽥w ∘ 􏽥w′ � 0,
(47)

x ∘ υ′ � 0,

s ∘ υ′ � 0,
(48)

x
2
0 + s

2
0 + x0s0 +

w0

2
� x0x1 + s0s1 + x0s1 +

w1

2

������

������

� x1
����

����
2

+ s1
����

����
2

+ x
T
1 s1 +

w1

2
,

(49)

where 􏽥w ≔
��
w

√
. Moreover, the following equivalence

holds:

υ0 � 0⇔υ1 � 0⇔υ � 0

⇔x0 � s0 � w0 � 0⇔x1 � s1 � w1 � 0⇔(x, s, w) � (0, 0, 0).

(50)

Proof. Since

υ � x
2

+ s
2

+ x ∘ s + w

� x +
s

2
􏼒 􏼓

2
+
3
4
s
2

+ 􏽥w
2

� s +
x

2
􏼒 􏼓

2
+
3
4
x
2

+ 􏽥w
2 ∈ bdKn

,

(51)

from Lemma 3, we have

x +
s

2
􏼒 􏼓 ∘ x +

s

2
􏼒 􏼓

′ � 0, s ∘ s′ � 0,

x +
s

2
􏼒 􏼓 ∘ s′ � 0, s ∘ 􏽥w′ � 0,

x +
s

2
􏼒 􏼓 ∘ 􏽥w′ � 0, 􏽥w ∘ 􏽥w′ � 0,

s +
x

2
x􏼒 􏼓 ∘ s +

x

2
􏼒 􏼓

′ � 0, x ∘ x′ � 0,

s +
x

2
􏼒 􏼓 ∘x′ � 0, x ∘ 􏽥w′ � 0,

s +
x

2
􏼒 􏼓 ∘ 􏽥w′ � 0.

(52)

It follows from these equalities that the results in
(45)–(47) hold. Since υ ∈ bdKn, we have λ1(υ) � 0, i.e.,

‖x‖
2

+‖s‖
2

+ x
T
s + w0 � 2x0x1 + 2s0s1 + x0s1 + s0x1 + w1

����
����.

(53)

By the last relation and (45)–(47), we obtain that (49)
holds. To prove (48), we only need to verify x0υ1 � υ0x1 and
xT
1 υ1 � x0υ0 by the symmetry of x and s in υ. From (45)–(47)

and (49),

x0υ1 � x0 2x0x1 + 2s0s1 + x0s1 + s0x1 + 2􏽥w0 􏽥w1( 􏼁

� 2 x
2
0 + s

2
0 + x0s0 + 􏽥w

2
0􏼐 􏼑x1

� 2 x1
����

����
2

+ s1
����

����
2

+ x
T
1 s1 +

w0

2
􏼒 􏼓x1

� υ0x1,

x
T
1 υ1 � x

T
1 2x0x1 + 2s0s1 + x0s1 + s0x1 + 2􏽥w0 􏽥w1( 􏼁

� 2x0 x1
����

����
2

+ s
2
0 + x

T
1 s1 + 􏽥w

2
0􏼒 􏼓

� 2x0 x
2
0 + s

2
0 + x0s0 +

w0

2
􏼒 􏼓

� x0υ0.

(54)

From (51), the equivalence is also true. □
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4. Jacobian Consistency

In this section, we will show the Jacobian consistency property
and estimate the distance between the gradient of the
smoothing function (7) and the subgradient of the WSOCCP
complementarity function (5). For any μ ∈ R, w ∈Kn, let
z ≔ (x, s, y) ∈ Rn × Rn × Rm. Based on smoothing function
(7), we define Φμ: Rn × Rn × Rm⟶ R2n+m by

Φ(z) ≔
F(x, s, y)

φ(x, s, w)
􏼠 􏼡, (55)

Φμ(z) ≔
F(x, s, y)

φμ(x, s, w)
􏼠 􏼡. (56)

From (1) and (56) and Lemma 1,

Φμ(z) � 0⇔z � (x, s, y) solvesWSOCCP (1). (57)

Since the function Φ(z) is typically nonsmooth, New-
ton’s method cannot be applied to the system Φ(z) � 0
directly. +us, we can approximately solve the smooth
system Φμ(z) � 0 at each iteration and make ‖Φμ(z)‖ de-
crease gradually by reducing μ to zero. First, we show that
the function Φμ(z) satisfies the Jacobian consistency.

Lemma 5. For any arbitrary but fixed vector w ∈Kn, we
have for any (μ, x, s) ∈ R × Rn × Rn,

J
0
φ(x, s) ≔ limμ⟶0φμ′(x, s, w) �

I − L x +
s

2
􏼒 􏼓J

I − L s +
x

2
􏼒 􏼓J

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(58)

where

J ≔

L
− 1

(ω), if (x, s) ∈ I,

1
2

���
2υ0

􏽰 1 υT
1 υ14I − 3υ1υ

T
1 ), if (x, s) ∈B, O, if (x, s) ∈ O.􏼐

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(59)

Proof. By (34) and the symmetry of x and s, it suffices to
prove

limμ⟶0L x +
s

2
􏼒 􏼓L

− 1 ωμ
( 􏼁 � L x +

s

2
􏼒 􏼓J. (60)

□

Case 1. If (x, s) ∈ I, it follows from (25) that

lim
μ⟶0

ωμ
� lim

μ⟶0

������

λ1 υμ( 􏼁

􏽱

u1(υ) +

������

λ2 υμ( 􏼁

􏽱

u2(υ)􏼔 􏼕

� lim
μ⟶0

���������

λ1(υ) + μ2
􏽱

u1(υ) +

���������

λ2(υ) + μ2
􏽱

u2(υ)􏼔 􏼕

�

�����

λ1(υ)

􏽱

u1(υ) +

�����

λ2(υ)

􏽱

u2(υ)

� ω ∈ intKn
.

(61)

+erefore,

limμ⟶0L x +
s

2
􏼒 􏼓L

− 1 ωμ
( 􏼁 � L x +

s

2
􏼒 􏼓L

− 1
(ω). (62)

Case 2. If (x, s) ∈B, it is easy to prove (51), and

2υ0 � λ2(υ)> λ1(υ) � 0,

υ1
����

���� � υ0 � x +
s

2

������

������

2
+
3
4
‖s‖

2
+ w0 > 0.

(63)

+us, we obtain the following from (25):

λ1 υμ( 􏼁 � λ1(υ) + μ2 � μ2 > 0, (64)

λ2 υμ( 􏼁 � λ2(υ) + μ2 � 2υ0 + μ2 > 0. (65)

For any μ≠ 0, we may get from (35) that L− 1(ωμ) �

L1(υμ) + L2(υμ). We first prove for any μ≠ 0,

L x +
s

2
􏼒 􏼓L1 υμ( 􏼁 � O. (66)

Let

ϑ ≔ 1; υ1( 􏼁 �
1
υ1

����
����

υ0; υ1( 􏼁 �
υ
υ0

. (67)

Based on (36), (48), and (64), we have

L x +
s

2
􏼒 􏼓L1 υμ( 􏼁 �

1

2
������
λ1 υμ( 􏼁

􏽱 L x +
s

2
􏼒 􏼓ϑ′ϑ′

T

�
1

2|μ|
x +

s

2
􏼒 􏼓°ϑ′ϑ′

T

�
1

2|μ|υ20
x +

s

2
􏼒 􏼓°υ′υ′

T

� O.

(68)

Next, we prove limμ⟶0 L2(υμ) � J. From (37), (64), and
(65), we have
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lim
μ⟶0

L2 υμ( 􏼁 � lim
μ⟶0

1

2
�������

2υ0 + μ2
􏽱

1 υT
1

υ1 υ1υ
T
1

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

+ lim
μ⟶0

2
��

μ2
􏽱

+

�������

2υ0 + μ2
􏽱

0 0T

0 I − υ1υ
T
1

⎛⎜⎜⎝ ⎞⎟⎟⎠

�
1

2
���
2υ0

􏽰
1 υT

1

υ1 4I − 3υ1υ
T
1

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ � J.

(69)

Combining (68) and (69) yields

limμ⟶0L x +
s

2
􏼒 􏼓L

− 1 ωμ
( 􏼁 � limμ⟶0L x +

s

2
􏼒 􏼓L2 υμ( 􏼁 � L x +

s

2
􏼒 􏼓J.

(70)

Case 3. If (x, s) ∈ O, it follows from Lemma 4 that
(x, s, w) � (0, 0, 0) and

ωμ
�

��
υμ

􏽰
� |μ|e ∈ intKn

,

limμ⟶0L x +
s

2
􏼒 􏼓L

− 1 ωμ
( 􏼁 � limμ⟶0O ·

1
|μ|

e � O � L x +
s

2
􏼒 􏼓J.

(71)

Lemma 6. For any arbitrary but fixed vector w ∈Kn, we
have for any (x, s) ∈ Rn × Rn,

I − Ux

I − Us

􏼠 􏼡 ∈ zBφ(x, s, w), (72)

where

Ux � ±
1
2

Z + L x +
s

2
􏼒 􏼓J,

Us � ± Z + L s +
x

2
􏼒 􏼓J,

Z �

O, if (x, s) ∈ I,

1
2 1 − υT

1 − υ1υ1υ
T
1􏼐 􏼑, if (x, s) ∈B,

I, if (x, s) ∈ O,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(73)

and J is defined by (59).

Proof. By Proposition 5.2 [15] and the chain rule for dif-
ferentiation, the complementarity function φ is continuously
differentiable at any (x, s) ∈ I with

φ′(x, s, w) �

I − L x +
s

2
􏼒 􏼓L

− 1
(ω)

I − L s +
x

2
􏼒 􏼓L

− 1
(ω)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ zBφ(x, s, w).

(74)

+us, it suffices to consider the two cases: (x, s) ∈B and
(x, s) ∈ O.

For any (x, s) ∈B or (x, s) ∈ O, let (x,􏽢s) � (x, s + μe)

with sufficiently small μ≠ 0, and define

􏽢υ � 􏽢υ0; 􏽢υ1( 􏼁 ≔ x
2

+ 􏽢s
2

+ x ∘􏽢s + w,

􏽢ω � 􏽢ω0; 􏽢ω1( 􏼁 ≔
�
􏽢υ

√
,

􏽢ϑ1 ≔
􏽢υ1
􏽢υ1

����
����
,

􏽢λi � λi(􏽢υ) ≔ 􏽢υ0 +(− 1)
i

􏽢υ1
����

����, i � 1, 2.

(75)

+en, we have

􏽢υ � x
2

+(s + μe)
2

+ x ∘ (s + μe) + w

� υ + μx + 2μs + μ2e,

􏽢υ0 � υ0 + μx0 + 2μs0 + μ2,

􏽢υ1 � υ1 + μx1 + 2μs1,

(76)

􏽢λi � υ0 + μx0 + 2μs0 + μ2 +(− 1)
i υ1 + μx1 + 2μs1
����

����, i � 1, 2.

(77)

Obviously, when μ⟶ 0, we have (x, 􏽢s)⟶ (x, s),

􏽢υ⟶ υ, 􏽢ω⟶ ω and 􏽢λi⟶ λi(υ) for i � 1, 2.+en by (7), it
suffices to show

limμ⟶0L x +
􏽢s

2
􏼠 􏼡L

− 1
(􏽢ω) � Ux,

limμ⟶0L 􏽢s +
x

2
􏼒 􏼓L

− 1
(􏽢ω) � Us,

(78)

if φ is differentiable at (x,􏽢s). □

Case 4. If (x, s) ∈B, we obtain υ ∈ (bdKn/ 0{ }), and from
(45), (46), and (48),

􏽢υ1
����

����
2

� υ1 + μx1 + 2μs1
����

����
2

� υ1
����

����
2

+ μ2 x1
����

����
2

+ 4μ2 s1
����

����
2

+ 4μυT
1 s1

+ 2μυT
1 x1 + 4μ2xT

1 s1

� υ0 + μx0 + 2μs0( 􏼁
2
.

(79)

+e last relation together with υ0 > 0 implies that for
sufficiently small μ, we have
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􏽢υ1
����

���� � υ0 + μx0 + 2μs0 > 0. (80)

For sufficiently small μ≠ 0, we obtain from (77) and (80),
􏽢λ1 � υ0 + μx0 + 2μs0 + μ2 − 􏽢υ1

����
���� � μ2 > 0, (81)

􏽢λ2 � υ0 + μx0 + 2μs0 + μ2 + 􏽢υ1
����

���� � 2 υ0 + μx0 + 2μs0( 􏼁 + μ2 > 0.

(82)

It follows from (81) and (82) that 􏽢υ ∈ intKn, and hence φ
is differentiable at (x, 􏽢s).

Now we will prove

lim
μ⟶0

L x +
􏽢s

2
􏼠 􏼡L

− 1
(􏽢ω) � Ux, (83)

where L− 1(􏽢ω) � L1(􏽢υ) + L2(􏽢υ), in which L1(􏽢υ) and L2(􏽢υ)

are given by (36) and (37) with 􏽢υ and 􏽢ϑ1 replacing υμ and υ1,
respectively. By the expression of 􏽢υ1 and (80),

􏽢ϑ ≔ 1; 􏽢ϑ1􏼐 􏼑 �
1
􏽢υ1

����
����

􏽢υ1
����

����; 􏽢υ1􏼐 􏼑

�
1
􏽢υ1

����
����

υ0 + μx0 + 2μs0; υ1 + μx1 + 2μs1( 􏼁

�
1
􏽢υ1

����
����

(υ + μx + 2μs).

(84)

By (45), (46), (48), and (84), we have

x +
s

2
􏼒 􏼓°􏽢ϑ′ �

1
􏽢υ1

����
����

x +
s

2
􏼒 􏼓°(υ + μx + 2μs)′

�
1
􏽢υ1

����
����

x +
s

2
􏼒 􏼓°υ′ + 2μ x +

s
2

􏼒 􏼓°
x
2

+ s􏼒 􏼓′􏼔 􏼕

� 0.

(85)

+us, from (36) and (81),

L x +
􏽢s

2
􏼠 􏼡L1(􏽢υ) �

1

2
��
􏽢λ1

􏽱 x +
s

2
+
μe

2
􏼒 􏼓°􏽢ϑ′􏽢ϑ′

T

�
1

2|μ|
x +

s

2
􏼒 􏼓°􏽢ϑ′􏽢ϑ′

T
+
μ
2

􏽢ϑ′􏽢ϑ′
T

􏼔 􏼕

�
sgn(μ)

4
􏽢ϑ′􏽢ϑ′

T
.

(86)

It follows from (73)–(84) that as μ⟶ 0,

􏽢λ1⟶ λ1(υ) � 0,

􏽢λ2⟶ λ2(υ) � 2υ0,

􏽢ϑ1⟶ υ1,

1
2

􏽢ϑ′􏽢ϑ′
T

�
1
2

1 − 􏽢ϑ
T

1

− 􏽢ϑ1 − − ϑ̂1􏽢ϑ
T

1

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠⟶ Z.

(87)

+en, by following the proof of Case 5 in Lemma 5, we
have

lim
μ⟶0

L2(􏽢υ) �
1

2
���
2υ0

􏽰
1 υT

1

υ1 4I − 3υ1υ
T
1

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ � J. (88)

+erefore, we obtain from (86) and (88) that

lim
μ⟶±0

L x +
􏽢s

2
􏼠 􏼡L

− 1
(􏽢ω) � lim

μ⟶±0
L x +

􏽢s

2
􏼠 􏼡L1(􏽢υ)

+ lim
μ⟶±0

L x +
􏽢s

2
􏼠 􏼡L2(􏽢υ)

� lim
μ⟶±0

sgn(μ)

4
􏽢ϑ′􏽢ϑ′

T
+ L x +

s

2
􏼒 􏼓J

� ±
1
2

Z + L x +
s

2
􏼒 􏼓J

� Ux.

(89)

Next we will prove

lim
μ⟶0

L 􏽢s +
x

2
􏼒 􏼓L

− 1
(􏽢ω) � Us. (90)

By (45), (46), (48), (81), and (84), we have

s +
x

2
􏼒 􏼓°􏽢ϑ′ �

1
􏽢υ1

����
����

s +
x

2
􏼒 􏼓°(υ + μx + 2μs)′

�
1
􏽢υ1

����
����

s +
x

2
􏼒 􏼓°υ′ + 2μ s +

x
2

􏼒 􏼓°
x
2

+ s􏼒 􏼓′􏼔 􏼕

� 0,

(91)

and then
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L 􏽢s +
x

2
􏼒 􏼓L1(􏽢υ) �

1

2
��
􏽢λ1

􏽱 s + μe +
x

2
􏼒 􏼓°􏽢ϑ′􏽢ϑ′

T

�
1

2|μ|
s +

x

2
􏼒 􏼓°􏽢ϑ′􏽢ϑ′

T
+ μ􏽢ϑ′􏽢ϑ′

T
􏼔 􏼕

�
sgn(μ)

2
􏽢ϑ′􏽢ϑ′

T
.

(92)

+erefore, we obtain from (88) and (92) that

lim
μ⟶±0

L 􏽢s +
x

2
􏼒 􏼓L

− 1
(􏽢ω) � lim

μ⟶±0
L 􏽢s +

x

2
􏼒 􏼓L1(􏽢υ)

+ lim
μ⟶±0

L 􏽢s +
x

2
􏼒 􏼓L2(􏽢υ)

� lim
μ⟶±0

sgn(μ)

2
􏽢ϑ′􏽢ϑ′

T
+ L s +

x

2
􏼒 􏼓J

� ± Z + L s +
x

2
􏼒 􏼓J

� Us.

(93)

Case 5. If (x, s) ∈ O, it follows from Lemma 4 that
(x, s, w) � (0, 0, 0). +us, 􏽢υ � μ2e ∈ intKn, 􏽢ω � |μ|e, and

lim
μ⟶±0

L x +
􏽢s

2
􏼠 􏼡L

− 1
(􏽢ω) � lim

μ⟶±0

μ
2

I ·
1

|μ|
I � lim

μ⟶±0

sgn(μ)

2
I

� ±
1
2

I � Ux,

lim
μ⟶±0

L 􏽢s +
x

2
􏼒 􏼓L

− 1
(􏽢ω) � lim

μ⟶±0
μI ·

1
|μ|

I � lim
μ⟶±0

sgn(μ)I

� ± I � Us.

(94)

□
Now we show the Jacobian consistency of the function
Φμ (56) and then estimate an upper bound of the parameter
μ> 0 for the predicted accuracy of the distance between the
gradient of Φμ (56) and the subgradient of Φ (55).

Theorem 1. 7e following results hold. (i) 7e function Φμ
defined by (56) with μ> 0 satisfies the Jacobian consistency.
(ii) For given τ > 0 and any point z ≔ (x, s, y) ∈ R2n+m, let
ρ(x, s) be any function such that

ρ(x, s)≥

L x +
s

2
􏼒 􏼓J

L s +
x

2
􏼒 􏼓J

������������������

������������������

, (95)

and let μ: R2n × R+⟶ R+ ∪ +∞{ } be defined by

μ(x, s, τ) ≔

λ1(υ)τ
���������������

ρ2(x, s) − λ1(υ)τ2
􏽱 , if (x, s) ∈ I and τ < ρ(x, s)/

�����
λ1(υ)

􏽰
( 􏼁,

υ0τ����������������������
2ρ(x, s) 2ρ(x, s) − τ

���
2υ0

􏽰
􏼐 􏼑

􏽱 , if (x, s) ∈B and τ < 2ρ(x, s)/
���
2υ0

􏽰
,

+∞, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(96)

7en, for any μ ∈ R such that 0< |μ|≤ μ(x, s, τ), we have

dist Φμ′
(z), zΦ(z)􏼒 􏼓< τ. (97)

Proof. By (56), it suffices to show the Jacobian consistency of
φμ with μ> 0. Define

V
i ≔

I − U
i
x

I − U
i
s

⎛⎝ ⎞⎠, (98)

where

U
i
x � (− 1)

i1
2

Z + L x +
s

2
􏼒 􏼓J,

U
i
s � (− 1)

i
Z + L s +

x

2
􏼒 􏼓J,

(99)

for i � 1, 2, J and Z are defined by (59) and (73). Let
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V ≔
1
2

V
1

+ V
2

􏼐 􏼑 �

I − L x +
s

2
􏼒 􏼓J

I − L s +
x

2
􏼒 􏼓J

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (100)

It follows from Lemma 5 and Lemma 6 that

V � J
0
φ(x, s) � lim

μ⟶0
φμ′

(x, s, w), (101)

and V1, V2 ∈ zBφ(x, s, w). Hence,

V �
1
2

V
1

+ V
2

􏼐 􏼑 ∈zφ(x, s, w), (102)

which together with Definition 1 and Lemma 2 implies the
Jacobian consistency of φμ with μ> 0. (ii) For any
z ≔ (x, s, y) ∈ R2n+m, it follows from the proof of +eorem
1(i) that

J
0
φ(x, s) � V ∈zφ(x, s, w),

J
0
Φ(z) ≔

J
0
φ(x, s) O

Fx,s
′(x, s, y) Fy

′(x, s, y)

⎛⎝ ⎞⎠ ∈zΦ(x, s, y).

(103)

+us, we obtain from (34) and (100) that

dist Φμ′(z), zΦ(z)􏼐 􏼑≤ Φμ′(z) − J
0
Φ(z)

�����

�����

� φμ′(z) − J
0
φ(z)

�����

�����

�

L x +
s

2
􏼒 􏼓 L

− 1
(􏽢ω) − J􏼐 􏼑

L s +
x

2
􏼒 􏼓 L

− 1
(􏽢ω) − J􏼐 􏼑

������������������

������������������

.

(104)

+en, similar to the proof of Proposition 4.1 [13], we
have

dist Φμ′(z), zΦ(z)􏼐 􏼑≤ g0(x, s) − gμ(x, s)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 ·

L x +
s

2
􏼒 􏼓J

L s +
x

2
􏼒 􏼓J

������������������

������������������

,

(105)

where gμ: R2n⟶ R+ is given by

gμ(x, s) ≔

1
���������

λ1(υ) + μ2
􏽱 , if (x, s) ∈ I,

2
�������

2υ0 + μ2
􏽱

+|μ|

1
���������

λ1(υ) + μ2
􏽱 , if (x, s) ∈B,

0, if (x, s) ∈ O.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(106)

Hence, by following the proof of +eorem 4.1 [13], the
result holds. □

5. Conclusions

In this paper, we show the Jacobian consistency of the
smoothing function φμ for WSOCCP, which will play a key
role in analyzing the rapid convergence of smoothing
methods. Moreover, in order to adjust a parameter ap-
propriately in smoothing methods, we estimate the distance
between the gradient of the smoothing function φμ and the
subgradient of the weighted SOC complementarity function
φ.
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We extend the self-excitingmodel by assuming that the temporary market impact is nonlinear and the coefficient of the temporary
market impact is an exponential function. +rough optimal control method, the optimal strategy satisfies the second-order
nonlinear ordinary differential equation. +e specific form of the optimal strategy is given, and the decreasing property of the
optimal strategy is proved. A numerical example is given to illustrate the financial implications of the model parameter changes.
We find that the optimal strategy of a risk-neutral investor changes with time and investment environment.

1. Introduction

In the financial field, the problem of optimal liquidation is
widely studied. In 1998, Bertsimas and Lo [1] study the
minimum transaction completion in the case of fixed trading
time dynamic trading strategy. Based on the original
scholar’s model, Almgren and Chriss [2] consider the ex-
pected costs and risks of execution and propose a simple
market impact model. It includes the following three parts:
unaffect price process, temporary market impact, and per-
manent. Almgren–Chriss market impact model provides a
good tool to continue studying the optimal liquidation
problem. Almgren [3] gives the optimal execution strategy
under the nonlinear temporary impact. Curato et al. [4]
study the optimal execution of a large trade when the
transient impact is nonlinear. Gueant and Lehalle [5] carry
out research on optimal liquidation when the execution
process intensity is general functional forms.

Some scholars research the corresponding optimal liq-
uidation strategy under the expanded Almgren–Chriss
model. Schied and Gatheral [6, 7] show the optimal strat-
egies when the unaffected price process is geometric
Brownian motion. Lehalle and Neuman [8] obtain the op-
timal strategies and provide the existence and uniqueness of

them when the model incorporates a Markovian signal.
When order flow is imbalanced and uncertain, the optimal
execution is discussed by Bechler and Ludkovski [9] and
Cheng et al. [10], respectively. Cartea and Jaimungal [11] and
Gueant et al. [12] address the optimal liquidation when the
order book is limited. Many scholars continue to make
further research studies in the recent years. Cartea and
Jaimungal [13] investigate optimal execution when the in-
vestor executes a large order. Kato [14] gets the optimal
execution of trader when the volume weighted average price
(VWAP) is used in the Almgren–Chriss model. Frei and
Westray [15] propose a relative volume curve model under
the VWAP model and get the explicit characterization of
optimal execution. Based on [14], Kato [16] obtains a sec-
ond-order asymptotic expansion formula of optimal strat-
egies by the penalizationmethod. Klöck et al. [17] change the
application scenario and study the execution with dark pool
in the Almgren–Chriss model. Bela et al. [18] study the
optimal liquidation under the Almgren–Chriss model with
running and terminal inventory costs and general predictive
signals about price changes. Bank et al. [19] carry out re-
search on the optimal problem of hedging and give the
general predictable target hedging strategies. In addition,
some scholars investigate the optimal liquidation by using
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new methods. Damian [20] discusses the optimal execution
under the multitime version of the Almgren–Chriss model
by the variational calculus techniques which assumes that
the optimal control is in the set of admissible controls.
Bismuth et al. [21] address the optimal liquidation in an
Almgren–Chriss framework by the Bayesian learning and
dynamic programming techniques when expected returns
are unknown. Besides, Schied and Zhang [22] consider the
Almgren–Chriss model has n risk-averse agents and prove
the property of optimal liquidation strategies.

Differential equations are widely used in engineering.
Wakif et al. [23, 24] study the stability of nanofluids which
has the characteristics of electrically conducting and New-
tonian fluids, incorporating the effects of thermophoresis
and Brownian motion in different situations. +en, they get
the corresponding differential equations which are obtained
by the relevant methods. From the numerical methods, they
discuss the properties and get the solutions of differential
equations. Similarly, differential equations are also used in
the financial field. +e optimal strategies of relevant liter-
ature mentioned above satisfy the differential equations
through the optimal control methods.

Caye and Muhle-Karbe [25] consider that the trades not
only incur price impact but also increase the execution costs.
+us, they propose a self-exciting price model and get the
optimal liquidation strategies under the Almgren–Chriss
framework. However, they only discuss the temporary im-
pact, and its coefficients are linear functions. Different from
the above references, we suppose that the temporary impact
and its coefficients are nonlinear functions. Namely, let the
temporary impact and its coefficient be the exponential
function and the power function, respectively, which are used
in economic and finance research. Finally, we get the specific
form and prove the properties of optimal liquidation.

+e paper is organized as follows. In Section 2, we state
the Almgren–Chriss framework, self-exciting price model,
and objective function. In Section 3, we give the specific form
of optimal liquidation and discuss the properties of solu-
tions. In Section 4, we show the numerical examples and the
corresponding financial interpretations.

2. Statement of Background

In this paper, we use the continuous-time market impact
model of Almgren–Chriss which supposes that the active
time of every investor is fixed in [0, T]. An investor hold x

shares at the initial time and completely trade at the time T,
that is, X0 � x and XT � 0. +e investor’s strategy is Xt

which is absolutely continuous and bounded with derivative
X
.

t and Xt � x + 􏽒
t

0 X
.

tdt, where X
.

t satisfies 􏽒
T

0 (X
.

t)
2 <∞.

A filtration (Ft)t> 0 on the given probability space
(Ω,F,p) is supported by the standard Brownian motion
Wt. We suppose that the a risk asset’s unaffected price
process follows the Bachelier [26] model with no drift:

S
0
t ≔ σ dWt. (1)

+e Almgren–Chriss model is supposed that the price of
a risk asset is related to the hold share and trading speed at

the time t. So, the Almgren–Chriss market impact model is
divided into three components: unaffected price process,
permanent impact components, and temporary impact
components. +e specific form of the Almgren–Chriss
model is assumed to be

St ≔ S
0
t + c Xt − x( 􏼁 + λX

.

t, (2)

where c(Xt − x) and X
.

t represents the permanent impact
and temporary impact components, respectively; the pa-
rameters λ> 0 and c> 0 represent the coefficient of per-
manent and temporary impact components.

Cayé and Muhle-Karbe [25] give the self-exciting price
impact under the Almgren–Chriss framework. In this
model, the parameter of temporary impact component is a
linear function about the number of shares already sold. +e
specific form is assumed to be

St ≔ S
0
t + a + b x − Xt( 􏼁( 􏼁Xt

.

, t ∈ [0, T], (3)

where a> 0 and b> 0. In equation (3), there is no permanent
impact component because the influence of the permanent
impact component about the cost of investor is fixed.

At each time t ∈ [0, T], the infinitesimal amounts of
− Xt

.

dt shares are sold at price St. +erefore, the total
implementation cost is represented by

C(X) ≔ xS0 + 􏽚
T

0
Xt

.

Stdt. (4)

So, the optimal trade execution problem becomes the
minimization of expected costs. We only need to solve the
minimization of expected cost:

minimizeE[C(X)]. (5)

Problem (5) is proposed by Bertsimas and Lo [1].
Carmona and Yang [27] use (5) to deal with the problem of
the maximization.

3. Main Results

Cayé and Muhle-Karbe [25] only discuss the coefficient of
temporary impact component is a linear function. However,
in the real lifetime, the coefficient of temporary impact
component maybe nonlinear. So, we suppose that the co-
efficient of temporary impact component like the expo-
nential function is widely used in economic activities. +us,
the coefficient of temporary impact component is assumed
to be ea+b(x− Xt), where a> 0 and b> 0.

Theorem 1. Since the coefficient of temporary impact
component is ea+b(x− Xt), there exists a unique strategy for
mean optimization. -e strategy is the unique solution of the
following differential equation:

Xt

..

−
b

2
_X
2
t � 0, (6)

with two-point boundary conditions
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X0 � x,

XT � 0.
(7)

-e solution of equation (6) is

t � C1 + C2 􏽚 e
− (b/2)XtdXt. (8)

Proof. When the coefficient of temporary impact compo-
nent is ea+b(x− Xt), equation (3) is

St ≔ S
0
t + e

a+b x− Xt( )Xt

.

, t ∈ [0, T]. (9)

From equations (4) and (9), we obtain

C(X) ≔ xS0 + 􏽚
T

0
Xt

.

Stdt

� xS0 + 􏽚
T

0
Xt

.

S
0
t + e

a+b x− Xt( )Xt

.

􏼒 􏼓dt􏼒 􏼓

� 􏽚
T

0
σXtdWt + 􏽚

T

0
e

a+b x− Xt( ) _X
2
tdt.

(10)

From the properties of Ito integral and equation (5), we
obtain

minimizeE[C(X)] � 􏽚
T

0
e

a+b x− Xt( ) _X
2
tdt. (11)

In order to get the solution of equation (11), we use the
Euler–Lagrange equation to get the second-order ordinary
differential equation:

Xt

..

−
b

2
X

2
t

.

� 0. (12)

+e optimal strategy satisfies equation (12). From [28],
the solution of equation (12) is

t � C1 + C2 􏽚 e
− (b/2)XtdXt. (13)

□

Theorem 2. -e optimal strategy from equations (12) and
(11), over all deterministic, absolutely continuous strategies
Xt, is decreasing.

Proof

C(X) � 􏽚
T

0
e

a+b x− Xt( )Xt

. 2
dt � e

a+bx
􏽚

T

0
e

− Xt Xt

. 2
dt � F(X).

(14)

Let Y � X − X∗; then, we obtain

F(X) � F Y + X
∗

( 􏼁

� e
a+bx

􏽚
T

0
e

− X∗t − Yt X
∗
t

.

+ Yt

.

􏼒 􏼓
2
dt

� e
a+bx

􏽚
T

0
e

− X∗t − Yt X
∗
t

. 2
+ 2X
∗
t

.

Yt

.

+ Yt

. 2
􏼒 􏼓dt

� e
a+bx

􏽚
T

0
e

− X∗t − Yt X
∗
t

. 2
dt + e

a+bx
􏽚

T

0
e

− X∗t − Yt2X
∗
t

.

Yt

.

dt

+ e
a+bx

􏽚
T

0
e

− X∗t − Yt Yt

. 2
dt

≥ e
a+bx

􏽚
T

0
e

− X∗t − Yt X
∗
t

. 2
dt

≥ e
a+bx

􏽚
T

0
e

− X∗t X
∗
t

. 2
dt.

(15)

Because the Almgren–Chriss model supposes that there
is no existence price manipulation, the Xt

.

satisfies Xt

.

< 0.
+us, Xt is decreasing. From the properties of exponential
function and integral, we get the proof of +eorem 2.

Except for references [3, 5, 10], there are still some
scholars studying the problem of optimal execution when
temporary impact is nonlinear. Gatheral [29] discusses the
optimal liquidation problems under the basic assumption of
the Almgren–Chriss model which contains some special
nonlinear temporary market impact function. When the
temporary market impact function in the Almgren–Chriss
model is nonlinear, Labadie and Lehalle [30] examine the
optimal starting times, stopping times, and risk measures for
algorithmic trading of target close and implementation
shortfall. Hendricks and Wilcox [31] research the optimal
trade execution of the Almgren–Chriss framework by a
reinforcement learning method. Horst and Naujokat [32]
show the value derivatives under market impact in a mul-
tiplayer framework which is based on the nonlinear tem-
porary market impact function of the Almgren–Chriss
model.

Although Caye and Muhle-Karbe [25] pay attention to
the optimal liquidation of self-exciting price impact under
the Almgren–Chriss framework, the case of nonlinear
temporary market impact function is not studied. Next, we
suppose that the temporary market impact function likes a
nonlinear form h(Xt

.

). Since h(Xt

.

) has many forms,
drawing on the above research studies of optimal liquidation
with the nonlinear functions, we let h(Xt

.

) be the power
function. Namely, h(Xt

.

) has the form
h(Xt

.

) � (Xt

.

)α, α> 0. However, in the actual process of

Mathematical Problems in Engineering 3



solution, it is difficult to get the general solution of opti-
mizing equation when the h(Xt

.

) is the power function.
+erefore, we research the special case which is usually used
in economic and finance and discuss the optimal strategies
when h(Xt

.

) � (Xt

.

)2. +us, equation (3) is changed for

St ≔ S
0
t + a + b x − Xt( 􏼁( 􏼁 Xt

.

􏼐 􏼑
2
, t ∈ [0, T]. (16)

□

Theorem 3. Since the temporary impact component is
h(Xt

.

) � (Xt

.

)2, there exists a unique strategy for mean
optimization. -e strategy is the unique solution of the fol-
lowing differential equation:

3 a + b x − Xt( 􏼁( 􏼁Xt

..

− bXt

. 2
� 0, (17)

with two-point boundary conditions

X0 � x,

XT � 0.
(18)

The solution of equation (17) is

a + b x − Xt( 􏼁( 􏼁
(2/3)

� C1t + C2. (19)

Proof. When the coefficient of temporary impact compo-
nent is ea+b(x− Xt), equation (3) is

St ≔ S
0
t + a + b x − Xt( 􏼁( 􏼁 Xt

.

􏼐 􏼑
2
, t ∈ [0, T]. (20)

From equations (4) and (20), we obtain

C(X) ≔ xS0 + 􏽚
T

0
Xt

.

Stdt

� xS0 + 􏽚
T

0
Xt

.

S
0
t + a + b x − Xt( 􏼁( 􏼁 Xt

.

􏼐 􏼑
2

􏼒 􏼓dt

� 􏽚
T

0
σXtdWt + 􏽚

T

0
a + b x − Xt( 􏼁( 􏼁Xt

. 3dt.

(21)

By the properties of Ito integral and equation (5), we
obtain

minimizeE[C(X)] � 􏽚
T

0
a + b x − Xt( 􏼁( 􏼁Xt

. 3
dt. (22)

In order to get the solution of equation (22), we use the
Euler–Lagrange equation to get the second-order ordinary
differential equation. +e optimal strategy satisfies the fol-
lowing equation:

3 a + b x − Xt( 􏼁( 􏼁Xt

..

− bXt

. 2
� 0. (23)

From [28], the solution of equation (23) is

a + b x − Xt( 􏼁( 􏼁
(2/3)

� C1t + C2. (24)
□

Theorem 4. -e optimal strategy from equations (17) and
(24), over all deterministic, absolutely continuous strategies
Xt, is decreasing.

Proof

C(X) � 􏽚
T

0
a + b x − Xt( 􏼁( 􏼁Xt

. 3

dt � (a + bx) 􏽚
T

0
− bXt( 􏼁Xt

. 3
dt � F(X).

(25)

Let Y � X − X∗; then, we obtain

F(X) � F Y + X
∗

( 􏼁 � (a + bx) 􏽚
T

0
− bX
∗
t − bYt( 􏼁 X

∗
t

.

+ Yt

.

􏼒 􏼓
3
dt

� (a + bx) 􏽚
T

0
− bX
∗
t − bYt( 􏼁 X

∗
t

. 3
+ 3X
∗
t

. 2
Yt

.

􏼒

+ 3X
∗
t

.

Yt

. 2
+ Yt

. 3
􏼓dt

� (a + bx) 􏽚
T

0
− bX
∗
t − bYt( 􏼁X

∗
t

. 2
dt

+(a + bx) 􏽚
T

0
− bX
∗
t − bYt( 􏼁 3X

∗
t

. 2
Yt

.

􏼒 􏼓dt

+(a + bx) 􏽚
T

0
− bX
∗
t − bYt( 􏼁 3X

∗
t

.

Yt

. 2
􏼒 􏼓dt

+(a + bx) 􏽚
T

0
− bX
∗
t − bYt( 􏼁 Yt

. 3
􏼒 􏼓dt

≥ (a + bx) 􏽚
T

0
− bX
∗
t − bYt( 􏼁X

∗
t

. 3
dt

≥ (a + bx) 􏽚
T

0
− bX
∗
t X
∗
t

. 3
􏼒 􏼓dt.

(26)

From the properties of Xt

.

, Xt

.

< 0, and integral, we get
the proof of +eorem 4.

Next, we discuss the optimal liquidation strategies when
the temporary impact function is power function and the
coefficient of temporary impact is ea+b(x− Xt). +us, the price
process is changed to be

St ≔ S
0
t + e

a+b x− Xt( ) Xt

.

􏼐 􏼑
2
, t ∈ [0, T]. (27)

□

Theorem 5. Since the temporary impact component is
h(Xt

.

) � (Xt

.

)2 and the coefficient of temporary impact
component is ea+b(x− Xt), there exists a unique strategy for
mean optimization. -e strategy is the unique solution of the
following differential equation:

3Xt

..

− bXt

. 2
� 0, (28)

with two-point boundary conditions

X0 � x,

XT � 0.
(29)

The solution of equation (6) is

a + b x − Xt( 􏼁( 􏼁
(2/3)

� C1t + C2. (30)

Proof. From equations (4) and (19), we obtain
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C(X) ≔ xS0 + 􏽚
T

0
Xt

.

Stdt,

� xS0 + 􏽚
T

0
e

a+b x− Xt( ) Xt

.

􏼐 􏼑
3
dt

� 􏽚
T

0
σXtdWt + 􏽚

T

0
e

a+b x− Xt( )Xt

. 3
dt.

(31)

+rough the properties of Ito integral and equation (5),
we have

minimizeE[C(X)] � 􏽚
T

0
e

a+b x− Xt( )Xt

. 3
dt. (32)

In order to get the solution of equation (32), we use the
Euler–Lagrange equation to get the second-order ordinary
differential equation:

3Xt

..

− bXt

. 2
� 0. (33)

+e optimal strategy satisfies equation (33). From [28],
the solution of equation (33) is

t � C1 + C2 􏽚 e
− (b/3)XtdXt. (34)

□

Theorem 6. -e optimal strategy from equations (28) and
(34), over all deterministic, decreasing, and absolutely con-
tinuous strategies x with square-integrable derivative, satisfies
X0 � x and XT � 0.

Proof

C(X) � 􏽚
T

0
e

a+b x− Xt( )Xt

. 3
dt

� (a + bx) 􏽚
T

0
− bXt( 􏼁Xt

. 3
dt � F(X).

(35)

Let Y � X − X∗; then, we obtain

F(X) � F Y + X
∗

( 􏼁 � e
(a+bx)

􏽚
T

0
e

− bX∗t − bYt( ) X
∗
t

.

+ Yt

.

􏼒 􏼓
3
dt

� e
(a+bx)

􏽚
T

0
e

− bX∗t − bYt( ) X
∗
t

. 3
+ 3X
∗
t

. 2
Yt

.

􏼒

+ 3X
∗
t

.

Yt

. 2
+ Yt

. 3
􏼓dt

� e
(a+bx)

􏽚
T

0
e

− bX∗t − bYt( )X
∗
t

. 2
dt

+(a + bx) 􏽚
T

0
e

− bX∗t − bYt( ) 3X
∗
t

. 2
Yt

.

􏼒 􏼓dt

+ e
(a+bx)

􏽚
T

0
e

− bX∗t − bYt( ) 3X
∗
t

.

Yt

. 2
􏼒 􏼓dt

+ e
(a+bx)

􏽚
T

0
e

− bX∗t − bYt( ) Yt

. 3
􏼒 􏼓dt

≥ e
(a+bx)

􏽚
T

0
e

− bX∗t − bYt( )X
∗
t

. 3
dt

≥ e
(a+bx)

􏽚
T

0
e

− bX∗t X
∗
t

. 3
dt.

(36)

From the properties of Xt

.

, Xt

.

< 0, and integral, we get
the proof of +eorem 6. □

4. Numerical Simulation

In the previous part, we give the specific forms of optimal
investment strategies for risk-neutral investors when the
temporary market impact and coefficient of temporary
market impact are a power function and an exponential
function, respectively. According to the parameter setting
method in the relevant literature, we assume that X0 � 2,
XT�3 � 0, and t ∈ [0, 3], and the values of other parameters
are shown in the figures.

From equation (13), we know that the optimal liqui-
dation has nothing to do with a. From Figure 1, we get that
the cost of trading becomes higher when b gets larger. +us,
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the investor speeds up liquidation early. From equation (24)
and Figures 2 and 3, when the temporary market impact is a
power function and the coefficient of temporary market
impact is a linear function, the investor realizes that they will
face large execution costs with bigger a and smaller b so that
they speed up liquidation early and slow down the trading
speed later. When temporary market impact is a power
function and the coefficient of temporary market impact is
an exponential function, we find that a has no effect on the
optimal liquidation. In Figure 4, the bigger b leads to in-
creased costs of execution. +erefore, in order to decrease
the costs, the investor will speed up liquidation early.

+rough numerical examples, we find that when in-
vestment conditions change, the optimal investment strategy
of risk-neutral investors is not the average of initial holdings
with respect to time. However, it changes with time and

investment environment. Since investment environment is
complicated and volatile, the purpose of this paper is to
remind risk-neutral investors that when they face the three
investment environments, and they should follow these
investment strategies to get the maximum return.

5. Conclusion

In this paper, combining the model setting of Cay and
Muhle-Karbe [25] with the review of relevant literature, we
put forward a class of optimal liquidation when the tem-
porary market impact is a power function and the coefficient
of temporary market impact is an exponential function,
respectively. +e optimal liquidation strategies satisfy the
second-order nonlinear ordinary differential equations. +e
form of optimal liquidation strategies is given. At the same
time, we discuss the properties of optimal liquidation
strategies. +rough the numerical example, we explain the
financial implications with the changed parameter. +is
paper studies the optimal liquidation strategy of investors
under three situations. In the future, more situations with
financial implications will be discussed, particularly the
fractional form of derivation with financial implications.
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In this paper, a double nonmonotone quasi-Newton method is proposed for the nonlinear complementarity problem. By using 3-
1 piecewise and 4-1 piecewise nonlinear complementarity functions, the nonlinear complementarity problem is reformulated into
a smooth equation. By a double nonmonotone line search, a smooth Broyden-like algorithm is proposed, where a single solution
of a smooth equation at each iteration is required with the reduction in the scale of the calculation. Under suitable conditions, the
global convergence of the algorithm is proved, and numerical results with some practical applications are given to show the
efficiency of the algorithm.

1. Introduction

In this paper, we consider the following nonlinear com-
plementarity problem (NCP): find x ∈ Rn such that

x≥ 0, F(x) ≥ 0, x
T
F(x) � 0. (1)

where F: Rn⟶ Rn is continuously differentiable and the
superscript T denotes the transpose operator. When F is
linear, problem (1) reduces to a linear complementarity
problem (LCP). +roughout this paper, the solution set of
problem (1), denoted by X∗, is assumed to be nonempty.

Nonlinear complementarity problems arisen in many
practical applications, for example, the KKT systems of
mathematical programming problem, the economic equi-
librium, the engineering design problem, can be reformu-
lated into the NCP [1–3].

During the past decades, various efficient numerical
algorithms are proposed to solve the NCP. One of the most
effective methods is to transform the NCP into the semi-
smooth equations (based on nonlinear complementarity
function, NCP function) so that the semismooth Newton-
type method can be deployed. +e most well-known NCP

functions are the Fischer–Burmeister function [4] (FB NCP
function) and the modified FB NCP function [5]. Sun and Qi
[6] proposed several NCP functions, investigated their
properties, and provided a numerical comparison between
the behavior of different NCP functions. Based on NCP
functions, some kinds of algorithm are designed, see, for
example, [7–11].

Another well-known class of algorithm is the smoothing
algorithm. +e main idea of smoothing algorithm is to
reformulate the NCP to smooth equations by introducing
the smoothing NCP functions. Some smoothing NCP
functions and the corresponding algorithms can be found in
[12–15].

Besides the NCP functions mentioned above, a 3-1
piecewise NCP function was proposed by Liu et al. [16],
using it to solve the inequality-constrained nonlinear op-
timization. +e advantage of the 3-1 piecewise lies in the
absence of the smoothing parameter. Motivated by the 3-1
piecewise NCP function, Su and Yang [17, 18] developed
smooth-based Newton algorithms with nonmonotone line
search for nonlinear complementarity and generalized
nonlinear complementarity problems. Different from the
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previous methods, the authors introduced independent
variable quantities to simplify the algorithm, reducing the
amount of calculation without using the smoothing
parameter.

Smoothing procedure allows one to use successful quasi-
Newton approaches, and there are many quasi Newton
methods available for the nonlinear complementarity
problems based on some smoothing functions [19–26].

In this paper, we will construct a 3-1 piecewise and 4-1
piecewise NCP functions and develop a double non-
monotone quasi Newton method to solve the nonlinear
complementarity problems. Based on the piecewise NCP
functions, the nonlinear complementarity problem is
transformed into the smooth equation. Moreover, we only
solve one smooth equation at each iteration. In order to get
the better numerical results, a double nonmonotone line
search is used by combining with the Broyden-like algo-
rithm. Consequently, the omission of the parameter μ and
the single calculation of the Jacobian matrix at each iteration
have led to the simplicity and flexibility of this approach.
Furthermore, let t � F(x) as an independent variable, which
has no relationship with x, ensures the realization of our
algorithm easier. Our algorithm is proved to be well-defined
and globally convergent under suitable conditions. At the
end of the paper, we give numerical results to prove the
effectiveness of the algorithm. +is paper is organized as
follows: the piecewise linear NCP functions are introduced
in Section 1. +e double nonmonotone line search with
quasi-Newton method is given in Section 2. In Section 3, the
convergence properties of the algorithm are presented. We
give some numerical results in Section 4, and the conclusion
is drawn in Section 5.

2. Algorithm Analysis

To describe our algorithm, we first give the definitions of
NCP function and P0 function. We assume that
F: Rn⟶ Rn is a continuously differentiable P0-function; if,
for all x, y ∈ Rn with x≠y, there exists an index i such that

xi − yi( 􏼁
T

Fi(x) − Fi(y)􏼂 􏼃≥ 0, xi ≠yi, (2)

and we regard a pair (a, b) ∈ R2 as an NCP pair if a≥ 0, b≥ 0,
and aTb � 0; a function Φ: R2⟶ R is called an NCP

function, and we have Φ(a, b) � 0 if and only if (a, b) is a
NCP pair.

In what follows, we first introduce the 3–1 piecewise
NCP function and then define a 4–1 piecewise NCP
function:

Φ(a, b) �

3a −
a
2

b
􏼠 􏼡, b≥ a> 0 or 3b> − a≥ 0;

3a −
b
2

a
􏼠 􏼡, a> b> 0 or 3a> − b≥ 0;

9a + 9b, else.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

If (a, b)≠ (0, 0), then

∇Φ(a, b) �

3 −
2a

b
􏼒 􏼓

a
2

b
2􏼠 􏼡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, b≥ a> 0, or 3b> − a≥ 0;

b
2

a
2􏼠 􏼡

3 −
2b

a
􏼠 􏼡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, a> b> 0 or 3a> − b≥ 0;

9

9

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠, else.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

We define the 4–1 piecewise linear NCP function (k is
any positive integer):

Φ( a, b ) �

k
2
a, if b≥ k|a|;

2kb −
b
2

a
􏼠 􏼡, if a>

|b|

k
;

2k
2
a + 2kb +

b
2

a
􏼠 􏼡, if a< −

|b|

k
;

k
2
a + 4kb, if b≤ − k|a|< 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

If (a, b)≠ (0, 0), then
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∇Φ(a, b) �

k
2

0

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠, if b≥ k|a|;

b
2

a
2􏼠 􏼡

2k −
2b

a
􏼠 􏼡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, if a>
|b|

k
;

2k
2

−
b
2

a
2􏼠 􏼡

2k +
2b

a
􏼠 􏼡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, if a< −
|b|

k
;

k
2

4k

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠, if b≤ − k|a|< 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DenoteH: R
2n⟶ R

2n
,

H(x, t) �
t − F(x)

Φ(x, t)

⎛⎝ ⎞⎠,

(6)

where t is a sequence in the algorithm and t � F(x) holds at
the optimal solution to NCP.

Hence, the NCP can be written as the following mini-
mization problem:

minΨ(x, t) � ‖H(x, t)‖. (7)

To get the solution of (7), we introduce the notations as
follows:

αk
i , βk

i􏼐 􏼑 �
(1, 1), (x, t) � (0, 0);

∇Φ(x, t), otherwise.
􏼨

i � 1, 2, . . . , n.Obviously, αk
i > 0andβ

k
i > 0.

(8)

Denote the Jacobian matrix of H(xk, tk) by V(xk, tk), we
get

V x
k
, t

k
􏼐 􏼑 �

− F′ x
k

􏼐 􏼑 I

diag αk
i􏼐 􏼑 diag βk

i􏼐 􏼑

⎛⎜⎝ ⎞⎟⎠. (9)

+e identity matrix of n × n, diagonal matrix whose ith
diagonal element is αk

i , and the diagonal matrix whose ith
diagonal element is βk

i are represented by I, diag(αk
i ), and

diag(βk
i ), respectively.

We use the nonmonotone line search to present Broy-
den-like method. +e search directions d and λ are obtained

by calculating a system of smooth equation, and the algo-
rithm is described in detail in Algorithm1.

3. Convergence Analysis

In this section, the global convergence properties of a
Broyden-like algorithm with 3–1 piecewise NCP function
are discussed. We give some assumptions to prove the
convergence of the algorithm.

Assumption 1

(a) Suppose F: Rn⟶ Rnis P0-function and it is con-
tinuously differentiable.

(b) On the level set of

L x
0
, t

0
􏼐 􏼑 � (x, t) ∈ R

2n
|Ψt(x, t)n≤ qΨh x

0
, t

0
􏼐 􏼑􏽮 􏽯, (10)

where F is Lipschitz continuously differentiable, namely,
there exists a constant Lsuch that for all x1, x2 ∈ Rn,

F x1( 􏼁 − F x2( 􏼁
����

����≤L x1 − x2
����

����. (11)

Remark 1 (see [27]). F(x) is P0-function, then F′(x) is
positive semidefinite.

Lemma 1. If H(x0, t0)≠ 0, then B0 � V0 is nonsingular.

Proof. Assume H(x0, t0)≠ 0. If VT
0 (u, v) � 0 for some

(u, v) ∈ R2n, where u � (u1, u2, . . . , un)T and v � (v1, v2, . . . ,

vn)T, then

− F′ x
0

􏼐 􏼑u + Iv � 0, (12)

diag α0􏼐 􏼑u + diag β0􏼐 􏼑v � 0. (13)

By the definitions of α0i and β
0
i , for all i, α0i > 0 and β0i > 0.

+erefore, diag(β0) is nonsingular. +en

v � − diag β0􏼐 􏼑􏼐 􏼑
− 1
diag α0􏼐 􏼑u. (14)

Substitute v in (12) by (14), and multiply by uT, we have

− u
T
F x

0
􏼐 􏼑u − u

T diag β0􏼐 􏼑􏼐 􏼑
− 1
diag α0􏼐 􏼑u � 0. (15)

According to the definition of P0-function, all the
principal minor determinants of F′(x) is nonnegative;
hence, F′(x) is positive semidefinite. And matrix
(diag(β0))− 1diag(α0) is positive definite. +erefore u � 0.
Together with (14), it holds that v � 0, which implies B0 is
nonsingular. □

Lemma 2. Assume that Assumption 1 holds. ,en
Φ(xk, tk)⟶ 0, as k⟶∞.

Proof. For convenience, we define ‖Φl(k)‖ � max0≤r≤m(k)− 1‖

Φk− r‖, where k − m(k) + 1≤ l(k)≤ k. When
m(k + 1)≤m(k) + 1, we have
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Φl(k+1)
�����

����� � max
0≤r≤m(k+1)− 1

Φk+1− r
�����

�����

≤ max
0≤r≤m(k)

Φk+1− r
�����

�����

� max Φl(k)
�����

�����, Φk+1
�����

�����􏼚 􏼛

� Φl(k)
�����

�����.

(16)

Which means ‖Φl(k)‖ is decreasing monotonely, and
hence, we have ‖Φl(k)‖􏽮 􏽯 convergent. Based on (c) of Al-
gorithm1, we have ‖Φl(k)‖≤ ‖Φl(l(k)− 1)‖.

By ξ ∈ (0, 1), ‖Φl(k)‖􏽮 􏽯⟶ 0(k⟶∞) holds, so
according to ‖Φk+1‖≤ ξ‖Φl(k)‖⟶ 0, the conclusion
holds. □

Lemma 3. Assume Assumption 1 holds. ,en
tk − F(xk)⟶ 0 as k⟶∞.

Proof. Define ‖tl(k) − F(xl(k))‖ � max0≤r≤m(k)− 1‖tk− r−

F(xk− r)‖, where k − M≤ l(k)≤ k. For m(k + 1)≤m(k) + 1,
we have

t
l(k+1)

− F x
l(k+1)

􏼐 􏼑
�����

����� � max
0≤r≤m(k+1)− 1

t
k+1− r

− F x
k+1− r

􏼐 􏼑
�����

�����

≤ max
0≤r≤m(k)

t
k+1− r

− F x
k+1− r

􏼐 􏼑
�����

�����

� max t
l(k)

− F x
l(k)

􏼐 􏼑
�����

�����, t
k+1

− F x
k+1

􏼐 􏼑
�����

�����􏼚 􏼛

� t
l(k)

− F x
l(k)

􏼐 􏼑
�����

�����.

(17)

From (17), ‖tl(k) − F(xl(k))‖ is decreasing in a monotone
way; then ‖tl(k) − F(xl(k))‖􏼈 􏼉is convergent.

According to (g) of Algorithm 1, ‖tl(k) − F(xl(k))‖

≤ ξ‖tl(l(k)− 10) − F(xl(l(k)− 1))‖. By ξ ∈ (0, 1), ‖tl(k)−􏼈

F(xl(k))‖}⟶ 0(k⟶∞) holds. +at means
‖tk+1 − F(xk+1)‖≤ ξ‖tl(k) − F(xl(k))‖⟶ 0 holds by Algo-
rithm1, so the conclusion is as follows. □

Lemma 4. Assume Assumption 1 holds. ,en dk⟶ 0,
λk⟶ 0, and Hk⟶ 0, as k⟶∞.

Proof. We have Φ(xk, tk)⟶ 0, [tk − F(xk)]⟶ 0, as
k⟶∞ by Lemma 2 and Lemma 3.

So, H(xk, tk)⟶ 0, as k⟶∞:

Bk

d
k

λk
⎛⎝ ⎞⎠ �

F x
k

􏼐 􏼑 − t
k

− Φ x
k
, t

k
􏼐 􏼑

⎛⎜⎝ ⎞⎟⎠ � 0. (18)

We know that Bk is nonsingular by Algorithm1. So,
dk⟶ 0, and λk⟶ 0, as k⟶∞. □

Theorem 1. Under the same condition in Lemma 4, equation
(a) of Algorithm1 has solutions, and the definition of Algo-
rithm1 is well.

Proof. On the one hand, we know B0 is nonsingular by
Lemma 1. And Bk produced by the Broyden-like iteration is
nonsingular. Hence equation (a) of Algorithm1 has one and
only one solution. On the other hand, we know
Φ(xk, tk)⟶ 0 and [tk − F(xk)]⟶ 0 as k⟶∞ by
Lemma 2 and Lemma 3. So ‖H(xk, tk)‖⟶ 0 as
k⟶∞. □

Lemma 5. Assume Assumption 1 holds, and let (xk, tk)􏼈 􏼉 be
generated sequence by Algorithm1; then (xk, tk)􏼈 􏼉 ⊂ L(x0, t0).

Proof. By induction, for k � 0, we have (x0, t0) ∈ L(x0, t0).
Assume (xk, tk) ∈ L(x0, t0); then we have
Ψ(xk, tk)≤Ψ(x0, t0). By (c) and (d) of Algorithm1, we get

Ψ x
k+1

, t
k+1

􏼐 􏼑 � Φ x
k+1

, t
k+1

􏼐 􏼑
�����

����� + t
k+1

− F x
k+1

􏼐 􏼑
�����

�����

≤ ξ max
0≤r≤m(k)− 1

Φk− r
�����

����� + t
k− r

− F x
k− r

􏼐 􏼑
�����

�����􏼒 􏼓

� ξ max
0≤r≤m(k)− 1

Ψ x
k− r

, t
k− r

􏼐 􏼑

≤Ψ x
0
, t

0
􏼐 􏼑.

(19)

So, (xk+1, tk+1) ∈ L(x0, t0). Based on the similar analysis,
it is easy to see (xk, tk)􏼈 􏼉 ⊂ L(x0, t0) for all k. □

Theorem 2. Assume Assumption 1 holds, and (xk, tk)􏼈 􏼉 is
generated by Algorithm1; then there exists an accumulation
point (x∗, t∗) of the sequence (xk, tk)􏼈 􏼉 which is solution of
NCP(1).

Proof. From Lemma 3 and Lemma 4, we know
(xk, tk)􏼈 􏼉 ⊂ L(x0, t0). By Assumption 1(b), we see that
L(x0, t0) is bounded. So, (xk, tk)􏼈 􏼉 has an accumulation
point. Suppose there exists a subsequence (xk, tk)􏼈 􏼉k∈K which
has an accumulation point (x∗, t∗). We should prove
H(x∗, t∗) � 0.

Suppose (xk, tk)􏼈 􏼉k∈K be an infinite sequence generated
by Algorithm1. By construction of the algorithm, we know
there are two types of successive iteration. Let
K1 � k|xk+1 � xk + dk, tk+1 � tk + λk

􏽮 􏽯 and K2 � k|xk+1 �􏼈

xk + ρkdk, tk+1 � tk + ρkλ
k}. We need to prove the conclu-

sion by the following two cases:

Case I: K1 is an infinite index set. Let the sequence be
(xk, tk)􏼈 􏼉k∈K1

, which satisfy (b) of Algorithm1.
+erefore,

Ψk1 ≤ ξΨk2 ≤ ξ2Ψk3 ≤ · · · ≤ ξm− 1Ψkm . (20)

+is suggests that liminfk⟶∞H(xk, tk) � 0.
Case II: K2 is an infinite index set. Let the sequence be
(xk, tk)􏼈 􏼉k∈K2

, which satisfy (f ) and (g) of Algorithm 1.

It is known that ‖Φl(k)‖ is monotone decreasing and
limk⟶∞‖Φk‖ � 0 by Lemma 2 and ‖tl(k) − F(xl(k))‖ is
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monotone decreasing and limk⟶∞‖tk − F(xk)‖ � 0 by
Lemma 3.+erefore, limk⟶∞‖H(xk, tk)‖ � limk⟶∞‖Φk‖ +

limk⟶∞‖tk − F(xk)‖ � 0 as k ∈ K2.
+erefore, the conclusion is followed. □

4. Numerical Results

In this section, some numerical results are given. We used
a personal computer with 4.0 GB memory and Intel(R)
Core(TM)i5-5200U CPU @2.20 GHz to perform all ex-
periments. We used Windows 10 as the operating system
and Matlab R2018b to write the computer codes. In the
whole experiment, the parameters used in Algorithm1
were ξ � 0.9, μ � 0.8, ξk ≡ 1, M is an integer which is
randomly selected from 2 to 5. ‖H(x, t)‖< 10− 6 was the
stop criterion.

+e number of iterations, the CPU time in seconds, and
the value of x(T)F(x) at the final iteration are are listed in
Table 1. x0 in Table 1 means the Initial point where ones
(i, 1) means the i dimension of this problem.

4.1. Some Test Problems. Examples 1–8 (NCP) are
considered.

Example 1. Consider (1), where x ∈ Rnand F(x) � Mx + q

with

M �

4 − 1

− 1 4 − 1

⋱ ⋱ ⋱

⋱ ⋱ − 1

− 1 4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

q �

− 1

− 1

⋮

− 1

− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(21)

We use x0 � (1, 1, . . . , 1)Tand t0 � (10− 3, 10− 3

, . . . , 10− 3)Tas the starting points to text this problem.

Example 2. Consider (1), where x ∈ R3, and
F(x): R3⟶ R3 given by

F(x) �

x2

x3

− x2 + x3 + 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (22)

Figure 1 is the 3D diagram of Example 2. (0, λ, 0) is an
infinite solution of this problem, where λ ∈ [0, 1]. +e initial
points x0, t0 are randomly generated, and these elements are
in the interval (0, 10).

Step 0: initialization.
Given initial point (x0, t0) ∈ R2n, μ ∈ (0, 1), ξ > 0, ξ < 1, B0 � V(x0, t0), k � 0.
Step 1: if Ψ(xk, tk) � 0, then stop. Otherwise, calculate the search direction

Bk

d

λ􏼠 􏼡 �
F(x

k
) − t

k

− Φ(x
k
, t

k
)

􏼠 􏼡. (a)

By (a), we can obtain dk and λk.
Step 2: modified linear search technique.
Step 2.1 If
Ψ(xk + dk, tk + λk)≤ ξΨ(xk, tk), (b)
‖Ψ(xk + dk, tk + λk)‖≤ ξmax0≤r≤m(k)− 1‖Ψ(xk− r, tk− r)‖, (c)
‖tk + λk − F(xk + dk)‖≤ ξmax0≤r≤m(k)− 1‖tk− r − F(xk− r)‖, (d)

where m(0) � 0, 0≤m(k)≤min m(k − 1) + 1, M{ } is a positive constant. +en, let
xk+1 � xk + dk, tk+1 � tk + λk, (e)

and go to Step 3; otherwise, go to Step 2.2.
Step 2.2: for j � 0, 1, . . . ,, check the following inequality with μj successively

‖Φ(xk + μjdk, tk + μjλk)‖≤ ξmax0≤r≤m(k)− 1‖Φ(xk− r, xk− r)‖, (f )
‖sk + μjλk − F(xk + μjdk)‖≤ ξmax0≤r≤m(k)− 1‖tk− r − F(xk− r)‖, (g)

Let jk be the smallest nonnegative integer j such that (f ) and (g) hold for μj. Set ρk: � μjk , and
xk+1 � xk + ρkdk, tk+1 � tk + ρkλ

k, (h)
and go to Step 3.
Step 3: Update Bk to get Bk+1,

Bk+1 � Bk + ξk((zk)T(yk − Bkzk)/‖zk‖2), (i)
where

zk �
x

k+1

t
k+1􏼠 􏼡 −

x
k

t
k􏼠 􏼡, yk � H(xk+1, tk+1) − H(xk, tk). (j)

Select ξk to satisfy |ξk − 1|≤ ξ and matrix Bk+1 is nonsingular.
Step 4: Let k � k + 1, go to Step 1.

ALGORITHM 1
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Example 3. Consider (1), where x ∈ R7, and
F(x): R7⟶ R7 given by

F(x) �

2x1 − x3 + x5 + 3x6 − 1

x2 + 2x5 + x6 − x7 − 3

− x1 + 2x3 + x4 + x5 + 2x6 − 4x7 + 1

x3 + x4 + x5 − x6 − 1

− x1 − 2x2 − x3 − x4 + 5

− 3x1 − x2 − 2x3 + x4 + 4

x2 + 4x3 − 1.5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (23)

Example 4. Consider (1), where x ∈ R4 and
F(x): R4⟶ R4 given by

F(x) �

x
3
1 − 8

x2 + x
3
2 − x3 + 3

x2 + x3 + 2x
3
3 − 3

x4 + 2x
3
4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (24)

Example 5 (Kojima–Shindo Problem). Consider (1), where
x ∈ R4and F(x): R4⟶ R4 given by

F(x) �

3x
2
1 + 2x1x2 + 2x

2
2 + x3 + 3x4 − 6

2x
2
1 + x1 + x

2
2 + 10x3 + 2x4 − 2

3x
2
1 + x1x2 + 2x

2
2 + 2x3 + 9x4 − 9

x
2
1 + 3x

2
2 + 2x3 + 3x4 − 3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (25)

(
�
6

√
/2, t n0q, h 0x, 7C0.5) is a degenerate solution, and

(1, 0, 3, 0) is a nondegenerate solution.

Example 6 (Modified Mathiesen Problem). Consider (1),
where x ∈ R4 and F(x): R4⟶ R4 given by

F(x) �

− x2 + x3 + x4

x1 −
4.5x3 + 2.7x4

x2 + 1

5 − x1 −
0.5x3 + 0.3x4

x3 + 1

3 − x1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (26)

Example 7. +e function f(x) is endowed with the com-
ponent as follows:

F(x) � f1(x), f2(x), . . . , fn(x)( 􏼁
T
,

fi(x) � e
xi − 1, i � 1, 2, . . . , n − 1,

fn(x) � e
xn + xn − 1.

(27)

Example 8. Consider (1), where x ∈ Rn and F(x) � Mx + q

with

M � diag
1
n

,
2
n

, . . . , 1􏼒 􏼓, q � (− 1, − 1, . . . , − 1)
T
. (28)

Table 1 shows the results of Examples 1–8 using 3-1
piecewise, 4-1 piecewise Algorithm1 and feasible direction
method, respectively. It can be seen from the table that
Algorithm1 applying 3-1 piecewise has a good solution to
all the above problems. Algorithm1 applying 4-1 piecewise
is slightly insufficient, and the feasible directionmethod has
some difficulties in solving examples above, and some of
the examples cannot be solved. Figure 2 shows how the
xTf(x) value of the three algorithms decreases as the
number of iterations increases in each specific example. We
use performance profiles [28]—distribution functions for a
performance metric—as a tool for comparing different
algorithms. We consider the comprehensive performance
of the above three algorithms in terms of CPU time,
number of iterations, and xTf(x) value. If the curve is
closer to 1, the better the ability to solve the problem
(Figure 3).

4.2. Nash Equilibrium Problem. General economic equi-
librium [29] means that total supply and total demand are
exactly equal in a price system. With the existing pro-
ductivity and technical conditions, producers get the
most profit, while consumers get the most utility when
they meet the budget constraints. +e theory of general
economic equilibrium was first put forward by the French
economist Walras. Walras believes that when the whole
economy is in equilibrium, the prices of all consumer
goods and factors of production will have a certain
equilibrium value, and their output and supply will have a
certain equilibrium quantity. It is assumed that the whole
economic system is a large and complete trading market,
and the equilibrium price system means that all com-
modities are traded in this market, and finally all com-
modities can be traded.

–10
10

8
6

4
2

1098760 543210

–50

0

5

10

15

Figure 1: Diagram of Example 2.
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Considering the competitive economic model of pro-
duction and investment, suppose H is a price system, in
which there are N kinds of commodities, we use RN to
express commodity space. For producer i, the set of pro-
duction is Yi⊆RN. For consumer j, the set of consumption is
Zj⊆RN. +e number of producers and consumers in the
system are l and k, respectively. +e total production, total
consumption, and initial commodity reserve are represented
by Yi, Zj, and λj, respectively, and the proportion of con-
sumer j in the profit of producer i is represented by ϕji.
Specially, i � 1, . . . , l; j � 1, . . . , k; and Zj, Yi, λj ∈ RN.

To describe the model better, we assume the following
definitions. In particular, Zj, Yi, and λj are independent of x.

Definition 1. Let zj ∈ Zj, yi ∈ Yi, x is the equilibrium price:

(1) For every i, the maximum profit function is x · yi.
(2) For every j, preference maximum element is zj �

zj ∈ Zj|xt · nzjq≤ hx·xλj7 + C 􏽐􏽮 l
j�1ϕji · x · yi.

(3) Economic equilibrium is defined as
􏽐

l
i�1 λi + 􏽐

l
i�1 x · yi − 􏽐

k
j�1 zj � 0.

It can be seen from Definition 1 that when price system
H reaches economic equilibrium, the demands of both
producers and consumers are satisfied and then all the
commodities of price system H are sold, that is, the com-
modities are cleared. We define the conditions for clearing
the goods as

F � 􏽘
l

i�1
λi + 􏽘

l

i�1
x · yi − 􏽘

k

j�1
zj, x≥ 0, x · F � 0. (29)

Equation (29) is not only the equilibrium state of free
allocation, but also the model of linear complementarity
problem. If Zj, Yi, and λj are related to x, (29) will become a
nonlinear complementarity problem (NCP).

Let the inverse demand function for the market be
defined by

P(Q) � 5000(1/c)
Q

− (1/c)
, (30)

where Q is the total quantity produced, P is the market price,
and c is the elasticity of demand with respect to price. Let qi

denote the output of firm i and let the total cost function for
firm i be given by

fi qi( 􏼁 � ciqi +
βi

1 + βi

􏼠 􏼡L
1/βi( )q

( βi+1( )/βi )

i ,

Fi(q) � fi
′ qi( 􏼁 − p 􏽘

n

j�1
qj − qip′􏽘

n

j�1
qj, i � 1, 2, . . . , n,

F � F1(q), F2(q), . . . , Fi(q)􏼂 􏼃.

(31)

Example 9. Data is given in Table 2.

Example 10. Data is given in Table 3.

4.3. Two-Dimensional Contact Problem. Under the condi-
tions of nonpenetration and negligible attraction between
objects, the elastic contact problem mainly requires the

Table 1: Iterations, CPU time, and xTf(x) for NCP Examples 2–6 between Algorithm1 and FDA.

Problem x0 Algorithm 1 with 3–1 piecewise Algorithm 1 with 4–1 piecewise Feasible directions algorithm
Iter CPU time xTf(x) Iter CPU time xTf(x) Iter CPU time xTf(x)

4.1

ones(100, 1)
2 0.000814 5.49E – 09 13 0.001768 1.12E – 08 5 0.004301 6.58E – 07
2 0.473808 5.69E – 08 13 1.520458 1.21E – 08 5 0.257754 − 8.81E – 14

ones(4069, 1) 3 15.640096 − 1.58E – 11 13 18.551757 1.16E – 08 5 8.556959 7.20E – 14
ones(8138, 1) 2 51.204458 4.51E – 10 13 70.145272 1.44E – 08 5 53.324527 − 1.27E – 12

(1, 1, 1)T 3 0.000235 − 1.02E – 07 8 0.000617 -5.41E – 08 10 0.000354 4.66E – 07

4.2
(10, 10, 10)T 4 0.000288 5.25E – 08 10 0.000604 3.26E – 07 13 0.000529 3.76E – 07

(1, 5, 9)T 7 0.000462 − 2.23E – 08 5 0.000742 4.64E – 07 19 0.001465 3.50E – 07
ones(7, 1) 15 0.001014 − 2.23E – 08 22 0.001768 5.53E – 07 26 0.004301 6.58E – 07

4.3 10∗ ones(7, 1) 15 0.001661 − 4.62E – 09 24 0.002366 1.05E – 08 NaN NaN NaN
10∗ rand(7, 1) 16 0.001608 − 2.14E – 09 20 0.001204 1.20E – 08 NaN NaN NaN

4.4 (1, 1, 1, 1)T 14 0.007181 − 3.11E – 08 23 0.001696 -6.07E – 07 >500∗ Inf NaN
(10, 10, 10, 10)T 145 0.019268 1.80E – 08 86 0.004996 -2.26E – 07 21 0.007137 6.12E – 07

4.5 (1, 1, 1, 1)T 13 0.00103 − 5.62E – 09 26 0.001658 4.93E – 09 36 0.001121 6.43E – 07
(1, 2, 3, 4)T 23 0.002497 − 5.65E – 07 30 0.003223 -2.75E – 08 65 0.009764 9.61E – 07

4.6 (1, 1, 1, 1)T 10 0.001351 1.52E – 08 9 0.001473 6.19E – 09 16 0.00746 3.67E – 07

4.7

ones(100, 1) 11 0.039089 − 9.29E – 11 17 0.001768 8.98E – 08 46 0.024301 8.81E – 07
ones(1024, 1) 20 1.230144 2.26E – 10 20 1.745354 -2.68E – 11 52 1.157443 7.57E – 07
ones(4069, 1) 15 25.532848 − 2.61E – 12 20 35.615797 3.61E – 10 55 50.806954 8.14E – 07
ones(8138, 1) 15 305.640096 − 4.09E – 14 20 370.126146 4.62E – 09 57 415.720027 7.56E – 07
ones(100, 1) 4 0.002064 7.41E – 07 57 0.107685 1.32E – 07 NaN NaN NaN

4.8
ones(1024, 1) 6 0.641349 5.40E – 07 407 22.002366 3.10E – 06 NaN NaN NaN
ones(4069, 1) 8 26.727794 1.87E – 06 >500∗ Inf NaN NaN NaN NaN
ones(8138, 1) 10 215.640096 5.19E – 06 >500∗ Inf NaN NaN NaN NaN
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Figure 2: Schematic diagram of the changes of xTf(x) with iteration of the three algorithms (the same initial point of ones (n, 1)).
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contact surface and the pressure of the contact surface when
two objects are pressed together. +e wheel-rail problem is a
typical elastic contact problem.

Figure 4 [31] shows the geometric structure application
of the wheel-rail contact phenomenon, where Figure 4(a)
represents the overall geometric structure showing the
forward speed V and angular velocityω of the track when the
wheel is rolling. +e track is deformed by the wheel pressure
Fw and the sleeper pressure Fs1 and Fs2. At the same time,
the wheel deforms due to the wheel-rail pressure Fr, and
Figures 4(b) and 4(c) represent the undeformed and de-
formed states, respectively.

Regarding a point (x, y) on the contact surface, if z

represents the pressure on the point, u represents the dis-
placement from the dashed line to the solid line along the
normal direction, q represents the distance of the dashed line
when the point is not deformed, and w represents its shape,
the gap between the rear wheel and the track is w � u + q.
Assume that C is the contact surface and E is the other

external area, the geometric relationship shown in Figure 4
can be abbreviated as

∀(x, y) ∈ C, w � 0, z≥ 0,

∀(x, y) ∈ E, w> 0, z � 0.
(32)

If the two-dimensional potential contact area with
contact surface is discretized, users mx × my grid is divided,
and let n represent the total number of grids; then

u � Tz, z, u ∈ R
n
, T ∈ R

n×n
, (33)

and the problem can be changed into a linear comple-
mentarity problem LCP(q, T); to find a pair w, z ∈ Rn, the
following is satisfied

w � Tz + q≥ 0, z≥ 0, z
T
w � 0, (34)

where the coefficient matrix [32] T is a Toeplitz matrix,
satisfying

Time
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Figure 3: Performance profile for Algorithm1 and feasible directions algorithm through Examples 1–8.
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T �

T0 T− 1 · · · T2− n T1− n

T1 T0 T− 1 · · · T2− n

⋮ T1 T0 ⋱ ⋮

Tn− 2 ⋮ ⋱ ⋱ T− 1

Tn− 1 Tn− 2 · · · T1 T0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (35)

Example 11. +e diagonal element Tk of the coefficient
matrix T is

Tk �
2(1 + k)

− 1.2
, k≠ 0;

2, k � 0.

⎧⎨

⎩ (36)

Example 12. +e diagonal element Tk of the coefficient
matrix T is

Tk � 2− k
, k � 0, 1, . . . , n − 1 . (37)

Example 13. +e diagonal element Tk of the coefficient
matrix T is

Tk �

19
8

􏼒 􏼓 +
1
n

􏼒 􏼓, k � 0;

− 0.5, k � 1;

0.25, k � 2;

1
16

􏼒 􏼓, k � 3;

0, else.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(38)

Table 4 shows the performance of Algorithm1 using
different piecewise methods for practical application
problems. From Figures 5 to 7, it can be seen that Algo-
rithm1 using 3-1 piecewise has a stronger ability to solve all
the above problems than Algorithm1 applying 4-1 piecewise.

Table 2: Data of Example 9.

Firm i ci Li βi

1 10 5 1.2
2 8 5 1.1
3 6 5 1
4 4 5 0.9
5 2 5 0.8

Table 3: Data of Example 10.

Firm i ci Li βi

1 5 10 1.20
2 3 10 1.00
3 8 10 0.90
4 5 10 0.60
5 1 10 1.50
6 3 10 1.00
7 7 10 0.70
8 4 10 1.10
9 6 10 0.95
10 3 10 0.75

R
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Fw

Fr Fs2

V
z

y

x
ω

(a)

Underformed
wheel surface

Separation

Under. rail surface

Penetration

z

x

(b)

Derformed
wheel surface

Rail def.

Wheel defDef. rail surface

z

x

Contact area

(c)

Figure 4: Schematic diagram of the two-dimensional contact problem [30].
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Table 4: Iterations, CPU time, and xTf(x) for problem 4.9–4.13.

Problem x0
Algorithm 1 with 3–1 piecewise Algorithm 1 with 4–1 piecewise

Iter CPU time XTF(X) Iter CPU time XTF(X)

4.9 20∗ ones(5, 1) 20 0.005197 − 1.87E − 06 23 0.00523 − 1.49E − 06
30∗ ones(5, 1) 18 0.010009 − 2.28E − 06 21 0.019381 − 3.98E − 06

4.10 20∗ ones(5, 1) 45 0.033759 3.61E − 06 43 0.050365 1.03E − 06
30∗ ones(5, 1) 55 0.05047 7.62E − 07 49 0.055852 − 1.80E − 06

4.11

ones(100, 1) 13 0.052309 1.87E − 08 15 0.089898 1.65E − 08
ones(1024, 1) 14 2.080973 − 3.66E − 09 16 2.616348 1.94E − 09
ones(4069, 1) 14 60.367315 1.05E − 09 16 68.659795 8.54E − 09
ones(8138, 1) 14 574.245627 3.05E − 09 20 682.960276 − 5.23E − 09
ones(100, 1) 14 0.058579 1.96E − 09 14 0.072436 − 5.59E − 09

4.12

ones(1024, 1) 14 2.376266 − 1.89E − 08 14 2.348159 − 4.86E − 09
ones(4069, 1) 12 53.195688 − 7.32E − 09 14 61.321038 2.96E − 12
ones(8138, 1) 17 519.846528 − 2.89E − 08 14 582.933657 3.25E − 11
ones(100, 1) 17 0.060449 1.99E − 08 19 0.0813907 4.00E − 09
ones(1024, 1) 17 2.860266 5.62E − 08 19 3.145843 8.61E − 09

4.13 ones(4069, 1) 17 74.532155 7.27E − 08 19 82.960276 − 2.45E − 09
ones(8138, 1) 21 674.226819 2.02E − 08 23 782.155632 5.12E − 09
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Figure 5: Performance profile on CPU time for Algorithm1 with different piecewise functions.
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Figure 6: Performance profile on iterations for Algorithm1 with different piecewise functions.
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5. Conclusion

In this paper, by using 3-1 and 4-1 piecewise nonlinear
complementarity problem functions, we reformulate the
nonlinear complementarity problem into smooth equations.
By using a new nonmonotone line search, a modified
smooth Broyden-like algorithm is proposed and the global
convergence of the proposed algorithm is obtained, and the
numerical tests for some practical problems show the effi-
ciency of the algorithm. How to get the local convergence
under certain conditions is worth studying in the future.
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In terms of the instability of the full-order observer for the induction motor in the low-speed regenerative mode, the low-speed
unstable region which leads to the extension of the commissioning cycle cannot be eliminated by the traditional adaptive law
which aims at good system performance. It is proposed that the feedback gain matrix can control both the unstable region and the
system performance both. To make a trade-off between the stability and performance by designing the feedback gain matrix is still
an open problem. To solve this problem, first we analyze the cause of instability and derive constraints to ensure system stability by
establishing a transfer function of the adaptive observing system for the speed. *en, with the derived constraints as the design
criteria for the feedback gain matrix, a control strategy combining the weighted adaptive law with the improved feedback gain
matrix is proposed to improve the stability at low speed. Finally, by comparing the traditional control strategy with the proposed
control strategy through simulations and experiments, we show that the proposed control strategy achieves better performance
with higher stability.

1. Introduction

*e speed-sensorless vector control system of the induction
motor abandons the photoelectric encoder and other tra-
ditional motor speed measurement devices, which reduces
the cost of the system and enhances the reliability of system
operation. At present, among speed identification methods
for the speed-sensorless induction motor, the direct calcu-
lation method [1] directly uses the mathematical model of
the induction motor for speed open-loop estimation. Al-
though the structure is simple, this method features poor
anti-interference ability and low-speed identification accu-
racy. *e model reference adaptive control method [2, 3]
takes the voltage model as an adjustable one that has a simple
principle. However, the pure integrator in the voltage model
causes DC bias and error in integral initial value, which leads
to poor performance at low speed.*e high frequency signal
injection method [4] eliminates the problem of poor low-
speed performance of the model reference adaptive control

method by taking advantage of the salient pole rotors.
However, it depends heavily on the structural design of the
motor and is not practical enough. In the adaptive full-order
observer method [5], a state equation of the rotor-flux
linkage and the stator current is established to predict the
state of the motor in real time for the induction motor. *e
difference between the estimated value and the measured
value of the stator current state is corrected and input by the
gain matrix, and the estimated state is corrected in real time
by feedback correction, thus forming a closed-loop state
estimation to improve the performance of the speed iden-
tification system.

As a widely used speed identification tool, the adaptive
full-order observer is unstable in the low-speed regenerative
mode. To address this problem, there are many works on
improving the speed identification system. In References
[5, 6], the rotor-flux linkage error is ignored in the process of
deriving the speed adaptive law using Popov’s hyperstability
theory. Although the immeasurability of the rotor-flux
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linkage is considered, when the motor runs at low speed, the
rotor-flux linkage error increases significantly, which results
in inaccurate speed identification. In Reference [7], the
rotor-flux linkage error is compensated in the adaptive law,
which improves the accuracy and dynamic performance of
the speed identification system. However, in the design of
the weight coefficient of the rotor-flux linkage error in the
scheme, filtering processing is required, which leads to an
increase in system complexity. Since the poles of the motor
model are in the left half plane of the s-plane, the model itself
is stable [8]. In Reference [9], it is proposed that the poles of
the full-order observer should be set on the left side of the
motor pole. *e scheme can improve the convergence speed
of the full-order observer to a certain extent by setting a
reasonable feedback gain matrix. However, the stability of
the low-speed regenerative mode is still not effectively
solved. In Reference [10], the transfer function of the open-
loop full-order observer is analyzed, and the unstable region
under the low-speed regenerative mode is given. In Refer-
ence [11], the regenerative instability problem is solved by
improving the feedback gain matrix, but the pole position of
the full-order observer is moved to the position close to the
origin, which reduces the convergence speed of the system.
References [12–17] provide a new idea for speed-sensorless
performance optimization at low speed, but its algorithm is
not practical due to its complexity.

In view of the shortcomings of the improved adaptive
law [5–7] and the feedback gain matrix [8–11] of the full-
order observer, an improved method combining the
adaptive law with the feedback gain matrix is proposed to
improve the dynamic performance and low-speed stability
of the system, by introducing an adaptive law compensation
method with adjustable weight coefficient and simplifying
the feedback gain matrix with low-speed stability as the
design criteria. *e feasibility and effectiveness of this
control strategy are supported by theoretical analyses and
simulations.

2. Mathematical Model of Full-Order
Observer for Induction Motor

With stator current and rotor-flux linkage of the induction
motor as state variables, the state equation of the induction
motor in the static coordinate system is given by

d

dt
x � Ax + Bus,

y � Cx.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

By formula (1), the state equation of the full-order ob-
server is obtained as follows:

d

dt
􏽢x � 􏽢A􏽢x + Bus + G(􏽢y − y),

􏽢y � C􏽢x,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(2)

where C � I 0􏼂 􏼃 is the output matrix, and the feedback gain
matrix is as follows:

G � G1 G2􏼂 􏼃
T

� g1I + g2J g3I + g4J􏼂 􏼃
T
,

A �
A11 A12

A21 A22

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ �
a11I a12I + a12′J

a21I a22I + a22′J

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦

�

δ − 1
δTr

−
Rs

δLs

􏼠 􏼡I
Lm

δLsLrTr

I −
Lmωr

δLsLr

J

Lm

Tr

I −
1

Tr

I + ωrJ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(3)

in which B �
B1
0􏼢 􏼣，B1 � (1/δLs)I，I �

1 0
0 1􏼢 􏼣,

J �
0 − 1
1 0􏼢 􏼣，δ � 1 − (L2

m/Ls Lr)，Tr � (Lr/Rr), and x �

is ψr􏼂 􏼃
T are the state variables, y � is is the output variable,

is � isα isβ􏽨 􏽩
T
is the stator current, ψr � ψrα ψrβ􏽨 􏽩

T
is the

rotor-flux linkage, us � usα usβ􏽨 􏽩
T
is the stator voltage, ωr

is the rotor speed, Rr and Rs are the rotor resistance and

stator resistance, Lr, Ls, and Lm are the rotor inductance,

stator inductance, and mutual inductance. *e superscript

“̂ ” indicates the observed value.
An error equation is obtained by subtracting the state

equation (1) of the induction motor from the state equation
(2) of the full-order observer as follows:

d

dt

ei

eψ

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ � (A + GC)

ei

eψ

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ + Δωr

0 −
J

ε

0 J

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

􏽢is

􏽢ψr

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦, (4)

where ei � is − 􏽢is, eψ � ψr − 􏽢ψr, and ε � δLsLr/Lm.
*e speed adaptive law [18] can be obtained from the

state error equation (4) by using Lyapunov stability theorem:

􏽢ωr � Kp ε1 − ε2( 􏼁 + Ki 􏽚 ε1 − ε2( 􏼁dt,

ε1 � eisα
􏽢ψrβ − eisβ

􏽢ψrα􏼒 􏼓,

ε2 � eψsα
􏽢ψrβ − eψsβ

􏽢ψrα􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(5)

Note that it is impossible to obtain actual rotor-flux
linkage, if it is assumed that the estimated flux linkage is
equal to the actual flux linkage, ε2 � 0, and the traditional
speed adaptive law is obtained:

􏽢ωr � Kpε1 + Ki 􏽚 ε1dt. (6)

When the motor operates at the medium-high speed, the
flux linkage error term is small, which has little impact on
the estimation of flux linkage when it is ignored. However,
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when the motor operates at low speed, the rotor-flux linkage
error will increase significantly, which leads to inaccurate
observation.

3. Design of Speed Adaptive Law

3.1. Observer Based on Traditional Adaptive Law. By ap-
plying Laplace transform in the state error equation (4), we
obtain

s

ei

eψ

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ � (A + GC)

ei

eψ

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦ + ΔωrJ􏽢ψr

−
J

ε

J

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7)

where s is the differential divisor.
A closed-loop system composed of the error equation

and speed adaptive link can be established by formulas (6)
and (7). *e system structure of this system is shown in
Figure 1.

As shown in Figure 1, the input of the transfer function
of the linear time-invariant forward path is ΔωrJ􏽢ψr. *e
output is the stator current error ei, and the formula below is
obtained:

G(s) �
ei

ΔωrJ􏽢ψr

. (8)

By expanding formula (7) in s domain, the following
formula is obtained:

sIei � A11 + G1( 􏼁ei + A12eψ −
Δωr

ε
J􏽢ψr,

sIeψ � A11 + G1( 􏼁ei + A12eψ − ΔωrJ􏽢ψr.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(9)

Specific expression of transfer function of the linear
time-invariant forward path is obtained by eliminating eψ in
the simultaneous equations (9):

G(s) �
s

ε
s
2
I − s A11 + G1 + A22( 􏼁 + A22 A11 + G1 +

A21 + G2

ε
􏼒 􏼓􏼢 􏼣

− 1

. (10)

To facilitate the analysis of the stability of the full-order
observer, the state error formula (7) is transformed into the
rotor-flux linkage-oriented synchronously rotating coordi-
nate system:

s
ei

eψ

⎡⎣ ⎤⎦ � A′ + GC( 􏼁
ei

eψ

⎡⎣ ⎤⎦ + ΔA′
􏽢is

􏽢ψr

⎡⎣ ⎤⎦, (11)

where A′ �
A11 − ω1J A12

A21 A22 − ω1J
􏼢 􏼣 and ΔA′ � A′ − 􏽢A′.

*e state variables are the components under synchronously
rotating coordinate systems m and t.

If the transfer function of the forward path is expressed
by G′(s) in coordinate systems m and t, formula (8) can be
transformed into the following [10]:

eism

eist
􏼢 􏼣 �

G11′ (s) G12′ (s)

G21′ (s) G22′ (s)
􏼠 􏼡

0
􏽢ψr

􏼢 􏼣Δωr. (12)

*e elements of the transfer functionG′(s)matrix can be
obtained by error equations under synchronously rotating
coordinate systems [11].

*e transfer function from m-axis component of stator
current error to speed difference is expressed by Gm

′(s). *e

transfer function from t-axis component of stator current
error to speed difference is expressed by Gt

′(s):

Gm
′ (s) �

eism

Δωr

� G12′ (s)􏽢ψr,

Gt
′(s) �

eist

Δωr

� G22′ (s)􏽢ψr.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(13)

*e adaptive law equation is obtained by transforming
the traditional adaptive law into coordinate systems m and t
by coordinate transformation, as shown in the following
equation:

􏽢ωr � − Kp + Ki 􏽚 dt􏼒 􏼓 ist − 􏽢ist􏼐 􏼑ψrm. (14)

*e structure diagram of the traditional full-order ob-
server in the synchronously rotating coordinate system can
be obtained by synthesizing equations (13) and (14), as
shown in Figure 2.

3.2. Design of Improved Speed Adaptive Law. It can be seen
from Figure 2 that the traditional adaptive full-order ob-
server is a closed-loop system with single input and single
output. In the closed-loop system, only the torque current

0
+ –

J

J
ε

1
s 0

T
Ie· e

ˆ

ˆ

ei

•

Linear steady forward channel

Nonlinear time-varying feedback channel

–

+

+

G(s)
A + GC

PI+–
ωr

ωrJψr

Figure 1: Traditional observer structure in the stationary coor-
dinate system.
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error component is involved in speed identification, and
excitation current error component is not a part of the speed
identification system.

By introducing the excitation current error component
into the traditional speed identification system, equation
(14) can be modified as follows:

􏽢ωr � − Kp + Ki 􏽚 dt􏼒 􏼓 ist − 􏽢ist􏼐 􏼑ψrm + M ism − 􏽢ism􏼐 􏼑􏽨 􏽩.

(15)

If M � Lrψst and the introduced compensation term
M(ism − 􏽢ism) is transformed into the static coordinate sys-
tem, the compensation term is approximately equal to
ε2[18]. So, it is the negligence of the flux linkage error term in
the adaptive law of the traditional speed identification
system that leads to the lack of excitation current error
component in the synchronously rotating coordinate sys-
tem, resulting in the inaccurate low-speed observation.

Considering that the actual value of rotor-flux linkage
cannot be measured in actual application, the rotor-flux
linkage error term ε2 in the static coordinate system is
transformed into detectable stator current:

ε2 � eψsα
􏽢ψrβ − eψsβ

􏽢ψrα􏼒 􏼓 � ψrα􏽢ψrβ − 􏽢ψrαψrβ

�
ψrα􏽢ψrβ − 􏽢ψrαψrβ

ψr

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 · 􏽢ψr

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

ψr

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽢ψr

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

� (cos θ sin 􏽢θ − sin θ cos 􏽢θ) ψr

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽢ψr

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � sinΔθ ψr

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽢ψr

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

(16)

where |ψr| is the rotor-flux linkage vector module value and
Δθ is the difference between the observed rotor-flux linkage
vector angle 􏽢θ and the actual rotor-flux linkage vector angle
θ.

*e rotor-flux linkage vector angle difference can be
replaced by the stator current vector angle difference [19]:

sinΔθ �
isα􏽢isβ − 􏽢isαisβ

is
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽢is
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
. (17)

By introducing equation (17) into equation (16), the
following equation is obtained:

ε2 �
isα􏽢isβ − 􏽢isαisβ

is
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 􏽢is
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
ψr

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 􏽢ψr

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � H isα

􏽢isβ − 􏽢isαisβ􏼐 􏼑, (18)

where His the weight coefficient. *e accuracy and dynamic
performance of the observer can be improved by adjusting
the H value [20]. *e typical value of parameter h can be
designed as shown in the following equation:

0<H< 0.05, ω1 < 0( 􏼁,

H � 0, ω1 ≥ 0( 􏼁.
􏼨 (19)

4. Stability Analysis and
Improvement of Observer

4.1. Analysis of the Unstable Range for Full-Order Observer.
In theory, the stability of the full-order observer can be
improved by weighting and compensating the adaptive law.
However, the commissioning cycle will be extended, and
there is a great blindness if the weight coefficient is adjusted
in real time based on open-loop observation (G � 0). In
addition, to improve the convergence speed of full-order
observer speed identification, the open-loop gain is usually
set to a large value. Considering that the root locus of the
closed-loop transfer function starts from the open-loop pole
and eventually tends to the open-loop zero point, an un-
reasonable weight coefficient will lead to a positive real part
of the open-loop zero point of the observer, which causes
instability as the closed-loop root locus of the full-order
observer tends to open-loop zero point due to the large
open-loop gain.

To analyze the unstable region of the open-loop observer
and reasonably configure the feedback gain matrix to form a
closed-loop full-order observer to eliminate the low-speed
unstable region, the transfer function (10) of the linear time-
invariant forward path can be simplified as follows:

G(s) �
s

ε
s
2
I − s(aI + bI) + cI + dI􏽨 􏽩

− 1
, (20)

where

a � − g1 +
Rr

δLr

+
Rs

δLs

,

b � − g2 − ωr,

c � −
Rr

Lr

−
Rs

δLs

+ g1 +
g3

ε
􏼠 􏼡 − ωr g2 +

g4

ε
􏼒 􏼓,

d � ωr −
Rs

δLs

+ g1 +
g3

ε
􏼠 􏼡 −

Rr

Lr

g2 +
g4

ε
􏼒 􏼓.

(21)

According to Popov’s hyperstability theorem, to ensure
the asymptotic stability of the speed identification system,
the transfer function of the linear time-invariant forward
path should be a strictly positive real function:

G(jω) + G
∗
(jω)> 0, ∀ω> 0. (22)

By introducing equation (20) and s � jω1 into equation
(20), a simplified equation is obtained:

ˆ
+
ωr ωr

–
Gt′ (s)

ist – îst –ψrm PI

Figure 2: System structure diagram of the traditional full-order
observer.
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a> 0,

ω2
1 > −

d

a
􏼠 􏼡

2

,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(23)

where ω1 is the synchronous angular frequency, so ωc �

− d/a is the critical angular frequency.
Formula (23) is the stability condition of the speed

identification system, and the constraint condition a> 0 is
naturally satisfied under open-loop observation (G � 0). If
the motor operates in the forward rotation state and the
synchronous frequency is positive, the unstable region of the
open-loop observation speed identification system is as
follows:

0<ω1 <ωc �
Rs/δLs( 􏼁

Rs/δLs( 􏼁 + Rr/δLr( 􏼁
ωr <ωr. (24)

*e relationship between the electromagnetic torque and
the speed of the induction motor is presented as follows:

Te � np

ψ2
r

Rr

ω1 − ωr( 􏼁. (25)

By introducing the boundary condition of the unstable
region into equation (25), it is obtained that

Te � − np

ψ2
r

Rr

ωr,

Te � − np

Rr/δLr

Rr/δLr + Rs/δLs

ψ2
r

Rr

ωr.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(26)

*e graph of the unstable region is plotted with elec-
tromagnetic torque and speed, as shown in Figure 3(a). *e
shaded part in the figure is the unstable region, and the
expression of the boundary line is shown in expression (26).
In this case, the actual speed is greater than the synchronous
speed and the slip frequency is negative, which means that
the motor is in the dynamic braking state (unstable state).

4.2. Stability Improvement of Full-Order Observer. From the
stability constraint expression (23), the stability of the full-
order observer is subjected to the design of the feedback gain
matrix. *e stability of the observer can be improved by
configuring a feedback gain matrix. To meet the low-speed
stability requirements of the motor operation, the critical
angular frequency ωcis set to zero. At this point, the two
boundary lines in Figure 3(a) coincide and the unstable
region disappears, as shown in Figure 3(b). *e stability
constraint can be simplified as follows:

g1 <
Rs

δLs

+
Rr

δLr

,

Rr

Lr

g2 +
g4

ε
􏼒 􏼓 � ωr −

Rs

δLs

+ g1 +
g3

ε
􏼠 􏼡.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(27)

According to this principle, the elements of the feedback
gain matrix can be configured as follows [11]:

g1 �
RsL

2
r + RrL

2
m

δLsL
2
r

− k
Rr

Lr

,

g2 � − kωr,

g3 � −
LmRr

Lr

,

g4 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)

where k is the ratio of the observer pole to motor pole.
According to this design scheme, although global sta-

bility is achieved, the observer pole position is moved to the
position close to the origin, which reduces the convergence
speed of the system.

It can be seen from expression (28) that since the
feedback gain matrix itself is time-varying and constantly
updated, complicated element design will inevitably reduce
its convergence performance. *erefore, in this paper, the
feedback gain matrix is simplified.

g1 � k
RsL

2
r + RrL

2
m

δLsL
2
r

,

g2 � 0,

g3 � −
LmRr

Lr

,

g4 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

*e final design scheme of the adaptive full-order ob-
server can be obtained by synthesizing expressions (5), (18),
and (29), as shown in Figure 4. *e design scheme not only
solves the problem of low-speed instability by reasonably
designing the gain matrix but also improves the dynamic
performance of the system by combining with the improved
weighted adaptive law.

5. System Simulations and Experiments

5.1. System Simulations. In this paper, simulation of the
decoupling vector control system of the full-order observer-
based induction motor is carried out, and the simulation
model of the control algorithm is constructed using
MATLAB/SIMULINK, as shown in Figure 5.

In the simulation model, basic parameters of the induction
motor are set as follows: uN � 380 V, PN �

3∗746W, f � 50Hz, Rs � 0.435Ω, Rr � 0.816Ω, Lm � 0.069
H, Llr � Lls � 0.002H, J � 0.01 kg·m2, andp � 2 .

Figures 6(a) and 6(b) are the speed waveforms of the
traditional full-order observer control strategy and the
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improved full-order observer control strategy at high speed.
From the speed graphs of two control strategies, in the high-
speed and no-load state, the motor speed rises steadily to
1500 r/min in 0.25 s, and the overshoot of the improved full-
order observer is lower than that of the traditional observer.
At this point, the actual speed curve and the estimated speed
curve of the two control strategies basically coincide, and
both speed identification systems can accurately track the
real speed.

In the low-speed regenerative braking mode, the given
speed is set to 100r/min and the given flux linkage to 0.9Wb.
From formula (25) we know that the critical value of power-
generating load is − 27N·m. As a result, the load applied to
the motor is set to − 30N·m.

Figure 7 is the speed waveform of the control system in
the low-speed regenerative mode. To verify the stability of
the control system under the regenerative state, the power-
generating load is used for simulation experiment. As shown
in the figure, the motor starts with no load, and then the
speed is maintained at 100 r/min. At 0.5 s, the power-gen-
erating load of − 30N·m is suddenly applied to the motor. As
the load applied exceeds the critical value, the traditional
observer enters the unstable region. *e observed speed
becomes divergent and no longer converges to the actual
speed, while the improved full-order observer converges to
the actual speed stably. *is is consistent with previous
theoretical analysis, proving that the improved full-order
observer control system has good low-speed stability.

Figure 8 shows the component diagram of rotor-flux
linkage of the control system in the low-speed regenerative
mode. When the power-generating load is suddenly applied
at 0.5 s, the flux linkage of the traditional observer diverges,
while the flux linkage of the improved full-order observer
has accurate estimation without DC bias and error in in-
tegral initial value of open-loop estimation.

Figures 9 and 10 are the speed waveforms and their
partial enlarged drawings of the improved full-order ob-
server when load is added or reduced at low speed. In the
low-speed state, the motor starts at no load and then steadily
rises to 100 r/min at low speed. At 0.4 s, the load torque of

the motor steps from 0 to − 30N·m; at 0.6 s, the load torque
steps from − 30N·m to 30N·m. In this process, the estimated
speed still tracks the actual speed in real time, showing that
the control system has good dynamic performance when the
load is added or reduced.

Figure 11(a) is the speed switch waveform at low
speed. At 0.4 s, the given speed of the control system is
stepped from 50 r/min to 30 r/min and from 30 r/min to
10 r/min at 0.6 s. In the figure, the control system not only
can operate stably at extremely low speed but also has fast
speed and small overshoot in the switching process. As
shown in Figure 11(b), after the flux linkage is stabilized,
the influence speed change is neglectable. It can be seen
that the improved control scheme not only improves the
dynamic performance but also has good low-speed
stability.

5.2. System Experiments. *e improved control algorithm is
tested on a 5 kW induction motor doubly-fed platform, as
shown in Figure 12. Motor 1 is the test motor, and Motor 2
the load motor. Some parameters of the motors in the ex-
periment are as follows: uN � 380V, PN � 5 kW,

f � 50Hz, IN � 11.1A, p � 2, nN � 1440 r/min. In the test,
Motor 1 works in the speed identification state and uses the
speed obtained from speed identification to conduct closed-
loop vector control. *e stability of the control system at low
speed is verified by observing the actual speed and estimated
speed of Motor 1.

Figure 13 shows the three-phase stator current waveform
of the induction motor at a low speed of 100 r/min. *e
three-phase stator current waveform at low speed is sym-
metrical and basically stable.

Figure 14 shows the waveform of the actual speed. When
the given speed is switched from 600 r/min to 200 r/min and
100 r/min, respectively, the dynamic performance of the
system is good during the whole process, and the motor
operation is still stable when switched to the low-speed
mode, which proves the effectiveness of the improved
control strategy.
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Figure 6: Speed waveform diagram of the control system at high speed. (a) Speed waveform of the traditional observer. (b) Improved
full-order observer speed waveform.
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6. Conclusion

In this paper, a control strategy for low-speed stability
optimization of the induction motor based on the full-
order observer is proposed. *e low-speed instability of the
full-order observer in the speed identification system is
analyzed. *e feedback gain matrix is designed to eliminate
the unstable region of the control system, and the feedback
gain matrix is simplified to improve the convergence speed.
Combined with the weighted adaptive law, the good dy-
namic and static performance of the control system is
achieved. *e simulation results show that the control
strategy can improve the stability at low speed and increase
the accuracy of speed identification.
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1-bit compressing sensing (CS) is an important class of sparse optimization problems.0is paper focuses on the stability theory for
1-bit CS with quadratic constraint. 0e model is rebuilt by reformulating sign measurements by linear equality and inequality
constraints, and the quadratic constraint with noise is approximated by polytopes to any level of accuracy. A new concept called
restricted weak RSP of a transposed sensing matrix with respect to the measurement vector is introduced. Our results show that
this concept is a sufficient and necessary condition for the stability of 1-bit CS without noise and is a sufficient condition if the
noise is available.

1. Introduction

0e standard noiseless compressing sensing (CS) model is to
solve the following optimization problem:

min ‖x‖0,

s.t. Ax � y,
(1)

where A ∈ Rm×n is a sensing (or measurement) matrix and x

is a sparse signal requiring robust reconstruction from a
given nonadaptive measurement vector y [1–4]. 0e
l0-minimization problem is well known to be NP-hard.
Hence, to overcome this difficulty, a typical treatment is
resorting to use l1-norm. Along this approach, a great deal of
algorithms is available, e.g., orthogonal matching pursuit
algorithm [5], basis pursuit algorithm [6], iterative hard
threshold algorithm [7], and iteratively reweighted least
squares algorithm [8]. Moreover, some added assumptions

have to be added on the measurement matrix A to ensure
that a sparse solution/signal could be exactly recovered by l1
minimization. 0ese conditions include restricted isometry
property [9–11], coherence condition [12], null space
property [8, 13, 14], and range space property [15, 16]. In
recent research, some work has been done concerning the
robust reconstruction condition (RRC) based on the above
traditional properties and their variants, e.g., exact recon-
struction condition [17], double null space property [18],
and null space property [19].

However, the above CS model cannot be adapted in
some practical problems; for example, in brain signal pro-
cessing and sigma-delta converters, only the sign or support
of a signal is measured.0is motivates one to consider sparse
signal recovery through low bits of measurements. An ex-
treme quantization is only one bit per measurement. It gives
rise to the theory of 1-bit compressed sensing (see Bou-
founos and Baraniuk [20]).
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In this paper, we further consider a constrained 1-bit
compressed sensing model involved by a noisy constraint.
Precisely, let A ∈ Rm×n andB ∈ Rl×n be two given full-row
rank matrices. Pick y ∈ 1, − 1, 0{ }m with, b ∈ Rl is a given
vector, and ε is a positive number. 0e constrained 1-bit
compressed sensing model is described as follows:

(P)min ‖x‖0

s.t. sign(Ax) � y,

‖b − Bx‖2 ≤ ε,

(2)

where the last term ‖b − Bx‖2 ≤ ε stands for a noisy con-
straint. 0e corresponding convex relaxed problem via
l1-norm is expressed as

min ‖x‖1,

s.t. sign(Ax) � y,

‖b − Bx‖2 ≤ ε.

(3)

Compared with the recovery of a given signal, it is
equally important to study whether the recovered signal is
stable. 0e stability of recovery means that recovery errors
stay under control even if the measurements are slightly
inaccurate and the data are not exactly sparse. Recent sta-
bility study for CS can be found in [21–25]. However, few
theoretical results are available on the stability of 1-bit CS. In
general, it is impossible to exactly reconstruct a sparse signal
by only using 1-bit information. For example, if
sign (Ax∗) � (1, 1), then any sufficiently small perturbation
x∗ + v is also positive and hence satisfies the requirement.
Hence, we turn our attention to recover part of the infor-
mation in 1-bit CS, such as support set or sign of a target
signal. Due to this reason, the following criterion,

x

‖x‖2
−

x∗

x∗‖ ‖2

��������

��������2
≤Δ, (4)

where x≠ 0 and x∗ ≠ 0 and Δ denotes a sufficient small
positive scalar and has been widely used in the 1-bit CS
literature. Inspired by this observation, the problem (1) is
said to be stable for noisy reconstruction, if for any nonzero
vector x ∈ Rn, there is a nonzero solution x∗ of (3) such that

x

‖x‖2
−

x∗

x∗‖ ‖2

��������

��������2
≤ τ(x) C1σk(x)1 + C2ε( 􏼁, (5)

where C1 and C2 are constant depending on the primal
problem data (A, y, ε, B, b). If ε � 0 and x is k-sparse, then
the right side of (5) is zero and hence x/‖x‖2 � x∗/‖x∗‖2,
which in turn implies that sign(x) � sign(x∗); i.e., the sign
of target signals can be exact recovery.

0e main target of this paper is to study the necessary and/
or sufficient condition for (5). First, a new definition called
restricted weak RSP with respect to y is introduced. Our results
show that, for 1-bit CS, this condition is sufficient and necessary
condition for stability if there is no noise, while it is sufficient if
the noise is available.0e analysis is based on the duality theory
of linear programming and the fact that the ball constraint can
be approximated by polytopes to any level of accuracy.

0e notations used in this paper are standard. Let Rn
+ be

the set of nonnegative vectors in Rn. Given a set S, |S|

denotes the cardinality of S. 0e l0-norm ‖x‖0 counts the
number of nonzero components of x, and the l1-norm of x is
defined as ‖x‖1 ≔ 􏽐

n
i�1 |xi|. Let e stand for a vector of ones,

i.e., e � (1, . . . , 1)T. For a vector x, write x+ ≔ max x, 0{ }

and x− ≔ max − x, 0{ }. For any two norms ‖ · ‖p and ‖ · ‖q

with p, q≥ 1, the induced matrix norm ‖A‖p⟶q is defined as
‖A‖p⟶q ≔ max‖x‖p ≤ 1‖Ax‖q. A convex combination be-
tween the points x1 and x2 is written as [x1, x2], i.e.,

x1, x2􏼂 􏼃 ≔ λx1 +(1 − λ)x2
􏼌􏼌􏼌􏼌 λ ∈ [0, 1]􏽮 􏽯. (6)

Given a vector y � 1, − 1, 0{ }m, let

J+(y) ≔ i: yi � 1􏼈 􏼉,

J− (y) ≔ i: yi � − 1􏼈 􏼉,

J0(y) ≔ i: yi � 0􏼈 􏼉.

(7)

0e sign function is defined as

sign (t) ≔

1, t> 0,

− 1, t< 0,

0, t � 0,

⎧⎪⎪⎨

⎪⎪⎩
(8)

and sign (x)i ≔ sign (xi) where x ∈ Rn and i � 1, . . . , n. 0e
projection of x onto a convex set S is denoted by πS(x), i.e.,
πS(x) ≔ argminz∈S‖x − z‖2. Denote by (S1 ∪ S2)

c the
complement of S1 ∪ S2 in 1, 2, . . . , n{ }. 0e error of the best
k-term approximation of a vector x is defined as

σk(x)1 ≔ inf
u

‖x − u‖1: ‖u‖0 ≤ k􏼈 􏼉. (9)

0e Hausdorff metric of two sets M1, M2 ⊆ R
n is

d
H

M1, M2( 􏼁 ≔ max sup
x∈M1

inf
z∈M2

‖x − z‖2, sup
x∈M2

inf
z∈M1

‖x − z‖2
⎧⎨

⎩

⎫⎬

⎭.

(10)
Robinson’s constant is defined as follows:

σα1 ,α2 M′, M″( 􏼁 ≔ max
N⊆ 1,...,m{ }

μα1 ,α2

IN 0

− I 0
􏼢 􏼣,

M′

M″
⎡⎣ ⎤⎦

T

⎛⎝ ⎞⎠,

(11)
where

μα1 ,α2(P, Q) ≔ max
‖(b,d)‖α2 ≤ 1,(b,d)∈F

min
z∈Rq

‖z‖α1: Pz≤ b, Qz � d􏽮 􏽯􏼒 􏼓,

F ≔ (b, d) | Pz≤ b, Qz � d for some z ∈ Rq
􏼈 􏼉.

(12)

2. Reformulation and Approximation of (3)

0e 1-bit CS is NP-hard and hence is difficult to solve
precisely. It motivates us to reformulate the 1-bit CS
problem by removing the sign function. 0e advantage of
such a reformulation is yielding a decodingmethod based on
the theory of linear programming.
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Given sign measurements y ∈ − 1, 1, 0{ }m, denote by
A+, A− , andA0 the submatrices of A in which their rows are
corresponding to index sets J+(y), J− (y), and J0(y), re-
spectively. For simplification of notations, we simply use J+,
J0, and J− to denote J+(y), J0(y), and J− (y), respectively. In
the following analysis, we always assume that J+ ∪ J− ≠∅
because otherwise y � 0, and nothing is measured in this
case.

0e constraint sign (Ax) � y can be rewritten equiva-
lently as

sign A
+
x( 􏼁 � eJ+

,

sign A
−

x( ) � − eJ−
,

sign A
0
x􏼐 􏼑 � 0.

(13)

By rearranging the order of the components of y and the
order of the associated rows of A if necessary, we may as-
sume without loss of generality that

A �

A
+

A
−

A
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

y �

eJ+

− eJ−

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(14)

It is clear that

x|A
+
x> 0, A

−
x< 0, A

0
x � 0􏽮 􏽯 � ∪

α>0
x | A

+
x≥ αe, A

−
x≤ − αe, A

0
x � 0􏽮 􏽯. (15)

In fact, the inclusion “⊇” is clear. For “⊆,” take x sat-
isfying A+x> 0, A− x< 0, A0x � 0. Define

α ≔ min Aix, − Ajx
􏼌􏼌􏼌􏼌􏼌 i ∈ J+, j ∈ J−􏼚 􏼛. (16)

Clearly, α> 0. 0us, Aix≥ α for all i ∈ J+ and − Ajx≥ α
for all j ∈ J− ; i.e., A+x≥ αe and A− x≤ − αe. 0erefore,

x ∈ ∪
α>0

x | A
+
x≥ αe, A

−
x≤ − αe, A

0
x � 0􏽮 􏽯. (17)

For any fixed α> 0, define the following relaxed problem
(denoted by α-problem for short),

min ‖x‖1

s.t. A
+
x≥ αeJ+

, A
−

x≤ − αeJ−
, A

0
x � 0,

‖b − Bx‖2 ≤ ε.

(18)

0e formula (15) shows thatF � ∪ α>0Fα, whereF and
Fα denote the feasible region of the primal problem and the
relaxed problem, respectively. In addition, Fβ⊆Fα as long
as β≥ α. 0us,

F � ∪
α> 0

Fα⊆ lim
α⟶0+

Fα � clF, (19)

where the limit is in the sense of the Painlevé–Kuratowski.

Proposition 1. A vector x∗ is an optimal solution of primal
problem (P) if and only if x∗ is an optimal solution of
β-problem for all β ∈ (0, α], where
α ≔ min Aix

∗, − Ajx
∗ | i ∈ J+, j ∈ J−􏽮 􏽯.

Proof. “⇒.” 0e construction of α ensures that
A+x∗ ≥ αe, A− x∗ ≤ − αe, andA0x∗ � 0. Hence, for ∀β≤ α,

A
+
x
∗ ≥ αe≥ βe,

A
−

x
∗ ≤ − αe≤ − βe,

A
0
x
∗

� 0,

(20)

i.e., x∗ is a feasible solution of β-problem. Since x∗ is an
optimal solution of the primal problem, x∗ is the optimal
solution of β-problem due to Fβ ⊂ F by (15).

“⇐.” Let 􏽥x∗ be an optimal solution of the primal
problem. Take β ∈ (0, 􏽥α) where 􏽥α ≔ min α, α′􏼈 􏼉 and
α′ ≔ min Ai􏽥x

∗, − Aj􏽥x∗ | i ∈ J+, j ∈ J−􏽮 􏽯. 0en, 􏽥x∗, x∗ ∈Fβ
due to the monotonicity of Fα with respect to α. By as-
sumption, x∗ is an optimal solution of β-problem. Since
􏽥x∗ ∈ Fβ and is an optimal solution of the primal problem,
then x∗ is an optimal solution of the primal problem.

Denote by T∗ and T∗α the optimal solution set of (3) and
(18), respectively. Following the similar argument as above,
we can obtain the following result. □

Corollary 1. 7ere exists α> 0 such that T∗β ⊆T∗ for all
β ∈ (0, α].

0e problem (18) by introducing the slack variables r

and s can be rewritten equivalently as

min
x,r,s

‖x‖1

s.t. A
+
x≥ αeJ+

, A
−

x≤ − αeJ−
, A

0
x � 0, s≤ ε, r ∈ sB, r � b − Bx, s≥ 0,

(21)

Mathematical Problems in Engineering 3



where B stands for the unit l2-ball, i.e.,
B ≔ z ∈ Rm: ‖z‖2 ≤ 1􏼈 􏼉. According to the convex set sepa-
rate theorem, the set B can be described as an intersection of
an infinite number of half spaces, i.e.,

B � ∩
‖a‖2�1

z ∈ Rm
: a

T
z≤ 1􏽮 􏽯. (22)

Define

Eα ≔ (x, s): s≤ ε, A
+
x≥ αeJ+

, A
−

x≤ − αeJ−
, A

0
x � 0, s≥ 0􏽮 􏽯.

(23)

Notice that

T
∗
α � x: ‖x‖1 ≤ θ

∗
α , r ∈ sB, r � b − Bx, (x, s) ∈ Eα􏼈 􏼉, (24)

where θ∗α denotes the optimal value of (18). Replacing B in
(24) by a polytope P⊇B yields a relaxation of T∗α , called TP

α ,
i.e.,

T
P
α ≔ x: ‖x‖1 ≤ θ

∗
α , r ∈ sP, r � b − Bx, (x, s) ∈ Eα􏼈 􏼉. (25)

0e following lemma claims that the polytope TP can
approximate T∗ to any level of accuracy, as long as P is
chosen suitably.

Lemma 1 (see [25], Corollary 6.5.2). For any ε> 0, there
exists a polytope approximation P of B satisfying P⊇B and

d
H

T
∗
α , T

P
α􏼐 􏼑≤ ε. (26)

In the remainder of the paper, we fix ε> 0 and choose a
polytope P such that TP

α and T∗α satisfying (26). 0e polytope
can be described as an interaction of a finite number of half
spaces:

P ≔ z ∈ Rl
: a

i
􏼐 􏼑

T
, z≤ 1, i ∈ 1, . . . , L􏼚 􏼛, (27)

where ai for i ∈ 1, . . . , L are some unit vectors (i.e., ‖ai‖2 � 1)
and L is an integer number. For the convenience in the
following analysis, we further add 2l half spaces

βj
􏼐 􏼑

T
z≤ 1,

− βj
􏼐 􏼑

T
z≤ 1,

⎧⎪⎨

⎪⎩
j � 1, . . . , l, (28)

to P, where βj is the j-th column of the l × l identity matrix.
0is yields the following polytope:

P0 ≔ P∩ z ∈ Rl
: βj

􏼐 􏼑
T
z≤ 1, − βj

􏼐 􏼑
T
z≤ 1, j � 1, . . . , l􏼚 􏼛

� z ∈ Rl
:

a
i

􏼐 􏼑
T
z≤ 1, i ∈ 1, . . . , L;

βj
􏼐 􏼑

T
z≤ 1, j � 1, . . . , l;

− βj
􏼐 􏼑

T
z≤ 1, j � 1, . . . , l.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(29)

Denote by Ω the collection of the vectors ai and ±βj in
P0, i.e.,

Ω ≔ a
i
: i ∈ 1, . . . , L􏽮 􏽯∪ ±βj

: j ∈ 1, . . . , l􏽮 􏽯. (30)

Clearly, P0 still satisfies (26), i.e.,

d
H

T
∗
α , T

P0
α􏼐 􏼑≤ ε. (31)

Let N ≔ |Ω| and let MP0
be the matrix with column

vectors in Ω. 0us, P0 can be written as

P0 � z ∈ Rl
: MP0

􏼐 􏼑
T
z≤ e

N
􏼚 􏼛, (32)

where eN is the vector of one’s in RN.
By replacing B by the above P0, we obtain the following

approximation of (3):

min
x

‖x‖1: b − Bx ∈ εP0, A
+
x≥ αeJ+

, A
−

x≤ − αeJ−
, A

0
x � 0􏽮 􏽯,

(33)

and the solution set of (33) is

T
P0
α􏼐 􏼑
∗

� x: ‖x‖1 ≤ θP0
α􏼐 􏼑
∗

, b − Bx ∈ εP0, A
+
x≥ αeJ+

, A
−

x≤ − αeJ−
, A

0
x � 0􏽮 􏽯

� x: ‖x‖1 ≤ θP0
α􏼐 􏼑
∗

, r ∈ sP0, r � b − Bx, (x, s) ∈ Eα􏽮 􏽯,
(34)

where (θP0
α )∗ denotes the optimal value of (33). Since B⊆P0,

then

θ∗α ≥ θP0
α􏼐 􏼑
∗

,

T
P0
α􏼐 􏼑
∗
⊆T

P0
α ,

T
∗
α⊆T

P0
α .

(35)

3. Stability Analysis

0e concept of range space property (RSP for short) was
first introduced in [15] to develop a necessary and suf-
ficient condition for uniform recovery of sparse signals
via l1-minimization. It was extended in [26] to weak RSP
for developing stability theory of convex optimization
algorithms. Recently, restricted RSP (RRSP) was
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introduced to develop sign recovery condition for sparse
signals through 1-bit measurement in [16, 25].

Definition 1 (weak RSP). Given a matrix A ∈ Rm×n, the
transposed matrix AT is said to possess the weak RSP
order k, if for any two disjoint sets S1, S2 ⊆ 1, . . . , n{ } with
|S1| + |S2|≤ k, there exists a vector η ∈R(AT) such that

ηi � 1, for i ∈ S1,

ηi � − 1, for i ∈ S2,

ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1 for i ∉ S1 ∪ S2.

(36)

To investigate the stability of 1-bit compressed sensing
involved noise constraints, the notion of weak RSP is needed
to be extended to the following restricted weak RSP with
respect to y.

Definition 2 (restricted weak RSP with respect to y). Given
matrices A ∈ Rm×n, B ∈ Rl×n, and y ∈ − 1, 1, 0{ }m, the pair
(AT, BT) is said to satisfy the restricted weak RSP of order k

with respect to y, if for any disjoint subsets S1, S2 of 1, . . . , n{ }

with |S1| + |S2|≤ k, there exists η ∈R(AT, BT) such that

η � A
T

, B
T

􏼐 􏼑
w

h
􏼠 􏼡, (37)

where w � (w(1), w(2), w(3))T ∈ R|J+|
+ × R|J− |

− × R|J0|, h ∈ Rl,
and

ηi � 1, for i ∈ S1,

ηi � − 1, for i ∈ S2,

ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1, for i ∉ S1 ∪ S2.

(38)

Theorem 1. Let A ∈ Rm×n and B ∈ Rl×n be given matrices
and b ∈ Rl. Suppose that, for any given vector
y ∈ sign(Ax) | ‖x‖0 ≤ k􏼈 􏼉, the following holds: for any x ∈ Rn

satisfying y � sign (Ax), there is a solution x∗ of

min
x

‖x‖1,

s.t. A
+
x≥ αeJ+

, A
−

x≤ − αeJ−
, A

0
x � 0,

Bx � b,

(39)

where α> 0 and A+, A0, andA− are submatrices of A in
which their rows are corresponding to index sets J+(y), J− (y),
and J0(y), such that

x

‖x‖2
−

x∗

x∗‖ ‖2

��������

��������2
≤Cσk(x)1. (40)

Here, C is a constant dependent only on the problem
data (A, B, y, b). 0en, (AT, BT) must satisfy the restricted
weak RSP of order k with respect to y.

Proof. Let (S1, S2) be any pair of disjoint subsets of
1, . . . , n{ } with |S1| + |S2|≤ k. To prove that (AT, BT) satisfies
the restricted weak RSP of order k with respect to y, it is
sufficient to show that there exists a vector η ∈R(AT, BT)

such that

η � A
T
, B

T
􏼐 􏼑

w

h
􏼠 􏼡, (41)

where w ≔ (w(1), w(2), w(3))T ∈ R|J+|
+ × R|J− |

− × R|J0|, h ∈ Rl,
and

ηi � 1, for i ∈ S1;

ηi � − 1, for i ∈ S2;

ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1, for i ∉ S1 ∪ S2.

(42)

Take a k-sparse vector 􏽢x in Rn. Define

S1 ≔ i: 􏽢xi > 0􏼈 􏼉,

S2 ≔ i: 􏽢xi < 0􏼈 􏼉.
(43)

Let y ≔ sign (A􏽢x). By assumption, there is a solution x∗

of (39) such that

􏽢x

‖􏽢x‖2
−

x∗

x∗‖ ‖2

��������

��������2
≤Cσk(􏽢x)1. (44)

Since 􏽢x is k-sparse, then σk(􏽢x)1 � 0, which in turn
implies 􏽢x/‖􏽢x‖ � x∗/‖x∗‖. So, sign (􏽢x) � sign (x∗). 0is, to-
gether with (43), implies that

i: x
∗
i > 0􏼈 􏼉 � S1,

i: x
∗
i < 0􏼈 􏼉 � S2,

i: x
∗
i � 0􏼈 􏼉 � S1 ∪ S2( 􏼁

c
.

(45)

Since x∗ is a solution of linear programming (39), then
KKT conditions hold; i.e., there exist
w � (w(1), w(2), w(3))T ∈ R|J+| × R|J− | × R|J0| and h ∈ Rl

such that

η ≔

A+

A−

A0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

w + B
T
h ∈z x

∗����
����1, (46)

where z‖x∗‖1 is the subgradient of the l1-norm at x∗, i.e.,
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z x
∗����
����1 � v ∈ Rn

:

vi � 1, forx
∗
i > 0;

vi � − 1, forx
∗
i < 0;

vi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

(47)

Hence, (46) ensures that

ηi � 1, for x
∗
i > 0;

ηi � − 1, for x
∗
i < 0;

ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1, for x

∗
i � 0.

(48)

0is together with (45) means that η � ATw + BTh

satisfies (42). Since S1 and S2 are arbitrary disjoint subsets of
1, . . . , n{ } with |S1| + |S2|≤ k, we conclude that (AT, BT)

satisfies the restricted weak RSP of order k with respect to y.
We now further show that the restricted weak RSP with

respect to y is a sufficient condition for (3) to be stable.

Firstly, for the approximation problem (33), let us introduce
variables t, s to yield the following equivalent form:

min
(x,t,s)

e
T
t,

s.t.

x + t≥ 0, − x + t≥ 0,

− s≥ − ε, M
T
P0

Bx + se
N ≥M

T
P0

b,

A
+
x≥ αeJ+

, A
−

x≤ − αeJ−
,

A
0
x � 0, (t, s)≥ 0.

(49)

Recall that the solution set of (49) is given as (34). 0e
above optimization problem is a linear programming
problem, and the dual problem can be written as

max
w

− εw3 + b
T
MP0

w4 + αe
T
J+

w5 − αe
T
J−

w6,

s.t.

w1 − w2 + B
T
MP0

w4 + A
+

( 􏼁
T
w5 + A

−
( )

T
w6 + A

0
􏼐 􏼑

T
w7 � 0,

w1 + w2 ≤ e, − w3 + e
N

􏼐 􏼑
T
w4 ≤ 0,

w1, w2 ∈ R
n
+, w3 ∈ R+, w4 ∈ R

N
+ , w5, w6, w7( 􏼁 ∈ R+

J+| | × R
J−| |
− × R

J0| |.

(50)

According to the dual theory on linear programming, the
solution of (49) can be characterized by KKTconditions. □

Lemma 2. x∗ is a solution to the problem (33) if and only if
(x∗, t∗, s∗, w∗) ∈ Θ, where

Θ ≔ (x, t, s, w)

− x − t≤ 0, x − t≤ 0, s≤ ε, − M
T
P0

Bx − se
N ≤ − M

T
P0

b;

− A
+
x≤ − αeJ+

, A
−

x≤ − αeJ−
, A

0
x � 0;

w1 − w2 + B
T
MP0

w4 + A
+

( 􏼁
T
w5 + A

−
( )

T
w6 + A

0
􏼐 􏼑

T
w7 � 0;

w1 + w2 ≤ e, − w3 + e
N

􏼐 􏼑
T
w4 ≤ 0;

e
T
t � − εw3 + b

T
MP0

w4 + αe
T
J+

w5 − αe
T
J−

w6;

(t, s)≥ 0, wi ≥ 0, i � 1, . . . , 5, w6 ≤ 0.

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(51)
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For the convenience of notations, the set in (51) can be
written equivalently as

Θ � z � x, t, s, w{ } | M′z≤p, M″z � q􏼈 􏼉, where

p ≔ 0, 0, ε, − M
T
P0

b, − αeJ+
, − αeJ−

, e, 0, 0, 0, 0, 0, 0, 0, 0, 0􏼐 􏼑
T
,

q ≔ (0, 0, 0)
T
,

(52)

M′ ≔

D1 0
0 D2

D3 0
0 D4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

M″ ≔ M
∗
, M
∗∗

􏼂 􏼃,

(53)

D1 ≔

− I − I 0
I − I 0
0 0 1

− M
T
P0

B 0 − e
N

− A
+ 0 0

A
− 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D2 ≔
I I 0 0 0 0 0
0 0 − I e

N
􏼐 􏼑

T
0 0 0􏼢 􏼣,

D3 ≔
0 − I 0
0 0 − I

􏼢 􏼣,

D4 ≔

− In 0 0 0 0 0 0
0 − In 0 0 0 0 0
0 0 − 1 0 0 0 0
0 0 0 − IN 0 0 0
0 0 0 0 − I J+| | 0 0
0 0 0 0 0 I J−| | 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

M
∗ ≔

A
0 0 0
0 0 0
0 e

T 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

M
∗∗ ≔

0 0 0 0 0 0 0
I − I 0 B

T
MP0

A
+

( 􏼁
T

A
−

( )
T

A
0

􏼐 􏼑
T

0 0 ε − b
T

MP0
− α eJ+􏼐 􏼑

T
α eJ−􏼐 􏼑

T
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(54)

0e following two lemmas play a key role to establish the
stability theory on 1-bit CS problem.

Lemma 3 (Hoffman’s error bound). Let M′ ∈ Rm×q and
M″ ∈ Rl×q be given matrices and

F ≔ z ∈ Rq
: M′z≤p, M″z � q􏼈 􏼉. (55)

For any vector x in Rq, there is a point x∗ ∈F such that

x − x
∗����
����2 ≤ σ∞,2 M′, M″( 􏼁

M′x − p( 􏼁
+

M″x − q

⎛⎝ ⎞⎠

����������

����������1

, (56)

where the constant σ∞,2(M′, M″) is referred to as Rob-
inson’s constant defined by M1 and M2.

Hoffman’s error bound indicates that, for a linear system
F, the distance from a point in space toF can be measured
in terms of Robinson’s constant and quantity of the linear
system being violated at this point.

Lemma 4 (see [25], Lemma 6.2.2). Given three convex
compact sets T1, T2, and T3 satisfy T1⊆T2 and T3⊆T2, then

x − πT1
(x)

�����

�����2
≤ d

H
T1, T2( 􏼁 + 2‖x − z‖2, ∀x ∈ R

n
, z ∈ T3.

(57)

Inspired by [25, 26], we obtain the following result,
which states that the restricted weak RSP with respect to y is
a sufficient condition for the l1-minimization (3) to be stable
in sparse vector recovery.

Theorem 2. Let the problem data (A, B, ε, b, y) is given as (3)
and rank (A; B) � m + l. Let ε′ > 0 be any prescribed small
number, and let P0 be the polytope given in (29) satisfying
(26). If CT � (AT, BT) satisfies the restricted weak RSP of
order k with respect to y, then for any nonzero x ∈ Rn, there is
an optimal solution x∗ of (3) such that

x

‖x‖2
−

x∗

x∗‖ ‖2

��������

��������2

≤ τ(x) ε′ + 2c 2σk(x)1􏼈( + c ‖Bx − b‖1 +‖Ax − αy‖1 + ε( 􏼁 + ‖b − Bx‖2 − ε( 􏼁
+

+ − A
+
x + αeJ+

􏼐 􏼑
+

�����

�����1
+ A

−
x + αeJ−

􏼐 􏼑
+

�����

�����1
+ A

0
x

����
����1􏽯􏼑,

(58)
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where α> 0 is sufficient small, c ≔ ‖(CCT)− 1C‖∞⟶ 1,
c ≔ σ∞,2(M′, M′′) is the Robinson constant with (M′, M″)
given in (53), and

τ(x) ≔

2
x − x
∗����
����2

, if 0 ∈ x, x
∗

􏼂 􏼃,

1
dist 0, x, x

∗
􏼂 􏼃( 􏼁

, if 0 ∉ x, x
∗

􏼂 􏼃.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(59)

In particular, if x is a feasible solution of (3), then there is
an optimal solution x∗ of (1) such that

x

‖x‖2
−

x∗

x∗‖ ‖2

��������

��������2
≤ τ(x) ε′ + 2c 2σk(x)1 + c ‖Bx − b‖1 +‖Ax − αy‖1 + ε( 􏼁􏼈 􏼉( 􏼁. (60)

Proof. Let x ∈ Rn be an arbitrary nonzero vector and P0 be
the fixed polytope given in (29) satisfying (26) in Lemma 1.
0e proof is divided into the following four steps. □

Step 1. (t, s, w). 0e first step is to construct t, s, w. Con-
structing (t, s). Let

t ≔ |x|,

s ≔ MP0
􏼐 􏼑

T
(b − Bx)

������

������∞
.

(61)

0e choice of (t, s) ensures

(− x − t)
+

� 0,

(x − t)
+

� 0,

M
T
P0

(b − Bx) − e
N

s􏼐 􏼑
+

� 0.

(62)

Let S be the support set of the k largest components of
|x|. Define

S1 ≔ i: xi > 0, i ∈ S􏼈 􏼉,

S2 ≔ i: xi < 0, i ∈ S􏼈 􏼉.
(63)

Clearly, S1 ∩ S2 � ∅ and S � S1 ∪ S2 with
|S1 ∪ S2| � |S|≤ k. Let S3 be the complementary set of S.
Hence, S1, S2, and S3 are disjoint. Since CT � (AT, BT)

satisfies the restricted weak RSP of order k with respect to y,
there exists a vector η ∈ R(AT, BT) such that

η � A
T
h
∗

+ B
T
v
∗ (64)

for some h∗ � (h∗1 , h∗2 , h∗3 )T ∈ R|J+|
+ × R|J− |

− × R|J0|, v∗ ∈ Rl,
and

ηi � 1, for i ∈ S1,

ηi � − 1, for i ∈ S2,

ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1, for i ∈ S3.

(65)

Now, we construct a dual feasible solution
w � (w1, . . . , w7).

Constructing (w1, w2, w3). Set w1, w2, and w3 as follows:

w1( 􏼁i ≔

0, i ∈ S1,

1, i ∈ S2,

ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − ηi􏼐 􏼑

2
, i ∈ S3,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w2( 􏼁i ≔

1, i ∈ S1,

0, i ∈ S2,

ηi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + ηi􏼐 􏼑

2
, i ∈ S3,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w3 ≔ v
∗����
����1.

(66)

Hence, (w1, w2) satisfies

w1 + w2 ≤ e,

w2 − w1 � η,

w1, w2 ≥ 0.

(67)

Constructing w4. We assume, without loss of generality,
that the first l columns in MP0

are βj(j � 1, . . . , l) and the
second l columns of MP0

are − βj (j � 1, . . . , l). 0e com-
ponent of w4 is assigned as follows:

w4( 􏼁j ≔ v
∗
j , if v

∗
j > 0, j � 1, . . . , l;

w4( 􏼁j+l ≔ − v
∗
j , if v

∗
j < 0, j � 1, . . . , l;

w4( 􏼁j ≔ 0, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(68)

It follows from the choice of w3 andw4 that
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MP0
w4 � v

∗
,

w4
����

����1 � v
∗����
����1,

w4 ≥ 0,

(69)

− w3 + e
N

􏼐 􏼑
T
w4􏼒 􏼓

+

� − v
∗����
����1 + e

N
􏼐 􏼑

T
w4􏼒 􏼓

+

� − v
∗����
����1 + w4

����
����1􏼐 􏼑 � 0.

(70)

Constructing (w5, w6, w7). Let (w5, w6, w7) ≔ h∗.
Clearly, (w5, w6, w7) ∈ R

|J+|
+ × R|J− |

− × R|J0|.
With the above choice of w � (w1, . . . , w7), it follows

from (64)–(70) that

w1 − w2 + B
T
MP0

w4 + A
+

( 􏼁
T
w5 + A

−
( )

T
w6 + A

0
􏼐 􏼑

T
w7 � 0;

w1 + w2 − e( 􏼁
+

� 0, − w3 + e
N

􏼐 􏼑
T
w4􏼒 􏼓

+

� 0;

t
−

� 0, s
−

� 0, wi( 􏼁
−

� 0, i � 1, . . . , 5, w6( 􏼁
+

� 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(71)

Step 2. Calculating ‖x − x‖2, where x is a solution of (33) for
α ∈ (0, 􏽥α), and 􏽥α satisfies Tβ

∗ ⊆T∗ for all β ∈ (0, 􏽥α) as re-
quired in Corollary 1.

Define

Λ ≔ e
T
t + εw3 − b

T
MP0

w4 − αe
T
J+

w5 + αe
T
J−

w6,

Υ ≔ (s − ε)+
.

⎧⎨

⎩ (72)

For (x, t, s, w) where (t, s, w) is constructed as above,
Lemma 3 ensures the existence of (x, ttn, qsh,w) ∈ Θ such
that

x

t

s

w

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

x

t

s

w

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�������������������

�������������������2

≤ c

Λ

Υ

− A+x + αeJ+
􏼐 􏼑

+

A− x + αeJ−
􏼐 􏼑

+

A0x

(x − t)+

(− x − t)+

MP0
􏼐 􏼑

T
(b − Bx) − seN􏼒 􏼓

+

w1 + w2 − e( 􏼁
+

− w3 + eN( 􏼁
T
w4􏼐 􏼑

+

w1 − w2 + BTMP0
w4 + A+( )

Tw5 + A−( )Tw6 + A0( 􏼁
T
w7

t− , s− , w−
1 , w−

2 , w−
3 , w−

4 , w−
5 , w+

6( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

���������������������������������������������������������������������

���������������������������������������������������������������������1

, (73)

where c ≔ σ∞,2(M′, M″) is Robinson’s constant deter-
mined by (M′, M″) given in (53). Since the vector (x, t, s, w)

satisfies (62) and (71), the inequality (73) can be simplified to

‖(x, t, s, w) − (x, t, s, w)‖2 ≤ c |Λ| +|Υ| +

− A+x + αeJ+
􏼐 􏼑

+

A− x + αeJ−
􏼐 􏼑

+

A0x

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

����������������

����������������1

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (74)

Since

max
1≤i≤N

MP0
􏼐 􏼑

T
(Bx − b)􏼔 􏼕

i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ ‖Bx − b‖2, (75)

we have s≤ ‖b − Bx‖2 by (61). 0erefore,

Υ � (s − ε)+ ≤ ‖b − Bx‖2 − ε( 􏼁
+
. (76)
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It follows from (69) that

Λ � e
T
t + εw3 − b

T
v
∗

− αe
T
J+

h
∗
1 + αe

T
J−

h
∗
2 ,

� e
T
t + εw3 − x

T
B

T
v
∗

+(Bx − b)
T
v
∗

− x
T
A

T
h
∗

+(Ax − αy)
T
h
∗
,

� e
T
t + εw3 − x

Tη +(Bx − b)
T
v
∗

+(Ax − αy)
T
h
∗
,

(77)

where the second step comes from the fact y � (eJ+
, − eJ−

, 0)T

and the last step uses the fact η � ATh∗ + BTv∗ by (64).
Hence,

|Λ|≤ e
T
t − x

Tη
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + ε w3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + (Bx − b)
T
v
∗

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + (Ax − αy)
T
h
∗

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

(78)

Firstly, we focus on each term of the right-hand side of
the above inequality, respectively. Recall that t � |x|.
0erefore,

e
T
t − x

Tη
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � e
T
S tS + e

T
S3

tS3
− x

T
S ηS − x

T
S3
ηS3

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

� e
T
S3

tS3
− x

T
S3
ηS3

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ e
T
S3

tS3

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + x
T
S3
ηS3

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤ xS3

�����

�����1
+ xS3

�����

�����1
ηS3

�����

�����∞
≤ xS3

�����

�����1
+ xS3

�����

�����1

� 2 xS3

�����

�����1
� 2σk(x)1,

(79)

where the second equality is from (65). By using the re-
stricted weak RSP of order k with respect to y, we have

max v
∗����
����1, h
∗����
����1􏽮 􏽯≤

v∗

h∗
􏼠 􏼡

���������

���������1
� CC

T
􏼐 􏼑

− 1
Cη

�����

�����1
≤ CC

T
􏼐 􏼑

− 1
C

�����

�����∞⟶1
‖η‖∞

≤ CC
T

􏼐 􏼑
− 1

C
�����

�����∞⟶1
≕c.

(80)

Hence,

(Bx − b)
T
v
∗

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ ‖Bx − b‖1 v
∗����
����∞ ≤ ‖Bx − b‖1 v

∗����
����1 ≤ c‖Bx − b‖1,

(Ax − αy)
T
h
∗

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ ‖Ax − αy‖1 h
∗����
����∞ ≤ ‖Ax − αy‖1 h

∗����
����1 ≤ c‖Ax − αy‖1,

ε w3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � ε v
∗����
����1 ≤ cε.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(81)

It then follows from (78)–(81) that

|Λ|≤ cε + 2σk(x)1 + c ‖Bx − b‖1 +‖Ax − αy‖1( 􏼁, (82)

together with (74) and (76) implies

‖x − x‖2

≤ c 2σk(x)1􏼈 + c ‖Bx − b‖1 +‖Ax − αy‖1 + ε( 􏼁 + ‖b − Bx‖2 − ε( 􏼁
+

+ − A
+
x + αeJ+

􏼐 􏼑
+

�����

�����1
+ A

−
x + αeJ−

􏼐 􏼑
+

�����

�����1
+ A

0
x

����
����1􏽯.

(83)

Step 3. Calculating ‖x − x∗‖2, where x∗ is a solution of (3).
Recall three sets T∗α , T

P0
α , and (T

P0
α )∗ , where T∗α and (T

P0
α )∗

are the solution of (18) and (33) (cf. (24) and (34)) and T
P0
α is

given as (25) with P ≔ P0. Clearly, x ∈ (T
P0
α )∗ . Let x∗ de-

note the projection of x onto T∗, i.e., x∗ � πT∗(x). Since
T∗α⊆T

P0
α and (T

P0
α )∗ ⊆TP0

α by (35), applying Lemma 4 with
T1 ≔ T∗α , T2 ≔ T

P0
α and T3 ≔ (T

P0
α )∗ , the definition of

πT(x) and the fact T∗α⊆T∗ by Corollary 1 yields

x − x
∗����
����2 � x − πT∗(x)

����
����2≤ x − πT∗α

(x)
�����

�����2
≤d

H
T
∗
α , T

P0
α􏼐 􏼑 + 2‖x − x‖2,

(84)

which together with dH(T∗α , T
P0
α )≤ ε′ by Lemma 1 implies

x − x
∗����
����2 ≤ ε′ + 2‖x − x‖2. (85)

0is combined with the inequality (83) gives

x − x
∗����
����2

≤ ε′ + 2c 2σk(x)1􏼈 + c ‖Bx − b‖1 +‖Ax − αy‖1 + ε( 􏼁 + ‖b − Bx‖2 − ε( 􏼁
+

+ − A
+
x + αeJ+

􏼐 􏼑
+

�����

�����1
+ A

−
x + αeJ−

􏼐 􏼑
+

�����

�����1
+ A

0
x

����
����1􏽯.

(86)
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Step 4. Calculating ‖(x/‖x‖2) − (x∗/‖x∗‖2). Note first that
x∗ ≠ 0 due to J+ ∪ J− ≠∅. Consider the following two cases:

(i) If 0 ∈ [x, x∗], since x, x∗ ≠ 0, then x � αx∗ for some
α≠ 0. Hence,

x

‖x‖2
−

x∗

x∗‖ ‖2

��������

��������2
�

ax∗

ax∗‖ ‖2
−

x∗

x∗‖ ‖2

��������

��������2
≤

2
x − x
∗����
����2

x − x
∗����
����2.

(87)

(ii) If 0 ∉ [x, x∗], let f(z) ≔ z/‖z‖2 as z≠ 0. 0en,

∇f(z) �
I − z/‖z‖2( 􏼁 z/‖z‖2( 􏼁

T

‖z‖2
, (88)

which implies ‖∇f(z)‖2 � 1/‖z‖2 since eigenvalues of I −

(z/‖z‖2)(z/‖z‖2)
T are 0 and 1 with multiplicity n − 1. 0us,

f(x) − f x
∗

( 􏼁 � 􏽚
1

0
∇f x

∗
+ t x − x

∗
( 􏼁( 􏼁 x − x

∗
( 􏼁dt

≤ 􏽚
1

0
∇f x

∗
+ t x − x

∗
( 􏼁( 􏼁

����
����2 x − x

∗
( 􏼁
����

����2dt

≤
1

dist 0, x, x
∗

􏼂 􏼃( 􏼁
x − x
∗����
����2,

(89)

where the last inequality is due to the fact for any t ∈ [0, 1],

∇f x
∗

+ t x − x
∗

( 􏼁( 􏼁
����

����2 �
1

x
∗

+ t x − x
∗

( 􏼁
����

����2
≤

1
dist 0, x, x

∗
􏼂 􏼃( 􏼁

.

(90)

Combining (87) and (89) together yields

x

‖x‖2
−

x∗

x∗‖ ‖2

��������

��������2
≤ τ(x) x − x

∗����
����2, (91)

where

τ(x) ≔

2
x − x
∗����
����2

, if 0 ∈ x, x
∗

􏼂 􏼃,

1
dist 0, x, x

∗
􏼂 􏼃( 􏼁

, if 0 ∉ x, x
∗

􏼂 􏼃.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(92)

0is together with (86) results in (58).
Ifx is the feasible solution of (3), then (‖b − Bx‖2 − ε)+ � 0

and

− A
+
x + αeJ+

􏼐 􏼑
+

�����

�����1
� A

−
x + αeJ−

􏼐 􏼑
+

�����

�����1
� A

0
x

����
����1 � 0,

(93)

as α> 0 is sufficiently small, which further implies

x

‖x‖2
−

x∗

x∗‖ ‖2

��������

��������2
≤ τ(x) ε′ + 2c 2σk(x)1 + c ‖Bx − b‖1 +‖Ax − αy‖1 + ε( 􏼁􏼈 􏼉( 􏼁. (94)

We now further show that the restricted weak RSP with
respect to y is also a sufficient condition for the l1-minimization
problem if the noise does not exist, i.e., ε � 0. It should be
noticed that, in this case, the constraint Bx � b is linear, and
hence, it is unnecessary to further introduce a polytope. 0us,
the problem (3) and its relaxed problem (49) reduces to

min ‖x‖1

s.t. sign (Ax) � y,
Bx � b,

(95)

min
x,t

e
T
t,

s.t.

x + t≥ 0, − x + t≥ 0,

A
+
x≥ αeJ+

, A
−

x≤ − αeJ−
,

A
0
x � 0, Bx � b, t≥ 0.

(96)

0e dual problem is given as

max
w

αe
T
J+

w3 − αe
T
J−

w4 + b
T
w6,

s.t.

w1 − w2 + A
+

( 􏼁
T
w3 + A

−
( )

T
w4 + A

0
􏼐 􏼑

T
w5 + B

T
w6 � 0,

w1 + w2 ≤ e, w1, w2( 􏼁≥ 0, w6 ∈ R
l
,

w3, w4, w5( 􏼁 ∈ R+
J+| | × R−

J−| | × R
J0| |.

(97)

Similarly, according to the dual theory of linear pro-
gramming, x∗ is a solution to the problem (96) if and only if
there exists (x∗, t∗, s∗, w∗) ∈ Θ, where

Θ ≔ (x, t, w)

x≤ t, − x≤ t, − A
+
x≤ − αeJ+

, A
−

x≤ − αeJ−
, A

0
x � 0, Bx � b;

w1 − w2 + A
+

( 􏼁
T

w3 + A
−

( )
T
w4 + A

0
􏼐 􏼑

T
w5 + B

T
w6 � 0, w1 + w2 ≤ e;

e
T
t � αe

T
J+

w3 − αe
T
J−

w4 + b
T
w6, w1, w2, t( 􏼁≥ 0, w3 ≥ 0, w4 ≤ 0.

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(98)
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0e set Θ can be written equivalently as

Θ � z �(x, t, w) | M′z≤p, M′′z � q􏼈 􏼉, (99)

where p ≔ (0, 0, − αeJ+
, − αeJ−

, e, 0, 0, 0, 0, 0,), q ≔ (0, b, 0, 0),

M′ ≔

D1 0
0 D2

D3 0
0 D4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

M″ ≔ M
∗
, M
∗∗

􏽨 􏽩,

(100)

D1 ≔

I − I

− I − I

− A
+ 0

A
− 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

D2 ≔ I I 0 0 0 0􏼂 􏼃,

D3 ≔ 0 − I􏼂 􏼃,

D4 ≔

− In 0 0 0 0 0
0 − In 0 0 0 0
0 0 − I J+| | 0 0 0
0 0 0 I J−| | 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

M
∗ ≔

A
0 0

B 0
0 0
0 e

T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

M
∗∗ ≔

0 0 0 0 0 0
0 0 0 0 0 0
I − I A

+
( 􏼁

T
A

−
( )

T
A
0

􏼐 􏼑
T

B
T

0 0 − αeJ+
αeJ−

0 − b
T

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(101)

Following the similar argument as given in 0eorem 2,
we can obtain the following result.

Theorem 3. Let the problem data (A, B, b, y) is given as (95)
and the matrix C � (AT, BT)T ∈ R(m+l)×n with full row rank.

If CT � (AT, BT) satisfies the restricted weak RSP of order k

with respect to y, then for any x ∈ Rn, there is an optimal
solution x∗ of (3) such that

x

‖x‖2
−

x∗

x∗‖ ‖2

��������

��������2
≤ 2cτ(x) 2σk(x)1 + c‖Ax − αy‖1 + − A

+
x + αeJ+

􏼐 􏼑
+

�����

�����1
+ A

−
x + αeJ−

􏼐 􏼑
+

�����

�����1
+ A

0
x

����
����1􏼚 􏼛, (102)

where α> 0 is sufficiently small, c ≔ ‖(CCT)− 1C‖∞⟶1, and
c ≔ σ∞,2(M′, M′′) is the Robinson constant with (M′, M′′)
given in (100). In particular, if x is a feasible solution of (3),
then there is an optimal solution x∗ of (3) such that

x

‖x‖2
−

x∗

x∗‖ ‖2

��������

��������2
≤ 2cτ(x) 2σk(x)1 + c‖Ax − αy‖1􏼈 􏼉.

(103)

0e following result shows that the property of restricted
weak RSP with respect to y is the mildest condition to ensure
the stability of l1-minimization problem with any given
measurement vector y � (eJ+

, − eJ−
,0) ∈ sign(Ax): ‖x‖0≤k􏼈 􏼉.

Corollary 2. Let the problem data (A, B, b, y) be given as
(95) and C � (AT, BT)T ∈ R(m+l)×n be a matrix with full row
rank. 7en, the 1-bit CS problem
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min ‖x‖1

s.t.
A

+
x≥ αeJ+

, A
−

x≤ − αeJ−
, A

0
x � 0,

Bx � b,

(104)

is stable for all y ∈ sign (Ax): ‖x‖0 ≤ k􏼈 􏼉 if and only if CT

satisfies restricted weak RSP of order k with respect to y.

Proof. Following the argument given in 0eorem 2, we
know that the restricted weak RSP of order k of CT with
respect to y is a sufficient condition for l1-minimization
problem (104) to be stable.

On the contrary, 0eorem 1 claims that if the l1-mini-
mization problem is stable for any given
y ∈ sign (Ax): ‖x‖0 ≤ k􏼈 􏼉, then the matrix CT must satisfy
the restricted weak RSP of the order k with respect to y. □

4. Conclusions

In this paper, the stability theory for 1-bit CS with quadratic
constraint is established. In the analysis, it is essential to use
the duality theory of linear programming, Hoffman error
bound, and the fact that the ball constraint via Euclidean
norm can be approximated by polytopes to any level of
accuracy. An interesting and challenging topic is to further
study the stability theory for 1-bit CS with other norms, e.g.,
p-norm, particularly as p ∈ (0, 1). In this case, the non-
convex structure of p-norm requires us to adopt the error
bounded theory (also called metric subregularity) for
nonlinear systems, instead of linear system used in this
paper.
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Our main goal in this manuscript is to accelerate the relaxed inertial Tseng-type (RITT) algorithm by adding a shrinking
projection (SP) term to the algorithm. Hence, strong convergence results were obtained in a real Hilbert space (RHS). A novel
structure was used to solve an inclusion and a minimization problem under proper hypotheses. Finally, numerical experiments to
elucidate the applications, performance, quickness, and effectiveness of our procedure are discussed.

1. Introduction

)e standard form of the variational inclusion problem
(VIP) on a RHS ℸ is

0 ∈ (¥ + Υ)ϑ∗, (1)

where ϑ∗ is the unknown point that we need to find, for an
operator ¥: ℸ⟶ℸ and a set-valued operator
Υ: ℸ⟶ 2ℸ. VIP is a frequent problem in the optimization
field, which has a lot of applications in many areas, including
equilibrium, machine learning, economics, engineering,
image processing, and transportation problems [1–16].

)e vintage technique to solve problem (1) which is
denoted by (¥ + Υ)− 1(0) is the forward-backward splitting
method [17–22] which is defined as follows: ϑ1 ∈ ℸ and

ϑn+1 � (I + ℓΥ)− 1
(I − ℓ¥)ϑn, n≥ 1, (2)

where ℓ > 0. In (2), each step of iterates includes only the
forward step ¥ and the backward step Υ, but not ¥ + Υ. )is
technique involves the proximal point algorithm [23–25]
and the gradient method [26–28] as special cases.

In a RHS, nice splitting iterative procedures presented by
Lions and Mercier [29] are shown as follows:

ϑn+1 � 2J
¥
ℓ − I􏼐 􏼑 2J

Υ
ℓ − I􏼐 􏼑ϑn, n≥ 1, (3)

and

ϑn+1 � J
¥
τ 2J
Υ
ℓ − I􏼐 􏼑ϑn + I − J

Υ
ℓ􏼐 􏼑ϑn, n≥ 1, (4)

where JRℓ � (I + ℓR)− 1. Permanently, two algorithms are
weakly convergent [30], knowing that algorithm (3) is called
Peaceman–Rachford algorithm [19] and scheme (4) is called
Douglas–Rachford algorithm [31].

A lot of works are concerned with problem (1) for ac-
cretive operators and two monotone operators, for instance,
a stationary solution to the initial-valued problem of the
evolution equation

0 ∈
zϖ
zt

− Ξϖ,ϖ(0) � ϖ° (5)

can be adjusted as (1) when the governing maximal
monotone Ξ � ¥ + Υ [29].

[1] is used to solve a minimization problem as follows:

min
ϑ∈ℸ
ℶ(ϑ) + σ(ϑ), (6)

where ℶ, σ: ℸ⟶ (− ∞,∞] are proper and lower semi-
continuous convex functions such that ℶ is differentiable
with L-Lipschitz gradient, and the proximal mapping of σ is
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ϑ⟼ argmin
ω∈ℸ

σ(ω) +
‖ϑ − ω‖

2

2ℓ
. (7)

In particular, if ¥ � ∇ℶ and Υ � zσ, where ∇ℶ is the
gradient of ℶ and zσ is the subdifferential of σ which takes
the form zσ(ϑ) � λ ∈ ℸ: σ(ω)≥ σ(ϑ) + 〈λ,ω − ϑ〉∀ω ∈ ℸ{ },
problem (1) becomes (6), and (3) becomes

ϑn+1 � proxℓσ ϑn − ℓ∇ℶ ϑn( 􏼁( 􏼁, n≥ 1, (8)

where ℓ > 0 is the stepsize and proxℓσ � (I + ℓ zσ)− 1 is the
proximity operator of σ.

)e concept of merging the inertial term with the
backward step was initiated by Alvarez and Attouch [32] and
studied extensively in [33, 34]. For maximal monotone
operators, it was called the inertial proximal point (IPP)
algorithm, and they defined it by

In � ϑn + Λn ϑn − ϑn− 1( 􏼁,

ϑn+1 � I + ℓnΥ( 􏼁
− 1
In, n≥ 1.

⎧⎨

⎩ (9)

It was proved that if ℓn􏼈 􏼉 is nondecreasing and
Λn􏼈 􏼉 ⊂ [0, 1) with

􏽘

∞

n�1
Λn ϑn − ϑn− 1

����
����
2 <∞, (10)

then algorithm (9) converges weakly to zero of Υ. In par-
ticular, condition (10) is true for Λn < 1/3. Here, Λn is an
extrapolation factor, and the inertia is represented by the
term Λn(ϑn − ϑn− 1). Note that the inertial term improves the
performance of the procedure and has good convergence
results [35–37].

Inertial term was merged with forward-backward al-
gorithm by authors [38].)ey added Lipschitz-continuous, a
single-valued, cocoercive operator ¥ into the IPP algorithm:

In � ϑn + Λn ϑn − ϑn− 1( 􏼁,

ϑn+1 � I + ℓnΥ( 􏼁
− 1
n In − ℓn¥In( 􏼁, n≥ 1.

⎧⎨

⎩ (11)

Via assumption (10), provided ℓn < 2/L with L, the
Lipschitz constant of ¥ , they obtained a weak convergence
result. Note that, for Λn > 0, algorithm (11) does not take the
form of (2), in spite of ¥ is still evaluated at the points ¥n.

Relaxation techniques and inertial effects have many
advantages in solving monotone inclusion and convex op-
timization problems; this effect appeared in several names
such as relaxed inertial proximal method, relaxed inertial
forward-backward method, and relaxed inertial Dou-
glas–Rachford algorithm; for more details, refer to
[22, 24, 39–44].

Abubakar et al. [45] introduced the RITT method as
follows:

In � ϑn + Λ ϑn − ϑn− 1( 􏼁,

ψn � 1 + ℓnΥ( 􏼁
− 1 1 − ℓn¥( 􏼁In,

ϕn+1 � (1 − β)In + βψn + βℓn ¥In − ¥ψn( 􏼁, n≥ 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(12)

where Λ and β are extrapolation and relaxation parameters,
respectively. Under this algorithm, they discussed the weak
convergence to the solution point of VIP (1) and the problem
of image recovery. Note that the extrapolation step works to
accelerate but not for the desired acceleration.

)e concept of the SP method was discussed by Taka-
hashi et al. [46] as in the following algorithm:

ϑ0 ∈ ℸ be arbitrarily fixed,

C1 � C, ϑ1 � PC1
ϑ0,

ωn � Λnϑn + 1 − Λn( 􏼁Znϑn,

Cn � η ∈ C: ωn − η
����

����≤ ϑn − η
����

����􏽮 􏽯,

ϑn+1 � PCn+1
ϑ0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

)ey just selected one closed convex (CC) set for a family
of nonexpansive mappings Zn􏼈 􏼉 to modify Mann’s iteration
method [47] and proved that the sequence ϑn􏼈 􏼉 converges
strongly to PFix(Z)ϑ0, provided Λn ≤ e for all n≥ 1 and for
some 0< e< 1.

In 2019, Yang and Liu [48] selected the stepsize sequence
for the iterative algorithm for monotone variational in-
equalities, which are based on Tseng’s extragradient method
and Moudafi viscosity scheme that does not require either
the knowledge of the Lipchitz constant of the operator or
additional projections.

With the incorporation of results of [45, 46, 48], we
accelerate RITT algorithm by adding the SP method to al-
gorithm (12). In a RHS, strong convergence results are given
under a proposed algorithm. As applications, our algorithm
was used to find the solution to a VIP and minimization
problem under certain conditions. Eventually, numerical
experiments to illustrate the applications, performance,
acceleration, and effectiveness of the proposed algorithm are
presented.

2. Preparatory Lemmas and Definitions

Suppose that C is a nonempty closed convex subset (CCS) of
a RHSℸ; we shall refer to ”⟶ ” as the strong convergence,
and PC: ℸ⟶ C is the nearest point projection, that is, for
all ϑ ∈ ℸ and ω ∈ C, ‖ϑ − PCϑ‖≤ ‖ϑ − ω‖. PC is called the
metric projection. It is obvious that PC verifies the following
inequality:

PCϑ − PCω
����

����
2 ≤ 〈PCϑ − PCω, ϑ − ω〉, (14)

for all ϑ,ω ∈ ℸ. In other words, the metric projection PC is
firmly nonexpansive. Hence, 〈ϑ − PCϑ,ω − PCω〉≤ 0 holds
for all ϑ ∈ ℸ and ω ∈ C, see [49, 50].

)e following inequality holds in a HS [51]:

‖l ± m‖
2

� ‖l‖
2

+‖m‖
2 ± 2〈l, m〉, (15)

for all l, m ∈ ℸ.

Lemma 1 (see [52]). Let C be a nonempty CCS of a RHS ℸ.
For each ϑ,ω, υ ∈ ℸ and ∈ R, the following set is closed and
convex:
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η ∈ C: ‖ω − η‖
2 ≤ ‖ϑ − η‖

2
+〈υ, η〉 + δ􏽮 􏽯. (16)

Lemma 2 (see [38]). Let C be a nonempty CCS of a RHS ℸ
and PC: ℸ⟶ C be the metric projection. %en,

ω − PCϑ
����

����
2

+ ϑ − PCϑ
����

����
2 ≤ ‖ϑ − ω‖

2
, (17)

for all ϑ ∈ ℸ and ω ∈ C.

Definition 1. Suppose that D(¥) ⊂ ℸ and R(¥) ⊂ ℸ are the
domain and the range of an operator ¥ , respectively. For all
ϑ,ω ∈ D(¥), an operator ¥ is called

(1) Monotone if

〈ϑ − ω, ¥ϑ − ¥ω〉≥ 0. (18)

(2) L− Lipschitz if

‖¥ϑ − ¥ω‖≤ L‖ϑ − ω‖. (19)

(3) β− Strongly monotone if there exists β> 0 such that

〈ϑ − ω, ¥ϑ − ¥ω〉≥ β‖ϑ − ω‖
2
. (20)

(4) Λ− Inverse strongly monotone (Λ− ism) if there exists
Λ> 0 such that

〈ϑ − ω, ¥ϑ − ¥ω〉≥Λ‖¥ϑ − ¥ω‖
2
. (21)

Lemma 3 (see [44]). Let ℸ be a RHS, ¥: ℷ⟶ ℷ be an
Λ− ism operator, and Υ : ℸ⟶ 2ℸ be a maximal monotone
operator. For each ℓ > 0, we define

[ℓ � J
Υ
ℓ (I − ℓ¥) � (I + ℓΥ)− 1

(I − ℓ¥). (22)

%en, we get

(i) For ℓ > 0, fix([ℓ) � (¥ + Υ)− 1(0)

(ii) For 0< s≤ ℓ and ϑ ∈ ℸ, ‖ϑ − [sϑ‖≤ 2‖ϑ − [ℓϑ‖

Lemma 4. Let ℸ be a RHS, ¥: ℸ⟶ℸ be an Λ− ism op-
erator, and Υ : ℸ⟶ 2ℸ be a maximal monotone operator.
For each ℓ > 0, we have

[ℓϑ − [ℓω
����

����
2 ≤ ‖ϑ − ω‖

2
− ℓ(2Λ − ℓ)‖¥ϑ − ¥ω‖

2
, (23)

for all ϑ,ω ∈ ℸ.

Proof. For all ϑ,ω ∈ ℸ, we get

[ℓϑ − [ℓω
����

����
2

� J
Υ
r (I − ℓ¥)ϑ − J

Υ
r (I − ℓ¥)ω

����
����
2

≤ ‖(I − ℓ¥)ϑ − (I − ℓ¥)ω‖
2

� ‖(ϑ − ω) − ℓ(¥ϑ − ¥ω)‖
2

� ‖ϑ − ω‖
2

− 2ℓ〈ϑ − ω, ¥ϑ − ¥ω〉 + ℓ2‖¥ϑ − ¥ω‖
2

≤ ‖ϑ − ω‖
2

− 2ℓΛ‖¥ϑ − ¥ω‖
2

+ ℓ2‖¥ϑ − ¥ω‖
2

� ‖ϑ − ω‖
2

− ℓ(2Λ − ℓ)‖¥ϑ − ¥ω‖
2
.

(24)

)e proof is ended. □

3. Shrinking Projection Relaxed Inertial Tseng-
Type Algorithm

We provide a method consisting of the forward-backward
splitting method with an inertial factor and an explicit
stepsize formula, which are being used to ameliorate the
convergence average of the iterative scheme and to make the
manner independent of the Lipschitz constants. )e detailed
method is provided in Algorithm 1.

Note that

(i) Since ¥ is an Λ− ism operator, it is a Lipschitz
function with a constant L, ¥In ≠ ¥ψn, and we get

ρ In − ψn

����
����

¥In − ¥ψn

����
����
≥
ρ
L

. (25)

It is obvious for ¥In � ¥ψn that inequality (25) is
satisfied. Hence, it follows that ℓn ≥min (ρ/L), ℓ0􏼈 􏼉.
)is implies that the generated sequence ℓn􏼈 􏼉 is
bounded below by min (ρ/L), ℓ0􏼈 􏼉, i.e., ℓn􏼈 􏼉 is
monotonically decreasing.

(ii) By (i) and (25), we have

ℓn+1 ¥In − ¥ψn

����
����≤ ρ In − ψn

����
����, (26)

i.e., the update (28) is well defined.
(iii) If we delete the shrinking projection term from our

algorithm, we get the algorithms of the papers
[22, 45, 53].

Theorem 1. Let ℸ be a RHS and the operators ¥: ℸ⟶ℸ
be Λ− ism on ℸ, and Υ : ℸ⟶ 2ℸ is maximally monotone. If
feasible set Ω � (¥ + Υ)− 1(0) of (1) is a nonempty CCS of a
RHS ℸ, then the sequence ϑn􏼈 􏼉 generated by Algorithm 1
converges strongly to a point τ � PΩ(ϑ1), provided that

(i) 0< liminfn⟶∞ℓℓn ≤ limsupn⟶∞ℓn < 2Λ.
(ii) limn⟶∞‖ψn − In‖ � 0.

Proof. )e proof will be divided as follows: □
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Part 1. Demonstrate that PCn+1
ϑ1 is well-defined, for each

ϑ1 ∈ ℸ, n≥ 1, andΩ ⊂ Cn+1. It follows from condition (i) and
Lemma 4 that [ℓn

� (I + ℓnΥ)
− 1(I − ℓn¥) is a nonexpansive

mapping. Lemma 3 implies thatΩ is a closed and convex set,

and Lemma 1 clarifies that Cn+1 is closed and convex, for all
n≥ 1.

Let η ∈ Ω; we have

In − η2
����

���� � ϑn − η( 􏼁 − Λ ϑn− 1 − ϑn( 􏼁
����

����
2

� ϑn − η
����

����
2

− 2Λ〈ϑn − η, ϑn− 1 − ϑn〉 + Λ2 ϑn− 1 − ϑn

����
����
2
. (27)

Since the resolvent [ℓn
is firmly a nonexpansive mapping

and by Lemma 3, we have

〈ψn − η,In − ψn − ℓn¥In〉 �〈JΥℓ I − ℓn¥( 􏼁In − J
Υ
ℓ I − ℓn¥( 􏼁η, I − ℓn¥( 􏼁In − I − ℓn¥( 􏼁η + I − ℓn¥( 􏼁η − ψn〉

≥ ψn − η
����

����
2

+〈ψn − η, η − ψn〉 − 〈ψn − η, ℓn¥ψn〉 � − 〈ψn − η, ℓn¥ψn〉.
(28)

Hence, by (28), we get

〈ψn − η,In − ψn − ℓn ¥In + ¥ψn( 􏼁〉 ≥ 0, (29)

which leads to

2〈In − ψn,ψn − η〉 − 2ℓn〈¥In + ¥ψn,ψn − η〉 ≥ 0. (30)

It is obvious that

2〈In − ψn,ψn − η〉 � In − η
����

����
2

− In − ψn

����
����
2

− ψn − η
����

����
2
.

(31)

Applying (31) in (30), we can write

ψn − η
����

����
2 ≤ 〈In − η〉2 − In − ψn

����
����
2

− 2ℓn〈¥In − ¥ψn,ψn − η〉.

(32)

Now, from definition ϕn, we have

ϕn − η
����

����
2

� (1 − β)In + βψn + βℓn ¥In − ¥ψn( 􏼁 − η
����

����
2

� (1 − β) In − η( 􏼁 + β ψn − η( 􏼁 + βℓn ¥In − ¥ψn( 􏼁
����

����
2

� (1 − β)
2
In − η

����
����
2

+ β2 ψn − η
����

���� + β2ℓ2n ¥In − ¥ψn

����
����
2

+ 2β(1 − β)〈In − η,ψn − η〉

+ 2βℓn(1 − β)〈In − η, ¥In − ¥ψn〉 + 2β2ℓn〈ψn − η, ¥In − ¥ψn〉.

(33)

Initialization: select initial ϑ0, ϑ1 ∈ ℸ, ρ ∈ (0, 1), Λ≥ 0, ℓ0 > 0, and 0< β< 1.
St. (i). Put In as:

In � ϑn + Λ(ϑn − ϑn− 1),

St. (ii). Calculate:
ψn � (1 + ℓnΥ)

− 1(1 − ℓn¥)In.,
If In � ψn, discontinue. In is a solution of (1), otherwise, continue to St. (iii)

St. (iii). Calculate:
ϕn � (1 − β)In + βψn + βℓn(¥In − ¥ψn),

where ℓn+1 is stepsize sequence revised as follows:

ℓn+1 �
min ℓn, (ρ‖In − ψn‖)/(‖¥In − ¥ψn‖)􏼈 􏼉, if ¥In ≠ ¥ψn,

ℓn, else,􏼨

St. (iv). Calculate:
Cn+1 � η ∈ Cn: ‖ϕn − η‖2 ≤ ‖ϑn − η‖2 + Λ2‖ϑn− 1 − ϑn‖2 − 2Λ〈ϑn − η, ϑn− 1 − ϑn〉 − βΔ‖In − ψn‖2􏽮 􏽯,

where Δ � (2 − β − 2ρ(1 − β)ℓn/ℓn+1 − βρ2ℓ2n/ℓ
2
n+1).

St. (v). Compute
ϑn+1 � PCn+1

(ϑ1), n≥ 1,

put n � n + 1, and return to St. (i).

ALGORITHM 1: Splitting method for the VIP.
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From equation (15), one can write

2〈In − η,ψn − η〉 � In − η
����

����
2

− In − ψn

����
����
2

+ ψn − η
����

����
2
.

(34)

Applying (34) in (33), we get

ϕn − η
����

����
2

� (1 − β) In − η
����

����
2

+ β ψn − η
����

����
2

− β(1 − β) ψn − In

����
����
2

+ β2ℓ2n ¥In − ¥ψn

����
����
2

+ 2βℓn(1 − β)〈In − η, ¥In − ¥ψn〉

+ 2β2ℓn〈ψn − η, ¥In − ¥ψn〉.
(35)

It follows from (32), (35), and (26) that

ϕn − η
����

����
2 ≤ (1 − β) In − η

����
����
2

+ β In − η
����

����
2

− In − ψn

����
����
2

− 2ℓn〈¥In − ¥ψn,ψn − η〉􏼔 􏼕 − β(1 − β) ψn − In

����
����
2

+ β2ℓ2n ¥In − ¥ψn

����
����
2

+ 2βℓn(1 − β)〈In − η, ¥In − ¥ψn〉 + 2β2ℓn〈ψn − η, ¥In − ¥ψn〉

≤ In − η
����

����
2

− β(2 − β) In − ψn

����
����
2

− 2βℓn〈¥In − ¥ψn,ψn − η〉 + β2ℓ2n ¥In − ¥ψn

����
����
2

+ 2βℓn(1 − β)〈In − η, ¥In − ¥ψn〉 + 2βℓn〈ψn − η, ¥In − ¥ψn〉

≤ In − η
����

����
2

− β(2 − β) In − ψn

����
����
2

+ β2ℓ2n ¥In − ¥ψn

����
����
2

+ 2βℓn(1 − β)〈In − ψn, ¥In − ¥ψn〉

≤ In − η
����

����
2

− β(2 − β) In − ψn

����
����
2

+ β2ℓ2n
ρ2

ℓ2n+1
In − ψn

����
����
2

+ 2βℓn(1 − β)
ρ

ℓn+1
In − ψn

����
����
2

� In − η
����

����
2

− β 2 − β − 2ρ(1 − β)
ℓn

ℓn+1
− βρ2

ℓ2n
ℓ2n+1

􏼢 􏼣 In − ψn

����
����
2

� In − η
����

����
2

− βΔn In − ψn

����
����
2
.

(36)

Applying (27) in (36), we have

ϕn − η
����

����
2 ≤ ϑn − η

����
����
2

+ Λ2 ϑn− 1 − ϑn

����
����
2

− 2Λ〈ϑn − η, ϑn− 1 − ϑn〉 − βΔn In − ψn

����
����
2
.

(37)

It is clear thatΩ ⊂ C1 � ℸ. Assume thatΩ ⊂ Cn for some
n≥ 1. )en, η ∈ Cn and by (37), we have for all n≥ 1,
η ∈ Cn+1. )us, Ω ⊂ Cn+1 for all n≥ 1, i.e., PCn+1

ϑ1 is well-
defined and bounded.

Part 2. Illustrate that ϑn􏼈 􏼉 is bounded. Since Ω≠∅ and
closed and convex subset of ℸ, there is a unique u ∈ Ω such
that u � PΩϑ1. )is leads to ϑn � PCn

ϑ1, Cn ⊂ Cn+1, and
ϑn+1 ∈ Cn for all n≥ 1, and we have

ϑn − ϑ1
����

����≤ ϑn+1 − ϑ1
����

����. (38)

Furthermore, as Ω ⊂ Cn, for all n≥ 1, we obtain

ϑn − ϑ1
����

����≤ u − ϑ1
����

����. (39)

It follows by (38) and (39) that limn⟶∞‖ϑn − ϑ1‖ exists.
Hence, ϑn􏼈 􏼉 is bounded.

Part 3. Fulfillment of limn⟶∞ϑn � τ. By the definition of
Cn, for m> n, we observe that ϑm � PCm

ϑ1 ∈ Cm ⊂ Cn. From
Lemma 2, we have

ϑm − ϑn

����
����
2 ≤ ϑm − ϑ1

����
����
2

− ϑn − ϑ1
����

����
2
. (40)

By Part 2, we conclude that limn,m⟶∞‖ϑm − ϑn‖2 � 0.
)us, ϑn􏼈 􏼉 is a Cauchy sequence. Hence, limn⟶∞ϑn � τ.
Additionally, we get

lim
n⟶∞

ϑn+1 − ϑn

����
���� � 0. (41)

Part 4. Prove that τ ∈ Ω. It follows from (41) that

In − ϑn

����
���� � Λ ϑn − ϑn− 1

����
����⟶ 0 as n⟶∞. (42)

Also, by (42) and condition (ii), we can write

ψn − ϑn

����
����≤ ψn − In

����
���� + In − ϑn

����
����⟶ 0 as n⟶∞.

(43)
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From triangle inequality on the norm and (42) and (43),
we obtain

In − ψn

����
����≤ In − ϑn

����
���� + ψn − ϑn

����
����⟶ 0 as n⟶∞.

(44)

Replacing η with ϑn in (36) and using (41) and (44), we
have

ϕn − ϑn

����
����
2 ≤Λ2 ϑn− 1 − ϑn

����
����
2

− βΔn In − ψn

����
����
2⟶ 0 as n⟶∞.

(45)

Applying (41), (42), and (45), we can write

ϑn+1 − In

����
����≤ ϑn+1 − ϑn

����
���� + In − ϑn

����
����⟶ 0 as n⟶∞,

ϑn+1 − ϕn

����
����≤ ϑn+1 − ϑn

����
���� + ϕn − ϑn

����
����⟶ 0 as n⟶∞,

ϕn − In

����
����≤ ϕn − ϑn

����
���� + In − ϑn

����
����⟶ 0 as n⟶∞.

(46)

It follows from (44) that

lim
n⟶∞

[ℓn
In − In

�����

����� � lim
n⟶∞

ψn − In

����
���� � 0. (47)

Since liminfn⟶∞ℓn > 0, there is ε> 0 such that ℓn ≥ ε and
ε ∈ (0, 2Λ) for all n≥ 1. )en, by Lemma 3 (ii) and (47), we
get

[εIn − In

����
����≤ 2 [ℓn

In − In

�����

�����⟶ 0 as n⟶∞. (48)

From (45) and (46), since ϑn⟶ τ as n⟶∞, we have
also In⟶ τ as n⟶∞. Since [ε is a nonexpansive and
continuous mapping, from (47), we conclude that τ ∈ Ω.

Part 5. Show that τ � PΩ(ϑ1). Since ϑn � PCn
ϑ1 andΩ ⊂ Cn,

we can get

〈ϑ1 − ϑn, ϑn − η〉 ≥ 0, ∀η ∈ Ω. (49)

Setting n⟶∞ in (49), we have

〈ϑ1 − τ, τ − η〉 ≥ 0, ∀η ∈ Ω. (50)

)is shows that τ � PΩ(ϑ1). )is finishes the proof.

4. Solve a Minimization Problem

As an application of our theorem, we solve the following
constrained convex minimization problem:

min ϑ∈Cℶ(ϑ), (51)

where ℶ: ℸ⟶ R is a convex function. We suppose that
the function ℶ is differentiable such that ∇ℶ is an Λ− ism
operator.

It is easy to see that problem (51) is equivalent to the
following problem:

minϑ∈ℸ ℶ(ϑ) + ℘C(ϑ)􏼂 􏼃, (52)

where ℘C is the indicator function of C. )us, this problem
becomes the problem of finding an element ϑ∗ ∈ ℸ such that

∇ℶ ϑ∗( 􏼁 + z℘C ϑ∗( 􏼁 ∋ 0, (53)

where z℘C is the subdifferential of ℘C. We know that z℘C is a
maximal monotone operator, and (I + m z℘C)− 1 � PC for
all m> 0.

For solving problem (51), we state the theorem in the
following, which is similar to )eorem 1.

Theorem 2. Let the sequence ℓn􏼈 􏼉 be bounded below by
min (ρ/L), ℓ0􏼈 􏼉, where ρ ∈ (0, 1) and ℓ0 > 0. Given a param-
eter Λ≥ 0 such that 0< inf

n
ℓn􏼈 􏼉≤ supn ℓn􏼈 􏼉< 2Λ. Let ϑn􏼈 􏼉 be

the sequence in ℸ which is defined by ϑ0, ϑ1 ∈ ℸ, C1 � ℸ,
0< β< 1, and

In � ϑn + Λ ϑn − ϑn− 1( 􏼁,

ψn � PC In − ℓn∇ℶIn( 􏼁,

ϕn � (1 − β)In + βψn + βℓn ¥In − ¥ψn( 􏼁,

where, ℓn+1 �

min ℓn,
ρ In − ψn

����
����

¥In − ¥ψn

����
����

􏼨 􏼩, if ¥In ≠ ¥ψn,

ℓn, else,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Cn+1 �

η ∈ ℸ: ϕn − η
����

����
2 ≤ ϑn − η

����
����
2

+ Λ2 ϑn− 1 − ϑn

����
����
2

− 2Λ〈ϑn − η, ϑn− 1 − ϑn〉 − βΔ In − ψn

����
����
2

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

,

ϑn+1 � PCn+1
ϑ1( 􏼁, n≥ 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(54)

where ¥: ℸ⟶ℸ is Λ− ism on a RHS ℸ, Υ: ℸ⟶ 2ℸ is a
maximally monotone operator, and Δ � (2−

β − 2ρ(1 − β)ℓn/ℓn+1 − βρ2ℓ2n/ℓ
2
n+1). If Ω≠∅, then the se-

quence ϑn􏼈 􏼉 converges strongly to τ � PΩ(ϑ1), provided that
limn⟶∞‖ψn − In‖ � 0.

5. Solve a Split Feasibility Problem

In this section, we investigated the application of our pro-
posed methods to the split convex feasibility problem
(SCFP). Let T: ℸ 1⟶ℸ 2 be a bounded linear operator and
T∗ its adjoint defined on the two RHSs ℸ 1 and ℸ 2. Assume
that C ⊂ ℸ 1 and Q ⊂ ℸ 2 are nonempty CCSs. )e SCFP
[54] take the shape as follows:

create a point ϑ ∈ C so thatT(ϑ) ∈ Q. (55)

In a HS, SFP was initiated by Censor and Elfving [54],
and they used a multidistance approach to find an adaptive
approach for resolving it. Many of the problems that emerge
from state retrieval and restoration of medical image can be
formulated as SVFP [55, 56]. SFP is also used in a variety of
disciplines such as dynamic emission tomographic image
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reconstruction, image restoration, and radiation therapy
treatment planning [57–59]. Let us consider

¥(ϑ) ≔ ∇
1
2

Tϑ − PQ(Tϑ)
����

����
2

􏼒 􏼓 � T
∗

I − PQ􏼐 􏼑Tϑ (56)

for the metric projection PQ on to Q, the gradient ∇, and
Υ � ziC. Due to the above construction, problem (55) has an
inclusion format as described in (1). It can be seen that ¥ is
Lipschitz continuous with constant L � ‖T‖2, and Υ is
maximal monotone, see, e.g., [60].

Let C be a nonempty CCS of a RHS ℸ, and a normal
cone of C at ϑ ∈ C is defined by

NC(ϑ) � z ∈ ℸ: 〈z, y − ϑ〉≤ 0, ∀y ∈ C􏼈 􏼉. (57)

Suppose g: ℸ⟶ (− ∞, +∞) is a proper, lower semi-
continuous, and convex function. For each ϑ ∈ ℸ, the
subdifferential zg of g is given by

zg(ϑ) � z ∈ ℸ: g(y) − g(ϑ)≥ 〈z, y − ϑ〉, ∀y ∈ C􏼈 􏼉.

(58)

For any nonempty CCSC ofℸ, the indicator function iC
of C is defined by

iC(ϑ) �
0, if ϑ ∈ C

∞, otherwise.
􏼨 (59)

It is obvious that the indicator function iC is proper,
convex, and lower semicontinuous on ℸ. A subdifferential
ziC of iC is a maximal monotone operator, and

ziC(ϑ) � z ∈ ℸ: iC(y) − iC(ϑ)≥ 〈z, y − ϑ〉, ∀y ∈ C􏼈 􏼉

� z ∈ ℸ: 〈z, y − ϑ〉≤ 0, ∀y ∈ C􏼈 􏼉 � NC(ϑ).

(60)

For each ϑ ∈ ℸ, now we define the resolvent of an in-
dicator function ziC for each λ> 0 in the following manner:

J
ziC
λ � Id + λ ziC( 􏼁

− 1
. (61)

Hence, we can observe that

y � J
ziC
λ (ϑ)⟺ ϑ ∈ y + λ ziC(y)( 􏼁

− 1⟺ ϑ − y ∈ λ ziC(y)

⟺y � PC(ϑ).

(62)

Now, on the basis of the above, Algorithm 1 may be
reduced to the following scheme.

Theorem 3. Let ϑn􏼈 􏼉 be a sequence generated by the following
scheme: choose ϑ− 1, ϑ0 ∈ C, ρ ∈ (0, 1), Λ≥ 0, ℓ0 > 0, and
0< β< 1.

St. (i): compute In in the following way:

In � ϑn + Λ ϑn − ϑn− 1( 􏼁. (63)

St. (ii): calculate

ψn � PC In − ℓnT
∗

I − PQ􏼐 􏼑TIn􏽨 􏽩. (64)

If In � ψn, stop, and In is a solution of problem (55);
otherwise, continue to St. (iii).
St. (iii): calculate

ϕn � (1 − β)In + βψn + βℓn T
∗

I − PQ􏼐 􏼑TIn − T
∗

I − PQ􏼐 􏼑Tψn􏽨 􏽩,

(65)

where ℓn+1 is the stepsize sequence revised in the fol-
lowing way:

ℓn+1 �
min ℓn,

ρ In − ψn

����
����

T
∗

I − PQ􏼐 􏼑TIn − T
∗

I − PQ􏼐 􏼑Tψn􏽨 􏽩

⎧⎨

⎩

⎫⎬

⎭, if T
∗

I − PQ􏼐 􏼑TIn ≠T
∗

I − PQ􏼐 􏼑Tψn,

ℓn, otherwise.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(66)

St. (iv): calculate

Cn+1 � η ∈ ℸ: ϕn − η
����

����
2 ≤ ϑn − η

����
����
2

+ Λ2 ϑn− 1 − ϑn

����
����
2

− 2Λ〈ϑn − η, ϑn− 1 − ϑn〉 − βΔ In − ψn

����
����
2

􏼚 􏼛, (67)

where Δ � (2 − β − 2ρ(1 − β)ℓn/ℓn+1 − βρ2ℓ2n/ℓ
2
n+1).

St. (v): compute
ϑn+1 � PCn+1

ϑ1( 􏼁, n≥ 1. (68)
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Put n � n + 1, and return to St. (i). If the solution set ΓSFP
is nonempty, then the sequence ϑn􏼈 􏼉 converges weakly to
an element of Γ(SFP).

6. Numerical Discussion

)is part is devoted to present a numerical solution to a
SCFP in an infinite HS, which is a special inclusion problem
as explained in Section 5. )e problem setting is taken from
[61]. We provide the comparison of Algorithm 1 (Alg1) in
[45] and our proposed Algorithm 1 (Alg2).

Example 1. Let ℸ1 � ℸ2 � L2([0, 2π]) be two HSs with an
inner product

〈ϑ, y〉 ≔ 􏽚
2π

0
ϑ(t)y(t)dt, ∀ϑ, y ∈ L2([0, 2π]), (69)

and the induced norm defined by

‖ϑ‖ ≔

�����������

􏽚
2π

0
|ϑ(t)|

2dt

􏽳

, ∀ϑ ∈ L2([0, 2π]). (70)

Next, consider the feasible set C ⊂ ℸ 1 as

10–6
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Number of iterations

Alg1 [l0 = 1.00]
Alg1 [l0 = 0.80]
Alg1 [l0 = 0.60]

Alg1 [l0 = 0.40]
Alg1 [l0 = 0.20]

Figure 1: Numerical conduct of Alg1 by choosing different values of ℓ0.
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Figure 2: Numerical conduct of Alg1 by choosing different values
of ℓ0.
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Figure 3: Numerical conduct of Alg2 by choosing different values
of ℓ0.
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C � ϑ ∈ ℸ1: 􏽚
2π

0
ϑ(t)dt≤ 1􏼨 􏼩, (71)

and Q ⊂ ℸ2 is

Q � ϑ ∈ ℸ2: 􏽚
2π

0
|ϑ(t) − sin(t)|

2dt≤ 16􏼨 􏼩. (72)

Consider the mapping T: ℸ 1⟶ℸ 2 such that
(Tϑ)(s) � ϑ(s), ϑ ∈ ℸ1.)en, (T∗ϑ)(s) � ϑ(s), and ‖T‖ � 1.
So, we shall solve the following problem:

create ϑ∗ ∈ C so thatT ϑ∗( 􏼁 ∈ Q. (73)

We can also observe that since (Tϑ)(s) � ϑ(s), ϑ ∈ ℸ1,
the above problem is actually a CFP of the form
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Figure 4: Numerical conduct of Alg2 by choosing different values of ℓ0.
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Figure 5: Numerical comparison of Alg2 with Alg.1 by assuming values of ϑ− 1 � ϑ0 � t.
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create ϑ∗ ∈ C∩Q. (74)

Figures 1–9 and Tables 1 and 2 show the numerical
results by assuming Dn � ‖ϑn − ϑn1

‖≤ 10− 6.

Remark 1. It is well known that the success of any iterative
method depends on two main things: first, the number of
iterations: when the number of iterations is small, the
method is successful in saving effort. Second, time factor: the

method that needs less time in implementation is excellent
than its counterpart, which needs a lot of time and is
considered successful in saving time. So, from figures and
tables, we observe that our algorithm needs fewer iterations
and less time than Algorithm 1 [45]. )is illustrates that our
method is successful in speeding up Algorithm 1 [45] and
solving problem (55). Also, the performance of our algo-
rithm is good because it saves time and effort in studding the
convergence rate.
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Figure 6: Numerical comparison of Alg2 with Alg.1 by assuming values of ϑ− 1 � ϑ0 � t2/5.
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Figure 7: Numerical comparison of Alg2 with Alg1 by assuming values of ϑ− 1 � ϑ0 � 2ett5.
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Figure 8: Numerical comparison of Alg2 with Alg1 by assuming values of ϑ− 1 � ϑ0 � et sin(t).
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Figure 9: Numerical comparison of Alg2 with Alg1 by assuming values of ϑ− 1 � ϑ0 � (t2 − et)cos(t).

Table 1: Numerical comparison of Alg2 with Alg1 by assuming different values of ℓ0.

Number of iterations Execution time in
seconds

ϑ− 1 � ϑ0 ρ Λ ℓ0 Alg1 Alg2 Alg1 Alg2
1/5 exp (t/2)5/4 0.27 0.50 1.00 56 50 0.0136 0.0190
1/5 exp (t/2)5/4 0.27 0.50 0.80 62 52 0.0219 0.0150
1/5 exp (t/2)5/4 0.27 0.50 0.60 72 56 0.0186 0.0205
1/5 exp (t/2)5/4 0.27 0.50 0.40 83 62 0.0160 0.0183
1/5 exp (t/2)5/4 0.27 0.50 0.20 104 72 0.0252 0.0225
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In recent years, Differential Evolution (DE) has shown excellent performance in solving optimization problems over continuous
space and has been widely used in many fields of science and engineering. How to avoid the local optimal solution and how to
improve the convergence performance of DE are hotpot problems for many researchers. In this paper, an improved differential
evolution algorithm based on dual-strategy (DSIDE) is proposed. -e DSIDE algorithm has two strategies. (1) An enhanced
mutation strategy based on “DE/rand/1,” which takes into account the influence of reference individuals on mutation and has
strong global exploration and convergence ability. (2) A novel adaptive strategy for scaling factor and crossover probability based
on fitness value has a positive impact on population diversity. -e DSIDE algorithm is verified with other seven state-of-the-art
DE variants under 30 benchmark functions. Furthermore, Wilcoxon sign rank-sum test, Friedman test, and Kruskal–Wallis test
are utilized to analyze the results. -e experiment results show that the proposed DSIDE algorithm can significantly improve the
global optimization performance.

1. Introduction

Differential Evolution (DE) is an emerging optimization
technique proposed by Storn and Price [1] in 1995, which
was initially used to solve Chebyshev polynomials. Later, it is
demonstrated that DE is also an effective method to solve
complex optimization problems. Similar to other intelligent
evolutionary algorithms, DE is a stochastic parallel opti-
mization algorithm based on swarm intelligence, which
guides optimization search by imitating heuristic swarm
intelligence generated by cooperation and competition
among individuals in the population.

In DE, the population consists of several individuals,
each of which representing a potential solution to an op-
timization problem. DE generates offspring individuals
through mutation, crossover, and selection, and the off-
spring individuals are expected to be closer to the optimal
solution. In the process of evolution, with the increase of
generations, the population diversity becomes worse,

leading to premature convergence or evolutionary stagna-
tion, which is undoubtedly fatal to the algorithm that de-
pends on the difference of population. Also, the performance
of DE is affected by control parameters [2, 3]. For different
optimization problems, these control parameters often need
a large number of repeated experiments to adjust to the
appropriate value for achieving better optimization effect.

To address these shortcomings in DE, many improve-
ments have been proposed, most of which focused on
control parameters and mutation strategies.

Population size NP, scaling factor F, and crossover
probability CR are three crucial control parameters in DE.
Experiments in many works of literatures show that the
performance of DE can be improved by adjusting these control
parameters. Omran et al. [4] proposed a self-adaptation
scheme (SDE), in which F was adaptive and CR was generated
by a normal distribution. Liu and Lampinen [5] proposed a
fuzzy adaptive differential evolution algorithm (FADE), which
used the fuzzy logic controller to adjust F, andCR
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dynamically and successfully evolved individuals and their
fitness values as input parameters of the logic controller. Brest
et al. [6] developed a new adaptive DE algorithm, named jDE,
applying F and CR to the individual level. If a better individual
is produced, these parameters would be retained; otherwise,
they would be adjusted according to two constants. Noman
et al. [7] proposed an adaptive differential evolution algorithm
(aDE), which was similar to jDE [6], except that the updating
of parameters in aDE depended on whether the offspring was
better than the average individual in the parent population.
Asafuddoula et al. [8] used roulette to select the suitable CR
value for each individual in each generation of the population.
Tanabe and Fukunaga [9] proposed the success-history-based
parameter adaptation for differential evolution (SHADE),
which generated new F and CR pairs by sampling the nearby
space of stored parameter pairs. Later, they came up with an
improved version called L-SHADE [10]. Based on SHADE, a
linear population size reduction strategy (LPSR) was adopted
to reduce the population size NP by a linear function con-
tinuously. Zhu et al. [11] proposed an adaptive population
tuning scheme (APTS) that dynamically adjusted the pop-
ulation size, in which redundant individuals were removed
from the population or “excellent” individuals were generated.
Zhao et al. [12] proposed a self-adaptive DE with population
adjustment scheme (SAPA) to tune the size of the offspring
population, which contained two kinds of population ad-
justment schemes. Pan et al. [13] proposed a parameter
adaptive DE algorithm on real-parameter optimization, in
which better control parameters F and CR are more likely to
survive and produce good offspring. An enhancing DE with
novel parameter control, referred to as DE-NPC, was pro-
posed by Meng et al. [14]. -e update of F and CR was based
on the location information of the population and the success
probability of CR, respectively, and a combined parabolic-
linear population size reduction schemewas adopted. Di Carlo
et al. [15] proposed a multipopulation adaptive version of
inflationaryDE algorithm (MP-AIDEA), the parameters F and
CR of which were adjusted together with the local restart
bubble size and the number of local restarts of Monotonic
Basin Hopping [16]. Li et al. [17] presented an enhanced
adaptive differential evolution algorithm (EJADE), in which
CR sorting mechanism and dynamic population reduction
strategy were introduced.

To improve the optimization performance and balance
the contradiction between global exploration and local ex-
ploitation, researchers have carried out a lot of work on
mutation strategy in DE. Das et al. [18] proposed an improved
algorithm based on “DE/current-to-best/1” strategy, which
made full use of the optimal individual information in the
neighborhood to guide the mutation operation. Zhang and
Sanderson [19] proposed an adaptive differential evolution
algorithm (JADE), which adopted “DE/current-to-pbest/1”
mutation model, used suboptimal solutions to improve
population diversity, and employed Cauchy and Normal
distribution to generate F and CR. Qin et al. [20] proposed a
self-adaptive DE (SaDE), which adopted four mutation
strategies to generate mutation individuals. -e selection of
mutation strategy would be affected by previous performance.
A DE algorithm (CoDE) using three mutation strategies and

three parameters for the random combination was presented
by Wang et al. [21]. Epitropakis et al. [22] proposed a novel
framework that specified the selection probability in the
mutation operation based on the distance between each in-
dividual and the mutation individual, thereby guiding the
population to global optimization. Mallipeddi et al. [23]
proposed the EPSDE algorithm, which was characterized by a
stochastic selection of mutation strategies and parameters in a
candidate pool consisting of three basic mutation strategies
and preset parameters. Xiang et al. [24] proposed an enhanced
differential evolution algorithm (EDE), which adopted a new
combined mutation strategy composed of “DE/current/1”
and “DE/pbest/1.” Cui et al. [25] proposed a DE algorithm
based on adaptive multiple subgroups (MPADE), which di-
vided the population into three subgroups according to fitness
values, each subgroup had its mutation strategy.Wu et al. [26]
presented a DE with multipopulation-based ensemble of
mutation strategies (MPEDE), which had three mutation
strategies, three indicator subgroups, and one reward sub-
group. After several evolutionary generations, the reward
subgroup was dynamically assigned to the best-performing
mutation strategy. Parameters with an adaptive learning
mechanism for the enhancement of differential evolution
(PALM-DE) were presented by Meng et al. [27]. Unlike the
external archive of the mutation strategy in JADE [19] and
SHADE [9], the inferior solution archive in PALM-DE
mutation strategy used a timestamp mechanism. In [28],
Meng et al. introduced a novel parabolic population size
reduction scheme and an enhanced timestamp-based mu-
tation strategy to tackle the weakness of previous mutation
strategy. Wei et al. [29] proposed the RPMDE algorithm,
designed the “DE/M_pbest-best/1” mutation strategy, used
the optimal individual group information to generate new
solutions, and adopted the random perturbation method to
avoid falling into the local optimal. Duan’s DPLDE [30] al-
gorithm used population diversity and population fitness to
determine individuals participating in mutation operation,
thus influencing the mutation strategy. Tian and Gao [31]
proposed NDE, which employed two mutation operators
based on neighborhood-based and an individual-based se-
lection probability to adjust the search performance of each
individual appropriately. Wang et al. [32] proposed the DE
algorithm based on particle swarm optimization (DEPSO),
which utilized the improved “DE/rand/1” mutation strategy
and PSO mutation strategy. Meng and Pan [33] presented
hierarchical archive based on mutation strategy with depth
information of evolution for the enhancement of differential
evolution (HARD-DE), the depth information in which was
the linkage of more than three different generations of
populations and was included into the mutation strategy. A
hybrid differential evolution algorithm based on “DE/target-
to-ci_mbest/1” mutation operation of CIPDE [34] and “DE/
target-to-pbest/1” mutation operation of JADE [19] was in-
troduced by Pan et al. [35]. Meng et al. [36] proposed depth
information-based DE with adaptive parameter control (Di-
DE), the mutation strategy of which contained a depth in-
formation-based external archive.

As mentioned above, mutation strategies and control
parameters affect the performance of DE, and “DE/rand/1”
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is widely used due to its strong global exploration ability and
good population diversity. Many researchers have refined
the mutation strategy. In this paper, an enhanced mutation
strategy based on “DE/rand/1” is proposed by introducing a
reference factor. Besides, according to the maximum,
minimum, average fitness value of population, and the fit-
ness value of the individual, the scaling factor and crossover
probability are changed to adjust the population diversity
effectively.

-e remainder of the paper is organized as follows.
Section 2 describes the basic DE algorithm. Section 3 pro-
vides the details of the proposed DSIDE. In Section 4, the
proposed DSIDE is compared and analyzed experimentally
with seven advanced DE algorithms, and the effectiveness of
the enhanced mutation strategy and the novel adaptive
strategy for control parameters in DSIDE is studied. Section
5 summarizes the work of this paper and points out the
future research direction.

2. The Basic Differential Evolution Algorithm

An unconstrained optimization problem is to find the ex-
tremum of a function, which can be expressed as follows:

min f x1, x2, . . . , xD( 􏼁

s.t. x
L
j ≤xj ≤x

U
j , j � 1, 2, . . . , D,

⎧⎨

⎩ (1)

where f(∗) denotes the fitness value, D represents the di-
mension of the problem, and xL

j and xU
j are the minimum

and maximum values of xj, respectively. -e process of
solving optimization problems in DE is divided into ini-
tialization, mutation, crossover, and selection.

2.1. Initialization. To establish a starting point, an initial
population must be created in the search space. Without loss
of generality, the jth component (j � 1, 2, . . . , D) of the ith
individuals (i � 1, 2, . . . ,NP) in the original population can
be expressed as follows:

x
0
i,j � x

L
i,j + rand∗ x

U
i,j − x

L
i,j􏼐 􏼑, (2)

where rand returns a uniformly distributed random number
between 0 and 1 and L and U represent the lower and upper
bounds of solution space, respectively.

2.2. Mutation. -e mutation strategy of the DE algorithm
can be expressed as “DE/x/y,” where “DE” means differential
evolution algorithm, “x” represents the reference vector in
the mutation operation, and “y” denotes the number of
differential vectors in the mutation operation. -e most
common mutation strategy is to randomly select two dif-
ferent individuals in the population, scale their vector dif-
ferences, and then conduct vector synthesis with another
random individual. -e obtained mutation individual Vi is
as follows:

V
G+1
i � X

G
r1 + F · X

G
r2 − X

G
r3􏼐 􏼑, (3)

where r1, r2, and r3 are randomly generated integers
ranging from 1 to NP, and r1≠ r2≠ r3≠ i; G represents the
current generation number; and F denotes the scaling factor
and controls the amplification of the differential vector. -e
mutation strategy is shown in equation (3) and is known as
“DE/rand/1”.

2.3. Crossover. -e purpose of the crossover operation is to
generate the trial vector UG+1

i,j . -e binomial crossover and
exponential crossover are two main crossover operators. In
this paper, binomial crossover is adopted, and its expression
is as follows:

U
G+1
i,j �

V
G+1
i,j , rand<CRor j � jrand,

X
G
i,j, otherwise,

⎧⎪⎨

⎪⎩
(4)

where XG
i,j denotes the jth component of the ith individual in

the current population; CR(∈ [0, 1]) is called crossover
probability, which determines the contribution of mutation
vector VG+1

i,j to trial vector UG+1
i,j . jrand(∈ [1, D]) is a uni-

formly distributed random integer, ensuring that at least
one-dimensional components of the trial vector UG+1

i,j inherit
from the mutation vector VG+1

i,j .

2.4. Selection. In DE, the greedy selection strategy is utilized
to compare the trial vector UG+1

i,j with the target vector XG
i ,

and the one which has better fitness value will be selected as
the offspring individual XG+1

i :

X
G+1
i �

U
G+1
i , f U

G+1
i􏼐 􏼑<f X

G
i􏼐 􏼑,

X
G
i , otherwise,

⎧⎪⎨

⎪⎩
(5)

where f(·) stands for the fitness value.

3. DSIDE Algorithm

In DSIDE, the crossover and selection operations are the
same as the basic DE, as shown in equations (4) and (5),
respectively. Next, the improved mutation strategy and
adaptive strategy will be introduced.

3.1. An Enhanced Mutation Strategy. From equation (3), it
can be seen that the reference individual XG

r1 plays an im-
portant role in regulating balance in the evolutionary pro-
cess. In the early stage of evolution, when most individuals
are far away from the optimal solution, a larger XG

r1 is
conducive to jumping out of the local optimal. However, in
the later stage of evolution, most individuals gradually ap-
proach the global optimal solution, and a larger XG

r1 may
cause individuals to deviate from the correct direction of
evolution, which is not in favor of global convergence. On
this basis, we propose an improved mutation strategy as
follows:
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V
G+1
i � αG∗

i X
G
r1 + Fi · X

G
r2 − X

G
r3􏼐 􏼑, (6)

αG
i � 1 − r

1− G/Gmax)2.( (7)

In equation (6), αi(∈ [0, 1]), Fi, and CRi are the reference
factor, scaling factor, and crossover probability for each
target individual XG

i , respectively; G denotes the current
generation number. In equation (7), r means a random
number on the interval [0, 1]. Gmax represents the maximum
generation number. From equation (7)， it is not chal-
lenging to observe that the value of αG

i is relatively large at
the initial evolutionary stage, which ensures a wide range of
search. As the evolutionary generation increases, the αG

i

value decreases and the search scope shrink.

3.2. A Novel Adaptive Strategy for Control Parameters.
During the mutation operation of equation (3), the scaling
factor affects the reference individual through the dif-
ferential vector (XG

r2 − XG
r3), which is called “perturba-

tion.” A larger F can produce a larger “perturbation,”
which is helpful to maintain the population diversity, but
will reduce the search efficiency of the algorithm. A
smaller F helps to improve the convergence speed, but the
loss of population diversity is faster, and it is easy to fall
into local optimal and premature convergence. During the
crossover operation of equation (4), CR determines the
contribution of the mutation vector to trial vector. A
larger CR facilitates the expansion of the search space,
thus accelerating the convergence. However, the mutation
individuals tend to be identical in the later evolutionary
stage, which weights against the maintenance of diversity.
A smaller CR is not to the benefit of exploring the search
area. -erefore, F and CR should be adjusted adaptively to
explore the global space more thoroughly in the early stage
of evolution and exploit the local area near the optimal
solution at the later stage of evolution. Based on these
points, a novel adaptive strategy is proposed, which can
dynamically adjust control parameters according to the
fitness value, as shown in

F
G
i �

f
G
max − f

G
i􏼐 􏼑

f
G
mean

, (8)

CRG
i �

f
G
i − f

G
min􏼐 􏼑

f
G
mean

, (9)

wherefG
i is the fitness value of the target individualXG

i ,fG
max

and fG
min are the maximum and minimum fitness values at

the current generation G, and fG
mean is the average fitness

value of the current population.
-e reference factor αG

i , scaling factor FG
i , and

crossover probability CRG
i are updated before each evo-

lution. -e entire process of DSIDE algorithm is shown in
Algorithm 1.

4. Experimental Results and Analysis

4.1. Benchmark Functions. Unlike deterministic algorithms,
it is difficult to verify that evolutionary algorithms are su-
perior to other algorithms due to their limited knowledge.
-erefore, benchmark functions are utilized to evaluate the
performance of evolutionary algorithms. In this section, the
performance of DSIDE is tested on 27 benchmark functions
[37–39] listed in Table 1, where D is the dimension of the
problem. f1 ∼ f11 are unimodal functions. f12 has one
minimum and is discontinuous. f13 is a noisy quadratic
function. f14 ∼ f27 are multimodal functions. f(∗) denotes
the global minimum value.

Experiment results in this paper are obtained onWindows
10 x64 Operating System of a PC with Intel (R) Core (TM) i7-
8550U CPU (1.80GHz) and 8GB RAM, and algorithms are
implemented in MATLAB 2015b Windows version.

4.2. Comparison with 7 Improved DE Algorithms. Here, we
mainly discuss the overall optimization performance among
jDE [6], JADE [19], SaDE [20], CoDE [21], EPSDE [23],
MPEDE [26], DEPSO [32], and the proposed DSIDE al-
gorithm. Experiments are carried out on f1 ∼ f30 bench-
mark functions at 30 D and 100 D, respectively. -e
parameters of other algorithms are the same as in their
original literatures. -e population size NP is set to 100 for
all algorithms. 30 independent runs with 1000 maximum
number of evolutionary generations are conducted. Tables 2
and 3 show the mean/std (mean value and standard devi-
ation) of fitness error over 30 runs at 30 D and 100 D,
respectively. Symbols “+,” “ ≈ ,” and “− ” behind
“mean± std” pair denote “Better Performance,” “Similar
Performance,” and “Worse Performance,” respectively, all of
which are measured under Wilcoxon’s signed-rank test with
a level of significant α � 0.05. Furthermore, Wilcoxon’s
rank-sum test and Kruskal–Wallis test [39, 40] in Tables 4–6
are employed to further test the optimization performance of
all algorithms.-e best results in tables are shown in bold. In
addition, the representative convergence curves of all al-
gorithms are also given in Figures 1 and 2.

(1) Initialize the original population pop and calculate
their fitness values, NP� 100, G � 1, Gmax�1000;

(2) while ((G≤Gmax) do
(3) for each individual Xi in pop do
(4) Calculate αi in equation (7);
(5) Calculate Fi in equation (8);
(6) Calculate CRi in equation (9);
(7) Implement mutation in equation (6);
(8) Implement crossover in equation (4);
(9) Implement selection in equation (5);
(10) end for
(11) G � G + 1
(12) end while

ALGORITHM 1: DSIDE.
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Table 4: -e results of Wilcoxon’s rank-sum test over independent 30 runs.

Comparison R+ D � 30
p value α � 0.1 R+ R− p value D � 100 α � 0.05 α � 0.1

R− α � 0.05
DSIDE vs. jDE 235 143 6.37e − 04 Yes Yes 372 93 6.01e − 06 Yes Yes
DSIDE vs. JADE 223 155 1.53e − 03 Yes Yes 371 94 6.94e − 06 Yes Yes
DSIDE vs. SaDE 282 124 2.84e − 04 Yes Yes 402 63 1.37e − 06 Yes Yes
DSIDE vs CoDE 322 143 3.15e − 05 Yes Yes 419 46 1.76e − 07 Yes Yes
DSIDE vs. EPSDE 240 138 3.80e − 04 Yes Yes 401 64 2.00e − 06 Yes Yes
DSIDE vs. MPEDE 244 162 7.53e − 04 Yes Yes 369 96 6.46e − 06 Yes Yes
DSIDE vs. DEPSO 294 57 7.51e − 04 Yes Yes 284 41 1.69e − 03 Yes Yes

Table 5: -e results of Friedman and Kruskal–Wallis tests on 30D test functions.

Algorithms jDE JADE SaDE CoDE EPSDE MPEDE DEPSO DSIDE
Friedman (rank) 5.25 3.12 5.42 6.73 4.92 3.53 4.28 2.75
Kruskal–Wallis (rank) 131.13 109.28 133.87 163.00 129.93 117.38 112.73 66.67

Table 6: -e results of Friedman and Kruskal–Wallis tests on 100 D test functions.

Algorithms jDE JADE SaDE CoDE EPSDE MPEDE DEPSO DSIDE
Friedman (rank) 4.80 3.10 6.23 6.77 5.50 4.23 3.32 2.05
Kruskal–Wallis (rank) 132.77 120.80 146.30 165.20 137.87 128.70 81.03 51.33
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From Table 2 on 30 D, the proposed DSIDE algorithm
displays that 23 out of 30 benchmark functions have better
or similar performance than jDE, JADE, CoDE, EPSDE, and
MPEDE, 24 out of 30 benchmark functions have better or
comparable performance than SaDE, and 27 out of 30
benchmark functions have better or equivalent performance
than DEPSO. Furthermore, the proposed DSIDE algorithm
performs the best on benchmark functions f1 ∼ f11, f13,
f15 ∼ f22, f25 ∼ f26, and f28 in comparison with the other
contrasted algorithms, performs slightly inferior on
benchmark functions f14, f23, f24, and f27, and only
performs poorly on f12, f29, and f30. -erefore, we can
conclude that the proposed DSIDE algorithm is more
competitive with the other seven improved DE algorithms
on these functions at 30 D.

From Table 3 on 100 D, the proposed DSIDE algorithm
displays that 25 out of 30 benchmark functions have better
or equal performance than jDE, JADE, and MPEDE, 26 out
of 27 benchmark functions have better or similar perfor-
mance than SaDE, CoDE, and EPSDE, and 28 out of 30
benchmark functions have better or similar performance
than DEPSO. Furthermore, the proposed DSIDE algorithm
performs the best on benchmark functions f1 ∼ f11,
f13 ∼ f22, f24 ∼ f26, and f28 in comparison with all other
contrasted algorithms, performs slightly inferior on
benchmark functions f14, f23, f27, and only performs
poorly on other three benchmark functions. -at is to say,
DSIDE has an overall better performance on benchmark
functions f1 ∼ f30 at 100 D.

From Table 4, we can see the results of Wilcoxon’s
rank-sum test for 30 D and 100 D problems. R+ is the sum
of positive ranks in which the first algorithm performs
better than the second, and R− is the sum of negative ranks
in which the first algorithm performs worse than the
second. As shown in the table, we can observe that, for all
comparison of DEs, all R+ values obtained by DSIDE are
higher than R− . It proves that DSIDE outperforms other
compared DE algorithms significantly. Tables 5 and 6,

respectively, utilize Friedman and Kruskal–Wallis statis-
tical test to compare the performance of each algorithm on
30 D and 100 D problems. It can be seen that the test
results obtained by DSIDE are the minimum regardless of
the high dimension or low dimension, indicating that
DSIDE has the best performance among the comparison
algorithms.

So far, all the nonparametric tests, including Wilcoxon’s
rank-sum, Friedman, and Kruskal–Wallis test, support the
conclusion that DSIDE is superior to other competing
algorithms.

Furthermore, we compare the convergence curves of
each algorithm on benchmark functions at 30 D and 100 D.
All convergence curves are studied and analyzed from the
aspects of convergence precision and whether they converge
to the global optimum or not. Some representative con-
vergence curves are depicted in Figures 1 and 2.

As shown in Figures 1(a) and 1(b), in convergence
curves of function f1 at 30 D and 100 D, only DSIDE
converges to the global optimum, and the average con-
vergence accuracy is much higher than other algorithms
under the same generations. Convergence curves of f7, as
shown in Figures 1(c)and 1(d). Although convergence
precision is not always optimal in the evolution process,
only DSIDE gets the global optimum. Figures 1(e) and 1(f )
show convergence curves of f13 at 30 D and 100 D, re-
spectively. All algorithms have not found the optimal so-
lution, but the average convergence accuracy of DSIDE is
much higher than other algorithms under the same gen-
erations and obtains the best value. Figures 1(g) and 1(h)
show convergence curves of f14 at 30 D and 100 D, re-
spectively. All algorithms have not obtained the global
minimum. JADE performs the best on the low-dimensional
problem, while DSIDE is the best on high-dimensional. In
Figures 1(i) and 1(j), DSIDE converges the fastest on f15.
DSIDE, EPSDE, and jDE converge to the global optimum at
30 D, while DSIDE and DEPSO reach the optimal at 100 D.
In Figures 1(k) and 1(l), only DSIDE gets the global optimal
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Figure 2: Convergence curves of f18, f23, f25, f26, f28, andf29 at D � 30,100. -e horizontal axis and the vertical axis are generations and
the mean function error values over 30 independent runs. (a) f18 30 D, (b) f18 100 D, (c) f23 30 D, (d) f23 100 D, (e) f25 30 D, (f )
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on f16 and consumes fewer generations and converges
quickly.

In Figure 2(a), DSIDE, JADE, DEPSO, and EPSDE
obtain the optimal on f18 at 30 D. In Figure 2(b), DSIDE
and DEPSO get the global optimal on f18 at 100D. DSIDE
has the fastest convergence speed in both low-dimensional
and high-dimensional problems. Convergence curves of
function f23 in Figures 2(c) and 2(d), none of the algorithms
finds the global minimum, and there is a phenomenon of
“evolutionary stagnation.” In Figures 2(e) and 2(f ) on
function f25, only CoDE cannot find the global minimum at
30D; DSIDE and DEPSO get the global optimal at 100D, but
the former costs much less generations. In Figures 2(g) and
2(h), DSIDE converges to the global optimal on f26, while
other algorithms suffer from “evolutionary stagnation.” In
Figure 2(i), the global minimum value is found by all al-
gorithms except CoDE and EPSDE on f28 at 30 D. In
Figure 2(j), DSIDE and DEPSO get the global optimal on
function f28 at 100 D. In Figures 2(k) and 2(l), DSIDE
performs relatively low but consistently outperforms
DEPSO on function f29.

In general, through the comparative analysis of the above
experiments, DSIDE not only obtains the global optimal
value most times on these benchmark functions but also is
superior to other algorithms in terms of convergence speed
and convergence accuracy.

4.3. Efficiency Analysis of Proposed Algorithmic Components.
So far, the above experiment exhibits the combined effect of
the proposed DSIDE. In this section, the efficiency analysis
of proposed algorithmic components is completed, in-
cluding the enhanced mutation strategy of the reference
factor and the adaptive strategy of the scaling factor and
crossover probability. Some variants of DSIDE are listed as
follows:

(i )To verify the effectiveness of the enhanced muta-
tion strategy of reference factor α, DSIDE variants
adopt dynamic F,CR, and constant reference factor
of α � 0.3 and α � 0.6 and random real number in
[0, 1], which are, respectively, called as DSIDE-1,
DSIDE-2, and DSIDE-3 one by one.

(ii) To investigate the validity of the scaling factor
adaptive strategy, DSIDE variants employ dynamic
CR, α and fixed scaling factor of F � 0.3, F � 0.6,
and random real number in [0, 1], which are named
DSIDE -4, DSIDE -5, and DSIDE -6 for short.

(iii) To study the contribution of the crossover proba-
bility adaptive strategy, DSIDE variants with shifty
F, α and settled crossover probability of CR � 0.3
and CR � 0.6, and random real number in [0, 1] are,
respectively, abbreviated as DSIDE-7, DSIDE-8, and
DSIDE-9.
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Figure 3: Nonparametric test results of proposed DSIDE and 9 DSIDE variants over 30 independent runs. (a) Friedman test results.
(b) Kruskal–Wallis test results.
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For the purpose of evaluating and comparing the
performance of DSIDE variants, Friedman test, Krus-
kal–Wallis test, and Wilcoxon’s rank-sum test are
adopted, and the test results are shown in Figure 3(a),
Figure 3(b), and Table 7, respectively. -e following
summaries can be obtained. (1) From Figure 3, we can
observe that DSIDE and DSIDE-6 are the best and the
second, while the performance of other DSIDE variants is
relatively low. -e combined effect of the proposed al-
gorithmic components is the best. (2) From Table 7, the
integrated DSIDE performs significantly better than
DSIDE variants (DSIDE-2 and DSIDE-5) with a larger
reference factor and a lager scaling factor, as well as
DSIDE variants (DSIDE-7, DSIDE-8, and DSIDE-9) with
different crossover probability. -e performance between
the integrated DSIDE and DSIDE-1 with a smaller ref-
erence factor, DSIDE-3 with a random reference factor,
and DSIDE-4 with a smaller scaling factor show no sig-
nificant difference when the significance level of Wil-
coxon’s rank-sum test is 0.1, but the difference is opposite
when the significant level is 0.05. At the same time, there is
no performance difference between DSIDE and DSIDE-6
with a random scaling factor, regardless of the significance
level. -e validity of the proposed mutation strategy and
adaptive strategy for control parameters is demonstrated
utilizing above experimental comparisons. It is noted that
the contribution of the adaptive strategy of crossover
probability is larger than enhanced mutation strategy and
adaptive strategy of scaling factor. -at is to say, although
the enhanced mutation strategy of reference factor and
adaptive strategy of scaling factor are effective, DSIDE is
less susceptible to both a smaller or variational reference
factor and scaling factor.

5. Conclusions

DSIDE’s innovation lies in two strategies, the enhanced
mutation strategy and the novel adaptive strategy for control
parameters. On the one hand, the enhanced mutation
strategy considers the influence of the reference individual
on the overall evolution. It introduces the reference factor,
which is beneficial to global exploration in the early stage of
evolution and global convergence in the later stage. On the
other hand, the novel adaptive strategy for control pa-
rameters can dynamically adjust the scaling factor and

crossover probability according to the fitness value, which
has a positive impact on maintaining the population di-
versity. DSIDE is compared with other seven DE algorithms,
the results are evaluated by three nonparametric statistical
tests, and the convergence curves are analyzed. Experimental
results show that the proposed DSIDE can effectively im-
prove the optimization performance. Besides, the efficiency
analysis of proposed algorithmic components has been
carried out, which further proves the comprehensive effect
and validity of DSIDE.

So far, DE variants have been applied to various fields,
such as target allocation [41], text classification [42], image
segmentation [43], and neural network [44–47]. For the
future work, the proposed DSIDE algorithm will be applied
to the parameter optimization of neural network and may
further apply it to the air traffic control system for flight
trajectory prediction [48, 49].
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Autonomous underwater vehicles (AUVs) are important and useful tool platforms in exploring and utilizing ocean resource.
However, the effect of control surfaces would decrease even invalid complete in this condition, and it is very hard for conventional
AUVs to perform detailed missions at a low forward speed. ,erefore, solving this problem of AUVs becomes particularly
important to increase the application scope of AUVs. In this paper, we present a design scheme for the vectored thruster AUV
based on 3RPS parallel manipulator, which is a kind of parallel manipulator and has advantages of compact structure and reliable
performance. To study the performance and characteristics of the proposed thrust-vectoring mechanism, a series of works about
corresponding kinematic and dynamic analysis have been performed through the theoretical analysis and numerical simulation.
In the part of kinematics, the inverse, forward kinematics, and workspace analysis of the thrust-vectoring mechanism is presented,
and the numerical simulations are accomplished to prove the feasibility and effectiveness of this design in AUVs. In order to
further verify feasibility of the thrust-vectoring mechanism, based on the considerations of various affecting factors, a dynamic
model of the designed thrust-vectoring mechanism is established according to theoretical analysis, and the driving forces of the
linear actuator are presented through a series of numerical simulations. In addition, a control scheme based on PID algorithm is
proposed for the designed vectored thruster with considering various affecting factors and the application environment.
Meanwhile, the control scheme is also established and verified inMATLAB SimscapeMutibody. A series of numerical simulations
of the thrust-vectoring mechanism prove the feasibility of the vectored thruster. According to equipping the designed vectored
thruster, the AUVs can overcome the limit of weakening the control ability at zero or low forward speeds, and this improvement
also expands the application of it, which has been scaled greatly.

1. Introduction

Over the last few decades, due to exhausting of resources and
energy, human beings are bearing with a series of survival
predicaments and development challenges [1, 2]. Because of
the lack of land-based resource and the continuing need for
all kinds of resources, an increasing number of countries and
scientists have paid more and more attention on the ex-
ploitation and utilization of resources [3–5]. In the present,
most of the water available on Earth exists in the oceans, yet
only a small part of this vast resource has been explored [2].
,e ocean has vast areas and is rich in all kinds of natural
resources, such as marine life, oil, natural gas, and minerals.
Additionally, the ocean not only contains a lot of marine

recourse but also brings a lot of traffic convenience around
the world. With the progress of society and economy, the
development of mineral resource has become an inevitable
trend. Exploring and exploiting the oceans has become the
principal development strategy of every country in the
world. However, the nature environment of the ocean is too
harsh to explore, and the advanced technology has been
rapidly developed in recent years, such as autonomous
underwater vehicles (AUVs), remotely operated vehicles
(ROVs) [6–8], and unmanned marine vehicles (USVs) [9].
In addition, other different techniques have also been used
for controlling all kinds of robots, such as proportional
integral derivate [10], fuzzy control [11, 12], and sliding
model control [13].
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AUVs have become a main tool for surveying below the
sea due to the great improvement in their performance and
advancement in underwater research. ,rough equipping a
large quantity of advanced instruments and equipment,
AUVs are capable of accomplishing applications including
scientific, commercial, andmilitary tasks such as exploration
of oceans [14, 15], oceanography mapping surveys [16–18],
the collecting ocean environment information [19–21], and
searching and rescuing for shipwrecks [22, 23] and debris
from the missing airplanes [24, 25]. With the expanding area
of applications, the design of AUVs needs to meet the higher
demand continuously. Although it has made great steps in
AUVs performance, the new emerging technologies and
demands for exploiting oceans have attracted critical mass of
scientists and engineers to undertake the research of AUVs.

Conventional AUVs are designed equipped with a main
propeller and control surfaces at the tail cone for propulsion
and control [26–28].,ese conventional AUVs can fulfill the
work well under normal conditions. When the conventional
AUVs need to complete exploration tasks with a lower speed
in a complex and unknown underwater environment, the
control capability of AUV depends heavily on the control
faces made up of fin and rudder. ,e velocity of AUV is
relatively low or zero because of the demand of practical
problems, such as scanning topographic map, taking pho-
tographs, and monitoring marine observation data. How-
ever, they are unable to perform detailed inspectionmissions
at zero or low forward speeds due to the control faces which
become ineffective in this condition [28, 29]. ,e cause of
this problem is that the generation of control forces from
control surfaces depends on forward speeds of AUVs
[28, 30]. ,erefore, this disadvantage has further develop-
ment and application of conventional AUVs greatly.

,ere are some approaches to solve this problem, such as
installing additional thrusters to provide additional control
forces for controlling AUVs [28, 31–34], but this method
would result in the problems of complicated structure and
increasing energy consumption. Its complex structure, ad-
verse working environment, and so on causes the decrease of
reliability of the whole AUV control system. Installation and
maintenance of additional thrusters would significantly
increase energy expenditure or energy carrier for sailing.

Another more efficient and workable method to release
this restriction is to use vectored thruster to replace the
conventional propulsion types [7, 29, 35–38]. ,e AUVs
equipped with vectored thruster do not require the use of fin
and rudder for controlling at all. Since this kind of AUVs
driven by a vectored thruster, the control forces are gen-
eralized force components produced by vectored thruster,
and these forces only depend on the rotational speed of the
propeller. ,erefore, the AUVs equipped with vectored
thruster are independent from any control forces generated
by control faces, and the controllability of vehicle is
markedly improved and obtains a better good application
effect. So, the vectored thruster AUVs are capable of
accomplishing detailed missions at a low forward speed.

In the research areas of this field, some companies and
research institutions have made progress in theory study and
application of vectored thrusters [29, 36, 38]. Among above

research AUVs, Bluefin and MBARI have achieved great
successes and provided considerable experience in the use
and study of vectored thrusters. More importantly, the
engineering practice of Bluefin and MBARI shows that this
method can raise control efficiency greatly and also reduce
the possibility of losing control at low speed. However, the
existing design of the vectored thruster is almost designed
based on serial mechanism; this kind of mechanism has the
disadvantages of complex structure, low bearing capacity,
and high moment inertia. So, based heavily on practicalities
of serial mechanism, the existing design of the vectored
thruster is too bulky and complex to use for AUVs. Con-
sidering the restrictions of application environment and
structure size, it is crucial to choose a suitable mechanism for
designing new vectored thruster AUVs.

On the contrary, compared with other commonly used
mechanical structures, parallel manipulators have numerous
advantages, such as small size, compact and reasonable
structure, reliable performance, fast response, high posi-
tioning precision, high stability, high sensitivity, high
stiffness, and better dynamic performance [39–42]. ,ose
merits of parallel manipulators make the device have high
popularization value and use value, such as medical and
industrial robots, flight simulator, and mechanical device.
Inspired by various applications of parallel manipulators, the
idea of vectored thruster AUVs based on parallel manipu-
lator is generated. In the field of thrust-vectoring mechanism
research, many scientists and engineers have made great
contributions to the development of vectored thruster AUVs
based on parallel manipulators. ,e full deflection vectored
thruster is based on the spatial linkage and universal joint
proposed by Cavallo and Michelini [43]; the authors
designed a 3-SPS-S parallel manipulator with passive con-
straining spherical joints to drive the underwater vehicle
[30]. ,e above thrusters currently have some problems,
such as the structure is relatively complex, and the motion
real-time resolving method and the dynamics model for the
vectored thruster are difficult.

With comparing structure characteristics of different
kinds of parallel manipulators and considering actors of
application environment, 3RPS is chosen from various
parallel manipulators as the thrust-vectoring mechanism
mainly various advantages, including its compact structure,
high position tracking precision, and fast response speed.
,is parallel mechanism is a strong coupled nonlinear
structure, so its motion control is too complex to use more
widely [44–47]. Despite its advantages, the 3RPS parallel
manipulator also needs to overcome some problems that
would restrict the development and application of the
thrust-vectoring mechanism. ,rough reading and analyz-
ing the domestic and foreign related literature, various
methods of kinematics and dynamics for 3RPS parallel
manipulators have been presented [44, 45, 48–50].

On the basis of the above considerations, the design
concept of vectored thruster which is made up of 3RPS
parallel manipulators is introduced. ,e vectored thruster
based on 3RPS parallel manipulators has terse structure,
convenient operation, convenient installation, steady
working system, and wide adjustable range. Using this
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method, the AUVs are able to provide the vectored thrust
effectively and efficiently. More than anything, the AUVs
equipped with vectored thruster are able to complete a
variety of the complex tasks at a comparably low forward
speed.

In this paper, the structural design of the vectored
thruster based on 3RPS is introduced briefly. In order to
satisfy the design requirements and study the motion
characteristics of vectored thruster, the kinematics and
dynamics model of the thrust-vectoring mechanism are
established, and the related simulation is presented to
verify feasibility of the scheme. Finally, a control scheme
for the vectored thruster is designed and simulated in
Matlab. ,e theoretical analysis and numerical simulations
prove that the proposed vectored thruster based on a 3RPS
parallel manipulator can effectively realize the function of
providing the required vectored thrust for thrust-vectoring
propulsion.

2. The General Design of Vectored Thruster

,e configuration of the whole AUV equipped with the
designed vectored thruster based on 3RPS parallel manip-
ulator is presented, as shown in Figure 1. Due to the exis-
tence of the vectored thruster, the AUVs do not need any
more rudders to provide control forces. ,e force generated
by the vectored thruster is used as control force for AUV’s
yaw and pitch motion. Consequently, the tilt angle is im-
portant one of the criteria to assessing the performance of
the proposed vectored thruster. However, the space in the
stern of AUVs is limited, and the tilt angle range of the
designed vectored thruster is also limited. Referring to a
literature review [29, 51], the duct propeller’s tilt angle is
limited to plus or minus 15° in our design. In addition, the
vectored thruster contains a duct that can be used for
protecting the propeller form damaging and enhancing flow
capability.

In terms of structure design, considering the specific
requirements of application environment and the stability of
system, we adopted the modular design for vectored thruster
AUV. ,e designed vectored thruster is mounted on the
stern of an AUV as an integral and independent, which is
adopted for convenient installation and maintenance. ,e
designed vectored thrust duct propeller system mainly
contains the duct propeller and the thrust-vectoring
mechanism. A whole structure model of the vectored
thruster AUV based on 3RPS parallel manipulator is built
up, as shown in Figure 2.

At present, the duct propeller is the most widely used
form of propulsion device for underwater robots. A duct
propeller is mainly composed of an annular wing and a
propeller. ,ere are many underwater vehicles equipped
with duct propellers, for the extraordinary performance of
improving the propulsive efficiency and avoiding cavitation
conditions [52]. ,is kind of propeller is able to provide the
thruster from zero to cruising speed more effectively. Just
because of an effectively increased thrust in the condition of
a low forward speed, the duct propeller is widely used in
various marine vessels, such as AUVs and ROVs.

Furthermore, underwater environments are very com-
plex and harsh; propellers are very easily destroyed by
underwater animals and plants, waves, even currents, and
other uncertainties. Hence, the existence of a duct can
protect the propeller against damage from the underwater
environment during all kinds of missions. Moreover, since
the duct also can generate the thrust during the voyage, the
duct is an important source of control force for AUV’s yaw
and pitch motion.

In our design, the duct propeller is driven by amain electric
motor installed in the rotating body, which is aligned with the
holes of the duct’s inner shaft with fastening screws. In order to
simplify the unnecessary transmission structure and reduce the
redundant weight, the main motor has been bedded on the
rotating body with a duct propeller. It is very clean and efficient
to take direct connects with the propeller and the main motor.
,is installation mode of the main motor and rotating body
can improve space utilization significantly and reduce the
weight of vectored thruster effectively. And this modularity
makes the duct propeller system easy tomaintain and debug on
the whole vectored thruster control system.

As the implementing actuator of the vectored thruster,
the thrust-vectoring mechanism is fundamental to the
overall system for its basic functions. ,ere are many
methods on how to realize thrust vectoring, and each
method has its own advantages and disadvantages. Con-
sidering the limited space of AUVs’ tailcone and the harsh
operation condition, it is central to choose an appropriate
mechanism structure that can complete the design function
of achieving vector control effectively for AUVs. Comparing
to the serial mechanism, parallel manipulators have many
inherent superiorities, such as small size, compact and
reasonable structure, reliable performance, fast response,
high positioning precision, high stability, high sensitivity,
high stiffness, and better dynamic performance.

Integrating practical application environment of AUVs
and based on the application background of various parallel
manipulators, 3RPS parallel manipulator is chosen as the
thrust-vectoring mechanism after analyzing various me-
chanical structures. In accordance with this notion, a novel
thrust-vectoring mechanism based on the 3RPS parallel
manipulator for AUVs is designed, as shown in Figure 3.

,e thrust-vectoring mechanism is designed based on 3-
RPS manipulator, which has a top rotting platform, a fixed
base, and three identical sets of driving limbs and joints.

Figure 1: Vectored thruster mounted at AUV.
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Each driving limb has an actuating prismatic joint (P) attached
to the fixed base by a rotational joint (R) and connected to the
platform by a spherical joint (S) [53–55]. Each limb is driven by
a linear actuator. ,us, the length of limb could be changed
within the operation range, and the top platform would rotate
when the length of limbs changes with a certain law of motion.
,e vectored thruster is installed on the tail horizontally, which
connected with the shell of the AUV via fastening screws. ,e
duct propeller can rotate around the center of the top platform
horizontally and vertically, and the thrust generated by the
vectored thruster will drive the vehicle forward or changes the
direction of movement.

,e 3RPS parallel manipulator has two rotational and one
translational degree of freedom (DOF). It is superfluous to have
the translational DOF for the thrust-vectoring mechanism, the
redundant DOF needs to be constrained by motion control,
and the other two rotational DOFs are used to realize functions
of the thrust-vectoring mechanism. In addition, the transla-
tional DOF of 3RPS parallel manipulator will make the top

rotating body bump into the shell of the AUV. So, the im-
portance of the study on redundant DOF of the 3RPS parallel
manipulator is obvious for the actual application of the thrust-
vectoring mechanism.

Since the vectored thruster could generate required
control forces for controlling AUVsmotion, there is no need
to have extra rudders as conventional AUVs. ,e compo-
nent of the thrust as control forces is dependent on the
deflection angle and the thrust of the vectored thruster.
,erefore, the research on deflection angle of the vectored
thruster is essential for controlling the motions of AUVs.
However, it is very difficult to measure the tilt angle of the
vectored thruster directly because the limited space and
underwater environment is not suitable for installing sensors
to measure. Another common and efficient approach to get
the rotation angles is using the kinematic analysis method,
which can obtain the tilt angle by measuring the lengths of
the three limbs. Based on this kinematic method, tilt angle
information about the vectored thruster can be obtained via
relative calculation with the lengths of three limbs, which
can be measured directly by length sensors installed in
actuators.

In order to realize precision and stable positioning
control of the proposed vectored thruster, the design of the
automation control system is fundamental to achieve ob-
jectives. Hence, establishment of kinematic and dynamic
models for the thrust-vectoring mechanism based on the
3RPS parallel manipulator is significant to achieving perfect
control of the vectored thruster based on the above analysis.

3. Kinematic Analysis of the Thrust-
Vectoring Mechanism

,e thrust-vectoring mechanism is designed based on the 3-
RPS parallel manipulator, which is composed of a base plate,
a rotating platform, and three uniformly distributed driving

Thrust-vectoring mechanism

Propulsion motor

Ducted propeller

Figure 2: Vectored duct thrust propeller.

Actuator 1

Actuator 2 Actuator 3

Figure 3: ,rust-vectoring mechanism based on 3-RPS parallel
manipulator.
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limbs, as shown in Figure 3. According to the needs of
analyzing the motion of the top rotating platform, two
Cartesian coordinate systems with associated symbols have
been established in the 3RPS parallel manipulator and
shown in Figure 4. ,e reference frame O-xyz, which is the
global coordinate system, is fixed to the center of the im-
movable base and the z-axis normal to the fixed base.
Similarly, the reference frame P-ijk denotes the local co-
ordinate system located on center point P of the rotating
platform, whose j-axis is perpendicular to the bottom surface
of the platform.

,e moving sides of driving limbs (linear actuators) are
connected to the upper rotating platform through three
sphere joints that is fixed directly to the center of the top
platform, while the other sides of the limbs are connected to
the base with three revolute joints that are symmetrical
about the center of base. A1, A2, and A3 are the connected
points between the fixed base and the driving legs (linear
actuators), B1, B2, and B3 denote the points of the revolute
joints. It should be mentioned that A1B1, A2B2, and A3B3 are
perpendicular to the fixed base becauseA1B1,A2B2, andA3B3
represent revolute joints with a certain height. A reference
frame O′-xyz is established with respect to the plane formed
by points B1, B2, and B3, and this plane parallels with the
fixed base A1, A2, and A3. ,e connected points between the
moving parts and the rotating platform are expressed as C1,
C2, and C3. ,e radius of the fixed base and the top platform
are defined as r1 and r2, O and P denote the center points of
the base and top platform, respectively. L1, L2, and L3 denote
the lengths of three linear actuators between the top plat-
form and the fixed base.

As we can see in Figure 4, in the global reference frame
O-xyz, the center point of the equilateral triangle made up of
three points A1, A2, and A3 is expressed as O, and the radius
of the fixed base is defined as OA1 �OA2 �OA3 � r1. Hence,
the location of Ai in global reference frame O-xyz can be
described as follows:
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Similarly, B1, B2, and B3 denote the axes of revolution of
the revolute joints with a certain height hr, and this plane
parallel is with the fixed base. Hence, the locations of point Bi
can be denoted as follows:
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A local coordinate system P-ijk is established on the
rotating platform bottom surface of the thrust-vectoring

mechanism, in which the origin point P is the circumcenter
of triangle C1, C2, and C3. So, the locations of connection
point between the linear actuators and the top platform can
be described as follows:

PC−P � B1 B2 B3􏼂 􏼃 �

0 r2 −r2

−

�
3

√
r2

2
r2

2
r2

2

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

From Figure 4, p as a position vector denotes the
translation vector from the center point O to point P of top
rotating platform in global reference frame O-xyz. To de-
scribe the relative motion between top rotating platform and
fixed base, a rotation matrix about frame P-ijk with respect
to the fixed base reference frame O-xyz needs to be estab-
lished. ,e position vector p and the rotation matrix R are
defined as follows:

p � Px Py Pz􏽨 􏽩
T
,

R �

cccβ ccsβsα − sccα ccsβcα + scsα

sccβ scsβsα + cccα scsβcα − ccsα

−sβ cβsα cβcα

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(4)

where s (·)� sin (·), c (·)� cos (·), and α, β, and c denote the
rotation angles about the k-axis, j-axis, and i-axis,
respectively.

,e thrust-vectoring mechanism only needs two rota-
tional DOFs to realize its functionality; the 3RPS parallel
manipulator has one more translational DOF that is re-
dundant. In order to present the condition of the top ro-
tating platform of the thrust-vectoring mechanism, the
rotation angles are also important parameters that need to be
defined. According to the need of the thrust-vectoring
mechanism, the displacement between centers of the base
and the top platform are set as h. A generalized vector q is
established to describe the position and orientation of the
top rotating platform in the global reference frame as
follows:

q � Px Py Pz α β c􏽨 􏽩
T
, (5)

where Px, Py, and c are associated with the rotation angles α
and β. Based on Px � r2(sαsβcc − cαsc), Px � r2
(sαsβcc − cαsc), Px � r2(sαsβcc − cαsc), Px � r2(sαsβcc−

cαsc), Py � (r2/2)[(cβcc − sαsβsc) − cαcc], LP �
�������
P2

x + P2
y

􏽱
,

and c � tan−1[sβsα/(sβ + cα)], so Px and Py also can be
written as follows:

Px � r2 · δPx,

Py � r2 · δPy,

LP � r2 · δLP,

⎧⎪⎪⎨

⎪⎪⎩
(6)

where δPx, δPy, and δLy denote the influence factor of Px, Py,
and LP. According to the application needs to be designed in

Mathematical Problems in Engineering 5



this design, the numerical simulations about δPx, δPy, and δLP
and the angle of rotation of c can be calculated, and the
simulation results are obtained and plotted in Figure 5.

From Sections 3.1 and 3.3, the inverse, forward kine-
matic analyses, and workspace analysis of the thrust-vec-
toring mechanism are performed, and numerical
simulations are conducted to validate the accuracy and
reliability accordingly.

3.1. Inverse Position Analysis of6rust-VectoringMechanism.
In this design, inverse position analysis of the thrust-vec-
toring mechanism is carried out to establish the mapping
relations between the position and orientation of topmoving
platform and the lengths of three driving linear actuators.
Referring to Figure 4, the length of linear actuator Li with
respect to the fixed base reference frame O-xyz can be
written as

Li � Rci + p − ai

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (7)

where ai (ci) denotes the vector from point O (P) to point Ai
(Ci) in frame O-xyz (P-ijk).

,e length change of the ith limb can be calculated as

ΔLi � Li − Lave, (8)

where Lave is the initial length of the linear actuators at the
tilt angle α� β� 0°.

According to (7) and (8), the length changes of the three
linear actuators can be obtained with related parameters
presented in Table 1, and the dimension parameters of
vectored thruster are calculated through CAD software. ,e
results of the length change of ith linear actuator are plotted
in Figure 6.

To further study the relationship between the tilt
angles of the top rotating platform and the lengths of three
linear actuators, the top moving platform moves

according to αs � π/9 · sin(t) rad and βs � π/9 · cos(t) rad.
When the top rotating platform moves according to α� αs
and β� βs, based on the kinematic analysis of the thrust-
vectoring mechanism above, the length of linear actuators
is plotted in Figure 7.

3.2. Forward Position Analysis of 6rust-Vectoring
Mechanism. Similarly, the forward position analysis of the
thrust-vectoring mechanism is established to study the map-
ping relations between the lengths, three linear actuators, and
the position and orientation of top moving platform. ,e
position and orientation of the topmoving platform is obtained
according to the given length of the ith linear actuator.

Referring to Figure 4, the position vector of point Ci on
the top rotating platform in global frame O-xyz can be
expressed as

OCi � OAi + AiBi + BiCi, (9)

where BiCi denotes the vector of the ith linear actuator,
which can be expressed as

BiCi �

Li c θ1i( 􏼁c λi( 􏼁

Lic θ1i( 􏼁s λi( 􏼁

Lis θ1i( 􏼁 + hr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

λi �
iπ
3

+
π
6

,

(10)

where θ1i is the angle between the actuator and the fixed
base. Since points C1, C2, and C3 form an equilateral triangle
in the top rotating platform, based on the theory in ge-
ometry, the relationship of C1C2C3 can be determined by

C1C2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � C1C3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � C2C3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
�
3

√
r2. (11)
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Figure 4: Schematic diagram of the 3-RPS parallel manipulator.
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Hence, the position of points Ci in reference frameO-xyz
can be obtained through (9)–(11).

Because P is the center of the circumcircle generated by
three points C1C2C3 in the top moving platform, the position
of center point P in global reference frame O-xyz can be
expressed as

p − OCi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � r2, (12)

where p of the center point P of the top rotating platform,
which can be used to describe the position of point P with
three components (Px, Py, Pz).

,e position vector OCi of points Ci is regarded as a
known parameter when the length of linear actuator is given;
thus, the three equations about the point of P can be
established and calculated.

To further investigate the relationship between the
lengths of linear actuators with the position and orientation
of the top platform, different lengths of the linear actuator
are used for the forward kinematic analysis. In this simu-
lation, the linear actuator L1, L2 ∈ [310 340]mm and L3 � 310,
325, 340mm. According to equations (9)–(12), the orien-
tation and position vector of the top moving platform can be
calculated directly, as shown in Figure 8.

3.3. Workspace Analysis of 6rust-Vectoring Mechanism.
Due to the available space of AUV is limited, it is im-
portant to analyze the workspace of the thrust-vectoring
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Figure 5: Influence factor.

Table 1: Geometric Parameters of the thrust-vectoring mechanism.

Symbol Value (unit)
r1 100 (mm)
r2 60 (mm)
h 330 (mm)
hr 10 (mm)

L1

L3

L2

0

–20
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 (m

m
)

–40

0.2
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0.2

α (rad)
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–0.2 –0.2β (rad)
–0.4 –0.4

Figure 6: Length changes of linear actuators.
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mechanism for optimizing structure design and im-
proving performance. According to the kinematic analysis
mentioned above, all the positions and orientations of the
top rotating platform can be obtained by changing the
lengths of actuators. Considering the motion character-
istics of the thrust-vectoring mechanism and constraint
on available space, the workspace analysis is mainly re-
ferring to study the tilt angle and angle change of the
revolute joint and spherical joint of the thrust-vectoring
mechanism in this paper.

In this section, θr and θt denote, respectively, the rota-
tional angles of the revolute joint and spherical joint. ,e
schematic diagram of revolute joint and spherical joint is
presented, as shown in Figure 9.

,e tilt angle θri and angle change ∆θri of the revolute
joint at point Bi can be defined by

θri � arccos
sri · e1

sri

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 e1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
,

Δθri � θri − θr−avg,

(13)

where e1 is the direction vector of the y-axis in global ref-
erence frame O-xyz and θr−avg is the initial angle generated
by the linear actuator and the fixed base at the tilt angle
α� β� 0 rad.

,e tilt angle θti and angle change Δθti of the spherical
joint at point Ci can be expressed as

θti � arccos
sti · t1

sti

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 t1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
,

Δθti � θti − θt−avg,

(14)

where t1 is the direction vector of the k-axis in local reference
frame P-ijk and θt-avg is the initial angle between the linear
actuators with the rotating platform at the tilt angle
α� β� 0 rad.

Similarly, to study the relations between the tilt angles of
revolute and spherical joints and the lengths of linear ac-
tuators, the tilt angles of revolute joint θri and spherical joint
θti by forward kinematic analysis are performed with linear
actuator length L1, L2 ∈ [310 340]mm and L3 � 310, 325,
340mm. ,e simulation results are plotted in Figure 10.

,e tilt angle of the three linear actuators and the top
rotating platform has close relation, the platform moves
according to αs and βs mentioned above. When the top
rotating platform moves according to α� αs and β� βs
(αs � π/9 · sin(π · (t/36) rad and βs � π/9 · cos(π · t/36) rad),
the tilt angle and angle change of linear actuators are plotted
in Figure 11.

4. Dynamic Analysis of Thrust-
Vectoring Mechanism

For improving the dynamic performance and control
accuracy of the designed vectored thruster, it is greatly
important to analyze the dynamics model. Since the
thrust-vectoring mechanism is designed based on the
3RPS parallel manipulator, which includes three closed-
loops kinematic chains, it is very complicated to perform
the dynamic analysis of the thrust-vectoring mechanism.

According to the theoretical analysis and practical needs,
the dynamic model of the thrust-vectoring mechanism based
on the 3RPS parallel manipulator is established. ,e schematic
diagram of the dynamic analysis model of the 3RPS parallel
manipulator is represented graphically, as shown in Figure 12.

Referring to Figure 12, dynamic formulation of the force
and moment balances on the linear actuator of the 3RPS
parallel manipulator can be expressed as follows:

FBi + Fgi − Fbi − FCi � mt _vti,

MBi − Mgi − MCi + Mbi − mtrti × _vti � Ii _ωi + ωi × Iiωi,

⎧⎨

⎩

(15)
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Figure 7: Length of linear actuators.
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where FBi and MBi denote force and moment applied at
point Bi, and FCi and MCi denote force and moment at
point Ci accordingly. Fgi and Fbi are the gravity and
buoyancy of the linear actuator, Mgi and Mbi denote the
moments generated by gravity and buoyancy of the linear
actuator, respectively. It should be noted that the buoy-
ancy of the linear actuator Fbi can be obtained by the
diameters dr and dt of bottom section and the movable
part and the length of bottom section lr. mt and Ii

represent the mass of the translating component and the
inertia moment of the linear actuator. _vti represents the
acceleration velocity of the linear actuator. rti denotes the
vector from point Bi to the mass center of linear actuator,
and _ωi denote the angular velocity and acceleration of the
linear actuator, respectively.

Due to acting by an external force and moment, it is
necessary to carrying out dynamic analysis of the topmoving
platform for establishing overall dynamics model for the
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Figure 8: ,e position and orientation of the top rotating platform with certain actuator lengths.
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thrust-vectoring mechanism. According to the forces and
moments distributions analysis of the proposed thrust-
vectoring mechanism, the stress conditions of the top
platform can be represented as Figure 13.

As shown in Figure 13, forces and moments are applied
on the connection points Ci generated from many respects,
such as the linear actuator, the top rotating platform, and
duct propeller. Based on the definition of forces and mo-
ments at point Ci above, the dynamical equations of the top
rotating platform can be expressed as

􏽐
3

i�1
FCi + Fg−P − Fb−P + RFe � mP _vP,

􏽐
3

i�1
MCi( 􏼁 − lg−P × Fg−P + lb−P × Fb−P + RMe � IP _ωP + ωP × IPωP( 􏼁,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(16)

where vp and _vP are the velocity and acceleration and ωP and
_ωP denote the angular velocity and angular acceleration at
the center of the top platform, respectively. FCi denotes
actuating force from the linear actuator along the direction
of actuator. Because the top platform is an axisymmetric
structure, Fg−P and Fb−P are the gravity and buoyancy from
the top platform, and lg−P and lb−P denote the distance from
the center point P generated by connection points C1C2C3 to
the center of mass and buoyancy of the top rotating plat-
form, respectively. Fe and Me are the external force and
momentmainly generated from the propeller and the duct in
our paper. Referring to Figure 13, the external force Fe and
external moment Me can be defined as

Fe � Fprop + Fduct,

Me � Mduct,
􏼨 (17)

where Fprop and Fduct denote the force generated by the
propeller and the duct of the thrust-vectoring mechanism
and Me denotes the moment generated by the duct, re-
spectively. ,e thrust vector Fprop is produced by the pro-
peller and can be expressed as

Fprop � Tp

−cαcβ

cαsβ

sα

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (18)

where Tp denotes the thrust produced by propeller and based
on standard propeller theory [28, 31], Tp �KTρn2pD4. KT, ρ,

np, andD denote the thrust coefficient, the water density, the
rotation speed of the propeller, and the propeller diameter,
respectively.

In this AUV, the duct propeller has been widely adopted
to protect from damage and improve the propulsive effi-
ciency by being enclosed by a duct. To further investigate the
dynamic model of the vectored thruster, it is clearly nec-
essary to considerate the effect on lift and drag generated by
the duct. ,e force generated by the duct applied to the
platform can be expressed as

FL D �

0

−L

D

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (19)

where L andD denote the lift and drag of the duct, which can
be calculated by CFD software.

Because the duct rotates around the center of the duct in
use, a transformation matrix Rd is established to convert the
duct frame into the body frame, and the matrix Rd can be
described as

Rd �

cαcβ −sα cαsβ

sαcβ cα sαsβ

−sβ 0 cβ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (20)

where α and β represent the tilt angles of the ducted
propeller.

Referring to equations (17)–(20), the force Fduct and
momentMduct generated by the duct that are applied on the
platform of the thrust-vectoring mechanism can be calcu-
lated as

Fduct � RdFL D,

Mduct � rp × Fduct.

⎧⎨

⎩ (21)

Finally, based on the above analysis and according to
Figures 12 and (15)–(21), the force balance along the leg
direction can be expressed as

Fi � FBi · si, (22)

where Fi denotes the force produced by the linear actuator to
complete the key components of drive function and si is the
unit vector of the ith actuator.

In order to do a better research on the effect of motion on
the vectored thruster, the numerical dynamic simulation on
the thrust-vectoring mechanism has been developing. Some
parameters used in the simulation, such as the dimension
parameters of vectored thruster, are calculated through CAD
software, and other parameters can be obtained by in [56].
All parameters of the thrust-vectoring mechanism are given
in Table 2.

Based on the abovementioned theory analysis and pa-
rameters, the analysis formulations in Section 4 have been
implemented in MATLAB.

When only considering the thrust produced by the duct
propeller and the top platform moving according to α � αs

and β � 0, the length changes and the driving forces of linear

Figure 9: Schematic diagram of revolute joint and spherical joint.
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actuator can be calculated, and the results are plotted in
Figures 14 and 15.

In the dynamic analysis above, the gravity, buoyancy,
drag, and torque of the vectored thruster is ignored. When
the weights of the rotating platform and the three actuators

are taken into account only, the driving forces of the linear
actuator can be calculated and plotted in Figure 16.

In addition, the buoyancy of actuator depends on the
length changes of actuators, and the buoyancy of linear
actuator can be calculated by the length change. When the
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Figure 10: Tilt angle of revolute and spherical joint of the actuator by forward kinematic analysis.
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top platform moves according to the designed trajectory, the
buoyancy is created with the movement of the vectored
thruster and the result of buoyancy is shown in Figure 17.

As we can see in Figure 17, the buoyant forces of ac-
tuators change with the length changes of actuators, but the

magnitude of the change is relatively small. Hence, the
buoyant forces of actuators can be approximately equal to
4.7N in this next calculation.
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Generally, the emphases of dynamic analysis of the
parallel manipulator for research are mainly focused on
the gravity, the external force, and torques. However, the
buoyancy is also an important factor that affects the
driving force of the actuators because the designed vec-
tored thruster is used in underwater vehicles. In addition,

the buoyancy of the other parts can be directly calculated
by CAD software.

With considering the buoyant forces of actuators as
shown in Figure 17 and buoyancy of other parts, the driving
force of the ith actuator can be recalculated and plotted in
Figure 18.

Table 2: Parameters of the thrust-vectoring mechanism.

Symbol Value (unit)
dr 50 (mm)
dt 10 (mm)
lr 250 (mm)
lg−P 35 (mm)
lb−p 70 (mm)
Fg−P 100 (N)
Fb−p 30 (N)
Fgi 20 (N)
Tp 200 (N)
Ip diag (3.2 3.2 1.54) (kg ·m2)
Ii diag (24.5 24.5 0.1) (kg ·m2)
mt 0.1 (kg)
P 60000
I 40000
D 15000
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Comparing the driving forces in Figures 15, 17, and 18, it
is obvious that the gravity and buoyancy of the whole
vectored thruster have an effect on the value of the driving
force greatly.

In order to investigate the performance and character-
istic of the vectored thruster more fully, some influential
factors of the duct have been considered in the following
simulations. Referring to (19)–(21), the parameters of the
duct are important to calculate in the numerical dynamic
simulation. In this paper, we use CFD simulation to get the
dynamics parameters of the duct. Figure 19 shows the drag,
lift, and moment of the duct with the angle of attack range
between 0° and 20° andmaintains the flow velocity at 2.5m/s,
respectively.

Based on the dynamics parameters of the duct, as shown
in Figure 19, the force andmoment generated by the duct are
calculated and presented in Figure 20.

,e calculation results show that the influential factors of
the duct play a very important role in calculating the driving
forces of actuators; hence, the influential factors of the duct
should be considered in a calculation schedule.

To improve the performance of the vehicle motion
control, the tilt angles α and β play a crucial role in the
vectored thruster AUVS. With considering the usage of the
vectored thruster, a control scheme using the PID method is
developed for the designed thrust-vectoring mechanism, as
shown in Figure 21. PID algorithm is the most widely used
control methods in all kinds of application fields for its
effectiveness and practicability. Based on the control scheme

shown in Figure 21, a control model of the proposed thrust-
vectoring mechanism is developed by Matlab and Simscape
Mutibody, as shown in Figures 22 and 23.

To further investigate the performance of proposed
control model, related numerical simulations are carried
out with top platform moves according to � αs and β� 0.
,e related parameters are given in Table 2, the length
responses of linear actuators can be obtained, as shown in
Figure 24.

,e simulation results from Figures 14 and 24 show that
the designed PID controller for the thrust-vectoring
mechanism is fast, effective, and able to achieve the expected
goal commendably. Based on the designed controller and
considering the influence of factors as analyzed above, which
includes extra forces and moments from duct and buoyant
forces of the vectored thruster, the driving force of linear
actuators is presented in Figure 25.

Comparing the driving force in Figures 18 and 25, the
driving forces of actuators have some similarities in change
trend at the same time, but the maximum and minimum of
driving forces are distinctly different. Hence, it is concluded
that the lift, drag, and torque of the duct propeller are
important influential factors to the dynamic model of the
vectored thruster. Accordingly, for the purposes of opti-
mizing the structure and decreasing the dimension, it is of
significance to choose the appropriate linear actuator for
driving the proposed thrust-vectoring mechanism by
studying the dynamic analysis with considering all kinds of
influence factor.
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5. Conclusion

In this paper, a design scheme for the vectored thruster
based on a 3RPS parallel manipulator is proposed to solve
the effect of the control surface weakening problems. Parallel
manipulators have several advantages over the mechanical
structure and are suitable for various application fields, such
as compact and reasonable structure, fast response, and high
positioning precision. Because of the merits of itself, this
type mechanical structure is used to design the thrust-
vectoring mechanism considering the limited space and
hash environment. Additionally, a duct propeller is adopted
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Figure 23: Model of the the thrust-vectoring mechanism with
Simscape Mutibody.
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as power source of the proposed vectored thruster, which
is installed on the top rotating platform with a main motor
as a whole structure, thereby this design ensures compact
structure, reliable motion, and high propulsive efficiency.
Because the control force is provided by the component
force of thrust rather than common rudders, the proposed
vectored thruster AUVs have the abilities to complete all
kinds of certain tasks and operations at a low forward
speed.

In order to make sure the designed vectored thruster can
run efficiently and stably, studying and developing the
control system is fundamental to implement the design
function of the vectored thruster. Owing to the importance
of control system, related theoretical research about kine-
matics and dynamics of the thrust-vectoring mechanism is
carried out to establish the motion model. In the kinematic
analysis, the inverse and forward kinematics of the thrust-
vectoring mechanism is presented, and the numerical
simulations are accomplished to prove the feasibility and
effectiveness of this design. In the section of workspace
analysis, the study of the tilt angles of revolute and spherical
joints is also carried out to make sure the motion platform
can implement its designed function in limited motion
space. In order to further verify feasibility of the thrust-
vectoring mechanism, based on the considerations of var-
ious affecting factors, a dynamics model of the designed
thrust-vectoring mechanism is established according to
theoretical analysis, and the driving forces of the linear
actuator are presented though a series of numerical simu-
lations. In addition, a control scheme based on PID algo-
rithm is proposed for the thrust vector control system on the
existing work basis, and a control model is established using
Simsacpe Mutibody, and the simulation results proved the
feasibility of the proposed control scheme, which can ef-
fectively realize the goal of controlling the thrust-vectoring
mechanism.

According to the above, the designed vectored thruster is
able to provide the vectored thrust effectively and efficiently,
and the AUVs equipped with vectored thruster are able to
complete a variety of the complex tasks at a comparably low
forward speed.

In the future research, a series of numerical simulations
and theoretical study are carried out to investigate hydro-
dynamic performance of this vectored thruster AUV. On
this basis, a prototype of this designed vectored thruster will
be developed and experimental test will be carried out to
verify the principles design. Moreover, the corresponding
control system of the vectored thruster as a part of the AUV
will be developed and tested in pools or open water to check
its performance.
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[53] M. Dı́az-Rodŕıguez, J. A. Carretero, and R. Bautista-Quintero,
“Solving the dynamic equations of a 3-PRS parallel manip-
ulator for efficient model-based designs,”Mechanical Sciences,
vol. 7, no. 1, p. 9, 2016.

[54] J. A. Carretero, R. P. Podhorodeski, M. A. Nahon, and
C.M. Gosselin, “Kinematic analysis and optimization of a new
three degree-of-freedom spatial parallel manipulator,” Journal
of Mechanical Design, vol. 122, no. 1, pp. 17–24, 2000.

[55] J. Carretero, M. Nahon, and R. Podhorodeski, “Workspace
analysis and optimization of a novel 3-DOF parallel ma-
nipulator,” International Journal of Robotics and Automation,
vol. 15, no. 4, pp. 178–188, 2000.

[56] R. McEwen and K. Streitlien, “Modeling and control of a
variable-length AUV,” in Proceedings of the 12th International
Symposium on Unmanned Untethered Submersible
Technology, Durham, NJ, USA, 2001.

18 Mathematical Problems in Engineering



Research Article
Prediction Model and Experimental Study on Braking
Distance under Emergency Braking with Heavy Load of Escalator

Zhongxing Li ,1 Haixia Ma ,2 Peng Xu ,3 Qifeng Peng,1 Guojian Huang,1

and Yingjie Liu1

1Guangzhou Academy of Special Equipment Inspection & Testing, Guangzhou 510180, China
2Guangzhou College of South China University of Technology, Guangzhou 510800, China
3MOE Key Laboratory of Disaster Forecast and Control in Engineering, School of Mechanics and Construction Engineering,
Jinan University, Guangzhou 510632, China

Correspondence should be addressed to Haixia Ma; mahx@gcu.edu.cn and Peng Xu; 325802168@qq.com

Received 16 July 2020; Revised 8 August 2020; Accepted 17 August 2020; Published 2 September 2020

Academic Editor: Guoqiang Wang

Copyright © 2020 Zhongxing Li et al. 0is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In order to study the relationship between the braking distance and the load of escalator and realize the prediction of the rated load
braking distance with a little load, the method of combining theoretical analysis and experimental research is used. First, the
dynamic characteristics of the escalator during emergency braking are analyzed, and the prediction model of the braking distance
of the escalator under different loads is derived based on the law of conservation of energy. Furthermore, the influence coefficients
under different loads were determined through experimental studies, themodel was revised, and the concept of equivalent no-load
kinetic energy (ENKE) was proposed. 0e research shows that the braking distance of the escalator increases nonlinearly with the
increase in load. When the no-load braking distance and the 25% rated load braking distance change greatly, the braking distance
increases faster as the load increases; the escalators with large brake force have a small ENKE and are easy to stop. Otherwise, it is
difficult to stop. 0e test results show that the comparison between the predicted value of the prediction model and the measured
value has a maximum error of 2.7%, and the maximum error at rated load is only 2.0%, which fully meets the needs of engineering
measurement. And the prediction method reduces test costs, enhances test security, and improves test coverage.

1. Introduction

As an important means of transportation in modern
buildings, escalator greatly saves physical strength and time
and improves traffic efficiency. As a kind of elevator, the
escalator is used to transport passengers up or down in an
oblique way. It has cyclic steps which are characterized by
continuous operation. Compared with the vertical elevator,
it has a greater transport capacity and is widely used in
airports, shopping malls, stations, and other places with
large passenger flow. In recent years, with the rapid de-
velopment of economy, the number of elevators in China has
increased rapidly, especially in the coastal areas. According
to the market supervision administration of Guangdong
Province website [1], by the end of 2019, the number of
special equipment in Guangdong Province was 1.6356

million, 7.33% more than in 2018, 40800 boilers, 399700
pressure vessels, 853200 sets of elevator, 193500 sets of
hoisting machinery, 146200 special motor vehicles, 24
passenger ropeways, and large-scale amusement equipment
2160 units (sets), as shown in Figure 1.

Due to the large amount and high risk, accidents of
special equipment occur from time to time. In 2019, there
were 15 special equipment accidents in Guangdong Prov-
ince, including 9 elevator accidents, accounting for 60%.
Figure 2 shows the accidents of special equipment in
Guangdong Province in 2019. It can be seen that the elevator
is not only a large number but also a special equipment with
a high incidence of accidents.

Guangdong Provincial government attaches great im-
portance to the safety of special equipment. With the
contribution of technical personnel to safety technology, the
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deaths number of 10,000 special equipments in Guangdong
Province has been decreasing year by year. However, due to
the large base, the safety situation is still grim. Figure 3 shows
the trend of accidents per 10,000 devices special equipment
in Guangdong Province.

As a special equipment, the safety and reliability of
escalators have always been the focus of managers and
technicians [2–6]. Most escalator accidents occur in crow-
ded public places, causing great personal injury and social
impact [7–11]. 0erefore, how to prevent accidents and
reduce the loss and social impact brought by accidents has
been the research direction of scholars in the industry
[10, 12–14].

As an important part of escalator safety protection, the
brake is used to quickly stop the escalator in the event of an
emergency and protect the personal safety to the greatest

extent. 0e principle of the brake is shown in Figure 4. 0e
quality of the brake’s performance directly affects the safety
level of escalators [15–17].0erefore, in order to improve the
safety of escalator brake, domestic and foreign scholars have
done a lot of research [18–20].

As an important indicator of brake performance, braking
distance is a necessary test item for inspection and main-
tenance [21, 22]. GB16899-2011 5.4.2.1 has clearly stipulated
the range of braking distance under different rated speeds
and takes the detection items of braking distance into one of
the items of escalator safety detection [23]. Table 1 shows the
standard values of the braking distances of escalators at
different nominal speeds.

In Table 1, the minimum braking distance is the limit
value with no load, while the maximum braking distance is
the limit value with rated load.0e traditional rated load test
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Figure 1: Proportion of special equipment in Guangdong Province in 2019.
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of the braking distance of escalators is mainly carried out by
loading. When the escalator comes to an emergency stop
under the rated load, the braking distance is measured to
judge the braking performance of the brake. Rated load is
required during the experiment. Due to the need to reserve

the braking distance, the load will generally be concentrated
on the upper part of the escalator, which can cause excessive
load concentration. 0ere are two problems in the load test:
first, it is difficult to carry the weight that is required by the
test, and the cost of handling is high; second, the brake
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Figure 3: 0e trend of accidents of special equipment in Guangdong Province.

Encoder
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Braker

EscalatorReducer

Power supply
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Motor

Figure 4: Structure principle of brake.

Table 1: Escalator braking distance range at different nominal speeds.

Nominal speeds V0(m/s) Minimum braking distance Smin(m) Maximum braking distance Smax(m)

0.5 0.2 1.0a

0.65 0.3 1.3a

0.75 0.4 1.5a
aExcluding endpoint values.
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performance of the escalator with a long service life may not
meet the requirements of the rated load test. And the es-
calator cannot be stopped reliably under rated load, which is
a great potential safety hazard. 0e loading test situation is
shown in Figure 5(a). Especially, in some shopping malls,
there is a human activity space under the escalator, as shown
in Figure 5(b). Once the brake is unable to stop the escalator
reliably at rated load, in some cases, the escalator is damaged,
and in other cases, personal injury or death will be caused.

Consider the high cost and risk of rated load test of
braking distance. At present, for the annual inspection and
maintenance of escalators, there is no rated load test, only
the measurement of no-load braking distance. However, the
actual situation is that escalators in China often operate
under heavy load, as shown in Figure 5(c). 0is brings great
safety hazard to passengers. In order to reduce the cost of
rated load test and reduce the test risk, it is particularly
important to study the equivalent test method under the
condition of light load. By establishing the relationship
model between the braking distance and load, the braking
distance of escalator under heavy load will be predicted.

Some scholars have studied the relationship between the
test of the braking distance and safety. Wang and Lu pro-
posed a method for calculating the braking capacity of es-
calators and moving walkways. 0e braking torque is
selected through braking deceleration and then proofread
stop distance [24]. Based on the design requirements of the
escalator braking system, Pan studied the influencing factors
of the braking distance and put forward proposed im-
provements to the inspection requirements of the braking
distance [25]. Hu established a new method for calculating
the mathematical model of the escalator braking distance
and used this method to calculate some structural param-
eters of the escalator [26]. Liu analyzed the calculation of the
braking distance of the escalator and established the relevant
calculation formula [27]. Park and Gschwendtner proposed
an efficient multibody dynamics simulation modeling ap-
proach. 0e approach also covers a comprehensive simu-
lation modeling of drive machine with gearbox, main drive
chain band, operational brake system, and auxiliary brake
system to evaluate the escalator brake performance at the
system level [21]. 0e work of the researchers provided an
important reference for the study of the braking distance of
escalators. However, most of the research on the braking
distance of escalators is carried out from the aspects of
checking and influencing factors, and there are few studies
on how to predict the braking distance under various loads
without loading or adding light load. In view of this, this
paper studies the law ofmovement in the process of escalator
operation, analyzes the energy change during the escalator
braking process, analyzes and summarizes a large number of
test data, and puts forward a method for braking distance
prediction.

In this paper, the braking distance prediction model of
the escalator under heavy load is obtained by light load.0e
method can reduce the test cost and risk, increase the
coverage of the braking distance test of rated load, and
improve the safety of the escalator. 0e structure of the
paper is as follows: Section 2 is the theoretical analysis,

starting from the general equation of mechanical motion,
analyzes the law of the movement of the escalator, and
constructs the equivalent dynamic model of the escalator
system. And the relationship between the braking distance
and the load is formed. Section 3 establishes the escalator
braking distance prediction model. 0rough the analysis of
the law of energy change in the braking process and
according to the conservation of energy, a simpler rela-
tionship between the braking distance and the load is
deduced and tested. Section 4 is the improved prediction
model of the braking distance of the escalator. 0e pre-
diction model derived in the Section 3 is improved, and the
calculation method of the influence coefficient is given.
Section 5 is the calculation results of the improved model.
0ree escalators with different parameters are tested, and
compared with the predicted data, the results are basically
consistent to meet the needs of engineering measurement.
In the fifth section, the test results of three escalators are
analyzed. 0e sixth section is the conclusion.

2. Theoretical Analysis

2.1. General Equations of Mechanical Motion. For a me-
chanical system composed of moving components, the
acting force on the component i is Fi, the torque is Mi, the
velocity of the point of force is vi, the angular velocity of the
component is ωi, the velocity of the center of mass is vsi, and
the moment of inertia of the center of mass is Jsi, then there
is

d 􏽘
n

i�1

miv
2
si

2
+

jsiω
2
i

2
⎡⎣ ⎤⎦ � d 􏽘

n

i�1
Fivi cos αi ±Miωi( 􏼁⎡⎣ ⎤⎦ · dt,

(1)

where αi is the angle between force and velocity, plus or
minus sign depends on the direction of the torque Mi acting
on the component and the angular velocity ωi of the
component. When they are the same, “+” is taken, and when
they are opposite, “−” is taken.

Equation (1) shows that, for complex systems, there are
many components and it is difficult to solve. However,
single-degree-of-freedom mechanical systems can be sim-
plified by equivalent.

2.2. Equivalent Dynamic Model of Escalator System.
According to the mechanical principle, the single-degree-of-
freedom mechanism can be reduced to an equivalent
component with equivalent mass or equivalent rotational
inertia [28]. At this time, the motion law of the equivalent
component is the same as that in the mechanism. 0e
condition of the equivalent rotational inertia is that the
kinetic energy of the equivalent component with the
equivalent rotational inertia (mass) is equal to the kinetic
energy of the original mechanical system. Due to the kinetic
energy theorem, during mechanical operation, the elemental
work done dw by all external forces in any time interval dt

should be equal to the increase in dE in kinetic energy of the
mechanical system:
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dw � dE. (2)

For the escalator system shown in Figure 6, let the
angular speed of the step sprocket be ω1, the mass is m1, the
moment of inertia is J1, the mass of all the steps is m2, the
speed of the step is v2, the load mass is m3, and the speed of
load is v3.

When running with no load, there is

dE � d
J1ω

2
1

2
+

m2v
2
2

2
􏼠 􏼡,

dw � M1ω1 · dt.

(3)

From equation (2),

d
ω2
1
2

J1 + m2
v2

ω1
􏼠 􏼡

2
⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭ � M1ω1 · dt. (4)

Make Je0 � J1 + m2 · (v2/ω1)
2 and Me0 � M1, where Je0

is the moment of inertia equivalent to the step sprocket, Me0
is the equivalent torque of the step sprocket, and M1 is the
electromagnetic torque converted to the step sprocket.

When running down with rated load, there is

dE � d
J1ω

2
1

2
+

m2v
2
2

2
+

m3v
2
3

2
􏼠 􏼡,

dw � m3g sin α · v3 − M1ω1( 􏼁 · dt.

(5)

Due to v2 � v3 � v,

d
ω2
1
2

J1+m2
v

ω1
􏼠 􏼡

2

+m3
v

ω1
􏼠 􏼡

2
⎡⎣ ⎤⎦

⎧⎨

⎩

⎫⎬

⎭�ω1
m3gsinα·v

ω1
M1􏼢 􏼣dt.

(6)

Make Je1 � J1 + (m2 + m3) · (v/ω1)
2 and Me1 � ((m3g

sin α · v/ω1) − M1), where Je1 is the equivalent moment of
inertia of the step sprocket and Me1 is the equivalent torque
of the step sprocket.

0e equivalent moment of inertia converted to the brake
wheel is

Je1′ � Je1 ·
n1

nb

􏼠 􏼡

2

· η. (7)

In equation (7), n1 is the speed of the step sprocket, m/s;
nb is the speed of the brake wheel, m/s; and η is the
transmission efficiency.

0e torque converted to the brake wheel is

Me1′ �
Me1

η
·
n1

nb

. (8)

On applying brake to the escalator, the braking distance
is

(a) (b) (c)

Figure 5: Escalator status: (a) escalator loading test; (b) escalator of mall; (c) status of escalator operation.
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Figure 6: 0e motion model of escalator.
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S �
v
2

2a
, (9)

where v is the escalator running speed, m/s, and a is the
deceleration, m/s2.

0e angular deceleration converted to the brake wheel is

εb �
a

R1
·
n1

nb

, (10)

where R1 is the radius of the step sprocket, m.
Since the braking torque of the brake is constant, set to

Mb, there is

εb �
Mb − Me1′

Je1′
. (11)

From equations (9)–(11),

S �
v
2

· n1 · J
’
e1

2R1nb Mb − M
’
e1􏼐 􏼑

�
v
2

· n1 · J1 + m2 + m3( 􏼁 · v/ω1( 􏼁
2

􏽨 􏽩 · n1/nb( 􏼁
2

2R1nb Mb − m3g sin α · v/ω1( 􏼁 − M1( 􏼁 · n1/nb( 􏼁􏼂 􏼃
.

(12)

It can be seen from equation (12) that when applying
brake, the motor power is disconnected, and the electro-
magnetic torque is zero. 0e braking distance is related to
the mass of the load. As the load increases, the numerator
increases, the denominator decreases, and the braking
distance increases rapidly. Although the values such as
moment of inertia and braking torque can be measured, they
involve many and complicated parameters. For the instal-
lation site of the escalator, even some parameters cannot be
obtained. 0erefore, it is very difficult to calculate the
braking distance with rated load and can only be measured
by loading. 0is article attempts to analyze the relationship
between the braking distance and the load from another
angle to achieve the purpose of predicting the braking
distance with rated load. By the analysis of energy changes
during braking, a mathematical model of braking distance
and load is established based on energy conservation, and
the influence of some intermediate details is equivalent to a
coefficient. Finally, the braking distance prediction of the
escalator with rated load and various loads is realized.

3. Prediction Model of Braking
Distance of Escalator

3.1. Energy Analysis of Escalator Braking Process. 0e brakes
of escalator products are currently mechanical; that is, the
brake system relies on the friction torque to stop the system
that drives the main engine to run. Applying brake to an
escalator or moving walkway running at a rated speed is the
mechanics to consume all the inertial energies of moving
parts of the stairway and the load through the frictional
resistance between the brake wheel and the brake shoe and
stop it within a distance. Taking an escalator as an example,
the energy change during braking is shown in Figure 7.

In Figure 7, the energy of the escalator movement
process includes the following: the kinetic energy of the
system (including all linear moving parts and rotating
moving parts), the work done by the friction of the system,
the work done by the gravity of the load, and the work done
by the braking force during braking.

3.2. Mathematical Model of Relationship between Braking
Distance and Load. 0e escalator is driven by the motor
through the gears to drive the steps and the handrails to
make a circular movement. When the fault occurs or the
safety switch is activated, the safety circuit is disconnected
and the motor loses its power source. At this time, the brake
coil is deenergized, and the brake decelerates the brake wheel
to stop. During braking, the kinetic energy and potential
energy are reduced, the braking force does work, and finally
reaches a state of equilibrium.

According to the law of conservation of energy, the sum
of the work done by the braking force and the friction force
is equal to the reduction of the kinetic energy of the system
and the reduction of the potential energy of load. 0en,

WF + Wf � ES + El, (13)

where WF is the work of the braking force, Wf is the work of
the friction, ES is the kinetic energy of the system, and El is
the work of gravity of the load.

In order to simplify the calculation, an equivalent
method is adopted. Simplify the influence of friction and
efficiency into an influence coefficient λ, so as to achieve the
equivalent purpose. 0e core idea is to use the braking force
to do work to consume the energy of the system. Two cases
of no load and rated load are taken to be considered. Assume
that the no load and the rated load have the same influence
coefficient. When the escalator is running without load, the
work done by the braking force is equal to the reduction of
kinetic energy multiplied by the influence factor:

FS0 � λE0. (14)

When the escalator is loaded with a mass ofm1, there are
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Figure 7: Energy changes during escalator braking.
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FS1 � λ
1
2

m1v
2

+ E0 + m1gS1 sin α􏼒 􏼓, (15)

where F is the braking force equivalent to the step chain;
kinetic energy with no load is E0′ � (1/2)mv2 + (1/2)Jω2; m1
is the load mass; S1 is the braking distance corresponding to
m1; S0 is the braking distance with no load; m is the mass of
linear moving parts with no load; J is the rotational inertia of
the rotating parts with no load; E0 is the ENKE related to E0′;
that is, the energy consumed in addition to the load energy;
and λ is the influence coefficient, which is affected by un-
known parameters such as friction and transmission
efficiency.

From equations (1) and (2), the relationship between the
braking distance and the load is as follows:

S1 �
(1/2)m1v

2
S0 + E0S0

E0 − m1g sin α · S0
. (16)

Equations (16) and (12) show the relationship between
the braking distance and the load from two different angles.
From the comparison between equations (16) and (12), it
can be seen that they are similar in the following aspects:
when the load increases, the numerator increases and the
denominator decreases; the braking distance increases with
the increase in load, and the closer to the rated load, the
greater the increase in braking distance. However, the
parameters to be measured in equation (16) are signifi-
cantly less than those in equation (12), which shows that
using equation (16) to predict the braking distance is more
simple and convenient.

3.3. Test and Verification. 0e braking distance of the es-
calator under different loads can be obtained by equation
(16). Although the ENKE in the model is a fixed value, it is
related to many factors, and it is difficult to calculate ac-
curately. In order to simplify the calculation, this paper
proposed the back derivation method to obtain the ENKE.
And then, substitute it into equation (16) to obtain the
braking distance of the corresponding load. 0is not only
avoids the high cost but also avoids the safety hazards of
rated load testing.

Principle of back derivation method: for equation (16),
braking distance with no load can be measured experi-
mentally. v, g, and α are all fixed values, m1 is the mass of the
load, and E0 is the ENKE, which is a constant related to the
braking force. According to the analysis, when the load mass
m1 is given, the braking distance S1 can be obtained.
Conversely, by testing the value of S1 under load m1, the
magnitude of the ENKE E0 can be calculated. If two braking
distance tests are conducted under no-load and few-load
conditions, respectively, the ENKE under the current con-
ditions can be obtained by equation (16).

After calculating the ENKE by the back derivation
method, only the braking distance S1 and the load m1 to be
loaded are unknown in equation (16). 0is means that, as
long as the load value is given, the braking distance under
any load can be obtained. Take 3 different escalators as
examples to verify equation (16).

0e infrared-based ranging sensor tester is used for the
braking distance test of escalator, which is designed inde-
pendently. 0e parameters of the instrument are shown in
Table 2.

3.3.1. Test Method. Place the instrument on the step, reserve
enough braking distance, and start the escalator operation;
when the escalator reaches a uniform speed, press the
emergency stop button and test the relative distance of the
instrument in real time during the braking process. Once the
emergency stop signal is detected, the relative distance is
recorded once. After the escalator stops, the relative distance
is recorded again. 0e distance between the two measured
values is the escalator braking distance.0e test site is shown
in Figure 8.

Figure 8(a) is the braking distance test when there is no
load, and Figure 8(b) is the braking distance test when it is
rated load.

0e parameters of the three tested escalators are shown
in Table 3.

3.4.Verification andAnalysis. 0e test of the three escalators
was carried out using the test method of braking distance in
Section 3.3. 0e braking distance of the escalators was
measured under the conditions of no load and 25%, 50%,
75%, and 100% rated load, respectively. 0e measured re-
sults of the braking distance when there were different loads
are shown in Table 4.

As can be seen from Table 4, for the escalator 1, when the
load is 0 kg, 450 kg, and 1800 kg, the measured braking
distance is 0.3m, 0.38m, and 0.73m, respectively. As the
load increases, the braking distance increases, and when the
load exceeds 50% of the rated load, the increase in braking
distance increases significantly, which basically increases
exponentially. For escalators 2 and 3, the same results as
escalator 1 are obtained.

Equation (16) considers the ENKE to be a constant value.
To verify, the back derivation method is used. Take escalator
1 as an example. Substitute the corresponding braking
distance at 0 kg and at 450 kg into equation (16). 0e cor-
responding ENKE is calculated as 3353.0625 J. In the same
way, the braking distances corresponding to 0 kg and other
loads are substituted into equation (16), and the ENKE
corresponding to the various loads calculated is 4194 J,
4291.553571 J, and 4649.023256 J. Similarly, the calculation
results of escalators 2 and 3 are shown in Table 4.

It can be seen from the results in Table 4 that the cal-
culated ENKE is inconsistent at different loads. As the load
increases, the calculation result of the ENKE also increases.
From 25% to 50% rated load stage, the ENKE increases
faster; from 50% to 75% rated load stage, the ENKE increases
slowly; and from 75% to 100% rated load stage, the ENKE
increase rate increases again.

0rough theoretical analysis, the ENKE proposed in this
paper is related to the braking force. For an escalator, under
the condition of a certain braking torque, the ENKE will not
change. 0en, the corresponding ENKE should be a certain
value. However, from the calculation results of the no-load
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equivalent kinetic energy in Table 4, it can be seen that the
ENKE becomes larger with the increase in the load.0at is to
say, the energy needs to be consumed by the brake in ad-
dition to the energy of the load itself, and the increased
energy of the ENKE is noticed. It is caused by an increase in
load. 0is is inconsistent with theoretical analysis. 0e
analysis shows that, as the load increases, the friction and
efficiency of the escalator system will change, so the impact
coefficient of this model will also change with the increase in
the load. 0e next section will improve the model.

4. Improved Model

4.1. Modification of the Model. According to the test results
and theoretical analysis in the previous section, the calcu-
lated ENKE is not a constant but increases with the increase

in the load. 0e analysis shows that, due to the existence of
factors such as meshing and friction between the gears, the
rated conversion efficiency of the work done by the braking
force is deviated. 0e efficiency of the escalator in no-load
and loading operation is different. 0is shows that the co-
efficients in equations (14) and (15) are not a constant value
but change as the load increases.

So, equation (14) is amended as follows when no load:

FS0 � k0E0. (17)

Equation (15) is amended as follows when loading:

FS1 � k1
1
2

m1v
2

+ E0 + m1gS1 sin α􏼒 􏼓. (18)

Kinetic energy with no load is as follows:

E0′ �
1
2

mv
2

+
1
2

Jω2
. (19)

Among them, k0 is the influence coefficient with no
load, and k1 is the influence coefficient with loading, which
varies with the load. E0 is the ENKE, which is related to E0′,
that is, the energy consumed in addition to the load
energy.

From equations (17) and (18), the expression of the
baking distance with load m1 is

Table 2: Parameters of the instrument.

Sampling frequency 25Hz Resolution 0.1mm
Measuring range 0.1～100m Transmission interface Bluetooth
Measurement accuracy ±3mm Operating temperature −10～+50°C

(a) (b)

Figure 8: Braking distance test: (a) with no load; (b) with load.

Table 3: Parameters of tested escalators.

Parameters Escalator 1 Escalator 2 Escalator 3
Nominal speed 0.5m/s 0.5m/s 0.5m/s
Tilt angle 35° 35° 35°
Lifting height 4.2m 5.3m 4.8m
Nominal width 1000mm 1000mm 1000mm
Rated load 1800 kg 2760 kg 2400 kg
Power 7.5 kw 11 kw 7.5 kw
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S1 �
(1/2)m1v

2
S0 + E0S0

λ1E0 − m1g sin α · S0
, (20)

where λ1 � (k0/k1).
Equation (20) is deformed:

λ1 �
(1/2)m1v

2
S0 + E0S0 + m1g sin α · S0S1

S1E0
, (21)

E0 �
0.5m1v

2
S0 + m1g sin α · S0 · S1

λ1S1 − S0
. (22)

4.2. Determination of Influence Coefficient and Analysis.
For the calculation results of the ENKE of the test escalator
in Section 3.4, it is actually assumed λ1 � (k0/k1) � 1.
According to this assumption, substitute the test results of
the braking distance of Table 4 into equation (22); the ENKE
calculation results of the three escalators can be obtained, as
shown in Table 4.

Since the improved mathematical model thinks that the
value of λ1 is not 1, the next step is to calculate the value of
λ1. Take escalator 1 as an example. Assuming that the 25%
rated load is used as the reference, λ1 � 1, so the ENKE at
this time is E0 � 3353.0625 J. Take E0 � 3353.0625 J as the
ENKE of the system; that is to say, the ENKE of the system is
a constant value 3353 J under any load (values after the
decimal point are omitted). 0en, the λ1 value under dif-
ferent loads can be obtained from equation (21), as shown in
Table 5.

Similarly, for the escalator 2, substitute the test results of
the braking distance in Table 4 into equation 22, and it can be
calculated as E0 � 6059.34264. 0e corresponding calcula-
tion results of λ1 under different loads are shown in Table 6.

As can be seen in Table 6, the 25% rated load is used as
the reference λ1 � 1. When the load is 50%, 75%, and 100%
rated load, the calculated λ1 is 1.080, 1.141, and 1.239,
respectively.

For the escalator 3, substitute the test results of the
braking distance in Table 4 into equation (22), and it can be
calculated as E0 � 4062.8403 J. 0e corresponding calcula-
tion results of λ1 under different loads are shown in Table 7.

It can be seen from Table 7 that when the load is 50%,
75%, and 100% rated load, the calculated λ1 is 1.075, 1.144,
and 1.234, respectively.

0is is approximately the same as the values of escalators
1 and 2 under the same load. 0en, the comparison of the

calculation results of the three escalators is shown in
Figure 9.

It can be intuitively seen from Figure 9 that the λ1 value
change trend of the three escalators under different loads is
very consistent and basically coincides at a specific point.
0erefore, it can be obtained that when the load is 25%,
λ1 ≈ 1; when the load is 50%, λ1 ≈ 1.08; when the load is
75%, λ1 ≈ 1.14; when the load is 100%, λ1 ≈ 1.234, as shown
in Table 8.

0e λ1 value corresponding to the load not listed in
Table 8 is calculated by the piecewise interpolation method.

0e test results of the above three escalators show that,
with the increase in load, λ1 shows an increasing trend. But
the growth rate decreases during the 50%–75% rated load
stage, and the growth rate is faster at the 75%–100% rated
load stage. 0e inflection point appears around 75% of the
rated load. According to equation (20), as the load increases,
the numerator becomes larger and the denominator be-
comes smaller. Due to the existence of λ1, after 75% rated
load, the speed at which the denominator becomes smaller is
slowed down. 0is suppresses the excessively rapid increase
in the braking distance, and a reasonable braking distance
value is obtained.

So far, the improved braking distance prediction model
of escalator has been completed, and the influence coefficient
has been determined. To verify the improved mathematical
model, the next section will test the model and compare it
with the measured value.

5. Test Results of Improved Model

Since the determination of the parameters in the improved
model is based on the three escalator tests mentioned in
Sections 3.3, the tilt angles are all 35°. In order to avoid
interference, other three escalators with different models,
different angles, and different rated loads were used as ex-
amples for testing. 0e parameters of the escalators are
shown in Table 9.

0e loading test process is shown in Figure 10.
0e actual measurement results of the braking distance

are shown in Table 10.
It can be seen from Table 10, for escalator 1, the braking

distance with no load is small, and the increment between
no-load and 25% rated load is small, so the braking distance
increases slowly as the load increases, and the braking
distance at rated load is also smaller, only 0.68m; for es-
calator 2, the no-load braking distance is larger, and the

Table 4: Test and calculation results of three escalators.

Tested escalator Load percentage (%)
0 25 50 75 100

Escalator 1 (rated load 1800 kg) Test result of braking distance (m) 0.3 0.38 0.45 0.58 0.73
Calculation result of ENKE (J) — 3353.06 4194.00 4291.55 4649.02

Escalator 2 (rated load 2760 kg) Test result of braking distance (m) 0.34 0.44 0.54 0.72 0.92
Calculation result of ENKE (J) — 6059.34 7369.81 7680.53 8305.68

Escalator 3 (rated load 2400 kg) Test result of braking distance (m) 0.19 0.23 0.26 0.3 0.34
Calculation result of ENKE (J) — 4062.84 5195.78 5662.83 6224.59
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increase in the braking distance between no-load and 25%
rated load is larger, so with the increase in load, the braking
distance increases rapidly.0e braking distance at rated load
is 1.09m, which has exceeded the standard requirements.
0erefore, it can be concluded that, as the load increases, the
braking distance shows an upward trend. When the braking
distance change between no-load and 25% rated load is
greater, the braking distance increases faster and is likely to
exceed the standard. On the contrary, the growth of the
braking distance is relatively slow.

According to the back derivation method in Section 3.3,
the actual measurement results of the no-load and 25% rated
load in Table 10 are substituted into equation (22). And the
ENKE of each escalator is calculated under the current
braking force, as shown in Table 11.

0e ENKE of each escalator calculated in Table 11 is
substituted into equation (20), and the predicted results of
the braking distance under different loads of each escalator
are calculated, as shown in Table 12.

It can be seen from Table 12 that, for an escalator of 0.5m/
s, when the braking distance with no load is close to 0.2m, the
braking distance with rated load is predicted to be 0.67m.
And there is space from the standard requirement of 1m;
when the braking distance with no load exceeds 0.4m, the
predicted value of the braking distance with rated load is
basically close to the upper limit of the standard or even
exceeds the standard. Relevant measures need to be taken to
reduce the braking distance to ensure the safe of the escalator.

6. Analysis and Discussion

According to the test results in Section 5 above, the com-
parison between the predicted value of the improved braking
distance prediction model and the measured value is shown
in Figure 11.

By combining Tables 10 and 12 and Figure 11, it can be
seen that the difference between the predicted value and the

Table 5: Calculated result of λ1 for escalator 1.

Load percentage (%) 25 50 75 100
Equivalent no-load kinetic energy (J) 3353 3353 3353 3353
λ1 1.000003924 1.08360672 1.135131174 1.227679976

Table 6: Calculated result of λ1 for escalator 2.

Load percentage (%) 25 50 75 100
Equivalent no-load kinetic energy (J) 6059 6059 6059 6059
λ1 1.000012852 1.080126793 1.141245873 1.239476107

Table 7: Calculated result of λ1 for escalator 3.

Load percentage (%) 25 50 75 100
Equivalent no-load kinetic energy (J) 4062 4062 4062 4062
λ1 1.000035977 1.075147415 1.144503496 1.234880806
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λ1

Load ratio
0.25 0.50 0.75 1.00

Escalator 3
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Figure 9: Comparison of λ1 for three escalators.

Table 8: Values of λ1.

Load percentage (%) 25 50 75 100
λ1 1.000 1.080 1.140 1.234

Table 9: Parameters of tested escalators.

Parameters Escalator 1 Escalator 2 Escalator 3
Nominal speed 0.5m/s 0.5m/s 0.5m/s
Tilt angle 30° 35° 35°
Lifting height 3.6m 5.3m 5.0m
Nominal width 1000mm 1000mm 1000mm
Rated load 2000 kg 2880 kg 2640 kg
Power 7.5 kw 11.0 kw 8.0 kw
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measured value is 0.022m at the maximum, and the max-
imum error is 2.7%. It can meet the needs of engineering
measurement. At the same time, the error we are more
concerned about at 100% of the rated load is smaller, the
minimum difference is only 0.003m, and the minimum
error is 0.3%.0is means that the predicted value is closer to
the actual value at 100% of the rated load.

It can be seen in Figure 11 that, before 50% rated load,
the slope of the curve of braking distance with load is
smaller; after that, the slope of the curve of braking distance
with load is larger, which means that, from 50% rated load,
as the load increases, the braking distance increases faster.
0e analysis shows that, as the load increases, the kinetic

energy of the escalator system continues to increase. At 50%
rated load, on applying brake, due to the large impulse force,
the critical point of friction is reached, causing the friction of
the system to become sliding friction. 0e frictional force is
reduced so that the braking distance increases more
obviously.

Furthermore, in order to visually show the influence of
the braking force on the braking distance, the braking force
is adjusted on the escalator 1. 0e braking force is increased
first, and then, the braking force is reduced. 0e braking
distance test method in Section 3.3 has been used for testing.
0emeasured results of the braking distance before and after
adjustment are shown in Table 13.

(a) (b) (c)

Figure 10: Load test of braking distance.

Table 11: Calculated values of equivalent no-load kinetic energy.

Escalator no. Escalator 1 Escalator 2 Escalator 3
Equivalent no-load kinetic energy (J) 2620.35 10441.08 9879.85

Table 12: Predicted value of braking distance for 3 escalators.

Load percentage 0 25% 50% 75% 100%
Predicted braking distance of escalator 1 (m) 0.230 0.300 0.370 0.498 0.674
Predicted braking distance of escalator 2 (m) 0.450 0.570 0.681 0.873 1.112
Predicted braking distance of escalator 3 (m) 0.430 0.540 0.637 0.803 0.997

Table 10: Actual measurement results of braking distance.

Load percentage (%) 0 25 50 75 100
Braking distance of escalator 1 (m) 0.23 0.3 0.38 0.5 0.68
Braking distance of escalator 2 (m) 0.45 0.57 0.7 0.88 1.09
Braking distance of escalator 3 (m) 0.43 0.54 0.65 0.81 1.0

Mathematical Problems in Engineering 11



0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Escalator c

Escalator b

Br
ak

in
g 

di
st

an
ce

 (m
)

Load ratio

Escalator a

0.0 0.2 0.4 0.6 0.8 1.0

Predictive value
Measured value

Figure 11: Measured and predicted values of three escalators.

Table 13: Test results before and after adjustment.

Load percentage (%) 0 25 50 75 100 Remarks
Braking distance of escalator (m) 0.23 0.3 0.38 0.5 0.68 Before adjustment
Braking distance of escalator (m) 0.18 0.24 0.32 0.43 0.62 Increase the braking force
Braking distance of escalator (m) 0.26 0.34 0.42 0.6 0.8 Decrease the braking force
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Figure 12: Comparison of braking distance before and after braking force adjustment.
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According to the back derivation method in Section 3.3,
the actual measurement results of the no-load and 25% rated
load in Table 13 are substituted into equation (22), re-
spectively. 0e value of ENKE is calculated. And then, the
predicted value of the braking distance can be obtained,
respectively, according to equation (20) before and after
adjustment. 0e comparison between the predicted value
and the measured value is shown in Figure 12.

It can be seen from Figure 12 that the test value and the
predicted value of the braking distance before and after the
braking force adjustment are basically the same, indicating
that the improved prediction model can meet the needs of
engineering measurement. Before the braking force ad-
justment, the braking distance with no load is 0.23m. After
the braking force increases, the braking distance with no
load is 0.18m, indicating that the braking force will decrease
when the braking force increases; after the braking force
decreases, the braking distance with no load is 0.26m, in-
dicating that the braking force will increase if the braking
force decreases. 0e same phenomenon happened when
rated loaded. Further analysis, from the braking distance test
results of Table 13 and equation (22), the ENKE can be
calculated to be 2620 J, before the adjustment of the braking
force. After the brake spring is tightened, that is, the braking
force increases. 0en, the result is that the braking distance
becomes smaller. Correspondingly, from equation (22), the
ENKE is 2223 J, which also becomes smaller. After the brake
spring is loosened, it means that the braking force is reduced.
0en, the result is that the braking distance becomes larger.
Correspondingly, from equation (22), the ENKE is 2910 J,
which also becomes larger. It can be concluded that the
ENKE of an escalator with a large braking force is small; that
is, the ENKE that needs to be consumed is small. In addition,
the change in braking distance between no-load and 25%
rated load is large, indicating that the braking force is small,
and the braking distance increases faster as the load
increases.

7. Conclusion

In this paper, the relationship model between the braking
distance and the load of the escalator is derived through the
analysis of the force and energy changes in the escalator
during braking. After experimental verification, it was found
that the influence coefficients were inconsistent under no-
load and loaded conditions, and the model was revised
accordingly, and an improved model was obtained. It re-
alizes braking distance predicting various loads for escalator
under light load test conditions, greatly reducing the safety
hazards and test costs on traditional testing of braking
distance under rated load and improving test efficiency:

(1) 0e prediction model before improvement considers
that the influence coefficients are equal whether no
load or loaded. However, it has been verified by
experiments that the influence coefficient increases
nonlinearly with the increase in the load. 0e im-
proved prediction model revises the influence co-
efficient and proposes the change law of the influence

coefficient on the braking distance. 0e results show
that the maximum error between the braking dis-
tance predicted by the improved model and the
braking distance measured by the loading method is
2.3%, which meets the test error of engineering
application.

(2) As the load increases, the braking distance is on the
rise. When the difference of braking distance be-
tween no-load and 25% rated load is large, the
braking distance increases faster and is likely to
exceed the standard. On the contrary, the growth of
the braking distance is relatively slow.

(3) 0e braking distance test is based on the power-off
time, including the electrical and mechanical delay
time of the brake. And the load influence coefficient
is also obtained on this basis. If the braking distance
test starts from braking, the load influence coefficient
needs to be recalculated.

(4) 0e introduction of ENKE simplifies the model and
ignores the influence of some intermediate quanti-
ties, which simplifies the calculation. At the same
time, a back derivation method is proposed to cal-
culate the ENKE, which avoids the complexity and
uncertainty of the ENKE calculation.

(5) 0e improved prediction model shows that the es-
calator with a large braking force has a small ENKE;
that is to say, for the braking force under this
condition, the escalator is easy to stop. Conversely,
the escalator with a small braking force has a large
ENKE, so the escalator is not easy to stop, which is
consistent with the actual situation.
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