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We are delighted to be associated as guest editors with the publi-
cation of this special issue of the Journal of Applied Mathemat-
ics and Decision Sciences, in honour of our esteemed colleague
Professor Jeffrey J. Hunter. This special issue marks Jeff ’s retire-
ment from Massey University, although Jeff plans to continue his
research. It also acknowledges Jeff ’s many contributions to prob-
ability and statistics over a long career of 40-plus years, during
which he has served his colleagues and university exceedingly
well, with the utmost integrity, and has served and promoted
his academic discipline in a consistent and highly professional
manner, representing the interests of the statistics discipline in many capacities and roles.
We have been honoured to have him as a colleague, and given the impressive response of
the authors of this issue, we believe this feeling is shared by many in the academic com-
munity. Some personal notes from Robert Anderson (Pro Vice-Chancellor of the College
of Sciences, Massey University), Howard Edwards (Programmes Director in the College
of Sciences), and Emeritus Professor Shayle Searle are included in this editorial.

We are indebted to the Hindawi Publishing Corporation for supporting this initiative,
and for their efficient handling of the manuscripts. We thank Tony Norris (Head of our
Institute) and Robert McKibbin (former Head) for their helpful suggestions and moral
support, and are grateful to Tony and Gaven Martin, for providing financial support via
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the institute and personal research funds, respectively, without which this publication
would not have been possible. Helpful comments from Stephen Haslett are acknowl-
edged. We thank the many referees who helped tremendously with the reviewing process;
in particular, we acknowledge the following referees for their helpful comments and/or
detailed reviews: Tasos Tsoularis, Martin Hazelton, Valerie Isham, Beatrix Jones, Claire
Jordan, Dominic Lee, Michael Leonard, Barry McDonald, Andrew Metcalfe, Christian
Onof, Marco Reale, Danny Walsh, and Thomas Yee. Finally, we thank the authors, many
of whom know Jeff well and are his friends; we are very grateful to them for their impres-
sive response to this special issue and for their comments on each others work, which has
helped ensure that this publication is of high standard.

Paul Cowpertwait and Graeme Wake
Guest Co-Editors

July, 2007

Professor Jeffrey J. Hunter, FNZMS by Robert D. Anderson, Pro Vice-Chancellor

It is an honour to have been asked to contribute some thoughts on Professor Jeffrey
Hunter to this special publication.

I first met Jeff at the time of his interview for the Chair in Statistics at Massey Uni-
versity, in 1990. In the subsequent 17 years, we have developed a strong personal and
professional friendship. Such is his instinctively generous and helpful nature, it is impos-
sible not to enjoy, and value, his friendship and professional interaction. He has been an
outstanding colleague and mentor to many.

When one reflects on Jeff ’s career and achievements, a remarkable aspect that stands
out, and that others rarely emulate, is that at varying times he has held some high-level
managerial posts, the Foundation Deanship of the Faculty of Information and Math-
ematical Sciences at Massey University for example, yet he still managed to sustain an
enviable personal record of research and advanced scholarship-compared to most other
university administrators. The award of a Doctor of Science degree by Massey Univer-
sity in 2005 is compelling evidence of enduring scholarship at the highest level. The New
Zealand Statistical Association Campbell Award (its highest) in 2006 for “contributions
to statistical research and education, and services to the profession of statistics” further
reflects his ability to keep his managerial responsibilities-without exception, successfully
discharged-in perspective in order that he could find time to concentrate on what actually
counts in any university of substance, namely; advanced education and scholarship.

In the early stages of our association, Jeff and I were fellow Deans. Later when the
Institute of Information and Mathematical Sciences, based at the Auckland Campus of
Massey University, was founded, the wider College of Sciences needed to find a leader
with an ability to inspire, and to organise, others to commit to a shared vision for a newly
created multidisciplinary entity. Fortunately, Jeff was available for the role and (with high
probability of success-that particular word needs to appear in any statement about him)
he was appointed Foundation Head as from 1st January, 1998. It is important for the
formal record that appreciation be expressed for his excellent leadership of the institute
over those formative years.
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It is entirely apt that there is a dedicated publication honouring Professor Jeffrey
Hunter’s outstanding career of advanced scholarship in statistics and mathematics.

Robert D. Anderson, ONZM
Pro Vice-Chancellor (Sciences)

July, 2007

Jeff Hunter’s Contribution to Statistics at Massey University by Howard Edwards

It has been my great pleasure to work under and with Jeff Hunter in his variety of roles at
Massey University: Professor and Head of the Statistics Department at Palmerston North,
Dean of the Faculty of Information and Mathematical Sciences which spanned both the
Palmerston North campus and the new Albany campus, and Foundation Head of the
Institute of Information and Mathematical Sciences based on the new Albany campus.

Jeff arrived at Massey University in 1990 after an already distinguished career at the
University of Auckland. At the time, the Statistics Group within the combined Depart-
ment of Mathematics and Statistics at Massey had recently tried to break away and form
a separate department but had been unsuccessful in this regard. Jeff recognised that Sta-
tistics as a discipline within the university would only receive its proper recognition and
grow if it were a separate department and argued accordingly for this, within a larger
grouping of departments, including that of Mathematics. Under his leadership a de facto
department was effectively created, and the university recognised this in 1991 with the
establishment of the Department of Statistics.

Jeff ’s background in applied probability led some to worry that he might alter the
applied focus of statistics at Massey. However, Jeff always put the interests of the statisti-
cians as a group first, and the subject flourished as a result of judicious staff appointments
through the early 1990s.

In 1993, Massey University opened its new Albany campus at Auckland and Jeff was
fully supportive of the small Statistics group (consisting of Denny Meyer, Barry McDon-
ald, and myself) that was set up there in 1994 to support the offerings in Business and
in Information Sciences. The campus grew swiftly and so did the group, and when the
Faculty of Information and Mathematical Sciences went out of existence as part of uni-
versity restructuring in 1997 Jeff was appointed as Foundation Head of the Institute of
Information and Mathematical Sciences which was (and continued to be) based on the
Albany campus. Both Statistics in particular and Information Sciences in general flour-
ished under Jeff ’s leadership, and when Jeff stepped down as Head in 2002, he continued
to lead the Statistics group at Albany.

Those of us who have been part of Statistics at Massey University have been fortunate
to benefit from Jeff ’s leadership, vision, and collegiality over the past 17 years, and we owe
him a huge debt of thanks in making Statistics the success it is at Massey University.

Howard Edwards
Programmes Director for Information Sciences

July, 2007
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A Personal Note to Jeff J. Hunter on His Retirement by Shayle Searle

What would mathematically bring together a Markov chain enthusiast and a linear mod-
els devotee? The link for Jeff and me is generalized inverse matrices. And it is of no small
importance that we are also both New Zealanders each with an off-shore Ph.D., both en-
joy travel and for more than twenty years have had much pleasure in being guests in each
other’s homes. For a variety of reasons, some legitimate and some patently transparent,
I have been fairly inactive statistically since retiring twelve years ago. Hence, I cannot, in
the time made available to me, offer anything new, as much as I would like to be in a
position to do so. Retirement for me has been, and is, a delight, especially for relaxingly
doing things other than statistics. I sincerely hope that my good friend Jeff and his wife
Hazel get the same pleasure from it as I do. All good wishes to you both.

Emeritus Professor Shayle Searle
April, 2007

Paul Cowpertwait: Institute of Information and Mathematical Sciences, College of Sciences,
Massey University, Auckland, New Zealand
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Email address: g.c.wake@massey.ac.nz
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Email address: r.d.anderson@massey.ac.nz

Howard Edwards: Institute of Information and Mathematical Sciences, College of Sciences,
Massey University, Auckland, New Zealand
Email address: h.edwards@massey.ac.nz

Shayle Searle: Department of Biological Statistics and Computational Biology,
Cornell University, Ithaca, NY 13101, USA
Email address: srs24@cornell.edu
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Marked Continuous-Time Markov Chain Modelling of
Burst Behaviour for Single Ion Channels

Frank G. Ball, Robin K. Milne, and Geoffrey F. Yeo
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Recommended by Graeme Charles Wake

Patch clamp recordings from ion channels often show bursting behaviour, that is, pe-
riods of repetitive activity, which are noticeably separated from each other by periods of
inactivity. A number of authors have obtained results for important properties of theoret-
ical and empirical bursts when channel gating is modelled by a continuous-time Markov
chain with a finite-state space. We show how the use of marked continuous-time Markov
chains can simplify the derivation of (i) the distributions of several burst properties, in-
cluding the total open time, the total charge transfer, and the number of openings in a
burst, and (ii) the form of these distributions when the underlying gating process is time
reversible and in equilibrium.

Copyright © 2007 Frank G. Ball et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Movement of ions across biological membranes is selectively controlled by specialised
protein molecules, called ion channels, which thereby regulate many aspects of cell func-
tion. The many kinds of ion channels vary in location, size, chemical structure and func-
tion; see, for example, Sakmann and Neher [1]. Usually, ion conduction occurs through
a single aqueous pore having a gate that is controlled, for example, by a neurotransmitter,
voltage, or membrane tension. Understanding the behaviour of ion channels is impor-
tant in the study of cell regulation and its pathologies; certain diseases and drugs may
affect behaviour of particular channels, and consequently cell functioning. Recordings of
the ion flux (tiny current of the order of a few picoamperes) from a single channel are
possible through the patch clamp technique (Hamill et al. [2]). At typical recording time
resolution, channel gating appears instantaneous, and at any particular time the chan-
nel is in one of its stable conductance levels; the simplest channel types exhibit just two,
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commonly termed open (conducting) and closed (nonconducting), though some have
multiple conductance levels.

Gating behaviour of a single ion channel is usually modelled by a continuous-time
homogeneous finite-state Markov chain; see Colquhoun and Hawkes [3]. (Other back-
ground and references can be gleaned from the work of Sakmann and Neher [1].) Two
complications often need to be addressed in such modelling: because each conductance
level may arise from several states, there may be aggregation of states into conductance
classes which partition the state space into open and closed states in the case of just
two conductance levels; also, because of inherent limitations of the recording procedure,
very brief sojourns in a class may not be observable (see, e.g., Ball et al. [4] and Hawkes
et al. [5]).

Periods of repetitive open channel activity known as bursts are often present in a single
channel record, and these are noticeably separated from each other by periods of inactiv-
ity. Essentially, a burst is a sequence of periods during which the channel is open together
with the intervening short closed times, commonly called gaps; neighbouring bursts are
separated by much longer closed times, termed interburst sojourns. Two types of burst
have been studied: theoretical bursts depend on a partitioning of the closed states into
short-lived and long-lived states; empirical bursts depend on closed-times being classified
as short or long according to whether they do not or do exceed some specified critical time
tc. In practice, from a single channel record only empirical bursts can be determined, and
some of their global properties (such as total charge transfer—see Section 4.2) may be less
sensitive to problems caused by missed brief sojourns than individual open and closed so-
journs. Furthermore, activity within a burst is likely to come from only one channel even
when there are several channels in the patch; consequently data from within empirical
bursts are often used for statistical analyses (see, e.g., Colquhoun et al. [6] and Beato et al.
[7]). Ball et al. [8, 9] have discussed other reasons for studying bursts.

For a channel with two conductance levels, Colquhoun and Hawkes [3] showed, un-
der diagonalisability assumptions, that the distributions of the duration, total open time,
and number of openings in a theoretical burst are each linear combinations of (resp.) ex-
ponential or geometric distributions, and that the numbers of these components can be
related to the structure of the underlying gating process. Empirical bursts were first con-
sidered by Colquhoun and Sakmann [10]; later studies include Ball [11], Li et al. [12],
and Yeo et al. [13].

Ball et al. [8, 9] developed a multivariate semi-Markov framework for analysing burst
properties of multiconductance channels, that encompassed both theoretical and empiri-
cal bursts in a unified fashion, and investigated the form of distributions of burst proper-
ties when the underlying channel is in equilibrium and time reversible. (In the absence of
a free energy source, any plausible model of channel gating should be time reversible, see
Laüger [14].) The aim of the present paper is to show how the results in Ball et al. [8, 9]
can be accessed more easily through a marked continuous-time Markov chain (cf. He and
Neuts [15]) which is derived from the underlying continuous-time Markov model de-
scribing the channel gating behaviour by deleting closed sojourns and concatenating the
open sojourns; the marks allow transitions corresponding to the deleted closed sojourns
to be labelled according to whether they are gaps or interburst periods. Concatenated
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processes have been used previously to explain some burst properties; see, for example,
Colquhoun and Hawkes [3, pages 20–22] and Ball et al. [8, pages 192-193], [9, page 217].
However, they have not been used previously to provide a systematic approach like that
developed in the present paper for derivation of burst properties.

Some background and basic notation for Markov modelling of a single ion channel is
given in Section 2, along with definitions of bursts and the key marked continuous-time
Markov chain. Section 3 develops some fundamental structural properties of transition-
rate matrices and equilibrium distributions relevant for study of bursts, and shows that
the key marked process inherits time reversibility from the underlying process. Section 4
then presents derivations for some particular burst properties, the total open time, total
charge transfer, and number of openings during a burst. In addition, it summarizes re-
sults for other properties, such as the time spent in and the number of visits to a subclass
of the open states during a burst. Section 5 makes concluding remarks about some ex-
tensions, the advantages and disadvantages of the present approach relative to previous
ones, and other applications.

Throughout this paper, vectors and matrices are rendered in bold, all vectors are col-
umn vectors, and “�” denotes transpose, which is used to express row vectors. Further-
more, I denotes an identity matrix, 1 a column vector of ones, and 0 a matrix (vector) of
zeros, dimensions of these being clear from their context.

2. Background and notation

We assume that the gating mechanism of a single ion channel is modelled by an ir-
reducible homogeneous continuous-time Markov chain {X(t)} = {X(t) : t ≥ 0}, with
finite-state space E = {1,2, . . . ,n}, transition-rate matrix Q = [qi j], and equilibrium dis-
tribution π = [π1,π2, . . . ,πn]�. The state space is partitioned as E = O∪ C, where O =
{1,2, . . . ,nO} and C = {nO + 1,nO + 2, . . . ,n} correspond to the channel being open and
closed, respectively. The closed states are further partitioned as C = S∪ L, where S =
{nO + 1,nO + 2, . . . ,nO + nS} and L = {nO + nS + 1,nO + nS + 2, . . . ,n} are the short-lived
and long-lived closed states, respectively. Let nC = n−nO be the number of closed states
and nL = n−nO−nS = nC −nS be the number of long-lived closed states.

The transition-rate matrix Q may be partitioned in various ways according to the
problem under consideration, for example, by the open and closed classes O and C, or by
the open, short-lived closed and long-lived closed classes O, S, and L, giving, respectively,

Q =
[
QOO QOC

QCO QCC

]
=
⎡
⎢⎣
QOO QOS QOL

QSO QSS QSL

QLO QLS QLL

⎤
⎥⎦ . (2.1)

Corresponding partitions are used for the equilibrium distribution π, that is, π� =
[π�

O,π�
C]= [π�

O,π�
S ,π�

L].
We now give formal definitions of the two types of burst. For a theoretical burst, a

sojourn of {X(t)} in the class C is classified as an interburst sojourn if it contains a visit
to L, and is classified as a gap if it is purely within the class S. The interburst sojourns
are used to partition the channel record into bursts. Thus, a given burst begins at the
start of the first O sojourn following an interburst sojourn, and ends at the start of the
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subsequent interburst sojourn. An empirical burst is defined by specifying a critical time
tc > 0 and classifying sojourns in C of duration > tc as interburst sojourns and those of
duration ≤ tc as gaps. A given burst is then defined as for a theoretical burst but with this
new definition of interburst sojourns and gaps.

Some basic results for aggregated continuous-time Markov chains, required in the se-
quel, are now summarized. For t ≥ 0, let PC(t)= [pCi j(t)], where

pCi j(t)= P
(
X(t)= j, X(u)∈ C for 0≤ u≤ t | X(0)= i) (i, j ∈ C). (2.2)

Then, a standard forward argument (see, e.g., Colquhoun and Hawkes [3, pages 9, 10])
shows that

PC(t)= exp
(
QCCt

)
(t ≥ 0), (2.3)

where exp(QCCt)=
∑∞

k=0 t
kQk/k! denotes the usual matrix exponential.

Suppose that X(0) ∈ C and let TC = inf{t > 0 : X(t) ∈ O} denote the time elapsing
until the channel enters an open state. Then TC has (matrix) probability density function
given by

f TC (t)= exp
(
QCCt

)
QCO (t > 0), (2.4)

where f TC (t)= [ f TCi j (t)] with

f TCi j (t)= d

dt
P
(
TC ≤ t, X

(
TC
)= j | X(0)= i) (i∈ C, j ∈O). (2.5)

Hence, if PCO = [pCOi j ], where pCOi j = P(X(TC)= j | X(0)= i) (i∈ C, j ∈O), then

PCO =
∫∞

0
f TC (t)dt =

∫∞
0

exp
(
QCCt

)
QCO dt =

(−Q−1
CC

)
QCO. (2.6)

Note that QCC is nonsingular since C is a transient class (as {X(t)} is irreducible), and
hence by Asmussen [16, page 77] all the eigenvalues of QCC have strictly negative real
parts.

Let {X̃(t)} be the process obtained from {X(t)} by deleting all closed sojourns and
concatenating the open sojourns; see Figures 2.1(a) and 2.1(b). The process {X̃(t)} is a
continuous-time Markov chain, with state space O. Let Qcat

OO = [qcat
i j ] denote the

transition-rate matrix for concatenated open-to-open transitions; that is, for i, j ∈O, qcat
i j

is the rate that, given the channel is in state i, it leaves the open states and subsequently
reenters the open states via state j. Then it follows from (2.6) that

Qcat
OO =QOC

(−Q−1
CC

)
QCO. (2.7)

Thus {X̃(t)} has nO×nO transition-rate matrix, Q̃ say, given by

Q̃ =QOO +QOC

(−Q−1
CC

)
QCO. (2.8)
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[
O

S

L

1

2
3

4

X
(t

)
a b c d

t

Interburst Burst Interburst Burst

(a)

1
2X̃

M
(t

)

a b c d

t

I G G I

(b)

1
2

2G
2I

X̃
A

(t
) a

b c

d

t

(c)

Figure 2.1. (a) Partial realization of {X(t)} based on O = {1,2}, S = {3}, and L = {4}, with q13 =
q31 = q14 = q41 = 0 and all other entries of Q nonzero. (For corresponding state space graph see
Figure 3.1(a).) Labels a, b, c, d indicate open sojourns immediately preceded by a closed sojourn (al-
lowing these to be tracked in parts (b) and (c)). Also indicated are (theoretical) burst and interburst
periods. (b) Corresponding realization of {X̃M(t)}, that is, realization from (a) after omission of gaps
and interburst sojourns, concatenation of neighbouring (open) sojourns, and addition of marks I
and G to indicate (preceding omitted) interburst sojourn or gap. Corresponding realization of {X̃(t)}
is obtained by omitting marks. (c) Corresponding realization of augmented process {X̃A(t)} (as in-
troduced following proof of Theorem 3.2). This requires two states, denoted 2G and 2I , additional to
states 1 and 2; these carry information previously indicated by marks I and G in (b).

It is easily verified that Q̃ satisfies Q̃1= 0, so it is a proper transition-rate matrix. To see
this, start with Q̃1 = QOO1 +QOC(−Q−1

CC)QCO1. Expanding Q1 = 0 in partitioned form
yields QOO1 +QOC1= 0 and QCO1 +QCC1= 0. The latter implies that (−Q−1

CC)QCO1= 1,
whence Q̃1= 0 using the former.

Finally, let {X̃M(t)} be defined analogously to {X̃(t)} except that whenever a closed so-
journ of {X(t)} is deleted, the corresponding transition of {X̃(t)} (which may not involve
a change of state) is marked G or I , according to whether the closed sojourn of {X(t)} is
a gap or an interburst sojourn; see Figure 2.1(b).
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3. Basic results

The transition-rate matrix, Q̃, of {X̃(t)} can be decomposed as Q̃=QO +QG +QI , where
QO corresponds to transitions of {X(t)} purely within O (i.e., without any deletion and
concatenation), and QG and QI to transitions which result from deleted sojourns which
were gaps and interburst sojourns, respectively.

Theorem 3.1. For both types of burst,

QO =QOO. (3.1)

For a theoretical burst,

QG =QOS

(−Q−1
SS

)
QSO, (3.2)

QI =−
[
QOL +QOS

(−Q−1
SS

)
QSL

][
QLL +QLS

(−Q−1
SS

)
QSL

]−1[
QLO +QLS

(−Q−1
SS

)
QSO

]
.

(3.3)

For an empirical burst,

QG =QOC

(−Q−1
CC

)(
I − eQCCtc

)
QCO, (3.4)

QI =QOC

(−Q−1
CC

)
eQCCtcQCO. (3.5)

Proof. The off-diagonal elements of (3.1) are clear; since Q̃ is a proper transition matrix,
the diagonal elements of (3.1) follow, respectively, for each type of burst once (3.2) and
(3.3), or (3.4) and (3.5), have been established.

For a theoretical burst, (3.2) follows from (2.7) with C replaced by S. To prove (3.3),
consider an alternative concatenation of {X(t)} in which sojourns in S are deleted unless
they are gaps. This yields a continuous-time Markov chain {X ′(t)} say, with transition-
rate matrix Q′ having partitioned form

Q′ =
⎡
⎢⎣
Q′OO Q′OS Q′OL
Q′SO Q′SS 0
Q′LO 0 Q′LL

⎤
⎥⎦ . (3.6)

Now, arguing as for (2.8), Q′LL = QLL + QLS(−Q−1
SS )QSL. Also Q′OL = QOL +

QOS(−Q−1
SS )QSL, where the first term corresponds to transitions directly from O to L and

the second to transitions that involve an intervening sojourn in S. Similarly,Q′LO =QLO +
QLS(−Q−1

SS )QSO. It then follows as in (2.7), withC replaced by L, thatQI=Q′OL(−Q′LL)−1Q′LO,
yielding (3.3).

For an empirical burst, using (2.4),QG=
∫ tc

0 QOCeQCCtQCOdt andQI=
∫∞
tc QOCeQCCtQCOdt;

hence (3.4) and (3.5) follow. �

The process {X̃(t)} inherits irreducibility from {X(t)}, so {X̃(t)} possesses an equi-
librium distribution, π̃ say (of dimension nO). It is intuitively clear that

π̃ = (π�
O1
)−1

πO, (3.7)



Frank G. Ball et al. 7

since concatenating closed sojourns does not affect the long-term relative proportions of
time that {X(t)} spends in the different open states. More formally, it is easily verified
that π̃�

Q̃ = 0. For example, for empirical bursts, π�
OQ̃ = π�

OQOO + π�
OQOC(−Q−1

CC)QCO.
Now, π�Q = 0, since π is the equilibrium distribution of {X(t)}, and expanding this in
partitioned form yields π�

OQOC + π�
CQCC = 0, so π�

OQOC(−Q−1
CC)QCO = π�

CQCO. Hence,
π�
OQ̃ = π�

OQOO +π�
CQCO = 0, since π�Q = 0. Thus π̃�

Q̃ = 0, as required. A similar argu-
ment holds for theoretical bursts.

Recall that {X(t)} is reversible if and only if the detailed balance conditions

πiqi j = πjqji (i, j ∈ E) (3.8)

are satisfied. Let W = diag(π) be the diagonal matrix whose entries on the diagonal are
those of π. Then (3.8) can be written as

W1/2QW−1/2 = (W1/2QW−1/2)�. (3.9)

Expanding (3.9) in partitioned form yields (cf. Fredkin et al. [17]) that if A ⊆ E and
WA = diag(πA) then

W1/2
A QAAW

−1/2
A = (W1/2

A QAAW
−1/2
A

)�
, (3.10)

while if A,B ⊂ E are disjoint then

W1/2
A QABW

−1/2
B = (W1/2

B QBAW
−1/2
A

)�
. (3.11)

Theorem 3.2. For both theoretical and empirical bursts, if {X(t)} is reversible, then so are
{X̃(t)} and {X̃M(t)}.
Proof. Again this is clear on intuitive grounds. For a formal proof we show that detailed

balance holds for the three types of transition in {X̃M(t)}, that is, that W̃
1/2
QOW̃

−1/2
,

W̃
1/2
QGW̃

−1/2
, and W̃

1/2
QIW̃

−1/2
are all symmetric, where W̃ = diag(π̃). Note that, be-

cause of (3.7), it is sufficient to show that W1/2
O QOW

−1/2
O , W1/2

O QGW
−1/2
O , and

W1/2
O QIW

−1/2
O are all symmetric. Setting A = O in (3.10) and recalling (3.1) shows that

W1/2
O QOW

−1/2
O is symmetric for both types of burst.

For theoretical bursts, using (3.2),

W1/2
O QGW

−1/2
O =W1/2

O QOSW
−1/2
S

[
W1/2

S (−QSS)W
−1/2
S

]−1
W1/2

S QSOW
−1/2
O , (3.12)

which is symmetric, because of (3.10) with A = S and (3.11) with A = O and B = S. A
similar argument shows that W1/2

O QIW
−1/2
O is symmetric.

For empirical bursts, noting that −Q−1
CC(I − eQCCtc)=∑∞

k=1Q
k−1
CC t

k
c /k! ,

W1/2
O QGW

−1/2
O =W1/2

O QOCW
−1/2
C

[ ∞∑
k=1

(W1/2
C QCCW

−1/2
C )k−1tkc /k!

]
W1/2

C QCOW
−1/2
O ,

(3.13)

which is symmetric, because of (3.10) with A = C and (3.11) with A = O and B = C.
Similarly, W1/2

O QIW
−1/2
O is symmetric. �



8 Journal of Applied Mathematics and Decision Sciences

3

4

1 2

O O

S

L

(a)

2G

2I

1 2

(b)

Figure 3.1. State space graphs based onO = {1,2}, S= {3}, and L= {4}, with q13 = q31 = q14 = q41 =
0 and all other entries ofQ nonzero. (a) State space graph for underlying process. (b) State space graph
for augmented process corresponding to (a); note that only states 1, 2, and additional states 2G and 2I

are required in this case. The augmented process is clearly nonreversible; for example, state 1 can be
reached from, but not followed by, 2G or 2I .

The marked process {X̃M(t)} could in principle be modelled by augmenting the state
space of {X̃(t)} to indicate whether the current state was immediately preceded by an-
other open state, a deleted gap, or a deleted interburst sojourn. This augmented process,
{X̃A(t)} say, is a continuous-time Markov chain. Suppose that {X(t)} has state space
graph as in Figure 3.1(a). In this example, since state 1 cannot be reached directly from
either state 3 or state 4, only states 1 and 2, and two additional states, 2G and 2I (say), are
required for the augmented process. Figure 3.1(b) gives the state space graph and shows
the nonreversibility of this augmented process; see Figure 2.1(c) for a typical (partial) re-
alization of {X̃A(t)}, corresponding to those for {X(t)} and {X̃M(t)} in Figures 2.1(a) and
2.1(b). In general, the augmented process requires a state space which is up to three times
the size of that of the marked process: {1,2, . . . ,nO, 1G,2G, . . . ,nGO, 1I ,2I , . . . ,nIO} (say).
Hence, this approach would not be so useful because, as well as increasing the size of
the state space, such an augmented process need not be reversible.

Let {Jk} be the discrete-time Markov chain that records the entry state of successive
bursts, that is, the state of {X̃M(t)} immediately following successive I-marked transi-

tions. The transition matrix of {Jk} is PB =−Q̃−1
O QI , where Q̃O =QO +QG. (By analogy

with (2.3), the (matrix) probability that {X̃M(t)} does not have an I-transition in (0, t]

is exp(Q̃Ot), so PB =
∫∞

0 exp(Q̃Ot)QI dt = −Q̃
−1
O QI . The matrix Q̃O is nonsingular be-

cause its eigenvalues have strictly negative real parts, since exp(Q̃Ot)→ 0 as t→∞). Note
that {Jk} also inherits irreducibility from {X(t)}, though the state space of {Jk} may be a
proper subset of O, for example, if there are open states which cannot be entered directly
from C. If {Jk} is also aperiodic, as is necessarily the case when Q is such that qi j > 0 if
and only if qji > 0 (a condition that is satisfied by most physically plausible channel gating
models and by all time reversible models), then {Jk} possesses an equilibrium distribu-
tion, ψ = [ψ1,ψ2, . . . ,ψnO]� say, where ψi is the equilibrium probability that a burst begins
in state i. (If the state space of {Jk} is a proper subset of O, then some of the elements of
ψ are zero.)

Lemma 3.3. The equilibrium distribution ψ of {Jk} is given by ψ� = π�
OQI /(π

�
OQI1).
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Proof. Recall that Q̃ = Q̃O +QI and, using (3.7), that π�
OQ̃ = 0. Thus π�

OQI =−π�
OQ̃O, so

using PB =−Q̃−1
O QI gives π�

OQIPB = π�
OQI . Hence ψ�PB = ψ�, as required. �

The equilibrium distribution in Lemma 3.3 is intuitively clear in view of (3.7) and
the fact that a burst is immediately preceded by an I-transition of {X̃M(t)}. Alternative
expressions for ψ have been given by, for example, Colquhoun and Hawkes [3, Equation
(3.2)] for theoretical bursts, and Ball [11, Equation (3.9)] and Li et al. [12, Equation
(2.10)] for empirical bursts.

4. Properties of bursts

4.1. Total open time during a burst. Suppose that {X̃M(t)} is in equilibrium. Then the
times of I-transitions of {X̃M(t)} form a stationary point process. Let TO denote the
length of a typical interval in this point process (i.e., the time between two successive
I-transitions) and let UO denote a typical excess lifetime (i.e., the time from an arbi-
trary time point until the next I-transition of {X̃M(t)}). Note that, because in {X̃M(t)} all
closed sojourns have been omitted and the open sojourns concatenated, TO gives the total
open time during a typical burst. Since {X̃M(t)} is in equilibrium, the survivor function,
FUO(t) say, of UO is given by

FUO(t)= π̃� eQ̃Ot 1 (t > 0). (4.1)

Thus, by the standard relationship between the distributions of a typical lifetime and a
typical excess lifetime of a stationary point process, the pdf of TO, fTO(t) say, is given by

fTO(t)= μTOF′′UO
(t)= μTO π̃�

Q̃
2
O eQ̃Ot 1 (t > 0), (4.2)

where, with D+ denoting right-hand derivative, μTO = E[TO] = [−D+FUO(0)]−1 =
(−π̃�

Q̃O1)−1; cf. Ball and Milne [18].
Now, suppose that {X(t)}, and hence {X̃(t)}, is time reversible. Then

FUO(t)= 1�W̃ eQ̃Ot 1= 1�W̃
1/2
W̃

1/2
eQ̃Ot W̃

−1/2
W̃

1/2
1 (t > 0). (4.3)

Now, using the series expression for the matrix exponential, W̃
1/2

eQ̃Ot W̃
−1/2 =

exp(W̃
1/2
Q̃OW̃

−1/2
t). Further, W̃

1/2
Q̃OW̃

−1/2 = W̃
1/2

(QO +QG)W̃
−1/2

is symmetric as

{X̃M(t)} is time reversible. Hence, W̃
1/2
Q̃OW̃

−1/2
admits the spectral representation

W̃
1/2
Q̃OW̃

−1/2 =
nO∑
i=1

λi xix
�
i , (4.4)

where λ1,λ2, . . . ,λnO are the eigenvalues of Q̃O, which are all real (as W̃
1/2
Q̃OW̃

−1/2
is

symmetric) and strictly negative, and x1,x2, . . . ,xnO is a corresponding orthonormal set
of right eigenvectors.
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Substituting (4.4) into (4.3) yields

FUO(t)=
nO∑
i=1

αi eλit (t > 0), (4.5)

where, for i = 1,2, . . . ,nO, αi = 1�W̃
1/2
xix

�
i W̃

1/2
1 = (x�i W̃

1/2
1)2 ≥ 0. Thus, if {X(t)} is

time-reversible and in equilibrium, thenTO is distributed as a mixture of at most nO nega-
tive exponential random variables; this distribution is obtained from [9, Equation (3.17)]
by Ball et al. (by taking their c = 1).

4.2. Total charge transfer during a burst. For i ∈ O, let ci denote the current when
X(t) = i, that is, when the channel is in open state i. The total charge transfer during
a burst is the integral of the current over the burst, which is given by

∫ TO
0 cX̃(t)dt, as-

suming that the burst starts at t = 0 and the current is zero when X(t) ∈ C. Suppose
that ci > 0 (i ∈ O). Let {X̂(t)} and {X̂M(t)} denote the random time-changed versions
of {X̃(t)} and {X̃M(t)}, respectively, obtained by running the clock at rate c−1

i when
X̃(t) = i (i ∈ O). Let C = diag(c), where c = (c1,c2, . . . ,cnO)�. The transition-rate ma-
trix, Q̂ say, of {X̂(t)} admits the decomposition Q̂ = Q̂O + Q̂G + Q̂I , where Q̂O = C−1QO,
Q̂G = C−1QG, and Q̂I = C−1QI . It is easily verified that {X̂(t)} has equilibrium distribu-
tion, π̂ say, given by π̂� = (π̃�

C1)−1π̃
�
C, and that {X̂M(t)} is time reversible if and only if

{X̃M(t)} is time reversible.
Let T̂O be the time elapsing between two successive I-transitions of {X̂M(t)}, that is,

the total charge transfer over a typical burst (since all closed sojourns have been omitted
and the open sojourns concatenated). Then, in equilibrium, the distribution of T̂O is

given by (4.2), with π̃ replaced by π̂, Q̃O replaced by ˜̂QO = Q̂O + Q̂G, and μTO replaced by

μ̂TO =−(π̂�
O
˜̂QO1)−1. Further, it follows as in Section 4.1 that if {X(t)} is time-reversible,

then, in equilibrium, T̂O is distributed as a mixture of at most nO negative exponential
random variables; see [9, Equation (3.17)] by Ball et al.

4.3. Number of openings during a burst. Let NO be the number of openings in a burst.
Note that NO = k if and only if, in {X̃M(t)}, the number of G-marks between two succes-
sive I-marks is k− 1. The (substochastic) transition matrix between two successive marks
in {X̂M(t)} is −Q−1

O QG if the second mark is a G, and −Q−1
O QI if the second mark is an I .

Thus, in equilibrium, and using Lemma 3.3,

P
(
NO = k

)= (π�
OQI1

)−1
π�
OQI

(−Q−1
O QG

)k−1(−Q−1
O QI

)
1 (k = 1,2, . . .). (4.6)

Suppose that {X(t)}, and hence {X̃M(t)}, is time reversible. The strictly positive def-
inite matrix −W1/2

O QOW
−1/2
O is then symmetric, so (−QO)−1/2 exists and AO defined by
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AO =W1/2
O (−QO)−1/2W−1/2

O is symmetric. Thus,

P
(
NO = k

)
= (π�

OQI1
)−1

1�WOQI

(−QO)−1/2[− (QO

)−1/2
QG

(−QO

)−1/2]k−1(−QO

)−1/2
QI1

= (π�
OQI1

)−1
1�W1/2

O W1/2
O QI

(−QO

)−1/2
W−1/2

O

[
W1/2

O

(−QO

)−1/2
QG

(−QO

)−1/2
W−1/2

O

]k−1

×W1/2
O

(−QO

)−1/2
QIW

−1/2
O W1/2

O 1.
(4.7)

The matrix W1/2
O (−QO)−1/2QG(−QO)−1/2W−1/2

O = AO(W1/2
O QGW

−1/2
O )AO is symmetric

and positive (semi-) definite (noting that the eigenvalues of QG are nonnegative for both
types of burst) and hence admits the spectral representation

W1/2
O

(−QO

)−1/2
QG

(−QO

)−1/2
W−1/2

O =
nO∑
i=1

ρiyiy
�
i . (4.8)

Further, the eigenvalues satisfy 0≤ ρi < 1 (i= 1,2, . . . ,nO) as the matrix on the left in (4.8)
is similar to the substochastic matrix −Q−1

O QG. Substituting (4.8) into (4.7) yields

P
(
NO = k

)= nO∑
i=1

βiρ
k−1
i (k = 1,2, . . .), (4.9)

where βi=(π�
OQI1)−11�W1/2

O W1/2
O QI(−QO)−1/2W−1/2

O yiy
�
iW

1/2
O (−QO)−1/2QIW

−1/2
O W1/2

O 1.
Now, as {X̃M(t)} is reversible,

W1/2
O QI

(−QO

)−1/2
W−1/2

O =W1/2
O QIW

−1/2
O AO

= [AOW1/2
O QIW

−1/2
O

]�
= [W1/2

O

(−QO

)−1/2
QIW

−1/2
O

]�
.

(4.10)

Thus,

βi =
(
π�
OQI1

)−1[
1�WOQI

(−QO

)−1/2
W−1/2

O yi
][

1�WOQI

(−QO

)−1/2
W−1/2

O yi
]� ≥ 0,

(4.11)

so if {X(t)} is time-reversible and in equilibrium then NO is distributed as a mixture of
at most rank(QG) geometric random variables; cf. [9, Equation (3.28)] by Ball et al.

4.4. Other properties. Various other properties of bursts may be obtained by using ap-
propriate marked processes. For example, suppose that nO > 1 and consider a proper
subset A⊂O of the class O of open states. Let TA be denoting the time {X̃(t)} spends in
A between two successive I-transitions. (e.g., ifA denotes the open states that have a spec-
ified conductance level, then TA is the total time the channel spends at that conductance
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level during a typical burst.) Let B =O\A. Now partition Q̃O and ψ , giving, respectively,

Q̃O =
[
Q̃AA Q̃AB

Q̃BA Q̃BB

]
, ψ� = [ψ�

A,ψ�
B

]
. (4.12)

Then, in equilibrium, the probability that the channel visits A during a burst is given by
P(TA > 0) = ψ�

A1 +ψ�
B(−Q̃BB)−1Q̃BA1. Note that it is possible for this probability to be

strictly less than one, in which case P(TA = 0) > 0.
The distribution of TA | TA > 0 can be obtained by a further concatenation of {X̃(t)},

in which sojourns in B are deleted. Denote the resulting process by {X∗(t)} and the cor-
responding marked process by {X∗M(t)}. The transition-rate matrix of {X∗(t)}, Q∗ say,

admits the decomposition Q∗ =Q∗A +Q∗G +Q∗I . Moreover, if Q̃
∗
A =Q∗A +Q∗G, then argu-

ing as for (2.8) yields Q̃
∗
A = Q̃AA + Q̃AB(−Q̃−1

BB)Q̃BA.
Suppose that {X∗M(t)} is in equilibrium and letUA denote a typical excess lifetime from

an arbitrary time until the next I-transition of {X∗M(t)}. Then UA has survivor function

given by FUA(t) = (π∗)� eQ̃
∗
At 1 (t > 0), where π∗ = (π�

A1)−1πA is the equilibrium distri-
bution of {X∗(t)}. Arguing as in Section 4.1 now shows that, if {X(t)} is time reversible
and in equilibrium, then TA | TA > 0 is distributed as a mixture of at most nA negative
exponential random variables, where nA is the number of states in A. The distribution
of the total charge transfer whilst in A during a burst can be determined using a random
time transformation of {X∗M(t)}, as in Section 4.2; details concerning this distribution are
given in Ball et al. [9, Equations (3.13) and (3.14)].

Let NA denote the number of visits to A during a burst. The distribution of NA com-
prises a point mass at zero, given by P(NA = 0) = P(TA = 0), and a (possibly defec-
tive) distribution on the positive integers. Moreover, similar arguments to those used
in Section 4.3 show that if {X(t)} is time-reversible and in equilibrium, then NA |NA > 0
is distributed as a mixture of at most rank(PA) geometric random variables, where PA =
(−Q̃−1

AA)Q̃AB(−Q̃−1
BB)Q̃BA is the (substochastic) transition matrix for entry states of two

successive visits to A during a burst; for details see [9, Equation (3.32)] by Ball et al.

5. Concluding remarks

In previous papers, notably Ball et al. [4, 8, 9], we have derived results about ion channel
gating behaviour by exploiting structure arising from relevant Markov renewal processes
that are embedded in the underlying Markov or Markov renewal process which describes
the channel gating. Especially, in [8, 9] the focus was on derivation of burst properties.
The present paper has shown that many of the results of those two papers can be obtained
much more simply using a suitably marked continuous-time Markov chain which is de-
rived from the assumed underlying continuous-time Markov chain by deleting closed
sojourns and concatenating the open sojourns. Other results in those papers, such as
the form of autocorrelation functions of burst properties, can also be obtained using the
present framework but details are omitted owing to space restrictions. The clarity of the
derivations appears to result from them accessing precisely the details of structure which
are relevant in each situation, and from exploiting two other aspects. First, the use of ex-
cess lifetimes simplifies the derivation of properties of sojourn time pdfs, since they avoid
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the use of burst entry process equilibrium distributions and consequently lead more di-
rectly to mixtures of exponentials. Second, the expression for the burst entry process
equilibrium distribution given in Lemma 3.3 (that arises naturally in the present setting)
leads to more efficient derivations of mixture properties than in [9]. The approach of the
present paper is not readily applicable when knowledge of the time spent in the deleted
closed sojourns is required (e.g., in determining the distribution of burst duration). Also,
the method is generally less useful in cases where the channel gating behaviour is mod-
elled by a Markov renewal process that is not a continuous-time Markov chain; the con-
catenated process is a Markov renewal process but its semi-Markov kernel usually does
not take a simple form. Concatenated processes may also prove useful in other areas of
application of aggregated processes, such as system reliability (cf. Csenki [19]).
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Markov chain theory plays an important role in statistical inference both in the for-
mulation of models for data and in the construction of efficient algorithms for infer-
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come popular recently. Using mark-recapture models as an illustration, we show how
Markov chains can be used for developing demographic models and also in developing
efficient algorithms for inference. We anticipate that a major area of future research in-
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better demographic models that account for all uncertainties in the analysis. A key issue
is determining when the chains produced by Markov chain Monte Carlo sampling have
converged.
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1. Introduction

Markov chains, and related stochastic models, have long played an important role in help-
ing ecologists understand population dynamics. In the main, this has been through the
application of probability models to the problem of predicting the realized dynamics of
plant and animal populations over time. In this context, the challenge is to construct
models that are relatively simple, in terms of the numbers of parameters and the re-
lationships between (and among) parameters and state variables, and yet that are able
to provide a reasonable approximation to the sorts of dynamics typically observed in
nature.
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The development of these models has been driven by ecologists motivated by an in-
terest in underlying theory, and ecologists with applications in mind. These applications
are generally based on inference about the long-term dynamics of the study population.
Examples include predicting the time to possible extinction for threatened populations
or establishing safe levels of harvest for exploited populations.

Complementary to the problem of developing theoretical models that predict the tem-
poral dynamics of populations has been the development of a body of theory for estimat-
ing population parameters. This estimation theory is the main emphasis in the remainder
of this contribution. Almost universally, these models treat quantities such as population
size at time t, Nt, or the numbers of individuals born between t and t+Δt, as fixed quan-
tities to be predicted (here we use prediction in the sense of predicting the value of an
unobserved realization of a random variable as well as future realizations). In contrast,
the population models discussed above treat these same quantities as random variables
whose behavior we are interested in describing.

A particularly important class of estimation models for population dynamics is the
mark-recapture model [1]. Mark-recapture data comprises repeated measures on indi-
vidual animals in the population obtained through samples of animals drawn from the
population (usually) at discrete sample times t1, . . . , tk. Because the capture process is im-
perfect, not all animals in the population at time t j are captured, and a model is required
to describe this process of repeated imperfect captures.

In the simplest case, the population is regarded as closed to births and deaths and so
the population size at time t j is the same for all k sample occasions. Studies of the dynam-
ics of the population can then be based on repeated experiments generating a sequence
of abundance estimates.

A more interesting class of models is the open population models in which individuals
may enter (through birth or immigration) or leave (through death or emigration) during
the interval (t1, tk). Here the challenge is to model the sequence of captures of animals in
terms of parameters of demographic interest. These are usually survival probabilities Sj ,
and parameters that describe the birth process. Quantities such as Nj , the abundance of
animals at the time of sample j, and Bj , the number of animals born between samples j
and j + 1, are then predicted from the model.

Traditionally, inference for mark-recapture models has been based on maximum like-
lihood. Importantly, demographic models for {Nt} have played no role in these estima-
tion models. Inference about the {Nt} process has instead been based on ad hoc methods
for summarizing sequences of estimates such as { ̂Nt}. Recently there have been many de-
velopments that apply Bayesian inference methods to mark recapture models based on
Markov chain Monte Carlo (MCMC). Here the utility of Markov chain theory appears
in a fundamentally different context to that described above for population modeling; it
arises as a tool for inference. An exciting feature of Bayesian inference methods based on
MCMC is that fitting complicated hierarchical models has become feasible. Hierarchi-
cal models provide a link between the demographic models and estimation models in a
way that should lead to better and more relevant inference. It is recent developments in
Markov chain theory, in particular Gibbs sampling [2] and reversible jump Markov chain
Monte Carlo [3], that allow this link to take place.
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Xi1 Xi2 Xi3 ��� Xik

Yi1 Yi2 Yi3 Yik

Figure 2.1. Directed acyclic graph for the hidden Markov model for mark-recapture data.

2. Open population capture-recapture models

Define ν as the total number of animals alive on at least one of the sampling occasions
t j ( j = 1, . . . ,k). Let Yij be the indicator that animal i (i = 1, . . . ,ν) is caught in sample j,
which takes place at time t j . Any animal that is caught for the first time in a particular
sample is marked with some form of unique tag and then released, with any recaptures
noted. The data are of the form y = {yi j} for i= 1, . . . ,u. and j = 1, . . . ,k, where uj is the
number of unmarked animals caught in sample j and u. =∑ j u j is the total number of
animals caught at least once.

For animal i, the set of values yi = {yi1, . . . , yik} is called the capture history and these
provide censored information on the time of birth and death. We know that the time
of birth occurred before the sample time corresponding to the first nonzero value of yi
and the time of death occurred sometime after the sample time corresponding to the last
nonzero value of yi.

2.1. Hidden Markov model. The problem with capture-recapture methods is that not
all animals in the population are caught; this causes the censoring of the birth and death
intervals. Define Xij as the indicator of the event that animal i is alive and in the study
population at time t j . If X = {xi j}, i = 1, . . . ,ν, j = 1, . . . ,k, were observed for an animal
population in which ν animals were ever alive and available for capture on at least one
of the k sample occasions, then inference about the parameters {Sj} and {βj} would be
straight-forward. It would also be straight-forward to calculate observed values of the
random variables Nj =

∑

i xi j .
Instead of observing xi j , we observe yi j with the joint distribution of the sequence of

pairs {Xij ,Yij} described by a hidden Markov model (Figure 2.1). Importantly, y does
not include the history given by the vector of k zeros associated with animals that were
available for capture at sometime during the experiment but never caught.

Conditional on the event that animal i is alive (and available for capture) on at least
one of the capture occasions t j , the sequence (Xi1, . . . ,Xik) can then be modeled as a three-
state Markov chain. Xij = 0 corresponds to the event that animal i has not yet entered the
population. Xij = 1 corresponds to the event that animal i is in the population and alive,
and Xij = 2 corresponds to animal i being dead. The possible transitions are 0→ 0, 0→ 1,
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1→ 1, 1→ 2, and 2→ 2. Define:
β0 as the probability that an animal is born before the start of the experiment,
given that it is alive at some time during the experiment,

βj as the probability that an animal is born between the times of sample j and
j + 1, given that it was available for capture at sometime during the experiment,

Sj as the probability that an animal alive at the time of sample j is still alive at the
start of sample j + 1.

Conditioning on the ν individuals that are alive and available for capture at sometime
during the experiment means that β0 +β1 + . . .+βk−1 = 1. If � is used to denote the event
that animal i is alive and available for capture at sometime during the experiment, then

Pr
(

Xi1 = xi1 |�
)=

⎧

⎨

⎩

β0, xi1 = 1,

1−β0, xi1 = 0,
(2.1)

and for j = 2, . . . ,k− 1,

Pr
(

Xij = xi j | xi j−1,�
)=

⎧

⎪

⎪

⎪

⎪

⎪
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⎪
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⎪
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⎨
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⎪

⎪
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⎪

⎪
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⎪

⎪

⎪

⎪

⎩

1, xi j = 2,xi j−1 = 2,

0, xi j = 1,xi j−1 = 2,

0, xi j = 0,xi j−1 = 2,

1− Sj , xi j = 2,xi j−1 = 1,

Sj , xi j = 1,xi j−1 = 1,

0, xi j = 0,xi j−1 = 1,

0, xi j = 2,xi j−1 = 1,

β′j−1, xi j = 1,xi j−1 = 0,

1−β′j−1, xi j = 0,xi j−1 = 0,

(2.2)

where β′j = βj/
∑k−1

h= j βh. Note that we exclude from the study population individuals that
are born and then die during (t j , t j+1). Clearly these individuals are invisible to the mark-
recapture experiment.

2.2. Observed data likelihood. A common assumption in mark recapture models is that
yi j|xi j is the outcome of a Bernoulli trial with probability pj if xi j = 1 or 0 otherwise.
That is, only those animals alive and in the population at the time of sample j are at risk
of being caught, which happens with probability pj . The standard approach to fitting this
model is to derive an observed data likelihood from the marginal distribution with pdf
[y | ν,S,β, p] which is described by summing up across all possible sample paths for X
that are compatible with the data (here we use the notation [y|x] to denote the pdf of the
distribution for the random variable Y , evaluated at y, conditional on X , evaluated at x).

Using the notation y = {yi j} (i= 1, . . . ,u.; j = 1, . . . ,k) and u= (u1, . . . ,uk)′ the likeli-
hood can be expressed as

[y | ν,S,β, p]= [u. | ν][u | u.,β,S][y | u,S, p], (2.3)
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where [u.|ν] describes a binomial distribution with index ν and parameter π0 and [u|u.]
a multinomial distribution with index u. and parameter vector ξ.

Both π0 and ξ are complicated functions of the parameters S and β that account for
the censoring of the birth times in y. If we let ψj denote the probability that an animal is
available for capture in sample j but has not yet been caught, then

ψj+1 = ψj
(

1− pj
)

Sj +βj (2.4)

for j = 2, . . . ,k− 1, with ψ1 = β0. Such an animal is first caught in sample j with proba-
bility ψj pj hence

π0 = 1−
t
∑

j=1

ψj pj ,

ξj =
ψj pj

1−π0
.

(2.5)

The term [y | u,S, p] describes the celebrated Cormack-Jolly-Seber model (see [4–6]).
If we index the first sample in which an animal i was caught by ri and the last sample in
which animal i was seen by li, then we can write

[y | u,S, p]=
u.
∏

i=1

li
∏

j=ri
p
yi j
j

(

1− pj
)1−yi j χli , (2.6)

where the term χj , which accounts for the censoring of time of death, can be defined
recursively as

χj =
⎧

⎨

⎩

1, j = k,

1− Sj + Sj
(

1− pj+1
)

χj+1, j = 1, . . . ,k− 1.
(2.7)

A nice feature of the observed data likelihood (2.3) is that it is straightforward to find
maximum likelihood estimators. [7] showed that the parameter ν is not identifiable, how-
ever the partial likelihood [u | u.,β,S][y | u,S, p] obtained by conditioning on u. contains
all practically useful information on the identifiable parameters in the model. Closed-
form solutions to the ML equations exist for all identifiable parameters in this partial-
likelihood.

The model can also be easily generalized to allow parameters to be individual-specific,
by introducing covariates, or to allow captures to depend on the earlier capture history
of the animal. The model (2.3) has also been extended by reparameterizing the model in
terms of per capita birth rate f j [7, 8] and an index to population growth rate [8]

λj = Sj + f j

= E
[

Nj+1 |Nj ,ν
]

E
[

Nj | ν
] .

(2.8)
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The complete model (2.3), which we refer to as the Crosbie-Manly-Arnason-Schwarz
model, was first described in [9] building on earlier work of [10]. It differs from the well-
known Jolly-Seber (JS) model ([5, 6]) in the way that captures of unmarked animals are
modeled. In the JS model, the terms

[u. | ν][u | u.] (2.9)

are replaced by

[u |U] (2.10)

and the elements of U = (U1, . . . ,Uk)′, where Uj is the number of unmarked animals in
the population at the time of sample j, are treated as unknown parameters to be es-
timated. While historically important, this approach does not allow the reparameteriza-
tions in terms of f j and λj described above as f j and λj cannot be written as deterministic
functions of the parameters Sj and βj . Also, the Uj parameters are of little demographic
interest although predictors of Nj and Bj exist.

2.3. Complete data likelihood. An alternative to using the observed data likelihood is to
describe the model in terms of the complete data likelihood (CDL) [11]. The CDL is the
likelihood of all data, both missing and observed. The observed data are

(i) the values yi j for all u. individuals that we observed at least once,
(ii) the censored information about X that we obtain from y.

The missing data are
(i) the unknown number of individuals that were available for capture but not

caught (we include this by specifying ν as a parameter),
(ii) the realized but unknown values of Xij , xi j .

Including both the observed and missing data gives the CDL that we can express as

[x, y | S,β, p,ν]= [y | p,x,ν][x | S,β,ν]. (2.11)

The CDL has been naturally factored into a term that describes how the data were cor-
rupted, [y | p,x,ν], and a term that models the underlying birth and death processes of
interest, [x | S,β,ν]. As for the observed data likelihood section, we model the corruption
by assuming that an individual that was alive in sample j (xi j = 1) was observed in sample
j (yi j = 1) with probability pj . We model the birth and death process as in the Markov
chain model for X described in Section 2.1.

Even though the CDL provides a natural approach to looking at the problem, we must
still integrate over the missing data in order to obtain valid inference. Computational
techniques such as Markov chain Monte Carlo (MCMC, discussed below) can be used
that iteratively integrate out all missing data, allowing models to be specified in terms
of the CDL. This means that in each iteration of the MCMC chain we need values for
the missing quantities x and ν (and all other parameters) that were obtained from the
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posterior distribution of all unknowns. One such MCMC algorithm we can use is Gibbs
sampling, described in the following section.

2.4. Markov chain Monte Carlo. The Gibbs sampler, also known as alternating condi-
tional sampling, is a remarkable algorithm for efficiently constructing a Markov chain
for complex joint probability distributions [Z1, . . . ,Zk | θ] by sampling from the full con-
ditional distributions [Zi | {Zj} j�=i,θ] of each component. The stationary distribution of
this Markov chain has the target density [Z1, . . . ,Zk | θ]. A particularly useful feature of
the Gibbs sampler is that the Markov chain can be constructed even though the target
joint probability density may only be known up to the normalizing constant. This has led
to a resurgence of interest in Bayesian inference which, historically, has been held back
by the need for high-dimension integration needed to normalize posterior probability
densities.

Here, we outline the construction of a Gibbs sampler whose target density is the CDL
described in the previous section. Once we have collected our mark-recapture data we
have data y, that is known; and the unknown are any parameters and any unknown re-
alized values of random variables of interest. For the Crosbie-Manly-Arnason-Schwarz
model (2.3), the parameters are p1, p2, . . . , pk; S1, . . . ,Sk−1, β0,β1, . . . ,βk−1, and ν. In addi-
tion unknown realized random variables of interest (might) include N1, . . . ,Nk, B0,B1, . . . ,
Bk−1.

Starting with (2.3) and specifying independent beta Be(αp,γp) prior distributions for
the parameters pj , we can show that the full conditional distribution for pj is a beta
Be(nj +αp,Nj − nj + γp) for j = 1, . . . ,k, and where nj is the total number of individuals
caught at time of sample j.

If we specify independent beta Be(αS,γS) prior distributions for the parameters Sj , we
obtain beta Be(Nj −Dj +αS,Dj + γS) full conditional distributions for j = 1, . . . ,k− 1.

If we specify independent beta Be(αβ′ ,γβ′) prior distributions for the parameters β′j , we

obtain beta Be(Bj +αβ′ ,N −
∑ j

h=0Bh + γβ′) full conditional distributions for j = 1, . . . ,k−
2 (note that β′k−1 = 1). If desired, we can transform the generated values of β′j to any other
birth parameter, such as βj or ηj . For example, βj , j = 0, . . . ,k− 1, is obtained by taking

βj =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

β′j , j = 0,

β′j

j−1
∏

h=0

(

1−β′h
)

, j = 1, . . . ,k− 2.
(2.12)

We also need to calculate the full conditional probability of the missing values of x.
This can be done a number of ways, but we choose to represent the information in x
by matrices that give the interval censored times of birth and death, denoted by b and
d, respectively. The value bi j = 1 means individual i was born between sample j and j +
1 with bi j = 0 otherwise. The value bi0 = 1 means the individual was born before the
study began. The value di j = 1 means that individual i died between sample j and j + 1
with di j = 0 otherwise. The value dik = 1 means the individual was still alive at the end
of the study. The assumptions about the underlying birth and death processes impose
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restrictions on the values of b and d,

k−1
∑

j=0

bi j = 1,
k
∑

j=1

di j = 1, di j − bi j ≥ 0∀i, j. (2.13)

The matrices b and d are censored. For the u. individuals that were ever observed we
know that they were not born after first capture, bi j = 0, j = ri, . . . ,k, where ri indexes the
sample in which animal i first appeared. Likewise we know that they did not die before
the last capture, di j = 0, j = 1, . . . , li, where li indexes the sample in which animal i last
appeared. For the ν− u. individuals that were never observed we have no information
about either b or d.

The full conditional distribution of the unknown values of b for individual i is a multi-
nomial distribution with probability vector γb, where

γbj =
ζbj

∑λbi −1
h=0 ζ

b
h

,

ζbj =βj
λbi −1
∏

h= j
Sh
(

1− ph
)

,

(2.14)

and λbi is the time of first capture ri for all individuals observed, and it is the last period in
which the individual was alive (obtained from d) for individuals i= u.+ 1, . . . ,ν that were
not observed.

The full conditional distribution of the unknown values of d for individual i is a multi-
nomial distribution with probability vector γd, where

γdj =
ζdj

∑t
h=λdi ζ

d
h

,

ζdj =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

j−1
∏

h=λdi
Sh

j
∏

h=λdi +1

(

1− ph
)(

1− Sj
)

, j < k,

j−1
∏

h=λdi
Sh

j
∏

h=λdi +1

(

1− ph
)

, j = k,

(2.15)

and λdi is the time of last capture li for all individuals observed, and it is the first period in
which the individual was alive (obtained from b) for individuals i= u.+ 1, . . . ,ν that were
not observed.

For the parameter ν we specify a discrete uniform prior distribution DU(0,κν). Ob-
taining a sample from the full conditional distribution for ν has two problems:

(1) the full conditional distribution is only known to a proportionality constant,
(2) the value of the parameter changes the dimension of other unknowns in the

model.
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Table 2.1. Summary statistics for fitting the Crosbie-Manly-Arnason-Schwarz model to the meadow
vole data. The statistic uj is the number of individuals caught in sample j, Rj is the number of indi-
viduals released following sample j, qj is the number of the Rj that were ever recaptured, and mj is
the number of marked animals caught in sample j.

Month uj = Rj qj mj

1 96 81 —

2 42 74 76

3 27 65 71

4 30 61 70

5 38 82 59

6 61 — 87

Table 2.2. Maximum likelihood estimates of identifiable parameters in the Crosbie-Manly-Arnason-
Schwarz model fitted to the meadow vole data.

95% C. I.

Parameter Estimate SE lower upper

S1 0.875 0.041 0.770 0.936

S2 0.659 0.049 0.559 0.747

S3 0.681 0.050 0.576 0.770

S4 0.619 0.050 0.518 0.710

p2 0.905 0.040 0.792 0.960

p3 0.855 0.047 0.737 0.925

p4 0.934 0.036 0.816 0.979

p5 0.909 0.039 0.800 0.961

f2 0.220 0.056 0.130 0.347

f3 0.253 0.062 0.152 0.391

f4 0.378 0.078 0.242 0.538

To overcome the first problem we can use a sampling scheme, such as the Metropolis-
Hastings algorithm, that allows us to sample from a distribution that we only know
up to the proportionality constant. The second problem requires an extension of the
Metropolis-Hastings algorithm called reversible jump Markov chain Monte Carlo [3]
where there is dimension matching to ensure reversibility of the Markov chain. Details
of the reversible-jump sampler are given in [11].

2.5. Example. We illustrate the use of the MCMC algorithm described in the previous
section by fitting the model (2.3) to meadow vole (Microtus pensylvannicus) data col-
lected at the Patuxent Wildlife Research Center, Laurel, Md, USA [12]. The meadow vole
population was trapped at one-month intervals; untagged animals were tagged and re-
leased, tagged animals had their identity recorded and were then released. The model
(2.3) can be fitted using sufficient statistics (Table 2.1) and closed-form solutions to the
ML equations [7]. The ML estimates (Table 2.2) and the posterior summaries from fit-
ting the model using the Gibbs sample algorithm (Table 2.3) of the previous section are
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Table 2.3. Posterior distribution summary statistics for the Gibbs sampler posterior simulations and
for the identifiable parameters in the Crosbie-Manly-Arnason-Schwarz model fitted to the meadow
vole data. Included are predictions of the abundances Nj at the time of each sample and Bj , the
number of individuals born in (t j , t j+1).

Quantile

Parameters Mean Median 0.025 0.5 0.975

S1 0.874 0.042 0.788 0.876 0.953

S2 0.659 0.049 0.563 0.659 0.755

S3 0.681 0.051 0.580 0.682 0.779

S4 0.616 0.050 0.517 0.616 0.711

f2 0.222 0.058 0.123 0.218 0.348

f3 0.257 0.064 0.147 0.252 0.397

f4 0.377 0.079 0.241 0.370 0.549

p2 0.886 0.043 0.791 0.891 0.956

p3 0.839 0.048 0.733 0.843 0.921

p4 0.913 0.041 0.819 0.919 0.975

p5 0.891 0.041 0.799 0.896 0.958

Realized random variables

N2 132.4 5.1 125 132 145

N3 116.3 5.1 108 116 128

N4 108.8 3.9 103 108 118

N5 108.1 3.7 103 107 117

B2 28.7 4.1 21 29 37

B3 29.3 3.4 22 29 36

B4 41.0 3.6 35 41 49

in close agreement. For the Gibbs sampler we used beta Be(1,1) priors for Si, pi, and β′i
with the fi parameters found deterministically as a function of the βi and Si parameters
[7]. We used a discrete uniform DU(200000) prior for ν.

A nice feature of the MCMC approach is that it is relatively simple to obtain a posterior
distribution for unobserved random variables of interest such as Ni and Bi, also reported
in Table 2.3. Predictions for these in a likelihood analysis must be based on method of
moment-type estimators as the Ni and Bi parameters do not explicitly appear in the like-
lihood function. Obtaining predictions using MCMC is straightforward with values sam-
pled from the posterior predictive distribution. In practice, we simply use the set of b and
d values obtained in the Markov chain and for each iteration compute the current value
of the variable of interest. For example, [11] show that

Nj =
ν
∑

i=1

( j−1
∑

h=0

bih−
j−1
∑

h=1

dih

)

. (2.16)

Progress of the Markov chains is instructive (Figure 2.2). Convergence of the Markov
chains for the identifiable parameters S1, . . . ,Sk−2; p2, . . . , pk−1; f2, . . . , fk−2 is rapid and the



R. J. Barker and M. R. Schofield 11

1

0.5

0
0 500 1000

S1

0.9
0.8
0.7

0 50000

S1

0.7 0.8 0.9

S1

1

0.5

0
0 500 1000

p2

0.9
0.8
0.7

0 50000

p2

0.7 0.8 0.9

p2

�103

1

0.5

0
0 500 1000

ν

350

300

250
0 50000

ν

300 320 340

ν

Figure 2.2. Gibbs sampler Markov chains for the first 1000 iterations (column of plots on left-hand
side), for 50 000 iterations following a discarded burn-in of 10 000 iterations (middle column of
plots) and posterior density plots (right-hand column of plots) for the identifiable parameters S1 and
p1 and the nonidentifiable parameter ν, for the Gibbs sampler posterior simulations from fitting the
Crosbie-Manly-Arnason-Schwarz model fitted to the meadow vole data.

chains appear well-mixed after a few thousand iterations. Even chains for nonidentifiable
parameters such as ν appear well mixed after a few thousand iterations.

3. Discussion

Markov chain theory plays an important role in statistical inference both in the formula-
tion of models for data and in the construction of efficient algorithms for inference. The
ability to compactly represent stochastic processes that evolve over time has meant that
Markov chain theory has played an important role in describing animal and plant pop-
ulation dynamics. The fact that each generation gives rise to the next makes the Markov
property a natural starting point in developing population models.

The role of the Markov chain in statistical inference is a much more recent devel-
opment. Although the Metropolis-Hastings algorithm first appeared in 1953 [13], with
roots back to the Manhattan project, and the Gibbs sampler in 1984 [2] MCMC entered
into widespread use in statistics only in the last 15 years. This followed [14] who illus-
trated the application of Gibbs sampling to a variety of statistical problems.

MCMC is particularly useful for fitting hierarchical models using Bayesian inference
methods. A simple example of a hierarchical model is one where we have two components
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to the model [Y | θ][θ | γ]. Here, conditional on parameters θ, the random variable Y has
density [Y | θ]. The parameters θ are themselves modeled as random variables and have
distribution with pdf [θ | γ]. In order to fit this model by a method such as maximum
likelihood (ML), we must find the marginal likelihood: �(θ | y] = ∫θ[y | θ][θ | γ]dθ. In
practice this integral is very difficult, if not practically impossible, in most cases of inter-
est. The equivalent Bayesian problem is to find the posterior marginal density [γ | y]∝
[Y | θ][θ | γ][γ] which involves essentially the same integral. However, MCMC allows us
to approximate a sample from the required density but we must specify a prior distribu-
tion from γ. Thus, Bayesian inference methods based on MCMC allows inference for the
model [Y | θ][θ | γ] but the same problem may be difficult or impossible using standard
ML theory.

In the context of mark-recapture modeling, the advent of MCMC has meant that it is
now possible to fit complex hierarchical models. Starting with a model such as (2.3), it is
relatively easy to add hierarchical structure. In the context of the hidden Markov model
described in Figure 2.1, we mean that it is relatively straightforward to add in components
that allow us to further model [X | β,S,ν]. These issues have been explored by [7, 11]. [7]
showed how the model (2.3) could be used to explore relationships among parameters
and in particular considered a hierarchical model in which it was assumed that survival
probabilities were related to per capita birth rates (functions of the β parameters). Such
a model would make sense when there were common environmental influences on both
survival probabilities and birth rates. Such an analysis is virtually impossible using ML
methods. Similarly, [11] showed how the CDL discussed above could be used in hier-
archical modeling, and in particular fit models in which there is feedback between the
unknown random variables Nj and survival Sj or per capita birth rates f j . The practical
benefit of hierarchical modeling is that a much richer class of models is available for the
ecologist to explore, and the advent of MCMC means that methods of inference are fully
able to incorporate all different sources of uncertainty in the analysis.

A particularly important technical issue with MCMC is that of convergence. A typical
problem in Markov chain theory is the determination of a stationary distribution given
the transition kernel. In MCMC, the problem is reversed, and is one of constructing a
transition kernel that has, as its stationary distribution, the target distribution of interest.
Under mild conditions, the Metropolis-Hastings algorithm and the Gibbs sampler as a
special case are methods of constructing transition kernels that have the required prop-
erty. An important practical problem is the development of rules for helping determine
when the chain has converged. Experience indicates that for some problems, convergence
can be rapid and in others it can be slow. Rapid convergence appears to be an associated
with likelihood functions that are well behaved. Methods for assessing convergence are ad
hoc, and generally based on informal graphical assessment (Figure 2.2) or computation
of simple statistics, such as the Brooks-Gelman-Rubin diagnostic statistic. There is sur-
prisingly little underlying theory about the rate at which Markov chains constructed in
MCMC should converge to the stationary distribution that can be applied to the practical
problems of MCMC. Clearly, time to stationarity will be a property of the model. Again,
observation indicates that problems for which the likelihood function are well behaved
tend to converge rapidly. The work in [15, 16] is important in this regard.
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To increase the reliability of modules, and thus of systems assembled from them, they
are frequently constructed using parallel load-sharing components. Examples include jet
engines, electrical power networks, and telecommunications networks. We consider the
situation when the components operate independently, but when any one of them fails,
the load of the failed component is instantaneously distributed among the working com-
ponents. The entire module fails when the last working component fails. We analyze the
survival probability and residual life expectancy of such modules. An obvious application
is to the case of the 1998 Auckland power supply failure in New Zealand.
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1. Introduction and motivation

Reliability systems often consist of several subsystems, which may be called modules. In
practical reliability analysis, one often considers first the reliability of each module, and
derives the reliability of the system as a whole. A classical example of such a system is a
combination of data transmission routers. Since, in many areas, the continuity of data
flow is of utmost importance, the system’s reliability is increased by incorporating re-
dundancy in the form of parallel components or subsystems. For instance, data transfers
between two points may be accomplished by multiple (identical or not) parallel routers,
with electricity supplied to each of the routers by several (identical or not) power units.

In general, we are interested in a module consisting K ≥ 2 parallel components. We
denote the lifetimes of the components by Tk, 1≤ k ≤ K , with survival functions Sk(t)=
P{Tk > t}, and hazard rate (HR) functions hk(t) =−S′k(t)/Sk(t), respectively. When one
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of the components fails, its load is distributed among the working components. The en-
tire module fails when the last working component fails; denote the module’s failure time
by M(K). The corresponding survival and mean residual life (MRL) functions are, re-
spectively,

SM(K)(t)= P
{
M(K) > t

}
,

μM(K)(t)= ISM(K)(t)
SM(K)(t)

,
(1.1)

where ISM(K)(t) =
∫∞
t SM(K)(x)dx. We next give a couple of illustrative examples, where

the need to estimate the above two functions is a natural one.

“Consider jet engines functioning under full load on a commercial air-
plane. One functioning jet engine is enough for a small airplane, while 2
engines are necessary for a big airplane. But for higher reliability, 2 en-
gines are functioning for the small airplane and 4 for the big airplane.
An engine controller manages the load sharing. When 2 engines func-
tion in a small airplane, the load on each is much less than when they
function alone. From the test data, the failure rate of the engines is re-
duced to 45% under half load. Similarly, if 4 engines are functioning for
a big airplane, the failure rate for each engine is reduced to 45%, while
if three engines are functioning, the failure rate is reduced to 75% . . . for
how long can the small and big airplanes fly before the reliability drops
below 0.9?” [1].

We see from this excerpt that it is natural to aim at estimating the airplane’s survival func-
tion SM(K)(t). We may also want to know for how long, on average, the airplane can still
stay in the air, for which we need to estimate the MRL function μM(K)(t). Of course, the
above questions are more mathematical idealizations than reflections of reality, but they
serve as conceptual examples of some of the types of problems in the area. In practice,
even large jets can land relatively safely without a single functioning engine [2, 3].

“The 1998 Auckland power crisis was an event that occurred in the Auck-
land, New Zealand, Central Business District. The area suffered a five-
week-long power outage in 1998. At the beginning of 1998, almost all of
downtown Auckland received electricity from the supplier Mercury En-
ergy via only four power cables, two of them were 40-year-old oil-filled
cables past their replacement date. One of the cables failed on 20 Janu-
ary, possibly due to the unusually hot and dry conditions, another on 9
February, and due to the increased load from the failure of the first ca-
bles, the remaining two failed on 19 and 20 February, leaving the central
business district (except parts of a few streets) without power” [4].

For a detailed account and analysis of the power crisis, see [5]. In this case, estimation
of the mean residual life is of utmost importance in deciding what emergency repair or
replacement activities may be (more) effective.

To get an initial feel about the module’s survival, HR, and MRL functions, we note that
if the failure of any one of the K components does not influence the HR functionsof the
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functioning components, then the module’s survival function SM(K)(t) can be written in
terms of the individual survival functions as 1−∏K

k=1(1− Sk(t)). The individual survival
functions Sk(t) can in turn be expressed using the corresponding HR functions hk(t) as
Sk(t) = exp{−∫ t0 hk(y)dy}. In the context of the present paper, due to the load-sharing
scenario, the dynamics of the entire module and thus of its survival and MRL functions
are quite different from those in the case of non-interacting parallel components.

There are a few closely related references on this topic. The reliability of load sharing
systems may be studied through positively dependent multivariate life distributions [6];
for positively dependent bivariate life distributions, we refer to [7, Section 9.2]. Another
approach of studying dependency among parallel components is by using interaction
schemes. For example, Murthy and Nguyen [8], and Murthy and Wilson [9] propose
and analyze an interaction scheme where, in a two-component system, the failure of one
component provokes the failure of another component with probability p, and thus does
not provoke with 1− p. Another failure interaction scheme in various generalities—we
follow a similar line of thought in the present paper—is where the failure of a component
modifies the HR function of the other components by not provoking its failure instan-
taneously but modifying its conditional time to failure [10–13]. These papers assume
piecewise constant failure rates, or various degrees of interchangeability and symmetry
in their components and/or redistribution schemes, whereas our results are presented
in complete generality, and include estimators for the MRL. Perhaps more importantly,
our work starts with the notion that there might be too few observations of failing entire
modules in order to derive desired statistical inferential results, but failure times of indi-
vidual module’s components might be more readily available (e.g., from laboratory-type
testing). Hence assuming the availability of such data, we then aim at deriving formu-
lae for the survival function—and thus, in turn, failure, MRL, and other functions—of
the entire module. In contrast, the aforementioned papers are concerned with estimating
the component failure rate function given the observed failure times of entire systems.
Note also that this problem can be considered [1, 12] in the context of a more general
system, the k-out-of-K :G, which, by definition, functions as long as there are at least k
(1≤ k ≤ K) components working. These papers consider specific distributions and load
sharing rules, with less generality than our results.

The remainder of the paper is organized as follows. In Section 2, we present the model,
notational conventions, and other mathematical formalities. Section 5 contains expres-
sions for the survival and MRL functions, SM(K)(t) and μM(K)(t), in terms of individual
components that work under the original or increased loads. The general results, Theo-
rems 5.1 and 5.2, are preceded in Section 3 by a detailed analysis of the case K = 2, which
is of interest in its own right, as well as for a more easily comprehended example of the
general theorems. Explicit examples of the K = 2 case are given in Section 4, where the
performance of parametric and nonparametric estimators of the survival and MRL func-
tions are examined.

Two of us (M.B. and C.D.L.) were fortunate enough to be colleagues of Jeff Hunter
when he occupied the Chair in Statistics at Massey University. Jeff ’s inaugural address
was on the subject of reliability and warranty analysis, and we hope he enjoys this sequel.
The many visits of the third author (R.Z.) to Massey University in PalmerstonNorth did
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not pass by without Jeff flying in from Auckland either to give an inspiring seminar on
Generalized Inverses and Stochastic Processes, or to enliven morning and afternoon teas.

2. Mathematical formalism

We assume that the failure times T1, . . . ,TK are independent, though not necessarily iden-
tically distributed, random variables. We work with continuous life-time distributions,
and hence assume that there are no multiple failures at any time as multiple failures can
occur only with zero probabilities. The first failure occurs at the time T1:K =min1≤k≤K Tk,
which is the first order statistic of T1, . . . ,TK . Let D be the first antirank of T1, . . . ,TK ,
which is (uniquely) defined by TD = T1:K . Hence the pair (D,T1:K ) tells us which of the
components {1, . . . ,K} fails first and at what time.

At the time T1:K , the load of the failed component D is instantaneously distributed
among the remaining K − 1 components, whose set we denote by Δ(1) = {1, . . . ,K} \ {D}.
Specifically, for every k ∈ Δ(1), the failure of the Dth component increases the HR func-

tion hk(t) of the kth (working) component by a function a(1)
D,k(t), where the superscript

(1) indicates that the redistribution has occurred (immediately) after the 1st failure.

Hence for every k ∈ Δ(1), we have the conditional-on-{T1, . . . ,TK} HR function h(1)
k (t)=

(hk(t) + a(1)
D,k(t))1{T1:K≤t}, where the indicator 1{T1:K≤t} is equal to 1 when the statement

T1:K ≤ t is true and is 0 otherwise. Let T(1)
k , k ∈ Δ(1) be conditionally-on-{T1, . . . ,TK} in-

dependent random variables whose conditional-on-{T1, . . . ,TK} distributions have the
HR functions h(1)

k (t).
Before proceeding further, let us discuss intuitively what we have introduced so far.

First, note that h(1)
k (t) = 0 for all t < T1:K , which implies that the random variables T(1)

k ,
k ∈ Δ(1) do not take on any value in the interval [0,T1:K ]. Hence in addition to the ‘origi-
nal’ situation with K random variables T1, . . . ,TK , we have constructed an “artifact” with
K − 1 random variables T(1)

k , k ∈ Δ(1), which are “activated” at the moment t = T1:K and

governed by the HR functions hk(t) + a(1)
D,k(t). When one of the Δ(1) components fails, we

create new K − 2 “artificial” components. Proceeding in a similar fashion, we specify the
mechanism that governs the life of the entire module and allows us, via a conditioning
technique, to determine its survival, HR, and MRL functions. We next describe this pro-
cedure rigorously and also introduce additional notation to be used throughout the rest
of the paper.

To begin, we find it convenient to use the notation T(0)
1 , . . . ,T(0)

K instead of T1, . . . ,TK ,

respectively, andD(0) instead ofD. Next, starting with the “initial” random variables T(0)
k ,

we recursively, for all i= 1, . . . ,K − 2, define the following quantities.

(i) The random variables D(i) and T(i)
1:(K−i), which respectively specify the (i+ 1)st

failed component and its failure time, which are related via (or defined by) the

equations T(i)
D(i) = T(i)

1:(K−i) ≡mink∈Δ(i) T(i)
k , where Δ(0) = {1, . . . ,K} and, for any i≥

1, the set Δ(i) = Δ(i−1) \ {D(i−1)} consists of all working components immediately
before the (i+ 1)st failure.

(ii) Conditionally-on-{D(0), . . . ,D(i),T(i)
1:(K−i)} independent random variables T(i+1)

k ,

k ∈ Δ(i), whose conditional-on-{D(0), . . . ,D(i),T(i)
1:(K−i)} distributions have the HR



Mark Bebbington et al. 5

functions

h(i+1)
k (t)=

(

hk(t) +
i+1∑

m=1

a(m)
D(m−1),k(t)

)

1{T(i)
1:(K−i)≤t}. (2.1)

Hence, T(i+1)
k is the lifetime of the kth component after i+ 1 failed components, which are

D(0), . . . ,D(i). The random variable T(i+1)
k starts its life at the time t = T(i)

1:(K−i).
Note that, since there are K components in the module, the largest value of i is K − 1

as there are no functioning components after the Kth failure. When i= K − 2, then there

is only one “surviving” random variable T(K−1)
k , whose index k is the (only) member of

the singleton set {1, . . . ,K} \ {D(0), . . . ,D(K−2)}; denote the member by κ(K − 1). Hence

we have M(K) = T(K−1)
κ(K−1), and so the module’s survival function SM(K)(t) can be written

as SM(K)(t)= P{T(K−1)
κ(K−1) > t}. With the help of the latter equation, the corresponding for-

mula for the MRL function μM(K)(t) can be expressed in terms of the survival function

of the random variable T(K−1)
κ(K−1) using (1.1). Of course, one can also derive an analogous

expression for the HR function via the equation hM(K)(t)=−S′M(K)(t)/SM(K)(t). Section 3
provides a detailed analysis of the survival and MRL functions when K = 2.

3. Survival and MRL functions for two components

In this section, we give a detailed analysis of the survival function SM(2)(t) of a module
with two (possibly different) components whose independent lifetime variables are T1

and T2 with (possibly different) survival functions S1(t) and S2(t), respectively. At the
time T1:2 =min(T1,T2), one of the two components fails; let it be i. As a result of the
failure, the HR function of the working component k = not(i) increases by a function

a(1)
i,k (t), for all t ≥ T1:2. (Note that not(i)= 3− i as we consider the K = 2 case.) Let S+i

k (t)
be the survival function of the component k when it is working under its own load plus
the load of the failed component i, which in our current two-component situation means
that the component k takes on the whole module’s load.

There is a possibility that we might have a sufficiently large number of failure times of
such modules, in which case we estimate SM(2)(t) using the empirical survival function,
or fit a parametric distribution to the failure times. Failing a sufficiently large number of
modules may not, however, be feasible, due to time and/or cost considerations. However,
assessing the reliability of individual components under normal and/or increased loads
can be quite a feasible task, say, in a laboratory environment. Quantitative accelerated
life testing techniques can be used to speed up the process (cf., e.g., Nelson [14]). For the
reasons noted above, in the next theorem, we express SM(2)(t) in terms of the “individual”
survival functions Si(t) and S+i

not(i)(t), for i= 1 and 2.

Theorem 3.1. We have that

SM(2)(t)=−
2∑

i=1

S+i
not(i)(t)

∫

1{y≤t}
Snot(i)(y)

S+i
not(i)(y)

dSi(y) + S1(t)S2(t). (3.1)

We can estimate the survival functions S1(t) and S2(t) on the right-hand side of (3.1)
by exposing (e.g., in a laboratory environment) the two components to their “normal”
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loads, and we can also estimate the survival functions S+2
1 (t) and S+1

2 (t) by exposing the
corresponding components to the load of the entire module. In the nonparametric ap-
proach, we estimate the survival functions Si(t), i = 1,2 as Ŝi(t) = (1/ni)

∑ni
�=1 1{Ti(�)>t},

where Ti(1), . . . ,Ti(ni) are independent copies of the random variable Ti ∼ Si. (For a given
random variable X , it is customary to use the notation X1, . . . ,Xn for copies of X . Since we
already use subscripts for other good reasons, throughout the paper, we useX(1), . . . ,X(n)
to denote copies of X .) Next, we use independent copies T+i

j (1), . . . ,T+i
j (mj) of the

random variable T+i
j ∼ S+i

j to construct an estimator for S+i
j (t), which is Ŝ+i

j (t) =
(1/mj)

∑mj

�=1 1{T+i
j (�)>t}. Thus, we have the nonparametric estimator of the module’s sur-

vival function

ŜM(2)(t)=
2∑

i=1

Ŝ+i
not(i)(t)

1
ni

ni∑

�=1

1{Ti(�)≤t}
Ŝnot(i)

(
Ti(�)

)

Ŝ+i
not(i)

(
Ti(�)

) + Ŝ1(t)Ŝ2(t). (3.2)

To derive an analogous expression for the MRL function μM(2)(t) in terms of the four
“individual” survival functions, we need to derive an analogous expression for the inte-
gral ISM(2)(t), which can be done by either integrating the right-hand side of (3.1) or by
using general Theorem 5.2 with K = 2. This gives us the following corollary.

Corollary 3.2. We have that

ISM(2)(t)=
2∑

i=1

∫∫
(
x−max(y, t)

)
+dS

+i
not(i)(x)

Snot(i)(y)

S+i
not(i)(y)

dSi(y)

−
2∑

i=1

∫

(y− t)+Snot(i)(y)dSi(y),

(3.3)

where c+ = c if c > 0 and c+ = 0 otherwise.

Equations (3.1) and (3.3) can be used for constructing parametric estimators for the
MRL function μM(2)(t). If, however, we want to use a nonparametric estimator, then we
can construct it with the help of the non-parametric estimator for the integral ISM(2)(t),

ÎSM(2)(t)=
2∑

i=1

1
nimnot(i)

ni∑

�=1

mnot(i)∑

v=1

(
T+i

not(i)(v)−max
(
Ti(�), t

))
+

Ŝnot(i)
(
Ti(�)

)

Ŝ+i
not(i)

(
Ti(�)

)

+
2∑

i=1

1
ni

ni∑

�=1

(
Ti(�)− t)+Ŝnot(i)

(
Ti(�)

)
.

(3.4)

We now define a nonparametric estimator for the MRL function μM(2)(t) as

μ̂M(2)(t)= ÎSM(2)(t)

ŜM(2)(t)
. (3.5)

The above expressions for the module’s survival and MRL functions are based on the
survival functions of individual components under their original and increased loads. If
desired, however (and we will find it convenient in Section 4), the expressions can easily
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be rewritten in terms of the corresponding HR functions. This can be done using the

equations Sk(t) = exp{−∫ t0 hk(x)dx}, S+i
k (t) = exp{−∫ t0 hk(x) + a(1)

i,k (x)dx}, and so forth,
or simply using (A.6) derived in the appendix. (Indeed, the proof of general Theorem 5.1

is based on HR functions.) Clearly now, we have Sk(t)/S+i
k (t)= exp{∫ t0 a(1)

i,k (x)dx}, which
is convenient when dealing with the right-hand sides of (3.1) and (3.3). (Of course, we
have i�= k.)

4. Examples

As an example, consider the simple but important case when the module’s two compo-
nents have exponential lifetimes. (For a recent discussion of tests for exponentiality, we
refer to Mimoto and Zitikis [15] and references therein.) That is, we assume the sur-
vival function Sk(t)= exp(−λkt) and, consequently, the HR function hk(t)= λk. (We will
later find it also convenient to use the notation S(t;λk) instead of Sk(t), and the notation
f (t;λk) for the corresponding density function.) Since the exponential HR function is
constant, it leaps to mind to choose the redistribution function also as a constant; hence
we assume that a(1)

i,k (t)≡ αi,k. Under this assumption and using (3.1), we obtain the sur-
vival function

SM(2)(t)=
(

1 + t
2∑

i=1

λiΔ
(
t;λi−αi,k

)
e(λi−αi,k)t

)

e−(λ1+λ2)t, (4.1)

where

Δ(t;c)=
⎧
⎪⎨

⎪⎩

1
ct

(
1− e−ct) if c �= 0,

1 if c = 0.
(4.2)

Irrespectively of the sign of c, the quantity Δ(t;c) is nonnegative, and so we have the
bound SM(2)(t) ≥ e−(λ1+λ2)t, which can be rewritten as SM(2)(t) ≥ P{min(T1,T2) > t};
hence the obvious fact is that the module functions at least until the time of the first
failure.

We next derive the HR function, which is

hM(2)(t)=
(
λ1 + λ2

)−∑2
i=1 λie

(λi−αi,k)t + t
(
λ1 + λ2

)∑2
i=1 λiΔ

(
t;λi−αi,k

)
e(λi−αi,k)t

1 + t
∑2

i=1 λiΔ
(
t;λi−αi,k

)
e(λi−αi,k)t

. (4.3)

Integrating (4.1), we obtain an expression for ISM(2)(t) and, in turn, for the MRL func-
tion:

μM(2)(t)= 1 +
∑2

i=1 λi
/(
λk +αi,k

)
e(λi−αi,k)t + t

∑2
i=1 λiΔ

(
t;λi−αi,k

)
e(λi−αi,k)t

(
1 + t

∑2
i=1 λiΔ

(
t;λi−αi,k

)
e(λi−αi,k)t

)(
λ1 + λ2

) . (4.4)

We will next further examine two special cases.

4.1. Scenario A. If we suppose that the components are functionally identical but the

HR functions differ because the load is shared unequally, then we can have a(1)
i,k (t) ≡ λi.
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Figure 4.1. Representative shapes of the failure rate of a module consisting of two exponential com-
ponents in parallel with failure rates λ1,λ2 : λ1 + λ2 = 1. The solid lines are for the independent case
[16, Equation 2.2] with the upper, middle, and lower curves having λ1 = 0.5,0.3,0.1, respectively. The
dashed curve is Scenario A (λ1 = 0.5,0.3,0.1) and Scenario B with λ1 = 0.5, the dotted curve is Sce-
nario B with λ1 = 0.3, and the dot-dashed curve is Scenario B with λ1 = 0.1.

(As a special case, we may have λ1 = λ2 =, say, λ.) Equations (4.1) and (4.3) yield the
survival and HR functions

SM(2)(t)=
(
1 + t

(
λ1 + λ2

))
e−(λ1+λ2)t, hM(2)(t)= t

(
λ1 + λ2

)2

1 + t
(
λ1 + λ2

) , (4.5)

while (4.4) gives the MRL function

μM(2)(t)= 2 + t
(
λ1 + λ2

)

(
1 + t

(
λ1 + λ2

))(
λ1 + λ2

) . (4.6)

4.2. Scenario B. As an alternative to Scenario A, we might suppose that the components
are sharing the load equally but the component reliabilities differ. In this case, we set

a(1)
i,k (t)≡ λk, assuming without loss of generality that λ1 �= λ2, as the case of equality (i.e.,
λ1 = λ2 =, say, λ) is covered by Scenario A. As before, (4.1) and (4.3) give

SM(2)(t)= λ1e−2λ2t − λ2e−2λ1t

λ1− λ2
, hM(2)(t)= 2λ1λ2

(
e−2λ2t − e−2λ1t

)

λ1e−2λ2t − λ2e−2λ1t
. (4.7)

Finally, from (4.4), we have the MRL function

μM(2)(t)= λ2
2e
−2λ1t − λ2

1e
−2λ2t

2λ1λ2
(
λ2e−2λ1t − λ1e−2λ2t

) . (4.8)

Figure 4.1 shows the behaviour of the HR function for various combinations of λ1, λ2,
normalized so that λ1 + λ2 = 1.
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In both scenarios, the survival, HR, and MRL functions depend only on λ1 and λ2,
which are parameters of individual components and can, therefore, be estimated by fail-
ing the components under, for example, their “usual” loads a number of times in a labo-
ratory environment. Assuming that we have such data

t1(1), . . . , t1(n1)− observations of T1 ∼ S
(•;λ1

)
,

t2(1), . . . , t2
(
n2
)− observations of T2 ∼ S

(•;λ2
)
,

(4.9)

the MLEs of λi, i = 1,2 are the standard ones: λ̂i = ni/si, where si =
∑ni

�=1 ti(�). However,
we may have more information about failures under the original and redistributed load.

First, consider the case of individual components. Suppose that the reliability of indi-
vidual components can be determined in a laboratory environment, providing ni obser-
vations of Ti, and mi observations of T+i

not(i). Hence in addition to data (4.9), we now also
have

t+1 (1), . . . , t+1 (m1)− observations of T+2
1 ∼

⎧
⎪⎨

⎪⎩

S
(•;λ1 + λ2

)
Scenario A,

S
(•;2λ1

)
Scenario B,

t+2 (1), . . . , t+2
(
m2
)− observations of T+1

2 ∼

⎧
⎪⎨

⎪⎩

S
(•;λ1 + λ2

)
Scenario A,

S
(•;2λ2

)
Scenario B.

(4.10)

(It would be more precise to write t+not(i)
i (�) instead of t+i (�), but the latter is simpler and

we expect no confusion.) The likelihood is the product of the n1 +n2 +m1 +m2 individual
likelihoods. Denote s+i =

∑mi
�=1 t

+
i (�). Then in Scenario A, the loglikelihood function is

logL(λ)= n1 logλ1− λ1s1 +n2 logλ2− λ2s2

+
(
m1 +m2

)
log

(
λ1 + λ2

)− (λ1 + λ2
)(
s+1 + s+2

)
.

(4.11)

Solving the system of equations (∂/∂λi) logL(λ)= 0, i= 1,2 yields the MLEs for i= 1,2,

λ̂i = b±√b2− 4ac
2a

, (4.12)

where a = (si − s3−i)(si + s+1 + s+2 ), b = (si − s3−i)(ni +m1 +m2) + (n1 + n2)(si + s+1 + s+2 ),
and c = ni(n1 +n2 +m1 +m2). In Scenario B, we have the loglikelihood function

logL(λ)= n1 logλ1− λ1s1 +n2 logλ2− λ2s2

+m1 log
(
2λ1

)
+m2 log

(
2λ2

)− 2λ1s
+
1 − 2λ2s

+
2 ,

(4.13)

which yields the MLEs for i= 1,2,

λ̂i = ni +mi

si + 2s+i
. (4.14)

Now, consider the case where we have data on failures of the entire module. We have
already noted the “trivial” situation when the module’s survival, HR, and MRL function
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can be estimated using modules’ observed failures, provided that the number of such ob-
servations is sufficiently large. If, however, the sample size is not large, then in order to
increase the reliability of statistical inference, we want to use every possible bit of infor-
mation. Hence assume that we have n independent observations of the random vector
(D,T1:2,T+D

not(D)), where D is the first failed component, T1:2 is the time of the first failure,
and T+D

not(D) is the time of module’s failure. (Note that not(D)= 3−D.) Our data are the
three-dimensional vectors (d(�), t(�), t+(�)), � = 1, . . . ,n, which are independent observa-

tions of the random vector (D,T1:2,T+D
not(D)). (It would be more precise to write t+d(�)

not(d(�))(�)
instead of t+(�), but the latter is less cumbersome and we expect no confusion.) In addi-
tion, we assume that we also know n1 =

∑n
�=1 1{d(�)=1}, the number of times component

1 has failed first. The frequency of component 2 failing first is, therefore, n2 = n− n1.
Whether we are dealing with Scenario A or B, the (unknown) parameter is λ = (λ1,λ2),
and we need to estimate it. In Scenario A, we have the likelihood function

L(λ)=
n∏

�=1

f
(
t(�);λd(�)

)
S
(
t(�);λ3−d(�)

)
f
(
t+(�)− t(�);λ1 + λ2

)

= (λ1 + λ2
)n
λn1

1 λ
n2
2 exp

{

− (λ1 + λ2
) n∑

�=1

t+(�)

}

.

(4.15)

Solving the system of equations (∂/∂λi) logL(λ) = 0, i = 1,2 yields the MLEs for i = 1,2,

λ̂i = 2ni/
∑n

�=1 t
+(�). In Scenario B, the likelihood function is

L(λ)=
n∏

�=1

f
(
t(�);λd(�)

)
S
(
t(�);λ3−d(�)

)
f
(
t+(�)− t(�);2λ3−d(�)

)

= (2λ1λ2
)n

exp

{

− (λ1 + λ2
) n∑

�=1

t(�)

}

exp

{

− 2
n∑

�=1

λ3−d(�)
(
t+(�)− t(�)

)
}

,

(4.16)

which gives the MLEs, for i= 1,2,

λ̂i = n
∑n

�=1 t(�) + 2
∑n

�=1 1{d(�)=3−i}
(
t+(�)− t(�)

) . (4.17)

We are now able to compare the performance of the parametric estimators obtained
from (3.1) and (3.3), and the nonparametric estimators (3.2) and (3.5), using a small
simulation study. We suppose that λ1 = 0.001, λ2 = 0.002, and that we have n1 = n2 =
m1 =m2 observations of failure times of individual components in a laboratory setting,
allowing us to estimate the parameters from (4.12) or (4.14). Figure 4.2 compares the
estimated survival and MRL functions for Scenario A, while Figure 4.3 shows the same for
Scenario B. We can see in both examples that the estimators appear to be unbiased, except,
possibly, the nonparametric estimator of the MRL, where there may be underestimation.
The variation is larger, as expected, for the nonparametric estimators, and increases over
time, except in the case of the parametric estimate of the MRL, where the 90-percentile
band appears to be of approximately constant width.
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Figure 4.2. The estimated survival (left) and MRL (right) functions for Scenario A. Parametric es-
timates are shown in the top panel, nonparametric in the bottom. The true curve is a solid line. The
mean of 100 repetitions is shown as a dashed line, while the dotted lines are the 5th and 95th per-
centiles.
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Figure 4.3. The estimated survival (left) and MRL (right) functions for Scenario B. Parametric es-
timates are shown in the top panel, nonparametric in the bottom. The true curve is a solid line. The
mean of 100 repetitions is shown as a dashed line, while the dotted lines are the 5th and 95th per-
centiles.

5. Survival and MRL functions for more than two components

In this section, we consider the survival and MRL functions of modules with arbitrar-
ily, K ≥ 2, many components. We will need additional notation. Let S

+(i, j)
k (t) denote the

survival function of a working component k when two other components, i and j, have
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failed. Likewise, we interpret the survival functions S+(i1,...,iK−2)
iK−1

(t), S+(i1,...,iK−1)
not(i1,...,iK−1)(t), and so

forth.

Theorem 5.1. For every K ≥ 2, we have SM(K)(t)= S∗M(K)(t) + S∗∗M(K)(t), where

S∗M(K)(t)= (−1)K−1
∑

i1∈{1,...,K}
···

∑

iK−1∈{1,...,K}\{i1,...,iK−2}
S+(i1,...,iK−1)

not(i1,...,iK−1)(t)
∫

···
∫

1{yK−1≤t}

×
∏

q∈{1,...,K}\{i1,...,iK−1}

S+(i1,...,iK−2)
q

(
yK−1

)

S+(i1,...,iK−1)
q

(
yK−1

)1{yK−1>yK−2}dS
+(i1,...,iK−2)
iK−1

(
yK−1

)

···

×
∏

q∈{1,...,K}\{i1}

Sq
(
y1
)

S+i1
q
(
y1
)1{y1>0}dSi1

(
y1
)
,

S∗∗M(K)(t)= (−1)K−1
∑

i1∈{1,...,K}
···

∑

iK−1∈{1,...,K}\{i1,...,iK−2}

∫

···
∫

1{yK−1>max(yK−2,t)}

× S+(i1,...,iK−2)
not(i1,...,iK−1)

(
yK−1

)
1{yK−1>yK−2}dS

+(i1,...,iK−2)
iK−1

(
yK−1

)

×
∏

q∈{1,...,K}\{i1,...,iK−2}

S+(i1,...,iK−3)
q

(
yK−2

)

S+(i1,...,iK−2)
q

(
yK−2

)1{yK−2>yK−3}dS
+(i1,...,iK−3)
iK−1

(
yK−2

)

···

×
∏

q∈{1,...,K}\{i1}

Sq
(
y1
)

S+i1
q (y1)

1{y1>0}dSi1
(
y1
)
.

(5.1)

The proof of Theorem 5.1 is deferred from the appendix.
In the following theorem, we consider the integral ISM(K)(t) for arbitrary K ≥ 2, from

which we can arrive at the MRL function μM(K)(t) via the equation μM(K)(t) =
ISM(K)(t)/SM(K)(t).

Theorem 5.2. For every K ≥ 2, we have ISM(K)(t)= IS∗M(K)(t) + IS∗∗M(K)(t), where

IS∗M(K)(t)= (−1)K
∑

i1∈{1,...,K}
···

∑

iK−1∈{1,...,K}\{i1,...,iK−2}
∫

···
∫
(
x−max

(
yK−1, t

))
+dS

+(i1,...,iK−1)
not(i1,...,iK−1)(x)

×
∏

q∈{1,...,K}\{i1,...,iK−1}

S+(i1,...,iK−2)
q

(
yK−1

)

S+(i1,...,iK−1)
q

(
yK−1

)1{yK−1>yK−2}dS
+(i1,...,iK−2)
iK−1

(
yK−1

)

···

×
∏

q∈{1,...,K}\{i1}

Sq
(
y1
)

S+i1
q
(
y1
)1{y1>0}dSi1

(
y1
)
,
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IS∗∗M(K)(t)= (−1)K−1
∑

i1∈{1,...,K}
···

∑

iK−1∈{1,...,K}\{i1,...,iK−2}
∫

···
∫
(
yK−1− t

)
+S

+(i1,...,iK−2)
not(i1,...,iK−1)

(
yK−1

)
1{yK−1>yK−2}dS

+(i1,...,iK−2)
iK−1

(
yK−1

)

×
∏

q∈{1,...,K}\{i1,...,iK−2}

S+(i1,...,iK−3)
q

(
yK−2

)

S+(i1,...,iK−2)
q

(
yK−2

)1{yK−2>yK−3}dS
+(i1,...,iK−3)
iK−1

(
yK−2

)

···

×
∏

q∈{1,...,K}\{i1}

Sq
(
y1
)

S+i1
q
(
y1
)1{y1>0}dSi1

(
y1
)
.

(5.2)

The proof of Theorem 5.2 is again deferred to the appendix. We have by now estab-
lished all the necessary formulas to derive the MRL function μM(K)(t) via original and
increased loads of individual components.

Explicit formulae for Theorems 5.1 and 5.2 in the case of three and four components
are available from the authors. The case K = 4 features prominently in our motivating
examples in Section 1.

6. Summary

In this paper, we argue that reliability of modules with load-sharing components can be
expressed in terms of the reliabilities of individual components exposed to various levels
of load (normal and increased). This is of practical interest since the reliability of individ-
ual components can be conveniently estimated in a laboratory environment using either
a natural aging regime (if time permits) or employing, for example, a quantitative ac-
celerated life testing technique (cf., e.g., Nelson [14]). Hence we have derived equations
expressing the module’s survival, and thus HR and MRL, functions in terms of the sur-
vival functions of individual components. We have also discussed parametric and non-
parametric inference for the latter functions, or their parameters if a parametric model
has been assumed, under various load-sharing scenarios and data gathering regimes.

Appendix

A. Proofs

Proof of Theorem 5.1. We start calculating the survival function SM(K)(t) using first con-
ditioning and then the formula of total probability. Hence

SM(K)(t)= E
[

P
{
T(K−1)
κ(K−1) > t |D(0), . . . ,D(K−2),T(K−2)

1:2

}]

= E

[

exp

{

− 1{T(K−2)

D(K−2)≤t}

∫ t

T(K−2)

D(K−2)

(

hκ(K−1)(x) +
K−1∑

m=1

a(m)
D(m−1),κ(K−1)(x)

)

dx

}]
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=
∑

i1∈{1,...,K}

∑

i2∈{1,...,K}\{i1}
···

∑

iK−1∈{1,...,K}\{i1,...,iK−2}

E

[

exp

{

− 1{T(K−2)
iK−1

≤t}

∫ t

T(K−2)
iK−1

(

hiK (x) +
K−1∑

m=1

a(m)
im,iK (x)

)

dx

}

× 1{D(0)=i1} ···1{D(K−3)=iK−2}1{D(K−2)=iK−1}

]

,

(A.1)

where iK is the (only) member of the singleton set {1, . . . ,K} \ {i1, . . . , iK−1}. Given D(0) =
i1, . . . ,D(K−3) = iK−2, the event D(K−2) = iK−1 is equivalent to T(K−2)

iK−1
< T(K−2)

iK . By con-
struction, the latter two random variables are independent. Hence we calculate the con-
ditional expectation of 1{D(K−2)=iK−1} by first writing

P
{
T(K−2)
iK > t |D(0) = i1, . . . ,D(K−3) = iK−2

}

= exp

{

− 1{T(K−3)
iK−2

≤t}

∫ t

T(K−3)
iK−2

(

hiK (x) +
K−2∑

m=1

a(m)
im,iK (x)

)

dx

}

.
(A.2)

Next, we use (A.2) with t = T(K−2)
iK−1

to get the desired probability of the event T(K−2)
iK−1

<

T(K−2)
iK . This, together with (A.1), gives

SM(K)(t)=
∑

i1∈{1,...,K}

∑

i2∈{1,...,K}\{i1}
···

∑

iK−1∈{1,...,K}\{i1,...,iK−2}

E

[

exp

{

− 1{T(K−2)
iK−1

≤t}

∫ t

T(K−2)
iK−1

(

hiK (x) +
K−1∑

m=1

a(m)
im,iK (x)

)

dx

}

× exp

{

− 1{T(K−3)
iK−2

≤T(K−2)
iK−1

}

∫ T(K−2)
iK−1

T(K−3)
iK−2

(

hiK (x) +
K−2∑

m=1

a(m)
im,iK (x)

)

dx

}

× 1{D(0)=i1} ···1{D(K−3)=iK−2}

]

.

(A.3)

Our next step is to integrate the expression inside E[···] on the right-hand side of (A.3)

with respect to the random variable T(K−2)
iK−1

, for which we need to derive the survival
function. Analogously to (A.2), we have that

P
{
T(K−2)
iK−1

> t |D(0) = i1, . . . ,D(K−3) = iK−2

}

= exp

{

−
∫ t

0

(

hiK−1 (x) +
K−2∑

m=1

a(m)
im,iK−1

(x)

)

1{T(K−3)
iK−2

≤x}dx

}

.
(A.4)
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Using the latter equation on the right-hand side of (A.3), we have that

SM(K)(t)=
∑

i1∈{1,...,K}

∑

i2∈{1,...,K}\{i1}
···

∑

iK−1∈{1,...,K}\{i1,...,iK−2}

E

[∫∞

T(K−3)
iK−2

exp

{

− 1{yK−1≤t}
∫ t

yK−1

(

hiK (x) +
K−1∑

m=1

a(m)
im,iK (x)

)

dx

}

× exp

{

−
∑

q∈{1,...,K}\{i1,...,iK−2}

∫ yK−1

T(K−3)
iK−2

(

hq(x) +
K−2∑

m=1

a(m)
im,q(x)

)

dx

}

×
(

hiK−1

(
yK−1

)
+
K−2∑

m=1

a(m)
im,iK−1

(
yK−1

)
)

dyK−11{D(0)=i1} ···1{D(K−3)=iK−2}

]

.

(A.5)

Comparing the latter equation with (A.1), we see that we have “eliminated” the indicator
1{D(K−2)=iK−1}. Continuing the above arguments until the last indicator 1{D(0)=i1} is “elimi-
nated,” we arrive at

SM(K)(t)=
∑

i1∈{1,...,K}

∑

i2∈{1,...,K}\{i1}
···

∑

iK−1∈{1,...,K}\{i1,...,iK−2}

∫∞

0

∫∞

y1

···
∫∞

yK−2

exp

{

− 1{yK−1≤t}
∑

q∈{1,...,K}\{i1,...,iK−1}

∫ t

yK−1

(

hq(x) +
K−1∑

m=1

a(m)
im,q(x)

)

dx

}

× exp

{

−
∑

q∈{1,...,K}\{i1,...,iK−2}

∫ yK−1

yK−2

(

hq(x) +
K−2∑

m=1

a(m)
im,q(x)

)

dx

}

×
(

hiK−1

(
yK−1

)
+
K−2∑

m=1

a(m)
im,iK−1

(
yK−1

)
)

dyK−1

···

× exp

{

−
∑

q∈{1,...,K}\{i1}

∫ y2

y1

(

hq(x) + a(1)
i1,q(x)

)

dx

}(

hi2
(
y2
)

+ a(1)
i1,i2

(
y2
)
)

dy2

× exp

{

−
∑

q∈{1,...,K}

∫ y1

0
hq(x)dx

}

hi1
(
y1
)
dy1.

(A.6)

We will next modify the last K − 1 exponents in (A.6). We start with

exp

{

−
∑

q∈{1,...,K}

∫ y1

0
hq(x)dx

}

hi1
(
y1
)
dy1 =−exp

{

−
∑

q∈{1,...,K}\{i1}

∫ y1

0
hq(x)dx

}

dSi1
(
y1
)
.

(A.7)
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We now combine the exponent on the right-hand side of (A.7) with the penultimate
exponent in (A.6). The last two lines of (A.6) become

···× exp

{

−
∑

q∈{1,...,K}\{i1}

∫ y2

0

(
hq(x) + a(1)

i1,q(x)
)
dx

}
(
hi2
(
y2
)

+ a(1)
i1,i2

(
y2
))
dy2

× (−1)exp

{
∑

q∈{1,...,K}\{i1}

∫ y1

0
a(1)
i1,q(x)dx

}

dSi1
(
y1
)
,

(A.8)

which can be rewritten as

···× (−1)exp

{

−
∑

q∈{1,...,K}\{i1,i2}

∫ y2

0

(
hq(x) + a(1)

i1,q(x)
)
dx

}

dS+i1
i2

(
y2
)

× (−1)exp

{
∑

q∈{1,...,K}\{i1}

∫ y1

0
a(1)
i1,q(x)dx

}

dSi1
(
y1
)
.

(A.9)

We continue with these arguments and arrive at

SM(K)(t)=
∑

i1∈{1,...,K}
···

∑

iK−1∈{1,...,K}\{i1,...,iK−2}

∫∞

0
···

∫∞

yK−2

exp

{

− 1{yK−1≤t}
∑

q∈{1,...,K}\{i1,...,iK−1}

∫ t

yK−1

(

hq(x) +
K−1∑

m=1

a(m)
im,q(x)

)

dx

}

× (−1)exp

{

−
∑

q∈{1,...,K}\{i1,...,iK−1}

∫ yK−1

0

(

hq(x) +
K−2∑

m=1

a(m)
im,q(x)

)

dx

}

×dS+(i1,...,iK−2)
iK−1

(
yK−1

)

···

× (−1)exp

{
∑

q∈{1,...,K}\{i1}

∫ y1

0
a(1)
i1,q(x)dx

}

dSi1
(
y1
)
.

(A.10)

Next, we write SM(K)(t)= S∗M(K)(t) + S∗∗M(K)(t), where

S∗M(K)(t)= (−1)K−1
∑

i1∈{1,...,K}
···

∑

iK−1∈{1,...,K}\{i1,...,iK−2}
S+(i1,...,iK−1)

not(i1,...,iK−1)(t)
∫∞

0
···

∫∞

yK−2

1{yK−1≤t}

× exp

{
∑

q∈{1,...,K}\{i1,...,iK−1}

∫ yK−1

0
a(K−1)
im,q (x)dx

}

dS+(i1,...,iK−2)
iK−1

(
yK−1

)

···

× exp

{
∑

q∈{1,...,K}\{i1}

∫ y1

0
a(1)
i1,q(x)dx

}

dSi1
(
y1
)
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S∗∗M(K)(t)= (−1)K−1
∑

i1∈{1,...,K}
···

∑

iK−1∈{1,...,K}\{i1,...,iK−2}
∫∞

0

∫∞

y1

···
∫∞

yK−2

1{yK−1>t}S
+(i1,...,iK−2)
not(i1,...,iK−1)

(
yK−1

)
dS+(i1,...,iK−2)

iK−1

(
yK−1

)

···

× exp

{
∑

q∈{1,...,K}\{i1}

∫ y1

0
a(1)
i1,q(x)dx

}

dSi1
(
y1
)
.

(A.11)

Write a(1)
i1,q(x) as the sum of hq(x) + a(1)

i1,q(x) and −hg(x), which shows that the rightmost
exponent in (A.11) can be written as the ratio Sq(y1)/S+i1

q (y1). Similarly, we have the equa-
tions

exp

{∫ y2

0
a(2)
i2,q(x)dx

}

= S+i1
q

(
y2
)

S+(i1,i2)
q

(
y2
) , . . . , exp

{∫ yK−1

0
a(K−1)
i2,q (x)dx

}

= S+(i1,...,iK−2)
q

(
yK−1

)

S+(i1,...,iK−1)
q

(
yK−1

) .

(A.12)

Theorem 5.1 follows. �

Proof of Theorem 3.1. This is a consequence of Theorem 5.1 and the observation that the
product S1(t)S2(t) is equal to −∑2

i=1

∫∞
t Snot(i)(y)dSi(y), which appears in the result of

Theorem 5.1 when K = 2. �

Proof of Theorem 5.2. For any random variable X , whose survival function we denote
by SX(t), the integral

∫∞
t SX(x)1{z≤x}dx is equal to the expectation E[(X −max(z, t))+],

which is of course equal to−∫∞0 (x−max(z, t))+dSX(x). Furthermore,
∫∞
t 1{y>x}dx is equal

to (y− t)+. These observations and (3.1) complete the proof of Theorem 5.2. �
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A Cox process NCox directed by a stationary random measure ξ has second moment
var NCox(0, t] = E(ξ(0, t]) + var ξ(0, t], where by stationarity E(ξ(0, t]) = (const.)t =
E(NCox(0, t]), so long-range dependence (LRD) properties of NCox coincide with LRD
properties of the random measure ξ. When ξ(A) = ∫ AνJ(u)du is determined by a den-
sity that depends on rate parameters νi (i∈ X) and the current state J(·) of an X-valued
stationary irreducible Markov renewal process (MRP) for some countable state space
X (so J(t) is a stationary semi-Markov process on X), the random measure is LRD if
and only if each (and then by irreducibility, every) generic return time Yj j ( j ∈ X) of
the process for entries to state j has infinite second moment, for which a necessary
and sufficient condition when X is finite is that at least one generic holding time Xj in
state j, with distribution function (DF) Hj , say, has infinite second moment (a sim-
ple example shows that this condition is not necessary when X is countably infinite).
Then, NCox has the same Hurst index as the MRP NMRP that counts the jumps of J(·),
while as t→∞, for finite X, var NMRP(0, t] ∼ 2λ2∫ t

0�(u)du, var NCox(0, t] ∼ 2
∫ t

0

∑
i∈X(νi

− ν)2�i�i(t)du, where ν =∑ i�iνi = E[ξ(0,1]], �j = Pr{J(t) = j},1/λ =∑ j p̌ jμ j , μj =
E(Xj), { p̌ j} is the stationary distribution for the embedded jump process of the MRP,

� j(t) = μ−1
i

∫ ∞
0 min(u, t)[1 − Hj(u)]du, and �(t) ∼ ∫ t0 min(u, t)[1 − Gj j(u)]du/mj j ∼∑

i�i�i(t) where Gj j is the DF and mj j the mean of the generic return time Yj j of the
MRP between successive entries to the state j. These two variances are of similar order
for t→∞ only when each �i(t)/�(t) converges to some [0,∞]-valued constant, say, γi,
for t→∞.

Copyright © 2007 D. J. Daley et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.
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1. Introduction

This paper is a sequel to Daley [1] which arose from wanting to decide whether the de-
tailed long-range dependent (LRD) behavior of a Cox process NCox directed by the ON
phases of a stationary ON/OFF alternating renewal process N is the same as the LRD
behavior of N . It was shown that both processes have the same Hurst index but that the
ratio varNCox(0, t]/varN(0, t] need not converge for t→∞.

Here, we examine the nature of these two variance functions for the case of a Cox pro-
cess whose instantaneous rate νi is determined by the state i∈ X, with X being countable
(sometimes it must be finite), of a LRD stationary Markov renewal process (MRP), of
which our earlier example of an alternating renewal process (ARP) is the simplest. MRPs
have long been an interest of Jeff Hunter (e.g., Hunter [2]), and it is a pleasure to con-
tribute this paper to a volume that marks his contributions to the academic community
both inside New Zealand and further afield where D. Daley in particular has enjoyed his
company many times since first meeting him in Chapel Hill, NC, and T. Rolski at Cornell
University.

In Section 2, we introduce the necessary notation and recall known results that are
relevant to the problem at hand. Section 3 develops formulae for univariate and bivariate
marginal probabilities for MRPs that take us into the realm of Markov renewal equations
which enable us to address the questions we raise when X is finite. We conclude in Sec-
tion 4 with remarks on the case where X is countably infinite. In the appendix, we prove
an asymptotic convergence result due originally, we believe, to Sgibnev [3].

2. The setting and known results

A Cox process NCox driven by the random measure ξ is a point process which, conditional
on the realization ξ, is a Poisson process with parameter measure ξ (e.g., Daley and Vere-
Jones [4, Section 6.2]). Then, when NCox and ξ are located in the half-line R+, for Borel
subsets A of R+,

E
[
NCox(A)

]= E
[
ξ(A)

]
, varNCox(A)= E

[
ξ(A)

]
+ varξ(A) (2.1)

[4, Proposition 6.2.II]. A stationary point process or random measure ξ on R is LRD
when

limsup
t→∞

varξ(0, t]
t

=∞ (2.2)

[4, Section 12.7], and its Hurst index H is defined by

H = inf
{
h : limsup

t→∞
varξ(0, t]

t2h
<∞

}
. (2.3)

It follows from (2.1) and (2.2) that a Cox process is LRD if and only if the random mea-
sure driving it is LRD, and that they both have the same Hurst index (this is Daley [1,
Proposition 1]).

We choose to describe a Markov renewal process (see, e.g., Çinlar [5] or Kulkarni [6]
for a textbook account) both in terms of the sequence {(Xn, Jn)} of successive intervals
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Xn between jumps of a Markov chain {Jn} on a countable state space X with one-step
transition probabilities (pi j , i, j ∈ X), and the X-valued semi-Markov process {J(t) : t ∈
R} which can be related via the time epochs Tn = T0 +X1 + ···+Xn subsequent to some
initial epoch T0, as Jn+1 = J(Tn+) and

J(t)= Jn
(
Tn−1 ≤ t < Tn, n= 1,2, . . .

)

=
∞∑

n=1

JnITn−1≤t<Tn(t).
(2.4)

We use the random measure

ξ(A)≡
∫

A
νJ(u)du, (2.5)

where {νi} is a family of nonnegative constants defined over X, as the driving measure
of the Cox process NCox that we consider. This means that if σi(0, t] is the (Lebesgue)
measure of that part of the interval (0, t] during which J(u)= i for i∈ X (mnemonically,
the sojourn time in i during (0, t]), then

ξ(0, t]=
∑

i∈X
νiσi(0, t]

(
t ∈R+

)
, (2.6)

and NCox consists of points evolving as a Poisson process at rate νi on the disjoint sets of
support of σi for i∈ X. Equation (2.1) shows that in order to evaluate the variance of the
Cox process, we must find

varξ(0, t]=
∑

i, j∈X
νiν j cov

(
σi(0, t],σj(0, t]

)
. (2.7)

When X is a finite set, the finiteness conditions we impose are automatically satisfied,
but for the sake of completeness, we allow the countably infinite case of X except where
we know of proof only in the finite case (see (2.20) and Section 4). For NCox to be well
defined, we want ξ(0, t] <∞ a.s. for finite t > 0, which is the case when ν≡∑i∈X νi�i <∞,
where for stationary J(·), we set

�i = Pr
{
J(t)= i

}= E
[
σi(0,1]

]
(all t). (2.8)

Then, E[ξ(0, t]] = νt for all t > 0. Assuming (as we must for the conditions of station-
arity to hold) that the chain {Jn} is irreducible and has a stationary distribution { p̌i}
(so p̌ j =

∑
i∈X p̌i pi j), this is related to the distribution {�i} via the mean holding times

μi =
∫∞

0 Hi(u)du = E(Xn | Jn = i) as at (2.9). When Fi j(t) = Pr{Xn ≤ t | Jn = i, Jn+1 = j},
the process of termination of sojourns in state i is governed by the (in general) dishonest
DFs Qij(t) = pi jFi j(t) but such that the holding time DFs Hi(t) =

∑
j Qi j(t) are honest.

We make the simplifying assumption that pii = 0 (all i).
Assume that the point process defined by such an MRP (i.e., the sequence of epochs

{Tn}) can and does exist in a stationary state; in which case, its intensity λ is given by
λ−1 =∑i∈X p̌iμi, and

�i = λp̌iμi = Pr
{
J(t)= i

}
(all t), (2.9)
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with the semi-Markov process J(·) here being stationary also. Since the rate of entry
epochs into state i equals λp̌i, it follows that the mean time mii between successive en-
tries into state i is given by

mii = 1
λp̌i

= μi
�i

(i∈ X). (2.10)

We assume that our MRP is irreducible (i.e., the Markov chain {Jn} is irreducible),
and therefore it can be studied via first passage distributions Gij(·) (it is here that the
assumption pii = 0 simplifies the discussion); define for every i ∈ X and j ∈ X except
j = i

Gji(t)= Pr
{

entry to i occurs in (0, t] | state j �= i entered at 0
}

,

Gii(t)= Pr
{

second entry to i occurs in (0, t] | state i entered at 0
}
.

(2.11)

Then, for example,

Gii(t)=
∑

k∈X\{i}
pik

∫ t

0
Fik(du)Gki(t−u)=

∑

k

(
Qik ∗Gki

)
(t), (2.12)

where our convention in writing the convolution (A∗ B)(t) of a nonnegative function
B(·) (like Gki) with respect to a measure A(·) (like Qik) is that (A∗B)(t)= ∫ t0 A(du)B(t−
u), or in vector algebra notation when A= (Aij(·)) and B= (Bij(·)) are compatible,

(
(A∗B)(t)

)
i j =

∑

k∈X

∫ t

0
Aik(du)Bk j(t−u). (2.13)

When we consider only the point process NMRP of epochs where entrances into states
occur, for which we should count the number of entries Ni into state i and therefore have
NMRP =

∑
i∈XNi, Sgibnev [7] has shown (under the condition of irreducibility) that there

is a solidarity result; it implies that m−2
ii varNi(0, t] ∼m−2

11 varN1(0, t] as t→∞ when the
number of visits to any one state has LRD behavior (and hence, that the point process
of visits to any other given state is LRD also, and moreover the asymptotic behavior of
the variance function m−2

ii varNi(0, t] is the same irrespective of the state i). Given this
solidarity property, it is seemingly extraordinary that the variance of the amount of time
spent in the various states need not have the same asymptotic behavior. The major aim
now in considering a Cox process directed by a stationary MRP is to show that this as-
ymptotic behavior is determined, as in the ARP case, by a linear mixture of integrals of
certain functions that are crucial in Sgibnev [3, 7] (see also Appendix A), namely,

�i(t)≡ 1
μi

∫∞

0
min(u, t)Hi(u)du. (2.14)

We also write H̃i(t)= (1/μi)
∫ t

0 Hi(u)du; this equals �′
i (t). Write ���(t) and H̃(t) for vectors

with components �i(t) and H̃i(t), respectively.
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Recall (2.7) writing alternatively

V(t)≡ varξ(0, t]=
∑

i, j∈X
2νiν j

∫ t

0
(t−u)

[
�ij(u)−�i�j

]
du, (2.15)

where�ij(u)= Pr{J(0+)= i, J(u)= j} for u > 0 (stationarity of J(·) is assumed as around
(2.9)). In terms of the distribution of J(·), only the uni- and bivariate distributions {�i}
and �ij(u) are involved in (2.15), and LRD behavior is therefore associated with the inte-
gral of �ij(u)−�i�j over large intervals. Since these bivariate probabilities are those of a
semi-Markov process, each �ij(·) has a representation as a convolution involving DFs of
lifetimes on the state space X, and this leads to renewal function representations and use
of asymptotics of renewal functions as we shall demonstrate.

Write Uij(t) = E(Nj[0, t] | state i entered at 0) = δi j +
∑

k∈X
∫ t

0 Qik(du)Ukj(t − u).
Then, Ui(x) =∑ j∈XUij(x) satisfies the same backwards equation with δi j and Ukj re-
placed by 1 and Uk. Writing Q= (Qij)i, j∈X, define

U= (Uij(t)
)
i, j∈X = I + Q + Q2∗ + ···

= I + Q∗U= I + U∗Q
(2.16)

(note that Uij(t) = E[Nj(0, t] | i entered at 0] for j �= i, while for j = i, since the Nj are
orderly, Ni[0, t] = 1 +Ni(0, t]). Since Ui = UT

i e, where Ui is the vector over j ∈ X of Uij

(all vectors are column vectors unless transposed as, e.g., UT
i ),

UMRP(t)= p̌TUe= E
(
NMRP[0, t] | jump at 0 of stationary J(·)). (2.17)

Now, substitute in the standard formula (e.g., Daley and Vere-Jones [4, page 62]) to give
varNMRP(0, t] for the stationary point process generated by the jumps of a stationary
MRP:

varNMRP(0, t]= λ
∫ t

0

(
2
[
UMRP(u)− λu

]− 1
)
du, (2.18)

where in terms of the respective vectors p̌ and μ of the stationary jump distribution { p̌i}
and mean sojourn times {μi} of the states i∈ X, 1/λ= p̌Tμ=∑i∈X p̌iμi as around (2.9).
The integrand at (2.18) has uniformly bounded increments because UMRP(t) ∼ λt (t →
∞) and it is subadditive (see Appendix B), like the renewal function (e.g., Daley and
Vere-Jones [4, Exercise 4.4.5(b)]).

Let Gkk be the return time DF for some given state k ∈ X. Sgibnev [7] showed that for
t→∞ and all other i, j ∈ X for the stationary irreducible LRD MRP,

mj jUi j(t)− t ∼�(t)= 1
mkk

∫∞

0
min(t,u)Gkk(u)du. (2.19)

Then from (2.17), at least for a finite state space X, it follows that

UMRP(t)− λt =
∑

i∈X

∑

j∈X
p̌i
(
Uij(t)− λp̌ j t

)∼
∑

i∈X

∑

j∈X
p̌i · λp̌ j ·�(t)= λ�(t), (2.20)
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and hence that

varNMRP(t)∼ 2λ2
∫ t

0
�(u)du. (2.21)

Whether (2.21) holds for countably infinite state space remains a question for another
place; the discussion in Section 4 is relevant to the nature of the return time distribution
Gkk in (2.19).

3. Recurrence relations for bivariate probabilities and asymptotics

In this section, we establish the result that extends the simpler conclusion of Daley [1]
from an alternating renewal process to a Markov renewal process on a finite state space X.
So far, we do not know the nature of any extension to the case that X is countably infinite.

Theorem 3.1. Let the Cox process NCox be driven by a long-range dependent random mea-
sure ξ(A)= ∫A νJ(u)du determined by a stationary semi-Markov process J(·) on a finite state
space X. Then, NCox has the same Hurst index as the Markov renewal process NMRP un-
derlying J(·). Both varNCox(0,x] and varNMRP(0,x] are asymptotically determined by the
holding time DFs {Hi(·) : i∈ X} in the MRP, at least one of which must have infinite second
moment. Under these conditions, for t→∞,

varNCox(0, t]∼ 2
∫ t

0

∑

i∈X

(
νi− ν

)2
�i�i(u)du, (3.1)

while varNMRP(0, t] is given by (2.21) in which

�(u)∼
∑

i∈X
�i�i(u) (u−→∞), (3.2)

where {�i} is the stationary distribution for J(·) and the truncated second moment functions
�i(·) and �(·) are given by (2.14) and (2.19).

In general, varNMRP(0, t] ∼ λ2
∫ t

0 �(u)du �∼ (const.)varNCox(0, t], but if for some j, all
the ratios �i(t)/� j(t) (i∈ X \ { j}) converge as t→∞ to limits in [0,∞], then

varNMRP(0, t]∼ (const.)varNCox(0, t] (t −→∞). (3.3)

Proof. If all holding time DFs Hi have finite second moments, then because X is finite, so
do all return time DFs Gkk, and the MRP cannot be LRD.

The last part of the theorem, given (3.1)–(3.2), is proved in the same way as the analo-
gous statement for the alternating renewal case, so for the rest, we concentrate on demon-
strating (3.1)–(3.2).

We develop expressions involving the bivariate probabilities �ij(t) (see around (2.15))
for the stationary irreducible semi-Markov process J(·). The variance function V(t) =
varξ(0, t] at (2.15) describes the variance of the Cox process via (2.1). Equation (2.15)
shows that V(·) is differentiable, with derivative

V ′(t)= d
dt

varξ(0, t]=
∑

i, j∈X
2νiν j

∫ t

0

[
�ij(u)−�i�j

]
du, (3.4)
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which is already simpler to evaluate than (2.15) itself. In particular, when ξ(·) is LRD,
V(t) is larger than O(t) for t→∞, so that when V ′(t)∼ g(t)→∞ as t→∞ for some g(·)
that is ultimately monotone, the asymptotic behavior of V(t) for large t is the same as for
∫ t

0 g(u)du.
For a stationary irreducible semi-Markov process J(·) on X as we are considering, the

joint distribution on X×X×R+ of the current state i, the state k next entered, and the
forward recurrence time x for that next entry, is determined by the density function

�iQik(x)dx
μi

(
i∈ X, k ∈ X \ {i}, 0 < x <∞). (3.5)

In (3.13), we use Q̃(t) to denote the array with elements (1/μi)
∫ t

0 Qij(u)du. Note that the

vector H̃(t) as below (2.14) satisfies H̃(t)= Q̃(t)e.
Define

Π j|i(t)=
∫ t

0
E
(
δj,J(u) | J(0+)= i

)
du, (3.6)

so that

E

[

δi,J(0)

∫ t

0
δj,J(u)du

]

= �iΠ j|i(t)=
∫ t

0
�ij(u)du. (3.7)

Setting Π(t)= (Π j|i(t))i, j∈X, it follows that (3.4) is expressible as

V ′(t)=
∑

i, j∈X
2νiν j

[
�i
(
Π j|i(t)−�jt

)]= 2νT diag(�)
(
Π(t)− e�Tt

)
ν. (3.8)

We now develop expressions for Π j|i in terms of the truncated second moment functions
at (2.14) and the related functions, discussed in Lemma 3.3,

Mij(t)= E

[∫ t

0
δj,J(u)du

∣
∣
∣ state i entered at 0

]

. (3.9)

Lemma 3.2

Π j|i(t)= δji�i(t) +
∑

k∈X

∫ t

0

Qik(v)
μi

Mk j(t− v)dv, (3.10a)

equivalently, with M(t)= (Mij(t))i, j∈X,

Π(t)= diag
(
���(t)

)
+ (Q̃∗M)(t). (3.10b)

Proof. For j �= i, we use the joint distribution at (3.5) and a backwards decomposition to
write

Π j|i(t)=
∑

k∈X

∫ t

0

Qik(x)
μi

dxMk j(t− x), (3.11)
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which is (3.10a) for j �= i. For j = i,

Πi|i(t)=
∑

k∈X
t
∫∞

t

Qik(x)
μi

dx+
∑

k∈X

∫ t

0

Qik(x)
μi

[x+Mki(t− x)]dx. (3.12)

Grouping terms according to whether they involve any Mki(·) or not leads to (3.10). �

Lemma 3.3 (Recurrence relations for Mij(·))

Mij(t)= δji

∫ t

0
Hi(u)du+

∑

k∈X

∫ t

0
Qik(du)Mkj(t−u) (i, j ∈ X), (3.13)

hence M(t)= diag(H̃(t))diag(μ) + (Q∗M)(t), so

Mij(t)=
(

U∗diag(H̃)diag(μ)(t)
)
i j =

∫ t

0
H j(u)Uij(t−u)du. (3.14)

Proof. Equation (3.13) is established by a standard backwards decomposition. The equa-
tion is written more usefully in the form of a generalized Markov renewal equation as
shown, from which the rest of the lemma follows. �

In the second term of (3.10b), substituting for M from (3.14) yields

(Q̃∗M)(t)= (Q̃∗U∗diag(H̃)
)
(t). (3.15)

Since Uij(t)≤ Uj j(t) for all t > 0 and all i, j ∈ X, a dominated convergence argument
involving Uij(t− u)/Uj j(t) in (3.14) implies that limt→∞Mij(t)/Uj j(t) =

∫∞
0 H j(u) du =

μj , and since Uj j(t)∼ λp̌ j t for t→∞, this implies, with (2.9), that

Mij(t)∼
(
λp̌ jμj

)
t = �jt (all i). (3.16)

The same arguments applied to (3.10a) show that Π j|i(t) ∼ �jt for every i so that
every element of Π(t)− e�Tt in (3.8) is at most o(t) for t →∞. We now find the exact
asymptotics of these elements.

The components of (Q̃∗M)(t) in (3.10b) can be written as

(
(Q̃∗M)(t)

)
i j =

∑

k∈X

∫ t

0

Qik(u)
μi

Mk j(t−u)du

=
∑

k∈X

∫ t

0

Qik(u)
μi

(
Mkj(t−u)−�j(t−u)

)
du+

∑

k∈X

∫ t

0

Qik(u)
μi

�j(t−u)du.

(3.17)

The last term equals

�j

∫ t

0

Hi(u)
μi

(t−u)du= �j

∫∞

0

Hi(u)
μi

(t−u)+du. (3.18)
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Consequently, from (3.10a), Π j|i(t)−�jt equals

δji�i(t) +
∑

k∈X

∫ t

0

Qik(u)
μi

(
Mkj(t−u)−�j(t−u)

)
du−�j

∫∞

0

Hi(u)
μi

(
t− (t−u)+

)
du,

(3.19)

and the last term equals �j�i(t); so finally

Π j|i(t)−�jt =
(
δji−�j

)
�i(t) +

∑

k∈X

∫ t

0

Qik(u)
μi

(
Mkj(t−u)−�j(t−u)

)
du. (3.20)

In vector algebra notation, writing L(t)= t+, this reads

Π(t)− e�Tt = diag
(
���(t)

)−���(t)�T +
(

Q̃∗ (M− e�TL
))

(t). (3.21)

This is not quite of the form we want; the first two terms on the right-hand side are
expressed in terms of the truncated second moments of the sojourn time DFs Hi as at
(2.14); it remains to consider the last term. Start by using the expression below (3.13) in
writing

((
M− e�TL

)
(t)
)
i j

= ((U∗diag(H̃)diag(μ)
)
(t)
)
i j −�jt

=
∫ t

0
Uij(du)

∫ t−u

0
H j(v)dv−�jt

=
∫ t

0
Uij(u)H j(t−u)du−�jt

=
∫ t

0

[
Uij(u)− u

mj j

]
H j(t−u)du+

1
mj j

∫ t

0
(t− v)H j(v)dv−�jt

=
∫ t

0

[
Uij(u)− λp̌ ju

]
H j(t−u)du+

�j

μj

∫∞

0
(t− v)+H j(v)dv−�jt

∫∞

0

H j(v)

μj
dv

=
∫ t

0

[
Uij(u)− λp̌ ju

]
H j(t−u)du−�j� j(t).

(3.22)

By (2.19), the integral here ∼ μj�(t)/mj j = �j�(t), so

(
M− e�TL

)
(t)∼ e�T�(t)− e�T diag

(
���(t)

)
. (3.23)

But in (3.21), Q̃ is a stochastic kernel, so the last term there has this same asymptotic
behavior and

Π(t)− e�Tt ∼ diag
(
���(t)

)−���(t)�T + e�T
(

I�(t)−diag
(
���(t)

))
, (3.24)
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at least in the case of a finite state space X. Finally then (cf. (3.8)),

V ′(t)∼ 2
∑

i∈X

∑

j∈X
νiν j�i

(
δji�i(t) +�j

[−�i(t) + �(t)−� j(t)
])

= 2

(
∑

i∈X
ν2
i �i�i(t)− 2ν

∑

i

νi�i�i(t) + (ν)2�(t)

)

= 2
∑

i∈X
(νi− ν)2�i�i(t) + 2(ν)2

(

�(t)−
∑

i∈X
�i�i(t)

)

(t→∞).

(3.25)

This establishes (3.1) except for showing that the coefficient of (ν)2 vanishes asymptoti-
cally, that is, (3.2) holds.

Recall (see above (2.16)) the function Ui(x)= E(NMRP[0,x] | state i entered at 0). Just
as the functions Mij(·) satisfy generalized Markov renewal equations (see Lemma 3.3), so
too do the functions Ui(x)− λx. Using a backwards decomposition, we have

Ui(x)= 1 +
∑

k∈X

∫ x

0
Qik(du)Uk(x−u), (3.26)

and therefore

Ui(x)− λx = 1− λx+
∑

k∈X

∫ x

0
Qik(du)

[
Uk(x−u)− λ(x−u)

]
+ λ
∫ x

0
(x−u)Hi(du)

=
∑

k∈X

∫ x

0
Qik(du)

(
Uk(x−u)− λ(x−u)

)
+ 1− λx+ λ

∫ x

0
Hi(u)du

= 1− λμi + λ
∫∞

x
Hi(v)dv+

∑

k∈X

∫ x

0
Qik(du)

(
Uk(x−u)− λ(x−u)

)
.

(3.27)

Write Z(x) and z(x) for the vectors with respective components Ui(x)− λx and 1− λμi +
λ
∫∞
x Hi(v)dv (i∈ X). Then, Z= z + Q∗Z is a generalized Markov renewal equation, and

therefore it has solution (under the condition that it is unique, which is the case when X
is finite) Z(x)= (U∗ z)(x). In terms of the components, this gives

Ui(x)− λx =
∑

j∈X

∫ x

0
Uij(du)

[

1− λμj + λ
∫∞

x−u
H j(v)dv

]

=Ui(x)− λx−
∑

j∈X
λμj
[
Uij(x)− λp̌ jx

]
+ λ

∑

j∈X

∫ x

0
Uij(du)

∫∞

x−u
H j(v)dv,

(3.28)

that is,

∑

j∈X

λμj

mj j

(
mj jUi j(x)− x

)= λ
∑

j∈X

∫ x

0
Uij(du)

∫∞

x−u
H j(v)dv. (3.29)

Now, our MRP is LRD, so by (2.10) and Sgibnev’s [7] solidarity result quoted at (2.19),
the left-hand side here ∼∑ j λ�j�(x) = λ�(x). For the right-hand side, we can apply
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the asymptotic convergence lemma in Sgibnev [3] (see Appendix A), because Uij(x) ∼
x/mj j = λp̌ jx (x→∞), to deduce that the right-hand side of (3.29) ∼ λ2

∑
j∈X p̌ jμ j� j(x)

= λ
∑

j∈X�j� j(x); so (3.2) holds. �

In the setting in Daley [1] for the case of an alternating renewal process, we should have
in our general notation above that ν1 = 1 for the ON state, 1, say, and ν0 = 0 for the OFF
state, ν= � = �1 = E(X1)/E(Y), where Y = X1 +X0 is a generic cycle time, p̌0 = p̌1 = 1/2,
and �0 = 1−�. An ARP can be studied via cycle times (with generic duration Y), with
return time distribution G(x) = Pr{Y ≤ x} for which �(·) emerges naturally for (2.19)
and (3.2). The right-hand side of (3.1) equals (1−�)2��1(t) +�2(1−�)�0(t), so our
theorem above is consistent with Daley [1].

4. Discussion

Our proof of the asymptotic relation at (2.21) for the behavior of varNMRP(0, t] when
the MRP is LRD depends on Sgibnev’s [7] solidarity result and, lacking any uniform
convergence result over the state spaceX, it is confined to the case thatX is finite. Whether
or not a relation like (2.21) persists in the countable case is not clear. We indicate one
difficulty.

Consider a realization of our MRP. Let a “tour” consist of the successive states { jn}
visited on a path starting from j0 = k until a first return to k, consisting of say, Ntour

transitions in all, so jNtour = k and jn �= k for n= 1, . . . ,Ntour− 1; for such a path, represent
the first return time Ykk, with DF Gkk, and in self-evident notation, as

Ykk =
∑

{ jn}
X tour

jn, jn+1
=

Ntour−1∑

n=0

X tour
jn, jn+1

. (4.1)

Then, Ykk has infinite second moment if and only if either (or both) of some Xij and
Ntour has infinite second moment. For a Markov chain in discrete time, only the latter is
possible (because whenever pi j > 0, Xij = 1 a.s.). Trivially, a Markov chain in discrete time
is also a Markov renewal process, and thus, in a LRD MRP with all holding times being
equal to 1, say, a relation like (3.2) would be impossible because the left-hand side would
be infinite but the right-hand side would be finite.

Appendices

A. An asymptotic convergence lemma

The result given below is the essence of Sgibnev [3, Theorem 4], used to establish the
asymptotic behavior of the difference between a renewal function U(t) and its asymptote
λt when a generic lifetime r.v. has infinite second moment. Sgibnev’s proof assumes that
U(·) is a renewal function, but this is not needed in our proof below.

Lemma A.1. Let the nonnegative function z(x) (x > 0) be monotonic decreasing and such
that L(t) ≡ ∫ t0 z(u)du→∞ for t →∞. Let the monotonic increasing nonnegative function
U(t) have uniformly bounded increments U(x+ 1)−U(x)≤ K <∞ (all x > 0) and let it be
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asymptotically linear, so that U(t)∼ λt (t→∞) for some finite positive λ. Then,

L1(t)≡ (U ∗ z)(t)≡
∫ t

0
z(t−u)U(du)∼ λL(t) (t −→∞). (A.1)

Proof. Given ε > 0, the asymptotic linearity of U(·) implies that there exists finite positive
tε such that

∣
∣U(t)− λt

∣
∣≤ εt (

all t ≥ tε
)
. (A.2)

Write

L1(t)=
∫ t

0

[

z(t) +
∫ t

t−u

∣
∣dz(v)

∣
∣
]

U(du)

= [U(t)−U(0+)
]
z(t) +

∫ t

0

[
U(t)−U(t− v)

]∣∣dz(v)
∣
∣

= [U(t)−U(0+)
]
z(t) +

(∫ tε

0
+
∫ t

tε

)∫ t

0

[
U(t)−U(t− v)

]∣∣dz(v)
∣
∣

= [U(t)−U(0+)
]
z(t) +Aε(t) +

∫ t

tε

[
U(t)−U(t− v)

]∣∣dz(v)
∣
∣,

(A.3)

where 0 < Aε(t)≤ [z(0)− z(tε)]Ktε, uniformly in t. Then,

L1(t)−Aε(t)=U(t)z(tε)−U(0+)z(t)−
∫ t

tε
U(t− v)

∣
∣dz(v)

∣
∣. (A.4)

For t > 2tε, this integral equals (
∫ t−tε
tε +

∫ t
t−tε)U(t− v)|dz(v)|, in which the latter integral,

Bε(t), say, satisfies

0≤ Bε(t)≡
∫ t

t−tε
U(t− v)

∣
∣dz(v)

∣
∣≤U

(
tε
)
z
(
t− tε

)≤ (λ+ ε)tεz
(
t− tε

)
, (A.5)

which for a given ε is uniformly bounded, independently of t. The integral that remains
equals

∫ t−tε
tε U(t− v)|dz(v)| which by (A.1) is bounded above and below by

(λ± ε)
∫ t−tε

tε
(t− v)

∣
∣dz(v)

∣
∣= (λ± ε)

∫ t−tε

tε

∣
∣dz(v)

∣
∣
∫ t−v

0
dw

= (λ± ε)
∫ t−tε

0
dw
∫min(t−w,t−tε)

tε

∣
∣dz(v)

∣
∣

= (λ± ε)
∫ t−tε

0

[
z
(
tε
)− z

(
min

(
t−w, t− tε

))]
dw

= (λ± ε)
∫ t

tε

[
z
(
tε
)− z

(
min

(
w, t− tε

))]
dw.

(A.6)
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Using the upper bound, we can therefore write

L1(t)−Aε(t)−Bε(t) +U(0+)z(t)

<
[
U(t)− (λ+ ε)

(
t− tε

)]
z
(
tε
)

+ (λ+ ε)
∫ t

tε
z
(

min
(
w, t− tε

))
dw

≤ (λ+ ε)tεz
(
tε
)

+ (λ+ ε)
∫ t

tε
z
(

min
(
w, t− tε

))
dw,

(A.7)

in which the second inequality comes from (A.1) because t > tε. Divide each extreme of
this inequality by L(t), and observe that in the limit t→∞, the only term on the left-hand
side that does not vanish is L1(t)/L(t), while the right-hand side (after division) converges
to λ+ ε. It then follows that, because ε is arbitrary, limsupt→∞L1(t)/L(t)≤ λ.

Using the lower bound at (A.6) leads instead to

L1(t)−Aε(t)−Bε(t) +U(0+)z(t)≥ (λ− ε)tεz(tε) + (λ− ε)
∫ t

tε
z
(

min(w, t− tε)
)
dw,

(A.8)

and a similar argument as in using the upper bound gives liminf t→∞L1(t)/L(t)≥ λ. �

B. Subadditivity of the renewal function UMRP(·)

Lemma B.1. The renewal function UMRP(·) defined on jump epochs of a stationary MRP is
subadditive.

Proof. For a stationary MRP on state space X, recall the Palm expectations (see around
(2.16) and (3.26) above)

Ui(x)= E
(
NMRP[0,x] | state i entered at 0

)=
∑

j

Ui j(x), (B.1)

UMRP(x)=
∑

i

p̌iUi(x). (B.2)

For a stationary MRP, the stationary distribution { p̌i} for the embedded jump process
{Jn} satisfies both p̌ j =

∑
i∈X p̌i pi j and the equation for the state probability at the epoch

of the first jump after any fixed time interval thereafter, that is, the semi-Markov process
J(t) satisfies p̌k = Pr{first jump of J(x+ t) in t > 0 is to k | J(·) has jump at 0}, namely,

p̌k =
∑

i

p̌i
∑

j

∫ x

0
Uij(du)H j(x−u)

∫∞

0

Qjk(x−u+ dz)

H j(x−u)
=
∑

i

p̌i
∑

j

∫ x

0
Uij(du)

∫∞

x−u
Qjk(dz).

(B.3)
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Now,

Ui(x+ y)−Ui(x)= E
(
N(x,x+ y] | state i entered at 0

)

=
∑

j

∑

k

∫ x

0
Uij(du)

∫ x+y−u

x−u
Qjk(dz)Uk(x+ y−u− z)

≤
∑

j

∑

k

∫ x

0
Uij(du)

∫ x+y−u

x−u
Qjk(dz)Uk(y),

(B.4)

because every Ui(·) is nondecreasing and every Qjk(·) is a measure, and then, again be-
cause every Qjk(·) is a measure and using (B.2), UMRP(x+ y)−UMRP(x) equals

∑

i

p̌i
[
Ui(x+ y)−Ui(x)

]≤
∑

i

p̌i
∑

j

∑

k

∫ x

0
Uij(du)

∫ x+y−u

x−u
Qjk(dz)Uk(y)

≤
∑

k

Uk(y)
∑

i

p̌i
∑

j

∫ x

0
Uij(du)

∫∞

x−u
Qjk(dz)

=
∑

k

Uk(y) p̌k =UMRP(y).

(B.5)

�
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eskĭı Zhurnal, vol. 22, no. 5, pp. 178–189, 224, 1981, Translation in Siberian Mathematical Jour-
nal, vol. 22, no. 5, pp. 787–796, 1981.

[4] D. J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes. Vol. I: Elementary
Theory and Methods, Probability and Its Applications, Springer, New York, NY, USA, 2nd edi-
tion, 2003.

[5] E. Cinlar, Introduction to Stochastic Processes, Prentice-Hall, Englewood Cliffs, NJ, USA, 1975.



D. J. Daley et al. 15

[6] V. G. Kulkarni, Modeling and Analysis of Stochastic Systems, Texts in Statistical Science Series,
Chapman & Hall, London, UK, 1995.

[7] M. S. Sgibnev, “An infinite variance solidarity theorem for Markov renewal functions,” Journal
of Applied Probability, vol. 33, no. 2, pp. 434–438, 1996.

D. J. Daley: Centre for Mathematics and its Applications, The Australian National University,
ACT 0200, Australia
Email address: daryl@maths.anu.edu.au

T. Rolski: Mathematical Institute, University of Wrocław, pl. Grunwaldzki 2/4,
50384 Wrocław, Poland
Email address: rolski@math.uni.wroc.pl

R. Vesilo: Department of Electronics, Macquarie University, North Ryde, NSW 2109, Australia
Email address: rein@ics.mq.edu.au



Hindawi Publishing Corporation
Journal of Applied Mathematics and Decision Sciences
Volume 2007, Article ID 94515, 16 pages
doi:10.1155/2007/94515

Review Article
The Geometry of Statistical Efficiency and Matrix Statistics

K. Gustafson

Received 23 March 2007; Accepted 8 August 2007

Recommended by Paul Cowpertwait

We will place certain parts of the theory of statistical efficiency into the author’s opera-
tor trigonometry (1967), thereby providing new geometrical understanding of statistical
efficiency. Important earlier results of Bloomfield and Watson, Durbin and Kendall, Rao
and Rao, will be so interpreted. For example, worse case relative least squares efficiency
corresponds to and is achieved by the maximal turning antieigenvectors of the covariance
matrix. Some little-known historical perspectives will also be exposed. The overall view
will be emphasized.

Copyright © 2007 K. Gustafson. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
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1. Introduction and Summary

Recently, Gustafson [1–3] was able to connect the theory of statistical efficiency to his
operator trigonometry, which is a theory of antieigenvalues and antieigenvectors which
he initiated in 1967 for a different purpose. The aim of this paper is to go beyond the
[1–3] papers to provide a more overall view of these results and their implications. We will
also use this opportunity to expose some historical perspectives that have been generally
forgotten or which are otherwise little known.

The outline and summary of this paper are as follows. In Section 2, we obtain the sta-
tistical efficiency ratio of BLUE to OLSE covariance in terms of the geometry provided by
the author’s 1967 operator trigonometry. To fix ideas here, this result can be described as
giving to the [4, 5] Bloomfield-Watson-Knott solution of the Durbin conjecture, that is,
its geometrical meaning. In Section 3, we provide the reader with the basics of the oper-
ator trigonometry. This brief but adequate bibliographical citation is given from which
further detail may be obtained. To augment the reader’s intuition and appreciation for the
operator trigonometry, and because we are writing here for an audience of statisticians,
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in Section 4 we recall the origin of the operator trigonometry, that is, operator semi-
groups, with application to Markov processes. This problem essentially induced both of
the key elements of the operator trigonometry. In Section 5, we return to the topic of
statistical efficiency and provide some lesser-known historical background. This is aug-
mented in Section 6 with a look at an interesting early paper of von Neumann. From the
latter, we are able to make here an interesting new connection of statistical efficiency to
partial differential equations. In Section 7, we develop the interesting and useful distinc-
tion between what we call inefficiency vectors versus antieigenvectors. Both satisfy related
variational equations. Through this link, we may then relate in Section 8 certain consider-
ations of canonical correlations as treated in [6] by Rao-Rao to the general mathematical
setting of statistical efficiency and operator trigonometry—all three are now combined.
Section 9 concludes the paper with some further discussion of the historical view of sta-
tistical efficiency as viewed through the context of this paper.

2. The geometry of statistical efficiency

What follows was shown in Gustafson [1–3]. Considering the general linear model, we
follow Wang and Chow [7] for convenience:

y = Xβ+ e, (2.1)

where y is an n-vector composed of n random samplings of a random variable Y , X is
an n× p matrix usually called the design or model matrix, β is a z-vector composed of p
unknown nonrandom parameters to be estimated, and e is an n-vector of random errors
incurred in observing y. The elements xi j of X may have different statistical meanings
depending on the application. We assume for simplicity that the error or noise e has
expected value 0 and has covariance matrix σ2V , whereV is a symmetric positive definite
n× n matrix. Of course one can generalize to singular V and to unknown V and so on
by using singular value decomposition and generalized inverses throughout to develop
a more general theory, but we shall not do so here. We absorb the σ2 or nonidentical
row-dependent variances into V . A customary assumption on X is that n� 2p, that is,
one often thinks of X as having only a few (regressor) columns available. In fact, it is
useful to often think of p as just 1 or 2. Generally, it seems to be usually assumed that the
columns of X are linearly independent, and often it is assumed that those columns form
an orthonormal set X∗X = Ip.

The relative statistical efficiency for comparing an ordinary least-squares estimator

OLSE ̂β and the best linear unbiased estimator BLUE β∗ is defined as

RE
(

̂β
)=

∣

∣Cov
(

β∗
)∣

∣

∣

∣Cov
(

̂β
)∣

∣

= 1
∣

∣X∗VX
∣

∣

∣

∣X∗V−1X
∣

∣

, (2.2)

where | · | denotes determinant. A fundamental lower bound for statistical efficiency is

RE
(

̂β
)

�
p
∏

i=1

4λiλn−i+1
(

λi + λn−i+1
)2 , (2.3)
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where λ1 � λ2 � ···� λn > 0 are the eigenvalues of V . This lower bound is sometimes
called the Bloomfield-Watson-Knott lower bound; see Section 5 for more historical par-
ticulars. In Gustafson [1], the following new and geometrical interpretation of the lower
bound (2.3) was obtained. More specifics of the operator trigonometry, antieigenvalues,
and antieigenvectors will be given in Section 3. The essential meaning of Theorem 2.1 is
that the linear model’s statistical efficiency is limited by the maximal turning angles of the
covariance matrix V .

Theorem 2.1. For the general linear model (2.1) with SPD covariance matrix V > 0, for

p = 1, the geometrical meaning of the relative efficiency (2.2) of an OLSE estimator ̂β against
BLUE β∗ is

RE
(

̂β
)

� cos2φ(V), (2.4)

where φ(V) is the operator angle of V . For p� n/2, the geometrical meaning is

RE
(

̂β
)

�
p
∏

i=1

cos2φi(V)=
p
∏

i=1

μ2
i (V), (2.5)

where the φi(V) are the successive decreasing critical turning angles ofV , that is, correspond-
ing to the higher antieigenvalues μi(V). The lower bound (2.3), as expressed geometrically in
(2.4), is attained for p = 1 by either of the two first antieigenvectors of V :

x± = ±
(

λ1

λ1 + λn

)1/2

xn +

(

λn
λ1 + λn

)1/2

x1. (2.6)

For p� n/2, the lower bound (2.3), as expressed geometrically in (2.5), is attained as

p
∏

i=1

〈

Vxi±,xi±
〉

∥

∥Vxi±
∥

∥

∥

∥xi±
∥

∥

, (2.7)

where xi± denotes the ith higher antieigenvectors of V given by

xi± = ±
(

λi
λi + λn−i+1

)1/2

xn−i+1 +

(

λn−i+1

λi + λn−i+1

)1/2

xi. (2.8)

In (2.6) and (2.8), xi denotes the normalized ith eigenvector of V corresponding to the eigen-
value λi.

We remark that Theorem 2.1 follows rather immediately from (2.3) once one recog-
nizes that the factors on the right-hand side of (2.3) are exactly the cosines of the critical
turning angles of V . This connection was first pointed out in Gustafson [1]. In Gustafson
[3], some related trace statistical efficiency bounds were also given an operator trigono-
metric interpretation.
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3. The operator trigonometry: antieigenvalues and angles

For simplicity, let A be an n×n symmetric positive definite (SPD) matrix with eigenval-
ues 0 < λn � λ2 � ···� λ1. Then, the first antieigenvalue of A was defined to be

μ1 =min
x�=0

〈Ax,x〉
‖Ax‖‖x‖ (3.1)

and a related entity

ν1 =min
ε>0

‖εA− I‖ (3.2)

also came naturally into the theory. How that came about will be described in Section 4.
Because of the need for both μ1 and ν1, the author felt that ν1 must also be trigonometric.
Indeed it is. Gustafson [8] established the following key minmax result.

Theorem 3.1. Given a strongly accretive operator B on a Hilbert space, then

sup
‖x‖�1

inf
ε
‖(εB− I)x‖2 = inf

ε > 0

sup
‖x‖�1

‖(εB− I)x‖2. (3.3)

In particular for an SPD matrix A, one has

μ2
1 + ν2

1 = 1. (3.4)

Originally, the minimum (3.1) was called cosA for obvious reasons, and after Theorem
3.1 was realized, the minimum (3.2) could be called sinA. This is an essential critical point
to understand about the operator trigonometry. One must have both a sinA and a cosA
if one wants some kind of trigonometry. Later, the better notations cosφ(A) and sinφ(A)
were introduced so as to avoid any unwarranted confusion with cosine and sine functions
in an operator’s functional calculus. Moreover, it is clear that A does have a meaningful
operator angle φ(A) defined equivalently by either (3.1) or (3.2). This operator maximal
turning angle φ(A) is a real tangible angle in n-dimensional Euclidean space. It is attained
by A’s two (here normalized to norm 1) antieigenvectors:

x± = ±
(

λ1

λ1 + λn

)1/2

xn +

(

λn
λ1 + λn

)1/2

x1, (3.5)

where x1 and xn are any (normalized) eigenvectors from the eigenspaces corresponding
to λ1 and λn, respectively. The antieigenvectors are those that are turned to the maximal
amount when operated on by A, and they thus attain the minimums in (3.1) and (3.2).

A more general theory has been developed, and for that and further history and other
ramifications of the operator trigonometry and antieigenvalue-antieigenvector theory,
we just refer to the books of Gustafson [9], Gustafson and Rao [10], and the surveys of
Gustafson [11, 2]. One more basic ingredient which should be mentioned here is the
Euler equation

2‖Ax‖2‖x‖2(ReA)x−‖x‖2 Re〈Ax,x〉A∗Ax−‖Ax‖2 Re〈Ax,x〉x = 0 (3.6)
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which is satisfied by the antieigenvectors of A, for any strongly accretive matrix A. When
A is Hermitian or normal, this Euler equation is satisfied not only by the first antieigen-
vectors x± of A, but also by all eigenvectors of A. Thus, the expression (3.1) generalizes
the usual Rayleigh quotient theory for SPD matrices A to now include antieigenvectors
x±, which minimize it, and all eigenvectors, which maximize it.

Higher antieigenvalues μi(A) and their corresponding higher antieigenvectors were
originally defined, Gustafson [12], in a way analogous to that for higher eigenvalues in
the Rayleigh-Ritz theory. That is okay for some applications but later, Gustafson [13],
the author formulated a better general combinatorially based theory in which the higher
antieigenvectors are those stated in (2.8). To each such pair, we obtain via (3.1) a sequence
of decreasing-in-size maximal interior operator turning angles φi(V) as indicated in (2.5)
(see Gustafson [14] for more details).

It is interesting to note that antieigenvectors, including the higher ones, always occur
in pairs. In retrospect, this is a hint that there are connections of that fact to the fact that
the usual analyses of statistical efficiency also often end up at a point where one needs to
consider certain pairs of vectors. We will return to this point in Section 7.

4. The origin of the operator trigonometry: Markov processes

The author’s creation of the operator trigonometry in 1967 came out of an abstract op-
erator theoretic question. Let X be a Banach space and let A be the densely defined in-
finitesimal generator of a contraction semigroup etA on X . In other words, consider the
initial value problem

du

dt
= Au(t), t > 0,

u(0)= u0 given
(4.1)

and its solution u(t)=Utu0 ≡ etAu0 with the contraction property ‖Ut‖� 1. So one can
think of the heat equation, the Schrödinger equation, or a linear Markov process. In fact,
it was a question of introducing a stochastic time change into a Markov process etA, which
led to the following question. When can one multiplicatively perturb A to BA and still
retain the contraction semigroup infinitesimal generator property in BA? The result was
as follows, Gustafson [15], stated here in now familiar terms.

Theorem 4.1. Let A be the infinitesimal generator of a contraction semigroup on a Banach
space X . Then, BA is still an infinitesimal generator of a contraction semigroup if B is a
strongly accretive operator satisfying

sinφ(B) � cosφ(A). (4.2)

But the proof of Theorem 4.1 in Gustafson [15] did not originally involve any entity
sinφ(B) because such entities did not exist yet. The proof instead needed ‖εB − I‖ �
μ1(A) for some positive ε. By the minmax Theorem 3.1, this requirement becomes (4.2).
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Therefore, to better understand these now trigonometric entities, the author quickly
computed them for some operator classes. For the most definitive and most useful class
A a SPD matrix with eigenvalues 0 < λn � λn−1 � ···� λ1, one has

cosφ(A)= 2
√

λ1λn
λ1 + λn

, sinφ(A)= λ1− λn
λ1 + λn

, (4.3)

which are attained by the antieigenvector pair (3.5).

5. Some history of statistical efficiency

Although the theory of statistical efficiency is well documented in a number of books, and
in the 1970’s papers of Bloomfield-Watson [4], Knott [5], and others, in the writing of
Gustafson [1] this author wanted to get some original feel of the history for himself. For
one thing, it was wondered where the “Durbin conjecture” which led to the lower bound
(2.3) was explicitly stated. This was not found. But some related historical perspectives
were put into Gustafson [1, 3, Section 4]. There, for example, one finds a description of
precursor work of Plackett [16], Aitken [17], and Durbin and Kendall [18]. The latter
paper is quite explicitly geometrical, although, not operator theoretically. Plackett [16]
takes the fundamental notions all the way back to Gauss.

A second more recent historical look has revealed some further interesting historical
perspectives. In particular, the Watson [19] paper is probably the explicit source of the
“Durbin conjecture.” In fact, one finds it there, (3.5), with a footnote crediting it to J.
Durbin. However, Watson [20] admits a flaw in his [19] argument and thus the verifica-
tion of the Durbin conjecture remained an open problem until 1975.

Going back further to the two papers of Durbin-Watson [21, 22], one finds a more
classical statistical analysis of (2.1) from the point of view of χ2 distributions, which is
of course of central importance to the theory of analysis of variance. In particular, the
second paper is largely devoted to a study of the statistic

d =
∑

(Δz)2
∑

z2
(5.1)

which is to be used for testing for serial correlation within error in terms of a regression
model. We go back to the first paper (see [21, page 409]) and find that the principal issue
is “the problem of testing the errors for independence forms the subject of this paper and
its successor.” Attribution is made to earlier papers by Anderson [23] and Anderson and
Anderson [24], where possible serial correlations in least-squares residuals from Fourier
regressions were tested. In Watson [20], which is a quite useful paper historically, study
of the efficiency of least squares is said to follow that of Grenander [25] and Grenander
and Rosenblatt [26]. In fact, we have traced efficiency explicitly back to Fisher [27]. See
our further discussion in Section 9.
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6. The von Neumann connection and a new connection to
partial differential equations

In our historical search, tracing back through the two papers of Durbin and Watson [21,
22], one comes upon the interesting n×n matrix

A=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 −1 0 ··· 0
−1 2 −1 ··· 0
0 −1 2 −1 ··· 0
... ··· 0

−1 2 −1
0 −1 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (6.1)

It is stated there that this results from the statistic to be used to test for serial correlation

d =
∑

(Δz)2
∑

z2
= 〈Az,z〉

∑

z2
, (6.2)

where z is the residual from linear regression. It was shown [22] that the mean and vari-
ance of the statistic d are given by

E(d)= P

n− k′ − 1
,

var(d)= 2[Q−PE(d)]
(n− k′ − 1)(n− k′ + 1)

,

(6.3)

where

P = trA− tr
(

X ′AX
(

X ′X
)−1

)

,

Q = trA2− 2tr
(

X ′A2X
(

X ′X
)−1

)

+ tr
(

(

X ′AX
(

X ′X
)−1

)2
,

(6.4)

where k′ is the number of columns of the matrix of observations of the independent
variables

⎡

⎢

⎢

⎣

x11 x21 ··· xk′1
...
x1n x2n ··· ck′n

⎤

⎥

⎥

⎦

. (6.5)

One wonders, or at least this author wonders, about how A came about. It turns out that
this query became quite interesting as we now explain.

A more careful reading of Durbin and Watson [21] leads to a paper of von Neu-
mann [28], and one cannot resist looking at it. As it is well known, von Neumann was a
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polymath and this paper is not an exception. An in-depth study of the statistic

η = δ2

s2
(6.6)

is carried out, where s2 is the sample variance of a normally distributed random variable
and δ2 =∑n−1

μ=1(xμ+1− xμ)2/(n− 1) is the mean square successive difference—the goal be-
ing to determine the independence or trend dependence of the observations x1, . . . ,xn.
Thus, we find this paper to be an early and key precedent to all the work done by Durbin,
Watson, and others in the period of 1950–1975.

Von Neumann’s analysis is extensive and he obtains a number of theoretical results
which, if we might paraphrase see Durbin and Watson [21, page 418], are more or less
beyond use by conventional statisticians. However, both Durbin-Watson papers [21, 22]
go ahead and use the matrix A to illustrate their theory. So one looks further into von
Neumann’s paper to better understand the origin of the matrix A of (6.1). One finds
there (see [28, page 367]) the statement: “the reasons for the study of the distribution
of the mean square successive difference δ2, in itself as well as in its relationship to the
variance s2, have been set forth in a previous publication, to which the reader is referred.”
However, it is made clear that comparing observed values of the statistic η will be used
to determine “whether the observations x1, . . . ,xn are independent or whether a trend
exists.”

Since curiosity knows no bounds, we pushed the historical trace back to the previous
publication of von Neumann, Kent, Bellison, and Hart [29]. The answer to our curios-
ity about why von Neumann became involved with this statistical regression problem is
found there. To quote (see [29, page 154]), “the usefulness of the differences between
successive observations only appears to be realized first by ballisticians, who faced the
problem of minimizing effects due to wind variation, heat, and wear in measuring the
dispersion of the distance traveled by shell.” The 4-author paper originated from the Ab-
erdeen Ballistic Research Laboratory, where von Neumann was consulting.

Returning to his analysis in von Neumann [28], we find that he begins with a now
more or less classical multivariate analysis of normally distributed variables. By diago-
nalization, a quadratic form

∑

Aμx′μ is obtained where the Aμ, μ= 1, . . . ,n, are the eigen-
values of the form (n− 1)δ2. The smallest eigenvalue An = 0 is found, with eigenvec-
tor x0 = (1, . . . ,1)/

√
n. A further analysis, using an interesting technique of assuming the

x′1, . . . ,x′n−1 to be uniformly distributed over an n− 1 unit sphere, shows that the statistic
η of (6.5) is then distributed according to

η = n

n− 1

n−1
∑

μ=1

Aμx
2
μ. (6.7)

Thus, the sought eigenvalues Aμ, μ = 1, . . . ,n, are the eigenvalues of the quadratic form
(n− 1)δ2, which is then written as

(n− 1)δ2 = x2
1 + 2

n−1
∑

μ=2

x2
μ + x2

n− 2
n−1
∑

μ=1

xμxμ+1. (6.8)
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The matrix of this form is (6.1) and it is that matrix which is also borrowed and used in
Durbin and Watson [21, 22]. Used as well are the eigenvalues

Ak = 4sin2

(

kπ

2n

)

, k = 1, . . . ,n− 1 (6.9)

which von Neumann computes from the determinant of A.

Commentary. When we first saw the matrix A in Durbin and Watson [21, 22], our take
was completely different. As this author is a specialist in partial differential equations, for
example, see Gustafson [30], we immediately see the matrix A in (6.1) as the discretized
Poisson-Neumann boundary value problem

−d
2u(x)
dx2

= f (x), 0 < x < 1,

du

dx
= 0 at x = 0,1.

(6.10)

In saying this, I am disregarding the exact interval and discrete Δx sizes.
This new connection between statistical efficiency and partial differential equations

will be further explored elsewhere, especially as it will no doubt generalize to Dirich-
let, Neumann, and Robin boundary value problems for the Laplacian operator −Δ =
∑

∂2u/∂x2 in higher dimensions. The reverse implications for a more general context of
statistical efficiency could also be interesting. Moreover, we have already worked out the
complete operator trigonometry for the two-dimensional discretized Dirichlet problem
in Gustafson [31].

We also comment in passing that a similar ballistic problem—that of control of rocket
flight—was the motivating application in Japan during the Second World War that led Ito
to develop his stochastic calculus, which is now so important in the theory of financial
derivatives and elsewhere.

7. The inefficiency equation and the Euler equation

Following Wang and Chow [7], among others, one may apply a Lagrangian method to

RE
(

̂β
)−1 = ∣∣XV−1X

∣

∣

∣

∣X ′VX
∣

∣ (7.1)

with the general case having been reduced to that of X ′X = Ip. By a differentiation of
F(x,λ)= ln|X ′V−1X|+ ln|X ′VX|− 2tr(X ′XΛ) and subsequent minimization, the rela-
tion

X ′X
(

Λ+Λ′
)=Λ+Λ′ = 2Ip (7.2)
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is obtained. Here, Λ is a p× p upper triangular matrix which is the Lagrange multiplier
with respect to the constraint X ′X = Ip. From this and further work including the simul-
taneous diagonalization of X ′V 2X , X ′VX , and X ′V−1X , one arrives at the result

RE
(

̂β
)−1 =

p
∏

i=1

x′i Vxix
′
i V

−1xi, (7.3)

where X is now the n× p column matrix X = [(x1)···(xp)] whose columns go into the
expression (7.3). The Lagrange multiplier minimization leading to (7.3) has also now
yielded the equation for the xi:

V 2xi
x′i Vxi

+
xi

x′i V−1xi
= 2Vxi, i= 1, . . . , p. (7.4)

Clearly, the span {xi,Vxi} is a two- (or one-)dimensional reducing subspace of V and
it is spanned by two (or one) eigenvectors ψj and ψk of V . Writing each column xi =
∑n

j=1αi jψj in terms of the full eigenvector basis of V , (7.4) yields the quadratic equation

z2

x′i Vxi
− 2z+

1
x′i V−1xi

= 0 (7.5)

for the two (or one) eigenvalues λj and λk associated to each xi, i= 1, . . . , p. Substituting
those eigenvalues as found from (7.5) into (7.3) brings (7.3) to the statistical efficiency
lower bound (2.3).

On the other hand, the Euler equation (3.6) from the operator trigonometry, for n×n
SPD matrices A, becomes

A2x
〈

A2x,x
〉 − 2Ax

〈Ax,x〉 + x = 0. (7.6)

Comparison of (7.5), which we call the inefficiency equation, and the Euler equation (7.6)
yield the following result.

Theorem 7.1. For any n× n SPD covariance matrix V or more generally any n× n SPD
matrix A, all eigenvectors xj satisfy the inefficiency equation (7.4) and the Euler equation
(7.6). The only other vectors satisfying the inefficiency equation (7.4) are the “inefficiency
vectors”

x
j+k
± = ± 1√

2
xj +

1√
2
xk, (7.7)

where xj and xk are any eigenvectors corresponding to any distinct eigenvalues λj �= λk. The
only other vectors satisfying the Euler equation (7.6) are the antieigenvectors

x
jk
± = ±

(

λk
λj + λk

)1/2

xj +

(

λj
λj + λk

)1/2

xk. (7.8)

For details of the proof of Theorem 7.1, see Gustafson [1, 3].
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Commentary. The statistical interpretation of relative statistical inefficiency of an OLSE

estimator ̂β in terms of (2.2) is that the design matrix X chosen for (2.1) unfortunately
contains columns of the form (7.7). That is why we called those the inefficiency vectors
of V . The most critical are of course those with j = 1 and k = n. On the other hand, the

new geometrical interpretation of relative statistical inefficiency of an OLSE estimator ̂β,
now in terms of the bound (2.3) as seen trigonometrically according to Theorem 2.1, is
now in the worst-case situation; the matrixX under consideration unfortunately contains
columns of the form (7.8). These antieigenvectors represent the critical turning angles of
the covariance matrix V . The worst case is when j = 1 and k = n.

8. Canonical correlations and Rayleigh quotients

The Euler equation for the antieigenvectors can be placed (at least in the case of A sym-
metric positive definite) within a context of stationary values of products of Rayleigh
quotients. To do so, we refer to the paper of Rao and Rao [6], and references therein. If
one considers the problem of obtaining the stationary values of an expression

x′Cx
(

x′Ax
)1/2(

x′Bx
)1/2 (8.1)

with A and B being symmetric positive definite and C being symmetric, then squaring
(8.1) gives the product of two Rayleigh quotients

〈Cx,x〉
〈Ax,x〉 ·

〈Cx,x〉
〈Bx,x〉 . (8.2)

Taking the functional derivative of (8.1) with respect to x yields the equation

x′Cx
x′Ax

Ax+
x′Cx
x′Bx

Bx = 2Cx. (8.3)

Note that if we let C = T , A= T2, B = 1, then (8.1) becomes the antieigenvalue quo-
tient (3.1). Similarly, (8.3), for the same operators and with x being normalized to ‖x‖ =
1, becomes the Euler equation (7.6). On the other hand, the full Euler equation (3.6) for
any bounded accretive operator A on any Hilbert space is more general than (8.3) in the
sense of operators treated. Moreover, one can easily put B and C operators into the coef-
ficients by a similar derivation. Thus, a general theory encompassing statistical efficiency,
operator trigonometry, and canonical correlations could be developed.

Commentary. In their analysis, Rao and Rao [6] arrive at two cases, the first case corre-
sponds to stationary values equal to 1, and the second case corresponds to smaller sta-
tionary values. As regards the second case, they note that “there can be solutions of the
form x = aei + bej ,” where the ei and ej are eigenvectors. But we now know from the op-
erator trigonometry that these are the two cases covered by our Euler equation (3.6), and
that the solutions in the second case are the antieigenvectors.
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9. Concluding discussion

Who first formulated that the definition RE(̂β) of statistical efficiency was not clear to
this author. Durbin and Kendall [18], certainly two great veterans in the field, specifically
define E to be the efficiency of t′ relative to t according to (see [18, page 151])

ρ(t, t′)=
√

var t
var t′

= √E. (9.1)

Here t =∑n
j=1 λjxj is a linear estimator of the mean. To be unbiased, the coefficients λj

must satisfy
∑

λj = 1. The variance of the estimator t is then σ2
∑

λ2
j = σ2(OP)2, where

OP is the line segment from the origin to the
∑

λj = 1 hyperplane in λ-space. Clearly, the
smallest such variance arrives when one takes the point P to be the bottom of the line
segment perpendicular to the hyperplane. Variance of t′ is just σ2(OP′)2 for any other
point P′ in the hyperplane. So E = cosφ, where φ is the angle between the lines OP and
OP′.

Durbin and Kendall [18] cite the book of Cramér [32] for statistical efficiency. There
[32, Chapter 32, page 474], Cramér makes it clear that “in the sequel, we shall exclusively
consider the measures of dispersion and concentration associated with the variance and
its multidimensional generalizations.” Then see [32, page 481], the efficiency e(α∗) is
defined to be the ratio between the variance D2(α∗) of an unbiased and regular estimate
α∗ and its smallest possible value

1

n
∫∞

−∞

(

∂ log f
∂α

)2

f dx

. (9.2)

Here, f (x,α) is a continuous frequency function. The discrete case is also worked out in
later pages. Cramér attributes the concept of efficient estimate to Fisher [27, 33]. Also
mentioned (see [32, page 488]) are (later) papers by Neyman, Pearson, and Koopman. So
the theory of statistical efficiency arises centrally out of the general theory of estimation
of variance by maximum likelihood methods, and it seems, from the early days of that
development.

In Freund’s classic textbook (Miller and Miller [34]), one finds (see page 327) that the

fact that var(̂θ) � the quantity in (9.2) is called the Cramér-Rao inequality. The denomi-
nator of (9.2) is interpreted as the information about the estimator θ which is supplied by
the sample. Smaller variance is interpreted to mean greater information. Thus, as Cramér
already made clear (see our quote above and Chapter 32 of his book), we are looking at
central tendency as measured by second moments.

We decided to bite the bullet and go back to Fisher [27, 33]. Indeed, in his first paper
see [27, page 309], he clearly defines efficiency of a statistic as “the ratio whose intrinsic
accuracy bears to that of the most efficient statistic possible; it expresses the proportion
of the total available relevant information of which that statistic makes use.” He carefully
attributes, designates, or, in any case, cites in connection with that definition a 1908 paper
by Student and a 1763 paper by Bayes. Then, we find (on page 315) that “in 1908, Stu-
dent broke new ground by calculating the distribution of the ratio which the deviation of
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the mean from its population value bears to the standard deviation calculated from the
sample.” Of course, both papers [27, 33] also contain excellent discussions of the method
of maximum likelihood and its pros and cons.

Here, this author must interject that in a classified naval intelligence task, in 1959,
he first became aware of, and implemented, the χ2 distribution for estimating goodness
of fit for combinations of normally distributed random variables. The application was
concerned with observations at several receiving sites of the bearings of received signal
from a transmitting enemy submarine. For an unclassified account of this work, see the
paper of Gustafson [35]. This author still remembers the genuine joy of operational naval
personnel as they called out that “the χ2 of the fit is. . .!” It is also perhaps an amusing
irony that 45 years later this author, through the indirect and abstract path of his operator
trigonometry, has arrived back at χ2 testing.

A second point for discussion is that in this treatment, we have not gone into the more
general theory of statistical efficiency utilizing generalized inverses. Certainly, it is natural
and essential to do so for both theory and statistical applications. For example, when V is
nonsingular, one has (e.g., see Puntanen and Styan [36]) in terms of generalized inverses

BLUE(Xβ)= Xβ∗ = X(X∗V−1X
)−
X∗V−1y,

OLSE(Xβ)= X ̂β = X(X∗X)−X∗y.
(9.3)

However, in this author’s opinion, the essential points are first seen for p = 1, that is, in
the case of X , a single regressor vector. In any case, the more general theory including
generalized inverses is now so well worked out in the mathematical statistics literature
that such a state of affairs should excuse the author from having to process it all. On
the other hand, it is equally clear that the operator trigonometry of statistical efficiency
should be extended to that setting including generalized inverses and, moreover, singular
correlation matrices V . Possibly, we shall do that in the future, but such a comprehensive
study is a task for another paper.

However, we here may “close the picture” from the other direction. From the usual
assumption X∗X = Ip, where X is an n× p semi-unitary matrix, it is instructive to take
its p orthonormal columns and conceptually add to them n− p orthonormal columns.
These may be thought of as “fictitious” additional regressors that one would like to have.
How to do so is just the procedure in the proof of the classical Schur theorem. Call any
one of these enlarged unitary regressor matrices X . Then, (9.3) is simplified to

BLUE
(

Xβ∗
)= X−1y, OLSE

(

X ̂β
)= y. (9.4)

Also, the efficiency (2.2) becomes 1, caused essentially by the unitarity of X . Although
this exercise should not surprise anyone, still it seems to this author that the generalized
inverse theory could be viewed as an “intermediate” theory dealing with how badly you
have truncated and otherwise abused the fictitiously available large set of Schur unitaries.
As a variation on this theme, for an arbitrary n×nmatrix X written in its polar form X =
U|X|, where U is the isometry from the range of the absolute value operator |X| to the
range of X , the operator trigonometry concerns itself only with the turning angles of the
Hermitian polar factor |X|. See Gustafson [14] for more on this point. Thus, the essence
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of the minimization of the Durbin lower bound (2.3) by its attainment by antieigenvector
regression vectors as described in Theorem 2.1 has to do with the polar Hermitian factor
of X , and not with its isometric factor U . So our thought experiment exercise leading
to (9.4) says that the unitary factor of the design matrix X has no effect on its statistical
efficiency.

To conclude, in this paper we have placed the theory of statistical efficiency into the
geometrical setting of the author’s operator trigonometry. There are many remaining
aspects of both together with their further interconnection, with which we have not dealt.

Addendum

In the intervening two years since the IWMS 2005 conference, on which the work herein
was first presented, I have written two further related papers that should be mentioned:
Gustafson [37, 38].

In [37], what follows are rendered trigonometric: Khatri-Rao inequality, Khatri-Rao-
Ando bound, Bartmann-Bloomfield bound, and Hotelling correlation coefficient. In [38],
I provide a complete survey of the various applications of my operator trigonometry,
from 1966 to the present.
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1. Introduction

Many generalizations and extensions of the Weibull distribution have been proposed in
reliability literature due to the lack of fits of the traditional Weibull distribution. A sum-
mary of these generalizations is given by Pham and Lai [1]. An extensive treatment on
Weibull models is given by Murthy et al. [2].

A modified Weibull distribution that allows instantaneous or early failures is intro-
duced by Muralidharan and Lathika [3]. It was pointed out that the occurrence of instan-
taneous or early (premature) failures in life testing experiment is a phenomenon observed
in electronic parts as well as in clinical trials. These occurrences may be due to inferior
quality, faulty construction, or nonresponse of the treatments.

It has been shown that the distribution may be represented as a mixture of a singular
distribution at zero (or t0) and a two-parameter Weibull distribution. Because of the sin-
gular nature of distribution, we have been unable to define the failure rate (hazard rate)
function meaningfully. The aim of this paper is to provide a meaningful modification so
that the resulting model can be expressed as a mixture of two continuous distributions.
This modified form is more realistic as “true” instantaneous failures rarely occur. The
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modification allows us to establish and study the failure rate function of this reliability
model via mixture distributions. We also provide some graphical plots to illustrate some
possible shapes for the survival functions as well as the failure rate functions.

The present paper focuses on the “nearly instantaneous” failure case as it has fewer
parameters. This special case is more realistic than the “early failure” case since many
products exhibit an “infant mortality” phenomenon due to initial defects.

2. Representation of the model

Let F(t) and R(t)= 1−F(t) denote the cumulative distribution function and the survival
function of the mixture, respectively. We assume that F is continuous and its density be
given by f (t)= F′(t). The component distribution functions and their survival functions
are Fi(t) and Ri(t)= 1−Fi(t), respectively, i= 1,2. The failure rate of a lifetime distribu-
tion is defined as h(t)= f (t)/R(t) provided the density exists.

Instead of assuming an instant or an early failure to occur at a particular time point, as
in the original model of Muralidharan and Lathika [3], we now represent this model as a
mixture of a generalized Dirac delta function and the 2-parameter Weibull as opposed to
a mixture of a singular distribution with a Weibull. Thus, the resulting modification gives
rise to a density function:

f (t)= pδd
(
t− t0

)
+ qαλαtα−1e−(λt)α , p+ q = 1, 0 < p < 1, (2.1)

where

δd
(
t− t0

)=

⎧
⎪⎪⎨

⎪⎪⎩

1
d

, t0 ≤ t ≤ t0 +d,

0, otherwise,
(2.2)

for sufficiently small d. Here p > 0 is the mixing proportion.
We note that

δ
(
x− x0

)= lim
d→0

δd
(
x− x0

)
, (2.3)

where δ(·) is the Dirac delta function. We may view the Dirac delta function as a normal
distribution having a zero mean and standard deviation that tends to 0. For a fixed value
of d, (2.2) denotes a uniform distribution over an interval [t0, t0 + d] so the modified
model is now effectively a mixture of a Weibull with a uniform distribution. Instead of
including a possible instantaneous failure in the model, (2.2) allows for a possible “near
instantaneous” failure to occur uniformly over a very small time interval.

Note that the case t0 = 0 corresponds to instantaneous failures, whereas t0 /= 0 (but
small) corresponds to the case with early failures.

Noting from (2.1) and (2.2), we see that the mixture density function is not continuous
at t0 and t0 +d. However, both the distribution and survival functions are continuous.

Writing f1(t)= δd(t− t0) and f2(t)= αλαtα−1e−(λt)α , α,λ > 0; (2.1) can be written as

f (t)= p f1(t) + q f2(t), p+ q = 1, 0 < p < 1, (2.4)
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so

F(t)= pF1(t) + qF2(t), (2.5)

R(t)= 1−F(t)= p+ q− {pF1(t) + qF2(t)
}= pR1(t) + qR2(t). (2.6)

Thus, the failure (hazard) rate function of the mixture distribution is

h(t)= p f1(t) + q f2(t)
pR1(t) + qR2(t)

. (2.7)

A mixture distribution involving two 2-parameter Weibull distributions has been thor-
oughly studied in Jiang and Murthy [4]. The mixture considered in this paper is more
complex in the sense that one of the mixing distributions has a finite range which poses
some challenges.

Via (2.4) simulated observations from this model are made by generating uniform
variates and Weibull variates with proportions p and q = 1− p, respectively.

3. Survival function and failure rate function of the model

Recently, failure rates of mixtures are discussed quite extensively. Lai and Xie [5, Sec-
tion 2.8] provide a good summary. As demonstrated by Block et al. [6], various shapes
of failure rate functions can arise with a mixture of two increasing failure rate distribu-
tions. Now, a Weibull has an increasing (decreasing) failure rate if its shape parameter α
is greater (smaller) than 1. The uniform distribution also has an increasing failure rate if
it is uniform over [0, a]. Thus we are interested to know what shapes would result from
our model.

The reliability (survival) functions of the respective component distributions are given
by

R1(t)=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if 0≤ t < t0,

d+ t0− t
d

if t0 ≤ t ≤ t0 +d,

0 if t > t0 +d,

(3.1)

R2(t)= e−(λt)α , t ≥ 0, α,λ > 0. (3.2)

The failure rates are, respectively,

h1(t)=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, 0≤ t < t0,

1
d+ t0− t , t0 ≤ t ≤ t0 +d,

∞, t > t0 +d,

(3.3)

h2(t)= αλ(λt)α−1. (3.4)
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It can be shown from (2.4) and (2.6) that for any mixture of two continuous distribu-
tions, the failure rate function can be expressed as

h(t)= f (t)
R(t)

=w(t)h1(t) +
[
1−w(t)

]
h2(t), (3.5)

where w(t)= pR1(t)/R(t) for all t ≥ 0. In our case,

w(t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

p

R(t)
if 0≤ t < t0,

pR1(t)
R(t)

if 0≤ t ≤ t0 +d,

0 if t > t0 +d

(3.6)

with

w′(t)=w(t)
[
1−w(t)

]{
h2(t)−h1(t)

}
. (3.7)

(Note that equation (3.7) is valid for all cases).
Also a simple differentiation shows that

h′(t)=w′(t)h1(t) +w(t)h′1(t)−w′(t)h2(t) + [1−w(t)]h′2(t). (3.8)

Now, w(t)h1(t) = pR1(t)/R(t)× f1(t)/R1(t) = p f1(t)/R(t), so (3.5) is well defined for
all t > 0.

Summarized expression for R(t) and h(t) are, respectively, given as

R(t)= pR1(t) + qR2(t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

p+ qe−(λt)α , 0≤ t < t0,

p
(
d+ t0− t

)

d
+ qe−(λt)α , t0 ≤ t ≤ t0 +d,

qe−(λt)α , t > t0 +d,

(3.9)

h(t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
qe−(λt)α

p+ qe−(λt)α

)
αλαtα−1, 0≤ t < t0,

p+dqe−(λt)ααλαtα−1

p
(
d+ t0− t

)
+dqe−(λt)α

, t0 ≤ t ≤ t0 +d,

αλαtα−1, t > t0 +d.

(3.10)

Recall that h(t) is discontinuous at both t = t0 and t = t0 +d. Unlike the model of Mu-
ralidharan and Lathika [3], the survival function is continuous though not differentiable
at t = t0 and t = t0 +d.
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Figure 4.1. Plot of f (t) : λ= 1,α= 0.5,d = 0.2, t0 = 0.

4. Nearly instantaneous failure case (t0 = 0)

Consider a special case of the model (2.1) whereby t0 = 0. The model may be called the
Weibull with “nearly instantaneous failure” model.

In this case, (3.3) is simplified giving the failure rate of the uniform distribution as

h1(t)=
⎧
⎪⎨

⎪⎩

1
d− t , 0≤ t ≤ d,

∞, t > d,
(4.1)

and (3.1) its survival function is given as

R1(t)=
⎧
⎪⎨

⎪⎩

d− t
d

if 0≤ t ≤ d,

0 if t > d.
(4.2)

The Weibull model with “nearly instantaneous failure” occurring uniformly over [0,d]
has

R(t)=

⎧
⎪⎪⎨

⎪⎪⎩

p(d− t)
d

+ qe−(λt)α , 0≤ t ≤ d,

qe−(λt)α , t > d,

(4.3)

h(t)=

⎧
⎪⎪⎨

⎪⎪⎩

p+dqe−(λt)ααλαtα−1

p(d− t) +dqe−(λt)α
, 0≤ t ≤ d,

αλαtα−1, t > d.

(4.4)

Graphs of Survival, Density, and Failure Rate Functions. Graphical plots are important for
ageing distributions. It is not the aim of this paper to present complete characterizations
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Figure 4.2. Plot of f (t) : λ= 1,α= 2,d = 0.2, t0 = 0.
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Figure 4.3. Plot of R(t) : λ= 1,α= 0.5,d = 0.2, t0 = 0.

for the survival, density, and the failure rate functions. Instead, snapshots are taken of
some possible shapes from this model, as it is important to identify whether the model is
useful for specific datasets for which empirical plots are available.

Consider in detail the special case when t0 = 0, that is, the Weibull with “nearly” in-
stantaneous failure model.

Density functions. In both Figures 4.1 and 4.2, three density functions with p = 0.2, 0.5,
and 0.8 are plotted. In all figures, the smallest mixing proportion p is given by the solid
line.
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Figure 4.4. Plot of R(t) : λ= 1,α= 2,d = 0.2, t0 = 0.
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Figure 4.5. Plots of failure rate functions.

Survival functions. The survival functions are given by Figures 4.3 and 4.4 which corre-
spond to the density functions in Figures 4.1 and 4.2, respectively.

Failure rate functions. The failure rate function h(t) is given as in (4.4). Clearly, its shape
is the same as the Weibull failure rate after d. Thus we focus on the segment from 0 to d.
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Table 5.1. Instantaneous failures at ti = 0, i= 1,2, . . . ,28.

p̂ α̂ 1/λ̂

Estimates 0.6999992 1.1929632 0.9315360

Standard error 0.07244318 0.28878116 0.23615878

Since the scale parameter λ does not alter the shape, it is set to one. Figure 4.5 shows that
h(t) can be increasing, decreasing, or bathtub shaped for 0≤ t ≤ d.

From the plots, it can be seen that the failure rate function of the model gives rise
to several different shapes and bumps; this is expected as mixing distributions with a
component distribution that has a finite range often cause some problems. Although the
second part can be either increasing or decreasing, the first segment can achieve various
shapes. This finding is consistent with Block et al. [6].

5. Data fitting and an application

Mixture distributions are used widely in the statistics literature. Bebbington et al. [7] have
used a mixture of two generalized Weibull distributions to fit human mortality data. A
mixture distribution may give rise to different failure rate thus it can provide pseudo-
demarcation of various phases of a lifespan. Bebbington et al. [7] also use their mixture
distribution to identify the differences between (sub)populations.

While software for fitting mixture distributions is available, such as the MIX package
for the R environment (Macdonald [8]), such packages do not handle uniform distribu-
tions, or mixtures of unlike distributions.

To fit the model to a dataset, an R script was written. One can write a code in R to fit
all 4 parameters (p,λ,α,d) and another to fit 3 parameters (p,λ,α) with d given and held
fixed. The second case always works, and works very well, but the first never gives good
results when the edge of the uniform (parameter d) is inside the peak of the Weibull (per-
sonal communication with Professor Macdonald). This is because there is not enough
information in the data to fit the 4th parameter in this situation. In practice, the value of
d can be manually estimated quite accurately from the dataset.

5.1. Application. A sample of 40 boards of woods were checked for their dryness on
a particular area of a board. The actual observations were degrees of dryness measured
as a percentage. This dataset was analysed in Muralidharan and Lathika [3] with ti = 0,
i = 1,2, . . . ,28 and the other positive observations are as follows: 0.0463741, 0.0894855,
0.4, 0.42517, 0.623441, 0.6491, 0.73346, 1.35851, 1.77112, 1.86047, 2.12125, 2.12389.

Treating the degree of dryness as the “failure time,” we apply the Weibull model with
“nearly instantaneous” failures model to this data (see Table 5.1).

It is reasonable to spread the zeros uniformly over an interval [0,d). For illustration,
we select d = 0.135 so that t1 = 0, t2 = 0.0005, t3 = 0.001, . . . , t28 = 0.0135. Applying the
MLE method in R, we found the following see Table 5.2.

It seems to us the sizes of standard errors of the three estimates are reasonable in view
of a small sample size.
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Table 5.2. Uniform spread of “nearly” instantaneous failure times.

p̂ α̂ 1/λ̂

Estimates 0.6981846 1.1656527 0.9431262

Standard error 0.07292797 0.30176818 0.24822803

Table 5.3. Exponential with “nearly” instantaneous failures: d = 0.0135.

p̂ 1/λ̂

v1–estimates (se) 0.6959071 (0.0734413) 1.0031716 (0.2896755)

v2–estimates (se) 0.6959356 (0.07343414) 1.0033558 (0.28970177)

Since the shape parameter α̂= 1.16 and the fact that three parameters are being esti-
mated from few data points, it would be more realistic to specify α = 1 a priori (i.e., an
exponential) as a special case of the Weibull model. This would reduce the number of pa-
rameters and therefore the uncertainty in the parameter estimates. Table 5.3 summarizes
the parameter estimates of the exponential mixing with the uniform model.

Note. v1 consists of of measurements from the original dataset. The 28 zeros in v1 are
then calibrated to spread over uniformly over [0,d]. v2 is formed by replacing the first 28
cells of v1 by the calibrated values.

We note from the preceding table that the precision for the second parameter estimate
actually deteriorates in comparison with the Weibull case. Perhaps the Akaike informa-
tion criteria (AIC) or BIC would be a more objective way to evaluate this comparison.

5.2. Sensitivity analysis. In the above model fitting, we have chosen d manually and the
value d = 0.0135 is chosen because it is sufficiently apart from the first nonzero observed
value 0.0463741. We have assessed the sensitivity of the selection of the parameter d. For
the “instantaneous” failures case, we let d vary between 0.01 and 0.04; the resulting es-
timates and their standard errors are virtually unchanged. However, it becomes sensitive
when d is too close to t = 0 or to the first Weibull failure time t = 0.0463741. If d is set
to 0.135, the parameter estimates are then given by p̂ = 0.7497827, α̂ = 1.8827550, and
1/λ̂= 0.7327841 indicating that these estimates change noticeably as d encroaches on the
Weibull “territory.” It also shows that for this value of d, the model with the uniform mix-
ing with the exponential can longer be an alternative because the estimate for the shape
parameter α is now close to 2.

6. Conclusion

The Weibull distribution has been widely used as a life model in reliability applications.
However, one often finds that it does not fit well in the early part of a lifespan for various
reasons. In particular, in the cases where initial defects are present causing early failures,
the Weibull distribution is found inadequate to model such phenomenon. The proposed
model of a modified Weibull mixing with a uniform distribution to model the first phase
of a lifespan should provide a useful alternative.
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Appendix

R code for fitting the model

v1<-rep(0,40)
v1[29:40]<-c(0.0463741,0.0894855,0.4,0.42517,0.623441,0.6491,

0.73346,1.35851,1.77112,1.86047,2.12125,2.12389)
v2 <- c(0, 0.0005, 0.001, 0.0015, 0.002, 0.0025, 0.003, 0.0035,
0.004, 0.0045, 0.005, 0.0055, 0.006, 0.0065, 0.007, 0.0075, 0.008,
0.0085, 0.009, 0.0095, 0.01, 0.0105, 0.011, 0.0115, 0.012, 0.0125,
0.013, 0.0135, 0.046374, 0.089486, 0.4, 0.42517, 0.623441, 0.6491,
0.73346, 1.35851, 1.77112, 1.86047, 2.12125, 2.12389)

uniweib <-cbind(v1, v2)

neglluniweib<-function(p,x,d){
pp<-p[1]
shape<-p[2]
rate<-p[3]
if(pp>0 & shape>0 & rate>0 & pp<1) {

-sum(log(pp*dunif(x,0,d)+(1- pp)*dweibull(x,shape,1/rate)))
}else{

1e+200
}

}

uniweibmle <- function(d,prop,shape,rate,x) {
p<-c(prop,shape,rate)
fit<-nlm(neglluniweib,p=p,x=x,d=d,hessian=T)
fit$se<-sqrt(diag(solve(fit$hessian)))
fit[c(1,2,7,3,4,5,6)]

}

uniweibmle(0.0135,0.1,2,1,v1) uniweibmle(0.0135,0.1,2,1,v2)
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1. Introduction

Suppose that for each number of subjects, we measure a response y and a vector of co-
variates x, in order to estimate the parameters β of a regression model which describes
the conditional distribution of y given x. If we have sampled directly from the conditional
distribution, or even the joint distribution, we can estimate β without knowledge of the
distribution of the covariates.

In the case of a discrete response, which takes one of J values y1, . . . , yJ , say, we often
estimate β using a case-control sample, where we sample from the conditional distribu-
tion of X given Y = yj . This is particularly advantageous if some of the values yj occur
with low probability. In case-control sampling, the likelihood involves the distribution
of the covariates, which may be quite complex, and direct parametric modelling of this
distribution may be too difficult. To get around this problem, the covariate distribution
can be treated nonparametrically. In a series of papers (Scott and Wild [1, 2] Wild [3])
Scott and Wild have developed an estimation technique which yields a semiparametric
estimate of β. They dealt with the unknown distribution of the covariates by profiling
it out of the likelihood, and derived a set of estimating equations whose solution is the
semiparametric estimator of β.
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This technique also works well for more general sampling schemes, for example, for
two-phase outcome-dependent stratified sampling. Here, the sample space is partitioned
into S disjoint strata which are defined completely by the values of the response and possi-
bly some of the covariates. In the first phase of sampling, a prospective sample of sizeN is
taken from the joint distribution of x and y, but only the stratum to which the individual

belongs is observed. In the second phase, for s = 1, . . . ,S, a sample of size n(s)
1 is selected

from the n(s)
0 individuals in stratum s which were selected in the first phase, and the rest

of the covariates are measured. Such a sampling scheme can reduce the cost of studies by
confining the measurement of expensive variables to the most informative subjects. It is
also an efficient design for elucidating the relationship between a rare disease and a rare
exposure, in the presence of confounders.

Another generalized scheme that falls within the Scott-Wild framework is that of case-
augmented sampling, where a prospective sample is augmented by a further sample of
controls. In the prospective sample, we may observe both disease state and covariates, or
covariates alone. Such schemes are discussed in Lee et al. [4].

In this paper, we introduce a general method for demonstrating that the Scott-Wild
procedures are fully efficient. We use a (slightly extended) version of the theory of semi-
parametric efficiency due to Bickel et al. [5] to derive an “information bound” for the
asymptotic variance of the estimates. We then compute the asymptotic variances of the
Scott-Wild estimators, and demonstrate their efficiency by showing that the asymptotic
variance coincides with the information bound in each case.

The efficiency of these estimators has been studied by several authors, who have also
addressed this question using semiparametric efficiency theory. This theory assumes an
i.i.d. sample, and so various ingenious devices have been used to apply it to the case of
choice-based sampling. For example, Breslow et al. [6] consider case-control sampling,
that the data are generated by Bernoulli sampling, where either a case or a control is
selected by a randomisation device with known selection probabilities, and the covariates
of the resulting case or control are measured. The randomisation at the first stage means
that the i.i.d. theory can be applied.

The efficiency of regression models under an approximation to the two-phase sam-
pling scheme has been considered by Breslow et al. [7] using missing value theory. In this
approach, a single prospective sample is taken. For some individuals, the response and the
covariates are both observed. For the rest, only the response is measured and the covari-
ates are regarded as missing values. The efficiency bound is obtained using the missing
value theory of Robins et al. [8].

In this paper, we adopt a more direct approach. First, we sketch an extension of Bickel-
Klaassen-Ritov-Wellner theory to cover the case of sampling from several populations,
which we require in the rest of the paper. Such extensions have also been studied by
McNeney and Wellner [9], and Bickel and Kwon [10]. Then information bounds for the
regression parameters are derived assuming that separate prospective samples are taken
from the case and control populations.

The minor modifications to the standard theory required for the multisample effi-
ciency bounds are sketched in Section 2. This theory is then applied to case-control sam-
pling and an information bound derived in Section 3. We also derive the asymptotic
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variance of the Scott-Wild estimator and show that it coincides with the information
bound.

In Section 4, we deal with the two-phase sampling scheme. We argue that a sampling
scheme, equivalent to the two-phase scheme described above is to regard the data as aris-
ing from separate independent sampling from S+ 1 populations. This allows the appli-
cation of the theory sketched in Section 2. We derive a bound and again show that the
asymptotic variance of the Scott-Wild estimator coincides with the bound. Finally, math-
ematical details are given in Section 5.

In the context of data that are independently and identically distributed, Newey [11]
characterises the information bound in terms of a population version of a profile likeli-
hood, rather than a projection. A parallel approach to calculating the information bound
for the case-control and two-phase problems, using Newey’s “profile” characterisation, is
contained in Lee and Hirose [12].

2. Multisamples, information bounds, and semiparametric efficiency

In this section, we give a brief account of the theory of semiparametric efficiency when
the data are not independently and identically distributed, but rather consist of separate
independent samples from different populations.

Suppose we have J populations. From each population, we independently select sep-
arate i.i.d. samples so that for j = 1, . . . , J , we have a sample {xi j , i = 1, . . . ,nj} from a
distribution with density pj , say. We call the combined sample a multisample. We will
consider asymptotics where nj/n→wj , and n= n1 + ···+nJ .

Suppose that pj is a member of the family of densities

�= {pj(x,β,η), β ∈�, η ∈�
}

, (2.1)

where � is a subset of �k and � is an infinite-dimensional set. We denote the true values
of β and η by β0 and η0, and pj(x,β0,η0) by pj0. Consider asymptotically linear estimates
of β of the form

√
n
(
β̂−β0

)= 1√
n

J∑

j=1

nj∑

i=1

φj
(
xi j
)

+ op(1), (2.2)

where Ejφj(X) = 0, Ej denoting expectation with respect to pj0. The functions φj are
called the influence functions of the estimate and its asymptotic variance is

J∑

j=1

wjEj
[
φjφ

T
j

]
. (2.3)

The semiparametric information bound is a matrix B that is a lower bound for the
asymptotic variance of all asymptotically linear estimates of β. We have

Avar β̂ =
∑

j

wjEj
[
φjφ

T
j

]
≥ B, (2.4)

where the φj are the influence functions of β̂.
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The efficiency bound is found as follows. Let T be a subset of �p so that �T = {pj(x,β,
η(t)), β ∈�, t ∈ T} is a p-dimensional submodel of �. We also suppose that if η0 is the
true value of η, then η(t0) = η0 for some t0 ∈ T . Thus, the submodel includes the true
model, having β = β0 and η = η0.

Consider the vector-valued score functions

l̇ j,η =
∂ log pj

(
x,β,η(t)

)

∂t
, (2.5)

whose elements are assumed to be members of L2(Pj0), where Pj0 is the measure cor-
responding to pj(x,β0,η0). Consider also the space L2k(Pj0), the space of all �k-valued
square-integrable functions with respect to Pj0, and the Cartesian product � of these
spaces, equipped with the norm defined by

∥
∥( f1, . . . , fJ

)∥∥2
� =

J∑

j=1

wj

∫ ∥
∥ f j
∥
∥2
dPj0. (2.6)

The subspace of � generated by the score functions (l̇1,η, . . . , l̇J ,η) is the set of all vector-
valued functions of the form (Al̇1,η, . . . ,Al̇J ,η), where A ranges over all k by p matrices.
Thus, to each finite-dimensional sub-family of �, there correspond a score function and
subspace of � generated by the score function. The closure in � of the span(over all such
subfamilies) of all these subspaces is called the nuisance tangent space and denoted by �η.

Consider also the score functions

l̇β, j =
∂ log pj(x,β,η)

∂β
. (2.7)

The projection l̇∗ in � of l̇β = (l̇β,1, . . . ,l̇β,J) onto the orthogonal complement of �η is
called the efficient score, and its elements (which are members of L2,k(Pj0)) are denoted
by l̇∗j . The matrix B (the efficiency bound) is given by

B−1 =
J∑

j=1

wjEj
[
l̇∗j l̇

∗
j
T
]
. (2.8)

The functions B l̇∗j are called the efficient influence functions, and any multisample asymp-
totically linear estimate of β having these influence functions is asymptotically efficient.

3. The efficiency of the Scott-Wild estimator in case-control studies

In this section, we apply the theory sketched in Section 2 to regression models, where the
data are obtained by case-control sampling. Suppose that we have a response Y (assumed
as discrete with possible values y1, . . . , yJ) and a vector X of covariates, and we want to
model the conditional distribution of Y given X using a regression function

f j(x,β)= P(Y = yj | X = x
)
, (3.1)
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say, where β is a k-vector of parameters. If the distribution of the covariates X is specified
by a density g, then the joint distribution of X and Y is

f j(x,β)g(x) (3.2)

and the conditional distribution of x given Y = yj is

pj(x,β,η)= f j(x,β)g(x)

πj
, (3.3)

where

πj =
∫

f j(x,β)g(x)dx. (3.4)

In case-control sampling, the data are not sampled from the joint distribution, but
rather from the conditional distributions of X given Y = yj . We are thus in the situation
of Section 2 with g playing the role of η and

pj(x,β,g)= f j(x,β)g(x)

πj
. (3.5)

3.1. The information bound in case-control studies. To apply the theory of Section 2,
we must identify the nuisance tangent space �η and calculate the projection of l̇β on this
space. Direct calculation shows that

l̇β, j =
∂ log f j(x,β)

∂β
−� j

[
∂ log f j(x,β)

∂β

]
, (3.6)

where � j denotes expectation with respect to the true density pj0, given by pj0(x) =
pj(x,β0,g0), where β0 and g0 are the true values of β and g. Here, and in what follows,
all derivatives are evaluated at the true values of parameters.

Also, for any finite-dimensional family {g(x, t)} of densities with g(x, t0) = g0(x), we
have

l̇η, j = ∂ logg(x, t)
∂t

−� j

[
∂ logg(x, t)

∂t

]
. (3.7)

It follows by the arguments of Bickel et al. [5, page 52] that the nuisance tangent space is
of the form

�η =
{(
h−�1[h], . . . ,h−�J[h]

)
: h∈ L2,k

(
G0
)}

, (3.8)

where dG0 = g0dx, and L2,k(G0) is the space of all k-dimensional functions f satisfying
the condition

∫ ‖ f ‖2dG0(x) <∞.
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The efficient score, the projection of l̇β on the orthogonal complement of �η, is de-
scribed in our first theorem. In the theorem, we use the notations πj0 =

∫
f j(x,β0)dG0(x),

f ∗(x)=
J∑

j=1

wj

πj
f j(x),

l̇β, j =
(
l̇β, j1, . . . , l̇β, jk

)T
,

φl(x)=
J∑

j=1

wj

πj0
l̇β, jl f j

(
x,β0

)
.

(3.9)

Then we have the following result.

Theorem 3.1. Let A be the operator L2(G0)→ L2(G0) defined by

(Ah)(x)= f ∗(x)h(x)−
J∑

j=1

wj

πj
f j(x)

(
f j
πj

,h
)

2
, (3.10)

where (·,·)2 is the inner product in L2(G0). Then the efficient score has j, l element

l̇β, jl −h∗l +Ej
[
h∗l
]
, (3.11)

where h∗l is any solution in L2(G0) of the operator equation

Ah∗l = φl. (3.12)

A proof is given in Section 5.1.
It remains to identify a solution to (3.12). Define Pj(x)= (wj/πj0) f j(x,β0)/ f ∗(x) and

vj j′ =
∫
PjPj′ f ∗dG0. Let V= (vj j′), W= diag(w1, . . . ,wJ), and M=W−V. Note that the

row and column sums of M are zero since

wj −
J∑

j′=1

∫

PjPj′ f
∗dG0 =wj −

wj

πj

∫

f j dG0 = 0. (3.13)

Using these definitions and (3.10), we get

Ahl = hl f ∗ −
J∑

j=1

(
hl,

f j
πj

)

2
Pj f

∗ (3.14)

so that Ahl = φl if and only if

hl = φl
f ∗

+
J∑

j=1

(
hl,

f j
πj

)

2
Pj. (3.15)

This suggests that h∗l will be of the form

h∗l =
φl
f ∗

+
J∑

j=1

cjPj (3.16)
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for some constants c1, . . . ,cJ . In order that h∗l satisfy (3.12), we must have

cj −
J∑

j′=1

cj′

(

Pj′ ,
f j
πj

)

2

−w−1
j

(
φl,Pj

)
2 = 0, j = 1, . . . , J. (3.17)

Now,

(

Pj′ ,
f j
πj

)

2

= π−1
j

∫

Pj′ f j dG0 =w−1
j

∫

Pj′Pj f
∗dG0 =

(
W−1V

)
j j′ (3.18)

so that (3.17) will be satisfied if the vector c = (c1, . . . ,cJ)T satisfies

Mc = d(l), (3.19)

where dl = (d1l, . . . ,dJl)T with djl = (φl,Pj)2. Thus, we require that c =M−d(l), where M−

is a generalised inverse of M.
Our next result gives the information bound.

Theorem 3.2. Let D = (d1, . . . ,dk) and φ = (φ1, . . . ,φk)T . The inverse of the information
bound B is given by

B−1 =
J∑

j=1

wj� j
[
l̇β, j l̇

T
β, j

]−
∫
φφT

f ∗
dG0−DTM−D. (3.20)

See Section 5.2 for a proof.

3.2. Efficiency of the Scott-Wild estimator in case-control studies. Suppose that we
have J disease states (typically J = 2, with disease-state case and control), and we choose
nj individuals at random from disease population j, j = 1, . . . , J , observing covariates
x1, j , . . . ,xnj , j for the individuals sampled from population j. Also suppose that we have a
regression function f j(x,β), j = 1, . . . , J , giving the conditional probability that an indi-
vidual with covariates x has disease state j. The unconditional density g of the covariates
is unspecified. The true values of β and g are denoted by β0 and g0, and the true proba-
bility of being in disease state j is πj0 =

∫
f (x,β0)g0(x)dx.

Under the case-control sampling scheme, the log-likelihood (Scott and Wild [2]) is

J∑

j=1

nj∑

i=1

log f j
(
xi j ,β

)
+

J∑

j=1

nj∑

i=1

logg
(
xi j
)−

J∑

j=1

nj logπj . (3.21)

Scott and Wild show that the nonparametric MLE of β is the “beta” part of the solution
of the estimating equation

J∑

j=1

nj∑

i=1

∂ logP∗j
(
xi j ,β,ρ

)

∂θ
= 0, (3.22)
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where θ = (β,ρ), ρ= (ρ1, . . . ,ρJ−1),

P∗j (x,β,ρ)= eρj f j(x,β)
∑J−1

l=1 e
ρl fl(x,β) + fJ(x,β)

, j = 1, . . . , J − 1,

P∗J (x,β,ρ)= fJ(x,β)
∑J−1

l=1 e
ρl fl(x,β) + fJ(x,β)

.

(3.23)

A Taylor series argument shows that the solution of (3.22) is an asyptotically linear esti-
mate.

Thus, to estimate β, we are treating the function l∗(θ)=∑J
j=1

∑nj
i=1 logP∗j (xi j ,β,ρ) as

though it were a log-likelihood. Moreover, Scott and Wild indicate that we can obtain a
consistent estimate of the standard error by using the second derivative −∂2l∗(θ)/∂θ∂θT ,
which they call the “pseudo-information matrix.”

Now let n= n1 + ···+nJ , let the nj ’s converge to infinity with nj/n→ wj , j = 1, . . . , J ,
and let ρ0 = (ρ01, . . . ,ρ0,J−1)T , where exp(ρ0 j)= (wj/π0 j)/(wJ/π0J). It follows from the law
of large numbers and the results of Scott and Wild that the asymptotic variance of the
estimate of β is the ββ block of the inverse of the matrix

I∗ = −
J∑

j=1

wj� j

[
∂2 logP∗j

(
xi j ,β,ρ

)

∂θ∂θT

]

, (3.24)

where all derivatives are evaluated at (β0,ρ0). Using the partitioned matrix inverse for-
mula, the ββ block of (I∗)−1 is

(
I∗ββ− I∗βρ

(
I∗ρρ
)−1

I∗ρβ
)−1

, (3.25)

where I∗ is partitioned as

I∗ =
⎡

⎣
I∗ββ I∗βρ
I∗ρβ I∗ρρ

⎤

⎦ . (3.26)

To prove the efficiency of the estimator, we show that the information bound (3.20) co-
incides with the asymptotic variance (3.25). To prove this, the following representation of
the matrix I∗ will be useful. Let S be the J × k matrix with j, l element Sjl = (∂ log f j(x,β)/
∂βl) |β=β0 and jth row Sj , and let E be the J × k matrix with j, l element � j[Sjl]. Also note
that Pj(x) = P∗j (x,β0,ρ0) and write P = (P1, . . . ,PS)T . Then we have the following theo-
rem.

Theorem 3.3. (1) I∗ββ =
∑J

j=1wj� j[SjSTj ]− ∫ STPPTS f ∗dG0.

(2) Let U=WE− ∫ PPTS f ∗dG0. Then I∗ρβ consists of the first J − 1 rows of U.
(3) I∗ρρ consists of the first J − 1 rows and columns of M=W−V.

A proof is given in Section 5.3.
Now we show that the information bound coincides with the asymptotic variance.

Using the definition φl(x) =∑J
j=1(wj/πj0)l̇β, jl f j(x,β0), we can write φ = (S− E)TP f ∗,
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and substituting this and the relationship l̇β = S−E into (3.20), we get

B−1 =
J∑

j=1

wjEj
[
SjS

T
j

]
−ETWE−

∫

(S−E)TPPT(S−E) f ∗dG0(x)−DTM−D. (3.27)

Moreover,

D=
∫

PφT dG0(x)=
∫

PPT(S−E) f ∗dG0(x)=WE−U−VE=ME−U. (3.28)

Substituting this into (3.27) and using the relationships described in Theorem 3.3, we get

B−1 = I∗ββ−UTM−U−ET(I−MM−)U−UT(I−M−M)E. (3.29)

By Theorem 3.3, the matrix

[
I∗ρρ

−1 0

0T 0

]

(3.30)

is a generalised inverse of M, so UTM−U= I∗βρI∗ρρ
−1I∗ρβ. Also,

(
I−MM−)U= (I−MM−)(ME−D)= (I−MM−)ME− (I−MM−)MC= 0 (3.31)

by the properties of a generalised inverse. Thus, B−1 = I∗ββ − I∗βρI∗ρρ
−1I∗ρβ and the Scott-

Wild estimate is efficient.

4. Efficiency of the Scott-Wild estimator under two-stage sampling

In this section, we use the same techniques to show that the Scott-Wild nonparametric
MLE is also efficient under two-stage sampling.

4.1. Two stage sampling. In this sampling scheme, the population is divided into S strata,
where stratum membership is completely determined by an individual’s response y and
possibly some of the covariates x—typically those that are cheap to measure. In the first
sampling stage, a random sample of size n0 is taken from the population, and the stratum
to which the sampled individuals belong is recorded. For the ith individual, let Zis = 1

if the individual is in stratum s, and zero otherwise. Then n(s)
0 =∑n1

i=1Zis is the number
of individuals in stratum s. In the second sampling stage, for each stratum s, a simple

random sample of size n(s)
1 is taken from the n(s)

0 individuals in the stratum. Let xis, i =
1, . . . ,n(s)

1 and yis, i= 1, . . . ,n(s)
1 be the covariates and responses for those individuals. Note

that n(s)
1 depends on n(s)

0 and must be regarded as random since n(s)
0 ≥ n(s)

1 for s= 1, . . . ,S.

We assume that the distribution of n(s)
1 depends only on n(s)

0 , and that, conditional on the

n(s)
0 ’s, the n(s)

1 ’s are independent.
As in Section 3, let f (y | x,β) be the conditional density of y given x, which depends

on a finite number of parameters β, which are the parameters of interest. Let g denote the
density of the covariates. We will regard g as an infinite-dimensional nuisance parameter.
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The conditional density of (x, y), conditional on being in stratum s, using Bayes theorem,
is

Is(x, y) f (y | x,β)g(x)
∫∫
Is(x, y) f (y | x,β)g(x)dxdy

, (4.1)

where Is(x, y) is the stratum indicator, having value 1 if an individual having covariates
x and response y is in stratum s, and zero otherwise. The unconditional probability of
being in stratum s in the first phase is

Qs =
∫∫

Is(x, y) f (y | x,β)g(x)dxdy. (4.2)

Introduce the function Qs(x,β)= ∫ Is(x, y) f (y | x,β)dy. Then,

Qs =
∫

Qs(x,β)g(x)dx. (4.3)

Under two-phase sampling, the log-likelihood (Wild [3], Scott and Wild [2]) is

S∑

s=1

n(s)
1∑

i=1

log f
(
yis | xis,β

)
+

S∑

s=1

n(s)
1∑

i=1

logg
(
xis
)

+
S∑

s=1

ms logQs, (4.4)

where ms = n(s)
0 − n(s)

1 . Scott and Wild show that the semiparametric MLE β̂ (i.e., the

“β” part of the maximiser (β̂, ĝ) of (4.4)) is equal to the “β” part of the solution of the
estimating equations

∂	∗

∂β
= 0,

∂	∗

∂ρ
= 0. (4.5)

The function 	∗ is given by

	∗(β,ρ)=
S∑

s=1

n(s)
1∑

i=1

log f
(
yis | xis,β

)−
S∑

s=1

n(s)
1∑

i=1

log

[
∑

r

μr(ρ)Qr
(
xis,β

)
]

+
S∑

s=1

ms logQs(ρ),

(4.6)
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whereQ1(ρ), . . . ,QS(ρ) are probabilities defined by
∑S

s=1Qs(ρ)= 1 and logQs/QS = ρs, s=
1, . . . ,S, and μs(ρ)= c(n0−ms/Qs(ρ)). The μs’s depend on the quantity c and thems’s, and
for fixed values of these quantities, they are completely determined by the S− 1 quantities
ρs. Note that the estimating equations (4.5) are invariant under choice of c. It will be

convenient to take c as N−1, where N = n0 +n1, where n1 =
∑S

s=1n
(s)
1 .

In order to apply the theory of Section 2 to two-phase sampling, we will prove that
the asymptotics under two-phase sampling are the same as those under the following
multi-sample sampling scheme.

(1) As in the first scheme, take a random sample of n0 individuals and record the
stratum in which they fall. This amounts to taking an i.i.d. sample {(Zi1, . . . ,ZiS),
i= 1, . . . ,n0} of size n0 from MULT(1,Q1, . . . ,QS).

(2) For s= 1, . . . ,S, take independent i.i.d. samples {(xis, yis), i= 1, . . . ,n(s)
1 } of size n(s)

1

from the conditional distribution of (x, y) given s, having density ps(x, y,β,g)=
Is(x, y) f (y | x,β)g(x)/Qs.

We note that the likelihood under this modified sampling scheme is the same as before,
and we show in Theorem 4.1 that the asymptotic distribution of the parameter estimates
is also the same. It follows that if an estimate is efficient under the multisampling scheme,
it must also be efficient under two-phase sampling.

Theorem 4.1. Let N = n0 +n1, where n1 =
∑S

s=1n
(s)
1 , and suppose that

√
N(n0/N −w0)

p→
0 and

√
N(n(s)

1 /N −ws)
p→ 0, s= 1, . . . ,S.

Let θ̂ be the solution of the estimating equation (4.5), and let θ0 be the solution to the
equation

w0�
[
ψ0
(
Z1, . . . ,Zs,θ

)]
+

S∑

s=1

�s
[
ψs(x, y,θ)

]= 0, (4.7)

where �s denotes expectation with respect to ps,

ψ0
(
Z1, . . . ,Zs,θ

)= ∂

∂θ

S∑

s=1

Zs logQs,

ψs(x, y,θ)= ∂

∂θ

{
log f (y | x,β)− log

[∑

s

μsQs(x,β)
]
− logQs

}
, s= 1, . . . ,S.

(4.8)

Then
√
N(θ̂− θ0) is asymptotically N(0,(I∗)−1V(I∗)−1) under both sampling schemes,

where V=∑S
s=0wsEs[(ψs−Es[ψs])(ψs−Es[ψs])T] and I∗ = −∑S

s=0wsEs[∂ψs/∂θ].

A proof is given in Section 5.4.

4.2. The information bound. Now we derive the information bound for two-stage sam-
pling. By the arguments of Section 4.1, the information bound for two-phase sampling is
the same as that for the case of independent sampling from the S+ 1 densities ps(x, y,β,g),
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where

ps(x, y,β,g)= Is(x, y) f
(
y | x,β

)
g(x)

Qs
, s= 1, . . . ,S,

p0(x, y,β,g)=QZ1
1 ···QZJ

J ,

(4.9)

where Zs = Is(x, y) is the sth stratum indicator.
First, we identify the form of the nuisance tangent space (NTS) for this problem. As in

Section 3, we see that the score functions for this problem are

l̇0 = ∂ log p0(x, y,β,g)
∂β

=
S∑

s=1

Zs�s[	],

l̇s = ∂ log ps(x, y,β,g)
∂β

=	−�s[	], s= 1, . . . ,S,

(4.10)

where 	 = ∂ log f (y | x,β)/∂β and �s denotes expectation with respect to the true den-
sity ps(x, y,β0,g0). Similarly, if g(x, t) is a finite-dimensional subfamily of densities, then
∂ log ps(x, y,β,g(x, t))/∂t = h−�s[h], s= 1, . . . ,S, and

∂ log p0
(
x, y,β,g(x, t)

)

∂t
=

S∑

s=1

Zs�s[h], (4.11)

where h = ∂ logg(x, t)/∂t. Arguing as in Section 3, we see that the NTS consists of all
elements of the form

T(h)=
( S∑

s=1

Zs
(
�s[h]−�[h]

)
,h−�1[h], . . . ,h−�s[h]

)

, (4.12)

where � denotes expectation with respect to G0.
As before, the efficient score is l̇∗ = l̇ − T(h∗), where h∗ is the element of L2k(G0)

which minimises ‖l̇−T(h)‖2
�. An explicit expression for this squared distance is

k∑

j=1

{

w0

S∑

s=1

�
[
Zs
{
�s
[
	 j
]−�s

[
hj
]
+�
[
hj
]}2
]

+
S∑

s=1

ws�s

[{
	 j−�s

[
	 j
]−hj+�s

[
hj
]}2
]
}

,

(4.13)

where hj and 	 j are the jth elements of h and 	, respectively. To obtain the projection,
we must choose hj to minimise the term in the braces in (4.13). Some algebra shows that
this term may be written as

(
hj ,Ahj

)
2− 2

(
hj ,φj

)
2 +

S∑

s=1

(
w0Qs0−ws

)
�s
[
	 j
]2

+
S∑

s=1

ws�s
[
	2
j

]
, (4.14)
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where Qs0 =
∫
Q(x,β0)g0(x)dx is the true value of Qs, (·,·)2 is the inner product on

L2(G0), and A is a selfadjoint nonnegative definite operator on L2(G0) defined by

Ah=Q∗
{

h−
S∑

r=1

S∑

s=1

(
δrs− γrs

)
∫
h(x)Qr

(
x,β0

)
g0(x)dx

Qr0
Ps

}

,

Q∗(x)=
S∑

s=1

ws

Qs0
Qs
(
x,β0

)
,

Ps(x)=
(
ws/Qs0

)
Qj
(
x,β0

)

Q∗(x)
,

γrs =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w0Qr
(
1−Qr

)

wr
, r = s,

−w0QrQs

wr
, r
= s,

φj(x)=
S∑

s=1

ws

Qs0
Qs
(
x,β0

)∂ logQs(x,β)
∂βj

|β=β0 −
S∑

s=1

S∑

r=1

Q∗(x)Pr(x)
(
δrs− γrs

)
�s
(
	 j
)
.

(4.15)

As in Section 3, (4.14) is minimised when hj = h∗j , where hj is a solution of Ahj = φj ,
which must be of the form

h∗j =
φj
f ∗

+
S∑

r=1

cr jPr (4.16)

for constants cr j which satisfy the equation

cr j −
S∑

s=1

S∑

t=1

(
δrs− γrs

)

ws
vstct j =

S∑

s=1

(
δrs− γrs

)

ws
ds j , (4.17)

where vrs =
∫
PrPsQ∗dG0 and ds j = (Ps,φj)2. Writing Γ= (γrs), C= (cr j), D= (dr j), W=

diag(w1, . . . ,wS), and V= (vrs), (4.17) can be expressed in matrix terms as

MC=D, (4.18)

where M =W(I− Γ)−1 −V. These results allow us to find the efficient score and hence
the information bound, which is described in the following theorem.

Theorem 4.2. The information bound B is given by

B−1 =
S∑

s=1

ws�s
[
		T

]
+

S∑

s=1

(
w0Qs0−ws

)
�s[	]�s[	]T −

∫
φφT

Q∗
dG0(x)−DTM−D.

(4.19)

The proof is similar to that of Theorem 3.2 and hence omitted.
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4.3. Efficiency of the Scott-Wild estimator. Let θ̂ = (β̂, ρ̂) be the solutions of the estimat-

ing equations (4.5). By Theorem 4.1, under suitable regularity conditions, θ̂ is asymptot-
ically normal with asymptotic variance

I∗−1VI∗−1, (4.20)

where I∗ and V are as in Theorem 4.1. It turns out that the matrix V is of the form

V= I∗ − I∗
(

0 0
0T A

)

I∗ (4.21)

for some matrix A. Thus, the asymptotic variance of θ̂ is

I∗−1−
(

0 0
0T A

)

, (4.22)

and it follows from the partitioned matrix inverse formula that the asymptotic variance

matrix of β̂ is the inverse of

I∗ββ− I∗βρ
(

I∗ρρ
)−1

I∗ρβ, (4.23)

where I∗ is partitioned as

I∗ =
⎡

⎣
I∗ββ I∗βρ
I∗ρβ I∗ρρ

⎤

⎦ . (4.24)

To demonstrate the efficiency of β̂, we must show that (4.23) and (4.19) coincide. To
do this, we need a more explicit formula for I∗. Let S be the S× k matrix with s, j element
(∂ logQs(x,βj)/∂β) |β=β0 , and let E be the S× k matrix with lth row Es = �s[	], where
	= (∂ log f (y | x,β)/∂β) |β=β0 . Also define

P∗s (x,β,ρ)= μs(ρ)Qs(x,β)
∑S

r=1μr(ρ)Qr(x,β)
(4.25)

and note that Ps(x) = P∗s (x,β0,ρ0), where ρ0 satisfies Qs(ρ0) = Qs0, s = 1, . . . ,S. Finally,
write P = (P1, . . . ,PS)T . Then we have the following theorem.

Theorem 4.3.
(1) I∗ββ =

∑S
s=1ws�s[		T]− ∫ STPPTSQ∗dG0(x).

(2) Let U =WE− ∫ PPTSQ∗dG0(x). Then I∗ρβ = ATU0, where U0 consists of the first
S− 1 rows of U and A is a nonsingular (S− 1)× (S− 1) matrix.

(3) I∗ρρ = ATM0A, where M0 consists of the first S− 1 rows and columns of M=W(I−
Γ)−1−V.

The proof is given in Section 5.5.
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We now use Theorems 4.1 and 4.2 to show that the efficiency bound (4.19) equals the
asymptotic variance (4.23). Arguing as in Section 3, we get

B−1 = I∗ββ− I∗βρI∗ρρ
−1I∗ρβ +

{ S∑

s=1

(
w0Qs0−ws

)
EsE

T
s + ETW(I−Γ)E

}

. (4.26)

We complete the argument by showing that the term in the braces in (4.26) is zero. We
have

ETW(I−Γ)ET =
S∑

s=1

(
ws−w0Qs0

)
EsE

T
s +w0

( S∑

s=1

Qs0Es

)( S∑

s=1

Qs0Es

)T

=
S∑

s=1

(
ws−w0Qs0

)
EsE

T
s

(4.27)

since
∑S

s=1Qs0Es = 0. Since the term in the braces in (4.26) is zero, the asymptotic variance
coincides with the information bound and so the Scott-Wild estimator has full semipara-
metric efficiency.

5. Proofs

5.1. Proof of Theorem 3.1. The efficient score is the projection of l̇β onto �⊥
η , and so

it is of the form l̇β − g, where g is the unique minimiser of ‖l̇β − g‖2
� in �η. By (3.8),

this is l̇β−T(h∗), where h∗ is the (unique) minimiser of ‖l̇β−T(h)‖2
� in L2,k(G0). Write

h∗ = (h∗1 , . . . ,h∗k ). Then,

∥
∥l̇β−T(h∗)

∥
∥2

� =
k∑

l=1

J∑

j=1

wj

πj

∫
(
l̇β, jl −h∗l −Ej

[
h∗l
])2

f j dG0 (5.1)

so that we must choose h∗l to minimise

J∑

j=1

wj

πj

∫
(
l̇β, jl −h∗l −Ej

[
h∗l
])2

f j dG0 =
J∑

j=1

wjEj
[
l̇2β, jl

]
+
(
Ah∗l ,h∗l

)
2− 2

(
φl,h∗l

)
2.

(5.2)

Now let h∗l be any solution in L2(G0) to (3.12). Then for any h in L2(G0), using the fact
that A is selfadjoint and positive-definite, we get

J∑

j=1

wjEj
[
l̇2β, jl

]
+ (Ah,h)2− 2

(
φl,h

)
2 =

J∑

j=1

wjEj
[
l̇2β, jl

]
− (Ah∗l ,h∗l

)
2 +
(
h−h∗l ,A

(
h−h∗l

))
2

≥
J∑

j=1

wjEj
(
l̇2β, jl

)− (Ahl,h∗l
)

2

(5.3)

with equality if h = h∗l so that the efficient score has j, l element Sβ, jl − h∗l + Ej[h∗l ] as
asserted.
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5.2. Proof of Theorem 3.2. The l, l′ element of B−1 is

J∑

j=1

wjEj
[
l̇∗β, jl l̇

∗
β, jl′

]
=

J∑

j=1

wj

πj

∫
(
l̇β, jl −h∗l −Ej

(
h∗l
))(

l̇β, jl′ −h∗l′ −Ej
(
h∗l′
))
f j dG0

=
J∑

j=1

wjEj
[
l̇β, jl l̇β, jl′

]
+ (Ah∗l ,h∗l′ )2−

(
φl,h∗l′

)
2−

(
φl′ ,h∗l

)
2

=
J∑

j=1

wjEj
[
l̇β, jl l̇β, jl′

]− (φl,h∗l′
)

2

=
J∑

j=1

wjEj
[
l̇β, jl l̇β, jl′

]−
∫
φlφl′

f ∗
dG0−dT(l)M−d(l′).

(5.4)

5.3. Proof of Theorem 3.3. First, we note the formula

∂2 logP∗j
∂θ∂θT

= ∂2P∗j
∂θ∂θT

1
P∗j
− ∂ logP∗j

∂θ

∂ logP∗j
∂θT

(5.5)

and the fact that

J∑

j=1

wjEj

[
∂2P∗j
∂θ∂θT

1
P∗j

]

=
J∑

j=1

wj

πj

∫ ∂2P∗j
∂θ∂θT

1
P∗j

f j dG0(x)

=
J∑

j=1

∫ ∂2P∗j
∂θ∂θT

f ∗dG0(x)

= ∂2

∂θ∂θT

∫

f ∗dG0(x)

= 0

(5.6)

since
∑J

j=1P
∗
j = 1. Hence

I∗ = −
J∑

j=1

wjEj

[
∂2 logP∗j
∂θ∂θT

]

=
J∑

j=1

wjEj

[
∂ logP∗j
∂θ

∂ logP∗j
∂θT

]

. (5.7)

Next, we note the derivatives

∂ logP∗j (x,β,ρ)

∂β
= Sj −

J∑

s=1

SsPs,

∂ logP∗j (x,β,ρ)

∂ρr
= δj,r −Pr ,

(5.8)
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when the derivatives are evaluated at (β0,ρ0). Thus

I∗ββ =
J∑

j=1

wjEj

[
∂ logP∗j
∂β

∂ logP∗j
∂βT

]

=
J∑

j=1

wj

πj

∫ (

Sj −
J∑

s=1

SsPs

)(

Sj −
J∑

s=1

SsPs

)T

f j(x)dG0(x)

=
J∑

j=1

wjEj
[
SjS

T
j

]
−
∫ ( J∑

s=1

SsPs

)( J∑

s=1

SsPs

)T

f ∗(x)dG0(x)

=
J∑

j=1

wjEj
[
SjS

T
j

]
−
∫

STPPTS f ∗dG0(x),

(5.9)

which proves part 1. Also

I∗ρβ,r =
J∑

j=1

wjEj

[
∂ logP∗j
∂ρr

∂ logP∗j
∂β

]

=
J∑

j=1

wj

πj

∫
(
δr,s−Pr

)
(

Sj −
J∑

s=1

SsPs

)

f j(x)dG0(x)

=wrEr
[
Srl
]−

∫ ( J∑

j=1

SjPj

)

Pr f
∗(x)dG0(x),

(5.10)

which proves part 2. Finally,

I∗ρρ,rs =
J∑

j=1

wjEj

[
∂ logP∗j
∂ρr

∂ logP∗j
∂ρs

]

=
J∑

j=1

wj

πj

∫
(
δjr −Pr

)(
δjs−Ps

)
f j(x)dG0(x)

=
∫
(
δrs−Ps

)
Pr f

∗(x)dG0(x)

= δrswr − vrs
=Mrs.

(5.11)

5.4. Proof of Theorem 4.1. Under the two-stage sampling scheme, the joint distribution

of {n(s)
0 }, {n(s)

1 } and {(xis, yis), i= 1, . . . ,n(s)
1 , s= 1, . . . ,S} (Wild [3]) is

∏S

s=1
P
[
n(s)

1 | n(s)
0

]
× n0!

n(1)
0 !···n(S)

0 !
Q
n(1)

0
1 ···Qn(S)

0
S

×
∏S

s=1

{∏n(s)
1

i=1
Is
(
xis, yis

)
f
(
yis | xis,β

)
g
(
xis
)
}

Q
n(s)

1
s

.

(5.12)
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Thus, conditional on the {n(s)
0 } and {n(s)

1 }, the random variables {(xis, yis), i= 1, . . . ,n(s)
1 ,

s= 1, . . . ,S} are independent, with {(xis, yis), i= 1, . . . ,n(s)
1 } being an i.i.d. sample from the

conditional distribution of (x, y), conditional on being in stratum s, having density

ps(x, y,β,g)= Is(x, y) f (y | x,β)g(x)
Qs

. (5.13)

Define

ψ(N)
s (x, y,θ)= ∂

∂θ

{
log f (y | x,β)− log

[∑

s

μsQs(x,β)
]
− logQs

}
, s= 1, . . . ,S,

ψ(N)
0

(
Z1, . . . ,Zs,θ

)= ∂

∂θ

S∑

s=1

Zs logQs.

(5.14)

Then the estimating equations (4.5) can be written in the form

n0∑

i=1

ψ(n0)
0

(
Zi1, . . . ,Zis,θ

)
+

S∑

s=1

n(s)
0∑

i=1

ψ(n0)
s

(
xis, yis,θ

)= 0. (5.15)

Note that the functions ψ(N)
s depend on N , the n(s)

1 ’s and the n(s)
0 ’s through the μs’s, and

the Qs’s. As N →∞, the functions converge to

ψs(x, y,θ)= ∂

∂θ

{

log f (y | x,β)− log
[∑

s

μsQs(x,β)
]
− logQs

}
, s= 1, . . . ,S,

ψ0(x, y,θ)= ∂

∂θ

S∑

s=1

Zs logQs,

(5.16)

where μs =w0− (w0Qs0−ws)/Qs.
Put

SN (θ)=
n0∑

i=1

ψ(N)
0

(
Zi1, . . . ,ZiS,θ

)
+

S∑

s=1

n(s)
1∑

i=1

ψ(N)
s

(
xis, yis,θ

)
. (5.17)

A standard Taylor expansion argument gives

√
N(θ̂− θ0)=

(

− 1
N

∂SN
∂θ

∣
∣
∣
∣
θ=θ0

)−1
1√
N
S(θ0) +

1√
N

(

− 1
N

∂SN
∂θ

∣
∣
∣
∣
θ=θ0

)−1

R, (5.18)

where the jth element of R is

Rj = 1
2

(
θ̂− θ0

)T ∂2
N j

∂θ∂θT

∣
∣
∣
∣
θ=θ̃

(θ̂− θ0), (5.19)

SN j is the jth element of SN and ‖θ̃− θ0‖ ≤ ‖θ̂− θ0‖.
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Consider first SN (θ0)/
√
N . We have

SN
(
θ0
)

√
N

=
√
n0

N

1√
n0

n0∑

i=1

{
ψ(N)

0

(
Zi1, . . . ,ZiS,θ0

)−�
[
ψ0
]}

+
S∑

s=1

√
√
√n(s)

1

N

1
√
n(s)

1

n(s)
1∑

i=1

{
ψ(N)
s

(
xis, yis,θ

)−�s
[
ψs
]}

+
√
N

S∑

s=1

(
n0

N
−w0

)
�
[
ψ0
]

+
√
N

S∑

s=1

(
n(s)

1

N
−ws

)
�s
[
ψs
]
.

(5.20)

Since
√
N(n0/(N)−w0) and

√
N(n(s)

1 /(N)−ws) converge to zero in probability, we see
that

S
(
θ0
)

√
N

=√w0
1√
n0

n0∑

i=1

S∑

s=1

{
ψ(N)

0

(
Zis,θ0

)−�
[
ψ0
]}

+
S∑

s=1

√
ws

1
√
n(s)

0

n(s)
0∑

i=1

{
ψ(N)
s

(
xis, yis,θ

)−�s
[
ψs
]}

+ op(1).

(5.21)

So it suffices to consider SN = S(1)
N + S(2)

N , where S(1)
N and S(2)

N are the first and second terms
above.

Under the alternative multisampling scheme, S(1)
N and S(1)

N are independent, as are the

S summands of S(2)
N . Thus, by the CLT, provided ψ(N)

s converges to ψs sufficiently quickly,
we see that SN is asymptotically normal with zero mean and asymptotic variance V =
∑S

s=0wsVarψs.
Conversely, under two-phase sampling, the characteristic function of SN is

E
[
eitSN

]=
∑

(0)

E
[
eitSN |

{
n(s)

0

}
,
{
n(s)

1

}]
P
[{
n(s)

0

}
,
{
n(s)

1

}]
, (5.22)

where
∑

(0) denotes summation over all possible values of the {n(s)
0 } and {n(s)

1 }. Since S(2)
N

depends on {n(s)
0 } only through {n(s)

1 }, (5.22) equals

E
[
eitSN

]=
∑

(0)

E
[
eitS

(1)
N E
[
eitS

(2)
N |

{
n(s)

1

}]]
P
[{
n(s)

0

}
,
{
n(s)

1

}]
. (5.23)

Let V2 =
∑S

s=1wsVar[ψs]. Assuming that the ψ(N)
s converge sufficiently quickly to the ψs,

it follows that E[eitS
(2)
N | {n(s)

1 }]→ exp{−(1/2)tTV2t} since the distribution of S(2)
N , condi-

tional on {n(s)
0 } and {n(s)

1 }, is the same as that (unconditionally) under multisampling.
Now let ε be arbitrary and let N0 be such that

∣
∣
∣
∣E
[
eitS

(2)
N |

{
n(s)

1

}]
− exp

{
− 1

2
tTV2t

}∣∣
∣
∣ <

ε
2

, (5.24)
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whenever n(s)
1 ≥N0 for s= 1, . . . ,S. Also, assume that the (random) sample sizes ultimately

get large, in the sense that there exists N∗ such that

P
[
n(1)

1 ≥N0, . . . ,n(1)
S ≥N0

]
≥ 1− ε

4
, (5.25)

whenever N > N∗. Denote by
∑

(1) summation over all values of {n(s)
0 } and {n(s)

1 } for

which n(s)
1 ≥N0 for s= 1, . . . ,S, and let

∑
(2) denote summation over all remaining values.

Then,

E
[
eitSN

]=E
[
eitS

(1)
N

]
exp

{
− 1

2
tTV2t

}
+
∑

(1)

E
[
eitS

(1)
N

(
E
[
eitS

(2)
N |

{
n(s)

1

}]
− exp

{
− 1

2
tTV2t

})]

+
∑

(2)

E
[
eitS

(1)
N

(
E
[
eitS

(2)
N |

{
n(s)

1

}]
− exp

{
− 1

2
tTV2t

})]
.

(5.26)

If n0 > N∗, the sum of the second two terms is less than ε in absolute value. So

E
[
eitSN

]= E
[
eitS

(1)
N

]
exp

{
− 1

2
tTV2t

}
+ o(1). (5.27)

Again by the same arguments as above, [eitS
(1)
N ] converges to exp{−(1/2)tTV1t}, where V1

is w0 Var[ψ0(Z1, . . . ,ZS,θ0)] so that E[eitSN ] converges to exp{−(1/2)tTVt}, and hence SN
converges in distribution to a multivariate normal with variance V=V1 + V2.

Assuming that θ̂ is
√
N-consistent, similar arguments show that −(1/N)(∂S/∂θ)|θ=θ0

converges in probability to I∗ under both sampling schemes, and that R/
√
N is op(1).

Thus, as asserted, in both cases,
√
N(θ̂ − θ0) converges to a multivariate normal with

variance (I∗)−1V(I∗)−1.

5.5. Proof of Theorem 4.3. Let

P†s (x, y,β,ρ)= μs(ρ)Is(x, y) f
(
y | x,β

)

∑
r μr(ρ)Qr(x,β)

. (5.28)

From the definition of I∗ in Theorem 4.1 and the law of large numbers, we get

I∗ = −w0�

[ S∑

s=1

Zs
∂2 logQs

∂θ∂θT

]

−
S∑

s=1

ws�s

[
∂2 logP†s
∂θ∂θT

− ∂2 logQsμs
∂θ∂θT

]

=
S∑

s=1

ws�s

[
∂ logP†s
∂θ

∂ logP†s
∂θT

]

−
S∑

s=1

ws�s

[
1

P†s

∂2P†s
∂θ∂θT

]

+
S∑

s=1

ws
∂2 logQsμs
∂θ∂θT

−
S∑

s=1

w0Qs0
∂2 logQs

∂θ∂θT
.

(5.29)
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The second term of this expression is zero since

S∑

s=1

ws�s

[
1

P†s

∂2P†s
∂θ∂θT

]

=
S∑

s=1

∫
∂2

∂θ∂θT

∫

P†s dyQ
∗dG0(x)

=
S∑

s=1

∂2

∂θ∂θT

∫

PsQ
∗dG0(x)

= ∂2

∂θ∂θT

∫

Q∗dG0(x)

= 0.

(5.30)

Now, we evaluate I∗ββ. For the ββ submatrix, the third and fourth terms of (5.29) are zero.
Thus, using the derivative

∂P†s
∂β

=	− STP, (5.31)

we get

I∗ββ =
S∑

s=1

ws�s

[
∂ logP†s
∂β

∂ logP†s
∂βT

]

=
S∑

s=1

ws

Qs0

∫∫
(
	− STP

)(
	− STP

)T
Is(x, y) f

(
y | x,β0

)
dydG0(x)

=
S∑

s=1

ws

Qs0

∫∫

		TIs(x, y) f
(
y | x,β0

)
dydG0(x)−

∫

STP
(

STP
)T
Q∗(x)dG0(x)

=
S∑

s=1

ws�s
[
		T

]−
∫

STPPTSQ∗dG0(x),

(5.32)

which proves part 1.
Now, consider I∗ρβ,r j . Again, the third and fourth terms of (5.29) are zero. Introduce

the parameters λ1, . . . ,λS−1 defined by

λr = log
(
μr(ρ)
μS(ρ)

)
, r = 1, . . . ,S− 1. (5.33)

Then,

∂P†s
∂ρr

=
S−1∑

p=1

∂λp
∂ρr

∂P†s
∂λp

=
S−1∑

p=1

∂λp
∂ρr

(
δsp−Pp

)
. (5.34)
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Thus,

I∗ρβ,r j =
S∑

s=1

ws�s

[
∂ logP†s
∂ρr

∂ logP†s
∂βj

]

=
S∑

s=1

ws

Qs0

∫∫ [ S−1∑

p=1

∂λp
∂ρr

(
δsp−Pp

)
]

(	− SP) j Is(x, y) f
(
y | x,β0

)
dydG0(x)

=
S−1∑

p=1

∂λp
∂ρr

up j ,

(5.35)

where

up j =
S∑

s=1

ws

Qs0

∫∫
(
δps−Pp

)
(	− SP) j Is(x, y) f

(
y | x,β0

)
dydG0(x). (5.36)

Then, as in Theorem 3.3, we see that up j is the p, j element of U, and so part 2 of the
theorem is true with Apr = ∂λp/∂ρr .

The ρρ submatrix is

I∗ρρ =
S∑

s=1

wsEs

[
∂ logP†s
∂ρ

∂ logP†s
∂ρT

]

−
S∑

s=1

w0Qs0
∂2 logQs

∂ρ∂ρT
+

S∑

s=1

ws
∂2 logQsμs
∂ρ∂ρT

=
S∑

s=1

wsEs

[
∂ logP†s
∂ρ

∂ logP†s
∂ρT

]

−w0

S∑

s=1

1
κs

∂Qs

∂ρ

∂Qs

∂ρT
,

(5.37)

where κs =Qs0ws/cs. It follows from (5.34) that I∗ρρ = ATM0A, where M0 has p, q element

S∑

s=1

wsEs

[
∂ logP†s
∂λp

∂ logP†s
∂λq

]

−w0

S∑

s=1

1
κs

∂Qs

∂λp

∂Qs

∂λq
. (5.38)

As in Section 5.3, the first term of this expression is δpqwp − vpq. Routine calculations
using the relationships λp = log(μp/μS) and μp =w0− cp/Qp give

∂Qp

∂λq
= δpqκp−

κpκq
κ∗

, (5.39)

where κ∗ =∑S
p=1 κp. This representation implies that

s∑

s=1

1
κs

∂Qs

∂λp

∂Qs

∂λq
= ∂Qp

∂λq
(5.40)

so that the p, q element of M0 is δpqwp− vpq−w0(∂Qp/∂λq).
By the Sherman-Morrison formula, the p, q element of the matrix W(I−Γ)−1−W is

−w0(∂Qp/∂λq). So the matrix M0 consists of the first S− 1 rows and columns of W−V +
W(I−Γ)−1−W=W(I−Γ)−1−V=M.
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1. Introduction

We consider a finite capacity queueing system, usually of the M/G/C/L class. Customers
who arrive when there are already L+C customers in the system overflow. We can identify
three traffic processes in the customers leaving the system: the overflow process formed by
customers who find the system full, the output process formed by customers who com-
plete service, and these two processes, superposed together, from the departure process.

It is well known that in a number of cases in this class of queues, the departure process,
when considered as an isolated process, is Poisson. For example:

(i) in the limit, the departure process from an M/M/C/L queue is Poisson (Boes [1]);
(ii) interdeparture times from an M/G/C/0 queue are exponentially distributed and

are independent in the limit (Shanbag and Tambouratzis [2]).
Yet the complex behaviour present in these processes cannot be determined by examining
the departure process in isolation. If we take the simplest case, of outputs and overflows
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from an M/M/1/0 queue, then although both the output and the overflow process are re-
newal, neither is Poisson. The overflow process has a hyperexponential distribution and
the output process is of phase type with two phases. Yet when superposed, they produce a
Poisson process. Now the superposition of two independent renewal processes is Poisson
if and only if both are Poisson processes. So the conclusion must be that the overflow and
output processes cannot be independent. In this paper, we investigate the degree of this
dependence by considering the cross-correlation functions of the two processes. We show
that these cross-correlations can be positive, negative, or even uniformly zero, depending
on the parameters of the process. Only in the simplest case do they have a clear form.
However the models do suggest some general principles for the signs and sizes of these
correlations, and when they are important. There have been a number of methods sug-
gested for moment- or renewal-type approximations to these processes or similar ones,
for example, the equivalent random method from classical telephone theory (Cooper
[3]). (See also Whitt [4], Albin [5], Albin and Kai [6], and Johnson [7]). Having some
qualitative knowledge about correlations should enhance the reliability and the appro-
priate use of these methods. There are a large number of papers on queues with similar
correlated arrivals; see, for example, Adan and Kulkarni [8], and Heindl [9] (and other
papers in the special issue of Performance Evaluation).

Individually, the characteristics of the overflow and output traffic processes are usually
quite easy to determine. The output process is of Markov renewal type, (see Disney and
Kiessler [10, Theorem 3.3, page 172]). This collapses to a renewal output process if and
only if either (i) the service times are all zero with probability 1, (ii) L= 0, (iii) L= 1 with
the service times being constant, or (iv) L=∞ with the service times being exponential
(see Disney and Kiessler [10, Theorem 3.5] for the proof of this).

Where the departure process has a Markov renewal representation, the overflow pro-
cess is renewal, since it consists of the times between entries to a particular state in the
Markov renewal process. Hence the distribution of times between overflows can be estab-
lished by the usual filtering arguments.

2. Methodology

2.1. Cross-correlations between the overflow and the output processes. The measures
that we will use for the dependence between the overflow and output processes are the
crosscovariance and cross-correlation of the processes that count the number of outputs,
No(t), and overflows, Nov(t), in (0, t]. Thus we define

ccov
(
No(t)Nov(t)

)= E[No(t)Nov(t)
]−E[No(t)

]
E
[
Nov(t)

]
,

ccor
(
No(t)Nov(t)

)= ccov
(
No(t)Nov(t)

)

√
Var

(
No(t)

)
Var

(
Nov(t)

) .
(2.1)

Since we need the joint distribution of No(t) and Nov(t), we consider systems where the
entire departure process can be represented by an n-state Markov renewal process (X ,T)
with semi-Markov kernel Qd(t). Usually the state will be the number of customers left
behind by a departure. Entries to one subclass of states (often the nth state) represent
overflows, while entries to the remaining states are outputs.
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The Laplace-Stieltjes transform of the Markov renewal kernel is

Rs =
(
I −Qd

s

)−1
, (2.2)

where Qd
s is the Laplace-Stieltjes transform of Qd(t). Çinlar [11, page 165] gives a general

expression for the expectation of the product of the numbers of visits by time t, Nj(t)
and Nk(t), to states j and k, for a general finite-state Markov renewal process. That is,
conditional on the process starting in state i:

Ei
[
Nj(t)Nk(t)

]= δjkR′i j(t) +R′i j ∗R′jk(t) +Rik ∗R′k j(t). (2.3)

The expected product of the numbers of visits to states j and k in steady state is

n∑

i=1

αiEi
[
Nj(t)Nk(t)

]
. (2.4)

Here ∗ stands for the convolution operation, R′i j(t)= Rij(t)− δi j , to ensure that the state
occupied at time zero is not counted in the expected number of entries; n is the number
of states, and α= [α1 ···αn] is the steady state vector for the Markov chain imbedded in
the Markov renewal process.

2.2. The calculation method and verification steps. The calculations were carried out
using the symbolic algebra package Maple to do the matrix operations and invert the
resulting Laplace-Stieltjes transforms. Since these programmes are reasonably complex
(up to 100 lines of Maple), a number of checks to verify the calculation were carried out.
For example, in each of the cases where the marginal departure process is Poisson with
rate λ, it was verified that α and Qd

s satisfy (e is a column vector of ones)

αQd
s e =

λ

λ+ s
. (2.5)

The matrix of expected products of the numbers of visits to states j and k in steady state
was verified to be symmetric in j and k (this is a particularly good check since it is pro-
duced at the end of a long sequence of distinctly asymmetric calculations), and finally
the simulation study (see Section 4) was also run on a number of the cases that could be
solved analytically. It produced entirely consistent results.

3. Results

3.1. M/M/1/0. We start with the simplest case of no storage with all distributions being
exponential. While this is a very simple model, it is also the simplest case of the Erlang-B
formula from classical telephone theory. We let the state of the system be the number of
customers left behind by a departure. Thus each entry to state 0 is an output and entries to
state 1 are overflows. With λ being the rate of the arrival Poisson process, and μ being the
service rate, the Laplace-Stieltjes transform of the semi-Markov kernel of the departure
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Figure 3.1. M/M/1/0 output and overflow cross-correlations.

process (see also Disney and Kiessler [10, page 84]) is

Qd
s =

⎛

⎜
⎜
⎜
⎝

λμ

(λ+ s)(λ+μ+ s)
λ2

(λ+ s)(λ+μ+ s)
μ

(λ+μ+ s)
λ

(λ+μ+ s)

⎞

⎟
⎟
⎟
⎠
. (3.1)

The Laplace-Stieltjes transform of the Markov renewal kernel is

Rs =
(
I −Qd

s

)−1 =

⎛

⎜
⎜
⎜
⎝

(λ+ s)(μ+ s)
s(λ+μ+ s)

λ2

s(λ+μ+ s)
μ(λ+ s)

s(λ+μ+ s)
λ2 + 2λs+μs+ s2

s(λ+μ+ s)

⎞

⎟
⎟
⎟
⎠
. (3.2)

Applying (2.3) and (2.4) to appropriate terms from (3.2) leads (with the assistance of
Maple) to the following expression for the cross-covariance of the number of outputs
and the number of overflows by time t (starting from steady state):

ccov
(
No(t)Nov(t)

)= μλ2
(
λ−μ− (λ2−μ2

)
t− (λ−μ)e−(λ+μ)t

)

(λ+μ)4
. (3.3)

Thus we immediately see that when λ = μ, the cross-covariance is zero for all times. Of
course by Disney and Kiessler [10, Theorem 3.5], this cannot imply that the overflow and
output processes are independent. So this is one of those peculiar situations where zero
correlations do not imply independence. The variances of the numbers of outputs and of
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overflows are

Var
(
No(t)

)= μλ
((
λ3 +μ3 +μ2λ+μλ2

)
t+ 2λμ

(
1− e−(λ+μ)t

))

(λ+μ)4
,

Var
(
Nov(t)

)= λ2
((
λ3 +μ3 + 5μ2λ+ 5μλ2

)
t− 2λμ

(
1− e−(λ+μ)t

))

(λ+μ)4
.

(3.4)

The cross-correlation of the number of outputs and the number of overflows by time t can
then be calculated from (3.3) and (3.4). The cross-correlation can be seen to be identical,
except for a change of sign, when the values of λ and μ are interchanged. Thus if λ < μ, the
number of outputs and the number of overflows are positively correlated over any time
interval, while if λ > μ they are negatively correlated. To demonstrate this symmetry, the
cross-correlations are plotted in Figure 3.1 for values of (λ,μ)= {(1,4),(1,2),(1,1),(2,1),
(4,1)} (traffic intensities of Rho= 0.25,0.5,1,2,4).

So the cross-correlations reduce monotonically with increasing traffic intensity, and
increase monotonically in absolute value with time. Taking the limit of the cross-
correlation expression gives

lim
t→∞

ccor
(
No(t)Nov(t)

)= λμ(μ− λ)
√(
λ2 + 4λμ+μ2

)(
λ3μ+ λμ3

) . (3.5)

This limiting expression was also found by a simple direct method in Disney and Kiessler.

3.2. Systems with storage, M/M/1/1, M/M/1/2. We now add one or two units of storage
to the system. Again an appropriate state for the departure Markov renewal process is the
number of customers left behind by a departure. We give only the results for M/M/1/2.
Those for M/M/1/1 are similar, but less pronounced. Labelling the states as {0,1,2,3},
each entry to state 0, 1, or 2 is an output and entries to state 3 are overflows. The Laplace-
Stieltjes transform of the semi-Markov kernel of the departure process is

Qd
s =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

λμ

(λ+ s)(λ+μ+ s)
λ2μ

(λ+ s)(λ+μ+ s)2

λ3μ

(λ+ s)(λ+μ+ s)3

λ4

(λ+ s)(λ+μ+ s)3

μ

λ+μ+ s
λμ

(λ+μ+ s)2

λ2μ

(λ+μ+ s)3

λ3

(λ+μ+ s)3

0
μ

λ+μ+ s
λμ

(λ+μ+ s)2

λ2

(λ+μ+ s)2

0 0
μ

(λ+μ+ s)
λ

(λ+μ+ s)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(3.6)

The Markov renewal matrix does not now have an informative form, but the method is as
before. Since the results are no longer symmetric in λ and μ, we take, as we will from now
on, the mean service time to be 1. Plots of the cross-correlations, for traffic intensities of
0.5, 0.8, 1, and 2 are given in Figure 3.2. The smallest cross-correlations occur at a traffic
intensity of about 0.8. So the symmetry and monotone nature of the M/M/1/0 results
have gone (possibly due to the fact that the output process is no longer renewal), but
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Figure 3.2. M/M/1/2 output and overflow cross-correlations.

the general principles of positive cross-correlations at low traffic intensities and negative
cross-correlations at high traffic intensities, which will be discussed further in Section 3.5,
are starting to emerge.

3.3. M/M/2/0. With two servers and no storage we assume that when both servers are
idle, an arrival selects a server by tossing a coin (the results when the servers are tested in
a fixed order are very similar). We take the state of the process to be {i, j,k}, where i= 1
or 2 is the server from which the last output occurred, and { j,k} ∈ {0,1}×{0,1} is the
number of customers left behind at servers 1 and 2. Since all the service and interarrival
distributions are negative exponential, this process is Markov renewal. The five possible
states are {1,0,0}, {2,0,0}, {2,1,0}, {1,0,1}, and the overflow state, which does not re-
quire the index of the last output, {∗,1,1}. With the states in that order, and using the
notation λ+ s= a, λ+μ+ s= b, λ+ 2μ+ s= c, the semi-Markov kernel is then

Qd
s =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

λμ

2ab
λμ

2ab
λ2μ

abc

λ2μ

abc

λ3

abc

λμ

2ab
λμ

2ab
λ2μ

abc

λ2μ

abc
s

λ3

abc

μ

b
s 0

λμ

abc

λμ

abc

λ2

bc

0
μ

b

λμ

abc

λμ

abc

λ2

bc

0 0
μ

b

μ

b

λ

c

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.7)
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Figure 3.3. M/M/2/0 total output and overflow correlations.

Now that we have two departure streams, there are a number of cross-correlations that
could be considered. We give only those between the total output process (i.e., the su-
perposition of the outputs from the two servers) and the overflow process, in Figure 3.3.
Thus the results are qualitatively similar to the first system, M/M/1/0.

3.4. A remark on the equivalent random method. Since this is a simple case of the clas-
sic Erlang-B situation, it is also interesting to look at the cross-correlation between the
two output streams. Even in the case where the servers are tested in fixed order, these
turn out to be very small (<0.05 in absolute value.) This may suggest another reason why
mean-variance methods like the equivalent random method (see Cooper [3, page 165])
have been found to work so well in telephone networks. If all the output streams, in-
cluding those from a single set of lines, are nearly uncorrelated, characterising the carried
traffic at a subsequent link by only its first two moments is more likely to work.

3.5. Some comments on the results so far. From the results so far, we can form explana-
tions which give some insight into the processes involved. We note that when the traffic
intensity is low, the cross-correlations are positive; when the traffic intensity is about 1,
the cross-correlations are very small; and that when the traffic intensity is much greater
than 1, the cross-correlations are strongly negative. Our explanation for this goes as fol-
lows. When the traffic intensity is low, the dependence in the departure process is basi-
cally being driven by fluctuations in the arrival process. Hence the output and overflow
processes tend to move together; when there are an abnormally large number of outputs
there are also an abnormally large number of overflows. For high traffic intensity, on the
other hand, the server is almost always busy so the output and overflow processes are
complements of each other—abnormal excess in one is associated with abnormal paucity
in the other, and hence the cross-correlations are negative.
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Figure 3.4. M/E2/1/0 output and overflow cross-correlations.

3.6. Nonexponential service time distributions. In general, cross-correlations for these
systems are difficult to measure analytically, since the departure process does not have a
compact representation as a Markov renewal process. One tractable case is M/E2/1/0. The
state is the phase of the customer (if any) left behind in service by a departure. Thus state
0 corresponds to an output, while state 1 is an overflow that occurred while the customer
in service was in the first phase of service, and state 2 is an overflow that occurred during
the second phase of service. The semi-Markov kernel is

Qd
s =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

λμ2

(λ+ s)(λ+μ+ s)2

λ2

(λ+ s)(λ+μ+ s)
λ2μ

(λ+ s)(λ+μ+ s)2

μ2

(λ+μ+ s)2

λ

λ+μ+ s
λμ

(λ+μ+ s)2

μ

λ+μ+ s
0

λ

λ+μ+ s

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.8)

We again make the mean service time 1, so each stage of the service time distribution has
the rate 2, and plot the output and overflow cross-correlations in Figure 3.4, along with
some simulation results for the same system (see Section 4).

So the trend of positive cross-correlations at low traffic intensities continues with Er-
lang service distributions, but the negative cross-correlations at high traffic intensities,
although present, are less pronounced, perhaps due to the lower rate of overflows.

4. Some simulation results

For Erlang service time distributions with L > 0 (and for M/M/1/L with L > 2), the
Markov renewal representation of the departure process is either too complex or has too
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many states to use the analytic approach detailed in Section 2. Simulating such systems is
quite easy however. A simulation programme in GPSS/H was written to see if the effects
noted previously carry on to systems with more storage. The simulation programme
was first verified against the analytic results for M/E2/1/0 from the previous section. For
each time value 100 000 pairs of the number of outputs and the number of overflows
were recorded, along with the sample cross-correlation calculated from these. The half
width of an approximate 95% confidence interval for these cross-correlations would be
1.96/

√
100000 = 0.006. All of the simulation results (some are plotted on Figure 3.4 in

the previous section) are within this distance of the analytic values.

M/E2/1/2. We keep the mean service time to be 1 (so each stage of the Erlang distribution
has the rate 2).

Traffic intensity Time 0 2 4 6 8 10

ρ = 0.5 0 0.089 0.155 0.190 0.211 0.221

ρ = 1 0 −0.014 0.025 0.050 0.063 0.069

ρ = 2 0 −0.222 −0.257 −0.274 −0.284 −0.288

Now with some storage, the results have returned to a pattern compatible with our
explanation of the effect of traffic intensity, positive correlations at low traffic intensity as
both the overflow and output processes move together, and negative correlations at high
traffic intensity, where they tend to be the complements of each other.

D/M/1/2. The system change we are after here is the reduced variability in the arrival pro-
cess. If our explanation of the qualitative effect of traffic intensity on the cross-correlations
is correct, we might expect that the low traffic intensity effect of positive cross-correlations
would be reduced or eliminated, while the high traffic intensity effect of negative cross-
correlations should be at least preserved or possibly enhanced. That is precisely what
happens:

Traffic intensity Time 0 2 4 6 8 10

ρ = 0.5 0 −0.007 −0.032 −0.061 −0.082 −0.106

ρ = 1 0 −0.329 −0.485 −0.591 −0.665 −0.717

ρ = 2 0 −0.705 −0.833 −0.885 −0.911 −0.928

Two other examples, E2/M/1/0 and E2/E2/1/0, support the hypothesis that it is the
variability of the arrival process that is responsible for the positive cross-correlations at
low traffic intensities.

E2/M/1/0.

Traffic intensity Time 0 2 4 6 8 10

ρ = 0.5 0 −0.018 −0.054 −0.071 −0.080 −0.089

ρ = 1 0 −0.019 −0.249 −0.268 −0.279 −0.283

ρ = 2 0 −0.349 −0.391 −0.405 −0.411 −0.415



10 Journal of Applied Mathematics and Decision Sciences

E2/E2/1/0.

Traffic intensity Time 0 2 4 6 8 10

ρ = 0.5 0 0.071 0.064 0.051 0.045 0.043

ρ = 1 0 −0.071 −0.091 −0.107 −0.109 −0.114

ρ = 2 0 −0.215 −0.238 −0.245 −0.250 −0.254

5. The effects of these correlations

5.1. How big are the effects of these correlations? Can we ever get away with treating the
overflow and output streams as being independent? For the simplest model, M/M/1/0, it
is possible to answer this exactly by considering, as an alternative, a model consisting
of two independent M/M/1/0 systems and combining the outputs from the first system
and the overflows from the second system. So this alternative combined process is what
would result if we were to treat the overflow and output streams as being independent.
As a reference model to measure the effects of this assumption, we compare the blocking
probability at a subsequent server with no storage, called server 3, both for the alternative
model and the correct (Poisson input) model.

We first need to determine the departure process from the two-independent-systems
model. We take the state of the process to be {i, j,k}, where i= 1 or 2 is the system from
which the last output occurred, and { j,k} ∈ {0,1}×{0.1} is the number of customers left
behind at servers 1 and 2. Since all the service and interarrival distributions are negatively
exponential, this process is Markov renewal. The eight possible states are outputs from
node 1: {1,0,0}, {1,0,1}, overflows from node 1: {1,1,0}, {1,1,1}, outputs from node 2:
{2,0,0}, {2,0,1}, and overflows from node 2: {2,1,0}, {2,1,1}. The semi-Markov kernel
is then

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
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. (5.1)
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Figure 5.1. The effect of treating output and overflow streams as being independent.

Here a= λ1 + λ2 + s, b = λ1 + λ2 + μ1 + s, c = λ1 + λ2 + μ2 + s, d = λ1 + λ2 + μ1 + μ2 + s, and
e = 1/abd + 1/acd. The input process that we require constitutes entries to states 1, 2, 7,
and 8 so this is obtained from Q by the usual filtering arguments. That is, if S= {1,2,7,8}
andT = {3,4,5,6}, the Laplace-Stieltjes transform of the semi-Markov kernel of the input
process is found from: Qi =QSS +QST(I −QTT)−1QTS, where QSS, QST , QTT , and QTS are
the corresponding submatrices of Q.

Finally when used as input to a subsequent node (server 3) with no storage and service
rate μ3, the state distribution as seen by an arriving customer has a semi-Markov kernel
given by

Q3(s)=
(
Qi(s)−Qi

(
s+μ3

)
Qi
(
s+μ3

)

Qi(s)−Qi
(
s+μ3

)
Qi
(
s+μ3

)

)

. (5.2)

Since states 5, 6, 7, 8 of this process are the states in which an overflow at server 3 occurs,
the probability of overflow at node 3 is π5 + π6 + π7 + π8, taken from the steady state
distribution of the imbedded Markov chain Q3(0).

If we take λ1 = λ2, and all of the service rates to be one, the fraction of customers who
overflow from server 3 is simplified to

π5 +π6 +π7 +π8 =
λ
(
4λ5 + 25λ4 + 67λ3 + 88λ2 + 49λ+ 60

)

(
4λ4 + 13λ3 + 16λ2 + 9λ+ 1

)(
λ2 + 4λ+ 6

) . (5.3)

We can compare this with the overflow fraction which would occur using the correctly
correlated overflow and output processes. This is easy to calculate as server 3 is actually
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Figure 5.2. Percentage error due to assuming independence.

an M/M/1/0 system. Plotting the error against traffic intensity (see Figure 5.1) shows that
while for high traffic intensities the error is small, for intensities less than 1, treating the
overflow and output processes as being independent leads to an underestimation of the
blocking probability by up to 50% (see Figure 5.2).

5.2. How much extra information can we get from the correlations? In the same case,
M/M/1/0, we can show that there is enough information in the cross-correlations to per-
fectly reconstruct the departure process. We assume that we know the marginal distri-
butions of the time between outputs and of the time between overflows. However, in
addition, we assume we know, or have measured, the cross-covariances (like equation
(3.3), but conditioned on the starting state). It is easy to show that we now have enough
information in the four equations to solve for, for example, the Markov renewal kernel
(3.2). So at least in the class of two-state Markov renewal processes, we would have exactly
determined the departure process. Thus at least in this simple case, the addition of this
information on cross-correlations is enough to reduce the error to zero.

6. Conclusions

We have shown that considerable dependencies, as measured by cross-correlations, can
arise in the output and overflow processes from simple queueing models. These can be
large, and either positive or negative. Positive cross-correlations are associated with lower
traffic intensities, which is also the situation in which ignoring these correlations may
produce the largest percentage errors. The variability of the arrival process is an impor-
tant factor in this. The smallest correlations usually occur at a traffic intensity close to 1.
The qualitative insight these models provide may prove useful in determining a circum-
stance under which moment or renewal approximations will work well.
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1. Introduction

Cluster analysis is a statistical tool to classify a set of objects into groups so that objects
within a group are “similar” and objects in different groups are “dissimilar.” The purpose
of clustering is to discover “natural” structure hidden in a data set. Regression clustering
technique is often used to classify the data and recover the underlying structure, when
the data set is believed to be a random sample from a population comprising of a fixed,
but unknown, number of subpopulations, each of which is characterized by a distinct
regression model. Regression clustering is one of the most commonly used model-based
clustering techniques. It has been studied by Bock [1], Quandt and Ramsey [2], and Späth
[3] among others, and has applications in a variety of disciplines, for example, in market
segmentation by DeSarbo and Cron [4] and quality control systems by Lou et al. [5].

A fundamental problem, as well as a preliminary step in regression clustering, is to
determine the underlying “true” number of regression models in a data set. Shao and Wu
[6] proposed an information-based criterion (named criterion “LS-C” in the sequel) to
tackle this problem. The limiting behavior of LS-C is given in their paper.

However, it is well known that the least squares (LS) method is very sensitive to outliers
and violation of the normality assumption of the data. This instability also exists in the
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LS-based procedures for both selecting the number of regression models and classifying
the data in the context of regression clustering.

During the past three decades, numerous efforts have been made for developing ro-
bust statistical procedures for statistical inferences. Among them, procedures based on
M-estimators, which are maximum likelihood-type estimators (Hampel et al. [7] and
Huber [8]), play an important role. The M-estimation-based model selection criteria are
considered by Konishi and Kitagawa [9], Machado [10], and Wu and Zen [11] among
others.

To overcome the instability of the LS-based procedures in regression clustering, we
propose an M-estimation-based procedure for determining the number of regression
models, which is an extension of M-estimation-based information criterion for linear
model selection developed by Wu and Zen [11]. Its asymptotic behavior will be investi-
gated.

The structure of this paper is arranged as follows. In Section 2, we build a probabilistic
framework for our problem and introduce some notations used in this paper. Section 3
lists all the assumptions needed for our study. In Section 4, we study the limiting behavior
of the proposed criterion. Some ancillary results required for our proofs are presented in
the appendix.

2. Notation and preliminaries

We consider the clustering problem for n objects �(n) = {1, . . . ,n}, where for each object

j, (x j , yj) has been recorded, where x j = (x(1)
j , . . . ,x

(p)
j )′ ∈Rp is a nonrandom explanatory

p-vector and yj ∈R is a random response variable. The set of these n objects is a random
sample from a structured population as specified below.

Suppose that there exists an underlying partition Π(n)
k0
= {�(n)

1 , . . . ,�(n)
k0
} for these n ob-

jects, and each component �(n)
i � {i1, . . . , ini} ⊆ �(n) is characterized by a linear regression

model:

yj,�i = x′j,�i
β0i + ej,�i , j = i1, . . . , ini , (2.1)

where ni = |�i| is the number of observations in the ith component �i, i= 1, . . . ,k0, and
∑k0

i=1ni = n. Note that �i and �(n)
i are used interchangeably to denote the ith component

of the underlying partition Π(n)
k0

. (x j,�i , yj,�i) ( j = i1, . . . , ini , i= 1, . . . ,k0) is a relabeled ob-
servation (x j , yj) ( j = 1, . . . ,n) to represent the jth object in the ith component �i of

the true partition Π(n)
k0

. We will use this double-index notation for any object (x j , yj)
throughout this paper to identify the component to which it belongs. β0i ∈ Rp are k0

pairwise distinct p-vectors of unknown regression parameters, and ej,�i , j = i1, . . . , ini , are
independently and identically distributed random errors for i= 1, . . . ,k0.

However, this underlying structure (2.1) is not observable. What we observe is just a
random sample of n objects with the data values (x j , yj) for each of the p + 1 variables
associated with each object. Our task is then to reconstruct the hidden structure (2.1)
from the observed data by first estimating the number of regression models k0 and then
classifying the data and estimating the regression parameters in each regression model
accordingly.



C. R. Rao et al. 3

Consider any possible classification of these n objects: Π(n)
k = {�(n)

1 , . . . ,�(n)
k }, where

k ≤ K is a positive integer. For this partitioning, we fit k M-estimator-based linear regres-

sion models and obtain kM-estimates β̂s, s = 1, . . . ,k, separately. Then the M-estimator-
based criterion for estimating the number of regression models is given as follows: let
q(k) be a strictly increasing function of k and let An be a sequence of constants. We define

Rn
(
Π(n)
k

)=
k∑

s=1

∑

j∈�s

ρ
(
yj,�s − x′j,�s

β̂s
)

+ q(k)An, (2.2)

where ρ is a convex discrepancy function. As an example, ρ can be chosen as Huber’s
discrepancy function

ρc(t)=

⎧
⎪⎪⎨

⎪⎪⎩

1
2
t2, |t| < c,

c|t|− 1
2
c2, |t| ≥ c.

(2.3)

Also, in (2.2),
∑

j∈�s
stands for the summation made over all the observations in the class

�s and β̂s is the M-estimator in the sth class such that
∑

j∈�s

ρ
(
yj,�s − x′j,�s

β̂s
)=min

βs

∑

j∈�s

ρ
(
yj,�s − x′j,�s

βs
)
. (2.4)

Again, �s and �(n)
s are used interchangeably in the above equations to denote the sth class

in the partition Π(n)
k . We will continue this convenient usage without further explanation

in the sequel. It can be seen that in (2.2), the first term is a generalization of a minimum
negative log-likelihood function and the second term is the penalty for over-fitting.

Then the estimate of the underlying number of regression models k0, k̂n is obtained by
minimizing the criterion (2.2), that is,

k̂n = arg min
1≤k≤K

min
Π(n)
k

Rn
(
Π(n)
k

)
. (2.5)

We will call this criterion MR-C, which stands for the M-estimator-based regression clus-
tering. Moreover, criterion MR-C in (2.5) shows that it actually determines the optimal
number of regression models and the associated partitioning simultaneously.

3. Assumptions

Let �l = {l1, . . . , lnl} be any component or a subset of a component associated with the

underlying true partition Π(n)
k0

of �(n), and nl = |�l|. If we let Xnl = (xl1,�l , . . . ,xlnl ,�l)
′ be

the design matrix in �l, then Wnl = X ′nlXnl , d2
nl =max1≤ j≤nl x′j,�l

W−1
nl x j,�l .

To facilitate the study on the limiting behavior of the criterion MR-C, we need the
following assumptions.

(A) For the true partition Π(n)
k0
= {�1, . . . ,�k0} and ni = |�i|, there exists a fixed con-

stant a0 > 0 such that

a0n≤ ni ≤ n ∀i= 1, . . . ,k0. (3.1)
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Remark 3.1. This assumption is equivalent to the explicit assumption that the population
comprises k0 subpopulations with proportions π1, . . . ,πk0 where 0 < πi < 1, i = 1, . . . ,k0,
∑k0

i=1πi = 1. Then a0 =min1≤i≤k0 πi would satisfy (3.1).

(B1) ρ(·) is a convex function on R1.
(B2) E[ρ(ej,�i)] is finite for all j ∈ �i and i= 1, . . . ,k0.
(B3) For any β and observations in �l,

liminf
nl→∞

1
nl

∑

j∈�l

E
[
ρ
(
ej,�l − x′j,�l

β
)− ρ(ej,�l

)]≥ g(β), (3.2)

where g(·) is a nonnegative convex function and is strictly convex in a neighborhood of
0.

If ρ has a first-order derivative, in order to find M-estimator of βs in the sth-class,
one may first find all first-order partial derivatives of

∑
j∈�s

ρ(yj,�s − x′j,�s
βs) and then

set them to be equal to zeros. The simultaneous solutions of these equations give the M-
estimator of βs. However in some cases, ρ does not have a first-order derivative. Note that
for any convex function, it always has subgradients, which are just partial derivatives if
they do exist (see Rockafellar [12]). Let ψ(·) be any choice of the subgradient of ρ(·) and
denote by � the set of discontinuity points of ψ, which is the same for all choices of ψ.

(C1) The common distribution function F of ej,�i , j ∈ �i, is unimodal and satisfies
F(�)= 0. E[ψ(ej,�i)]= 0, E[ψ2(ej,�i)]= σ2

i <∞ for any i= 1, . . . ,k0, and

E
[
ψ
(
ej,�i +u

)]= aiu+ o
(|u|), as u−→ 0, (3.3)

where ai, i= 1, . . . ,k0, are finite positive constants.
(C2) There exist positive constants ζ and h0 such that for any h∈ [0,h0] and any u,

ψ(u+h)−ψ(u)≤ ζ. (3.4)

(C3) The moment generating function Mi(t) = E[exp{tψ(ej,�i)}] exists for |t| ≤ Δ,
where i= 1, . . . ,k0.

(C4) E[|ψ(ej,�i)|3] <∞, j ∈ �i, i= 1, . . . ,k0.
Denote the eigenvalues of a symmetric matrix B of order p by λ1(B)≥ ··· ≥ λp(B).
(X) There are constants a1 and a2 such that

0 < a1nl ≤ λp
(
Wnl

)≤ λ1
(
Wnl

)≤ a2nl for large enough nl. (3.5)

The following three assumptions are on dnl . Recall that d2
nl =max1≤ j≤nl x′j,�l

W−1
nl x j,�l .

(X1) dnl(loglognl)1/2 → 0 as nl →∞.
(X2) dnl(lognl)1+ι =O(1), where ι > 0 is a constant.
(X3) When nl is large enough, there exists a constant ω > 0 such that dnl ≤ ωnl−1/2.

Remark 3.2. Assumptions (X) and (X1)–(X3) describe essentially the behavior of the
explanatory variables. Assumptions (X1)–(X3) are imposed so that dnl converges to 0 at
certain rates. It can be seen that Assumption (X) is satisfied almost surely if xi, i= 1,2, . . . ,
are independently and identically distributed observations of a random vector X with
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strictly positive definite covariance matrix. If we further assume that |X| is finite, then
(X1)–(X3) are met almost surely.

(Z) The sequence {An} satisfies

An
n
−→ 0,

An
loglogn

−→∞. (3.6)

Excluding Assumption (A), all other assumptions are ordinarily used in the study of
limiting behavior of an M-estimator. The only difference is that we now require them to
hold in any sth-class, 1≤ s≤ k.

4. Limiting behavior of the criterion MR-C

Suppose that (B1)–(B3), (C1)–(C3), (X), (X1), and (Z) hold.
Let Π(n)

k0
be the true underlying partition of the n objects with the model structure

(2.1). Observe that the true partition Π(n)
k0

is a sequence of naturally nested classifications
as n increases, that is,

�(n)
i ⊆ �(n+1)

i , i= 1, . . . ,k0, for large n. (4.1)

Consider a given sequence of classifications with k clusters Π(n)
k = {�(n)

1 , . . . ,�(n)
k } of

�(n) such that

�(n)
s ⊆�(n+1)

s , s= 1, . . . ,k, for large n, (4.2)

when n increases. For simplicity, when no confusion appears, nwill be suppressed inΠ(n)
k0

,

Π(n)
k , �(n)

i , 1≤ i≤ k0, and �(n)
s , 1≤ s≤ k.

Consider the following two cases.

Case 1. k0 < k < K , where K <∞ is a fixed constant:

Rn
(
Π(n)
k

)−Rn
(
Π(n)
k0

)

=
k∑

s=1

∑

j∈�s

ρ
(
yj,�s − x′j,�s

β̂s
)−

k0∑

i=1

∑

j∈�i

ρ
(
yj,�i − x′j,�i

β̂0i

)
+
(
q(k)− q(k0

))
An,

(4.3)

where

β̂s = argmin
β

∑

j∈�s

ρ
(
yj,�s − x′j,�s

β
)
, (4.4)

β̂0i = argmin
β

∑

j∈�i

ρ
(
yj,�i − x′j,�i

β
)
. (4.5)

Since we have k0 < k < K <∞, the number of possible intersection sets �s ∩�i is finite,
and

�(n) =∪k0
i=1�i =∪k

s=1�s =∪k
s=1∪k0

i=1

(
�s∩�i

)
. (4.6)
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Hence

Rn
(
Π(n)
k

)−Rn
(
Π(n)
k0

)

=
k∑

s=1

k0∑

i=1

∑

j∈�s∩�i

[
ρ
(
yj,�s∩�i − x′j,�s∩�i

β̂s
)− ρ(yj,�s∩�i − x′j,�s∩�i

β̂0i

)]
+
(
q(k)− q(k0

))
An

=
k∑

s=1

k0∑

i=1

∑

j∈�s∩�i

[
ρ
(
yj,�s∩�i − x′j,�s∩�i

β̂s
)− ρ(yj,�s∩�i − x′j,�s∩�i

β̂0si

)]

+
k∑

s=1

k0∑

i=1

∑

j∈�s∩�i

[
ρ
(
yj,�s∩�i − x′j,�s∩�i

β̂0si

)− ρ(yj,�s∩�i − x′j,�s∩�i
β̂0i

)]

+
(
q(k)− q(k0

))
An,

(4.7)

where β̂0si is the M-estimator defined by

β̂0si = argmin
β

∑

j∈�s∩�i

ρ
(
yj,�s∩�i − x′j,�s∩�i

β
)
. (4.8)

By (4.4) and (4.8), we have

∑

j∈�s∩�i

[
ρ
(
yj,�s∩�i − x′j,�s∩�i

β̂s
)− ρ(yj,�s∩�i − x′j,�s∩�i

β̂0si

)]≥ 0. (4.9)

By (A.3) of Lemma A.2, (4.5), (4.8), and the fact that �s∩�i is a subset of the true class
�i, we have that

k∑

s=1

k0∑

i=1

∑

j∈�s∩�i

[
ρ
(
yj,�s∩�i − x′j,�s∩�i

β̂0si

)− ρ(ej,�s∩�i

)]=O(loglogn),

k0∑

i=1

∑

j∈�i

[
ρ
(
yj,�i − x′j,�i

β̂0i

)− ρ(ej,�i

)]=O(loglogn).

(4.10)

Note that
⋃k
s=1

⋃
i∈k0

⋃
j∈�s∩�i

{ej,�s∩�i} is the same as
⋃k0
i=1

⋃
j∈�i
{ej,�i}. Hence we have

that

k0∑

i=1

∑

j∈�i

ρ
(
ej,�i

)≡
k∑

s=1

k0∑

i=1

∑

j∈�s∩�i

ρ
(
ej,�s∩�i

)
. (4.11)
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We further have

k∑

s=1

k0∑

i=1

∑

j∈�s∩�i

[
ρ
(
yj,�s∩�i − x′j,�s∩�i

β̂0si

)− ρ(yj,�s∩�i − x′j,�s∩�i
β̂0i

)]

=
k∑

s=1

k0∑

i=1

∑

j∈�s∩�i

[
ρ
(
yj,�s∩�i − x′j,�s∩�i

β̂0si

)− ρ(ej,�s∩�i

)]

−
k0∑

i=1

∑

j∈�i

[
ρ
(
yj,�i − x′j,�i

β̂0i

)− ρ(ej,�i

)]=O(loglogn).

(4.12)

Therefore, by (4.9), (4.12), Assumption (Z), and the fact that q(k)− q(k0) > 0, we obtain
that

Rn
(
Π(n)
k

)−Rn
(
Π(n)
k0

)
> 0, a.s. (4.13)

for n large enough.

Case 2. k < k0.
By [6, Lemma 3.1] for any partition Π(n)

k = {�1, . . . ,�k} of �(n), there exist one class in

Π(n)
k and two distinct components in the true partitionΠ(n)

k0
= {�1, . . . ,�k0}, say �1 ∈Π(n)

k

and �1,�2 ∈Π(n)
k0

such that

b0n <
∣
∣�1∩�1

∣
∣ < n, b0n <

∣
∣�1∩�2

∣
∣ < n, (4.14)

where b0 = a0/k0 > 0 is a constant.

Let d0 =min1≤i
=l≤k0 |β0i−β0l|. Then d0 > 0 is a fixed constant. Consider

∑

j∈�1∩�1

ρ
(
yj,�1∩�1 − x′j,�1∩�1

β̂1

)
,

∑

j∈�1∩�2

ρ
(
yj,�1∩�2 − x′j,�1∩�2

β̂1

)
, (4.15)

where β̂1 is the M-estimator in �1 defined in (4.4) with s = 1. Then in view of the con-
vexity of ρ(·), by (4.4), (4.14), and the fact that β01, β02 are two distinct underlying true
parameter vectors in the model structure (2.1), at least one of the following two inequal-
ities must hold:

∑

j∈�1∩�1

ρ
(
yj,�1∩�1 − x′j,�1∩�1

β̂1

)

>
∑

j∈�1∩�1

ρ
(
yj,�1∩�1 − x′j,�1∩�1

β̃
) ∀β̃ :

∣
∣β̃−β01

∣
∣≤ d0

4
,

(4.16)

∑

j∈�1∩�2

ρ
(
yj,�1∩�2 − x′j,�1∩�2

β̂1

)

>
∑

j∈�1∩�2

ρ
(
yj,�1∩�2 − x′j,�1∩�2

β̃
)
, ∀β̃ :

∣
∣β̃−β02

∣
∣≤ d0

4
.

(4.17)
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Without loss of generality, we assume that (4.16) holds. Now let us focus our discussion
on the set �1 ∩�1. Let n11 = |�1 ∩�1| be the number of objects in the set �1 ∩�1. We
intend to find the order of

∑

j∈�1∩�1

[
ρ
(
yj,�1∩�1 − x′j,�1∩�1

β̂1

)− ρ(yj,�1∩�1 − x′j,�1∩�1
β̂011

)] def= T (4.18)

in terms of n as n increases to infinity. In the above expression for T , β̂01 is the M-

estimator in �1 defined in (4.5) with i= 1 and β̂011 is the M-estimator in �1∩�1 defined
as follows:

β̂011 = argmin
β

∑

j∈�1∩�1

ρ
(
yj,�1∩�1 − x′j,�1∩�1

β
)
. (4.19)

�1 ∩ �1 is a subset of �1 ∈ Π(n)
k0

which is the underlying true classification of �(n). By

(A.4), Lemma A.2, with probability one, |β̂011 − β01| < d0/4 for n11 large enough, where

β̂011 is defined in (4.19). Let D
def= {β̃ : |β̃−β01| = d0/4}. Then by (4.16), it is certain that

there exists a point β̃D ∈D such that

∑

j∈�1∩�1

ρ
(
yj,�1∩�1 − x′j,�1∩�1

β̂1

)
>

∑

j∈�1∩�1

ρ
(
yj,�1∩�1 − x′j,�1∩�1

β̃D
)
. (4.20)

Hence

T >
∑

j∈�1∩�1

[
ρ
(
yj,�1∩�1 − x′j,�1∩�1

β̃D
)− ρ(yj,�1∩�1 − x′j,�1∩�1

β̂011

)]

=
∑

j∈�1∩�1

[
ρ
(
yj,�1∩�1 − x′j,�1∩�1

β̃D
)−E

(
ρ
(
ej,�1∩�1

))]

−
∑

j∈�1∩�1

[
ρ
(
yj,�1∩�1 − x′j,�1∩�1

β̂011

)−E
(
ρ
(
ej,�1∩�1

))] def= T1 +T2.

(4.21)

By (A.6), Lemma A.3, there exists a constant δ > 0 such that

T1 ≥ δn11 + o
(
n11
)
, a.s. (4.22)

Write T2 = T21 +T22 with

T21 =
∑

j∈�1∩�1

[
ρ
(
yj,�1∩�1 − x′j,�1∩�1

β̂011

)− ρ(ej,�1∩�1

)]
,

T22 =
∑

j∈�1∩�1

[
ρ
(
ej,�1∩�1

)−E
(
ρ
(
ej,�1∩�1

))]
.

(4.23)

By (A.3), Lemma A.2, and (4.2), we have

T21 =O
(

loglogn11
)
, a.s. (4.24)
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By (B2), (4.2), and the strong law of large numbers, we obtain

T22 = o
(
n11
)
, a.s. (4.25)

Hence, by (4.24) and (4.25), we have

T2 = o
(
n11
)
, a.s. (4.26)

In view of (4.21), (4.22), and (4.26), it follows that

∑

j∈�1∩�1

[
ρ
(
yj,�1∩�1 − x′j,�1∩�1

β̂1

)− ρ(yj,�1∩�1 − x′j,�1∩�1
β̂011

)]
> δn11 + o

(
n11
)
, a.s.

(4.27)

By (4.9), we can express our object function as follows:

Rn
(
Π(n)
k

)−Rn
(
Π(n)
k0

)

=
k∑

s=1

k0∑

i=1

∑

j∈�s∩�i

[
ρ
(
yj,�s∩�i − x′j,�s∩�i

β̂s
)− ρ(yj,�s∩�i − x′j,�s∩�i

β̂0si

)]

+
k∑

s=1

k0∑

i=1

∑

j∈�s∩�i

[
ρ
(
yj,�s∩�i − x′j,�s∩�i

β̂0si

)− ρ(yj,�s∩�i − x′j,�s∩�i
β̂0i

)]

+
(
q(k)− q(k0

))
An

≥
∑

j∈�1∩�1

[
ρ
(
yj,�1∩�1 − x′j,�1∩�1

β̂1

)− ρ(yj,�1∩�1 − x′j,�1∩�1
β̂011

)]

+
k∑

s=1

k0∑

i=1

∑

j∈�s∩�i

[
ρ
(
yj,�s∩�i − x′j,�s∩�i

β̂0si

)− ρ(yj,�s∩�i − x′j,�s∩�i
β̂0i

)]

+
(
q(k)− q(k0

))
An,

(4.28)

where β̂s, 1≤ s≤ k, and β̂0i, 1≤ i≤ k0, are defined in (4.4) and (4.5). By the same argu-
ment as used in Case 1, we have

k∑

s=1

k0∑

i=1

∑

j∈�s∩�i

[
ρ
(
yj,�s∩�i − x′j,�s∩�i

β̂0si

)− ρ(yj,�s∩�i − x′j,�s∩�i
β̂0i

)]

=O(loglogn)= o(n).

(4.29)

Therefore, by (3.6), (4.14), (4.27), and (4.29), we have

Rn
(
Π(n)
k

)−Rn
(
Π(n)
k0

)

> δn11 + o
(
n11
)

+ o(n) +
[
q(k)− q(k0

)]
An

≥ δb0n+ o(n) +
[
q(k)− q(k0

)]
An > 0, a.s.

(4.30)

for n large enough.
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Table 5.1. Parameter values used in the simulation study of regression clustering.

Case k0 Regression coefficients No. of obs.

1 1 β0 =
(

1
6

)
n= 120

2 2 β01 =
(

20
9

)
, β02 =

(
1
6

) n1 = 70

n2 = 50

3 3 β01 =
(

30
9

)
, β02 =

(
12
8

)
, β03 =

(
−2
9

) n1 = 35

n2 = 35

n3 = 50

Therefore, combining the results from (4.13) in Case 1 and (4.30) in Case 2, we have
showed that the true classification is attained when n increases to infinity.

Remark 4.1. In the above discussion, the set of the conditions (B1)–(B3), (C1)–(C3), (X),
(X1), and (Z) can be replaced by any set of the following conditions:

(a) (A), (B1)–(B3), (C1)-(C2), (C4), (X), (X2), and (Z);
(b) (A), (B1)-(B2), (C1)-(C2), (C4), (X), (X3), and (Z);
(c) (A), (B1)-(B2), (C1)–(C3), (X), (X3), and (Z).

Remark 4.2. Hannan and Quinn [13] show that An = c loglogn is sufficient for strong
consistency in a classical estimation procedure for the order of an autoregression. By
computing the upper bound in our proofs carefully, we can show that An = c loglogn
also works here.

Remark 4.3. The above study is not feasible when all possible classifications are consid-
ered simultaneously. For simplicity, we consider the quadratic ρ function, that is, ρ(t)=
t2. Let Dn = {all nonempty subsets of �}, then for any l ∈ {1,2, . . . , p},

max
d∈Dn

∣
∣
∣
∣
∣

∑

j∈d
x(l)
j e j

∣
∣
∣
∣
∣
≥max

(
∑

j:x(l)
j e j>0

x(l)
j e j ,

∑

j:x(l)
j e j<0

(− x(l)
j e j

)
)

≥ 1
2

n∑

j=1

∣
∣
∣x(l)

j e j
∣
∣
∣. (4.31)

Note that in general,
∑n

j=1 |x(l)
j e j| =O(n) for any l ∈ {1,2, . . . , p}. Hence the key equation

(A.2), Lemma A.2 does not hold uniformly for all possible subsets of �= {1,2, . . . ,n}.

5. A simulation study

In this section, we present a simulation study for the finite sample performance of the
criterion MR-C. In this simulation, q(k) = 3k(p + 3), where p is the known number of
regression coefficients in the model structure (2.1) and k is the number of clusters we
consider. Since limt→0[(logn)t − 1]/t = loglogn holds, by Remark 4.2 in Section 4, we let

A(i)
n = (1/λi)((logn)λi)− 1, with λ1 = 1.6, λ2 = 1.8, λ3 = 2.0, and λ4 = 2.2 employed in the

simulation.
We consider one cluster, two cluster and three cluster cases, respectively. In all cases,

the covariate is generated fromN(0,1). The parameter values used for each case are given
in Table 5.1. N(0,1) and Cauchy(0, 1) random error terms are used to generate the data
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Figure 5.1. Plots of simulated data for one homogeneous cluster.
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Figure 5.2. Plots of simulated data for two separated linear patterns.

for each of the above three cases, respectively. Therefore, in all, we actually consider six
models. We use a shorthand notation to identify them:

(i) N1C1 (C1C1) Case 1, one single line, normal (Cauchy) errors;
(ii) N1C2 (C1C2) Case 2, two separated lines, normal (Cauchy) errors;

(iii) N1C3 (C1C3) Case 3, three separated lines, normal (Cauchy) errors.
The ρ functions we employed for M-estimator are (1) ρ1(u) = u2 (LS); (2) ρ2(u) =

0.5u2 if |u| ≤ 1.345 and ρ2(u)= 1.345|u| − 0.5× 1.3452 otherwise (Huber ρ). When ρ is
the quadratic discrepancy function, MR-C coincides with LS-C. In the following, MR-
C stands for the M-estimator-based regression clustering procedure with Huber’s ρ. In
order to keep the same scale between LS-C and MR-C, the actual LS-C implemented
in this simulation study is to minimize

∑k
s=1

∑
j∈�s

(yj,�s − x′j,�s
β̂s)

2/2 + q(k)An over all
possible partitions. It is clear that this slight modification does not affect the asymptotic
property of LS-C.

Figures 5.1, 5.2, and 5.3 give us an intuitive idea of what the data look like for Cases
1, 2, and 3 with N(0,1) and Cauchy(0, 1) errors, respectively. These figures show that the
groupings of linear patterns are quite apparent and clear in each case for the normal error
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Figure 5.3. Plots of simulated data for three separated linear patterns.

Table 5.2. Relative frequencies of selecting k based on 500 simulations (Case 1).

ej ∼ N(0,1), N1C1

LS-C MR-C

Model A(1)
n A(2)

n A(3)
n A(4)

n A(1)
n A(2)

n A(3)
n A(4)

n

k = 1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

k = 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k = 3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k = 4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ej ∼ Cauchy(0,1), C1C1

LS-C MR-C

Model A(1)
n A(2)

n A(3)
n A(4)

n A(1)
n A(2)

n A(3)
n A(4)

n

k = 1 0.000 0.000 0.000 0.000 0.588 0.772 0.860 0.926

k = 2 0.160 0.170 0.186 0.216 0.150 0.076 0.042 0.010

k = 3 0.368 0.392 0.412 0.432 0.130 0.078 0.054 0.042

k = 4 0.472 0.438 0.402 0.352 0.132 0.074 0.044 0.022
† The true number of clusters k0 = 1.

models while there are some outliers far away from the whole pattern for each case with
Cauchy errors.

For each of the aforementioned six models, we generate the data by the model struc-
ture (2.1), we then use LS-C and MR-C to select the number of clusters and classify the
data. This process is then repeated 500 times separately. To reduce the computation bur-
den, we only fit models with possible numbers of clusters as 1, 2, 3, 4 when the true
number of clusters k0 is 1 or 2; and we only consider possible cluster size of 1, 2, 3, 4, and
5, when k0 is 3.

In the simulation study, LS-C and MR-C are used to select the best k, respectively.
Tables 5.2, 5.3, and 5.4 display the relative frequencies of selecting k for each of the six
models using LS-C and MR-C separately. It is apparent that both Huber ρ and LS func-
tions perform extremely well for these models with normal errors. However, as shown in
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Table 5.3. Relative frequencies of selecting k based on 500 simulations (Case 2).

ej ∼ N(0,1), N1C2

LS-C MR-C

Model A(1)
n A(2)

n A(3)
n A(4)

n A(1)
n A(2)

n A(3)
n A(4)

n

k = 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k = 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

k = 3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k = 4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ej ∼ Cauchy(0,1), C1C2

LS-C MR-C

Model A(1)
n A(2)

n A(3)
n A(4)

n A(1)
n A(2)

n A(3)
n A(4)

n

k = 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k = 2 0.086 0.088 0.098 0.114 0.898 0.924 0.956 0.970

k = 3 0.278 0.294 0.318 0.346 0.054 0.036 0.022 0.018

k = 4 0.636 0.618 0.584 0.540 0.048 0.040 0.022 0.012
† The true number of clusters k0 = 2.

Table 5.4. Relative frequencies of selecting k based on 500 simulations (Case 3).

ej ∼ N(0,1), N1C3

LS-C MR-C

Model A(1)
n A(2)

n A(3)
n A(4)

n A(1)
n A(2)

n A(3)
n A(4)

n

k = 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k = 2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k = 3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

k = 4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k = 5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ej ∼ Cauchy(0,1), C1C3

LS-C MR-C

Model A(1)
n A(2)

n A(3)
n A(4)

n A(1)
n A(2)

n A(3)
n A(4)

n

k = 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k = 2 0.052 0.052 0.052 0.052 0.000 0.000 0.000 0.000

k = 3 0.148 0.174 0.196 0.214 0.932 0.950 0.958 0.972

k = 4 0.370 0.382 0.396 0.394 0.056 0.040 0.034 0.022

k = 5 0.430 0.392 0.356 0.340 0.012 0.010 0.008 0.006
† The true number of clusters k0 = 3.

these tables, in contrast to the nearly perfect performance of both criteria in the normal
error models, when the random errors used to generate the data in each case are from
Cauchy(0, 1), MR-C with Huber ρ function still selects the underlying true numbers of
clusters with promising high proportions of correctness while LS-C loses the power of
detecting the underlying numbers of clusters significantly.
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Appendix

Let �l be any component or a subset of a component of the underlying true partition

Π(n)
k0
= {�(n)

1 , . . . ,�(n)
k0
} of the n objects �(n). Let nl = |�l|. The following lemmas hold in �l

and can be proved similarly as by Wu and Zen [11].

Lemma A.1. Suppose that (B1), (C1)-(C2), (X), and (X1) hold. Then,

1
nl

∑

j∈�l

[
γj −E

(
γj
)]−→ 0, a.s., (A.1)

where γj = ρ(yj,�l − x′j,�l
β)− ρ(ej,�l) + x′j,�l

(β−β0l)ψ(ej,�l) if |β−β0l| > 0.

Lemma A.2. Suppose that the Assumptions (B1)–(B3), (C1)–(C3), (X), and (X1) hold.
Then

∑

j∈�l

x j,�l ψ
(
ej,�l

)=O
((
nl loglognl

)1/2
)

, a.s. (A.2)

∑

j∈�l

[
ρ
(
yj,�l − x′j,�l

β̂0l

)− ρ(ej,�l

)]=O( loglognl
)
, a.s. (A.3)

β̂0l = β0l +O
((

loglognl/nl
)1/2

)
, a.s., (A.4)

where

β̂0l = argmin
β

∑

j∈�l

ρ
(
yj,�l − x′j,�l

β
)
. (A.5)

Lemma A.3. Suppose that the Assumptions (B1), (B2), (B3), (C2), (X), and (X1) hold. Then
there exists a constant δ > 0 such that

∑

j∈�l

[
ρ
(
yj,�l − x′j,�l

β∗
)−E

(
ρ
(
ej,�l

))]≥ δnl + o
(
nl
)
, a.s. (A.6)

holds for all β∗ ∈� and nl large enough, where � is defined in the preceding lemma.
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[3] H. Späth, “A fast algorithm for clusterwise linear regression,” Computing, vol. 29, no. 2, pp. 175–
181, 1982.

[4] W. S. DeSarbo and W. L. Cron, “A maximum likelihood methodology for clusterwise linear
regression,” Journal of Classification, vol. 5, no. 2, pp. 249–282, 1988.

[5] S. Lou, J. Jiang, and K. Keng, “Clustering objects generated by linear regression models,” Journal
of the American Statistical Association, vol. 88, no. 424, pp. 1356–1362, 1993.

[6] Q. Shao and Y. Wu, “A consistent procedure for determining the number of clusters in regression
clustering,” Journal of Statistical Planning and Inference, vol. 135, no. 2, pp. 461–476, 2005.

[7] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel, Robust Statistics: The Approach
Based on Influence Functions, Wiley Series in Probability and Mathematical Statistics: Probability
and Mathematical Statistics, John Wiley & Sons, New York, NY, USA, 1986.

[8] P. J. Huber, “Robust regression: asymptotics, conjectures and Monte Carlo,” The Annals of Sta-
tistics, vol. 1, pp. 799–821, 1973.

[9] S. Konishi and G. Kitagawa, “Generalised information criteria in model selection,” Biometrika,
vol. 83, no. 4, pp. 875–890, 1996.

[10] J. A. F. Machado, “Robust model selection and M-estimation,” Econometric Theory, vol. 9, no. 3,
pp. 478–493, 1993.

[11] Y. Wu and M. M. Zen, “A strongly consistent information criterion for linear model selection
based on M-estimation,” Probability Theory and Related Fields, vol. 113, no. 4, pp. 599–625,
1999.

[12] R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, no. 28, Princeton University
Press, Princeton, NJ, USA, 1970.

[13] E. J. Hannan and B. G. Quinn, “The determination of the order of an autoregression,” Journal of
the Royal Statistical Society. Series B, vol. 41, no. 2, pp. 190–195, 1979.

C. R. Rao: Department of Statistics, Penn State University, University Park, PA 16802, USA
Email address: crr1@psu.edu

Y. Wu: Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto,
Ontario, Canada M3J 1P3
Email address: wuyh@mathstat.yorku.ca

Q. Shao: Novartis Pharmaceuticals Corporation, East Hanover, NJ 07936, USA
Email address: qing.shao@novartis.com



Hindawi Publishing Corporation
Journal of Applied Mathematics and Decision Sciences
Volume 2007, Article ID 56372, 12 pages
doi:10.1155/2007/56372

Research Article
Methods for Stratified Cluster Sampling with Informative
Stratification

Alastair Scott and Chris Wild

Received 24 April 2007; Accepted 8 August 2007

Recommended by Paul Cowpertwait

We look at fitting regression models using data from stratified cluster samples when the
strata may depend in some way on the observed responses within clusters. One important
subclass of examples is that of family studies in genetic epidemiology, where the proba-
bility of selecting a family into the study depends on the incidence of disease within the
family. We develop the survey-weighted estimating equation approach for this problem,
with particular emphasis on the estimation of superpopulation parameters. Full maxi-
mum likelihood for this class of problems involves modelling the population distribution
of the covariates which is simply not feasible when there are a large number of potential
covariates. We discuss efficient semiparametric maximum likelihood methods in which
the covariate distribution is left completely unspecified. We further discuss the relative
efficiencies of these two approaches.

Copyright © 2007 A. Scott and C. Wild. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In this paper, we look at the problem of fitting models to data from stratified cluster
samples. We are particularly interested in situations where the probability that a cluster is
in a particular stratum depends on the value of its response. Sometimes this dependence
is explicit and obvious. An important special case of this situation is the case-control
family study, which is widely used in genetic epidemiology (see Neuhaus et al. [1, 2]). In
a simple case-control study, we stratify the population into cases (people with a disease
under study, say) and controls (people without the disease), choose independent random
samples from each stratum, and record the values of potential covariates for each person
selected in the study. In a case-control family study, we record the same information
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and, in addition, we identify a set of family members for each person selected in the case-
control study and record the disease status and the values of the covariates of each of these
family members. For example, Whittemore [3] considers a case-control family study of
ovarian cancer. Here, the clusters consist of mother-daughter pairs. The case stratum
contains all pairs in which the daughter has been diagnosed with ovarian cancer, and
the control stratum contains all the other pairs. Other examples of similar retrospective
family studies are given in Zhao et al. [4].

Another example where the strata are determined explicitly by the response is given
by Neuhaus and Jewell [5]. They consider data from a stratified cluster sample of in-
dividuals enrolled in the Federal Employees Health Benefit Plan in which the response
variable indicates whether or not someone used outpatient mental health services dur-
ing the previous year for each of the years 1979–1981. Here, the clusters consist of the
three observations for a single person, and four strata were defined by the total num-
ber of times (0, 1, 2, or 3) that the person used the service in the three years of the
study.

In all these examples, stratum membership is determined exactly by the value of the
(multivariate) response. In most surveys, however, the relationship between the response
and stratum membership is less clearcut, with the strata determined by such things as
administrative convenience or the availability of a suitable list. This is true even for some
case-control family studies. For example, in the study that motivated this work, Wrensch
et al. [6] conducted a population-based case-control study of glioma, the most common
type of malignant brain tumour, in the San Francisco Bay Area. The investigators gathered
all cases of glioma diagnosed in a specified time interval and a population-based sample
of comparable controls through random digit dialling. They also gathered the brain tu-
mour status and covariate information from family members of the original case-control
sample participants. In this case, the case stratum contains all families with at least one
member diagnosed with glioma in the specified time interval. The chance of a family be-
ing included in this stratum depends on the number of family members with glioma, but
is not completely determined by this.

To cover these more general cases, we consider situations in which we may have to fit a
parametric model, Ph(y,X;γ), for the conditional probability of a cluster being included
in the hth stratum given values of the response vector, y, and the matrix of covariates, X.
Note that there are no problems if this stratum inclusion model only involves X. However,
if the model depends on the response, y, as well or, more generally depends on a design
variable that is associated with y but is not included in the model, then the sampling is
not ignorable (cf. Rubin [7]) and will affect the likelihood.

A possible strategy that is sometimes suggested for coping with informative stratifica-
tion is to include the stratum indicator as a covariate in the model. This strategy avoids
the technical problems but clearly makes no sense when the stratification depends solely
on the response as in many of the examples above. Even in situations where the stratifica-
tion does not depend directly on the response, it may distort the relationship between y
and X, which is the quantity of interest. For example, Lee et al. [8] consider a secondary
analysis of data from a case-control study of Sudden Infant Death Syndrome (SIDS). The
response in this analysis was an indicator of immunization, and clearly there would be
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little sense in including the stratifying variable (SIDS) as a predictor in the model. Simi-
larly, in our motivating brain cancer example, the researchers did not want to include the
date of diagnosis in their predictive model.

The standard survey approach is through weighted estimating equations, with weights
inversely proportional to the selection probabilities, as in Binder [9] or Rao et al. [10].
This works well when the weights are reasonably homogeneous but can be inefficient
when the weights vary widely as they tend to do in retrospective studies. De Mets and
Halperin [11] and Smith [10] looked at a more efficient approach which involved mod-
elling the joint distribution of response, covariates, and design variables used for the
stratification. This is efficient but becomes very difficult to implement when there are
a large number of potential explanatory variables. In this paper, we look at an efficient
intermediate approach based on semiparametric maximum likelihood in which the mar-
ginal distribution of the covariates is left unspecified. The general setup is described in
Section 2. In Section 3, we examine the survey-weighted approach in some detail and the
semi-parametric theory is developed in Section 4. We conclude with a brief discussion.

2. Basic setup

As in the introduction, we let y denote the vector of responses for the units in a cluster
and we let X be the corresponding matrix of covariate values. In addition, we define a
stratum indicator variable Z which takes the value Z = h if the cluster is assigned to the
hth stratum (h= 1, . . . ,L). We assume that the values in our finite population of N clusters
are generated by random sampling from the joint distribution of (y,X,Z). The clusters
are then sorted into L strata, �1, . . . ,�L, according to the values of Z, resulting in Nh

clusters in �h (
∑L

1 Nh =N). Finally, we draw independent simple random samples, Dh, of
nh clusters from the Nh clusters in �h (h= 1, . . . ,L) and observe the corresponding (y,X)
values. Let (yh j ,Xh j) represent observed values for the jth cluster in the hth stratum (h=
1, . . . ,L; j = 1, . . . ,nh). Our data are thus of the form {(yh j ,Xh j , j ∈Dh), Nh; h= 1, . . . ,L}.
Note that the observed stratum sizes, N1, . . . ,NL, are random variables in this scenario and
contain valuable information.

We are interested in modelling f (y | X;θ), the conditional distribution of the vector
of cluster responses y given X, the matrix of cluster covariates, and, in cases where it is
needed, the conditional probabilities that the cluster falls into stratum �h, h = 1, . . . ,L
given y and X:

pr(cluster∈�h | y,X)= pr(Z = h | y,X)= Ph(y,X;γ). (2.1)

Using an argument similar to that given in Scott and Wild [12, Appendix B], the likeli-
hood function can be shown to be given by

L(θ,γ,g)=
L∏

h=1

{
∏

j∈Dh

pr
(

yh j ,Xh j | cluster∈�h
)
}

QNh

h

=
∏

h

(
∏

Dh

{
f
(

yh j |Xh j ;θ
)
g
(

Xh j
)}
QNh−nh

h

)

,

(2.2)
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where g(X) denotes the marginal density of X in the population and

Qh =Qh(θ,γ,g)= pr(Z = h)=
∫∫

Ph(y,X;γ) f (y |X;θ)g(X)dydX (2.3)

denotes the marginal probability that a cluster is in stratum �h. Strictly speaking, we
need to describe how we choose the sample sizes, n1, . . . ,nL. However, the kernel of the
likelihood is as above for any scheme satisfying the condition that {n1, . . . ,nL} depends
only on {N1, . . . ,NL} and not on the realized values of (y,X) (see Wild [13] for details).

If we had drawn a simple random sample from the whole population, or if the strat-
ification depended only on X, then the likelihood would factor into two terms, one in-
volving θ alone and the other involving γ and g(X). This means that we could make
inferences about θ conditional on the observed values of X and not have to bother about
terms involving g(X). Unfortunately, we cannot ignore g(X) when Ph(y,X;γ) involves y;
just as in a case-control study, we cannot separate θ from g(x) because both are involved
in Qh. The most common way of coping with this is through weighted estimating equa-
tions with weights inversely proportional to the selection probabilities as in Binder [9].
We examine this approach in more detail in Section 3. It is relatively simple to implement
and works well in many situations. However, it tends to be very inefficient if the selection
probabilities vary widely as they often do in retrospective studies such as the case-control
family studies described in the introduction. A more efficient alternative is to build a full
parametric model for g(x) and use ordinary maximum likelihood. A good description of
this approach is given in Smith and Nathan [14]. It does indeed produce very efficient es-
timators but, unfortunately, it rapidly becomes impractical when the number of potential
covariates increases. This limits its application when we have a large number of potential
covariates with a mixture of continuous, categorical, and count variables, as is the case in
many surveys.

Ideally, we would like a method that combines the simplicity of the weighted approach
with the efficiency of maximum likelihood. In Section 4, we look at a semiparametric
approach in which the marginal distribution of X is treated nonparametrically. In this
approach, g(X) becomes a (potentially infinite dimensional) nuisance parameter in the
likelihood. The resulting estimators turn out to be very efficient while, perhaps more
surprisingly, still reasonably simple to obtain.

3. Weighted estimators

If we had observed the values of {y,X,Z} for every cluster in the finite population, we
would estimate θ by solving the “census” likelihood equation

S(θ)=
L∑

h=1

Nh∑

j=1

Uh j(θ)= 0, (3.1)
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where Uh j(θ)= ∂ log f (yh j |Xh j ;θ)/∂θ. We will assume that the standard regularity con-
ditions for likelihood (see, e.g., Lehmann [15, Section 7.3]) are satisfied so that

E
{

S(θ)
}= 0

¯
, Cov

{
S(θ)

}=−E
{
∂S(θ)

∂θT

}

=N�(θ), (3.2)

at the true value, θ = θ0.
Of course, we do not observe the whole population. However, for any fixed value of θ,

S(θ) is simply a vector of population totals and thus can be estimated from the sample
observations by the weighted sample score,

SW (θ)=
∑

h

∑

Dh

Nh

nh
Uh j(θ). (3.3)

The weighted estimator, θ̂W , is then defined as the solution to the weighted pseudo-
likelihood equation, SW (θ)= 0.

Under suitable regularity conditions on {Uh j}, θ̂W is a consistent estimator of the
finite population (or census) regression parameter, θC, defined as the solution to (3.1)
(see, e.g., Binder [9] or Rao et al. [10]). Our interest here, however, is not in descriptive
inferences about a particular finite population, but rather about modelling the underlying
processes that lead different units to have different responses y. Thus, in survey sampling
terminology, we are interested in estimating the superpopulation parameters. We have to

take some care in deriving the properties of θ̂W in this framework since N1, . . . ,NL are now
random variables rather than fixed constants as in the standard finite population setup.

In sampling terminology, we can think of our situation as being equivalent to two-
phase sampling for stratification. In the first phase, the finite population is generated
as a random sample of size N from an (infinite) super population and the stratum to
which each cluster (i.e., the value of Z) belongs is recorded. At the second phase, we
draw a simple random sample of size nh from the Nh clusters in stratum �h, with the
values of {n1, . . . ,nL} depending only on {N1, . . . ,NL}, and observe {yh j ,Xh j , j ∈ Dh} for
h= 1, . . . ,L.

We establish the results by first conditioning on ZN, the vector of stratum indicators for
the realized finite population and then averaging over the distribution of ZN. Given ZN,
{N1, . . . ,NL}, and hence {n1, . . . ,nL}, are fixed constants and Uh j(θ), j ∈Dh, are i.i.d. ob-
servations from the conditional distribution of U(θ)= (∂ log f (y |X;θ))/∂θ given Z = h.
Let μh(θ) and Σh(θ) denote the mean vector and covariance matrix of this conditional
distribution, and let μ(θ) and Σ(θ) denote the corresponding quantities for the uncondi-
tional distribution of U(θ). Recall that μ(θ0)= 0

¯
and Σ(θ0)=�(θ0) under our regularity

conditions. The unconditional distribution of {N1, . . . ,NL} is multinomial (N ;Q1, . . . ,QL)
where, as before, Qh is the marginal probability that Z = h for h= 1, . . . ,L.
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Note that

E

{
∑

h

Nhμh(θ)

}

=N

(
∑

h

μh(θ)Qh

)

=Nμ(θ). (3.4)

It follows that

E
{

SW (θ)
}= E

{
∑

h

Nhμh(θ)

}

=Nμ(θ). (3.5)

Thus E{∑hNhμh(θ)} = 0
¯

at θ = θ0. In addition, using the standard results for conditional
variances,

Cov
{

SW (θ)
}= Cov

{
∑

h

Nhμh(θ)

}

+E

{
∑

h

N2
h

Σh(θ)
nh

}

. (3.6)

To proceed further, we need to specify how the nhs are chosen. We will assume that the
sampling fractions nh/Nh are fixed constants fh with 0 < fh ≤ 1 for h= 1, . . . ,L. (Of course
we cannot always achieve this exactly in small samples but if nh = [ fhNh] the difference is
negligible asymptotically.) Then

Cov
{

SW (θ)
}�N

{
∑

μhμ
T
h Qh

(
1−Qh

)− 2
∑∑

�<h

μhμ
T
� QhQ� +

∑
Qh

Σh

fh

}

=N

{
∑

h

Qh

(

μhμ
T
h +

Σh

fh

)

−
(
∑

h

Qhμh

)(
∑

h

Qhμh

)T}

=N

{
∑

h

Qh

(

μhμ
T
h +

Σh

fh

)

−μμT
}

=N
∑

h

Qh

{
Σh

fh
+
(
μh−μ

)(
μh−μ

)T
}

.

(3.7)

The first term is the covariance matrix that we would get if the weights were known
and the second term represents the penalty we pay for incomplete knowledge about the
weights. Using the relation

Cov
{

U(θ)
}= E

{
Cov{U | Z = h

}}
+ Cov

{
E
{

U | Z = h
}}

, (3.8)

we can also rewrite this variance in the form

Cov
{

SW (θ)
}=N

{

Σ(θ) +
∑

h

Qh

(
1
fh
− 1

)

Σh

}

. (3.9)
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Now the first term is the covariance matrix that we would have obtained by sampling all
clusters in the finite population so that, in this representation, the second term represents
the penalty that we pay for incomplete enumeration at the second phase.

Finally, it follows from the results of Chen and Rao [16] that SW (θ) is asymptotically
multivariate normal as N →∞ with nh/Nh → fh for h= 1, . . . ,L fixed. Having established
the properties of SW (θ), we use standard results for unbiased estimating equations (see,

e.g., Amari and Kawanabe [17]) to invert the equation SW (θ̂W )= 0 and infer results for

θ̂W . In particular, it follows that
√
N(θ̂W − θ) converges in distribution to a multivariate

normal random variable with mean vector 0 and covariance matrix N V(θ̂), where

N V(θ̂)=�−1(θ0
)
(
∑

h

Qh

[
Σh

fh
+
(
μh−μ

)(
μh−μ

)T
])

�−1(θ0
)
, (3.10)

with

�(θ)= E

{

− ∂2 log
(
f (y |X;θ)

)

∂θ∂θT

}

, (3.11)

as N →∞. Recall that Σ(θ)=�(θ) at θ = θ0. This means that we can rewrite V(θ̂) as

V(θ̂)= 1
N

[

�−1(θ0
)

+ �−1(θ0
)
{
∑

h

Qh

(
1
fh
− 1

)

Σh

}

�−1(θ0
)
]

. (3.12)

(Here we have used (3.9) to represent Cov(SW )). The first term is what we would get
if we sampled the whole population and the second term again represents the cost of
incomplete enumeration.

We can estimate V(θ̂) by substituting Ĵ=−(1/N)∂SW (θ̂)/∂θT for �(θ0), μ̂h=
∑

j Uh j /nh
for μh, Wh =Nh/N for Qh, and the ordinary within-stratum sample variance for Σh. This,
in conjunction with (3.10), leads to the estimator

V̂(θ̂)= Ĵ−1

(
∑

h

W2
h

Σ̂h

nh

)

Ĵ−1 +
1
N

Ĵ−1

{
∑

h

Whμ̂hμ̂
T
h

}

Ĵ−1. (3.13)

The first term of (3.13), which is O(1/n), is the variance estimate we would use if we
assumed that the Nhs were fixed and the second term, which is O(1/N), measures the
effect of not knowing the Nhs in advance. This second term will be negligible in many
applications.

The weighted method is relatively straightforward and most large statistical packages
now include procedures for implementing it for linear and logistic regression models, al-
though all will assume that the {Nh}s are fixed constants and thus will produce a slight
underestimate of the standard errors. A big advantage over more efficient procedures
is that it does not require any modeling of stratum inclusion probabilities. One impor-
tant consequence of this is that the same procedure can be used for stratified two-stage
sampling, where simple random subsamples are chosen from each selected cluster. More
complex subsampling schemes can be handled simply by adjusting the weights in the
pseudo likelihood (3.1).
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In general, weighting works pretty well for standard sampling situations where the
sampling fractions do not vary too much among strata. It does not work so well in situa-
tions where the sampling fractions vary widely, as they tend to do in retrospective designs
like the case-control family studies discussed in the introduction. For example, Lawless
et al. [18] report efficiencies of less than 15% (compared to the semiparametric estima-
tors discussed in Section 4) for some unclustered case-control designs and Scott and Wild
[19] report similar values for some special clustered designs. An appealing feature of the
weighted method is its robustness to departures from the model. When the assumed re-
gression model f (y |X;θ) is not valid, the fitted model produced by the weighted method
can still be interpreted as estimating the best fitting model for the whole population; see
Scott and Wild [20] for further discussion of this point.

4. Semiparametric estimators

We now return to the likelihood function L(θ,γ,g) given in (2.2). The semi-parametric
maximum likelihood estimators of θ and γ are obtained by maximizing �(θ,γ,g)
= logL(θ,γ,g) over θ, γ, and g leaving the density function g(·) completely undefined.
Essentially, we treat g(·) as a (potentially infinite-dimensional) nuisance parameter. Al-
though it might seem at first glance that this would be formidable task, it turns out that
the semi-parametric MLE of θ (and γ) can be calculated relatively easily.

We start by reducing the problem to the simpler case in which stratum membership is
determined directly by the cluster response. First, we augment the response vector y with

the stratum indicator Z to give modified response variable ỹ = ( y
Z ). Next, we set θ̃ = (θγ ).

Our problem is then reduced to that of fitting the model f (ỹ |X; θ̃), where

f (ỹ |X; θ̃)= f (z | y,X;γ) f (y |X;θ)= Pz(y,X;γ) f (y |X;θ), (4.1)

to data from a stratified sample where the strata, �h (h= 1, . . . ,L), are determined com-
pletely by the response, ỹ. The estimating equations for the semi-parametric maximum
likelihood equations in this reduced case are derived in Scott and Wild [12, 19], follow-
ing earlier work by Cosslett [21]. In a companion paper in this issue, Lee [22] establishes
the asymptotic efficiency of this estimator and shows that �∗(φ̂)−1 provides a consistent
estimator of the variance. Similar results are obtained in Lee and Hirose [23] using a dif-
ferent approach based on the profile likelihood methods of Newey [24]. In the remainder
of this section, we summarize the results of translating these results for the reduced case
back into our original notation.

First, we define a pseudo-log-likelihood function

�∗(θ,γ,π)=
∑

h

∑

Dh

log f ∗h
(

yh j |Xh j ;θ,γ,π
)

−
∑

h

{(
Nh−nh

)
log
(
1−πh

)
+nh logπh

}
,

(4.2)

where

f ∗h (y |X;θ,γ,π)∝ πhPh(y,X;γ) f (y |X;θ) (4.3)
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and π is an L-dimensional vector of nuisance parameters. Then the semi-parametric
maximum likelihood estimators, θ̂ and γ̂, of θ and γ are the appropriate components
of φ̂, the solution of the pseudo score equation

S∗(φ)= ∂�∗(φ)
∂φ

= 0, (4.4)

where φ = (θT ,γT ,πT)T . This means that, for the purposes of calculating the MLE of
(θγ ), we can act as if �∗(φ) is the log-likelihood; in essence, we have replaced a prob-
lem involving an infinite dimensional nuisance parameter, g(·), with one involving an
L-dimensional nuisance parameter, π.

The pseudoscore, S∗(φ), has many of the properties of a standard score function. In
the first place, with appropriate standardization, S∗ is asymptotically normal as N →∞
provided nh/Nh → fh with 0 < fh ≤ 1 for h= 1, . . . ,L. Secondly, E{S∗(φ)} = 0 at the true
value, even though the individual terms in S∗(φ) are neither identically distributed nor
have expected value zero under the stratified sampling design. Finally, if we let �∗ denote
the observed (pseudo-) information matrix,

�∗(φ)=−∂S∗(φ)

∂φT =− ∂2�∗

∂φ∂φT , (4.5)

and let �∗ denote its expected value, then S∗(φ) is asymptotically normal with asymp-
totic covariance matrix equal to

Cov
{

S∗(φ)
}= �∗

(
φ0

)−�∗
(
φ0

)
(

0 0T

0 K

)

�∗
(
φ0

)
, (4.6)

where K is some L× L symmetric matrix. Properties of φ̂ then follow from standard
results for estimating equations (see, e.g., Amari and Kawanabe [17]). In particular, φ̂ is
asymptotically normal with mean φ0 and covariance matrix

�∗
(
φ0

)−1−
(

0 0T

0 K

)

. (4.7)

We are only interested in the block corresponding to the components of (θγ ) and this does
not involve K. All this means that, for the purpose of estimating θ and γ, we can operate as

if S∗(φ) is a genuine score function. The semiparametric MLE, ( θ̂γ̂ ), is obtained by setting
S∗(φ)= 0 and its covariance matrix can be estimated using the appropriate components
of the inverse observed information matrix, �∗(φ̂)−1. (Note that some care has to be
taken with solving the pseudoscore equations numerically as φ̂ often corresponds to a
saddle point of �∗ rather than a maximum.)

In principle, we can extend the results to stratified two-stage sampling where subsam-
ples are drawn from the chosen clusters (or primary sampling units). However, to apply
(4.3), we need the conditional probability of stratum membership given the observed
(y,X), which requires integration over the values for the unsampled units in the cluster.
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This is a nontrivial task in general so that the extension of the semiparametric approach to
two-stage sampling is much less straightforward in practice than the weighted approach.

5. Discussion

We have sketched in Section 4 the development of semi-parametric methods for fitting
regression models to data from stratified samples as an alternative to the weighted meth-
ods of Section 3, which are simple to implement but can be inefficient in retrospective
studies, or full maximum likelihood, which is efficient but difficult to implement because
it requires fitting a model for the joint distribution of all covariates. The methods are rel-
atively simple to implement and simulations so far (see, e.g., Lawless et al. [18]) suggest
that they are much more efficient than weighted methods in situations where the latter
perform badly. In the very limited examples that we have looked at so far, they seem to
be almost as efficient as full maximum likelihood but much more work needs to be done
here.

A number of alternative general approaches to inference from complex surveys have
been suggested in the literature and all of these can be specialized to informative stratified
sampling. Nathan and Holt [25] and Smith and Nathan [14] suggest alternatives to full
maximum likelihood that do not require the fitting of a complete model for the joint
distribution of the covariates and design variables. Krieger and Pfeffermann [26] and
Pfeffermann and Sverchkov [27] explore methods based on the induced distribution of
y given X in the sample after the (possible informative) selection mechanism has been
taken into account. The general semi-parametric methods for missing data problems that
have been developed by Robins and his collaborators (see, e.g., Robins et al.[28, 29]) may
also be applicable to our setup here. All of these methods seem to have connections to
the methods that we have developed here and we are in the process of exploring these
connections.
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1. Introduction

In the following we are going on an excursion with Jeff Hunter, visiting some of his re-
search topics. Specifically, we will present some facts about certain people whose work
seems to have influenced Jeff in his scientific career. We illustrate our presentation with
postage stamps that have been issued in honour of these people; we know that Jeff collects
stamps. Our main guide will be the two-volume book [1, 2] by Hunter. (All but one of
the postage stamps depicted in this article are identified with their Scott catalog numbers
as found in the Scott 2007 Standard Postage Stamp Catalogue [3].)

2. Bernoulli, Seki, Leibniz and Chebyshev

One of the first entries of this two-volume treatment of applied probability is “Bernoulli
trial” [1, page 10]: “. . . a sequence of independent trials is called a sequence of Bernoulli
trials.” A Bernoulli trial is an experiment whose outcome is random and can be either
“success” and “failure” [4].
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Figure 2.1. (Left panel) Jacob Bernoulli I: Switzerland 1994 (Scott 939); (right panel) Takakazu Seki
Kôwa: Japan 1992 (Scott 2147).

The eldest of four brothers, Jacob Bernoulli I (also known as James Bernoulli; first
name in German: Jakob, in French: Jacques) lived from 1654 to 1705, mainly in Switzer-
land. He is one of eight prominent mathematicians in the Bernoulli family [4] and is fa-
mous for his Ars Conjectandi [5] (published posthumously in 1713), a ground-breaking
work on probability theory, and for his research concerning the law of large numbers, see
Figure 2.1 (left panel).

The Bernoulli numbers Bk (k = 0,1,2, . . .) are a sequence of signed rational numbers
that are implicitly defined by the identity

x

ex − 1
=

∞∑

k=0

Bkxk

k!
. (2.1)

Actually, the Japanese mathematician Takakazu Seki Kôwa (1642–1708) discovered these
numbers before Jacob Bernoulli I. Seki also discovered determinants before Leibniz, see,
for example, [6–8].

Gottfried Wilhelm von Leibniz (the surname “Leibniz” is sometimes written as “Leib-
nitz” [6]) (1646–1716) was a German polymath “of remarkable breadth of knowledge,
who made original contributions to optics, mechanics, statistics, logic, and probability
theory. He conceived the idea of calculating machines and of a universal language. He
wrote on history, law, and political theory” [9]; see also [6].

The postage stamp from St. Vincent (in Figure 2.2) was issued for the “750th Anniver-
sary of Hannover: Gottfried Wilhelm Leibniz. Head librarian for the electors of Hannover
& co-inventor of calculus.”

The notion of “Markov chain” is already mentioned by Jeff Hunter in [1], but the
main theory of Markov chains in discrete time is developed only in [2]. The early re-
search of Andrey Andreyevich Markov (1856–1922) was much influenced by Pafnuty
Lvovich Chebyshev (his surname is transliterated in various other ways, for example,
Chebychev, Chebyshov, Tchebycheff, or Tschebyscheff [10, 11]) (1821–1894), see Fig-
ure 2.2 (right panel). Chebyshev is probably best known for his inequality, also known as
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Figure 2.2. (Left panel) Gottfried W. von Leibniz: St. Vincent 1991 (Scott 1557); (right panel)
Pafnuty Lvovich Chebyshev: USSR 1946 (Scott 1051).

the Bienaymé-Chebyshev inequality:

Prob
(|X −μ| ≥ kσ

)≤ 1
k2

, (2.2)

where X has expected value μ and variance σ2, and k is any positive real number. We have
not found a postage stamp that honours either Markov or the statistician Irenée–Jules
Bienaymé (1796–1878), who proved (2.2) some years before Chebyshev, see, for example,
Heyde and Seneta [12, page 132].

3. Wiener, Brownian Motion, Gauss, Laplace, Abel

Andrey Andreyevich Markov introduced the concept of a Markov chain as a working
model for the study of dependent random variables. Brownian motion is a very good
example of a continuous Markov process and is often called a Wiener process; Norbert
Wiener (1894–1964) “was an American theoretical and applied mathematician, who is
perhaps best known as the founder of cybernetics” [4].

Brownian motion, which is named after the botanist Robert Brown (1773–1858), “is
either the random movement of particles suspended in a fluid or the mathematical model
used to describe such random movements” [4].

A graph of Brownian motion is shown on a postage stamp (in Figure 3.1 (right panel)
right-hand side, center) from Czechoslovakia. This stamp was issued in celebration of
the 125th anniversary of the Union of Czechoslovakian Mathematicians and Physicists.
Shown on the stamp is “geographical measurement from A. M. Malletta’s book (we have
not been able to further identify this book), 1672, earth fold and Brownian motion dia-
grams” [3, volume 2, page 714].

We observe, however, that Jeff Hunter’s research interests focus mainly on discrete
models. But even in discrete models, continuous distributions play a major role (see,
e.g., volume 1, where the distribution of the number of recurrent events is shown to be
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Figure 3.1. (Left panel) Norbert Wiener: Moldova 2000 (Scott 348); (right panel) Brownian motion:
Czechoslovakia 1987 (Scott 2665).

Figure 3.2. (Left panel) Carl Friedrich Gauss: German Democratic Republic 1977 (Scott 1811);
(right panel) Pierre-Simon Laplace: Mozambique 2001 (Scott seemingly unlisted (we could not find
this stamp listed in the Scott 2007 Standard Postage Stamp Catalogue [3])).

Figure 3.3. Niels Henrik Abel: Norway 2002 (Scott 1333).

approximately normal). The normal distribution is attributed to Carl Friedrich Gauss
(the surname “Gauss” is sometimes written as “Gauß”) (1777–1855).
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Beyond mathematics, Gauss did research in astronomy, physics, and geodesy. His prin-
cipal contributions to statistics are in the theory of least squares estimation, where ma-
jor work was also done by the mathematician Pierre-Simon, Marquis de Laplace (1749–
1827).

In connection with the behaviour of probability-generating functions and the applica-
tion of discrete models, convergence problems of infinite series arise. In both volumes of
his book, Jeff has to apply Abel’s convergence theorem to solve these problems. Niels Hen-
rik Abel (1802–1829) was a Norwegian mathematician, who is best known for proving the
impossibility of finding, in closed form, the roots of a polynomial of degree greater than
4. Beyond group theory (“Abelian group”), Abel was especially interested in the theory of
functions. In 2001 the government of Norway announced that the bicentennial of Abel’s
birth (1802) would mark the commencement of a new prize for mathematicians, named
after Abel. The Abel Prize is similar to the Nobel Prize which is awarded in Sweden and
Norway, but excludes mathematics. Sathamangalam R. Srinivasa Varadhan (born 1940)
received the 2007 Abel Prize for his fundamental contributions to probability theory [4].

4. Euler, Banachiewicz, Penrose triangle, and Hawking

Matrix theory is a powerful tool which has been widely used by Jeff Hunter in his research
papers to further the understanding of the main features of Markov chains. Jeff also de-
voted one chapter of his book to these techniques. Although Leonhard Euler (1707–1783)
did not explicitly use the notion of a matrix (explicitly created only in the mid-19th cen-
tury), in 1776 Euler created several magic squares, including a 4× 4 magic square [13,
page 8], [14, 15] which may be represented by the matrix

M =

⎛
⎜⎜⎜⎝

8 10 15 1
11 5 4 14
2 16 9 7

13 3 6 12

⎞
⎟⎟⎟⎠ . (4.1)

Dividing each element of M by 34 yields a doubly stochastic matrix [1, page 127].
When inverting large-scale matrices, Jeff applies results from the theory of partitioned

matrices. The latter notion can be traced back to Tadeusz Banachiewicz (1882–1954),
who was a Polish astronomer, mathematician, and geodesist, see, for example, [8, 16].

The Banachiewicz inversion formula can be stated as

(
P Q
R S

)−1

=
⎛
⎝
P−1 +P−1QT−1RP−1 −P−1QT−1

−T−1RP−1 T−1

⎞
⎠ , (4.2)

where T = S− RP−1Q. The matrix T is known as a Schur complement, a concept that
has become increasingly important in statistics and applied mathematics in recent years,
see, for example, Zhang [17]. In 1925, Banachiewicz invented a theory of “cracovians”
(Cracovian calculus), a special kind of matrix algebra, which brought him international
recognition. This theory solved several astronomical, geodesic, mechanical, and mathe-
matical problems [4].
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Figure 4.1. (Left panel) Leonhard Euler: USSR 1957 (Scott 1932); (right panel) Tadeusz Banachiew-
icz: Poland 1983 (Scott 2565).

Figure 4.2. (Left panel) Penrose triangle: Sweden 1982 (Scott 1396); (right panel) Stephen Hawking:
Zambia 2000 (Scott 856n).

Jeff Hunter has participated in numerous conferences and workshops dedicated to
matrix theory and probability, and related fields. In some of these meetings he met the
statistician Calyampudi Radhakrishna Rao (born 1920), where both were invited speak-
ers. Rao’s tool of a generalized inverse of a matrix was one of Jeff ’s favourites (see [2]
and his research papers, e.g., [18, 19]). (Calyampudi Radhakrishna Rao was the Ph.D.
thesis adviser for the 2007 Abel Prize laureate Sathamangalam R. Srinivasa Varadhan, see
Section 3.) As is well known, every matrix has a generalized inverse which, however, need
not be unique. The Moore-Penrose inverse of a complex matrix A is, however, the unique
matrix G satisfying the four equations

AGA= A, GAG=G, AG= (AG)∗, GA= (GA)∗, (4.3)

where the superscript ∗ denotes conjugate transpose. See, for example, [20, page 40].
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Figure 5.1. Jules Henri Poincaré, Kurt Gödel, and Andrey Nikolaevich Kolmogorov: Portugal 2000
(Scott 2345b).

The Moore-Penrose inverse is named after the mathematician Eliakim Hastings Moore
(1862–1932) and the renowned mathematical physicist Sir Roger Penrose (born 1931). It
should be mentioned that Penrose, after his research on generalized inverses of matri-
ces in the 1950s, apparently did not pursue his matrix interests any further, but started
to work on singularities in the framework of general relativity, together with the fa-
mous theoretical physicist Stephen William Hawking (born 1942). The Penrose triangle
(Figure 4.2, left panel) is an impossible object first created by the Swedish artist Oscar
Reutersvärd (1915–2002) in 1934. Sir Roger Penrose independently devised and popu-
larised it in the 1950s, describing it as “impossibility in its purest form.”

5. Poincaré, Gödel, Kolmogorov, Carroll, and Hua

Jules Henri Poincaré (1854–1912) “was one of France’s greatest mathematicians and the-
oretical physicists, and a philosopher of science” [4] and in 1886 he was appointed to
the Chair of Mathematical Physics and Probability at the Sorbonne. Poincaré is famous
for geometric probability. In matrix theory there is the Poincaré separation theorem for
eigenvalues, see, for example, [21]:

chn−p+i(A)≤ chi(F′AF)≤ chi(A), i= 1, . . . , p ≤ n, (5.1)

where chi denotes the ith largest eigenvalue. Here the matrix A is a real symmetric n×n
matrix and F is a real n× p matrix such that F′F = FF′ = Ip, the p× p identity matrix
and F′ is the transpose of F.

The postage stamp shown in Figure 5.1 was issued by Portugal as part of a large set
in celebration of the 20th century, and includes Kurt Gödel (1906–1978) in addition to
Poincaré and Andrey Nikolaevich Kolmogorov (1903–1987).

Kurt Gödel was a mathematician and philosopher. “One of the most significant logi-
cians of all time, Gödel’s work has had an immense impact upon scientific and philo-
sophical thinking in the 20th century” [4].

Andrey Nikolaevich Kolmogorov, who is widely considered one of the prominent
mathematicians of the 20th century, made major advances in probability theory (as well
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Figure 5.2. (left panel) Lewis Carroll: Mali 1982 (Scott C443); (right panel) Loo-Keng Hua: China
1988 (Scott 2148).

as topology, intuitionistic logic, turbulence, classical mechanics, and computational com-
plexity). Kolmogorov observed that “The theory of probability as a mathematical disci-
pline can and should be developed from axioms in exactly the same way as geometry and
algebra” [4].

In connection with matrices, the notion of determinant is indispensable. We have al-
ready mentioned that Seki invented determinants a few years before Leibniz. Jeff ’s book
contains a nice collection of rules for determinants.

The first books solely dedicated to determinants, see, for example, [22], were writ-
ten by the mathematician and physicist William Spottiswoode (1825–1883) and by the
author, mathematician, Anglican clergyman, and photographer Rev. Charles Lutwidge
Dodgson (1832–1908), who is better known as Lewis Carroll [23]; his books [24, 25]
entitled Condensation of Determinants [24] and An Elementary Treatise on Determinants
[25] are far less well known than his famous Alice’s Adventures in Wonderland (1865) and
its sequel Through the Looking-Glass, and What Alice Found There (1871), recently reis-
sued (with an introduction by Martin Gardner) as a single paperback [26]. (The 6-page
booklet Condensation of Determinants [24] is just a reprint of an article published in the
Proceedings of the Royal Society of London but An Elementary Treatise on Determinants
[25] is a 143-page book published by Macmillan, London, 1867.)

Loo-Keng Hua (1910–1985) was a great mathematician and a Chinese legendary hero.
(The name “Loo-Keng Hua” is also written as “Hua Loo-keng” [27].) He had little formal
education, but made enormous contributions to number theory, algebra, complex anal-
ysis, matrix geometry, and applied mathematics” [28, 29]. In particular the inequality

det
(
I −A∗A

) ·det
(
I −B∗B

)≤ ∣∣det
(
I −A∗B

)∣∣2
(5.2)

is known as the “Hua determinantal inequality” [18, 30, 21]. Here the matrices A and B
are contractive, that is, the singular values all lie in the half-open unit interval [0,1); on
the right-hand side of (5.2), the symbol | · | denotes absolute value.

We conclude this little excursion into the world of stamps and mathematics by express-
ing again our appreciation for Jeff ’s outstanding research activities, especially in matrix
theory. We are sure that his retirement will be the starting point for new adventures in
this attractive field.

Go ahead, Jeff!
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Götz Trenkler: Fachbereich Statistik, Universität Dortmund, 44221 Dortmund, Germany
Email address: trenkler@statistik.uni-dortmund.de



Hindawi Publishing Corporation
Journal of Applied Mathematics and Decision Sciences
Volume 2007, Article ID 68280, 10 pages
doi:10.1155/2007/68280

Research Article
A Paradox in a Queueing Network with State-Dependent
Routing and Loss

Ilze Ziedins

Received 25 May 2007; Accepted 8 August 2007

Recommended by Paul Cowpertwait

Consider a network of parallel finite tandem queues with two stages, where each arrival
attempts to minimize its own cost due to loss. It is known that the user optimal and
asymptotic system optimal policies may differ—we give examples showing that they may
differ for finite systems and that as the service rate is increased at the second stage the user
optimal policy may change in such a way that the total expected cost due to loss increases.

Copyright © 2007 Ilze Ziedins. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction and background

Queueing networks often exhibit seemingly paradoxical behaviour, where adding capac-
ity either in the form of extra capacity on links or at nodes, or even extra links or routes,
does not always lead to an improvement in performance, and may even lead to a severe
degradation in performance. The classic and very well-known example of this is Braess’s
paradox, which has been much studied, both in the traffic literature, and in the queueing
theory literature (see [1, 2] for the original paper and [3] for a comprehensive list of ref-
erences maintained by Braess). This was one of the examples mentioned by Professor Jeff

Hunter in his inaugural lecture. It is therefore a great pleasure to write on a different kind
of paradox in this festschrift for Jeff.

In addition to Braess’s paradox, there are several other well-known paradoxes (see,
e.g., Arnott and Small [4] and the references therein). The paradoxes can be ascribed to
the difference between system optimal and perceived user optimal behaviour—that is,
if individuals behave selfishly in a way that minimizes their own measure of cost (e.g.,
the delay in transit through a network), then the system as a whole can suffer, and flows
can alter in such a way that all individuals see worse performance. This is most clearly
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Origin

Stage 1 Stage 2

Destination

Figure 1.1. Three parallel two-stage tandem queues.

seen in traffic and transportation networks, and many of the early papers were directed
to this application (see, e.g., [1, 5–8]). More recently, the phenomenon of selfish routing
has become increasingly important in the context of telecommunication and computer
networks (e.g., [9–13]).

The model considered here consists of a system ofK parallel finite tandem queues with
two stages, with a stream of arrivals who can be sent to any one of the queues. Figure 1.1
illustrates such a system with 3 parallel tandem queues. The objective is to minimize the
cost due to loss, rather than minimize delay, the usual performance measure. Loss occurs
when an individual attempts to enter a finite queue, but is unable to do so because it is
full—that individual is then lost to the system. This assumption, while not at all realis-
tic for traffic networks, is realistic for computer networks, where packets attempting to
join a buffer that is full are lost and, if necessary, resent from the origin. This model was
earlier studied in [14] (which obtained some properties of user optimal routing policies)
and [15] (which obtained the asymptotic as K →∞ system optimal routing policies); and
these papers should be referred to for a more complete list of earlier, relevant references.
In [14] it was shown that user optimal policies may be paradoxical in the sense that ar-
rivals may choose a queue with greater occupancy to minimize their probability of loss.
The main contribution of this paper is to give an example showing that this paradoxical
behaviour may then have further consequences—under user optimal routing it is pos-
sible for the expected cost, both to the system as a whole, and to the individual user, to
increase when the service rate at the second queue is increased.

The model discussed here differs in some respects from those commonly studied in the
literature. The most obvious difference is that it is a queueing system with loss. Paradoxes
in loss networks have been studied [9, 10], but networks with finite queues and loss have
been seen more rarely. The usual performance measure of interest is delay, and in most
papers it is then also assumed that queues are infinite when studying paradoxes. Another
difference is that here we concentrate on state-dependent routing, whereas routing para-
doxes have most commonly been studied with probabilistic routing (see, e.g., [11, 16, 17]
for some examples of other studies with state-dependent routing). For the model in this
paper, with state-dependent routing, it has already been shown in [14] that when indi-
viduals are able to choose a route to minimize their own loss, they may choose a route
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where the occupancy is greater, particularly at the first stage of the tandem. Here, we il-
lustrate by example the difference in the expected cost between the user optimal policy
and the system optimal policy when the number of queues, K , is finite, and we compare
both with the asymptotically optimal cost. We then give an example showing that when
the service rate at the second stage of the tandem is increased, the expected cost under the
user optimal policy may increase, rather than decrease as might be expected.

In Section 2, we give a detailed description of the parallel tandem queue model, and
we give some of the results that we will be using from [14, 15]. In Section 3, we give ex-
amples comparing the performance of state-dependent user optimal and system optimal
routing schemes, looking both at asymptotic results taken from [15] and results for a
finite system. We conclude with a short discussion in Section 4.

2. Definitions and preliminaries

This section gives a detailed description of the network and outlines some results from
previous papers, in particular [14, 15].

Consider a network with K parallel tandem queues. Each tandem queue has two single
server finite queues in sequence, which we refer to as stages, the first stage having service
rate μ1 and capacity C1 and the second service rate μ2 and capacity C2. Arrivals to the
system are as a Poisson process with rate Kλ so that the arrival rate scales with the size of
the system. An arrival can be routed to any one of the K queues, but once it has joined a
tandem queue, it cannot change to a different queue, so there is no interaction between
the queues beyond that induced by any controls over the routing of arrivals. We assume
that all interarrival times and service times are exponentially distributed and independent
of one another, so the system can be modelled as a Markov process.

Since the queues are finite, not all arrivals will necessarily be accepted into the system.
Moreover, since the second queue in the tandem is finite, it is possible for an individual
to finish service at the first queue, but find that the second queue is full, so that they are
unable to join it—we assume that in that case, the individual leaves the system, and is
lost, without completing service at both queues.

We assume that the objective is to minimize the cost due to losing or blocking indi-
viduals. In a system such as this, it may also be possible to consider minimizing the delay,
conditional on not being lost, but we do not do so here. Previous analyses of paradoxes in
queueing networks (not loss networks) have often focussed on routing or other controls
that minimize or equalize delay rather than loss, because the common assumption is that
the queues have infinite capacity—however, in practice, queues are often finite, so that
minimizing loss in networks with finite queues also needs to be considered.

Let d1 be the cost of losing an individual on entry to queue 1, and d2 the cost of losing
an individual on entry to queue 2. We will examine both system optimal and user optimal
policies, as well as a range of intermediate policies.

Under probabilistic routing, each arrival chooses queue k with probability pk, 1≤ k ≤
K , where

∑
k pk = 1 independently of all other routing decisions, service times, and arrival

times. In that case it is sufficient to consider the tandem queues separately, with arrival
rate Kλpk at the kth tandem queue. The state for a single queue is then given by (i, j),
where i is the occupancy at the first queue, and j the occupancy at the second. This single
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queue has state space S1 = {(i, j) : 0≤ i≤ C1, 0≤ j ≤ C2} and transition rates

(i, j)−→

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(i+ 1, j) Kλpk if i < C1,

(i− 1, j + 1) μ1 if i > 0, j < C2,

(i− 1, j) μ1 if i > 0, j = C2,

(i, j− 1) μ2 if j > 0.

(2.1)

Let the equilibrium distribution for a single tandem queue with these transition proba-
bilities be denoted by π̃(n), n∈ S1. The system optimal policy is found by minimizing a
weighted sum of the cost of loss for the individual queues. In contrast, the user optimal
policy is one where the costs of loss at all queues that are in use are equalized. For this
model, under probabilistic routing, the system optimal and user optimal policies coincide
with pk = 1/K , 1≤ k ≤ K and the flow of arrivals is divided equally between the tandem
queues, so that each tandem queue has arrival rate λ.

Under state-dependent routing the analysis is considerably more complicated and it
is necessary to consider the state of the whole network simultaneously. Now, let ni j be
the number of tandem queues with occupancy i at the first queue, and j at the sec-
ond queue. Then n = (ni j : 0 ≤ i ≤ C1, 0 ≤ j ≤ C2) is a Markov process with state space
S = {n :

∑
i j ni j = K , ni j ∈ {0,1,2, . . . ,K}, 0 ≤ i ≤ C1, 0 ≤ j ≤ C2} and transition rates

partly depending on the routing rule. Denote by rn(i, j) the probability an arrival is sent
to a tandem queue in state (i, j) if the network is in state n, and let rn(b) be the prob-
ability that an arrival is lost in state n, where rn(b) +

∑
i j rn(i, j) = 1 for all n ∈ S. Let

R= {rn(i, j),rn(b); n∈ S, 0≤ i≤ C1, 0≤ j ≤ C2, 0≤ rn(i, j),rn(b)≤ 1} denote a particu-
lar state-dependent admission and routing policy. Note that for a finite system, since this
is a Markov decision process, the system optimal policy will have rn(i, j),rn(b) ∈ {0,1}.
Given some linear ordering of the states (i, j), let ei j denote the (C1 + 1)× (C2 + 1) unit
vector with the i jth entry equal to 1, and the remaining entries equal to 0. Then the
transition rates under policy R are given by

n−→

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

n− ei j + ei+1, j Kλrn(i, j) for (i, j)∈ S1,

n− ei j + ei−1, j+1 ni jμ1 if i > 0, j < C2,

n− ei j + ei−1, j ni jμ1 if i > 0, j = C2,

n− ei j + ei, j−1 ni jμ2 if j > 0.

(2.2)

We denote by πR(n), n∈ S the equilibrium distribution under a given policy R.
The state space grows rapidly as the capacities C1, C2, and the number of queues in-

crease. The system optimal policy can be found using the theory of Markov decision
processes, but apart from some special cases (e.g., when C1 = C2 = 1), the exactly optimal
policy will, in general, not only require considerable computational effort to calculate,
but also, just as importantly, substantial effort to implement. In Section 3, we therefore
limit ourselves to state-dependent policies that are relatively easy both to analyse and to
implement (although note that the asymptotic result given below gives optimality over
all state-dependent policies). The system optimal policy minimizes over all policies R the
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expected cost per queue per unit time, which is given by

λ
∑

n:n∈S
πR(n)rn(b) +μ1

∑

n:n∈S
πR(n)

∑

i

ni,C2 /K. (2.3)

The user optimal policy, however, is one that chooses the route that will give the lowest
expected cost due to loss for an arrival. This can be calculated explicitly (see [14]), and
the details are not given here, although the calculations are done for the examples in
Section 3.

In the numerical examples below, in addition to giving exact results for the system with
a small number of queues, found by calculating the equilibrium distribution numerically,
we also give the asymptotic costs and policy, as the number of queues becomes large.
The following results from [15], which are obtained using the methods of [18, 19], give
the basis for obtaining the asymptotic results given below. In the following, instead of
considering n as the state, we instead consider xK = n/K . Here, xKi j is the proportion of
tandem queues in state (i, j).

Consider the sequence of networks indexed by K , the Kth network operating under
any admissible acceptance and routing policy (an admissible policy must be nonanticipat-
ing). Let KwK

ij (t) be the number of arrivals that have been accepted at a tandem queue in

state (i, j) by time t, 0≤ i≤ C1, 0≤ j ≤ C2 and let KwK
b (t) be the number of arrivals that

have been lost at entry (i.e., not accepted into the system) by time t. Then {(xK ,wK )(·)} is
relatively compact and the limit of any convergent sequence has the following properties.

(1)
∑

i j xi j(t)= 1 for all t ≥ 0.
(2) xi j(t)≥ 0 for all t ≥ 0, 0≤ i≤ C1, 0≤ j ≤ C2.
(3) There exists z(·) such that, almost surely, zi j(t),zb(t)≥ 0, and

xi j(t)= xi j(0) +
∫ t

0

(
zi−1, j(s)I{i�=0} − zi j(s)I{i�=C1}

+μ1xi+1, j−1(s)I{i�=C1, j�=0} +μ1xi+1, j(s)I{i�=C1, j=C2}

+μ2xi, j+1(s)I{ j�=C2} − xi j(s)
(
μ1I{i�=0} +μ2I{ j�=0}

))
ds,

λ=
∑

i j

zi j(t) + zb(t),

(2.4)

for all t ≥ 0, 0≤ i≤ C1, 0≤ j ≤ C2.
The equilibrium distribution is then a solution to the following system of equations:

zi j + xi j
(
μ1I{i�=0} +μ2I{ j�=0}

)

= zi−1, j I{i�=0} +μ1xi+1, j−1I{i�=C1, j�=0}
+μ1xi+1, j I{i�=C1, j=C2} +μ2xi, j+1I{ j�=C2}, 0≤ i≤ C1, 0≤ j ≤ C2,

λ=
∑

i j

zi j + zb,
∑

i j

xi j = 1, xi j ,zi j ,zb ≥ 0.

(2.5)

These equations are balance equations for the asymptotic system. The zi j here give the
rate at which arrivals are entering queues in state (i, j) under the given policy, while zb
gives the rate at which arrivals are blocked.
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In [15] these equations are constraints for the linear optimisation problem

minimize F
(

x,zb
)= d1zb +d2μ1

C1∑

i=1

xi,C2 . (2.6)

This can be solved to find the asymptotically optimal value of the objective function, and
hence derive the asymptotically optimal control. However, the balance equations above
can more generally be used to find the asymptotic costs for any routing policy of interest.
In particular, we will give the asymptotic costs for the two main policies of interest, which
are to accept all arrivals if possible, and to accept arrivals only if they can be routed to
a tandem queue that has total occupancy less than C2 (i.e., for the designated tandem
queue, n1 +n2 < C2).

3. Examples

Consider a system of parallel tandem queues with C1 = C2 = 2. If arrivals are accepted
into the system, they will be routed to a queue in one of the states (0,0),(1,0), (0,1),(1,1),
(0,2),(1,2). In the state-dependent case, under user optimal routing, arrivals choose the
queue that will minimize their own cost. Let pd(n) be the probability that an arrival join-
ing a tandem queue in state n= (n1,n2) will reach its destination (the success probability).
When C1 = C2 = 2,

pd(1,1)= 1−
(

μ1

μ1 +μ2

)2

,

pd(1,2)= 1−
(

μ1

μ1 +μ2

)2(

1 +
μ2

μ1 +μ2

)

,

pd(0,2)= 1− μ1

μ1 +μ2

(3.1)

with, trivially, pd(0,0)= pd(1,0)= pd(0,1)= 1 and pd(2,0)= pd(2,1)= pd(2,2)= 0 (see
[14] for details). We see immediately that pd(1,1) > pd(1,2) > pd(0,2). When μ1 = μ2 = 1,
for instance, pd(1,1)= 3/4, pd(1,2)= 5/8 and pd(0,2)= 1/2. Thus, somewhat paradox-
ically, an arrival wishing to minimize their own blocking probability at the second stage
would prefer to join a queue in state (1,2), rather than one in state (0,2), even though
the number of individuals in the former is greater. A queue in state (1,1) is preferred to a
queue in state (0,2). In both cases the increased delay for the new arrival allows additional
time for individuals ahead of them in the tandem to leave, thus reducing the blocking
probability for the new arrival. Under user optimal routing, in general, arrivals may join
queues that are in state (i, j) provided d1 > d2(1− pd(i, j)). Thus when μ1 = μ2 = 1, for
instance, they may join queues in state (1,1) if d2 < 4d1, in state (1,2) if d2 < d18/3, and
in state (0,2) if d2 < 2d1.

The policy under user optimal routing is in strong contrast to the asymptotically sys-
tem optimal policy, which is to accept arrivals if possible when d2 < d1, and otherwise to
only accept arrivals into queues in one of the states (0,0), (1,0), or (0,1), that is, a queue
in such a state that the probability the arrival is lost at the second stage is 0 (see [15] for
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details). The results in that paper also yield the asymptotic average costs (to first order).
Let

λ∗ = μ1
1 +
(
μ1/μ2

)

1 +
(
μ1/μ2

)
+
(
μ1/μ2

)2 . (3.2)

Then the asymptotic average costs of the two policies are as follows.
(1) If λ < λ∗, then all arrivals (to first order) can be routed to queues where there is

no blocking, and the average cost is 0.
(2) For the policy that accepts all arrivals if possible the average cost is d2(λ− λ∗)

when λ∗ < λ < μ1, and d1(λ−μ1) +d2(μ1− λ∗) when λ > μ1.
(3) For the policy that only accepts arrivals into queues with occupancy less than

C1 +C2, the average cost is d1(λ− λ∗) for λ > λ∗.
For a finite number of queues, as already observed, state-dependent optimal policies

can be found using the theory of Markov decision processes, but are complex. Instead
we consider a number of policies intermediate between the two asymptotically optimal
ones. The costs of these are calculated numerically, and although closed form expressions
can be given, we do not do so here, since they are tedious and not at all illuminating. In
the examples below, where C1 = C2 = 2, we consider the following policies. A policy here
consists of a list of possible states for queues into which an arrival can be accepted, listed
in order of preference with the most preferred first. The policies compared below are

(1) (0,0),(0,1),(1,0),
(2) (0,0),(0,1),(1,0),(1,1),
(3) (0,0),(0,1),(1,0),(0,2),
(4) (0,0),(0,1),(1,0),(1,1),(1,2),
(5) (0,0),(0,1),(1,0),(1,1),(0,2),
(6) (0,0),(0,1),(1,0),(1,1),(1,2),(0,2).

For instance, policy (2) is to send an arrival to a queue in state (0,0) if possible, other-
wise to a queue in state (0,1), otherwise to a queue in state (1,0), and finally, if there is no
queue in any of these three states, to a queue in state (1,1). If there are no queues in any of
these four states, then the arrival is lost. Some candidate policies have been omitted from
the list. The policy (0,0),(0,1),(1,0),(1,2) has the same average cost as policy (1), since
the state (1,2) for a single queue is transient under this policy (to see this, observe that to
reach the state (1,2) from any of the other three states included in this policy, it needs to
pass through a state with n1 + n2 = 2, but no such state is included in this policy). Also,
in policies (4), (5), and (6) we have assumed that queues in state (1,1) are preferred to
queues in state (0,2).

The first example has C1 = C2 = 2, with μ1 = μ2 = 1. In Figure 3.1 we plot the expected
cost per unit time for each of the six policies when d1 = 1 and d2 = 3 for a system of four
queues. We note that policy (3) is the user optimal policy in this case, although the system
optimal policy is to only accept arrivals into tandem queues that have occupancy no more
than 1. For comparison purposes, the asymptotic cost as the number of queues, K →∞,
under the asymptotically optimal policy (policy (1)) is also given. The expected cost is
lowest for policy (1), and highest for policy (6), with policy (2) having lower cost than
policy (4), which has lower cost again than policies (3) and (5). Thus, in accordance with
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Figure 3.1. Expected cost per queue per unit time, C1 = C2 = 2, μ1 = μ2 = 1, d1 = 1, d2 = 3. Plotting
symbols for each policy are 1 �, 2 ◦, 3×, 4
, 5� 6 �, asymptotically optimal policy�. Four tandem
queues.
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Figure 3.2. Expected cost per queue per unit time,C1 = C2 = 2, μ1 = μ2 = 1, d1 = 1, d2 = 0.1. Plotting
symbols for each policy are 1 �, 2 ◦, 3×, 4
, 5� 6 �, asymptotically optimal policy�. Four tandem
queues.

the user optimal policy, sending arrivals to queues in state (0,2) also gives the highest
average cost. However, when d2 < d1, this is largely reversed. Figure 3.2 gives a similar
plot, but now with d2 = 0.1, and we see that the policies are reversed, with policy (6)
having the lowest cost, and policy (1) the highest.
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Figure 3.3. Expected cost per queue per unit time, C1 = C2 = 2, μ1 = 1, d1 = 1, d2 = 2.5 under user
optimal policies when μ2 = 0.5,1.0. Plotting symbols: μ2 = 0.5 �, μ2 = 1.0
. Four queues.

Finally, Figure 3.3 plots the expected cost under the user optimal policy when d1 = 1
and d2 = 2.5 for C1 = C2 = 2, μ1 = 1, and μ2 = 0.5,1.0. For both values of μ2, the system
optimal policy is policy (1). When μ2 = 0.5, the user optimal policy coincides with the
system optimal policy, however, when μ2 = 1.0, policy (4) is user optimal since the ex-
pected cost of using queues in states (1,1) and (1,2) is less than d1 in this case. We see
from the plot that if arrivals follow user optimal policies, increasing the service rate at
stage 2 of the tandem queues gives a higher expected cost overall for high values of λ.

These examples have all had unrealistically small capacities. This has been because the
state space grows rapidly with C1, C2, and K . In all cases above, the equilibrium distri-
bution, when the number of queues is finite, has been calculated explicitly to obtain the
expected costs (rather than estimating from simulation). However, we conjecture that
the finding in this case will carry over to larger capacities, that is, for sufficiently high
arrival rates, as μ2 increases, the expected cost may also increase, when d2 is greater than
d1 (note that d2 > d1 is a reasonable scenario for a system where there may be a greater
cost attached to losing an individual on whom some service has already been expended).

4. Conclusions

The numerical examples of the previous section have shown that permitting otherwise
indistinguishable arrivals to use queues in certain states may lead to greater expected
costs, when arrivals attempt to minimize their own costs due to loss. The difference here
between the expected cost under user optimal and system optimal policies can be sub-
stantial. Furthermore, increasing the service rate, as in the classical paradoxes, may lead
to worse overall performance, if user optimal policies are permitted. We have given a nu-
merical example where increasing the service rate at the second stage of the tandem leads
to increased expected cost.
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