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The aim of this special issue is to present discussions of some recent developments in the
area of dynamics and control, in all branches of science and engineering.

The subject of dynamics and control systems is wonderfully broad and it has important
applications in fields ranging from several engineering branches, physics, and computer
science to the life sciences, sociology, and finance.

So, this special issue of MPE is designed to present the state-of-the-art research and
the latest theoretical, numerical, and practical achievements to contribute to the advance-
ment of this field, in a significant way.

This special issue involves 19 original papers, selected by the editor, related to the var-
ious researches themes on dynamics and control, in order to present recent results on the
mentioned fields.

These papers are related to various subjects: mechanical (modeling, dynamics, ro-
botics, structures, chaos); electrical (telecommunications), aerospace science, biological
(modeling), fluids and control processes (optimization).

This special issue on Dynamics and Control in Sciences and Engineering papers is
organized as follows:

Concerning chaos, the 4 papers are:

Successive Bifurcation Conditions of a Lorenz-Type Equation for the Fluid Convection
Due to the Transient Thermal Field, Xiaoling He.
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Patrol Mobile Robots and Chaotic Trajectories, Luiz S. Martins-Filho and Elbert E. N.
Macau.

Inductorless Chua’s Circuit: Experimental Time Series Analysis, R. M. Rubinger, A. W. M.
Nascimento, L. F. Mello, C. P. L. Rubinger, N. Manzanares Filho, and H. A. Albuquerque.

Chaos Synchronization Criteria and Costs of Sinusoidally Coupled Horizontal Platform
Systems, Jianping Cai, Xiaofeng Wu, and Shuhui Chen.

Concerning control and identification, the 6 papers are:

Stabilizability and Motion Tracking Conditions for Mechanical Nonholonomic Control
Systems, Elżbieta Jarzȩbowska.

Stabilization and Observability of a Rotating Timoshenko Beam Model, Alexander Zuyev
and Oliver Sawodny.

Numerical and Analytical Study of Optimal Low-Thrust Limited-Power Transfers be-
tween Close Circular Coplanar Orbits, Sandro da Silva Fernandes and Wander Almod-
ovar Golfetto.

Fault Detection and Control of Process Systems, Vu Trieu Minh, Nitin Afzulpurkar, and
W. M. Wan Muhamad.

Joint Dynamics Modeling and Parameter Identification for Space Robot Applications,
Adenilson R. da Silva, Luiz C. Gadelha de Souza, and Bernd Schäfer.

Quadratic Stabilization of LPV System by an LTI Controller Based on ILMI Algorithm,
Wei Xie.

Concerning dynamics, the 3 papers are:

Modal Formulation of Segmented Euler-Bernoulli Beams, Rosemaira Dalcin Copetti,
Julio C. R. Claeyssen, and Teresa Tsukazan.

Asymptotic Solution of the Theory of Shells Boundary Value Problem, I. V. Andrianov
and J. Awrejcewicz.

Dynamic Stationary Response of Reinforced Plates by the Boundary Element Method,
Luiz Carlos Facundo Sanches, Euclides Mesquita, Renato Pavanello, and Leandro Palermo
Jr.

Concerning dynamics and control applications, the 2 papers are:

Simple Orbit Determination Using GPS Based on a Least-Squares Algorithm Employing
Sequential Givens Rotations, Rodolpho Vilhena de Moraes, Aurea Aparecida da Silva, and
Helio Koiti Kuga.

Evaluation of Tropospheric and Ionospheric Effects on the Geographic Localization of
Data Collection Platforms, C. C. Celestino, C. T. Sousa, W. Yamaguti, and H. K. Kuga.
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Concerning turbulence, the 2 papers are:

Incompressible Turbulent Flow Simulation Using the κ-ε Model and Upwind Schemes, V.
G. Ferreira, A. C. Brandi, F. A. Kurokawa, P. Seleghim Jr., A. Castelo, and J. A. Cuminato.

Dynamical Simulation and Statistical Analysis of Velocity Fluctuations of a Turbulent
Flow behind a Cube, T. F. Oliveira, R. B. Miserda, and F. R. Cunha.

Concerning Biological applications, the paper is:

A Stochastic Model for the HIV/AIDS Dynamic Evolution, Giuseppe Di Biase, Guglie-
lmo D’Amico, Arturo Di Girolamo, Jacques Janssen, Stefano Iacobelli, Nicola Tinari, and
Raimondo Manca.

Concerning telecommunications, the paper is:

Models for Master-Slave Clock Distribution Networks with Third- Order Phase-Locked
Loops, José Roberto Castilho Piqueira and Marcela de Carvalho Freschi.

J. M. Balthazar: Department of Statistics, Applied Mathematics and Computation,
State University of São Paulo at Rio Claro, P.O. Box 178, 13500-230 Rio Claro, SP, Brazil
Email address: jmbaltha@rc.unesp.br
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Successive Bifurcation Conditions of a Lorenz-Type Equation for
the Fluid Convection Due to the Transient Thermal Field

Xiaoling He
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Recommended by José Manoel Balthazar

This paper investigates the convection flow between the two parallel plates in a fluid cell
subject to the transient thermal field. We use the modal approximations similar to that
of the original Lorenz model to obtain a generalized Lorenz-type model for the flow in-
duced by the transient thermal field at the bottom plate. This study examines the con-
vection flow bifurcation conditions in relation to the transient temperature variations
and the flow properties. We formulated successive bifurcation conditions and illustrated
the various flow behaviors and their steady-state attractors affected by the thermal field
functions and fluid properties.

Copyright © 2007 Xiaoling He. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

The study of the thermally induced convection flow, or the Rayleigh-Benard convec-
tion problem, has centered on the Lorenz equation since 1963 when Lorenz used the
3-mode truncation of the Fourier series to obtain a nonlinear model [1]. Lorenz used
the Boussinesq approximation adopted by Saltzman [2] who solved the convection flow
problem in a seven-mode Fourier series approximation. The Lorenz equation represents
the Rayleigh-Benard convection for both the parallel and circular plates [3, 4]. Essentially,
the Boussinesq approximation originates from the Navier-Stokes equation and the heat
conduction equation when the variation of the fluid density is negligible. The Lorenz
model concerns the thermally induced convection flow by a steady-state temperature dif-
ference between the two parallel plates. Lorenz’s simplification to the nonlinear equation
allows for identification of the convection flow characteristics, such as the strange at-
tractors and flow stabilities. Major investigations of the Lorenz system have been on the



2 Mathematical Problems in Engineering

bifurcation, stability, and chaos at different Rayleigh numbers and at both the small and
large Prandtl numbers [5–8]. These earlier studies are largely based on numerical com-
putations or experimental observations, which demonstrate various behaviors, including
the sequential bifurcations with respect to the Rayleigh numbers and chaos with sensitive
dependence on the initial conditions. In addition, both the homoclinic and heteroclinic
bifurcations occur leading to periodic orbits [9–11]. The study by McLaughlin found that
the sequential bifurcation of the Lorenz system itself can give rise to chaos [12, 13]. Curry
observed that chaos also persists when the system is subject to a harmonic forcing [14].
However, a formulation to explain the sequential bifurcations has not been well estab-
lished yet.

A sustained interest in the nonlinear convection flow extends the nonlinear model
further to higher order systems than the Lorenz three-dimensional model. Curry subse-
quently expanded the Lorenz model to a generalized Lorenz model of 14 modes. Curry
found different bifurcation and stability conditions with this high-dimensional analogue
of the convection flow problem [15]. Specifically, Curry’s computation results indicate
that a torus of a periodic orbit appeared at a higher r with period doubling bifurcations,
where r is the ratio between the Rayleigh number and the critical Rayleigh number. Curry
showed that the stability of the origin gives its way to the Hopf bifurcation at a critical
Rayleigh number. This critical number r differs from that established from the original
Lorenz model. In a separate study, Boldrighini and Franceschini [16] and Franceschini
and Tebaldi [17] investigated a five-term truncation of the convection equations. They
found that the system has a four-fold symmetry with four stable points and undergoes
both Hopf bifurcation and the period doubling bifurcation at large Rayleigh numbers to
produce four stable periodic orbits. Further, saddle node bifurcations exist at a larger r.
Gibbon and McGuinness studied another variation of the five-mode truncation of the
fluid convection model [18]. Their stability condition renders the Hopf bifurcation at
r = 1 and bifurcations into nonstable torus at a high r, which is consistent with Curry’s
results. In general, the numerical computation results of the high-dimensional convection
flow reveal a different stability and bifurcation condition from that of the original Lorenz
model. It is apparent that such a deviation comes from the different modal truncations.
For the Fourier series, although a higher order truncation gives a closer approximation
of the system, the fundamental mode plays a dominant role compared with other modes.
This makes the low-dimensional system, such as the Lorenz model, remain a valid ap-
proximation.

In spite of all the attention paid to the Lorenz system, major efforts have focused
on a thermal field defined the same as that in the original Rayleigh’s description,
that is, a constant temperature difference between the two parallel plates is main-
tained externally [3]. This restriction excluded the transient thermal process in the plate.
Therefore, the conclusions drawn from the Lorenz equation or a generalized higher-
dimensional Lorenz-type model become invalid when a transient thermal field is present.
The nonuniform transient temperature difference arises from a thermal and fluid en-
ergy transfer without external thermal modulation. Therefore, a formulation taking into
account the nonuniform transient thermal field will better explain the relevant flow
behaviors.
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In this paper, we investigate the Rayleigh-Benard convection problem with a transient
thermal field at the bottom layer. We derive the equation of motion with a transient ther-
mal field using the same truncation modes as that of Lorenz. Our purpose for this study
is to see how the transient thermal field influences the flow behavior, such as the bifurca-
tion and chaos with respect to the Rayleigh number and fluid properties. We will answer
questions on the sequential bifurcations to convection flow attractors and flow stability
in quantified terms to justify the numerical computation results from prior models and
from the current model. The study could reveal the difference and analogy between the
original Lorenz system and the system with a nonuniform transient thermal field.

This paper is organized as follows. Subsequent to this introduction on the previous
study of the original and the generalized Lorenz system, we derive the convection flow
model with a nonuniform transient thermal field. Next, we examine the steady-state at-
tractors of the flow subject to different thermal fields. In this part, we formulate various
bifurcation conditions, such as the Hopf bifurcation, period doubling, and saddle node
bifurcations that affect the attractor behavior and stability. In the fourth section, we illus-
trate the numerical computation results for the sequential bifurcations and the transient
response behavior. We pay special attention to the homoclinic bifurcations at large r and
offer our explanation of the phenomena. This paper concludes with discussions and a
summary of the influence of a transient thermal field on flow behaviors.

2. The model

The flow within a parallel plates with a transient heat source at the bottom layer is shown
in Figure 2.1. The flow is parallel in the y-direction. The flow velocity u,w in the horizon-
tal x- and the vertical z-direction, respectively, are related to the stream function ψ(x,z, t)
by the continuity equation as

∂u

∂x
+
∂w

∂z
= 0, u=−∂ψ

∂z
, w = ∂ψ

∂x
. (2.1)

Using the Boussinesq approximation, that is, the variation of the fluid density is negligi-
ble, the equilibrium equation for the flow field is [2]

∂u

∂t
+u

∂u

∂x
+w

∂u

∂z
+
∂P

∂x
− ν∇2u= 0, (2.2a)

∂w

∂t
+u

∂w

∂x
+w

∂w

∂z
+
∂P

∂z
− gεT1− ν∇2w = 0, (2.2b)

∂T

∂t
=−u∂T

∂x
−w∂T

∂z
+ κ∇2T , (2.3)
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x

z

Conductive bottom plate

Figure 2.1. A flow field in two parallel plates.

where the thermal field is defined as

T(x,z, t)= T1(x,z, t) + θ(x,z, t)=
(

1− z

H

)
ΔT + θ(x,z, t),

T1(x,z, t)= ΔT(x,0, t)− ΔT(x,0, t)z
H

,

θ(x,z, t)= θ11(x,z, t) + θ02(z, t).

(2.4)

The laminate temperature variation is independent of the cell height, that is,

∂ΔT

∂z
= 0. (2.5)

θ(x,z, t) is the transient temperature variation of the of the flow field, which is composed
of the 2D variation θ11(x,z, t) and the vertical variation θ02(z, t), respectively. ΔT(x,0, t)
is the temperature difference between the two parallel plates or equivalently the temper-
ature variation of the bottom plate when the upper plate is as the reference. ΔT(x,0, t)
causes a linear temperature variation along the vertical direction, T1(x,z, t). ΔT(x,0, t)
has both transient and nonuniform spatial variations in the x-direction, that is, ∂ΔT(x,0,
t)/∂t �= 0, ∂ΔT(x,0, t)/∂x �= 0.

Introducing (2.1) into (2.2a) and (2.2b), the governing equation of motion for the
thermally induced convection flow is transformed to be

∂

∂t

(∇2ψ
)− ∂ψ

∂z

∂

∂x

(∇2ψ
)

+
∂ψ

∂x

∂

∂z

(∇2ψ
)− gε∂T1

∂x
− ν∇4ψ = 0. (2.6)

Here, g and ε are the gravitational acceleration and the coefficient of volume expansion
of the fluid. With both spatial and temporal variations of the temperature, (2.3) becomes

∂θ

∂t
+
[(

κ

κL
− 1

)
z

H

]
∂ΔT

∂t
=−∂θ

∂z

∂ψ

∂x
+
∂θ

∂x

∂ψ

∂z
− z

H

∂ΔT

∂x

∂ψ

∂z
+ κ∇2θ +

ΔT

H

∂ψ

∂x
. (2.7)
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The Rayleigh number is a function of the temperature difference between the two parallel
plates, that is,

Ra = gεH3ΔT(x,z, t)
κν

. (2.8a)

The critical Rayleigh number is

Rc = π4

a2

(
1 + a2)3

. (2.8b)

Rc = 27π4/4 when the convection occurs at a wave length of a2 = 1/2 [2]. Considering
the transient conductive thermal field in the form ΔT(x, t) = ΔT(x)∗ gT(t), the ratio
between the two Rayleigh numbers r is

r(t)= Ra
Rc
∗ gT(t)= r∗ gT(t). (2.8c)

The function gT(t) represents the transient temperature variation with respect to time of
a conductive plate. For example, gT(t) is an exponential function arising from solution of
the diffusion equation

∂ΔT

∂t
= κL∇2(ΔT). (2.9)

gT(t) can also assume other forms for different thermal processes in the solids.
By incorporating (2.9) for the heat conduction of the plate along with the heat con-

ductivities at the boundaries, such as the Newmann or Dirichlet boundary conditions as
explained below, we obtain a Lorenz-type model with a nonuniform transient thermal
field as

dX

dτ
=−σX + σY ,

dY

dτ
= cXZ−Y + rX ,

dZ

dτ
= drX +XY − bZ + eκrβ,

(2.10a)

where

σ = ν

κ
, β = gT ,τ

gT
, b= 4

1 + a2
, c = 2cos

(
2πz
H

)
,

eκ = 1
2

(
κ

κL
− 1

)[
1 +

1
2

(
πz

H

)2]
.

(2.10b)

Note that here gT ,τ means ∂gT(τ)/∂τ. We adopted the same truncation modes X , Y , Z as
that in the original Lorenz equation, which are dimensionless functions of the normalized
time τ = (π/H)2(1 + a2)κt alone. The parameters b, σ , κ, ν, τ are defined the same as in
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the original Lorenz equation, that is, the geometry factor b, Prandtl number σ , kinematic
thermal viscosity ν, and thermal diffusivity of the fluid κ and that of the solid κL. It is
worth mentioning that our derivation verified that the original Lorenz model represents
the points of z =H/3 or z = 2H/3 only of the 2-dimensional flow field by assuming that
c =−1 based on the expression c = 2cos(2πz/H) of this model.

In the above derivation, a series approximation is used for the temperature variation
ΔT(x) with respect to x, in order to be consistent with the form of the functions X , Y , Z
for the purpose of reduction. This variation of ΔT(x) introduces the thermal parameter
d, which is related to heat conduction at the boundaries as follows:

(a) the von Neumann condition ΔT(x)=T0 sin(2πx/L) satisfies ΔT(x = 0, x = L)=0,

ΔT(x, t)= ΔT(x)gT(τ),

d = dN (x)=−2
√

2
(
πx

L

)2

, dN =
[− 2

√
2π2,0

]= [−27.92,0].
(2.11a)

(b) the Dirichlet condition ΔT(x)= T0 cos(2πx/L) satisfies ∂ΔT/∂x(x = 0, x = L)= 0,

ΔT(x, t)= ΔT(x)gT(τ),

d = dD(x)=−
√

2πx
L

, dD =
[−√2π,0

]= [−4.44,0].
(2.11b)

At the center of the plate x = L/2, dN |x=L/2 =−6.98, dD|x=L/2 =−2.22, dN = dD|x=L/2π =
−√2/2.

By incorporating the nonuniform transient thermal field, we obtain this Lorenz-type
model that differs from the original Lorenz equation. The model correlates the convective
flow with the transient temperature fluctuation function β(τ) in the conductive plate, the
spatial temperature variation and the thermal boundary condition of the plate d(x), and
the plate-fluid thermal diffusion rate parameter eκ(z), respectively. The transient thermal
field acts as a forcing source in the form β(τ)= gT ,τ(τ)/gT(τ), which measures the rate of
change of the temperature or the thermal fluctuation of the plate. β(τ) drives the vertical
temperature of the fluid Z directly to influence the flow field stream function X and the
temperature variation Y . When β(τ) = 0 and d(x) = 0, this model reduces to that by
Lorenz.

As the definition entails, eκ(z) concerns the thermal diffusion between the fluid and the
plate; eκ(z) influences the vertical temperature variation Z due to the heat exchange be-
tween the plate and the fluid. Since the thermal diffusivity of the fluid is generally greater
than that of the solid, that is, κ > κL, therefore, eκ(z) > 0. In addition, eκ(z) increases as
the fluid-solid heat exchange rate subsides at the high end of the cell. As an example,
the glycerin has conductivity in the range of κ= 0.14 [W/cm K], engine oil has κ= 0.28
[W/cm K], and a conductive metal plate has κ= 0.2 [W/cm K]. If κ/κL = 5 for the solid
layer, eκ|min = 2 at z = 0, and eκ|max = 11.89 at z =H . At the same points for c =−1, that
is, z =H/3 and z = 2H/3, eκ(z =H/3)= 3.08 and eκ(z = 2H/3)= 6.38, respectively.
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This expanded model has the same negative divergence as the original Lorenz system,
when the transient function β(τ) is considered as an external forcing, that is,

∂Ẋ

∂X
+
∂Ẏ

∂Y
+
∂Ż

∂Z
=−(1 + b+ σ) < 0, (2.12)

which suggests that the flow is dissipative. Geometrically, a dissipative system has all tra-
jectories confined when the transient temperature rise is restricted. On the other hand,
a rapid temperature rise certainly will cause oscillation without bound if β(τ) is un-
bounded.

3. The steady-state attractors and bifurcations

We examine the linearized system for the stability of the flow at the steady state, that is,

J =

⎡
⎢⎢⎣
−σ σ 0

cZ + r −1 cX

dr +Y X −b

⎤
⎥⎥⎦ . (3.1)

3.1. The steady state at the origin for X = Y = Z = 0. The eigenvalues determine the
stability and bifurcation behaviors of the system. For a steady-state attractor appearing at
X = Y = Z = 0, the eigenvalues are given by

(λ+ b)
[
(λ+ 1)(λ+ σ)− σr]= 0. (3.2)

It is evident that the eigenvalues are independent of d(x) and the thermal fluctuation
function β(τ). This defines the same eigenvalues as the Lorenz model, that is,

λ1 =−b < 0,

λ2,,3 = 1
2

[
−(1 + σ)±

√
(1− σ)2 + 4σr

]

= 1
2

[
−(1 + σ)± (1− σ)

√
1 + δ

]
, δ = 4σr

(1− σ)2
> 0.

(3.3)

Using the series approximation,

λ2 = σ
[
−1 +

r

(1− σ)

]
, λ3 =−

[
1 +

σr

(1− σ)

]
. (3.4)

λ2 < 0 for σ > 1or r < (1− σ). Note that σ > 1 is a typical condition for the convection
flow problem. λ3 < 0 when r > (1− 1/σ). The negative eigenvalues produce a stable flow
to the nodal attractor at the origin. The condition for the onset of the convection flow is
r < (1− 1/σ). For σ→∞, this means that r → 1.

An unstable saddle node bifurcation occurs at λ3 = 1, corresponding to

r = 2
(

1− 1
σ

)
. (3.5)
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This condition can be satisfied by numerous combinations of parameters, such as σ = 2,
r = 1 and σ = 10, r = 1.8, which suggests that the system experiences a sequential saddle
node bifurcation as r varies. In a similar fashion, we can find that the condition for period
doubling bifurcation at λ1 = −b is b = 1. However, the period doubling bifurcation will
not occur at λ2,3 = −1. This is because the physical parameter r > 0; λ2 = −1 requires
r = −(1− σ)2/σ < 0 and λ3 = −1 requires r = 0. Since all the eigenvalues are real, the
steady state attractor at the origin does not undergo the Hopf bifurcation. However, a
successive saddle node and period doubling bifurcations can occur at different r, b and σ .

3.2. The nonzero steady-state attractors. The steady-state attractor at the nonorigin,
that is, at X ,Y ,Z �= 0 is determined by Ẋ = Ẏ = Ż = 0 from (2.10a), which yields

X = Y ,

cZ = (1− r),

drX +X2− bZ + eκrβ(τ)= 0.

(3.6)

This defines the attractors at

X2 +drX +η = 0, η = b

c
(r− 1) + eκrβ(τ)= 1

c

[
r
(
b+ ceκβ(τ)

)− b],

X = Y = 1
2

(
−dr±

√
(dr)2 +

4
c

[
b− r(b+ ceκβ(τ)

)])
,

Z = 1
c

(1− r).

(3.7)

The original Lorenz attractor at c =−1, d = 0, eκ = 0 or β(τ)= 0 is at

X = Y =±
√
b(1− r), Z = r− 1. (3.8)

X , Y can be either real or complex, depending on the value of r. To ensure the physical
parameter X is a real parameter, the following condition should be satisfied:

(
r∗
)2− 4b+ 4ceκβ(τ)

cd2
r +

4b
cd2

> 0. (3.9)

For a real attractor X , Y , r > r∗1 or r < r∗2 , r∗2 < r∗1 . The condition in (3.9) is alternatively
expressed as

f0
(
r∗
)= (dr∗)2

+
4
c

[
b− r∗(b+ ceκβ(τ)

)]
> 0. (3.10)

The characteristic equation for the stability of the attractor is in the form

λ3 + Iλ2 + IIλ+ III = 0, (3.11)
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where

I =−(λ1 + λ2 + λ3
)= (1 + b+ σ),

II = (λ1λ2 + λ1λ3 + λ2λ3
)= b2 + bσ − cX2,

III =−λ1λ2λ3 = σcdrX ,

(3.12)

where X is determined by (3.7). The characteristics equation can lead to various bifurca-
tion conditions determined by the eigenvalues, as we analyze below.

(a) Periodic orbits with purely imaginary eigenvalues. The steady-state attractors will not
occur with a pair of purely imaginary eigenvalues. This is because the condition requires
that

b+ 1= 0. (3.13)

As b > 0, this is impossible. Similarly, it can be demonstrated that neither will a flow
initiate due to the real eigenvalues of

λ1 =−b, λ2 =−λ3. (3.14)

(b) All negative real eigenvalues and complex conjugacy. For the Hopf bifurcation in a
complex conjugacy λ2,3 = α± iγ and α=−1/2(I + λ1), the coefficients of the characteris-
tic equation become

I =−(λ1 + 2α
)= (1 + b+ σ),

II = (2αλ1 +α2 + γ2)= b2 + bσ − cX2,

III =−λ1
(
α2 + γ2)= σcdrX.

(3.15)

For any αλ1 > 0 in either of the Hopf bifurcations, II = 2αλ1 + α2 + γ2 > 0. This defines
the necessary condition associated with three possibilities: (a) all real eigenvalues to make
II > 0; (b) the subcritical Hopf bifurcation when α < 0 with λ1 < 0; (c) the supercritical
Hopf bifurcation when α > 0 with λ1 > 0. However, α > 0 leads to λ1 <−I < 0, since I > 0
and α=−1/2(I + λ1). Therefore, only cases (a) and (b) are possible. In the case of λ1 = 0,
III = 0 and X = 0. This means that there is no periodic orbit due to either of the Hopf
bifurcations alone with λ1 = 0. The condition II > 0 generates the steady-state attractor
at

X >− r
(
b+ ceκβ(τ)

)− b+ b(b+ σ)
cdr

=−
(
b+ ceκβ(τ)

)
cd

− b(b+ σ − 1)
cdr

= Δnh. (3.16a)

For the steady-state response, this is equivalent to

fnh(r)= 1
2

⎛
⎝−dr±

√
(dr)2 +

4
c

[
b− r(b+ ceκβ(τ)

)]
⎞
⎠−Δnh > 0. (3.16b)

Note that the condition (3.16) does not differentiate between cases of all real eigenvalues
in II > 0 and the case of complex conjugate eigenvalues with α < 0 and λ1 < 0. This means
that the necessary condition is not exclusive for either of the cases.
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(c) The Hopf bifurcation with complex eigenvalues. In the case of the Hopf bifurcation
with a real eigenvalues, we can further identify the necessary conditions for different
cases. The condition can be expressed in the form identical to that in (3.16) except for
the operator Δnh. That is,

f j(r)= 1
2

⎛
⎝−dr±

√
(dr)2 +

4
c

[
b− r(b+ ceκβ(τ)

)]
⎞
⎠−Δ j . (3.17)

Here the function f j(r) is associated with the specific operator Δ j , of which three condi-
tions can be drawn based on the relation between λ1 and α:

(1) I ∗ II − III < 0, a necessary condition for the supercritical Hopf bifurcation with
λ1 <−I < 0, α > 0, which requires the steady-state attractor to satisfies

X <− (1 + b+ σ)
cdr(1 + b)

[
b(b+ σ − 1) + r

(
b+ ceκβ(τ)

)]= Δ−H. (3.18a)

Therefore, the necessary condition is

f −sup(r)= 1
2

⎛
⎝−dr±

√
(dr)2 +

4
c

[
b− r(b+ ceκβ(τ)

)]
⎞
⎠−Δ−H < 0. (3.18b)

(2) I ∗ II − III > 0 for the subcritical Hopf bifurcation with −I < λ1 < 0 and −I/2 <
α < 0, which is the opposite condition to that for the supercritical Hopf bifurca-
tion with λ1 <−I < 0. Therefore, the necessary condition is

f −sub(r)= 1
2

⎛
⎝−dr±

√
(dr)2 +

4
c

[
b− r(b+ ceκβ(τ)

)]
⎞
⎠−Δ−H > 0. (3.19)

(3) II2− 4I ∗ III > 0 for the subcritical Hopf bifurcation with λ1 > 0, α <−I/2 < 0,
this defines

X <

{(
b2 + bσ − b+

(
ceκβ(τ) + b

)
r
)2− c(dr)2

[(
ceκβ(τ) + b

)
r− b]}{

4(1 + b+ σ)σ − 2(b2 + bσ − b+
(
ceκβ(τ) + b

)
r
)

+ c(dr)2
}
cdr

= Δ+
sub. (3.20a)

This leads to the necessary condition of

f +
sub(r)= 1

2

⎛
⎝−dr±

√
(dr)2 +

4
c

[
b− r(b+ ceκβ(τ)

)]
⎞
⎠−Δ+

sub < 0. (3.20b)

The above three conditions are exclusive necessary condition for each Hopf bifurcation.

(d) The Hopf bifurcation concurrent with the saddle node/period doubling bifurcations.
When the real eigenvalue is specified, the necessary and sufficient condition can be
uniquely defined for the Hopf bifurcation with a real eigenvalue. For example, the pe-
riod doubling or saddle node bifurcation can occur at λ1 = −1 and λ1 = 1, respectively,
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concurrent with the subcritical Hopf bifurcation. This is because α < 0 as long as λ1 >
−(1 + b+ σ). Therefore,

αλ1=1 = 1
2

[−I − 1]=−1
2

(2 + b+ σ), αλ1=−1 = 1
2

[−I + 1]=−1
2

(b+ σ). (3.21)

Notice that a combination of λ1 = ±1 and α = 0 for the purely imaginary eigenvalues is
impossible since λ1 < −1 at α = 0.The necessary and sufficient condition for the Hopf
bifurcation with any real λ1 is

III + λ1II =−
(
λ1
)2(

I + λ1
)
, (3.22)

which defines the attractor at

X =−
{(
λ1
)2(

1 + σ + b+ λ1
)

+ λ1
[
b2 + bσ − b+ r

(
b+ ceκβ(τ)

)]}
(
λ1 + σ

)
cdr

= Δ∗H. (3.23a)

Equivalently, this gives the bifurcation condition of:

f ∗H (r)= 1
2

⎛
⎝−dr±

√
(dr)2 +

4
c

[
b− r(b+ ceκβ(τ)

)]
⎞
⎠−Δ∗H = 0. (3.23b)

The condition in (3.22) ensures that all the necessary conditions for the Hopf bifurcation
in (3.18), (3.19), and (3.20) are satisfied. For example, in the case of the supercritical Hopf
bifurcation with λ1 <−I < 0, the condition I ∗ II − III < 0 becomes

I ∗ II − III = I ∗ II + λ−1 II +
(
λ−1
)2
I +

(
λ−1
)3
< I ∗ II − I ∗ II +

(
λ−1
)2
I +

(
λ−1
)3

= (λ−1 )2[
I +

(
λ−1
)]
< 0.

(3.24a)

For the subcritical Hopf bifurcation with−I < λ1 < 0, α < 0, I ∗ II − III > 0 is satisfied by

I ∗ II − III = I ∗ II + λ−1 II +
(
λ−1
)2
I +

(
λ−1
)3
> I ∗ II − I ∗ II +

(
λ−1
)2
I +

(
λ−1
)3

= (λ−1 )2[
I +

(
λ−1
)]
> 0.

(3.24b)

For the subcritical Hopf bifurcation with λ1 > 0, α < 0, the condition II2− 4I ∗ III > 0 is

II2 + 4I ∗ (λ−1 II +
(
λ−1
)2
I +

(
λ−1
)3)= [II + 2

(
λ−1 I

)]2
+ 4
(
λ−1
)3∗ I > 0. (3.24c)

The condition (3.23) can also determine the concurrent saddle node bifurcation at
λ1 = 1 and the period doubling bifurcation at λ1 = −1, respectively, since, (3.23) is the
necessary and sufficient condition for the Hopf bifurcations with a specified eigenvalue.
This condition defines the Hopf bifurcation curve, whereas those necessary conditions
in (3.18), (3.19), and (3.20) define the domain boundaries for the bifurcation they are
associated with. These conditions describe a bifurcation map with respect to the physical
parameters. The fact that all of the conditions are in the third order polynomials of r



12 Mathematical Problems in Engineering

suggests that several ranges of parameters could coexist to satisfy the condition. As a
result, the system exhibits sequential bifurcations discussed above. One exception is the
Hopf bifurcation with a pair of purely imaginary eigenvalues, which will not occur due to
the restriction of the physical parameters. These bifurcation conditions provide qualified
and quantified terms to define the steady-state attractors and describe their stability due
to various bifurcations.

4. Computation results

We use a numerical computation in the 4th-order Runge-Kutta method to study the bi-
furcation behavior and the response of the system. We fixed parameters at c =−1, d =−π
for the response with respect to σ , b, and r.

4.1. Bifurcation conditions. The computation for the bifurcation map assumes the fluid
property parameters b and σ in the range of [0 10]. We study various bifurcation condi-
tions that can be satisfied by the parameters in this range with respect to σ and b when
r and β(τ) are specified. The purpose of the computation is to demonstrate the influ-
ence of the transient thermal field effect on the convective flow of the specified geometry
loci. For the Hopf bifurcations with a specified eigenvalue λ1, we select the period dou-
bling bifurcation at λ1 = −1 and the saddle node bifurcation at λ1 = 1, respectively. In
addition, the Hopf bifurcation conditions at both λ1 = 15 and λ1 = −15 are examined.
At λ1 = −15, either a supercritical or a subcritical Hopf bifurcation can occur since the
real part of the complex conjugate α varies between α = −3 and α = 7 for b, σ in the
range of [0 10]. For λ1 = 15, only a subcritical Hopf bifurcation is possible as α varies
between α=−8 and α=−18. These four curves are marked by f sd for the Hopf bifurca-
tion with the saddle node, f pd for that with the period doubling, f H p for the subcritical
Hopf bifurcation at λ1 = 15 and f Hn for the Hopf bifurcation at λ1 =−15, respectively.
Curves f sub p > 0, f h > 0 and f nh > 0 represent the contour projections of the func-
tion f +

sub(r) > 0 in (3.20b), f −sub(r) > 0 in (3.19), and fnh(r) > 0 in (3.16b), respectively, for
the three distinct necessary conditions associated with the Hopf bifurcations and other
possible cases. Therefore, curves f sd, f pd, and f Hn and f H p define the necessary and
sufficient conditions while each other one represents the necessary condition only.

Figures 4.1(a), 4.1(c), and 4.1(e) show the bifurcation curves at a specified r and β(τ).
Figure 4.1(a) is for r = 5 and β(τ)= 0 whereas Figure 4.1(c) shows the bifurcation at r = 5
and β(τ)=−10. In both figures, we observe the curve with the saddle node bifurcation,
f sd, the curve with the period doubling f pd and the curve f Hn for the Hopf bifurcation
at λ1 = −15. The curve f sub p > 0 in Figure 4.1(a) defines parameter range that satisfies
the condition for a successive subcritical Hopf bifurcation with λ1 > 0. The 3D plot for
the condition f sub p is shown in Figure 4.1(b), indicating that the intercepted area by the
two blue curves satisfy f sub p > 0. Curve f H p also appears in both Figures 4.1(a) and
4.1(c) for the subcritical Hopf bifurcation with λ1 = 15, with different parameter ranges.

Note that there are two curves of f h > 0 for the subcritical Hopf bifurcation with
λ1 < 0, that is, f −sub(r) > 0, in Figures 4.1(a) to 4.1(c), as a result of the projection at a
specified value at f h = 50, similar to the curve f sub p > 0 in Figure 4.1(a). For the case
in Figure 4.1(c) with r = 5 and β = −10, the necessary condition f −sub(r) > 0 in (3.17),
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Figure 4.1. Bifurcation conditions and map. (a) Bifurcation map at r = 5, β = 0. (b) The subcritical
Hopf bifurcation condition f +

sub(r) > 0 at r = 5, β = 0. (c) Bifurcation map at r = 5. (d) The subcrit-
ical Hopf bifurcation condition with λ1 < 0 f −sub(r) > 0 at r = 28. (e) Bifurcation map at r = 28. (f)
Condition for the period doubling bifurcation at fPD(r) at r = 28.

shown by f h = 50 > 0, is uniformly satisfied by the parameters in the 2D domain as
shown in Figure 4.1(d) for f −sub(r) > 0. The curves in Figures 4.1(a) and 4.1(c) illustrate
only a selective projection of the contour at f h = 50. In both Figures 4.1(a) and 4.1(c),
the necessary condition for fnh(r) > 0 is also satisfied, marked by the curve f nh > 0 where
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the projection is at fnh(r)= 20 in Figure 4.1(a) and fnh(r)= 50 > 0 in Figure 4.1(c). Both
conditions f h > 0 for f −sub(r) > 0 and f nh > 0 for fnh(r) > 0 are valid in the entire domain
of b and σ in Figures 4.1(a) and 4.1(c).

The variation of β(τ) changes the bifurcation conditions as it is evident from compar-
ison of Figures 4.1(a) and 4.1(c) where the same condition is satisfied by different param-
eters. In the same token, a different r also alters the bifurcation map. Figure 4.1(e) is the
map for r = 28 and β =−10, where the Hopf bifurcation curve with the period doubling
and the saddle node bifurcations are illustrated. The curves f h > 0 and f nh > 0 are again
selective contour projections of functions that are satisfied by the parameters b, σ in the
range of [0 10]. Figure 4.1(f) shows that the Hopf bifurcation concurrent with the period
doubling bifurcation occurs around σ = 1, which is characteristic for all different range
of parameters as seen from Figures 4.1(a), 4.1(c), and 4.1(e) also.

4.2. Transient thermal field functions. We study three different transient thermal field
functions, which are as follows.

(a) The harmonic function gT(τ). A cyclic function of β(τ) results. Specifically,

gT(τ)= cos(ωτ), β(τ)=−ω tan(ωτ)

⎧⎨
⎩
< 0, 0 < (ωτ) < π/2,

> 0, π/2 < (ωτ) < π.
(4.1a)

Note that the sign of ω does not affect the sign of β(τ) = −ω tan(ωτ) in each bounded
interval kπ < (ωτ) < (k+ 1)π + π/2.The function β(τ) goes to infinity at the boundaries
(ωτ) = (k+ 1)π ± π/2. The function β(τ) causes instantaneous change of the attractors
due to transitions of the bifurcation conditions, which makes the condition Ẋ = Ẏ = Ż =
0 invalid. Equivalently, this suggests that a steady-state attractor at Ẋ = Ẏ = Ż = 0 does
not exist in this case.

(b) The exponential function gT(τ) for the thermal conduction. The exponential function
gT(τ) produces a constant driving force as

gT(τ)= exp(−ωτ), β(τ)=−ω. (4.1b)

The function β(τ) > 0, if ω < 0 for a temperature rise or vice versa. Therefore, a temper-
ature rise or decline for β(τ) > 0 or β(τ) < 0 will influence the steady state response in
a different fashion. However, in each case the steady-state attractor, as defined in (3.7),
remains stationary since β(τ) is a constant.

(c) The linear function gT(τ). The linear function gT(τ) makes β(τ) > 0 and β(τ)→ 0 as
τ →∞, that is,

gT(τ)= ωτ, β(τ)= 1
τ
> 0. (4.1c)
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The three transient thermal field functions β(τ) discussed above suggest that the steady
state is not stationary with a harmonic function gT(τ), while the exponential and linear
functions lead to stationary attractors.

4.3. Transient responses. We use a time step h= 0.001 second to generate the transient
response for steps of N = 10,000 for this system with respect to different β(τ) and other
parameters. The initial condition is assumed to be X = 0, Y = 20, Z = 10, unless other-
wise specified.

(a) r = 1, β(τ)= 0, nodal attractors at the origin. For r = 1 and β(τ)= 0 without the tran-
sient thermal effect, the response could converge to the steady-state X = Y = 0, Z = r− 1
or X = Y =−d, Z = r − 1, depending on the initial conditions. Figures 4.2(a) and 4.2(b)
show that all X , Y , and Z converge to the zero steady-state attractor at r = 1, b = 8/3,
σ = 6.33 with the given initial conditions. The steady state reaches the nodal point X = 0,
Y = 0, Z = 0 quickly after a transient oscillation. The corresponding eigenvalues are all
real and negative, that is, λ= 0,−10.4273,−3.2394, which makes the nodal attractor sta-
ble.

(b) r = 5, β(τ) = 0, the Hopf bifurcation. The parameters b = 8/3, σ = 10, r = 5 induce
the subcritical Hopf bifurcation with eigenvalues of λ1 = 11.5572 and λ2,3 =−12.6119±
20.8298i. Figures 4.2(c) and 4.2(d) show a spiral oscillation leading to the nonzero
steady-state attractor. A similar behavior exists at r = 28, shown in Figures 4.2(e) and
4.2(f). A higher oscillation frequency during the transition to the steady-state is evident
at r = 28 in comparison with that at r = 5, as shown in the phase diagrams of X-Y and
Y-Z for r = 5 and r = 28, respectively. This is caused by the eigenvalue with an increased
imaginary part at r = 28, which is λ1 = 23.6679 and λ2,3 =−18.7065± 91.5255i.

(c) r = 28 with different transient thermal field functions. The response behaves differently
with a different transient thermal field function β(τ). Figures 4.3(a) and 4.3(b) show the
transient response with b = 8/3, σ = 10, r = 28 and β(τ) = 1/τ. The transient response
vanishes after certain iterations with the ensuing oscillation approaching the steady state
by way of the Hopf bifurcation as β(τ) = limτ→∞(1/τ) = 0. The steady state attractor is
identical to that shown in Figures 4.2(e) and 4.2(f), respectively.

The response with an exponential function g(τ)= exp−(π/2)τ and β(τ)=(π/2) is shown
in Figures 4.3(c) and 4.3(d) with b = 8/3, σ = 10, and r = 28. The transient exponential
function, in fact, produces a constant driving force to the system. This function β(τ) di-
rectly influences the vertical temperature Z(τ) and modifies the attractor X , Y , and Z.
The steady-state attractor is at X = Y = 88.64, Z = 27 for β(τ) = (π/2) shown in Fig-
ures 4.3(c) and 4.3(d) for the phase diagrams of X-Y and Y-Z, respectively. Note that
the subcritical Hopf bifurcation produces a spiral for either β(τ) = (π/2) or β(τ) = 1/τ
approaching a stationary steady-state attractor. Notably, the attractor position Z is inde-
pendent of β(τ), although β(τ) influences the transient behavior of Z prior to the steady
state. Each initial response goes through a period of increasing amplitude for different
r and different function β(τ). This is caused by the positive real eignevalue λ1. Such in-
crease is eventually balanced by the negative real part of the complex eigenvalues, which
eventually makes the periodic oscillation dominate in a subcritical Hopf bifurcation.
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Figure 4.2. Phase diagrams without the transient effect. (a) X-Y at b = 8/3, σ = 2b + 1, r = 1. (b)
X-Z at b = 8/3, σ = 2b+ 1, r = 1. (c) X-Y at b = 8/3, σ = 10, r = 5. (d) Y-Z at b = 8/3, σ = 10, r = 5.
(e) X-Y at b= 8/3, σ = 10, r = 28. (f) Y-Z at b = 8/3, σ = 10, r = 28.

The attractor’s behavior with an assumed constant function β(τ) is an instant repre-
sentation of the oscillatory attractors with a transient function β(τ), whereas the attractor
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Figure 4.3. Response with a transient function β(τ), b = 8/3, σ = 10, r = 28. (a) Z versus time, β(t)=
1/τ. (b) X-Y phase diagram, β(t)= 1/τ. (c) X-Y phase diagran β(t)= π/2, g(t)= exp−(π/2)τ . (d) Y-Z
phase diagram, β(t)= π/2, g(t)= exp−(π/2)τ .

experiences instantaneous oscillations with respect to the transient eigenvalues and func-
tion β(τ). The steady-state attractor also experiences instability when the function β(τ)
approaches infinity such as in the case of β(τ)=−ω tan(ωτ). The oscillatory behavior of
attractors associated with the transient function β(τ) means that the steady-state attrac-
tors can not be predicted based on the assumption of Ẋ = Ẏ = Ż = 0, as that in (3.7). In
fact, a steady-state attractor does not exist for a case of Ẋ �= 0, Ẏ �= 0, Ż �= 0.

(d) The homoclinic bifurcation at r = 1000, a periodic oscillation. In contrast with the
bifurcation conditions associated with the steady-state attractors, another type of bifur-
cation occurs independent of these conditions, that is, the homoclinic explosion, a phe-
nomenon that transform the steady-state oscillation to a newly born set of orbits. Figures
4.4(a) to 4.4(f) show a periodic oscillation as a result of the explosion at b = 8/3, σ = 10,
r = 1000 and β(τ) = π with a transient function gT(τ) = exp−πτ . The time history of X ,
Y and Z in Figures 4.4(a), 4.4(c), and 4.4(e), respectively, indicates a burst of the ho-
moclinic explosion after the steady state is sustained for a certain period of time. The
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Figure 4.4. Response with a transient function β(t) = π, b = 8/3, σ = 10, r = 1000. (a) X versus
time. (b) steady-state Poincare map X-Y . (c) Y versus time. (d) steady-state Poincare map X-Z. (e) Z
versuss time. (f) steady-state Poincare map Y-Z.

Poincare maps shown in Figures 4.4(b), 4.4(d), and 4.4(f) are sampled at a frequency
interval Δh = 0.01s, equivalent to 10 iterations for each point. Totally 87,310 periodic
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traces are taken in each map after eliminating the transient 2,600 iterations. These or-
bits remain the same as those with fewer sampling points, such as N = 10,000, or those
at a different sampling frequency. These identical Poincare maps confirm that the orbit
is periodic. The numerical computation results also reveal that the response with β(τ)
from a linear transient function arrives at the same periodic orbit due to the explosion
after reaching the steady state predicted by (3.7). β(τ) only influences the duration of the
steady state prior to such an explosion, but not the orbit after the explosion.

(e) The steady state at r = 903, a quasi-periodic oscillation. Another bifurcation behav-
ior exists, as can be observed from the phase diagrams at b = 8/3, σ = 10, and r = 903,
where the homoclinic bifurcation leads to multiple periodic orbits. Figures 4.5(a), 4.5(c),
and 4.5(e) show the bifurcation explosion after an initial steady-state sustained for about
2000 iterations. The phase diagrams in Poincare maps show a finite number of orbits in
Figures 4.5(b), 4.5(d), and 4.5(f), after eliminating the initial 2600 transient iterations.
Our extensive computation results verified that such a homoclinic bifurcation initiates at
a higher Rayleigh number, that is, about r = 900. This transition number r is also affected
by the exponential function frequency ω.

Figures 4.4 and 4.5 together suggest that the system experiences homoclinic bifurca-
tions that lead to another steady state. This phenomenon agrees with the earlier observa-
tion from that of the original Lorenz model in that homoclinic explosions at a large r lead
to periodic orbits [11]. Our results ascertain that such homoclinic explosions persist with
different transient functions β(τ). Namely, a different β(τ) function leads to identical or-
bits as a result of the explosion, that is, either a monotonic periodic orbit or multiple
period orbits.

There exists no valid explanation for such explosion phenomena that occur at a large
r except consistent computation observations. However, examining the eigenvalues for
each case suggests that cases with a large number r are associated with an insignificant real
eigenvalues, that is, λ1 = 26.6 at both r = 1000 and r = 903. At the same time, the com-
plex conjugates have a trivial real part where the real and the imaginary part has a ratio in
the order of 102, that is, λ2,3 =−20.18± 3139.10i for r = 1000; λ2,3 =−20.16± 2837.40i
for r = 903, respectively. The steady-state attractors are at X = 3138.9, Z = 999 and X =
2837.3, Z = 902, respectively. These eigenvalues suggest that the amplitude of the steady-
state oscillation is insignificant, due to the canceling effect between the real and the com-
plex eigenvalues. Such a behavior is evident in the time history of the oscillation prior to
the explosion. However, such trivial oscillation is subject to computing errors which can
alter the eigenvalues and give birth to new periodic orbits. Therefore, the homoclinic orbit
is a manifestation of the transition of eigenvalues as a result of the computation error per-
turbation. A single periodic oscillation is the consequence of a pair of stable eigenvalues
due to such a perturbation, whereas a multiperiod oscillation occurs when the eigenval-
ues are unstable, experiencing multiple transitions among different values. Therefore, the
phase diagram embodies either a finite number of periodic orbits when the eigenvalues
are finite or an infinite number of orbits when the eigenvalues vary continuously. Al-
though the function β(τ) influences the transient behavior, we observe that the initiation
of the explosion is dependent on β(τ). The skew-shaped periodic orbit for the Poincare
map in Figures 4.4(d) and 4.5(d) with X �= Y is the consequence of such perturbation
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Figure 4.5. Response with a harmonic function β(t)=−ν tan(νt), b = 8/3, σ = 10, r = 903, v = π/8.
(a) X versus time. (b) Transient response Y versus time. (c) Z versus time. (d) steady-state Poincare
map X-Y . (e) Steady-state Poincare map X-Z. (f) Steady-state Poincare map Y-Z.

that produces the orbits different from those predicted by the steady-state analysis. An-
other fact that can be verified from the expression of the coefficients in (3.12) is that a
large r reduces the absolute values of λ1 and α is in an reduced magnitude. In addition,
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the two values are related by the constant coefficient I = 1 + b+ σ =−(λ1 + 2α) < 0. This
makes the two in a comparable scale to reinforce the canceling effect that leads to the triv-
ial oscillation magnitude. It is apparent that the characteristics of the eigenvalues offers a
compelling argument for the homoclinic explosions at a large r.

5. Discussions and conclusions

Our bifurcation analysis and the computation results indicate that the thermally induced
convection flow presents drastically different behaviors when the transient thermal field
drives the flow. The transient form Lorenz model incorporates the influence of the con-
ductive layer and the heat transfer boundary condition for the flow behavior of the entire
2D field. The transient thermal field function influences the steady-state and transient
oscillations. We identified stationary steady-state attractors that exist subject to certain
transient thermal field functions. The fluctuation of the thermal field modifies the attrac-
tors, bifurcation conditions for the initiation of the unstable flow. It also affects the bursts
of the homoclinic bifurcation, though not the homoclinic orbit itself. The transient ther-
mal field variation is likely to cause transitions among different bifurcation behaviors,
which could generate turbulence or chaos due to instantaneous transitions of the attrac-
tors.

The bifurcation analysis from this study provides a quantified justification for the se-
quential bifurcations at different thermal and fluid parameters. This explains the succes-
sive bifurcations exhibited by the original Lorenz model as well as the current model at
a different range of parameters. Further, we identified the mechanisms of the bursts of
the homoclinic explosions at a large r. We attribute the explosions to the trivial effect of
the oscillation amplitude determined by these eigenvalues at large r that is sensitive to
numerical computation errors to alter the oscillation orbits.

This study revealed the typical behaviors of the thermally induced convection flow
with a transient thermal source and predicted the system response in both qualitative
and quantitative terms for the bifurcations of steady-state attractors. These bifurcation
conditions shed light on the turbulence of the thermally induced convection flow.

Nomenclature

a: critical wave number
b: geometry factor
c: geometry factor
d: coefficient for the thermal boundary condition effect
dN , dD: coefficients d for the Newmann and Dirichlet condition, respectively
eκ: coefficient for the thermal diffusivity between the fluid and the solid
f −sup(r): necessary condition for the supercritical Hopf bifurcation with λ1 < 0
f −sub(r): necessary condition for the subcritical Hopf bifurcation with λ1 < 0
f +
sub(r): necessary condition for the subcritical Hopf bifurcation with λ1 > 0
f ∗H (r): necessary and sufficient condition for the Hopf bifurcation with

a specified eigenvalue λ1 > 0 or λ1 < 0
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f sd: bifurcation curve for the Hopf bifurcation with the concurrent
saddle node bifurcation

f pd: bifurcation curve for the Hopf bifurcation with the concurrent period
doubling bifurcation

f H p: bifurcation curve for the subcritical Hopf bifurcation at λ1 = 15

f Hn: bifurcation curve for the Hopf bifurcation at λ1 =−15

f h > 0: the contour projection of the function f −sub(r) > 0

f nh > 0: the contour projection of the function fnh(r) > 0

f sub p > 0: curve for the contour projection of the function f +
sub(r) > 0

g: gravitational acceleartion

gT(t), gT(τ): transient thermal field function

gT ,τ(τ): time derivative of the transient thermal field function gT(τ)

H : height of the fluid cell

I ,II ,III : coefficients

J : Jocobi of the system

L: length of the fluid cell

r: ratio between Ra and Rc

r∗: threshold value of r for r > 0

Ra: Rayleigh number

Rc: critical Rayleigh number

T(x,z, t): temperature of the flow field

T0: magnitude of the temperature variation at the bottom layer

T1(x,z, t): linear temperature variation along z

ΔT(x,0, t): temperature difference between the two parallel plates

X : variable for the function θ11(x,z, t)

Y : variable for the function θ02(x,z, t)

Z: variable for the function ψ(x,z, t)

u, w flow in x and z, respectively

ε: the coefficient of volume expansion of the fluid

α: the real part of the eigenvalue

γ: the imaginary part of the eigenvalue

β(τ): ratio between gT ,τ(τ) and gT(t)

δ: intermediate variable
κ: thermal diffusivity of fluid

κL: thermal diffusivity of solid at the bottom plate

σ : Prandtl number
η: intermediate variable



Xiaoling He 23

λ: eigenvalue

τ: normalized time

ω: frequency of the transient thermal field function

θ, θ11, θ02: temperature variation of the flow field

ν: kinematic thermal viscosity

ψ(x,z, t): flow field stream function

Δnh: operator for the attractors when the eigenvalues are real or complex

Δ−H : operator for the attractor at the Hopf bifurcation with λ1 < 0

Δ+
sub: operator for the attractor at the Hopf bifurcation with λ1 > 0

Δ∗H : operator for the attractor at the Hopf bifurcation with a specified λ1
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This paper presents a study of special trajectories attainment for mobile robots based on
the dynamical features of chaotic systems. This method of trajectories construction is
envisaged for missions for terrain exploration, with the specific purpose of search or pa-
trol, where fast scanning of the robot workspace is required. We propose the imparting of
chaotic motion behavior to the mobile robot by means of a planner of goal positions se-
quence based on an area-preserving chaotic map. As a consequence, the robot trajectories
seem highly opportunistic and unpredictable for external observers, and the trajectories’s
characteristics ensure the quick scanning of the patrolling space. The kinematic model-
ing and the closed-loop control of the robot are described. The results and discussion of
numerical simulations close the paper.
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1. Introduction

Mobile robotics, after decades of continuous development, keeps up as an intensive re-
search issue because of its ever-increasing application to different domains and its eco-
nomical and technological relevances. Interesting applications can be seen in robots per-
forming floor-cleaning tasks [1], executing industrial transportation [2], exploring vol-
canos, scanning areas to find explosive devices, and so on [3].

This work deals with the problem in which a mobile robot is used for searching or pa-
trolling a defined region. To avoid risks to human life, it is very wise to use autonomous or
remotely operated robots to deal with the hazardous tasks of detecting dangerous mate-
rials or an intruder. For these applications, the physical robot and its systems architecture
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and software have been studied extensively for military and civil operations. Some mo-
bile patrol robots are already commercially available (e.g., [4]). Many examples of studies
involving vigilance robots can be found in [5–9]. These works mainly focus on target
perception and identification, robot localization, terrain map updating, optimization of
communication with the operation center or other robots. Here, we are specifically inter-
ested in investigating a very critical and still open issue that is paramount for the success
of these applications: the path planning. The main goal is to generate a very convenient
trajectory to be followed by the rover so that it increases as much as possible the prob-
ability of finding the intruder inside the surveillance region. This trajectory must be as
opportunistic as possible so that its developed thread on the region cannot be easily un-
derstood or predicted by the intruder. Otherwise, he can come up with a way that allow
him to avoid the rover. As so, this problem of using a robot to patrol a defined region is
actually a problem of conceiving a proper strategy that generates an opportunistic and
properly crafted trajectory to be followed by the robot. We can affirm that high unpre-
dictability for the robot trajectories as well as fast scanning of the workspace area are
strongly required. In this work, we introduce a very convenient strategy to accomplish
these basic requirements. Our strategy exploits the dynamical behavior of a conservative
chaotic system to generate trajectories to be followed by the rover. As a spin-off of this
approach, previous terrain mapping is no longer necessary.

The interaction between mobile robotics and chaos theory has been studied only re-
cently, as can be seen in [10–12]. For instance, the integration between the robot motion
system and a chaotic system, the Arnold dynamical system, is used to impart chaotic be-
havior to a robot in [13]. An extension of this motion control strategy, applying diverse
chaotic systems on integration with the robot kinematics model, can be found in [14]. In
[15], the same principle of systems integration is used, however a Van der Pol equation is
associated with the target. In [16], an open-loop control approach is proposed to produce
unpredictable trajectories so that the state variables of the Lorenz chaotic system are used
to command the velocities of the robot’s wheels.

Here, we introduce a new strategy that generates an opportunistic and proper crafted
trajectory that works as follows. We associate a path-planning generator module with a
closed-loop locomotion control module. At each step, the first one generates a position
goal defined by its coordinates in the phase space. This position goal is provided to the
second module, which drives the mobile rover from its actual position to the desired one.
When the rover arrives at the desired position, the path-planning generator module is
used again to give another position goal, which is subsequently provided to the second
module. This sequence of action is repeated over and over again. The path-planning gen-
erator module is implemented by exploiting the dynamics of an area-preserving map in
a chaotic regime. Different to a dissipative chaotic map, in which the chaotic evolution
takes place on attractors, the chaotic region of an area-preserving map for specific param-
eter values extends practically over all of its phase spaces. For these parameter values, the
entire phase space is covered by a single chaotic orbit. It is therefore possible to make an
association between the physical region that we wish to scan with the phase space defined
for the area-preserving map. Thus, the position goals are generated as transformed iter-
ations of an area-preserving map and so present a chaotic dynamics with its remarkable
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characteristic that makes long-time prediction based on measurements very difficult. Be-
tween the position goals, the rover trajectory is driven by a closed-loop locomotion con-
trol module which allows a short trajectory between the points and introduces an element
of regularity to the strategy. By properly combining the parameters of both modules, we
can exploit a multitude of possibilities between a quick scanning of a region by using a
trajectory with “small” level of unpredictability to a “slow” scanning with a highly unpre-
dictable trajectory. Actually, by properly combining the parameters, we are able to come
up with a very efficient, opportunistic, and properly crafted trajectory that fits the desired
requirements for patrol missions.

This paper presents the proposed path planning (Section 2). The robot model and the
adopted control are described in Section 3. Section 4 presents the simulation results and
discussions, and Section 5 concludes the paper.

2. Chaotic trajectory planning

In the context of deterministic systems, sensitive dependence on initial conditions is the
main well-known characteristic of the chaotic behavior [17]. This means that arbitrarily
close initial conditions imply trajectories that move far away from each other after some
time. This property of a chaotic system makes long-term prediction of a chaotic trajectory
based on finite-time measurements practically impossible because of the limited accuracy
associated to measurement sensors. Another intrinsic characteristic of a chaotic evolution
is the transitivity [17]. A deterministic system is transitive on an invariant set if for any
two open subsetsU and V of this invariant set, there exist trajectories originating from U
that pass throughV after some time. This property means that we always can use a chaotic
trajectory as a transportation path between regions belonging to the chaotic invariant set.
It implies the “mixing property” founded in chaotic systems that ensures that the system
cannot be broken down into subsystems that do not interact with each other. From the
perspective of an external observer, a chaotic trajectory presents a complicated behavior
that does not exhibit any recurrent pattern and seems to be random. In other words, a
chaotic trajectory is reported by an external observer as an erratic trajectory that quickly
moves among different regions of a certain invariant set. It is precisely this behavior that
we exploit in this work to orient the movement of a robot to make it very suitable to be
used as an opportunistic patrolling engine.

The space to be scanned by the robot can be viewed as a kind of a continuous subset
with an integer dimension 2. In order to accomplish our goal, the chaotic trajectory must
fill densely this integer dimension subset. This requirement provides an extra ingredient
that delimits the class of chaotic system to be used. In a dissipative chaotic system, the
chaotic invariant set is an attractor. In general, this attractor has a noninteger dimension,
that is, its geometric picture on the phase space is a fractal. However, in our problem,
the robot must cover densely its patrol region. Consequently, we consider it more ap-
propriate to choose another class of chaotic systems: an area-preserving chaotic system.
One of the basic properties of an area-preserving system is that it preserves volumes in
the phase space [18]. As a consequence of this property, these systems do not have attrac-
tors, and the chaotic regions spread densely over regions of the phase space. Note that
this fact individualizes our approach in the scenario of previous works that uses a chaotic
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system to run the robot dynamics. Because previous approaches use dissipative chaotic
systems (e.g., [13]), they require subterfuges to make the robot wander opportunistically
through the patrolling area. This is not necessary in this approach. For the knowledge of
the authors, this is the first time that this concept is applied in the area of mobile robots.

2.1. The standard map-based path planning. The planning procedure is based on deter-
mining a sequence of intermediary goal points (coordinates x and y) that will compose
the robot trajectory. The path-planning generator module uses an area-preserving map
that is considered as a paradigm for area-preserving chaotic systems: the standard map,
also called Taylor-Chirikov map [19]. It is a two-dimensional map which results from a
periodic impulsive kicking of a rotor. This map was firstly proposed by Brian Taylor and
then independently obtained by Chirikov [20] to describe the dynamics of magnetic field
lines on the kicked rotor [18]. The dynamic effect of this system is expressed mathemati-
cally through the map equations, given by

xn+1 = xn +K sin yn,

yn+1 = yn + xn+1,
(2.1)

where x is a periodic configuration variable (angular position) and y is the momentum
variable (angular speed). These map variables are both computed mod(2π). The map
parameter K represents the strength of the nonlinear kick applied in the rotor mecha-
nism. In its phase space and according to the value associated with the parameter K , it
has stable and unstable periodic orbits, Kolmogorov-Arnold-Moser (KAM) surfaces, and
chaotic regions. Depending on the nonlinear parameter K , the regions of regular motion
and the regions of chaotic motion are complexly interwoven, but the chaotic regions are
confined between KAM tori. As this parameter is increased, the KAM surfaces start to
be destroyed, chaotic regions occupy increasingly large areas until, for a specific value
of K , the last KAM torus is destroyed and the entire region of the phase space appears
to be densely covered by a single chaotic orbit. Our path-planning generator module is
implemented based on the standard map that presents this dynamics.

Let us now show an example of how the standard map is used in the context of our
path-planning generator module. By numerically simulating the map equations, we can
analyze the properties of terrain covering considering the basic mission requirements for
fast terrain scanning. We define a square terrain with dimensions 100× 100 in a nor-
malized measurement unit. The map simulation begins with an arbitrary initial position,
and considers the gain value K = 7. We can see that the third case can cover completely
the considered terrain (in fact, the necessary condition for the complete scan is K > 6
[20]). The results of passage locations planned for 100 and 3000 iterations can be seen in
Figure 2.1.

The terrain covering can be judged through a performance index. This index is defined
using a terrain division on square unit cells (e.g., 1× 1, i.e., 10 000 cells), and computing
the visited cells percentage after the robot locations planning. This index of terrain cover-
ing is presented in the form of a plotting index versus planning evolution, as can be seen
in Figure 2.2 (where index = 1 represents 100% of cells visited). However, this analysis
does not consider the robot trajectories between two subsequent locations, that will be
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Figure 2.1. Terrain covering by subgoals planned points using standard maps after 100 and 3000
planning iterations (considered map gain value K = 7).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
is

it
at

io
n

in
d

ex

0 5 10 15 20 25 30 35 40
×103

Number of planned locations

Figure 2.2. Index of terrain covering (visited cells portion) for 40 000 iterations, with map gain K = 7.

taken in account later in this paper. It is quite evident that a faster complete area cover-
ing could be obtained using a systemic scan without passing two or more times at one
same terrain cell, but this classic strategy is absolutely predictable, and inadequate to the
patrolling mission.

Another strategy to plan these points could be defined using a random numbers gen-
erator. Considering a uniform distribution random sequence, we obtain a very similar
terrain space covering. The results for this alternative planning strategy are shown in Fig-
ures 2.3 and 2.4. Even if the appearance and the terrain covering are similar, the planning
nature is quite different to the conservative standard map. We will discuss this fundamen-
tal difference in Section 4.
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Figure 2.3. Terrain covering by subgoals planned points using a random numbers generator after 100
and 3000 planning iterations.
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Figure 2.4. Terrain covering by subgoals planned points using a random numbers generator (40 000
planning iterations).

3. Kinematic control of the mobile robot

The mobile robot considered in this work is a typical differential motion robot with two
degrees of freedom, composed by two active, parallel, and independent wheels, a third
passive wheel with exclusive equilibrium functions (a sort of free steered standard wheel),
and proximity sensors capable of obstacles detection. The active wheels are independently
controlled on velocity and sense of turning. The sensors provide short-range distances
to obstacles. For instance, these sensors could be sonar or infrared devices commonly
used in mobile robots, with adequate accuracy. Additionally, the robot is assumed to be
equipped with specific sensors for detection and recognition of the searched objects or
intruders. This robot model represents an interesting compromise between control sim-
plicity and degrees of freedom that allow the robot to accomplish mobility requirements
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[21], and it is largely adopted in several researches on mobile robotics, for example, [22–
24].

The robot chassis is considered as a rigid body operating on the horizontal plane.
Its motion is obtained by driving the active wheels. The resultant motion is described
in terms of linear velocity v(t) and direction θ(t), representing an instantaneous linear
motion of the medium point of the wheel axis and a rotational motion (rotational velocity
ω(t)) of the robot body over this same point.

The robot motion control can be done providing the wheels velocities, ωl(t) and ωr(t),
or equivalently the body linear and angular velocities, v(t) and ω(t), called input or con-
trol variables. The mathematical model of this kinematics problem considers these two
input variables and also three state variables: the robot position and orientation (x(t),
y(t), θ(t)) [21]:

⎡
⎢⎣
ẋ
ẏ
θ̇

⎤
⎥⎦=

⎡
⎢⎣

cosθ 0
sinθ 0

0 1

⎤
⎥⎦
[
v
ω

]
. (3.1)

These equations constitute a nonholonomic dynamical system. The control of this
system has been studied extensively by various research groups, and diverse solutions are
available, for example, [22, 23]. The motion control strategy adopted in this work involves
a state feedback controller, proposed in [24], which is an appropriate approach to produce
a desired trajectory described by a sequence of coordinates (xp, yp). This means that the
path-planning task is given by a specialized robot module, independent of the motion
control module, that sets intermediate positions lying on the requested path.

The adopted control law considers the geometric situation shown in Figure 3.1. In this
figure, the robot is placed at an arbitrary configuration (position x, y and orientation
θ), and a desired position (the target xp, yp: the origin of frame XGYG) is defined by the
robot path-planner. In the robot reference frame XRYR, the configuration error vector is
defined by e = [ρ ϕ]T , where ρ and ϕ localize the target position, and provide a coordinate
change:

ρ = (Δx2 +Δy2)1/2
,

ϕ= 180 + θ−ψ. (3.2)

The robot kinematics model is described by (3.1), where ẋ(t) and ẏ(t) are the linear
velocity components in the absolute reference frame (fixed on the workspace). We define
the angle ϕ between the XR axis of body reference frame and the vector connecting the ro-
bot center and the desired position. The other configuration variables ρ and ψ represent,
respectively, the distance between present and desired positions, and the angle between
the direction to the target and the axis X0.

The description of the motion in the new coordinates becomes

[
ρ̇
ϕ̇

]⎡
⎢⎣
−cosϕ 0
1
ρ

sinϕ 1

⎤
⎥⎦
[
v
ω

]
. (3.3)
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YG = Y0

XG = X0

YR XRy

x

ρ

ϕ

ω

Figure 3.1. The robot control problem configuration, where the position/orientation error (ρ,ϕ), the
linear and angular velocities (v,ω), the robot frame (XRYR), and the desired position frame (XGYG ≡
X0Y0) can be seen.

Concerning these polar coordinates system descriptions, it is necessary to remark that
the coordinate transformation is not defined at x = y = 0, that is, when the robot achieves
the goal location. The adopted control law [24], in terms of error feedback (ρ,ϕ) to de-
termine the value of system inputs v, ω, is given by

v = k1ρcosϕ,

ω =−k1 sinϕcosφ− k2ϕ.
(3.4)

Using the Lyapunov stability analysis, we can verify the robot kinematic system with
the application of this nonlinear control law [25]. Composing a quadratic Lyapunov func-
tion with the state variables ρ and ϕ given by V = (1/2)(ρ2 +ϕ2), the time derivative of
this Lyapunov function, considering the control law, is

V̇ = ρ(−v cosϕ) +ϕ
(
ω+

v

ρ
sinϕ

)
=−k1(ρcosϕ)2− k2ϕ

2. (3.5)

The constant control gains k1 and k2 are exclusively positive. As a consequence, the
value of V̇ is negative for all nonnull value of (ρ,ϕ), and null at the origin of state space.
That is a sufficient condition for the asymptotic convergence of (3.3).

If an obstacle is found on the trajectory, a specific navigation competence, obstacle
avoidance, must be used to drive the robot from this obstacle. Is this work, the obstacle
avoidance problem is not treated, nevertheless a simple solution could be implemented,
for example, using the algorithm proposed in [26].

Using this feedback control law, we intend to validate the proposed path planning, ex-
amining the trajectory unpredictability, the terrain covering by the robot motion, and the
general characteristics of the obtained trajectories. Nevertheless, we note that any stable
control law can provide adequate closed-loop motion respecting the planned sequence of
passage points, and obtaining the chaotic robot motion.
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Figure 4.1. Two instants of the mobile robot trajectory evolution, after 200 and 1000 planned passage
locations, using the adopted continuous control law (considering a terrain with dimension 100× 100
in a normalized measurement unit).

4. Numerical simulations

To test our mobile robot patrolling approach, we have simulated the robot kinematic
motion applying the closed-loop control law discussed in the previous section to track a
sequence of planned objective points, provided by the standard map. The adopted con-
trol law obtains smooth trajectories between two subsequent locations, reinforcing the
apparently erratic nature of the movement, which constitute an interesting feature for
patrol missions. The trajectory results of the application of this control law are shown in
Figure 4.1. For any other terrain shape, the planning process can fit the area of interest in-
side a square standard map, ignoring the points planned outside the terrain but ensuring
the desired fast workspace scan.

We analyze the terrain covering of this executed (or effective) trajectory using the same
performance index proposed for the planned sequence of points (Section 2), that is, the
terrain is divided in 10 000 square unit cells, and the index represents the visited cells
percentage (index= 1 represents 100%). The time evolution of the terrain covering index
is shown in Figure 4.2. We do not take in to account here the extra area covered by the
sensors perception range region that certainly could augment the area covering indexes.
The terrain scan analysis presented here is based on a worst case in which the sensor
perception field is considered as a single point.

We can see that the central part of the terrain will be visited more often than the re-
gions close to the borders. This is a consequence of frequent changes of motion direction
and it is in accordance with the strategy which is to cover completely the patrolled terrain
all the time so that an intruder appearing in an arbitrary time/location inside the terrain
is quickly detected by the rover. Evidently, the complete terrain covering will be obtained
only after a long-term execution of the robot planning/motion procedure.

Considering the basic requirements of patrol missions, and the main ideas of our ap-
proach, we can discuss different ways to obtain the construction of mobile robot trajec-
tories by combining the adoption of a motion control law and a strategy for the determi-
nation of the regions sequence to be inspected by the robot.
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Figure 4.2. The time evolution of the index of terrain covering for the executed robot trajectory (300
simulation time intervals).

In the example presented, we adopt a continuous control law that provides smooth
trajectories and minimizes unnecessary maneuvers and consequent control switches. An-
other very different but intuitive control strategy could be adopted: a discontinuous con-
trol law based on an initial rotational maneuver around the robot wheel axis center to
orientate the robot towards the next desired position, followed by a straight trajectory to
the objective.

In Section 2, we mentioned an alternative approach to be used as our path-planning
generator module: to use a series of random locations, uniformly distributed in the pa-
trolled space. This sort of random planning strategy results in a similar terrain covering
to the chaotic planning. However, the nature of locations planning is quite different: the
chaotic one is deterministic.

We can conclude our proposed approach by analyzing the advantages and disadvan-
tages of these aspects of the patrolling scenario: the type of control law and the inspection
planning strategy. Firstly, we compare the two options of control laws presented here,
continuous and discontinuous, and we can verify that the continuous one offers advan-
tages, because the smoother trajectories save control switches and maneuvers; moreover,
they contribute to perform unpredictable trajectories for external observers. On the other
hand, the discontinuous control produces a sequence of piecewise predictable straight
trajectories (an example can be seen in Figure 4.3). However, in terms of time of ter-
rain scanning, the advantageous control approach is the discontinuous one, because it
will evidently cover faster the terrain than the discontinuous control when using straight
trajectories.

If we compare the two options of scanning plan, chaotic and random approaches, both
of them provide very similar results in terms of terrain scan appearance and patrol cover-
ing. In spite of that, chaotic trajectories have an important advantage, they are based on
a deterministic sequence of objective points. This means that the behavior of the rover
can be predicted in advance for the system designer. In terms of navigation expertise, this
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Figure 4.3. An example of trajectories obtained using the discontinuous control law (500 planned
passage locations, standard map planning).

path-planning determinism represents an important advantage over navigation based on
a sort of random walk trajectory. This feature can facilitates the frequent robot localiza-
tion procedure, which is a crucial function because the knowledge of the robot position
with appropriate precision constitutes very necessary information for the robot itself and
also for the mission operation center. This determinism can be also advantageous to other
mission aspects, for example, executed trajectory supervision, terrain’s scanning informa-
tion, and precise localization of intruders or targets.

5. Conclusion

The presented strategy to deal with terrain exploration missions for mobile robots can
achieve adequately the main requirements for patrol missions: we are able to achieve very
efficient, opportunistic, and proper crafted trajectory that fits the desired requirements
for patrol missions. Imparting chaotic motion behavior to the robot motion through
the utilization of an area-preserving chaotic map as a path planner ensures high unpre-
dictability of robot trajectories, resembling a nonplanned erratic motion from external
observers’ point of view. Validation tests, based on numerical simulations of closed-loop
motion control to follow the sequence of objective points on the robot trajectory, con-
firm that the chaotic planning procedure can obtain adequate results. The advantageous
property of the proposed chaotic motion planning over unplanned or randomly planned
motion resides mainly in the deterministic nature of chaotic behavior, which can be useful
for important functions of the robot motion control, for example, the robot localization
and the terrain mapping.

This study shows that the application of dynamical behaviors of nonlinear systems to
solutions for mobile robots control problems represents an interesting interdisciplinary
interface for researchers of both scientific domains, opening promising perspectives of
future works including experimental realizations.
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Email address: elbert@lac.inpe.br



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2007, Article ID 83893, 16 pages
doi:10.1155/2007/83893

Research Article
Inductorless Chua’s Circuit: Experimental Time Series Analysis

R. M. Rubinger, A. W. M. Nascimento, L. F. Mello, C. P. L. Rubinger,
N. Manzanares Filho, and H. A. Albuquerque

Received 8 September 2006; Revised 6 November 2006; Accepted 11 February 2007

Recommended by José Manoel Balthazar

We have implemented an operational amplifier inductorless realization of the Chua’s cir-
cuit. We have registered time series from its dynamical variables with the resistor R as the
control parameter and varying from 1300Ω to 2000Ω. Experimental time series at fixed
R were used to reconstruct attractors by the delay vector technique. The flow attractors
and their Poincaré maps considering parameters such as the Lyapunov spectrum, its sub-
product the Kaplan-Yorke dimension, and the information dimension are also analyzed
here. The results for a typical double scroll attractor indicate a chaotic behavior character-
ized by a positive Lyapunov exponent and with a Kaplan-Yorke dimension of 2.14. The
occurrence of chaos was also investigated through numerical simulations of the Chua’s
circuit set of differential equations.

Copyright © 2007 R. M. Rubinger et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Chaotic electronic circuits [1] have been widely studied during the last few decades due to
their easy implementation, robustness, reproducibility of results, and also as a test plat-
form for synchronization [2–4], chaos control [4–6], signal encryption [7], and secure
communications [8, 9]. Also it is easy, through Kirchhoff ’s laws, to obtain the circuit de-
scribed by a set of differential equations and carry on simulations which in most times,
present good agreement with experimental data. The Chua’s circuit [1, 10] is one of the
most famous circuits on the literature and the reasons, among others, are:

(1) Chua’s circuit has a quite simple construction characterized by four passive linear
elements and one of them with nonlinear i(V) characteristic represented by a
piecewise linear equation, as shown in Figure 1.1;
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Figure 1.1. Chua’s circuit. The dynamical variables are x, y, and z corresponding to the voltage across
capacitor C1, the voltage across capacitor C2, and the current through the inductor, respectively. The
nonlinear element is the Chua’s diode and the nonlinearity is presented through id(x) characteristics.

(2) it exhibits a number of distinct routes to chaos and multistructural chaotic at-
tractors [11];

(3) attractors that occur in Chua’s circuit arise from very complex homoclinic tan-
gencies and loops of a saddle focus [11];

(4) many opened questions on the system’s behavior and the lack of a possibility to
fully describe Chua’s circuit from its equations [11].

The Chua’s circuit has been the object of study of hundreds of papers, where its topo-
logical, numerical, physical, and dynamical characterizations are deeply investigated. See
[12–15] and references therein.

Point (4) suggests that numerical analysis such as that carried on this work could pro-
vide some contributions to understand Chua’s circuit dynamical behavior. Chua’s circuit
dynamical equations are given by

dx

dt
= f1(x, y,z)=

(
y− x

RC1

)
− id(x)

C1
,

dy

dt
= f2(x, y,z)=

(
x− y

RC2

)
+

z

C2
,

dz

dt
= f3(x, y,z)=− y

L
− z

(
rL
L

)
,

id(x)=m0x+
1
2

(
m1−m0

){∣∣x+BP

∣∣−∣∣x−BP

∣∣},

(1.1)

where R,C1,C2, and L are passive linear elements, rL is the inductor’s resistance, id is the
current through Chua’s diode with m0,m1 and Bp as parameters.
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Chua’s diode and the active component “inductor” were implemented according to
Tôrres and Aguirre [16]. This inductor implementation turns easy and compact to con-
struct the Chua’s circuit. It has another advantage since it can be designed as resistance
free as have been carried on this work.

This paper is organized as follows: Section 2 is devoted to a detailed description of
the parameters used to build and analyze Chua’s circuit. A brief study of the equilibrium
points of Chua’s differential equations and the existence of a homoclinic loop is presented
in Section 3. This was carried in order to identify the possible dynamical behavior for
the chosen parameters of the circuit and to support the analyses carried in Section 4. In
Section 4, we present the time series analysis of some illustrative experimental time series
obtained from the Chua’s circuit implementation. This section is the core of our work.
Our aim is to characterize attractors obtained from this particular implementation of
Chua’s circuit with respect to its sensitivity to initial conditions and its dimension on the
state space. Finally, concluding remarks are presented in Section 5.

2. Experimental details

Chua’s circuit was constructed in a single face circuit board with the same scheme of
[16] but with all capacitors 1000 times lower. This way C1 = 23.5nF, C2 = 235nF, and
L = 42.3mH. These values were obtained from the combination of passive components
and measured with a digital multimeter with a 3% precision. We evaluate the oscillation
main frequency as a rough approximation by 1/(2π(LC2)1/2) which gives about 1600 Hz.
This oscillation frequency allowed us to store large time series for data analysis. Other pa-
rameters were experimentally determined. From Chua’s diode i(V) characteristics linear
fittings as Bp = 1.8 V, m1 = −0.758 mS, and m0 = −0.409 mS with the significant digits
limited by the fitting accuracy. Here S stands for inverse resistance unity. The resistor R,
used as the control parameter, was a precision multiturn potentiometer and kept in the
range of 1300Ω to 2000Ω.

A data acquisition (DAQ) interface with 16 bit resolution, maximum sampling rate of
200 k samples/s, and adjustable voltage range of maximal peak voltage of 10 V was applied
for data storage. The Chua’s circuit oscillations were measured at the x point depicted in
Figure 1.1 after passing through an active buffer. Also Labview r© was used to develop
data acquisition software and analysis [17, 18]. A Keithley 237 voltage/current source in
series with the Chua’s diode was applied to obtain the i(V) data. For each time series the
potentiometer R was detached from the circuit for resistance measurements with a 3(1/2)
digit multimeter.

Four representative attractors obtained with R as 1480Ω, 1560Ω, 1670Ω, and 1792Ω
will be presented in Section 4 with the respective analyses. Particular attention will be
given to the double scroll attractor.

3. Differential equation analysis

Considering a resistance free inductor, that is, rL = 0, we have determined the operating
points which coincide with the equilibrium points of (1.1), that is, its solution for

ẋ = ẏ = ż = 0. (3.1)
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Here the dot over the variables stands for time derivatives. The solutions correspond to
the state space points (−Rid(x),0, id(x)), which coincide with the interception of the load
line with the graph of id in the plane y = 0. The load line is a straight line with slope−1/R
determined by the Kirchhoff ’s laws applied to the circuit composed by R and the Chua’s
diode. One of these equilibrium points will always be the origin (0,0,0).

For

1300Ω≤ R <− 1
m1

≈ 1319.26Ω, (3.2)

(1.1) presents only the equilibrium point at the origin. The origin is a saddle focus point,
since the Jacobian matrix of (1.1) at (0,0,0) has one negative real eigenvalue and two com-
plex eigenvalues with positive real parts. Here f (x, y,z)= ( f1(x, y,z), f2(x, y,z), f3(x, y,z))
is defined by (1.1). For 1318.93Ω < R < 1319.26Ω, the origin is a (1-2)-saddle point, that
is, the Jacobian matrix J f (0,0,0) has three real eigenvalues, being one negative and two
positives.

For R = 1319.26Ω, (1.1) presents a line segment of equilibrium points. In fact, all
points (x,0,m1x), −Bp ≤ x ≤ Bp, are equilibrium points of (1.1).

For

1319.26Ω < R≤ 2000Ω <− 1
m0

≈ 2444.99Ω, (3.3)

(1.1) presents three equilibrium points

p0 = (0,0,0),

p1 =
(
R
(
m0−m1

)
Bp

Rm0 + 1
,0,

(
m1−m0

)
Bp

Rm0 + 1

)
,

p2 =
(
R
(
m1−m0

)
Bp

Rm0 + 1
,0,

(
m0−m1

)
Bp

Rm0 + 1

)
.

(3.4)

For 1319.26Ω < R < 1323.93Ω, p0 is a (2-1)-saddle point, and for 1323.93Ω ≤ R ≤
2000Ω, the equilibrium point p0 is of saddle-focus type, since the Jacobian matrix J f (p0)
has one real positive eigenvalue λ00 and two complex eigenvalues, λ01 and λ02, with nega-
tive real parts. Therefore, p0 has a 1-dimensional unstable manifold and a 2-dimensional
stable manifold. The equilibrium points p1 and p2 are of saddle-focus type too, but their
stable manifolds are 1-dimensional and their unstable manifolds are 2-dimensional, since
the Jacobian matrix J f (p1) = J f (p2) has one real negative eigenvalue and two complex
eigenvalues with positive real parts.

The presence of homoclinic loops connecting p0 to itself, that is, p0 possesses a 2-
dimensional stable manifold and a 1-dimensional unstable manifold which intersect non-
transversely, for some value of the parameter R, plays a fundamental role in the existence
of chaos in (1.1).
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The existence of a homoclinic loop at p0 is now outlined, according to [19]. Equation
(1.1) can be written in dimensionless form

dx

dτ
= α(x− y) + i(x),

d y

dτ
= 0.1

(
α(y− x)

)− z,

dz

dτ
= 3.321y,

(3.5)

where

i(x)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x− 0.853 if x ≤−1(region I),

1.853x if |x| ≤ 1(region II),

x+ 0.853 if x ≥ 1(region III),

(3.6)

and the dimensionless variables and parameters are given by

x = 1
Bp

x, y = 1
Bp

y, z = 1
m0Bp

z,

τ = m0

C1
t, i(x)= 1

m0Bp
id(x), α= 1

m0R
.

(3.7)

For α=−1.64042 (R= 1490.46Ω), (3.5) has the equilibrium points

q0 = (0,0,0), q1 = (−1.33193,0,−2.18493),

q2 = (1.33193,0,2.18493).
(3.8)

The eigenvalues of the Jacobian matrix of (3.5) at q0 are 0.406522 and −0.178994±
i0.376325, with the respective eigenvectors

e0 = (0.716695,0.0847343,0.69222),

f0 = (−0.32928,0.0500556,−0.928716),

g0 = (0.124423,−0.105239,0).

(3.9)

It follows that the unstable line at q0 is generated by e0 while the stable plane π0 is gener-
ated by { f0,g0}. Let N1 be the intersection of the plane x = 1 and the unstable line at q0.
Thus N1 = (1,0.118229,0.96585). Let X(τ)= (x(τ), y(τ),z(τ)) be the solution of (3.5) in
the region III with the initial condition N1. If τ = 8.2870398 then N2 = X(8.2870398)=
(1,−0.249007,2.42616) belongs to intersection of the plane x = 1 and the stable plane π0

since det[N2, f0,g0] = 0. Therefore a homoclinic loop at q0 can be defined by the trajec-
tory along the unstable eigenvector e0. By symmetry of (3.5), there is another homoclinic
loop at q0 defined by the trajectory of the unstable eigenvector −e0.

The chaotic nature of the Chua’s (1.1) was proved by establishing the existence of a
homoclinic loop of the saddle focus at the origin and by applying the Shil’nikov condition
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Figure 3.1. Homoclinic loops. They were obtained solving (3.5) with initial conditions N1 =
(1,0.118229,0.96585) and M1 = (−1,−0.118229,−0.96585) and τ ∈ [−10,30].

λ00 > −Re(λ01) > 0 [11]. In this work, Shil’nikov saddle-focus condition is satisfied by
1334.94Ω≤ R≤ 2000Ω. Figure 3.1 presents a draft of the homoclinic loop found at α=
−1.64042 corresponding to R= 1490.46Ω.

In Figure 3.1 it is possible to identify the stable and unstable manifolds associated with
it. The value of R for the homoclinic loops is near of the value found for the experimental
measurements of the cycle-one attractor obtained with R= 1480Ω as will be presented in
the next section. It should be pointed out that the nominal values of capacitors and resis-
tors used in this implementation were selected by measurements with digital multimeters
which are subjected to experimental errors between 1% and 3%. Thus the value of R for
the occurrence of the homoclinic loops is compatible with our experimental results.

4. Experimental results and discussion

For this work we have carried out time series measurements of the variable x(t) for some
R values and proceeded as described in Section 2. Figures 4.1 and 4.2 present the four se-
lected attractors obtained from time series with R as 1480Ω, 1560Ω, 1670Ω, and 1792Ω.
They correspond to a cycle one, cycle two, chaotic-like in one region and the double scroll,
respectively. For attractor reconstruction (see Figures 4.1 and 4.2) proper time delay [20]
and the embedding dimension [21] were determined.

Figure 4.3 presents the mutual information for attractor 4. The first minimum corre-
sponds to the optimal time delay for the delayed vectors. For the double scroll attractor it
is of 7-time steps of 33 μs.

The false nearest neighbors algorithm was applied to verify if the time series is sensitive
to noise [22]. Since Chua’s system is a three-variable system, it turns out that false nearest
neighbors should indicate the embedding dimensions as three. A higher than three em-
bedding dimension for this system would mean significant noise contamination [17, 18].
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Figure 4.1. Periodic attractors obtained from delayed coordinates of the x variable. (a) Was obtained
from a time series with R= 1480Ω and is a cycle one attractor. (b) Was obtained from a time series
with R= 1560Ω and is a cycle two attractor.

Since our results indicate no false nearest neighbors for embedding dimensions above 3,
we can neglect noise contribution for the geometric invariants that will be presented in
the following.

Figure 4.4 presents the false nearest neighbor plot for attractor 4. As can be seen, the
proper embedding dimension is 3. In Figure 4.5, we present the Poincaré section for the
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Figure 4.2. Chaotic attractors obtained from delayed coordinates of the x variable. (a) Was obtained
from a time series with R= 1670Ω and occupies one state space region. (b) Was obtained from a time
series with R= 1792Ω and is the double scroll attractor.

periodic attractors presented in Figure 4.1. In Figure 4.5(a) we have a fixed point obtained
from attractor 1. In Figure 4.5(b) we have a period two pair of points obtained from
attractor 2.

In Figure 4.6 we present the Poincaré section for the chaotic attractors presented in
Figure 4.2. In Figure 4.6(a) we have the Poincaré section for attractor 3 represented by a
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Figure 4.4. False nearest neighbor ratio as a function of the embedding dimension. The false nearest
neighbors become negligible after dE = 3. This confirms that the Chua’s circuit is a 3-variable system.

continuous curve crossing the y = x line. In Figure 4.6(b) we have a more complex pat-
tern obtained for attractor 4. It is basically composed by two curves, one corresponding
to each side of the “scroll” of the flow attractor.

Time series analyses were carried for all attractors. The estimated parameters were the
Lyapunov spectrum [23] with its subproduct the Kaplan-Yorke dimension (DKY) [24] and
the information dimension (D1) [25]. D1 was measured for both flow and map represen-
tations. We will present detailed analysis for attractor 4 and summarize the information
for all attractors in a table that will follow.
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Figure 4.5. Poincaré section obtained from the extrema sequence of the attractors 1(a) and 2(b) pre-
sented in Figure 4.1. The dashed line is y = x, which shows that in (a) we have a fixed point and in (b)
a period 2 points.

Figure 4.7 presents the Lyapunov spectrum for the attractor 4, obtained by using the
method described in [23] and implemented in [17, 18]. It is characterized by a positive, a
null, and a negative Lyapunov exponent. This configuration is a characteristic of chaotic
attractors. The Kaplan-Yorke dimension for this attractor is evaluated as DKY = 2.14.



R. M. Rubinger et al. 11

−3 −2.5 −2 −1.5 −1 −0.5

Sn

−3

−2.5

−2

−1.5

−1

−0.5

S n
+

1

(a)

−6 −5 −4 −3 −2 −1 0 1 2

Sn

−6

−5

−4

−3

−2

−1

0

1

2

S n
+

1

(b)

Figure 4.6. Poincaré section obtained from the extrema sequence of the attractors 3(a) and 4(b) pre-
sented in Figure 4.3. The dashed line is y = x, which shows that in both cases the attractors resemble
chaotic.

Dimension analysis gives complementary information since it is common to find strange
attractors with fractal shape.

DKY is considered as equivalent to D1 [26]. Considering this we present in Figure 4.8
the D1 for attractor 4. In Figure 4.8(a) we present the results for the D1 measured for the
flow attractor and in Figure 4.8(b) for its Poincaré map. D1 is characterized by a region
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Figure 4.7. Lyapunov spectrum for attractor 4. Each Lyapunov exponent corresponds to a state space
direction. The positive Lyapunov exponent is an evidence of chaotic behavior. DKY is evaluated as
DKY = 2.14.

of zero slope independent of the embedding dimensions above the proper one (i.e., 3 for
Chua’s circuit). In Figure 4.8(a) D1 is estimated as 1.8± 0.1 and in Figure 4.8(b) 1.2± 0.1.

According to [26] the dimension of a map attractor is related to the dimension of
its flow attractor by a difference of one unity. This occurs because the map is obtained
by eliminating the flow direction which is related to the null Lyapunov exponent. Since
the null Lyapunov exponent is associated to a dimension of one, the map information
dimension (D1M) must be related to the flow information dimension (D1F) by D1M =
D1F − 1.

Considering that DKY ∼ D1F we can infer that our measurements of D1F are underesti-
mated and that D1M + 1 is compatible with the corresponding values of DKY. The reason
for the low value of D1F is yet unknown but certainly it is related to the direction of the
flow and thus to the null Lyapunov exponent.

Table 4.1 summarizes the results for the four presented attractors. The first column,
assigned as #, indicates the number of the attractor as defined in the text. 1, 2, 3, and 4
correspond to the attractors obtained with R in ohms defined in column 2. The third col-
umn is D1M , measured for the Poincaré maps and the fourth column presents D1F , mea-
sured for the flow attractor. The fifth column is the Kaplan-Yorke dimension. The sixth
column is the minimal embedding dimension obtained from the false nearest neighbor
algorithm. The last column lists the three Lyapunov exponents in decreasing order.

Both periodic attractors presented three negative Lyapunov exponents, but the first
two can be considered as null when compared with the third value. Considering this,
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Figure 4.8. Information dimensionD1 for attractor 4. In (a) we present the result for the flow attractor
and in (b) for its Poincaré map. In (a) the straight line is a guide that indicates that the dimension is
below 2.0. In (b) the dimension is evaluated at 1.2.

DKY is estimated as 1.0 for attractors 1 and 2. This is in agreement with the value of 1.0
obtained for D1F .

Attractors 3 and 4 presented one positive, one null, and one negative Lyapunov expo-
nent. The sum of the exponents is negative, which means that attractors contract volume
in state space. The Kaplan-Yorke dimension for them is above 2.0, whilst the D1 was de-
termined as 1.8 for the flow representation of the attractors.
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Table 4.1. Analysis results for the four presented attractors.

# RΩ D1M D1F DKY FNN Lyap. Exp.

1 1480 0.0 1.0 1.0 2

−0.01

−0.02

−0.15

2 1560 0.0 1.0 1.0 3

−0.02

−0.02

−0.15

3 1670 1.3 1.8 2.19 3

0.01

0.00

−0.08

4 1792 1.2 1.8 2.14 3

0.01

0.00

−0.07

As discussed above the latter value is underestimated. Two facts corroborate for this
assumption. One is that D1 measured for the Poincaré maps of the attractors does not
differ by one unity from the measurement carried on the flow attractors, but they do
differ by approximately one unity from the Kaplan-Yorke dimension.

The other fact is also related to the Poincaré map of the attractors. The visual inspec-
tion of the Poincaré maps presented in Figure 4.6 indicates that they are objects with
dimension greater than 1. Thus, the flow attractor must be an object with a dimension
greater than 2, since by adding 1 to a number between 1 and 2 the resulting number must
be between 2 and 3.

5. Summary

We have implemented experimentally an operational amplifier inductorless realization of
the Chua’s circuit.

A homoclinic loop was found by numerical analysis of normalized Chua’s differen-
tial equations at a parameter corresponding to R= 1490.46Ω. Indeed, bifurcations were
observed experimentally in the vicinity of R for the homoclinic loop.

We selected four representative attractors obtained with R as 1480Ω, 1560Ω, 1670Ω,
and 1792Ω to present in this work. They correspond to a cycle one, cycle two, chaotic-like
in one region, and the double scroll, respectively.

Considering the double scroll, that is, for R= 1792Ω, the information dimension of a
three-dimensional delay vector reconstruction of the attractor (D1F) and of its Poincaré
map (D1M) are 1.8 and 1.2, respectively. Also the Lyapunov spectrum gives positive, null,
and negative exponents with a Kaplan-Yorke dimension as 2.14 characterizing the attrac-
tor as chaotic. This indicates that the flow attractor dimension has been underestimated
and that the Kaplan-Yorke dimension is better suited for this attractor.
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1. Introduction

Horizontal platform devices are widely used in offshore engineering and earthquake en-
gineering. Mechanical model for a horizontal platform system with an accelerometer is
depicted in Figure 1.1. The platform can freely rotate about the horizontal axis, which
penetrates its mass center. When the platform deviates from horizon, the accelerometer
will give an output signal to the torque generator, which generates a torque to inverse the
rotation of the platform about rotational axis. The equation governing this system is

Aÿ +Dẏ + rg sin y− 3g
R

(B−C)cos y sin y = F cosωt, (1.1)

where y denotes the rotation of the platform relative to the earth, A, B, and C are respec-
tively the inertia moment of the platform for axis 1, 2, and 3, D is the damping coefficient,



2 Mathematical Problems in Engineering

3

1

2

Figure 1.1. Mechanical model for a horizontal platform system with an accelerometer.
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Figure 1.2. Double-scroll attractor of the horizontal platform system.

r is the proportional constant of the accelerometer, g is the acceleration constant of grav-
ity, R is the radius of the earth, and F cosωt is harmonic torque. More details about this
model can be found in [1, 2]. Such horizontal platform systems can reduce the swing
of moving devices and keep the system close to horizontal position. They are used in
modelling offshore platforms and earthquake-proof devices. As shown in Figure 1.2, the
horizontal platform system has a double-scroll attractor when its parameter values are
A = 0.3, B = 0.5, C = 0.2, D = 0.4, r = 0.1155963, R = 6378000, g = 9.8, F = 3.4, and
ω = 1.8. It was numerically verified in [1] that two identical horizontal platform systems
coupled by a linear, sinusoidal, or exponential state error feedback control can achieve
chaos synchronization. Analytic criteria for chaos synchronization have the advantage
over numerical ones because they can reveal the relationship between the criteria and sys-
tem parameters, and then they are convenient for design and analysis of the coupling con-
troller [3–11]. Algebraic sufficient criteria for synchronizing the driving-response hori-
zontal platform systems via linear state error feedback control were obtained in [12].
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In this paper, some sufficient criteria for synchronizing the horizontal platform systems
coupled by sinusoidal state error feedback control are further derived by the Lyapunov
stability theory and the Sylvester’s criterion. In order to obtain easily verified algebraic
criteria, the state variables are restricted in a subregion, which is different from [12]. Fur-
thermore, a new concept of synchronization cost is introduced based on a measure of the
magnitude of the feedback control. The minimal synchronization cost, as well as optimal
coupling strength is calculated numerically. Minimal cost means the lowest energy input,
which is meaningful in engineering application.

2. Algebraic sufficient synchronization criteria

Let x1 = y, x2 = ẏ, and x = (x1,x2)T , and rewrite the governing equation in form of vector

ẋ =Mx+ f (x) +m(t) (2.1)

with

M =
(

0 1
0 −a

)
, f (x)=

(
0

−b sinx1 + ccosx1 sinx1

)
, m(t)=

(
0

hcosωt

)
,

a= D

A
> 0, b = rg

A
> 0, c = 3g

RA
(B−C), h= F

A
> 0.

(2.2)

A driving-response synchronization scheme for two identical platform systems cou-
pled by a sinusoidal state error feedback controller is constructed as follows:

driving system: ẋ =Mx+ f (x) +m(t), (2.3)

response system: ẏ =My + f (y) +m(t) +u(t), (2.4)

controller: u(t)= (k1 sin
(
x1− y1

)
,k2 sin

(
x2− y2

))T
, (2.5)

where y = (y1, y2)T , T means transpose, and k1 and k2 are constant coupling coefficients.
Defining an error variable e = x− y, or (e1,e2)= (x1− y1,x2− y2), we can obtain an error
dynamical system

ė =M(x− y)−u(t) + f (x)− f (y)= (M−K(t) +N(t)
)
e (2.6)

with

K(t)=
(
k1s1(t) 0

0 k2s2(t)

)
, s1(t)= sin

(
x1− y1

)
x1− y1

, s2(t)= sin
(
x2− y2

)
x2− y2

,

N(t)=
(

0 0
q(t) 0

)
, q(t)= −b

(
sinx1− sin y1

)
+ c(sinx1 cosx1− sin y1 cos y1

)
x1− y1

.

(2.7)
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Our object is to select suitable coupling coefficients k1 and k2 such that x(t) and y(t)
satisfy

lim
t→+∞

∥∥x(t)− y(t)
∥∥= lim

t→+∞
∥∥e(t)

∥∥= 0, (2.8)

where ‖x(t)− y(t)‖ =
√

(x1− y1)2 + (x2− y2)2 denotes the Euclidean norm of vector. By
the theory of stability, chaos synchronization of systems (2.3) and (2.4) in the sense of
(2.8) is equivalent to asymptotic stability of the error system (2.6) at the origin e = 0.

Taking a quadratic Lyapunov function V(e)= eTPe with P a symmetric positive defi-
nite constant matrix, then the derivative of V(e) with respect to time along the trajectory
of system (2.6) is

V̇(e)= ėTPe+ eTPė= eT
[
P
(
M−K(t) +N(t)

)
+
(
M−K(t) +N(t)

)T
P
]
e. (2.9)

By the Lyapunov stability theorem for linear time-varying system (see [13, Theorem 4.1]),
a sufficient condition that the error system (2.6) is asymptotically stable at the origin is
that the following matrix

Q(t)= P
(
M−K(t) +N(t)

)
+
(
M−K(t) +N(t)

)T
P (2.10)

is negative definite, denoting it by

Q(t) < 0. (2.11)

For simplicity, we choose P = diag{p1, p2} with p1 > 0 and p2 > 0, then

Q(t)=
(
−2p1k1s1(t) p1 + p2q(t)
p1 + p2q(t) −2p2

(
k2s2(t) + a

)
)
. (2.12)

By the Sylvester’s criterion, Q(t) < 0 is equivalent to the following inequalities:

p1k1s1(t) > 0, 4p1p2k1s1(t)
(
k2s2(t) + a

)
>
(
p1 + p2q(t)

)2
. (2.13)

Note that s1(t) > 0 and s2(t) > 0 if (x1,x2) and (y1, y2) are limited in the region G= {|x1−
y1| < π,|x2− y2| < π}. So we conclude that under condition (2.13) the error system (2.6)
is locally asymptotically stable at the origin in the region G. In order to get an easily
verified algebraic condition, we further restrict the variables in the subregion G0 = {|x1−
y1| ≤ 3π/4,|x2− y2| ≤ 3π/4}, then we have 2

√
2/3π ≤ s1(t)≤ 1 and 2

√
2/3π ≤ s2(t)≤ 1.

Now, a simple algebraic sufficient criterion for synchronizing the systems (2.3) and (2.4)
can be obtained from (2.13) as

k1 > 0, k2 >
9π2

(
p1 + p2(b+ |c|))2

32p1p2k1
− a, (2.14)

in which the inequality |q(t)| < b+ |c| has been used as in [12].
The synchronization criterion obtained here only renders a sufficient but not necessary

condition. It is natural to expect that a sharp criterion can provide more choices of the
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Figure 2.1. Error between the driving-response horizontal platform systems (2.3)–(2.5) with the cou-
pling coefficients k1 = 5.6 and k2 = 6.2, solid curve for x1 − y1 and dashed curve for x2 − y2, initial
conditions (x1(0),x2(0))= (1,1) and (y1(0), y2(0))= (−1,−1).

coupling coefficients. To this end, we can minimize the lower bound of k2 in inequality
(2.14) by choosing p = diag{(b+ |c|)p2, p2} and obtain a sharper criterion

k1 > 0, k2 >
9π2(b+ |c|)

8k1
− a. (2.15)

Similarly, if the controller is chosen as u(t)= (k1 sin(x1− y1),0)T , the sufficient criteria
associated with inequalities (2.14) and (2.15) become, respectively,

k1 >
3π
(
p1 + p2(b+ |c|))2

8
√

2p1p2a
, (2.16)

k1 >
3π(b+ |c|)

2
√

2a
. (2.17)

The theoretical sufficient criteria are illustrated with the following examples. If we
choose p2 = 1 and p1 = (b+ |c|)p2 = 3.776615, it is easy to verify that the coupling coef-
ficients k1 = 5.6 and k2 = 6.2 satisfy inequalities (2.15). For this choice, the two coupled
horizontal platform systems (2.3) and (2.4) can be asymptotically synchronized. The pa-
rameter values are chosen such that the system is in a state of chaos: A = 0.3, B = 0.5,
C = 0.2, D = 0.4, r = 0.1155963, R = 6378000, g = 9.8, F = 3.4, and ω = 1.8. The re-
sult is shown in Figure 2.1 with initial values (x1(0),x2(0)) = (1,1) and (y1(0), y2(0)) =
(−1,−1), which are chosen arbitrarily in the region G0. In this paper, software Mathe-
matica is applied to implement relative calculations and plots.

For the controller u(t)= (k1 sin(x1− y1),0)T , inequality (2.17) should be k1 > 9.43706.
Chaos synchronization for k1 = 9.5 is illustrated in Figure 2.2, where p1, p2, and other
parameter values are the same as above.



6 Mathematical Problems in Engineering

0

0.5

1

1.5

2

0 2 4 6 8 10 12 14

t

E
rr

or

Figure 2.2. Error between the driving-response horizontal platform systems (2.3)–(2.5) with the cou-
pling coefficients k1 = 9.5 and k2 = 0, solid curve for x1 − y1 and dashed curve for x2 − y2, initial
conditions (x1(0),x2(0))= (1, 1) and (y1(0), y2(0))= (−1,−1).
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Figure 3.1. Synchronization time of systems (2.3) and (2.4) with sinusoidal controller u(t)=
(k sin(x1− y1),k sin(x2− y2))T , synchronization error measure d < 0.001, L= 1000, initial conditions
(x1(0),x2(0))= (1,1) and (y1(0), y2(0))= (−1,−1).

3. Synchronization time and cost

Firstly, we numerically investigate the behavior of synchronization time Tsyn as a func-
tion of coupling strength k1 and/or k2. The synchronization time is defined as the initial

time when the error measure d =
√

(x1− y1)2 + (x2− y2)2 < ε is satisfied and maintains
in a long enough time interval [Tsyn,Tsyn + L], where ε is the precision of the synchro-
nization, and L is a sufficiently large positive constant. As shown in Figures 3.1 and 3.2,
the synchronization time Tsyn gradually decreases with the increase of coupling strength,
and approaches an asymptotic minimal value. This is a very interesting phenomenon,
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Figure 3.2. Synchronization time of systems (2.3) and (2.4) with sinusoidal controller u(t) =
(k sin(x1 − y1),0)T , synchronization error measure d < 0.001, L = 1000, initial conditions
(x1(0),x2(0))= (1,1) and (y1(0), y2(0))= (−1,−1).

since one might think that the synchronization could be led as fast as desired if coupling
strength is large enough. Figures 3.1 and 3.2 confirm that very large values of coupling
strength are not necessary to ensure the synchronization with approximately the min-
imum Tsyn. Such phenomenon also occurred in synchronization scheme of single-well
Duffing oscillators [14]. Generally, synchronizing two chaotic systems is not cost-free. In
order to evaluate what price must be paid to achieve synchronization, a new concept of
synchronization cost for scheme (2.3)–(2.5) is introduced as follows:

∫∞
0
k1
∣∣sin

(
x1− y1

)∣∣dt+
∫∞

0
k2
∣∣sin

(
x2− y2

)∣∣dt. (3.1)

The meaning of this definition refers to the cost to achieve a certain degree of synchro-
nization in the sense of (2.8). Note that the magnitude of |xi − yi| is very small once
synchronization is nearly achieved. So a good approximation of cost should be

∫ Tsyn

0
k1
∣∣sin

(
x1− y1

)∣∣dt+
∫ Tsyn

0
k2
∣∣sin

(
x2− y2

)∣∣dt, (3.2)

which will be adopted in the following simulations. Another definition of synchroniza-
tion cost adopted in [15] for linear control is

lim
τ→∞

1
τ

∫ τ

0
ki
∣∣xi− yi

∣∣dt, i= 1,2, (3.3)

which refers to the cost per unit time required to keep the synchronization going. The
meaning is different from ours.

From the viewpoint of preventing from a useless increase of coupling strength, that
is, from an unavailing waste of input energy, the calculation of minimal synchronization
cost, as well as optimal coupling strength, is of great practical interest. Synchronization
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Figure 3.3. Synchronization cost of systems (2.3) and (2.4) with sinusoidal controller u(t) =
(k sin(x1− y1),k sin(x2− y2))T , initial conditions (x1(0),x2(0))= (1,1) and (y1(0), y2(0))= (−1,−1).
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Figure 3.4. Synchronization cost of systems (2.3) and (2.4) with sinusoidal controller u(t) =
(k sin(x1− y1),0)T , initial conditions (x1(0),x2(0))= (1,1) and (y1(0), y2(0))= (−1,−1).

cost versus coupling strength is simulated in Figures 3.3 and 3.4 with different controllers.
From these figures we can see that the synchronization cost decreases rapidly at first, then
reaches a minimal value and increases slowly with the increase of coupling strength at
last. The explanation of this phenomenon is in agreement with the simulations of syn-
chronization time shown in Figures 3.1 and 3.2. The critical coupling strength with the
minimal synchronization cost can be chosen as the optimal coupled strength in the sense
of consumed energy. The optimal coupling strength and minimal synchronization cost
are 5.6 and 3.03922 in Figure 3.3, 4.2 and 2.77078 in Figure 3.4, respectively. Although
double-variable-coupled configuration (x- and y-coupled) can lead to fast synchroniza-
tion, its minimal synchronization cost is larger than that of single-variable-coupled con-
figuration (x-coupled).



Jianping Cai et al. 9

4. Conclusions

Some algebraic sufficient criteria for synchronizing driving-response horizontal platform
systems coupled by sinusoidal state error feedback control are derived and their validity
is illustrated with some numerical examples. Numerical simulations show that the syn-
chronization time approaches an asymptotic minimal value with the increase of coupling
strength. The concept of synchronization cost is introduced and the minimal synchro-
nization cost as well as optimal coupling strength is calculated numerically. The minimal
synchronization cost refers to the lowest-energy input, which is of great practical interest.
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This paper addresses formulation of stabilizability and motion tracking conditions for
mechanical systems from the point of view of constraints put on them. We present a new
classification of constraints, which includes nonholonomic constraints that arise in both
mechanics and control. Based on our classification we develop kinematic and dynamic
control models of systems subjected to these constraints. We demonstrate that a property
of being a “hard-to-control” nonholonomic system may not be related to the nature of
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We examine two control objectives which are stabilization to the target equilibrium by a
continuous static state feedback control and motion tracking. Theory is illustrated with
examples of control objective formulations for systems with constraints of various types.
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1. Introduction

A control design project does not begin when a control engineer is handed a model of
a system. It begins at the onset of the model formulation. The paper is focused on the
formulation of kinematic and dynamic control models of constrained systems and a sub-
sequent specification of control objectives for them. We provide a new classification of
constraints, which is a basis for the formulation of the models. We consider nonholo-
nomic constraints, which may be of two types: material and non-material. Equations,
which specify the non-material constraints, may be differential equations of high-order
with respect to time derivatives of coordinates.

Dynamic models of mechanical systems with first-order nonholonomic constraints
can be developed using classical methods of analytical mechanics, for example, Lagrange’s
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equations with multipliers and their modifications. For systems with second-order con-
straints Appell’s equations are available [1–4]. Recently, a method of the derivation of
equations of motion of systems with nonholonomic constraints of high-order has been
developed. This is a generalized programmed motion equations (GPME) method [5, 6].
The high-order constraints are referred to as programmed, since they are put by a de-
signer to specify tasks that systems have to perform or they may arise from design and
control objectives [5–7]. They are non-material constraints in contrast to materials that
are given by nature. Also, an equation that specifies the angular momentum conservation
is meant as a non-material nonholonomic constraint [1]. Constraints that arise from
underactuation in a control system are non-material nonholonomic and second-order
[8, 9].

Nonholonomic control systems are a class of nonlinear control systems, which are not
amenable to methods of linear control theory even locally and they are not transformable
into linear control problems in any meaningful way. They require different control ap-
proaches than other nonlinear control systems due to the presence of the nonholonomic
constraints. Moreover, control systems in which the high-order constraints are present
require different control approaches than systems with first-order constraints [1–3, 10–
12].

Nonholonomic control systems can be presented in a general form [2]:

ẋ = F(x,u), (*)

where x ∈M, and M is a smooth n-dimensional manifold referred to as the state space,
u ∈ U , u(t) is a time-dependent map from the nonnegative reals R+ to a constraint set
Σ ⊂ Rm, F is assumed to be C∞ (smooth) or Cω (analytic) and is taken from M ×Rm

into TM such that for each fixed u, F is a vector field on M. The map u is assumed
to be piecewise smooth or piecewise analytic, that is, it is admissible. There are many
generalizations and specializations of this definition, for example, for Hamiltonian and
Lagrangian control systems; see [2] and references there. For the scope of this paper we
may consider affine nonlinear control systems in the form [2, 11]

ẋ = f (x) +
m∑

i=1

gi(x)ui, (**)

where f is the drift vector field, gi, i= 1, . . . ,m, are the control vector fields, and both are
smooth on M. We assume that the constraint set Σ contains an open neighborhood of the
origin in Rm.

In this paper, we make connections between the control models (**) for systems with
material and non-material nonholonomic constraints, and control objectives stated for
them. We demonstrate that nonholonomically constrained systems are not “hard to con-
trol” when proper control objectives and strategies are employed.

We select two control objectives, that is, stabilization (local asymptotic stabilizability)
by a continuous static-state feedback strategy and motion tracking.

The system (**) is said to be LAS if there exists a feedback u(x) defined on a neighbor-
hood of 0 such that 0∈M is an asymptotically stable equilibrium of the closed-loop sys-
tem. A feedback controller u(x) is said to be a static-state feedback when it is a continuous
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map u : M → U : x→ u(x), u(0) = 0, such that the closed-loop system (**) has a unique
solution x(t,x(0)), t ≥ 0, for sufficiently small initial state x(0). The asymptotic stabiliz-
ability of the target equilibrium holds only if the dimension of the equilibria set including
the target is equal to the number of control inputs [13, 14]. This result is equivalent to
Brockett’s necessary condition for feedback stabilization [2, 15]. Based on Brockett’s con-
dition, control models of nonholonomic systems are not asymptotically stabilizable even
locally. However, we can still formulate control objectives for some control problems that
make them LAS.

Motion tracking consists in tracking a desired motion specified by algebraic or dif-
ferential equations of constraints [16, 17]. This extended definition of tracking includes
trajectory tracking as a peculiar case for which a trajectory is specified by an algebraic
equation. Usually in nonlinear control, motion tracking means trajectory tracking. It is
achieved using two kinds of models. One considers velocities of a system as control inputs
and uses a kinematic model, and ignores a system dynamics (see [2, 18, 19] and refer-
ences therein). The second uses the system dynamics, where control forces and torques
as well as velocities can be control inputs [10–12]. For a nonholonomic system with first-
order constraints, kinematic and dynamic control models are usually integrated. A con-
trol strategy developed in such a way has a two-level architecture. The lower control level
operates within the kinematic model to stabilize the system motion to a desired trajec-
tory. The upper control level uses the dynamic model and stabilizes feedback obtained
on the lower control level [12]. Trajectory tracking for nonholonomic systems with first-
order constraints can also be achieved using controllers based on dynamic models in a
reduced-state form [3, 12, 20]. For a control objective other than trajectory tracking these
nonlinear control strategies are not applicable and new strategies have to be pursued. A
model reference tracking control strategy for programmed motion is a tool developed for
tracking motions specified by equations of constraints of arbitrary order [6, 7, 16, 17].
The strategy uses only dynamic models of a system, both derived by the GPME method.
This strategy can also be applied to underactuated systems additionally subjected to pro-
grammed constraints [21]. For this reason we do not have to distinguish the underactu-
ated systems as a special class of systems with second-order nonholonomic constraints as
it is usually done.

Contributions of the paper consist of the presentation of the new classification of non-
holonomic constraints, formulation of control models and control objectives for systems
with such constraints, and design control strategies to realize these objectives.

The paper is organized as follows. In Section 2 we present the classification of con-
strained systems. In Sections 3 and 4 we address kinematic and dynamic control models
for them. In Sections 5 and 6, based on examples, we review these models with respect to
the stabilizability conditions and possibilities of motion tracking. Examples are illustrated
with simulation results. The paper closes with conclusions and a list of references.

2. Classification of nonholonomic systems

Classifications of nonholonomic constraints known to the author capture material con-
straints and non-material that arise from the conservation law and underactuation, for
example, [1, 8, 9, 12, 14, 22]. In Table 2.1 we present a new classification, which includes
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nonholonomic non-material high-order constraints. The high-order constraints enable
specification of many tasks, control objectives, and motion requirements that are usually
considered “side conditions” not the constraints. In the new classification they are treated
in the same way as other constraints on systems, provided that they can be specified by al-
gebraic or differential equations. An example is an equation of a desired trajectory, which
we treat as a constraint.

We do not consider high-order constraints in biomechanical systems herein, see, for
example, [23].

The most common constrained systems are these with first-order material constraints
(group 1). They arise from the condition that vehicle wheels or fingers of multifinger
hands grasping objects do not slip. There is a subgroup of the wheeled systems for which
their wheels are not powered. These are a snakeboard [24, 25], a roller-racer [26, 27], a
roller-blader [28], a roller-walker [29], or snake-like robots [30, 31]. All these systems can
move their bodies due to the relative motion of their joints. This motion is referred to as
snake-like motion. Control properties of systems with powered and idle wheels signifi-
cantly differ.

The constraints from group 2 originate from the conservation law and have the form of
nonholonomic constraint equations of first-order. They play the same role as the material
constraints do, that is, they specify conditions, which system velocities have to satisfy.
Usually, they are distinguished as the “conservation laws” not the constraints per se [1].
They arise for space vehicles and robots, for a falling cat [1], for a sportsman performing
a summersault [32], and for an astronaut on a space walk [3]. Some of these systems may
be underactuated; then we assign them to group 5.

Underactuated systems from group 3 are defined as systems for which the dimension
of the configuration space exceeds that of the control input space. Dynamic models of
underactuated systems are classified as second-order nonholonomic system models (see
(2.3a) in Table 2.1). This is due to equations that represent unactuated degrees of free-
dom, which are second-order nonholonomic and nonintegrable in general [9].

The underactuated systems may be wheeled mobile robots, underactuated vehicles and
manipulators with unactuated joints or space robots without jets or momentum wheels
[8]. Sometimes specific properties of these systems are utilized to facilitate control design,
for example, equipping unactuated joints with breaking mechanisms or including gravity
terms make linearization of system models about equilibrium controllable (see (2.3b) in
Table 2.1).

The constraints form group 4 are programmed and they are specified by (4). We as-
sume that they are ideal constraints. Equations (4) may specify both material and non-
material constraints on a system and for this reason they are referred to as a unified con-
straint formulation. We state the following proposition.

Proposition 2.1. The unified constraint formulation B(t,q, q̇, . . . ,q(p−1))q(p) + s(t,q, q̇, . . . ,
q(p−1))= 0 may specify both material and non-material constraints on mechanical systems.

Proof. The proof is based upon the reasoning that the type of a constraint equation does
not influence the derivation of equations of motion of a system subjected to this con-
straint. The only concern is the constraint order and whether it is ideal. Indeed, when



Elżbieta Jarzȩbowska 5

Table 2.1. Classification of nonholonomic constraints.

Kind of
constraints

Systems/constraint
equations

Number of degrees of
freedom (m), number
of control inputs (l)

LAS Tracking

(1) First-order,
material
nonholonomic.

Car-like vehicles, mobile
platforms with powered
wheels, multifingered hands,
nonholonomic manipulators,
dexterous manipulation.

B1(q, q̇)= 0 (2.1)

B1 is a (k×n) full rank
matrix, n > k.

m= n− k;
m= l

− +

Wheeled vehicles with idle
wheels, nonholonomic toys,
snake-like robots and
manipulators.
Constraints have the
form (2.1), n > k.

m= n− k;
m≥ l

− +

(2) First-order,
non-material
nonholonomic
(conservation law).

Space vehicles and robots,
sportsman, falling cat.

B2(q)q̇+ b2(q)= 0 (2.2)

B2 is a (k×n) full rank
matrix, n > k

m= n− k;
m≥ l

May
be

+

(3) Second-order, non-
material nonholonomic,
(underactuated).

Manipulators, space systems,
underwater vehicles.

M11(q)q̈1 +M12(q)q̈2 +C1(q, q̇)

= T1(q)τ,

M21(q)q̈1 +M22(q)q̈2

+C2(q, q̇)= 0,

(2.3a)

No gravity is present:
m= n,
m> l

− +

M11(q)q̈1 +M12(q)q̈2

+C1(q, q̇) +D1(q)

= T1(q)τ,

M21(q)q̈1 +M22(q)q̈2

+C2(q, q̇) +D2(q)= 0,

(2.3b)

Gravity is
present:
m= n,
m> l

+ +
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Table 2.1. Continued.

(4) High-order, non-
material nonholonomic
(programmed).

Task specifications for any
system:

B
(
t,q, q̇, . . . ,q(p−1)

)
q(p)

+ s
(
t,q, q̇, . . . ,q(p−1)

)= 0,
(2.4)

B is a (k×n) full rank matrix,
n≥ k, s is a (k× 1) vector.

m= n− k,
m≥ l

May
be

+

(5) Different types of
constraints put on
a system.

Underactuated vehicles with
idle wheels, manipulators and
other systems with material
and programmed constraints.
The unified constraint
(4), n≥ k.

m= n− k,
m≥ l

May
be

+

p = 0 we get a position constraint, which may be a material constraint that describes, for
example, a constant distance between link ends or be a programmed constraint that spec-
ifies a desired trajectory. When p = 1, a constraint equation is in the form (2.1) or (2.2).
It can be a material constraint, a specification of the conservation law, or a programmed
constraint that specifies a desired velocity. For all examples of constraints of order p = 1,
equations of motion are generated in the same way provided that constraints are ideal.
Material constraints are of orders p = 0 or p = 1 and can be presented by (2.1). Equa-
tions for the conservation law are of order p = 1 and are specified by (2.2). Constraint
equations for p > 1 are of the non-material type. Two or more constraint equations, each
of a different type, may be listed in (4). The constraint (4) can be used then to specify
constraint equations of any order and type. �

It should be emphasized that the constraint equations which have been investigated so
far in nonlinear control were mostly in the so-called Chaplygin form, they were mostly
driftless and differentially flat, and could be transformed into the power or chained forms
or to their extensions [2, 3, 33]. A trajectory tracking control design for such systems
can be considered a solved problem, at least theoretically [2, 11, 19]. Systems with both
material and programmed constraints may be, in general, non-Chaplygin and may not
be transformable into any special control form [34].

For the unified constraint formulation (4) we introduce a definition.

Definition 2.2. The equations of constraints (4) are completely nonholonomic if they
cannot be integrated with respect to time, that is, constraint equations of a lower-order
cannot be obtained.

If we can integrate (4) (p − 1) or less times, that is, we can obtain nonholonomic
constraints of first-orders or orders lower than p, we say that (4) are partially integrable.
If (4) can be integrated completely, we say that they are holonomic.
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We assume that (4) are completely nonholonomic. Then they do not restrict positions
q(t) and their time derivatives up to (p− 1)th-order. Our definition is an extension of a
definition of completely nonholonomic first-order constraints [2] and completely non-
holonomic second-order constraints [9]. Necessary and sufficient integrability conditions
for differential constraints of arbitrary order such as (4) are formulated in [35].

The constraint equations (4) may be of different orders. From the point of view of
a control strategy design they may be differentiated. For the numerical simulation the
differentiated constraint equations have to be stabilized; for more details see [17].

Finally, the constraints belong to group 5 when they are of different types and also
arise form underactuation in a system.

3. Kinematic control models of constrained systems

Kinematic control models of systems with the material constraints (2.1) have a form of
driftless state equations [1, 2]

ẋ =
n−k∑

i=1

gi(x)ui, (3.1)

where gi, i= 1, . . .n− k, are control vector fields smooth onM. The vector x ∈M, andM is
a smooth n-dimensional manifold referred to as the state space, u(t) is a time-dependent
map from the nonnegative reals R+ to a constraint set Σ⊂Rn−k, which contains an open
neighborhood of the origin in Rn−k. For systems from group 1 stabilizability conditions
and trajectory tracking algorithms at kinematic and dynamic control levels are well es-
tablished [1–3, 11, 18]. Nonholonomic systems with the constraints (2.1) are not LAS
[13–15]. A trajectory tracking formulated as an asymptotic stabilization of a tracking
error is LAS for them [14]. The same holds for motion tracking [6]. For some vehicles
with idle wheels subjected to the constraints (2.1) no kinematic control models can be
developed [26, 27].

Kinematic control models of systems with the constraints (2.2) and (4) may have the
form

ẋ = f (x) +
n−k∑

i=1

gi(x)ui, (3.2)

where f is the drift vector field smooth on M.
For these systems a trajectory tracking and motion tracking control formulated as an

asymptotic stabilization of a tracking error is LAS. In Section 5 we show that we can select
a control objective that may make (3.2) stabilizable at some equilibrium by a continuous
static-state feedback.

For the unified constraints (4) we formulate the following theorem.

Theorem 3.1. The unified constraint formulation (4) can be presented in the state space
control form (3.2).

Proof. Let us take a new p-vector x = (x1, . . . ,xp) such that x1 = q, ẋ1 = x2, . . . , ẋp−1 = xp.
If time t is present explicitly in (4), we reorder coordinates, assigning x0 = t. With the new
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vector x (4) can be written as (p− 1 + k) first-order equations

ẋ1 = x2,

ẋ2 = x3,

: :

: :

ẋp−1 = xp,

B
(
x1, . . . ,xp

)
ẋp =−s

(
x1, . . . ,xp

)

(3.3a)

or in a matrix form

C(x)ẋ = b(x), (3.3b)

where C is a (p− 1 + k)× p matrix and b is a (p− 1 + k)-dimensional vector. Let f (x)
be a particular solution of (3.3b) so that C(x) f (x)= b(x). Let g(x) be a full-rank matrix,
whose column space is in the null space of C(x), that is, C(x)g(x)= 0. Then, the solution
of (3.3b) is given by ẋ = f (x) + g(x)u(t) for any smooth vector u(t). �

In the control models (3.1) or (3.2) the number of equations is less than the number
of degrees of freedom of a system, to which they are related, that is, n > k. When con-
straints are programmed, we say that the program is partly specified. When the number
of equations (4) and (2.1) or (2.2) is equal to the number of degrees of freedom, that is,
n = k, a system motion is fully specified provided that the constraints are not mutually
exclusive [7, 36]. In this paper, we consider partly specified programs.

4. Dynamic control models of constrained systems

Motions specified by equations of programmed constraints have to be controlled at a dy-
namic level. There are important reasons to formulate a motion tracking control problem
at the dynamic level. The first reason, significant from the perspective of this paper, is that
we consider constraints of high-order, which specify dynamic properties of systems. Sec-
ondly, this is the level at which control takes place in practice. Designing controllers at
the dynamic level usually leads to significant improvements in performance and imple-
mentability, and can help in the early identification and resolution of difficulties. Finally,
unmodeled dynamics, friction, and disturbances can be taken into account at that level.
Also, for massive wheeled robots that operate at high speeds, dynamics-based control
strategies are necessary to obtain realistic control results [19]. It is interesting to con-
sider tracking for holonomically constrained systems in this regard; the kinematic con-
trol problem is trivial, but the dynamic control problem is still quite challenging [37]. For
wheeled vehicles that perform the snake-like motion, control at the dynamic level is only
possible. The reason is that we cannot determine their global motions by just the shape
variations, since they do not posses a sufficient number of nonholonomic constraint
equations for this [26, 27]. Dynamic control models of such systems consist of (2.3a)
and (2.1). For underactuated systems dynamic control models are (2.3a) or (2.3b). For
systems with the constraints (4) dynamic models can be derived by the GPME method
only.
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The GPME method can also be used to derive the dynamic models (2.3a) and (2.3b),
and dynamic models of systems with the constraints (2.1) or (2.2). To demonstrate this,
recall that dynamic control models used in control theory are mostly based on Lagrange’s
equations with multipliers [2, 7], that is,

M(q)q̈+C(q, q̇) +D(q)= J(q)Tλ+E(q)τ,

J(q)q̇ = 0,
(4.1)

where q is a n-vector of generalized coordinates, M(q) is a (n×n) positive definite sym-
metric inertia matrix, C(q, q̇)-vector of centripetal and Coriolis forces, D(q)-vector of
gravitational forces, E(q)-vector of an input transformation, J(q) is a full-rank (k× n)
matrix of the constraint equations, 2≤ n− k < n, λ is a k-vector of Lagrange multipliers,
E(q)τ is a vector of generalized forces applied to a system, and τ is an r-vector of control
inputs. For control applications, the dynamic control model (4.1) has to be transformed
to the reduced-state form [2, 20, 32]. The reduced-state equations characterize the con-
trol dependent motion on the constraint manifold. The reduction procedure consists in
the elimination of the constraint reaction forces. To this end let q = (q1,q2) be a partition
of the configuration variables corresponding to the partitioning of the matrix function
J(q) as J(q)= [J1(q), J2(q)], det J1(q)�= 0, and q1 ∈Rk, q2 ∈Rn−k. The second time deriv-
ative of a vector of dependent coordinates q1 extracted from the constraint equations and
inserted into the first of (4.1) yields equations of motion decoupled into two sets, from
which one is used to design a control strategy

M22(q)q̈2 +C22
(
q, q̇2

)
q̇2 +D2(q)= E2τ,

q̇1 =−J−1
1 (q)J2(q)q̇2,

(4.2a)

and the second when one wishes to retrieve the constraint reaction forces

M12(q)q̈2 +C12
(
q, q̇2

)
q̇2 +D1(q)= E1τ + JT1 λ. (4.2b)

The dynamic control model (4.2a) can be written in the extended kinematic control form
[2]

q̇ = g1(q)v1 + ···+ gn−k(q)vn−k, i= 1, . . . ,n− k, 2≤ n− k < n, (4.3a)

vrii = ui, (4.3b)

where ri, . . . ,rm denote an order of time differentiation and v is the output of a linear sys-
tem consisting of chains of integrators. Equations (4.3a), (4.3b) form a dynamic model,
since in applications from mechanics ri = 1, i= 1, . . . ,n− k, controls are typically gener-
alized forces and the model consists of the constraint (4.3a) and the equations of motion
(4.3b), which reduce to v̇ = u.

The dynamic control model (4.2a) is applicable to systems with the constraints (2.1)
and for trajectory tracking. A desired trajectory is specified by q2p = q2p(t), where “p”
stands for “program.” It is enough then to control q2(t) and q1(t) is also controlled, since
it satisfies the constraint equations. The resulting tracking is state tracking. Using the
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same reduced-state dynamics (4.2a), the input-output decoupling procedure can be ap-
plied for output tracking [10]. In what follows we address state tracking strategies. For
systems with the constraints (4) a new tracking control strategy is designed, that is, the
model reference tracking control strategy for programmed motion. All details about this
strategy can be found in [5, 6, 17] and here we report it briefly. Its architecture consists of
three blocks. One is a control law block with feedback and the two are dynamic models.
The first one is a reference dynamic model for programmed motion. It is a constrained
dynamics that incorporates effects of all constraints on a system and has the form

M(q)q̈+V(q, q̇) +D(q)=Q(t,q, q̇),

B
(
t,q, q̇, . . . ,q(p−1))q(p) + s

(
t,q, q̇, . . . ,q(p−1))= 0.

(4.4)

The matrix M(q) is a (n− k×n) matrix, B(t,q, q̇, . . . ,q(p−1)) is a full-rank (k×n) matrix.
V(q, q̇),D(q), andQ(t,q, q̇) are all (n− k× 1) vectors and they stand, respectively, for cen-
tripetal, Coriolis and friction forces, for gravitational forces, and for other external forces
applied to a system. Equations (4.4) form a reference block that plans a programmed
motion.

The second dynamic model in the strategy is a dynamic control model, which incor-
porates effects of material constraints and conservation laws only, that is,

Mc(q)q̈+Vc(q, q̇)q̇+Dc(q)= Ec(q)τ,

B1(q)q̇ = 0.
(4.5)

Equations (4.5) consist of (n− k) equations of motion and k equations of the constraints.
They form a “plant” block in the strategy. Both models are derived by the GPME so they
are in the reduced-state form. Outputs qip(t), i= 1, . . . ,n, of (4.4) are inputs to the control
law τ in (4.5). We can demonstrate that (4.5) are equivalent to (4.2a).

Theorem 4.1. The dynamic control model (4.5) is equivalent to the reduced-state dynamic
control model (4.2a).

Proof. The reduction procedure that results in (4.2a) can be accomplished in several ways
[3, 20]. We start from Lagrange’s equations with multipliers (4.1), which we write as

d

dt

(
∂T

∂q̇

)
− ∂T

∂q
= JT(q)λ+Q(q, q̇),

J(q)q̇ = 0,
(4.6)

where we assume that Q(q, q̇) stands for all external forces applied to a system.
To eliminate constraint forces from (4.6) we project these equations onto the linear

subspace generated by the null space of J(q). Since (JT(q)λ) · δq = 0, Lagrange’s equations
become

[
d

dt

(
∂T

∂q̇

)
− ∂T

∂q
−Q

]
· δq = 0, (4.7)

where δq ∈Rn and satisfies J(q)δq = 0. We partition the coordinate vector q and the J(q)
matrix such that q = (q1,q2)∈Rk ×Rn−k, and J = [J1(q)J2(q)], J1(q)∈Rk×k is invertible.
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Then the relation δq1 =−J−1
1 (q)J2(q)δq2 holds. Inserting it to (4.7) we obtain

J−1
1 J2

[
d

dt

(
∂T

∂q̇1

)
− ∂T

∂q1
−Q1

]
−
[
d

dt

(
∂T

∂q̇2

)
− ∂T

∂q2
−Q2

]
= 0. (4.8)

Equations (4.8) are second-order differential equations in terms of q. They can be simpli-
fied by reusing the constraint equation q̇1 = −J−1

1 (q)J2(q)q̇2 to eliminate q̇1 and q̈1. The
evolution of q1 can be retrieved by reapplication of the constraint equations. Equations
(4.8) are equivalent to Nielsen’s equations in Maggi’s form [7], that is,

J−1
1 J2

[
∂Ṫ

∂q̇1
− 2

∂T

∂q1
−Q1

]
− ∂Ṫ

∂q̇2
− 2

∂T

∂q2
−Q2 = 0 (4.9a)

which are the GPME for p = 1, that is, they are (4.5). It is enough to show that

d

dt

(
∂T

∂q̇σ

)
= ∂2T

∂q̇σ∂t
+

n∑

ρ=1

∂2T

∂q̇σ∂qρ
q̇ρ +

n∑

ρ=1

∂2T

∂q̇σ∂q̇ρ
q̈ρ, (4.10a)

Ṫ = ∂T

∂t
+

n∑

ρ=1

∂T

∂qρ
q̇ρ +

n∑

ρ=1

∂T

∂q̇ρ
q̈ρ. (4.10b)

Based on (4.10b) we have

∂Ṫ

∂q̇σ
= ∂2T

∂t∂q̇σ
+

n∑

ρ=1

∂2T

∂qρ∂q̇σ
q̇ρ +

n∑

ρ=1

∂2T

∂q̇ρ∂q̇σ
q̈ρ +

∂T

∂qσ
(4.11)

and comparing (4.10a) and (4.11) we obtain that

d

dt

(
∂T

∂q̇σ

)
= ∂Ṫ

∂q̇σ
− ∂T

∂qσ
. (4.12)

Relations (4.12) inserted into (4.8) for q1 and q2 yield that terms in brackets in (4.8)
are equal to (∂Ṫ/∂q̇σ − 2(∂T/∂qσ)), σ = 1,2, and (4.8) are equivalent to (4.9a), that is,
equivalent to the GPME for p = 1. �

Theorem 4.2. There exists a static-state feedback U(q̇1,q,u) : Rm ×Rn ×Rm → Rm such
that the dynamics (4.5) can be transformed to the state space control formulation (4.3a),
(4.3b).

Proof. First, transform (4.5) to the state space control formulation. To this end, present
the constraint equation as

q̈ =G(q)q̈1 + Ġ(q)q̇1, (4.13)

where partition of the vector q is q = (q1,q2) and q1 ∈Rn−k, q2 ∈Rk, m= n− k, and q1,
q2 are the vectors of independent and dependent coordinates, respectively. Columns of
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the matrix G(q) span the right null space of B1(q). It is the (n×m) matrix of the form

G=
⎡
⎣

I(m×m)

−B−1
12 (q)B11(q)

⎤
⎦ , (4.14)

where I is a (m×m) identity matrix, B−1
12 (q)B11(q) is a locally smooth (k ×m) ma-

trix function, and the matrix B1(q) is expressed as B1 = [B11(q),B12(q)], and B11(q) is
a k× (n− k) matrix function, and B12(q) is a (k× k) locally nonsingular matrix function.
Elimination of second-order derivatives of dependent coordinates from the first of (4.5)
yields

Mc(q)G(q)q̈1 +
[
Mc(q)Ġ(q) +Vc(q, q̇)G(q)

]
q̇1 +Dc(q)= Ec(q)τ,

q̇ =G(q)q̇1.
(4.15)

Equations (4.15) are exactly the reduced-state dynamic model of a nonholonomic system
[4, 20].

Now, introduce in (4.15) a new state variable vector x = (q, q̇1) = (x1,x2) such that
ẋ1 = q̇ = (q̇1, q̇2), ẋ2 = q̈1 and x1 ∈Rn, x2 ∈Rm. Then, (4.15) takes the form

Mc
(
x1
)
G
(
x1
)
ẋ2 +

[
Mc
(
x1
)
Ġ
(
x1
)

+Vc
(
x1, ẋ1

)
G
(
x1
)]
x2 +Dc

(
x1
)= Ec

(
x1
)
τ,

ẋ1 =G
(
x1
)
x2.

(4.16)

Now, select for the dynamics (4.16) a static-state feedback U(x2,x1,u) :Rm×Rn×Rm→
Rm defined by the relation Mc(x1)G(x1)u+ [Mc(x1)Ġ(x1) +Vc(x1, ẋ1)G(x1)]x2 +Dc(x1)=
Ec(x1)τ. Application of this static-state feedback to (4.16) transforms it to the form

ẋ1 =G
(
x1
)
x2,

ẋ2 = u,
(4.17)

which is a desired state space control formulation with f (x) = (G(x1),0) and g(x) =
(0,ei), and ei is the standard basis vector in Rn−k. �

The first of (4.17) is the constraint equation. The second is the motion equation, which
transforms immediately to the linear controllable dynamics [11]

d

dt

[
q1

q̇1

]
=
[

0 Im
0 0

][
q1

q̇1

]
+

[
0
Im

]
u. (4.18)

Equations (4.17) can be transformed to the normal form equivalent to the one obtained
for instance in [2]. Taking new state variables z1 = q1, z2 = q2, z3 = q̇1, which are related
to x1 and x2 such that ẋ1 = (ż1, ż2), ż3 = ẋ2, (4.17) can be written as

ż1 = z3,

ż2 =G∗
(
z1,z2

)
z3,

ż3 = u.

(4.19)
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This form is equivalent to the control form (3.2) where f (z) = (z3,G∗(z1,z2)z3,0),gi =
(0,0,ei) and ei is the standard basis vector inRn−k. The matrix G∗ in (4.19) is a (k×n− k)
submatrix of the matrix G defined in (4.14).

We demonstrated that the dynamic control model derived with the aid of the GPME
can be presented in a standard state space representation (4.17) or (4.19). This allows
us to reformulate for our dynamics (4.5) all theoretical control results obtained for the
classical control models [1–3, 11, 12, 19, 20, 33].

A main motivation to design the model reference tracking control strategy for pro-
grammed motion is that a variety of equations of the non-material constraints (4) dis-
ables designing a general algorithm for a tracking controller. Instead, we separate pro-
grammed constraints from material and conservation laws. All constraint equations on a
system, that is, (2.1), (2.2), and (4) are merged into the reference dynamic model (4.4).
Material constraints and conservation laws are merged into the dynamic control model
(4.5). This separation yields that (4.5) can be derived once for a given system and differ-
ent reference dynamic models (4.4) that specify different programmed motions can be
plugged into (4.5) each time. Also, this separation makes motion tracking analog to tra-
jectory tracking and enables application of controllers originally dedicated to holonomic
systems. This latter property of the tracking strategy significantly increases its scope of
applications.

5. Stabilizability conditions for constrained systems

The control model (3.1) is not LAS due to Brockett’s condition [2, 13, 14]. For the con-
trol model (3.2) we may formulate a control objective, for which we may design a con-
tinuous static-state feedback that makes (3.2) LAS. To show this, consider a model of a
free-floating space robot presented in Figure 5.1. The angular momentum conservation
yields the constraint equation

[
J+
(
m1 +m2

)
l21 +m2l

2
2

]
φ̇+
[(
m1 +m2

)
l21 +m2l

2
2

]
θ̇1 +m2l

2
2 θ̇2 +m2l1l2 cosθ2

(
2φ̇+2θ̇1+θ̇2)=K0

(5.1)

which can be written as

B1ϕϕ̇+B1θ1θ̇1 +B1θ2θ̇2 = K0, (5.2)

where Ko is the initial angular momentum that may or may not be zero and

B1ϕ = J +
(
m1 +m2

)
l21 +m2l

2
2 + 2m2l1l2 cosθ2,

B1θ1 =
(
m1 +m2

)
l21 +m2l

2
2 + 2m2l1l2 cosθ2,

B1θ2 =m2l
2
2 +m2l1l2 cosθ2.

(5.3)

In (5.1) J is the inertia of the base body, and m1, m2-masses of links concentrated at
their ends. We assume that no external forces act on the space robot model. Let us select
ϕ̇ = u1, θ̇2 = u2 as controls and introduce a state vector x ∈ R3 such that x1 = ϕ− ϕp,
x2 = θ1− θ1p, x3 = θ2− θ2p. It quantifies the error between current values (ϕ,θ1,θ2) and
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Figure 5.1. Free-floating space robot.

desired values (ϕp,θ1p,θ2p) of the coordinates. Then the control model (3.2) for the space
robot becomes

dx

dt
=

⎡
⎢⎢⎣

0
Ko(x)

0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

1 0
−K1(x) −K2(x)

0 1

⎤
⎥⎥⎦

[
u1

u2

]
(5.4)

with Ko(x)= (Ko(x))/(B1θ1(x)), K1(x)= (B1ϕ(x))/(B1θ1(x)), K2(x)= (B1θ2(x))/(B1θ1(x)).
When Ko is zero it seems natural to formulate a control objective as to asymptotically
stabilize the equilibrium x = 0. Then the system (5.4) is driftless and the number of states
n= 3 and n− k = 2. The equilibrium is not LAS. When Ko is not zero, the drift term never
vanishes and x = 0 is not an equilibrium. It implies that asymptotic stabilization of x = 0
is not an appropriate control objective.

Instead, we can formulate a control problem as follows: make a system achieve x(tp)=
0 for a given initial time t = 0 and some final time t = tp. For this formulation of the
control goal, we can apply the following time-varying transformation. Select ξ ∈R3, ξ =
(ξ1,ξ2,ξ3) such that

ξ1 = x1,

ξ2 = x2 +K1(0)x1 +K2(0)x3−Ko(0)
(
t− tp

)
,

ξ3 = x3.

(5.5)

In the new coordinates the control model (5.4) has the form

dξ

dt
=

⎡
⎢⎢⎣

0
Ko(ξ)−Ko(0)

0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

1 0
−[K1(ξ)−K1(0)

] −[K2(ξ)−K2(0)
]

0 1

⎤
⎥⎥⎦

[
u1

u2

]
(5.6)

and the system has equilibrium at ξ = 0. It can be verified that the dimension of the
equilibrium set is 2 and n− k = 2. Then the system is stabilizable by continuous static-
state feedbacks.
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We conclude that the control problem formulation is significant as well as the structure
of the system and constraints on it.

6. Motion tracking conditions for constrained systems

Tracking a desired motion becomes a control objective in a case of the programmed con-
straints put on a system. Trajectory tracking can be formulated as asymptotic stabilization
of a tracking error and the tracking error dynamics are LAS [13, 14]. Consider an example
of a system subjected to the high-order constraint (4). Take a two-link planar manipula-
tor model presented in Figure 6.1 [16, 36]. We put a constraint on the manipulator end
effector, which specifies the rate of change of the curvature Φ(t) of its trajectory. In the
joint coordinates the constraint has the form

F2
...
Θ1 +

...
Θ2−F1 = 0, (6.1)

where

F1 =
Aφ−A1−A2ao

a2 + a4ao
, F2 = a1 + a2 + ao

(
a3 + a4

)

a2 + a4ao
, ao = a5

a6
,

Aφ = −Φ
(
a2

5 + a2
6

)2[
Φ̇
(
a2

5 + a2
6

)
+ 3Φ

(
a5a7 + a6a8

)]

a6
(
a5a8− a7a6

) ,

A1 = 3a3Θ̇1Θ̈1 + 3a4
(
Θ̈1 + Θ̈2

)(
Θ̇1 + Θ̇2

)− a1Θ̇
3
1− a2

(
Θ̇1 + Θ̇2

)3
,

A2 = 3a3Θ̇1Θ̈1 + 3a2
(
Θ̈1 + Θ̈2

)(
Θ̇1 + Θ̇2

)
+ a3Θ̇

3
1 + a4

(
Θ̇1 + Θ̇2

)3
,

a1 =−l1 sinΘ1, a3 =−l1 cosΘ1,

a2 =−l2 sin
(
Θ1 +Θ2

)
, a4 =−l2 cos

(
Θ1 +Θ2

)
,

a5 = a1Θ̇1 + a2
(
Θ̇1 + Θ̇2

)
, a7 = a1Θ̇1 + a3Θ̇

2
1 + a2

(
Θ̈1 + Θ̈2

)
+ a4

(
Θ̇1 + Θ̇2

)2
,

a6 =−a3Θ̇1− a4
(
Θ̇1 + Θ̇2

)
, a8 =−a3Θ̈1 + a1Θ̇

2
1− a4

(
Θ̈1 + Θ̈2

)
+ a2

(
Θ̇1 + Θ̇2

)2
.

(6.2)

For this constraint n = 2, n− k = 1. The kinematic control model (3.2) generated for
(6.1) has a drift that does not vanish. One option is to look for one control input that
can steer a system to the desired motion consistent with (6.1). The other is to apply the
model reference tracking control for programmed motion based on (4.4) and (4.5). The
reference dynamic model of the manipulator subjected to the third-order constraint (6.1)
and developed by the GPME is

(
b1− b2F2

)
Θ̈1 +

(
b2− δF2

)
Θ̈2 + c = 0,

...
Θ2 = F1−F2

...
Θ1,

(6.3)

where α = Iz1 + Iz2 + m1r
2
1 + m2(l21 + r2

2 ), β = m2l1r2, δ = Iz2 + m2r
2
2 , b1 = α + 2βcosΘ2,

b2 = δ +βcosΘ2, and c =−βΘ̇2(Θ̇2 + 2Θ̇1)sinΘ2− 4/3βΘ̇2
1F2 sinΘ2.



16 Mathematical Problems in Engineering

y

O
l1

l2

Θ1

Θ2

x

Figure 6.1. Two-link planar manipulator.

The parameters above consist of inertia and geometric data for the manipulator model.
The dynamic control model of the manipulator is as follows:

⎡
⎢⎣
α+ 2βcosΘ2 δ +βcosΘ2

δ +βcosΘ2 δ

⎤
⎥⎦

⎡
⎢⎣
Θ̈1

Θ̈2

⎤
⎥⎦

+

⎡
⎢⎣
−Θ̇2β sinΘ2 −β sinΘ2

(
Θ̇1 + Θ̇2

)

Θ̇1β sinΘ2 0

⎤
⎥⎦

⎡
⎢⎣
Θ̇1

Θ̇2

⎤
⎥⎦=

⎡
⎢⎣
τ1

τ2

⎤
⎥⎦ ,

(6.4)

since the manipulator with no programmed constraints is holonomic.
The reference dynamics (6.3) produces programmed outputs Θ1p, Θ2p, and their

derivatives, which are inputs to the control dynamics (6.4). Two control inputs τ = (τ1,τ2)
are torques, which have to be applied at manipulator joints to track the desired motion
specified by (6.1). Furthermore, they can be static-state feedbacks designed in the same
way as for any holonomic system, specifically for any manipulator [37, Chapter 3.4]. In-
deed, when to select computed torque controllers τ1, τ2, and the PD controller for the
outer loop, the tracking error is asymptotically stable as long as the PD controller gains
are all positive. Specifically, we have

τ =Mc(Θ)u+Vc(Θ,Θ̇)Θ̇, (6.5)

whereΘ= (Θ1,Θ2),Mc(Θ),Vc(Θ,Θ̇) are matrices that furnish (6.4), and u is a new input.
The PD controller can be defined as u= Θ̈p− 2σė− σ2e and a vector of a tracking error as
e(t) =Θ(t)−Θp(t). The tracking error satisfies the equation ë+ 2σė+ σ2e = 0 in which
σ is a convergence rate diagonal matrix. It converges to zero exponentially, that is, the
end-effector motion converges to the programmed motion.

In a general case of a dynamic control model of a nonholonomic system, according to
Theorem 4.2, the computed torque applied to (4.5) results in (4.17) that can be written
as

q̈1 = u,

q̈2 =−B−1
12 (q)B11(q)q̈1− d

dt

[
B−1

12 (q)B11(q)
]
q̇1.

(6.6)
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Figure 6.2. Programmed motion tracking by the PD controller.

A vector of a new input is u and it can be selected as

u= q̈1p− 2σ ˙̃q− σ2q̃, (6.7)

where q̃ = q1 − q1p is a position tracking error. The tracking error satisfies the equation
¨̃q+ 2σ ˙̃q+ σ2q̃ = 0 and converges to zero exponentially. This simple sample of a controller
design illustrates the philosophy of the application of the reference dynamic model in the
model reference tracking control strategy for programmed motion.

Simulation results for tracking the programmed motion specified by (6.1) by the PD
controller and tracking errors are presented in Figures 6.2 and 6.3. Position and velocity
errors are denoted by e1 = Θ1 −Θ1p, e2 = Θ2 −Θ2p, and e3 and e4 for the angle time
derivatives, respectively.

This tracking strategy can be employed in the same way with the application of other
static-state feedback controllers [17].

7. Conclusions

In this paper, we have presented the new constraint classification with respect to kinds of
constraints put on mechanical systems. This classification reflects the extended constraint
concept that includes non-material nonholonomic constraints of high-order. The general
form of equations of constraints referred to as the unified constraint formulation follows
this classification. For systems subjected to the unified high-order constraints kinematic
and dynamic control models have been developed and examined from the point of view
of stabilizability and motion tracking conditions. We have demonstrated that constrained
systems are not “hard to control” when appropriate control objectives are formulated
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Figure 6.3. Position and velocity tracking errors versus time.

and control strategies are applied. In this paper, we applied the model reference tracking
control strategy for programmed motion to track motions specified by the constraint
equations.
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A control system describing the dynamics of a rotating Timoshenko beam is considered.
We assume that the beam is driven by a control torque at one of its ends, and the other
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control design is proposed.

Copyright © 2007 A. Zuyev and O. Sawodny. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Control issues for several models of flexible manipulators have been intensively studied
by many authors. A particular list of references in this area can be found in monographs
[1, 2]. There are two common approaches to represent the motion of such manipulators.
The first approach deals with systems of rigid bodies [3], Galerkin approximations [4,
5], or finite element methods [6] to derive mathematical models with finite degrees of
freedom. The second approach treats a manipulator as a distributed parameter system.
The majority of publications in this distributed parameter approach are concentrated on
the Euler-Bernoulli beam model (see [7], [8, Chapter 10.8], [1, Chapter 4], [2, 9, 10]).

A possible extension of the Euler-Bernoulli model was proposed by Timoshenko [11].
From the engineering viewpoint, the Timoshenko beam has an advantage of describing
the effects of rotary inertia and the deflection due to shear. Control of Timoshenko beams
was studied in [12–17], [1, Chapter 5.1.2]. The motion of a payload, usually attached to a
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real manipulator, is neglected in all these publications. In [18], a clamped beam with an
end mass is proved to be stabilizable by a feedback control applied to the tip. The author
of [19] addresses the development of LQR techniques and computation algorithms for
beams with controlling torques applied to the hub. A limitation of these results is that
a knowledge of the full infinite dimensional space is required. In [5], a hybrid system
of partial and ordinary differential equations, representing the oscillations of a flexible
beam, has been studied for the case when the control is the acceleration at a point. We
have considered a model for the vertical motion of a beam and estimated its physical
parameters from measurements of modal frequencies in [20].

It should be emphasized that, in contrast to the above publications, we study here a
rotating beam that carries a payload under the action of gravity, the control torque is
applied at the hub, and the longitudinal motion is taken into account. The motivation
for this study is to control the motion of a real flexible-link manipulator-turntable lad-
der. Such a turntable ladder has been described in [3], where a dynamical model with
two rigid bodies (two degrees of freedom) has been used to represent the first mode of
oscillations.

This paper is organized as follows. In Section 2, we derive the motion equations for
a flexible beam with a load under the action of gravity and the control torque. Section 3
contains necessary details for computing the eigenvalues and eigenfunctions of the associ-
ated Sturm-Liouville problem. By using Galerkin’s method, we approximate the dynamics
by a system of ODEs in Section 4. In the derivation procedure, we exploit the variational
form instead of taking the standard inner product in L2. The order of approximation may
be chosen arbitrarily. In Section 5, a state feedback control which stabilizes the equilib-
rium of the Galerkin approximation is obtained (Theorem 5.1). In order to justify a pos-
sibility of implementation of the controller proposed, we study the observability problem
in Section 6. The closed-loop system is proved to be asymptotically stable, provided that
the feedback is generated by a Luenberger-type observer (Theorem 6.2). The proof of
Theorem 6.2 is based on the invariance principle. The main advantage of our approach is
that the control design is done explicitly; all the parameters appearing in the feedback law
and dynamical observer can be effectively computed through integral moments with re-
spect to solutions of the Sturm-Liouville problem. It is also important that no derivatives
of the input signals are needed for the state estimation.

2. Description of the model

Consider a flexible beam rotating in the vertical plane around the fixed point O (see
Figure 2.1).

We assume that the beam is driven by a control torque M at one of its ends (the hub
at O), and the other end (point C) carries a payload of mass m.

Let l be the length of the beam. We assume that the centerline of the beam in its un-
deformed reference configuration occupies the segment [0, l] on the Ox-axis. Consider a
particle P on the centerline and denote by x its coordinate in the reference configuration.
At a given time t, let (x+ s(x, t),w(x, t)) be the coordinates of the position vector for P in
the Cartesian frame Oxy. We introduce the notation ψ(x, t) for the rotation angle of the
cross section area at P due to bending. By taking into account the longitudinal, vertical,
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Figure 2.1. A rotating Timoshenko beam.

and shear motions, we derive the following expression for the kinetic energy of the system
considered:

2T =
∫ l

0

{
ρ(x)

[
(ẇ+ xϕ̇)2 + (wϕ̇)2 + ṡ2 + 2ϕ̇(ẇs− ṡw) + (ϕ̇)2(s+ 2x)s

]
+ Iρ(x)(ϕ̇+ ψ̇)2}dx

+J0(ϕ̇)2 +m
{

(ẇ+ xϕ̇)2 + (wϕ̇)2 + ṡ2 + 2ϕ̇(ẇs− ṡw) + (ϕ̇)2(s+ 2x)s
}∣∣

x=l

+ Jc{ϕ̇+ ψ̇}2|x=l,
(2.1)

where ϕ(t) is the angle between the moving axis Ox and the horizontal direction, ρ(x)
is the mass per unit length of the beam, Iρ(x) is the mass moment of inertia of the cross
section, and J0 is the hub moment of inertia. The mass distribution for the payload is
characterized by the moment of inertia Jc with respect to its center of mass C.

In this paper, we use dots to denote derivatives with respect to time t, and primes to
denote derivatives with respect to the space variable x.

Assuming that the beam is inextensible, we get the following relation on w and s:

s′ = −1
2
w′2 + o

(
w′2

)
. (2.2)

The integration of this relation, with the higher order terms being omitted, yields

s(x, t)=−1
2

∫ x
0
w′2(ξ, t)dξ. (2.3)

We assume that the deformation of the beam is small and drop the terms of order higher
than 2 relative to w when computing the Lagrangian of the system considered.
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Following the Timoshenko beam model [11], [7, page 1142], and exploiting (2.1),
(2.3), the Lagrangian takes the form

2L=
∫ l

0

{
ρ(x)

(
(ẇ+ xϕ̇)2 + ϕ̇2w2)− ρ2(x)ϕ̇2w′2 + Iρ(ϕ̇+ ψ̇)2−K(ψ−w′)2−EI(ψ′)2}dx

+m
{
ϕ̇2w2(l, t) +

(
lϕ̇+ ẇ(l, t)

)2}
+ Jc

{
ϕ̇+ ψ̇(l, t)

}2
+ J0ϕ̇2

− g
∫ l

0

{(
2ρx− ρ1w

′2)sinϕ+ 2ρw cosϕ
}
dx− 2mg

{
l sinϕ+w(l, t)cosϕ

}
,

(2.4)

where

ρ1(x)=
∫ l
x
ρ(ξ)dξ +m, ρ2(x)=

∫ l
x
ξρ(ξ)dξ +ml. (2.5)

Here E and I are Young’s modulus and the moment of inertia of the cross section of
the beam, respectively, g is the acceleration of gravity. The coefficient K is equal to kGA,
where G is the modulus of elasticity in shear, A is the cross sectional area, and k is a
constant depending on the shape of the cross section. We assume that ρ, Iρ, EI , and K are
all positive, differentiable functions of the space variable x.

If C2-functions (ϕ(t),w(x, t),ψ(x, t)) define the motion of the system for the control
torque M(t) on a segment t ∈ [t1, t2] then Hamilton’s principle yields

δ
(∫ t2

t1
Ldt

)
+
∫ t2
t1
M(t)δϕ(t)dt = 0, (2.6)

for any admissible variations (δϕ(t),δw(x, t),δψ(x, t)) satisfying the boundary conditions

δϕ|t=t1 = δϕ|t=t2 = 0, δw|t=t1 = δw|t=t2 = 0, δψ|t=t1 = δψ|t=t2 = 0,

δw|x=0 = 0, δψ|x=0 = 0.
(2.7)

By computing the first variation in (2.6) and integrating by parts, we get
∫ t2
t1

{(
M +

∂L

∂ϕ
− d

dt

∂L

∂ϕ̇

)
δϕ(t)−μ(δw(·, t),δψ(·, t);ϕ,w,ψ

)}
dt = 0, (2.8)

where the functional μ is linear with respect to δw and δψ:

μ
(
δw(·, t),δψ(·, t);ϕ,w,ψ

)

=
∫ l

0
δw(x, t)

{(
ẅ+ xϕ̈− (ϕ̇)2w+ g cosϕ

)
ρ+

(
K(ψ−w′) +

(
gρ1 sinϕ− (ϕ̇)2ρ2

)
w′
)′}

dx

+
∫ l

0
δψ(x, t)

{
Iρ(ψ̈ + ϕ̈) +K(ψ−w′)− (EIψ′)′

}
dx+ δψ(l, t)

{
Jc(ϕ̈+ ψ̈) +EIψ′

}|x=l
+ δw(l, t)

{
K(w′ −ψ) +m

(
ẅ+ lϕ̈− (ϕ̇)2w+ g cosϕ

)
+m

(
l(ϕ̇)2− g sinϕ

)
w′
}|x=l .

(2.9)
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Thus, as (2.8) vanishes on each admissible variation satisfying (2.7), we get the following
boundary value problem:

ẅ+
1
ρ

(
K(ψ −w′))′ = −g cosϕ− xϕ̈+ ϕ̇2w+

1
ρ

((
ρ2ϕ̇

2− gρ1 sinϕ
)
w′
)′

;

ψ̈ +
K

Iρ
(ψ−w′)− 1

Iρ
(EIψ′)′ = −ϕ̈, x ∈ (0, l);

w|x=0 = ψ|x=0 = 0;

K(ψ −w′)|x=l =m
{
ẅ+ lϕ̈− ϕ̇2w+ g cosϕ+

(
lϕ̇2− g sinϕ

)
w′
}|x=l;

−EIψ′|x=l = Jc
(
ϕ̈+ ψ̈|x=l

)
,

M(t)= d

dt

∂L

∂ϕ̇
− ∂L

∂ϕ
=
{
Jc + J0 +m

[
l2 +w2(l, t)

]
+
∫ l

0

[
Iρ +

(
x2 +w2)ρ− ρ2w

′2]dx
}
ϕ̈

+
∫ l

0

(
ρxẅ+ Iρψ̈ + 2ρwϕ̇ẇ− 2ρ2w

′ϕ̇ẇ′
)
dx+m(lẅ+ 2wϕ̇ẇ)|x=l + Jcψ̈|x=l

+ g
{∫ l

0

(
ρx− 1

2
ρ1w

′2
)
dx+ml

}
cosϕ− g

{∫ l
0
ρwdx+mw(l, t)

}
sinϕ.

(2.10)

Straightforward computations show that the above control system admits an equilib-
rium

ϕ(t)= ϕ0, w(x, t)=w0(x), ψ(x, t)= ψ0(x), M(t)=M0 (2.11)

if and only if the following conditions are satisfied:

(
K
(
w′0(x)−ψ0(x)

))′ = g{ρcosϕ0 +
(
ρ1w0

′)′ sinϕ0
}

;

(
EIψ′0(x)

)′
+K

(
w′0(x)−ψ0(x)

)= 0, x ∈ (0, l);

w0(0)= ψ0(0)= 0; ψ′0(l)= 0; K
(
ψ0(l)−w′0(l)

)=mg(cosϕ0−w0
′(l)sinϕ0

)
;

M0

g
=
(∫ l

0

(
ρx− 1

2
ρ1w

′
0

2
)
dx+ml

)
cosϕ0−

(∫ l
0
ρw0dx+mw0(l)

)
sinϕ0.

(2.12)

Our goal is to control the system (2.10) around its steady state (2.12).

3. Perturbed dynamics

Let (ϕ0,w0,ψ0) be a solution of (2.12) with some M0. Then plugging

ϕ= ϕ0 + ϕ̃, w =w0 + w̃, ψ = ψ0 + ψ̃, M =M0 + M̃ (3.1)
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into the dynamical equations (2.10) yields the following control system:

¨̃ϕ= v;

¨̃w+
1
ρ

(
K(ψ̃− w̃′))′ = −xv+ gϕ̃sinϕ0− g

ρ

((
w̃′ sinϕ0 + ϕ̃w′0 cosϕ0

)
ρ1
)′

+ ··· ;

Iρ ¨̃ψ +K(ψ̃− w̃′)− (EIψ̃′)′ = −Iρv;

w̃|x=0 = ψ̃|x=0 = 0;
(
K

m
(w̃′ − ψ̃) + ¨̃w− g(sinϕ0 +w′0 cosϕ0

)
ϕ̃− gw̃′ sinϕ0 + ···

)∣∣∣∣
x=l
=−lv;

(
EIψ̃′ + Jc ¨̃ψ

)|x=l =−Jcv,

(3.2)

where

v =
(
J0 +

∫ l
0

[(
w0
)2
ρ− (w′0)2

ρ2
]
dx+mw2

0(l)
)−1

×
{
M̃ + g

(∫ l
0

[(
ρw0− ρ1w

′
0

)
cosϕ0− 1

2
ρ1
(
w′0
)2

sinϕ0
]
dx+mw0(l)cosϕ0

)
ϕ̃

+ g
∫ l

0

[(
w′0 cosϕ0− sinϕ0

)
ρ1w̃

′ + ρw̃ sinϕ0
]
dx+mgw̃(l, t)−EIψ̃′(0, t)

}
+ ··· ,

(3.3)

where the symbol “···” denotes terms of order of smallness 2 or higher with respect to
ϕ̃, w̃, ψ̃ and their derivatives.

As, for each state (ϕ̃(t), ˙̃ϕ(t),w̃(·, t), ˙̃w(·, t), ψ̃(·, t), ˙̃ψ(·, t)), there is a one-to-one corre-
spondence between M̃ and v, we may treat v as a control in (3.2) and assume that it may
take any value in R.

3.1. Separation of variables. To derive a finite dimensional approximation, let us first
study solutions of the control system (3.2) of a particular form

ϕ̃(t)≡ 0, w̃(x, t)=w(x)q(t), ψ̃(x, t)= ψ(x)q(t). (3.4)

By substituting the above relations into (3.2), we get q̈(t) = −λq(t) together with the
following Sturm-Liouville problem:

(
K(ψ −w′) + gρ1w

′ sinϕ0
)′ − λρw = 0,

K(ψ −w′)− (EIψ′)′ − λIρψ = 0, x ∈ (0, l),

w(0)= 0, ψ(0)= 0,

K
(
w′(l)−ψ(l)

)−mgw′(l)sinϕ0−mλw(l)= 0,

EIψ′(l)− λJcψ(l)= 0,

(3.5)

where λ is a scalar parameter.
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3.2. Eigenvalues of the Sturm-Liouville problem. Let

�=
{(

w
ψ

)
:w ∈H1[0, l], ψ ∈H1[0, l], w(0)= ψ(0)= 0

}
, (3.6)

where H1[0, l] is the Sobolev space. Consider the following symmetric positive definite
bilinear form on �:

〈
w1

ψ1
,
w2

ψ2

〉

�

=
∫ l

0

(
ρw1w2 + Iρψ1ψ2

)
dx+mw1(l)w2(l) + Jcψ1(l)ψ2(l). (3.7)

A straightforward consequence of the above definition is the following.

Lemma 3.1. Let (λ1,w1,ψ1) and (λ2,w2,ψ2) be nontrivial solutions of (3.5). Then

〈
w1

ψ1
,
w2

ψ2

〉

�

= 0 if λ1 �= λ2. (3.8)

Moreover, if K(x)= const and

2
(
m+

∫ l
0 ρdx

)
g sinϕ0

K
≤ 1,

Kl2

EI
≤ 2 (3.9)

then all eigenvalues λ of (3.5) are nonnegative real numbers.

Proof. If (λ1,w1,ψ1) is a solution of (3.5) then

λ1

〈
w1

ψ1
,
w2

ψ2

〉

�

=
〈
λ1w1

λ1ψ1
,
w2

ψ2

〉

�

=
∫ l

0

(
K
(
ψ1−w′1

)
+ gρ1w

′
1 sinϕ0

)′
w2dx+

∫ l
0

(
K
(
ψ1−w′1

)− (EIψ′1)′
)
ψ2dx

+
(
K
(
w′1(l)−ψ1(l)

)−mgw′1(l)sinϕ0
)
w2(l) +EIψ′1(l)ψ2(l).

(3.10)

Performing integration by parts in the above expression, we get

λ1

〈
w1

ψ1
,
w2

ψ2

〉

�

=
∫ l

0

{
K
(
w′1w

′
2 +ψ1ψ2−w′1ψ2−w′2ψ1

)
+EIψ′1ψ

′
2− gρ1w

′
1w

′
2 sinϕ0

}
dx.

(3.11)
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The permutation of arguments in (3.11) yields

λ2

〈
w1

ψ1
,
w2

ψ2

〉

�

= λ2

〈
w2

ψ2
,
w1

ψ1

〉

�

= λ1

〈
w1

ψ1
,
w2

ψ2

〉

�

. (3.12)

Hence,
〈
w1
ψ1 , w2

ψ2

〉
�
= 0 if λ1 �= λ2. If w2 =w1 and ψ2 = ψ1 then (3.11) implies

λ1

〈
w1

ψ1
,
w1

ψ1

〉

�

=
∫ l

0

(
K
(
w′1−ψ1

)2
+EIψ′1

2− gρ1w
′
1

2 sinϕ0
)
dx

=
∫ l

0

(
K

2
w′1

2 +EIψ′1
2−Kψ2

1 − gρ1w
′
1

2 sinϕ0

)
dx+

1
2

∫ l
0
K
(
w′1− 2ψ1

)2
dx

≥
∫ l

0

((
K

2
− gρ1 sinϕ0

)
w′1

2 +EIψ′1
2−Kψ1

2
)
dx.

(3.13)

The function ψ1(x) subject to the boundary condition ψ1(0) = 0 satisfies Friedrichs’ in-
equality of the following form (cf. [13, page 440]):

∫ l
0
ψ1

2(x)dx ≤ l2

2

∫ l
0
ψ′1

2(x)dx. (3.14)

Using this inequality in (3.13), we conclude that

λ1

〈
w1

ψ1
,
w1

ψ1

〉

�

≥
∫ l

0

((
K

2
− gρ1 sinϕ0

)
w′1

2 +
(
EI − Kl2

2

)
ψ′1

2
)
dx ≥ 0, (3.15)

provided that the conditions (3.9) are satisfied. This proves that all eigenvalues λ are non-
negative. �

For the rest of this section we assume that EI , Iρ, K , and ρ are constants, and that
sinϕ0 = 0. The coefficients of the Sturm-Liouville problem are constant under this as-
sumption, and, therefore, it is easy to find the general solution of the corresponding sys-
tem of ODEs. This solution is needed for computing the coefficients of an approximate
dynamical model in the sequel (formulae (4.5) define coefficients of the approximate sys-
tem (4.4) through eigenvalues and eigenfunctions of (3.5)).

We introduce in (3.5) the following dimensionless functions:

ζ
(
x

l

)
= w(x)

l
, θ

(
x

l

)
= ψ(x), (3.16)

and parameters:

p1 = ρl2

K
, p2 = Kl2

EI
, p3 =

Iρl2

EI
, p4 = ml

K
, p5 = lJc

EI
. (3.17)
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Then (3.5) is reduced to the following problem:

d

dτ

⎛
⎜⎜⎜⎝
ζ(τ)
ζτ(τ)
θ(τ)
θτ(τ)

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

0 1 0 0
−λp1 0 0 1

0 0 0 1
0 −p2 p2− λp3 0

⎞
⎟⎟⎟⎠×

⎛
⎜⎜⎜⎝
ζ(τ)
ζτ(τ)
θ(τ)
θτ(τ)

⎞
⎟⎟⎟⎠ , τ = x

l
∈ (0,1); (3.18)

ζτ(1)− θ(1)= λp4ζ(1), θτ(1)= λp5θ(1), ζ(0)= θ(0)= 0, (3.19)

where ζτ(τ) and θτ(τ) stand for derivatives with respect to τ. The eigenvalues and eigen-
vectors of the matrix in (3.18) are, respectively, given by

μj = iσj , vj =

⎛
⎜⎜⎜⎝

4μj
(
λp3− σj2

)
λc3 + 4λp1

(
σj2− λp3

)
λc3

λc3μj

⎞
⎟⎟⎟⎠ , j = 1,2,3,4, (3.20)

where

σ1 =−σ2 =
√

2
2

√
c1λ−

√
c2

2λ2 + c3λ, σ3 =−σ4 =
√

2
2

√
c1λ+

√
c2

2λ2 + c3λ,

c1 = p1 + p3, c2 = p1− p3, c3 = 4p1p2.
(3.21)

The general solution of (3.18) therefore reads as

(
ζ ,ζτ ,θ,θτ

)T
(τ)= C1v1e

iσ1τ +C2v2e
−iσ1τ +C3v3e

iσ3τ +C4v4e
−iσ3τ . (3.22)

By substituting (3.22) into the boundary conditions (3.19), we get a system of linear
algebraic equations with respect to (complex) variables C1, C2, C3, C4. That system has a
nontrivial solution if

κ(λ)=∣∣∣∣∣∣∣∣∣∣∣∣

e−iσ1 eiσ1 e−iσ3 eiσ3

σ1
(
σ2

1 − λp3
)
e−iσ1 −σ1

(
σ2

1 − λp3
)
eiσ1 σ3

(
σ2

3 − λp3
)
e−iσ3 −σ3

(
σ2

3 − λp3
)
eiσ3

(
σ2

1 − λp3
)(
p1 + ip4σ1

) (
σ2

1 − λp3
)(
p1− ip4σ1

) (
σ2

3 − λp3
)(
p1 + ip4σ3

) (
σ2

3 − λp3
)(
p1− ip4σ3

)

iσ1− λp5 iσ1 + λp5 iσ3− λp5 iσ3 + λp5

∣∣∣∣∣∣∣∣∣∣∣∣
=0.

(3.23)

The roots of κ(λ) = 0 define the eigenvalues λ for the Sturm-Liouville problem (3.5)
when its coefficients are constant. It is clear that the function κ(λ), given by (3.23), is
analytic in its domain of definition. Then the uniqueness theorem for analytic functions
implies that either κ(λ) ≡ 0 or the set of all eigenvalues for (3.5) is discrete. The for-
mer is impossible for “typical” values of parameters (see, for example, [13], where the
spectrum was estimated for a particular case p1 = p2 = p3 = 1, p4 = p5 = 0). We do not
estimate solutions of the characteristic equation (3.23) here. Such a study requires addi-
tional assumptions on the mechanical parameters, based on real measurements, and is
not of principal interest for this work.
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4. The Galerkin approximation

To derive a Galerkin approximation (see, e.g., [6]), we consider a variational formulation
of the boundary value problem as follows: if (ϕ̃(t),w̃(x, t), ψ̃(x, t)) (0≤ x ≤ l) is a solution
of (3.2), corresponding to M(t), on an interval t ∈�⊂R then

¨̃ϕ(t)− v = 0,

μ̃=
∫ l

0
δw̃(x, t)

{( ¨̃w+ xv− gϕ̃sinϕ0
)
ρ

+
(
K(ψ̃− w̃′) + ρ1g

(
w̃′ sinϕ0 + ϕ̃w′0 cosϕ0

))′
+ ···}dx

+
∫ l

0
δψ̃(x, t)

{
Iρ ¨̃ψ +K(ψ̃− w̃′)− (EIψ̃′)′ + Iρv

}
dx+ δψ̃(l, t)

{
Jc ¨̃ψ +EIψ̃′ + Jcv

}|x=l

+ δw̃(l, t)
{
K(w̃′ − ψ̃) +m

( ¨̃w+ lv− g(ϕ̃+ w̃′)sinϕ0− gϕ̃w′0 cosϕ0
)

+ ···}|x=l = 0,

∀t ∈�,
(4.1)

for each admissible variation (δw̃(x, t),δψ̃(x, t)) satisfying the boundary conditions δw̃(0,
t) = 0 and δψ̃(0, t) = 0. (The derivation of μ̃ from (3.2) uses the standard technique:
integration by parts, collecting terms, and so forth. The expression (4.1) may also be
obtained by expanding (2.9) in a neighborhood of the equilibrium and neglecting the
higher order terms.) Here v is given by the expression (3.3).

Let us fix an integer number N ≥ 1 and consider nontrivial solutions (λj ,wj ,ψj) of
(3.5) for j = 1,2, . . . ,N . We assume that all λj are different and substitute finite sums

w̃(x, t)=
N∑
j=1

qj(t)wj(x), ψ̃(x, t)=
N∑
j=1

qj(t)ψj(x) (4.2)

into (3.3) and (4.1). We also restrict δw̃ and δψ̃ to finite-dimensional subspaces:

δw̃(·, t)∈ span
{
w1(·), . . . ,wN (·)}, δψ̃(·, t)∈ span

{
ψ1(·), . . . ,ψN (·)}. (4.3)

By assuming δw̃(x, t)= wi(x) and δψ̃(x, t)= ψi(x) in (4.1) for i= 1,2, . . . ,N and exploit-
ing Lemma 3.1, we obtain the following control system with respect to ϕ̃,q1,q2, . . . ,qN :

ż1 =A11z1 +A12z2 +B1u+R1(z,u),

ż2 =A21z1 +A22z2 +B2u+R2(z,u), z = (zT1 ,zT2
)T

,
(4.4)
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where z is the state, u is the control,

z1 = (ϕ̃, ˙̃ϕ)T , z2 =
(
q1, q̇1,q2, q̇2, . . . ,qN , q̇N

)T
,

u= M̃

J0 +
∫ l

0

(
w2

0ρ−w′02ρ2
)
dx+mw2

0(l)
,

A11 =
(

0 1
d0 0

)
, A12 =

(
0 0 0 0 ··· 0 0
d1 0 d2 0 ··· dN 0

)
,

B1 =
(

0
1

)
, B2 =

(
0,−b1, . . . ,0,−bN

)T
,

A21 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0

a1− b1d0 0

0 0

a2− b2d0 0

...
...

0 0

aN − bNd0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, A22 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 ··· 0 0

−λ1− b1d1 0 −b1d2 0 ··· −b1dN 0

0 0 0 1 ··· 0 0

−b2d1 0 −λ2− b2d2 0 ··· −b2dN 0

...
...

...
...

. . .
...

...
0 0 0 0 ··· 0 1

−bNd1 0 −bNd2 0 ··· −λN − bNdN 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

aj = g
(∫ l

0 ρwj dx+mwj(l)
)

sinϕ0 +
∫ l

0 ρ1w
′
0w

′
j dxcosϕ0∫ l

0

(
ρw2

j + Iρψ2
j

)
dx+mw2

j (l) + Jcψ2
j (l)

,

bj =
∫ l

0

(
ρxwj + Iρψj

)
dx+mlwj(l) + Jcψj(l)∫ l

0

(
ρw2

j + Iρψ2
j

)
dx+mw2

j (l) + Jcψ2
j (l)

,

d0 =
∫ l

0

[(
ρw0− ρ1w

′
0

)
cosϕ0− (1/2)

(
w′0
)2
ρ1 sinϕ0

]
dx+mw0(l)cosϕ0

J0 +
∫ l

0

(
w2

0ρ−w′02ρ2
)
dx+mw2

0(l)
g,

dj =
g
∫ l

0

[(
w′0 cosϕ0− sinϕ0

)
ρ1w

′
j + ρwj sinϕ0

]
dx+mgwj(l)sinϕ0 +EIψ′j(0)

J0 +
∫ l

0

(
w2

0ρ−w′02ρ2
)
dx+mw2

0(l)
,

(4.5)

the nonlinear term R(z,u)= (RT1 ,RT2 )T satisfies the estimate

∥∥R(z,u)
∥∥=O(‖z‖2 +u2) (4.6)

around the equilibrium point z = 0, u= 0. The control system (4.4) is a finite dimensional
approximation of (3.2) corresponding to the flexible coordinates of order up to N .
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5. Stabilization in finite dimensions

In this section, an explicit procedure for stabilizing controller design is proposed.

Theorem 5.1. Assume that all eigenvalues (λ1, . . . ,λN ) are positive and different, and that
aj + λjbj �= 0 for each j = 1,2, . . . ,N . Then system (4.4) is stabilizable by the following feed-
back control:

u= Kz, K = (K1,K2
)
, K1 =

(
−d0−

h1 +
∑N

j=1 aj
(
bj + aj/λj

)
h2

,−h0

h2

)
,

K2 =
(
−d1 +

a1 + λ1b1

h2
,0,−d2 +

a2 + λ2b2

h2
,0, . . . ,−dN +

aN + λNbN
h2

,0
)

,

(5.1)

where h0, h1, and h2 are arbitrary positive constants.

Proof. Consider a Lyapunov function candidate

2V(z)=
(
h1 +

N∑
j=1

a2
j

λ j

)
ϕ̃2 +

(
h2 +

N∑
j=1

b2
j

)
˙̃ϕ

2
+

N∑
j=1

(
λjqj

2 + q̇2
j − 2ajϕ̃q j + 2bj ˙̃ϕq̇j

)
.

(5.2)

By applying the Cauchy-Schwartz inequality, we get

2V ≥G1

(
−|ϕ̃|,

( N∑
j=1

λjq
2
j

)1/2)
+G2

(
−| ˙̃ϕ|,

( N∑
j=1

q̇2
j

)1/2)
, (5.3)

where

G1(α,β)=
(
h1 +

N∑
j=1

a2
j

λ j

)
α2 + 2

( N∑
j=1

aj2

λj

)1/2

αβ+β2,

G2(α,β)=
(
h2 +

N∑
j=1

b2
j

)
α2 + 2

( N∑
j=1

bj
2

)1/2

αβ+β2.

(5.4)

Sylvester’s criterion for quadratic forms G1 and G2 implies that both G1 and G2 are pos-
itive definite if h1 > 0 and h2 > 0. Then the quadratic form V is positive definite due to
estimate (5.3).

The time-derivative of V along the trajectories of the linear part of (4.4) is

V̇ = h2
˙̃ϕv+

(
h1 +h2d0 +

N∑
j=1

aj

(
bj + aj
λj

))
ϕ̃ ˙̃ϕ+ ˙̃ϕ

N∑
j=1

qj
(
h2dj − aj − λjbj

)
. (5.5)

We choose a constant h0 > 0 arbitrarily and define the feedback control in order to have

V̇ =−h0
˙̃ϕ

2
. This yields expression (5.1).
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Now we apply the Barbashin-Krasovskii theorem (or LaSalle’s invariance principle, cf.
[21]). For this purpose consider the set

Z0 =
{(
ϕ̃, ˙̃ϕ,q1, q̇1, . . . ,qN , q̇N

)∈R2N+2 : V̇ = 0
}
. (5.6)

Each positive semitrajectory of the linear approximation of (4.4) with (5.1) on Z0 satisfies
the following relations:

q̈ j =−λjqj + ajϕ̃,

N∑
j=1

[− ajbj ϕ̃+
(
aj + λjbj

)
qj
]=

(
h1 +

N∑
j=1

a2
j

λ j

)
ϕ̃= const, t ≥ 0.

(5.7)

The above relations imply

N∑
j=1

(
aj + λjbj

)(
r1 j cos

(√
λjt
)

+ r2 j sin
(√
λjt
))
= h1ϕ̃ (5.8)

for some constants r1 j , r2 j , and ϕ̃. Exploiting the fact that

{
1,sin

(√
λjt
)

, cos
(√
λjt
)}N

j=1
(5.9)

are linearly-independent functions on [0,+∞) (cf. [22]), we get that (5.8) is possible only
if ϕ̃ = 0 and r1 j = r2 j = 0 for all j = 1,2, . . . ,N . Thus, the only semitrajectory of the lin-
earized closed-loop system on Z0 is the trivial one, and the trivial solution of the linear
part of (4.4), (5.1) is asymptotically stable by the Barbashin-Krasovskii theorem (LaSalle’s
invariance principle). Now local asymptotic stability of the nonlinear closed-loop system
follows from Lyapunov’s theorem on stability using linearization. �

Remark 5.2. As it follows from the representation V̇ = −h0
˙̃ϕ

2
, the choice of constant

h0 affects the decay rate of the Lyapunov function along trajectories of the closed-loop
system. On the one hand, the more h0 the faster convergence of solutions to the equilib-
rium could be achieved (for solutions with ˙̃ϕ �= 0). On the other hand, for large h0, the
gain −h0/h2, appearing in formula (5.1), may take large values if h2 is small. This sug-
gests us to choose h0 as maximal as possible, and to select h2 in such a way that the term
−(h0/h2) ˙̃ϕ, appearing in u = Kz, would not bring the control input u to its saturation
bound (for typical disturbances ˙̃ϕ). The constant h1 should be then defined according
to a desired geometry of the level surfaces for the quadratic form V . Indeed, constants
h1 and h2 define a relation between semiaxes for the ellipsoids V(z) = const, and hence
a desired ratio between overshoots for ϕ̃ and ˙̃ϕ can be estimated in terms of h1 and h2.
Certainly, this suggestion is based on the linearized system and does not give a rigorous
characterization of the global behavior.

6. Observer design

In order to implement the feedback law (5.1) in practice, one should reconstruct the com-
plete state vector of (4.4) from the outputs which can be measured. The values of w(x, t)
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and ψ(x, t) cannot be directly estimated in a real flexible manipulator. Instead, there is a
set of strain gauges located at a point x = l0, 0≤ l0 ≤ l, which allows measurement of some
components of the strain tensor. By using only the principal part of the strain at x = l0,
we get the output ψ′(x, t)|x=l0 for each t ≥ 0. By subtracting from the signals ϕ(t) and
ψ′(x, t)|x=l0 their steady-state values and rescaling, we assume that the following outputs
are available for the finite dimensional approximation (4.4):

y1(t)= ϕ̃(t), y2(t)= l2ψ̃′(x, t)|x=l0 =
N∑
j=1

χjq j(t), (6.1)

where χj = l2ψ′j(l0). We introduce the factor l2 in order to get the dimension of length for
the output y2.

Let us rewrite the output (6.1) as follows:

y1 = C1z1, y2 = C2z2, C1 = (1,0), C2 =
(
χ1,0,χ2,0, . . . ,χN ,0

)
. (6.2)

Lemma 6.1. The control system (4.4), (6.2) is locally observable at z = 0 if

∣∣∣∣∣∣∣∣∣∣∣

π11 π12 ··· π1N

π21 π22 ··· π2N
...

...
. . .

...
πN1 πN2 ··· πNN

∣∣∣∣∣∣∣∣∣∣∣
�= 0, (6.3)

where π1, j = χj , πk, j =−λjπk−1, j −dj
∑N

i=1πk−1,ibi, j = 1,N , k = 2,N .
In particular, the condition (6.3) is equivalent to χ1 �= 1 if N = 1 or

χ1χ2
(
λ1− λ2 + b1d1− b2d2

)
+ b2χ

2
2d1− b1χ

2
1d2 �= 0 if N = 2. (6.4)

Proof. The linear part of (4.4), (6.2) can be written in terms of output y1 as follows:

z1 =
(
y1, ẏ1

)T
,

ż2 = A22z2 +B2u+
(
0,a1− b1d0,0,a2− b2d0, . . . ,0,aN − bNd0

)T
y1,

y2 = C2z2.

(6.5)

Hence, the above system is observable if the pair (A22,C2) satisfies the Kalman observ-
ability condition (cf. [23, Theorem 3.1, page 58]):

rank

⎛
⎜⎜⎜⎜⎝

C2

C2A22
...

C2A
2N−1
22

⎞
⎟⎟⎟⎟⎠= 2N. (6.6)
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Straightforward computations show that

det

⎛
⎜⎜⎜⎜⎝

C2

C2A22
...

C2A
2N−1
22

⎞
⎟⎟⎟⎟⎠=

∣∣∣∣∣∣∣∣∣∣∣

π11 π12 ··· π1N

π21 π22 ··· π2N
...

...
. . .

...
πN1 πN2 ··· πNN

∣∣∣∣∣∣∣∣∣∣∣

2

. (6.7)

Therefore, (6.3) implies the observability rank condition for the linear part of (4.4), (6.2).
It also means that (4.4), (6.2) is strongly locally observable at z = 0 by the Hermann-
Krener theorem [24]. �

The following theorem gives an explicit procedure for the Luenberger-type observer
design.

Theorem 6.2. Suppose that the control system (4.4), (6.2) satisfies the observability condi-
tion (6.3), all λj are positive and different, aj + λjbj �= 0, and bjdj > 0 for j = 1,N . Then the
origin z = 0, z = 0 of the extended system (4.4), (6.2) and

ż1 =
(
A11−F1C1

)
z1 +A12z2 +F1y1 +B1u,

ż2 =
(
A22−F22C2

)
z2 +F21y1 +F22y2 +B2u

(6.8)

with u= Kz is locally asymptotically stable, where K is given by (5.1),

F1 =
(
φ1,d0 +φ2

)T
, F21 =

(
0,a1− b1d0,0,a2− b2d0, . . . ,0,aN − bNd0

)T
,

F22 =
(
f1,0, f2,0, . . . , fN ,0

)T
,

(
f1, f2, . . . , fN

)T = γQ−1(χ1,χ2, . . . ,χN
)T

,

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1d1

b1
+d2

1 d1d2 ··· d1dN

d2d1
λ2d2

b2
+d2

2 ··· d2dN

...
...

. . .
...

dNd1 dNd2 ··· λNdN
bN

+d2
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(6.9)

Here φ1, φ2, and γ are any positive constants.

Proof. Consider the observation errors e1 = z1 − z1, e2 = z2 − z2. Then subtracting (6.8)
from (4.4) yields the following dynamics:

ė1 =H1e1 +A12e2 +R1(z,u), ė2 =H2e2 +R2(z,u), (6.10)

here H1 = A11−F1C1 and H2 = A22−F22C2. We see that the roots of the polynomial

det
(
H1−μI

)=
∣∣∣∣∣
−φ1−μ 1
−φ2 −μ

∣∣∣∣∣= μ2 +φ1μ+φ2 (6.11)
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have negative real parts if and only if φ1 > 0 and φ2 > 0. Our goal is to show that the real
parts of all eigenvalues of

H2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− f1χ1 1 − f1χ2 0 ··· − f1χN 0

−λ1− b1d1 0 −b1d2 0 ··· −b1dN 0

− f2χ1 0 − f2χ2 1 ··· − f2χN 0

−b2d1 0 −λ2− b2d2 0 ··· −b2dN 0

...
...

...
...

. . .
...

...

− fNχ1 0 − fNχ2 0 ··· − fNχN 1

−bNd1 0 −bNd2 0 ··· −λN − bNdN 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(6.12)

are also negative if the conditions of Theorem 6.2 are satisfied. Let us denote e2 = (ξ1,η1,
. . . ,ξN ,ηN )T and consider the following quadratic form:

2W
(
e2
)=

N∑
j=1

djη
2
j

b j
+
(
ξ1,ξ2, . . . ,ξN

)
Q
(
ξ1,ξ2, . . . ,ξN

)T
. (6.13)

This form is positive definite as λj > 0 and bjdj > 0. Indeed, all principal minors Δ j of Q
are positive:

Δ j =
(
λ1d1

)(
λ2d2

)···(λjdj)
b1b2 ···bj

(
1 +

j∑
i=1

bidi
λi

)
> 0, j = 1,N. (6.14)

Then Sylvester’s criterion implies that W is positive definite. The inequality det(Q) =
ΔN > 0 also proves invertibility of Q in (6.9). By computing the time derivative of W
along the trajectories of the linear system ė2 =H2e2, we get

Ẇ
(
e2
)=−γ(C2e2

)2 ≤ 0, (6.15)

provided that F22 is defined by (6.9). As the time derivative ofW is negative semi-definite
and vanishes on kerC2 = {e2 ∈R2N : C2e2 = 0}, we check whether the linear system ė2 =
H2e2 admits a nontrivial semitrajectory on kerC2. Let C2e2(t)≡ 0, t ≥ 0, then

dk

dtk
C2e2(t)= C2

(
A22−F22C2

)k
e2(t)= C2A

k
22e2(t)= 0, t ≥ 0, k ≥ 0. (6.16)

This implies that, for each t ≥ 0, e2(t) is a solution of the following system of linear alge-
braic equations:

C2A
k
22e2(t)= 0, k = 0,2N − 1. (6.17)

The above system has only the trivial solution e2(t)= 0 because of the observability rank
condition (6.3). This proves asymptotic stability of the linear system ė2 = H2e2 by the
Barbashin-Krasovskii theorem (LaSalle’s invariance principle).
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We have shown that the matrices H1 and H2 are Hurwitz. The nonlinear closed-loop
system (4.4), (6.2), (6.8) with u= Kz can be written in variables (z,e) as follows:

⎛
⎜⎝
ż
ė1

ė2

⎞
⎟⎠=

⎛
⎜⎝
H0 −BK1 −BK2

0 H1 A12

0 0 H2

⎞
⎟⎠
⎛
⎜⎝
z
e1

e2

⎞
⎟⎠+

⎛
⎜⎝
R
(
z,K(z− e))

R1
(
z,K(z− e))

R2
(
z,K(z− e))

⎞
⎟⎠ , (6.18)

where

H0 =
(
A11 +B1K1 A12 +B1K2

A21 +B2K1 A22 +B2K2

)
, B = (BT1 ,BT2

)T
. (6.19)

As aj + λjbj �= 0 then the conditions of Theorem 5.1 are satisfied and H0 is Hurwitz.
Hence, the trivial solution of (6.18) is asymptotically stable by linear approximation as
the spectrum of its matrix is the union of spectra of the Hurwitz matrices H0, H1, and
H2. �

7. Conclusions

We have proposed a feedback controller that stabilizes the equilibrium of a Galerkin ap-
proximation for a rotating Timoshenko beam, provided that measurements of the raising
angle and the strain at a point are available. The feedback law and coefficients of the
dynamical observer are computed explicitly for any number of modal coordinates. A po-
tential field of application of these results is the control design for fire-rescue turntable
ladders. An advantage of our approach is that the identification procedure can be reduced
significantly in comparison with a multibody model. In addition, the higher modes can
be calculated explicitly, which is important for the design of an oscillation damping con-
trol of a turntable ladder. For a possible implementation of the controller, it is necessary
to integrate a system of ordinary differential equations in real time. We do not consider
here such issues as spillover analysis, convergence of Galerkin approximations, computa-
tional complexity, or limitation of the sampling rate with respect to the calculation time
leaving these problems for future work.
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1. Introduction

The main purpose of this paper is to present a numerical and analytical study of optimal
low-thrust limited-power trajectories for simple transfers (no rendezvous) between close
circular coplanar orbits in an inverse-square force field. The study of these transfers is
particularly interesting because the orbits found in practice often have a small eccentricity
and the problem of slight modifications (corrections) of these orbits is frequently met [1].
Besides, the analysis has been motivated by the renewed interest in the use of low-thrust
propulsion systems in space missions verified in the last two decades. Several researchers
have obtained numerical, and sometimes analytical, solutions for a number of specific
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initial orbits and specific thrust profiles [2–10]. Averaging methods are also used in such
researches [11–15].

Low-thrust electric propulsion systems are characterized by high specific impulse and
low-thrust capability and have a great interest for high-energy planetary missions and
certain Earth orbit missions. For trajectory calculations, two idealized propulsion models
are of most frequent use [1]: LP and CEV systems. In the power-limited variable ejec-
tion velocity systems or, simply, LP systems, the only constraint concerns the power, that
is, there exists an upper constant limit for the power. In the constant ejection velocity
limited-thrust systems or, simply, CEV systems, the magnitude of the thrust acceleration
is bounded. In both cases, it is usually assumed that the thrust direction is unconstrained.
The utility of these idealized models is that the results obtained from them provide good
insight into more realistic problems. In this paper, only LP systems are considered.

In the study presented in the paper, the fuel consumption is taken as the performance
criterion and it is calculated for various radius ratios ρ = r f /r0, where r0 is the radius
of the initial circular orbit O0 and r f is the radius of the final circular orbit Of , and for
various transfer durations t f − t0. Transfers with small and moderate amplitudes are con-
sidered. The optimization problem associated to the space transfer problem is formulated
as a Mayer problem of optimal control with Cartesian elements—components of position
and velocity vectors—as state variables.

The numerical study is carried out by a neighboring extremal algorithm which is based
on the linearization about an extremal solution of the nonlinear two-point boundary
value problem defined by the set of necessary conditions for a Bolza problem of optimal
control with fixed initial and final times, fixed initial state, and constrained final state
[16, 17]. The resulting linear two-point boundary value problem is solved through Riccati
transformation. As briefly described in Section 2, a slight modification is introduced in
the algorithm to improve the convergence. On the other hand, the analytical study is
based on a linear theory expressed in terms of nonsingular orbital elements, similar to
the ones presented in [1, 18]. Here, the linear theory is determined through canonical
transformation theory using the concept of generalized canonical systems. This approach
provides a simple way to compare the numerical solutions and the analytical theory. The
numerical and analytical results are compared to the ones obtained through an algorithm
based on gradient techniques [19, 20].

2. Neighboring extremal algorithm based on Riccati transformation

For completeness, a brief description of the neighboring extremal algorithm used in the
paper is presented in this section. This algorithm has a slight modification when com-
pared to the well-known algorithms in the literature [16, 17, 21]: a constraint on the con-
trol variations is introduced. Numerical experiments have shown that this simple device
improves the convergence.

Let the system of differential equations be defined by

dxi
dt
= fi(x,u), i= 1, . . . ,n, (2.1)
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where x is an n-vector of state variables and u is an m-vector of control variables. It is
assumed that there exist no constraints on the state or control variables. The problem
consists in determining the control u∗(t) that transfers the system (2.1) from the initial
conditions

x
(
t0
)= x0, (2.2)

to the final conditions at t f ,

ψ
(
x
(
t f
))= 0, (2.3)

and minimizes the performance index

J[u]= g(x(t f
))

+
∫ t f

t0
F(x,u)dt. (2.4)

The functions f (·) :Rn×Rm →Rn, F(·) :Rn×Rm →R, g(·) :Rn →R, and ψ(·) :Rn →
Rq, q < n, are assumed to be twice continuously differentiable with respect to their argu-
ments. Furthermore, it is assumed that the matrix [∂ψ/∂x] has a maximum rank.

By applying the Pontryagin maximum principle [21, 22] to the Bolza problem with
constrained final state and fixed terminal times defined by (2.1)–(2.4), the following two-
point boundary value problem is obtained:

dx

dt
=HT

λ , (2.5)

dλ

dt
=−HT

x , (2.6)

Hu = 0, (2.7)

with

x
(
t0
)= x0, (2.8)

λ
(
t f
)=−(gx +μTψx

)T
, (2.9)

ψ
(
x
(
t f
))= 0, (2.10)

where H(x,λ,u) = −F(x,u) + λT f (x,u) is the Hamiltonian function, λ is an n-vector of
adjoint variables and μ is a q-vector of Lagrange multipliers. The quantitiesHx,Hu,gx, . . . ,
and so forth, denote the partial derivatives. If x, λ, and u are taken to be column vectors,
then Hx, Hλ, and Hu are row vectors. In this way, ψx is a q×n-matrix. The superscript T
denotes the transpose of a matrix or a (row or column) vector.

Neighboring extremal methods are iterative procedures used for solving the two-point
boundary value problem defined through (2.5)–(2.10). These methods are based on the
second variation theory and consist in determining iteratively the unknown adjoint vari-
ables λ(t0) and Lagrange multipliers μ. Let λ0(t0) be an arbitrary starting approximation
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of the unknown adjoint variables at t0. The trajectory x0(t) corresponding to these start-
ing values is obtained by integrating (2.5) from t0 to t f , with the initial conditions (2.8).
The vector of Lagrange multipliers μ is then calculated such that the transversality condi-
tion (2.9) is fulfilled. Since ψx has a maximum rank, one finds that

μ=−(ψxψTx
)−1

ψx
(
λ
(
t f
)

+ gTx
)
. (2.11)

Let λ1(t0) = λ0(t0) + δλ(t0) and μ1 = μ0 + δμ be the next approximation. Following [16,
21], the corrections (perturbations) δλ(t0) and δμ are obtained in order to satisfy the
linear two-point boundary value problem obtained from the linearization of (2.5)–(2.10)
about a nominal extremal solution defined by λ0(t0):

δẋ =Hλxδx+Hλuδu, (2.12)

δλ̇=−Hxλδλ−Hxxδx−Hxuδu, (2.13)

Huxδx+Huλδλ+Huuδu= 0, (2.14)

δx
(
t0
)= 0, (2.15)

ψxδx
(
t f
)=−kψ(x(t f

))
, (2.16)

δλ
(
t f
)=−(gxx +μTψxx

)
δx
(
t f
)−ψTx δμ, (2.17)

where the constant k, 0 < k ≤ 1, has been introduced to indicate that the correction is
partial. Quantities such as gxx,Hxx,Hxλ,Hxu, . . . , and so forth, are matrices of second par-
tial derivatives; for instance, Hxu = [∂2H/∂xi∂uj] is an n×m matrix. According to our
notation Hλx =HT

xλ.
Equations (2.12)–(2.17) form the two-point boundary value problem to the accessory

minimum problem associated to the original optimization problem defined by (2.1)–
(2.4) [16, 17, 21]. This accessory minimum problem is obtained expanding the aug-
mented performance index, which includes through adjoint variables the constraints
represented by the state equations, to second order and all constraints to first order, as
described in the appendix.

According to the appendix, (2.14) must be replaced by (A.8) since a constraint on the
control variations is imposed [23]. Assuming that W2 is chosen such that Huu +W2 is
nonsingular for t ∈ �t0, t f �, we may solve (A.8) for δu(t), in terms of δx(t) and δλ(t):

δu(t)=−(Huu +W2
)−1(

Huxδx(t) +Huλδλ(t)
)
. (2.18)

Substituting this equation into (2.12) and (2.13), it follows that

δẋ =Aδx+Bδλ, (2.19)

δλ̇= Cδx−ATδλ, (2.20)
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where matrices A, B, and C are given by

A(t)=Hλx −Hλu
(
Huu +W2

)−1
Hux,

B(t)=−Hλu
(
Huu +W2

)−1
Huλ,

C(t)=Hxu
(
Huu +W2

)−1
Hux −Hxx.

(2.21)

We recall that the matrices A, B and C are evaluated on a nominal extremal solution.
Equations (2.15) through (2.20) represent a linear two-point boundary value problem,

whose solution can be obtained through a backward sweep method which uses the Riccati
transformation [21]:

δλ(t)= R(t)δx(t) +L(t)δμ,

kψ = LT(t)δx(t) +Q(t)δμ,
(2.22)

where R is an n× n symmetric matrix, L is an n× q matrix, and Q is a q× q symmetric
matrix. For (2.22) to be consistent with (2.15)–(2.20), the Riccati coefficients must satisfy
the differential equations (2.23) with the boundary conditions (2.24) defined below.

The step-by-step computing procedure to be used in the neighboring extremal algo-
rithm is summarized as follows.

(1) Guess the starting approximation for λ(t0), that is, λ0(t0).
(2) The control u= u(x,λ) is obtained from (2.7): Hu = 0.
(3) Integrate forward, from t0 to t f , the system of differential equations (2.5) and

(2.6) with the initial conditions x(t0) = x0 and λ(t0) = λ0(t0) in order to obtain
x(t f ) and λ(t f ).

(4) Compute μ through (2.11).
(5) Integrate backward, from t f to t0, the differential equations for the Riccati coef-

ficients

−Ṙ= RA+ATR+RBR−C,

−L̇= (AT +RB
)
L,

−Q̇= LTBL,

(2.23)

with the boundary conditions

R
(
t f
)=−(gxx +μTψxx

)
,

L
(
t f
)=−ψTx ,

Q
(
t f
)= 0,

(2.24)

and the system of differential equations (2.5) and (2.6) with boundary conditions
x(t f ) and λ(t f ).

(6) Compute the variation δμ from δμ=Q(t0)−1kψ.
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(7) Compute δλ(t0) from δλ(t0)= L(t0)δμ.
(8) Test the convergence. If it is not obtained, update the unknown λ(t0), that is,

compute the new value λ1(t0)= λ0(t0) + δλ(t0).
(9) Go back to step 2 and repeat the procedure until convergence is achieved.

3. Optimal low-thrust trajectories

In what follows, the neighboring extremal algorithm presented in previous section is ap-
plied to determine optimal low-thrust limited-power transfers between close coplanar
circular orbits in an inverse-square force field.

3.1. Problem formulation. A low-thrust limited-power propulsion system, or LP sys-
tem, is characterized by low-thrust acceleration level and high specific impulse [1]. The
ratio between the maximum thrust acceleration and the gravity acceleration on the
ground, γmax/g0, is between 10−4 and 10−2. For such system, the fuel consumption is
described by the variable J defined as

J = 1
2

∫ t f

t0
γ2dt, (3.1)

where γ is the magnitude of the thrust acceleration vector Γ, used as control variable. The
consumption variable J is a monotonic decreasing function of the mass m of the space
vehicle:

J = Pmax

(
1
m
− 1
m0

)
, (3.2)

where Pmax is the maximum power and m0 is the initial mass. The minimization of the
final value of the fuel consumption J f is equivalent to the maximization of mf .

The optimization problem concerned with simple transfers (no rendezvous) between
coplanar orbits will be formulated as a Mayer problem of optimal control by using Carte-
sian elements as state variables. At time t, the state of a space vehicle M is defined by
the radial distance r from the center of attraction, the radial and transverse components
of the velocity, u and v, and the fuel consumption J . (Note that the radial component u
should not be confused with the control variables defined in Section 2.) The geometry of
the transfer problem is illustrated in Figure 3.1.

In the two-dimension optimization problem, the state equations are given by

du

dt
= v2

r
− μ

r2
+R,

dv

dt
=−uv

r
+ S,

dr

dt
= u,

dJ

dt
= 1

2

(
R2 + S2),

(3.3)
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Of

M(t f ) M(t0)

O0

r(t)

g
Γ

Figure 3.1. Geometry of transfer problem.

where μ is the gravitational parameter (it should not be confused with Lagrange multi-
plier defined in Section 2), R and S are the components of the thrust acceleration vector
in a moving frame of reference, that is, Γ = Rer + Ses, with the unit vector er pointing
radially outward and the unit vector es perpendicular to er in the direction of the motion
and in the plane of orbit. The optimization problem is stated as follows: it is proposed to
transfer a space vehicle M from the initial conditions at t0,

u(0)= 0, v(0)= 1, r(0)= 1, J(0)= 0, (3.4)

to the final state at the prescribed final time t f ,

u
(
t f
)= 0, v

(
t f
)=

√
μ

r f
, r

(
t f
)= r f , (3.5)

such that J f is a minimum.
We note that in the formulation of the boundary conditions above all variables are

dimensionless. In this case, μ= 1.

3.2. Two-point boundary value problem. Following the Pontryagin maximum princi-
ple [21, 22], the adjoint variables λu, λv, λr , and λJ are introduced and the Hamiltonian
function H(u,v,r, J ,λu,λv,λr ,λJ ,R,S) is formed using the right-hand side of (3.3):

H = λu
(
v2

r
− μ

r2
+R
)

+ λv

(
−uv
r

+ S
)

+ λru+
λJ
2

(
R2 + S2

)
. (3.6)

The control variables R and S must be selected from the admissible controls such that the
Hamiltonian function reaches its maximum along the optimal trajectory. Thus, we find
that

R∗ = −λu
λJ

S∗ = −λv
λJ
.

(3.7)



8 Mathematical Problems in Engineering

The variables λu, λv, λr , and λJ must satisfy the adjoint differential equations and the
transversality conditions (2.6) and (2.9).

Therefore, from (3.3)–(3.7), we get the following two-point boundary value problem
for the transfer problem defined by (3.3)–(3.5):

du

dt
= v2

r
− μ

r2
− λu
λJ

,
dv

dt
=−uv

r
− λv
λJ

,

dr

dt
= u,

dJ

dt
= 1

2λ2
J

(
λ2
u + λ2

v

)
,

dλu
dt

= v

r
λv − λr , dλv

dt
=−2

v

r
λu +

u

r
λv,

dλr
dt

=
(
v2

r2
− 2

μ

r3

)
λu− uv

r2
λv,

dλJ
dt

= 0,

(3.8)

with the boundary conditions given by (3.4) and (3.5), and the transversality condition

λJ
(
t f
)=−1. (3.9)

3.3. Applying the neighboring extremal algorithm. The matrices A, B, and C describ-
ing the linearized two-point boundary value problem in the neighboring extremal algo-
rithm can be obtained straightforwardly from (3.8) by calculating the partial derivatives
of the right-hand side of the equation with respect to the state and adjoint variables taking
into account a diagonal weighting matrix W2 as described in the next paragraph. These
matrices are then given by

A=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
2v
r

−a 0

−v
r

−u
r

uv

r2
0

1 0 0 0

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 1
λJ − σ 0 0

λu
λJ
(
λJ − σ

)

0 − 1
(
λJ − σ

) 0
λv

λJ
(
λJ − σ

)

0 0 0 0

λu
λJ
(
λJ − σ

)
λv

λJ
(
λJ − σ

) 0 − c

λ2
J

(
λJ − σ

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
λv
r

−vλv
r2

0

λv
r

−2λu
r

b 0

−vλv
r2

b d 0

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(3.10)
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where

a= v2

r2
− 2

μ

r3
, b = 2v

r2
λu− u

r2
λv,

c = λ2
u + λ2

v, d =
(
−2v2

r3
+

6μ
r4

)
λu +

2uv
r3

λv.

(3.11)

In Section 5, we present the results obtained through the neighboring extremal algo-
rithm for several ratios ρ = r f /r0, ρ = 0.727;0.800;0.900;0.950;0.975;1.025;1.050;1.100;
1.200;1.523, and nondimensional transfer durations of 2, 3, 4, 5. We note that the Earth-
Mars transfer corresponds to ρ = 1.523 and Earth-Venus to ρ = 0.727. The criterion
adopted for convergence is a tolerance of 1.0× 10−8 in the computation of corrections
(variations) of the initial value of the adjoint variables. In view of this convergence cri-
terion, the terminal constraints are obtained with an error less than 1.0× 10−6, which
means that ‖ψ(x(t f ))‖ ≤ 1.0× 10−6. All simulations consider the transfer from low orbit
to high orbit, with starting approximation λ0(t0)= (0.001 0.001 0.001 −1), attenu-
ation factor k = 0.10 for ρ= 0.727 and 1.5236, and k = 0.15 for the other values of ρ, and
a diagonal matrix W2 such that W211 =W222 =−σ , with σ = 5.5 for all maneuvers, except
ρ = 0.727 and 0.800, with t f − t0 = 4 and 5. In these cases, σ = 2.5.

4. Linear theory

In this section, a first-order analytical solution for the problem of optimal simple transfer
defined in Section 3.1 is presented.

The Hamiltonian function H∗ governing the extremal (optimal) trajectories can be
obtained as follows. Since λJ is a first integral (3.8) and λJ(t f ) = −1, from the transver-
sality condition (3.9), it follows that λJ(t) = −1. Thus, from (3.7), we find the optimal
thrust acceleration

R∗ = λu, S∗ = λv. (4.1)

Introducing these equations into (3.6), it results that

H∗ = uλr +
(
v2

r
− μ

r2

)
λu− uv

r
λv +

1
2

(
λ2
u + λ2

v

)
. (4.2)

In what follows, we consider the problem of determining an approximate solution
of the system of differential equations governed by the Hamiltonian H∗ by means of
the theory of canonical transformations. This analytical solution is obtained through the
canonical transformation theory using the concept of generalized canonical systems [24,
25].

Now, consider the Hamiltonian function describing a null thrust arc in the two-dimen-
sional formulation of the optimization problem defined in Section 3.1:

H = uλr +
(
v2

r
− μ

r2

)
λu− uv

r
λv +

v

r
λθ. (4.3)
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Note that H is obtained from (3.6) taking R= S= 0 and adding the last term concerning
the differential equation of the angular variable θ, which defines the position of the space
vehicle with respect to a reference axis in the plane of motion. This variable is important
for rendezvous problems and plays no special role for simple transfer problems like the
one considered here, but it is necessary to define the canonical transformations described
below. In the transformation theory described in the next paragraphs, it is assumed that
the Hamiltonian H∗ is augmented in order to include this last term, that is,

H∗ = uλr +
(
v2

r
− μ

r2

)
λu− uv

r
λv +

v

r
λθ +

1
2

(
λ2
u + λ2

v

)
. (4.4)

Note that H is the undisturbed part of H∗ and plays a fundamental role in our theory.
According to the properties of generalized canonical systems, the general solution of

the system of differential equations governed by the Hamiltonian H can be expressed in
terms of a fast phase and is given by [24, 25]:

u=
√
μ

p
e sin f ,

v =
√
μ

p
(1 + ecos f ),

r = p

1 + ecos f
,

θ = ω+ f ,

λu =
√
p

μ
sin f λe +

√
p

μ

cos f
e

(
λ f − λω

)

λv = 2

√
p

μ
rλp +

√
p

μ

(
2cos f + ecos2 f + e

) r

p
λe−

√
p

μ

sin f

e

[
1 +

r

p

]
(
λ f − λω

)
,

λr = 2
p

r
λp +

cos f + e
r

λe− sin f

re

(
λ f − λω

)
,

λθ = λω,

(4.5)

where p is the semi latus rectum, e is the eccentricity, ω is the pericenter argument, f is
the true anomaly (fast phase), and (λp,λe,λ f ,λω) are adjoint variables to (p,e, f ,ω).

Equations (4.5) define a Mathieu transformation between the Cartesian elements and
the orbital ones,

(
u,v,r,θ,λu,λv,λr ,λθ

) Mathieu (
p,e, f ,ω,λp,λe,λ f ,λω

)
. (4.6)
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The undisturbed Hamiltonian function H is invariant with respect to this canonical
transformation. Thus, the undisturbed Hamiltonian is written in terms of the new vari-
ables as

H =
√
μp

r2
λ f . (4.7)

The general solution of the new differential equations governed by the new undis-
turbed Hamiltonian function H is closely related to the solution of the time flight equa-
tion in the two-body problem for elliptic, parabolic, and hyperbolic motions [25]. For
quasicircular motions, this solution is very simple, as described in the next paragraphs.

Equations (4.5) have singularities for circular orbits (e = 0). In order to avoid this
drawback, a set of nonsingular elements is introduced. The relationships between the
singular orbital elements and the nonsingular ones are given by

a= p
(
1− e2

) , h= ecosω, k = e sinω, L= f +ω. (4.8)

These equations define a Lagrange point transformation and the Jacobian of the inverse
of this transformation must be computed in order to get the relationships between the
corresponding adjoint variables. Thus, we get

λa =
(
1− e2)λp,

λh =
(
λe− 2ep

(
1− e2

)λp

)
cosω+

(
λL− λω

e

)
sinω,

λk =
(
λe− 2ep

(
1− e2

)λp

)
sinω−

(
λL− λω

e

)
cosω,

λL = λ f .

(4.9)

Equations (4.8) and (4.9) define a new Mathieu transformation between singular and
nonsingular elements,

(
p,e, f ,ω,λp,λe,λ f ,λω

) Mathieu (
a,h,k,L,λa,λh,λk,λL

)
. (4.10)

Substituting (4.8) and (4.9) into (4.5), we get

u=
√

μ

a
(
1−h2− k2

) (hsinL− k cosL),

v =
√

μ

a
(
1−h2− k2

) (1 +hcosL+ k sinL),

r = a
(
1−h2− k2

)

1 +hcosL+ k sinL
,

θ = L,
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λu =
√
a

μ

{
2aλa

(hsinL− k cosL)√
1−h2− k2

+
√

1−h2− k2
(
λh sinL− λk cosL

)
}

,

λv =
√
a

μ

{
2aλa

√
1−h2− k2

(
a

r

)

+
1√

1−h2− k2

(
r

a

){[
3
2
h+ 2cosL+

h

2
cos2L+

k

2
sin2L

]
λh

+
[

3
2
k+ 2sinL− k

2
cos2L+

h

2
sin2L

]
λk

}}
,

λr = 2
(
a

r

)2

λa +
1
r

[
(h+ cosL)λh + (k+ sinL)λk

]
,

λθ =−kλh +hλk + λL.

(4.11)

These equations are valid for all orbits and define a Mathieu transformation between the
Cartesian elements and the nonsingular orbital elements.

For quasicircular orbits, with very small eccentricities, (4.11) can be greatly simplified
if higher-order terms in eccentricity are neglected. Thus,

u= na(hsin�− k cos�),

v = na(1 +hcos� + k sin�),

r = a

1 +hcos� + k sin�
,

θ = �

λu = 1
na

(
λh sin�− λk cos�

)
,

λv = 2
na

[
aλa +

(
λh cos� + λk sin�

)]
,

λr = 2λa +
1
a

(
λh cos� + λk sin�

)
,

λθ = λ� ,

(4.12)

where n =
√
μ/a3 is the mean motion and � = ω+M is the mean latitude. We note that

first-order terms in eccentricity are retained in the state variables in order to get a tra-
jectory with better accuracy. For adjoint variables, this is unnecessary since λa, λh, and λk
are small quantities for transfers between close circular orbits, that is, for small amplitude
transfers.
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Introducing (4.12) into the expression for H∗, we finally get

H∗ = nλ� +
1

2n2a2

{
4a2λ2

a +
5
2

(
λ2
h + λ2

k

)
+ 8aλaλk sin� + 8aλaλh cos�

+3λhλk sin2� +
3
2

(
λ2
h− λ2

k

)
cos2�

}
.

(4.13)

For transfers between close circular coplanar orbits, an approximate solution of the
system of differential equations governed by H∗ can be obtained through simple integra-
tions if the system is linearized about a reference circular orbit O with semimajor axis a.
This solution can be put in the form

Δx = Aλ0, (4.14)

where Δx = [Δα Δh Δk]T denotes the imposed changes on nonsingular orbital ele-
ments (state variables), α = a/a, λα = aλa, λ0 is the 3× 1 vector of initial values of the
adjoint variables, and A is a 3× 3 symmetric matrix. The adjoint variables are constant
and the matrix A is given by

A=
⎡

⎢
⎣

aαα aαh aαk
ahα ahh ahk
akα akh akk

⎤

⎥
⎦ , (4.15)

where

aαα = 4

√
√
√
√a

5

μ3
Δ�, (4.16)

aαh = ahα = 4

√
√
√
√a

5

μ3

(
sin� f − sin�0

)
, (4.17)

aαk = akα =−4

√
√
√
√a

5

μ3

(
cos� f − cos�0

)
, (4.18)

ahh =
√
√
√
√a

5

μ3

[
5
2
Δ� +

3
4

(
sin2� f − sin2�0

)
]

, (4.19)

ahk = akh =−3
4

√
√
√
√a

5

μ3

(
cos2� f − cos2�0

)
, (4.20)

akk =
√
√
√
√a

5

μ3

[
5
2
Δ�− 3

4

(
sin2� f − sin2�0

)
]
. (4.21)
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Subscript f stands for the final time, � = �0 +n(t− t0), and t0 is the initial time. The linear
solution, described by (4.14)–(4.21), is in agreement with the one presented in [1, 18],
where it is obtained through a different approach.

In view of (4.1) and (4.12), the optimal thrust acceleration Γ∗ is expressed by

Γ∗ = 1
na

{(
λh sin�− λk cos�

)
er + 2

(
λα + λh cos� + λk sin�

)
es
}
. (4.22)

The variation of the consumption variable ΔJ during the maneuver can be obtained
straightforwardly from (4.13) and (4.15) by integrating, from t0 to t f , the differential
equation (see (3.3), (4.1), and (4.13))

dJ

dt
=H∗

γ , (4.23)

where H∗
γ denotes the part of the Hamiltonian H∗ concerned with the thrust accelera-

tion. Thus,

ΔJ = 1
2

{
aααλ

2
α + 2aαhλαλh + 2aαkλαλk+ahhλ2

h + 2ahkλhλk + akkλ2
k

}
, (4.24)

where aαα,aαh, . . . ,akk are given by (4.16)–(4.21); and λα, λh, and λk are obtained from the
solution of the linear algebraic system defined by (4.14).

We recall that the extremal (optimal) trajectory is given by (4.12) with the nonsingular
elements a, h, and k calculated from (4.14).

For transfers between circular orbits, only Δα is imposed. If it is assumed that the
initial and final positions of the vehicle in orbit are symmetric with respect to x-axis of
the inertial reference frame, that is, � f =−�0 = Δ�/2, the solution of the system (4.14) is
given by

λα = 1
2

√
μ3

a5

{
Δα(5Δ� + 3sinΔ�)

10Δ�
2

+ 6Δ� sinΔ�− 64sin2(Δ�/2)

}

,

λh =−
√
μ3

a5

{
8Δαsin(Δ�/2)

10Δ�
2

+ 6Δ� sinΔ�− 64sin2(Δ�/2)

}

,

λk = 0.

(4.25)

We note that the linear theory is applicable only to orbits which are not separated by
large radial distance, that is, to transfers between close orbits. If the reference orbit is
chosen in the conventional way, that is, with the semimajor axis as the radius of the initial
orbit, the radial excursion to the final orbit will be maximized [26]. A better reference
orbit is defined with a semimajor axis given by an intermediate value between the values
of semimajor axes of the terminal orbits. In our analysis, we have chosen a= (a0 + a f )/2
in order to improve the accuracy in the calculations.

In the next section, the results of the linear theory are compared to the ones provided
by the neighboring extremal algorithm described in Sections 2 and 3.
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Table 5.1. Consumption variable J (ρ > 1).

ρ t f − t0 Janal Jgrad Jneigh drel1 drel2

1.0250

2.0 3.5856× 10−4 3.5855× 10−4 3.5854× 10−4 0.00 0.00

3.0 8.4459× 10−5 8.4462× 10−5 8.4456× 10−5 0.00 0.01

4.0 3.1226× 10−5 3.1233× 10−5 3.1230× 10−5 0.01 0.01

5.0 1.7138× 10−5 1.7147× 10−5 1.7143× 10−5 0.03 0.02

1.0500

2.0 1.4463× 10−3 1.4463× 10−3 1.4459× 10−3 0.03 0.03

3.0 3.4169× 10−4 3.4166× 10−4 3.4164× 10−4 0.02 0.01

4.0 1.2533× 10−4 1.2538× 10−4 1.2537× 10−4 0.03 0.00

5.0 6.7541× 10−5 6.7611× 10−5 6.7598× 10−5 0.08 0.02

1.1000

2.0 5.8778× 10−3 5.8741× 10−3 5.8716× 10−3 0.11 0.04

3.0 1.3977× 10−3 1.3970× 10−3 1.3969× 10−3 0.06 0.00

4.0 5.0619× 10−4 5.0666× 10−4 5.0664× 10−4 0.09 0.00

5.0 2.6374× 10−4 2.6453× 10−4 2.6451× 10−4 0.29 0.01

1.2000

2.0 2.4187× 10−2 2.4097× 10−2 2.4097× 10−2 0.37 0.00

3.0 5.8370× 10−3 5.8200× 10−3 5.8199× 10−3 0.29 0.00

4.0 2.0813× 10−3 2.0845× 10−3 2.0844× 10−3 0.15 0.00

5.0 1.0260× 10−3 1.0346× 10−3 1.0345× 10−3 0.83 0.00

1.5236

2.0 1.7743× 10−1 1.7434× 10−1 1.7434× 10−1 1.77 0.00

3.0 4.4947× 10−2 4.4067× 10−2 4.4066× 10−2 1.99 0.00

4.0 1.6051× 10−2 1.5889× 10−2 1.5889× 10−2 1.02 0.00

5.0 7.2498× 10−3 7.3352× 10−3 7.3351× 10−3 1.17 0.00

5. Results

The values of the consumption variable J computed through the neighboring extremal
algorithm and the ones provided by the linear theory and by a numerical method based
on gradient techniques [19] are presented in Tables 5.1 and 5.2, and are plotted in Figures
5.1 and 5.2, as function of the radius ratio ρ of the terminal orbits for various transfer
durations t = t f − t0. The absolute relative difference in percent between the numerical
and analytical results is also presented in the tables according to the following definition:

drel1 =
∣
∣
∣
∣
Jneigh− Jlinear

Jneigh

∣
∣
∣
∣× 100%,

drel2 =
∣
∣
∣
∣
Jneigh− Jgrad

Jneigh

∣
∣
∣
∣× 100%.

(5.1)

Tables 5.1 and 5.2 show that drel1 < 2% for ρ > 1, and drel1 < 5.5% for ρ < 1. The greater
values corresponds to transfers with moderate amplitude ρ = 0.7270 and ρ = 1.5236. On
the other hand, drel2 < 0.04% for all cases.

Tables 5.1 and 5.2, and Figures 5.1 and 5.2 show the good agreement between the
results. Note that the linear theory provides a good approximation for the solution of the
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Table 5.2. Consumption variable J (ρ < 1).

ρ t f − t0 Jlinear Jgrad Jneigh dre1l drel2

0.7270

2.0 3.7654× 10−2 3.7299× 10−2 3.7298× 10−2 0.95 0.00

3.0 8.9269× 10−3 9.0261× 10−3 9.0259× 10−3 1.10 0.00

4.0 4.0482× 10−3 4.2133× 10−3 4.2131× 10−3 3.91 0.00

5.0 2.8941× 10−3 3.0573× 10−3 3.0572× 10−3 5.33 0.00

0.8000

2.0 2.0951× 10−2 2.0842× 10−2 2.0842× 10−2 0.52 0.00

3.0 4.9040× 10−3 4.9173× 10−3 4.9172× 10−3 0.27 0.00

4.0 2.0703× 10−3 2.1047× 10−3 2.1046× 10−3 1.63 0.00

5.0 1.3838× 10−3 1.4198× 10−3 1.4197× 10−3 2.53 0.00

0.9000

2.0 5.4740× 10−3 5.4672× 10−3 5.4671× 10−3 0.13 0.00

3.0 1.2771× 10−3 1.2772× 10−3 1.2771× 10−3 0.00 0.01

4.0 5.0063× 10−4 5.0198× 10−4 5.0198× 10−4 0.27 0.00

5.0 3.0496× 10−4 3.0653× 10−4 3.0652× 10−4 0.51 0.00

0.9500

2.0 1.3958× 10−3 1.3955× 10−3 1.3955× 10−3 0.02 0.00

3.0 3.2649× 10−4 3.2649× 10−4 3.2647× 10−4 0.01 0.01

4.0 1.2451× 10−4 1.2459× 10−4 1.2458× 10−4 0.06 0.00

5.0 7.2585× 10−5 7.2671× 10−5 7.2667× 10−5 0.11 0.01

0.9750

2.0 3.5225× 10−4 3.5231× 10−4 3.5223× 10−4 0.01 0.02

3.0 8.2555× 10−5 8.2560× 10−5 8.2553× 10−5 0.00 0.01

4.0 3.1120× 10−5 3.1126× 10−5 3.1124× 10−5 0.01 0.01

5.0 1.7765× 10−5 1.7772× 10−5 1.7771× 10−5 0.03 0.00

low-thrust limited-power transfer between close circular coplanar orbits in an inverse-
square force field.

Figures 5.1 and 5.2 also show that the fuel consumption can be greatly reduced if the
duration of the transfer is increased. The fuel consumption for transfers with duration
t f − t0 = 2 is approximately ten times the fuel consumption for a transfer with duration
t f − t0 = 4.

In order to follow the evolution of the optimal thrust acceleration vector during the
transfer, it is convenient to plot the locus of its tip in the moving frame of reference.
Figures 5.3 and 5.4 illustrate these plots for small amplitude transfers with ρ = 0.950 and
1.050, and for moderate amplitude transfers, Earth-Mars (ρ = 1.523), and Earth-Venus
(ρ = 0.727) transfers, with t f − t0 = 2. It should be noted that the agreement between
the numerical and analytical results is better for small amplitude transfers. For moderate
amplitude transfers, this difference increases with the duration of the maneuvers.

Figures 5.5 and 5.6 show the time history of the state variables—u, v, and r—for a
small amplitude transfer, ρ = 1.050, and a moderate amplitude transfer, ρ = 1.523, with
t f − t0 = 2. Again, the agreement between the numerical and analytical results is better
for small amplitude transfers.
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Figure 5.1. Consumption variable J for ρ > 1.

The results—consumption variable, thrust acceleration, and trajectory—provided by
the gradient-based algorithm are quite similar to the ones provided by the neighboring
extremal algorithm.

It should be noted that the numerical algorithms based on the second variation
theory—gradient-based algorithm and the neighboring extremal algorithm—provide
quite similar results. This fact leads us to suppose that the solutions provided by the
both algorithms are really optimal in the sense of a local minimum for the consump-
tion variable J , although the sufficiency conditions are not tested. Besides, we note that
the Pontryagin maximum principle is a set of necessary and sufficient conditions for the
linearized problem describing the transfers between close circular orbits [26].

6. Conclusion

In this paper, a numerical and analytical study of optimal low-thrust limited-power tra-
jectories for simple transfer (no rendezvous) between close circular coplanar orbits in an
inverse-square force field is presented. The numerical study is carried out by means of
a neighboring extremal algorithm and the analytical one is based on linear theory ob-
tained through canonical transformation theory, using the concept of generalized canon-
ical systems. The numerical and analytical results have been compared to the ones ob-
tained through a numerical method based on gradient techniques. The great agreement
between the results shows that the linear theory provides a good approximation for the
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Figure 5.2. Consumption variable J for ρ < 1.
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Figure 5.3. Thrust acceleration for t f − t0 = 2 (transfers with small amplitude).
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Figure 5.4. Thrust acceleration for t f − t0 = 2 (transfers with moderate amplitude).

solution of the transfer problem and it can be used in preliminary mission analysis con-
cerning close coplanar circular orbits. On the other hand, the good performance of the
algorithms based on the second variation theory shows that they are also good tools in
determining optimal low-thrust limited-power trajectories.

Appendix

In this appendix, the modified accessory minimum problem is described. Consider the
Bolza problem formulated in Section 2. Introducing the adjoint vector λ(t) and the vector
of Lagrange multipliers μ, the augmented performance index J is formed using (2.3) and
(2.4),

J = g(x(t f
))

+μTψ
(
x
(
t f
))

+
∫ t f

t0

[−H(x,λ,u) + λTẋ
]
dt, (A.1)

where H is the Hamiltonian function previously introduced in Section 2.
Now, consider the expansion of J to second-order and the constraints, defined by

(2.2)–(2.4), to first order. Taking into account that all first-order terms vanish about a
nominal extremal solution (see (2.5)–(2.10)), one finds that

δ2J = 1
2
δxT

(
t f
)(
gxx +μTψxx

)
δx
(
t f
)− 1

2

∫ t f

t0

{
δxTHxxδx+ 2δuTHuxδx+ δuTHuuδu

}
dt,

(A.2)
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Figure 5.5. Time history of state variables for t f − t0 = 2 and ρ = 1.050.

δẋ =Hλxδx+Hλuδu, (A.3)

δx
(
t0
)= 0, (A.4)

ψxδx
(
t f
)=−kψ. (A.5)
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Figure 5.6. Time history of state variables for t f − t0 = 2 and ρ = 1.523.

All quantities, Hxx,Hλx,gxx,ψ, . . . , in equations above, are evaluated on a nominal ex-
tremal solution and k is defined in Section 2.

In order to assure that the expansion above is valid, a constraint is imposed on the
control variations:

1
2

∫ t f

t0
δuTWδudt =M, (A.6)
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where W(t) is an arbitrary m×m positive-definite weighting matrix and M > 0 is an
arbitrary prescribed value.

Consider the following Bolza problem: determine δu such that δ2J is minimized sub-
ject to the constraints (A.3) through (A.6). In view of the imposed constraint on the
control variations defined by (A.6), this minimization problem is referred to as modified
accessory minimum problem. By applying the set of necessary and sufficient conditions
to this minimization problem, one finds (2.12) through (2.17), with (2.14) replaced by

Huxδx+Huλδλ+
(
Huu +αW

)
δu= 0, (A.7)

where α is a constant Lagrange multiplier associated to the constraint (A.6). Since W and
M are arbitrary, α can be included in the choice of matrix W , that is, a new arbitrary m×
m matrix W2 can be introduced such that W2 = αW . The evaluation of α is unnecessary,
as well as the choice of M. Accordingly, (A.7) can be replaced by

Huxδx+Huλδλ+
(
Huu +W2

)
δu= 0. (A.8)

Beside the equations mentioned above, the strengthened Legendre condition must be
satisfied, that is,

Huu +W2 < 0. (A.9)
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This paper develops a stochastic hybrid model-based control system that can determine
online the optimal control actions, detect faults quickly in the control process, and re-
configure the controller accordingly using interacting multiple-model (IMM) estimator
and generalized predictive control (GPC) algorithm. A fault detection and control sys-
tem consists of two main parts: the first is the fault detector and the second is the con-
troller reconfiguration. This work deals with three main challenging issues: design of fault
model set, estimation of stochastic hybrid multiple models, and stochastic model predic-
tive control of hybrid multiple models. For the first issue, we propose a simple scheme for
designing faults for discrete and continuous random variables. For the second issue, we
consider and select a fast and reliable fault detection system applied to the stochastic hy-
brid system. Finally, we develop a stochastic GPC algorithm for hybrid multiple-models
controller reconfiguration with soft switching signals based on weighted probabilities.
Simulations for the proposed system are illustrated and analyzed.
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1. Introduction

Control systems are becoming more and more powerful and sophisticated. Reliability,
availability, and safety are primary goals in the operation of process systems. The aim
to develop a fast and reliable control system that could detect undesirable changes in
the process (referred to as “faults”) and isolate the impact of faults has been attracting
much attention of researchers. Various methods for fault detection and control of process
systems have been studied and developed over recent years [1–8] but there are relatively
few successful developments of controller systems that can deal with faults in stochastic
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hybrid sense where faults are modeled as multiple-model set with varying variable struc-
ture and use of stochastic model predictive control algorithm.

Faults are difficult to foresee and prevent. Traditionally, faults were handled by de-
scribing the result behavior of the system and were grouped into a hierarchical structure
of fault model [9]. This approach is still widely used in practice: when a failure occurs,
the system behavior changes and should be described by a different mode from the one
that corresponds to the normal mode. A more appropriate mathematical model for such a
system is the so-called stochastic hybrid approach. It differs from the conventional hierar-
chical structure in that its state may jump as well as it may vary continuously. Apart from
the applications to problems involving failures, hybrid systems have found great success
in such areas as target tracking and control that involve possible structure changes [10].
Hybrid systems switch among many operating modes, where each mode is governed by
its own characteristic dynamic laws. Mode transitions are triggered by variables crossing
specific thresholds.

For the fault modeling and verification, design of a model set is the key issue for the
application of multiple-model estimator and controller. For simple systems, fault model
set can be designed as a fixed structure (FS) or a fixed set of models at all times. The FS has
fundamental limitations that only one fixed model set can be represented sufficiently and
accurately by all possible failures. Actually, the set of possible system modes is not fixed.
It varies and depends on the hybrid state of the system at the previous time. As shown
in [11], use of more models in an FS estimation does not improve the performance. In
fact, the performance will deteriorate if too many models are used in one fixed model set.
Therefore, a variable structure (VS) is considered for modeling faults. The VS overcomes
limitations of FS by using a variable set of models determined in real time adaptively.
General and representative problems of model-set design, choice, and comparison for
multiple-model approach to hybrid estimation are given in [12]. In this paper, a simple
scheme for modeling of fault set as discrete and continuous random variables is proposed.

For the fault detection, various methods have been developed in [13–17]. One of the
most effective approaches for solving stochastic hybrid systems is based on the use of
multiple models (MM): it runs a bank of filters in parallel, each based on a particular
model to obtain the model-conditional estimates. MM estimation algorithms appeared
in early 1970s when Bar-Shalom and Tse [18] introduced a suboptimal, computation-
ally bounded extension of Kalman filter to cases where measurements were not always
available. Then, several multiple-model filtering techniques, which could provide accu-
rate state estimation, have been developed. Major existing approaches for MM estimation
are discussed and introduced in [18–23] including the noninteracting multiple model
(NIMM), the Gaussian pseudo-Bayesian (GPB1), the second-order Gaussian pseudo-
Bayesian (GPB2), and the interacting multiple models (IMM). Among those, we consider
and select a fast and reliable algorithm for the fault detection system applied to the above
model-set design.

Finally, for the controller reconfiguration (CR), we propose the use of stochastic model
predictive control (MPC) algorithm applied to stochastic hybrid multiple models. The
problem of determining optimal control laws for hybrid systems has been widely inves-
tigated and many results can be found in [24–28]. However, the use of MPC applied to
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stochastic hybrid systems is unfavorable since the general MPC algorithms follow deter-
ministic perspective approaches. Thus, we propose use of generalized predictive control
(GPC), a stochastic MPC technique developed by Clarke el al. [29, 30]. GPC uses the
ideas with controlled autoregressive integrated moving average (CARIMA) plant in adap-
tive context and self-tuning by recursive estimation. Kinnaert [31] developed GPC from
CARIMA model into a more general one in MIMO state-space form. We propose the use
of a bank of GPC controllers, each based on a particular model. The optimal control ac-
tion is the summation of probabilistic weighted outputs of each GPC controller. A similar
soft switching mechanism based on weighted probabilities has been developed. Simula-
tions for the proposed controller are illustrated and analyzed. Results show its strong
ability for real applications to detect faults in dynamic systems.

The outline of this paper is as follows: Section 2 introduces the stochastic hybrid sys-
tem and fault modeling design; Section 3 considers the selection of a fault detection sys-
tem; Section 4 develops a controller reconfiguration integrated with fault detection sys-
tem; examples and simulations are given after each section to illustrate the main ideas of
the section; finally conclusions are given in Section 5.

2. Hybrid system and fault modeling design

An important requirement currently exists for improving the safety and reliability of pro-
cess systems in ways that reduce their vulnerability to failures. When a failure occurs, the
system behavior changes and should be described by a different mode from the one that
corresponds to the normal mode of operation. An effective way to model faults for dy-
namic failures, which state may jump as well as vary continuously in a discrete set of
modes, is the so-called a hybrid system.

A simplest continuous time hybrid system is described by the following different linear
state update equation:

ẋ(t)= A
(
t,m(t)

)
x(t) +B

(
t,m(t)

)
u(t) +T

(
t,m(t)

)
ξ(t),

z(t)= C
(
t,m(t)

)
x(t) +η

(
t,m(t)

)
,

(2.1)

and a discrete-time hybrid system is the following:

x(k+ 1)=A
(
k,m(k+ 1)

)
x(k) +B

(
k,m(k+ 1)

)
u(k) +T

(
k,m(k+ 1)

)
ξ(k),

z(k)= C
(
k,m(k)

)
x(k) +η

(
k,m(k)

)
,

(2.2)

where A, B, T , and C are the system matrices, x ∈ Rn is the state vector, u ∈ Rm is the
control input, z ∈Rp is the measured output, ξ ∈Rnξ and η ∈Rpη are independent noises
with means ξ(t) and η(t), and covariances Θ(k) and Ξ(k). In this equation, m(t)∈M is
the system mode, which may jump or stay unchanged, x is the state variable, which varies
continuously. The system mode sequence is assumed to be a first-order Markov chain
with transition probabilities:

Π
{
mj(k+ 1) |mi(k)

}= πi j(k), ∀mi,mj ∈Mk, (2.3)
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where Π{·} denotes probability, m(k) is the discrete-valued modal state, that is, the index
of the normal or fault modes at time k, Mk = {m1, . . . ,mN} is the set of all possible system
modes at time instant k, πi j(k) is the transition probability from mode mi to mode mj at
time instant k. Obviously, the following relation must be held for any mi ∈Mk:

Mk∑

j=1

πi j(k)=
Mk∑

j=1

Π
{
mj(k+ 1) |mi(k)

}= 1, mi,...,N ∈Mk ⊂M. (2.4)

Faults can be modeled by changing the appropriate matrices A, B, C, or T representing
the effectiveness of failures in the systems. They can also be modeled by increasing the
process noise covariance Θ or measurement noise covariance Ξ in ξ and η. Mk denotes
the set of models used at time instant k and M denotes the total set of models used, that
is, M is the union of all M′

ks:

mi ∈Mk =
⎧
⎪⎨

⎪⎩

x(k+ 1)=Ai(k)x(k) +Bi(k)u(k) +Ti(k)ξi(k),

z(k)= Ci(k)x(k) +ηi(k),
(2.5)

where the subscript i denotes the fault modeling in model set, mi ∈Mk = {m1,m2, . . . ,
mN}, each mi corresponds to a node (a fault) occurring in the process at time instant k.
In fixed structure, the model setMk used is fixed over time, that is,MkΔ=M, for all k, to be
determined offline based on the initial information about the system faults. Otherwise,
we have a variable structure or the model set Mk varies at any time in the total model
set M or Mk ⊂M. Variable structure model overcomes fundamental limitations of fixed
structure mode set because the fixed model set used does not always exactly match the
true system mode set at any time, or the set of possible modes at any time varies and
depends on the previous state of the system.

For faults varying as continuous variables, we can handle them via probabilistic mod-
eling techniques. In these cases, faults can be modeled as discrete modes based on their
cumulative distribution function (CDF) and probability density function (PDF). Data
of the past operation fault records (fault rate and percentage of fault type) provide the
required probability distribution of the mode. More methods on design of model set as
continuous random variables can be read in [12]. In this paper, we just propose the sim-
plest method of equal probability to model a continuous random variable into discrete
modes. We assume that the CDF Fs(x) of the true continuous variable s is known and
we want to reconstruct it into the CDF Fm(x) of discrete modes. In the equal probability
method, we propose to group the CDF Fs(x) into |M| discrete modes of equal probabili-
ties, mi = 1/|M| (preferably an odd number 3,5,7, . . . , for symmetric distributions). The
design of a continuous variable into discrete modes is shown in Figure 2.1 with |M| = 5
and PDF is a normal distribution f (x;μ,σ) = (1/σ

√
2π)exp(−(x− μ)2/2σ2) with mean

μ= 0 and variance σ2 = 1.
In Figure 2.1, we group a continuous random variable with a normal distribution into

five equal probabilities (discrete modes) with a model set (mode set) of M = {m1,m2, . . . ,
m|M|}.
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Figure 2.1. Group a normal CDF into equal probabilities.

Example 2.1 (fault model-set design). Consider a continuous process system with the
state space model in (2.1):

ẋ(t)= Aix(t) +Biu(t) +Tiξi(t),

z(t)= Cix(t) +ηi(t),
(2.6)

where Ai, Bi, Ti, and Ci are system matrices, ξi and ηi are independent noises with zero-
mean ξ = η = 0 and constant covariance Θ = Ξ = 0.022I , Ti = I . We assume that at the
normal operation mode N , two generic types of faults might take place: one static fault
mode S0 and one varying fault mode V0. This example is modeled from a chemical pro-
cess model with four state variables, two inputs and two outputs. For simplicity, we verify
only one input.

We have the normal operation mode:

AN =

⎡

⎢
⎢
⎢
⎣

1 0 0.1 0
0 1 0 0.1

−0.08 0.06 0.7 0
0.1 −0.1 0 0

⎤

⎥
⎥
⎥
⎦

, BN =

⎡

⎢
⎢
⎢
⎣

−0.2
0.03

2
1

⎤

⎥
⎥
⎥
⎦

, CN =
[

1 −0.5 1 1
−1 0.6 0 1

]

.

(2.7)

A static failure mode S0 happens when an interrupted actuator failure, −50%,

BS0 = 0.5BN =

⎡

⎢
⎢
⎢
⎣

−0.1
0.015

1
0.5

⎤

⎥
⎥
⎥
⎦
. (2.8)
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A varying failure mode V0 happens when a continuous varying variable appears in AN ,

AV0 =

⎡

⎢
⎢
⎢
⎣

1 0 0.1 0
0 1 0 0.1

−0.08 0.06 0.7 sin(ω)
0.1 −0.1 0 0

⎤

⎥
⎥
⎥
⎦

, (2.9)

where ω is a continuous varying variable (deg/s).
We assume that at the static mode S0, two other generic types of static faults might

take place: mode S1 with sensor 1 failure −50% or

CS1 =
[

0.5z1

z2

]

=
[

0.5 −0.25 0.5 0.5
−1 0.6 0 1

]

, (2.10)

and mode S2 with sensor 1 failure +50% or

CS2 =
[

1.5z1

z2

][
1.5 −0.75 1.5 1.5
−1 0.6 0 1

]

. (2.11)

We continue to assume that the PDF of the continuous varying variable ω in matrix AV0

is the mixture of three normal distributions:

f (ω)= 1
3
√

2π
exp

(
− (ω− 3)2

2

)
+

1
3
√

2π
exp

(
− (ω)2

2

)
+

1
3
√

2π
exp

(
− (ω+ 3)2

2

)
.

(2.12)

Since the PDF of ω is the combination of three normal curves with three mean values
ω1 = −30/ s, ω0 = 00/ s, and ω2 = 30/ s, we can group this continuous varying variable
into three discrete models (modes) with AV1 , AV0 , and AV2 corresponding to the above
three mean values with equal probabilities of 1/3, 1/3, and 1/3. The model set design via
CDF and its reconstruction PDF are shown in Figure 2.2.

Hence, in this example, we have total 7 models (modes) grouped into three varying
model sets in Figure 2.3:

model set 1: M1 =
{
m1 =N(AN ,BN ,CN ),m2 = S0(AS,BN ,CN ),m3 =V0(AV0 ,BN ,CN )

}
,

model set 2: M2 =
{
m2 = S0(AS,BN ,CN ),m4 = S1(AS,BN ,CS1 ),m5 = S2(AS,BN ,CS2 )

}
,

model set 3: M3 =
{
m3 =V0(AV0 ,BN ,CN ),m6 =V1(AV1 ,BN ,CN ),m7 =V2(AV2 ,BN ,CN )

}
.

(2.13)

We assume that the following Markov transition probability matrix in (2.3) is used for all
simulations in the total model set M = {m1,m2,m3,m4,m5,m6,m7}:

Π=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.94 0.03 0.03 0 0 0 0
0.03 0.93 0 0.02 0.02 0 0
0.03 0 0.93 0 0 0.02 0.02

0 0.05 0 0.95 0 0 0
0 0.05 0 0 0.95 0 0
0 0 0.05 0 0 0.95 0
0 0 0.05 0 0 0 0.95

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.14)
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Figure 2.2. Model set design of varying variable ω.
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Figure 2.3. Total model set design.

The design of model set now is completed. In the next section, we will consider the selec-
tion of a reliable fault detection system applied to this model set.

3. Fault detection system

Fault detection for stochastic hybrid systems has received a great attention in recent years.
A variety of different fault detection methods has been developed. For hybrid systems
with fixed structure (FS) or variable structure (VS) modeled in mixed logic dynamical
(MLD) form or piecewise affine (PWA) systems, the state estimation can be solved by
moving horizon estimation (MHE) strategy. MHE has strong ability to incorporate con-
straints on states and disturbances. Moreover, on the computational side, because MHE
algorithms lead to optimization problem of fixed dimension, they are suitable for prac-
tical implementation. MHE is applied successfully to constrained linear systems where it
can guarantee stability of the estimate when other classical techniques, like Kalman fil-
tering, fail [32]. A number of MHE techniques for fault detection system can be found
in [32–35]. However for stochastic hybrid systems where their state can jump as well
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Figure 3.1. Structure of an MM estimator.

as vary continuously and randomly in a model set with the system mode sequence as-
sumed to be a first-order Markov chain in (2.3), a more effective and natural estimation
approach is the use of algorithms of multiple-model (MM) estimator. Major existing ap-
proaches for MM estimation are discussed and introduced in [18–26]. In this part, we
consider and select a reliable fault detection system among the noninteracting multi-
ple models (NIMM), the Gaussian pseudo-Bayesian (GPB1), the second-order Gaussian
pseudo-Bayesian (GPB2), and the interaction multiple models (IMM).

From the design of model set (in Section 2), a bank of filters runs in parallel at every
time, each based on a particular model, to obtain the model-conditional estimates. The
overall state estimate is a probabilistically weighted sum of these model-conditional es-
timates. The jumps in system modes can be modeled as switching among the assumed
models in the set.

Figure 3.1 shows the operation of a recursive multiple-model estimator, where x̂i(k | k)
is the estimate of the state x(k) obtained from the filter based on model mi at time k given
the measurement sequence through time k; x̂0

i (k− 1 | k− 1) is the equivalent reinitialized
estimate at time (k−1) as the input to the filter based on model mi at time k; x̂(k | k) is
the overall state estimate; Pi(k | k), P0

i (k− 1 | k− 1), and P(k | k) are the corresponding
covariances.

A simple and straightforward way of filter reinitialization is that each single model-
based recursive filter uses its own previous state estimation and state covariance as the
input at the current cycle:

x̂0
i (k− 1 | k− 1)= x̂i(k− 1 | k− 1),

P0
i (k− 1 | k− 1)= Pi(k− 1 | k− 1).

(3.1)

This leads to the so-called noninteracting multiple-model (NIMM) estimator because the
filters operate in parallel without interactions with one another, which is reasonable only
under the assumption that the system mode does not change.
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Another way of reinitialization is to use the previous overstate estimate and covariance
for each filter as the required input:

x̂0
i (k− 1 | k− 1)= x̂(k− 1 | k− 1),

P0
i (k− 1 | k− 1)= P(k− 1 | k− 1).

(3.2)

This leads to the first-order generalized pseudo-Bayensian (GPB1) estimator. It belongs to
the class of interacting multiple-model estimators since it uses the previous overall state
estimate, which carries information from all filters. Clearly, if the transition probability
matrix is an identity matrix, this method of reinitialization reduces to the first one.

The GPB1 and GPB2 algorithms were the result of early work by Ackerson and Fu
[21] and good overviews are provided in [22], where suboptimal hypothesis pruning
techniques are compared. The GPB2 differed from the GPB1 by including knowledge of
the previous time step’s possible mode transitions, as modeled by a Markov chain. Thus,
GPB2 produced slightly smaller tracking errors than GPB1 during nonmaneuvering mo-
tion. However in the size of this part, we do not include GPB2 into our simulation test
and comparison.

A significantly better way of reinitialization is to use IMM. The IMM was introduced
by Zhang and Li in [23]:

x̂0
j (k | k)= E

[
x(k) | zk,mj(k+ 1)

]=
N∑

i=1

x̂i(k : k)P
{
mi(k) | zk,mj(k+ 1)

}
,

P0
j (k | k)= cov

[
x̂0
j (k : k)

]=
N∑

i=1

P
{
mi(k) | zk,mj(k+ 1)

}

× {
Pi(k | k) + x̃0

i j(k | k)x̃0
i j(k | k)′

}
,

(3.3)

where cov[·] stands for covariance and x̃0
i j(k | k)= x̂0

i (k | k)− x̂ j(k | k). In this paper, we
will use this approach for setting up a fault detection system.

For each model in Mk ∈M = {m1, . . . ,mN
}

, we can operate a Kalman filter. The prob-
ability of each model matching to the system mode provides the required information for
mode’s chosen decision. The mode decision can be achieved by comparing it with a fixed
threshold probability μT . If the mode probabilities maxi(μi(k)) ≥ μT , mode at μi(k) has
occurred and has taken place at the next cycle. Otherwise, there is no new mode detection.
The system maintains the current mode for the next cycle calculation.

Example 3.1 (test and selection of fault detection system). From the model-set design
in Example 2.1, model-set modes in (2.6) are discretized with 0.1 second, the thresh-
old value for mode probabilities is chosen as μT = 0.9. Now we begin to compare the
three estimators of NIMM, GPB1, and IMM to test their ability to detect faults. The
seven models are run for a time interval t = 20 seconds and for the following sequence:
{m1,m2,m4,m2,m5,m2,m1,m3,m6,m3,m7}. Results of simulation are shown in Figure
3.2.

In Figure 3.2, we can see that the GPB1 estimator performs as good as IMM estimator
while NIMM estimator fails to detect faults in the model set. Next we continue to test the
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Figure 3.2. Probabilities of estimators (a) NIMM, (b) GPB1, and (c) IMM.
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Figure 3.3. Probabilities of estimators (a) GPB1 and (b) IMM.

ability of GPB1 and IMM estimators by narrowing the distances between modes as close
as possible until one of methods cannot detect the failures. Now we assume to design new
two varying modes of {m∗

6 ,m∗
7 } corresponding to a new A∗V1

with ω∗1 = 0.30/ s and a new
A∗V2

with ω∗2 = −0.30/ s. With these new parameters, GPB1 fails to detect failures since
the distance between modes {m∗

6 ,m3,m∗
7 } is very close, while IMM still proves it is much

superior in Figure 3.3.
As a result, we select the IMM for our fault detection system. Now we move to the

main part of this paper to set up a controller reconfiguration for the fault detection and
control system.
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4. Controller reconfiguration

In this section, we develop a new CR which can determine online the optimal control
actions and reconfigure the controller accordingly. The problem of determining the op-
timal control laws for hybrid systems has been widely studied in recent years and many
methods have been developed in [24–28]. Optimal quadratic control of piecewise linear
and hybrid systems is found in [25, 26]. For complex constrained multivariable con-
trol problems, model predictive control (MPC) has become the accepted standard in the
process industries [36, 37]. MPC can be applied to multiple models using linear matrix
inequalities (LMIs) in [38]. The general MPC algorithms follow deterministic perspec-
tive approaches, hence, for stochastic hybrid systems described in (2.1), (2.2), (2.3), and
(2.4), there are few MPC ideas applied to control stochastic hybrid systems. Thus, we pro-
pose a new controller reconfiguration (CR) using generalized predictive control (GPC)
algorithm. We will show how an IMM-based GMC controller can be used as a good fault
detection and control system.

Generalized predictive control (GPC) is one of model predictive control (MPC) tech-
niques developed by Clarke et al. [29, 30]. GPC was intended to offer a new adaptive
control alternative. GPC uses the ideas with controlled autoregressive integrated mov-
ing average (CARIMA) plant in adaptive context and self-tuning by recursive estimation.
Kinnaert [31] developed GPC from CARIMA model into a more general form when the
models are described in space.

The optimal control problem for the general cost function for GPC controller in (2.1)
is

min
U

Δ={u1,u2,...,ut+Nu−1}

{

J
(
U ,x(t)

)= x′t+Ny|t Pxt+Ny|t +
Ny−1∑

k=0

[
x′t+k|tQxt+k|t +u′t+k|tRut+k|t

]
}

,

subject to xt+k+1|t = Axt+k|t +But+k +Tξt+k|t,

ut+k =−Kxt+k|t, k ≥Nu,

xt+k ∈ X, ut+k ∈ U,

(4.1)

where Q = Q′ > 0, R = R′ ≥ 0 are the weighting matrices for predicted state and input,
respectively. Linear feedback gain K and the Lyapunov matrix P > 0 are the solution of
Riccati equation. For simplicity, we assume that the predictive horizon is set equal to the
control horizon, that is, Nu =Ny =NP .

By substituting xt+Np|t = ANpx(t) +
∑NP−1

j=0 AjBut+Np−1− j + ANP−1Tξ(t), (4.1) can be
rewritten as

min
U

{
1
2
U ′HU + x′(t)FU + ξ′(t)YU

}
, subject to GU ≤W +Ex(t), (4.2)

where the column vector U
Δ= [u′t , . . . ,u′t+Np−1]′ ∈ RU is the predictive optimization vec-

tor, H = H′ > 0, and H , F, Y , G, W , E are obtained from (4.1) as only the optimizer
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Figure 4.1. Two diagrams of IMM-based GPC controllers.

U is needed. Then, the optimization problem (4.2) is a quadratic program and depends
on the current state x(t) and noise ξ(t). The implementation of GPC requires the online
solution of a quadratic program at each time step.

For the controller reconfiguration (CR), we can use the output of IMM, the overall
state estimate x(k) ≈ x̂(k) =∑N

i=1μix̂i(k) in (3.3), where N is the number of models in
the current model set, as the input for (a) a GPC controller or for (b) a bank of GPC
controllers shown in Figure 4.1.

In Figure 4.1(a), IMM provides the overall state estimate x̂(t) and indicates one “most
reliable” mode mi in the mode set. Thus, we can build up a GPC controller corresponding
to this “most reliable” mode. The stability of the system is assured if we can find a positive
Lyapunov matrix in (4.1).

In Figure 4.1(b), assuming the model probabilities μi(t) are constant during the pre-
dictive control horizon, we can derive a new GPC control law that the “true” model m is
the union of all model modes mi in the current model set Mk in (2.5) or m=∑N

i=1μimi.
Thus, we can achieve a new control law by using a bank of GPC controllers for each model
in the model set and have the overall control input u(t)≈∑N

i=1μiûi(t). The stability of the
system is guaranteed if we can find out a common Lyapunov matrix P for all models in
the model set.

Lemma 4.1. The optimal control problem for the general cost function for GPC controller
in (4.1) applied to control stochastic hybrid system in (2.1) can guarantee the global and
asymptotical stability if there exist positive definite matrices P and θi such that AiP +PA′i =
−θi, for all i.

Proof. For simplicity, we assume that the control input u(t +NP) = 0 after k ≥ NP pre-
dictive control horizon so that a common Lyapunov matrix for each model in (4.1) is the
solution of Riccati equations AiP + PA′i = −θi since the state update equation then be-
comes ẋ(t)=∑N

i=1μiAix(t). For a positive Lyapunov function V(x)= x′(t)Px(t), we have
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always a negative definite time derivative V̇(x) < 0, and the system is stable:

V̇(x)=
( N∑

i=1

μiAix

)′
Px+ x′P

( N∑

i=1

μiAix

)

=
N∑

i=1

μix
′(AiP +PA′i

)
x =

N∑

i=1

μix
′(− θi

)
x < 0.

(4.3)

Otherwise, the closed-loop feedback in (4.1) ut+k = −Kxt+k|t for k ≥ NP , and we have
ẋ(t) = Ax(t) + Bu(t) or ẋ(t) = (

∑N
i=1μi(t)(A− BKi))x(t) = (

∑N
i=1μi(t)ALi)x(t) can also

satisfy Lemma 4.1 in (4.3). A similar result was found in [38] when we can apply a com-
mon Lyapunov matrix to find a robust stabilizing state feedback for uncertain hybrid
systems using LMIs.

For the controller reconfiguration (CR), we can apply hard switching or soft switching.
For hard switching, we use only one controller implemented at any time—similar scheme
in Figure 4.1(a). As indicated in [6], even if each controller globally stabilizes, there can
exist a switching sequence that destabilizes the closed-loop dynamics. Now we consider
some possible soft switching signals where the outputs of each controller are weighted by
a continuous, time-varying, probability vector νi(t) which can guarantee the closed-loop
stability, u(t)=∑N

i=1 νiûi(t), in which
∑N

i=1 νi(t)= 1, νi(t)∈ [0,1] for all i, t.
It is difficult to find out a common Lyapunov matrix for all models in the model

set (4.3). Recently, a new type of parameter-dependent Lyapunov function has been in-
troduced in the form that PL =

∑N
i=1 νiPi is a parameter-dependent Lyapunov function

for any AL =
∑N

i=1 νiALi. That is true since we always have a negative derivative V̇(x) <
0 in (4.3) as V̇(x) =∑N

i=1 νix′(AiPi +PiA
′
i )x =

∑N
i=1 νix′(−θ)x < 0. However, parameter-

dependent Lyapunov matrices do not insure the stability in switching sequence as indi-
cated in [6].

The existence of a direct common Lyapunov matrix AiP +PA′i =−θi can be searched
using software for solving LMIs. However we propose another method which can find a
common Lyapunov matrix with LMIs from their discrete equations. �

Lemma 4.2. The optimal control problem for the general cost function for GPC controller
in (4.1) applied to control stochastic hybrid system in (2.2) can guarantee the global and
asymptotical stability if there exist positive definite matrices P and scalar γ such that

⎡

⎢
⎣

P PA′i γ
AiP P 0
γ 0 γI

⎤

⎥
⎦ > 0, ∀i. (4.4)

Proof. Suppose there exists a Lyapunov function in (4.1) and the system will be stable
if the Lyapunov function is decreasing, that is, J(x(t +NP + 1)) < J(x(t +NP)), or x(t +
NP + 1)′Px(t +NP + 1)− x(t +NP)′Px(t +NP) < 0, or P−A′i PAi > 0, for all i. By adding
a scalar γ > 0, we have P−A′i PAi − γI > 0, or P− (A′i P)P−1(PAi)− (γ)Iγ−1(γ) > 0. And
using Schur complement, this equation is equivalent to the LMI in Lemma 4.2.
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Hence, the indirect common Lyapunov matrix in Lemma 4.2 is the solution to the
following LMI:

min
P>0,γ>0

γ, subject to

⎡

⎢
⎣

P PA′i γ
AiP P 0
γ 0 γI

⎤

⎥
⎦ > 0, ∀i. (4.5)

The above is CR design proposal for nonoutput tracking GPC controllers. However in
reality, the primary control objective is to force the plant outputs to track their set points.
What is about the CR design for tracking GPC controllers? In tracking GPC, the state
space of the stochastic model in (2.2) now can be changed into a new innovation form
[31]:

x̂(t+ 1 | t)= Ãx̂(t | t− 1) + B̃Δu(t) + T̃ξ(t),

z(t)= C̃x̂(t | t− 1) + ξ(t),
(4.6)

where Ã, B̃, C̃, and T̃ are fixed matrices from A, B, C, and T in (2.2), η = ξ, z(t) ∈ Rp,
Δu(t) = u(t)− u(t− 1) ∈ Rm, and x̂(t | t− 1) is an estimate of state x(t) ∈ Rn obtained
from a Kalman filter. For a moving horizon control, the prediction of x(t + j | t) in (4.6)
given the information {z(t),z(t− 1), . . . ,u(t− 1),u(t− 2), . . .} is

x̂(t+ j | t)=Ajx̂(t | t− 1) +
j−1∑

i=0

Aj−1−iBΔu(t+ i) +Aj−1Tξ(t), (4.7)

and the prediction of the filtered output is

ẑ(t+ j | t)= CAjx̂(t | t− 1) +
j−1∑

i=0

CAj−1−iBΔu(t+ i) +CAj−1Tξ(t). (4.8)

If we form ũ(t) = [Δu′(t), . . . ,Δu′(t +NP − 1)] and z̃(t) = [ẑ′(t | t, . . . , ẑ′(t +NP − 1 | t)],
we can write the global prediction model for the filtered-out from 1 to NP prediction
horizon as

ẑ(t)=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

CB ··· 0
CAB ··· 0

...
...

...

CANP−1B CANP−2B
... CB

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

ũ(t) +

⎡

⎢
⎢
⎢
⎢
⎢
⎣

CA
CA2

...
CANP

⎤

⎥
⎥
⎥
⎥
⎥
⎦
x̂(t | t− 1) +

⎡

⎢
⎢
⎢
⎢
⎢
⎣

C
CA

...
CANP−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦
Tξ(t).

(4.9)

For simplicity, we can rewrite (4.9) as

ẑ(t)=Uũ(t) +Vx̂(t | t− 1) +WTξ(t). (4.10)
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Consider the new tracking cost function of GPC [29]:

min
ũ(t)=[Δu′(t),...,Δu′(t+NP−1)]

{

J
(
ũ(t),x(t)

)=
NP∑

j=1

[∥∥z(t+ j)−w(t+ j)
∥
∥+

∥
∥Δu(t+ j− 1)

∥
∥
Γ

]
}

,

subject to xt+k ∈ X, zt+k ∈ Z, ut+k ∈ U, Δut+k ∈ ΔU
(4.11)

where NP is the prediction horizon, w(t + j) is the output reference, and Γ is the control
weighting matrix, the control law that minimizes this tracking cost function is

ũ(k)=−(U ′U +Γ)−1(Vx̂(t | t− 1) +WTξ(t)−w(t)
)

(4.12)

then the first input Δu(t) in ũ(t) will be implemented into the system. �

Lemma 4.3. Let (xc,uc) be an equilibrium pair and the corresponding equilibrium variable
z(t)= zc at w(t)= wc assuming that the initial state x(0) is such that a feasible solution of
(4.11) exists at time t = 0. Then the GPC law (4.12) stabilizes the system in limt→∞ x(t)= xc,
limt→∞ z(t)=wc, and limt→∞Δu(t)= 0 while fulfilling constraints in (4.11).

Proof. This stability problem follows easily from standard Lyapunov theory. Let ũ(0) de-

note the optimal control sequence ũ(0)=[Δu′(0), . . . ,Δu′(NP − 1)], let V(t)
Δ= J(ũ(0),x(t))

denote the corresponding value attained by the cost function, and let ũ(1) be the sequence
ũ(1)= [Δu′(1), . . . ,Δu′(NP − 2)]. Then, ũ(1) is feasible at time t + 1, along with the vec-
tors Δu(k | t + 1) = Δu(k + 1 | t), z(k | t + 1) = z(k + 1 | t), k = 0, . . . ,NP − 2, u(NP − 1 |
t+ 1)= uc, z(NP − 1 | t+ 1)= zc, because x(NP − 1 | t+ 1)= x(NP | t)= xc. Hence,

V(t+ 1)≤ J
(
ũ(1),x(t)

)=V(t)−∥
∥z(0)−wc

∥
∥−∥

∥Δu(0)
∥
∥
Γ (4.13)

and V(t) is reducing. Since V(t) is lower bounded by 0, there exists V∞ = limt→∞V(t),
which implies that V(t+ 1)−V(t)→ 0. Therefore, each term of the sum

∥
∥z(t)−wc

∥
∥+

∥
∥Δu(t)

∥
∥
Γ ≤V(t)−V(t+ 1) (4.14)

converges to zero as well, and the system is stable.
The tracking cost function of GPC in (4.11) and (4.12) does not require to find out

a Lyapunov matrix as in general cost function (4.1) and (4.2) so that the tracking GPC
controller can guarantee the system stability for systems which do not have solution for
the direct Lyapunov method, and can handle input and output constraints in the optimal
control problem.

For tracking GPC controllers, we also propose two CR schemes for hard switcher and
soft switcher as in Figure 4.1. For hard switcher, we run a tracking GPC controller corre-
sponding to the “most reliable” mode detected by IMM as in Figure 4.1(a). However for
a continuous varying variable system, a better control law is to mix all mode probabilities
into a “true” model. We then build a bank of tracking GPC controllers for each model in
the model set as in Figure 4.1(b). Assuming the mode probabilities are constant during
the control horizon, we can easily derive a new GPC control law in (4.10) by forming
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Figure 4.2. Normal GPC controller with sensor errors: (a) output and (b) input.

U = (
∑N

i=1μiUi), V = (
∑N

i=1μiVi), and W = (
∑N

i=1μiWi) matrices that correspond to the
“true” model m = (

∑N
i=1μimi), and find out the optimal control action in (4.12). Then

the first input Δu(t) in ũ(t) will be implemented into the system. Next, we will run some
simulations to test the above proposed fault detection and control system. �

Example 4.4 (controller reconfiguration). The existence of a common Lyapunov matrix
in (4.3) can be found by using LMI of Lemma 4.2. For simplicity, we assume that the
control input u(t +NP) = 0 after k ≥ NP predictive control horizon so that the solution
to the LMI

min
P>0,γ>0

γ, subject to

⎡

⎢
⎣

P PA′i γ
AiP P 0
γ 0 γI

⎤

⎥
⎦ > 0, ∀i, (4.15)

can be applied directly to matrices Ai = {AN ,AV0 ,AV1 ,AV2}. We found that a common
Lyapunov matrix for all Ai is

P =

⎡

⎢
⎢
⎢
⎣

6.43 1.69 −1.62 0.24
1.69 4.34 0.15 −0.30
−1.62 0.15 4.14 −0.10
0.24 −0.30 −0.10 3.25

⎤

⎥
⎥
⎥
⎦
. (4.16)

For tracking GPC controller, firstly we run a normal GPC controller with the predictive
horizon Ny = Nu = NP = 4, the weighting matrix Γ= 0.1, and with a reference set point
w = 1. We assume that the current mode is mode S0 from time k = 1− 50, mode S1 with
sensor 1 failure −50% from time k = 51− 100, and mode S2 with sensor 1 failure +50%
from time k = 101− 150. Of course, the normal GPC controller provides wrong outputs
(Figure 4.2).
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Figure 4.3. IMM-based GPC controllers: (a) output, (b) input, and (c) probabilities (IMM).

Next we run GPC controller simulations using CR system with hard switcher and soft
switcher (Figure 4.3). Our new FDMP system still keeps the output at the desired set
point since the IMM estimator easily finds out accurate fault modes and activates the CR
system online. The soft switcher provides a smoother and smaller offset error in tracking
process due to the interaction of mode probabilities that are always mixed into the “true”
mode.

We then test the ability of the system to detect and control continuous varying variable
in model set M3 = {m3,m6,m7}. Similar results are shown in Figures 3.3 and 4.3 that the
IMM-based GPC controller can detect faults online and control well the varying variables
with even small mode distances.

Finally, when we continue to narrow the distance between modes as we run the sim-
ulation with modes {m∗

6 ,m3,m∗
7 } corresponding to A∗V1

with ω∗1 = 0.10/ s and A∗V2
with

ω∗2 =−0.10/ s, the IMM estimator fails to detect faults since the distance between modes
becomes too close as shown in Figure 3.3(a), GPB1.

Low magnitude of input signals can also lead to failure of IMM-based GPC controller.
If we reduce the reference set point to a very low value at w = 0.01, the system becomes
uncontrollable (Figure 4.4): when the magnitude of the input signals is very small, the
residuals of Kalman filters will be very small, and therefore, the likelihood functions for
the modes will approximately be equal. This will lead to unchanging (or very slow chang-
ing) mode probabilities which in turn make the IMM estimator incapable to detect fail-
ures.

5. Conclusions

Systems subject to dynamic failures can be modeled as a set of variable structures using
a variable set of models. The new structure can handle with faults varying continuously
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Figure 4.4. IMM-based GPC controller with low magnitude of input signals.

as random variables. In that case, faults can be modeled as discrete modes based on their
cumulative distribution function.

One of the best methods for a fault detection of stochastic hybrid systems is using IMM
algorithm. In our simulations, IMM system proves its higher ability to detect multiple
failures of a dynamic process compared with that of GPB1 since the GPB1 estimator runs
each elemental filter only once in each cycle while the input to each elemental filter in
IMM is a weighted sum of the most recent estimates from all elemental filters.

Our proposed IMM-based GPC controller can provide real-time optimal control per-
formance subject to input and output constrains and detection of failures. Simulations in
this study show that the system can maintain the output set points amid failures. One of
the main advantages of the GPC algorithm is that the controller can provide soft switch-
ing signals based on weighted probabilities of the outputs of different models. The track-
ing GPC controller does not require finding a common Lyapunov matrix as in the general
cost function so that the tracking GPC controller can guarantee the stability of systems
which are unstable for the direct Lyapunov method.

The main difficulty of this approach is the choice of modes on the model set as well
as the transition probability matrix that assigns probabilities jumping from one mode
to another since IMM algorithms are sensitive to the transition probability matrix and
distance between modes. Another limitation related to IMM-based GPC controller is the
magnitude of the noises and the input. When we change the output set points to small
values, the input signals might become very small and this leads to unchanging mode
probabilities, or IMM-based GPC controller cannot detect failures. Lastly, this approach
does not consider issues of uncertainty in the control system.
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system in almost zero gravity with hostile space environment are extremely important
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where several nonlinearities have been taken into account. In order to identify all the
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egy makes use of a robust version of least-squares procedure (LS) for getting the initial
conditions and a general nonlinear optimization method (MCS—multilevel coordinate
search—algorithm) to estimate the nonlinear parameters. The approach is applied to the
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measurements have shown that the developed algorithm and strategy have remarkable
features in identifying all the parameters with good accuracy.
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1. Introduction

Modeling and simulation of the dynamic behavior in a microgravity environment is
mandatory for mission success. Not only the reduced gravity is severely changing the
dynamic behavior, but also often much more strongly, it is the outer space environment
that impacts on physical parameters like joint, structural damping, stiffness in gears and
limb structures. That hostile environment is mainly due to big temperature oscillations,
solar irradiation, eclipse phases, and hard space radiation. These influences affect pre-
dominantly the material, the lubrication properties of space manipulators [1], and other
servomechanisms, especially in long-term mission applications. As a result, it is desired
a proper knowledge of the time-dependent variances of material behavior in terms of
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their relevant physical parameters which in turn affects the governing differential equa-
tions of motion. Space technology demonstration experiments are required to validate
the proposed strategies and algorithms for physical parameter identification. The effect
of reduced gravity, temperature [2], and the expected physical parameter change due to
material degradation act severely on the proper joint nonlinear dynamic modeling pro-
cess. These variation especially effects the backlash, friction, stiffness, and control of space
manipulators systems. In-flight systems parameters identification, both online and offline
versions as well as dynamic model validation are, therefore, a very important pre-requisite
to increased confidence in the modeling process.

Slow motion of any mechanical machine has been found to exhibit a highly non-linear
friction [3] behavior like: stribeck effect, stick-slip [4], periodic cycle alternating motion,
arrest, and so forth. It is well known that the friction and stiffness effect can strongly af-
fect the performance of the robot arm control system, thus, the entire mission success may
directly depend on the accuracy of the modeling. In order to obtain a good description
of the system, especially in low velocity operation, the nonlinear friction models should
be taken into account. However, the identification of nonlinear parameters is extremely
difficult to deal with due to the problems of local minima, initial condition, computa-
tion time, and so forth. Previous works [3] have reported algorithms that have run time
of several days. Such algorithms are almost impracticable if the identification procedure
must be performed more than one time, as is the case for space applications, where one
is interested in monitoring the parameters time-varying behavior. In this work, a bal-
ance between complexity and accuracy is made in order to have a model that accurately
describes the friction and stiffness behavior, but also allowing the identification process
to be practicable. A friction model that takes into account both, low and high velocity
effects, has been derived. The identification strategy uses two versions of LS to identify
the parameters, which are linearly dependent upon the measurements. For the nonlinear
parameters, a nonlinear global optimization algorithm based on multilevel coordinate
search (MCS) [5] has shown a good compromise between accuracy and computation
time.

2. Experiment description

The IRJ experiment (Figure 2.1) developed at DLR—Institute of Robotics and Mecha-
tronics, has served as an experimental setup. The design and construction of IRJ incor-
porate new features like no bulk wiring on the joint and also a number of sensors that
monitor the joint performance. The joints are based on special light-weight harmonic
drive (HD) gears, while measuring with high precision all relevant state variables: (a)
on the input side, motor angular position and speed via an analogous hall sensor, and
commanded electric current, (b) on the output side, off-drive position by using opto-
electronics, and a torque measurement device based on strain gauge systems. The sensors
used give a high degree of intelligence to the joint. In some tests, two accelerometers have
been also attached on the top of the link to measure the acceleration in radial and tan-
gential directions. The motors used are inland brushless DC type, which were redesigned
by DLR to provide hollow axes where all cabling are fed through. DLR has also developed
a lightweight small robot system with a total weight of less than 20 kg and a length of
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Figure 2.1. IRJ experimental setup of two joint configurations for identification purposes.

Figure 2.2. Prototype of DLR lightweight robot.

1.50 m (Figure 2.2). This design allows a very favorable payload to total weight ratio of
about 1 : 3 to almost 1 : 2, compared to conventional industrial robots of more than 1 : 20.

This new design makes the robot very attractive for space-based demonstration mis-
sions as on ISS. Currently, there are some studies underway to contemplate about the
space experimental use and possible accommodation opportunities at the ISS. However,
if not the entire robot system is likely to be operational in the ISS early opportunity uti-
lization phase, the IRJ experiment more probably is expected to get ready for experimen-
tal usage. The IRJ experiment will consist of a combination of two of such intelligent
rotary joints. The two axes are kinematically combined in order to build up a roll-pitch
configuration (Figure 2.2).



4 Mathematical Problems in Engineering

3. Joint dynamics modeling

The main emphasis of the intended space-based identification experiments is directed
towards obtaining modeling confidence by proper knowledge of the time-varying joint
dynamics parameters, mainly viscous damping, friction/stiction effects, and elasticity
within the gears, all of those expecting to be of strongly nonlinear nature. Therefore,
the following investigations have been restricted to the modeling and understanding of
the nonlinear dynamics of one single intelligent joint. More complex models have already
been elaborated for a two-joint configuration and also multibody models have been de-
veloped for the seven joint configurations, that is, the entire robotic system, using multi-
body [1] software code for model generation and simulation. Appropriate identification
algorithms have been studied [6, 7] and others are still being developed and are underway
for these multidegree of freedom systems.

The mathematical model to be used in the identification process is based on Newton’s
laws that are used to determine the dynamic force interactions and to derive the equations
of motions of the joint. Here, only the main steps of the derivation are focused, a detailed
description of the modeling is found in [6].

In the joints in the IRJ experiment, the wave generator (wg) is driven by a motor
mounted to the circular spline (cs) and the flexspline is attached to the ground. The out-
put is driven by the circular spline. Damping torques, both at the input and output side,
have been considered. According to Figures 3.1 and 3.2, while making use only of the
pitch (θ) rotary joint, the equations of motion for the IRJ can be described by

Jinθ̈in = Tm−Td in−Twg,

Joutθ̈out = Tcs−Td out−Td fscs +Tload,
(3.1)

where Tm = KmIa is the applied motor torque with motor constant Km and electric cur-
rent Ia. Jin and Jout are the input and output inertia, θin and θout the respective angular
positions. The elasticity within the HD gear is given by the stiffness torque Tstiff with
Twg = Tstiff +Td wg on the input side of the gear and Tcs = (N + 1)Twg. N is the gear re-
duction.

The various damping torques are denoted by Td, attributed with appropriate indices.
The applied load on the link (Figure 2.1) side is due to gravity and is given by Tload =
̂Tg sinθout with the load amplitude ̂Tg .

Based upon the HD manufacturer’s catalog values, this gear type typically exhibits
the well-known nonlinear behavior. Usually, the dependency between applied torque and
the relative angular position Δθ (θin− θout) is given by a combination of piecewise linear
functions, Tstiff = f (Δθ), depending upon the operational range of the gear. For the iden-
tification algorithm to be developed further, it is necessary to replace this piecewise linear
behavior by a continuous curve. As a first approach, it has been proved sufficient to apply
a third-order polynomial to represent the stiffness torque given by

Tstiff = k1Δθ + k2(Δθ)3 (3.2)

with coefficients k1 and k2 to be adjusted.
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Figure 3.1. Dynamic representation of the intelligent robotic joint (IRJ).

Moreover, regarding the mechanical nature of the torque measurement system with
strain gauges attached to spokes and rings, it may be worthwhile to account also for some
compliance in that system. This is necessary to model it as a further spring, being serially
connected to the HD gear spring. In total, this would result in a combined softer spring,
and can be considered within new stiffness constants k1 and k2 that now would enter as
unknown parameters within the identification algorithm.

According to experimental results of many authors [3, 6], the damping torques Td that
appear on the input side, the output side, and inside the HD gear are assumed to capture
two facets of damping behavior, namely Tvisc and Tfric. These are a viscous and a dry
friction or Coulomb-type part. Thus, total damping torques is written as

Td = Tvisc +Tfric, (3.3)

the viscous part can be strongly nonlinear with a cubic relationship in the angular veloc-
ity,

Tvisc = b1θ̇ + b2θ̇
3 (3.4)

with the linearly depending coefficients b1 and b2. For the dry friction, a modified classi-
cal Coulomb friction model is required. This is necessary to account for the well-known
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Wave generator
θwg, ωwg, Twg

Td wg = f (Δω) Tstiff = f (Δθ)

ωn wg, θn wg, Tn wg

Gear reduction
N

θn fs, ωn fs, Tn fs θn cs, ωn cs, Tn cs

Td fscs = f (ω)

Flexspline Circular spline

θfs, ωfs, Tfs θcs, ωcs, Tcs

Figure 3.2. Harmonic drive gear model (wave generator wg, circular cs, and flexible fs spline).

Stribeck effects. This observes the fact that for low velocities, the friction torque is nor-
mally decreasing continuously with increasing velocity, not in a discontinuous manner.
Another problem that arise in using the classical Coulomb friction model is the discon-
tinuity at zero velocity. In order to account both problems, Stribeck effects and zero dis-
continuity, an empirical mathematical model has been adopted,

Tfric =
∣

∣TN

∣

∣ ·
(

μ · tanh
(

θ̇i
ω1

)

+
θ̇i
ω2
· e−|ω/ωS|δS

)

, (3.5)

where TN is the normal torque, μ is the friction coefficient, ωS is the Stribeck velocity,
i= in,out, δS is the exponential parameter that is commonly taken either as 0.5, 1 or even
2. Another possibility is to let δS to be identified by the nonlinear part of the algorithm
together with ω1 and ω2.

According to [8], periodic variations in the frictional torque might appear in the HD
operation. Thus, we have introduced periodic variations in the frictional torque on the
HD output,

Tcyclic = Acyclic sin
(

θout + γcyclic
)

. (3.6)

As this relationship indicates, frictional torque fluctuations of amplitude Acyclic complete
one cycle every time the flexspline makes one complete rotation relative to the circular
spline. To match this model to experimental observations, a phase shift of γcyclic is also
included. In order to obtain a linear dependency of the two parameters, this relationship
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can be easily transformed to

Tcyclic =A1 sinθout +A2 cosθout (3.7)

with the new linearly depending parametersA1 = Acyclic cosγcyclic andA2 =Acyclic sinγcyclic,
from where Acyclic and γcyclic can be recovered.

It is self-evident that not all of the envisaged damping torques given in (3.1) are ex-
pected to capture both types, that is, viscous damping and dry friction parts. Where ap-
propriate, only linear viscous damping is considered in order to keep the amount of pa-
rameters to be identified at a minimum, as well as the complexity of the joint dynamic
model. It has to be kept in mind that the final manipulator configuration consists of seven
kinematic degrees of freedom, which otherwise would drive the amount of parameters in-
tensively high. Recalling the given kinematic constraints, the various torques in (3.1) can
now be formulated in terms of the input and output positions, θin and θout, and their
respective velocities

Jinθ̈in = KmIa−Td in
(

θ̇in,θin
)−Td wg

(

θ̇in− (N + 1)θ̇out
)−Tstiff

(

θin− (N + 1)θout
)

,

Joutθ̈out = (N + 1) · [Tstiff
(

θin− (N + 1)θout
)

+Td wg
(

θ̇in− (N + 1)θ̇out
)]−Td out

(

θ̇out
)

−Td fscs
(

θout, θ̇out
)

+ ̂Tg sinθout.
(3.8)

The damping dependent on the position that appears in Td in is related to Dahl effect [4].
It is necessary to include a position-dependent term also on the input side in order to get
good agreement between dynamic model and measured data.

4. Identification model and strategy

In order to identify the dynamic parameters of the robotic joint, (3.8) have been taken as
the dynamic model representation for the identification process. The problem of identi-
fying, especially rigid body dynamics parameters of a robot, has been extensively studied
and a vast amount of literature can be found [9–11]. However, these methods have a
common idea: the robot is moved along a selected trajectory while the joint motion and
torques are measured. Then, the parameters are offline estimated using a standard offline
LS-based technique. In addition, most of these works have used an industrial robot as
a test bed. The strategy and algorithm proposed in this paper should guarantee to cope
with several requirements, like online procedure, ability to track time-variant parame-
ters, possibility to identify parameters with nonlinear dependency with respect to the
measurements in fast way at low-computational cost.

For the algorithm development, (3.8) are rewritten in order to set up a linear combi-
nation of the unknown parameters, given by the vector Θ, and the known information,
given by the measurement vector φ. The parameters that appear in vector Θ are identified
by an RLS with variable forgetting [7] factor and the parameters ω1 and ω2 which appear
inside the matrix φ are identified by the MCS algorithm. The measured signals are θin
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and Ia on the input side, θout, θ̈out, and Tout on the output side. The respective veloci-
ties θ̇in and θout and the acceleration signal θ̈in are calculated numerically while regarding
filtering techniques to remedy bad measurement signals.

The following specific torque functional relationships have been considered for the
dynamic model:

Td in = binθ̇in +
∣

∣TN

∣

∣ ·μ tanh·
(

θ̇in

ω1

)

+
∣

∣TN

∣

∣ · θ̇in

ω2
· e−|θ̇in/ωS|δS + binDθin, (4.1)

Tstiff = k1
(

θin− (N + 1)θout
)

+ k2
(

θin− (N + 1)θout
)3 = k1Δθ + k2(Δθ)3, (4.2)

Td fscs = bfscs1sign
(

θ̇out
)

+A1 sinθout +A2 cosθout, (4.3)

Td out = bout1θ̇out, (4.4)

where Twg = Tn wg = Tcs/(N + 1) = Tout/(N + 1). Then, the identification model in the
linear regression format can be described by

Yk = φ ·ΘT , (4.5)

where

Yk =
[

y1

y2

]

=
⎡

⎣

Jinθ̈in−KmIa

Joutθ̈out− ̂Tg sinθout

⎤

⎦=
⎡

⎣

Jinθ̈in−KmIa

Tout

⎤

⎦ ,

φ=
⎡

⎢

⎣

−Δθ −Δθ3 − tanh
(

θ̇in

ω1

)

−θ̇in · e−|θ̇in/ωS| −θ̇in −θin 0 0 0 0

Δθ Δθ3 0 0 0 0 −θ̇out −sign
(

θ̇out
)−sin

(

θout
)−cos

(

θout
)

⎤

⎥

⎦,

Θ=
[

k1 k2 C1 C2 bin binD bout boutC A1 A2

]T
.

(4.6)

C1 = |TN | ·μ and C2 = |TN |/ω2. The exponential coefficient δS has been set to 1.
Using the model given by (4.5), a prediction of Y is given by

̂Yk = φ · ̂ΘT . (4.7)

For a given discrete measurement time tk, the predicted error to be minimized in LS sense
is

εk = Yk − ̂Yk. (4.8)

Using the singular value decomposition (SVD) approach, the excitation level and linear
combination in the information matrix is verified:

φ=UΣVT , Σ= diag
(

σ1,σ2, . . . ,σm
)

(4.9)

with U and V being the isometric matrices. If some states are not well excited or there
exist some linear combination in the φ matrix, the related singular value σi will have small
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magnitude, close to machine precision. After testing the matrix φ, the initial condition for
the recursive algorithm is obtained by standard batch least squares estimation:

̂Θinitial =
(

φTφ
)−1

φTYk (4.10)

and by applying (4.9), one obtains

̂Θinitial =VΣ−TUTYk. (4.11)

Once the initial conditions are obtained, the recursive identification is carried out by
using the algorithm described in [7].

5. Nonlinear optimization: multilevel coordinate search (MCS) algorithm

Two parameters in (4.1) have nonlinear dependency with respect to measurement data;
therefore, they cannot be identified by the RLS approach. There exist several methods
that can be used; local minimizer or global one. The local minimizer requires a good
starting point and sometimes they deliver only a mathematical solution for the problem.
In these cases, the parameters have no longer physical meaning. Most of the global al-
gorithms have very hard computational load, making the identification process almost
impracticable. In this paper, the MCS algorithm has been used in combination with RLS
approach.

The MCS algorithm has a very interesting combination of local and global search of
the minimum. Here, we will point out only the basic ideas of the algorithm, the interested
reader is directed to the work of Huyer and Neumaier [5].

Consider the bound-constrained optimization problem

min f (x), x ∈ [u,v], (5.1)

with finite or infinite bounds

[u,v] := {x ∈ Rn | ui ≤ xi ≤ vi, i= 1, . . . ,n
}

. (5.2)

With u and v being n-dimensional vectors with components in R := R∪ {−∞,∞} and
ui < vi for i = 1, . . . ,n, that is, only points with finite components are regarded of a box
[u,v] whereas its bounds can be infinite. If all the bounds are set to infinity, an uncon-
strained optimization problem is obtained.

The MCS algorithm tries to find the minimizer by splitting the search space into
smaller boxes. These boxes contain a distinguished point, the so-called base point, whose
function value is known. In splitting the boxes, a nonuniform procedure is used. Parts
where low values of the function are expected are carefully examined. In order to speed
up the computation procedure, the MCS algorithm combines global search (splitting the
boxes with large parts) and local search (splitting the boxes with good function values).
This gives a good balance between convergence to the global minimum and computation
time.

The nonlinear algorithm requires an index of performance (IP) to be minimized.
There exists several ways to define IP criteria. In this work, two criteria have been tested:
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a quadratic function of the error,

IP= 1
2

[y− ŷ][y− ŷ]T (5.3)

and the absolute value of the error,

IP= ‖y− ŷ‖, (5.4)

where y is the plant output (friction torque) and ŷ the estimation of y by considering the
optimal linear parameters (LS estimation), and ‖ · ‖means the Euclidian norm of ε.

6. Integrated algorithm LS: MCS

For solving the identification problem characterized by (4.5), an integrated algorithm us-
ing LS and MCS approach is derived. The proposed strategy is divided in two different
operational modes: a starting procedure and a normal mode. In the starting procedure,
the measurements are collected and stored in a batch with a preselected length. The batch
of measurements is continuously updated, this work is like a moving window of measure-
ments. Given an initial guess for the nonlinear parameters (in our case, ω1 and ωS), the
parameters with linear dependency with respect to measurements (thereafter called just
as linear parameters) are estimated by the LS part. Then the linear parameters are passed
to MCS algorithm in order to estimate the nonlinear ones. This process is repeated un-
til the convergence criteria are completely fulfilled, namely the norms of the errors are
smaller than selected threshold (δ and δΘmin ). When convergence criteria are fulfilled, the
online identification algorithm for the linear parameters is started, and the non-linear
parameters are assumed constant for the period where the norm of the errors is smaller
than δ. If the error increases, the nonlinear parameters are updated by using the MCS al-
gorithm. Using this procedure, for our example, the space of search in the identification
problem is reduced from 10 to 2 for the nonlinear algorithm. This drastically reduces the
computation time and the efficiency of the MCS algorithm in finding the global mini-
mum. Thus, the integrated algorithm has an online update for the linear parameters and
a random update for the nonlinear parameters.

The integrated algorithm can be summarized in the following steps.
(i) Initial procedure:

(1) input: u, v (boundaries for ω1 and ω2), ω1initial and ω2initial ; While Nerr = ‖y−
ŷ‖ > δ and ΔΘ= (Θk −Θk−1) > δΘmin ;

(2) collect the measurements;
(3) compute φ;
(4) check rank of φ (SVD);
(5) estimate the ΘL (LS part);
(6) estimate the Θ̆NL (Θ̆NL means global optimizer in the box described by

[u,v]) coefficient (MCS algorithm);
(7) evaluate Nerr and ΔΘ;
(8) if Nerr < δ and ΔΘ < δΘmin , stop and keep Θ.
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Figure 6.1. Schematic representation of the integrated identification algorithm.

(ii) Normal mode:
(9) using Θ, start the online algorithm;

(10) check Nerr;
(11) if Nerr > δ, call MCS algorithm and using the latest measurement window,

evaluate the new Θ̆NL coefficient;
else Θ̆NL is still the minimum (no change in the non-linear parameters);

(12) takes the next measurement.
Working in this way, the proposed algorithm can track in real time variations
in the linear parameters and update the nonlinear parameters only when some
corrections are required. The schematic diagram of the integrated algorithm is
shown in Figure 6.1.

7. Results

The proposed strategy and algorithms have been tested in two different situations: first,
using only the measured information from IRJ; second, a jump inΘNL has been simulated
in order to check the ability of the algorithm in tracking time variations in ΘNL. Besides,
in order to have a normalized system, the data and parameters values of the motor side
have been translated to link side, meaning that the gear reduction is 1. (N = 1).

7.1. Case 1: using measured data from IRJ. In this test, the measurements are taken from
IRJ with time length of one minute. Figure 7.1, in the upper part shows the motor posi-
tion and velocity by using a triangular trajectory and on the bottom, the link acceleration.
In order to have better resolution, only 20 seconds of measurements are shown.

Using (4.5) as a model and the integrated algorithm, all parameters which appear in Θ
have been identified. After 13 seconds collecting data, the matrix φ gets full rank and the
starting procedure is completed. The nonlinear parameters are identified by using MCS
algorithm and the linear ones are identified by a batch LS. Figure 7.2 shows the conver-
gence process of the non-linear parameters. It can be noted that after few interactions, the
convergence criterion has been fulfilled and the nonlinear optimization has been stopped.
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Figure 7.1. Measurements from IRJ.
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Figure 7.2. Nonlinear parameters identified by MCS algorithm.
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Figure 7.3. Linear parameters identified by RLS part—stiffness and nonlinear damping.

In the plots, there is a period where all parameters have zero value, this period corre-
sponds to the initialization procedure where there is no online identification. The mea-
surements are collected and an analysis in matrix φ is performed sequentially with the
nonlinear and batch estimation. The stiffness coefficients and the nonlinear damping are
shown in Figure 7.3. The dashed lines are constant values obtained by an offline proce-
dure using all the data available. It can be noted that all the parameters converge to the
offline estimation showing the good convergence and robustness of the RLS algorithm.
As expected, the parameter related to the cubic stiffness has low rate of convergence. This
fact is early observed in the singular values of the information matrix. The related singular
value has the smallest magnitude meaning that this parameter is very difficult to identify.
Despite of its small excitation, the cubic stiffness parameter converges to the expected
mean value (offline estimation).
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Figure 7.4. Linear parameters identified by RLS part—viscous damping.

Figures 7.4 and 7.5 show the rest of the parameters, which appear in vector Θ. It can be
noted that all parameters have stable behavior converging to their expected mean values
obtained by full batch identification.

Finally, Figure 7.6 shows the statistical performance of the identification process. It
can be observed that the algorithm has good ability in tracking the reference signal. Most
of the errors lies below 5%, the peak of the errors (20%) occurs due to the nature of the
trajectory (Figure 7.1) used. In the point where the velocity changes the sign, there exists
a peak in the torque and the algorithm cannot predict this high torque immediately.

7.2. Case 2: simulation of time-variant parameters. In order to test the integrated linear
and nonlinear identification procedure in case of time-variant parameters, a mixed data
set has been used: the angular velocity has been taken from the experiment setup and the
friction torque is calculated by setting the values of the parameters in (4.1). The parameter
δs has been set to 1 and the other values used are shown in Table 7.1.
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Figure 7.5. Linear parameters identified by RLS part—periodic damping and phase.
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Table 7.1. Offline estimation for the parameters.

Parameters Value Parameters Value

bin 76 Nm.s.rad−1 |TN | ·ω−1
2 590 Nm.s2.rad−2

binD 40 Nm.rad−1 ω1 0.0616 rad.s−1

|TN | ·μ 25 Nm ωS 0.1312 rad.s−1
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Figure 7.7. Simulation of time-variant systems—linear parameters.

By using these values, a simulated friction torque (Td in) has been obtained to be used
in the test of the algorithm. In order to simulate time variant system, the parameters have
experimented variations at instant 16 seconds and 32 seconds in the linear and nonlinear
ones, respectively. At time 16 seconds, the plant output Td in has been recalculated and a
jump of 50% in the linear parameters has been set. Immediately, the RLS algorithm is able
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Figure 7.8. Simulation of time-variant systems—nonlinear parameters.

to notice the changes in the parameters, and from that it can estimete the new parameters
values, as shown in Figure 7.7. At this time, the correction in the linear parameters is
sufficient to keep the error smaller than the threshold δ. Therefore, the MCS algorithm
has been not activated. The dashed-dot lines represent the parameters values before the
jump and the dot lines the values after the jump.

Figure 7.7 shows that after the initialization procedure, the parameters identified by
the RLS part have fast convergence to the nominal values. The jump in the linear pa-
rameters is compensated avoiding the nonlinear optimization. When the nonlinear pa-
rameters are changed, the linear ones are affected (peaks in Figure 7.7), but according
the convergence in the nonlinear one is reached, the linear parameters approach to the
correct values.

At instant t = 32 seconds, the nonlinear parameters have been changed by 20% of their
initial values. Then, the norm of error increases and the corrections in the linear pa-
rameters are not sufficient to decrease it. Thus, the MCS is activated and the nonlinear
parameters are recalculated. When the norm of the error decreases, the nonlinear opti-
mization is stopped and only the fast (RLS) part of the algorithm is running. Figure 7.8
shows the behavior of the nonlinear parameters, it can be noted that the algorithm has
fast convergence in both situation: in the initialization and when are recalculated. Due to
fast corrections in the linear parameters, change in these parameters does not affect the
nonlinear ones. On the other hand, the linear parameters are affected when corrections
in the nonlinear ones are required. This occurs because the corrections in the non-linear
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parameters are not so fast. Due to this feature, the procedure presented here has very low-
computational load allowing one to track time-variant systems, which contain nonlinear
parameters.

8. Conclusions

In this work, the complete model of the robotic joint has been derived. The obtained
model takes into account several nonlinearities; as for the stiffness as well as in the friction
model. The typical nonlinear behavior of the friction at low velocity has been taken into
account. An integrated (independent linear and nonlinear parts) identification algorithm
has been derived and tested by using data from IRJ experiment and also a mixed data to
simulate time-variant systems.

The results have shown that strategy presented gives excellent precision at very low-
computational cost; the integrated algorithm is more than 20 times faster than the com-
pletely nonlinear counterpart (if all the parameters is to be identified by MCS algorithm
alone). This allows an online identification for almost all of the measurement period,
except for a short period, when an update in the nonlinear parameters is necessary; the
online identification was not possible. The ability in tracking time-variant parameters has
been also tested by using simulated data and the results have shown a fast and accurate
response to the variations in both set of parameters: linear and nonlinear ones. Another
very important feature of the proposed approach is that there is no necessity of initial
guess for all the parameters; they are automatically adjusted by the initialization proce-
dure. It is only required to set the boundary for the nonlinear parameters, even though
this is not a requirement but save computation time.
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1. Introduction

A linear parameter-varying (LPV) system is formalized as a certain type of nonlinear sys-
tem, and is successfully applied in developing a control strategy which is based on clas-
sical gain-scheduled methodology [1]. Several tutorial papers and special publications
concerning the gain-scheduled method of LPV control system are [2–7]. These gain-
scheduled LPV controller design approaches are applicable under the assumption that the
dependent parameters can be measured online. In practical application, it is often diffi-
cult to satisfy this requirement. Therefore, it is crucial to design an effective LTI controller
to get robust stability for an LPV plant with immeasurable dependent parameters. Here,
these dependent parameters are assumed to vary in a polytopic space. In robust control
framework of LPV system, a necessary and sufficient condition of quadratic stability for
polytopic LPV system is formulated in terms of a finite LMIs optimization problem [8].
The underlying quadratic Lyapunov functions are also used to derive bounds on robust
performance measures. Several heuristic procedures [9–13] have also been proposed to
solve some control problems with nonconvex constraints such as a controller with fixed
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or reduced order of the decentralized structure. In [10], a method is presented to solve
some controller design problems when structure constraints are imposed. The procedure
is based on a two-stage optimization process, each stage requires the solution of a convex
optimization problem based on a kind of LMI expression, in which either the controller
gain matrix or the Lyapunov function is considered as the optimization variable.

This paper proposes a way of designing a quadratically stabilizing LTI output feed-
back controller for LPV system where dependent parameters vary in a polytopic space.
Different from gain-scheduled LPV controller design, besides rank constraints, another
constraint condition in which the controller matrix should be the same one for each ver-
tex plant of LPV system is added. This problem still remains a complex issue and not
numerically tractable. Here, a heuristic ILMI approach is presented to solve an admis-
sible solution for this control problem. And a method of setting an initial value for the
Lyapunov matrix is also proposed to increase the possibility of obtaining a feasible solu-
tion to the ILMI approach. The proposed method is better than random assignment of
the initial value. Even though this approach is not guaranteed to converge globally, it may
provide a useful alternative design tool in practice.

2. Notation and definitions

Consider an LPV plant P(θ(t)) described by state space equations as

ẋ(t)= A(θ)x(t) +Buu(t),

y(t)= Cyu(t).
(2.1)

Here, state-space matrices have compatible dimensions of time-varying dependent pa-
rameters θ(t) = [θ1(t)θ2(t)···θr(t)]T ∈ Rr . Moreover, we have the following assump-
tions.

(1) The system state matrix A(θ) is a continuous and bounded function and depends
affinely on θ(t).

(2) The immeasurable real parameters θ(t) exist in the LPV plant and vary in a poly-
tope Θ as

θ(t)∈Θ := Co
{
ω1,ω2, . . . ,ωN

}

=
{ N∑

i=1

αi(t)ωi : αi(t)≥ 0,
N∑

i=1

αi(t)= 1, N = 2r
}

.
(2.2)

(3) The LPV plant is quadratically detectable and quadratically stabilizable.
With the above assumptions, the system state matrix A(θ) can be expressed as

A(θ)=
N∑

i=1

αi(t)Ai with αi ≥ 0,
N∑

i=1

αi = 1. (2.3)

Remark 2.1. It is assumed that the matrices Bu, Cy of the LPV plant are time invariant.
When they are time varying, a simple way is to satisfy the requirement by filtering the
control input and output through lowpass filters. These filters should have sufficiently
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large bandwidth. Then, the dependent parameters are shifted into the state matrix A(θ)
in [3].

Definition 2.2 (quadratic stability [14]). Considering a LPV system, ẋ(t) = A(θ)x(t) is
said to be quadratically stable if and only if there exists P > 0 such that

AT(θ)P +PA(θ) < 0. (2.4)

Remark 2.3. For polytopic LPV system, we have the equivalent conditions for (2.4) as

AT
i P +PAi < 0, i= 1, . . . ,N. (2.5)

It should be noted that if LPV system is quadratically stable one, it is also exponentially
stable.

3. Main results

In this section, a LTI output feedback controller is designed to achieve quadratic stability
for LPV system where dependent parameters vary in a polytopic space.

We seek to design a controller (AK ∈Rnk×nk ) of fixed order nk as

ẋk =Akxk +Bk y,

u= Ckxk +Dky,
(3.1)

where xK ∈Rnk is the controller state. Substituting (3.1) into (2.1), the closed-loop state
matrix Acl has the following expression:

Acl(θ)=
[
A(θ) +BuDkCy BuCK

BKCy AK

]

. (3.2)

First, the following definitions are made as

J =
[
Ak Bk

Ck Dk

]

, A(θ)=
[
A(θ) 0

0 0

]

, Bu =
[

0 Bu

I 0

]

, Cy =
[

0 I
Cy 0

]

,

(3.3)

which are totally dependent on the state-space matrices of the controller and the LPV
plant. Then, the closed-loop relation is parameterized in terms of the controller realiza-
tion as

Acl(θ)= A(θ) +BuJCy. (3.4)

Theorem 3.1. Suppose LPV system is given in (3.4), and then the following are equivalent
conditions.

(1) The closed-loop state matrix Acl(θ) is quadratically stable.
(2) There exist a symmetric positive definite matrix P and matrix J such that

A(θ)P +PA
T

(θ) +BuJCyP +PC
T
y J

TB
T
u < δI (3.5)
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Figure 3.1. Relevant LPV control scheme.

or

AiP +PA
T
i +BuJCyP +PC

T
y J

TB
T
u < δI , (3.6)

i= 1, . . . ,N , for δ being a negative scalar value.

Proof. According to Definition 2.2, the claims (3.5) or (3.6) can be established easily. �

From (3.6), system matrix J of the controller (3.1) should be the same one for each ver-
tex plant of LPV system (3.2): it is also a nonconvex constraint and difficult to be solved.
In the following section, necessary conditions for the existence of a constant matrix J
for (3.6) are presented, then a heuristic ILMI algorithm is presented to supply a solution
of J for (3.6). The choosing of an appropriate initial value to ILMI is very important to
converge quickly to a feasible solution. Here, a method of setting an initial value to ILMI
algorithm is also proposed.

Theorem 3.2. Given an LPV plant (2.1), if there exists a fixed order LTI controller of order
nk that makes the closed-loop LPV system as Figure 3.1 quadratically stable, then there exist
n×n symmetric positive definite matrices X ,Y such that

NT
o

(
AT(θ)X +XA(θ)

)
No < 0, NT

c

(
YA(θ) +AT(θ)Y

)
Nc < 0. (3.7)

Using the polytopic characteristic of the LPV plant, (3.7) can be equivalent to

NT
o

(
AT
i X +XAi

)
No < 0, NT

c

(
YAi +AT

i Y
)
Nc < 0, (3.8)

[
X I
I Y

]

≥ 0,

rank

[
X I
I Y

]

≤ n+nk,

(3.9)

where No and Nc are full column rank matrices such that

ImNo = kerCy , ImNc = kerBT
u . (3.10)
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The proof of the theorem can be easily taken from earlier results [3, 15].
Theorem 3.2 tells us necessary conditions of the existence of a stabilizing output feed-

back LTI controller for the LPV plant (2.1). Meanwhile, it also provides an efficient
method for setting an initial value of the common Lyapunov matrix P, which is used
to construct a stabilizing output feedback LTI controller.

Remark 3.3. Now, let us overview some results of LPV controller design for LPV plant.
Consider the LPV plant (2.1), since this plant is assumed to be quadratically stabilizable
and quadratically detectable, (3.8)-(3.9) are sufficient and necessary conditions for the
existence of such a full-order gain-scheduled LPV controller that quadratically stabilizes
LPV plant (2.1). In contrast to gain-scheduled LPV controller design [3], here only an LTI
controller is designed to quadratically stabilize the LPV plant and conditions (3.8)-(3.9)
become not sufficient but necessary just as Theorem 3.2.

Note that the matrix inequality (3.6) is a bilinear matrix problem with the constraint
that controller gain matrix should be constant, and it is a nonconvex optimization prob-
lem. Here, a heuristic approach of alternately solving convex optimization problems is
proposed based on LMI formulation. We minimize δ, over P and J , subject to (3.6). This
problem is a convex optimization problem in J and δ for fixed P, and is convex in P and
δ for fixed J . It also should be noted that this approach is guaranteed to converge, but
not necessarily to the global optimum of the problem. The assignment of a proper ini-
tial value to P is the key to enhance probability of converging to the global optimum.
Here, conditions (3.8)-(3.9) supply necessary conditions for the existence of such an LTI
controller of order nk. Therefore, conditions (3.8)-(3.9) of Theorem 3.2 also give us an
effective method of setting an initial value to P.

Therefore, the ILMI algorithm proceeds as shown in Algorithm 3.1.
If, after the procedure is alternated several times, solution J is still infeasible, there are

two cases: one is that a feasible J may still exit, for this procedure does not necessarily
guarantee to the solution J ; the other is that the LPV plant may not be quadratically
stabilizable by only an LTI controller.

4. Numerical example

In this section, two numerical examples are considered to illustrate the proposed method.
All LMI-related computations are performed with LMI toolbox of Matlab [4].

Example 4.1. We consider the problem of controlling the yaw angles of a satellite system
that appears in [4]. The satellite system consisting of two rigid bodies joined by a flexible
link has the state-space representation as
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⎢
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⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

θ1

θ2

θ̇1

θ̇2

⎤

⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎥
⎦
u, y =

⎡

⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

θ1

θ2

θ̇1

θ̇2

⎤

⎥
⎥
⎥
⎦

, (4.1)
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Step 1.

Set initial value i= 0, obtain Pi =
[

X X2

XT
2 I

]

subject to (3.8)-(3.9), where X −Y−1 = X2X
T
2 .

Let δi be an arbitrary large positive real number.
δold = δi.

Step 2.
Repeat {
OP1: Solve eigenvalue problem, “minimize δi1, over Ji and δi1, subject to (3.6);”

δi = δi1opt, Ji = Jopt.
If δi < 0, exit. Ji is an admissible solution.

OP2: Solve eigenvalue problem, “minimize δi2, over Pi and δi2, subject to (3.6)
and Pi > 0”;

Pi+1 = Pi2opt. δi = δi2opt.
If δi < 0, exit. Ji is an admissible solution.

If ‖δi− δold‖ < γ, a predetermined tolerance, exit.
Else δold = δi.
i= i+ 1.

}

Algorithm 3.1

where k and f are torque constant and viscous damping, which vary in the following
uncertainty ranges: k ∈ [0.09 0.4] and f ∈ [0.0038 0.04]. A state-feedback controller
u= Kx is designed to achieve quadratic stability for all possible parameter trajectories in
the polytopic space. The pre-determined tolerance γ is set to 1.0e− 4. The following two
cases are considered.

(1) Setting an arbitrary matrix to the initial P such as identity matrix. After 12 iterations,
δ12 converges to −0.0857, therefore solution K is found as

K = [1061463.3 −1061463.3 −258208.45 −7338.2]. (4.2)

(2) Setting an initial matrix to P proposed in this paper. In this case, a state feedback is
considered to construct, then an initial matrix of P satisfying (3.8) is chosen as

P0 =

⎡

⎢
⎢
⎢
⎣

961.4 518.14 −118.4 278.06
518.1 930.3 −247.3 −167.8
−118.4 −247.3 95.46 −55.25

278.06 −167.8 −55.25 972.54

⎤

⎥
⎥
⎥
⎦
. (4.3)

Using the initial matrix P0, after only 1 iteration, δ1 converges to −9395817.73. An ad-
missible K is found as

K = [10541311.8 −24814284.7 −60435459.05 −15945712.7]. (4.4)

Therefore, the proposed method has a quicker convergence to a feasible solution than
the method of setting an arbitrary matrix as the initial matrix P.
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Example 4.2. A classical example of parameter-varying unstable plant that can be viewed
as a mass-spring-damper system with time-varying spring stiffness is considered [16].
The state-space equation of this unstable LPV plant is as follows:

A(θ)=
[

0 1
−0.5− 0.5θ −0.2

]

, Bu =
[

0
1

]

,

Cy =
[

1 0
]

, Duy = 0.

(4.5)

Here, the scope of time-varying parameter θ(t) is assumed in the polytope space Θ :=
Co{−1,1}. An LTI output feedback controller is designed to achieve quadratic stability
for all possible parameter trajectories in the polytopic space. The predetermined tolerance
γ is set to 1.0e− 4.

Just like Example 4.1, the following two cases are considered.

(1) Setting an arbitrary matrix to the initial P, such as identity matrix. After 5 iterations,
δ5 converges to 0.163, which is larger than zero. Therefore solution J is found infeasible.

(2) Setting an initial matrix to P proposed in this paper. In this case, a full-order output
feedback controller is considered to construct, then an initial matrix of P satisfying (3.8)-
(3.9) is as follows:

P0 =

⎡

⎢
⎢
⎢
⎣

17.62 −11.99 4.01 −1.22
−11.99 35.23 −1.22 5.80

4.01 −1.22 1 0
−1.22 5.80 0 1

⎤

⎥
⎥
⎥
⎦
. (4.6)

Using the initial matrix P0, after only 1 iteration, δ1 converges to −3.998. An admissible J
is solved as

J = 1.0e8∗
⎡

⎢
⎣

−4.00 −0.53 −7.8e− 7
−0.53 −5.56 2.94e− 7

3.76e− 8 6.0e− 10 2.0e− 7

⎤

⎥
⎦ . (4.7)

Therefore, an LTI output feedback controller to satisfy quadratic stability of closed-
loop LPV system is constructed as

Ak = 1.0e8∗
[
−4.00 −0.53
−0.53 −5.56

]

, BK =
[
−78
29.4

]

,

CK =
[

3.76 0.06
]

, Dk = 20.

(4.8)

When the trajectory of dependent parameter is assumed as θ(t)= 0.63 + 0.1 · e−t, the tra-
jectory of the output of this plant can be drawn for the initial values x(0)=[−0.25 0.15]T

as shown in Figure 4.1.
Comparing these two cases above, numerical examples demonstrate that the proposed

method of setting the initial value to ILMI algorithm is more efficient than the method
of setting an arbitrary matrix as the initial value.
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Figure 4.1. Trajectory of the output of this plant with initial values x(0)= [−0.25 0.15]T .

5. Conclusions

In this paper, an LTI output feedback controller has been designed for LPV system to
ensure that the closed-loop system achieves quadratic stability for all possible dependent
parameters in a polytopic space. A heuristic iterative algorithm to solve such a controller
has been presented in terms of LMI formulation. It also should be noted that the proce-
dure is heuristic and the choice of initial value is important to ensure convergence to an
acceptable solution. Finally, some numerical examples have been presented to illustrate
the design method.
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We consider the obtention of modes and frequencies of segmented Euler-Bernoulli beams
with internal damping and external viscous damping at the discontinuities of the sections.
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will influence a chosen basis.
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1. Introduction

The methodology introduced by Tsukazan [1] in terms of a fundamental response [2, 3]
is applied here to a triple-span Euler-Bernoulli beam with internal damping of the type
Kelvin-Voight and viscous external damping at the discontinuities of the sections.

In the literature, the study of free vibrations of beams of the type Euler-Bernoulli have
been sufficiently studied [4–11]. However, the effects of the nonproportional damping
has been little studied in terms of modal analysis. Friswell and Lees [12] considered the
method of separation of variables for obtaining the eigenvalues of a double-span pinned-
pinned nonhomogeneous damped beam without intermediate devices. Chang et al. [13]
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m1,c1,k1 m2,c2,k2 m3,c3,k3

Mw

Kw Cw

x = x0 = 0 x1 x2 x = x3 = L

X1(x) X2(x) X3(x)

Figure 2.1. A triple-span discontinuous cantilever beam.

uses the Laplace transform for obtaining the natural frequencies of a pinned-pinned uni-
form Euler-Bernoulli beam, by considering masses, springs, and viscous dampers located
in the middle of the beam. Sorrentino et al. [14] obtain the frequencies of the beam by
using the state space formulation with a first-order transfer matrix. The obtention of the
modes was accomplished by using the Euler basis in connection with fourth-order spa-
tial differential equations, the Laplace transform and with the state-space methodology.
Simulations were performed for double-span and four-span beams with several types of
damping: internal, external, nonproportional, viscous damping.

Here, we consider the original Newtonian approach by keeping the formulation of a
second-order system, that includes damping and stiffness, in each segment of the beam.
The coefficients for the displacement boundary conditions and intermediate continuity
conditions at discontinuity points of the beam are casted in a convenient block matrix
that we refer to as being the coefficient matrix. The values that the elements of the basis at
each segment take at the ends of the beam and intermediate discontinuity points give rise
to another block matrix called the basis matrix. The introduction of these block matri-
ces allows to formulate the eigenvalue problem in a compact matrix form. By choosing a
basis that is generated by a fundamental solution of a fourth-order differential equation,
the basis matrix becomes sparse. This approach can also be employed with double- or
four-span beams subject to classical and nonclassical boundary conditions. In a forth-
coming work, we will discuss multispan beams subject to a elastic coupling and discuss a
reduction in the computation of the coefficients of a mode in each segment.

2. Statement of problem

We consider an Euler-Bernoulli beam of length L with two intermediate devices and two
discontinuous cross sections, as in Figure 2.1. A flexural movement is represented in the
beam by vj(t,x) in the jth segment [xj−1,xj], j = 1 : 3 with 0= x0 ≤ x1 ≤ x2 ≤ x3 = L.

Here, Mw denotes value of the attached mass, Cw attached damping coefficient, Kw the
attached stiffness.

In each segment of the beam, we have the governing equations [6, 15]

Mj
∂2vj(t,x)

∂t2
+Cj

∂vj(t,x)

∂t
+Kjvj(t,x)= 0, xj−1 < x < xj , j = 1 : 3, (2.1)
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where

Mj =mj = ρjAj ,

Kj = ∂2

∂x2

[
kj(x)

∂2

∂x2

]
.

(2.2)

The damping coefficient can be considered to be of the form

Cj = c0 j(x) +
∂2

∂x2

[
c4 j(x)

∂2

∂x2

]
(2.3)

which includes the case of external viscous damping and internal Kelvin-Voigt damping.
In the above, we have the following usual parameter description:

(i) ρj denotes density,
(ii) Aj denotes cross-sectional area,

(iii) ci j denotes damping coefficients,
(iv) kj denotes stiffness coefficients.

In what follows, we will consider the particular case of beams with uniform sections.
Then the coefficients in the operators Cj , Kj become constants, that is,

Kj = kj
∂4

∂x4
= EjI j

∂4

∂x4
, Cj = c0 j + c4 j

∂4

∂x4
, Mj =mj , (2.4)

where Ej denotes Young’s modulus of elasticity, I j denotes the area moment of inertia.

3. Modal analysis

Free vibrations whose spatial distribution amplitude in each segment is Xj(x),

vj = eλtXj(x), x ∈ [xj−1,xj
]
, j = 1 : 3, (3.1)

can be found by substituting them into the above system. It turns out the spatial modal
differential equation

X (iv)
j (x)− a2

j (λ)ρjAjXj(x)= 0, x ∈ [xj−1,xj
]
, j = 1 : 3, (3.2)

for each segment of the beam. Here,

a2
j (λ)=−(αj + λβj

)
λ (3.3)

with

αj =
c0 j

ρ jAj
(
EjI j + λc4 j

) , βj = 1
EjI j + λc4 j

, j = 1 : 3. (3.4)

The solution for each segment (3.2) can be conveniently written as

Xj(x)= d1 jφ1 j(x) +d2 jφ2 j(x) + +d3 jφ3 j(x) +d4 jφ4 j(x)=Ψ j(x)dj, j = 1 : 3, (3.5)
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where

Ψ j =Ψ j(x,λ)= [φ1, j(x),φ2, j(x),φ3, j(x),φ4, j(x)
]

(3.6)

is a solution basis of (3.2) in the segment [xj−1,xj], j = 1 : 3, and dj is the column vector
with components d1 j , d2 j , d3 j , d4 j . Here we have emphasized that the solution matrix
basis Ψ j depend upon the parameter λ corresponding to a free vibration.

Generic boundary conditions of classical or nonclassical nature can be written as

A11X1(0) +B11X
′
1(0) +C11X

′′
1 (0) +D11X

′′′
1 (0)= 0,

A12X1(0) +B12X
′
1(0) +C12X

′′
1 (0) +D12X

′′′
1 (0)= 0,

A21X3(L) +B21X
′
3(L) +C21X

′′
3 (L) +D21X

′′′
3 (L)= 0,

A22X3(L) +B22X
′
3(L) +C22X

′′
3 (L) +D22X

′′′
3 (L)= 0.

(3.7)

The continuity conditions for the displacement, the inertia moment, the bending mo-
ment, and the shear force at the discontinuity point xj , j = 1 : 2 of the transversal section,
including an intermediate device, can be written in general as follows:

E
( j)
11 Xj

(
xj
)

+F
( j)
11 X

′
j

(
xj
)

+G
( j)
11 X

′′
j

(
xj
)

+H
( j)
11 X

′′′
j

(
xj
)

= E
( j)
12 Xj+1

(
xj
)

+F
( j)
12 X

′
j+1

(
xj
)

+G
( j)
12 X

′′
j+1

(
xj
)

+H
( j)
12 X

′′′
j+1

(
xj
)
,

E
( j)
21 Xj

(
xj
)

+F
( j)
21 X

′
j

(
xj
)

+G
( j)
21 X

′′
j

(
xj
)

+H
( j)
21 X

′′′
j

(
xj
)

= E
( j)
22 Xj+1

(
xj
)

+F
( j)
22 X

′
j+1

(
xj
)

+G
( j)
22 X

′′
j+1

(
xj
)

+H
( j)
22 X

′′′
j+1

(
xj
)
,

E
( j)
31 Xj

(
xj
)

+F
( j)
31 X

′
j

(
xj
)

+G
( j)
31 X

′′
1

(
xj
)

+H
( j)
31 X

′′′
1

(
xj
)

= E
( j)
32 Xj+1

(
xj
)

+F
( j)
32 X

′
j+1

(
xj
)

+G
( j)
32 X

′′
j+1

(
xj
)

+H
( j)
32 X

′′′
j+1

(
xj
)
,

E
( j)
41 Xj

(
xj
)

+F
( j)
41 X

′
j

(
xj
)

+G
( j)
41 X

′′
j

(
xj
)

+H
( j)
41 X

′′′
j

(
xj
)

= E
( j)
42 Xj+1

(
xj
)

+F
( j)
42 X

′
j+1

(
xj
)

+G
( j)
42 X

′′
j+1

(
xj
)

+H
( j)
42 X

′′′
j+1

(
xj
)

+Fj , j = 1 : 2,
(3.8)

where Fj denotes the force exerted by an external device.
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Figure 2.1 shows a cantilever beam with intermediate continuity conditions at the
points x = x1 and x = x2 and subject to a concentrated mass, spring, and a dashpot. The
boundary conditions at x = x0 = 0 and x = x3 = L are

X1(0)= X ′1(0)= 0, X ′′3 (L)= X ′′′3 (L)= 0. (3.9)

At the intermediate point x = x1, we have

X1
(
x1
)= X2

(
x1
)
,

X ′1
(
x1
)= X ′2

(
x1
)
,

k−1
2 k1X

′′
1

(
x1
)= X ′′2

(
x1
)
,

−k−1
2

(
Mwλ

2 +Kw
)
X1
(
x1
)

+ k−1
2 k1X

′′′
1

(
x1
)= X ′′′2

(
x1
)
.

(3.10)

Similarly, at the point x = x2, we have

X2
(
x2
)= X3

(
x2
)
,

X ′2
(
x2
)= X ′3

(
x2
)
,

k−1
3 k2X

′′
2

(
x2
)= X ′′3

(
x2
)
,

−k−1
3

(
Cwλ

)
X2
(
x2
)

+ k−1
3 k2X

′′′
2

(
x2
)= X ′′′3

(
x2
)
.

(3.11)

The substitution of (3.5) into (3.7) and (3.8), the boundary and continuity conditions
leads to a linear algebraic system

�(λ)d= 0, (3.12)

for the vector d of order 12× 1,

d=
⎡
⎢⎣

d1

d2

d3

⎤
⎥⎦ , dj =

⎡
⎢⎢⎢⎣
d1 j

d2 j

d3 j

d4 j

⎤
⎥⎥⎥⎦ , j = 1 : 2. (3.13)

Here, the matrix � is of order 12× 12 and it has the form

�=�Φ, (3.14)

where � is a matrix of order 12× 24 formed with the coefficients associated to the bound-
ary and continuity conditions and Φ is a matrix of order 24× 12 whose components are
values of the solution basis at the ends and the conditions at the discontinuity. A detailed
description of these block matrices is given in Section 4. Then nonzero solutions of (3.12)
are obtained for frequency values λ real or complex that satisfy the characteristic equation

det(�)= 0. (3.15)
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In classical conservative mechanical vibration theory, modes are essential for performing
a decoupling of the system. However, any real structure with or without intermediate
devices is dissipative. This implies the existence of complex modes that not necessarily
decouple a damped system [16]. On the other hand, any pair of complex conjugate modes
represent a free vibration in which distributed coordinates oscillate and share the same
decay rate and frequency but are not synchronous. This later is because it introduced a
phase when writing the mode or amplitude was in polar form [15].

4. Block matrix formulation

A detailed description of the matrix � in terms of the boundary and basis block matrices
is given in what follows for a triple-span beam subject to generic conditions. The matrix
corresponding to the boundary values can be written as follows:

�0 =
[
A11 B11 C11 D11

A12 B12 C12 D12

]
, �L =

[
A21 B21 C21 D21

A22 B22 C22 D22

]
. (4.1)

The matrix coefficients corresponding to the continuity conditions at x = xj , j = 1 : 2,
can be described in terms of the matrices

�1 j =

⎡
⎢⎢⎢⎢⎢⎣

E
( j)
11 F

( j)
11 G

( j)
11 H

( j)
11

E
( j)
21 F

( j)
21 G

( j)
21 H

( j)
21

E
( j)
31 F

( j)
31 G

( j)
31 H

( j)
31

E
( j)
41 F

( j)
41 G

( j)
41 H

( j)
41

⎤
⎥⎥⎥⎥⎥⎦

, �2 j =

⎡
⎢⎢⎢⎢⎢⎣

E
( j)
12 F

( j)
12 G

( j)
12 H

( j)
12

E
( j)
22 F

( j)
22 G

( j)
22 H

( j)
22

E
( j)
32 F

( j)
32 G

( j)
32 H

( j)
32

E
( j)
42 F

( j)
42 G

( j)
42 H

( j)
42

⎤
⎥⎥⎥⎥⎥⎦
. (4.2)

The values of the basis solutions at the ends of the beam x0, x3, and at each discontinuity
point xk, k = 1,2, can be written in terms of the Wronskian matrices in each segment

Φj(x)=

⎡
⎢⎢⎢⎢⎣

φ1 j(x) φ2 j(x) φ3 j(x) φ4 j(x)
φ′1 j(x) φ′2 j(x) φ′3 j(x) φ′4 j(x)
φ′′1 j(x) φ′′2 j(x) φ′′3 j(x) φ′′4 j(x)
φ′′′1 j (x) φ′′′2 j (x) φ′′′3 j (x) φ′′′4 j (x)

⎤
⎥⎥⎥⎥⎦ , j = 1 : 3. (4.3)

For a triple-span beam, we will have the block matrices

�=

⎡
⎢⎢⎢⎣

�0 0 0 0 0 0
0 �11 −�21 0 0 0
0 0 0 �12 −�22 0
0 0 0 0 0 �3

⎤
⎥⎥⎥⎦ , (4.4)

Φ=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ1(0) 0 0
Φ1
(
x1
)

0 0
0 Φ2

(
x1
)

0
0 Φ2

(
x2
)

0
0 0 Φ3

(
x2
)

0 0 Φ3
(
x3
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.5)

In the above, 0 denotes null matrices with appropriate dimensions, that is, 2× 4 or 4× 4.
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4.1. A cantilever triple-span beam subject to damping. For the triple-span cantilever
beam of Figure 2.1, the corresponding blocks for the coefficients of the boundary condi-
tions are

�0 =
[

1 0 0 0
0 1 0 0

]
, �L =

[
0 0 1 0
0 0 0 1

]
, (4.6)

while the blocks for the continuity conditions at the intermediate discontinuous sections
are

�11 =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 k−1

2 k1 0
−k−1

2

(
Mwλ2 +Kw

)
0 0 k−1

2 k1

⎤
⎥⎥⎥⎦ , �21 =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎦ ,

�12 =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 k−1

3 k2 0
−k−1

3

(
Cwλ

)
0 0 k−1

3 k2

⎤
⎥⎥⎥⎦ , �22 =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎦ .

(4.7)

5. The fundamental basis

The classical or spectral Euler basis of the fourth-order equation,

X (iv)(x)− ε4X(x)= 0, (5.1)

is constructed by using the roots ±ε, ±iε of the characteristic polynomial s4− ε4 = 0, that
is,

Ψ= [sin(εx),cos(εx), sinh(εx),cosh(εx)
]
. (5.2)

However, among all possible bases that we can choose, it would be convenient to choose
the basis that makes (4.5) as sparse as possible. In this work, this is accomplished by
choosing in each segment a fundamental basis that is a translation of a fixed basis that
is generated by an initial-value solution in the first segment. This later solution can be
found in the work of Timoshenko et al. [17] literature without the systematic treatment
considered in [2, 3, 18]. We will consider the basis for the first segment that is constituted
by the solution h(x) of the initial value problem

h(iv)(x)− ε4h(x)= 0,

h(0)= 0, h′(0)= 0, h′′(0)= 0, h′′′(0)= 1,
(5.3)

and its first three derivatives h′(x), h′′(x), h′′′(x). With respect to the spectral Euler basis,
the fundamental solution h(x) has the following representation:

h(x)= sinh(εx)− sin(εx)
2ε3

. (5.4)
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By defining

φ(i−1)
jk (x)= h( j+i−2)(x− xk−1,εk

)
, i, j = 1 : 4, k = 1 : 3,

ε4
k = a2

k(λ)ρkAk,
(5.5)

where we have emphasized the dependence of the solution of (5.3) upon the parameter ε
in each segment of the beam, it turns out

Φ j
(
xj−1

)=

⎡
⎢⎢⎢⎢⎣

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⎤
⎥⎥⎥⎥⎦ , j = 1 : 3. (5.6)

By taking into account the initial values of h(x,ε), the matrix (4.5) becomes more sparse
and it is given by

Φ=
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

φ11
(
x1
)
φ21
(
x1
)
φ31
(
x1
)
φ41
(
x1
)

0 0 0 0 0 0 0 0

φ′11

(
x1
)
φ′21

(
x1
)
φ′31

(
x1
)
φ′41

(
x1
)

0 0 0 0 0 0 0 0

φ′′11

(
x1
)
φ′′21

(
x1
)
φ′′31

(
x1
)
φ′′41

(
x1
)

0 0 0 0 0 0 0 0

φ′′′11

(
x1
)
φ′′′21

(
x1
)
φ′′′31

(
x1
)
φ′′′41

(
x1
)

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 φ12
(
x2
)
φ22
(
x2
)
φ32
(
x2
)
φ42
(
x2
)

0 0 0 0

0 0 0 0 φ′12

(
x2
)
φ′22

(
x2
)
φ′32

(
x2
)
φ′42

(
x2
)

0 0 0 0

0 0 0 0 φ′′12

(
x2
)
φ′′22

(
x2
)
φ′′32

(
x2
)
φ′′42

(
x2
)

0 0 0 0

0 0 0 0 φ′′′12

(
x2
)
φ′′′22

(
x2
)
φ′′′32

(
x2
)
φ′′′42

(
x2
)

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 φ13(L) φ23(L) φ33(L) φ43(L)

0 0 0 0 0 0 0 0 φ′13(L) φ′23(L) φ′33(L) φ′43(L)

0 0 0 0 0 0 0 0 φ′′13(L) φ′′23(L) φ′′33(L) φ′′43(L)

0 0 0 0 0 0 0 0 φ′′′13 (L) φ′′′23 (L) φ′′′33 (L) φ′′′43 (L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5.7)
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L

X1 X2

m1,k1 Mw m2,k2

Kw
Cw

Figure 6.1. A double-span discontinuous cantilever beam.

The fundamental response h(x,ε), has the same shape for each segment, but depends on
different values for the involved physical parameters.

6. Numerical examples

6.1. Double-span beam. We first consider the case of a pinned-pinned double-span
beam of length L as Figure 6.1 that was studied in Sorrentino et al. [14] and Chang
et al. [13].

The spatial modal differential equation to double-span beam can be expressed in the
form

X (iv)
j (x)− a2

j (λ)ρjAjXj(x)= 0, x ∈ [xj−1,xj
]
, j = 1 : 2, (6.1)

for each segment of the beam, where aj , j = 1 : 2 are given in (3.3).
The boundary conditions to beam above at x = x0 = 0 and x = x2 = L are

X1(0)= X ′′1 (0)= 0, X2(L)= X ′′2 (L)= 0. (6.2)

We have the intermediate continuity conditions at the point x = x1,

X1
(
x1
)= X2

(
x1
)
,

X ′1
(
x1
)= X ′2

(
x1
)
,

k−1
2 k1X

′′
1

(
x1
)= X ′′2

(
x1
)
,

−k−1
2

(
Mwλ

2 +Cwλ+Kw
)
X1
(
x1
)

+ k−1
2 k1X

′′′
1

(
x1
)= X ′′′2

(
x1
)
.

(6.3)

For a double-span beam, the blocks that correspond to the boundary conditions are

�0 =
[

1 0 0 0

0 0 1 0

]
, �L =

[
1 0 0 0

0 0 1 0

]
. (6.4)
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At the intermediate points, where continuity conditions are to be held, we have

�11 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 k−1

2 k1 0
−k−1

2

(
Mwλ2 +Cwλ+Kw

)
0 0 k−1

2 k1

⎤
⎥⎥⎥⎥⎦ , �21 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

(6.5)

Thus, the coefficient block matrix of the given double-span beam is

�=

⎡
⎢⎢⎣

�0 0 0
0 �11 −�21

0 0 �L

⎤
⎥⎥⎦ (6.6)

or expanded

�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0 0 −1 0 0

0 0 0 0 0 0
k1

k2
0 0 0 −1 0

0 0 0 0 Γ 0 0
k1

k2
0 0 0 −1

0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6.7)

where Γ=−k2(Mwλ2 +Cwλ+Kw).
For constructing the basis matrix, that carries the values of the generic solution basis at

the ends of the beam and at the discontinuity points of a double-span beam, we consider

φ(i−1)
jk (x)= h( j+i−2)(x− xk−1,εk

)
, i, j = 1 : 4, k = 1 : 2, (6.8)

where h(x) is the solution of (5.3). Then, the basis matrix is given by

Φ=

⎡
⎢⎢⎢⎢⎣

Φ1(0) 0
Φ1
(
x1
)

0
0 Φ2

(
x1
)

0 Φ2(L)

⎤
⎥⎥⎥⎥⎦ (6.9)
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Table 6.1. Parameter values of a double-span beam.

Parameter Numeric value Unit

m1 =m2 1.6363× 104 kg/m

k1 = k2 1.6669× 1011 Nm2

L 15.24 m

Table 6.2. Eigenvalues (rad/s) to double-span beam.

Mode (n) Proposed method [14]

1 −11.25426117± 135.0795544 I −11.30627± 135.1799 I

2 .5512552857e-7 ±542.5166750 I 0± 542.5144 I

3 −8.442911066± 1128.708193 I −8.482803± 1128.716 I

or expanded

Φ=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

φ11
(
x1
)

φ21
(
x1
)

φ31
(
x1
)

φ41
(
x1
)

0 0 0 0
φ′11

(
x1
)

φ′21

(
x1
)

φ′31

(
x1
)

φ′41

(
x1
)

0 0 0 0
φ′′11

(
x1
)

φ′′21

(
x1
)

φ′′31

(
x1
)

φ′′41

(
x1
)

0 0 0 0
φ′′′11

(
x1
)

φ′′′21

(
x1
)

φ′′′31

(
x1
)

φ′′′41

(
x1
)

0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 φ12(L) φ22(L) φ32(L) φ42(L)
0 0 0 0 φ′12(L) φ′22(L) φ′32(L) φ′42(L)
0 0 0 0 φ′′12(L) φ′′22(L) φ′′32(L) φ′′42(L)
0 0 0 0 φ′′′12 (L) φ′′′22 (L) φ′′′32 (L) φ′′′42 (L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(6.10)

Numerical simulations with the proposed method are presented by using the data in
Table 6.1. The parameter values at the discontinuity point x = x1 = (L/2) of beam used
are Mw = 0.1mL, Kw = 0.1mLw2

1, and Cw = 0.1mLw1 where m =m1 =m2 and w1 is the
first natural frequency of the beam without added mass and spring [13]. In Table 6.2,
the first three eigenvalues of the beam were obtained by solving the characteristic equa-
tion (3.15) with an approximation of h(x) and compared with the ones obtained in [14].
We observed a good agreement among the two methods. In Figures 6.2, 6.3, and 6.4 are
showed the modes shapes corresponding to the first three eigenvalues of the beam, where
(a) indicates the real part of the mode and (b) the imaginary part of the mode.
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Figure 6.2. First mode to double-span beam.
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Figure 6.3. Second mode to double-span beam.

6.2. Triple-span beam. We now consider the triple-span beam given in Figure 2.1. First,
we assume that the beam is uniform with parameter values given in Table 6.3. The viscous
damping at the point of discontinuity x = x2 is given by Cw = 0.1mLw1, where x1 = 4m,
x2 = 10m, and w1 is the first natural frequency of the beam without added mass and
spring [13].

In Table 6.4, we have the values of the first three eigenvalues of the beam and in Figures
6.5, 6.6, and 6.7 the correspondent modes shapes, where (a) it indicates the real part of
the mode and (b) the imaginary part of the mode.
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Table 6.3. System parameters to beam uniform triple-span.

Parameter Numeric value Unit

m1 =m2 =m3 =m 1.6363× 104 kg/m

k1 = k2 = k3 1.6669× 1011 Nm2

L 15.24 m

Table 6.4. Eigenvalues of a uniform triple-span beam.

Mode (n) Eigenvalues

1 −1.355547843± 48.31860604 I

2 −12.43829644± 302.5538405 I

3 −8.226875796± 847.5582997 I

Table 6.5. System parameters to triple-span beam.

Segment first Segment second Segment third Unit

Mass 1.6363× 104 0.8×m1 0.8×m1 kg/m

Stiffness 1.6669× 1011 1.4× k1 0.6× k1 Nm2

Damping 5× 10−1 0.5× c1 11.7× c1 Ns/m2

Length (L) 4 6 5.24 m
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�0.2

�0.4

x

(a) Real part

0.8

0.6

0.4

0.2

0
2 4 6 8 10 12 14

x

(b) Imaginary part

Figure 6.4. Third mode to double-span beam.

For the second case, we consider that the cantilever beam in Figure 2.1 is nonuniform.
Its parameters values are given in Table 6.5. The first three eigenvalues of the beam are
listed in Table 6.6.
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Table 6.6. Eigenvalues (rad/s) to triple-span beam.

Mode (n) Eigenvalues

1 −.4314672830± 49.72926784 I

2 −8.906552965± 278.6470011 I

3 −16.73690547± 797.5457311 I
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Figure 6.5. First mode of a uniform triple-span beam.

0.4

0.2

0

�0.2

2 4 6 8 10 12 14

x

(a) Real part

0.03

0.02

0.01

0
2 4 6 8 10 12 14

x

(b) Imaginary part

Figure 6.6. Second mode of a uniform triple-span beam.
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Figure 6.7. Third mode of a uniform triple-span beam.
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Figure 6.8. First mode to triple-span beam.

In Figures 6.8, 6.9, and 6.10 are plotted the first three shape modes corresponding to
the first three eigenvalues of the beam, where (a) it indicates the real part of the mode and
(b) the imaginary part of the mode.

We can observe the effect of varying the parameters values in each segment of the
beam on the modes shapes. The second and third modes are quite different from those of
the uniform beam. This means that a beam with different sections some how influences
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Figure 6.9. Second mode to triple-span beam.
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Figure 6.10. Third mode to triple-span beam.

more the modes than external devices such as lumped mass, lumped stiffness, and lumped
damping.

7. Conclusion

We have considered the study of the eigenanalysis of a triple-span Euler-Bernoulli beam
subject to internal and external damping and to intermediate devices by keeping the orig-
inal second-order Newtonian formulation. We also employed a matrix formulation that
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allows to observe the influence of the boundary and intermediate continuity conditions
of the beam. Also, the values of a solution basis of the fourth-order differential equation
for each segment. By choosing the elements of the basis in each segment as a convenient
translation of the elements of a fundamental basis for the first segment, computations are
reduced. This fundamental later is generated by a specific initial-value solution and its
first three derivatives. The matrix method avoids the use of the first-order state formula-
tion or to rely on the Euler basis of a differential equation of fourth order. It also allows
to envision how conditions will influence a chosen basis.
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1. Introduction

The theory of plates and shells is applied usually for technical purposes. However, a role
of today’s modern theory of plates and shells is certainly wider. In fact, in many important
cases, the physical objects cannot be described by equations of 3D theory of elasticity. The
examples can be biological membranes, liquid crystals, thin polymeric films, thin-walled
objects made from materials with shape memory, as well as various nanostructure de-
vices. Theory of plates and shells not only gives practically useful results, but outlines also
a general methodology of the transition from 3D to 2D (or 1D) models. It is worth noting
that development of mathematical physics in many cases has been motivated by theory of
plates and shells problems, in particular we mean the problems associated with the appli-
cation of variation and asymptotic methods. Note that a key (for singular asymptotics)
concept of an edge effect appeared in the works of Lamb and Basset in 1890, while the
concept of boundary layer occurred in fluid mechanics appeared only in 1904 [1]. The
classical papers by Vishik and Lyusternik are a generalization of some results obtained
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earlier by Gol’denveı̌zer [2]. On the other hand, theory of plates and shells problems asso-
ciated with high-technology development of materials and constructions implied devel-
opment of various homogenization procedures [3–12]. The investigation of rods stability
yielded a linearization procedure, whereas Koiter’s approach [13] has strongly influenced
today’s Catastrophe theory.

Generally, asymptotic methods are applied in the field of theory of plates and shells
first for transition from 3D to 2D models, and then to solve 2D problems. Our attention
is focused on the latter problem. A choice of discussed and illustrated asymptotic methods
is mainly motivated by authors’ subjective experience. Note that in this paper we do not
concern up-to-date analysis of the existing linear and nonlinear models of shells, and a
reader interested at this topic is invited to follow other known works [14–18].

We also omit here purely mathematical approaches regarding theory of shells and
mainly developed by the French school (see, for instance, [19–21]).

2. On the parameter of asymptotic integration

Almost always while considering any asymptotic behavior, a term “small” or “large” pa-
rameter is applied. Since this traditional meaning may lead to confusion, we further ap-
ply the term of “asymptotic integration parameters,” not restricted to be necessarily small
(large). Notice that any asymptotic analysis should begin with normalization of the prob-
lem, that is defining it in terms of nondimensional variables whose typical scale is of the
order of one, and the relative magnitude of different physical effects is measured by non-
dimensional parameters or dimensionless groups [22]. In particular, in theory of plates
and shells, the following parameters are often used: h/R is the ratio of shell thickness to its
characteristic size, that is, radius [2, 23]; a/b is the ratio of characteristic dimensions (i.e.,
a plate length to its width) [24]; ω−1, where ω is the dimensionless frequency of vibra-
tions [25]; A is the dimensionless amplitude of vibrations [26]; ε = w/h, where w is the
normal displacement (the case ε� 1 belongs to Koiter’s asymptotics [13], whereas the
case ε� 1 is called Pogorolev’s asymptotics [27]); B1/B2 is the ratio of bending stiffnesses
of structurally orthotropic shell or the ratio of shear rigidity to membrane rigidity [28];
a small deviation of shell shape from canonical one [29] or a changeable thickness from
a constant one; the ratio of shallow shell rise H to curvature radius R, and so on.

For periodically nonhomogeneous plates and shells, small parameter is the ratio of a
period of nonhomogeneity to a characteristic size of considered structure [3–12].

If it is impossible to define a suitable real physical parameter, it can be introduced
to equations in a purely formal manner (artificial parameter of asymptotic integration)
[30].

“Let us try to find the asymptotics of some nontrivial solutions. First of all it is nec-
essary to guess (no better word may be chosen) in what form this asymptotics must be
sought. This stage—guessing the form of the asymptotics—of course, defines formaliza-
tion. Analogies, experience, physical considerations, intuition, and “just lucky” guesses
are the toolkit which is used by every investigator” [31], but after the introduction of the
parameters of asymptotic integration and after the choice of an asymptotic method, it
is not necessary to “reinvent the wheel”—it is better to use some well-known and well-
worked out approach.
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3. How to find parameters of asymptotic integration

One of the most peculiar aspects of theory of plates and shells is that associated with the
existence of a few parameters of asymptotic integration yielding complexity of the prob-
lem being analyzed. In general, this fact is omitted in most studies. Therefore, a domain
of application of the results is not clear enough. Gol’denveı̌zer [2] indicated the impor-
tance of estimation of the order of coefficients of the partial differential equations and
differential operators. In this reference, the index of variation of a function has been in-
troduced and found to be very convenient. For example [2, 24, 32, 33], one can introduce
estimations for the derivatives

wx ∼ εαw; wy ∼ εβw; wt ∼ εγw. (3.1)

To compare the orders of several functions, their indices of intensity are introduced in
the following way:

w ∼ εδ ; w ∼ εσu. (3.2)

Parameters of asymptotic integration α,β, . . . are chosen in a way which yields a gener-
alization of the Newton polygon. Notice that one gets finally not only simplified bound-
ary value problem, but also the estimation of application domains for used asymptotic
simplifications.

Let us introduce some remarks. Solutions of linear boundary value problem of the-
ory of plates and shells usually include exponential and trigonometric functions, which
causes efficiency of the described technique; but, for example, the solution of corner
boundary layer type can contain powers of coordinates, and in this case the indices of
variations should be applied carefully. In addition, it should be noted that the described
technique gives local estimations.

Although Gol’denveı̌zer’s monograph [2] was published long time ago, some of the
results reported there have been reconsidered again in the frame of the so-called power
geometry [34].

Key steps of the method will be illustrated by the example of a membrane lying on an
elastic support and governed by the equation

ε
(
wxx +wyy

)
+w = 0, (3.3)

where w(x, y) is the normal displacement of membrane, and ε is the small parameter.
The parameters of asymptotic integration α, β are introduced in the following way:

wx ∼ εαw, wy ∼ εβw, −∞ < α, β <∞. (3.4)
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Figure 3.1. Newton polygon for (3.3).

Exponents of ε power for all terms of (3.3) follow:

1− 2α, 1− 2β, 0. (3.5)

Considering plane αβ (see Figure 3.1), the areas corresponding to the smallest values
of exponents associated with all terms of (3.3) are constructed.

Note that exponent 1− 2α is the smallest one under the choice of α and β values in
area 4, exponent 1− 2β in area 1, and exponent 0 in area 6 (areas 1, 4, 6 are open sets, i.e.,
their boundary lines are not included).

In areas 1, 4, 6 the limiting equations follow:

wyy = 0; wxx = 0; w = 0. (3.6)

The equations include only one term. The values of α and β associated with the equa-
tions with two terms are located on boundary lines (without point α= β = 1/2)

wxx +wyy = 0, εwxx +w = 0, εwyy +w = 0. (3.7)

Finally, for α = β = 1/2 in (3.3) all terms remain. Since there are no blank spaces on
the αβ plane, there are no other limiting systems.

Note that the occurrence of more than two parameters of the asymptotic integration
results in an increase of the problem complexity. In [35, 36], effective algorithms to solve
the occurring problems are introduced, whereas in [37], a generalization is proposed.

Simultaneous splitting of governing equations should be matched with an appropriate
splitting of the associated boundary conditions. This complicated problem is discussed
and illustrated in [2, 23, 24, 32, 33].

4. Timoshenko-type plate equations

Below, we consider an illustrative example showing the efficiency of asymptotic meth-
od [36]. According to Timoshenko, the effect of a shear deflection occurring for plate
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vibration is comparable to that of rotary inertia. However, the wave front sets are pre-
dicted incorrectly due to the Timoshenko theory. On the other hand, asymptotic method
shows that a transverse compression effect is comparable with effects of rotary inertia and
shear deflection. Correct asymptotic theory gives a proper location of wave fronts as well
as averaged characteristics of stress-strain state in the vicinity of the mentioned fronts
within two-dimensional equations of the form

ϕ1xx + a2
s ϕ1yy + eϕ2xy + cWx − 8a2

s

(
wx +ϕ1

)−ϕ1tt = 0, (4.1)

ϕ2yy + a2
s ϕ2xx + eϕ1xy + cWy − 8a2

s

(
wy +ϕ2

)−ϕ2tt = 0, (4.2)

a2
s

(
wxx +wyy

)
+ e
(
ϕ1x +ϕ2y

)
+W −wtt = 0, (4.3)

W + c
(
ϕ1x +ϕ2y

)
+ 0.5wtt +

1
16
Wtt = 0, (4.4)

M1 = ϕ1x + cϕ2y + cW , M2 = ϕ2y + cϕ1x + cW , (4.5)

N =W + cϕ1x +ϕ2y , (4.6)

H = a2
s

(
ϕ2x +ϕ1y

)
, Q1 =wx +ϕ1 = β1, Q2 =wy +ϕ2 = β2, (4.7)

where: e = 1/(2(1− ν)), c = ν/(1− ν), a2
s = (1− 2ν)/(1− ν)2, w is the displacement of the

middle plane of the plate, ϕ1, ϕ2 are the rotational angles of the normal to the middle
plane of the plate in the x and y directions, W is the function of changing of the plate
thickness, antisymmetric with respect to the middle plane of the plate.

Compare (4.1)–(4.7) with the equations of Timoshenko plate at the shear coefficient
k2 = 2/3,

ϕ1xx +
1− ν

2
ϕ1yy +

1 + ν

2
ϕ2xy − 4(1− ν)

(
wx +ϕ1

)− 1
a2

1
ϕ1tt = 0,

ϕ2yy +
1− ν

2
ϕ2xx +

1 + ν

2
ϕ1xy − 4(1− ν)

(
wy +ϕ2)− 1

a2
1
ϕ2tt = 0,

wxx +wyy +ϕ1x +ϕ2y − 3
2a2

s
wtt = 0,

M1 = a2
1

(
ϕ1x + νϕ2y

)
, M2 = a2

1

(
ϕ2y + νϕ1y

)
, H = a2

s

(
ϕ2x +ϕ1y

)
,

Q1 =wx +ϕ1 = β1, Q2 =wy +ϕ2 = β2, a2
1 =

1− 2ν

(1− ν)2
.

(4.8)

Note that (4.1)–(4.7), contrary to (4.8), govern the velocities of all waves in compari-
son with the 3D case.

Equations (4.8) can be obtained from (4.1)–(4.7), but using the asymptotically incon-
sistent procedure: the last term of (4.4) as well as functionN in (4.6) should be neglected;
and expression W =−c(ϕ1x +ϕ2y) should be introduced to (4.2)–(4.4).

5. Dynamic edge effect method

Due to the main idea of this approach proposed by Bolotin [25], a continuous elastic
system is separated into two parts. In one of them—an interior zone—solutions may be
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expressed by trigonometric functions with unknown constants. One can use exponential
functions in the dynamic edge effect’s zone. Then, a matching procedure permits to ob-
tain unknown constants, and a complete solution of dynamic problem may be written in
a relatively simple form. This approximate solution is very accurate for high-frequency
vibrations, but even at low-frequency vibrations the error is not excessive. Dynamic edge
effect method is naturally generalized for a nonlinear case [26, 32].

We should also emphasize that dynamic edge effect method works properly in con-
nection with variation methods [26, 32]. This is due to the fact that the dynamic edge
effect method gives good approximation of displacements. While finding the eigenval-
ues, the following general rule can be formulated: if you are looking for the eigenforms,
then asymptotics should be used; if you need an eigenvalue, then the found asymptotic
function can be used further by one of the variation methods.

6. Homogenization approach

Replacement of a nonhomogeneous shell by a homogeneous one with some reduced
characteristics belongs to one of the most popular approximations in theory of plates
and shells. We can mention structurally orthotropic theories of ribbed, corrugated, per-
forated plates and shells, plates and shells with many attached masses, and so forth. For
many years, a design of similar simplifications depended fully on engineers’ intuition, and
the obtained quantities differed from each other depending on the theory used. Mathe-
matical difficulties were caused by the occurrence of partial differential equations with
rapidly changing coefficients. Beginning from the 1970s of the 20th century, the the-
ory of homogenization of partial differential equations has been developed. It should be
emphasized that a similar mathematical approach was proposed earlier in the theory of
ribbed shells [12].

Using the homogenization approach, one must deal with two successively solvable
problems: a local problem for periodically repeated element (cell) as well as the global
homogeneous problem with some reduced parameters. As a rule, the fundamental diffi-
culty is associated with solution of the cell problem. Although this problem can be solved
numerically, an analytical solution is always highly required. The application of asymp-
totic methods to solve local problems allowed us to get homogenized solutions for various
periodically nonhomogeneous plates and shells with correctly reduced coefficients. The
areas of applicability of approximated theories are estimated, and full stress-strain states
can be calculated. It is important that one can also predict boundary layers occurring in
the vicinity of boundaries. Lack of this knowledge does not allow the shell stress-strain
to be fully estimated. Using the homogenization procedure, one should take into account
the relations between parameters of investigated structures. As an example, a deformation
of a reinforced membrane governed by the following equation is analyzed:

∂2u

∂x2
+
∂2u

∂y2
= g1(x, y), kl ≤ y ≤ (k+ 1)l. (6.1)
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Conditions of conjugations of the neighboring parts of membrane are:

lim
y→kl+0

u≡ u+ ≡ lim
y→kl−0

u≡ u−, (6.2)

(
∂u

∂y

)+

−
(
∂u

∂y

)−
= d1

∂2u

∂x2
, (6.3)

u= 0 for x = 0,H. (6.4)

Let a characteristic period of external load be L� l, ε = l/L� 1. We introduce the
variables η = y/l, y1 = y/L, and the following series:

u= u0(x, y) + εα1
[
u10(x, y) +u1(x, y,η)

]

+ εα2
[
u20(x, y) +u2(x, y,η)

]
+ ···, 0 < α1 < α2 < ··· .

(6.5)

Substituting (6.5) into (6.1)–(6.4), the following recurrent system is obtained:

∂2u0

∂x2
+
∂2u0

∂y2
+ εα−2 ∂

2u1

∂η2
+ 2εα−1 ∂

2u0

∂y∂η
+ εα−2 ∂

2u2

∂η2
+ 2εα−1 ∂

2u0

∂y∂η
+O(εα)= q(x, y),

[
u0 + εα

(
u10 +u1

)
+ ···]+ = [u0 + εα

(
u10 +u1

)
+ ···]−,

εα−1

[(
∂u1

∂η

)+

−
(
∂u1

∂η

)+
]

+O
(
εα
)= d

[
∂2u0

∂x2
+O

(
εα
)]

,

(6.6)

where: q = L2q1, d = d1/L.
The character of asymptotics depends essentially on the order of magnitude of d in

comparison to ε. Let us introduce the estimation d ∼ εβ.
Depending on the value of β, one obtains the following limiting systems:

0 < α < 2,
∂2u1

∂η2
= 0, (6.7)

α= 2,
∂2u0

∂x2
+
∂2u0

∂y2
+
∂2u1

∂η2
= q(x, y), (6.8)

α > 2,
∂2u0

∂x2
+
∂2u0

∂y2
= q(x, y), (6.9)

and the following conjugation conditions:

β < α− 1,
∂2u0

∂x2
= 0,

β = α− 1,

[(
∂u1

∂η

)+

−
(
∂u1

∂η

)+
]

= dε1−α1
∂2u0

∂x2
,

β > α− 1,
(
∂u1

∂η

)+

=
(
∂u1

∂η

)+

.

(6.10)
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Figure 6.1. The plane of parameters β > 0, α > 0.

The plane of parameters β > 0, α > 0 is divided into nine parts (see Figure 6.1).
In zones 1–3, one has

∂2u1

∂η2
= q(x, y). (6.11)

In zones 4–6, the equation has the form of (6.9). For zones 7 and 9, the limiting systems
are incorrect.

A particular role plays the case of α = 2, β = 1 (zone 8). The corresponding limiting
equation is (6.8) and

u+ = u−,
[(

∂u1

∂η

)+

−
(
∂u1

∂η

)+
]

= dε−1 ∂
2u0

∂x2
.

(6.12)

Solution of (6.8) can be written as follows.

u1 = 0.5
(
∂2u0

∂x2
+
∂2u0

∂y2
− q(x, y)

)
η2 +C1η+C2. (6.13)

Substituting solution (6.13) into conditions (6.12) yields the homogenized boundary
value problem governed by the following equations:

∇2u0 +
d1

l

∂2u0

∂x2
= q(x, y),

u1 = d1(x, y)
l

∂2u0

∂x2
η(η− l).

(6.14)

Observe that boundary conditions (6.4) are not satisfied. In order to construct
a boundary layer ub, the new “fast” variable ξ = x/l is introduced and the following series
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is applied:

un = εγ1u11(x, y,ξ,η) + εγ2u22(x, y,ξ,η) + ··· , 0 < γ1 < γ2 < ··· . (6.15)

Substituting series (6.15) into the governing boundary value problem yields the first
approximation

∂2u11

∂ξ2
+
∂2u11

∂η2
= 0, u11|η=kl = 0, k = 0,±1,±2, . . . . (6.16)

Then, further construction of a boundary layer may be easily carried out using, for
example, the Kantorovich procedure [38].

7. Distributional approach

Terms like a(x/ε) often occur in the asymptotic problems. In order to introduce parame-
ter ε explicitly, it is useful to apply the distributional approach [39]. As a model problem,
we consider a transition from 2D ribs to 1D ones. The governing partial differential equa-
tions for bending deformation of an infinite plate on the elastic foundation, reinforced
by periodic systems of ribs in two main directions, are as follows:

DΔΔw+Cw+D1F1(x)wxxxx +D2F2(y)wyyyy = q(x, y),

F1(x)=
∞∑

n=−∞

[
H
(
x+nl1

)−H(x+ml1 + a
)]

;

F2(y)=
∞∑

n=−∞

[
H
(
y +nl2

)−H(y +ml2 + a
)]

,

(7.1)

where H is the Heaviside function.
We suppose that the ribs are thin and choose their width a as the parameter of as-

ymptotic integration. To introduce parameters a, b explicitly, we analyze function f (x)=
H(x)−H(x + a). Applying two-sided Laplace transformation, and using development
into a Maclaurin series, one obtains

f (p)= a+

∑∞
n=1(−1)nan+1pn

(n+ 1)!
, (7.2)

where f (p) is the Laplace transform of f (x) (x→ p).
The inverse Laplace transform leads to the following series:

f (x)= aδ(x) +

∑∞
n=1(−1)nan+1δ(n)(x)

(n+ 1)!
, (7.3)

where δ(x) is the Dirac function.
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Functions F1(x) and F2(y) can be expanded in a similar way. As a result, we obtain the
following equations:

DΔΔw+Cw+D1Φ1(x)wxxxx +D2Φ2(y)wyyyy = q(x, y),

Φ1(x)=Φ10(x) +Φ11(x) +Φ12(x)

=
∞∑

n=−∞
aδ
(
x+nl1

)− 0.5
∞∑

n=−∞
a2δ′

(
x+nl1

)
+

∞∑

n=−∞

∞∑

k=2

(−1)kak+1δ(n)(x+nl1
)
,

Φ2(y)=Φ20(y) +Φ21(y) +Φ22(y)

=
∞∑

n=−∞
aδ
(
y +nl2

)− 0.5
∞∑

n=−∞
a2δ′

(
y +nl2

)
+

∞∑

n=−∞

∞∑

k=2

(−1)kak+1δ(n)(y +nl2
)
.

(7.4)

A solution to the equation can be sought in the form of the following series:

w =w0 +
∞∑

i=0

aiwi. (7.5)

In the zero-order approximation, one gets a plate with 1D ribs governed by the follow-
ing PDE:

DΔΔw0 +Cw+D1Φ10(x)w0xxxx +D2Φ20(y)w0yyyy = q(x, y). (7.6)

Note that an influence of the ribs width appears in the next approximations.

8. Real and asymptotic errors

Accuracy of asymptotic methods is usually estimated by an asymptotic error, that is, ow-
ing to the order of estimation of the last omitted term. However, a researcher engaged in
theory of plates and shells is more interested in a real rather than asymptotic error. It may
happen that in order to increase real accuracy of the obtained solution, one has to omit
the asymptotic character of constructed solutions. Some methods for decreasing the real
error of constructed approximate solutions follow.

(1) Asymptotically accurate semimembrane theory of cylindrical shells can be de-
veloped using the condition of absence of shear and torsion deformations in the
shell middle surface. However, the condition of absence of shear deformations
is realized with less accuracy than for torsion deformation. Although, a theory
constructed on the basis of only rotary deformation absence is asymptotically
inaccurate, practically it gives more accurate results [40–42].

(2) Donnell-Mushtari-Marguerre equations are good approximation of complete
system of nonlinear dynamical shell equations except a case, when vibrations
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form in circumferential direction can be modeled as cos(2πy/R). Shkutin [43]
proposed a slight modification of the Donnell-Mushtari-Marguerre equations
for overcoming this drawback, which is exhibited by the following equations:

D

h
∇4

1W =WxxΦyy +WyyΦxx − 2WxyΦxy +
1
R
Φxx − ρhWtt = 0,

1
E
∇4

1Φ+
1
R
Wxx +WxxWyy −

(
Wxy

)2 = 0,
(8.1)

where:

∇4
1 =

∂4

∂x4
+ 2

∂4

∂x2∂y2
+
∂2

∂y2

(
∂2

∂y2
+

1
R2

)
. (8.2)

(3) Owing to the asymptotic splitting of the boundary value problems, a fundamen-
tal error is introduced by simplification of the boundary conditions. In many
cases, one may analytically obtain a general solution of edge effect equations.
Using this solution, it is possible to exclude exactly the terms of the edge effect
solution from the boundary conditions and hence avoid splitting of the bound-
ary conditions [44].

(4) The method of composite equations is devoted to constructing uniformly suit-
able solutions on the basis of various limiting cases [45]. A fundamental idea
of the method can be formulated in the following way. First, the components
of the governing equations are detected, which, when neglected, lead to non-
homogeneity in a zero-order approximation. Second, the mentioned compo-
nents are defined in a relatively simple way (they must include essential prop-
erties in the nonhomogeneous states). Matching of the limiting relations leads
to uniformly suitable equations. In the theory of plates and shells, a composite
equation of the stress-strain fundamental state has been obtained, unifying the
semimembrane and membrane theories and a plane plate deformation. A simple
edge effect and bending of the plate are included in a composite equation of the
edge effect type. The obtained composite equations are of the fourth order be-
cause of a longitudinal variable and are applicable in the whole range of different
loadings [26, 32, 46].

(5) For a posteriori error estimation of the asymptotic solutions, singular version of
the Kantorovich theorem [46] can be successfully used [47].

9. Beyond the series locality

The principal shortcoming of asymptotic methods is the local nature of solutions yielded
by them. Problems of elimination of the expansion locality, evaluation of the convergence
domain, and construction of uniformly suitable solutions are highly expected.
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There are many approaches to these problems [26, 30, 32, 48–50]: the method of ana-
lytic continuation, Borel summation procedure, Euler transformation, and Domb-Sykes
diagram [45]. As a rule, they need a significant number of the expansion components.

Not diminishing the merits of the mentioned techniques, let us, however, note that in
practice, only a few of the first components of the expansion of perturbations are usually
known. Lately, the situation has indeed changed a little due to computer application. It
may happen that a number of terms of asymptotic series can be increased without any
serious problems. For instance, computing improvement terms with respect to an eigen-
value are usually successfully defined by eigenvalues and eigenfunctions. The knowledge
of the nth eigenfunction allows us to define 2n+ 1 eigenvalues [51]. However, until now,
there are usually 3–5 components available in a perturbation series, and exactly from this
segment of the series, we have to extract all available information. To this end, the method
of Padé approximants may be very useful. Let us now define Padé approximants. Let

F(ε)=
∞∑

i=0

Ciε
i,

Fmn(ε)=
∑m

i=0 aiε
i

∑m
i=0 biεi

,

(9.1)

where the coefficients ai, bi are determined from the following condition: the first (m+n)
components of the expansion of the rational function Fmn(ε) in a Maclaurin series coin-
cide with the first (m+n+ 1) components of the series F(ε). Fmn(ε) is the Padé approxi-
mation of the function F(ε).

Padé approximants perform meromorphic continuation of the function given in the
form of the power series. If the Padé approximants sequence converges to a given func-
tion, then the roots of its denominators tend to singular points.

A wide application of the Padé approximants is observed due to its suitable properties.
Among others, we should mention the effect of error autocorrection: even very significant
errors in the coefficients of Padé approximants do not affect the accuracy of the approxi-
mation [52, 53]. This is because the errors in the numerator and the denominator of Padé
approximants compensate each other. In other words, the errors in the coefficients of the
Padé approximants are not distributed in an arbitrary way, but form the coefficients of a
new approximant to the approximated function.

Padé approximants can be used for a heuristic evaluation of the domain of applicabil-
ity of a perturbation series. The ε values, up to which the difference between calculations
according to the truncated perturbation series and its diagonal Padé approximants do not
exceed a given value (e.g., 5%), can be considered as a limiting value for applicability of
the perturbation series.

10. Homotopy perturbation technique

Dorodnitzyn [54] proposed a method of introducing the parameter ε into the input
boundary value problem in such a way that for ε = 0 the simplified problem is obtained,
whereas for ε = 1 the input problem is governed. Then, the perturbation method can
be used. Now, this approach is known as a homotopy perturbation technique [49, 55].
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Figure 10.1. Relationship between the vibration frequency λ and the clamped segment length.

Unfortunately, perturbation series for ε = 1 usually diverges. In order to overcome this
difficulty, the Padé approximants can be used effectively [26, 30, 32, 56].

Let us focus on the application of the homotopy perturbation method [26, 30, 32]
when solving mixed BVP of the vibration of a rectangular plate (−0.5k ≤ x ≤ 0.5k,−0.5≤
y ≤ 0.5), simply supported at x = ±0.5k, and having mixed boundary conditions of the
“clamped-simple supported” type, symmetrical to the y axis or the sides y = ±0.5k
(Figure 10.1). The governing equation is

∇4w− λw = 0. (10.1)

The boundary conditions after introducing a homotopy parameter have the following
form:

w = 0, wxx = 0 for x =±0.5k,

w = 0, wyy =H(x)ε
(
wyy ±wy

)
for y =±0.5,

(10.2)

where H(x)=−H(x−μ) +H(−x−μ).
Substituting w and λ in the form of ε-series

w =w0 + εw1 + ··· , λ= λ0 + ελ1 + ··· , (10.3)
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and after applying the usual perturbation procedure to the boundary value problem
(10.1), (10.2), one obtains

λ0 = π4ψ2, λ1 = 4π2n2γmm,

λ2 = 4π2n2γmm

{
1− γmm

π2ψ

[
πα

2
cth(−1)m

(
πα

2

)
+
n2

ψ
− 3

2

]}

− 2n2

ψ

∞∑

{
i=1,3,5,...
i=2,4,6,...

}
γim

⎡

⎣αi cth(−1)i
(
αi
2

)
+

{
−φi cth(−1)i (φi/2

)

βi cth(−1)i (βi/2
)

}⎤

⎦ ,
{
i2 >m2 +n2k
i2 <m2 +n2k

}
,

(10.4)

where

ψ = n2 +
m2

k2
, α=

√

2
m2

k2
+n2, αi =

√
i2 +m2

k2
+n2, βi = π

√
m2− i2
k2

+n2,

γim =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2(0.5−μ) +
(−1)m

πm
sin(2πμm), for i=m

4
π

1
(
m2− i2)

[{
i

m

}
sin(πμi)cos(πμm)−

{
m

i

}
sin(πμm)cos(πμi)

]
, for i
=m,

(10.5)

and
∑′ is the sum without the component i=m.

Truncated perturbation series for μ= 0 (both sides y =±0.5 are completely clamped)
for the square plate gives (1.4783π)4. Padé approximants are

λp(ε)= a0 + a1ε

1 + b1ε
, a0 = λ0, a1 = λ1 + b1λ0, b1 = −λ2

λ1
, (10.6)

and for ε = 1 one obtains λp = (1.7081π)4, while numerical value λ = (1.7050π)4.
Figure 10.1 presents the relation of λ versus μ and some experimental data (dots and
triangles).

11. Theories of higher-order approximations

In order to increase approximation accuracy, the terms of higher order may remain in
the input equations, but such an approach can increase the order of the approximate
partial differential equation. This problem can be overcome by Padé approximants. Let
us consider vibrations of a stretched beam modeled by the following equations:

wtt −wξξ + εwξξξξ = 0, (11.1)

w =wξξ = 0 for ξ = 0,1. (11.2)

Note that one may obtain a string-type model from (11.1) for ε = 0, namely,

wtt −wξξ = 0, (11.3)

w = 0 for ξ = 0,1. (11.4)
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In (11.1), instead of the differential operator −∂2/∂ξ2 + ε∂4/∂ξ4, one can use the fol-
lowing approximation:

−∂2

∂ξ2
+
ε∂4

∂ξ4
≈ −∂2/∂ξ2
(
1 + ε∂2/∂ξ2

) . (11.5)

Finally one obtains

(
1 + ε

∂2

∂ξ2

)
wtt −wξξ = 0. (11.6)

The associated boundary conditions have the form (11.4). Observe that if the model
(11.3), (11.4) approximates eigenvalues of the initial problem up to the order of ε, then
model (11.6), (11.4) includes second-order approximation of ε2 preserving the equation
order with respect to the spatial coordinates.

12. Matching of limiting asymptotics

It happens often that solutions related to two limiting values of a certain parameter can
be easily constructed. In this case, one can define a solution valid for all parameter values
with a help of two-point Padé approximants [26, 30, 32]. Let

F(ε)=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∞∑

i=0

aiε
i when ε −→ 0,

∞∑

i=0

biε
−i when ε −→ A.

(12.1)

The two-point Padé approximation is represented by the following rational function:

F(ε)=
∑m

k=0 akε
k

∑n
k=0 bkεk

, (12.2)

where k+ 1 (k = 0,1, . . . ,n+m+ 1) are the coefficients of a Taylor expansion if ε→ 0, and
m+n+ 1− k are the coefficients of a Laurent series, and for ε→ A they coincide with the
corresponding coefficients of the series (12.1).

As an example, we consider the problem of nonlinear deformation of a sphere. The
solution

Q = 0.42ε+ 0.3ε3 + 0
(
ε5),

ε = 2(w/h)
√

3
√

1− ν2, Q= 0.5qR23
√

1− ν2

Eh2

(12.3)

has been obtained by means of the asymptotic methods for a closed sphere subjected to
the uniform external pressure q [27]. In the above, w is the amplitude of post-buckling
axially symmetric equilibrium form.

In the region of small displacements, the Koiter approach [13] holds, and hence

Q = 1 + 0
(
ε−4). (12.4)
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Figure 12.1. Matching of quasilinear and essentially nonlinear asymptotics.
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Figure 12.2. Comparison of two-point Padé approximation solution (solid line) with experimental
results.

By matching expansions (12.3) and (12.4) with the two-point Padé approximation,
one obtains the following solution [27]:

Q = A

A+ 2.19
, A= ε4 + 0.082ε3 + 0.386ε2 + 0.92ε. (12.5)

Curves 1 and 2 in Figure 12.1 correspond to solutions (12.3), (12.5), respectively. Ac-
curacy of solution (12.5) is confirmed by comparison with the precise numerical solution.

In Figure 12.2, results of comparison of experimental data for post-buckling equilib-
rium states of shallow elliptic parabolic-shaped shells under external pressure [57] with
the solution based on two-point Padé approximation [27] are shown, where w = w/h;
P = (0.5qR1R23

√
1− ν2)/Eh2.
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Figure 12.3. Homogenized coefficients of perforated plates.

The second example is associated with homogenization of a rectangular plate with
circular perforations. Analytical solutions for small and large holes were obtained [12] by
using the AM perturbation of the domain and boundary form. Coefficients A and B of
the homogenized equation

A
(
Wxxxx +Wyyyy

)
+ 2BWxxyy = q(x, y) (12.6)

are yielded by the following expressions (for ν= 0.3):

A= 1− λ
1− 0.5785λ

, B = 1− λ
1− 0.6701λ

, (12.7)

where λ= b/a (b is the diameter of the hole, a is the length of the square cell side).
Figure 12.3 shows the numerical results for A and B.
The values of coefficients are compared with both theoretical results obtained by

means of the two-period elliptic functions (curve 1 in Figure 12.3) and experimental re-
sults (points in Figure 12.3).

Evidently, the two-point Padé approximants are not a panacea. As a rule, one of the
limit expansions (ε→ 0 or ε→ A) contains logarithmic or exponential terms. In this case,
one can use the method of asymptotically equivalent functions. Suppose that we have
a perturbation approach in powers of ε for ε→ 0 and asymptotic expansions F(ε) con-
taining logarithm for ε→ A. By definition, an asymptotically equivalent function is the
ratio with unknown coefficients ai, bi, containing both powers of ε and function F(ε).
The coefficients a, b are chosen in such a way, that the expansion of a ratio in powers of
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ε matches the corresponding perturbation expansion and the asymptotic behavior of the
ratio for ε→∞ coincides with F(ε).

13. Nonlinear problems

Although asymptotic techniques regarding linear problems of theory of plates and shells
are relatively good developed, there are still many unsolved tasks related to nonlinear
problems. In particular, nonlinear systems with distributed parameters exhibit various
internal resonance between modes. It may happen that neglection of higher modes may
yield also erroneous results [58]. In [59], the asymptotic method has been proposed,
where all modes of vibrations can be approximately applied. In order to show main fea-
tures of the proposed approach, let us consider free vibrations of a membrane attached
to a nonlinear foundation. The governing equation follows:

∂2u

∂x2
+
∂2u

∂y2
−β1u− εβ2u

3 = 0, (13.1)

where ε is a nondimensional parameter (ε� 1).
The boundary conditions have the following form:

u|x=0,l1 = u|y=0,l2 = 0. (13.2)

A being sought periodic solution satisfies the following periodicity requirement:

u(t)= u(t+T), (13.3)

where T = 2π/ω is a period, and ω is a natural vibration frequency.
We are going to find natural frequencies of vibrations associated with such fundamen-

tal modes that in the associated linear case (for ε = 0) only half waves appear in both x-
and y-directions. Now we proceed in a usual way, using Lindstedt-Poincaré procedure
[60]. Namely, we scale time

τ = ωt, (13.4)

and the following series are introduced:

u= u0 + εu1 + ε2u2 + ··· ,

ω = ω0 + εω1 + ε2ω2 + ··· . (13.5)

Substitution of relations (13.5) into (13.1), (13.2), (13.3) and comparison of the terms
standing by the same powers of ε yields the following set of linear boundary value prob-
lems:

∂2u0

∂x2
+
∂2u0

∂y2
−ω2

0
∂2u0

∂τ2
−β1u0 = 0, (13.6)

∂2u1

∂x2
+
∂2u1

∂y2
−ω2

1
∂2u1

∂τ2
1
−β1u1 = 2ω0ω1

∂2u0

∂τ2
+β2u

3
0. (13.7)



I. V. Andrianov and J. Awrejcewicz 19

Both boundary conditions (13.2) and periodicity relations (13.3) are cast to the fol-
lowing form:

ui|x=0,l1 = ui|y=0,l2 = 0;

ui(τ)= ui(τ + 2π).
(13.8)

A solution to (13.6) has the following form

u0,0 =
∞∑

m=1

∞∑

n=1

Am,n sin

(
ωlin
m,n

ω1,0
τ

)

sin
(
πm

l1
x
)

sin
(
πn

l2
y
)

, (13.9)

where A1,1 is the amplitude of the principal mode; Am,n, m,n = 1,2,3, . . ., (m,n) 
= (1,1)

are the amplitudes of the successive modes: ωlin
m,n =

√
(π2m2/l21) + (π2n2/l22) +β1, m,n =

1,2,3, . . . are the natural frequencies of the linear system, and ω0 = ωlin
1,1.

Next approximation regarding ε is found owing to solution of the boundary value
problem governed by (13.7), (13.8). In order to cancel the secular terms, the coefficient
standing by the terms of the form sin((ωlin

m,n/ω0)τ)sin((πm/l1)x)sin((πn/l2)y), m,n =
1,2,3, . . . , occurred in the right-hand side of (13.7) are assigned to zero. This approach
yields the following infinite system of algebraic equations:

2Am,nω1

β2ω0

(
ωlin
m,n

)2 =
∞∑

i=1

∞∑

j=1

∞∑

k=1

∞∑

l=1

∞∑

p=1

∞∑

s=1

C
(i jklps)
m,n Ai, jAk,lAp,s, m,n= 1,2,3, . . . . (13.10)

The coefficients C
(i jklps)
m,n are found via substitution of relations (13.9) into the right-

hand side of (13.7).
Note that system (13.10) can be solved via a reduction method. However, owing to

introduction of many equations the essential difficulties regarding efficient computation
may appear. Besides, the mentioned approach does not include higher modes interaction.
In order to omit the mentioned problem, one may introduce a new parameter μ such
that for μ = 0 the studied system is essentially simplified. Then, the solution as a series
regarding that parameter is constructed and finally μ= 1 is assumed.

In our study in the right-hand side of each (m,n)th equation of system (13.10), a
parameter μ is introduced before the terms Ai, jAr,lAp,s for which the following condi-
tion holds: (i > m)∪ (k > m)∪ (p > m)∪ ( j > n)∪ (l > n)∪ (s > n). Note that now sys-
tem (13.10) takes “triangle” form for μ= 0, whereas for μ= 1 the system takes the initial
form. The solution is sought further in the following series form:

ω1 = ω(0) +μω(1) +μ2ω(2) + ··· ,

Am,n = A(0)
m,n +μA(1)

m,n +μ2A(2)
m,n + ··· , m,n= 1,2,3, . . . , (m,n)
= (1,1),

(13.11)

and then one assumes μ= 1. Finally, let us emphasize that the mentioned approach allows
to contain in systems (13.10) arbitrary number of equations.
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14. Merits and demerits of the asymptotic methods

Advantages of asymptotic methods follow.
(1) Essentially simplified solutions, which in many cases can be obtained in an ana-

lytical way.
(2) Asymptotic methods are easily matched with other approaches, that is, numer-

ical, variational ones, and so forth. Owing to the introduced simplification of
the input boundary value problem and separation of the associated peculiari-
ties of the considered problem, one may effectively apply numerical approaches.
Asymptotic methods allow us to exhibit the structure of solution and the type
of approximating functions in the Bubnov-Galerkin, Rayleigh-Ritz, Trefftz and
Kantorovich approaches. Owing to the construction of zero order solution, it can
be applied as a starting solution for other iteration processes like the Newton-
Kantorovich method.

(3) Asymptotic methods are strictly associated with a physical aspect of the analyzed
problem allowing for it easier understanding.

(4) Asymptotic methods allow us to explain mathematical and physical bases of ap-
proximated engineering methods, increasing their accuracy and reliability of ob-
tained results.

(5) Asymptotic methods give a possibility of a unified approach to various different
problems exhibiting their common aspects and internal unity.

However, the main drawback of asymptotic methods is generated by insufficiently ac-
curate results of low approximations, since a construction of successive approximations is
not always easy. Also an accuracy of the estimation of asymptotic methods and intervals
of their applicability in many cases causes serious difficulties.

15. Concluding remarks

Many important methods like WKB [24] or matched asymptotic expansion [61] are
omitted in our review. Other interesting problems such as junction of plates and shells
with 1D and 3D bodies or junction of two shells [62, 63], solutions of shell problems in
singular domains [60, 64], have not been considered either.

In addition, an application of the asymptotic methods in the localization problems
[24, 65] are also omitted in our paper.

One can also add to this list the problems of bonding, which arise in laminated plates
and shells and which attracted many researches in the recent past [66, 67].

Important results related to the so-called first-order accuracy problems in theory of
plates and shells have been reported by Gol’denveı̌zer et al. [68] and Nazarov [69]. They
show, among others, that inclusion into consideration of 3D boundary layers may im-
prove accuracy order of the being modeled systems.

In our paper, we are mainly focused on linear problems. On the other hand there is
no doubt that the development regarding application of asymptotic methods devoted to
analysis of nonlinear problems plays a key role in nonlinear problems of both dynamics
and stability of continuous systems [70, 71].
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It is expected that further development of asymptotic methods is associated with com-
bined numerical-analytical approaches and includes them in standard codes. This is im-
portant because an accurate numerical computation of shells with arbitrarily small thick-
ness is impossible in practice. Standard finite-element codes usually fail to give accurate
results for h/R∼ 0.01 or 0.001.

Nowadays, in order to compute thin-walled structures, the standard finite-element
codes are used. It seems that asymptotic information is rather rarely applied. On the
other hand, asymptotic methods belong to fundamental ones during the construction
of mathematical models of physical processes [22, 72]. “Design of computational or ex-
perimental schemes without the guidance of asymptotic information is wasteful at best,
dangerous at worst, because of possible failure to identify crucial (stiff) features of the
process and their localization in coordinate and parameter space. Moreover, all experi-
ence suggests that asymptotic solutions are useful numerically far beyond their nominal
range of validity, and can often be used directly, at least at a preliminary product design
stage, for example, saving the need for accurate computation until the final design stage,
where many variables have been restricted to narrow ranges” [72].

Finally, there are many books and papers devoted to the considered problems, and
therefore only some of them are cited. However, a reader may find additional references
in [24, 30, 32, 33, 50, 60, 65, 73–76] to extend knowledge associated with asymptotic
approaches to plates and shells modeling.
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Email address: awrejcew@p.lodz.pl



Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2007, Article ID 62157, 17 pages
doi:10.1155/2007/62157

Research Article
Dynamic Stationary Response of Reinforced Plates by
the Boundary Element Method

Luiz Carlos Facundo Sanches, Euclides Mesquita, Renato Pavanello, and
Leandro Palermo Jr.

Received 1 October 2006; Revised 7 February 2007; Accepted 26 February 2007

Recommended by José Manoel Balthazar

A direct version of the boundary element method (BEM) is developed to model the
stationary dynamic response of reinforced plate structures, such as reinforced panels in
buildings, automobiles, and airplanes. The dynamic stationary fundamental solutions of
thin plates and plane stress state are used to transform the governing partial differen-
tial equations into boundary integral equations (BIEs). Two sets of uncoupled BIEs are
formulated, respectively, for the in-plane state (membrane) and for the out-of-plane state
(bending). These uncoupled systems are joined to form a macro-element, in which mem-
brane and bending effects are present. The association of these macro-elements is able
to simulate thin-walled structures, including reinforced plate structures. In the present
formulation, the BIE is discretized by continuous and/or discontinuous linear elements.
Four displacement integral equations are written for every boundary node. Modal data,
that is, natural frequencies and the corresponding mode shapes of reinforced plates, are
obtained from information contained in the frequency response functions (FRFs). A spe-
cific example is presented to illustrate the versatility of the proposed methodology. Dif-
ferent configurations of the reinforcements are used to simulate simply supported and
clamped boundary conditions for the plate structures. The procedure is validated by com-
parison with results determined by the finite element method (FEM).
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erly cited.

1. Introduction

Reinforced panel systems are widely used in buildings, bridges, ships, aircrafts, and ma-
chines. These structural systems are efficient, economical, and readily constructed from
common materials. The panels are usually built by the association of plates (or shells)
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with orthogonally displaced beams, which are the reinforcements. The main advantage
of applying these structural elements is the increase of structural rigidity without consid-
erable increase in weight.

The static analysis of the reinforced plate systems has been performed using solution
strategies such as methodologies based on energy principles [1], semi-analytical methods
[2], or the differential quadrature methods [3]. Also it is possible to model the behav-
ior of these structures by the finite element method (FEM) [4, 5], the boundary element
method (BEM) [6–10], or a combination of these numerical methods [11]. A rather lim-
ited amount of technical literature is available on the dynamic analysis of stiffened plate
systems. On the other hand, a significant research effort is under way in both the academia
and the industry to improve the numerical models and to develop new modeling meth-
ods for the dynamic analysis [12]. Finite and boundary elements have some limitations
to obtain vibration responses at middle and upper frequency ranges due to the necessity
of intense mesh refining. The use of very fine meshes in the finite element analysis results
in large algebraic systems. An alternative is posed by the BEM. If formulated with the
proper auxiliary state, the BEM only requires boundary discretization, leading to consid-
erable smaller algebraic systems.

Direct boundary element subregion formulations based on Kirchhoff ’s plate theory
has been applied to the dynamic analysis of thin-walled structures formed by assembling
folded plate models using the so-called static fundamental solution [13, 14]. Assembled
plate structures were also analyzed by BEM and comparisons with FEM are given to
demonstrate the accuracy of this methodology [15]. Another dynamic analysis of elastic
plates reinforced with beams takes into account the resulting in-plane forces and defor-
mations in the plate, as well as the axial forces and deformations in the beam, due to
combined response of the system [16]. The method presented in [16] employs the static
solution similar to the models described previously. The consequence of these formula-
tions is that the inertia forces lead to domain integrals. In these previous articles, it was
necessary to develop a procedure to deal with the domain integral. An alternative way to
derive the governing integral equation for the problem is to use a stationary dynamic fun-
damental solution [17–19]. If this fundamental solution is applied, the resulting integral
equation requires only the discretization of the boundary of the single-folded plate being
analyzed.

The present paper analyzes the dynamic stationary response of reinforced panels sub-
jected to time harmonic loadings using the BEM. In the proposed methodology, the pan-
els are considered as assembled folded-plate structures [20]. The formulation is built by
coupling BE formulations of plate bending and two-dimensional plane stress elasticity.
These uncoupled systems are joined to form a macro-element. The plate structure is di-
vided into several regions, and equilibrium and compatibility equations along the inter-
face boundaries are imposed. The boundaries are discretized by means of linear contin-
uous and discontinuous isoparametric elements. Four displacement integral equations
are written for every boundary node. The stationary dynamic responses are character-
ized by modal quantities, that means by eigenfrequencies and eigenvalues. These quanti-
ties are obtained by analyzing the numerically synthesized frequency response functions
(FRFs) of the reinforced structures. A harmonic force of constant amplitude excites the
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structure at a given point and the resulting displacement is measured (calculated) at an-
other point. From the resonances or peaks of the FRFs, the operational eigenfrequencies
may be determined. The operational eigemodes (vibration mode shapes) are determined
by calculating the folded-plate structure displacement field at the determined operational
eigenfrequencies. In the present article, an example is presented to illustrate the proposed
methodology where different configurations of the reinforcements are used to simulate
simply supported and clamped boundary conditions. The implementation is validated
by comparison with numerical results determined by FE solutions. The results obtained
by the present BEM are shown to be in good agreement with those obtained by the FEM.
The proposed scheme may be seen as an accurate methodology to analyze free and forced
stationary vibrations of structures assembled by folded plates, like plate structures and
reinforced panels. This methodology may be regarded as an extension of the previous
article that analyzed the stationary dynamic behavior of frame structures by the BEM
[21].

2. Boundary integral formulations

The dynamic equilibrium equations for plane stress and thin plate theory will be pre-
sented next with Latin indices taking values {1, 2, and 3} and Greek indices assuming the
range {1, 2}. In the plane macro-element formulation, the membrane displacements u1

and u2 are in the x1-x2 plane. The thin plate transversal displacement w is in the x3 direc-
tions. The equilibrium equations for the dynamic plane stress problem in the domain Ω
is given by

σαβ,β + ρFα = ρüα, (2.1)

where σi j represents the stresses components, ρ is the mass density, Fα (α = 1,2) are the
body forces components in the x1-x2 plane and dots over the quantities indicate differen-
tiation with respect to time.

The equilibrium equations for an infinitesimal thin plate element under a dynamical
transverse loading g and in absence of a body forces are given by

qα,α + g = ρhẅ,

mαβ,β− qα = 0,
(2.2)

where ρh is the mass density per unit area, h is the thickness, qα(q1,q2) represent the
shear forces, mαα(m11,m22) represent the bending moments and mαβ(m12,m21) represent
the twisting moments.

Now consider the plane element occupying the area Ω, bounded by the contour Γ, in
the plane x1-x2. The displacement boundary integral equation for the plane stressproblem
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(membrane) and smooth boundaries is given by

1
2
δαβuβ(P)=

∫
Γ
U∗
αβ(P,Q)tβ(Q)dΓ(Q)

−
∫
Γ
T∗αβ(P,Q)uβ(Q)dΓ(Q) +

∫

Ω

U∗
αβ(P,Q)Fβ(Q)dΩ(Q),

(2.3)

where δαβ is the Kronecker delta; dΓ and dΩ denote boundary and domain differentials,
respectively; uβ(Q) and tβ(Q) are displacement and traction boundary values associated
with a boundary pointQ, respectively. The termU∗

αβ(Q,P) represents a displacement fun-
damental solution and may be interpreted as the displacement at point Q in the direction
α due to a harmonic unit point force applied at the point P in the direction β. Analo-
gosly, the term T∗αβ(Q,P) represents the traction fundamental solution and may also be
interpreted as the traction at point Q in the direction α due to a harmonic unit point load
applied at P in the direction β.

Considering that all variables are undergoing a time harmonic displacement with cir-
cular frequency ω, the displacement and traction fundamental solutions are given, re-
spectively, by the expressions [22]

U∗
αβ =

1
2πρc2

2

[
ψδαβ− χr,αr,β

]
, (2.4)

where

ψ = K0
(
k2r
)

+
1
k2r

[
K1
(
k2r
)− c2

c1
K1
(
k1r
)]

,

χ = K2
(
k2r
)− c2

2

c2
1
K2
(
k1r
)
,

T∗αβ =
1

2π

[(
dψ

dr
− 1
r
χ
)(
δαβ

∂r

∂n
+ r,βnα

)
− 2
r
χ
(
nβr,α− 2r,αr,β

∂r

∂n

)

− 2
dχ

dr
r,αr,β

∂r

∂n
+
(
c2

1

c2
2
− 2
)(

dψ

dr
− dχ

dr
− 1
r
χ
)
r,αnβ

]
,

(2.5)

where δαβ is again the Kronecker delta, n is the normal vector, K0 and K1 are the zero and
first-order modified Bessel function of second kind, r is the distance between load and
displacement point, k1 = i(ω/c1) and k2 = i(ω/c2), i=√− 1, ω is the circular frequency,
c1 = (λ+ 2μ/ρ)1/2, c2 = (μ/ρ)1/2, λ and μ are the Lamé’s constants which can be written in
terms of the Young Modulus E and the Poisson ratio ν.
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Additionally, the integral equation for the thin plate theory is employed to describe
the bending action:

1
2
δ(P)w(P) +

∫
Γ

[
V∗
n (P,Q)w(Q)−M∗

n (P,Q)w,n(Q)
]
dΓ(Q) +

Nc∑
k=1

R∗ck(P,c)wck(P,c)

=
∫
Γ

[
w∗(P,Q)Vn(Q)−w∗,n(P,Q)Mn(Q)

]
dΓ(Q)

+
Nc∑
k=1

w∗ck(P,Q)Rck(Q) +
∫
Ω
w∗(P,q)g(q)dΩ(q),

(2.6)

where δ(P) is equal to Kronecker delta for a smooth boundary, w is the out-of-plane
displacement, w,n is the rotation in the direction of outward normal to the boundary Γ,
Vn is the equivalent shear, Mn is the bending moment, and Rc is the corner reaction. The
classical theory makes use of the equivalent shear (Vn) in boundary integrals and a corner
reaction (Rc) at each corner when polygonal plates are considered,

Vn =Qn +
∂Mns

∂s
=−D(w,γγα ·nα + (1− ν)w,nss

)
(2.7)

Rck =
(
MF

ns−MB
ns

)
k, (2.8)

where Qn is the shear in the direction of outward normal and Mns is the twisting moment
in the direction normal and tangential to the boundary Γ. The expression (2.8) presents
the corner reaction (Rc) at corner k as the difference between the twisting moments at the
corner neighborhood on the forward side (MF

ns) and the backward side (MB
ns).

Considering again that all variables are undergoing a time harmonic displacement,
u(t)= ûexp(iωt) with circular frequency ω. Under this circumstance, load g and deflec-
tions w will also vary harmonically and the fundamental solution for (2.6) has the form
[23, 24]

w∗ = −iC1J0(ηr) +C1Y0(ηr) +C2K0(ηr) (2.9)

with

C1 = 1
8η2

, C2 = 1
4πη2

,

η4 = ρhω2

D
.

(2.10)

In (2.9) to (2.10), the flexural rigidity D is equal to Eh3/[12(1− ν2)], E is the Young
Modulus and ν is the Poisson ratio. The variables J0 and Y0 are the zero-order Bessel
functions of the first and second kind, respectively, K0 is the zero-order modified Bessel
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function of the second kind. Explicit expressions for derivatives of fundamentals solu-
tions, rotations w∗,n, moments M∗

n , and shear forces V∗
n are as follows [23]:

w,∗n = iC1ηJ1(ηr)cosβ−η[C1Y1(ηr) +C2K1(ηr)
]

cosβ,

M∗
n =−i

{
C1
D

2

[
1 + ν + (1− ν)cos2β

]
η2J0(ηr)−C1Dη(1− ν)

J1(ηr)
r

cos2β
}

+
D

2

{
η2[1 + ν + (1− ν)cos2β

][
C1Y0(ηr)−C2K0(ηr)

]

− 2η(1− ν)
1
r

[
C1Y1(ηr) +C2K1(ηr)

]
cos2β

}
,

V∗
n = iC1D

{
J1(ηr)

[
η3 cosβ+

η3(1− ν)
2

sen2β senβ+
2η(1− ν)

r

(
cos3β
r

− cos2β
R

)]

+ (1− ν)η2J0(ηr)
(

cos2β
R

− cos3β
r

)}
−Dη3[C1Y1(ηr)−C2K1(ηr)

]
cosβ

+D(1− ν)
{
η2

r

[
C1Y0(ηr)−C2K0(ηr)

]− 2η
r2

[
C1Y1(ηr) +C2K1(ηr)

]
cos3β

}

−D(1− ν)
{
η2

R

[
C1Y0(ηr)−C2K0(ηr)

]− 2η
rR

[
C1Y1(ηr) +C2K1(ηr)

]
cos2β

}

− D(1− ν)
2

η3[C1Y1(ηr)−C2K1(ηr)
]

sen2β senβ,

(2.11)

where J1 and Y1 are the first-order Bessel functions of the first and second kind, respec-
tively; K1 is the first-order modified Bessel function of the second kind and β the angle
formed between r and n.

3. Algebraic formulation of the macro-elements

In this session, the plane macro-element will be assembled by superposition of the mem-
brane and thin plate effects. The plane stress boundary integral equation (2.3) repre-
senting the membrane may be discretized leading to the following algebraic system of
equations:

[
Hm

11 Hm
12

Hm
21 Hm

22

]{
u1

u2

}
=
[
Gm

11 Gm
12

Gm
21 Gm

22

]{
t1
t2

}
. (3.1)

Analogosly, the BIE (2.6) describing the out-of-plane bending effect (thin plate) may
be discretized as follows:

⎡
⎣H

p
11 H

p
12

H
p
21 H

p
22

⎤
⎦
{
w
w,n

}
=
⎡
⎣G

p
11 G

p
12

G
p
21 G

p
22

⎤
⎦
{
Vn

Mn

}
. (3.2)

In (3.1) and (3.2), the upper indicesm and p on the coefficient matricesH andG stand,
respectively, for membrane and plate mechanisms. Furthermore, u1 and u2 represent the
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x1

x2

x3

Figure 3.1. Global coordinate system and macro-elements interfaces.

in-plane membrane displacements associated with the in-plane tractions t1 and t2. The
plate displacement normal to the x1-x2 plane is w and its derivative with respect to the
boundary normal n is w,n. The corresponding generalized forces are the shear forces Vn

and the bending moment Mn. Equations (3.1) and (3.2) may be superposed to form the
plane macro-element in which membrane and bending mechanisms are uncoupled:

⎡
⎢⎢⎢⎢⎢⎣

Hm
11 Hm

12 0 0

Hm
21 Hm

22 0 0

0 0 H
p
11 H

p
12

0 0 H
p
21 H

p
22

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u1

u2

w
w,n

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
=

⎡
⎢⎢⎢⎢⎢⎣

Gm
11 Gm

12 0 0

Gm
21 Gm

22 0 0

0 0 G
p
11 G

p
12

0 0 G
p
21 G

p
22

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t1
t2
Vn

Mn

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
. (3.3)

The interface boundaries between macro-elements must be parallel to a single axis.
In a global coordinate system, this axis is called x3, as shown in Figure 3.1. Figure 3.1
also shows a plate with reinforcements. It can be noticed that the reinforcements are all
aligned parallel to the x3 axis.

The plane macro-element given by (3.3) is written in terms of a local coordinate sys-
tem. To perform the coupling of distinct macro-elements, as the ones shown in Figure 3.1,
it is necessary to transform (3.3) from a local to a global coordinate system. This is done
by means of an intermediate coordinate system and a set of two coordinate transfor-
mation matrices. After the macro-element equations have been written in terms of the
global coordinate system, the assemblage may take place. The vector of generalized dis-
placements and forces may now be subdivided into ones belonging or not to a common
interface. For the case of two macro-elements, the individual equations for every macro-
element may be written as

[
H1

11 H1
1i

H1
i1 H1

ii

]{
U1

U1
i

}
=
[
G1

11 G1
1i

G1
i1 G1

ii

]{
T1

T1
i

}
,

[
H2

11 H2
1i

H2
i1 H2

ii

]{
U2

U2
i

}
=
[
G2

11 G2
1i

G2
i1 G2

ii

]{
T2

T2
i

}
.

(3.4)

The coupling of the macro-elements is performed by considering kinematic compati-
bility and equilibrium at the interface nodes. Considering T the vector of external loads
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applied at the elements interface, compatibility and equilibrium is given by

U1
i =U2

i =Ui,

T1
i +T2

i +T = 0.
(3.5)

After (3.5) has been applied to (3.4), the basic system of equation for two coupled
macro-elements is given by

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

H1
11 H1

1i 0 −G1
1i 0

H1
i1 H1

ii 0 −G1
ii 0

0 H2
ii H2

i2 0 −G2
ii

0 H2
2i H2

22 0 −G2
2i

0 0 0 I I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

U1

Ui

U2

T1
i

T2
i

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

G1
11 0 0

G1
1i 0 0

0 0 G2
i2

0 0 G2
22

0 I 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨
⎪⎩
T1

T
T2

⎫⎪⎬
⎪⎭ . (3.6)

In (3.6), U1 and U2 are generalized displacement vectors (bending and stretching) re-
lated to subregions Ω1 and Ω2, respectively. T1 and T2 are the corresponding generalized
forces. The displacement vector Ui and the corresponding forces vector Ti stand for the
values at the interface; T1

i and T2
i represent forces vectors at the interfaces for each one of

the macro-elements.

4. BEM formulations

In this paper, the macro-elements coupled by (3.6) were discretized by rectilinear bound-
ary elements described by linear shape functions. Considering B1 and B2 the initial and
final coordinates of the elements, the element geometry may be expressed in terms of
intrinsic coordinates, σ:

b(σ)= B1
1− σ

2
+B2

1 + σ

2
. (4.1)

This same interpolation is used for the field variables of the boundary elements pos-
sessing no corners, leading to an isoparametrical formulation. For elements with corners,
the field variables were discretized by discontinuous elements. The corner nodes were
displaced towards the interior by one-fourth of the element length (0.25 Le). Four inte-
gral equations were written for every boundary node. The collocation points were placed
outside the plane element (macro-element) domains. When collocation point P is placed
outside the plate domain (P /∈Ω), the integration free-term disappears, δ(P)= 0. More-
over, the corner reactions Rck can be written in terms of neighbor node rotations using a
finite difference scheme. Although this is the correct way to treat corner reactions, in the
present implementation these terms were neglected.

A final algebraic system [A]{X} = {B} is obtained once the equations are assembled
and the prescribed boundary conditions applied. The solution of this system, the vec-
tor X , contains all unknown boundary quantities. The system matrix [A(ω)] contains
frequency dependent terms. After the vector X is determined, the displacement at the as-
sembled folded plate domains may be readily obtained by the nonsingular integrations
indicated in (2.3) and (2.6).
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xp = 304mm

x

zp =
160
mm

Plate 1 Plate 2

Lz

z
Lx

Figure 5.1. Two plates, S-F-S-F, no reinforcements.

5. Numerical analysis

This session applies the previously described strategy to analyze reinforced panels. The
strategy is simple. Consider two joined rectangular plates, simply supported (S) in two
edges z = 0 and z = Lz, and freely supported (F) at the remaining edges, x = 0 and x = Lx,
as shown in Figure 5.1. The plates are excited by a concentrated force applied at the point
with coordinates xp and zp. The frequency of excitation is continuously changed within
a preestablished range. The displacement response at some point of the plates to this
frequency dependent excitation is the so-called frequency response function (FRF).

In the sequence, reinforcements are placed at the boundaries x = 0 and x = Lx. If the
reinforcement is very thin but very high in the y-direction, then the bending effect of the
support is very small compared to the membrane effect. This should simulate a simply
supported (S) boundary condition. On the other hand, if the plate thickness is increased,
then the clamped (C) boundary condition should be simulated. The validation strategy
is composed of these three steps. In the first step, the FRF of S-F-S-F plate is determined
and the natural frequencies of the present methodology compared to results from a fi-
nite element (FE) analysis. In the second step, high but thin reinforcements are placed
at the originally free boundaries, giving rise to a model that simulates completely sim-
ply supported plates S-S-S-S. Again the operational eigenfrequencies are obtained from
the FRF. Comparisons are also made with the FE solution. Finally, thicker reinforcements
are placed at the free boundaries, simulating the clamped (C) boundary condition. The
operational eigenfrequencies for this C-S-C-S plate are compared to the FE results. This
strategy is sketched in Figure 5.2.

Take initially the two plates loaded by a unit harmonic normal excitation on the in-
terface between the two plates at distances x1 = 304 mm and x3 = 160 mm (X-Z plane),
as shown in Figure 5.1. The two plates are assembled and are simply supported (S) at
their edges z = 0 and z = Lz, andfree (F) at their boundaries x = 0 and x = Lx. Each
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Figure 5.2. Reinforcements as replacements for distinct boundary conditions.

Plate 2

Plate 1

Node 18

Figure 5.3. Example of the discretization for the two plates.

Table 5.1. First six natural frequencies of the two SFSF plates [Hz].

Method Mesh ω1 ω2 ω3 ω4 ω5 ω6

BEM
1 6056 7618 12 110 19 922 24 415 26 172

2 6056 7618 12 305 20 313 24 415 26 172

FEM 1 5951 7459 12 013 19 709 23 878 25 575

assembled plate is made of same constitutive properties with Young’s modulus E = 6.9×
1010 kN/m2, thickness h = 4 mm, density ρ = 2700 Kg/m3, length Lx = 704 mm, width
Lz = 400 mm, and Poisson ratio ν= 0.3.

Computations by the BEM are carried out for the following boundary discretization
(two macro-elements) using linear micro-elements: Mesh 1 : 18 and 20 boundary ele-
ments per macro-element (plate 1 and 2, resp.) and Mesh 2 : 28 and 30 boundary el-
ements per macro-element (plate 1 and 2, resp.). An example of the discretization of
boundary is shown in Figure 5.3.

Figure 5.4 shows the FRF18-18 for the first BEM mesh. The FRF18-18 is obtained by
exciting node 18 (see Figure 5.3) and measuring the response at the same node. In this
FRF, the resonances and antiresonances can be clearly recognized. The system operational
eigenfrequencies (natural frequencies) are determined from the frequencies at which res-
onances in the FRF occur.

The values of the first six eigenfrequencies taken from the FRF of the two assembled
plates given in Figure 5.4 are reproduced in Table 5.1. These valuesare compared with
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Figure 5.4. FRF18-18 for the first BE discretization of the two SFSF plates.

Plate 2

Plate 1

Reinforcement

Reinforcement

Length

Width

Height

Figure 5.5. Reinforced panel structure subjected to concentrated time-harmonic load.

similar discretization of the FEM by ANSYS� using SHELL63� elements. The discretiza-
tion of de FEM by ANSYS� consisted of the 18× 30 finite elements.

Now the reinforcements are included in the originally freely supported boundary con-
ditions (F). The resulting reinforced panel structure is shown in Figure 5.5. In the rein-
forcements, only the central nodes of the sides are submitted to simply supported bound-
ary conditions. The remaining nodes are free.

To simulate a simply supported boundary condition (S) as shown in Figure 5.6, the re-
inforcement is a thin and high macro-element. In this case, the plates and reinforcements
are made of same material properties described in the previous example.

The reinforced panel is discretized with 4 macro-elements, 2 elements for the plates
and 2 elements for the reinforcements (see Figure 5.7). Two BE meshes are used to per-
form the calculations. In the first mesh, all 4 macro-elements are discretized with 18× 20
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xp = 304mm

x
zp =
160
mm

Plate 1 Plate 2

Lz

z Lx

(a) Boundary conditions (S-S-S-S)

xp = 304mm

x
zp =
160
mm

Plate 1 Plate 2

Lz

z
Lx

Reinf.

Reinf.

(b) Equivalent thin reinforcements

Figure 5.6. Schematic illustration of the reinforced panel structure.

Node 18

Figure 5.7. BEM for the reinforced panel structure (Mesh 1).

Table 5.2. First six natural frequencies of the SSSS structure [Hz].

Method Mesh ω1 ω2 ω3 ω4 ω5 ω6

BEM
1 8203 14063 24024 26563 32617 37891

2 8203 14 063 24 024 26 563 32 617 37 891

FEM 1 7911 13 638 23 174 25 771 31 292 36 528

linear elements. In the second mesh, the 4 macro-elements have been discretized with
28× 30 linear elements. The geometric properties of the reinforcements are thickness
0.4 mm, height 400 mm, and width 400 mm.

The FRF18-18, of the reinforced panel structure is shown in Figure 5.8, for the dis-
cretization (Mesh 1) mentioned above.

The values of the first six eigenfrequencies of the reinforced panel structure are repro-
duced in Table 5.2. These values are compared with results obtained by the FEM com-
mercial code ANSYS� using 18× 30 SHELL63� elements.
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Figure 5.8. FRF18-18 for the first BEM discretization of the reinforced SSSS panel.
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(a) Boundary condition (CCCC)

xp = 304mm

x
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160
mm

Plate 1 Plate 2

Lz
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(b) Equivalent thick reinforcements

Figure 5.9. Scheme to reproduce clamped boundary conditions on the plate by thick reinforcements.

Let us now consider the plate structure with its entire contour under clamped (C)
boundary conditions (Figure 5.9(a)). The intention is to simulate a clamped boundary
condition of the two plates on the boundaries z = 0 and z = Lz using a thick reinforce-
ment. The idea was to introduce thick reinforcements to increase the bending rigidity.
This strategy is illustrated in Figure 5.9(b). In the reinforcement, only the central nodes
of the sides are considered clamped. The others are considered free. In this case, the plates
are made of same material properties and geometry described in the previous example.
However, the thickness of the two reinforcements is increased to 40 mm. This thickness
is increased by a factor 100, compared to the previous case.

The FRF18-18, of the reinforced (campled) panel structure discretized by BE is shown
in Figure 5.10. The discretization utilized is the same as the previous case (mesh 1).
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Figure 5.10. FRF18-18 for the first BEM discretization of the reinforced CCCC panel.

Table 5.3. First six natural frequencies of the CCCC structure [Hz].

Method Mesh ω1 ω2 ω3 ω4 ω5 ω6

BEM 1 15 821 22 071 32 813 40 235 46 289 48 046

FEM 1 15 456 21 485 32 019 39 328 45 023 46 860

(a) ω1 = 15821 Hz (b) ω2 = 22071 Hz
and ω3 = 32813 Hz

(c) ω4 = 40235 Hz

Figure 5.11. Four lower operational eigenmodes for the CCCC structure.

The values of the first six (operational) eigenfrequencies are reproduced in Table 5.3.
The eigenvalues obtained by the commercial FEM code ANSYS� using 18 × 30
SHELL63� elements are also given in Table 5.3.

The other modal quantity necessary to characterize the stationary dynamic behav-
ior of the reinforced panel structure is given by the eigenmodes or the natural modes of
vibration. For the last case (clamped bc), the operational eigenmodes are obtained by cal-
culating the displacement field at boundary of the structure at each resonance frequency
present in the FRF.
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Figure 5.11 shows the boundary displacements corresponding to the first four eigen-
modes of the excited structure. In this case, all external boundary nodes of the structure
are campled. It should be noticed that the second and third modes present the same
boundary displacement.

6. Concluding remarks

An implementation of the direct version of the boundary element method has been pre-
sented to analyze the stationary dynamic behavior of the reinforced panel structures.
The dynamic stationary fundamental solution has been used to transform the differential
equations governing the thin plate and membrane behavior into boundary-only integral
equations. The proposed scheme is used, exemplarily, to obtain modal data, that is, op-
erational eigenfrequencies and eigenmodes of the assembled plates and reinforced panel
structures with different boundary conditions. The formulation was shown to be capable
of modelling plates subjected to varied boundary conditions and out-of-plane loadings.
Frequency response functions may be determined for every boundary or domain point
of the structure. In the reported examples, the FRF of a node on an interface boundary
is used to recover eigenfrequencies. The eigenfrequencies are determined from the reso-
nances of the FRF. At these resonance frequencies, the displacement fields of the structure
furnish the operational eigenmodes. The presented results agree well with numerical so-
lutions obtained by a FEM commercial code. The proposed scheme may be seen as an
accurate methodology to analyze free and forced stationary vibrations of structures as-
sembled by folded plates, plate structures, and also reinforced panels which only require
the discretization of the folded plate boundary. The simplicity of the BE mesh generation
presents some advantages over other domain methods.
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A low-cost computer procedure to determine the orbit of an artificial satellite by using
short arc data from an onboard GPS receiver is proposed. Pseudoranges are used as mea-
surements to estimate the orbit via recursive least squares method. The algorithm ap-
plies orthogonal Givens rotations for solving recursive and sequential orbit determination
problems. To assess the procedure, it was applied to the TOPEX/POSEIDON satellite for
data batches of one orbital period (approximately two hours), and force modelling, due
to the full JGM-2 gravity field model, was considered. When compared with the reference
Precision Orbit Ephemeris (POE) of JPL/NASA, the results have indicated that precision
better than 9 m is easily obtained, even when short batches of data are used.
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1. Introduction

The Global Positioning System (GPS) provides a powerful and quick means to com-
pute orbits for low Earth artificial satellites. Theoretically, four GPS satellites, simulta-
neously tracked, are enough for geometrical positioning of an artificial satellite carrying
an onboard GPS receiver. Dynamical orbit determination is a nonlinear problem where
the perturbing factors are not easily modelled. The GPS satellites transmit signals such
that accurate measurements of distances are performed based on the comparison be-
tween received signals and template signals generated by the receiver [1]. Through a GPS
receiver onboard of an artificial satellite it is possible to obtain such measurements (pseu-
doranges) that can be processed to estimate a state vector (e.g., position and velocity vec-
tors and parameters referred to the receiver clock bias). Using our knowledge about the
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dynamics of the motion and, at the same time, assuming statistics for the measurement
errors, the state vector can be computed based on a set of observations. To this, the differ-
ences between the observed and modelled observations are minimised according to the
least squares criterion [2–4].

The aim of this work is to determine the orbit of an artificial satellite carrying a GPS
receiver, by a recursive least squares method based on L1-code GPS satellite-to-satellite
tracking observations, and to make use of Givens rotations [5] in order to solve the prob-
lem in a recursive way. The Givens rotations algorithm is as stable as other orthogonaliza-
tion algorithms (such as Cholesky decomposition, Gram-Schmidt, or Householder) and
allows the processing for each observation epoch, avoiding the storage of large matrices.
Advantages of the use of Givens rotations were already point out in the seventies of the
last century in an improvement of a computational form of the discrete Kalman filter [6].

Givens rotations have been successively used at Center for Space Research, University of
Texas at Austin, Austin, Tex, USA [7].

Thus, this procedure for near real time positioning has been considered to be used in
the next two Chinese-Brazilian remote sensing satellites CBERS-3 and CBERS-4 sched-
uled to fly in 2008–2010, according to a Brazil-China protocol agreement. These missions
carry a main CCD camera payload with 20 m resolution and, therefore, a simple orbit
determination scheme with 10 m accuracy is a desirable requirement for the image pro-
cessing users. Due to onboard memory limitations it is likely that only a short batch of
GPS data (one revolution) around the image scene will be available.

Initially, a simple dynamical model (geopotential perturbations only) was used to pre-
liminary assess the procedure, by using the TOPEX/POSEIDON satellite as a test bed.
However, the final purpose is to evolve to applications of the procedure considering real
and suitable models for the perturbations well suited for the orbital geometry and physi-
cal characteristics of the CBERS mission satellites [8].

2. Dynamical model

The problem of dynamical orbit determination is essentially nonlinear. The orbital mo-
tion is described in an inertial frame by a set of ordinary differential equations:

r̈=−μ r
r3

+ P, (2.1)

where r = (x, y,z) is the position vector, μ is the gravity parameter, and P stands for
modelled perturbations. Formally, we include an additional equation ḃ = 0 with b =
[b0,b1,b2] solve-for parameters referred to the receiver clock bias, (bias, drift, and drift
rate). Thus, the state vector to be estimated is defined by x ≡ [r v b

]t
with v being

the velocity vector. The state transition matrix which relates the state between times tk
and tk+1 can be computed by Φ̇(t, tk) = F(x, t)Φ(t, tk) with initial condition Φ(tk, tk)= I
[3, 9, 10]. The Jacobian matrix F(x,t) contains partial derivatives of the differential equa-
tions of motion. In general, the transition matrix is numerically integrated together with
the orbit. In our case, where only the geopotential perturbation is modelled, the matrix
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F can be written as

F= ∂f
∂x
=
⎡

⎢
⎣

03×3 I3×3 03×3

A3×3 03×3 03×3

03×3 03×3 03×3

⎤

⎥
⎦ , (2.2)

where f is the acceleration acting on the satellite, 03×3 is a 3× 3 matrix of zeros, I3×3

is a 3× 3 identity matrix and, A3×3 is the 3× 3 matrix of gravity gradient 3× 3 given
by A3×3 = ∂v̇/∂r. In this work, the modelled force includes the geopotential, taking into
account the spherical harmonic coefficients up to 50th order and degree of the JGM-
2 model [11]. The geopotential acceleration and its gradient matrix A3×3 were com-
puted using basically Pine’s universal recursive formulation [12], however we use the
improved numerical recursions as stated in Lundberg and Schutz [13]. For assessing the
proposed approach, we decided to consider only the geopotential perturbation, applied
to TOPEX/Poseidon satellite for which results are broadly available for comparison pur-
poses. Considering that the aimed application would be the CBERS satellite, the final
procedure, as developed for the CBERS mission, will include also other relevant pertur-
bations such as radiation pressure forces, lunisolar attraction, and atmospheric drag.

3. Measurement model

The general nonlinear equation representing the scalar model of observations at epoch.
is given by yk = hk(xk, t) + vk, where yk is the vector of m observations, hk(xk) is the m-
dimensional nonlinear vector function of the state vector xk, vk is the m-dimensional
vector of observation errors modelled as white noise. Pseudoranges are measurements
of the distance between the GPS satellites and the receiver’s antenna, referring to the
epochs of emission and reception of the signals. Pseudorange is a typical type of mea-
surement in an orbit determination process using GPS, and can be written as [1] Pi =
ρi + c(dt−dTi) +Dion +Dtrop + v, where Pi is the pseudorange measured by the user with
respect to the ith GPS satellite, ρi is the geometric distance, c is the speed of light, dt is the
user clock offset, dTi is the ith GPS satellite clock offset, Dion are ionospheric delays (not
considered in this work), Dtrop are tropospheric delays (not applicable), and v denotes
random measurement noise. Tests computing the first-order ionosphere effect using P1

and P2 measurements, were performed. They show that, given the aimed for precision
in this work (order of 10 m), ionospheric delays can be neglected. The user clock offset
is modelled as cdt = b0 + b1Δt + b2Δt2, where b= [b0,b1,b2] is a vector of parameters to
be estimated representing the clock bias, bias rate, and rate of bias rate. To estimate the
state vector parameters using the least squares algorithm (e.g., [14]), the measurement
equation is linearized and the sensitivity matrix of partial derivatives with respect to the
state vector is derived.

4. Recursive least squares method based on givens rotations

The numerical stability of a state vector estimator based on the least square method
should be assured. To validate the method for orbit determination using a recursive ap-
proach, namely the recursive least squares method, one is tempted to use the Kalman
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form [2] in straightforward way. Extensive analyses of such algorithms have shown that
they are unstable numerically and sensitive to error accumulation [2, 3]. On the other
hand, the nonrecursive solution of normal equations requires a matrix inversion, another
source of numerical errors, which should be avoided. In order to overcome such prob-
lems, several methods can be found in the literature using orthogonal transformations.
They yield best numerical performance with respect to problems due to error propa-
gation or uncertainty in the information. The main goal of applying orthogonal trans-
formations to matrices and vectors in the least squares algorithms is the substitution of
the conventional algebra based on matrix inversions by a method that is more robust
and less prone to numerical errors. Among the several existing orthogonal transforma-
tions (e.g., Givens, Gram-Schmidt, Householder), the Givens rotations algorithm is the
most adequate transformation to selectively annihilate elements of a matrix, making it
easy to implement the least squares method in a recursive way. For a batch least squares
method, Gram-Schmidt or Householder transformations are in general computationally
less costly than Givens rotations. However, from a recursive formulation point of view,
Givens rotations algorithm allows us to implement the processing of one measurement
at a time, avoiding the need of large matrices for storage (see, e.g., [6, 9, 15]).

Indeed, the direct solution of the normal equations can be quite sensitive to small
errors in a sensitivity matrix H that are inevitable when forming the product (HTH),
with a limited numerical machine accuracy. In order to avoid the normal equations of
the form (HTH)x =HT y, the minimization of the least squares cost function using Q-R
factorisation [6, 16] is recommended:

Hm×n =Qm×m

(
Rn×n

0(m−n)×n

)

, (4.1)

where the matrix H is factored into an orthogonal matrix Q and an upper triangular
matrix R.

Methods for performing the Q-R factorisation have been proposed [5, 6, 16, 17],
involving orthogonal transformations that successively annihilate the sub-diagonal ele-
ments of H. Nevertheless we concentrated our approach on the Givens rotations method
for the reasons stated above.

The complete transformation can be written as the product of the sequence of orthog-
onal rotations required to transform Matrix H into the form of (4.1):

QT = (UmUm−1 ···U3U2
)

(4.2)

denoting the sequence of orthogonal rotations required to put matrix H into the form of
(4.1).

Orthogonal transformations of matrices play a considerable role in the numerical
computations of the least squares problems [18]. In fact, the Euclidian norm of a vec-
tor does not change, the same accuracy is obtained with single computer floating point
arithmetic that otherwise would require double precision and the problem is solved in a
numerically robust fashion.
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Several programming tests were carried out before choosing the Givens rotation algo-
rithm for implementation in the recursive least squares method. The Kalman type algo-
rithm led to truncation errors for long batches of data. The Gram-Schmidt and House-
holder method were not as well suited for recursive implementation. Thus the Givens
algorithm was finally selected. The final combination of a simple orbit model and robust
numerical properties of the Givens orthogonal transformation resulted in a very com-
pact computer program with small requirements of storage, paving the way for further
improvements in terms of more complex models for orbit and GPS measurements.

5. Results

Actual TOPEX/POSEIDON (T/P) satellite flight data are used to validate the proposed
method. The T/P satellite was launched on August 10, 1992, and it orbits the Earth at
an altitude of 1336 km in an orbit with an inclination of 66◦, with near-zero eccentricity,
and an orbital period of about 1.87 hours. It has a GPS receiver onboard as experimental
equipment to verify several precision methods for orbit determination. The receiver can
track up to 6 GPS satellites simultaneously on two frequencies if antispoofing is inactive.
RINEX format for T/P observation data, GPS group data, and navigation messages are
provided by International GNSS Service (IGS), NASA, DC, USA [19], Goddard Space
Flight Center (GSFC), NASA, DC, USA, and Jet Propulsion Laboratory (JPL), NASA,
DC, USA. Here, the following files were used [20].

(1) T/P observation files: Pseudorange codes measured at two frequencies in GPS
time steps of 10 seconds, and made available by the GPS data processing facility
of JPL in RINEX format.

(2) Files with the Precise Orbit Ephemeris (POE): generated by JPL in one minute
UTC time steps in inertial true of date coordinates.

(3) GPS navigation message files in RINEX format made available by the Crustal
Dynamics Data Information System (CDDIS) of the GSFC.

In this work, the estimated position and velocities were compared with the T/P Pre-
cise Orbit Ephemeris (POE) generated by JPL which provides position estimates with an
estimated precision of 15 cm or better. The test conditions for the investigated problem
are the following:

(1) actual topex/poseidon pseudorange measurement dataset collected by the on-
board GPS receiver on November 18 1993;

(2) geopotential perturbations taking into account the spherical harmonic coeffi-
cients up to 50th order and degree of JGM-2 model;

(3) GPS antenna offset neglected, as its effects is about 5 m;
(4) pseudorange measurements at frequency L1 (Code);
(5) recursive least squares method with Givens rotations algorithm;
(6) short dataset of 2 hours (about 1 orbital period).

The estimates obtained by our method were compared with the POE reference and
produced position error of better than 9 m, starting with the JPL/POE values at first
epoch, but clock parameters at the 100 m error level.

Figure 5.1 shows the position error components compared with the JPL/POE refer-
ence orbit and Figure 5.2 shows the pseudorange residuals versus time, where the final
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residuals are clearly unbiased with respect to the apriori residuals. These are the plots
of pseudorange data residuals (observed minus computed) for different satellites, seen at
different times around the orbit. The apriori covariance matrix was set to 1000 m and
10 m/s for each component of the position and velocity vectors, respectively, and 5 m
standard deviation was adopted for the measurement error.

6. Conclusions

The aim of this work was to assess a recursive least squares method based on Givens ro-
tations to determine the orbit of an artificial satellite using an onboard GPS receiver. A
short batch of a two hours pseudorange measurement dataset (about one orbital period),
collected by the GPS receiver onboard of the T/P satellite, was used. The modelled forces
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included the geopotential taking into account the spherical harmonic coefficients up to
50th order and degree of the JGM-2 model. Results of this work, using T/P dataset from
November 18, 1993, compared against the postprocessed GPS ephemeris POE/JPL, has
demonstrated an accuracy better than 9 m, without requiring much computational effort.
In accordance with the obtained results, we can conclude that the recursive least squares
procedure implemented with Givens rotations algorithm is a simple, reliable, and numer-
ically stable method for orbit determination by using GPS measurements. The attained
precision can, of course, be improved, and the authors are working on it, considering
other relevant perturbing effects [21]. Finally, it is important to point out that for the tar-
get application, the CBERS-3 and 4 satellites, the perturbations due to atmospheric drag,
solar radiation pressure, lunisolar gravity field and tides, as well as measurement errors
(e.g., ionosphere) must be taken into account for precision applications.
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The Brazilian National Institute for Space Research (INPE) is operating the Brazilian
Environmental Data Collection System that currently amounts to a user community of
around 100 organizations and more than 700 data collection platforms installed in Brazil.
This system uses the SCD-1, SCD-2, and CBERS-2 low Earth orbit satellites to accom-
plish the data collection services. The main system applications are hydrology, meteorol-
ogy, oceanography, water quality, and others. One of the functionalities offered by this
system is the geographic localization of the data collection platforms by using Doppler
shifts and a batch estimator based on least-squares technique. There is a growing de-
mand to improve the quality of the geographical location of data collection platforms for
animal tracking. This work presents an evaluation of the ionospheric and tropospheric
effects on the Brazilian Environmental Data Collection System transmitter geographic
location. Some models of the ionosphere and troposphere are presented to simulate their
impacts and to evaluate performance of the platform location algorithm. The results of
the Doppler shift measurements, using the SCD-2 satellite and the data collection plat-
form (DCP) located in Cuiabá town, are presented and discussed.

Copyright © 2007 C. C. Celestino et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The current Brazilian Environmental Data Collection System is composed of the SCD-1,
SCD-2, and CBERS-2 satellite constellations (space segment), a network of more than 700
data collection platforms (DCP) spread out in Brazil, the Reception Stations of Cuiabá
and Alcântara, and the Data Collection Mission Center. Figure 1.1(a) illustrates the Brazi-
lian Environmental Data Collection System and Figure 1.1(b) the system space segment.
In this system, the satellite works as a message retransmitter (bent pipe transponder).
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(a)

SCD-1

SCD-2

CBERS-2

(b)

Figure 1.1. (a) Brazilian Environmental Data Collection System with Cuiabá and Alcântara station
visibility circles and (b) space segment composed of SCD-1, SCD-2, and CBERS-2 satellites.

A communication link between a data collection platform (DCP) and a reception station
is established through one of the satellites. The platforms installed on ground (fixed or
mobile) are configured for transmission intervals spanning from 40 to 220 seconds. Each
message may have up to 32 bytes of useful data that correspond to a 1-second transmis-
sion burst. The DCP messages retransmited by the satellites and received by the Cuiabá
or Alcântara stations are sent to the Data Collection Mission Center located at Cachoeira
Paulista (São Paulo state) for processing, storage, and dissemination to the users. The
users receive the processed data through Internet, at most 30 minutes after being received
at a station. The DCP geographical location could be determined by using the Doppler ef-
fect or by the use of a GPS receiver. Considering the Doppler shift as the platform location
method, the coordinates of a platform are obtained from the Doppler shift measurements
of the transmitter frequency carrier signal [1]. As these signals spread in the terrestrial at-
mosphere, among other factors, they are influenced by the electrochemical elements that
compose the atmosphere layers, which generate a propagation delay, and cause errors in
the final coordinates supplied to the system users. The signal propagation delay due to
the atmospheric effects consists, essentially, of the ionospheric and tropospheric effects.

Zenithal delays due to ionosphere can range from a few meters up to dozens of me-
ters, while that due to troposphere is usually around three meters [2]. To evaluate the
impacts on geographical location due to the ionospheric and tropospheric effects, the
SCD-2 satellite and DCP #32590, located in Cuiabá, with latitude 15.55293◦S and longi-
tude 56.06875◦W were considered in this work.

The content of this article is the following: the effects in the geographic location and
characteristics of the ionosphere and troposphere are shown in Section 2; the models
are described in Section 3; in Section 4, qualitative analyses of the ionospheric and tro-
pospheric effects are presented; Section 5 presents the results of the evaluation of tropo-
spheric and ionospheric effects, and Section 6 presents the conclusions and final remarks.
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Figure 2.1. Ionospheric electron density (expressed as ln in units of cm−3) in the magnetic meridional
plane for the Brazilian longitudinal sector calculated by Sheffield University Plasmasphere Ionosphere
Model (Communication: Jonas R. Souza and G. J. Bailey).

2. Ionosphere and troposphere characteristics

This section presents a brief description of the ionosphere and troposphere characteris-
tics.

2.1. Ionosphere. The ionosphere layer is located between 50 and 1.000 kilometers above
the Earth surface [3], and is composed of ions and electrons, being thus named iono-
sphere. The key agent of ionization is the Sun, whose radiation in the X-ray and ultravi-
olet bands inserts a great amount of free electrons in the environment. In the ionosphere
the density of free electrons is variable in close connection with the hour of the day, sea-
son, and chemical composition of the high atmosphere. The refraction in the ionosphere
depends on the signal frequency and is proportional to the total electron content (TEC)
along the path traveled by the signal between platform and satellite.

Figure 2.1 shows a sample of the ionospheric electron density. The data of the iono-
sphere in Brazil are obtained using rockets, satellites, modeling systems, and simulation
of the ionospheric and thermospheric processes.

2.2. Troposphere. The effect of the troposphere depends on the density of the atmo-
sphere and on the satellite line of sight elevation angle. This effect can be observed from
ground up to approximately 50 km height. Tropospheric effect on signal propagation at
frequencies below 30 GHz do not depend on the transmitted frequency [3]. The influ-
ence of the gaseous mass can be divided in two parts: (a) composed of dry gases, called
dry or hydrostatic component and, (b) composed of water vapor, called wet or humid
component. The tropospheric delay is generated by these components: hydrostatic and
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wet. The delay due to hydrostatic component can correspond to approximately 2 to 3 m
in the zenith and it varies with the temperature and the local atmospheric pressure [3];
the delay for the wet component is of approximately 1 to 30 cm at the zenith [4], however
its variation is very large. Its prediction with good accuracy becomes a difficult task.

3. Ionospheric and tropospheric models

The models used in this work are described below.

3.1. Ionospheric model. The ionospheric signal delay is given by [5]

RI = 40.3 VTEC sec Z
f 2

, (3.1)

where VTEC is the total electron content in the vertical direction (el/m2), Z is the signal
path zenithal angle in relation to the plane of the mean altitude of 350 km approximately,
and f is the platform transmitter frequency (Hz).

At the ionospheric pierce point Z is given as

sinZ = RE cosγ
RE +H

, (3.2)

where RE is the Earth’s equatorial radius, H and γ are altitude and satellite elevation angle,
respectively.

Substituting (3.2) in (3.1) and differentiating in function to time, we get

ṘI =−36.2 VTEC cosγ sinγγ̇

f 2
(
1− 0.9cos2 γ

)3/2 , (3.3)

where γ̇ is satellite elevation angle rate.
Equation (3.1) models the ionospheric signal delay and (3.3) models the time variation

of this delay. This can be applied to the ionospheric correction based on the Doppler shift
measurements.

The delay due to the ionosphere is sensitive to the variable VTEC. The values used for
this variable were obtained from IRI-2001 (International Reference Ionosphere) [6].

3.2. Tropospheric models. Three tropospheric models are considered. The first model
is the Hopfield empiric model for the tropospheric delay in function of the temperature
and pressure values measured on ground. It is given by [4]

Ts
r = TZHmb(γ) +TZWmw(γ), (3.4)

where

TZH = 155.2× 10−7 P

T
Hd (3.5)
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is the zenithal delay of the dry component,

TZW = 155.2× 10−7 4810e
T2

HW (3.6)

is the zenithal delay of the humid component, T is the temperature (in degrees K), P is
the dry pressure (in hPa), e is the humid pressure (in hPa), and

Hd = 40136 + 148.72(T − 273.16),

HW = 11000m.
(3.7)

mb(γ) and mW (γ) are mapping functions that relate the dry and humid delay compo-
nents with the elevation angle (γ) in degrees and are given by

mb(γ)= csc
(
γ2 + 6.25

)1/2
,

mw(γ)= csc
(
γ2 + 2.25

)1/2
.

(3.8)

The second model is the Saastamoinen model [7–9]:

TZH = 0.002277DP,

TZW = 0.002277eD
(

1255
T

+ 0.05
)

,
(3.9)

where D = (1 + 0.0026cos2ϕ+ 0.00028H), and ϕ and H (in km) are the satellite latitude
and altitude, respectively.

The third model is a dynamic model that is being used at Center for Weather Fore-
casting and Climate Studies (CPTEC-INPE) to provide the zenithal tropospheric delay
(ZTD). The predictions of ZTD values are obtained from estimation of temperature, sur-
face atmospheric pressure and humidity generated by the numeric weather prediction
(NWP) with observed initial conditions [10]. The dynamic model data are available on
the Internet site http://satelite.cptec.inpe.br/htmldocs/ztd/zenital.htm.

4. Qualitative analysis of the ionospheric and tropospheric effects

This section presents a qualitative analysis of the tropospheric delay values (hydrostatic
and wet components) using the CPTEC’s dynamic model [10] and the ionospheric delay
values obtained from the IRI’s model [6].

Figure 4.1 shows the root mean square (RMS) errors of the zenithal tropospheric delay
resulted from comparison between the dynamic modeling of [10], the Hopfield empiric



6 Mathematical Problems in Engineering

BOMJ BRAZ CRAT CUIB PARA POAL RECF UEPP

Stations GPS

0

5

10

15

20

25

R
M

S
(c

m
)

Autumn

(a)

BOMJ BRAZ CRAT CUIB PARA POAL RECF UEPP

Stations GPS

0

5

10

15

20

25

R
M

S
(c

m
)

Summer

(b)

BOMJ BRAZ CRAT CUIB PARA POAL RECF UEPP

Stations GPS

0

5

10

15

20

25

R
M

S
(c

m
)

Winter

(c)

BOMJ BRAZ CRAT CUIB PARA POAL RECF UEPP

Stations GPS

0

5

10

15

20

25

R
M

S
(c

m
)

Spring

(d)

Figure 4.1. Zenithal tropospheric delay RMS values resulted from comparison of Hopfield (◦), Saas-
tamoinem (�), dynamic ( ) models, and GPS reference data (source: [10]).
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Figure 4.2. VTEC values for DCP no. 32590 location (IRI-2001).

model [4], the Saastamoinem model [7–9], and GPS reference data from Brazilian Con-
tinuous GPS Network (RBMC) collected during one year starting from March 2004. Ob-
serve that the maximum RMS difference between the zenithal values is 20 cm approx-
imately, considering the summer season and the GPS ground station in Cuiabá. This
difference happens because in the Hopfield and Saastamoinem models mean values are
used for the temperature, hydrostatic, and wet components while in the dynamic mod-
eling the temperature is a real measurement. Besides, the Hopfield and Saastamoinem
models standard mean values are obtained in the subtropical areas such as Europe and
North America. For those reasons, the evaluation of the tropospheric effects in this work
considers the data from dynamic modeling because it is more suitable for tropical condi-
tions of Brazil.

Figure 4.2 shows the VTEC values used in the numeric simulations (IRI, 2001). These
values were obtained considering the location of the 32590 DCP on 2006, April 7th. Ob-
serve that in this figure the largest value occurs at 7 pm UTC. The location errors due
to this effect for 11 am and 6 pm were of 24.6 m and 39.5 m, respectively, as presented in
Table 4.1.

In [11], the ionospheric zenithal signal delay considering Rio de Janeiro city (Brazil)
is 30 meters approximately, and using the model IRI is 10 meters approximately. This
difference happens because TEC causes a decrease in the GPS signal, and in the region
above Brazil it depends strongly on the ionospheric equatorial anomaly [11]. For tropical
regions like in Brazil, ionospheric irregularities occurrence can affect drastically the GPS
performance.
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Table 4.1. Geographical location errors considering DCP no. 32590 as obtained with simulated condi-
tions, simulated location error due to ionospheric effect, simulated location error due to tropospheric
effect, and simulated location error considering both effects.

Date
UTC
Time

Min
elevation
angle
(deg)

Max
elevation
angle
(deg)

Simulated
location
error (km)

Simulated
ionospheric
effect error
(km)

Simulated
tropospheric
effect error
(km)

Simulated
location error
with both
effects (km)

April, 6
2 pm 4 27 0.0063 0.1296 0.0304 0.1628

April, 7
11 am

15 42 0.0154 0.1455 0.0304 0.1910

April, 7
6 pm

9 33 0.0063 0.1874 0.0399 0.2267

April, 10
9 am

10 73 0.0503 0.0545 0.0789 0.1835

The IRI ionospheric model results were used in this work for the DCP location. Know-
ing that the model can also be inaccurate, we can conclude that the location error due to
the ionospheric effect can be larger than the values presented here.

5. Results

The results and analysis of the data collection platform geographic location due to the
ionospheric and the tropospheric effects are shown here, demonstrating the location ac-
curacy achieved. We obtained data collected in Cuiabá Reception Station (Central Brazil)
using the Brazilian satellite SCD-2 of low orbit with 25◦ inclination in relation to Equator
and altitude of approximately 750 km. We considered a nearby Data Collecting Platform
number 32 590 with known latitude of 15.55293◦S and longitude of 56.06875◦W. We
gathered representative data sets of 32 590 DCP transmitter at three different days and
times as shown in Tables 4.1 and 5.1.

Table 4.1 shows the results considering simulated SCD2 Doppler shift values, repre-
senting simulated conditions. Table 5.1 shows the results form another analysis consider-
ing data measurements gathered in actual conditions.

The minimum elevation (γmin) and the maximum elevation (γmax) angles of the trans-
mitted beam from the platform to satellite are presented in the second and third columns.
We used the geographical location algorithm [1] to generate the results. The geographical
location errors without considering ionospheric and tropospheric effects, simulated con-
ditions, (e) are represented in the fourth column. The last three columns show location
error results considering ionospheric effect (e(ṘI)), tropospheric effect (e(ṘT)), and both
effects (e(ṘI , ṘT)) in the simulated Doppler shift measurements.

It can be observed in Table 4.1 that the error in DCP location in the simulated Doppler
measurements due to the ionospheric effect was larger than the error considering the
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Table 5.1. Geographical location errors for the DCP no. 32590 as obtained today without any correc-
tion (actual conditions), actual location error with ionospheric correction, actual location error with
tropospheric correction, and final location error considering both corrections.

Date
UTC
Time

Min
elevation
angle
(deg)

Max
elevation
angle
(deg)

Actual
location
error
(km)

Actual location
error with
ionospheric
correction
(km)

Actual location
error with
tropospheric
correction
(km)

Actual location
error with both
corrections
(km)

April, 6
2 pm 11 27 0.35 0.25 0.33 0.24

April, 7
11 am

15 42 1.06 0.90 1.01 0.87

April, 7
6 pm

9 33 1.75 1.98 1.86 2.10

April, 10
9 am

10 73 2.17 1.87 1.74 1.47

tropospheric effect as expected. The maximum error in the observed location was 187 m
for the ionospheric effect and the minimum error was 30 m for tropospheric effect.

Now considering actual conditions with data obtained from flying satellites as shown
in Table 5.1, we can observe that in most cases the location error decreases when we con-
sider both corrections as shown in the last column as expected. For these test cases, the
errors decreased more than 100 m.

In Table 5.1, several visual inspections of the results generated for the actual case were
made. In the first pass (April 6, 2 pm) it was observed that when eliminating the measure-
ment with elevation below 10 degrees, the result was consistent with the expectations.
Unlikely the introduction of this measurement in the total of 6 measurements worsened
the final result.

Already in the third pass (April 7, 6 pm) two measurements were taken with eleva-
tion smaller than 10 degrees, remaining only two good measurements in the total of 4
measurements. With this, the final result was inconsistent with the expected result.

6. Conclusions

The performance analysis of the geographic location of data collection platforms con-
sidering the ionospheric and the tropospheric effects is shown. Two different analyses
were made: in the first analysis results were obtained considering simulated Doppler shift
of the SCD2 satellite pass, as representative of ideal conditions, and the total incremen-
tal error in the observed location was less than 227 m; in the second analysis, with data
files depicting actual conditions, we can observe that in most cases the location error de-
creases around hundred meters. The April 7, 6 pm case (Table 5.1) presented insufficient
data and its result was not considered representative.
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On the average, for these tested cases, we can conclude that the location errors de-
creased when including the ionospheric and tropospheric corrections.

In as much as the location accuracy being a function of several factors such as on board
oscillator stability, DCP transmitter oscillator stability, satellite orbital elements accuracy,
data collection processing equipment performance, number of reception stations, among
others, the correction of the effects of signal propagation through the ionosphere and
troposphere can be an important factor to be considered.

The results herein indicate that the correction of the ionospheric and tropospheric
effects can reduce the geographical location errors and improve the performance of the
geographical location software.

A proposed follow-on research is to analyze in detail the ionospheric and tropospheric
effects considering several DCPs located in different regions, as well as the year season to
verify the impact of seasonal effects in the performance of the system. Furthermore, other
models such as IONEX from IGS, and other mapping functions are being considered to
be included in the system.
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In the computation of turbulent flows via turbulence modeling, the treatment of the
convective terms is a key issue. In the present work, we present a numerical technique
for simulating two-dimensional incompressible turbulent flows. In particular, the per-
formance of the high Reynolds κ-ε model and a new high-order upwind scheme (adap-
tative QUICKEST by Kaibara et al. (2005)) is assessed for 2D confined and free-surface
incompressible turbulent flows. The model equations are solved with the fractional-step
projection method in primitive variables. Solutions are obtained by using an adaptation
of the front tracking GENSMAC (Tomé and McKee (1994)) methodology for calculating
fluid flows at high Reynolds numbers. The calculations are performed by using the 2D
version of the Freeflow simulation system (Castello et al. (2000)). A specific way of im-
plementing wall functions is also tested and assessed. The numerical procedure is tested
by solving three fluid flow problems, namely, turbulent flow over a backward-facing step,
turbulent boundary layer over a flat plate under zero-pressure gradients, and a turbulent
free jet impinging onto a flat surface. The numerical method is then applied to solve the
flow of a horizontal jet penetrating a quiescent fluid from an entry port beneath the free
surface.
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1. Introduction

With the rapid advance of computer technology, numerical modeling has become an
important tool in the understanding of fluid dynamics phenomena. One of the challeng-
ing tasks is the computation of incompressible turbulent flows (mainly those with free
surfaces), which can, in principle, be carried out by the direct numerical integration of
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instantaneous Navier-Stokes equations. Unfortunately, due to the large computational ef-
fort involved, this technique has been restricted to flows at low Reynolds numbers. Practi-
cal calculations at the present time must therefore be based on the unsteady Reynolds av-
eraged Navier-Stokes (URANS) equations, with the high Reynolds κ-ε turbulence model.
However, the performance of this modeling decisively depends on the form that the non-
linear advective terms are approximated.

A wide variety of techniques for discretizing the nonlinear advective terms has been
proposed over the last 20 years, given that the combination of NVD (normalized variable
diagram) [1] and TVD (total variation diminishing) [2] is one of the most popular in the
CFD community. For instance, [3] proposed the VONOS (variable-order non-oscillatory
scheme), an NVD scheme which emerged, according to [4, 5], as an acceptable upwind-
ing tool for simulation of free surface flows. Reference [6] proposed a third-order accu-
rate and limited scheme named WACEB (weighted-average coefficient ensuring bound-
edness) TVD. Numerical results for scalar convection problems show that this scheme has
the same ability of QUICK in reducing numerical diffusion without introducing spuri-
ous extrema (oscillations). However, this scheme still has convergence problems for non-
Newtonian flows. As a remedy, [7] devised a high-resolution scheme called CUBISTA
(convergent and universally bounded interpolation scheme for treatment of advection)
TVD. The evaluation of the accuracy and convergence properties of the scheme was mea-
sured in two-dimensional cases by using linear and nonlinear problems and for Newto-
nian and non-Newtonian flows.

In the last years, a great effort has been made to develop high-order bounded advec-
tion schemes that combine the TVD and NVD formulations. Using this combination, re-
cently, [8] derived an upwind scheme for unsteady flow fields (called adaptative QUICK-
EST), which did a very good job in solving laminar incompressible free surface flows (see
[9] for details). The main motivation for the present work is to simulate incompress-
ible turbulent free surface flows at high Reynolds numbers. By using the standard κ-ε
turbulence model and the adaptative QUICKEST scheme, the present paper describes
an effective 2D finite difference methodology for the numerical solution of this class of
flows. The calculations are performed by the 2D version of the Freeflow simulation system
of [10].

The paper is organized as follows. First, the model equations are set out (Section 2).
The initial and boundary conditions are then presented (Section 3). The adaptative
QUICKEST scheme is described in Section 4. The numerical technique is given in Section
5, while the finite difference discretization is described in Section 6. Numerical results are
presented and discussed in Section 7. Conclusions are presented in Section 8.

2. Equation models

The flow regime of interest in this paper is modeled by the time-dependent, incom-
pressible, constant property 2D Reynolds averaged Navier-Stokes equations, mass con-
servation equation, and κ-ε model in the primitive variable formulation. In conservative
and nondimensional forms, these equations, omitting averaging symbols, can be written
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In the above equations, t is the time, u= u(x, y, t) and v = v(x, y, t) are, respectively, the
components in the x and y directions of the local time-averaged velocity vector field of
the fluid, κ= κ(x, y, t) is the local time-averaged turbulent kinetic energy of the fluctuat-
ing motion, ε = ε(x, y, t) is the turbulence dissipation rate of κ, pe = p + (2/3)(1/Re)κ is
the effective scalar pressure field divided by the density, and g = (gx,gy) is the accelera-

tion due to gravity. The nondimensional parameters Re=UL/ν and Fr=U/
√
L|g| denote

the associated Reynolds and Froude numbers, respectively, in which U is a characteristic
velocity scale and L is a length scale of the flow. The nondimensional turbulent viscos-
ity νt, turbulent shear stress production P, and turbulence time scale Tt are, respectively,
defined as

νt = CμκTt, (2.6)

P = νt

[
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Tt = κε−1, (2.8)
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Figure 3.1. Computational cell showing where the variables are discretized. The variable φ can be pe,
κ, ε, or νt .

where the model constants, obtained from experimental results, are considered as Cμ =
0.09, C1ε = 1.44, C2ε = 1.92, σκ = 1.0, and σε = 1.3. Equations (2.1)–(2.8) have been
non-dimensionalized with the following scalings:

u= uU , v = vU , x = xL, y = yL, t = tLU−1, pe = peU2,

κ= κνUL−1, ε = ενU2L−2, νt = νtν, gx = gx|g|, g y = gy|g|,
(2.9)

where variables with a bar refer to their corresponding dimensional variables.

3. Initial and boundary conditions

Equations (2.1)–(2.5) are coupled nonlinear differential equations and, together with the
eddy viscosity model (2.6), are sufficient, in principle, to solve for the five unknowns u, v,
pe, κ, and ε when appropriate initial and boundary conditions are specified. In this work,
a staggered grid is used where the effective pressure, the turbulent kinetic energy, and
the dissipation rate are stored at the centre of a computational grid cell, while velocities
are stored at the cell edges. A typical cell showing the physical locations at which these
dependent variables are defined is illustrated in Figure 3.1. With this grid system, effective
pressure boundary conditions are not needed. The boundary and initial conditions have
been implemented as follows.

The initial conditions for the mean velocities and effective pressure are specified in the
same way as in the laminar case (see [4] or [9]), that is, these variables are prescribed.
It is difficult to specify initial conditions for the turbulent variables, since they must be
in agreement with the physics of the problem. Thus, for the problems considered in this
work, we prescribe the initial conditions for κ and ε, and hence νt, as functions of an
upstream turbulent intensity I = 8.0× 10−2. This specific intensity level is used because it



V. G. Ferreira et al. 5

is within the bounds of realistic values. In nondimensional form, the turbulent variables
can be written as

κ= IRe, ε = 0.33× 10−2(Re−1 κ3)1/2
. (3.1)

Four types of boundary conditions have been implemented, namely: inflow, outflow, free
surface, and rigid-wall boundaries. At the inflow, the velocities u and v are prescribed
while the values of κ and ε are estimated in such a way that they are consistent with
the initial conditions (3.1). At the outflow, the streamwise gradient for each variable is
required to be equal to zero. At a free surface, we consider the fluid to be moving into
(or out of) a passive atmosphere (zero-pressure) and, in the absence of surface tension
forces, the normal and tangential components of the stress must be continuous across the
free surface; hence on such a surface, we have (see, e.g., [11])

n · (τ ·n)= pext, (3.2)

m · (τ ·n)= 0. (3.3)

Here, n and m are, respectively, unit normal and tangential vectors to the surface, pext is
the external (atmospheric) pressure (assumed zero in this paper), and τ = τ(pe,νt,u) is
the Cauchy stress-tensor given by

τ =−peI + Re−1 (1 + νt
){∇u + (∇u)T

}
, (3.4)

where I denotes the identity tensor. Equations (3.2) and (3.3) are discretized by accurate
local finite difference approximations on the free surface, namely, from condition (3.2)
one determines the effective pressure; and from (3.3) one obtains the velocities at the free
surface. Due to the complexity of the dynamics of the turbulence near the free surface,
the values of the turbulent variables κ and ε at the boundary are difficult to specify. For
instance, it is not known how turbulence interacts with surface tension, and therefore,
it is difficult to specify the distribution of κ on an irregular moving boundary. So, as a
first approximation, we assume that the free surface is locally flat and the movement of
the fluid does not cause any discontinuities at the boundary. In summary, the turbulent
variables at the free surface are determined by imposing

∂κ

∂n
= 0,

∂ε

∂n
= 0. (3.5)

The derivatives in (3.5) are approximated by first-order (either forward or backward)
finite difference schemes.

The κ-ε model, as formulated in (2.4)-(2.5), cannot be applied as the calculation ap-
proaches a rigid wall. This is because the turbulent time scale in (2.5) exhibits a singular
nature near a wall, since the turbulent kinetic energy κ tends to zero there [12]. For this
reason, the wall function is employed in the near-wall region. In this case, the fundamen-
tal equation for determining the fictitious velocities and turbulent variables near a rigid
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wall is the total momentum flux τω given by [13]

(
1

Re

(
1 + νt

)∣∣∣∣∂u∂n
∣∣∣∣
)∣∣∣∣

wall
≈ u∗2 = τω, (3.6)

where u represents the mean velocity component tangential to the rigid wall, and u∗ is the
friction velocity. The values of κ and ε in the inertial sublayer are, respectively, prescribed
by the well-known relations

κ= Re
u∗2

C1/2
μ

, ε= Re
u∗3

Ky
, (3.7)

where K = 0.41. In the viscous region close to the wall, we use the strategy of [14], that is,

κ= Re
u∗2

C1/2
μ

(
y+

y+
c

)2

, ε =
√

1
Re

κ3/2

l∗
, (3.8)

where y+ is defined as y+ = Reu∗y, and l∗ represents the length scale proposed by [15].
Neglecting the buffer layer of the turbulent boundary layer, the critical value of y+ (de-
noted by y+

c ) in (3.8) separates the viscous sublayer from the inertial sublayer.

3.1. Wall boundary conditions. The strategy adopted here to describe the solution of
the flow near a rigid wall is the wall function which describes the asymptotic behavior of
the turbulent variables near the wall. The main advantages of the wall function approach
are (a) the need to extend the calculation right down to the wall is avoided, a fact which
saves computing time and storage; and (b) it is not necessary to account for the viscous
effects in the turbulence model. In summary, the behavior of the mean velocity profiles
in the viscous and inertial sublayers is given by (see, e.g., [16, 17] or [18])

u+− y+ = 0, (3.9)

ln
(
Ey+)−Ku+ = 0, (3.10)

where u+ = u/u∗ and E = exp(KB); B is an empirical constant and is usually chosen to
correspond to a hydrodynamically smooth wall. One of the central questions in the ap-
plication of the wall functions (3.6)–(3.8) and (3.9)-(3.10) is the accurate determination
of the friction velocity, and hence the wall shear stress. This is determined from rela-
tion (3.9) or (3.10), depending on the local Reynolds number y+. The Newton-Raphson
method was used to obtain u∗ from (3.10), with u∗ = 11.60 as initial condition. This ini-
tial value was obtained from the numerical solution of the system (3.9)-(3.10) (see also
[19]). To begin with, we need to know the critical Reynolds number y+

c in (3.8). By ne-
glecting the transition sub-layer, the friction velocity is estimated in the following specific
way: with the tangential velocity u∗ known in the first grid cell adjacent to the wall, u∗

is updated according to the value of y+ given by (3.9). If y+ is less than y+
c , we use (3.9);

on the other hand, if it is not, we employ (3.10). The fictitious velocities are calculated by
the central-difference approximation of (3.6) for a known wall shear stress.
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R U D
f

Vf

Figure 4.1. Neighboring nodes D, U , and R of the f face.

4. Treatment of nonlinear advection terms

For the flow regime considered in this work, the momentum and turbulence transport
equations are dominated by convection, and it is well recognized that standard discretiza-
tion (i.e., QUICK, central difference, or Lax-Wendroff) for the nonlinear terms leads to
oscillatory solutions. In this paper, the discretization of all advective terms in transport
equations (2.1)-(2.2) and (2.4)-(2.5) is performed by using the adaptative QUICKEST
scheme of [8] (see also [9]). This high-order upwind technique is derived from the nor-
malized variable of [20] and by enforcing the total variation diminishing property of
[2, 21]. Consequently, it satisfies the CBC of [22]. The main idea in the derivation of this
scheme was to combine accuracy and monotonicity, while ensuring flexibility (it depends
on a free parameter). The adaptative QUICKEST scheme enjoyies the property that total
variation of the variables does not increase with time, thus spurious numerical oscilla-
tions are not generated. The numerical solution can be second- or third-order accurate
in the smooth parts of the solution, but only first-order near regions with large gradients.
In summary, a general interfacial flow property φ̂ f is implemented in the current Freeflow
code by the functional relationship

φ̂ f =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2− θ)φ̂U , 0 < φ̂U < a,

φ̂U +
1
2

(
1−|θ|)(1− φ̂U)− 1

6

(
1− θ2

)(
1− 2φ̂U

)
, a≤ φ̂U ≤ b,

1− θ + θφ̂U , b < φ̂U < 1,

φ̂U , elsewhere,

(4.1)

where θ = Vf · δt/δx is the convective Courant number, Vf is a convective velocity, and

δx is the grid spacing, and φ̂() = (φ() − φR)/(φD − φR) is Leonard’s normalized variable
(see [1]). The subscripts D, U , and R referring to values at the downstream, upstream,
and remote-upstream locations are defined according to the sign of Vf at f face (see
Figure 4.1). The constants a and b in (4.1) are given by

a= 2− 3|θ|+ θ2

7− 6θ− 3|θ|+ 2θ2
, b = −4 + 6θ− 3|θ|+ θ2

−5 + 6θ− 3|θ|+ 2θ2
. (4.2)
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The corresponding flux limiter for the adaptative QUICKEST scheme is as follows (see
details in [9]):

ψ
(
r f
)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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2
3
−|θ|+

θ2

3
+
(

1− θ2

3

)
r f , a′ ≤ r f ≤ b′,

2(1− θ), r f > b′,

0, r f < 0,

(4.3)

where

a′ = θ2 + 2− 3|θ|
5− 6θ + θ2

, b′ = −4 + 6θ+ θ2− 3|θ|
θ2− 1

. (4.4)

The implementation of this scheme will be presented later (see Section 6).

5. Numerical solution procedure

The governing equations (2.1)–(2.5) are solved in a partly segregated manner using an
extension of the GENSMAC methodology of [23] for turbulent flow fields. A detailed de-
scription of this technique is provided in [24]. Based on the predictor-corrector method
(see, e.g., [25]), the numerical solution procedure is an explicit finite difference, first- or
second-order accurate numerical method for calculation of free surface flows as well as
confined flows.

For calculations, a uniform Cartesian staggered grid system is used, where the effec-
tive pressure, the turbulent kinetic energy, and the dissipation rate are stored at the center
of a computational grid cell, while velocities are stored at the cell edges. For flows pos-
sessing free surface, this boundary generally moves, and therefore the domain of interest
deforms with time. In this case, the front-tracking MAC (marker and cell) method [26]
is adopted in Freeflow to determine the free surface location. In summary, the interface is
represented discretely by connected Lagrangian markers to form a front which lies within
and moves through an Eulerian mesh; as the front moves and deforms, interface points
are added/deleted and reconnected as necessary (for details, see [10]). To advance the
numerical solution in time, the projection method of [27] is employed (see also [25]).

6. Discretizations

The differential equations are discretized using the finite difference technique on a uni-
form staggered grid system. The temporal derivatives were discretized using the first-
order forward difference (Euler’s method), while the spatial derivatives were approxi-
mated by standard second-order central differences with the exception of the advection
terms (denoted here by CONV(·)), which are approximated by the adaptative QUICK-
EST scheme. The Poisson equation in discretized scheme (see [9]) is done by using the
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usual five-point Laplacian operator, and the corresponding symmetric-positive definite
linear system is solved by the conjugate-gradient method. In summary, fluid flow equa-
tions (2.1)–(2.5) take the following discretized form.

(i) Momentum-ũ:

ũn+1
i+1/2, j

= uni+1/2, j + δt
{

CONV(u)
∣∣
i+1/2, j −

p̃ei+1, j − p̃ei, j
δx

+
1

Reδy

[(
ui+1/2, j+1−ui+1/2, j

δ y
− vi+1, j+1/2− vi, j+1/2

δx

)

−
(
ui+1/2, j −ui+1/2, j−1

δy
− vi+1, j−1/2− vi, j−1/2

δx

)]

+
2

Reδx2

(
νt i+1, j

(
ui+3/2, j −ui+1/2, j

)− νt i, j
(
ui+1/2, j −ui−1/2, j

))

+
1

Reδy

[
νt i+1/2, j+1/2

(
ui+1/2, j+1−ui+1/2, j

δ y
+
vi+1, j+1/2− vi, j+1/2

δx

)

− νt i+1/2, j−1/2

(
ui+1/2, j −ui+1/2, j−1

δy
+
vi+1, j−1/2− vi, j−1/2

δx

)]
+

1
Fr2 gx

}n
,

(6.1)

where the superscript n denotes the time level, and

CONV(u)
∣∣n
i+1/2, j =−

[
∂(uu)
∂x

+
∂(uv)
∂y

]n
i+1/2, j

. (6.2)

(ii) Momentum-ṽ:

ṽn+1
i, j+1/2

= vni, j+1/2 + δt
{

CONV(v)
∣∣
i, j+1/2−

p̃ei, j+1 − p̃ei, j
δ y

− 1
Reδx

[(
ui+1/2, j+1−ui+1/2, j

δ y
− vi+1, j+1/2− vi, j+1/2

δx

)

−
(
ui−1/2, j+1−ui−1/2, j

δ y
− vi, j+1/2− vi−1, j+1/2

δx

)]

+
2

Reδy2

(
νt i, j+1

(
vi, j+3/2− vi, j+1/2

)− νt i, j
(
vi, j+1/2− vi, j−1/2

))

+
1

Reδx

[
νt i+1/2, j+1/2

(
ui+1/2, j+1−ui+1/2, j

δ y
+
vi+1, j+1/2− vi, j+1/2

δx

)

− νt i−1/2, j+1/2

(
ui−1/2, j+1−ui−1/2, j

δ y
+
vi, j+1/2− vi−1, j+1/2

δx

)]
+

1
Fr2 gy

}n
,

(6.3)
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with

CONV(v)
∣∣n
i, j+1/2 =−

[
∂(vv)
∂y

+
∂(vu)
∂x

]n
i, j+1/2

. (6.4)

(iii) Mass conservation:

ui+1/2, j −ui−1/2, j

δx
+
vi, j+1/2− vi, j−1/2

δy
= 0. (6.5)

(iv) Poisson equation for ψ:

ψi+1, j − 2ψi, j +ψi−1, j

δx2
+
ψi, j+1− 2ψi, j +ψi, j−1

δy2
= ũi+1/2, j − ũi−1/2, j

δx
+
ṽi, j+1/2− ṽi, j−1/2

δy
.

(6.6)

(v) κ-equation:

κn+1
i, j

= κni, j + δt
{

CONV(κ)
∣∣
i, j +

1
Re

[
1
δx2

((
1 +

νti+1, j + νti, j
2σκ

)(
κi+1, j − κi, j

)

−
(

1 +
νti, j + νti−1, j

2σκ

)(
κi, j − κi−1, j

))
+

1
δy2

((
1 +

νti, j+1 + νti, j
2σκ

)(
κi, j+1− κi, j

)

−
(

1 +
νti, j + νti, j−1

2σκ

)(
κi, j − κi, j−1

))]
+Pi, j − εi, j

}n
,

(6.7)

where

CONV(κ)
∣∣n
i, j =−

[
∂(κu)
∂x

+
∂(κv)
∂y

]n
i, j
. (6.8)

(vi) ε-equation:

εn+1
i, j

= εni, j + δt
{

CONV(ε)
∣∣
i, j +

1
Re

[
1
δx2

((
1 +

νti+1, j + νti, j
2σε

)(
εi+1, j − εi, j

)

−
(

1 +
νti, j + νti−1, j

2σε

)(
εi, j − εi−1, j

))
+

1
δy2

((
1 +

νti, j+1 + νti, j
2σε

)(
εi, j+1− εi, j

)

−
(

1 +
(νti, j + νti, j−1

2σε

)(
εi, j − εi, j−1

)))]
+
C1εPi, j −C2εεi, j

Ti, j

}n
,

(6.9)

where

CONV(ε)
∣∣n
i, j =−

[
∂(εu)
∂x

+
∂(εv)
∂y

]n
i, j
. (6.10)
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The production of turbulence, the eddy viscosity, and the time scale are discretized, re-
spectively, as follows:

Pni, j = νnti, j

{[
2
δx2

(
ui+1/2, j −ui−1/2, j

)2
+

2
δy2

(
vi, j+1/2− vi, j−1/2

)2
]

+
[

1
4δy

(
ui+1/2, j+1 +ui−1/2, j+1−ui+1/2, j−1−ui−1/2, j−1

)

+
1

4δx

(
vi+1, j+1/2 + vi+1, j−1/2− vi−1, j+1/2− vi−1, j−1/2

)]2}n
,

νnti, j = Cμ
(
κni, j
)2

εni, j
, Tn

ti, j =
κni, j
εni, j

.

(6.11)

For the nonlinear advection terms in the momentum equations (the advection terms of
κ and ε equations follow a similar procedure), the application of the adaptative QUICK-
EST scheme is as follows. For simplicity, only the discretization of the nonlinear terms in
u-component of the time-averaged Navier-Stokes equations will be presented. The dis-
cretization of the other nonlinear term is made in a similar way. In position (i+ 1/2, j) of
the mesh, this term can be approximated by the following conservative scheme:

(
∂(uu)
∂x

+
∂(uv)
∂y

)∣∣∣∣
i+1/2, j

≈ ui+1, jui+1, j −ui, jui, j
δx

+
vi+1/2, j+1/2ui+1/2, j+1/2− vi+1/2, j−1/2ui+1/2, j−1/2

δy
,

(6.12)

where the velocities ui+1, j , ui, j , vi+1/2, j+1/2 and vi+1/2, j−1/2 are obtained by averaging. For
instance, vi+1/2, j−1/2 is approximate by vi+1/2, j−1/2 ≈ 0.5(vi, j−1/2 + vi+1, j−1/2). The velocities
ui, j and ui+1, j are calculated (the other velocities follow similar procedures) by the follow-
ing.

(i) When ui, j > 0 and ûi−1/2, j = (ui−(1/2), j −ui−(3/2), j)/(ui+(1/2), j −ui−(3/2), j), the value
of ui, j is

ui, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ui−1/2, j if ûi−1/2, j �∈ [0,1],

(2− θ)ui−1/2, j − (1− θ)ui−3/2, j if 0 < ûi−1/2, j < a,

αDui+1/2, j +αUui−1/2, j −αRui−3/2, j if a≤ ûi−1/2, j ≤ b,

(1− θ)ui+1/2, j + θui−1/2, j if b < ûi−1/2, j < 1.

(6.13)
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(ii) When ui, j < 0 and ûi+1/2, j = (ui+(1/2), j −ui+(3/2), j)/(ui−(1/2), j −ui+(3/2), j), the value
of ui, j is

ui, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ui+1/2, j if ûi+1/2, j �∈ [0,1],

(2− θ)ui+1/2, j − (1− θ)ui+3/2, j if 0 < ûi+1/2, j < a,

αDui−1/2, j +αUui+1/2, j −αRui+3/2, j if a≤ ûi+1/2, j ≤ b,

(1− θ)ui−1/2, j + θui+1/2, j if b < ûi+1/2, j < 1.

(6.14)

(iii) When ui+1, j > 0 and ûi+1/2, j = (ui+(1/2), j−ui−(1/2), j)/(ui+(3/2), j −ui−(1/2), j), the value
of ui+1, j is

ui+1, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ui+1/2, j if ûi+1/2, j �∈ [0,1],

(2− θ)ui+1/2, j − (1− θ)ui−1/2, j if 0 < ûi+1/2, j < a,

αDui+3/2, j +αUui+1/2, j −αRui−1/2, j if a≤ ûi+1/2, j ≤ b,

(1− θ)ui+3/2, j + θui+1/2, j if b < ûi+1/2, j < 1.

(6.15)

(iv) When ui+1, j < 0 and ûi+3/2, j = (ui+(3/2), j −ui+(5/2), j)/(ui+(1/2), j −ui+(5/2), j), the
value of ui+1, j is

ui+1, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ui+3/2, j if ûi+3/2, j �∈ [0,1],

(2− θ)ui+3/2, j − (1− θ)ui+5/2, j if 0 < ûi+3/2, j < a,

αDui+1/2, j +αUui+3/2, j −αRui+5/2, j if a≤ ûi+3/2, j ≤ b,

(1− θ)ui+1/2, j + θui+3/2, j if b < ûi+3/2, j < 1,

(6.16)

where

αD = 1
6

(
θ2−|θ|+ 2

)
, αU = 1

6

(− 2θ2 + 3|θ|+ 5
)
, αR = 1

6

(
1− θ2). (6.17)

The Courant number is calculated in the code by analyzing the direction in which
information propagates, that is, the sign of a previously calculated local normal averaged
velocity u at a face of the control volume, and by computing the expression θ = u · δt/δx
in each control volume.

7. Numerical tests

In order to validate the actual Freeflow code, incremented with the original κ-ε model
and adaptative QUICKEST scheme, we report now the numerical results for a turbulent
flow over a backward-facing step, the turbulent boundary layer over a flat surface, and a
turbulent jet impinging onto a flat surface. Also, as an example of application, we present
a turbulent planar jet penetrating into a pool.
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Table 7.1. Estimates for the reattachment length.

Mesh Adaptative QUICKEST CUBISTA WACEB VONOS

Coarse 6.86 7.13 7.10 6.12

Medium 6.03 6.10 6.06 5.76

Fine 5.50 5.51 5.50 5.42

Inflow

y

x

h

x1 Rigid wall

30h

2h Outflow

Figure 7.1. Configuration for turbulent flow over a backward-facing step problem.

7.1. Turbulent flow over a backward-facing step. The turbulent flow over a backward-
facing step is a standard test case, often used for validation of turbulence models. This
flow is computationally challenging, because both a primary and a secondary recircula-
tion eddy vertex occur. The problem configuration is illustrated in Figure 7.1. By using
the current Freeflow code with a fully developed parabolic velocity profile prescribed at
the inlet section, we simulate this flow at Re= 1.32× 105. This is based on the maximum
velocity Umax = 1.0 ms−1 at that section and the height of the step h= 0.1 m.

Computations were performed on three different meshes, namely, the coarse mesh
(200× 15 computational cells, δx = δy = 0.02 m); the medium mesh (400× 30 com-
putational cells, δx = δy = 0.01 m); and the fine mesh (800× 60 computational cells,
δx = δy = 0.005 m). Table 7.1 depicts values of the reattachment length x1 on the three
meshes, using four advection schemes, including the adaptative QUICKEST. By com-
paring these numerical results with experimental data of [28], which obtained value of
x1 = 7.1, one can see that our numerical results underpredict the experimental reattach-
ment point by 20%–25%. The CUBISTA scheme for the coarse mesh provides a value
greater than 7.1. The good results with WACEB on coarse meshes can be attributed to
the value of the y+. On the other hand, it can be seen that our numerical results are in
good agreement with the numerical result of [29], which found that x1 = 6.0. From this
same table, it should also be observed that WACEB, CUBISTA, and adaptative QUICK-
EST schemes provide good results, while the VONOS scheme gives much less satisfac-
tory results. We believe that most of this difference may be attributed to the fact that the
WACEB, CUBISTA, and adaptative QUICKEST schemes are TVD, whereas the VONOS
scheme is not.
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Table 7.2. Other estimates for the reattachment length.

Scheme HOAB STOIC SMART CLAM FOU

x1 5.405 5.396 5.377 5.357 4.607

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

u
(m

/s
)

1 1.2 1.4 1.6 1.8 2

x (m)

Mesh 200× 15
Mesh 400× 30

Mesh 800× 60
y = 0

Figure 7.2. Comparison on three meshes of u velocity component using the adaptative QUICKEST
scheme.

For simple comparison, Table 7.2 shows other estimates for the reattachment length
obtained by HOAB, STOIC, SMART, CLAM, and FOU schemes (see [30]). From this
table and Table 7.1, one can observe that the adaptative QUICKEST scheme provided a
consistent reattachment length. In addition, a convergence test of the numerical solution
obtained with the adaptative QUICKEST scheme on these three meshes was made. This
is illustrated in Figure 7.2, which shows how the reattachment length was estimated (the
change in the sign of the u-velocity profile adjacent to the lower bounding wall) in the
code.

One can see from this figure that both the velocity profile and the reattachment length
tend to converge to a solution near the numerical one in the fine mesh. For illustration,
Figures 7.3 and 7.4 present the pressure contours and v-component of the velocity field,
on the medium mesh, using adaptative QUICKEST scheme.

7.2. Turbulent flow past a flat plate. The interaction between the fluid and the bound-
ary wall is of great importance in turbulent flows. Due to the strong velocity gradients
occurring near the wall, a large amount of turbulence is generated. This turbulence plays
a very important role in physical phenomena as reattachment of separated regions. In
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−0.156 0.009 0.174 0.339 0.504 0.669 0.834 0.998

Figure 7.3. u-velocity component using the adaptative QUICKEST and Re= 1.32× 105.

0.049 −0.035 −0.021 −0.007 0.007 0.022 0.036 0.05

Figure 7.4. v-velocity component using the adaptative QUICKEST and Re= 1.32× 105.

this subsection, a two-dimensional turbulent boundary layer over a flat plate is simu-
lated according to the classical zero-pressure gradient theory. This is justified by the fact
that the plate is flat, and thus, the only contribution to the pressure gradient comes from
the product between the dynamic viscosity and the second derivative of the longitudi-
nal velocity with respect to the transversal coordinate which, in the present case, can be
neglected. Physically, in a zero-pressure gradient turbulent boundary layer, the point of
inflection is at the wall itself; there can be no flow separation [31].

This fluid flow problem has been extensively studied in the literature (see, e.g., [5]),
and numerous formulae have been proposed to estimate the coefficient of skin friction
(Cf ). In order to solve this problem, a uniform free stream boundary condition is im-
posed at the inlet, and the Reynolds number, based on length and velocity scales of unity,
is Re = 2.0× 106. Figure 7.5 compares the calculated dimensionless turbulent skin fric-
tion coefficient Cf = 2τw with the estimates given by Prandtl approximation, Power-law
theory, and the “exact” profile of White (see [18]). These figures display Cf against the
local Reynolds number Rex =U0x/ν at the (nondimensional) time t = 6.0 calculated for
the following three different-sized meshes, namely, the coarse mesh (20× 100 computa-
tional cells, δx = δy = 0.05 m); the medium mesh (40× 200 computational cells, δx =
δy = 0.025 m); and the fine mesh (80× 400 computational cells, δx = δy = 0.0125 m).
Additionally, the corresponding laminar result is also included for simple comparison.
As shown in Figures 7.5(a), 7.5(b), and 7.5(c), the numerical estimates are generally sat-
isfactory for Rex beyond 1.0× 106. It can also be observed from Figure 7.5(d) that when
the coarse mesh was twice refined, there appears to be convergence of the numerical so-
lution to a profile near the power-law theory and the “exact” White relation. On the other
hand, for Rex ≤ 1.0× 106, a systematic discrepancy existed and this may be due to the
uniform meshes used and/or the initial velocity profile not being sufficiently turbulent at
the entrance region.

7.3. Turbulent jet impinging onto a flat surface. A jet impinging normally onto a flat
rigid surface is a good example of a free surface flow, but is difficult to simulate because
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Figure 7.5. Comparison of the local skin friction on a flat plate for turbulent flow, showing several
theoretical estimates and those obtained by the present finite difference scheme on three meshes: (a)
coarse; (b) medium; (c) fine; and (d) shows comparison of the three numerical solutions.
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Outflow1 Outflow2
Free surface

L

h

Rigid wall

Figure 7.6. Configuration of a free jet impinging onto a rigid surface.

the free surface boundary conditions must be specified on an arbitrarily moving bound-
ary. This free surface flow in turbulent regime is also chosen as a representative test case
because there is (see [4, 32]) an approximated analytical solution for the total thickness
of the fluid layer flowing on the surface (see the illustration in Figure 7.6). In summary,
for a given volumetric flux Q through the inlet section of diameter L= 2a, the analytical
solution is

h(x)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

81(7A)1/4k

800

(
ν

Q

)1/4

(x+ l) if x ≥ x0,

a+
(

1− A

k

)
δ if x < x0,

(7.1)

where

δ(x)=
(

81
320(9A− 2)

)4/5

71/5k
(
aν

Q

)1/5

x4/5,

x0 = 320(9A− 2)
81× 71/4A5/4

aRe1/4,

l = 160(1− 2A)
9× 71/4A5/4

aRe1/4 .

(7.2)

In (7.1), A= 0.239 and k = 0.260. The problem configuration is illustrated in Figure 7.6.
By using three different meshes, namely, the coarse mesh (200× 50 computational

cells, δx = δy = 0.001 m); the medium mesh (400× 100 computational cells, δx = δy =
0.0005 m); and the fine mesh (800× 200 computational cells, δx = δy = 0.00025 m),
the Freeflow code, equipped with the adaptative QUICKEST advection scheme and κ-ε
model, run this moving free boundary problem at Reynolds number 5.0×104, which was
based on the maximum velocity Umax = 1.0 m/s and diameter of the inlet L= 0.01 m (or
volumetric flux Q = ν, Re = 0.01 m2/s). On these three meshes, a comparison is made
between the free surface height (the total thickness of the layer), obtained from our nu-
merical solutions and from the analytical viscous solution of Watson. This is displayed
in Figure 7.7 and its enlargement in Figure 7.8. One can see from these figures that the
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Figure 7.7. Comparison on three meshes between numerical solution and analytical solution of Wat-
son.
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Figure 7.8. Enlargement of a section of Figure 7.7.

numerical results on these meshes are similar, showing, in some regions, a small differ-
ence when compared to Watson’s solution. We believe that most of this difference may be
attributed to insufficient grid points, being used near the rigid wall.
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−0.002 0.101 0.203 0.305 0.408 0.51 0.612 0.715

Figure 7.9. Pressure field of a turbulent free jet using adaptative QUICKEST scheme at Re= 5.0× 104.

−1.154 −0.824 −0.494 −0.165 0.165 0.494 0.824 1.154

Figure 7.10. u-velocity component of a turbulent free jet using adaptative QUICKEST scheme at
Re= 5.0× 104.

For illustration, Figures 7.9–7.11 present at the time t = 1.0 the pressure and velocities
fields on the medium mesh using the adaptative QUICKEST scheme.

7.4. Application: a horizontal jet penetrating a quiescent fluid. We conclude this work
by presenting the numerical simulation of a horizontal jet penetrating a quiescent fluid
from an entry port at depth H = 6.0 m beneath the free surface. The purpose here is
to show that the actual Freeflow can simulate the largest eddies present in the flow and
their nonlinear interaction with a free surface. This free surface flow problem has also
been simulated by [5] using a classical upwind scheme. The geometrical configuration
and parameters for this free surface fluid flow are shown in Figure 7.12. In this numeri-
cal simulation, the associated Reynolds and Froude numbers are Re=DU0/ν= 5.0× 104

and Fr=U0/
√
gD ≈ 12.77, respectively. The mesh used in this test case is 100× 100 com-

putational cells (δx = δy = 0.010 m). The development of pressure and velocities distri-
butions, together with the free surface elevation at various times, are presented in Figures
7.13 through 7.15. In this case, the interaction with the free surface occurs only at the later
stages of the flow development. Initially, one can observe the growth of the instability of
the boundary layers between the entering jet and the stagnant fluid, and subsequently, the
formation of a pair of counter-rotating eddies. Later on, the first pair of eddies propagates
towards the free surface.

The result obtained in this simulation should be interpreted as representing the 2D
motion of one realization occurring at scales greater than the discretization scale. In other
words, both the free surface position and the velocity fields computed here may be re-
garded as the deterministic motion at these larger scales. Indeed, this simulation may be
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−1.036 −0.887 −0.738 −0.589 −0.439 −0.29 −0.141 0.008

Figure 7.11. v-velocity component of a turbulent free jet using adaptative QUICKEST scheme at
Re= 5.0× 104.

Free surface
Outflow

H

D U

Inflow

16D

4D

20D

Fluid

Rigid wall

Figure 7.12. Geometry and parameters for flow of a penetrating planar jet in a pool: U0 = 2 ms−1 and
D = 0.05 m.

thought of URANS or as VLES (very large scale simulations), as opposed to the 3D, and
much more expensive, LES. Turbulent flow simulations using LES and DNS approaches
have been performed by other authors, but are mostly restricted to very low (or negligi-
ble) Froude numbers.

8. Conclusions

In this work, a finite difference numerical technique for simulating 2D incompressible
turbulent flows was described. The Freeflow simulation system coupled with the original
high Reynolds κ-ε turbulence model and the high-order adaptative QUICKEST advec-
tion scheme has been applied to simulate three problems, namely, turbulent flow over
a backward-facing step, the turbulent boundary layer over a flat surface (zero-pressure
gradient case), and a turbulent free jet impinging onto a flat rigid wall. According to the
computed results, the new version of the Freeflow code can, in fact, predict both confined
and free surface turbulent flows with satisfactory accuracy. In order to illustrate the ro-
bustness and applicability of the code to compute the interactions between a free surface
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Figure 7.13. Evolution of the pressure contours of a jet in a fluid portion.
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Figure 7.14. Evolution of the u-velocity contours of a jet in a fluid portion.
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Figure 7.15. Evolution of the v-velocity contours of a jet in a fluid portion.
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and vortical structures at high Froude numbers, the numerical method was applied to
solve the flow of a horizontal jet penetrating a quiescent fluid from an entry port beneath
the free surface.

Particularly, the best upwind schemes emerging from this study were WACEB, CU-
BISTA, and adaptative QUICKEST. The VONOS scheme presented poor results in the
case of the internal flow over a backward-facing step (the exact fact can be seen in Table
7.1), and we believe that this is because it is not TVD; in another words, VONOS does not
guarantee convergence. Although not shown here, the computed results using traditional
high-order schemes (e.g., central difference, QUICK, and Lax-Wendroff) were corrupted
by numerical instabilities. For the problems of a turbulent flow past a flat plate and a free
jet impinging normally onto flat rigid wall, the adaptative QUICKEST scheme presented
similar results to WACEB and CUBISTA schemes.

The price to pay when using the adaptative QUICKEST is that the CPU time is greater
than or equal to the CPU time required by WACEB and CUBISTA. However, the adap-
tative QUICKEST is more flexible and more widely applicable than the others, since it is
based on the local Courant number.

All the results present in this work are consistent with the previous numerical results of
[5], indicating that the current Freeflow code is also able to predict turbulent confined and
free surface fluid flows with adequate accuracy. And we believe that these results could be
improved by incorporating more physics in the modeling. For this to be realized, the
authors are considering adaptations for the renormalization group method (RNG) and
the realizable κ-ε model.
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A. C. Brandi: Departamento de Matemática Aplicada e Estatı́stica, Instituto de Ciências Matemáticas
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A statistical approach for the treatment of turbulence data generated by computer simu-
lations is presented. A model for compressible flows at large Reynolds numbers and low
Mach numbers is used for simulating a backward-facing step airflow. A scaling analy-
sis has justified the commonly used assumption that the internal energy transport due
to turbulent velocity fluctuations and the work done by the pressure field are the only
relevant mechanisms needed to model subgrid-scale flows. From the numerical simula-
tions, the temporal series of velocities are collected for ten different positions in the flow
domain, and are statistically treated. The statistical approach is based on probability av-
erages of the flow quantities evaluated over several realizations of the simulated flow. We
look at how long of a time average is necessary to obtain well-converged statistical results.
For this end, we evaluate the mean-square difference between the time average and an
ensemble average as the measure of convergence. This is an interesting question since the
validity of the ergodic hypothesis is implicitly assumed in every turbulent flow simula-
tion and its analysis. The ergodicity deviations from the numerical simulations are com-
pared with theoretical predictions given by scaling arguments. A very good agreement is
observed. Results for velocity fluctuations, normalized autocorrelation functions, power
spectra, probability density distributions, as well as skewness and flatness coefficients are
also presented.
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1. Introduction

In spite of considerable progress in computer technology, numerical methods, and turbu-
lence modeling during the last several decades, reliable prediction of complex turbulent
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flows at high Reynolds number remains an elusive target. Turbulent flows and, in partic-
ular, wall-bounded flows exhibit wide ranges of spatial and temporal scales that increase
with Reynolds number. Tsherefore, direct numerical simulation (DNS) is limited to rel-
atively low Reynolds numbers, as the number of grid points required for DNS increases
proportionally to Re9/4 [1]. Smaller timesteps result in an extra 3/4 power for the total
cost scaling as Re3. Due to the limitations of DNS, great expectations have been placed on
large eddy simulation (LES) [2]. Large eddy simulation is an important technique in the
study of turbulent flows. In LES, the governing equations are spatially averaged allowing
the large-scale motion to be solved. On the other hand, from this averaging process, the
so-called subgrid terms arise, requiring constitutive models to their evaluation [3]. LES
requires less computational effort than direct numerical simulations, which attempts to
solve all scales present in the turbulent flow [4]. Other important characteristic is the
unsteady feature of LES. This implies that a statistical treatment is needed in order to
permit an accurate characterization of the simulated turbulent flow. In addition, several
theoretical studies on small-scale two-dimensional nonlocal turbulence, where the inter-
actions of small scales with the large vortices dominate in the small-scale dynamics, have
been developed in the current literature [5]. Bouris and Bergeles [6] have found that the
two-dimensional large eddy simulation using a fine grid resolution, especially in the near
wall region, gives a good representation of the quasi-two-dimensional mechanisms of the
flow since they are directly simulated instead of being modeled as with statistical turbu-
lence models. In addition, the two-dimensional LES performed by them has proven to be
much better than any of the Reynolds-averaged Navier-Stokes (RANS) models when the
major two-dimensional mechanisms of the flow and the statistical turbulence quantities
are examined.

In a general case, a formal statistical treatment is based on probability averages eval-
uated over an ensemble of several realizations of the same process, which defines a sto-
chastic set. For an ergodic process, the probability average can be replaced by a temporal
average, and the statistical analysis is more feasible. Nevertheless, when the turbulence
is dominated by large and coherent structures, typically strongly correlated, the ergodic
hypothesis cannot be assumed and only a probability or statistical average (i.e., ensemble
averages) should be used to describe correctly the statistical quantities of the flow [7, 8].
In an LES context, the total time of simulation needs to be long enough to ensure the
ergodicity of the process and to get converging statistics.

The main goal of this paper is to perform a statistical treatment of turbulent velocity
signals resulting from numerical simulations, in particular, large eddy numerical simu-
lations (LESs). The large eddy simulations are performed for the limit of high Reynolds
number (Re) and low Mach number (Ma) compressible flows. The scalings show the rela-
tive importance of the subgrid terms when the flow obeys the Re� 1 and Ma� 1 limits.
A scaling analysis is also developed in order to estimate the deviation ε between the time
average and probability average associated with the ergodicity hypothesis. In addition,
from the turbulent flow over a backward-facing step simulated a long time, behavior
analysis is carried out in order to quantify the integral scales for ten different positions on
the flow domain. Based on this correlation time, a stochastic set is built and a statistical
analysis is performed. The velocity time series of the flow are analyzed statistically using



T. F. Oliveira et al. 3

the formal probability average approach and confronted with the statistics given by the
conventional time average analysis. The deviation between the two approaches is charac-
terized by the ergodic parameter ε. We look at how long of a time average is necessary to
obtain well-converged statistical results, and evaluate the mean-square difference between
the time average and an ensemble average as the measure of convergence. Certainly this is
an interesting question since the validity of the ergodic hypothesis is implicitly assumed
in every turbulent flow simulation and its analysis. Turbulent intensities, skewness and
flatness factors are also examined. All statistical quantities investigated are calculated us-
ing the probability average approach and the associated error bars are always evaluated.
More recently, an extension of the ideas and of the method explored in this paper has
been investigated experimentally for a three-dimensional flow [9].

2. Flow governing equations

2.1. Average equations. Let us consider a generic flow property that can be a function of
space and time φ(x, t). The spatial average φ(x, t) is defined as

φ(x, t)=
∫
Ω
φ(r, t)G(x− r)dr, (2.1)

where x is the position vector, r is the displacement vector regarding x, and Ω denotes
the volume of r-space over which the integral is taken (i.e., space average). The function
G(x− r) is a filter function G :R3 → [0,1] and satisfies

lim
|x−r|→∞

G(x− r)= 0,
∫
Ω
G(x− r)dr= 1. (2.2)

This averaging process still regards the linearity and the commutability with the spatial
and temporal derivatives

φ+ψ = φ+ψ,
∂φ

∂s
= ∂φ

∂s
, (2.3)

where s= x, t. The properties (2.3) are derived from the continuity of φ and the properties
of the filter function presented in (2.2) [10]. Now, a density-weighted average process is
more appropriat for compressible models. This process corresponds to the well-known
Favre filtered [11], defined as

φ̃ = ρφ

ρ
, (2.4)

where ρ is the density of the fluid. Note that according to (2.4), ρφ = ρφ̃. This identity is
largely applied for averaging the governing equations shown below. The averaged mass
and momentum balance equations written using index notation in the three-dimensional
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Euclidian space are given, respectively, by

∂ρ

∂t
+

∂

∂xi

(
ρũi

)= 0, (2.5)

∂

∂t

(
ρũi

)
+

∂

∂xj

(
ρũiuj

)=− ∂p
∂xi

+
∂

∂xj

(
2μSi j

)
, (2.6)

where

Si j =
(
Dij − 1

3
∂uk
∂xk

δi j

)
, Dij = 1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.7)

Here, ui are the components of the velocity vector u, p is the pressure, μ is the dynamical
viscosity coefficient, Dij are the components of the strain-rate tensor D, and the symbol
δi j (the Kroenecker delta) denotes the components of the identity tensor. Now, since the
velocity covariance is defined as σu = ũiuj − ũiũ j , the averaged product of velocities that
appears in the second term on the left-hand side of (2.6) can be written as ũiuj = ũiũ j +
σu. So, the averaged momentum equation written in the indicial notation becomes

∂

∂t

(
ρũi

)
+

∂

∂xj

(
ρũiũ j

)=− ∂p
∂xi

+
∂

∂xj

(
2μSi j

)− ∂

∂xj

(
ρσu

)
. (2.8)

Defining the tensor Σi j ≡−ρσu, a modified Cauchy equation can be written as follows:

ρ
Dũ
Dt

=∇·T. (2.9)

Note that we have used the Favre filtered velocity for the material derivative, D/Dt =
∂/∂t+ u ·∇, namely ρDu/Dt = ρDũ/Dt, with the constitutive equation for the stress ten-
sor given by

T=−pI + 2μ
[

D− 1
3

(∇·u)I
]

+Σ, (2.10)

where I is the identity tensor. In this formulation, Σ represents the momentum transport
by velocities fluctuations in the subgrid scales. The same averaging process is applied to
the energy equation leading to

∂

∂t

(
ρẽT

)
+

∂

∂xj

(
ρũ j ẽT

)=− ∂

∂xj

(
pũj

)
+

∂

∂xj

(
2μS̃i j ũi

)− ∂q j
∂xj

− ∂

∂xj

[
ρ
(
ujeT − ũ j ẽT)]︸ ︷︷ ︸

I

− ∂

∂xj

(
puj − pũj

)
︸ ︷︷ ︸

II

+
∂

∂xj
2μ
(
Si jui− S̃i j ũi

)
︸ ︷︷ ︸

III

,

(2.11)

where qi are the components of the heat flux vector q, given by the Fourier constitutive
equation q=−kD∇�. Here, � denotes temperature, kD is the thermal conductivity, and
eT is the total energy, namely, eT = e+ u ·u/2, with e being the internal energy. The terms
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on the right-hand side of (2.11) identified by II and III represent the work done by the
shear stress in the subgrid scale, whereas term I is the convective transport of total energy.
Term I can be decomposed into two contributions as expressed below:

ρ
(
ujeT − ũ j ẽT)= ρ(ũ je− ũ j ẽ)︸ ︷︷ ︸

IV

+
ρ

2

(
ũ jukuk − ũ j
ukuk)︸ ︷︷ ︸

V

. (2.12)

Using the equation of state for perfect gases, terms II and IV are directly related by the
following expression:

puj − pũj = (γ− 1)
(
ρeuj − ρeũ j

)= (γ− 1)ρ
(
ẽu j − ẽũ j

)
. (2.13)

In (2.13), γ = cp/cv, where cp and cv are the specific heat at constant pressure and vol-
ume, respectively. Adding terms II and IV , the vector Qj that represents the transport of
internal energy in the subgrid scales is defined, namely,

Qj = γρ
(
ẽu j − ẽũ j

)
. (2.14)

For instance, the terms III , V and the vector Qj , resulting from the averaging process of
energy equation, need to be modeled in a general case.

2.2. Scaling analysis. Before discussing a model for the subgrid terms, some scaling anal-
ysis will be performed in order to evaluate the relative importance of each subgrid contri-
bution. The scales of the large eddies are set by the geometry and the speed of the stirring
mechanism, while cut-off scales of the small eddies are determined by the action of vis-
cosity. Here, one concentrates on the small scales for a flow with large eddies of given
velocity, length, and time scales U
 , 
, T
 . The important Kolmogorov microscale for the
smallest eddies is based on a further assumption that the smallest eddies depend only on
the rate at which energy is put into the large eddies, that is, on one particular combination
of U
 , 
. The friction only acts on the smallest scale and the energy is supplied only at the
large scale. The rate of dissipation ε = 2νD′ : D′ is measured per unit of mass, and can
be related to the macroscales by assuming that a significant fraction of the kinetic energy
per unit of mass k = (1/2)u′ ·u′ in the large eddies is dissipated in the turnover time of
the large eddies, that is, per unit time,

ρε = ρU2



T

, therefore, ε = U3






. (2.15)

Now, the dimensions of this dissipations per unit mass ε are L2T−3, while the dimensions
of the kinematic viscosity ν are L2T−1. Hence, by a simple dimensional analysis, we obtain
the velocity, length, time, and strain-rate scalings of the Kolmogorov microscale: Uk =
(νε)1/4, 
k = (ν3/ε)1/4, Tk = (ν/ε)1/2, and Sk = (ε/ν)1/2 [12]. Introducing the Reynolds
number of the large-scale eddies Re=U

/ν, one obtains

Uk

U

= Re−1/4, 
k = 
Re−3/4, Tk = T
 Re−1/2, Sk = S
 Re1/2 . (2.16)
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The Kolmogorov microscale for the smallest eddies depends on the velocity and length
scales of the large eddies in the combination ε =U
/
. Note that the turnover time of the
smallest eddies Tk is shorter than the turnover time of the large eddies T
 by the factor
Re−1/2. Hence, mixing takes place faster and more efficiently on small scales than on large
scales. Large-scale mixing, however, is described by the Taylor diffusivity DT = U

. So,
for a container of height H , the time for eddy diffusion is then H2/DT = T
H2/
2 [12].

A second microscale, the Taylor microscale, uses a different combination to yield a
slightly large scale. The Taylor microscale λT can be thought of as the boundary layer
thickness on the edge of a large eddy, that is,

λT = (νt)1/2 (2.17)

with t being the turnover time of the large eddies T
 = 
/U
 . Hence, using the Reynolds
number of the large eddies we can show that λT = (ν
/U
)1/2 = 
Re−1/2.

Now, we turn to the scaling of the turbulence energy equation (2.11). First, note that
the vector Qj can be expressed in terms of the temperature in the subgrid scale, namely,

Qj = γρ
(
ẽu j − ũ j ẽ

)= ρcp(�̃uj −�̃ũ j). (2.18)

This diffusion mechanism is promoted by the velocity fluctuation transport in this scale.
In such case, a typical scale of these velocity fluctuations is given by U
 =

√
u′ ·u′, where

u′ = u− ũ. The temperature fluctuations scale like U2

 . Then, a typical scale for the vector

Qj is given by

Qj ∼

ρ

(γ− 1)� c
2U3


 , (2.19)

where R is the gas constant given by Carnot’s relation R= cp− cv.
The important velocity gradient occurs at the smallest scales as mentioned above.

Therefore, S̃i j ∼ (ε/ν)1/2
∼ (Uk/
k) ∼ Re1/2U
/
, and consequently

μ
(
Si jui− S̃i j ũi

)
∼

ρνU2





Re1/2 . (2.20)

It should be important to note that using the Taylor microscale to evaluate S̃i j ∼ U
/λT
leads to the same result given in (2.20) since λT = 
Re−1/2 as mentioned before, and again
S̃i j ∼ Re1/2U
/
.

The scaling of the term V in terms of the large eddies is given by

ρ
(
ũ jukuk − ũ j
ukuk)∼ ρ

(
U

)3
. (2.21)
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Now, it is possible to determine the scaling for the ratio of the terms III/Qj and V/Qj ,
respectively,

∣∣∣∣∣
(
Si jui− S̃i j ũi

)
Qj

∣∣∣∣∣∼ Re−1/2,

∣∣∣∣∣
ρ
(
ũ jukuk − ũ j
ukuk)

Qj

∣∣∣∣∣∼

(
Ma
Re

)2

,

(2.22)

where Re = 
U
/ν is the Reynolds number, Ma = U
/c is the Mach number, and c is the
speed of the sound. The resulting scaling indicates that for high Reynolds and low Mach
numbers typically for the values of these parameters investigated in the present paper,
the work done by shear stress and the kinetic energy transport done by subgrid eddies
are very small in comparison to the transport of internal energy Qj . The scalings are sup-
ported by Knight et al. [13], who have evaluated subgrid terms directly by their numerical
simulation. After this dimensional analysis, we can say that the only two terms to be mod-
eled for the limit Re� 1 and Ma� 1 are the subgrid stress tensor Σi j and the subgrid
internal energy transport vector Qj .

2.3. Constitutive relations for the remaining subgrid terms. The constitutive equation
used to describe the subgrid stress tensor is the well-known Smagorinsky model [14],

Σ= 2μtD̃, (2.23)

where the nonlocal turbulent viscosity μt is calculated under conditions of inertial equi-
librium subrange of turbulence [12], namely,

μt = ρ
(
CSΔλ

)2˜̇γ. (2.24)

Here ˜̇γ is the average shear rate defined as ˜̇γ = (2D̃ : D̃)1/2
∼ ε/k. The filter width Δλ ∼

k3/2/ε is set equal to 2δg , where δg is the grid spacing. It is an indication that the smallest
eddies are represented by two grid points. Note that μt ∼ k2/ε. The factor CS is known
as Smagorinsky’s constant. Several values have been proposed for this constant ranging
from 0.1 to 0.2 [15, 16]. In the present work, one has used CS = 0.20, as suggested by
Deardorff [16]. Thus, the model for the subgrid stress tensor takes the form

Σ= 2ρ
(
CSΔλ

)2˜̇γD̃. (2.25)

The subgrid internal energy transport tensor Qj is related to the diffusion of temper-
ature in the subgrid scales due to velocities fluctuations and may be modeled as being a
diffusive heat transport given by a nonlocal Fourier law in the form

Qj =−kt ∂�̃
∂xj

, (2.26)



8 Mathematical Problems in Engineering

with the nonlocal turbulent heat conductivity kt written in terms of a turbulent Prandtl
number Prt [17],

kt =
cp
Prt

μt. (2.27)

For the edge of a turbulent boundary layer, Prt = 0.6 [18] and this value has been used in
the simulations. The set of governing equations is made nondimensionalized by using a
characteristic length and velocity 
 and U
 , respectively, and the properties of the nondis-
turbed flow. From this point through all over the work, we will omit any superscript
notation and assume that all properties are dimensionless averaged quantities. The set
of dimensionless governing equations simulated consists of the continuity, written such
as in (2.5), and the momentum and energy-averaged equations given in dimensionless
terms by

∂

∂t

(
ρui

)
+

∂

∂xj

(
ρujui

)=− ∂

∂xi
+

1
Re

∂

∂xj

[
2
(
μ+μt

)
Si j
]
,

∂

∂t

(
ρeT

)
+

∂

∂xi

(
ρeTui

)=− ∂

∂xi

(
pui

)
+

1
Re

∂

∂xi

(
2μSi j

)

+
1

(γ− 1)PrMa2 Re
∂

∂xi

[(
k+ kt

) ∂�
∂xi

]
,

(2.28)

where Pr is the Prandtl number, Pr= cpμ/kD.

3. Statistical analysis

As mentioned before, the main goal of this work is to treat statistically turbulent velocity
signals either from numerical simulations or experimental observations. An important
question addressed here is to look at how long of a time average is necessary to obtain
well-converged statistical results. Indeed, we have looked at the difference between the
time average and an ensemble average as the measure of this convergence.

The flow is considered as a stochastic process given by the family of functions u =
u(t,α), where α= 1, . . . ,N are the realizations of the process according to Figure 3.1, and
in the present context, u= u(t,α) denotes the velocity of the flow. By stationary we mean
that the form of the probability distribution functions does not depend on a shift of the
time origin. More precisely, we say that a random process is stationary when the probabil-
ity distribution of the stochastic processes u(t,α) and u(to + t,α) are the same for any to.
For a stationary random process then, we may, in principle at least, determine the various
probability distributions from the observations of u(t) for one realization of the system
over a long period of time T . This time being much longer than the integral scale Θ (i.e.,
velocity fluctuation correlation time). This long-time record can be cut up into pieces
of length Tλ (where Tλ is much longer than any periodicities occurring in the process),
and these pieces may be treated as observations of different realizations of the system in
an ensemble of similarly prepared systems. We will restrict the discussion to fluctuating
quantities that are statistically steady, so that their mean values and variance are not func-
tion of time. Only under this condition does the idea of a time average make sense. In a
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u

t

α

u(t,5)

u(t,4)

u(t,3)

u(t,2)

u(t,1)

Figure 3.1. Ensemble of the stochastic process u(t,α). Each temporal series αi denotes one realization
(or experiment) in a given point of the flow domain. The plot illustrates realizations of the flow.

typical laboratory situation, the fluctuating velocity u(t,α) should be the streamwise ve-
locity component measured in a wind tunnel behind a cube. In particular, the relative
amount of time that u(t,α) spends at various levels is measured.

The underlying assumption here is the so-called ergodic hypothesis which states that
for a stationary random process, a large number of observations made on a single system
atN arbitrary instants of time have the same statistical properties as observingN arbitrar-
ily chosen systems at the same time from an ensemble of similar systems. In dealing with
general stochastic process, there are two types of mean values that can be evaluated. One
is the probability average obtained by a number sufficiently larger (N) of observations
at some fixed time t, denoting this average by 〈u(t)〉, and the other is the time average
made for a function u(t), denoting this average by u. The requirement that a time average
should converge to a mean value, that is, that the error should become smaller as the in-
tegration time T increases, and that the mean value found this way should always be the
same, is the ergodicity [19]. This point is discussed in more details in Section 3.2.

In the case of an ergodic stationary random process, both averages yield the same
result, provided that the function u is finite and continuous in mean square [20]. The
time average u over a sufficiently long realization αo (i.e., for time much longer than the
velocity fluctuation correlation time) of the flow is defined as [21]

u= lim
T→∞

1
T

∫ to+T

to
u(t)dt. (3.1)

The use of time averages corresponds to the typical laboratory situation, in which mea-
surements are taken at fixed locations in a statistically steady, but often inhomogeneous,
flow field. For a time average to make sense, the integral (3.1) has to be independent of
to. In other words, the mean flow has to be stationary ∂u/∂t = 0, and consequently the
mean value of the velocity fluctuations, u′ = u(t)− u, itself is zero by definition. Here,
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the averaging time T needed to measure mean values depends on the accuracy desired as
discussed in Section 3.2.

Now, whether each realization has the same probability to occur, a statistical (or prob-
ability) average is defined as being [22]

〈
u(t)

〉= lim
N→∞

1
N

N∑
α=1

u(t,α). (3.2)

A fluctuation about the probability average is defined as being u′(t,α)= u(t,α)−〈u(t)〉.
The variance (or the turbulent kinetic energy (1/2)〈u′(t)2〉) is calculated from the prob-
ability average

〈
u′2(t)

〉= lim
N→∞

1
N

N∑
α=1

[
u(α, t)− 〈u(t)

〉]2
(3.3)

as being the probability average of the square of the velocity fluctuation. While the time
average of the square of the velocity fluctuations is given by

u′2 = lim
T→∞

1
T

∫ to+T

to
u′2(t)dt. (3.4)

3.1. Correlation function and the spectral density. The random processes that do occur
often in flow applications are those where u′(t) and u′(t′) will be correlated at least for
small values of τ = |t′ − t|. There are two more functions associated with a continuous
stationary random process that is central to a statistical description. These two functions
are the velocity fluctuation autocorrelation function and the spectral density. The nor-
malized velocity fluctuation autocorrelation function of a continuous stationary random
process is defined as [23]

R(t, t′)=
〈
u′(t)u′(t′)

〉
〈
u′(t)2

〉 . (3.5)

Now, since a shift in the origin of time does not affect any of the statistical properties of
a stationary random process, the probability density functions simplify from f (u′, t) and
g(u′t, t;u′t′ , t′) to f (u′) and g(u′t,u′t′ , t− t′), respectively. Here, f (u′, t)du′ is called the
first probability distribution and g(u′t, t;u′t′ , t′)du′tdu′t′ , the second probability distri-
bution, is the joint probability of finding u′(α, t) between u′t and u′t + du′t at time t and
between u′t′ and u′t′ + du′t′ at time t′. In this particular case, when both the probability
average and the normalized autocorrelation function do not vary with a shift in the ori-
gin of time, we simply write 〈u〉, 〈u′2〉, and R(τ) and the process is said to be statistically
stationary, with the time shift τ = t′ − t.

The other central function for the statistical analysis here is the spectral density of u′.
It is well known that the variance of the process 〈u′2〉 corresponds to the average power
dissipated in the interval (−T ,T). Then

〈
u′2
〉= 1

2π

∫∞
−∞

E(ω)dω, (3.6)
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where E(ω) is the power spectrum of u′(t). Thus, E(ω)dω/2π is the average power dis-
sipated with frequencies between ω and ω+dω. The velocity fluctuation autocorrelation
function and the spectral density are connected by the Wiener-Khintchine theorem which
states that [7]

Cτ(τ)= 〈u′(t+ τ)u′(t)
〉= 1

2π

∫∞
−∞

E(ω)eiωτdω,

E(ω)=
∫∞
−∞

Cτ(τ)e−iωτdτ.
(3.7)

Note that the autocorrelation function is related with the autocorrelation coefficient by
the variance, that is, Cτ(τ)= 〈u′2〉R(τ). Thus, according to the above theorem, the corre-
lation function and the spectral density are simply Fourier transforms of each other.

3.2. Ergodicity. As stated before in this work, we look at how long of a time average is
necessary to obtain well-converged statistical results. For this end, we need to evaluate the
mean-square difference between the time average and an ensemble average as the measure
of convergence. This is an interesting question since the validity of the ergodic hypothesis
is implicitly assumed in every turbulent flow simulation and its analysis. Thus, using the
definition of correlation function given in (3.5), one obtains [7, 24]

σ2(T)= (u− 〈u(t)
〉)2 = u′2

T2

∫∫ T
0
R(t′ − t)dtdt′ 2

〈
u′2
〉

T

∫ T
0

(
1− τ

T

)
R(τ)dτ. (3.8)

Equation (3.8) is an important result that relates the correlation function with the vari-
ance σ2. Note that if T →∞ leads to σ2 → 0, this implies the ergodicity condition. Thus,
the mean value of the fluctuating quantity can be determined by a time average with ac-
curacy defined by the size of the integral time scale Θ. In fact, this is the requirement
that a time average should converge to a mean value with the error becoming smaller as
the integration time T increases. An ergodic variable not only becomes uncorrelated with
itself at large time step, but it also becomes statistically independent of itself. An equation
like (3.8) may be also used to evaluate the mean-square error of the difference between
the average value of u(t) in the laboratory (evolving finite integration time) and the true
mean value (requiring integration over an infinitely long time). Usually, in a process in
which the correlation function decays rapidly for a relatively short time τ, the ergodic
condition is verified. In particular, for a turbulence in which the correlation function has
the same exponential decay of the one corresponding to a random walk process, we have

R(τ) ∼ e−τ/Θ, (3.9)

where Θ is a correlation time associated to an interval in which the events are weakly
correlated. For large time intervals compared to Θ, the flow u(t) becomes statistically in-
dependent of itself, so thatΘ is a measure for the time interval over which u(t) remembers
its past history.

In a Markovian diffusion process, the variance in the displacement from the starting
position increases linearly in time. The coefficient of the linear growth is defined to be
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the diffusivity of the random walk Γ= (1/2)d/dt(〈x2(t)〉). Again, the symbol 〈·〉 denotes
an average over several experiments.

Now, proceeding formally, Taylor’s calculation of the eddy diffusivity in turbulence is
given by

Γ= d

dt

(
1
2

〈
x2(t)

〉)= 〈x(t)ẋ(t)
〉=

∫ t
0

〈
ẋ(t′)ẋ(t)

〉
dt′. (3.10)

The diffusivity attains its constant value only after several correlation times. Thus,
Γ = 〈u′2〉Θ, with 〈u′2〉 being the mean square of the velocity fluctuations and Θ being
the integral time scale,

Θ=
∫∞

0

〈
ẋ(τ)ẋ(0)

〉
dτ〈

u′2
〉 =

∫∞
0
R(τ)dτ. (3.11)

By the present analysis, we can show that when the above integral fails to converge, due to
the slow decay of the velocity fluctuations autocorrelation, the diffusion becomes anoma-
lous with 〈x2(t)〉∼ tn, with n 
= 1 [25, 26]. This behavior is characteristic in large-scale
region of the turbulent flow investigated where these scales are strongly correlated, and
the turbulence does not loose its memory. It is instructive to remind the reader that the
velocity correlation needs to be computed as seen by a particle moving with the fluid, and
hence Θ is called the Lagrangian integral-correlation time. The length scale 
 introduced
in Section 2 as the size of the eddies can now be defined as 
 = u′Θ, that is, the distance
one would move at (〈u′2〉)1/2 (i.e., the root mean square of the velocity fluctuation or
simply the RMS) during the correlation time Θ.

Now, the magnitude of the error associated with the nonergodicity (i.e., the conver-
gence of time average) of the process is defined as being

ε= σ

〈u〉 . (3.12)

Considering an exponential decay for the correlation function, the integral in (3.8) may
be performed to give an estimation of ε, namely,

ε2
∼

2
〈
u′2
〉
Θ

T〈u〉2
= 2I2Θ

T
, (3.13)

where I = √〈u′2〉/〈u〉 is the turbulence intensity of the flow that is a measure of the rela-
tive importance between the velocity fluctuation and the mean flow. It is clear from (3.13)
that the convergence of the time average to a mean value can be determined to any accu-
racy desired if the integral scale Θ is finite. In particular, (3.13) gives a good estimation of
the long time T needed to verify the ergodicity of the flow. The time average should also
be used as a correct approach to describe the process from a statistical point of view. In
this work, the result expressed in (3.13) is tested by direct evaluations of the variance σ2.

As mentioned before, an important quantity to quantify flow memory is the Taylor
time scale [23]. Using a Taylor series to expand u′(t + τ) in a neighborhood of t and
supposing the process to be stationary, the correlation function based on an ensemble
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average may be written as

R(τ)=
〈
u′(t)u′(t+ τ)

〉
〈
u′2
〉 = 1− τ2

2!
1〈
u′2
〉
〈(

∂u′

∂t

)2
〉

+O
(
τ3), (3.14)

or

R(τ) ∼ 1− τ2

λ2
T

, where λT =
[

2
〈
u′2
〉

〈
(∂u′/∂t)2

〉
]1/2

. (3.15)

From (2.17) and (3.15), it is clear that λT is a short time scale of the correlation process.
So, using a second-degree polynomial function in order to fit the correlation function for
short times, λT may be estimated. Typically, the Taylor scale is larger than a dissipative
time scale, but is not related to the integral scale observed in the macroscopic flow, that
is, 
2

k/ν� λT � 
/U
 , where 
k is the Kolmogorov dissipative length scale as defined in
Section 2. Effectively, the Taylor scale is a memory characteristic time of the flow. If t is
the present time, we can say that the flow has a strong dependence on the events that
occur in the interval (t− λT , t).

4. Numerical simulations

We now briefly summarize the sequence of steps that is necessary to perform our nu-
merical simulations. Large eddy simulations admittedly require denser grids and more
computer time than Reynolds averaged approaches, but in certain cases, such as the one
under consideration here, it seems that the Reynolds averaged approaches fail to predict
important statistical aspects of the flow. The purpose of this section is to provide an ac-
curate simulation of the turbulent flow past a backward-facing step using a large eddy
simulation in two dimensions. We have therefore obtained information on the statistics
of the flow from the velocity time series generated from the simulations according to
the procedure described in Section 3. We will show that certain region of the flow corre-
sponding to the formation of coherent large-scale structure cannot be described by the
well-converging time average approach.

The flow investigated was numerically simulated under a two-dimensional large eddy
fashion. We use a finite-volume method on a two-dimensional Eulerian grid to solve hy-
drodynamic and energy equations of the flow in Cartesian coordinate for a structured
mesh with colocalized variables. The governing equations are solved simultaneously. The
Reynolds and Mach numbers based on the step height were Re = 38000 and Ma = 0.03,
respectively. Figure 4.1 shows the flow domain and the location of the analyzed points in
the flow and typical streamlines of the mean turbulent field. The streamwise and span-
wise lengths of the computational domain were 20H and 2.5H , respectively. The filtered
governing equations described in Section 2 were discretized by using the explicit Mac-
Cormack method written for a finite volume formulation [27]. The numerical method
uses a standard explicit predictor-corrector Euler algorithm to carry the temporal march.
The set of governing equations was discretized using forward first-order differences in
the predictor steps and backward first order differences in the corrector steps. In both
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Figure 4.1. Flow domain and the indication of the velocity probes’ position inside (probes 1–4) and
outside (probes 5–10) the recirculating bubble. The probes are equally spaced with Δ(x/H)= 1.5 from
x/H = 6.5 (probe 1) to x/H = 20 (probe 10). The height of all probes is y/H = 0.5, with H = 5.08 cm
and U∞ = 11.63 m/s.

steps, the strain rate and the temperature gradient components were evaluated at the fi-
nite volume faces by central differences. We summarize next the basic procedure of the
discretization process.

4.1. Discrete approximation of the balance equations. The general framework for the
filtered balance equations described in Section 2 can be written in the form of the follow-
ing vector equation:

∂U
∂t

+∇·Π= 0, (4.1)

where Π= Eê1 + Fê2, and the vectors U, E, and F are defined in the same way as given by
Anderson et al. [28],

U=

⎡
⎢⎢⎢⎣
ρ
ρu1

ρu2

ρeT

⎤
⎥⎥⎥⎦ ,

E=

⎡
⎢⎢⎢⎢⎢⎢⎣

ρu1

ρu2
1 + p−C1

(
μ+μt

)
S11

ρu1u2−C1
(
μ+μt

)
S12

ρu1eT + pu1−C1
(
μS11

)
u1−C1

(
μS12

)
u2C2

(
k+ kt

)
∂�/∂x1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

F=

⎡
⎢⎢⎢⎢⎢⎢⎣

ρu2

ρu2u1−C1
(
μ+μt

)
S21

ρu2
2 + p−C1

(
μ+μt

)
S22

ρu2eT + pu2−C1
(
μS21

)
u−C1

(
μS22

)
u2−C2

(
k+ kt

)
∂�/∂x2

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(4.2)

Here the subscripts 1 and 2 in the above vectors denote the components x1 and x2 of a
flow quantity, ê1 and ê2 are the unit basis vectors in directions 1 and 2, respectively, and
the parameters C1 = 2Re−1 and C2 = [(γ− 1)PrMa2 Re]−1.
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Figure 4.2. A two-dimensional sketch of the computational structured quadrangular grid used in the
numerical simulations. The notation used is shown in the figure.

Now, consider that the flow domain Ω is subdivided inN� small regions called control
volumes, so that Ω=⋃N�

i=1 �i. The volume average of the quantity U over a single control
volume � is defined as being Û= (1/�)

∫
� UdS. Now, integrating (4.1) over � and using

the divergence theorem with the volume average definition, it is found that

∂Û
∂t
=− 1

�

∫
�
Π ·nd�, (4.3)

where � is the contour of the elementary region � and n is a unit vector directed out-
ward from the enclosed control volume. The flow domain Ω was discretized by using
quadrangular control volumes in a structural mesh as illustrated in Figure 4.2. The sur-
face integral (4.3) is evaluated by line integrals over the edges of the control volumes. The
value of Π on an elementary volume edge is taken as being the volume average of Π over
one of the control volumes bounded by this edge. In particular, it is considered that Π̂ is
always constant with respect to the integral over �, so that

∫
�Π · nd� ≈∑4

β=1 Π̂β ·�β,
where �β is a vector normal to the edge β with absolute value equal to the length of this
edge. Under this condition, (4.3) reduces to the following approximation:

∂Û
∂t
≈− 1

�

4∑
β=1

Π̂β ·�β. (4.4)

Since Π̂ is a function of Û, (4.4) can be solved by an Euler method. In the MacCormack
method, a predictor-corrector algorithm corresponding to a second-order Runge-Kutta
procedure is applied. In the predictor step, the vector Π̂ was taken as being equal to the
vector of the control volume downstream to the edge, whereas in the corrector step, Π̂was
associated to the volume upstream to the same edge. For instance, following the notation
in Figure 4.2, consider the discrete quantity evaluated on the edge i+ 1/2. At the predictor
step, Π is calculated in terms of the quantities of the volume (i+ 1, j). Subsequently, for
the same edge, at the corrector step, Π is calculated in terms of the quantities of the vol-
ume (i, j). The components of the velocity gradient tensor and the temperature gradient
on the faces of the control volume were evaluated by central difference. For instance, on
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the edge i+ 1/2, the term ∂u1/∂x1 is approximated by

∂u1

∂x1
≈ u1(i+ 1, j)−u1(i, j)
x1(i+ 1, j)− x1(i, j)

, (4.5)

where x1(i, j) and x1(i+ 1, j) denote the center coordinates of the control volumes (i, j)
and (i+ 1, j), respectively.

The compressible formulation of the flow allows the use of a state equation for the
pressure. Consequently, additional velocity-pressure coupling algorithm was not
required. This numerical procedure leads to a second-order precision discretization in
both space and time derivatives. The accuracy and robustness of the numerical method
are defined in the context of the classical MacCormack method described in details by
[27]. No extra upwinding feature was implemented and the method is stable if the CFL
number (i.e., Courant-Friedricks-Lewey number) is less than unity for all grid volumes,
where CFL = Δx/(u+ cs) with u and cs being the largest velocity norm and the largest
sound velocity at the volume boundary, respectively, and Δx is the local grid spacing [28].
In the present simulation, CFL≈ 0.7, which has provided a stable condition for all sim-
ulations. The initial transient, corresponding to 608 flows through (i.e., 106 iterations),
that is, 2.3 seconds of physical time, was neglected. The typical convective time scale of
the flow H/U∞ ≈ 0.1 second and the longest simulation time was approximately 21 sec-
onds. This wide interval was necessary because the velocity signal was fragmented into
smaller temporal series when defining the stochastic set.

An equally spaced Cartesian grid was used to discretize the flow domain and to resolve
the velocity, pressure, and temperature fields of the flow. The spatial resolution employed
was 36 volumes/cube edge. This resolution was sufficient to resolve the turbulent length
scales of interest. Additionally, a 100H stretched grid region was generated with 188 vol-
umes in the streamwise direction, downstream of the regular grid. This region was nec-
essary to dissipate the turbulent structures and provide a smooth condition at the outgo-
ing section of the domain. The computations were carried out for a typical rectangular
grid with (90× 1088) control volumes. A uniform velocity profile at the inlet section was
imposed with no turbulence intensity (i.e., laminar flow). No slip boundary conditions
were employed in the spanwise and normal directions. The initial condition is formed
by stagnated fluid with constant pressure and temperature. The dimensionless time step
used was approximately Δt = 5× 10−3. The simulation time was T = 48800H/U∞. The
velocity samples at probe positions were stored in intervals of 25Δt. In postprocessing al-
gorithm, the velocity time series have been used to compute the various statistical results
to be presented next. The time separation between two sequential data fields was large
enough compared to the integral time scale of the turbulent fluctuation Θ for the data
fields to be considered are nearly independent realizations of the flow. The flow statistics
have been obtained by or ensemble averaging over all stored data fields. The simulations
all were carried out on a PC of 2.0 GHz processor and 1.0 GB of physical memory. The
total CPU time required to perform the 2D LES simulation was about 27 days.

Figure 4.3 shows a typical evolution of the instantaneous vorticity field around the
cube given by our two-dimensional LES. A complex turbulent wake downstream the cube
is seen, with large-scale vortices of different intensities interacting along the wake. In this
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Rotz: �5 �3.6 �2.1 �0.7 0.7 2.1 3.6 5

Figure 4.3. A typical time evolution of the instantaneous vorticity field obtained in the present work
by using two-dimensional LES. From top to bottom, the associated dimensionless times are tU∞/H =
448.3, 474.7, 501.1, and 527.5. The color scale indicates the vorticity intensity, increasing from left
(blue) to right (red). The label Rotz means the component “z” of the vorticity or rotational of the
velocity field (perpendicular to the plane of the flow).

region, the velocity signals were collected in order to build the stochastic set to be ana-
lyzed. In addition, we can see the flow separation and that a reattachment occurs more
suddenly. The converged solutions were checked against the experimental results for the
average reattachment point position given by Eaton and Johnston [29]. This is a typi-
cal parameter that has been commonly used to validate numerical simulations. The test
simulation was carried out on the same conditions of the experimental setup, including
flow domain geometry, thermodynamic properties of the fluid, and the imposed flow.
Figure 4.4 depicts the dimensionless component of the average velocity in x-direction as
a function of the position x/H . A very good agreement is seen between the reattachment
length xR/H = 12.94 predicted by the present numerical simulations and xR/H = 12.95
measured experimentally [29]. The error was less than 1%. Halving the grid size pro-
duced a change that was not greater than 1% in this computed quantity.

The first step for the statistical characterization of the flow was to define the stochastic
set in the probes positions. In order to build a stochastic process from the numerical sim-
ulations, a large temporal series was dropped into smaller temporal series corresponding
to the realizations of the process. The resulting temporal series were then independent
events of the turbulent flow, since the time scales involved were long enough for a com-
plete decay of the correlation function. So, the velocity fluctuations become statistically
independent with respect to events that have occurred in their past history. This proce-
dure was equivalent to start a new simulation from a different initial condition which is
uncorrelated with the past one. The dimensionless integral time scale ΘU∞/H may be
determined by direct integration of the velocity fluctuation normalized autocorrelation
function (3.11). In this work, however, we have estimated this parameter by direct in-
spection of the velocity fluctuation autocorrelation function as being approximately two
times the time for the full decay of the autocorrelation function. This of course overesti-
mates the integral scale value of the correlation time, but it corresponds to a suitable time
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Figure 4.4. Dimensionless average velocity in the x-direction as a function of the dimensionless po-
sition x/H (solid line). The vertical dashed line indicates the reattachment length (xR/H = 12.5)
measured experimentally [29], whereas the arrow in the plot indicates the reattachment length
(xR/H = 12.4) given by the present work for CFL= 0.7 and CS = 0.27.

scale which guaranteed the statistical independence of the set of realizations constructed
from the original velocity signal.

5. Results and discussions

Figures 5.1(a) and 5.1(b) show the normalized velocity fluctuation autocorrelation func-
tion as a function of the nondimensional time for probes in two different dimensionless
positions x = 4H and x = 8H . The standard errors are calculated in terms of the standard
deviation of the normalized autocorrelation function values which result from the sta-
tistics over the set of realizations, at each fixed time. The same procedure was applied to
evaluate all values of error bars presented in this work. We can see a remarkable differ-
ence between the integral time scales for the probes 4 and 8 located inside and outside the
recirculating bubble, respectively, as illustrated in Figure 4.1. While for the probe 4 (see
Figure 5.1(a)), the dimensionless integral time scale was estimated to be ΘU∞/H ≈ 500,
in probe 8 the corresponding time scale was ΘU∞/H ≈ 10 as displayed in Figure 5.1(b).
The temporal series in the probe positions were divided into smaller time intervals cor-
responding to different independent experiments. Table 5.1 shows the length of these in-
tervals ΘU∞/H and the number of realizations associated with each probe. By this pro-
cedure, the statistics of the flow were performed in terms of the probability averages.
Figures 5.2(a), 5.2(b), 5.3(a), and 5.3(b) give the nondimensional average velocity in the
x-direction (streamwise) and its associated root mean square statistics for the probes 4
and 8, respectively. We can see temporal oscillations in the values of the mean velocity
fluctuation and velocity fluctuations that are more intense in the probe 4. These oscil-
lations are a direct consequence of the difference between the temporal and probabil-
ity averages, which is related to a nonergodic behavior of the turbulence in a region of
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Figure 5.1. The normalized velocity fluctuation autocorrelation function (streamwise component)
plotted as a function of the dimensionless time. The numerical results were obtained from LES. (a)
Probe 4; (b) probe 8. The insert in the plot shown in (b) gives an estimation of the Taylor microscale
λT by using the parabolic fit (3.15). Attempt to different time scales used in the plots. The error bars
are also shown in both plots.

large-scale structures located in the transition shear layer region of the flow. Actually, the
probes 4 and 5 are located in a place which appears to be more critical for the ergodicity
than probes 1, 2, 3 that are exactly inside the recirculating region. Inside this region, the
fluid parcels seem to describe approximately a rigid body rotation since the important
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Table 5.1. The values of the integral time scale and number of realizations for each probe.

Probe ΘU∞/H Number of realizations

1, 2, 3 100 40

4, 5 500 9

6 200 20

7, 8, 9, 10 10 100

mechanism known as vortex stretching is absent in two-dimensional flows. The probes 4
and 5 (mainly probe 4) on the other hand are located in a transition shear layer region
where the fluid particles are subject to stronger velocity gradients, and the complex inter-
actions of smaller scales with intermediate scales cannot be neglected. The coherence of
the turbulent eddies in the shear layer is much increased if no three-dimensional insta-
bilities are present (as it is the present case). The intensity of the coherent vortices grows
via an inverse energy cascade, and eventually they start producing significant feedback
on turbulence. Despite many achievements in numerical simulations of two-dimensional
turbulence, the underlying physical mechanism of turbulent vortex interactions still re-
mains unclear.

The mean-square difference between the probability average and the time average gives
a direct measurement of the error ε, defined in (3.12). This error can also be estimated
by the simple relation proposed in (3.13). Table 5.2 shows the values of the predicted
and the ergodic deviation errors for each probe in the turbulent flow. The purpose of
relation (3.13) is to give an estimation of the order of magnitude of the error introduced
when a probability average is replaced by a temporal average. The results presented in
Table 5.2 show a good agreement between the scaling based on an exponential decay of
the autocorrelation function and the ergodic deviation error calculated numerically by
using (3.12) with the autocorrelation sample computed from the numerical simulations.
It is seen that for those points far outside from the recirculating bubble the turbulence
behaves close to a random walk. On the other hand, the results also indicates that for
those points inside and around the recirculating bubble, the ergodic deviation can be
very high such as that found for the probe 4. So, the time average does not produce a
meaningful statistics.

For the case of the probes 4 and 5, an exponential decay does not fit the real decay
behavior of the normalized correlation function. It indicates that the turbulence in this
region may have a quite different behavior of a typical random walk process. The dis-
persion process of momentum transport by velocity fluctuations seems to characterize
an anomalous diffusion in the way described in Section 3. In that case, the integral in
(3.8) must be evaluated numerically. The probe 4 shows a strong nonergodic property,
suggesting that in this region a time average approach fails in describing the local tur-
bulence. It is possible to infer that the probes in the neighboring or inserted into the
recirculation bubble shown in Figure 4.1 have presented a significant deviation from the
ergodicity. Consequently, the flow in this regions persists strongly correlated for a long
time as shown in Table 5.2. It means that large turbulent structures dominate the flow in
the recirculation bubble. In contrast in probes 7 to 10, the turbulence is characterized by



T. F. Oliveira et al. 21

�0.5

0

0.5

1

1.5

�

u

�

/U

�

0 50 100

tU
�
/H

(a)

0

0.5

1

1.5

�

u

�

/U

�

0 10 20 30 40

tU
�
/H

(b)

Figure 5.2. Dimensionless mean streamwise velocity as a function of the dimensionless time. (a) Nu-
merical results of LES for probe 4, and (b) probe 8. Both plots show the error bars.

structures of smaller scales with short memory intervals and behavior closer to random
fluctuations and a normal diffusion. In this case, a time average could be used to describe
precisely the flow. From the plots in Figures 5.1(a) and 5.1(b), it is possible to evaluate
the correlation degree of the flow process. In probes 4 and 5, the correlation functions
decay very slowly with respect to the other ones. Their shapes are also different and an
exponential or parabolic fit seems to be not appropriated anymore. For all other probes,
an exponential fit was used to determine the finite time-scale integral as a measure of
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Figure 5.3. Dimensionless root mean square (RMS) as a function of the dimensionless time obtained
from the LES (a) at probe 4 and (b) probe 8. The error bars are also shown in both plots.

the turbulence memory, corresponding to the time over which the velocity fluctuation is
correlated with itself (i.e., the velocity fluctuation correlation time).

In addition, the two-dimensional power spectra relative to the probes 4 and 8 are pre-
sented in Figures 5.4(a) and 5.4(b), respectively. The details of the spectra calculations
were mentioned in Section 3.1. The error bars are also considered in the plots. In these
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Table 5.2. Comparison between the ergodic deviation error ε predicted by relation (3.13) and its
value directly evaluating from the large eddy numerical simulation data by calculating the mean-
square difference between the time and probability averages.

Probe x/H Computed error (%) Predicted error (%)

1 6.5 16 20

2 8 12 20

3 9.5 14 20

4 11 4975 3400

5 12.5 24 13

6 14 10 10

7 15.5 3 3

8 17 3 3

9 18.5 4 3

10 20 3 3

plots, the abscissa is the logarithm of the nondimensional frequency, whereas the ordinate
is defined so that the area beneath a logarithmic plot of E(ω) is proportional to the mean
square of the fluctuating signal. Both spectra show that turbulence energy at small scales
is decreased, while it is increased at large scales. In particular, one can see that the spectra
of present two-dimensional simulations seem to change shape for moderate nondimen-
sional frequencies ranging form 0.1 to 1. In the case of probe 4 located in the interface
of the recirculating bubble as shown in Figure 4.1, we see that the energy cascade is char-
acterized by a −3 spectral exponent which is different from the famous ω−5/3 valid for
three-dimensional small scales of a local turbulence. The decay turbulence with ω−5/3 is
observed only at higher frequency (smaller scales) as a result of the subgrid model used
in numerical simulations which has been based on the Kolmogorov inertial equilibrium
subrange of turbulence described in Section 2.3. The interval of the ω−5/3 spectrum is
shown in both inserts of the mentioned figures. The presence of a spectrum interval with
an ω−3 decay may be attributed to the mechanism of the inverse cascade which arises
in two-dimensional turbulence inside the recirculating bubble. The resulting spectrum
of probe 8 located outside the recirculating bubble (Figure 5.4(b)) exhibits virtually the
same characteristics shown in the plot in Figure 5.4(a). However, the decay turbulence
given by this spectrum is closer to ω−4 than to ω−3. So, outside the recirculating region
it is found that the turbulence decay corresponding to intermediate scales with dimen-
sionless frequencies ranging form 1 to 10 gets steeper than−3. Most of these results seem
to be in qualitatively agreement with the predictions given by the dimensional analysis of
two-dimensional turbulent flow presented by Nazarenko and Laval [5].

The probability density functions associated with the turbulent velocity fluctuations in
probes 4 and 8 are shown in Figures 5.5(a) and 5.5(b), respectively. The non-Gaussian de-
viation of the distribution function is clearly noticeable in probe 4, whereas in probe 8, the
behavior of the probability density function is closer to a normal distribution. In partic-
ular, the behavior of the statistical distribution is quantified by the skewness and flatness
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Figure 5.4. Dimensionless power spectra for the streamwise direction as a function of the dimension-
less frequency for (a) probe 4 and (b) probe 8. The results were obtained from LES. Dashed line in
(a) represents a decayment of the spectra with (ωU∞/H)−3, whereas the dashed line in (b) represents
a spectrum with (ωU∞/H)−4. The inserts in the plots (a) and (b) show the Kolmogorov frequency
decay (ωU∞/H)−5/3 for the smaller scale. The error bars are shown in both plots of the figure.

factors, defined as ϕ= 〈u′(t)3〉/ξ3 and κ = 〈u′(t)4〉/ξ4, where ξ2 = 〈u′(t)2〉, respectively.
These factors and the turbulence intensities for each probe are listed in Table 5.3. It is
well known that a normal distribution has ϕ = 0 and κ = 3. It is possible to infer that
all processes display some non-Gaussian behavior. The turbulent intensity at probe 4 has
the order of 2× 104%, whereas between others, the greater value of this parameter has



T. F. Oliveira et al. 25

0

0.4

0.8

1.2

1.6

2

f(
u

�
�

u

�

)

�1 �0.5 0 0.5 1

(u��u�)/U
�

(a)

0

0.4

0.8

1.2

1.6

2

f(
u

�
�

u

�

)

�1 �0.5 0 0.5 1

(u��u�)/U
�

(b)

Figure 5.5. Probability density function. (a) Probe 4 and (b) probe 8. The solid line shows the stan-
dard Gaussian process. The error bars are shown in both plots.

the order of 102% (see, e.g., probe 1, Table 5.3). This characteristic is an indication of the
strong nonergodic property of the velocity fluctuations in probe 4. The interval of confi-
dence represented by the error bars shown in the plots and by the associated errors to the
quantities in Table 5.3 is relatively large. It suggests that for a complete characterization
of these parameters, more realizations are required, and consequently it would demand
additional computational effort in order to simulate much larger time intervals.
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Table 5.3. The values of the turbulence intensities, skewness and flatness factors for each probe.

Probe x/H Turbulence intensity (%) ϕ κ

1 6.5 113± 38 −0.3± 0.6 2.7± 0.8

2 8 77± 26 −0.2± 0.5 2.7± 0.5

3 9.5 82± 16 0.2± 0.3 2.7± 0.5

4 11 (2.1± 0.4)× 104 0.5± 0.3 2.6± 0.6

5 12.5 88± 16 0.0± 0.3 2.3± 0.3

6 14 43± 6 −0.3± 0.3 2.5± 0.2

7 15.5 37± 4 −0.5± 0.4 2.9± 0.7

8 17 37± 4 −0.2± 0.5 2.9± 0.5

9 18.5 39± 3 0± 0.3 2.8± 0.4

10 20 41± 3 0± 0.2 2.7± 0.4

6. Concluding remark

In this paper, a rigorous statistical approach for the treatment of turbulent velocity fluc-
tuations has been presented. We have looked at how long of a time average is necessary
to obtain well-converged statistical results. For this end, we evaluate the mean-square
difference between the time average and an ensemble average as the measure of conver-
gence. From the numerical simulations, ten different points in the flow domain have been
statistically treated using a probabilistic approach. The realizations of the statistical en-
semble were defined by the cut up of a long-time velocity record into pieces of length
much longer than the characteristic correlation time of the velocity fluctuations. Based
on the velocity fluctuations correlation time, a statistical analysis of long time has been
performed. The ergodicity assumption of the turbulence was investigated. The devia-
tion ε of this criterium was evaluated and compared with theoretical predictions given
by scaling arguments. The results have suggested that the deviation due to ergodicity as-
sumption may be used as a criterion in order to predict the upper boundary simulation
time required to have a convergence of the statistical characterization of the flow. We
have found from the two-dimensional large eddy simulations that inside and outside a
recirculating region, the turbulence decaying corresponding to intermediate scales (with
dimensionless frequencies ranging form 1 to 10) gets steeper than the classical scaling
ω−5/3 spectrum. We found ω−3 and ω−4 for a point inside and another outside the re-
circulating bubble, respectively. The decaying turbulence like ω−5/3 was seen only at the
smaller scales attributed to the subgrid model used which was based on the Kolmogorov
inertial equilibrium subrange of the turbulence. Probability functions, skewness and flat-
ness coefficients have shown a deviation from the Gaussian behavior at all investigated
positions. We have seen that the break of flow ergodicity property of the flow is directly
related with the large-scale structures of the turbulence. In this flow regime, the inte-
gral time scale required to define the most commonly used time average is almost always
unpredictable.
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As future works, it would be important to think about developing more robust three-
dimensional LES to test the ergodicity of turbulent flows in the presence of vortex-
stretching and multistructure interactions. Two-dimensional LES calculations are clearly
inferior to three-dimensional ones since certain important features of three-dimensional
turbulence (vortex stretching) are not resolved. Moreover, two-dimensional large-scale
structures are subject to three-dimensional instability which results in counter-rotation
vortices. Behind this, there is a question of how the nonlocal interactions of large-scale
vortices with intermediate and small-scale structures in three-dimensional turbulence
affect the local ergodicity of the flow. Clearly, this fundamental topic requires further
attention.
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1. Introduction

In this paper the homogeneous semi-Markov reliability stochastic model is proposed as a
useful tool for predicting the evolution of the human immunodeficiency virus (HIV) in-
fection and the probability of an infected patient’s survival. This model, when compared
to the most common epidemiologic data analyses, has the following advantages:

(i) not only is the randomness in the different states in which the infection can
evolve into considered, but also the randomness of the time elapsed in each state;

(ii) all the states are interrelated, therefore any improvements are also considered;
(iii) a large number of disease states can be considered;
(iv) fewer and less rigid working hypotheses are needed;
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(v) only raw data obtained from observations are needed, with no strong assump-
tions about any standard probability functions regarding the random variables
analysed;

(vi) the conclusions are simply based on a list of all computed probabilities derived
directly from raw data.

Semi-Markov processes were defined in the fifties independently of each other by Levy
[1] and Smith [2]. A detailed theoretical analysis of semi-Markov processes was produced
in Howard [3, 4]. Since then, they have been applied in a number of scientific fields in-
cluding: engineering applications (systems reliability) [3–6], finance [7], insurance, actu-
arial and demographic sciences [6, 8, 9]. Semi-Markov models have also been employed
in the field of biomedicine, for example, in applications to prevent, screen, and design
cancer prevention trials, in Davidov [10], and Davidov and Zelen [11], respectively.

Moreover, many papers relating to HIV infection, have been written such as Lagakos
et al. [12], Satten and Sternberg [13], Sternberg and Satten [14] and Sweeting et al. [15].
Foucher et al. [16] also considered various patients based on their ages by means of a
parametric approach. Joly and Commenges [17] reduced the instability of nonparametric
models but introduced some strong assumptions in order to estimate a posteriori inten-
sity functions by penalizing the log-likelihood. Apart from [16], in all the papers quoted,
the model solvability is related to the possibility that a patient might move through the
states following the same direction. Our data has shown that there are no negligible prob-
abilities of recovering from the disease, and so, in our dynamic analysis the unidirection-
ality hypothesis for the transitions among the states was not considered.

As regards the statistical analysis of semi-Markov processes, the fundamental refer-
ences are Gill [18], Andersen et al. [19], Ouhbi and Limnios [20] and, more the recent,
Limnios and Ouhbi [21] and Dabrowska and Ho [22].

Physicians consider that the HIV fully satisfies few and weak working hypotheses
needed. Data refer to subjects selected from a series of 766 HIV-positive intravenous
drug users screened at different Italian clinics in the period from October 1988 to Decem-
ber 1996. The cohort characteristics were described in [23]. The computation is done by
means of Mathematica software designed and written by some of the authors.

2. Homogeneous semi-Markov process

In this part, the homogeneous semi-Markov process (HSMP) will be defined and the
notation will be as given in [24].

In the SMP environment, two random variables run simultaneously:

Xn : Ω−→ S, Tn : Ω−→R, n∈N, (2.1)

Xn with state space S= {S1, . . . ,Sm} represents the state at the nth transition. In the health
care environment, the elements of S represent all the possible stages in which the disease
may show level of seriousness. Tn, with state space equal to R, represents the time of the
nth transition. In this way, we cannot only consider the randomness of the states but also
the randomness of the time elapsed in each state. The process (Xn,Tn) is assumed to be a
homogeneous Markovian renewal process, see [25].
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The kernel Q= [Qij(t)] associated with the process is defined as follows:

Qij(t)= P
[
Xn+1 = j,Tn+1−Tn ≤ t | X0, . . . ,Xn−1; Xn = i; T0, . . . ,Tn

]

= P
[
Xn+1 = j,Tn+1−Tn ≤ t | Xn = i

]
.

(2.2)

Thus, (Pyke [26])

pi j = lim
t→∞Qij(t); i, j ∈ S, t ∈R, (2.3)

where P = [pi j] is the transition matrix of the embedded Markov chain in the process.
Furthermore, it is necessary to introduce the probability that the process will leave state i
in a time t as

Hi(t)= P
[
Tn+1−Tn ≤ t | Xn = i

]
. (2.4)

Obviously,

Hi(t)=
m∑

j=1

Qij(t). (2.5)

It is now possible to define the distribution function of the waiting time in each state i,
given that the state successively occupied is known,

Gij(t)= P
[
Tn+1−Tn ≤ t | Xn = i, Xn+1 = j

]
. (2.6)

Obviously, the related probabilities can be obtained by means of the following formula:

Gij(t)=

⎧
⎪⎪⎨

⎪⎪⎩

Qij(t)

pi j
if pi j �= 0

1 if pi j = 0.

(2.7)

The main difference between a continuous time Markov process and a semi-Markov pro-
cess lies in the distribution functions Gij(t). In a Markov environment this function must
be a negative exponential function. On the other hand, in the semi-Markov case, the dis-
tribution functions Gij(t) can be of any type. This means that the transition intensity can
be decreasing or increasing.

If we apply the semi-Markov model in the health care environment, we can consider,
by means of the Gij(t), the problem given by the duration of the time spent inside one of
the possible disease states.

Now the HSMP Z = (Z(t), t ∈R) can be defined. It represents, for each waiting time,
the state occupied by the process

Z(t)= XN(t), where N(t)=max
{
n : Tn ≤ t

}
. (2.8)

The transition probabilities are defined in the following way:

φij(t)= P
[
Z(t)= j | Z(0)= i

]
. (2.9)
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They are obtained by solving the following evolution equations:

φij(t)= δi j
(
1−Hi(t)

)
+

m∑

β=1

∫ t

0
Q̇i j(ϑ)φij(t− ϑ)dϑ, (2.10)

where δi j represents the Kronecker symbol.
The first addendum of formula (2.10) gives the probability that the system does not

undergo transitions up to time t given that it was in state i at an initial time 0. In predict-
ing the HIV/AIDS evolution model, it represents the probability that the infected patient
does not shift to any new stage in a time t. In the second addendum, Q̇i j(ϑ) is the deriv-
ative at a time ϑ of Qiβ(ϑ) and it represents the probability that the system remained in a
state i up to the time ϑ and that it shifted to state β exactly at a time ϑ. After the transition,
the system will shift to state j following one of all the possible trajectories from state β
to state j within a time t− ϑ. In our application, it means that up to a time ϑ an infected
subject remains in the state i. At the time ϑ, the patient moves into a new stage β and then
reaches state j following one of the possible trajectories in some time t− ϑ.

2.1. A description of HSMP numerical solution. In a previous paper, Corradi et al. [27]
proved that it is easy to find the numerical solution of (2.10) by means of quadrature
method. Moreover, they proved that the numerical solution of the process converges to
the discrete time HSMP (DTHSMP).

Furthermore, in the same paper, it was proved that the DTHSMP process tends to be
continuous if the discretization interval tends to 0. The discretization of formula (2.10)
leads to the following infinite countable linear system:

φh
i j(kh)= dhi j(kh) +

m∑

l=1

k∑

τ=1

vhil(τh)φh
l j

(
(k− τ)h

)
, (2.11)

where h represents the discretization step

dhi j(kh)=
⎧
⎪⎨

⎪⎩

0 if i�= j,

1−Hh
i (kh) if i= j,

vhi j(kh)=
⎧
⎪⎨

⎪⎩

0 if k = 0,

Qh
i j(kh)−Qh

i j

(
(k− 1)h

)
if k > 0.

(2.12)

For more information on discretization see [28]. Relation (2.11) can be written in the
following matrix form:

Φh(kh)−
k∑

τ=1

Vh(τh)Φh((k− τ)h
)=Φh(kh). (2.13)
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If h= 1, we have:

φij(k)= di j(k) +
m∑

l=1

k∑

τ=1

vil(τ)φl j(k− τ). (2.14)

The following theorems have been proved in [27].

Theorem 2.1. Equation (2.14) has a unique solution.

Theorem 2.2. The matrix Φh(kh) is stochastic.

Equation (2.14) is the evolution equation of the DTHSMP.
From all these results it follows that the solution of an SMP can be obtained by means

of the DTSMP. Furthermore, we are interested in solving the problem in a finite time
span. The solution can be found by means of a simple recursive method.

As a first step, (2.13) for t = 0 gives

Dh(0)=Φh(0)= I. (2.15)

Knowing Φh(0), it is possible to compute Φh(h). Knowing these two matrices, it is possi-
ble to compute Φh(2h) and so on.

3. Homogeneous semi-Markov reliability model

There are several semi-Markov models in reliability theory, see for example, Osaki [29]
and more recently Limnios and Oprisan [5].

Let us consider a reliability system S that may be at any given time t in one of the states
of I = {1, . . . ,m}. The stochastic process of the successive states of S is Z = {Z(t), t ≥ 0}.
The state set is partitioned into sets U and D in the following way:

I =U ∪D, U ,D �=∅ such that U ∩D =∅. (3.1)

The subset U contains all “good” states in which the system is working and the subset D
contains all “bad” states in which the system is not working properly or has failed.

The typical indicators used in reliability theory are the following:
(i) the reliability functionR giving the probability that the system was always working

from time 0 to a time t:

R(t)= P
[
Z(u)∈U :∀u∈ (0, t]

]
; (3.2)

(ii) the point-wise availability function A giving the probability that the system is
working at a time t whatever happens in (0, t]:

A(t)= P
[
Z(t)∈U

]
; (3.3)

(iii) the maintainability function M giving the probability that the system will leave
the set D within the time t being in D at time 0:

M(t)= 1−P
[
Z(u)∈D,∀u∈ (0, t]

]
. (3.4)
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It has been shown in [5] that these three probabilities can be computed in the following
way if the process is a homogeneous semi-Markov process with kernel Q.

(i) The point-wise availability function Ai given that Z(0)= i:

Ai(t)=
∑

j∈U
φi j(t). (3.5)

(ii) the reliability function Ri given that Z(0)= i.
To compute these probabilities, all the states of the subset D must be changed into

absorbing states. Ri(t) is given by solving the evolution equation of HSMP with the em-
bedded Markov chain with pi j = δi j if i∈D. The resulting formula is

Ri(t)=
∑

j∈U
φ̃i j(t), (3.6)

where φ̃i j is the solution of (2.10) with all the states in D that are absorbing.
(iii) The maintainability function Mi given that Z(0)= i.
In this case, all the states of the subset U must be changed into absorbing states. Mi(t)

is given by solving the evolution equation of HSMP with the embedded Markov chain
with pi j = δi j if i∈U . The resulting formula is

Mi(t)=
∑

j∈U
φ̂i j(t), (3.7)

where φ̂i j(t) is the solution of (2.10) with all the states in U that are absorbing.

4. Application of the model to the HIV/AIDS dynamic evolution

The acquired immunodeficiency syndrome (AIDS) is caused by the human immunodefi-
ciency virus (HIV), a virus belonging to the lentivirus subgroup of retroviruses [30, 31].
The hallmark of the HIV infection is the progressive depletion of a class of lymphocytes
named CD4+ or helper lymphocytes which play a pivotal regulatory role in the immune
response to infections and tumours. The immune suppression resulting from the CD4+
decline leads to high susceptibility to opportunistic infections and possibly unusual tu-
mours. Without appropriate antiretroviral treatment, AIDS is almost uniformly lethal
[30, 31].

The natural history of HIV infection is characterized by a phase of latency that can
last for several years, and evolves through consecutive steps [32] defined on the basis of
CD4+ lymphocyte count and constitutional symptoms [33] with full blown AIDS repre-
senting the final stage of the disease [34]. The time spent in each stage of the disease is
not predictable on the basis of clinical and immunological parameters.

HIV is transmitted primarily by sexual contact, syringe sharing amongst intravenous
drug users, blood and blood products not properly screened. From an epidemiological
point of view, the disease has spread worldwide. It is currently estimated that the total
number cases of HIV infections is some 39.5 million, with a peak in the sub-Saharan
African continent, and East Asian countries [35].
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I II III IV

D

Figure 4.1. The model of the immunological stages a HIV/AIDS infected patient can go into.

Physicians believe that the fundamental hypothesis needed in order to apply the model
in HIV/AIDS environment is satisfied. Indeed, as quoted in [36] the relation (2.6) is
nearer to reality, that is, in the absence of treatment, the future of the patient depends
only on the present state but not on all previous history.

Followup took T = 87 months (from October 1989 to December 1996). The retrospec-
tive study concerned a cohort of K = 766 HIV-positive intravenous drug users. Database
fields were completed by means of a number of biological and clinical parameters ob-
tained from 2488 medical examinations. In order to predict the HIV/AIDS evolution, we
employed the following immunological states related to CD4+ count plus an absorbing
state (the death of the patient): state I (CD4 > 500× 106 cells/L), state II (350 < CD4
≤ 500), state III (200 < CD4 ≤ 350), state IV (CD4 ≤ 200), and state D (absorbing state).
We assume, therefore, that the HIV/AIDS infection shifts between five different degrees
of seriousness. This choice was justified by the CDC immunological classification [33],
and taking into account the recommendations of the DHHS (Department of Human and
Health Services) for the initiation of antiretroviral therapy [37].

All that led to the following set of states:

S= {I, II, III, IV, D}. (4.1)

Figure 4.1 represents the graph model. It shows all the immunological states an HIV/AIDS
infected patient can undergo. All the states, apart from D, are interrelated, and also im-
provements are taken into account. It is also possible that an examination will show that
a patient’s state has not changed.

The first four states are working states (good states) and the last one is the only bad
state. This is represented in the following two subsets:

U = {I, II, III, IV}, D = {D}. (4.2)

In this case, the maintainability function M does not make sense because the default state
D is absorbing and once an infected patient had entered this state it was no longer possible
to leave it.

Furthermore, the fact that the only bad state is an absorbing state implies that the
availability function A corresponds to the reliability function R.
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Table 4.1. Transition frequencies matrix of the followed-up cohort and estimates of the transition
matrix.

States I II III IV D

I 381 135 42 19 6

II 115 252 129 51 8

III 26 108 319 144 31

IV 11 19 64 144 31

Another important result that can be obtained by means of the semi-Markov approach
is the distribution function of the subject’s death conditioned to the state held at time 0.

In the health care environment, the reliability model is substantially simplified. In fact,
to obtain all the results that are relevant to our study it suffices to solve the system (2.11)
numerically only once since φ̃= φ̂i j(t)= φij(t).

In order to obtain the claimed results, we need to estimate the semi-Markov kernel
Q= [Qij(t)] from our data set.

Firstly, we introduce the following symbols:
(i) K is the number of independent trajectories in our data set;

(ii) Xr
n is the state at nth transition of the rth subject;

(iii) Tr
n is the time in which the rth subject makes the nth transition;

(iv) Nr =Nr(T)= sup{n∈N : Tr
n ≤ T} is the total number of transitions held by the

rth subject;
(v) Nr

i =Nr
i (T)=∑Nr

k=1 1{Xr
k−1=i} is the number of visits of the rth subject to the state

i;
(vi) Ni =Ni(T)=∑K

r=1N
r
i is the total number of visits of all subjects to the state i.

Then we consider the empirical kernel estimator defined in [21] by

Q̂i j(t,K)= 1
Ni

K∑

r=1

Nr
∑

l=1

1{Xr
l−1=i,Xr

l = j,Tr
l −Tr

l−1≤t}. (4.3)

In [21] it was proved that the empirical kernel estimator is uniformly strongly consistent
and, properly centralized and normalized, it converges to the normal random variable.

Owing to lack of space, we do not show the kernel estimates, but we can make them
available upon request. We report, in Table 4.1, the frequencies of the transitions between
the states and, consequently, in Table 4.2, the estimates of the embedded Markov chain.

Obviously the obtained estimates Q̂i j(t,K) are used as input to estimate all the relevant
variables listed in Section 5.

5. Numerical results

After solving the evolution equations of the semi-Markov model with kernel Q̂, an exten-
sive amount of information useful to a phisician can be obtained, including the following.

(1) φ̂i j(t), that represents, for each t, for each j ∈ {I, II, III, IV, D}, and for each i ∈
{I, II, III, IV} the probabilities of being in a state j after a time t given that she/he entered
at time 0 (starting time) in the state i. In Figure 5.1, there is a graphical representation of
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Table 4.2. Estimates of the transition matrix of the embedded Markov chain.

States I II III IV D

I 0.654 0.232 0.072 0.033 0.010

II 0.207 0.454 0.232 0.092 0.014

III 0.041 0.172 0.508 0.229 0.049

IV 0.015 0.026 0.089 0.681 0.188

D 0 0 0 0 1

1
0.8
0.6
0.4
0.2

0
I II III IV D

Month 4

State I
State II
State III

State IV
Death

1
0.8
0.6
0.4
0.2

0
I II III IV D

Month 20

State I
State II
State III

State IV
Death

1
0.8
0.6
0.4
0.2

0
I II III IV D

Month 36

State I
State II
State III

State IV
Death

1
0.8
0.6
0.4
0.2

0
I II III IV D

Month 52

State I
State II
State III

State IV
Death

1
0.8
0.6
0.4
0.2

0
I II III IV D

Month 68

State I
State II
State III

State IV
Death

1
0.8
0.6
0.4
0.2

0
I II III IV D

Month 88

State I
State II
State III

State IV
Death

Figure 5.1. Conditional probabilities of being in state j after a month t given the starting state i. The
starting states are in the axis categories.

such conditional probabilities. For the sake of brevity, only the values corresponding to
lapses of sixteen months and up to month 88 are reported. They are all, however, available
on request. It seems superfluous to underline the medical relevance of such computed
probabilities. For example, if an HIV infected patient is in the third stage of the disease,
with 21% risk, after 52 months he will be in the fourth stage (see Figure 5.1, Month 52).

(2) R̂i(t)= Âi(t)=
∑

j∈U φ̂i j(t), that represents the conditional probabilities, given the

starting state, that an infected patient will survive up to a time t. R̂i(t) gives a physician
vital information. In Figure 5.2, four curves, which depend on the starting state of the
subject, have been computed. For example, if we look at the lowest curve we can read
R̂i=IV(42) = 0.8 and we may conclude that, with a probability equal to 0.8, an infected
patient that was in state IV will not die after 42 months.

(3) 1− Ĥi(t) represents the conditional probabilities of staying in the starting state un-
til month t. In Figure 5.3 these conditional probabilities have been computed depending
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Figure 5.2. Survival conditional probabilities up to month t given the starting state.
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Figure 5.3. Stay on conditional probability in the starting state at least for a time t.

on the starting state. For example, if an HIV-infected patient comes under study at the
fourth stage of the disease, with 40% risk, after 24 months he will still be in the fourth
stage.

Before giving another result of current interest for epidemiologic purposes that can
be obtained in an SMP environment, the concept of the first transition after time t must
be introduced. More precisely, it is supposed that a subject at time 0 was in state i and
it is known that with probability (1−Hi(t)) he does not shift from state i. Under these
hypotheses, it is possible to know the probability of the next transition is to state j. This
probability will be denoted by ϕij(t). In terms of formulas it means the following:

ϕij(t)= P
[
Xn+1 = j | Xn = i, Tn+1−Tn > t

]
. (5.1)
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Figure 5.4. Conditional probabilities of developing state j of the disease at the next transition given
that previous state occupied was i and no change occurred up to month t. The states occupied up to
month t are in the axis categories.

This probability can be estimated by means of the following formula:

ϕ̂i j(t)=
p̂i j − Q̂i j(t)

1− Ĥi(t)
. (5.2)

After definition (5.1) by means of SMP, it is possible to obtain the following result.
(4) ϕ̂i j(t) represents the estimated probability of developing stage j of the disease at

the next transition if the previous state was i and no change of state occurred up to time t.
In this way, in the case we studied, if the patient does not shift for a time t from state i, the
probability of him being dead in the next transition can be computed easily. In Figure 5.4,
a graphical representation of the probabilities of the first transition after a time t is shown.
As for φ̂i j(t), only the values corresponding to lapses of sixteen months are reported.
They are all, however, available on request. A physician might read the probability of
moving into state j of the disease (for each j ∈ {I, II, III, IV, D}) at the next transition if
the previous state occupied was i (for each i∈ {I, II, III, IV}) and no change occurred up
to month t (for each t).

6. Concluding remarks

In this paper we have presented an HSMP approach to the dynamic evolution of the Hu-
man Immunodeficiency Virus Infection, as defined by CD4+ levels, and the probabilities
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of an infected patient’s survival. By means of this approach, we cannot only consider
randomness in the possible stages of seriousness which the disease may show but also
the randomness of the duration of the waiting time in each state. The model starts from
the idea that the disease evolution problem can be considered a special type of reliability
problem and this idea allows the application of some semi-Markov reliability results to a
healthcare environment.

We would like to point out that this paper does not show all the potential of the semi-
Markov environment. Indeed, by means of the backward recurrence time process it is
possible to assess different transition probabilities as a function of the duration inside the
states. Moreover, it is possible to attach a reward structure to the process that allows the
possibility of doing a cost analysis that considers, for example, the cost of antiretroviral
treatment and/or other social costs related to the dynamic evolution of the HIV infection.
These features will be the object of future research.
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[5] N. Limnios and G. Oprişan, Semi-Markov Processes and Reliability, Statistics for Industry and
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Recommended by José Manoel Balthazar

The purpose of this work is to study the processing and transmission of clock signals
in networks of geographically distributed nodes, in order to derive conditions for fre-
quency and phase synchronization between the nodes. The focus is on the master-slave
architecture, which presents a priority scheme of clock distribution. One-way master-
slave (OWMS ) and two-way master-slave (TWMS) chains are studied, considering that
the slave nodes are third-order phase-locked loops (PLLs). Third-order PLLs are cho-
sen to improve the transient response but, if their parameters are not well adjusted, sta-
bility problems and chaotic behaviors appear, restricting the lock-in range of the net-
work. Lock-in range for third-order PLLs with Sallen-Key filter is determined and it is
verified whether this range is reduced when the PLLs are connected to a network. Nu-
merical experiments show how chain size changes the lock-in ranges and the acquisition
times.

Copyright © 2007 J. R. C. Piqueira and M. de Carvalho Freschi. This is an open access ar-
ticle distributed under the Creative Commons Attribution License, which permits unre-
stricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

1. Introduction

The distribution of clock signals is essential for several applications in control and com-
munication [1] establishment of a worldwide time schedule system, synchronization of
oscillators at different multiplexing points in digital telecommunication networks, con-
trol and monitoring of performance at specific instants in industrial processes and estab-
lishment of a synchronous state in a supercomputer composed of several processors.

In this work, the distribution of clock signals in telecommunications networks is con-
sidered. The problem concerns mainly to the distribution of phase and frequency signals
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through nodes distributed in a certain geographic area. There are three different im-
plementation strategies: plesiochronous, master-slave (MS), and synchronous full-con-
nected [2].

Plesiochronous networks are used when the synchronism is not critical. Oscillators
with small frequency deviation are used in each node. They are manually adjusted and
control signals are not needed. These networks are easy to implement, robust, though
costly.

In synchronous full-connected networks, all the nodes have their own oscillator inter-
changing reference signals. They are more complex to be implemented, being used only
in special applications, as in military communication networks.

Master-slave networks present a priority scheme of clock distribution, establishing a
hierarchy between the nodes. There is a node with an extremely precise atomic oscilla-
tor, called master. The other nodes are controlled by the master’s reference signal and
are called slaves. As the control is centralized, if the master fails, the performance of the
whole network is spoiled. However, due to its simple implementation and low cost, the
master-slave networks are widely used in robotics and public telecommunications net-
works.

There are two types of MS networks, OWMS and TWMS. In the OWMS architecture,
mainly used in telecommunication networks, the clock signal generated by the master
is transmitted to the nodes sequentially, not considering the state of the slaves. In the
TWMS, mainly used in process-control networks, the reference signal considers the mas-
ter and the state of the slaves.

Here, the two distribution schemes are considered and compared from the lock-in
point of view, with the slaves being third-order PLLs [3]. First, the isolated third-order
PLL is considered and modeled, with an analytical determination of its lock-in range.
Then, chains with third-order PLLs as slaves are explored by using numerical experi-
ments.

2. Third-order PLL

The phase-locked loop (PLL) is an electronic device that has been used since 1932 in
applications that demand automatic control of frequency. It is composed of a phase-
detector (PD), a lowpass filter (F) and a voltage controlled oscillator (VCO) [4], as shown
in Figure 2.1, and is used to extract the time basis in a reliable way, synchronizing the in-
put signal vi(t) with the one of its internal oscillator (VCO) vo(t).

The nonlinear behavior of the PLL is due the phase detector (PD), which is represented
by a signal multiplier that compares the phases of the input signal, vi(t), and the VCO
output, vo(t). This operation is described by

vd(t)= kdvi(t)vo(t), (2.1)

where kd is the PD gain, and vi(t) and vo(t) have periodic expressions with central angu-
lar frequency ωM(t) and instantaneous phases θi(t) and θo(t), respectively, as described
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F
vi(t) vd(t)

PD

vo(t)

vc(t)
VCO

Figure 2.1. PLL block diagram.

below:

vi(t)=Vi sin
[
ωMt+ θi(t)

]
,

vo(t)=Vo sin
[
ωMt+ θo(t)

]
.

(2.2)

Combining (2.1), (2.2), vd(t) can be expressed as

vd(t)= kmViVo

2
sin
[
2ωMt+ θi(t) + θo(t)

]
+
kmViVo

2
sin
[
θi(t)− θo(t)

]
, (2.3)

where km is the multiplier gain, being kd = kmVo/2.
In expression (2.3), the presence of a second-harmonic term can be noticed. The sig-

nal vd(t) passes through the lowpass filter (F) to eliminate this high-frequency term called
double-frequency jitter [5]; however, a small amplitude double-frequency term remains.
This jitter is responsible for oscillations around the synchronous state, causing distur-
bances in the network performance [6].

The VCO signal is controlled by the filter output and its frequency is given by

θ̇o(t)= kovc(t), (2.4)

where ko is the VCO gain.
The VCO output has a phase θo(t). When the phase error ϕ(t) = θi(t)− θo(t) has a

constant value or, equivalently, the frequency error ϕ̇(t)= θ̇i(t)− θ̇o(t) is zero, the system
is in the synchronous state.

First-order filters, implying second-order PLLs, are normally chosen due to their in-
herent stability and good lock-in range [7]. However, these PLLs frequently present high-
level double-frequency terms in the PD output, as a phase-jitter, as it is difficult to adapt a
first-order filter that eliminates these components in a satisfactory way. In order to elim-
inate this double-frequency jitter and to improve the transitory responses, higher-order
filters are chosen, implying PLLs with order greater than 2.
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Figure 2.2. Sallen-Key second-order filter.

Here, a second-order Sallen-Key filter as shown in Figure 2.2, is chosen [7], resulting
in a third-order PLL. The filter transfer function is given by

H(s)= Vc(s)
Vd(s)

= Kω2
0

s2 +
(
ω0/Q

)
s+ω2

0
, (2.5)

where ω2
0 = 1/R1R2C1C2, K = 1 +RB/RA and Q = 1/ω0[C2(R1 +R2) +R1C1(1−K)].

Considering the normalization of the cut-off frequency, that is, R1 = R2 = C1 = C2 = 1,
and the PLL gain as G= kdk0ViVo/2, combining (2.3), (2.4) and (2.5), and neglecting the
high-frequency terms of (2.4), the dynamic equation of the third-order PLL becomes

...
ϕ + (3−K)ϕ̈+ ϕ̇+KGsinϕ= ...

θ i + (3−K)θ̈i + θ̇i. (2.6)

Considering phase-ramp inputs, θi =Ωt+ψ, the dynamic equation becomes

...
ϕ + (3−K)ϕ̈+ ϕ̇+KGsinϕ=Ω. (2.7)

Equation (2.7) describes the third-order PLL, considering ϕ∈ (−π,π] and Ω > 0. The
synchronous state corresponds to a constant phase error ϕ, and to frequency and acceler-
ation errors, ϕ̇ and ϕ̈, equal to zero.

3. Lock-in range

The set of parameters and inputs corresponding to a reachable asymptotically stable syn-
chronous state for (2.7) is called lock-in range. Consequently, the lock-in range is the set
of filter gains K , input frequencies Ω, and PLL gains G corresponding to the existence of
an asymptotically stable synchronous state (ϕ, ϕ̇, ϕ̈)= (ϕ∗,0,0) for (2.7).

Analyzing (2.7), the synchronous state is (ϕ, ϕ̇, ϕ̈) = (arcsin (Ω/KG),0,0), implying a
first existence condition Ω≤ KG.

For Ω = KG, there is the synchronous state (π/2,0,0) that is nonhyperbolic [8]. For
Ω < KG, there are two synchronous states: (ϕ1, 0, 0) and (ϕ2,0,0), so that sinϕ1= sinϕ2 =
Ω/KG, and cosϕ1 =−cosϕ2 =

√
1− (Ω/KG)2. The first state can be stable depending on

the parameters combination. The second one is unstable.
The stability of the synchronous states, (ϕ1,0,0) and (ϕ2,0,0) can be analyzed by using

the characteristic polynomial related to the linear approximation of (2.7), around the
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equilibrium states

P(λ)= λ3 + (3−K)λ2 + λ+KGcosϕSS. (3.1)

The stability of the synchronous state (SS) is given by the real-part of the roots of P(λ).
If they are all negative, the corresponding synchronous state is asymptotically stable. If
there is a root with positive real part, the corresponding synchronous state is unstable.

According to the Routh-Hurwitz stability criterion [9], the number of positive real-
part roots of the polynomial is equal to the number of signal changes in coefficients of
the first column of Routh-Hurwitz matrix R0. For P(λ) given by (3.1), R0 is as follows:

R0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1
3−K KGcosϕ

3−K −KGcosϕ
3−K 0

KGcosϕ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.2)

As the synchronous state (ϕ2,0,0) has a negative cosine, observing R0 and according
to the Routh-Hurwitz criterion, it can be seen that the first term of the first column is
positive and the fourth term is negative. Consequently, there is at least a signal change,
and, therefore, (ϕ2,0,0) is unstable.

The synchronous state (ϕ1,0,0) has a positive cosine, consequently, the conditions for
its asymptotical stability are 3− K > 0 and 3− K − KG√1− (Ω/KG)2 > 0. With these
conditions, the lock-in range for a third-order PLL is

(i) 1≤ K < 3;
(ii) G >Ω/K ;

(iii) G <
√

9/K2− 6/K + 1 +Ω2/K2.
Then there is only one synchronous state, (ϕ1,0,0) and the lock-in range results from

two bifurcations: a saddle-node, related to the existence of the synchronous state, and
Hopf, related to the stability of the synchronous state [8].

The conditionG=Ω/K represents a saddle-node bifurcation, whose diagram is shown
in Figure 3.1. Below the surface, there is no synchronous state, and on it the state is non-
hyperbolic. Above the surface, there are two equilibrium points: (ϕ1,0,0) and (ϕ2,0,0),
so that sinϕ1 = sinϕ2 =Ω/KG and cosϕ1 =−cosϕ2 =

√
1− (Ω/KG)2.

Condition G = √9/K2− 6/K + 1 +Ω2/K2 represents a Hopf bifurcation, as shown in
Figure 3.2. Below the surface, the state (ϕ1,0,0) is asymptotically stable, and above it,
unstable.

4. OWMS and TWMS networks

In OWMS topology, the transmission of time signals follows only one direction. The
master node has its own time basis that is independent of the other nodes. The time basis
of all slave nodes depends on only one node, which can be the master or another slave.
OWMS networks can be implemented in two topologies [10], single chain and single star.

TWMS networks have reference signals sent in the two ways of the network. The mas-
ter has its own time basis, but the time basis of each slave depends on more than one node.
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Figure 3.1. Saddle-node bifurcation.
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Figure 3.2. Hopf bifurcation.

They can be implemented in four topologies: double chain, double star, single loop, and
double loop [10].

Here, only the single and double chains are studied because they are the most common
architectures in commercial networks. The single chain topology is composed of a master
node, which has an independent time basis, connected to slave nodes in a sequential way,
as shown in Figure 4.1. Each slave is a third-order PLL with phase controlled by the node
that precedes it in the chain.

The double chain topology is similar to the single chain, but the reference signal, which
will be the input of a slave node n, considers the signals from nodes n− 1 and n+ 1, as
shown in Figure 4.2.
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M 2 3 N���

Figure 4.1. Single-chain topology.

M 2 3 N���

Figure 4.2. Double-chain topology.

In this topology, the time basis of the master node, called node 1, does not depend on
the other nodes and is given by a precise and reliable oscillator whose phase is:

φM = ωt+ψ(t), (4.1)

where ω represents the frequency of normal operation of master clock and ψ(t) is a per-
turbation term.

As delays in the main commercial networks are small related to the time constants of
the node filters, they are not considered. Consequently, the signal sent by the master to
the first slave considers its own phase and the phase of the first slave. Then, the phase of
the control signal sent for the first slave is given by the following equation:

Φ1(t)= 2ΦM(t)−Φ2(t), (4.2)

where Φ2(t) represents the phase of node 2, the first slave node.
For this node, the input phase is

Φ(2)
i (t)=ΦM(t)− 0.5Φ2(t) + 0.5Φ3(t). (4.3)

From (4.2) and (4.3),

Φ(2)
i (t)= 0.5Φ1(t) + 0.5Φ3(t). (4.4)

As can be seen in (4.4), the input phase of the n-slave node depends on the phase of
the nodes n− 1 and n+ 1. So, for each slave n of the chain, n= 2,3, . . . ,N − 1,

Φ(n)
i (t)= 0.5Φn−1(t) + 0.5Φn+1(t). (4.5)

For node N , the last of the chain, the input signal will be the output signal of node
N − 1.

5. Numerical experiments

In order to explore the several aspects of the lock-in range and performance parameters,
by using MATLAB-Simulink, single and double chain architectures, as described above,
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Figure 5.1. Phase error without synchronous state.

were mounted with periodic oscillators as master and built-in PLLs as slaves. Simula-
tions with these architectures were conducted with “Ode-45-Dormand-Prince” [11] with
variable step integration method and 10−6 of relative tolerance.

The simulations aimed to study the reachability of the synchronous state and to ob-
tain acquisition parameters for the whole network. Input parameters and filter transfer
functions were varied trying to confirm the analytical results obtained in Section 3.

The master node was simulated by a periodic signal generator, and a phase ramp start-
ing at tenth second of simulation was added to the master phase in order to analyze the
networks capacity in accommodating this perturbation. The input deviation Ω and the
free-running angular frequency ωM were set in 1 rad/s, and the parameters K and G were
varied.

The synchronism is analyzed observing the phase error that must be constant in the
synchronous state. Network performance includes the double-frequency jitter as it is
not completely eliminated being responsible for the oscillations around the synchronous
state.

5.1. OWMS. The chains were mounted according to the single chain topology.

One-slave node chain. For K = 1, the lock-in range is analytically given by G∈ (1,
√

5).
In the simulations, the synchronous state is reachable for G ∈ (1.18,2.2). For G = 1,

the phase error goes to infinite, as illustrated in Figure 5.1, and for G lower than this
value, the behavior is the same.

For values of G in the lock-in range, the phase error presents an equilibrium state with
a small oscillation, the double-frequency jitter, around it, as can be seen in Figure 5.2 for
G= 1.2.
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Figure 5.2. Phase error with PLL gain in the lock-in range.
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Figure 5.3. Phase error increasing PLL gain in the lock-in range.

When the PLL gain G is increased, the acquisition time and double-frequency jitter
increase, as shown in Figure 5.3 for G= 1.7.

When the gain value approaches the lock-in range limit (G = 2.2), a large amplitude
oscillation appears around the synchronous state, as shown in Figure 5.4. With the PLL
gain out of this range, there is no synchronous state, as shown in Figure 5.5 for G= 3.5.

For K = 2, the lock-in range analytically determined is given by G∈ (0.5,
√

2/2).
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Figure 5.4. Phase error with PLL gain in the lock-in range limit.
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Figure 5.5. Phase error with PLL gain out of lock-in range.

When the simulations are conducted, varying G for the whole theoretical lock-in
range, it is experimentally noticed that the synchronous state is not reachable for cer-
tain values of G, implying that the practical lock-in range is smaller than the theoretical
one. This fact is probably due to nonrobustness of the model in this band of gains.

According to the numerical simulations, the real lock-in range seems to be [0.5,0.59)∪
(0.66,

√
2/2). In order to observe this fact, Figure 5.6 shows the result for G = 0.6, with

the synchronous state not reachable. For G= 0.67, reachability is recovered as shown in
Figure 5.7.
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Figure 5.6. Phase error with synchronous state not reachable, but with PLL gain in the theoretical
lock-in range.
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Figure 5.7. Phase error with PLL gain in the lock-in range.

Further experiences show that the higher the parameter K , the smaller the lock-in
range. With K next to the limit of the lock-in range (1 ≤ K < 3), K = 2.9, for instance,
corresponding to a theoretical range (0.344,0.346), the synchronous state is not reachable
for any G.

The number of slave nodes was increased up to ten gradually and each chain was sim-
ulated in accordance with the methodology used in the previous item. It was observed
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that to each slave node added to the chain, the synchronizing ranges become smaller, and
the settling time increases.

Therefore, the reference signal of the network loses quality while it is transmitted along
the chain. Due to this fact, according to G.812 recommendation of ITU-T [12], the higher
number of sequential nodes recommended for a single chain is ten, and in the following,
results for this type of chain are presented.

Ten-slave node chain. With ten slave nodes, the synchronous state is still reachable, but
for a smaller lock-in range, as listed below:

(i) for K = 1, the theoretical lock-in range is G ∈ (1,
√

5). In the simulations, the
synchronous state is reachable for G∈ (1.63,1.64);

(ii) for K = 1.5, the theoretical lock-in range isG∈ (0.667,1.2), but the synchronous
state is reachable for G∈ (0.97,0.98);

(iii) for K = 2, the theoretical lock-in range is G ∈ (0.5,
√

2/2), and in the simula-
tions, the synchronous state is reachable only for G = 0.63 after 400 seconds of
simulation;

(iv) forK = 2.5, the theoretical lock-in range isG∈ (0.4,0.447), and the synchronous
state is reachable for the following gain values: 0.416,0.436,0.438,0.44,0.443, and
0.444.

Figure 5.8 shows the phase error for K = 2.5 and G = 0.416. For the tenth node, the
settling-time is high but the double-frequency jitter disappeared, due to the fact that the
signal passed through the ten lowpass filters of the chain.

Then, considering the lock-in ranges, the behavior of the whole network with ten slave
nodes is satisfactory, showing that the third-order PLL with a Sallen-Key filter for extrac-
tion of reference signal in OWMS provides good performance figures.

5.2. TWMS. The analysis of TWMS networks [1] strongly depends on the number of
nodes [13], consequently, the simulations follow an increasing sequence of the number
of slave nodes.

Two-slave node chain. Running the simulations, the lock-in ranges are the following:
(i) for K = 1, the synchronous state is reachable only for G= 1.3;

(ii) for K = 1.5, the synchronous state is reachable for G∈(0.8,0.9);
(iii) for K = 2, in the simulations, the synchronous state is reachable only forG= 0.6;
(iv) for K = 2.5, the synchronous state is reachable for G ∈ (0.4,0.5), that is, for a

lock-in range greater than the theoretical one.
Figure 5.9 shows the phase error in the two slave nodes for K = 2.5 and G= 0.42. The

second node presents a higher settling-time but better double-frequency jitter perfor-
mance, as expected.

Three-slave node chain. Lock-in ranges are the following:
(i) for K = 1 there was no synchronization;

(ii) for K = 1.5 the synchronous state is reachable only for G= 0.7;
(iii) for K = 2, the synchronous state is reachable for G∈ (0.5,0.6);
(iv) for K = 2.5, the synchronous state is reachable for G ∈ (0.43,0.48), surpassing

the theoretical lock-in range again.
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Figure 5.8. Phase error (a) first slave node (b) tenth slave node.

In this case, it is relevant to notice that the settling-time increased and varies from 100
to 250 seconds. Besides, the lock-in range was reduced as listed above.

Four-slave node chain. This chain approached the synchronous state only for K = 2.5
and G= 0.43, having a considerable oscillation around the synchronous state, as shown
in Figure 5.10 for the first and fourth slave nodes. Also it is noticed that a small increase
of this oscillation with the increase in the number of slaves. Jitter did not present any
significant alteration.
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Figure 5.9. Phase error (a) first slave node (b) second slave node.

Five-slave node chain. In these conditions, the synchronous state is not reachable. The
simulation time was increased to 500 seconds, but for all the values of parameters tested,
the phase error went to infinite in all the slaves.

Then it is noticed that the increase in the chain makes the synchronization of TWMS
networks difficult considerably, having a limited number of slave nodes, above which the
behavior of the network becomes totally unstable.

This result is in accordance to [13] that claims that TWMS networks present limita-
tions in the number of slave nodes that should not be higher than three when a first-order
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Figure 5.10. Phase error (a) first slave node (b) fourth slave node.

lag filter is used. Simulations have shown that the critical number of slave nodes for third-
order PLLs with Sallen-Key filter is four.

6. Conclusions

Third-order PLLs provide satisfactory conditions of synchronism, transient response and
double-frequency jitter attenuation when used as slave nodes in MS chain networks. Sim-
ulations confirmed analytical results, also showing the reliability of the usual PLL models.
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Increasing the number of nodes in a chain makes synchronization more difficult re-
ducing the lock-in range of the OWMS and the TWMS networks. As some theoretical
studies show [13], for TWMS chains there is a maximum number of nodes above which
the synchronous state is not reachable. This number, when third-order PLLs with Sallen-
Key filter are used, is four.

Comparing single-chain (OWMS) with double-chain (TWMS), the OWMS architec-
ture is more indicated for precise clock distribution, since it supports more slave nodes
and presents a larger lock-in range.

The limitation in the number of nodes and in the lock-in range for TWMS is the main
reason to use this architecture only for process-control in local area networks. In this case,
in spite of these problems, transient responses and jitter performance are considerably
improved.
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