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The existence of factor and fractional factor in network graph in various settings has raised much attention from both
mathematicians and computer scientists. It implies the availability of data transmission and network segmentation in certain
special settings. In our paper, we consider P≥2-factor and P≥3-factor which are two special cases of general H -factor.
Specifically, we study the existence of these two kinds of path factor when some subgraphs are forbidden, and several
conclusions on the factor-deleted graph, factor critical-covered graph, and factor uniform graph are given with regards to
network parameters. Furthermore, we show that these bounds are best in some sense.

1. Introduction

All graphs considered in this work are finite simple graphs. Let
G = ðVðGÞ, EðGÞÞ be a graph, NGðvÞ be the neighborhood of
vertex v, and dGðvÞ = jNGðvÞj. LetωðGÞ be the number of con-
nected components in G and iðGÞ = jfv ∈ VðGÞ: dGðvÞ = 0gj.
For the commonly used notations and terminologies, please
refer to book [1] by Bondy and Mutry.

Let n ≥ 2 and P≥n be a path with at least n vertices. A P≥n
-factor is a spanning subgraph of G such that each component
is isomorphic to P≥n. A graph G is a ðP≥n,mÞ-factor-deleted
graph if removing any m edges from G, the resting subgraph
still admits P≥n-factor. For P≥2-factor, Akiyama et al. [2] dem-
onstrated the following characteristic for its existence.

Lemma 1. A graph G permits a P≥2 -factor if and only if 2j
Xj ≥ iðG − XÞ established for arbitrary vertex subset X of G.

More recent results on graph factors in various settings
can be referred to Gao et al. [3, 4], Wang and Zhang and
Zhou et al. [5–10], and Zhu et al. [11, 12].

A graph R is factor-critical if deleting any vertex v, the
resulting subgraph has a perfect matching. A graph G is
called a sun if it is isomorphic to K1, K2, or the corona of
a factor-critical graph, and the last class of sun is a big sun.
Let sunðGÞ be the number of sun components of G. Kaneko
[13] and Kano et al. [14] revealed that sun components can
describe the existence of P≥3-factor, i.e, a graph G admits a
P≥3-factor if and only if 2jSj ≥ sunðG − SÞ for any vertex sub-
set S of G.

Zhang and Zhou [15] introduced the concept of P≥n
-factor-covered graph, i.e., a graph G is P≥n-factor covered
if for any edge e, there is a P≥n-factor containing e. More-
over, they obtained the following two conclusions for P≥n
-factor-covered graph when n = 2 or 3.

Lemma 2 (Zhang and Zhou [15]). A connected graph G is a
P≥2-factor-covered graph if and only if

i G − Sð Þ ≤ 2 Sj j − ε1 Sð Þ, ð1Þ
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for any vertex subset S of G, where

ε1 Sð Þ =

2, if S is not an independent set,
1, S is independent, and there exists a
  nontrivial component of G − S,
0, otherwise:

8>>>>><
>>>>>:

ð2Þ

Lemma 3 (Zhang and Zhou [15]). Assume G as a connected
graph. Then, G is a P≥3-factor-covered graph if and only if

sun G − Sð Þ ≤ 2 Sj j − ε2 Sð Þ, ð3Þ

for any S ⊆ VðGÞ, where

ε2 Sð Þ =

2, if S is not an independent set,
1, S is independent and there exists a

  nonsun component of G − S,
0, otherwise:

8>>>>><
>>>>>:

ð4Þ

The concept of factor-covered graph can be further
extended to factor-critical-covered graph. A graph G is
ðP≥n, kÞ-factor-critical covered if deleted any k vertices from
G, and the resting subgraph is still a P≥n-factor-covered
graph.

In computer data communication networks, there are
three main indices to test the robustness and vulnerability
of networks, and also, there are some variables of these
parameters.

(i) Chvátal [16] firstly introduced toughness where tðGÞ
= +∞ if G is complete; otherwise

t Gð Þ =min Sj j
ω G − Sð Þ ω G − Sð Þj ≥ 2

� �
: ð5Þ

Enomoto et al. [17] introduced a variant of toughness by
revising the denominator to ωðG − SÞ − 1 and denoted it by
τðGÞ. That is to say, τðGÞ = +∞ if G is a complete graph; and

τ Gð Þ =min Sj j
ω G − Sð Þ − 1 ω G − Sð Þj ≥ 2

� �
, ð6Þ

for noncomplete graph.

(ii) Isolated toughness was introduced by Yang et al.
[18] as follows: if G is a complete graph, then IðGÞ
= +∞; elsewise

I Gð Þ =min Sj j
i G − Sð Þ S ⊂ V Gð Þj , i G − Sð Þ ≥ 2

� �
: ð7Þ

Similar to τ, Zhang and Liu [19] introduced a variant of
isolated toughness by revising the denominator to iðG − SÞ

− 1, denoted by I ′ðGÞ: I ′ðGÞ = +∞ for a complete graph G,
and

I ′ Gð Þ =min Sj j
i G − Sð Þ − 1 S ⊂V Gð Þj , i G − Sð Þ ≥ 2

� �
, ð8Þ

for others.

(iii) Binding number is defined by Woodall [20] which
is formulated by

bind Gð Þ =min NG Xð Þj j
Xj j ∅≠ X ⊆V Gð Þj ,NG Xð Þ ≠V Gð Þ

� �
:

ð9Þ

The main contributions of this article are three folded:
(1) the relationships between ðP≥2,mÞ-factor-deleted graph
and the above three parameters are studied; (2) toughness
conditions for ðP≥2, kÞ-factor-critical covered and ðP≥3, kÞ
-factor-critical covered graph are given; (3) toughness
bounds for a graph to be P≥2-factor uniform graph and P≥3
-factor uniform graph are determined. The main conclu-
sions and detailed proofs are manifested in the next section,
and then, in the third section, we present the sharpness of
these bounds.

2. Main Results and Proofs

The purpose of this section is to present the main theorems
and detailed proofs.

2.1. Bounds for ðP≥2,mÞ-Factor-Deleted Graphs

Theorem 4. Let m be a positive integer and G be an ðm + 1Þ
-edge-connected graph. If tðGÞ >m/m + 1 (resp. τðGÞ > 1)
then G is a ðP≥2,mÞ-factor-deleted graph.

Proof. For a complete graph G, the result follows from edge
connectivity. Assume that G is not complete, and clearly we
have jVðGÞj ≥m + 2.

For arbitrary edge subset E′ = fe1,⋯,emg with m edges, let
G′ = G − E′, and we have VðG′Þ =VðGÞ and EðG′Þ = EðGÞ
− E′. We verify the theorem by means of proving that G′
admits P≥2-factor. In contrast, we assume G′ has no P≥2
-factor, and hence, in view of Lemma 1, there is a subset S
of VðG′Þ satisfying

i G′ − S
� �

≥ 2 Sj j + 1: ð10Þ

If jSj = 0, then iðG′Þ ≥ 1 by (1) which contradicts to G is
ðm + 1Þ-edge-connected and jVðGÞj ≥m + 2. Therefore, we
infer jSj ≥ 1 and iðG′ − SÞ ≥ 2jSj + 1 ≥ 3. Deleting one edge
from G − S, the number of its components adds most 1, thus
ωðG′ − SÞ = ωðG − E − SÞ ≤ ωðG − SÞ +m.

We divide E′ = feigmi=1 into three classes E1′, E2′, and E3′.
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If ei ∈ E′ is a unique edge in K2 which is a component in
G − S, then ei ∈ E1′.

If ei ∈ E′ and ei ∈ EðG − SÞ, one of end vertex of ei (say vi)
meets dG−SðviÞ ≥ 2, then ei ∈ E2′.

Otherwise, ei ∈ E′ and at least one of its end vertices in S,
then ei ∈ E3′.

We have jE1′j + jE2′j ≤m and jE1′j, jE2′j ∈ f0,⋯,mg. Select
one vertex in each edge in E2′ with larger degree in G − S
and denote X by the set of these vertices. Thus, jXj ≤ jE2′j.

According to

m
m + 1 < t Gð Þ ≤ Sj j

ω G − Sð Þ ≤
Sj j

ω G′ − S
� �

−m

≤
Sj j

i G′ − S
� �

−m
≤

Sj j
2 Sj j + 1 −m

,
ð11Þ

or accordingly

1 < τ Gð Þ ≤ Sj j
ω G − Sð Þ − 1 ≤

Sj j
ω G′ − S
� �

−m − 1

≤
Sj j

i G′ − S
� �

−m − 1
≤

Sj j
2 Sj j −m

,
ð12Þ

we get jSj ∈ f1,⋯,m − 1g.
For tðGÞ, we have
m

m + 1 < t Gð Þ ≤ S ∪ Xj j
ω G − S ∪ Xð Þ = Sj j + Xj j

ω G′ − S ∪ X
� �

− E1′
�� ��

≤
Sj j + Xj j

ω G′ − S
� �

− E1′
�� �� ≤

Sj j + E2′
�� ��

i G′ − S
� �

− E1′
�� ��

≤
Sj j +m − E1′

�� ��
i G′ − S
� �

− E1′
�� �� ≤

Sj j +m − E1′
�� ��

2 Sj j + 1 − E1′
�� �� :

ð13Þ

Let f ðjE1′jÞ = ðjSj +m − jE1′jÞ/ð2jSj + 1 − jE1′jÞ be a func-
tion with regard to jE1′j. We have

Hence, f ðjE1′jÞ is a monotonically increasing function
and max f f ðjE1′jÞg = f ðmÞ. We get

m
m + 1 < t Gð Þ ≤ Sj j

2 Sj j + 1 −m
= 1
2 + m/2 − 1/2

2 Sj j + 1 −m

≤
1
2 + m/2 − 1/2

2 + 1 −m
= −m2 + 4m − 2

2 ,
ð15Þ

which implies m = 2.
If m = 2, then jSj = 1 and iðG′ − SÞ ≥ 2jSj + 1 = 3. If ωðG

− SÞ ≥ 2, then 2/3 =m/ðm + 1Þ < tðGÞ ≤ jSj/ωðG − SÞ ≤ 1/2,
a contradiction. Hence, G − S is a connected graph, and
there are at least 3 isolated vertices after removing 2 edges
from G − S. That is to say, G = K1∨P3 which contradicts to
G is a 3-edge-connected graph.

For τðGÞ, we have

1 < τ Gð Þ ≤ S ∪ Xj j
ω G − S ∪ Xð Þ − 1 = Sj j + Xj j

ω G′ − S ∪ X
� �

− E1′
�� �� − 1

≤
Sj j + Xj j

ω G′ − S
� �

− E1′
�� �� − 1

≤
Sj j + E2′

�� ��
i G′ − S
� �

− E1′
�� �� − 1

≤
Sj j +m − E1′

�� ��
i G′ − S
� �

− E1′
�� �� − 1

≤
Sj j +m − E1′

�� ��
2 Sj j + 1 − E1′

�� �� − 1

= Sj j +m − E1′
�� ��

2 Sj j − E1′
�� �� :

ð16Þ

Let gðjE1′jÞ = ðjSj +m − jE1′jÞ/ð2jSj − jE1′jÞ be a function
with regard to jE1′j. We obtain

f ′ E1′
�� ��� �

=
2 Sj j + 1 − E1′

�� ��� �
Sj j +m − E1′

�� ��� �
′ − 2 Sj j + 1 − E1′

�� ��� �
′ Sj j +m − E1′

�� ��� �

2 Sj j + 1 − E1′
�� ��� �2 = m − 1 − Sj j

2 Sj j + 1 − E1′
�� ��� �2 ≥ 0: ð14Þ

g′ E1′
�� ��� �

=
2 Sj j − E1′

�� ��� �
Sj j +m − E1′

�� ��� �
′ − 2 Sj j − E1′

�� ��� �
′ Sj j +m − E1′

�� ��� �

2 Sj j − E1′
�� ��� �2 = m − Sj j

2 Sj j − E1′
�� ��� �2 > 0: ð17Þ
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Hence, gðjE1′jÞ is a monotonically increasing function
and max fgðjE1′jÞg = gðmÞ. We get

1 < τ Gð Þ ≤ Sj j
2 Sj j −m

= 1
2 + m

2 2 Sj j −mð Þ
≤
1
2 + m

2 2 −mð Þ = 1
2 −m

,
ð18Þ

which implies m = 2.
If m = 2, then jSj = 1 and iðG′ − SÞ ≥ 2jSj + 1 = 3. If ωðG

− SÞ ≥ 2, then 1 < τðGÞ ≤ jSj/ωðG − SÞ − 1 ≤ 1, a contradic-
tion. Hence, G − S is a connected graph, and there are at least
three isolated vertices after removing two edges from G − S.
That is to say, G = K1∨P3 which contradicts to G that is a
3-edge-connected graph.

Hence, the proof of result is completed.

Theorem 5. Let m be a positive integer and G be an ðm + 1Þ
-edge-connected graph. If IðGÞ > 2m/ðm + 1Þ (resp. I ′ðGÞ > 2
), then, G is a ðP≥2,mÞ-factor-deleted graph.

Proof. For a complete graph G, the result follows from edge
connectivity. Assume that G is not complete, and clearly, we
have jVðGÞj ≥m + 2.

For arbitrary edge subset E′ = fe1,⋯,emg with m edges,
let G′ = G − E′, and we have VðG′Þ =VðGÞ and EðG′Þ = Eð

GÞ − E′. We check the correctness of Theorem 5 via proving
G′ permits P≥2-factor. If not, we assume G′ has no P≥2
-factor, and hence ,using Lemma 1, there is a subset S of V
ðG′Þ satisfying (1).

If jSj = 0, then iðG′Þ ≥ 1 by (1) which contradicts to G
being ðm + 1Þ-edge-connected and jVðGÞj ≥m + 2. There-
fore, we infer jSj ≥ 1 and iðG′ − SÞ ≥ 2jSj + 1 ≥ 3. Deleting
one edge from G − S, the number of its isolated vertices adds
most 2; thus, iðG′ − SÞ = iðG − E − SÞ ≤ iðG − SÞ + 2m.

We divide E′ into three classes E1′, E2′, and E3′ as described
in Theorem 4, and hence, jE1′j + jE2′j ≤m and jE1′j, jE2′j ∈ f0,
⋯,mg. Also, we use the same way to select vertex set X, and
thus, jXj ≤ jE2′j.

For IðGÞ, we have

2m
m + 1 < I Gð Þ ≤ S ∪ Xj j

i G − S ∪ Xð Þ = Sj j + Xj j
i G′ − S ∪ X
� �

− 2 E1′
�� ��

≤
Sj j + Xj j

i G′ − S
� �

− 2 E1′
�� ��

ð19Þ

Reset f ðjE1′jÞ = ðjSj +m − jE1′jÞ/ð2jSj + 1 − 2jE1′jÞ be a
function with regard to jE1′j. We acquire

Hence, f ðjE1′jÞ is a monotonically increasing function
and max f f ðjE1′jÞg = f ðmÞ. Thus, we get

2m
m + 1 < I Gð Þ ≤ Sj j

2 Sj j + 1 − 2m = 1
2 + m − 1/2

2 Sj j + 1 −m

≤
1
2 + m − 1/2

2 + 1 − 2m = 1
3 − 2m ,

ð21Þ

a contradiction.

For I ′ðGÞ, we have

2 < I ′ Gð Þ ≤ S ∪ Xj j
i G − S ∪ Xð Þ − 1 = Sj j + Xj j

i G′ − S ∪ X
� �

− 2 E1′
�� �� − 1

≤
Sj j + Xj j

i G′ − S
� �

− 2 E1′
�� �� − 1

≤
Sj j +m − E1′

�� ��
2 Sj j + 1 − 2 E1′

�� �� − 1

= Sj j +m − E1′
�� ��

2 Sj j − 2 E1′
�� �� :

ð22Þ

Reset gðjE1′jÞ = ðjSj +m − jE1′jÞ/ð2jSj − 2jE1′jÞ be a func-
tion with regard to jE1′j. We acquire

f ′ E1′
�� ��� �

=
2 Sj j + 1 − 2 E1′

�� ��� �
Sj j +m − E1′

�� ��� �
′ − 2 Sj j + 1 − 2 E1′

�� ��� �
′ Sj j +m − E1′

�� ��� �

2 Sj j + 1 − 2 E1′
�� ��� �2 = 2m − 1

2 Sj j + 1 − E1′
�� ��� �2 > 0: ð20Þ

g′ E1′
�� ��� �

=
2 Sj j − 2 E1′

�� ��� �
Sj j +m − E1′

�� ��� �
′ − 2 Sj j − 2 E1′

�� ��� �
′ Sj j +m − E1′

�� ��� �

2 Sj j − 2 E1′
�� ��� �2 = 2m

2 Sj j − E1′
�� ��� �2 > 0: ð23Þ
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Hence, gðjE1′jÞ is a monotonically increasing function
and max fgðjE1′jÞg = f ðmÞ. Thus, we get

2 < I ′ Gð Þ ≤ Sj j
2 Sj j − 2m = 1

2 + m
2 Sj j − 2m ð24Þ

a contradiction if m ≥ 2.
Specially, if m = 1, then

2 < I ′ Gð Þ ≤ Sj j
i G − Sð Þ − 1 ≤

Sj j
i G′ − S
� �

− 2m − 1

≤
Sj j

2 Sj j + 1 − 3 = Sj j
2 Sj j − 2 ,

ð25Þ

which implies jSj = 1. In this case, iðG′ − SÞ ≥ 3 leads to iðG
− SÞ ≥ iðG′ − SÞ − 2m ≥ 1 which contradicts to G being a 2-
edge-connected graph.

Hence, the proof of this result is completed.

Theorem 6. Let m be a positive integer and G be an ðm + 1Þ
-edge-connected graph. If bindðGÞ > 3/2, then, G is a ðP≥2,mÞ
-factor-deleted graph.

Proof. For a complete graph G, the result follows from edge
connectivity. Assume that G is not complete, and clearly, j
VðGÞj ≥m + 2.

Let G′ =G − E′ for arbitrary edge subset E′ with m
edges, and we have VðG′Þ =VðGÞ and EðG′Þ = EðGÞ − E′.
Assume that G′ has no P≥2-factor, and hence, in view of
Lemma 1, there is a subset S of VðG′Þ satisfying (1).

If jSj = 0, then, iðG′Þ ≥ 1 by (1) which contradicts to G
being ðm + 1Þ-edge-connected and jVðGÞj ≥m + 2. There-
fore, we infer jSj ≥ 1 and iðG′ − SÞ ≥ 2jSj + 1 ≥ 3. Deleting
one edge from G − S, the number of its isolated components
adds most 2, thus, iðG′ − SÞ = iðG − E − SÞ ≤ iðG − SÞ + 2m.

Note that there are at least 3 isolated vertices after
removing m edges from G − S. Also, since δðGÞ ≥ λðGÞ ≥m
+ 1, we get jSj ≥m + 1 −m/iðG′ − SÞ ≥m + 1 −m/ð2jSj + 1Þ,
i.e., m ≤ ð2jSj + 1ÞðjSj − 1Þ/2jSj. Let X be the vertex set of
these isolated vertices in G′ − S. If NGðXÞ ≠VðGÞ, we
acquire

3
2 < bind Gð Þ ≤ NG Xð Þj j

Xj j ≤
Sj j + 2m

i G′ − S
� � ≤

Sj j + 2m
2 Sj j + 1

≤
Sj j + 2 2 Sj j + 1ð Þ Sj j − 1ð Þ/2 Sj jð Þ

2 Sj j + 1

= 3
2 −

1
Sj j −

1
2 2 Sj j + 1ð Þ < 3

2 ,

ð26Þ

a contradiction.
Now, we consider NGðXÞ ≠VðGÞ. If there is a vertex v in

G − S meeting dG−SðvÞ = 1, then, set uv ∈ EðG − SÞ and u ∈ X
since NGðXÞ ≠VðGÞ. We yield

3
2 < bind Gð Þ ≤ NG X − uf gð Þj j

X − uf gj j ≤
Sj j + 2m − 1

i G′ − S
� �

− 1

≤
Sj j + 2m − 1
2 Sj j + 1 − 1 = Sj j + 2m − 1

2 Sj j
≤

Sj j + 2 2 Sj j + 1ð Þ Sj j − 1ð Þ/2 Sj jð Þ − 1
2 Sj j

= 3 Sj j2 − 2 Sj j − 1
2 Sj j2 < 3

2 ,

ð27Þ

a contradiction.
If each vertex in X has a degree at least 2 in G − S, then,

we can get the contradiction similar to what discussed above.
Hence, the proof of result is completed.

2.2. Toughness Conditions for ðP≥2, kÞ-Factor-Critical
Covered and ðP≥3, kÞ-Factor-Critical Covered Graph

Theorem 7. Let k ∈N ∪ f0g and G be a graph with κðGÞ ≥
k + 1 . If ðGÞ > ðk + 2Þ/3ðresp:τðGÞ > ðk + 2Þ/2Þ, then, G is a
ðP≥2, kÞ-factor critical covered graph.

Proof. If G is complete, the result follows from δðGÞ ≥ κðGÞ
≥ k + 1. In what follows, we consider noncomplete graph.

For any U ⊆VðGÞ with jU j = k, set G′ =G −U . To demon-
strate G is ðP≥2, kÞ-factor critical covered, it is enough to
prove G′ is P≥2-factor covered. Otherwise, suppose G′ is
not P≥2-factor covered; then, according to Lemma 2, there
is a vertex subset S of G′ such that

i G′ − S
� �

≥ 2 Sj j − ε1 Sð Þ + 1: ð28Þ

The following discussion is divided into three cases in
terms of the value of jSj.

Case 1. jSj = 0.
In this case, ε1ðSÞ = 0 and iðG′Þ ≥ 1 by (2), which contra-

dicts to δðGÞ ≥ κðGÞ ≥ k + 1.

Case 2. jSj = 1.
We consider the following two subcases.

Case 3. G′ − S has no nontrivial component.

We infer ε1ðSÞ = 0 and iðG′ − SÞ ≥ 2jSj − ε1ðSÞ + 1 = 3. By
means of the definition of toughness, we deduce

k + 2
3 < t Gð Þ ≤ U ∪ Sj j

ω G −U ∪ Sð Þ ≤
k + 1
3 , ð29Þ
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or

k + 2
2 < τ Gð Þ ≤ U ∪ Sj j

ω G −U ∪ Sð Þ − 1 ≤
k + 1
2 , ð30Þ

a contradiction.

Case 4. G′ − S has a nontrivial component.

We yield ε1ðSÞ = 1, iðG′ − SÞ ≥ 2jSj − ε1ðSÞ + 1 = 2, and
ωðG′ − SÞ ≥ 3. Using the definition of toughness, we have

k + 2
3 < t Gð Þ ≤ U ∪ Sj j

ω G −U ∪ Sð Þ ≤
k + 1
3 , ð31Þ

or

k + 2
2 < τ Gð Þ ≤ U ∪ Sj j

ω G −U ∪ Sð Þ − 1 ≤
k + 1
2 , ð32Þ

a contradiction.

Case 5. jSj ≥ 2.
We acquire ε1ðSÞ ≤ 2 and iðG′ − SÞ ≥ 2jSj − ε1ðSÞ + 1 ≥ 3.

In light of the definition of toughness, we obtain

k + 2
3 < t Gð Þ ≤ U ∪ Sj j

ω G −U ∪ Sð Þ = k + Sj j
ω G′ − S
� �

≤
k + Sj j

i G′ − S
� � ≤

k + Sj j
2 Sj j − ε1 Sð Þ + 1 ≤

k + Sj j
2 Sj j − 1

= 1
2 + k + 1/2

2 Sj j − 1 ≤
1
2 + k + 1/2

2 × 2 − 1 = k + 2
3 ,

ð33Þ

or

k + 2
2 < τ Gð Þ ≤ U ∪ Sj j

ω G −U ∪ Sð Þ − 1 = k + Sj j
ω G′ − S
� �

− 1

≤
k + Sj j

i G′ − S
� �

− 1
≤

k + Sj j
2 Sj j − ε1 Sð Þ + 1 − 1

≤
k + Sj j
2 Sj j − 2 = 1

2 + k + 1
2 Sj j − 2 ≤

1
2 + k + 1

2 × 2 − 2 = k + 2
2 ,

ð34Þ

a contradiction.
Therefore, the result follows.

Theorem 8. Let k ∈N ∪ f0g and G be a graph with κðGÞ ≥
k + 1 and jVðGÞj ≥ k + 3. If ðGÞ > ðk + 2Þ/3
ðresp:τðGÞ > ðk + 2Þ/2Þ, then, G is a ðP≥3, kÞ-factor critical
covered graph.

Proof. If G is a complete graph, then, the result follows from
jVðGÞj ≥ k + 3. We only consider noncomplete graph in
what follows.

For any U ⊆ VðGÞ with k vertices, let G′ =G −U , and we
aim to prove G′ is P≥3-factor covered. On the contrary, G is
not a P≥3-factor covered graph, and then, by Lemma 3, there
is a subset S of VðG′Þ meeting

sun G′ − S
� �

≥ 2 Sj j − ε2 Sð Þ + 1: ð35Þ

The following discussion is divided into three cases by
means of the value of jSj.

Case 1. jSj = 0.
In this case, we summarize ε2ðSÞ = 0 and sunðG′Þ ≥ 1 by

(3). Using κðGÞ ≥ k + 1 and jUj = k, we get sunðG′Þ = ωðG′
Þ = 1. Since jVðGÞj ≥ k + 3, we confirm that G′ is a big sun.
Let R be the factor-critical graph of G′ with jVðRÞj ≥ 3 and
v ∈ VðRÞ be a vertex in R. Using the definition of toughness,
we obtain

k + 2
3 < t Gð Þ ≤ U ∪ V Rð Þ − vf gð Þj j

ω G −U ∪ V Rð Þ − vf gð Þð Þ
= k + V Rð Þj j − 1

V Rð Þj j = 1 + k − 1
V Rð Þj j

≤ 1 + k − 1
3 = k + 2

3 ,

ð36Þ

or

k + 2
2 < τ Gð Þ ≤ U ∪ V Rð Þ − vf gð Þj j

ω G −U ∪ V Rð Þ − vf gð Þð Þ − 1

= k + V Rð Þj j − 1
V Rð Þj j − 1 = 1 + k

V Rð Þj j − 1

≤ 1 + k
3 − 1 = k + 2

2 ,

ð37Þ

a contradiction.

Case 2. jSj = 1.
If there is a nonsun component of G′ − S, we have ε2ðS

Þ = 1, sunðG′ − SÞ ≥ 2jSj − ε2ðSÞ + 1 = 2 by (3), and ωðG′ − S
Þ ≥ sunðG′ − SÞ + 1. Directly using the definition of tough-
ness, we yield

k + 2
3 < t Gð Þ ≤ U ∪ Sj j

ω G −U ∪ Sð Þ = Uj j + Sj j
ω G′ − S
� �

≤
k + 1

sun G′ − S
� �

+ 1
≤

k + 1
2 Sj j − ε2 Sð Þ + 1 + 1 = k + 1

3 ,

ð38Þ
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or

k + 2
2 < τ Gð Þ ≤ U ∪ Sj j

ω G −U ∪ Sð Þ − 1 = Uj j + Sj j
ω G′ − S
� �

− 1

≤
k + 1

sun G′ − S
� �

+ 1 − 1
≤

k + 1
2 Sj j − ε2 Sð Þ + 1 = k + 1

2 ,

ð39Þ

a contradiction.

If there is no nonsun component of G′ − S, we get ε2ðS
Þ = 0, sunðG′ − SÞ ≥ 2jSj − ε2ðSÞ + 1 = 3 by (3), and ωðG′ − S
Þ = sunðG′ − SÞ. In light of the definition of toughness, we
infer

k + 2
3 < t Gð Þ ≤ U ∪ Sj j

ω G −U ∪ Sð Þ = Uj j + Sj j
ω G′ − S
� �

= k + 1
sun G′ − S

� � ≤
k + 1

2 Sj j − ε2 Sð Þ + 1 = k + 1
3 ,

ð40Þ

or

k + 2
2 < τ Gð Þ ≤ U ∪ Sj j

ω G −U ∪ Sð Þ − 1 = Uj j + Sj j
ω G′ − S
� �

− 1

= k + 1
sun G′ − S

� �
− 1

≤
k + 1

2 Sj j − ε2 Sð Þ + 1 − 1 = k + 1
2 ,

ð41Þ

a contradiction.

Case 3. jSj ≥ 2.
In this case, we acquire ε2ðSÞ ≤ 2 and sunðG′ − SÞ ≥ 2jSj

− ε2ðSÞ + 1 ≥ 3 in terms of (3). We verify

k + 2
3 < t Gð Þ ≤ U ∪ Sj j

ω G −U ∪ Sð Þ = Uj j + Sj j
ω G′ − S
� �

≤
k + Sj j

sun G′ − S
� � ≤

k + Sj j
2 Sj j − ε2 Sð Þ + 1

≤
k + Sj j
2 Sj j − 1 = 1

2 + k + 1/2
2 Sj j − 1

≤
1
2 + k + 1/2

2 × 2 − 1 = k + 2
3 ,

ð42Þ

or

k + 2
2 < τ Gð Þ ≤ U ∪ Sj j

ω G −U ∪ Sð Þ − 1 = Uj j + Sj j
ω G′ − S
� �

− 1

≤
k + Sj j

sun G′ − S
� �

− 1
≤

k + Sj j
2 Sj j − ε2 Sð Þ + 1 − 1

≤
k + Sj j
2 Sj j − 2 = 1

2 + k + 1
2 Sj j − 2 ≤

1
2 + k + 1

2 × 2 − 2 = k + 2
2 ,

ð43Þ

a contradiction.
Hence, Theorem 8 is verified.

Theorem 9. Let k ∈N ∪ f0g and G be a graph with κðGÞ ≥
k + 1. If ðGÞ > ðk + 1Þ/2ðresp:I ′ðGÞ > k + 1Þ, then, G is a ð
P≥2, kÞ-factor critical covered graph.

Proof. If G is complete, we check the theorem using δðGÞ
≥ κðGÞ ≥ k + 1. Hence, we only consider noncomplete graph
in the following contents.

For any U ⊆VðGÞ with jU j = k, set G′ =G −U . To dem-
onstrate G that is ðP≥2, kÞ-factor critical covered, it is enough
to prove G′ is P≥2-factor covered. Otherwise, suppose G′ is
not P≥2-factor covered; then, using Lemma 2, there is a ver-
tex subset S of G′ satisfying (2).

The following discussion is divided into three cases in
terms of the value of jSj.

Case 1. jSj = 0.
In this case, we get contradiction as we discussed in The-

orem 7.

Case 2. jSj = 1.
We consider the following two subcases.

Case 3. G′ − S has no nontrivial component.
We infer ε1ðSÞ = 0 and iðG′ − SÞ ≥ 2jSj − ε1ðSÞ + 1 = 3. By

means of the definition of isolated toughness, we deduce

k + 1
2 < I Gð Þ ≤ U ∪ Sj j

i G −U ∪ Sð Þ ≤
k + 1
3 , ð44Þ

or

k + 1 < I ′ Gð Þ ≤ U ∪ Sj j
i G −U ∪ Sð Þ − 1 ≤

k + 1
2 , ð45Þ

a contradiction.

Case 4. G′ − S has nontrivial component.

7Journal of Function Spaces



We yield ε1ðSÞ = 1 and iðG′ − SÞ ≥ 2jSj − ε1ðSÞ + 1 = 2.
Using the definition of isolated toughness, we have

k + 1
2 < I Gð Þ ≤ U ∪ Sj j

i G −U ∪ Sð Þ ≤
k + 1
2 , ð46Þ

or

k + 1 < I ′ Gð Þ ≤ U ∪ Sj j
i G −U ∪ Sð Þ − 1 ≤ k + 1, ð47Þ

a contradiction.

Case 5. jSj ≥ 2.
We acquire ε1ðSÞ ≤ 2 and iðG′ − SÞ ≥ 2jSj − ε1ðSÞ + 1 ≥ 3.

We can get the contradiction using the similar derivation to
Theorem 7.

Therefore, we get the desired result.

Theorem 10. Let k ∈N and G be a graph with κðGÞ ≥ k + 1
and jVðGÞj ≥ k + 3. If IðGÞ > ðk + 3Þ/2 (resp. I ′ðGÞ > k + 3),
then, G is a ðP≥3, kÞ-factor critical covered graph.

Proof. If G is a complete graph, the result is hold from jVð
GÞj ≥ k + 3. We only discuss noncomplete graph in the fol-
lowing context.

For any U ⊆VðGÞ with k vertices, let G′ = G −U , and we
aim to prove G′ is P≥3-factor covered. On the contrary, G is
not a P≥3-factor covered graph; then, using Lemma 3, there
is a subset S of VðG′Þ satisfying (3).

The following discussion is divided into three cases
according to how many elements in S.

Case 1. jSj = 0.
In this case, similar to what’s discussed in Theorem 8, we

have ε2ðSÞ = 0 and sunðG′Þ = ωðG′Þ = 1, and G′ is a big sun.
Let R be the factor-critical of G′ with jVðRÞj ≥ 3. Using the
definition of IðGÞ, we obtain

k + 3
2 < I Gð Þ ≤ U ∪ V Rð Þj j

i G −U ∪V Rð Þð Þ = k + V Rð Þj j
V Rð Þj j

= 1 + k
V Rð Þj j ≤ 1 + k

3 = k + 3
3 ,

ð48Þ

or

k + 3 < I ′ Gð Þ ≤ U ∪V Rð Þj j
i G −U ∪V Rð Þð Þ − 1

= k + V Rð Þj j
V Rð Þj j − 1 = 1 + k + 1

V Rð Þj j − 1

≤ 1 + k + 1
3 − 1 = k + 3

2 ,

ð49Þ

a contradiction.

Case 2. jSj = 1.

We have ε2ðSÞ ≤ 1. Suppose that there are K1’s, bK2’s,
and c big sun components H1,⋯,Hc with jVðHiÞj ≥ 6 in G
′ − S. Hence, a + b + c = sunðG′ − SÞ ≥ 2jSj − ε2ðSÞ + 1 ≥ 2 by
(3). We select one vertex from each K2 and choose vertex
set of factor-critical subgraph of every big sun and then
denote X by the vertex set of all these selected vertices. We
infer jXj = b +∑c

i=1jVðHiÞj/2 and iðG −U ∪ S ∪ XÞ ≥ 2. In
terms of the definition of isolated toughness, we yield

k + 3
2 < I Gð Þ ≤ U ∪ S ∪ Xj j

i G −U ∪ S ∪ Xð Þ =
Uj j + Sj j + Xj j
i G′ − S ∪ X
� �

≤
k + 1 + b +∑c

i=1 V Hið Þj j/2ð Þ
a + b +∑c

i=1 V Hið Þj j/2ð Þ :

ð50Þ

It implies

2k + 2 > k + 3ð Þa + k + 1ð Þb + k + 1ð Þ〠
c

i=1

V Hið Þj j
2

≥ k + 3ð Þa + k + 1ð Þb + 3k + 3ð Þc
≥ k + 1ð Þ a + b + cð Þ ≥ 2k + 2,

ð51Þ

a contradiction.

For I ′ðGÞ, we have

k + 3 < I ′ Gð Þ ≤ U ∪ S ∪ Xj j
i G −U ∪ S ∪ Xð Þ − 1

= Uj j + Sj j + Xj j
i G′ − S ∪ X
� �

− 1
≤
k + 1 + b +∑c

i=1 V Hið Þj j/2ð Þ
a + b +∑c

i=1 V Hið Þj j/2ð Þ − 1 :

ð52Þ

It implies

2k + 4 > k + 3ð Þa + k + 2ð Þb + k + 2ð Þ〠
c

i=1

V Hið Þj j
2

≥ k + 3ð Þa + k + 2ð Þb + 3k + 6ð Þc
≥ k + 2ð Þ a + b + cð Þ ≥ 2k + 4,

ð53Þ

a contradiction.

Case 3. jSj ≥ 2.
In this case, we acquire ε2ðSÞ ≤ 2 and a + b + c = sunðG′

− SÞ ≥ 2jSj − ε2ðSÞ + 1 ≥ 3 in terms of (3). Let X be vertex
subset defined as Case 2. We verify

k + 3
2 < I Gð Þ ≤ U ∪ S ∪ Xj j

i G −U ∪ S ∪ Xð Þ =
Uj j + Sj j + Xj j
i G′ − S ∪ X
� �

≤
k + Sj j + b +∑c

i=1 V Hið Þj j/2ð Þ
a + b +∑c

i=1 V Hið Þj j/2ð Þ ,
ð54Þ
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that is,

2k + 2 Sj j > 3 + kð Þa + k + 1ð Þb + k + 1ð Þ〠
c

i=1

V Hið Þj j
2

≥ 3 + kð Þa + k + 1ð Þb + 3k + 3ð Þc
≥ k + 1ð Þ a + b + cð Þ ≥ k + 1ð Þ 2 Sj j − ε2 Sð Þ + 1ð Þ
≥ k + 1ð Þ 2 Sj j − 1ð Þ:

ð55Þ

It is implies that jSj < ð3k + 1Þ/2k ≤ 2 since k ≥ 1, a
contradiction.

For I ′ðGÞ, we confirm

k + 3 < I ′ Gð Þ ≤ U ∪ S ∪ Xj j
i G −U ∪ S ∪ Xð Þ − 1 = Uj j + Sj j + Xj j

i G′ − S ∪ X
� �

− 1

≤
k + Sj j + b +∑c

i=1 V Hið Þj j/2ð Þ
a + b +∑c

i=1 V Hið Þj j/2ð Þ − 1 ,

ð56Þ

which means,

2k + 3 + Sj j > 3 + kð Þa + k + 2ð Þb + k + 2ð Þ〠
c

i=1

V Hið Þj j
2

≥ 3 + kð Þa + k + 2ð Þb + 3k + 6ð Þc
≥ k + 2ð Þ a + b + cð Þ ≥ k + 2ð Þ 2 Sj j − ε2 Sð Þ + 1ð Þ
≥ k + 2ð Þ 2 Sj j − 1ð Þ:

ð57Þ

It implies that jSj < ð3k + 5Þ/ð2k + 3Þ ≤ 2, a contradiction.
Hence, Theorem 10 is verified.
Note that k ≠ 0 in Theorem 10. From Zhou et al. [21], we

know that G is a P≥3-factor covered graph if IðGÞ > 5/3, and
5/3 is tight.

2.3. Toughness Conditions for Factor Uniform Graph. A
graph G is a P≥n-factor uniform graph if for any two edges
e1 and e2, G admits a P≥n-factor including e1 and excluding
e2. Zhou and Sun [?] studied the binding number condition
for P≥2-factor uniform graph and P≥3-factor uniform graph.
In this section, we research on other two parameters: tough-
ness and isolated toughness. The idea to prove the following
results is based on the observation that G is P≥n-factor uni-
form if G − e is P≥n-covered for any e ∈ EðGÞ.

Theorem 11. Let G be a 2-edge-connected graph. If ðGÞ > 1
ðresp:τðGÞ > 2Þ, then, G is a P≥2-factor uniform graph.

Proof. For any e = uv, G′ =G − e is connected since G is 2-
edge-connected graph. To confirm Theorem 11, we need to
verify that G′ is P≥2-factor covered. If not, we assume that
G′ is not P≥2-factor covered. Using Lemma 2, there is a ver-
tex subset S of G′ satisfying

i G′ − S
� �

≥ 2 Sj j − ε1 Sð Þ + 1: ð58Þ

Furthermore, we have iðG − SÞ ≤ iðG′ − SÞ ≤ iðG − SÞ + 2.
We consider three cases according to the value of jSj.

Case 1. If jSj = 0.
We obtain iðG′Þ ≥ 1 which contradicts λðGÞ ≥ 2.

Case 2. If jSj = 1.
Then, ε1ðSÞ ≤ 1 and iðG′ − SÞ ≥ 2jSj − ε1ðSÞ + 1 ≥ 2. If ið

G − SÞ ≥ 2, then

1 < t Gð Þ ≤ Sj j
ω G − Sð Þ ≤

Sj j
i G − Sð Þ ≤

1
2 , ð59Þ

or

2 < τ Gð Þ ≤ Sj j
ω G − Sð Þ − 1 ≤

Sj j
i G − Sð Þ − 1 ≤ 1, ð60Þ

a contradiction.
If iðG − SÞ = 1, then, e = uv ∈ EðG − SÞ and ωðG − SÞ ≥ 2.

We infer

1 < t Gð Þ ≤ Sj j
ω G − Sð Þ ≤

1
2 , ð61Þ

or

2 < τ Gð Þ ≤ Sj j
ω G − Sð Þ − 1 ≤ 1, ð62Þ

a contradiction.
If iðG − SÞ = 0, then, K2 is a component in G − S and e

= uv ∈ EðK2Þ. If there is another component in G − S except
K2, then, ωðG − SÞ ≥ 2, and we get the contradiction similar
to the derivation above. If ωðG − SÞ = 1, then, G ≅ K3 since
G is 2-edge-connected graph. Special for K3, we yield tðK3Þ
= τðK3Þ = +∞, G′ = P3 which is a P≥2-factor covered graph.
Hence, K3 satisfies the condition of theorem which is a P≥2
-factor uniform graph.

Case 3. If jSj ≥ 2.
Then, ε1ðSÞ ≤ 2, iðG′ − SÞ ≥ 2jSj − ε1ðSÞ + 1 ≥ 3 and iðG

− SÞ ≥ iðG′ − SÞ − 2 ≥ 1.
Notice that if iðG − SÞ ≠ iðG′ − SÞ, then, e ∈ EðG − SÞ and

ωðG − SÞ ≥ iðG − SÞ + 1 ≥ iðG′ − SÞ − 2 + 1 = iðG′ − SÞ − 1. If
iðG − SÞ = iðG′ − SÞ, then, ωðG − SÞ ≥ iðG − SÞ = iðG′ − SÞ.
Combining the above two cases, we have ωðG − SÞ ≥ iðG′ −
SÞ − 1.

9Journal of Function Spaces



If iðG − SÞ ≥ 2, then

1 < t Gð Þ ≤ Sj j
ω G − Sð Þ ≤

Sj j
i G′ − S
� �

− 1

≤
Sj j

2 Sj j − ε1 Sð Þ + 1 − 1 ≤
Sj j

2 Sj j − 2 ,
ð63Þ

or

2 < τ Gð Þ ≤ Sj j
ω G − Sð Þ − 1 ≤

Sj j
i G′ − S
� �

− 1 − 1

≤
Sj j

2 Sj j − ε1 Sð Þ + 1 − 2 ≤
Sj j

2 Sj j − 3 :
ð64Þ

It implies jSj < 2, a contradiction.
If iðG − SÞ = 1, then, using the fact that iðG′ − SÞ ≥ 3, we

confirm that K1 and K2 are components in G − S, e = uv ∈
EðK2Þ, and iðG′ − SÞ = iðG − SÞ + 2 = 3. We acquire

1 < t Gð Þ ≤ Sj j
ω G − Sð Þ ≤

Sj j
i G − Sð Þ + 1 = Sj j

i G′ − S
� �

− 1

≤
Sj j

2 Sj j − ε1 Sð Þ + 1 − 1 ≤
Sj j

2 Sj j − 2 ,
ð65Þ

or

2 < τ Gð Þ ≤ Sj j
ω G − Sð Þ − 1 ≤

Sj j
i G − Sð Þ + 1 − 1

= Sj j
i G′ − S
� �

− 2
≤

Sj j
2 Sj j − ε1 Sð Þ + 1 − 2 ≤

Sj j
2 Sj j − 3 :

ð66Þ

Again, in both situation we get jSj < 2, which leads to a
contradiction.

Theorem 12. Let G be a 2-edge-connected graph. If ðGÞ > 1
ðresp:τðGÞ > 2Þ, then, G is a P≥3-factor uniform graph.

Proof. For any e = uv ∈ EðGÞ, G′ =G − e is connected, and
we only need to prove that G′ is P≥3-factor covered. On
the contrary, G′ is not P≥3-factor covered, and we can find
a subset S of VðG′Þ such that

sun G′ − S
� �

≥ 2 Sj j − ε2 Sð Þ + 1: ð67Þ

The following discussion is divided into three cases
according to the value of jSj.

Case 1. jSj = 0.
Then, ε2ðSÞ = 0 and sunðG′Þ ≥ 1 by (67). It implies sun

ðG′Þ = 1, and G′ is a big sun with at least six vertices. More-

over, G is a graph constructed by adding an edge in a big
sun. Let R be the factor-critical of G′ and x ∈ VðRÞ. We have

1 < t Gð Þ ≤ V Rð Þ \ xf gj j
ω G −V Rð Þ \ xf gð Þ ≤

Rj j − 1
Rj j − 1 = 1, ð68Þ

or

2 < τ Gð Þ ≤ V Rð Þ \ xf gj j
ω G −V Rð Þ \ xf gð Þ − 1

≤
Rj j − 1
Rj j − 2 = 1 + 1

Rj j − 2 ≤ 1 + 1
3 − 2 = 2,

ð69Þ

a contradiction.

Case 2. jSj = 1.
Then, ε2ðSÞ ≤ 1 and sunðG′ − SÞ ≥ 2 by (67). If ωðG − SÞ

≥ 2, then

1 < t Gð Þ ≤ Sj j
ω G − Sð Þ ≤

1
2 , ð70Þ

or

2 < τ Gð Þ ≤ Sj j
ω G − Sð Þ − 1 ≤ 1, ð71Þ

a contradiction. If ωðG − SÞ = 1, then, e ∈ EðG − SÞ, and it
produces two sun components after deleting e from G − S. If
G − S isomorphic to K2, then, G ≅ K3 which is a P≥3-factor
uniform graph. Otherwise, jVðG − SÞj ≥ 3, and there are at
least two vertices having degree 1 in G − S. Let xy ∈ EðG − SÞ
such that dG−SðxÞ = 1. We acquire 1 < tðGÞ ≤ jS ∪ fygj/ωðG
− S ∪ fygÞ ≤ 1 or 2 < τðGÞ ≤ jS ∪ fygj/ωðG − S ∪ fygÞ − 1 ≤
2, a contradiction.

Case 3. jSj ≥ 2.
In this case, ε2ðSÞ ≤ 2, sunðG′ − SÞ ≥ 3 by (67), sunðG −

SÞ ≥ sunðG′ − SÞ − 2 ≥ 1, and ωðG − SÞ ≥ 2. If sunðG − SÞ =
sunðG′ − SÞ or sunðG − SÞ = sunðG′ − SÞ − 1, we deduce

1 < t Gð Þ ≤ Sj j
ω G − Sð Þ ≤

Sj j
sun G − Sð Þ

≤
Sj j

sun G′ − S
� �

− 1
≤

Sj j
2 Sj j − ε2 Sð Þ + 1 − 1

≤
Sj j

2 Sj j − 2 = 1
2 + 1

2 Sj j − 2 ≤
1
2 + 1

2 × 2 − 2 = 1,

ð72Þ
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or

2 < τ Gð Þ ≤ Sj j
ω G − Sð Þ − 1 ≤

Sj j
sun G − Sð Þ − 1

≤
Sj j

sun G′ − S
� �

− 1 − 1
≤

Sj j
2 Sj j − ε2 Sð Þ + 1 − 2

≤
Sj j

2 Sj j − 3 = 1
2 + 3

2 2 Sj j − 3ð Þ ≤
1
2 + 3

2 2 × 2 − 3ð Þ = 2,

ð73Þ

a contradiction.

If sunðG − SÞ = sunðG′ − SÞ − 2, then, edge e = uv
belongs to a nonsun component W, while removing e will
produce two sun components. It means at least one of u
and v is a cut vertex of component W, and without loss of
generality, we set u as a cut vertex in W. Hence, we get

1 < t Gð Þ ≤ S ∪ uf gj j
ω G − S ∪ uf gð Þ ≤

S ∪ uf gj j
ω G − Sð Þ + 1

≤
Sj j + 1

sun G − Sð Þ + 2 ≤
Sj j + 1

sun G′ − S
� �

− 2 + 2

≤
Sj j + 1

2 Sj j − ε2 Sð Þ + 1 ≤
Sj j + 1

2 Sj j − 1 = 1
2 + 3

2 2 Sj j − 1ð Þ
≤
1
2 + 3

2 2 × 2 − 1ð Þ = 1,

ð74Þ

or

2 < τ Gð Þ ≤ S ∪ uf gj j
ω G − S ∪ uf gð Þ − 1 ≤

S ∪ uf gj j
ω G − Sð Þ + 1 − 1

≤
Sj j + 1

sun G − Sð Þ + 1 ≤
Sj j + 1

sun G′ − S
� �

− 2 + 1

≤
Sj j + 1

2 Sj j − ε2 Sð Þ + 1 − 1 ≤
Sj j + 1

2 Sj j − 2

= 1
2 + 1

Sj j − 1 ≤
1
2 + 1

2 − 1 = 3
2 ,

ð75Þ

a contradiction.
Thus, the proof of Theorem 12 is completed.

Theorem 13. Let G be a 2-edge-connected graph. If ðGÞ > ðj
VðGÞj − 2Þ/2ðresp:I ′ðGÞ > jVðGÞj − 2Þ, then, G is a P≥2-fac-
tor uniform graph.

Proof. Clearly, we have jVðGÞj ≥ 3. For any e = uv, G′ =G − e
is connected since G is a 2-edge-connected graph. Similar as
Theorem 11, we only need to verify that G′ is P≥2-factor cov-
ered. In contrast, suppose that G′ is not P≥2-factor covered.
In terms of Lemma 2, there is a vertex subset S of G′ that
meets (58). Furthermore, iðG′ − SÞ ∈ fiðG − SÞ, iðG − SÞ + 1,
iðG − SÞ + 2g.

We consider three cases in view of the value of jSj.

Case 1. jSj = 0.
We get iðG′Þ ≥ 1 which contradicts to λðGÞ ≥ 2.

Case 2. jSj = 1.
Then, ε1ðSÞ ≤ 1 and iðG′ − SÞ ≥ 2jSj − ε1ðSÞ + 1 ≥ 2. If ið

G − SÞ ≥ 2, then

V Gð Þj j − 2
2 < I Gð Þ ≤ Sj j

i G − Sð Þ ≤
1
2 , ð76Þ

or

V Gð Þj j − 2 < I ′ Gð Þ ≤ Sj j
i G − Sð Þ − 1 ≤ 1, ð77Þ

a contradiction.
If iðG − SÞ = 1, then, e = uv ∈ EðG − SÞ and assume dG−S

ðuÞ ≥ dG−SðvÞ = 1. We infer

V Gð Þj j − 2
2 < I Gð Þ ≤ S ∪ uf gj j

i G − S ∪ uf gð Þ ≤ 1, ð78Þ

or

V Gð Þj j − 2 < I ′ Gð Þ ≤ S ∪ uf gj j
i G − S ∪ uf gð Þ − 1 ≤ 2, ð79Þ

a contradiction.

If iðG − SÞ = 0, then, K2 is a component in G − S and e
= uv ∈ EðK2Þ. If there is another component in G − S except
K2, then denote this component by W. Select w ∈ VðWÞ
such that w has a minimum degree in G − S among all verti-
ces in W. Hence, iðG − S ∪ fug ∪NG−SðwÞÞ ≥ 2 and

V Gð Þj j − 2
2 < I Gð Þ ≤ S ∪ uf g ∪NG−S wð Þj j

i G − S ∪ uf g ∪NG−S wð Þð Þ
≤
2 + V Wð Þj j − 1

2 = 1 + V Wð Þj j
2

≤
1 + V Gð Þj j − 3

2 = V Gð Þj j − 2
2 ,

ð80Þ

or

V Gð Þj j − 2 < I ′ Gð Þ ≤ S ∪ uf g ∪NG−S wð Þj j
i G − S ∪ uf g ∪NG−S wð Þð Þ − 1

≤
2 + V Wð Þj j − 1

2 − 1 = 1 + V Wð Þj
≤ 1 + V Gð Þj j − 3 = V Gð Þj j − 2,

ð81Þ

a contradiction. If ωðG − SÞ = 1, then, G becomes K3. As dis-
cussed in Theorem 11, K3 meets the condition of Theorem
13 that is a P≥2-factor uniform graph.

Case 3. jSj ≥ 2.
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Then, ε1ðSÞ ≤ 2, iðG′ − SÞ ≥ 2jSj − ε1ðSÞ + 1 ≥ 3 and iðG
− SÞ ≥ iðG′ − SÞ − 2 ≥ 1. We consider the following subcases
in light of the value of iðG − SÞ.

Case 4. iðG − SÞ ≥ 2.
If iðG − SÞ = iðG′ − SÞ, then jVðGÞj ≥ 4,

1 ≤ V Gð Þj j − 2
2 < I Gð Þ ≤ Sj j

i G − Sð Þ ≤
Sj j

i G′ − S
� �

≤
Sj j

2 Sj j − ε1 Sð Þ + 1 ≤
Sj j

2 Sj j − 1 = 1
2 + 1

2 2 Sj j − 1ð Þ
≤
1
2 + 1

2 2 × 2 − 1ð Þ = 2
3 ,

ð82Þ

or

2 ≤ V Gð Þj j − 2 < I ′ Gð Þ ≤ Sj j
i G − Sð Þ − 1

≤
Sj j

i G′ − S
� �

− 1
≤

Sj j
2 Sj j − ε1 Sð Þ + 1 − 1

≤
Sj j

2 Sj j − 2 = 1
2 + 1

2 Sj j − 2 ≤
1
2 + 1

2 × 2 − 2 = 1,

ð83Þ

a contradiction.
If iðG − SÞ ≠ iðG′ − SÞ, then, jVðGÞj ≥ 6,

2 ≤ V Gð Þj j − 2
2 < I Gð Þ ≤ Sj j

i G − Sð Þ ≤
Sj j

i G′ − S
� �

− 2

≤
Sj j

2 Sj j − ε1 Sð Þ + 1 − 2 ≤
Sj j

2 Sj j − 3

= 1
2 + 3

2 2 Sj j − 3ð Þ ≤
1
2 + 3

2 2 × 2 − 3ð Þ = 2,

ð84Þ

a contradiction. For τðGÞ, if jSj ≥ 3, then

4 ≤ V Gð Þj j − 2 < I ′ Gð Þ ≤ Sj j
i G − Sð Þ − 1

≤
Sj j

i G′ − S
� �

− 2 − 1
≤

Sj j
2 Sj j − ε1 Sð Þ + 1 − 3

≤
Sj j

2 Sj j − 4 = 1
2 + 2

2 Sj j − 4 ≤
1
2 + 2

2 × 3 − 4 = 3
2 ,

ð85Þ

a contradiction. If jSj = 2, we can easily check that 4 ≤
jVðGÞj − 2 < I ′ðGÞ ≤ jSj/iðG − SÞ − 1 ≤ 2, a contradiction.

Case 5. iðG − SÞ = 1.

Since iðG′ − SÞ ≥ 3, we confirm that K1 and K2 are com-
ponents in G − S, e = uv ∈ EðK2Þ and iðG′ − SÞ = iðG − SÞ +
2 = 3. Using jVðGÞj ≥ 5, we acquire

3
2 ≤

V Gð Þj j − 2
2 < I Gð Þ ≤ S ∪ uf gj j

i G − S ∪ uf gð Þ
= Sj j + 1
i G − Sð Þ + 1 = Sj j + 1

i G′ − S
� �

− 2 + 1

≤
Sj j + 1

2 Sj j − ε1 Sð Þ + 1 − 1 ≤
Sj j + 1

2 Sj j − 2

= 1
2 + 2

2 Sj j − 2 ≤
1
2 + 2

2 × 2 − 2 = 3
2 ,

ð86Þ

or

3 ≤ V Gð Þj j − 2 < I ′ Gð Þ ≤ S ∪ uf gj j
i G − S ∪ uf gð Þ − 1

= Sj j + 1
i G − Sð Þ + 1 − 1 = Sj j + 1

i G′ − S
� �

− 2

≤
Sj j + 1

2 Sj j − ε1 Sð Þ + 1 − 2 ≤
Sj j + 1

2 Sj j − 3

= 1
2 + 5

2 2 Sj j − 3ð Þ ≤
1
2 + 5

2 2 × 2 − 3ð Þ = 3,

ð87Þ

a contradiction.
Thus, we confirm that Theorem 13 is established.

Theorem 14. Let G be a 2-edge-connected graph. If ðGÞ > ðj
VðGÞj − 2Þ/2ðresp:I ′ðGÞ > jVðGÞj − 2Þ, then, G is a P≥3-fac-
tor uniform graph.

Proof. For any e = uv ∈ EðGÞ, G′ = G − e is connected, and
we only need to prove that G′ is P≥3-factor covered. On
the contrary, G′ is not P≥3-factor covered. Then, there exists
a subset S of VðG′Þ satisfying (67).

Let a, b, c be the number of K1 components, K2 compo-
nents, and big sun components in G − S, respectively. Let
H1,⋯,Hc be big sun components in G − S with jVðHiÞj ≥
6. Choosing one vertex from each K2 component in G − S
and let X be the set of these vertices. Set Ri as the factor-
critical subgraph of Hi and Y = ∪c

i=1VðRiÞ. We have jXj = b,
jY j =∑c

i=1jHij/2 and a + b + c = sunðG − SÞ ≥ sunðG′ − SÞ −
2. The following discussion is divided into three cases
according to the value of jSj.

Case 1. jSj = 0.
Then, ε2ðSÞ = 0 and sunðG′Þ ≥ 1 by (67). It implies

sunðG′Þ = 1, G′ is a big sun with at least six vertices, and j
VðGÞj ≥ 6. Moreover, G is a graph constructed by adding
an edge in a big sun. Let R be the factor-critical of G′. We
obtain
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2 ≤ V Gð Þj j − 2
2 < I Gð Þ ≤ V Rð Þj j

i G −V Rð Þð Þ
≤

Rj j
Rj j − 1 = 1 + 1

Rj j − 1 ≤ 1 + 1
3 − 1 = 3

2 ,
ð88Þ

or

4 ≤ V Gð Þj j − 2 < I ′ Gð Þ ≤ V Rð Þj j
i G − V Rð Þð Þ − 1

≤
Rj j

Rj j − 2 = 1 + 2
Rj j − 2 ≤ 1 + 2

3 − 2 = 3,
ð89Þ

a contradiction.

Case 2. jSj = 1.
In this case, ε2ðSÞ ≤ 1, sunðG′ − SÞ ≥ 2 by (67), and a = 0

since jSj = 1 and G is 2-edge-connected.
Case 3. sunðG − SÞ = sunðG′ − SÞ.

We get iðG − S ∪ X ∪ YÞ = b +∑c
i=1jHij/2 ≥ b + 3c ≥ b + c

= sunðG − SÞ = sunðG′ − SÞ ≥ 2 and jVðGÞj ≥ 4 (if jVðGÞj =
3, then G ≅ K3, G − S isomorphic to K2 which contradicts
to sunðG − SÞ = sunðG′ − SÞ ≥ 2).

If jVðGÞj ≥ 6, using the definition of isolated toughness,
we have

2 ≤ V Gð Þj j − 2
2 < I Gð Þ ≤ S ∪ X ∪ Yj j

i G − S ∪ X ∪ Yð Þ
≤
1 + b +∑c

i=1 Hij j/2ð Þ
b +∑c

i=1 Hij j/2ð Þ ,
ð90Þ

which implies b +∑c
i=1jHij/2 < 1, a contradiction. For I ′ðGÞ,

we yield

4 ≤ V Gð Þj j − 2 < I ′ Gð Þ ≤ S ∪ X ∪ Yj j
i G − S ∪ X ∪ Yð Þ − 1

≤
1 + b +∑c

i=1 Hij j/2ð Þ
b +∑c

i=1 Hij j/2ð Þ − 1 ,
ð91Þ

which implies 3b + 3∑c
i=1jHij/2 < 5, contradicting to b + c ≥ 2

.
If jVðGÞj = 5, then, c = a = 0 and

3
2 = V Gð Þj j − 2

2 < I Gð Þ ≤ S ∪ Xj j
i G − S ∪ Xð Þ ≤

1 + b
b

, ð92Þ

or

3 = V Gð Þj j − 2 < I ′ Gð Þ ≤ S ∪ Xj j
i G − S ∪ Xð Þ − 1 ≤

1 + b
b − 1 , ð93Þ

which implies b < 2 which contradicts to b = sunðG − SÞ =
sunðG′ − SÞ ≥ 2.

If jVðGÞj = 4, then, c = a = 0 and b = 1 contradicting to
b = sunðG − SÞ = sunðG′ − SÞ ≥ 2.

Case 4. sunðG − SÞ = sunðG′ − SÞ − 1.
In this case, sunðG − SÞ ≥ 1 since sunðG′ − SÞ ≥ 2.

Claim 1. If K2 is one of components in G − S, then, e∈EðK2Þ.

Proof. Suppose K2 is a component in G − S and e ∈ EðK2Þ is
exactly a deleted edge, set u ∈ VðK2Þ. If G − S is isomorphic
to K2, then, G is isomorphic to K3 which is clearly a P≥3
-factor uniform graph.

If there is a K1 component in G − S, then, jVðGÞj ≥ 4 and

1 ≤ V Gð Þj j − 2
2 < I Gð Þ ≤ S ∪ uf gj j

i G − S ∪ uf gð Þ ≤
2
2 = 1, ð94Þ

or

2 ≤ V Gð Þj j − 2 < I ′ Gð Þ ≤ S ∪ uf gj j
i G − S ∪ uf gð Þ − 1 ≤

2
2 − 1 = 2,

ð95Þ

a contradiction.
If there is another K2 component or big sun component

in G − S (say W), then, there is a vertex x in W such that
dG−SðxÞ = 1 and assume xy ∈ EðG − SÞ. We have jVðGÞj ≥ 5
and

3
2 ≤

V Gð Þj j − 2
2 < I Gð Þ ≤ S ∪ u, yf gj j

i G − S ∪ u, yf gð Þ ≤
3
2 , ð96Þ

or

3 ≤ V Gð Þj j − 2 < I ′ Gð Þ ≤ S ∪ u, yf gj j
i G − S ∪ u, yf gð Þ − 1 ≤

3
2 − 1 = 3,

ð97Þ

a contradiction.
If there exists a nonsun component in G − S (say M),

the,n we select x ∈ VðMÞ with its degree in G − S as small
as possible. We infer

V Gð Þj j − 2
2 < I Gð Þ ≤ S ∪ uf g ∪ V Mð Þ − xf gð Þj j

i G − S ∪ uf g ∪ V Mð Þ − xf gð Þð Þ
≤

V Gð Þj j − 2
2 ,

ð98Þ

or

V Gð Þj j − 2 < I ′ Gð Þ ≤ S ∪ uf g ∪ V Mð Þ − xf gð Þj j
i G − S ∪ uf g ∪ V Mð Þ − xf gð Þð Þ − 1

≤ V Gð Þj j − 2,
ð99Þ

a contradiction.
Hence, the claim is hold.
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From Claim 1, we see that there is a nonsun component
W in G − S with jVðWÞj ≥ 3 (and hence, jVðGÞj ≥ 5), delete
edge e = uv from W, and then, it produces a new sun com-
ponent in G − S. Thus, there is a vertex x in W with dG−Sðx
Þ = 1, and set xy ∈ EðG − SÞ. Note that sunðG − SÞ ≥ 1, if K1
is a component in G − S, then, we yield

3
2 ≤

V Gð Þj j − 2
2 < I Gð Þ ≤ S ∪ yf gj j

i G − S ∪ yf gð Þ ≤
2
2 = 1, ð100Þ

or

3 ≤ V Gð Þj j − 2 < I ′ Gð Þ ≤ S ∪ yf gj j
i G − S ∪ yf gð Þ − 1 ≤

2
2 − 1 = 2,

ð101Þ

a contradiction. If K2 or a big sun is a component in G − S
(denote this sun component by M), then, there is a vertex
x′ in M with dG−Sðx′Þ = 1, and set x′y′ ∈ EðG − SÞ. We
acquire

3
2 ≤

V Gð Þj j − 2
2 < I Gð Þ ≤

S ∪ y, y′
n o���

���
i G − S ∪ y, y′

n o� � ≤
3
2 , ð102Þ

or

3 ≤ V Gð Þj j − 2 < I ′ Gð Þ ≤
S ∪ y, y′

n o���
���

i G − S ∪ y, y′
n o� �

− 1
≤

3
2 − 1 = 3,

ð103Þ

a contradiction.

Case 3. sunðG − SÞ = sunðG′ − SÞ − 2.
In this case, there is a nonsun component W in G − S,

and it produces two sun components after deleting e = uv
from W. Thus, there are at least two vertices x, x′ ∈ VðWÞ
such that dG−SðxÞ = dG−Sðx′Þ = 1. Set xy, x′y′ ∈ EðWÞ and
note that y and y′ are allowed to be the same vertex (if W
≅ P3). If W ≅ P3, then, y = y′, jVðGÞj ≥ 4, and

1 ≤ V Gð Þj j − 2
2 < I Gð Þ ≤ S ∪ yf gj j

i G − S ∪ yf gð Þ ≤
2
2 = 1, ð104Þ

or

2 ≤ V Gð Þj j − 2 < I ′ Gð Þ ≤ S ∪ yf gj j
i G − S ∪ yf gð Þ − 1 ≤

2
2 − 1 = 2,

ð105Þ

a contradiction. Otherwise, jVðGÞj ≥ 5, and

3
2 ≤

V Gð Þj j − 2
2 < I Gð Þ ≤

S ∪ y, y′
n o���

���
i G − S ∪ y, y′

n o� � ≤
3
2 , ð106Þ

or

3 ≤ V Gð Þj j − 2 < I ′ Gð Þ ≤
S ∪ y, y′

n o���
���

i G − S ∪ y, y′
n o� �

− 1
≤

3
2 − 1 = 3,

ð107Þ

a contradiction.

Case 4. jSj ≥ 2.
In this case, ε2ðSÞ ≤ 2, a + b + c = sunðG′ − SÞ ≥ 3 by (67),

and sunðG − SÞ ≥ sunðG′ − SÞ − 2 ≥ 1. We have jVðGÞj ≥ 5,

3
2 ≤

V Gð Þj j − 2
2 < I Gð Þ

≤
S ∪ X ∪ Yj j

i G − S ∪ X ∪ Yð Þ ≤
Sj j + b +∑c

i=1 Hij j/2ð Þ
b +∑c

i=1 Hij j/2ð Þ :

ð108Þ

Then, the rest proof process is consistent with the part of
Theorem 4 and Theorem 5 in Gao et al. [22], and we will not
repeat here.

Hence, the proof of Theorem 14 is finished.

3. Sharpness

In this section, we present some counterexamples to verify
that the bounds of parameters in theorems in the second sec-
tion are tight.

3.1. Sharpness of Theorem 4-Theorem 6.Wemanifest that (1)
λðGÞ ≥m + 1 and tðGÞ >m/ðm + 1Þ or τðGÞ > 1 in Theorem 4
cannot change to λðGÞ ≥m and tðGÞ =m/ðm + 1Þ (or τðGÞ
= 1); (2) λðGÞ ≥m + 1 and IðGÞ > 2m/ðm + 1Þ or I ′ðGÞ > 2
in Theorem 5 cannot change to λðGÞ ≥m and IðGÞ = 2m/ð2
m + 1Þ (or I ′ðGÞ = 1); (3) λðGÞ ≥m + 1 and bindðGÞ > 3/2 in
Theorem 6 cannot change to λðGÞ ≥m and bindðGÞ = 3/2.

Let G = Km∨ðmK2 ∪ K1Þ. Taking one vertex from each
K2 and denote X by the set of these vertices, we have

t Gð Þ = V Kmð Þj j
ω G −V Kmð Þð Þ =

m
m + 1 ,

τ Gð Þ = V Kmð Þj j
ω G − V Kmð Þð Þ − 1 = m

m + 1 − 1 = 1,

I Gð Þ = V Kmð Þ ∪ Xj j
i G −V Kmð Þ − Xð Þ = 2m

m + 1 ,

I ′ Gð Þ = V Kmð Þ ∪ Xj j
i G −V Kmð Þ − Xð Þ − 1 = 2m

m + 1 − 1 = 2,

bind Gð Þ = NG V mK2ð Þð Þj j
V mK2ð Þj j = 3m

2m = 3
2 :

ð109Þ
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Set E′ = EðmK2Þ and G′ =G − E′ = Km∨ðð2m + 1ÞK1Þ.
Then, jE′j =m, and by setting S = Km, we have

i G′ − S
� �

= 2m + 1 > 2m = 2 Sj j: ð110Þ

Thus, G′ has no P≥2-factor, and accordingly, G is not a
ðP≥2,mÞ-factor-deleted graph.

3.2. Sharpness of Theorem 7 and Theorem 8. We show that
the toughness bounds in Theorem 7 and Theorem 8 are best.
Consider G = Kk+2∨ð3K1Þ, and we have κðGÞ = k + 2, tðGÞ
= ðk + 2Þ/3 and τðGÞ = ðk + 2Þ/2. Set U ⊆VðGÞ with jU j =
k, and let G′ = G −U = K2∨ð3K1Þ. Take S = K2 in G′, then,
we have ε1ðSÞ = ε2ðSÞ = 2,

i G′ − S
� �

= 3 > 2 = 2 Sj j − ε1 Sð Þ,

sun G′ − S
� �

= 3 > 2 = 2 Sj j − ε2 Sð Þ:
ð111Þ

Hence, according to Lemma 2, G′ is not P≥2-factor cov-
ered, and G is not a ðP≥2, kÞ-factor critical covered graph.
Moreover, in terms of Lemma 3, G′ is not P≥3-factor cov-
ered, and G is not a ðP≥3, kÞ-factor critical covered graph.

3.3. Sharpness of Theorem 9. We depict that the isolated
toughness bounds in Theorem 9 for a graph to be ðP≥2, kÞ
-factor critical covered are best. Consider G = Kk+1∨ð2K1 ∪
KtÞ where t is enough large, and we have κðGÞ = k + 1, IðG
Þ = ðk + 1/2Þðk + 1Þ/2 and I ′ðGÞ = k + 1. Set U ⊆VðGÞ with
jUj = k, and let G′ =G −U = K1∨ð2K1 ∪ KtÞ. Set S as the
first K1 in G′, then, we have ε1ðSÞ = 1 and

i G′ − S
� �

= 2 > 1 = 2 Sj j − ε1 Sð Þ: ð112Þ

Hence, by means of Lemma 2, G′ is not P≥2-factor cov-
ered, and G is not a ðP≥2, kÞ-factor critical covered graph.

3.4. Sharpness of Theorem 10. The isolated toughness condi-
tions in Theorem 10 are tight. Consider G = Kk+1∨ð2K2 ∪
G′′Þ where G′′ is connected but not a sun. Set U ⊂VðKk+1
Þ with jUj = k, G′ =G −U = K1∨ð2K2 ∪G′′Þ, and S = K1 in
G′. Selecting one vertex from each K2 in the 2K2 part and
denoting X by the set of these two vertices, we confirm

I Gð Þ = U ∪ S ∪ Xj j
i G −U ∪ S ∪ Xð Þ = Uj j + Sj j + Xj j

i G′ − S ∪ X
� �

= k + 1 + 2
2 = 3 + k

2 ,

I ′ Gð Þ = U ∪ S ∪ Xj j
i G −U ∪ S ∪ Xð Þ − 1

= Uj j + Sj j + Xj j
i G′ − S ∪ X
� �

− 1
= k + 1 + 2

2 − 1 = k + 3:

ð113Þ

On the other hand, ε2ðSÞ = 1 since G′′ is a nonsun com-
ponent of G′ − S and

sun G′ − S
� �

= 2 > 1 = 2 Sj j − ε2 Sð Þ: ð114Þ

In view of Lemma 3, G′ is not P≥3-factor covered, and G
is not a ðP≥3, kÞ-factor critical covered graph.

3.5. Sharpness of Theorem 11. The toughness bounds in The-
orem 11 are tight. Consider G = K2∨ðK1 ∪ K2Þ which is 2-
edge-connected graph with tðGÞ = 1 and τðGÞ = 2. Select e
∈ EðK1 ∪ K2Þ and set G′ =G − e = K2∨ð3K1Þ. Let S = VðK2
Þ ⊆VðG′Þ. We have ε1ðSÞ = 2 and

i G′ − S
� �

= 3 > 2 = 2 Sj j − ε1 Sð Þ: ð115Þ

Therefore, by means of Lemma 2, G′ is not P≥2-factor
covered, and G is not a P≥2-factor uniform graph.

3.6. Sharpness of Theorem 12. The isolated toughness bounds
in Theorem 12 are sharp. Consider G = K2∨ð2K2Þ which is a
2-edge-connected graph. We have tðGÞ = 1 and τðGÞ = 2. Let
e ∈ Eð2K2Þ, G′ =G − e = K2∨ðK2 ∪ 2K1Þ, and S be the vertex
set of first K2 in G′. We infer ε2ðSÞ = 2 and

sun G′ − S
� �

= 3 > 2 = 2 Sj j − ε2 Sð Þ: ð116Þ

Hence, in terms of Lemma 3, G′ is not P≥3-factor cov-
ered, and G is not a P≥3-factor uniform graph.

3.7. Sharpness of Theorem 13 and Theorem 14. To show the
isolated toughness bounds in Theorem 13 and Theorem 14
that are sharp, we consider G = K1∨ðK2 ∪ KtÞ where t is a
large number. Select one vertex from K2 and t − 1 vertices
from Kt and denote X by the vertex subset of these vertices.
We have

I Gð Þ = V K1ð Þ ∪ Xj j
i G − V K1ð Þ ∪ Xð Þ

= 1 + t
2 = 1 + V Gð Þj j − 3

2 = V Gð Þj j − 2
2 ,

I ′ Gð Þ = V K1ð Þ ∪ Xj j
i G − V K1ð Þ ∪ Xð Þ − 1

= 1 + t
2 − 1 = 1 + V Gð Þj j − 3 = V Gð Þj j − 2:

ð117Þ

On the other hand, let e ∈ EðK2Þ and G′ =G − e = K1∨ð
2K1 ∪ KtÞ. Let S be the vertex set of first K1 in G′, and then,
we have ε1ðSÞ = ε2ðSÞ = 1,

i G′ − S
� �

= 2 > 1 = 2 Sj j − ε1 Sð Þ,

sun G′ − S
� �

= 2 > 1 = 2 Sj j − ε2 Sð Þ:
ð118Þ
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Therefore, by means of Lemma 2, G′ is not P≥2-factor
covered, and G is not a P≥2-factor uniform graph. Also, in
terms of Lemma 3, G′ is not P≥3-factor covered, and G is
not a P≥3-factor uniform graph.

4. Open Problems

The restrictions in factor critical graphs can be further
extended to more general ones. For instance, a graph G is
a ðP≥n, k,mÞ-factor critical covered graph if removing any
k vertices from G, the resting subgraph is still a ðP≥n,mÞ
-factor covered graph (that is, if for any E ⊆ EðGÞ with jEj
=m, G has a P≥n-factor containing all the edges in E, and
then, G is called a ðP≥n,mÞ-factor covered graph). The big-
gest obstacle to solve these problems is lacking of necessary
and sufficient condition for ðP≥n,mÞ-factor covered graph.
Hence, as the first step, we need to expand the results on
P≥2-factor covered graph and P≥3-factor covered graph
determined by Zhang and Zhou [15] to necessary and suffi-
cient condition of ðP≥2,mÞ-factor covered graph and ðP≥3,
mÞ-factor covered graph. These problems are worthy of deep
study in the future.
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In the form of a T, a T-maze is an experimental design in which each trial consists of decisions between two or more options. It
contains choices with particular kinds of symmetries that have gained considerable attention in psychology and learning theories.
One of the simplest mazes utilized by rats is the T-maze since it requires just a single point of preference. At a T-maze base, the
mouse chooses to turn right or left to get food. This paper aims at analyzing the rat’s behavior in such circumstances and
proposing a suitable mathematical model for it. The existence and uniqueness of a solution to the proposed T-maze model are
investigated by using the appropriate fixed point method.

1. Introduction

Mathematical psychology is an approach to psychological
study focused on mathematical modeling of perceptual,
thinking, cognitive, and motor processes. The mathematical
methods are used to develop more reliable theories and thus
produce more rigorous empirical validations. The biggest
issue with today’s application of mathematics to psycholog-
ical problems and most likely for some time to come is
modeling these problems.

In an animal or human being, the learning phase may
often be viewed as a series of choices between multiple pos-
sible reactions. Even in basic repetitive experiments under
strictly regulated conditions, preference sequences are typi-
cally volatile, suggesting that the probability governs the
choice of responses. It is also helpful to identify structural
adjustments in the series of alternatives that reflect changes
in trial-to-trial outcome probabilities. From this perspective,

most of the learning analysis explains the probability of a
trial-to-test occurrence that describes a stochastic
mechanism.

In modern mathematical learning experiments, the
researchers concluded that a basic learning experiment was
compatible with any stochastic process. It is not a new idea
(see [1] for a summary of its history). After 1950, two critical
features emerged mainly in the research initiated by Bush,
Estes, and Mosteller. In the first instance, the learning
method egalitarian essence was a core feature of the devel-
oped model. Second, these frameworks were studied and
applied in areas that did not conceal their quantitative
aspects.

Several studies (Estes and Straughan [2], Grant et al. [3],
Humphreys [4], and Jarvik [5]) on human actions in proba-
bility–learning scenarios have produced results aligned with
the so–called event-matching hypothesis that the allocation
of incentives would mirror the asymptotic distribution of
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answers in a two-choice setting. Conflicting findings have
been reported in other studies. For example, if subjects
choose the correct option in most trials, then, it would accel-
erate the probability close to 1 (for the detail, see [1, 6]).

Turab and Sintunavarat [7, 8] presented a functional
equation to analyze Bush and Wilson’s experimental study
on a paradise fish [9], in which they offered the fish two
options for swimming. As the starting gate was raised, swim-
mers had two options: swim on the right-hand side or the
left-hand side of the tank’s far end.

Recently, in [10], the authors discussed a particular
type of traumatic avoidance learning experiment of normal
dogs proposed by Solomon and Wynne [11]. They exam-
ined 30 mongrel dogs weighing between 9 and 13 kg and
observed a particular form of emotional resistance per-
formed in a tiny box with a steel grid floor. Turab and
Sintunavarat [10] analyzed the dogs’ behavior in such sit-
uations and proposed a mathematical model and also pre-
sented the existence of solutions of such model by using
the fixed point technique.

On the other hand, the genesis of the fixed point theory
was primarily for the use of successive approximations to
prove the existence and uniqueness of solutions, primarily
of differential and integral equations, in the second half of
the nineteenth century. It is indeed a beautiful blend of pure
and applied analysis, topology, and geometry. Picard’s work
demonstrates the fundamental concepts of a fixed point the-
oretic perspective. However, it is attributed to the Polish
mathematician Banach for abstracting the fundamental
ideas into a framework applicable to a wide variety of appli-
cations beyond ordinary differential and integral equations
(see [12]). It has been generalized and extended in various
directions (for the detail, see [13–16]). For more details
about the fixed point theory and its applications in different
spaces, we refer the reader to [17–22].

In this paper, we present a specific type of psycholog-
ical learning theory experiment related to the T-maze
model proposed by Brunswik and Stanley in [23, 24],
and suggest a mathematical model that is appropriate for
it. The existence and uniqueness of the proposed model’s
solution are investigated by using the suitable fixed point
theorem. Later on, to check the proposed model’s validity,
we shall highlight some particular aspects of the T-maze
model under the experimenter-subject controlled events.
In the end, we raise an open problem for the interested
readers.

2. A T–Maze Experiment Proposed by Brunswik
and Stanley

A T-maze [23, 24] is a unique design that has gotten much
attention in the past few years. It is a classic maze for rats
since it has only one choice point. While experimental
design modifications and generalizations have been used
with mice and other subjects, we shall concentrate on the
primary form of the open maze used with rats.

In Figure 1, a schematic of the apparatus can be seen. At
the starting position, s, a rat is put and it runs to the point of

preference, w. After that, the rat moves to one of the two aim
bins, A and B, where it may get food.

Here, the experimental trials constitute the series of
behavior. With the same rat, the process is usually per-
formed several times. A very elaborate course of action is
the overall activity of a rat during an experimental study.
The rat is in a particular stimulation position when it crosses
the labyrinth and is in two potential stimulus conditions
after reaching the preference stage. Of course, this overall
activity on a test may be divided up and appropriate mea-
surements or indexes used by each part can be used. For
example, we could ask about the starting location latency, s
, or the running momentum between s and the w-point of
preference. However, it seems to us that the part of the rat’s
conduct that is unique to this experiment is the behavior at
the option stage, w.

In the study that follows, we only consider a rat’s choice
of the path on a trial instead of any other actions it may
exhibit. The rat arrives at the decision point at a complete
experimental study where the stimulation factor population
is kept unchanged from trial to trial. Corresponding to the
target box achieved, A or B, two groups of responses are
listed in Table 1. One and only one of these response groups
take part in each study trial. Then, an experimental study
compares to a trial as described in [12]—a chance to select
between alternatives that are mutually exclusive and
exhaustive.

The condition of the organism on a specific test, accord-
ing to the model, is fully specified by a probability k that the
rat will go to goal box A and a probability 1 − k that it will go
to goal box B. We have complete information about the

Reward

Correct choice w

A
B

1 – k k

s

Figure 1: The behavior of a rat in a T-maze experiment.

Table 1: Alternative definitions of experimental events in a T-maze
experiment depending on the placement of the food and chosen
side.

Responses Outcomes

A : left turn O1 : food side (reward)

B : left turn O1 : food side (reward)

A : right turn O2 : nonfood side (no reward)

B : right turn O2 : nonfood side (no reward)
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learning process model when these probabilities are recog-
nized for each trial. These probabilities can be estimated
from the proportion of turns made by a single rat on several
trials to goal box A or from the proportion of a population of
rats that go on a specific trial to goal box B.

3. Mathematical Modeling of the Proposed T-
Maze Experiment

In the above experiment, the significant interest lies in the
behavior of a rat; turn left or right, “A” or “B,” and get the
food which is dependent on where the food is placed and
the movement of a rat towards that compartment. In our
view, if a rat chooses the food side, there would be an occur-
rence of alternative O1, and if a rat made a move to the other
side, then, there will be an occurrence of alternative O2.
According to the mathematical point of view, there would
be four possibilities of events, depending on the movement
of the rat and the placement of the food. These events are
listed in Table 2.

The probability of the responses A and B are x and ð1
− xÞ, respectively, where x ∈ ½0, 1�. The experimental pattern
asks for the outcomes of the responses (whether the rat gets
the food or not), trials’ fixed proportion of ς ∈ ½0, 1�. There-
fore, we get the event probabilities stated below (see Table 3).

Let us assume that ϑ1, ϑ2 ∈ ð0, 1Þ are the learning–rate
parameters and their values measure the ineffectiveness of
the events E1 − E4 in altering the response probability. Also,
λk ∈ ½0, 1�, where k = 1, 2 is the constant of the corresponding
event E1 − E4. If ςx is the probability of response A with out-
come O1 on some trial and A is fulfilled, the new probability
of A with outcome O1 is ϑ1x + ð1 − ϑ1Þλ1, and if A is
achieved with outcome O2, then, the new probability will
be ϑ1x + ð1 − ϑ1Þð1 − λ1Þ with the event probability ð1 − ςÞx
: Similarly, if B is performed with outcomes O1 and O2,
then, the new probabilities of B are ϑ2x + ð1 − ϑ2Þλ2 and ϑ2
x + ð1 − ϑ2Þð1 − λ2Þ, having event probabilities of occurrence
ð1 − xÞς and ð1 − ςÞð1 − xÞ, respectively. For the four events
E1 − E4, we can define the transition operators P1, P2, P3,
P4 : ½0, 1�⟶ ½0, 1� as

P1x = ϑ1x + 1 − ϑ1ð Þλ1,
P2x = ϑ2x + 1 − ϑ2ð Þλ2,

P3x = ϑ1x + 1 − ϑ1ð Þ 1 − λ1ð Þ,
P4x = ϑ2x + 1 − ϑ2ð Þ 1 − λ2ð Þ,

ð1Þ

for all x ∈ ½0, 1� and 0 < ϑ1, ϑ2 < 1.

It can be observed that a rat following such description,
in the long run, will stop giving feedback to one of the
responses and react only with the other (with probability
one). Now, giving x, ϑ1, ϑ2, λ1, λ2, what is the probability
that the rat stops providing B’s, that is, consumed by A?
We define such probability by Pðx, ϑ1, ϑ2, λ1, λ2Þ as a func-
tion of x, and it depends on the path as well as the responses
and outcomes. After one trial, the rat has a new probability
shown in (1) depending on the events E1 − E4 with the
respective probabilities of occurrence. Thus, if its first trial
is A with outcomes O1 and O2, its new probability of con-
sumption by A will be Pðϑ1x + ð1 − ϑ1Þλ1, ϑ1, λ1Þ and Pðϑ1x
+ ð1 − ϑ1Þð1 − λ1Þ, ϑ1, λ1Þ, respectively. But, if the first trial
is B with outcomes O1 and O2, then, the new probability
of absorption by B will be Pðϑ2x + ð1 − ϑ2Þλ2, ϑ2, λ2Þ and P
ðϑ2x + ð1 − ϑ2Þð1 − λ2Þ, ϑ2, λ2Þ, respectively.

By considering the above transition operators with their
corresponding probabilities and events given in Table 3, we
have the following functional equation

P x, ϑ1, ϑ2, λ1, λ2ð Þ = ςxP ϑ1x + 1 − ϑ1ð Þλ1, ϑ1, λ1ð Þ
+ 1 − xð ÞςP ϑ2x + 1 − ϑ2ð Þλ2, ϑ2, λ2ð Þ
+ 1 − ςð ÞxP ϑ1x + 1 − ϑ1ð Þ 1 − λ1ð Þ, ϑ1, λ1ð Þ
+ 1 − ςð Þ 1 − xð ÞP ϑ2x + 1 − ϑ2ð Þ 1 − λ2ð Þ, ϑ2, λ2ð Þ:

ð2Þ

In the progression, the following noted result will be
needed.

d Mℓ,Mmð Þ ≤ ϖd ℓ,mð Þ, ð3Þ

for some ϖ < 1 and for all ℓ,m ∈ S: Then, M has precisely
one fixed point. Moreover, the Picard iteration fℓng in S

which is defined by ℓn =Mℓn−1 for all n ∈ℕ, where ℓ0 ∈ S ,
converges to the unique fixed point of M.

Theorem 1. (Banach fixed point theorem [12]). Let ðS , dÞ be
a complete metric space and M : S ⟶ S be a mapping
defined by

4. Main Results

Let A = ½0, 1�: Throughout this article, we denote by B the
class of all continuous real-valued functions W : A ⟶ℝ
such that W ð0Þ = 0 and

sup
x≠y

W xð Þ −W yð Þj j
x − yj j <∞: ð4Þ

Table 2: The movement of a rat and its corresponding events.

Response Outcomes Events

A O1 E1

B O1 E2

A O2 E3

B O2 E4

Table 3: Corresponding probabilities of the four events.

Event Probability of occurrence

E1 ςx

E2 1 − xð Þς
E3 1 − ςð Þx
E4 1 − ςð Þ 1 − xð Þ
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It is easy to see that ðB, k·kÞ is a Banach space, where k·k
is defined by

Wk k = sup
x≠y

W xð Þ −W yð Þj j
x − yj j , ð5Þ

for all W ∈B.
For the computational convenience, we define an opera-

tor W : A ⟶ℝ and write functional equation (2) as

W xð Þ = ςxW ϑ1x + 1 − ϑ1ð Þλ1ð Þ + 1 − xð ÞςW ϑ2x + 1 − ϑ2ð Þλ2ð Þ
+ 1 − ςð ÞxW ϑ1x + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ
+ 1 − ςð Þ 1 − xð ÞW ϑ2x + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ,

ð6Þ

where 0 < ϑ1, ϑ2 < 1 and λ1, λ2 ∈A . Our objective is to inves-
tigate the existence and uniqueness of a solution to func-
tional equation (6) by using the fixed point technique. We
begin with the following outcome.

Theorem 2. Let 0 < ϑ1, ϑ2 < 1 and λ1, λ2, ς ∈A such that ϖ
< 1, where

ϖ≔ 2ς − 1ð Þ 1 − ϑ1ð Þλ1 + 1 − ϑ2ð Þλ2ð Þ + 1 − ςð Þj
� 1 − ϑ1ð Þ + 1 − ϑ2ð Þð Þ + 2 ϑ1 + ϑ2ð Þj: ð7Þ

If there exists a closed subset Λ of B such that Λ is Z
invariant, that is, ZðΛÞ ⊆Λ, where Z is the operator from
Λ defined for each W ∈ Λ by

ZWð Þ xð Þ = ςxW ϑ1x + 1 − ϑ1ð Þλ1ð Þ + ς 1 − xð Þ
�W ϑ2x + 1 − ϑ2ð Þλ2ð Þ + 1 − ςð Þ
� xW ϑ1x + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ + 1 − ςð Þ
� 1 − xð ÞW ϑ2x + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ,

ð8Þ

for all x ∈A , then, Z is a Banach contraction mapping with
the metric d induced by k·k.

Proof. Let W 1,W 2 ∈Λ. For each distinct points x, y ∈A , we
obtain

ZW 1 − ZW 2ð Þ xð Þ − ZW 1 − ZW 2ð Þ yð Þj j
x − yj j

= 1
x − y

ςx W 1 −W 2ð Þ ϑ1x + 1 − ϑ1ð Þλ1ð Þ½
�
�
�
�

+ ς 1 − xð Þ W 1 −W 2ð Þ ϑ2x + 1 − ϑ2ð Þλ2ð Þ
+ 1 − ςð Þx W 1 −W 2ð Þ ϑ1x + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ
+ 1 − ςð Þ 1 − xð Þ W 1 −W 2ð Þ ϑ2x + 1 − ϑ2ð Þð
� 1 − λ2ð ÞÞ − ςy W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þλ1ð Þ
− ς 1 − yð Þ W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þλ2ð Þ
− 1 − ςð Þy W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ
− 1 − ςð Þ 1 − yð Þ W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ

��
�
�
�

= 1
x − y

ςx W 1 −W 2ð Þ ϑ1x + 1 − ϑ1ð Þλ1ð Þ − ςx W 1 −W 2ð Þ½
�
�
�
�

� ϑ1y + 1 − ϑ1ð Þλ1ð Þ + ς 1 − xð Þ W 1 −W 2ð Þ
� ϑ2x + 1 − ϑ2ð Þλ2ð Þ − ς 1 − xð Þ W 1 −W 2ð Þ
� ϑ2y + 1 − ϑ2ð Þλ2ð Þ + 1 − ςð Þx W 1 −W 2ð Þ
� ϑ1x + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ − 1 − ςð Þx W 1 −W 2ð Þ
� ϑ1y + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ + 1 − ςð Þ 1 − xð Þ W 1 −W 2ð Þ
� ϑ2x + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ − 1 − ςð Þ 1 − xð Þ W 1 −W 2ð Þ
� ϑ2y + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ + ςx W 1 −W 2ð Þ
� ϑ1y + 1 − ϑ1ð Þλ1ð Þ − ςy W 1 −W 2ð Þ
� ϑ1y + 1 − ϑ1ð Þλ1ð Þ + ς 1 − xð Þ W 1 −W 2ð Þ
� ϑ2y + 1 − ϑ2ð Þλ2ð Þ − ς 1 − yð Þ W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þð
� λ2Þ + 1 − ςð Þx W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þð
� 1 − λ1ð ÞÞ − 1 − ςð Þy W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þð
� 1 − λ1ð ÞÞ + 1 − ςð Þ 1 − xð Þ W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þð
� 1 − λ2ð ÞÞ − 1 − ςð Þ 1 − yð Þ W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þð
� 1 − λ2ð ÞÞ

��
�
�
�
= 1

x − y
ςx W 1 −W 2ð Þ ϑ1x + 1 − ϑ1ð Þλ1ð Þ − ςx½

�
�
�
�

� W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þλ1ð Þ� + 1
x − y

ς 1 − xð Þ½
� W 1 −W 2ð Þ ϑ2x + 1 − ϑ2ð Þλ2ð Þ − ς 1 − xð Þ W 1 −W 2ð Þ
� ϑ2y + 1 − ϑ2ð Þλ2ð Þ� + 1

x − y
1 − ςð Þx W 1 −W 2ð Þ½

� ϑ1x + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ − 1 − ςð Þx W 1 −W 2ð Þ
� ϑ1y + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ� + 1

x − y
1 − ςð Þ 1 − xð Þ½

� W 1 −W 2ð Þ ϑ2x + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ − 1 − ςð Þ 1 − xð Þ
� W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ� + 1

x − y
� ςx W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þλ1ð Þ − ςy W 1 −W 2ð Þ½
� ϑ1y + 1 − ϑ1ð Þλ1ð Þ� + 1

x − y
ς 1 − xð Þ W 1 −W 2ð Þ½

� ϑ2y + 1 − ϑ2ð Þλ2ð Þ − ς 1 − yð Þ W 1 −W 2ð Þ
� ϑ2y + 1 − ϑ2ð Þλ2ð Þ� + 1

x − y
1 − ςð Þ½

� x W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ − 1 − ςð Þ
� y W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ� + 1

x − y
1 − ςð Þ½

� 1 − xð Þ W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ − 1 − ςð Þ
� 1 − yð Þ W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ�j ≤ ϑ1ςx
� W 1 −W 2k k + ϑ2ς 1 − xð Þ W 1 −W 2k k + ϑ1 1 − ςð Þx
� W 1 −W 2k k + ϑ2 1 − ςð Þ 1 − xð Þ W 1 −W 2k k + ςj
� W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þλ1ð Þ − ς W 1 −W 2ð Þ 0ð Þj + ςj
� W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þλ2ð Þ − ς
� W 1 −W 2ð Þ 0ð Þj + 1 − ςð Þ W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þðj
� 1 − λ1ð ÞÞ − 1 − ςð Þ W 1 −W 2ð Þ 0ð Þj + 1 − ςð Þ W 1 −W 2ð Þj
� ϑ2y + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ − 1 − ςð Þ W 1 −W 2ð Þ 0ð Þj = ϑ1ςx
� W 1 −W 2k k + ϑ2ς 1 − xð Þ W 1 −W 2k k + ϑ1
� 1 − ςð Þx W 1 −W 2k k + ϑ2 1 − ςð Þ 1 − xð Þ
� W 1 −W 2k k + ς ϑ1y + 1 − ϑ1ð Þλ1ð Þ
� W 1 −W 2k k + ς ϑ2y + 1 − ϑ2ð Þλ2ð Þ
� W 1 −W 2k k + 1 − ςð Þ ϑ1y + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ
� W 1 −W 2k k + 1 − ςð Þ ϑ2y + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ
� W 1 −W 2k k ≤ ϖ W 1 −W 2k k,

ð9Þ
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where ϖ is defined in (7). This gives that

d ZW 1, ZW 2ð Þ = ZW 1 − ZW 2k k ≤ ϖ W 1 −W 2k k
= ϖd W 1,W 2ð Þ: ð10Þ

It follows from 0 < ϖ < 1 that Z is a Banach contraction
mapping with the metric d induced by k·k.☐

We get the following conclusion from Theorem 2 about
the uniqueness of a solution to functional equation (6).

Theorem 3. Functional equation (6) has a unique solution
provided that ϖ < 1, where ϖ is defined in (7), and there exists
a closed subset Λ of B such that Λ is Z invariant, that is,
ZðΛÞ ⊆Λ, where Z is the operator from Λ defined for each
W ∈ Λ by

ZWð Þ xð Þ = ςxW ϑ1x + 1 − ϑ1ð Þλ1ð Þ + ς 1 − xð Þ
�W ϑ2x + 1 − ϑ2ð Þλ2ð Þ + 1 − ςð Þ
� xW ϑ1x + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ + 1 − ςð Þ
� 1 − xð ÞW ϑ2x + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ,

ð11Þ

for all x ∈A :Moreover, the iteration fW ng in Λ is defined by

W nð Þ xð Þ = ςxW n−1 ϑ1x + 1 − ϑ1ð Þλ1ð Þ + ς 1 − xð Þ
�W n−1 ϑ2x + 1 − ϑ2ð Þλ2ð Þ + 1 − ςð Þ
� xW n−1 ϑ1x + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ
+ 1 − ςð Þ 1 − xð ÞW n−1 ϑ2x + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ,

ð12Þ

for all n ∈ℕ, whereW 0 ∈Λ, converges to the unique solution
of functional equation (6) in the sense of the metric d induced
by k·k.

Proof.We derive the result of this theorem by combining the
Banach fixed point theorem with Theorem 3.☐

5. A Certain Case of a T-Maze Experiment with
Experimenter-Subject-Controlled Events

It has been highlighted that the examination of any experi-
ment is based on suppositions, which are assembled about
the subject. Experiments are classified as contingent and
noncontingent, based on the occurrences of the result.

In the previous models on imitation problems such as T-
maze experiments with fish, dogs, and humans (see [7, 10,
25]), it was already mentioned that such experiments
required a contingent approach; the result of the trials was
entirely dependent on the subject’s choice. Such types of
models required experimenter-subject-controlled events.
The two responses A and B along with outcomes O1 and
O2 are choosing the right or left side or pushing the right
or left button, which coincides with rewarding and nonre-
warding or choosing the correct and incorrect side, respec-
tively. Now, we define the probabilities ς1 and ς2 which
indicate the conditional probability of outcomes O1 and

O2 of the given alternatives A and B, respectively, such that

ς1 + ς2 = 1: ð13Þ

With such conditions, we have Table 4.
We have the following functional equation from the data

given above

W xð Þ = ς1xW ϑ1x + 1 − ϑ1ð Þλ1ð Þ + ς2 1 − xð Þ
�W ϑ2x + 1 − ϑ2ð Þλ2ð Þ + 1 − ς1ð Þ
� xW ϑ1x + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ
+ 1 − ς2ð Þ 1 − xð ÞW ϑ2x + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ,

ð14Þ

where W : A ⟶ℝ is an unknown function, 0 < ϑ1, ϑ2 < 1,
and λ1, λ2, ς1, ς2 ∈A with ς1 + ς2 = 1. We shall begin with
the following outcome.

Theorem 4. Let 0 < ϑ1, ϑ2 < 1 and λ1, λ2, ς1, ς2 ∈A such that
ϖå < 1, where

ϖ⋆ ≔ 2λ1 − 1ð Þ ς1 1 − ϑ1ð Þð Þ + 2λ2 − 1ð Þ ς2 1 − ϑ2ð Þð Þ
�
�
�
�
�

+ 1 − ϑ1ð Þ 1 − λ1ð Þ + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ + 2 ϑ1 + ϑ2ð Þ

�
�
�
�
�
:

ð15Þ

If there exists a closed subset Λ of B such that Λ is Z
invariant, that is, ZðΛÞ ⊆Λ, where Z is the operator from
Λ defined for each W ∈ Λ by

ZWð Þ xð Þ = ς1xW ϑ1x + 1 − ϑ1ð Þλ1ð Þ + ς2 1 − xð Þ
�W ϑ2x + 1 − ϑ2ð Þλ2ð Þ + 1 − ς1ð Þ
� xW ϑ1x + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ
+ 1 − ς2ð Þ 1 − xð ÞW ϑ2x + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ,

ð16Þ

for all x ∈A , then, Z is a Banach contraction mapping with
the metric d induced by k·k.

Table 4: Four events under conditional probabilities of occurrence.

Events Outcomes Transition operators
Probability of
occurrence

A O1 P1x = ϑ1x + 1 − ϑ1ð Þλ1 ς1x

B O1 P2x = ϑ2x + 1 − ϑ2ð Þλ2 ς2 1 − xð Þ
A O2 P3x = ϑ1x + 1 − ϑ1ð Þ 1 − λ1ð Þ 1 − ς1ð Þx
B O2 P4x = ϑ2x + 1 − ϑ2ð Þ 1 − λ2ð Þ 1 − ς2ð Þ 1 − xð Þ
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Proof. Let W 1,W 2 ∈Λ. For each distinct points x, y ∈A , we
obtain

ZW 1 − ZW 2ð Þ xð Þ − ZW 1 − ZW 2ð Þ yð Þj j
x − yj j

= 1
x − y

ς1x W 1 −W 2ð Þ ϑ1x + 1 − ϑ1ð Þλ1ð Þ + ς2 1 − xð Þ W 1 −W 2ð Þ ϑ2x + 1 − ϑ2ð Þλ2ð Þ½
�
�
�
�

+ 1 − ς1ð Þx W 1 −W 2ð Þ ϑ1x + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ + 1 − ς2ð Þ 1 − xð Þ W 1 −W 2ð Þ
� ϑ2x + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ − ς1y W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þð
� λ1Þ − ς2 1 − yð Þ W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þλ2ð Þ − 1 − ς1ð Þ
� y W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ − 1 − ς2ð Þ 1 − yð Þ
� W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þ 1 − λ2ð Þð �j

= 1
x − y

ς1x W 1 −W 2ð Þ ϑ1x + 1 − ϑ1ð Þλ1ð Þ − ς1x W 1 −W 2ð Þ½
�
�
�
�

� ϑ1y + 1 − ϑ1ð Þλ1ð Þ + ς2 1 − xð Þ W 1 −W 2ð Þ ϑ2x + 1 − ϑ2ð Þð
� λ2Þ − ς2 1 − xð Þ W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þλ2ð Þ + 1 − ς1ð Þ
� x W 1 −W 2ð Þ ϑ1x + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ − 1 − ς1ð Þ
� x W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ + 1 − ς2ð Þ 1 − xð Þ
� W 1 −W 2ð Þ ϑ2x + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ − 1 − ς2ð Þ 1 − xð Þ
� W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ + ς1x W 1 −W 2ð Þ
� ϑ1y + 1 − ϑ1ð Þλ1ð Þ − ς1y W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þλ1ð Þ
+ ς2 1 − xð Þ W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þλ2ð Þ − ς2 1 − yð Þ
� W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þλ2ð Þ + 1 − ς1ð Þx W 1 −W 2ð Þ
� ϑ1y + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ − 1 − ς1ð Þy W 1 −W 2ð Þ
� ϑ1y + 1 − ϑ1ð Þ 1 − λ1ð ÞÞ + 1 − ς2ð Þ 1 − xð Þ W 1 −W 2ð Þ
� ϑ1y + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ − 1 − ς2ð Þ 1 − yð Þ W 1 −W 2ð Þ
� ϑ1y + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ�j

= 1
x − y

ς1x W 1 −W 2ð Þ ϑ1x + 1 − ϑ1ð Þλ1ð Þ − ς1x W 1 −W 2ð Þ½
�
�
�
�

� ϑ1y + 1 − ϑ1ð Þλ1ð Þ� + 1
x − y

ς2 1 − xð Þ W 1 −W 2ð Þ½
� ϑ2x + 1 − ϑ2ð Þλ2ð Þ − ς2 1 − xð Þ W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þλ2ð Þ�
+ 1
x − y

1 − ς1ð Þx W 1 −W 2ð Þ ϑ1x + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ − 1 − ς1ð Þ½

� x W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ� + 1
x − y

1 − ς2ð Þ 1 − xð Þ½
� W 1 −W 2ð Þ ϑ2x + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ − 1 − ς2ð Þ 1 − xð Þ
� W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ� + 1

x − y
ς1x W 1 −W 2ð Þ ϑ1yð½

+ 1 − ϑ1ð Þλ1Þ − ς1y W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þλ1ð Þ� + 1
x − y

� ς2 1 − xð Þ W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þλ2ð Þ − ς2 1 − yð Þ W 1 −W 2ð Þ½
� ϑ2y + 1 − ϑ2ð Þλ2ð Þ� + 1

x − y
1 − ς1ð Þx W 1 −W 2ð Þ½

� ϑ1y + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ − 1 − ς1ð Þy W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þð
� 1 − λ1ð ÞÞ� + 1

x − y
1 − ς2ð Þ 1 − xð Þ W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ½

− 1 − ς2ð Þ 1 − yð Þ W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ�j ≤ ϑ1ς1x W 1 −W 2k k + ϑ2ς2 1 − xð Þ
� W 1 −W 2k k + ϑ1 1 − ς1ð Þx W 1 −W 2k k + ϑ2 1 − ς2ð Þ 1 − xð Þ W 1 −W 2k k +
� ς1 W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þλ1ð Þ − ς1 W 1 −W 2ð Þ 0ð Þj j + ς2 W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þλ2ð Þj
− ς2 W 1 −W 2ð Þ 0ð Þj + 1 − ς1ð Þ W 1 −W 2ð Þ ϑ1y + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ − 1 − ς1ð Þ W 1 −W 2ð Þ 0ð Þj j
+ 1 − ς2ð Þ W 1 −W 2ð Þ ϑ2y + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ − 1 − ς2ð Þ W 1 −W 2ð Þ 0ð Þj j = ϑ1ς1x W 1 −W 2k k
+ ϑ2ς2 1 − xð Þ W 1 −W 2k k + ϑ1 1 − ς1ð Þx W 1 −W 2k k + ϑ2 1 − ς2ð Þ 1 − xð Þ W 1 −W 2k k
+ ς1 ϑ1y + 1 − ϑ1ð Þλ1ð Þ W 1 −W 2k k + ς2 ϑ2y + 1 − ϑ2ð Þλ2ð Þ W 1 −W 2k k + 1 − ς1ð Þ
� ϑ1y + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ W 1 −W 2k k + 1 − ς2ð Þ ϑ2y + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ W 1 −W 2k k ≤ ϖ⋆

� W 1 −W 2k k,

ð17Þ

where ϖ⋆ is defined in (15). This gives that

d ZW 1, ZW 2ð Þ = ZW 1 − ZW 2k k ≤ ϖ⋆ W 1 −W 2k k = ϖ⋆d W 1,W 2ð Þ:
ð18Þ

It follows from 0 < ϖ⋆ < 1 that Z is a Banach contraction
mapping with the metric d induced by k·k.☐

We get the following conclusion from Theorem 4 about
the uniqueness of a solution to functional equation (14).

Theorem 5. Functional equation (14) has a unique solution
provided that ϖ⋆ < 1, where ϖ⋆ is given in (15), and there
exists a closed subset Λ of B such that Λ is Z invariant, that
is, ZðΛÞ ⊆Λ, where Z is the operator from Λ defined for each
W ∈ Λ by

ZWð Þ xð Þ = ς1xW ϑ1x + 1 − ϑ1ð Þλ1ð Þ + ς2 1 − xð Þ
�W ϑ2x + 1 − ϑ2ð Þλ2ð Þ + 1 − ς1ð Þ
� xW ϑ1x + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ + 1 − ς2ð Þ
� 1 − xð ÞW ϑ2x + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ,

ð19Þ

for all x ∈A : Moreover, the iteration fW ng in Λ which is
defined by

W nð Þ xð Þ = ς1xW n−1 ϑ1x + 1 − ϑ1ð Þλ1ð Þ + ς2 1 − xð Þ
�W n−1 ϑ2x + 1 − ϑ2ð Þλ2ð Þ + 1 − ς1ð Þ
� xW n−1 ϑ1x + 1 − ϑ1ð Þ 1 − λ1ð Þð Þ + 1 − ς2ð Þ
� 1 − xð ÞW n−1 ϑ2x + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ,

ð20Þ

for all n ∈ℕ, where W 0 ∈Λ, converges to the unique solution
of functional equation (14) in the sense of the metric d
induced by k·k.

Proof.We derive the result of this theorem by combining the
Banach fixed point theorem with Theorem 4.☐

6. Some Particular Aspects of the Proposed T-
Maze Model

In this section, we have discussed some particular cases of
the proposed T-maze model.

6.1. Events with Equal Lambda Conditions. This condition
(sometimes called commutative condition) says that the
transition operators P1 − P4 (none of them is an identity
operator) have the same lambda conditions ðλ1 = λ = λ2Þ.
These conditions reduce our transition operators (1) to

P1x = ϑ1x + 1 − ϑ1ð Þλ,
P2x = ϑ2x + 1 − ϑ2ð Þλ,

P3x = ϑ1x + 1 − ϑ1ð Þ 1 − λð Þ,
P4x = ϑ2x + 1 − ϑ2ð Þ 1 − λð Þ:

ð21Þ

Now, we can write our functional equation (6) as

W xð Þ = ςxW ϑ1x + 1 − ϑ1ð Þλð Þ + ς 1 − xð ÞW ϑ2x + 1 − ϑ2ð Þλð Þ
+ 1 − ςð ÞxW ϑ1x + 1 − ϑ1ð Þ 1 − λð Þð Þ
+ 1 − ςð Þ 1 − xð ÞW ϑ2x + 1 − ϑ2ð Þ 1 − λð Þð Þ,

ð22Þ

where W : A ⟶ℝ is an unknown function, 0 < ϑ1, ϑ2 < 1
and λ, ς ∈A . The following conclusions are drawn as a result
of Theorem 3.
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Corollary 6. Let 0 < ϑ1, ϑ2 < 1 and λ, ς ∈A with

1 − ςð Þ 1 − λð Þ + λςð Þ 1 − ϑ1ð Þ + 1 − ϑ2ð Þð Þ + 2 ϑ1 + ϑ2ð Þj j < 1:

ð23Þ

If there exists a closed subset Λ of B such that Λ is Z
invariant, that is, ZðΛÞ ⊆Λ, where Z is the operator from
Λ defined for each W ∈ Λ by

ZWð Þ xð Þ = ςxW ϑ1x + 1 − ϑ1ð Þλð Þ + ς 1 − xð Þ
�W ϑ2x + 1 − ϑ2ð Þλð Þ + 1 − ςð Þ
� xW ϑ1x + 1 − ϑ1ð Þ 1 − λð Þð Þ + 1 − ςð Þ
� 1 − xð ÞW ϑ2x + 1 − ϑ2ð Þ 1 − λð Þð Þ,

ð24Þ

for all x ∈A , then, Z is a Banach contraction mapping with
the metric d induced by k·k.

Corollary 7. Functional equation (22) has a unique solution
provided that

1 − ςð Þ 1 − λð Þ + λςð Þ 1 − ϑ1ð Þ + 1 − ϑ2ð Þð Þ + 2 ϑ1 + ϑ2ð Þj j < 1:

ð25Þ

Also, there exists a closed subset Λ of B such that Λ is Z
invariant, that is, ZðΛÞ ⊆Λ, where Z is the operator from Λ
defined for each W ∈ Λ by

ZWð Þ xð Þ = ςxW ϑ1x + 1 − ϑ1ð Þλð Þ + ς 1 − xð Þ
�W ϑ2x + 1 − ϑ2ð Þλð Þ + 1 − ςð Þ
� xW ϑ1x + 1 − ϑ1ð Þ 1 − λð Þð Þ + 1 − ςð Þ
� 1 − xð ÞW ϑ2x + 1 − ϑ2ð Þ 1 − λð Þð Þ,

ð26Þ

for all x ∈A : Moreover, the iteration fW ng in Λ which is
defined by

W nð Þ xð Þ = ςxW n−1 ϑ1x + 1 − ϑ1ð Þλð Þ + ς 1 − xð Þ
�W n−1 ϑ2x + 1 − ϑ2ð Þλð Þ + 1 − ςð Þ
� xW n−1 ϑ1x + 1 − ϑ1ð Þ 1 − λð Þð Þ
+ 1 − ςð Þ 1 − xð ÞW n−1 ϑ2x + 1 − ϑ2ð Þ 1 − λð Þð Þ,

ð27Þ

for all n ∈ℕ, whereW 0 ∈Λ, converges to the unique solution
the functional equation (22) in the sense of the metric d
induced by k·k.
6.2. Extinction of an Operant Response. In some cases, non-
food side responses (turning right or left) frequently by the
mouse decrease the probability of that event towards an
asymptote to zero. In this situation, we have λ1 = 0 = λ2:

These conditions reduce our operators (1) to

P1x = ϑ1x,
P2x = ϑ2x,

P3x = ϑ1x + 1 − ϑ1ð Þ,
P4x = ϑ2x + 1 − ϑ2ð Þ:

ð28Þ

Now, we can write our functional equation (6) as

W xð Þ = ςxW ϑ1xð Þ + ς 1 − xð ÞW ϑ2xð Þ + 1 − ςð Þ
� xW ϑ1x + 1 − ϑ1ð Þð Þ + 1 − ςð Þ 1 − xð Þ
�W ϑ2x + 1 − ϑ2ð Þð Þ,

ð29Þ

where W : A ⟶ℝ is an unknown function such that, 0
< ϑ1, ϑ2 < 1, and ς ∈A . We have the following corollaries
of Theorem 3.

Corollary 8. For 0 < ϑ1, ϑ2 < 1 and ς ∈A with

1 − ςð Þ 1 − ϑ1ð Þ + 1 − ϑ2ð Þð Þ + 2 ϑ1 + ϑ2ð Þj j < 1: ð30Þ

If there exists a closed subset Λ of B such that Λ is Z
invariant, that is, ZðΛÞ ⊆Λ, where Z is the operator from
Λ defined for each W ∈ Λ by

ZWð Þ xð Þ = ςxW ϑ1xð Þ + ς 1 − xð ÞW ϑ2xð Þ + 1 − ςð Þ
� xW ϑ1x + 1 − ϑ1ð Þð Þ + 1 − ςð Þ 1 − xð Þ
�W ϑ2x + 1 − ϑ2ð Þð Þ,

ð31Þ

for all x ∈A , then, Z is a Banach contraction mapping with
the metric d induced by k·k.

Corollary 9. Functional equation (29) has a unique solution
provided that

1 − ςð Þ 1 − ϑ1ð Þ + 1 − ϑ2ð Þð Þ + 2 ϑ1 + ϑ2ð Þj j < 1: ð32Þ

Also, there exists a closed subset Λ of B such that Λ is Z
invariant, that is, ZðΛÞ ⊆Λ, where Z is the operator from Λ
defined for each W ∈ Λ by

ZWð Þ xð Þ = ςxW ϑ1xð Þ + ς 1 − xð ÞW ϑ2xð Þ
+ 1 − ςð ÞxW ϑ1x + 1 − ϑ1ð Þð Þ + 1 − ςð Þ
� 1 − xð ÞW ϑ2x + 1 − ϑ2ð Þð Þ,

ð33Þ

for all x ∈A : Moreover, the iteration fW ng in Λ which is
defined by

W nð Þ xð Þ = ςxW n ϑ1xð Þ + ς 1 − xð ÞW n ϑ2xð Þ + 1 − ςð Þ
� xW n ϑ1x + 1 − ϑ1ð Þð Þ + 1 − ςð Þ 1 − xð Þ
�W n ϑ2x + 1 − ϑ2ð Þð Þ,

ð34Þ

for all n ∈ℕ, where W 0 ∈Λ, converges to the unique solution
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of functional equation (29) in the sense of the metric d
induced by k·k.

Similarly, if the mouse chooses the food side repeatedly,
then, the probability of that specific event will increase. Thus,
we have λ1 = 1 = λ2: In this situation, our four operators (1)
will be

P1x = ϑ1x + 1 − ϑ1ð Þ,
P2x = ϑ2x + 1 − ϑ2ð Þ,

P3x = ϑ1x,
P4x = ϑ2x:

ð35Þ

Now, we can write our functional equation (6) as

W xð Þ = ςxW ϑ1x + 1 − ϑ1ð Þð Þ + ς 1 − xð Þ
�W ϑ2x + 1 − ϑ2ð Þð Þ + 1 − ςð ÞxW ϑ1xð Þ
+ 1 − ςð Þ 1 − xð ÞW ϑ2xð Þ,

ð36Þ

where W : A ⟶ℝ is an unknown function, 0 < ϑ1, ϑ2 < 1,
and ς ∈A . Now, we have the following corollaries of Theorem
3.

Corollary 10. For 0 < ϑ1, ϑ2 < 1 and ς ∈A with

ς 1 − ϑ1ð Þ + 1 − ϑ2ð Þð Þ + 2 ϑ1 + ϑ2ð Þj j < 1: ð37Þ

If there exists a closed subset Λ of B such that Λ is Z
invariant, that is, ZðΛÞ ⊆Λ, where Z is the operator from
Λ defined for each W ∈ Λ by

ZWð Þ xð Þ = ςxW ϑ1x + 1 − ϑ1ð Þð Þ + ς 1 − xð Þ
�W ϑ2x + 1 − ϑ2ð Þð Þ + 1 − ςð ÞxW ϑ1xð Þ
+ 1 − ςð Þ 1 − xð ÞW ϑ2xð Þ,

ð38Þ

for all x ∈A , then, Z is a Banach contraction mapping with
the metric d induced by k·k.

Corollary 11. Functional equation (36) has a unique solution
provided that

ς 1 − ϑ1ð Þ + 1 − ϑ2ð Þð Þ + 2 ϑ1 + ϑ2ð Þj j < 1: ð39Þ

Also, there exists a closed subset Λ of B such that Λ is Z
invariant, that is, ZðΛÞ ⊆Λ, where Z is the operator from Λ
defined for each W ∈ Λ by

ZWð Þ xð Þ = ςxW ϑ1x + 1 − ϑ1ð Þð Þ + ς 1 − xð Þ
�W ϑ2x + 1 − ϑ2ð Þð Þ + 1 − ςð Þ
� xW ϑ1xð Þ + 1 − ςð Þ 1 − xð ÞW ϑ2xð Þ,

ð40Þ

for all x ∈A : Moreover, the iteration fW ng in Λ which is

defined by

W nð Þ xð Þ = ςxW n ϑ1x + 1 − ϑ1ð Þð Þ + ς 1 − xð Þ
�W n ϑ2x + 1 − ϑ2ð Þð Þ + 1 − ςð ÞxW n ϑ1xð Þ
+ 1 − ςð Þ 1 − xð ÞW n ϑ2xð Þ,

ð41Þ

for all n ∈ℕ, where W 0 ∈Λ, converges to the unique solution
of functional equation (36) in the sense of the metric d
induced by k·k.
6.3. Attraction towards the Specific Choice. In some specific
cases, it is possible that the mouse always follows the O1 out-
come and never choose O2. For such a case, we choose λ1
= 1: Similarly, if the mouse chooses O2 again and again,
then, the probability of that event should turn towards zero.
It means that λ2 = 0: These conditions reduce our four oper-
ators (1) to

P1x = ϑ1x + 1 − ϑ1ð Þ,
P2x = ϑ2x,
P3x = ϑ1x,

P4x = ϑ2x + 1 − ϑ2ð Þ:

ð42Þ

Now, we can write our functional equation (6) as

W xð Þ = ςxW ϑ1x + 1 − ϑ1ð Þ + ς 1 − xð ÞW ϑ2xð Þ
+ 1 − ςð ÞxW ϑ1xð Þ + 1 − ςð Þ 1 − xð ÞW ϑ2x + 1 − ϑ2ð Þ,

ð43Þ

where W : A ⟶ℝ is an unknown function, 0 < ϑ1, ϑ2 < 1,
and ς ∈A . We have the following results of Theorem 3.

Corollary 12. For 0 < ϑ1, ϑ2 < 1 and ς ∈A with

2ς − 1ð Þ 1 − ϑ1ð Þ + 1 − ςð Þ 1 − ϑ1ð Þ + 1 − ϑ2ð Þð Þ + 2 ϑ1 + ϑ2ð Þj j < 1:

ð44Þ

If there exists a closed subset Λ of B such that Λ is Z
invariant, that is, ZðΛÞ ⊆Λ, where Z is the operator from
Λ defined for each W ∈ Λ by

ZWð Þ xð Þ = ςxW ϑ1x + 1 − ϑ1ð Þ + ς 1 − xð ÞW ϑ2xð Þ
+ 1 − ςð ÞxW ϑ1xð Þ + 1 − ςð Þ
� 1 − xð ÞW ϑ2x + 1 − ϑ2ð Þ,

ð45Þ

for all x ∈A , then Z is a Banach contraction mapping with
the metric d induced by k·k.

Corollary 13. The functional equation (43) has a unique
solution provided that

2ς − 1ð Þ 1 − ϑ1ð Þ + 1 − ςð Þ 1 − ϑ1ð Þ + 1 − ϑ2ð Þð Þ + 2 ϑ1 + ϑ2ð Þj j < 1,
ð46Þ
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and there exists a closed subset Λ of B such that Λ is Z
invariant, that is, ZðΛÞ ⊆Λ, where Z is the operator from
Λ defined for each W ∈ Λ by

ZWð Þ xð Þ = ςxW ϑ1x + 1 − ϑ1ð Þ + ς 1 − xð ÞW ϑ2xð Þ
+ 1 − ςð ÞxW ϑ1xð Þ + 1 − ςð Þ 1 − xð Þ
�W ϑ2x + 1 − ϑ2ð Þ,

ð47Þ

for all x ∈A : Moreover, the iteration fW ng in Λ which is
defined by

W nð Þ xð Þ = ςxW n ϑ1x + 1 − ϑ1ð Þ + ς 1 − xð ÞW n ϑ2xð Þ
+ 1 − ςð ÞxW n ϑ1xð Þ + 1 − ςð Þ 1 − xð Þ
�W n ϑ2x + 1 − ϑ2ð Þ,

ð48Þ

for all n ∈ℕ, whereW 0 ∈Λ, converges to the unique solution
of functional equation (36) in the sense of the metric d
induced by k·k.

7. Conclusion

In an animal or a human being, the learning phase may also
be analyzed through a sequence of choices between multiple
possible answers. The choice sequence is usually unpredict-
able, even in basic experiments conducted under highly reg-
ulated conditions, indicating that probabilities govern the
selection of responses. Thus, it is helpful to think of the
sequential changes in a sequence of choices in response
probabilities from trial to trial. In this paper, we have dis-
cussed a particular type of stochastic process related to the
T-maze experiment [23, 24], which plays a vital role in
observing the behavior of the mouse in a two-choice situa-
tion. We analyzed the rat’s behavior in such situations and
proposed a mathematical model for it. The existence and
uniqueness of a solution to the proposed model have been
investigated by using the Banach fixed point theorem. To
observe the flexibility of the T-maze model, we examined it
under the experimenter-subject-controlled events. Further-
more, the proposed model depends only on the contingent
reinforcement behavior of rats in which a rat gets the reward
for choosing the food side. However, in general, a natural
question arises, which we present here to make this interac-
tion more interesting.

7.1. Question. What happens if a mouse does not move to
any side (left or right) on a specific trial k and remains stick-
ing to its starting position?

Moreover, one of the critical issues in functional equa-
tions is to find out its stability regarding Hyers-Ulam- and
Hyers-Ulam-Rassias-type stability (see for the detail,
[26–30]). We leave the stability question to the following
functional equation as an open problem:

W xð Þ = ςxW ϑ1x + 1 − ϑ1ð Þλ1ð Þ + ς 1 − xð Þ
�W ϑ2x + 1 − ϑ2ð Þλ2ð Þ + 1 − ςð ÞxW ϑ1x + 1 − ϑ1ð Þð
� 1 − λ1ð ÞÞ + 1 − ςð Þ 1 − xð ÞW ϑ2x + 1 − ϑ2ð Þ 1 − λ2ð Þð Þ,

ð49Þ

where W : A ⟶ℝ is an unknown function, 0 < ϑ1, ϑ2 < 1,
and λ1, λ2, ς ∈A .
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In this manuscript, some tripled fixed point results are presented in the framework of complete metric spaces. Furthermore,
Wardowski’s contraction was mainly applied to discuss some theoretical results with and without a directed graph under
suitable assertions. Moreover, some consequences and supportive examples are derived to strengthen the main results. In the
last part of the paper, the obtained theoretical results are used to find a unique solution to a system of functional and integral
equations.

1. Introduction

Mathematics is one of the most important ways to under-
stand things that happen around us. Mathematics has been
divided into branches, and with its help, one can analyze
other sciences. Integral and differential equations are very
important tools that can be used to build patterns in order
to understand the models that happen around us. The fixed
point theory also plays a crucial role in integral and differen-
tial equations.

A commonly used tool that has a major role in nonlinear
analysis is the fixed point technique, which was given by the
well-known scientist Banach. The famous “Banach Contrac-
tion Principle” [1] can be announced as follows.

Theorem 1. Assume that ðΘ, ϖÞ is a complete metric space
(CMS) and Q is a self-mapping defined on it, such that for
all l1, l2 ∈Θ and ϱ ∈ ½0, 1Þ, the following inequality holds:

ϖ Ql1,Ql2
� �

≤ ϱϖ l1, l2
� �

: ð1Þ

Then, there exists a unique fixed point (FP) of Q and the
sequence fQnl1°gn∈ℕ converges to it, for all l1° ∈Θ.

There are more generalizations of the inequality (1)
either by replacing the contraction condition or by using
more general spaces. For more results, see [2–4].

We construct the present paper as follows: in Section 1,
we recall the background of our work; in Section 2, we give
essential results, which are useful for understanding the
aim of the paper; in Section 3, we discuss the existence
of tripled fixed point (TFP) results via π-contraction map-
pings in CMS with and without a directed graph (DG); in
Section 4, we prove the existence of a solution of different
types of tripled systems of functional integral equations;
and in Section 5, illustrative examples are given to support
our study.
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2. Preliminaries

In 2012, a new type of contraction was given by Wardowski,
called Wardowski’s contraction or π-contraction (see [5]).
He generalized the condition in Banach’s theorem and stated
the following definition.

Definition 2 (see [5]). Assume that ðΘ, ϖÞ is a metric space
and Q is a self-mapping defined on it. We say Q is π-con-
traction, if there is π ∈ Ϝ and ℓ ∈ ð0,+∞Þ such that

ϖ Ql1,Ql2
� �

> 0 implies ℓ + π ϖ Ql1,Ql2
� �� �

≤ π ϖ l1, l2
� �� �

∀l1, l2 ∈Θ,
ð2Þ

where z is the family of all functions π : ð0,+∞Þ⟶ R such
that the conditions below hold:

ðπiÞ: for each l1, l2 ∈ℝ+, if l1 < l2, then πðl1Þ < πðl2Þ; i.e.,
π is strictly increasing.

ðπiiÞ: lim
n⟶∞

l1n = 0 if and only if lim
n⟶∞

πðl1nÞ = −∞, where

fl1ngn∈N is a sequence of positive numbers.

ðπiiiÞ: lim
l1⟶0+

ðl1Þμπðl1Þ = 0 for each μ ∈ ð0, 1Þ.
By the inequality (2), the same author introduced some

examples of various contractions as follows: for all l1, l2 ∈Θ
with υ > 0 and Ql1 ≠Ql2,

(i) π1ðυÞ = ln ðυÞ, ϖðQl1,Ql2Þ/ϖðl1, l2Þ ≤ e−ℓ

(ii) π2ðυÞ = ln ðυÞ + υ, ϖðQl1,Ql2ÞeϖðQl1,Ql2Þ ≤ ϖðl1, l2Þ
eϖðl

1,l2Þ−ℓ

(iii) π3ðυÞ = −1/ ffiffiffi
υ

p
, ϖðQl1,Ql2Þð1 + ℓ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖðl1, l2Þ

p
Þ2 ≤ ϖð

l1, l2Þ
(iv) π4ðυÞ = ln ðυ2 + υÞ, ϖðQl1,Ql2Þð1 + ϖðQl1,Ql2ÞÞÞ ≤

e−ℓϖðl1, l2Þð1 + ϖðl1, l2ÞÞ
where all functions fπn : n = 1, 2, 3, 4g ∈ Ϝ:.

Remark 3. The inequality (2) implies that Q is a contractive
mapping, that is,

ϖ Ql1,Ql2
� �

< ϖ l1, l2
� �

, ð3Þ

for all l1, l2 ∈Θ such that Ql1 ≠Ql2. Hence, every π-con-
traction is continuous.

Remark 4 (see [6]). Let πðυÞ = −1/ ffiffiffi
υζ

p
, where ζ > 1 and υ > 0.

Then, π ∈ Ϝ.

Wardowski states his theorem as follows.

Theorem 5 (see [6]). Assume that the mapping Q satisfies the
contraction condition (2) on a CMS ðΘ, ϖÞ. Then, there is a
unique fixed point of Q and fQnl1°gn∈ℕ converges to the fixed
point for all l1° ∈Θ:.

For two mappings, this theorem has been generalized by
Isik [7] as follows.

Lemma 6 (see [7]). Suppose that ðΘ, ϖÞ is a CMS and Q and
R are self-mappings defined on it. If there is ℓ > 0 and π ∈ Ϝ
such that

ℓ + π ϖ Ql1, Rl2
� �� �

≤ π ϖ l1, l2
� �� �

, ð4Þ

for all l1, l2 ∈Θ and min fϖðQl1, Rl2Þ, ϖðl1, l2Þg > 0, then
there exists a unique common fixed point of Q and R.

A number of papers related to π-contraction and related
fixed point theorems in the setting of various spaces were
published. See, for example, [8–10].

In the paper [11], the concept of the coupled fixed point
(CFP) was presented and studied. In partially ordered metric
spaces and abstract spaces, some main results in this direc-
tion have been considered. See [12, 13].

Definition 7. Assume that Θ ≠∅ and Q, R : Θ ×Θ⟶Θ are
given mappings; then, the pair ðl1, l2Þ ∈Θ ×Θ is called

(i) CFP of Q if Qðl1, l2Þ = l1 and Qðl2, l1Þ = l2

(ii) a common CFP of Q and R, if Qðl1, l2Þ = Rðl1, l2Þ = l1

and Qðl2, l1Þ = Rðl2, l1Þ = l2

Using the generalized notion of CFP, Berinde and Borcut
[14] defined the notion of a tripled fixed point (TFP) for self-
mappings and established some interesting consequences in
partially ordered metric spaces. Many other research results
were given in this direction, for different spaces and different
types of mappings. For additional results, see [4, 15–17].

Definition 8. Assume thatΘ ≠∅ and Q, R : Θ3 ⟶Θ
ðwhereΘ3 =Θ ×Θ ×ΘÞ are given mappings; then, the pair
ðl1, l2, l3Þ ∈Θ3 is called a TFP of Q if Qðl1, l2, l3Þ = l1, Qðl2,
l3, l1Þ = l2, and Qðl3, l1, l2Þ = l3:.

Here, the symbol Ω refers to the set of all TFPs of the
mapping Q, that is,

Ω = l1, l2, l3
� �

∈Θ3 : Q l1, l2, l3
� �

= l1,Q l2, l3, l1
� ��

= l2, andQ l3, l1, l2
� �

= l3
�
:

ð5Þ

In [18], Jachymski used the following notations.
Assume that ðΘ, ϖÞ is a MS and Y is the diagonal of the

Cartesian product Θ ×Θ. Consider ℶ = ð△ðℶÞ,∇ðℶÞÞ a
directed graph (DG), where △ðℶÞ is the set of vertices that
coincides with Θ and ∇ðℶÞ is the set of edges that contains
all loops, i.e., ∇ðℶÞ ⊇ Y .

The two definitions below were introduced by Chaoban-
koh and Charoensawa [19].
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Definition 9 (see [19]). A mapping Q : Θ3 ⟶Θ is called
edge-preserving if

l1, u1
� �

, l2, u2
� �

, l3, u3
� �� �

∈ ∇ ℶð Þ, ð6Þ

implies

Q l1, l2, l3
� �

,Q u1, u2, u3
� �� �

, Q l2, l3, l1
� �

,Q u2, u3, u1
� �� �

,
�

Q l3, l1, l2
� �

,Q u3, u1, u2
� �� ��

∈ ∇ ℶð Þ:
ð7Þ

Definition 10 (see [19]). A mapping Q : Θ3 ⟶Θ is called
ℶ-continuous for each ðl1, l2, l3Þ ∈Θ3 and for any sequence
fmjgj∈ℕ of positive integers with

Q l1mj
, l2mj

, l3mj

	 

⟶ l1,

Q l2mj
, l3mj

, l1mj

	 

⟶ l2,

Q l3mj
, l1mj

, l2mj

	 

⟶ l3,

ð8Þ

as j⟶∞, and

Q l1mj
, l2mj

, l3mj

	 

, u1mj+1, u

2
mj+1, u

3
mj+1

		 

,Q l2mj

, l3mj
, l1mj

	 

,

		
u2mj+1, u

3
mj+1, u

1
mj+1

	 


,Q l3mj

, l1mj
, l2mj

	 

,

	
u3mj+1, u

1
mj+1, u

2
mj+1

	 



∈ ∇ ℶð Þ:

ð9Þ

Then, for j⟶∞, we have

Q Q l1mj
, l2mj

, l3mj

	 

,Q l2mj

, l3mj
, l1mj

	 

,Q l3mj

, l1mj
, l2mj

	 
	 

⟶Q l1, l2, l3

� �
,

Q Q l2mj
, l3mj

, l1mj

	 

,Q l3mj

, l1mj
, l2mj

	 

,Q l1mj

, l2mj
, l3mj

	 
	 

⟶Q l2, l3, l1

� �
,

Q Q l3mj
, l1mj

, l2mj

	 

,Q l1mj

, l2mj
, l3mj

	 

,Q l2mj

, l3mj
, l1mj

	 
	 

⟶Q l3, l1, l2

� �
:

ð10Þ

Definition 11 (see [18]). Let ðΘ, ϖÞ be a CMS and ℶ be a
directed graph. A triple ðΘ, ϖ,ℶÞ has the property ðKÞ if
for any sequence flmgm∈ℕ ⊂Θ with lim

n⟶∞
lm = l and ðlm,

lm+1Þ ∈ ∇ðℶÞ, for n ∈ℕ, we get ðlm, lÞ ∈ ∇ðℶÞ.

3. Tripled Fixed Point Technique

Let us start this section by giving the following lemma,
which is useful in the proof of the main result.

Lemma 12. Let ðΘ, ϖÞ be a CMS and Θ3 be a Cartesian
product. Define a distance ϖmax by

ϖmax l1, l2, l3
� �

, u1, u2, u3
� �� �

=max ϖ l1, u1
� �

, ϖ l2, u2
� �

, ϖ l3, u3
� �� �

:
ð11Þ

Then, ðΘ3, ϖmaxÞ is also CMS.

Proof. The proof of the lemma is obvious.

Furthermore, let us give the first main theorem of this
section.

Theorem 13. Assume that ðΘ, ϖÞ is a CMS and Q, R : Θ3

⟶Θ are continuous mappings. If there is ℓ > 0 and π ∈ Ϝ
such that ϖððl1, l2, l3Þ, ðu1, u2, u3ÞÞ > 0 implies

ℓ + π ϖ Q l1, l2, l3
� �

, R u1, u2, u3
� �� �� �

≤ π max ϖ l1, u1
� �

, ϖ l2, u2
� �

, ϖ l3, u3
� �� �� �

,
ð12Þ

for each ðl1, l2, l3Þ, ðu1, u2, u3Þ ∈Θ3, then Q and R have a
unique common TFP.

Proof. Define the mappings M∗,H∗ : Θ3 ⟶Θ3 by

M∗ l1, l2, l3
� �

= Q l1, l2, l3
� �

,Q l2, l3, l1
� �

,Q l3, l1, l2
� �� �

,

H∗ l1, l2, l3
� �

= R l1, l2, l3
� �

, R l2, l3, l1
� �

, R l3, l1, l2
� �� �

:

ð13Þ

Next, for a CMS Θ3 (see Lemma 12), we shall show that
M∗ and H∗ justify the inequality (4). For ðl1, l2, l3Þ, ðu1, u2,
u3Þ ∈Θ3, let

ϖmax M∗ l1, l2, l3
� �

,H∗ u1, u2, u3
� �� �

= ϖmax Q l1, l2, l3
� �

,Q l2, l3, l1
� �

,Q l3, l1, l2
� �� �

,
�

R u1, u2, u3
� �

, R u2, u3, u1
� �

, R u3, u1, u2
� �� ��

=max ϖ Q l1, l2, l3
� �

, R u1, u2, u3
� �� �

, ϖ Q l2, l3, l1
� �

,
���

R u2, u3, u1
� �Þ, ϖ Q l3, l1, l2

� �
, R u3, u1, u2
� �� �g > 0:

ð14Þ

Here, if we put

DQR =max ϖ Q l1, l2, l3
� �

, R u1, u2, u3
� �� �

, ϖ Q l2, l3, l1
� �

,
��

R u2, u3, u1
� ��

, ϖ Q l3, l1, l2
� �

, R u3, u1, u2
� �� �g,

ð15Þ

then three cases will be discussed for ϖðQðl1, l2, l3Þ, Rðu1,
u2, u3ÞÞ > 0 as follows:

3Journal of Function Spaces



ð★iÞ: if DQR = ϖðQðl1, l2, l3Þ, Rðu1, u2, u3ÞÞ, then, by rela-
tion (12), we obtain

ℓ + π ϖmax M∗ l1, l2, l3
� �

,H∗ u1, u2, u3
� �� �� �

= ℓ + π ϖ Q l1, l2, l3
� �

, R u1, u2, u3
� �� �� �

≤ π max ϖ l1, l2, l3
� �

, ϖ u1, u2, u3
� �� �� �

= π max ϖ l1, u1
� �

, ϖ l2, u2
� �

, ϖ l3, u3
� �� �� �

:

ð16Þ

ð★iiÞ: if DQR = ϖðQðl2, l3, l1Þ, Rðu2, u3, u1ÞÞ, then, by (12),
we have

ℓ + π ϖmax M∗ l1, l2, l3
� �

,H∗ u1, u2, u3
� �� �� �

= ℓ + π ϖ Q l2, l3, l1
� �

, R u2, u3, u1
� �� �� �

≤ π max ϖ l2, l3, l1
� �

, ϖ u2, u3, u1
� �� �� �

= π max ϖ l2, u2
� �

, ϖ l1, u1
� �� �� �

≤ π max ϖ l1, u1
� �

, ϖ l2, u2
� �

, ϖ l3, u3
� �� �� �

:

ð17Þ

ð★iiiÞ: if DQR = ϖðQðl3, l1, l2Þ, Rðu3, u1, u2ÞÞ, it follows
from (12) that

ℓ + π ϖmax M∗ l1, l2, l3
� �

,H∗ u1, u2, u3
� �� �� �

= ℓ + π ϖ Q l3, l1, l2
� �

, R u3, u1, u2
� �� �� �

≤ π max ϖ l3, l1, l2
� �

, ϖ u3, u1, u2
� �� �� �

= π max ϖ l3, u3
� �

, ϖ l2, u2
� �

, ϖ l1, u1
� �� �� �

:

ð18Þ

The above cases prove that the condition (4) is fulfilled.

Then, M∗ and H∗ have a unique common FP ðl′1, l′2, l′3Þ
∈Θ3. This means

l′1, l′2, l′3
	 


=M∗ l′1, l′2, l′3
	 


= Q l′1, l′2, l′3
	 


,Q l′2, l′3, l′1
	 


,Q l′3, l′1, l′2
	 
	 


,

l′1, l′2, l′3
	 


=H∗ l′1, l′2, l′3
	 


= R l′1, l′2, l′3
	 


, R l′2, l′3, l′1
	 


, R l′3, l′1, l′2
	 
	 


:

ð19Þ

Hence,

Q l′1, l′2, l′3
	 


= R l′1, l′2, l′3
	 


= l′1,

Q l′2, l′3, l′1
	 


= R l′2, l′3, l′1
	 


= l′2,

Q l′3, l′1, l′2
	 


= R l′3, l′1, l′2
	 


= l′3:

ð20Þ

Therefore, ðl′1, l′2, l′3Þ is a common TFP of Q and R.
The uniqueness follows immediately from the definition

of M∗ and H∗.

A pivotal result follows below by letting Q = R in
Theorem 13.

Corollary 14. Assume that ðΘ, ϖÞ is a CMS and Q : Θ3

⟶Θ is a continuous mapping. If there is ℓ > 0 and π ∈ Ϝ

such that ϖððl1, l2, l3Þ, ðu1, u2, u3ÞÞ > 0 implies

ℓ + π ϖ Q l1, l2, l3
� �

,Q u1, u2, u3
� �� �� �

≤ π max ϖ l1, u1
� �

, ϖ l2, u2
� �

, ϖ l3, u3
� �� �� �

,
ð21Þ

for all ðl1, l2, l3Þ, ðu1, u2, u3Þ ∈Θ3, then Q has a unique TFP.

Now, we will discuss the existence and uniqueness of a
TFP in a CMS with a directed graph.Following the paper
[19], we define the set ðΘ3ÞQ by

Θ3� �
Q
= l1, l2, l3
� �

∈Θ3 : l1,Q l1, l2, l3
� �� �

, l2,Q l2, l3, l1
� �� �

,
�
l3,Q l3, l1, l2

� �� �
∈∇ ℶð Þ�:

ð22Þ

Proposition 15. Let Q : Θ3 ⟶Θ be an edge-preserving
mapping; then, for all n ∈ℕ,

ð†1Þ: ðl1, u1Þ, ðl2, u2Þ, ðl3, u3Þ ∈ ∇ðℶÞ⇒ ½ðQnðl1, l2, l3Þ,Qn

ðu1, u2, u3ÞÞ, ðQnðl2, l3, l1Þ,Qnðu2, u3, u1ÞÞ, ðQnðl3, l1, l2Þ,Qnð
u3, u1, u2ÞÞ� ∈ ∇ðℶÞ:

ð†2Þ: ðl1, l2, l3Þ ∈ ðΘ3ÞQ ⇒ ðQn½ ðl1, l2, l3Þ,Qn+1ðl1, l2, l3Þ
Þ, ðQnðl2, l3, l1Þ,Qn+1ðl2, l3, l1ÞÞ, ðQnðl3, l1, l2Þ,Qn+1ðl3, l1, l2ÞÞ�
∈ ∇ðℶÞ:

ð†3Þ: ðl1, l2, l3Þ ∈ ðΘ3ÞQ ⇒ ðQnðl1, l2, l3Þ,Qnðl2, l3, l1Þ,Qnð
l3, l1, l2ÞÞ ∈ ðΘ3ÞQ:

Proof. ð†1Þ: consider ðl1, u1Þ, ðl2, u2Þ, ðl3, u3Þ ∈ ∇ðℶÞ. Because
R is a preserving mapping, we get ðQðl1, l2, l3Þ,Qðu1, u2, u3ÞÞ
∈ ∇ðℶÞ. Using the same property, we can write ðQ2ðl1, l2, l3Þ,
Q2ðu1, u2, u3ÞÞ ∈ ∇ðℶÞ. It follows that, by induction, ðQnðl1,
l2, l3Þ,Qnðu1, u2, u3ÞÞ ∈ ∇ðℶÞ. In the same manner, we can
prove ðQnðl2, l3, l1Þ,Qnðu2, u3, u1ÞÞ ∈ ∇ðℶÞ and ðQnðl3, l1, l2Þ,
Qnðu3, u1, u2ÞÞ ∈ ∇ðℶÞ.

ð†2Þ: assume that

l1, l2, l3
� �

∈ Θ3� �
Q
: l1,Q l1, l2, l3

� �� �
, l2,Q l2, l3, l1

� �� �
,

l3,Q l3, l1, l2
� �� �

∈ ∇ ℶð Þ:
ð23Þ

By ð†1Þ, we get

Qn l1, l2, l3
� �

,Qn+1 l1, l2, l3
� �� �

= Qn l1, l2, l3
� �

,
�

Qn Q l1, l2, l3
� �

,Q l2, l3, l1
� �

,Q l3, l1, l2
� �� ��

∈ ∇ ℶð Þ:
ð24Þ

Similarly, one can show that ðQnðl2, l3, l1Þ,Qn+1ðl2, l3,
l1ÞÞ ∈ ∇ðℶÞ and ðQnðl3, l1, l2Þ,Qn+1ðl3, l1, l2ÞÞ ∈ ∇ðℶÞ.ð†3Þ:
from ð†2Þ, we get

Qn l1, l2, l3
� �

,Q Qn l1, l2, l3
� �

,Qn l2, l3, l1
� �

,Qn l3, l1, l2
� �� �� �

= Qn l1, l2, l3
� �

,Qn+1 l1, l2, l3
� �� �

∈ ∇ ℶð Þ,
ð25Þ
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which is equivalent to ðQnðl1, l2, l3Þ,Qnðl2, l3, l1Þ,Qnðl3, l1,
l2ÞÞ ∈ ðΘ3ÞQ.

Definition 16.We say Q : Θ3 ⟶Θ is a πℶ-rational contrac-
tion mapping ðπℶ‐RCMÞ if

ð♡iÞ: Q is edge-preserving.
ð♡iiÞ: there is a positive ℓ > 0 such that

ℓ + π ϖ Q l1, l2, l3
� �

,Q u1, u2, u3
� �� �� �

≤ π
ϖ l1, u1
� �

+ ϖ l2, u2
� �

+ ϖ l3, u3
� �

3

 !
,

ð26Þ

for all ðl1, u1Þ, ðl2, u2Þ, ðl3, u3Þ ∈ ∇ðℶÞ, with ϖðQðl1, l2, l3Þ,Q
ðu1, u2, u3ÞÞ > 0.

Lemma 17. Assume that ðΘ, ϖÞ is a MS and Q : Θ3 ⟶Θ is
a πℶ‐RCM with a DG ℶ. Then, for each ðl1, u1Þ, ðl2, u2Þ, ðl3,
u3Þ ∈ ∇ðℶÞ, we have

π ϖ Q l1, l2, l3
� �

,Q u1, u2, u3
� �� �� �

≤ π
ϖ l1, u1
� �

+ ϖ l2, u2
� �

+ ϖ l3, u3
� �

3

 !
− nℓ:

ð27Þ

Proof. Let ðl1, u1Þ, ðl2, u2Þ, ðl3, u3Þ ∈ ∇ðℶÞ. Because Q is edge-
preserving, we have

Q l1, l2, l3
� �

,Q u1, u2, u3
� �� �

∈ ∇ ℶð Þ: ð28Þ

It follows from Proposition 15 ð†1Þ that ðQnðl1, l2, l3Þ,Qn

ðu1, u2, u3ÞÞ ∈ ∇ðℶÞ. Because Q is a πℶ‐RCM, one can obtain

Moreover, we have the same result if ðQnðl2, l3, l1Þ,Qnð
u2, u3, u1ÞÞ ∈ ∇ðℶÞ or ðQnðl3, l1, l2Þ,Qnðu3, u1, u2ÞÞ ∈ ∇ðℶÞ.
Therefore, the conclusion follows using mathematical induc-
tion.

Lemma 18. Let Q : Θ3 ⟶Θ be a πℶ‐RCM on a CMS ðΘ,
ϖÞ with a DG ℶ. Then, for each ðl1, l2, l3Þ ∈ ðΘ3ÞQ, there is

ðl′1, l′2, l′3Þ ∈Θ3 such that Qnðl1, l2, l3Þn∈ℕ ⟶ l′1, Qn

ðl2, l3, l1Þn∈ℕ ⟶ l′2, and Qnðl3, l1, l2Þn∈ℕ ⟶ l′3, as .

Proof. Suppose that ðl1, l2, l3Þ ∈ ðΘ3ÞQ; then,

l1,Q l1, l2, l3
� �� �

, l2,Q l2, l3, l1
� �� �

, l3,Q l3, l1, l2
� �� �

∈ ∇ ℶð Þ:
ð30Þ

Set u1 =Qðl1, l2, l3Þ, u2 =Qðl2, l3, l1Þ, and u3 =Qðl3, l1, l3Þ
in the contractive condition of Lemma 17 and put

I l1, l1, l2
� �

= ϖ l1,Q l1, l2, l3
� �� �

+ ϖ l2,Q l2, l3, l1
� �� �

+ ϖ l3,Q l3, l1, l2
� �� �

3 :

ð31Þ

Then, we have

π ϖ Qn l1, l2, l3
� �

,Qn Q l1, l2, l3
� �

,Q l2, l3, l1
� �

,Q l3, l1, l2
� �� �� �� �

≤ π I l1, l1, l2
� �� �

− nℓ; ;

ð32Þ

or equivalently,

π ϖ Qn l1, l2, l3
� �

,Qn+1 l1, l2, l3
� �� �� �

≤ π I l1, l1, l2
� �� �

− nℓ:

ð33Þ

As n⟶∞ in (33), we can write

lim
n⟶∞

π ϖ Qn l1, l2, l3
� �

,Qn+1 l1, l2, l3
� �� �� �

= −∞: ð34Þ

Applying condition ðπiiÞ, we have

lim
n⟶∞

ϖ Qn l1, l2, l3
� �

,Qn+1 l1, l2, l3
� �� �

= 0: ð35Þ

Using the same steps, we can write

lim
n⟶∞

ϖ Qn l2, l3, l1
� �

,Qn+1 l2, l3, l1
� �� �

= 0,

lim
n⟶∞

ϖ Qn l3, l1, l2
� �

,Qn+1 l3, l1, l2
� �� �

= 0:
ð36Þ

π ϖ Q2 l1, l2, l3
� �

,Q2 u1, u2, u3
� �� �� �

= π ϖ Q Q l1, l2, l3
� �

,Q l2, l3, l1
� �

,Q l3, l1, l2
� �� �

,Q Q u1, u2, u3
� �

,Q u2, u3, u1
� �

,Q u3, u1, u2
� �� �� �� �

≤ π
ϖ Q l1, l2, l3

� �
,Q u1, u2, u3
� �� �

+ ϖ Q l2, l3, l1
� �

,Q u2, u3, u1
� �� �

+ ϖ Q l3, l1, l2
� �

,Q u3, u1, u2
� �� �

3

 !

− ℓ ≤ π
ϖ l1, u1
� �

+ ϖ l2, u2
� �

+ ϖ l3, u3
� �

3

 !
− 2ℓ:

ð29Þ
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From condition ðπiiiÞ to (35), there exists μ ∈ ð0, 1Þ such
that

lim
n⟶∞

ϖ Qn l1, l2, l3
� �

,Qn+1 l1, l2, l3
� �� �� �μ

� ϖ Qn l1, l2, l3
� �

,Qn+1 l1, l2, l3
� �� �

= 0:
ð37Þ

For all n ∈ℕ, the inequality (33) yields

ϖ Qn l1, l2, l3
� �

,Qn+1 l1, l2, l3
� �� �� �μ

× π ϖ Qn l1, l2, l3
� �

,Qn+1 l1, l2, l3
� �� �� �

− π I l1, l1, l2
� �� �� �

≤ −n ϖ Qn l1, l2, l3
� �

,Qn+1 l1, l2, l3
� �� �� �μ

ℓ ≤ 0:
ð38Þ

Take into account (35) and (37), and taking n⟶∞ in
(38), we get

lim
n⟶∞

ϖ Qn l1, l2, l3
� �

,Qn+1 l1, l2, l3
� �� �� �μ = 0: ð39Þ

By (39), there is n° ∈ℕ, such that n
ðϖðQnðl1, l2, l3Þ,Qn+1ðl1, l2, l3ÞÞÞμ ≤ 1, for all n ≥ n°, or

ϖ Qn l1, l2, l3
� �

,Qn+1 l1, l2, l3
� �� �

≤
1

n1/μ
, for all n ≥ n°:

ð40Þ

Using (40), for m > n ≥ n°, we get

ϖ Qn l1, l2, l3
� �

,Qm l1, l2, l3
� �� �

≤ ϖ Qn l1, l2, l3
� �

,Qn+1 l1, l2, l3
� �� �

+⋯+ϖ Qm−1 l1, l2, l3
� �

,Qm l1, l2, l3
� �� �

≤ 〠
∞

n≥n°

1
n1/μ

:

ð41Þ

The convergence series ∑∞
n≥n°

1/n1/μ leads to lim
n,m⟶∞

ϖð
Qnðl1, l2, l3Þ,Qmðl1, l2, l3ÞÞ = 0. Moreover, we can write

lim
n,m⟶∞

ϖ Qn l2, l3, l1
� �

,Qm l2, l3, l1
� �� �

= 0,

lim
n,m⟶∞

ϖ Qn l3, l1, l2
� �

,Qm l3, l1, l2
� �� �

= 0:
ð42Þ

This implies that fQnðl1, l2, l3Þgn∈ℕ, fQnðl2, l3, l1Þgn∈ℕ,
and fQnðl3, l1, l2Þgn∈ℕ are Cauchy sequences in Θ. The com-
pleteness of ðΘ, ϖÞ tells us that there is ðl′1, l′2, l′3Þ ∈Θ3

such that Qnðl1, l2, l3Þn∈ℕ ⟶ l′1, Qnðl2, l3, l1Þn∈ℕ ⟶ l′2,
and Qnðl3, l1, l2Þn∈ℕ ⟶ l′3, as n⟶∞. Then, the conclu-
sion follows.

Theorem 19. Assume that Q : Θ3 ⟶Θ is a πℶ‐RCM on a
CMS ðΘ, ϖÞ with a DG ℶ. Let

(a) Q be ℶ-continuous

(b) the triple ðΘ, ϖ,ℶÞ satisfy the property ðKÞ and π be
continuous

Then, Ω ≠∅ if and only if ðΘ3ÞQ ≠∅.

Proof. Let Ω ≠∅; then, there is ðl′1, l′2, l′3Þ ∈Ω so that ðl′
1,Qðl′1, l′2, l′3ÞÞ = ðl′1, l′1Þ ∈ Y ⊂ ∇ðℶÞ, ðl′2,Qðl′2, l′3, l′
1ÞÞ = ðl′2, l′2Þ ∈ Y ⊂ ∇ðℶÞ, and ðl′3,Qðl′3, l′1, l′2ÞÞ = ðl′3,
l′3Þ ∈ Y ⊂ ∇ðℶÞ. So, ðl′1,Qðl′1, l′2, l′3ÞÞ, ðl′2,Qðl′2, l′3, l′
1ÞÞ, ðl′3,Qðl′3, l′1, l′2ÞÞ ∈ ∇ðℶÞ; this yields ðΘ3ÞQ ≠∅.

Conversely, suppose that ðΘ3ÞQ ≠∅; this means that

there is ðl1, l2, l3Þ ∈ ðΘ3ÞQ such that

l1,Q l1, l2, l3
� �� �

, l2,Q l2, l3, l1
� �� �

, l3,Q l3, l1, l2
� �� �

∈ ∇ ℶð Þ:
ð43Þ

Considering a positive integer sequence fnigi∈ℕ, by
Proposition 15 ð†2Þ, we obtain

Qni l1, l2, l3
� �

,Qni+1 l1, l2, l3
� �� �

∈ ∇ ℶð Þ: ð44Þ

Applying Lemma 18 to (44), there are l′1, l′2, l′3 ∈Θ
such that

lim
i⟶∞

Qni l1, l2, l3
� �

= l′1,

lim
i⟶∞

Qni l2, l3, l1
� �

= l′2,

lim
i⟶∞

Qni l3, l1, l2
� �

= l′3:

ð45Þ

(a) Let Q be ℶ-continuous; then, we get

Q Qni l1, l2, l3
� �

,Qni l2, l3, l1
� �

,
�

Qni l3, l1, l2
� ��

⟶Q l′1, l′2, l′3
	 


, as i⟶∞:

ð46Þ

From triangle inequality, it follows

ϖ Q l′1, l′2, l′3
	 


, l′1
	 

≤ ϖ Q l′1, l′2, l′3

	 

,Qni+1 l1, l2, l3

� �	 

+ ϖ Qni+1 l1, l2, l3

� �
, l′1

	 

:

ð47Þ

The continuity of Q and (45) leads to ϖðQðl′1, l′2, l′3Þ,
l′1Þ = 0, i.e., Qðl′1, l′2, l′3Þ = l′1. Similarly, one can show
that Qðl′2, l′3, l′1Þ = l′2 and Qðl′3, l′1, l′2Þ = l′3. Hence, a
triple ðl′1, l′2, l′3Þ is a TFP of Q and Ω ≠ 0.

(b) If a triple ðΘ, ϖ,ℶÞ satisfies the property ðKÞ, then
we get

6 Journal of Function Spaces



ϖ Qn l1, l2, l3
� �

, l′1
	 


∈ ∇ ℶð Þ: ð48Þ

Again, by the triangle inequality, we have

ϖ Q l′1, l′2, l′3
	 


, l′1
	 


≤ ϖ Q l′1, l′2, l′3
	 


,Qn+1 l1, l2, l3
� �	 


+ ϖ Qn+1 l1, l2, l3
� �

, l′1
	 


≤ ϖ Q l′1, l′2, l′3
	 


,Q Qn l1, l2, l3
� �

,Qn l2, l3, l1
� �

,Qn l3, l1, l2
� �� �	 


+ ϖ Qn+1 l1, l2, l3
� �

, l′1
	 


:

ð49Þ

Using mapping π yields

π ϖ Q l′1, l′2, l′3
	 


, l′1

	 


− ϖ Qn+1 l1, l2, l3
� �

, l′1
	 
	 


≤ π ϖ Q l′1, l′2, l′3
	 


,Q Qn l1, l2, l3
� �

,Qn l2, l3, l1
� �

,Qn l3, l1, l2
� �� �	 
	 


≤ π
ϖ t′1,Qn l1, l2, l3

� �	 

+ ϖ l′2,Qn l2, l3, l1

� �	 

+ ϖ l′3,Qn l3, l1, l2

� �	 

3

0
@

1
A − τ:

ð50Þ

As n⟶∞ in (50), we obtain that πðϖðQðl′1, l′2, l′3Þ,
l′1ÞÞ ≤ −∞, that is, ϖðQðl′1, l′2, l′3Þ, l′1Þ = 0, i.e., Qðl′1, l′2,
l′3Þ = l′1. Similarly, one can prove that Qðl′2, l′3, l′1Þ = l′2

and Qðl′3, l′1, l′2Þ = l′3. So ðl′1, l′2, l′3Þ ∈Ω.

4. Applications

The fixed point theory is a very important tool in nonlin-
ear analysis, due to its applications in various domains
(see [20, 21]).

Before stating the main results of this section, we need
the following lemma.

Lemma 20 (see [22]). Assume that φζ
ℓ : ½0,∞Þ⟶ ½0,∞Þ is a

function defined by

φζ
ℓ eð Þ = e

1 + ℓ
ffiffi
eζ

p� �ζ , ð51Þ

for ζ > 1 and ℓ > 0. Then,

(i) φζ
ℓðeÞ is strictly increasing

(ii) φζ
ℓð0Þ = 0 and φζ

ℓðeÞ is a concave function

(iii) for e, r ∈ ½0,∞Þ, jφζ
ℓðrÞ − φζ

ℓðeÞj ≤ φζ
ℓðjr − ejÞ

4.1. System of Tripled Functional Equations. The fixed point
technique contributes to the study of dynamic program-
ming, which is considered an essential tool in optimization
problems such as the study of dynamic economic models.
This technique has been studied by many researchers to give
a unique solution to a system of functional equations via
suitable contraction conditions in various spaces. For more

results, we refer to Bhakta and Mitra [23], Liu [24], Pathak
et al. [25], Zhang [26], and Bellman and Lee [27].

Consider a system of tripled functional equations below:

z l1
� �

= sup
l2∈D

c l1, l2
� �

+ J l1, l2, z o l1, l2
� �� �

, b o l1, l2
� �� �

, a o l1, l2
� �� �� �� �

,

b l1
� �

= sup
l2∈D

c l1, l2
� �

+ J l1, l2, b o l1, l2
� �� �

, a o l1, l2
� �� �

, z o l1, l2
� �� �� �� �

,

a l1
� �

= sup
l2∈D

c l1, l2
� �

+ J l1, l2, a o l1, l2
� �� �

, z o l1, l2
� �� �

, b o l1, l2
� �� �� �� �

,

8>>>>>><
>>>>>>:

ð52Þ

where S and D are state and decision spaces, respectively,
l1 ∈ S, o : S ×D⟶ S, c : S ×D⟶ℝ, and J : S ×D ×ℝ3

⟶ℝ.
We denote the set of all bounded real-valued functions

on a nonempty set S, by AS. Define

νk k = sup
l1∈S

ν l1
� ��� ��, ð53Þ

for any ν ∈ AS. Moreover, on AS, define a distance as follows:

ϖ r, uð Þ = sup
l1∈S

r l1
� �

− u l1
� ��� ��, ð54Þ

for all r, u ∈ AS. Clearly, the pair ðAS, ϖÞ is a CMS.
Problem (52) will be considered via the two hypotheses

below:
ð‡iÞ: the functions c : S ×D⟶ℝ and J : S ×D ×ℝ3

⟶ℝ are bounded.
ð‡iiÞ: for all l1 ∈ S, l2 ∈D, and z, b, e, z∗, b∗, e∗ ∈ℝ, for ζ

> 1 and ℓ > 0, we have

J l1, l2, z, b, a
� �

− J l1, l2, z∗, b∗, a∗
� ��� ��

≤
max z − z∗j j, b − b∗j j, a − a∗j jf g

1 + ℓ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max z − z∗j j, b − b∗j j, a − a∗j jf gζ

p	 
ζ : ð55Þ

Theorem 21. Using the hypotheses ð‡iÞ and ð‡iiÞ on AS × AS,
the problem (52) has a unique bounded common solution.

Proof. On the space AS, let us define an operator Q as fol-
lows:

Q z, b, að Þ l1
� �

= sup
l2∈D

c l1, l2
� �

+ J l1, l2, z o l1, l2
� �� �

,
��

b o l1, l2
� �� �

, a o l1, l2
� �� ��g, ð56Þ

for each ðz, b, aÞ ∈ AS and l1 ∈ S. The boundedness of the
functions c and J assures that the mapping Q is well defined.

Suppose that ðz, b, aÞ, ðz∗, b∗, a∗Þ ∈ AS × AS, and take

χz,b,a
z∗ ,b∗ ,a∗ =max z o l1, l2

� �� �
− z∗ o l1, l2

� �� ��� ��,�
b o l1, l2
� �� �

− b∗ o l1, l2
� �� ��� ��,

a o l1, l2
� �� �

− a∗ o l1, l2
� �� ��� ���,
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ϑz,b,az∗ ,b∗ ,a∗ =max z o l1, l2
� �� �

− z∗ o l1, l2
� �� ��� ��,�

b o l1, l2
� �� �

− b∗ o l1, l2
� �� ��� ��,

a o l1, l2
� �� �

− a∗ o l1, l2
� �� ��� ���:

ð57Þ

Then, by hypothesis ð‡iiÞ, we have

ϖ Q z, b, að Þ,Q z∗, b∗, a∗ð Þð Þ
= sup

l1∈S
Q z, b, að Þ l1

� �
−Q z∗, b∗, a∗ð Þ l1

� ��� ��
= sup

l1∈S
sup
l2∈D

c l1, l2
� �

+ J l1, l2, z o l1, l2
� �� �

, b o l1, l2
� �� �

, a o l1, l2
� �� �� �� ������

− sup
l2∈D

c l1, l2
� �

+ J l1, l2, z∗ o l1, l2
� �� �

, b∗ o l1, l2
� �� �

, a∗ o l1, l2
� �� �� �� ������

= sup
l1∈S

sup
l2∈D

J l1, l2, z o l1, l2
� �� �

, b o l1, l2
� �� �

, a o l1, l2
� �� �� ���(

− J l1, l2, z∗ o l1, l2
� �� �

, b∗ o l1, l2
� �� �

, a∗ o l1, l2
� �� �� ���)

≤ sup
l1∈S

sup
l2∈D

χz,b,a
z∗ ,b∗ ,a∗

1 + ℓ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χz,b,a
z∗ ,b∗ ,a∗

ζ

q �ζ

0
BBB@

1
CCCA

8>>><
>>>:

9>>>=
>>>;

≤ sup
l1∈S

ϑz,b,az∗ ,b∗ ,a∗

1 + ℓ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϑz,b,az∗ ,b∗ ,a∗

ζ

q �ζ

0
BBB@

1
CCCA

≤
max ϖ z, z∗ð Þ, ϖ b, b∗ð Þ, ϖ a, a∗ð Þf g

1 + ℓ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max ϖ z, z∗ð Þ, ϖ b, b∗ð Þ, ϖ a, a∗ð Þf gζ

p	 
ζ ,
ð58Þ

where the nondecreasing character of φζ
ℓ was used (Lemma

20). Then,

ϖ Q z, b, eð Þ,Q z∗, b∗, e∗ð Þð Þ
≤

max ϖ z, z∗ð Þ, ϖ b, b∗ð Þ, ϖ e, e∗ð Þf g
1 + ℓ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max ϖ z, z∗ð Þ, ϖ b, b∗ð Þ, ϖ e, e∗ð Þf gζ

p	 
ζ : ð59Þ

Taking ffi
ζ
p on both sides, we have

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖ Q z, b, eð Þ,Q z∗, b∗, a∗ð Þð Þζ

q
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max ϖ z, z∗ð Þ, ϖ b, b∗ð Þ, ϖ a, a∗ð Þf gζ

p
1 + ℓ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max ϖ z, z∗ð Þ, ϖ b, b∗ð Þ, ϖ a, a∗ð Þf gζ

p ,
ð60Þ

or equivalently,

1 + ℓ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max ϖ z, z∗ð Þ, ϖ b, b∗ð Þ, ϖ a, a∗ð Þf gζ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max ϖ z, z∗ð Þ, ϖ b, b∗ð Þ, ϖ a, a∗ð Þf gζ

p
≤

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖ Q z, b, að Þ,Q z∗, b∗, a∗ð Þð Þζ

p ,
ð61Þ

yields

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max ϖ z, z∗ð Þ, ϖ b, b∗ð Þ, ϖ a, a∗ð Þf gζ

p + ℓ

≤
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϖ Q z, b, að Þ,Q z∗, b∗, a∗ð Þð Þζ
p ,

ð62Þ

and this leads to

ℓ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϖ Q z, b, að Þ,Q z∗, b∗, a∗ð Þð Þζ
p

≤ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

max ϖ z, z∗ð Þ, ϖ b, b∗ð Þ, ϖ a, a∗ð Þf gζ
p :

ð63Þ

This confirms that the inequality (21) of Corollary 14
holds with πðυÞ = ð−1/ ffiffiffi

υζ
p Þ ∈ Ϝ (Remark 4). Then, it follows

that the operator Q has a unique TFP. At the same time, it
is a unique bounded solution of the problem (52) on AS ×
AS.

4.2. Tripled System of the First Type of Integral Equations. In
this subsection, the theoretical results of Corollary 14 will be
applied to discuss the existence and uniqueness of a solution
of an integral equation tripled system. Let us consider the
following system:

l1 eð Þ = k eð Þ +
ð1
0
Y e, r, l1 rð Þ, l2 rð Þ, l3 rð Þ� �

dr,

l2 eð Þ = k eð Þ +
ð1
0
Y e, r, l2 rð Þ, l3 rð Þ, l1 rð Þ� �

dr,

l3 eð Þ = k eð Þ +
ð1
0
Y e, r, l3 rð Þ, l1 rð Þ, l2 rð Þ� �

dr,

8>>>>>>>>><
>>>>>>>>>:

ð64Þ

where kðeÞ is defined for all e ∈ ½0, 1�.
Consider C½0, 1�, the set of all real continuous functions

defined on ½0, 1�, and together with the distance defined
above, we can notice that ðC½0, 1�, ϖÞ is a CMS.

Now, we discuss the problem (64) according to the
assumptions below:

ð♠1Þ: k : ½0, 1�⟶ℝ is a continuous function.
ð♠2Þ: Y : ½0, 1� × ½0, 1� ×ℝ3 ⟶ℝ is a continuous func-

tion verifying

Y e, r, l1 rð Þ, l2 rð Þ, l3 rð Þ� �
− Y e, r, l′1 rð Þ, l′2 rð Þ, l′3 rð Þ
	 
��� ���

≤
max l1 − l′1

��� ���, l2 − l′2
��� ���, l3 − l′3

��� ���n o

1 + ℓ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max l1 − l′1

��� ���, l2 − l′2
��� ���, l3 − l′3

��� ���n o
ζ

r �ζ
,

ð65Þ

for each e, r ∈ ½0, 1� and l1, l2, l3, l′1, l′2, l′3 ∈ℝ, and ℓ > 0 and
ζ > 1.

Furthermore, let us present the main theorem of this
subsection.
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Theorem 22. There is a unique solution of system (64) ðl′1,
l′2, l′3Þ ∈ ðC½0, 1�Þ3, as long as the conditions ð♠1Þ and ð♠2Þ
are satisfied.

Proof. Define a mapping Q on C½0, 1� as follows:

Q l1, l2, l3
� �

eð Þ = k eð Þ +
ð1
0
Y e, r, l1 rð Þ, l2 rð Þ, l3 rð Þ� �

dr, ð66Þ

for all l1, l2, l3 ∈ C½0, 1�. In virtue of ð♠1Þ and ð♠2Þ, we con-
clude that Qðl1, l2, l3Þ ∈ C½0, 1� for each l1, l2, l3 ∈ C½0, 1�.
Thus, we can write

Q : C 0, 1½ �ð Þ3 ⟶ C 0, 1½ �: ð67Þ

Let ϖðQðl1, l2, l3Þ,Qðl′1, l′2, l′3ÞÞ > 0; then, for e ∈ ½0, 1�,
we get

Q l1, l2, l3
� �

eð Þ −Q l′1, l′2, l′3
	 


tð Þ
��� ���
=
ð1
0
Y e, r, l1 rð Þ, l2 rð Þ, l3 rð Þ� �

dr −
ð1
0
Y e, r, l′1 rð Þ, l′2 rð Þ, l′3 rð Þ
	 


d
����

����
≤
ð1
0
Y e, r, l1 rð Þ, l2 rð Þ, l3 rð Þ� �

− Y e, r, l′1 rð Þ, l′2 rð Þ, l′3 rð Þ
	 
��� ���dr

≤
ð1
0

max l1 rð Þ − l′1 rð Þ
��� ���, l2 rð Þ − l′2 rð Þ

��� ���, l3 rð Þ − l′3 rð Þ
��� ���o

1 + ℓ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max l1 rð Þ − l′1 rð Þ

��� ���, l2 rð Þ − l′2 rð Þ
��� ���, l3 rð Þ − l′3 rð Þ

��� ���n o
ζ

r �ζ

0
BBB@

1
CCCAdr

≤
ð1
0

max ϖ l1 rð Þ, l′1 rð Þ
	 


, ϖ l2 rð Þ, l′2 rð Þ
	 


, ϖ l3 rð Þ, l′3 rð Þ
	 
n o

1 + ℓ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max ϖ l1 rð Þ, l′1 rð Þ

	 

, ϖ l2 rð Þ, l′2 rð Þ
	 


, ϖ l3 rð Þ, l′3 rð Þ
	 
n o

ζ

r �ζ

0
BBB@

1
CCCAdr

=
max ϖ l1 rð Þ, l′1 rð Þ

	 

, ϖ l2 rð Þ, l′2 rð Þ
	 


, ϖ l3 rð Þ, l′3 rð Þ
	 
n o

1 + ℓ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max ϖ l1 rð Þ, l′1 rð Þ

	 

, ϖ l2 rð Þ, l′2 rð Þ
	 


, ϖ l3 rð Þ, l′3 rð Þ
	 
n o

ζ

r �ζ
,

ð68Þ

where the nondecreasing characters of φζ
ℓ were used

(Lemma 20). Thus,

ϖ Q l1, l2, l3
� �

,Q l′1, l′2, l′3
	 
	 


≤
max ϖ l1 rð Þ, l′1 rð Þ

	 

, ϖ l2 rð Þ, l′2 rð Þ
	 


, ϖ l3 rð Þ, l′3 rð Þ
	 
n o

1 + ℓ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max ϖ l1 rð Þ, l′1 rð Þ

	 

, ϖ l2 rð Þ, l′2 rð Þ
	 


, ϖ l3 rð Þ, l′3 rð Þ
	 
n o

ζ

r �ζ
:

ð69Þ

By the same approach used at the inequalities (60)–(62),
we get

ℓ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϖ Q l1, l2, l3
� �

,Q l′1, l′2, l′3
	 
	 


ζ

r

≤ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

max ϖ l1 rð Þ, l′1 rð Þ
	 


, ϖ l2 rð Þ, l′2 rð Þ
	 


, ϖ l3 rð Þ, l′3 rð Þ
	 
n o

ζ

r :

ð70Þ

Hence, the hypotheses of Corollary 14 are fulfilled on π
ðυÞ = ð−1/ ffiffiffi

υζ
p Þ ∈ Ϝ (Remark 4). There is a unique TFP of

the mapping Q. In other words, there is ðl′1, l′2, l′3Þ ∈
ðC½0, 1�Þ3 such that

l′1 eð Þ = Γ l°′
1, l°′

2, l°′
3	 


eð Þ = k eð Þ +
ð1
0
Y e, r, l°′

1
rð Þ, l°′

2
rð Þ, l°′

3
rð Þ

	 

dr,

l′2 eð Þ = Γ l°′
2, l°′

3, l°′
1	 


eð Þ = k eð Þ +
ð1
0
Y e, r, l°′

2
rð Þ, l°′

3
rð Þ, l°′

1
rð Þ

	 

dr,

l′3 eð Þ = Γ l°′
3, l°′

1, l°′
2	 


eð Þ = k eð Þ +
ð1
0
Y e, r, l°′

3
rð Þ, l°′

1
rð Þ, l°′

2
rð Þ

	 

dr:

8>>>>>>>>><
>>>>>>>>>:

ð71Þ

4.3. Tripled System of the Second Type of Integral Equations.
Let us consider the following type of system of integral
equations:

l1 eð Þ =
ðM
0
W e, rð ÞX e, r, l1 rð Þ, l2 rð Þ, l3 rð Þ� �

dr,

l2 eð Þ =
ðM
0
W e, rð ÞX e, r, l2 rð Þ, l3 rð Þ, l1 rð Þ� �

dr,

l3 eð Þ =
ðM
0
W e, rð ÞX e, r, l3 rð Þ, l1 rð Þ, l2 rð Þ� �

dr,

8>>>>>>>>><
>>>>>>>>>:

ð72Þ

where e, r ∈ ½0,M� with M > 0.
This subsection is devoted to discussing the influence of

the theoretical results of a DG for solving this new type of
system of integral equations.

Let Π = Cð½0,M�,ℝnÞ endowed with kl1k =max0≤e≤Mjl1
ðeÞj for all l1 ∈Π. Moreover, define a partial order on a

graph ℶ as follows, for all l1, l2, l3, l′1, l′2, l′3 ∈Π and e ∈ ½0,
M�,

l1 ≤ l′1 ⇔ l1 eð Þ ≤ l′1 eð Þ,
l2 ≤ l′2 ⇔ l2 eð Þ ≤ l′2 eð Þ,
l3 ≤ l′3 ⇔ l3 eð Þ ≤ l′3 eð Þ:

ð73Þ

Thus, ðΠ, k:kÞ is a CMS equipped with a directed graphℶ.
Let ðΠ, k:k,ℶÞ be a triple with the property ðKÞ and

Π3 =Π ×Π ×Π
� �

Q
= l1, l2, l3
� �

∈Π3 : l1 ≤Q l1, l2, l3
� �

, l2
�

≤Q l2, l3, l1
� �

, and l3 ≤Q l3, l1, l2
� ��

:

ð74Þ

We can state the main theorem.

Theorem 23. There is at least one solution of the problem
(72), if the assumptions below are fulfilled:

ð▶1Þ: the functions X : ½0,M� × ½0,M� ×ℝn ×ℝn ×ℝn

⟶ℝn and W : ½0,M� × ½0,M�⟶ℝn are continuous such
that
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ðM
0
W e, rð Þdr ≤ M

ℓ
, ð75Þ

for all e, r ∈ ½0,M� and ℓ > 0.

ð▶2Þ: for all l1, l2, l3, l′
1, l′2, l′3 ∈ℝn with l1 ≤ l′1, l2 ≤ l′2,

and l3 ≤ l′3, we have

X e, r, l1 rð Þ, l2 rð Þ, l3 rð Þ� �
≤ X e, r, l′1 rð Þ, l′2 rð Þ, l′3 rð Þ
	 


, ð76Þ

for all e, r ∈ ½0,M�:
ð▶3Þ: there are ℓ > 0 and ζ > 1 so that

X e, r, l1 rð Þ, l2 rð Þ, l3 rð Þ� �
− X e, r, l′1 rð Þ, l′2 rð Þ, l′3 rð Þ
	 
��� ���

≤
ℓ
M

1/3ð Þ max l1 − l′1
��� ���, l2 − l′2

��� ���, l3 − l′3
��� ���n o

1 + ℓ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/3ð Þ max l1 − l′1

��� ���, l2 − l′2
��� ���, l3 − l′3

��� ���n o
ζ

r �ζ
,

ð77Þ

for any e, r ∈ ½0,M�.
ð▶4Þ: there is ðl1° , l2° , l3° Þ ∈Π3 such that

l1° eð Þ =
ðM
0
W e, rð ÞX e, r, l1° rð Þ, l2° rð Þ, l3° rð Þ� �

dr,

l2° eð Þ =
ðM
0
W e, rð ÞX e, r, l2° rð Þ, l3° rð Þ, l1° rð Þ� �

dr,

l3° eð Þ =
ðM
0
W e, rð ÞX e, r, l3° rð Þ, l1° rð Þ, l2° rð Þ� �

dr,

8>>>>>>>>><
>>>>>>>>>:

ð78Þ

where e ∈ ½0,M�:

Proof. Let the mapping Q : Π3 ⟶Π defined by

Q l1, l2, l3
� �

eð Þ

=
ðM
0
W e, rð ÞX e, r, l1 rð Þ, l2 rð Þ, l3 rð Þ� �

dr, e ∈ 0,M½ �:

ð79Þ

Next, we show that Q is ℶ-edge-preserving. Let l1, l2, l3,
l′1, l′2, l′3 ∈Π with l1 ≤ l′1, l2 ≤ l′2, and l3 ≤ l′3. Then, we get

Q l1, l2, l3
� �

eð Þ =
ðM
0
W e, rð ÞX e, r, l1 rð Þ, l2 rð Þ, l3 rð Þ� �

dr

≤
ðM
0
W e, rð ÞX e, r, l′1 rð Þ, l′2 rð Þ, l′3 rð Þ

	 

dr

=Q l′1, l′2, t′3
	 


eð Þ:
ð80Þ

Using the same steps, we can write Qðl2, l3, l1ÞðeÞ ≤Qðl

′2, l′3, l′1,ÞðeÞ and Qðl3, l1, l2ÞðeÞ ≤Qðl′3, l′1, l′2ÞðeÞ, for all e
∈ ½0,M�.

Next, from ð▶4Þ, it follows

Π3� �
Q
= l1, l2, l3
� �

∈Π3 : l1 ≤Q l1, l2, l3
� �

, l2 ≤Q l2, l3, l1
� �

,
�
and l3 ≤Q l3, l1, l2

� ��
≠∅:

ð81Þ

Ultimately,

Q l1, l2, l3
� �

eð Þ −Q l′1, l′2, l′3
	 


eð Þ
��� ���
≤
ðM
0
W e, rð Þ X e, r, l1 rð Þ, l2 rð Þ, l3 rð Þ� �

− X e, r, l′1 rð Þ, l′2 rð Þ, l′3 rð Þ
	 
��� ���dr

≤
ðM
0
W e, rð Þ ℓ

M

1/3ð Þ max l1 − l′1
��� ���, l2 − l′2

��� ���, l3 − l′3
��� ���n o

1 + ℓ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/3ð Þ max l1 − l′1

��� ���, l2 − l′2
��� ���, l3 − l′3

��� ���n o
ζ

r �ζ

0
BBB@

1
CCCAdr

≤
1/3ð Þ max l1 − l′1

��� ���, l2 − l′2
��� ���, l3 − l′3

��� ���n

1 + ℓ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/3ð Þ max l1 − l′1

��� ���, l2 − l′2
��� ���, l3 − l′3

��� ���n o
ζ

r �ζ

≤
1/3ð Þ l1 − l′1

��� ��� + l2 − l′2
��� ��� + l3 − l′3

��� ���h i	 


1 + ℓ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/3ð Þ l1 − l′1

��� ��� + l2 − l′2
��� ��� + l3 − l′3

��� ���h
∣ζ

r �ζ

=
ϖ l1, l′1
	 


+ ϖ l2, l′2
	 


+ ϖ l3, l′3
	 
	 


/3
	 


1 + ℓ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖ l1, l′1
	 


+ ϖ l2, l′2
	 


+ ϖ l3, l′3
	 
	 


/3ζ

r �ζ
,

ð82Þ

where the nondecreasing characters of φζ
ℓ were used (Lemma

20). Thus,

ϖ Q l1, l2, l3
� �

,Q l′1, l′2, l′3
	 
	 


≤
ϖ l1, l′1
	 


+ ϖ l2, l′2
	 


+ ϖ l3, l′3
	 
	 


/3
	 


1 + ℓ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖ l1, l′1
	 


+ ϖ l2, l′2
	 


+ ϖ l3, l′3
	 
	 


/3ζ

r �ζ
:

ð83Þ

Taking ffi
ζ
p on both sides, we get

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖ Q l1, l2, l3

� �
,Q l′1, l′2, l′3
	 
	 


ζ

r

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖ l1, l′1
	 


+ ϖ l2, l′2
	 


+ ϖ l3, l′3
	 
	 


/3
	 


ζ

r

1 + ℓ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖ l1, l′1
	 


+ ϖ l2, l′2
	 


+ ϖ l3, l′3
	 
	 


/3ζ

r ,
ð84Þ
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or equivalently,

1 + ℓ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖ l1, l′1
	 


+ ϖ l2, l′2
	 


+ ϖ l3, l′3
	 
	 


/3ζ

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϖ l1, l′1
	 


+ ϖ l2, l′2
	 


+ ϖ l3, l′3
	 
	 


/3
	 


ζ

r

≤
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϖ Q l1, l2, l3
� �

,Q l′1, l′2, l′3
	 
	 


ζ

r ,

ð85Þ

or

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϖ l1, l′1
	 


+ ϖ l2, l′2
	 


+ ϖ l3, l′3
	 
	 


/3
	 


ζ

r + ℓ

≤
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϖ Q l1, l2, l3
� �

,Q l′1, l′2, l′3
	 
	 


ζ

r :

ð86Þ

This leads to

ℓ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϖ Q l1, l2, l3
� �

,Q l′1, l′2, l′3
	 
	 


ζ

r

≤ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϖ l1, l′1
	 


+ ϖ l2, l′2
	 


+ ϖ l3, l′3
	 
	 


/3
	 


ζ
r :

ð87Þ

Hence, Q is πℶ‐RCM with πðυÞ = ð−1/ ffiffiffi
υζ

p Þ ∈ Ϝ (Remark
4). So, it follows from Theorem 19 that the mapping Q has
a TFP, which is a solution of the problem (72).

5. Examples

In this section, some important examples satisfying theoret-
ical consequences are presented, with the role to strengthen
our results.

Example 1. Assume that Θ = ½0,∞Þ and ϖðl1, l2Þ = jl1 − l2j.
Clearly, ðΘ, ϖÞ is a CMS. Define Q, R : Θ3 ⟶Θ by

Q l1, l2, l3
� �

= l1 − 4l2 + l3

5

(
, l1 + l3 ≥ 4l2,

R l1, l2, l3
� �

= l1 − l2 + l3

5

(
, l1 + l3 ≥ l2,

ð88Þ

for all l1, l2, l3 ∈Θ.

Moreover, from the definition, Q and R are continuous.
Let π : ℝ+ ⟶ℝ be a function defined by πðυÞ = ln ðυÞ for
υ > 0: To verify the inequality (12) of Theorem 13, we con-
sider the following cases:

ð•1Þ: if l1 + l3 ≥ 4l2 and l′1 + l′3 ≥ l′2, we can write Qðl1,
l2, l3Þ = ðl1 − 4l2 + l3Þ/5 and Rðl′1, l′2, l′3Þ = ðl′1 − l′2 + l′3Þ/5;
then,

ϖ Q l1, l2, l3
� �

, R l′1, l′2, l′3
	 
	 


= l1 − 4l2 + l3

5 −
l′1 − l′2 + l′3

5

�����
�����

= l1 − l′1

5 + l′2 − 4l2
5 + l3 − l′3

5

�����
����� ≤ l1 − l′1

5

�����
����� + l′2 − 4l2

5

�����
�����

+ l3 − l′3

5

�����
����� ≤ l1 − l′1

5

�����
����� + l2 − l′2

5

�����
����� + l3 − l′3

5

�����
�����

≤
3
5 max l1 − l′1

��� ���, l2 − l′2
��� ���, l3 − l′3

��� ���n o
= 3
5 max ϖ l1, l′1

	 

, ϖ l2, l′2
	 


, ϖ l3, l′3
	 
n o

:

ð89Þ

Taking π into account, we can write

ln ϖ Q l1, l2, l3
� �

, R l′1, l′2, l′3
	 
	 
	 


≤ ln 3
5 max ϖ l1, l′1

	 

, ϖ l2, l′2
	 


, ϖ l3, l′3
	 
n o �

= ln 3
5

 �
+ ln max ϖ l1, l′1

	 

, ϖ l2, l′2
	 


, ϖ l3, l′3
	 
n o	 


,

ð90Þ

or

ln 5
3

 �
+ ln ϖ Q l1, l2, l3

� �
, R l′1, l′2, l′3
	 
	 
	 


≤ ln max ϖ l1, l′1
	 


, ϖ l2, l′2
	 


, ϖ l3, l′3
	 
n o	 


,
ð91Þ

which leads to

ℓ + π ϖ Q l1, l2, l3
� �

, R l′1, l′2, l′3
	 
		 


≤ π max ϖ l1, l′1
	 


, ϖ l2, l′2
	 


, ϖ l3, l′3
	 
n o	 


:
ð92Þ

ð•2Þ: if l1 + l3 ≥ 4l2 and l′1 + l′3 < l′2, we have Qðl1, l2, l3Þ
= ðl1 − 4l2 + l3Þ/5 and Rðl′1, l′2, l′3Þ = 0; then,

ϖ Q l1, l2, l3
� �

, R l′1, l′2, l′3
	 
	 


= l1 − 4l2 + l3

5 − 0
�����

�����
≤

l1 − l′1
	 


+ l′2 − l2
	 


+ l3 − l′3
	 


+ l′1 + l′3 − l′2
	 


5

������
������

≤
l1 − l′1

5

�����
����� + l′2 − 4l2

5

�����
����� + l3 − l′3

5

�����
�����,

ð93Þ
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since for all i, j, k ∈Θ, i + j + k ≤ 3 max fi, j, kg, one can get

ϖ Q l1, l2, l3
� �

, R l′1, l′2, l′3
	 
	 


≤
3
5 max l1 − l′1

5

�����
����� + l′2 − 4l2

5

�����
����� + l3 − l′3

5

�����
�����

( )

≤
3
5 max ϖ l1, l′1

	 

, ϖ l2, l′2
	 


, ϖ l3, l′3
	 
n o

,

ð94Þ

and by the same manner of ð•1Þ, we get (92).

ð•3Þ: if l1 + l3 < 4l2 and l′1 + l′3 ≥ l′2, then Qðl1, l2, l3Þ = 0
and Rðl′1, l′2, l′3Þ = ðl′1 − l′2 + l′3Þ/5. Hence, by the same
method of ð•2Þ, we obtain (92).

ð•4Þ: if l1 + l3 < 4l2 and l′1 + l′3 < l′2, we get Qðl1, l2, l3Þ
= 0 and Rðl′1, l′2, l′3Þ = 0; it is trivial.

It follows from ð•1Þ − ð•4Þ that the inequality (12) of
Theorem 13 with ℓ = ln ð5/3Þ > 0 is verified.

Then, ð0, 0, 0Þ ∈Θ3 is a unique common TFP of Q and R.

Example 2. We consider the following tripled system of
functional equations:

for l1 ∈ ½0, 1�.

It is clear that the system (95) is a special form of system
(52) with S = ½0, 1� and D =ℝ. The condition ð‡iÞ of Theo-
rem 21 is clear. For ð‡iiÞ, we can write

J l1, l2, z o l1, l2
� �� �

, b o l1, l2
� �� �

, a o l1, l2
� �� �� ���

− J l1, l2, z∗ o l1, l2
� �� �

, b∗ o l1, l2
� �� �

, a∗ o l1, l2
� �� �� ���

≤
1
3

z oð Þj j
1 + 8

ffiffiffiffiffiffiffiffiffiffiffi
z oð Þj j3

p	 
3 −
z∗ oð Þj j

1 + 8
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z∗ oð Þj j3

p	 
3
�������

�������
+ 1
3

b oð Þj j
1 + 5

ffiffiffiffiffiffiffiffiffiffiffi
b oð Þj j3

p	 
3 −
b∗ oð Þj j

1 + 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b∗ oð Þj j3

p	 
3
�������

�������
+ 1
3

a oð Þj j
1 + 4

ffiffiffiffiffiffiffiffiffiffiffi
a oð Þj j3

p	 
3 −
a∗ oð Þj j

1 + 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a∗ oð Þj j3

p	 
3
�������

�������
= 1
3 φ3

8 z oð Þj jð Þ − φ3
8 z∗ oð Þj jð Þ�� �� + 1

3 φ3
5 b oð Þj jð Þ − φ3

5 b∗ oð Þj jð Þ�� ��

+ 1
3 φ3

4 a oð Þj jð Þ − φ3
5 a∗ oð Þj jð Þ�� �� ≤ 1

3φ
3
8 z oð Þj j − z∗ oð Þj jj jð Þ

+ 1
3φ

3
5 b oð Þj j − b∗ oð Þj jj jð Þ + 1

3φ
3
4 a oð Þj j − a∗ oð Þj jj jð Þ

≤
1
3φ

3
8 z oð Þ − z∗ oð Þj jð Þ + 1

3φ
3
5 b oð Þ − b∗ oð Þj jð Þ

+ 1
3φ

3
4 a oð Þ − a∗ oð Þj jð Þ ≤ 1

3φ
3
8 max z − z∗j j, b − b∗j j, a − a∗j jf gð Þ

+ 1
3φ

3
5 max z − z∗j j, b − b∗j j, a − a∗j jf gð Þ

+ 1
3φ

3
4 max z − z∗j j, b − b∗j j, a − a∗j jf gð Þ

≤ 3 × 1
3φ

3
4 max z − z∗j j, b − b∗j j, a − a∗j jf gð Þ

= max z − z∗j j, b − b∗j j, a − a∗j jf g
1 + 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max z − z∗j j, b − b∗j j, a − a∗j jf g3

p	 
3 ,
ð96Þ

where Lemma 20 is used. Hence, ð‡iiÞ is satisfied with ℓ
= 4 and ζ = 3. According to Theorem 21, the system (95)
has a unique solution in AS × AS.

z l1
� �

= sup
l2∈ℝ

arctan l1 + 5 l2
�� ��� �

+ 1
1 + l1
� �2 + 1

1 + el
2 + 1

3
z oð Þj j

1 + 8
ffiffiffiffiffiffiffiffiffiffiffi
z oð Þj j3

p	 
3 + 1
3

b oð Þj j
1 + 5

ffiffiffiffiffiffiffiffiffiffiffi
b oð Þj j3

p	 
3 + 1
3

a oð Þj j
1 + 4

ffiffiffiffiffiffiffiffiffiffiffi
a oð Þj j3

p	 
3
0
B@

1
CA

8><
>:

9>=
>;,

b l1
� �

= sup
l2∈ℝ

arctan l1 + 5 l2
�� ��� �

+ 1
1 + l1
� �2 + 1

1 + el
2 + 1

3
b oð Þj j

1 + 8
ffiffiffiffiffiffiffiffiffiffiffi
b oð Þj j3

p	 
3 + 1
3

a oð Þj j
1 + 5

ffiffiffiffiffiffiffiffiffiffiffi
a oð Þj j3

p	 
3 + 1
3

z oð Þj j
1 + 4

ffiffiffiffiffiffiffiffiffiffiffi
z oð Þj j3

p	 
3
0
B@

1
CA

8><
>:

9>=
>;

a l1
� �

= sup
l2∈ℝ

arctan l1 + 5 l2
�� ��� �

+ 1
1 + l1
� �2 + 1

1 + el
2 + 1

3
a oð Þj j

1 + 8
ffiffiffiffiffiffiffiffiffiffiffi
a oð Þj j3

p	 
3 + 1
3

z oð Þj j
1 + 5

ffiffiffiffiffiffiffiffiffiffiffi
z oð Þj j3

p	 
3 + 1
3

b oð Þj j
1 + 4

ffiffiffiffiffiffiffiffiffiffiffi
b oð Þj j3

p	 
3
0
B@

1
CA

8><
>:

9>=
>;,

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

,

ð95Þ
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Example 3. Suppose the following tripled system of integral
equations:

for w ∈ ½0, 1�.

Again, system (97) is a special case of system (64), where
kðwÞ = ew.

It is obvious that the condition ð♠1Þ of Theorem 22
holds. For the condition ð♠2Þ, we get

Y w, r, l1 rð Þ, l2 rð Þ, l3 rð Þ� �
− Y w, r, l′1 rð Þ, l′2 rð Þ, l′3 rð Þ
	 
��� ���

≤
1
3

l1 rð Þ�� ��
1 + 10

ffiffiffiffiffiffiffiffiffiffiffiffi
l1 rð Þ�� ��5

q �5 −
l′1 rð Þ
��� ���

1 + 10
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l′1 rð Þ
��� ���5

r �5

���������

���������

+ 1
3

l2 rð Þ�� ��
1 + 7

ffiffiffiffiffiffiffiffiffiffiffiffi
l2 rð Þ�� ��5

q �5 −
l′2 rð Þ
��� ���

1 + 7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l′2 rð Þ
��� ���5

r �5

���������

���������

+ 1
3

l3 rð Þ�� ��
1 + 6

ffiffiffiffiffiffiffiffiffiffiffiffi
l3 rð Þ�� ��5

q �5 −
l′3 rð Þ
��� ���

1 + 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l′3 rð Þ
��� ���5

r �5

���������

���������
= 1
3 φ5

10 l1 rð Þ�� ��� �
− φ5

10 l′1 rð Þ
��� ���	 
��� ���

+ 1
3 φ5

7 l2 rð Þ�� ��� �
− φ5

7 l′2 rð Þ
��� ���	 
��� ���

+ 1
3 φ5

6 l3 rð Þ�� ��� �
− φ5

7 l′3 rð Þ
��� ���	 
��� ���

≤
1
3φ

5
10 l1 rð Þ�� �� − l′1 rð Þ

��� ������ ���	 

+ 1
3φ

5
7 l2 rð Þ�� �� − l′2 rð Þ

��� ������ ���	 

+ 1
3φ

5
6 l3 rð Þ�� �� − l′3 rð Þ

��� ������ ���	 

≤
1
3φ

5
10 l1 rð Þ − l′1 rð Þ
��� ���	 


+ 1
3φ

5
7 l2 rð Þ − l′2 rð Þ
��� ���	 


+ 1
3φ

5
6 l3 rð Þ − l′3 rð Þ
��� ���	 


≤
1
2φ

5
10 max l1 − l′1

��� ���, l2 − l′2
��� ���, l3 − l′3

��� ���n o	 

+ 1
2φ

5
7 max l1 − l′1

��� ���, l2 − l′2
��� ���, l3 − l′3

��� ���n o	 

+ 1
3φ

5
6 max l1 − l′1

��� ���, l2 − l′2
��� ���, l3 − l′3

��� ���n o	 

≤ 3 × 1

3φ
5
6 max l1 − l′1

��� ���, l2 − l′2
��� ���, l3 − l′3

��� ���n o	 


=
max l1 − l′1

��� ���, l2 − l′2
��� ���, l3 − l′3

��� ���n o
1 + 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max l1 − l′1

��� ���, l2 − l′2
��� ���, l3 − l′3

��� ���n o
5

r �5 ,

ð98Þ

where Lemma 20 was used. Hence, ð♠2Þ holds with ℓ = 6 and
ζ = 5. According to Corollary 14, system (97) has a unique

solution ðl′1, l′2, l′3Þ ∈ ðC½0, 1�Þ3.

6. Conclusions

The present paper is dedicated to the study of the existence
and uniqueness of tripled fixed points in a CMS with and
without a directed graph. Common tripled fixed point
results are given too. Moreover, some applications of the
main results in solving different types of tripled equation
systems are presented. Then, using our main results, we
study the existence and uniqueness of a solution of some sys-
tems of tripled functional and integral equations used in the
study of dynamic programming. To sustain our results, the
last part of the paper is dedicated to some illustrative exam-
ples. Our results come to improve some results from the
related literature and give new directions in the study of eco-
nomic phenomena, using the tripled fixed point technique.

l1 wð Þ = ew +
ð1
0

w2 + r
1 + r

+ 1
3

l1 rð Þ�� ��
1 + 10

ffiffiffiffiffiffiffiffiffi
l1 rð Þ5

q �5 + 1
3

l2 rð Þ�� ��
1 + 7

ffiffiffiffiffiffiffiffiffiffiffiffi
l2 rð Þ�� ��5

q �5 + 1
3

l3 rð Þ�� ��
1 + 6

ffiffiffiffiffiffiffiffiffiffiffiffi
l3 rð Þ�� ��5

q �5

0
BBB@

1
CCCAdr,

l2 wð Þ = ew +
ð1
0

w2 + r
1 + r

+ 1
3

l2 rð Þ�� ��
1 + 10

ffiffiffiffiffiffiffiffiffi
l2 rð Þ5

q �5 + 1
3

l3 rð Þ�� ��
1 + 7

ffiffiffiffiffiffiffiffiffiffiffiffi
l3 rð Þ�� ��5

q �5 + 1
3

l1 rð Þ�� ��
1 + 6

ffiffiffiffiffiffiffiffiffiffiffiffi
l1 rð Þ�� ��5

q �5

0
BBB@

1
CCCAdr,

l3 wð Þ = ew +
ð1
0

w2 + r
1 + r

+ 1
3

l3 rð Þ�� ��
1 + 10

ffiffiffiffiffiffiffiffiffi
l3 rð Þ5

q �5 + 1
3

l1 rð Þ�� ��
1 + 7

ffiffiffiffiffiffiffiffiffiffiffiffi
l1 rð Þ�� ��5

q �5 + 1
3

l2 rð Þ�� ��
1 + 6

ffiffiffiffiffiffiffiffiffiffiffiffi
l2 rð Þ�� ��5

q �5

0
BBB@

1
CCCAdr,

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

ð97Þ
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available from the corresponding author upon request.

Additional Points

Open Questions. (1) A new research direction can be consid-
ered the existence of fixed points in the case of multivalued
operators. Which conditions can be imposed in order to
obtain the uniqueness of the fixed point for the multivalued
operators’ case? (2) Moreover, the case of coincidence fixed
points and the case of coupled fixed points can be considered
for further research proposals.
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In this work, we combined two techniques, the variational iteration technique and the Laplace transform method, in order to
solve some nonlinear-time fractional partial differential equations. Although the exact solutions may exist, we introduced the
technique VITM that approximates the solutions that are difficult to find. Even a single iteration best approximates the exact
solutions. The fractional derivatives being used are in the Caputo-Fabrizio sense. The reliability and efficiency of this newly
introduced method is discussed in details from its numerical results and their graphical approximations. Moreover, possible
consequences of these results as an application of fixed-point theorem are placed before the experts as an open problem.

1. Introduction and Preliminaries

Almost all the phenomena in science and engineering are
naturally modeled in the form of nonlinear differential equa-
tions, like Korteweg-de Vries equation [1, 2], nonlinear
Schrödinger equation [3–5], alternating current power flow
model [6], Richards equation for unsaturated water flow
[7–10], Burger equation [11], and gravitational general the-
ory [12].

Recently, the above-mentioned and other nonlinear
model equations are solved by using more than one semia-
nalytical and numerical methods, like the Laplace transform
method (LTM) [13, 14], variational iteration method (VIM)
[15, 16], Newton-Raphson formula (NRF) [17], Adomian
decomposition method (ADM) [18], homotopy analysis
method (HAM) [19, 20], homotopy perturbation method
(HPM) [21], spectral collocation technique [22] and the
equation presented in [23].

Nowadays, the techniques of fractional calculus are
being employed successfully for better understanding of
complex natural phenomena, which not only agree with
the ordinary calculus techniques but also give the best results

and understanding of the phenomena. Laplace transform is
a powerful tool, which has been used in the past decades to
solve the ODEs with constant and variable coefficients as
well as to solve PDEs. Similarly, in these days, the variational
iteration technique, developed by the Chinese mathemati-
cian He [15], is also a reliable technique (which was origi-
nally developed to solve differential and integrodifferential
equations) to solve PDEs. The main drawback of the varia-
tional iteration method is that one may have difficulty in cal-
culating the Lagrange multiplier. Currently, much attention
is being paid in combining more than one technique to solve
a model especially nonlinear models, to get better and rapid
results. In this direction the work has been started, and it is
observed that the results obtained by combining more than
one technique are much better than that of a single tech-
nique as discussed in [24, 25].

In the current paper, two techniques, variational iteration
technique and the Laplace transform, are being utilized, and
the combined technique, the variational iteration transform
method (VITM), is employed to handle the nonlinear frac-
tional order partial differential equations, like the Korteweg-
de Vries equation [26], Schrödinger equation [27], and Burger
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equation [28]. The rapid convergence of the method proves
that it is a more reliable technique now more than ever than
the existing one to solve FPDEs, and it introduces a new signif-
icant improvement. In the proceeding sections, method
description along with the validity of the results obtained by
the technique is presented.

In the study of the fractional differential equations, the
Caputo-Fabrizio fractional derivative [29] will be consid-
ered. The Caputo-Fabrizio fractional derivative is the most
recent fractional derivative which is more effective than the
other fractional derivatives present in the literature, in deal-
ing with the initial value problems. First, let us recall the
some definitions from the area of fractional calculus.

(1) Riemann-Liouville Fractional Derivative. The
Riemann-Liouville fractional derivative of a function
f ðtÞ is defined to be

Dα f tð Þ = d
dt

� �ε+1ðt
a
t − τð Þε−α f τð Þdτ, ð1Þ

where ε ≤ α < ε + 1 or

Dα f tð Þ = 1
Γ κ − αð Þ

dκ

dtκ

ðt
a
t − τð Þκ−α−1 f τð Þdτ, ð2Þ

where κ − 1 ≤ α < κ. Both κ and ε are integers.

(2) Caputo’s Fractional Derivative. Caputo’s fractional
derivative of f ðtÞ is given by

Dα
a f tð Þ = 1

Γ 1 − αð Þ
ðt
a

f ′ t − τð Þ
τ − að Þα dτ, ð3Þ

such that α∈ ½0, 1�.
(3) Caputo-Fabrizio Derivative. Let us recall one of the

most recent definitions of the fractional derivative
Caputo-Fabrizio derivative, as follows. Let FðtÞ∈H1

ða, bÞ, b > a; then, the Caputo-Fabrizio time frac-
tional derivative of FðtÞ is defined as

Dα
tF tð Þ = M að Þ

1 − αð Þ
ðt
a
F ′ tð Þ exp −

α t − τð Þ
1 − α

� �
dτ, ð4Þ

where αϵ½0, 1� and MðaÞ is a normalization function
that is Mð0Þ =Mð1Þ = 1.

(4) Laplace Transform. Let f ðtÞ be a function; then, its
Laplace transform is defined as

L f tð Þf g =F sð Þ =
ð∞
0
e−st f tð Þdt, ð5Þ

and the Laplace transform of f ′ðtÞ is given by

L D α+nð Þ
t f ′ tð Þ

n o
= s n+1ð ÞL f tð Þ½ � − sn f 0ð Þ − sn−1 f ′ 0ð Þ−⋯−f nð Þ 0ð Þ

s + α 1 − sð Þ :
ð6Þ

2. Methodology of VITM

This section is devoted to present the methodology of the
proposed technique. Then, let us consider the general time
fractional partial differential equation.

Dα
tX φ, tð Þ + L X φ, tð Þð Þ +N X φ, tð Þ,Y φ, tð Þ,Z φ, tð Þð Þ
=F φ, tð Þ,

ð7Þ

subject to

X φ, 0ð Þ =X0, ð8Þ

where LðXðφ, tÞÞ, NðXðφ, tÞ,Yðφ, tÞ,Zðφ, tÞÞ, and Fðφ, tÞ
are linear, nonlinear, and known functions, respectively.
Also Dα

t is in the Caputo-Fabrizio sense.
Further, we apply the variational iteration method on the

above equation. Then, we found the following iterative form:

Xn+1 φ, tð Þ =Xn φ, tð Þ + λ Dα
t X φ, tð Þ + L X φ, tð Þð Þf

+N X φ, tð Þ,Y φ, tð Þ,Z φ, tð Þð Þ −F φ, tð Þg:
ð9Þ

Also, if we apply the Laplace transform on this equation,
we transform the variable t, to the new variable s, such that

Xn+1 φ, sð Þ =Xn φ, sð Þ + λL
n
Dα
t Xn φ, sð Þ + L ~Xn φ, sð Þ

+N ~Xn φ, sð Þ, ~Yn φ, sð Þ, ~Zn φ, sð Þ
� �

−F φ, sð Þ
o
,

ð10Þ

where ~Xnðφ, tÞ, etc. are restricted values, which means

δ ~Xn φ, tð Þ = 0: ð11Þ

Using the following relations:

L DαXn φ, tð Þf g = sαXn φ, sð Þ − sα−1Xn φ, 0ð Þ,
L δDαXn φ, tð Þf g = sαδXn φ, sð Þ − sα−1δXn φ, 0ð Þ,

ð12Þ

where

δXn φ, 0ð Þ = 0: ð13Þ
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Then, we have

L δDαXn φ, tð Þf g = sαδXn φ, sð Þ: ð14Þ

The optimization conditions,

δ ~Xn+1 φ, sð Þ
δ ~Xn φ, sð Þ

= 0,

δfXn = 0, δfYn = 0, δfZn = 0,

ð15Þ

give

0 = 1 + λ
sαδ ~Xn φ, sð Þ
δ ~Xn φ, sð Þ

( )
: ð16Þ

The above equation implies λ = −1/sα.
On substituting in equation (10), we obtain

Xn+1 φ, sð Þ =Xn φ, sð Þ − 1
sα
L
n
Dα
t Xn φ, sð Þ + L ~Xn φ, sð Þ

+N ~Xn φ, sð Þ, ~Yn φ, sð Þ, ~Zn φ, sð Þ
� �

−F φ, tð Þ
o
:

ð17Þ

The inverse Laplace transform gives

Xn+1 φ, tð Þ =Xn φ, tð Þ −L−1
� 1
sα
L
	
Dα

tXn φ, sð Þ + LXn φ, sð Þ

+N Xn φ, sð Þ,Yn φ, sð Þ,Zn φ, sð Þð Þ −F φ, sð Þg


:

ð18Þ

Substituting n = 0, 1, 2,⋯, we find the following succes-
sive approximations:

X1,X2,X3 ⋯ : ð19Þ

3. Applications of VITM on Various
FODE Types

In this section, we present and apply VITM on some impor-
tant FODEs from related literature. Then, our first applica-
tion takes into consideration the most general time
fractional form of the Korteweg-de Vries equation (see [24]).

Dα
t X + α1XXφ + β1Xφφφ = 0, 0 < α ≤ 1, ð20Þ

subject to

X φ, 0ð Þ =X0 =
a

cosh2β1φ
, ð21Þ

where

α1 =
c0
2k2

εcλ3ð Þ, ð22Þ

is the nonlinear parameter and

β1 =
c0h

2

6 , ð23Þ

is the dispersion parameter.
Applying the variational iteration and Laplace trans-

form, we get

Xn+1 φ, sð Þ =Xn φ, sð Þ +L

(
λ

(
Dα
t
~Xn φ, sð Þ

+ α1 ~Xn φ, sð Þ ∂
~Xn φ, sð Þ
∂φ

+ β1
∂3 ~Xn φ, sð Þ

∂φ3

))
:

ð24Þ

Also, substituting the following relation

L Dα
tXn φ, tð Þf g = sαXn φ, sð Þ − sα−1Xn φ, 0ð Þ, ð25Þ

and optimality conditions, etc., we get the next results:

δ ~Xn+1 φ, sð Þ
δ ~Xn φ, sð Þ

= 0, δfXn = 0, λ = −1
sα

: ð26Þ

By substitution, we have

Xn+1 φ, sð Þ =Xn φ, sð Þ − 1
sα
L

(
α1Xn φ, sð Þ ∂Xn φ, sð Þ

∂φ

+ β1
∂3Xn φ, sð Þ

∂φ3

)
:

ð27Þ

Applying the inverse Laplace transform on the above
equation and simplifying, we get

Xn+1 φ, tð Þ =Xn φ, tð Þ −L−1
(

1
sα
L

(
Dα

tXn φ, sð Þ

+ α1Xn φ, sð Þ ∂Xn φ, sð Þ
∂φ

+ β1
∂3Xn φ, sð Þ

∂φ3

))
:

ð28Þ

For n = 0, 1, 2,⋯, the following approximations are
obtained: X1,X2,X3 ⋯ , such as

X1 φ, tð Þ = asech2β1φ −
tα

Γ 1 + αð Þ
� 	−2a2α1β1 sec h4β1φ tan hβ1φ

+ β1
	
16aβ1

3 sec h4β1φ tan hβ1φ

− 8aβ1
3 sec h2β1φ tan h3β1φ

��
,
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X2 φ, tð Þ = a sec h2β1φ −
tα

Γ 1 + αð Þ
� 	−2a2α1β1 sec h4β1φ tan hβ1φ

+ β1
	
16aβ1

3 sec h4β1φ tan hβ1φ

− 8aβ1
3 sec h2β1φ tan h3β1φ

��
−
2a3t2αα12β1

2 sec h8β1φ

Γ 1 + 2αð Þ +⋯,

ð29Þ

and so on.
The solution Xðφ, tÞ can be found as

X φ, tð Þ = lim
i⟶∞

X i: ð30Þ

As particular examples, let us consider further some ver-
sions of time fractional equations.

Example 1. The first particular example is a simple time frac-
tional Korteweg-de Vries equation (see [18]).

Dα
t X − 6XXφ +Xφφφ = 0 ;X φ, 0ð Þ = 6φ: ð31Þ

Application of the proposed VITM step by step gives

Xn+1 φ, sð Þ =Xn φ, sð Þ +L

(
λ

(
Dα

t
fXn φ, sð Þ

− 6fXn φ, sð Þ ∂
fXn φ, sð Þ
∂φ

+ ∂3fXn φ, sð Þ
∂φ3

))
:

ð32Þ

The optimality conditions, etc. give the following results:

δ ~Xn+1 φ, sð Þ
δ ~Xn φ, sð Þ

= 0, δfXn = 0, λ = −1
sα

ð33Þ

Substitution and inverse Laplace transform implies

Xn+1 φ, tð Þ =Xn φ, tð Þ −L−1
(

1
sα
L

(
Dα
t Xn φ, sð Þ

− 6Xn φ, sð Þ ∂Xn φ, sð Þ
∂φ

+ ∂3Xn φ, sð Þ
∂φ3

))
:

ð34Þ

For n = 0, 1, 2,⋯, we get the approximations X1,X2,
X3,⋯, such as

X1 φ, tð Þ = 6φ + 216φtα
Γ 1 + αð Þ ,

X2 φ, tð Þ = 6φ + 216φtα
Γ 1 + αð Þ − 216φtα

(
−1 + t−1+ααΓα/Γ 2αð Þ

Γ 1 + αð Þ

−
72tα

Γ 1 + 2αð Þ −
1296t2αΓ 1 + 2αð Þ
Γ 1 + αð Þ2Γ 1 + 3αð Þ

)
:

ð35Þ

The solution Xðφ, tÞ can be found as

X φ, tð Þ = lim
i⟶∞

X i, ð36Þ

that is,

X φ, tð Þ = 6φ + 216φtα
Γ 1 + αð Þ − 216φtα

(
−1 + t−1+ααΓα/Γ 2αð Þ

Γ 1 + αð Þ

−
72tα

Γ 1 + 2αð Þ −
1296t2αΓ 1 + 2αð Þ
Γ 1 + αð Þ2Γ 1 + 3αð Þ

)
+⋯:

ð37Þ

For α = 1, it turns out to be

X φ, tð Þ = 6φ + 216φt + 7776φt2+⋯, ð38Þ

which is the expansion of the exact solution Xðφ, tÞ = 6ðφÞ
/ð1 − 36tÞ that confirms the validity of the proposed VITM
(see [18]).

Next, let us give a graphical representation of the
approximated solution Xðφ, tÞ, for different values of α
using Mathematica. Moreover, we will also give a graphical
3D representation for the exact solution Xðφ, tÞ = 6ðφÞ/ð1 −
36tÞ (Figure 1(b)). In this way, we show how the proposed
technique approaches the exact solution; see Figures 2(a),
2(b), and 1(a), which are the approximations of Figure 1(b).
The scale for all the four figures is −50 ≥ φ ≤ 50 and −50 ≥ t
≤ 50.

Example 2. Let us consider another version of time fractional
version of Korteweg-de Vries equation (see [18]).

Dα
t X − 6XXφ +Xφφφ = 0,X φ, 0ð Þ = −2 sec h2φ: ð39Þ

Applying VITM step by step, we obtain

Xn+1 φ, sð Þ =Xn φ, sð Þ +L

(
λ

(
Dα
t
~Xn φ, sð Þ

− 6 ~Xn φ, sð Þ ∂
~Xn φ, sð Þ
∂φ

+ ∂3 ~Xn φ, sð Þ
∂φ3

))
:

ð40Þ
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Using optimality conditions, etc., we get the following
results:

δ ~Xn+1 φ, sð Þ
δ ~Xn φ, sð Þ

= 0, δ ~Xn = 0, λ = −1
sα

: ð41Þ

Substitution and inverse Laplace transform implies

Xn+1 φ, tð Þ =Xn φ, tð Þ −L−1
(

1
sα
L

(
Dα
tXn φ, sð Þ

− 6Xn φ, sð Þ ∂Xn φ, sð Þ
∂φ

+ ∂3Xn φ, sð Þ
∂φ3

))
:

ð42Þ

For n = 0, 1, 2,⋯, we get the approximations X1,X2,
X3,⋯, such as

X1 φ, tð Þ = −2 sec h2φ −
tα 16 sec h4φ tan hφ + 16 sec h2φ tan h3φ
	 �

Γ 1 + αð Þ ,

X2 φ, tð Þ = −2 sec h2φ −
tα 16 sec h4φ tan hφ + 16 sec h2φ tan h3φ
	 �

Γ 1 + αð Þ

−
16t−1+α sec h2φ+⋯

Γ 1 + αð Þ2Γ 2αð ÞΓ 1 + 2αð ÞΓ 1 + 3αð Þ :

ð43Þ

The solution Xðφ, tÞ can be found as

X φ, tð Þ = lim
i⟶∞

X i: ð44Þ

Then,

X φ, tð Þ = −2 sec h2φ −
tα 16 sec h4φ tan hφ + 16 sec h2φ tan h3φ
	 �

Γ 1 + αð Þ

−
16t−1+α sec h2φ+⋯

Γ 1 + αð Þ2Γ 2αð ÞΓ 1 + 2αð ÞΓ 1 + 3αð Þ+⋯:

ð45Þ

For α = 1, we have

X φ, tð Þ = −2 sec h2φ − t 16 sec h4φ tan hφ
	

+ 16 sec h2φ tan h3φ
�
+⋯,

ð46Þ

which is the expansion of the exact solution, Xðφ, tÞ =
−2 sec h2ðφ − 4tÞ (see [18]).

Example 3. Consider the simple time fractional Burgers
equation (see [18]).

Dα
t X +XXφ +Xφφ = 0,X φ, 0ð Þ = φ: ð47Þ

Applying the proposed VITM step by step, we get

Xn+1 φ, sð Þ =Xn φ, sð Þ +L

(
λ

(
Dα
t
fXn φ, sð Þ

+ fXn φ, sð Þ ∂
fXn φ, sð Þ
∂φ

+ ∂2fXn φ, sð Þ
∂φ2

))
:

ð48Þ

The optimality conditions, etc. give the following results:

δ ~Xn+1 φ, sð Þ
δfXn φ, sð Þ

= 0, δfXn = 0, λ = −1
sα

: ð49Þ
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Figure 1: 3D representation of X for α = 1 (a) and of the exact solution (b).
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Substitution and inverse Laplace transform implies

Xn+1 φ, tð Þ =Xn φ, tð Þ −L−1
(

1
sα
L

(
Dα
t Xn φ, sð Þ

+Xn φ, sð Þ ∂Xn φ, sð Þ
∂φ

+ ∂2Xn φ, sð Þ
∂φ2

))
:

ð50Þ

For n = 0, 1, 2,⋯, we get the approximations X1,X2,
X3,⋯, such as

X1 φ, tð Þ = φ −
φtα

Γ 1 + αð Þ ,

X2 φ, tð Þ = φ + φtα

Γ 1 + αð Þ − φtα
(
1 − t−1+ααΓα/Γ 2αð Þ

Γ 1 + αð Þ

−
2tα

Γ 1 + 2αð Þ + t2αΓ 1 + 2αð Þ
Γ 1 + αð Þ2Γ 1 + 3αð Þ

)
:

ð51Þ

The solution Xðφ, tÞ can be found as

X φ, tð Þ = lim
i⟶∞

X i: ð52Þ

It means

X φ, tð Þ = φ + φtα

Γ 1 + αð Þ − φtα
(
1 − t−1+ααΓα/Γ 2αð Þ

Γ 1 + αð Þ

−
2tα

Γ 1 + 2αð Þ + t2αΓ 1 + 2αð Þ
Γ 1 + αð Þ2Γ 1 + 3αð Þ

)
:

ð53Þ

For α = 1, we have

X φ, tð Þ = φ − φt + φt2+⋯, ð54Þ

which resembles with the expansion of the exact solution
Xðφ, tÞ = φ/ð1 + tÞ, confirming the validity of the proposed
VITM (see [18]).

Further, let us draw some approximations of Xðφ, tÞ =
φ − φt + φt2 +⋯, for different values of α. Then, see
Figures 3(a), 3(b), 4(a), and 4(b), which are the approxima-
tions of Figure 5.

Example 4. Let us consider another time fractional version of
Burgers equation (see [18]) as follows:

Dα
t X +XXφ +Xφφ = 0 ;X φ, 0ð Þ = 2 tan φ: ð55Þ

Applying the variational iteration and Laplace trans-
form, we get

Xn+1 φ, sð Þ =Xn φ, sð Þ +L

(
λ

(
Dα
t
~Xn φ, sð Þ

+ ~Xn φ, sð Þ ∂
~Xn φ, sð Þ
∂φ

+ ∂2 ~Xn φ, sð Þ
∂φ2

))
:

ð56Þ

Using optimality conditions, etc., we obtain the follow-
ing results:

δ ~Xn+1 φ, sð Þ
δ ~Xn φ, sð Þ

= 0, δ ~Xn = 0, λ = −1
sα

: ð57Þ
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Figure 2: 3D representation of X for α = 0:2 (a) and α = 0:8 (b).
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Substitution and inverse Laplace transform implies

Xn+1 φ, tð Þ =Xn φ, tð Þ −L−1
(

1
sα
L

(
Dα
tXn φ, sð Þ

+Xn φ, sð Þ ∂Xn φ, sð Þ
∂φ

+ ∂2Xn φ, sð Þ
∂φ2

))
:

ð58Þ

For n = 0, 1, 2,⋯, we get the approximations X1,X2,
X3,⋯, such as

X1 φ, tð Þ = 2 tan φ −
8tα sec2φ tan φ

Γ 1 + αð Þ ,

X2 φ, tð Þ = 2 tan φ −
8tα sec2φ tan φ

Γ 1 + αð Þ
−

8t−1+α sec2φ tan φ

Γ 2αð ÞΓ 1 + αð Þ2Γ 1 + 2αð ÞΓ 1 + 3αð Þ
× −tααΓ αð ÞΓ 1 + αð ÞΓ 1 + 2αð ÞΓ 1 + 3αð Þf
+ tΓ 2αð ÞΓ 1 + αð ÞΓ 1 + 2αð ÞΓ 1 + 3αð Þ
+ 4tα sec2φ −4 + cos 2φð ÞΓ 1 + αð Þ2Γ 1 + 3αð Þ
− 8t2α sec4x −2 + cos 2xð ÞΓ 1 + 2αð Þ2�:

ð59Þ

The solution is in the series form, such as

X φ, tð Þ = lim
i⟶∞

X i, ð60Þ

which turns out to be the expansion of the exact solution
Xðφ, tÞ = −2 tan φ for α = 1, as discussed earlier (see [18]).

Example 5. Let us consider the time fractional version of the
nonlinear simple Schrödinger equation [18] as follows

iDα
tX +Xφφ − 2 Xj j2X = 0,X φ, 0ð Þ = eiφ: ð61Þ

Applying the variational iteration and Laplace trans-
form, we obtain

Xn+1 φ, sð Þ =Xn φ, sð Þ +L

(
λ

(
iDα

t
~Xn φ, sð Þ

− 2 ∣ fX2
n φ, sð Þ ∣ ~Xn φ, sð Þ + ∂2 ~Xn φ, sð Þ

∂φ2

))
:

ð62Þ

Using optimality conditions, etc., we get the following
results:

δ ~Xn+1 φ, sð Þ
δ ~Xn φ, sð Þ

= 0, δ ~Xn = 0, λ = −1
sα

: ð63Þ

Substitution and inverse Laplace transform implies

Xn+1 φ, tð Þ =Xn φ, tð Þ −L−1
(

1
sα
L

(
iDα

tXn φ, sð Þ

− 2 Xn φ, sð Þj j2Xn φ, sð Þ + ∂2Xn φ, sð Þ
∂φ2

))
:

ð64Þ

For n = 0, 1, 2,⋯, we get the approximations X1,X2,
X3,⋯, such as
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Figure 3: 3D representation of X for α = 0:2 (a) and α = 0:5 (b).
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X1 φ, tð Þ = eiφ + 2e3iφtα
Γ 1 + αð Þ ,

X2 φ, tð Þ = eiφ + 2e3iφtα
Γ 1 + αð Þ − 2e3iφtα

(
−1 + it−1+ααΓ αð Þ/Γ 2αð Þ

Γ 1 + αð Þ

−
6e2αtα

Γ 1 + 2αð Þ −
12e4αt2αΓ 1 + 2αð Þ
Γ 1 + αð Þ2Γ 1 + 3αð Þ

−
8e6αt3αΓ 1 + 3αð Þ

Γ 1 + αð Þ3Γ 1 + 4αð Þ

)
:

ð65Þ

The solution is in the series form, such as

X φ, tð Þ = lim
i⟶∞

X i, ð66Þ

which turns out to be the exact solution Xðφ, tÞ = eiðφ+tÞ for
α = 1 (see [18]).

Open question: as an application of the VITM on
nonlinear-time fractional differential equations towards
fixed-point theorem. One can obtain some approximations
of the solution X1,X2,X3 ⋯ . Moreover, it can be asked
whether these approximations of the solution are equivalent
with the iterations of a sequence of successive approxima-
tions which are convergent to a fixed point or not? What
are the minimum hypotheses imposed which lead us to the
existence and the uniqueness of a fixed point in this case?

4. Discussions and Concluding Remarks

The proposed method VITM being the combination of two
basic techniques, VIM and Laplace transform, is understand-
able by just having the formal knowledge of advanced calculus;
indeed, it is understandable even for the reader who has no
strong background and base in calculus of variations. It is sim-
ple and can be easily applied as compared to the more tradi-
tional VIM for fractional differential equations.

Using the proposed method in the present paper, we
study the convergence for some nonlinear fractional order
partial differential equations as the Korteweg-de Vries equa-
tion, Schrödinger equation, and Burger equation. The rapid
convergence of the method proves that it is a more reliable
technique now more than ever than the existing ones to
solve FPDEs, and it introduces a new significant improve-
ment. The reliability and efficiency of this simple and newly
introduced method is discussed by giving some numerical
results and their graphical approximations.

Moreover, we propose an interesting connection
between the approximations of the solution X1,X2,X3 ⋯
and the iterations of a sequence (convergent or not), from
the area of fixed-point theory.

The main advantage of this proposed variational method
together with Laplace transform helps to speed up the com-
putational work and may easily be applied to nonlinear
dynamical systems using software like Mathematica™,
MATLAB™, and Maple™.

5

–5
–50

–5050

50

0

0

0

Figure 5: 3D representation of the exact solution.
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Figure 4: 3D representation of X for α = 0:8 (a) and α = 1 (b).
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This paper is aimed at acquainting with a new Kannan F-expanding type mapping by the approach of Wardowski in the
complete metric space. We establish some fixed point results for Kannan F-expanding type mapping and F-contractive
type mappings which satisfy F-contraction conditions. Additionally, some new results are given which generalize several
results present in the literature. Moreover, some applications and examples are provided to show the practicality of our
results.

1. Introduction and Preliminaries

In 1922, Banach [1] commenced one of the most essential
and notable results called the Banach contraction principle,
i.e., let P be a self-mapping on a nonempty set X and d be a
complete metric, if there exists a constant k ∈ ½0, 1Þ such that

d Pu, Pvð Þ ≤ k d u, vð Þ, ð1Þ

for all u, v ∈ X. Then, it has a unique fixed point in X. Due to
its significance, in 1968, Kannan [2] introduced a different
intuition of the Banach contraction principle which removes
the condition of continuity, i.e., for all u, v ∈ ½0, 1/2�, there
exists a constant ρ ∈ ½0, 1Þ such that

d Pu, Pvð Þ ≤ ρ d u, Puð Þ + d v, Pvð Þ½ �: ð2Þ

On the other hand, the notion of metric space has been
generalized in several directions, and the abovementioned
contraction principle has been enhanced in the new settings
by considering the concept of convergence of functions. In
1989, Bakhtin [3] introduced the notion of b-metric space
which was revaluated by Czerwik [4] in 1993.

Definition 1. A b-metric space on a nonempty set X is a
function d : X × X⟶ ½0,∞Þ such that for all u, v,w ∈ X
and for some real number s ≥ 1, it satisfies the following:

(M1) If dðu, vÞ = 0, then u = v
(M2) dðu, vÞ = dðv, uÞ
(M3) dðu,wÞ ≤ s½dðu, vÞ + dðv,wÞ�

Then, the pair ðX, d, sÞ is called the b-metric space. Moti-
vated by this, many researchers [5–8] generalized the con-
cept of metric spaces and established on the existence of
fixed points in the setting of b-metric space keeping in mind
that, unlike standard metric, b-metric is not necessarily
continuous due to the modified triangle inequality. In gen-
eral, a b-metric does not induce a topology on X.

Partial metric space is one of the attempts to generalize
the notion of the metric space. In 1994, Matthews [9] intro-
duced the notion of a partial metric space in which dðu, uÞ
are no longer necessarily zero.

Definition 2. A partial metric on a nonempty set X is a func-
tion p : X × X⟶ ½0,∞Þ such that for all u, v,w ∈ X, it
satisfies the following:

(PM1) If pðu, uÞ = pðu, vÞ = pðv, vÞ, then u = v
(PM2) pðu, uÞ ≤ pðu, vÞ
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(PM3) pðu, vÞ = pðv, uÞ
(PM4) pðu, vÞ ≤ pðu,wÞ + pðw, vÞ − pðw,wÞ

Then, the pair ðX, pÞ is called the partial metric space.

Definition 3. Let ðX, pÞ be a partial metric space. Then, sev-
eral topological concepts for partial metric space can be eas-
ily defined as follows:

(1) A sequence fung in the partial metric space ðX, pÞ
converges to the limit u if pðu, uÞ = limn⟶∞pðu, unÞ

(2) It is said to be a Cauchy sequence if limn⟶∞pðun,
umÞ exists and is finite

(3) A partial metric space ðX, pÞ is called complete if
every Cauchy sequence fung in X converges with
respect to τp, to a point u ∈ X such that pðu, uÞ =
limn⟶∞pðun, umÞ

For more details, see, for example, [10–12], and the
related references therein. The following definition gives
room for the lack of symmetry in the spaces under study.
In 2013, Karapinar et al. [13] introduced quasi-partial metric
space that satisfies the same axioms as metric spaces.

Definition 4. A quasi-partial metric on a nonempty set X is a
function q : X × X⟶ℝ+ that satisfies the following:

(QPM1) If qðu, uÞ = qðu, vÞ = qðv, vÞ, then u = v
(QPM2) qðu, uÞ ≤ qðu, vÞ
(QPM3) qðu, uÞ ≤ qðv, uÞ
(QPM4) qðu, vÞ + qðw,wÞ ≤ qðu,wÞ + qðw, vÞfor all u, v,

w ∈ X. Then, the pair ðX, qÞ is called quasi-partial metric
space.

Later on, Gupta and Gautam [14, 15] introduced quasi-
partial b-metric space.

Definition 5. A quasi-partial b-metric on a nonempty set X is
a function qpb : X × X⟶ ½0,∞Þ such that for some real
number ρ ≥ 1, it satisfies the following:

(QPb1) If qpbðu, uÞ = qpbðu, vÞ = qpbðv, vÞ, then u = v
(indistancy implies equality)

(QPb2) qpbðu, uÞ ≤ qpbðu, vÞ (small self-distances)
(QPb3) qpbðu, uÞ ≤ qpbðv, uÞ (small self-distances)
(QPb4) qpbðu, vÞ + qpbðw,wÞ ≤ ρfqpbðu,wÞ + qpbðw, vÞg

(triangularity)
for all u, v,w ∈ X: The infimum over all reals ρ ≥ 1 satis-

fying ðQPb4Þ is called the coefficient of ðX, qpbÞ and repre-
sented by RðX, qpbÞ.

Lemma 6. Let ðX, qpbÞ be a quasi-partial b-metric space.
Then, the following hold:

(i) If qpbðu, vÞ = 0, then u = v

(ii) If u ≠ v, then qpbðu, vÞ > 0 and qpbðv, uÞ > 0

Definition 7. Let ðX, qpbÞ be a quasi-partial b-metric. Then,

(i) a sequence fung ⊂ X converges to u ∈ X if and only if

qpb u, uð Þ = lim
n⟶∞

qpb u, unð Þ = lim
n⟶∞

qpb un, uð Þ ð3Þ

(ii) a sequence fung ⊂ X is called a Cauchy sequence if
and only if

lim
n,m⟶∞

qpb un, umð Þ& lim
m,n⟶∞

qpb um, unð Þ exist ð4Þ

(iii) the quasi-partial b-metric space ðX, qpbÞ is said to
be complete if every Cauchy sequence fung ⊂ X
converges with respect to τqpb to a point u ∈ X such
that

qpb u, uð Þ = lim
n,m⟶∞

qpb un, umð Þ = lim
m,n⟶∞

qpb um, unð Þ ð5Þ

(iv) a mapping f : X⟶ X is said to be continuous at
u0 ∈ X, if for every ε > 0, there exists δ > 0 such that
f ðBðu0, δÞÞ ⊂ Bð f ðu0Þ, εÞ

The extensive application of the Banach contraction
principle has motivated many researchers to study the possi-
bility of its generalization. A great number of generalizations
of this famous result have appeared in the literature. In 2012,
Wardowski [16] established a new notion of F-contraction
and proved the fixed point theorem which generalized the
Banach contraction principle.

Definition 8 (see [16]). Let ðX, dÞ be a metric space, and
there exists a mapping F : ð0,∞Þ⟶ℝ which satisfies the
following condition:

(F1) F is strictly increasing
(F2) For any sequence fxngn∈N , limn⟶∞xn = 0 if and

only if limn⟶∞FðxnÞ = −∞
(F3) limx⟶0+x

kFðxÞ = 0 for some k ∈ ð0, 1Þ
Then, a mapping P : X⟶ X is said to be Wardowski F

-contraction if dðPu, PvÞ > 0 implies

δ + F d Pu, Pvð Þð Þ ≤ F d u, vð Þð Þ ð6Þ

for all u, v ∈ X

Theorem 9 (see [16]). Let ðX, dÞ be a complete metric space
and T : X ⟶ X an F-contraction. Then, T has a unique
fixed point x∗ ∈ X, and for every x ∈ X, the sequence
fTnxgn∈N converges to x∗.
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In 2012, Samet et al. [17] established the class of α
-admissible mappings as follows:

Definition 10 (see [17]). Let α : X × X ⟶ ½0,∞Þ be given
mapping where X is a nonempty set. A self-mapping T is
called α-admissible if for all x, y ∈ X, we have

α x, yð Þ ≥ 1⇒ α Tx, Tyð Þ ≥ 1: ð7Þ

Motivated by this, Aydi et al. [18] extended the notion of
F-contraction and prove the following result.

Theorem 11 (see [18]). Let ðX, dÞ be a metric space. A self-
mapping T : X⟶ X is said to be a modified F-contraction
via α-admissible mappings. Suppose that

(i) T is α-admissible

(ii) there exists x0 ∈ X such that αðx0, Tx0Þ ≥ 1

(iii) T is continuous

Then, T has a fixed point. In 2015, Kumam et al. [19]
generalized the contraction condition by adding four new
values dðT2x, xÞ, dðT2x, TxÞ, dðT2x, yÞ, dðT2x, TyÞ and
introduced F-Suzuki contraction mappings in complete
metric space. The Suzuki-type generalization can be said to
have many applications, as in computer science, game the-
ory, biosciences, and in other areas of mathematical sciences
such as in dynamic programming, integral equations, and
data dependence. Recently, Wardowski [20] proposed the
replacement of the positive constant δ in equation (6) by a
function ϕ and relaxed the conditions on F.

Definition 12 (see [20]). Let ðX, dÞ be a metric space, F : ð0
,∞Þ⟶ℝ and ϕ : ð0,∞Þ⟶ ð0,∞Þ satisfy the following:

(1) F is strictly increasing, i.e., x < y implies FðxÞ < FðyÞ
for all x, y ∈ ð0,∞Þ

(2) limα⟶0+FðαÞ = −∞

(3) liminfα⟶s+ϕðαÞ > 0 for all s > 0

A mapping T : X⟶ X is called an ðϕ, FÞ-contraction
on ðX, dÞ if

ϕ d x, yð Þð Þ + F d Tx, Tyð Þð Þ ≤ F d x, yð Þð Þ, ð8Þ

for all x, y ∈ X for which Tx ≠ Ty.

Consider a function FB : ℝ+ ⟶ℝ by FBðuÞ = ln u.
Note that with F = FB, the F-contraction reduces to a
Banach contraction. Therefore, the Banach contractions are
a particular case of F-contractions. Meanwhile, there exist
F-contractions which are not Banach contractions.

The concept of an F-contraction has been generalized in
many directions (see, e.g., [21–24]), and as an extension,
engaging work was done by many authors [25–34], which
enhanced this field. In 2015, Cosentino et al. [35] extended

the concept of F-contraction in metric space to F-contrac-
tion in b-metric space by introducing the following condi-
tion with continuation of Definition 7.

ðF4Þ For some δ > 0 and any sequence fxng, we have

δ + F sxnð Þ ≤ F xn−1ð Þ,
δ + F snxnð Þ ≤ F sn−1xn−1

� � ð9Þ

for all n ∈N , s ∈ℝ
In 2017, Gornicki [36] established F-expanding type

mappings.

Definition 13. Let ðX, dÞ be a metric space. A mapping P
: X ⟶ X is called F-expanding if for all u, v ∈ X and δ > 0,
we have

d u, vð Þ > 0⇒ F d Pu, Pvð Þð Þ ≥ F d u, vð Þð Þ + δ: ð10Þ

The concept of F-expanding type mappings was rede-
fined as Kannan F-expanding type mappings by Goswami
et al. [37].

Definition 14 (see [37]). A mapping P : X⟶ X is said to be
Kannan F-expanding type mapping if there exists Δ > 0 such
that dðu, PuÞdðv, PvÞ ≠ 0 implies

Δ + F sd u, vð Þð Þ ≤ 1
2 F d u, Puð Þð Þ + F d v, Pvð Þð Þf g, ð11Þ

and dðu, PuÞdðv, PvÞ = 0 implies

Δ + F sd u, vð Þð Þ ≤ 1
2 F d u, Pvð Þð Þ + F d v, Puð Þð Þf g ð12Þ

for all u, v ∈ X. Following this direction, we have established
a new type of mapping, i.e., Kannan F-expanding type map-
ping, and proved some fixed point results for F-contractive
type mappings as well as Kannan F-expanding type map-
pings in the setting of quasi-partial b-metric space without
using the continuity of mapping. Also, we attain the non-
unique fixed point in quasi-partial b-metric space which
lacks symmetry property.

The main motive behind this study is that today, this
field of research has vast literature. The significance of the
Kannan type mapping is that it characterizes completeness
which the Banach contraction does not; also, it does not
require continuous mapping. In this paper, some examples
and applications for the solution of a certain integral equa-
tion and the existence of a bounded solution of the func-
tional equation are also given to represent the practicality
of the results obtained. The application shows the role of
fixed point theorems in dynamic programming, which is
used in computer programming and optimization.

The future aspect of this study is to prove the existence
of a unique fixed point in Kannan F-expanding type map-
ping. Another field of research can be the existence of a com-
mon fixed point for the same. The notion of interpolative F
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-contraction as well as interpolation for Kannan F-expand-
ing type mapping can also be future studies concerning the
present manuscript.

2. Fixed Point for F-Contractive Type Mappings

In this section, the existence of a fixed point for F-contrac-
tive type mappings in a quasi-partial b-metric space is
obtained.

Definition 15. For a quasi-partial b-metric space ðX, qpbÞ, a
mapping P : X ⟶ X is said to be an F-contractive type
mapping if there exists δ > 0 such that, if qpbðu, PuÞqpbðv,
PvÞ ≠ 0, then

δ + F ρqpb Pu, Pvð Þð Þ ≤ 1
3 F qpb u, vð Þð Þ + F qpb u, Pvð Þð Þ½
+ F qpb v, Puð Þð Þ� − F qpb w, Pwð Þð Þ,

ð13Þ

and if qpbðu, PuÞqpbðv, PvÞ = 0, then

δ + F ρqpb Pu, Pvð Þð Þ ≤ 1
3 F qpb u, vð Þð Þ + F qpb u, Puð Þð Þ½
+ F qpb v, Pvð Þð Þ� − F qpb w, Pwð Þð Þ

ð14Þ

for all u, v,w ∈ X and ρ ≥ 1.

Definition 16. Let ðX, qpbÞ be a quasi-partial b-metric space.
A self-mapping P on X is called an F-contraction if there
exist τ ∈ℝ+ such that

τ + F ρqpb Pu, Pvð Þð Þ ≤ F qpb u, vð Þð Þ, ð15Þ

for all u, v ∈ X with qpbðPu, PvÞ > 0.

Example 17. Let F : ℝ+ ⟶ℝ be given by FðuÞ = log u.
Here, F satisfies (F1)-(F3) for any k ∈ ð0, 1Þ. Each mapping
P : X⟶ X satisfying Definition 16 is an F-contraction such
that

qpb Pu, Pvð Þ ≤ ρe−τqpb u, vð Þ ð16Þ

for all u, v ∈ X, Pu ≠ Pv.

It is clear that for u, v ∈ X such that Pu = Pv, the previous
inequality also holds, and hence, P is a contraction as shown
in Figure 1.

Example 18. Consider a function FðuÞ = −1/ ffiffiffi
u

p , u > 0 where
F satisfies (F1)-(F3) for any k ∈ ð1/2, 1Þ. In this case, a map-
ping P : X⟶ X satisfies

ρqpb Pu, Pvð Þ ≤ 1

1 + τ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qpb u, vð Þp� �2 qpb u, vð Þ ð17Þ

for all u, v ∈ X, Pu ≠ Pv. Hence, P is a contraction as shown
in Figure 2.

Theorem 19. Let ðX, qpbÞ be a quasi-partial b-metric space
and P : X ⟶ X be an F-contractive type mapping. Then, P
has a unique fixed point u∗ ∈ X, and for every u0 ∈ X, a
sequence fPnx0gn∈ℕ is convergent to u∗.

Proof. Let u0 be an arbitrary and fixed point in X, and we
assume a sequence fungn∈N ⊂ X such that un+1 = Pun, n = 0
, 1,⋯. To prove P has a fixed point, we need to show that
if un0+1 = un0 , then Pun0 = un0 for all n0 ∈ℕ. Suppose that
un+1 ≠ un for every n ∈ℕ, then qpbðun+1, unÞ > 0, and using
equation (6), we have

F qpb un+1, unð Þð Þ ≤ ρF qpb un, un−1ð Þð Þ − δ ≤ ρF qpb un−1, un−2ð Þð Þ − 2δ
≤⋮≤ ρ F qpb u, u0ð Þð Þ − nδ,

ð18Þ

which implies

lim
n⟶∞

ρF qpb un+1, unð Þð Þ = −∞: ð19Þ

Using ðF2Þ, we get

lim
n⟶∞

ρ qpb un+1, unð Þ = 0: ð20Þ

Also, using ðF3Þ, there exists k ∈ ð0, 1Þ such that

lim
n⟶∞

qpb un+1, unð Þk F qpb un+1, unð Þð Þ = 0: ð21Þ

Let us denote qpbðun+1, unÞ by αn. From inequality (18),
the following holds

F αnð Þ − αknF α0ð ÞÞ ≤ ρ αkn F α0ð Þ − nδð Þ − αknF α0ð Þ
� �

= −ρ αkn nδ ≤ 0,

ð22Þ
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Figure 1: The graphical surface represents a 3-D view of F
-contractive function FðuÞ = log u where u ∈ ð0, 5Þ, v ∈ ð0, 5Þ and
w ∈ℝ+.
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which implies

lim
n⟶∞

nαkn = 0: ð23Þ

Also, if there exists n1 < n ∈ℕ such that nαkn ≤ 1, we have

ρ αn ≤ n−1/k: ð24Þ

To prove fungn∈ℕ is a Cauchy sequence, let us consider
m, n ∈ℕ such that m > n ≥ n1. From the definition of
quasi-partial b-metric space and equation (24), we have

qpb um, unð Þ ≤ ρ αm−1 + αm−2+⋯+αnð Þ ≤ ρ〠
∞

i=n
αi ≤ ρ〠

∞

i=n
i−1/k:

ð25Þ

Using the convergence of series, we get that fungn∈ℕ is a
Cauchy sequence. Since X is complete, there exists u∗ ∈ X
such that limn⟶∞un = u∗, and the continuity of P implies

qpb Pu∗, u∗ð Þ = ρ lim
n⟶∞

qpb Pun, unð Þ = ρqpb un+1, unð Þ = 0:

ð26Þ

Hence, P has a unique fixed point.☐

Theorem 20. For a quasi-partial b-metric space ðX, qpbÞ, we
say X is complete if for every closed subset Y of X, P : Y
⟶ Y is an F-contractive type mapping having a fixed point.

Proof. Suppose that there does not exist any Cauchy
sequence in X which has a convergent subsequence and we
have a sequence

θ unð Þ = inf qpb un, umð Þ: m > nf g > 0 ð27Þ

for all n ∈ℕ where θðunÞ ≤ θðumÞ for m ≥ n. Also, we con-

sider a subsequence funkg such that

ρqpb ui, uj

� �
< aθ unk−1

� �
, ð28Þ

for any a with 0 < a < 1 and for all i, j ≥ nk. Then, Y = funk
: k ∈ℕg is a closed subset of X. Define P : X⟶ X by

Punk = unk+1 ð29Þ

for all k ∈ℕ, which implies P has no fixed point. Now,

ρqpb Pu, Pvð Þ = ρqpb Punk , Punk+1
� �

= ρqpb unk+1, Punk+i+1
� �

< aθ unk
� �

:

ð30Þ

By definition,

θ unk
� �

≤ ρqpb unk , unk+i
� �

= ρqpb u, vð Þ ≤ ρqpb unk , unk+1
� �

= ρqpb u, Puð Þ ≤ θ unk+i
� �

≤ ρqpB unk+i , unk+i+1
� �

= ρqpb v, Pvð Þ,
ð31Þ

which implies

δ + F ρqpb Pu, Pvð Þð Þ ≤ 1
3 F qpb u, vð Þð Þ + F qpb u, Puð Þð Þf
+ F qpb v, Pvð Þð Þg − qpb w, Pwð Þð Þ

ð32Þ

for some δ > 0. Hence, it proves that P is an F-contractive
type mapping on a closed subset of X which has no fixed
point. Thus, this is a contradiction and X is complete.☐

Theorem 21. Let ðX, qpbÞ be a quasi-partial b-metric space
and P : X × CðXÞ be a closed F-contraction. Then, P has a
fixed point.

Proof. Let u0 ∈ X be an arbitrary point of X, and we have
u1 ∈ Pu0. If u1 = u0, then u1 is a fixed point of P, and hence,
the proof is completed. Now, assume that u1 ≠ u0. Since P is
a F-contraction, there exists u2 ∈ Pu1 such that

τ + F ρqpb u1, u2ð Þð Þ ≤ F M u0, u1ð Þð Þ, ð33Þ

where

M u0, u1ð Þ =max qpb u0, u1ð Þ, qpb u0, Pu0ð Þ, qpb u1, Pu1ð Þ, 12 qpb u0, Pu1ð Þ + qpb u1, Pu0ð Þ½ �
� �

,

ð34Þ

and u2 ≠ u1. Also, there exists u3 ∈ Pu2 such that

τ + F ρqpb u2, u3ð Þð Þ ≤ F M u1, u2ð Þð Þ, ð35Þ

and u3 ≠ u2. With the recurrence of the same process, we get

τ + F ρqpb un, un+1ð Þð Þ ≤ F M un−1, unð Þð Þ ð36Þ
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Figure 2: The graphical surface represents a 3-D view of F
-contractive function FðuÞ = −1/ ffiffiffi

u
p

where u ∈ ð0, 10Þ, v ∈ ð0, 10Þ
and w ∈ℝ+.
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for all n ∈ℕ. It implies

τ + F ρqpb un, un+1ð Þð Þ ≤ F M un−1, unð Þð Þ: ð37Þ

Assume that qpbn = qpbðxn, xn+1Þ > 0 for all n ∈ℕ ∪ f0g.
By equation (37), we have

F ρqpbn

� �
≤ F ρqpbn−1

� �
≤⋯ < ≤F ρqpb0

� �
− nτ ð38Þ

for all n ∈ℕ. Letting n⟶∞, property ðF2Þ implies

lim
n⟶∞

F ρqpbn

� �
= −∞: ð39Þ

Let k ∈ ð0, 1Þ such that

lim
n⟶∞

qpkbn F ρqpbn

� �
= 0: ð40Þ

By equation (38), the following holds

qpkbn F ρqpbn

� �
− qpkbn F ρqpb0

� �
≤ qpkbn F ρqpb0

� �
− nτ

� �
− qpkbn F ρqpb0

� �
= −nτqpkbn ≤ 0

ð41Þ

for all n ∈ℕ. Letting n⟶∞, we get

lim
n⟶∞

nqpkbn = 0: ð42Þ

This implies limn⟶∞n1/kqpbn = 0 and ∑+∞
n=1qpbn is con-

vergent. Hence, fung is Cauchy sequence. Since X is com-
plete, there exists x ∈ X such that un = x as n⟶ +∞.
Since P is closed, ðun, un+1Þ⟶ ðx, xÞ, we get x ∈ Px, and
hence, x is the fixed point of P.☐

Corollary 22. Let ðX, qpbÞ be a quasi-partial b-metric space
and P : X⟶ CðXÞ be an upper semicontinuous F-contrac-
tion. Then, P has a fixed point.

Example 23. Consider the quasi-partial b-metric space ðX,
qpbÞ where X = f0, 2, 4,⋯g and qpb : X × X⟶ ½0,∞Þ is
given by

qpb u, vð Þ =
u + v, u ≠ v,
0, u = v,

(
ð43Þ

which is also shown in Figure 3, and P : X ⟶ CðXÞ is
defined by

P uð Þ =
0f g, u ∈ 0, 1½ �,
0, 2,⋯,2u − 2f g, u ≥ 4:

(
ð44Þ

Now, we show that P satisfies Definition 16, where ρ =
2, τ = 2 and FðuÞ = log u + u for each u ∈ℝ+. Let for all u, v
∈ X with v ∈ Pu, we have w = 0 ∈ Pv. Here, qpbðv,wÞ > 0 iff

x ≥ 4 and w > 0. If it is true, then

qpb v,wð Þ = v < u + v = qpb u, vð Þ: ð45Þ

This implies

qpb v,wð Þ −M u, vð Þ ≤ qpb v,wð Þ − qpb u, vð Þ ≤ −4,
qpb v,wð Þ
M u, vð Þ eqpb u,vð Þ−M u,vð Þ ≤ e−2:

ð46Þ

Hence,

2 + F ρqpb v,wð Þð Þ ≤ F M u, vð Þð Þ ð47Þ

for all u, v ∈ X and qpbðv,wÞ > 0. Then, by Theorem 21, P
has a fixed point.

3. Fixed Point for Kannan F-Expanding
Type Mapping

In this section, we prove the fixed point results for Kannan F
-expanding type mappings in a quasi-partial b-metric space.

Definition 24. Let us consider a mapping P : X⟶ X; it is
said to be Kannan F-expanding type mapping if there exists
Δ > 0 such that qpbðu, PuÞqpbðv, PvÞ ≠ 0 implies

Δ + F ρqpb u, vð Þð Þ ≤ 1
2 F qpb u, Puð Þð Þ + F qpb v, Pvð Þð Þ½ �
− F qpb Pw, Pwð Þð Þ,

ð48Þ
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Figure 3: 3-D view. The plane in yellow represents the quasi-
partial b-metric space defined by qpb : X × X ⟶ ½0,∞Þ and qpbðu
, vÞ = u + v when u ≠ v for all u, v ∈ X.
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and qpbðu, PuÞqpbðv, PvÞ = 0 implies

Δ + F ρqpb u, vð Þð Þ ≤ 1
2 F qpb u, Pvð Þð Þ + F qpb Pv, Puð Þð Þ½ �
− F qpb Pw, Pwð Þð Þ

ð49Þ

for all u, v,w ∈ X.

Lemma 25. Let ðX, qpbÞ be a quasi-partial b-metric space
and P : X ⟶ X be surjective. Then, there exists a mapping
P∗ : X⟶ X such that P ∘ P∗ is the identity map on X.

Proof. For any point u ∈ X, let vu ∈ X be any point such that
Pvu = u. Let P∗u = vu for all u ∈ X. Then, ðP ∘ P∗ÞðuÞ = Pð
P∗uÞ = Pvu = u for all u ∈ X.☐

Theorem 26. Let ðX, qpbÞ be a quasi-partial b-metric space
and P : X⟶ X be surjective and a Kannan F-expanding
type mapping. Then, P has a unique fixed point γ ∈ X.

Proof. Assume that there exists a mapping P∗ : X⟶ X
such that P ∘ P∗ is the identity map on X. Let u, v be arbi-
trary points of X such that u ≠ v and x = P∗u, y = P∗v which
also implies that x ≠ y. Applying equation (48) on x, y, we
have

Δ + F ρqpb x, yð Þð Þ ≤ 1
2 F qpb x, Pxð Þð Þ + F qpb y, Pyð Þð Þ½ � − F qpb z, Pzð Þð Þ

ð50Þ

for qpbðx, PxÞqpbðy, PyÞ ≠ 0 and

Δ + F ρqpb x, yð Þð Þ ≤ 1
2 F qpb x, Pyð Þð Þ + F qpb y, Pxð Þð Þ½ � − F qpb z, Pzð Þð Þ

ð51Þ

for qpbðx, PxÞqpbðy, PyÞ = 0. Since Px = PðP∗ðuÞÞ = u and P
y = PðP∗ðvÞÞ = v, we get

Δ + F ρqpb P∗u, P∗vð Þð Þ ≤ 1
2 F qpb u, P∗uð Þð Þ + F qpb v, P∗vð Þð Þ½ �
− F qpb w, P∗wð Þð Þ

ð52Þ

for qpbðu, PuÞqpbðv, PvÞ ≠ 0 and

Δ + F ρqpb P∗u, P∗vð Þð Þ ≤ 1
2 F qpb u, P∗vð Þð Þ + F qpb v, P∗uð Þð Þ½ �
− F qpb w, P∗wð Þð Þ

ð53Þ

for qpbðu, PuÞqpbðv, PvÞ = 0, which implies P∗ is Kannan F
-contractive type mapping. Also, we know that P∗ has a
unique fixed point γ ∈ X, and for every u0 ∈ X, the sequence
fP∗nu0g converges to γ. In particular, γ is also a fixed point

of P since P∗γ = γ implies that

Pγ = P P∗γð Þ = γ: ð54Þ

Finally, if γ0 = Pγ0 is another fixed point, then from
equation (49),

Δ + F ρqpB γ, γ0ð Þð Þ ≤ 1
2 F qpb γ, Pγ0ð Þð Þ + F qpb γ0, Pγð Þð Þ½ � − F qpb v, Pvð Þð Þ,

ð55Þ

which is not possible, and hence, P has a unique fixed
point.☐

4. Applications of F-Contraction

In this section, we discuss the applications of the results
obtained to prove the existence of the solution of an integral
equation and a functional equation.

4.1. Existence of Solution of Integral Equation. Now, we study
the existence of solution of the following Volterra type inte-
gral equation

u xð Þ =
ðx
0
f x, y, u yð Þð Þdy + g xð Þ, ð56Þ

x ∈ ½0, σ� where σ > 0. Let Cð½0, σ�,ℝÞ denote space of all
continuous functions on ½0, σ�, and for an arbitrary u ∈ Cð½
0, σ�,ℝÞ, we define

uj jj jτ = supx∈ 0,σ½ � u xð Þj je−τxf g, ð57Þ

where τ > 0 is taken arbitrary. Clearly, ðCð½0, σ�,ℝÞ, k·kτÞ is
endowed with quasi-partial b-metric defined by

qpb u, vð Þ = supx∈ 0,σ½ � ∣u xð Þ − v xð Þ ∣ e−τxf g ð58Þ

for all u, v ∈ Cð½0, σ�,ℝÞ is a Banach space and

u ≤ v⇔ u xð Þ ≤ v xð Þ ð59Þ

for all x ∈ ½0, σ�.

Theorem 27. Let us consider that for the integral equation
(56), the following conditions are satisfied:

(i) f and g are continuous where f : ½0, σ� × ½0, σ� ×ℝ
⟶ℝ and g : ½0, σ�⟶ℝ

(ii) f ðx, y,:Þ: ℝ⟶ℝ is increasing

(iii) u0ðxÞ ≤
Ð x
0 f ðx, y, u0ðyÞÞdy + gðxÞ for some u0 ∈ Cð½0

, σ�,ℝÞ
(iv) There exists τ ∈ ½1,∞Þ such that

f x, y, uð Þ − f x, y, vð Þj j ≤ τe−2τρ u − vj j ð60Þ

7Journal of Function Spaces



for all x, y ∈ ½0, σ� and u, v ∈ℝ. Then, integral equation (56)
has a solution.

Proof. Here, ðCð½0, σ�,ℝÞ, qpbÞ is a quasi-partial b-metric
space, where qpb is the quasi-partial b-metric given by equa-
tion (58). Let us define P : Cð½0, σ�,ℝÞ⟶ Cð½0, σ�,ℝÞ by

P uð Þ xð Þ =
ðx
0
f x, y, u yð Þð Þdy + g xð Þ, x ∈ 0, σ½ �: ð61Þ

From (iv) we have,

∣P uð Þ xð Þ − P vð Þ xð Þ∣ ≤
ðx
0
∣f x, y, u yð Þð Þ − f x, y, v yð Þð Þ∣dy

≤
ðx
0
τe−2τρ∣u yð Þ − v yð Þ∣dy

=
ðx
0
τe−2τρ∣u yð Þ − v yð Þ∣e−τyeτydy

≤
ðx
0
τe−2τeτyρ∣u yð Þ − v yð Þ∣e−τydy

≤ τe−2τρ u − vk kτ
ðx
0
eτydy

≤ τe−2τρ
1
τ

u − vk kτeτx:
ð62Þ

It implies

∣P uð Þ xð Þ − P vð Þ xð Þ∣e−τx ≤ e−2τρ u − vk kτ ð63Þ

or

qpb P uð Þ, P vð Þð Þ ≤ e−2τρqpb u, vð Þ: ð64Þ

Taking logarithm in both sides, we get

ln qpb P uð Þ, P vð Þð Þð Þ ≤ ln e−2τρqpb u, vð ÞÞ� �
, ð65Þ

which on solving reduces to

2τ + ln qpb P uð Þ, P vð Þð Þð Þ ≤ ln ρqpb u, vð ÞÞð Þ: ð66Þ

Now, we observe that the function F : ℝ+ ⟶ℝ defined
by FðuÞ = log u for each u ∈ Cð½0, σ�,ℝÞ is F-contraction.
Clearly, from (iii), we have

u0 ≤ P u0ð Þ, ð67Þ

and hence, Theorem 19 applies to P, which has a fixed point
u∗ ∈ Cð½0, σ�,ℝÞ. Hence, u∗ is a solution of integral equation
(56).☐

4.2. Existence of Bounded Solutions of Functional Equations.
Fixed point theory is widely used in the field of dynamic
programming which is the most commonly used tool for
mathematical optimization. With this approach, the prob-

lem of the dynamic programming process reduces to solving
the functional equations.

Let us consider that U and V are Banach spaces, W ⊂U
is a state space, i.e., the set of the initial state of process, and
D ⊂V is a decision space, i.e., the set of possible actions that
are allowed for the process.

Here, we will prove the existence of the bounded solu-
tion of the following functional equation:

ϕ uð Þ = supx∈D f u, vð Þ + g u, v + ϕ τ u, vð Þð Þð Þf g, ð68Þ

where τ : W ×D, f : W ×D⟶ℝ, g : W ×D ×ℝ⟶ℝ.
Let BðWÞ denote the set of all bounded real valued functions
W and for an arbitrary α ∈ BðWÞ, define kαk = supx∈W ∣ αð
xÞ ∣ . Clearly, ðBðwÞ, k·kÞ endowed with quasi-partial b
-metric defined by

qpb α, βð Þ = supx∈W ∣α xð Þ − β xð Þ∣ ð69Þ

for all α, β ∈ BðWÞ is a Banach space. Thus, if we consider a
Cauchy sequence fαng in BðWÞ, then fαng converges uni-
formly to a function, let α∗ that is bounded and so α∗ ∈ Bð
wÞ. Also, we have P : BðWÞ × BðWÞ defined by

P αð Þ xð Þ = supy∈D f x, yð Þ + g x, y, α τ x, yð Þð Þð Þf g ð70Þ

for all α ∈ BðWÞ and x ∈W. Hence, P is well defined if f
and g are bounded.

Theorem 28. Let P : BðWÞ⟶ BðWÞ be an upper semicon-
tinuous operator defined by (70), and we assume that the fol-
lowing conditions are satisfied:

(i) f and g are bounded and continuous where f : W
×D⟶ℝ and g : W ×D ×ℝ⟶ℝ

(ii) There exists τ ∈ℝ+ such that

∣g x, y, α xð Þð Þ − g x, y, β xð Þð Þ∣ ≤ ρ ∣ α − β ∣

1 + τ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∣α − β ∣

p� �2 ð71Þ

for all α, β ∈ BðWÞ, x ∈W, y ∈D, ρ ≥ 1. Then, the functional
equation (68) has a bounded solution.

Proof. Clearly, ðBðWÞ, qpbÞ is a quasi-partial b-metric given
by equation (69). Let σ be an arbitrary positive number, x
∈W, α1, α2 ∈ BðWÞ, then there exist y1, y2 ∈D such that

P α1ð Þ xð Þ < f x, y1ð Þ + g x, y1, α1 τ x, y1ð Þð Þð Þ + σ, ð72Þ

P α2ð Þ xð Þ < f x, y2ð Þ + g x, y2, α2 τ x, y2ð Þð Þð Þ + σ, ð73Þ

P α1ð Þ xð Þ < f x, y2ð Þ + g x, y2, α1 τ x, y2ð Þð Þð Þ + σ, ð74Þ

P α2ð Þ xð Þ < f x, y1ð Þ + g x, y1, α2 τ x, y1ð Þð Þð Þ + σ: ð75Þ
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From equations (72) and (75),

P α1ð Þ xð Þ − P α2ð Þ xð Þ < g x, y1, α1 τ x, y1ð Þð Þð Þ − g x, y1, α2 τ x, y1ð Þð Þð Þ + σ

≤ ∣g x, y1, α1 τ x, y1ð Þð Þð Þ − g x, y1, α2 τ x, y1ð Þð Þð Þ∣ + σ

≤
ρ ∣ α1 − α2 ∣

1 + τ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∣α1 − α2 ∣

p� �2 + σ:

ð76Þ

It implies,

P α1ð Þ xð Þ − P α2ð Þ xð Þ ≤ ρ ∣ α1 − α2 ∣

1 + τ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∣α1 − α2 ∣

p� �2 + σ: ð77Þ

Similarly, from equations (73) and (74),

P α2ð Þ xð Þ − P α1ð Þ xð Þ ≤ ρ ∣ α1 − α2 ∣

1 + τ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∣α1 − α2 ∣

p� �2 + σ: ð78Þ

From equations (77) and (78), we get

P α1ð Þ xð Þ − P α2ð Þ xð Þj j ≤ ρ α1 − α2j j
1 + τ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α1 − α2j jp� �2 + σ, ð79Þ

i.e.,

qpb P α1ð Þ, P α2ð Þð Þ ≤ ρ ∣ α1 − α2 ∣

1 + τ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∣α1 − α2 ∣

p� �2 + σ: ð80Þ

Hence, we conclude that

qpb P α1ð Þ, P α2ð Þð Þ ≤ ρ ∣ α1 − α2 ∣

1 + τ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∣α1 − α2 ∣

p� �2 : ð81Þ

Now, we observe that the function F : ℝ+ ⟶ℝ defined
by FðαÞ = −1/ ffiffiffi

α
p

for each α ∈W is F-contractive function,
and hence, operator P is F-contractive.

Since any upper semicontinuous F-contractive function
has a fixed point α∗ ∈ BðWÞ, it implies that there exists a
bounded solution of functional equation (68).☐

5. Conclusion

In this manuscript, we established a new type of mappings
that is Kannan F-expanding mappings and obtained fixed
point theorems for contractive mappings in the framework
of quasi-partial b-metric spaces. Moreover, we provided
examples that demonstrate the usability of our results. As
an application of our result, we also studied a system of inte-
gral and functional inclusions. It would be more engaging to
work on the obtained results to prove the uniqueness of the
fixed point in the future.
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In this paper, a mathematical fractional order Hepatitis C virus (HCV) spread model is presented for an analytical and numerical
study. The model is a fractional order extension of the classical model. The paper includes the existence, singularity, Hyers-Ulam
stability, and numerical solutions. Our numerical results are based on the Lagrange polynomial interpolation. We observe that the
model of fractional order has the same behavior of the solutions as the integer order existing model.

1. Introduction

Hepatitis C is a kind of viral maladies caused by the Hepatitis
C virus (HCV), which mostly damages the liver. People gen-
erally have minor or no symptoms when they first become
infected. Black urine, Fever, yellow-tinged skin, and abdom-
inal pain are all symptoms that might occur. The virus
remains in the liver, in roughly 75 percent to 85 percent of
patients who are infected. Initially, in the period of a chronic
infection, there are usually no symptoms. However, it fre-
quently develops to cirrhosis over time. Hepatitis C, on the
other hand, can sometimes lead to liver cancer, blood cancer,
and liver failure [1]. The most common way for HCV to
spread is by blood-to-blood contact, which is related to
injectable usage of drugs, improperly cleaned equipment for
medical care, needle stick injuries in health care, and transfu-
sions. The most typical reason for liver transplantation is
Hepatitis C, even though virus generally returns after the
procedure. Hepatitis C infects an estimated 71 million people
(1 percent of the global population) in 2015. Low- and
middle-income nations bear the brunt of the health burden,
with Africa and Central and East Asia having the greatest
rates of prevalence. In 2015, Hepatitis C caused around
167,000 liver cancer deaths and 326,000 cirrhosis deaths.
15th Hepatitis C is a disease that can be transmitted from

one person to another. Hepatitis C was first identified in
the 1970s, it was thought to be a kind of non-A non-B Hep-
atitis, and its presence was confirmed in 1989. Only humans
and chimps are infected with Hepatitis C; for more details,
see [2, 3].

In natural and physical sciences, mathematical and com-
putational tools have been used to investigate phenomena at
many scales, ranging from the global human population to
individual atoms within a biomolecule. The relevant model-
ing methodologies span time spans ranging from years to
picoseconds, region to region of interest (impacts ranging
from evolutionary to atomic), and importance. This explora-
tion will go over some of the most common and useful
approaches in mathematics and computing. Differential
equations, statistical models, dynamical systems, and game
theoretic models are all examples of mathematical models;
we refer to [4–10]. These and other types of models can be
mixed and matched, resulting in a single model that has a
diverse set of abstract structures. Logic models can be used
in mathematical models in general. In many instances, the
quality of a scientific topic is determined by how well theo-
retical mathematical models accord with the results of
repeated experiments. As better theories are discovered, a
lack of concordance between mathematical models that are
theoretical and experimental findings frequently leads to
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significant advancements. Many mathematical models were
formulated for the Hepatitis C diseases to understand the
dynamics of the diseases and control the spreading of dis-
eases; we refer to [11–14].

Fractional calculus is a discipline of mathematics that
investigates the various ways in which the differentiation
operator can be defined in terms of real or complex number
powers. Because of their ability to include notion of nonlocal
operators used to incorporate more complicated natural
phenomena into mathematical equations, differential equa-
tions have attracted many scholars from practically all disci-
plines of science, technology, and engineering in recent
years. The exponential decay law, the power law, and the
extended Mittag-Leffler law were recommended as three
dominants in fractional calculus. The kernel Mittag-Leffler
function was shown to be more broadly applicable than
the power law and exponential decay functions; both
Riemann-Liouville and Caputo-Fabrizio are special exam-
ples of the Atangana-Baleanu fractional operator; we refer
to [15–18]. Many biological models have been studied on
fractional operators; Atangana and Alqahtani [19] consid-
ered a mathematical model river blindness as in Caputo
sense and beta operators. Stability and numerical solutions
were obtained for the fractional order model. Gómez-
Aguilar et al. [20] examined a cancer model in three dimen-
sions in the sense of Caputo-Fabrizio-Caputo and the novel
fractional derivative with Mittag-Leffler kernel. Special solu-
tions were obtained by an iterative process that used the
Laplace transform rule, Sumudu-Picard integration
approach, and the Adams-Moulton approach. Shah and
Bushnaq [21] evaluated an endemic infection model in the
fractional sense. Numerical solutions were obtained for the
proposed model by combining the Laplace transform with
the Adomian decomposition approach. Arfan et al. [22]
studied semianalytical solutions for a fractional order
COVID-19 model under Caputo derivative; for more details,
see [23–26].

Inspired from the above literature, in this paper, we
consider a Hepatitis C model in the sense of a fractional
order derivative. Furthermore, we investigate the existence
and uniqueness of the fractional order model with the
help of a fixed point theorem and stability analysis of
the fractional order Hepatitis C model. Finally, numerical
simulations of the solutions are demonstrated and com-
pared with classical derivatives by using different values
of fractional order and parameters. This paper is organized
as follows; Section 1: introduction of the paper; Section 2:
framework of the model; Section 3: preliminaries; Section
4: existence of solutions; Section 5: numerical data fitting;
Section 6: conclusion.

2. Framework of the Model

In this section, we discuss an integer order Hepatitis C
model. The population is split into four classes based on
their size. S denotes class of susceptible, I class of acutely
infected, ℙ class of persistently infected, and T class of treat-
ment for infection:

Dt′S tð Þ = μ − λS tð Þ − μS tð Þ,
Dt′I tð Þ = 1 − ψð ÞλS tð Þ + ψλ 1 − I −ℙ − Tð Þ − μ + σ + ε + dð ÞI,
Dt′ℙ tð Þ = εI + ρT − μ + δ+℘ð Þℙ,
Dt′T tð Þ = ℘ℙ − μ + ρ + θð ÞT :

8>>>>><
>>>>>:

ð1Þ

With the initial conditions

S 0ð Þ ≥ 0,
I 0ð Þ ≥ 0,
ℙ 0ð Þ ≥ 0,
T 0ð Þ ≥ 0,

ð2Þ

where μ is the rate of natural death, λ is force of infec-
tion, ψ is the rate of susceptibility of recovered, σ is the rate
of recovery from acute infection, ε is the rate of progression
to chronic infection, d is the rate of death due to acute infec-
tion, ρ is the rate of treatment failure of chronically infected,
δ is the rate of recovery from chronic infection, ℘ is the rate
of treatment of chronically infected, and θ is the rate of treat-
ment cure. For more details on the existence of infection,
endemic equilibrium, reproduction numbers, and stability
of endemic equilibrium, see [11–13].

Definition 1 (see [17, 27]). On the basis of Mittag-Leffler ker-
nel and ψ ∈H∗ða, bÞ, b > a, for ϱ ∈ ½0, 1�, the ABC-fractional
differential operator is given as

ABC
a D

ϱ

℘ψ ℘ð Þ = β ϱð Þ
1−ϱ

ð℘
a
ψ′ sð ÞEϱ

−ϱ ℘−sð Þϱ
1 − ϱ

� �
ds, ð3Þ

where BðϱÞ denote a weighted function which satisfied the
main property βð0Þ = βð1Þ = 1:

Eρ hð Þ = 〠
∞

r=0

hr

1 + ρrð Þ , ρ > 0: ð4Þ

Definition 2 (see [17, 27]). On the basis of Mittag-Leffler ker-
nel and ψ ∈H∗ða, bÞ, b > a, ϱ ∈ ½0, 1�, the ABR-fractional
derivative is defined as

ABR
a D

ϱ

℘ψ ℘ð Þ = β ϱð Þ
1 − ϱ

d
d℘

ð℘
a
ψ sð ÞEϱ

−ϱ ℘−sð Þϱ
1 − ϱ

� �
ds: ð5Þ

Definition 3 (see [17, 27]). Let ψ ∈H∗ða, bÞ, b > a, 0 < ρ < 1;
the AB-integral is given

AB
aI

ϱ
℘ψ ℘ð Þ = 1 − ϱ

β ϱð Þ ψ ℘ð Þ+ ϱ

β ϱð ÞΓ ϱð Þ
ð℘
a
ψ sð Þ ℘−sð Þϱ−1ds: ð6Þ

Lemma 4 (see [17]). Let function ψ, then the AB fractional
integral and derivative satisfy the following special character
of Newton-Leibniz formula:
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AB
a I

ϱ
℘

ABC
a D

ϱ
℘ψ ℘ð Þ

� �
= ψ ℘ð Þ − ψ að Þ: ð7Þ

3. Existence Criteria

Let B =I ×ℝ4 ⟶ℝ, where I = ½0, T�, for 0 < t < T <∞,
with a norm defined by kðS, I,ℙ, TÞk =maxt∈I fjSj + jIj + j
ℙj + jT jg. Then, clearly, ðB, k⋅kÞ is Banach’s space. Let us
consider system (1) in the sense of fractional order operator:

ABCD
ρ
t S tð Þ = μ − λS tð Þ − μS tð Þ,

ABCD
ρ
t I tð Þ = 1 − ψð ÞλS tð Þ + ψλ 1 − I − ℙ − Tð Þ − μ + σ + ε + dð ÞI,

ABCD
ρ
t ℙ tð Þ = εI + ρT − μ + δ+℘ð Þℙ,

ABCD
ρ
t T tð Þ = ℘ℙ − μ + ρ + θð ÞT :

8>>>>><
>>>>>:

ð8Þ

By employing Definition (3) to (8), we have

S tð Þ − S 0ð Þ = 1 − ϱ

β ϱð Þ μ − λS − μS tð Þð Þ

+ ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þϱ−1 μ − λS − μSð Þds,

ð9Þ

I tð Þ − I 0ð Þ = 1 − ϱ

β ϱð Þ 1 − ψð ÞλS tð Þ + ψλ 1 − I −ℙ − Tð Þð

− μ + σ + ε + dð ÞIÞ + ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þϱ−1 1 − ψð ÞλS tð Þð

+ ψλ 1 − I −ℙ − Tð Þ − μ + σ + ε + dð ÞIÞds,
ð10Þ

ℙ tð Þ − ℙ 0ð Þ = 1 − ϱ

β ϱð Þ εI + ρT − μ + δ+℘ð Þℙð Þ

+ ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þϱ−1 εI + ρT − μ + δ+℘ð Þℙð Þds,

ð11Þ

T tð Þ − T 0ð Þ = 1 − ϱ

β ϱð Þ ℘ℙ − μ + ρ + θð ÞTð Þ

+ ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þρ−1 ℘ℙ − μ + ρ + θð ÞTð Þds:

ð12Þ

For simplicity in the above Equation (9), we introduce
ℍi for i = 1,2,3,4, given below:

ℍ1 t, Sð Þ = μ − λS − μS, ð13Þ

ℍ2 t, Ið Þ = 1 − ψð ÞλS + ψλ 1 − I −ℙ − Tð Þ − μ + σ + ε + dð ÞI,
ð14Þ

ℍ3 t,ℙð Þ = εI + ρT − μ + δ+℘ð Þℙ, ð15Þ

ℍ4 t, Tð Þ = ℘ℙ − μ + ρ + θð ÞT , ð16Þ

χ1 = λ − μ,
χ2 = μ + σ + ε + d + ψλ,
χ3 = μ + δ+℘ð Þ,
χ4 = μ + ρ + θð Þ:

8>>>>><
>>>>>:

ð17Þ

For proving our results, we consider the following
assumption B. For the below continuous functions SðtÞ, S∗

ðtÞ, IðtÞ, I∗ðtÞ,ℙðtÞ,ℙ∗ðtÞ, TðtÞ, T∗ðtÞ, ∈L½0, 1� such that kS
ðtÞk ≤ ξ1, kIðtÞk ≤ ξ2, kℙðtÞk ≤ ξ3, 0 < kTðtÞk ≤ ξ4, there exist
three constant κi > 0, i ∈ℕ3

1, such that the below hold:

S tðk k ≤ κ1,
ℙ tð Þ − T tð Þk k ≤ κ2,

ℙk k ≤ κ3:

ð18Þ

Theorem 5. ℍi, for i ∈ℕ5
1, satisfy Lipschitz condition if

max fχi, for i = 1; 2; 3; 4g < 1 for χi defined in (17).
Consider for ℍ1, below

ℍ1 t, Ið Þ −ℍ1 t, I∗ð Þk k = μ − λS tð Þ − μS tð Þ − μ + λS∗ tð Þk
+ μS∗ tð Þk ≤ λ − μ½ � S − S∗k k = χ1 S − S∗k k:

ð19Þ

For ℍ2ðt, IÞ, we have

ℍ2 t, Ið Þ −ℍ2 t, I∗ð Þk k = 1 − ψð ÞλS tð Þ + ψλ 1 − I −ℙ − Tð Þk
− μ + σ + ε + dð ÞI − 1 − ψð ÞλS tð Þ + ψλ 1 − I∗ −ℙ − Tð Þð
− μ + σ + ε + dð ÞI∗Þk ≤ ψλ I − Ik k + μ + σ + ε + dð Þ I − I∗k k

≤ μ + σ + ε + d + ψλð Þ I − I∗k k = χ2 I − I∗k k:
ð20Þ

ℍ3ðt,ℙÞ implies

ℍ3 t,ℙð Þ −ℍ3 t,ℙ∗ð Þk k = εI + ρTk
− μ + δ+℘ð Þℙ − εI + ρT − μ + δ+℘ð Þℙ∗ð Þk

≤ μ + δ+℘ð Þ ℙ −ℙ∗k k = χ3 ℙ −ℙ∗k k:
ð21Þ

ℍ4ðt, TÞ implies

ℍ4 t, Tð Þ − T 4 t, T∗ð Þk k = ℘ℙ − μ + ρ + θð ÞTk
− ℘ℙ − μ + ρ + θð Þ − T∗ð k ≤ μ + ρ + θð Þ T − T∗k k

= χ4 T − T∗k k:
ð22Þ

Thus, from (19)(–)(22), we have that ℚi for i = 1; 2; 3; 4,
satisfying the Lipschitz condition. And this completes the
proof. Assuming that Sð0Þ = Ið0Þ =ℙð0Þ = Tð0Þ = 0, then we
have

S tð Þ = 1 − ϱ

β ϱð Þℍ1 t, S tð Þð Þ + ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þϱ−1ℍ1 s, Sð Þ sð Þds,

ð23Þ
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I tð Þ = 1 − ϱ

β ϱð Þℍ2 t, I tð Þð Þ + ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þϱ−1ℍ2 s, Ið Þ sð Þds,

ð24Þ

ℙ tð Þ = 1 − ϱ

β ϱð Þℍ3 t,ℙ tð Þð Þ + ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þρ−1ℍ3 s,ℙð Þ sð Þds,

ð25Þ

T tð Þ = 1 − ϱ

β ϱð Þℍ4 t, T tð Þð Þ + ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þϱ−1ℍ4 s, Tð Þ sð Þds:

ð26Þ

For the iterative scheme of the ABC-fractional order HCV
model (8), define

Sn tð Þ = 1 − ϱ

β ϱð Þℍ1 t, Sn−1 tð Þð Þ + ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þϱ−1ℍ1 s, Sn−1ð Þ sð Þds,

In tð Þ = 1 − ϱ

β ϱð Þℍ2 t, In−1 tð Þð Þ + ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þϱ−1ℍ2 s, In−1ð Þ sð Þds,

ℙn tð Þ = 1 − ϱ

β ϱð Þℍ3 t,ℙn−1 tð Þð Þ + ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þϱ−1ℍ3 s,ℙn−1ð Þ sð Þds,

Tn tð Þ = 1 − ϱ

β ϱð Þℍ4 t, Tn−1 tð Þð Þ + ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þϱ−1ℍ4 s, Tn−1ð Þ sð Þds:

ð27Þ

Theorem 6. The ABC-fractional order HCV model (8) has a
solution if

Δ =max χif g < 1, i ∈ℕ4
1: ð28Þ

We define the function

G1n tð Þ = Sn+1 tð Þ − S tð Þ,
G2n tð Þ = In+1 tð Þ − I tð Þ, ð29Þ

G3n tð Þ =ℙn+1 tð Þ −ℙ tð Þ,
G4n tð Þ = Tn+1 tð Þ − T tð Þ:

ð30Þ

By the help of (29) and (30), we have

G1nk k ≤ 1 − ϱ

β ϱð Þ ℍ1 t, Sn tð Þð Þ −ℍ1 t, Sn−1 tð Þð Þk k

+ ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þρ−1 ℍ1 s, Sn sð Þð Þk

−ℍ1 t, Sn−1 tð Þð Þkds ≤ 1 − ϱ

β ϱð Þ + 1
β ϱð ÞΓ ϱð Þ

� �
χ1 Sn − Sn−1k k

≤
1 − ϱ

β ϱð Þ + 1
β ϱð ÞΓ ϱð Þ

� �n
Δn Sn − Sn−1k k,

G2nk k ≤ 1 − ϱ

β ϱð Þ ℍ2 t, In tð Þð Þ −ℍ2 t, In−1 tð Þð Þk k

+ ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þρ−1 ℍ2 s, In sð Þð Þk

−ℍ2 t, In−1 tð Þð Þkds ≤ 1 − ϱ

β ϱð Þ + 1
β ϱð ÞΓ ϱð Þ

� �
χ2 In − In−1k k

≤
1 − ϱ

β ϱð Þ + 1
β ϱð ÞΓ ϱð Þ

� �n
Δn In − In−1k k:

ð31Þ

Similarly,

G3nk k ≤ 1 − ϱ

β ϱð Þ ℍ3 t,ℙn tð Þð Þ −ℍ3 t,ℙn−1 tð Þð Þk k

+ ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þϱ−1 ℍ3 s,ℙn sð Þð Þk

−ℍ3 t,ℙn−1 tð Þð Þkds ≤ 1 − ϱ

β ϱð Þ + 1
β ϱð ÞΓ ϱð Þ

� �
χ3 ℙn −ℙn−1k k

≤
1 − ϱ

β ϱð Þ + 1
β ϱð ÞΓ ϱð Þ

� �n
Δn ℙn −ℙn−1k k,

G4nk k ≤ 1 − ϱ

β ϱð Þ ℍ4 t, Tn tð Þð Þ −ℍ4 t, Tn−1 tð Þð Þk k

+ ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þρ−1 ℍ4 s, Tn sð Þð Þk

−ℍ4 t, Tn−1 tð Þð Þkds ≤ 1 − ϱ

β ϱð Þ + 1
β ϱð ÞΓ ϱð Þ

� �
χ4 Tn − Tn−1k k

≤
1 − ϱ

β ϱð Þ + 1
β ϱð ÞΓ ϱð Þ

� �n
Δn Tn − Tn−1k k,

ð32Þ

which ensure that GðtÞn ⟶ 0, i ∈ℕ4
1, as n⟶∞ for Δ < 1,

which completes the proof.

4. Uniqueness Solution

For our suggested model (8), we study the analysis of the
uniqueness of solution.

Theorem 7. The ABC-fractional order Hepatitis C model (8)
has a unique solution provided that

1 − ϱi
β ϱið Þ + 1

β ϱið ÞΓ ϱið Þ
� �

χi ≤ 1, i ∈ℕ4
1: ð33Þ

Assume another solution exist �SðtÞ,�IðtÞ,ℙðtÞ, �TðtÞ, and
ℝðtÞ such that
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�S tð Þ = 1 − ϱ

β ϱð Þℍ1 t,ℍ tð Þ� �
+ ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þϱ−1ℍ1 s, �S sð Þ� �

ds,

�I tð Þ = 1 − ϱ

β ϱð Þℍ2 t,�I tð Þ� �
+ ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þϱ−1ℍ2 s,�I sð Þ� �

ds,

ℙ tð Þ = 1 − ϱ

β ϱð Þℍ3 t, ℙ tð Þ� �
+ ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þϱ−1ℍ3 s,ℙ sð Þ� �

ds,

�T tð Þ = 1 − ϱ

β ϱð Þℍ4 t, �T tð Þ� �
+ ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þϱ−1ℍ4 s, �T sð Þ� �

ds:

ð34Þ

Then,

S tð Þ − �S tð Þ�� �� ≤
1 − ϱ

β ϱð Þ ℍ1 t, S tð Þð Þ −ℍ1 t, �S tð Þ� ��� ��

+ ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þϱ−1 ℍ1 s, S sð Þð Þk

−ℍ1 t, �S tð Þ� ���ds ≤ 1 − ϱ

β ϱð Þ + 1
β ϱð ÞΓ ϱð Þ

� �
χ1 S − �S
�� ��,

ð35Þ

which implies

1 − ϱ

β ϱð Þ χ1 +
χ1

β ϱð ÞΓ ϱð Þ − 1
� �

S − �S
�� �� ≥ 0: ð36Þ

By (33), (36) holds if kS − �Sk = 0; this implies SðtÞ = �SðtÞ:
With the same procedure, for I, we have

I tð Þ −�I tð Þ�� �� ≤ 1 − ϱ

β ϱð Þ ℍ2 t, I tð Þð Þ −ℍ2 t,�I tð Þ� ��� ��

+ ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þϱ−1 ℍ2 s, I sð Þð Þk

−ℍ2 t,�I tð Þ� ���ds ≤ 1 − ϱ

β ϱð Þ + 1
β ϱð ÞΓ ϱð Þ

� �
χ2 I −�I
�� ��,

ð37Þ

which implies

1 − ϱ

β ϱð Þ χ1 +
χ1

β ϱð ÞΓ ϱð Þ − 1
� �

ℙ − ℙ
�� �� ≥ 0: ð38Þ

By (33), (38) is true if kℙ −ℙðtÞk = 0; this implies ℙðtÞ =
ℙðtÞ: With the same procedure, for T , we have

T tð Þ − �T tð Þ�� �� ≤
1 − ϱ

β ϱð Þ ℍ3 t, T tð Þð Þ −ℍ3 t, �T tð Þ� ��� ��

+ ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þϱ−1 ℍ3 s, T sð Þð Þk

−ℍ3 t, �T tð Þ� ���ds ≤ 1 − ϱ

β ϱð Þ + 1
β ϱð ÞΓ ϱð Þ

� �
χ3 T − �T
�� ��,

ð39Þ

which implies

1 − ϱ

β ϱð Þ χ4 +
χ4

β ϱð ÞΓ ϱð Þ − 1
� �

T − �T
�� �� ≥ 0: ð40Þ

By (33), (40) holds if kT − �Tk = 0, which implies TðtÞ = �T
ðtÞ: Similarly, TðtÞ = �TðtÞ. Thus, the ABC-fractional order (8)
has a unique solution.

5. Hyers-Ulam Stability

Definition 8. The integral system (23)–(26) is Hyers-Ulam
stable if for Δi > 0, i ∈ℕ4

1, and γi > 0, i ∈ℕ5
1, such that

S tð Þ − 1 − ϱ

β ϱð Þℍ1 t, S tð Þð Þ − ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þϱ−1ℍ1 s, S sð Þð Þds

				
				 ≤ γ1,

I tð Þ − 1 − ϱ

β ϱð Þℍ2 t, I tð Þð Þ − ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þϱ−1ℍ2 s, I sð Þð Þds

				
				 ≤ γ2,

ℙ tð Þ − 1 − ϱ

β ϱð Þℍ3 t, ℙ tð Þð Þ − ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þϱ−1ℍ3 s, ℙ sð Þð Þds

				
				 ≤ γ3,

T tð Þ − 1 − ϱ

β ϱð Þℍ4 t, T tð Þð Þ − ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þϱ−1ℍ4 s, T sð Þð Þds

				
				 ≤ γ4:

ð41Þ

We have S
� ðtÞ, I� ðtÞ,ℙ� ðtÞ, T� ðtÞ which implies

S
�
tð Þ = 1 − ϱ

β ϱð Þℍ1
�
t, S� tð ÞÞ + ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þϱ−1ℍ1 s, S� sð ÞÞds,�

I
�
tð Þ = 1 − ϱ

β ϱð Þℍ2
�
t, I� tð ÞÞ + ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þϱ−1ℍ2 s, I� sð ÞÞds,

�

ℙ
�
tð Þ = 1 − ρ

β ρð Þℍ3
�
t,ℙ� tð ÞÞ + ρ

β ρð ÞΓ ρð Þ
ðt
0
t − sð Þρ−1ℍ3 s, I� H sð ÞÞds,�

T
�
tð Þ = 1 − ϱ

β ϱð Þℍ4
�
t, T� tð ÞÞ + ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þϱ−1ℍ4 s, I� TH sð ÞÞds,�

ð42Þ

such that

S tð Þ − S
�
tð Þ
			 ≤ δ1γ1,

			

I tð Þ − I
�
tð Þ
			 ≤ δ2γ2,

			

ℙ tð Þ −ℙ tð Þ
			 ≤ δ3γ3,

			

T tð Þ − T
�
tð Þ
			 ≤ δ4γ4:

			 ð43Þ

Theorem 9. Let ðBÞ be satisfied. Then, ABC-fractional order
HCV model (8) is Hyers-Ulam stable.

Proof. By Theorem 7, the ABC-fractional order HCV model
(8) has a unique solution, say SðtÞ, IðtÞ,ℙðtÞ, TðtÞ. Let us
consider S

� ðtÞ, I� ðtÞ,ℙðtÞ, T� ðtÞ to be another solution of (8)
satisfying (23)–(26). Then, we have
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S tð Þ − S
�
tð Þ
���� ≤

1 − ϱ

β ϱð Þ ℍ1 t, S tð Þð Þ −ℍ1
�
t, S� tð ÞÞ

����
����

����

+ ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þϱ−1 ℍ1 s, S sð Þð Þ −ℍ1

�
t, S� tð ÞÞ

����ds
����

≤
1 − ϱ

β ϱð Þ + 1
β ϱð ÞΓ ϱð Þ

� �
χ1 S − S

� k:��

ð44Þ

Taking γ1 = χ1, Δ = ð1 − ϱÞ/βðϱÞ + ϱ/βðϱÞΓðϱÞ, this
implies

S tð Þ − S
�
tð Þk ≤ γ1Δ1:

�� ð45Þ

Similarly, for IðtÞ, I� ðtÞ,ℙðtÞ,ℙ� ðtÞ, TðtÞ, T� ðtÞ, we have

I tð Þ − I
�
tð Þk ≤ γ2Δ, ℙ tð Þ − ℙ

�
tð Þk ≤ γ3Δ, T tð Þ − T

�
tð Þk ≤ γ4Δ:

�����
���

n

ð46Þ

This implies that system (8) is Hyers-Ulam stable which
ultimately ensures the stability of (8). This completes the
proof.

6. Numerical Scheme

We provide the following numerical scheme by the Caputo
fractional derivative:

ABC
0 D

ϱ
tS tð Þ =M1 t, Sð Þ,

ABC
0 D

ϱ
t IT tð Þ =M2 t, ITð Þ,

ABC
0 D

ϱ
t IH tð Þ =M3 t, IHð Þ,

ABC
0 D

ϱ
t ITH tð Þ =M4 t, ITHð Þ:

8>>>>><
>>>>>:

ð47Þ

With the help of fractional AB-integral operator, (48)
gets the following form:

S tð Þ − S 0ð Þ = 1 − ϱ

β ϱð ÞM1 t, Sð Þ + ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þϱ−1M1 s, Sð Þds,

ð48Þ

I tð Þ − I 0ð Þ = 1 − ϱ

β ϱð ÞM2 t, Ið Þ + ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þϱ−1M2 s, Ið Þds,

ð49Þ
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Figure 1: The joint solution for ϱ = 1.
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Figure 2: The joint solution for ϱ = 0:98.
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Figure 3: The joint solution for ϱ = 0:96.
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ℙ tð Þ −ℙ 0ð Þ = 1 − ϱ

β ϱð ÞM3 t,ℙð Þ + ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þϱ−1M3 s,ℙð Þds,

ð50Þ

T tð Þ − T 0ð Þ = 1 − ϱ

β ϱð ÞM4 t, ℙð Þ + ϱ

β ϱð ÞΓ ϱð Þ
ðt
0
t − sð Þρ−1M4 s, Tð Þds:

ð51Þ
By dividing the assumed interval ½0, t� into subintervals

by the help of point tn+1, for n = 0,1,2,⋯, we have

S tn+1ð Þ − S 0ð Þ = 1 − ϱ

β ϱð ÞM1 tn, Sð Þ + ϱ

β ϱð ÞΓ ϱð Þ〠
n

k=0

ðtk+1
tk

� tn+1 − sð Þϱ−1M1 s, Sð Þds,

I tn+1ð Þ − I 0ð Þ = 1 − ϱ

β ϱð ÞM2 tn, Ið Þ + ϱ

β ϱð ÞΓ ϱð Þ〠
n

k=0

ðtk+1
tk

� tn+1 − sð Þϱ−1M2 s, Ið Þds,

ℙ tn+1ð Þ −ℙ 0ð Þ = 1 − ϱ

β ϱð ÞM3 tn,ℙð Þ + ϱ

β ϱð ÞΓ ϱð Þ〠
n

k=0

ðtk+1
tk

� tn+1 − sð Þϱ−1M3 s,ℙð Þds,

T tn+1ð Þ − T 0ð Þ = 1 − ϱ

β ϱð ÞM4 tn, Tð Þ + ϱ

β ϱð ÞΓ ϱð Þ〠
n

k=0

ðtk+1
tk

� tn+1 − sð Þϱ−1M4 s, Tð Þds:
ð52Þ

Now, using Lagrange’s interpolation, we have

S tn+1ð Þ = S 0ð Þ + 1 − ϱ

β ϱð ÞM1 tk, Sð Þ + ϱ

B ϱð Þ × 〠
n

k=0

� hϱM1 tk, Sð Þ
Γ ϱ + 2ð Þ n + 1 − kð Þϱ n − k + 2 + ϱð Þð

�

− n − kð Þϱ n − k + 2 + 2ϱð ÞÞ − hϱℤ1 tk−1, Sð Þ
Γ ϱ + 2ð Þ

× n + 1 − kð Þϱ − n − kð Þϱ n + 1 − k + ϱð Þð Þ
�
,

I tn+1ð Þ = I 0ð Þ + 1 − ϱ

β ϱð ÞM2 tk, Ið Þ + ϱ

B ϱð Þ × 〠
n

k=0

� hϱM2 tk, Ið Þ
Γ ϱ + 2ð Þ n + 1 − kð Þϱ n − k + 2 + ϱð Þð

�

− n − kð Þϱ n − k + 2 + 2ϱð ÞÞ − hϱM2 tk−1, Ið Þ
Γ ϱ + 2ð Þ

× n − k + 1ð Þϱ − n − kð Þϱ n + 1 − k + ϱð Þð Þ
�
,

ℙ tn+1ð Þ =ℙ 0ð Þ + 1 − ϱ

β ϱð ÞM3 tk, ℙð Þ + ϱ

B ϱð Þ × 〠
n

k=0

� hϱM3 tk, Ið Þ
Γ ϱ + 2ð Þ n + 1 − kð Þϱ n − k + 2 + ϱð Þð

�

− n − kð Þϱ n − k + 2 + 2ϱð ÞÞ − hϱℤ3 tk−1, IHð Þ
Γ ϱ + 2ð Þ

× n + 1 − kð Þϱ − n − kð Þϱ n + 1 − k + ϱð Þð Þ
�
,
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Figure 4: The joint solution for ϱ = 0:94.
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T tn+1ð Þ = T 0ð Þ + 1 − ϱ

β ϱð ÞM4 tk, Tð Þ + ϱ

B ϱð Þ × 〠
n

k=0

� hϱM4 tk, Tð Þ
Γ ϱ + 2ð Þ n + 1 − kð Þϱ n − k + 2 + ϱð Þð

�

− n − kð Þϱ n − k + 2 + 2ϱð ÞÞ − hϱM4 tk−1, ITHð Þ
Γ ϱ + 2ð Þ

× n + 1 − kð Þϱ+1 − n − kð Þϱ n + 1 − k + ϱð Þ� ��
:

ð53Þ

7. Computational Results

Here, we present some computational results based on the
parametric values defined in [12]. We consider the initial
values S0 = 0:90, I0 = 0:70,ℙ0 = 0:66, T 0 = 0:60, and the
parametric values given by β = 1:30, μ = 0:09, χ = 0:5, ψ =
0:5, σ = 0:5, ε = 0:7, d = 0:035, ρ = 0:50, δ = 0:012, ℘ = 0:34, θ
= 0:67. We get the same behavior of the fractional order
model as for the integer order.
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Table 1: Shows the parameter values given in Equation (8). The time units are taken in years.

Parameter Description Value Reference

μ Rate of natural death 0:09 [12]

λ Force of infection Assumed
ψ Rate of susceptibility of recovered 0.5 [11–13]

σ Rate of recovery from acute infection 0.02 [12]

ε Rate of progression to chronic infection 0.7 [12]

d Rate of death due to acute infection 0.035 [12]

ρ Rate of treatment failure of chronically infected 0.50 [12]

δ Rate of recovery from chronic infection 0.012 [12]

℘ Rate of treatment of chronically infected 0.34 [12]

θ Rate of treatment cure 0.67 [12]
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Figures 1–4 represent the numerical solution of the
model for the orders ϱ = 1:0, 0:98, 0:96, 0:94 and using
Table 1 values, respectively. Figure 5 represents the suscepti-
ble class for the orders ϱ = 1:0, 0:98, 0:96, 0:94 and using
Table 1 values, which are increasing with the passage of time
and get stability after 60 days of the treatment. The infection
class is given in Figure 6, for the fractional orders ϱ = 1:0,
0:98, 0:96, 0:94 and using Table 1 values, it has been
observed that with the passage of time, the infection is
decreased to a certain limit. Figure 7 shows the chronic
infection class for ϱ = 1:0, 0:98, 0:96, 0:94, and using
Table 1 values, finally the chronically infected treated class
for ϱ = 1:0, 0:98, 0:96, 0:94 is given in Figure 8. This
numerical analysis of the fractional order model ensures that
the fractional order model is more informative and has the
same behavior as the classical model.

8. Conclusions

In this article, we have given a mathematical fractional order
Hepatitis C virus (HCV) spread model for an analytical and
numerical study. The model is a fractional order extension
of the classical model. The paper includes the existence,
uniqueness, Hyers-Ulam stability, and a numerical scheme
for the computational results. Our numerical results are
based on the Lagrange polynomial interpolation. On the
basis of the numerical scheme, we have given graphical
explanation of the model and its subclasses. For details,
Figures 1–4 represent the numerical solution of the model
with the fractional orders ϱ = 1:0, 0:98, 0:96, 0:94, respec-
tively. Figure 5 represents the susceptible class for the orders
ϱ = 1:0, 0:98, 0:96, 0:94 which are increasing with the pas-
sage of time and get stability after 60 days of treatment.
The infection class is given in Figure 6 for the fractional
orders ϱ = 1:0, 0:98, 0:96, 0:94, and it has been observed

that with the passage of time the infection is decreased to a
certain limit. Figure 7 shows the chronic infection class for
ϱ = 1:0, 0:98, 0:96, 0:94, and finally, the chronically infected
treated class for ϱ = 1:0, 0:98, 0:96, 0:94 is given in Figure 8.
Our numerical analysis of the fractional order model ensures
that the fractional order model is more informative and has
the same behavior as the classical model.
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In this paper, we consider a generalized Caputo boundary value problem of fractional differential equation with composite p-
Laplacian operator. Boundary value conditions of this problem are of three-point integral type. First, we obtain Green’s
function in relation to the proposed fractional boundary value problem and then for establishing the existence and uniqueness
results, we use topological degree theory and Banach contraction principle. Further, we consider a stability analysis of Ulam-
Hyers and Ulam-Hyers-Rassias type. To examine the validity of theoretical results, we provide an illustrative example.

1. Introduction

Fractional calculus, as a generalization of classical ordinary
calculus to integrodifferential operators in the noninteger
settings, has attracted considerable interest in recent years
and has grown rapidly since its introduction. Fractional cal-
culus is now broadly used in several fields such as biology,
fluid dynamics, viscoelastic theory, neural networks, and epi-
demic models; see for instance [1, 2] and references therein.

By using fixed point techniques, a large number of
researchers studied the existence-uniqueness properties of
solutions for different classes of differential equations in
the fractional settings. In 2016, Ntouyas et al. [3] studied
two fractional boundary value problems (FBVPs) with
three-point boundary conditions and derived the existence
results by using the fixed point notion. Similarly, in [4],
Boutiara et al. used fixed point theorems to prove the exis-
tence results for another FBVP with three-point boundary
conditions in the context of the Caputo-Hadamard and
Hadamard operators. More recently, Derbazi et al. [5]
designed a new FBVP by applying the generalized ψ-opera-

tors and proved their desired results via monotone iterative
techniques.

As you know, every numerical method must be accurate
in order to give desired results which are acceptable for dif-
ferent applications. For this purpose, the analysis of the sta-
bility is needed. Various types of stability involving
exponential, Lyapunov, and Mittag-Leffler have been studied
for different types of problems. The abovementioned types
of stability have been improved for many differential equa-
tions in both linear and nonlinear fractional cases and their
related systems over the last few years. However, the stability
of some nonlinear systems undergo unavoidable deficiencies
which appear due to the need of predefining Lyapunov func-
tion. This is often considered as an uneasy task.

In [6, 7], Ulam and Hyers have initiated the concept of
Ulam-Hyers stability. In addition, this notion has been con-
sidered for nonlinear fractional differential equations and
their related systems. For instance, Abdo et al. [8] investi-
gated the stability criteria for ψ-Hilfer fractional integrodif-
ferential equations and in the same time, Zada et al. [9]
derived similar results for impulsive integrodifferential
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equations with Riemann-Liouville boundary conditions. In
[10], Kheiryan and Rezapour considered a new multisingu-
lar FBVP and checked its Hyers-Ulam stability.

On the other hand, some properties of solutions of
FBVPs including the uniqueness, existence, and stability
notions have been investigated with the help of various tech-
niques such as topological degree theory (T-degree theory)
and fixed point theory. In this paper, we will apply the exist-
ing concepts in T-degree theory, as well as there are a large
number of nonlinear mathematical models in engineering
and the scientific fields to investigate and analyze dynamical
systems. One of the most important nonlinear operators fre-
quently used is the classical p-Laplacian operator. Models
with p-Laplacian operators are often used to simulate practi-
cal problems such as tides caused by celestial gravity and
elastic deformation of beams. Such extensive applications
attract the attention of many researchers to study mathemat-
ical models having p-Laplacian operators.

Specifically, Ma et al. [11] defined a new multipoint
FBVP with p-Laplacian operator and derived the existence
and iteration of monotone positive solutions for the given
system. Next, Matar et al. [12] studied another p-Laplacian
FBVP having Caputo-katugampula fractional derivatives
recently. For more details about p-Laplacian fractional
boundary value problems, we refer to [13, 14].

Also, to see the importance of existing techniques in T-
degree theory, we can point out to a paper published by Shah
and Khan [15] on the existence-uniqueness results to a
coupled system of FBVPs. Further, Sher et al. [16] imple-
mented a qualitative analysis on a multiterm delay FBVP
with the help of the same technique in T-degree theory.

In 2017, Ali et al. [17] studied a coupled fractional struc-
ture of a system involving two differential equations with
non-integer boundary conditions of integral type which
takes the form

CDr1
0+v1 tð Þ = ϕ1 t, v2 tð Þð Þ, ≤t ≤ 1,

CDr1
0+v1 tð Þ = ϕ2 t, v1 tð Þð Þ, ≤t ≤ 1,

v1 0ð Þ = 0, v1 1ð Þ = 1
Γ αð Þ

ðK
0
K − sð Þα−1p v1 sð Þð Þds,

v2 0ð Þ = 0, v2 1ð Þ = 1
Γ βð Þ

ðK
0
K − sð Þβ−1p v2 sð Þð Þds,

8>>>>>>>>>><
>>>>>>>>>>:

ð1Þ

where CDr1
0+ð·Þ, CD

r2
0+ð·Þ stands for the Caputo derivative

of orders 1 < r1 < 2 and 1 < r2 < 2, respectively, and ϕ1, ϕ2
: ½0, 1� ×ℝ2 ⟶ℝ is continuous functions along with p, q
∈ L½0, 1� which satisfy some certain linear growth condi-
tions. By setting certain particular conditions, they derived
their desired existence results using some techniques in T-
degree theory. The authors also investigated the Hyers-
Ulam stability for the proposed problem.

In [18], Khan et al. studied the existence of solutions and
their uniqueness for the proposed coupled fractional struc-
ture of a FBVP having the nonlinear operator of p-Laplacian
type and integral boundary conditions given by

CDr∗1
0+φp

CD
r1
0+v1 tð Þ

� �
= ϱ1 t, v1, v2 tð Þð Þ, 0 ≤ t ≤ 1,

CDr∗2
0+φp

CD
r2
0+v1 tð Þ

� �
= ϱ2 t, v1, v2 tð Þð Þ, 0 ≤ t ≤ 1,

φp
CD

r1
0+v1

� �
0ð Þ = v1′ 0ð Þ = 0, v1 0ð Þ = c1

1
Γ α − 1ð Þ

ðK
0
K − sð Þα−2v1 sð Þds,

φp
CD

r2
0+v2

� �
0ð Þ = v2′ 0ð Þ = 0, v2 0ð Þ = c2

1
Γ β − 1ð Þ

ðK
0
η − sð Þβ−2v2 sð Þds,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð2Þ

where CD
r∗j
0+ð·Þ and CD

rj
0+ð·Þ for j = 1, 2 denote the Caputo

derivative of orders 0 < r∗j < 1 and 1 < r j < 2. Additionally,
ϱ1, ϱ2 : ½0, 1� ×ℝ2 ⟶ℝ is continuous, and α, β ≥ 1, −1 ≤ c1
, c2 ≤ 0 and φpðθÞ = jθjp−2θ stand for the p-Laplacian opera-
tor such that 1/q + 1/p = 1. The authors established their
desired theorems using the techniques attributed to Leray-
Schauder and Banach. Further, the Hyers-Ulam stability
was investigated.

In [19] and by means of T-degree theory, Shah and Hus-
sain established sufficient conditions for investigation of the
existence of solutions and their stability on the following
nonlinear FBVP

CD
r
0+ =Θ t, μ tð Þð Þ, 2 < r < 4,

μ 0ð Þ = ζ tð Þ, μ′ 0ð Þ = μ′′ 0ð Þ = 0, μ 1ð Þ = vμ ηð Þ,

(

ð3Þ

where CDr
0+ð·Þ represents the Caputo derivative of order r.

Further, Θ : ½0, 1� ×ℝ⟶ℝ and ζ : ½0, 1�⟶ℝ are
regarded to be continuous and μ, η ∈ ð0, 1Þ.

By considering the existing literatures, we see that all dif-
ferential equations having a p-Laplacian operator with three-
point integral boundary conditions are not well explored by
T-degree theory, and even the boundary conditions of inte-
gral type cover a wide range of applications which have
direct contributions in the theory of fluid mechanics, opti-
mization, and viscoelasticity.

Inspired and motivated by the above fractional systems,
we focus on the existence of solutions and establish four
classes of Hyres-Ulam stability of a generalized FBVP having
p-Laplacian operator with 3-point integral boundary condi-
tions given by

CD
β,δ

φp
CD

χ,ρ
x tð Þ

� �� �
= ℏ1 t, x tð Þð Þ t ∈ t0, K½ �, t0 ≥ 0ð Þ,

x t0ð Þ + μ1x Kð Þ = σ1

ðK
t0

ℏ2 sð Þds, μ1 ≠ −1ð Þ,

x′ t0ð Þ + μ2x′ Kð Þ = σ2

ðK
t0

ℏ3 sð Þds, μ2 ≠ −
t0
K

� �ρ−1
 !

,

CD
χ,ρ
x t0ð Þ = 0, CDχ,ρ

x Kð Þ = υCD
χ,ρ
x ηð Þ, η ∈ t0, Kð Þð Þ,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð4Þ

so that CDβ,δ
and CDχ,ρ

are generalized derivatives in the
sense of Caputo, of order β, χ ∈ (1,2) and δ, ρ > 0. Along
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with these, μ1, μ2, υ, σ1, σ2 ∈ℝ with υ ≠ ðKδ − tδ0/ηδ − tδ0Þ
q−1

and also ℏ2, ℏ3 : ½t0, K�⟶ℝ and ℏ1 : ½t0, K� ×ℝ⟶ℝ are
assumed to be continuous. We emphasize that the proposed
FBVP (4) has a novel structure and is designed for the first
time in the context of a generalized fractional settings along
with the p-Laplacian operator.

2. Auxiliary Preliminaries

The main purpose of this section is to collect some impor-
tant definitions, primitive lemmas, and theoretical results
of generalized fractional integrals and derivatives which are
applicable in this paper.

By Cð½t0, K�Þ, we mean the category of all continuous
real functions defined on ½t0, K� which is simply proved that
it is a Banach space along with kxk = supt∈½t0,K�jxðtÞj. More-

over, AClð½t0, K�,ℝÞ = fx : ½t0, K�⟶ℝ : xðl−1ÞðtÞ ∈ ACð½t0,
K�,ℝÞg stands for the space of absolutely continuous func-
tions on ½t0, K� having real values up to ðl − 1Þ-derivative.
Thus, in this regard, we define

ACl
δ t0, K½ �,ℝð Þ
= x : t0, K½ �⟶ℝ : δl−1x

� �
tð Þ ∈ AC t0, K½ �,ℝð Þ, δ = 1

tρ−1
d
dt

� �
,

ð5Þ

as a category of functions having absolutely continuous δl−1

-derivatives, and a norm is defined by

xk kCl
δ
= 〠

l−1

k=0
δkx
� �

tð Þ
��� ���

C
, ð6Þ

so that δk = δδ⋯ δ
⏞ k−times

.

Definition 1. (see [20]). Let 0 < a, b < +∞, q > 0 and x ∈Xp
c

ða, bÞ, where Xp
c ða, bÞ is the space of all Lebesgue measur-

able complex functions. The integral operator given by

ρIqa+x tð Þ = ρ1−q

Γ qð Þ
ðt
a+
sρ−1 tρ − sρð Þq−1x sð Þds, ρ > 0, t > a+ ð7Þ

is named as the generalized Riemann-Liouville integral such
that the R.H.S. integral is finite-valued.

Definition 2. (see [20]). The generalized derivative in sense of
Caputo for a given function f ∈ ACl

δ½a, b� of order l − 1 < q
< l with l = ½q� + 1 is defined by

CDq,ρ
a+ x tð Þ = ρIl−qa+ δl f

� �
tð Þ = ρq−l+1

Γ l − qð Þ
ðt
a+
sρ−1 tρ − sρð Þl−q−1

� δl f
� �

sð Þds, ρ > 0, t > a+ð Þ
ð8Þ

In particular, if q = l ∈ℕ,

CDq,ρ
a+ x tð Þ = δl f

� �
sð Þ: ð9Þ

Lemma 3. (see [20]). Let f ∈ ACl
δ½a, b�. Then, for every l − 1

< q < l,

ρIqa+
CDq,ρ

a+ x tð Þ = x tð Þ − 〠
l−1

k=0

δk f
� �

að Þ
ρkk!

tρ − aρð Þk: ð10Þ

Moreover, for 0 < q < 1, (10) becomes

ρIqa+
C
Dq,ρ
a+ x tð Þ = x tð Þ − x að Þ: ð11Þ

Now, we will present a definition of Kuratowski’s mea-
sure of noncompactness ξð·Þ which is constructed by

ξ Dð Þ = inf ε > 0 : D =
[n
i=1

Di andDiam Dið Þ ≤ ε for i = 1,⋯, n
( )

,

ð12Þ

where DiamðDiÞ = sup fjx − yj: x, y ∈Dig and D are a
bounded subset of the Banach space Cð½t0, K�Þ: It is clear
that 0 ≤ ξðDÞ ≤DiamðDÞ < +∞ [21].

Definition 4. (see [21]). Let G : V ⟶W be bounded and
continuous with V ⊂W . Then, G will be ξ -Lipschitz if ∃ς
≥ 0 so that

ξ G Að Þð Þ < ςξ Að Þ,∀boundedA ⊂V : ð13Þ

As well as G is named as strict ξ-contraction when ς < 1
holds.

Definition 5. (see [21]). A function G is ξ -condensing if

ξ G Að Þð Þ < ξ Að Þ,∀A ⊂V bounded, withξ Að Þ > 0: ð14Þ

So, ξðGðAÞÞ ≥ ξðAÞ gives ξðAÞ = 0: Also, G : V ⟶W is
Lipschitz for ς > 0 such that

G μð Þ −G μ′
� ���� ��� ≤ ς μ − μ′

�� �� for all μ, μ′ ∈V : ð15Þ

If ς < 1, in this case G is called a strict contraction.

Proposition 6. (see [21]). G is ξ -Lipschitz with constant
ς = 0 iff G : V ⟶W is compact.

Proposition 7. (see [21]). A function G is ξ-Lipschitz with
constant ς if and only if G : V ⟶W is Lipschitz with
Lipschitz constant ς.

Theorem 8. (see [22]). Let G : C ½t0, K�⟶C ½t0, K� be a ξ
-condensing and
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M = u ∈C t0, K½ �: θ ∈ 0, 1½ �exists so that u = θG uð Þf g: ð16Þ

IfM is a bounded subset contained in C ½t0, K�, i.e., a con-
stant r > 0 exists with M ⊂ Krð0Þ, then degðI − θG , Krð0Þ, 0Þ
= 1 for all θ ∈ ½0, 1�. Therefore, G has a fixed point, and the
set FIXðGÞ belongs to Krð0Þ.

Lemma 9. (see [13]). Consider φp as an operator in the p-
Laplacian settings.

(p1) For 1 < p ≤ 2, if Y1, Y2 > 0 and jY1j, ∣Y2 ∣ ≥λ > 0,
then

φp Y1ð Þ − φp Y2ð Þ
			 			 ≤ p − 1ð Þλp−2 Y1 − Y2j j: ð17Þ

(p2) For p > 2, if jY1j, jY2j ≤ λ∗, then

∣φp Y1ð Þ − φp Y2ð Þ∣ ≤ p − 1ð Þλ∗p−2 Y1 − Y2j j: ð18Þ

3. Main Analytical Results

This important section is divided into some subsections.
In each part, we shall study desired theorems about differ-
ent specifications of solutions to the proposed p-Laplacian
FBVP (4).

3.1. Existence-Uniqueness Results. We here present the first
result which yields the solution of the proposed p-Laplacian
FBVP (4) in the equivalent format of integral equations.

Theorem 10. Let ℏ1, ℏ2, ℏ3 ∈C ½t0, K�, K > t0 ≥ 0, χ, β ∈ ð1, 2Þ,
and δ, ρ, υ > 0. The p-Laplacian FBVP with given integral com-
posite conditions

CD
β,δ

φp
CD

χ,ρ
x tð Þ

� �� �
= ℏ1 tð Þ,

x t0ð Þ + μ1x Kð Þ = σ1

ðK
t0

g sð Þds,

x′ t0ð Þ + μ2x′ Kð Þ = σ2

ðK
t0

ℏ3 sð Þds,

CD
χ,ρ
x t0ð Þ = 0, CDχ,ρ

x Kð Þ = υCD
χ,ρ
x ηð Þ,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð19Þ

has a solution given by

x tð Þ =
ðK
t0

H1 t, ϖð Þφq

ðK
t0

H2 ϖ, sð Þℏ1 sð Þds
 ! 

+σ1ℏ2 ϖð Þ
1 + μ1

+ σ2ℏ3 ϖð Þ
tρ−10 + μ2K

ρ−1

tρ − tρ0
ρ

−
μ1

1 + μ1

Kρ − tρ0
ρ

� �!
dϖ,

ð20Þ

such that H1ðt, ϖÞ and H2ðt, sÞ stand for Green’s functions
defined as follows:

Proof. By utilizing the integral operator δIβ on (19), the fol-
lowing relation is produced

φp
CD

χ,ρ
x tð Þ

� �
= δIβℏ1 tð Þ − a1 − a2

tδ − tδ0
δ

� �
, a1, a2 ∈ℝ: ð23Þ

By taking the inverse φq of φp on above equation, we
have

CD
χ,ρ
x tð Þ = φq

δ1−β

Γ βð Þ
ðt
t0

tδ − sδ
� �β−1

sδ−1ℏ1 sð Þds
 

− a1 − a2
tδ − tδ0
δ

� ��
:

ð24Þ

Using the boundary conditions CDχ,ρxðt0Þ = 0 and
CDχ,ρxðKÞ = υCDχ,ρxðηÞ, we have a1 = 0 and

H1 t, ϖð Þ =

ρ1−χ

Γ χð Þ tρ − ϖρð Þχ−1ϖρ−1 −
μ1

1 + μ1

ρ1−χ

Γ χð Þ Kρ − ϖρð Þχ−1ϖρ−1 + μ2ρ
2−χ

tρ−10 + μ2K
ρ−1

� �
Γ χ − 1ð Þ

× μ1
1 + μ1

Kρ − tρ0
ρ

−
tρ − tρ0
ρ

� �
Kρ − ϖρð Þχ−2 ϖKð Þρ−1,− μ1

1 + μ1

ρ1−χ

Γ χð Þ Kρ − ϖρð Þχ−1ϖρ−1 + μ2ρ
2−χ

tρ−10 + μ2K
ρ−1

� �
Γ χ − 1ð Þ

t0 ≤ ϖ ≤ t ≤ K ,

μ1
1 + μ1

Kρ − tρ0
ρ

−
tρ − tρ0
ρ

� �
Kρ − ϖρð Þχ−2 ϖKð Þρ−1, t0 ≤ t ≤ ϖ ≤ K ,

8>>>>><
>>>>>:

ð21Þ

H2 t, sð Þ =

δ1−β

Γ βð Þ tδ − sδ
� �β−1

sδ−1 −
δ1−β tδ − tδ0


 �
Kδ − tδ0

 �

− υ1/q−1 ηδ − tδ0

 �
 �

Γ βð Þ Kδ − sδ
� �β−1

sδ−1 + δ1−βυ1/q−1 tδ − tδ0

 �

Kδ − tδ0

 �

− υ1/q−1 ηδ − tδ0

 �
 �

Γ βð Þ ηδ − sδ
� �β−1

sδ−1, t0 ≤ s ≤ η ≤ t,≤K ,

δ1−β

Γ βð Þ tδ − sδ
� �β−1

sδ−1 −
δ1−β tδ − tδ0


 �
Kδ − sδ

 �β−1

sδ−1

Kδ − tδ0

 �

− υ1/q−1 ηδ − tδ0

 �
 �

Γ βð Þ , t0 ≤ η ≤ s ≤ t,≤K ,

−
δ1−β tδ − tδ0


 �
Kδ − tδ0

 �

− υ1/q−1 ηδ − tδ0

 �
 �

Γ βð Þ Kδ − sδ
� �β−1

sδ−1, t0 ≤ η ≤ t ≤ s:≤K:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð22Þ
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φq
δ1−β

Γ βð Þ
ðK
t0

Kδ − sδ
� �β−1

sδ−1ℏ1 sð Þds − a2
Kδ − tδ0

δ

 ! !

= υφq
δ1−β

Γ βð Þ
ðη
t0

ηδ − sδ
� �β−1

sδ−1ℏ1 sð Þds − a2
ηδ − tδ0

δ

� � !

= φq
υ1/q−1δ1−β

Γ βð Þ
ðη
t0

ηδ − sδ
� �β−1

sδ−1ℏ1 sð Þds − a2υ
1

q−1
ηδ − tδ0

δ

� � !

ð25Þ

which is obtained by using the property of p-Laplacian oper-
ator. Therefore,

a2
Kδ − tδ0

δ

 !
− υ

1
q−1

ηδ − tδ0
δ

� � !

= δ1−β

Γ βð Þ
ðK
t0

Kδ − sδ
� �β−1

sδ−1ℏ1 sð Þds − υ1/q−1δ1−β

Γ βð Þ
ðη
t0

� ηδ − sδ
� �β−1

sδ−1ℏ1 sð Þds,
ð26Þ

which implies that

a2 =
δ2−β

Kδ − tδ0

 �

− υ1/q−1 ηδ − tδ0

 �
 �

Γ βð Þ

ðK
t0

� Kδ − sδ
� �β−1

sδ−1ℏ1 sð Þds

−
υ1/q−1δ2−β

Kδ − tδ0

 �

− υ1/q−1 ηδ − tδ0

 �
 �

Γ βð Þ

ðη
t0

� ηδ − sδ
� �β−1

sδ−1ℏ1 sð Þds:

ð27Þ

According to (24) and the definition of H2ðt, sÞ, we get

CD
χ,ρ
x tð Þ = φq

ðK
t0

H2 t, sð Þℏ1 sð Þds
 !

: ð28Þ

Applying the integral operator ρIχ, we shall write

x tð Þ = ρIχφq

ðK
t0

H2 t, sð Þℏ1 sð Þds
 !

− b1 − b2
tρ − tρ0
ρ

: ð29Þ

By virtue of the boundary condition xðt0Þ + μ1xðKÞ =
σ1
Ð K
t0
ℏ2ðsÞds, we have

−b1 + μ1 Iχ,ρφq

ðK
t0

H2 t, sð Þℏ1 sð Þds
 !

− b1 − b2
Kρ − tρ0

ρ

 !
= σ1

ðK
t0

ℏ2 sð Þds,

ð30Þ

which implies

b1 =
μ1

1 + μ1

ρ1−χ

Γ χð Þ
ðK
t0

Kρ − ϖρð Þχ−1ϖρ−1φq

ðK
t0

H2 ϖ, sð Þℏ1 sð Þds
 !

dϖ

−
μ1

1 + μ1

Kρ − tρ0
ρ

b2 −
σ1

1 + μ1

ðK
t0

ℏ2 sð Þds:

ð31Þ

Therefore, we obtain

x′ tð Þ = ρ2−χ

Γ χ − 1ð Þ
ðt
t0

tρ − ϖρð Þχ−2 tϖð Þρ−1φq

�
ðK
t0

H2 ϖ, sð Þℏ sð Þds
 !

dϖ − b2t
ρ−1:

ð32Þ

Using the boundary condition x′ðt0Þ + μ2x′ðKÞ = σ2
Ð K
t0

ℏ3ðsÞds,

−b2t
ρ−1
0 + μ2

ρ2−χ

Γ χ − 1ð Þ
ðK
t0

Kρ − ϖρð Þχ−2 ϖKð Þρ−1φq

�
ðK
t0

H2 ϖ, sð Þℏ1 sð Þds
 !

dϖ − μ2b2K
ρ−1 = σ2

ðK
t0

ℏ3 sð Þds:
ð33Þ

Then,

b2 =
μ2

tρ−10 + μ2K
ρ−1

ρ2−χ

Γ χ − 1ð Þ
ðK
t0

Kρ − ϖρð Þχ−2 ϖKð Þρ−1φq

�
ðK
t0

H2 ϖ, sð Þℏ1 sð Þds
 !

dϖ −
σ2

tρ−10 + μ2K
ρ−1

ðK
t0

ℏ3 sð Þds:
ð34Þ

Therefore,

x tð Þ = ρ1−χ

Γ χð Þ
ðt
t0

tρ − ϖρð Þχ−1ϖρ−1φq

ðK
t0

H2 ϖ, sð Þℏ1 sð Þds
 !

dϖ

−
μ1

1 + μ1

ρ1−χ

Γ χð Þ
ðK
t0

Kρ − ϖρð Þχ−1ϖρ−1φq

�
ðK
t0

H2 ϖ, sð Þℏ1 sð Þds
 !

dϖ + μ2ρ
2−χ

tρ−10 + μ2K
ρ−1

� �
Γ χ − 1ð Þ

� μ1
1 + μ1

Kρ − tρ0
ρ

−
tρ − tρ0
ρ

� �
×
ðK
t0

Kρ − ϖρð Þχ−2 ϖKð Þρ−1φq

�
ðK
t0

H2 ϖ, sð Þℏ1 sð Þds
 !

dϖ + σ1
1 + μ1

ðK
t0

ℏ2 ϖð Þdϖ

+ σ2

tρ−10 + μ2K
ρ−1

tρ − tρ0
ρ

−
μ1

1 + μ1

Kρ − tρ0
ρ

� �ðK
t0

ℏ3 ϖð Þdϖ

=
ðK
t0

H1 t, ϖð Þφq

ðK
t0

H2 ϖ, sð Þℏ1 sð Þds
 ! 

+σ1ℏ2 ϖð Þ
1 + μ1

+ σ2h ϖð Þ
tρ−10 + μ2K

ρ−1
tρ − tρ0
ρ

−
μ1

1 + μ1

Kρ − tρ0
ρ

� �!
dϖ,

ð35Þ

where H1ðt, ϖÞ is defined in (18). This ends the proof.
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In this part, we intend to state and prove our required
existence-uniqueness theorems. To achieve such an inten-
tion and in view of Theorem 10, the solution of the sug-
gested p-Laplacian FBVP (4) is equivalent to a fixed point
xðtÞ of the self–map Ξ : C ½t0, K�⟶C ½t0, K� which is for-
mulated as

Ξxð Þ tð Þ =
ðK
t0

H1 t, ϖð Þφq

ðK
t0

H2 ϖ, sð Þℏ1 s, x sð Þð Þds
 ! 

+ σ1ℏ2 ϖð Þ
1 + μ1

+ σ2ℏ3 ϖð Þ
tρ−10 + μ2K

ρ−1
tρ − tρ0
ρ

−
μ1

1 + μ1

Kρ − tρ0
ρ

� �!
dϖ,

ð36Þ

where H1ðt, ϖÞ and H2ðϖ, sÞ are represented by (21) and
(22), respectively. In the sequel, we utilize the following
notations:

Δ1 =
Kρ − t0

ρ

ρ

� �χ μ1
1 + μ1

				
				 + 1

� � 1
Γ χ + 1ð Þ + μ2j jKρ−1

Γ χð Þ tρ−10 + μ2K
ρ−1

� �			 			
0
B@

1
CA,

Δ2 =
Kδ − t0

δ

δ

 !β 1
Γ β + 1ð Þ + Kδ − tδ0


 �
Kδ − tδ0

 �

− υ1/q−1 ηδ − tδ0

 �
 �		 		

� Kδ − t0
δ

δ

 !β 1
Γ β + 1ð Þ + ηδ − t0

δ

δ

� �β
υ1/q−1

Γ β + 1ð Þ

0
@

1
A,

Δ3 =
σ1

1 + μ1

				
				ℏ∗2 + σ2j jℏ∗3

tρ−10 + μ2K
ρ−1

			 			
Kρ − t0

ρ

ρ

� �
μ1

1 + μ1

				
				 + 1

� �
,

ð37Þ

and ω∗
1 = supt∈½t0,K�fω1ðtÞg , ω∗

2 = supt∈½t0,K�fω2ðtÞg, Ω1 = ω∗
1

Δ1Δ
q−1
2 + Δ3, Ω2 = ω∗

2Δ1Δ
q−1
2 , y∗2 = supt∈½t0,K� ∣ ℏ2ðtÞ ∣ , and ℏ∗3

= supt∈½t0,K�jℏ3ðtÞj.

Theorem 11. Let (HP1): the functions ω1, ω2 ∈C ½t0, K� exist
so that jℏ1ðt, xÞj ≤ φpðω1ðtÞ + ω2ðtÞjxðtÞjÞ for any x ∈C ½t0,
K� and t ∈ ½t0, K�:

Then, Ξ : C ½t0, K�⟶C ½t0, K� is continuous, and also
the growth condition kΞxk ≤Ω1 +Ω2kxk holds.

Proof. Define a set Bε = fx ∈C ½t0, K�: kxk ≤ εg having the
boundedness property. In order to prove the continuity of
Ξ, we consider xn as a sequence converging to x inBε. Then,
Lemma 9 yields

Ξxnð Þ tð Þ − Ξxð Þ tð Þj j

=
ðK
t0

H1 t, ϖð Þφq

ðK
t0

H2 ϖ, sð Þℏ1 s, xn sð Þð Þds
 !

dϖ

 					
−
ðK
t0

H1 t, ϖð Þφq

ðK
t0

H2 ϖ, sð Þℏ1 s, x sð Þð Þds
 ! 

dϖ

					
≤
ðK
t0

H1 t, ϖð Þj j φq

ðK
t0

H2 ϖ, sð Þℏ1 s, xn sð Þð Þds
 !					

− φq

ðK
t0

H2 ϖ, sð Þℏ1 s, x sð Þð Þds
 !					dϖ

≤ q − 1ð Þλq−2
ðK
t0

H1 t, ϖð Þj j

·
ðK
t0

H2 ϖ, sð Þj j ℏ1 s, xn sð Þð Þ − ℏ1 s, x sð Þð Þj jds
 !

dϖ:

ð38Þ

According to Lebesgue’s dominated convergence theo-
rem and the continuity of the function ℏ1, we get kΞxn − Ξ
xk⟶ 0 when n⟶∞. Hence, Ξ is continuous.

Now, about the growth condition, by (HP1), we obtain

Ξxð Þ tð Þj j ≤
ðK
t0

H1 t, ϖð Þj jφq

ðK
t0

H2 ϖ, sð Þj j ℏ1 s, x sð Þð Þj jds
 ! 

+ σ1ℏ2 ϖð Þ
1 + μ1

				
				 + σ2ℏ3 ϖð Þ

tρ−10 + μ2K
ρ−1

tρ − tρ0
ρ

−
μ1

1 + μ1

Kρ − tρ0
ρ

� �					
					
!
dϖ

≤
ðK
t0

H1 t, ϖð Þj jφq

ðK
t0

H2 ϖ, sð Þj jφp ω1 sð Þ + ω2 sð Þ x sð Þj jð Þds
 ! 

+ σ1ℏ2 ϖð Þ
1 + μ1

				
				 + σ2ℏ3 ϖð Þ

tρ−10 + μ2K
ρ−1

tρ − tρ0
ρ

−
μ1

1 + μ1

Kρ − tρ0
ρ

� �					
					
!
dϖ

≤
ðK
t0

 
H1 t, ϖð Þj jΔ2

q−1 ω∗
1 + ω∗

2 xk kð Þ+ σ1ℏ2 ϖð Þ
1 + μ1

				
				

+ σ2ℏ3 ϖð Þ
tρ−10 + μ2K

ρ−1
tρ − tρ0
ρ

−
μ1

1 + μ1

Kρ − tρ0
ρ

� �					
					
!
dϖ

≤ Δ1Δ
q−1
2 ω∗

1 + ω∗
2 xk kð Þ + Δ3 ≤ ω∗

1Δ1Δ
q−1
2 + Δ3 + ω∗

2Δ1Δ
q−1
2 xk k

≤Ω1 +Ω2 xk k:
ð39Þ

Thus, kΞxk ≤Ω1 +Ω2kxk and this complete the
argument.

Theorem 12. Under hypothesis (HP1), the single-valued
operator Ξ : C ½t0, K�⟶C ½t0, K� is ξ-Lipschitz with the con-
stant zero and is compact.

Proof. In view of Theorem 11, Ξ is bounded. In the subse-
quent step, we show that Ξ is an equicontinuous operator.
Then, by the hypothesis (HP1), for any x ∈Bε and t1, t2
∈ ½t0, K� subject to t1 < t2, we have
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Ξxð Þ t2ð Þ − Ξxð Þ t1ð Þj j ≤
ðK
t0

H1 t2, ϖð Þφq

ðK
t0

H2 ϖ, sð Þℏ1 s, x sð Þð Þds
 ! 					

+ σ2ℏ3 ϖð Þ
tρ−10 + μ2K

ρ−1
tρ2 − tρ0
ρ

� �!
dϖ −

ðK
t0

· H1 t1, ϖð Þφq

ðK
t0

H2 ϖ, sð Þℏ1 s, x sð Þð Þds
 ! 

+ σ2ℏ3 ϖð Þ
tρ−10 + μ2K

ρ−1
tρ1 − tρ0
ρ

� �!
dϖj ≤

ðK
t0

 
H1 t2, ϖð Þ −H1 t1, ϖð Þj jφq

·
ðK
t0

H2 ϖ, sð Þj jφp ω1 sð Þ + ω2 sð Þ x sð Þj jð Þds
 !

+ ∣σ2ℏ3 ϖð Þ ∣
∣tρ−10 + μ2K

ρ−1 ∣
tρ2 − tρ0
ρ

−
tρ1 − tρ0
ρ

� �!
dϖ:

ð40Þ

Clearly, the R.H.S. of (40) goes to zero by taking t2
⟶ t1, and so ΞðBεÞ is equicontinuous. Therefore, by vir-
tue of the well-known Arzelá-Ascoli theorem, ΞðBεÞ is
compact, and thus Proposition 6 gives a result stating this
fact that Ξ is ξ-Lipschitz with the constant zero.

Theorem 13. Under the following hypothesis, i.e.,
(HP2) A real constant ℓ exists so that for any μ1, μ2 ∈C

½t0, K� and t ∈ ½t0, K�,

ℏ1 t, μ1ð Þ − ℏ1 t, μ2ð Þj j ≤ ℓ μ1 tð Þ − μ2 tð Þj j: ð41Þ

The generalized p-Laplacian FBVP (4) has a unique solution
such that

ℓ q − 1ð Þλq−2Δ1Δ2 < 1: ð42Þ

Proof. Consider Ξ as defined in (36). Then by Lemma 9, we
obtain

Ξxð Þ tð Þ − Ξyð Þ tð Þj j

≤
ðK
t0

H1 t, ϖð Þφq

ðK
t0

H2 ϖ, sð Þℏ1 s, x sð Þð Þds
 !

dϖ

					
−
ðK
t0

H1 t, ϖð Þφq

ðK
t0

H2 ϖ, sð Þℏ1 s, y sð Þð Þds
 !

dϖ

					
≤
ðK
t0

H1 t, ϖð Þj j φq

ðK
t0

H2 ϖ, sð Þℏ1 s, x sð Þð Þds
 !					

− φq

ðK
t0

H2 ϖ, sð Þℏ1 s, y sð Þð Þds
 !					dϖ ≤ q − 1ð Þλq−2

ðK
t0

H1 t, ϖð Þj j

·
ðK
t0

H2 ϖ, sð Þj j ℏ1 s, x sð Þð Þ − ℏy1 s, y sð Þð Þj jds
 !

dϖ

≤ ℓ q − 1ð Þλq−2
ðK
t0

H1 t, ϖð Þj j
ðK
t0

H2 ϖ, sð Þj j x sð Þ − y sð Þj jds
 !

dϖ

≤ ℓ q − 1ð Þλq−2
ðK
t0

H1 t, ϖð Þj j Δ2 x − yk kð Þdϖ ≤ ℓ q − 1ð Þλq−2Δ1Δ2 x − yk k,

ð43Þ

for x, y ∈C ½t0, K�. So, kΞx − Ξyk ≤ ℓðq − 1Þλq−2Δ1Δ2kx − yk.
Hence, in view of the well-known contraction principle due
to Banach, we follow that Ξ admits a fixed point uniquely.
Thus, the generalized p-Laplacian FBVP (4) involves a solu-
tion uniquely.

Theorem 14. If hypotheses (HP1) and (HP2) hold, then the
generalized p-Laplacian FBVP (4) has a solution such that
Ω2 < 1. Moreover, the set containing solutions of the general-
ized p -Laplacian FBVP (4) is bounded.

Proof. According to Theorem 13, Ξ is Lipschitz and by Prop-
osition 7, Ξ is ξ-Lipschitz which yields that Ξ is ξ-condens-
ing. With the aid of Theorem 8, we need to prove that

W = x ∈C t0, K½ �: θ ∈ 0, 1½ �exists so that x = θΞ xð Þf g, ð44Þ

is bounded. For this regard, we suppose that x ∈W for some
θ ∈ ½0, 1� and for each t ∈ ½t0, K�: Then, from the growth con-
dition of Ξ derived in Theorem 11, we may write

xk k = θΞ xð Þk k ≤Ω1 +Ω2 xk k: ð45Þ

Hence,

xk k ≤ Ω1
1 −Ω2

, ð46Þ

which yields that W is a bounded set contained in C ½t0, K�.
By Theorem 8, one can understand that Ξ involves at least
a fixed point which confirms the existence of at least a solu-
tion for the proposed generalized p-Laplacian FBVP (4), and
hence W consisting of solutions of the mentioned FBVP (4)
is a bounded subset of C ½t0, K�. This ends the proof.☐
3.2. Analysis of the Stability. In this part, we discuss on four
kinds of stability for the generalized p-Laplacian FBVP (4) as
follows [6, 7].

Definition 15. The generalized p-Laplacian FBVP (4) is
called Ulam-Hyers stable if there is a real number Cy1

> 0
such that for every κ > 0 and every solution ~x ∈C ½t0, K� of
the inequality

CDβ,δ φp
CDχ,ρ~x tð Þ
 �� �

− ℏ1 t, ~x tð Þð Þ
			 			 ≤ κ, ð47Þ

there is a unique solution x ∈C ½t0, K� of (4) such that

x − ~xk k ≤Cy1
κ, t ∈ t0, K½ �ð Þ: ð48Þ

Definition 16. The generalized p -Laplacian FBVP (4) is
called the generalized Ulam-Hyers stable with respect to ρ
∈Cðℝ>0,ℝ>0Þ with ρð0Þ = 0, if for each approximate solu-
tion ~x ∈C ½t0, K� of inequality (47), there is a unique solution
x ∈C ½t0, K� of (4) so that

x − ~xk k ≤ ρ κð Þ, t ∈ t0, K½ �ð Þ: ð49Þ
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Definition 17. The generalized p-Laplacian FBVP (4) is
called Ulam-Hyers-Rassias stable with respect to ψ ∈C ½t0,
K� if there is a real number Kℏ1,ψ > 0 such that for every κ

> 0 and approximate solution ~x ∈C ½t0, K� of the inequality

CDβ,δ φp
CDχ,ρ~x tð Þ
 �� �

− ℏ1 t, ~x tð Þð Þ
			 			 ≤ ψ tð Þκ, ð50Þ

there is a unique solution x ∈C ½t0, K� of (4) so that

x − ~xk k ≤Ky1,ψκψ tð Þ, t ∈ t0, K½ �ð Þ: ð51Þ

Definition 18. The generalized p-Laplacian FBVP (4) is
called the generalized Ulam-Hyers-Rassias stable with
respect to ψ ∈C ½t0, K�, if there is a real number Ky1,ψ > 0
such that for each approximate solution ~x ∈C ½t0, K� of
inequality (50), there is a unique solution x ∈C ½t0, K� of
(4) such that

x − ~xk k ≤Ky1,ψψ tð Þ, t ∈ t0, K½ �ð Þ: ð52Þ

Remark 19. The function ~x ∈C ½t0, K� is a solution of (47) if
and only if there exists a function Ψ ∈C ½t0, K� such that

jΨðtÞj ≤ κ for t ∈ ½t0, K�
CDβ,δðφpð CDχ,ρ~xðtÞÞÞ = ℏ1ðt, ~xðtÞÞ +ΨðtÞ for t ∈ ½t0, K�

Remark 20. The function ~x ∈C ½t0, K� is a solution of (50) if
and only if there exists a function Φ ∈C ½t0, K� such that

jΦðtÞj ≤ κψðtÞ for t ∈ ½t0, K�
CDβ,δðφpðCDχ,ρ

~xðtÞÞÞ = ℏ1ðt, ~xðtÞÞ +ΦðtÞ for t ∈ ½t0, K�

Theorem 21. If the hypothesis (HP2) and the inequality (42)
are valid, then the unique solution of the generalized p-Lapla-
cian FBVP (4) is Ulam-Hyers stable and is the generalized
Ulam-Hyers stable.

Proof. Set κ > 0 and let ~x ∈C ½t0, K� be the approximate solu-
tion of (47) and x ∈C ½t0, K� be the unique solution of the
approximate generalized p-Laplacian FBVP

CD
β,δ

φp
CD

χ,ρ
~x tð Þ

� �� �
= ℏ1 t, ~x tð Þð Þ +Ψ tð Þ, t ∈ t0, K½ �, t0 ≥ 0ð Þ,

~x t0ð Þ + μ1~x Kð Þ = σ1

ðK
t0

ℏ2 sð Þds, μ1 ≠ −1ð Þ,

~x′ t0ð Þ + μ2~x′ Kð Þ = σ2

ðK
t0

ℏ3 sð Þds, μ2 ≠ −
t0
K

� �ρ−1
 !

,

CD
χ,ρ
~x t0ð Þ = 0, CDχ,ρ

~x Kð Þ = υCD
χ,ρ
~x ηð Þ, η ∈ t0, Kð Þð Þ,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð53Þ

with υ ≠ ðKδ − tδ0/ηδ − tδ0Þ
q−1

. According to Theorem 10, we
get

~x tð Þ =
ðK
t0

H1 t, ϖð Þφq

ðK
t0

H2 ϖ, sð Þ ℏ s, ~x sð Þð Þ +Ψ tð Þð Þds
 ! 

+σ1ℏ ϖð Þ
1 + μ1

+ σ2ℏ3 ϖð Þ
tρ−10 + μ2K

ρ−1
tρ − tρ0
ρ

−
μ1

1 + μ1

Kρ − tρ0
ρ

� �!
dϖ,

ð54Þ

where H1ðt, ϖÞ and H2ðt, sÞ are defined by (21) and (22),
respectively. Hence, from Theorem 13, we estimate

x tð Þ − ~x tð Þj j ≤
ðK
t0

H1 t, ϖð Þφq

ðK
t0

H2 ϖ, sð Þℏ1 s, x sð Þð Þds
 !

dϖ

					
−
ðv
t0

H1 t, ϖð Þφq

ðK
t0

H2 ϖ, sð Þ ℏ1 s, ~x sð Þð Þ +Ψ tð Þð Þds
 !

dϖ

					
≤
ðK
t0

H1 t, ϖð Þj j φq

ðK
t0

H2 ϖ, sð Þℏ1 s, x sð Þð Þds
 !					

− φq

ðK
t0

H2 ϖ, sð Þℏ1 s, ~x sð Þð Þds
 !					dϖ

+
ðK
t0

H1 t, ϖð Þj jφq

ðK
t0

H2 ϖ, sð Þj j Ψ tð Þj jds
 !

dϖ

≤ ℓ q − 1ð Þλq−2Δ1Δ2 x − ~xk k + Δ1 Δ2κð Þq−1:
ð55Þ

Thus,

x − ~xk k ≤ Δ1 Δ2κð Þq−1
1 − ℓ q − 1ð Þλq−2Δ1Δ2

=Cy1
κ, ð56Þ

where Cy1 ≔ Δ1Δ
q−1
2 κq−2/1 − ℓðq − 1Þλq−2Δ1Δ2: This

shows that the generalized p-Laplacian FBVP (4) is Ulam-
Hyers stable. Along with this, if ∥x − ~x∥≤ρðκÞ so that ρð0Þ
= 0, then the solution related to the generalized p-Laplacian
FBVP (4) is the generalized Ulam-Hyers stable, and the
proof is completed.

Theorem 22. Let the hypothesis (HP2) and (42) are valid,
and there exists an increasing function ψðtÞ ∈C ½t0, K� ; there
exists λψ > 0 such that

Ð K
t0
jψðsÞjds ≤ λψψðtÞ, ∀t ∈ ½t0, K�.

Then, the unique solution of the generalized p-Laplacian
FBVP (4) is Ulam-Hyers-Rassias stable and thus is the gener-
alized Ulam-Hyers-Rassias stable.

Proof. Consider κ > 0 and let ~x ∈C ½t0, K� be the approximate
solution of (50) and x ∈C ½t0, K� be the unique solution of
the generalized p-Laplacian FBVP (4). By remark 20, we
have
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CD
β,δ

φp
CD

χ,ρ
~x tð Þ

� �� �
= ℏ1 t, ~x tð Þð Þ +Φ tð Þ, t ∈ t0, K½ �, t0 ≥ 0ð Þ,

~x t0ð Þ + μ1~x Kð Þ = σ1

ðK
t0

ℏ2 sð Þds, μ1 ≠ −1ð Þ,

~x′ t0ð Þ + μ2~x′ Kð Þ = σ2

ðK
t0

ℏ3 sð Þds, μ2 ≠ −
t0
K

� �ρ−1
 !

,

CD
χ,ρ
~x t0ð Þ = 0, CDχ,ρ

~x Kð Þ = υCD
χ,ρ
~x ηð Þ, η ∈ t0, Kð Þð Þ,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð57Þ

with υ ≠ ðKδ − tδ0/ηδ − tδ0Þ
q−1

. In view of Theorem 10, we
have

~x tð Þ =
ðK
t0

H1 t, ϖð Þφq

ðK
t0

H2 ϖ, sð Þ ℏ1 s, ~x sð Þð Þ +Φ sð Þð Þds
 ! 

+σ1ℏ2 ϖð Þ
1 + μ1

+ σ2ℏ3 ϖð Þ
tρ−10 + μ2K

ρ−1
tρ − tρ0
ρ

−
μ1

1 + μ1

Kρ − tρ0
ρ

� �!
dϖ,

ð58Þ

where H1ðt, ϖÞ and H2ðt, sÞ are defined by (21) and (22),
respectively. Hence, we can immediately estimate that

x − ~xk k ≤ Δ1 Δ2κλψψ tð Þ
 �q−1
1 − ℓ q − 1ð Þλq−2Δ1Δ2

=Kℏ,ψκψ tð Þ, ð59Þ

where Ky1,ψ ≔ Δ1Δ
q−1
2 λq−1ψ ðκψðtÞÞq−2/1 − ℓðq − 1Þλq−2Δ1

Δ2: This proves that the generalized p-Laplacian FBVP (4)
is Ulam-Hyers-Rassias stable. Furthermore, if κ = 1, then
the solution of generalized p-Laplacian FBVP (4) is the
generalized Ulam-Hyers-Rassias stable, and the proof is
completed.

4. Example

As an application to validate the theoretical results, an illus-
trative example is given here.

Example 23. Regarding to the given FBVP (4), we provide a
special structure of the generalized problem having the frac-
tional composite p-Laplacian as

CD
1:08,0:5

φ5
4

CD
1:09,0:7

x tð Þ
� �� �

= 6 sin x tð Þj j
12000 sin x tð Þj j + 12000 + 0:18et , t ∈ 0, 1½ �ð Þ

x 0ð Þ + 0:1x 1ð Þ = 0:8
ð1
0
2e3s + 1

 �

ds,

x′ 0ð Þ + 0:2x′ 1ð Þ = 0:9
ð1
0
cos sð Þds,

CD
1:09,0:7

x 0ð Þ = 0, CD1:09,0:7
x 1ð Þ = 0:3CD1:09,0:7

x 0:25ð Þ,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð60Þ

in which the following parameters are considered β =
1:08, χ = 1:09, δ = 0:5, ρ = 0:7, μ1 = 0:1, μ2 = 0:2, υ = 0:3, σ1
= 0:8, σ2 = 0:9, η = 0:25, λ = 1:5, p = 5/4, q = 5, t0 = 0, K = 1
, and φpðθÞ = jθjp−2θ. In addition to these, the continuous
functions y1, y2, and y3 are introduced by

ℏ1 t, x tð Þð Þ = 6 sin x tð Þj j
12000 sin x tð Þj j + 12000 + 0:18etd,

ℏ2 tð Þ = 2e3t + 1, ℏ3 tð Þ = cos tð Þ,
ð61Þ

for t ∈ ½0, 1�. By utilizing some of above data, we get Δ1 ≃
= 3:0899 and Δ2 ≃ 6:4094. On the other side, for any x, x̂ ∈
ℝ, we can write

ℏ1 t, x tð Þð Þ − ℏ1 t, x̂ tð Þð Þj j
≤

6 sin x tð Þj j
12000 sin x tð Þj j + 12000 −

6 sin x̂ tð Þj j
12000 sin x̂ tð Þj j + 12000

				
				

≤
6

12000
sin x tð Þj j

sin x tð Þj j + 1 −
sin x̂ tð Þj j

sin x̂ tð Þj j + 1

				
				

≤
6

12000 sin x tð Þ − sin x̂ tð Þj j ≤ 6
12000 x tð Þ − x̂ tð Þj j,

ð62Þ

where ℓ = 6/12000 = 0:0005 is obtained. Then, since

ℓ q − 1ð Þλq−2Δ1Δ2 ≃ 0:1336797342 < 1, ð63Þ

thus the conditions of Theorem 13 are satisfied, and so the
generalized composite p-Laplacian FBVP (60) has a unique
solution. On the other side, since all hypotheses of Theorems
21 and 22 hold, we find out that the given generalized com-
posite p-Laplacian FBVP (60) is Ulam-Hyers and Ulam-
Hyers-Rassias stable and thus is stable of their generalized
type.

5. Conclusion

Qualitative analysis such as the investigation of the exis-
tence, uniqueness, and stability of fractional differential
equations is an important and useful task. In this paper,
we studied a generalized fractional composite differential
equation with p-Laplacian operator equipped with three-
point integral boundary value conditions. We used the clas-
sical results for this purpose and obtained the relevant
Green’s function. The existence and uniqueness of solutions
were established by means of topological degree theory and
Banach contraction principle. Besides, four types of stability
in the sense of Ulam-Hyers, Ulam-Hyers-Rassias, and their
generalized versions were analyzed. Finally, we provided an
illustrative example to validate our results. In the next
researches, one can study these qualitative behaviors of solu-
tions for different generalizations of fractional p-Laplacian
boundary value problems by means of generalized operators
with nonsingular kernels such as Caputo-Fabrizio operators
or Atangana-Baleanu operators.
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This paper aims at proving some unique fixed-point results for different contractive-type self-mappings in fuzzy metric spaces by
using the “triangular property of the fuzzy metric”. Some illustrative examples are presented to support our results. Moreover, we
present an application by resolving a particular case of a Fredholm integral equation of the second kind.

1. Introduction

In 1922, Banach [1] proved a “Banach contraction principle
(BCP),” which is stated as “a self-mapping in a complete
metric space satisfying a contraction condition has a unique
fixed point”. This theorem plays a very important role in the
theory of fixed points. Many researchers gave generalization
and improved the BCP in many directions for single-valued
and multivalued mappings in the context of metric spaces by
ensuring the existence of fixed point, common fixed point,
and coincidence point results with different types of applica-
tions, such as differential-type applications, integral-type
applications, functional-type applications. In 2004, Ran
and Reurings [2] proved a fixed-point theorem in a metric
space by using partially ordered sets and they present some
applications to matrix equations. While in [3], Nieto and
Rodrguez-López extended and improved the result of Ran
and Reurings [2] by using increasing mappings and applied
the result to get a unique solution for the first-order ordinary
differential equation with periodic boundary equations. In
2017, Priskillal and Thangavelu [4] established some fixed-

point theorems in complete metric spaces by using ψ-con-
tractive fuzzy mappings with an application to fuzzy differ-
ential equations. Some more fixed-point results in the
context of metric spaces can be found in [5–16].

In 1965, the theory of fuzzy sets was introduced by Zadeh
[17]. Lately, this theory is improved, investigated, and applied
in many directions. Among them, we state the theory of fuzzy
logic, which is based on the notion of relative graded member-
ships, as inspired by the processing of human perceptions and
cognitions. Fuzzy logic can deal with information arising from
computational perceptions and cognitions, that is, uncertain,
obscure, imprecise, partly true, or without sharp limits. A
fuzzy logic permits the inclusion of vague human assessments
in computing problems. The fuzzy logic is extremely useful for
many people associated with innovative work including engi-
neering (electrical, chemical, civil, environmental, mechanical,
industrial, geological, etc.), mathematics, computer software,
earth science, and physics. Some of their findings can be found
in [18–25].

The other direction of fuzzy sets is used in topology and
analysis by many mathematicians. Subsequently, several
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authors have applied various forms of general topologies and
developed the concept of fuzzy spaces. Kramosil and Micha-
lek [26] developed the concept of a fuzzy metric space (FM-
space). Later on, Grabeic [27] extended the BCP and proved a
fixed-point result in FM-spaces in the sense of Kramosil and
Michalek. George and Veeramani [28] modified the concept
of FM-spaces with the help of continuous t-norms and proved
some basic properties in this direction. In 2002, Gregori and
Sapena [29] proved some contractive-type fixed-point theo-
rems in complete FM-spaces in the sense of Kramosil and
Michalek [26] and in the sense of George and Veeramani
[28]. Rana et al. [30] established some fixed-point theorems
in FM-spaces by using implicit relations. Many authors have
introduced the number of fixed-point theorems in FM-
spaces by using the concept of compatible maps, implicit rela-
tions, weakly compatible maps, and R-weakly compatible
maps (see [31–38] and the references therein). Furthermore,
Beg and Abbas [39], Popa [40], and Imad et al. [41, 42]
obtained some fixed-point and invariant approximation
results in FM-spaces. Recently, Li et al. [43] proved some
strong coupled fixed-point theorems in FM-spaces with an
integral-type application. Later on, Rehman et al. [44] proved
some rational fuzzy-contraction theorems in FM-spaces with
nonlinear integral-type application.

The purpose of this paper is at obtaining some extended
unique fixed-point theorems in FM-spaces without the
“assumption that all the sequences are Cauchy” by using the
concept of Li et al. [43] and Rehman et al. [44]. We present
some illustrative examples and an integral-type application
to support our work. By using this concept, one can prove
more generalized contractive-type fixed-point and common
fixed-point results in FM-spaces with different types of inte-
gral equations. Our paper is organized as follows: Section 2
consists of preliminary concepts. In Section 3, we prove some
generalized fixed-point results without continuity in FM-
spaces and we presented some examples in the support of
our obtained results. In Section 4, we consider some general-
ized Ćirić fuzzy contraction results in complete FM-spaces.
In Section 5, we present an application of a particular case of
the Fredholm integral equation of the second kind by ensuring
the existence of a solution.

2. Preliminaries

The concept of a continuous t-norm is given by Schweizer
and Sklar [45].

Definition 1 (see [45]). An operation ∗ : ½0, 1� × ½0, 1�⟶
½0, 1� is known as a continuous t-norm if it satisfies the
following:

(1) ∗ is commutative, associative, and continuous

(2) 1 ∗ ρ1 = ρ1 and ρ1 ∗ ρ2 ≤ ρ3 ∗ ρ4, whenever ρ1 ≤ ρ3
and ρ2 ≤ ρ4, for all ρ1, ρ2, ρ3, ρ4 ∈ ½0, 1�

The basic continuous t-norms: the minimum, the Luka-
siewicz, and the product t-norms are defined, respectively, as

follows:

ρ1 ∗ ρ2 = min ρ1, ρ2f g,
ρ1 ∗ ρ2 = max ρ1 + ρ2 − 1, 0f g,

ρ1 ∗ ρ2 = ρ1ρ2:

ð1Þ

Definition 2 (see [28]). A 3-tuple ðW,MF ,∗Þ is said to be a
FM-space if W is an arbitrary set, ∗ is a continuous t
-norm, and MF is a fuzzy set on W ×W × ð0,∞Þ satisfying
the following:

(i) MFðw, x, tÞ > 0 and MFðw, x, tÞ = 1⇔w = x

(ii) MFðw, x, tÞ =MFðw, x, tÞ
(iii) MFðw, z, tÞ ∗MFðz, x, sÞ ≤MFðw, x, t + sÞ
(iv) MFðw, x, tÞ: ð0,∞Þ⟶ ½0, 1� is continuous for all

w, x, z ∈W and t, s > 0

Definition 3 (see [28, 29]). Let ðW,MF ,∗Þ be a FM-space,
w ∈W, and fwig be a sequence in W. Then,

(i) A sequence fwig in W is said to be convergent to a
point w ∈W if lim

i⟶∞
MFðwi,w, tÞ = 1 for t > 0

(ii) fwig is said to be a Cauchy sequence, if for each 0
< ε < 1 and t > 0, there is i0 ∈ℕ such that MFðwk,
wi, tÞ > 1 − ε, ∀k, i ≥ i0

(iii) ðW,MF ,∗Þ is complete, if every Cauchy sequence is
convergent in W

(iv) fwig is known as a fuzzy contractive, if there is 0
< β < 1 so that

1
MF wi,wi+1, tð Þ − 1

≤ β
1

MF wi−1,wi, tð Þ − 1
� �

, for t > 0 and i ≥ 1
ð2Þ

Definition 4 (see [46]). Let ðW,MF ,∗Þ be a FM-space. The
fuzzy metric MF is triangular if

1
MF w, x, tð Þ − 1 ≤ 1

MF w, y, tð Þ − 1
� �

+ 1
MF y, x, tð Þ − 1
� �

,

ð3Þ

for all w, x, y ∈W and t > 0.

Lemma 5. A fuzzy metric MF is triangular.
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Proof. Let MF : W ×W × ð0,∞Þ⟶ ½0, 1� be a fuzzy metric
defined by

MF w, x, tð Þ = t
t + w − xj j , forw, x ∈W and t > 0: ð4Þ

Now, we have

1
MF w, x, tð Þ − 1 = w − xj j

t
= w − z + z − xj j

t

≤
w − zj j
t

+ z − xj j
t

= 1
MF w, z, tð Þ − 1
� �

+ 1
MF z, x, tð Þ − 1
� �

:

ð5Þ

This implies that

1
MF w, x, tð Þ − 1 ≤ 1

MF w, z, tð Þ − 1
� �

+ 1
MF z, x, tð Þ − 1
� �

, for t > 0:
ð6Þ

Hence, it is proved that a fuzzy metric MF is triangular.

Lemma 6 (see [46]). Let ðW,MF ,∗Þ be a FM-space. Let w
∈W and fwig be a sequence in W. Then, wi ⟶w iff
lim
i⟶∞

MFðwi,w, tÞ = 1, for t > 0.

Definition 7 (see [29]). Let ðW,MF ,∗Þ be a FM-space and
G : W ⟶W. Then, G is known as a fuzzy contraction, if
there is 0 < h < 1 so that

1
MF Gw,Gx, tð Þ − 1 ≤ h

1
MF w, x, tð Þ − 1
� �

, ð7Þ

for all w, x ∈W and t > 0.

3. Generalized Fixed-Point Results in FM-
Spaces

In this section, we consider some generalized contraction
theorems on FM-spaces for fixed points (by using the “trian-
gular property of the fuzzy metric”).

Theorem 8. Let ðW,MF ,∗Þ be a complete FM-space so that
the fuzzy metric MF is triangular. Let G : W ⟶W satisfy

1
MF Gw,Gx, tð Þ − 1

≤ a
1

MF w, x, tð Þ − 1
� �

+ b
�

1
MF w,Gw, tð Þ − 1

+ 1
MF x,Gx, tð Þ − 1 + 1

MF x,Gw, tð Þ − 1 + 1
MF w,Gx, tð Þ − 1

�

+ c
1

min MF w,Gw, tð Þ,MF x,Gx, tð Þ,MF x,Gw, tð Þ,MF w,Gx, tð Þf g − 1
� �

,

ð8Þ

for all w, x ∈W, a ∈ ð0, 1Þ, b ∈ ½0, 1/4Þ, and c ∈ ½0, 1Þ with
ða + 4b + 2cÞ < 1. Then, G has a unique fixed point.

Proof. Fix w0 ∈W. Take an iterative sequence fwig such that
wi+1 = Gwi for all i ≥ 0: Now, by view of (8), we have

Then, we have for t > 0,

1
MF wi,wi+1, tð Þ − 1 = 1

MF Gwi−1,Gwi, tð Þ − 1 ≤ a
1

MF wi−1,wi, tð Þ − 1
� �

+ b
� 1
MF wi−1,Gwi−1, tð Þ − 1

+ 1
MF wi,Gwi, tð Þ − 1 + 1

MF wi,Gwi−1, tð Þ − 1 + 1
MF wi−1,Gwi, tð Þ − 1

�

+ c
1

min MF wi−1,Gwi−1, tð Þ,MF wi,Gwi, tð Þ,MF wi,Gwi−1, tð Þ,MF wi−1,Gwi, tð Þf g − 1
� �

≤ a
1

MF wi−1,wi, tð Þ − 1
� �

+ b
� 1
MF wi−1,wi, tð Þ − 1 + 1

MF wi,wi+1, tð Þ − 1 + 1
MF wi−1,wi, tð Þ − 1

+ 1
MF wi,wi+1, tð Þ − 1

�
+ c

1
min MF wi−1,wi, tð Þ,MF wi−1,wi, tð Þ, 1,MF wi,wi+1, tð Þf g − 1
� �

= a
1

MF wi−1,wi, tð Þ − 1
� �

+ b
� 1
MF wi−1,wi, tð Þ − 1 + 1

MF wi,wi+1, tð Þ − 1 + 1
MF wi−1,wi, tð Þ − 1

+ 1
MF wi,wi+1, tð Þ − 1

�
+ c

1
min MF wi−1,wi, tð Þ,MF wi−1,wi, tð Þ,MF wi,wi+1, tð Þf g − 1
� �

:

ð9Þ
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Three possibilities arise:

(i) If MFðwi−1,wi, tÞ is the minimum term in fMFð
wi−1,wi, tÞ,MFðwi,wi+1, tÞ,MFðwi−1,wi+1, tÞg, then,
after simplification, (10) can be written as

1
MF wi,wi+1, tð Þ − 1

≤
a + 2b + c
1 − 2b

1
MF wi−1,wi, tð Þ − 1
� �

, for t > 0
ð11Þ

(ii) If MFðwi,wi+1, tÞ is the minimum term in fMFð
wi−1,wi, tÞ,MFðwi,wi+1, tÞ,MFðwi−1,wi+1, tÞg, then
again, (10) can be written as

1
MF wi,wi+1, tð Þ − 1

≤
a + 2b

1 − 2b − c
1

MF wi−1,wi, tð Þ − 1
� �

, for t > 0
ð12Þ

(iii) If MFðwi−1,wi+1, tÞ is the minimum term in fMFð
wi−1,wi, tÞ,MFðwi,wi+1, tÞ,MFðwi−1,wi+1, tÞg, then
again, (10) becomes

1
MF wi,wi+1, tð Þ − 1

≤
a + 2b + c
1 − 2b − c

1
MF wi−1,wi, tð Þ − 1
� �

, for t > 0
ð13Þ

Let β≔max fða + 2b + cÞ/ð1 − 2bÞ, ða + 2bÞ/ð1 − 2b − cÞ
, ða + 2b + cÞ/ð1 − 2b − cÞg < 1. Then, from all cases, we get

1
MF wi,wi+1, tð Þ − 1 ≤ β

1
MF wi−1,wi, tð Þ − 1
� �

, for t > 0:

ð14Þ

Similarly,

1
MF wi−1,wi, tð Þ − 1 ≤ β

1
MF wi−2,wi−1, tð Þ − 1
� �

, for t > 0:

ð15Þ

Now, from (14) and (15) and by induction, for t > 0,

1
MF wi,wi+1, tð Þ − 1

≤ β
1

MF wi−1,wi, tð Þ − 1
� �

≤ β2 1
MF wi−2,wi−1, tð Þ − 1
� �

≤⋯≤ βi 1
MF w0,w1, tð Þ − 1
� �

⟶ 0, as i⟶∞:

ð16Þ

This yields that

lim
i⟶∞

MF wi,wi+1, tð Þ = 1, for t > 0: ð17Þ

Since MF is triangular, we have

1
MF wi,wk, tð Þ − 1

≤
1

MF wi,wi+1, tð Þ − 1
� �

+ 1
MF wi+1,wi+2, tð Þ − 1
� �

+⋯+ 1
MF wk−1,wk, tð Þ − 1
� �

≤ βi + βi+1+⋯+βk−1
� � 1

MF w0,w1, tð Þ − 1
� �

≤
βi

1 − β

 !
1

MF w0,w1, tð Þ − 1
� �

⟶ 0, as i⟶∞:

ð18Þ

Thus, fwig is a Cauchy sequence. Since W is complete,

1
MF wi,wi+1, tð Þ − 1 ≤ a

1
MF wi−1,wi, tð Þ − 1
� �

+ 2b 1
MF wi−1,wi, tð Þ − 1 + 1

MF wi,wi+1, tð Þ − 1
� �

+ c
1

min MF wi−1,wi, tð Þ,MF wi,wi+1, tð Þ,MF wi−1,wi+1, tð Þf g − 1
� �

:

ð10Þ
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there is κ ∈W so that

lim
i⟶∞

MF κ,wi, tð Þ = 1, for t > 0: ð19Þ

We shall show that Gκ = κ. By the triangular property of
MF , we have that

1
MF κ,Gκ, tð Þ − 1 ≤ 1

MF κ,wi+1, tð Þ − 1
� �

+ 1
MF wi+1,Gκ, tð Þ − 1
� �

, for t > 0:

ð20Þ

Now, by using (8), (17), and (19), we have

Hence,

lim
i⟶∞

sup 1
MF wi+1,Gκ, tð Þ − 1

≤ 2b + cð Þ 1
MF κ,Gκ, tð Þ − 1
� �

, for t > 0:
ð22Þ

Equation (22) together with (20) and (19) implies that

1
MF κ,Gκ, tð Þ − 1 ≤ 2b + cð Þ 1

MF κ,Gκ, tð Þ − 1
� �

, for t > 0:

ð23Þ

As ð2b + cÞ < 1, one has MFðκ,Gκ, tÞ = 1. This implies
that Gκ = κ.

The uniqueness is as follows: let κ∗ ∈W be such that G
κ∗ = κ∗. Then, in view of (8), we have for t > 0

1
MF wi+1,Gκ, tð Þ − 1 ≤ 1

MF Gwi,Gκ, tð Þ − 1 ≤ a
1

MF wi, κ, tð Þ − 1
� �

+ b
� 1
MF wi,Gwi, tð Þ − 1 + 1

MF κ,Gκ, tð Þ − 1 1
MF κ,Gwi, tð Þ

− 1 + 1
MF wi,Gκ, tð Þ − 1

�
+ c

1
min MF wi,Gwi, tð Þ,MF κ,Gκ, tð Þ,MF κ,Gwi, tð Þ,MF wi,Gκ, tð Þf g − 1
� �

= a
1

MF wi, κ, tð Þ − 1
� �

+ b
� 1
MF wi,wi+1, tð Þ − 1 + 1

MF κ,Gκ, tð Þ − 1 1
MF κ,wi+1, tð Þ − 1

+ 1
MF wi,Gκ, tð Þ − 1

�
+ c

1
min MF wi,Gwi+1, tð Þ,MF κ,Gκ, tð Þ,MF κ,wi+1, tð Þ,MF wi,Gκ, tð Þf g − 1
� �

⟶ 2b 1
MF κ,Gκ, tð Þ − 1
� �

+ c
1

min 1,MF κ,Gκ, tð Þf g − 1
� �

, as i⟶∞:

ð21Þ

1
MF κ, κ∗, tð Þ − 1 ≤ a

1
MF κ, κ∗, tð Þ − 1
� �

+ b
1

MF κ,Gκi, tð Þ − 1 + 1
MF κ∗,Gκ∗, tð Þ − 1 1

MF κ,Gκ∗, tð Þ − 1 + 1
MF κ∗,Gκ, tð Þ − 1

� �

+ c
1

min MF κ,Gκ∗, tð Þ,MF κ∗,Gκ∗, tð Þ,MF κ,Gκ∗i , tð Þ,MF κ∗,Gκ, tð Þf g − 1
� �

= a
1

MF κ, κ∗, tð Þ − 1
� �

+ 2b 1
MF κ,Gκ∗, tð Þ − 1
� �

+ c
1

min 1,MF κ, κ∗, tð Þf g − 1
� �

= a + 2b + cð Þ 1
MF κ, κ∗, tð Þ − 1
� �

≤ a + 2b + cð Þ 1
MF Gκ,Gκ∗, tð Þ − 1
� �

≤ a + 2b + cð Þ2 1
MF κ, κ∗, tð Þ − 1
� �

≤⋯≤ a + 2b + cð Þi 1
MF κ, κ∗, tð Þ − 1
� �

⟶ 0, as i⟶∞:

ð24Þ
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Hence, we get that MFðκ, κ∗, tÞ = 1, so κ = κ∗. Thus, G
has a unique fixed point in W.

Corollary 9. Let ðW,MF ,∗Þ be a complete FM-space so that
the fuzzy metricMF is triangular. LetG : W ⟶W verify that

1
MF Gw, Gx, tð Þ − 1 ≤ a

1
MF w, x, tð Þ − 1
� �

+ b
�

1
MF w, Gw, tð Þ

− 1 + 1
MF x,Gx, tð Þ − 1 + 1

MF x, Gw, tð Þ
− 1 + 1

MF w,Gx, tð Þ − 1
�
,

ð25Þ

for all w, x ∈W, t > 0, a ∈ ð0, 1Þ, and b ∈ ½0, 1/4Þ with ða +
2bÞ < 1. Then, G has a unique fixed point.

Proof. It follows by putting c = 0 in Theorem (8).

Example 10. Let W = ½0, 1� be equipped with a continuous t
-norm. LetMF : W ×W × ð0,∞Þ⟶ ½0, 1� be a fuzzy metric
defined by

MF w, x, tð Þ = t
t + d w, xð Þ , where d w, xð Þ = w − x

3
��� ���, ð26Þ

for all w, x ∈W and t > 0. Then, ðW,MF ,∗Þ is a complete
FM-space. Now, we define the mapping G : W ⟶W by

G wð Þ = 2w
3 + 4

15 , for allw ∈ 0, 1½ � and t > 0: ð27Þ

Then,

1
MF Gw,Gx, tð Þ − 1

= Gw − Gx
3t

����
���� = 2 w − xð Þ

9t

����
���� ≤ 2 w − xð Þ

9t

����
����

+ 1
15

2 5w + 5x − 8ð Þ
45t

����
���� = 2

3
w − x
3t

��� ���

+ 1
15

1
3t

5w − 4
15

� �����
���� + 1

3t
5x − 4
15

� �����
����

+ 1
3t

15x − 10w − 4
15

� �����
���� + 1

3t
15w − 10x − 4

15

� �����
����

0
BBBB@

1
CCCCA

= 2
3
w − x
3t

��� ��� + 1
15

� 1
3t w −

2w
3 −

4
15

� �����
����

+ 1
3t x −

2wx
3 −

4
15

� �����
���� + 1

3t x −
2w
3 −

4
15

� �����
����

+ 1
3t w −

2x
3 −

4
15

� �����
����
�
= 2
3

1
MF w, x, tð Þ − 1
� �

+ 1
15

� 1
MF w,Gw, tð Þ − 1 + 1

MF x,Gx, tð Þ − 1

+ 1
MF x,Gw, tð Þ − 1 + 1

MF w,Gx, tð Þ − 1
�
:

ð28Þ

Hence, all the conditions of Corollary 9 are satisfied with
a = 2/3 and b = 1/15. Hence, the self-mapping G has a unique
fixed point, that is, Gð4/5Þ = 4/5 ∈ ½0, 1�:

Corollary 11. Let ðW,MF ,∗Þ be a complete FM-space so that
the fuzzy metricMF is triangular. Let G : W ⟶W verify that

for all w, x ∈W, t > 0, a ∈ ð0, 1Þ, and c ∈ ½0, 1Þ with ða + 2cÞ
< 1. Then, G has a unique fixed point.

Proof. It follows by putting b = 0 in Theorem (8).

Example 12. Let W = ½0,∞Þ be endowed with a continuous t
-norm. LetMF : W ×W × ð0,∞Þ⟶ ½0, 1� be a fuzzy metric
defined by

MF w, x, tð Þ = t
t + d w, xð Þ where d w, xð Þ = w − xj j, ð30Þ

for all w, x ∈W and t > 0. Then, ðW,MF ,∗Þ is a complete
FM-space. Now, we define a mapping G : W ⟶W by

Gw =

3w
4 + 1

2 , if w ∈ 0, 1½ �,
w
2 + 7

2 , if w ∈ 1,∞ð Þ:

0
BB@ ð31Þ

We have

1
MF Gw,Gx, tð Þ − 1 ≤ a

1
MF w, x, tð Þ − 1
� �

+ c
1

min MF w,Gw, tð Þ,MF x,Gx, tð Þ,MF x,Gw, tð Þ,M w,Gx, tð Þf g − 1
� �

, ð29Þ

1
MF Gw,Gx, tð Þ − 1 = 3

4t w − xj j = 3
4t

1
MF w, x, tð Þ − 1
� �

≤
3
4

1
MF w, x, tð Þ − 1
� �

+ 1
9

1
min MF w,Gw, tð Þ,M x,Gx, tð Þ,MF x,Gw, tð Þ,MF w,Gx, tð Þf g − 1
� �

:

ð32Þ
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Hence, all the conditions of Corollary 11 are satisfied
with a = 3/4 and b = 1/9. Then, the self-mapping G has a
unique fixed point, that is, Gð7Þ = 7:

4. Ćirić-Type Fuzzy Contraction Results in FM-
Spaces

In this section, we define Ćirić-type fuzzy contraction map-
pings and we present a unique related fixed-point theorem
on a complete FM-space.

Definition 13. Let ðW,MF ,∗Þ be a complete FM-space. A
self-mapping G : W ⟶W is said to be a Ćirić contraction
if there is α ∈ ð0, 1Þ such that

1
MF Gw,Gx, tð Þ − 1

≤ α max

1
MF w,Gw, tð Þ − 1, 1

MF x,Gx, tð Þ − 1

1
MF x,Gw, tð Þ − 1, 1

MF w,Gx, tð Þ − 1

1
MF w, x, tð Þ − 1

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
,

ð33Þ

for all w, x ∈W and t > 0. Here, α is called the contractive
constant of T .

Theorem 14. Let a self-mapping G : W ⟶W be a Ćirić
contraction in a complete FM-space ðW,MF ,∗Þ so that MF
is triangular and (33) satisfies with 2α < 1. Then, G has a
unique fixed point.

Proof. Fix w0 ∈W. Take an iterative sequence fwig such that
wi+1 =Gwi for all i ≥ 0: Now, by using (33), we have

1
MF wi,wi+1, tð Þ − 1

= 1
MF Gwi−1,Gwi, tð Þ − 1

≤ α max

1
MF wi−1,Gwi−1, tð Þ − 1, 1

MF wi,Gwi, tð Þ − 1

1
MF wi−1,Gwi, tð Þ − 1, 1

MF wi,Gwi−1, tð Þ − 1

1
MF wi−1,wi, tð Þ − 1

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
:

ð34Þ

After simplification, for t > 0, we get

1
MF wi,wi+1, tð Þ − 1

≤ α max
� 1
MF wi−1,wi, tð Þ − 1, 1

MF wi,wi+1, tð Þ
− 1, 1

MF wi−1,wi+1, tð Þ − 1
�
:

ð35Þ

Now, there are three possibilities:

(i) If ð1/MFðwi−1,wi, tÞÞ − 1 is the maximum in fð1/
MFðwi−1,wi, tÞÞ − 1, ð1/MFðwi,wi+1, tÞÞ − 1, ð1/MFð
wi−1,wi+1, tÞÞ − 1g, then, from (35), we have

1
MF wi,wi+1, tð Þ − 1 ≤ α

1
MF wi−1,wi, tð Þ − 1
� �

, for t > 0

ð36Þ

(ii) If ð1/MFðwi,wi+1, tÞÞ − 1 is the maximum in fð1/
MFðwi−1,wi, tÞÞ − 1, ð1/MFðwi,wi+1, tÞÞ − 1, ð1/MF
ðwi−1,wi+1, tÞÞ − 1g, then, from (35), we have

1
MF wi,wi+1, tð Þ − 1 ≤ α

1
MF wi,wi+1, tð Þ − 1
� �

,

 for t > 0, which is not possible
ð37Þ

(iii) If ð1/MFðwi−1,wi+1, tÞÞ − 1 is the maximum in fð1/
MFðwi−1,wi, tÞÞ − 1, ð1/MFðwi,wi+1, tÞÞ − 1, ð1/MFð
wi−1,wi+1, tÞÞ − 1g, then, from (35), we have

1
MF wi,wi+1, tð Þ − 1

≤ α
1

MF wi−1,wi+1, tð Þ − 1
� �

≤
α

1 − α

1
MF wi−1,wi, tð Þ − 1
� �

, for t > 0

ð38Þ

Let δ≔max fα, a/ð1 − αÞg < 1. Using (36) and (38), we
have

1
MF wi,wi+1, tð Þ − 1 ≤ δ

1
MF wi−1,wi, tð Þ − 1
� �

, for t > 0:

ð39Þ
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Similarly,

1
MF wi−1,wi, tð Þ − 1 ≤ δ2

1
MF wi−2,wi−1, tð Þ − 1
� �

, for t > 0:

ð40Þ

Now, from (39) and (40) and by induction, for t > 0

1
MF wi,wi+1, tð Þ − 1

≤ δ
1

MF wi−1,wi, tð Þ − 1
� �

≤ δ2
1

MF wi−2,wi−1, tð Þ − 1
� �

≤⋯≤ δi
1

MF w0,w1, tð Þ − 1
� �

⟶ 0, as i⟶∞:

ð41Þ

This yields that

lim
i⟶∞

MF wi,wi+1, tð Þ = 1, for t > 0: ð42Þ

Since MF is triangular and k > i, we have

1
MF wi,wk, tð Þ − 1

≤
1

MF wi,wi+1, tð Þ − 1
� �

+ 1
MF wi+1,wi+2, tð Þ − 1
� �

+⋯

+ 1
MF wk−1,wk, tð Þ − 1
� �

≤ δi + δi+1+⋯+δk−1
� �

� 1
MF w0,w1, tð Þ − 1
� �

≤
δi

1 − δ

 !
1

MF w0,w1, tð Þ − 1
� �

⟶ 0, as i⟶∞:

ð43Þ

Hence, fwig is a Cauchy sequence. Since ðW,MF ,∗Þ is
complete, there is κ ∈W so that

lim
i⟶∞

MF κ,wi, tð Þ = 1, for t > 0: ð44Þ

Now, we have to show that Gκ = κ. Since MF is triangu-
lar, one writes

1
MF Gκ, κ, tð Þ − 1 ≤ 1

MF Gκ,wi+1, tð Þ − 1
� �

+ 1
MF wi+1, κ, tð Þ − 1
� �

, for t > 0:

ð45Þ

In view of (33), (42), and (44), we have for t > 0

1
MF wi+1,Gκ, tð Þ − 1

≤
1

MF Gwi,Gκ, tð Þ − 1

≤ α max

1
MF wi,Gwi, tð Þ − 1, 1

MF κ,Gκ, tð Þ − 1

1
MF wi,Gκ, tð Þ − 1, 1

M κ,Gwi, tð Þ − 1

1
MF wi, κ, tð Þ − 1

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

= α max

1
MF wi,wi+1, tð Þ − 1, 1

MF κ,Gκ, tð Þ − 1

1
MF wi,Gκ, tð Þ − 1, 1

MF κ,wi+1, tð Þ − 1

1
MF wi, κ, tð Þ − 1

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

⟶ α
1

MF κ,Gκ, tð Þ − 1
� �

, as i⟶∞:

ð46Þ

Hence,

lim
i⟶∞

sup 1
MF wi+1,Gκ, tð Þ − 1

≤ α
1

MF κ,Gκ, tð Þ − 1
� �

, for t > 0:
ð47Þ

This together with (45) and (44), we have

1
MF κ,Gκ, tð Þ − 1 ≤ α

1
MF κ,Gκ, tð Þ − 1
� �

, for t > 0: ð48Þ

Since α ∈ ð0, 1Þ, one gets MFðκ,Gκ, tÞ = 1. This implies
that Gκ = κ.

The uniqueness is as follows: let κ∗ ∈W be such that G
κ = κ∗. Using (33), we have

1
MF Gκ,Gκ∗, tð Þ − 1

≤ α max

1
MF κ,Gκ, tð Þ − 1, 1

MF κ∗,Gκ∗, tð Þ − 1

1
MF κ,Gκ∗, tð Þ − 1, 1

MF κ∗,Gκ, tð Þ − 1

1
MF κ, κ∗, tð Þ − 1

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
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= α
1

MF κ, κ∗, tð Þ − 1
� �

≤ α
1

MF Gκ,Gκ∗, tð Þ − 1
� �

≤ α2
1

MF κ, κ∗, tð Þ − 1
� �

≤⋯

≤ αi
1

MF κ, κ∗, tð Þ − 1
� �

⟶ 0, as i⟶∞:

ð49Þ

We get that MFðκ, κ∗, tÞ = 1 for t > 0. This implies that
κ = κ∗. Thus, G has a unique fixed point in W.

Example 15. Let W = ½0,∞Þ be endowed with a continuous t
-norm. Let a fuzzy metricMF : W ×W × ð0,∞Þ⟶ ½0, 1� be
defined by

MF w, x, tð Þ = t
t + d w, xð Þ , where d w, xð Þ = 2 w − xj j,

ð50Þ

for all w, x ∈W and t > 0. Then, ðW,MF ,∗Þ is a complete
FM-space. Now, we define a mapping G : W ⟶W as

Gw =

w
3 + 1

2 , if w ∈ 0, 1½ �,
7w
8 + 2

3 , if w ∈ 1,∞ð Þ:

8>><
>>: ð51Þ

We have

1
MF Gw,Gx, tð Þ − 1

= 2
t
w
3 −

x
3

��� ��� = 1
3

1
M w, x, tð Þ − 1
� �

≤
1
3 max

1
MF w,Gw, tð Þ − 1, 1

MF x,Gx, tð Þ − 1

1
MF x,Gw, tð Þ − 1, 1

MF w,Gx, tð Þ − 1

1
MF w, x, tð Þ − 1

0
BBBBBBBBB@

1
CCCCCCCCCA
,

ð52Þ

for t > 0. Hence, all the conditions of Theorem 14 are satis-
fied with α = 1/3 and G has a unique fixed point, that is, G
ð16/3Þ = 16/3:

5. Application

In this section, we present an integral-type equation. Let
W = Cð½0, ξ�,ℝÞ be the space of all real-valued continuous
functions on the interval ½0, ξ�, where 0 < ξ ∈ℝ. Now, we
present a particular case of a Fredholm integral equation

(FIE) of the second kind given as follows:

w τð Þ =
ðξ
0
K τ, v,w vð Þð Þdv, ð53Þ

where τ ∈ ½0, ξ� and K : ½0, ξ� × ½0, ξ� ×ℝ⟶ℝ. The induced
metric d : W ×W ⟶ℝ is defined by

d w, xð Þ = w − xk k, ∀w, x ∈W: ð54Þ

The binary operation ∗, being a continuous t-norm, is
defined by α ∗ β = αβ for all α, β ∈ ½0, ξ�. The standard fuzzy
metric MF : W ×W × ð0,∞Þ⟶ ½0, 1� can be expressed as

MF w, x, tð Þ = t
t + d w, xð Þ , ∀w, x ∈W, and t > 0: ð55Þ

Then easily, we can show that MF is triangular and ðW
,MF ,∗Þ is a complete FM − space.

Theorem 16. Assume that there is η ∈ ð0, 1Þ so that

Gw −Gxk k ≤ ηN G,w, xð Þ, ∀w, x ∈W, ð56Þ

where

N G,w, xð Þ

=max
w − xk k, Gw −wk k, Gx − xk k, Gw − xk k, Gx −wk k
Gw −wk k + Gx − xk k + Gw − xk k + Gx −wk k,

( )
:

ð57Þ

Then, the FIE (53) has a unique solution.

Proof. Give G : W ⟶W as

Gw τð Þ =
ðξ
0
K τ, v,w vð Þð Þdv: ð58Þ

Notice that G is well defined and (53) has a unique solu-
tion if and only if G has a unique fixed point in W. Now, we
have to show that Theorem 8 is applied to the integral oper-
ator G. Then, for all w, x ∈W, we have the following six
cases:

(1) If kw − xk is the maximum term in (57), then NðG
,w, xÞ = kw − xk. Therefore, in view of (55) and
(56), we have

1
MF Gw,Gx, tð Þ − 1 = d Gw,Gxð Þ

t
≤ η

N G,w, xð Þ
t

= η
w − xk k
t

= η
1

MF w, x, tð Þ − 1
� �

:

ð59Þ
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This implies that

1
MF Gw,Gx, tð Þ − 1 ≤ η

1
MF w, x, tð Þ − 1
� �

, for t > 0,

ð60Þ

for all w, x ∈W such that Gw ≠Gx. The inequality (60)
holds if Gw =Gx. Thus, the integral operator G satisfies all
the conditions of Theorem 8 with η = a and b = c = 0 in
(8). Then, the integral operator G has a unique fixed point,
i.e., (53) has a solution in W

(2) If kGw −wk is the maximum term in (57), then, N
ðG,w, xÞ = kGw −wk. Therefore, using (55) and
(56), we have

1
MF Gw,Gx, tð Þ − 1 = d Gw,Gxð Þ

t
≤ η

N G,w, xð Þ
t

= η
Gw −wk k

t
= η

1
MF Gw,w, tð Þ − 1
� �

:

ð61Þ

It yields that

1
MF Gw,Gx, tð Þ − 1 ≤ η

1
MF Gw,w, tð Þ − 1
� �

, for t > 0,

ð62Þ

for all w, x ∈W such that Gw ≠Gx

(3) If kGx − xk is the maximum term in (57), then Nð
G,w, xÞ = kGx − xk. Therefore, by (55) and (56), we
have

1
MF Gw,Gx, tð Þ − 1 = d Gw,Gxð Þ

t
≤ η

N G,w, xð Þ
t

= η
Gx − xk k

t
= η

1
M Gx, x, tð Þ − 1
� �

:

ð63Þ

That is,

1
MF Gw,Gx, tð Þ − 1 ≤ η

1
MF Gx, x, tð Þ − 1
� �

, for t > 0,

ð64Þ

for all w, x ∈W such that Gw ≠Gx

(4) If kGw − xk is the maximum term in (57), then,
NðG,w, xÞ = kGw − xk. Therefore, due to (55) and
(56), we have

1
MF Gw,Gx, tð Þ − 1 = d Gw,Gxð Þ

t
≤ η

N G,w, xð Þ
t

= η
Gw − xk k

t
= η

1
MF Gw, x, tð Þ − 1
� �

:

ð65Þ

Hence,

1
MF Gw,Gx, tð Þ − 1 ≤ η

1
MF Gw, x, tð Þ − 1
� �

, for t > 0,

ð66Þ

for all w, x ∈W such that Gw ≠Gx

(5) If ∥Gx −w∥ is the maximum term in (57), then, Nð
G,w, xÞ = kGx −wk. Using (55) and (56), we have

1
MF Gw,Gx, tð Þ − 1 = d Gw,Gxð Þ

t
≤ η

N G,w, xð Þ
t

= η
Gx −wk k

t
= η

1
MF Gx,w, tð Þ − 1
� �

:

ð67Þ

It implies that

1
MF Gw,Gx, tð Þ − 1 ≤ η

1
MF Gx,w, tð Þ − 1
� �

, for t > 0,

ð68Þ

for all w, x ∈W such that Gw ≠Gx
The inequalities (62), (64), (66), and (68) hold if Gw =

Gx. Thus, the integral operator G satisfies all the conditions
of Theorem 8 with η = c and a = b = 0 in (8). The integral
operator G has a unique fixed point, i.e., (53) has a solution
in W.

(6) If kGw −wk + kGx − xk + kGw − xk + kGx −wk is
the maximum term in (57), then, NðG,w, xÞ = kGw
−wk + kGx − xk + kGw − xk + kGx −wk. There-
fore, from (55) and (56), we have

1
MF Gw,Gx, tð Þ − 1

= d Gw,Gxð Þ
t

≤ η
N G,w, xð Þ

t

= η
Gw −wk k + Gx − xk k + Gw − xk k + Gx −wk k

t

= η

� 1
MF w,Gw, tð Þ − 1 + 1

MF x,Gx, tð Þ − 1

+ 1
M x,Gw, tð Þ − 1 + 1

MF w,Gx, tð Þ − 1
�
:

ð69Þ
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That is,

1
MF Gw,Gx, tð Þ − 1

≤ η

� 1
MF w,Gw, tð Þ − 1 + 1

MF x,Gx, tð Þ − 1

+ 1
MF x,Gw, tð Þ − 1 + 1

MF w,Gx, tð Þ − 1
�
, for t > 0,

ð70Þ

for all w, x ∈W such that Gw ≠Gx. The inequality (70)
holds if Gw =Gx. Thus, the integral operator G satisfies all
the conditions of Theorem 8 with η = b and a = c = 0 in
(8). The integral operator G has a unique fixed point, i.e.,
(53) has a solution in W.

Now, we present a special type of example for a particu-
lar case of an FIE of a second kind.

Example 17. TakeW = ½0, 1�. If we put ξ = 1 in (53), then, we
have the following integral equation:

w τð Þ =
ð1
0

2
5 τ + 1 +w vð Þð Þ dv, whereK τ, v,w vð Þð Þ

= 2
5 τ + 1 +w vð Þð Þ :

ð71Þ

Equation (71) is a special kind of the integral equation
(53), where τ ∈ ½0, 1�. Then,

K τ, v,w vð Þð Þ − K τ, v, x vð Þð Þk k
= 2

5 τ + 1 +w vð Þð Þ −
2

5 τ + 1 + x vð Þð Þ
				

				
= 2
5

w vð Þ − x vð Þ
τ + 1 +w vð Þð Þ τ + 1 + x vð Þð Þ

				
				

≤
2
5 w vð Þ − x vð Þk k = 2

5N G,w, xð Þ,

ð72Þ

where NðG,w, xÞ = kwðvÞ − xðvÞk. Now, we have to show
that kGwðτÞ −GxðτÞk ≤ ηNðG,w, xÞ. From equation (58),
we have

Gw τð Þ − Gx τð Þk k

=
ð1
0
K τ, v,w vð Þð Þdv −

ð1
0
K τ, v, x vð Þð Þdv

				
				

=
ð1
0
K τ, v,w vð Þð Þ − K τ, v, x vð Þð Þk kdv

≤
ð1
0

2
5 w vð Þ − x vð Þk kdv =

ð1
0

2
5N T ,w, xð Þdv

= 2
5N G,w, xð Þ

ð1
0
dv = 2

5N G,w, xð Þ:

ð73Þ

Hence, all conditions of Theorem 16 hold with η = 2/5
< 1. The integral equation (71) has a unique solution by
using Theorem 16.

6. Conclusion

In this paper, we proved variant unique fixed-point results
for some generalized contraction-type self-mappings in
complete FM-spaces, without continuity and by using the
“triangular property of the fuzzy metric” as a basic tool.
We presented illustrative examples. Moreover, we provided
an application about a particular case of Fredholm integral
equation of second kind. In this direction, researchers can
prove more fixed-point results in complete FM-spaces with-
out using continuity via different types of applications.
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This article is focused on the generalization of some fixed point theorems with Kannan-type contractions in the setting of new
extended b-metric spaces. An idea of asymptotic regularity has been incorporated to achieve the new results. As an application,
the existence of a solution of the Fredholm-type integral equation is presented.

1. Introduction and Preliminaries

The existence of fixed points for some operators has a note-
worthy contribution in many branches of applied and pure
mathematics. The theory of a fixed point provides very valu-
able and effective tools in mathematics. It has a wide range
of implications in nonlinear analysis and has been estab-
lished in two directions. One is to change the space under
consideration (see the works of Bakhtin [1], Jleli and Samet
[2], Karapinar [3], Kamran et al. [4], etc.), and the other is
to change the contraction conditions (see the works of Ćirić
[5], Popescu [6], Rakotch [7], etc.).

In 1922, the Polish mathematician Banach [8] estab-
lished a remarkable result relevant to a metric fixed point
theory, that is known as the Banach contraction principle
(BCP). The work of Banach is well regarded and an adapt-
able consequence in the theory of fixed points. BCP laid a
foundation of research in this field, which is further investi-
gated by many researchers from 1922 till now. One of the
prominent generalizations of the BCP was presented by
Kannan [9]. Additional works on the existence of (common)
fixed points can be seen in [10–14].

In 1989, Bakhtin [1] introduced the notion of b-metric
spaces. Later on, the concept of b-metric spaces was further
used by Czerwik [15] to establish different fixed point results
in b-metric spaces. The study of b-metric spaces endowed an
imperative place in the fixed point theory with multiple
aspects. Many mathematicians (Abdeljawad et al. [16, 17],
Ali et al. [18], Akkouchi [19], Chifu and Karapinar [20],
Kadelburg and Radenović [21], Parvaneh et al. [11], Gupta
et al. [12], Mlaiki et al. [22], etc.) led the foundation to
improve the fixed point theory in b-metric spaces. Another
innovative task has been achieved by Kamran et al. [4] in
2017 by introducing the notion of an extended b-metric
space, which generalizes the notion of a b-metric space.
Some fixed point results are proved in this new setting; see
for instance the work presented in [23–25].

The work of Kannan [9] refined the concept of the Banach
contraction mapping by introducing a new contraction, now
known as Kannan contraction. The Kannan fixed point result
has been further extended and generalized in the setup of b
-metric spaces [15] and for generalized metric spaces [26].

In 2019, the notion of a new extended b-metric space
has been initiated by Aydi et al. [27], where the control
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function depends on three variables. This fact is new since
all precedent control functions depend on two variables.
The objective of this work is at investigating Kannan-
type contractions in the context of new extended b- metric
spaces by extending the main results of Gornicki [28]. For
this purpose, some basic concepts are needed in the
sequel.

Definition 1 (see [15]). Let X be a nonempty set and s ≥ 1 be
a real number. A function db : X × X ⟶ℝ is called a b
-metric, if it satisfies the following for all j, κ, ℓ ∈ X:

(b1) dbðj, κÞ ≥ 0

(b2) dbðj, κÞ = 0, if and only if j = κ

(b3) dbðj, κÞ = dbðκ, jÞ
(b4) dbðj, κÞ ≤ s½dbðj, ℓÞ + dbðℓ, κÞ�

The pair ðX, dbÞ is called a b-metric space. If s = 1,
then, a b-metric space becomes a metric space. In 2017,
Kamran et al. [4] generalized the b-metric space setting
to an extended b-metric space (in the same direction, see
also [29, 30]).

Definition 2 (see [4]). Let X be a nonempty set and θ : X ×
X⟶ ½1,∞Þ be a function. The map dθ : X × X⟶ℝ is
called an extended b-metric if for all j, κ, ℓ ∈ X, it satisfies
the following axioms:

(i) dθðj, κÞ ≥ 0

(ii) dθðj, κÞ = 0, if and only if j = κ

(iii) dθðj, κÞ = dθðκ, jÞ
(iv) dθðj, ℓÞ ≤ θðj, ℓÞ½dθðj, κÞ + dθðκ, ℓÞ�

In 2019, Aydi et al. [27] introduced the notion of new
extended b-metric spaces. Here, the control function
depends on 3 variables.

Definition 3 (see [27]). Let X be a nonempty set and θ : X
× X × X ⟶ ½1,∞Þ be a function. The map dθ : X × X ⟶
ℝ is called a new extended b-metric if for all j, κ, ℓ ∈ X, it
satisfies the following axioms:

(i) dθðj, κÞ ≥ 0

(ii) dθðj, κÞ = 0, if and only if j = κ

(iii) dθðj, κÞ = dθðκ, jÞ
(iv) dθðj, ℓÞ ≤ θðj, κ, ℓÞ½dθðj, κÞ + dθðκ, ℓÞ�

The pair ðX, dθÞ is named to be a new extended b-metric
space. If θðj, κ, ℓÞ = s (for s ≥ 1), we get Definition 1.

Example 4 (see [27]). Let X =ℕ. Define dθ : X × X⟶ℝ by

dθ j, κð Þ =

0, ⟺j = κ,
1
j
, if j is even and κ is odd,

1
κ
, if j is odd and κ is even,

1, otherwise,

8>>>>>>>><
>>>>>>>>:

ð1Þ

where

θ j, κ, ℓð Þ =

1, if j = ℓ and κ is even or odd,
jℓ
j + ℓ

, if j ≠ ℓ, j and ℓ are even and κ odd,

κ

2
, if j ≠ ℓ, j and ℓ are odd and κ even,

3
2
, if j ≠ ℓ, j, ℓ and κ are all even or all odd,

j + κ 1 + jð Þ
j 1 + κð Þ , if j ≠ ℓ, j is even, ℓ is odd and κ is even,

ℓ + κ ℓ + 1ð Þ
ℓ κ + 1ð Þ , if j ≠ ℓ, j is odd, ℓ is even and κ is even,

2 + ℓ
1 + ℓ

, if j ≠ ℓ, j is odd, ℓ is even and κ is odd,

j + 1
j

, if j ≠ ℓ, j is even, ℓ is odd and κ is odd:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð2Þ

Here, ðX, dθÞ is a new extended b-metric space.

On the other hand, by taking j = 2p + 1, ℓ = 4p + 1, and
κ = 2p, we have

dθ j, ℓð Þ
dθ j, κð Þ + dθ κ, ℓð Þ =

dθ 2p + 1, 4p + 1ð Þ
dθ 2p + 1, 2pð Þ + dθ 2p, 4p + 1ð Þ = p:

ð3Þ

It is not possible to find s ≥ 1 so that ðb4Þ holds. Thus, dθ
is not a b-metric on X.

Example 5. Consider X = f1, 2, 3g. Take dθ : X × X⟶ ½0,
∞Þ as

dθ j, κð Þ = j − κð Þ2, ð4Þ

where θ : X × X × X ⟶ ½1,∞Þ as θðj, κ, ℓÞ = j + κ + 2ℓ:
Then, ðX, dθÞ is a new extended b-metric space.
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Proof. The first three conditions are trivially verified. To
check the triangular inequality, we proceed as follows:

dθ 1, 2ð Þ ≤ θ 1, 3, 2ð Þ dθ 1, 3ð Þ + dθ 3, 2ð Þ½ � ≤ 1 + 3 + 4ð Þ 4 + 1½ �,
ð5Þ

so 1 < 40. Similarly, we can check the other two pairs.
Therefore, for all j, κ, ℓ in X, dθðj, ℓÞ ≤ θðj, κ, ℓÞ½dθðj, κÞ

+ dθðκ, ℓÞ�:

Definition 6. Let ðX, dθÞ be a new extended b -metric space.

(i) A sequence fang ⊂ X is called convergent to a ∈ X
if for ε > 0, there is NðεÞ ∈ℕ such that limn⟶∞
dθðan, aÞ < ε for all n ≥NðεÞ

(ii) A sequence fang ⊂ X is called Cauchy if for ε > 0,
there is NðεÞ ∈ℕ such that limn⟶∞dθðan, amÞ < ε
for all n,m ≥NðεÞ

(iii) The space is called complete if every Cauchy
sequence in X is convergent in X

Definition 7. Let ðX, dθÞ be a new extended b -metric space.
Denote by Bða, rÞ = fb ∈ X : dθðb, aÞ < rg and B½a, r� = fb
∈ X : dθðb, aÞ ≤ rg the open and closed balls in X,
respectively.

(i) A subset U of X is called open if for any u ∈U , there
exists an ε > 0 such that Bðu, εÞ ⊂U

(ii) A subset V of X is called closed if for any fvng ⊂ V
such that limn⟶∞vn = v, then v ∈ X

In this paper, we are going to prove some Kannan-type
fixed point theorems in the setting of new extended b-met-
ric spaces. Some examples are also provided to make effec-
tive the obtained results.

2. Main Results

We define a Kannan-type fixed point contraction on new
extended b-metric spaces.

Definition 8. Let ðX, dθÞ be a new extended b-metric space. A
mapping T : X⟶ X is a Kannan-type contraction if there
are K ∈ ½0, 1/2Þ and 0 ≤ L < 1 such that

dθ T að Þ, T bð Þð Þ ≤ K dθ a, T að Þð Þ + dθ b, T bð Þð Þ½ �
+ Ldθ b, T að Þð Þ, for all a, b ∈ X:

ð6Þ

Our first main result is as follows:

Theorem 9. Consider a complete new extended b-metric
space ðX, dθÞ such that dθ is a continuous functional. Let
T : X ⟶ X be a mapping such that there are ξ ∈ ð0, 1/2Þ
and L ∈ ½0, 1Þ so that

dθ T að Þ, T bð Þð Þ ≤ ξ dθ a, T að Þð Þ + dθ b, T bð Þð Þ½ �
+ Ld b, T að Þð Þ, ∀a, b ∈ X:

ð7Þ

Assume that

sup
m≥1

lim
n⟶∞

θ an, an+1, amð Þ < 1 − ξ

ξ
, ð8Þ

for each a0 ∈ X, such that an = Tnða0Þ, n = 1, 2,⋯:
Then, T has only one fixed point v ∈ X. Further, for any

a ∈ X, the iterative sequence fTnðaÞg converges to v, and

dθ T anð Þ, vð Þ ≤ ξ

1 − L
ξ

1 − ξ

� �n

dθ T a0ð Þ, a0ð Þ, n = 0, 1, 2,⋯:

ð9Þ

Proof. For an arbitrary point a0 ∈ X, construct the iterative
sequence

an+1 = T anð Þ = Tn+1 a0ð Þ: ð10Þ

If for some n, an = an+1, so an is a fixed point of T .
Otherwise, assume that an ≠ an+1 for all n ≥ 0. Since

dθ an, an+1ð Þ = dθ T an−1ð Þ, T anð Þð Þ, ð11Þ

one writes

dθ T an−1ð Þ, T anð Þð Þ ≤ ξ dθ an−1, T an−1ð Þð Þ + dθ an, T anð Þð Þ½ �
+ Ldθ an, Tan−1ð Þ:

ð12Þ

Then,

dθ an, an+1ð Þ ≤ ξ dθ an−1, anð Þ + dθ an, an+1ð Þ½ � + Ldθ an, anð Þ:
ð13Þ

That is,

dθ an, an+1ð Þ ≤ ξ

1 − ξ

� �
dθ an−1, anð Þ: ð14Þ

Continuing in this way, we have

dθ an, an+1ð Þ ≤ ξ

1 − ξ

� �n

dθ a0, a1ð Þ, ð15Þ

dθ T an−1ð Þ, T anð Þð Þ ≤ ξ

1 − ξ

� �n

dθ a0, T a0ð Þð Þ: ð16Þ

Let m, n ∈ℕ be such that m > n. Applying triangular
inequality, we get
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dθ an, amð Þ ≤ θ an, an+1, amð Þ dθ an, an+1ð Þ + dθ an+1, amð Þ½ �
= θ an, an+1, amð Þdθ an, an+1ð Þ + θ an, an+1, amð Þdθ an+1, amð Þ
≤ θ an, an+1, amð Þdθ an, an+1ð Þ + θ an, an+1, amð Þθ
� an+1, an+2, amð Þ dθ an+1, an+2ð Þ + dθ an+2, amð Þ½ �

≤ θ an, an+1, amð Þdθ an, an+1ð Þ + θ an, an+1, amð Þθ
� an+1, an+2, amð Þdθ an+1, an+2ð Þ+⋯+θ an, an+1, amð Þθ
� an+1, an+2, amð Þθ an+2, an+3, amð Þ⋯ θ

� am−2, am−1, amð Þdθ am−1, amð Þ:
ð17Þ

Since

dθ an, an+1ð Þ ≤ ξ

1 − ξ

� �n

dθ a0, a1ð Þ n = 0, 1, 2,⋯, ð18Þ

one writes

dθ an, amð Þ ≤ θ an, an+1, amð Þ ξ

1 − ξ

� �n

dθ a0, a1ð Þ + θ

� an, an+1, amð Þθ an+1, an+2, amð Þ ξ

1 − ξ

� �n+1
dθ

� a0, a1ð Þ+⋯+θ an, an+1, amð Þθ an+1, an+2, amð Þθ

� an+2, an+3, amð Þ⋯ θ am−2, am−1, amð Þ ξ

1 − ξ

� �m−1
dθ a0, a1ð Þ

≤

(
θ a1, a2, amð Þθ a2, a3, amð Þ⋯ θ an−1, an, amð Þθ

� an, an+1, amð Þ ξ

1 − ξ

� �n

+ θ a1, a2, amð Þθ a2, a3, amð Þ⋯ θ

� an, an+1, amð Þθ an+1, an+2, amð Þ ξ

1 − ξ

� �n+1
+⋯+θ

� a1, a2, amð Þθ a2, a3, amð Þ⋯ θ an, an+1, amð Þθ
� an+1, an+2, amð Þ⋯ θ am−3, am−2, amð Þθ am−2, am−1, amð Þ

� ξ

1 − ξ

� �m−1
)
dθ a0, a1ð Þ:

ð19Þ

Since

sup
m≥1

lim
n,m⟶∞

θ an, an+1, amð Þ ξ

1 − ξ

� �
< 1, ð20Þ

in view of (8), the series ∑∞
n=1ðξ/ð1 − ξÞÞnQn

i=1θðai, ai+1, amÞ
is convergent for each m ∈ℕ by ratio test.

Let S =∑∞
n=1ðξ/ð1 − ξÞÞnQn

i=1θðai, ai+1, amÞ and

Sn = 〠
n

j=1

ξ

1 − ξ

� �j Yj

i=1
θ ai, ai+1, amð Þ: ð21Þ

So, for m > n, the above inequality implies that

dθ an, amð Þ ≤ dθ a0, a1ð Þ Sm−1 − Sn−1ð Þ: ð22Þ

That is,

lim
n⟶∞

dθ an, amð Þ = 0: ð23Þ

Hence, the sequence fang is a Cauchy sequence. By the
completeness of X, there is v ∈ X such that limn⟶∞an = v:

We claim that v is a fixed point of T . We have

dθ T anð Þ, T vð Þð Þ ≤ ξ dθ an, T anð Þð Þð + dθ v, T vð Þð Þ + Ldθ v, T anð Þð Þ:
ð24Þ

That is,

dθ an+1, T vð Þð Þ ≤ ξ dθ an, an+1ð Þ + dθ v, T vð Þð Þð Þ + Ldθ v, an+1ð Þ:
ð25Þ

As n⟶∞, we have in view of the assumption that dθ is
continuous,

dθ v, T vð Þð Þ ≤ ξdθ v, Tvð Þ, ð26Þ

which holds unless dθðv, TðvÞÞ = 0, and so, TðvÞ = v:
The uniqueness is as follows:
Let τ be another fixed point of T . We have

0 ≤ dθ v, τð Þ = dθ T vð Þ, T τð Þð Þ ≤ ξ dθ v, T vð Þð Þ + dθ τ, T τð Þð Þ½ �
+ Ldθ τ, T vð Þð Þ:

ð27Þ

That is,

dθ v, τð Þ ≤ Ldθ v, τð Þ: ð28Þ

It is only possible if dθðv, τÞ = 0: Thus, v ∈ X is the
unique fixed point of T . Further, we have

dθ T an−1ð Þ, T anð Þð Þ ≤ ξ dθ T an−2ð Þ, T an−1ð Þð Þ + dθ T an−1ð Þ, T anð Þð Þ½ �
+ Ldθ an, anð Þ:

ð29Þ

Then,

dθ T an−1ð Þ, T anð Þð Þ ≤ ξ

1 − ξ

� �
dθ T an−2ð Þ, T an−1ð Þð Þ: ð30Þ

Also,

dθ T anð Þ, vð Þ ≤ ξ dθ T an−1ð Þ, T anð Þð Þ + dθ v, T vð Þð Þ½ � + Ldθ v, T anð Þð Þ
≤ ξdθ T an−1ð Þ, T anð Þð Þ + Ldθ v, T anð Þð Þ:

ð31Þ
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Using (15),

dθ T anð Þ, vð Þ ≤ ξ
ξ

1 − ξ

� �n

dθ T a0ð Þ, a0ð Þ + Ldθ v, T anð Þð Þ:

ð32Þ

That is,

dθ T anð Þ, vð Þ ≤ ξ

1 − L
ξ

1 − ξ

� �n

dθ T a0ð Þ, a0ð Þ, n = 0, 1, 2,⋯:

ð33Þ

The following examples illustrate Theorem 9. We deal
with noncompact sets.

Example 10. Let X = ℓ∞ be the space of all bounded
sequences of real numbers, that is,

ℓ∞ = η = ηnf g: ηnj j ≤ Cη,∀n ∈ℕ
� �

, ð34Þ

where Cη ∈ℝ may depend on the sequence η but does not
depend on n: Take that

dθ η, ζð Þ = sup
n∈ℕ

ηn − ζnj j2,

η = ηnf g,
ζ = ζnf g,

ð35Þ

are in X.
Then, X is a complete new extended b-metric space with

θ : X × X × X⟶ ½1,∞Þ being defined by

θ η, ζ, φð Þ = sup
n∈ℕ

ηn + ζn + φnj j
ηn + ζn + φnj j + 1

+ 3: ð36Þ

Consider T : X⟶ X given as TðηÞ = fðηn − 1Þ/5g, ∀n
= 1, 2, 3,⋯. For each η, ζ ∈ X, we have

dθ Tη, Tζð Þ = sup
n∈ℕ

ηn − 1
5

−
ζn − 1
5

����
����
2
= sup

n∈ℕ

ηn
5

−
ζn
5

����
����
2

≤ sup
n∈ℕ

2
ηn
5

��� ���2 + sup
n∈ℕ

2
ζn
5

����
����
2
=
1
8
sup
n∈ℕ

16
ηn
5

��� ���2

+
1
8
sup
n∈ℕ

16
ζn
5

����
����
2
=
1
8
sup
n∈ℕ

4ηn
5

����
����
2
+
1
8
sup
n∈ℕ

4ζn
5

����
����
2

≤
1
8
sup
n∈ℕ

4ηn + 1
5

����
����
2
+
1
8
sup
n∈ℕ

4ζn + 1
5

����
����
2

=
1
8
dθ η, Tηð Þ + dθ ζ, Tζð Þ½ �:

ð37Þ

Thus, (7) holds with ξ = 1/8 and L ∈ ½0, 1Þ. Also, ð1 − ξÞ
/ξ = 7 and θðη, ζ, φÞ < 7 for all η, ζ, φ ∈ X. Hence, (8) holds,
and by Theorem 9, T has a fixed point.

Example 11. Let X = C½a, b� be the set of all real-valued con-
tinuous functions defined on ½a, b�: Define

dθ x, yð Þ = sup
t∈ a,b½ �

x tð Þ − y tð Þj j2, ∀x, y ∈ C a, b½ �, ð38Þ

and θ : X × X × X⟶ ½1,∞Þ as

θ x, y, zð Þ = supt∈ a,b½ �
x tð Þj j + y tð Þj j + z tð Þj j

x tð Þj j + y tð Þj j + z tð Þj j + 1
+ 2: ð39Þ

Then, X is a complete new extended b-metric space, con-
sider a mapping T : X⟶ X given as

T η tð Þð Þ = η tð Þ − 1
7

, ∀η ∈ C a, b½ �: ð40Þ

For all η, ζ ∈ X, we have

dθ Tη, Tζð Þ = sup
t∈ a,b½ �

η tð Þ − 1
7

−
ζ tð Þ − 1

7

����
����
2
= sup

t∈ a,b½ �

η tð Þ
7

−
ζ tð Þ
7

����
����
2

≤ sup
t∈ a,b½ �

2
η tð Þ
7

����
����
2
+ sup

t∈ a,b½ �
2
ζ tð Þ
7

����
����
2
=

1
18

sup
t∈ a,b½ �

36
η tð Þ
7

����
����
2

+
1
18

sup
t∈ a,b½ �

36
ζ tð Þ
7

����
����
2
=

1
18

sup
t∈ a,b½ �

6η tð Þ
7

����
����
2
+

1
18

sup
n∈ℕ

6ζ tð Þ
7

����
����
2

≤
1
18

sup
t∈ a,b½ �

6η tð Þ + 1
5

����
����
2
+

1
18

sup
t∈ a,b½ �

6ζ tð Þ + 1
5

����
����
2

<
1
6
dθ η, Tηð Þ + dθ ζ, Tζð Þ½ �:

ð41Þ

Thus, (7) holds with ξ = 1/6 and L ∈ ½0, 1Þ. Also, ð1 − ξÞ
/ξ = 5 and θðη, ζ, φÞ < 5 for all η, ζ, φ ∈ X. That is, (8) holds.
Since all the conditions of Theorem 9 are satisfied, T has a
fixed point.

Example 12. Choose X = f1/4, 1/16,⋯,1/4n,⋯g ∪ f0, 1g:
Define θ : X × X × X⟶ ½1,∞Þ and dθ : X × X ⟶ ½0,∞Þ
by

θ x, y, zð Þ = x + y + z + 2, dθ x, yð Þ = x − yð Þ2: ð42Þ

Let T : X⟶ X be given as

Tu =
1

4n+1
, if u =

1
4n

, n = 0, 1, 2, 3,⋯,

u, if u = 0:

8<
: ð43Þ

Then, for all x, y ∈ X with neither x = 0 nor y = 0, we
have
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dθ Tx, Tyð Þ = 1
4n+1

−
1

4m+1

����
����
2
≤ 2

1
4n+1

����
����
2
+ 2

1
4m+1

����
����
2

=
2
9

3
4n+1

����
����
2
+
2
9

3
4m+1

����
����
2
=
2
9
dθ x, Txð Þ + dθ y, Tyð Þ½ �:

ð44Þ

If x = 0 and y ≠ 0, then

dθ Tx, Tyð Þ = 0 − 1
4m+1

����
����
2
= 1

4m+1

����
����
2
= 2
9

3
4m+1

����
����
2

=
2
9
dθ x, Txð Þ + dθ y, Tyð Þ½ �:

ð45Þ

Thus, (7) is satisfied for ξ = 2/9 and for each L ∈ ½0, 1Þ:
Also, ð1 − ξÞ/ξ = 7/2. If a0 = 0, then, for the iterative
sequence an = Tna0 = 0 for each n ∈ℕ, we have limn,m⟶∞
θðan, an+1, amÞ = limn,m⟶∞an + an+1 + am + 2 < 7/2. If a0 ≠
0 (say a0 = 1/4k for some k ∈ f0, 1, 2,⋯g); then, for the iter-
ative sequence an = Tna0 = 1/4k+n for each n ∈ℕ, we have
limn,m⟶∞θðan, an+1, amÞ = limn,m⟶∞an + an+1 + am + 2 < 7
/2. Hence, Theorem 9 ensures the existence of a fixed point
of T .

Remark 13. In the following, we ensure the completeness of
the spaces given in precedent examples.

(a) Completeness of ℓ∞

Let X = ℓ∞ and let fxmg = fξðmÞ
1 , ξðmÞ

2 , ξðmÞ
3 ,⋯g be a Cau-

chy sequence in X: Define a metric on X as dθðx, yÞ = supj

jξj − ηjj2, where x = ðξjÞ and y = ðηjÞ: Since fxmg is a Cauchy
sequence, for ε > 0, there is N ∈ℕ such that for all m, n ≥N ,

dθ xn, xmð Þ = sup
j

ξ
mð Þ
j − ξ

nð Þ
j

��� ���2 < ε∀m, n ≥N

⟹ ξ
mð Þ
j − ξ

nð Þ
j

��� ���2 < ε, ∀j andm, n ≥N:

ð46Þ

That is,

ξ
mð Þ
j − ξ

nð Þ
j

��� ��� < ε1, ∀j andm, n ≥N , ð47Þ

where ε1 =
ffiffi
ε

p
is arbitrary. Hence, for every fixed j,

ðξð1Þj , ξð2Þj ,⋯Þ is a Cauchy sequence of complex numbers

and it converges, so ξðmÞ
j ⟶ ξj as m⟶∞: Construct a

sequence x = ðξ1, ξ2,⋯Þ by using these infinitely many limits
to show that x ∈ ℓ∞ and xm ⟶ x: From (48) with n⟶∞,
we have

ξ
mð Þ
j − ξj

��� ��� < ε1, m ≥N: ð48Þ

Since xm = ξðmÞ
j ∈ ℓ∞, there is a real number cm so that

jξðmÞ
j j ≤ cm, ∀j. Hence,

ξj
�� ��2 = ξj − ξ

mð Þ
j + ξ

mð Þ
j

��� ���2 ≤ ξj − ξ
mð Þ
j

��� ��� + ξ
mð Þ
j

��� ���� 	2

≤ 2 ξj − ξ
mð Þ
j

��� ���2 + ξ
mð Þ
j

��� ���2� �
:

ð49Þ

That is,

ξj
�� �� ≤ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ε + 2 cmð Þ2
q

: ð50Þ

So, (51) holds for each j. It implies that fξjg is a bounded
sequence of complex numbers. This leads to fξjg ∈ ℓ∞: Also,
from (48), we have

dθ xm, xð Þ = sup
j

ξ
mð Þ
j − ξj

��� ���2 ≤ ε, m >N: ð51Þ

This implies that xm ⟶ x ∈ ℓ∞ (ℓ∞ is endowed with the
new extended metric dθ).

(b) Completeness of C½a, b�
Let X be the function space C½a, b�, where ½a, b� is any

closed interval in ℝ: Define

dθ x, yð Þ = sup
t∈ a,b½ �

x tð Þ − y tð Þj j2, ∀x, y ∈ C a, b½ �: ð52Þ

Let fxmg be a Cauchy sequence in C½a, b�. Then, for each
ε > 0, there exists an N ∈ℕ such that

dθ xm, xnð Þ = sup
t∈ a,b½ �

xm tð Þ − xn tð Þj j2 < ε, ∀m, n ≥N: ð53Þ

Hence, for each fixed t0 ∈ ½a, b�, we have

xm t0ð Þ − xn t0ð Þj j2 < ε, ∀m, n ≥N: ð54Þ

That is,

xm t0ð Þ − xn t0ð Þj j < ffiffi
ε

p
= ε1,  sayð Þ∀m, n ≥N: ð55Þ

This shows that ðx1ðt0Þ, x2ðt0Þ,⋯Þ is a Cauchy sequence
of real numbers; hence, it converges. That is, xmðt0Þ⟶ x
ðt0Þ as m⟶∞: In this way, we can associate to each
t ∈ ½a, b� a unique real number xðtÞ: This defines a function
x (pointwise) in ½a, b�: Further, we need to show that
xm ⟶ x ∈ C½a, b�: From (53), we have as n⟶∞

sup
t∈ a,b½ �

xm tð Þ − x tð Þj j2 < ε, m ≥N: ð56Þ

Hence, for each t ∈ ½a, b� and m >N , we have

xm tð Þ − x tð Þj j2 < ε, ð57Þ

which implies that jxmðtÞ − xðtÞj < ε1. Thus, fxmðtÞg con-
verges uniformly to xðtÞ on the interval ½a, b�: Since t⟶
xmðtÞ is continuous and the convergence is uniform; hence,
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xðtÞ is continuous. This leads to the completeness of C½a, b�
with the new extended metric dθ:

Theorem 14. Let ðX, dθÞ be a complete new extended b
-metric space where dθ is a continuous functional and M is
a nonempty closed subset of X. Let T : M⟶M satisfy

dθ T að Þ, T bð Þð Þ ≤ ξ dθ a, T að Þð Þ + dθ b, T bð Þð Þ½ �
+ Ldθ b, T að Þð Þ, ∀a, b ∈M and L, ξ ∈ 0, 1½ Þ:

ð58Þ

Assume that there exist α, β ∈ℝ with 0 < α < 1 and β > 0
such that for an arbitrary a ∈M, there is μ∗ ∈M verifying

dθ μ∗, T μ∗ð Þð Þ ≤ αdθ a, T að Þð Þ, dθ μ∗, að Þ ≤ βdθ a, T að Þð Þ:
ð59Þ

Also, for an arbitrary a0 ∈M, assume that the sequence
fan = Tnða0Þg verifies

sup
m≥1

lim
n⟶∞

θ an, an+1, amð Þ < 1
α
: ð60Þ

Then, T has only one fixed point.

Proof. Let a0 be an arbitrary element of M: Consider the
sequence fan = Tnða0Þg in M. We have

dθ T an+1ð Þ, an+1ð Þ ≤ αdθ T anð Þ, anð Þ, dθ an+1, anð Þ
≤ βdθ T anð Þ, anð Þ, n = 0, 1, 2,⋯:

ð61Þ

Since

dθ an+1, anð Þ = dθ T anð Þ, anð Þ ≤ βdθ T anð Þ, anð Þ, n = 0, 1, 2,⋯,

βdθ T anð Þ, anð Þ ≤ βαdθ T an−1ð Þ, an−1ð Þ ≤ βα2dθ T an−2ð Þ, an−2ð Þ
≤⋯≤ βαndθ T a0ð Þ, a0ð Þ,

ð62Þ

we have

dθ an+1, anð Þ ≤ βαndθ T a0ð Þ, a0ð Þ: ð63Þ

Let m, n ∈ℕ such that m > n. Applying triangular
inequality, we get

dθ an, amð Þ ≤ θ an, an+1, amð Þ dθ an, an+1ð Þ + dθ an+1, amð Þ½ �
= θ an, an+1, amð Þdθ an, an+1ð Þ + θ an, an+1, amð Þdθ
� an+1, amð Þ ≤ θ an, an+1, amð Þdθ an, an+1ð Þ + θ

� an, an+1, amð Þθ an+1, an+2, amð Þ dθ an+1, an+2ð Þ + dθ an+2, amð Þð Þ
≤ θ an, an+1, amð Þdθ an, an+1ð Þ + θ an, an+1, amð Þθ an+1, an+2, amð Þdθ
� an+1, an+2ð Þ+⋯+θ an, an+1, amð Þθ an+1, an+2, amð Þθ
� an+2, an+3, amð Þ⋯ θ am−2, am−1, amð Þdθ am−1, amð Þ:

ð64Þ

Using (63), we get

dθ an, amð Þ ≤ θ an, an+1, amð Þβαndθ T a0ð Þ, a0ð Þ + θ an, an+1, amð Þθ
� an+1, an+2, amð Þβαn+1dθ T a0ð Þ, a0ð Þ+⋯+θ
� an, an+1, amð Þθ an+1, an+2, amð Þθ an+2, an+3, amð Þ⋯ θ

� am−2, am−1, amð Þβαm−1dθ T a0ð Þ, a0ð Þ
≤ θ a1, a2, amð Þθ a2, a3, amð Þ⋯ θ an−1, an, amð Þθ½
� an, an+1amð Þαn + θ a1, a2, amð Þθ a2, a3, amð Þ⋯ θ

� an, an+1, amð Þθ an+1, an+2, amð Þαn+1+⋯+θ a1, a2, amð Þθ
� a2, a3, amð Þ⋯ θ an, an+1, amð Þθ an+1, an+2amð Þ⋯ θ

� am−2, am−1, amð Þαm−1
βdθ T a0ð Þ, a0ð Þ:
ð65Þ

Since supm≥1limn,m⟶∞θðan, an+1, amÞα < 1, the series
∑∞

n=1α
nQn

i=1θðai, ai+1, amÞ is convergent for each m ∈ℕ by
ratio test.

Let

S = 〠
∞

n=1
αn

Yn
i=1

θ ai, ai+1, amð Þ,

Sn = 〠
n

j=1
αj
Yj

i=1
θ ai, ai+1, amð Þ:

ð66Þ

So, for m > n, the above inequality implies that

dθ an, amð Þ ≤ dθ a0, a1ð Þ Sm−1 − Sn−1ð Þ: ð67Þ

Letting n⟶∞, the sequence fang is a Cauchy
sequence. By the completeness ofM, there is v ∈M such that
limn⟶∞an = v:

We will prove that v is a fixed point of T . By using (58),
we get

dθ T anð Þ, T vð Þð Þ ≤ ξ dθ an, T anð Þð Þ + dθ v, Tvð Þð Þ + Ldθ v, T anð Þð Þ
⟹ dθ an+1, T vð Þð Þ ≤ ξ dθ an, an+1ð Þ + dθ v, Tvð Þð Þ

+ Ldθ v, an+1ð Þ:
ð68Þ

As n⟶∞, we have

dθ v, T vð Þð Þ ≤ ξdθ v, T vð Þð Þ: ð69Þ

Hence, TðvÞ = v.
The uniqueness is as follows:
Assume on contrary that there is τð≠ vÞ ∈M so that

TðτÞ = τ; then,

0 < dθ v, τð Þ = dθ T vð Þ, T τð Þð Þ ≤ ξ dθ v, T vð Þð Þ + dθ τ, T τð Þð Þ½ �
+ Ldθ τ, T vð Þð Þ = Ldθ τ, vð Þ:

ð70Þ

That is, dθðv, τÞ < Ldθðv, τÞ, which is a contradiction.
Thus, v ∈ X is the unique fixed point of T .
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Remark 15. To prove Theorem 9 in new extended b-metric
spaces, by using the following conditions:

dθ μ∗, T μ∗ð Þð Þ ≤ αdθ a, T að Þð Þ,
dθ μ∗, að Þ ≤ βdθ a, T að Þð Þ,

ð71Þ

we proceed as follows:
For any a ∈ X, take μ∗ = TðaÞ. Then,

dθ μ∗, T μ∗ð Þð Þ = dθ T að Þ, T μ∗ð Þð Þ ≤ ξ dθ a, T að Þð Þ + dθ μ∗, T μ∗ð Þð Þ½ �
+ Ldθ μ∗, T að Þð Þ 1 − ξð Þdθ μ∗, T μ∗ð Þð Þ

≤ ξdθ a, T að Þð Þdθ μ∗, T μ∗ð Þð Þ ≤ ξ

1 − ξ

� �
dθ a, T að Þð Þ,

ð72Þ

where by assumption ðξ/1 − ξÞ < 1 and dθðμ∗, aÞ = dθðT
ðaÞ, aÞ. Now, for arbitrary a0 ∈ X, we can inductively define
a sequence fan+1 = TðanÞg. By Theorem 14, this sequence
is convergent. So, limn⟶∞an = v: Thus, TðvÞ = v.

Also, for each a ∈ X,

dθ T an−1ð Þ, T anð Þð Þ ≤ ξ dθ T an−2ð Þ, T an−1ð Þð Þ + dθ T an−1ð Þ, T anð Þð Þ½ �
+ Ldθ an, T an−1ð Þð Þ⟹ dθ T an−1ð Þ, T anð Þð Þ

≤
ξ

1 − ξ

� �
dθ T an−2ð Þ, T an−1ð Þð Þ,

dθ T anð Þ, vð Þ ≤ ξ dθ T an−1ð Þ, T anð Þð Þ + dθ v, T vð Þð Þ½ � + Ldθ v, T anð Þð Þ
≤ ξdθ T an−1ð Þ, T anð Þð Þ + Ldθ v, T anð Þð Þ⟹ dθ T anð Þ, vð Þ

≤
ξ

1 − L
ξ

1 − ξ

� �n

dθ T að Þ, að Þ, n = 0, 1, 2,⋯:

ð73Þ

Theorem 16. Let ðX, dθÞ be a complete new extended b
-metric space such that dθ is a continuous functional. Let
T : X ⟶ X satisfy

dθ T að Þ, T bð Þð Þ ≤ αdθ a, T að Þð Þ + βdθ b, T bð Þð Þ + γdθ a, bð Þ
+ Ldθ a, T bð Þð Þ, ∀a, b ∈ X,

ð74Þ

where α, β, γ, L are nonnegative real numbers such that
α + β + γ + L < 1 and β + γ > 0. Assume that for an arbitrary
a0 ∈M, we have

sup
m≥1

lim
n⟶∞

θ an, an+1, amð Þ < 1
p
, ð75Þ

where p = ððβ + γÞ/ð1 − αÞÞ and an = Tnða0Þ.
Then, T has only one fixed point.

Proof. For an arbitrary a0 ∈ X, take the sequence fTnða0Þg.
Substituting a = Tn−1ða0Þ = Tðan−1Þ = an and b = Tn−2ða0Þ =
Tðan−2Þ = an−1 in (74), we obtain

dθ T anð Þ, T an−1ð Þð Þ ≤ αdθ T an−1ð Þ, T anð Þð Þ + βdθ T an−2ð Þ, T an−1ð Þð Þ
+ γdθ T an−1ð Þ, T an−2ð Þð Þ + Ldθ T an−1ð Þ, T an−1ð Þð Þ:

ð76Þ

That is,

1 − αð Þdθ T anð Þ, T an−1ð Þð Þ ≤ β + γð Þdθ T an−1ð Þ, T an−2ð Þð Þ:
ð77Þ

Thus,

dθ T anð Þ, T an−1ð Þð Þ ≤ β + γ

1 − α

� �
dθ T an−1ð Þ, T an−2ð Þð Þ: ð78Þ

Moreover,

dθ T anð Þ, T an−1ð Þð Þ ≤ pdθ T an−1ð Þ, T an−2ð Þð Þ
≤ p2dθ T an−2ð Þ, T an−3ð Þð Þ⋮
≤ pn−1dθ T a1ð Þ, T a0ð Þð Þ, ∀n > 1:

ð79Þ

Thus, we reach

dθ T anð Þ, T an−1ð Þð Þ ≤ pndθ a0, a1ð Þ, ∀n ∈ℕ: ð80Þ

By assumption on the parameters α, β, and γ, one has
p = ððβ + γÞ/ð1 − αÞÞ < 1.

Following the same steps as given in Theorem 14, one
can show that fang is a Cauchy sequence. By the complete-
ness of X, there is v ∈ X such that Tnða0Þ⟶ v: To prove
TðvÞ = v, replace a = Tnða0Þ and b = v in (74). We have

dθ Tn+1 a0ð Þ, T vð Þ� �
≤ αdθ Tn a0ð Þ, Tn+1 a0ð Þ� �

+ βdθ v, T vð Þð Þ
+ γdθ Tn a0ð Þ, vð Þ + Ldθ Tn a0ð Þ, T vð Þð Þ:

ð81Þ

Then,

dθ an+1, T vð Þð Þ ≤ αdθ Tn a0ð Þ, Tn+1 a0ð Þ� �
+ βdθ v, T vð Þð Þ

+ γdθ an, vð Þ + Ldθ Tv, an+1ð Þ:
ð82Þ

That is,

lim
n⟶∞

dθ an+1, T vð Þð Þ ≤ lim
n⟶∞

αdθ Tn a0ð Þ, Tn+1 a0ð Þ� �
+ βdθ v, T vð Þð Þ�

+ γdθ an, vð Þ + Ldθ T vð Þ, an+1ð ÞÞ:
ð83Þ
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We have dθðv, TðvÞÞ ≤ ðβ + LÞdθðv, TðvÞÞ, which holds
unless TðvÞ = v:

The uniqueness is as follows:
Let τ and v be two fixed points, such that τ ≠ v: Then,

using inequality (74), we get

dθ T τð Þ, T vð Þð Þ ≤ αdθ τ, T τð Þð Þ + βdθ v, T vð Þð Þ + γdθ τ, vð Þ½ �
+ Ldθ T vð Þ, τð Þdθ τ, vð Þ ≤ L + γð Þdθ τ, vð Þ½ �1 ≤ L + γ,

ð84Þ

which is a contradiction. Hence, T has only one fixed point.

Now, we use the concept of an asymptotically regular
mapping [31, 32] in new extended b-metric spaces.

Definition 17. Let ðX, dθÞ be a new extended b-metric space.
A mapping T : X⟶ X satisfying the condition

lim
n⟶∞

dθ Tn+1a, Tna
� �

= 0, for all a ∈ X, ð85Þ

is called asymptotically regular.

Example 18. Let X = f0g ∪ ½1, 3�. Define T : X⟶ X by T0
= 1 and Tx = 0, for 0 < x ≤ 3: Consider dθðx, yÞ = ðx − yÞ2
and θðx, y, zÞ = ðx + y + z + 11Þ/ðx + y + z + 1Þ: We claim
that T satisfies condition (7). Indeed,

Case 1. If x = y = 0, then, (7) gives 0 ≤ 2ξ + L, which is true
for all ξ ∈ ½0, 1/2Þ and L ∈ ð0, 1Þ:

Case 2. If x ∈ ½1, 3�, y = 0, then, (7) gives 1 ≤ ξð1 + x2Þ, which
is true for all ξ ∈ ½0, 1/2Þ and L ∈ ð0, 1Þ:

Case 3. If x, y ∈ ½1, 3�, then, (7) implies that 0 ≤ ξðx2 + y2Þ +
Ly2, which is true for all ξ ∈ ½0, 1/2Þ and L ∈ ð0, 1Þ: Notice
that T is fixed point free. The iterative sequence fxn = Tn0g
is not convergent, so T is not asymptotically regular.

Theorem 19. Let ðX, dθÞ be a complete new extended b
-metric space such that dθ is a continuous functional. Let
T : X ⟶ X be an asymptotically regular self mapping such
that there is ξ < 1 so that

dθ T að Þ, T bð Þð Þ ≤ ξ dθ a, T að Þð Þ + dθ b, T bð Þð Þ½ �, ∀a, b ∈ X:
ð86Þ

Then, T has only one fixed point v ∈ X.

Proof. Let a ∈ X and take an = TnðaÞ be defined inductively.
Let m, n ∈ℕ such that m > n; then, according to asymptotic
regularity,

dθ Tn+1 að Þ, Tm+1 að Þ� �
≤ ξ dθ Tn að Þ, Tn+1 að Þ� �

+ dθ Tm að Þ, Tm+1 að Þ� � 

⟶ 0, as n⟶∞:

ð87Þ

Thus, the sequence fTnðaÞg is a Cauchy sequence. By
the completeness of X, there is v ∈ X such that

lim
n⟶∞

Tn að Þ = v: ð88Þ

To prove that v is a fixed point of T , we proceed as
follows:

dθ T anð Þ, T vð Þð Þ ≤ ξ dθ an, T anð Þð Þ + dθ v, T vð Þð Þð Þ: ð89Þ

That is,

dθ T anð Þ, T vð Þð Þ ≤ ξ dθ an, an+1ð Þ + dθ v, T vð Þð Þð Þ: ð90Þ

Taking limit n⟶∞ and using the asymptotic regular-
ity of T , one obtains

dθ v, T vð Þð Þ ≤ ξdθ v, T vð Þð Þ, ð91Þ

which implies that TðvÞ = v:
To prove uniqueness, let τ be another fixed point of T .

We have

dθ v, τð Þ = dθ T vð Þ, T τð Þð Þ ≤ ξ dθ v, T vð Þð Þ + dθ τ, T τð Þð Þð Þ:
ð92Þ

This is true unless dθðv, τÞ = 0, and so, v = τ. Hence, v is
the only fixed point of T . Further, for each a ∈ X, the itera-
tive sequence fTnðaÞg converges to v.

Remark 20. It is noteworthy that if the mapping is asymptot-
ically regular, then, the condition on θðan, an+1, amÞ can be
relaxed.

Theorem 21. Let ðX, dθÞ be a complete new extended b
-metric space such that dθ is a continuous functional. Let
T : X⟶ X be an asymptotically regular mapping such that
there is 0 < S < 1 so that

dθ T að Þ, T bð Þð Þ ≤ S dθ a, T að Þð Þ + dθ b, T bð Þð Þ + dθ a, bð Þ½ �, ∀a, b ∈ X:

ð93Þ

Then, T has only one fixed point v ∈ X provided that

lim
n⟶∞

S + Sθ an, an+1, amð Þθ an+1, am+1, amð Þ
1 − Sθ an, an+1, amð Þθ an+1, am+1, amð Þ ð94Þ

exists for an = TnðaÞ,m > n and a is arbitrary in X.
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Proof. Let a ∈ X and take an = TnðaÞ defined inductively. Let
m, n ∈ℕ such that m > n; then, using (93), we have

Thus, the sequence fTnðaÞg is a Cauchy sequence. By
the completeness of X, there is v ∈ X such that

lim
n⟶∞

Tn að Þ = v: ð96Þ

Now, by using triangular inequality and (93), we get

dθ T anð Þ, T vð Þð Þ ≤ S dθ an, T anð Þð Þ + dθ v, T vð Þð Þ + dθ an, vð Þ½ �,
ð97Þ

so

dθ an+1, T vð Þð Þ ≤ S dθ an, an+1ð Þ + dθ v, T vð Þð Þ + dθ an, vð Þ½ �:
ð98Þ

At the limit,

lim
n⟶∞

dθ an+1, T vð Þð Þ ≤ lim
n⟶∞

S dθ an, an+1ð Þ + dθ v, T vð Þð Þ + dθ an, vð Þ½ �:
ð99Þ

Thus, dθðv, TðvÞÞ ≤ Sdθðv, TðvÞÞ, which is possible only
if TðvÞ = v.

The uniqueness is as follows:
Suppose that there is τð≠ vÞ ∈M so that TðτÞ = τ, then

dθ T τð Þ, T vð Þð Þ ≤ S dθ τ, T τð Þð Þ + dθ v, T vð Þð Þ + dθ τ, vð Þ½ �1 ≤ S,
ð100Þ

which a contradiction. Hence, T has only one fixed
point. Thus, for each a ∈ X, fTnðaÞg converges to v.

3. Application

Let X = C½a, b� be the set of all real-valued continuous func-
tions on ½a, b�, and let dθ : X × X⟶ ½0,∞Þ be defined as

dθ x, yð Þ = sup
t∈ a,b½ �

x tð Þ − y tð Þj j2, with θ x, y, zð Þ

= sup
t∈ a,b½ �

x tð Þj j + y tð Þj j + z tð Þj j
x tð Þj j + y tð Þj j + z tð Þj j + 1

+ 2:
ð101Þ

One can easily verify that X is a complete new extended
b-metric space. Consider the Fredholm integral equation

x tð Þ =
ðb
a
K t, τ, x τð Þð Þdτ + f tð Þ, for all t ∈ a, b½ �, ð102Þ

where f : ½a, b�⟶ℝ and K : ½a, b� × ½a, b� ×ℝ⟶ℝ are
continuous.

Theorem 22. Let X = C½a, b� and let the operator I : X⟶ X
be defined by

I x tð Þð Þ =
ðb
a
K t, τ, x τð Þð Þdτ + f tð Þ, for all t ∈ a, b½ �: ð103Þ

Assume that the following condition holds for each x, y ∈ X

K t, τ, x τð Þð Þ − K t, τ, y τð Þð Þj j2

≤
ξ

2 b − að Þ x τð Þ − I x τð Þð Þ + y τð Þ − I y τð Þð Þj j2,
ð104Þ

for all t, τ ∈ ½a, b�, where ξ ∈ ½0, 1/2Þ. Then, the integral
equation (102) has a solution, provided that for every iterative
sequence fxn = Inx0g, for each x0 ∈ X, we have

dθ Tn+1 að Þ, Tm+1 að Þ� �
≤ S dθ Tn að Þ, Tn+1 að Þ� �

+ dθ Tm að Þ, Tm+1 að Þ� �
+ dθ Tn að Þ, Tm að Þð Þ 


= S dθ Tn að Þ, Tn+1 að Þ� �
+ dθ Tm að Þ, Tm+1 að Þ� � 


+ Sdθ Tn að Þ, Tm að Þð Þ
≤ S dθ Tn að Þ, Tn+1 að Þ� �

+ dθ Tm að Þ, Tm+1 að Þ� � 

+ Sθ an, an+1, amð Þ

� dθ Tn að Þ, Tn+1 að Þ� �
+ dθ Tn+1 að Þ, Tm að Þ� � 


= S dθ Tn að Þ, Tn+1 að Þ� �
+ dθ Tm að Þ, Tm+1 að Þ� � 


+ Sθ an, an+1, amð Þdθ Tn að Þ, Tn+1 að Þ� �
+ Sθ an, an+1, amð Þdθ Tn+1 að Þ, Tm að Þ� �

≤ S dθ Tn að Þ, Tn+1 að Þ� �
+ dθ Tm að Þ, Tm+1 að Þ� � 


+ Sθ an, an+1, amð Þdθ Tn að Þ, Tn+1 að Þ� �
+ Sθ an, an+1, amð Þθ an+1, am+1, amð Þ dθ Tn+1 að Þ, Tm+1 að Þ� �

+ dθ Tm+1 að Þ, Tm að Þ� � 

dθ

� Tn+1 að Þ, Tm+1 að Þ� �
≤

S + Sθ an, an+1, amð Þ
1 − Sθ an, an+1, amð Þθ an+1, am+1, amð ÞÞ

� �
dθ Tn að Þ, Tn+1 að Þ� �

+
S + Sθ an, an+1, amð Þθ an+1, am+1, amð ÞÞ
1 − Sθ an, an+1, amð Þθ an+1, am+1, amð ÞÞ

� �
dθ Tm+1 að Þ, Tm að Þ� �

⟶ 0, as n⟶∞:

ð95Þ
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sup
m≥1

lim
n⟶∞

θ xn, xn+1, xmð Þ < 1 − ξ

ξ
: ð105Þ

Proof. It is required to prove that the operator I satisfies the
conditions of Theorem 9. For this, we will use the following
inequality for β > 1:

a + b
2

� �β

≤
aβ + bβ

2
: ð106Þ

For x, y ∈ X, consider

sup
t∈ a,b½ �

I x tð Þð Þ − I y tð Þð Þj j2 =
ðb
a
K t, τ, x τð Þð Þdτ + f tð Þ −

ðb
a
K t, τ, y τð Þð Þdτ − f tð Þ

����
����
2

=
ðb
a
K t, τ, x τð Þð Þ − K t, τ, y τð Þð Þð Þdτ

����
����
2

≤
ðb
a
K t, τ, x τð Þð Þ − K t, τ, y τð Þð Þj j2dτ

≤
ðb
a

ξ

2 b − að Þ x τð Þ − I x τð Þð Þ + y τð ÞÞ−I y τð Þð Þj j2dτ

≤
ξ

2 b − að Þ
ðb
a
2 x τð Þ − I x τð Þð Þj j2 + y τð Þ − I y τð Þð Þj j2 


dτ

≤ ξ sup
t∈ a,b½ �

x tð Þ − I x tð Þð Þj j2 + sup
t∈ a,b½ �

y tð Þ − I y tð Þð Þj j2
" #

:

ð107Þ

That is,

dθ Ix, Iyð Þ ≤ ξ dθ x, Txð Þ + dθ y, Tyð Þ½ �, ∀x, y ∈ X: ð108Þ

This implies that (7) holds for L = 0. Hence, by Theorem 9,
the operator I has a fixed point, provided that for every itera-
tive sequence xn = Inx0, for each x0 ∈ X, we have supm≥1
limn⟶∞θðxn, xn+1, xmÞ<ð1 − ξÞ/ξ, that is, the Fredholm inte-
gral equation (102) has a solution.

4. Conclusion

(i) The idea of new extended b-metric spaces was elab-
orated with examples

(ii) Some results involving Kannan-type contractions
on new extended b-metric spaces are provided

(iii) Results presented by Gornicki [28] are generalized
and modified
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In this article, common fixed-point theorems for self-mappings under different types of generalized contractions in the context of
the cone b2-metric space over the Banach algebra are discussed. The existence results obtained strengthen the ones mentioned
previously in the literature. An example and an application to the infinite system of integral equations are also presented to
validate the main results.

1. Introduction and Preliminaries

Gähler [1] proposed the definition of 2-metric spaces as a
generalization of an ordinary metric space. He defined that
dðs,m, zÞ geometrically represents the area of a triangle with
vertices s,m, z ∈ℵ. 2-metric is not a continuous function of
its variables. This was one of the key drawbacks of the 2-
metric space while an ordinary metric is a continuous
function.

Keeping these drawbacks in mind, Dhage [2], in his PhD
thesis, proposed a concept of the D-metric space as a gener-
alized version of the 2-metric space. He also defined an open
ball in such spaces and studied other topological properties
of the mentioned structure. According to him, Dðs,m, zÞ
represented the perimeter of a triangle. He stated that the
D-metric induced a Hausdorff topology and in the D-met-
ric space, the family of all open balls forms a basis for such
topology.

Later, Mustafa and Sims [3] illustrate that the topological
structure of Dhage’s D-metric is invalid. Then, they revised
the D-metric and expanded the notion of a metric in which

each triplet of an arbitrary set is given a real number called
as the G-metric space [4].

In addition, the definition of the D∗-metric space is pro-
posed by Sedghi et al. [5] as an updated version of Dhage’s D
-metric space. Later, they analyzed and found that G-metric
and D∗-metric have shortcomings. Later, they proposed a
new simplified sturcture called the S-metric space [6].

On the other hand, by swapping the real numbers with
the ordered Banach space and established cone metric space,
Huang and Zhang [7] generalized the notion of a metric
space and demonstrated some fixed-point results of contrac-
tive maps using the normality condition in such spaces.
Rezapour and Hamlbarani [8] subsequently ignored the nor-
mality assumption and obtained some generalizations of the
Huang and Zhang [7] results. However, it should be noted
that the equivalence between cone metric spaces and metric
spaces has been developed in recent studies by some scholars
in the context of the presence of fixed points in the mapping
involved. Liu and Xu [9] proposed the concept of a cone
metric space over the Banach algebra in order to solve these
shortcomings by replacing the Banach space with the
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Banach algebra. This became an interesting discovery in the
study of fixed-point theory since it can be shown that cone
metric spaces over the Banach algebra are not equal to met-
ric spaces in terms of the presence of the fixed points of
mappings. Among these generalizations, by generalizing
the cone 2-metric spaces [10] over the Banach algebra and
b2-metric spaces [11], Fernandez et al. [12] examined cone
b2-metric spaces over the Banach algebra with the constant
b ≥ 1. In the setting of the new structure, they proved some
fixed-point theorems under different types of contractive
mappings and showed the existence and uniqueness of a
solution to a class of system of integral equations as an
application.

Recently, in 2020, Islam et al. [13] initiated the notion of
the cone b2-metric space over the Banach algebra with con-
stant b ≽ e which is a generalization of the definition of Fer-
nandez et al. [12]. They proved some fixed-point theorems
under α-admissible Hardy-Rogers contractions which gener-
alize many of the results from the existence literature, and as
an application, they proved results which guarantee the exis-
tence of solution of an infinite system of integral equations.

In 1973, Hardy and Rogers [14] proposed a new defini-
tion of mappings called the contraction of Hardy-Rogers
that generalizes the theory of the Banach contraction and
the theorem of Reich [15] in a metric space setting. For other
related work about the concept of Hardy-Rogers contrac-
tions, see, for instance, [16, 17] and the references therein.

We recollect certain essential notes, definitions required,
and primary results consistent with the literature.

Definition 1 (see [18]). Consider Û the Banach algebra
which is real, and the multiplication operation is defined
under the below properties (for all s,m, z ∈ Û, ρ ∈ℝ):

(a1) ðsmÞz = sðmzÞ
(a2) sðm + zÞ = sm + sz and ðs +mÞz = sz +mz
(a3) ρðsmÞ = ðρsÞm = sðρmÞ
(a4) ksmk ≤ kskkmk
Unless otherwise stated, we will assume in this article

that Û is a real Banach algebra. If s ∈ Û occurs, we call e
the unit of Û, so that es = se = s. We call Û a unital in this
case. If an inverse element m ∈ Û exists, the element s ∈ Û
is said to be invertible, so that sm =ms = e. The inverse of s
in such case is unique and is denoted by s−1. We require
the following propositions in the sequel.

Proposition 2 (see [18]). Consider the unital Banach algebra
Û with unit e, and let s ∈ Û be the arbitrary element. If the
spectral radius rðsÞ < 1, i.e.,

r sð Þ = lim
n⟶∞

snk k1/n = inf snk k1/n < 1, ð1Þ

then e − s is invertible. In fact,

e − sð Þ−1 = 〠
∞

k=1
sk: ð2Þ

Remark 3. We see from [18] that rðsÞ ≤ ksk for all s ∈ Û with
unit e.

Remark 4 (see [19]). In Proposition 2, by replacing “rðsÞ < 1”
by ksk ≤ 1, then the conclusion remains the same.

Remark 5 (see [19]). If rðsÞ < 1, then ksnk⟶ 0 as ðn⟶
∞Þ.

Definition 6. Consider the Banach algebra Û with unit ele-
ment e, zero element θÛ, and CÛ ≠∅. Then, CÛ ⊂ Û is a
cone in Û if:

(b1) e ∈CÛ

(b2) CÛ +CÛ ⊂CÛ

(b3) λCÛ ⊂CÛ for all λ ≥ 0
(b4) CÛ ·CÛ ⊂CÛ

(b5) CÛ ∩ ð−CÛÞ = fθÛg
Define the partial order relation ≼ in Û w.r.t CÛ by s≼m

if and only if m − s ∈CÛ; also, s ≺m if s≼m but s ≠m while
s≪m stands for m − s ∈ int CÛ, where int CÛ is the interior
of CÛ. CÛ is solid if int CÛ ≠∅.

If there is M > 0 such that for all s,m ∈CÛ, we have

θÛ≼s≼m implies sk k ≤M mk k, ð3Þ

then CÛ is normal. If M is least and positive in the
above, then it is the normal constant of CÛ [7].

Definition 7 (see [7, 9]). Let d : ℵ ×ℵ⟶ Û and ℵ ≠∅ be
the mapping:

(c1) For all s,m ∈ℵ, dðs,mÞ ≽ θÛ and dðs,mÞ = θÛ if and
only if s =m

(c2) For all s,m ∈ℵ, dðs,mÞ = dðm, sÞ
(c3) For all s,m, z ∈ℵ, dðs, zÞ≼dðs,mÞ + dðm, zÞ
Then, ðℵ, dÞ over the Banach algebra Û with cone met-

ric d is a cone metric space.
In [20], over the Banach algebra with constant b ≥ 1, the

cone b-metric space is introduced as a generalization of the
cone metric space over the Banach algebra while in Mitrovic
and Hussain [16], over the Banach algebra with parameter
b ≽ e, the concept of cone b-metric spaces is introduced.

Definition 8 (see [16]). Let d : ℵ ×ℵ⟶ Û and ℵ ≠∅ be
the mapping:

(e1) For all s,m ∈ℵ, θÛ≼dðs,mÞ and dðs,mÞ = θÛ if and
only if s =m

(e2) For all s,m ∈ℵ, dðs,mÞ = dðm, sÞ
(e3) There is b ∈CÛ, b ≽ e, and for all s,m, z ∈ℵ, dðs, z

Þ≼b½dðs,mÞ + dðm, zÞ�
Then, ðℵ, dÞ over the Banach algebra Û with cone b

-metric d is a cone b-metric space. Note that if we take b =
e, then it reduces to the cone metric space over the Banach
algebra Û.

Definition 9 (see [1]). Let d : ℵ ×ℵ ×ℵ⟶ℝ+ and ℵ ≠∅:
(f1) There is a point z ∈ℵ for s,m ∈ℵ such that dðs,m

, zÞ ≠ 0, if at least two of s,m, z are not equal
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(f2) dðs,m, zÞ = 0 if and only if at least two of s,m, z are
equal

(f3) dðs,m, zÞ = dðPðs,m, zÞÞ for all s,m, z ∈ℵ, where P
ðs,m, zÞ stands for all permutations of s,m, z

(f4) dðs,m, zÞ ≤ dðs,m, tÞ + dðs, z, tÞ + dðm, z, tÞ for all s
,m, z, t ∈ℵ

Then, ðℵ, dÞ is a 2-metric space with 2-metric d.

Definition 10 (see [12]). Let d : ℵ ×ℵ ×ℵ⟶ Û, ℵ ≠∅,
and b ≥ 1 be a real number:

(g1) There is a point z ∈ℵ for s,m ∈ℵ such that dðs,m
, zÞ ≠ θÛ if at least two of s,m, z are not equal

(g2) dðs,m, zÞ = θÛ if and only if at least two of s,m, z are
equal

(g3) dðs,m, zÞ = dðPðs,m, zÞÞ for all s,m, z ∈ℵ, where P
ðs,m, zÞ stands for all permutations of s,m, z

(g4) dðs,m, zÞ≼b½dðs,m, tÞ + dðs, z, tÞ + dðm, z, tÞ� for all
s,m, z, t ∈ℵ

Then, ðℵ, dÞ over the Banach algebra Û with parameter
b ≥ 1 is a cone b2-metric space. By taking b = 1, it became a
cone 2-metric space. We refer the reader to [21] for other
details about the cone 2-metric space over the Banach alge-
bra Û.

Islam et al. [13] initiated the concept of the cone b2
-metric space over the Banach algebra with parameter b ≽ e.

Definition 11 (see [13]). Let d : ℵ ×ℵ ×ℵ⟶ Û and ℵ ≠∅:
(h1) There is a point z ∈ℵ for s,m ∈ℵ such that dðs,m

, zÞ ≠ θÛ if at least two of s,m, z are not equal
(h2) dðs,m, zÞ = θÛ iff at least two of s,m, z are equal
(h3) dðs,m, zÞ = dðPðs,m, zÞÞ for all s,m, z ∈ℵ, where P

ðs,m, zÞ stands for all permutations of s,m, z
(h4) dðs,m, zÞ≼b½dðs,m, tÞ + dðs, z, tÞ + dðm, z, tÞ� for all

s,m, z, t ∈ℵ with b ∈CÛ, b ≽ e
Then, ðℵ, dÞ over the Banach algebra with parameter b

≽ e is a cone b2-metric space. By taking b = e, it reduces to
a cone 2-metric space.

Example 12 (see [13]). Let Û = C1
ℝ½0, 1�. For each hðtÞ ∈ Û,

khðtÞk = khðtÞk∞ + kh′ðtÞk∞. Then, Û is a Banach algebra
with unit e = 1 as a constant function, and multiplication is
defined pointwise. Let CÛ = fhðtÞ ∈ Û ∣ hðtÞ ≥ 0, t ∈ ½0, 1�g.
Then, CÛ is a cone in Û. Let ℵ = fðk, 0Þ ∈ℝ2 ∣ j ∣ 0 ≤ k ≤ 1g
∪ fð0, 1Þg. For all S,M, Z ∈ℵ, define d : ℵ ×ℵ ×ℵ⟶ Û

as

d S,M, Zð Þ =
d P S,M, Zð Þð Þ, P denotes permutations,
Δ · h tð Þ, otherwise,

 

ð4Þ

where Δ is the square of the area of the triangle formed by
S,M, Z and h : ½0, 1�⟶ℝ defined by hðtÞ = et . Consider

d s, 0ð Þ, m, 0ð Þ, 0, 1ð Þð Þ · et≼d s, 0ð Þ, m, 0ð Þ, z, 0ð Þð Þ · et
+ d s, 0ð Þ, z, 0ð Þ, 0, 1ð Þð Þ · et
+ d z, 0ð Þ, m, 0ð Þ, 0, 1ð Þð Þ · et:

ð5Þ

That is, 1/4ðs −mÞ2 · et≼1/4ððs − zÞ2 + ðz −mÞ2Þ · et,
showing that d is not a cone 2-metric, because −ð3/16Þet∈CÛ

for 0 ≤ s,m, z ≤ 1 with z = 1/2, m = 0, and s = 1. But for b ≥ 2
∈CÛ is a cone b2-metric space over the Banach algebra Û.

Definition 13 (see [13]). Consider that ðℵ, dÞ is a cone b2
-metric space over the Banach algebra Û with b ≽ e, and let
fsng be a sequence in ðℵ, dÞ; then,

(i1) fsng is said to converge to s ∈ℵ if for every c≫ θÛ
there is N ∈ℕ such that dðsn, s, aÞ≪ c for all n ≥N . That is,

lim
n⟶∞

sn = s orð Þ sn ⟶ s n⟶∞ð Þ: ð6Þ

(i2) If for every c≫ θÛ there exists N ∈ℕ such that dð
sn, sm, aÞ≪ c for all m, n ≥N , then we say that fsng is a Cau-
chy sequence

(i3) ðℵ, dÞ is complete if every Cauchy sequence is con-
vergent in ℵ

Definition 14 (see [22]). Let a sequence fsng be in Û; then,
sequence fsng is a c -sequence, if for each c≫ θÛ there is
N ∈ℕ such that sn ≪ c for all n >N .

Lemma 15 (see [23]). Consider the Banach algebra Û and
int CÛ ≠∅. Also, consider fsng a c -sequence in Û and k ∈
CÛ where k is arbitrary; then, fksng is a c -sequence.

Lemma 16 (see [23]). Consider the Banach algebra Û and
int CÛ ≠∅. Let fsng and fzng be c-sequences in Û. Then,
for arbitrary η, ζ ∈CÛ, we have fηsn + ζzng which is also a
c-sequence.

Lemma 17 (see [23]). Consider the Banach algebra Û and
int CÛ ≠∅. Let fsng ⊂CÛ such that ksnk⟶ 0 as n⟶
∞. Then, fsng is a c-sequence.

Lemma 18 (see [19]). Let Û be the Banach algebra, e be their
unit element, and m, s ∈ Û. If m, s commutes, then

(k1) rðs +mÞ ≤ rðsÞ + rðmÞ
(k2) rðsmÞ ≤ rðsÞrðmÞ

Lemma 19 (see [19]). Consider the Banach algebra Û and s
∈ Û. If 0 ≤ rðsÞ < 1, then

r e − sð Þ−1� �
≤ 1 − r sð Þð Þ−1: ð7Þ
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Lemma 20 (see [24]). Consider the Banach algebra Û, e is
their unit element, and CÛ ≠∅. Let L ∈ Û and sn = Ln. If rð
LÞ < 1, then fsng is a c-sequence.

Lemma 21 (see [25]). Let CÛ ⊂ Û be a cone.
(l1) If s,m ∈ Û, k ∈CÛ, and m≼s, then km≼ks
(l2) If m, k ∈CÛ, rðkÞ < 1, and m≼km, then m = 0
(l3) For any n ∈ℕ, rðknÞ < 1 with k ∈CÛ and rðkÞ < 1

Lemma 22 (see [26]). Consider the Banach algebra Û and
int CÛ ≠∅.

(n1) If m, s, z ∈ Û and m≼s≪ z, then m≪ s
(n2) If m ∈CÛ and m≪ c for c≫ θÛ, then m = θÛ

Lemma 23 (see [21]). Consider the Banach algebra Û and
int CÛ ≠∅. Let m ∈ Û, and suppose that k ∈CÛ is an arbi-
trary given vector such that m≪ c for any θÛ ≪ c, then km
≪ c for any θÛ ≪ c.

Lemma 24 (see [27]). Consider the Banach algebra Û and
int CÛ ≠∅. Let θÛ≼m≪ c for each θÛ ≪ c; then, m = θÛ.

Lemma 25 (see [27]). Consider the Banach algebra Û and
int CÛ ≠∅. If ksnk⟶ 0 as ðn⟶∞Þ, then for each c≫
θÛ, there is N ∈ℕ with n >N , such that sn ≪ c.

Definition 26 (see [28]). Let g and g be self-maps of a set ℵ.
If m = gs = f s for some s ∈ℵ, then for g and f , s is known as
a coincidence point and m is known as a point of coinci-
dence of g and f .

Definition 27 (see [29]). The mappings g, f : ℵ⟶ℵ are
said to be weakly compatible, whenever f s = gs and f gs = g
f s for any s ∈ℵ.

Lemma 28 (see [28]). Let the mappings g and f be weakly
compatible self-maps of a set ℵ. If g and f have a unique
point of coincidence m = f s = gs, then m is the unique com-
mon fixed point of g and f .

2. Main Results

In this section, in the framework of the cone b2-metric space
over Banach algebras with parameter b ≽ e, we prove some
common fixed-point results.

Proposition 29. Let ðℵ, dÞ over the Banach algebra Û be the
complete cone b2-metric space and CÛ ≠∅ be a cone in Û. If
a sequence fsng in ℵ converges to s ∈ℵ, then we have the
following:

(i) fdðsn, s, aÞg is a c-sequence for all a ∈ℵ

(ii) For any α ∈ℕ, fdðsn, sn+α, aÞg is a c-sequence for all
a ∈ℵ

Proof. Since the proof is easy, so we left it.
Now, we here state and prove our first main results

which generalize and extend many of the conclusions from
the existence literature. ☐

Theorem 30. Let ðℵ, dÞ over the Banach algebra Û be a cone
b2-metric space with b ≽ e and CÛ ≠∅ be a cone in Û. Let
fEig∞i=1, fFjg∞j=1, fGkg∞k=1, and fHlg∞l=1 be four families of

self-mappings on ℵ. For all i, j, k, l ∈ℕ, if a sequence
fηng∞n=1 exists of nonnegative integers, such that for all s,m,
z ∈ℵ,

d Eηi
i sð Þ, Fη j

j mð Þ, a
� �

≼ϑ1d Gηk
k sð Þ,Hηl

l mð Þ, a� �
+ ϑ2d Gηk

k sð Þ, Eηi
i sð Þ, a� �

+ ϑ3d Hηl
l mð Þ, Fη j

j mð Þ, a
� �

+ ϑ4d Gηk
k sð Þ, Fη j

j mð Þ, a
� �

+ ϑ5d Hηl
l mð Þ, Eηi

i sð Þ, a� �
,

ð8Þ

where ϑ1, ϑ2, ϑ3, ϑ4, ϑ5 ∈CÛ with ∑3
w=1rðϑwÞ + 2rðϑ4ÞrðbÞ + 2

rðϑ5ÞrðbÞ < 1, rðϑ2ÞrðbÞ + rðϑ5Þrðb2Þ < 1, rðϑ3ÞrðbÞ + rðϑ4Þrð
b2Þ < 1, and ϑ1, ϑ2, ϑ3, ϑ4, ϑ5, b commute. If EiðℵÞ ⊆HlðℵÞ,
FjðℵÞ ⊆GkðℵÞ, and one of EiðℵÞ, GkðℵÞ, HlðℵÞ, and Fjðℵ
Þ are a complete subspace of ℵ for each i, j, k, l ≥ 1, then
fEig∞i=1, fFjg∞j=1, fGkg∞k=1, and fHlg∞l=1 have a unique point

of coincidence in ℵ. Moreover, if fFj,Hlg and fEi,Gkg are
weakly compatible, respectively, then fEig∞i=1, fFjg∞j=1,
fGkg∞k=1, and fHlg∞l=1 have a unique common fixed point.

Proof. Set Eηi
i = S2i+1, F

η j
j = T2j+2, G

ηk
k = I2k+3, and Hηl

l = J2l+2,
i, j, k, l ≥ 1. Then, by (8), we have

d S2i+1 sð Þ, T2j+2 mð Þ, a� �
≼ϑ1d I2k+3 sð Þ, J2l+2 mð Þ, að Þ

+ ϑ2d I2k+3 sð Þ, S2i+1 sð Þ, að Þ
+ ϑ3d J2l+2 mð Þ, T2j+2 mð Þ, a� �
+ ϑ4d I2k+3 sð Þ, T2j+2 mð Þ, a� �
+ ϑ5d J2l+2 mð Þ, S2i+1 sð Þ, að Þ:

ð9Þ

Choose s0 ∈ℵ to be arbitrary. Since EiðℵÞ ⊆HlðℵÞ and
FjðℵÞ ⊆GkðℵÞ for each i, j, k, l ≥ 1, there exists s1, s2 ∈ℵ
such that S1ðs0Þ = J2ðs1Þ and T2ðs1Þ = I3ðs2Þ. Continuing this
process, we can define fsng by S2n+1ðs2nÞ = J2n+2ðs2n+1Þ and
T2n+2ðs2n+1Þ = I2n+3ðs2n+2Þ.

Denote μ2n = J2n+2ðs2n+1Þ = S2n+1ðs2nÞ and μ2n+1 = I2n+3ð
s2n+2Þ = T2n+2ðs2n+1Þ for n = 0, 1, 2,⋯. Now, we show that f
μng is a Cauchy sequence.
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From (9), we know that

d μ2n, μ2n+1, að Þ = d S2n+1 s2nð Þ, T2n+2 s2n+1ð Þ, að Þ
≼ϑ1d I2n+1 s2nð Þ, J2n+2 s2n+1ð Þ, að Þ

+ ϑ2d I2n+1 s2nð Þ, S2n+1 s2nð Þ, að Þ
+ ϑ3d J2n+2 s2n+1ð Þ, T2n+2 s2n+1ð Þ, að Þ
+ ϑ4d I2n+1 s2nð Þ, T2n+2 s2n+1ð Þ, að Þ
+ ϑ5d J2n+2 s2n+1ð Þ, S2n+1 s2nð Þ, að Þ

= ϑ1d μ2n−1, μ2n, að Þ + ϑ2d μ2n−1, μ2n, að Þ
+ ϑ3d μ2n, μ2n+1, að Þ + ϑ4d μ2n−1, μ2n+1, að Þ
+ ϑ5d μ2n, μ2n, að Þ≼ϑ1d μ2n−1, μ2n, að Þ
+ ϑ2d μ2n−1, μ2n, að Þ + ϑ3d μ2n, μ2n+1, að Þ
+ ϑ4bd μ2n−1, μ2n+1, μ2nð Þ
+ ϑ4bd μ2n−1, μ2n, að Þ
+ ϑ4bd μ2n, μ2n+1, að Þ:

ð10Þ

d μ2n, μ2n+1, μ2n−1ð Þ = d S2n+1 s2nð Þ, T2n+2 s2n+1ð Þ, μ2n−1ð Þ
≤ ϑ1d I2n+1 s2nð Þ, J2n+2 s2n+1ð Þ, μ2n−1ð Þ

+ ϑ2d I2n+1 s2nð Þ, S2n+1 s2nð Þ, μ2n−1ð Þ
+ ϑ3d J2n+2 s2n+1ð Þ, T2n+2 s2n+1ð Þ, μ2n−1ð Þ
+ ϑ4d I2n+1 s2nð Þ, T2n+2 s2n+1ð Þ, μ2n−1ð Þ
+ ϑ5d J2n+2 s2n+1ð Þ, S2n+1 s2nð Þ, μ2n−1ð Þ

= ϑ1d μ2n−1, μ2n, μ2n−1ð Þ
+ ϑ2d μ2n−1, μ2n, μ2n−1ð Þ
+ ϑ3d μ2n, μ2n+1, μ2n−1ð Þ
+ ϑ4d μ2n−1, μ2n+1, μ2n−1ð Þ
+ ϑ5d μ2n, μ2n, μ2n−1ð Þ

≼ϑ3d μ2n, μ2n+1, μ2n−1ð Þ:
ð11Þ

It means that dðμ2n, μ2n+1, μ2n−1Þ = θÛ. Therefore, (10)
becomes

e − ϑ3 − ϑ4bð Þd μ2n, μ2n+1, að Þ≼ ϑ1 + ϑ2 + ϑ4bð Þd μ2n−1, μ2n, að Þ,
ð12Þ

that is,

d μ2n, μ2n+1, að Þ≼L1d μ2n−1, μ2n, að Þ, ð13Þ

where L1 = ðe − ϑ3 − ϑ4bÞ−1ðϑ1 + ϑ2 + ϑ4bÞ. Similarly, it is not
difficult to show that

d μ2n+2, μ2n+1, að Þ = d S2n+3 s2n+2ð Þ, T2n+2 s2n+1ð Þ, að Þ
≼ϑ1d I2n+3 s2n+2ð Þ, J2n+2 s2n+1ð Þ, að Þ

+ ϑ2d I2n+3 s2n+2ð Þ, S2n+3 s2n+2ð Þ, að Þ
+ ϑ3d J2n+2 s2n+1ð Þ, T2n+2 s2n+1ð Þ, að Þ
+ ϑ4d I2n+3 s2n+2ð Þ, T2n+2 s2n+1ð Þ, að Þ
+ ϑ5d J2n+2 s2n+1ð Þ, S2n+3 s2n+2ð Þ, að Þ

= ϑ1d μ2n+1, μ2n, að Þ + ϑ2d μ2n+1, μ2n+2, að Þ
+ ϑ3d μ2n, μ2n+1, að Þ + ϑ4d μ2n+1, μ2n+1, að Þ
+ ϑ5d μ2n, μ2n+2, að Þ≼ϑ1d μ2n+1, μ2n, að Þ
+ ϑ2d μ2n+1, μ2n+2, að Þ + ϑ3d μ2n, μ2n+1, að Þ
+ ϑ5bd μ2n, μ2n+2, μ2n+1ð Þ
+ ϑ5bd μ2n, μ2n+1, að Þ
+ ϑ5bd μ2n+1, μ2n+2, að Þ:

ð14Þ

As dðμ2n, μ2n+2, μ2n+1Þ = θÛ, therefore (14) becomes

e − ϑ2 − ϑ5bð Þd μ2n+2, μ2n+1, að Þ≼ ϑ1 + ϑ3 + ϑ5bð Þd μ2n, μ2n+1, að Þ,
ð15Þ

that is,

d μ2n+2, μ2n+1, að Þ≼L2d μ2n, μ2n+1, að Þ, ð16Þ

where L2 = ðe − ϑ2 − ϑ5bÞ−1ðϑ1 + ϑ3 + ϑ5bÞ. Set K = L1L2, and
using inequalities (13) and (16), we deduce that

d μ2n+2, μ2n+1, að Þ≼L2d μ2n+1, μ2n, að Þ
≼L2L1d μ2n, μ2n−1, að Þ
≼L2L1L2d μ2n−1, μ2n−2, að Þ
= L2Kd μ2n−1, μ2n−2, að Þ
≼⋯≼L2K

nd μ1, μ0, að Þ,

ð17Þ

d μ2n+3, μ2n+2, að Þ≼L1d μ2n+2, μ2n+1, að Þ
≼L1L2K

nd μ1, μ0, að Þ
= Kn+1d μ1, μ0, að Þ:

ð18Þ

In this case, for all t < n, similar to (17) and (18), we have

d μ2n+1, μ2n, μ2t+1ð Þ = L2K
n−t−1d μ2t+1, μ2t+2, μ2t+1ð Þ = θÛ,

d μ2n−1, μ2n, μ2t+1ð Þ = Kn−t−1d μ2t+1, μ2t+2, μ2t+1ð Þ = θÛ,
d μ2n+1, μ2n, μ2tð Þ = Kn−td μ2t+1, μ2t , μ2tð Þ = θÛ,

d μ2n−1, μ2n, μ2tð Þ = L2K
n−t−1d μ2t+1, μ2t , μ2tð Þ = θÛ:

ð19Þ

Therefore, for all m < n, a ∈ℵ, and using the above
inequalities, we have
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d μ2n+1, μ2m+1, að Þ≼bd μ2n+1, μ2m+1, μ2nð Þ
+ bd μ2n+1, μ2n, að Þ
+ bd μ2n, μ2m+1, að Þ

= bd μ2n+1, μ2n, að Þ + bd μ2n, μ2m+1, að Þ
≼bd μ2n+1, μ2n, að Þ + b2d μ2n, μ2m+1, μ2n−1ð Þ

+ b2d μ2n, μ2n−1, að Þ
+ b2d μ2n−1, μ2m+1, að Þ

= bd μ2n+1, μ2n, að Þ + b2d μ2n, μ2n−1, að Þ
+ b2d μ2n−1, μ2m+1, að Þ:

ð20Þ

Continuing this process, we get

d μ2n+1, μ2m+1, að Þ ≤ bd μ2n+1, μ2n, að Þ + b2d μ2n, μ2n−1, að Þ
+ b3d μ2n−1, μ2n−2, að Þ
+ b4d μ2n−2, μ2n−3, að Þ
+⋯+bn−m−4d μ2m+5, μ2m+4, að Þ
+ bn−m−3d μ2m+4, μ2m+3, að Þ
+ bn−m−2d μ2m+3, μ2m+2, að Þ
+ bn−m−1d μ2m+2, μ2m+1, að Þ

≤ bKnd μ1, μ0, að Þ + b2L2K
n−1d μ1, μ0, að Þ

+ b3Kn−1d μ1, μ0, að Þ
+ b4L2K

n−2d μ1, μ0, að Þ
+⋯+bn−m−4Km+2d μ1, μ0, að Þ
+ bn−m−3L2K

m+1d μ1, μ0, að Þ
+ bn−m−2Km+1d μ1, μ0, að Þ
+ bn−m−1L2K

md μ1, μ0, að Þ
≤ bKn + b2L2K

n−1 + b3Kn−1�
+ b4L2K

n−2+⋯+bn−m−4Km+2

+ bn−m−3L2K
m+1 + bn−m−2Km+1

+ bn−m−1L2K
m�d μ1, μ0, að Þ,

d μ2n+1, μ2m+1, að Þ = bKn + b3Kn−1+⋯+bn−m−4Km+2�
+ bn−m−2Km+1 + b2L2K

n−1

+ b4L2K
n−2+⋯+bn−m−3L2K

m+1

+ bn−m−1L2K
m�d μ1, μ0, að Þ

= Km+1bn−m−2 e + b−2K
�

+⋯+bm−n+3Kn−m−1�d μ1, μ0, að Þ
+ L2K

mbn−m−1 e + b−2K
�

+⋯+bm−n+3Kn−m−1�d μ1, μ0, að Þ

= Km+1bn−m−2 〠
∞

r=0
b−2K
� �r 

+ L2K
mbn−m−1 〠

∞

r=0
b−2K
� �r!

d μ1, μ0, að Þ:

ð21Þ

That is,

d μ2n+1, μ2m+1, að Þ≼〠
∞

r=0
b−2K
� �r

Km+1bn−m−2�
+ L2K

mbn−m−1�d μ1, μ0, að Þ
≼ e − b−2K
� �−1

Km Kbn−m−2�
+ L2b

n−m−1�d μ1, μ0, að Þ
=MKmd μ1, μ0, að Þ,

ð22Þ

where M = ðe − b−2KÞ−1ðKbn−m−2 + L2b
n−m−1Þ.

Similarly, we have

d μ2n, μ2m+1, að Þ ≤ bd μ2n, μ2n−1, að Þ
+ b2d μ2n−1, μ2n−2, að Þ
+ b3d μ2n−2, μ2n−3, að Þ
+ b4d μ2n−3, μ2n−4, að Þ
+⋯+bn−m−4d μ2m+5, μ2m+4, að Þ
+ bn−m−3d μ2m+4, μ2m+3, að Þ
+ bn−m−2d μ2m+3, μ2m+2, að Þ
+ bn−m−1d μ2m+2, μ2m+1, að Þ

≤ bL2K
n−1 + b3L2K

n−2�
+⋯+bn−m−4L2K

m+2 + bn−m−2L2K
m+1

+ b2Kn−1 + b4Kn−2+⋯+bn−m−3Km+2

+ bn−m−1Km�d μ1, μ0, að Þ
≤ bn−m−2L2K

m+1 e + b−2K
�

+⋯+bm−n+3Kn−m−1�d μ1, μ0, að Þ
+ bn−m−1Km e + b−2K

�
+⋯+bm−n+3Kn−m−1�d μ1, μ0, að Þ

≤ bn−m−2L2K
m+1 〠

∞

r=0
b−2K
� �r 

+ bn−m−1Km 〠
∞

r=0
b−2K
� �r!

d μ1, μ0, að Þ

≤ 〠
∞

r=0
b−2K
� �r

bn−m−2L2K
m+1�

+ bn−m−1Km�d μ1, μ0, að Þ
≤ e − b−2K
� �−1

Km bn−m−2L2K
�

+ bn−m−1�d μ1, μ0, að Þ
=NKmd μ1, μ0, að Þ,

ð23Þ

where N = ðe − b−2KÞ−1ðbn−m−2L2K + bn−m−1Þ.
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Similar to the above, one can easily get that

d μ2n, μ2m, að Þ≼OKmd μ1, μ0, að Þ,
d μ2n+1, μ2m, að Þ≼PKmd μ1, μ0, að Þ,

ð24Þ

where O = ðe − b−2KÞ−1ðbn−mL2 + bn−m−1KÞ and P =
ðe − b−2KÞ−1ðbn−m−1 + bn−m−2L2Þ.

From Lemmas 18 and 19, we have that

r Kð Þ = r L1L2ð Þ ≤ r L1ð Þ × r L2ð Þ
= r e − ϑ3 − ϑ4bð Þ−1 ϑ1 + ϑ2 + ϑ4bð Þ� �

× r e − ϑ2 − ϑ5bð Þ−1 ϑ1 + ϑ3 + ϑ5bð Þ� �
≤ r e − ϑ3 − ϑ4bð Þ−1� �

× r ϑ1 + ϑ2 + ϑ4bð Þ
× r e − ϑ2 − ϑ5bð Þ−1� �

× r ϑ1 + ϑ3 + ϑ5bð Þ
≤
r ϑ1ð Þ + r ϑ2ð Þ + r ϑ4ð Þr bð Þ
1 − r ϑ3ð Þ − r ϑ4ð Þr bð Þ

× r ϑ1ð Þ + r ϑ3ð Þ + r ϑ5ð Þr bð Þ
1 − r ϑ2ð Þ − r ϑ5ð Þr bð Þ < 1:

ð25Þ

Since rðKÞ < 1, therefore in the light of Remark 5 and
Lemma 25, kKmk⟶ 0 as ðm⟶∞Þ, and so, for every c
∈ int CÛ, there exists n0 ∈ℕ such that Km ≪ c for all n >
n0; that is, the sequence fKmg is a c-sequence. By Lemma
15, the sequences fMKmdðμ1, μ0, aÞg, fNKmdðμ1, μ0, aÞg,
fOKmdðμ1, μ0, aÞg, and fPKmdðμ1, μ0, aÞg are also c
-sequences. Therefore, for any c ∈ Û with θÛ ≪ c, there exists
n1 ∈ℕ such that, for any n >m > n1, we have dðμn, μm, aÞ
≪ c for all n > n1 and for all a ∈ℵ. Thus, from Lemma 24,
it means that dðμn, μm, aÞ = θÛ. This implies that fμng is a
Cauchy sequence in ℵ.

If HlðℵÞ is complete for each l = 1, 2, 3,⋯, there exists
q ∈HlðℵÞ such that

μ2n = J2n+2 s2n+1ð Þ = S2n+1 s2nð Þ⟶ q n⟶∞ð Þ: ð26Þ

So we can find a p ∈ℵ such that J2n+2ðpÞ = q (if EiðℵÞ is
complete for each i = 1, 2, 3,⋯, there exists q ∈ EiðℵÞ ⊆Hlð
ℵÞ; then, the conclusion remains the same). Now, we show
that T2n+2ðpÞ = q. By (9), we have

d T2n+2 pð Þ, q, að Þ≼bd T2n+2 pð Þ, q, S2n+1 s2nð Þð Þ
+ bd T2n+2 pð Þ, S2n+1 s2nð Þ, að Þ
+ bd S2n+1 s2nð Þ, q, að Þ

≼bd T2n+2 pð Þ, q, S2n+1 s2nð Þð Þ
+ bd S2n+1 s2nð Þ, q, að Þ
+ bϑ1d I2n+1 s2nð Þ, J2n+2 s2n+1ð Þ, að Þ
+ bϑ2d I2n+1 s2nð Þ, S2n+1 s2nð Þ, að Þ
+ bϑ3d J2n+2 s2n+1ð Þ, T2n+2 pð Þ, að Þ
+ bϑ4d I2n+1 s2nð Þ, T2n+2 pð Þ, að Þ
+ bϑ5d J2n+2 s2n+1ð Þ, S2n+1 s2nð Þ, að Þ,

d T2n+2 pð Þ, q, að Þ = bd T2n+2 pð Þ, q, μ2nð Þ + bd μ2n, q, að Þ
+ bϑ1d μ2n−1, q, að Þ + bϑ2d μ2n−1, μ2n, að Þ
+ bϑ3d q, T2n+2 pð Þ, að Þ
+ bϑ4d μ2n−1, T2n+2 pð Þ, að Þ
+ bϑ5d q, μ2n, að Þ

≼bd T2n+2 pð Þ, q, μ2nð Þ + bd μ2n, q, að Þ
+ bϑ1d μ2n−1, q, að Þ + bϑ2d μ2n−1, μ2n, að Þ
+ bϑ3d q, T2n+2 pð Þ, að Þ
+ b2ϑ4d μ2n−1, T2n+2 pð Þ, qð Þ
+ b2ϑ4d μ2n−1, q, að Þ
+ b2ϑ4d q, T2n+2 pð Þ, að Þ + bϑ5d q, μ2n, að Þ:

ð27Þ

That is,

e − bϑ3 − b2ϑ4
� �

d T2n+2 pð Þ, q, að Þ
≼bd μ2n, T2n+2 pð Þ, að Þ + b2ϑ4d μ2n−1, T2n+2 pð Þ, qð Þ

+ b + bϑ5ð Þd μ2n, q, að Þ + bϑ1 + b2ϑ4
� �

d μ2n−1, q, að Þ
+ bϑ2d μ2n−1, μ2n, að Þ:

ð28Þ

Therefore, it follows from Proposition 29 and Lemmas
15 and 16 that

e − bϑ3 − b2ϑ4
� �

d T2n+2 pð Þ, q, að Þ≼zn, ð29Þ

where fzng is a c-sequence in CÛ. In addition, from Propo-
sition 2 and

r bϑ3 + b2ϑ4
� �

≤ r bð Þr ϑ3ð Þ + r b2
� �

r ϑ4ð Þ < 1, ð30Þ

it means that e − ðbϑ3 + b2ϑ4Þ is invertible. In this case,
we have

e − bϑ3 − b2ϑ4
� �

d T2n+2 pð Þ, q, að Þ≪ c, ð31Þ

for any c≫ θÛ, which together with Lemma 23 implies
that θÛ≼dðT2n+2ðpÞ, q, aÞ≪ c, for any a ∈ℵ, n ∈ℕ, and c
≫ θÛ as ðe − ðbϑ3 + b2ϑ4ÞÞ is invertible. Therefore, by
Lemma 24, we have dðT2n+2ðpÞ, q, aÞ = θÛ for any n ∈ℕ.
Namely, T2n+2ðpÞ = q for any n ∈ℕ. That is, T2n+2ðpÞ = q =
J2n+2ðpÞ.

At the same time, as q = T2n+2ðpÞ ∈ FjðℵÞ ⊆ GkðℵÞ, there
exists u ∈ℵ such that I2n+3ðuÞ = q.
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Now, we show that S2n+1ðuÞ = q. From (9), we have that

d S2n+1 uð Þ, q, að Þ = d S2n+1 uð Þ, T2n+2 pð Þ, að Þ
≼ϑ1d I2n+3 uð Þ, J2n+2 pð Þ, að Þ

+ ϑ2d I2n+3 uð Þ, S2n+1 uð Þ, að Þ
+ ϑ3d J2n+2 pð Þ, T2n+2 pð Þ, að Þ
+ ϑ4d I2n+3 uð Þ, T2n+2 pð Þ, að Þ
+ ϑ5d J2n+2 pð Þ, S2n+1 uð Þ, að Þ

= ϑ1d q, q, að Þ + ϑ2d q, S2n+1 uð Þ, að Þ
+ ϑ3d q, q, að Þ + ϑ4d q, q, að Þ
+ ϑ5d q, S2n+1 uð Þ, að Þ:

ð32Þ

That is,

d S2n+1 uð Þ, q, að Þ≼ ϑ2 + ϑ5ð Þd S2n+1 uð Þ, q, að Þ: ð33Þ

Hence, by Lemma 20, we know that dðS2n+1ðuÞ, q, aÞ =
θÛ, and so S2n+1ðuÞ = q. Therefore, S2n+1ðuÞ = I2n+3ðuÞ = q
and T2n+2ðpÞ = J2n+2ðpÞ = q.

Next, if we assume GkðℵÞ is complete for each k = 1, 2,
3,⋯, there exists q ∈GkðℵÞ such that

μ2n+1 = I2n+3 s2n+2ð Þ = T2n+2 s2n+1ð Þ⟶ q as n⟶∞ð Þ: ð34Þ

So, we can find u ∈ℵ such that I2n+3ðuÞ = q (if FjðℵÞ is
complete for each j = 1, 2, 3,⋯, there exists q ∈ FjðℵÞ ⊆ Gkð
ℵÞ; then, the conclusion remains the same).

Now, we show that S2n+1ðuÞ = q. By (9), we get that

d S2n+1 uð Þ, q, að Þ≼bd S2n+1 uð Þ, q, T2n+2 s2n+1ð Þð Þ
+ bd S2n+1 uð Þ, T2n+2 s2n+1ð Þ, að Þ
+ bd T2n+2 s2n+1ð Þ, q, að Þ

≼bd S2n+1 uð Þ, q, T2n+2 s2n+1ð Þð Þ
+ bd T2n+2 s2n+1ð Þ, q, að Þ
+ bϑ1d I2n+3 uð Þ, J2n+2 s2n+1ð Þ, að Þ
+ bϑ2d I2n+3 uð Þ, S2n+1 uð Þ, að Þ
+ bϑ3d J2n+2 s2n+1ð Þ, T2n+2 s2n+1ð Þ, að Þ
+ bϑ4d I2n+3 uð Þ, T2n+2 s2n+1ð Þ, að Þ
+ bϑ5d J2n+2 s2n+1ð Þ, S2n+1 uð Þ, að Þ

≼bd S2n+1 uð Þ, q, μ2n+1ð Þ + bd μ2n+1, q, að Þ
+ bϑ1d q, μ2n, að Þ + bϑ2d q, S2n+1 uð Þ, að Þ
+ bϑ3d μ2n, μ2n+1, að Þ + bϑ4d q, μ2n+1, að Þ
+ b2ϑ5d μ2n, S2n+1 uð Þ, qð Þ
+ b2ϑ5d μ2n, q, að Þ + b2ϑ5d q, S2n+1 uð Þ, að Þ:

ð35Þ

That is,

e − bϑ3 − b2ϑ4
� �

d T2n+2 pð Þ, q, að Þ
≤ bd μ2n, T2n+2 pð Þ, að Þ + b2ϑ4d μ2n−1, T2n+2 pð Þ, qð Þ

+ b + bϑ5ð Þd μ2n, q, að Þ + bϑ1 + b2ϑ4
� �

d μ2n−1, q, að Þ
+ bϑ2d μ2n−1, μ2n, að Þ:

ð36Þ

Therefore, it follows from Proposition 29 and Lemmas
15 and 16 that

e − bϑ2 − b2ϑ5
� �

d S2n+1 uð Þ, q, að Þ≼z∗n , ð37Þ

where fz∗ng is a c-sequence in CÛ. In addition, from Propo-
sition 2 and

r bϑ3 + b2ϑ4
� �

≤ r bð Þr ϑ3ð Þ + r b2
� �

r ϑ4ð Þ < 1, ð38Þ

it means that e − ðbϑ2 + b2ϑ5Þ is invertible. In this case,
we have

e − bϑ2 − b2ϑ5
� �

d S2n+1 uð Þ, q, að Þ≪ c, ð39Þ

for any c≫ θÛ, which together with Lemma 23 implies
that θÛ≼dðS2n+1ðuÞ, q, aÞ≪ c for any a ∈ℵ, n ∈ℕ, and c≫
θÛ as ðe − ðbϑ2 + b2ϑ5ÞÞ is invertible. Therefore, by Lemma
24, we have dðS2n+1ðuÞ, q, aÞ = θÛ for any n ∈ℕ. Namely,
S2n+1ðuÞ = q for any n ∈ℕ. That is, S2n+1ðuÞ = q = I2n+3ðuÞ.

At the same time, as q = S2n+1ðuÞ ∈ EiðℵÞ ⊆HlðℵÞ, there
exists p ∈ℵ such that J2n+2ðpÞ = q. Now, we show that
T2n+2ðpÞ = q. From (9), we have

d T2n+2 pð Þ, q, að Þ = d S2n+1 uð Þ, T2n+2 pð Þ, að Þ
≼ϑ1d I2n+3 uð Þ, J2n+2 pð Þ, að Þ

+ ϑ2d I2n+3 uð Þ, S2n+1 uð Þ, að Þ
+ ϑ3d J2n+2 pð Þ, T2n+2 pð Þ, að Þ
+ ϑ4d I2n+3 uð Þ, T2n+2 pð Þ, að Þ
+ ϑ5d J2n+2 pð Þ, S2n+1 uð Þ, að Þ

= ϑ1d q, q, að Þ + ϑ2d q, q, að Þ
+ ϑ3d q, T2n+2 pð Þ, að Þ
+ ϑ4d q, T2n+2 pð Þ, að Þ + ϑ5d q, q, að Þ:

ð40Þ

That is,

d T2n+2 pð Þ, q, að Þ≼ ϑ3 + ϑ4ð Þd T2n+2 pð Þ, q, að Þ: ð41Þ

Hence, by Lemma 20, we know that dðT2n+2ðpÞ, q, aÞ =
θÛ, and so T2n+2ðpÞ = q. Therefore, T2n+2ðpÞ = J2n+2ðpÞ = q
and S2n+1ðuÞ = I2n+3ðuÞ = q.

Finally, we show that S2i+1 and I2k+3, T2j+2, and J2l+2 have
a unique point of coincidence in ℵ. Assume that there is
another point z ∈ℵ such that T2n+2ðxÞ = J2n+2 = z; then,
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d q, z, að Þ = d S2n+1 uð Þ, T2n+2 xð Þ, að Þ
≼ϑ1d I2n+3 uð Þ, J2n+2 xð Þ, að Þ

+ ϑ2d I2n+3 uð Þ, S2n+1 uð Þ, að Þ
+ ϑ3d J2n+2 xð Þ, T2n+2 xð Þ, að Þ
+ ϑ4d I2n+3 uð Þ, T2n+2 xð Þ, að Þ
+ ϑ5d J2n+2 xð Þ, S2n+1 uð Þ, að Þ

= ϑ1d q, z, að Þ + ϑ2d q, q, að Þ + ϑ3d z, z, að Þ
+ ϑ4d q, z, að Þ + ϑ5d z, q, að Þ:

ð42Þ

That is,

d q, z, að Þ≼ ϑ1 + ϑ4 + ϑ5ð Þd q, z, að Þ: ð43Þ

Hence, by Lemma 20, we have that dðq, z, aÞ = θÛ, and
so q = z; that is, q is the unique point of coincidence of
T2j+2 and J2l+2.

Similarly, we also have q which is the unique point of
coincidence of S2i+1 and I2k+3 by induction.

So, according to Lemma 28, q is the unique common
fixed point of fS2i+1, I2k+3g and fT2j+2, J2l+2g for each i, j, k
, l = 1, 2, 3,⋯. Therefore, q is the unique common fixed
point of S2i+1, I2k+3, T2j+2, and J2l+2.

Now, it is left to show that q is the unique common fixed
point of fEig∞i=1, fFjg∞j=1, fGkg∞k=1, and fHlg∞l=1.

As q = S2n+1ðqÞ = Eηn
n ðqÞ, so we have EnðqÞ = EnðEηn

n ðqÞÞ
= Eηn

n ðEnðqÞÞ = S2n+1ðqÞ, that is, S2n+1ðEnðqÞÞ = EnðqÞ. But
S2n+1ðqÞ = q is unique; therefore, EnðqÞ = q for n = 1, 2, 3,⋯.

Also, as q = T2n+2ðqÞ = Fηn
n ðqÞ, so we have FnðqÞ = Fnð

Fηn
n ðqÞÞ = Fηn

n ðFnðqÞÞ = T2n+2ðqÞ, that is, T2n+2ðFnðqÞÞ = Fnð
qÞ. But T2n+2ðqÞ = q is unique; therefore, FnðqÞ = q for n =
1, 2, 3,⋯. Similarly, GnðqÞ = q and HnðqÞ = q for n = 1, 2, 3,
⋯. Thus, the four families of mappings fEig∞i=1, fFjg∞j=1,
fGkg∞k=1, and fHlg∞l=1 have a unique common fixed point. ☐

Remark 31. Theorem 30 of this paper extends and improves
Theorem 2.1 of [30] from cone metric spaces to cone b2
-metric spaces; also, it extends and improves Theorem 3.2
of [17] and Theorem 3.1 of [31] from one family and two
families, respectively, to four families of mappings.

We obtain a series of new common fixed-point results
using Theorem 30 for four families of mappings in the con-
text of cone b2-metric spaces over Banach algebras, which
generalize and improve many known results from the exis-
tence literature.

Corollary 32. Let ðℵ, dÞ over the Banach algebra Û be a cone
b2-metric space with b ± e and CÛ ≠∅ be a cone in Û. Let
fEig∞i=1, fFjg∞j=1, fGkg∞k=1, and fHlg∞l=1 be four families of

self-mappings on ℵ. For all i, j, k, l ∈ℕ, if a sequence
fηng∞n=1 exists of nonnegative integers, such that for all s,m,
z ∈ℵ,

d Eηi
i sð Þ, Fη j

j mð Þ, a
� �

≼αd Gηk
k sð Þ,Hηl

l mð Þ, a� �
+ β d Gηk

k sð Þ, Eηi
i sð Þ, a� ��

+ d Hηl
l mð Þ, Fη j

j mð Þ, a
� �i

+ γ d Gηk
k sð Þ, Fη j

j mð Þ, a
� �h

+ d Hηl
l mð Þ, Eηi

i sð Þ, a� ��
,

ð44Þ

where α, β, γ ∈CÛ with rðαÞ + rðβÞ + 2rðγÞrðbÞ < 1, rðβÞrðb
Þ + rðγÞrðb2Þ < 1, and α, β, γ, b commute. If EiðℵÞ ⊆HlðℵÞ,
FjðℵÞ ⊆GkðℵÞ, and one of EiðℵÞ, GkðℵÞ, HlðℵÞ, and Fjðℵ
Þ are a complete subspace of ℵ for each i, j, k, l ≥ 1, then
fEig∞i=1, fFjg∞j=1, fGkg∞k=1, and fHlg∞l=1 have a unique point

of coincidence in ℵ. Moreover, if fFj,Hlg and fEi,Gkg are
weakly compatible, respectively, then fEig∞i=1, fFjg∞j=1,
fGkg∞k=1, and fHlg∞l=1 have a unique common fixed point.

Proof. Let ϑ1 = α, ϑ2 = ϑ3 = β, ϑ4 = ϑ5 = γ in Theorem 30. ☐

Corollary 33. Let ðℵ, dÞ over the Banach algebra Û be a cone
b2-metric space with b ± e and CÛ ≠∅ be a cone in Û. Let
fEig∞i=1, fFjg∞j=1, fGkg∞k=1, and fHlg∞l=1 be four families of

self-mappings on ℵ. For all i, j, k, l ∈ℕ, if a sequence
fηng∞n=1 exists of nonnegative integers, such that for all s,m,
z ∈ℵ,

d Eηi
i sð Þ, Fη j

j mð Þ, a
� �

≼ϑ1d Gηk
k sð Þ,Hηl

l mð Þ, a� �
+ ϑ2d Gηk

k sð Þ, Eηi
i sð Þ, a� �

+ ϑ3d Hηl
l mð Þ, Fη j

j mð Þ, a
� �

,

ð45Þ

where ϑ1, ϑ2, ϑ3 ∈CÛ with rðϑ1Þ + rðϑ2Þ + rðϑ3Þ < 1, rðϑ2Þrðb
Þ + rðϑ3ÞrðbÞ < 1, and ϑ1, ϑ2, ϑ3, b commute. If EiðℵÞ ⊆Hlðℵ
Þ, FjðℵÞ ⊆ GkðℵÞ, and one of EiðℵÞ, GkðℵÞ, HlðℵÞ, and Fjð
ℵÞ are a complete subspace of ℵ for each i, j, k, l ≥ 1, then
fEig∞i=1, fFjg∞j=1, fGkg∞k=1, and fHlg∞l=1 have a unique point

of coincidence in ℵ. Moreover, if fFj,Hlg and fEi,Gkg are
weakly compatible, respectively, then fEig∞i=1, fFjg∞j=1,
fGkg∞k=1, and fHlg∞l=1 have a unique common fixed point.

Proof. Taking ϑ4 = ϑ5 = θÛ in Theorem 30, one can get the
desired result. ☐

Remark 34. We can have Theorem 3.1 in [21], when fEig∞i=1
and fFjg∞j=1 are the same mapping and fGkg∞k=1 and fHlg∞l=1
are the identity mappings. Therefore, Theorem 3.1 of [21] is
a special case of Corollary 33. Also, Corollary 33 of this
paper generalizes Theorem 2.1 of [10] from the cone 2-
metric space to the cone b2-metric space and extends Theo-
rem 6.1 in [12].
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Corollary 35. Let ðℵ, dÞ over the Banach algebra Û be a cone
b2 -metric space with b ± e and CÛ ≠∅ be a cone in Û. Let
fEig∞i=1, fFjg∞j=1, fGkg∞k=1, and fHlg∞l=1 be four families of

self-mappings on ℵ. For all i, j, k, l ∈ℕ, if a sequence
fηng∞n=1 exists of nonnegative integers, such that for all s,m,
z ∈ℵ,

d Eηi
i sð Þ, Fη j

j mð Þ, a
� �

≼αd Gηk
k sð Þ,Hηl

l mð Þ, a� �
+ β d Gηk

k sð Þ, Eηi
i sð Þ, a� ��

+ d Hηl
l mð Þ, Fη j

j mð Þ, a
� �i

,

ð46Þ

where α, β ∈CÛ with rðαÞ + 2rðβÞ < 1, 2rðβÞrðbÞ < 1, and α
, β, b commute. If EiðℵÞ ⊆HlðℵÞ, FjðℵÞ ⊆ GkðℵÞ, and one
of EiðℵÞ, GkðℵÞ, HlðℵÞ, and FjðℵÞ is a complete subspace
of ℵ for each i, j, k, l ≥ 1, then fEig∞i=1, fFjg∞j=1, fGkg∞k=1,
and fHlg∞l=1 have a unique point of coincidence in ℵ. More-
over, if fFj,Hlg and fEi,Gkg are weakly compatible, respec-
tively, then fEig∞i=1, fFjg∞j=1, fGkg∞k=1, and fHlg∞l=1 have a

unique common fixed point.

Proof. One can the result taking ϑ1 = α, ϑ2 = ϑ3 = β, and ϑ4
= ϑ5 = θÛ in Theorem 30. ☐

Remark 36. Corollary 35 of this paper extends Theorem 6 in
[32]; therefore, Theorem 6 in [32] is a special case of Corol-
lary 35.

Corollary 37. Let ðℵ, dÞ over the Banach algebra Û be a cone
b2-metric space with b ≽ e and CÛ ≠∅ be a cone in Û. Let
fEig∞i=1, fFjg∞j=1, fGkg∞k=1, and fHlg∞l=1 be four families of

self-mappings on ℵ. For all i, j, k, l ∈ℕ, if a sequence
fηng∞n=1 exists of nonnegative integers, such that for all s,m,
z ∈ℵ,

d Eηi
i sð Þ, Fη j

j mð Þ, a
� �

≼αd Gηk
k sð Þ,Hηl

l mð Þ, a� �
+ βd Gηk

k sð Þ, Fη j
j mð Þ, a

� �
+ γd Hηl

l mð Þ, Eηi
i sð Þ, a� �

,

ð47Þ

where α, β, γ ∈CÛ with rðαÞ + 2rðβÞrðbÞ + 2rðγÞrðbÞ < 1, rð
βÞrðb2Þ + rðγÞrðb2Þ < 1, and α, β, γ, b commute. If EiðℵÞ ⊆
HlðℵÞ, FjðℵÞ ⊆GkðℵÞ, and one of EiðℵÞ, GkðℵÞ, HlðℵÞ,
and FjðℵÞ are a complete subspace of ℵ for each i, j, k, l ≥ 1
, then fEig∞i=1, fFjg∞j=1, fGkg∞k=1, and fHlg∞l=1 have a unique
point of coincidence in ℵ. Moreover, if fFj,Hlg and fEi,Gk

g are weakly compatible, respectively, then fEig∞i=1, fFjg∞j=1,
fGkg∞k=1, and fHlg∞l=1 have a unique common fixed point.

Proof. One can get the result taking ϑ1 = α,ϑ2 = ϑ3 = θÛ and
ϑ4 = β, ϑ5 = γ in Theorem 30. ☐

Corollary 38. Let ðℵ, dÞ over the Banach algebra Û be a cone
b2-metric space with b ≽ e and CÛ ≠∅ be a cone in Û. Let
fEig∞i=1, fFjg∞j=1, fGkg∞k=1, and fHlg∞l=1 be four families of

self-mappings on ℵ. For all i, j, k, l ∈ℕ, if a sequence
fηng∞n=1 exists of nonnegative integers, such that for all s,m,
z ∈ℵ,

d Eηi
i sð Þ, Fη j

j mð Þ, a
� �

≼kd Gηk
k sð Þ, Eηi

i sð Þ, a� �
+ ld Hηl

l mð Þ, Fη j
j mð Þ, a

� �
,

ð48Þ

where k, l ∈CÛ with rðkÞ + rðlÞ < 1, rðkÞrðbÞ + rðlÞrðbÞ < 1,
and k, l, b commute. If EiðℵÞ ⊆HlðℵÞ, FjðℵÞ ⊆GkðℵÞ, and
one of EiðℵÞ, GkðℵÞ, HlðℵÞ, and FjðℵÞ are a complete sub-
space of ℵ for each i, j, k, l ≥ 1, then fEig∞i=1, fFjg∞j=1,
fGkg∞k=1, and fHlg∞l=1 have a unique point of coincidence in
ℵ. Moreover, if fFj,Hlg and fEi,Gkg are weakly compatible,
respectively, then fEig∞i=1, fFjg∞j=1, fGkg∞k=1, and fHlg∞l=1 have
a unique common fixed point.

Proof. Let ϑ1 = ϑ4 = ϑ5 = θÛ, ϑ2 = k, ϑ3 = l in Theorem 30. ☐

Corollary 39. Let ðℵ, dÞ over the Banach algebra Û be a cone
b2-metric space with b ≽ e and CÛ ≠∅ be a cone in Û. Let
fEig∞i=1, fFjg∞j=1, fGkg∞k=1, and fHlg∞l=1 be four families of

self-mappings on ℵ. For all i, j, k, l ∈ℕ, if a sequence
fηng∞n=1 exists of nonnegative integers, such that for all s,m,
z ∈ℵ,

d Eηi
i sð Þ, Fη j

j mð Þ, a
� �

≼kd Gηk
k sð Þ, Fη j

j mð Þ, a
� �

+ ld Hηl
l mð Þ, Eηi

i sð Þ, a� �
,

ð49Þ

where k, l ∈CÛ with 2rðkÞrðbÞ + 2rðlÞrðbÞ < 1, rðkÞrðb2Þ + r
ðlÞrðb2Þ < 1, and k, l, b commute. If EiðℵÞ ⊆HlðℵÞ, FjðℵÞ ⊆
GkðℵÞ, and one of EiðℵÞ, GkðℵÞ, HlðℵÞ, and FjðℵÞ are a
complete subspace of ℵ for each i, j, k, l ≥ 1, then fEig∞i=1,
fFjg∞j=1, fGkg∞k=1, and fHlg∞l=1 have a unique point of coinci-

dence in ℵ. Moreover, if fFj,Hlg and fEi,Gkg are weakly
compatible, respectively, then fEig∞i=1, fFjg∞j=1, fGkg∞k=1, and
fHlg∞l=1 have a unique common fixed point.

Proof. Let ϑ1 = ϑ2 = ϑ3 = θÛ, ϑ4 = k, ϑ5 = l in Theorem 30. ☐

Corollary 40. Let ðℵ, dÞ over the Banach algebra Û be a cone
b2 -metric space with b ≽ e and CÛ ≠∅ be a cone in Û. Let
fEig∞i=1, fFjg∞j=1, fGkg∞k=1, and fHlg∞l=1 be four families of

self-mappings on ℵ. For all i, j, k, l ∈ℕ, if a sequence
fηng∞n=1 exists of nonnegative integers, such that for all s,m,
z ∈ℵ,

d Eηi
i sð Þ, Fη j

j mð Þ, a
� �

≼kd Gηk
k sð Þ,Hηl

l mð Þ, a� �
, ð50Þ
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where k ∈CÛ with rðkÞ < 1 and k, b commute. If EiðℵÞ ⊆Hl
ðℵÞ, FjðℵÞ ⊆GkðℵÞ, and one of EiðℵÞ, GkðℵÞ, HlðℵÞ, and
FjðℵÞ are a complete subspace of ℵ for each i, j, k, l ≥ 1, then
fEig∞i=1, fFjg∞j=1, fGkg∞k=1, and fHlg∞l=1 have a unique point of
coincidence in ℵ. Moreover, if fFj,Hlg and fEi,Gkg are
weakly compatible, respectively, then fEig∞i=1, fFjg∞j=1,
fGkg∞k=1, and fHlg∞l=1 have a unique common fixed point.

Proof. Let ϑ1 = k, ϑ2 = ϑ3 = ϑ4 = ϑ5 = θÛ in Theorem 30. ☐

From the above corollary, we obtain the following.

Corollary 41. Let ðℵ, dÞ over the Banach algebra Û be a
complete cone b2-metric space with b ≽ e and CÛ ≠∅ be a
cone in Û. Let fEig∞i=1 be the family of self-mapping on ℵ.
For all i ∈ℕ and for all s,m, z ∈ℵ,

d Ei sð Þ, Ei mð Þ, að Þ≼kd s,m, að Þ, ð51Þ

where k ∈CÛ with rðkÞ < 1 and k, b commute. Then, fEig∞i=1
have a unique common fixed point.

Proof. Taking ηn = 1, Ei = Fj, and Gk,Hl which are identity
mappings in Corollary 40, then we can obtain the required
result. ☐

We finish this section with an example that will demon-
strate the consequence of Theorem 30.

Example 42. Let Û =ℝ2. For each ðs1, s2Þ ∈ Û, kðs1, s2Þk = j
s1j + js2j. The multiplication is defined by sm = ðs1, s2Þðm1,
m2Þ = ðs1m1, s1m2 + s2m1Þ. Then, Û is a Banach algebra with
unit element e = ð1, 0Þ. Let CÛ = fðs1, s2Þ ∈ℝ2 ∣ s1, s2 ≥ 0g.
Then, CÛ is a cone in Û.

Let ℵ = fðs, 0Þ ∈ℝ2 ∣ s ≥ 0g ∪ fð0, 2Þg ⊂ℝ2 and define d
: ℵ ×ℵ ×ℵ⟶ Û as follows:

d S,M, Zð Þ =
0, 0ð Þ, if atleast two of S,M, Z are equal,
d P S,M, Zð Þð Þ, P denotes permutations,
Δ, Δð Þ, otherwise,

0
BB@

ð52Þ

where Δ is the square of the area of the triangle S,M, Z. We
have

d s, 0ð Þ, m, 0ð Þ, 0, 2ð Þð Þ≼d s, 0ð Þ, m, 0ð Þ, z, 0ð Þð Þ
+ d s, 0ð Þ, z, 0ð Þ, 0, 2ð Þð Þ
+ d z, 0ð Þ, m, 0ð Þ, 0, 2ð Þð Þ:

ð53Þ

That is, ðs −mÞ2≼ðs − zÞ2 + ðz −mÞ2, which shows that d
is not a cone 2-metric, because ð−9/2,−9/2Þ∈CÛ for s,m, z
≥ 0 with s = 5, m = 0, and z = 1/2. But for the parameter b

= ð2, 0Þ ≽ e is a cone b2-metric space over the Banach alge-
bra Û.

Now, we define mappings Ei : ℵ⟶ℵði = 1, 2, 3,⋯Þ by

Ei s, 0ð Þð Þ = 1
6

� 	1/ 2i−1ð Þ 3
2

� 	1/ 2i−1ð Þ s
s2i−2

, 0
 !

,

Ei 0, 2ð Þð Þ = 0, 0ð Þ:
ð54Þ

We have

E2i−1
i s, 0ð Þð Þ = E2i−2

i Ei s, 0ð Þð Þð Þ

= E2i−2
i

1
6

� 	1/ 2i−1ð Þ 3
2

� 	1/ 2i−1ð Þ s
s2i−2

, 0
 !

= E2i−3
i

1
6

� 	2/ 2i−1ð Þ 3
2

� 	2/ 2i−1ð Þ s2

s2i−2
, 0

 !

= E2i−4
i

1
6

� 	3/ 2i−1ð Þ 3
2

� 	3/ 2i−1ð Þ s3

s2i−2
, 0

 !

=⋯⋯

= Ei
1
6

� 	 2i−2ð Þ/ 2i−1ð Þ 3
2

� 	 2i−2ð Þ/ 2i−1ð Þ s2i−2

s2i−2
, 0

 !

= 1
6

� 	 2i−1ð Þ/ 2i−1ð Þ 3
2

� 	 2i−1ð Þ/ 2i−1ð Þ s2i−1

s2i−2
, 0

 !

= 1
4 s, 0
� 	

:

ð55Þ

We define mappings Gk : ℵ⟶ℵ (k = 1, 2, 3,⋯) by

Gk s, 0ð Þð Þ = 1
3

� 	1/ 2k−1ð Þ 1
2

� 	−1/ 2k−1ð Þ s
s2k−2

, 0
 !

,

Gk 0, 2ð Þð Þ = 0, 0ð Þ:
ð56Þ

We have

G2k−1
k s, 0ð Þð Þ = G2k−2

k Gk s, 0ð Þð Þð Þ

= G2k−2
k

1
3

� 	1/ 2k−1ð Þ 1
2

� 	−1/ 2k−1ð Þ s
s2k−2

, 0
 !

= G2k−3
k

1
3

� 	2/ 2i−1ð Þ 1
2

� 	−2/ 2k−1ð Þ s2

s2k−2
, 0

 !

= G2k−4
k

1
3

� 	3/ 2k−1ð Þ 1
2

� 	−3/ 2k−1ð Þ s3

s2k−2
, 0

 !

=⋯⋯

= Gk
1
3

� 	 2k−2ð Þ/ 2k−1ð Þ 1
2

� 	 −2k−2ð Þ/ 2k−1ð Þ s2k−2

s2k−2
, 0

 !
,

G2k−1
k s, 0ð Þð Þ = 1

3

� 	 2k−1ð Þ/ 2k−1ð Þ 1
2

� 	 −2k+1ð Þ/ 2k−1ð Þ s2k−1

s2k−2
, 0

 !

= 2
3 s, 0
� 	

:

ð57Þ

Similarly, we define mappings Fj,Hl : ℵ⟶ℵ
(j, l = 1, 2, 3,⋯) by
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Fj s, 0ð Þð Þ = 2
3

� 	1/ 2j−1ð Þ 3
10

� 	1/ 2j−1ð Þ s
s2j−2

, 0
 !

,

Fj 0, 2ð Þð Þ = 0, 0ð Þ,

Hl s, 0ð Þð Þ = 2
3

� 	1/ 2l−1ð Þ 1
2

� 	−1/ 2l−1ð Þ s
s2l−2

, 0
 !

,

Hl 0, 2ð Þð Þ = 0, 0ð Þ:

ð58Þ

Then, it is not difficult to show that F2j−1
j ððs, 0ÞÞ = ðð1/5

Þs, 0Þ and H2l−1
l ððs, 0ÞÞ = ðð1/3Þs, 0Þ. Choose ϑ1 = ð1/10, 0Þ,

ϑ2 = ϑ3 = ð1/8, 0Þ, and ϑ4 = ϑ5 = ð1/16, 0Þ. Clearly,

〠
3

w=1
r ϑwð Þ + 2r ϑ4ð Þr bð Þ + 2r ϑ5ð Þr bð Þ

= 1
10 + 1

8 + 1
8 + 2 1

16

� 	
2 + 2 1

16

� 	
2 = 34

40 < 1,
ð59Þ

also rðϑ2ÞrðbÞ + rðϑ5Þrðb2Þ = 2ð1/8Þ + 4ð1/16Þ = 1/2 < 1
and rðϑ3ÞrðbÞ + rðϑ4Þrðb2Þ = 2ð1/8Þ + 4ð1/16Þ = 1/2 < 1.

Now, considering the contractive condition (8), we have

d
s
4 , 0
� �

, s
5 , 0
� �

, 0, 2ð Þ
� �

≼
1
10 , 0
� 	

d
2s
3 , 0

� 	
, s

3 , 0
� �

, 0, 2ð Þ
� 	

+ 1
8 , 0
� 	

d
2s
3 , 0

� 	
, s

4 , 0
� �

, 0, 2ð Þ
� 	

+ 1
8 , 0
� 	

d
s
3 , 0
� �

, s
5 , 0
� �

, 0, 2ð Þ
� �

+ 1
16 , 0
� 	

d
2s
3 , 0

� 	
, s

5 , 0
� �

, 0, 2ð Þ
� 	

+ 1
16 , 0
� 	

d
s
3 , 0
� �

, s
4 , 0
� �

, 0, 2ð Þ
� �

,

ð60Þ

that is,

s
4 −

s
5

� �2
, s

4 −
s
5

� �2� 	
≼

1
10 , 0
� 	 2s

3 −
s
3

� 	2
, 2s

3 −
s
3

� 	2
 !

+ 1
8 , 0
� 	 2s

3 −
s
4

� 	2
, 2s

3 −
s
4

� 	2
 !

+ 1
8 , 0
� 	

s
3 −

s
5

� �2
, s

3 −
s
5

� �2� 	

+ 1
16 , 0
� 	 2s

3 −
s
5

� 	2
, 2s

3 −
s
5

� 	2
 !

+ 1
16 , 0
� 	

+ s
3 −

s
4

� �2
, s

3 −
s
4

� �2� 	

= 1
10

2s
3 −

s
3

� 	2
, 1
10

2s
3 −

s
3

� 	2
 !

+ 1
8

2s
3 −

s
4

� 	2
, 18

2s
3 −

s
4

� 	2
 !

+ 1
8

s
3 −

s
5

� �2
, 18

s
3 −

s
5

� �2� 	

+ 1
16

2s
3 −

s
5

� 	2
, 1
16

2s
3 −

s
5

� 	2
 !

+ 1
16

s
3 −

s
4

� �2
, 1
16

s
3 −

s
4

� �2� 	
,

ð61Þ

which means that

s
4 −

s
5

� �2
≼
1
10

2s
3 −

s
3

� 	2
+ 1
8

2s
3 −

s
4

� 	2

+ 1
8

s
3 −

s
5

� �2
+ 1
16

2s
3 −

s
5

� 	2

+ 1
16

s
3 −

s
4

� �2
, s

20
� �2° 1

10
s
3
� �2

+ 1
8

5s
12

� 	2
+ 1
8

2s
15

� 	2

+ 1
16

7s
15

� 	2
+ 1
16

s
12
� �2

,

ð62Þ

that is,

s2

400≼
s2

90 + 25s2
1152 + 4s2

1800 + 49s2
3600 + s2

2304 , ð63Þ

which shows that s2/400≼2827s2/57600, and so ð2827s2/
57600Þ − ðs2/400Þ ∈CÛ, which is true for all s ≥ 0. Hence,
condition (8) is true for all s,m, a ∈ℵ and i, j, k, l ≥ 1, where
ηi = 2i − 1, ηj = 2j − 1, ηk = 2k − 1, and ηl = 2l − 1. All other
conditions of Theorem 30 are satisfied. By Theorem 30, Ei,
Fj, Gk, and Hl have a unique common fixed point ð0, 0Þ
for all i, j, k, l ≥ 1.

3. Application to the Infinite System of
Integral Equations

We give here a couple of auxiliary facts that will be needed in
our further considerations. Let Û =ℝ2 with norm k:kÛ be a
real Banach algebra. Let I = ½0, T�, and denote by CðI, ÛÞ the
space consisting of all continuous functions defined on
interval I with values in the Banach algebra Û. The space
CðI, ÛÞ will be equipped with ksk =max fksðaÞkÛ : a ∈ Ig.

Let ℵ = CðI, ÛÞ and define d : ℵ3 ⟶ Û by

d s tð Þ,m tð Þ, zð Þ = min s tð Þ −m tð Þj j, m tð Þ − zj j, s tð Þ − zj jf g½ �p,
ð64Þ

where p ≥ 1 and for all sðtÞ,mðtÞ, z ∈ℵ. Then, ðℵ, dÞ is a
complete cone b2-metric space over the Banach algebra.

We consider the infinite system of integral equations of
the form

si tð Þ = gi tð Þ +
ðT
0
Mi t,wð Þf i w, s wð Þð Þdw, ð65Þ
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where i = 1, 2, 3,⋯. Let Ei : ℵ⟶ℵ. We redefine the above
infinite system of integral equations as

Ei si tð Þð Þ = gi tð Þ +
ðT
0
Mi t,wð Þf i w, s wð Þð Þdw, ð66Þ

for all siðtÞ ∈ℵ and t,w ∈ I. Clearly, by using Corollary
41, the existence of solution to (65) is equivalent to the exis-
tence of a common fixed point of Ei.

We assume that

(i) gi : I ⟶ℝ are continuous for each i = 1, 2, 3,⋯

(ii) Mi : I ×ℝ⟶ ½0,+∞Þ are continuous and
Ð T
0Miðt

,wÞdw ≤ 1 for each i = 1, 2, 3,⋯
(iii) f i : I ×ℝ⟶ℝ are continuous for each i = 1, 2, 3,

⋯ such that

f i w, s wð Þð Þ − f i w,m wð Þð Þj j ≤ v1/p min s wð Þ −m wð Þj j, m wð Þjf½
− zj, s wð Þ − zj jg�,

ð67Þ

for all sðwÞ,mðwÞ, z ∈ℵ and 0 ≤ v < 1.

Theorem 43. Under the assumptions (i)–(iii), the infinite sys-
tem of integral equations (65) has a unique solution in ℵ.

Proof. Take Û =ℝ2 with norm ksk = kðs1, s2Þk = ∣s1 ∣ + ∣ s2 ∣ ,
and multiplication is defined by the following way:

sm = s1, s2ð Þ m1,m2ð Þ = s1m1, s1m2 + s2m1ð Þ: ð68Þ

Let CÛ = fðs1, s2Þ ∈ Û : s1, s2 ≥ 0g. It is clear that CÛ is a
normal cone and Û is a Banach algebra with unit element
e = ð1, 0Þ.

Consider the family of mapping Ei : ℵ⟶ℵ defined by
(66). Let siðtÞ,miðtÞ, z ∈ℵ. From (64), we deduce that

d Ei si tð Þð Þ, Ei mi tð Þð Þ, zð Þ = max
a∈ 0,T½ �

min Ei si tð Þð Þjf½

− Ei mi tð Þð Þj, Ei si tð Þð Þj
− zj, Ei mi tð Þð Þ − zj jg�p

≼ max
a∈ 0,T½ �

Ei si tð Þð Þ − Ei mi tð Þð Þj j
� 	p

= max
a∈ 0,T½ �

ðT
0
Mi t,wð Þf i w, s wð Þð Þdw






�

−
ðT
0
Mi t,wð Þf i w,m wð Þð Þdw





Þ
p

= max
a∈ 0,T½ �

ðT
0
Mi t,wð Þ f i w, s wð Þð Þ½






�
− f i w,m wð Þð Þ�dwjÞp

≼ max
a∈ 0,T½ �

ðT
0
Mi t,wð Þ f i w, s wð Þð Þj

�
− f i w,m wð Þð ÞjdwÞp

≼ max
a∈ 0,T½ �

ðT
0
Mi t,wð Þv1/p min s wð Þjf½

�
−m wð Þj, m wð Þ − zj j, s wð Þ − zj jg�dwÞp

≼
ðT
0

max
a∈ 0,T½ �

Mi t,wð Þ
� 	

v1/p
�

� max
a∈ 0,T½ �

min s wð Þ −m wð Þj j, m wð Þjf½
�

− zj, s wð Þ − zj jg�p�1/pdw�p
≤
ðT
0

max
a∈ 0,T½ �

Mi t,wð Þ
� 	

v1/p
�

� d si tð Þ,mi tð Þ, zð Þð Þ1/pdw
�p
:

ð69Þ

Therefore,

d Ei si tð Þð Þ, Ei mi tð Þð Þ, zð Þ≼vd si tð Þ,mi tð Þ, zð Þ: ð70Þ

Now, all the assumptions of Corollary 41 are fulfilled and
the family of mapping Ei has a unique common fixed point
in ℵ, which means that the infinite system of integral equa-
tions (65) has a unique solution in ℵ. ☐
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This paper is dedicated to construct a viscosity extragradient algorithm for finding fixed points in a CAT(0) space. The
mappings we consider are nonexpansive. Strong convergence of the algorithm is obtained. The results established in this
work extend and improve some recent discovers in the literature.

1. Introduction

Let X be a CAT(0) space and K be any closed convex subset
of X. Let ϕ : K × K ⟶ℝ be a bifunction with ϕðv, vÞ = 0 for
all v ∈ K . The main equilibrium problem is to get r ∈ K
satisfying

ϕ r,wð Þ ≥ 0, for allw ∈ K: ð1Þ

Finding solutions for equilibrium problems aids in
solving problems in other areas of science like physics,
optimization, and economics. The set of all solutions of
the equilibrium problem is denoted by EPðϕÞ, i.e.,

EP ϕð Þ = r ∈ K : ϕ r,wð Þ ≥ 0,∀w ∈ Kf g: ð2Þ

Numerous iterative algorithms for monotome equilib-
rium have been investigated previously; for finding the
solutions, see [1, 2]. Here, we will find the iterative algo-
rithm for pseudomonotone bifunction. The bifunction ϕ
is said to be pseudomonotone if

ϕ v,wð Þ ≥ 0⟶ ϕ w, vð Þ ≤ 0, for all v,w ∈ K: ð3Þ

An extragradient method, to solve a pseudomonotone
equilibrium problem in ℝn, was introduced in [3]. The

method of extragradient is as follows: given v0 ∈ K , find
successively wn and vn+1 by

wn = argminw∈K λnϕ vn,wð Þ + 1
2

w − vnk k2
� �

,

vn+1 = argminw∈K λnϕ wn,wð Þ + 1
2

w − vnk k2
� �

,

8>>><
>>>:

ð4Þ

where fλng ⊂ ð0,∞Þ and ϕ is such that the Lipschitz (type)
condition holds. In [4], the following algorithm was intro-
duced by Anh for finding a fixed point of a nonexpansive
mapping T which is also the solution of the equilibrium
problem for pseudomonotone bifunction ϕ in a Hilbert
space:

wn = argminw∈K λnϕ vn,wð Þ + 1
2

w − vnk k2
� �

,

vn+1 = argminw∈K λnϕ wn,wð Þ + 1
2

w − vnk k2
� �

,

8>>><
>>>:

ð5Þ

where fαng, fλng ⊂ ð0, 1� and ϕ is such that the Lipschitz
(type) condition holds. The convergence (strong) of fvng
with lim

n⟶∞
kvn+1 − vnk = 0 and under certain considerations

on fαng, fλng ∈ ð0, 1�.
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In 2012, an algorithm for hybrid projection was consid-
ered by Vuong et al. [5] for

wn = argminw∈K λnϕ vn,wð Þ + 1
2

w − vnk k2
� �

,

vn+1 = argminw∈K λnϕ vn,wð Þ + 1
2

w − vnk k2
� �

,

sn = αnv0 + 1 − αn βnz + 1 − βnð ÞSzn½ �ð ,

Kn = z ∈ K : sn − zk k ≤ vn − zk kf g,
Dn = z ∈ K : vn − z, v0 − vnh i ≥ 0f g,
vn+1 = PKn∩Dn

v0,

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð6Þ

where fαng, fλng ∈ ð0, 1� and ϕ is such that the Lipschitz
(type) condition holds. The convergence proved was strong.

The Armijo-type method for pseudomonotone equilib-
rium problems was formulated in [6] in the setting of Hil-
bert spaces. After that, the authors in [7] presented the
convergence of weak and strong types for the algorithms in
order to solve the equilibrium problem. The admirable out-
comes are due to Dinh and Kim in which there is no restric-
tion on monotonicity of the bifunction. The current results
of equilibrium problems are given for pseudomonotone
type. For further references, see [8, 9]. To the current knowl-
edge, the authors modified the “hybrid projection algorithm”
in order to get convergence of strong type for iterative algo-
rithms of equilibrium problems of pseudomonotone type
[10, 11].

The aim of this paper is to construct an extragradient
algorithm of viscosity type for finding the same element
for the solution set of a pseudomonotone equilibrium prob-
lem and fixed point set of a nonexpansive mapping in the
framework of a CAT(0) space and derive its strong
convergence.

2. Definitions and Known Results

In this section, we present basic definitions and known
results. The notions that are not defined in this paper can
be seen in [12–14].

Throughout this paper, ðX, dÞ denotes the geodesic met-
ric space with a geodesic triangle Δðv1, v2, v3Þ in ðX, dÞ,
where v1, v2, and v3 represent the vertices of Δ in ðX, dÞ.
We will represent ðX, dÞ as X henceforth. A comparison tri-
angle in X is a triangle �Δðv1, v2, v3Þ≔ Δð �v1, �v2, �v3Þ in the
Euclidean plane E2 such that dE2ðvi, vjÞ = dðvi, vjÞ for i, j =
1, 2, 3:

A geodesic space is called a CAT(0) space, if all the geo-
desic triangles satisfy the following comparison axiom

d v,wð Þ ≤ dE2 �v, �wð Þ: ð7Þ

Let v,w ∈ X, and by Lemma 2.1(iv) of [15] for each s ∈
½0, 1�, there exists a unique point z ∈ ½v,w� such that

d v, zð Þ = sd v,wð Þ, ð8Þ

d w, zð Þ = 1 − sð Þd v,wð Þ, ð9Þ

for all v,w ∈ Δðv1, v2, v3Þ with �v, �w the corresponding points
of v,w in �Δðv1, v2, v3Þ.

Lemma 1 (see [16]). Let X be a CAT(0) space. Then the fol-
lowing assertions are true:

(i) For any v,w, z ∈ X and s ∈ ½0, 1�,

d 1 − sð Þv ⊕ sy, zð Þ ≤ 1 − sð Þd v, zð Þ + sd w, zð Þ ð10Þ

(ii) For any v,w, z ∈ X and s ∈ ½0, 1�,

d2 1 − sð Þv ⊕ sy, zð Þ ≤ 1 − sð Þ2d v, zð Þ + sd2 w, zð Þ − s 1 − sð Þd2 v,wð Þ
ð11Þ

Let ðX, dÞ be a uniquely geodesic metric space; that is,
for each v,w ∈ X, there exists a unique isometry c : ½0, d
ðv,wÞ�⟶ X such that cð0Þ = v and cðdðv,wÞÞ =w, and
in this case, we write ½v,w� = fcðtÞ: t ∈ ½0, dðx, yÞ�g. For each
s ∈ ½0, 1�, we write ð1 − sÞv ⊕ sw for the element z ∈ ½v,w� such
that dðz, vÞ = sdðv,wÞ and dðz,wÞ = ð1 − sÞdðv,wÞ.

Hadamard spaces are the complete CAT(0) spaces; for
details, see [16]. If v,w1,w2 are points of a CAT(0) space
and w0 is the midpoint of the segment ½w1,w2�, which we
will denote by w1/2 ⊕w2/2, then the CAT(0) inequality gives

d2 v,
w1
2

⊕
w2
2

� �
≤
1
2
d2 v,w1ð Þ + 1

2
d2 v,w2ð Þ − 1

4
d2 w1,w2ð Þ:

ð12Þ

This inequality is called the (CN) inequality of Bruhat
and Tits [16]. In fact, a geodesic space is a CAT(0) space if
and only if it satisfies the (CN) inequality (cf. [16], page
163). Berg and Nikolaev [17] introduced the idea of the
quasilinearization as follows: Let us denote the pair ðα, βÞ
∈ X × X by αβ

 �
and call it a vector. Then, quasilineariza-

tion is defined as a map

:,:h i: X × Xð Þ × X × Xð Þ⟶ℝ ð13Þ

defined as

αβ
�!

,νϑ
!D E

=
1
2

d2 α, ϑð Þ + d2 β, νð Þ − d2 α, νð Þ − d2 β, ϑð Þ� �
:

ð14Þ

It is easy to see that h αβ�!,νϑ
!i = hνϑ!, αβ

�!i, h αβ�!,νϑ
!i =

−hβα�!, νϑ
!i, and hαx!,νϑ

!i + h xβ�!, νϑ
!i = h αβ�!, νϑ

!i for all α,
β, ν, ϑ ∈ X. We say that X satisfies the Cauchy-Schwarz
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inequality if

αβ
 �

,νϑ
 D E

≤ d α, βð Þd ν, ϑð Þ ð15Þ

for all α, β, ν, ϑ ∈ X. It is well known [17] that a geodesically
connected metric space is a CAT(0) space if and only if it
satisfies the Cauchy-Schwarz inequality.

In 1976, Lim gave the definition of Δ-convergence in a
general metric space case (see [18]). He named this type of
convergence as strong Δ-convergence, proving that CAT(0)
spaces provide a natural framework for the Lim concept
and, in the setting of Δ-convergence, provide many proper-
ties of the usual notion of weak convergence in Banach
spaces. Let us recall this type of convergence for the case of
CAT(0) spaces, as follows.

Definition 2. Let ðX, dÞ be a CAT(0) space. A sequence fvng
in X is said to Δ-converge to v ∈ X if and only if v is the
unique asymptotic center of all subsequences of fvng. In this
case, we write Δ − lim

n⟶∞
vn = v, and v is called the Δ-limit of

fvng.

Note that the asymptotic center AðfvngÞ of fvng is the
set

A vnf gð Þ≔ v ∈ X : r v, vnf gð Þ = r vnf gð Þf g, ð16Þ

and the asymptotic radius rðfvngÞ of fxng is given by

r vnf gð Þ≔ inf
v∈X

r x, vnf gð Þf g, ð17Þ

where rðv, fvngÞ≔ limsup
n⟶∞

dðvn, vÞ, for fvng is a bounded

sequence in X.
Ahmadi Kakavandi and Amini introduced in [19]

another variant of weak convergence in complete CAT(0)
spaces, taking into account the concept of quasilinearization.

Definition 3 (see [19]). Let ðX, dÞ be a complete CAT(0)
space. A sequence fvng in X is said to w-converge to an ele-
ment v ∈ X if for each w ∈ X, lim

n⟶∞
hvvn�!, vw�!i = 0.

Obviously, the convergence in the metric implies w
-convergence, and the w-convergence implies Δ-conver-
gence (see Proposition 2.5 in [19]). But the converse is not
true (see [20]). The following result proves an explicit con-
nection between w-convergence and Δ-convergence.

Theorem 4 (see [20]). Let ðX, dÞ be a complete CAT(0) space.
Then a sequence fvng in XΔ-converges to v ∈ X if and only if,
for every w ∈ X, limsup

n⟶∞
hvvn�!, vw�!i ≤ 0.

Further, let us recall some definitions for the case of a
CAT(0) space.

Definition 5. Let X be a CAT(0) space and T : X ⟶ X be a
mapping. Then T is called nonexpansive if

d T vð Þ, T wð Þð Þ ≤ d v,wð Þ, for every v,w ∈ K: ð18Þ

Definition 6. Let X be a CAT(0) space and T : X ⟶ X be a
mapping. Then T is called a contraction if

d T vð Þ, T wð Þð Þ ≤ θd v,wð Þ, for every v,w ∈ K , θ ∈ 0, 1½ Þ:
ð19Þ

Throughout this paper, we denote by FixðTÞ = fv ∈ C ∣
Tv = vg the set of fixed points of T .

Concerning the convexity in CAT(0) spaces, we remark
that, in this type of spaces, angles exist in a strong sense,
the distance function is convex, and one has both uniform
convexity and orthogonal projection onto convex subsets.
Moreover, CAT(0) spaces turn up to represent a real frame-
work for convexity theory.

Remark 7. Considering the CAT(0) space case, a subset C
⊂ X is said to be convex if C includes every geodesic seg-
ment joining any two of its points, i.e., ð1 − tÞx ⊕ ty ∈ C, for
every x, y ∈ C and t ∈ ð0, 1Þ.

Definition 8. Let X be a CAT(0) space. A function f : X
⟶ ð−∞,+∞� is said to be convex if

f tv ⊕ 1 − tð Þwð Þ ≤ t f vð Þ + 1 − tð Þf wð Þ, ð20Þ

for all v,w ∈ X, and t ∈ ð0, 1Þ.

Let X be a CAT(0) space and K ⊂ X a convex and closed
subset. Further, let a bifunction ϕ : K × K ⟶ℝ; then ϕ is
called

(1) ς-strong monotone ðς < 0Þ on K if ∀v,w ∈ K , we
have

ϕ v,wð Þ + ϕ w, vð Þ ≤ ςd2 v,wð Þ ð21Þ

(2) monotone on K if for each v,w ∈ K , one has

ϕ v,wð Þ + ϕ w, vð Þ ≤ 0 ð22Þ

(3) pseudomonotone on K if for each v,w ∈ K , one has

ϕ v,wð Þ ≥ 0⇒ ϕ w, vð Þ ≤ 0 ð23Þ

The above bifunction ϕ is Lipschitz-type continuous on
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K , if there exist two constants c1 > 0 and c2 > 0 such that

ϕ v, zð Þ ≤ ϕ v,wð Þ + ϕ w, zð Þ + c1d
2 v,wð Þ + c2d

2 w, zð Þ, for every v,w ∈ K:

ð24Þ

In [19], Kakavandi and Amini define the notion of a sub-
differential of a function as follows.

Definition 9 (see [19]). Let f : X ⟶ ð−∞,+∞� be a proper
function with efficient domain Dð f Þ = fv : f ðvÞ<+∞g, then
the subdifferential of f is the multifunction ∂f : X⇉ X∗

defined by

∂f v∗ð Þ = v∗ : f zð Þ − f vð Þ ≥ v∗, vz!	 

, for all z ∈ X

� �
, ð25Þ

when v ∈Dð f Þ and ∂f ðvÞ =∅.

We mention that X∗ denote the notion of dual space of
the metric space ðX, dÞ. For more details, see [19].

In [21], Georgiou and Papadopoulos gave a strong dis-
cussion concerning the convergence types and topologies
on function spaces. Then, let us consider X, Y , Z as three
topological spaces. A mapping f : X ⟶ Y into a is called
weakly continuous at v ∈ X if for every open neighbourhood
V of f ðvÞ there exists an open neighbourhood U of v such
that f ðUÞ ⊆ ClðVÞ. ClðVÞ denotes the closure of V . The
mapping f is weakly continuous on X, if it is weakly contin-
uous at each point of X. In the following, WCðY , ZÞ denotes
the set of all weakly continuous maps of Y into Z. If τ is a
topology on the setWCðY , ZÞ, then the corresponding topo-
logical space is denoted by WCτðY , ZÞ.

In this conditions, we can recall the notion of jointly
weakly continuous function.

Definition 10. A topology τ on WCðY , ZÞ is called weakly
jointly continuous if for every X, the weak continuity of a
map G : X⟶WCτðY , ZÞ implies the weak continuity of
the map ~G : X × Y ⟶ Z.

For more details and results concerning the topology and
the convergence types in function spaces, see [21–23].

Further, taking into account the previous notions, let us
consider the following properties of ϕ:

(1) ϕðv, vÞ = 0 for all v ∈ K , and ϕ is taken pseudomono-
tone on the subset K

(2) ϕ is taken to be Lipschitz-type continuous on the
subset K

(3) For all v ∈ K , w⟶ ϕðv,wÞ is subdifferentiable and
convex

(4) ϕðv,wÞ is taken jointly weakly continuous on K × K

With conditions (6), (7), (8), and (10), the set EPðϕÞ is
convex and closed.

Lemma 11 (see [24]). Let X be a CAT(0) space. Assume that
EPðϕÞ ≠∅ and v ∈ K . Further, let w, s ∈ K be solutions of

w = argminz∈K λϕ v,wð Þ + 1
2
d2 v, zð Þ

� �
, ð26Þ

s = argmina∈K λϕ v,wð Þ + 1
2
d2 w, að Þ

� �
, ð27Þ

strongly convex problems, where λ > 0, then

λ ϕ v, zð Þ − ϕ v,wð Þ½ � ≥ wv�!, wz�!	 

, z ∈ K ,

d2 s, xð Þ ≤ d2 v, xð Þ − 1 − 2λc1ð Þd2 v,wð Þ
− 1 − 2λc2ð Þd2 s, xð Þ, ∀x ∈ EP ϕð Þ:

ð28Þ

Lemma 12 (the demiclosedness principle). Let K be a non-
empty closed convex subset of the CAT(0) space X and
T : K ⟶ K such that

vn ⇀ v ∈ K ,

d vn, Tvnð Þ⟶ 0:
ð29Þ

Then, v = Tv. (Here, ⟶ (respectively, ⇀ ) denotes
strong (respectively, weak) convergence.) The notion of
weak convergence is the same as defined in [25].

Lemma 13 (see [26]). Let X be a CAT(0) space and K be any
closed convex subset of X. For each point v ∈ X, there exists a
unique nearest point of K , denoted by PKv, such that dðv,
PKvÞ ≤ dðv,wÞ for all w ∈ K . Such a PK is metric projection
onto K from X. Then,

(1) for all v ∈ X and z ∈ K , z = PKv iff

vz!, zw�!	 

≥ 0, for all w ∈ K ð30Þ

(2) for all v ∈ X and z ∈ K , it holds

d2 PKv, zð Þ ≤ d2 v, zð Þ − d2 PKv, vð Þ ð31Þ

For more information, see Section 3 of [27].

Lemma 14. Let X be a complete CAT(0) space. For all v,w
∈ X and 0 = ½ð0, 1Þ� ∈ X, the following hold:

(1) d2ðv ⊕w, 0Þ ≤ d2ðv, 0Þ + 2hw0�!, v0!i + 2d2ðw, 0Þ
(2) d2ðsv ⊕ ð1 − sÞw, 0Þ = sd2ðv, 0Þ + ð1 − sÞd2ðw, 0Þ − sð1

− sÞd2ðv,wÞ for all s ∈ ½0, 1�
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Lemma 15 (see [28]). Assume that fang is a sequence of non-
negative real numbers such that

an+1 ≤ 1 − βnð Þan + δn, for all n ≥ 0, ð32Þ

where fβng is a sequence in ð0, 1Þ and fδng is a sequence
with

(1) ∑∞
n=0βn =∞

(2) limsup
n⟶∞

δn/βn ≤ 0 or ∑∞
n=0 ∣ δn ∣ <∞

Then, lim
n⟶∞

an = 0.

Another interesting result useful in the proof of our
main results is the following.

Lemma 16 (see [29]). Assume that fang is a sequence of
nonnegative real numbers such that there exists subse-
quences fnjg of fng such that ani < ani+1 for all i ∈ℕ. Then
there exists a nondecreasing sequence fmkg ⊂ℕ such that
mk ⟶∞ as k⟶∞, and the following properties are
satisfied all (sufficiently large) number k ∈ℕ:

amk
< amk+1,

ak < amk+1:
ð33Þ

In fact, mk =max fj ≤ k : aj ≤ aj+1g.

Example 17. Let X = Rnðn ≥ 2Þ and K = fðv1, v2,⋯, vnÞ: vi
≥ 1, i = 1, 2,⋯, ng. Consider a bifunction f : K × K ⟶ R
defined as f ðv,wÞ = 2ðwn − vnÞdðv,wÞ for each v,w ∈ K .
Then we have the inequality

f v,wð Þ = 2 wn − vnð Þd v,wð Þ ≤ 2 wn − rnð Þd v, rð Þ
+ 2 wn − rnð Þd w, rð Þ + 2 rn − vnð Þd v, rð Þ
+ 2 rn − vnð Þd r,wð Þ ≤ 2d w, rð Þd v, rð Þ
+ 2d r, vð Þd r,wð Þ + f v, rð Þ + f r,wð Þ ≤ 2d2 v, rð Þ
+ 2d2 r,wð Þ + f v, rð Þ + f r,wð Þ:

ð34Þ

Then, f is Lipschitz-type continuous on K with c1 = 2
= c2.

3. Strong Convergence of the
Proposed Algorithm

Suppose that a nonexpansive mapping T : K ⟶ K and a
bifunction ϕ : K × K ⟶ R satisfy the conditions (6)–(10)
and FixðTÞ ∩ EPðϕÞ ≠∅. Further, let p : K ⟶ K be a ρ

-contraction. Because PFixðTÞ∩EPðϕÞp is a contraction map-
ping on K , we have q̂ ∈ K , such that q̂ = PFixðTÞ∩EPðϕÞpðq̂Þ.

Before presenting the first result of this section, let us
recall a crucial theorem given by Lim in [18], which is used
in the proof of our main results.

Theorem 18 ([18], Theorem 5.2). Every bounded sequence
fxng in a Hadamard space ðX, dÞ has a Δ-convergent
subsequence.

The following algorithm is useful in finding a common
element of a solution set of pseudomonotone equilibrium
problem on ϕ and fixed point set of T .

Step 1.

wn = argminw∈K λnϕ vn,wð Þ + 1
2
d2 w, vnð Þ

� �
,

vn = argmins∈K λnϕ wn, sð Þ + 1
2
d2 s, vnð Þ

� �
:

8>>><
>>>:

ð35Þ

Step 2. If wn = vn = Tvn, then vn ∈ FixðTÞ ∩ EPðϕÞ, stop the
process; otherwise, go to Step 3.

Step 3. Generate vn+1 = αnpðvnÞ ⊕ ð1 − αnÞðβnvn ⊕ ð1 − βnÞT
snÞ: Set n = n + 1 and go to Step 1. Obviously, if wn = vn for
n ∈N , by using (26), it gives ϕðvn, zÞ ≥ 0 for all z ∈ K and
vn ∈ EPðϕÞ. It gives vn ∈ FixðTÞ ∩ EPðϕÞ: from vn = Tvn. Fur-
ther, for convergence of the algorithm, let us consider that
Step 2 is not true for n ∈N .

Lemma 20. Consider fvng to be bounded sequence. If dðvn,
wnÞ⟶ 0, dðvn, snÞ⟶ 0, dðsn, TsnÞ⟶ 0 as n⟶∞, then

limsup
n⟶∞

vnq̂
�!,p q̂ð Þq̂���!D E

≤ 0: ð36Þ

Proof. We consider the following bounded sequence fvng.
Using Theorem 18, there exists fvnkg a subsequence of fvng
such that fvnkg weakly converges to v ∈ K with

limsup
n⟶∞

vnq̂
�!,p q̂ð Þq̂���!D E

= lim
k⟶∞

vnk q̂
��!,p q̂ð Þq̂���!D E

= vq̂
!,p q̂ð Þq̂���!D E

:

ð37Þ

Since dðvn,wnÞ⟶ 0, we have wnk
⇀ v.

By (26) with v = vnk and w =wnk
, we have

λ ϕ vnk , z
� �

− ϕ vnk ,wnk

� � �
≥ wnk

vnk
���!, yz!	 


, for all z ∈ K:
ð38Þ

Consider fλng ⊂ ½δ1, δ2� with 0 < δ1 < δ2 < min f1/2c1, 1/2c2g,fαng ⊂ ð0, 1/ð2 − ρÞÞ,fβng ⊂ ð0, 1Þ, and v0 ∈ K . Consider n = 0.

Algorithm 19
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Taking k⟶∞ on fλng, (6), and (10), we achieve

ϕ v, zð Þ ≥ 0 for all z ∈ K: ð39Þ

This gives v ∈ EPðϕÞ. Also snk ⇀ v.
By Lemma 12 with dðvn,wnÞ⟶ 0, we obtain v ∈ FixðTÞ.

Then v ∈ FixðTÞ ∩ EPðϕÞ. Using Lemma 13 with (36), the con-
clusion follows. ☐

Theorem 21. Consider the sequences fαng and fβng satisfy-
ing the conditions:

lim
n⟶∞

αn = 0,

〠
∞

n=0
αn =∞,

0 < liminf
n⟶∞

βn ≤ limsup
n⟶∞

βn < 1,

ð40Þ

then the sequence fvng strongly converges to q̂.

Proof. Consider ln = βnvn ⊕ ð1 − βnÞTsn∀n ∈ℕ. Lemma 11
follows

d2 ln, q̂ð Þ ≤ βnd
2 vn, q̂ð Þ + 1 − βnð Þd2 Tsn, q̂ð Þ ≤ βnd

2 vn, q̂ð Þ
+ 1 − βnð Þd2 sn, q̂ð Þ ≤ βnd

2 vn, q̂ð Þ + 1 − βnð Þ d2 vn, q̂ð Þ
− 1 − λnc1ð Þd2 vn,wnð Þ − 1 − λnc2ð Þd2 vn, snð Þ�
≤ βnd

2 vn, q̂ð Þ + 1 − βnð Þ 1 − λnc1ð Þd2 vn,wnð Þ
− 1 − βnð Þ 1 − λnc2ð Þd2 wn, snð Þ ≤ d2 vn, q̂ð Þ:

ð41Þ

Then

d vn+1, q̂ð Þ ≤ αnd p vnð Þ, q̂ð Þ + 1 − αnð Þd ln, q̂ð Þ
≤ αnd p vnð Þ, p q̂ð Þð Þ + αnd p q̂ð Þ, q̂ð Þ

+ 1 − αnð Þd vn, q̂ð Þ ≤ αnρd vn, q̂ð Þ
+ αnd p q̂ð Þ, q̂ð Þ + 1 − αnð Þd vn, q̂ð Þ

= 1 − αn 1 − ρð Þð Þ vn, q̂ð Þ + αnd p q̂ð Þ, q̂ð Þ
≤max

p q̂ð Þ, q̂ð Þ
1 − ρ

, d vn, q̂ð Þ
� �

⋯≤max d p q̂ð Þ, q̂ð Þ
1 − ρð Þ , d v0, q̂ð Þ

� �
:

ð42Þ

Hence, fvng is bounded; then, fpðvnÞg, fwng, and fsng
are bounded too. On the other hand, by (41), we have

d2 vn+1, q̂ð Þ ≤ αnd
2 p vnð Þ, q̂ð Þ + 1 − αnð Þd2 ln, q̂ð Þ

≤ αnd
2 p vnð Þ, q̂ð Þ + 1 − αnð Þ

� d2 vn, q̂ð Þ − 1 − βnð Þ 1 − λnc1ð Þd2 vn,wnð Þ
+ 1 − λnc2ð Þd2 wn, snð Þ�:

ð43Þ

Let us consider

M = sup d2 p vnð Þ, q̂ð Þ − d2 vn, q̂ð Þ�� �� + 1 − βnð Þ 1 − λnc1ð Þ½�
� d2 vn,wnð Þ + 1 − λnc2ð Þd2 wn, snð Þ�: n ∈ℕg:

ð44Þ

Combining (43) and (44), we get

1 − βnð Þ 1 − λnK1ð Þd2 vn,wnð Þ + 1 − λnc2ð Þd2 wn, snð Þ�
≤ d2 vn, q̂ð Þ − d2 vn+1, q̂ð Þ + αnM:

ð45Þ

By Lemma 14 and (40), we have

d2 vn+1, q̂ð Þ = d2 αn p vnð Þ − q̂ð Þ ⊕ 1 − αnð Þ ln − q̂ð Þ, 0ð Þ
≤ 1 − αnð Þ2d2 ln, q̂ð Þ + 2αn p vnð Þq̂

���!
vn+1q̂
��!D E

≤ 1 − αnð Þ2d2 vn, q̂ð Þ + 2αn p vnð Þp q̂ð Þ������!,vn+1q̂
��!D E

+ 2αn p q̂ð Þq̂���!
,vn+1q̂
��!D E

≤ 1 − αnð Þ2d2 vn, q̂ð Þ
+ 2αnd p vnð Þ, p q̂ð Þð Þd vn+1, q̂ð Þ
+ 2αn p vnð Þq̂

����!
,vn+1q̂
��!D E

≤ 1 − αnð Þ2d2 vn, q̂ð Þ
+ 2αnρd vn, q̂ð Þd vn+1, q̂ð Þ + 2αn p qnð Þq̂

���!,vn+1q̂
��!D E

≤ 1 − αnð Þ2d2 vn, q̂ð Þ + αnρ d2 vn, q̂ð Þ + d2 vn+1, q̂ð Þ
+ 2αn p qnð Þq̂

���!,vn+1q̂
��!D E

:

ð46Þ

Therefore,

d2 vn+1, q̂ð Þ ≤ 1 − αnð Þ2 + αnρ

1 − αnρ
d2 vn, q̂ð Þ + 2αn

1 − αnρ
p q̂ð Þq̂���!

,vn+1q̂
��!D E

≤
1 − 2αn + αnρ

1 − αnρ
d2 vn, q̂ð Þ + α2n

1 − αnρ
d2 vn, q̂ð Þ

+
2αn

1 − αnρ
p q̂ð Þq̂���!

,vn+1q̂
��!D E

≤ 1 −
2 1 − ρð Þαn
1 − αnρ

� �

� d2 vn, q̂ð Þ + 2 1 − ρð Þα2n
1 − αn

M0 +
2αn

1 − αnρ
p q̂ð Þq̂���!

,vn+1q̂
��!D E

,

ð47Þ

where M0 = sup fd2ðvn, q̂Þ: n ∈ℕg. Taking γn = 2ð1 − ρÞαn/
1 − αnρ for all n ∈ℕ. As fαng ⊂ ð0, 1/ð2 − ρÞÞ, then fγng ⊂
ð0, 1Þ. By the conditions on fαng, we get

lim
n⟶∞

γn = 0,

〠
∞

n=0
γn =∞:

ð48Þ
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Then, we have

d2 vn+1, q̂ð Þ ≤ 1 − γnð Þd2 vn, q̂ð Þ + αnγnM0
2 1 − ρð Þ

+
γn

1 − ρ
p q̂ð Þq̂���!

,vn+1q̂
��!D E

:

ð49Þ

The rest of the proof will be divided into two parts. ☐

Case 1. Suppose that there exists n0 ∈ℕ such that
fdðvn, q̂Þg∞n=n0 is nonincreasing. In this situation, fdðvn, q̂Þg
is convergent. This together with the hypothesis on fγng,
fαng, fβng, and (45) gives

lim
n⟶∞

d vn,wnð Þ = lim
n⟶∞

d vn, snð Þ = 0: ð50Þ

On the other hand, by Lemmas 11 and 14, we have

d2 vn+1, q̂ð Þ = d2 αn p vnð Þ − q̂ð Þ ⊕ 1 − αnð Þ βnvn ⊕ 1 − βnð Þ½ð
� Tsn − q̂�, 0Þ ≤ αnd

2 p vnð Þ, q̂ð Þ + 1 − αnð Þ
� d2 βnvn ⊕ 1 − βnð ÞTsn − q̂, 0ð Þ ≤ αnd

2 p vnð Þ, q̂ð Þ
+ 1 − αnð Þ βnd

2 vn, q̂ð Þ + 1 − βnð Þd2 Tsn, q̂ð Þ
− βn 1 − βnð Þd2 vn, Tsnð Þ� ≤ αnd

2 p vnð Þ, q̂ð Þ
+ 1 − αnð Þ βnd

2 vn, q̂ð Þ + 1 − βnð Þd2 vn, q̂ð Þ
− βn 1 − βnð Þd2 vn, Tsnð Þ� ≤ αnd

2 p vnð Þ, q̂ð Þ
+ 1 − αnð Þβnd

2 vn, q̂ð Þ − βn 1 − βnð Þ
� 1 − αnð Þd2 vn, Tsnð Þ:

ð51Þ

Hence,

βn 1 − βnð Þ 1 − αnð Þd2 vn, Tsnð Þ ≤ d2 vn, q̂ð Þ
− d2 vn+1, q̂ð Þ + αnd

2 p vnð Þ, q̂ð Þ:
ð52Þ

Then, fdðvn, q̂Þg converges. Also, fαng ⊂ ð0, 1/ð2 − ρÞÞ,
and conditions on fαng and fβng gives

lim
n⟶∞

d vn, Tsnð Þ = 0: ð53Þ

Combining (49) and (52), we get

d sn, Tsnð Þ ≤ d sn, vnð Þ + d vn, Tsnð Þ⟶ 0, as n⟶∞:

ð54Þ

Lemma 20 and (49) and (53) give

limsup
n⟶∞

p qnð Þq̂
����!,vn+1q̂

��!D E
≤ 0: ð55Þ

The conclusion follows from Lemma 15 and (48), (49),
and (54).

Case 2. Let fvnig be a subsequence of fvng with

d vni , q̂
� �

< d vni , q̂
� �

∀i ∈ℕ: ð56Þ

Then, by Lemma 16, there exists a subsequence fmkg
such that mk ⟶∞:

d vnk , q̂
� �

< d vmk+1, q̂
� �

,

d vk, q̂ð Þ < d vnk+1, q̂
� �

,

∀k ∈ℕ:

ð57Þ

The above expression with (44) concludes

1 − βmk

� �
1 − λmk

c1
� �

d2 vmk
,wmk

� �
+ 1 − λmk

c2
� �

d2 wmk
, smk

� � �
≤ d2 vmk

, q̂
� �

− d2 vmk+1, q̂
� �

+ αmk
M ≤ αmk

M∀k ∈ℕ:

ð58Þ

By the hypothesis on fαng, fβng, and fγng, it follows
that

lim
k⟶∞

d2 vmk
,wmk

� �
= d2 wmk

, smk

� �
= 0: ð59Þ

Using (51), we have

βmk
1 − βmk

� �
1 − αmk

� �
d2 vmk

, Tsmk

� �
≤ d2 vmk

, q̂
� �

− d2 vmk+1, q̂
� �

+ αmk
d2 p vmk

� �
, q̂

� �
≤ αmk

d2 p vmk

� �
, q̂

� �
⟶ 0, as k⟶∞:

ð60Þ

By the hypothesis on fαng and fβng, it follows that

lim
k⟶∞

d vmk
, Tsmk

� �
= 0: ð61Þ

In a similar way as Case 1, we arrive at

limsup
k⟶∞

p vmk
+ 1

� �
q̂

�������!
,p q̂ð Þq̂���!D E

≤ 0: ð62Þ

Note that

d2 vmk+1
, q̂

� �
≤ 1 − αmk

� �
d2 vmk

, q̂
� �

+ 2αmk
p q̂ð Þq̂���!

,vmk
+ 1q̂����!D E

:

ð63Þ

Since

d vmk
, q̂

� �
< d vmk+1, q̂

� �
for all k ∈ℕ, ð64Þ

we have

αmk
d2 vmk

, q̂
� �

≤ d2 vmk
, q̂

� �
− d2 vmk+1, q̂

� �
+ 2αmk

p q̂ð Þq̂���!
,vmk+1q̂
���!D E

+ 2αmk
p q̂ð Þq̂���!

,vmk+1q̂
���!D E

:

ð65Þ
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As fαmk
g > 0, we have

d2 vmk
, q̂

� �
≤ p q̂ð Þq̂���!

,vmk+1q̂
���!D E

: ð66Þ

From (61), it follows that dðvmk
, q̂Þ⟶ 0 as k⟶∞. By

the above arguments, using relations (61) and (62) and con-
ditions of fαng, we obtain

d vmk+1, q̂
� �

⟶ 0, ð67Þ

with k⟶∞.
As dðvk, q̂Þ < dðvmk

, q̂Þ for all k ∈ℕ, we get vk ⟶ q̂
when k⟶∞:

Corollary 22. Consider a CAT(0) space X and nonempty,
convex, and closed subset K of X. Further, consider a bifunc-
tion ϕ : K × K ⟶ R that fulfils conditions (6)–(10) and a
nonexpensive mapping T : K ⟶ K with FixðTÞ ∩ EPðϕÞ ≠
∅. Then, define a sequence fvng as follows: for any u, v0 ∈
K , consider

wn = argminw∈K λnϕ vn,wð Þ + 1
2
d2 w, vnð Þ

� �
,

sn = argminw∈K λnϕ vn, sð Þ + 1
2
d2 s, vnð Þ

� �
,

vn+1 = αnu ⊕ 1 − αnð Þ βnvn ⊕ 1βnð ÞTsnð Þ, n ∈ℕ:

8>>>>>><
>>>>>>:

ð68Þ

Initially, we choose fλng ⊂ ½δ1, δ2� with 0 < δ1 < δ2 <
min f1/2c1, 1/2c2g,fαng ⊂ ð0, 1/ð2 − ρÞÞ,fβng ⊂ ð0, 1Þ, and
take v0 ∈ K . Set n = 0 and the sequences fαng, fβng as in The-
orem 21, then fvng converges strongly to q̂ = PFixðTÞ∩EPðϕÞu.

Corollary 23. Consider a CAT(0) space X and nonempty,
convex, and closed subset K of X. Further consider a bifunc-
tion ϕ : K × K ⟶ R that fulfils conditions (6)–(10) such that
EPðϕÞ ≠ ϕ, the sequence fvng with u, v0 ∈ K and

wn = argminw∈K λnϕ vn,wð Þ + 1
2
d2 w, vnð Þ

� �
,

sn = argmins∈K λnϕ sn,wð Þ + 1
2
d2 s, vnð Þ

� �
,

vn+1 = αnu ⊕ 1 − αnð Þ βnvn ⊕ 1 − βnð ÞTsnð Þ, n ∈ℕ,

8>>>>>><
>>>>>>:

ð69Þ

where fλng ⊂ ½δ1, δ2� with 0 < δ1 < δ2 <min f1/2c1, 1/2c2g,
fαng,fβng ⊂ ð0, 1Þ: If the sequences fαng and fβng are same
as in Theorem 21, then the fvng converges strongly to q̂ =
PEPðϕÞu.

Example 24. Let H =ℝ3 and K = fðv1, v2, v3Þ: v1, v2, v3 = 0g.
Let ϕðv,wÞ = ðw3 − v3Þkvk for all v = ðv1, v2, v3Þ, w = ðw1,
w2,w3Þ ∈ K . Then ϕ is Lipschitz-type continuous with the
constants c1 = c2 = 1.

It is easy to see that ϕ satisfies conditions (6)–(10). Let
Tv = ðv1, v2, arctan ð0:1v3ÞÞ and pðvÞ = ð0:5v1, 0:4v2, 0:2v3Þ
for all v = ðv1, v2, v3Þ ∈ K . It follows that T is a nonexpansive
mapping and p is a contraction. Take the initial point v1 =
ð2, 2, 2Þ and put the sequences αn = 1/10n, βn = 1/4 + 4n,
and γn = 1/4 + 1/8n for all n ∈ℕ. It is easy to see that

Fix Tð Þ ∩ EP ϕð Þ = v1, v2, 0ð Þ: v1, v2 = 0f g: ð70Þ

We give some vn and kvn −wnk by Table 1: from
Table 1, we see that after 13 iterations v13 = ð1:70912,
1:65541, 0:00000Þ ∈ FixðTÞ ∩ EPðϕÞ.

Corollary 25. Consider a CAT(0) space X and nonempty,
convex, and closed subset K of X. Further consider a bifunc-
tion ϕ : K × K ⟶ R that fulfils conditions (6)–(10) and a
nonexpensive mapping T : K ⟶ K with FixðTÞ ∩ EPðϕÞ ≠
∅. Then define a sequence fvng as follows.

For any u, v0 ∈ K , consider

wn = argminw∈K λnϕ vn,wð Þ + 1
2
d2 w, vnð Þ

� �
,

sn = argminw∈K λnϕ vn, sð Þ + 1
2
d2 s, vnð Þ

� �
,

vn+1 = αnu ⊕ 1 − αnð Þ βnvn ⊕ 1βnð ÞTsnð Þ, n ∈ℕ:

8>>>>>><
>>>>>>:

ð71Þ

Initially choose fλng ⊂ ½δ1, δ2� with 0 < δ1 < δ2 <min f1
/2c1, 1/2c2g,fαng ⊂ ð0, 1/ð2 − ρÞÞ,fβng ⊂ ð0, 1Þ and take v0 ∈
K . Set n = 0 and the sequences fαng, fβng as in Theorem 21.

Then fvng converges strongly to q̂ = PFixðTÞ∩EPðϕÞu.

Corollary 26. Consider a CAT(0) space X and nonempty,
convex, and closed subset K of X. Further consider a bifunc-
tion ϕ : K × K ⟶ R that fulfils conditions (6)–(10) such that

Table 1: Some vn and kvn −wnk generated by Algorithm 19.

Iteration (n) vn1 vn2 vn3 vn −wnk k
1 2.00000 2.00000 2.00000 1.29903

2 1.90000 1.88000 0.98071 0.88973

3 1.85250 1.82360 0.36780 0.36780

4 1.82162 1.78713 0.12097 0.12096

5 1.79886 1.76032 0.03746 0.03746

6 1.78087 1.73920 0.01116 0.01116

7 1.76026 1.72181 0.00323 0.00324

8 1.75341 1.70704 0.00092 0.00092

9 1.74245 1.69424 0.00026 0.00026

10 1.73277 1.68295 0.00007 0.00007

11 1.72411 1.67285 0.00001 0.00002

12 1.71627 1.66373 0.00001 0.00001

13 1.70912 1.65541 0.00000 0.00000
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EPðϕÞ ≠ ϕ, the sequence fvng with u, v0 ∈ K and

wn = argminw∈K λnϕ vn,wð Þ + 1
2
d2 w, vnð Þ

� �
,

sn = argmins∈K λnϕ sn,wð Þ + 1
2
d2 s, vnð Þ

� �
,

vn+1 = αnu ⊕ 1 − αnð Þ βnvn ⊕ 1 − βnð ÞTsnð Þ, n ∈ℕ,

8>>>>>><
>>>>>>:

ð72Þ

where fλng ⊂ ½δ1, δ2� with 0 < δ1 < δ2 <min f1/2c1, 1/2c2g,
fαng,fβng ⊂ ð0, 1Þ: If the sequences fαng and fβng are the
same as in Theorem 21, then the sequence fvng converges
strongly to q̂ = PEPðϕÞu.

Remark 27. Our Theorem 21 is an analog of Theorem 3.1 of
Wang et al. [30] for the Hilbert space case.

Remark 28. Our results can be extended to any CATðκÞ
space with κ ≤ 0, since any CATðκ′Þ space is a CATðκÞ
space, for any κ′ > κ (see [17]).

4. Conclusions

It is well known that finding solutions for equilibrium prob-
lems play an important role in solving problems in other
areas of science like physics, optimization, and economics.
In this paper, we construct a new viscosity extragradient
algorithm in order to find fixed points in a CAT(0) space
for the case of nonexpansive mappings. Also, we prove a
strong convergence of the proposed algorithm, and we give
some examples to support our results.
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The aim of the paper is to discuss data dependence, existence of fixed points, strict fixed points, and well posedness of some
multivalued generalized contractions in the setting of complete metric spaces. Using auxiliary functions, we introduce
Wardowski type multivalued nonlinear operators that satisfy a novel class of contractive requirements. Furthermore, the
existence and data dependence findings for these multivalued operators are obtained. A nontrivial example is also provided to
support the results. The results generalize, improve, and extend existing results in the literature.

1. Introduction and Preliminaries

Let ðZ, dÞ be a metric space (in shortMS). The set of all non-
empty subsets of Z is denoted by PðZÞ, the set of all non-
empty closed subsets of Z is denoted by CLðZÞ, the set of
all nonempty closed and bounded subsets of Z is denoted
by CBðZÞ, and the set of all nonempty compact subsets of
X is denoted by KðZÞ. It is obvious that CBðZÞ includes K
ðZÞ. For U , V ∈ CBðZÞ, define H : CBðZÞ × CBðZÞ⟶ ½0,
∞Þ by

H U , Vð Þ =max sup
u∈U

D u, Vð Þ, sup
v∈V

D v,Uð Þ
� �

, ð1Þ

where Dðu, VÞ = inf fdðu, vÞ: v ∈ Vg. Such a function H
is called the Pompei-Hausdorff metric induced by d, for
more details, see, e.g., [1].

Lemma 1 [2]. Let ðZ, dÞ be a MS and A, B ∈ CLðZÞ with H
ðA, BÞ > 0. Then, for each h > 1 and for each a ∈ A, there
exists b = bðaÞ ∈ B such that dða, bÞ < hHðA, BÞ:

If Ω : Z⟶ PðZÞ is a multivalued operator, then an ele-
ment ϖ ∈Z is called a fixed point for Ω if x ∈Ωϖ. The sym-

bol fix Ω = fϖ ∈Z : x ∈Ωϖg denotes the fixed point set of Ω
. On the other hand, a strict fixed point for Ω is an element
ϖ ∈Z with the property fxg =Ωϖ. The set of all strict fixed
points of Ω is denoted by SFix Ω.

Banach’s contraction principle [3] is the most funda-
mental result in metric fixed point theory. Since then, many
authors have extended and generalized Banach’s contraction
principle in many ways. Extensions of Banach’s contraction
principle have spawned a wealth of literature. (see [13, 29]).
One of an attractive and important generalization is given by
Wardowski in [10]. He introduced a new type of contraction
called F-contraction and proved a new fixed point theorem
concerning F-contraction.

Definition 2 [10]. Let ðZ, dÞ be a MS. A mapping Ω : Z
⟶Z is said to be F -contraction if there exists τ > 0 such
that

d Ωϖ,Ωωð Þ > 0 implies τ + F d Ωϖ,Ωωð Þð Þ ≤ F d ϖ, ωð Þð Þ,
ð2Þ

for all x, y ∈ X, where F : ð0,∞Þ⟶ℝ is a function
satisfying

(Ϝ1) F is strictly increasing
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(Ϝ2) For all sequence ftng ⊆ ð0,∞Þ, limn⟶∞tn = 0, if
and only if limn⟶∞FðtnÞ = −∞

(Ϝ3) There exists 0 < k < 1 such that limk⟶0+ t
kFðtÞ = 0

We denote by ΔðϜ Þ the collection of all functions F : ð
0,∞Þ⟶ℝ satisfying (Ϝ1), (Ϝ2), and (Ϝ3). Also, define

Δ ○∗ð Þ = F ∈ Δ Ϝð Þ ∣ F satifies Ϝ4ð Þf g, ð3Þ

where
(Ϝ4) Fðinf AÞ = inf FðAÞ for all A ⊂ ð0,∞Þ with inf A

> 0.

Theorem 3 [10]. Let ðZ, dÞ be a complete MS and Ω : Z
⟶Z be a F-contraction. Then, Ω has a unique fixed point
ϖ∗ ∈Z and for every ϖ0 ∈Z, a picard sequence fTnϖ0gn∈ℕ
converges to ϖ∗.

Further, Turinici [11] is replaced (Ϝ2) by the following
condition: (Ϝ2′) limt⟶0+FðtÞ = −∞:

Note that, in general, F ∈ ΔðϜ Þ is not continuous. How-
ever, by ðϜ1Þ and the properties of the monotone functions,
we have the following proposition.

Proposition 4 [11]. Let F : ð0,∞Þ⟶ℝ be a function satis-
fying ðϜ1Þ and ðϜ2Þ, and then there exists a countable subset
ΛðFÞ ⊆ ð0, 1Þ such that

F t − 0ð Þ = F tð Þ = F t + 0ð Þforeach t ∈ 0, 1ð Þ \Λ Fð Þ: ð4Þ

Lemma 5 [11]. Let F : ð0,∞Þ⟶ℝ be a function satisfying
ðϜ1Þ and ðϜ2′Þ. Then, for each sequence ftng in ð0, 1Þ,

F tnð Þ⟶ −∞⇒ tn ⟶ 0: ð5Þ

After this, many authors generalized the F-contraction
in several ways (see [12–22] and references therein). In
2015, Klim and Wardowski [23] extended the concept of F
-contractive mappings to the case of nonlinear F-contrac-
tions and proved fixed point theorems via the dynamic pro-
cesses. In 2017, Wardowski [24] omitted one of the
conditions of F-contraction and introduced nonlinear F
-contraction).

Definition 6 [24]. A mapping Ω : Z⟶Z is said to be a ð
φ, FÞ -contraction (or nonlinear F-contraction), if there
exists F ∈F and a function φ : ð0,∞Þ⟶ ð0,∞Þ satisfying

(H1) liminf s⟶t+φðsÞ > 0, forall t ≥ 0:
(H2) φðdðϖ, ωÞÞ + FðdðΩϖ,ΩωÞÞ ≤ Fðdðϖ, ωÞÞ, for allϖ

, ω ∈Z such thatΩϖ ≠Ωω

Theorem 7 [24]. Let ðZ, dÞ be a complete MS and let Ω : Z
⟶Z be a ðφ, FÞ -contraction. Then, Ω has a unique fixed
point in Z.

Very recently, Iqbal and Rizwan [25] considered a rich
class of functions and generalized Definition 6 to obtain
some new fixed point theorems for nonlinear F-contrac-

tions involving generalized distance. On unifying the con-
cept of Wardowski [10], Nadler [9] and Altun et al. [26]
gave the concept of multivalued F-contraction as follows.

Definition 8 [26]. Let ðZ, dÞ be a complete MS and Ω : Z
⟶ CBðZÞ be a mapping. Then, Ω is a multivalued F -con-
traction, if there exists τ > 0 and F ∈ ΔðFÞ such that for all
ϖ, ω ∈Z,

H Ωϖ,Ωωð Þ > 0⇒ τ + F H Ωϖ,Ωωð Þð Þ ≤ F d ϖ, ωð Þð Þð : ð6Þ

Theorem 9 [26]. Let ðZ, dÞ be a complete MS and Ω : Z
⟶ KðZÞ be a multivalued F -contraction, and then Ω has
a fixed point in Z.

Afterwards, Olgun et al. [27] proved the nonlinear case
of Theorem 9 as follows.

Theorem 10 [27]. Let ðZ, dÞ be a complete MS and Ω : Z
⟶ KðZÞ, if there exists F ∈ ΔðϜ Þ and φ : ð0, 1Þ⟶ ð0, 1Þ
satisfying

liminf
s⟶t+

φ sð Þ > 0 for allϖ, ω ∈Z,

φ d ϖ, ωð Þð Þ + F H Ωϖ,Ωωð Þð Þ ≤ F d ϖ, ωð Þð Þ:
ð7Þ

Then, Ω has a fixed point in Z.

For more directions for nonlinear F-contractions, con-
sult [28, 29] and references there in. Next, we denote by P

the set of all continuous mappings ρ : ½0,∞Þ5 ⟶ ½0,∞Þ sat-
isfying the following conditions:

(ρ1) ρð1, 1, 1, 2, 0Þ ∈ ð0, 1�;
(ρ2) ρ is subhomogeneous; that is, for all ðϖ1, ϖ2, ϖ3, ϖ4

, ϖ5Þ ∈ ½0,∞Þ5 and α ≥ 0, we have ρðαϖ1, αϖ2, αϖ3, αϖ4, αϖ5
Þ ≤ αρðϖ1, ϖ2, ϖ3, ϖ4, ϖ5Þ

(ρ3) ρ is nondecreasing function; that is, for ϖi, ωi ∈ℝ+,
ϖi ≤ ωi, i = 1,⋯, 5, we have ρðϖ1, ϖ2, ϖ3, ϖ4, ϖ5Þ ≤ ρðω1, ω2
, ω3, ω4, ω5Þ

If ϖi, ωi ∈ℝ+, ϖi < ωi, i = 1,⋯, 4, then ρðϖ1, ϖ2, ϖ3, ϖ4,
0Þ < ρðω1, ω2, ω3, ω4, 0Þ and ρðϖ1, ϖ2, ϖ3, 0, ϖ5Þ < ρðω1, ω2,
ω3, 0, ω5Þ.

Also, define

ℙ = ρ ∈P ρj 1, 0, 0, 1, 1ð Þ ∈ 0, 1�ðf g: ð8Þ

Note that ℙ ⊆P .

Example 1. Define ρ1 : ½0,∞Þ5 ⟶ ½0,∞Þ by

ρ1 ϖ1, ϖ2, ϖ3, ϖ4, ϖ5ð Þ = ϖ1 + ξx5, ð9Þ

where ξ ∈ ð0, 1Þ. Then, ρ1 ∈P . Since ρ1ð1, 0, 0, 1, 1Þ = 1 + ξ
> 1, so ρ1 ∉ℙ. Also, note that ρ1ð1, 1, 1, 0, 2Þ = 1 + 2ξ > 1,
so ρ1 ∉R [30].
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Example 2. Define ρ2 : ½0,∞Þ5 ⟶ ½0,∞Þ by

ρ2 ϖ1, ϖ2, ϖ3, ϖ4, ϖ5ð Þ = g max ϖ1,
1
2 ϖ2 + ϖ3ð Þ, 12 ϖ4 + ϖ5ð Þ

� �
,

ð10Þ

where g ∈ ð0, 1Þ. Then, ρ2 ∈ ℙ.

Example 3. Define ρ3 : ½0,∞Þ5 ⟶ ½0,∞Þ by

ρ3 ϖ1, ϖ2, ϖ3, ϖ4, ϖ5ð Þ = aϖ1 + b ϖ2 + ϖ3ð Þ + c ϖ4 + ϖ5ð Þ,
ð11Þ

where a + 2b + 2c < 1. Then, ρ3 ∈P .

Now, we prove the following Lemma.

Lemma 11. If ρ ∈P and u, v ∈ ½0,∞Þ are such that

u ≤max ρ v, v, u, v + u, 0ð Þ, ρ v, v, u, 0, v + uð Þ, ρ v, u, v, v + u, 0ð Þ, ρ v, u, v, 0, v + uð Þf g,

ð12Þ

then u ≤ v.

Proof. Without loss of generality, we can suppose that u ≤
ρðv, v, u, v + u, 0Þ. If v < u, then

u ≤ ρ v, v, u, v + u, 0ð Þ < ρ u, u, u, 2u, 0ð Þ ≤ uρ 1, 1, 1, 2, 0ð Þ ≤ u,
ð13Þ

a contradiction. Thus, u ≤ v. ☐

Now, consider following examples.

Example 4. Let F : ð0,∞Þ⟶ℝ be a function defined by

F tð Þ = −1
t
for all t ∈ 0,∞ð Þ: ð14Þ

Then, F satisfies ðϜ1Þ, ðϜ2′Þ, and F that is continuous
but does not satisfies ðϜ3Þ.

Example 5. Let F : ð0,∞Þ⟶ℝ be a function defined by

F tð Þ =
−1
t

if t ∈ 0, 1ð Þ
0 otherwise:

8<
: ð15Þ

Then, F satisfies ðϜ1Þ and ðϜ2′Þ but F is not continuous.

Example 6. [31] Let F : ð0,∞Þ⟶ℝ be a function defined
by

F tð Þ = −
1

t + t½ �ð Þℓ
, ð16Þ

where ½t� denotes the integral part of Ω and ℓ ∈ ð0, 1/aÞ, a > 1
. Then, F satisfies ðϜ1Þ, ðϜ2′Þ, and ðϜ3Þ but F is not
continuous.

Examples 4–6 clearly show that there exist some func-
tions F : ð0,∞Þ⟶ℝ which does not satisfy the condition
of continuity, ðϜ1Þ, ðϜ2Þ, and ðϜ3Þ at a time. By getting
inspiration from this, in this paper, we prove fixed point
results for contractive conditions involving functions F,
not necessarily continuous and belongs to ΔðϜ Þ by taking
support of a continuous function from P . Our results gener-
alize many results appearing recently in the literature includ-
ing Altun et al. [32], Olgun et al., [27] Sgroi and Vetro [33],
Vetro [34], Wardowski [24], and Wardowski and Dung [35].

For convenience, we set Φ, the collection of all functions
χ : ð0,∞Þ⟶ ð0,∞Þ satisfying

lim
s⟶t+

inf χ sð Þ > 0 forall t ≥ 0: ð17Þ

Theorem 12. Let ðZ, dÞ be a complete MS and Ω : Z⟶ K
ðZÞ be a multivalued mapping. Assume that there exists χ
∈Φ, a nondecreasing real valued function F1 on ð0,∞Þ
and a real valued function F2 on ð0,∞Þ satisfying condition
ðϜ2′Þ and ðϜ3Þ such that the following conditions hold:

(N1) F1ðcÞ ≤ F2ðcÞ for all c > 0
(N2) For all ϖ, ω ∈Z and ρ ∈P , HðΩϖ,ΩωÞÞ > 0 implies

χ d ϖ, ωð Þð Þ + F2 H Ωϖ,Ωωð Þð Þ
≤ F1 ρ d ϖ, ωð Þ,D ϖ,Ωϖð Þ,D ω,Ωωð Þ,D ϖ,Ωωð Þ,D ω,Ωϖð Þð Þð Þ:

ð18Þ

Then, fix Ω is nonempty.

Proof. Let ϖ0 ∈Z be an arbitrary point and ϖ1 ∈Ωϖ0.
Assume that ϖ1∈Ωϖ1; otherwise, ϖ1 is a fixed point of Ω,
and the proof is complete. Then, Dðϖ1,Ωϖ1Þ > 0 and conse-
quently HðΩϖ0,Ωϖ1Þ > 0. Compactness of Ωϖ1 ensures the
existence of ϖ2 ∈Ωϖ1, such that dðϖ1, ϖ2Þ =Dðϖ1,Ωϖ1Þ.
From (N1) and (N2), we get

F1 d ϖ1, ϖ2ð Þð Þ = F1 D ϖ1,Ωϖ1ð Þð Þ ≤ F1 H Ωϖ0,Ωϖ1ð Þð Þ ≤ F2 H Ωϖ0,Ωϖ1ð Þð Þ
≤ F1 ρ d ϖ0, ϖ1ð Þ,D ϖ0,Ωϖ0ð Þ,D ϖ1,Ωϖ1ð Þ,D x0,Ωϖ1ð Þ,D ϖ1,Ωϖ0ð Þð Þð Þ

− χ d ϖ0, ϖ1ð Þð Þ < F1 ρ d ϖ0, ϖ1ð Þ, d x0, ϖ1ð Þ, d ϖ1, ϖ2ð Þ, d ϖ0, ϖ2ð Þ, 0ð Þð Þ:
ð19Þ

☐

Since F1 is an nondecreasing function, (19) with ðρ3Þ
implies that

d ϖ1, ϖ2ð Þ < ρ d ϖ0, ϖ1ð Þ, d x0, ϖ1ð Þ, d ϖ1, ϖ2ð Þ, d x0, ϖ1ð Þ, 0ð Þ
≤ ρ d ϖ0, ϖ1ð Þ, d ϖ0, ϖ1ð Þ, d ϖ1, ϖ2ð Þ, d ϖ0, ϖ1ð Þ + d ϖ1, ϖ2ð Þ, 0ð Þ:

ð20Þ

By using Lemma 11, (20) implies

d ϖ1, ϖ2ð Þ < d ϖ0, ϖ1ð Þ: ð21Þ
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Next, arguing as previous, we get ϖ3 ∈Ωϖ2, such that d
ðϖ2, ϖ3Þ =Dðϖ2,Ωϖ2Þ with Dðx2,Ωϖ2Þ > 0. Also, by using
Lemma 11, from (N1) and (N2), we obtain

d ϖ2, ϖ3ð Þ < d ϖ1, ϖ2ð Þ: ð22Þ

Continuing in the same manner, we get a sequence fϖn
g ⊂Z such that ϖn+1 ∈Ωϖn satisfying dðϖn, ϖn+1Þ =Dðϖn,
ΩϖnÞ with Dðϖn,ΩϖnÞ > 0 and

d ϖn, ϖn+1ð Þ < d ϖn−1, ϖnð Þ, ð23Þ

for all n ∈ℕ. (23) implies that fdðϖn, ϖn+1Þgn∈ℕ is a
decreasing sequence of positive real numbers. Hence, from
(N1) and (N2), we get

χ d ϖn, ϖn+1ð Þð Þ + F2 H Ωϖn,Ωϖn+1ð Þð Þ
≤ F1 ρ d ϖn, ϖn+1ð Þ,D ϖn,Ωϖnð Þ,D ϖn+1,Ωϖn+1ð Þ,D ϖn,Ωϖn+1ð Þ,D ϖn+1,Ωϖnð Þð Þð Þ
≤ F1 ρ d ϖn, ϖn+1ð Þ, d ϖn, ϖn+1ð Þ, d ϖn+1, ϖn+2ð Þ, d ϖn, ϖn+1ð Þ + d ϖn+1, ϖn+2ð Þ, 0ð Þð Þ
≤ F1 ρ d ϖn, ϖn+1ð Þ, d ϖn, ϖn+1ð Þ, d ϖn, ϖn+1ð Þ, 2d ϖn, ϖn+1ð Þ, 0ð Þð Þ
≤ F1 d ϖn, ϖn+1ð Þρ 1, 1, 1, 2, 0ð Þð Þ ≤ F1 d ϖn, ϖn+1ð Þð Þ = F1 D ϖn,Ωϖnð Þð Þ
≤ F1 H Ωϖn−1,Ωϖnð Þð Þ ≤ F2 H Ωϖn−1,Ωϖnð Þð Þ:

ð24Þ

Thus, for all n ∈ℕ,

F2 H Ωϖn,Ωϖn+1ð Þð Þ ≤ F2 H Ωϖn−1,Ωϖnð Þð Þ − χ d ϖn, ϖn+1ð Þð Þ:
ð25Þ

Since χ ∈Φ, there exists h > 0 and n0 ∈ℕ such that χðd
ðϖn, ϖn+1ÞÞ > h, for all n ≥ n0. From (25), we obtain

F2 H Ωϖn,Ωϖn+1ð Þð Þ ≤ F2 H Ωϖn−1,Ωϖnð Þð Þ − χ d ϖn, ϖn+1ð Þð Þ
≤ F2 H Ωϖn−2,Ωϖn−1ð Þð Þ − χ d ϖn−1, ϖnð Þð Þ

− χ d ϖn, ϖn+1ð Þð Þ⋮

≤ F2 H Ωϖ0,Ωϖ1ð Þð Þ − 〠
n

i=1
χ d ϖi, ϖi+1ð Þð Þ

= F2 H Ωϖ0,Ωϖ1ð Þð Þ − 〠
n0−1

i=1
χ d ϖi, ϖi+1ð Þð Þ

− 〠
n

i=n0
χ d ϖi, ϖi+1ð Þð Þ

≤ F2 H Ωϖ0,Ωϖ1ð Þð Þ − n − n0ð Þh, n ≥ n0:

ð26Þ

Taking n⟶∞ in (26), we get F2ðHðΩϖn,Ωϖn+1ÞÞ
⟶ −∞ and by ðϜ2′Þ, we have

lim
n⟶∞

H Ωϖn,Ωϖn+1ð Þ = 0, ð27Þ

which further implies that

lim
n⟶∞

d ϖn, ϖn+1ð Þ = lim
n⟶∞

D ϖn,Ωϖnð Þ ≤ lim
n⟶∞

H Ωϖn−1,Ωϖnð Þ = 0:

ð28Þ

Now from ðϜ3Þ, there exists k ∈ ð0, 1Þ such that

lim
n⟶∞

H Ωϖn,Ωϖn+1ð Þð ÞkF2 H Ωϖn,Ωϖn+1ð Þð Þ = 0: ð29Þ

Then, from (26), for all n ∈ℕ, we have

H Ωϖn,Ωϖn+1ð Þð ÞkF2 H Ωϖn,Ωϖn+1ð Þð Þ
− H Ωϖn,Ωϖn+1ð Þð ÞkF2 H Ωϖ0,Ωϖ1ð Þð Þ

≤ H Ωϖn,Ωϖn+1ð Þð Þk F2 H Ωϖ0,Ωϖ1ð Þð Þ − n − n0ð Þhð Þ
− H Ωϖn,Ωϖn+1ð Þð ÞkF2 H Ωϖ0,Ωϖ1ð Þð Þ

= − H Ωϖn,Ωϖn+1ð Þð Þk n − n0ð Þh ≤ 0:
ð30Þ

Taking limit n⟶∞, in (30) and using (27) and (29),
we have

lim
n⟶∞

n H Ωϖn,Ωϖn+1ð Þð Þk = 0: ð31Þ

Observe that from (31), there exist sn1 ∈ℕ such that n
ðHðΩϖn,Ωϖn+1ÞÞk ≤ 1 for all n ≥ n1. Thus, for all n ≥ n1,
we have

H Ωϖn,Ωϖn+1ð Þ ≤ 1
n1/k

for all n ≥ n1, ð32Þ

which further implies that

d ϖn, ϖn+1ð Þ =D ϖn,Ωϖnð Þ ≤H Ωϖn−1,Ωϖnð Þ ≤ 1
n1/k

for all n ≥ n1:

ð33Þ

Now, in order to show that fϖngn∈ℕ is Cauchy sequence,
consider m, n ∈ℕ such that m > n > n1. From (33), we get

d ϖm, ϖnð Þ ≤ 〠
m−1

i=n
d ϖi, ϖi+1ð Þ ≤ 〠

m−1

i=n

1
i1/k

≤ 〠
∞

i=n

1
i1/k

: ð34Þ

As a result of the above and the series’ convergence,
∑∞

i=n ð1/i1/kÞ, we receive that fϖngn∈ℕ is Cauchy sequence.
Since Z is a complete space, so there exists ϖ∗ ∈Z such that

lim
n⟶∞

ϖn = ϖ∗: ð35Þ

Now,

F1 H Ωϖ,Ωωð Þð Þ ≤ F2 H Ωϖ,Ωωð Þð Þ < ϕ d ϖ, ωð Þð Þ + F2 H Ωϖ,Ωωð Þð
≤ F1 ρ d ϖ, ωð Þ,D ϖ,Ωϖð Þ,D ω,Ωωð Þ,D ϖ,Ωωð Þ,D ω,Ωϖð Þð Þð Þ:

ð36Þ

Since F1 is nondecreasing function, we obtain for all ϖ
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, ω ∈Z.

H Ωϖ,Ωωð Þ ≤ ρ d ϖ, ωð Þ,D ϖ,Ωϖð Þ,D ω,Ωωð Þ,D ϖ,Ωωð Þ,D ω,Ωϖð Þð Þ:
ð37Þ

We claim that ϖ∗ is fixed point of Z. On contrary, sup-
pose that Dðϖ∗,Ωϖ∗Þ > 0 and by equation (37), we have

D ϖ∗,Ωϖ∗ð Þ ≤ d ϖ∗, ϖn+1ð Þ +D ϖn+1,Ωϖ∗ð Þ
< d ϖ∗, ϖn+1ð Þ +H Ωϖn,Ωϖ∗ð Þ
< d ϖ∗, ϖn+1ð Þ + ρ d ϖn, ϖ∗ð Þ,D ϖn,Ωϖnð Þ,ð
D ϖ∗,Ωϖ∗ð Þ,D ϖn,Ωϖ∗ð Þ,D x∗,Ωϖnð ÞÞ

≤ d ϖ∗, ϖn+1ð Þ + ρ d ϖn, ϖ∗ð Þ, d ϖn, ϖn+1ð Þ,ð
D ϖ∗,Ωϖ∗ð Þ, d ϖn, ϖ∗ð Þ
+D ϖ∗,Ωϖ∗ð Þ, d ϖ∗, ϖn+1ð ÞÞ:

ð38Þ

Passing to limit as n⟶∞ in the above inequality, we
obtain

D ϖ∗,Ωϖ∗ð Þ < ρ 0, 0,D ϖ∗,Ωϖ∗ð Þ, 0 +D ϖ∗,Ωϖ∗ð Þ, 0ð Þ,
ð39Þ

which implies by Lemma 1 that

0 <D ϖ∗,Ωϖ∗ð Þ < 0, ð40Þ

which is a contradiction. Hence, Dðϖ∗,Ωϖ∗Þ = 0. Since
Ωϖ∗ is closed, therefore, ϖ∗ ∈Ωϖ∗.

Remark 13. By defining F1 = F2 = F and ρðϖ1, ϖ2, ϖ3, ϖ4,
ϖ5Þ = ϖ1 in Theorem 12, we get back Theorem 2.3 of [27].

Example 7. Consider Z = fun = nðn + 1Þ/2 : n ∈ℕg, and
then Z is complete MS with metric dðu, vÞ = ∣u − v ∣ . Define

functions F1, F2 : ð0,∞Þ⟶ℝ by

F1 uð Þ = −
1
u

if u ∈ 0, 1ð Þ
u if u ∈ 1,∞½ Þ

8<
: ð41Þ

and F2ðuÞ = ln u + u for all u ∈ ð0,∞Þ, respectively. Then
F1 is nondecreasing, F2 satisfy the conditions ðϜ2′Þ and ð
Ϝ3Þ and F1ðuÞ ≤ F2ðuÞ for all u > 0.

Next, define Ω : Z⟶ KðZÞ, ρ : ½0,∞Þ5 ⟶ ½0,∞Þ and
χ : ð0,∞Þ⟶ ð0,∞Þ by

Ωϖ =
u1f g if ϖ = u1,
u1, u2f g if ϖ = un, n ≥ 2,

(

ρ ϖ1, ϖ2, ϖ3, ϖ4, ϖ5ð Þ = ϖ1 + ξϖ5, ξ ∈ 0, 1ð Þ
ð42Þ

and χðtÞ = 1/t for all t ∈ ð0,∞Þ, respectively. Then χ ∈Φ and
ρ ∈P (see Example 1). Observe that

m, n ∈ℕ,H Ωum,Ωunð Þ > 0⇔ m > 2and n = 1ð Þ: ð43Þ

Assume that HðΩϖ,ΩωÞ > 0, and then m > 2 and n = 1.
From Figure 1, it is clear that

2
∣m2 +m − 2 ∣ + ln ∣m2 −m − 2 ∣

2

����
���� + ∣m2 −m − 2 ∣

2 ≤
∣m2 +m − 2 ∣

2 ,

ð44Þ

HðΩum,Ωu1Þ = ∣um−1 − 1 ∣ and Dðu1,ΩumÞ = 0. Which
further implies that

χ d um, u1ð Þð Þ + F2 H Ωum,Ωu1ð Þð Þ = 1
∣um − u1 ∣

+ F2 ∣um−1 − 1 ∣ð Þ

= 2
∣m2 +m − 2 ∣ + ln ∣m2 −m − 2 ∣

2

����
���� + ∣m2 −m − 2 ∣

2

≤
∣m2 +m − 2 ∣

2 = d um, u1ð Þ + ξD u1,Ωumð Þ
= F1 d um, u1ð Þ + ξD u1,Ωumð Þð Þ
= F1 ρ d um, u1ð Þ,D u1,Ωu1ð Þ,D um,Ωumð Þ,D um,Ωu1ð Þ,ðð
D u1,Ωumð ÞÞÞ:

ð45Þ

All hypothesis of Theorem 12 are satisfied and fix Ω =
fu1, u2g.

Observe the following in Example 7:

(i) F1 is not continuous at 1
(ii) F1 ≠ F2

(iii) ρ ∉R

(iv) ρ ∉ℙ.

m
∞

∞

Figure 1: Graph of Inequality (44).
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Corollary 14. Let ðZ, dÞ be a complete MS and Ω : Z⟶
KðZÞ be a multivalued mapping. Assume that there exists χ
∈Φ, a nondecreasing real valued function F1 on ð0,∞Þ
and a real valued function F2 on ð0,∞Þ satisfying condition
ðϜ2′Þ and ðϜ3Þ such that (N1) and the following condition
holds:

HðΩϖ,ΩωÞÞ > 0 implies χðdðϖ, ωÞÞ + F2ðHðΩϖ,ΩωÞÞ
≤ F1ðMðϖ, ωÞÞ for all ϖ, ω ∈Z, where

M ϖ, ωð Þ =max d ϖ, ωð Þ,D ϖ,Ωϖð Þ,D ω,Ωωð Þ, D x,Ωωð Þ +D ω,Ωϖð Þ
2

� �
:

ð46Þ

Then, fix Ω is nonempty.

Proof. Define ρ : ½0,∞Þ5 ⟶ ½0,∞Þ by

ρ ϖ1, ϖ2, ϖ3, ϖ4, ϖ5ð Þ =max ϖ1, ϖ2, ϖ3,
ϖ4 + ϖ5

2

� �
: ð47Þ

Then, ρ ∈P and result follow from Theorem 12. ☐

Remark 15. Corollary 14 generalizes and improves Theorem
2.4 of [35]. In fact, by taking F1 = F2 and by defining Ωϖ
= fϖg for all ϖ, ω ∈Z and χðtÞ = τ > 0 for all t ∈ ð0,∞Þ in
Corollary 14, then we find Theorem 2.4 of [35]. Corollary
14 shows that condition ðϜ2Þ can be replaced by ðϜ2′Þ
and the strictness of the monotonicity of F is not necessary.

Corollary 16. Let ðZ, dÞ be a complete MS and Ω : Z⟶
KðZÞ be a multivalued mapping. Assume that there exist χ
∈Φ, a non decreasing real valued function F1 on ð0,∞Þ
and a real valued function F2 on ð0,∞Þ satisfying condition
ðϜ2′Þ and ðϜ3Þ such that (N1) and the following condition
holds:

HðΩϖ,ΩωÞÞ > 0 implies χðdðϖ, ωÞÞ + F2ðHðΩϖ,ΩωÞÞ
≤ F1ðNðϖ, ωÞÞ for all ϖ, ω ∈Z, where

N ϖ, ωð Þ = ad ϖ, ωð Þ + bD ϖ,Ωϖð Þ + cD ω,Ωωð Þ + e D ϖ,Ωωð Þ +D ω,Ωϖð Þ½ �,
ð48Þ

a, b, c, e ≥ 0 and a + b + c + 2e < 1. Then Fix Ω is
nonempty.

Proof. Define ρ : ½0,∞Þ5 ⟶ ½0,∞Þ by

ρ ϖ1, ϖ2, ϖ3, ϖ4, ϖ5ð Þ = aϖ1 + bϖ2 + cϖ3 + e ϖ4 + ϖ5½ �, ð49Þ

where a, b, c, e > 0 and a + b + c + 2e < 1. Then ρ ∈P and
result follows from Theorem 12. ☐

Now, in the next Theorem, we replace the condition ðϜ
3Þ of F2 by continuity of F1 in hypothesis of Theorem 12
and obtain another fixed point result.

Theorem 17. Let ðZ, dÞ be a complete MS and Ω : Z⟶ K
ðZÞ be a multivalued mapping. Assume that there exists χ

∈Φ, a continuous, nondecreasing real-valued function F1
on ð0,∞Þ and a real valued function F2 on ð0,∞Þ satisfying
condition ðϜ2′Þ such that following conditions hold:

(N1) F1ðcÞ ≤ F2ðcÞ for all c > 0
(N2) HðΩϖ,ΩωÞÞ > 0 implies

χ d ϖ, ωð Þð Þ + F2 H Ωϖ,Ωωð Þð Þ
≤ F1 ρ d ϖ, ωð Þ,D ϖ,Ωϖð Þ,D ω,Ωωð Þ,D ϖ,Ωωð Þ,D ω,Ωϖð Þð Þð Þ

ð50Þ

for all ϖ, ω ∈Z and ρ ∈ℙ.
Then, fix Ω is nonempty.

Proof. Let ϖ0 ∈Z be an arbitrary point and ϖ1 ∈Ωϖ0. Then,
as in proof of Theorem 12, we get a sequence fϖng ⊂Z such
that ϖn+1 ∈Ωϖn satisfying dðϖn, ϖn+1Þ =Dðϖn,ΩϖnÞ with
Dðϖn,ΩϖnÞ > 0,

d ϖn, ϖn+1ð Þ < d ϖn−1, ϖnð Þ, for all n ∈ℕ, ð51Þ

F2 H Ωϖn,Ωϖn+1ð Þð Þ ≤ F2 H Ωϖ0,Ωϖ1ð Þð Þ − n − n0ð Þh, n ≥ n0:

ð52Þ
Taking n⟶∞ in (52), we get F2ðHðΩϖn,Ωϖn+1ÞÞ

⟶ −∞ and by ðϜ2′Þ, we have

lim
n⟶∞

H Ωϖn,Ωϖn+1ð Þ = 0, ð53Þ

which further implies that

lim
n⟶∞

d ϖn, ϖn+1ð Þ = lim
n⟶∞

D ϖn,Ωϖnð Þ ≤ lim
n⟶∞

H Ωϖn−1,Ωϖnð Þ = 0:

ð54Þ

Next, we claim that

lim
n,m⟶∞

d ϖn, ϖmð Þ = 0: ð55Þ

If (55) is not true, then there exists δ > 0 such that for all
r ≥ 0, there exists mk > nk > r

d ϖn, ϖmð Þ > δ: ð56Þ

Also, there exists r0 ∈ℕ such that

λr0 = d ϖn−1, ϖnð Þ < δ forall n ≥ r0: ð57Þ

Consider two subsequences fϖnk
g and fϖmk

g of fϖng
satisfying

r0 ≤ nk ≤mk + 1 and d ϖmk
, ϖnk

� �
> δ forall k > 0: ð58Þ

Observe that

d ϖmk−1, ϖnk

� �
≤ δ forall k, ð59Þ

where mk is chosen as minimal index for which (59) is
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satisfied. Also, note that because of (58) and (59), the case
nk+1 ≤ nk is impossible. Thus, nk+2 ≤mk for all k. It implies

nk + 1 <mk <mk + 1 for all k: ð60Þ

Using triangle inequality and by (58) and (59), we have

δ < d ϖmk
, ϖnk

� �
≤ d ϖmk

, ϖmk−1
� �

+ d ϖmk−1, ϖnk

� �
≤ λmk

+ δ:

ð61Þ

Letting limit k⟶∞ in (61) and using (53), we get

lim
k⟶∞

d ϖmk
, ϖnk

� �
= δ: ð62Þ

Now, by using (53) and (62), we obtain

lim
k⟶∞

d ϖmk+1, ϖnk+1
� �

= δ: ð63Þ

Then, from ðN1Þ, ðN2Þ, and monotonicity of F1, we get

χ d ϖmk
, ϖnk

� �� �
+ F1 d ϖmk+1

, ϖnk+1

� �� �
= χ d ϖmk

, ϖnk

� �� �
+ F1 D ϖmk+1

,Ωϖnk

� �� �
≤ χ d ϖmk

, ϖnk

� �� �
+ F1 H Ωϖmk

,Ωϖnk

� �� �
≤ χ d ϖmk

, ϖnk

� �� �
+ F2 H Ωϖmk

,Ωϖnk

� �� �
≤ F1 ρ d ϖmk

, ϖnk

� �
,D ϖmk

,Ωϖmk

� �
,D ϖnk

,Ωϖnk

� �
,

��
D ϖmk

,Ωϖnk

� �
,D ϖnk

,Ωϖmk

� ��Þ
≤ F1 ρ d ϖmk

, ϖnk

� �
, d ϖmk

, ϖmk+1

� �
, d ϖnk

, ϖnk+1

� �
,

��
d ϖnk+1

, ϖnk

� �
+ d ϖnk

, ϖmk

� �
, d ϖnk

, ϖnk+1

� �
+ d ϖnk+1

, ϖmk+1

� ��Þ:
ð64Þ

Since F1 is continuous, so by passing the limit k⟶∞,
using equations (62) and (63), we have

lim
k⟶∞

χ d ϖmk
, ϖnk

� �� �
+ F1 δð Þ ≤ F1 ρ δ, 0, 0, δ, δð Þð Þ ≤ F1 δρ 1, 0, 0, 1, 1ð Þð Þ:

ð65Þ

Now, since ρ ∈ℙ, we have ρð1, 0, 0, 1, 1Þ ∈ ð0, 1�; so, (65)
implies

lim
s⟶δ+

inf ϕ sð Þ ≤ 0, ð66Þ

which is a contradiction to (17). Hence, (55) holds, which
implies that fϖng is a Cauchy sequence. Completeness of
Z ensures the existence of ϖ∗ ∈Z such that

lim
n⟶∞

ϖn = ϖ∗: ð67Þ

By following the same steps as in the proof of Theorem
12, we get ϖ∗ ∈Ωϖ∗. This completes the proof. ☐

Corollary 18. Let ðZ, dÞ be a complete MS and Ω : Z⟶
KðZÞ be a multivalued mapping. Assume that there exists χ
∈Φ, a continuous, nondecreasing real-valued function F1
on ð0,∞Þ and a real valued function F2 on ð0,∞Þ satisfying

condition ðϜ2′Þ such that (N1) and the following condition
holds:

H Ωϖ,Ωωð ÞÞ > 0 impliesχ d ϖ, ωð Þð Þ + F2 H Ωϖ,Ωωð Þð Þ
≤ F1 ℘1ð d ϖ, ωð Þð + ℘2D ϖ,Ωϖð Þ + ℘3D ω,Ωωð Þ

+ ℘4D ϖ,Ωωð Þ + ℘5D ω,Ωϖð Þ for allϖ, ω ∈Z,
ð68Þ

where ℘i ≥ 0, ℘1 + ℘2 + ℘3 + 2℘4 = 1 and ℘1 + ℘3 + ℘4 ≤ 1.
Then, fix Ω is nonempty.

Proof. Define ρ : ½0,∞Þ5 ⟶ ½0,∞Þ by

ρ ϖ1, ϖ2, ϖ3, ϖ4, ϖ5ð Þ = ℘1ϖ1 + ℘2ϖ2 + ℘3ϖ3 + ℘4ϖ4 + ℘5ϖ5,
ð69Þ

where ℘i ≥ 0, ℘1 + ℘2 + ℘3 + 2℘4 = 1 and ℘1 + ℘3 + ℘4 ≤ 1.
Then, ρ ∈ℙ and result follow from Theorem 17. ☐

Remark 19. Corollary 18 improves Theorem 1 of [35]. In
fact, by taking F1 = F2 and by defining Ωϖ = fϖg for all ϖ,
ω ∈Z in Corollary 18, then we are back to Theorem 1 of
[34]. In Corollary 18, condition ðϜ2Þ is weakened to the
condition ðϜ2′Þ.

Next, we consider Ωϖ that are closed subsets of Z

instead of compact subsets for all Z and obtain the following
theorems.

Theorem 20. Let ðZ, dÞ be a complete MS and Ω : Z⟶ C
ðXÞ be a multivalued mapping. Assume that there exists χ
∈Φ, F ∈ ΔðϜ ∗Þ and a real-valued function L on ð0,∞Þ such
that following holds:

(G1) FðcÞ ≤ LðcÞ for all c > 0
(G2) HðΩϖ,ΩωÞÞ > 0 implies

χ d ϖ, ωð Þð Þ + L H Ωϖ,Ωωð Þð Þ
≤ F ρ d ϖ, ωð Þ,D ϖ,Ωϖð Þ,D ω,Ωωð Þ,D ϖ,Ωωð Þ,D ω,Ωϖð Þð Þð Þ,

ð70Þ

for all ϖ, ω ∈Z and ρ ∈P .
Then, fix (Ω) is nonempty.

Proof. Let x0 ∈Z be an arbitrary point and ϖ1 ∈Ωϖ0.
Assume that ϖ1∈Ωϖ1; otherwise, ϖ1 is a fixed point of Ω,
and the proof is complete. Then, since Ωϖ1 is closed, Dðϖ1
,Ωϖ1Þ > 0 and consequently, HðΩϖ0,Ωϖ1Þ > 0. Due to ðϜ4
Þ, we obtain

F D ϖ1,Ωϖ1ð Þð Þ = inf
z∈Ωϖ1

F d ϖ1, zð Þð Þ: ð71Þ

☐
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Then, (71) with (G1) and (G2) gives

inf
z∈Ωϖ1

F d ϖ1, zð Þð Þ = F D ϖ1,Ωϖ1ð Þð Þ ≤ F H Ωϖ0,Ωϖ1ð Þð Þ
≤ L H Ωϖ0,Ωϖ1ð Þð Þ
≤ F ρ d ϖ0, ϖ1ð Þ,D ϖ0,Ωϖ0ð Þ,D ϖ1,Ωϖ1ð Þ,ðð
D ϖ0,Ωϖ1ð Þ,D ϖ1,Ωϖ0ð ÞÞÞ − χ d ϖ0, ϖ1ð Þð Þ

< F ρ d ϖ0, ϖ1ð Þ, d ϖ0, ϖ1ð Þ, d ϖ1, ϖ2ð Þ, d ϖ0, ϖ2ð Þ, 0ð Þð Þ:
ð72Þ

Thus, there exists x2 ∈Ωϖ1 such that

F d ϖ1, ϖ2ð Þð Þ < F ρ d ϖ0, ϖ1ð Þ, d ϖ0, ϖ1ð Þ, d ϖ1, ϖ2ð Þ, d ϖ0, ϖ1ð Þ, 0ð Þð Þ:
ð73Þ

Since F is an nondecreasing function, (73) with ðρ3Þ
implies that

d ϖ1, ϖ2ð Þ < ρ d ϖ0, ϖ1ð Þ, d ϖ0, ϖ1ð Þ, d ϖ1, ϖ2ð Þ, d ϖ0, ϖ1ð Þ, 0ð Þ
≤ ρ d ϖ0, ϖ1ð Þ, d ϖ0, ϖ1ð Þ, d ϖ1, ϖ2ð Þ, d ϖ0, ϖ1ð Þ + d ϖ1, ϖ2ð Þ, 0ð Þ:

ð74Þ

By using Lemma 11, (74) implies

d ϖ1, ϖ2ð Þ < d ϖ0, ϖ1ð Þ: ð75Þ

Next, arguing as previous, we get ϖ3 ∈Ωϖ2 with Dðϖ2,
Ωϖ2Þ > 0. Also, by using Lemma 11, from (G1) and (G2),
we obtain

d ϖ2, ϖ3ð Þ < d ϖ1, ϖ2ð Þ ð76Þ

Continuing in the same manner, we get a sequence fϖn
g ⊂Z such that ϖn+1 ∈Ωϖn with Dðϖn,Ωϖn+1Þ > 0 and

d ϖn, ϖn+1ð Þ < d ϖn−1, ϖnð Þ, ð77Þ

for all n ∈ℕ. (77) implies that fdðϖn, ϖn+1Þgn∈ℕ is a decreas-
ing sequence of positive real numbers. Hence, from ðF4Þ,
(G1), and (G2), we get

inf
z∈Ωϖn

F d ϖn, zð Þð Þ = F D ϖn,Ωϖnð Þð Þ ≤ F H Ωϖn−1,Ωϖnð Þð Þ
≤ L H Ωϖn−1,Ωϖnð Þð Þ ≤ F ρ d ϖn−1, ϖnð Þ,D ϖn−1,Ωϖn−1ð Þ,ðð
D ϖn,Ωϖnð Þ,D ϖn−1,Ωϖnð Þ,D ϖn,Ωϖn−1ð ÞÞÞ
− χ d ϖn−1, ϖnð Þð Þ

≤ F ρ d ϖn−1, ϖnð Þ, d ϖn−1, ϖnð Þ, d ϖn, ϖn+1ð Þ,ðð
d ϖn−1, ϖnð Þ + d ϖn, ϖn+1ð Þ, 0ÞÞ − χ d ϖn−1, ϖnð Þð Þ

≤ F ρ d ϖn−1, ϖnð Þ, d ϖn−1, ϖnð Þ, d ϖn−1, ϖnð Þ,ðð
2d ϖn−1, ϖnð Þ, 0ÞÞ − χ d ϖn−1, ϖnð Þð Þ

≤ F d ϖn−1, ϖnð Þρ 1, 1, 1, 2, 0ð Þð Þ − χ d ϖn−1, ϖnð Þð Þ
≤ F d ϖn−1, ϖnð Þð Þ − χ d ϖn−1, ϖnð Þð Þ:

ð78Þ

Thus, for all n ∈ℕ,

inf
z∈Ωϖn

F d ϖn, zð Þð Þ ≤ F d ϖn−1, ϖnð Þð Þ − χ d ϖn−1, ϖnð Þð Þ:

ð79Þ

Thus, from (79), there exists ϖn+1 ∈Ωϖn such that

F d ϖn, ϖn+1ð Þð Þ ≤ F d ϖn−1, ϖnð Þð Þ − χ d ϖn−1, ϖnð Þð Þ: ð80Þ

Since χ ∈Φ, there exists h > 0 and n0 ∈ℕ such that χðd
ðϖn, ϖn+1ÞÞ < h, for all n ≥ n0. From (80), we obtain

F d ϖn, ϖn+1ð Þð Þ ≤ F d ϖn−1, ϖnð Þð Þ − χ d ϖn−1, ϖnð Þð Þ
≤ F ϖn−2, ϖn−1ð Þð Þ − χ d ϖn−2, ϖn−1ð Þð Þ − χ d ϖn−1, ϖnð Þð Þ⋮

≤ F d ϖ0, ϖ1ð Þð Þ − 〠
n−1

i=1
χ d ϖi−1, ϖið Þð Þ

= F d ϖ0, ϖ1ð Þð Þ − 〠
n0−1

i=1
χ d ϖi−1, ϖið Þð Þ − 〠

n−1

i=n0
χ d ϖi−1, ϖið Þð Þ

= F d ϖ0, ϖ1ð Þð Þ − n − n0ð Þh, n ≥ n0:

ð81Þ

Taking n⟶∞ in (81), we get Fðdðϖn−1, ϖnÞÞ⟶ −∞
and by ðϜ2′Þ, we have

lim
n⟶∞

d ϖn−1, ϖnð Þ = 0, ð82Þ

Now, from ðϜ3Þ, there exists k ∈ ð0, 1Þ such that

lim
n⟶∞

d ϖn−1, ϖnð Þð ÞkF d ϖn−1, ϖnð Þð Þ = 0: ð83Þ

Then, from (81), for all n ∈ℕ, we have

d ϖn−1, ϖnð Þð ÞkF d ϖn−1, ϖnð Þð Þ − d ϖn−1, ϖnð Þð ÞkF d ϖ0, ϖ1ð Þð Þ
≤ d ϖn−1, ϖnð Þð Þk F d ϖn−1, ϖnð Þð Þ − n − n0ð Þhð Þ

− d ϖn−1, ϖnð Þð ÞkF d ϖ0, ϖ1ð Þð Þ
= − d ϖn−1, ϖnð Þð Þk n − n0ð Þh ≤ 0:

ð84Þ

Taking limit n⟶∞, in (84) and using (82) and (83),
we have

lim
n⟶∞

n d ϖn−1, ϖnð Þð Þk = 0: ð85Þ

Observe that from (85), there exists n1 ∈ℕ such that n
ðdðϖn−1, ϖnÞÞk ≤ 1 for all n ≥ n1. Thus, for all n ≥ n1, we have

d ϖn−1, ϖnð Þ ≤ 1
n1/k

for all n ≥ n1, ð86Þ

Now, in order to show that fxngn∈ℕ is Cauchy sequence,
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consider m, n ∈ℕ such that m > n > n1. From (86), we get

d ϖm, ϖnð Þ ≤ 〠
m−1

i=n
d ϖi, ϖi+1ð Þ ≤ 〠

m−1

i=n

1
i1/k

≤ 〠
∞

i=n

1
i1/k

: ð87Þ

As a result of the above and the series’ convergence,
∑∞

i=n ð1/i1/kÞ, we receive that fϖngn∈ℕ is Cauchy sequence.
Since Z is a complete space, so there exists ϖ∗ ∈Z such that

lim
n⟶∞

xn = ϖ∗: ð88Þ

Now,

F H Ωϖ,Ωωð Þð Þ ≤ L H Ωϖ,Ωωð Þð Þ < ϕ d ϖ, ωð Þð Þ + L H Ωϖ,Ωωð Þð
≤ F ρ d ϖ, ωð Þ,D ϖ,Ωϖð Þ,D ω,Ωωð Þ,D ϖ,Ωωð Þ,D ω,Ωϖð Þð Þð Þ:

ð89Þ

Since F is nondecreasing function, we obtain

H Ωϖ,Ωωð Þ ≤ ρ d ϖ, ωð Þ,D ϖ,Ωϖð Þ,D ω,Ωωð Þ,D ϖ,Ωωð Þ,D ω,Ωϖð Þð Þ, for allϖ, ω ∈Z:

ð90Þ

We claim that ϖ∗ is a fixed point of Z. On contrary, sup-
pose that Dðϖ∗,Ωϖ∗Þ > 0 and by equation (90), we have

D ϖ∗,Ωϖ∗ð Þ ≤ d ϖ∗, ϖn+1ð Þ +D ϖn+1,Ωϖ∗ð Þ
< d ϖ∗, ϖn+1ð Þ +H Ωϖn,Ωϖ∗ð Þ
< d ϖ∗, ϖn+1ð Þ + ρ d ϖn, ϖ∗ð Þ,D ϖn,Ωϖnð Þ,ð
D ϖ∗,Ωϖ∗ð Þ,D ϖn,Ωϖ∗ð Þ,D ϖ∗,Ωϖnð ÞÞ

≤ d ϖ∗, ϖn+1ð Þ + ρ d ϖn, ϖ∗ð Þ, d ϖn, ϖn+1ð Þ,ð
D ϖ∗,Ωϖ∗ð Þ,D ϖn, ϖ∗ð Þ +D ϖ∗,Ωϖ∗ð Þ,
d ϖ∗, ϖn+1ð ÞÞ:

ð91Þ

Passing to limit as n⟶∞ in the above inequality, we
obtain

D ϖ∗,Ωϖ∗ð Þ < ρ 0, 0,D ϖ∗,Ωϖ∗ð Þ, 0 +D ϖ∗,Ωϖ∗ð Þ, 0ð Þ,
ð92Þ

which implies by Lemma 1 that

0 <D x∗,Ωϖ∗ð Þ < 0, ð93Þ

which is a contradiction. Hence, Dðϖ∗,Ωϖ∗Þ = 0. Since Ωϖ∗

is closed, therefore, ϖ∗ ∈Ωϖ∗.

Corollary 21. Let ðZ, dÞ be a complete MS and Ω : Z⟶
CðZÞ be a multivalued mapping. Assume that there exists χ
∈Φ, F ∈ ΔðϜ ∗Þ and a real-valued function L on ð0,∞Þ such

that (G1) and the following condition holds:

H Ωϖ,Ωωð ÞÞ > 0 impliesχ d ϖ, ωð Þð Þ + F H Ωϖ,Ωωð Þð Þ
≤ L ℘1ð d ϖ, ωð Þð + ℘2D ϖ,Ωϖð Þ + ℘3D ω,Ωωð Þ

+ ℘4D ϖ,Ωωð Þ + ℘5D ω,Ωϖð Þ for allϖ, ω ∈Z,
ð94Þ

where ℘i ≥ 0 and ℘1 + ℘2 + ℘3 + 2℘4 = 1. Then, fix Ω is
nonempty.

Proof. Define ρ : ½0,∞Þ5 ⟶ ½0,∞Þ by

ρ ϖ1, ϖ2, ϖ3, ϖ4, ϖ5ð Þ = ℘1ϖ1 + ℘2ϖ2 + ℘3ϖ3 + ℘4ϖ4 + ℘5ϖ5,
ð95Þ

where ℘i ≥ 0 and ℘1 + ℘2 + ℘3 + 2℘4 = 1. Then. ρ ∈P and
result follow from Theorem 20. ☐

Corollary 22. Let ðZ, dÞ be a complete MS and Ω : Z⟶
CðZÞ be a multivalued mapping. Assume that there exists χ
∈Φ, F ∈ ΔðϜ ∗Þ and a real-valued function L on ð0,∞Þ such
that (G1) and the following condition holds:

H Ωϖ,Ωωð ÞÞ > 0 impliesχ d ϖ, ωð Þð Þ + F H Ωϖ,Ωωð Þð Þ
≤ L d ϖ, ωð Þ + λD ω,Ωϖð Þð Þ for allϖ, ω ∈Z,

ð96Þ

where λ ≥ 0. Then, fix Ω is nonempty.

Proof. Define ρ : ½0,∞Þ5 ⟶ ½0,∞Þ by

ρ ϖ1, ϖ2, ϖ3, ϖ4, ϖ5ð Þ = ϖ1 + λϖ5, ð97Þ

where λ ≥ 0. Then, ρ ∈P and result follow from Theorem
20. ☐

Remark 23. Corollary 21 generalizes Theorem 24 of [33].
Indeed, by considering L = F and by defining χðtÞ = 2τ for
all ϖ, ω ∈Z, where τ > 0 in Corollary 21, we obtain Theorem
32 of [33]. Also, by considering L = F and by defining χðtÞ
= τ for all ϖ, ω ∈Z, where τ > 0 in Corollary 22, we get back
the Theorem 24 of [32].

Theorem 24. Let ðZ, dÞ be a complete MS and Ω : Z⟶ C
ðZÞ be a multivalued mapping. Assume that there exists χ
∈Φ, a nondecreasing and continuous real-valued function
F : ð0,∞Þ⟶ℝ satisfying condition ðϜ2′Þ and a real-
valued function L on ð0,∞Þ such that following holds:

(G1) FðcÞ ≤ LðcÞ for all c > 0
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(G2) HðΩϖ,ΩωÞÞ > 0 implies

χ d ϖ, ωð Þð Þ + L H Ωϖ,Ωωð Þð Þ
≤ F ρ d ϖ, ωð Þ,D ϖ,Ωϖð Þ,D ω,Ωωð Þ,D ϖ,Ωωð Þ,D ω,Ωϖð Þð Þð Þ,

ð98Þ

for all ϖ, ω ∈Z and ρ ∈ ℙ.
Then, fix Ω is nonempty.

Proof. Let ϖ0 ∈Z be an arbitrary point and ϖ1 ∈Ωϖ0. Then,
as in proof of Theorem 20, we get a sequence fϖng ⊂Z such
that ϖn+1 ∈Ωϖn with Dðϖn,Ωϖn+1Þ > 0,

d ϖn, ϖn+1ð Þ < d ϖn−1, ϖnð Þ, for all n ∈ℕ, ð99Þ

F d ϖn−1, ϖnð Þð Þ ≤ F d ϖ0, ϖ1ð Þð Þ − n − n0ð Þh, n ≥ n0:

ð100Þ
Taking n⟶∞ in (100), we get Fðdðϖn−1, ϖnÞÞ⟶ −

∞ and by ðϜ2′Þ, we have

lim
n⟶∞

d ϖn−1, ϖnð Þ = 0: ð101Þ

Next, we claim that

lim
n,m⟶∞

d ϖn, ϖmð Þ = 0: ð102Þ

If (102) is not true, then there exists δ > 0 such that for
all r ≥ 0, there exists mk > nk > r

d ϖn, ϖmð Þ > δ: ð103Þ

Also, there exists r0 ∈ℕ such that

λr0 = d ϖn−1, ϖnð Þ < δ forall n ≥ r0: ð104Þ

Consider two subsequences fϖnk
g and fϖmk

g of fxng;
then, as is proof of Theorem 17, we get

lim
k⟶∞

d ϖmk
, ϖnk

� �
= δ,

lim
k⟶∞

d ϖmk+1, ϖnk+1
� �

= δ:
ð105Þ

Then, from (G1), (G2), and monotonicity of F, we get

χ d ϖmk
, ϖnk

� �� �
+ F d ϖmk+1

, ϖnk+1

� �� �
= χ d ϖmk

, ϖnk

� �� �
+ F D ϖmk+1

,Ωϖnk

� �� �
≤ χ d ϖmk

, ϖnk

� �� �
+ F H Ωϖmk

,Ωϖnk

� �� �
≤ χ d ϖmk

, ϖnk

� �� �
+ L H Ωϖmk

,Ωϖnk

� �� �
≤ F ρ d ϖmk

, ϖnk

� �
,D ϖmk

,Ωϖmk

� �
,D ϖnk

,Ωϖnk

� �
,

��
D ϖmk

,Ωϖnk

� �
,D ϖnk

,Ωϖmk

� ��Þ
≤ F ρ d ϖmk

, ϖnk

� �
, d ϖmk

, ϖmk+1

� �
, d ϖnk

, ϖnk+1
� �

, d ϖnk+1
, ϖnk

� ���
+ d ϖnk

, ϖmk

� �
, d ϖnk

, ϖnk+1

� �
+ d ϖnk+1

, ϖmk+1

� ��Þ:
ð106Þ

Since F is continuous, so by passing the limit k⟶∞,
using equations (105) and (106), we have

lim
k⟶∞

χ d ϖmk
, ϖnk

� �� �
+ F δð Þ ≤ F ρ δ, 0, 0, δ, δð Þð Þ ≤ F δρ 1, 0, 0, 1, 1ð Þð Þ:

ð107Þ

Now, since ρ ∈ℙ, we have ρð1, 0, 0, 1, 1Þ ∈ ð0, 1�; so,
(107) implies

lim
s⟶δ+

inf ϕ sð Þ ≤ 0, ð108Þ

which is a contradiction to (17). Hence, (102) holds, which
implies that fϖng is Cauchy sequence. Completeness of Z
ensures the existence of ϖ∗ ∈Z such that

lim
n⟶∞

ϖn = ϖ∗: ð109Þ

By following the same steps as in the proof of Theorem
20, we get ϖ∗ ∈Ωϖ∗. This completes the proof. ☐

Corollary 25. Let ðZ, dÞ be a complete MS and Ω : Z⟶
CðZÞ be a multivalued mapping. Assume that there exists χ
∈Φ, a nondecreasing and continuous real-valued function
F : ð0,∞Þ⟶ℝ satisfying condition ðϜ2′Þ and a real-
valued function L on ð0,∞Þ such that (G1) and the following
condition hold:

H Ωϖ,Ωωð ÞÞ > 0 impliesχ d ϖ, ωð Þð Þ + F H Ωϖ,Ωωð Þð Þ
≤ L ℘1ð d ϖ, ωð Þð + ℘2D ϖ,Ωϖð Þ + ℘3D ω,Ωωð Þ

+ ℘4D ϖ,Ωωð Þ + ℘5D ω,Ωϖð Þ for allϖ, ω ∈Z,
ð110Þ

where ℘i ≥ 0, ℘1 + ℘2 + ℘3 + 2℘4 = 1, and ℘1 + ℘3 + ℘4 ≤ 1.
Then, fix Ω is nonempty.

Proof. Define ρ : ½0,∞Þ5 ⟶ ½0,∞Þ by

ρ ϖ1, ϖ2, ϖ3, ϖ4, ϖ5ð Þ = ℘1ϖ1 + ℘2ϖ2 + ℘3ϖ3 + ℘4ϖ4 + ℘5ϖ5,
ð111Þ

where ℘i ≥ 0, ℘1 + ℘2 + ℘3 + 2℘4 = 1, and ℘1 + ℘3 + ℘4 ≤ 1.
Then, ρ ∈ℙ and result follow from Theorem 24. ☐

If we restrict λ = 0 in Corollary 22, then ρ defined in the
proof of Corollary 22 also satisfies ρð1, 0, 0, 1, 1Þ = 1 and
hence ρ ∈ℙ. Consequently, from Theorem 24, we get

Corollary 26. Let ðZ, dÞ be a complete MS and Ω : Z⟶
CðZÞ be a multivalued mapping. Assume that there exists χ
∈Φ, a nondecreasing and continuous real-valued function
F : ð0,∞Þ⟶ℝ satisfying condition ðϜ2′Þ and a real-
valued function L on ð0,∞Þ such that (G1) and the following
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condition hold:

H Ωϖ,Ωωð ÞÞ > 0 impliesχ d ϖ, ωð Þð Þ + F H Ωϖ,Ωωð Þð Þ
≤ L d ϖ, ωð Þ + λD ω,Ωϖð Þð Þ for allϖ, ω ∈Z,

ð112Þ

where λ ≥ 0. Then, fix Ω is nonempty.

2. Data Dependence

Let Z,V be two nonempty sets and Ω : Z⟶ PðVÞ. Denote
by GðΩÞ, the graph of the multivalued operator is Ω. A mul-
tivalued operator Ω : Z⟶ PðVÞ is said to be closed if Gð
ΩÞ is a closed set in Z ×V. A selection for Ω is a singleva-
lued operator Ω : Z⟶V such that tðϖÞ ∈ΩðϖÞ, for each
ϖ ∈Z. Mo t and Petrusel in [36] discussed some basic prob-
lems including data dependence of the fixed point theory for
a new type contractive multivalued operator. In [37], Rus
et al. gave an important abstract notion as follows:

Definition 27. Let ðZ, dÞ be a MS and Ω : Z⟶ CLðZÞ a
multivalued operator. Then, Ω is a multivalued weakly
Picard operator (briefly MWP operator) if for all ϖ ∈Z
and ω ∈Ωϖ, there exists a sequence fϖngn∈ℕ such that

(i) ϖ0 = ϖ, ϖ1 = ω

(ii) ϖn+1 ∈Ωϖn, for all n ∈ℕ

(iii) The sequence fϖngn∈ℕ is convergent, and its limit is
a fixed point of Ω

A sequence fϖngn∈ℕ satisfying the conditions (i) and (ii)
in Definition 27 is also called a sequence of successive
approximations of Ω starting from ϖ0. Now, we present
the main result of this section.

Theorem 28. Let ðZ, dÞ be a MS and Ω1,Ω2 : Z⟶ KðZÞ
be two multivalued operators. Assume that there exists χ ∈
Φ, a nondecreasing real-valued function F1 on ð0,∞Þ and
a real valued function F2 on ð0,∞Þ satisfying condition ðϜ
2′Þ and ðϜ3Þ such that Ωi satisfies (N1) and (N2) for all i ∈
f1, 2g:

(i) There exists λ > 0 such that HðΩ1ðϖÞ,Ω2ðϖÞÞ ≤ λ,
for all ϖ ∈Z

(ii) Then

(iii) Fix ðΩiÞ ∈ CLðZÞ and i ∈ f1, 2g
(iv) Ω1 and Ω2 are MWP operators and

H Fix Ω1ð Þ, Fix Ω2ð Þð Þ ≤ λ

1 −max ρ1 1, 1, 1, 2, 0ð Þ, ρ2 1, 1, 1, 2, 0ð Þf g :

ð113Þ

Proof. (a) By Theorem 12, we have that fix ðΩiÞ ≠∅, for i

∈ f1, 2g. Next, we prove that the fixed point set of multiva-
lued operatorsΩi is closed for i ∈ f1, 2g. For this, let fwng be
a sequence in fix ðΩiÞ such that wn ⟶w as n⟶∞. Then,

F1 H Ωϖ,Ωωð Þð Þ ≤ F2 H Ωϖ,Ωωð Þð Þ < ϕ d ϖ, ωð Þð Þ + F2 H Ωϖ,Ωωð Þð
≤ F1 ρ d ϖ, ωð Þ,D ϖ,Ωϖð Þ,D ω,Ωωð Þ,D ϖ,Ωωð Þ,D ω,Ωϖð Þð Þð Þ:

ð114Þ

Since F1 is nondecreasing function, we obtain for all ϖ
, ω ∈Z

H Ωϖ,Ωωð Þ ≤ ρ d ϖ, ωð Þ,D ϖ,Ωϖð Þ,D ω,Ωωð Þ,D ϖ,Ωωð Þ,D ω,Ωϖð Þð Þ:
ð115Þ

Suppose that Dðw,ΩwÞ > 0, then we have

D w,Ωwð Þ ≤ d w,wn+1ð Þ +D wn+1,Ωwð Þ < d w,wn+1ð Þ +H Ωwn,Ωwð Þ
< d w,wn+1ð Þ + ρ d wn,wð Þ,D wn,Ωwnð Þ,D w,Ωwð Þ,ð
D wn,Ωwð Þ,D w,Ωwnð ÞÞ

≤ d w,wn+1ð Þ + ρ d wn,wð Þ, d wn,wn+1ð Þ,D w, Twð Þ,ð
d wn,wð Þ +D w, Twð Þ, d w,wn+1ð ÞÞ:

ð116Þ

Passing to limit as n⟶∞ in the above inequality, we
obtain

D w,Ωwð Þ < ρ 0, 0,D w,Ωwð Þ, 0 +D w,Ωwð Þ, 0ð Þ, ð117Þ

which implies by Lemma 1 that

0 <D w, Twð Þ < 0, ð118Þ

which is a contradiction. Hence, Dðw,ΩwÞ = 0. Since Ωw is
closed, so w ∈Ωw.

(b) From the proof of Theorem 12, we immediately get
that Ωi operators are MWP operators for i ∈ f1, 2g. Now,
we will show that Hð Fix ðΩ1Þ, Fix ðΩ2ÞÞ ≤ λ/1 −max fρ1ð1
, 1, 1, 2, 0Þ, ρ2ð1, 1, 1, 2, 0Þg. For this purpose, Let q > 1, ϖ0
∈ Fix ðΩ1Þ, be arbitrary. Then, there exists ϖ1 ∈Ω2ϖ0 such
that dðϖ0, ϖ1Þ =Dðϖ0,Ω2ϖ0Þ and dðϖ0, ϖ1Þ ≤ qHðΩ1ϖ0,Ω2
ϖ0Þ. Next, for ϖ1 ∈Ω2ϖ0, there exists ϖ2 ∈Ω2ϖ1 such that
dðϖ0, ϖ1Þ =Dðϖ0,Ω2ϖ0Þ and dðϖ1, ϖ2Þ ≤ qHðΩ2ϖ0,Ω2ϖ1Þ.
Then, by using (3.1), we get dðϖ1, ϖ2Þ ≤ dðϖ0, ϖ1Þ and

d ϖ1, ϖ2ð Þ ≤ qH Ω2ϖ0,Ω2ϖ1ð Þ
≤ qρ d ϖ0, ϖ1ð Þ,D ϖ0,Ω2ϖ0ð Þ,D ϖ1,Ω2ϖ1ð Þ,ð
D ϖ0,Ω2ϖ1ð Þ,D ϖ1,Ω2ϖ0ð ÞÞ

≤ qρ d ϖ0, ϖ1ð Þ, d ϖ0, ϖ1ð Þ, d ϖ1, x2ð Þ, d ϖ0, ϖ1ð Þð
+ d ϖ1, x2ð Þ, 0ÞÞ

≤ qρ d ϖ0, ϖ1ð Þ, d ϖ0, ϖ1ð Þ, d ϖ0, ϖ1ð Þ, 2d ϖ0, ϖ1ð Þ, 0ð ÞÞ
≤ qρ 1, 1, 1, 2, 0ð Þd ϖ0, ϖ1ð Þ:

ð119Þ

Inductively, we will obtain a sequence of successive
approximations for Ω2 starting from ϖ0, satisfying the
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following:

d ϖn, ϖn+1ð Þ ≤ qρ1 1, 1, 1, 2, 0ð Þð Þnd ϖ0, ϖ1ð Þ, n ∈ℕ, ð120Þ

which further implies for each n ∈ℕ,

d ϖn, ϖn+mð Þ ≤ qρ1 1, 1, 1, 2, 0ð Þð Þn
1 − qρ1 1, 1, 1, 2, 0ð Þ d ϖ0, ϖ1ð Þ: ð121Þ

Letting n⟶∞, we get that fϖngn∈ℕ is Cauchy
sequence in ðZ, dÞ, and so it converges to an element u ∈Z
. As in the proof of Theorem 12, we get that u ∈ Fix ðΩ2Þ.
From (121), letting m⟶∞ to get

d ϖn, uð Þ ≤ qρ1 1, 1, 1, 2, 0ð Þð Þn
1 − qρ1 1, 1, 1, 2, 0ð Þ d ϖ0, ϖ1ð Þ, for each n ∈ℕ:

ð122Þ

Putting n = 0, we get that

d ϖ0, uð Þ ≤ 1
1 − qρ1o 1, 1, 1, 2, 0ð Þ d ϖ0, ϖ1ð Þ ≤ qλ

1 − qρ1 1, 1, 1, 2, 0ð Þ :

ð123Þ

By interchanging the roles of Ω1 and Ω2, we obtain that
for each u0 ∈ Fix ðΩ2Þ, there exists x ∈ Fix ðΩ1Þ such that

d u0, ϖð Þ ≤ 1
1 − qρ2 1, 1, 1, 0, 2ð Þ d u0, u1ð Þ ≤ qλ

1 − qρ2 1, 1, 1, 0, 2ð Þ :

ð124Þ

Hence, HðFix ðΩ1Þ, Fix ðΩ2ÞÞ ≤ qλ/1 −max fqρ1ð1, 1, 1,
2, 0Þ, qρ2ð1, 1, 1, 2, 0Þ, and letting q⟶ 1, we get the
conclusion. ☐

3. Strict Fixed Points and Well Posedness

Firstly, we define the notions of well posedness of a fixed
point problem.

Definition 29 [38, 39]. Let ðZ, dÞ be a MS, V ∈ PðZÞ, and
Ω : V⟶ CðZÞ be a multivalued operator. Then, the fixed
point problem is well posed for Ω with respect to D if

(a1) FixΩ = fϖ∗;
(b1) If ϖn ∈V, n ∈ℕ, and Dðϖn,ΩϖnÞ⟶ 0 as n⟶∞,

then ϖn ⟶
d

ϖ∗ ∈ FixΩ as n⟶∞

Definition 30 [38, 39]. Let ðZ, dÞ be a MS, V ∈ PðZÞ, and
Ω : V⟶ CðZÞ be a multivalued operator. Then, the fixed
point problem is well posed for Ω with respect to H if

(a2) SFixΩ = fϖ∗g
(b2) If ϖn ∈V, n ∈ℕ, and Hðϖn,ΩϖnÞ⟶ 0 as n⟶∞

, then ϖn ⟶
d

ϖ∗ ∈ SFixΩ as n⟶∞

Remark 31. Note that if the fixed point problem is well posed
for Ω with respect to D and FixΩ = SFixΩ, then the fixed
point problem is well posed for Ω with respect to H.

Theorem 32. Let ðZ, dÞ be a MS and Ω : Z⟶ KðZÞ be a
multivalued operators. Assume that

(1) There exist χ ∈Φ, a continuous, nondecreasing real-
valued function F1 on ð0,∞Þ and a real-valued func-
tion F2 on ð0,∞Þ satisfying condition ðϜ2′Þ such that
(N1) and (N2) hold for ρ ∈P with ρð1, 0, 0, 1, 1Þ ∈ ð
0, 1Þ,

SFixΩ ≠∅: ð125Þ

Then,

(a) FixΩ = SFixΩ = fϖ∗g;
(b) The fixed point problem is well posed for Ω with

respect to H

Proof. ðaÞ By Theorem 17, we have that fix ðΩÞ ≠∅. Next,
We will prove that FixΩ = fϖ∗g. From (N1) and (N2), we
get that

F1 H Ωϖ,Ωωð Þð Þ ≤ F2 H Ωϖ,Ωωð Þð Þ < ϕ d ϖ, ωð Þð Þ + F2 H Ωϖ,Ωωð Þð
≤ F1 ρ d ϖ, ωð Þ,D ϖ,Ωϖð Þ,D ω,Ωωð Þ,D ϖ,Ωωð Þ,D ω,Ωϖð Þð Þð Þ:

ð126Þ

Since F1 is nondecreasing function, we obtain for all ϖ
, ω ∈Z,

H Ωϖ,Ωωð Þ ≤ ρ d ϖ, ωð Þ,D ϖ,Ωϖð Þ,D ω,Ωωð Þ,D ϖ,Ωωð Þ,D ω,Ωϖð Þð Þ:
ð127Þ

Let u ∈ FixΩ, with u ≠ ϖ∗; then Dðϖ∗,ΩuÞ > 0, and we
have

D ϖ∗,Ωuð Þ =H Ωϖ∗,Ωuð Þ
≤ ρ d ϖ∗, uð Þ,D ϖ∗,Ωϖ∗ð Þ,D u,Ωuð Þ,D ϖ∗,Ωuð Þ,D u,Ωϖ∗ð Þð Þ
≤ ρ d ϖ∗, uð Þ, 0, 0, d ϖ∗, uð Þ, d u, ϖ∗ð Þð Þ ≤ d ϖ∗, uð Þρ 1, 0, 0, 1, 1ð Þ:

ð128Þ

Since ρð1, 0, 0, 1, 1Þ ∈ ð0, 1Þ, above inequality implies
that

d ϖ∗, uð Þ =D ϖ∗,Ωuð Þ < d ϖ∗, uð Þ, ð129Þ

which is a contradiction. Hence, dðϖ∗, uÞ = 0; so, ϖ∗ = u.
(b) Let ϖn ∈V, n ∈ℕ, such that

lim
n⟶∞

D ϖn,Ωϖnð Þ = 0: ð130Þ

We claim that

lim
n⟶∞

d ϖn, ϖ∗ð Þ = 0, ð131Þ

where ϖ∗ ∈ FixΩ. If (131) is not true, there exists ε > 0 such
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that for each n ∈ℕ, we have that

d ϖn, ϖ∗ð Þ > ε: ð132Þ

On the other hand, from (130), there exists nε ∈ℕ \ 0
such that Dðϖn,ΩϖnÞ < ε for each n > nε. Hence, for each
n > nε, we get

d ϖn, ϖ∗ð Þ =D ϖn,Ωϖ∗ð Þ =D ϖn,Ωϖnð Þ +H Ωϖn,Ωϖ∗ð Þ
≤D ϖn,Ωϖnð Þ + ρ d ϖn, ϖ∗ð Þ,D ϖn,Ωϖnð Þ,ð
D ϖ∗,Ωϖ∗ð Þ,D ϖn,Ωϖ∗ð Þ,D ϖ∗,Ωϖnð ÞÞ

≤D ϖn,Ωϖnð Þ + ρ d ϖn, ϖ∗ð Þ,D ϖn,Ωϖnð Þ,ð
d ϖ∗, ϖ∗ð Þ, d ϖn, ϖ∗ð Þ, d ϖ∗, ϖnð Þ +D ϖn,Ωϖnð ÞÞ:

ð133Þ

Since ρð1, 0, 0, 1, 1Þ ∈ ð0, 1Þ, so by passing the limit n
⟶∞, we obtain dðxn, ϖ∗Þ⟶ 0 as n⟶∞, a contradic-
tion. Consequently, proof is complete by Remark 31. ☐

4. Conclusion

In the theory of set-valued dynamic systems, fixed points
and strict fixed points of multivalued operators are essential
notions. A rest point of the dynamic system can be read as a
fixed point for the multivalued map Ω, whereas a strict fixed
point for Ω can be viewed as the system’s endpoint. We have
made a contribution in this approach by establishing some
basic problems in multivalued fixed point and strict fixed
point theory. We have proved several existence and data
dependence results for multivalued nonlinear mappings sat-
isfying a new class of contractive conditions via auxiliary
functions. The obtained outcomes are backed up by a non-
trivial example. The findings add to and expand on some
of the most recent results in the literature.
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In this manuscript, using the concept of multivalued contractions, some new Banach- and Caristi-type fixed point results are
established in the context of metric spaces. For the reliability of the presented results, some examples and applications to
Volterra integral type inclusion are also studied. The established results unify and generalize some existing results from the
literature.

1. Introduction and Preliminaries

Volterra integral equations appear in different scientific
applications such as in the spread of epidemics, semiconduc-
tor devices, and population dynamics. Also, the dynamics of
multispan uniform continuous beams subjected to a moving
load is one of the best applications of Volterra integral equa-
tions. A universal method for finding sorption uptake curves
of fluid multicomponent mixtures in porous solid at variable
and constant concentration of mixture components on the
basis of the Volterra integral equation has been proposed.
The fixed point theory for multivalued mappings is a serious
subject of set-valued analysis. In Banach spaces, several well-
known fixed point theorems of single-valued mappings such
as Banach and Schauder have been extended to multivalued
mappings. There are a lot of applications for multivalued
mappings such as optimal control theory, differential inclu-
sions, game theory, and many branches in physics.

The Banach contraction principle is used in a variety of
fields of mathematics. This technique has many applications
in studying the existence of solutions for nonlinear Volterra
integral equations, and nonlinear integrodifferential equa-
tions in Banach spaces.

Recently, it has been widely spread. For example, in
abstract spaces, the Fredholm integral equation introduced
by Fredholm [1] and the solutions of Fredholm- and

Volterra-type integral equations have been discussed analyt-
ically by Rezan et al. [2–4], Rus [5], Aydi et al. [6], Karapinar
et al. [7], and Hammad and De la Sen [8, 9] and numerically
by Panda et al. [10, 11] and Berenguer et al. [12].

Throughout this paper, the symbols NðMÞ, CðMÞ, CBð
MÞ, and CPðMÞ refer to the family of all nonempty, non-
empty closed, nonempty closed bounded, and nonempty
compact subset of M, respectively.

For multivalued contraction mappings, we have the
following.

Definition 1 (see [13]). Suppose that ðM, dÞ is a metric space.
Denote by CBðMÞ, the set of all nonempty closed bounded
subsets of M. The Pompeiu-Hausdorff metric PHM : CBðM
Þ × CBðMÞ⟶ ½0,∞Þ induced by the distance d is formu-
lated as follows: for all A, B ∈ CBðMÞ,

PHM A, Bð Þ =max sup
s∈B

d s,Að Þ, sup
t∈A

d t, Bð Þ
� �

, ð1Þ

where dðs, AÞ = inf t∈Adðs, tÞ: Also, the pair ðCBðMÞ, PHMÞ is
called a generalized Hausdorff distance induced by d:

In 1969, the stipulation of Banach in single-valued map-
pings was modified to multivalued mappings by Nadler [13]
as follows.
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Theorem 2. Let ðM, dÞ be a complete metric space (CMS)
and T be a multivalued mapping on M so that TðsÞ is a non-
empty closed, bounded subset of M: If for each s ∈M there is
c ∈ ð0 1Þ so that

PHM T sð Þ, T tð Þð Þ ≤ cd s, tð Þ, ∀s, t ∈M, ð2Þ

then, T has a fixed point in M:

In the literature, via abstract spaces, some authors
obtained nice fixed point results for contractive mappings
under certain conditions, for example, Hussain et al. [14]
prove the existence of several fixed point results in ordinary
and partially order metric spaces by studying the notion of
Geraghty-type contractive mapping via simulation function
along with C-class function. In integral type, Branciari [15]
introduced some common fixed point results under general
contractive conditions.

In Meir-Keeler type, Agarwal et al. [16] obtained some
exciting fixed point results. In Menger probabilistic metric
spaces, Chauhan et al. [17] discussed a hybrid coincidence
and common fixed point theorem under a strict contractive
condition with an application. Via the notion of α-admissi-
ble mapping, the existence of fixed point theorems under
w-distance mappings with an application is presented by
Kutbi and Sintunavarat [18], and the others concerned with
studying the notion of multivalued mapping and its contri-
butions in fixed point theory such as Nadler [13], Ali and
Kamran [19], Aubin and Siegel [20], Covitz and Nadler
[21], Hot [22], and Ali et al. [23].

Du and Karapinar [24] introduce the concept of a
Caristi-type cyclic map and present a new convergence the-
orem and a best proximity point theorem for Caristi-type
cyclic maps. Petrusel and Sîntămarian [25] obtained a new
result in the link of single-valued and multivalued Caristi-
type mappings. Hussain et al. [26] introduce the notion of
Suzuki-type multivalued contraction with simulation func-
tions and then set up some new fixed point and data depen-
dence results for these types of contraction mappings.
Karapinar [27] used lower semicontinuous mappings to gen-
eralize Caristi-Kirk’s fixed point theorem on partial metric
spaces. Abdeljawad and Karapinar [28] generalize Cristi-
Kirik’s fixed point theorem to Cone metric spaces using
Cone-valued lower semicontinuous maps. The relation
between Caristi’s result and its restriction to the function
verifying Caristi’s stipulations with continuous real func-
tions is explained by Jachymski [29]. Khojasteh et al. [30]
introduce the idea that many known fixed point theorems
can easily be derived from the Caristi theorem. Also, Karapi-
nar et al. [31] proposed a new fixed point theorem which is
inspired from both Caristi and Banach.

In 2013, Ali et al. [32] initiated the idea of generalized α∗
-admissible mappings. Via this concept, fixed point conse-
quences to generalized Mizoguchi’s fixed point theorem are
derived. For single-valued mappings, Caristi [33] introduced
an important theorem in fixed point field and called it the
“Caristi fixed point theorem.” This theorem was generalized
to multivalued mappings in Banach spaces by Feng and Liu
[34] as follows:

Theorem 3. Assume that ðM, dÞ is a CMS and T : M⟶
NðMÞ is a multivalued mapping so that TðsÞ is a closed sub-
set of M, if there is a constant c ∈ ð0, 1Þ so that

d t, T tð Þð Þ ≤ cd s, tð Þ, ð3Þ

for all s ∈M and t ∈ Isb, where

Isb = t ∈ T sð Þ: bd s, tð Þ ≤ d s, T sð Þð Þ, b ∈ 0, 1ð Þf g, ð4Þ

then, there is a fixed point of T inM with c < b and dðs, TðsÞÞ
is lower semicontinuous.

Theorem 4. Assume that ðM, dÞ is a CMS and T : M⟶
CðMÞ is a multivalued mapping so that TðsÞ is a nonempty
subset of M: Let ϕ : M⟶ℝ be a lower semicontinuous
and bounded from below function and p : ½0,∞Þ⟶ 0,∞Þ
be a nondecreasing, continuous, and subadditive function so
that p−1ðf0gÞ = f0g: If for each s ∈ X, there is an element t
∈ TðsÞ verifying

p d s, tð Þð Þ ≤ ϕ sð Þ − ϕ tð Þ, ð5Þ

then, the mapping T has a fixed point on M:

Recently, Isik et al. [35] generalized Banach contraction
and Caristi’s fixed point theorem for a single-valued map
as the following:

Theorem 5. Let ðM, dÞ be a CMS and T : M⟶M be a self-
continuous mapping, if there is the mapping φ : ½0,∞�⟶ ½
0,∞� so that lim

s⟶0+
φðsÞ = 0,φð0Þ = ð0Þ, and

d Ts, Ttð Þ ≤ φ d s, tð Þð Þ − φ d Ts, Ttð Þð Þ, ∀s, t ∈M, ð6Þ

then, there is a unique fixed point of T .

Theorem 6. Assume that ðM, dÞ be a CMS and T : M⟶M
is a self-mapping. Let W be a set of mappings f : ℝ⟶ ð0,
∞Þ so that the hypotheses in the following hold:

(1) f is continuous and strictly increasing

(2) For each sequence an ⊆ℝ+,limn⟶∞an = 0 if and only
if limn⟶∞ f ðanÞ = 1

(3) For all a, b ∈ℝ,f ða + bÞ ≤ f ðaÞf ðbÞ
If the function ϕ : M⟶ R is lower semicontinuous and

bounded from as follows so that

f d s, Tsð Þð Þ ≤ f ϕ sð Þð Þ
f ϕ Tsð Þð Þ , ∀s ∈M, ð7Þ

then, T has a fixed point.

Definition 7 (see [36]). A function p : ½0,∞Þ⟶ 0,∞Þ is
called subadditive if pða + bÞ ≤ pðaÞ + pðbÞ for every a, b ∈ 0
,∞Þ:
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Definition 8 (see [13]). Suppose that T : M⟶NðMÞ be a
multivalued mapping, a point s ∈M is called a fixed point
of T if s ∈ TðMÞ:

Definition 9 (see [37]). Let ðM, dÞ be a metric space A and B
be nonempty subsets of M. Then, a set-valued mapping T
: A ∪ B⟶ A ∪ B is called a set-valued cyclic map if TðAÞ
⊂ B and TðBÞ ⊂ A, where TðAÞ = ∪fTx : x ∈ Ag.

The lemma in the following is very useful in the sequel.

Lemma 10 (Zorn’s lemma). Let S be a partially order set. If
every totally ordered subset of S has an upper bound then S
contains a maximal element.

Lemma 11 (see [10]). Assume that A and B are closed and
bounded subset of M and let a ∈ A: For each positive η >
0, then there is b ∈ B so that dða, bÞ ≤ PHMðA, BÞ + η: More-
over, if B is a compact then there is b ∈ B so that dða, bÞ
≤ PHMðA, BÞ:

The focus of this work is extending Theorems 3, 4, 5, and
6 for multivalued mappings via generalized contractive con-
ditions. An example and application for the existence of
solution of Volterra integral inclusion are also given.

2. Fixed Point Results

We begin this section with the first main result.

Theorem 12. Let ðM, dÞ be a complete metric space and T
: M⟶ CðMÞ be a multivalued mapping. If there is a nonde-
creasing mapping φ : ½0∞Þ⟶ 0∞Þ so that lim

t⟶0+
φðtÞ = 0,

φð0Þ = 0 and for all s ∈M, there is t ∈ Isb, so that

d t, Ttð Þ ≤ φ d s, tð Þð Þ − φ
d t, Ttð Þ

b

� �
, ð8Þ

where Isb = ft ∈ TðsÞ: bdðs, tÞ ≤ dðs, TðsÞÞ, b ∈ ð0, 1Þg and dðs
, TsÞ is lower semicontinuous; then, T has a fixed point in
M.

Proof. Let s∘ be an arbitrary element in M: Since Isb is non-
empty for any b ∈ ð0, 1Þ, we can build a sequence fsng with
sn+1 ∈ I

sn
b for each n ∈ℕ ∪ f0g so that

d sn+1, Tsn+1ð Þ ≤ φ d sn, sn+1ð Þð Þ − φ
1
b
d sn+1, Tsn+1ð Þ

� �
: ð9Þ

Since sn+2 ∈ Is+1b , then, we can write

d sn+1, sn+2ð Þ ≤ 1
b
d sn+1, Tsn+1ð Þ: ð10Þ

Because the mapping φ is nondecreasing, so by (9), we
have

0 ≤ d sn+1, Tsn+1ð Þ ≤ φ d sn, sn+1ð Þð Þ − φ d sn+1, sn+2ð Þð Þ: ð11Þ

This implies that the sequence fφðdðsn, sn+1ÞÞg is nonin-
creasing. Since φ is bounded as follows, then there is k ∈ℝ so
that φðdðsn, sn+1ÞÞ⟶ k as n⟶∞:

Now, for m, n ∈ℕ with m > n, we get

d sn, smð Þ ≤ 〠
m−1

i=n
d si, si+1ð Þ ≤ 1

b
〠
m−1

i=n
d si, Tsið Þ

≤
1
b
〠
m−1

i=n
φ d si−1, sið Þð Þ − φ d si, si+1ð Þð Þ½ �

≤
1
b

φ d sn−1, snð Þð Þ − φ d sm−1, smð Þð Þð Þ:

ð12Þ

Passing the limit in the above inequality as n,m⟶∞,
one can write

lim
n,m⟶∞

d sn, smð Þ = 0, ð13Þ

this proves that fsng is a Cauchy sequence. The complete-
ness of M leads to there is s ∈M so that lim

n⟶∞
dðsn, sÞ = 0:

Since dðsn, TsnÞ is lower semicontinuous, decreasing, φ is
nondecreasing and by (9), we obtain that

0 ≤ d sn+1, Tsn+1ð Þ = φ d sn, sn+1ð Þð Þ − φ
1
b
d sn+1, Tsn+1ð Þ

� �

= φ
1
b
d sn, Tsnð Þ

� �
− φ

1
b
d sn+1, Tsn+1ð Þ

� �
,

ð14Þ

or, equivalently,

d sn+1, Tsn+1ð Þ < d sn, Tsnð Þ, ð15Þ

this implies

d sn+1, Tsn+1ð Þ < d sn, Tsnð Þ, ð16Þ

therefore, dðsn, TsnÞ converges to zero. Again, because dðsn
, TsnÞ is lower semicontinuous, then, we have

0 ≤ d s, Tsð Þ ≤ lim
n⟶∞

d sn, Tsnð Þ = 0: ð17Þ

Hence, dðs, TsÞ = 0 ; also, the closed property of TðsÞ
implies that s ∈ Ts: ☐

Remark 13. Theorem 12 is more general than Theorem 3,
because if T verifies the stipulation of Theorem 3, then for
each s ∈M, there is t ∈ Isb so that

d t, Ttð Þ ≤ cd s, tð Þ ≤ c

1 + c/b −
ffiffiffiffiffiffi
c/b

p d s, tð Þ, ð18Þ
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this insinuate that

1 + c
b
−

ffiffiffi
c
b

r !
d t, Ttð Þ ≤ cd s, tð Þ, ð19Þ

this equivalent to

1 −
ffiffiffi
c
b

r !
d t, Ttð Þ + c

b

� �
d t, Ttð Þ ≤ cd s, tð Þ, ð20Þ

yields

d t, Ttð Þ ≤ cd s, tð Þ
1 −

ffiffiffiffiffiffi
c/b

p −
c

1 −
ffiffiffiffiffiffi
c/b

p d t, Ttð Þ
b

� �
: ð21Þ

Setting φðpÞ = cp/ð1 − ffiffiffiffiffiffi
c/b

p Þ, we have

d t, Ttð Þ ≤ φ d s, tð Þð Þ − φ
d t, Ttð Þ

b

� �
: ð22Þ

Moreover, dðs, TsÞ is lower semicontinuous; therefore, T
has a fixed point by Theorem 12.

If we put φðpÞ = p2 for all p ≥ 0 in Theorem 12, we get the
result as follows.

Corollary 14. Suppose that ðM, dÞ is a CMS and T : M
⟶ CðMÞ is a multivalued mapping. If for any s ∈M there
is t ∈ Isb so that

d t, Ttð Þ ≤ d s, tð Þð Þ2 − d t, Ttð Þ
b

� �2

, ð23Þ

then, there exists a fixed point of T:

Theorem 15. Let ðM, dÞ be a CMS and T : M⟶ CPðMÞ be
a multivalued mapping, where CPðMÞ is a compact subset of
M. If there exists a nondecreasing mapping φ : ½0,∞Þ⟶ 0,
∞Þ so that lim

t⟶0
φðtÞ = 0,φð0Þ = 0, and

PHM Ts, Ttð Þ ≤ φ d s, tð Þð Þ − φ PHM Ts, Ttð Þð Þ, ∀s, t ∈M,
ð24Þ

then, there is a fixed point of T in M:

Proof. Consider s∘ is an arbitrary point of M: According to
Lemma 11, construct a sequence fsng with sn+1 ∈ Tsn for
all n ∈N so that

0 ≤ d sn, sn+1ð Þ ≤ PHM Tsn−1, Tsnð Þ
≤ φ d sn−1, snð Þð Þ − φ PHM Tsn−1, Tsnð Þð Þ
≤ φ d sn−1, snð Þð Þ − φ d sn, sn+1ð Þð Þ,

ð25Þ

this implies that fφðdðsn, sn+1ÞÞg is a nonincreasing
sequence, as φ is bounded from the following so there is r
∈ℝ so that lim

n⟶∞
φðdðsn, sn+1ÞÞ = r:

To show that fsng is a Cauchy sequence, let m, n ∈N
with m > n and applying Lemma 11, we have

d sn, smð Þ ≤ 〠
m−1

i=n
d si, si+1ð Þ

≤ 〠
m−1

i=n
PHM Tsi−1, Tsið Þ

≤ 〠
m−1

i=n
φ d si−1, sið Þð Þ − φ d si, si+1ð Þð Þ½ �

= φ d sn−1, snð Þð Þ − φ d sm−1, smð Þð Þ½ �:

ð26Þ

As n,m⟶∞, we get

lim
n,m⟶∞

d sn, smð Þ = 0: ð27Þ

Thus, fsng is a Cauchy sequence. The completeness ofM
leads to there is s∘ ∈M so that lim

n⟶∞
sn = s∘: Thus, the

sequence Tsn converges to Ts∘. Since sn+1 ∈ Tsn for each n
∈N , this implies that s∘ ∈ Ts∘: This finishes the proof. ☐

Example 1. Let

M = si =
i i + 1ð Þ

2 i ∈N
� �

,

d s, tð Þ = s − tj j:
ð28Þ

It is obvious that the pair ðM, dÞ is complete metric
space. Define a multivalued mapping T by

T sð Þ =
s1, if s = s1 ∧ h ∈Mg,
s1, s2,⋯,si−1f g, if s = si and i > 1:

(
ð29Þ

Now, we verify that the multivalued mapping T satisfied
the condition of Theorem 15 with φðpÞ = p:exp ðpÞ: Note
that PHMðTsj, TsiÞ > 0 iff ði = 1 and j > 2Þ or ðj > i > 1Þ so
we have the following two cases.

Case 1. If j > 2 and i = 1, we have

PHM Tsj, Ts1
	 


1 + ePHM Tsj ,Ts1ð Þ� �
d sj, s1
	 


ed sj ,s1ð Þ ≤
PHM Tsj, Ts1

	 

2ePHM Tsj ,Ts1ð Þ� �

d sj, s1
	 


ed sj ,s1ð Þ

=
sj−1 − s1
	 


2esj−1−s1ð Þ
sj − s1
	 


esj−s1ð Þ

=
sj−1 − s1
	 


2esj−1−sjð Þ
sj − s1
	 


= j2 − j − 2
	 


2e−j
	 


j2 − j − 2
	 
 < 2e−j < 2e−1 < 1:

ð30Þ
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That is,

PHM Tsj, Ts1
	 


1 + ePHM Tsj ,Ts1ð Þ� �
d sj, s1
	 


ed sj,s1ð Þ < 1, ð31Þ

which implies that

PHM Tsj, Ts1
	 


≤ d Tsj, Ts1
	 


ed sj, s1
	 


− d Tsj, Ts1
	 


ed Tsj, Ts1
	 


:

ð32Þ

Case 2. If j > i > 1, then, we have

PHM Tsj, Tsi
	 


1 + ePHM Tsj ,Tsið Þ� �
d sj, si
	 


ed sj ,sið Þ ≤
PHM Tsj, Tsi

	 

2ePHM Tsj ,Tsið Þ� �

d sj, si
	 


ed sj ,sið Þ

=
sj−1 − si−1
	 


2e sj−1 − si−1
	 
	 


sj − si
	 


e sj − si
	 


=
sj−1 − si−1
	 


2e sj−1 − si−1 − sj + si
	 
	 

sj − si
	 


= j + i − 1ð Þ 2ei−j
	 


j + i + 1ð Þ ≤ 2ei−j ≤ 2e−1 < 1,

ð33Þ

that is,

PHM Tsj, Tsi
	 


1 + ePHM Tsj ,Tsið Þ� �
d sj, si
	 


ed sj ,sið Þ ≤ 1, ð34Þ

therefore,

PHM Tsj, Tsi
	 


< d sj, si
	 


ed sj, si
	 


− PHM Tsj, Tsi
	 


ePHM Tsj,Tsið Þ:
ð35Þ

Hence, the condition of Theorem 15 is satisfied. Also,
s1 = 1 is a fixed point of T:

Example 2. Suppose that M = ½0,∞Þ,dðs, tÞ = js − tj for all s,
t ∈M. It is obvious that the pair ðM, dÞ is a CMS. Define a
multivalued mapping T by

T sð Þ = s
2
n o

, ð36Þ

then, we have

PHM Ts, Ttð Þ = 1
2 s − tj j = 1

2 d s, tð Þ, ð37Þ

d2 s, tð Þ − P2
HM Ts, Ttð Þ = d2 s, tð Þ − 1

4 d
2 s, tð Þ = 3

4 d
2 s, tð Þ,

ð38Þ
it follows from (37) and (38) that

PHM Ts, Ttð Þ ≤ d2 s, tð Þ − P2
HM Ts, Ttð Þ, ∀s, t ∈M: ð39Þ

Hence, T satisfies the condition of Theorem 15 with φð
pÞ = p2:

Remark 16. Theorem 15 upgrades the Nadler fixed point
result in a finite-dimensional space. Indeed, if T holds con-
dition of Nadler’s theorem, then for s, t ∈M, we have

PHM Ts, Ttð Þ ≤ cd s, tð Þ ≤ cd s, tð Þ
1 + c −

ffiffi
c

p , ð40Þ

or, equivalently,

1 −
ffiffi
c

p	 

PHM Ts, Ttð Þ + cPHM Ts, Ttð Þ ≤ cd s, tð Þ, ð41Þ

yields

PHM Ts, Ttð Þ ≤ c

1 − ffiffi
c

p d s, tð Þ − c

1 − ffiffi
c

p PHM Ts, Ttð Þ: ð42Þ

Taking φðpÞ = cp/ð1−√cÞ, we get

PHM Ts, Ttð Þ ≤ φ d s, tð Þð Þ − φ PHM Ts, Ttð Þð Þ, ð43Þ

moreover, for each s ∈M,TðsÞ ∈ CBðMÞ but M is a finite-
dimensional space; therefore, TðsÞ is compact, and hence,
by Theorem 15, there is a fixed point of T:

Let Ω be the set of all mappings f : R⟶ ð0∞Þ having
the same stipulations (1)–(3) of Theorem 6. Note: by prop-
erty (2), of Theorem 6, we have f ðaÞ = 1 if and only if a =
0:

Example 3. All the functions in the following belong to Ω:

(i) f1ðsÞ = 1 + tanh s

(ii) f2ðsÞ = es

(iii) f3ðsÞ =
1 + ln ð1 + sÞ, if s ∈ 0,∞Þ
es, if s∈ð−∞,0�

(

The lemmas in the following help us to supplement the
theoretical results.

Lemma 17. Assume that ðM, dÞ is a CMS and T : M⟶N
ðMÞ is a multivalued mapping. Let ϕ : M⟶ R be a function
defined in Theorem 6 and f ∈Ω: Define the relation “≤” on
M so that

s ≤ t⇔ f d s, tð Þð Þð Þ ≤ f ϕ sð Þð Þ
f ϕ tð Þð Þ , ð44Þ

then, the relation “≤” is a partial order on M and M is a par-
tial order space.
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Proof. Since f ðaÞ = 1 iff a = 0, then, we have

f d s, sð Þð Þ = f 0ð Þ = 1 = f ϕ sð Þð Þ
f ϕ sð Þð Þ , ð45Þ

this shows that s ≤ s:
If s ≤ t and t ≤ s, then

f d s, tð Þð Þ ≤ f ϕ sð Þð Þ
f ϕ tð Þð Þ ,

f d t, sð Þð Þ ≤ f ϕ tð Þð Þ
f ϕ sð Þð Þ ,

ð46Þ

because dðt, sÞ = dðs, tÞ; thus, f ðdðt, sÞÞ = 1: Moreover, f ðaÞ
= 1 iff a = 0; therefore, dðt, sÞ = 0; this implies that s = t:

Finally, if s ≤ t and t ≤ u, then

f d s, tð Þð Þ ≤ f ϕ sð Þð Þ
f ϕ tð Þð Þ ,

andf d t, uð Þð Þ ≤ f ϕ tð Þð Þ
f ϕ uð Þð Þ ,

ð47Þ

it follows from f ða + bÞ ≤ f ðaÞ:f ðbÞ that

f d s, uð Þð Þ ≤ f d s, tð Þ + d t, uð Þð Þ ≤ f d s, tð Þ:f d t, uð Þð Þð Þ ≤ f ϕ sð Þð Þ
f ϕ uð Þð Þ :

ð48Þ

From the above results, we conclude that “≤” is a partial
order on M: ☐

Lemma 18. Let the pair ðM, dÞ be a CMS and T : M⟶N
ðMÞ be a multivalued mapping. Consider ϕ : M⟶ R be a
function defined in Theorem 6, f ∈Ω and η : ½0,∞Þ⟶ 0,
∞Þ is a nondecreasing, continuous, and subadditive function
that ensures that η−1ðf0gÞ = f0g: Define the relation “≤” on
M by

s ≤ t⇔ f η d s, tð Þð Þð Þ ≤ f ϕ sð Þð Þ
f ϕ tð Þð Þ , ð49Þ

then, the relation “≤” is a partial on M and M is a partial
order space.

Proof. Since f ðaÞ = 1 iff a = 0 and η−1ðf0gÞ = f0g, then, we
get

f η d s, sð Þð Þð Þ = f η 0ð Þð Þ = f 0ð Þ = 1 = f ϕ sð Þð Þ
f ϕ sð Þð Þ , ð50Þ

this implies that s ≤ s:

If s ≤ t and t ≤ s, then

f η d s, tð Þð Þð Þ ≤ f ϕ sð Þð Þ
f ϕ tð Þð Þ ,

f η d t, sð Þð Þð Þ ≤ f ϕ tð Þð Þ
f ϕ sð Þð Þ :

ð51Þ

Since dðt, sÞ = dðs, tÞ, thus f ðdðt, sÞÞ = 1: Moreover, f ðaÞ
= 1 iff a = 0 and η−1ðf0gÞ = f0g; therefore, dðt, sÞ = 0, i.e., s
= t:

Again, if s ≤ t and t ≤ u, then

f η d s, tð Þð Þð Þ ≤ f ϕ sð Þð Þ
f ϕ tð Þð Þ ,

f η d t, uð Þð Þð Þ ≤ f ϕ tð Þð Þ
f ϕ uð Þð Þ ,

ð52Þ

it follows from f ða + bÞ ≤ f ðaÞ:f ðbÞ, and η is nondecreasing
and subadditive that

f η d s, uð Þð Þð Þ ≤ f η d s, tð Þ + d t, uð Þð Þð Þ
≤ f η d s, tð Þð Þ + η d t, uð Þð Þð Þ
≤ f η d s, tð Þð Þð Þ:f η d t, uð Þð Þð Þ ≤ f ϕ sð Þð Þ

f ϕ uð Þð Þ ,

ð53Þ

and this completes the required. So, “≤” is a partial order on
M: ☐

Now, we can state and prove the next main theorems.

Theorem 19. Let ðM, dÞ be a CMS, T : M⟶NðMÞ be a
multivalued mapping, ϕ : M⟶ R be a function defined as
Theorem 6, and f ∈Ω: If for all s ∈M, there is t ∈ TðsÞ so that

f d s, tð Þð Þ ≤ f ϕ sð Þð Þ
f ϕ tð Þð Þ , ð54Þ

then, the mapping T has a fixed point in M:

Proof. SinceM is a partial order space, then we need to prove
only that M has a maximal element. Suppose that fsαgα∈I is
increasing sequence inM, that is, for α, β ∈ I with α ≤ β then
sα ≤ sβ from (54), we have fϕðsαÞgα∈I is decreasing, since ϕ is
bounded as follows then infα∈IϕðsαÞ holds. Assume that αn is
increasing sequence in I that ensures

lim
n⟶∞

ϕ sαn
	 


= inf
α∈I

ϕ sαð Þ = r: ð55Þ

Now, for m, n ∈ℕ with m ≥ n, then αn ≤ αm and fsαng
≤ fsαmg:
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Applying (54), we get

f d sαn , sαm
	 
	 


= f 〠
m−1

i=n
d si, si+1ð Þ

 !

≤Πm−1
i=n f d si, si+1ð Þð Þ

≤Πm−1
i=n

f ϕ sið Þð Þ
f ϕ si+1ð Þð Þ = f ϕ snð Þð Þ

f ϕ smð Þð Þ :

ð56Þ

As m, n⟶∞ in the above inequality, we have
lim

n,m⟶∞
f dðsαn , sαmÞ = 1: Since f is continuous so, we obtain

lim
n,m⟶∞

d sαn , sαm
	 


= 0: ð57Þ

Hence, fsαng is a Cauchy sequence in M: Since M is
complete then there exists s ∈M so that

fsαng⟶ s as n⟶∞: Thus, s is an upper bound for
fsαng for each n ≥ 1: Now, we want to show that s is also
an upper bound for fsαg: Suppose that β ∈ I with sαn ≤ sβ
for each n ≥ 1: Then, by (54), we obtain that ϕðsβÞ ≤ ϕðsαnÞ
for each n ≥ 1: Also, from (54), we have

ϕ sβ
	 


= inf
α∈I

ϕ sαð Þ = r: ð58Þ

Since

f d sαn , sβ
	 
	 


≤
f ϕ sαn
	 
	 


f ϕ sβ
	 
	 
 , ð59Þ

then, by taking the limit as n⟶∞, we get lim
n⟶∞

sαn = sβ:

Hence, for each α ∈ I, there is n ≥ 1 so that sα ≤ sαn , also sαn
≤ s, yields sα ≤ s for each α ∈ I: Thus, s is an upper bound
for fsαgα∈I : By Zorn’s lemma, M has a maximal element s∘:
The condition t∘ ∈ Tðs∘Þ implies that

f d s∘, t∘ð Þð Þ ≤ f ϕ s∘ð Þð Þ
f ϕ t∘ð Þð Þ , ð60Þ

this shows that s∘ ≤ t∘: Since s∘ is maximal, therefore, s∘ = t∘:
Therefore, s∘ ∈ Tðs∘Þ: This ends the proof. ☐

Theorem 20. Let ðM, dÞ be a CMS, T : M⟶NðMÞ be a
multivalued mapping, ϕ : M⟶ R be a function defined as
Theorem 6, f ∈Ω, and η : ½0,∞Þ⟶ 0,∞Þ be a nondecreas-
ing continuous subadditive function such that η−1ðf0gÞ = f0g
. If for any s ∈M, there is t ∈ TðsÞ so that

f η d s, tð Þð Þð Þ ≤ f ϕ sð Þð Þ
f ϕ tð Þð Þ , ð61Þ

then, there is a fixed point of T in M.

Proof. By the same manner of the proof of Theorem 19, we
can easily show that there is a maximal point s∘ of partial
order space M, and by hypothesis, there is t∘ ∈ Tðs∘Þ that

ensures

f η d s∘, t∘ð Þð Þð Þ ≤ f ϕ s∘ð Þð Þ
f ϕ t∘ð Þð Þ : ð62Þ

This implies that s∘ ≤ t∘: As s∘ is a maximal element ofM,
therefore, s∘ = t∘; hence, s∘ ∈ Tðs∘Þ: This completes the proof.

☐

3. Supportive Application

Here, we use Theorem 15 with φðpÞ = p2 to determine the
existence of a solution to the Volterra-type integral inclusion
of the following form:

s qð Þ ∈
ðq
a
W q, j, s jð Þð Þdj + g qð Þ, q ∈ a, b½ �, ð63Þ

where W : ½a, b� × ½a, b� ×ℝ⟶ PcvðℝÞ, PcvðℝÞ refers to the
class of nonempty compact and convex subset of ℝ and g
: ½a, b�⟶ℝ is a continuous function.

Let M = Cð½a, b�,ℝÞ be the space of all continuous real-
valued functions on ½a, b�: Define the distance

d s, tð Þ = sup
q∈ a,b½ �

s qð Þ − t qð Þj j, ð64Þ

for all s ∈M: It is clear that the pair ðM, dÞ is a metric space.
We shall consider Problem (63) under the hypotheses as

follows:

(1) W : ½a, b� × ½a, b� ×ℝ⟶ PcvðℝÞ and g : ½a, b�⟶
ℝ are continuous functions, as well as W is compact
and convex

(2) There is a continuous function l : M⟶ 0∞Þ so
that

PHM W q, j, s jð Þð Þ,W q, j, t jð Þð Þð Þ ≤ l jð Þ
−1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4 s jð Þ − t jð Þð Þ2

q
2

0
@

1
A,

ð65Þ

for each q, j ∈ ½a, b� and s, t ∈M

(3) We have supt∈½a,b�
Ð t
alðjÞdj ≤ 1

Now, our main theorem in this part becomes valid for
showing.

Theorem 21. Under the assumptions (1)–(3), Problem (63)
has a solution on M:
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Proof. Define the multivalued mapping T : Cð½a, b�, RÞ⟶
CPðCð½a, b�, RÞÞ by

Ts qð Þ = u ∈M : u ∈
ðq
a
W q, j, s jð Þð Þdj + g qð Þ, q ∈ a, b½ �

� �
:

ð66Þ

☐

The unique solution of Problem (63) is equivalent to find
a fixed point of T in M:

It is obvious that Ts is compact because for any s ∈M,
Wð:,:,sÞ is lower semicontinuous. For clarification, let Ws
=Wðq, j, sðjÞÞ, for each q, j ∈ ½a, b�: Thus, Ws : ½a, b� × ½a, b�
⟶ PcvðℝÞ, by Michael selection theorem [38], there is a
continuous function ms : ½a, b� × ½a, b�⟶ℝ so that msðq, j
Þ ∈Wsðq, jÞ: It follows that

Ð q
amsðq, jÞdj + gðqÞ ∈ TsðqÞ ; this

implies that Ts is nonempty. Hence, it is compact.

Proof. Suppose that s, u ∈M such that u ∈ Ts: Then, for each
q, j ∈ ½a, b�,msðq, jÞ ∈Wsðq, jÞ and

u qð Þ =
ðq
a
ms q, jð Þdj + g qð Þ, ∀q ∈ a, b½ �: ð67Þ

Now, by condition (1), there exist vtðq, jÞ ∈Wtðq, jÞ such
that

ms q, jð Þ − vt q, jð Þj j ≤ l jð Þ
−1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4 s jð Þ − t rð Þj j2

q
2 , ∀q, j ∈ a, b½ �:

ð68Þ

Let us define the multivalued operator O by

O q, jð Þ =Wt q, jð Þ ∩
(
w ∈ℝ : ms q, sð Þ −wj j

≤ q jð Þ
−1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4 s jð Þ − t jð Þj j2

q
2

)
, ∀q, j ∈ a, b½ �:

ð69Þ

Since T is lower semicontinuous, then there exist mt : ½
a, b� × ½a, b�⟶ R such that for all q, j ∈ ½a, b�,
mtðq, jÞ ∈Wtðq, jÞ. Thus, for any r ∈M,

r qð Þ =
ðq
a
mt q, jð Þdj + g qð Þ ∈

ðq
a
W q, j, t jð Þð Þdj + g qð Þ, q ∈ a, b½ �:

ð70Þ

By condition (3), we can write

u qð Þ − r qð Þj j ≤
ðq
a
ms q, jð Þ −mt q, jð Þj jdj

≤
ðq
a
l jð Þ

−1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4 s jð Þ − t jð Þj j2

q
2 dj

≤
ðq
a
l jð Þ

−1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4Þ s jð Þ − t jð Þk k2

q
2 dj

=
−1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4 s jð Þ − t jð Þk k2

q
2

ðq
a
l jð Þdj

≤
−1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4 s jð Þ − t jð Þk k2

q
2

0
@

1
A sup

ðq
a
l jð Þdj

� �

≤
−1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4 s jð Þ − t jð Þk k2

q
2 :

ð71Þ

This implies that

d u qð Þ, r qð Þð Þ ≤
−1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4 d s jð Þ, t jð Þð Þ½ �2

q
2 : ð72Þ

Now, by exchanging the rule of s and t, we have

PHM Ts, Ttð Þ ≤
−1 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4 d s jð Þ, t jð Þð Þ½ �2

q
2 , ∀s, t ∈M,

ð73Þ

yielding

1 + 2PHM Ts, Ttð Þð Þ2 ≤ 1 + 4 d s, tð Þ½ �2 ð74Þ

is equivalent to

PHM Ts, Ttð Þ + PHM Ts, Ttð Þ½ �2 ≤ d s, tð Þ½ �2: ð75Þ

Therefore,

PHM Ts, Ttð Þ ≤ d s, tð Þ½ �2 − PHM Ts, Ttð Þ½ �2, ∀s, t ∈M:

ð76Þ

Therefore, all the conditions of Theorem 15 are fulfilled.
Therefore, the operator T has a fixed point which is a solu-
tion to Problem (63). ☐
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Under some given conditions, we prove the explosion result of the solution of the system of nonlocal singular viscoelastic with
damping and source terms on general case. This current study is a general case of the previous work of Boulaaras.

1. Introduction

During the last decades, many nonlocal problems of deter-
ministic and parabolic partial differential equations have
been studied. These equations and their systems represent
the modeling of many physical phenomena related to time.
These constraints can be data measured directly at the
boundary or give integral boundary conditions (for instance,
see [1–25]).

In this work, we investigate the blow-up of the following
system of nonlinear damping term:

utt −
1
x

xuxð Þx +
ðt
0
g1 t − sð Þ 1

x
xux x, sð Þð Þxds + utj jm−1ut = f1 u, vð Þ,Q,

vtt −
1
x

xvxð Þx +
ðt
0
g2 t − sð Þ 1

x
xvx x, sð Þð Þxds + vtj jm−1vt = f2 u, vð Þ,Q,

u x, 0ð Þ = u0 xð Þ, ut x, 0ð Þ = u1 xð Þ, x ∈ 0, αð Þ,
v x, 0ð Þ = v0 xð Þ, vt x, 0ð Þ = v1 xð Þ, x ∈ 0, αð Þ,

u α, tð Þ = v α, tð Þ = 0,
ðα
0
xu x, tð Þdx =

ðα
0
xv x, tð Þdx = 0,

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð1Þ

wheref1ðu, vÞ, f2ðu, vÞ: R2 ⟶ Rgiven by

f1 u, vð Þ = a u + vj j2 r+1ð Þ u + vð Þ + b uj jru vj jr+2,
f2 u, vð Þ = a u + vj j2 r+1ð Þ u + vð Þ + b vj jrv uj jr+2,

ð2Þ

with a, b ∈ R, r≥−1 (we get a = b = 1), Q = ð0, αÞ × ð0, TÞ, α
<∞, T <∞, and

g1 :ð Þ,g2 :ð Þ : R+ ⟶ R+ ð3Þ

are given functions which will be specified later. The motiva-
tion of our work is because of some results regarding the fol-
lowing research paper: in [12], under some conditions
suitable for the relaxation function, the author explained
that solutions with initial negative energy explode in a finite
time if p >m and continue to find if m ≥ p, for the following
studied problem:

utt − Δu +
ðt
0
g t − sð ÞΔu + ut utj jm−2 = uj jp−2u, inΩ × 0,∞ð Þ,

u = 0x ∈ ∂Ω, t ∈ 0,∞ð Þ,
u x, 0ð Þ = u0 xð Þ, ut x, 0ð Þ = u1 xð Þ, x ∈Ω:

8>>>><
>>>>:

ð4Þ

In [4], the author studied a model describing the
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movement of a flexible two-dimensional viscous body on the
unit disk (i.e., radial solutions) and by using some density
arguments and some prior estimates, the authors demon-
strated the existence and uniqueness of a generalized solu-
tion to the following problem:

utt −
1
x

xuxð Þx +
ðt
0
g t − sð Þ 1

x
xux x, sð Þð Þxds = f x, t, u, uxð Þ, inQ, ux 1, tð Þ = 0,

ð1
0
xu x, tð Þdx = 0, t ∈ 0, Tð Þ,

u x, 0ð Þ = φ xð Þ,
ut x, 0ð Þ = ψ xð Þ, x ∈ 0, 1ð Þ,

8>>>>>>>>><
>>>>>>>>>:

ð5Þ

where

Q = 0, 1ð Þ × 0, Tð Þ ð6Þ

and f is the right-hand side that satisfied the Lipschitzian
condition. Recently, in [3], the authors demonstrated the
decay result of energy for a small enough initial data
together with the explosion result of large initial data of
the following singular problem:

utt −
1
x

xuxð Þx +
ðt
0
g t − sð Þ 1

x
xux x, sð Þð Þxds = uj jp−2u,

u a, tð Þ = 0,
ða
0
xu x, tð Þdx = 0,

u x, 0ð Þ = φ xð Þ, ut x, 0ð Þ = ψ xð Þ:

8>>>>>><
>>>>>>:

ð7Þ

That is, they obtained the blow-up properties of local
solution by Georgiev-Todorova method with nonpositive
initial energy. More work followed up on similar nonlocal
singular viscoelastic equations and systems in [8, 9].

In this work, we continue the study on system (1).
According to some given conditions, we prove the explosion
result of the solution of the system of nonlocal singular vis-
coelastic with damping and source terms on general case,
where we begin by giving basic definitions and theories
about the function spaces we need, and then, we mention
the theorem of local existence. Finally, we announce and
prove the main result of our studied problem in (1).

1.1. Preliminaries. In this section, we introduce some func-
tional spaces and give some lemma’s need for the remaining
of this paper. Let Lpx = Lpxðð0, αÞÞ be the weighed Banach
space equipped with the norm

uk kLpx =
ðα
0
x uj jpdx

� �1/p
: ð8Þ

H = L2xðð0, αÞÞis, in particular, the Hilbert space of

square integral functions having the finite norm

uk kH =
ðα
0
xu2dx

� �1/2
: ð9Þ

V = V1
xðð0, αÞÞis the Hilbert space equipped with the

norm

uk kV = uk k2H + uxk k2H
� �1/2,

V0 = u ∈ V : u αð Þ = 0f g:
ð10Þ

Lemma 1 (Poincare-type inequality). For any u ∈ V0,

ðα
0
xu2dx ≤ CP

ðα
0
xu2xdx, ð11Þ

where CP is some positive constant.

Remark 2. It is clear that kukV0
= kuxkH defines an equiva-

lent norm on V0:

Lemma 3. For any u ∈ V0 and 2 < p < 4 , we have

uk kpLpx 0,αð Þ ≤ C∗ uxk kpH=L2x 0,αð Þ, ð12Þ

where C∗ is a constant depending on α and p only. For the g1
and g2 functions, assumptions are as follows:(G1): g1ð:Þ, g2ð
:Þ: R+ ⟶ R+ are two differentiable and nonincreasing func-
tions with

g1 tð Þ ≥ 0, 1 −
ð∞
0
g1 sð Þds = I1 ≥ 0,

g2 tð Þ ≥ 0, 1 −
ð∞
0
g2 sð Þds = I2 ≥ 0,

ð13Þ

(G2): For all t ≥ 0,

g1 tð Þ ≥ 0,
g1
′ tð Þ ≤ 0,

g2 tð Þ ≥ 0,
g2
′ tð Þ ≤ 0:

ð14Þ

(G3): r ≥ −1:

Theorem 4. Suppose that (G1), (G2), and (G3) hold. Then,
for all ðu0, v0Þ ∈ V2

0 and all ðu1, v1Þ ∈H2 , problem ((1))
admits a unique local solution (u, v):

u, v ∈ C 0, Tð Þ ; V0ð Þ ∩ C1 0, Tð Þ ;Hð Þ, ð15Þ

for T > 0 small enough.
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Lemma 5. Assume that (G1), (G2), and (G3) hold and (u, v)
is a solution of problem((1)); then, the energy functional

E tð Þ = 1
2

ðα
0
xu2t dx +

1
2

ðα
0
xv2t dx +

1
2

1 −
ðt
0
g1 sð Þds

� �ðα
0
xu2x dx

+ 1
2

1 −
ðt
0
g2 sð Þds

� �ðα
0
xv2xdx +

1
2

g1 ∘ uxð Þ tð Þ

+ 1
2

g2 ∘ vxð Þ tð Þ −
ðα
0
xF u, vð Þdx,

ð16Þ

where

g1 ∘ uxð Þ tð Þ =
ðα
0

ðt
0
xg1 t − sð Þ ux x, sð Þ − ux x, tð Þj j2dsdx,

g2 ∘ vxð Þ tð Þ =
ðα
0

ðt
0
xg2 t − sð Þ vx x, sð Þ − vx x, tð Þj j2dsdx,

F u, vð Þ = 1
2 r + 2ð Þ u + v ∣ 2 r+2ð Þ + 2

��� ���uv���r+2� �
:

ð17Þ

Remark 6. Multiplying the first equation in((1))by xut and
the second equation in((1))by xvt integrating over ð0, αÞ ,
we obtain the following equation:

d
dt

E tð Þ½ � = −
ðα
0
x utj jm+1 dx −

ðα
0
x vtj jm+1 dx,

= − utk km+1
Lm+1
x

+ vtk km+1
Lm+1
x

h i
:

ð18Þ

The definition of the norm is as follows:

utk km+1
Lm+1
x

+ vtk km+1
Lm+1
x

h i
≥ 0: ð19Þ

From here,

− utk km+1
Lm+1
x

+ vtk km+1
Lm+1
x

h i
≤ 0: ð20Þ

Thus,

d
dt

E tð Þ½ � = − utk km+1
Lm+1
x

+ vtk km+1
Lm+1
x

h i
≤ 0: ð21Þ

Lemma 7. There exist c0 and c1 positive constants such that

c0
2 r + 2ð Þ uj j2 r+2ð Þ + vj j2 r+2ð Þ

	 

≤ F u, vð Þ ≤ c1

2 r + 2ð Þ uj j2 r+2ð Þ + vj j2 r+2ð Þ
	 


:

ð22Þ

Lemma 8. If 2 ≤ s ≤ p,

uk ksLpx ≤ C uxk k2H + uk kpLpx
	 


: ð23Þ

2. Blow-Up of Solution

In this section, we shall deal with the blow-up behavior of
solutions for problem (1). We derive the blow-up properties
of solutions of problem (1) with nonpositive initial energy by
the method given in [1].

Theorem 9. Assume that (G1), (G2), and (G3) hold. Eð0Þ < 0
and

ð∞
0
gi sð Þds <

r + 1
r + 1 + 1/ 4 r + 2ð Þð Þ , i = 1, 2: ð24Þ

Then, the solution of problem (1) blows up in finite time.

Proof. Since ðd/dtÞ½EðtÞ� = E′ðtÞ ≤ 0,

E tð Þ ≤ E 0ð Þ < 0, ∀t ≥ 0: ð25Þ

We define HðtÞ = −EðtÞ; then,

0 <H 0ð Þ ≤H tð Þ = −E tð Þ, ∀t ≥ 0: ð26Þ

☐

We obviously substitute EðtÞ in (26); then,

0 <H 0ð Þ ≤H tð Þ = −
1
2

ðα
0
xu2t dx −

1
2

ðα
0
xv2t dx

−
1
2 1 −

ðt
0
g1 sð Þds

� �ðα
0
xu2xdx

−
1
2 1 −

ðt
0
g2 sð Þds

� �ðα
0
xv2xdx

−
1
2 g1 ∘ uxð Þ tð Þ − 1

2 g2 ∘ vxð Þ tð Þ

+
ðα
0
xF u, vð Þdx:

ð27Þ

From (22) and (27),

0 <H 0ð Þ ≤H tð Þ ≤
ðα
0
xF u, vð Þ dx

≤
c1

2 r + 2ð Þ
ðα
0
x uj j2 r+2ð Þdx +

ðα
0
x vj j2 r+2ð Þdx

� �

= c1
2 r + 2ð Þ uk k2 r+2ð Þ

L2 r+2ð Þ
x

+ vk k2 r+2ð Þ
L2 r+2ð Þ
x

h i
:

ð28Þ

Thus,

H tð Þ ≤ c1
2 r + 2ð Þ uk k2 r+2ð Þ

L2 r+2ð Þ
x

+ vk k2 r+2ð Þ
L2 r+2ð Þ
x

h i
: ð29Þ

Equation (29) will then be used as an important data for
proof of the theorem. Now, we define
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L tð Þ =H1−σ tð Þ + ε
ðα
0
xuutdx +

ðα
0
xvvtdx

� �
ð30Þ

for ε small enough and

0 < σ ≤min 2 r + 2ð Þ −m
2m r + 2ð Þ , 2 r + 2ð Þ −m

2m r + 2ð Þ , 2r + 2
4 r + 2ð Þ

� �
: ð31Þ

By differentiating (30), using (1) and H ′ðtÞ = kutkm+1
Lm+1
x

+ kvtkm+1
Lm+1
x

, we obtain

L′ tð Þ = 1 − σð ÞH−σ tð Þ utk km+1
Lm+1
x

+ vtk km+1
Lm+1
x

h i
+ ε
ðα
0
xu2t dx

+ ε
ðα
0
xv2t dx − ε 1 −

ðt
0
g1 sð Þds

� �ðα
0
xu2xdx

− ε 1 −
ðt
0
g2 sð Þds

� �ðα
0
xv2xdx + ε

ðα
0

ðt
0
xg1

� t − sð Þux x, tð Þ ux x, sð Þ − ux x, tð Þ½ �dsdx + ε
ðα
0

ðt
0
xg2

� t − sð Þvx x, tð Þ vx x, sð Þ − vx x, tð Þ½ �dsdx
− ε
ðα
0
xuut utj jm−1dx − ε

ðα
0
xvvt vtj jm−1dx

+ ε2 r + 2ð Þ
ðα
0
xF u, vð Þdx:

ð32Þ

By using Young inequality and from HðtÞ = −EðtÞ,
ðα
0
xF u, vð Þ dx =H tð Þ + 1

2

ðα
0
xu2t dx +

1
2

ðα
0
xv2t dx

+ 1
2 1 −

ðt
0
g1 sð Þds

� �ðα
0
xu2xdx

+ 1
2 1 −

ðt
0
g2 sð Þds

� �ðα
0
xv2xdx

+ 1
2 g1 ∘ uxð Þ tð Þ + 1

2 g2 ∘ vxð Þ tð Þ,

ð33Þ

we obtain

L′ tð Þ ≥ 1 − σð ÞH−σ tð Þ utk km+1
Lm+1
x

+ vtk km+1
Lm+1
x

h i
+ ε r + 3ð Þ

ðα
0
xu2t dx + ε r + 3ð Þ

ðα
0
xv2t dx

+ ε r + 1ð Þ − r + 1ð Þ + 1
4θ

� �ðt
0
g1 sð Þds

� �ðα
0
xu2xdx

+ ε r + 1ð Þ − r + 1ð Þ + 1
4θ

� �ðt
0
g2 sð Þds

� �ðα
0
xv2xdx

+ ε r − θ + 2ð Þ g1 ∘ uxð Þ tð Þ + ε r − θ + 2ð Þ g2 ∘ vxð Þ tð Þ + ε2 r + 2ð ÞH tð Þ
− ε
ðα
0
xuut utj jm−1dx − ε

ðα
0
xvvt vtj jm−1dx:

ð34Þ

where

α3 = r − θ + 2 > 0⇒ r + 2 > θ > 0,
α4 = r − θ + 2 > 0⇒ r + 2 > θ > 0,

α1 = r + 1ð Þ − r + 1ð Þ + 1
4θ

� �ðt
0
g1 sð Þds

� �
> 0,

α2 = r + 1ð Þ − r + 1ð Þ + 1
4θ

� �ðt
0
g2 sð Þds

� �
> 0:

ð35Þ

From (34),

L′ tð Þ ≥ 1 − σð ÞH−σ tð Þ utk km+1
Lm+1
x

+ vtk km+1
Lm+1
x

h i
+ ε r + 3ð Þ

ðα
0
xu2t dx + ε r + 3ð Þ

ðα
0
xv2t dx + εα1

ðα
0
xu2xdx

+ εα2

ðα
0
xv2xdx + εα3 g1 ∘ uxð Þ tð Þ + εα4 g2 ∘ vxð Þ tð Þ

+ ε2 r + 2ð ÞH tð Þ − ε
ðα
0
xuut ut ∣

m−1dx − ε
ðα
0
xvvt

����
����vt
����
m−1

dx,

ð36Þ

H tð Þ = −E tð Þ = −
1
2

ðα
0
xu2t dx −

1
2

ðα
0
xv2t dx

−
1
2 1 −

ðt
0
g1 sð Þds

� �ðα
0
xu2xdx −

1
2 1 −

ðt
0
g2 sð Þds

� �ðα
0
xv2xdx

−
1
2 g1 ∘ uxð Þ tð Þ − 1

2 g2 ∘ vxð Þ tð Þ +
ðα
0
xF u, vð Þdx,

ð37Þ
and for a5 < min fα1, α2, α3, α4, 2ðr + 2Þg,

ε2 r + 2ð ÞH tð Þ = ε a5 + 2 r + 2ð Þ − a5ð Þð ÞH tð Þ
= εa5H tð Þ + ε 2 r + 2ð Þ − a5ð ÞH tð Þ
= −

ε

2 a5
ðα
0
xu2t dx −

ε

2 a5
ðα
0
xv2t dx

−
ε

2 a5 1 −
ðt
0
g1 sð Þds

� �ðα
0
xu2xdx

−
ε

2 a5 1 −
ðt
0
g2 sð Þds

� �ðα
0
xv2xdx

−
ε

2 a5 g1 ∘ uxð Þ tð Þ − ε

2 a5 g2 ∘ vxð Þ tð Þ

+ εa5

ðα
0
xF u, vð Þdx + ε 2 r + 2ð Þ − a5ð Þð ÞH tð Þ:

ð38Þ

To estimate the last term in (36), we apply the three-
parameter Young inequality: a, b ≥ 0,ð1/rÞ + ð1/qÞ = 1
,ab ≤ ðδr/rÞar + ðδ−qbq/qÞ,∀δ > 0. We take

r =m + 1 v eq = m + 1
m

, ð39Þ

in this case:

−ε
ðα
0
xuut utj jm−1dx ≥ −ε

δm+1
1

m + 1 uk km+1
Lm+1
x

− ε
m

m + 1 δ
− m+1ð Þ/mð Þ
1 utk km+1

Lm+1
x

:

ð40Þ
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Similarly

−ε
ðα
0
xvvt vtj jm−1dx ≥ −ε

δm+1
2

m + 1 vk km+1
Lm+1
x

− ε
m

m + 1 δ
− m+1ð Þ/mð Þ
2 vtk km+1

Lm+1
x

:

ð41Þ

Substituting (38), (40), and (41) into (36), by organizing,
we obtain

L′ tð Þ ≥ 1 − σð ÞH−σ tð Þ − m
m+ 1 εδ

− m+1ð Þ/mð Þ
1

h i
utk km+1

Lm+1
x

+ 1 − σð ÞH−σ tð Þ − m
m + 1 εδ

− m+1ð Þ/mð Þ
2

h i
vtk km+1

Lm+1
x

+ ε r + 3ð Þ − a5
2

	 
ðα
0
xu2t dx + ε r + 3ð Þ − a5

2
	 
ðα

0
xv2t dx

+ ε α1 −
a5
2 1 −

ðt
0
g1 sð Þds

� �� �ðα
0
xu2xdx

+ ε α2 −
a5
2 1 −

ðt
0
g2 sð Þds

� �� �ðα
0
xv2xdx

+ ε α3 −
a5
2

	 

g1 ∘ uxð Þ tð Þ + ε α4 −

a5
2

	 

g2 ∘ vxð Þ tð Þ

+ εa5

ðα
0
xF u, vð Þdx + ε 2 r + 2ð Þ − a5ð Þð ÞH tð Þ

− ε
δm+1
1

m + 1 uk km+1
Lm+1
x

− ε
δm+1
2

m + 1 vk km+1
Lm+1
x

:

ð42Þ

Since integration in estimate (40) and (41) is performed
over the space, the parameter δ1 and δ2 can be a function of
time; we get them as follows:

δ
− m+1ð Þ/mð Þ
1 = k1H

−σ tð Þ⇒ δm+1
1 = k−m1 Hσm tð Þ, ð43Þ

δ
− m+1ð Þ/mð Þ
2 = k2H

−σ tð Þ⇒ δm+1
2 = k−m2 Hσm tð Þ, ð44Þ

where k1 > 0 and k2 > 0 are sufficiently large constants to be
specified further. By using (43) and (44) in (42), we have

L′ tð Þ ≥ 1 − σð Þ − m
m + 1 εk1

	 

H−σ tð Þ utk km+1

Lm+1
x

+ 1 − σð Þ − m
m + 1 εk2

	 

H−σ tð Þ vtk km+1

Lm+1
x

+ ε r + 3ð Þ − a5
2

	 
ðα
0
xu2t dx + ε r + 3ð Þ − a5

2
	 
ðα

0
xv2t dx

+ ε α1 −
a5
2 1 −

ðt
0
g1 sð Þds

� �� �ðα
0
xu2xdx

+ ε α2 −
a5
2 1 −

ðt
0
g2 sð Þds

� �� �ðα
0
xv2xdx

+ ε α3 −
a5
2

	 

g1 ∘ uxð Þ tð Þ + ε α4 −

a5
2

	 

g2 ∘ vxð Þ tð Þ

+ εa5

ðα
0
xF u, vð Þdx + ε 2 r + 2ð Þ − a5ð Þð ÞH tð Þ

−
εk−m1
m + 1H

σm tð Þ uk km+1
Lm+1
x

−
εk−m2
m + 1H

σm tð Þ vk km+1
Lm+1
x

:

ð45Þ

To estimate the last two terms in (45), we use (29); then,

εk−m1
m + 1 H tð Þð Þσm uk km+1

Lm+1
x

≤
εk−m1 cσm2
m + 1 uk k2 r+2ð Þ

L2 r+2ð Þ
x

+ vk k2 r+2ð Þ
L2 r+2ð Þ
x

h iσm
uk km+1

Lm+1
x

:

ð46Þ

On the other hand, since r >max fm,mg from L2ðr+2Þx
°

Lm+1
x ,

uk km+1
Lm+1
x

≤ C uk km+1
L2 r+2ð Þ
x

≤ C uk kL2 r+2ð Þ
x

+ vk kL2 r+2ð Þ
x

h im+1
: ð47Þ

Substituting (47) into (46),

εk−m1
m + 1 H tð Þð Þσm uk km+1

Lm+1
x

≤
εk−m1 cσm2 C
m + 1 uk k2 r+2ð Þ

L
2 r+2ð Þ
x

+ vk k2 r+2ð Þ
L
2 r+2ð Þ
x

h iσm
� uk kL2 r+2ð Þ

x
+ vk kL2 r+2ð Þ

x

h im+1
:

ð48Þ

By using

a, b ≥ 0,
1 ≤ p <∞,

ap + bp ≤ a + bð Þp,
ð49Þ

we can estimate the following:

uk k2 r+2ð Þ
L2 r+2ð Þ
x

+ vk k2 r+2ð Þ
L2 r+2ð Þ
x

h i
≤ uk kL2 r+2ð Þ

x
+ vk kL2 r+2ð Þ

x

h i2 r+2ð Þ
: ð50Þ

Consequently, we have

εk−m1
m + 1 H tð Þð Þσm uk km+1

Lm+1
x

≤
εk−m1 cσm2 C
m + 1 uk kL2 r+2ð Þ

x
+ vk kL2 r+2ð Þ

x

h i2 r+2ð Þσm+m+1
:

ð51Þ

Similarly

εk−m2
m + 1 H tð Þð Þσm vk km+1

Lm+1
x

≤
εk−m2 cσm2 C
m + 1 uk kL2 r+2ð Þ

x
+ vk kL2 r+2ð Þ

x

h i2 r+2ð Þσm+m+1
:

ð52Þ

By using (51) and (52),

a, b ≥ 0, 1 ≤ p <∞, a + bð Þp ≤ c ap + bp
� �

,  c = 2p−1
� �

,
ð53Þ

forc · C = C′; we have

εk−m1
m + 1 H tð Þð Þσm uk km+1

Lm+1
x

≤
εk−m1 cσm2 C′

m + 1 uk k2 r+2ð Þσm+m+1
L2 r+2ð Þ
x

+ vk k2 r+2ð Þσm+m+1
L2 r+2ð Þ
x

h i
,

ð54Þ

εk−m2
m + 1 H tð Þð Þσm vk km+1

Lm+1
x

≤
εk−m2 cσm2 C′

m + 1 uk k2 r+2ð Þσm+m+1
L
2 r+2ð Þ
x

+ vk k2 r+2ð Þσm+m+1
L
2 r+2ð Þ
x

h i
:

ð55Þ
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From (31),

2 r + 2ð Þσm +m + 1 ≤ 2 r + 2ð Þ 2 r + 2ð Þ −m
2m r + 2ð Þ

� �
m +m + 1 = 2 r + 2ð Þ + 1,

r ≥ −1,
2 r + 2ð Þ ≥ 2,

2 r + 2ð Þσm +m + 1 ≥ 2:
ð56Þ

From here,

2 ≤ 2 r + 2ð Þσm +m + 1 ≤ 2 r + 2ð Þ + 1: ð57Þ

Thus, by applying (23), we obtain

uk k2 r+2ð Þσm+m+1
L2 r+2ð Þ
x

≤ uxk k2H + uj jj j2 r+2ð Þ
L2 r+2ð Þ
x

,

vk k2 r+2ð Þσm+m+1
L2 r+2ð Þ
x

≤ vxk k2H + vk k2 r+2ð Þ
L2 r+2ð Þ
x

:
ð58Þ

Substituting these inequalities in (54) and (55), in this
case,

εk−m1
m + 1 H tð Þð Þσm uk km+1

Lm+1
x

≤
εk−m1 cσm2 C′

m + 1 uxk k2H + uk k2 r+2ð Þ
L
2 r+2ð Þ
x

+ vxk k2H + vk k2 r+2ð Þ
L
2 r+2ð Þ
x

h i
,

ð59Þ

εk−m2
m + 1 H tð Þð Þσm vk km+1

Lm+1
x

≤
εk−m2 cσm2 C′

m + 1 uxk k2H + uk k2 r+2ð Þ
L2 r+2ð Þ
x

+ vxk k2H + vk k2 r+2ð Þ
L2 r+2ð Þ
x

h i
:

ð60Þ

With the combination of (59) and (60), we obtain

−
εk−m1
m + 1H

σm tð Þ uk km+1
Lm+1
x

−
εk−m2
m + 1H

σm tð Þ vk km+1
Lm+1
x

≥ −
εk−m1 cσm2 C′

m + 1 −
εk−m2 cσm2 C′

m + 1

" #
uk k2 r+2ð Þ

L2 r+2ð Þ
x

+ vk k2 r+2ð Þ
L2 r+2ð Þ
x

	 


+ −
εk−m1 cσm2 C′

m + 1 −
εk−m2 cσm2 C′

m + 1

" #
uxk k2H + vxk k2H

� �
:

ð61Þ

Finally,

uxk k2H =
ðα
0
xu2xdx, vxk k2H =

ðα
0
xv2xdx,

uk k2 r+2ð Þ
L2 r+2ð Þ
x

=
ðα
0
x uj j2 r+2ð Þdx, vk k2 r+2ð Þ

L2 r+2ð Þ
x

=
ðα
0
x vj j2 r+2ð Þdx,

c′ ·
ðα
0
x uj j2 r+2ð Þdx +

ðα
0
x vj j2 r+2ð Þdx

� �
≤
ðα
0
xF u, vð Þdx, c0

2 r + 2ð Þ = c′
� �

,

ð62Þ

and by considering (61), thus by organizing (45), we have

L′ tð Þ ≥ 1 − σð Þ − m
m + 1 εk1

	 

H−σ tð Þ utk km+1

Lm+1
x

+ 1 − σð Þ − m
m + 1 εk2

	 

H−σ tð Þ vtk km+1

Lm+1
x

+ ε r + 3ð Þ − a5
2

	 
ðα
0
xu2t dx + ε r + 3ð Þ − a5

2
	 
ðα

0
xv2t dx

+ ε α1 −
a5
2 1 −

ðt
0
g1 sð Þds

� �� �
−
k−m1 cσm2 C′
m + 1 −

k−m2 cσm2 C′
m + 1

" #

�
ðα
0
xu2xdx + ε α2 −

a5
2 1 −

ðt
0
g2 sð Þds

� �� �
−
k−m1 cσm2 C′
m + 1 −

k−m2 cσm2 C′
m + 1

" #

�
ðα
0
xv2xdx + ε c′a5 −

k−m1 cσm2 C′
m + 1 −

k−m2 cσm2 C′
m + 1

" #ðα
0
x uj j2 r+2ð Þdx

+ ε c′a5 −
k−m1 cσm2 C′
m + 1 −

k−m2 cσm2 C′
m + 1

" #ðα
0
x vj j2 r+2ð Þdx

+ ε α3 −
a5
2

h i
g1 ∘ uxð Þ tð Þ + ε α4 −

a5
2

h i
g2 ∘ uxð Þ tð Þ + ε 2 r + 2ð Þ − a5½ �H tð Þ,

ð63Þ

which introduce the constant

γ = ε · min r + 3ð Þ − a5
2 , α1 −

a5
2 1 −

ðt
0
g1 sð Þds

� �� �
−
k−m1 cσm2 C′
m + 1 −

k−m2 cσm2 C′
m + 1

" #
,

(

α2 −
a5
2 1 −

ðt
0
g2 sð Þds

� �� �
−
k−m1 cσm2 C′
m + 1 −

k−m2 cσm2 C′
m + 1

" #
,

c′a5 −
k−m1 cσm2 C′
m + 1 −

k−m2 cσm2 C′
m + 1

" #
, α3 −

a5
2

h i
, α4 −

a5
2

h i
, 2 r + 2ð Þ − a5½ �

)
:

ð64Þ

Taking sufficiently large k1 > 0 and k2 > 0 for the positive
constant γ, we simplify (63)

L′ tð Þ ≥ 1 − σð Þ − m
m + 1 εk1

	 

H−σ tð Þ utk km+1

Lm+1
x

+ 1 − σð Þ − m
m + 1 εk2

	 

H−σ tð Þ vtk km+1

Lm+1
x

+ εγ
ðα
0
xu2t dx +

ðα
0
xv2t dx +

ðα
0
xu2xdx +

ðα
0
xv2xdx

�

+
ðα
0
x uj j2 r+2ð Þdx +

ðα
0
x vj j2 r+2ð Þdx + g1 ∘ uxð Þ tð Þ

+ g2 ∘ vxð Þ tð Þ +H tð Þ�:
ð65Þ

For fixed k1 > 0, k2 > 0, and γ > 0, we choose ε > 0 so
small that the following inequality holds:

1 − σð Þ − m
m + 1 εk1

	 

≥ 0,

1 − σð Þ − m
m + 1 εk2

	 

≥ 0:

ð66Þ

Moreover, we assume that the initial data satisfy the esti-
mate

L 0ð Þ =H1−σ 0ð Þ + ε
ðα
0
xu0u1dx +

ðα
0
xv0v1dx

� �
> 0: ð67Þ
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Then, from (65), we obtain the following inequality:

L′ tð Þ ≥ εγ
ðα
0
xu2t dx +

ðα
0
xv2t dx +

ðα
0
xu2x dx +

ðα
0
xv2x dx

�

+
ðα
0
x uj j2 r+2ð Þdx +

ðα
0
x vj j2 r+2ð Þdx + g1 ∘ uxð Þ tð Þ

+ g2 ∘ vxð Þ tð Þ +H tð Þ�:
ð68Þ

On the other hand, in Equation (30), we take
the1/ð1 − σÞ · powerof each side

L tð Þ½ �1/ 1−σð Þ = H1−σ tð Þ + ε
ðα
0
xuutdx +

ðα
0
xvvtdx

� �� �1/ 1−σð Þ
:

ð69Þ

Twice by applying the following inequality to (69)

a, b ≥ 0, 1 ≤ p <∞, a + bð Þp ≤ 2p−1 ap + bp
� �

, ð70Þ

we have

L tð Þ½ �1/ 1−σð Þ ≤ 2σ/ 1−σð Þ H tð Þ + ε1/ 1−σð Þ
ðα
0
xuut dx +

ðα
0
xvvt dx

����
����
1/ 1−σð Þ" #

≤ 2σ/ 1−σð Þ H tð Þ + ε1/ 1−σð Þ2σ/ 1−σð Þ
ðα
0
xuutdx

����
����
1/ 1−σð Þ

+
ðα
0
xvvtdx

����
����
1/ 1−σð Þ !" #

≤ C H tð Þ +
ðα
0
xuutdx

����
����
1/ 1−σð Þ

+
ðα
0
xvvtdx

����
����
1/ 1−σð Þ" #

,

ð71Þ

where C > 0. Now, to estimate the last two terms in (71), we,
respectively, apply Holder inequality, L2ðr+2Þx

°
LHx , and Young

inequality; thus,

ðα
0
xuut dx

����
����
1/ 1−σð Þ

≤ uk k1/ 1−σð Þ
H utk k1/ 1−σð Þ

H ≤ C uk k1/ 1−σð Þ
L2 r+2ð Þ
x

utk k1/ 1−σð Þ
H

≤ C uk kθ/ 1−σð Þ
L2 r+2ð Þ
x

+ utk kμ/ 1−σð Þ
H

	 

:

ð72Þ

Similarly,

ðα
0
xvvtdx

����
����
1/ 1−σð Þ

≤ C vk kθ/ 1−σð Þ
L2 r+2ð Þ
x

+ vtk kμ/ 1−σð Þ
H

	 

, ð73Þ

where ð1/θÞ + ð1/μÞ = 1. In these inequalities by collecting
side by side, we obtain

ðα
0
xuut dx

����
����
1/ 1−σð Þ

+
ðα
0
xvvt dx

����
����
1/ 1−σð Þ

≤ C uk kθ/ 1−σð Þ
L2 r+2ð Þ
x

+ utk kμ/ 1−σð Þ
H + vk kθ/ 1−σð Þ

L2 r+2ð Þ
x

+ vtk kμ/ 1−σð Þ
H

	 

:

ð74Þ

We choose μ = 2ð1 − σÞ, to get

θ = 2 1 − σð Þ
1 − 2σ ≤ 2 r + 2ð Þ, ð75Þ

then

ðα
0
xuut dx

����
����
1/ 1−σð Þ

+
ðα
0
xvvt dx

����
����
1/ 1−σð Þ

≤ C uk k2/ 1−2σð Þ
L2 r+2ð Þ
x

+ utk k2H + vk k2/ 1−2 σð Þ
L2 r+2ð Þ
x

+ vtk k2H
	 


:

ð76Þ

By applying (23), we can write

uk k2/ 1−2 σð Þ
L2 r+2ð Þ
x

≤ C uxk k2H + uk k2 r+2ð Þ
L2 r+2ð Þ
x

	 

,

vk k2/ 1−2σð Þ
L2 r+2ð Þ
x

≤ C vxk k2H + vk k2 r+2ð Þ
L2 r+2ð Þ
x

	 

:

ð77Þ

From here, we obtain

ðα
0
xuut dx

����
����
1/ 1−σð Þ

+
ðα
0
xvvt dx

����
����
1/ 1−σð Þ

≤ C utk k2H + vtk k2H + uxk k2H + vxk k2H + uk k2 r+2ð Þ
L2 r+2ð Þ
x

+ vk k2 r+2ð Þ
L2 r+2ð Þ
x

	 

:

ð78Þ

Thus, by considering (78) and the following in (71),

utk k2H =
ðα
0
xu2t dx, vtk k2H =

ðα
0
xv2t dx,

uxk k2H =
ðα
0
xu2xdx, vxk k2H =

ðα
0
xv2xdx,

uk k2 r+2ð Þ
L2

r+2ð Þ
x

=
ðα
0
x uj j2 r+2ð Þdx, vk k2 r+2ð Þ

L2
r+2ð Þ

x

=
ðα
0
x vj j2 r+2ð Þdx,

g1 ∘ uxð Þ tð Þ ≥ 0, g2 ∘ vxð Þ tð Þ ≥ 0,
ð79Þ

we obtain

L tð Þ½ �1/ 1−σð Þ ≤ C H tð Þ +
ðα
0
xu2t dx +

ðα
0
xv2t dx +

ðα
0
xu2x dx

�

+
ðα
0
xv2xdx +

ðα
0
x uj j2 r+2ð Þdx +

ðα
0
x vj j2 r+2ð Þdx

+ g1 ∘ uxð Þ tð Þ + g2 ∘ vxð Þ tð Þ�:
ð80Þ

Finally, by combining (68) and (80), we obtain the fol-
lowing ordinary differential inequality:

L′ tð Þ ≥ λL1/ 1−σð Þ tð Þ∀t ≥ 0, ð81Þ

obviously, where λ > 0 is a constant depending only C, ε, and
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γ. This differential inequality integration over ð0, tÞ gives

L1/ 1−σð Þ tð Þ ≥ 1
L−σ/ 1−σð Þ 0ð Þ − λ σ/ 1 − σð Þð Þt , ð82Þ

where we choose

t ≤ T∗ = 1 − σ

λσLσ/ 1−σð Þ 0ð Þ : ð83Þ

Hence,

lim
t⟶T∗−

L tð Þ⟶∞: ð84Þ

3. Conclusions

The purpose of this paper is to study the explosion result of
the solution of the system of nonlocal singular viscoelastic
with damping and source terms on general case. This cur-
rent study is a general case of the previous work of Boulaaras
in ([5]). In the next work, we will try to obtain the same
result for the two-dimensional problem that allows a reason-
able description of the phenomenon occurring in a three-
dimensional domain. Then, we will try to prove uniqueness
results of the weak solution.
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In the theory of fuzzy fixed point, many authors have been proved different contractive type fixed point results with different types
of applications. In this paper, we establish some new fuzzy cone contractive type unique coupled fixed point theorems (FP-
theorems) in fuzzy cone metric spaces (FCM-spaces) by using “the triangular property of fuzzy cone metric” and present
illustrative examples to support our main work. In addition, we present a Lebesgue integral type mapping application to get
the existence result of a unique coupled FP in FCM-spaces to validate our work.

1. Introduction

The theory of fuzzy sets was introduced by Zadeh [1]. Later
on, in 1975, Kramosil and Michalek [2] introduced the con-
cept of fuzzy metric spaces (FM-space); they present some
structural properties of FM-space. In 1988, Grabiec [3] used
the concept of Kramosil and Michalek [2] and proved two
fixed point theorems (FP-theorems) of “Banach and Edel-
stein contraction mapping theorems on complete and com-
pact FM-spaces, respectively.” After that, the idea of FM-
space given by Kramosil and Michalek [2] was modified by
George and Veeramani [4], and they proved that every met-
ric induces a fuzzy metric and also proved some fundamental
properties and Baire’s theorem for FM-spaces. In 2002, Greg-
ory and Sapena [5] proved some contractive type FP-
theorems in FM-spaces. Roldan et al. [6] presented some
new FP-results in FM-spaces, while Jleli et al. [7] proved
some results by using cyclic ðψ, ϕÞ-contractions in Kaleva-
Seikkala’s type fuzzy metric spaces. Kiany and Harandi [8]
presented the concept of set-valued fuzzy-contractive type

maps and proved some FP and end point results in FM-
spaces. Latterly, Rehman et al. [9] gave out the notion of
rational type fuzzy contraction for FP in complete FM-
spaces with an application. Some more related FP-results
can be found in [10–15].

Indeed, Huang and Zhang [16] rediscovered the idea of
Banach-valued metric space. Indeed, many mathematicians
proposed it; but it becomes popular after Huang and Zhang’s
study. By adopting the theory that the underlying cone is
normal, they demonstrated the convergence properties and
some FP-theorems. Rezapour and Hamlbarani [17], in
2008, proved FP-theorems without assuming the cone’s nor-
mality, while in [18] Karapinar proved some Ćirić-type non-
unique FP-theorems on cone metric spaces. After that, many
others contributed their ideas to the problem of FP-findings
in cone metric spaces. A few of their FP-findings can be
found (e.g., see [19–22]).

In 2015, Oner et al. [23] gave the idea of fuzzy cone met-
ric space (FCM-space), and they also presented some funda-
mental properties and “a single-valued Banach contraction
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theorem for FP with the assumption that all the sequences
are Cauchy.” After that, Rehman and Li [24] settled some
generalized fuzzy cone contractive type FP-results neglecting
that “all the sequences are Cauchy” in complete FCM-space.
And later, Jabeen et al. [25] presented some common FP-
theorems for three self-mappings, by taking into consider-
ation the idea of weakly compatible in FCM-spaces with an
integral type application. Chen et al. [26], in 2020, gave the
idea of coupled fuzzy cone contractive-type mappings. They
proved “some coupled FP-theorems in FCM-spaces with
non-linear integral type application.” Latterly, Rehman and
Aydi [27], in 2021, presented the concept of rational type
fuzzy cone contraction mappings in FCM-spaces. They used
“the triangular property of fuzzy metric” as a fundamental
tool and proved some common FP-theorems and give an
application.

Guo and Lakshmikantham [28] proved “coupled FP-
results for the nonlinear operator with applications”. Later,
Bhaskar and Lakshmikantham [29] present some coupled
FP-theorems in the context of partially ordered metric
spaces, and this work is also presented by Lakshmikantham
and Ciric [30]. In the year 2010, Sedghi et al. [31] proved
some common coupled FP-results for commuting mappings
in fuzzy metric spaces.

In this paper, we present some unique coupled FP-
findings in FCM-spaces by taking the idea of Guo and
Lakshmikantham [28] and Chen et al. [26]. Furthermore,
we have also presented an application of the two Lebesgue
Integral Equations (LIE) for a common solution to uphold
our work. This paper is organized as follows: Section 2 con-
sists of preliminaries. In Section 3, we establish some unique
coupled FP-results in FCM-spaces with illustrative exam-
ples. In Section 4, we present an application of Lebesgue
integral mapping to get the existence result of unique
coupled FP in FCM-spaces to hold up our main work. In
Section 5, we discuss the conclusion of our work.

2. Preliminaries

Definition 1 [32]. A binary operation ∗ : ½0, 1� × ½0, 1�⟶ ½
0, 1� would be a continuous t-norm if ∗ fulfils the following
conditions:

(i) ∗ is associative and commutative

(ii) ∗ is continuous

(iii) 1 ∗ α = α, ∀α ∈ ½0, 1�
(iv) α1 ∗ α2 ≤ α3 ∗ α4 whenever α1 ≤ α3 and α2 ≤ α4, for

α1, α2, α3, α4 ∈ ½0, 1�

Throughout the complete paper, ζ-norm represents a con-
tinuous t-norm.

Definition 2 [16]. Let E be a real Banach space and ϑ be the
zero element of E , and C is a subset of E. Then, C is called a
cone if,

(i) C is closed and nonempty, and C ≠ fϑg
(ii) α1, α2 ∈ R, α1, α2 ≥ 0 and a, b ∈ C, then α1a + α2b ∈ C

(iii) both a ∈ C and −a ∈ C and then a = ϑ

A partial ordering on a given cone C ⊂ E is defined by
a⪯b⇔ b − a ∈ C. a ≺ b stands for a⪯b and a ≠ b, while a≪
b stands for b − a ∈ int ðCÞ. In this paper, all cones have non-
empty interior.

Definition 3 [4]. A 3-tuple ðA,Mc,∗Þ is said to be a FM-
space if A is any set, ∗ is a ζ-norm, and Mc is a fuzzy set
on A2 × ð0,∞Þ satisfying

(i) Mcða, b, ζÞ > 0
(ii) Mcða, b, ζÞ = 0⇔a = b

(iii) Mcða, b, ζÞ =Mcðb, a, ζÞ
(iv) Mcða, c, ζÞ ∗Mcðc, b, sÞ ≤Mcða, b, ζ + sÞ
(v) Mcða, b,:Þ: ð0,∞Þ⟶ ½0, 1�is con-

tinuous,∀a, b, c ∈ A and ζ, s > 0

Definition 4 [23]. A 3-tuple ðA,Mc,∗Þ is said to be a FCM-
space if C is a cone of E, A is an arbitrary set, ∗ is a ζ -norm,
and Mc is a fuzzy set on A2 × int ðCÞ satisfying

(i) Mcða, b, ζÞ > 0
(ii) Mcða, b, ζÞ = 0⇔a = b

(iii) Mcða, b, ζÞ =Mcðb, a, ζÞ
(iv) Mcða, c, ζÞ ∗Mcðc, b, sÞ ≤Mcða, b, ζ + sÞ
(v) Mcða, b,:Þ: int ðCÞ⟶ ½0, 1� is continuous, ∀a, b, c

∈ A, and ζ, s≫ ϑ

Definition 5 [23]. Let a 3-tuple ðA,Mc,∗Þ be a FCM-space,
b1 ∈ A, which is a sequence fbjg in A

(i) It converges tob if α3 ∈ ð0, 1Þ and ζ≫ ϑ; there is j1
∈N such that Mcðbj, b, ζÞ > 1 − α3, for j ≥ j1, or
we write it as lim

j⟶∞
bj = b1 or bj ⟶ b1 as j⟶∞

(ii) It is a Cauchy sequence if α3 ∈ ð0, 1Þ and ζ≫ ϑ; there
is j1 ∈N such that Mcðbj, bi, ζÞ > 1 − α3, for j, i ≥ j1

(iii) ðA,Mc,∗Þ is complete if every Cauchy sequence is
convergent in A

(iv) It is fuzzy cone contractive if ∃α ∈ ð0, 1Þ and fulfilling

1
Mc bj, bj+1, ζ
� � − 1 ≤ α

1
Mc bj−1, bj, ζ
� � − 1

 !
,

 for ζ≫ ϑ, j ≥ 1:
ð1Þ
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Lemma 6 [23]. Let ðA,Mc,∗Þ be a FCM-space, and let a
sequence fbjg in A converge to a point b ∈ A⇔Mcðbj, b, ζÞ
which converges to 1 as j⟶∞, for ζ≫ ϑ.

Definition 7 [24]. Let ðA,Mc,∗Þ be a FCM-space. The FCM
Mc is triangular, if

1
Mc a, b, ζð Þ − 1 ≤ 1

Mc a, c, ζð Þ − 1
� �

+ 1
Mc c, b, ζð Þ − 1
� �

,

 ∀a, c, b ∈ A, ζ≫ ϑ:

ð2Þ

Definition 8 [23]. Let ðA,Mc,∗Þ be a FCM-space and Γ : A
⟶ A. Then, Γ is said to be fuzzy cone contractive if ∃
α1 ∈ ð0, 1Þ such that

1
Mc Γb, Γc, ζð Þ − 1 ≤ α1

1
Mc b, c, ζð Þ − 1
� �

, ∀b, c ∈ A, ζ≫ ϑ:

ð3Þ

Definition 9. Let ðb, cÞ be an element in A × A. Then, it is
called coupled FP of a mapping Γ : A × A⟶ A if

Γ b, cð Þ = b,
Γ c, bð Þ = c:

ð4Þ

Now, in the following, we prove some unique couple FP-
theorems in FCM-spaces with examples to support our main
work. Furthermore, we present an application of Lebesgue
integral contractive type mapping to prove a unique coupled
FP-theorem in FCM-spaces.

3. Main Results

Now, we present our first main result.

Theorem 10. Let Γ : A × A⟶ A be a mapping on complete
FCM-spaces ðA,Mc,∗Þ in which Mc is triangular and sat-
isfies the inequality:

1
Mc Γ a, bð Þ, Γ κ, ϱð Þ, ζð Þ − 1

≤ α1
1

Mc a, κ, ζð Þ − 1
� �

+ α2
1

N Γ, a, bð Þ, κ, ϱð Þ, ζð Þ − 1
� �

,

ð5Þ

where

1
N Γ, a, bð Þ, κ, ϱð Þ, ζð Þ − 1

=
�

1
Mc a, Γ a, bð Þ, ζð Þ − 1 + 1

Mc κ, Γ κ, ϱð Þ, ζð Þ
− 1 + 1

Mc a, Γ κ, ϱð Þ, ζð Þ − 1 + 1
Mc κ, Γ a, bð Þ, ζð Þ − 1

�
,

ð6Þ

∀a, b, κ, ϱ ∈ A, ζ≫ ϑ, α1 ∈ ½0, 1Þ, and α2 ≥ 0 with ðα1 + 4α2Þ
< 1. Then, Γ has a unique couple FP in A.

Proof. Any a0, b0 ∈ A; we define sequences fajg and fbjg in
A such that

Γ aj, bj
� �

= aj+1,

Γ bj, aj
� �

= bj+1, for j ≥ 0:
ð7Þ

☐

Now from (5) for ζ≫ ϑ, we have

1
Mc aj, aj+1, ζ
� � − 1

= 1
Mc Γ aj−1, bj−1

� �
, Γ aj, bj
� �

, ζ
� � − 1

≤ α1
1

Mc aj−1, aj, ζ
� � − 1

 !

+ α2
1

N Γ, aj−1, bj−1
� �

, aj, bj
� �

, ζ
� � − 1

 !
,

ð8Þ

where

1
N Γ, aj−1, bj−1

� �
, aj, bj
� �

, ζ
� � − 1

=
 

1
Mc aj−1, Γ aj−1, bj−1

� �
, ζ

� � − 1 + 1
Mc aj, Γ aj, bj

� �
, ζ

� �
− 1 + 1

Mc aj−1, Γ aj, bj
� �

, ζ
� � − 1

+ 1
Mc aj, Γ aj−1, bj−1

� �
, ζ

� � − 1
!

=
 

1
Mc aj−1, aj, ζ
� � − 1 + 1

Mc aj, aj+1, ζ
� �

− 1 + 1
Mc aj−1, aj+1, ζ
� � − 1

!

≤ 2 1
Mc aj−1, aj, ζ
� � − 1 + 1

Mc aj, aj+1, ζ
� � − 1

 !
:

ð9Þ
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Now from (8) and (9), for ζ≫ ϑ,

1
Mc aj, aj+1, ζ
� � − 1

≤ α
1

Mc aj−1, aj, ζ
� � − 1

 !
+ 2α2

 
1

Mc aj−1, aj, ζ
� �

− 1 + 1
Mc aj, aj+1, ζ
� � − 1

!
:

ð10Þ

We get, after simplification,

1
Mc aj, aj+1, ζ
� � − 1 ≤ λ

1
Mc aj−1, aj, ζ
� � − 1

 !
, for ζ≫ ϑ,

ð11Þ

where λ = ðα1 + 2α2Þ/ð1 − 2α2Þ < 1. Similarly,

1
Mc aj−1, aj, ζ
� � − 1 ≤ λ

1
Mc aj−2, aj−1, ζ
� � − 1

 !
, for ζ≫ ϑ:

ð12Þ

Now, from (11) and (12) and by induction, for ζ≫ ϑ,

1
Mc aj, aj+1, ζ
� � − 1

≤ λ
1

Mc aj−1, aj, ζ
� � − 1

 !
≤ λ2

1
Mc aj−2, aj−1, ζ
� � − 1

 !

≤⋯ ≤ λj 1
Mc a0, a1, ζð Þ − 1
� �

⟶ 0, as j⟶∞:

ð13Þ

It shows that the sequence fajg is a fuzzy cone contrac-
tive; therefore,

lim
j⟶∞

Mc aj, aj+1, ζ
� �

= 1, for ζ≫ ϑ: ð14Þ

Now for i > j and for ζ≫ ϑ, we have

1
Mc aj, ai, ζ
� � − 1

≤
1

Mc aj, aj+1, ζ
� � − 1

 !
+ 1

Mc aj+1, aj+2, ζ
� � − 1

 !

+⋯+ 1
Mc ai−1, ai, ζð Þ − 1
� �

≤ λ j 1
Mc ao, a1, ζð Þ − 1
� �

+ λj+1 1
Mc a0, a1, ζð Þ − 1
� �

+⋯+λi−1 1
Mc a0, a1, ζð Þ − 1
� �

= λj + λj+1+⋯+λi−1
� � 1

Mc a0, a1, ζð Þ − 1
� �

= λj

1 − λ

1
Mc ao, a1, ζð Þ − 1
� �

⟶ 0, as j⟶∞:

ð15Þ

Hence, the sequence fajg is Cauchy. Now for sequence
fbjg and from (5), for ζ≫ ϑ, we have

1
Mc bj, bj+1, ζ
� � − 1

= 1
Mc Γ bj−1, aj−1

� �
, Γ bj, aj
� �

, ζ
� � − 1

≤ α1
1

Mc bj−1, bj, ζ
� � − 1

 !

+ α2
1

N Γ, bj−1, aj−1
� �

, bj, aj
� �

, ζ
� � − 1

 !
,

ð16Þ

where

1
N Γ, bj−1, aj−1

� �
, bj, aj
� �

, ζ
� � − 1

=
 

1
Mc bj−1, Γ bj−1, aj−1

� �
, ζ

� � − 1

+ 1
Mc bj, Γ bj, aj

� �
, ζ

� �
− 1 + 1

Mc bj−1, Γ bj, aj
� �

, ζ
� � − 1

+ 1
Mc bj, Γ bj−1, aj−1

� �
, ζ

� � − 1
!

=
 

1
Mc bj−1, bj, ζ
� � − 1 + 1

Mc bj, bj+1, ζ
� �

− 1 + 1
Mc bj−1, bj+1, ζ
� � − 1

!

≤ 2 1
Mc bj−1, bj, ζ
� � − 1 + 1

Mc bj, bj+1, ζ
� � − 1

 !
:

ð17Þ

Now from (16) and (17), for ζ≫ ϑ,
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1
Mc bj, bj+1, ζ
� � − 1

≤ α1
1

Mc bj−1, bj, ζ
� � − 1

 !

+ 2α2
1

Mc bj−1, bj, ζ
� � − 1 + 1

Mc bj, bj+1, ζ
� � − 1

 !
:

ð18Þ

We get, after simplification,

1
Mc bj, bj+1, ζ
� � − 1 ≤ λ

1
Mc bj−1, bj, ζ
� � − 1

 !
, for ζ≫ ϑ,

ð19Þ

where λ = ðα1 + 2α2Þ/ð1 − 2α2Þ < 1. Similarly,

1
Mc bj−1, bj, ζ
� � − 1 ≤ λ

1
Mc bj−2, bj−1, ζ
� � − 1

 !
, for ζ≫ ϑ:

ð20Þ

Now, from (19) and (20) and by induction, for ζ≫ ϑ,

1
Mc bj, bj+1, ζ
� � − 1

≤ λ
1

Mc bj−1, bj, ζ
� � − 1

 !
≤ λ2

1
Mc bj−2, bj−1, ζ
� � − 1

 !

≤⋯≤ λj 1
Mc b0, b1, ζð Þ − 1
� �

⟶ 0, as j⟶∞

ð21Þ

It shows that the sequence fbjg is a fuzzy cone contrac-
tive; therefore,

lim
j⟶∞

Mc bj, bj+1, ζ
� �

= 1, for ζ≫ ϑ: ð22Þ

Now for i > j and for ζ≫ ϑ, we have

1
Mc bj, bi, ζ
� � − 1

≤
1

Mc bj, bj+1, ζ
� � − 1

 !
+ 1

Mc bj+1, bj+2, ζ
� � − 1

 !

+⋯+ 1
Mc bi−1, hi, ζð Þ − 1
� �

≤ λj 1
Mc bo, b1, ζð Þ − 1
� �

+ λj+1 1
Mc b0, b1, ζð Þ − 1
� �

+⋯+λi−1 1
Mc b0, b1, ζð Þ − 1
� �

= λj + λj+1+⋯+λi−1
� � 1

Mc b0, b1, ζð Þ − 1
� �

= λj

1 − λ

1
Mc b0, b1, ζð Þ − 1
� �

⟶ 0, as j⟶∞:

ð23Þ

Hence, the sequence fbjg is Cauchy. Since A is complete
and fajg, fbjg are Cauchy sequences in A, so ∃a, b ∈ A such
that aj ⟶ a and bj ⟶ b as j⟶∞ or this can be written
as lim

j⟶∞
aj = a and lim

j⟶∞
bj = b. Therefore,

lim
j⟶∞

Mc aj, a, ζ
� �

= 1,

lim
j⟶∞

Mc bj, b, ζ
� �

= 1, for ζ≫ ϑ:
ð24Þ

Hence,

lim
j⟶∞

aj+1 = lim
j⟶∞

Γ aj, bj
� �

= Γ lim
j⟶∞

aj, lim
j⟶∞

bj

� �
⇒ Γ a, bð Þ = a:

ð25Þ

Similarly,

lim
j⟶∞

bj+1 = lim
j⟶∞

Γ bj, aj
� �

= Γ lim
j⟶∞

bj, lim
j⟶∞

aj

� �
⇒ Γ b, að Þ = b:

ð26Þ

Regarding its uniqueness, suppose ða1, b1Þ and ðb1, a1Þ
are another couple fixed point pairs in A × A such that Γð
a1, b1Þ = a1 and Γðb1, a1Þ = b1. Now, from (5), for ζ≫ ϑ, we
have

1
Mc a, a1, ζð Þ − 1

= 1
Mc Γ a, bð Þ, Γ a1, b1ð Þ, ζð Þ − 1

≤ α1
1

Mc a, a1, ζð Þ − 1
� �

+ α2
1

N Γ, a, bð Þ, a1, b1ð Þ, ζð Þ − 1
� �

,

ð27Þ

where
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1
N Γ, a, bð Þ, a1, b1ð Þ, ζð Þ − 1

=
� 1
Mc a, Γ a, bð Þ, ζð Þ − 1 + 1

Mc a1, Γ a1, b1ð Þ, ζð Þ − 1

+ 1
Mc a, Γ a1, b1ð Þ, ζð Þ − 1 + 1

Mc a1, Γ a, bð Þ, ζð Þ − 1
�

=
� 1
Mc a, a, ζð Þ − 1 + 1

Mc a1, a1, ζð Þ − 1 + 1
Mc a, a1, ζð Þ

− 1 + 1
Mc a1, a, ζð Þ − 1

�
= 2 1

Mc a, a1, ζð Þ
� �

:

ð28Þ

Now from (27) and for ζ≫ ϑ,

1
Mc a, a1, ζð Þ − 1

≤ α1
1

Mc a, a1, ζð Þ − 1
� �

+ 2α2
1

Mc a, a1, ζð Þ − 1
� �

= α1 + 2α2ð Þ 1
Mc a, a1, ζð Þ − 1
� �

= α1 + 2α2ð Þ 1
Mc Γ a, bð Þ, Γ a1, b1ð Þ, ζð Þ − 1
� �

≤ α1 + 2α2ð Þ2 1
Mc a, a1, ζð Þ − 1
� �

≤⋯

≤ α1 + 2α2ð Þj 1
Mc a, a1, ζð Þ − 1
� �

⟶ 0, as j⟶∞,
ð29Þ

where ðα1 + 2α2Þ < 1. Hence, we have Mcða, a1, ζÞ = 1 for ζ
≫ ϑ, ⇒a = a1.

Similarly, again from (5), for ζ≫ ϑ, we have

1
Mc b, b1, ζð Þ − 1 = 1

Mc Γ b, að Þ, Γ b1, a1ð Þ, ζð Þ − 1

≤ α1
1

Mc b, b1, ζð Þ − 1
� �

+ α2
1

N Γ, b, að Þ, b1, a1ð Þ, ζð Þ − 1
� �

,

ð30Þ

where

1
N Γ, b, að Þ, b1, a1ð Þ, ζð Þ − 1

=
� 1
Mc b, Γ b, að Þ, ζð Þ − 1 + 1

Mc b1, Γ b1, a1ð Þ, ζð Þ − 1

+ 1
Mc b, Γ b1, a1ð Þ, ζð Þ − 1 + 1

Mc b1, Γ b, að Þ, ζð Þ − 1
�

=
� 1
Mc b, b, ζð Þ − 1 + 1

Mc b1, b1, ζð Þ − 1 + 1
Mc b, b1, ζð Þ

− 1 + 1
Mc b1, b, ζð Þ − 1

�
= 2 1

Mc b, b1, ζð Þ
� �

:

ð31Þ

Now from (30) and for ζ≫ ϑ,

1
Mc b, b1, ζð Þ − 1

≤ α1
1

Mc b, b1, ζð Þ − 1
� �

+ 2α2
1

Mc b, b1, ζð Þ − 1
� �

= α1 + 2α2ð Þ 1
Mc b, b1, ζð Þ − 1
� �

= α1 + 2α2ð Þ 1
Mc Γ b, að Þ, Γ b1, a1ð Þ, ζð Þ − 1
� �

≤ α1 + 2α2ð Þ2 1
Mc b, b1, ζð Þ − 1
� �

≤⋯

≤ α1 + 2α2ð Þj 1
Mc b, b1, ζð Þ − 1
� �

⟶ 0, as j⟶∞:

ð32Þ

Hence, we have Mcðb, b1, ζÞ = 1 for ζ≫ ϑ, ⇒b = b1.

Corollary 11. Let Γ : A × A⟶ A be a mapping on complete
FCM-spaces ðA,Mc,∗Þ in which Mc is triangular and sat-
isfies

1
Mc Γ a, bð Þ, Γ κ, ϱð Þ, ζð Þ − 1

≤ α1
1

Mc a, κ, ζð Þ − 1
� �

+ α2

�
1

Mc a, Γ a, bð Þ, ζð Þ − 1
� �

+ 1
Mc κ, Γ κ, ϱð Þ, ζð Þ − 1
� �	

,

ð33Þ

for all a, b, κ, ϱ ∈ A, ζ≫ ϑ, α1 ∈ ½0, 1Þ, and α2 ≥ 0 with ðα1 +
2α2Þ < 1. Then, Γ has a unique couple FP in A.

Corollary 12. Let Γ : A × A⟶ A be a mapping on complete
FCM-spaces ðA,Mc,∗Þ in which Mc is triangular and sat-
isfies

1
Mc Γ a, bð Þ, Γ κ, ϱð Þ, ζð Þ − 1

≤ α1
1

Mc a, κ, ζð Þ − 1
� �

+ α2

�
1

Mc a, Γ κ, ϱð Þ, ζð Þ − 1
� �

+ 1
Mc κ, Γ a, bð Þ, ζð Þ − 1
� �	

,

ð34Þ
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for all a, b, κ, ϱ ∈ A, ζ≫ ϑ, α1 ∈ ½0, 1Þ, and α2 ≥ 0 with ðα1 +
2α2Þ < 1. Then, Γ has a unique couple FP in A.

Example 1. A = ð0,∞Þ, ∗ is a ζ-norm, and Mc : A
2 × ð0,∞Þ

⟶ ½0, 1� is defined as

Mc a, b, ζð Þ = ζ

ζ + d a, bð Þ , d a, bð Þ = a − bj j, ð35Þ

for all a, b ∈ A and ζ > 0. Then, it is easy to verify that Mc is
triangular and ðA,Mc,∗Þ is a complete FCM-space. We
define

Γ g, hð Þ =
a − b
12 , if a, b ∈ 0, 1½ �,
2a + 2b − 2

3 , if a, b ∈ 1,∞½ Þ:

8>><
>>: ð36Þ

Now from (5), for ζ≫ ϑ, we have

1
Mc Γ a, bð Þ, Γ κ, ϱð Þ, ζð Þ − 1

= 1
Mc a − bð Þ/12, κ − ϱð Þ/12, ζð Þ − 1
� �

= 1
ζ

d
a − b
12 , κ − ϱ

12

� �� �
= 1
12ζ a − b − κ + ϱj j

≤
1
12ζ ∣ a − κð Þ + a − a − bð Þð Þ + κ − κ − ϱð Þð Þ½
+ a − κ − ϱð Þð Þ + κ − a − bð Þð Þ ∣ �

≤
1
12ζ a − κj j + 1

12ζ a − a − bð Þj j + κ − κ − ϱð Þj jð
+ a − κ − ϱð Þj j + κ − a − bð Þj jÞ

= 1
12

1
Mc a, κ, ζð Þ − 1
� �

+ 1
12

� 1
Mc a, Γ a, bð Þ, ζð Þ − 1
� �

+ 1
Mc κ, Γ κ, ϱð Þ, ζð Þ − 1
� �

+ 1
Mc a, Γ κ, ϱð Þ, ζð Þ − 1
� �

+ 1
Mc κ, Γ a, bð Þ, ζð Þ − 1
� ��

= 1
12

1
Mc a, κ, ζð Þ − 1
� �

+ 1
12

1
N Γ, a, bð Þ, κ, ϱð Þ, ζð Þ − 1
� �

, for ζ≫ ϑ

ð37Þ

It is easy to verify that conditions of Theorem 10 are sat-
isfied with α1 = α2 = 1/12. Then, Γ has unique coupled FP for
a = 2 and b = 2.

Γ a, bð Þ = Γ 2, 2ð Þ = 2 2ð Þ + 2 2ð Þ − 2
3 = 2⇒ Γ 2, 2ð Þ = 2: ð38Þ

Theorem 13. Let Γ : A × A⟶ A be a mapping in a com-
plete FCM-space ðA,Mc,∗Þ in which Mc is triangular and
satisfies

1
Mc Γ a, bð Þ, Γ κ, ϱð Þ, ζð Þ − 1

≤ α1
1

Mc a, κ, ζð Þ − 1
� �

+ α2

�
1

Mc a, Γ a, bð Þ, ζð Þ − 1
� �

+ 1
Mc κ, Γ κ, ϱð Þ, ζð Þ − 1
� �	

+ α3
1

Mc κ, Γ a, bð Þ, ζð Þ ∗Mc κ, Γ κ, ϱð Þ, ζð Þ − 1
� �� 	

,

ð39Þ

for all a, b, κ, ϱ ∈ A, ζ≫ ϑ α1 ∈ ½0, 1Þ, and α2, α3 ≥ 0 with ðα1
+ 2α2 + α3Þ < 1. Then, Γ has a unique couple FP in A.

Proof. Any a0, b0 ∈ A, and we define sequence fajg by

Γ aj, bj
� �

= aj+1,

Γ bj, aj
� �

= bj+1, for j ≥ 0:
ð40Þ

☐

Now, from (39), for ζ≫ ϑ, we have

1
Mc aj, aj+1, ζ
� � − 1

= 1
Mc Γ aj−1, bj−1

� �
, Γ aj, bj
� �

, ζ
� � − 1

≤ α1
1

Mc aj−1, aj, ζ
� � − 1

 !

+ α2

"
1

Mc aj−1, Γ aj−1, bj−1
� �

, ζ
� � − 1

 !

+ 1
Mc aj, Γ aj, bj

� �
, ζ

� � − 1
 !#

+ α3
1

Mc aj, Γ aj−1, bj−1
� �

, ζ
� �

∗Mc aj, Γ aj, bj
� �

, ζ
� � − 1

 !

= α1
1

Mc aj−1, aj, ζ
� � − 1

 !
+ α2

"
1

Mc aj−1, aj, ζ
� � − 1

 !

+ 1
Mc aj, aj+1, ζ
� � − 1

 !#

+ α3
1

Mc aj, aj, ζ
� �

∗Mc aj, aj+1, ζ
� � − 1

 !

= α1
1

Mc aj−1, aj, ζ
� � − 1

 !
+ α2

"
1

Mc aj−1
� �

, aj, ζ
� − 1

 !

+ 1
Mc aj, aj+1, ζ
� � − 1

 !#
+ α3

1
Mc aj, aj+1, ζ
� � − 1

 !
:

ð41Þ
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We get, after simplification,

1
Mc aj, aj+1, ζ
� � − 1 ≤ δ

1
Mc aj−1, aj, ζ
� � − 1

 !
, for ζ≫ ϑ,

ð42Þ

where δ = ðα1 + α2Þ/ð1 − α2 − α3Þ < 1. Similarly,

1
Mc aj−1, aj, ζ
� � − 1 ≤ δ

1
Mc aj−2, aj−1, ζ
� � − 1

 !
, for ζ≫ ϑ:

ð43Þ

Now, from (42) and (43) and by induction, for ζ≫ ϑ, we
have

1
Mc aj, aj+1, ζ
� � − 1

≤ δ
1

Mc aj−1, aj, ζ
� � − 1

 !
≤ δ2

1
Mc aj−2, aj−1, ζ
� � − 1

 !

≤⋯≤ δj
1

Mc ao, a1, ζð Þ − 1
� �

⟶ 0,  as j⟶∞:

ð44Þ

Hence, the sequence fajg is fuzzy cone contractive;
therefore,

lim
j⟶∞

Mc aj, aj+1, ζ
� �

= 1 ζ≫ ϑ: ð45Þ

Now for i > j and for ζ≫ ϑ, we have

1
Mc aj, ai, ζ
� � − 1

≤
1

Mc aj, aj+1, ζ
� � − 1

 !
+ 1

Mc aj+1, aj+2, ζ
� � − 1

 !

+⋯+ 1
Mc ai−1, ai, ζð Þ − 1
� �

≤ δj
1

Mc ao, a1, ζð Þ − 1
� �

+ δj+1
1

Mc ao, a1, ζð Þ − 1
� �

+⋯+δi−1 1
Mc ao, a1, ζð Þ − 1
� �

= δj + δj+1+⋯+δi−1
� � 1

Mc ao, a1, ζð Þ − 1
� �

= δj

1 − δ

1
Mc ao, a1, ζð Þ − 1
� �

⟶ 0, as j⟶∞:

ð46Þ

Hence, the sequence fajg is Cauchy. Now for sequence
fbjg, again from (39), for ζ≫ ϑ, we have

1
Mc bj, bj+1, ζ
� � − 1

= 1
Mc Γ bj−1, aj−1

� �
, Γ bj, aj
� �

, ζ
� � − 1

≤ α1
1

Mc bj−1, bj, ζ
� � − 1

 !

+ α2

"
1

Mc bj−1, Γ
�

bj−1, aj−1, ζ
� � − 1

 !

+ 1
Mc bj, Γ bj, aj

� �
, ζ

� � − 1
 !#

+ α3
1

Mc bj, Γ bj−1, aj−1
� �

, ζ
� �

∗Mc bj, Γ bj, aj
� �

, ζ
� � − 1

 !

= α1
1

Mc bj−1, bj, ζ
� � − 1

 !
+ α2

"
1

Mc bj−1, bj, ζ
� � − 1

 !

+ 1
Mc bj, bj+1, ζ
� � − 1

 !#

+ α3
1

Mc bj, bj, ζ
� �

∗Mc bj, bj+1, ζ
� � − 1

 !

= α1
1

Mc hj−1, bj, ζ
� � − 1

 !
+ α2

"
1

Mc bj−1, bj, ζ
� � − 1

 !

+ 1
Mc bj, bj+1, ζ
� � − 1

 !#
+ α3

1
Mc bj, bj+1, ζ
� � − 1

 !
:

ð47Þ

We get, after simplification,

1
Mc bj, bj+1, ζ
� � − 1 ≤ δ

1
Mc bj−1, bj, ζ
� � − 1

 !
, for ζ≫ ϑ,

ð48Þ

where the value of δ is the same as in (42). Similarly,

1
Mc bj−1, bj, ζ
� � − 1 ≤ δ

1
Mc bj−2, bj−1, ζ
� � − 1

 !
, for ζ≫ ϑ:

ð49Þ

Now, from (48) and (49) and by induction, for ζ≫ ϑ, we
have that

1
Mc bj, bj+1, ζ
� � − 1

≤ δ
1

Mc bj−1, bj, ζ
� � − 1

 !
≤ δ2

1
Mc bj−2, bj−1, ζ
� � − 1

 !

≤⋯≤ δj
1

Mc b0, b1, ζð Þ − 1
� �

⟶ 0, as j⟶∞:

ð50Þ
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Hence, the sequence fbjg is fuzzy cone contractive;
therefore,

lim
j⟶∞

Mc bj, bj+1, ζ
� �

= 1, for ζ≫ ϑ: ð51Þ

Now for i > j, for ζ≫ ϑ, we have

1
Mc bj, bi, ζ
� � − 1

≤
1

Mc bj, bj+1, ζ
� � − 1

 !
+ 1

Mc bj+1, bj+2, ζ
� � − 1

 !

+⋯+ 1
Mc bi−1, bi, ζð Þ − 1
� �

≤ δj
1

Mc b0, b1, ζð Þ − 1
� �

+ δj+1
1

Mc b0, b1, ζð Þ − 1
� �

+⋯+δi−1 1
Mc b0, b1, ζð Þ − 1
� �

= δj + δj+1+⋯+δi−1
� � 1

Mc b0, b1, ζð Þ − 1
� �

= δj

1 − δ

1
Mc b0, b1, ζð Þ − 1
� �

⟶ 0,  as j⟶∞:

ð52Þ

Hence, the sequence fbjg is Cauchy. Since A is complete
and fajg and fbjg are Cauchy sequences in A, ∃a, b ∈ A such
that aj ⟶ a and bj ⟶ b as j⟶∞, or this can be written
as lim

j⟶∞
aj = a and lim

j⟶∞
bj = b. Therefore,

lim
j⟶∞

aj+1 = lim
j⟶∞

Γ aj, bj
� �

= Γ lim
j⟶∞

aj, lim
j⟶∞

bj

� �
⇒ Γ a, bð Þ = a:

ð53Þ

Similarly,

lim
j⟶∞

bj+1 = lim
j⟶∞

Γ bj, aj
� �

= Γ lim
j⟶∞

bj, lim
j⟶∞

aj

� �
⇒ Γ b, að Þ = b:

ð54Þ

Regarding its uniqueness, let ða1, b1Þ and ðb1, a1Þ be
another couple fixed point pairs in A × A such that Γða1,
b1Þ = a1 and Γðb1, a1Þ = b1. Now, from (39), for ζ≫ ϑ, we
have

1
Mc a, a1, ζð Þ − 1

= 1
Mc Γ a, bð Þ, Γ a1, b1ð Þ, ζð Þ − 1
� �

≤ α1
1

Mc a, a1, ζð Þ − 1
� �

+ α2

� 1
Mc a, Γ a, bð Þ, ζð Þ − 1 − 1
� �

+ 1
Mc a1, Γ a1, b1ð Þ, ζð Þ − 1
� �	

+ α3
1

Mc a1, Γ a, bð Þ, ζð Þ ∗Mc a1, Γ a1, b1ð Þ, ζð Þ − 1
� �

= α1 + α3ð Þ 1
Mc a, a1, ζð Þ − 1
� �

= α1 + α3ð Þ 1
Mc Γ a, bð Þ, Γ a1, b1ð Þ, ζð Þ − 1
� �

≤ α1 + α3ð Þ2 1
Mc a, a1, ζð Þ − 1
� �

≤⋯

≤ α1 + α3ð Þj 1
Mc a, a1, ζð Þ − 1
� �

⟶ 0, as j⟶∞:

ð55Þ

Hence, we get that Mcða, a1, ζÞ = 1,⇒a = a1. Similarly,
again from (39), for ζ≫ ϑ, we have

1
Mc b, b1, ζð Þ − 1

= 1
Mc Γ b, að Þ, Γ b1, a1ð Þ, ζð Þ − 1
� �

≤ α1
1

Mc b, b1, ζð Þ − 1
� �

+ α2

� 1
Mc b, Γ b, að Þ, ζð Þ − 1 − 1
� �

+ 1
Mc b1, Γ b1, a1ð Þ, ζð Þ − 1
� �	

+ α3
1

Mc b1, Γ b, að Þ, ζð Þ ∗Mc b1, Γ b1, a1ð Þ, ζð Þ − 1
� �

= α1 + α3ð Þ 1
Mc b, b1, ζð Þ − 1
� �

= α1 + α3ð Þ 1
Mc Γ b, að Þ, Γ b1, a1ð Þ, ζð Þ − 1
� �

≤ α1 + α3ð Þ2 1
Mc b, b1, ζð Þ − 1
� �

≤⋯

≤ α1 + α3ð Þj 1
Mc b, b1, ζð Þ − 1
� �

⟶ 0,  as j⟶∞:

ð56Þ

Hence, we get that Mcðb, b1, ζÞ = 1 for ζ≫ ϑ,⇒b = b1.

Corollary 14. Let Γ : A × A⟶ A be a mapping on complete
FCM-spaces ðA,Mc,∗Þ in which Mc is triangular and sat-
isfies
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1
Mc Γ a, bð Þ, Γ κ, ϱð Þ, ζð Þ − 1

≤ α1
1

Mc a, κ, ζð Þ − 1
� �

+ α3
1

Mc κ, Γ a, bð Þ, ζð Þ ∗Mc κ, Γ κ, ϱð Þ, ζð Þ − 1
� �� 	

,

ð57Þ

for all a, b, κ, ϱ ∈ A, ζ≫ ϑ,α1 ∈ ð0, 1Þ, and α3 ≥ 0 with ðα1 +
α3Þ < 1. Then, Γ has a unique couple FP.

Example 2. A = ð0,∞Þ, ∗ is a ζ-norm, and Mc : A × A × ð0,
∞Þ⟶ ½0, 1� is defined as

Mc a, b, ζð Þ = ζ

ζ + d a, bð Þ , d a, bð Þ = a − bj j, ð58Þ

for all a, b ∈ A and ζ > 0. Then, it is easy to verify that Mc is
triangular and ðA,Mc,∗Þ is a complete FCM-space. We
define

€F a, bð Þ =
a − b
8 , if a, b ∈ 0, 1½ �,

2a + 2b − 3
3 , if a, b ∈ 1,∞½ Þ:

8>><
>>: ð59Þ

Now from (39), for ζ≫ ϑ, we have

1
Mc Γ a, bð Þ, Γ κ, ϱð Þ, ζð Þ − 1

= 1
Mc a − bð Þ/8, κ − ϱð Þ/8, ζð Þ − 1
� �

= 1
ζ

d
a − b
8 , κ − ϱ

8

� �� �
= 1
8ζ a − b − κ + ϱj jð Þ

≤
1
8ζ ∣a − κ∣+∣ a − a − bð Þð Þ + κ − κ − ϱð Þð Þ ∣½ �

≤
1
8ζ a − κj j + 1

8ζ a − a − bð Þj j + κ − κ − ϱð Þj j½ �

= 1
8

1
Mc a, κ, ζð Þ − 1
� �

+ 1
8

� 1
Mc a, Γ a, bð Þ, ζð Þ − 1
� �

+ 1
Mc κ, Γ κ, ϱð Þ, ζð Þ − 1
� �	

, for ζ≫ ϑ:

ð60Þ

It is easy to verify that all the conditions of Theorem 13
are satisfied with α1 = α2 = 1/8 and α3 = 0. Then, Γ has
unique coupled FP.

Γ a, bð Þ = Γ 3, 3ð Þ = 2 3ð Þ + 2 3ð Þ − 3
3 = 3⇒ Γ 3, 3ð Þ = 3: ð61Þ

4. Application

In this section, we present an application on Lebesgue inte-
gral (LI) mapping to support our main work. In 2002, Bran-
ciari proved the following result on complete metric space
for unique FP (see [33]):

Theorem 15. Let ðA, dÞ be a complete metric space, α ∈ ð0,
1Þ, and Γ : A⟶ A a mapping such that for each a, b ∈ A,

ðd Γa,Γbð Þ

0
φ sð Þds ≤ α

ðd a,bð Þ

0
φ sð Þds, ð62Þ

where φ : ½0,∞Þ⟶ ½0,∞Þ is a Lebesgue integrable mapping
which is summable (i.e., with finite integral on each compact
subset of ½0,∞Þ) and for each τ > 0,

ðτ
0
φ sð Þds > 0: ð63Þ

Then, Γ has a unique FP u ∈ A such that for any a ∈ A,
lim
j⟶∞

Γja = u.

Now, we are in the position to use the above concept and
to prove a unique coupled FP-theorem in FCM-spaces.

Theorem 16. Let Γ : A × A⟶ A be a mapping on complete
FCM-spaces ðA,Mc,∗Þ in which Mc is triangular and sat-
isfies

ð 1/ Mc Γ a,bð Þ,Γ κ,ϱð Þ,ζð Þð Þð Þ−1ð Þ

0
φ sð Þds

≤ α1

ð 1/ Mc a,κ,ζð Þð Þð Þ−1ð Þ

0
φ sð Þds

+ α2

ð 1/ N Γ, a,bð Þ, κ,ϱð Þ,ζð Þð Þð Þ−1ð Þ

0
φ sð Þds,

ð64Þ

where

1
N Γ, a, bð Þ, κ, ϱð Þ, ζð Þ − 1

=
�

1
Mc a, Γ a, bð Þ, ζð Þ − 1 + 1

Mc κ, Γ κ, ϱð Þ, ζð Þ − 1

+ 1
Mc a, Γ κ, ϱð Þ, ζð Þ − 1 + 1

Mc κ, Γ a, bð Þ, ζð Þ − 1
�
,

ð65Þ

for all a, b, κ, ϱ ∈ A, ζ≫ ϑ, α1 ∈ ð0, 1Þ, and α2 ≥ 0 with ðα1 +
4α2Þ < 1 and φ : ½0,∞Þ⟶ ½0,∞Þ is a Lebesgue integrable
mapping which is summable (i.e., with finite integral on each
compact subset of ½0,∞Þ) and for each τ > 0,

ðτ
0
φ sð Þds > 0: ð66Þ

Then, Γ has a unique couple FP in A.
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Proof. Any ao, bo ∈ A; we define sequences fajg and fbjg in
A such that

Γ aj, bj
� �

= aj+1,

Γ bj, aj
� �

= bj+1, for j ≥ 0:
ð67Þ

☐

Now from (64) and from the proof of Theorem 10, for
ζ≫ ϑ, we have that

ð 1/ Mc aj,aj+1,ζð Þð Þð Þ−1ð Þ
0

φ sð Þds

=
ð 1/ Mc Γ aj−1,bj−1ð Þ,Γ aj ,bjð Þ,ζð Þð Þð Þ−1ð Þ
0

φ sð Þds

≤ λ
ð 1/ Mc aj−1,aj ,ζð Þð Þð Þ−1ð Þ
0

φ sð Þds,

ð68Þ

where λ = ðα1 + 2α2Þ/ð1 − 2α2Þ < 1. Similarly, again by using
the same arguments, we have

ð 1/ Mc aj−1,aj ,ζð Þð Þð Þ−1ð Þ
0

φ sð Þds

≤ λ
ð 1/ Mc aj−2,aj−1,ζð Þð Þð Þ−1ð Þ
0

φ sð Þds, for ζ≫ ϑ:

ð69Þ

Now, from (68) and (69) and by induction, for ζ≫ ϑ, we
have

ð 1/ Mc aj ,aj+1,ζð Þð Þð Þ−1ð Þ
0

φ sð Þds

≤ λ
ð 1/ Mc aj−1,aj ,ζð Þð Þð Þ−1ð Þ
0

φ sð Þds

≤ λ2
ð 1/ Mc aj−2,aj−1,ζð Þð Þð Þ−1ð Þ
0

φ sð Þds ≤⋯

≤ λ j
ð 1/ Mc a0,a1,ζð Þð Þð Þ−1ð Þ

0
φ sð Þds⟶ 0, as j⟶∞,

ð70Þ

which shows that the sequence fajg is a fuzzy cone contrac-
tive, therefore

lim
j⟶∞

ð 1/ Mc aj ,aj+1,ζð Þð Þð Þ−1ð Þ
0

φ sð Þds

= 0⇒ lim
j⟶∞

1
Mc aj, aj+1, ζ
� � − 1

 !

= 0, for ζ≫ ϑ:

ð71Þ

Hence, we get that

lim
j⟶∞

Mc aj, aj+1, ζ
� �

= 1, for ζ≫ ϑ: ð72Þ

Now for i > j and for ζ≫ ϑ, we have

ð 1/ Mc aj ,ai ,ζð Þð Þð Þ−1ð Þ
0

φ sð Þds

≤
ð 1/ Mc aj,aj+1,ζð Þð Þð Þ−1ð Þ
0

φ sð Þds

+
ð 1/ Mc aj+1,aj+2,ζð Þð Þð Þ−1ð Þ
0

φ sð Þds+⋯

+
ð 1/ Mc ai−1,ai ,ζð Þð Þð Þ−1ð Þ

0
φ sð Þds

≤ λ j
ð 1/ Mc ao ,a1,ζð Þð Þð Þ−1ð Þ

0
φ sð Þds

+ λj+1
ð 1/ Mc ao ,a1,ζð Þð Þð Þ−1ð Þ

0
φ sð Þds+⋯

+λi−1
ð 1/ Mc a0,a1,ζð Þð Þð Þ−1ð Þ

0
φ sð Þds

= λ j + λ j+1+⋯+λi−1
� �ð 1/ Mc a0,a1,ζð Þð Þð Þ−1ð Þ

0
φ sð Þds

= λj

1 − λ

ð 1/ Mc a0,a1,ζð Þð Þð Þ−1ð Þ

0
φ sð Þds

⟶ 0, as j⟶∞:

ð73Þ

We get that

lim
j⟶∞

ð 1/ Mc aj,ai ,ζð Þð Þð Þ−1ð Þ
0

φ sð Þds

= 0⇒ lim
j⟶∞

1
Mc aj, ai, ζ
� � − 1

 !
= 0, for ζ≫ ϑ:

ð74Þ

Hence proved that the sequence fajg is Cauchy. Now for
sequence fbjg from (64) and from the proof of Theorem 10,
for ζ≫ ϑ, we have

ð 1/ Mc bj ,bj+1,ζð Þð Þð Þ−1ð Þ
0

φ sð Þds

=
ð 1/ Mc Γ bj−1,aj−1ð Þ,Γ bj,ajð Þ,ζð Þð Þð Þ−1ð Þ
0

φ sð Þds

≤ λ
ð 1/ Mc bj−1,bj ,ζð Þð Þð Þ−1ð Þ
0

φ sð Þds,

ð75Þ

where λ = ðα1 + 2α2Þ/ð1 − 2α2Þ < 1. Similarly, again by using
the same arguments, we have

ð 1/ Mc bj−1,bj ,ζð Þð Þð Þ−1ð Þ
0

φ sð Þds

≤ λ
ð 1/ Mc bj−2,aj−1,ζð Þð Þð Þ−1ð Þ
0

φ sð Þds, for ζ≫ ϑ:

ð76Þ
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Now, from (75) and (76) and by induction, for ζ≫ ϑ, we
have

ð 1/ Mc bj ,bj+1,ζð Þð Þð Þ−1ð Þ
0

φ sð Þds

≤ λ
ð 1/ Mc bj−1,bj ,ζð Þð Þð Þ−1ð Þ
0

φ sð Þds

≤ λ2
ð 1/ Mc bj−2,bj−1,ζð Þð Þð Þ−1ð Þ
0

φ sð Þds

≤⋯≤ λj
ð 1/ Mc b0,b1,ζð Þð Þð Þ−1ð Þ

0
φ sð Þds

⟶ 0, as j⟶∞,

ð77Þ

which shows that the sequence fbjg is fuzzy cone contrac-
tive; therefore,

lim
j⟶∞

ð 1/ Mc bj ,bj+1,ζð Þð Þð Þ−1ð Þ
0

φ sð Þds

= 0⇒ lim
j⟶∞

1
Mc bj, bj+1, ζ
� � − 1

 !
= 0, for ζ≫ ϑ:

ð78Þ

Hence, we get that

lim
j⟶∞

Mc bj, bj+1, ζ
� �

= 1, for ζ≫ ϑ: ð79Þ

Now for i > j and for ζ≫ ϑ, we have

ð 1/ Mc bj ,bi ,ζð Þð Þð Þ−1ð Þ
0

φ sð Þds

≤
ð 1/ Mc bj ,bj+1,ζð Þð Þð Þ−1ð Þ
0

φ sð Þds

� +
ð 1/ Mc bj+1,bj+2,ζð Þð Þð Þ−1ð Þ
0

φ sð Þds+⋯

+
ð 1/ Mc bi−1,bi ,ζð Þð Þð Þ−1ð Þ

0
φ sð Þds

≤ λj
ð 1/ Mc bo ,b1,ζð Þð Þð Þ−1ð Þ

0
φ sð Þds

+ λj+1
ð 1/ Mc bo ,b1,ζð Þð Þð Þ−1ð Þ

0
φ sð Þds+⋯

+λi−1
ð 1/ Mc bo ,b1,ζð Þð Þð Þ−1ð Þ

0
φ sð Þds

= λj + λ j+1+⋯+λi−1
� �ð 1/ Mc bo ,b1,ζð Þð Þð Þ−1ð Þ

0
φ sð Þds

= λj

1 − λ

ð 1/ Mc bo ,b1,ζð Þð Þð Þ−1ð Þ

0
φ sð Þds⟶ 0, as j⟶∞:

ð80Þ

We get that

lim
j⟶∞

ð 1/ Mc hj ,hi ,ζð Þð Þð Þ−1ð Þ
0

φ sð Þds

= 0⇒ lim
j⟶∞

1
Mc hj, hi, ζ
� � − 1

 !

= 0, for ζ≫ ϑ:

ð81Þ

Hence, it was proved that the sequence fbjg is Cauchy.
Since A is complete and fajg, fbjg are Cauchy sequences
in A, so ∃a, b ∈ A such that aj ⟶ a and bj ⟶ b as j⟶
∞ or this can be written as lim

j⟶∞
aj = a and lim

j⟶∞
bj = b.

Therefore,

lim
j⟶∞

Mc aj, a, ζ
� �

= 1,

lim
j⟶∞

Mc bj, b, ζ
� �

= 1, for ζ≫ ϑ:
ð82Þ

Hence,

lim
j⟶∞

aj+1 = lim
j⟶∞

Γ aj, bj
� �

= Γ lim
j⟶∞

aj, lim
j⟶∞

bj

� �
⇒ Γ a, bð Þ = a:

ð83Þ

Similarly,

lim
j⟶∞

bj+1 = lim
j⟶∞

Γ bj, aj
� �

= Γ lim
j⟶∞

bj, lim
j⟶∞

aj

� �
⇒ Γ b, að Þ = b:

ð84Þ

Regarding its uniqueness, suppose ða1, b1Þ and ðb1, a1Þ
are another couple fixed point pairs in A × A such that Γð
a1, b1Þ = a1 and Γðb1, a1Þ = b1. Now, from (64) and from
the proof of Theorem 10, for ζ≫ ϑ, we have that

ð 1/ Mc a,a1,ζð Þð Þð Þ−1ð Þ

0
φ sð Þds

=
ð 1/ Mc Γ a,bð Þ,Γ a1,b1ð Þ,ζð Þð Þð Þ−1ð Þ

0
φ sð Þds

≤ α1 + 2α2ð Þ
ð 1/ Mc a,a1,ζð Þð Þð Þ−1ð Þ

0
φ sð Þds

= α1 + 2α2ð Þ
ð 1/ Mc Γ a,bð Þ,Γ a1,b1ð Þ,ζð Þð Þð Þ−1ð Þ

0
φ sð Þds

≤ α1 + 2α2ð Þ2
ð 1/ Mc a,a1,ζð Þð Þð Þ−1ð Þ

0
φ sð Þds ≤⋯

≤ α1 + 2α2ð Þj
ð 1/ Mc a,a1,ζð Þð Þð Þ−1ð Þ

0
φ sð Þds

⟶ 0, as j⟶∞:

ð85Þ

Hence, we get thatMcða, a1, ζÞ = 1 for ζ≫ ϑ; this implies
a = a1.
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Similarly, again from (64)and from the proof of Theo-
rem 10, for ζ≫ ϑ, we have that

ð 1/ Mc b,b1,ζð Þð Þð Þ−1ð Þ

0
φ sð Þds

=
ð 1/ Mc Γ b,að Þ,Γ b1,a1ð Þ,t∗ð Þð Þð Þ−1ð Þ

0
φ sð Þds

≤ α1 + 2α2ð Þ
ð 1/ Mc b,b1,ζð Þð Þð Þ−1ð Þ

0
φ sð Þds

= α1 + 2α2ð Þ
ð 1/ Mc Γ b,að Þ,Γ b1,a1ð Þ,ζð Þð Þð Þ−1ð Þ

0
φ sð Þds

≤ α1 + 2α2ð Þ2
ð 1/ Mc b,b1,ζð Þð Þð Þ−1ð Þ

0
φ sð Þds

≤⋯ ≤ α1 + 2α2ð Þj
ð 1/ Mc b,b1,ζð Þð Þð Þ−1ð Þ

0
φ sð Þds

⟶ 0, as j⟶∞:

ð86Þ

Hence, we get thatMcðb, b1, ζÞ = 1 for ζ≫ ϑ; this implies
b = b1.

5. Conclusion

We presented the concept of coupled FP-results in FCM-
spaces and prove some unique coupled FP-theorems under
the modified contractive type conditions by using “the trian-
gular property of fuzzy cone metric.” We presented exam-
ples in support of our result. Further, we presented an
application of Lebesgue integral mapping to uplift our main
work. With the help of this new concept, one can prove
more modified and general contractive type coupled FP-
results with different types of integral contractive type of
conditions and applications in complete FCM-spaces.
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The investigation of the stabilities of various types of equations is an interesting and evolving research area in the field of
mathematical analysis. Recently, there are many research papers published on this topic, especially additive, quadratic, cubic,
and mixed type functional equations. We propose a new functional equation in this study which is quite different from the
functional equations already dealt in the literature. The main feature of the equation dealt in this study is that it has three
different solutions, namely, additive, quadratic, and mixed type functions. We also prove that the stability results hold good for
this equation in intuitionistic random normed space (briefly, IRN-space).

1. Introduction

The theory of random normed spaces (RN-spaces) is impor-
tant as a generalization of the deterministic result of linear
normed spaces and also in the study of random operator
equations. The RN-spaces may also provide us with the tools
to study the geometry of nuclear physics and have important
applications in quantum particle physics.

The concept of stability of a functional equation arises
when one replaces a functional equation by an inequality
which acts as a perturbation of the equation. The first stabil-
ity problem concerning group homomorphisms was raised
by Ulam [1] in 1940 and affirmatively solved by Hyers [2].
Aoki generalized the result of Hyers [3] for approximate
additive mappings and by Rassias [4] for approximate linear
mappings by allowing the difference Cauchy equation k f ðx
+ yÞ − f ðxÞ − f ðyÞk to be controlled by εð∥x∥p+∥y∥pÞ. In
1994, a generalization of the Th.M. Rassias’ theorem was
got by Gavruta [5], who replaced εð∥x∥p+∥y∥pÞ by a general
control function φðx, yÞ. For additional information regard-

ing the outcomes about such issues, the related background
in [6–12] can be examined. Absorbing new outcomes con-
cerning mixed-type functional equations has as of late been
acquired by Najati et al. [13–15], Jun and Kim [16, 17], and
Park [18–22].

The functional equations

f x + yð Þ = f xð Þ + f yð Þ, ð1Þ

and

f x + yð Þ + f x − yð Þ = 2f xð Þ + 2f yð Þ, ð2Þ

are called the additive and quadratic functional equations,
respectively. Every solution of the additive and quadratic
functional equations is said to be additive mapping and qua-
dratic mapping, respectively.

As of late, Zhang [23] examined the cubic functional
equation in intuitionistic random space. The stability of var-
ious equations in RN-spaces has been as of late concentrated
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in Alsina [24], Eshaghi Gordji et al. [25, 26], Mihet and Radu
[27–29], and Saadati et al. [30]. Xu et al. [31–33] presented
the various mixed types of functional equations investigated
in Intuitionistic fuzzy normed spaces, quasi Banach spaces,
and random normed spaces. Also, Shu et al. [33–35] dis-
cussed various differential equations to study the Hyers-
Ulam stability, which provides a wide view of this stability
problem.

In this present work, we introduce a new mixed type
additive-quadratic functional equation

φ 〠
m

i=1
aivi

 !
+ 〠

m

i=1
φ −aivi + 〠

m

j=1;i≠j
ajvj

 !

= m − 3ð Þ〠
m

i=1
φ aivi + ajvj
� �

− m2 − 5m + 2
� �

�〠
m

i=1
a2i

φ við Þ + φ −við Þ
2

� �
− m2 − 5m + 4
� �

�〠
m

i=1
ai

φ við Þ − φ −við Þ
2

� �
,

ð3Þ

where a is a fixed integer andm ≥ 5 and investigate the Ulam-
Hyers stability results of this mixed type additive-quadratic
functional equation in an intuitionistic random normed
space.

So far various forms of additive and quadratic functional
equations are considered in this research field to obtain their
stability results through different methods. For the first time,
a new mixed additive-quadratic functional equation is pro-
posed in this paper, and its stability results are proved in an
intuitionistic random normed space.

This type of functional equation can be of use in solving
many physical problems and also has significant relevance
in various scientific fields of research and study. In particular,
additive-quadratic functional equations have applications in
electric circuit theory, physics, and relations connecting the
harmonic mean and arithmetic mean of several values. Pro-
viding a wealth of essential insights and new concepts in
the field of functional equations.

2. Preliminaries

We recall the following ideas and conceptions of IRN-spaces
in [36–41].

Definition 1 (see [42]). A mapping μ : ℝ⟶ ½0, 1� is said to
be a measure distribution function, if μ is left continuous
on ℝ, non-decreasing, inf t∈ℝμðtÞ = 0, and supt∈ℝμðtÞ = 1.

Definition 2 (see [42]). A mapping ν : ℝ⟶ ½0, 1� is said to
be a non-measure distribution function, if ν is right continu-
ous on ℝ, non-increasing, supt∈ℝνðtÞ = 1, and inf t∈ℝνðtÞ = 0.

Lemma 3 (see [43, 44]). Let L∗ be a set with an operator ≤L∗ is
defined by

L∗ = v1, v2ð Þ: v1, v2ð Þ ∈ 0, 1½ �2 and v1 + v2 ≤ 1
� �

,
v1, v2ð Þ≤L∗ w1,w2ð Þ⇔ v1 ≤w1, v2 ≥w2, v1, v2ð Þ, w1,w2ð Þ ∈ L∗:

ð4Þ

Then, the pair ðL∗, ≤L∗Þ is a complete lattice.

We denote its units by 0L∗ = ð0, 1Þ and 1L∗ = ð1, 0Þ.
Typically, a triangular norm (t-norm) ∗ =Φ on ½0, 1� is
defined as an increasing, commutative, associative mapping
Φ : ½0, 1�2 ⟶ ½0, 1� satisfying Φð1, pÞ = 1 ∗ p = p for every
p ∈ ½0, 1�, and a triangular conorm (t-conorm) Y = ⋄ is
defined as an increasing, commutative, associative map-
ping Y : ½0, 1�2 ⟶ ½0, 1� satisfying Yð0, pÞ = 0⋄p = p for all
p ∈ ½0, 1�.

By using the lattice ðL∗, ≤L∗Þ, these definitions can be
straightforwardly extended.

Definition 4 (see [44]). A triangular norm (t-norm) on L∗ is a
mapping Φ : ðL∗Þ2 ⟶ L∗ satisfying the following conditions:

(i) Boundary condition

i.e., Φðp, 1L∗Þ = p, ∀p ∈ L∗ ;

(ii) Commutativity

i.e., Φðp, qÞ =Φðq, pÞ, ∀ðp, qÞ ∈ ðL∗Þ2 ;

(iii) Associativity

i.e., Φðp,Φðq, rÞÞ =ΦðΦðp, qÞ, rÞ, ∀ðp, q, rÞ ∈ ðL∗Þ3 ;

(iv) Monotonicity

i.e., p≤L∗p′ and q≤L∗q′ ⇒Φðp, qÞ≤L∗Φðp′, q′Þ for all ðp,
p′, q, q′Þ ∈ ðL∗Þ4:

If ðL∗, ≤L∗ ,ΦÞ is an Abelian topological monoid with unit
1L∗ , then Φ is called a continuous t-norm.

Definition 5 (see [42]). A negator on L∗ is any decreasing map-
pingN from L∗ to L∗ satisfying Nð1L∗Þ = 0L∗ and Nð1L∗Þ = 0L∗
. IfNðNðpÞÞ = p for all p ∈ L∗ , then N is called an involu-
tive negator. A negator on ½0, 1� is a decreasing mapping
N : ½0, 1�⟶ ½0, 1� satisfying Nð0Þ = 1 and Nð1Þ = 0.

Ns denotes the standard negator on ½0, 1� defined by

Ns pð Þ = 1 − p, ð5Þ

for all p ∈ ½0, 1�.

Definition 6 (see [23]). Let μ and ν be measure and nonmea-
sure distribution functions from V × ð0,+∞Þ to ½0, 1� such
that

μp tð Þ + νp tð Þ ≤ 1, p ∈ V , t > 0: ð6Þ
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The triple ðV , Iμ,ν,ΦÞ is said to be an intuitionistic
random normed space if a vector space V , continuous t-
representable Φ, and a mapping Iμ,ν : V × ð0,+∞Þ⟶ L∗

holds the following conditions: for all p, q ∈ V and t1, t2 > 0

Iμ,ν p, 0ð Þ = 0L∗ ,
Iμ,ν p, t1ð Þ = 1L∗ ⇔ p = 0,

Iμ,ν αp, t1ð Þ = Iμ,ν p, t1
αj j

� 	
,∀α ≠ 0,

Iμ,ν p + q, t1 + t2ð Þ≥L∗Φ Iμ,ν p, t1ð Þ, Iμ,ν q, t2ð Þ� �
:

ð7Þ

Thus, Iμ,ν is called an intuitionistic random norm. Hence,

Iμ,ν p, t1ð Þ = μp t1ð Þ, νp t1ð Þ

 �

: ð8Þ

Example 1 (see [42]). Let ðV , k·kÞ be a normed space. Let
Φðp, qÞ = ðp1q1, min ðp2 + q2, 1ÞÞ for all p = ðp1, p2Þ, q = ðq1,
q2Þ ∈ L∗ and let μ, ν be measure and non-measure distribu-
tion functions defined by

Iμ,ν v, εð Þ = μv εð Þ, νv εð Þð Þ = ε

ε+∥v∥ ,
∥v∥
ε+∥v∥

� 	
,∀ε ∈ R+: ð9Þ

Then, ðV , Iμ,ν,ΦÞ is an IRN-space.

Definition 7 (see [42]). Let ðV , Iμ,ν,ΦÞ be an IRN-space.

(i) A sequence fpmg in ðV , Iμ,ν,ΦÞ is known as a Cauchy
sequence if, for some δ > 0 and t > 0, there is an m0
∈ℕ satisfies

Iμ,ν pm − pn, tð Þ≥L∗ Ns δð Þ, δð Þ,m, n ≥m0: ð10Þ

(ii) The sequence fpmg is convergent to any point p ∈ V
if Iμ,νðpm − p, tÞ⟶ 1L∗ as m⟶∞ for all t > 0

(iii) An intuitionistic random normed space ðV , Iμ,ν,ΦÞ
is known as complete if every Cauchy sequence in
V is convergent to a point p ∈ V

3. Solution of the Functional Equation (3)

In this section, let us consider V and W are two real vector
spaces.

Theorem 8. If an odd mapping φ : V ⟶W satisfies the
functional equation (3) for all v1, v2,⋯, vm ∈ V , then the
function φ is additive.

Proof. In the view of the oddness of φ, we have φð−vÞ = −φðvÞ
for all v ∈ V . Using the oddness property, the functional
equation (3) reduces as

φ 〠
m

i=1
aivi

 !
+ 〠

m

i=1
φ −aivi + 〠

m

j=1;i≠j
ajvj

 !

= m − 3ð Þ〠
m

i=1
φ aivi + ajvj
� �

− m2 − 5m + 4
� �

〠
m

i=1
aiφ við Þ,

ð11Þ

for all v1, v2,⋯, vm ∈ V . Now, replacing ðv1, v2,⋯,vmÞ by
ð0, 0⋯,0Þ in (11), we get φð0Þ = 0. Interchanging ðv1, v2,
⋯,vmÞ with ðv, 0, 0,⋯,0Þ in (11), we get

φ avð Þ = aφ vð Þ, v ∈ V : ð12Þ

Again interchanging v with av in (12), we have

φ a2v
� �

= a2φ vð Þ, ð13Þ

for all v ∈ V . Replacing v by av in (13), we obtain

φ a3v
� �

= a3φ vð Þ, v ∈ V : ð14Þ

From the equalities (12)–(14), we can generalize the
results for any nonnegative integer m as

φ amvð Þ = amφ vð Þ, v ∈V: ð15Þ

Similarly, we have

φ
v
am


 �
= 1
am

φ vð Þ, v ∈ V : ð16Þ

Replacing ðv1, v2,⋯,vmÞ by ððx/aÞ, ðy/a2Þ, 0,⋯,0Þ in
(11), we have

φ x + yð Þ = φ xð Þ + φ yð Þ, x, y ∈ V : ð17Þ

Hence, the function φ is additive. ☐

Theorem 9. If an even mapping φ : V ⟶W satisfies the
functional equation (3) for all v1, v2,⋯, vm ∈ V , then the
function φ is quadratic.

Proof. Since, in the view of evenness of φ, we have φð−vÞ =
φðvÞ for all v ∈ V . Now, the functional equation (3) reduces as

φ 〠
m

i=1
aivi

 !
+ 〠

m

i=1
φ −aivi + 〠

m

j=1;i≠j
ajvj

 !

= m − 3ð Þ〠
m

i=1
φ aivi + ajvj
� �

− m2 − 5m + 2
� �

〠
m

i=1
a2iφ við Þ:

ð18Þ

for all v1, v2,⋯, vm ∈ V . Now, replacing ðv1, v2,⋯,vmÞ by
ð0, 0,⋯,0Þ in (18), we obtain φð0Þ = 0. Interchanging ðv1,
v2,⋯,vmÞ with ðv, 0, 0,⋯,0Þ in (18), we obtain

φ avð Þ = a2φ vð Þ, v ∈ V : ð19Þ
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Replacing v by av in (19), we reach

φ a2v
� �

= a4φ vð Þ, v ∈ V : ð20Þ

Switching v by av in (20), we get

φ a3v
� �

= a6φ vð Þ, v ∈ V : ð21Þ

From (19)–(21), we can generalize the results for any
nonnegative integer m as

φ amvð Þ = a2mφ vð Þ, v ∈ V : ð22Þ

Similarly, we have

φ
v
am


 �
= 1
a2m

φ vð Þ, v ∈ V : ð23Þ

Replacing ðv1, v2,⋯,vmÞ by ððx/aÞ, ðy/a2Þ, 0,⋯,0Þ in
(18), we obtain

φ x + yð Þ + φ x − yð Þ = 2φ xð Þ + 2φ yð Þ, x, y ∈ V : ð24Þ

Hence, the function φ is quadratic. ☐

Theorem 10. If a mapping φ : V ⟶W satisfies φð0Þ = 0 and
satisfies the functional equation (3) for all v1, v2,⋯, vm ∈ V
if and only if there exists a symmetric biadditive mapping
Q : V ×V ⟶W and a additive mapping A : V ⟶W
satisfies φðvÞ =Qðv, vÞ + AðvÞ for all v ∈ V .

Proof. Let a mapping φ : V ⟶W with φð0Þ = 0 satisfies the
functional equation (3). We divide the function φ into the
odd part and even part as

φo vð Þ = φ vð Þ − φ −vð Þ
2 , φe vð Þ = φ vð Þ + φ −vð Þ

2 , v ∈ V , ð25Þ

respectively. Clearly, φðvÞ = φeðvÞ + φoðvÞ for all v ∈ V . ☐

It is easy to prove that φo and φe satisfies the functional
equation (3). By Theorems 8 and 9, we conclude that φo
and φe are additive and quadratic, respectively. Then, there
exist a symmetric biadditive mapping Q : V ×V ⟶W
which satisfies φeðvÞ =Qðv, vÞ and an additive mapping
A : V ⟶W which satisfies φoðvÞ = AðvÞ for all v ∈ V .
Hence, φðvÞ =Qðv, vÞ + AðvÞ for all v ∈ V .

Conversely, suppose that there exists a symmetric biad-
ditive mapping Q : V × V ⟶W and an additive mapping
A : V ⟶W and satisfies φðvÞ =Qðv, vÞ + AðvÞ for all v ∈ V.
It is easy to prove that the mappings v↦Qðv, vÞ and
A : V ⟶W satisfy the functional equation (3). Hence, the
mapping φ : V ⟶W satisfies the functional equation (3).

For our notational convenience, we can define a mapping
φ : V ⟶W by

Dφ v1, v2,⋯,vmð Þ = φ 〠
m

i=1
aivi

 !
+ 〠

m

i=1
φ −aivi + 〠

m

j=1;i≠j
ajvj

 !

− m − 3ð Þ〠
m

i=1
φ aivi + ajvj
� �

+ m2 − 5m + 2
� �

〠
m

i=1
a2i

φ við Þ + φ −við Þ
2

� �

+ m2 − 5m + 4
� �

〠
m

i=1
ai

φ við Þ − φ −við Þ
2

� �
,

ð26Þ

for all v1, v2,⋯, vm ∈ V .
In the following sections, we consider V is a linear space,

ðV , Iμ′ ,ν′ , YÞ is an intuitionistic random normed space and

ðW, Iμ,ν, YÞ is a complete intuitionistic random normed
space.

4. Stability Results for Even Case

Theorem 11. Let α, β : Vm ⟶D+ , where αðv1, v2,⋯,vmÞ is
denoted by αv1 ,v2 ,⋯,vm , βðv1, v2,⋯,vmÞ is denoted by βv1 ,v2 ,⋯,vm
and αv1 ,v2 ,⋯,vmðεÞ, βv1 ,v2 ,⋯,vmðεÞ is denoted by Θα,βðv1, v2,⋯,
vm, εÞ , be a mapping such that

lim
w⟶∞

Θα,β awv1, awv2,⋯,awvm, a2wε
� �

= 1L∗ , ð27Þ

for all v1, v2,⋯, vm ∈ V and all ε > 0, and

lim
w⟶∞

Φ∞
i=1 Θα,β aw+i−1v, 0,⋯,0, a2w+iε

� �� �
= 1L∗ , ð28Þ

for all v ∈ V and all ε > 0. If an even mapping φ : V ⟶W
with φð0Þ = 0 satisfies

Iμ,ν Dφ v1, v2,⋯,vmð Þ, εð Þ≥L∗Θα,β v1, v2,⋯,vm, εð Þ, ð29Þ

for all v1, v2,⋯, vm ∈ V and all ε > 0, then there exists a
unique quadratic mapping Q2 : V ⟶W such that

Iμ,ν φ vð Þ −Q2 vð Þ, εð Þ
≥L∗Φ

∞
i=1 Θα,β ai−1v, 0,⋯,0, ai m2 − 5m + 2

� �
ε

� �� �
,

ð30Þ

for all v ∈ V and all ε > 0.

Proof. Replacing ðv1, v2,⋯,vmÞ by ðv, 0,⋯,0Þ in (29), we have

Iμ,ν m2 − 5m + 2
� �

φ avð Þ − m2 − 5m + 2
� �

a2φ vð Þ, ε� �
≥L∗Θα,β v, 0,⋯,0, εð Þ,

ð31Þ
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for all v ∈ V and all ε > 0. From inequality (31), we get

Iμ,ν
φ avð Þ
a2

− φ vð Þ, ε
� 	

≥L∗Θα,β v, 0,⋯,0, a2 m2 − 5m + 2
� �

ε
� �

,

v ∈ V , ε > 0:
ð32Þ

Interchanging v with av in (32), we obtain

Iμ,ν
φ a2v
� �
a4

−
φ avð Þ
a2

, ε
� 	

≥L∗Θα,β av, 0,⋯,0, a2 2ð Þ m2 − 5m + 2
� �

ε

 �

, v ∈ V , ε > 0:

ð33Þ

Replacing v by al−1v and divide by a2l in (33), we con-
clude that

Iμ,ν
φ al+1v
� �
a2 l+1ð Þ −

φ alv
� �
a2l

, ε
 !

≥L∗Θα,β alv, 0,⋯,0, a2 l+1ð Þ m2 − 5m + 2
� �

ε

 �

,
ð34Þ

for all v ∈ V and all ε > 0. Thus,

Iμ,ν
φ awvð Þ
a2w

− φ vð Þ, ε
� 	

≥L∗Φ
w−1
l=0 Iμ,ν

φ al+1v
� �
a2 l+1ð Þ −

φ alv
� �
a2l

, 〠
w−1

l=0

ε

al+1

 ! !
,

ð35Þ

for all v ∈ V and all ε > 0. To prove the convergence of the
sequence fφðawvÞ/a2wg, replacing v by akv in (35), we obtain

Iμ,ν
φ aw+kv
� �
a2 w+kð Þ −

φ akv
� �
a2 kð Þ , ε

 !

≥L∗Φ
w+k−1
l=k Iμ,ν

φ al+1v
� �
a2 l+1ð Þ −

φ alv
� �
a2 lð Þ , 〠

w+k−1

l=k

ε

al+1

 ! !
,

ð36Þ

for all v ∈ V and all ε > 0 and all k,w ≥ 0. Since the R.H.S of
the inequality (36) tends to 1L∗ as w, k⟶∞, the sequence
fφðawvÞ/a2wg is a Cauchy sequence in ðW, Iμ,ν, YÞ. Since
ðW, Iμ,ν, YÞ is a complete IRN-space, this sequence con-
verges to some point Q2ðvÞ ∈W. So one can define the
mapping Q2 : V ⟶W by

Q2 vð Þ = lim
w⟶∞

φ awvð Þ
a2w

, ð37Þ

for all v ∈ V . Letting k = 0 in (36), we obtain

Iμ,ν
φ awvð Þ
a2w

− φ vð Þ, ε
� 	

≥L∗Φ
w−1
l=0 Iμ,ν

φ al+1v
� �
a2 l+1ð Þ −

φ alv
� �
a2 lð Þ , 〠

w−1

l=0

ε

al+1

 ! !
,

ð38Þ

for all v ∈ V and all ε > 0. Taking the limit w⟶∞ in
(38), we get

Iμ,ν φ vð Þ −Q2 vð Þ, εð Þ
≥L∗Φ

∞
l=1 Θα,β al−1v, 0,⋯,0, al m2 − 5m + 2

� �
ε


 �
 �
,

ð39Þ

for all v ∈ V and all ε > 0.

Next, we prove that the function Q2 is quadratic. Replacing
ðv1, v2,⋯,vmÞ by ðawv1, awv2,⋯,awvmÞ in (29), we obtain

Iμ,ν
1
a2w

Dφ awv1, awv2,⋯,awvmð Þ, ε
� 	
≥L∗Θα,β awv1, awv2,⋯,awvm, a2wε

� �
,

ð40Þ

for all v1, v2,⋯, vm ∈ V and all ε > 0. Taking the limit as
w⟶∞, we find that Iμ,νðDQ2ðv1, v2,⋯,vmÞ, εÞ = 1L∗ for
all v1, v2,⋯, vm ∈ V and all ε > 0, which implies DQ2ðv1,
v2,⋯,vmÞ = 0. Thus, the function Q2 satisfies the functional
equation (3). Hence, Q2 : V ⟶W is a quadratic mapping.
Passing to the limit as w⟶∞ in (35), we have (30).

Finally, to show the uniqueness ofQ2 subject to (30), con-
sider that there exists an another quadratic functionQ2′which
satisfies the inequality (30). Clearly, Q2ðawvÞ = a2wQ2ðvÞ and
Q2′ðawvÞ = a2wQ2′ðvÞ for all v ∈ V and w ∈ℕ, from (30) and
(28) that

Iμ,ν Q2 vð Þ −Q2′ vð Þ, ε

 �

≥L∗Iμ,ν Q2 awvð Þ −Q2′ awvð Þ, a2wε

 �

≥L∗Φ Iμ,ν Q2 awvð Þ − φ awvð Þ, a
2w

2 ε

� 	
,

�

Iμ,ν φ awvð Þ −Q2′ awvð Þ, a
2w

2 ε

� 		

≥L∗Φ Φ∞
i=1 Θα,β aw+i−1v, 0,⋯,0, a2w+i m2 − 5m + 2

� � ε
2


 �
 �
,



Φ∞

i=1 Θα,β aw+i−1v, 0,⋯,0, a2w+i m2 − 5m + 2
� � ε

2

 �
 �	

,

ð41Þ

for all v ∈ V and all ε > 0. By takingw⟶∞ in (41), we show
the uniqueness ofQ2. This ends the proof of the uniqueness, as
desired. ☐
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Corollary 12. If an even mapping φ : V ⟶W satisfies

Iμ,ν Dφð v1, v2,⋯,vm, εð Þ≥L∗Iμ′ ,ν′ 〠
m

i=1
vi, ε

 !
, ð42Þ

for all v1, v2,⋯, vm ∈ V and all ε > 0, and

lim
w⟶∞

Φ∞
i=1 Iμ′,ν′ aw+i−1v, a2w+i m2 − 5m + 2

� �
ε

� �
 �
= 1L∗ ,

ð43Þ

for all v ∈ V and all ε > 0, then there exists a unique quadratic
mapping Q2 : V ⟶W such that

Iμ,ν φ vð Þ −Q2 vð Þ, εð Þ≥L∗Φ
∞
i=1 Iμ′ ,ν′ ai−1v, ai m2 − 5m + 2

� �
ε

� �
 �
,

ð44Þ

for all v ∈ V and all ε > 0.

Proof. By taking Θα,βðv1, v2,⋯,vm, εÞ = Iμ′ ,ν′ð∑m
i=1vi, εÞ in

Theorem 11, we obtain our desired result. ☐

5. Stability Results for Odd Case

Theorem 13. Let α, β : Vm ⟶D+ , where αðv1, v2,⋯,vmÞ is
denoted by αv1 ,v2 ,⋯,vm , βðv1, v2,⋯,vmÞ is denoted by βv1 ,v2 ,⋯,vm
and αv1 ,v2 ,⋯,vmðεÞ, βv1 ,v2 ,⋯,vmðεÞ is denoted by Θα,βðv1, v2,⋯,
vm, εÞ , be a mapping such that

lim
w⟶∞

Θα,β awv1, awv2,⋯,awvm, awεð Þ = 1L∗ , ð45Þ

for all v1, v2,⋯, vm ∈ V and all ε > 0, and

lim
w⟶∞

Φ∞
i=1 Θα,β aw+i−1v, 0,⋯,0, awε

� �� �
= 1L∗ , ð46Þ

for all v ∈ V and all ε > 0. If an odd mapping φ : V ⟶W
with φð0Þ = 0 satisfies

Iμ,ν Dφ v1, v2,⋯,vmð Þ, εð Þ≥L∗Θα,β v1, v2,⋯,vm, εð Þ, ð47Þ

for all v1, v2,⋯, vm ∈ V and all ε > 0, then there exist a unique
additive mapping A1 : V ⟶W such that

Iμ,ν φ vð Þ − A1 vð Þ, εð Þ
≥L∗Φ

∞
i=1 Θα,β ai−1v, 0,⋯,0, m2 − 5m + 4

� �
ε

� �� �
,

ð48Þ

for all v ∈ V and all ε > 0.

Proof. Replacing ðv1, v2,⋯,vmÞ by ðv, 0,⋯,0Þ in (47), we
obtain

Iμ,ν m2 − 5m + 4
� �

φ avð Þ − m2 − 5m + 4
� �

aφ vð Þ, ε� �
≥L∗Θα,β v, 0,⋯,0, εð Þ,

ð49Þ

for all v ∈ V and all ε > 0. From inequality (49), we get

Iμ,ν
φ avð Þ
a

− φ vð Þ, ε
� 	

≥L∗Θα,β v, 0,⋯,0, a m2 − 5m + 4
� �

ε
� �

,

ð50Þ

for all v ∈ V and all ε > 0. Replacing v by av in the above
inequality (50), we have

Iμ,ν
φ a2v
� �
a2

−
φ avð Þ
a

, ε
� 	
≥L∗Θα,β av, 0,⋯,0, a2 m2 − 5m + 4

� �
ε

� �
,

ð51Þ

for all v ∈ V and all ε > 0. Replacing v by al−1v in (51), we con-
clude that

Iμ,ν
φ al+1v
� �
al+1

−
φ alv
� �
al

, ε
 !

≥L∗Θα,β alv, 0,⋯,0, a l+1ð Þ m2 − 5m + 4
� �

ε

 �

,
ð52Þ

for all v ∈ V and all ε > 0. Thus,

Iμ,ν
φ awvð Þ
aw

− φ vð Þ, ε
� 	

≥L∗Φ
w−1
l=0 Iμ,ν

φ al+1v
� �
a l+1ð Þ −

φ alv
� �
al

, 〠
w−1

l=0

ε

al+1

 ! !
,

ð53Þ

for all v ∈ V and all ε > 0. To prove the convergence of the
sequence fφðawvÞ/awg, replacing v by akv in (53), we obtain

Iμ,ν
φ aw+kv
� �
a w+kð Þ −

φ akv
� �
a kð Þ , ε

 !

≥L∗Φ
w+k−1
l=k Iμ,ν

φ al+1v
� �
a l+1ð Þ −

φ alv
� �
a lð Þ , 〠

w+k−1

l=k

ε

al+1

 ! !
,

ð54Þ

for all v ∈ V and all ε > 0 and all k,w ≥ 0. Since the R.H.S of
the inequality (54) tends to 1L∗ as w, k⟶∞, the sequence
fφðawvÞ/awg is a Cauchy sequence in ðW, Iμ,ν, YÞ. Since
ðW, Iμ,ν, YÞ is a complete IRN-space, this sequence con-
verges to some point A1ðvÞ ∈W. So one can define the map-
ping A1 : V ⟶W by

A1 vð Þ = lim
w⟶∞

φ awvð Þ
aw

, ð55Þ
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for all v ∈ V . Letting k = 0 in (54), we obtain

Iμ,ν
φ awvð Þ
aw

− φ vð Þ, ε
� 	

≥L∗Φ
w−1
l=0 Iμ,ν

φ al+1v
� �
a l+1ð Þ −

φ alv
� �
a lð Þ , 〠

w−1

l=0

ε

al+1

 ! !
,

ð56Þ

for all v ∈ V and all ε > 0. Taking the limit as w⟶∞ in
(56), we get

Iμ,ν φ vð Þ − A1 vð Þ, εð Þ
≥L∗Φ

∞
l=1 Θα,β al−1v, 0,⋯,0, m2 − 5m + 4

� �
ε


 �
 �
,

ð57Þ

for all v ∈ V and all ε > 0.

Next, we want to prove that the function A1 is additive.
Replacing ðv1, v2,⋯,vmÞ by ðawv1, awv2,⋯,awvmÞ in (47), we
obtain

Iμ,ν
1
aw

Dφ awv1, awv2,⋯,awvmð Þ, ε
� 	
≥L∗Θα,β awv1, awv2,⋯,awvm, awεð Þ,

ð58Þ

for all v1, v2,⋯, vm ∈ V and all ε > 0. Taking the limit as
w⟶∞, we find that Iμ,νðDA1ðv1, v2,⋯,vmÞ, εÞ = 1L∗ for
all v1, v2,⋯, vm ∈ V and all ε > 0, which implies DA1ðv1,
v2,⋯,vmÞ = 0. Thus, A1 satisfies the functional equation
(3). Hence, the function A1 : V ⟶W is additive. Passing
to the limit as w⟶∞ in (53), we have (48).

Finally, to show the uniqueness of the additive function
A1 subject to (48), consider that there exists another additive
function A1′ which satisfies the inequality (48). Evidently, A1
ðawvÞ = awA1ðvÞ and A1′ðawvÞ = awA1′ðvÞ for all v ∈ V and w
∈ℕ, from (48) and (46) that

Iμ,ν A1 vð Þ − A1′ vð Þ, ε

 �

≥L∗Iμ,ν A1 awvð Þ − A1′ awvð Þ, awε

 �

≥L∗Φ Iμ,ν A1 awvð Þ − φ awvð Þ, a
w

2 ε

� 	
,

�

Iμ,ν φ awvð Þ − A1′ awvð Þ, a
w

2 ε

� 		

≥L∗Φ Φ∞
i=1 Θα,β aw+i−1v, 0,⋯,0, aw m2 − 5m + 4

� � ε
2


 �
 �
,



Φ∞

i=1 Θα,β aw+i−1v, 0,⋯,0, aw m2 − 5m + 4
� � ε

2

 �
 ��

,

ð59Þ

for all v ∈ V and all ε > 0. By taking the limitw⟶∞ in (59),
we show the uniqueness of A1. ☐

Corollary 14. If an odd mapping φ : V ⟶W satisfies

Iμ,ν Dφð v1, v2,⋯,vm, εð Þ≥L∗Iμ′ ,ν′ 〠
m

i=1
vi, ε

 !
, ð60Þ

for all v1, v2,⋯, vm ∈ V and all ε > 0, and

lim
w⟶∞

Φ∞
i=1 Iμ′ ,ν′ aw+i−1v, aw m2 − 5m + 4

� �
ε

� �
 �
= 1L∗ , ð61Þ

for all v ∈ V and all ε > 0. Then, there exists a unique additive
mapping A1 : V ⟶W such that

Iμ,ν φ vð Þ − A1 vð Þ, εð Þ≥L∗Φ
∞
i=1 Iμ′ ,ν′ ai−1v, m2 − 5m + 4

� �
ε

� �
 �
,

ð62Þ

for all v ∈ V and all ε > 0.

Proof. By taking Θα,βðv1, v2,⋯,vm, εÞ = Iμ′ ,ν′ð∑m
i=1vi, εÞ in

Theorem 13, we obtain our desired result. ☐

6. Stability Results for Mixed Case

Theorem 15. Let α, β : Vm ⟶D+ be mappings satisfying
(27), (28), (45), and (46) for all v1, v2,⋯, vm, v ∈ V and all ε
> 0 . If a mapping φ : V ⟶W with φð0Þ = 0 satisfies (29)
for all v1, v2,⋯, vm ∈ V and all ε > 0 , then there exist a unique
quadratic mapping Q2 : V ⟶W and a unique additive
mapping A1 : V ⟶W satisfying (3) and

Iμ,ν φ vð Þ −Q2 vð Þ − A1 vð Þ, εð Þ
≥L∗Φ Φ Φ∞

i=1 ai−1v, 0,⋯,0, ai m2 − 5m + 2
� �

ε
� �� �

,
�

Φ∞
i=1 −ai−1v, 0,⋯,0, ai m2 − 5m + 2

� �
εÞ� �Þ

� Φ Φ∞
i=1 ai−1v, 0,⋯,0, m2 − 5m + 4

� �
εÞ� �

,
��

Φ∞
i=1 −ai−1v, 0,⋯,0, m2 − 5m + 4

� �
εÞ� �ÞÞ,

ð63Þ

for all v ∈ V .

Proof. Let φeðvÞ = φðvÞ + φð−vÞ/2 for all v ∈ V . Thus, φe
ð0Þ = 0, φeð−vÞ = φeðvÞ and for all v1, v2,⋯, vm ∈ V and
all ε > 0,

Iμ,ν Dφe v1, v2,⋯,vmð Þ, εð Þ

= Iμ,ν
Dφ v1, v2,⋯,vmð Þ +Dφ −v1,−v2,⋯,−vmð Þ

2 , ε
� 	

,

≥L∗Φ Iμ,ν Dφ v1, v2,⋯,vmð Þ, εð Þ, Iμ,ν Dφ −v1,−v2,⋯,−vmð Þ, εð Þ� �
,

≥L∗Φ Θα,β v1, v2,⋯,vm, εð Þ,Θα,β −v1,−v2,⋯,−vm, εð Þ� �
:,

ð64Þ

By Theorem 11, there exists a quadratic mapping
Q2 : V ⟶W such that

Iμ,ν φe vð Þ −Q2 vð Þ, εð Þ
≥L∗Φ Φ∞

i=1 ai−1v, 0,⋯,0, ai m2 − 5m + 2
� �

ε
� �

,
�

Φ∞
i=1 −ai−1v, 0,⋯,0, ai m2 − 5m + 2

� �
ε

� �Þ,
ð65Þ

for all v ∈ V and all ε > 0. ☐
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On the other hand, let φoðvÞ = φðvÞ − φð−vÞ/2 for all v ∈ V .
Then φoð0Þ = 0, φoð−vÞ = −φoðvÞ. By Theorem 13, there
exists a additive mapping A1 : V ⟶W satisfies

Iμ,ν φ0 vð Þ − A1 vð Þ, εð Þ
≥L∗Φ Φ∞

i=1 ai−1v, 0,⋯,0, m2 − 5m + 4
� �

ε
� �

,
�

Φ∞
i=1 −ai−1v, 0,⋯,0, m2 − 5m + 4

� �
ε

� �Þ,
ð66Þ

for all v ∈ V and all ε > 0. From inequalities (65) and (66), we
obtain our desired result (64).

Corollary 16. If a mapping φ : V ⟶W satisfies

Iμ,ν Dφð v1, v2,⋯,vm, εð Þ≥L∗Iμ′ ,ν′ 〠
m

i=1
vi, ε

 !
, ð67Þ

for all v1, v2,⋯, vm ∈ V and all ε > 0, and

lim
w⟶∞

Φ∞
i=1 Iμ′ ,ν′ aw+i−1v, a2w+i m2 − 5m + 2

� �
ε

� �
 �
= 1L∗ ,

lim
w⟶∞

Φ∞
i=1 Iμ′ ,ν′ aw+i−1v, aw m2 − 5m + 4

� �
ε

� �
 �
= 1L∗ ,

ð68Þ

for all v ∈ V and all ε > 0. Then, there exists a unique qua-
dratic mapping Q2 : V ⟶W and a unique additive map-
ping A1 : V ⟶W such that

Iμ,ν φ vð Þ −Q2 vð Þ − A1 vð Þ, εð Þ
≥L∗Φ Φ Φ∞

i=1 ai−1v, ai m2 − 5m + 2
� �

ε
� �� �

,
�

Φ∞
i=1 −ai−1v, ai m2 − 5m + 2

� �
εÞ� �Þ

� Φ Φ∞
i=1 ai−1v, m2 − 5m + 4

� �
εÞ� �

,
��

Φ∞
i=1 −ai−1v, m2 − 5m + 4

� �
εÞ� �ÞÞ,

ð69Þ

for all v ∈ V and all ε > 0.

7. Conclusion

In this paper, we introduced a new mixed type of additive-
quadratic functional equation, and we applied the Hyers
direct technique to investigate the Hyers-Ulam stability of
the mixed type of additive-quadratic functional equation.
Moreover, we have derived its general solution. The main
objective of this work has been discussed: In Section 4, we
have proved its Ulam-Hyers stability for the even case; in
Section 5, examined Ulam-Hyers stability for odd case, and
in Section 6, investigated Ulam-Hyers stability for the mixed
cases, respectively, in intuitionistic random normed space.
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1. Introduction

Let ðX, dÞ be a metric space and k ≥ 1 be a fixed integer. Sup-
pose that T : Xk ⟶ X is given. The following two problems
were studied by Prešić [1]:

(i) Find x̂ ∈ X such that

x̂ = T x̂, x̂,⋯, x̂ð Þ: ð1Þ

(ii) For any given x1, x2,⋯, xk ∈ X, if we define

xn+k = T xn, xn+1,⋯, xn+k−1ð Þ for all n ≥ 1, ð2Þ

then what can we say about the convergence of the
sequence fxng?

This problem is very interesting and was further studied
by many authors, for example, see [2–4].

In 1965, Prešić [1] proved the following interesting theo-
rem which can be regarded as a generalization of the classical
fixed point theorem proposed by Banach [5]. Let k be a

positive integer and let q1, q2,⋯, qk be nonnegative real num-
bers such that q1 + q2 +⋯ + qk < 1. Let P ðq1, q2,⋯, qkÞ be a
family of mappings T : Xk ⟶ X such that

d T u1, u2,⋯, ukð Þ, T u2, u3,⋯, uk+1ð Þð Þ

≤ 〠
k

i=1
qid ui, ui+1ð Þ for all u1, u2,⋯, uk+1 ∈ X:

ð3Þ

Theorem P1. Let ðX, dÞ be a complete metric space. Let
fαng∞n=1 be a sequence of positive real numbers such that
∑∞

n=1αn <∞ and lim inf
n⟶∞

ðαn+1/αnÞ = 1. Let fTng∞n=1 be a

sequence of operators in P ðq1, q2,⋯, qkÞ such that

d Tn u1, u2,⋯, ukð Þ, Tn+1 u1, u2,⋯, ukð Þð Þ
≤ αn for all u1, u2,⋯, uk ∈ X and for all n ≥ 1:

ð4Þ

Let fxng∞n=1 be a sequence in X such that x1, x2,⋯, xk ∈ X are
arbitrary and
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xn+k = Tn xn, xn+1,⋯, xn+k−1ð Þ for all n ≥ 1: ð5Þ

Then, the following statements are true.

(a) There exists an element x̂ ∈ X such that x̂ =
limn⟶∞xn

(b) There exists an operator T ∈P ðq1, q2,⋯, qkÞ such
that fTng∞n=1 converges to T uniformly; that is,
limn⟶∞ supx∈XdðTnx, TxÞ = 0

(c) The element x̂ is the only one satisfying Equation (1)

Theorem P1, where k = 1, is nothing but Banach’s fixed
point theorem [5].

Remark 1. It was shown in [6] that the condition
lim infn⟶∞ðαn+1/αnÞ = 1 is superfluous.

As a consequence of Theorem P1, we have the follow-
ing result.

Theorem P2. Let ðX, dÞ be a complete metric space and
let k be a positive integer. Let q1, q2,⋯, qk be nonnegative real
numbers such that q1 + q2 +⋯ + qk < 1. Let T ∈P ðq1, q2,
⋯, qkÞ. Let fxng∞n=1 be a sequence in X such that x1, x2,⋯,
xk ∈ X are arbitrary and Equation (2) holds. Then, the follow-
ing statements are true.

(a) There exists an element x̂ ∈ X such that x̂ =
limn⟶∞xn

(b) The element x̂ is the only one satisfying Equation (1).

Ćirić and Prešić [2] proved the following improvement of
Theorem P2.

Theorem CP. Let ðX, dÞ be a complete metric space. Let k
be a positive integer and let q be a positive real number such
that q < 1. Let T : Xk ⟶ X be such that

d T u1, u2,⋯, ukð Þ, T u2, u3,⋯, uk+1ð Þð Þ
≤ q max d ui, ui+1ð Þ: i = 1, 2,⋯, kf g
 for all u1, u2,⋯, uk+1 ∈ X:

ð6Þ

Let fxng∞n=1 be a sequence in X such that x1, x2,⋯, xk ∈ X are
arbitrary and Equation (2) holds. Then, the following state-
ments are true.

(a) There exists an element x̂ ∈ X such that x̂ =
limn⟶∞xn and Equation (1) holds.

(b) If, in addition

d T u, u,⋯, uð Þ, T v, v,⋯, vð Þð Þ < d u, vð Þ for all u, v ∈ X, ð7Þ

then the element x̂ is the only one satisfying
Equation (1).

Remark 2. It is clear that if T : Xk ⟶ X satisfies Expression
(3), then it satisfies Expressions (6) and (7).

Proof. Suppose that T : Xk ⟶ X satisfies Expression (3)
with nonnegative constants q1, q2,⋯, qk such that q1 + q2 +
⋯ + qk < 1. To show that T satisfies Expression (6) with

q≔∑k
i=1qi, let u1, u2,⋯, uk+1 ∈ X. It follows that

d T u1, u2,⋯, ukð Þ, T u2, u3,⋯, uk+1ð Þð Þ

≤ 〠
k

i=1
qid ui, ui+1ð Þ ≤ q max d ui, ui+1ð Þ: i = 1, 2,⋯, kf g:

ð8Þ

To see that T satisfies Equation (7), let u, v ∈ X. It fol-
lows that

d T u, u,⋯, uð Þ, T v, v,⋯, vð Þð Þ
≤ d T u, u,⋯, uð Þ, T v, u,⋯, uð Þð Þ

+ d T v, u,⋯, uð Þ, T v, v, u,⋯, uð Þð Þ+⋯
+d T v, v,⋯, v, uð Þ, T v, v,⋯, vð Þð Þ

≤ q1 + q2+⋯+qkð Þd u, vð Þ < d u, vð Þ:

ð9Þ

This completes the proof. ☐

It is natural to ask the following:
Question: Is it possible to generalize Theorem CP by using

the approach of Theorem P1?
In this paper, we answer the question above by considering

a wider class of mappings than those satisfying Expression (6).
The class of mappings studied in this paper is motivated by the
one in work of Kada et al. [7]. Some progress on these map-
pings can be found in [8].

Theorem KST (see [7]). Let ðX, dÞ be a complete metric
space. Let r ∈ ½0, 1Þ be given and let T : X ⟶ X be a
mapping such that the following conditions hold:

(1) (KST1) dðTx, T2xÞ ≤ rdðx, TxÞ for all x ∈ X
(2) (KST2) If y ≠ Ty, then inf fdðx, TxÞ + dðx, yÞ:

x ∈ Xg > 0

Then, every sequence fxng∞n=1 with arbitrary x1 and
xn+1 ≔ Txn for all n ≥ 1 converges to a fixed point of T .

2. Main Results

2.1. On the Fixed Point Problem of Prešić Type.We first show
that the fixed point problem of Prešić type is equivalent to the
classical fixed point problem. Suppose that X is a nonempty
set and k ≥ 1 is an integer. The fixed point problem of Prešić
type for a given mapping T : Xk ⟶ X is to find u ∈ X
such that

u = T u, u,⋯, uð Þ: ð10Þ

We denote by PFixðTÞ the set of all solutions of the
problem above. We show that this problem is connected
to the classical fixed point problem. To simplify the
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notation of the following result, we write X≔ Xk and _x
≔ ðx, x,⋯, xÞ ∈X where x ∈ X.

Theorem 3. Suppose that X is a nonempty set and k ≥ 1 is an
integer. Suppose that T : Xk ⟶ X is given. Then, there exists
a mapping T : X⟶X such that the following statements
hold.

(a) If u ∈ PFixðTÞ, then _u ∈ FixðTÞ
(b) If ðu1, u2,⋯, ukÞ ∈ FixðTÞ, then u1 = u2 =⋯ = uk ∈

PFixðTÞ

Proof. Define T : X⟶X by

Tu≔ u2,⋯, uk, T u1,⋯, ukð Þð Þ, ð11Þ

where u≔ ðu1,⋯, ukÞ ∈X.
The statement (a) is trivial. We prove the statement (b).

Suppose that ðu1, u2,⋯, ukÞ ∈ FixðTÞ. It follows that

u1, u2,⋯, ukð Þ = u2,⋯, uk, T u1,⋯, ukð Þð Þ: ð12Þ

This implies that

u1 = u2 =⋯ = uk = T u1,⋯, ukð Þ: ð13Þ

This completes the proof. ☐

2.2. On the Class of Mappings. In this subsection, we discuss
the following classes of mappings. The first two classes are
from Theorem P and Theorem CP and the last one from
Theorem KST.

Suppose that X ≔ ðX, dÞ is a metric space and k ≥ 1 is an
integer. Suppose that r, q, q1,⋯, qk are nonnegative real
numbers. Define

F X, d, q1,⋯, qkð Þ≔ T : Xk ⟶ X satisfies 3ð Þ
n o

,

G X, d, qð Þ≔ T : Xk ⟶ X satisfies 6ð Þ
n o

,

H X, d, rð Þ≔ T : X ⟶ X satisfies Conditions KST1ð Þand KST2ð Þf g:
ð14Þ

Remark 4. Suppose that X ≔ ðX, dÞ is a metric space and k ≥ 1
is an integer. The following statements are true.

(a) If q1,⋯, qk are nonnegative real numbers, then

FðX, d, q1,⋯, qkÞ ⊂GðX, d, qÞ, where q≔∑k
i=1qi

(b) If q is a nonnegative real number and T ∈ GðX, d, qÞ,
then T ∈HðX, d, rÞ, where X≔ Xk, r = q1/k, T is

defined by Equation (11) and

d x, yð Þ≔max q−i/kd xi, yið Þ: i = 1,⋯, k
n o

 for all x≔ x1,⋯, xkð Þ ∈X and y ≔ y1,⋯, ykð Þ ∈X:
ð15Þ

Proof. The statement (a) is trivial. We prove the statement
(b). Let T ∈ GðX, d, qÞ. It is clear that d is a metric on X.
We now prove that T ∈HðX, d, rÞ. To see that T satisfies
Condition (KST1), let u≔ ðu1,⋯, ukÞ ∈X. We write uk+1 ≔
Tðu1,⋯, ukÞ and uk+2 ≔ Tðu2,⋯, uk+1Þ. It follows from
T ∈ GðX, d, qÞ that

d uk+1, uk+2ð Þ ≤ q max d ui, ui+1ð Þ: i = 1,⋯, kf g: ð16Þ

Note that

Tu = u2,⋯, uk+1ð Þ,
T2u = u3,⋯, uk+2ð Þ:

ð17Þ

Put r ≔ 1/s ∈ ð0, 1Þ where s = q−1/k. It follows from
Equation (6) that

d Tu, T2u
� �

=max sid ui+1, ui+2ð Þ: i = 1,⋯, k
� �

=max
max sid ui+1, ui+2ð Þ: i = 1,⋯, k − 1

� �
,

skd uk+1, uk+2ð Þ

8<
:

9=
;

=max
max sid ui+1, ui+2ð Þ: i = 1,⋯, k − 1

� �
,

skd T u1, u2,⋯, ukð Þ, T u2, u3,⋯, uk+1ð Þð Þ

8<
:

9=
;

≤max
max sid ui+1, ui+2ð Þ: i = 1,⋯, k − 1

� �
,

skq max d ui, ui+1ð Þ: i = 1,⋯, kf g

8<
:

9=
;

=max
max sid ui+1, ui+2ð Þ: i = 1,⋯, k − 1

� �
,

max d ui, ui+1ð Þ: i = 1,⋯, kf g

( )

=max
max sid ui+1, ui+2ð Þ: i = 1,⋯, k − 1

� �
,

d u1, u2ð Þ, max d ui, ui+1ð Þ: i = 2,⋯, kf g

( )

=max d u1, u2ð Þ, max sid ui+1, ui+2ð Þ: i = 1,⋯, k − 1
� �� �

=
1
s
max sd u1, u2ð Þ, s max sid ui+1, ui+2ð Þ: i = 1,⋯, k − 1

� �� �
= r max sd u1, u2ð Þ, max sid ui, ui+1ð Þ: i = 2,⋯, k

� �� �
= r max sid ui, ui+1ð Þ: i = 1,⋯, k

� �
= r max q−i/kd ui, ui+1ð Þ: i = 1,⋯, k

n o
= rd u, Tuð Þ:

ð18Þ

Finally, we show that T satisfies Condition (KST2). To see
this, let fung be a sequence in X and let u ∈X be such that
limn⟶∞dðun, TunÞ = limn⟶∞dðun, uÞ = 0. For each n ∈ℕ,
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we write un ≔ ðuðnÞ1 , uðnÞ2 ,⋯, uðnÞk Þ and u≔ ðu1, u2,⋯, ukÞ. It
follows from the definition of d that

In particular, we have u1 = u2 =⋯ = uk. This implies that

u = ðu1, u1,⋯, u1Þ and limn⟶∞dðu1, TðuðnÞ1 , uðnÞ2 ,⋯, uðnÞk ÞÞ
= 0. We consider

d T u nð Þ
1 , u nð Þ

2 ,⋯, u nð Þ
k

� �
, T u1, u1,⋯, u1ð Þ

� �

≤ d T u nð Þ
1 , u nð Þ

2 ,⋯, u nð Þ
k

� �
, T u nð Þ

2 , u nð Þ
3 ,⋯, u nð Þ

k , u1
� �� �

+ d T u nð Þ
2 , u nð Þ

3 ,⋯, u nð Þ
k , u1

� �
, T u nð Þ

3 ,⋯, u nð Þ
k , u1, u1

� �� �

+⋯+d T u nð Þ
k , u1,⋯, u1

� �
, T u1, u1,⋯, u1ð Þ

� �

≤ q max d u nð Þ
k , u1

� �
, d u nð Þ

i , u nð Þ
i+1

� �
: i = 1,⋯, k − 1

n o

+ q max d u nð Þ
k , u1

� �
, d u nð Þ

i , u nð Þ
i+1

� �
: i = 2,⋯, k − 1

n o

+⋯ + qd u nð Þ
k , u1

� �
:

ð20Þ

Hence, limn⟶∞dðTðuðnÞ1 , uðnÞ2 ,⋯, uðnÞk Þ, Tðu1, u1,⋯,
u1ÞÞ = 0. Since

lim
n⟶∞

d T u nð Þ
1 , u nð Þ

2 ,⋯, u nð Þ
k

� �
, u1

� �
= lim

n⟶∞
d u nð Þ

k+1, u1
� �

= 0,

ð21Þ

we have u1 = Tðu1, u1,⋯, u1Þ. Hence, u = Tu. This com-
pletes the proof. ☐

Remark 5. The classes FðX, d, q1,⋯, qkÞ and GðX, d, qÞ are
closed under the pointwise convergence, that is, if fTng is a
sequence in FðX, d, q1,⋯, qkÞ (GðX, d, qÞ, respectively) and
there exists a mapping T : Xk ⟶ X such that

lim
n⟶∞

d Tn u1, u2,⋯, ukð Þ, T u1, u2,⋯, ukð Þð Þ
= 0 for all u1, u2,⋯, ukð Þ ∈ Xk,

ð22Þ

then T ∈FðX, d, q1,⋯, qkÞ (T ∈ GðX, d, qÞ, respectively).

Proof. Suppose that fTng is a sequence in GðX, d, qÞ and
there exists a mapping T : X⟶ X such that

lim
n⟶∞

d Tn u1, u2,⋯, ukð Þ, T u1, u2,⋯, ukð Þð Þ
= 0 for all u1, u2,⋯, ukð Þ ∈ Xk:

ð23Þ

We prove that T ∈ GðX, d, qÞ. To see this, let u1, u2,⋯,
uk, uk+1 ∈ X. Note that

lim
n⟶∞

d T u1, u2,⋯, ukð Þ, Tn u1, u2,⋯, ukð Þð Þ
= lim

n⟶∞
d Tn u2, u3,⋯, uk+1ð Þ, T u2, u3,⋯, uk+1ð Þð Þ = 0:

ð24Þ

It follows that

d T u1, u2,⋯, ukð Þ, T u2, u3,⋯, uk+1ð Þð Þ
≤ d T u1, u2,⋯, ukð Þ, Tn u1, u2,⋯, ukð Þð Þ

+ d Tn u1, u2,⋯, ukð Þ, Tn u2, u3,⋯, uk+1ð Þð Þ
+ d Tn u2, u3,⋯, uk+1ð Þ, T u2, u3,⋯, uk+1ð Þð Þ

≤ d T u1, u2,⋯, ukð Þ, Tn u1, u2,⋯, ukð Þð Þ
+ q max d ui, ui+1ð Þ: i = 1, 2,⋯, kf g
+ d Tn u2, u3,⋯, uk+1ð Þ, T u2, u3,⋯, uk+1ð Þð Þ:

ð25Þ

In particular,

d T u1, u2,⋯, ukð Þ, T u2, u3,⋯, uk+1ð Þð Þ
≤ q max d ui, ui+1ð Þ: i = 1, 2,⋯, kf g: ð26Þ

This implies that T ∈ GðX, d, qÞ. The case that fTng is a
sequence in FðX, d, q1, q2,⋯, qkÞ can be done similarly. ☐

2.3. A Generalization of Theorem KST and Its Consequences.
The following result is analogous to Theorem P1 with a wider
class of mappings.

Theorem 6. Let ðX, dÞ be a complete metric space and r ∈ ½0, 1Þ
be given. Let fαng∞n=1 be a sequence of positive real numbers
such that ∑∞

n=1αn <∞. Let fTng∞n=1 be a sequence of operators
in HðX, d, rÞ such that

d Tnx, Tn+1xð Þ ≤ αn for all x ∈ X: ð27Þ

Let fxng∞n=1 be a sequence in X such that x1 ∈ X is arbitrary
and xn+1 ≔ Tnxn for all n ≥ 1. Then, the following statements
are true.

(a) There exists an element x̂ ∈ X such that x̂ = limn⟶∞xn

(b) There exists an operator T : X ⟶ X such that fTng
converges to T uniformly

(c) If T satisfies Condition (KST2), then x̂ ∈ FixðTÞ

lim
n⟶∞

d u nð Þ
i , u nð Þ

i+1

� �
= lim

n⟶∞
d u nð Þ

i , ui
� �

= 0, for all i = 1, 2,⋯, k, where u nð Þ
k+1 ≔ T u nð Þ

1 , u nð Þ
2 ,⋯, u nð Þ

k

� �
for all n ≥ 1: ð19Þ

4 Journal of Function Spaces



Lemma 7. Let fsng∞n=1 and fαng∞n=1 be two sequences of non-
negative real numbers such that ∑∞

n=1αn <∞. Let r ∈ ð0, 1Þ
be given. If

sn+1 ≤ rsn + αn for all n ≥ 1, ð28Þ

then ∑∞
n=1sn <∞.

Proof. Note that, for each m ≥ 1, we have ∑m+1
n=2 sn ≤ r∑m

n=1sn
+∑m

n=1αn. In particular, ð1 − rÞ∑m
n=2sn ≤ ð1 − rÞ∑m

n=2sn +
sm+1 ≤ rs1 +∑m

n=1αn ≤ rs1 +∑∞
n=1αn for all m ≥ 2. Hence, the

conclusion follows. ☐

Proof of Theorem 6. First, we note that

d xn+1, xn+2ð Þ = d Tnxn, Tn+1xn+1ð Þ ≤ d Tnxn, Tnxn+1ð Þ
+ d Tnxn+1, Tn+1xn+1ð Þ

= d Tnxn, T2
nxn

� �
+ d Tnxn+1, Tn+1xn+1ð Þ

≤ rd xn, Tnxnð Þ + αn
= rd xn, xn+1ð Þ + αn:

ð29Þ

It follows from Lemma 7 that ∑∞
n=1dðxn, xn+1Þ <∞. In

particular, fxng is a Cauchy sequence and hence limn⟶∞
xn = x̂ for some x̂ ∈ X by the completeness of X. Hence, (a)
is proved.

We now prove (b). For each x ∈ X and for each n, k ≥ 1,
we note that

d Tnx, Tn+kxð Þ ≤ 〠
n+k−1

j=n
d T jx, T j+1x
� �

≤ 〠
n+k−1

j=n
αj ≤ 〠

∞

j=n
αj:

ð30Þ

It follows that fTnxg∞n=1 is a Cauchy sequence and hence
limn⟶∞Tnx exists. We then define T : X⟶ X by

Tx≔ lim
n⟶∞

Tnx: ð31Þ

It follows then that

d Tnx, Txð Þ ≤ lim
k⟶∞

d Tnx, Tn+kxð Þ ≤ lim
k⟶∞

〠
n+k−1

j=n
d T jx, T j+1x
� �

≤ lim
k⟶∞

〠
n+k−1

j=n
αj = 〠

∞

j=n
αj for all x ∈ X and for all n ≥ 1:

ð32Þ

To see that limn⟶∞ supx∈XdðTnx, TxÞ = 0, let ε > 0. Since
∑∞

n=1αn <∞, there exists an integer M such that ∑∞
j=nαj < ε

for all n ≥M. For each x ∈ X and n ≥M, we have

d Tnx, Txð Þ ≤ 〠
∞

j=n
αj < ε: ð33Þ

That is, supx∈XdðTnx, TxÞ ≤ ε for all n ≥M. Hence,

lim
n⟶∞

sup
x∈X

d Tnx, Txð Þ = 0: ð34Þ

Finally, we assume that T satisfies (KST2). Note that
limn⟶∞dðxn, x̂Þ = 0. Moreover,

lim
n⟶∞

d xn, Txnð Þ ≤ lim
n⟶∞

d xn, Tnxnð Þ + d Tnxn, Txnð Þð Þ

≤ lim
n⟶∞

d xn, xn+1ð Þ + lim
n⟶∞

〠
∞

j=n
αj = 0:

ð35Þ

It follows from Condition (KST2) that x̂ = Tx̂.

We are now ready to give an affirmative answer of the
problem in the introduction. In fact, we can generalize The-
orem CP by using the approach of Theorem P1.

Theorem 8. Let ðX, dÞ be a complete metric space and k ≥ 1 be
a fixed integer. Let q be a positive real number such that q < 1.
Let fαng∞n=1 be a sequence of positive real numbers such that
∑∞

n=1αn <∞. Let fTng∞n=1 be a sequence of operators in
GðX, d, qÞ such that

d Tn u1, u2,⋯, ukð Þ, Tn+1 u1, u2,⋯, ukð Þð Þ
≤ αn for all u1, u2,⋯, uk ∈ X and for all n ≥ 1:

ð36Þ

Let fxng∞n=1 be a sequence in X such that x1, x2,⋯, xk ∈ X
are arbitrary and

xn+k ≔ Tn xn, xn+1,⋯, xn+k−1ð Þ for all n ≥ 1: ð37Þ

Then, the following statements are true.

(a) There exists an element x̂ ∈ X such that x̂ = limn⟶∞xn

(b) There exists an operator T ∈ GðX, d, qÞ such that
fTng∞n=1 converges uniformly to T and x̂ ∈ PFixðTÞ

(c) PFixðTÞ = fx̂g, that is, x̂ is the only solution of the
fixed point problem of Prešić type for T , provided that

d T u, u,⋯, uð Þ, T v, v,⋯, vð Þð Þ < d u, vð Þ for all u, v ∈ X:

ð38Þ

Proof. Suppose that fαng, fTng, and fxng are given as in the
statement of the theorem. Let X and d be defined as in
Theorem 3 and Remark 4. For each n ≥ 1, we define
Tn : X⟶X by

Tnu≔ u2,⋯, uk, Tn u1,⋯, ukð Þð Þ, ð39Þ

where u≔ ðu1,⋯, ukÞ ∈X. By Remark 4, we have Tn ∈HðX,
d, rÞ for all n ≥ 1. Define fxng∞n=1 be a sequence in X by
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xn ≔ xn, xn+1,⋯, xn+k−1ð Þ for all n ≥ 1: ð40Þ

We prove that xn+1 ≔ Tnxn for each n ≥ 1. To see this,
we have

xn+1 = xn+1, xn+2,⋯, xn+kð Þ
= xn+1, xn+2,⋯, Tn xn, xn+1,⋯, xn+k−1ð Þð Þ
= Tnxn:

ð41Þ

Next, we prove that

d Tnu, Tn+1uð Þ ≤ αn
q
 for all n ≥ 1 andu ∈X: ð42Þ

In fact, for each n ≥ 1 and u≔ ðu1,⋯, ukÞ ∈X, we have

d Tnu, Tn+1uð Þ = d u2, u3,⋯, uk, Tn u1,⋯, ukð Þð Þ,ð
� u2, u3,⋯, uk, Tn+1 u1,⋯, ukð Þð ÞÞ

= q−1d Tn u1,⋯, ukð Þ, Tn+1 u1,⋯, ukð Þð Þ
≤
αn
q
:

ð43Þ

It follows from Theorem 6 that there exists an element
x̂≔ ðx̂1, x̂2,⋯, x̂kÞ ∈X such that x̂ = limn⟶∞xn. In particu-
lar, we have limn⟶∞xn = x̂1 = x̂2 =⋯ = x̂k. It also follows
from Theorem 6 that there exists an operator S : X⟶X
such that fTng converges uniformly to S. Note that, for each
ðu1, u2,⋯, ukÞ ∈X, we have

S u1, u2,⋯, ukð Þ = lim
n⟶∞

Tn u1, u2,⋯, ukð Þ
= lim

n⟶∞
u2, u3,⋯, uk, Tn u1, u2,⋯, ukð Þð Þ

= u2, u3,⋯, uk, lim
n⟶∞

Tn u1, u2,⋯, ukð Þ
� �

:

ð44Þ

We now define T : X⟶ X (from S) by

T u1, u2,⋯, ukð Þ≔ vk ⟺
def

S u1, u2,⋯, ukð Þ≔ v1, v2,⋯, vkð Þ:
ð45Þ

In particular, we have

(i) Tðu1, u2,⋯, ukÞ = limn⟶∞Tnðu1, u2,⋯, ukÞ,
(ii) Sðu1, u2,⋯, ukÞ = ðu2, u3,⋯, uk, Tðu1, u2,⋯, ukÞÞ

for all ðu1, u2,⋯, ukÞ ∈X.
It follows from each Tn ∈ GðX, d, qÞ and Remark 5 that

T ∈ GðX, d, qÞ. Hence S ∈HðX, d, rÞ. In particular, S satisfies
Condition KST2 and hence x̂ = Sx̂ by Theorem 6. This
implies that

x̂1, x̂1,⋯, x̂1ð Þ = S x̂1, x̂1 ⋯ , x̂1ð Þ = x̂1, x̂1,⋯, x̂1, T x̂1, x̂1 ⋯ , x̂1ð Þð Þ:
ð46Þ

Hence,

T x̂1, x̂1 ⋯ , x̂1ð Þ = x̂1: ð47Þ

The uniqueness of the fixed point of Prešić type is
obvious if the additional hypothesis is assumed. ☐

3. Applications

We finally discuss some applications of our result.

3.1. Some Convergence Problem of Recursive Real Sequences.
We reconsider the following example studied by Ćirić and
Prešić [2, Example 1] and give some remark.

Example 9. Let X ≔ ½0, 1� ∪ ½2, 3� be a metric space endowed
with the usual metric d and T : X2 ⟶ X be defined by

T x, yð Þ≔

x + y
4

if x, yð Þ ∈ 0, 1½ �2,

1 +
x + y
4

if x, yð Þ ∈ 2, 3½ �2,
x + y
4

−
1
2

if x, yð Þ ∈ 0, 1½ � × 2, 3½ �ð Þ ∪ 2, 3½ � × 1, 2½ �ð Þ:

8>>>>>><
>>>>>>:

ð48Þ

It was proved in [2] that

d T x, yð Þ, T y, zð Þð Þ ≤ 1
2
max d x, yð Þ, d y, zð Þf g 

for all x, y ∈ X and z ≔ T x, yð Þ:
ð49Þ

The author of [2] claimed that T ∈ GðX, d, 1/2Þ. We note that
T ∉ GðX, d, qÞ for all 0 < q < 1. In fact, let x≔ 3, y≔ 2, and
z ≔ 1; it follows that

d T x, yð Þ, T y, zð Þð Þ = d
9
4
,
1
4

� 	

= 2while max d x, yð Þ, d y, zð Þf g
= 1:

ð50Þ

Using our approach, let X≔ X2 and

d x, yð Þ≔max
ffiffiffi
2

p
d x1, x2ð Þ, 2d y1, y2ð Þ

n o
, ð51Þ

where x≔ ðx1, x2Þ ∈X and y ≔ ðy1, y2Þ ∈X. Moreover, let
T : X⟶X be defined by

Tx≔ x2, T x1, x2ð Þð Þ, ð52Þ

where x≔ ðx1, x2Þ ∈X. We can follow the proof in Remark
4 to show that

d Tx, T2x
� �

≤
1ffiffiffi
2

p d x, Txð Þ for all x ∈X: ð53Þ

Next, we show that T satisfies Condition (KST2). Note
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that PFixðTÞ = f0, 2g so FixðTÞ = fð0, 0Þ, ð2, 2Þg. Let fung
be a sequence in X and let u ∈X be such that limn⟶∞d
ðun, TunÞ = limn⟶∞dðun, uÞ = 0. For each n ∈ℕ, we write

un ≔ ðuðnÞ1 , uðnÞ2 Þ and u≔ ðu1, u2Þ. It follows from the defi-
nition of d that

lim
n⟶∞

d u nð Þ
1 , u nð Þ

2

� �
= lim

n⟶∞
d u nð Þ

2 , T u nð Þ
1 , u nð Þ

2

� �� �

= lim
n⟶∞

d u nð Þ
1 , u1

� �

= lim
n⟶∞

d u nð Þ
2 , u2

� �
= 0:

ð54Þ

In particular, we have u1 = u2. This implies that u = ð
u1, u1Þ and limn⟶∞dðu1, TðuðnÞ1 , uðnÞ2 ÞÞ = 0. We consider
the following two cases.

Case 1. u1 ∈ ½0, 1�. In this case, we may assume that fuðnÞ1 g and
fuðnÞ2 g are sequences in ½0, 1� and hence TðuðnÞ1 , uðnÞ2 Þ = ðuðnÞ1

+ uðnÞ2 Þ/4. This implies that u1 = ðu1 + u2Þ/4 = u1/2 and hence
u1 = 0. Then, u≔ ðu1, u2Þ = ðu1, u1Þ = ð0, 0Þ ∈ FixðTÞ.

Case 2. u1 ∈ ½2, 3�. In this case, we may assume that fuðnÞ1 g
and fuðnÞ2 g are sequences in ½2, 3� and hence TðuðnÞ1 , uðnÞ2 Þ = 1
+ ðuðnÞ1 + uðnÞ2 Þ/4. This implies that u1 = 1 + ðu1 + u2Þ/4 = 1 +
u1/2 and hence u1 = 2. Then u≔ ðu1, u2Þ = ðu1, u1Þ = ð2, 2Þ
∈ FixðTÞ.

Hence, T ∈HðX, d, 1/ ffiffiffi
2

p Þ. In particular, we can apply
this example to our Theorem 8. Note that, since PFixðTÞ =
f0, 2g, the condition (7) cannot be omitted for the unique-
ness of the solution as claimed in [2].

We now discuss the following convergence problem of
real sequences inspired by [6].

Example 10. Suppose that fxng is a real sequence satisfying
the following recursive relation: x1, x2 ∈ ½0, 1� ∪ ½2, 3� and for
each n ≥ 1

xn+2 ≔

xn + xn+1
4

if xn, xn+1ð Þ ∈ 0, 1½ �2,

1 + xn + xn+1
4

if xn, xn+1ð Þ ∈ 2, 3½ �2,
xn + xn+1

4
−
1
2

if xn, xn+1ð Þ ∈ 0, 1½ � × 2, 3½ �ð Þ ∪ 2, 3½ � × 0, 1½ �ð Þ:

8>>>>>><
>>>>>>:

ð55Þ

It is clear that this example is related to the preceding one.
Table 1 shows the numerical experiment regarding to the
problem with respect to the initial inputs x1 and x2. For
example, if x1 ≔ 0:5 and x2 ≔ 1, then limn⟶∞xn = 0; if
x1 ≔ 2 and x2 ≔ 3, then limn⟶∞xn = 2.

3.2. Volterra Type Integral Equations. We discuss a further
application of our Theorem 8 in the context of Volterra type
integral equations.

Table 1: A numerical experiment for Example 10.

x1 0.5 1 1 2 3

x2 1 1 2 3 3

x3 0.375 0.5 0.25 2.25 2.5

x4 0.34375 0.375 0.0625 2.3125 2.375

x5 0.1796875 0.21875 0.078125 2.140625 2.21875

x6 0.130859375 0.1484375 0.03515625 2.11328125 2.1484375

x7 0.077636719 0.091796875 0.028320313 2.063476563 2.091796875

x8 0.052124023 0.060058594 0.015869141 2.044189453 2.060058594

x9 0.032440186 0.037963867 0.011047363 2.026916504 2.037963867

x10 0.021141052 0.024505615 0.006729126 2.017776489 2.024505615

x11 0.013395309 0.015617371 0.004444122 2.011173248 2.015617371

x12 0.00863409 0.010030746 0.002793312 2.007237434 2.010030746

x13 0.00550735 0.006412029 0.001809359 2.004602671 2.006412029

x14 0.00353536 0.004110694 0.001150668 2.002960026 2.004110694

x15 0.002260678 0.002630681 0.000740007 2.001890674 2.002630681

x16 0.001449009 0.001685344 0.000472669 2.001212675 2.001685344

x17 0.000927422 0.001079006 0.000303169 2.000775837 2.001079006

x18 0.000594108 0.000691087 0.000193959 2.000497128 2.000691087

x19 0.000380382 0.000442523 0.000124282 2.000318241 2.000442523

x20 0.000243623 0.000283403 7:95603E − 05 2.000203842 2.000283403
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Theorem 12. Suppose that X ≔ Cð½0, T�,ℝÞ is the space of
continuous real-valued functions defined on an interval ½0, T�,
where T > 0, equipped with the supremum metric d defined by

d u, vð Þ≔ sup u tð Þ − v tð Þj j: t ∈ 0, T½ �f g for all u, v ∈ X:
ð56Þ

Suppose that λ, μ : ½0, T� ×ℝ⟶ ½0,∞Þ and f , g : ½0, T�
×ℝ⟶ℝ are continuous functions such that

(i) f and g satisfy the Lipschitz condition for the second
argument with constants α and β, respectively, that is,

f t, sð Þ − f t, s′
� ���� ��� ≤ α s − s′

�� ��and∣g t, sð Þ − g t, s′
� �

∣

≤ β∣s − s′∣ for all t ∈ 0, T½ � and for all s, s′ ∈ℝ,

ð57Þ

(ii) q≔ α maxt∈½0,T�
Ð T
0 λðt, sÞds + β maxt∈½0,T�

Ð T
0 μðt, sÞds

< 1:

Suppose that fhng is a sequence in X such that ∑∞
n=1αn

<∞ where αn ≔ dðhn, hn+1Þ for all n ≥ 1. If u1, u2 ∈ X and
for each n ≥ 1

un+2 tð Þ≔ hn tð Þ +
ðT
0
λ t, sð Þf s, un sð Þð Þds

+
ðT
0
μ t, sð Þg s, un+1 sð Þð Þds t ∈ 0, T½ �ð Þ,

ð58Þ

then un ∈ X for all n ≥ 3 and there exists an element û ∈ X such
that limn⟶∞dðun, ûÞ = 0 and û is a unique solution of the fol-
lowing Volterra type integral equation

u tð Þ = h tð Þ +
ðT
0
λ t, sð Þf s, u sð Þð Þds

+
ðT
0
μ t, sð Þg s, u sð Þð Þds t ∈ 0, T½ �ð Þ,

ð59Þ

where hðtÞ≔ limn⟶∞hnðtÞ.

Proof. Now, for each n ≥ 1, we define Fn : X × X⟶ X, by
for each u, v ∈ X,

Fn u, vð Þ tð Þ≔ hn tð Þ +
ðT
0
λ t, sð Þf s, u sð Þð Þds

+
ðT
0
μ t, sð Þg s, v sð Þð Þds t ∈ 0, T½ �ð Þ:

ð60Þ

To apply our Theorem 8, it is sufficient to prove that

(a) Fn ∈ GðX, d, qÞ for all n ≥ 1

(b) dðFnðu1, u2Þ, Fn+1ðu1, u2ÞÞ = αn for all n ≥ 1 and for
all u1, u2 ∈ X

We now prove the statements (a) and (b).

(a) Let n ≥ 1 and let u1, u2, u3 ∈ X. Then,

d Fn u1, u2ð Þ, Fn u2, u3ð Þð Þ = sup
t∈ 0,T½ �

∣Fn u1, u2ð Þ tð Þ − Fn u2, u3ð Þ tð Þ∣

≤ sup
t∈ 0,T½ �

ðT
0
λ t, sð Þ∣f s, u1 sð Þð Þ − f s, u2 sð Þð Þ∣ds

+ sup
t∈ 0,T½ �

ðT
0
μ t, sð Þ∣g s, u2 sð Þð Þ − g s, u3 sð Þð Þ∣ds

≤ α max
t∈ 0,T½ �

ðT
0
λ t, sð ÞdsÞ

� 	
d u1, u2ð Þ

+ β max
t∈ 0,T½ �

ðT
0
μ t, sð Þds

� 	
d u2, u3ð Þ

≤ q max d u1, u2ð Þ, d u2, u3ð Þf g:
ð61Þ

(b) Let n ≥ 1 and let u1, u2 ∈ X. Then,

d Fn u1, u2ð Þ, Fn+1 u1, u2ð Þð Þ = sup
t∈ 0,T½ �

∣Fn u1, u2ð Þ tð Þ − Fn+1 u1, u2ð Þ tð Þ∣

= sup
t∈ 0,T½ �

∣hn tð Þ − hn+1 tð Þ∣

= d hn, hn+1ð Þ
= αn:

ð62Þ

Note that

un+2 tð Þ = Fn un tð Þ, un+1 tð Þð Þ t ∈ 0, T½ �ð Þ: ð63Þ

It follows from our Theorem 8, where k = 2, there exists
an element û ∈ X such that

lim
n⟶∞

d un, ûð Þ = 0: ð64Þ

Moreover,

û = F û, ûð Þ ⟺û is a solution of 11ð Þð Þ, ð65Þ

where F : X × X⟶ X is defined by

F u, vð Þ tð Þ≔ h tð Þ +
ðT
0
λ t, sð Þf s, u sð Þð Þds

+
ðT
0
μ t, sð Þg s, v sð Þð Þds t ∈ 0, T½ �ð Þ,

ð66Þ

and hðtÞ = limn⟶∞hnðtÞ. Finally, to show that û is a
unique solution of the Volterra type integral Equation
(59), we show that dðFðu, uÞ, Fðv, vÞÞ < dðu, vÞ for all
u, v ∈ X. Let u, v ∈ X. Then,
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d F u, uð Þ, F v, vð Þð Þ = sup
t∈ 0,T½ �

∣F u, uð Þ tð Þ − F v, vð Þ tð Þ∣

≤ sup
t∈ 0,T½ �

ðT
0
λ t, sð Þ∣f s, u sð Þð Þ − f s, v sð Þð Þ∣ds

+ sup
t∈ 0,T½ �

ðT
0
μ t, sð Þ∣g s, u sð Þð Þ − g s, v sð Þð Þ∣ds

≤ α max
t∈ 0,T½ �

ðT
0
λ t, sð ÞdsÞ

� 	
d u, vð Þ

+ β max
t∈ 0,T½ �

ðT
0
μ t, sð Þds

� 	
d u, vð Þ

= qd u, vð Þ < d u, vð Þ:
ð67Þ

This completes the proof. ☐

4. Conclusion

We show that the fixed point problem of Prešić type (with
respect to several variables) can be regarded a fixed point
problem (of a single variable) by using a product space
approach. With an appropriate metric on the product space,
the Ćirić-Prešić operator can be regarded a mapping studied
by Kada et al. in the product space. In particular, we deduce
the fixed point result under a weaker assumption. We apply
our result for the convergence problems of recursive real
sequences and the Volterra type integral equations.
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In the present paper, we study amathematical model of an imperfect testing infectious disease model in the sense of theMittage-Leffler
kernel. The Banach contraction principle has been used for the existence and uniqueness of solutions of the suggested model.
Furthermore, a numerical method equipped with Lagrangian polynomial interpolation has been utilized for the numerical
outcomes. Diagramming and discussion are used to clarify the effects of related parameters in the fractional-order imperfect testing
infectious disease model.

1. Introduction

The aggregate of human microbiota is called human micro-
biome, including viruses, bacteria, protists, archaea, and
fungi. These microbiomes live in or on our body including
the skin, placenta, mammary glands, seminal fluid, ovarian
follicles, uterus, lung, oral mucosa, conjunctiva, saliva,
biliary, and gastrointestinal tract [1]. A number of infectious
maladies are caused by these mirobiome such as influenza,
malaria, dengue, Ebola, COVID-19, HIV/AIDS, rabies, syph-
ilis, yellow fever, hepatitis, Zika virus infection, and tubercu-
losis [2]. Yearly, 9.2 million people died due to infectious
diseases [3, 4]. Due to this life-threatening situation, health
departments spend more money to reduce the outbreak of
infectious maladies. Several techniques were applied to
minimize the exposure of infectious diseases, such as preven-
tion measures, screening, testing diagnostics, education, and
counseling. Among all of these techniques, testing diagnos-
tics is a very useful tool to identify the infected individuals
and susceptible. For the laboratory test, a sample is required
such as a stool, tissue, cerebrospinal fluid, genital area, mucus

from the nose, blood, sputum, urine, stool, and throat. There
are two main types after testing, germ-negative and germ-
positive. If the individual can identify as germ-positive then
a proper treatment begins for the disease. Sometimes, the test
results suffer due to test imperfections. These effects come
from sensitivity and specificity, which might be useful when
trying to mitigate an epidemic.

Mathematics plays an effective rule in modeling to under-
stand the dynamical behavior of complex phenomena in the
life sciences. By mathematical models, one can easily know
the basic properties of the complex system such as severity,
clinical features, structures, risk analysis, evaluated interven-
tions, and various transmission forms of viruses have been
studied along with different dimensions, see for more details,
[5–7]. Bernoulli [8] for the first time formulated a mathemat-
ical model for infectious diseases and analyzed the impact of
prevention smallpox vaccines and life tables. After that, num-
bers of models have been systemized for infectious maladies
such as control strategies for tuberculosis [9], sexually trans-
mitted infections [10], human immunodeficiency virus [11],
control of foot and mouth disease epidemic in the UK in
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2001 [12], Middle East respiratory syndrome corona virus
(MERS-CoV) [13], and severe acute respiratory syndrome
(SARS) [14].

Fractional calculus is a generalization of classical calcu-
lus. Fractional calculus has lately gained popularity due to
its remarkable properties, nonsingular, nonlocal, and mem-
ory and filter effects. Researchers of various disciplines are
applying the fractional-order operators to real-life phenom-
ena to study the behavior of the models theoretically and
numerically. Atangana [15] studied Markovian and non-
Markovian, Gaussian and non-Gaussian, and random and
nonrandom properties of the fractional derivative, providing
numerical examples. Bonyah et al. [16] formulated a human
African trypanosomiasis model consisting of an AB-
fractional operator and provide numerical solutions. Khan
et al. [17] provided an HIV-TB model including AB-
fractional derivative and analyzed the model for well-posed-
ness, stability analysis, and numerical solutions. Koca in [18]
studied the AB-fractional spread Ebola virus model for the
existence of solutions and illustrated the results numerically.
Khan et al. [19] considered the AB-fractional-order
HIV/AIDS model and applied the fixed point theorem for
the existence results and studied the stability analysis. Atan-
gana [20] analyzed the numerical approximations for frac-
tional differentiation based on the Riemann-Liouville
definition, from the power law kernel to the generalized
Mittag-Leffler law via the exponential decay law.

In this paper, we investigate the dynamical behavior of
the fractional-order ITI disease model. The integer-order
derivative of the model is replaced by fractal fractional oper-
ator in the sense of the Mittage-Leffler kernel. To study the
existence of solutions and numerical simulations for the
fractional-order ITI disease model. The paper is organized
as follows: in Section 2, the definition of fractal fractional
operators is shown. In Section 3, the model formulation is
discussed. In Section 4, existence and uniqueness of solutions
are shown. In Section 5, the numerical scheme is discussed.
In Section 6, the numerical discussion and data fitting is dis-
cussed. In Section 7, the conclusion is discussed.

2. Preliminaries

Here, we will discuss some definitions which are utilized in
the main proof of this study [21–24].

Definition 1 (see [22]). Let Ϝ ðtÞ be a continuous and fractal
differential in the open interval ða, bÞ with 0 < n − 1 < σ ≤ n;
then, the fractal fractional operator 0 < n − 1 < ϵ ≤ n in the
sense of Caputo with power law is characterized as

FFP

a
Dϵ,σ

t Ϝ tð Þ = 1
Γ n − ϵ½ �

ðt
a

dϜ zð Þ
dzσ

t − zð Þn−ϵ−1dz,

where
dϜ zð Þ
dzσ

= lim
t−z

Ϝ tð Þ − Ϝ zð Þ
tσ − zσ

:

ð1Þ

The generalized form is given as

FFP

a
Dϵ,σ

t Ϝ tð Þ = 1
Γ n − ϵ½ �

ðt
a

dθϜ zð Þ
dzσ

t − zð Þn−ϵ−1dz,

where
dθϜ zð Þ
dzσ

= lim
t−z

Ϝ θ tð Þ − Ϝ θ zð Þ
tσ − zσ

, where 0 < θ ≤ 1:

ð2Þ

Definition 2 (see [22]). Let Ϝ ðtÞ be a continuous and fractal
differential in the open interval ða, bÞ with 0 < σ ≤ 1; then,
the fractal fractional operator 0 < ϵ ≤ 1, in the sense of
Caputo with the exponential decay kernel, is characterized as

FFP

a
Dϵ,σ

t Ϝ tð Þ = ℘ ϵð Þ
1 − ϵ½ �

ðt
a

dϜ zð Þ
dzσ

exp −
ϵ

1 − ϵ
t − zð Þ

h i
dz: ð3Þ

The generalized form given as

FFP

a
Dϵ,σ,θ

t Ϝ tð Þ = ℘ ϵð Þ
1 − ϵ½ �

ðt
a

dθϜ zð Þ
dzσ

exp −
ϵ

1 − ϵ
t − zð Þ

h i
dz, 0 < θ ≤ 1,

ð4Þ

where ℘ðtÞ is the normalization function such that
℘ð0Þ = 1 = ℘ð1Þ.

Definition 3 (see [22, 23]). Let Ϝ ðtÞ be a continuous and frac-
tal differential in the open interval ða, bÞ with 0 < σ ≤ 1; then,
the fractal fractional operator 0 < ϵ ≤ 1, in the sense of
Caputo with the generalized Mittage-Leffler kernel, is charac-
terized as

FFM

a
Dϵ,σ

t Ϝ tð Þ = AB ϵð Þ
1 − ϵ½ �

ðt
a

dϜ zð Þ
dzσ

Eϵ −
ϵ

1 − ϵ
t − zð Þϵ

h i
dz,

AB ϵð Þ = 1 − ϵ + ϵ

Γ ϵð Þ :

ð5Þ

The generalized form is given as

FFM

a
Dϵ,σ,θ

t Ϝ tð Þ = AB ϵð Þ
1 − ϵ½ �

ðt
a

dθϜ zð Þ
dzσ

Eϵ −
ϵ

1 − ϵ
t − zð Þϵ

h i
dz, 0 < θ ≤ 1,

ð6Þ

where ℘ðtÞ is normalization function such that
℘ð0Þ = 1 = ℘ð1Þ.

Definition 4 (see [21, 22]). Assume that Ϝ ðtÞ is a continuous
and fractal differential in the open interval ða, bÞ with then
the fractal fractional integral 0 < ϵ ≤ 1, in the sense of the
power law kernel, is characterized as

FFP

a
Iϵ,σ0,t Ϝ tð Þ = 1

Γ ϵð Þ
ðt
0
t − zð Þϵ−1z1−σϜ zð Þdz: ð7Þ

Definition 5 (see [21, 22]). Let Ϝ ðtÞ be a continuous and
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fractal differential in the open interval ða, bÞ with then the
fractal fractional integral 0 < ϵ ≤ 1, in the sense of the expo-
nential kernel, is characterized as

FFE
a Iϵ,σ0,t Ϝ tð Þ = σ 1 − ϵð Þtσ−1Ϝ tð Þ

℘ ϵð Þ + ϵσ

℘ ϵð Þ
ðt
0
zϵ−1Ϝ zð Þdz: ð8Þ

Definition 6 (see [21, 22]). Let Ϝ ðtÞ be a continuous and frac-
tal differential in the open interval ða, bÞ with then the fractal
fractional integral 0 < ϵ ≤ 1, in the sense of the Mittage-
Leffler kernel, is characterized as

FFM
a Iϵ,σ0,t Ϝ tð Þ = σ 1 − ϵð Þtσ−1Ϝ tð Þ

AB ϵð Þ + ϵσ

AB ϵð Þ
ðt
0
t − zð Þϵ−1zϵ−1Ϝ zð Þdz:

ð9Þ

3. Model Formulation

In this section, we will study the dynamics of the ordinary
differential equations of the infectious disease model formu-
lated in the reference therein [25–27], which is leveraged
from the SIR system. This model has two main components,
SmðtÞ, a stand for rate of suspectable individual tested, ImðtÞ,
infected cases which is tested positive and started treatment.
While SðtÞ denotes susceptible, IðtÞ denotes infected and
RðtÞ denotes the class of recovered individuals. The fol-
lowing SSIIR model:

_S tð Þ = ηSm tð Þ + µ − θS tð Þ − βS tð Þ I tð Þ + Im tð Þð Þ,
_Sm tð Þ = θS tð Þ − η + µð ÞSm tð Þ − βmSm tð Þ I tð Þ + Im tð Þð Þ,
_I tð Þ = βS tð Þ I tð Þ + Im tð Þð Þ − γ + α + µð ÞI tð Þ + βmSm tð Þ I tð Þ + Im tð Þð Þ,

_Im tð Þ = αI tð Þ − µIm tð Þ − γmIm tð Þ,
_R tð Þ = γI tð Þ − µR tð Þ + γmIm tð Þ,

ð10Þ

where β denotes the rate of infected susceptible indi-
viduals, θ = κð1 − λÞ denotes the rate of susceptible indi-
viduals that are tested and deemed incorrectly, and βm
denotes the rate of effectively infected individuals. For this
model, βm < β is assumed, μ denotes total population, κ
denotes the rate of converging from susceptible to θ sus-
ceptible-infected-deemed, ψ is the sensitivity, α = κψ rate
of treatment, γ rate of recovered individuals, and γm
denotes the rate of recovered infected-undertreatment that
γ < γm assumed in the model.

The predominant of this paper is to study the existence of
results and numerical analysis of fractal fractional-order ITI
disease model. In the upcoming section, we are going to pro-
duce existence of solution for the model (10) and later on the
uniqueness of solution is our interest. For these, we need to
define the following Banach’s space. Consider Y =I ×ℝ5

⟶ℝ, where I = ½0, τ�, for 0 < t < τ <∞, with a norm
defined by kðS, Sm, I, Im, RÞk =maxt∈I fjSj + jSmj + jIj + jImj
+∣R ∣ g.

Then, clearly ðY , kkÞ is a Banach space.

4. Existence and Uniqueness of Solutions

In this section, the fixed point theorem is used to investigate
the existence and uniqueness of the results for the fractional-
order ITI disease model. The integer operator of the model
(10) is replaced by a fractal fractional operator

ABRD
ϵ
0,t S tð Þð Þ = ηSm tð Þ + μ − θS tð Þ − βS tð Þ I tð Þ + Im tð Þð Þ,

ABRD
ϵ
0,t Sm tð Þð Þ = θS tð Þ − η + μð ÞSm tð Þ − βmSm tð Þ I tð Þ + Im tð Þð Þ,

ABRD
ϵ
0,t I tð Þð Þ = βS tð Þ I tð Þ + Im tð Þð Þ − γ + α + μð ÞI tð Þ

+ βmSm tð Þ I tð Þ + Im tð Þð Þ,
ABRD

ϵ
0,t Im tð Þð Þ = αI tð Þ − μIm tð Þ − γmIm tð Þ,

ABRD
ϵ
0,t R tð Þð Þ = γI tð Þ − μR tð Þ + γmIm tð Þ: ð11Þ

with initial boundary value conditions

S 0ð Þ = S0, Sm 0ð Þ = Sm0, I 0ð Þ = I0, Im 0ð Þ = Im0, R 0ð Þ = R0:
ð12Þ

For simplicity, we write the system:

Λ1 z, S, Sm, I, Im, Rð Þ = ηSm tð Þ + µ − θS tð Þ − βS tð Þ I tð Þ + Im tð Þð Þ,
Λ2 z, S, Sm, I, Im, Rð Þ = θS tð Þ − η + µð ÞSm tð Þ

− βmSm tð Þ I tð Þ + Im tð Þð Þ,
Λ3 z, S, Sm, I, Im, Rð Þ = βS tð Þ I tð Þ + Im tð Þð Þ − γ + α + µð ÞI tð Þ

+ βmSm tð Þ I tð Þ + Im tð Þð Þ,
Λ4 z, S, Sm, I, Im, Rð Þ = αI tð Þ − µIm tð Þ − γmIm tð Þ,
Λ5 z, S, Sm, I, Im, Rð Þ = γI tð Þ − µR tð Þ + γmIm tð Þ: ð13Þ

Furthermore, the above system (11) can be written as

ABRD0,t Φ tð Þð Þ =Ψ t,Φ tð Þð Þ, ð14Þ

where ΦðtÞ and Ψ stand for

Φ tð Þ =

S tð Þ
Sm tð Þ
I tð Þ
Im tð Þ
R tð Þ

8>>>>>>>><
>>>>>>>>:

and ψ t,Φ tð Þf g =

Λ1 t, S, Sm, I, Im, Rð Þ,
Λ2 t, S, Sm, I, Im, Rð Þ,
Λ3 t, S, Sm, I, Im, Rð Þ,
Λ4 t, S, Sm, I, Im, Rð Þ,
Λ5 t, S, Sm, I, Im, Rð Þ:

8>>>>>>>><
>>>>>>>>:

ð15Þ

By applying Definition (3), to (14), we get the following
form:

AB ϵð Þ
1 − ϵ

d
dt

ðt
0
Ψ ω,Φ ωð Þð ÞEϵ −

ϵ

1 − ϵ
t − zð Þϵ

h i
dz = ztz−1Ψ t,Φ tð Þð Þ:

ð16Þ

Now, by employing Definition (6), with (16), we get the
following form:
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Ψ tð Þ =Ψ 0ð Þ + 1 − ϵ

AB ϵð Þ zt
z−1Ψ t,Φ tð Þð Þ

+ zϵ
AB ϵð ÞΓ ϵð Þ

ðt
0
t − zð Þϵ−1Ψ ω,Φ ωð Þð Þωz−1dz:

ð17Þ

Let us consider here:

Bq
a =Hn tnð Þ × C0 Φ0ð Þ, ð18Þ

where Hn = ½tn−a, tn+a� and C0ðΦ0Þ = ½t0 − b, t0 + b�. Now,
assume sup t ∈Bq

akΨk =P .
Let us define a norm:

Ωk k∞ = sup
t∈Bq

a

Ω tð Þj j: ð19Þ

Now, consider operator Ξ : G ½HnðtnÞ, CbðtnÞ�⟶
G ½HnðbÞ, CbðtnÞ� such that

ΞΦ tð Þ =Φ0 +
1 − ϵ

AB ϵð Þ zt
z−1Ψ t,Φ tð Þð Þ

+ zϵ
AB ϵð ÞΓ ϵð Þ

ðt
0
t − zð Þϵ−1Ψ ω,Φ ωð Þð Þωz−1dz:

ð20Þ

First, we will show kΞΦðtÞ −Φ0k < q. For this,
we have

ΞΦ tð Þ −Φ0k k ≤ 1 − ϵ

AB ϵð Þ zt
z−1 Ψ t,Φ tð Þð Þk k

+ zϵ
AB ϵð ÞΓ ϵð Þ

ðt
0
t − zð Þϵ−1 Ψ ω,Φ ωð Þð Þk kωz−1dz,

≤
1 − ϵ

AB ϵð Þ zt
z−1P + zϵ

AB ϵð ÞΓ ϵð Þ
ðt
0
t − zð Þϵ−1ωz−1dz:

ð21Þ

Consider ω = tv and putting in Equation (21),
then we get the following:

ΞΦ tð Þ −Φ0k k ≤ 1 − ϵ

AB ϵð Þ zt
z−1P + zϵP

AB ϵð ÞΓ ϵð Þω
z+ϵ−uQ z, ϵð Þ,

ð22Þ

which yields

ΞΦ tð Þ −Φ0k k ≤ q⟶P < qQ z, ϵð ÞAB ϵð ÞΓ ϵð Þ
1 − ϵð ÞΓ αð Þztz−1 + 1 − ϵztz+ϵ−u

:

ð23Þ

Now, consider for any Φ1,Φ2 ∈ G ½HnðtnÞ, CbðtnÞ�,
then, we have

ΞΦ1 − ΞΦ2k k ≤ 1 − ϵ

AB ϵð Þ zt
z−1 Ψ t,Φ1 tð Þð Þ −Ψ t,Φ2 tð Þð Þk k

+ zϵ
AB ϵð ÞΓ ϵð Þ

ðt
0
t − zð Þϵ−1 Ψ t,Φ1 tð Þð Þk

−Ψ t,Φ2 tð Þð Þkωz−1dz:

ð24Þ

As Ξ is a contraction, then we have

ΞΦ1 − ΞΦ2k k ≤ 1 − ϵ

AB ϵð Þ zt
z−1X Φ1 −Φ2k k∞

+ zϵX
AB ϵð ÞΓ ϵð Þ

ðt
0
t − zð Þϵ−1 Φ1 −Φ2k k∞ωz−1dz:

≤
1 − ϵ

AB ϵð Þ zt
z−1X Φ1 −Φ2k k∞

+ zϵX
AB ϵð ÞΓ ϵð Þ Φ1 −Φ2k k∞tϵ+z−3Q z, ϵð Þ,

ΞΦ1 − ΞΦ2k k ≤ 1 − ϵ

AB ϵð Þ zt
z−1X + zϵX

AB ϵð ÞΓ ϵð Þ t
ϵ+z−3Q z, ϵð Þ

� �
Φ1 −Φ2k k∞

ð25Þ

Therefore, Ξ is a contraction if

ΞΦ1 − ΞΦ2k k∞ ≤ Φ1 −Φ2k k: ð26Þ

Then, we have

X < 1
1 − ϵð Þ/ AB ϵð Þð Þð Þztz−1 + zϵ/AB ϵð ÞΓ ϵð Þð Þtϵ+z−3Q z, ϵð Þ ,

ð27Þ

such that

P < 1
1 − ϵð Þ/ AB ϵð Þð Þð Þztz−1 + zϵ/AB ϵð ÞΓ ϵð Þð Þtϵ+z−3Q z, ϵð Þ :

ð28Þ

Hence, by necessary condition, the proposed fractional-
order ITI disease model (11) has a unique solution.

5. Numerical Scheme

We consider the ITI disease model (10), in the sense of the
fractal fractional Mittag-Leffler Kernel

ABRDϵ,σ
0,t S tð Þð Þ = ηSm tð Þ + μ − θS tð Þ − βS tð Þ I tð Þ + Im tð Þð Þ,

ð29Þ
ABRDϵ,σ

0,t Sm tð Þð Þ = θS tð Þ + η + μð ÞSm tð Þ − βmSm tð Þ I tð Þ + Im tð Þð Þ,
ð30Þ

ABRDϵ,σ
0,t I tð Þð Þ = βS tð Þ I tð Þ + Im tð Þð Þ − γ + α + μð ÞI tð Þ

+ βmSm tð Þ I tð Þ + Im tð Þð Þ,
ð31Þ

ABRDϵ,σ
0,t Im tð Þð Þ = αI tð Þ − μIm tð Þ − γmIm tð Þ, ð32Þ
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ABRDϵ,σ
0,t R tð Þð Þ = γI tð Þ − μR tð Þ − γmIm tð Þ: ð33Þ

For simplicity,

Λ1 z, S, Sm, I, Im, Rð Þ = ηSm tð Þ + μ − θS tð Þ
− βS tð Þ I tð Þ + Im tð Þð Þ,

Λ2 z, S, Sm, I, Im, Rð Þ = θS tð Þ − η + μð ÞSm tð Þ
− βmSm tð Þ I tð Þ + Im tð Þð Þ,

Λ3 z, S, Sm, I, Im, Rð Þ = βS tð Þ I tð Þ + Im tð Þð Þ − γ + α + μð ÞI tð Þ
+ βmSm tð Þ I tð Þ + Im tð Þð Þ,

Λ4 z, S, Sm, I, Im, Rð Þ = αI tð Þ − μIm tð Þ − γmIm tð Þ,
Λ5 z, S, Sm, I, Im, Rð Þ = γI tð Þ − μR tð Þ − γmIm tð Þ: ð34Þ

By applying the Atangan-Baleanu integral operator to
Equation (29), which deduced to the following form:

S tð Þ = S 0ð Þ + σtσ−1 1 − εð ÞΛ1 t, S, Sm, I, Im, Rð Þ
AB εð Þ

+ εσ

AB εð ÞΓ εð Þ
ðt
0
t − zð Þε−1Λ1 t, S, Sm, I, Im, Rð Þzσ−1dz,

ð35Þ

Sm tð Þ = Sm 0ð Þ + σtσ−1 1 − εð ÞΛ1 z, S, Sm, I, Im, Rð Þ
AB εð Þ

+ εσ

AB εð ÞΓ εð Þ
ðt
0
t − zð Þε−1Λ2 z, S, Sm, I, Im, Rð Þzσ−1dz,

ð36Þ

I tð Þ = I 0ð Þ + σtσ−1 1 − εð ÞΛ3 t, S, Sm, I, Im, Rð Þ
AB εð Þ

+ εσ

AB εð ÞΓ εð Þ
ðt
0
t − zð Þε−1Λ3 z, S, Sm, I, Im, Rð Þzσ−1dz,

ð37Þ

Im tð Þ = Im 0ð Þ σt
σ−1 1 − εð ÞΛ3 t, S, Sm, I, Im, Rð Þ

AB εð Þ
+ εσ

AB εð ÞΓ εð Þ
ðt
0
t − zð Þε−1Λ4 z, S, Sm, I, Im, Rð Þzσ−1dz,

ð38Þ

R tð Þ = R 0ð Þ + σtσ−1 1 − εð ÞΛ5 t, S, Sm, I, Im, Rð Þ
AB εð Þ

+ εσ

AB εð ÞΓ εð Þ
ðt
0
t − zð Þε−1Λ5 z, S, Sm, I, Im, Rð Þzσ−1dz:

ð39Þ
For the numerical scheme fitting t = tn+1 in Equation

(35), which deduced to the below form:

Sn+1 tð Þ = S0 + σtσ−1 1 − εð ÞΛ1 tn, Sn, Snm, In, Inm, Rnð Þ
AB εð Þ

+ εσ

AB εð ÞΓ εð Þ
ðtn+1
0

tn+1 − zð Þε−1Λ1 t, S, Sm, I, Im, Rð Þzσ−1dz,

ð40Þ

Sn+1m tð Þ = S0m + σtσ−1n 1 − εð ÞΛ2 tn, Sn, Snm, In, Inm, Rnð Þ
AB εð Þ

+ εσ

AB εð ÞΓ εð Þ
ðtn+1
0

tn+1 − zð Þε−1Λ2 z, S, Sm, I, Im, Rð Þzσ−1dz,

ð41Þ

In+1 tð Þ = I0 + σtσ−1n 1 − εð ÞΛ3 tn, Sn, Snm, In, Inm, Rnð Þ
AB εð Þ

+ εσ

AB εð ÞΓ εð Þ
ðtn+1
0

tn+1 − zð Þε−1Λ3 z, S, Sm, I, Im, Rð Þzσ−1dz,

ð42Þ

In+1m tð Þ = I0m + σtσ−1n 1 − εð ÞΛ4 tn, Sn, Snm, In, Inm, Rnð Þ
AB εð Þ

+ εσ

AB εð ÞΓ εð Þ
ðtn+1
0

tn+1 − zð Þε−1Λ4 z, S, Sm, I, Im, Rð Þzσ−1dz,

ð43Þ

Rn+1 tð Þ =R0 + σtσ−1n 1 − εð ÞΛ5 tn, Sn, Snm, In, Inm, Rnð Þ
AB εð Þ

+ εσ

AB εð ÞΓ εð Þ
ðtn+1
0

tn+1 − zð Þε−1Λ5 z, S, Sm, I, Im, Rð Þzσ−1dz:

ð44Þ
By approximating the integral in the above system (40),

then we get

Sn+1 tð Þ = S0 + σtσ−1n 1 − εð ÞΛ1 tn, Sn, Snm, In, Inm, Rnð Þ
AB εð Þ

+ εσ

AB εð ÞΓ εð Þ〠
q

r=0

ðtr+1
tr

tn+1 − zð Þε−1Λ1 t, S, Sm, I, Im, Rð Þzσ−1dz,

Sn+1m tð Þ = S0m + σtσ−1n 1 − εð ÞΛ2 tn, Sn, Snm, In, Inm, Rnð Þ
AB εð Þ

+ εσ

AB εð ÞΓ εð Þ〠
q

r=0

ðtr+1
tr

tn+1 − zð Þε−1Λ2 z, S, Sm, I, Im, Rð Þzσ−1dz,

In+1 tð Þ = I0 + σtσ−1n 1 − εð ÞΛ3 tn, Sn, Snm, In, Inm, Rnð Þ
AB εð Þ

In+1m tð Þ = I0m + σtσ−1n 1 − εð ÞΛ4 tn, Sn, Snm, In, Inm, Rnð Þ
AB εð Þ

+ εσ

AB εð ÞΓ εð Þ〠
q

r=0

ðtr+1
tr

tn+1 − zð Þε−1Λ4 z, S, Sm, I, Im,Rð Þzσ−1dz,

Rn+1 tð Þ = R0 + σtσ−1n 1 − εð ÞΛ5 tn, Sn, Snm, In, Inm, Rnð Þ
AB εð Þ

+ εσ

AB εð ÞΓ εð Þ〠
q

r=0

ðtr+1
tr

tn+1 − zð Þε−1Λ5 z, S, Sm, I, Im, Rð Þzσ−1dz:

ð45Þ
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Figure 1: Numerical solution of (10) for κ = 0:1 and different values of ϵ fractional order.
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Figure 2: Numerical solution of (10) for κ = 0:3 and different values of ϵ fractional order.
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Figure 3: Numerical solution of system (10) for κ = 0:5 and different values of ϵ fractional order.
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Now, by applying the Lagrangian interpolation polynomial
piecewise which yields the following form:

 Sn+1 tð Þ = S0

  + σtσ�1
n 1� ϵð ÞΛ1 tn, Sn, Snm, In, Inm, Rnð Þ

AB ϵð Þ

  + σ ▲tð Þϵ
AB ϵð ÞΓ ϵ + 2ð Þ

  · 〠
q

r=0
tσ�1
r Λ1 tr , Sr , Srm, Ir , Irm, Rrð Þ�

  × q + 1� rð Þϵ q� r + 2 + ϵð Þ � q� rð Þϵ p� r + 2 + 2ϵð Þð Þ

 � tσ�1
r�1Λ1 tr , Sr�1, Sr�1

m , Ir�1, Ir�1
m , Rr�1� �

 × q� r + 1ð Þϵ+1 � p� rð Þϵ p� r + 1 + ϵð Þ� ��
,

 Sn+1m tð Þ = S0m

  + σtσ�1
n 1� ϵð ÞΛ2 tn, Sn, Snm, In, Inm, Rnð Þ

AB ϵð Þ

  + σ ▲tð Þϵ
AB ϵð ÞΓ ϵ + 2ð Þ

  · 〠
q

r=0
tσ�1
r Λ2 tr , Sr , Srm, Ir , Irm, Rrð Þ�

  × q + 1� rð Þϵ q� r + 2 + ϵð Þ � q� rð Þϵ p� r + 2 + 2ϵð Þð Þ

 � tσ�1
r�1Λ2 tr , Sr�1, Sr�1

m , Ir�1, Ir�1
m , Rr�1� �

 × q� r + 1ð Þϵ+1 � p� rð Þϵ p� r + 1 + ϵð Þ� ��
,

 In+1 tð Þ = I0

  + σtσ�1
n 1� ϵð ÞΛ3 tn, Sn, Snm, In, Inm, Rnð Þ

AB ϵð Þ

  + σ ▲tð Þϵ
AB ϵð ÞΓ ϵ + 2ð Þ

  · 〠
q

r=0
tσ�1
r Λ3 tr , Sr , Srm, Ir , Irm, Rrð Þ�

  × q + 1� rð Þϵ q� r + 2 + ϵð Þ � q� rð Þϵ p� r + 2 + 2ϵð Þð Þ

 � tσ�1
r�1Λ2 tr , Sr�1, Sr�1

m , Ir�1, Ir�1
m , Rr�1� �

 × q� r + 1ð Þϵ+1 � p� rð Þϵ p� r + 1 + ϵð Þ� ��
,

 In+1m tð Þ = I0m

  + σtσ�1
n 1� ϵð ÞΛ4 tn, Sn, Snm, In, Inm, Rnð Þ

AB ϵð Þ

  + σ ▲tð Þϵ
AB ϵð ÞΓ ϵ + 2ð Þ

  · 〠
q

r=0
tσ�1
r Λ4 tr , Sr , Srm, Ir , Irm, Rrð Þ�

  × q + 1� rð Þϵ q� r + 2 + ϵð Þ � q� rð Þϵ p� r + 2 + 2ϵð Þð Þ

 � tσ�1
r�1Λ4 tr , Sr�1, Sr�1

m , Ir�1, Ir�1
m , Rr�1� �

 × q� r + 1ð Þϵ+1 � p� rð Þϵ p� r + 1 + ϵð Þ� ��
,

 Rn+1 tð Þ = R0

  + σtσ�1 1� ϵð ÞΛ5 tn, Sn, Snm, In, Inm, Rnð Þ
AB ϵð Þ

  + σ ▲tð Þϵ
AB ϵð ÞΓ ϵ + 2ð Þ

  · 〠
q

r=0
tσ�1
r Λ5 tr , Sr , Srm, Ir , Irm, Rrð Þ�

  × q + 1� rð Þϵ q� r + 2 + ϵð Þ � q� rð Þϵ p� r + 2 + 2ϵð Þð Þ

 � tσ�1
r�1Λ5 tr , Sr�1, Sr�1

m , Ir�1, Ir�1
m , Rr�1� �

 × q� r + 1ð Þϵ+1 � p� rð Þϵ p� r + 1 + ϵð Þ� ��
: ð46Þ

6. Discussion and Numerical Results

A numerical scheme utilized to obtain the approximate solu-
tions for the fractal fractional-order ITI disease model. Dif-
ferent scenarios have been discussed for the fractal
fractional-order ITI disease model by choosing different
parametric values and testing rates for the model. We
observed that as the testing rate κ increasing; then, the inci-
dence decreased effectively. We apply the aforementioned
iterative scheme for the numerical analysis to demonstrate
graphically the fractal fractional ITI disease model. To exam-
ine the dynamical behavior of the model, we choose suitable
constant values for the parameters used in the model.

Figure 1 shows the effect of testing rate κ increasing and
different order values of fractal fractional operator. By choos-
ing the parametric values involved in the fractional-order ITI
disease model such that κ = 0:1, β = 0:15, βm = 0:1, γ = 0:1,
γm = 0:15, μ = 0:003, and η = 0:1 and assuming initial condi-
tions for S, Sm,I, Im and R. (c) and (d) show the infected class
decreasing as the κ value increases.

Figure 2 shows the effect of testing rate κ increasing and
different order values of fractal fractional operator. By choos-
ing the parametric values involved in the fractional order ITI
disease model such that κ = 0:3, β = 0:15, βm = 0:1, γ = 0:1,
γm = 0:15, μ = 0:003, and η = 0:1 and assuming initial condi-
tions for S, Sm, I, Im, and R. (c) and (d) show the infected
class decreasing as the κ value increasing.

Figure 3 shows the effect of testing rate κ increasing and
different order values of fractal fractional operator. By
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choosing the parametric values involved in the fractional
order ITI disease model such that κ = 0:5, β=0.15, βm = 0:1,
γ = 0:1, γm = 0:15, μ = 0:003, and η = 0:1 and assuming initial
conditions for S, Sm, I, Im, and R. (c) and (d) shows the
infected class decreasing as the κ value increases.

7. Conclusion

In this article, we study the theoretical and numerical aspects
of the fractal fractional ITI disease model in the sense of the
Mittag-leffler kernel. The existence of a solution is derived
with the help of a fixed point theorem for the proposed
model. Different scenarios have been investigated for fractal
fractional-order ITI disease models by choosing different
parametric values and testing rates for the model. We
observed that as different fractional orders for and testing
rate κ increase, then the infected class decreased effectively.
The numerical approximate solutions achieved by Lagrang-
ian polynomial piecewise interpolation iterative method.
Furthermore, one can study the stability analysis fractal
fractional-order ITI disease model by using various types of
approaches.
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The goal of this study is to propose a new interpolative contraction mapping by using an interpolative approach in the setting of
complete metric spaces. We present some fixed point theorems for interpolative contraction operators using w-admissible maps
which satisfy Suzuki type mappings. In addition, some results are given. These results generalize several new results present in
the literature. Moreover, examples are provided to show the suitability of our given results.

1. Introduction

In 1922, Banach [1] proved his famous remarkable fixed-
point theorem; the result is known as the Banach contraction
principle, which states that “Let ðK , dÞ be a complete metric
space and S : K ⟶K be a contraction, then S has a unique
fixed point.” The Banach contraction principle is one of the
essential and most valuable theorems of analysis and is
accepted as the main results of metric fixed-point theory. In
the last century, the fixed point and its applications have been
the subject of research by many authors in the literature,
since it provides useful tools to solve many complex prob-
lems that have applications in different sciences like com-
puter science, engineering, data science, physics, economics,
game theory, and biosciences [2–7]. Due to several applica-
tions of “fixed point theory,” researchers were motivated to
further generalize it in different directions, by generalizing
the contractive conditions underlying the space concept of
completeness.

The background literature on the famous Banach con-
traction principle has been extended in various comprehen-
sive directions by many researchers. One of the exciting
generalizations was given by Kannan [8], which characterize
the completeness of underlying metric spaces. Kannan intro-
duced the following theorem.

Theorem 1. [8] Let ðK , dÞ be a complete metric space. A map-
ping S : K ⟶K is said to be a Kannan contraction if there
exists λ ∈ ½0, 1/2Þ such that

d Sv, Stð Þ ≤ λ d v, Svð Þ + d t, Stð Þð Þ, ð1Þ

for all v, t ∈K \ FixðSÞ. Then, S posses a unique fixed point.

The Kannan theorem has been generalized in different
aspects by many authors; one of the crucial generalizations
was given by Karapinar in [9]. Karapinar [9] introduced the
notion of an interpolative Kannan contraction mapping and
proved the following:

A mapping S : K ⟶K on ðK , dÞ a complete metric
space such that

d Sv, Stð Þ ≤ κ d v, Svð Þ½ �α · d t, Stð Þ½ �1−α, ð2Þ

where κ ∈ ½0, 1Þ and α ∈ ð0, 1Þ, for each v, t ∈K \ FixðSÞ.
Then, S has a unique fixed point inK . Subsequently, Karapi-
nar et al. [10] introduced the following notion of interpola-
tive Ciric-Reich-Rus contractions.

Theorem 2 (see [10]). Let ðK , pÞ be a partial metric space.
The mapping S : K ⟶K is called an interpolative Ciric-
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Reich-Rus contraction if there exist λ ∈ ½0, 1Þ and positive reals
β, α > 0 , with β + α < 1 , such that

p Sv, Stð Þ ≤ λ p v, tð Þ½ �β · p v, Svð Þ½ �α · p t, Stð Þ½ �1−α−β
� �

, ð3Þ

for each v, t ∈K \ FixðSÞ. Then, the mapping S has a fixed
point in K .

Afterward, this concept has been extended in different
aspects, for example, [11–15].

Let Ψ be the set of all nondecreasing self-mappings ψ on
½0,∞Þ such that ∑∞

r=1ψ
rðzÞ <∞ for every z > 0. Notice that

for ψ ∈Ψ, we have ψð0Þ = 0 and ψðzÞ < z for all z > 0 (see
[16, 17]).

The concept of w-orbital admissible mappings was intro-
duced by Popescu as a clarification of the concept of α
-admissible mappings of Samet et al. [18].

Definition 3 (see [19]). Let S be a self-map defined on K

and w : K ×K ⟶ ½0,∞Þ be a function. S is said to be
an w -orbital admissible if for all v ∈K , we have

w v, Svð Þ ≥ 1⇒w Sv, S2v
� �

≥ 1: ð4Þ

In our appointed theorems, if the continuity of the
involved contractive mappings is removed, to handle this
defect, it is necessary that ðK , dÞ be w-regular.

ðRÞA space ðK , dÞ is defined as w-regular, if fvrg is a
sequence in K such that wðvr , vr+1Þ ≥ 1 for each r and
vr ⟶ ω ∈K as r⟶∞, then wðvr , ωÞ ≥ 1 for all r.

Some curious results in this sense are found in the works
in [20–24].

Another most interesting Banach contraction principle
generalization was given by Suzuki [25, 26]. He intro-
duced a weaker notion of contraction and discussed the
existence of some new fixed point theorems. Besides the
famous theorem, Suzuki generalized also the results of
Nemytzki [27] and Edelstein [28] for compact metric
spaces. One of the recently popular topics in fixed point
theory is addressing the existence of fixed points of
Suzuki type mappings. As with many generalizations of
the famous Banach theorems, Suzuki type generalization
can be said to have many applications, such as in com-
puter science [29], game theory [30], and biosciences
[31] and in other areas of mathematical sciences such
as in dynamic programming, integral equations, data
dependence, and homotopy [32, 33]. Subsequently,
Popescu [34] has modified the nonexpansiveness situation
with the weaker C-condition presented by Suzuki.
Accordingly, the existence of fixed points of maps satisfy-
ing the C-condition has been extensively studied (see
[35–38]). Karapınar et al. [39] introduced the definition
of a nonexpansive mapping satisfying the C-condition:

Definition 4. A mapping S on a metric space ðK , dÞ satisfies
the C -condition if

1
2 d v, Svð Þ ≤ d v, tð Þ⇒ d Sv, Stð Þ ≤ d v, tð Þ, ð5Þ

for each v, t ∈K :

2. Main Results

We start the section with the following essential definition:

Definition 5. Let ðK , dÞ be a metric space. A mapping S : K
⟶K is called an w - ψ -interpolative Kannan contraction
of Suzuki type if there exist ψ ∈Ψ, w : K ×K ⟶ ½0,∞Þ ,
and a real number β ∈ ½0, 1Þ , such that

1
2 d v, Svð Þ ≤ d v, tð Þ⇒w v, tð Þd Sv, Stð Þ ≤ ψ d v, Svð Þ½ �β · d t, Stð Þ½ �1−β

� �
,

ð6Þ

for each v, t ∈K \ FixðSÞ.

Theorem 6. Let ðK , dÞ be a complete metric space and
S : K ⟶K be an w - ψ -interpolative Kannan contrac-
tion of the Suzuki type. Suppose that S is an w -orbital
admissible mapping and wðv0, Sv0Þ ≥ 1 for some v0 ∈K .
Then, S has a fixed point in K provided that at least one of
the following conditions holds:

(a) ðK , dÞ is w-regular
(b) S is continuous

(c) S2 is continuous and wðv, SvÞ ≥ 1 where v ∈ FixðS2Þ

Proof. Let v0 ∈K such that wðv0, Sv0Þ ≥ 1 and fvrg be the
sequence constructed by Srðv0Þ = vr for each positive integer
r:Assuming that for some r0 ∈ℕ, vr0 = vr0+1 , we get vr0 = Svr0 ,
so vr0 is a fixed point of S: Then, vr ≠ vr+1 for each positive
integer r: As S is w-orbital admissible, wðv0, Sv0Þ =wðv0,
v1Þ ≥ 1 implies that wðv1, Sv1Þ =wðv1, v2Þ ≥ 1. Similarly,
continuing this process, we have

w vr , vr+1ð Þ ≥ 1: ð7Þ

Thereupon, choosing v = vr−1 and t = Svr−1 in (6), we
get

1
2 d vr−1, Svr−1ð Þ = 1

2 d vr−1, vrð Þ ≤ d vr−1, vrð Þ
⇒ d vr , vr+1ð Þ ≤w vr−1, vrð Þd Svr−1, Svrð Þ
≤ ψ d vr−1, Svr−1ð Þ½ �β · d vr , Svrð Þ½ �1−β
� �

= ψ d vr−1, vrð Þ½ �β · d vr , vr+1ð Þ½ �1−β
� �
< d vr−1, vrð Þ½ �β · d vr , vr+1ð Þ½ �1−β,

ð8Þ
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whence it follows that

d vr , vr+1ð Þ½ �β < d vr−1, vrð Þ½ �β, ð9Þ

or equivalent

d vr , vr+1ð Þ < d vr−1, vrð Þ: ð10Þ

Thus, on the one hand, it follows that the sequence
fdðvr−1, vrÞg is a nonincreasing sequence with positive
terms, so there exists l ≥ 0 such that limr⟶∞dðvr−1, vrÞ = l.
On the other hand, combining (8) and (10) and keeping in
mind that the function ψ is nondecreasing, we obtain

d vr , vr+1ð Þ ≤ ψ d vr−1, vrð Þð Þ ≤ ψ2 d vr−2, vr−1ð Þð Þ ≤⋯≤ ψr d v0, v1ð Þð Þ:
ð11Þ

Now, applying the triangle inequality and using (11), for
all j ≥ 1, we get

d vr , vr+j
� �

≤ d vr , vr+1ð Þ + d vr+1, vr+2ð Þ+⋯+d vr+j−1, vr+j
� �

≤ ψr d v0, v1ð Þð + ψr+1 d v0, v1ð Þð +⋯+ψr+j−1

� d v0, v1ð Þð = 〠
r+j−1

m=r
ψm d v0, v1ð Þð = Pr+j−1 − Pr−1,

ð12Þ

where Pk =∑k
m=0ψ

mðdðv0, v1ÞÞ: But, ψ ∈Ψ, the series ∑∞
m=0

ψmðdðv0, v1ÞÞ is convergent, so there exists a positive real
number P such that limk⟶∞Pk = P. Consequently, letting r,
j⟶∞ in the above inequality, we get

d vr , vr+j
� �

⟶ 0: ð13Þ

Therefore, fvrg is a Cauchy sequence, and taking into
account the completeness of the space ðK , dÞ, it follows that
there exists ω ∈K such that

lim
r⟶∞

vr = ω, ð14Þ

and we claim that this ω is a fixed point of S.
In case that the assumption (a) holds, we have wðvr , ωÞ

≥ 1, and we claim that

1
2 d vr , Svrð Þ ≤ d vr , ωð Þ ð15Þ

or

1
2 d Svr , S Svrð Þð Þ ≤ d Svr , ωð Þ, ð16Þ

for every r ∈ℕ. Supposing

1
2 d vr , Svrð Þ > d vr , ωð Þ,

1
2 d Svr , S Svrð Þð Þ > d Svr , ωð Þ,

ð17Þ

on the account of the triangle inequality, we have

d vr , vr+1ð Þ = d vr , Svrð Þ ≤ d vr , ωð Þ + d ω, Svrð Þ
< 1
2 d vr , Svrð Þ + 1

2 d Svr , S Svrð Þð Þ

= 1
2 d vr , vr+1ð Þ + 1

2 d vr+1, vr+2ð Þ

≤
1
2 d vr , vr+1ð Þ + 1

2 d vr , vr+1ð Þ = d vr , vr+1ð Þ,
ð18Þ

which is a contradiction. Thereupon, for every r ∈ℕ, either

1
2 d vr , Svrð Þ ≤ d vr , ωð Þ, ð19Þ

or

1
2 d Svr , S Svrð Þð Þ ≤ d Svr , ωð Þ, ð20Þ

holds. In the case that (19) holds, we obtain

d vr+1, Sωð Þ ≤w vr , ωð Þd Svr , Sωð Þ ≤ ψ d d vr , Svrð Þ½ �ð β
h

· d ω, Sωð Þ½ �1−β

= ψ d vr , vr+1ð Þ½ �β
h

· d ω, Sωð Þ½ �1−β < d vr , vr+1ð Þ½ �β · d ω, Sωð Þ½ �1−β:

ð21Þ

If the second condition, (20), holds, we have

d vr+2, Sωð Þ ≤w vr+1, ωð Þd S2vr , Sω
� �

≤ ψ d d Svr , S2vr
� �� ��� β · d ω, Sωð Þ½ �1−β

= ψ d vr+1, vr+2ð Þ½ �½ β · d ω, Sωð Þ½ �1−β
< d vr+1, vr+2ð Þ½ �β · d ω, Sωð Þ½ �1−β:

ð22Þ

Therefore, letting r⟶∞ in (21) and (22), we get that
dðω, SωÞ = 0, that is, ω = Sω:

In the case that the assumption (b) is true, that is, the
mapping S is continuous,

Sω = lim
r⟶∞

Svr = lim
r⟶∞

vr+1 = ω: ð23Þ

If the last assumption, (c), holds, as above, we have S2ω
= limr⟶∞S2vr = limr⟶∞vr+2 = ω and we want to show that
also Sω = ω. Supposing on the contrary, that ω ≠ Sω, since

1
2 d Sω, S2ω
� �

= 1
2 d Sω, ωð Þ ≤ d Sω, ωð Þ, ð24Þ
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by (6), we get

d ω, Sωð Þ ≤w Sω, ωð Þd S2ω, Sω
� �

≤ ψ d Sω, S2ω
� �� �β · d ω, Sωð Þ1−β

h i� �
< d Sω, ωð Þ½ �β · d ω, Sωð Þ1−β

h i
= d Sω, ωð Þ,

ð25Þ

which is a contradiction. Consequently, ω = Sω, that is, ω is a
fixed point of the mapping S. ☐

Example 7. Let K = ½0, 3� and d : K ×K ⟶ ½0,+∞Þ be the
usual distance on ℝ . Consider the mapping S : K ⟶K be
defined as

Sv =

4
5 , if v ∈ 0, 1½ �,
1
3 , if v ∈ 1, 2ð �,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v3 + 6v + ln 4 − vð Þ3
p

5 , if v ∈ 2, 3ð �:

8>>>>>>><
>>>>>>>:

ð26Þ

Let also w : K ×K ⟶ ½0,∞Þ, where

w v, tð Þ =

2, if v, t ∈ 0, 1½ �,
v2 + t2, if v, t ∈ 1, 2ð Þ,
1, if v = 0, t = 3,
0, otherwise:

8>>>>><
>>>>>:

ð27Þ

We remark that the space is not regular since, for example,
considering the sequence fvrg, with vr = ðr + 8Þ/ð2r + 4Þ we
have vr ⟶ 1/2 as r⟶∞, wðvr , vr+1Þ = v2r + v2r+1 ≤ 1, but w
ðvr, 1/2Þ = 0. On the other hand, the mapping S is not continu-
ous, but since S2 = 4/5, we have that S2 is a continuous map-
ping. Let the function ψ ∈Ψ defined as ψðzÞ = z/3 and we
choose β = 1/9. Thus, we have to check that (6) holds. We have
to consider the following cases:

(1) For v, t ∈ ½0, 1�, respectively, v, t ∈ ð1, 2Þ, we have d
ðSv, StÞ = 0, so (6) holds

(2) For v = 0 and t = 3

1
2 d 0, S0ð Þ = 2

5 < 3 = d 0, 3ð Þ⇒w 0, 3ð Þd S0, S3ð Þ
= 0, 088621339 ≤ 0, 678785019

= 1
3 0:8ð Þ1/9 · 2, 288621339ð Þ8/9

= ψ d 0, S0ð Þ½ �1/9 · d 3, S3ð Þ½ �8/9
� �

ð28Þ

(3) All other cases are not interesting because wðv, tÞ = 0

Consequently, the assumptions of Theorem 6 being satis-
fied, it follows that the mapping S has a fixed point, which is
v = 4/5.

Corollary 8. Let ðK , dÞ be a complete metric space and S be a
self-mapping on K , such that,

1
2
d v, Svð Þ ≤ d v, tð Þ implies d Sv, Stð Þ ≤ ψ d v, Svð Þ½ �β · d t, Stð Þ½ �1−β

� �
,

ð29Þ

for each v, t ∈K \ FixðSÞ, where ψ ∈Ψ and β ∈ ½0, 1Þ. Then, S
possesses a fixed point in K .

Proof. Theorem 6 is sufficient to get wðv, tÞ = 1 for the proof.
☐

Moreover, taking ψðzÞ = zκ, with κ ∈ ½0, 1Þ in Corollary
(8), we obtain the following consequence.

Corollary 9. Let ðK , dÞ be a complete metric space and S be a
self-mapping on K , such that

1
2
d v, Svð Þ ≤ d v, tð Þ implies d Sv, Stð Þ ≤ κ d v, Svð Þ½ �β · d t, Stð Þ½ �1−β,

ð30Þ

for each v, t ∈K \ FixðSÞ, where β ∈ ½0, 1Þ. Then, the mapping
S possesses a fixed point in K .

Definition 10. Let ðK , dÞ be a metric space. The mapping
S : K ⟶K is called an w - ψ -interpolative Ćirić-Reich-Rus
contraction of Suzuki type if there exist ψ ∈Ψ, w : K ×K

⟶ ½0,∞Þ , and positive reals β, α > 0 , with β + α < 1 , such
that

1
2 d v, Svð Þ ≤ d v, tð Þ⇒w v, tð Þd Sv, Stð Þ

≤ ψ d v, tð Þ½ �β · d v, Svð Þ½ �α · d t, Stð Þ½ �
� �1−α−β ð31Þ

for each v, t ∈K \ FixðSÞ.

Theorem 11. Let ðK , dÞ be a complete metric space and the
mapping S : K ⟶K be an w - ψ -interpolative Ćirić-
Reich-Rus contraction of the Suzuki type. Suppose that S is
w -orbital admissible and wðv0, Sv0Þ ≥ 1 for some v0 ∈K . If
ðK , dÞ is w -regular or either

(1) S is continuous or

(2) S2 is continuous and wðSω, ωÞ ≤ 1 for any v ∈ FixðS2Þ,
then the mapping S has a fixed point in K

Proof. Let v0 ∈K satisfy wðv0, Sv0Þ ≥ 1 and fvrg be the
sequence defined by Srðv0Þ = vr for each positive integer r:
If vr0 = vr0+1 for some r0 ∈ℕ, we get vr0 = Svr0 , that means
vr0 is a fixed point of S: Then, we can assume that vr ≠ vr+1
for each positive integer r: Moreover, due to the assumption
that S is w-orbital admissible, as in the previous proof, we
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have

w vr , vr+1ð Þ ≥ 1: ð32Þ

By letting v = vr−1 and t = Svr−1 = vr in (31), we obtain

1
2 d vr−1, Svr−1ð Þ = 1

2 d vr−1, vrð Þ
≤ d vr−1, vrð Þ⇒ d vr , vr+1ð Þ
≤w vr−1, vrð Þd Svr−1, Svrð Þ
≤ ψ d vr−1, vrð Þ½ �β · d vr−1, Svr−1ð Þ½ �α · d vr , Svrð Þ½ �1−α−β
� �

= ψ d vr−1, vrð Þ½ �β · d vr−1, vrð Þ½ �α · d vr , vr+1ð Þ½ �1−α−β
� �

,

ð33Þ

then, using ψðzÞ < z for every z > 0.

d vr , vr+1ð Þ ≤ d vr−1, vrð Þ½ �β+α · d vr , vr+1ð Þ½ �1−α−β, ð34Þ

or equivalent

d vr , vr+1ð Þ½ �α+β < d vr−1, vrð Þ½ �α+β: ð35Þ

So,

d vr , vr+1ð Þ < d vr−1, vrð Þ, ð36Þ

for every r ∈ℕ. Therefore, the positive sequence fdðvr−1, vrÞg
is decreasing. Eventually, by (33), we have

d vr , vr+1ð Þ ≤ ψ d vr−1, vrð Þð Þ, ð37Þ

and by repeating this process, we find that

d vr , vr+1ð Þ ≤ ψr d v0, v1ð Þð Þ: ð38Þ

We assert that fvrg is a fundamental sequence in ðK , dÞ.
Thus, using the triangle inequality with (38), we can write

d vr , vr+lð Þ ≤ d vr , vr+1ð Þ + d vr+1, vr+2ð Þ+⋯+d vr+l−1, vr+lð Þ
≤ ψrd v0, v1ð Þ + ψr+1 d v0, v1ð Þð Þ+⋯+ψr+l−1 d v0, v1ð Þð Þ

≤ 〠
∞

k=r
ψk d v0, v1ð Þð Þ:

ð39Þ

Taking r⟶∞ in (39), we deduce that fvrg is a fun-
damental sequence in ðK , dÞ, and using the completeness
ðK , dÞ, there exists ω ∈K such that

lim
r⟶∞

d vr , ωð Þ = 0: ð40Þ

We claim that the point ω is a fixed point of S: In the
case of the space ðK , dÞ being w-regular and fvrg verifies
(32), that is, wðvr , vr+1Þ ≥ 1 for every r ∈ℕ, we get wðvr ,
ωÞ ≥ 1. On the other hand, we know (see the proof of

Theorem 6) that either

1
2 d vr , Svrð Þ ≤ d vr , ωð Þ, ð41Þ

or

1
2 d Svr , S Svrð Þð Þ ≤ d Svr , ωð Þ, ð42Þ

holds, for every r ∈ℕ. If (41) is holds, we obtain

d vr+1, Sωð Þ ≤w vr , ωð Þd Svr , Sωð Þ
≤ ψ d vr , ωð Þ½ �β · d vr , Svrð Þ½ �α · d ω, Sωð Þ½ �1−α−β,

= ψ d vr , ωð Þ½ �β · d vr , vr+1ð Þ½ �α · d ω, Sωð Þ½ �1−α−β
< d vr , ωð Þ�β · d vr , vr+1ð Þ½ �α · d ω, Sωð Þ½ �1−α−β:

ð43Þ

Letting r⟶∞ in the above inequality, we get that
dðω, SωÞ = 0, that is, ω = Sω: If the second condition (42)
is true, we get that ω is a fixed point S by a similar
argument.

Furthermore, if the w-regular of ðK , dÞ is removed and,
instead, S is continuous, we get that S has a fixed point in
K , because

ω = lim
r⟶∞

vr+1 = lim
r⟶∞

Svr = S lim
r⟶∞

vr
� �

= Sω: ð44Þ

Finally, if the mapping S is such that S2 is continu-
ous, we easily obtain S2ω = ω. Supposing that Sω ≠ ω,
since wðSω, ωÞ ≤ 1 for any v ∈ FixðS2Þ and ð1/2ÞdðSω, S2
ωÞ = ð1/2ÞdðSω, ωÞ ≤ dðSω, ωÞ, we have

d ω, Sωð Þ = d S2ω, Sω
� �

≤w Sω, ωð Þd S2ω, Sω
� �

≤ ψ d Sω, ωð Þ½ �α · d Sω, S2ω
� �� �β · d ω, Sωð Þ½ �1−α−β

� �
< d Sω, ωð Þ½ �α · d Sω, ωð Þ½ �β · d ω, Sωð Þ½ �1−α−β = d ω, Sωð Þ½ �:

ð45Þ

That is a contradiction. Thereupon, Sω = ω. ☐

Example 12. Let K = f0, 1/8, 1/4, 1/2, 1g, d : K ×K ⟶ ½0,
+∞Þ, dðv, tÞ = jv − tj , and S : K ⟶K , where S0 = Sð1/2Þ
= 1/8, Sð1/8Þ = 1/2 , and S1 = Sð1/4Þ = 1/4 . Consider the
function w : K ×K ⟶ ½0,∞Þ,

w v, tð Þ =

1, if v, tð Þ ∈ 0, 1ð Þ, 0, 12

	 
� �
,

3, if v, tð Þ ∈K ∪
1
4

� �
,

t + 1, if v, tð Þ ∈ 1
4

� �
∪K ,

0, otherwise,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð46Þ

let ψ ∈Ψ, ψðzÞ = 2z/5, and the real constants α = β = 1/3.
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Taking into account the definition of the function w, the only
interesting situations are for v = 0, y = 1/2, respectively, v =
0, y = 1. For the first case, we have

1
2 d 0, S0ð Þ = 1

2 d 0, 18

	 

= 1
16 < 1

2 = d 0, 12

	 


⇒w 0, 12

	 

d S0, S 12

	 

= 0

≤ ψ d 0, 12

	 
 �1/3
· d 0, S0ð Þ½ �1/3

�
· d

1
2 , S

1
2

	 
 �1/3 !
:

ð47Þ

For the second case,

1
2 d 0, S0ð Þ = 1

2 d 0, 18

	 

= 1
16 < 1 = d 0, 1ð Þ⇒w 0, 1ð Þd S0, S1ð Þ

= 1
8 ≤ 0, 158740105 = 2

5 · 1
8

	 
1/3
· 3

4

	 
1/3

= ψ d 0, 1ð Þ½ �1/3 · d 0, S0ð Þ½ �1/3 · d 1, S1ð Þ½ �1/3
� �

:

ð48Þ

Definition 13. Let ðK , dÞ be a metric space. The mapping
S : K ⟶K is called an ψ -interpolative Ćirić-Reich-Rus
contraction of Suzuki type if there exist ψ ∈Ψ and the con-
stants β, α > 0 , with β + α < 1, such that

1
2 d v, Svð Þ ≤ d v, tð Þ⇒ d Sv, Stð Þ

≤ ψ d v, tð Þ½ �β · d v, Svð Þ½ �α · d t, Stð Þ½ �1−α−β
� �

,
ð49Þ

for each v, t ∈K \ FixðSÞ.

Theorem 14. Let ðK , dÞ be a complete metric space and the
mapping S : K ⟶K be an ψ -interpolative Ćirić-Reich-
Rus contraction of the Suzuki type. Then, the mapping S has
a fixed point in K .

Proof. Put wðv, tÞ = 1 in Theorem 11. ☐

Definition 15. Let ðK , dÞ be a metric space. A mapping S
: K ⟶K is called an interpolative Ćirić-Reich-Rus contrac-
tion of the Suzuki type if there exist κ ∈ ½0, 1Þ and positive reals
β, α > 0 , with β + α < 1 , such that

1
2 d v, Svð Þ ≤ d v, tð Þ⇒ d Sv, Stð Þ ≤ κ d v, tð Þ½ �β · d v, Svð Þ½ �α

· d t, Stð Þ½ �1−α−β,
ð50Þ

for each v, t ∈K \ FixðSÞ.

Theorem 16. Let ðK , dÞ be a complete metric space and S
: K ⟶K be an interpolative Ćirić-Reich-Rus contraction
of the Suzuki type. Therefore, S has a fixed point in K .

Proof. Put ψðzÞ = κz, for all z > 0, in Theorem 14. ☐

3. Conclusions

In this manuscript, we introduce new concepts on complete-
ness of w-ψ-interpolative Kannan contraction of Suzuki type
andw-ψ-interpolative Ćirić-Reich-Rus contraction of Suzuki
type mappings in metric space. We prove the existence of
some fixed point theorems for mappings these concepts. Fur-
ther, we obtain some fixed point results and give examples to
show that the new results are applicable. Interpolation con-
traction, which is generalized from the Kannan type contrac-
tion, is a new and interesting contraction in fixed point
theory, and different interpolation contractions of Suzuki
type studies can be obtained by combining it with a Suzuki
type contraction in the future. Additionally, these proposed
contractions can be generalized in other well-known spaces
and can give new fixed point results.
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We study the existence of positive solutions for second-order nonlinear repulsive singular difference systems with periodic
boundary conditions. Our nonlinearity may be singular in its dependent variable. The proof of the main result relies on a fixed
point theorem in cones and a nonlinear alternative principle of Leray-Schauder; the result is applicable to the case of a weak
singularity as well as the case of a strong singularity. An example is given; some recent results in the literature are improved and
generalized.

1. Introduction

Difference systems are widely used in modeling real-life phe-
nomena [1] and references therein. In this paper, we establish
the existence positive solutions for the following nonlinear
difference systems:

−Δ p n − 1ð ÞΔx n − 1ð Þ½ � + q nð Þx nð Þ = f n, x nð Þð Þ + e nð Þ, ð1Þ

with the boundary conditions:

x 0ð Þ = x Tð Þ, p 0ð ÞΔx 0ð Þ = p Tð ÞΔx Tð Þ, ð2Þ

where qðnÞ = diag ðq1ðnÞ, q2ðnÞ,⋯, qNðnÞÞ, pðnÞ = diag ðp1ð
nÞ, p2ðnÞ,⋯, pNðnÞÞ, e = ðe1, e2,⋯, eNÞT , and f = ð f1, f2,⋯
, f NÞT , N ≥ 1: By a periodic solution, we mean a function x
= ðx1, x2,⋯, xNÞT , solving (1) and (2) and such that xðnÞ
≠ 0 for all n. We call boundary condition (2) the periodic
boundary conditions which are important representatives
of nonseparated boundary conditions. For convenience, we
denote byℤ,ℕ, andℝ the sets of all integer numbers, natural
numbers, and real numbers, respectively. For a, b ∈ℤ, let ℤ
ðaÞ = fa, a + 1,⋯g,ℤ½a, b� = fa, a + 1,⋯, bg when a ≤ b. As

usual, Δ denotes the forward difference operator defined by

Δx nð Þ = x n + 1ð Þ − x nð Þ: ð3Þ

In particular, the nonlinearity f ðx, xðnÞÞ: ℕ ×ℝN \ f0g
⟶ℝN may have a repulsive singularity at x = 0, from the
physical explanation, which means that lim

x⟶0
f iðn, xÞ = +∞,

uniformly in n ∈ℤ½1, T�, i = 1, 2,⋯,N .
Such repulsive singularity appears in many problems of

applications such as the Brillouin focusing systems and non-
linear elasticity [2].

System (1) can be viewed as a discretization of the follow-
ing more general class of the Sturm singular second-order
differential system:

− p tð Þy0ð Þ0 + q tð Þy = f t, yð Þ + e tð Þ: ð4Þ

Such systems, even in case p ≡ 1, where they are referred
to as being of Klein-Gordon or Schrödinger type, appear in
many scientific areas including fluid mechanics, gas dynam-
ics, and quantum field theory. During the last few decades,
the study of the existence of periodic solutions for singular
differential equations has deserved the attention of many
researchers [3–11]. Tracing back to 1987, Lazer and Solimini
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[5] investigated the singular model:

x′′ + h tð Þ
xλ

= g tð Þ, ð5Þ

where λ > 0, h, g are T-periodic functions and the mean
value of g is negative, �g < 0. One of the common conditions
to guarantee the existence of positive periodic solution is a
so-called strong force condition (corresponds to the case λ
≥ 1 in (5)) [11, 12]. For example, if we consider the system:

€x+∇Vx t, xð Þ = f tð Þ, ð6Þ

with Vðt, xÞ = 1/jxja; the strong force condition holds for α
≥ 2. On the other hand, the existence of positive periodic
solutions of the singular differential equations has been
established with a weak force condition (corresponds to the
case 0 < λ < 1 in (5)) [13–15].

From then on, some classical tools have been used to
study singular differential equations in the literature, includ-
ing the degree theory [6, 11, 16], the method of the upper and
lower solutions [8, 17], Schauder’s fixed point theorem [14],
some fixed point theorems in cones for completely continu-
ous operators [13, 18], and a nonlinear Leray-Schauder alter-
native principle [19].

For the existence of periodic solutions of difference
equations, some results have been obtained using the var-
iational methods or the topological methods [1, 20–25].
For example, by minimax principle, Guo and Yu [23] dis-
cussed the existence of periodic solutions for difference

equation:

−Δ2x n − 1ð Þ + f n, x nð Þð Þ = 0, ð7Þ

where the nonlinearity f is of superlinear or sublinear
growth at infinity. Based on the method of the upper
and lower solutions, Atici and Cabada [21] studied the
existence of periodic solutions for difference equation:

−Δ2x n − 1ð Þ + q nð Þx nð Þ = f n, x nð Þð Þ: ð8Þ

In [26], Zhou and Liu investigated the following
autonomous difference equations:

Δ2x n − 1ð Þ + f x nð Þð Þ = 0: ð9Þ

By Conley index theory, the author showed that the
suitable assumptions of asymptotically linear nonlinear
are enough to guarantee the existence of periodic
solutions.

In this paper, we establish two different existence results
of positive periodic solutions for (1) and (2) and proof of
the existence of positive solutions; the first one is based on
an application of a nonlinear alternative of Leray-Schauder,
which has been used by many authors [19, 27, 28] and refer-
ences therein; the second one is based on a fixed point theo-
rem in cones. Our main motivation is to obtain new existence
results for positive periodic solutions of the system:

Here, we emphasize that the new results are applicable to
the case of a strong singularity as well as the case of a weak
singularity and that e does not need to be positive.

The rest of this paper is organized as follows. In Section 2,
some preliminary results will be given. In Section 3, we will
state and prove the main results. We will use the notation
ℝN

+ = fx ∈ ℝN : xi ≥ 0 for each i = 1, 2,⋯,Ng, for x = ðx1,
⋯, xNÞ, y = ðy1,⋯, yNÞ, we write x ≥ y, if x − y = ðx1 − y1,⋯
, xN − YNÞ ∈ℝN

+ . We say that a function φ : ℝN ⟶ℝ is
nondecreasing if φðxÞ ≥ φðyÞ for x, y ∈ℝN with x ≥ y. For a
given function p defined on ℤ½0, T�, we denote its maximum
and minimum by p∗ and p∗, respectively.

2. Preliminaries

For i = 1, 2,⋯,N , let us denote by φiðnÞ and ψiðnÞ the solu-
tions of the corresponding homogeneous equations:

−Δ pi n − 1ð ÞΔx n − 1ð Þ½ � + qi nð Þx nð Þ = 0, n ∈ℤ 1, T½ �, ð11Þ

satisfying the initial conditions:

φi 0ð Þ = φi 1ð Þ = 0 ; ψi 0ð Þ = 0, pi 0ð Þψi 1ð Þ = 1: ð12Þ

Let

Di = φi Tð Þ + pi Tð ÞΔψi Tð Þ − 2: ð13Þ

Throughout this paper, we always assume that
(H) For each i = 1, 2,⋯,N , piðnÞ > 0, qiðnÞ ≥ 0, qið·Þ6 ≢ 0

, n ∈ Z½1, T�

Lemma 1 (see [29]). If (H) holds, then Di > 0.

−Δ p1 n − 1ð ÞΔx n − 1ð Þ½ � + q1 nð Þx nð Þ = x2 + y2
� �−a/2 + μ x2 + y2

� �β/2 + e1 nð Þ,

−Δ p2 n − 1ð ÞΔy n − 1ð Þ½ � + q2 nð Þy nð Þ = x2 + y2
� �−a/2 + μ x2 + y2

� �β/2 + e2 nð Þ:

8<: ð10Þ
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Lemma 2 (see [29]). Assume (H) holds. For the solution of the
problem:

−Δ pi n − 1ð ÞΔx n − 1ð Þ½ � + qi nð Þx nð Þ = ei nð Þ, n ∈ℤ 1, T½ �,
x 0ð Þ = x Tð Þ, pi 0ð ÞΔx 0ð Þ = pi Tð ÞΔx Tð Þ,

(
ð14Þ

the formula

x nð Þ = 〠
T

s=1
Gi n, sð Þei sð Þ, ð15Þ

holds, where

is the Green’s function; the number Di is defined by (13).

Lemma 3 (see [29]). Under condition (H), the Green’s func-
tion Giðn, sÞ of the boundary value problem (14) is positive,
i.e., Giðn, sÞ > 0 for n, s ∈ Z½0, T�.

We denote

Ai = min
n,s∈Z 0,T½ �

Gi n, sð Þ, Bi = max
n,s∈Z 0,T½ �

Gi n, sð Þ, σ = Ai/Bi: ð17Þ

Obviously, Bi > Ai > 0 and 0 < σi < 1.

Remark 4. If piðtÞ = 1, qiðtÞ = α > 0, then Green’s function
Giðn, sÞ of the boundary value problem (14) has the form:

Gi n, sð Þ =

βn−s + βs−n+N

β − β−1� �
βn − 1ð Þ

, 0 ≤ s ≤ n ≤ T + 1,

βs−n + βn−s+N

β − β−1� �
βn − 1ð Þ

, 0 ≤ n ≤ s ≤ T + 1,

8>>>><>>>>:
ð18Þ

where β = ðα + 2 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðα + 2Þp Þ/2. If n is even, a direct calcu-

lation shows that

Ai =
2βT/2

β − β−1� �
βT − 1

� � ,

Bi =
1 + βT

β − β−1� �
βT − 1

� � ,

σi =
2βT/2

1 + βT
< 1:

ð19Þ

3. Main Results

In this section, we state and prove the new existence results
for (1). In order to prove our main results, the following non-
linear alternative of Leray-Schauder is needed, which can be
found in [30].

Lemma 5. AssumeΩ is a relatively compact subset of a convex
set E in a normed space X. LetA : �Ω⟶ E be a compact map
with 0 ∈Ω: Then, one of the following two conclusions holds:

(i) T has at least one fixed point in Ω

(ii) There exist u ∈ ∂Ω and 0 < λ < 1 such that u = λAu

Let

X1 = x : ℤ 0, T + 1½ �⟶ℝ x 0ð Þ = x Tð Þ, p 0ð ÞΔx 0ð Þjf
= p Tð ÞΔx Tð Þg: ð20Þ

Then, X1 is a Banach space with the norm

xk k = max
n∈Z 1,T½ �

x nð Þ: ð21Þ

We take

X = X1 × X1 ×⋯ × X1 N copiesð Þ, ð22Þ

with the norm

xj j =max x1k k, x2k k,⋯, xNk kf g: ð23Þ

Define

γi nð Þ = 〠
T

s=1
Gi n, sð Þei sð Þ, ð24Þ

which corresponds to the unique solution of (14), and the

Gi n, sð Þ = ψi Tð Þ
Di

φi nð Þφi sð Þ −
pi Tð ÞΔφi Tð Þ

Di
ψi nð Þψi sð Þ +

pi Tð ÞΔψi Tð Þ − 1
Di

φi nð Þψi sð Þ −
φi Tð Þ − 1

Di
φi sð Þψi nð Þ, 0 ≤ s ≤ n ≤ T + 1,

pi Tð ÞΔψi Tð Þ − 1
Di

φi sð Þψi nð Þ − φi Tð Þ − 1
Di

φi nð Þψi sð Þ, 0 ≤ n ≤ s ≤ T + 1,

8>>><>>>:
ð16Þ
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operator A : X ⟶ X by Ax = ðA1x,A2x,⋯,ANxÞT , where

A ixð Þ nð Þ = 〠
T

s=1
Gi n, sð Þf i s, x sð Þ + γ sð Þð Þ, i = 1, 2,⋯,N: ð25Þ

Now, we present the first existence result of the positive
solution to problem (1).

Theorem 6. Suppose that condition (H) holds and γ∗ ≥ 0. Fur-
thermore, we assume that

(H1) For each constant L > 0, there exists a function φLð
nÞ > 0 for all n ∈ℤ½1, T� such that each component f i of f sat-
isfies f iðn, xÞ ≥∅LðnÞ for all ðn, jxjÞ ∈ℤ½1, T� × ð0, L�

(H2) For each component f i of f , there exist nonnegative
functions giðxÞ, hiðxÞ, and kiðnÞ such that

0 ≤ f i n, xð Þ ≤ gi xð Þ + hi xð Þf gki nð Þ for all n, xð Þ ∈ℤ 1, T½ � ×ℝN
+ 0f g,
ð26Þ

and giðxÞ > 0 is nonincreasing and hiðxÞ/giðxÞ is nondecreas-
ing in x

(H3) There exists a positive number r such that σr + γ∗ > 0
and

for all i = 1, 2,⋯,N . Here,

Ki nð Þ = 〠
T

s=1
Gi n, sð Þki sð Þ,

σ = min
i=1,2,⋯,N

σif g,

γ∗ =min
i,n

γ nð Þ,

γ∗ =max
i,n

γ nð Þ:

ð28Þ

Then, (1) and (2) has at least one positive periodic solu-
tion x with xðnÞ > γðnÞ for all n ∈ Z½0, T� and 0 < jx − γj < r.

Proof. We first show that

−Δ p n − 1ð ÞΔx n − 1ð Þ½ � + q nð Þx nð Þ = f n, x nð Þ + γ nð Þð Þ,
ð29Þ

together with (2) has a positive solution x satisfying xðnÞ +
γðnÞ for n ∈ Z½0, T� and 0 < jxj < r. If this is true, it is easy
to see that uðnÞ = xðnÞ + γðnÞ will be a positive solution of
(1) and (2) with 0 < ju − γj < r since

−Δ p n − 1ð ÞΔu n − 1ð Þ½ � + q nð Þu nð Þ = −Δ p n − 1ð ÞΔ x n − 1ð Þð½
+ γ n − 1ð ÞÞ� + q nð Þ x nð Þ + γ nð Þð Þ = f n, x nð Þ + γ nð Þð Þ
+ e nð Þ = f n, u nð Þð Þ + e nð Þ:

ð30Þ

Since (H3) holds, let J0 = fj0, j0 + 1,⋯g, we can choose

j0 ∈ f1, 2,⋯g such that 1/J0 ≤ σr + γ∗ and

gi γ∗,⋯, γ∗, σir + γ∗, γ∗,⋯, γ∗ð Þ 1 + hi r + γ∗,⋯, r + γ∗ð Þ
gi r + γ∗,⋯, r + γ∗ð Þ

� �
K∗

i +
1
j0

< r,

ð31Þ

for all i = 1, 2,⋯,N .
Fix j ∈ J0. Consider the family of systems

−Δ p n − 1ð ÞΔx n − 1ð Þ½ � + q nð Þx nð Þ = λf j n, x nð Þ + γ nð Þð Þ
+ q nð Þ

j
, n ∈ℤ 1,N½ �,

ð32Þ

where λ ∈ ½0, 1� and for each i = 1, 2,⋯,N ,

f ji n, xð Þ =
f i n, xð Þ, if x ≥ 1

j
,

f i n, x1,⋯, xi−1,
1
j
, xi + 1,⋯, xN

	 

, if x ≤ 1

j
:

8>>><>>>:
ð33Þ

Problem (29) and (2) are equivalent to the following fixed
point problem:

xi nð Þ = λ〠
T

s=1
Gi n, sð Þf ji s, x sð Þ + γ sð Þð Þ + 1

j
= λ A

j
ix

� �
nð Þ + 1

j
,

ð34Þ

for each i = 1, 2,⋯,N , here, we used the fact

〠
T

s=1
Gi n, sð Þqi sð Þ ≡ 1, i = 1, 2,⋯,N: ð35Þ

r
gi γ∗,⋯, γ∗, σir + γ∗, γ∗,⋯, γ∗ð Þ 1 + hi r + γ∗,⋯, r + γ∗ð Þð Þ/ gi r + γ∗,⋯, r + γ∗ð Þð Þð Þf g > K∗

i , ð27Þ
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We claim that any fixed point x of (34) for any λ ∈ ½0, 1�
must satisfy jxj ≠ r. Otherwise, assume that x is a fixed point
of (34) for some λ ∈ ½0, 1� such that jxj = r. Without loss of
generality, we assume that jxlj = r for some l = 1, 2,⋯,N .

Thus, we have

xl nð Þ − 1
j
= λ〠

N

s=1
Gl n, sð Þf jl n, x sð Þ + γ sð Þð Þds ≥ λAl 〠

T

s=1
f jl n, x sð Þð

+ γ sð ÞÞds = σlBlλ〠
T

s=1
f jl n, x sð Þð

+ γ sð ÞÞds ≥ σl max
n

λ〠
T

s=1
Gl n, sð Þf jl n, x sð Þ + γ sð Þð Þds

( )

= σl xl −
1
j

���� ����:
ð36Þ

Hence, for all n ∈ Z½1, T�, we have

xl nð Þ ≥ σl xl −
1
j

���� ���� + 1
j
≥ σl xlk k − 1

j

	 

+ 1

j
≥ σlr: ð37Þ

Therefore,

xl nð Þ + γl nð Þ ≥ σlr + γ∗ >
1
j
: ð38Þ

Using (34), we have from condition (H2), for all n ∈ Z½1
, T�,

xl nð Þ = λ〠
T

s=1
Gl n, sð Þf jl s, x sð Þ + γ sð Þð Þ + 1

j

= λ〠
T

s=1
Gl n, sð Þf l s, x sð Þ + γ sð Þð Þ + 1

j

≤ 〠
T

s=1
Gl n, sð Þf l s, x sð Þ + γ sð Þð Þ + 1

j

≤ 〠
T

s=1
Gl n, sð Þkl sð Þgl x sð Þ + γ sð Þð Þ 1 + h1 x sð Þ + γ sð Þð Þ

g1 x sð Þ + γ sð Þð Þ
� �

≤ gl γ∗,⋯, γ∗, σlr + γ∗, γ∗,⋯, γ∗ð Þ
� 1 + hl r + γ∗,⋯, r + γ∗ð Þ

gl r + γ∗,⋯, r + γ∗ð Þ
� �

K∗
l +

1
j0
:

ð39Þ

Therefore,

r = xlj j ≤ gl γ∗,⋯, γ∗, σlr + γ∗, γ∗,⋯, γ∗ð Þ
� 1 + hl r + γ∗,⋯, r + γ∗ð Þ

gl r + γ∗,⋯, r + γ∗ð Þ
� �

K∗
l +

1
j0
:

ð40Þ

This is a contradiction to the choice of j0, and the claim is
proved.

From this claim, the nonlinear alternative of Leray-
Schauder guarantees that

x nð Þ = A jx
� �

nð Þ + 1
j
, ð41Þ

has a fixed point, denoted by xjðnÞ, in Br = fx ∈ X : jxj < rg,
i.e.,

−Δ p n − 1ð ÞΔx n − 1ð Þ½ � + q nð Þx nð Þ = f j n, x nð Þ + γ nð Þð Þ + q nð Þ
j

,

ð42Þ

has a periodic solution xj with jxjj < r.
Next, we claim that these solutions xjðnÞ + γðnÞ have a

uniform positive lower bound, that is, there exists a constant
δ > 0, independent of j ∈ J0, such that

min
i,n

xji nð Þ + γi nð Þ
n o

≥ δ, ð43Þ

for all j ∈ J0. To see this, we know from (H1) that there exists
a continuous function ϕr + γ∗ðnÞ such that each component
f i of f satisfies f iðn, xÞ ≥ ϕr+γ∗ðnÞ for all ðn, jxjÞ ∈ℤ½1, T� ×
ð0, r + γ∗�. Now, let xr+γ∗ðnÞ be the unique solution to

−Δ p n − 1ð ÞΔx n − 1ð Þ½ � + q nð Þx nð Þ =Φ nð Þ, ð44Þ

with (2), here ΦðnÞ = ðϕr+γ∗ðnÞ,⋯, ϕr+γ∗ðnÞÞT . Then, we
have

xr+γ
∗

i nð Þ + γi nð Þ = 〠
T

s=1
Gi n, sð Þϕr+γ∗ sð Þ + γi nð Þ ≥Φ∗ + γ∗ > 0

ð45Þ

for each i = 1,⋯,N , here

Φ∗ = inf
n
Φi nð Þ, Φi nð Þ = 〠

T

s=1
Gi n, sð Þϕr+γ∗ sð Þ: ð46Þ

Next, we show that (43) holds for δ =Φ∗ + γ∗ > 0. To see
this, for each i = 1,⋯,N , since xjiðnÞ + γiðnÞ ≤ r + γ∗ and xji
ðnÞ + γ∗ ≥ 1/j, we have

xji nð Þ + γi nð Þ = 〠
T

s=1
Gi n, sð Þf ji s, xj sð Þ + γ sð Þ� �

+ γi nð Þ

+ 1
j
≥ 〠

T

s=1
Gi n, sð Þ∅r+γ∗ + γi nð Þ ≥Φ∗ + γ∗ ≔ δ:

ð47Þ

The fact jxðnÞj < r and (43) show that for each i = 1, 2,
⋯,N , fxjigj∈J0 is a bounded family on ℤ½1, T�. Moreover,
we have

xji 0ð Þ = xji Tð Þ, pi 0ð ÞΔxji 0ð Þ = pi Tð ÞΔxji Tð Þ, ð48Þ
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which implies that

xji T + 1ð Þ = pi 0ð Þ
pi Tð ÞΔx

j
i 0ð Þ + xji Tð Þ, j ∈ J0: ð49Þ

Thus, the Arzela–Ascoli theorem guarantees that fxjig
j ∈ J0 has a subsequence, fxjki gjk ∈ J0, k ∈N converging
uniformly on ℤ½0, T + 1� to a function xi. Let x = ðx1,⋯,
xNÞ, xðnÞ satisfies δ ≤ xiðnÞ + γiðnÞ < r + γ∗ for all n ∈ℤ½1
, T� and i = 1,⋯,N . Moreover, xjki satisfies the integral
equation:

xjki nð Þ = 〠
T

s=1
Gi n, sð Þf i s, xjk sð Þ + γ sð Þ

� �
+ 1

jk
, i = 1,⋯,N:

ð50Þ

Letting k⟶∞, we arrive at

xi nð Þ = 〠
T

s=1
Gi n, sð Þf i s, x sð Þ + γ sð Þð Þ, i = 1, 2,⋯,N , ð51Þ

here, we have used the fact that f ðn, xÞ is with respect to
ðn, xÞ with n ∈ℤ½1, T� and x > 0 satisfying δ ≤ jxj ≤ r + γ∗.
Therefore, x is a positive periodic solution of (1) and sat-
isfies 0 < ∣x ∣ ≤r

Corollary 7. Assume that (H) holds, α > 0, β ≥ 0. Then, for
each e1, e2 with γ∗ ≥ 0, we have

(i) if β < 1, then (10) has at least one positive periodic
solution for each μ > 0

(ii) if β ≥ 1, then (10) has at least one positive periodic
solution for each 0 < μ < μ1, where μ1 is some positive
constant

Proof. We will apply Theorem 6. To this end, assumption
(H1) is fulfilled by ∅L = ð ffiffiffiffiffi

2L
p Þ−α. If we take

g1 x, yð Þ = g2 x, yð Þ = x2 + y2
� �−α/2,

h1 x, yð Þ = h2 x, yð Þ = μ x2 + y2
� �β/2, ð52Þ

and k1ðnÞ = k2ðnÞ = 1, then (H2) is satisfied.
Let

ω1 nð Þ = 〠
T

s=1
G1 n, sð Þ, ω2 nð Þ = 〠

T

s=1
G2 n, sð Þ: ð53Þ

Then, the existence condition (H3) becomes

μ < r σir + γ∗ð Þ2 + γ2∗
� 2/α − ω∗

i

2 α+βð Þ/2 r + γ∗ð Þα+β
, i = 1, 2, ð54Þ

for some r > 0. So, (10) has at least one positive periodic
solution for

0 < μ < μ1 ≔min
i=1,2

sup
r>0

r σir + γ∗ð Þ2 + γ2∗
� 2/α − ω∗

i

2 α+βð Þ/2 r + γ∗ð Þα+β
, i = 1, 2:

ð55Þ

Note that μ1 =∞ if β < 1 and μ1 <∞ if β ≥ 1. We
have (i) and (ii).

In more general, we can obtain the following result.

Corollary 8. Assume that (H) holds and there exist functions
a, â, b, b̂ and α, β > 0 such that, for i = 1, 2,⋯,N ,

α nð Þ
xj jα + b nð Þ xj jβ ≤ f i n, xð Þ ≤ bα nð Þ

xj jα + μb̂ nð Þ xj jβ: ð56Þ

Then, for each e with γ∗ ≥ 0, we have

(i) if β < 1, then (10) has at least one positive periodic
solution for each μ > 0

(ii) if β ≥ 1, then (10) has at least one positive periodic
solution for each 0 < μ < μ2, where μ2 is some positive
constant

By using a fixed point theorem for compact maps on
conical shells [31], we established the second positive peri-
odic solution for (1). Recall that a compact operator
means an operator which transforms every bounded set
into a relatively compact set and introducing the definition
of a cone.

Definition 9. Let X be a Banach space and let K be a closed,
nonempty subset of X. K is a cone if

(i) αu + βv ∈ K for all u, v ∈ K and all α, β > 0
(ii) u, −u ∈ K implies u = 0

Lemma 10 (see [31]). Let X be a Banach space and K a cone
in X. Assume Ω1,Ω2 are open subsets of X with 0 ∈Ω1, �Ω1
∈Ω2. Let

Φ : K ∩ �Ω2 \Ω1

� �
⟶ K ð57Þ

be a continuous and completely continuous operator such that

(i)

Φxk k ≤ xk k for x ∈ K ∩ ∂Ω1 ð58Þ

(ii) There exist ψ ∈ K \ f0g such that x ≠Φx + λψ for x
∈ K ∩ ∂Ω2 and λ > 0
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Then, F has a fixed point in K ∩ ð�Ω2 \Ω1Þ. The same con-
clusion remains valid if (i) holds on K ∩ ∂Ω2, and (ii) holds on
K ∩ ∂Ω1.

Define

K = x = x1,⋯, xNð Þ ∈ X : min
0≤n≤T

xi nð Þ
n

≥ σi xik kg for all n ∈ Z 0, T½ �, i = 1,⋯,Ng:
ð59Þ

Then, one can readily verify that K is a cone in X.

Theorem 11. Suppose conditions (H), (H1)–(H3) hold. Fur-
thermore, assume that the following two conditions are
satisfied:

(H4) There exist continuous, nonnegative functions g
1ðxÞ,

h1ðxÞ and k1ðnÞ such that

f i n, xð Þ ≥ g1i xð Þ + h1i xð Þ� �
k1i nð Þ for all n, xð Þ ∈ 0, T½ � ×ℝn

+ 0f g,
ð60Þ

where g1
i ðxÞ > 0 is nonincreasing and h1i ðxÞ/g1i ðxÞ is nonde-

creasing in x
(H5) There exists R > r such that

Then, problems (1) and (2) have another one positive peri-
odic solution ~x with r < j~x − γj ≤ R.

Proof. Let Ax = ðA1x,⋯,ANxÞT , A ix is given by (25), then,
it is easy to verify that A is well defined and maps X into K .
Moreover, A is continuous and completely continuous, and
let K be a cone in X defined by (59). Define the

Ω1 = x ∈ X : ∣x∣<rf g,Ω2 = x ∈ X : xj j < Rf g: ð62Þ

As in the proof of Theorem 3.1, we only need to show
that (29) has a positive periodic solution u ∈ X with uðnÞ +
γðnÞ > 0 and r < juj ≤ R. We claim that

(i)

Axj j ≤ xj j for x ∈ K ∩ ∂Ω1 ð63Þ

(ii) There exist ψ ∈ K \ f0g such that x ≠Ax + λψ for x
∈ K ∩ ∂Ω2 and λ > 0

We start with (i). In fact, if x ∈ K ∩ ∂Ω1, then jxj = r and
σir + γ∗ ≤ xiðnÞ + γðnÞ ≤ r + γ∗ for all t ∈ ½0, T�. Fix i ∈ f1, 2,
⋯,Ng, thus, we have

A ixð Þ tð Þ = 〠
T

s=1
Gi n, sð Þf i s, x sð Þ + γ sð Þð Þ ≤ 〠

T

s=1
Gi n, sð Þki sð Þgi x sð Þð

+ γ sð ÞÞ 1 + hi x sð Þ + γ sð Þð Þ
gi x sð Þ + γ sð Þð Þ

� �
≤ gi x sð Þð

+ γ sð ÞÞ 1 + hi x sð Þ + γ sð Þð Þ
gi x sð Þ + γ sð Þð Þ

� �
〠
T

s=1
Gi n, sð Þki sð Þ

≤ gi γ∗,⋯, γ∗, σir + γ∗, γ∗,⋯, γ∗ð Þ
� 1 + hi r + γ∗,⋯, r + γ∗ð Þ

gi r + γ∗,⋯, r + γ∗ð Þ
� �

Ki∗ < r = xj j:

ð64Þ

Therefore, kA ixk ≤ jxj for each i = 1, 2 ,...,N. This implies
that (i) holds.

Next, we show that (ii) holds. Let ψ ≡ ð1,⋯, 1Þ, then
ψ ∈ K \ f0g. Suppose that there exists x ∈ K ∩ ∂Ω2 and
λ > 0 such that x =Ax + λψ. Since x ∈ K ∩ ∂Ω2, then σi
R + γ∗ ≤ xiðnÞ + γðnÞ ≤ R + γ∗ for all n ∈ Z½0, T�. As a
result, it follows from (H4) and (H5) that, for all n ∈ Z½
0, T�,

xi nð Þ = A ixð Þ nð Þ + λ = 〠
T

s=1
Gi n, sð Þf i s, x sð Þ + γ sð Þð Þds + λ

≥ 〠
T

s=1
Gi n, sð Þkli sð Þgl

1 x sð Þ + γ sð Þð Þ 1 + hli x sð Þ + γ sð Þð Þ
gli x sð Þ + γ sð Þð Þ

( )

+ λ ≥ gl
i x sð Þ + γ sð Þð Þ 1 + hli x sð Þ + γ sð Þð Þ

gli x sð Þ + γ sð Þð Þ

( )
〠
T

s=1
Gi n, sð Þkli sð Þ

+ λ ≥ gl
i R + γ∗,⋯, R + γ∗ð Þ 1 + hli σ1R + γ∗,⋯, σNR + γ∗ð Þ

gl
i σ1R + γ∗,⋯, σNR + γ∗ð Þ

( )
Ki∗

+ λ ≥ σR + λ:

ð65Þ

Hence, min
0≤n≤T

xiðnÞ > σR; this is a contradiction and we

prove the claim.
Now, Lemma 3.7 guarantees that A has at least one fixed

point x ∈ K ∩ ð�Ω2 \Ω1Þ with r ≤ jxj ≤ R.

Let us consider again the example (10) in Corollary 7 for
the superlinear case.

Corollary 12. Assume in (10) that pi, qiði = 1, 2Þ satisfy (H),
for each e1, e2 with γ∗ ≥ 0, β > 1. Then, for each μ with 0
< μ < μ1, where μ1 is given as in Corollary 7, problem
(10) has at least two different positive solutions. To verify

σR

g1
i R + γ∗,⋯, R + γ∗ð Þ 1 + h1i σ1R + γ∗,⋯, σnR + γ∗ð Þ� �

/ g1i σ1R + γ∗,⋯, σnR + γ∗ð Þ� �� �� � ≤ Ki∗: ð61Þ
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(H4), one may take

g1
1 x, yð Þ = g12 x, yð Þ = 1

2
x2 + y2
� �−α/2,

h12 x, yð Þ = 1
2

x2 + y2
� �β/2, ð66Þ

and k1ðnÞ1 = k12ðnÞ = 1. If β > 1, then the existence condi-
tion (H5) becomes

μ ≥
2 α+2ð Þ/2 R + γ ∗ð ÞασR − 2ωi∗

σ1R + γ∗ð Þ2 + σ2R + γ∗ð Þ2�  α+βð Þ/2
ωi∗

, i = 1, 2: ð67Þ

Since β > 1, the right-hand side goes to 0 as R⟶ +
∞. Thus, for any given 0 < μ < μ1, it is always possible
to find such R≫ r that (67) is satisfied. Thus, (10) has
an additional positive periodic solution ~x.

Remark 13. We emphasize that our results are applicable to
the case of a strong singularity as well as the case of a weak
singularity since we only need α > 0. Moreover, e does not
need to be positive. In fact, using the assumption that the
Green function is positive, one may readily verify that γ∗ ≥
0 is equivalent to the ∑N

i=1eiðnÞ ≥ 0, i = 1, 2,⋯,N .
Let us consider the 2-dimensional system

−Δ2x n − 1ð Þ + x nð Þ = α nð Þ
xj jα + μb nð Þ xj jβ + e1 nð Þ,

−Δ2y n − 1ð Þ + y nð Þ = α nð Þ
xj jα + μb nð Þ xj jβ + e2 nð Þ,

8>>><>>>:
ð68Þ

with

ei nð Þ = n di − nð Þ, di ∈ℝ, i = 1, 2: ð69Þ

Example 1. Assume that α > 0, β > 1, aðnÞ, and bðnÞ are pos-
itive functions, eiðnÞ, i = 1, 2 are given by (69) with

d1 + 2d2 ≥ 5: ð70Þ

Then, the results in Corollary 12 hold.

Proof. We only need show γ∗ ≥ 0, which is equivalent to

〠
2

i=1
ei nð Þ ≥ 0, ð71Þ

Since d1 + 2d2 ≥ 5, a direct computation show that

〠
2

i=1
ei nð Þ ≥ 0 〠

2

i=1
= n di − nð Þ ≥ 0: ð72Þ

4. Conclusions

In this paper, we study the periodic problem for nonlinear
difference systems with a singularity of repulsive type in the
case of γ∗ ≥ 0. The proofs of main results are based on a non-
linear alternative principle of Leray-Schauder and a fixed
point theorem in cones. It is interesting that the singularity
f is applicable to the case of a weak singularity as well as
the case of a strong singularity. In the next research, we will
continue to study the periodic problem to the difference sys-
tems like (10) where f may have attractive singularity at x = 0
, and whether the condition γ∗ ≥ 0 can be removed.
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In this paper, we study a diffusion equation of the Kirchhoff type with a conformable fractional derivative. The global existence and
uniqueness of mild solutions are established. Some regularity results for the mild solution are also derived. The main tools for
analysis in this paper are the Banach fixed point theory and Sobolev embeddings. In addition, to investigate the regularity, we
also further study the nonwell-posed and give the regularized methods to get the correct approximate solution. With reasonable
and appropriate input conditions, we can prove that the error between the regularized solution and the search solution is
towards zero when δ tends to zero.

1. Introduction

The aim of this study is to investigate the final value for the
space fractional diffusion equation

C∂
α

∂tα
v x, tð Þ + ∇vk kL2ð Þ −Δð Þβv x, tð Þ = F x, tð Þ, x ∈Ω, t ∈ 0, Tð Þ,

v x, tð Þ = 0, x ∈ ∂Ω, t ∈ 0, Tð Þ,
v x, Tð Þ = f xð Þ, x ∈Ω,

8>>>><
>>>>:

ð1Þ

where the symbol C∂
α
vðtÞ/∂tα is called the conformable

derivative which is defined clearly in Section 2. Here, Ω ⊂
ℝdðd ≥ 1Þ is a bounded domain with the smooth boundary
∂Ω, and T > 0 is a given positive number. The function F
represents the external forces or the advection term of a dif-
fusion phenomenon, etc., and the function f is the final
datum which will be specified later.

The applications of the conformable derivative are inter-
ested in various models such as the harmonic oscillator, the
damped oscillator, and the forced oscillator (see, e.g., [1]),
electrical circuits (see, e.g., [2]), chaotic systems in dynamics

(see, e.g., [3]), and quantum mechanics (see, e.g., [4]). From
the paper, see, e.g., [5], we must confirm that the study of
the ODE problem with the conformable derivative is very dif-
ferent from the study of the PDE problem with a conform-
able derivative. Results and research methods of the well-
posedness for the ODE and PDE model are not the same
and are completely different. The following two remarks con-
firm what we have just pointed out.

Remark 1. Let us first discuss conformable ODEs. Let v be the
functions whose domain of its value is ℝ. If α = 1, C∂α/∂tα
becomes the classical derivative. If 0 < α < 1, by the paper of
[6], we know that the relation between the conformable
derivative and the classical derivative by the following
lemma.

Lemma 2. If v : ½0, T�⟶ℝ, then a conformable derivative of
order α at s > 0 of v exists if and only if it is differentiable at s,
and the following equality is true:

C∂
α
v sð Þ

∂sα
= s1−α

∂v sð Þ
∂s

: ð2Þ
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Remark 3. In the following, we mention the PDEs with
conformable derivative where D is a Sobolev space, such
as L2ðΩÞ, Wγ,pðΩÞ, and DðAγÞ. When we study the PDE
model, we often do with a multivariable function v : ð0, TÞ
⟶D, where D is a Sobolev space. This means that, for each
t, vðtÞ can take on values in many classes of spaces with
D1↪D↪D2 ⋯ . Some illustrated examples given in [5] say
that (2) may be not true on Sobolev spaces.

Let us mention some recent works on diffusion equations
with a conformable derivative, for example, [2, 5, 7–16].
Some interesting papers on fractional diffusion equations
can be found in [17–24] and the references therein.

When α = 1, the main equation of Problem (1) appears in
many population dynamics. By the work of Chipot and Lovat
[25], we know that the diffusion coefficient B is dependent on
the entire population in the domain instead of local density;
that is, the moves are guided by considering the global state
of the vehicle. The function u is a descriptive population den-
sity (e.g., bacteria) spread. According to article [26], we find
that model (1) is a type of Kirchhoff equation, arising in
vibration theory; see, for example, [27].

(i) This paper is the first study on the final value prob-
lem for a diffusion equation with a Kirchhoff-type
equation and conformable derivative. Since our
models are nonlinear, in order to establish the exis-
tence and uniqueness of solutions, we have to use
the Banach contracting mapping theorem combined
with some techniques to evaluate inequality and
some Sobolev embeddings. One of the most difficult
points is finding the appropriate functional spaces
for the solution

(ii) The second result is to investigating the regularized
solution for our problem. We show the ill-posedness
of the problem and give Fourier regularization. The
most difficult thing that we have to overcome is find-
ing the appropriate space, to prove that the regularized
solution converges with the exact solution

It can be said that our article is one of the first results, giv-
ing a general and comprehensive picture, considering both
the frequency and the inaccuracy of Kirchhoff’s diffusion
equation with fractional time and space derivative. Using
complex and interoperable assessment techniques, we find
the right keys and tools to achieve both of our goals.

This paper is organized as follows. In Section 3, we pres-
ent the existence of the backward Problem (1) with the sim-
ple case F = 0. In the appropriate terms of the terminal data f ,
we show that the mild solution of (1) in the case β < 1 con-
verges with the mild solution of the same problem in the case
β = 1 when β⟶ 1−. Finally, in Section 4, we consider a
backward problem with an inhomogeneous source term.
The first part of this section discusses the existence of a mild
solution under the appropriate conditions of the source func-
tion F. Furthermore, we also give an example, which shows
that the problem is not stable, and then look for the approx-
imate solution. Using the Fourier truncation method, we
involve the regularized solution. Convergence error between

the regularized solution and the correct solution has also
been established, with some suitable conditions of input
value data.

2. Preliminaries

2.1. Conformable Derivative Model. Let the function v : ½0,
∞Þ⟶D, where D is a Banach space.

If for each t > 0, the limitation

C∂
α
v tð Þ

∂tα
≔ lim

ε⟶0

v t + εt1−α
� �

− v tð Þ
ε

inD, ð3Þ

finitely exists, then it is called the conformable derivative
of order α ∈ ð0, 1� of v. We can refer the reader to [6, 8,
14, 28, 29].

We introduce fractional powers of A as follows:

D A vð Þ = g ∈ L2 Ωð Þ: 〠
∞

j=1
g,wj

� ��� ��2λ2vj <∞
( )

: ð4Þ

The space DðAνÞ is a Banach space in the following with
the corresponding norm:

gk kD Avð Þ ≔ 〠
∞

j=1
g,wj

� ��� ��2λ2vj
 !1/2

, g ∈D Avð Þ: ð5Þ

The information for negative fractional power A−ν can
be provided by [30]. For any θ > 0, we introduce the follow-
ing Hölder continuous space of exponent θ

Cθ 0, T½ � ;Bð Þ

= v ∈ C 0, T½ � ;Bð Þ: sup
0≤s<t≤T

v :,tð Þ−v :,sð Þk kB
t − sj jθ

<∞
( )

,

ð6Þ

corresponding to the following norm:

vk kCθ 0,T½ �: Bð Þ = sup
0≤s<t≤T

v :,tð Þ−v :,sð Þk kB
t − sj jθ

: ð7Þ

For any 0 < θ < 1, let us introduce the following space:

Cθ 0, Tð � ;Bð Þ
= v ∈ C 0, Tð � ; L2 Ωð Þ� �

: sup
0<t≤T

tθ v :,tð Þk kB<∞
� �

,
ð8Þ

corresponding to the norm kvkCθðð0,T�;BÞ ≔ sup
0<t≤T

tθkvð:,tÞkB.
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Let us define the space as follows:

Xβ,α Ωð Þ =
(
g ∈ L2 Ωð Þ, 〠

∞

j=1
λ
2+2β
j

� exp 2TαM1λ
β
j

α

 !
g,wj

� �2<∞
)
:

ð9Þ

3. Backward Problem for Homogeneous Case

In this section, we consider the final value problem for the
homogeneous equation with a space fractional derivative as
follows:

C∂
α

∂tα
v x, tð Þ + B ∇vk kL2ð Þ −Δð Þβv x, tð Þ = 0, x ∈Ω, t ∈ 0, Tð Þ,

v x, tð Þ = 0, x ∈ ∂Ω, t ∈ 0, Tð Þ,
v x, Tð Þ = f xð Þ, x ∈Ω,

8>>>><
>>>>:

ð10Þ

where 0 <M0 ≤ BðξÞ ≤M1 and ξ ∈ ½0, T�. The following theo-
rem states the existence and uniqueness of the solution of
Problem (10).

Theorem 4. Let f ∈Xβ,αðΩÞ. Then, Problem (10) has a

unique mild solution v ∈ Cð½0, T� ;H1ðΩÞÞ which satisfies that

v x, tð Þ = 〠
∞

j=1
exp λ

β
j

ðTα/α

tα/α
B ∇v :,sð Þk kL2
� �

ds
	 


f ,wj

� �
wj xð Þ:

ð11Þ

Furthermore, this solution is not stable in the L2 norm.

Proof.We express a mild solution of (10) by Fourier series as
follows:

v x, tð Þ = 〠
∞

j=1
v :,tð Þ,wj

� �
wj xð Þ: ð12Þ

It follows from Problem (10) and the equality hð−ΔÞβ
vð:,tÞ,wji = λ

β
j hvð:,tÞ,wji that

ℓ∂α

∂tα
v :,tð Þ,wj

� �
+λβj B ∇vk kL2ð Þ v :,tð Þ,wj

� �
= 0, t ∈ 0, Tð Þ,

u :,0ð Þ,wj

� �
= u0,wj

� �
:

8><
>:

ð13Þ

Note that this formula

ℓ∂α

∂tα
u :,tð Þ,wj

� �
= t1−α

∂
∂t

u :,tð Þ,wj

� �
, ð14Þ

is correct; we get that

∂
∂t

v :,tð Þ,wj

� �
+ λ

β
j t

α−1B ∇vk kL2ð Þ v :,tð Þ,wj

� �
= 0: ð15Þ

Multiply both sides of equation (15) by the quantity

exp ðÐ tα/α0 λ
β
j Bðk∇vð:,sÞkL2ÞdsÞ, we reach the following

assertion:

∂
∂t

v :,tð Þ,wj

� �
exp

ðtα/α
0

λ
β
j B v :,sð Þk kL2
� �

ds
	 
	 


= 0, ð16Þ

where we have used the fact that

∂
∂t

exp
ðtα/α
0

λ
β
j B ∇v :,sð Þk kL2
� �

ds
	 
	 


= exp
ðtα/α
0

λ
β
j B ∇v :,sð Þk kL2
� �

ds
	 


tα−1λβj B ∇v :,tð Þk kL2
� �

:

ð17Þ

Integrating the two sides of the latter equation 0 to t,
we obtain the following confirmation:

v :,tð Þ,wj

� �
exp

ðtα/α
0

λ
β
j B ∇v :,sð Þk kL2
� �

ds
	 


= v :,0ð Þ,wj

� �
:

ð18Þ

It yields that

v :,tð Þ,wj

� �
= exp −

ðtα/α
0

λ
β
j B ∇v :,sð Þk kL2
� �

ds
	 


v :,0ð Þ,wj

� �
:

ð19Þ

Therefore, we find that

v x, tð Þ = 〠
∞

j=1
exp λ

β
j

ðTα/α

tα/α
B ∇v :,sð Þk kL2
� �

ds
	 


f ,wj

� �
wj xð Þ:

ð20Þ

For v ∈ L∞ð0, T ;H1ðΩÞÞ, we consider the following
function:

Q vð Þ x, tð Þ = 〠
∞

j=1
exp λ

β
j

ðTα/α

tα/α
B ∇v :,sð Þk kL2
� �

ds
	 


f ,wj

� �
wj xð Þ:

ð21Þ

We shall prove by induction if w1,w2 ∈ L∞ð0, T ;H1

ðΩÞÞ, then
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Qk w1ð Þ −Qk w2ð Þ
��� ���

L2 Ωð Þ
≤

fk k2Xβ,α Ωð Þ
K2

b Tα − tαð Þ/αð Þ
� 1/2

k!

0
B@

1
CA

� w1 −w2k kL∞ 0,T ;L2 Ωð Þð Þ ∀q ≤ 1:

ð22Þ

For m = 1, using the inequality jea − ebj ≤ ja − bj max
ðea, ebÞ for any a, b ∈ℝ, we have

Q w1ð Þ −Q w2ð Þk k2H1 Ωð Þ

= 〠
∞

j=1
λ
2+2β
j

�
exp λ

β
j

ðTα/α

tα/α
B ∇w1 :,sð Þk kL2
� �

ds
	 


− exp λ
β
j

ðTα/α

tα/α
B ∇w2 :,sð Þk kL2
� �

ds
	 
�2

f ,wj

� �2
≤ 〠

∞

j=1
λ
2−2β
j

ðTα/α

tα/α
B ∇w1 :,sð Þk kL2
� �

ds
����

−
ðTα/α

tα/α
B ∇w2 :,sð Þk kL2
� �

ds
����2

� exp 2Tα − 2tα
α

M1λj

	 

f ,wj

� �2
≤ K2

b fk k2Xβ,α Ωð Þ

ðTα/α

tα/α
∇ w1−w2ð Þ :,sð Þk k2L2 Ωð Þds

≤ K2
b fk k2Xβ,α Ωð Þ

Tα − tα

α
w1 −w2k k2L∞ 0,T ;H1 Ωð Þð Þ:

ð23Þ

Assume that (22) holds for m = k. We show that (22)
holds for m = k + 1. Indeed, we have

Qk+1 w1ð Þ −Qk+1 w2ð Þ
��� ���2

H1 Ωð Þ

= 〠
∞

j=1
λ2j

�
exp λ

β
j

ðTα/α

tα/α
B ∇Qk w1ð Þ :,sð Þ
��� ���

L2

� 
ds

	 


− exp λ
β
j

ðTα/α

tα/α
B ∇Qk w2ð Þ :,sð Þ
��� ���

L2

� 
ds

	 
�2
f ,wj

� �2
≤ fk k2Xβ,α Ωð ÞK

2
b

ðTα/α

tα/α
Qk w1ð Þ :,sð Þ−Qk w2ð Þ :,sð Þ
��� ���2

H1 Ωð Þ
ds

≤ fk k2Xβ,α Ωð ÞK
2
b

ðTα/α

tα/α

fk k2Xβ,α Ωð ÞK
2
b Tα − tαð Þ/αð Þ

� k
k!

ds

≤
fk k2Xβ,α Ωð ÞK

2
b Tα − tαð Þ/αð Þ

� k+1
k + 1ð Þ! w1 −w2k k2L∞ 0,T ;H1 Ωð Þð Þ:

ð24Þ

By the theory of the induction principle, (22) holds for all
w1,w2 ∈ L∞ð0, T ;H1ðΩÞÞ. Since the fact that

lim
k⟶+∞

fk k2Xβ,α Ωð ÞK
2
b Tα − tαð Þ/αð Þ

� k
k!

0
B@

1
CA

1/2

= 0, ð25Þ

there exists a positive integer number k0 such that Qk0 is a
contraction. It follows that the equation Qk0v = v has a
unique solution v ∈ L∞ð0, T ;H1ðΩÞÞ. It is easy to see that v
is also a fixed point of Q. ☐

Theorem 5. Assume that f ∈ Xβ+γ,αðΩÞ for any γ > β. Let us
choose ν0 such that

2K2
b fk k2Xβ,α Ωð Þ

Tα 1−δð Þ Cδj j2ν−2δ0

α1−δ 1 − δð Þ < 1: ð26Þ

Let any 0 < ε < γ − β. Then, there exists Cε > 0 such that

vα,β −wα

�� ��2
L∞ν0 0,T ;H1 Ωð Þð Þ

≤
Cε 1 − βð Þε fk kXβ+γ,α Ωð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2K2
b fk kXβ,α Ωð Þ Tα 1−δð Þ Cδj j2ν−2δ0 /α1−δ 1 − δð Þ

� r ,

ð27Þ

where

L∞ν0 0, T ;H1 Ωð Þ� �
=
�
v ∈ L∞ 0, T ;H1 Ωð Þ� �

, vk kL∞ν0 0,T ;H1 Ωð Þð Þ

= sup
0≤t≤T

eν0 t−Tð Þ v tð Þk kH1 Ωð Þ<∞
�
:

ð28Þ

Proof. Let vα,β be the solution of Problem (11). Let wα be the
solution to Problem (11) with β = 1. Then, we get

vα,β x, tð Þ = 〠
∞

j=1
exp λ

β
j

ðTα/α

tα/α
B ∇vα,β :,sð Þ�� ��

L2

� 
ds

	 

� f ,wj

� �
wj xð Þ,

wα x, tð Þ = 〠
∞

j=1
exp λj

ðTα/α

tα/α
B ∇wα :,sð Þk kL2
� �

ds
	 


� f ,wj

� �
wj xð Þ:

ð29Þ

4 Journal of Function Spaces



We have

vα,β x, tð Þ −wα x, tð Þ

= 〠
∞

j=1
exp λ

β
j

ðTα/α

tα/α
B ∇vα,β :,sð Þ�� ��

L2

� 
ds

	 

f ,wj

� �
wj xð Þ

− 〠
∞

j=1
exp λ

β
j

ðTα/α

tα/α
B ∇wα :,sð Þk kL2
� �

ds
	 


f ,wj

� �
wj xð Þ

+ 〠
∞

j=1
exp λ

β
j

ðTα/α

tα/α
B ∇wα :,sð Þk kL2
� �

ds
	 


f ,wj

� �
wj xð Þ

− 〠
∞

j=1
exp λj

ðTα/α

tα/α
B ∇wα :,sð Þk kL2
� �

ds
	 


f ,wj

� �
wj xð Þ

=D1 +D2,
ð30Þ

whereby

D1 = 〠
∞

j=1
exp λ

β
j

ðTα/α

tα/α
B ∇wα :,sð Þk kL2
� �

ds
	 


f ,wj

� �
wj xð Þ,

D2 = 〠
∞

j=1
exp λj

ðTα/α

tα/α
B ∇wα :,sð Þk kL2
� �

ds
	 


f ,wj

� �
wj xð Þ:

ð31Þ

The term D1 is bounded by

D1k k2H1 Ωð Þ ≤ 〠
∞

j=1
λ
2β+2
j exp

2TαM1λ
β
j

α

 !

�
	ðTα/α

tα/α
B ∇vα,β :,sð Þ�� ��

L2

� 
ds

−
ðTα/α

tα/α
B ∇wα :,sð Þk kL2
� �

ds

2

f ,wj

� �2
≤ K2

b fk k2Xβ,α Ωð Þ

ðTα/α

tα/α
∇ vα,β −wα

� �
·, sð Þ�� ��2

L2 Ωð Þds:

ð32Þ

The term D2 is estimated as follows:

D2k k2H1 Ωð Þ ≤ 〠
∞

j=1
λ
2β+2
j exp

2TαM1λ
β
j

α

 !
λ
β
j − λ j

� 2

�
ðTα/α

tα/α
B ∇wα :,sð Þk kL2
� �

ds
	 
2

f ,wj

� �2
≤M2

1
Tα − tα

α

	 
2
〠
∞

j=1
λ
2β+2
j exp

2TαM1λ
β
j

α

 !

� λ
β
j − λj

� 2
f ,wj

� �2
:

ð33Þ

Consider the following subset:

A1 = j ∈ℕ, λj ≤ 1
� �

, A2 = j ∈ℕ, λj > 1
� �

: ð34Þ

If j ∈ A1, then using the inequality 1 − e−z ≤ Cεz
ε, we get

λ
β
j − λ j = λ

β
j 1 − λ

1−β
j

� 
= λ

β
j Cε 1 − βð Þελ−εj = Cε 1 − βð Þελβ−εj ,

ð35Þ

which allows us to obtain

〠
j∈A1

λ
2β
j exp

2TαM1λ
β
j

α

 !
λ
β
j − λj

� 2
f ,wj

� �2
≤ Cεj j2 1 − βð Þ2ε 〠

j∈A1

λ
4β+2−2ε
j exp

2TαM1λ
β
j

α

 !
f ,wj

� �2
:

ð36Þ

If j ∈ A2, then using the inequality 1 − e−z ≤ Cεz
ε, we find

λ
β
j − λj

��� ��� = λj 1 − λ
β−1
j

� 
= λjCε 1 − βð Þελεj = Cε 1 − βð Þελβ+εj :

ð37Þ

Hence, we obtain

〠
j∈A2

λ
2β+2
j exp

2TαM1λ
β
j

α

 !
λ
β
j − λj

� 2
f ,wj

� �2
≤ Cεj j2 1 − βð Þ2ε 〠

j∈A1

λ
4β+2+2ε
j exp

2TαM1λ
β
j

α

 !
f ,wj

� �2
:

ð38Þ

Combining (36) and (38), we find that

λ
2β
j exp

2TαM1λ
β
j

α

 !
λ
β
j − λ j

� 2
f ,wj

� �2
≤ C Cεj j2 1 − βð Þ2ε 〠

j∈A1

λ
4β+2ε+2
j exp

2TαM1λ
β
j

α

 !
f ,wj

� �2
:

ð39Þ

Let us choose 0 < ε < γ − β. Then, we follow from (33)
and the latter equality that
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D2k k2 ≤ CM2
1

Tα − tα

α

	 
2
Cεj j2 1 − βð Þ2ε 〠

j∈A1

λ4β+2ε+2j

� exp 2TαM1λ
β
j

α

 !
f ,wj

� �2
≤ CM2

1
Tα − tα

α

	 
2
Cεj j2 1 − βð Þ2ε 〠

j∈A1

λ
2β+2γ2
j

� exp 2TαM1λ
β
j

α

 !
f ,wj

� �2
= CM2

1
Tα − tα

α

	 
2
Cεj j2 1 − βð Þ2ε fk k2Xβ+γ,α Ωð Þ:

ð40Þ

This above inequality together with (32) and (3) yields
that

e2ν t−Tð Þ vα,β :,tð Þ−wα :,tð Þ�� ��2
H1 Ωð Þ

≤ 2e2ν t−Tð Þ D1k k2H1 Ωð Þ + 2e2ν t−Tð Þ D2k k2H1 Ωð Þ

≤ 2K2
b fk k2Xβ,α Ωð Þe

2ν t−Tð Þ
ðTα/α

tα/α
vα,β :,sð Þ−wα :,sð Þ�� ��2

H1 Ωð Þds

+ 2CM2
1e

2ν t−Tð Þ Tα − tα

α

	 
2
Cεj j2 1 − βð Þ2ε fk k2Xβ+γ,α Ωð Þ:

ð41Þ

It is easy to get that

e2ν t−Tð Þ
ðTα/α

tα/α
vα,β :,sð Þ−wα :,sð Þ�� ��2

H1 Ωð Þds

=
ðTα/α

tα/α
e2ν t−sð Þe2ν s−Tð Þ vα,β :,sð Þ−wα :,sð Þ�� ��2

H1 Ωð Þds

≤
ðTα/α

tα/α
e2ν t−sð Þds

	 

vα,β −wα

�� ��2
L∞ν 0,T ;H1 Ωð Þð Þ:

ð42Þ

It follows from the inequality

e−z ≤ Cδz
−δ, 0 < δ < 1, ð43Þ

we get

ðTα/α

tα/α
e2ν t−sð Þds ≤ Cδj j2ν−2δ

ðTα/α

tα/α
s − tð Þ−δds: ð44Þ

The inequality ða + bÞα ≤ aα + bα leads to

ðTα/α

tα/α
s − tð Þ−δds = Tα/α − tð Þ1−δ − tα/α − tð Þ1−δ

1 − δ

≤
Tα/α − tα/αð Þ1−δ

1 − δ
≤

Tα 1−δð Þ

α1−δ 1 − δð Þ ,
ð45Þ

which allows us to get immediately that

ðTα/α

tα/α
e2ν t−sð Þds ≤

Tα 1−δð Þ Cδj j2ν−2δ
α1−δ 1 − δð Þ · ð46Þ

It follows from (41) and (42) that for any t ∈ ½0, T�

e2ν t−Tð Þ vα,β :,tð Þ−wα :,tð Þ�� ��2
H1 Ωð Þ

≤ 2K2
b fk k2Xβ,α Ωð Þ

Tα 1−δð Þ Cδj j2ν−2δ
α1−δ 1 − δð Þ vα,β −wα

�� ��2
L∞ν 0,T ;H1 Ωð Þð Þ

+ 2CM2
1

Tα

α

	 
2
Cεj j2 1 − βð Þ2ε fk k2Xβ+γ,α Ωð Þ:

ð47Þ

Since the right-hand side of (47) is independent of t, we
deduce that

vα,β −wα

�� ��2
L∞ν 0,T ;H1 Ωð Þð Þ

≤ 2K2
b fk k2Xβ,α Ωð Þ

Tα 1−δð Þ Cδj j2ν−2δ
α1−δ 1 − δð Þ vα,β −wα

�� ��2
L∞ν 0,T ;H1 Ωð Þð Þ

+ 2CM2
1

Tα

α

	 
2
Cεj j2 1 − βð Þ2ε fk k2Xβ+γ,α Ωð Þ:

ð48Þ

Then, we find that

vα,β −wα

�� ��2
L∞ν0 0,T ;H1 Ωð Þð Þ

≤
2CM2

1 Tα/αð Þ2 Cεj j2 1 − βð Þ2ε fk k2Xβ+γ,α Ωð Þ

1 − 2K2
b fk k2Xβ,α Ωð Þ Tα 1−δð Þ Cδj j2ν−2δ0 /α1−δ 1 − δð Þ

�  : ð49Þ

☐

4. Backward Problem for Inhomogeneous Case

In this section, we consider the final value problem for homo-
geneous equation as follows:

∂α

∂tα
u x, tð Þ + B ∇uk kL2ð Þ −Δð Þβu x, tð Þ = F x, tð Þ, x ∈Ω, t ∈ 0, Tð Þ,

u x, tð Þ = 0, x ∈ ∂Ω, t ∈ 0, Tð Þ,
u x, Tð Þ = 0, x ∈Ω,

8>>><
>>>: ð50Þ
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where F is defined later.

4.1. Existence and Uniqueness of the Mild Solution. In this
subsection, we state the existence and uniqueness of the mild
solution. In order to give the main results, we require the
condition F which belongs to the space L2pð0, T ; Xβ, αðΩÞÞ.

Theorem 6. Let 0 < β ≤ 1 and F be the source function that
belongs to L2pð0, T ; Xβ, αðΩÞÞ for any 1 < p < 1/ð1 − αÞ. Let
B be the functions which satisfy M0 ≤ BðzÞ ≤M1, z ∈ ½0, T�
and

B z1ð Þ − B z2ð Þj j ≤ Kb z1 − z2j j, z1, z2 ∈ℝ: ð51Þ

Then, Problem (50) has a unique mild solution u ∈ L∞μ0 ð0
, T ;H1ðΩÞÞ, where μ0 is small enough. The function u satisfies
that

u x, tð Þ = −〠
∞

j=1

	ðT
t
sα−1 exp

ðsα/α
tα/α

λ
β
j B ∇u :,rð Þk kL2
� �

dr
	 


� F :,sð Þ,wj

� �
ds


wj:

ð52Þ

Furthermore, this solution is not stable in the L2 norm.

Proof. By a simple calculation, we get the following equality:

v :,tð Þ,wj

� �
= exp −

ðtα/α
0

λ
β
j B ∇v :,sð Þk kL2
� �

ds
	 


u :,0ð Þ,wj

� �
+
ðt
0
sα−1 exp −

ðtα/α
sα/α

λ
β
j B ∇v :,rð Þk kL2
� �

dr
	 


� F :,sð Þ,wj

� �
ds:

ð53Þ

By letting t = T and noting that vðx, TÞ = 0, we find that

exp −
ðTα/α

0
λ
β
j B ∇v :,sð Þk kL2
� �

ds
	 


u :,0ð Þ,wj

� �
+
ðT
0
sα−1 exp −

ðTα/α

sα/α
λ
β
j B ∇v :,rð Þk kL2
� �

dr
	 


� F :,sð Þ,wj

� �
ds = 0:

ð54Þ

Therefore, we obtain

u :,0ð Þ,wj

� �
= −
ðT
0
sα−1 exp

ðsα/α
0

λ
β
j B ∇v :,rð Þk kL2
� �

dr
	 


� F :,sð Þ,wj

� �
ds:

ð55Þ

Combining (53) and (55), we deduce that

v :,tð Þ,wj

� �
=
ðt
0
sα−1 exp −

ðtα/α
sα/α

λ
β
j B ∇v :,rð Þk kL2
� �

dr
	 


� F :,sð Þ,wj

� �
ds −

ðT
0
sα−1 exp

� −
ðtα/α
sα/α

λ
β
j B ∇v :,rð Þk kL2
� �

dr
	 


F :,sð Þ,wj

� �
ds

= −
ðT
t
sα−1 exp

ðsα/α
tα/α

λ
β
j B ∇v :,rð Þk kL2
� �

dr
	 


� F :,sð Þ,wj

� ���ds:
ð56Þ

Let us denote by L∞μ ð0, T ; VÞ the functional subspace of
L∞ð0, T ; VÞ corresponding to the norm

gk kL∞μ 0,T ;Vð Þ ≔ max
0≤t≤T

exp μ t−Tð Þð Þg :,tð Þk kV ,
 ∀g ∈ L∞μ 0, T ; Vð Þ,

ð57Þ

where

V = μ ∈ℝ, g ∈ L2 Ωð Þ, 〠
∞

j=1
exp μ t − Tð Þð Þ g,wj

� �2<∞
( )

·

ð58Þ

Set the following function:

P v tð Þ = −〠
∞

j=1

	ðT
t
sα−1 exp

ðsα/α
tα/α

λ
β
j B ∇v :,rð Þk kL2
� �

dr
	 


� F :,sð Þ,wj

� �
ds


wj,

ð59Þ

and we let

M s, t, j,wð Þ = exp
ðsα/α
tα/α

λ
β
j B ∇w :,rð Þk kL2
� �

dr
	 


: ð60Þ

So, using Parseval’s equality, we get that

Pw1 −Pw2k k2H1 Ωð Þ

= 〠
∞

j=1
λj

	ðT
t
sα−1 M s, t, j,w1ð Þð

−M s, t, j,w2ð ÞÞ F :,sð Þ,wj

� �
ds

2

≤ 〠
∞

j=1
λj

ðT
t
sα−1ds

	 
	ðt
0
sα−1 M s, t, j,w1ð Þð

−M s, t, j,w2ð ÞÞ2 F :,sð Þ,wj

� �2ds
:

ð61Þ
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Using the inequality jea − ebj ≤ ja − bj max ðea, ebÞ, we
continue to treat the term Mðs, t, j,w1Þ −Mðs, t, j,w2Þ as
follows:

M s, t, j,w1ð Þ −M s, t, j,w2ð Þj j

= exp
ðsα/α
tα/α

λ
β
j B ∇w1 :,rð Þk kL2
� �

dr
	 
����

− exp
ðsα/α
tα/α

λ
β
j B ∇w2 :,rð Þk kL2
� �

dr
	 
����

≤ exp
TαM1λ

β
j

α

 !
Kbλ

β
j

ðsα/α
tα/α

u :,rð Þ−v :,rð Þk kH1dr:

ð62Þ

Therefore, applying the Hölder inequality, we get

M s, t, j, v1ð Þ −M s, t, j, v2ð Þj j2

≤ exp
2TαM1λ

β
j

α

 !
Kbj j2λ2βj

T2α

α2

�
ðsα/α
tα/α

v1 :,rð Þ−v2 :,rð Þk k2H1 Ωð Þds:

ð63Þ

Inserting (61) and (63) yields the following inequality:

exp 2μ t − Tð Þð Þ P v1 −P v2k k2H1 Ωð Þ

≤ Kbj j2 T
3α

α3

ðsα/α
tα/α

e2μ t−sð Þe2μ s−Tð Þ v1 :,sð Þ−v2 :,sð Þk kL2ds
	 


×
ðsα/α
tα/α

sα−1 〠
∞

j=1
λ2β+2j exp

2TαM1λ
β
j

α

 !
F :,sð Þ,wj

� �2 !
ds

 !

≤
K2

bT
3α

3α

ðsα/α
tα/α

exp 2μ t − sð Þdsð
	 


× max
0≤s≤T

exp 2μ s−Tð Þð Þ v1 :,sð Þ−v2 :,sð Þk k2H1 Ωð Þ
� 

�
ðt
0
sα−1 F :,sð Þk k2Xβ,α Ωð Þds

	 

:

ð64Þ

Take any δ ∈ ð0, 1Þ. By a similar explanation as (46), we
find that

ðsα/α
tα/α

exp 2μ t − sð Þdsð ≤
Tα 1−δð Þ Cδj j2μ−2δ
α1−δ 1 − δð Þ : ð65Þ

By applying the Hölder inequality, we also obtain that

ðt
0
sα−1 F :,sð Þk k2Xβ,α Ωð Þds

≤
ðt
0
s α−1ð Þp∗ds

	 
1/p∗ ðt
0
F :,sð Þk k2pXβ,α Ωð Þds

	 
1/p

≤
p − 1
αp − 1T

αp−1ð Þ/ p−1ð Þ Fk k2L2p 0,T ;Xβ,α Ωð Þð Þ:

ð66Þ

From some observations as above, we deduce that

exp 2μ t − Tð Þð Þ P v1
−P v2

�� ��2
H1 Ωð Þ

≤
K2

bT
3α

3α
Tα 1−δð Þ Cδj j2μ−2δ
α1−δ 1 − δð Þ

p − 1
αp − 1T

αp−1ð Þ/ p−1ð Þ

� Fk k2L2p 0,T ;Xβ,α Ωð Þð Þ v1 − v2k k2L∞μ 0,T ;H1 Ωð Þð Þ:

ð67Þ

Since the right-hand side of the latter estimate is indepen-
dent of t, we find that

P v1
−P v2

�� ��2
L∞μ 0,T ;H1 Ωð Þð Þ

≤
K2

bT
3α

3α
Tα 1−δð Þ Cδj j2μ−2δ
α1−δ 1 − δð Þ

p − 1
αp − 1T

αp−1ð Þ/ p−1ð Þ

� Fk k2L2p 0,T ;Xβ,α Ωð Þð Þ v1 − v2k k2L∞μ 0,T ;H1 Ωð Þð Þ:

ð68Þ

Let us choose μ0 such that

μ2δ0 > K2
bT

3α

3α
Tα 1−δð Þ Cδj j2
α1−δ 1 − δð Þ

p − 1
αp − 1T

αp−1ð Þ/ p−1ð Þ Fk k2L2p 0,T ;Xβ,α Ωð Þð Þ:

ð69Þ

Then, we can conclude that P is a contraction mapping
in the space L∞μ0 ð0, T ;H1ðΩÞÞ. Next, we continue to show

that if v ∈ L∞μ0 ð0, T ;H1ðΩÞÞ, then P v ∈ L∞μ0 ð0, T ;H1ðΩÞÞ. If
v1 = 0, then

P v1 tð Þ = 〠
∞

j=1

ðT
t
sα−1 F :,sð Þ,wj

� �
ds

	 

wj: ð70Þ

Hence, from Parseval’s equality, we find that

P v1k k2H1 Ωð Þ = 〠
∞

j=1
λ2j

ðT
t
sα−1 F :,sð Þ,wj

� �
ds

	 
2

≤
ðT
t
sα−1ds

	 

〠
∞

j=1

ðT
t
sα−1λ2j F :,sð Þ,wj

� �2ds
 !

≤
Tα

α

ðT
t
sα−1 F :,sð Þk k2H1 Ωð Þds

≤
Tα

α

ðt
0
s α−1ð Þp∗ds

	 
1/p∗ ðt
0
F :,sð Þk k2pH1 Ωð Þds

	 
1/p

≤
p − 1
αp − 1T

αp−1ð Þ/ p−1ð Þ Fk k2L2p 0,T ;H1 Ωð Þð Þ:

ð71Þ

This says thatP v1 belongs to the space L
∞
μ0
ð0, T ;H1ðΩÞÞ.

Using (68), we arrive at the confirmation that P v belongs
to L∞μ0 ð0, T ;H1ðΩÞÞ if v ∈ L∞μ0 ð0, T ;H1ðΩÞÞ. For any m ∈
ℕ, let um be the function that satisfies the following integral
equation:
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um x, tð Þ = −〠
∞

j=1

	ðT
t
sα−1 exp

ðsα/α
tα/α

λ
β
j B ∇um :,rð Þk kL2
� �

dr
	 


� F :,sð Þ,wj

� �
ds


wj xð Þ:

ð72Þ

Let us assume that

Fm x, tð Þ = 1
λm

〠
∞

j=1
wj xð Þ: ð73Þ

It is not difficult to verify that Fm ∈ L∞ð0, T ;Xβ,αðΩÞÞ,
so we get that Fm ∈ L2pð0, T ;Xβ,αðΩÞÞ.

Using Theorem 6, we conclude that equation (72) has
a unique solution um ∈ L∞ð0, T ;H1ðΩÞÞ. By the fact that
BðzÞ ≥M0∀z ∈ℝ, we obtain the following estimate:

um ·, tð Þk k2L2 Ωð Þ =
1
λ2m

ðT
t
sα−1 exp

	 ðsα/α
tα/α

λβj B ∇um :,rð Þk kL2
� �

dr
	 
2

≥

Ð T
t s

α−1 exp M0λ
β
j sα − tαð Þ/αð Þ

� 
ds

� 2
λ2m

:

ð74Þ

The estimate is true for all t ∈ ½0, T�, so it is easy to see
that

umk kL∞ 0,T ;L2 Ωð Þð Þ ≥
Ð T
0 s

α−1 exp M0λ
β
j sα/αð Þ

� 
ds

λm

≥
exp λβmM0 Tα/αð Þ

� 
M0λ

β+1
m

:

ð75Þ

When m tends to +∞, we can check that k f mkL2ðΩÞ
= 1/λm go to zero when m⟶ +∞ and

lim
m⟶+∞

umk kC 0,T½ �;L2 Ωð Þð Þ

= lim
m⟶+∞

exp λβmM0 Tα/αð Þ
� 
M0λ

β+1
m

= +∞:

ð76Þ

This shows that Problem (50) is ill-posed in the sense
of Hadamard in the L2-norm. ☐

4.2. Fourier Truncation Method. In this section, we will pro-
vide a regularized solution and solve the problem by the Fou-
rier truncation method as follows:

uN ,δ x, tð Þ = −〠
N

j=1

	ðT
t
sα−1 exp

ðsα/α
tα/α

λ
β
j B ∇uN ,δ :,rð Þ

��� ���
L2

� 
dr

	 


� Fδ :,sð Þ,wj

D E
ds


wj xð Þ:

ð77Þ

Here, N ≔NðδÞ goes to infinity as δ tends to zero which
is called a parameter regularization. The function F is dis-
turbed by the observed data Fδ ∈ L∞ð0, T ; L2ðΩÞÞ provided
by

Fδ − F
��� ���

L∞ 0,T ;L2 Ωð Þð Þ ≤ δ: ð78Þ

The main results of this subsection are given by the theo-
rem below.

Theorem 7. Let ν > 0 such that F belongs to the space L∞ð0
, T ;Xβ+ν,αðΩÞÞ. Let Fδ be as above. Let us assume that Prob-

lem (50) has a unique mild solution u ∈ L∞ð0, T ;DðAν+θÞÞ
for θ > 0. Let us choose N such that

lim
δ⟶0

λνN exp TαM1λ
β
N

α

 !
δ = 0, lim

δ⟶0
λN = +∞: ð79Þ

Here ν ≥ 1/2. Then, there exists a positive �μ large enough
such that Problem has a unique solution vN ,δ ∈ L∞�μ ð0, T ;
DðAνÞÞ. Moreover, we have the following estimate:

vN ,δ − u
��� ���2

L∞�μ 0,T ;D Aνð Þð Þ

≤
6T2α

α2
λ2νN exp 2TαM1λ

β
N

α

 !
δ2

+ 6λ−2θN uk k2L∞ 0,T ;D Aν+θð Þð Þ:

ð80Þ

Remark 8. Since λN ~N2/d , we can choose a natural num-
ber N such that

λN = α 1 − bð Þ log 1/bð Þ
TαM1

	 
1/β
: ð81Þ

Proof. Part 1: prove that the nonlinear integral equation
(77) has a unique mild solution.

Let any v ∈ Cð½0, T� ;H1ðΩÞÞ, we denote by the following
function

G vð Þ x, tð Þ = −〠
N

j=1

	ðT
t
sα−1 exp

ðsα/α
tα/α

λ
β
j B ∇v :,rð Þk kL2
� �

dr
	 


� Fδ :,sð Þ,wj

D E
ds


wj xð Þ:

ð82Þ
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By applying Parseval’s equality, we follow from (82) that

G v1ð Þ :,tð Þ−G v2ð Þ :,tð Þk k2D Aνð Þ

= 〠
N

j=1
λ2νj

	ðT
t
sα−1 M s, t, j, v1ð Þð

−M s, t, j,v2ð ÞÞ F :,sð Þ,wj

� �
ds

2

≤
Tα

α
λ2νN 〠

N

j=1

	ðt
0
sα−1 M s, t, j,w1ð Þð

−M s, t, j,w2ð ÞÞ2 Fδ :,sð Þ,wj

D E2
ds


:

ð83Þ

If 1 ≤ j ≤N , then we have in view of (63) that

M s, t, j, v1ð Þ −M s, t, j, v2ð Þj j2

≤ exp
2TαM1λ

β
j

α

 !
Kbj j2λ2βj

T2α

α2

ðsα/α
tα/α

v1 :,rð Þ−v2 :,rð Þk k2H1 Ωð Þds

≤ exp 2TαM1λ
β
N

α

 !
λ2βN K2

b
T2α

α2

ðsα/α
tα/α

v1 :,rð Þ−v2 :,rð Þk k2H1 Ωð Þds:

ð84Þ

The above two observations (65) lead to

exp 2μ t−Tð Þð Þ G v1ð Þ :,tð Þ−G v2ð Þ :,tð Þk k2D Aνð Þ

≤ Kbj j2 T
3α

α3
exp 2TαM1λ

β
N

α

 !
λ
2β+2ν
N

�
ðsα/α
tα/α

e2μ t−sð Þe2μ s−Tð Þ v1 :,sð Þ−v2 :,sð Þk kH1ds
	 


�
ðsα/α
tα/α

sα−1 〠
∞

j=1
Fδ :,sð Þ,wj

D E2 !
ds

 !

≤ Kbj j2 T
3α

α3
exp 2TαM1λ

β
N

α

 !
λ
2β+2ν
N

Tα 1−δð Þ Cδj j2μ−2δ
α1−δ 1 − δð Þ

� max
0≤s≤T

exp 2μ s−Tð Þð Þ v1 :,sð Þ−v2 :,sð Þk k2H1 Ωð Þ
� 
�
ðt
0
sα−1 Fδ :,sð Þ
��� ���2

L2 Ωð Þ
ds

	 


≤ Kbj j2 T
4α

α4
exp 2TαM1λ

β
N

α

 !
λ
2β+2ν
N

Tα 1−δð Þ Cδj j2μ−2δ
α1−δ 1 − δð Þ

� Fδ
��� ���2

L∞ 0,T ;L2 Ωð Þð Þ v1 − v2k k2L∞ 0,T ;H1 Ωð Þð Þ:

ð85Þ

Because the right-hand side of the latter estimate is inde-
pendent of t and noting the Sobolev embedding DðAνÞ↪
H1ðΩÞ, we arrive at

G v1ð Þ −G v2ð Þk k2L∞μ 0,T ;D Aνð Þð Þ

≤ Kbj j2 T
4α

α4
exp 2TαM1λ

β
N

α

 !
λ2β+2νN

Tα 1−δð Þ Cδj j2μ−2δ
α1−δ 1 − δð Þ

� Fδ
��� ���2

L∞ 0,T ;L2 Ωð Þð Þ v1 − v2k k2L∞μ 0,T ;D Aνð Þð Þ:

ð86Þ

Let us choose μ1 such that

Kbj j2 T
4α

α4
exp 2TαM1λ

β
N

α

 !
λ
2β+2ν
N

Tα 1−δð Þ Cδj j2
α1−δ 1 − δð Þ

� Fδ
��� ���2

L∞ 0,T ;L2 Ωð Þð Þ < μ2δ1 :

ð87Þ

It is easy to see that G is a contracting mapping on the
space L∞μ1 ð0, T ;DðAνÞÞ. Therefore, we can conclude that

there exists a uniqueness solution vN ,δ for Problem (77).
Next, we continue to give the upper bound of the term

kvN ,δð·, tÞ − uð·, tÞk2DðAνÞ. First, we have

vN ,δ x, tð Þ − u x, tð Þ

= −〠
N

j=1

	ðT
t
sα−1 exp

ðsα/α
tα/α

λ
β
j B ∇vN ,δ :,rð Þ

��� ���
L2

� 
dr

	 


� Fδ :,sð Þ−F :,sð Þ,wj

D E
ds


wj xð Þ

+ 〠
N

j=1

	ðT
t
sα−1
�
M s, t, j, vN ,δ
� 

−M s, t, j,uð Þ


F :,sð Þ,wj

� �
ds


wj xð Þ

+ 〠
N

j=1

	ðT
t
sα−1 exp

ðsα/α
tα/α

λ
β
j B ∇u :,rð Þk kL2
� �

dr
	 


� F :,sð Þ,wj

� �
ds


wj:

ð88Þ

The above equality and Parseval’s equality allow us to get
that

vN ,δ ·, tð Þ − u ·, tð Þ
��� ���2

D Aνð Þ

≤ 3〠N

j=1λ
2ν
j

ðT
t
sα−1 exp

ðsα/α
tα/α

λ
β
j B ∇vN ,δ :,rð Þ

��� ���
L2

� 
dr

	 

Fδ :,sð Þ−F :,sð Þ,wj

D E
ds

	 
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
J1

+ 3〠N

j=1λ
2ν
j

ðT
t
sα−1 M s, t, j, vN ,δ

� 
−M s, t, j,uð Þ

� 
F :,sð Þ,wj

� �
ds

	 
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
J2

+ 3〠∞
j=N+1λ

2ν
j

ðT
t
sα−1 exp

ðsα/α
tα/α

λ
β
j B ∇u :,rð Þk kL2
� �

dr
	 


F :,sð Þ,wj

� �
ds

	 
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
J3

:

ð89Þ

10 Journal of Function Spaces



Since the condition BðzÞ ≤M1∀z ∈ℝ and applying
Hölder inequality, the quantity J1 is bounded by

J1 ≤ 3λ2νN
ðT
t
sα−1

	 

〠
N

j=1

ðT
t
sα−1 exp

	
2
ðsα/α
tα/α

λβj B ∇vN ,δ :,rð Þ
��� ���

L2

� 
dr

	 


� Fδ :,sð Þ−F :,sð Þ,wj

D E2
ds

≤
3Tα

α
λ2νN exp 2TαM1λ

β
N

α

 ! ðt
0
sα−1 Fδ :,sð Þ − F
��� ���2

L2 Ωð Þ
ds

	 


≤
3Tα

α
λ2νN exp 2TαM1λ

β
N

α

 ! ðT
t
sα−1ds

	 

Fδ − F
��� ���2

L∞ 0,T ;L2 Ωð Þð Þ

≤
3T2α

α2
λ2νN exp 2TαM1λ

β
N

α

 !
δ2,

ð90Þ

where we have used the fact that kFδ − FkL∞ð0,T ;L2ðΩÞÞ ≤ δ.
The quantity J2 is estimated as follows:

exp 2μ t − Tð Þð ÞJ2
≤ 3 exp 2μ t − Tð Þð Þ

ðT
t
sα−1ds

	 


�
"
〠
N

j=1

ðT
t
sα−1λ2νj M s, t, j, vN ,δ

� �

−M s, t, j,uð Þ
2

F :,sð Þ,wj

� �2ds
#
:

ð91Þ

We have in view of (63) that

M s, t, j, vN ,δ
� 

−M s, t, j, uð Þ
��� ���2

≤ exp
2TαM1λ

β
j

α

 !
λ
2β
j
K2

bT
2α

α2

�
ðsα/α
tα/α

vN ,δ :,rð Þ−u :,rð Þ
��� ���2

D Aνð Þ
dr:

ð92Þ

This leads to the following estimate:

 exp 2μ t � Tð Þð ÞJ2

  ≤
3K2

bT
3α

α3
∫sα/α
tα/αe

2μ t�sð Þ

 ⋅e2μ s�Tð Þ vN ,δ :, rð Þ � u :, rð Þ
��� ���2

D Aνð Þ

 ⋅dr∫T0 s
α�1 〠

∞

j=1
λ2β+2νj exp

2TαM1λ
β
j

α

 !
F :, sð Þ,wj

� 2
 !

ds

  ≤
3K2

bT
4α

α4
Fk k2L∞ 0,T ;Xβ+ν,α Ωð Þð Þ

Tα 1�δð Þ Cδj j2μ�2δ

α1�δ 1� δð Þ
 ⋅ vN ,δ � u
��� ���

L∞μ 0,T ;D Aνð Þð Þ
:

ð93Þ

The term J3 is estimated as follows:

J3 = 3 〠
∞

j=N+1
λ2νj u :,tð Þ,wj

� �2
= 3 〠

∞

j=N+1
λ−2θj λ2ν+2θj u :,tð Þ,wj

� �2
≤ 3λ−2θN uk k2L∞ 0,T ;D Aν+θð Þð Þ:

ð94Þ

Combining (89), (90), (93), and (94), we find that

exp 2μ t − Tð Þð Þ vN ,δ ·, tð Þ − u ·, tð Þ
��� ���2

D Aνð Þ
≤ exp 2μ t − Tð Þð Þ J1 + J2 + J3ð Þ

≤
3T2α

α2
λ2νN exp 2TαM1λ

β
N

α

 !
δ2 + 3K2

bT
4α

α4

� Fk k2L∞ 0,T ;Xβ+ν,α Ωð Þð Þ
Tα 1−δð Þ Cδj j2μ−2δ
α1−δ 1 − δð Þ

� vN ,δ − u
��� ���

L∞μ 0,T ;D Aνð Þð Þ
+ 3λ−2θN uk k2L∞ 0,T ;D Aν+θð Þð Þ:

ð95Þ

We choose �μ such that both the following inequalities are
satisfied:

3K2
bT

4α

α4
Fk k2L∞ 0,T ;Xβ+ν,α Ωð Þð Þ

Tα 1−δð Þ Cδj j2
α1−δ 1 − δð Þ ≤

1
2 �μ

2δ,

Kbj j2 T
4α

α4
exp 2TαM1λ

β
N

α

 !
λ
2β+2ν
N

Tα 1−δð Þ Cδj j2
α1−δ 1 − δð Þ

� Fδ
��� ���2

L∞ 0,T ;L2 Ωð Þð Þ < �μ2δ:

ð96Þ

Some observations above give us the following confirma-
tion:

vN ,δ − u
��� ���2

L∞�μ 0,T ;D Aνð Þð Þ

≤
3T2α/α2
� �

λ2νN exp 2TαM1λ
β
N /α

� 
δ2 + 3λ−2θN uk k2L∞ 0,T ;D Aν+θð Þð Þ

1 − 3K2
bT

4α/α4
� �

Fk k2L∞ 0,T ;Xβ+ν,α Ωð Þð Þ Tα 1−δð Þ Cδj j2μ−2δ/α1−δ 1 − δð Þ
�  :

ð97Þ

Since the fact that

1 − 3K2
bT

4α

α4
Fk k2L∞ 0,T ;Xβ+ν,α Ωð Þð Þ

Tα 1−δð Þ Cδj j2μ−2δ
α1−δ 1 − δð Þ ≥

1
2 , ð98Þ

We easily obtain the desired result (80). ☐
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Crimean-Congo hemorrhagic fever is a common disease between humans and animals that is transmitted to humans through
infected ticks, contact with infected animals, and infected humans. In this paper, we present a boxed model for the transmission
of Crimean-Congo fever virus. With the help of the fixed-point theory, our proposed system model is investigated in detail to
prove its unique solution. Given that the Caputo fractional-order derivative preserves the system’s historical memory, we use
this fractional derivative in our modeling. The equilibrium points of the proposed system and their stability conditions are
determined. Using the Euler method for the Caputo fractional-order derivative, we calculate the approximate solutions of the
fractional system, and then, we present a numerical simulation for the transmission of Crimean-Congo hemorrhagic fever.

1. Introduction

Crimean-Congo hemorrhagic fever is a common disease
between human and livestock. The virus that causes this dis-
ease is one of the most important Arthropod-Borne viruses
of the Bunyaviridae family, and it is a genus of Nairovirus
that can cause severe and deadly disease in humans, but it
is not associated with any specific clinical sign in livestock.
The most common vector is a tick called Hyalomma, but it
is also transmitted by other ticks [1]. The average mortality
rate among infected people is 30 percent [2].

The first known case of the disease was recorded in 1942
in the Crimean region of the former Soviet Union. The virus
that caused the disease was also isolated from the blood of a
feverish patient in 1956 in the Democratic Republic of the

Congo. The relationship between these two reported places
of disease and the attention to the main symptoms of the dis-
ease (fever and bleeding) has led to the choice of the current
name of the disease (Crimean-Congo hemorrhagic fever)
(see [3, 4]). The disease has been reported in more than 31
countries in Africa, Asia, and Eastern Europe [5].

Numerous serological studies have confirmed infections
in animals, especially domestic animals such as cattle, sheep,
and goats that may occur as feverish reactions. Infection in
animals occurs through the bite of ticks infected with the
Crimean-Congo hemorrhagic fever virus [6]. Crimean-
Congo hemorrhagic fever virus can also infect a wide range
of wild animals. Among wild mammals, rabbits have been
an important reservoir of the virus in the European part of
the former Soviet Union and Bulgaria. In Asia, hedgehogs,
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rats, and particular species of rabbits are the reservoir of this
virus [7].

The most important ways of getting infected with the
Crimean-Congo fever virus are as follows: the person is get-
ting bitten by infected ticks, the contact of scratched or
injured skin of a person’s body with the contents of infected
crushed ticks, the contact of damaged skin or human mucosa
with infected animal blood or secretions, and the contact
with blood and other secretions of the infected person, as well
as the contact with infected surgical instruments [8–10].
Because Crimean-Congo hemorrhagic fever is more likely
to come from the contact with an infected animal or human
or bite by infected ticks are transmitted to humans so
hunters, farmers, ranchers, health personnel, and those con-
tact with infected animals and humans due to occupations
more likely to be infected.

Clinical signs and the course of this disease include four
stages:

(i) Incubation Period: After a tick bite, the incubation
period usually lasts 1-3 days and reaches a maxi-
mum of 1 day. The incubation period following the
contact with infected tissues or blood is usually 5-6
days, and the maximum time is 13 days [11]

(ii) Prehaemorrhagy: In 80 percent of cases, Crimean-
Congo hemorrhagic fever infections are asymptom-
atic. People in whom the disease has clinical manifes-
tations, the onset of symptoms is sudden, and it lasts
about 1 up to 7 days (average 3 days). The initial
symptoms are severe headache, fever, chills, joint
pain, muscle cramps, dizziness, pain and stiffness of
the neck, eye pain, and fear of light. Nausea, vomiting,
diarrhea, abdominal pain, loss of appetite, swelling
and redness of the face, decreased heart rate, and
low blood pressure have also been reported [12]

(iii) Haemorrhagy: The bleeding phase is short and usu-
ally starts on days 3 to 5 and lasts 1 to 11 days (aver-
age 4 days). Bleeding in the mucosa, hematoma,
bleeding gums and nose, bleeding from the uterus,
bloody sputum, and bleeding from the conjunctiva
and ears are the symptoms of the disease at this
stage. Bleeding from various organs worsens the
patient’s condition so that the patient may die in
the second week of severe bleeding, intravascular
coagulation, liver failure, and dehydration [13]

(iv) Convalescence Period: Between days 7 and 20, the
fever stops, and then the bleeding stops. From the
tenth day, when the skin lesions fade, patients grad-
ually recover. Most patients are discharged from the
hospital in the third to sixth week after the onset of
illness when blood and urine tests return to be nor-
mal [11]

Biological and mathematical researchers have conducted
research studies to model the transmission of Crimean-
Congo fever. Kashkynbayev et al. have used an SI Model to
study tick-borne diseases, including Crimean-Congo fever

[14]. Ergena et al. have used an SIR Model to study the
dynamic of tuberculosis and Crimean-Congo fever as epi-
demic diseases [15]. Switkes et al. have used the deterministic
system of nonlinear differential equations to model the trans-
mission of Crimean-Congo haemorrhagic fever with host
immunity [16].

In recent years, extensive studies [17–19] have been con-
ducted on the mathematical analysis of fractional derivatives
and integrals. The fractional-order derivative is nonlocal and
includes the historical and long-term memory effect of the
system, and this is one of its most important advantages over
the integer-order derivative, which helps to model natural
phenomena better [20–23].

By the expansion of fractional differential calculus,
researchers in many branches of science have turned to use
the fractional differential equation system in their research.
Mathematical modeling of the spread of viruses and the
transmission of infectious diseases using systems of frac-
tional differential equations are considered as one of the
topics that has attracted the attention of researchers in recent
decades [24]. Almeida et al. [25] proposed an epidemiologial
MSEIR model formulated in the sense of Caputo fractional
derivative. Baleanu et al. [26, 27] formulated new models of
the HIV-1 infection of CD4+ T-cell and human liver via
Caputo-Fabrizio fractional derivative. In addition, Rezapour
et al. [28, 29] introduced new models for the spread of
AH1N1 influenza and the transmission of Zika virus between
humans and mosquitoes via Caputo-Fabrizio and Cuputo
fractional derivatives, respectively. Singh analyzed the frac-
tional blood alcohol model with a composite fractional deriv-
ative [30], and Singh et al. investigated the fractional fish
farm model and fractional model of guava for biological pest
control, [31, 32]. Also, Ghanbari et al. presented an efficient
numerical method for the fractional model of allelopathic
stimulatory phytoplankton species [33].

In this article, we model the complete Crimean-Congo
fever transmission cycle between humans, animals, and ticks,
which in previous articles, researchers have only modeled a
part of the cycle. Due to the effect of fractional derivative
memory and good results obtained in recent years from frac-
tional mathematical modeling, in this study, we use the
fractional-order differential equation system to model the
Crimean-Congo fever transmission.

The structure of this paper is organized as follows: In
Section 2, some basic definitions and concepts of fractional
calculus are recalled. A fractional-order mathematical model
for the Crimean-Congo fever transmission cycle is formu-
lated in Section 3. In Section 4, with the help of the fixed-
point theory, our proposed system (10) is proven to have a
unique solution. The approximate solution of the fractional
differential equation system (10) is obtained numerically,
and a numerical simulation for the transmission of the
Crimean-Congo fever virus is also provided in Section 5. In
Section 6, we conclude our research work.

2. Preliminary Results and Definitions

In the current section, we recall the two definitions of the
fractional-order derivative and corresponding integral of
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each one. A concept of the Laplace transform of fractional
derivative is also discussed.

Definition 1 [34]. For an integrable function w, the Caputo
derivative of fractional order ϑ ∈ ð0, 1Þ is given by

CD
ϑ
w tð Þ = 1

Γ m − ϑð Þ
ðt
0

w mð Þ υð Þ
t − υð Þϑ−m+1 dυ, m ϑ½ � + 1: ð1Þ

The Gamma function, denoted by Γð:Þ, is defined as:

Γ ϑð Þ = lim
m⟶∞

m!mϑ

ϑ ϑ + 1ð Þ ϑ + 2ð Þ⋯ ϑ +mð Þ : ð2Þ

Also, the corresponding fractional integral of order ϑ
with Re ðϑÞ > 0 is given by

CI
ϑ
w tð Þ = 1

Γ ϑð Þ
ðt
0
t − υð Þϑ−1w υð Þdυ: ð3Þ

Definition 2 ([35, 36]). For w ∈H1ðc, dÞ and d > c, the
Caputo-Fabrizio derivative of fractional order ϑ ∈ ð0, 1Þ for
w is given by

CFD
ϑ
w tð Þ = M ϑð Þ

1 − ϑð Þ
ðt
c
exp −ϑ

1 − ϑ
t − υð Þ

� �
w′ υð Þdυ, ð4Þ

where t ≥ 0, MðϑÞ is a normalization function that depends
on ϑ andMð0Þ =Mð1Þ = 1. If w ∉H1ðc, dÞ and 0 < ϑ < 1, this
derivative for w ∈ L1ð−∞,dÞ as given by

CFD
ϑ
w tð Þ = ϑM ϑð Þ

1−ϑð Þ
ðd
−∞

w tð Þ −w υð Þð Þ exp −ϑ
1 − ϑ

t − υð Þ
� �

dυ:

ð5Þ

Also, the corresponding CF fractional integral is pre-
sented by

CFI
ϑ
w tð Þ = 2 1 − ϑð Þ

2 − ϑð ÞM ϑð Þw tð Þ + 2ϑ
2 − ϑð ÞM ϑð Þ

ðt
0
w υð Þdυ:

ð6Þ

The Laplace transform is one of the most important tools
in solving differential equations, which has different defini-
tions in fractional calculus. The next definition presents the
Laplace transform of the Caputo fractional-order derivative.

Definition 3 [34]. The Laplace transform of Caputo Frac-
tional differential operator of order ϑ is given by

L CD
ϑ
w tð Þ

h i
sð Þ = sϑLw tð Þ − 〠

m−1

i=0
sϑ−i−1w ið Þ 0ð Þ, m − 1 < ϑ ≤m ∈N:

ð7Þ

This can also be obtained in the following form:

L CD
ϑ
w tð Þ

h i
= smL w tð Þ½ � − sm−1w 0ð Þ − sm−1w′ 0ð Þ−⋯−w m−1ð Þ

sm−ϑ :

ð8Þ

3. Model Formulation

Mathematical models are considered as one of the most
important tools in the study of disease transmission. In this
section, we present a fractional-order mathematical model
for the Crimean-Congo fever transmission cycle.

Crimean-Congo haemorrhagic fever (CCHF) is a feverish
hemorrhagic disease that is mostly transmitted by ticks.
Although the virus is specific to animals, single infection,
and epidemic cases of CCHF also occurred in humans. To
model the transmission of this viral disease, we consider the
population of transmitting ticks Nk, the population of live-
stock and wild animals Nl, and the human population Nh.
We divide the tick population into two groups and denote
susceptible ticks with Sk and infected ticks with Ik. In the pre-
vious section, we have mentioned that livestock and some
wild animals can also be infected with this disease and be a
virus reservoir, which we divide into two groups, susceptible
group Sl and infected group Il. Like the previous two popula-
tions, we divide the human population into two susceptible
Sh and infected Ih groups. Susceptible ticks are infected
through infected ticks at the effective contact rate β1 and
through infected animals at the effective contact rate β2.
Infected ticks transmit the virus to susceptible animals at
the effective contact rate β3 when they feed on animal body.
Crimean-Congo fever virus is transmitted to humans in three
ways. The virus is transmitted to humans through infected
ticks at the effective contact rate β4, through the blood and
blood products of an infected animal at the effective contact
rate β5, and through the blood and bloodymucosa of infected
human at the effective contact rate β6. We also consider the
recruitment rate of ticks, animals, and humans as Λk,Λl,
and Λh, respectively. The natural mortality rates of ticks, ani-
mals, and humans are dk, dl, and dh, respectively.

Based on the provided explanations, we present the
Crimean-Congo fever transfer model with the system of dif-
ferential equations as follows:

dSk
dt

=Λk − β1Sk tð ÞIk tð Þ − β2Sk tð ÞIl tð Þ − dkSk tð Þ,
dIk
dt

= β1Sk tð ÞIk tð Þ + β2Sk tð ÞIl tð Þ − dkIk tð Þ,
dSl
dt

=Λl − β3Sl tð ÞIl tð Þ − dlSl tð Þ,
dIl
dt

= β3Sl tð ÞIl tð Þ − dlIl tð Þ,
dSh
dt

=Λh − β4Sh tð ÞIk tð Þ − β5Sh tð ÞIl tð Þ − β6Sh tð ÞIh tð Þ − dhSh tð Þ,
dIh
dt

= β4Sh tð ÞIk tð Þ + β5Sh tð ÞIl tð Þ + β6Sh tð ÞIh tð Þ − dhIh tð Þ,

0
BBBBBBBBBBBBBBBBBBBBB@

ð9Þ
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where all of the initial conditions Skð0Þ = S0k, Ikð0Þ = I0k, Slð
0Þ = S0l, Ilð0Þ = I0l, Shð0Þ = S0h, and Ihð0Þ = I0h are positive.

The fractional-order system (FDEs) is related to systems
with memory, history, or nonlocal effects which exist in the
many biological systems that show the realistic biphasic
decline behavior of infection or diseases but at a slower rate.
In the above integer-order system, since the internal memory
effects of the biological system of CCHF are not included, it is
better that we extend the proposed ordinary model to a frac-
tional model. In this alternative, the equality of the dimen-
sions of both sides of the equation is disturbed, and we use
an auxiliary parameter σ, with the dimension of sec., to solve
this problem ([37]). Thus, the fractional-order model for the
Crimean-Congo haemorrhagic fever (CCHF) is given as
follows:

σϑ−1CD
ϑ
t Sk tð Þ =Λk − β1Sk tð ÞIk tð Þ − β2Sk tð ÞIl tð Þ − dkSk tð Þ,

σϑ−1CD
ϑ
t Ik tð Þ = β1Sk tð ÞIk tð Þ + β2Sk tð ÞIl tð Þ − dkIk tð Þ,

σϑ−1CD
ϑ
t Sl tð Þ =Λl − β3Sl tð ÞIk tð Þ − dlSl tð Þ,

σϑ−1CD
ϑ

t Il tð Þ = β3Sl tð ÞIk tð Þ − dlIl tð Þ,
σϑ−1CD

ϑ
t Sh tð Þ =Λh − β4Sh tð ÞIk tð Þ − β5Sh tð ÞIl tð Þ − β6Sh tð ÞIh tð Þ − dhSh tð Þ,

σϑ−1CD
ϑ
t Ih tð Þ = β4Sh tð ÞIk tð Þ + β5Sh tð ÞIl tð Þ + β6Sh tð ÞIh tð Þ − dhIh tð Þ,

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð10Þ

where t ≥ 0 and 0 < ϑ < 1.

3.1. Nonnegative Solution. To show the nonnegativity of solu-
tions, we claim that M = fðSk, Ik, Sl, Il, Sh, IhÞ ∈ R+

6 : NkðtÞ ≤
ðΛk/dkÞ,NlðtÞ ≤ ðΛl/dlÞ,NhðtÞ ≤ ðΛh/dhÞg is the feasibility
region of system (10). To prove this claim, we consider the
following Lemma.

Lemma 4. The closed set M with respect to the fractional sys-
tem (10) is positively invariant.

Proof.We first add two relations in the system (10) to obtain
the fractional derivative of the total population of ticks. So,

σϑ−1CD
v
t Nk tð Þ =Λk − dkNk tð Þ, ð11Þ

where NkðtÞ = SkðtÞ + IkðtÞ. We apply the Laplace transform
to the parties of the above relation, then

Nk tð Þ =Nk 0ð ÞEϑ −dkσ
1−ϑtϑ

� �
+
ðt
0
Λkσ

1−ϑηϑ−1Eϑ,ϑ −dkσ
1−ηηϑ

� �
dη:

ð12Þ

In the above equation, Nkð0Þ is the initial size of ticks
population, and the terms Eϑ, Eϑ,ϑ are theMittag-Leffler func-
tions which are defined by

Eϑ wð Þ = 〠
∞

n=0

wn

Γ 1 + nϑð Þ , Eϑ,ϑ wð Þ = 〠
∞

n=0

wn

Γ ϑ + nϑð Þ , ϑ > 0:

ð13Þ

By simplifying the relations, we conclude that

Nk tð Þ =Nk 0ð ÞEϑ −dkσ
1−ϑtϑ

� �
+
ðt
0
Λkσ

1−ϑηϑ−1

� 〠
∞

n=0

−1ð Þndnkσn 1−ϑð Þηnϑ

Γ nϑ + ϑð Þ dη = Λkσ
1−ϑ

dkσ1−ϑ

+ Eϑ −dkσ
1−ϑtϑ

� �
Nk 0ð Þ − Λkσ

1−ϑ

dkσ1−ϑ

� �
,

= Λk

dk
+ Eϑ −dkσ

1−ϑtϑ
� �

Nk 0ð Þ − Λk

dk

� �
:

ð14Þ

Now, if Nkð0Þ ≤ ðΛk/dkÞ, then for t > 0, NkðtÞ ≤ ðΛk/dkÞ.
At the same way for Nl and Nh, we can prove that if Nlð0Þ
≤ ðΛl/dlÞ and Nhð0Þ ≤ ðΛh/dhÞ, then NlðtÞ ≤ ðΛl/dlÞ and
NhðtÞ ≤ ðΛh/dhÞ. Thus, the closed set M with respect to
fractional model (2) is positively invariant. ☐

3.2. Equilibrium Points. In the current section, we determine
the equilibrium points of the system (10) and the basic
reproduction number. We present the necessary conditions
for the stability of the system at the equilibrium point. To
determine the equilibrium points, we set the equations to
zero in system (10),

CD
ϑ
Sk tð Þ = CD

ϑ
Ik tð Þ = CD

ϑ
Sl tð Þ = CD

ϑ
Il tð Þ = CD

ϑ
Sh tð Þ

= CD
ϑ
Ih tð Þ = 0,

ð15Þ

We solve the resulting algebraic equations and deter-
mine the equilibrium point of the system. The disease-free
equilibrium point, denoted by E0, is obtained as: E0 = ððΛk/
dkÞ, 0, ðΛl/dlÞ, 0, ðΛh/dhÞ, 0Þ. The second equilibrium point,
called the endemic equilibrium point, is obtained as E∗ =
ðS∗k , I∗k , S∗l , I∗l , S∗h , I∗hÞ,

S∗k =
Λk

β1I
∗
k + β2I

∗
l + dk

, S∗l =
Λl

β3I
∗
k + dl

, S∗h

= Λh

β4I
∗
k + β5I

∗
l + β6I

∗
h + dh

:

ð16Þ

When the basic reproduction number is greater than
one, and the spread of the disease continues, the endemic
equilibrium point is defined. To obtain the basic reproduc-
tion number, we use the next generation method [38]. We
consider the matrix form of the system (10) as follows:

CD
ϑ
v tð Þ = F v tð Þð Þ −V v tð Þð Þ, ð17Þ
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where

F ν tð Þð Þ = σ1−ϑ

β1Sk tð ÞIk tð Þ + β2Sk tð ÞIl tð Þ
β3Sl tð ÞIk tð Þ

β4Sh tð ÞIk tð Þ + β5Sh tð ÞIl tð Þ + β6Sh tð ÞIh tð Þ

2
664

3
775,

V ν tð Þð Þ = σ1−ϑ

dkIk tð Þ
dlIl tð Þ
dhIh tð Þ

2
664

3
775:

ð18Þ

By calculating the Jacobian matrix for F and V at the
disease-free equilibrium point, we obtain:

J F E0ð Þ = σ1−ϑ

β1Λk

dk

β2Λk

dk
0

β3Λl

dl
0 0

β4Λh

dh

β5Λh

dh

β6Λh

dh

2
6666666664

3
7777777775
,

Jv E0ð Þ = σ1−ϑ

dk 0 0

0 dl 0

0 0 dh

2
6664

3
7775:

ð19Þ

The basic reproduction number R0 is defined as the
eigenvalue of next generation matrix of system (10), R0 =
ρðFV−1Þ. We obtain: R0 = max ðRh, RklÞ,

Rh =
β6Λh

d2h
, Rkl =

β1Λkdl +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2
1Λ

2
kd

2
l + 4β2β3ΛkΛld

2
k

q
2dld2k

:

ð20Þ

In commonly used infection models, when R0 > 1, the
infection will be able to start spreading in a population, but
not if R0 < 1.

3.3. Stability of Equilibrium Points. To determine the neces-
sary conditions for the stability of the disease-free equilib-
rium point, we investigate the roots of the characteristic
equation of system (10). The Jacobian matrix of the system
(10) is

J = σ1−ϑ ×

−β1Ik − β2Il − dk −β1Sk 0 −β2Sk 0 0
β1Ik + β2Il β1Sk − dk 0 β2Sk 0 0

0 −β3Sl −β3Ik − dl 0 0 0
0 β3Sl β3Ik −dl 0 0
0 −β4Sh 0 −β5Sh −β4Ik − β5Il − β6Ih − dh −βhSh

0 β4Sh 0 β5Sh β4Ik + β5Il + β6Ih β6Sh − dh

2
666666666664

3
777777777775
:

ð21Þ

Then, the Jacobian matrix at E0 is obtained as:

J E0ð Þ = σ1−ϑ

−dk −β1
Λk

dk
0 −β2

Λk

dk
0 0

0 β1
Λk

dk
− dk 0 β2

Λk

dk
0 0

0 −β3
Λl

dl
−dl 0 0 0

0 β3
Λl

dl
0 −dl 0 0

0 −β4
Λh

dh
0 −β5

Λh

dh
−dh −βh

Λh

dh

0 β4
Λh

dh
0 β5

Λh

dh
0 β6

Λh

dh
− dh

2
666666666666666666666664

3
777777777777777777777775

:

ð22Þ

In the following theorem, we determine the necessary
conditions for the stability of the disease-free equilibrium
point.

Theorem 5. The disease-free equilibrium point E0 is locally
asymptotically stable if R0 < 1.

Proof. The characteristic equation of matrix JðE0Þ is obtained
as follows:

dl + λð Þ dk + λð Þ dh + λð Þ β6
Λh

dh
− dh − λ

� �

� dl + λð Þ β1
Λk

dk
− dk − λ

� �
− β2β3

ΛkΛl

dkdl

� �
= 0:

ð23Þ

Therefore, the eigenvalues of the Jacobin matrix are λ1 =
−dl, λ2 = −dk, λ3 = −dh, λ4 = ðβ6Λh/dhÞ − dh, and the roots
of the following equation are:

λ2 − λ
β1Λk

dk
− dk − dl

� �
−
β1Λkdl
dk

+ dldk + β2β3
ΛkΛl

dkdl
= 0:

ð24Þ

The three roots λ1, λ2, and λ3 are negative. If R0 < 1, then
Rh = ðβ6Λh/d2hÞ < 1, we obtain λ4 < 0. It also follows from R0
< 1 that Rkl < 1, then we conclude by simplifying β1Λk < d2k.
In Equation (24), which is a quadratic equation, we have:

P = −β1Λkdl
dk

+ dldk + β2β3
ΛkΛl

dkdl
, S = β1Λk

dk
− dk − dl,

ð25Þ

since β1Λk < d2k then P > 0, S < 0 so Equation (24) has 2
negative roots. Therefore, all of the eigenvalues are negative,
and the disease-free equilibrium point is locally asymptotically
stable. ☐
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4. Existence of Unique Solution

In the current section, using the fixed-point theory, we prove
that system (10) has a unique solution. Fixed-point theory is
essential in proving the existence of a solution to the pro-
posed system where adequate conditions are provided by
fixed-point theorems such that a unique fixed point exists
for a given function. To achieve this goal, we prove that ker-
nels are satisfied under the Lipschitz condition, and they are
contraction. Then, the existence of solution to the proposed
system is constructed via fixed-point theorem. From the
Lipschitz condition, the uniqueness of our obtained solution
is proven when the obtained condition is satisfied.

First, we consider system (10) in the following compact
form:

σϑ−1CD
ϑ
t Sk tð Þ = R1 t, Sk tð Þð Þ,

σϑ−1CD
ϑ
t Ik tð Þ = R2 t, Ik tð Þð Þ,

σϑ−1CD
ϑ
t Sl tð Þ = R3 t, Sl tð Þð Þ,

σϑ−1CD
ϑ
t Il tð Þ = R4 t, Il tð Þð Þ,

σϑ−1CD
ϑ
t Sh tð Þ = R5 t, Sh tð Þð Þ,

σϑ−1CD
ϑ
t Ih tð Þ = R6 t, Ih tð Þð Þ:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð26Þ

We apply the fractional-order integral to the parties of
the above equations, so

Sk tð Þ − Sk 0ð Þ = σ1−ϑ

Γ ϑð Þ
ðt
0
R1 μ, Skð Þ t − μð Þϑ−1dμ,

Ik tð Þ − Ik 0ð Þ = σ1−ϑ

Γ ϑð Þ
ðt
0
R2 μ, Ikð Þ t − μð Þϑ−1dμ,

Sl tð Þ − Sl 0ð Þ = σ1−ϑ

Γ ϑð Þ
ðt
0
R3 μ, Slð Þ t − μð Þϑ−1dμ,

Il tð Þ − Il 0ð Þ = σ1−ϑ

Γ ϑð Þ
ðt
0
R4 μ, Ilð Þ t − μð Þϑ−1dμ,

Sh tð Þ − Sh 0ð Þ = σ1−ϑ

Γ ϑð Þ
ðt
0
R5 μ, Shð Þ t − μð Þϑ−1dμ,

Ih tð Þ − Ih 0ð Þ = σ1−ϑ

Γ ϑð Þ
ðt
0
R6 μ, Ihð Þ t − μð Þϑ−1dμ:

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð27Þ

In the following, we prove that the kernels Rj, j = 1, 2, 3,
4, 5, 6 are satisfied in the Lipschitz condition, and they are
contraction.

Theorem 6. Kernel R1 is satisfied in Lipschitz condition and
contraction if we have:

0 ≤ β1z1 + β2z2 + dk < 1: ð28Þ

Proof. We can write for Sk and S1k,

R1 t, Skð Þ − R1 t, S1kð Þk k
= −β1Ik Sk − S1kð Þ − β2Il Sk − S1kð Þ − dk Sk − S1kð Þk k,
≤ β1 Ikk k Sk − Skk k + β2 Ilk k Sk − S1kk k + dk Sk − S1kk k,
≤ β1 Ikk k + β2 Ilk k + dkð Þ Sk − S1kk k,
≤ β1z1 + β2z2 + dkð Þ Sk − S1kk k:

ð29Þ

Consider e1 = β1z1 + β2z2 + dk, where kIkðtÞk ≤ z1 and k
Ilk ≤ z2, are bounded functions. We get:

R1 t, Skð Þ − R1 t, S1kð Þk k ≤ e1 Sk tð Þ − S1k tð Þk k, ð30Þ

if 0 ≤ β1z1 + β2z2 + dk < 1, then the kernel R1 is satisfied in
Lipschitz condition, and it is contraction. ☐

In a similar way, we can show that the kernels Rj, j = 2,
3, 4, 5, 6 are satisfied in the Lipschitz condition as follows:

R2 t, Ikð Þ − R2 t, I1kð Þk k ≤ e2 Ik tð Þ − I1k tð Þk k,
R3 t, Slð Þ − R3 t, S1lð Þk k ≤ e3 Sl tð Þ − S1l tð Þk k,
R4 t, Ilð Þ − R4 t, I1lð Þk k ≤ e4 Il tð Þ − I1l tð Þk k,
R5 t, Shð Þ − R3 t, S1hð Þk k ≤ e5 Sh tð Þ − S1h tð Þk k,
R6 t, Ihð Þ − R4 t, I1hð Þk k ≤ e6 Ih tð Þ − I1h tð Þk k,

8>>>>>>>><
>>>>>>>>:

ð31Þ

so that e2 = β1z4 + dk, e3 = β3z1 + dl, e4 = dl, e5 = β4z1 + β5z2
+ β6z3 + dh, e6 = β6z6 + dh are bounded functions where k
IhðtÞk ≤ z3, kSkðtÞk ≤ z4, kSlðtÞk ≤ z5, and kShðtÞk ≤ z6. Also,
if 0 ≤ ej < 1, j = 2, 3, 4, 5, 6, then Rj are contraction for j = 2,
3, 4, 5, 6.

Based on system (27), we define:

A1n tð Þ = Snk tð Þ − S n−1ð Þk tð Þ = σ1−ϑ

Γ ϑð Þ
ðt
0
R1 μ, S n−1ð Þk
� ��

− R1 μ, S n−2ð Þk
� ��

t − μð Þϑ−1dμ,

A2n tð Þ = Ink tð Þ − I n−1ð Þk tð Þ = σ1−ϑ

Γ ϑð Þ
ðt
0
R2 μ, I n−1ð Þk
� ��

− R2 μ, I n−2ð Þk
� ��

t − μð Þϑ−1dμ,

A3n tð Þ = Snl tð Þ − S n−1ð Þl tð Þ =
σ1−ϑ

Γ ϑð Þ
ðt
0
R3 μ, S n−1ð Þl
� ��

− R3 μ, S n−2ð Þl
� ��

t − μð Þϑ−1dμ,

A4n tð Þ = Inl tð Þ − I n−1ð Þl tð Þ =
σ1−ϑ

Γ ϑð Þ
ðt
0
R4 μ, I n−1ð Þl
� ��

− R4 μ, I n−2ð Þl
� ��

t − μð Þϑ−1dμ,
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A5n tð Þ = Snh tð Þ − S n−1ð Þh tð Þ = σ1−ϑ

Γ ϑð Þ
ðt
0
R5 μ, S n−1ð Þh
� ��

− R5 μ, S n−2ð Þh
� ��

t − μð Þϑ−1dμ,

A6n tð Þ = Inh tð Þ − I n−1ð Þh tð Þ = σ1−ϑ

Γ ϑð Þ
ðt
0
R6 μ, I n−1ð Þh
� ��

− R6 μ, I n−2ð Þh
� ��

t − μð Þϑ−1dμ,
ð32Þ

where Skð0Þ = S0k, Ikð0Þ = I0k, Slð0Þ = S0l, Ilð0Þ = I0l, Shð0Þ =
S0h, and Ihð0Þ = I0h are initial conditions. The norm of A1n
in the above system is expressed as follows:

A1n tð Þk k = Snk tð Þ − S n−1ð Þk tð Þ
			 			 ≤

σ1−ϑ

Γ ϑð Þ
ðt
0
R1 μ, S n−1ð Þk
� �			

− R1 μ, S n−2ð Þk
� ��

t − μð Þϑ−1
			dμ:

ð33Þ

According to the Lipschitz condition (30), we conclude

A1n tð Þk k ≤ σ1−ϑ

Γ ϑð Þ e1
ðt
0
A1 n−1ð Þ μð Þ

			 			dμ: ð34Þ

Similarly, we can prove that

A2n tð Þk k ≤ σ1−ϑ

Γ ϑð Þ e2
ðt
0
A2 n−1ð Þ μð Þ

			 			dμ,
A3n tð Þk k ≤ σ1−ϑ

Γ ϑð Þ e3
ðt
0
A3 n−1ð Þ μð Þ

			 			dμ,
A4n tð Þk k ≤ σ1−ϑ

Γ ϑð Þ e4
ðt
0
A4 n−1ð Þ μð Þ

			 			dμ,
A5n tð Þk k ≤ σ1−ϑ

Γ ϑð Þ e5
ðt
0
A5 n−1ð Þ μð Þ

			 			dμ,
A6n tð Þk k ≤ σ1−ϑ

Γ ϑð Þ e6
ðt
0
A6 n−1ð Þ μð Þ

			 			dμ:

ð35Þ

Therefore, we get

Snk tð Þ = 〠
n

i=1
A1i tð Þ, Ink tð Þ = 〠

n

i=1
A2i tð Þ, Snl tð Þ = 〠

n

i=1
A3i tð Þ,

Inl tð Þ = 〠
n

i=1
A4i tð Þ, Snh tð Þ = 〠

n

i=1
A5i tð Þ, Inh tð Þ = 〠

n

i=1
A6i tð Þ:

ð36Þ

In the next theorem, we prove the existence of solution by
the fixed-point theorem.

Theorem 7. The Crimean-Congo fever transmission
fractional-order model (10) has a solution, if there exists tε
such that

σ1−ϑ

Γ ϑð Þ tεei < 1: ð37Þ

Proof. By Equation (34) and Equation (46), we obtain

A1n tð Þk k ≤ Snk 0ð Þk k σ1−ϑ

Γ ϑð Þ e1t
� �n

, A2n tð Þk k ≤ Ink 0ð Þk k σ1−ϑ

Γ ϑð Þ e2t
� �n

,

A3n tð Þk k ≤ Snl 0ð Þk k σ1−ϑ

Γ ϑð Þ e3t
� �n

, A4n tð Þk k ≤ Inl 0ð Þk k σ1−ϑ

Γ ϑð Þ e4t
� �n

,

A5n tð Þk k ≤ Snh 0ð Þk k σ1−ϑ

Γ ϑð Þ e5t
� �n

, A6n tð Þk k ≤ Inh 0ð Þk k σ1−ϑ

Γ ϑð Þ e6t
� �n

:

ð38Þ

The above relations show that the system has a continu-
ous solution. Now, it is sufficient to show that the above func-
tions construct the solution for the fractional-order model
(10). We consider the following relations:

Sk tð Þ − Sk 0ð Þ = Snk tð Þ −U1n tð Þ, Ik tð Þ − Ik 0ð Þ = Ink tð Þ −U2n tð Þ,

Sl tð Þ − Sl 0ð Þ = Snl tð Þ −U3n tð Þ, Il tð Þ − Il 0ð Þ = Inl tð Þ −U4n tð Þ,

Sh tð Þ − Sh 0ð Þ = Snh tð Þ −U5n tð Þ, Ih tð Þ − Ih 0ð Þ = Inh tð Þ −U6n tð Þ:
ð39Þ

The norm of U1nðtÞ is obtained as follows:

U1n tð Þk k = σ1−ϑ

Γ ϑð Þ
ðt
0
R1 μ, Skð Þ − R1 μ, S n−1ð Þk

� �� �
dμ

				
				

≤
σ1−ϑ

Γ ϑð Þ
ðt
0
R1 μ, Skð Þ − R1 μ, S n−1ð Þk

� �			 			dμ
≤

σ1−ϑ

Γ ϑð Þ e1 Sk − S n−1ð Þk
			 			t:

ð40Þ

By continuing this repetitive method, we conclude:

U1n tð Þk k ≤ σ1−ϑ

Γ ϑð Þ t
� �n+1

en+11 k: ð41Þ

At tε, we have

U1n tð Þk k ≤ σ1−ϑ

Γ ϑð Þ tε
� �n+1

en+11 k: ð42Þ

If we take limit on the recent relation as n approaches to
∞, it results kU1nðtÞk⟶ 0. Similarly, we conclude that k
BjnðtÞk⟶ 0, j = 2, 3, 4, 5, 6, and the proof is complete. ☐

To show the uniqueness of the solution of CCHF model,
we consider that the fractional-order system (10) has another
solution such as ðS1kðtÞ, I1kðtÞ, S1lðtÞ, I1lðtÞ, S1hðtÞ, I1hðtÞ,
then for Sk, S1k can be written as:
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Sk tð Þ − S1k tð Þ = σ1−ϑ

Γ ϑð Þ
ðt
0
R1 μ, Skð Þ − R1 μ, S1kð Þð Þdμ: ð43Þ

We take the norm on the above equation, so

Sk tð Þ − S1k tð Þk k = σ1−ϑ

Γ ϑð Þ
ðt
0
∥R1 μ, Skð Þ − R1 μ, S1kð Þ∥dμ: ð44Þ

By Lipschitz condition (30), we obtain:

Sk tð Þ − S1k tð Þk k ≤ σ1−ϑ

Γ ϑð Þ e1t Sk tð Þ − S1k tð Þk k: ð45Þ

Thus,

Sk tð Þ − S1k tð Þk k 1 − σ1−ϑ

Γ ϑð Þ e1t
� �

≤ 0: ð46Þ

Theorem 8. The solution of fractional-order system (10) is
unique when the following condition is met:

1 −
σ1−ϑ

Γ ϑð Þ e1t > 0: ð47Þ

Proof.Assume that the condition (46) holds, in which case we
conclude from (46) and (47) that kSkðtÞ − S1kðtÞk = 0, and
this shows that ShðtÞ = S1hðtÞ. In the same way, similar rela-
tionships can be reached for Ik, Sl, Il, Sh, Ih. This completes
the proof. ☐

5. Numerical Simulation and Discussion

In this section, we first obtain the approximate solution of the
fractional differential equation system (10) by a numerical
method, and then, we present a numerical simulation for
the transmission of the Crimean-Congo fever virus.

5.1. Numerical Method. We use the fractional Euler method
for Caputo derivative [39] to obtain the approximate solu-
tions of the Crimean-Congo hemorrhagic fever virus trans-
mission model. First, we consider the compact form of the
system (10) as follows:

σϑ−1CD
ϑ
t φ tð Þ =Q t, φ tð Þð Þ, φ 0ð Þ = φ0, 0 ≤ t ≤ T <∞, ð48Þ

where φ = ðSk, Ik, Sl, Il, Sh, IhÞ ∈ R6
+, φ0 = ðS0k, I0k, S0l, I0l, S0h,

I0hÞ, and QðtÞ is a continuous real vector function that is sat-
isfied in the Lipschitz condition as follows:

Q φ1 tð Þð Þ −Q φ2 tð Þð Þk k ≤m φ1 tð Þ − φ2 tð Þk k,m > 0: ð49Þ

We apply the fractional-order integral operator corre-
sponding to the Caputo fractional-order derivative on both
sides of Equation (48), so

φ tð Þ = σ1−ϑ φ0 + IϑQ φ tð Þð Þ
h i

, 0 ≤ t ≤ T <∞: ð50Þ

Set r = ðT − 0Þ/N and tn = nr, where t ∈ ½0, T� and N is a
natural number and n = 0, 1, 2,⋯,N . Let φn be the approxi-
mation of φðtÞ at t = tn. By the fractional Euler method
([39]), we get:

φn+1 = σ1−ϑ φ0 +
rϑ

Γ ϑ + 1ð Þ〠
n

p=0
ωn+1,pQ tp, φp

� �" #
, p

= 0, 1, 2,⋯,N − 1,
ð51Þ

where

ωn+1,p = n + 1 − pð Þϑ − n − pð Þϑ, p = 0, 1, 2,⋯, n: ð52Þ

The obtained scheme is stable. Details of the stability
analysis are given in Theorem (3.1) of [39]. According to
the explanations provided, the answer of the system is
obtained as follows:

S n+1ð Þk = σ1−ϑ S0k +
rϑ

Γ ϑ + 1ð Þ〠
n

p=0
ωn+1,py1 tp, φp

� �" #
,

I n+1ð Þk = σ1−ϑ I0k +
rϑ

Γ ϑ + 1ð Þ〠
n

p=0
ωn+1,py2 tp, φp

� �" #
,

S n+1ð Þl = σ1−ϑ S0l +
rϑ

Γ ϑ + 1ð Þ〠
n

p=0
ωn+1,py3 tp, φp

� �" #
,

I n+1ð Þl = σ1−ϑ I0l +
rϑ

Γ ϑ + 1ð Þ〠
n

p=0
ωn+1,py4 tp, φp

� �" #
,

S n+1ð Þh = σ1−ϑ S0h +
rϑ

Γ ϑ + 1ð Þ〠
n

p=0
ωn+1,py5 tp, φp

� �" #
,

I n+1ð Þh = σ1−ϑ I0h +
rϑ

Γ ϑ + 1ð Þ〠
n

p=0
ωn+1,py6 tp, φp

� �" #
,

ð53Þ

so that ωn+1,p = ðn + 1 − pÞϑ − ðn − pÞϑ and the functions yj
for j = 0, 1,⋯, 6 are expressed as:

y1 t, φ tð Þð Þ =Λk − β1Sk tð ÞIk tð Þ − β2Sk tð ÞIl tð Þ − dkSk tð Þ,
y2 t, φ tð Þð Þ = β1Sk tð ÞIk tð Þ + β2Sk tð ÞIl tð Þ − dkIk tð Þ,
y3 t, φ tð Þð Þ =Λl − β3Sl tð ÞIk tð Þ − dlSl tð Þ,
y4 t, φ tð Þð Þ = β3Sl tð ÞIk tð Þ − dlIl tð Þ,
y5 t, φ tð Þð Þ =Λh − β4Sh tð ÞIk tð Þ − β5Sh tð ÞIh tð Þ

− β6Sh tð ÞIh tð Þ − dhSh tð Þ,
y6 t, φ tð Þð Þ = β4Sh tð ÞIk tð Þ + β5Sh tð ÞIl tð Þ

+ β6Sh tð ÞIh tð Þ − dhIh tð Þ: ð54Þ

5.2. Simulation. In the present subsection, we present a
numerical simulation to investigate the transmission of
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Crimean-Congo fever virus based on the amount of repro-
duction number. Also, we compare the results of the
integer-order and fractional-order models.

To perform the desired simulation, in two cases, we
consider different values for the parameters. In the first
case, we assume: β1 = 0:5 × 10−4, β2 = 0:3 × 10−4, β3 = 0:1
× 10−3, β4 = 0:03 × 10−4, β5 = 0:4 × 10−4, β6 = 0:7 × 10−4,Λk
= 0:6,Λl = 0:3,Λh = 0:6, dk = 0:09, dl = 0:07, dh = 0:007, σ =
0:99: We also consider the initial values as Sk = 800, Ik
= 20, Sl = 600, Il = 30, Sh = 1000, Ih = 10:

Using the above parameters, we obtain Rh = 0:0233, Rkl
= 0:00597; thus, R0 = 0:0233 < 1. Figure 1 shows the results
of model (10) for all six groups for ϑ = 0:98. In this case,
R0 < 1, and Figure 1 shows that over time, the number of sus-
ceptible people is decreased, and the number of infected peo-
ple is increased, but in less than 20 days, the number of
infected people is decreased and eventually reaches zero,
and the spread of the disease stops. In this case, SðtÞ and
IðtÞ converge to the disease-free equilibrium point E0.

In the second case, we assume that the disease transmis-
sion rate increases from the susceptible group to the infected
group, and the transmission rates are equal to β1 = 0:5 × 1
0−3, β2 = 0:3 × 10−3, β3 = 0:1 × 10−2, β4 = 0:7 × 10−3, β5 = 0:4
× 10−3, β6 = 0:7 × 10−3:With these transfer rates, the value of
the reproduction number is equal to R0 = 1:435 > 1. Figure 2
shows the results of model (10) for the six groups studied in
this case. Over time, the population of susceptible groups
decreases and the population of infected groups increases,
and finally, after 100 days, the population of infected groups
decreases and converges to the endemic equilibrium point.
As the rate of disease transmission increases, the value of
R0 increases, and we observe that the disease does not go
away and its spread continues.

In this work, we have used the fractional-order derivative
for modeling. In order to investigate the effect of derivation
order, we have drawn the model results for infected groups
with derivatives with integer-order ϑ = 1 and fractional-
order ϑ = 0:98 in Figure 3. Figure 3 shows that the results of
model (10) are similar for the integer-order and the Caputo
fractional order, and a small change in the order of derivation
has no effect on the overall trend of the results in terms of
ascending and descending, but the resulting numerical values
are different.

5.3. The Reproduction Number Sensitivity Analysis.We inves-
tigate the effect of parameters in Crimean-Congo hemor-
rhagic fever fractional model (10) on reproduction number
using the method introduced by [40]. For this simulation,
we use the parameters in the first case of the previous subsec-
tion. Since R0 is defined as R0 = max ðRh, RklÞ, therefore, we
analyze the sensitivity of R0 in two cases.

First, if R0 = Rh, by the mentioned method, we have Sβ6

= ð∂R0/∂β6Þðβ6/R0Þ = 1 > 0, SΛh
= ð∂R0/∂ΛhÞðΛh/R0Þ = 1 >

0, Sdh = ð∂R0/∂dhÞðdh/R0Þ = −2β6Λh/d3h = −1:55 < 0: Figure 4
shows the sensitivity of R0 with respect to each of the param-
eters. As you can see, changing each of the parameters of
model (10) that is involved in Rh changes the reproduction
number. The reproduction number is directly related to
parameters β6,Λh and inversely related to parameter dh.
From an epidemiological point of view, whenever the repro-
duction number decreases, then the spread of the disease is
controlled. Given that β6 has the most positive effect on the
R0, so to control the spread of the disease, β6 should be
reduced through the reduced communication of infected
and susceptible humans.
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Figure 1: Plots of the results of model (10) with R0 < 1 for ϑ = 0:98.
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Figure 2: Plots of the results of model (10) with R0 > 1 for ϑ = 0:98.
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Figure 3: Plots of the results of model (10) for infected groups with integer-order ϑ = 1 and fractional-order ϑ = 0:98 in the case R0 > 1.
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In the latter case if R0 = Rkl , we obtain the same equations
as above

SΛk
= ∂R0
∂Λk

Λk

R0
= 0:724 > 0, Sβ1

= ∂R0
∂β1

β1
R0

= 0:4486 > 0,

Sdl =
∂R0
∂dl

dl
R0

= −0:5513 < 0,

Sβ2
= ∂R0
∂β2

β2
R0

= 0:275 > 0, Sβ3
= ∂R0
∂β3

β3
R0

= 0:276 > 0,

Sdk =
∂R0
∂dk

dk
R0

= −1:448 < 0:
ð55Þ

Figure 5 shows the sensitivity of R0 with respect to each of
the parameters. The reproduction number is directly related
to parameters β1, β2, β3, andΛk and inversely related to
parameter dl, dk. Among the mentioned parameters, param-
eters β1, β2, and β3 can be controlled, and all of which have a
positive effect on causality, so to reduce the amount of repro-
duction number, it is enough to reduce the rate of disease
transmission between ticks, animals, and humans.

6. Conclusion

In this work, we have presented a box model using the
Caputo fractional-order derivative by taking into account
the transmission of the Crimean-Congo hemorrhagic fever
virus between ticks, animals (domestic and wild), and
humans. We have calculated the feasible region and the equi-
librium points of the system (10), and we have determined
the necessary conditions for the stability of the equilibrium
point. In the last section, using the Euler method for the
Caputo fractional derivative, we have obtained the approxi-
mate solution of system (10), and then, we have provided a
numerical simulation for the transmission of Crimean-
Congo hemorrhagic fever virus. In two cases: R0 < 1 and R0
> 1, the results of the model have been plotted for the six
groups in the model, which clearly show that in the case R0
< 1, the transmission of the disease stops after a while, and
the results of the system converge to the disease-free equilib-
rium point. We have increased the rate of disease transmis-
sion among the groups, and in this case, the results for
R0 > 1 show that the disease continues endemically, and also,
the results converge to the endemic equilibrium point. The
results of the model are compared with two types of deriva-

tives of integer-order and fractional-order, and the result of
comparison shows that changing the type of derivative with
close order has no effect on the overall trend of the results
but the obtained numerical values are different.

Later, we have investigated the effect of each of the model
parameters on R0, and the results show that the disease trans-
mission rates among the groups have a positive effect on the
value of R0; therefore, to control the spread of Crimean-
Congo hemorrhagic fever, the disease transmission rate
should be reduced by reducing contact between different
groups.
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We connect the F iteration process with the class of generalized α-nonexpansive mappings. Under some appropriate assumption,
we establish some weak and strong convergence theorems in Banach spaces. To show the numerical efficiency of our established
results, we provide a new example of generalized α-nonexpansive mappings and show that its F iteration process is more
efficient than many other iterative schemes. Our results are new and extend the corresponding known results of the current
literature.

1. Introduction and Preliminaries

Once an existence of a solution for an operator equation is
established then in many cases, such solution cannot be
obtained by using ordinary analytical methods. To overcome
such cases, one needs the approximate value of this solution.
To do this, we first rearrange the operator equation in the
form of fixed-point equation. We apply the most suitable
iterative algorithm on the fixed point equation, and the limit
of the sequence generated by this most suitable algorithm is
in fact the value of the desired fixed point for the fixed point
equation and the solution for the operator equation. The
Banach Fixed Point Theorem [1] (BFPT, for short) suggests
the elementry Picard iteration wt+1 =Gwt in the case of
contraction mappings. Since for the class of nonexpansive
mappings, Picard iterates do not always converge to a fixed
point of a certain nonexpansive mapping, we, therefore use
some other iterative processes involving different steps and
set of parameters. Among the other things, Mann [2],
Ishikawa [3], Noor [4], S iteration of Agarwal et al. [5], SP
iteration of Phuengrattana and Suantai [6], S ∗ iteration of
Karahan and Ozdemir [7], Normal-S [8], Picard-Mann

hybrid [9], Krasnoselskii-Mann [10], Abbas [11], Thakur
[12], and Picard-S [13] are the most studied iterative pro-
cesses. In 2018, Ullah and Arshad introduced M [14] itera-
tion process for Suzuki mappings and proved that it
converges faster than all of these iteration processes.

Very recently, Ali and Ali [15] introduced the novel
iteration process, namely, F iterative scheme for generalized
contractions as follows:

w1 ∈P ,
ut =G 1 − αtð Þwt + αtGwtð Þ,
vt =Gut ,
wt+1 = Gvt , t ≥ 1,

8>>>>><
>>>>>:

ð1Þ

where αt ∈ ð0, 1Þ.
They showed that the F iteration (1) is stable and has a

better rate of convergence when compared with the other
iterations in the setting of generalized contractions.

Definition 1. Let G : P →P . Then G is said to be
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(i) nonexpansive provided that kGp′−Gp″k≤kp′− p″k,
for every two p′, p″ ∈P

(ii) endowed with condition (C) provided that 1/2kp′
− Gp′k ≤ kp′ − p″k implies kGp′ −Gp″k ≤ kp′ −
p″k, for every two p′, p″ ∈P

(iii) generalized α-nonexpansive provided that 1/2kp′ −
Gp′k ≤ kp′ − p″k implies kGp′ − Gp″k ≤ αkp′ − G

p″k + αkp″ −Gp′k + ð1 − 2αÞkp′ − p″k, for every
two p′, p″ ∈P and α ∈ ½0, 1Þ

(iv) endowed with condition I [16] if one has a nonde-
creasing function f such that f ð0Þ = 0 and f ðaÞ > 0
at a > 0 and kp′ −Gp′k ≥ f ðdðp′, FGÞ for all p′ ∈P

In 1965, Browder [17] and Gohde [18] are in a uniformly
convex Banach space (UCBS), while Kirk [19] in a reflexive
Banach space (RBS) established an existence of fixed point
for nonexpansive maps. In 2008, Suzuki [20] showed that
the class of maps endowed with condition ðCÞ is weaker than
the notion of nonexpansive maps and proved some related
fixed point theorems in Banach spaces. In 2017, Pant and
Shukla [21] proved that the notion of generalized α-nonex-
pansive maps is weaker than the notion of maps endowed
with condition ðCÞ. They proved some convergence theo-
rems using Agarwal iteration [5] for these maps. Very
recently, Ullah et al. [22] used M iteration for finding fixed
points of generalized α-nonexpansive maps in Banach
spaces. In this paper, we show under some conditions that
F iteration converges better to a fixed point of generalized α
-nonexpansive map as compared to the leading M iteration
and hence many other iterative schemes.

Definition 2. Select a Banach space J such that P ⊆ J is
nonempty and fwtg ⊆ J is bounded. We set for fix j ∈ J

the following.
ða1Þ asymptotic radius of the bounded sequence fwtg at

the point j by rðj, fwtgÞ≔ limsupt→∞kj −wtk;
ða2Þ asymptotic radius of the bounded sequence fwtg

with the connection of P by rðP , fwtgÞ = inf frðj, fwtgÞ
: j ∈P g;

ða3Þ asymptotic center of the bounded sequence fwtgwith
the connection of P by AðP , fwtgÞ = fj ∈P : rðj, fwtgÞ = r
ðP , fwtgÞg.

It is worth mentioning that AðP , fwtgÞ has a cardinality
equal to one in the case of UCBS and nonempty convex in the
case of weak compactness and convexity of P (see [23, 24]).

Definition 3 (see [25]). A Banach space J is called with
Opial’s condition in the case when every sequence fwtg ⊆
J which is weakly convergent to j ∈ J , then one has the
following

limsup
t→∞

wt − jk k < limsup
t→∞

wt − j′
�� ��for eachj′ ∈P − jf g: ð2Þ

Pant and Shukla [21] observed the following facts about
generalized α-nonexpansive operators.

Proposition 4. If J is a Banach space such that P ⊆ J is
closed and nonempty, then for G : P →P and α ∈ ½0, 1Þ,
the following hold

(i) If G is endowed with condition ðCÞ, then G is gener-
alized α-nonexpansive

(ii) If G is generalized α-nonexpansive endowed with a
nonempty fixed point, then kGp′ − p∗k ≤ kp′ − p∗k
for p′ ∈P and p∗ is a fixed point of G

(iii) If G is generalized α-nonexpansive, then FG is closed.
Furthermore, when the underlying space J is strictly
convex and the set P is convex, then the set FG is also
convex

(iv) If G is generalized α-nonexpansive, then for every
choice of p′, p″ ∈P

p′ −Gp″
�� �� ≤ 3 + α

1 − α

� �
p′ − Gp′
�� �� + p′ − p″

�� ��: ð3Þ

(v) If the underlying space J is with Opial condition, the
operator G is generalized α-nonexpansive, fwtg is
weakly convergent to l and limt→∞kGwt −wtk = 0,
then l ∈ FG

We now state an interesting property of a UCBS from [26].

Lemma 5. Suppose J is any UCBS. Choose 0 < r ≤ αt ≤ s < 1
and fwtg, fxtg ⊆ J such that limsupt→∞kwtk ≤ q, limsupt→∞
kxtk ≤ q, and limt→∞kαtwt + ð1 − αtÞxtk = q for some q ≥ 0.
Then, consequently, limt→∞kwt − xtk = 0.

2. Main Results

We first provide a very basic lemma.

Lemma 6. Suppose J is any UCBS and P ⊆ J is convex non-
empty and closed. If G : P →P is generalized α-nonexpan-
sive operator satisfying with FG ≠∅ and fwtg is a sequence
of F iterates (1), then, consequently, one has limt→∞kwt − p∗

k always exists for every taken p∗ ∈ FG .

Proof.We may take any p∗ ∈ FG . Using Proposition 4(ii), we
see that

ut − p∗k k = G 1 − αtð Þwt + αtGwtð Þ − p∗k k ≤ k 1 − αtð Þwt

+ αtGwt − p∗k ≤ 1 − αtð Þ wt − p∗k k + αtkGwt

− p∗k ≤ 1 − αtð Þ wt − p∗k k + αt wt − p∗k k ≤ wt − p∗k k:
ð4Þ
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This implies that

wt+1 − p∗k k = Gvt − p∗k k ≤ vt − p∗k k = kGut
− p∗k ≤ ut − p∗k k ≤ wt − p∗k k:

ð5Þ

Consequently, kwt+1 − p∗k ≤ kwt − p∗k, that is, fkwt −
p∗kg is bounded as well as nonincreasing. This follows that
limt→∞kwt − p∗k exists for each p∗ ∈ FG .

We now provide the necessary and sufficient require-
ments for the existence of fixed points for any given general-
ized nonexpansive mappings in a Banach space.

Theorem 7. Suppose J is any UCBS and P ⊆ J is convex
nonempty and closed. If G : P →P is generalized α-nonex-
pansive operator and fwtg is a sequence of F iterates (1).
Then, FG ≠∅ if and only if fwtg is bounded and limt→∞kG
wt −wtk = 0.

Proof. Suppose that FG ≠∅ and p∗ ∈ FG . Take any p∗ ∈ FG ,
and so applying Lemma 6, we have limt→∞kwt − p∗k exists
and fwtg is bounded. Suppose that this limit is equal to some
ε, that is,

lim
t→∞

wt − p∗k k = ε: ð6Þ

As we have established in the proof of Lemma 6 that

ut − p∗k k ≤ wt − p∗k k: ð7Þ

This together with (6) gives that

limsup
t→∞

ut − p∗k k ≤ limsup
t→∞

wt − p∗k k = ε: ð8Þ

Since p∗ is in the set FG , so we may apply Proposition
4(ii) to obtain the following

Gwt − p∗k k ≤ wt − p∗k k,⇒ limsup
t→∞

Gwt − p∗k k ≤ limsup
t→∞

wt − p∗k k = ε:

ð9Þ

Now, if we look in the proof of Lemma 6, we can see the
following

wt+1 − p∗k k ≤ ut − p∗k k⇒ ε = liminf
t→∞

wt+1 − p∗k k ≤ liminf
t→∞

ut − p∗k k:
ð10Þ

From (8) and (10), we have

ε = lim
t→∞

ut − p∗k k: ð11Þ

By (11) and (1), one has

ε = lim
t→∞

ut − p∗k k = lim
t→∞

kG 1 − αtð Þwt + αtGwtð Þ
− p∗k ≤ lim

t→∞
1 − αtð Þ wt − p∗ð Þ + αt Gwt − p∗ð Þk k

≤ lim
t→∞

1 − αtð Þ wt − p∗ð Þk k + lim
t→∞

αt Gwt − p∗ð Þk k
≤ lim

t→∞
1 − αtð Þ wt − p∗k k + lim

t→∞
αt wt − p∗k k = lim

t→∞
wt − p∗k k ≤ ε:

ð12Þ

If and only if

ε = lim
t→∞

1 − αtð Þ wt − p∗ð Þ + αt Gwt − p∗ð Þk k: ð13Þ

One can now apply the Lemma 5, to obtain

lim
t→∞

Gwt −wtk k = 0: ð14Þ

Conversely, we want to show that the set FG is nonempty
under the assumptions that fwtg is bounded such that
limt→∞kGwt −wtk = 0. We may choose a point p∗ ∈ AðP ,
fwtgÞ. If we apply Proposition 4(iv), then one can observe
the following

r Gp∗, wtf gð Þ = limsup
t→∞

wt − Gp∗k k ≤ 3 + α

1 − α

� �
limsup
t→∞

Gwt −wtk k
+ limsup

t→∞
wt − p∗k k = limsup

t→∞
wt − p∗k k = r p∗, wtf gð Þ:

ð15Þ

We observed that Gp∗ ∈ AðP , fwtg. By using the facts
that this set has only element in the case of UCBS J , one
concludes Gp∗ = p∗, accordingly the set FG is nonempty.

The weak convergence of F iteration is established as
follows.

Theorem 8. Suppose J is any UCBS with Opial condition and
P ⊆ J is convex nonempty and closed. If G : P →P is gen-
eralized α-nonexpansive operator with FG ≠∅ and fwtg is
a sequence of F iterates (1). Then, consequently, fwtg con-
verges weakly to a fixed point of G .

Proof. By Theorem 7, the given sequence fwtg is bounded.
Since J is UCBS, J is RBS. Therefore, some one construct
a weakly convergent sequence of fwtg. We may assume that
fwtr

g be this subsequence having weak limit x1 ∈P . If we
apply Theorem 7 on this subsequence, we obtain limr→∞k
wtr

−Gwtr
k = 0. Thus, by Proposition 4(v), one has x1 ∈

FG . It is sufficient to show that fwtg converges weakly to
x1. In fact, if fwtg does not converge weakly to x1. Then,
there exists a subsequence fwts

g of fwtg and x2 ∈P such
that fwts

g converges weakly to x2 and x2 ≠ x1. Again by
Proposition 4(v), x2 ∈ FG . By Lemma 6 together with Opial
property, we have
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lim
t→∞

xn − l1k k = lim
r→∞

wtr
− x1

�� �� < lim
r→∞

wtr
− x2

�� �� = lim
t→∞

wt − x2k k
= lim

s→∞
wts

− x2
�� �� < lim

s→∞
wts

− x1 ∣
�� �� = lim

t→∞
wt − x1k k:

ð16Þ

This is a contradiction. So, we have x1 = x2. Thus, fwtg
converges weakly to x1 ∈ FG .

Now we provide some strong convergence results.

Theorem 9. Suppose J is any UCBS and P ⊆ J is convex
nonempty and compact. If G : P →P is generalized α-non-
expansive operator with FG ≠∅ and fwtg is a sequence of F
iterates (1). Then, consequently, fwtg converges strongly to a
fixed point of G .

Proof. Since the domain P is a compact subset of J and
fwtg ⊆P . It follows that a subsequence fwtr

g of fwtg
exists such that limr→∞kwt−p∗∗k = 0 for some p∗∗ ∈P .
In the view of Theorem 7, limr→∞kPwtr

−wtr
k = 0. Apply-

ing Proposition 4(iv), one has

wtr
−Gp∗∗

�� �� ≤ 3 + α

1 − α

� �
wtr

−Gwtr

�� �� + wtr
−p∗∗

�� ��: ð17Þ

Hence, if we let r→∞, then Gp∗∗ = p∗∗. The fact that
p∗∗ is the strong limit of fwtg now follows from the exis-
tence of limt→∞kwt−p∗∗k.

Theorem 10. Suppose J is any UCBS and P ⊆ J is convex
nonempty and closed. If G : P →P is generalized α-nonex-
pansive operator with FG ≠∅ and fwtg is a sequence of F
iterates (1) and liminf t→∞dðwt , FGÞ = 0. Then, consequently,
fwtg converges strongly to a fixed point of G .

Proof. By using Lemma 6, one has limt→∞kwt − p∗k exists,
for every fixed point of G . It follows that limt→∞dðwt , FGÞ
exists. Accordingly

lim
t→∞

d wn, FGð Þ = 0: ð18Þ

The above limit provides us two subsequence fwtr
g and

fprg of fwtg and FG , respectively, in the following way

wtr
− pr

�� �� ≤ 1
2r  for each r ≥ 1: ð19Þ

By looking into the proof of Lemma 6, we see that fwtg is
nonicreasing, therefore

wtr+1
− pr

�� �� ≤ wtr
− pr

�� �� ≤ 1
2r : ð20Þ

It follows that

pr+1 − prk k ≤ pr+1 −wtr+1

�� �� + wtr+1
− pr

�� ��
≤

1
2r+1 + 1

2r ≤
1

2r−1 → 0, asr→∞:

ð21Þ

Consequently, we obtained that limr→∞kpr+1 − prk = 0
which show that fprg is Cauchy sequence in FG and so it
converges to an element p∗∗. Applying Proposition 4(iii),
FG is closed and so p∗∗ ∈ FG . By Lemma 6, limt→∞kwt−p∗∗
k exists and hence p∗∗ is the strong limit of fwtg.

Theorem 11. Suppose J is any UCBS and P ⊆ J is convex
nonempty and closed. If G : P →P is generalized α-non-
expansive operator satisfying condition I with FG ≠∅ and
fwtg is a sequence of F iterates (1). Then, consequently,
fwtg converges strongly to a fixed point of G .

Proof. Keeping Theorem 7 in mind, one can write

liminf
t→∞

Gwt −wtk k = 0: ð22Þ

From the definition of condition (I), we see that

wt − Gwtk k ≥ f d wt , FGð Þð Þ: ð23Þ

Applying (22) on (23), we have

liminf
t→∞

f d wt , FGð Þð Þ = 0: ð24Þ

It follows that

liminf
t→∞

d wt , FGð Þ = 0: ð25Þ

Now applying Theorem 10, fwtg is strongly convergent
to a fixed point of G .

3. Example

To support the main results, we provide an example of gen-
eralized α-nonexpansive mappings, which is not endowed
with condition (C). Using this example, we compare F with
other iterations in the setting of generalized α-nonexpansive
mappings.

Example 12.We take a setP = ½7, 13� and set a self map on G

by the following rule:

Gp′ =
p′ + 7
2  if p′ < 13,

7 if z = 13:

8<
: ð26Þ

We show that G is generalized α-nonexpansive having
α = 1/2, but not Suzuki mapping. This example thus exceeds
the class of Suzuki mappings.

Case I. When p′ = 13 = p″, we have

1
2 p′ −Gp″
�� �� + 1

2 p″ −Gp′
�� �� + 1 − 2 1

2

� �� �
p′ − p″
�� �� ≥ 0 = Gp′ −Gp″

�� ��:
ð27Þ
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Table 1: Numerical data generated by F, M, Picard-S, S, Ishikawa, and Mann iterative approximation schemes for the self map given in
Example 12.

F M Picard-S S Ishikawa Mann

1 7.9 7.9 7.9 7.9 7.9 7.9

2 7.06468750 7.12937500 7.16284375 7.3256875 7.3931875 7.51750000

3 7.00464941 7.01859766 7.02946454 7.11785816 7.17177379 7.29756250

4 7.00033418 7.00267341 7.00533124 7.04264992 7.07504367 7.17109844

5 7.00002402 7.00038430 7.00096462 7.01543394 7.03278471 7.09838160

6 7.00000173 7.00005524 7.00017454 7.00558516 7.01432282 7.05656942

7 7.00000012 7.00000794 7.00003158 7.00202113 7.00625728 7.03252742

8 7.00000001 7.00000114 7.00000571 7.0007314 7.00273365 7.01870326

9 7 7.00000016 7.00000103 7.00026467 7.00119426 7.01075438

10 7 7.00000002 7.00000019 7.00009578 7.00052174 7.00618377

11 7 7 7.00000003 7.00003466 7.00022794 7.00355567

12 7 7 7.00000001 7.00001254 7.00009959 7.00204451

13 7 7 7 7.00000454 7.00004350 7.00117559

14 7 7 7 7.00000164 7.00001901 7.00067597

15 7 7 7 7.00000059 7.00000830 7.00038868

16 7 7 7 7.00000022 7.00000363 7.00022349

17 7 7 7 7.00000008 7.00000158 7.00012851

18 7 7 7 7.00000003 7.00000069 7.00007389

19 7 7 7 7.00000001 7.00000030 7.00004249

20 7 7 7 7 7.00000013 7.00002443

21 7 7 7 7 7.00000006 7.00001405

22 7 7 7 7 7.00000003 7.00000808

23 7 7 7 7 7.00000001 7.00000464

24 7 7 7 7 7 7.00000260

7.0 7.2 7.4 7.6 7.8

7.0

7.1

7.2

7.3

7.4

7.5

wt

w t
+1

Figure 1: Convergence analysis view of F (cyan), M (red), Picard-S (green), S (blue), Ishikawa (magenta), and Mann (yellow) iteration
process for the mapping given in Example 12.
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Case II. Choose p′, p″ < 13, we have

 
1
2 p′ � Gp′′
�� �� + 1

2 p′′� Gp′
�� ��

  + 1� 2 1
2

� �� �
p′ � p′′
�� ��

  = 1
2 p′′� p′ + 7

2

 !�����
����� + 1

2 p′ � p′′ + 7
2

 !�����
�����

  ≥
1
2 p′′� p′ + 7

2

 ! !
� p′ � p′′ + 7

2

 ! !�����
�����

  = 1
2

2p′′� p′ � 7� 2p′ + p′′ + 7
2

�����
�����

  = 1
2

3p′′� 3p′
2

�����
����� = 3

4 p′ � p′′
�� �� ≥ 1

2 p′ � p′′
�� ��

  = Gp′ � Gp′′
�� ��:

ð28Þ

Case III. When p′ = 13 and p″ < 13, we have

 
1
2 p′ � Gp′′
�� �� + 1

2 p′′� Gp′
�� ��

  + 1� 2 1
2

� �� �
p′ � p′′
�� ��

  = 1
2 p′ � 7
�� �� + 1

2 p′′� p′ + 7
2

 !�����
����� ≥ 1

2 p′ � 7
�� ��

  = p′ � 7
2

�����
����� = Gp′ � Gp′′
�� ��:

ð29Þ

Consequently, kGp′ −Gp″k ≤ 1/2 ∣ p′ −Gp″ ∣ +1/2 ∣ p″
−Gp′ ∣ +ð1 − 2ð1/2ÞÞ∣p′ − p″∣ for every two points p′, p″ ∈
G . Now if one chooses p′ = 11:8 and p″ = 13, we must have
∣p′ − p″ ∣ = 1:2,∣Gp′ −Gp″ ∣ = 2:4 and 1/2 ∣ p′−Gp′ ∣ = 1:2.
It has been observed, 1/2 ∣ p′ − Gp′ ∣ ≤ ∣ p′ − p′′ ∣ and ∣Gp′
−Gp″ ∣ > ∣ p′ − p″ ∣ . Thus, G exceeded the class of Suzuki
mappings.

We now compare the effectiveness of the iterative scheme
F [15] with the leading M [14] and Picard [13] and the ele-
mentry S [5], Ishikawa [3] and Mann [2] approximation
scheme. We may take αt = 0:85 and βt = 0:65. For the strat-
ingw1 = 7:9, we can see some values in Table 1. Furthermore,
Figure 1 provides information about the behavior of the lead-
ing schemes. Clearly, F iterative scheme is more effective
than the other schemes in the general context of generalized
α-nonexpansive maps.

Remark 13. In the view of the above discussion, we noted that
the main theorems and outcome of this paper improved and
extended the main results of Ullah and Arshad [14] from
Suzuki mappings to generalized α-nonexpansive mappings
and from the setting of M iteration to the more general set-
ting of F iteration process. Moreover, the main results of this
paper improved the results of Ali and Ali [15] from the set-
ting of contractions to the general context of generalized α
-nonexpansive mappings. We have also improved the results
of Ullah et al. [22] in the sense of better rate of convergence.
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In this paper, we prove some common fixed point theorems for rational contraction mapping on complex partial b-metric space.
The presented results generalize and expand some of the literature’s well-known results. We also explore some of the applications of
our key results.

1. Introduction

Introduced in 1989 by Bakhtin [1] and Czerwick [2], the con-
cept of b-metric spaces provided a framework to extend the
results already known in the classical setting of metric spaces.
The concept of complex valued metric spaces was introduced
in 2011 by Azam et al. [3] and given some common fixed
point theorems under the condition of contraction. Rao
et al. [4] introduced the definition of complex valued b
-metric spaces in 2013 and provided a scheme to expand
the results, as well as proved a common fixed point theorem
under contraction. In 2017, Dhivya and Marudai [5] intro-
duced the concept of complex partial metric space and sug-
gested a plan to expand the results, as well as proved
common fixed point theorems under the rational expression
contraction condition. Gunaseelan [6, 7] presented the con-
cept of complex partial b-metric space in 2019, as well as
proved the fixed point theorem under the contractive
condition. Many researchers have studied some intriguing

concepts and applications and have shown significant results
[7–23]. In this paper, we prove some common fixed point
theorems for rational contraction mapping on complex
partial b-metric space.

2. Preliminaries

Let C be the set of complex numbers and 1, 2, 3 ∈C. Define a
partial order ≤ on C as follows: 1 ≤ 2 if and only if Rð1Þ ≤
Rð2Þ and I ð1Þ ≤I ð2Þ.

Consequently, one can infer that 1 ≤ 2 if one of the
following conditions is satisfied:

(i) Rð1Þ =Rð2Þ, I ð1Þ <I ð2Þ
(ii) Rð1Þ <Rð2Þ, I ð1Þ =I ð2Þ
(iii) Rð1Þ <Rð2Þ, I ð1Þ <I ð2Þ
(iv) Rð1Þ =Rð2Þ, I ð1Þ =I ð2Þ
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In particular, we write 1⋨2 if 1 ≠ 2 and one of (i), (ii), and
(iii) is satisfied and we write 1 ≺ 2 if only (iii) is satisfied.
Notice that

(a) If 0 ≤ 1⋨2, then j1j < j2j
(b) If 1 ≤ 2 and 2 ≺ 3, then 1 ≺ 3
(c) If η, γ ∈ℝ and η ≤ γ, then η1 ≤ γ1 for all 0 ≤ 1 ∈C

Here, C+ð= fðℵ, yÞ ∣ℵ, y ≥ 0,ℵ, y ∈ℝ+gÞ denote the set
of nonnegative complex numbers.

Now, let us recall some basic concepts and notations,
which will be used in the sequel.

Definition 1 [6]. A complex partial b-metric on a nonvoid set
W is a function φcb : W ×W⟶ℂ+ such that for all ℵ, ϑ,
Z ∈W,

(i) 0 ≤ φcbðℵ,ℵÞ ≤ φcbðℵ, ϑÞðsmall self ‐distancesÞ
(ii) φcbðℵ, ϑÞ = φcbðϑ,ℵÞðsymmetryÞ
(iii) φcbðℵ,ℵÞ = φcbðℵ, ϑÞ = φcbðϑ, ϑÞ⇔ℵ = ϑðequalityÞ
(iv) ∃ a real number s ≥ 1 and s is an independent of

ℵ, ϑ,Z such that φcbðℵ, ϑÞ ≤ s½φcbðℵ,ZÞ + φcbðZ, ϑÞ�
− φcbðZ,ZÞðtriangularityÞ

A complex partial b-metric space is a pair ðW, φcbÞ such
that W is a nonvoid set and φcb is the complex partial
b-metric on W. The number s is called the coefficient of
ðW, φcbÞ.

Definition 2 [6]. Let ðW, φcbÞ be a complex partial b-metric
space with coefficient s. Let fℵng be any sequence in W

and ℵ ∈W. Then,

(1) The sequence fℵng is said to converge to ℵ, if
limn⟶∞φcbðℵn,ℵÞ = φcbðℵ,ℵÞ

(2) The sequence fℵng is said to be Cauchy sequence in
ðW, φcbÞ if limn,m⟶∞φcbðℵn,ℵmÞ exists and is finite

(3) ðW, φcbÞ is said to be a complete complex partial
b-metric space if for every Cauchy sequence fℵng in
W, there exists ℵ ∈W such that limn,m⟶∞φcbðℵn,
ℵmÞ = limn⟶∞φcbðℵn,ℵÞ = φcbðℵ,ℵÞ.

Definition 3. Let S and T be self-mappings of nonempty set
W. A point ℵ ∈W is called a common fixed point of S and
T if ℵ =Sℵ =Tℵ.

In 2019, Gunaseelan [6] proved some fixed point theo-
rems on complex partial b-metric space as follows.

Theorem 4. Let ðW, φcbÞ be any complete complex partial b
-metric space with coefficient s ≥ 1 and S : W⟶W be a
mapping satisfying

φcb Sℵ,Sϑð Þ ≤ λ max φcb ℵ, ϑð Þ, φcb ℵ,Sℵð Þ, φcb ϑ,Sϑð Þf g,
ð1Þ

for allℵ, ϑ ∈W, where λ ∈ ½0, 1/s�. Then,S has a unique fixed
point ℵ∗ ∈W and φcbðℵ∗,ℵ∗Þ = 0.

Inspired by the study made by Gunaseelan [6], here, we
prove some common fixed point theorems for rational
contraction mapping on complex partial b-metric space with
an application.

3. Main Results

In this section, we will give our main result of this paper,
where some common fixed point theorems for rational
contraction mapping on complex partial b-metric space are
given.

Theorem 5. Let ðW, φcbÞ be a complete complex partial
b-metric space with the coefficient s ≥ 1 and S,T : W⟶
W be mappings satisfying

φcb Sℵ,Tϑð Þ ≤ a1φcb ℵ, ϑð Þ + a2φcb ℵ,Sℵð Þφcb ϑ,Tϑð Þ
1 + φcb ℵ,Tϑð Þ + φcb ℵ, ϑð Þ ,

ð2Þ

for all ℵ, ϑ ∈W, where a1, a2 are nonnegative reals with
a1 + sa2 < 1. Then, S and T have a unique common fixed
point in W.

Proof. Let ℵ0 be arbitrary point in W, and define a sequence
fℵng in W such that

ℵ2n+1 =Sℵ2n,ℵ2n+2 =Tℵ2n+1, ∀n ≥ 0: ð3Þ

Next, show that the sequence fℵng is Cauchy. By using
(3), we get

φcb ℵ2n+1,ℵ2n+2ð Þ = φcb Sℵ2n,Tℵ2n+1ð Þ
≤ a1φcb ℵ2n,ℵ2n+1ð Þ

+ a2φcb ℵ2n,Sℵ2nð Þφcb ℵ2n+1,Tℵ2n+1ð Þ
1 + φcb ℵ2n,Tℵ2n+1ð Þ + φcb ℵ2n,ℵ2n+1ð Þ ,

ð4Þ

so that

φcb ℵ2n+1,ℵ2n+2ð Þj j ≤ a1 φcb ℵ2n,ℵ2n+1ð Þj j
+ a2 φcb ℵ2n,ℵ2n+1ð Þj j φcb ℵ2n+1,ℵ2n+2ð Þj j

φcb ℵ2n,ℵ2n+2ð Þj j + φcb ℵ2n,ℵ2n+1ð Þj j :

ð5Þ
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By the hypothesis of theorem, we get

φcb ℵ2n+1,ℵ2n+2ð Þj j ≤ s φcb ℵ2n+1,ℵ2nð Þj j + φcb ℵ2n,ℵ2n+2ð Þj jf g
− φcb ℵ2n,ℵ2nð Þj j φcb ℵ2n+1,ℵ2n+2ð Þj j

≤ s φcb ℵ2n+1,ℵ2nð Þj j + φcb ℵ2n,ℵ2n+2ð Þj jf g:
ð6Þ

Hence,

φcb ℵ2n+1,ℵ2n+2ð Þj j ≤ a1 φcb ℵ2n,ℵ2n+1ð Þj j + sa2 φcb ℵ2n,ℵ2n+1ð Þj j
= a1 + sa2ð Þ φcb ℵ2n,ℵ2n+1ð Þj j φcb ℵ2n+1,ℵ2n+2ð Þj j
≤ a1 + sa2ð Þ φcb ℵ2n,ℵ2n+1ð Þj j:

ð7Þ

Similarly,

φcb ℵ2n+2,ℵ2n+3ð Þj j ≤ a1 + sa2ð Þ φcb ℵ2n+1,ℵ2n+2ð Þj j, ð8Þ

since a1 + sa2 < 1. Therefore, with δ = a1 + sa2 < 1 and for all
n ≥ 0, consequently, we have

φcb ℵ2n+1,ℵ2n+2ð Þj j ≤ δ φcb ℵ2n,ℵ2n+1ð Þj j ≤ δ2 φcb ℵ2n−1,ℵ2nð Þj j⋮
≤ δ2n+1 φcb ℵ0,ℵ1ð Þj j:

ð9Þ

That is,

φcb ℵn+1,ℵn+2ð Þj j ≤ δ φcb ℵn,ℵn+1ð Þj j
≤ δ2 φcb ℵn−1,ℵnð Þj j⋮
≤ δn+1 φcb ℵ0,ℵ1ð Þj j:

ð10Þ

For any m > n,m, n ∈ℕ, we have

φcb ℵn,ℵmð Þj j ≤ s φcb ℵn,ℵn+1ð Þj j + φcb ℵn+1,ℵmð Þj jf g
− φcb ℵn+1,ℵn+1ð Þj j ≤ s φcb ℵn,ℵn+1ð Þj jf
+ φcb ℵn+1,ℵmð Þj jg ≤ s φcb ℵn,ℵn+1ð Þj j
+ s2 φcb ℵn+1,ℵn+2ð Þj j + s2 φcb ℵn+2,ℵmð Þj j
− φcb ℵn+2,ℵn+2ð Þj j ≤ s φcb ℵn,ℵn+1ð Þj j
+ s2 φcb ℵn+1,ℵn+2ð Þj j + s2 φcb ℵn+2,ℵmð Þj j

≤ s φcb ℵn,ℵn+1ð Þj j + s2 φcb ℵn+1,ℵn+2ð Þj j
+ s3 φcb ℵn+2,ℵn+3ð Þj j + s3 φcb ℵn+3,ℵmð Þj j
− φcb ℵn+3,ℵn+3ð Þj j ≤ s φcb ℵn,ℵn+1ð Þj j
+ s2 φcb ℵn+1,ℵn+2ð Þj j + s3 φcb ℵn+2,ℵn+3ð Þj j
+ s3 φcb ℵn+3,ℵmð Þj j⋮≤s φcb ℵn,ℵn+1ð Þj j
+ s2 φcb ℵn+1,ℵn+2ð Þj j + s3 φcb ℵn+2,ℵn+3ð Þj j
+⋯sm−n−2 φcb ℵm−3,ℵm−2ð Þj j
+ sm−n−1 φcb ℵm−2,ℵm−1ð Þj j
+ sm−n φcb ℵm−1,ℵmð Þj j:

ð11Þ

From (10), we get

φcb ℵn,ℵmð Þj j ≤ sδn φcb ℵ0,ℵ1ð Þj j + s2δn+1 φcb ℵ0,ℵ1ð Þj j
+ s3δn+2 φcb ℵ0,ℵ1ð Þj j
+⋯+sm−n−2δm−3 φcb ℵ0,ℵ1ð Þj j
+ sm−n−1δm−2 φcb ℵ0,ℵ1ð Þj j
+ sm−nδm−1 φcb ℵ0,ℵ1ð Þj j

= 〠
m−n

i=1
siδi+n−1 φcb ℵ0,ℵ1ð Þj j:

ð12Þ

Hence,

φcb ℵn,ℵmð Þj j ≤ 〠
m−n

i=1
si+n−1δi+n−1 φcb ℵ0,ℵ1ð Þj j

= 〠
m−1

t=n
stδt φcb ℵ0,ℵ1ð Þj j ≤ 〠

∞

t=n
sδð Þt φcb ℵ0,ℵ1ð Þj j

= sδð Þn
1 − sδ

φcb ℵ0,ℵ1ð Þj j,
ð13Þ

and hence,

φcb ℵn,ℵmð Þj j ≤ sδð Þn
1 − sδ

φcb ℵ0,ℵ1ð Þj j⟶ 0 asm, n⟶∞:

ð14Þ

Thus, fℵng is a Cauchy sequence in W. Since W is
complete, there exists some u ∈W such that ℵn ⟶ u as
n⟶∞ and

φcb u, uð Þ = lim
n⟶∞

φcb u,ℵnð Þ = lim
n⟶∞

φcb ℵn,ℵnð Þ = 0: ð15Þ

Assume on the contrary that there exists z ∈W such
that

φcb u,Suð Þj j = zj j > 0: ð16Þ

By using the triangular inequality and (2), we obtain

z = φcb u,Suð Þ
≤ s φcb u,ℵ2n+2ð Þ + φcb ℵ2n+2,Suð Þf g − φcb ℵ2n+2,ℵ2n+2ð Þ
≤ s φcb u,ℵ2n+2ð Þ + φcb ℵ2n+2,Suð Þf g
= s φcb u,ℵ2n+2ð Þ + φcb Tℵ2n+1,Suð Þf g
≤ sφcb u,ℵ2n+2ð Þ + sa1φcb u,ℵ2n+1ð Þ

+ sa2φcb u,Suð Þφcb ℵ2n+1,Tℵ2n+1ð Þ
1 + φcb u,Tℵ2n+1ð Þ + φcb u,ℵ2n+1ð Þ

= sφcb u,ℵ2n+2ð Þ + sa1φcb u,ℵ2n+1ð Þ
+ sa2φcb u,Suð Þφcb ℵ2n+1,ℵ2n+2ð Þ
1 + φcb u,ℵ2n+2ð Þ + φcb u,ℵ2n+1ð Þ ,

ð17Þ

3Journal of Function Spaces



which implies that

zj j = φcb u,Suð Þj j
≤ s φcb u,ℵ2n+2ð Þj j + sa1 φcb u,ℵ2n+1ð Þj j

+ sa2 φcb u,Suð Þj j φcb ℵ2n+1,ℵ2n+2ð Þj j
1 + φcb u,ℵ2n+2ð Þ∣+ φcb u,ℵ2n+1ð Þj j :

ð18Þ

As n⟶∞ in (18), we obtain that jzj = jφcbðu,SuÞj
≤ 0, a contradiction with (16). Therefore jzj = 0. Hence,
Su = u. Similarly, we obtain Tu = u.

Assume that u∗ is another common fixed point ofS and
T. Then,

φcb u, u∗ð Þ = φcb Su,Tu∗ð Þ
≤ a1φcb u, u∗ð Þ + a2φcb u,Suð Þφcb u∗,Tu∗ð Þ

1 + φcb u,Tu∗ð Þ + φcb u, u∗ð Þ ,

ð19Þ

so that

φcb u, u∗ð Þj j ≤ a1 φcb u, u∗ð Þj j
+ a2 φcb u,Suð Þj j φcb u∗,Tu∗ð Þj j
1 + φcb u,Tu∗ð Þj j + φcb u, u∗ð Þj j

≤ a1 φcb u, u∗ð Þj j:

ð20Þ

Hence, u = u∗, which proves the uniqueness. This com-
pletes the proof of the theorem. ☐

Theorem 6. Let ðW, φcbÞ be a complete complex partial
b-metric space with the coefficient s ≥ 1 and S,T : W⟶
W be mappings satisfying

φcb Sℵ,Tϑð Þ ≤ a1φcb ℵ, ϑð Þ + a2φcb ℵ,Tϑð Þ
+ a3 φcb ℵ,Sℵð Þ + φcb ϑ,Tϑð Þ½ �, ð21Þ

for all ℵ, ϑ ∈W, where a1, a2, and a3 are nonnegative reals
with a1 + 2sa2 + 2a3 < 1. Then, S and T have a unique com-
mon fixed point in W.

Proof. Let ℵ0 be arbitrary point inW, and define a sequence
fℵng in W such that

ℵ2n+1 =Sℵ2n,ℵ2n+2 =Tℵ2n+1, ∀n ≥ 0: ð22Þ

Next, show that the sequence fℵng is Cauchy. By using
(22), we get

φcb ℵ2n+1,ℵ2n+2ð Þ = φcb Sℵ2n,Tℵ2n+1ð Þ
≤ a1φcb ℵ2n,ℵ2n+1ð Þ + a2φcb ℵ2n,Tℵ2n+1ð Þ

+ a3 φcb ℵ2n,Sℵ2nð Þ + φcb ℵ2n+1,Tℵ2n+1ð Þ½ �
= a1φcb ℵ2n,ℵ2n+1ð Þ + a2φcb ℵ2n,Tℵ2n+1ð Þ

+ a3 φcb ℵ2n,ℵ2n+1ð Þ + φcb ℵ2n+1,ℵ2n+2ð Þ½ �,
ð23Þ

so that

∣φcb ℵ2n+1,ℵ2n+2ð Þ∣ ≤ a1∣φcb ℵ2n,ℵ2n+1ð Þ∣
+ a2∣φcb ℵ2n,ℵ2n+2ð Þ∣
+ a3 ∣φcb ℵ2n,ℵ2n+1ð Þ∣½
+∣φcb ℵ2n+1,ℵ2n+2ð Þ ∣ �:

ð24Þ

By the notion of complex partial b-metric space, we get

φcb ℵ2n,ℵ2n+2ð Þj j ≤ s φcb ℵ2n,ℵ2n+1ð Þj j + φcb ℵ2n+1,ℵ2n+2ð Þj jf g
− φcb ℵ2n+1,ℵ2n+1ð Þj j φcb ℵ2n,ℵ2n+2ð Þj j

≤ s φcb ℵ2n,ℵ2n+1ð Þj j + φcb ℵ2n+1,ℵ2n+2ð Þj jf g:
ð25Þ

Hence,

φcb ℵ2n+1,ℵ2n+2ð Þj j ≤ a1 φcb ℵ2n,ℵ2n+1ð Þj j
+ sa2 φcb ℵ2n,ℵ2n+1ð Þj j + φcb ℵ2n+1,ℵ2n+2ð Þj jf g
+ a3 φcb ℵ2n,ℵ2n+1ð Þj j + φcb ℵ2n+1,ℵ2n+2ð Þj j½ �

≤
a1 + sa2 + a3
1 − sa2 − a3

� �
φcb ℵ2n,ℵ2n+1ð Þj j:

ð26Þ

Similarly,

φcb ℵ2n+2,ℵ2n+3ð Þj j ≤ a1 + sa2 + a3
1 − sa2 − a3

� �
φcb ℵ2n+1,ℵ2n+2ð Þj j:

ð27Þ

Set δ = ða1 + sa2 + a3Þ/ð1 − sa2 − a3Þ. Since a1 + 2sa2 + 2
a3 < 1 and for all n ≥ 0, consequently, we have

φcb ℵ2n+1,ℵ2n+2ð Þj j ≤ δ φcb ℵ2n,ℵ2n+1ð Þj j
≤ δ2 φcb ℵ2n−1,ℵ2nð Þj j⋮
≤ δ2n+1 φcb ℵ0,ℵ1ð Þj j:

ð28Þ

That is,

φcb ℵn+1,ℵn+2ð Þj j ≤ δ φcb ℵn,ℵn+1ð Þj j
≤ δ2 φcb ℵn−1,ℵnð Þj j⋮
≤ δn+1 φcb ℵ0,ℵ1ð Þj j:

ð29Þ
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For any m > n,m, n ∈ℕ, we have

∣φcb ℵn,ℵmð Þ∣ ≤ s ∣φcb ℵn,ℵn+1ð Þ∣+∣φcb ℵn+1,ℵmð Þ ∣f g
− ∣φcb ℵn+1,ℵn+1ð Þ∣

≤ s ∣φcb ℵn,ℵn+1ð Þ∣+∣φcb ℵn+1,ℵmð Þ ∣f g
≤ s∣φcb ℵn,ℵn+1ð Þ∣ + s2∣φcb ℵn+1,ℵn+2ð Þ∣

+ s2∣φcb ℵn+2,ℵmð Þ∣ − ∣φcb ℵn+2,ℵn+2ð Þ∣
≤ s∣φcb ℵn,ℵn+1ð Þ∣ + s2∣φcb ℵn+1,ℵn+2ð Þ∣

+ s2∣φcb ℵn+2,ℵmð Þ∣
≤ s∣φcb ℵn,ℵn+1ð Þ∣ + s2∣φcb ℵn+1,ℵn+2ð Þ∣

+ s3∣φcb ℵn+2,ℵn+3ð Þ∣ + s3∣φcb ℵn+3,ℵmð Þ∣
− ∣φcb ℵn+3,ℵn+3ð Þ∣

≤ s∣φcb ℵn,ℵn+1ð Þ∣ + s2∣φcb ℵn+1,ℵn+2ð Þ∣
+ s3∣φcb ℵn+2,ℵn+3ð Þ∣ + s3 φcb ℵn+3,ℵmð Þj j⋮

≤ s∣φcb ℵn,ℵn+1ð Þ∣ + s2∣φcb ℵn+1,ℵn+2ð Þ∣
+ s3∣φcb ℵn+2,ℵn+3ð Þ∣
+⋯sm−n−2∣φcb ℵm−3,ℵm−2ð Þ∣
+ sm−n−1∣φcb ℵm−2,ℵm−1ð Þ∣
+ sm−n φcb ℵm−1,ℵmð Þj j:

ð30Þ

From (29), we get

φcb ℵn,ℵmð Þj j ≤ sδn φcb ℵ0,ℵ1ð Þj j + s2δn+1 φcb ℵ0,ℵ1ð Þj j
+ s3δn+2 φcb ℵ0,ℵ1ð Þj j+⋯+sm−n−2δm−3 φcb ℵ0,ℵ1ð Þj j
+ sm−n−1δm−2 φcb ℵ0,ℵ1ð Þj j + sm−nδm−1 φcb ℵ0,ℵ1ð Þj j

= 〠
m−n

i=1
siδi+n−1 φcb ℵ0,ℵ1ð Þj j:

ð31Þ

Hence,

∣φcb ℵn,ℵmð Þ∣ ≤ 〠
m−n

i=1
si+n−1δi+n−1∣φcb ℵ0,ℵ1ð Þ∣

= 〠
m−1

t=n
stδt∣φcb ℵ0,ℵ1ð Þ∣

≤ 〠
∞

t=n
sδð Þt φcb ℵ0,ℵ1ð Þj j

= sδð Þn
1 − sδ

φcb ℵ0,ℵ1ð Þj j,

ð32Þ

and hence,

φcb ℵn,ℵmð Þj j ≤ sδð Þn
1 − sδ

φcb ℵ0,ℵ1ð Þj j⟶ 0 asm, n⟶∞:

ð33Þ

Thus, fℵng is a Cauchy sequence in W. Since W is
complete, there exists some u ∈W such that ℵn ⟶ u as n
⟶∞ and

φcb u, uð Þ = lim
n⟶∞

φcb u,ℵnð Þ = lim
n⟶∞

φcb ℵn,ℵnð Þ = 0: ð34Þ

Assume on the contrary that there exists z ∈W such that

∣φcb u,Suð Þ∣ = ∣z∣ > 0: ð35Þ

By using the triangular inequality and (21), we obtain

z = φcb u,Suð Þ
≤ s φcb u,ℵ2n+2ð Þ + φcb ℵ2n+2,Suð Þf g − φcb ℵ2n+2,ℵ2n+2ð Þ
≤ s φcb u,ℵ2n+2ð Þ + φcb ℵ2n+2,Suð Þf g
= s φcb u,ℵ2n+2ð Þ + φcb Su,Tℵ2n+1ð Þf g
≤ sφcb u,ℵ2n+2ð Þ + sa1φcb u,ℵ2n+1ð Þ + sa2φcb u,Tℵ2n+1ð Þ

+ sa3 φcb u,Suð Þ + φcb ℵ2n+1,Tℵ2n+1ð Þ½ �
= sφcb u,ℵ2n+2ð Þ + sa1φcb u,ℵ2n+1ð Þ + sa2φcb u,ℵ2n+2ð Þ

+ sa3 z + φcb ℵ2n+1,ℵ2n+2ð Þ½ �,
ð36Þ

which implies that

∣z∣ = ∣φcb u,Suð Þ∣
≤ s∣φcb u,ℵ2n+2ð Þ∣ + sa1∣φcb u,ℵ2n+1ð Þ∣

+ sa2∣φcb u,ℵ2n+2ð Þ∣ + sa3 ∣z∣+∣φcb ℵ2n+1,ℵ2n+2ð Þ ∣½ �:
ð37Þ

As n⟶∞ in (37), we obtain that ∣z ∣ = ∣ φcbðu,SuÞ
∣ ≤0, a contradiction with (35). Therefore, ∣z ∣ = 0. Hence,
Su = u. Similarly, we obtain Tu = u.

Assume that u∗ is another common fixed point ofS and
T. Then,

φcb u, u∗ð Þ = φcb Su,Tu∗ð Þ
≤ a1φcb u, u∗ð Þ + a2φcb u,Tu∗ð Þ

+ a3 φcb u,Suð Þ + φcb u∗,Tu∗ð Þ½ �,
ð38Þ

which implies that ∣φcbðu, u∗Þ ∣ ≤0, a contradiction. So u =
u∗, which proves the uniqueness. ☐

Example 1. Let W = f1, 2, 3, 4g be endowed with the order
ℵ ≤ ϑ if and only if ϑ ≤ℵ. Then, ≤ is a partial order in W.
Define the complex partial b-metric space φcb : W ×W

⟶ℂ+ as follows (Table 1):

Table 1

ℵ, ϑð Þ φcb ℵ, ϑð Þ
(1,1), (2,2) 0

(1,2), (2,1), (1,3), (3,1), (2,3), (3,2), (3,3) e2ix

(1,4), (4,1), (2,4), (4,2), (3,4), (4,3), (4,4) 9e2ix
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It is easy to verify that ðW, φcbÞ is a complete complex
partial b-metric space with the coefficient s ≥ 1 for
x ∈ ½0, π/2�. Define S,T : W⟶W by Sℵ = 1,

T ℵð Þ =
1 if ℵ ∈ 1, 2, 3f g,
2 if ℵ = 4:

 
ð39Þ

Let λ1 = 1/9 and λ2 = 1/8; we consider the following cases:

(1) If ℵ = 1 and ϑ ∈W − f4g, thenSðℵÞ =TðϑÞ = 1 and
the conditions of Theorem 5 are satisfied

(2) If ℵ = 1 and ϑ = 4, then Sℵ = 1, Tϑ = 2,

φcb Sℵ,Tϑð Þ = e2ix ≤ 9λ1ei2x

= λ1φcb ℵ, ϑð Þ + λ2
φcb ℵ,Sℵð Þφcb ϑ,Tϑð Þ

1 + φcb ℵ,Tϑð Þ + φcb ℵ, ϑð Þ
ð40Þ

(3) If ℵ = 2 and ϑ = 4, then Sℵ = 1, Tϑ = 2

φcb Sℵ,Tϑð Þ = e2ix ≤ 1 + 1
8

� �
ei2x

= λ19ei2x + λ2
ei2x9ei2x
1 + 9ei2x

= λ1φcb ℵ, ϑð Þ + λ2
φcb ℵ,Sℵð Þφcb ϑ,Tϑð Þ

1 + φcb ℵ,Tϑð Þ + φcb ℵ, ϑð Þ
ð41Þ

(4) If ℵ = 3 and ϑ = 4, then Sℵ = 1, Tϑ = 2

φcb Sℵ,Tϑð Þ = e2ix ≤ 1 + 9
80

� �
ei2x

= λ19ei2x + λ2
ei2x9ei2x
1 + 10ei2x

= λ1φcb ℵ, ϑð Þ + λ2
φcb ℵ,Sℵð Þφcb ϑ,Tϑð Þ

1 + φcb ℵ,Tϑð Þ + φcb ℵ, ϑð Þ
ð42Þ

(5) If ℵ = 4 and ϑ = 4, then Sℵ = 1, Tϑ = 2

φcb Sℵ,Tϑð Þ = e2ix ≤ 1 + 9
16

� �
ei2x

= λ19ei2x + λ2
9ei2x9ei2x

1 + 9ei2x + 9ei2x

= λ1φcb ℵ, ϑð Þ + λ2
φcb ℵ,Sℵð Þφcb ϑ,Tϑð Þ

1 + φcb ℵ,Tϑð Þ + φcb ℵ, ϑð Þ
ð43Þ

Moreover for a1 + sa2 < 1, the conditions of Theorem 5
are satisfied. Therefore, 1 is the unique common fixed point
of S and T.

4. Application

Consider the following systems of integral equations:

w sð Þ = b sð Þ +
ðb
a
T1 s, p,w pð Þð Þdp, ð44Þ

w sð Þ = b sð Þ +
ðb
a
T2 s, p,w pð Þð Þdp, ð45Þ

where

(1) [label = ðÞ]
(2) wðsÞ is an unknown variable for each s ∈ J = ½a, b�, b

> a ≥ 0
(3) bðsÞ is the deterministic free term defined for s ∈ ½a, b�
(4) T1ðs, pÞ and T2ðs, pÞ are deterministic kernels defined

for s, p ∈ J = ½a, b�
In this section, we present an existence theorem for a

common solution to (44) and (45) that belongs to W =
ðCðJÞ,ℝnÞ (the set of continuous functions defined on J) by
using the obtained result in Theorem 5. We consider the con-
tinuous mappings S,T : W⟶W given by

Sw sð Þ = b sð Þ +
ðb
a
T1 s, p,w pð Þð Þdp, w ∈W, s ∈ J ,

Tw sð Þ = b sð Þ +
ðb
a
T2 s, p,w pð Þð Þdp, z ∈W, s ∈ J:

ð46Þ

Then, the existence of a common solution to the integral
equations (44) and (45) is equivalent to the existence of a
common fixed point of T1 and T2. It is well known that W,
endowed with the metric φcb defined by

φcb w, zð Þ = w sð Þ − z sð Þj j2 + 2, ð47Þ

for allw, z ∈W, is a complete complex partial b-metric space.
W can also be equipped with the partial order ≤ given by

w, z ∈W, w ≤ z if and onlyw sð Þ ≥ z sð Þ, for all s ∈ J: ð48Þ
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Further, let us consider that a system of integral equation
as (44) and (45) under the following condition holds:

(1) T1, T2 : J × J ×ℝn ⟶ℝn are continuous functions
satisfying

∣T1 s, p,w pð Þð Þ − T2 s, p, z pð Þð Þ∣ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
φcb w, zð Þ
b − að Þet −

2
b − a

s
, ∀t > 0

ð49Þ

Theorem 7. Let ðCðJÞ,ℝn, φcbÞ be a complete complex partial
b-metric space; then, the systems (44) and (45) under condi-
tion (3) have a unique common solution.

Proof. For w, z ∈ ðCðJÞ,ℝnÞ and s ∈ J , we define the continu-
ous mappings S,T : W⟶W by

Sw sð Þ = b sð Þ +
ðb
a
T1 s, p,w pð Þð Þdp,

Tw sð Þ = b sð Þ +
ðb
a
T2 s, p,w pð Þð Þdp:

ð50Þ

Then, we have

φcb Sw sð Þ,Tz sð Þð Þ = Sw sð Þ −Tz sð Þj j2 + 2

=
ðb
a
T1 s, p,w pð Þð Þ − T2 s, p, z pð Þð Þj j2dp + 2

≤
ðb
a

φcb w, zð Þ
b − að Þet −

2
b − a

� �
dp + 2

= φcb w, zð Þ
et

= λ1φcb w, zð Þ

= λ1φcb w, zð Þ + λ2
φcb w,Swð Þφcb z,Tzð Þ

1 + φcb w,Tzð Þ + φcb w, zð Þ :

ð51Þ

Hence, all the conditions of Theorem 5 are satisfied for
a1 + sa2ð= 0Þ < 1, with t > 0. Therefore, the system of integral
equations (44) and (45) has a unique common solution.

5. Conclusion

In this paper, we proved some common fixed point theorems
for rational contraction mapping on complex partial b-met-
ric space. An illustrative example and application on complex
partial b-metric space is given.
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In the recent past, some researchers studied some fixed point results on the modular variable exponent sequence space ðℓrð:ÞÞψ, where
ψðvÞ =∑∞

a=0ð1/raÞjvajra and ra ≥ 1. They depended on their proof that the modular ψ has the Fatou property. But we have explained
that this result is incorrect. Hence, in this paper, the concept of the premodular, which generalizes the modular, on the Nakano
sequence space such as its variable exponent in ð1,∞Þ and the operator ideal constructed by this sequence space and s-numbers is
introduced. We construct the existence of a fixed point of Kannan contraction mapping and Kannan nonexpansive mapping
acting on this space. It is interesting that several numerical experiments are presented to illustrate our results. Additionally, some
successful applications to the existence of solutions of summable equations are introduced. The novelty lies in the fact that our
main results have improved some well-known theorems before, which concerned the variable exponent in the aforementioned space.

1. Introduction

Ideal operators and summability theorems are awfully
invaluable in mathematical models and have large execu-
tions, for example, the fixed point theory, geometry of
Banach spaces, normal series theory, approximation theory,
and ideal transformations. For added evidence, see [1–4].
By RN , ℓ∞, ℓr , and c0, we denote the spaces of all, bounded,
r-absolutely summable and null sequences of real numbers.
We indicate the space of all bounded linear operators from
a Banach space Z into a Banach space M by LðZ,MÞ, and
if Z =M, we inscribe LðZÞ and ed = f0, 0,⋯, 1, 0, 0,⋯g,
while 1 displays at the dth place, for all d ∈N = f0, 1, 2,⋯g.

Definition 1 [5]. An s-number function is a map detailed on
LðZ,MÞ which sorts every map W ∈LðZ,MÞ a nonnega-
tive scaler sequence ðsdðWÞÞ∞d=0 overbearing that the next
setting encompasses

(a) kWk = s0ðWÞ ≥ s1ðWÞ ≥ s2ðWÞ≥⋯≥0, for all W ∈
LðZ,MÞ

(b) sl+d−1ðW1 +W2Þ ≤ slðW1Þ + sdðW2Þ, for every W1,
W2 ∈LðZ,MÞ, and l, d ∈N

(c) Ideal property: sdðVYWÞ ≤ kVksdðYÞkWk, for every
W ∈LðZ0, ZÞ, Y ∈LðZ,MÞ, and V ∈LðM,M0Þ,
where Z0 and M0 are discretionary Banach spaces

(d) For W ∈LðZ,MÞ and γ ∈R, one has sdðγWÞ = jγj
sdðWÞ

(e) Rank property: assume rank ðWÞ ≤ d, then sdðWÞ = 0,
for each W ∈LðZ,MÞ

(f) Norming property: sl≥aðIaÞ = 0 or sl<aðIaÞ = 1, where
Ia mirrors the unit map on the a-dimensional Hilbert
space ℓa2

The dth approximation number, established by αdðWÞ, is
defined as

αd Wð Þ = inf W − Yk k: Y ∈L Z,Mð Þ and rank Yð Þ ≤ df g: ð1Þ
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Notation 2. The sets SA,SAðZ,MÞ, SappA , and SappA ðZ,MÞ (cf.
[6]) indicate

SA ≔ SA Z,Mð Þf g, ð2Þ

where SAðZ,MÞ≔ fW ∈LðZ,MÞ: ðsdðWÞÞ∞d=0 ∈ Ag: Also,
SappA ≔ fSappA ðZ,MÞg, where SappA ðZ,MÞ≔ fW ∈LðZ,MÞ:
ðαdðWÞÞ∞d=0 ∈ Ag.

Suppose that r = ðraÞ ∈R+N , the Nakano sequence space
defined and studied in [7–9] is denoted by ℓðrÞ = fv = ðvaÞ
∈RN : ϕðμvÞ<∞,for some μ > 0g, when ϕðvÞ =∑∞

a=0jvajra :
The space ðℓðrÞ, k:kÞ, where kvk = inf fκ > 0 : ϕðv/kÞ ≤

1g and ra ≥ 1, for all a ∈N , is a Banach space. If ðraÞ ∈ ℓ∞,
then,

ℓ rð Þ = v = vað Þ ∈RN : ϕ μvð Þ<∞,for some μ > 0
n o

= v = vað Þ ∈RN : inf
a

μj jra 〠
∞

a=0
vaj jra ≤ 〠

∞

a=0
μvaj jra<∞,for some μ > 0

( )

= v = vað Þ ∈RN : 〠
∞

a=0
vaj jra<∞

( )

= v = vað Þ ∈RN : ϕ μvð Þ<∞,for any μ > 0
n o

:

ð3Þ

The vector spaces ℓðrÞ are contained in the variable expo-
nent spaces LðrÞ. In the second half of the twentieth century, it
was assumed that these variable exponent spaces provided
the proper framework for the mathematical components of
numerous issues for which the classical Lebesgue spaces were
insufficient. Because of the importance of these spaces and
their surroundings, they have become a well-known and
environmentally friendly tool in the treatment of a variety
of conditions; currently, the region of LðrÞðΩÞ spaces is a pro-
lific subject of research, with ramifications extending into a
wide range of mathematical specialties (see [10]). The math-
ematical description of the hydrodynamics of non-Newto-
nian fluids provides an impetus for learning about variable
exponent Lebesgue spaces, LðrÞ (see [11, 12]). Applications
of non-Newtonian fluids, known as electrorheological, vary
from their use in army science to civil engineering and ortho-
pedics. Faried and Bakery provided the theory of the pre-
quasioperator ideal, which is more general than the quasio-
perator ideal, in [6]. In [7], Bakery and Abou Elmatty
explained the sufficient (not necessary) setting on ℓðrÞ so that
SℓðrÞ generated a simple Banach pre-quasioperator ideal. The

pre-quasioperator ideal SappℓðrÞ is strictly restricted to different

powers. It was a small pre-quasioperator ideal. Because of
the booklet of the Banach fixed point theorem [13], many
mathematicians have worked on many developments. Kan-
nan [14] gave an example of a class of mappings with the
same fixed point actions as contractions, though that fails
to be continuous. The only attempt to describe Kannan oper-
ators in modular vector spaces was once made in reference
[15]. Bakery and Mohamed [16] explored the concept of
the pre-quasinorm on the Nakano sequence space such that

its variable exponent in ð0, 1�. They explained the sufficient
conditions on it, equipped with the definite pre-quasinorm
to generate pre-quasi-Banach and closed space, and exam-
ined the Fatou property of different pre-quasinorms on it.
Moreover, they showed the existence of a fixed point of Kan-
nan pre-quasinorm contraction maps on it and on the pre-
quasi-Banach operator ideal constructed by s-numbers which
belong to this sequence space. For more details on Kannan’s
fixed point theorems, see [17–24]. The aim of this paper is to
examine the concept of the pre-quasinorm on ℓðrÞwith a var-
iable exponent in ð1,∞Þ. We study the sufficient conditions
on ℓðrÞ equipped with the definite pre-quasinorm to form
pre-quasi-Banach and closed (sss), the existence of a fixed
point of Kannan pre-quasinorm contraction mapping in
the pre-quasi-Banach (sss), ðℓðrÞÞϕ satisfies the property (R),
and ðℓðrÞÞϕ has the ϕ-normal structure property. The exis-
tence of a fixed point of Kannan pre-quasinorm nonexpansive
mapping in the pre-quasi-Banach (sss) has been given. Finally,
we examine the idea of Kannan pre-quasinorm contraction
mapping in the pre-quasioperator ideal. As well, the existence
of a fixed point of Kannan pre-quasinorm contraction map-
ping in the pre-quasi-Banach operator ideal SðℓðrÞÞϕ has been

introduced. Finally, some illustrative examples and applica-
tions to the existence of solutions of summable equations are
given.

2. Definitions and Preliminaries

By ½0,∞ÞA, we denote the space of all functions ϕ : A⟶
½0,∞Þ. Nakano [25] introduced the concept of modular
vector spaces.

Definition 3. Suppose that A is a vector space. A function
ϕ ∈ ½0,∞�A is called modular if the next conditions hold

(a) For v ∈A, v = θ⟺ ϕðvÞ = 0 with ϕðvÞ ≥ 0, where θ
is the zero vector of A

(b) ϕðηvÞ = ϕðvÞ holds, for all v ∈A and jηj = 1
(c) The inequality ϕðαv + ð1 − αÞtÞ ≤ ϕðvÞ + ϕðtÞ sat-

isfies, for all v, t ∈A and α ∈ ½0, 1�

The concept of premodular vector spaces is more general
than modular vector spaces.

Definition 4 [2]. The linear space of sequences A is called a
special space of sequences (sss), if

(a) feaga∈N ⊆A

(b) A is solid, i.e., assume that v = ðvaÞ ∈RN , t = ðtaÞ ∈A
, and jvaj ≤ jtaj, for each a ∈N , and then v ∈A

(c) ðv½a/2�Þ∞a=0 ∈A, where ½a/2� indicates the integral part
of a/2, in case ðvaÞ∞a=0 ∈A
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Definition 5 [6]. A subclass Aϕ of A is named a premodular

(sss), if there is ϕ ∈ ½0,∞ÞA, it satisfies the next setting:

(i) For v ∈A, v = θ⟺ ϕðvÞ = 0 with ϕðvÞ ≥ 0
(ii) For some B ≥ 1, the inequality ϕðηvÞ ≤ BjηjϕðvÞ

holds, for all v ∈A and η ∈R

(iii) For some J ≥ 1, the inequality ϕðv + tÞ ≤ JðϕðvÞ + ϕ
ðtÞÞ satisfies, for all v, t ∈A

(iv) For a ∈N and jvaj ≤ jtaj, we have ϕððvaÞÞ ≤ ϕððtaÞÞ
(v) The inequality, ϕððvaÞÞ ≤ ϕððv½a/2�ÞÞ ≤ J0ϕððvaÞÞ

includes, for some J0 ≥ 1
(vi) Let F be the space of finite sequences, then �F =Aϕ

(vii) we have ς > 0 such that ϕðβ, 0, 0, 0,⋯Þ ≥ ςjβjϕð1, 0
, 0, 0,⋯Þ, for all β ∈R

This is an example of a premodular vector space but not a
modular vector space.

Example 6. The function ϕðvÞ = ð∑a∈N jvaja+1/3a+4Þ
4
is a pre-

modular (not a modular) on the vector space
ℓðða + 1/3a + 4Þ∞a=0Þ. Since for all v, t ∈ ℓðða + 1/3a + 4Þ∞a=0Þ,
we have

ϕ
v + t
2

� �
= 〠

a∈N

va + ta
2

����
����
a+1/3a+4

 !4

≤ 4 ϕ vð Þ + ϕ tð Þð Þ: ð4Þ

Definition 7 [26]. LetA be a (sss). The function ϕ ∈ ½0,∞ÞA is
named a pre-quasinorm on A, if it provides the following
setting:

(i) For v ∈A, v = θ⟺ ϕðvÞ = 0 with ϕðvÞ ≥ 0
(ii) For some B ≥ 1, the inequality ϕðηvÞ ≤ BjηjϕðvÞ

holds, for all v ∈A and η ∈R

(iii) For some J ≥ 1, the inequality ϕðv + tÞ ≤ JðϕðvÞ + ϕ
ðtÞÞ satisfies, for all v, t ∈A

Theorem 8 [26]. Let A be a premodular (sss), and then, it is
pre-quasinormed (sss).

Theorem 9 [26]. A is a pre-quasinormed (sss), if it is quasi-
normed (sss).

Definition 10 [3]. Suppose that L is the class of all bounded
linear operators within any two arbitrary Banach spaces. A
subclass U of L is called an operator ideal, if every element
UðZ,MÞ =U ∩LðZ,MÞ satisfies the next conditions:

(i) IΓ ∈U, where Γ describes the Banach space of one
dimension

(ii) The space UðZ,MÞ is linear over R

(iii) If W ∈LðZ0, ZÞ, X ∈UðZ,MÞ, and Y ∈LðM,M0Þ,
then, YXW ∈UðZ0,M0Þ, where Z0 and M0 are
normed spaces (see [27, 28])

This is the concept of the pre-quasioperator ideal which
is added in general to the quasioperator ideal.

Definition 11 [6]. A function ϕ ∈ ½0,∞ÞU is called a pre-
quasinorm on the ideal U if the next conditions hold:

(1) Let W ∈UðZ,MÞ, ϕðWÞ ≥ 0, and ϕðWÞ = 0, if and
only if, W = 0

(2) We have D ≥ 1 so as to ϕðηWÞ ≤DjηjϕðWÞ, for every
W ∈UðZ,MÞ and η ∈R

(3) We have J ≥ 1 so that ϕðW1 +W2Þ ≤ J½ϕðW1Þ + ϕ
ðW2Þ�, for each W1,W2 ∈UðZ,MÞ

(4) We have σ ≥ 1 if W ∈LðZ0, ZÞ, X ∈UðZ,MÞ, and Y
∈LðM,M0Þ, and then, ϕðYXWÞ ≤ σkYkϕðXÞkWk

Theorem 12 [29]. Assuming that Aϕ is a pre-modular (sss),
then, ϕðWÞ = ϕðsaðWÞÞ∞a=0 is a pre-quasinorm on SAϕ

.

Theorem 13 [7]. Let Z and M be Banach spaces and Aϕ be a
premodular (sss), and then, ðSAϕ

, ϕÞ is a pre-quasi-Banach

operator ideal, such that ϕðWÞ = ϕððsaðWÞÞ∞a=0Þ.

Theorem 14 [6]. ϕ is a pre-quasinorm on the idealU, if ϕ is a
quasinorm on the ideal U.

Lemma 15. The given inequalities will be used in the sequel:

(i) Let r ≥ 2, and for every v, t ∈R [30], then

v + t
2

����
����
r

+ v − t
2

����
����
r

≤
1
2

vj jr + tj jrð Þ ð5Þ

(ii) Assume that 1 < r ≤ 2, and for all v, t ∈R so that jvj
+ jtj ≠ 0 [31], then

v + t
2

����
����
r

+ r r − 1ð Þ
2

v − t
vj j + tj j
����

����
2−r v − t

2

����
����
r

≤
1
2

vj jr + tj jrð Þ ð6Þ

(iii) Suppose that ra ≥ 1 and va, ta ∈R, for every a ∈N ,
then, jva + tajra ≤ 2K−1ðjvajra + jtajraÞ, where K =
supara [32]
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3. Pre-Quasinormed (sss)
We explain the sufficient setting of ℓðrÞ equipped with a pre-
quasinorm ϕ to generate pre-quasi-Banach and closed (sss).
The Fatou property of a pre-quasinorm ϕ on ℓðrÞ has been
given.

Definition 16.

(a) The function ϕ on ℓðrÞ is named ϕ convex, if ϕðωv
+ ð1 − ωÞtÞ ≤ ωϕðvÞ + ð1 − ωÞϕðtÞ, for all ω ∈ ½0, 1�
and v, t ∈ ℓðrÞ

(b) fvaga∈N ⊆ ðℓðrÞÞϕ is ϕ convergent to v ∈ ðℓðrÞÞϕ, if
and only if, lima⟶∞ϕðva − vÞ = 0: If the ϕ limit
exists, then it is unique

(c) fvaga∈N ⊆ ðℓðrÞÞϕ is ϕ Cauchy, when lima,b⟶∞ϕðva
− vbÞ = 0

(d) Λ ⊂ ðℓðrÞÞϕ is ϕ closed, if for every ϕ-converges
fvaga∈N ⊂Λ to v, then v ∈Λ

(e) Λ ⊂ ðℓðrÞÞϕ is ϕ bounded, when δϕðΛÞ = sup fϕðv −
tÞ: v, t ∈Λg <∞

(f) The ϕ ball of radius d ≥ 0 and center v, for all v ∈
ðℓðrÞÞϕ, is detailed as

Bϕ v, dð Þ = t ∈ ℓ rð Þð Þϕ : ϕ v − tð Þ ≤ d
n o

ð7Þ

(g) A pre-quasinorm ϕ on ℓðrÞ provides the Fatou prop-
erty, if for all sequence ftag ⊆ ðℓðrÞÞϕ with lima⟶∞
ϕðta − tÞ = 0 and any v ∈ ðℓðrÞÞϕ, then ϕðv − tÞ ≤
supj inf a≥jϕðv − taÞ

Note that the Fatou property implies the ϕ closedness of
the ϕ balls.

Theorem 17. ðℓðrÞÞϕ, where ϕðvÞ = ½∑∞
a=0jvajra �1/K , for each

v ∈ ℓðrÞ, is a premodular (sss), if ðraÞa∈N ∈ ℓ∞ is increasing
with r0 > 1.

Proof. To begin with, we have to show that ℓðrÞ is a (sss):

(1) Assume v, t ∈ ℓðrÞ. As ðraÞ is bounded, we get

ϕ v + tð Þ = 〠
∞

a=0
va + taj jra

" #1/K
≤ 〠

∞

a=0
vaj jra

" #1/K
+ 〠

∞

a=0
taj jra

" #1/K

= ϕ vð Þ + ϕ tð Þ <∞:

ð8Þ

Hence, v + t ∈ ℓðrÞ.

And suppose that η ∈R and v ∈ ℓðrÞ. Since ðraÞ is
bounded, we obtain

ϕ ηvð Þ = 〠
∞

a=0
ηvaj jra

" #1/K
≤ sup

a
ηj jra/K 〠

∞

a=0
vaj jra

" #1/K
≤D ηj jϕ vð Þ <∞:

ð9Þ

So, ηv ∈ ℓðrÞ. Therefore, by using equations (8) and (9),
we have that ℓðrÞ is linear. Also, ea ∈ ℓðrÞ, for every a ∈N ,
as ϕðeaÞ = ½∑∞

j=0jeaðjÞjr j �1/K = 1

(2) Suppose jvaj ≤ jtaj, for every a ∈N and t ∈ ℓðrÞ. We
have

ϕ vð Þ = 〠
∞

a=0
vaj jra

" #1/K
≤ 〠

∞

a=0
taj jra

" #1/K
= ϕ tð Þ <∞: ð10Þ

Then, v ∈ ℓðrÞ.

(3) Assuming that ðvaÞ ∈ ℓðrÞ and ðraÞ is an increasing
sequence, we have

ϕ v a/2½ �
� �� �

= 〠
∞

a=0
v a/2½ �
��� ���ra

" #1/K
= 〠

∞

a=0
vaj jr2a + 〠

∞

a=0
vaj jr2a+1

" #1/K

≤ 21/K 〠
∞

a=0
vaj jra

" #1/K
= 21/Kϕ vað Þð Þ:

ð11Þ

Then, ðv½a/2�Þ ∈ ℓðrÞ. As well, we prove that the functional
ϕ on ℓðrÞ is a premodular:

(i) Clearly, ϕðvÞ ≥ 0 and ϕðvÞ = 0⟺ v = θ

(ii) We have D =max f1, supajηjðra/KÞ−1g ≥ 1 such that
ϕðηvÞ ≤DjηjϕðvÞ, for every v ∈ ℓðrÞ and η ∈R

(iii) We have J ≥ 1 so that ϕðv + tÞ ≤ JðϕðvÞ + ϕðtÞÞ, for
every v, t ∈ ℓðrÞ

(iv) Evidently, from (101)

(v) From (104), we have J0 = 21/K ≥ 1
(vi) Evidently, �F = ℓðrÞ
(vii) We have 0 < ς ≤ jβjðr0/KÞ−1, for β ≠ 0 or ς > 0, for β

= 0 so that

ϕ β, 0, 0, 0,⋯ð Þ ≥ ς βj jϕ 1, 0, 0, 0,⋯ð Þ ð12Þ

☐
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Theorem 18. Let ðraÞa∈N ∈ ℓ∞ be an increase with r0 > 1, and

then, ðℓðrÞÞϕ is a pre-quasi-Banach (sss), where ϕðvÞ =
½∑∞

a=0jvajra �1/K , for all v ∈ ℓðrÞ.

Proof. Suppose that the setup is satisfied. From Theorem 17,
the space ðℓðrÞÞϕ is a premodular (sss). By Theorem 8, the
space ðℓðrÞÞϕ is a pre-quasinormed (sss). To explain that

ðℓðrÞÞϕ is a pre-quasi-Banach (sss), suppose that vp =
ðvpaÞ∞a=0 is a Cauchy sequence in ðℓðrÞÞϕ. Therefore, for all ε
∈ ð0, 1Þ, there is p0 ∈N so that for every p, q ≥ p0, we have

ϕ vp − vqð Þ = 〠
∞

a=0
vpa − vqaj jra

" #1/K
< ε: ð13Þ

Hence, for p, q ≥ p0, and a ∈N , we have jvpa − vqaj < ε:
Hence, ðvqaÞ is a Cauchy sequence in R, for fixed a ∈N ,
which gives limq⟶∞vqa = v0a, for constant a ∈N . So, ϕðvp −
v0Þ < ε, for all p ≥ p0. Conclusively, to prove that v0 ∈ ℓðrÞ,
one has ϕðv0Þ = ϕðv0 − vp + vpÞ ≤ ϕðvp − v0Þ + ϕðvpÞ <∞:
Hence, v0 ∈ ℓðrÞ. This gives that ðℓðrÞÞϕ is a pre-quasi-
Banach (sss). ☐

Theorem 19. Assuming that ðraÞa∈N ∈ ℓ∞ is increasing with

r0 > 1, then, ðℓðrÞÞϕ is a pre-quasiclosed (sss), where ϕðvÞ =
½∑∞

a=0jvajra �1/K , for all v ∈ ℓðrÞ.

Proof. Let the setup be satisfied. From Theorem 17, the space
ðℓðrÞÞϕ is a premodular (sss). By Theorem 8, the space ðℓðrÞÞϕ
is a pre-quasinormed (sss). To prove that ðℓðrÞÞϕ is a pre-

quasiclosed (sss), let vp = ðvpaÞ∞a=0 ∈ ðℓðrÞÞϕ and limp⟶∞ϕðvp
− v0Þ = 0; then, for each ε ∈ ð0, 1Þ, there is p0 ∈N such that
for every p ≥ p0, one can see

ε > ϕ vp − v0
� �

= 〠
∞

a=0
vpa − v0a
�� ��ra" #1/K

: ð14Þ

Therefore, for p ≥ p0 and a ∈N , we have jvpa − v0aj < ε:
Hence, ðvpaÞ is a convergent sequence in R, for constant a ∈
N . So, limp⟶∞vpa = v0a, for fixed a ∈N . Finally, to show that
v0 ∈ ℓðrÞ, one has

ϕ v0
� �

= ϕ v0 − vp + vp
� �

≤ ϕ vp − v0
� �

+ ϕ vpð Þ<∞: ð15Þ

Hence, v0 ∈ ℓðrÞ. This implies that ðℓðrÞÞϕ is a pre-
quasiclosed (sss). ☐

Theorem 20. The function ϕðvÞ = ½∑∞
a=0jvajra �1/K satisfies the

Fatou property, if ðraÞa∈N ∈ ℓ∞ is increasing with r0 > 1, for
every v ∈ ℓðrÞ.

Proof. Assume that the setup is verified and ftbg ⊆ ðℓðrÞÞϕ
with limb⟶∞ϕðtb − tÞ = 0: As the space ðℓðrÞÞϕ is a pre-
quasiclosed space, then, t ∈ ðℓðrÞÞϕ. Hence, for all v ∈
ðℓðrÞÞϕ, we have

ϕ v − tð Þ = 〠
∞

a=0
va − taj jra

" #1/K
≤ 〠

∞

a=0
va − tba
��� ���ra

" #1/K

+ 〠
∞

a=0
tba − ta
��� ���ra

" #1/K
≤ sup

j
inf
b≥j

ϕ v − tb
� �

:

ð16Þ

☐

Theorem 21. The function ϕðvÞ =∑∞
a=0jvajra does not verify

the Fatou property, for every v ∈ ℓðrÞ, if ðraÞ ∈ ℓ∞ and ra > 1,
for each a ∈N .

Proof. Assume that the setting is verified and ftbg ⊆ ðℓðrÞÞϕ
with limb⟶∞ϕðtb − tÞ = 0: As the space ðℓðrÞÞϕ is a pre-
quasiclosed space, then, t ∈ ðℓðrÞÞϕ. Then, for all v ∈ ðℓðrÞÞϕ,
one can see

ϕ v − tð Þ = 〠
∞

a=0
va − taj jra ≤ 2

sup
a

ra−1
〠
∞

a=0
va − tba
��� ���ra + 〠

∞

a=0
tba − ta
��� ���ra

" #

≤ 2
sup
a

ra−1
sup
j

inf
b≥j

ϕ v − tb
� �

:

ð17Þ

Therefore, ϕ does not verify the Fatou property. ☐

Similarly as Theorems 17 and 19 under the conditions
ðraÞa∈N ∈ ℓ∞ is increasing with r0 > 1, it is easy to prove that
the space ðℓrð:ÞÞψ, which is studied in [33], is a pre-

quasiclosed (sss), where ψðvÞ =∑∞
a=01/rajvajra .

Theorem 22. The function ψðvÞ = ½∑∞
a=01/rajvajra �1/K satisfies

the Fatou property, if ðraÞa∈N ∈ ℓ∞ is increasing with r0 > 1,
for every v ∈ ðℓrð:ÞÞψ.

Proof. Assume that the setup is verified and ftbg ⊆ ðℓrð:ÞÞψ
with limb⟶∞ψðtb − tÞ = 0: As the space ðℓrð:ÞÞψ is a pre-

quasiclosed space, then, t ∈ ðℓrð:ÞÞψ. Hence, for all v ∈ ðℓrð:ÞÞψ,
we have

ψ v − tð Þ = 〠
∞

a=0

1
ra

va − taj jra
" #1/K

≤ 〠
∞

a=0

1
ra

va − tba
��� ���ra

" #1/K

+ 〠
∞

a=0

1
ra

tba − ta
��� ���ra

" #1/K
≤ sup

j
inf
b≥j

ψ v − tb
� �

:

ð18Þ
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Theorem 23. The function ψðvÞ =∑∞
a=01/rajvajra does not ver-

ify the Fatou property, for every v ∈ ðℓrð:ÞÞψ, if ðraÞ ∈ ℓ∞ and

ra > 1, for each a ∈N .

Proof. Assume that the setting is confirmed and ftbg ⊆
ðℓrð:ÞÞψ with limb⟶∞ψðtb − tÞ = 0: As the space ðℓrð:ÞÞψ is a

pre-quasiclosed space, then, t ∈ ðℓrð:ÞÞψ. Then, for all v ∈
ðℓrð:ÞÞψ, one can see

ψ v − tð Þ = 〠
∞

a=0

1
ra

va − taj jra ≤ 2
sup
a

ra−1

� 〠
∞

a=0

1
ra

va − tba
��� ���ra + 〠

∞

a=0

1
ra

tba − ta
��� ���ra

" #

≤ 2
sup
a

ra−1
sup
j

inf
b≥j

ψ v − tb
� �

:

ð19Þ

Therefore, ψ does not verify the Fatou property. ☐

Example 24. The function ϕðvÞ =∑a∈N jvaj3a+2/a+1 is a pre-
quasinorm (not a quasinorm) on ℓðð3a + 2/a + 1Þ∞a=0Þ.

Example 25. The function ϕðvÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑a∈N jvaj3a+2/a+13

q
is a pre-

quasinorm (not a norm) on ℓðð3a + 2/a + 1Þ∞a=0Þ.

Example 26. The function ϕðvÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑a∈N jvajrr

p
is a pre-quasi-

norm, quasi norm, and not a norm on ℓr , for 0 < r < 1.

Example 27. For ðraÞ ∈ ½1,∞ÞN , the function ϕðvÞ = inf fκ
> 0 : ∑a∈N jva/kjra ≤ 1g is a pre-quasinorm (a quasinorm
and a norm) on ℓðrÞ.

4. Kannan Prequasi ϕ Contraction Mapping

In this section, we will define Kannan ϕ-Lipschitzian map-
ping in the pre-quasinormed (sss). We study the sufficient
setting on ðℓðrÞÞϕ constructed with definite pre-quasinorm
so that there is one and only one fixed point of Kannan
pre-quasinorm contraction mapping.

Definition 28. An operator W : Aϕ ⟶Aϕ is named a Kan-
nan ϕ-Lipschitzian, if there is ξ ≥ 0, such that

ϕ Wv −Wtð Þ ≤ ξ ϕ Wv − vð Þ + ϕ Wt − tð Þð Þ, ð20Þ

for every v, t ∈Aϕ. The operator W is named

(1) Kannan ϕ contraction, if ξ ∈ ½0,1/2Þ
(2) Kannan ϕ nonexpansive, if ξ = 1/2

An element v ∈Aϕ is called a fixed point of W, when W
ðvÞ = v:

In fact, the authors of reference [33] in Theorem 1 proved
that the Kannan modular contraction mapping on a non-
empty modular-closed subset of the modular space ðℓrð:ÞÞψ,
where ψðvÞ =∑∞

a=01/rajvajra and ra ≥ 1, for all a ∈N , has a
unique fixed point. They depended on their proof that the
modular ψ has the Fatou property. But from Theorem 23,
this result is incorrect. We have improved it in the next
theorem.

Theorem 29. Let ðraÞa∈N ∈ ℓ∞ be an increase with r0 > 1 and
W : ðℓðrÞÞϕ ⟶ ðℓðrÞÞϕ be Kannan ϕ contraction mapping,

where ϕðvÞ = ½∑∞
a=0jvajra �1/K , for every v ∈ ℓðrÞ, so W has a

unique fixed point.

Proof.Assume that the conditions are verified. For all v ∈ ℓðrÞ
, then, Wpv ∈ ℓðrÞ. Since W is a Kannan ϕ contraction map-
ping, we have

ϕ Wp+1v −Wpv
� �

≤ ξ ϕ Wp+1v −Wpv
� �

+ ϕ Wpv −Wp−1v
� �� �

⇒ ϕ Wp+1v −Wpv
� �

≤
ξ

1 − ξ
ϕ Wpv −Wp−1v
� �

≤
ξ

1 − ξ

� �2
ϕ Wp−1v −Wp−2v
� �

≤

≤
ξ

1 − ξ

� �p

ϕ Wv − vð Þ:

ð21Þ

Therefore, for every p, q ∈N with q > p, then, we have

ϕ Wpv −Wqvð Þ ≤ ξ ϕ Wpv −Wp−1v
� �

+ ϕ Wqv −Wq−1v
� �� �

≤ ξ
ξ

1 − ξ

� �p−1
+ ξ

1 − ξ

� �q−1 !
ϕ Wv − vð Þ:

ð22Þ

Hence, fWpvg is a Cauchy sequence in ðℓðrÞÞϕ. Since the
space ðℓðrÞÞϕ is a pre-quasi-Banach space, so, there is t ∈
ðℓðrÞÞϕ so that limp⟶∞Wpv = t. To show that Wt = t, as ϕ
has the Fatou property, we get

ϕ Wt − tð Þ ≤ sup
i

inf
p≥i

ϕ Wp+1v −Wpv
� �

≤ sup
i

inf
p≥i

ξ

1 − ξ

� �p

ϕ Wv − vð Þ = 0:
ð23Þ

So,Wt = t. Then, t is a fixed point ofW. To prove that the
fixed point is unique, assume that we have two different fixed
points b, t ∈ ðℓðrÞÞϕ of W. Therefore, one can see

ϕ b − tð Þ ≤ ϕ Wb −Wtð Þ ≤ ξ ϕ Wb − bð Þ + ϕ Wt − tð Þð Þ = 0:
ð24Þ

Hence, b = t: ☐
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Corollary 30. Suppose that ðraÞa∈N ∈ ℓ∞ is increasing with
r0 > 1 and W : ðℓðrÞÞϕ ⟶ ðℓðrÞÞϕ is Kannan ϕ contraction

mapping, where ϕðvÞ = ½∑∞
a=0jvajra �1/K , for every v ∈ ℓðrÞ, then

W has unique fixed point b with ϕðWpv − bÞ ≤ ξðξ/1 − ξÞp−1
ϕðWv − vÞ:

Proof. Assume that the setup is verified. By Theorem 29,
there is a unique fixed point b of W. Therefore, one can see

ϕ Wpv − bð Þ = ϕ Wpv −Wbð Þ ≤ ξ ϕ Wpv −Wp−1v
� �

+ ϕ Wb − bð Þ� �
= ξ

ξ

1 − ξ

� �p−1
ϕ Wv − vð Þ:

ð25Þ

☐

Definition 31. Let Aϕ be a pre-quasinormed (sss), W : Aϕ

⟶Aϕ and b ∈Aϕ: The operatorW is named ϕ sequentially
continuous at b, if and only if lima⟶∞ϕðva − bÞ = 0, then
lima⟶∞ϕðWva −WbÞ = 0.

Theorem 32. If ðraÞa∈N ∈ ℓ∞ is increasing with r0 > 1 and
W : ðℓðrÞÞϕ ⟶ ðℓðrÞÞϕ, where ϕðvÞ =∑∞

a=0jvajra , for every v
∈ ℓðrÞ, the point g ∈ ðℓðrÞÞϕ is the only fixed point of W, if
the next settings are verified:

(a) W is Kannan ϕ contraction mapping

(b) W is ϕ sequentially continuous at g ∈ ðℓðrÞÞϕ
(c) We have v ∈ ðℓðrÞÞϕ such that the sequence of iterates

fWpvg has a subsequence fWpivg converges to g

Proof. If the settings are satisfied, let g be not a fixed point of
W, and then, Wg ≠ g. By the setups (b) and (c), one can see

lim
pi⟶∞

ϕ Wpiv − gð Þ = 0 and lim
pi⟶∞

ϕ Wpi+1v −Wg
� �

= 0: ð26Þ

Since the operator W is Kannan ϕ contraction, we have

0 < ϕ Wg − gð Þ = ϕ Wg −Wpi+1v
� �

+ Wpiv − gð Þ + Wpi+1v −Wpiv
� �� �

≤ 2
2 sup

i
ri−2

ϕ Wpi+1v −Wg
� �

+ 2
2 sup

i
ri−2

ϕ Wpiv − gð Þ

+ 2
sup
i

ri−1
ξ

ξ

1 − ξ

� �pi−1
ϕ Wv − vð Þ:

ð27Þ

Since pi ⟶∞, we get a contradiction. Hence, g is a fixed
point ofW. To show that the fixed point g is unique, suppose
that we have two different fixed points g, b ∈ ðℓðrÞÞϕ of W.
Therefore, we have

ϕ g − bð Þ ≤ ϕ Wg −Wbð Þ ≤ ξ ϕ Wg − gð Þ + ϕ Wb − bð Þð Þ = 0:
ð28Þ

So, g = b: ☐

Example 33. Let W : ðℓðð2a + 3/a + 2Þ∞a=0ÞÞϕ ⟶
ðℓðð2a + 3/a + 2Þ∞a=0ÞÞϕ, where ϕðvÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑a∈N jvaj2a+3/a+2

q
, for

all v ∈ ℓðð2a + 3/a + 2Þ∞a=0Þ and

W vð Þ =
v
4 , ϕ vð Þ ∈ 0, 1Þ½ ,
v
5 , ϕ vð Þ ∈ 1,∞Þ½ :

0
B@ ð29Þ

Since for all v1, v2 ∈ ðℓðð2a + 3/a + 2Þ∞a=0ÞÞϕ with ϕðv1Þ, ϕ
ðv2Þ ∈ ½0, 1Þ, we have

ϕ Wv1 −Wv2ð Þ = ϕ
v1
4 −

v2
4

� �
≤

1ffiffiffiffiffi
274

p ϕ
3v1
4

� �
+ ϕ

3v2
4

� �� �

= 1ffiffiffiffiffi
274

p ϕ Wv1 − v1ð Þ + ϕ Wv2 − v2ð Þð Þ:

ð30Þ

For all v1, v2 ∈ ðℓðð2a + 3/a + 2Þ∞a=0ÞÞϕ with ϕðv1Þ, ϕðv2Þ
∈ ½1,∞Þ, we have

ϕ Wv1 −Wv2ð Þ = ϕ
v1
5 −

v2
5

� �
≤

1ffiffiffiffiffi
644

p ϕ
4v1
5

� �
+ ϕ

4v2
5

� �� �

= 1ffiffiffiffiffi
644

p ϕ Wv1 − v1ð Þ + ϕ Wv2 − v2ð Þð Þ:

ð31Þ

For all v1, v2 ∈ ðℓðð2a + 3/a + 2Þ∞a=0ÞÞϕ with ϕðv1Þ ∈ ½0, 1Þ
and ϕðv2Þ ∈ ½1,∞Þ, we have

ϕ Wv1 −Wv2ð Þ = ϕ
v1
4 −

v2
5

� �
≤

1ffiffiffiffiffi
274

p ϕ
3v1
4

� �
+ 1ffiffiffiffiffi

644
p ϕ

4v2
5

� �

≤
1ffiffiffiffiffi
274

p ϕ
3v1
4

� �
+ ϕ

4v2
5

� �� �

= 1ffiffiffiffiffi
274

p ϕ Wv1 − v1ð Þ + ϕ Wv2 − v2ð Þð Þ:

ð32Þ

Therefore, the mapW is Kannan ϕ contraction mapping,
since ϕ satisfies the Fatou property. By Theorem 29, the map
W has a unique fixed point θ ∈ ðℓðð2a + 3/a + 2Þ∞a=0ÞÞϕ:

Let fvðnÞg ⊆ ðℓðð2a + 3/a + 2Þ∞a=0ÞÞϕ be such that limn⟶∞

ϕðvðnÞ − vð0ÞÞ = 0, where vð0Þ ∈ ðℓðð2a + 3/a + 2Þ∞a=0ÞÞϕ with

ϕðvð0ÞÞ = 1. Since the pre-quasinorm ϕ is continuous, we have
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lim
n⟶∞

ϕ Wv nð Þ −Wv 0ð Þ
� �

= lim
n⟶∞

ϕ
v nð Þ

4 −
v 0ð Þ

5

� �
= ϕ

v 0ð Þ

20

� �
> 0:

ð33Þ

Hence, W is not ϕ sequentially continuous at vð0Þ. So, the
map W is not continuous at vð0Þ.

If ϕðvÞ =∑a∈N jvaj2a+3/a+2, for all v ∈ ℓðð2a + 3/a + 2Þ∞a=0Þ.
Since for all v1, v2 ∈ ðℓðð2a + 3/a + 2Þ∞a=0ÞÞϕ with ϕðv1Þ, ϕðv2Þ
∈ ½0, 1Þ, we have

ϕ Wv1 −Wv2ð Þ = ϕ
v1
4 −

v2
4

� �
≤

2ffiffiffiffiffi
27

p ϕ
3v1
4

� �
+ ϕ

3v2
4

� �� �

= 2ffiffiffiffiffi
27

p ϕ Wv1 − v1ð Þ + ϕ Wv2 − v2ð Þð Þ:

ð34Þ

For all v1, v2 ∈ ðℓðð2a + 3/a + 2Þ∞a=0ÞÞϕ with ϕðv1Þ, ϕðv2Þ
∈ ½1,∞Þ, we have

ϕ Wv1 −Wv2ð Þ = ϕ
v1
5 −

v2
5

� �
≤
1
4 ϕ

4v1
5

� �
+ ϕ

4v2
5

� �� �

= 1
4 ϕ Wv1 − v1ð Þ + ϕ Wv2 − v2ð Þð Þ:

ð35Þ

For all v1, v2 ∈ ðℓðð2a + 3/a + 2Þ∞a=0ÞÞϕ with ϕðv1Þ ∈ ½0, 1Þ
and ϕðv2Þ ∈ ½1,∞Þ, we have

ϕ Wv1 −Wv2ð Þ = ϕ
v1
4 −

v2
5

� �
≤

2ffiffiffiffiffi
27

p ϕ
3v1
4

� �
+ 1
4 ϕ

4v2
5

� �

≤
2ffiffiffiffiffi
27

p ϕ
3v1
4

� �
+ ϕ

4v2
5

� �� �

= 2ffiffiffiffiffi
27

p ϕ Wv1 − v1ð Þ + ϕ Wv2 − v2ð Þð Þ:

ð36Þ

Therefore, the map W is Kannan ϕ contraction mapping
and

Wp vð Þ =
v
4p , ϕ vð Þ ∈ 0, 1Þ½ ,
v
5p , ϕ vð Þ ∈ 1,∞Þ½ :

0
B@ ð37Þ

It is clear that W is ϕ sequentially continuous at θ ∈
ðℓðð2a + 3/a + 2Þ∞a=0ÞÞϕ and fWpvg has a subsequence fWpi

vg that converges to θ. By Theorem 32, the point θ ∈
ðℓðð2a + 3/a + 2Þ∞a=0ÞÞϕ is the only fixed point of W.

Example 34. Let Wðℓðð2a + 3/a + 2Þ∞a=0ÞÞϕ ⟶ ðℓðð2a + 3/a
+ 2Þ∞a=0ÞÞϕ, where ϕðvÞ =∑a∈N jvaj2a+3/a+2, for all v ∈
ðℓðð2a + 3/a + 2Þ∞a=0ÞÞϕ and

W vð Þ =

1
4 e1 + vð Þ, v0∈ −∞, 13

� �
,

1
3 e1, v0 =

1
3 ,

1
4 e1, v0 ∈

1
3 ,∞
� �

:

0
BBBBBBBB@

ð38Þ

Since for all v, t ∈ ðℓðð2a + 3/a + 2Þ∞a=0ÞÞϕ with v0, t0 ∈ ð−
∞,1/3Þ, we have

ϕ Wv −Wtð Þ = ϕ
1
4 v0 − t0, v1 − t1, v2 − t2,⋯ð Þ
� �

≤
2ffiffiffiffiffi
27

p ϕ
3v
4

� �
+ ϕ

3t
4

� �� �

≤
2ffiffiffiffiffi
27

p ϕ Wv − vð Þ + ϕ Wt − tð Þð Þ:

ð39Þ

For all v, t ∈ ðℓðð2a + 3/a + 2Þ∞a=0ÞÞϕ with v0, t0 ∈ ð1/3,∞Þ,
then, for any ε > 0, we have

ϕ Wv −Wtð Þ = 0 ≤ ε ϕ Wv − vð Þ + ϕ Wt − tð Þð Þ: ð40Þ

For all v, t ∈ ðℓðð2a + 3/a + 2Þ∞a=0ÞÞϕ with v0 ∈ ð−∞,1/3Þ
and t0 ∈ ð1/3,∞Þ, we have

ϕ Wv −Wtð Þ = ϕ
v
4
� �

≤
1ffiffiffiffiffi
27

p ϕ
3v
4

� �
= 1ffiffiffiffiffi

27
p ϕ Wv − vð Þ

≤
1ffiffiffiffiffi
27

p ϕ Wv − vð Þ + ϕ Wt − tð Þð Þ:

ð41Þ

Therefore, the map W is Kannan ϕ contraction map-
ping. It is clear that W is ϕ sequentially continuous at ð1/
3Þe1 ∈ ðℓðð2a + 3/a + 2Þ∞a=0ÞÞϕ and there is v ∈ ðℓðð2a + 3/a
+ 2Þ∞a=0ÞÞϕ with v0 ∈ ð−∞,1/3Þ such that the sequence of

iterates fWpvg = f∑p
n=1ð1/4nÞe1 + ð1/4pÞvg has a subse-

quence fWpivg = f∑pi
n=1ð1/4nÞe1 + ð1/4piÞvg converges to

ð1/3Þe1. By Theorem 32, the map W has one fixed point
ð1/3Þe1 ∈ ðℓðð2a + 3/a + 2Þ∞a=0ÞÞϕ. Note that W is not contin-

uous at ð1/3Þe1 ∈ ðℓðð2a + 3/a + 2Þ∞a=0ÞÞϕ.
If ϕðvÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑a∈N jvaj2a+3/a+2

q
, for all v ∈ ðℓðð2a + 3/a + 2Þ

∞
a=0ÞÞϕ. Since for all v, t ∈ ðℓðð2a + 3/a + 2Þ∞a=0ÞÞϕ with v0, t0
∈ ð−∞,1/3Þ, we have

ϕ Wv −Wtð Þ= ϕ
1
4 v0 − t0, v1 − t1, v2 − t2,⋯ðð Þ
� �

≤
1ffiffiffiffiffi
274

p ϕ
3v
4

� �
+ ϕ

3t
4

� �� �

≤
1ffiffiffiffiffi
274

p ϕ Wv − vð Þ + ϕ Wt − tð Þð Þ: ð42Þ
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For all v, t ∈ ðℓðð2a + 3/a + 2Þ∞a=0ÞÞϕ with v0, t0 ∈ ð1/3,
∞Þ, then, for any ε > 0, we have

ϕ Wv −Wtð Þ = 0 ≤ ε ϕ Wv − vð Þ + ϕ Wt − tð Þð Þ: ð43Þ

For all v, t ∈ ðℓðð2a + 3/a + 2Þ∞a=0ÞÞϕ with v0 ∈ ð−∞,1/3Þ
and t0 ∈ ð1/3,∞Þ, we have

ϕ Wv −Wtð Þ = ϕ
v
4
� �

≤
1ffiffiffiffiffi
274

p ϕ
3v
4

� �
= 1ffiffiffiffiffi

274
p ϕ Wv − vð Þ

≤
1ffiffiffiffiffi
274

p ϕ Wv − vð Þ + ϕ Wt − tð Þð Þ:

ð44Þ

Therefore, the map W is Kannan ϕ contraction map-
ping. Since ϕ satisfies the Fatou property. By Theorem
29, the map W has a unique fixed point ð1/3Þe1 ∈
ðℓðð2a + 3/a + 2Þ∞a=0ÞÞϕ.

5. Pre-Quasinormed Uniform Convexity

In this part, we investigate the uniform convexity (UUC 2)
defined in [35] of the pre-quasinormed (sss) ðℓðrÞÞϕ.

Definition 35 [10, 34]. We define the following uniform
convexity-type behavior of the pre-quasinorm ϕ:

(1) Assume that a > 0 and b > 0 [35]. Indicate that

ℍ1 a, bð Þ = v, tð Þ: v, t ∈Aϕ, ϕ vð Þ ≤ a, ϕ tð Þ ≤ b, ϕ v − tð Þ ≥ ab

 �

:

ð45Þ

When ℍ1ða, bÞ ≠∅, we put

H1 a, bð Þ = inf 1 − 1
a
ϕ

v + t
2

� �
: v, tð Þ ∈ℍ1 a, bð Þ

� 
: ð46Þ

Whenℍ1ða, bÞ =∅, we put H1ða, bÞ = 1: The function ϕ
investigates the uniform convexity (UC) if for every a > 0 and
b > 0, we have H1ða, bÞ > 0: Note that for all a > 0, then, ℍ1
ða, bÞ ≠∅, for very small b > 0

(2) The function ϕ provides (UUC) if for every p ≥ 0
and b > 0, there is β1ðp, bÞ based on p and b > 0
so that [36]

H1 a, bð Þ > β1 p, bð Þ > 0, for a > p ð47Þ

(3) Suppose that a > 0 and b > 0. Indicate [36]

ℍ2 a, bð Þ = v, tð Þ: v, t ∈Aϕ, ϕ vð Þ ≤ a, ϕ tð Þ ≤ a, ϕ v − t
2

� �
≥ ab

� 
:

ð48Þ

When ℍ2ða, bÞ ≠∅, we put

H2 a, bð Þ = inf 1 − 1
a
ϕ

v + t
2

� �
: v, tð Þ v, tð Þ ∈ℍ2 a, bð Þ

� 
: ð49Þ

Whenℍ2ða, bÞ =∅, we put H2ða, bÞ = 1: The function ϕ
supports (UC 2) if for all a > 0 and b > 0, we have H2ða, bÞ
> 0:Observe that for each a > 0,ℍ2ða, bÞ ≠∅, for very small
b > 0

(4) The function ϕ satisfies (UUC 2) if for every p ≥ 0 and
b > 0, there is β2ðp, bÞ based on p and b > 0 so that [36]

H2 a, bð Þ > β2 p, bð Þ > 0, for a > p: ð50Þ

(5) The function ϕ is strictly convex (SC), if for each v,
t ∈Aϕ so that ϕðvÞ = ϕðtÞ and ϕðv + t/2Þ = ðϕðvÞ + ϕ

ðtÞÞ/2, we get v = t [35]

Here and after, we will need the following notation: ϕUðvÞ
= ½∑m∈U jvmjrm �1/K , for each U ⊂N and v ∈ ðℓðrÞÞϕ: When U
=∅, we set ϕUðvÞ = 0:

Theorem 36. The pre-quasinorm ϕ on ℓðrÞ is (UUC 2), where
ϕðvÞ = ½½∑∞

d=0jvdjrd �1/K , for every v ∈ ℓðrÞ, if ðraÞa∈N ∈ ℓ∞ is an
increasing with r0 > 1.

Proof. Supposing that the setting is verified, a > p ≥ 0 and b
> 0. Let v, t ∈ ℓðrÞ such that

ϕ vð Þ ≤ a,
ϕ tð Þ ≤ a,

ϕ
v − t
2

� �
≥ ab:

ð51Þ

From the definition of ϕ, one has

ab ≤ ϕ
v − t
2

� �
= 〠

∞

d=0

vd − td
2

����
����
rd

" #1/K
≤ 2−r0 〠

∞

d=0
vd − tdj jrd

" #1/K

≤ 2
−r0
K 〠

∞

d=0
vdj jrd

" #1
K

+ 〠
∞

d=0
tdj jrd

" #1
K

0
@

1
A

= 2
−r0
K ϕ vð Þ + ϕ tð Þð Þ ≤ 2a:

ð52Þ

This implies that b ≤ 2: So, set P = fd ∈N : rd ≥ 2g and
Q = fd ∈N : 1 < rd < 2g =N \ P: For everyw ∈ ℓðrÞ,we have
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ϕKðwÞ = ϕKP ðwÞ + ϕKQðwÞ: By using the setting, we obtain ϕP
ððv − tÞ/2Þ ≥ ab/2 or ϕQððv − tÞ/2Þ ≥ ab/2: Suppose first that
ϕPððv − tÞ/2Þ ≥ ab/2: Using Lemma 15, one can see

ϕKP
v + t
2

� �
+ ϕKP

v − t
2

� �
≤
ϕKP vð Þ + ϕKP tð Þ

2 : ð53Þ

This gives

ϕKP
v + t
2

� �
≤
ϕKP vð Þ + ϕKP tð Þ

2 −
ab
2

� �K

: ð54Þ

Since

ϕKQ
v + t
2

� �
≤
ϕKQ vð Þ + ϕKQ tð Þ

2 , ð55Þ

one has

ϕK
v + t
2

� �
≤
ϕK vð Þ + ϕK tð Þ

2 −
ab
2

� �K

≤ aK 1 − b
2

� �K
 !

:

ð56Þ

This implies

ϕ
v + t
2

� �
≤ a 1 − b

2

� �K
 !1/K

: ð57Þ

Next, assume that ϕQððv − tÞ/2Þ ≥ ab/2: Put B = b/4,

Q1 = d ∈Q : vd − tdj j ≤ B vdj j + tdj jð Þf g,
Q2 =Q \Q1:

ð58Þ

As the power function is convex and B ≤ 1. Hence,

ϕKQ1

v − t
2

� �
≤ 〠

d∈Q1

Brd
∣vd∣+∣td ∣

2

����
����
rd

≤
B
2

� �r0
ϕKQ1

vð Þ + ϕKQ1
tð Þ

� �

≤
B
2 ϕKQ vð Þ + ϕKQ tð Þ� �

≤ BaK :

ð59Þ

As ϕQððv − tÞ/2Þ ≥ ab/2, we have

ϕKQ2

v − t
2

� �
= ϕKQ

v − t
2

� �
− ϕKQ1

v − t
2

� �
≥ aK

b
2

� �K

−
b
4

� �K
 !

:

ð60Þ

For all d ∈Q2, one can see

r0 − 1 ≤ rd rd − 1ð Þ,

B ≤ B2−rd ≤
vd − td
vdj j + tdj j
����

����
2−rd

:
ð61Þ

By Lemma 15, we have

vd + td
2

����
����
rd
+ r0 − 1ð ÞB

2
vd − td

2

����
����
rd
≤
1
2 vdj jrd + tdj jrdð Þ: ð62Þ

So,

ϕKQ2

v + t
2

� �
+ r0 − 1ð ÞB

2 ϕKQ2

v − t
2

� �
≤
ϕKQ2

vð Þ + ϕKQ2
tð Þ

2 ,

ð63Þ

this gives

ϕKQ2

v + t
2

� �
≤
ϕKQ2

vð Þ + ϕKQ2
tð Þ

2 −
r0 − 1ð Þ
2

b
4

� �1+K
aK 2K − 1
� �

:

ð64Þ

As

ϕKQ1

v + t
2

� �
≤
ϕKQ1

vð Þ + ϕKQ1
tð Þ

2 , ð65Þ

we have

ϕKQ
v + t
2

� �
≤
ϕKQ vð Þ + ϕKQ tð Þ

2 −
r0 − 1ð Þ
2

b
4

� �1+K
aK 2K − 1
� �

:

ð66Þ

As

ϕKP
v + t
2

� �
≤
ϕKP vð Þ + ϕKP tð Þ

2 , ð67Þ

we get

ϕ
v + t
2

� �
≤ a 1 − r0 − 1ð Þ

2
b
4

� �1+K
2K − 1
� �" #1/K

: ð68Þ

Obviously,

1 < r0 ≤ K < 2K ⇒ 0 < r0 − 1
2K − 1 < 1: ð69Þ

If we set

β2 p, bð Þ =min 1 − 1 − b
2

� �K
 !1/K

, 1 − 1 − r0 − 1ð Þ
2

b
4

� �1+K
2K − 1
� �" #1/K !

:

ð70Þ
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Hence, one has H2ða, bÞ > β2ðp, bÞ > 0 and we deduce
that ϕ is (UUC 2). ☐

In fact, the authors of reference [37] in Proposition 3.5
proved that if infd∈N rd > 1, then, the modular space
ðℓrð:ÞÞψ, where ψðvÞ =∑∞

d=0ð1/rdÞjvdjrd , has the property

(R). They depended on their proof that the modular ψ
has the Fatou property. But from Theorem 23, this result
is incorrect. Consequently, all the related results in the
two references [33, 37] are incorrect. In this part, we
investigate the property (R) of the pre-quasinormed (sss)
ðℓðrÞÞϕ.

Theorem 37. Let ðraÞa∈N ∈ ℓ∞ be an increase with r0 > 1, then

(1) The space ðℓðrÞÞϕ is a pre-quasi-Banach (sss), where

ϕðvÞ = ½∑∞
j=0jvjjr j �1/K , for every v ∈ ℓðrÞ

(2) Suppose that Λ is a nonempty ϕ closed and ϕ convex
subset of ðℓðrÞÞϕ: Assume that v ∈ ðℓðrÞÞϕ so that

dϕ v,Λð Þ = inf ϕ v − tð Þv − tð Þ: t ∈Λf g <∞: ð71Þ

Then we have a unique λ ∈Λ so that dϕðv,ΛÞ = ϕðv − λÞ

(3) ðℓðrÞÞϕ verifies the property (R), i.e., for each decreas-
ing sequence fΛjg j∈N of ϕ closed and ϕ convex non-

empty subsets of ðℓðrÞÞϕ such that supj∈N dϕ
ðv,ΛjÞ <∞, for some v ∈ ðℓðrÞÞϕ, so we have

T
j∈N

Λj ≠∅

Proof. Assume that the setting is verified. The proof of (100)
comes from Theorem 18. To prove (101), suppose that v ∉Λ
as Λ is ϕ closed. Therefore, we have A≔ dϕðv,ΛÞ > 0. So, for
every p ∈N , there is tp ∈Λ such that ϕðv − tpÞ < Að1 + ð1/pÞÞ
. Assume that ftp/2g is not ϕ Cauchy. So there is a subse-
quence ft f ðpÞ/2g and b0 > 0 such that ϕððt f ðpÞ − t f ðqÞÞ/2Þ ≥ b0
, for all p > q ≥ 0: More, we have H2ðAð1 + ð1/pÞÞ, b0/2AÞ >
ξ≔ β2ðAð1 + ð1/pÞÞ, b0/2AÞ > 0, for each p ∈N : As

max ϕ v − t f pð Þ
� �

, ϕ v − t f qð Þ qð Þ
� �� �

≤ A 1 + 1
f qð Þ

� �
,

ϕ
t f pð Þ − t f qð Þ

2

� �
≥ b0 ≥ A 1 + 1

f qð Þ
� �

b0
2A :

ð72Þ

For all p > q ≥ 0, one has

ϕ v −
t f pð Þ + t f qð Þ

2

� �
≤ A 1 + 1

f qð Þ
� �

1 − ξð Þ: ð73Þ

Hence,

A = dϕ v,Λð Þ ≤ A 1 + 1
f qð Þ

� �
1 − ξð Þ, ð74Þ

for every q ∈N . If we set q⟶∞, we have

0 < A ≤ A 1 + 1
f qð Þ

� �
1 − ξð Þ < A: ð75Þ

This implies a contradiction. Therefore, ftp/2g is ϕ Cau-
chy. Since ðℓðrÞÞϕ is ϕ complete, hence, ftp/2gϕ converges to
some t. For every q ∈N , we get the sequence fðtp + tqÞ/2gϕ
converges to t + ðtq/2Þ. As Λ is ϕ closed and ϕ convex, one
has t + ðtq/2Þ ∈Λ: Clearly, t + ðtq/2Þϕ converges to 2t; this
implies that 2t ∈Λ: By setting λ = 2t and using Theorem
20, as ϕ verifies the Fatou property, we have

dϕ v,Λð Þ ≤ ϕ v − λð Þ ≤ sup
i

inf
q≥i

ϕ v − t +
tq
2

� �� �

≤ sup
i

inf
q≥i

sup
i

inf
p≥i

ϕ v −
tp + tq
2

� �

≤
1
2 sup

i
inf
q≥i

sup
i

inf
p≥i

ϕ v − tp
� �

+ ϕ v − tq
� �� �

= dϕ v,Λð Þ:

ð76Þ

Hence, ϕðv − λÞ = dϕðv,ΛÞ:As the function ϕ is (UUC 2),
then, it is (SC), which gives the uniqueness of λ. To prove
(104), suppose v ∉Λp0

, for some p0 ∈N : As ðdϕðv,ΛpÞÞp∈N
∈ ℓ∞ is increasing, set limp⟶∞dϕðv,ΛpÞ = A, if A > 0. Oth-
erwise v ∈Λp, for every p ∈N . From (2), there is one point
tp ∈Λp such that dϕðv,ΛpÞ = ϕðv − tpÞ, for all p ∈N . A con-
sistent proof will show that ftp/2gϕ converges to some t ∈
ðℓðrÞÞϕ. Since fΛpg are ϕ convex, decreasing, and ϕ closed,
we have 2t ∈ ∩ p∈NΛp: ☐

In this part, we investigate the ϕ normal structure prop-
erty of the pre-quasinormed (sss) ðℓðrÞÞϕ.

Definition 38. ðℓðrÞÞϕ verifies the ϕ normal structure property
if for every nonempty ϕ bounded, ϕ convex, and ϕ closed
subset Λ of ðℓðrÞÞϕ that are not decreased to one point, there
is v ∈Λ such that

sup
t∈Λ

ϕ v − tð Þ < δϕ Λð Þ≔ sup ϕ v − tð Þ v − tð Þ: v, t ∈Λf g <∞:

ð77Þ

Theorem 39. Let ðraÞa∈N ∈ ℓ∞ be an increase with r0 > 1;
then, ðℓðrÞÞϕ has the ϕ normal structure property, where

ϕðvÞ = ½∑∞
p=0jvpjrp �1/K , for all v ∈ ℓðrÞ.

Proof. Suppose that the setting is verified. Theorem 36
implies that ϕ is (UUC 2). Assume that Λ is a ϕ bounded, ϕ
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convex, and ϕ closed subset of ðℓðrÞÞϕ that are not decreased
to one point. Hence, δϕðΛÞ > 0: Set A = δϕðΛÞ: Suppose that
v, t ∈Λ such that v ≠ t: Hence ϕððv − tÞ/2Þ = b > 0: For every
λ ∈Λ, we have ϕðv − λÞ ≤ A and ϕðt − λÞ ≤ A: Since Λ is ϕ
convex, we have ðv + tÞ/2 ∈Λ. So,

ϕ
v + t
2 − λ

� �
= ϕ

v − λð Þ + t − λð Þ
2

� �
≤ A 1 −H2 A, b

A

� �� �
,

ð78Þ

for every λ ∈Λ: Hence,

sup
λ∈Λ

ϕ
v + t
2 − λ

� �
≤ A 1 −H2 A, b

A

� �� �
< A = δϕ Λð Þ:

ð79Þ

6. Kannan ϕ Nonexpansive Mapping on ðℓðrÞÞϕ
We examine here the sufficient conditions on the pre-quasi
normed (sss) ðℓðrÞÞϕ so that the Kannan pre-quasinorm non-
expansive mapping on it has a fixed point.

Lemma 40. Let the pre-quasinormed (sss) ðℓðrÞÞϕ verify the (R
) property and the ϕ quasinormal property. Assume thatΛ is a
nonempty ϕ bounded, ϕ convex, and ϕ closed subset of ðℓðrÞÞϕ.
Suppose thatW : Λ⟶Λ is a Kannan ϕ nonexpansive map-
ping. For a > 0, assume that Ga = fv ∈Λ : ϕðv −WðvÞÞ ≤ ag
≠∅. Set

Λa =
\

Bϕ p, qð Þ: W Gað Þ ⊂Bϕ p, qð Þ
 �
∩Λ: ð80Þ

Then, Λa ≠∅, ϕ convex, and ϕ closed subset of Λ and
WðΛaÞ ⊂Λa ⊂Ga and δϕðΛaÞ ≤ a:

Proof. As WðGaÞ ⊂Λa, this implies that Λa ≠∅. Since the ϕ
balls are ϕ convex and ϕ closed, soΛa is a ϕ closed and ϕ con-
vex subset of Λ. To prove that Λa ⊂ Ga, suppose that v ∈Λa:
If ϕðv −WðvÞÞ = 0, we have v ∈Ga: Otherwise, let ϕðv −W
ðvÞÞ > 0: Set

p = sup ϕ W wð Þ −W vð Þð Þ: w ∈Gaf g: ð81Þ

By using the definition of p, then,WðGaÞ ⊂BϕðWðvÞ, pÞ:
Hence,Λa ⊂BϕðWðvÞ, pÞ; this implies that ϕðv −WðvÞÞ ≤ p:
Suppose that b > 0: Hence, there is w ∈ Ga such that p − b ≤
ϕðWðwÞ −WðvÞÞ. Hence,

ϕ v −W vð Þð Þ − b ≤p − b ≤ ϕ W wð Þ −W vð Þð Þ
≤
1
2 ϕ v −W vð Þð Þ v −W vð Þð Þ + ϕ w −W wð Þðð Þð Þ

≤
1
2 ϕ v −W vð Þð Þ + að Þ:

ð82Þ

Since b is an arbitrary positive, we have ϕðv −WðvÞÞ
≤ a, so one has v ∈Ga. As WðGaÞ ⊂Λa, we have WðΛaÞ

⊂WðGaÞ ⊂Λa; this investigates that Λa is W invariant,
consequent to prove that δϕðΛaÞ ≤ a: As

ϕ W vð Þ −W tð Þð Þ ≤ 1
2 ϕ v −W vð Þð Þð Þ + ϕ t −W tð Þð Þ, ð83Þ

for each v, t ∈ Ga: Assume that v ∈ Ga: So WðGaÞ ⊂Bϕð
WðvÞ, aÞ: The definition of Λa implies Λa ⊂BϕðWðvÞ, aÞ:
So, WðvÞ ∈Tt∈Λa

Bϕðt, aÞ: Hence, we have ϕðt −wÞ ≤ a; for

every t,w ∈Λa, this gives δϕðΛaÞ ≤ a: This finishes the proof.
☐

Theorem 41. Picking up the pre-quasinormed (sss) ðℓðrÞÞϕ
verifies the ϕ quasinormal property and the (R) property.
Assume that Λ is a nonempty, ϕ convex, ϕ closed, and ϕ
bounded subset of ðℓðrÞÞϕ. Suppose that W : Λ⟶Λ is a
Kannan ϕ nonexpansive mapping. Then,W has a fixed point.

Proof. Set a0 = inf fϕðv −WðvÞÞ: v ∈Λg and ap = a0 + 1/p,
for all p ≥ 1: From the definition of a0, we have Gap

= fv ∈
Λ : ϕðv −WðvÞÞ ≤ apg ≠∅, for all p ≥ 1: Let Λap

be studied

as in Lemma 40. Obviously, fΛap
g is a decreasing sequence

of nonempty ϕ bounded, ϕ closed, and ϕ convex subsets of
Λ. The property (R) gives that Λ∞ =Tp≥1Λap

≠∅: Suppos-

ing that v ∈Λ∞, we get ϕðv −WðvÞÞ ≤ ap, for each p ≥ 1:
Assuming that p⟶∞, one has ϕðv −WðvÞÞ ≤ a0; this
implies that ϕðv −WðvÞÞ = a0: Hence, Ga0

≠∅: We obtain
a0 = 0. Otherwise, a0 > 0; this implies that W fails to have a
fixed point. Suppose Λa0

as defined in Lemma 40. Since W
fails to have a fixed point and Λa0

is W invariant, hence,
Λa0

has more than one point; this gives, δϕðΛa0
Þ > 0. By the

ϕ quasinormal property, there is v ∈Λa0
such that

ϕ v − tð Þ < δϕ Λa0

� �
≤ a0, ð84Þ

for each t ∈Λa0
: By Lemma 40, one has Λa0

⊂Ga0
: By defini-

tion of Λa0
, then, WðvÞ ∈Ga0

⊂Λa0
: Evidently, this implies

that

ϕ v −W vð Þð Þ < δϕ Λa0

� �
≤ a0: ð85Þ

This contradicts the definition of a0. Hence, a0 = 0 which
gives that any point in Ga0

is a fixed point ofW, i.e.,W has a
fixed point in Λ. ☐

Using Theorems 37, 39, and 41, we have the following
corollary:

Corollary 42. Let ðraÞa∈N ∈ ℓ∞ be an increase with r0 > 1.
Suppose that Λ is a nonempty, ϕ convex, ϕ closed, and ϕ

bounded subset of ðℓðrÞÞϕ, where ϕðvÞ = ½½∑∞
p=0jvpjrp �1/k, for

all v ∈ ℓðrÞ. Assume that W : Λ⟶Λ is a Kannan ϕ nonex-
pansive mapping. Then, W has a fixed point.
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Example 43. Let W : Λ⟶Λ with

W vð Þ =
v
4 , ϕ vð Þ ∈ 0,½ 1Þ,
v
5 , ϕ vð Þ ∈ 1,½ ∞Þ,

0
B@ ð86Þ

where Λ = fv ∈ ðℓðð2a + 3/a + 2Þ∞a=0ÞÞϕ : v0 = v1 = 0g and ϕ

ðvÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑a∈N jvaj2a+3/a+2

q
, for all v ∈ ðℓðð2a + 3/a + 2Þ∞a=0ÞÞϕ.

From Example 33, the map W is Kannan ϕ contraction
mapping. So, it is Kannan ϕ nonexpansive mapping.
Clearly, Λ is a nonempty, ϕ convex, ϕ closed, and ϕ
bounded subset of ðℓðð2a + 3/a + 2Þ∞a=0ÞÞϕ. By Corollary

42, the map W has one fixed point ðv = θÞ in Λ.

7. Kannan Pre-Quasicontraction on
Prequasi Ideal

We study the presence of a fixed point of Kannan pre-
quasinorm contraction mapping in the pre-quasi-Banach
operator ideal constructed by ðℓðrÞÞϕ and s-numbers.

Theorem 44 [9]. Pick up Z and M to be Banach spaces, and
ðraÞa∈N ∈ ℓ∞ is an increasing with r0 > 1, and then, ðSðℓðrÞÞϕ ,
ΦÞ, where ΦðWÞ = ϕððsaðWÞÞ∞a=0Þ is a pre-quasi-Banach
operator ideal.

Theorem 45. If Z andM are Banach spaces and ðraÞa∈N ∈ ℓ∞
is increasing with r0 > 1, then, ðSðℓðrÞÞϕ ,ΦÞ, where ΦðWÞ =
ϕððsaðWÞÞ∞a=0Þ is a pre-quasiclosed operator ideal.

Proof. By Theorem 17, the space ðℓðrÞÞϕ is a premodular (sss).
So, from Theorem 12, we have ΦðWÞ = ϕððsaðWÞÞ∞a=0Þ which
is a pre-quasinorm on SðℓðrÞÞϕ . Suppose that Wq ∈ SðℓðrÞÞϕðZ,
MÞ, for all q ∈N and limq⟶∞ΦðWq −WÞ = 0. Therefore,
there is ς > 0 and as LðZ,MÞ ⊇ SðℓðrÞÞϕðZ,MÞ; one has

Φ Wq −W
� �

= ϕ sa Wq −W
� �� �∞

a=0

� �
≥ ϕ s0 Wq −W

� �
Wq −W
� �

, 0, 0, 0,⋯
� �

= ϕ Wq −W
�� ��, 0, 0, 0,⋯� �

≥ ς Wq −W
�� ��:

ð87Þ

Then, ðWqÞq∈N is convergent in LðZ,MÞ. i.e., limq⟶∞

kWq −Wk = 0, and since ðsaðWq −WÞÞ∞
a=0 ∈ ðℓðrÞÞϕ, for all

q ∈N and ðℓðrÞÞϕ is a premodular (sss). Hence, one can see

Φ Wð Þ = ϕ sa Wð Þð Þ∞a=0
� �

= ϕ sa W −Wq +Wq

� �� �∞
a=0

� �
≤ ϕ sa/2 W −Wq

� �� �∞
a=0

� �
+ ϕ sa/2 Wq

� �� �∞
a=0

� �
≤ ϕ Wq −W

�� ��� �∞
a=0

� �
+ 2ð Þ1/Kϕ sa Wq

� �� �∞
a=0

� �
< ε:

ð88Þ

Weobtain ðsaðWÞÞ∞a=0 ∈ ðℓðrÞÞϕ; hence,W ∈ SðℓðrÞÞϕðZ,MÞ.
☐

Definition 46. A pre-quasinorm Φ on the ideal SAϕ
, where

ΦðWÞ = ϕððsaðWÞÞ∞a=0Þ, verifies the Fatou property if for all
sequence fWaga∈N ⊆ SAϕ

ðZ,MÞ with lima⟶∞ΦðWa −WÞ
= 0 and every V ∈ SAϕ

ðZ,MÞ, then

Φ V −Wð Þ ≤ sup
a

inf
i≥a

Φ V −Wið Þ: ð89Þ

Theorem 47. The pre-quasinormΦðWÞ = ½∑∞
a=0jsaðWÞjra �1/K ,

for eachW ∈ SðℓðrÞÞϕðZ,MÞ, does not verify the Fatou property,
if ðraÞa∈N ∈ ℓ∞ is increasing with r0 > 1.

Proof. Suppose that the conditions are verified and
fWpgp∈N ⊆ SðℓðrÞÞϕðZ,MÞ with limp⟶∞ΦðWp −WÞ = 0: As
the space SðℓðrÞÞϕ is a pre-quasiclosed ideal; hence, W ∈
SðℓðrÞÞϕðZ,MÞ. Then, for all V ∈ SðℓðrÞÞϕðZ,MÞ, one has

Φ V −Wð Þ = 〠
∞

a=0
sa V −Wð Þj jra

" #1/K

≤ 〠
∞

a=0
sa/2 V −Wð Þj jra

" #1/K

+ 〠
∞

a=0
sa/2 Wi −Wð Þj jra

" #1/K

≤ 2ð Þ1/K sup
p

inf
i≥p

〠
∞

a=0
sa V −Wð Þj jra

" #1/K
:

ð90Þ

Therefore, Φ does not verify the Fatou property. ☐

Now, we explain the definition of KannanΦ-Lipschitzian
mapping in the pre-quasioperator ideal.

Definition 48. For the pre-quasinorm Φ on the ideal SAϕ
,

where ΦðWÞ = ϕððsaðWÞÞ∞a=0Þ. An operator G : SAϕ
ðZ,MÞ

⟶ SAϕ
ðZ,MÞ is named a Kannan Φ -Lipschitzian, if there

is ξ ≥ 0 such that

Φ GW −GAð Þ ≤ ξ Φ GW −Wð Þ +Φ GA − Að Þð Þ, ð91Þ

for every W, A ∈ SAϕ
ðZ,MÞ. An operator G is named
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(1) Kannan Φ contraction, if ξ ∈ ½0, 1/2Þ
(2) Kannan Φ nonexpansive, if ξ = 1/2

Definition 49. For the pre-quasi norm Φ on the ideal SAϕ
,

where ΦðWÞ = ϕððsaðWÞÞ∞a=0Þ, G : SAϕ
ðZ,MÞ⟶ SAϕ

ðZ,M
Þ, and B ∈ SAϕ

ðZ,MÞ: The operator G is named Φ sequen-

tially continuous at B, if and only if, when limp⟶∞ΦðWp

− BÞ = 0, then limp⟶∞ΦðGWp −GBÞ = 0.

Theorem 50. Let ðraÞa∈N ∈ ℓ∞ be an increase with r0 > 1 and

G : SðℓðrÞÞϕðZ,MÞ⟶ SðℓðrÞÞϕðZ,MÞ, where ΦðWÞ =
½∑∞

a=0jsaðWÞjra �1/K , for all W ∈ SðℓðrÞÞϕðZ,MÞ. The point A ∈
SðℓðrÞÞϕðZ,MÞ is the unique fixed point of G, if the next settings
are verified:

(a) G is Kannan Φ contraction mapping

(b) G is Φ sequentially continuous at a point A ∈ SðℓðrÞÞϕ
ðZ,MÞ,

(c) We have B ∈ SðℓðrÞÞϕðZ,MÞ such that the sequence of

iterates fGpBg has a subsequence fGpiBg which con-
verges to A

Proof. Suppose that the settings are satisfied. If A is not a fixed
point of G, then, GA ≠ A. From conditions (b) and (c), one
has

lim
pi⟶∞

Φ GpiB − Að Þ = 0,

lim
pi⟶∞

Φ Gpi+1B − GA
� �

= 0:
ð92Þ

As G is Kannan Φ contraction mapping, we have

0 <Φ GA − Að Þ =Φ GA −Gpi+1B
� �

+ GpiB − Að Þ + Gpi+1B −GpiB
� �� �

≤ 2ð Þ1/KΦ Gpi+1B −GA
� �

+ 2ð Þ1/KΦ GpiB − Að Þ

+ 2ð Þ1/Kξ ξ

1 − ξ

� �pi−1
Φ GB − Bð Þ:

ð93Þ

Since pi ⟶∞, one has a contradiction. Hence, A is a
fixed point of G. To prove that the fixed point A is unique,
assume that we have two different fixed points A,D ∈ SðℓðrÞÞϕ
ðZ,MÞ of G. Therefore, we have

Φ A −Dð Þ ≤Φ GA − GDð Þ ≤ ξ Φ GA − Að Þ +Φ GD −Dð Þð Þ = 0:
ð94Þ

So, A =D: ☐

Example 51. Let Z and M be Banach spaces, G :

Sðℓðð2a+3/a+2Þ∞a=0ÞÞϕðZ,MÞ⟶ Sðℓðð2a+3/a+2Þ∞a=0ÞÞϕðZ,MÞ, where Φ

ðWÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑∞

a=0jszðWÞj2a+3/a+2
q

, for every W ∈ Sðℓðð2a+3/a+2Þ∞a=0ÞÞϕ
ðZ,MÞ and

G Wð Þ =
W
6 , Φ Wð Þ ∈ 0, 1Þ½ ,

W
7 , Φ Wð Þ ∈ 1,∞Þ½ :

0
BB@ ð95Þ

Since for all W1,W2 ∈ Sðℓðð2a+3/a+2Þ∞a=0ÞÞϕ with ΦðW1Þ,Φð
W2Þ ∈ ½0, 1Þ, we have

Φ GW1 − GW2ð Þ =Φ
W1
6 −

W2
6

� �

≤
ffiffiffi
2

p
ffiffiffiffiffiffiffi
1254

p Φ
5W1
6

� �
+Φ

5W2
6

� �� �

=
ffiffiffi
2

p
ffiffiffiffiffiffiffi
1254

p Φ GW1 −W1ð Þ +Φ GW2 −W2ð Þð Þ:

ð96Þ

For all W1,W2 ∈ Sðℓðð2a+3/a+2Þ∞a=0ÞÞϕ with ΦðW1Þ,ΦðW2Þ
∈ ½1,∞Þ, we have

Φ GW1 − GW2ð Þ=Φ
W1
7 −

W2
7

� �

≤
ffiffiffi
2

p
ffiffiffiffiffiffiffi
2164

p Φ
6W1
7

� �
+Φ

6W2
7

� �� �

=
ffiffiffi
2

p
ffiffiffiffiffiffiffi
2164

p Φ GW1 −W1ð Þ +Φ GW2 −W2ð Þð Þ:

ð97Þ

For all W1,W2 ∈ Sðℓðð2a+3/a+2Þ∞a=0ÞÞϕ with ΦðW1Þ ∈ ½0, 1Þ
and ΦðW2Þ ∈ ½1,∞Þ, we have

Φ GW1 − GW2ð Þ=Φ
W1
6 −

W2
7

� �

≤
ffiffiffi
2

p
ffiffiffiffiffiffiffi
1254

p Φ
5W1
6

� �
+

ffiffiffi
2

p
ffiffiffiffiffiffiffi
2164

p Φ
6W2
7

� �

≤
ffiffiffi
2

p
ffiffiffiffiffiffiffi
1254

p Φ GW1 −W1ð Þ +Φ GW2 −W2ð Þð Þ:

ð98Þ

Therefore, the mapW is KannanΦ contraction mapping

and GpðWÞ = W/6p, ΦðWÞ ∈ ½0, 1Þ,
W/7p, ΦðWÞ ∈ ½1,∞Þ:

 

It is clear that G is Φ sequentially continuous at the zero
operator Θ ∈ Sðℓðð2a+3/a+2Þ∞a=0ÞÞϕ and fG

pWg has a subsequence
fGpiWg which converges to Θ. By Theorem 50, the zero
operator Θ ∈ Sðℓðð2a+3/a+2Þ∞a=0ÞÞϕ is the only fixed point of G.
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Let fWðnÞg ⊆ Sðℓðð2a+3/a+2Þ∞a=0ÞÞϕ be such that limn⟶∞ΦðWðnÞ

−Wð0ÞÞ = 0, where Wð0Þ ∈ Sðℓðð2a+3/a+2Þ∞a=0ÞÞϕ with ΦðWð0ÞÞ =
1. Since the pre-quasinorm Φ is continuous, we have

lim
n⟶∞

Φ GW nð Þ −GW 0ð Þ
� �

= lim
n⟶∞

Φ
W 0ð Þ

6 −
W 0ð Þ

7

� �

=Φ
W 0ð Þ

42

� �
> 0:

ð99Þ

Hence, G is not Φ sequentially continuous at Wð0Þ. So,
the map G is not continuous at Wð0Þ.

8. Application to the Existence of Solutions of
Summable Equations

Summable equations like (100) studied by Salimi et al. [38],
Agarwal et al. [39], and Hussain et al. [40]. In this section,
we search for a solution to (100) in ðℓðrÞÞϕ, where ðraÞa∈N
∈ ℓ∞ is increasing with r0 > 1 and ϕðvÞ = ½∑∞

j=0jvjjr j �1/K , for
all v ∈ ℓðrÞ. Consider the summable equations

va = pa + 〠
∞

m=0
A a,mð Þf m, vmð Þ, ð100Þ

and let W : ðℓðrÞÞϕ ⟶ ðℓðrÞÞϕ defined by

W vað Þa∈N = pa + 〠
∞

m=0
A a,mð Þf m, vmð Þ

 !
a∈N

: ð101Þ

Theorem 52. The summable equation (100) has a solution in
ðℓðrÞÞϕ ; if A : N 2 ⟶R,f : N ×R⟶R,p : N ⟶R,
and for all a ∈N , suppose that

〠
m∈N

A a,mð Þ f m, vmð Þ − f m, tmð Þð Þ
�����

�����
ra

≤
1

2K
pa − va + 〠

∞

m=0
A a,mð Þf m, vmð Þ

�����
�����
ra

"

+ pa − ta + 〠
∞

m=0
A a,mð Þf m, tmð Þ

�����
�����
ra
#
:

ð102Þ

Proof. Let the conditions be verified. Consider the mapping
W : ðℓðrÞÞϕ ⟶ ðℓðrÞÞϕ defined by (101). We have

ϕ Wv −Wtð Þ = 〠
a∈N

Wva −Wtaj jra
" #1/K

= 〠
a∈N

〠
m∈N

A a,mð Þ f m, vmð Þ − f m, tmð Þ½ �
�����

�����
ra

" #1/K

≤
1
2 〠

a∈N
pa − va + 〠

∞

m=0
A a,mð Þf m, vmð Þ

�����
�����
ra

" #1/K0
@

+ 〠
a∈N

pa − ta + 〠
∞

m=0
A a,mð Þf m, tmð Þ

�����
�����
ra

" #1/K1A
= 1
2 ϕ Wv − vð Þ + ϕ Wt − tð Þð Þ:

ð103Þ

Then, from Theorem 41, we have a solution for equation
(100) in ðℓðrÞÞϕ: ☐

Example 53.Given the sequence space ðℓðð2a + 3/a + 2Þ∞a=0ÞÞϕ
, where ϕðvÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑a∈N jvaj2a+3/a+2

q
, for all v ∈ ℓð

ð2a + 3/a + 2Þ∞a=0Þ. Consider the summable equations

va = e− 3a+6ð Þ + 〠
∞

m=0
−1ð Þa+m va

a2 +m2 + 1
� �q

, ð104Þ

with a ≥ 2 and q > 2 and let W : Λ⟶Λ, where Λ = fv
∈ ðℓðð2a + 3/a + 2Þ∞a=0ÞÞϕ : v0 = v1 = 0g, defined by

W vað Þa≥2 = e− 3a+6ð Þ + 〠
∞

m=0
−1ð Þa+m va

a2 +m2 + 1
� �q !

a≥2

:

ð105Þ

Clearly, Λ is a nonempty, ϕ convex, ϕ closed, and ϕ
bounded subset of ðℓðð2a + 3/a + 2Þ∞a=0ÞÞϕ. It is easy to see

that

〠
∞

m=0
−1ð Þa va

a2 +m2 + 1
� �q

−1ð Þm − −1ð Þmð Þ
�����

�����
2a+3/a+2

≤
1ffiffiffi
2

p e− 3a+6ð Þ − va + 〠
∞

m=0
−1ð Þa+m va

a2 +m2 + 1
� �q�����

�����
2a+3/a+2"

+ e− 3a+6ð Þ − ta + 〠
∞

m=0
−1ð Þa+m ta

a2 +m2 + 1

� �q
�����

�����
2a+3/a+2#

:

ð106Þ

By Theorem 52, the summable equation (104) has a solu-
tion in Λ.

9. Conclusion

We have introduced the concept of the pre-quasinormed
space, which is more general than the quasinormed space.
We investigate the sufficient conditions on Nakano (sss) such
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as its variable exponent in ð1,∞Þ with the known pre-
quasinorm to form pre-quasi-Banach and closed (sss), the
concept of a fixed point of Kannan pre-quasi-norm contrac-
tion mapping in the pre-quasi-Banach (sss), which supports
the property (R), and the pre-quasinormal structure prop-
erty. The existence of a fixed point of Kannan pre-
quasinorm nonexpansive mapping in the pre-quasi-Banach
(sss) has been examined. Also, the existence of a fixed point
of Kannan pre-quasinorm contraction mapping in the pre-
quasi-Banach operator ideal formed by Nakano (sss) and s
-numbers has been investigated. Finally, we have explained
some examples to show that the results obtained can solve a
problem. The strength of this approach is that the existence
results are established under flexible conditions provided by
controlling the power of the Nakano sequence space. The
novelty lies in the fact that our main results have improved
some well-known theorems before, which concerned the var-
iable exponent in the aforementioned space.
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In this manuscript, a class of generalized ðψ, α, βÞ-weak contraction is introduced and some fixed point theorems in the framework
of b-metric space are proved. The result presented in this paper generalizes some of the earlier results in the existing literature.
Further, some examples and an application are provided to illustrate our main result.

1. Introduction and Preliminaries

Fixed point theory plays a vital role in the development of
nonlinear functional analysis. It has been used in various
branches of engineering and sciences. Banach contraction
principle is one of the most important results in fixed point
theory introduced by great Polish mathematician Stefan
Banach [1]. The concept of b-metric space or metric-type
space was first introduced by Czerwik [2]. He provided a
property which is weaker than the triangular inequality.
The basic idea of b-metric was commenced by Bourbaki [3]
and Bakhtin [4]. Later on, Khamsi and Hussain [5] reintro-
duced such spaces under the name of metric-type spaces
for some results of fixed and common fixed points in the set-
ting of b-metric spaces. Since then, several authors proved
fixed point results of single valued and multivalued operators
in b-metric space and its different type generalizations, we
refer [6–22]. Every one of these applications captivated us
to present the idea of b-metric space.

Definition 1. (see [23]). Let X be a nonempty set. A function
d : X × X⟶ 0,∞ is said to be a b -metric if it satisfies the
following conditions:

1ð Þ 0 ≤ d x, yð Þ and d x, yð Þ = 0 if and only ifx = y

2ð Þ d x, yð Þ = d y, xð Þ
3ð Þ d x, zð Þ ≤ s d x, yð Þ + d y, zð Þ½ � for some s ≥ 1,

ð1Þ

for all x, y, z ∈ X. The pair ðX, dÞ is called a b-metric with
coefficient s.

Here, we observe that every metric space is a b-metric
with s = 1. Conditions (1) and (2) of Definition 1 are similar
to metric space but it is important how to use (3) effectively.
An example is given to expound the concept of a third
condition.

Example 1. Let X =ℝ. We define a mapping d : X × X⟶
ℝ+ such that

d x, yð Þ = x − yð Þ2,∀x, y ∈ X: ð2Þ

The first two conditions of Definition 1 are clearly shown.
The solution of third condition is as follows:

d x, zð Þ = x − zð Þ2 = x2 + z2 − 2xz ≤ x2 + z2 − 2xz
+ x2 + z2 + 4y2 − 4xy − 2:

ð3Þ

Since

x2 + z2 + 4y2 > 2x 2y + zð Þ, x2 + z2 + 4y2 − 2x 2y + zð Þ > 0,
ð4Þ
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we have

d x, zð Þ ≤ x2 + z2 − 2xz + x2 + z2 + 4y2 − 4xy − 2
= 2x2 + 4y2 + 2z2 − 4xy − 4xz
= 2 x2 + 2y2 + z2 − 2xy − 2xz
� �

= 2 x2 + y2 − 2xy + y2 + z2 − 2xz
� �

= 2 x − yð Þ2 + y − zð Þ2� �
= 2 d x, yð Þ + d y, zð Þ½ �:

ð5Þ

Then, we obtain

d x, zð Þ ≤ 2 d x, yð Þ + d y, zð Þ½ �: ð6Þ

So the value of coefficient is s = 2.
In this section, the concept of generalized ðψ, α, βÞ-weak

contraction for metric space is provided with some basic
notions and results. In 1997, Alber and Guerre-Delabriere
[24] suggested a generalization of Banach contraction
mapping by introducing the concept of ϕ-weak contrac-
tion in Hilbert space. In 2008, Dutta and Choudhury
[25] gave a generalization of weakly contractive mapping
by defining ðψ, ϕÞ-weak contraction in complete metric spaces.

Definition 2. (see [26]). Let Ψ denote the class of function
ψ : ½0,∞Þ⟶ ½0,∞Þ which satisfies the following conditions:

(1) ψ is continuous and nondecreasing

ψ tð Þ = 0⟺ t = 0: ð7Þ

Definition 3. (see [26]). A self-map P is said to be a weakly
contractive map if there exists a function ϕ : ½0,+∞Þ⟶ ½0,
+∞Þ such that ϕ is continuous, nondecreasing, and ϕðtÞ = 0
⟺ t = 0 and satisfying

d Px, Pyð Þ ≤ d x, yð Þ − ϕ d x, yð Þð Þ,∀x, y ∈ X: ð8Þ

Theorem 4. (see [26]). LetðX, dÞ be a complete metric space
and P be a weakly contractive self-map on X. Then, P has a
unique fixed point in X.

Definition 5. (see [25]). A self-map P is said to be ðψ, ϕÞ-weak
contraction, if for each x, y ∈ X,

ψ d Px, Pyð Þð Þ ≤ ψ d x, yð Þð Þ − ϕ d x, yð Þð Þ, ð9Þ

where ψ, ϕ : ½0,∞�⟶ ½0,∞� are both continuous and
monotone nondecreasing functions with ψðtÞ = 0 = ϕðtÞ
⟺ t = 0.

Theorem 6. (see [25]). Let ðX, dÞ be a complete metric space
and a self-map P be a ðψ, ϕÞ-weak contraction. Then, P has
a unique fixed point.

Definition 7. (see [27]) Two self-maps P and Q are said to be
generalized ϕ -weakly contractive map if there exists a func-

tion ϕ : ½0,+∞�⟶ ½0,+∞� such that ϕ is continuous, non-
decreasing, and ϕðtÞ = 0⟺ t = 0 and satisfying

d Px,Qyð Þ ≤M x, yð Þ − ϕ M x, yð Þð Þ, ð10Þ

where

M x, yð Þ =max d x, yð Þ, d x, Pxð Þ, d y,Qyð Þ, d y, Pxð Þ + d x,Qyð Þ½ �
2

� �
,∀x, y ∈ X:

ð11Þ

Theorem 8. (see [27]). Let ðX, dÞ be a complete metric space
and T and R are generalized ϕ -weakly contractive self-maps
on X. Then, P and Q have a unique common fixed point in X.

Definition 9. (see [28]). Two self-maps P and Q are said to be
generalized ðϕ, ψÞ-weakly contractive maps if they satisfy

ψ Px,Qyð Þ ≤M x, yð Þ − ϕ M x, yð Þð Þ, ð12Þ

∀x, y ∈ X, where ϕ : ½0,+∞Þ⟶ ½0,+∞Þ such that ψ is
continuous, nondecreasing, and ψðtÞ = 0⟺ t = 0, ϕ : ½0,+
∞�⟶ ½0,+∞Þ such that ϕ is a lower semicontinuous func-
tion, ϕðtÞ = 0⟺ t = 0 and

M x, yð Þ =max d x, yð Þ, d x, Pxð Þ, d y,Qyð Þ, d y, Pxð Þ + d x,Qyð Þ½ �
2

� �
,∀x, y ∈ X:

ð13Þ

Theorem 10. (see [28]). Let ðX, dÞ be a complete metric space
and P and Q are generalized ðϕ, ψÞ -weakly contractive self-
maps on X. Then, P and Q have a unique common fixed point
in X.

Definition 11. (see [29]). Let ðX, ≼Þ be a partially ordered set.
Two mappings P,Q : X⟶ X are said to be weakly increas-
ing if Px≼QTx and Qx≼PQx for all x ∈ X.

Remark 12. (see [29]). Note that two weakly increasing map-
pings need not be nondecreasing.

Definition 13. (see [30]). Let ðX, dÞ be a metric space and
P,Q : X⟶ X are given two self-mappings on X. The pair
ðP,QÞ is said to be compatible if limn⟶∞dðPQxn,QPxnÞ
= 0, whenever xn is a sequence in X such that

lim
n⟶∞

Pxn = lim
n⟶∞

Qxn = t, for some t ∈ X: ð14Þ

Definition 14. (see [1]). Let ðX, ≼Þ be a partially ordered
set and let ðX, dÞ be a b-metric space with coefficient
s ≥ 1. Three maps T , R, and S are said to be a generalized
ðψ, α, βÞ-weak contraction if for each x, y ∈ X,

ψ d Px,Qyð Þð Þ ≤ α d Sx, Syð Þð Þð β d Sx, Syð Þð Þ, ð15Þ

where ψ ∈Ψ and β : ½0,∞Þ⟶ ½0,∞Þ is a continuous func-
tion with condition
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0 < β tð Þ < ψ tð Þ,∀t > 0: ð16Þ

Theorem 15. (see [1]). Let ðX, ≼Þ be a partially ordered set
and assume that there exists a metric function d in X such
that ðX, dÞ is a complete metric space. Let P,Q, S : X⟶ X
are generalized ðψ, α, βÞ -weak contraction mappings satisfy-
ing the following properties:

PX ⊆ SX, ð17Þ

(1) P, Q, and S are continuous

(2) The pairs ðP, SÞ and ðQ, SÞ are compatible

(3) P and Q weakly increasing with respect to S

(4) Sx and Sy are comparable

(5) ∀ðx, yÞ ∈ X × X, there exists u ∈ X such that Px≼Pu
and Py≼Pu

Then, P, Q, and S have a unique common fixed point
z ∈ X.

The next section includes the concept of generalized
ðψ, α, βÞ-weak contraction for b-metric space and theorem
related to it.

2. Generalized ðψ, α, βÞ-Weak Contractions

Definition 16. Let ðX, ≼Þ be a partially ordered set and let
ðX, dÞ be a b-metric space with coefficient s ≥ 1. Three maps
P, Q, and S are said to be a generalized ðψ, α, βÞ-weak con-
traction if for each x, y ∈ X and b ∈ ð0, 1Þ.

bsψ d Px,Qyð Þð Þ ≤ α d Sx, Syð Þð Þð β d Sx, Syð Þð Þ,∀x ≥ y, ð18Þ

where α ∈ F, ψ ∈Ψ and β : ½0,∞Þ⟶ ½0,∞Þ is a continuous
function with the condition

0 < β tð Þ < ψ tð Þ,∀t > 0: ð19Þ

Theorem 17. Let ðX, ≼Þ be a partially ordered set and
assume that there exist a b -metric function d in X such that
ðX, dÞ is complete b-metric space. Let T , R, S : X ⟶ X are
generalized ðψ, α, βÞ -weak contraction mappings satisfying
the following properties:

PX ⊆ SX, ð20Þ

(1) P, Q, and S are continuous

(2) The pair ðP, SÞ and ðQ, SÞ are compatible

(3) P and Q weakly increasing with respect to S

(4) Sx and Sy are comparable

(5) ∀ðx, yÞ ∈ X × X, there exist u ∈ X such that Px≼Pu and
Py≼Pu

Then, P,Q, and S have a unique common fixed point z ∈ X.

Proof. The proof is done by using the concept of Banach con-
traction principle in which a Cauchy sequence is taken in
complete b-metric space. Every Cauchy sequence is conver-
gent in a complete metric space, and converging point of that
sequence is proved to be a fixed point of contraction. ☐

Let us assume that x0 ∈ X be an arbitrary point in X. By
property (1), there exist x1, x2 ∈ X such that Px0 = Sx1 and
Qx1 = Sx2. Continuing this process, sequences fxng and fyng
can be constructed in X, defined as

Sx2n+1 = Px2n = y2n, Sx2n+1 =Qx2n+1 = y2n+1,∀n ∈ℕ: ð21Þ

By using property (4), we obtain

Sx1 = Px0≼Qx1 = Sx2: ð22Þ

Similarly,

Sx2 = Px1≼Qx2 = Sx3: ð23Þ

Continuing this process, we get

Sx1≼Sx2≼Sx3≼Sx4≼⋯≼Sx2n+1≼Sx2n+2≼⋯: ð24Þ

Thus,

y0≼y1≼y2≼⋯≼y2n≼y2n+1≼⋯: ð25Þ

According to our first supposition, if there exists n ∈ℕ
such that y2n−1 = y2n, then from (18),

bsψ d y2n, y2n+1ð Þð Þ = bsψ d Px2n,Qx2n+1ð Þð Þ
≤ bsα d Sx2n, Sx2n+1ð Þð Þβ d Sx2n, Sx2n+1ð Þð Þ
= bsα d y2n−1, y2nð Þð Þβ d y2n−1, y2nð Þð Þ
= 0,

ð26Þ

which implies that y2n+1 = y2n. Consequently, ym = y2n−1 for
any m ≥ 2n. Hence, for every m ≥ 2n, we have Sxm = Sx2n
which implies that fSxng is a b-Cauchy sequence.

According to our second supposition, yn ≠ yn+1 for any
integer n. Let zn = dðyn, yn+1Þ. Now, we have to show that
zn ⟶ 0 as n⟶∞. Since Sx2n and Sx2n+1 are comparable,
then from (18), we have

bsψ d y2n+2, y2n+1ð Þð Þ = bsψ d Sx2n+3, Sx2n+2ð Þð Þ
= bsψ d Px2n+2,Qx2n+1ð Þð Þ
≤ bsα d Sx2n+2, Sx2n+1ð Þð Þβ d Sx2n+2, Sx2n+1ð Þð Þ
= bsα d y2n+1, y2nð Þð Þβ d y2n+1, y2nð Þð Þ:

ð27Þ
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By property (2) of ψ and the fact that α ∈ F, we get

d y2n+2, y2n+1ð Þ ≤ d y2n+1, y2nð Þ: ð28Þ

Similarly, we have

d y2n+1, y2nð Þ ≤ d y2n, y2n−1ð Þ: ð29Þ

By combining (28) and (29), we obtain

d y2n+2, y2n+1ð Þ ≤ d y2n+1, y2nð Þ ≤ d y2n, y2n−1ð Þ: ð30Þ

This shows that the sequence fzng is monotonically
decreasing. So there exists r ≥ 0 such that

lim
n⟶∞

zn = d yn, yn+1ð Þ = r: ð31Þ

Suppose r ≥ 0. Then,

bsψ d y2n+2, y2n+1ð Þð Þ ≤ bsα d y2n+1, y2nð Þð Þβ d y2n+1, y2nð Þð Þ:
ð32Þ

Taking the limit as n⟶∞, we get ψðrÞ ≤ αðrÞ ≤ βðrÞ.
Since α ∈ F, by using (19), we have ψðrÞ < αðrÞ < βðrÞ but this
is a contradiction. Then, r = 0. Hence,

lim
n⟶∞

zn = d yn, yn+1ð Þ = 0: ð33Þ

Next, we have to show that fSxng is a b-Cauchy sequence.
We prove this by contradiction. Now, we suppose that fSx2ng
is not a b-Cauchy sequence. Then, for any ε > 0, there exist
two subsequences of positive integers mk and nk such that
nk >mk for all positive integers k,

d Sx2mk
, Sx2nk

� �
> ε, ð34Þ

d Sx2mk
, Sx2nk−2

� �
≤ ε: ð35Þ

From (34) and (35) and by using triangle inequality,
we get

ε ≤ d Sx2mk
, Sx2nk−2

� �
≤ d Sx2mk

, Sx2nk−2
� �

+ d Sx2nk−2 , Sx2nk−1
� �

+ d Sx2nk−1 , Sx2nk
� �

:

ð36Þ

Let k⟶∞ in the above inequality and by using (33),
we obtain

lim
k⟶∞

d Sx2mk
, Sx2nk

� �
= ε: ð37Þ

Again by using triangle inequality, we have

d Sx2nk , Sx2mk−1

� �
≤ d Sx2nk , Sx2mk

� �
+ d Sx2mk

, Sx2mk−1

� �
:

ð38Þ

By taking limit as k⟶∞ in above inequality and
using (33)–(35), we get

lim
k⟶∞

d Sx2nk , Sx2mk−1

� �
= ε: ð39Þ

Moreover, we obtain

d Sx2nk , Sx2mk

� �
≤ d Sx2nk , Sx2nk+1
� �

+ d Sx2nk+1 , Sx2mk

� �
= d Sx2nk , Sx2nk+1
� �

+ d Px2nk ,Qx2mk−1

� �
:

ð40Þ

Using inequalities (33)–(37) and letting limk⟶∞, we
have

ε ≤ lim
k⟶∞

d Px2nk ,Qx2mk−1

� �
: ð41Þ

However, ψ ∈Ψ, therefore

ψ εð Þ ≤ lim
k⟶∞

ψ d Px2nk ,Qx2mk−1

� �� �
: ð42Þ

From (18), we have

bsψ d Px2nk ,Qx2mk−1

� �� �
≤ bsα d Sx2nk , Sx2mk−1

� �� �
β d Sx2nk , Sx2mk−1

� �� �
:

ð43Þ

Taking limit as k⟶∞ in the above inequality and
using that fact that α ∈ F, we have

lim
k⟶∞

ψ d Px2nk ,Qx2mk−1

� �� �
< β εð Þ: ð44Þ

From (43) and (44), and using (19), we obtain

ψ εð Þ ≤ lim
k⟶∞

ψ d Px2nk ,Qx2mk−1

� �� �
< β εð Þ < ψ εð Þ: ð45Þ

This is a contradiction. Therefore, fx2ng is a b-Cauchy
sequence, and hence, fxng is a b-Cauchy sequence for all
n ∈ℕ. Hence, there exists u ∈ X such that

lim
n⟶∞

Sxn = u: ð46Þ

Next, claim that u is a coincidence point of P, Q, and
S. From (46) and the continuity of S, we get

lim
n⟶∞

S Sxnð Þ = Su: ð47Þ

From triangle inequality, we have

d Su, Puð Þ ≤ d Su, S Sx2n+1ð Þð Þ + d S Tx2nð Þð Þ, P Sx2nð ÞÞ
+ d P Sx2nð Þ, Tuð Þ, ð48Þ

From (46) and (21), we have

Sx2n ⟶ u, Px2n ⟶ u: ð49Þ
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Since pair ðP, SÞ are compatible, then

d S Px2nð Þ, P Sx2nð Þð Þ⟶ 0: ð50Þ

Using the continuity of P and (58), we get

d P Sx2nð Þ, Puð Þ⟶ 0, ð51Þ

letting k⟶∞ in (48) and using (47)–(50) together with
(51), we find

d Su, Puð Þ ≤ 0, ð52Þ

which means that Su = Pu. Similarly, from triangle
inequality, we have

d Su,Quð Þ ≤ d Su, S Sx2n+2ð Þð Þ + d S Qx2n+1ð Þð Þ,Q Sx2n+1ð ÞÞ
+ d Q Sx2n+1ð Þ,Quð Þ:

ð53Þ

In a similar way, we obtain dðSu,QuÞ ≤ 0 which means
that Su =Qu. Thus, we find that Su =Qu = Pu, that is, u is
a coincidence point of P, Q, and S.

Now, we use the property (6) to show that u is a common
fixed point of P, Q, and S. For this, we prove that P, Q, and S
have a common fixed point. To prove this, we show that if p
and q are coincidence points of P, Q, and S, i.e.,

Sp = Pp =Qp,
Sq = Pq =Qq:

ð54Þ

Then,

Sp = Sq: ð55Þ

From our assumption mentioned in property (6), there
exists u0 ∈ X such that

Tp≼Tu0, Tq≼Tu0: ð56Þ

Now, we can define a sequence fSung as follows:

Su2n+1 = Pu2n, Su2n+2 =Qu2n+1,∀n ∈ℕ: ð57Þ

Again, we have

Pp = Sp≼Sun, Pq = Sq≼Su2n,∀n ∈ℕ: ð58Þ

Now, putting x = un and y = p in (18), we get

bsψ d Su2n+1, Spð Þð Þ = bsψ d Pu2n,Qpð Þð Þ
≤ bsα d Su2n, Spð Þð Þβ d Su2n, Spð Þð Þ: ð59Þ

Since α ∈ F, we have the next inequality:

bsψ d Su2n+1, Spð Þð Þ ≤ bsβ d Su2n, Spð Þð Þ: ð60Þ

Similarly, again writing y = u2n and x = p in (18), we find

bsψ d Su2n+2, Spð Þð Þ ≤ bsβ d Su2n+1, Spð Þð Þ: ð61Þ

By combining (60) and (61), we obtain for all n ∈ℕ,

bsψ d Su2n+1, Spð Þð Þ ≤ bsβ d Su2n, Spð Þð Þ: ð62Þ

Consequently, by using property of ψðtÞ and βðtÞ, we get

d Su2n+1, Spð Þ ≤ d Su2n, Spð Þ: ð63Þ

Therefore, there exists r ≥ 0 such that

lim
n⟶∞

d Sun, Spð Þ = r: ð64Þ

Let r > 0, then from (18), we obtain

bsψ d Su2n+1, Spð Þð Þ ≤ bsα d Su2n, Spð Þð Þð β d Su2n, Spð Þð Þ, ð65Þ

on taking limit as n⟶∞ and using (19), we get

ψ rð Þ < β rð Þ < ψ rð Þ: ð66Þ

This is a contradiction. Thus, r = 0 and from (64),
we obtain

lim
n⟶∞

d Sun, Spð Þ = 0: ð67Þ

In the same pattern, we can show that

lim
n⟶∞

d Sun, Sqð Þ = 0: ð68Þ

Now, using the fact that the limit is unique and by
using (55)–(68), we can write

lim
n⟶∞

d S Pu2n, P Su2nð Þð Þð Þ = 0, lim
n⟶∞

d Sð Qu2n+1,Q Su2n + 1ð Þð Þ = 0,

lim
n⟶∞

Pu2n = Sp = Sq,

lim
n⟶∞

Qu2n+1 = Sp = Sq:

ð69Þ

Since the pair P, S and Q, S are compatible, we have

lim
n⟶∞

d S Pu2n, P Su2nð Þð Þð Þ = 0, lim
n⟶∞

d Sð Qu2n+1,Q Su2n + 1ð Þð Þ = 0:

ð70Þ

Let us take z = Sp. Consider

d Sz, Pzð Þ ≤ d Sz, S Pu2nð Þð Þ + d S Tu2nð Þ, P Su2nð Þð Þ + d P Su2nð Þ, Pzð Þ:
ð71Þ

Letting n⟶∞ and using the continuity of P, we
get the above inequality as

d Sz, Pzð Þ ≤ 0: ð72Þ
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That is, Sz = Pz and z is coincidence point of P and S.
Similarly, dðSz,QzÞ ≤ 0. That is, Rz = Sz and z is the coin-
cidence point of Q and S. Hence, from (55), we have

z = Sp = Sz = Pz =Qz: ð73Þ

This proves that z is a common fixed point of P, Q,
and S. Now, we show that z is unique common fixed
point. We will show this by contradiction. Assume that z
is not unique, therefore, there exists another fixed point
υ as

υ = Sp = Sυ = Pυ =Qυ: ð74Þ

By using (55), we have Sυ = Sz. Hence, we get

υ = Sυ = Sz = z, ð75Þ

but this is a contradiction to our assumption, and hence, a
common fixed point is unique.

An example is given to support the main result because
there is limited examples in the literature.

Example 2. Let X =ℝ is the set of real numbers and a
b -metric d : X × X ⟶ 0,∞ is defined as

d x, yð Þ = x − yð Þ2,∀x, y ∈ X, ð76Þ

with coefficient s = 2 and b = 0:01. Consider three self-
maps P,Q, S : ℝ⟶ℝ defined as

Px = 2x,Qx = 5 − 2x, Sx = x
3 : ð77Þ

Define maps ψ, β : ½0,∞Þ⟶ ½0,∞Þ and α : ½0,∞Þ⟶
½0, 1� as

ψ tð Þ = t
2 ,:

β = t
3 ,

α tð Þ = 7
3 :

ð78Þ

After substituting values in (18),

bsψ d Px,Qyð Þð Þ ≤ α d Sx, Syð Þð Þβ d Sx, Syð Þð Þð , ð79Þ

we have

0:012 ψ 2x − 5 + 2yð Þ2� �
≤ α d

x
3 ,

y
3

� 	� 	
β d

x
3 ,

y
3

� 	� 	
,

0:012 2x − 5 + 2yð Þ2
2

 !
≤
7
3

x − yð Þ2�
27

 !
:

ð80Þ

Now, for ðx, yÞ = ð0, 1Þ, we get

0:00045 ≤ 0:08, ð81Þ

For ðx, yÞ = ð1, 2Þ, we have

0:00005 ≤ 0:08, ð82Þ

Then, clearly, three maps P, Q, and S are generalized
ðψ, α, βÞ-weak contraction for all values of x, y ∈ℝ.

3. An Application to Fredholm
Integral Equations

In this section, applying Theorem 17, we give an existence
theorem for common solutions of Fredholm integral equa-
tions where the upper limits of equations are taken to be
the coefficient of b-metric space s ≥ 1. Here, we consider the
following integral equations:

ðs
0
P1 t, l, v lð Þð Þdl + ϰ tð Þ, ð83Þ

ðs
0
P2 t, l, v lð Þð Þdl + ϰ tð Þ, ð84Þ

for all t ∈ ½0, s� where s ≥ 1. Let us consider the space X = C½I�
ðI = ½0, s�Þ is a set of continuous functions defined on ½0, s�.
Obviously, the space C½I� with the metric dðp, qÞ =max

t∈I
jxðtÞ

− yðtÞj for all x, y ∈ X is a complete metric space.
Here, b-metric space is defined on the partially ordered

set. So, X can be prepared with partial order ≼ given by

for all x, y ∈ X, x≼y : ⟺ x tð Þ≼y tð Þ, for all t ∈ I: ð85Þ

Theorem 18. Suppose the following hypotheses hold:

(1) P1, P2 : I × I × R⟶ R and λ : R⟶ R are
continuous

(2) The following inequalities hold:

P1 t, l, u lð Þð Þ ≤ P2 t, lð ,
ðs
0
P1 l, r, u rð Þð Þdr + ϰ lð Þ,

P2 t, l, u lð Þð Þ ≤ P1 t, lð ,
ðs
0
P2 l, r, u rð Þð Þdr + ϰ lð Þ

ð86Þ

(3) There exists a continuous function ξ : I × I ⟶ R+
such that

bs P1 t, l, xð Þ − P2 t, l, yð Þj j ≤ ξ t, lð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log x − yð Þ2 + s
� �
x − y

,
s

ð87Þ
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for all t, l ∈ I and x, y ∈ X such that x≼y:

maxt∈Iξ t, ið Þ
ðs
0
ξ t, ið Þ2dl ≤ 1

s
ð88Þ

Then, the integral equations (83) and (84) have the unique
solution v∗ ∈ CðIÞ.

Proof. Let us define P,Q : CðIÞ⟶ CðIÞ by

Px tð Þ =
ðs
0
T1 t, l, v lð Þð Þdl + ϰ tð Þ,

Qx tð Þ =
ðs
0
T2 t, l, v lð Þð Þdl + ϰ tð Þ,

ð89Þ

where t ∈ I and p ∈ CðIÞ. Here, P and Q are considered to be
weakly increasing function according to the requirement of
our result.

Now, for all p, q ∈ CðIÞ such that p≼q, we have

bs Px tð Þ −Qy tð Þ�� �� = ðs
0
P1 t, l, v lð Þð Þ − P2 t, l, v lð Þð Þj jdl

≤
ðs
0
ξ t, lð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log x lð Þ − y lð Þð Þ2 + s
� �
x lð Þ − y lð Þ dl

s
,

ð90Þ

where b ∈ ð0, 1Þ.
Using the Cauchy-Schwarz inequality in the R.H.S.,

we get

ðs
0
ξ t, lð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log x lð Þ − y lð Þð Þ2 + s
� �
x lð Þ − y lð Þ dl

s

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs
0
ξ2 t, lð Þdl

s ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs
0

log x lð Þ − y lð Þð Þ2 + s
� �
x lð Þ − y lð Þ dl

s0
@

1
A:

ð91Þ

By using hypotheses (4), we have

ðs
0
ξ t, lð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log x lð Þ − y lð Þð Þ2 + s
� �
x lð Þ − y lð Þ dl

s

≤
ffiffiffi
1
s

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs
0

log x lð Þ − y lð Þð Þ2 + s
� �
x lð Þ − y lð Þ dl

s

≤
ffiffiffi
1
s

r ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log d x, yð Þð Þ2 + s
� �
d x, yð Þ

s0
@

1
A ffiffi

s
p� �

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log d x, yð Þð Þ2 + s
� �
d x, yð Þ

s
:

ð92Þ

This implies the following:

bs Px tð Þ −Qy tð Þ�� �� = bsd Px, Py

� �
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log d x, yð Þð Þ2 + s
� �
d x, yð Þ

s
, bsd Px, Py

� �2
≤
log d x, yð Þð Þ2 + s
� �
d x, yð Þ

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log d x, yð Þð Þ2 + s
� �
d x, yð Þ

s0
@

1
A

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log d x, yð Þð Þ2 + s
� �q� 

,

ð93Þ

Suppose we choose the values of α, β, ψ asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlog ½t2 + s�/tÞp
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log ½t2 + s

p
, and t2, respectively. There-

fore, from inequality (93),

bsψ d Px,Qyð Þð Þ ≤ α d Sx, Syð Þð Þð β d Sx, Syð Þð Þ,∀x ≥ y ð94Þ

Since all the hypotheses of Theorem 17 are satisfied so
there exists a unique common fixed point v∗ ∈ CðIÞ of P and
Q, that is, the solution of equations (83) and (84).
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In this paper, we introduce a new class of g − αsp − admissible mappings and prove some common fixed point theorems involving
this new class of mappings which satisfy generalized contractive conditions in the framework of b −metric spaces. We also provide
two examples to show the applicability and validity of our results. Meanwhile, we present an application to the existence of solutions
to an integral equation by means of one of our results.

1. Introduction

The Banach contraction principle [1] is one of the essential
pillars of the theory of metric fixed points. Many authors
have obtained generalizations, extensions, and applications
of their findings by investigating the Banach contraction
principle in many directions. One of the most popular and
interesting topics among them is the study of new classes of
spaces and their fundamental properties.

Czerwik [2] introduced the concept of b −metric space
and proved some fixed point theorems of contractive map-
pings in b −metric space. Subsequently, some authors have
studied on the fixed point theorems of a various new type
of contractive conditions in b −metric space. Aydi et al. in
[3] proved common fixed point results for mappings satisfy-
ing a weak ϕ − contraction in b −metric spaces. Following
the results of Berinde [4], Pacurar [5] obtained the existence
and uniqueness of fixed point of ϕ − contractions, and Zada
et al. [6] got fixed point results satisfying contractive condi-
tions of rational type. In 2019, Hussain et al. studied the exis-
tence and uniqueness of a periodic common fixed point for
pairs of mappings via rational type contraction in [7]. After
that, authors obtained fixed point theorems for L − cyclic
ðα, βÞs − contractions and cyclic ðα, βÞ − ðψ, ϕÞs − rational
type contractions and discussed the existence of a unique

solution to nonlinear fractional differential equations in
[8, 9], respectively. Also using rational type contractive
conditions, Hussain et al. [10] got the existence and unique-
ness of common n − tupled fixed point for a pair of map-
pings. Using a contractive condition defined by means of a
comparison function, [11] established results regarding the
common fixed points of two mappings. In 2014, Abbas
et al. obtained the results on common fixed points of four
mappings in b −metric space in [12].

To generalize the concept of b −metric spaces, Hussain
and Shah in [13] introduced the notion of a cone b −metric
space, which means that it is a generalization of b −metric
spaces and cone metric spaces; they considered topological
properties of cone b −metric spaces and obtained some
results on KKM mappings in the setting of cone b −met-
ric spaces. In [14], some fixed point results for weakly con-
tractive mappings in ordered partial metric space were
obtained. Recently, Samet et al. [15] introduced the concept
of α − admissible and α − ψ − contractive mappings and
presented fixed point theorems for them. In [16], Jamal
et al. used ðψ, ϕÞ − weak contraction to generalize coinci-
dence point results which are established in the context of
partially ordered b −metric spaces. In [17, 18], Zoto et al.
studied generalized αsp contractive mappings and ðα − ψ, ϕÞ
− contractions in b −metric−like space. Recently, in [16],
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Jamal et al. used ðψ, ϕÞ −weak contraction to generalize coin-
cidence point results which are established in the context of
partially ordered b −metric spaces. Abu-Donia et al. [19]
proved the uniqueness and existence of the fixed points for
five mappings from a complete intuitionistic fuzzy 3 −met-
ric space into itself under weak compatible of type ðαÞ and
asymptotically regular. For recent development on fixed
point theory, we refer to [20–26].

Motivated and inspired by Theorems 27 and 29 in [17],
Theorem 3.13 in [18], and Theorem 2.1 in [20], in this paper,
our purpose is to introduce the concept of g − αsp − admis-
sible mappings and obtain a few common fixed point results
involving generalized contractive conditions in the frame-
work of b −metric space. Furthermore, we provide examples
that elaborated the useability of our results. Meanwhile, we
present an application to the existence of solutions to an inte-
gral equation by means of one of our results.

2. Preliminaries

First of all, we introduce some definitions as follows:

Definition 1 (see [2]). Let X be a nonempty set and s ≥ 1 be a
given real number. A mapping d : X × X ⟶ ½0,+∞Þ is said
to be a b −metric if and only if, for all x, y, z ∈ X, the follow-
ing conditions are satisfied:

(i) dðx, yÞ = 0 if and only if x = y

(ii) dðx, yÞ = dðy, xÞ
(iii) dðx, yÞ ≤ sðdðx, zÞ + dðy, zÞÞ
Generally, we call ðX, dÞ a b −metric space with parame-

ter s ≥ 1.

Remark 2. We should note that a b −metric space with s = 1
is a metric space. We can find several examples of b −metric
spaces which are not metric spaces. (see [24]).

Example 3 (see [20]). Let ðX, ρÞ be a metric space, and dðx,
yÞ = ðρðx, yÞÞp, where p > 1 is a real number

Then, dðx, yÞ is a b −metric space with s = 2p−1.

Definition 4 (see [12]). Let ðX, dÞ be a b −metric space with
parameter s ≥ 1. Then, a sequence fxng in X is said to be:

(i) b − convergent if and only if there exists x ∈ X such
that dðxn, xÞ⟶ 0 as n⟶ +∞

(ii) a Cauchy sequence if and only if dðxn, xmÞ⟶ 0
when n,m⟶ +∞

In general, a b −metric space is called complete if and
only if each Cauchy sequence in this space is b − convergent.

Definition 5 (see [21]). Let f and g be two self-mappings on a
nonempty set X. If w = fx = gx, for some x ∈ X, then x is said
to be the coincidence point of f and g, where w is called the

point of coincidence of f and g. Let Cð f , gÞ denote the set of
all coincidence points of f and g.

Definition 6 (see [21]). Let f and g be two self-mappings
defined on a nonempty set X. Then, f and g are said to be
weakly compatible if they commute at every coincidence
point, that is, f x = gx⇒ f gx = gf x for every x ∈ Cð f , gÞ.

We need the following lemma to obtain our main results:

Lemma 7 (see [20]). Let ðX, dÞ be a b −metric space with
parameter s ≥ 1. Assume that fxng and fyng are b − conver-
gent to x and y, respectively. Then, we have

1
s2
d x, yð Þ ≤ liminf

n⟶+∞
d xn, ynð Þ ≤ limsup

n⟶+∞
d xn, ynð Þ ≤ s2d x, yð Þ:

ð1Þ

In particular, if x = y, then we have limn⟶+∞dðxn, ynÞ = 0.
Moreover, for each z ∈ X, we have

1
s
d x, zð Þ ≤ liminf

n⟶+∞
d xn, zð Þ ≤ limsup

n⟶+∞
d xn, zð Þ ≤ sd x, zð Þ: ð2Þ

3. Main Results

In this section, we will show the existence and uniqueness of
common fixed point for generalized ðg − αsp , ψ, φÞ contrac-
tive mappings in complete b −metric space. Meanwhile, we
give two examples to support our results.

Definition 8. Let ðX, dÞ be a b −metric space with parameter
s ≥ 1, and let f , g : X ⟶ X and α : X × X ⟶ ½0,+∞Þ be
given mappings and p ≥ 1 be an arbitrary constant. The
mapping f : X⟶ X is said to be g − αsp − admissible if,
for all x, y ∈ X,αðgx, gyÞ ≥ sp implies αð f x, f yÞ ≥ sp.

Remark 9.

(i) Note that, for g = I, the definition reduces to an αsp
-admissible mapping in a b −metric space

(ii) For s = 1, the definition reduces to the definition of an
α − admissible mapping in a metric space

Let ðX, dÞ be a complete b −metric space with parameter
s ≥ 1 and α : X × X⟶ ½0,+∞Þ be a function. Then,

ðHspÞ If fxng is a sequence in X such that gxn ⟶ gx as
n⟶ +∞, then there exists a subsequence fgxnkg of fgxng
with αðgxnk , gxÞ ≥ sp for all k ∈N

ðUspÞ For all u, v ∈ Cð f , gÞ, we have the condition of α
ðgu, gvÞ ≥ sp or αðgv, guÞ ≥ sp.

We know that contraction-type mappings are extended
in several directions. Since Samet introduced the concept of
α − admissible mappings and α − ψ − contractive mapping,
some papers have been published to study a series of general-
izations. Afterwards, these classes of mappings are used
under generalized weakly contractive conditions.
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We shall consider the contractive conditions in this sec-
tion are constructed via auxiliary functions defined with the
families Ψ,Φ, respectively:

Now, we introduce the notion of rational ðg − αsp , ψ, φÞ
contraction in the setting of b −metric spaces.

Definition 10. Let ðX, dÞ be a b −metric space with parameter
s ≥ 1, and let f , g : X⟶ X be two self-mappings. Assume
that α : X × X ⟶ ½0,+∞Þ and p ≥ 1 is a constant. A map-
ping f is called a generalized ðg − αsp , ψ, φÞ contractive map-
ping, if there exist ψ ∈Ψ, φ ∈Φ such that

ψ α gx, gyð Þd f x, f yð Þð Þ ≤ ψ N x, yð Þð Þ − φ M x, yð Þð Þ, ð4Þ

for all x, y ∈ X with αðx, yÞ ≥ sp, where

N x, yð Þ =max fd gx, gyð Þ, d f x, gxð Þ, d f y, gyð Þ,

� d gx, f yð Þ + d f x, gyð Þ
4s , d f x, gxð Þd f y, gyð Þ

1 + d f x, f yð Þ ,

� d f y, gyð Þ 1 + d f x, gxð Þ½ �
1 + d gx, gyð Þ

o
,

M x, yð Þ =max fd f x, gyð Þ, d gx, gyð Þ, d f x, gxð Þ, d f y, gyð Þ,

� d f x, gxð Þ 1 + d gx, gyð Þ½ �
1 + d f x, gyð Þ , d f x, gxð Þ 1 + d f x, gxð Þ½ �

1 + d f x, gyð Þ ,

� d f x, gxð Þ 1 + d f y, gyð Þ½ �
1 + d f x, gyð Þ

o
:

ð5Þ

Example 11. Let X = ½0,+∞Þ and dðx, yÞ = ðx − yÞ2: Define
mappings f , g : X⟶ X by

f x =
x + x2
� �

8 , x ∈ 0, 1½ �
2x, x > 1

8<
: , and gx =

7 x + x2
� �

8 , x ∈ 0, 1½ �
7x
4 , x > 1

8>><
>>: :

ð6Þ

Define mappings α : gðXÞ × gðXÞ⟶ ½0,+∞Þ by

α x, yð Þ =
s2, x, y ∈ 0, 74

� �

0, otherwise

8><
>: , ð7Þ

andψ, φ : ½0,+∞Þ⟶ ½0,+∞ÞwithψðtÞ = t/2, φðtÞ = 64t/585.
It is clear that f ðXÞ ⊂ gðXÞ. For x, y ∈ X such that α

ðgx, gyÞ ≥ s2, we can know that gx, gy ∈ ½0, 7/4� and this
implies that x, y ∈ ½0, 1�. By definitions, we obtain f x, f y

∈ ½0, 7/4� and αð f x, f yÞ ≥ s2. That is, f is a g − αs2 −
admissible mapping. For all x, y ∈ ½0, 1�, we have

 ψ α gx, gyð Þd f x, f yð Þð Þ

  = 1
2 · 4 · d f x, f yð Þ

  = 2 · 1
64 x + x2

� �� y + y2
� �� �2

  ≤
1
32max x + x2

� �2, y + y2
� �2n o

,

 ψ N x, yð Þð Þ

  ≥ ψ max d f x, gxð Þ, d f y, gyð Þf gð Þ

  = 9
32max x + x2

� �2
y + y2
� �2n o

,

 φ M x, yð Þð Þ

  = φ max x + x2
� �

8 � 7 y + y2
� �

8

� �2
, 7 x + x2

� �
8 � 7 y + y2

� �
8

� �2( 
,

 
x + x2
� �

8 � 7 x + x2
� �

8

� �2
, y + y2
� �

8 � 7 y + y2
� �

8

� �2
,

 
x + x2
� �

/8� 7 x + x2
� �

/8
� �2 1 + 7 x + x2

� �
/8� 7 y + y2

� �
/8

� �2h i
1 + x + x2ð Þ/8� 7 y + y2ð Þ/8ð Þ2

,

 
x + x2
� �

/8� 7 x + x2
� �

/8
� �2 1 + x + x2

� �
/8� 7 x + x2

� �
/8

� �2h i
1 + x + x2ð Þ/8� 7 y + y2ð Þ/8ð Þ2

,

 
x + x2
� �

/8� 7 x + x2
� �

/8
� �2 1 + y + y2

� �
/8� 7 y + y2

� �
/8

� �2h i
1 + x + x2ð Þ/8� 7 y + y2ð Þ/8ð Þ2

9=
;
1
A

  ≤ φ max 49
64max x + x2

� �2, y + y2
� �2n o

,
��

 
49
64max x + x2

� �2, y + y2
� �2n o

, 9
16 x + x2
� �2, 9

16 y + y2
� �2,

 
9
16 x + x2
� �2 1 + 49

64max x + x2
� �2, y + y2

� �2n o� �
,

 
9
16 x + x2
� �2 1 + 9

16 x + x2
� �2� �

,  9
16 x + x2
� �2 1 + 9

16 y + y2
� �2� �	�

Ψ = ψ : 0,+∞½ Þ⟶ 0,+∞½ Þis an increasing and continuous functionf g,
Φ = φ : 0,+∞½ Þ⟶ 0,+∞½ Þis an increasing and continuous function andφ tð Þ = 0 iff t = 0f g:

ð3Þ
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  ≤
64
585 · 9

16

  · 6516max x + x2
� �2, y + y2

� �2n o

  = 1
4max x + x2

� �2, y + y2
� �2n o

: ð8Þ

According to the above inequalities, we get that

ψ α gx, gyð Þd f x, f yð Þð Þ ≤ 1
32 max x + x2

� �2, y + y2
� �2n o

= 9
32 max x + x2

� �2, y + y2
� �2n o

−
1
4 max x + x2

� �2, y + y2
� �2n o

≤ ψ N x, yð Þð Þ − φ M x, yð Þð Þ:

ð9Þ

It follows that f is a generalized ðg − αsp , ψ, φÞ con-
tractive mapping.

Theorem 12. Let ðX, dÞ be a complete b −metric space with
parameter s ≥ 1 and let f , g : X⟶ X be given self-
mappings on X such that f ðXÞ ⊂ gðXÞ. Also, gðXÞ is a closed
subset of X, and α : X × X⟶ ½0,+∞Þ is a given mapping. If
the following conditions are satisfied:

(i) f is a g − αsp − admissible mapping

(ii) f is a generalized ðg − αsp , ψ, φÞ contractive mapping

(iii) there is x0 ∈ X with αðgx0, f x0Þ ≥ sp

(iv) properties ðHspÞ and ðUspÞ are satisfied
(v) α has a transitive property type sp, that is, for x, y, z

∈ X

α x, yð Þ ≥ sp and α y, zð Þ ≥ sp ⇒ α x, zð Þ ≥ sp: ð10Þ

Then, f and g have a unique point of coincidence in X.
Moreover, f and g have a unique common fixed point pro-
vided that f and g are weakly compatible.

Proof. According to condition (3), there exists an x0 ∈ X such
that αðgx0, f x0Þ ≥ sp. Define the sequences fxng and fyng in
X by yn = f xn = gxn+1 for all n ∈N . If yn = yn+1 for some n
∈N , then we have yn = yn+1 = f xn+1 = gxn+1 and it is easy to
see that f and g have a point of coincidence. Without loss
of generality, assume that yn ≠ yn+1 for all n ∈N . By the con-
dition (1), we get

α gx0, gx1ð Þ = α gx0, f x0ð Þ ≥ sp,
α gx1, gx2ð Þ = α f x0, f x1ð Þ ≥ sp,
α gx2, gx3ð Þ = α f x1, f x2ð Þ ≥ sp:

ð11Þ

Therefore, by induction, we obtain αðgxn, gxn+1Þ = α
ðyn−1, ynÞ ≥ sp for all n ∈N . It follows from (4) that

ψ d yn, yn+1ð Þð Þ ≤ ψ spd yn, yn+1ð Þð Þ
≤ ψ α gxn, gxn+1ð Þd f xn, f xn+1ð Þð Þ
≤ ψ N xn, xn+1ð Þð Þ − φ M xn, xn+1ð Þð Þ,

ð12Þ

where

N xn, xn+1ð Þ =max d yn−1, ynð Þ, d yn, yn−1ð Þ, d yn+1, ynð Þ,
�

� d yn−1, yn+1ð Þ + d yn, ynð Þ
4s , d yn−1, ynð Þd yn+1, ynð Þ

1 + d yn, yn+1ð Þ ,

� d yn+1, ynð Þ 1 + d yn, yn−1ð Þ½ �
1 + d yn−1, ynð Þ

	

≤max d yn−1, ynð Þ, d yn, yn+1ð Þ,
�

� s d yn−1, ynð Þ + d yn, yn+1ð Þ½ �
4s

)

=max d yn−1, ynð Þ, d yn, yn+1ð Þ
	
,

�
ð13Þ

M xn, xn+1ð Þ =max d yn, ynð Þ, d yn−1, ynð Þ, d yn, yn−1ð Þ, d yn+1, ynð Þ,
�

� d yn, yn−1ð Þ 1 + d yn−1, ynð Þ½ �
1 + d yn, ynð Þ , d yn, yn−1ð Þ 1 + d yn, yn−1ð Þ½ �

1 + d yn, ynð Þ ,

� d yn, yn−1ð Þ 1 + d yn+1, ynð Þ½ �
1 + d yn, ynð Þ

	
:

ð14Þ
If we assume that, for some n ∈N,

d yn, yn+1ð Þ ≥ d yn, yn−1ð Þ > 0, ð15Þ

then from inequalities (13) and (14), we have

N xn, xn+1ð Þ ≤ d yn, yn+1ð Þ, ð16Þ

M xn, xn+1ð Þ ≥max d yn, yn+1ð Þ, d yn, yn−1ð Þf g = d yn, yn+1ð Þ:
ð17Þ

Using (12), (16), and (17), one can obtain that

ψ d yn, yn+1ð Þð Þ ≤ ψ N xn, xn+1ð Þð Þ − φ M xn, xn+1ð Þð Þ
≤ ψ d yn, yn+1ð Þð Þ − φ d yn, yn+1ð Þð Þ, ð18Þ

which gives φðdðyn, yn+1ÞÞ ≤ 0 and then yn = yn+1, a contradic-
tion. It follows that dðyn, yn+1Þ < dðyn, yn−1Þ, that is, fdðyn,
yn+1Þg is a nonincreasing sequence and so there exists r ≥ 0
such that

lim
n⟶+∞

d yn, yn+1ð Þ = r: ð19Þ
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By virtue of (13) and (14) again, we have

N xn, xn+1ð Þ ≤ d yn, yn−1ð Þ,
M xn, xn+1ð Þ ≥ d yn, yn−1ð Þ:

ð20Þ

It follows that

ψ d yn, yn+1ð Þð Þ ≤ ψ N xn, xn+1ð Þð Þ − φ M xn, xn+1ð Þð Þ
≤ ψ d yn, yn−1ð Þð Þ − φ d yn, yn−1ð Þð Þ: ð21Þ

Now suppose that r > 0, then taking the limit as n⟶ +∞
in above inequality, we have ψðrÞ ≤ ψðsprÞ ≤ ψðrÞ − φðrÞ,
which gives a contradiction. Hence,

lim
n⟶+∞

d yn, yn+1ð Þ = 0: ð22Þ

Next, we aim to prove that fyng is a Cauchy sequence. Sup-
pose on the contrary that, limn,m⟶+∞dðyn, ymÞ ≠ 0, then there
exists ε > 0 for which one can find sequences fymk

g and fynkg of
fyng satisfying nk is the smallest index for which nk >mk > k,

ε ≤ d ymk
, ynk


 �
, ð23Þ

d ymk
, ynk−1


 �
< ε: ð24Þ

In view of the triangle inequality, we have

ε ≤ d ymk
, ynk


 �
≤ sd ymk

, ynk−1

 �

+ sd ynk−1, ynk

 �

< sε + sd ynk , ynk−1

 �

:
ð25Þ

Taking the upper limit as k⟶ +∞ in the above inequality
and using (22), we have

ε ≤ limsup
k⟶+∞

d ymk
, ynk


 �
≤ sε: ð26Þ

Also,

d ymk
, ynk


 �
≤ sd ymk

, ynk−1

 �

+ sd ynk−1, ynk

 �

, ð27Þ

d ymk
, ynk


 �
≤ sd ymk

, ymk−1


 �
+ sd ymk−1, ynk


 �
, ð28Þ

d ymk−1, ynk

 �

≤ sd ymk−1, ymk


 �
+ sd ymk

, ynk

 �

: ð29Þ

From (24) and (27), we obtain

ε

s
≤ limsup

k⟶+∞
d ymk

, ynk−1

 �

≤ ε: ð30Þ

Using (28) and (29), we have

ε

s
≤ limsup

k⟶+∞
d ymk−1, ynk

 �

≤ s2ε: ð31Þ

Similarly,

d ymk−1, ynk−1

 �

≤ sd ymk−1, ymk


 �
+ sd ymk

, ynk−1

 �

,

d ymk
, ynk


 �
≤ sd ymk

, ymk−1


 �
+ s2d ymk−1, ynk−1


 �
+ s2d ynk−1, ynk


 �
,

ð32Þ

so there is

ε

s2
≤ limsup

k⟶+∞
d ymk−1, ynk−1

 �

≤ sε: ð33Þ

In view of the definition of Nðx, yÞ, one can deduce that

N xmk
, xnk

� �
=max d ymk−1, ynk−1


 �
, d ymk

, ymk−1


 �
, d ynk , ynk−1

 �

,
(

�
d ymk−1, ynk

 �

+ d ymk
, ynk−1


 �
4s ,

�
d ymk−1, ymk


 �
d ynk , ynk−1

 �

1 + d ymk
, ynk


 � ,

�
d ynk , ynk−1

 �

1 + d ymk
, ymk−1


 �h i
1 + d ymk−1, ynk−1


 �
)
,

ð34Þ

which yields that

limsup
k⟶+∞

N xmk
, xnk

� �
≤max εs, 0, 0, εs

2 + ε

4s , 0, 0
� 	

= εs: ð35Þ

Similarly, we obtain

M xmk
, xnk

� �
=max d ymk

, ynk−1

 �

, d ymk−1, ynk−1

 �

, d ymk
, ymk−1


 �
, d ynk , ynk−1

 �

,
d ymk

, ymk−1


 �
1 + d ymk−1, ynk−1


 �h i
1 + d ymk

, ynk−1

 � ,

8<
:

�
d ymk

, ymk−1


 �
1 + d ymk

, ymk−1


 �h i
1 + d ymk

, ynk−1

 � ,

d ymk
, ymk−1


 �
1 + d ynk , ynk−1


 �h i
1 + d ymk

, ynk−1

 �

)
:

ð36Þ
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So there is

liminf
k⟶+∞

M xmk
, xnk

� �
≥max ε

s
, ε
s2
, 0, 0, 0, 0, 0

n o
≥

ε

s2
,

liminf
k⟶+∞

M xmk
, xnk

� �
≤max ε, sε, 0, 0, 0, 0, 0f g = sε,

ð37Þ

that is,

ε

s2
≤ liminf

k⟶+∞
M xmk

, xnk
� �

≤ sε: ð38Þ

Using the transitive property type sp of α, we get

α xmk
, xnk

� �
≥ sp: ð39Þ

Applying (4) with x = xnk and y = xmk
,we get

ψ d ymk
, ynk


 �
 �
≤ ψ spd f xmk

, f xnk
� �� �

≤ ψ α gxmk
, gxnk

� �
d f xmk

, f xnk
� �� �

≤ ψ N xmk
, xnk

� �� �
− φ M xmk

, xnk
� �� �

:

ð40Þ

By (35) and (38), we have

ψ sεð Þ ≤ ψ spεð Þ ≤ ψ splimsup
k⟶+∞

d f xmk
, f xnk

� �� �

≤ ψ limsup
k⟶+∞

N xmk
, xnk

� �� �
− φ liminf

k⟶+∞
M xmk

, xnk
� �� �

≤ ψ sεð Þ − φ liminf
k⟶+∞

M xmk
, xnk

� �� �
,

ð41Þ

which implies that

liminf
k⟶+∞

M xmk
, xnk

� �
= 0, ð42Þ

a contradiction to (38). Therefore, fyng is a Cauchy sequence
in X. The completeness of X ensures that there exists a u ∈ X
such that

lim
n⟶+∞

d yn, uð Þ = lim
n⟶+∞

d f xn, uð Þ = lim
n⟶+∞

d gxn+1, uð Þ = 0:

ð43Þ

Since gðXÞ is closed, we have u ∈ gðXÞ. It follows that one
can choose a z ∈ X such that u = gz, and we can write (43) as

lim
n⟶+∞

d yn, gzð Þ = lim
n⟶+∞

d f xn, gzð Þ = lim
n⟶+∞

d gxn+1, gzð Þ = 0:

ð44Þ

The property ðHspÞ yields that there exists a subsequence
fynkg of fyng so that αðynk−1, gzÞ ≥ sp for all k ∈N . If f z ≠ gz,

applying contractive condition (4) with x = xnk and y = z,
we have

ψ d ynk , f z

 �
 �

= ψ d f xnk , f z
� �� �

≤ ψ spd f xnk , f z
� �� �

≤ ψ α gxnk , gz
� �

d f xnk , f z
� �� �

≤ ψ N xnk , z
� �� �

− φ M xnk , z
� �� �

,

ð45Þ

where

N xnk , z
� �

=max d ynk−1, gz

 �

, d ynk , ynk−1

 �

, d f z, gzð Þ,
(

�
d ynk−1, f z

 �

+ d ynk , gz

 �

4s ,

�
d ynk , ynk−1

 �

d f z, gzð Þ
1 + d ynk , f z


 � ,

�
d f z, gzð Þ 1 + d ynk , ynk−1


 �h i
1 + d ynk−1, gz


 �
)
,

M xnk , z
� �

=max d ynk , gz

 �

, d ynk−1, gz

 �

, d ynk , ynk−1

 �

, d f z, gzð Þ,
(

�
d ynk , ynk−1

 �

1 + d ynk−1, gz

 �h i

1 + d ynk , gz

 � ,

�
d ynk , ynk−1

 �

1 + d ynk , ynk−1

 �h i

1 + d ynk , gz

 � ,

�
d ynk , ynk−1

 �

1 + d f z, gzð Þ½ �
1 + d ynk , gz


 �
)
:

ð46Þ

It is easy to show that

limsup
k⟶+∞

N xnk , z
� �

≤max 0, 0, d gz, f zð Þ, sd f z, gzð Þ
4s , 0, d gz, f zð Þ

� 	
= d gz, f zð Þ,

liminf
k⟶+∞

M xnk , z
� �

=max 0, 0, 0, d f z, gzð Þ, 0, 0, 0f g = d f z, gzð Þ:
ð47Þ

Taking the upper limit as k⟶ +∞ in (45), we have

ψ d gz, f zð Þð Þ ≤ ψ sp−1d gz, f zð Þ� �
= ψ sp

1
s
d gz, f zð Þ

� �

≤ ψ splimsup
k⟶+∞

d f xnk , f z
� �� �

≤ ψ limsup
k⟶+∞

N xnk , z
� �� �

− φ liminf
k⟶+∞

M xnk , z
� �� �

≤ ψ d gz, f zð Þð Þ − φ d gz, f zð Þð Þ,

ð48Þ
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which implies that

d f z, gzð Þ = 0: ð49Þ

That is, f z = gz. Therefore, u = f z = gz is a point of
coincidence for f and g. By using contractive condition
(4) and the property ðUspÞ, one can conclude that the
point of coincidence is unique. Assume on the contrary
that, there exist z, z′ ∈ Cð f , gÞ and z ≠ z′. According to
the property of ðUspÞ, without loss of generality, we
assume that

α gz, gz′

 �

≥ sp: ð50Þ

Applying (4) with x = z and y = z′, we obtain that

d f z, f z′

 �

= 0, ð51Þ

that is, f z = f z′. By the weak compatibility of f and g, it is
easy to show that z is a unique common fixed point. This
completes the proof.

Remark 13. It is obvious that the mappings defined in Exam-
ple 11 satisfy the conditions of Theorem 12, so f and g have a
unique common fixed point 0:

In Theorem 12, put ψðtÞ = t, one can get the following
result.

Corollary 14. Let ðX, dÞ be a complete b −metric space with
parameter s ≥ 1 and let f , g : X⟶ X be given self-
mappings on X with f ðXÞ ⊂ gðXÞ. Also, gðXÞ is a closed subset
of X, and α : X × X⟶ ½0,+∞Þ is a given mapping. If the fol-
lowing conditions are satisfied:

(i) f is a g − αsp − admissible mapping

(ii) there is function φ ∈Φ such that

α gx, gyð Þd f x, f yð Þ ≤N x, yð Þ − φ M x, yð Þð Þ, ð52Þ

where Nðx, yÞ,Mðx, yÞ are same as Theorem 12,

(iii) there exists x0 ∈ X with αðgx0, f x0Þ ≥ sp

(iv) properties ðHspÞ and ðUspÞ are satisfied
(v) α has a transitive property type sp, that is, for x, y, z

∈ X

α x, yð Þ ≥ sp and α y, zð Þ ≥ sp ⇒ α x, zð Þ ≥ sp: ð53Þ

Then, f and g have a unique point of coincidence in X.
Moreover, f and g have a unique common fixed point pro-
vided that f and g are weakly compatible.

Theorem 15. Let ðX, dÞ be a complete b −metric space with
parameter s ≥ 1, and let f , g : X⟶ X be given self-
mappings on X with f ðXÞ ⊂ gðXÞ. Also, gðXÞ is a closed subset
of X, and α : X × X⟶ ½0,+∞Þ is a given mapping. Suppose
that the following conditions are satisfied:

(i) f is a g − αsp − admissible mapping

(ii) there are functions ψ ∈Ψ and φ ∈Φ such that for all
x, y ∈ X

ψ α gx, gyð Þd f x, f yð Þð Þ ≤ ψ L x, yð Þð Þ − φ M x, yð Þð Þ, ð54Þ

where Mðx, yÞ is same as Theorem 12 and

L x, yð Þ =max d f x, gyð Þ, d f x, gxð Þ, d f y, gyð Þ,
n

� d gx, gyð Þ + d f x, gyð Þ
2s

o
:

ð55Þ

(iii) there exists x0 ∈ X with αðgx0, f x0Þ ≥ sp

(iv) properties ðHspÞ and ðUspÞ are satisfied
(v) α has a transitive property type sp, that is, for x, y, z

∈ X

α x, yð Þ ≥ sp and α y, zð Þ ≥ sp ⇒ α x, zð Þ ≥ sp, ð56Þ

then f and g have a unique point of coincidence in X.
Moreover, f and g have a unique common fixed point pro-
vided that f and g are weakly compatible.

Proof. It is the same as the proof of Theorem 12, we also
define the sequences fxng and fyng in X by yn = f xn = g
xn+1 for n ∈N and suppose that yn ≠ yn+1 for each n ∈N , so
one can get that

α yn−1, ynð Þ = α gxn, gxn+1ð Þ ≥ sp: ð57Þ

It follows from (54) that

ψ d yn, yn+1ð Þð Þ ≤ ψ spd yn, yn+1ð Þð Þ
≤ ψ α gxn, gxn+1ð Þd f xn, f xn+1ð Þð Þ
≤ ψ L xn, xn+1ð Þð Þ − φ M xn, xn+1ð Þð Þ,

ð58Þ

where

L xn, xn+1ð Þ =max d yn, ynð Þ, d yn, yn−1ð Þ, d yn+1, ynð Þ,
n

� d yn−1, ynð Þ + d yn, ynð Þ
2s

o
≤max d yn+1, ynð Þ, d yn, yn−1ð Þ

o
,

n
ð59Þ
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M xn, xn+1ð Þ =max d yn, ynð Þ, d yn−1, ynð Þ, d yn, yn−1ð Þ, d yn+1, ynð Þ,
�

� d yn, yn−1ð Þ 1 + d yn−1, ynð Þ½ �
1 + d yn, ynð Þ ,

� d yn, yn−1ð Þ 1 + d yn, yn−1ð Þ½ �
1 + d yn, ynð Þ ,

� d yn, yn−1ð Þ 1 + d yn+1, ynð Þ½ �
1 + d yn, ynð Þ

	
:

ð60Þ
If we assume that, for some n ∈N

d yn, yn+1ð Þ ≥ d yn−1, ynð Þ > 0, ð61Þ

then according to inequalities (59) and (60), we obtain

L xn, xn+1ð Þ ≤ d yn+1, ynð Þ,
M xn, xn+1ð Þ ≥ d yn+1, ynð Þ:

ð62Þ

In view of (58), we get

ψ d yn, yn+1ð Þð Þ ≤ ψ L xn, xn+1ð Þð Þ − φ M xn, xn+1ð Þð Þ
≤ ψ d yn, yn+1ð Þð Þ − φ d yn, yn+1ð Þð Þ, ð63Þ

which implies that dðyn, yn+1Þ = 0, a contradiction to d
ðyn, yn+1Þ > 0. It follows that dðyn, yn+1Þ < dðyn, yn−1Þ.
Hence, fdðyn, yn+1Þg is a nonincreasing sequence. Con-
sequently, the limit of the sequence is a nonnegative
number, say r ≥ 0. That is, limn⟶+∞dðyn, yn+1Þ = r.

By (59) and (60), we have

L xn, xn+1ð Þ ≤ d yn, yn−1ð Þ,
M xn, xn+1ð Þ ≥ d yn, yn−1ð Þ:

ð64Þ

So,

ψ d yn, yn+1ð Þð Þ ≤ ψ L xn, xn+1ð Þð Þ − φ M xn, xn+1ð Þð Þ
≤ ψ d yn, yn−1ð Þð Þ − φ d yn, yn−1ð Þð Þ: ð65Þ

If r > 0, then letting n⟶ +∞ in above inequality, we
obtain that ψðrÞ = ψðrÞ − φðrÞ, which implies that r = 0, i.e.,

lim
n⟶+∞

d yn, yn+1ð Þ = 0: ð66Þ

Now, we prove that fyng is a Cauchy sequence. If not, as
the proof of Theorem 12, there exists ε > 0 for which one can
find sequences fymk

g and fynkg of fyng so that nk is the smal-
lest index for which nk >mk > k, and the following inequal-
ities hold:

ε ≤ limsup
k⟶+∞

d ymk
, ynk


 �
≤ sε, ð67Þ

ε

s
≤ limsup

k⟶+∞
d ymk

, ynk−1

 �

≤ ε, ð68Þ

ε

s
≤ limsup

k⟶+∞
d ymk−1, ynk

 �

≤ s2ε, ð69Þ

ε

s2
≤ limsup

k⟶+∞
d ymk−1, ynk−1

 �

≤ sε: ð70Þ

In view of the definitions of Lðx, yÞ andMðx, yÞ, we have

L xmk
, xnk

� �
=max d ymk

, ynk−1

 �

, d ymk−1, ymk


 �
, d ynk , ynk−1

 �

,
d ymk−1, ynk−1

 �

+ d ymk
, ynk−1


 �
2s

8<
:

9=
;:

M xmk
, xnk

� �
=max d ymk

, ynk−1

 �

, d ymk−1, ynk−1

 �

, d ymk−1, ymk


 �
, d ynk , ynk−1

 �

,
(

�
d ymk

, ymk−1


 �
1 + d ymk−1, ynk−1


 �h i
1 + d ymk

, ynk−1

 � ,

d ymk
, ymk−1


 �
1 + d ymk

, ymk−1


 �h i
1 + d ymk

, ynk−1

 � ,

�
d ymk

, ymk−1


 �
1 + d ynk , ynk−1


 �h i
1 + d ymk

, ynk−1

 �

)
:

ð71Þ
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Letting k⟶ +∞ and using (67)–(70), one can obtain

limsup
k⟶+∞

L xmk
, xnk

� �
≤max ε, 0, 0, sε + s

2s
n o

= ε: ð72Þ

Similarly, we get that

liminf
k⟶+∞

M xmk
, xnk

� �
≤max ε, sε, 0, 0, 0, 0, 0f g = sε,

liminf
k⟶+∞

M xmk
, xnk

� �
≥max ε

s
, ε
s2
, 0, 0, 0, 0, 0

n o
= ε

s2
:

ð73Þ

That is,

ε

s2
≤ liminf

k⟶+∞
M xmk

, xnk
� �

≤ sε: ð74Þ

Using the transitive property type sp of α, we have

α xmk
, xnk

� �
≥ sp: ð75Þ

Taking x = xnk and y = xmk
in (54), one can deduce that

ψ d ymk
, ynk


 �
 �
≤ ψ spd f xmk

, f xnk
� �� �

≤ ψ α gxmk
, gxnk

� �
d f xmk

, f xnk
� �� �

≤ ψ L xmk
, xnk

� �� �
− φ M xmk

, xnk
� �� �

:

ð76Þ

Therefore,

ψ εð Þ ≤ ψ spεð Þ ≤ ψ splimsup
k⟶+∞

d f xmk
, f xnk

� �� �

≤ ψ limsup
k⟶+∞

L xmk
, xnk

� �� �
− φ liminf

k⟶+∞
M xmk

, xnk
� �� �

≤ ψ εð Þ − φ liminf
k⟶+∞

M xmk
, xnk

� �� �
:

ð77Þ

It follows that liminf k⟶+∞Mðxmk
, xnkÞ = 0, and which

gives a contradiction to (74). Hence,

lim
n,m⟶+∞

d yn, ymð Þ = 0: ð78Þ

From the completeness of X and the closure of gðXÞ,
there exists u ∈ X such that

lim
n⟶+∞

d yn, uð Þ = lim
n⟶+∞

d f xn, uð Þ = lim
n⟶+∞

d gxn+1, uð Þ = 0:

ð79Þ

It follows that one can choose a z ∈ X such that u = gz,
and write the above equality as

lim
n⟶+∞

d yn, gzð Þ = lim
n⟶+∞

d f xn, gzð Þ = lim
n⟶+∞

d gxn+1, gzð Þ = 0:

ð80Þ

In view of the property ðHspÞ, one can get a subsequence
fynkg of fyng with αðynk−1, gzÞ ≥ sp for all k ∈N . If f z ≠ gz,
taking x = xnk and y = z in contractive condition (54),
we have

ψ d ynk , f z

 �
 �

= ψ d f xnk , f z
� �� �

≤ ψ spd f xnk , f z
� �� �

≤ ψ α gxnk , gz
� �

d f xnk , f z
� �� �

≤ ψ L xnk , z
� �� �

− φ M xnk , z
� �� �

,

ð81Þ

where

L xnk , z
� �

=max d ynk , gz

 �

, d ynk , ynk−1

 �

, d f z, gzð Þ,
d ynk−1, gz

 �

+ d ynk , gz

 �

2s

8<
:

9=
;:

M xnk , z
� �

=max d ynk , gz

 �

, d ynk−1, gz

 �

, d ynk , ynk−1

 �

, d f z, gzð Þ,
d ynk , ynk−1

 �

1 + d ynk−1, gz

 �h i

1 + d ynk , gz

 � ,

8<
:

�
d ynk , ynk−1

 �

1 + d ynk , ynk−1

 �h i

1 + d ynk , gz

 � ,

d ynk , ynk−1

 �

1 + d f z, gzð Þ½ �
1 + d ynk , gz


 �
)
:

ð82Þ
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Consequently,

limsup
k⟶+∞

L xnk , z
� �

≤max 0, 0, d f z, gzð Þ, 0f g = d f z, gzð Þ:

liminf
k⟶+∞

M xnk , z
� �

= d f z, gzð Þ:
ð83Þ

Taking the upper limit as k⟶ +∞ in (81), we get

ψ d gz, f zð Þð Þ ≤ ψ sp−1d gz, f zð Þ� �
= ψ sp

1
s
d gz, f zð Þ

� �

≤ ψ splimsup
k⟶+∞

d f xnk , f z
� �� �

≤ ψ limsup
k⟶+∞

L xnk , z
� �� �

− φ liminf
k⟶+∞

M xnk , z
� �� �

≤ ψ d gz, f zð Þð Þ

− φ d gz, f zð Þð Þ:
ð84Þ

It follows that dð f z, gzÞ = 0. That is, u = f z = gz is a point
of coincidence for f and g. Using the same technique in the
proof of Theorem 12, one can complete the proof.

Example 16. Let X = ½0,+∞Þ and dðx, yÞ = ðx − yÞ2. Define
mappings f , g : X ⟶ X by

f x =

x
64 , x ∈ 0, 1½ �

ex − e + 1
2 , x > 1

8><
>: , and gx =

x
2 , x ∈ 0, 1½ �

e2x − e2 + 1
2 , x > 1

8><
>: :

ð85Þ

Define mappings α : gðXÞ × gðXÞ⟶ ½0,+∞Þ by

α x, yð Þ =
s2, x, y ∈ 0, 12

� �

0, otherwise

8><
>: , ð86Þ

and ψ, φ : ½0,+∞Þ⟶ ½0,+∞Þ with ψðtÞ = t, φðtÞ = 3828t/
4805.

It is clear that f ðXÞ ⊂ gðXÞ and gðXÞ is closed. For x, y
∈ X such that αðgx, gyÞ ≥ s2, we can know that gx, gy ∈ ½0,
1/2� and which implies that x, y ∈ ½0, 1�. It follows that f x, f
y ∈ ½0, 1/2� and αð f x, f yÞ ≥ s2, that is, f is a g − αsp − admis-
sible mapping.

For x, y ∈ ½0, 1�, we have

Obviously, we conclude

ψ α gx, gyð Þd f x, f yð Þð Þ = 4 · x
64 −

y
64


 �2
≤

4
642 max x2, y2

� 
,

ψ L x, yð Þð Þ ≥ ψ max d f x, gxð Þ, d f y, gyð Þf gð Þ = 31
64

� �2
max x2, y2

� 
,

φ M x, yð Þð Þ = φ max x
64 −

y
2


 �2
, x

2 −
y
2


 �2
, x

64 −
x
2


 �2
, y

64 −
y
2


 �2
, x/64 − x/2ð Þ2 1 + x/2 − y/2ð Þ2� �

1 + x/64 − y/2ð Þ2 ,
( 

� x/64 − x/2ð Þ2 1 + x/2 − x/64ð Þ2� �
1 + x/64 − y/2ð Þ2 , x/64 − x/2ð Þ2 1 + y/2 − y/64ð Þ2� �

1 + x/64 − y/2ð Þ2
)

≤ φ max 1
4 max x2, y2

� 
, 14 max x2, y2

� 
, 31

64

� �2
max x2, y2

� 
, 31

64

� �2
max x2, y2

� 
,

( 

� 31
64

� �2
max x2, y2

� 
· 54 ,

31
64

� �2
max x2, y2

� 
· 50574096 ,

31
64

� �2
max x2, y2

� 
· 50574096

)!

= 3828
4805 · 31

64

� �2
max x2, y2

� 
· 54 : ð87Þ

ψ α gx, gyð Þd f x, f yð Þð Þ ≤ 4
642 max x2, y2

� 
= 31

64

� �2
max x2, y2

� 
−
3828
4805 · 31

64

� �2
max x2, y2

� 
· 54

≤ ψ L x, yð Þð Þ − φ M x, yð Þð Þ:
ð88Þ
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It follows that all conditions of Theorem 15 are satis-
fied. It is obvious that 0 is the unique common fixed point
of f and g.

Remark 17. Taking S = T = Ix in Theorem 2.1 of [12], Roshan
et al. give that the existence of common fixed point for map-
pings f , g such that

d f x, gyð Þ ≤ q
s4

max d x, yð Þ, d f x, xð Þ, d gy, yð Þ, 12 d x, f yð Þ + d f x, yð Þð Þ
� 	

,

ð89Þ

where q ∈ ð0, 1Þ is a constant. Suppose all hypotheses in
Example 16 are true. For x = 0, y ∈ ð0, 1/2Þ, it is easy to calcu-
late that

d f x, gyð Þ = y2

4 > y2

16 ≥
q
16 max y2, 0, y

2

4 , y2

2 · 642 + y2

2

� 	

= q
s4

max d x, yð Þ, d f x, xð Þ, d gy, yð Þ, 12 d x, f yð Þ + d f x, yð Þð Þ
� 	

,

ð90Þ

which implies that Theorem 2.1 of [12] cannot be applied to
testify the existence of common fixed points of the mappings
f and g in X.

If ψðtÞ = t and φðtÞ = t in Theorem 15, we get the follow-
ing result immediately:

Corollary 18. Let ðX, dÞ be a complete b −metric space with
parameter s ≥ 1 and let f , g : X⟶ X be given self-
mappings on X such that f ðXÞ ⊂ gðXÞ. Also, gðXÞ is a closed
subset of X, and α : X × X⟶ ½0,+∞Þ is a given mapping. If
the following conditions are satisfied:

(i) f is a g − αsp − admissible mapping,

(ii) for x, y ∈ X

α gx, gyð Þd f x, f yð Þ ≤ L x, yð Þ −M x, yð Þ, ð91Þ

where Lðx, yÞ,Mðx, yÞ are same as Theorem 15,

(iii) there exists x0 ∈ X with αðgx0, f x0Þ ≥ sp

(iv) properties ðHspÞ and ðUspÞ are satisfied
(v) α has a transitive property type sp, that is, for x, y, z

∈ X

α x, yð Þ ≥ sp and α y, zð Þ ≥ sp ⇒ α x, zð Þ ≥ sp: ð92Þ

Then, f and g have a unique point of coincidence in X.
Moreover, if f and g are weakly compatible, then f and g have
a unique common fixed point.

Let g = I, ψðtÞ = t, and φðtÞ = Lt (L > 0 is a constant), we
obtain that

Theorem 19. Let ðX, dÞ be a complete b −metric space with
parameter s ≥ 1 and f : X⟶ X be a given self-mapping on
X. Let α : X × X ⟶ ½0,+∞Þ be a given mapping. If the follow-
ing conditions are satisfied:

(i) f is a αsp − admissible mapping

(ii) for x, y ∈ X

α x, yð Þd f x, f yð Þ ≤ 1 − Lð ÞK∗ x, yð Þ, ð93Þ

where

K∗ x, yð Þ =max d x, yð Þ, d f x, xð Þ, d f y, yð Þ, d f x, yð Þf g, L ∈ 0, 1ð Þ,
ð94Þ

(iii) there exists x0 ∈ X with αðx0, f x0Þ ≥ sp

(iv) properties ðHspÞ and ðUspÞ are satisfied when g = I

(v) α has a transitive property type sp, that is, for x, y, z
∈ X

α x, yð Þ ≥ sp and α y, zð Þ ≥ sp ⇒ α x, zð Þ ≥ sp: ð95Þ

Then, f has a unique fixed point.

Proof. The proof of Theorem 19 is similar to that of Theorem
15, we omit it.

Remark 20. Since a b −metric space is a metric space when
s = 1, so our results can be viewed as the generalization and
the extension of comparable results.

4. Application

In this section, we will use Theorem 19 to show that there is a
solution to the integral equation:

x tð Þ =
ðT
0
G t, r, x rð Þð Þdr: ð96Þ

Let X = Cð½0, T�Þ be the set of real continuous functions
defined on ½0, T�. The standard metric given by

ρ x, yð Þ = sup
t∈ 0,T½ �

∣x tð Þ − y tð Þ∣for all x, y ∈ X: ð97Þ

Now for p ≥ 1, we define

d x, yð Þ = ρ x, yð Þð Þp = sup
t∈ 0,T½ �

x tð Þ − y tð Þj jp for all x, y ∈ X:

ð98Þ

It is obvious that ðX, dÞ is a complete b −metric space
with s = 2p−1.
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Consider the mapping f : X⟶ X defined by

f x tð Þ =
ðT
0
G t, r, x rð Þð Þdr, ð99Þ

and let ξ : R × R⟶ R be a given function.

Theorem 21. Consider equation (96) and suppose that

(i) G : ½0, T� × ½0, T� × R⟶ R+ is continuous

(ii) there exists x0 ∈ X such that ξðx0ðtÞ, f x0ðtÞÞ ≥ 0 for
all t ∈ ½0, T�

(iii) for all t ∈ ½0, T� and x, y ∈ X, ξðxðtÞ, yðtÞÞ ≥ 0 implies
ξð f xðtÞ, f yðtÞÞ ≥ 0

(iv) properties ðHspÞ and ðUspÞ are satisfied when g = I

(v) there exists a continuous function γ : ½0, T� × ½0, T�
⟶ R+ such that

sup
t∈ 0,T½ �

ðT
0
γ t, rð Þdr ≤ 1, ð100Þ

(vi) there exists a constant L ∈ ð0, 1Þ such that for ðt, rÞ
∈ ½0, T� × ½0, T�

G t, r, x rð Þð Þ − G t, r, y rð Þð Þj j ≤
ffiffiffiffiffiffiffiffiffiffi
1 − L
sp

p

r
γ t, rð Þ x rð Þ − y rð Þj j:

ð101Þ

Then, the integral equation (96) has a unique solution x
∈ X:

Proof. Define α : X × X ⟶ ½0,+∞Þ by

α x, yð Þ =
sp, if ξ x tð Þ, y tð Þð Þ ≥ 0
0, otherwise:

(
ð102Þ

It is easy to prove that f is αsp-admissible. For x, y ∈ X, by
virtue of assumptions (1)–(6), we have

spd f x tð Þ, f y tð Þð Þ = sp sup
t∈ 0,T½ �

f x tð Þ − f y tð Þj jp

= sp sup
t∈ 0,T½ �

ðT
0
G t, r, x rð Þð Þdr −

ðT
0
G t, r, y rð Þð Þdr

����
����
p

≤ sp sup
t∈ 0,T½ �

ðT
0
G t, r, x rð Þð Þ −G t, r, y rð Þð Þj jdr

� �p

≤ sp sup
t∈ 0,T½ �

ðT
0

ffiffiffiffiffiffiffiffiffiffi
1 − L
sp

p

r
γ t, rð Þ x rð Þ − y rð Þj jdr

 !p

≤ sp sup
t∈ 0,T½ �

ðT
0

ffiffiffiffiffiffiffiffiffiffi
1 − L
sp

p

r
γ t, rð Þdr

 !p

sup
t∈ 0,T½ �

x tð Þ − y tð Þj jp

≤ 1 − Lð ÞK∗ x tð Þ, y tð Þð Þ,
ð103Þ

which implies that

α x tð Þ, y tð Þð Þd f x tð Þ, f y tð Þð Þ ≤ 1 − Lð ÞK∗ x tð Þ, y tð Þð Þ: ð104Þ

Therefore, all the conditions of Theorem 19 hold. As a
result, the mapping f has a unique fixed point x ∈ X, which
is a solution of the integral equation (96).

5. Conclusions

In this manuscript, we introduced a new class of g − αsp −
admissible mappings and obtained common fixed point the-
orems for generalized ðg − αsp , ψ, φÞ contractive mappings in
the framework of b −metric space. Further, we provided
examples that elaborated the useability of our results. As an
application of our result, we obtained a solution to an integral
equation. The obtained results will be helpful for the varia-
tional iteration method, so we are going to study this topic
in future.
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In this paper, we introduce extended b-gauge spaces and the extended family of generalized extended pseudo-b-distances.
Moreover, we define the sequential completeness and construct the Caristi-type G-contractions in the framework of extended b
-gauge spaces. Furthermore, we develop periodic and fixed point results in this new setting endowed with a graph. The obtained
results of this paper not only generalize but also unify and improve the existing results in the corresponding literature.

1. Introduction and Preliminaries

The famous Caristi fixed point theorem [1] states that a self-
mapping T on a complete metric space ðU , pÞ possesses a
fixed point w in U if

p u, Tuð Þ ≤ f uð Þ − f Tuð Þ, ð1Þ

for all u ∈U , where f : U ⟶ ½0,∞Þ is a lower semicontinu-
ous function.

Indeed, Caristi [1] observed these results when he
searched for alternative proof of the outstanding fixed point
theorem of Banach. It is known also Caristi-Kirk fixed point
theorem [2]. In fact, Caristi’s theorem is equivalent to metric
completeness [3]. For some other contributions to this topic,
we refer to [4–10].

In view of extending the concept of Banach contraction,
Banach G-contraction was introduced by Jachymaski [11]
in complete metric space accompanied with the graph G
where the set of vertex matches with the metric space (see
also [12–22]).

The notion of metric space has been refined and extended
in several distinct directions, by many authors [23–25].
Among all, the notion of gauge space was initiated by
Dugundji [26] as a generalization of a metric space. In
1973, Reilly [27] studied quasi-gauge spaces and proved that

it generalizes topological spaces, quasi uniform spaces, and
quasi metric spaces. This notion was extended as b-gauge
spaces by Ali et al. [28] in 2015. For further facts on gauge
spaces, we recommend the reader to [29–36].

In 2013, Wlodarczyk and Plebaniak [37] have given the
notion of left (right) J -families of generalized pseudo dis-
tances in quasi-gauge spaces that generalizes the abovemen-
tioned distances and provides powerful and useful tools for
finding solutions to various problems of nonlinear analysis.

This paper is aimed at introducing extended b-gauge
spaces ðU ,Qφ;ΩÞ and the extended J φ;Ω-family of general-
ized extended pseudo-b-distances generated by ðU ,Qφ;ΩÞ.
Moreover, by using extended J φ;Ω-family, we define the
extended J φ;Ω-sequential completeness and construct the

Caristi-type G-contractions T : U ⟶ ClJ φ;ΩðUÞ. Further-
more, we investigate periodic and fixed point results for these
mappings in the new setting endowed with a graph, which
generalizes and improves the existing results in the literature
of fixed point theory.

In what follows, we recollect some essential concepts and
basic results which shall be used in the sequel. For a non-
empty set U , we use the notation 2U to denote the set of all
nonempty subsets of the space U . If T : U ⟶ 2U is a multi-
valued map, then the sets of all fixed points are denoted by
Fix ðTÞ, that is, Fix ðTÞ = fu ∈U : u ∈ TðuÞg. In addition,
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the set of all periodic points of T is denoted by Per ðTÞ, that
is, Per ðTÞ = fu ∈U : u ∈ T ½k�ðuÞforsome k inNg, where T ½k�

=T ∘ T ∘ T ∘ ⋯:: ∘ T (k-times). A dynamic process of the sys-
tem ðU , TÞ starting at w0 ∈U is a sequence fwm : m ∈ f0g
∪Ng defined by ∀m∈Nfwm ∈ Tðwm−1Þg.

One of the most interesting extension of a metric is the
notion of b-metric [38, 39].

Definition 1. Let U be a nonempty set and s ≥ 1. A map q
: U ×U ⟶ ½0,∞Þ is b-metric, if it satisfies the following
properties:

(a) qðe, f Þ = 0⇔ e = f

(b) qðe, f Þ = qð f , eÞ
(c) qðe, gÞ ≤ sfqðe, f Þ + qð f , gÞg
for all e, f , g ∈U . Here, the pair ðU , q, sÞ is called b-metric

space.

Indeed, b-metric is one of the most interesting and orig-
inal generalizations of the notion metric. As it is seen obvi-
ously, in the case of s = 1, the notions b-metric and
standard metric coincide. On the other hand, despite the
standard metric, b-metric is not continuous despite metric.
Further, an open (closed) ball is not an open (closed) set.
For more details on b-metric and interesting examples, we
refer to, e.g., [40–49].

In 2017, Kamran et al. [50] refined the notion of b-metric
under the name “extended b-metric.”

Definition 2. Suppose U be a nonvoid set and let φ : U ×U
⟶ ½1,∞Þ. A map q : U ×U ⟶ ½0,∞Þ is said to be an
extended b -metric, if it satisfies the following properties:

(a) qðe, f Þ = 0⇔ e = f

(b) qðe, f Þ = qð f , eÞ
(c) qðe, gÞ ≤ φðe, gÞfqðe, f Þ + qð f , gÞg, for all e, f , g ∈U

For given extended b-metric q onU , a pair ðU , qÞ is called
extended b-metric space.

Definition 3. Let U be a nonvoid set. The map q : U ×U
⟶ ½0,∞Þ is called to be pseudo metric, if it satisfies the fol-
lowing properties:

(a) qðe, eÞ = 0
(b) qðe, f Þ = qð f , eÞ
(c) qðe, gÞ ≤ qðe, f Þ + qð f , gÞ, for all e, f , g ∈U

The pair ðU , qÞ is said to be pseudo metric space.

In 2015, Ali et al. [28] have defined gauge spaces in the
setting of bs-pseudo metrics called b-gauge spaces. In order
to introduce extended b-gauge spaces, we start here with
the introduction of the notion of extended pseudo-b-metric.

Definition 4. Let U be a nonempty set and φ : U ×U ⟶ ½1,
∞Þ: A map q : U ×U ⟶ ½0,∞Þ is an extended pseudo-b
-metric, if it satisfies the following properties:

(a) qðe, eÞ = 0
(b) qðe, f Þ = qð f , eÞ
(c) qðe, gÞ ≤ φðe, gÞfqðe, f Þ + qð f , gÞg, for all e, f , g ∈U

The pair ðU , qÞ is called extended pseudo-b-metric space.

Example 1. Let U = ½0, 1�. Define q : U ×U ⟶ ½0,∞Þ and φ
: U ×U ⟶ ½1,∞Þ for all e, f ∈U as follows:

q e, fð Þ = e − fð Þ2,
φ e, fð Þ = e + f + 2,

ð2Þ

for all e, f , g ∈U: Then, q is an extended pseudo-b-metric on
U . Indeed, qðe, eÞ = 0 and qðe, f Þ = qð f , eÞ. Further, qðe, gÞ
≤ φðe, gÞfqðe, f Þ + qð f , gÞg holds.

Example 2. Let U = fe, f , gg and φ : U ×U ⟶ ½1,∞Þ with
φðe, f Þ = ∣e ∣ +∣f ∣ + 2. Define q : U ×U ⟶ ½0,∞Þ as follows:

q e, eð Þ = 0,
q e, fð Þ = q f , eð Þ = 1,

q f , gð Þ = q g, fð Þ = 1
2 ,

and q e, gð Þ = q g, eð Þ = 2,

ð3Þ

for all e, f , g ∈U : Further, qðe, gÞ ≤ φðe, gÞfqðe, f Þ + qð f , gÞg
holds. In conclusion, q is an extended pseudo-b-metric on U .
Notice that 2 = qðe, gÞ > 3/2 = qðe, f Þ + qð f , gÞ; thus, q is not
a pseudo metric on U . This example shows that extended
pseudo-b-metric is more general than pseudo metric.

Definition 5. Each family Qφ;Ω = fqβ : β ∈Ωg of extended
pseudo-b-metrics qβ : U ×U ⟶ ½0,∞Þ, β ∈Ω, is called an
extended b-gauge on U .

Definition 6. Let the family Qφ;Ω = fqβ : β ∈Ωg be an
extended b-gauge on U . The topology T ðQφ;ΩÞ whose sub-
base is defined by the family BðQφ;ΩÞ = fBðe, εβÞ: e ∈U , εβ
> 0, β ∈Ωg of all balls Bðe, εβÞ = f f ∈U : qβðe, f Þ < εβg is
called the topology induced by Qφ;Ω on U .

Definition 7. Suppose ðU ,T Þ be a topological space and Qφ;Ω
be an extended b-gauge on U such that T =T ðQφ;ΩÞ. Then,
the topological space is called to be an extended b-gauge
space, which is denoted by ðU ,Qφ;ΩÞ.

Remark 8. (a) Each gauge space is bs-gauge space (for s =1),
and each b-gauge space is an extended b-gauge space (for
φβðu, vÞ = s, for each β ∈Ω, where s ≥ 1). Therefore, we can
term extended b-gauge spaces as the largest general spaces.
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(b) We observe that if φβðu, vÞ = s, for each β ∈Ω, where s ≥ 1
, the above definitions turn down to the corresponding defi-
nitions in b-gauge spaces, and if φβðu, vÞ = 1 for each β ∈Ω,
the above definitions turn down to the corresponding defini-
tions in gauge spaces.

We now introduce the notion of extended J φ;Ω-families
of generalized extended pseudo-b-distances on U (extended
J φ;Ω-families is the generalization of extended quasi-b
-gauges).

Definition 9. Let ðU ,Qφ;ΩÞ be an extended b-gauge space. The
family J φ;Ω = fJβ : β ∈Ωg where Jβ : U ×U ⟶ ½0,∞Þ, β
∈Ω is said to be the extended J φ;Ω-family of generalized
extended pseudo- b-distances on U (for short, extended
J φ;Ω-family on U) if there exists φ = fφβgβ∈Ω, where φβ

: U ×U ⟶ ½1,∞Þ such that for each β ∈Ω and for all u, v,
w ∈U , the following hold:

(J1) Jβðu,wÞ ≤ φβðu,wÞfJβðu, vÞ + Jβðv,wÞg
(J2) For each sequences ðum : m ∈NÞ and ðvm : m ∈NÞ

in U fulfilling

lim
m⟶∞

sup
n>m

Jβ um, unð Þ = 0, ð4Þ

lim
m⟶∞

Jβ vm, umð Þ = 0, ð5Þ

the following holds:

lim
m⟶∞

qβ vm, umð Þ = 0: ð6Þ

We denote JðU ,Qφ;ΩÞ = fJ φ;Ω : J φ;Ω = fJβ : β ∈Ωgg.

We mention here some trivial properties of extended
J φ;Ω-families in the following remark.

Remark 10. Let ðU ,Qφ;ΩÞ be an extended b-gauge space.
Then, for each β ∈Ω and for all u, v,w ∈U , the following
hold:

(a) Qφ;Ω ∈ JðU ,Qφ;ΩÞ

(b) Let J φ;Ω ∈ JðU ,Qφ;ΩÞ. If Jβðv, vÞ = 0 and Jβðu, vÞ = Jβð
v, uÞ, then Jβ is an extended pseudo-b-metric

(c) There exist examples of J φ;Ω ∈ JðU ,Qφ;ΩÞ which show

that the maps Jβ are not an extended pseudo-b
-metrics (see following Example 3)

Example 3. SupposeU = ½0, 1� ⊂ R. LetQφ;Ω = fqg be the fam-
ily of pseudo-b-metric where q : U ×U ⟶ ½0,∞Þ be defined
as in Example 1.

Let the set F = ½1/8, 1� ⊂U . Let d ∈ ð0,∞ÞΩ satisfies fδð
FÞ < dg, where fδðFÞ = sup fqðe, f Þ: e, f ∈ Fgg. Let J : U ×
U ⟶ ½0,∞Þ and φ : U ×U ⟶ ½1,∞Þ for all e, f ∈U define

as follows:

J e, fð Þ =
q e, fð Þ if F ∩ e, ff g = e, ff g,
d = 4 if F ∩ e, ff g ≠ e, ff g,

 
ð7Þ

and φðe, f Þ = e + f + 2. Then, J φ;Ω = fJg ∈ JðU ,QÞ.

We observe that Jðe, gÞ ≤ φðe, gÞfJðe, f Þ + Jð f , gÞg for all
e, f , g ∈U ; thus, condition ðJ 1Þ holds. Indeed, condition ð
J 1Þ will not hold in case if there exists some e, f , g ∈U such
that Jðe, gÞ = d, Jðe, f Þ = qðe, f Þ, Jð f , gÞ = qð f , gÞ, and φðe, g
Þfqðe, f Þ + qð f , gÞg ≤ d. However, then this implies the exis-
tence of h ∈ fe, gg with h ∉ F, and on other hand, e, f , g ∈ F,
which is impossible.

Now suppose that (4) and (5) are satisfied by the
sequences ðum : m ∈NÞ and ðvm : m ∈NÞ in U . Then, (5)
implies

∀0<ε<d∃m1∈N∀m≥m1
J vm, umð Þ < εf g: ð8Þ

By (8) and (7), we have

∀m≥m1
F ∩ vm, umf g = vm, umf gf g,

∀0<ε<d∃m1∈N∀m≥m1
q vm, umð Þ = J vm, umð Þ < εf g:

ð9Þ

Thus, (6) is satisfied by the sequences ðum : m ∈NÞ and
ðvm : m ∈NÞ. Therefore, J φ;Ω is an extended J φ;Ω-family
on U .

Now, using extended J φ;Ω-family on U , we establish the
following concepts of extended J φ;Ω-completeness in the
extended b-gauge space ðU ,Qφ;ΩÞ.

Definition 11. Let ðU ,Qφ;ΩÞ be an extended b-gauge space.
Let J φ;Ω = fJβ : β ∈Ωg be the extended J φ;Ω-family on U .
A sequence ðum : m ∈NÞ is extended J φ;Ω-cauchy sequence
in U if, for all β ∈Ω, limm⟶∞ supn>mJβðum, unÞ = 0:

Definition 12. Let ðU ,Qφ;ΩÞ be an extended b-gauge space.
Let J φ;Ω = fJβ : β ∈Ωg be the extended J φ;Ω-family on U .
The sequence ðum : m ∈NÞ is called to be extended J φ;Ω
-convergent to u ∈U if limJ φ;Ω

m⟶∞um = u, where

limJ φ;Ω
m⟶∞um = u⇔ limm⟶∞ Jβ u, umð Þ = 0 = limm⟶∞ Jβ um, uð Þ:

ð10Þ

Definition 13. Let ðU ,Qφ;ΩÞ be an extended b-gauge space.
Let J φ;Ω = fJβ : β ∈Ωg be the extended J φ;Ω-family on U .

If S
J φ;Ω
ðum:m∈NÞ ≠∅, where S

J φ;Ω
ðum:m∈NÞ = fu ∈U : limJ φ;Ω

m⟶∞um = u

g: Then, the sequence ðum : m ∈NÞ in U is extended J φ;Ω
-convergent in U .

Definition 14. Let ðU ,Qφ;ΩÞ be an extended b-gauge space.
Let J φ;Ω = fJβ : β ∈Ωg be the extended J φ;Ω-family on U .
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The space ðU ,Qφ;ΩÞ is called J φ;Ω-sequentially complete
extended b-gauge space, if every extended J φ;Ω-Cauchy in
U is an extended J φ;Ω-convergent in U .

Remark 15. Let ðU ,Qφ;ΩÞ be an extended b-gauge space.

(a) For each subsequence ðvm : m ∈NÞ of ðum : m ∈NÞ,
where ðum : m ∈NÞ is an extended J φ;Ω-convergent

in U , we have S
J φ;Ω
ðum:m∈NÞ ⊂ S

J φ;Ω
ðvm:m∈NÞ

(b) We observe that if φβðu, vÞ = s for all β ∈Ω, where s
≥ 1 and J φ;Ω =Qφ;Ω, the above definitions of com-
pleteness reduce to the corresponding definitions in
b-gauge spaces (see [28])

Definition 16. Let ðU ,Qφ;ΩÞ be an extended b-gauge space.

The map T ½k� : U ⟶U , where k ∈N is called to be an
extended Qφ;Ω-closed map on U if for each sequence ðxm
: m ∈NÞ in T ½k�ðUÞ, which is extended Qφ;Ω-converging in

U , i.e., S
Qφ;Ω
ðxm:m∈NÞ ≠∅ and its subsequences ðvm : m ∈NÞ and

ðum : m ∈NÞ satisfy ∀m∈Nfvm ∈ T ½k�ðumÞg has the property

that there exists w ∈ S
Qφ;Ω
ðxm:m∈NÞ such that w ∈ T ½k�ðwÞ.

Definition 17. Let ðU ,Qφ;ΩÞ be an extended b-gauge space,
and let J φ;Ω = fJβ : β ∈Ωg be the extended J φ;Ω-family on

U . A set Y ∈ 2U is a J φ;Ω-closed in U if Y = cl
J φ;Ω
U ðYÞ, where

cl
J φ;Ω
U ðYÞ, is the J φ;Ω-closure in U , which indicates the set of

all x ∈U for which there exists a sequence ðxm : m ∈NÞ in Y
which J φ;Ω-converges to x.

Define ClJ φ;ΩðUÞ = fY ∈ 2U : Y = cl
J φ;Ω
U ðYÞg. Thus, C

lJ φ;ΩðUÞ denotes the class of all nonempty J φ;Ω-closed sub-
sets of U .

Definition 18. Let ðU ,Qφ;ΩÞ be an extended b-gauge space, let
J φ;Ω = fJβ : β ∈Ωg be the extended J φ;Ω-family on U , and

let, for each β ∈Ω, u ∈U and for all V ∈ ClJ φ;ΩðUÞ,

Jβ u, Vð Þ = inf Jβ u, zð Þ: z ∈ V� �
: ð11Þ

Define on ClJ φ;ΩðUÞ the distance D
J φ;Ω
β of Hausdorff

type, where D
J φ;Ω
β : ClJ φ;ΩðUÞ × ClJ φ;ΩðUÞ⟶ ½0,∞Þ, β ∈Ω

as follows:

D
J φ;Ω
β U ,Vð Þ =

max sup
u∈U

Jβ u, Vð Þ, sup
v∈V

Jβ v,Uð Þ
� �

, if themaximum exists;

∞, otherwise

0
BBBB@

ð12Þ

for each β ∈Ω and for all U , V ∈ ClJ φ;ΩðUÞ.

In this paper, Ω is a directed set and ðU ,Qφ;ΩÞ be an
extended b-gauge space enriched with the graph G = ðV , EÞ
where the set of vertices coincides with set U and the set of
edges E contains fðv, vÞ: v ∈ Vg. Also, G is such that no two
edges are parallel.

2. Periodic and Fixed Point Theorems

Our main results for multivalued mappings are now given
below.

Theorem 19. Let ðU ,Qφ;ΩÞ be an extended b-gauge space. Let
J φ;Ω = fJβ : β ∈Ωg, where Jβ : U ×U ⟶ ½0,∞Þ, be the
extended J φ;Ω-family on U such that ðU ,Qφ;ΩÞ is extended
J φ;Ω-sequentially complete. Let T : U ⟶ ClJ φ;ΩðUÞ be a
multivalued edge preserving map and ϕβ : U ⟶ ½0,∞Þ, β ∈
Ω be a lower semicontinuous function such that for each u ∈
U and v ∈ Tu where ðu, vÞ ∈ E, we have, for all β ∈Ω,

Jβ v, Tvð Þ ≤ ϕβ uð Þ − ϕβ vð Þ: ð13Þ

Assume, moreover, that the following conditions hold:

(i) There exist z0 ∈U and z1 ∈ Tz0 such that ðz0, z1Þ ∈ E
(ii) For each frβ : rβ > 1g

β∈Ω
and u ∈U , there exists v ∈

Tu such that

Jβ u, vð Þ ≤ rβ Jβ u, Tuð Þ, ð14Þ

for all β ∈Ω. Then, the following statements hold:

(I) For any z0 ∈U , ðzm : m ∈ f0g ∪NÞ is extended Qφ;Ω
-convergent sequence in U ; thus, ∀z0∈UfS

Qφ;Ω
ðzm:m∈f0g∪NÞ

≠∅g
(II) Furthermore, assume that T ½k� for some k ∈N is an

extended Qφ;Ω-closed map on U . Then,

(a1) FixðT ½k�Þ ≠∅
(a2) ∀z0∈U∃z∈FixðT ½k�Þfz ∈ S

Qφ;Ω
ðzm:m∈f0g∪NÞg

Proof. (I) We first show that ðzm : m ∈ f0g ∪NÞ is an
extended J φ;Ω-Cauchy sequence in U .

By assumption (i), there exists z0 ∈U and z1 ∈ Tz0 such
that ðz0, z1Þ ∈ E. Now using (13), we can write, for each β ∈
Ω,

Jβ z1, Tz1
� �

≤ ϕβ z0
� �

− ϕβ z1
� �

: ð15Þ

Now by using assumption (ii) and (15), we have rβ > 1 for
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each β ∈Ω and z2 ∈ Tz1 such that

Jβ z1, z2
� �

≤ rβ Jβ z1, Tz1
� �

≤ rβ ϕβ z0
� �

− ϕβ z1
� �n o

: ð16Þ

As T is edge preserving, we can write ðz1, z2Þ ∈ E. Pro-
ceeding in the same manner, we have a sequence fzm : m ∈
f0g ∪Ng such that ðzm, zm+1Þ ∈ E and for each m ∈N and
for all β ∈Ω, we have

Jβ zm, zm+1� �
≤ rβ Jβ zm, Tzmð Þ ≤ rβ ϕβ zm−1� �

− ϕβ zmð Þ
n o

:

ð17Þ

This implies that the sequence fϕβðzmÞg is a nonincreas-
ing sequence; hence, there exits lβ ≥ 0 such that fϕβðzmÞg
⟶ lβ as m⟶∞. Now for m, p ∈N and each β ∈Ω, we
have

Jβ zm, zm+pð Þ ≤ φβ zm, zm+pð ÞJβ zm, zm+1� �
+ φβ zm, zm+pð Þφβ zm+1, zm+p� �

Jβ zm+1, zm+2� �
+ φβ zm, zm+pð Þφβ zm+1, zm+p� �

φβ

� zm+2, zm+p� �
Jβ zm+2, zm+3� �

+⋯+φβ zm, zm+pð Þφβ zm+1, zm+p� �
⋯ φβ

� zm+p−1, zm+p� �
Jβ zm+p−1, zm+p� �

≤ φβ zm, zm+pð Þrβ ϕβ zm−1� �
− ϕβ zmð Þ

n o
+ φβ zm, zm+pð Þφβ zm+1, zm+p� �

rβ

� ϕβ zmð Þ − ϕβ zm+1� �n o
+ φβ zm, zm+pð Þφβ zm+1, zm+p� �

φβ

� zm+2, zm+p� �
rβ ϕβ zm+1� �

− ϕβ zm+2� �n o
+⋯+φβ zm, zm+pð Þφβ zm+1, zm+p� �

⋯ φβ

� zm+p−1, zm+p� �
rβ ϕβ zm+p−2� �

− ϕβ zm+p−1� �n o
:

ð18Þ

Letting m⟶∞, we have fϕβðzmÞg⟶ lβ. This implies
that ðzm : m ∈ f0g ∪NÞ is an extended J φ;Ω-cauchy
sequence in U , i.e., for all β ∈Ω and for each z0 ∈U ,

∀ε>0∃k∈N∀n,m∈N ;n>m≥k Jβ zm, znð Þ < ε
� �

: ð19Þ

Now, since ðU ,Qφ;ΩÞ is extended J φ;Ω-sequentially com-
plete b-gauge space, we have ðzm : m ∈ f0g ∪NÞ extended

J φ;Ω-convergent in U , i.e., for all z ∈ S
J φ;Ω
ðzm:m∈f0g∪NÞ, we have,

for all β ∈Ω and for each ε > 0,

∃k∈N∀m∈N ;m≥k Jβ z, zmð Þ < ε
� �

: ð20Þ

Thus, from (19) and (20), fixing z ∈ S
J φ;Ω
ðzm:m∈f0g∪N , defining

ðum = zm : m ∈ f0g ∪NÞ and ðvm = z : m ∈ f0g ∪NÞ, and

applying ðJ2Þ to these sequences, we get, for all β ∈Ω and
for each ε > 0,

∃k∈N∀m∈N ;m≥k qβ z, zmð Þ < ε
n o

: ð21Þ

This implies S
Qφ;Ω
ðzm:m∈f0g∪NÞ ≠∅.

(II) To prove ða1Þ, let z0 ∈U be arbitrary and fixed. Since

S
Qφ;Ω
ðzm:m∈f0g∪NÞ ≠∅ and we have

z m+1ð Þk ∈ T k½ � zmk
� 	

, form ∈ 0f g ∪N , ð22Þ

thus defining ðzm = zm−1+k : m ∈NÞ, we can write

zm : m ∈Nð Þ ⊂ T k½ � Uð Þ,
S
Qφ;Ω
zm:m∈ 0f g∪Nð Þ = S

Qφ;Ω
zm:m∈ 0f g∪Nð Þ ≠∅:

ð23Þ

Also, its subsequences

ym = z m+1ð Þk : m ∈N
� 	

⊂ T k½ � Uð Þ,

xm = zmk : m ∈N
� 	

⊂ T k½ � Uð Þ,
ð24Þ

satisfy, for all m ∈N ,

ym = T k½ � xmð Þ ð25Þ

and are extended Qφ;Ω-convergent to each point z ∈

S
Qφ;Ω
ðzm:m∈f0g∪NÞ. Now, using the fact below,

S
Qφ;Ω
zm:m∈Nð Þ ⊂ S

Qφ;Ω
ym:m∈Nð Þ and S

Qφ;Ω
zm:m∈Nð Þ ⊂ S

Qφ;Ω
xm:m∈Nð Þ: ð26Þ

And the supposition that T ½k� for some k ∈N is an
extended Qφ;Ω-closed map on U , we have

∃
z∈S

Qφ;Ω
zm :m∈ 0f g∪Nð Þ=S

Qφ;Ω
zm :m∈ 0f g∪Nð Þ

z ∈ T k½ � zð Þ
n o

: ð27Þ

Thus, ða1Þ holds. The assertion ða2Þ follows from ða1Þ
and the fact that S

Qφ;Ω
ðzm:m∈f0g∪NÞ ≠∅. Hence, the theorem is

proved.☐

Theorem 20. Let ðU ,Qφ;ΩÞ be an extended b-gauge space. Let
J φ;Ω = fJβ : β ∈Ωg, where Jβ : U ×U ⟶ ½0,∞Þ, be the
extended J φ;Ω-family on U such that ðU ,Qφ;ΩÞ is extended
J φ;Ω-sequentially complete. Let T : U ⟶ ClJ φ;ΩðUÞ be a
multivalued edge preserving map and ϕβ : U ⟶ ½0,∞Þ, β ∈
Ω be a lower semicontinuous function such that for each u ∈
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U and v ∈ Tu where ðu, vÞ ∈ E, we have, for each β ∈Ω,

Jβ u, vð Þ ≤ ϕβ uð Þ − ϕβ vð Þ: ð28Þ

Assume, moreover, that the following condition holds:

(i) There exist z0 ∈U and z1 ∈ Tz0 such that ðz0, z1Þ ∈ E
Then, the following statements hold:

(I) For any z0 ∈U , ðzm : m ∈ f0g ∪NÞ is extended Qφ;Ω
-convergent sequence in U ; thus, ∀z0∈UfS

Qφ;Ω
ðzm:m∈f0g∪NÞ

≠∅g
(II) Furthermore, assume that T ½k� for some k ∈N is an

extended Qφ;Ω-closed map on U . Then,

(b1) FixðT ½k�Þ ≠∅
(b2) ∀z0∈U∃z∈FixðT ½k�Þfz ∈ S

Qφ;Ω
ðzm:m∈f0g∪NÞg

Proof. (I) We first show that ðzm : m ∈ f0g ∪NÞ is an
extended J φ;Ω-Cauchy sequence in U . By assumption (i),
there exist z0 ∈U and z1 ∈ Tz0 such that ðz0, z1Þ ∈ E. Now
using (28), we can write, for each β ∈Ω,

Jβ z0, z1
� �

≤ ϕβ z0
� �

− ϕβ z1
� �

: ð29Þ

As T is edge preserving, we can write ðz1, z2Þ ∈ E. Pro-
ceeding in the same manner, we have a sequence fzm : m ∈
f0g ∪Ng such that ðzm, zm+1Þ ∈ E and for each m ∈N and
for all β ∈Ω, we have

Jβ zm, zm+1� �
≤ ϕβ zmð Þ − ϕβ zm+1� �

: ð30Þ

This implies that the sequence fϕβðzmÞg is a nonincreas-
ing sequence; hence, there exits lβ ≥ 0 such that fϕβðzmÞg
⟶ lβ as m⟶∞. Now for m, p ∈N and each β ∈Ω, we
have

Jβ zm, zm+pð Þ ≤ φβ zm, zm+pð ÞJβ zm, zm+1� �
+ φβ zm, zm+pð Þφβ

� zm+1, zm+p� �
Jβ zm+1, zm+2� �

+ φβ zm, zm+pð Þφβ

� zm+1, zm+p� �
φβ zm+2, zm+p� �

Jβ zm+2, zm+3� �
+⋯+φβ zm, zm+pð Þφβ zm+1, zm+p� �

⋯ φβ

� zm+p−1, zm+p� �
Jβ zm+p−1, zm+p� �

≤ φβ zm, zm+pð Þ ϕβ zmð Þ − ϕβ zm+1� �n o
+ φβ zm, zm+pð Þφβ zm+1, zm+p� �

ϕβ zm+1� �
− ϕβ zm+2� �n o

+ φβ zm, zm+pð Þφβ zm+1, zm+p� �
φβ zm+2, zm+p� �

� ϕβ zm+2� �
− ϕβ zm+3� �n o

+⋯+φβ zm, zm+pð Þφβ zm+1, zm+p� �
⋯ φβ zm+p−1, zm+p� �

� ϕβ zm+p−1� �
− ϕβ zm+pð Þ

n o
:

ð31Þ

Letting m⟶∞, we have fϕβðzmÞg⟶ lβ. This implies
that ðzm : m ∈ f0g ∪NÞ is an extended J φ;Ω-cauchy
sequence in U , i.e., for all β ∈Ω and for each z0 ∈U ,

∀ε>0∃k∈N∀n,m∈N ;n>m≥k Jβ zm, znð Þ < ε
� �

: ð32Þ

Now, since ðU ,Qφ;ΩÞ is extended J φ;Ω-sequentially com-
plete b-gauge space, we have ðzm : m ∈ f0g ∪NÞ extended

J φ;Ω-convergent in U , i.e., for all z ∈ S
J φ;Ω
ðzm:m∈f0g∪NÞ, we have,

for all β ∈Ω and for each ε > 0,

∃k∈N∀m∈N ;m≥k Jβ z, zmð Þ < ε
� �

: ð33Þ

Thus, from (32) and (33), fixing z ∈ S
J φ;Ω
ðzm:m∈f0g∪N , defining

ðum = zm : m ∈ f0g ∪NÞ and ðvm = z : m ∈ f0g ∪NÞ, and
applying ðJ2Þ to these sequences, we get, for all β ∈Ω and
for each ε > 0,

∃k∈N∀m∈N ;m≥k qβ z, zmð Þ < ε
n o

: ð34Þ

This implies S
Qφ;Ω
ðzm:m∈f0g∪NÞ ≠∅.

(II) To prove ðb1Þ, let z0 ∈U be arbitrary and fixed. Since

S
Qφ;Ω
ðzm:m∈f0g∪NÞ ≠∅ and we have

z m+1ð Þk ∈ T k½ � zmk
� 	

, form ∈ 0f g ∪N , ð35Þ

thus defining ðzm = zm−1+k : m ∈NÞ, we can write

zm : m ∈Nð Þ ⊂ T k½ � Uð Þ,
S
Qφ;Ω
zm:m∈ 0f g∪Nð Þ = S

Qφ;Ω
zm:m∈ 0f g∪Nð Þ ≠∅:

ð36Þ

Also, its subsequences

ym = z m+1ð Þk : m ∈N
� 	

⊂ T k½ � Uð Þ,

xm = zmk : m ∈N
� 	

⊂ T k½ � Uð Þ,
ð37Þ

satisfy, for all m ∈N ,

ym = T k½ � xmð Þ, ð38Þ

and are extended Qφ;Ω-convergent to each point z ∈

S
Qφ;Ω
ðzm:m∈f0g∪NÞ. Now, using the fact below,

S
Qφ;Ω
zm:m∈Nð Þ ⊂ S

Qφ;Ω
ym:m∈Nð Þ and S

Qφ;Ω
zm:m∈Nð Þ ⊂ S

Qφ;Ω
xm:m∈Nð Þ: ð39Þ

And the supposition that T ½k� for some k ∈N is an
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extended Qφ;Ω-closed map on U , we have

∃
z∈S

Qφ;Ω
zm :m∈ 0f g∪Nð Þ=S

Qφ;Ω
zm :m∈ 0f g∪Nð Þ

z ∈ T k½ � zð Þ
n o

: ð40Þ

Thus, ðb1Þ holds. The assertion ðb2Þ follows from ðb1Þ
and the fact that S

Qφ;Ω
ðzm:m∈f0g∪NÞ ≠∅. Hence, the theorem is

proved. ☐

Theorem 21. Let ðU ,Qφ;ΩÞ be an extended b-gauge space. Let
J φ;Ω = fJβ : β ∈Ωg, where Jβ : U ×U ⟶ ½0,∞Þ, be the
extended J φ;Ω-family on U such that ðU ,Qφ;ΩÞ is extended
J φ;Ω-sequentially complete. Let T : U ⟶ ClJ φ;ΩðUÞ be a
multivalued edge preserving map and ψβ : U ⟶ ½0,∞Þ, β ∈
Ω be a upper semicontinuous function such that for each u
∈U and v ∈ Tu where ðu, vÞ ∈ E, we have, for each β ∈Ω,

Jβ v, Tvð Þ ≤ ψβ uð Þ − ψβ vð Þ: ð41Þ

Assume, moreover, that the following conditions hold:

(i) There exist z0 ∈U and z1 ∈ Tz0 such that ðz0, z1Þ ∈ E
(ii) For each frβ : rβ > 1g

β∈Ω
and x ∈U , there exists y ∈

Tx such that for each β ∈Ω,

Jβ x, yð Þ ≤ rβ Jβ x, Txð Þ: ð42Þ

Then, the following statements hold:

(I) For any z0 ∈U , ðzm : m ∈ f0g ∪NÞ is extended Qφ;Ω
-convergent sequence in U ; thus, ∀z0∈UfS

Qφ;Ω
ðzm:m∈f0g∪NÞ

≠∅g
(II) Furthermore, assume that T ½k� for some k ∈N is an

extended Qφ;Ω-closed map on U . Then,

(c1) FixðT ½k�Þ ≠∅
(c2) ∀z0∈U∃z∈FixðT ½k�Þfz ∈ S

Qφ;Ω
ðzm:m∈f0g∪NÞg

Proof. (I) We first show that ðzm : m ∈ f0g ∪NÞ is an
extended J φ;Ω-Cauchy sequence in U . By assumption (i),
there exist z0 ∈U and z1 ∈ Tz0 such that ðz0, z1Þ ∈ E. Now
using (41), we can write, for each β ∈Ω,

Jβ z1, Tz1
� �

≤ ψβ z0
� �

− ψβ z1
� �

: ð43Þ

Now by using assumption (ii) and (43), we have rβ > 1 for
each β ∈Ω and z2 ∈ Tz1 such that

Jβ z1, z2
� �

≤ rβ Jβ z1, Tz1
� �

≤ rβ ψβ z0
� �

− ψβ z1
� �n o

: ð44Þ

As T is edge preserving, we can write ðz1, z2Þ ∈ E. Pro-
ceeding as above, we have a sequence fzm : m ∈ f0g ∪Ng
such that ðzm, zm+1Þ ∈ E, and for each m ∈N and for all β ∈

Ω, we have

Jβ zm, zm+1� �
≤ rβ Jβ zm, Tzmð Þ ≤ rβ ψβ zm−1� �

− ψβ zmð Þ
n o

:

ð45Þ

This implies that the sequence fψβðzmÞg is a nonincreas-
ing sequence; hence, there exits lβ ≥ 0 such that fψβðzmÞg
⟶ lβ as m⟶∞. Now for m, p ∈N and each β ∈Ω, we
have

Jβ zm, zm+pð Þ ≤ φβ zm, zm+pð ÞJβ zm, zm+1� �
+ φβ zm, zm+pð Þφβ

� zm+1, zm+p� �
Jβ zm+1, zm+2� �

+ φβ zm, zm+pð Þφβ zm+1, zm+p� �
φβ

� zm+2, zm+p� �
Jβ zm+2, zm+3� �

+⋯+φβ zm, zm+pð Þφβ zm+1, zm+p� �
⋯ φβ

� zm+p−1, zm+p� �
Jβ zm+p−1, zm+p� �

≤ φβ zm, zm+pð Þrβ ψβ zm−1� �
− ψβ zmð Þ

n o
+ φβ zm, zm+pð Þφβ zm+1, zm+p� �

rβ

� ψβ zmð Þ − ψβ zm+1� �n o
+ φβ zm, zm+pð Þφβ

� zm+1, zm+p� �
φβ zm+2, zm+p� �

rβ

� ψβ zm+1� �
− ψβ zm+2� �n o

+⋯+φβ zm, zm+pð Þφβ zm+1, zm+p� �
⋯ φβ

� zm+p−1, zm+p� �
rβ ψβ zm+p−2� �

− ψβ zm+p−1� �n o
:

ð46Þ

Lettingm⟶∞, we have fψβðzmÞg⟶ lβ. This implies
that ðzm : m ∈ f0g ∪NÞ is an extended J φ;Ω-cauchy
sequence in U , i.e., for all β ∈Ω and for each z0 ∈U ,

∀ε>0∃k∈N∀n,m∈N ;n>m≥k Jβ zm, znð Þ < ε
� �

: ð47Þ

Now, since ðU ,Qφ;ΩÞ is extended J φ;Ω-sequentially com-
plete b-gauge space, we have ðzm : m ∈ f0g ∪NÞ extended

J φ;Ω-convergent in U , i.e., for all z ∈ S
J φ;Ω
ðzm:m∈f0g∪NÞ, we have,

for all β ∈Ω and for each ε > 0,

∃k∈N∀m∈N ;m≥k Jβ z, zmð Þ < ε
� �

: ð48Þ

Thus, from (47) and (48), fixing z ∈ S
J φ;Ω
ðzm:m∈f0g∪N , defining

ðum = zm : m ∈ f0g ∪NÞ and ðvm = z : m ∈ f0g ∪NÞ, and
applying ðJ2Þ to these sequences, we get, for all β ∈Ω and
for each ε > 0,

∃k∈N∀m∈N ;m≥k qβ z, zmð Þ < ε
n o

: ð49Þ

This implies S
Qφ;Ω
ðzm:m∈f0g∪NÞ ≠∅.
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(II) To prove ðc1Þ, let z0 ∈U be arbitrary and fixed. Since

S
Qφ;Ω
ðzm:m∈f0g∪NÞ ≠∅ and we have

z m+1ð Þk ∈ T k½ � zmk
� 	

, form ∈ 0f g ∪N , ð50Þ

thus defining ðzm = zm−1+k : m ∈NÞ, we can write

zm : m ∈Nð Þ ⊂ T k½ � Uð Þ,
S
Qφ;Ω
zm:m∈ 0f g∪Nð Þ = S

Qφ;Ω
zm:m∈ 0f g∪Nð Þ ≠∅:

ð51Þ

Also, its subsequences

ym = z m+1ð Þk : m ∈N
� 	

⊂ T k½ � Uð Þ,

xm = zmk : m ∈N
� 	

⊂ T k½ � Uð Þ,
ð52Þ

satisfy, for all m ∈N ,

ym = T k½ � xmð Þ, ð53Þ

and are extended Qφ;Ω-convergent to each point z ∈

S
Qφ;Ω
ðzm:m∈f0g∪NÞ. Now, using the fact below,

S
Qφ;Ω
zm:m∈Nð Þ ⊂ S

Qφ;Ω
ym:m∈Nð Þ and S

Qφ;Ω
zm:m∈Nð Þ ⊂ S

Qφ;Ω
xm:m∈Nð Þ: ð54Þ

And the supposition that T ½k� for some k ∈N is an
extended Qφ;Ω-closed map on U , we have

∃
z∈S

Qφ;Ω
zm :m∈ 0f g∪Nð Þ=S

Qφ;Ω
zm :m∈ 0f g∪Nð Þ

z ∈ T k½ � zð Þ
n o

: ð55Þ

Thus, ðc1Þ holds. The assertion ðc2Þ follows from ðc1Þ and
the fact that S

Qφ;Ω
ðzm:m∈f0g∪NÞ ≠∅. Hence, the theorem is proved.

☐

Remark 22. (a) The fixed point results concerning Caristi-
type contractions in gauge space in [51] require the com-
pleteness of the space ðU , dÞ. Therefore, our main theorems
for Caristi-type G-contractions in the extended b-gauge
space are a new generalization of the results in [51] in which
assumptions are weaker and assertions are stronger.

(b) Our results for Caristi-type G-contractions in
extended b-gauge space tell about periodic points as well,
hence improve the results in [51]

(c) We observe that by taking ∀β∈Ωfφβðu, vÞ = s ≥ 1g in
this paper, we obtain the results in b-gauge space.
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In this paper, a new class of a neutral functional delay differential equation involving the generalized ψ-Caputo derivative is
investigated on a partially ordered Banach space. The existence and uniqueness results to the given boundary value problem are
established with the help of the Dhage’s technique and Banach contraction principle. Also, we prove other existence criteria by
means of the topological degree method. Finally, Ulam-Hyers type stability and its generalized version are studied. Two
illustrative examples are presented to demonstrate the validity of our obtained results.

1. Introduction

Fractional calculus has demonstrated high visibility and
capability in the applications of various topics linked to
physics, signal processing, mechanics, electromagnetics,
economics, biology, and many more [1–3]. Even recently,
fractional differential equations (FDEqs) have acquired par-
ticular attention because of their numerous applications in
the fractional modeling [4–12]. FDEqs involving hybrid non-
linearity have been gained much attention during the past
few years. This class of equations arises from various mathe-
matical and physical phenomena such as three-layer beam,
electromagnetic waves, curved beam’s deflection with a con-
stant or varying cross-section, and gravity-driven [13–19].

Almeida [20] introduced a new fractional derivative,
named the ψ-fractional order derivative (FOD), with respect
to another function, which extended the classical fractional
derivative. Therefore, the generalizations of existing results

in fractional calculus and FBVPs have been established by
several mathematicians [21–25].

The qualitative analysis of FDEqs such as the solution’s
existence and uniqueness is the most popular problems that
many researchers focus on. Various fixed point theorems
are considered as the most effective tools for dealing with
such problems. In this work, we follow some results pre-
sented by Ragusa et al. [26, 27] concerning the qualitative
properties of some suitable FDEqs.

In the last decade, a new technique was developed by
Dhage [28], named Dhage iteration principle, for investigat-
ing the numerical solutions’ existence and approximation of
integral and FDEqs by constructing a sequence of successive
approximations with initial lower or upper solution. Dhage
[29–32] provided a generalized form of hybrid fixed point
theorem in the context of a metric space having the par-
tial order without applying any geometric condition. In
Dhage’s research study, with the help of the measure of
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noncompactnessan, an algorithm for studying the solutions’
existence of a certain nonlinear functional integral equation
was investigated under weaker conditions. The advantages
of the applied method were studied by Dhage to compare
with the standard approaches that involve Banach, Schau-
der’s, and Krasnoselskii’s fixed point theorems. As a result,
the iteration method due to Dhage has recently became an
important tool for investigating the solution’s existence and
approximate results of nonlinear hybrid FDEqs that have
various scientific applications such as air motion, electricity,
fluid dynamics, process control with nonlinear structures,
and electromagnetism. In addition, this method can be
extended to other functional differential equations (FuDEqs)
classes. On the other side, in recent years, the topological
degree method has been considered as one of the main tools
for studying the existence results to different fractional differ-
ential equations and inclusions. This method will be used in
our research study to derive desired results in relation to
the solutions of the proposed problem. For more details,
see [33–38].

The FuDEqs’ stability was first proposed by Ulam [39]
and then by Hyers [40]. Later on, this type of stability and
its generalization were called of the Ulam-Hyers (UH) and
generalized Ulam-Hyers (GUH) type, respectively. Investi-
gating the UH and GUH stability has been given a special
attention in studying all FuDEqs kinds and FDEqs in par-
ticular [41–44].

Motivated by the novel developments in ψ-fractional
calculus, the solution’s existence, uniqueness, and UH stabil-
ity of the proposed neutral functional differential equation
(NFuDEq) is investigated in this research work. The NFu-
DEq is expressed as:

cDv;ψ
a+ ϖ τð Þ − F τ, ϖτð Þ½ � =ℍ τ, ϖτð Þ, τ ∈ J≔ a, b½ �,

ϖ τð Þ = ϕ τð Þ, τ ∈ a − δ, a½ �,

(
ð1Þ

where the ψ-Caputo FOD, denoted by cD
ν;ψ
a+ , of order

ν ∈ ð0, 1Þ, given F,ℍ : J ×ℝ⟶ℝ are continuous functions
such that Fða, ϖaÞ = 0, and ϕ : ½a − δ, a�⟶ℝ is a continu-
ous function with ϕðaÞ = 0. For any function u defined
on ½a − δ, a� and any τ ∈ J, it is given by

uτ ρð Þ = u τ + ρð Þ, ρ ∈ −δ, 0½ �: ð2Þ

The main aim of this research work is to apply an
iteration principle due to Dhage to ensure the solutions’
existence along with approximation of (1) under weaker
partial continuity and partial compactness type conditions.

This article is constructed as follows: some important
definitions and lemmas which are needed for our results are
provided in Section 2. The solutions’ existence and approxi-
mation of (1) are proven in Section 3 via the Dhage iteration
principle. In Section 4, a theorem, based on the coincidence
degree theory for condensing maps, is established on the
solutions’ existence of the proposed NFuDEq (1). In Section
5, the solution’s uniqueness for the NFuDEq (1) is proven by
the Banach contraction principle of solutions. Moreover, we
investigate the UH and GUH stability for the NFuDEq (1).

Some illustrative examples for supposed problem are pro-
vided at the end to validate our theoretical results.

2. Fundamental Preliminaries

Some important definitions, theorems, and lemmas concern-
ing advanced fractional calculus and nonlinear analysis are
stated in this section which are needed for our approach in
the next parts.

Consider the space of all continuous real-valued func-
tions C = CðJ,ℝÞ endowed with the norm

ϖk kC = sup
τ∈J

ϖ τð Þj j: ð3Þ

Also, Cδ = Cð½−δ, 0�,ℝÞ is endowed with norm

ϕk kCδ
= sup

τ∈−δ,0�
ϕ τð Þj j, and ϖτk kCδ

= sup
ρ∈−δ,0�

ϖ τ + ρð Þj j: ð4Þ

Consider the Banach space Cb = Cð½a − δ, b�,ℝÞ defined
on ½a − δ, b� with the norm

ϖk kCb
= ϖk kCδ

+ ϖk kC = sup
τ∈a−δ,b�

ϖ τð Þj j: ð5Þ

The order relation ≼ is defined as follows:

ϖ≼ω⇔ ϖ tð Þ ≤ ω tð Þ½ �∀t ∈ a − δ, b½ �, ð6Þ

which gives a partial ordering in Cb.
From the research study in [29], let us now state some

necessary definitions and preliminary results for our research
work. Assume that �X = ðX, ≼, k:kÞ displays a real partial
order on X. If for ϖ, ω in X, either ϖ≼ω or ω≼ϖ, then ϖ
and ω are termed as comparable elements, and also when
all members of ∅≠C ⊂X are comparable, then C is named
either totally ordered or a chain. If there exists a nondecreas-
ing (resp., nonincreasing) sequence ðϖnÞn∈N and ϖ ∗ in X

such that ϖn ⟶ ϖ ∗ as n⟶∞, then X is regular
(ϖn≼ϖ ∗ (resp. ϖn ± ϖ ∗)) for all n ∈ℕ. By assuming this fact
that there are lower and upper bounds in X for every both
members of X, in that case, the partially ordered Banach
space X is named regular and lattice.

Definition 1 (see [29]). An operator:Q : X⟶X is termed as
nondecreasing or isotone if Qmaintains the order relation ≼,
i.e., when ϖ≼ω, it means that Qϖ≼Qω for all ϖ, ω ∈X.

Definition 2 (see [29]). A mapping Q : X⟶X has the com-
pactness specification if QðXÞ is a set in X with the relative
compactness. In addition, Q is totally bounded if QðSÞ has
the relative compactness property in X, where S ⊆X is an
arbitrary bounded set.

Every operator having the continuity and total bounded-
ness properties will be completely continuous.

Definition 3 (see [29]). Q : X⟶X has the partial continu-
ity property at a ∈X, if for each ε > 0, δ > 0 exists so that
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kQϖ −Qak < ε whenever kϖ − ak < δ and ϖ and a are
comparable. Assuming Q as an operator with the partial
continuity on X, it is well-known that Q is continuous on
each chain C ⊂X. Furthermore, if QðCÞ is bounded for
every C ⊆X, then Q is partially bounded. In addition, Q is
uniformly partially bounded if all existing chains QðCÞ ⊆X

involve the boundedness by a bound uniquely.

Definition 4 (see [29]). Q : X⟶X has the partial compact-
ness if QðCÞ ⊂X has the relative compactness with respect to
all chains C ⊆X. It has the partial total boundedness prop-
erty if for each bounded and totally ordered set C contained
in X, QðCÞ ⊂X possesses the relative compactness.

Every operator with the partial continuity and the partial
total boundedness is named as partially completely continu-
ous on the underlying space.

Remark 5. Assume that Q is a nondecreasing selfmap on X

and C is an arbitrary chain in it. In this case, Q possesses
the partial compactness or the partial boundedness specifica-
tions whenever QðCÞ is relatively compact or bounded in X.

Definition 6 (see [28]). Regard d and ≼ as a metric and an
order relation on X. We say that d and ≼ are compatible if
fϖngn∈ℕ ⊂X is monotone, and if a subsequence fϖnk

g
k∈N

of fϖngn∈ℕ tends to ϖ∗, then fϖngn∈ℕ tends to ϖ∗. Similar
definition can be applied on a partially order norm space. A
subset S of X is named Janhavi if the order relation ≼ and
the metric d (or the norm k·k) are compatible in it. Partic-
ularly, if S =X, then we say that X is Janhavi metric (or
Janhavi Banach space).

Definition 7 (see [29]). An operator Q : X⟶X is D-
Lipschitz if there exists an upper semicontinuous nonde-
creasing function: Ψ : ℝ+ ⟶ℝ+ with Ψð0Þ = 0 such that

Qϖ −Qωk k≼Ψ ϖ − ωk kð Þ, ð7Þ

for all ϖ, ω ∈X.

Definition 8 (see [29]). The same above operator Q is termed
as partially nonlinear D-Lipschitz whenever a D-function
Ψ : ℝ+ ⟶ℝ+ exists provide

Qϖ −Qωk k≼Ψ ϖ − ωk kð Þ, ð8Þ

∀ϖ, ω ∈X. In addition, when Q is nonlinear D-Lipschitz
subject to ΨðτÞ < τ for τ > 0, in that case, Q is nonlinear
D-contraction.

Let us at present introduce a novel procedure, named
Dhage iterative method, which is very useful for obtaining a
scheme for the approximation of solutions to problems with
nonlinearity.

Theorem 9 (see [29]). Let ðX, ≼, k·kÞ be a complete regular
normed linear algebra via the partial order so that ≼ and k·k

are compatible. Consider two nondecreasing operators K ,
H : X⟶X such that

(a) K is partially nonlinear D-Lipschtiz and partially
bounded with D-function ψK

(b) H has the partial continuity and the compactness

(c) ∃ an element ϖ0 ∈X such that ϖ0≼Kϖ0 +Hϖ0 or
ϖ0 ±Kϖ0 +Hϖ0

Then, Kϖ +Hϖ = ϖ possesses a solution ϖ ∗ in X, and
the sequence of the successive iterations fϖng∞n=0, expressed
as ϖn+1 =Kϖn +Hϖn, approaches to ϖ ∗ monotonically.

Theorem 10 (see [30]). Let H : X⟶X be a nondecreasing
and partially nonlinear D -contraction. Assume that ϖ0 ∈X
exists with ϖ0≼Hϖ0 or ϖ0 ±Hϖ0. IfX is regular orH is con-
tinuous, then a fixed point ϖ ∗ is found, and the sequence of
successive iterations fHnϖ0g tends to ϖ ∗ monotonically. In
addition, ϖ ∗ is unique if each of both members of X possesses
a lower and an upper bound.

Remark 11 (see [31]). Let every set contained in X with the
partial compactness includes the compatibility specification
with respect to ≼ and k·k. Then, every compact chain of X
is Janhavi. This implication can be simply applied to establish
the existence property of solutions in our research work.

Remark 12. The regularity property ofX in Theorem 9 can be
replaced with another strong continuity condition of the
operators K and H on X where Dhage in [28] proved this
result.

Remark 13 (see [30]).

(1) In a partially normed linear space, every compact
operator has the partial compactness, and all partially
compact operators has the partial total boundedness,
while the converse is not valid

(2) Each completely continuous operator has the partial
complete continuity, and each partially completely
continuous operator has the continuity and the par-
tial total boundedness, while the converse is not valid

In such a situation, the hypotheses regarding to the par-
tial continuity and the partial compactness of an operator
in Theorem 9 can be replaced by the continuity and compact-
ness of that operator.

We state here the results below given by [45–47].

Definition 14. The mapping κ : MC ⟶ ½0,∞Þ is named
Kuratowski measure of non-compactness (KMNC) if

κ Bð Þ = inf ε > 0 : B can be covered by finitely manyf
sets withDIAM Bð Þ ≤ εg, ð9Þ

where MC represents a class of all bounded mappings in C .
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Proposition 15. The following are fulfilled for KMNC:

(1) A ⊂ E⇒ κðAÞ ≤ κðEÞ
(2) κðAÞ = κð�AÞ = κðconvðAÞÞ, where �A and convðAÞ rep-

resent the closure and the convex hull of A, respectively

(3) κðA + EÞ ≤ κðAÞ + κðEÞ and κðcAÞ = ∣c ∣ κðAÞ, c ∈ℝ

Definition 16. Assume that K : A⟶C be a continuous
bounded mapping and A ⊂C . The operator K is said to be
κ-Lipschitz if we can find a constant ℓ ≥ 0 satisfying the
following condition:

κ K Bð Þð Þ ≤ ℓκ Bð Þ, for every B ⊂ A: ð10Þ

Moreover,K is called strict κ-contraction subject to ℓ < 1
.

Definition 17. K is called κ-condensing when

κ K Bð Þð Þ < κ Bð Þ, ð11Þ

for every bounded and nonprecompact subset B of A. So,

κ K Bð Þð Þ ≥ κ Bð Þ, which implies κ Bð Þ = 0: ð12Þ

Further, we have K : A⟶C is Lipschitz if we can find
ℓ > 0 such that

K uð Þ −K vð Þk k ≤ ℓ u − vk k, forall u, v ∈ A, ð13Þ

if ℓ < 1, K is said to be strict contraction.

The following three interesting results are based on [48]:

Proposition 18. Let K ,H : A⟶C be κ-Lipschitz with
constants ℓ1 and ℓ2. Then, K +H : A⟶C is κ-Lipschitz
with ℓ1 + ℓ2.

Proposition 19. Every compact mapping K : A⟶C is
κ-Lipschitz with ℓ = 0.

Proposition 20. Every Lipschitz mappingK : A⟶C with ℓ
is κ-Lipschitz with ℓ.

Isaia [48] used the topological degree theory to introduce
the following interesting results:

Theorem 21. Let F : A⟶C be κ-condensing and

Θ = u ∈C : ∃ξ ∈ 0, 1½ � s:t:x = ξFuf g: ð14Þ

If Θ ⊂C is bounded, i.e., r > 0 exists subject to Θ ⊂ Brð0Þ;
then, the degree

deg I − ξF , Br 0ð Þ, 0ð Þ = 1, for all ξ ∈ 0, 1½ �: ð15Þ

As a result, it is found a fixed-point forF and all possible
fixed-points of F are contained in Brð0Þ.

Let ψ ∈C1 = C1ðJ ,ℝÞ be an increasing differentiable
function such that ψ′ðτÞ ≠ 0, ∀τ ∈ J. Now, we start by defin-
ing ψ-FODs as follows:

Definition 22 (see [2]). The ψ-Riemann-Liouville fractional
integral of order α > 0 for an integrable function ϖ : J ⟶ℝ
is given by

I
α;ψ
a+ ϖ τð Þ = 1

Γ αð Þ
ðτ
a
ψ′ sð Þ ψ τð Þ − ψ sð Þð Þα−1ϖ sð Þds, ð16Þ

where the Gamma function is denoted by Γ.

Definition 23 (see [2]). Let n − 1 < α < nðn ∈ℕÞ, ϖ : J ⟶ℝ
be an integrable function, and ψ ∈ CnðJ ,ℝÞ. Then, the ψ-
Riemann–Liouville FOD of a function ϖ of order α is
expressed as:

D
α;ψ
a+ ϖ τð Þ = Dt

ψ′ τð Þ

 !n

I
n−α;ψ
a+ ϖ τð Þ, ð17Þ

where n = ½α� + 1 and Dt = d/dt.

Definition 24 (see [20]). For n − 1 < α < nðn ∈ℕÞ and ϖ,
ψ ∈ CnðJ ,ℝÞ, the ψ-Caputo FOD of a function ϖ of
order α is given by

cD
α;ψ
a+ ϖ τð Þ = I

n−α;ψ
a+ ϖ

n½ �
ψ τð Þ, ð18Þ

where ϖ½n�
ψ ðτÞ = ðDt/ψ′ðτÞÞ

n
ϖðτÞ:

From the above definition, we can express ψ-Caputo
FOD by the following formula:

cD
α;ψ
a+ ϖ τð Þ =

ðτ
a

ψ′ sð Þ ψ τð Þ − ψ sð Þð Þn−α−1
Γ n − αð Þ ϖ

n½ �
ψ sð Þds, if α ∉ℕ,

ϖ
n½ �
ψ τð Þ, if α ∈ℕ:

8>><
>>:

ð19Þ

Also, the ψ–Caputo FOD of order α of ϖ is defined as

cD
α;ψ
a+ ϖ τð Þ =D

α;ψ
a+ ϖ τð Þ − 〠

n−1

k=0

ϖ
k½ �
ψ að Þ
k!

ψ τð Þ − ψ að Þð Þk
" #

: ð20Þ

For more details, see ([20], Theorem 3).

Lemma 25 (see [2]). For α, β > 0, and ϖ ∈ CðJ ,ℝÞ, we have

I
α;ψ
a+ I

β;ψ
a+ ϖ τð Þ = I

α+β;ψ
a+ ϖ τð Þ, a:e:τ ∈ J: ð21Þ
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Lemma 26 (see [22]). Assume that α > 0. If ϖ ∈ CðJ ,ℝÞ, then

cD
α;ψ
a+ I

α;ψ
a+ ϖ τð Þ = ϖ τð Þ, τ ∈ J , ð22Þ

and if ϖ ∈ Cn−1ðJ ,ℝÞ, then

I
α;ψ
a+

c
D

α;ψ
a+ ϖ τð Þ = ϖ τð Þ − 〠

n−1

k=0

ϖ
k½ �
ψ að Þ
k!

ψ τð Þ − ψ að Þ½ �k, τ ∈ J:

ð23Þ

It is easily to deduce that

cD
k;ψ
a+ I

α,ψ
a+ = I

α−k,ψ
a+ : ð24Þ

Lemma 27 (see [2, 20]). Let τ > a, α ≥ 0, ς > 0 and let χðτÞ =
ψðτÞ − ψðaÞ. Then:

(i) Iα;ψa+ ðχðτÞÞς−1 = ΓðςÞ/Γðς + αÞðχðτÞÞς+α−1

(ii) cD
α;ψ
a+ ðχðτÞÞβ−1 = ΓðςÞ/Γðς − αÞðχðτÞÞς−α−1

(iii) cD
α;ψ
a+ ðχðτÞÞk = 0, for all k ∈ f0,⋯, n − 1g, n ∈ℕ

3. Existence and Approximation Results via
Dhage’s Technique

The solutions’ existence and approximation of problem (1)
are studied in this section.

Lemma 28. Assume that ðCb, ≼, k:kÞ is a partially ordered
Banach space with the norm k:k, and the order relation ≼
defined by (5) and (6), respectively. Then, every partially com-
pact subset of Cb is Janhavi.

Proof (see [31]). Let us now discuss exactly the problem (1).
☐

Definition 29. A function ϖ ∈Cb is a lower solution for the
NFuDEq (1) if:

(1) ϖτ ∈Cδ, ∀τ ∈ J

(2) the function τ↦ ½ϖðτÞ − Fðτ, ϖτÞ� is continuously
differentiable on J and settles

cD
ν;ψ
a+ ϖ τð Þ − F τ, ϖτð Þ½ �≼ℍ τ, ϖτð Þ, τ ∈ J ,

ϖ τð Þ≼ϕ τð Þ:

(
ð25Þ

Similarly, a differentiable function ω ∈Cb is named an
upper solution of the NFuDEq (1) if the above inequality is
satisfied with reverse sign.

To demonstrate the solutions’ existence to (1), we state
this lemma:

Lemma 30. Assume that 0 < ν < 1,ϕðaÞ = 0, and g, h : J ⟶
ℝ are continuous with hðaÞ = 0. The linear problem

cD
ν;ψ
a+ ϖ τð Þ − h τð Þ½ � = g τð Þ, τ ∈ J ; ϖ τð Þ = ϕ τð Þ, τ ∈ a − δ, a½ �,

ð26Þ

has a unique solution ϖðτÞ defined by:

h τð Þ + I
ν,ψ
a+ g τð Þ, if τ ∈ J ,

ϕ τð Þ, if τ ∈ a − δ, a½ �:

(
ð27Þ

For the proof of Lemma 30, it is useful to refer to
[2, 23, 41, 49].

With the help of the following hypothesis, we can inves-
tigate our results:

(H1) The functions Fðτ, ϖÞ and ℍðτ, ϖÞ are monotone
nondecreasing with respect to ϖ for any τ ∈ J.

(H2) ∃ a D-function Ψ that satisfies ΨðRÞ < R for R > 0
such that

0 ≤ F τ, ϖð Þ − F τ, ωð Þ½ � ≤Ψ ϖ − ωð Þ∀τ ∈ J andϖ, ω ∈ℝwithϖ ≥ ω:

ð28Þ

(H3) ∃M > 0 such that jℍðτ, ϖÞj ≤M,∀τ ∈ J, and ϖ ∈ℝ.
(H4) ∃L > 0 such that jFðτ, ϖÞj ≤ L, ∀τ ∈ J, and ϖ ∈ℝ.
(H5) The FBVP (1) possesses a lower solution x ∈Cb.
(H6) ∃ a positive constant Lℍ such that

ℍ τ, ϖð Þ −ℍ τ, ωð Þj j ≤ Lℍ ϖ − ωj j,∀τ ∈ J andϖ, ω ∈ℝwithϖ ≥ ω:

ð29Þ

Theorem 31. If the hypotheses (H1)-(H5) are fulfilled, then the
NFuDEq (1) includes a solution ϖ∗ formulated on ½a − δ, b�,
and fϖng containing the successive approximations expressed
as:

ϖ0 = x, ϖn+1 τð Þ≔ I
ν,ψ
a+ ℍ τ, ϖn,τð Þ + F τ, ϖn,τð Þ, if τ ∈ J ,
ϕ τð Þ, if τ ∈ a − δ, a½ �,

(

ð30Þ

where ϖn,τðρÞ = ϖnðτ + ρÞ, ρ ∈ ½−δ, 0�, tends to ϖ∗

monotonically.

Proof. Take X =Cb = Cð½a − δ, b�,ℝÞ. Then, using Lemma
28, each compact chain C ⊂Cb admits the compatibility
property in k·k and ≤ such that C is Janhavi in Cb. On the
other side, K and H can be defined on Cb as follows:

K ϖð Þ τð Þ≔
F τ, ϖτð Þ, if τ ∈ J,
0, if τ ∈ a − δ, a½ �,

(
ð31Þ

H ϖð Þ τð Þ≔ I
ν,ψ
a+ ℍ τ, ϖτð Þ, if τ ∈ J,
ϕ τð Þ, if τ ∈ a − δ, a½ �:

(
ð32Þ
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According to the structure of integral, it is obvious that
K ,H : Cb ⟶Cb are well-defined. In addition, the studied
problem (1) can be reformulated by:

K ϖð Þ τð Þ +H ϖð Þ τð Þ = ϖ τð Þ, τ ∈ a − δ, b½ �: ð33Þ

To investigate the solutions’ existence to this operator
equation, we can sufficiently show that the operators K

and H satisfy all items of Theorem 9. We follow our argu-
ment split into five steps. ☐

Step I. K and H are nondecreasing on Cb.
For ϖ, ω ∈Cb with ϖτ ≥ ωτ, using (H1), we get

K ϖð Þ τð Þ =
F τ, ϖτð Þ, if τ ∈ J,

0, if τ ∈ a − δ, a½ �

(

≥
F τ, ωτð Þ, if τ ∈ J,

0, if τ ∈ a − δ, a½ �

(
=K ωð Þ τð Þ,

ð34Þ

for all τ ∈ ½a − δ, b�. It means thatK : Cb ⟶Cb is a nonde-
creasing operator.

Similarly, we obtain

H ϖð Þ τð Þ =
I
ν,ψ
a+ ℍ τ, ϖτð Þ, if τ ∈ J,

ϕ τð Þ, if τ ∈ a − δ, a½ �

8<
:

≥
I
ν,ψ
a+ ℍ τ, ωτð Þ, if τ ∈ J,

ϕ τð Þ, if τ ∈ a − δ, a½ �

8<
: =H ωð Þ τð Þ,

ð35Þ

for all τ ∈ ½a − δ, b�. Thus, it is concluded thatH : Cb ⟶Cb
is a nondecreasing operator.

Step II. K is a nonlinear D-contraction on Cb.
For ϖ, ω ∈Cb with ϖ ≥ ω and by (H2), we get that

Kϖ τð Þ −Kω τð Þj j ≤ F τ, ϖτð Þ − F τ, ωτð Þj j
≤Ψ ϖτ − ωτk kCδ

� �
≤Ψ ϖ − ωk kð Þ,

ð36Þ

∀τ ∈ ½a − δ, b�: By taking the supremum over τ, we get

Kϖ −Kωk k ≤Ψ ϖ − ωk kCb

� �
, ð37Þ

∀ϖ, ω ∈Cb, ϖ ≥ ω, where r >ΨðrÞ for r > 0: Therefore,
according to Definition 8, our result is derived.

Step III. H is partially continuous on Cb.
Regard fϖngn∈ℕ in a chain C∋ϖn ⟶ ϖ as n⟶∞.

Then, ϖn,s ⟶ ϖs for any s ∈ J letting n⟶∞. The continu-
ity of ℍ yields

lim
n⟶∞

Hϖnð Þ τð Þ =
1

Γ νð Þ lim
n⟶∞

ðτ
a
ψ′ sð Þ ψ τð Þ − ψ sð Þð Þν−1ℍ s, ϖn,sð Þds, if τ ∈ J,

ϕ τð Þ, if τ ∈ a − δ, a�

8><
>:

=
1

Γ νð Þ
ðb
a
ψ′ sð Þ ψ τð Þ − ψ sð Þð Þν−1 lim

n⟶∞
ℍ s, ϖn,sð Þds, if τ ∈ J,

ϕ τð Þ, if τ ∈ a − δ, a½ �

8><
>:

=
I
ν,ψ
a+ ℍ τ, ϖτð Þ, if τ ∈ J,

ϕ τð Þ, if τ ∈ a − δ, a½ �

8<
:

=Hϖ τð Þ,

ð38Þ
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∀τ ∈ ½a − δ, b�. Hence, Hϖn converges to Hϖ pointwise
on ½a − δ, b�.

In the following two cases, we prove that fHϖngn∈ℕ is an
equicontinuous sequence of functions in Cb.

Case A. Take τ1, τ2 ∈ J, with τ1 < τ2. Then,

H ϖnð Þ τ2ð Þ −H ϖnð Þ τ1ð Þj j
≤ I

ν,ψ
a+ ℍ τ2, ϖn,τ2

� �
− I

ν,ψ
a+ ℍ τ1, ϖn,τ1

� ��� ��
≤

1
Γ νð Þ

ðτ1
a
ψ′ sð Þ ψ τ1ð Þ − ψ sð Þð Þν−1 − ψ τ2ð Þð��

− ψ sð ÞÞν−1j ℍ s, ϖn,sð Þ�� ��ds
+ 1
Γ νð Þ

ðτ2
τ1

ψ′ sð Þ ψ τ2ð Þ − ψ sð Þð Þν−1 ℍ s, ϖn,sð Þ�� ��ds
≤

L
Γ ν + 1ð Þ ψ τ2ð Þ − ψ að Þð Þν − ψ τ1ð Þ − ψ að Þð Þνð

+ 2 ψ τ2ð Þ − ψ τ1ð Þð ÞνÞ,

ð39Þ

which tends to zero as τ1 ⟶ τ2:

Case B. For τ1, τ2 ∈ a − δ, a�. Then,

H ϖnð Þ τ2ð Þ −H ϖnð Þ τ1ð Þj j = ϕ τ2ð Þ − ϕ τ1ð Þj j⟶ 0, as τ1 ⟶ τ2:

ð40Þ

Clearly, if τ1 ∈ ½a − δ, a� and τ2 ∈ J such that τ1 ⟶ τ2 has
only one possibility that they are close to a at whichHðϖnÞ is
close to zero.

Thus,

H ϖnð Þ τ2ð Þ −H ϖnð Þ τ1ð Þj j⟶ 0, as τ1 ⟶ τ2, ð41Þ

uniformly ∀n ≥ 1. This proves that fHϖng is equi–continuous
on ½a − δ, b�. Thus, the pointwise convergence of fHϖng on
½a − δ, b� implies the uniform convergence, soHϖn converges
to Hϖ uniformly on ½a − δ, b�. Consequently, the selfmap H

possesses the partial continuity on Cb.

Step IV. H has the partial compactness property on Cb.
Regard the chain C in Cb and ω ∈HðCÞ. Then ∃ϖ ∈C∋

ω =Hϖ: Using hypothesis (H3), if τ ∈ ½a − δ, a�, we have

ω τð Þj j = Hϖð Þ τð Þj j ≤ ϕ τð Þj j ≤ ϕk kCδ
≤ ϕk kCb

: ð42Þ

Otherwise, if τ ∈ J, then

H ϖð Þ τð Þj j ≤ I
ν,ψ
a+ ℍ τ, ϖτð Þj j ≤MI

ν,ψ
a+ 1ð Þ τð Þ ≤ ψ τð Þ − ψ að Þð Þν

Γ ν + 1ð Þ M:

ð43Þ

Hence,

H ϖð Þk kCb
≤ ϕk kCb

+ ψ τð Þ − ψ að Þð Þν
Γ ν + 1ð Þ M ≔ R, ð44Þ

∀τ ∈ ½a − δ, b�. Thus, we obtain kωk ≤ kHϖk ≤ R for
any ω ∈HðCÞ. Thus, HðCÞ is a uniformly bounded sub-
set of Cb.

Let us now prove thatHðCÞ is an equi–continuous set in
Cb. Let τ1, τ2 ∈ J , with τ1 < τ2. Then, according to Step III
arguments, it is concluded that

ω τ2ð Þ − ω τ1ð Þj j = Hϖ τ2ð Þ −Hϖ τ1ð Þj j⟶ 0 as τ1 ⟶ τ2,
ð45Þ

uniformly for any ω ∈HðCÞ which illustrates the equi–conti-
nuity of HðCÞ in Cb. So, HðCÞ is compact in reference to
Arzelà-Ascoli criterion. As a result, the selfmap H : Cb ⟶
Cb admits the partial compactness property on Cb.

Step V. ϖ satisfies ϖ ≤Kϖ +Hϖ.
By (H5),W is a lower solution of the NFuDEq (1) defined

on ½a − δ, b�. Then, according to the lower solution definition,
we get

cD
v;ψ
a+ W τð Þ − F τ,Wτð Þ½ � ≤ℍ τ,Wτð Þ, τ ∈ J = a, b½ �,

W τð Þ ≤ ϕ τð Þ, τ ∈ a − δ, a½ �:

(

ð46Þ

Let us integrate the above inequality from a to τ, we
obtain

W τð Þ ≤
I
ν,ψ
a+ ℍ τ,Wτð Þ + F τ,Wτð Þ, if τ ∈ J,

ϕ τð Þ, if τ ∈ a − δ, a½ �:

8<
:

=KW τð Þ +HW τð Þ,
ð47Þ

∀τ ∈ ½a − δ, b�. Thus, W ≤KW +HW. Obviously, both
operators K and H satisfy all of the items of Theorem 9;
therefore, the operator equation Kϖ +Hϖ = ϖ has a solu-
tion ϖ∗ defined on ½a − δ, b�. Furthermore, the sequence
fϖng∞n=0 of successive approximations defined by (30) tends
to ϖ∗ monotonically. So, our proof is ended.

Remark 32. Above theorem’s conclusion also remains true if
the hypothesis (H5) is replaced with (H7) such that the NFu-
DEq (1) has an upper solution: y ∈Cb.

Similarly, its proof under this replaced condition can be
shown by the observation of the same arguments with some
modifications.
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Theorem 33. Let (H1), (H5), and (H6) be valid. Then, the
problem (1) has a unique solution ϖ ∗ defined on ½a − δ, b�
provided that ΩðRÞ < R, R > 0, where

Ω Rð Þ = Lℍ ψ bð Þ − ψ að Þð ÞνR
Γ ν + 1ð Þ +Ψ Rð Þ: ð48Þ

Moreover, the sequence fϖng of successive approxima-
tions defined by (30) converges monotonically to ϖ ∗.

Proof. First, the operator: G : Cb ⟶Cb is defined by

G ϖð Þ τð Þ≔ I
ν,ψ
a+ ℍ τ, ϖτð Þ + F τ, ϖτð Þ, if τ ∈ J,
ϕ τð Þ, if τ ∈ a − δ, a�,

(

ð49Þ

for τ ∈ ½a − δ, b�,. To prove this theorem, we establish the
satisfaction of all items of Theorem 10 forG in Cb. We know
that G is nondecreasing and continuous.

The details are similar as in the proof of Theorem 31, so
we omit them. Therefore, it is needed to be verified that G
is a partially D-contraction on Cb. To arrive at such an
aim, by taking ϖ, ω ∈Cb such that ϖ ≥ ω, if τ ∈ ½a − δ, a�, then
it is obvious that

G ϖð Þ τð Þ −G ϖð Þ τð Þj j = 0: ð50Þ

Otherwise, let τ ∈ J , it follows from (H1) and (H6), that

G ϖð Þ τð Þ −G �ϖð Þ τð Þj j
≤ I

ν,ψ
a+ ℍ τ, ϖτð Þ −ℍ τ, �ϖτð Þj j + F τ, ϖτð Þ − F τ, �ϖτð Þj j

≤ Lℍ ϖτ − �ϖτk kCδ
I
ν,ψ
a+ 1ð Þ τð Þ +Ψ ϖτ − �ϖτk kCδ

� �
≤
Lℍ ψ bð Þ − ψ að Þð Þν

Γ ν + 1ð Þ ϖτ − �ϖτk kCδ
+Ψ ϖτ − �ϖτk kCδ

� �
≤Ω ϖτ − �ϖτk kCδ

� �
,

ð51Þ

for all τ ∈ J , where ΩðRÞ < R, R > 0. Let us now take the
supremum over τ, we get

Gϖ −G�ϖk k ≤Ω ϖ − �ϖk kCb

� �
, ð52Þ

for all ϖ, �ϖ ∈Cb, with ϖ ≥ �ϖ. As a result, G is a partially
nonlinear D-contraction on Cb. In addition, by using
Theorem 31, it is proven that the given function x in
(H5) satisfies the operator inequality x ≤Gx on ½a − δ, b�.
Therefore, from Theorem 10, it is found a solution ϖ∗

uniquely for the NFuDEq (1), and fϖng defined by (30)
tends to ϖ∗ monotonically. ☐

4. Existence Result via Topological
Degree Theory

The existence problem of the NFuDEq (1) is investigated in
this section based on the Topological Degree Theory due to
Isaia [48]. Let us first introduce the following hypothesis for
convenience:

(M1) The functions F andℍ satisfy the following growth
conditions for constants Mi,Ni > 0, i = 1, 2, p ∈ ð0, 1Þ:

F t, ϖð Þj j ≤M1 ϖj jp +N1,
ℍ t, ϖð Þj j ≤M2 ϖj jp +N2,

ð53Þ

for each t ∈ J and each ϖ ∈ℝ.
(M2) For each τ ∈ J, and for each, ϖ, ω ∈ℝ, ∃ constants

LF, Lℍ > 0, provided

F τ, ϖð Þ − F τ, �ϖð Þj j ≤ LF ϖ − �ϖj j,
ℍ τ, ϖð Þ −ℍ τ, �ϖð Þj j ≤ Lℍ ϖ − �ϖj j:

ð54Þ

In view of Lemma 30, we consider two operators K ,
H : Cb ⟶Cb given by (31) and (32), respectively. Then,
we write the integral equation (27) as an operator equation:

Fϖ tð Þ =Kϖ tð Þ +Hϖ tð Þ, t ∈ a − δ, b½ �: ð55Þ

The continuity of F and ℍ shows that the operator F is
well-defined, and its fixed points are the same solutions of
the existing equation (27) in Lemma 30.

Lemma 34. If (M1) and (M2) hold, then the operator K is
Lipschitz with constant LF and satisfies

Kϖk k ≤ M1 ϖk kp +N1

� �
, for everyϖ ∈Cb: ð56Þ

Proof. Let ϖ, �ϖ ∈Cb, then we get

Kϖ τð Þ −K�ϖ τð Þj j = F τ, ϖð Þ − F τ, �ϖð Þj j ≤ LF ϖ − �ϖk k, ð57Þ

∀τ ∈ J. Let us take the supremum over τ, so we get

Kϖ −K�ϖk k ≤ LF ϖ − �ϖk k: ð58Þ

Hence, K : Cb ⟶Cb is a Lipschitzian on Cb with
Lipschitz constant LF. From Proposition 20,K is κ–Lipschitz
with constant LF. In addition, we get

Kϖ tð Þj j ≤ M1 ϖk kp +N1
� �

, ð59Þ

for every ϖ ∈Cb. This finishes the proof. ☐

Lemma 35. If (M1) holds, then H is continuous and satisfies
the growth condition

Hϖk k ≤ �M ϖk kp + �N , for everyϖ ∈Cb: ð60Þ
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Proof. Choose a bounded subset Dr = fϖ ∈Cb : kϖk ≤ rg ⊂
Cb and consider a sequence fϖng ∈Dr via ϖn ⟶ ϖ by let-
ting n⟶∞ in Dr . We shall prove that kHϖn −Hϖk⟶
0, letting n⟶∞. From the continuity of ℍ, it follows that
ℍðs, ϖnÞ⟶ℍðs, ϖÞ, as n⟶∞. In view of (M1), we get
jHϖnðτÞj ≤ λðτÞ, where

λ τð Þ =
ϕ τð Þj j, if τ ∈ a − δ, a½ �,
ψ τð Þ − ψ að Þð Þν
Γ ν + 1ð Þ M2r

p +N2ð Þ, if τ ∈ J ,

8><
>:

ð61Þ

which is Lebesgue’s integrable bounded function. The
Labesgue dominated convergence theorem ensures that ∥
Hϖn −Hϖ∥⟶0, letting n⟶ +∞, which confirms the
continuity of H .

Next, it is easy as above to deduce that

Hϖ τð Þj j ≤
ϕk kCb

, if τ ∈ a − δ, a½ �,
ψ bð Þ − ψ að Þð Þν
Γ ν + 1ð Þ

� �
M2 ϖk kp +N2
� �

, if τ ∈ J:

8><
>:

ð62Þ

Therefore,

Hϖk k ≤ ψ bð Þ − ψ að Þð Þν
Γ ν + 1ð Þ M2 ϖk kp +N2

� �
+ ϕk kCb

= �M ϖk kp + �N ,
ð63Þ

where �M = ðψðbÞ − ψðaÞÞν/Γðν + 1ÞM2 and �N = ðψðbÞ −
ψðaÞÞν/Γðν + 1ÞN2 + kϕkCb

. This completes the proof. ☐

Lemma 36. If (M1) holds, then the operatorH : Cb ⟶Cb is
compact. As a result, H is κ-Lipschitz with zero constant.

Proof. Take a bounded set �Ω ⊂Dr . We need to establish the
relative compactness of Hð�ΩÞ in Cb. For ϖ ∈ �Ω, with the
help of the estimate (63), we can obtain

Hϖk k ≤ �Mrp + �N , ð64Þ

which shows that HðΩÞ is uniformly bounded.
Now, we prove the equi–continuity of H . For τ ∈ J, we

can estimate the derivative operator using (24) as follows:

Hϖð Þ′ τð Þ�� �� ≤ I
ν−1,ψ
a+ ℍ τ, ϖ τð Þð Þj j

≤ M2 ϖk kp +N2
� �

I
ν−1,ψ
a+ 1ð Þ τð Þ

≤
ψ bð Þ − ψ að Þð Þν−1

Γ νð Þ M ϖk kp +N
� �

≔ ℓ:

ð65Þ

Hence, for each τ1, τ2 ∈ J with a < τ1 < τ2 < b, we get

Hϖð Þ τ2ð Þ − H 2ϖð Þ τ1ð Þj j ≤
ðτ2
τ1

Hϖð Þ′ sð Þ�� ��ds ≤ ℓ τ2 − τ1ð Þ,

ð66Þ

which tends to zero independently of ϖ as ðτ2 − τ1Þ⟶ 0. So,
H is equi–continuous. The equi–continuity for the case τ1,
τ2 ∈ ½a − δ, a� is obvious. From the foregoing arguments
along with Arzela-Ascoli theorem, we deduce thatH is com-
pact onDr . Thus, from Proposition 19,H is κ–Lipschitz with
zero constant. This completes our proof. ☐

Theorem 37. If (M1) and (M2) hold, then the NFuDEq (1)
has at least one solution ϖ ∈Cb provided that LF < 1, and
the set of the solutions is bounded in Cb.

Proof. Assume that K ,H ,F are the operators defined by
(31), (32) and (55), respectively, which all of them are
bounded and continuous, and also, by Lemma 34, K is κ–
Lipschitz with LF and by Lemma 36, H is κ–Lipschitz via
constant 0. Thus, by Proposition 18, F is κ–Lipschitz with
LF. Hence, F is strict κ–contraction with LF > 0. Since LF <
1, F is κ-condensing.

Now, let us consider the following set:

Θ = ϖ ∈Cb : there exists ς ∈ 0, 1½ � such that x = ςFϖf g:
ð67Þ

We will show that the set Θ is bounded. For ϖ ∈Θ, we
have ϖ = ςFϖ = ςðKðϖÞ +HðϖÞÞ, which implies that

ϖk k ≤ ς Kuk k + Hϖk kð Þ ≤ ς M1 ϖk kp +N1 + �M ϖk kp + �N
	 


= ς M1 + �M
� �

ϖk kp + N1 + �N
� �	 


=M ϖk kp +N ,
ð68Þ

whereM = ðM + �MÞ andN = ðN + �NÞ. IfΘ is unbounded in
Cb, in that case, we divide the obtained inequality by a≔ kϖk
and supposing a⟶∞, we get

1 ≤ lim
a⟶∞

Map +N

a
= 0, ð69Þ

which is impossible, and Θ is bounded. Accordingly, it is
found a fixed point for F which is interpreted as the solution
of the NFuDEq (1). This finishes the proof. ☐

Remark 38. If (M1) is represented for p = 1, then Theorem 37
is true so that M < 1:

5. Uniqueness Result and UH Stability

The uniqueness of the solution for the NFuDEq (1) will be
investigated below by using the standard Banach fixed point
theorem. Moreover, The UH stability of the NFuDEq (1) will
be also checked.
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Theorem 39. Suppose that assumption (M2) holds. Assume
that

Δ≔
ψ bð Þ − ψ að Þð Þν
Γ ν + 1ð Þ Lℍ + LF

� �
< 1: ð70Þ

Then, ∃ a unique solution for (1) on the interval ½a − δ, b�.

Proof. Define the set

U ≔ ϖ ∈Cb : ϖj a−δ,a½ � ∈Cδ, ϖjJ ∈C ;cDν
a+ϖ ∈C

n o
, ð71Þ

and the operator G : U ⟶U :

G ϖð Þ τð Þ≔ I
ν,ψ
a+ ℍ τ, ϖτð Þ + F τ, ϖτð Þ, if τ ∈ J,
ϕ τð Þ, if τ ∈ a − δ, a½ �:

(

ð72Þ

Notice that G is well defined. Indeed, for ϖ ∈U ,
τ↦GðϖÞðτÞ is continuous, for any τ ∈ a − δ, b�: In addition,
∀τ ∈ J, cD

a,ψ
a+ ½GðϖÞðτÞ − Fðτ, ϖτÞ� =ℍðτ, ϖτÞ exists, and it is

continuous too due to the continuity of ℍ and Lemma 26.
Now, we need to show that G is a contraction. If ϖ, �ϖ ∈U

and τ ∈ a − δ, a�, then, ∣GðϖÞðτÞ −Gð�ϖÞðτÞ ∣ equals to zero.
On the contrary, for τ ∈ J, by (M2), it is derived that

G ϖð Þ τð Þ −G �ϖð Þ τð Þj j
≤ I

ν,ψ
a+ ℍ τ, ϖτð Þ −ℍ τ, �ϖτð Þj j + F τ, ϖτð Þ − F τ, �ϖτð Þj j

≤ Lℍ ϖτ − �ϖτk kCδ
I
ν,ψ
a+ 1ð Þ τð Þ + LF ϖτ − �ϖτk kCδ

≤
ψ bð Þ − ψ að Þð Þν
Γ ν + 1ð Þ Lℍ + LF

� �
ϖτ − �ϖτk kCδ

≤
ψ bð Þ − ψ að Þð Þν
Γ ν + 1ð Þ Lℍ + LF

� �
ϖ − �ϖk kCb

,

ð73Þ

which implies

G ϖð Þ −G �ϖð Þk kCb
≤ Δ ϖ − �ϖk kCb

: ð74Þ

Since Δ < 1, the operator G is a contraction. Hence,
Banach fixed point theorem shows that G admits a unique
fixed point. This finishes the proof. ☐

Here, we discuss the UH and GUH stability types of (1).

Definition 40. The NFuDEq (1) is UH stable when ∃c ∈ℝ+ so
that ∀ε ∈ℝ+ and ∀�ϖ ∈Cb satisfying

cD
ν;ψ
a+

�ϖ τð Þ − F τ, �ϖτð Þ½ � −ℍ τ, �ϖτð Þ�� �� ≤ ε, τ ∈ J,
�ϖ τð Þ − ϕ τð Þj j ≤ ε, τ ∈ a − δ, a½ �,

(
ð75Þ

exactly one solution ϖ ∈Cb of (1) exists with

�ϖ − ϖk k ≤ cε: ð76Þ

Definition 41. The NFuDEq (1) is GUH stable if ∃ σ ∈
Cðℝ+,ℝ+Þ, σð0Þ = 0 so that ∀ε ∈ℝ+ and ∀�ϖ ∈Cb satisfying
(75), one and exactly one solution ϖ ∈Cb of (1) exists with

ϖ − �ϖk k ≤ σ εð Þ: ð77Þ

Remark 42. A function �ϖ ∈Cb is a solution of the inequality
(75) iff ∃ a function η ∈C such that

(1) jηðτÞj ≤ ε, τ ∈ J

(2) cD
ν;ψ
a+ ½�ϖðτÞ − Fðτ, �ϖτÞ� =ℍðτ, �ϖτÞ + ηðτÞ, τ ∈ J

Theorem 43. Suppose that (M2) and (70) hold. In this case,
the solution of (1) is UH and GUH stable.

Proof. Assume that each of these two members ε ∈ℝ+ and
�ϖ ∈Cb satisfy (75). Then, ∃η ∈C such that jηðτÞj ≤ ε, τ ∈ J ,
and

cD
ν;ψ
a+

�ϖ τð Þ − F τ, �ϖτð Þ½ � =ℍ τ, �ϖτð Þ + η τð Þ, τ ∈ J,
�ϖ τð Þ = ϕ τð Þ, τ ∈ a − δ, a½ �:

(
ð78Þ

Using Lemma 30, the NFuDEq (78) has a solution given
as

�ϖ tð Þ≔ I
ν,ψ
a+ ℍ τ, �ϖτð Þ + η tð Þ½ � + F τ, �ϖτð Þ, if τ ∈ J,
ϕ τð Þ, if τ ∈ a − δ, a½ �:

(

ð79Þ

☐

Theorem 44. Ensures the existence of a unique solution ϖ ∈
Cb of the NFuDEq (1) which satisfies

ϖ tð Þ≔ I
ν,ψ
a+ ℍ τ, ϖτð Þ + F τ, ϖτð Þ, if τ ∈ J ,
ϕ τð Þ, if τ ∈ a − δ, a½ �:

(

ð80Þ

Therefore, for any τ ∈ J , we get:

�ϖ τð Þ − ϖ τð Þj j
≤ I

ν,ψ
a+ ℍ τ, �ϖτð Þ −ℍ τ, ϖτð Þj j + I

ν,ψ
a+ η τð Þj j

+ F τ, �ϖτð Þ − F τ, ϖτð Þj j
≤

ψ τð Þ − ψ að Þð Þν
Γ ν + 1ð Þ Lℍ �ϖτ − ϖτk kCδ

+ ψ τð Þ − ψ að Þð Þν
Γ ν + 1ð Þ ε

+ LF �ϖτ − ϖτk kCδ

≤
ψ bð Þ − ψ að Þð Þν
Γ ν + 1ð Þ Lℍ + LF

� �
�ϖ − ϖk kCb

+ κε,

ð81Þ

10 Journal of Function Spaces



where κ = ðψðbÞ − ψðaÞÞν/Γðν + 1Þ: Therefore, we have
proved that

�ϖ − ϖk kCb
≤ Δ �ϖ − ϖk kCb

+ κε: ð82Þ

By the condition in Theorem 39, one can deduce that

�ϖ − ϖk kCb
≤

κ

1 − Δ
ε: ð83Þ

For c = κ/1 − Δ > 0, we infer that the solution of (1) is UH
stable. In a similar manner, it is shown the existence of σ ∈
Cðℝ>0,ℝ>0Þ by σðεÞ = κ/1 − Δε with σð0Þ = 0. Hence, the
solution of (1) is GUH stable.

6. Examples

Two illustrative examples are provided in this section to
apply and validate our obtained results.

Example 45. Let us consider the NFuDEq according to (1)
such that

cD
3/4;ln τð Þ
a+ ϖ τð Þ − F τ, ϖτð Þ½ � =ℍ τ, ϖτð Þ, τ ∈ J≔ 1, e½ �,

ϖ τð Þ = 0, τ ∈ 1 − δ, 1½ �,

(

ð84Þ

where
ψðτÞ = ln ðτÞ, a = 1, b = e, ν = 3/4,
and Fðτ, uτÞ, ℍðτ, uτÞ are given as

F τ, uð Þ = ln τð Þ cos uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100 + ln τð Þp ,ℍ τ, uð Þ = 1

t + 1ð Þ2 u +
ffiffiffiffiffiffiffiffiffiffiffiffi
1 + u2

p� �
:

ð85Þ

To explain Theorem 39, let us take ℍðτ, uÞ and Fðτ, uÞ
given by (85) and Fð1, u1Þ = 0. Clearly, the condition (M2)
holds with LF = 1/10 and Lℍ = 1/4: In addition, Δ ≈ 0:3720
< 1. Hence, all hypotheses of Theorem 39 are satisfied.
Therefore, it is found exactly one solution for the NFuDEq
(84) on ½1, e�.

Example 46. Consider the NFuDEq as follows:

cD
1/2;τ
a+ z τð Þ − F τ, zτð Þ½ � =ℍ τ, zτð Þ, τ ∈ J≔ 0, 1½ �,

z 0ð Þ = 0:

(
ð86Þ

Notice that

ψ τð Þ = τ, ϕ τð Þ = 0, a = 0, b = 1, ν = 1
2 : ð87Þ

To illustrate Theorem 37, let us take

ℍ τ, uτð Þ = 1
e −πτð Þ + 9

u τð Þj j
1 + u τð Þj j
� �

+ τ,

F τ, vτð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffi
3 + τ2

p
∣ v ∣

10 + 1 + τ2
� �

:

ð88Þ

It is obvious that

ℍ τ, uð Þ −ℍ τ, vð Þj j ≤ 1
10 u − vk kCb

,

F τ, uð Þ − F τ, vð Þj j ≤ 1
5 u − vk kCb

:

ð89Þ

Hence, (M2) also holds with Lℍ = 1/10, LF = 1/5. Further,
from the above-given data, we can easily calculate

ψ bð Þ − ψ að Þð Þν
Γ ν + 1ð Þ

� 
Lℍ = 0:1128: ð90Þ

On the contrary, ∀τ ∈ J, u ∈ℝ, we get

ℍ τ, uð Þj j ≤ 1 + 1
10 uj j, F τ, uð Þj j ≤ 2 + 1

5 uj j: ð91Þ

Hence, (M1) holds withM1 = 1/10,M2 = 1/5, p =N1 = 1,
and N2 = 2: In view of Theorem 37,

Θ = u ∈Cb : there exists ς ∈ 0, 1½ � such that u = ςKuf g ð92Þ

is the solution set, then

uk k ≤ ξ Kuk kCb
+ Huk kCb

� �
≤M uk kCb

+N : ð93Þ

Using the Matlab program, we have

uk kCb
≤

N

1 −M
= 4:8298: ð94Þ

By Theorem 37, the NFuDEq (86) with the data (87) and
(88) has at least a solution.

7. Conclusion

In this paper, we considered and studied a fractional neutral
functional delay differential equation involving a ψ-Caputo
fractional derivative on a partially ordered Banach space.
To do this, we proved the existence results with the help of
the Dhage approximation technique, and then by topological
degree method for condensing maps. We established the
uniqueness result by the well-known Banach contraction
principle. The different kinds of Hyers-Ulam stability were
checked in the sequel. Finally, we supported the validity of
our findings by providing two examples. This study can be
extended to more general structures by using generalized
fractional operators with singular or nonsingular kernels
due to their high accuracy.
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In this paper, we introduce a matrix version of the generalized heat polynomials. Some analytic properties of the generalized heat
matrix polynomials are obtained including generating matrix functions, finite sums, and Laplace integral transforms. In addition,
further properties are investigated using fractional calculus operators.

1. Overture

In the past few decades, matrix versions of the orthogonal
polynomials have attracted a lot of research interest due to
their close relations and various applications in many areas
of mathematics, statistics, physics, and engendering, for
example, see [1–11].

The recent advances of fractional order calculus (FOC)
are dominated by its multidisciplinary applications. More-
over, special functions of fractional order calculus have many
applications in various areas of mathematical analysis,
probability theory, control systems, and engineering (see,
for example, [12–15]).

Moreover, the development of fractional calculus associ-
ated with special matrix functions and polynomials has been
investigated by many researchers, for example, the recent
works [16–22].

Among these classical polynomials are the heat polyno-
mials (also designated as Temperature polynomials) that
are polynomial solutions of the heat equation and also are
particularly useful in solving the Cauchy problem (see [23–
26]). Special functions, such as the confluent hypergeometric
function, integral error functions, and Laguerre polynomials,
have a close link with the generalized heat polynomials intro-

duced [27–29]. Further, the generalized heat polynomials are
mainly used to construct an approximate solution of a given
problem as a linear combination of the polynomials. Such
solution satisfies the governing equation and other equations
(cf., e.g., [30–35]).

In our investigation here, we define a generalized heat
matrix polynomial ℍℙmðT ; ξ, vÞ. We then establish certain
generating matrix functions, finite sum formulas, Laplace
transforms, and fractional calculus operators for these poly-
nomials in Sections 3, 4, 5, and 6, respectively. Further, some
interesting special cases and concluding remarks of our main
results are pointed out in Section 7.

2. Preliminaries

In this section, we give some basic definitions and terminol-
ogies; for more details, we can be referred to [36, 37].

Here and through the work, let ℂd×d be the vector space
of all the square matrices of order d ∈ℕ, (ℕ is the set of all
positive integers) whose entries are in the set of complex
numbers ℂ. For a E ∈ℂd×d , let σðEÞ be the set of all eigen-
values of E which is called the spectrum of E. We have
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μ Eð Þ≔max R ξð Þ: ξ ∈ σ Eð Þf g and ~μ Eð Þ≔min R zð Þ: z ∈ σ Eð Þf g,
ð1Þ

which imply ~μðEÞ = −μð−EÞ. Here, μðEÞ is called the spectral
abscissa of E, and the matrix E is said to be positive stable if
~μðEÞ > 0. Further, let I and 0 denote the identity and zero
matrices corresponding to a square matrix of any order,
respectively.

If E is a positive stable matrix in ℂd×d , then the
gamma matrix function ΓðEÞ is well defined as follows
(cf., e.g., [11, 38, 39]):

Γ Eð Þ =
ð∞
0
e−z zE−I dz, zE−I ≔ exp E − Ið Þ ln zð Þ: ð2Þ

Moreover, if E is a matrix in ℂd×d which gratifies

E + nI is invertible for every integer n ∈ℕ0 =ℕ ∪ 0f g, ð3Þ

then ΓðEÞ is invertible, its inverse coincides with Γ−1ðEÞ.
Under condition (3), we can write the following Pochham-
mer matrix symbol

Eð Þn = E E + Ið Þ⋯ E + n − 1ð ÞIð Þ = Γ E + nIð ÞΓ−1 Eð Þ n ∈ℕð Þ:
ð4Þ

Let r, k ∈ℕ0. Also let ðSÞr and ðQÞk be arrays of r
commutative matrices S1, S2,⋯, Sr and k commutative
matrices Q1,Q2,⋯,Qk in ℂd×d , respectively, such that Qk
+ nI are invertible for 1 ≤ d ≤ k and all n ∈ℕ0. Then, the
generalized hypergeometric matrix function rFk ððSÞr ;
ðQÞk ; zÞðz ∈ℂÞ can be defined by (see, e.g., [11, 39])

rFk Sð Þr ; Qð Þk ; z
� �

= 〠
∞

s=0

Yr
j=1

Sj
� �

s

Yk
i=1

Qið Þs
� �−1 zs

s!
: ð5Þ

In particular, the hypergeometric matrix function 2F1
ðS, P ; C ; zÞ ≡ FðS, P ; C ; zÞ is defined by

F R, P ; C ; zð Þ = 〠
∞

s=0
Rð Þs Pð Þs Cð Þ−1s

zs

s!
, ð6Þ

for matrices R, P, C in ℂd×d such that C + nI is invertible for
all n ∈ℕ0. Also, note that for r = 1, k = 0 in (9), we have the
Binomial type matrix function 1F0ðR;−;zÞ as follows:

1F0 R;−;zð Þ = 1 − zð Þ−R = I + Rz + R R + Ið Þz2
2! +⋯+ Rð Þnzn

n!
+⋯, zj j < 1:

ð7Þ

Let E be a positive stable invertible matrix in ℂd×d: Then,
the nth Laguerre matrix polynomial is defined in the form
(see, e.g., [11, 40])

LEn zð Þ = 〠
n

m=0

−1ð Þmzm
m! n −mð Þ! S + Ið Þn E + Ið Þ−1m

= E + Ið Þn
n! 1F1 −nI ; E + I ; zð Þ, n ∈N0:

ð8Þ

The Laplace transform of f ðξÞ is defined by [7].

L f ξð Þ ; λf g =
ð∞
0
e−λξ f ξð Þdξ,R λð Þ > 0, ð9Þ

provided that the improper integral exists.

Lemma 1. (see [7]). Let S be a positive stable invertible matrix
in ℂd×d . Then, we have

L ξS ; λ
n o

= λ− S+Ið ÞΓ S + Ið Þ, Re λð Þ > 0: ð10Þ

3. Generalized Heat Matrix Polynomial and
Generating Matrix Functions

A generalized heat matrix polynomial is defined in (11)
below; then, a family of generating matrix functions are
proposed, see Theorem 4 and Theorem 8 of this section.

Definition 2. Let T be a positive stable matrix in the complex
space Cd×d satisfying the spectral condition (3). Then, we
define a generalized heat matrix polynomial of degree m ∈
ℕ0 in the following explicit form:

ℍℙm T ; ξ, vð Þ = 〠
m

s=0
22s

m

s

 !
Γ T + m + 1

2

� �
I

� �
Γ−1

� T + m − s + 1
2

� �
I

� �
ξ2m−2s vs

=m! 4vð Þm LT−
1
2I

m
−ξ2

4v

 !
; v > 0,

ð11Þ

where LTmðξÞ is the Laguerre matrix polynomial in (8).

Remark 3. Note that

ℍℙm T ; ξ, vð Þ = 4vð Þm T + 1
2 I

� �
m
1F1 −mI, T + 1

2 I ;
−ξ2

4v

 !
,

ð12Þ

and that for the scalar case d = 1, taking T = a and a > 0, the
mth polynomial ℍℙmða ; ξ, vÞ coincides with the classical
scalar generalized heat polynomial, see [24, 26, 33]. Further,
the ordinary heat polynomial defined in [23], when T = 0;
ℍℙmð0 ; ξ, vÞ = υ2mðξ, vÞ:

Theorem 4. Let ξ ∈ℂ, v > 0, m ∈ℕ0, jξ2tj < j1 − 4vtj and T
and R be positive stable matrices in Cd×d such that T + nI is
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invertible for all n ∈ℕ0: A generating matrix function of ℍ
ℙmðT ; ξ, vÞ is

〠
∞

m=0
T + 1

2
I

� �
m

� 	−1
Rð Þmℍℙm T ; ξ, vð Þ tm

m!

= 1 − 4vtð Þ−R1F1 R, T + 1
2
I ; ξ2t

1 − 4vt

 !
:

ð13Þ

Proof. For convenience, suppose that the left-hand side of
(13) is denoted by J. According to the series expression of
(11) and (7) to J, we find that

J = 〠
∞

m=0
T + 1

2 I
� �

m

� 	−1
Rð Þm ℍℙm T ; ξ, vð Þ tm

m!

= 〠
∞

m=0
〠
m

s=0

Rð Þm T + 1/2Ið Þm−s
� �−1
s! m − kð Þ! ξð Þ2m−2s 4vð Þstm

= 〠
∞

m=0
Rð Þm T + 1

2 I
� �

m

� 	−1 ξ2t

 �m
m!

:〠
∞

s=0
R +mIð Þs

ξvtð Þs
s!

= 1 − 4vtð Þ−R 〠
∞

m=0
Rð Þm T + 1

2 I
� �

m

� 	−1 ξ2t/1 − 4vt

 �m

m!
:

ð14Þ

Upon using the relation (6), the last equality evidently
leads us to the required result.

Corollary 5. For ℍℙmðT ; ξ, vÞ, the following generating
matrix function holds true

〠
∞

m=0
T + 1

2
I

� �
m

� 	−1
ℍℙm T ; ξ, vð Þ t

m

m!

= exp 4vtð Þ0F1 −,T + 1
2
I ; ξ2t

� �
:

ð15Þ

Remark 6. The Bessel matrix function JRðzÞ, for a positive
stable matrix R ∈ Cd×d , is expressible in terms of hypergeo-
metric matrix function as follows (see, e.g., [11, 41])

JR wð Þ = w
2

 �R

Γ−1 R+Ið Þ0F1 −;R + I, −w
2

4

� �
: ð16Þ

Thus, by applying the relation (16) to (15) in Corollary 5,
we can deduce the following Corollary.

Corollary 7. For ℍℙmðT ; ξ, vÞ, the following holds true

〠
∞

m=0
T + 1

2
I

� �
m

� 	−1
ℍℙm T ; ξ, vð Þ t

m

m!
= Γ T + 1

2
I

� �� �

� iξ
ffiffi
t

p
 �− T−1
2Ið Þ exp 4vtð Þ JT−1

2I
2iξ

ffiffi
t

p
 �
:

ð17Þ

Theorem 8. Let ξ ∈ℂ, v > 0,m, l ∈ℕ0 and T be a positive sta-
ble matrix in Cd×d such that T + nI is invertible for all n ∈ℕ0:
The following relation holds true

〠
∞

m=0
ℍℙm+l T ; ξ, vð Þ t

m

m!
= 1 − 4vtð Þ− T+ l+1

2ð ÞIð Þ exp

� ξ2t
1 − 4vt

 !
ℍℙm+l T ; ξffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4vt
p , v

� �
:

ð18Þ

Proof. Follows by induction or by the successive application
of Theorem 4 when R = ðT + 1/2IÞ: The details are omitted.

Corollary 9. For l = 0 in Theorem 8, the following holds true

〠
∞

m=0
ℍℙm T ; ξ, vð Þ t

m

m!
= 1 − 4vtð Þ− T+1

2Ið Þ exp ξ2t
1 − 4vt

 !
:

ð19Þ

Remark 10. The special cases of (18) and (19) when d = 1 are
seen to yield the classical generating functions of the general-
ized Heat polynomials (see [24, 33]).

4. Finite Sums

Here, various finite sums ofℍℙmðT ; ξ, vÞ can be obtained in
the following results.

Theorem 11. Let ξ, z ∈ℂ, v > 0, m ∈ℕ0, and T be a positive
stable matrix in Cd×d such that T + nI is invertible for all n
∈ℕ0: Then, we have

ℍℙm T ; ξz, vð Þ = 〠
m

s=0

n

k

 !
T + 1

2
I

� �
m

T + 1
2
I

� �
s

� 	−1

� 4v 1 − z2
� � �m−s z2s ℍℙs T ; ξz, vð Þ:

ð20Þ

Proof. From (15) and the following fact

e4vt0F1 ;T + 1
2 I ; ξ

2z2t
� �

= e4vt 1−z2ð Þ+4vz2t
0F1 ;T + 1

2 I ; ξ
2z2t

� �
:

ð21Þ

We thus find that

〠
∞

m=0
〠
∞

s=0
ℍℙm T ; ξ, vð Þ T + 1

2 I
� �

s

� 	−1 4v 1 − z2
� � �m z2t

� �s
m!s!

= 〠
∞

m=0
〠
m

s=0

4v 1 − z2
� � �m−s z2t

� �s
m − sð Þ!s! T + 1

2 I
� �

s

� 	−1
ℍℙm T ; ξ, vð Þ:

ð22Þ

Comparing the coefficient of tm on both side, we thus get
the required a finite sum formula (20).
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Theorem 12. Let ξ ∈ℂ, v > 0, m ∈ℕ0, also let T and R be
positive stable matrices in Cd×d such that T + nI and R + nI
are invertible for all n ∈ℕ0: Then, we have

ℍℙm T ; ξ, vð Þ = T + 1
2
I

� �
m

Rð Þm
� �−1 〠m

s=0

n

s

 !
T − R + 1

2
I

� �
s

� T + 1
2
I

� �
s

� 	−1
×ℍℙs T ; iξ, vð Þℍℙm−s

� 2R − T − I ; ξ, vð Þ:
ð23Þ

Proof. By using the series (11) and Theorem 4 with applying
to Kummer’s matrix formula (see [5]), we observe that

〠
∞

m=0
T + 1

2 I
� �

m

� 	−1
Rð Þmℍℙm T ; ξ, vð Þ t

m

m!

= 1 − 4vtð Þ−R exp ξ2t
1 − 4vt

 !
1

F1 T − R + 1
2 I, T + 1

2 I ;
−ξ2t
1 − 4vt

 !

= 1 − 4vtð Þ− 2R−T−Ið Þ+1
2I exp ξ2t

1 − 4vt

 !
1 − 4vtð Þ− T−R+1

2Ið Þ
1F1

· T − R + 1
2 I, T + 1

2 I ;
−ξ2t
1 − 4vt

 !

= 〠
∞

m=0

ℍℙm 2R − T − I ; ξ, vð Þ
m!

tm 〠
∞

s=0
T − R + 1

2 I
� �

s

· T + 1
2 I

� �
s

� 	−1 ℍℙm T ; iξ, vð Þ
m!

ts:

ð24Þ

Equating the coefficient of tm on both sides, we thus arrive at
the desired result (23).

5. Laplace Transforms

Here, Laplace integral transforms of the generalized heat
matrix polynomials are derived as follows.

Theorem 13. Let ξ ∈ℂ, v > 0, RðλÞ > 0, m ∈ℕ0. Also, let T
and A be a positive stable matrices in Cd×d such that T + nI
is invertible for all n ∈ℕ0: The following Laplace transform
formula hold

L uAℍℙm T ; ξ
ffiffiffi
u

p
, v

� �
: λ

 �
= 4vð Þm T + 1

2
I

� �
m

λ− A+Ið ÞΓ

� A + Ið Þ2F1 −mI,A + I ; T + 1
2
I ; −ξ

2

4vλ

 !
:

ð25Þ

Proof.Making a particular use of (9) with (11), (6) and apply-
ing to Lemma 1, yields our desired result (25) in Theorem 13.
The details are omitted.

A similar procedure yields the following Laplace integral
transforms. So we prefer to omit the proofs.

Theorem 14. Let ξ ∈ℂ, v > 0, RðλÞ > 0, m ∈ℕ0. Also, let T
and A be a positive stable matrices in Cd×d such that T + nI
is invertible for all n ∈ℕ0: The following Laplace transform
formula hold

L uAℍℙm T ; ξu, vð Þ: λ �
= 4vð Þm T + 1

2
I

� �
m

λ− A+Ið ÞΓ A + Ið Þ3F1

· −mI, 1
2

A + Ið Þ, 1
2

A + 2Ið Þ ; T + 1
2
I ; −ξ

2

vλ2

 !
:

ð26Þ

Theorem 15. Let ξ ∈ℂ, v > 0, RðλÞ > 0, m ∈ℕ0. Also, let T
and A be a positive stable matrices in Cd×d such that T + nI
is invertible for all n ∈ℕ0: The following Laplace transform
formula hold

L uAℍℙm T ; u, vð Þ: λ �
= 4vð Þm T + 1

2
I

� �
m

λ− A+Ið Þ Γ A + Ið Þ3F1

· −mI, 1
2

A + Ið Þ, 1
2

A + 2Ið Þ ; T + 1
2
I ; −1

vλ2

� �
:

ð27Þ

The above Theorems lead to the following special cases.

Corollary 16. For T is a positive stable matrix in Cd×d , and
RðλÞ > 0, then we have the following Laplace transforms

L uT−
1
2Iℍℙm T ; ξ

ffiffiffi
u

p
, v

� �
: λ

n o

= 4vð Þm λ− A+1
2ð Þ Γ A + m + 1

2

� �
I

� �
1 + ξ2

4vλ

 !m

,

L u2T−Iℍℙm T ; ξu, vð Þ: λ �

= 4vð Þm T + 1
2
I

� �
m

λ−2TΓ 2Tð Þ2F0 −mI, T ;−;−ξ
2

vλ2

 !
,

L u2T−Iℍℙm T ; u, vð Þ: λ �
= 4vð Þm T + 1

2
I

� �
m

λ− 2Tð ÞΓ 2Tð Þ3F1 −mI, T ;−; −1
vλ2

� �
:

ð28Þ

6. Fractional Calculus Approach

Here, we consider the Riemann. Liouville fractional integral
and derivative operators Iγ and Dγ

z of order γ ∈ C,RðγÞ > 0,
respectively (see, for details, [19])

Iγ f τð Þð Þ zð Þ = 1
Γ γð Þ

ðz
0
f τð Þ z − τð Þγ−1dτ, ð29Þ

where f ðτÞ is a function of τ and some square matrices so
that this integral converges.
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Dγ
z f zð Þf g =

1
Γ −γð Þ

ðz
0
z − τð Þ−γ−1 f τð Þdτ, R γð Þ < 0ð Þ,

dn

dzn
Dγ−n
z f zð Þf gð Þ, n − 1 ≤R γð Þ < n n ∈Nð Þð Þ,

8>><
>>:

ð30Þ

where

Dγ
z zβ
n o

= Γ β + Ið Þ
Γ β − γ − 1ð ÞIð Þ z

β−γ R βð Þ > −1: ð31Þ

It is noted in passing that (29) and (30) are applied in
recent works, for example, (see [16–22]).

Theorem 17. For the generalized heat matrix polynomials of
degreem ∈ℕ0, the following fractional integral operator holds
true:

Iγ ξT−
1
2Iℍℙm T ;

ffiffiffi
ξ

p
, v


 �n o
= Γ T + m + 1

2

� �
I

� �
Γ−1

� T + γ +m + 1
2

� �
I

� �

× ξT+ γ−1
2ð ÞIℍℙm T + γI ;

ffiffiffi
ξ

p
, v


 �
:

ð32Þ

Proof. From (29) and (11), we have

Iγ ξT−
1
2I ℍℙm T ;

ffiffiffi
ξ

p
, v


 �n o
= 1
Γ γð Þ

ðξ
0
ξ − τð Þγ−1 τT−1

2I ℍℙm

� T ;
ffiffiffi
τ

p
, v

� �
dτ:

ð33Þ

Setting τ = ξη and after a simplification, we get

Iγ ξT−
1
2I ℍℙm T ;

ffiffiffi
ξ

p
, v


 �n o

= ξT+ γ−1/2ð ÞI

Γ γð Þ
ð1
0
ηT−

1
2I 1 − ηð Þγ−1 ℍℙm T ;

ffiffiffiffiffi
ξη

p
, v


 �
dη

= ξT+ γ−1
2ð ÞI 4vð Þm T + 1

2 I
� �

m

〠
m

s=0
−mIð Þs T + 1

2 I
� �

s

� 	−1
Γ

· T + s + 1
2

� �
I

� �
× Γ−1 T + s + γ + 1

2

� �
I

� � −
ffiffiffi
ξ

p
 �2
/4v

� �s

s!
,

ð34Þ

whose last summation, in view of (11), is easily seen to
arrive at the expression in (32). This completes the proof of
Theorem 17.

Theorem 18. For the generalized heat matrix polynomials
ℍℙmðT ; ξ, vÞ, we have the following formula

〠
∞

m=0
T + 1

2
I

� �
m

� 	−1 βð Þm
γð Þm

ℍℙm T ; ξ, vð Þ t
m

m! 1
F1 γ − β ; γ +m ; 4vtð Þ

= exp 4vtð Þ1F1 βI ; T + 1
2
I ; ξ2t

� �
,R βð Þ > 0,R γð Þ > 0:

ð35Þ

Proof. According to (15), we find that

exp −4vtð Þ 〠
∞

m=0
T + 1

2 I
� �

m

� 	−1
ℍℙm T ; ξ, vð Þ tm

m!

= 0F1 −;T + 1
2 I ; ξ

2t
� �

:

ð36Þ

Assume that the left-hand side of (35) be denoted by J.
Multiply the left-hand side (35) by tβ−1 and applying the
relation (31), we get

J = Γ βð Þ
Γ γð Þ t

γ−1 〠
∞

m=0
〠
∞

s=0
T + 1

2 I
� �

m

� 	−1
ℍℙm

� T ; ξ, vð Þ 4vð Þs −1ð Þs βð Þm+s t
m+s

γð Þm+s s!m!

= Γ βð Þ
Γ γð Þ t

γ−1 〠
∞

m=0
T + 1

2 I
� �

m

� 	−1
ℍℙm T ; ξ, vð Þ βð Þmtm

γð Þm m! 1
F1

� β +m ; γ + 1
2 ;−4vt

� �
:

ð37Þ

Invoking Kummer’s matrix transformation [5] leads to

J = Γ βð Þ
Γ γð Þ tγ−1 exp −4vtð Þ 〠

∞

m=0
T + 1

2 I
� �

m

� 	−1
ℍℙm

� T ; ξ, vð Þ βð Þm tm

γð Þm m! 1
F1 γ − β ; γ +m ; 4vtð Þ:

ð38Þ

It is easy to multiply right-hand side of (35) by tβ−1 and

applying the fractional differentiation operator Dβ−γ
t from

(31), whereupon this completes the establishment of the
Theorem 18.

7. Concluding Remarks

In [23], Rosenbloom and Widder investigated expansions of
solutions uðx, tÞ of the heat equation uxx = ut in series of
polynomial solutions υnðx, tÞ: Further, Haimo and Markett
[33, 34] discussed the generalized heat equation

Δxu x, tð Þ = ∂
∂t

u x, tð Þ, ð39Þ

where Δx hðxÞ = h′′ðxÞ + ð2ν/xÞh′ðxÞ, ν is a fixed positive
number and they introduced the generalized heat polynomial
solution of (39) as
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ℙn,ν x, tð Þ = 〠
n

j=0
22j

n

j

 !
Γ ν + 1/2 + nð Þ

Γ ν + 1/2 + n − jð Þ x
2n−2jt j: ð40Þ

Note that ℙn,0ðx, tÞ = υ2nðx, tÞ is the ordinary heat poly-
nomials of even order. Also, ℙn,0ðx,−1Þ =H2nðx/2Þ is the
Hermite polynomials of even order.

Recently, many studies and extensions of the well-known
special matrix polynomials have been in a focus of increasing
attention leading to new and interesting problems. In this
perspective, we defined the generalized heat matrix polyno-
mials. Also, we have given some of their main properties,
namely, the generating matrix functions, finite sum formulas,
Laplace integral transforms, and fractional calculus opera-
tors. Further, This study is assumed to be a generalization
of the scalar cases [27, 33, 34] to the matrix setting. In addi-
tion, this approach allows to derive several new integral and
differential representations that can be used in theoretical,
applicable aspects like the boundary value problems and the
numerical algorithms. Additional research and application
on this topic is now under preparation and will be presented
in forthcoming works.
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The purpose of this work is to introduce a new class of implicit relation and implicit type contractive condition in metric spaces
under w-distance functional. Further, we derive fixed point results under a new class of contractive condition followed by three
suitable examples. Next, we discuss results about weak well-posed property, weak limit shadowing property, and generalized w
-Ulam-Hyers stability of the mappings of a given type. Finally, we obtain sufficient conditions for the existence of solutions for
fractional differential equations as an application of the main result.

1. Introduction and Preliminaries

In 1996, Kada et al. [1] introduced the concept of a w-dis-
tance on a metric space and proved a generalized Caristi fixed
point theorem, Ekeland’s ε-variational principle, and the
nonconvex minimization theorem according to Mizoguchi
and Takahashi [2].

Definition 1 (see [1]). Let ðΞ, dÞ be a metric space. A function
ω : Ξ × Ξ⟶½0,∞Þ is called a w-distance on Ξ if it satisfies
the following properties:

(W1) ωðϑ, μÞ ≤ ωðϑ, νÞ + ωðν, μÞ for any ϑ, ν, μ ∈ Ξ
(W2) ω is lower semicontinuous in its second variable, i.e.,

if ϑ ∈ Ξ and νn⟶ν ∈ Ξ, then ωðϑ, νÞ ≤ liminfn⟶∞ωðϑ, νnÞ
(W3) For each ε > 0, there exists a δ > 0 such that ωðμ,

ϑÞ ≤ δ and ωðμ, νÞ ≤ δ imply dðϑ, νÞ ≤ ε

The following examples show that a w-distance is not
necessarily a metric.

Example 1.

(1) Let ðΞ, dÞ be a metric space and c > 0. Define w1ðϑ,
νÞ = cdðϑ, νÞ and w2ðϑ, νÞ = c for all ϑ, ν ∈ Ξ. Then,
w1 and w2 satisfy (W1)–(W3). Obviously, w2 is not
a metric since w2ðϑ, ϑÞ = c ≠ 0 for any ϑ ∈ Ξ

(2) Consider ℝ as a metric space with the usual metric.
Define

w3 ϑ, νð Þ = νj j for every ϑ, νð Þ ∈ℝ ×ℝ ð1Þ

Then, w3 is a w-distance on ℝ which is not a metric
(since it is not symmetric). Note that ðϑnÞ = ð1, 1, 1,⋯Þ
is a convergent sequence in ℝ but w3ðϑn, ϑmÞ = 1 for all
m, n ∈ℕ.

To prove the main theorem, we need the following
lemma, proved by Kada et al. [1].
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Lemma 2. Let ðΞ, dÞ be a metric space and let ω be a w-dis-
tance on Ξ. Suppose that fϑng and fνng are sequences in Ξ,
fαng and fβng are sequences in ½0,∞Þ converging to 0, and
let ϑ, ν, μ ∈ Ξ. Then, the following assertions hold.

(i) If ωðϑn, νÞ ≤ αn and ωðϑn, μÞ ≤ βn for all n ∈ℕ, then
ν = μ. In particular, if ωðϑ, νÞ = ωðϑ, μÞ = 0, then
ν = μ

(ii) If ωðϑn, νnÞ ≤ αn and ωðϑn, νÞ ≤ βn for all n ∈ℕ, then
fνng converges to ν

(iii) If ωðϑn, ϑmÞ ≤ αn for all n,m ∈ℕ with m > n, then
fϑng is a Cauchy sequence

(iv) If ωðν, ϑnÞ ≤ αn for all n ∈ℕ, then fϑng is a Cauchy
sequence

Lemma 3 (see [1, 3]). Let ω be a w-distance on a metric space
ðΞ, dÞ and fϑng be a sequence in Ξ such that for each ε > 0
there exists Nε ∈ℕ such that m > n >Nε implies ωðϑn, ϑmÞ
< ε, i.e., limm,n?∞ωðϑn, ϑmÞ = 0. Then, fϑng is a Cauchy
sequence.

Recall that the set Oðθ0 ;IÞ = fInθ0 : n = 0, 1, 2,⋯g is
called the orbit of the self-map I at the point θ0 ∈ Ξ.

Definition 4. Let ðΞ, dÞ be metric spaces and I : Ξ⟶Ξ be a
mapping. Then,

(1) FixðIÞ = fu ∈ Ξ ∣ u =Iug (the set of fixed points of
I)

(2) a mappingI is called a Picard operator if there exists
u ∈ Ξ such that FixðIÞ = fug and fInxg converges
to u, for all x ∈ Ξ

(3) [4] a metric space Ξ is said to beI-orbitally complete
if every Cauchy sequence contained in Oðx ;IÞ (for
some x in Ξ) converges in Ξ

(4) a mapping I is said to be orbitally U-continuous if,
for some U ⊂ Ξ × Ξ, the following condition holds:
for any x ∈ Ξ and a strictly increasing sequence fnig
of positive integers

lim
i⟶∞

Inix = z ∈ Ξ, ð2Þ

and ðInix, zÞ ∈U for any i ∈ℕ imply that

lim
i⟶∞

Ini+1x =Iz ð3Þ

(5) I is called orbitally continuous if, for any x ∈ Ξ and a
strictly increasing sequence fnig of positive integers,
Inix⟶z ∈ Ξ as i⟶∞ implies that Ini+1x⟶Iz
as i⟶∞

In [5], Samet et al. defined the notion of α-admissible
mapping which was further sharpened by Karapinar et al.
[6] and extended in [7].

Definition 5. For a set Ξ ≠∅, let α : Ξ × Ξ⟶ℝ+ and I : Ξ
⟶Ξ be two mappings. Then, I is said to be

(i) [5] α-admissible if

ν, ϑ ∈ Ξwith α ν, ϑð Þ ≥ 1⇒ α Iν,Iϑð Þ ≥ 1 ð4Þ

(ii) [6] triangular α-admissible if I is α-admissible and

α ν, ϑð Þ ≥ 1 and α ϑ, μð Þ ≥ 1 imply α ν, μð Þ ≥ 1 ð5Þ

Lemma 6 (see [6]). Let I : Ξ⟶Ξ be a triangular α-admis-
sible mapping. Assume that there exists ν0 ∈ Ξ such that
αðν0,Iν0Þ ≥ 1. Define a sequence fνng by νn+1 =Iνn for
n ∈ℕ∗. Then, αðνn, νmÞ ≥ 1 for all m, n ∈ℕ with n <m.

Similarly, we can state and prove the following lemma.

Lemma 7. Let I : Ξ⟶Ξ be a triangular α-admissible map-
ping. Assume that there exists ν0 ∈ Ξ such that αðIν0, ν0Þ ≥ 1.
Define a sequence fνng by νn+1 =Iνn for n ∈ℕ∗. Then,
αðνn, νmÞ ≥ 1 for all m, n ∈ℕ with n >m.

To the best of our knowledge, there is no fixed point
result in the literature which has been derived by implicit
type contractive relation in a metric space under w-dis-
tance. Also, w-distance is not necessarily a metric (examples
are given above). Motivated by this fact, there is a need for
introducing such type of contractive conditions. With this
in mind, in Section 2, we introduce the notion of a new
implicit relation and ω-implicit contractive mapping in the
respective structure. Then, we establish unique fixed point
results under aforesaid implicit contractive condition for α
-admissible and orbitally continuous mappings on orbitally
complete spaces. We demonstrate the results by three illus-
trative examples. We note that the symmetry condition and
full completeness of the underlying space are not required.
In Section 4, some new results on weak well-posed property,
weak limit shadowing property, and generalized w-Ulam-
Hyers stability of mappings of the mentioned type are dis-
cussed. In Section 4, a sufficient condition for the existence
of solutions for fractional differential equations as an applica-
tion of the main result is given.

2. Implicit Relation for w-Distance on
Metric Spaces

In this section, we introduce a modified version of implicit
relation and examples discussed in [8, 9].

Let Ψ be the set of all continuous functions ψ : ℝ6
+⟶ℝ

satisfying the following conditions:



(ψ1) ψ is nonincreasing in the fifth and sixth variables
(ψ2) There exists ℏ ∈ ½0, 1Þ such that for all ζ, ξ, μ ≥ 0,

k ≥ 1:
(ψ2a) ψðkζ, ξ, ξ, ζ, ζ + ξ, μÞ ≤ 0 implies that kζ ≤ ℏξ
(ψ2b) ψðkζ, ξ, ξ, ζ, μ, ζ + ξÞ ≤ 0 implies that kζ ≤ ℏξ
(ψ3) ψðkζ, ζ, 0, 0, ζ, ζÞ > 0 and ψðkζ, 0, 0, ζ, ζ, 0Þ > 0 for ζ

> 0 and k ≥ 1

Example 2. Let ψðℓ1, ℓ2, ℓ3, ℓ4, ℓ5, ℓ6Þ = ℓ21 − aℓ22 − bðℓ23 + ℓ24/ℓ5
+ ℓ6 + 1Þ, 0 < a, b < 1 and a + 2b < 1.

(ψ2a) For ζ, ξ, μ ≥ 0, we have

ψ kζ, ξ, ξ, ζ, ζ + ξ, μð Þ = k2ζ2 − aξ2 − b
ζ2 + ξ2

1 + ζ + ξ + μ
≤ 0, ð6Þ

which implies that k2ζ2 ≤ aξ2 + bðζ2 + ξ2Þ. Then, k2ζ2 ≤ ða
+ b/1 − bÞξ2. Hence, kζ ≤ ℏξ, ℏ = k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a + b/k2 − b

p
< 1 for

k ≥ 1
(ψ2b) Similarly as (ψ2a), if ψðkζ, ξ, ξ, ζ, μ, ζ + ξÞ ≤ 0, then

kζ ≤ ℏξ for k ≥ 1
(ψ3) For all ζ > 0 and for k ≥ 1, ψðkζ, ζ, 0, 0, ζ, ζÞ = ðk −

aÞζ2 > 0

Example 3. Let ψðℓ1, ℓ2, ℓ3, ℓ4, ℓ5, ℓ6Þ = ℓ21 − aℓ22 − bðℓ23 + ℓ24/ℓ25
+ ℓ26 + 1Þ, 0 < a, b < 1 and a + 2b < 1.

Similar to Example 2.

Example 4. Let ψðℓ1, ℓ2, ℓ3, ℓ4, ℓ5, ℓ6Þ = ℓ1 − aℓ2 − bℓ3 − cðℓ4ℓ5
/ℓ5 + ℓ6 + 1Þ, 0 < a, b, c < 1 and a + b + c < 1.

(ψ2a) For ζ, ξ, μ ≥ 0, we have

ψ kζ, ξ, ξ, ζ, ζ + ξ, μð Þ = kζ − aξ − bξ − c
ζ ζ + ξð Þ

1 + ζ + ξ + μ
≤ 0,

ð7Þ

which implies that kζ − ða + bÞξ ≤ cζ, that is, kζ ≤ ℏξ, ℏ =
kða + bÞ/k − c < 1 for k ≥ 1

(ψ2b) Similarly as (ψ2a), if ψðkζ, ξ, ζ, ξ, 0, μÞ ≤ 0, then kζ
≤ ℏξ

(ψ3) ψðℏζ, ζ, 0, 0, ζ, ζÞ = ðk − aÞζ > 0 for all ζ > 0 and for
k ≥ 1

Example 5. Let ψðℓ1, ℓ2, ℓ3, ℓ4, ℓ5, ℓ6Þ = ℓ31 − aðℓ23ℓ24/ℓ2 + ℓ5 +
ℓ6 + 1Þ, 0 ≤ a < 1.

(ψ2a) For ζ, ξ, μ ≥ 0 and ψðℏζ, ξ, ξ, ζ, μ, 0Þ = k3ζ3 − aðζ2
ξ2/ξ + μ + 1Þ ≤ 0.

Then, k3ζ ≤ aðξ2/ðξ + μ + 1ÞÞ < aξ, that is, kζ ≤ ða/k2Þξ.
Hence, kζ ≤ ℏξ, ℏ = a/k2 < 1 for k ≥ 1.

(ψ2b) Similarly, if ψðkζ, ξ, ζ, ξ, 0, μÞ ≤ 0, then kζ ≤ hξ
(ψ3) ψðkζ, ζ, 0, 0, ζ, ζÞ = k3ζ3 > 0 for all ζ > 0 for k ≥ 1

Example 6. Let ψðℓ1, ℓ2, ℓ3, ℓ4, ℓ5, ℓ6Þ = ℓ1 − aℓ2 − bðℓ3ℓ6/ðℓ5
+ ℓ6 + 1ÞÞ − cℓ4, 0 < a, b, c < 1 and a + b + c < 1.

(ψ2a) For ζ, ξ, μ ≥ 0, we have

ψ kζ, ξ, ξ, ζ, ζ + ξ, μð Þ = kζ − aξ − b
ζξ

1 + ζ + ξ + μ
− cζ ≤ 0,

ð8Þ

which implies that kζ − aξ − bζ ≤ cζ, that is, kζ ≤ ℏξ, ℏ = ka/
ðk − b − cÞ < 1 for k ≥ 1

(ψ2b) Similarly as (ψ2a), if ψðkζ, ξ, ζ, ξ, 0, μÞ ≤ 0, then kζ
≤ ℏξ

(ψ3) ψðkζ, ζ, 0, 0, ζ, ζÞ = ðk − aÞζ > 0 for all ζ > 0 for k ≥ 1

Now, we define ω-implicit contractive mapping in the
metric space under w-distance using the above introduced
implicit relation.

Definition 8. Let ðΞ, dÞ be a metric space with w-distance ω,
I : Ξ⟶Ξ be a given mapping, and α : Ξ × Ξ⟶ℝ+ be a
functional. We say that I is an ω-implicit contractive
mapping, if there exists a function ψ ∈Ψ such that

ψ α ϑ, νð Þω Iϑ,Iνð Þ, ω ϑ, νð Þ, ω ϑ,Iϑð Þ, ω ν,Iνð Þ, ω ϑ,Iνð Þ, ω Iϑ, νð Þð Þ
≤ 0,

ð9Þ

for all ðϑ, νÞ ∈ Ξ2.

If (9) is satisfied for ϑ, ν ∈ �Oðθ0 ;IÞ (for some θ0 ∈ Ξ), we
say that I is an orbitally ω-implicit contractive mapping (at
θ0).

Now, we are equipped to state and prove our first main
result as follows.

Theorem 9. Let ðΞ, dÞ be a metric space with w-distance ω
and I : Ξ⟶Ξ. Suppose that the following conditions hold:

(i) There exists θ0 ∈ Ξ such that αðθ0,Iθ0Þ ≥ 1 and
αðIθ0, θ0Þ ≥ 1

(ii) I is a triangular α-admissible mapping

(iii) I is an orbitally ω-implicit contractive mapping

(iv) ðΞ, ωÞ is I-orbitally complete at θ0

(v) I is orbitally continuous

Then, there exists a point ϑ∗ ∈ FixðIÞ. In addition, ωðϑ∗
, ϑ∗Þ = 0 provided αðϑ∗, ϑ∗Þ ≥ 1 holds.

Proof. Let θ0 ∈ Ξ be the point described in (i). Define a
sequence fθng by θn+1 =Iθn for n ≥ 1. If θnð0Þ = θnð0Þ+1 for
some n0 ≥ 1, then obviously FixðIÞ ≠∅. Hence, we suppose
that θn ≠ θn+1 for all n ≥ 1. First, we show that

lim
n?∞

ω Inθ0,In+1θ0
� �

= 0: ð10Þ

Using (ii) and Lemma 6, we have αðθn, θn+1Þ ≥ 1 for all
n ≥ 1. Then, for all n ≥ 1, using (9) for ϑ = θn−1, ν = θn,



ψ α θn−1, θnð Þω Inθ0,In+1θ0
� �

, ω In−1θ0,Inθ0
� �

,
�
� ω In−1θ0,Inθ0
� �

, ω Inθ0,In+1θ0
� �

, ω In−1θ0,In+1θ0
� �

,
� ω Inθ0,Inθ0ð Þ� ≤ 0:

ð11Þ

Denoting ρn = ωðInθ0,In+1θ0Þ for all n ∈ℕ∗ and apply-
ing ðψ1Þ in the fifth variable, we have

ψ α θn−1, θnð Þρn, ρn−1, ρn−1, ρn, ρn−1 + ρn, ω Inθ0,Inθ0ð Þð Þ ≤ 0:
ð12Þ

It follows from ðψ2aÞ that there is ℏ ∈ ½0, 1Þ such that

ρn ≤ α θn, θn+1ð Þρn ≤ ℏρn−1, ð13Þ

and so,

ρn ≤ ℏρn−1 ; ð14Þ

that is, the sequence fρng is a nonincresing sequence of real
numbers. Therefore, there exists ζ such that

lim
n⟶∞

ρn = lim
n⟶∞

ω Inθ0,In+1θ0
� �

= ζ, ∀n ∈ℕ: ð15Þ

Applying the limit in (12), by the continuity of ψ, we get

ζ ≤ lim
n?∞

α θn, θn+1ð Þρn ≤ hζ, ð16Þ

a contradiction, and therefore, ζ = 0.
For αðIθ0, θ0Þ ≥ 1, using condition (ii) and Lemma 7, we

get αðθn+1, θnÞ ≥ 1 for all n ≥ 1. Using similar arguments as
above, we can prove

lim
n?∞

ω In+1θ0,Inθ0
� �

= 0: ð17Þ

Next, we show that fInθ0g is a Cauchy sequence in
Oðθ0 ;IÞ. For this, we show that

lim
m,n⟶∞

ω Inθ0,Imθ0ð Þ = 0: ð18Þ

On the contrary, suppose that condition (18) does not
hold. Then, we can find a δ > 0 and increasing sequences
fmkg∞k=1, fnkg∞k=1 of positive integers with mk > nk such that

ω Inkθ0,Imkθ0ð Þ ≥ δ, for all k ∈ 1, 2, 3,⋯f g: ð19Þ

By (10), there exists a k0 ∈ℕ, such that nk > k0 implies
that

ω Inkθ0,Ink+1θ0
� �

< δ: ð20Þ

In view of the two last inequalities, we observe that mk
≠ nk+1. We may assume that mk is the minimal index such
that (19) holds, so that

ω Inkθ0,Irθ0ð Þ < δ, for r ∈ nk+1, nk+2,⋯,mk − 1f g: ð21Þ

Now, making use of (19), we get

0 < δ ≤ ω Inkθ0,Imkθ0ð Þ ≤ ω Inkθ0,Imk−1θ0
� �

+ ω Imk−1θ0,Imkθ0
� �

< δ + ω Imk−1θ0,Imkθ0
� �

:

ð22Þ

Thus,

lim
k?∞

ω Inkθ0,Imkθ0ð Þ = δ: ð23Þ

Using the triangle inequality, we have

ω Inkθ0,Imkθ0ð Þ ≤ ω Inkθ0,Imk+1θ0
� �

+ ω Imk+1θ0,Imkθ0
� �

≤ ω Inkθ0,Ink+1θ0
� �

+ ω Ink+1θ0,Imk+1θ0
� �

+ ω Imk+1θ0,Imkθ0
� �

:

ð24Þ

Taking the limit on both sides and making use of (10),
(17), and (23), we obtain

lim
k?∞

ω Ink+1θ0,Imk+1θ0
� �

≥ δ: ð25Þ

Again, using the triangle inequality, we have

ω Ink+1θ0,Imk+1θ0
� �

≤ ω Ink+1θ0,Imkθ0
� �

+ ω Imkθ0,Imk+1θ0
� �

≤ ω Ink+1θ0,Inkθ0
� �

+ ω Inkθ0,Imkθ0ð Þ
+ ω Imkθ0,Imk+1θ0
� �

:

ð26Þ

Taking the limit on both sides and making use of (10),
(17), and (23), we obtain

lim
k?∞

ω Ink+1θ0,Imk+1θ0
� �

≤ δ: ð27Þ

Combining (25) and (27), we have

lim
k?∞

ω Ink+1θ0,Imk+1θ0
� �

= δ: ð28Þ

From Lemma 6, we have αðθnk , θmk
Þ ≥ 1. Therefore, on

applying condition (9), we get

ψ α θnk , θmk

� �
ω Ink+1θ0,Imk+1θ0
� �

, ω Inkθ0,Imkθ0ð Þ,�
� ω Inkθ0,Ink+1θ0
� �

, ω Imkθ0,Imk+1θ0
� �

, ω Inkθ0,Imk+1θ0
� �

,
� ω Ink+1θ0,Imkθ0
� ��

≤ 0:
ð29Þ

Now applying ðψ1Þ in the fifth and sixth variables, we
have



ψ α θn kð Þ, θm kð Þ
� �

ω Ink+1θ0,Imk+1θ0
� �

, ω Inkθ0,Imkθ0ð Þ,
�
� ω Inkθ0,Ink+1θ0
� �

, ω Imkθ0,Imk+1θ0
� �

, ω Inkθ0,Ink+1θ0
� �

+ ω Ink+1θ0,Imk+1θ0
� �

, ω Ink+1θ0,Imk+1θ0
� �

+ ω Imk+1θ0,Imkθ0
� ��

≤ 0:

ð30Þ

Applying the limit and using continuity of ψ, we get

ψ δlim
k?∞

α θnk , θmk

� �
, δ, 0, 0, δ, δÞ

� �
≤ 0, ð31Þ

a contradiction to ðψ3Þ. Hence, fInθ0gmust be a Cauchy
sequence in Oðθ0 ;IÞ.

Since Ξ is I-orbitally complete, there exists a point ϑ∗

∈ Ξ such that limn⟶∞Inθ0 = ϑ∗. We shall show that ϑ∗ is
a fixed point of I.

Using the orbital continuity of I (due to condition (v)),
we have limn⟶∞IInθ0 =Iϑ∗. Owing to the uniqueness
of the limit, we obtain Iϑ∗ = ϑ∗.

Finally, assume that ωðϑ∗, ϑ∗Þ > 0. Then, by (9) for αðϑ∗,
ϑ∗Þ ≥ 1, we have

ψ α ϑ∗, ϑ∗ð Þω Iϑ∗,Iϑ∗ð Þ, ω ϑ∗, ϑ∗ð Þ, ω ϑ∗,Iϑ∗ð Þ,ð
� ω Iϑ∗, ϑ∗ð Þ, ω Iϑ∗, ϑ∗ð Þ, ω ϑ∗,Iϑ∗ð ÞÞ ≤ 0

ð32Þ

or

ψ α ϑ∗, ϑ∗ð Þω ϑ∗, ϑ∗ð Þ, ω ϑ∗, ϑ∗ð Þ, ω ϑ∗, ϑ∗ð Þ, ω ϑ∗, ϑ∗ð Þ,ð
� ω ϑ∗, ϑ∗ð Þ, ω ϑ∗, ϑ∗ð ÞÞ ≤ 0:

ð33Þ

It follows from ðψ2bÞ (for ζ = ξ = μ = ϑ∗) that there is
ℏ ∈ ½0, 1Þ such that

α ϑ∗, ϑ∗ð Þω ϑ∗, ϑ∗ð Þ ≤ ℏω ϑ∗, ϑ∗ð Þ, ð34Þ

a contradiction. Therefore, ωðϑ∗, ϑ∗Þ = 0.

Next, we have the following result.

Theorem 10. The conclusion of Theorem 9 remains true if
condition (v) is replaced by the following one:

(v’) For every ν ∈ Ξ with ν ≠Iν, inf fωðϑ, νÞ + ωðϑ,IϑÞ
∣ ϑ ∈ Ξg > 0

Proof. Following the proof of Theorem 9, we observe that the
sequence fInθ0g is a Cauchy sequence, and so, there exists a
point ϑ∗ in Ξ such that limn⟶∞Inθ0 = ϑ∗. Since
limm,n⟶∞ωðInθ0,Imθ0Þ = 0, for each ε > 0, there exists an
Nε ∈ℕ such that n >Nε implies ωðINεθ0,Inθ0Þ < ε. Since
limn⟶∞Inθ0 = ϑ∗ and ωðϑ, ·Þ is lower semicontinuous,

ω INεθ0, ϑ∗
� �

≤ liminf
n?∞

ω INεθ0,Inθ0
� �

< ε: ð35Þ

Therefore, ωðINεθ0, ϑ∗Þ ≤ ε. Set ε = 1/k, Nε = nk so that

lim
k⟶∞

ω Inkθ0, ϑ∗ð Þ = 0: ð36Þ

Assume that Iϑ∗ ≠ ϑ∗. Then, by the hypothesis (v’), we
have

0 < inf ω ϑ, ϑ∗ð Þ + ω ϑ,Iϑð Þ ∣ ϑ ∈ Ξf g
≤ inf ω Inkθ0, ϑ∗ð Þ + ω Inkθ0,Ink+1θ0

� �
∣ n ∈ℕ

	 

⟶0,

ð37Þ

which contradicts our assumption. Therefore, Iϑ∗ = ϑ∗.

The last conclusion is derived as in the proof of Theorem 9.
In what follows, we give a sufficient condition for the

uniqueness of the fixed point in Theorems 9 and 10.

Theorem 11. In addition to the hypotheses of Theorem 9 (or
Theorem 10), if for all fixed points θ∗ and η∗ such that θ∗ ≠
η∗ ∈ Ξ, αðθ∗, η∗Þ ≥ 1, then I has a unique fixed point.

Proof. Suppose that θ∗ and η∗ are two fixed points of I such
that θ∗ ≠ η∗. Then, using (9) for αðθ∗, η∗Þ ≥ 1,

ψ α θ∗, η∗ð Þω Iθ∗,Iη∗ð Þ, ω θ∗, η∗ð Þ, ω θ∗,Iθ∗ð Þ,ð
� ω η∗,Iη∗ð Þ, ω θ∗,Iη∗ð Þ, ω Iθ∗, η∗ð ÞÞ ≤ 0,

ð38Þ

i.e.,

ψ α θ∗, η∗ð Þω θ∗, η∗ð Þ, ω θ∗, η∗ð Þ, 0, 0, ω θ∗, η∗ð Þ, ω θ∗, η∗ð Þð Þ ≤ 0,
ð39Þ

a contradiction to ðψ3Þ, and thus, ωðθ∗, η∗Þ = 0. Also, we
have ωðθ∗, θ∗Þ = 0. So, by using Lemma 2, we infer that
θ∗ = η∗, i.e., the fixed point of I is unique.

By choosing ψ ∈Ψ from Examples 2–6, we have the fol-
lowing consequences.

Corollary 12. Let all the conditions of Theorems 9 and 10 be
satisfied, except that the assumption of orbitally ω-implicit
contractive mapping for ψ ∈Ψ is replaced by either of the form

ið Þ α ν, ϑð Þω Iν,Iϑð Þ½ �2 ≤ a ω ν, ϑð Þ½ �2 + b
ω ν,Iνð Þ½ �2 + ω ϑ,Iϑð Þ½ �2
1 + ω ν,Iϑð Þ + ω ϑ,Iνð Þ ,

ð40Þ

where 0 < a, b < 1, a + 2b < 1, αðν, ϑÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a + b/αðν, ϑÞ2 − b

q
< 1,

or

iið Þ α ν, ϑð Þω Iν,Iϑð Þ½ �2 ≤ a ω ν, ϑð Þ½ �2 + b
ω ν,Iνð Þ½ �2 + ω ϑ,Iϑð Þ½ �2

1 + ω ν,Iϑð Þ½ �2 + ω ϑ,Iνð Þ½ �2
,

ð41Þ



where 0 < a, b < 1, a + 2b < 1, αðν, ϑÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a + b/αðν, ϑÞ2 − b

q
< 1,

or

iiið Þ α ν, ϑð Þω Iν,Iϑð Þ ≤ aω ν, ϑð Þ + bω ν,Iνð Þ
+ c

ω ϑ,Iϑð Þω ν,Iϑð Þ
1 + ω ν,Iϑð Þ + ω ϑ,Iνð Þ ,

ð42Þ

where 0 < a, b, c < 1, a + b + c < 1, αðν, ϑÞða + bÞ/αðν, ϑÞ − c
< 1, or

ivð Þ α ν, ϑð Þω Iν,Iϑð Þ ≤ aω ν, ϑð Þ + b
ω ν,Iνð Þω ν,Iϑð Þ

1 + ω ν,Iϑð Þ + ω ϑ,Iνð Þ
+ cω ϑ,Iϑð Þ,

ð43Þ

where 0 < a, b, c < 1, a + b + c < 1, αðν, ϑÞða + bÞ/αðν, ϑÞ − c
< 1.

Then, FixðIÞ is a singleton.

3. Illustrations

Example 7. Consider the set Ξ = f0g ∪ f1/8n : n ∈ℕg with
the usual metric d. Define a w-distance ω : Ξ × Ξ⟶½0,+∞Þ
by ωðϑ, νÞ = ν for all ϑ, ν ∈ Ξ.

Consider the self-mapping I on Ξ given by Iϑ = ϑ/8.
Take θ0 = 1/8. It is simple to show that

O θ0 ;Ið Þ ⊂ 1
8k

∣ k ∈ℕ ∪ 0f g
� �

,

�O θ0 ;Ið Þ = O θ0 ;Ið Þ ∪ 0f g,
ð44Þ

and that ðΞ, ωÞ is I-orbitally complete at θ0.
Define functional α : Ξ × Ξ⟶½0,+∞Þ as follows:

α ϑ, νð Þ =
2, if ϑ, ν ∈ O θ0 ;Ið Þ,
0, otherwise:

(
ð45Þ

At θ0 = 1/8 in Oðθ0 ;IÞ, αðθ0,Iθ0Þ ≥ 1 and αðIθ0, θ0Þ
≥ 1. Also, I is a triangular α-admissible mapping in
Oðθ0 ;IÞ.

Considering Example 4, we can define ψ ∈Ψ as

ψ ℓ1, ℓ2, ℓ3, ℓ4, ℓ5, ℓ6ð Þ = ℓ1 − aℓ2 − bℓ3 − c
ℓ4ℓ5

1 + ℓ5 + ℓ6
: ð46Þ

Here, k = αðν, ϑÞ ≥ 1. One can easily check that ℏ = kða + bÞ/
k − b < 1 for k ≥ 1, 0 < a, b, c < 1 so that a + b + c < 1 and that
ψ belongs to the set Ψ. We will show that I is an orbitally ω
-implicit contractive mapping.

Take ϑ, ν ∈ �Oðθ0 ;IÞ, and so, 0 ≤ ϑ, ν ≤ 1/8. Consider two
cases.

Case 1. If ϑ = 0 and ν = 1/8n, n ∈ℕ, then (9) reduces to

1
8n+1 ≤ a · 1

8n + c · 1
82 n+1ð Þ + 8n+1

ð47Þ

and is fulfilled for a = 1/2, b = 1/5 = c. If ν = 0 and ϑ = 1/8n,
n ∈ℕ or ϑ = 0, then (9) holds trivially.

Case 2. Let ϑ, ν ∈ f1/8n ∣ n ∈ℕg. Then, (9) reduces to

2 · ν8 ≤ a · ν + b · ϑ8 + c · ν2

8 8 + ν + ϑð Þ ð48Þ

and is fulfilled for a = 1/2, b = 1/5 = c.

Thus, I is orbitally ω-implicit contractive mapping.
Therefore, all the conditions of Theorem 9 are satisfied, and
ϑ∗ = 0 is the unique fixed point of I in �Oðθ0 ;IÞ.

Example 8. Consider the set Ξ = ½0,+∞Þwith the usual metric
d. Define a w-distance ω : Ξ × Ξ⟶½0,+∞Þ by ωðϑ, νÞ = ν
for all ϑ, ν ∈ Ξ.

Consider the self-mapping I on Ξ given by

I ϑð Þ =

1
n + 1 , if ϑ = 1

n
,

0, if ϑ = 0,
1, otherwise:

8>>><
>>>:

ð49Þ

Take θ0 = 1. It is simple to show that

O θ0 ;Ið Þ ⊂ 1
n + 1 ∣ n ∈ℕ ∪ 0f g
� �

,

�O θ0 ;Ið Þ = O θ0 ;Ið Þ ∪ 0f g,
ð50Þ

and that ðΞ, ωÞ is I-orbitally complete at θ0.
Define a function α : Ξ × Ξ⟶½0,∞Þ as follows:

α ϑ, νð Þ =
1, if ϑ, ν ∈ O θ0 ;Ið Þ,
0, otherwise:

(
ð51Þ

At θ0 = 1 in Oðθ0 ;IÞ, αðθ0,Iθ0Þ ≥ 1 and αðIθ0, θ0Þ ≥ 1.
Also, I is a triangular α-admissible mapping in Oðθ0 ;IÞ.

Considering Example 3, we can define ψ ∈Ψ as

ψ ℓ1, ℓ2, ℓ3, ℓ4, ℓ5, ℓ6ð Þ = ℓ21 − aℓ22 − b
ℓ23 + ℓ24

ℓ25 + ℓ26 + 1
: ð52Þ

Here, k = αðν, ϑÞ ≥ 1. One can easily check that ℏ = kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a + b/k2 − b

p
< 1 for k ≥ 1, 0 < a, b < 1 so that a + 2b < 1

and that ψ belongs to the set Ψ. We will show that I is an
orbitally ω-implicit contractive mapping.

Take ϑ, ν ∈ �Oðθ0 ;IÞ, and so, 0 ≤ ϑ, ν ≤ 1. Consider two
cases.



Case 1. If ϑ = 0 and ν = 1/n, n ∈ℕ, then (9) reduces to

α 0, 1
m

� �
ω I 0ð Þ,I 1

n

� �� � �2
≤ a · ω 0, 1

n

� � �2

+ b · ω 0,I 0ð Þð Þ½ �2 + ω 1/n,I 1/nð Þð Þ½ �2
1 + ω 0,I 1/nð Þð Þ½ �2 + ω 1/n,I 0ð Þð Þ½ �2 ,

ð53Þ

that is,

1
n + 1ð Þ2 ≤ a · 1

n2
+ b · 1/ n + 1ð Þ2

1 + 1/ n + 1ð Þ2 = a
n2

+ b

n + 1ð Þ2 + 1
ð54Þ

and is fulfilled, for 0 < a, b < 1 so that a + 2b < 1. If ν = 0
and ϑ = 1/n, n ∈ℕ, or ϑ = 0, then (9) holds trivially.

Case 2. Let ϑ, ν ∈ f1/ðn + 1Þ ∣ n ∈ℕ ∪ f0gg. Then, inequality
(9) has the form

α
1
n
, 1
m

� �
ω I

1
n

� �
,I 1

m

� �� � �2
≤ a · ω

1
n
, 1
m

� � �2

+ b · ω 1/n,I 1/nð Þð Þ½ �2 + ω 1/m,I 1/mð Þð Þ½ �2
1 + ω 1/n,I 1/mð Þð Þ½ �2 + ω 1/m,I 1/nð Þð Þ½ �2 ,

ð55Þ

that is,

ω
1

n + 1 ,
1

m + 1

� � �2
≤ a · ω

1
n
, 1
m

� � �2

+ b · ω 1/n, 1/n + 1ð Þ½ �2 + ω 1/m, 1/m + 1ð Þ½ �2
1 + ω 1/n, 1/m + 1ð Þ½ �2 + ω 1/m, 1/n + 1ð Þ½ �2 ,

ð56Þ

that is,

1
m + 1ð Þ2 ≤ a

1
m2 + b · 1/ n + 1ð Þ2 + 1/ m + 1ð Þ2

1 + 1/ m + 1ð Þ2 + 1/ n + 1ð Þ2

= a
m2 + b · n + 1ð Þ2 + m + 1ð Þ2

n + 1ð Þ2 + m + 1ð Þ2 + 1

ð57Þ

and is fulfilled, for 0 < a, b < 1 so that a + 2b < 1.
Thus, I is an orbitally ω-implicit contractive mapping.
If ν > 0, we have ν ≠Iν so that

inf ω ϑ, νð Þ + ω ϑ,Iϑð Þ: ϑ ∈ Ξf g = inf ν +Iϑ : ϑ ∈ Ξf g > 0:
ð58Þ

Thus, all the conditions of Theorem 10 are satisfied and
ϑ∗ = 0 is the unique fixed point of I in �Oðθ0 ;IÞ.

Example 9. Consider the set Ξ = ½0, 1� with the usual metric d.
Define a w-distance ω : Ξ × Ξ⟶½0,+∞Þ by ωðϑ, νÞ = 2jϑ −
νj for all ϑ, ν ∈ Ξ.

Consider the self-mapping I on Ξ given by

I ϑð Þ =
1

2n+1 , if ϑ = 1
2n ,

1
2 , otherwise:

8>><
>>: ð59Þ

Take θ0 = 1/2. It is simple to show that

O θ0 ;Ið Þ ⊂ 1
2n ∣ n ∈ℕ
� �

,

�O θ0 ;Ið Þ = O θ0 ;Ið Þ ∪ 0f g,
ð60Þ

and that ðΞ, ωÞ is I-orbitally complete at θ0.
Define functional α : Ξ × Ξ⟶½0,+∞Þ as follows:

α ϑ, νð Þ =
1, if ϑ, ν ∈ O θ0 ;Ið Þ,
0, otherwise:

(
ð61Þ

At θ0 = 1/2 in Oðθ0 ;IÞ, αðθ0,Iθ0Þ ≥ 1 and αðIθ0, θ0Þ
≥ 1. Also, I is a triangular α-admissible mapping in
Oðθ0 ;IÞ.

Considering Example 6, we can define ψ ∈Ψ as

ψ ℓ1, ℓ2, ℓ3, ℓ4, ℓ5, ℓ6ð Þ = ℓ1 − aℓ2 − b
ℓ3ℓ6

ℓ5 + ℓ6 + 1 − cℓ4, ð62Þ

0 < a, b, c < 1 and a + b + c < 1.

Take ϑ, ν ∈ �Oðθ0 ;IÞ, and so, 0 ≤ ϑ, ν ≤ 1/2. Consider two
cases.

Case 1. If ϑ = 0 and ν = 1/2n (or ν = 0 and ϑ = 1/2n), n ∈ℕ,
then (9) reduces to

1 − 1
2n

����
���� ≤ a · 1

2n−1 + b · 1/2n
1 + 1/2n + 1/2n−1 + c · 1 − 1

2n
����

����
ð63Þ

and is fulfilled, for 0 < a, b, c < 1, a + b + c < 1. If ν = 0 and ϑ
= 0, then (9) holds trivially.

Case 2. Let ϑ, ν ∈ f1/2n ∣ n ∈ℕ ∪ f0gg. Consider ϑ = 1/2n and
ν = 1/2mðm > nÞ. Then, the inequality (9) has the form

2 1
2n+1 −

1
2m+1

����
���� ≤ 2a 1

2n −
1
2m

����
����

+ b
2 1/2n − 1/2n+1
�� �� · 2 1/2n − 1/2m+1�� ��

1 + 2 1/2n − 1/2m+1�� �� + 2 1/2m − 1/2n+1
�� ��

+ 2c 1
2m −

1
2m+1

����
����,

ð64Þ



which is equivalent to

2n − 2mj j
2m+n ∣ ≤ a

2n − 2mj j
2m+n−1 + 4b 2m+1 − 2n

�� ��
2m+n + 2m+1 − 2n

�� �� + 2n+1 − 2m
�� ��

+ c
2m ,

ð65Þ

which is obviously true for 0 < a, b, c < 1 such that a + b
+ c < 1.

It can be noted that for 0 ≠I0, we have

inf ω
1
2n , 0
� �

+ ω
1
2n ,

1
2n+1

� �
: n ∈ℕ

� �

= inf 2
2n + 2

2n+1 : n ∈ℕ
� �

= 0:
ð66Þ

Thus, all the conditions of Theorem 10 are satisfied
except (v’). Clearly, I has no fixed points in �Oðθ0 ;IÞ.

4. Weak Well-Posedness, Weak Limit
Shadowing, and Generalized w-Ulam-
Hyers Stability

The notion of well-posedness of a fixed point problem (fpp)
has evoked much interest of several mathematicians, for
example, Popa [10, 11]. In the paper [12], the authors defined
a weak well-posed (wwp) property in metric space. In the fol-
lowing, we extend this notion to aw-distance in metric space.

Definition 13. Let ðΞ, dÞ be a metric space and ω be a w
-distance in Ξ. Let I : Ξ⟶Ξ be a mapping having a unique
fixed point ϑ∗ such that αðϑ∗, ϑ∗Þ ≥ 1. The fpp of I is said to
be wwp with respect to ω if for any sequence fθng in Ξ with
limn⟶∞ωðθn,IðθnÞÞ = 0 and limn,m⟶∞ωðIðθnÞ,IðθmÞÞ
= 0, one has limn?∞ωðθn, ϑ∗Þ = 0.

To guarantee the wwp of a mapping I, we add the fol-
lowing additional condition for functions ψ ∈Ψ and call the
respective set Ψ′:

(ψ4) for all ζ, ξ > 0, k ≥ 1, ψðkζ, ξ, 0, 0, ξ, ζÞ ≤ 0 implies
that there exists ℏ ∈ ½0, 1Þ such that kζ ≤ ℏξ

Examples 2–4 and 6 satisfy the condition (ψ4).

Theorem 14. Let ðΞ, dÞ be a metric space and ω be a w-dis-
tance on Ξ. Suppose that all the hypotheses of Theorem 9 hold
for ψ ∈Ψ′. Then, the ffp for I is wwp.

Proof. Let fθng be a sequence in Ξ such that limn⟶∞ωðθn,
IðθnÞÞ = 0 and limm,n⟶∞ωðIθm,IθnÞ = 0, for n >m. We
obtain that

ω θn, ϑ∗ð Þ ≤ ω θn,Iθmð Þ + ω Iθm,Iθnð Þ + ω Iθn, ϑ∗ð Þ: ð67Þ

Taking the limit as n?∞, we get

lim
n⟶∞

ω θn, ϑ∗ð Þ ≤ lim
n⟶∞

ω θn,Iθmð Þ + ω Iθn, ϑ∗ð Þf g: ð68Þ

WLOG, we can assume that there exists a distinct subse-
quence fIθnkg of fIθng. Otherwise, there exists θ0 ∈ Ξ and
n1 ∈N such that Iθn = θ0 for n ≥ n1. Since limn⟶∞ωðθn,I
θnÞ = 0, we get limn⟶∞ωðθn, θ0Þ = 0. If θ0 ≠ ϑ∗, then θ0 ≠I

θ0 due to uniqueness of the fixed point of I. For n ≥ n1, we
obtain θ0 =Iθn ≠Iθ0. From (9), we have

ψ α θn, θ0ð Þω Iθn,Iθ0ð Þ, ω θn, θ0ð Þ, ω θn,Iθnð Þ, ω θ0,Iθ0ð Þ,ð
� ω θn,Iθ0ð Þ, ω Iθn, θ0ð ÞÞ ≤ 0,

ð69Þ

i.e.,

ψ
α θn, θ0ð Þω θ0,Iθ0ð Þ, ω θn, θ0ð Þ, ω θn, θ0ð Þ,

ω θ0,Iθ0ð Þ, ω θn,Iθ0ð Þ, ω θ0, θ0ð Þ

 !
≤ 0, ð70Þ

i.e.,

ψ α θn, θ0ð Þω θ0,Iθ0ð Þ, ω θn, θ0ð Þ, ω θn, θ0ð Þ, ω θ0,Iθ0ð Þ,ð
� ω θn, θ0ð Þ + ω θ0,Iθ0ð Þ, 0Þ ≤ 0:

ð71Þ

It follows from (ψ2a) that there is ℏ ∈ ½0, 1Þ such that

ω θ0,Iθ0ð Þ ≤ α θn, θ0ð Þω θ0,Iθ0ð Þ ≤ ℏω θn, θ0ð Þ, ð72Þ

which on applying n⟶∞ gives ωðθ0,Iθ0Þ = 0. Also, we
have ωðθ0, θ0Þ = 0. So, by Lemma 2, we get θ0 =Iθ0, a con-
tradiction. Hence, there exist m, q, n > n0ðm > q > nÞ such
that Iθm ≠Iθq ≠Iθn ≠ θn. Then,

ω θn,Iθmð Þ ≤ ω θn,Iθnð Þ + ω Iθn,Iθq
� �

+ ω Iθq,Iθm
� �

, ð73Þ

which ?0 as n?∞. On replacing the value in (68), we get

lim
n⟶∞

ω θn, ϑ∗ð Þ ≤ limn⟶∞ω Iθn, ϑ∗ð Þ: ð74Þ

From (9), we have

ψ α θn, ϑ∗ð Þω Iθn,Iϑ∗ð Þ, ω θn, ϑ∗ð Þ, ω θn,Iθnð Þ, ω ϑ∗,Iϑ∗ð Þ,ð
� ω θn,Iϑ∗ð Þ, ω Iθn, ϑ∗ð ÞÞ ≤ 0,

ð75Þ

i.e.,

ψ α θn, ϑ∗ð Þω Iθn, ϑ∗ð Þ, ω θn, ϑ∗ð Þ, ω θn,Iθnð Þ, ω ϑ∗, ϑ∗ð Þ,ð
� ω θn, ϑ∗ð Þ, ω Iθn, ϑ∗ð ÞÞ ≤ 0,

ð76Þ



which on applying limit as n?∞ gives

ψ lim
n⟶∞

α θn, ϑ∗ð Þ lim
n⟶∞

ω Iθn, ϑ∗ð Þ, lim
n⟶∞

ω θn, ϑ∗ð Þ, 0, 0,
�
� lim
n⟶∞

ω θn, ϑ∗ð Þ, lim
n⟶∞

ω Iθn, ϑ∗ð Þ
�
≤ 0:

ð77Þ

It follows from (ψ4) that there is ℏ ∈ ½0, 1Þ such that

lim
n?⟶∞

ω Iθn, ϑ∗ð Þ < ℏ lim
n⟶∞

ω θn, ϑ∗ð Þ: ð78Þ

Combining (74) and (78), we get limn⟶∞ωðθn, ϑ∗Þ = 0
as ℏ < 1.

The limit shadowing property of fixed point problems
has been discussed in the papers [13, 14]. We define weak
limit shadowing property (wlsp) in metric spaces under w
-distance.

Definition 15. Let ðΞ, dÞ be a complete metric space and ω be
aw-distance in Ξ. LetI : Ξ⟶Ξ be a mapping. The fpp ofI
is said to have wlsp in Ξ if assuming that fθng in Ξ satisfies
ωðθn,IθnÞ⟶0 as n⟶∞ and ωðIθn,IθmÞ⟶0, it follows
that there exists x ∈ Ξ such that ωðθn,Inϑ∗Þ⟶ 0 as n⟶∞
ðFixðIÞ = fϑ∗gÞ.

Theorem 16. In addition to the hypotheses of Theorem 9 (or
Theorem 10) if fθng in Ξ is such that limn⟶∞ωðθn,IθnÞ =
0, limn,m⟶∞ωðIθn,IθmÞ = 0 and ϑ∗ ∈ FixðIÞ, then I has
the wlsp.

Proof. Since ϑ∗ is a fixed point of I, we have ωðϑ∗,Iϑ∗Þ = 0
and let fθng in Ξ such that limn⟶∞ωðθn,IθnÞ = 0,
limn,m⟶∞ωðIθn,IθmÞ = 0, then by virtue of Theorem 9,
we have limn⟶∞ωðθn, ϑ∗Þ = 0, and therefore, we can write
limn⟶∞ωðθn,Inϑ∗Þ = 0.

Next, we define generalized-ω-Ulam-Hyers stability (G-
ω-UHS) of fixed point problem (fpp) in metric spaces under
w-distance.

Definition 17. Let ðΞ, dÞ be a metric space and ω be a w
-distance on Ξ. Let I : Ξ⟶Ξ be a mapping. The the fixed
point equation (FPE)

ϑ =Iϑ, ϑ ∈ Ξ ð79Þ

is said to be G-ω-UHS in the setting of metric spaces under w
-distance, if there exists an increasing function ϕ : ℝ+⟶ℝ+,
continuous at 0, with ϕð0Þ = 0, such that for each ε > 0 and an
ε-solution υ ∈ Ξ, that is,

ω υ,Iυð Þ ≤ ε, ð80Þ

there exists a solution ϑ∗ ∈ Ξ of (79) such that

ω υ, ϑ∗ð Þ ≤ ϕ εð Þ: ð81Þ

If ϕðξÞ = bξ for all ξ ∈ℝ+, where b > 0, then FPE (79) is
said to be ω-UHS in the framework of metric spaces under
w-distance.

Remark 18. If p = d, thenDefinition 17 reduces to the notion of
GUHS in metric spaces. Also, if ϕðξÞ = bξ for all ξ ∈ℝ+, where
b > 0, then it reduces to the notion of UHS in metric spaces.
Finally, ifωðϑ, υÞ = jϑ − υj, then it reduces to the classical UHS.

Theorem 19. Let ðΞ, dÞ be a metric space and ω be a w-dis-
tance on Ξ. Suppose that all the hypotheses of Theorem 9 hold,
using the contraction condition in the form (42). Then, the
FPE (79) is G-ω-UHS.

Proof. Following Theorem 9, we have Iρ∗ = ρ∗; that is,
ρ∗ ∈ Ξ is a solution of the FPE (79) with ωðρ∗,Iρ∗Þ = 0.
Let ε > 0 and σ∗ ∈ Ξ be an ε-solution of (79), that is,

ω σ∗,Iσ∗ð Þ ≤ ε: ð82Þ

Since ωðρ∗,Iρ∗Þ = ωðρ∗, ρ∗Þ = 0 ≤ ε, ρ∗ and σ∗ are ε
-solutions. Now,

ω ρ∗, σ∗ð Þ ≤ ω ρ∗,Iρ∗ð Þ + ω Iρ∗,Iσ∗ð Þ + ω Iσ∗, σ∗ð Þ ≤ ω Iρ∗,Iσ∗ð Þ + ε:

ð83Þ

From the contractive condition (42) for I, we get

ω Iρ∗,Iσ∗ð Þ ≤ aω ρ∗, σ∗ð Þ + bω ρ∗,Iρ∗ð Þ
+ c

ω σ∗,Iσ∗ð Þω ρ∗,Iσ∗ð Þ
1 + ω ρ∗,Iσ∗ð Þ + ω σ∗,Iρ∗ð Þ

≤ aω ρ∗, σ∗ð Þ + cε
ω ρ∗,Iσ∗ð Þ

1 + ω ρ∗,Iσ∗ð Þ + ω σ∗,Iρ∗ð Þ
≤ aω ρ∗, σ∗ð Þ + cε:

ð84Þ

Therefore, from (83), we obtain

ω ρ∗, σ∗ð Þ ≤ aω ρ∗, σ∗ð Þ + cε + ε = aω ρ∗, σ∗ð Þ + 1 + cð Þε, ð85Þ

which implies that

ω ρ∗, σ∗ð Þ 1 − að Þ ≤ 1 + cð Þε, ð86Þ

i.e.,

ω ρ∗, σ∗ð Þ ≤ 1 + c
1 − að Þ ε = ϕ εð Þ as 1 + c

1 − að Þ > 0: ð87Þ

Thus, the inequality (81) holds, and therefore, the FPE
(79) is G-ω-UHS in the metric spaces under w-distance.



5. Application

Fractional differential/integral equations (FDE/DIE) have
been extensively studied as an application of fixed point the-
ory. In fact, to get the unique solution of FDE, one has to apply
the Banach fixed point theorem or its variants. There are dif-
ferent types of FDEs in the literature, but the FDEs in the
Caputo sense are the easiest to apply. The main advantage of
Caputo derivative is that the derivative of the constant func-
tion is 0 while most of the other fractional derivatives do not
have such an important property. This property helps in initial
value problems to apply fixed point theorems. In paper [15],
the existence of solutions for some Atangana-Baleanu frac-
tional differential equations in the Caputo sense have been dis-
cussed. Some other FDE-related work can be seen in [16, 17].

The Caputo derivative of fractional order β is defined as

cDβ p ρð Þð Þ = 1
Γ n − βð Þ

ðρ
0
ρ − σð Þn−β−1p nð Þ σð Þ ds n − 1 < β < n, n = β½ � + 1ð Þ,

ð88Þ

where p : ½0,∞Þ?ℝ is a continuous function, ½β� denotes the
integer part of the positive real number β, and Γ is the
gamma function.

In this section, we discuss the existence of solutions of
following nonlinear fractional differential equation (FDE)
[18] as an application of Theorem 9.

Consider the nonlinear FDE

cDβ ϑ ρð Þð Þ = ℏ ρ, ϑ ρð Þð Þ 0 < ρ < 1, 1 < β ≤ 2ð Þ, ð89Þ

with the integral boundary conditions

ϑ 0ð Þ = 0, ϑ 1ð Þ =
ðη
0
ϑ σð Þds 0 < η < 1ð Þ, ð90Þ

where J = ½0, 1�, ϑ ∈ CðJ ,ℝÞ, and ℏ : J ×ℝ⟶ℝ is a continu-
ous function.

Let Ξ = CðJ ,ℝÞ be endowed with the usual distance and
w-distance ω : Ξ × Ξ⟶½0,+∞Þ by

ω ϑ, νð Þ =max
ρ∈J

ϑ ρð Þj j + ν ρð Þj j½ �: ð91Þ

Theorem 20. Let I : Ξ⟶Ξ be the operator defined by

Iϑ ρð Þ = 1
Γ βð Þ

ðρ
0
ρ − σð Þβ−1ℏ σ, ϑ σð Þð Þdσ −

2ρ
2 − η2ð ÞΓ βð Þ

�
ð1
0
1 − σð Þβ−1ℏ σ, ϑ σð Þð Þ dσ + 2ρ

2 − η2ð ÞΓ βð Þ
�
ðη
0

ðσ
0
σ − ςð Þβ−1ℏ z, ϑ zð Þð Þ dς

� �
dσ,

ð92Þ

for ϑ ∈ Ξ, ρ ∈ J . Also, let ζ : ℝ ×ℝ⟶ℝ be a given function.
Assume that

(F1) ℏ : J ×ℝ?ℝ is a continuous function, nondecreasing
in the second variable

(F2) there exists ϑ0 ∈ Ξ such that ζðϑ0ðρÞ,Iϑ0ðρÞÞ ≥ 0, ζ
ðIϑ0ðρÞ, ϑ0ðρÞÞ ≥ 0 for all ρ ∈ J

(F3) for ϑ, ν, υ ∈ Ξ, ζðϑðρÞ, νðρÞÞ ≥ 0 and ζðϑðρÞ, υðρÞÞ
≥ 0 for all ρ ∈ J implies that ζðϑðρÞ, υðρÞÞ ≥ 0 for all ρ ∈ J

(F4) there exist 0 < a, b, c < 1 with a + b + c < 1 such that
for ϑ, ν ∈ Ξ and ρ ∈ J we have

ζ ϑ, νð Þ ℏ ρ, ϑ ρð Þð Þj j + ℏ ρ, ν ρð Þð Þj jð Þ ≤ λ ×Θ ϑ, νð Þ ρð Þ, ð93Þ

where

and λ = Γðβ + 1Þ/5. Then, the problem (89)–(90) has at least
one solution ϑ∗ ∈ Ξ.

Proof. Define a function α : Ξ2⟶ ½0,∞Þ by

α ϑ, νð Þ =
1, if for ζ ϑ ρð Þ, ν ρð Þð Þ ≥ 0, for all ρ ∈ J ,
γ, otherwise,

 
ð95Þ

where γ ∈ ð0, 1Þ. It is easy to check that the assumption (F2)-
(F3) implies the condition (i)-(ii) of Theorem 9, respectively.

Let ϑ, ν ∈ Ξ, then for each ρ ∈ J , by the definition (92) of
operator I, we have

ζ ϑ, νð Þ Iϑ ρð Þj j + Iν ρð Þj jð Þ = ζ ϑ, νð Þ
·

1
Γ βð Þ

ðρ
0
ρ − σð Þβ−1ℏ σ, ϑ σð Þð Þdσ −

2ρ
2 − η2ð ÞΓ βð Þ

����
�

·
ð1
0
1 − σð Þβ−1ℏ σ, ϑ σð Þð Þdσ + 2ρ

2 − η2ð ÞΓ βð Þ
ðη
0

ðσ
0
σ − ςð Þβ−1ℏ ς, ϑ zð Þð Þdς

� �
dσ
����

+ 1
Γ βð Þ

ðρ
0
ρ − σð Þβ−1ℏ σ, ν σð Þð Þdσ + 2ρ

2 − η2ð ÞΓ βð Þ
����

·
ð1
0
1 − σð Þβ−1ℏ σ, ν σð Þð Þdσ −

2ρ
2 − η2ð ÞΓ βð Þ

ðη
0

ðσ
0
σ − ςð Þβ−1ℏ ς, ν ςð Þð Þ dς

� �
dσ
����
�

≤ ζ ϑ, νð Þ 1
Γ βð Þ

ðρ
0
ρ − σð Þβ−1 ℏ σ, ϑ σð Þð Þj j + ℏ σ, ν σð Þð Þj jð Þ dσ

� ��

+ 2ρ
2 − η2ð ÞΓ βð Þ

ð1
0
1 − σð Þβ−1 ℏ s, ϑ σð Þð Þj j + ℏ σ, ν σð Þð Þj jð Þ dσ

� �

+ 2ρ
2 − η2ð ÞΓ βð Þ

ðη
0

ðσ
0
σ − ςð Þβ−1 ℏ ς, ϑ ςð Þð Þj j + ℏ ς, ν ςð Þð Þj jð Þ dς

� �
dσ

� ��
,

ð96Þ

Θ ϑ, νð Þ ρð Þ = +c · a · ϑ ρð Þj j + ν ρð Þj jð Þ + b · ϑ ρð Þj j + Iϑ ρð Þj jð Þ ϑ ρð Þj j + Iϑ ρð Þj jð Þ ϑ ρð Þj j + Iν ρð Þj jð Þ
1 +max ρ∈J ϑ ρð Þj j + Iν ρð Þj jð Þ +max ρ∈J ν ρð Þj j + Iϑ ρð Þj jð Þ , ð94Þ



that is,

ζ ϑ, νð Þ Iϑ ρð Þj j + Iν ρð Þj jð Þ
≤

1
Γ βð Þ

ðρ
0
ρ − σð Þβ−1λ ×Θ ϑ, νð Þ ρð Þdσ

+ 2ρ
2 − η2ð ÞΓ βð Þ

ð1
0
1 − σð Þβ−1λ ×Θ ϑ, νð Þ ρð Þdσ

+ 2ρ
2 − η2ð ÞΓ βð Þ

ðη
0

ðσ
0
σ − ςð Þβ−1λ ×Θ ϑ, νð Þ ρð Þdς dσ

≤ λ ×ΘI ϑ, νð Þ ×max
ρ∈J

1
Γ βð Þ

ðρ
0
ρ − σð Þβ−1 dσ + 2ρ

2 − η2ð ÞΓ βð Þ
�

·
ð1
0
1 − σð Þβ−1dσ + 2ρ

2 − η2ð ÞΓ βð Þ
ðη
0

ðσ
0
σ − ςð Þβ−1 dς dσ

�
:

ð97Þ

After easy calculations, we get

ζ ϑ, νð Þ Iϑ ρð Þj j + Iν ρð Þj jð Þ ≤ΘI ϑ, νð Þ: ð98Þ

This implies that

α ϑ, νð Þω Iϑ,Iνð Þ = α ϑ, νð Þ max
t∈I

Iϑð Þ ρð Þj j + Iνð Þ ρð Þj jð Þ ≤ΘI ϑ, νð Þ
ð99Þ

for all ϑ, ν ∈ Ξ, where

ΘI ϑ, νð Þ = a · ω ϑ, νð Þ + b · ω ϑ,Iϑð Þ + c · ω ϑ,Iϑð Þω ϑ,Iνð Þ
1 + ω ϑ,Iνð Þ + ω ν,Iϑð Þ :

ð100Þ

If we consider

ψ ℓ1, ℓ2, ℓ3, ℓ4, ℓ5, ℓ6ð Þ = ℓ1 − aℓ2 − bℓ3 − c
ℓ4ℓ5

1 + ℓ5 + ℓ6
, ð101Þ

where 0 < a, b, c < 1 so that a + b + c < 1, then ψ ∈Ψ and the
condition (iii) of Theorem 9 is satisfied. Therefore, all the
requirements of Theorem 9 are fulfilled, and we conclude
that there is a fixed point ϑ∗ ∈ Ξ of the operator I. It is well
known (see, e.g., [18], Theorem 3.1) that in this case ϑ∗ is also
a solution of the integral equation (92) and the FDE (89) with
condition (90).

6. Further Work

On the line of our work, the following two types of FDE can
also be discussed:

Dβ ϑ ρð Þð Þ + ℏ ρ, ϑ ρð Þð Þ = 0 0 ≤ ρ ≤ 1, 1 < βð Þ, ð102Þ

with the two-point boundary conditions

ϑ 0ð Þ = 0, ϑ 1ð Þ = 0, ð103Þ

where ℏ : I = ½0, 1� ×ℝ?ℝ is a continuous function.

Dα ϑ ρð Þð Þ +Dβ ϑ tð Þð Þ = ℏ ρ, ϑ ρð Þð Þ 0 ≤ t ≤ 1, 0 < β < α < 1ð Þ,
ð104Þ

with the two-point boundary conditions

ϑ 0ð Þ = 0, ϑ 1ð Þ = 0, ð105Þ

where ℏ : I = ½0, 1� ×ℝ?ℝ is a continuous function.

7. Conclusion

In this work, a new class of implicit relation and implicit type
contractive condition under aforesaid implicit relation in the
metric spaces under w-distance functional have been intro-
duced. Next, some basic fixed point results under respective
contractive conditions followed by three suitable examples
have been discussed. Further, we have discussed weak well-
posed property, weak limit shadowing property, and general-
ized w-Ulam-Hyers stability in the underlying spaces.
Finally, sufficient conditions for the existence of solutions
for the fractional differential equation as an application of
the established result have been discussed.
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In this study, we introduce fuzzy triple controlled metric space that generalizes certain fuzzy metric spaces, like fuzzy rectangular
metric space, fuzzy rectangular b-metric space, fuzzy b-metric space, and extended fuzzy b-metric space. We use f , g, h, three
noncomparable functions as follows: mqðμ, η, t + s +wÞ ≥mqðμ, ν, t/f ðμ, νÞÞ ∗mqðν, ξ, s/gðν, ξÞÞ ∗mqðξ, η,w/hðξ, ηÞÞ. We
prove Banach fixed point theorem in the settings of fuzzy triple controlled metric space that generalizes Banach fixed point
theorem for aforementioned spaces. An example is presented to support our main results. We also apply our technique to the
uniqueness for the solution of an integral equation.

1. Introduction and Preliminaries

Banach contraction mapping principle (BCMP) [1] has
many applications in various scientific fields ([2–6]). BCMP
was proved in 1922 and has been investigated by many
researchers in different ways ([7–11]). In 1965, Zadeh [12]
defined a fuzzy set that generalizes the definition of a crisp
set by associating all elements with membership values
between the interval ½0, 1�. Since then, the fuzzy set theory
has been used extensively in mathematics ([13–18]) and
many other areas ([19–21]). The definition of fuzzy metric
space was given by Kramosil and Michálek [22] in 1975.
The fuzzy version of BCMP was proved by Grabiec [23].
He also extended the Edelstein theorem to fuzzy metric
spaces. George and Veeramani [24] introduced the Haus-
dorff topology in fuzzy metric space and modified the defini-
tion of fuzzy metric space given in [22]. In 1989, Bakhtin [25]
introduced the notion of a b-metric space that generalizes the
definition of classical metric space. Branciari [26] introduced
the rectangular metric space and proved some fixed point
results. Roshan et al. [27] introduced the notion of b-rect-
angular metric space that generalizes the definition of a
rectangular metric space.

In [28], Nădăban utilized fuzzy sets in b-metric spaces
and introduced the notion of a fuzzy b-metric space. He
also discussed the topological properties of this new space.
Kamran et al. [29] further generalized the definition of
[25] by introducing the idea of extended b-metric space
while in [30], Mehmood et al. applied the fuzzy sets to the
definition in [29] by introducing the notion of an extended
fuzzy b-metric space and proved BCMP on this space. In
[31], authors defined fuzzy version of rectangular b-metric
space while in [32], Asim et al. introduced the concept of
extended rectangular b-metric space and proved related
fixed point theorem. Recently, Saleem et al. [33] introduced
the notion of fuzzy double controlled metric space and
proved BCMP on such space. Abdeljawad et al. [34] modi-
fied the definition of controlled metric type space defined in
[35] by giving the idea of a double controlled metric type
space.

Definition 1 ([36]). Let ∗ : ½0, 1� × ½0, 1�⟶ ½0, 1� be a binary
operation, then ∗ is said to be continuous triangular norm (in
short, continuous t-norm), if for all x1, x2, x3, x4 ∈ ½0, 1�, the
following conditions are satisfied:

ð∗1Þ ∗ ðx1, x2Þ = ∗ðx2, x1Þ;
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ð∗2Þ ∗ ðx1,∗ðx2, x3ÞÞ = ∗ð∗ðx1, x2Þ, x3Þ;
ð∗3Þ∗ is continuous;
ð∗4Þ ∗ ðx, 1Þ = x for every x ∈ ½0, 1�;
ð∗5Þ ∗ ðx1, x2Þ ≤ ∗ðx3, x4Þ whenever x1 ≤ x3,x2 ≤ x4.

Definition 2 ([28]). Let F be a nonempty set, K ≥ 1 a real
number, ∗ a continuous t-norm, and m be a fuzzy set on F
× F × ½0,∞Þ. Then, m is said to be a fuzzy b-metric on F, if
for all μ, ν, η ∈ F, m satisfies the following:

ðbm1Þmðμ, ν, 0Þ = 0 for t = 0;
ðbm2Þmðμ, ν, tÞ = 1 for all t > 0, iff μ = ν;
ðbm3Þmðμ, ν, tÞ =mðν, μ, tÞ;
ðbm4Þmðμ, η, Kðt + sÞÞ ≥mðμ, ν, tÞ ∗mðν, η, sÞ for all

s, t > 0;
ðbm5Þmðμ, ν, ·Þ: ð0,∞Þ⟶ ½0, 1� is left continuous and

limt⟶∞mðμ, ν, tÞ = 1.

The quadruple ðF,m,∗,KÞ is called fuzzy b-metric
space.

Definition 3 ([30]). Let F be a nonempty set,f : F × F ⟶
½1,∞Þ, ∗ a continuous t-norm, and mf is a fuzzy set on
F × F × ð0,∞Þ. Then, mf is extended fuzzy b-metric if
for all μ, ν, η ∈ F, the following conditions are satisfied:

ðmf 1Þmf ðμ, ν, 0Þ = 0 for t = 0;
ðmf 2Þmf ðμ, ν, tÞ = 1 for all t > 0, iff μ = ν;
ðmf 3Þmf ðμ, ν, tÞ =mf ðν, μ, tÞ;
ðmf 4Þmf ðμ, η, f ðμ, ηÞðt + sÞÞ ≥mf ðμ, ν, tÞ ∗mf ðν, η, sÞ

for all s, t > 0;
ðmf 5Þmf ðμ, ν, ·Þ: ð0,∞Þ⟶ ½0, 1� is left continuous.

Then, ðF,mf ,∗,f Þ is known as an extended fuzzy b
-metric space.

Definition 4 ([37]). Let F be a nonempty set, ∗ a continuous t
-norm, and mr is a fuzzy set on F × F × ð0,∞Þ. Then, mr is
called a fuzzy rectangular metric if for any μ, ν ∈ F and all
distinct points u, η ∈ F \ fμ, νg, the following conditions are
satisfied:

ðmr1Þmrðμ, ν, 0Þ = 0 for t = 0;
ðmr2Þmrðμ, ν, tÞ = 1 for all t > 0 iff μ = ν;
ðmr3Þmrðμ, ν, tÞ =mrðν, μ, tÞ;
ðmr4Þ

mrðμ, ν, t + s +wÞ ≥mrðμ, ξ, tÞ ∗mrðξ, η, sÞ ∗mrðη, ν,wÞ
for all t, s,w > 0;

ðmr5Þmrðμ, ν, ·Þ: ð0,∞Þ⟶ ½0, 1� is left continuous, and
limt⟶∞mrðμ, ν, tÞ = 1.

Then, ðF,mr ,∗Þ is called a fuzzy rectangular metric
space.

Definition 5 ([31]). Let F be a nonempty set, b ≥ 1 a real num-
ber, ∗ a continuous t-norm, and mrb be a fuzzy set on F ×
F × ð0,∞Þ. Then, mrb is called fuzzy rectangular b-metric if
for any μ, ν ∈ F and all distinct points ξ, η ∈ F \ fμ, νg, the
following conditions are satisfied:

ðmrb1Þmrbðμ, ν, 0Þ = 0;
ðmrb2Þmrbðμ, ν, tÞ = 1 for all t > 0 iff μ = ν;

ðmrb3Þmrbðμ, ν, tÞ =mrbðν, μ, tÞ;
ðmrb4Þ

mrbðμ, ν, bðt + s +wÞÞ ≥mrbðμ, ξ, tÞ ∗mrbðξ, η, sÞ ∗mrbðη,
ν,wÞ for all t, s,w > 0;

ðmrb5Þmrbðμ, ν, ·Þ: ð0,∞Þ⟶ ½0, 1� is left continuous,
and limt⟶∞mrbðμ, ν, tÞ = 1.

Then, ðF,mrb,∗Þ is known as fuzzy rectangular b-metric
space.

Definition 6 ([34]). Letf , g : F × F ⟶ ½1,∞Þ be two non-
comparable functions, if for all μ, ν, η ∈ F,q : F × F ⟶ ½0,
∞Þ satisfies the following:

ðqf g1Þqðμ, νÞ = 0 iff μ = ν;
ðqf g2Þqðμ, νÞ = qðν, μÞ;
ðqf g3Þqðμ, νÞ ≤ f ðμ, ηÞqðμ, ηÞ + gðη, νÞqðη, νÞ.
Then, ðF, qÞ is known as double controlled metric type

space.

2. Main Results

We first give the definition of a fuzzy triple controlled metric
space as follows.

Definition 7. Let f , g, h : F × F ⟶ ½1,∞Þ be three noncom-
parable functions, ∗ a continuous t-norm, and mq is a fuzzy
set on F × F × ð0,∞Þ. Then, mq is called fuzzy triple con-
trolled metric if for any μ, ν ∈ F and all distinct ξ, η ∈ F \ fμ,
νg, the following conditions are satisfied:

ðmq1Þmqðμ, ν, tÞ > 0;
ðmq2Þmqðμ, ν, tÞ = 1 for all t > 0 iff μ = ν;
ðmq3Þmqðμ, ν, tÞ =mqðν, μ, tÞ;
ðmq4Þ

mqðμ, ν, t + s +wÞ ≥mqðμ, ξ, t/f ðμ, ξÞ ∗mqðξ, η, s/gðξ, ηÞÞ
∗mqðη, ν,w/hðη, νÞÞ, for all t, s,w > 0;

ðmq5Þmqðμ, ν, ·Þ: ð0,∞Þ⟶ ½0, 1� is continuous.

Then, ðF,mq,∗Þ is called a fuzzy triple controlled metric
space.

Remark 8.

(i) Taking f ðμ, ξÞ = gðξ, ηÞ = hðη, νÞ = 1 in (mq4), then
we get the definition of fuzzy rectangular metric
space [37].

(ii) Taking f ðμ, ξÞ = gðξ, ηÞ = hðη, νÞ = b ≥ 1 in (mq4),
then our definition reduces to the definition of fuzzy
rectangular b-metric space [31].

(iii) Taking η = ν and s +w = t ′ in (mq4), then our defi-
nition reduces to the definition of fuzzy double con-
trolled metric space defined in [33].
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(iv) Taking η = ν, f ðμ, ξÞ = gðξ, ηÞ and s +w = t ′ in (mq

4), then our definition reduces to the definition of
extended fuzzy b-metric space defined in [30].

(v) Taking η = ν, f ðμ, ξÞ = gðξ, ηÞ = b ≥ 1 and s +w = t ′
in (mq4), then our definition reduces to the defini-
tion of fuzzy b-metric space defined in [28].

The following example justifies Definition 7.

Example 1. Consider F = f1, 2, 3, 4g and let f , g, h : F × F
⟶ ½1,∞Þ be three noncomparable functions defined as
f ðμ, νÞ = 1 + μ + ν, gðμ, νÞ = μ2 + ν + 1 and hðμ, νÞ = μ2 +
ν2 − 1. Then, mq : F × F × ð0,∞Þ⟶ ½0, 1� defined by

mq μ, ν, tð Þ = min μ, νf g + t
max μ, νf g + t

, ð1Þ

with product t-norm, that is, t1 ∗ t2 = t1t2, ðF,mq, ∗Þ is a
fuzzy triple controlled metric space.

Now,

f 1, 2ð Þ = f 2, 1ð Þ = 4, f 1, 3ð Þ = f 3, 1ð Þ = 5, f 1, 4ð Þ = f 4, 1ð Þ
= 6, f 2, 3ð Þ = f 3, 2ð Þ = 6, f 2, 4ð Þ = f 4, 2ð Þ = 7, f 3, 4ð Þ
= f 4, 3ð Þ = 8, f 1, 1ð Þ = 3, f 2, 2ð Þ = 5, f 3, 3ð Þ
= 7, f 4, 4ð Þ = 9,

g 1, 1ð Þ = 3, g 1, 2ð Þ = 4, g 1, 3ð Þ = 5, g 1, 4ð Þ = 6, g 2, 1ð Þ
= 6, g 2, 2ð Þ = 7, g 2, 3ð Þ = 8, g 2, 4ð Þ = 9, g 3, 1ð Þ
= 11, g 3, 2ð Þ = 12, g 3, 3ð Þ = 13, g 3, 4ð Þ = 14, g 4, 1ð Þ
= 18, g 4, 2ð Þ = 19, g 4, 3ð Þ = 20, g 4, 4ð Þ = 21,

h 1, 2ð Þ = h 2, 1ð Þ = 4, h 1, 3ð Þ = h 3, 1ð Þ = 9, h 1, 4ð Þ = h 4, 1ð Þ
= 16, h 2, 3ð Þ = h 3, 2ð Þ = 12, h 2, 4ð Þ = h 4, 2ð Þ
= 19, h 3, 4ð Þ = h 4, 3ð Þ = 24, h 1, 1ð Þ = 1, h 2, 2ð Þ
= 7, h 3, 3ð Þ = 17, h 4, 4ð Þ = 31:

ð2Þ

Axioms (mq1) to (mq3) and (mq5) can easily be verified,
and we check only (mq4).

Let μ = 1, η = 4, then either ν = 2 and ξ = 3 or ν = 3 and
ξ = 2. We prove for ν = 2 and ξ = 3. The proof for ν = 3 and
ξ = 2 is similar.

mq 1, 4, t + s +wð Þ = min 1, 4f g + t + s +w
max 1, 4f g + t + s +w

= 1 + t + s +w
4 + t + s +w

:

ð3Þ

Now,

mq 1, 2, t
f 1, 2ð Þ

� �
= min 1, 2f g + t/f 1, 2ð Þ
max 1, 2f g + t/f 1, 2ð Þ = 1 + t/4

2 + t/4 = 4 + t
8 + t

,

mq 2, 3, s
g 2, 3ð Þ

� �
= min 2, 3f g + s/g 2, 3ð Þ
max 2, 3f g + s/g 2, 3ð Þ = 2 + s/8

3 + s/8 = 16 + s
24 + s

,

mq 3, 4, w
h 3, 4ð Þ

� �
= min 3, 4f g +w/h 3, 4ð Þ
max 3, 4f g +w/h 3, 4ð Þ = 3 +w/24

4 +w/24 = 72 +w
92 +w

:

ð4Þ

Clearly,

mq 1, 4, t + s +wð Þ ≥mq 1, 2, t
f 1, 2ð Þ

� �
∗mq 2, 3, s

g 2, 3ð Þ
� �

∗mq

� 3, 4, w
h 3, 4ð Þ

� �
:

ð5Þ

Working like same steps, remaining cases can easily be
proved. Hence, ðF,mq,∗Þ is a fuzzy triple controlled metric
space.

Remark 9. (i) In Example 1, ðF,mq,∗Þ is not a fuzzy triple
controlled metric space, if we use minimum t-norm, i.e., t1
∗ t2 = min ft1, t2g instead of product t-norm.

Next, we define the convergence of a sequence as well as
Cauchy sequence in the context of fuzzy triple controlled
metric space.

Definition 10. Consider a fuzzy triple controlled metric space
ðF,mq,∗Þ. Then, a sequence fμng in F is said to be

(1) convergent, if for all t > 0, there exists μ in F such that

lim
n⟶∞

mq μn, μ, tð Þ = 1, ð6Þ

(2) Cauchy iff for all t > 0 and for each ε > 0, t > 0, there
exists n0 ∈ℕ such that

mq μn, μm, tð Þ ≥ 1 − ε, for allm, n ≥ n0: ð7Þ

ðF,mq,∗Þ is called complete fuzzy triple controlled
metric space, if every Cauchy sequence in F converges to
some point μ in F:

Definition 11. Let ðF,mq,∗Þ be a fuzzy triple controlled met-
ric space. Then, an open ball Bðx, r, tÞ, with center x, radius
r, r ∈ �0, 1½, and t > 0, is given by

B x, r, tð Þ = y ∈ F : mq x, y, tð Þ > 1 − r
� �

, ð8Þ

and the corresponding topology is defined as

τmq
= S ⊂ F : B x, r, tð Þ ⊂ Sf g: ð9Þ

3Journal of Function Spaces



Next example shows that a fuzzy triple controlled metric
space is not Hausdorff.

Example 2. Consider the fuzzy triple controlled metric space
as given in Example 1. Then, the open ball centered at 1,
radius 0:3, and t = 5 is given by

B 1,0:3,5ð Þ = y ∈ F : mq 1, y, 5ð Þ > 0:7
� �

: ð10Þ

Now,

mq 1, 2, 5ð Þ = 1 + 5
2 + 5 = 6

7 = 0:8571,

mq 1, 3, 5ð Þ = 1 + 5
3 + 5 = 6

8 = 0:75,

mq 1, 4, 5ð Þ = 1 + 5
4 + 5 = 6

9 = 0:6666:

ð11Þ

Thus, Bð1,0:3,5Þ = f2, 3g. Now, consider the open ball B
ð2,0:2,7Þ with centered at 2, radius r = 0:2, and t = 7. Then,

B 2,0:2,7ð Þ = y ∈ F : mq 2, y, 7ð Þ > 0:8
� �

,

mq 2, 1, 7ð Þ = 1 + 7
2 + 7 = 8

9 = 0:8888,

mq 2, 3, 7ð Þ = 2 + 7
3 + 7 = 9

10 = 0:9,

mq 2, 4, 7ð Þ = 2 + 7
4 + 7 = 9

11 = 0:8181:

ð12Þ

Thus, Bð2,0:2,7Þ = f1, 3, 4g and so Bð1,0:3,5Þ ∩ Bð
2,0:2,7Þ = f2, 3g ∩ f1, 3, 4g = f3g ≠∅: Hence, fuzzy triple
controlled metric space ðF,mq,∗Þ is not Hausdorff.

Theorem 12. Let f , g, h : F × F ⟶ ½1, 1/kÞ be three noncom-
parable functions ðk ∈ ð0, 1ÞÞ and ðF,mq,∗Þ be a complete
fuzzy triple controlled metric space such that

lim
t⟶∞

mq μ, ν, tð Þ = 1: ð13Þ

Let T : F ⟶ F be a given mapping such that

mq Tμ, Tν, ktð Þ ≥mq μ, ν, tð Þ, for all μ, ν ∈ F: ð14Þ

Then, T has a unique fixed point.

Proof. Choose a0 an arbitrary point in F. If Ta0 = a0, then we
are done. If Ta0 ≠ a0 then Ta0 = a1 ∈ F. Continuing in this
way, we have

Ta1 = T Ta0ð Þ = T2a0 = a2,
Ta2 = T Ta1ð Þ = T2a1 = T2 Ta0ð Þ = T3a0 = a3,

ð15Þ

and so on,

Tan = T Tan−1ð Þ = T2an−1 =⋯ = Tn+1a0 = an+1: ð16Þ

So, we have iterative sequence an = Tan−1 = Tna0. Apply-
ing (14) successively, we get

mq an, an+1, tð Þ =mq Tan−1, Tan, tð Þ ≥mq an−1, an,
t
k

� �

=mq Tan−2, Tan−1,
t
k

� �
≥mq an−2, an−1,

t

k2

� �

≥mq an−3, an−2,
t

k3

� �
≥⋯≥mq a0, a1,

t
kn

� �
:

ð17Þ

Now, writing t = t/3 + t/3 + t/3 and for any sequence
fang, using rectangular property, we have the following
cases:

Case 1. When p = 2m + 1, i.e., p is odd, then

mq an, an+2m+1, tð Þ ≥mq an, an+1,
t/3

f an, an+1ð Þ
� �

∗mq

� an+1, an+2,
t/3

g an+1, an+2ð Þ
� �

∗mq an+2, an+2m+1,
t/3

h an+2, an+2m+1ð Þ
� �

≥mq an, an+1,
t/3

f an, an+1ð Þ
� �

∗mq an+1, an+2,
t/3

g an+1, an+2ð Þ
� �

∗mq an+2, an+3,
t/32

f an+2, an+3ð Þh an+2, an+2m+1ð Þ
� �

∗mq an+3, an+4,
t/32

g an+3, an+4ð Þh an+2, an+2m+1ð Þ
� �

∗mq an+4, an+2m+1,
t/32

h an+4, an+2m+1ð Þh an+2, an+2m+1ð Þ
� �

≥mq an, an+1,
t/3

f an, an+1ð Þ
� �

∗mq an+1, an+2,
t/3

g an+1, an+2ð Þ
� �

∗mq an+2, an+3,
t/32

f an+2, an+3ð Þh an+2, an+2m+1ð Þ
� �

∗mq an+3, an+4,
t/32

g an+3, an+4ð Þh an+2, an+2m+1ð Þ
� �

∗mq an+4, an+5,
t/33

f an+4, an+5ð Þh an+2, an+2m+1ð Þh an+4, an+2m+1ð Þ
� �

∗mq an+5, an+6,
t/33

g an+5, an+6ð Þh an+2, an+2m+1ð Þh an+4, an+2m+1ð Þ
� �

∗mq an+6, an+7,
t/34

f an+6, an+7ð Þh an+2, an+2m+1ð Þh an+4, an+2m+1ð Þh an+6, an+2m+1ð Þ
� �

∗mq an+7, an+8,
t/34

g an+7, an+8ð Þh an+2, an+2m+1ð Þh an+4, an+2m+1ð Þh an+6, an+2m+1ð Þ
� �

⋮

∗mq an+2m−2, an+2m−1,
t/3m

f an+2m−2, an+2m−1ð Þh an+2m−2, an+2m+1ð Þ⋯ h an+2, an+2m+1ð Þ
� �
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∗mq an+2m−1, an+2m,
t/3m

g an+2m−1, an+2mð Þh an+2m−2, an+2m+1ð Þ⋯ h an+2, an+2m+1ð Þ
� �

∗mq an+2m, an+2m+1,
t/3m

h an+2m, an+2m+1ð Þh an+2m−2, an+2m+1ð Þ⋯ h an+2, an+2m+1ð Þ
� �

:

ð18Þ

Applying (17) on right hand side, we deduce

mq an, an+2m+1, tð Þ ≥mq a0, a1,
t/3

f an, an+1ð Þkn
� �

∗mq

� a0, a1,
t/3

g an+1, an+2ð Þkn+1
 !

∗mq a0, a1,
t/32

f an+2, an+3ð Þh an+2, an+2m+1ð Þkn+2
 !

∗mq a0, a1,
t/32

g an+3, an+4ð Þh an+2, an+2m+1ð Þkn+3
 !

∗mq a0, a1,
t/33

f an+4, an+5ð Þh an+2, an+2m+1ð Þh an+4, an+2m+1ð Þkn+4
 !

∗mq a0, a1,
t/33

g an+5, an+6ð Þh an+2, an+2m+1ð Þh an+4, an+2m+1ð Þkn+5
 !

∗mq a0, a1,
t/34

f an+6, an+7ð Þh an+2, an+2m+1ð Þh an+4, an+2m+1ð Þh an+6, an+2m+1ð Þkn+6
 !

∗mq a0, a1,
t/34

g an+7, an+8ð Þh an+2, an+2m+1ð Þh an+4, an+2m+1ð Þh an+6, an+2m+1ð Þkn+7
 !

⋮

∗mq a0, a1,
t/3m

f an+2m−2, an+2m−1ð Þh an+2m−2, an+2m+1ð Þ⋯ h an+2, an+2m+1ð Þkn+2m−2

 !

∗mq a0, a1,
t/3m

g an+2m−1, an+2mð Þh an+2m−2, an+2m+1ð Þ⋯ h an+2, an+2m+1ð Þk2m−1

 !

∗mq a0, a1,
t/3m

h an+2m, an+2m+1ð Þh an+2m−2, an+2m+1ð Þ⋯ h an+2, an+2m+1ð Þk2m
 !

:

ð19Þ

Case 2. When p = 2m, i.e., p is even, then

mq an, an+2m, tð Þ ≥mq an, an+1,
t/3

f an, an+1ð Þ
� �

∗mq

� an+1, an+2,
t/3

g an+1, an+2ð Þ
� �

∗mq an+2, an+2m,
t/3

h an+2, an+2mð Þ
� �

≥mq an, an+1,
t/3

f an, an+1ð Þ
� �

∗mq an+1, an+2,
t/3

g an+1, an+2ð Þ
� �

∗mq an+2, an+3,
t/32

f an+2, an+3ð Þh an+2, an+2mð Þ
� �

∗mq an+3, an+4,
t/32

g an+3, an+4ð Þh an+2, an+2mð Þ
� �

∗mq an+4, an+2m,
t/32

h an+4, an+2mð Þh an+2, an+2mð Þ
� �

≥mq an, an+1,
t/3

f an, an+1ð Þ
� �

∗mq an+1, an+2,
t/3

g an+1, an+2ð Þ
� �

∗mq an+2, an+3,
t/32

f an+2, an+3ð Þh an+2, an+2mð Þ
� �

∗mq an+3, an+4,
t/32

g an+3, an+4ð Þh an+2, an+2mð Þ
� �

∗mq an+4, an+5,
t/33

f an+4, an+5ð Þh an+2, an+2mð Þh an+4, an+2mð Þ
� �

∗mq an+5, an+6,
t/33

g an+5, an+6ð Þh an+2, an+2mð Þh an+4, an+2mð Þ
� �

∗mq an+6, an+7,
t/34

f an+6, an+7ð Þh an+2, an+2mð Þh an+4, an+2mð Þh an+6, an+2mð Þ
� �

∗mq an+7, an+8,
t/34

g an+7, an+8ð Þh an+2, an+2mð Þh an+4, an+2mð Þh an+6, an+2mð Þ
� �

⋮

∗mq an+2m−4, an+2m−3,
t/3m−1

f an+2m−4, an+2m−3ð Þh an+2m−4, an+2mð Þ⋯ h an+2, an+2mð Þ
� �

∗mq an+2m−3, an+2m−2,
t/3m−1

g an+2m−3, an+2m−2ð Þh an+2m−4, an+2mð Þ⋯ h an+2, an+2mð Þ
� �

∗mq an+2m−2, an+2m,
t/3m−1

h an+2m−2, an+2mð Þh an+2m−4, an+2m+1ð Þ⋯ h an+2, an+2mð Þ
� �

:

ð20Þ

Now applying (17), we deduce

mq an, an+2m+1, tð Þ ≥mq a0, a1,
t/3

f an, an+1ð Þkn
� �

∗mq

� a0, a1,
t/3

g an+1, an+2ð Þkn+1
 !

∗mq a0, a1,
t/3/32

f an+2, an+3ð Þh an+2, an+2mð Þkn+2
 !

∗mq a0, a1,
t/3/32

g an+3, an+4ð Þh an+2, an+2mð Þkn+3
 !

∗mq a0, a1,
t/33

f an+4, an+5ð Þh an+2, an+2mð Þh an+4, an+2m+1ð Þkn+4
 !

∗mq a0, a1,
t/33

g an+5, an+6ð Þh an+2, an+2mð Þh an+4, an+2m+1ð Þkn+5
 !
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∗mq a0, a1,
t/34

f an+6, an+7ð Þh an+2, an+2mð Þh an+4, an+2m+1ð Þh an+6, an+2mð Þkn+6
 !

∗mq a0, a1,
t/34

g an+7, an+8ð Þh an+2, an+2mð Þh an+4, an+2mð Þh an+6, an+2mð Þkn+7
 !

⋮

∗mq a0, a1,
t/3m−1

f an+2m−3, an+2m−2ð Þh an+2m−4, an+2mð Þ⋯ h an+2, an+2mð Þkn+2m−4

 !

∗mq a0, a1,
t/3m−1

g an+2m−1, an+2mð Þh an+2m−2, an+2m+1ð Þ⋯ h an+2, an+2m+1ð Þkn+2m−3

 !

∗mq a0, a1,
t/3m−1

h an+2m−2, an+2mð Þh an+2m−4, an+2mð Þ⋯ h an+2, an+2mð Þkn+2m−2

 !
:

ð21Þ

Using (13) for each case, we obtain

lim
n⟶∞

mq an, an+p, t
� �

= 1 ∗ 1∗⋯∗1 = 1, ð22Þ

which shows that fang is a Cauchy sequence in F and con-
verges to some a ∈ F (as F is complete), i.e.,

lim
n⟶∞

mq an, a, tð Þ = 1: ð23Þ

Now, we show that a is the fixed point of T . From (14),

mq a, Ta, tð Þ ≥mq a, an,
t/3

f a, anð Þ
� �

∗mq an, an+1,
t/3

g an, an+1ð Þ
� �

∗mq

� an+1, Ta,
t/3

h an+1, Tað Þ
� �

≥mq a, an,
t/3

f a, anð Þ
� �

∗mq

� Tan−1, Tan,
t/3

g an, an+1ð Þ
� �

∗mq Tan, Ta,
t/3

h an+1, Tað Þ
� �

≥mq a, an,
t/3

f a, anð Þ
� �

∗mq an−1, an,
t/3

g an, an+1ð Þk
� �

∗mq

� an, a,
t/3

h an+1, Tað Þk
� �

⟶ 1 ∗ 1 ∗ 1 = 1 as n⟶∞,

ð24Þ

which shows that Ta = a, i.e., a is a fixed point of T . To prove
a is unique, we assume a′ is also a fixed point of T , i.e., Ta′
= a′. Then,

mq a, a′, t
� 	

=mq Ta, Ta′, t
� 	

≥mq a, a′, t
k

� �
, ð25Þ

which implies that a = a′, so the fixed point of T is unique.

Example 3. Let F = ½0, 1� and mq : F × F × ð0,∞Þ⟶ ½0, 1�
be defined as mqðμ, ν, tÞ = e−∣μ−ν∣/t for all t > 0. Let f , g, h
: F × F ⟶ ½1, 1/kÞ be defined by f ðμ, νÞ = μ + ν + 1, gðν, ξÞ
= ν2 + ξ + 1 and hðξ, ηÞ = ξ2 + η2 + 1. Then, ðF,mq,∗Þ is a
complete fuzzy triple controlled metric space. Let T : F
⟶ F be given by Tμ = 1 − μ/4. Then,

mq Tμ, Tν, ktð Þ =mq 1 − μ

4 , 1 −
ν

4 , kt
� 	

= e−∣1−μ/4−1+ν/4∣/kt

= e− μ/4−ν/4j j/kt ≥ e− μ−νj j/4kt ≥ e− μ−νj j/t =mq μ, ν, tð Þ,
ð26Þ

for all μ, ν ∈ F, where k ∈ ½13/50, 1Þ: Since all the conditions
of Theorem 12 are satisfied, therefore T has a unique fixed
point which is μ = 4/5.

Theorem 12 generalizes Theorem 2.1 of [31] as follows.

Corollary 13. Let ðF,mq,∗Þ be a complete fuzzy rectangular b
-metric space with b ≥ 1 such that

lim
t⟶∞

mq μ, ν, tð Þ = 1: ð27Þ

Let T : F ⟶ F be a mapping such that

mq Tμ, Tν, ktð Þ ≥mq μ, ν, tð Þ, for all μ, ν ∈ F: ð28Þ

Then, T has a unique fixed point.

Remark 14. If we choose f ðμ, νÞ = gðμ, νÞ = hðμ, νÞ = 1, then
our main result reduces to the Banach contraction principle
for the fuzzy rectangular metric space defined in [37].

3. Application

Consider the integral equation

μ ξð Þ = g ξð Þ +
ð
0

ξG ξ, γ, μ γð Þð Þdγ, ð29Þ

where ξ ∈ I = ½0, 1�.
Define f ðμ, νÞ = 3ðμ + ν + 1Þ, gðν, ξÞ = 3ðμ2 + ν2 + 1Þ,

and hðξ, ηÞ = 3ðμ2 + ν2 − 1Þ: Also, for all t > 0, μ, ν ∈ CðI,ℝÞ,

mq μ, ν, tð Þ = e
−sup
ξ∈I

μ ξð Þ−ν ξð Þj j2/t
: ð30Þ

Then, ðCðI,ℝÞ,mqÞ is a complete fuzzy triple controlled
metric space with product t-norm, where CðI,ℝÞ is the space
of all real valued continuous functions defined on I:

Theorem 15. Consider an integral operator defined on
CðI,ℝÞ as follows:

Tμ ξð Þ = g ξð Þ +
ð
0

ξG ξ, γ, μ γð Þð Þdγ, g ∈ C I,ℝð Þ, ð31Þ

where G satisfies the following condition.
There exists f : I × I ⟶ ½0,∞Þ such that for all ξ, γ ∈ I,

f ðξ, γÞ ∈ L1ðI,ℝÞ, and for all μ, ν ∈ CðI,ℝÞ, we have

G ξ, γ, μ γð Þð Þ −G ξ, γ, ν γð Þð Þ ∣ 2 ≤ f 2 ξ, γð Þ

 

μ γð Þ − ν γð Þ

2,
ð32Þ
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where

0 < sup
ξ∈I

ð
0

ξ f 2 ξ, γð Þdγ ≤ k < 1: ð33Þ

Then, the integral equation (29) has a unique solution.

Proof. Let μ, ν ∈ CðI,ℝÞ. Note that

mq Tμ, Tν, ktð Þ = e
−sup
ξ∈I

Tμ ξð Þ−Tν ξð Þj j2/kt

= e
−sup
ξ∈I

Ð
0
ξ G ξ,γ,μ γð Þð Þ−G ξ,γ,ν γð Þð Þð Þdγ



 

2/kt

≥ e
−sup
ξ∈I

Ð
0
ξ G ξ,γ,μ γð Þð Þ−G ξ,γ,ν γð Þð Þj j2dγ/kt

≥ e
−sup
ξ∈I

Ð
0
ξ f 2 ξ,γð Þ μ γð Þ−ν γð Þj j2dγ/kt

≥ e
− μ γð Þ−ν γð Þj j2 sup

ξ∈I

Ð
0
ξ f 2 ξ,γð Þdγ/kt

≥ e−k μ γð Þ−ν γð Þj j2/kt = e− μ γð Þ−ν γð Þj j2/t

≥ e
−sup
γ∈I

μ γð Þ−ν γð Þj j2/t
=mq μ, ν, tð Þ:

ð34Þ

Thus, mqðTμ, Tν, ktÞ ≥mqðμ, ν, tÞ for all μ, ν ∈ CðI,ℝÞ
and consequently, all the conditions of Theorem 12 are satis-
fied. Therefore, the integral equation (29) has a unique
solution.

4. Conclusion

In this article, the concept of fuzzy triple controlled metric
space is given which generalizes fuzzy rectangular b-metric
space, rectangular fuzzy metric space. We have established
Banach fixed point theorem in this space. An example is also
presented that illustrates our main result. Our newly defined
results can be used for further investigation in many existing
results in the literature.
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This paper is aimed at proving some common fixed point theorems for mappings involving generalized rational-type fuzzy cone-
contraction conditions in fuzzy cone metric spaces. Some illustrative examples are presented to support our work. Moreover, as an
application, we ensure the existence of a common solution of the Fredholm integral equations: μðτÞ = Ð τ0Γðτ, v, μðvÞÞdv and νðτÞ
=
Ð τ
0Γðτ, v, νðvÞÞdv, for all μ ∈U , v ∈ ½0, η�, and 0 < η ∈ℝ, where U = Cð½0, η�,ℝÞ is the space of all ℝ-valued continuous

functions on the interval ½0, η� and Γ : ½0, η� × ½0, η� ×ℝ⟶ℝ.

1. Introduction

In 1922, Banach [1] proved a “Banach contraction principle,”
which is stated as follows: “A self-mapping on a complete
metric space verifying the contraction condition has a unique
fixed point.” This principle plays a very important role in the
fixed point theory. A number of researches have generalized
it in many directions for single-valued and multivalued map-
pings in the context of metric spaces. Some of the findings
can be found in [2–13] and the references therein. Currently,
the fixed point theory is one of the most interested research
areas in the field of mathematics. In the last decades, it has
been investigated in many fields, such as game theory, graph
theory, economics, computer sciences, and engineering.

The theory of fuzzy sets was introduced by Zadeh [14],
while the concept of a fuzzy metric space (FM space) was
given by Kramosil and Michalek [15]. After that, the stronger
form of the metric fuzziness was presented by George and
Veeramani in [16]. Later on, in [17], Gregori and Sapena
proved some contractive-type fixed point results in complete
FM spaces. Some more fixed point results in FM spaces can
be found in [18–27] and the references therein.

Initially, in 2007, the concept of a cone metric space was
reintroduced by Huang and Zhang [28]. They proved some
nonlinear contractive-type fixed point results in cone metric
spaces. After the publication of this article, a number of
researchers have contributed their ideas in cone metric
spaces. Some of such works can be found in [29–34] and
the references therein.

In 2015, the basic concept of a fuzzy cone metric space
(FCM space) was given by Öner et al. [35]. They presented
some key attributes and a “fuzzy cone Banach contraction
theorem” in FCM spaces. Later, Rehman and Li [36]
extended and improved a “fuzzy cone Banach contraction
theorem” and proved some generalized fixed point theorems
in FCM spaces. Some more properties and related fixed point
results can be found in [37–47].

The aim of this research work is to establish some
rational-type fuzzy cone-contraction results in FCM spaces.
We use the concept of [36, 39] and prove some common
fixed theorems under generalized rational-type fuzzy cone-
contraction conditions in FCM spaces. Some illustrative
examples are presented. In the last section, we give an appli-
cation of two Fredholm integral equations (FIEs).
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2. Preliminaries

Definition 1 [47]. An operation ∗ : ½0, 1�2 ⟶ ½0, 1� is called a
continuous t-norm if

(i) ∗ is commutative, associative, and continuous

(ii) 1 ∗ η1 = η1 and η1 ∗ η2 ≤ η3 ∗ η4, whenever η1 ≤ η3
and η2 ≤ η4, for all η1, η2, η3, η4 ∈ ½0, 1�

The basic t-norms: the minimum, the product, and the
Lukasiewicz continuous t-norms are defined by [47]

η1 ∗ η2 = min η1, η2f g η1 ∗ η2 = η1η2,
η1 ∗ η2 = max η1 + η2 − 1, 0f g:

ð1Þ

Definition 2 [35]. A 3-tuple ðU ,Mr ,∗Þ is said to be a FCM
space if P is a cone of E, U is an arbitrary set, ∗ is a continu-
ous t-norm, and Mr is a fuzzy set on U2 × int ðPÞ satisfying
the following conditions:

(1) ∀ν1,ν2∈U ;Mrðν1, ν2, tÞ > 0 and Mrðν1, ν2, tÞ = 1⇔ ν1
= ν2

(2) ∀ν1,ν2∈U ;Mrðν1, ν2, tÞ =Mrðν2, ν1, tÞ
(3) ∀ν1,ν2,ν3∈U ;Mrðν1, ν2, tÞ ∗Mrðν2, ν3, sÞ ≤Mrðν1, ν3,

t + sÞ
(4) ∀ν1,ν2∈U ;Mrðν1, ν2,:Þ: int ðPÞ⟶ ½0, 1� is

continuous

for all t, s ∈ sin int ðPÞ.

Definition 3 [35]. Let ðU ,Mr ,∗Þ be a FCM space and ν1 ∈U
and ðνjÞ be a sequence in U .

(i) ðνjÞ converges to ν1 if for c ∈ ð0, 1Þ and t≫ θ there is
j1 ∈N such that Mrðνj, ν1, tÞ > 1 − c, for j ≥ j1. We
may write this lim

j⟶∞
νj = ν1 or νj ⟶ ν1 as j⟶∞

(ii) ðνjÞ is Cauchy if for c ∈ ð0, 1Þ and t≫ θ there is j1
∈N such that Mrðνj, νk, tÞ > 1 − c, for j, k ≥ j1

(iii) ðU ,Mr ,∗Þ is complete if every Cauchy sequence is
convergent in U

(iv) ðνjÞ is fuzzy cone contractive if there is a ∈ ð0, 1Þ so
that

1
Mr νj, νj+1, t
� � − 1 ≤ a

1
Mr νj−1, νj, t
� � − 1

 !
, for t≫ θ, j ≥ 1:

ð2Þ

Lemma 4 [35]. Let ðU ,Mr ,∗Þ be a FCM space and let ðνjÞ be
sequence in U converging to a point ν1 ∈U iff Mrðνj, ν1, tÞ
⟶ 1 as j⟶∞ for each t≫ θ.

Definition 5 [36]. Let ðU ,Mr ,∗Þ be a FCM space. The fuzzy
cone metric Mr is triangular if

1
Mr ν1, ν3, tð Þ − 1 ≤ 1

Mr ν1, ν2, tð Þ − 1
� �

+ 1
Mr ν2, ν3, tð Þ − 1
� �

, ∀ν1, ν2, ν3 ∈U , t≫ θ:

ð3Þ

Definition 6 [35]. Let ðU ,Mr ,∗Þ be a FCM space and ℓ : U
⟶U . Then, ℓ is said to be fuzzy cone contractive if there
is a ∈ ð0, 1Þ such that

1
Mr ℓν1, ℓν2, tð Þ − 1 ≤ a

1
Mr ν1, ν2, tð Þ − 1
� �

, ∀ν1, ν2 ∈U , t≫ θ:

ð4Þ

A “fuzzy cone Banach contraction theorem” [35] is stated
as follows: “Let ðU ,Mr ,∗Þ be a complete FCM space in which
fuzzy cone contractive sequences are Cauchy and ℓ : U ⟶
U be a fuzzy cone contractive mapping. Then, ℓ has a unique
fixed point.”

In this paper, we present some rational-type fuzzy cone-
contraction theorems in FCM spaces by using the concept
of [36, 39]. Namely, we prove some common fixed theorems
under generalized rational-type fuzzy cone-contraction con-
ditions in FCM spaces without the assumption that the fuzzy
cone contractive sequences are Cauchy. We use “the triangu-
lar property of the fuzzy cone metric.”We also present some
illustrative examples to support our work. In the last section,
an application of Fredholm integral equations is provided.

3. Main Results

In this section, we prove some common fixed point theorems
via generalized rational-type fuzzy cone-contraction condi-
tions in FCM spaces.

Theorem 7. Let ðU ,Mr ,∗Þ be a complete FCM space in which
Mr is triangular. Let ℓ, ℏ : U ⟶U be a pair of self-mappings
so that

1
Mr ℓμ, ℏν, tð Þ − 1

≤ a
1

Mr μ, ν, tð Þ − 1
� �

+ b
Mr μ, ν, tð Þ

Mr μ, ℏν, 2tð Þ ∗Mr ν, ℓμ, 2tð Þ − 1
� �

+ c
Mr μ, ℓμ, tð Þ ∗Mr ν, ℏν, tð Þ

Mr μ, ν, tð Þ ∗Mr μ, ℏν, 2tð Þ ∗Mr ν, ℓμ, 2tð Þ − 1
� �

+ d
1

Mr μ, ℓμ, tð Þ − 1 + 1
Mr ν, ℏν, tð Þ − 1

� �
,

ð5Þ
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for all μ, ν ∈U , t≫ θ, a ∈ ð0, 1Þ, and b, c, d ≥ 0 with a +
b + c + 2d < 1. Then, ℓ and ℏ have a common fixed point in
U .

Proof. Fix μ0 ∈U and construct a sequence of points in U
such that

μ2j+1 = ℓμ2j,
μ2j+2 = ℏμ2j+1,

 j ≥ 0:
ð6Þ

Then, by (5), for t≫ θ,

1
Mr μ2 j+1, μ2j+2, t
� � − 1

= 1
Mr ℓμ2j, ℏμ2j+1, t
� � − 1

≤ a
1

Mr μ2j, μ2j+1, t
� � − 1

0
@

1
A

+ b
Mr μ2j, μ2j+1, t
� �

Mr μ2j, ℏμ2j+1, 2t
� �

∗Mr μ2 j+1, ℓμ2j, 2t
� � − 1

0
@

1
A

+ c
Mr μ2j, ℓμ2j, t
� �

∗Mr μ2j+1, ℏμ2j+1, t
� �

Mr μ2j, μ2j+1, t
� �

∗Mr μ2j, ℏμ2j+1, 2t
� �

∗Mr μ2j+1, ℓμ2j, 2t
� � − 1

0
@

1
A

+ d
1

Mr μ2j, ℓμ2j, t
� � − 1 + 1

Mr μ2j+1, ℏμ2j+1, t
� � − 1

0
@

1
A

= a
1

Mr μ2j, μ2j+1, t
� � − 1

0
@

1
A

+ b
Mr μ2j, μ2j+1, t
� �

Mr μ2j, μ2j+2, 2t
� �

∗Mr x2j+1, x2j+1, 2t
� � − 1

0
@

1
A

+ c
Mr μ2j, μ2j+1, t
� �

∗Mr μ2j+1, μ2j+2, t
� �

Mr μ2j, μ2j+1, t
� �

∗Mr μ2j, μ2j+2, 2t
� �

∗Mr μ2j+1, μ2j+1, 2t
� � − 1

0
@

1
A

+ d
1

Mr μ2j, μ2j+1, t
� � − 1 + 1

Mr μ2j+1, μ2j+2, t
� � − 1

0
@

1
A

= a
1

Mr μ2j, μ2j+1, t
� � − 1

0
@

1
A + b

Mr μ2j, μ2j+1, t
� �

Mr μ2j, μ2j+2, 2t
� � − 1

0
@

1
A

+ c
Mr μ2j+1, μ2j+2, t
� �

Mr μ2j, μ2j+2, 2t
� � − 1

0
@

1
A

+ d
1

Mr μ2j, μ2j+1, t
� � − 1 + 1

Mr μ2j+1, μ2j+2, t
� � − 1

0
@

1
A:

ð7Þ

By Definition 2 (3), Mrðμ2j, μ2j+2, 2tÞ ≥Mrðμ2j, μ2j+1, tÞ
∗Mrðμ2j+1, μ2j+2, tÞ, for t≫ θ. One writes

1
Mr μ2j+1, μ2j+2, t
� � − 1

≤ a
1

Mr μ2j, μ2j+1, t
� � − 1

0
@

1
A

+ b
Mr μ2j, μ2j+1, t
� �

Mr μ2j, μ2j+1, t
� �

∗Mr μ2j+1, μ2j+2, t
� � − 1

0
@

1
A

+ c
Mr μ2j+1, μ2j+2, t
� �

Mr μ2j, μ2j+1, t
� �

∗Mr μ2j+1, μ2j+2, 2t
� � − 1

0
@

1
A

+ d
1

Mr μ2j, μ2j+1, t
� � − 1 + 1

Mr μ2j+1, μ2j+2, t
� � − 1

0
@

1
A:

ð8Þ

After simplification, we get that

1
Mr μ2j+1, μ2j+2, t
� � − 1 ≤ γ

1
Mr μ2j, μ2j+1, t
� � − 1

0
@

1
A, for t≫ θ,

ð9Þ

where γ = ða + c + dÞ/ð1 − b − dÞ < 1 since ða + b + c + 2d
Þ < 1. Similarly,

1
Mr μ2j+2, μ2j+3, t
� � − 1

= 1
Mr ℓμ2j+2, ℏμ2j+1, t
� � − 1

≤ a
1

Mr μ2j+1, μ2j+2, t
� � − 1

0
@

1
A

+ b
Mr μ2j+1, μ2j+2, t
� �

Mr μ2j+2, ℏμ2j+1, 2t
� �

∗M μ2j+1, ℓμ2j+2, 2t
� � − 1

0
@

1
A

+ c
Mr μ2j+2, ℓμ2j+2, t
� �

∗Mr μ2j+1, ℏμ2j+1, t
� �

Mr μ2j+1, μ2j+2, t
� �

∗Mr μ2j+2, ℏμ2j+1, 2t
� �

∗Mr μ2j+1, ℓμ2j+2, 2t
� � − 1

0
@

1
A

+ d
1

Mr μ2j+2, ℓμ2j+2, t
� � − 1 + 1

Mr μ2j+1, ℏμ2j+1, t
� � − 1

0
@

1
A

= a
1

Mr μ2j+1, μ2j+2, t
� � − 1

0
@

1
A + b

Mr μ2j+1, μ2j+2, t
� �

Mr μ2j+2, μ2j+2, 2t
� �

∗Mr x2j+1, x2j+3, 2t
� � − 1

0
@

1
A

+ c
Mr μ2j+2, μ2j+3, t
� �

∗Mr μ2j+1, μ2j+2, t
� �

Mr μ2j+1, μ2j+2, t
� �

∗Mr μ2j+2, μ2j+2, 2t
� �

∗Mr μ2j+1, μ2j+3, 2t
� � − 1

0
@

1
A

+ d
1

Mr μ2j+2, μ2j+3, t
� � − 1 + 1

Mr μ2j+1, μ2j+2, t
� � − 1

0
@

1
A

= a
1

Mr μ2j+1, μ2j+2, t
� � − 1

0
@

1
A + b

Mr μ2j+1, μ2j+2, t
� �

Mr μ2j+1, μ2j+3, 2t
� � − 1

0
@

1
A

+ c
Mr μ2j+2, μ2j+3, t
� �

Mr μ2j+1, μ2j+3, 2t
� � − 1

0
@

1
A + d

1
Mr μ2j+2, μ2j+3, t
� � − 1 + 1

Mr μ2j+1, μ2j+2, t
� � − 1

0
@

1
A:

ð10Þ

Again, by Definition 2 (3), Mrðμ2j+1, μ2j+3, 2tÞ ≥Mrð
μ2j+1, μ2j+2, tÞ ∗Mrðμ2j+2, μ2j+3, tÞ, for t≫ θ. We have

3Journal of Function Spaces



1
Mr μ2j+2, μ2j+3, t
� � − 1

≤ a
1

Mr μ2 j+1, μ2j+2, t
� � − 1

0
@

1
A

+ b
Mr μ2j+1, μ2j+2, t
� �

Mr μ2 j+1, μ2j+2, t
� �

∗Mr μ2j+2, μ2j+3, t
� � − 1

0
@

1
A

+ c
Mr μ2j+2, μ2 j+3, t
� �

Mr μ2j+1, μ2 j+2, t
� �

∗Mr μ2j+2, μ2j+3, 2t
� � − 1

0
@

1
A

+ d
1

Mr μ2j+1, μ2j+2, t
� � − 1 + 1

Mr μ2 j+2, μ2j+3, t
� � − 1

0
@

1
A:

ð11Þ

After simplification, we have

1
Mr μ2 j+2, μ2j+3, t
� � − 1 ≤ γ

1
Mr μ2 j+1, μ2j+2, t
� � − 1

0
@

1
A,  for t≫ θ,

ð12Þ

where the value of γ is the same as in (9). Now, from (9)
and (12) and by induction, we have

1
Mr μ2j+2, μ2j+3, t
� � − 1

≤ γ
1

Mr μ2j+1, μ2j+2, t
� � − 1

0
@

1
A

≤ γ2
1

Mr μ2j+1, μ2j+2, t
� � − 1

0
@

1
A ≤⋯

≤ γ2j+2
1

Mr μ0, μ1, tð Þ − 1
� �

⟶ 0, as j⟶∞,

ð13Þ

which shows that ðμjÞ is a fuzzy cone-contractive
sequence in U , and we get that

lim
j⟶∞

Mr μ2j+1, μ2j+2, t
� �

= 1, for t≫ θ: ð14Þ

Note that Mr is triangular; then, for all k > j ≥ j0,

1
Mr μj, μk, t
� � − 1 ≤ 1

Mr μj, μj+1, t
� � − 1

0
@

1
A

+ 1
Mr μj+1, μj+2, t
� � − 1

0
@

1
A+⋯

+ 1
Mr μk−1, μk, tð Þ − 1
� �

≤ γj + γj+1+⋯+γk−1
� � 1

Mr μ0, μ1, tð Þ − 1
� �

≤
γj

1 − γ

1
Mr μ0, μ1, tð Þ − 1
� �

⟶ 0, as j⟶∞,

ð15Þ

which yields that ðμjÞ is a Cauchy sequence in U . Since
ðU ,Mr ,∗Þ is complete, there is v1 ∈U such that

lim
j⟶∞

Mr μ2j+1, v1, t
� �

= 1, for t≫ θ: ð16Þ

Now, we prove that ℏv1 = v1. Since Mr is triangular,

1
Mr v1, ℏv1, tð Þ − 1 ≤ 1

Mr v1, μ2j+1, t
� � − 1

0
@

1
A

+ 1
Mr μ2j+1, ℏv1, t
� � − 1

0
@

1
A, for t≫ θ:

ð17Þ

By (5), (14), and (16), for t≫ θ,

1
Mr μ2j+1, ℏv1, t
� � − 1 = 1

Mr ℓμ2j, ℏv1, t
� � − 1 ≤ a

1
Mr μ2j, v1, t
� � − 1

0
@

1
A + b

Mr μ2j, v1, t
� �

Mr μ2j, ℏv1, 2t
� �

∗Mr v1, ℓμ2j, 2t
� � − 1

0
@

1
A

+ c
Mr μ2j, ℓμ2j, t
� �

∗Mr v1, ℏv1, tð Þ
Mr μ2j, v, t
� �

∗Mr μ2j, ℏv1, 2t
� �

∗Mr v1, ℓμ2j, 2t
� � − 1

0
@

1
A + d

1
Mr μ2j, ℓμ2j, t
� � − 1 + 1

Mr ν1, ℏν1, tð Þ − 1

0
@

1
A

= a
1

Mr μ2j, v1, t
� � − 1

0
@

1
A + b

Mr μ2j, v1, t
� �

Mr μ2j, ℏv1, 2t
� �

∗Mr v1, μ2j+1, 2t
� � − 1

0
@

1
A

+ c
Mr μ2j, μ2j+1, t
� �

∗Mr v1, ℏv1, tð Þ
Mr μ2j, v1, t
� �

∗Mr μ2j, ℏv1, 2t
� �

∗Mr v1, μ2j+1, 2t
� � − 1

0
@

1
A + d

1
Mr μ2j, μ2j+1, t
� � − 1 + 1

Mr ν1, ℏν1, tð Þ − 1

0
@

1
A:

ð18Þ
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Again, by Definition 2 (3), Mrðμ2j, ℏv1, 2tÞ ≥Mrðμ2j, v1,
tÞ ∗Mrðv1, ℏv1, tÞ, for t≫ θ. It follows that

Then,

lim sup
j⟶∞

1
Mr μ2j+1, ℏv1, t
� � − 1

0
@

1
A

≤ b + dð Þ 1
Mr v1, ℏv1, tð Þ − 1
� �

, for t≫ θ:

ð20Þ

This together with (17) and (16) implies

1
Mr v1, ℏv1, tð Þ − 1 ≤ b + dð Þ 1

Mr v1, ℏv1, tð Þ − 1
� �

,  for t≫ θ:

ð21Þ

Note that ðb + dÞ < 1 because a + b + c + 2d < 1. Then,
Mrðv1, ℏv1, tÞ = 1, that is, ℏv1 = v1. Similarly, we can show
that ℓv1 = v1 because Mr is triangular. Therefore,

1
Mr v1, ℓv1, tð Þ − 1 ≤ 1

Mr v1, μ2j+2, t
� � − 1

0
@

1
A

+ 1
Mr μ2j+2, ℓv1, t
� � − 1

0
@

1
A, for t≫ θ:

ð22Þ

Now, again by (5), (14), and (16), one writes for t≫ θ

1
Mr μ2j+1, ℏv1, t
� � − 1 ≤ a

1
Mr μ2 j, v1, t
� � − 1

0
@

1
A + b

Mr μ2j, v1, t
� �

Mr μ2j, v1, t
� �

∗Mr v1, ℏv1, tð Þ ∗Mr v1, μ2j+1, 2t
� � − 1

0
@

1
A

+ c
Mr μ2j, μ2j+1, t
� �

∗Mr v1, ℏv1, tð Þ
Mr μ2j, v1, t
� �

∗Mr μ2j, v1, t
� �

∗Mr v1, ℏv1, tð Þ ∗Mr v1, μ2j+1, 2t
� � − 1

0
@

1
A

+ d
1

Mr μ2j, μ2j+1, t
� � − 1 + 1

Mr ν1, ℏν1, tð Þ − 1

0
@

1
A⟶ b + dð Þ 1

Mr v1, ℏv1, tð Þ − 1
� �

,  as j⟶∞:

ð19Þ

1
Mr μ2j+2, ℓv1, t
� � − 1 = 1

Mr ℓv1, ℏμ2j+1, t
� � − 1 ≤ a

1
Mr v1, μ2j+1, t
� � − 1

0
@

1
A + b

Mr v1, μ2j+1, t
� �

Mr v1, ℏμ2j+1, 2t
� �

∗Mr μ2j+1, ℓv1, 2t
� � − 1

0
@

1
A

+ c
Mr v1, ℓv1, tð Þ ∗Mr μ2j+1, ℏμ2j+1, t

� �
Mr v1, μ2j+1, t
� �

∗Mr v1, ℏμ2j+1, 2t
� �

∗Mr μ2j+1, ℓv1, 2t
� � − 1

0
@

1
A + d

1
Mr ν1, ℓν1, tð Þ − 1 + 1

Mr μ2j+1, ℏμ2j+1, t
� � − 1

0
@

1
A

= a
1

Mr v1, μ2j+1, t
� � − 1

0
@

1
A + b

Mr v1, μ2j+1, t
� �

Mr v1, μ2j+2, 2t
� �

∗Mr μ2j+1, ℓv1, 2t
� � − 1

0
@

1
A

+ c
Mr v1, ℓv1, tð Þ ∗Mr μ2j+1, μ2j+2, t

� �
Mr v1, μ2j+1, t
� �

∗Mr v1, μ2j+2, 2t
� �

∗Mr μ2j+1, ℓv1, 2t
� � − 1

0
@

1
A + d

1
Mr ν1, ℓν1, tð Þ − 1 + 1

Mr μ2j+1, μ2j+2, t
� � − 1

0
@

1
A:

ð23Þ
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Again, by Definition 2 (3), Mrðμ2j+1, ℓv1, 2tÞ ≥Mrðμ2j+1
, v1, tÞ ∗Mrðv1, ℓv1, tÞ, for t≫ θ: It follows that

Then,

lim sup
j⟶∞

1
Mr μ2j+2, ℓv1, t
� � − 1

0
@

1
A

≤ b + dð Þ 1
Mr v1, ℓv1, tð Þ − 1
� �

, for t≫ θ:

ð25Þ

This together with (22) and (16) implies

1
Mr v1, ℓv1, tð Þ − 1 ≤ b + dð Þ 1

Mr v1, ℓv1, tð Þ − 1
� �

, for t≫ θ:

ð26Þ

Note that ðb + dÞ < 1 since a + b + c + 2d < 1. Then, Mrð
v1, ℓv1, tÞ = 1, that is, ℓv1 = v1.

Hence, v1 is a common fixed point of ℓ and ℏ.

Example 1. Let U = ½0,∞Þ, ∗ be a continuous t-norm and
Mr : U

2 × ð0,∞Þ⟶ ½0, 1� be written as

Mr μ, ν, tð Þ = t
t + μ − νj j , ∀μ, ν ∈U , t≫ θ: ð27Þ

Then, easily one can verify that Mr is triangular and ðU
,Mr ,∗Þ is a complete FCM space. Now, we define ℓ, ℏ : U
⟶U by

ℓ μð Þ = ℏ μð Þ =
3μ
8 , if μ ∈ 0, 1½ Þ,
4μ
5 + 7

5 , if μ ∈ 1,∞½ Þ:

8>><
>>: ð28Þ

Then, for t≫ θ, we have

1
Mr ℓ μð Þ, ℏ νð Þ, tð Þ − 1 = ℓ μð Þ − ℏ νð Þ

t

����
���� = 3

8
1

Mr μ, ν, tð Þ − 1
� �

:

ð29Þ

Hence, the pair of self-mapping ðℓ, ℏÞ is a fuzzy cone-
contraction. Now, from Definition 2 (3), Mrðμ, ℏν, 2tÞ ≥Mr
ðμ, ν, tÞ ∗Mrðν, ℏν, tÞ and Mrðν, ℓμ, 2tÞ ≥Mrðν, μ, tÞ ∗Mrð
μ, ℓμ, tÞ, for t≫ θ. We get the following:

Mr μ, ν, tð Þ
Mr μ, ℏν, 2tð Þ ∗Mr ν, ℓμ, 2tð Þ − 1
� �

≤
1

Mr μ, ν, tð Þ ∗Mr μ, ℓμ, tð Þ ∗Mr ν, ℏν, tð Þ − 1

= 1
t/ t + μ − νj jð Þð Þ t/ t + μ − ℓμj jð Þð Þ t/ t + ν − ℏνj jð Þð Þ − 1

= t + μ − νj jð Þ t + μ − ℓμj jð Þ t + ν − ℏνj jð Þ
t3

− 1

= t + μ − νj jð Þ 5t/8ð Þ μ + νð Þ + 25/64ð Þμν½ � + t2 μ − νj j
t3

= 5 t + μ − νj jð Þ 8t μ + νð Þ + 5μν½ �
64t3 + μ − νj j

t
,

Mr μ, ℓμ, tð Þ ∗Mr ν, ℏν, tð Þ
Mr μ, ν, tð Þ ∗Mr μ, ℏν, 2tð Þ ∗Mr ν, ℓμ, 2tð Þ − 1
� �

≤
1

Mr μ, ν, tð Þð Þ3 − 1 = 1
t/ t + μ − νj jð Þð Þ3 − 1

= t + μ − νj jð Þ3
t3

− 1 = μ − νj jð Þ3 + 3t μ − νj j t + μ − νj jð Þ
t3

,

1
Mr μ2j+1, ℓv1, t
� � − 1 ≤ a

1
Mr v1, μ2j+1, t
� � − 1

0
@

1
A + b

Mr v1, μ2j+1, t
� �

Mr v1, μ2j+2, 2t
� �

∗Mr μ2j+1, v1, t
� �

∗Mr v1, ℓv1, tð Þ
− 1

0
@

1
A

+ c
Mr v1, ℓv1, tð Þ ∗Mr μ2j+1, μ2j+2, t

� �
Mr v1, μ2j+1, t
� �

∗Mr v1, μ2j+2, 2t
� �

∗Mr μ2j+1, v1, t
� �

∗Mr v1, ℓv1, tð Þ
− 1

0
@

1
A

+ d
1

Mr ν1, ℓν1, tð Þ − 1 + 1
Mr μ2j+1, μ2j+2, t
� � − 1

0
@

1
A⟶ b + dð Þ 1

Mr v1, ℓv1, tð Þ − 1
� �

, as j⟶∞:

ð24Þ
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1
Mr μ, ℓμ, tð Þ − 1 + 1

Mr ν, ℏν, tð Þ − 1
� �

= 1
t/ t + μ − ℓμj jð Þ − 1 + 1

t/ t + ν − ℏνj jð Þ − 1 = 5 μ + νð Þ
8t :

ð30Þ

Hence, from the above, we conclude that all the condi-
tions of Theorem 7 are satisfied with a = 3/8, b = c = 1/6,
and d = 1/8. The mappings ℓ and ℏ have a common fixed
point, i.e., ℓð7Þ = ℏð7Þ = 7 ∈ ½0,∞Þ.

Putting b = 0 in Theorem 7, we get the following
corollary.

Corollary 8. Let ðU ,Mr ,∗Þ be a complete FCM space in which
Mr is triangular. Let ℓ, ℏ : U ⟶U be a pair of self-mappings
so that

1
Mr ℓμ, ℏν, tð Þ − 1

≤ a
1

Mr μ, ν, tð Þ − 1
� �

+ c
Mr μ, ℓμ, tð Þ ∗Mr ν, ℏν, tð Þ

Mr μ, ν, tð Þ ∗Mr μ, ℏν, 2tð Þ ∗Mr ν, ℓμ, 2tð Þ − 1
� �

+ d
1

Mr μ, ℓμ, tð Þ − 1 + 1
Mr ν, ℏν, tð Þ − 1

� �
,

ð31Þ

for all μ, ν ∈U , t≫ θ, a ∈ ð0, 1Þ, and c, d ≥ 0 with ða + c + 2d
Þ < 1. Then, ℓ and ℏ have a common fixed point in U .

In the following corollary, we prove that the mappings ℓ
and ℏ have a unique common fixed point in U by using the
constant c = 0 in Theorem 7.

Corollary 9. Let ðU ,Mr ,∗Þ be a complete FCM space in which
Mr is triangular. Let ℓ, ℏ : U ⟶U be a pair of self-mappings
so that

1
Mr ℓμ, ℏν, tð Þ − 1 ≤ a

1
Mr μ, ν, tð Þ − 1
� �

+ b
Mr μ, ν, tð Þ

Mr μ, ℏν, 2tð Þ ∗Mr ν, ℓμ, 2tð Þ − 1
� �

+ d
1

Mr μ, ℓμ, tð Þ − 1 + 1
Mr ν, ℏν, tð Þ − 1

� �
,

ð32Þ

for all μ, ν ∈U , t≫ θ, a ∈ ð0, 1Þ, and b, d ≥ 0 with a + b + 2d
< 1. Hence, ℓ and ℏ have a unique common fixed point in U .

Proof. It follows from the proof of Theorem 7 that v1 is a
common fixed point of ℓ and ℏ in U . For uniqueness, let u1
be another common fixed point of ℓ and ℏ in U such that ℓ
u1 = ℏu1 = u1 and ℓv1 = ℏv1 = v1. Then, by view of (32),

1
Mr u1, v1, tð Þ − 1 = 1

Mr ℓu1, ℏv1, tð Þ − 1

≤ a
1

Mr u1, v1, tð Þ − 1
� �

+ b
Mr u1, v1, tð Þ

Mr u1, ℏv1, 2tð Þ ∗Mr v1, ℓu1, 2tð Þ − 1
� �

+ d
1

Mr μ1, ℓμ1, tð Þ − 1 + 1
Mr ν1, ℏν1, tð Þ − 1

� �
:

ð33Þ

By Definition 2 (3),

Mr v1, ℓu1, 2tð Þ ≥Mr v1, u1, tð Þ ∗Mr u1, ℓu1, tð Þ
=Mr v1, u1, tð Þ ∗ 1 =Mr v1, u1, tð Þ, for t≫ θ,

Mr u1, ℏv1, 2tð Þ ≥Mr u1, v1, tð Þ ∗Mr v1, ℏv1, tð Þ
=Mr u1, v1, tð Þ ∗ 1 =Mr u1, v1, tð Þ, for t≫ θ:

ð34Þ

It follows that

1
Mr u1, v1, tð Þ − 1 ≤ a

1
Mr u1, v1, tð Þ − 1
� �

+ b
Mr u1, v1, tð Þ

Mr u1, v1, tð Þ ∗Mr v1, u1, tð Þ − 1
� �

+ d
1

Mr μ1, μ1, tð Þ − 1 + 1
Mr ν1, ν1, tð Þ − 1

� �

= a + bð Þ 1
Mr u1, v1, tð Þ − 1
� �

= a + bð Þ 1
Mr ℓu1, ℏv1, tð Þ − 1
� �

≤ a + bð Þ2 1
Mr u1, v1, tð Þ − 1
� �

≤⋯

≤ a + bð Þj 1
Mr u1, v1, tð Þ − 1
� �

⟶ 0, as j⟶∞:

ð35Þ

Since a + b < 1, one writes Mrðu1, v1, tÞ = 1, i.e., u1 = v1
for t≫ θ.

Corollary 10. Let ðU ,Mr ,∗Þ be a complete FCM space in
which Mr is triangular. Let ℓ, ℏ : U ⟶U be a pair of self-
mappings so that

1
Mr ℓμ, ℏν, tð Þ − 1 ≤ a

1
Mr μ, ν, tð Þ − 1
� �

+ d
1

Mr μ, ℓμ, tð Þ − 1 + 1
Mr ν, ℏν, tð Þ − 1

� �
,

ð36Þ

for all μ, ν ∈U , t≫ θ, a ∈ ð0, 1Þ, and d ≥ 0 with a + 2d < 1.
Then, ℓ and ℏ have a unique common fixed point in U .
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Example 2. As in Example 1, let Mr : U
2 × ð0,∞Þ⟶ ½0, 1�

be defined by

Mr μ, ν, tð Þ = t
t + μ − νð Þ/2j j , ∀μ, ν ∈U , t≫ θ: ð37Þ

Then, easily one can verify that Mr is triangular and ðU
,Mr ,∗Þ is a complete FCM space. Now, we define self-
mappings ℓ, ℏ : U ⟶U by

l μð Þ =
2μ
3 + 1

3 , μ ∈ 0, 1½ �,
4μ
5 + 8

5 , μ ∈ 1,∞ð Þ,

8>><
>>:

ℏ νð Þ =
2ν
3 + 1

3 , ν ∈ 0, 1½ �,
5ν
6 + 4

3 , ν ∈ 1,∞ð Þ:

8>><
>>:

ð38Þ

Then, from (36), for t≫ θ, we have

1
Mr ℓμ, ℏν, tð Þ − 1
� �

= μ − νð Þ
3t

����
���� ≤ 2

3
μ − νð Þ
2t

����
���� + μ + ν − 2ð Þ

42t

����
����

≤
2
3

μ − νð Þ
2t

����
���� + 1

7
μ + ν − 2ð Þ

6t

����
����

= a
1

Mr μ, ν, tð Þ − 1
� �

+ d
1

Mr μ, ℓμ, tð Þ − 1 + 1
Mr ν, ℏν, tð Þ − 1

� �
:

ð39Þ

Hence, all the conditions of Corollary 10 are satisfied
with a = 2/3 and d = 1/7. The mappings ℓ and ℏ have a com-
mon fixed point, i.e., ℓð8Þ = ℏð8Þ = 8 ∈ ½0,∞Þ.

Theorem 11. Let ðU ,Mr ,∗Þ be a complete FCM space in
which Mr is triangular. Let ℓ, ℏ : U ⟶U be a pair of self-
mappings so that

1
Mr ℓμ, ℏν, tð Þ − 1

≤ a
1

Mr μ, ν, tð Þ − 1
� �

+ b
Mr μ, ν, tð Þ

Mr μ, ℏν, 2tð Þ ∗Mr ν, ℓμ, 2tð Þ − 1
� �

+ c
Mr μ, ℓμ, tð Þ ∗Mr ν, ℏν, tð Þ

Mr μ, ν, tð Þ ∗Mr μ, ℏν, 2tð Þ ∗Mr ν, ℓμ, 2tð Þ − 1
� �

+ d
1

Mr ν, ℓμ, tð Þ − 1 + 1
Mr μ, ℏν, tð Þ − 1

� �
,

ð40Þ

for all μ, ν ∈U , t≫ θ, a ∈ ð0, 1Þ, and b, c, d ≥ 0 with a +
b + c + 2d < 1. Then, ℓ and ℏ have a common fixed point in
U .

Proof. The proof is similar as the proof of Theorem 7.

Corollary 12. Let ðU ,Mr ,∗Þ be a complete FCM space in
which Mr is triangular. Let ℓ, ℏ : U ⟶U be a pair of self-
mappings so that

1
Mr ℓμ, ℏν, tð Þ − 1

≤ a
1

Mr μ, ν, tð Þ − 1
� �

+ c
Mr μ, ℓμ, tð Þ ∗Mr ν, ℏν, tð Þ

Mr μ, ν, tð Þ ∗Mr μ, ℏν, 2tð Þ ∗Mr ν, ℓμ, 2tð Þ − 1
� �

+ d
1

Mr ν, ℓμ, tð Þ − 1 + 1
Mr μ, ℏν, tð Þ − 1

� �
,

ð41Þ

for all μ, ν ∈U , t≫ θ, a ∈ ð0, 1Þ, and c, d ≥ 0 with ða + c
+ 2dÞ < 1. Then, ℓ and ℏ have a common fixed point in U .

Corollary 13. Let ðU ,Mr ,∗Þ be a complete FCM space in
which Mr is triangular. Let ℓ, ℏ : U ⟶U be a pair of self-
mappings so that

1
Mr ℓμ, ℏν, tð Þ − 1 ≤ a

1
Mr μ, ν, tð Þ − 1
� �

+ b
Mr μ, ν, tð Þ

Mr μ, ℏν, 2tð Þ ∗Mr ν, ℓμ, 2tð Þ − 1
� �

+ d
1

Mr ν, ℓμ, tð Þ − 1 + 1
Mr μ, ℏν, tð Þ − 1

� �
,

ð42Þ

∀μ, ν ∈U , t≫ θ, a ∈ ð0, 1Þ, and b, d ≥ 0 with ða + b + 2dÞ
< 1. Then, ℓ and ℏ have a unique common fixed point in U .

Proof. It is as the proof of Theorem 7. Let v1 be a common
fixed point of ℓ and ℏ in U . Let u1 be another common fixed
point of ℓ and ℏ in U such that ℓu1 = ℏu1 = u1 and ℓv1 = ℏv1
= v1. Then, by view of (42),

1
Mr u1, v1, tð Þ − 1 = 1

Mr ℓu1, ℏv1, tð Þ − 1

≤ a
1

Mr u1, v1, tð Þ − 1
� �

+ b
Mr u1, v1, tð Þ

Mr u1, ℏv1, 2tð Þ ∗Mr v1, ℓu1, 2tð Þ − 1
� �

+ d
1

Mr v1, ℓu1, tð Þ − 1 + 1
Mr u1, ℏv1, tð Þ − 1

� �
:

ð43Þ

By Definition 2 (3),

Mr v1, ℓu1, 2tð Þ ≥Mr v1, u1, tð Þ ∗Mr u1, ℓu1, tð Þ
=Mr v1, u1, tð Þ ∗ 1 =Mr v1, u1, tð Þ, for t≫ θ,
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Mr u1, ℏv1, 2tð Þ ≥Mr u1, v1, tð Þ ∗Mr v1, ℏv1, tð Þ
=Mr u1, v1, tð Þ ∗ 1 =Mr u1, v1, tð Þ,  for t≫ θ:

ð44Þ

It follows that

1
Mr u1, v1, tð Þ − 1

≤ a
1

Mr u1, v1, tð Þ − 1
� �

+ b
Mr u1, v1, tð Þ

Mr u1, v1, tð Þ ∗Mr v1, u1, tð Þ − 1
� �

+ d
1

Mr v1, u1, tð Þ − 1 + 1
Mr u1, v1, tð Þ − 1

� �

= a + b + 2dð Þ 1
Mr u1, v1, tð Þ − 1
� �

,  for t≫ θ:

ð45Þ

Since 0 < ða + b + 2dÞ < 1, Mrðu1, v1, tÞ = 1, i.e., u1 = v1.

Corollary 14. Let ðU ,Mr ,∗Þ be a complete FCM space in
which Mr is triangular. Let ℓ, ℏ : U ⟶U be a pair of self-
mappings so that

1
Mr ℓμ, ℏν, tð Þ − 1 ≤ a

1
Mr μ, ν, tð Þ − 1
� �

+ d
1

Mr ν, ℓμ, tð Þ − 1 + 1
Mr μ, ℏν, tð Þ − 1

� �
,

ð46Þ

for all μ, ν ∈U , t≫ θ, a ∈ ð0, 1Þ, and d ≥ 0 with a + 2d < 1.
Then, ℓ and ℏ have a unique common fixed point in U .

Example 3. Let U = ½0, 1�. As in Example 2, we define self-
mappings ℓ, ℏ : U ⟶U by

ℓ μð Þ =

2μ
5 + 1

7 , μ ∈ 0, 12

	 

,

3μ
4 + 3

16 , μ ∈
1
2 , 1
� 


,

8>>><
>>>:

ℏ νð Þ =

2ν
5 + 1

7 , ν ∈ 0, 12

	 

,

2ν
3 + 1

4 , ν ∈
1
2 , 1
� 


:

8>>><
>>>:

ð47Þ

Now, from (46), for t≫ θ, we have

1
Mr ℓμ, ℏν, tð Þ − 1 = ℓμ − ℏν

2t

����
���� = μ − ν

5t
��� ��� ≤ 2

5
μ − ν

2t
��� ���

+ 2
7
21 μ + νð Þ − 10

70t

����
����

≤
2
5
μ − ν

2t
��� ��� + 2

7
ν − 2μ/5ð Þ − 1/7ð Þ

2t

����
����

�

+ μ − 2ν/5ð Þ − 1/7ð Þ
2t

����
����
�

= a
1

Mr ν, μ, tð Þ − 1
� �

+ d
1

Mr ν, ℓμ, tð Þ − 1
�

+ 1
Mr μ, ℏν, tð Þ − 1

�
:

ð48Þ

Hence, all the conditions of Corollary 14 are satisfied
with a = 2/5 and d = 2/7. The mappings ℓ and ℏ have a com-
mon fixed point, i.e., ℓð3/4Þ = ℏð3/4Þ = 3/4 ∈ ½0, 1�.

4. Application

In this section, we present an application on Fredholm inte-
gral equations. Let U = Cð½0, η�,ℝÞ be the space of all ℝ
-valued continuous functions on the interval ½0, η�, where 0
< η ∈ℝ. The Fredholm integral equations are

μ τð Þ =
ðη
0
K1 τ, v, μ vð Þð Þdv,

ν τð Þ =
ðη
0
K2 τ, v, ν vð Þð Þdv,

 ∀μ, ν ∈U ,

ð49Þ

where τ ∈ ½0, η� and K1, K2 : ½0, η� × ½0, η� ×ℝ⟶ℝ. The
induced metric d : U2 ⟶ℝ be defined as

d μ, νð Þ = sup
τ∈ 0,η½ �

μ τð Þ − ν τð Þj j = μ − νk k, where μ, ν ∈ C 0, η½ �,ℝð Þ =U :

ð50Þ

The binary operation ∗ is defined by α ∗ λ = αλ for all α
, λ ∈ ½0, η�. A standard fuzzy metric Mr : U

2 × ð0,∞Þ⟶ ½0,
1� is given as

Mr μ, ν, tð Þ = t
t + d μ, νð Þ , for t > 0,∀μ, ν ∈U: ð51Þ

Then, easily one can verify that Mr is triangular and ðU
,Mr ,∗Þ is a complete FCM space.
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Theorem 15. The two FIEs are

μ τð Þ =
ðη
0
K1 τ, v, x vð Þð Þdv,

ν τð Þ =
ðη
0
K2 τ, v, ν vð Þð Þdv, ð52Þ

where τ ∈ ½0, 1� and μ, ν ∈U. Assume that K1, K2 : ½0, 1� ×
½0, 1� ×ℝ⟶ℝ are such that Aμ, Bν ∈ E for every μ, ν ∈ E,
where

Aμ τð Þ =
ðη
0
K1 τ, v, μ vð Þð Þdv,

Bν τð Þ =
ðη
0
K2 τ, v, ν vð Þð Þdv: ð53Þ

If there exists β ∈ ð0, 1Þ such that for all μ, ν ∈U,

Aμ − Bν

�� �� ≤ βN ℓ, ℏ, μ, νð Þ, ð54Þ

where

Then, the two FIEs defined in (49) have a common solu-
tion in U .

Proof. Define the mappings ℓ, ℏ : E⟶ E by

ℓ μð Þ = Aμ,

ℏ νð Þ = Bν: ð56Þ

The FIEs in (49) have a common solution if and only if ℓ
and ℏ have a common fixed point in U . Now, we have to
show that Theorem 7 is applied to the integral operators ℓ
and ℏ. Then, for all μ, ν ∈U , we have the following four cases.

(a) If Nðℓ, ℏ, μ, νÞ = ∥μ − ν∥ in (55), then from (51) and
(54), we have

1
Mr ℓμ, ℏν, tð Þ − 1 = d ℓμ, ℏνð Þ

t
≤ β

N ℓ, ℏ, μ, νð Þ
t

= β
μ − νk k
t

= β
1

Mr μ, ν, tð Þ − 1
� �

:

ð57Þ

This implies that

1
Mr ℓμ, ℏν, tð Þ − 1 ≤ β

1
Mr μ, ν, tð Þ − 1
� �

, for t≫ θ, ð58Þ

for all μ, ν ∈U such that ℓμ ≠ ℏν. It is obvious that the
inequality (58) holds if ℓμ = ℏν. Thus, the integral opera-
tors ℓ and ℏ satisfy all the conditions of Theorem 7 with
β = a and b = c = d = 0 in (5). The integral operators ℓ
and ℏ have a common fixed point, i.e., (49) has a common
solution in U .

(b) If Nðℓ, ℏ, μ, νÞ = ð1/t2Þðt + kμ − νkÞðtkμ − Aμk + tkν
− Bνk + kμ − Aμk · kν − BνkÞ in (55), then from
(51) and (54), we have

1
Mr ℓμ, ℏν, tð Þ − 1 = d ℓμ, ℏνð Þ

t

≤ β
N ℓ, ℏ, μ, νð Þ

t

= β
1
t3

t + μ − νk kð Þ t μ − Aμ

�� ���
+ t ν − Bνk k + μ − Aμ

�� �� · ν − Bνk k�:
ð59Þ

It yields that

1
Mr ℓμ, ℏν, tð Þ − 1 ≤ β

1
t3

t + μ − νk kð Þ t μ − Aμ

�� ���
+ t ν − Bνk k + μ − Aμ

�� �� · ν − Bνk k�,
ð60Þ

N ℓ, ℏ, μ, νð Þ =max
μ − νk k, μ − Aμ

�� �� + ν − Bνk k, 1
t2

3t μ − νk k2 + μ − νk k3� �
,

1
t2

t + μ − νk kð Þ t μ − Aμ

�� �� + t ν − Bνk k + μ − Aμ

�� �� · ν − Bνk k� �
8>><
>>:

9>>=
>>;: ð55Þ
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for all μ, ν ∈U and for t≫ θ. Here, we simplify the
term ððMrðμ, ν, tÞÞ/ðMrðμ, ℏν, 2tÞ ∗Mrðν, ℓμ, 2tÞÞÞ − 1 by
using Definition 2 (3) and (51), for t≫ θ, we have

This implies that

Mr μ, ν, tð Þ
Mr μ, ℏν, 2tð Þ ∗Mr ν, ℓμ, 2tð Þ − 1

≤
1
t3

t2 μ − νk k + t + μ − νk kð Þ�
· t ν − ℏνk k + t μ − ℓμk k + μ − ℓμk k · ν − ℏνk kð ÞÞ,

ð62Þ

for all μ, ν ∈U and for t≫ θ. Now, from (60) and (62), we
have

1
Mr ℓμ, ℏν, tð Þ − 1 ≤ β

Mr μ, ν, tð Þ
Mr μ, ℓμ, tð Þ ∗Mr ν, ℏν, 2tð Þ − 1
� �

, for t≫ θ,

ð63Þ

for all μ, ν ∈U such that ℓμ ≠ ℏν. It is obvious that the
inequality (63) holds if ℓμ = ℏν. Thus, the integral operators
ℓ and ℏ satisfy all the conditions of Theorem 7 with β = b
and a = c = d = 0 in (5). The integral operators ℓ and ℏ have

a common fixed point, i.e., (49) has a common solution in
U .

(c) If Nðℓ, ℏ, μ, νÞ = ð1/t2Þð3t∥μ − ν∥2+∥μ − ν∥3Þ in (55),
then from (51) and (54), we have

1
Mr ℓμ, ℏν, tð Þ − 1 = d ℓμ, ℏνð Þ

t
≤ β

N ℓ, ℏ, μ, νð Þ
t

= β
3t μ − νk k2 + μ − νk k3

t3
:

ð64Þ

This implies

1
Mr ℓμ, ℏν, tð Þ − 1 ≤ β

3t μ − νk k2 + μ − νk k3
t3

, ð65Þ

for all μ, ν ∈U and for t≫ θ. Here, we simplify the
term ððMrðμ, ℓμ, tÞ ∗Mrðν, ℏν, tÞÞ/ðMrðμ, ν, tÞ ∗Mrðμ, ℏν,
2tÞ ∗Mrðν, ℓμ, 2tÞÞÞ − 1, by Definition 2 (3). For t≫ θ,
we have

Mr μ, ν, tð Þ
Mr μ, ℏν, 2tð Þ ∗Mr ν, ℓμ, 2tð Þ − 1 ≤ Mr μ, ν, tð Þ

Mr μ, ν, tð Þ ∗Mr ν, ℏν, tð Þ ∗Mr ν, μ, tð Þ ∗Mr μ, ℓμ, tð Þ − 1

= 1
Mr μ, ν, tð Þ ∗Mr ν, ℏν, tð Þ ∗Mr μ, ℓμ, tð Þ − 1

= t + μ − νk kð Þ t + ν − ℏνk kð Þ t + μ − ℓμk kð Þ
t3

− 1

= 1
t3

t2 μ − νk k + t2 ν − ℏνk k + μ − ℓμk kð Þ + t μ − νk k ν − ℏνk k + μ − ℓμk kð Þ
t μ − ℓμk k · ν − ℏνk k + μ − νk k · μ − ℓμk k · ν − ℏνk k

 !

= 1
t3

t2 μ − νk k + t + μ − νk kð Þ t ν − ℏνk k + t μ − ℓμk k + μ − ℓμk k · ν − ℏνk kð Þ� �
:

ð61Þ

Mr μ, ℓμ, tð Þ ∗Mr ν, ℏν, tð Þ
Mr μ, ν, tð Þ ∗Mr μ, ℏν, 2tð Þ ∗Mr ν, ℓμ, 2tð Þ − 1 ≤ Mr μ, ℓμ, tð Þ ∗Mr ν, ℏν, tð Þ

Mr μ, ν, tð Þ ∗Mr μ, ν, tð Þ ∗Mr ν, ℏν, tð Þ ∗Mr ν, μ, tð Þ ∗Mr μ, ℓμ, tð Þ − 1

= 1
Mr μ, ν, tð Þ ∗Mr μ, ν, tð Þ ∗Mr ν, μ, tð Þ − 1:

ð66Þ
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In view of (51) and after routine calculation, we get

Mr μ, ℓμ, tð Þ ∗Mr ν, ℏν, tð Þ
Mr μ, ν, tð Þ ∗Mr μ, ℏν, 2tð Þ ∗Mr ν, ℓμ, 2tð Þ − 1

≤
3t2∥μ − ν∥+3t∥μ − ν∥2+∥μ − ν∥3
� �

t2
,

ð67Þ

for t≫ θ. Now, from (65) and (67), we have

1
Mr ℓμ, ℏν, tð Þ − 1

≤ β
Mr μ, ℓμ, tð Þ ∗Mr ν, ℏν, tð Þ

Mr μ, ν, tð Þ ∗Mr μ, ℏν, 2tð Þ ∗Mr ν, ℓμ, 2tð Þ − 1
� �

, for t≫ θ,

ð68Þ

for all μ, ν ∈U such that ℓμ ≠ ℏν. It is obvious that the
inequality (68) holds if ℓμ = ℏν. Thus, the integral operators
ℓ and ℏ satisfy all the conditions of Theorem 7 with β = c
and a = b = d = 0 in (5). The integral operators ℓ and ℏ have
a common fixed point, i.e., (49) has a common solution in U .

(d) If Nðℓ, ℏ, μ, νÞ = kμ − Aμk + kν − Bνk in (55), then
from (51) and (54), we have

1
Mr ℓμ, ℏν, tð Þ − 1 = d ℓμ, ℏνð Þ

t
≤ β

N ℓ, ℏ, μ, νð Þ
t

= β
μ − Aμ

�� �� + ν − Bνk k
t

= β
1

Mr μ, ℓμ, tð Þ − 1 + 1
Mr ν, ℏν, tð Þ − 1

� �
:

ð69Þ

This implies that

1
Mr ℓμ, ℏν, tð Þ − 1 ≤ β

1
Mr μ, ℓμ, tð Þ − 1 + 1

Mr ν, ℏν, tð Þ − 1
� �

, for t≫ θ,

ð70Þ

for all μ, ν ∈U such that ℓμ ≠ ℏν. It is obvious that the
inequality (70) holds if ℓμ = ℏν. Thus, the integral operators
ℓ and ℏ satisfy all the conditions of Theorem 7 with β = d
and a = b = c = 0 in (5). The integral operators ℓ and ℏ have
a common fixed point, i.e., (49) has a common solution in
U .

5. Conclusion

In this paper, we presented the concept of rational-type fuzzy
cone contractions in FCM spaces and some common fixed
point results under generalized rational-type fuzzy cone-
contraction conditions in complete FCM spaces by using
the “triangular property of fuzzy cone metric” as a basic tool.
Moreover, we resolved some Fredholm integral equations as
an application. So, one can use this concept to prove more
rational-type fuzzy cone-contraction results in complete
FCM spaces with different types of applications.
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We introduce the notions of a generalized Θ-contraction, a generalized ΘE-weak contraction, a ΨE-weak JS-contraction, an
integral-type ΘE-weak contraction, and an integral-type ΨE-weak JS-contraction to establish the fixed point, fixed ellipse, and
fixed elliptic disc theorems. Further, we verify these by illustrative examples with geometric interpretations to demonstrate the
authenticity of the postulates. The motivation of this work is the fact that the set of nonunique fixed points may include a
geometric figure like a circle, an ellipse, a disc, or an elliptic disc. Towards the end, we provide an application of Θ-contraction
to chemical sciences.

1. Introduction and Preliminaries

The study of the geometry of the set of nonunique fixed
points of a map is a significant area of research. There are
numerous examples of a map where the set of nonunique
fixed points of the self-map includes some geometric shapes.
For example, consider a self-map M on the metric space ð
U, dÞ with the usual metric defined on the two-dimensional
plane ℝ2 as

M u, vð Þ =
u, vð Þ, u, vð Þ ∈ u2 + v2 = 1,
1, 0ð Þ, otherwise:

 
ð1Þ

Noticeably, the set of nonunique fixed points fðcos nθ,
sin nθÞ: n ∈ℤ, θ ∈ ½0, 2πÞg includes the circle Cðð0, 0Þ, 1Þ
centered at ð0, 0Þ having radius 1; that is, Cðð0, 0Þ, 1Þ is a
fixed circle of M. It is significant to mention that there exist
maps that map the circle Cðu0, rÞ to itself but do not fix all
the points of the circle Cðu0, rÞ. For example, let M be a

self-map on the two-dimensional plane ℝ2 defined by

M u, vð Þ = u
u2 + v2

, v
u2 + v2

� �
, u, v ∈ℝ: ð2Þ

Then, MCð0, 1Þ =Cð0, 1Þ, but map M fixes only two
points ð1, 0Þ and ð−1, 0Þ of the circle Cð0, 1Þ. Noticeably,
M does not fix all the points of Cð0, 1Þ. For details on this
work, one may refer to [1–23] and the references therein. A
geometric figure (a circle, a disc, an ellipse, and so on)
included in the set of nonunique fixed points is called a fixed
figure (a fixed circle, a fixed disc, a fixed ellipse, and so on) of
the self-map [15].

The aim of the present work is to introduce notions of a
generalized Θ-contraction, a generalized ΘE-weak contrac-
tion, a ΨE-weak JS-contraction, a generalized integral-type
ΘE-weak contraction, and an integral-type ΨE-weak JS-
contraction to study the geometry of nonunique fixed points.
In the sequel, we establish the fixed point, fixed ellipse, and
fixed elliptic disc theorems. Further, we verify these by illus-
trative examples to demonstrate the authenticity of the pos-
tulates. Further, we provide an application of Ćirić-type Θ
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-contraction to obtain an application to chemical sciences.
To be specific, we solve a boundary value problem arising
when a diffusing material is kept in an absorbing medium
between parallel walls of specified concentrations.

Definition 1 [24]. A metric on a nonempty setU is a function
d : U ×U⟶ℝ+ satisfying

(i) dðu, vÞ = 0 iff u = v

(ii) dðu, vÞ = dðv, uÞ
(iii) dðu, vÞ ≤ dðu,wÞ + dðw, vÞ, u, v,w ∈U

Definition 2 [5]. An ellipse having foci at c1 and c2 in a metric
space ðU, dÞ is defined as

E c1, c2, að Þ = u ∈U : d c1, uð Þ + d c2, uð Þ = a, c1, c2 ∈U, a ∈ 0,∞Þ½f g:
ð3Þ

The midpoint C of a line c1c2 is known as a center of an
ellipse. Here, the segment of length a on line c1c2 is the major
axis, the line perpendicular to it through the center is the
minor axis, and a/2 is the length of a semimajor axis of an
ellipse. The distance f = ð1/2Þdðc1, c2Þ is the linear eccentric-
ity, and the ratio of linear eccentricity and semimajor axis is
the eccentricity; that is, e = dðc1, c2Þ/a. Visibly, the circles
are the ellipses of vanishing eccentricity in which both the
focal points are the same; that is, dðc1, c2Þ = 0. Actually, an
ellipse is a compressed circle. Generally, eccentricity is the
measure of the deviation of the curve from the circularity of
the particular shape.

Example 1. Let U =ℝ and a metric d : U ×U⟶ℝ+ be
defined as dðu, vÞ = ju − vj, u, v ∈U; then,

E 5,10,8ð Þ = u ∈M : d 5, uð Þ + d 10, uð Þ = 8f g
= u ∈U : 5 − uj j + 10 − uj j = 8f g = 3:5,11:5f g:

ð4Þ

That is, an ellipse centered at 7.5 having foci at 5 and 10 is
f3:5,11:5g.

Definition 3 [25]. Let Ω symbolize the class of functions Θ
: ð0,∞Þ⟶ ð1,∞Þ such that the subsequent conditions hold:

ðΘ1Þ: Θ is nondecreasing;
ðΘ2Þ: for every sequence fung ⊆ ð0,∞Þ, limn⟶∞Θun =

1⇔ limn⟶∞un = 0+;
ðΘ3Þ: there exist α ∈ ð0, 1Þ and β ∈ ð0,∞� such that

limu⟶0+ðΘðuÞ − 1Þ/uα = β.

Definition 4 [5]. Let Eðc1, c2, aÞ be an ellipse having foci at c1
and c2 in a metric space ðU, dÞ. Then, Eðc1, c2, aÞ is said to be
a fixed ellipse of M : U⟶U if Mu = u, u ∈Eðc1, c2, aÞ, a
∈ ½0,∞Þ.

2. Main Results

In this section, we are dealing with maps satisfying some
novel contractions which fix one element of the space or
more than one element of the space under suitable conditions
and a set of nonunique fixed points, including some geomet-
rical shapes, may be either an ellipse or an elliptic disc. First,
we define a generalized Θ-contraction to establish a unique
fixed point by giving a short and simple proof.

Definition 5. Let Θ : ð0,∞Þ⟶ ð1,∞Þ ∈Ω, and the map M

: U⟶U of a metric space ðU, dÞ is said to be a generalized
Θ-contraction with u ≠ v if

d Mu,Mvð Þ > 0⇒Θ d Mu,Mvð Þð Þ ≤ Θ L u, vð Þð Þ½ �α, ð5Þ

where Lðu, vÞ =max fdðu, vÞ, γdðu,MuÞ + ð1 − γÞdðv,M
vÞ, ð1 − γÞdðu,MuÞ + γdðv,MvÞ, γdðu,MvÞ + ð1 − γÞdðv,
MuÞ, ð1 − γÞdðu,MvÞ + γdðv,MuÞg, γ ∈ ½0, 1Þ, α ∈ ð0, 1Þ, u
, v ∈U.

Remark 6. In the above contraction, if γ = 0, then M : U
⟶U is a Ćirić-type Θ-contraction.

Theorem 7. Let ðU, dÞ be a complete metric space and map
M : U⟶U be a continuous generalized Θ-contraction.
Then, M has a unique fixed point. Also, the sequence of iter-
ates fMnug converges to a fixed point of M in U.

Proof. Define a Picard sequence fung ⊆U, un+1 =Mun, n
∈ℕ0, with initial point u0 ∈U. If for some n ∈ℕ, Mnu =
Mn+1u, then Mnu is a fixed point of M and the proof is
complete. So, presume that for each n, dðMnu,Mn+1uÞ > 0;
then,

Θ d Mnu,Mn+1u
� �� �

≤Θ L Mn−1u,Mnu
� �� �

, ð6Þ

where

L Mn−1u,Mnu
� �

=max d Mn−1u,Mnu
� �

, γd Mn−1u,Mnu
� ��

+ 1 − γð Þd Mnu,Mn+1u
� �

, 1 − γð Þd Mn−1u,Mnu
� �

+ γd Mnu,Mn+1u
� �

, γd Mn−1u,Mn+1u
� �

+ 1 − γð Þd Mnu,Mnuð Þ, 1 − γð Þd Mn−1u,Mn+1u
� �

+ γd Mnu,Mnuð Þg
=max d Mn−1u,Mnu

� �
, γd Mn−1u,Mnu
� ��

+ 1 − γð Þd Mnu,Mn+1u
� �

, 1 − γð Þd Mn−1u,Mnu
� �

+ γd Mnu,Mn+1u
� �

, γd Mn−1u,Mn+1u
� �

,
� 1 − γð Þd Mn−1u,Mn+1u

� �
:

ð7Þ

Case 1. If dðMn−1u,MnuÞ ≤ dðMnu,Mn+1uÞ, then

L Mn−1u,Mnu
� �

= d Mnu,Mn+1u
� �

: ð8Þ

That is, ΘðdðMnu,Mn+1uÞÞ ≤ ½ΘðdðMnu,Mn+1uÞÞ�α,
α ∈ ð0, 1Þ, a contradiction.
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Case 2. If dðMn−1u,MnuÞ ≥ dðMnu,Mn+1uÞ, then

L Mn−1u,Mnu
� �

= d Mn−1u,Mnu
� �

: ð9Þ

That is, ΘðdðMnu,Mn+1uÞÞ ≤ ½ΘðdðMn−1u,MnuÞÞ�α.

Following a similar pattern,

Θ d Mnu,Mn+1u
� �� �

≤ Θ d Mn−1u,Mnu
� �� �� 	α ⋯

≤ Θ d u,Muð Þð Þ½ �αn ⟶ 1, as n⟶∞:

ð10Þ

Using ðΘ2Þ, limn⟶∞dðu,MuÞ = 0.
Using ðΘ3Þ, there exist β ∈ ð0,∞Þ such that limn⟶∞ðΘ

ðdðMnu,Mn+1uÞÞ − 1Þ/ðdðMnu,Mn+1uÞÞα = β.
If β ∈ ð0,∞Þ, then for ε1 = β/4 > 0, there exists N1 > 0

such that

Θ d Mnu,Mn+1u
� �� �

− 1
d Mnu,Mn+1u
� �� �α − β












 < ε, n ≥N1,

⇒ Θ d Mnu,Mn+1u
� �� �

− 1
d Mnu,Mn+1u
� �� �α > β − ε1

= 3
4β > ε1, n ≥N1:

ð11Þ

That is, ðdðMnu,Mn+1uÞÞα < ð1/ε1ÞðΘðdðMnu,Mn+1u
ÞÞ − 1Þ, n ≥N1.

If β =∞, then for any ε2 > 0, there exists N2 > 0 such that

Θ d Mnu,Mn+1u
� �� �

− 1
d Mnu,Mn+1u
� �� �α > ε2, n ≥N2: ð12Þ

That is, ðdðMnu,Mn+1uÞÞα < ð1/ε2ÞðΘðdðMnu,Mn+1u
ÞÞ − 1Þ, n >N2.

Thus, for all β ∈ ð0,∞� and μ =max f1/ε1, 1/ε2g, there
exists N =max fN1,N2g such that

d Mnu,Mn+1u
� �� �α < μ Θ d Mnu,Mn+1u

� �� �
− 1

� �
, n >N ,

≤μ Θ d u,Muð Þð Þ½ � − 1⟶ 0, as n⟶∞ using Θ2ð Þð Þ:
ð13Þ

That is, limn⟶∞ðdðMnu,Mn+1uÞÞα = 0 implies that
there exists n ≥N such that

d Mnu,Mn+1u
� �

≤
1

n1/α
, n ≥N: ð14Þ

If n >m,

d Mmu,Mnuð Þ ≤ d Mmu,Mm+1u
� �

+ d Mm+1u,Mm+2u
� �

+⋯+d Mn−1u,Mnu
� �

≤
1

m1/α + 1
m + 1ð Þ1/α

+⋯+ 1
n − 1ð Þ1/α

≤ 〠
∞

i=n

1
i1/α

:

ð15Þ

Since α ∈ ð0, 1Þ, series Σ∞
i=n1/i1/α is convergent and

limn,m⟶∞dðMmu,MnuÞ exists and is finite; that is, fMnu

g is a Cauchy sequence.
Since U is complete, fMnug converges to u∗ ∈U. Since

M is continuous, fMnug⟶ u∗ ⇒ fMn+1ug⟶Mu∗.
By definition of limit Mu∗ = u∗, that is, u∗ is a fixed point
of M.

Let w∗ be another fixed point of U. So dðMu∗,Mw∗Þ
= dðu∗,w∗Þ > 0. Now,

Θ d Mu∗,Mw∗ð Þð Þ ≤ Θ L u∗,w∗ð Þð Þ½ �α, ð16Þ

where

L u∗,w∗ð Þ =max d u∗,w∗ð Þ, γd u∗,Mu∗ð Þ + 1 − γð Þd w∗,Mw∗ð Þ,f
� 1 − γð Þd u∗,Mu∗ð Þ + γd w∗,Mw∗ð Þ, γd u∗,Mw∗ð Þ
+ 1 − γð Þd w∗,Mu∗ð Þ, 1 − γð Þd u∗,Mw∗ð Þ + γd w∗,Mu∗ð Þg

=max d u∗,w∗ð Þ, γd u∗, u∗ð Þ + 1 − γð Þd w∗,w∗ð Þ, 1 − γð Þd u∗, u∗ð Þf
+ γd w∗,w∗ð Þ, γd u∗,w∗ð Þ + 1 − γð Þd w∗, u∗ð Þ, 1 − γð Þd u∗,w∗ð Þ
+ γd w∗, u∗ð Þg

=max d u∗,w∗ð Þ, γd u∗,w∗ð Þ + 1 − γð Þd w∗, u∗ð Þ, 1 − γð Þd u∗,w∗ð Þf
+ γd w∗, u∗ð Þg = d u∗,w∗ð Þ:

ð17Þ

That is, ΘðdðMu∗,Mw∗ÞÞ ≤ ½Θðdðu∗,w∗ÞÞ�α ≤Θðdð
u∗,w∗ÞÞ.

That is, Θðdðu∗,w∗ÞÞ ≤Θðdðu∗,w∗ÞÞ, a contradiction.
Hence, M has a unique fixed point in U.

Theorem 8. Let ðU, dÞ be a complete metric space and map
M : U⟶U be a continuous Ćirić-type Θ-contraction.
Then, M has a unique fixed point. Also, the sequence of iter-
ates fMnug converges to a fixed point of M in U.

Proof. The proof follows the pattern of Theorem 7 on taking
γ = 0.

The subsequent example appreciates that Theorem 8
gives assurance of the uniqueness of the fixed point.

Example 2. Let U = fun = 2n − 1 : n ∈ℕg and a metric d
: U ×U⟶ℝ+ be defined as dðu, vÞ = ju − vj. Then, ðU, d
Þ is a complete metric space.

Let ΘðtÞ = ete
t ∈Ω, γ = 0.
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Define a self-map M : U⟶U as

Mu =
u1, u = u1,
un−1, u = un, n ≥ 2:

 
ð18Þ

Then,

L un, u1ð Þ =max d un, u1ð Þ, d un,Munð Þ, d u1,Mu1ð Þ, d u1,Munð Þ, d un,Mu1ð Þf g
=max d 2n − 1, 1ð Þ, d 2n − 1, 2n − 3ð Þ, 0, d 1, 2n − 3ð Þ, d 2n − 1, 1ð Þf g
=max 2n − 2j j, 2j j, 2n − 4j jf g = 2n − 2, n ≥ 2:

ð19Þ

Now,

lim
n⟶∞

d Mun,Mu1ð Þ
L un, u1ð Þ

= lim
n⟶∞

Mun −Mu1j j
L un, u1ð Þ

= lim
n⟶∞

2n − 3 − 1j j
2n − 2 = 1, n ≥ 2:

ð20Þ

Clearly, M is neither a Ćirić-type contraction [26] nor a
Banach contraction [27].

Now, we claim thatM satisfies Ćirić-type Θ-contraction;
that is,

d Mun,Mumð Þ ≠ 0⇒ e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d Mun ,Mumð Þed Mun ,Mumð Þ

p

≤ eα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d un ,umð Þed un ,umð Þ

p
, α ∈ 0, 1ð Þ

⇒ d Mun,Mumð Þed Mun ,Mumð Þ

≤ α2 d un, umð Þed un ,umð Þ
h i

, α ∈ 0, 1ð Þ

⇒ d Mun,Mumð Þed Mun ,Mumð Þ

d un, umð Þed un ,umð Þ ≤ α2, α ∈ 0, 1ð Þ:

ð21Þ

Case 1. When n = 1 and m ≥ 2,

d Mun,Mumð Þed Mun ,Mumð Þ

d un, umð Þed un ,umð Þ

= 4 − 2mj je∣4−2m∣

2 − 2mj je∣2−2m∣ =
2m − 4ð Þe 2m−4ð Þ

2m − 2ð Þe 2m−2ð Þ ≤ e−2:

ð22Þ

Case 2. When n >m > 1,

d Mun,Mumð Þed Mun ,Mumð Þ

d un, umð Þed un ,umð Þ

= 2n − 2m − 6j je∣2n−2m−6∣

2n − 2m − 2j je∣2n−2m−2∣

= 2n − 2m − 6ð Þe 2n−2m−6ð Þ

2n − 2m − 2ð Þe 2n−2m−2ð Þ ≤ e−4:

ð23Þ

Thus, M is a Ćirić-type Θ-contraction with α =max f

e−4, e−2g = e−2 and has a unique fixed point 1. Further,
limn⟶∞Mnu1 = 1.

Remark 9. Theorems 7 and 8 are improvements, extensions,
and generalizations of Banach [27], Ćirić [26], Jleli and Samet
[25], and references therein. Further, on taking ΘðtÞ = et , t
> 0, in these results, we obtain some novel results which
are generalizations of existing results in the literature.

Next, following Joshi et al. [5], we define an elliptic disc
and a fixed elliptic disc to study the geometry of nonunique
fixed points in a metric space.

Definition 10. An elliptic disc having foci at c1 and c2 in a
metric space ðU, dÞ is defined as EDðc1, c2, aÞ = fu ∈U : dð
c1, uÞ + dðc2, uÞ ≤ a, c1, c2 ∈M, a ∈ ½0,∞Þg.

Remark 11. For defining an ellipse or elliptic disc a ≥ dðc1, c2Þ
.

Example 3. Let U =ℝ2 and a metric d : U ×U⟶ℝ+ be

defined as dðu, vÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu1 − v1Þ2 + ðu2 − v2Þ2

q
, u≪ ðu1, u2Þ

, v≪ ðv1, v2Þ ∈U; then,

ED −5, 0ð Þ, 5, 0ð Þ, 12ð Þ = u ∈U : d −5, 0ð Þ, u1, u2ð Þð Þf
+ d 5, 0ð Þ, u1, u2ð Þð Þ ≤ 12g

= u ∈U :
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1 + 5ð Þ2 + u2

2

q�

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1 − 5ð Þ2 + u2

2

q
≤ 12


,

ð24Þ

which is shown by the blue shaded portion in Figure 1.

Definition 12. Let EDðc1, c2, aÞ be an elliptic disc having foci
at c1 and c2 in a metric space ðU, dÞ. Then, EDðc1, c2, aÞ is
said to be a fixed elliptic disc of map M : U⟶U if Mu

= u, u ∈EDðc1, c2, aÞ, a ∈ ½0,∞Þ.
We now introduce and exploit a generalized ΘE-weak

contraction to demonstrate that the set of nonunique fixed
points of a map includes an ellipse or an elliptic disc.

Definition 13. Let Θ : ð0,∞Þ⟶ ð1,∞Þ be an increasing
function. A map M : U⟶U of a metric space ðU, dÞ is
said to be a generalized ΘE-weak contraction with u ≠ v, if

d u,Muð Þ > 0⇒Θ d u,Muð Þð Þ ≤ Θ L u, vð Þð Þ½ �α, ð25Þ

where Lðu, vÞ =max fdðu, vÞ, γdðu,MuÞ + ð1 − γÞdðv,M
vÞ, ð1 − γÞdðu,MuÞ + γdðv,MvÞ, γdðu,MvÞ + ð1 − γÞdðv,
MuÞ, ð1 − γÞdðu,MvÞ + γdðv,MuÞg, γ ∈ ½0, 1Þ, α ∈ ð0, 1Þ, u
, v ∈U.

Remark 14. In the above contraction, if γ = 0, then M : U
⟶U is said to be a Ćirić-type ΘE-weak contraction.
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Theorem 15. Let Eðc1, c2, aÞ be an ellipse in a metric space
ðU, dÞ and a = ð1/2Þfinf dðu,MuÞ: u ≠Mug. If map M

: U⟶U is a generalized ΘE-weak contraction with c1, c2
∈U and dðc1,MuÞ + dðc2,MuÞ = a, u ∈Eðc1, c2, aÞ, then
Eðc1, c2, aÞ is a fixed ellipse of M.

Proof. Let u ∈Eðc1, c2, aÞ be any arbitrary point andMu ≠ u

. From the definition of a, dðu,MuÞ ≥ 2a, suppose Mc1 ≠ c1
and Mc2 ≠ c2, so we have dðc1,Mc1ÞÞ > 0, dðc2,Mc2ÞÞ > 0,
and

Θ d c1,Mc1ð Þð Þ ≤ Θ L c1, c1ð Þð Þ½ �α
= Θ max d c1, c1ð Þ, γd c1,Mc1ð Þfð½

+ 1 − γð Þd c1,Mc1ð Þ, 1 − γð Þd c1,Mc1ð Þ
+ γd c1,Mc1ð Þγd c1,Mc1ð Þ
+ 1 − γð Þd c1,Mc1ð Þ, 1 − γð Þd c1,Mc1ð Þ
+ γd c1,Mc1ð ÞgÞ�α

= Θ max 0, d c1,Mc1ð Þf gð Þ½ �α = Θ d c1,Mc1ð Þð Þ½ �α
<Θ d c1,Mc1ð Þð Þ, α ∈ 0, 1ð Þ, a contradiction:

ð26Þ

So Mc1 = c1. Similarly, Mc2 = c2.
Again, since dðu,MuÞ > 0,

Θ d u,Muð Þð Þ ≤ Θ L u, c1ð Þð Þ½ �α
= Θ max d u, c1ð Þ, γd u,Muð Þfð½

+ 1 − γð Þd c1,Mc1ð Þ, 1 − γð Þd u,Muð Þ
+ γd c1,Mc1ð Þγd u,Mc1ð Þ
+ 1 − γð Þd c1,Muð Þ, 1 − γð Þd u,Mc1ð Þ + γd c1,Muð ÞgÞ�α

< Θ max 2a, γd u,Muð Þ, 1 − γð Þd u,Muð Þ, γd u, c1ð Þfð½
+ 1 − γð Þd c1,Muð Þ, 1 − γð Þd u, c1ð Þ + γd c1,Muð ÞgÞ�α

<Θ max 2a, γd u,Muð Þ, 1 − γð Þd u,Muð Þ, γd u, c1ð Þfð
+ 1 − γð Þd c1,Muð Þ, 1 − γð Þd u, c1ð Þ + γd c1,Muð ÞgÞ, α ∈ 0, 1ð Þ:

ð27Þ

Case 1. If max f2a, γdðu,MuÞ, ð1 − γÞdðu,MuÞ, ð1 − γÞdð
u,MuÞ, γdðu, c1Þ + ð1 − γÞdðc1,MuÞ, ð1 − γÞdðu, c1Þ + γdð
c1,MuÞg = 2a, then Θðdðu,MuÞÞ <Θð2aÞ.

By definition of a andΘ,Θð2aÞ ≤Θðdðu,MuÞÞ <Θð2aÞ,
a contradiction.

Case 2. If max f2a, γdðu,MuÞ, ð1 − γÞdðu,MuÞ, ð1 − γÞdð
u,MuÞ, γdðu, c1Þ + ð1 − γÞdðc1,MuÞ, ð1 − γÞdðu, c1Þ + γdð
c1,MuÞg = γdðu,MuÞ, then Θðdðu,MuÞÞ <Θðγdðu,M
uÞÞ.

If γ = 0, Θðdðu,MuÞÞ <Θð0Þ, a contradiction.
If γ ∈ ð0, 1Þ, Θðdðu,MuÞÞ <Θðγdðu,MuÞÞ <Θðdðu,

MuÞÞ, a contradiction.

Case 3. If max f2a, γdðu,MuÞ, ð1 − γÞdðu,MuÞ, ð1 − γÞdð
u,MuÞ, γdðu, c1Þ + ð1 − γÞdðc1,MuÞ, ð1 − γÞdðu, c1Þ + γdð
c1,MuÞg = ð1 − γÞdðu,MuÞ, then Θðdðu,MuÞÞ <Θðð1 −
γÞdðu,MuÞÞ ≤Θðdðu,MuÞÞ, a contradiction.

Case 4. If max f2a, γdðu,MuÞ, ð1 − γÞdðu,MuÞ, ð1 − γÞdð
u,MuÞ, γdðu, c1Þ + ð1 − γÞdðc1,MuÞ, ð1 − γÞdðu, c1Þ + γdð
c1,MuÞg = γdðu, c1Þ + ð1 − γÞdðc1,MuÞ, then

Θ d u,Muð Þð Þ <Θ γd u, c1ð Þ + 1 − γð Þd c1,Muð Þð Þ
<Θ γa + 1 − γð Það Þ =Θ að Þ: ð28Þ

By definition of a and Θ, Θð2aÞ ≤Θðdðu,MuÞÞ <ΘðaÞ,
a contradiction.

Case 5. If max f2a, γdðu,MuÞ, ð1 − γÞdðu,MuÞ, ð1 − γÞdð
u,MuÞ, γdðu, c1Þ + ð1 − γÞdðc1,MuÞ, ð1 − γÞdðu, c1Þ + γdð
c1,MuÞg = ð1 − γÞdðu, c1Þ + γdðc1,MuÞ, then

Θ d u,Muð Þð Þ <Θ 1 − γð Þd u, c1ð Þ + γd c1,Muð Þð Þ
<Θ γa + 1 − γð Það Þ =Θ að Þ: ð29Þ

C  c2 = (5.0) c1 = (–5.0)

Figure 1: The elliptic disc EDðð−5, 0Þ, ð5, 0Þ, 12Þ centered at ð0, 0Þ having foci at ð−5, 0Þ and ð5, 0Þ is shown in this figure.
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By definition of a and Θ, Θð2aÞ ≤Θðdðu,MuÞÞ <ΘðaÞ,
a contradiction.

Similarly, we can prove for c2 ∈U.
Hence, Mu = u, u ∈Eðc1, c2, aÞ; that is, Eðc1, c2, aÞ is a

fixed ellipse of M.

Theorem 16. If in the above theorem dðc1,MuÞ + dðc2,Mu

Þ ≤ a, then EDðc1, c2, aÞ is a fixed elliptic disc of M.

Proof. Now, to show EDðc1, c2, aÞ is a fixed elliptic disc ofM,
it is sufficient to demonstrate that M fixes an ellipse Eðc1,
c2, bÞ with b⊲a. Since M is a generalized ΘE-weak contrac-
tion, then proceeding as in Theorem 15, Eðc1, c2, bÞ is a fixed
ellipse of M as dðc1,MuÞ + dðc2,MuÞ = b ≤ a; that is, Mu

= u, ∀u ∈EDðc1, c2, bÞ. Hence, EDðc1, c2, aÞ is a fixed elliptic
disc of M.

Theorem 17. Theorem 15 remains true if we substitute Ćirić-
type ΘE-weak contraction in place of generalized ΘE-weak
contraction.

Proof. The proof follows the pattern of Theorem 15 on taking
γ = 0.

Theorem 18. Theorem 16 remains true if we substitute Ćirić-
type ΘE-weak contraction in place of generalized ΘE-weak
contraction.

Proof. The proof follows the pattern of Theorem 16 on taking
γ = 0.

The subsequent examples elucidate Theorems 17 and 18.

Example 4. Let U = ½5,∞Þ and a metric d : U ×U⟶ℝ+ be
defined as dðu, vÞ = ju − vj.

Let ΘðtÞ = et , c1 = −2, c2 = 3, a = 6, γ = 0, and α = 6/7.
The ellipse

E −2, 3, 6ð Þ = u ∈U : d −2, uð Þ + d 3, uð Þ = 6f g
= u ∈U : −2 − uj j + 3 − uj j = 6f g = −2:5,3:5f g:

ð30Þ

Define a self-map M : U⟶U as Mu =

u, u ∈ ½−5, 5�
u + 12, otherwise

 
.

Since for u ∈ ½−5, 5�, dðu,MuÞ = 0, and for u ∈ ð5,∞Þ,
dðu,MuÞ = 12 > 0.

Case 1. For u > 5 and c1 = −2,

L u,−2ð Þ =max d u,−2ð Þ, d −2,M −2ð Þð Þ, d u,Muð Þ, d −2,Muð Þ, d u,M −2ð Þð Þf g
=max d u,−2ð Þ, d −2,−2ð Þ, d u,Muð Þ, d −2,Muð Þ, d u,−2ð Þf g
=max d u,−2ð Þ, 0, 12, d −2, u + 12ð Þf g =max u + 2j j, 12, u + 14j jf g
= u + 14j j > 19,

ð31Þ

and Θðdðu,MuÞÞ =Θð12Þ = e12 < eð12/13Þ∣u+8∣ =
eðLðu,−2ÞÞð12/19Þ = ½ΘðLðu,−2ÞÞ�ð12/19Þ.

Case 2. For u > 5 and c2 = 3,

L u, 3ð Þ =max d u, 3ð Þ, d 3,M3ð Þ, d u,Muð Þ, d 3,Muð Þ, d u,M3ð Þf g
=max d u, 3ð Þ, d 3, 3ð Þ, d u,Muð Þ, d 3,Muð Þ, d u, 3ð Þf g
=max d u, 3ð Þ, 0, 12, d 3, u + 12ð Þf g
=max u − 3j j, 12, u + 9j jf g = u + 9j j > 14,

ð32Þ

and Θðdðu,MuÞÞ =Θð12Þ = e12 < eð12/14Þju+9j = eðLðu,3ÞÞð12/14Þ

= ½ΘðLðu, 3ÞÞ�ð12/14Þ.
That is, M is a Ćirić-type ΘE-weak contraction with c1

= −2, c2 = 3, and α =max f12/19, 12/14g = 12/14. Hence, E
ð−2, 3, 6Þ = f−2:5,3:5g is a fixed ellipse and EDð−2, 3, 6Þ = ½
−2:5,3:5� is a fixed elliptic disc of M. One may verify that d
ð−2, uÞ + dð3, uÞ ≤ 6, u ∈EDð−2, 3, 6Þ.

Example 5. Let U =ℝ2 and a metric d : U ×U⟶ℝ+ be

defined as dðu, vÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu1 − v1Þ2 + ðu2 − v2Þ2

q
, where u = ð

u1, u2Þ and v = ðv1, v2Þ.
Let ΘðtÞ = 1 + t, c1 = ð3 + 2

ffiffiffi
3

p
,−1Þ, c2 = ð3 − 2

ffiffiffi
3

p
,−1Þ, a

= 8, γ = 0, and α = 6/7.
The ellipse

E c1, c2, 8ð Þ = u ∈U : d c1, uð Þ + d c2, uð Þ = 8f g

=
(
u ∈U :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1 − 3 − 2

ffiffiffi
3

p� �2
+ u2 + 1ð Þ2

r

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1 − 3 + 2

ffiffiffi
3

p� �2
+ u2 + 1ð Þ2

r
= 8
)

= u ∈U :
u1 − 3ð Þ2
16 + u2 + 1ð Þ2

4 = 1
( )

,

ð33Þ

which is shown by the blue line in Figure 2.
Further, the elliptic disc EDðc1, c2, 8Þ = fu ∈U : ð

ðu1 − 3Þ2/16Þ + ððu2 + 1Þ2/4Þ ≤ 1g, which is shown as the
blue shaded portion in Figure 2.

Define a self-map M : U⟶U as Mu =

u, u ∈ ð3 + 6 cos θ,−1 + 6 sin θÞ
u + ð8 ffiffiffi

2
p

, 8
ffiffiffi
2

p Þ, otherwise

 
.

Since for u ∈ ð3 + 6 cos θ,−1 + 6 sin θÞ, dðu,MuÞ = 0,
and for u ∈ℝ2 \ ð3 + 6 cos θ,−1 + 6 sin θÞ, dðu,MuÞ = 16
> 0.
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Case 1. For u ∈ℝ2 \ ð3 + 6 cos θ,−1 + 6 sin θÞ and c1 = ð3 +
2
ffiffiffi
3

p
,−1Þ,

L u, 3 + 2
ffiffiffi
3

p
,−1

� �� �
=max d u, 3 + 2

ffiffiffi
3

p
,−1

� �� �
, d

n
� 3 + 2

ffiffiffi
3

p
,−1

� �
,M 3 + 2

ffiffiffi
3

p
,−1

� �� �
, d

� u,Muð Þ, d 3 + 2
ffiffiffi
3

p
,−1

� �
,Mu

� �
, d

� u,M 3 + 2
ffiffiffi
3

p
,−1

� �� �o
=max d u, 3 + 2

ffiffiffi
3

p
,−1

� �� �
, d

n
� 3 + 2

ffiffiffi
3

p
,−1

� �
, 3 + 2

ffiffiffi
3

p
,−1

� �� �
, d

� u,Muð Þ, d 3 + 2
ffiffiffi
3

p
,−1

� �
,Mu

� �
, d

� u, 3 + 2
ffiffiffi
3

p
,−1

� �� �o
=max d u, 3 + 2

ffiffiffi
3

p
,−1

� �� �
, 0, 16, d

n
� 3 + 2

ffiffiffi
3

p
,−1

� �
, u + 8

ffiffiffi
2

p
, 8

ffiffiffi
2

p� �� �o

=max
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1 − 3 − 2

ffiffiffi
3

p� �2
+ u2 + 1ð Þ2

r
, 16,

(

� u1 + 8
ffiffiffi
2

p
− 3 − 2

ffiffiffi
3

p� �2
+ u2 + 8

ffiffiffi
2

p
+ 1

� �2q o
> 16,

ð34Þ

and Θðdðu,MuÞÞ =Θð16Þ = e16 < eð16/17ÞLðu,ð3+2 ffiffi3p ,−1ÞÞ∣ =
½ΘðLðu, ð3 + 2

ffiffiffi
3

p
,−1ÞÞÞ�ð16/17Þ.

Case 2. For u ∈ℝ2 \ ð3 + 6 cos θ,−1 + 6 sin θÞ and c1 = ð3 −
2
ffiffiffi
3

p
,−1Þ,

L u, 3 − 2
ffiffiffi
3

p
,−1

� �� �
=max d u, 3 − 2

ffiffiffi
3

p
,−1

� �� �
, d

n
� 3 − 2

ffiffiffi
3

p
,−1

� �
,M 3 − 2

ffiffiffi
3

p
,−1

� �� �
, d

� u,Muð Þ, d 3 − 2
ffiffiffi
3

p
,−1

� �
,Mu

� �
, d

� u,M 3 − 2
ffiffiffi
3

p
,−1

� �� �o
=max d u, 3 − 2

ffiffiffi
3

p
,−1

� �� �
, d

n
� 3 − 2

ffiffiffi
3

p
,−1

� �
, 3 − 2

ffiffiffi
3

p
,−1

� �� �
, d u,Muð Þ, d

� 3 − 2
ffiffiffi
3

p
,−1

� �
,Mu

� �
, d u, 3 − 2

ffiffiffi
3

p
,−1

� �� �o
=max d u, 3 − 2

ffiffiffi
3

p
,−1

� �� �
, 0, 16, d

n
� 3 − 2

ffiffiffi
3

p
,−1

� �
, u + 8

ffiffiffi
2

p
, 8

ffiffiffi
2

p� �� �o

=max
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1 − 3 + 2

ffiffiffi
3

p� �2
+ u2 + 1ð Þ2

r
, 16,

(

� u1 + 8
ffiffiffi
2

p
− 3 + 2

ffiffiffi
3

p� �2
+ u2 + 8

ffiffiffi
2

p
+ 1

� �2q o
> 21,

ð35Þ

Θ d u,Muð Þð Þ =Θ 16ð Þ = e16 < e 16/21ð ÞL u, 3−2 ffiffi3p ,−1ð Þð Þ

= Θ L u, 3 − 2
ffiffiffi
3

p
,−1

� �� �� �h i 16/21ð Þ
:

ð36Þ

That is, M is a Ćirić-type ΘE-weak contraction with c1

= ð3 + 2
ffiffiffi
3

p
,−1Þ, c2 = ð3 − 2

ffiffiffi
3

p
,−1Þ, and α =max f16/17, 16/

21g = 16/17. Hence, Eðc1, c2, 8Þ is a fixed ellipse and EDðc1
, c2, 8Þ is a fixed elliptic disc of M. One may verify that dðc1
, uÞ + dðc2, uÞ ≤ 8, u ∈EDðc1, c2, 8Þ.

Now, we introduce ΨE-weak JS-contraction to study the
geometry of nonunique fixed points.

Definition 19. Let Ψ : ½0,∞Þ⟶ ½1,∞Þ be an increasing
function withΨð0Þ = 1; then, a mapM : U⟶U of a metric
space ðU, dÞ is said to be a ΨE-weak JS-contraction with u

≠ v, if

d u,Muð Þ > 0⇒Ψ d u,Muð Þð Þ
≤ Ψ d u, vð Þð Þ½ �a Ψ d u,Muð Þð Þ½ �b Θ d v,Mvð Þð Þ½ �c
� Ψ d u,Mvð Þð Þ½ �e Ψ d v,Muð Þð Þ½ �f ,

ð37Þ

where a, b, c, e, and f are nonnegative and a + b + c + e + f
∈ ½0, 1Þ, u, v ∈U.

Theorem 20. Let Eðc1, c2, aÞ be an ellipse in a metric space
ðU, dÞ and a = ð1/2Þfinf dðu,MuÞ: u ≠Mug. If map M

: U⟶U is a ΨE-weak JS-contraction with c1, c2 ∈U and
dðc1,MuÞ + dðc2,MuÞ = a, u ∈Eðc1, c2, aÞ, then Eðc1, c2, a
Þ is a fixed ellipse of M.

Proof. Let u ∈Eðc1, c2, aÞ be any arbitrary point andMu ≠ u

. From the definition of a, dðu,MuÞ ≥ 2a, since M is ΨE

-weak JS-contraction for c1, c2 ∈U, suppose Mc1 ≠ c1 and
Mc2 ≠ c2, so we have dðc1,Mc1ÞÞ > 0, dðc2,Mc2ÞÞ > 0, and

Ψ d c1,Mc1ð Þð Þ ≤ Ψ d c1, c1ð Þð Þ½ �a Ψ d c1,Mc1ð Þð Þ½ �b Ψ d c1,Mc1ð Þð Þ½ �c
� Ψ d c1,Mc1ð Þð Þ½ �e Ψ d c1,Mc1ð Þð Þ½ �f

= Ψ 0ð Þ½ �a Ψ d c1,Mc1ð Þð Þ½ �b+c+e+f
= Ψ d c1,Mc1ð Þð Þ½ �1−a <Ψ d c1,Mc1ð Þð Þ, a contradiction:

ð38Þ

So Mc1 = c1. Similarly, Mc2 = c2.

c1 C c2
c1 C c2

M

Figure 2: The blue line and its interior demonstrate the ellipse ðE
ðc1, c2, 8ÞÞ and elliptic disc ðEDðc1, c2, 8ÞÞ, respectively, which is
fixed by map M.
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Again, since dðu,MuÞ > 0, so

Ψ d u,Muð Þð Þ ≤ Ψ d u, c1ð Þð Þ½ �a Ψ d u,Muð Þð Þ½ �b Ψ d c1,Mc1ð Þð Þ½ �c
� Ψ d u,Mc1ð Þð Þ½ �e Ψ d c1,Muð Þð Þ½ �f

< Ψ að Þ½ �a Ψ 2að Þ½ �b Ψ d c1, c1ð Þð Þ½ �c Ψ að Þ½ �e Ψ að Þ½ �f
< Θ 2að Þ½ �a Ψ 2að Þ½ �b Θ 0ð Þ½ �c Ψ 2að Þ½ �e Ψ 2að Þ½ �f
� asΨ is increasingð Þ = Ψ 2að Þ½ �a+b+e+f

< Ψ 2að Þ½ �1−c <Ψ 2að Þ:
ð39Þ

Since dðu,MuÞ ≥ 2a and Ψ is increasing, Ψð2aÞ ≤Ψðdð
u,MuÞÞ <Ψð2aÞ, a contradiction.

Similarly, we can prove for c2 ∈U.
Hence, Mu = u, u ∈Eðc1, c2, aÞ; that is, Eðc1, c2, aÞ is a

fixed ellipse of M.

Theorem 21. If in Theorem 20, dðc1,MuÞ + dðc2,MuÞ ≤ a,
then EDðc1, c2, aÞ is a fixed elliptic disc of M.

Proof. The proof follows the pattern of Theorem 16.

The subsequent example elucidates Theorems 20 and 21.

Example 6. Let U = f−2, 0, ð1/2Þ ln ð6/eÞ, ð1/2Þ ln ð15/eÞ, ð1/
2Þ ln ð18/eÞ, ð1/2Þ ln ð21/eÞ, ð1/2Þ ln ð24/eÞ, ð1/2Þ ln ð27/eÞ, ð
1/2Þ ln ð30/eÞ, ð1/2Þ ln ð6eÞ, ð1/2Þ ln ð9eÞ, ð1/2Þ ln ð12eÞ, ð1/
2Þ ln ð15eÞ, ln 2, ln 3, ln 5g and a metric d : U ×U⟶ℝ+

be defined as dðu, vÞ = ju − vj. Let ΨðtÞ = et , c1 = ln 3, c2 =
ln 5, a = 1, γ = 0, and α = 3/4.

The ellipse

E ln 3, ln 5, 1ð Þ = u ∈U : d ln 3, uð Þ + d ln 5, uð Þ = 1f g
= u ∈U : ln 3 − uj j + ln 5 − uj j = 1f g
= 1

2 ln 15
e

� �
, 12 ln 15eð Þ

� 
:

ð40Þ

Define a self-map M : U⟶U as

Mu =
0, u = −2,
−2, u = 0,
u, otherwise:

0
BB@ ð41Þ

Then, dðu,MuÞ = 2, u ∈ f−2, 0g
0, otherwise

 
.

Then, dðu,MuÞ = 2 > 0.

Case 1. For u = f−2, 0g and c1 = ln 3,

Ψ d u, ln 3ð Þð Þ½ �a Ψ d u,Muð Þð Þ½ �b Ψ d ln 3,M ln 3ð Þð Þ½ �c
� Ψ d u,M ln 3ð Þð Þ½ �e Ψ d ln 3,Muð Þð Þ½ �f

= Ψ ∣u − ln 3 ∣ð Þ½ �a Ψ ∣u −Mu ∣ð Þ½ �b Ψ ∣ln 3 −M ln 3 ∣ð Þ½ �c
� Ψ ∣u −M ln 3 ∣ð Þ½ �e Ψ ∣ln 3 −Mu ∣ð Þ½ �f

= Ψ ∣u − ln 3 ∣ð Þ½ �a Ψ 2ð Þ½ �b Ψ ∣ln 3 − ln 3 ∣ð Þ½ �c Ψ ∣u − ln 3 ∣ð Þ½ �e
� Ψ ∣ln 3 −Mu ∣ð Þ½ �f

= Ψ ∣u − ln 3 ∣ð Þ½ �a+e Ψ 2ð Þ½ �b Ψ ∣ln 3 −Mu ∣ð Þ½ �f
= Ψ ∣u − ln 3 ∣ð Þ½ �a+e Ψ 2ð Þ½ �b Ψ ln 3 −Muj jð Þ½ �f ,

Ψ u − ln 3j jð Þ½ �a+e Ψ 2ð Þ½ �b Ψ ln 3 −Muj jð Þ½ �f

=
Ψ ln 3ð Þ½ �a+e Ψ 2ð Þ½ �b Ψ ln 3 + 2j jð Þ½ �f , if u = 0

Ψ 2 + ln 3j jð Þ½ �a+e Ψ 2ð Þ½ �b Ψ ln 3ð Þ½ �f , if u = −2

8<
:

=
Ψ ln 3ð Þ½ �a+e Ψ 2ð Þ½ �b Ψ ln 3e2

� �� �� 	
, if u = 0

Ψ ln 3e2
� �� �� 	a+e

Ψ 2ð Þ½ �b Ψ ln 3ð Þ½ �f , if u = −2

8<
:

=
3a+ee2b 3e2

� �f , if u = 0

3e2
� �a+e

e2b3f , if u = −2
> e2 =Ψ d u,Muð Þð Þ

8<
: ,

ð42Þ

for a = e = 1/4, b = 1/4, c = 0, and f = 1/3, satisfying a + b + c
+ e + f < 1; that is,

Ψ d u,Muð Þð Þ < Ψ d c1, c1ð Þð Þ½ �a Ψ d c1,Mc1ð Þð Þ½ �b Ψ d c1,Mc1ð Þð Þ½ �c
� Ψ d c1,Mc1ð Þð Þ½ �e Ψ d c1,Mc1ð Þð Þ½ �f :

ð43Þ

Case 2. For u ∈ f−2, 0g and c2 = ln 5,

Ψ d u, ln 5ð Þð Þ½ �a Ψ d u,Muð Þð Þ½ �b Ψ d ln 5,M ln 5ð Þð Þ½ �c
� Ψ d u,M ln 5ð Þð Þ½ �e Ψ d ln 5,Muð Þð Þ½ �f

= Ψ u − ln 5j jð Þ½ �a Ψ u −Muj jð Þ½ �b Ψ ln 5 −M ln 5j jð Þ½ �c
� Ψ u −M ln 5j jð Þ½ �e Ψ ln 5 −Muj jð Þ½ �f

= Ψ u − ln 5j jð Þ½ �a Ψ 2ð Þ½ �b Ψ ln 5 − ln 5j jð Þ½ �c
� Ψ u − ln 5j jð Þ½ �e Ψ ln 5 −Muj jð Þ½ �f

= Ψ u − ln 5j jð Þ½ �a+e Ψ 2ð Þ½ �b Ψ ln 5 −Muj jð Þ½ �f ,

Ψ u − ln 5j jð Þ½ �a+e Ψ 2ð Þ½ �b Ψ ln 5 −Muj jð Þ½ �f

=
Ψ ln 5ð Þ½ �a+e Ψ 2ð Þ½ �b Ψ ln 5 + 2j jð Þ½ �f , if u = 0

Ψ 2 + ln 5j jð Þ½ �a+e Ψ 2ð Þ½ �b Ψ ln 5ð Þ½ �f , if u = −2

8<
:

=
Ψ ln 5ð Þ½ �a+e Ψ 2ð Þ½ �b Ψ ln 5e2

� �� �� 	f , if u = 0

Ψ ln 5e2
� �� �� 	a+e

Ψ 2ð Þ½ �b Ψ ln 5ð Þ½ �f , if u = −2

8<
:

=
5a+ee2b 5e2

� �f , if u = 0

5e2
� �a+e

e2b5f , if u = 2
> e2 =Ψ d u,Muð Þð Þ

8<
: ,

ð44Þ
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for a = e = 1/4, b = 1/4, c = 0, and f = 1/3, satisfying a + b + c
+ e + f < 1; that is,

Ψ d u,Muð Þð Þ < Ψ d c1, c1ð Þð Þ½ �a Ψ d c1,Mc1ð Þð Þ½ �b
� Ψ d c1,Mc1ð Þð Þ½ �c Ψ d c1,Mc1ð Þð Þ½ �e
� Ψ d c1,Mc1ð Þð Þ½ �f :

ð45Þ

That is, M is a Ψ-weak JS-contraction with c1 = ln 3, c2
= ln 5, and a = e = 1/4, b = 1/4, c = 0, and f = 1/3. Hence, E
ðln 3, ln 5, 1Þ = fð1/2Þ ln ð15/eÞ, ð1/2Þ ln ð15eÞg is a fixed
ellipse and EDðln 3, ln 5, 1Þ =U \ f−2, 0g is a fixed elliptic
disc of M. One may verify that dðln 3, uÞ + dðln 5, uÞ ≤ 1, u
∈EDðln 3, ln 5, 1Þ. Noticeably, a fixed ellipse or a fixed ellip-
tic disc is not essentially unique, as Eðln 3, ln 5, 1Þ is also a
fixed ellipse and EDðln 3, ln 5, 1Þ is also a fixed elliptic disc
of M.

Now, we prove the fixed ellipse and fixed elliptic disc con-
clusions of the integra-type. Let Φ : ½0,∞Þ⟶ ½0,∞Þ be a
locally integrable function so that, for each t > 0, Ð 10ΦðtÞdt
> 0.

Definition 22. Let Θ : ð0,∞Þ⟶ ð1,∞Þ be an increasing
function. A map M : U⟶U of a metric space ðU, dÞ is
said to be a generalized integral-type ΘE-weak contraction
with u ≠ v, if

d u,Muð Þ > 0⇒
ðΘ d u,Muð Þð Þ

0
Φ tð Þdt ≤

ð Θ L u,vð Þð Þ½ �α

0
Φ tð Þdt,

ð46Þ

where Lðu, vÞ =max fdðu, vÞ, γdðu,MuÞ + ð1 − γÞdðv,M
vÞ, ð1 − γÞdðu,MuÞ + γdðv,MvÞ, γdðu,MvÞ + ð1 − γÞdðv,
MuÞ, ð1 − γÞdðu,MvÞ + γdðv,MuÞg, γ ∈ ½0, 1Þ, α ∈ ð0, 1Þ, u
, v ∈U.

Theorem 23. Let Eðc1, c2, aÞ be an ellipse in a metric space
ðU, dÞ and a = ð1/2Þfinf dðu,MuÞ: u ≠Mug. If map M

: U⟶U is a generalized integral-typeΘE-weak contraction
with c1, c2 ∈U and dðc1,MuÞ + dðc2,MuÞ = a, u ∈Eðc1, c2,
aÞ, then Eðc1, c2, aÞ is a fixed ellipse of M.

Proof. The proof follows the pattern of Theorem 15.

Theorem 24. If in Theorem 23, dðc1,MuÞ + dðc2,MuÞ ≤ a,
then Eðc1, c2, aÞ is a fixed elliptic disc of M.

Proof. The proof follows the pattern of Theorem 16.

Next, we introduce an integral-type ΨE-weak JS-
contraction.

Definition 25. Let Ψ : ½0,∞Þ⟶ ½1,∞Þ be an increasing
function with Ψð0Þ = 1; then, map M : U⟶U of a metric
space ðU, dÞ is said to be an integral-type ΨE-weak JS-

contraction with u ≠ v, if dðu,MuÞ > 0 implies that

ðΨ d u,Muð Þð Þ

0
Φ tð Þdt

≤
ð Ψ d u,vð Þð Þ½ �a Ψ d u,Muð Þð Þ½ �b Θ d v,Mvð Þð Þ½ �c Ψ d u,Mvð Þð Þ½ �e Ψ d v,Muð Þð Þ½ �f

0
Φ tð Þdt,

ð47Þ

where a, b, c, e, and f are nonnegative and a + b + c + e + f
∈ ½0, 1Þ, u, v ∈U.

Theorem 26. Let Eðc1, c2, aÞ be an ellipse in a metric space
ðU, dÞ and a = ð1/2Þfinf dðu,MuÞ: u ≠Mug. If map M

: U⟶U is an integral-type ΨE-weak JS-contraction with
c1, c2 ∈U and dðc1,MuÞ + dðc2,MvÞ = a, u ∈Eðc1, c2, aÞ,
then Eðc1, c2, aÞ is a fixed ellipse of M.

Proof. The proof follows the pattern of Theorem 15.

Theorem 27. If in Theorem 26, dðc1,MuÞ + dðc2,MuÞ ≤ a,
then Eðc1, c2, aÞ is a fixed elliptic disc of M.

Proof. The proof follows the pattern of Theorem 16.

Remark 28.

(1) It is interesting to mention here that if a self-map
fixes an elliptic disc, then it also fixes an ellipse (see
Examples 4, 5, and 6). However, the reverse may
not be true

(2) The ellipses (elliptic discs) in metric spaces change
their shapes on changing the center, lengths of a
semiminor or semimajor axis, or metric under con-
sideration. Also, it is not necessary that an ellipse or
an elliptic disc defined in a metric space be the same
as an ellipse or an elliptic disc in a Euclidean space.
Noticeably, ellipses discussed in Examples 1, 4, and
6 and elliptic discs in Examples 4 and 6 are different
from the ellipse and elliptic disc in a Euclidean space

(3) If there exists a self-map that maps the ellipse (elliptic
disc) to itself, then that ellipse (elliptic disc) may not
be a fixed ellipse (elliptic disc); that is, the self-map
may not fix all the points of the ellipse (elliptic disc)

(4) All the elliptic discs inside a fixed elliptic disc are also
fixed elliptic discs of a self-map. Further, a fixed
ellipse is not essentially unique (see Example 6)

(5) If both the focuses coincide, then fixed ellipse results,
as well as fixed elliptic disc results, reduce to analo-
gous fixed circle and fixed disc results, respectively.
Noticeably, if c1 = c2 = u0 (say), then Eðc1, c2, aÞ =
Cðu0, a/2Þ and EDðc1, c2, aÞ =Dðu0, a/2Þ, with cen-
ter u0 and radius a/2

(6) For work on the set of nonunique fixed points form-
ing a fixed figure, one may refer to [1–23] and refer-
ences therein
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3. Applications

Inspired by the fact that the fixed point theory is applicable in
many real-world problems, we solve a boundary value prob-
lem arising when a diffusing matter is kept in an absorbing
medium between parallel walls of fixed concentrations γ
and δ. The concentration uðtÞ of the substance at time t is
given by

−
d2u
dt2

+ f tð Þu = ξ tð Þ, u 0ð Þ = γ, u 1ð Þ = δ, ð48Þ

where fðtÞ is the absorption coefficient and ξðtÞ is the source
density.

The Green function associated with an initial value prob-
lem (48) is

G t, sð Þ =
t 1 − sð Þ, 0 ≤ t ≤ s ≤ 1,
s 1 − tð Þ, 0 ≤ s ≤ s ≤ 1:

 
ð49Þ

Problem (48) is equivalent to

u tð Þ = γ + δ − γð Þt +
ð1
0
G t, sð Þ ξ sð Þ − f sð Þu sð Þð Þds, s ∈ 0, 1½ �:

ð50Þ

Let U be a set of Riemann integrable functions on ½0, 1�;
that is, U = R½0, 1�. Define d : U ×U⟶ℝ+ by

d u, vð Þ = u − vk k∞, u, v ∈U, ð51Þ

where kuk∞ = supt∈½0,1�juðtÞj. Clearly, ðU, dÞ is a complete
metric space.

Theorem 29. Consider the boundary value problem (48). Let
M : U ×U⟶ℝ be a self-map in a complete metric space ð
U, dÞ, satisfying

u tð Þ − v tð Þk k∞ > 0⇒ f tð Þu tð Þ − f tð Þv tð Þk k∞
≤ e−λ u tð Þ − v tð Þk k∞, λ > 0:

ð52Þ

Then, the boundary value problem (48) has a solution.

Proof. Define a map M : U⟶U by

Mu tð Þ = γ + δ − γð Þt +
ð1
0
G t, sð Þ ξ sð Þ − f sð Þu sð Þð Þds, s ∈ 0, 1½ �:

ð53Þ

Clearly, a fixed point of mapM is a solution to the prob-
lem (48).

Since kuðtÞ − uðtÞk∞ > 0,

d Mu,Mvð Þ = γ + δ − γð Þt +
ð1
0
G t, sð Þ ξ sð Þ − f sð Þu sð Þð Þds






− γ − δ − γð Þt −

ð1
0
G t, sð Þ ξ sð Þ − f sð Þv sð Þð Þds






=
ð1
0
G t, sð Þ ξ sð Þ − f sð Þu sð Þð Þds






−
ð1
0
G t, sð Þ ξ sð Þ − f sð Þv sð Þð Þds






=
ð1
0
G t, sð Þ f sð Þu sð Þ − f sð Þv sð Þð Þds












< f sð Þu sð Þ − f sð Þv sð Þk k∞ sup
t∈ 0,1½ �

ð1
0
G t, sð Þds












< e−λ u sð Þ − v sð Þk k∞ sup
t∈ 0,1½ �

ð1
0
G t, sð Þds












< 1
8 e

−λ u sð Þ − v sð Þk k∞ = 1
8 e

−λd u, vð Þ:
ð54Þ

If ΘðtÞ = et , t ∈ ð0,∞Þ, then

Θ d Mu,Mvð Þð Þ = ed Mu,Mvð Þ < e 1/8ð Þe−λd u,vð Þ = ed u,vð Þ 1/8ð Þe−λð Þ

= Θ d u, vð Þð Þ½ �α ≤ Θ maxð d u, vð Þ, d v,Mvð Þ,f½
d u,Muð Þ, d v,Muð Þ, d u,Mvð Þ�α,

ð55Þ

where α = ð1/8Þe−λ and α ∈ ð0, 1Þ. Therefore, all the condi-
tions of Theorem 8 are verified. Hence,M has a unique fixed
point, which is indeed a unique solution to a boundary value
problem (48).

4. Conclusion

We have explored new directions as a fixed ellipse and a fixed
elliptic disc to the geometry of the set of nonunique fixed
points of a map on a metric space via novel contractions. Fur-
ther, we have utilized a generalized Θ-contraction and Ćirić-
typeΘ-contraction to establish a unique fixed point. Also, we
have verified established results by illustrative examples to
demonstrate the authenticity of the postulates and substanti-
ated utility of our results by solving a boundary value prob-
lem of chemical sciences. The study of a set of unique and
nonunique fixed points in the current context would be an
interesting area for future study.
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In this work, we have to introduce a generalized quadratic functional equation and derive its solution. The main objective of this
work is to investigate the Hyers-Ulam stability of quadratic functional equation in non-Archimedean ðn, βÞ-normed spaces.

1. Introduction

The theory of functional equation is one of the most interest-
ing topics in the field of Mathematics. It deals with the search
of functions which satisfies a given equation. A functional
equation is like a regular algebraic equation; though instead
of unknown elements in some set, we are interested in find-
ing a function satisfying our equation.

The concept of stability of a functional equation arises
when one replaces a functional equation by an inequality
which acts as a perturbation of the equation. The first stabil-
ity problem concerning group homomorphisms was raised
by Ulam [1] in 1940 and affirmatively solved by Hyers [2].
Aoki was the first author who has generalized the theorem
of Hyers (see [3]).

Moreover, Gavruta [4], Rassias [5], and Bourgin [6] have
considered the stability problem with unbounded Cauchy
difference (see also [7]). On the other hand, Rassias [8–13]
considered the Cauchy difference controlled by a product of
different powers of norm. This stability phenomenon is
called the Ulam-Gavruta-Rassias stability (see also [14]).

The Hyers-Ulam stability issue for the quadratic func-
tional equation was cleared by Skof [15]. In [16], Czerwik
demonstrated the Hyers-Ulam-Rassias stability of the qua-

dratic functional equation. Afterward, Jung [17] has summed
up the outcomes gotten by Skof and Czerwik.

The Hyers-Ulam stability problem for the quadratic
functional equation was solved by Skof [15]. In [16], Czerwik
proved the Hyers-Ulam-Rassias stability of quadratic func-
tional equation. Later, Jung [17] has generalized the results
obtained by Skof and Czerwik.

The first work on the Hyers-Ulam stability of functional
equations in complete non-Archimedean normed spaces (some
particular cases were considered earlier; see [18] for details) is
[19]. After it, a lot of articles (see, for instance, [20] and the ref-
erences given there) on the stability of other equations in such
spaces were published. In [21], the stability of the additive Cau-
chy equation in non-Archimedean fuzzy normed spaces under
the strongest t-norm TM Rassias has been established.

In 1897, Hensel [22] has introduced a normed space which
does not have the Archimedean property. It turned out that
non-Archimedean spaces have many nice applications [23–26].

Initially, Liu [27] introduced the notions of ðn, βÞ
-normed space and non-Archimedean ðn, βÞ-normed space.
Then, they investigated Hyers-Ulam stability of the Cauchy
functional equation and the Jensen functional equation in
non-Archimedean ðn, βÞ-normed spaces and that of the pex-
iderized Cauchy functional equation in ðn, βÞ-normed
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spaces. During the most recent many years, a few stability
issues of functional equations have been researched by vari-
ous mathematicians (see [28–40]).

The objective of this work is to introduce that a general-
ized quadratic functional equation is

〠
1≤i<j≤l

ϕ vi + vj
� �

+ 〠
1≤i<j≤l

ϕ vi − vj
� �

= 2 l − 1ð Þ 〠
1≤i≤l

ϕ við Þ, ð1Þ

where l ≥ 2 and examine the Hyers-Ulam stability of the
above mentioned equation in non-Archimedean ðn, βÞ
-normed spaces.

2. Preliminaries

Now, we recall some notions and results which will be used.
Throughout this paper, let ℕ denote the set of nonnega-

tive integers and i, t, p, n ∈ℕ, and let n ≥ 2 be fixed.

Definition 1 (see [27]). Let E be a linear space over ℝ with
dim E ≥ n, n ∈ℕ, and 0 < β ≤ 1, let a mapping k·,⋯, · kβ
: En ⟶ℝ satisfies the following conditions:

(i) km1,⋯,mnkβ = 0 if and only if m1,⋯,mn are line-
arly dependent

(ii) km1,⋯,mnkβ is invariant under permutations of
m1,⋯,mn

(iii) kλm1,⋯,mnkβ = jλjβkm1,⋯,mnkβ
(iv) km1,⋯,mn−1, u + vkβ ≤ km1,⋯,mn−1, ukβ +

km1,⋯,mn−1, vkβ
for all m1,⋯,mn ∈ E, and λ ∈ℝ.

Then, k·, ⋯ , · kβ is called as ðn, βÞ-norm on E, and ðE,
k·, ⋯ , · kβÞ is called a linear ðn, βÞ-normed space or ðn, βÞ
-normed space.

We remark that the notion of a linear ðn, βÞ-normed
space is a summed up of a linear n-normed space ðβ = 1Þ
and of a β-normed space ðn = 1Þ.

Definition 2 (see [27]). Let E be a real vector space with dim
E ≥ n over a scalar field K with a non-Archimedean nontriv-
ial valuation j·j, where n ∈ℤ+ and a constant βwith 0 < β ≤ 1.
A real-valued function k∙,⋯, · kβ : En ⟶ℝ is called an ðn,
βÞ-norm on E if the upcoming conditions true:

(a) km1,⋯,mnkβ = 0 if and only ifm1,⋯,mn are linearly
dependent

(b) km1,⋯,mnkβ is invariant under permutations of m1
,⋯,mn

(c) kλm1,⋯,mnkβ = jλjβkm1,⋯,mnkβ
(d) km0 +m1,⋯,mnkβ ≤max fkm0,m2,⋯,mnkβ,

km1,m2⋯,mnkβg

for all λ ∈ K and m0,m1,⋯,mn ∈ E. Then, ðE, k·, ⋯ , · kβÞ is
called as non-Archimedean ðn, βÞ-normed space.

Example 3. Let p be a prime number. For any nonzero ratio-
nal number x = ða/bÞpr such that a and b are coprime to the
prime number p, define the p-adic absolute value kxkp ≔ p−r .
Then, k·kp is a non-Archimedean norm on ℚ. The comple-
tion of ℚ with respect to k·kp is denoted by ℚp and is called
the p-adic number field.

Note that if p > 3; then, k2nk = 1 in for each integer n.

Remark 4 (see [27]). A sequence fvmg in a non-Archimedean
ðn, βÞ-normed space E is a Cauchy sequence if and only if f
vm+1 − vmg converges to zero.

Lemma 5 (see [27]). For a convergent sequence fvpg in a lin-
ear ðn, βÞ -normed space E,

lim
p→∞

vp,w1,⋯,wn−1
�� ��

β
= lim

p⟶∞
vp,w1,⋯,wn−1

����
����
β

, ð2Þ

for all w1,⋯,wn−1 ∈ E.

Lemma 6 (see [27]). Let ðE, k·, ⋯ , · kβÞ be a linear ðn, βÞ
-normed space, n ≥ 2, 0 < β ≤ 1. If v1 ∈ E and
kv1,w1,⋯,wn−1kβ = 0 for all w1,⋯,wn−1 ∈ E, then v1 = 0.

3. General Solution

Here, the authors discussed the general solution of the equa-
tion (1). Consider E and F are real vector spaces.

Theorem 7. If ϕ : E⟶ F be a mapping satisfies the func-
tional equation (1) for all v1, v2,⋯, vl ∈ E, then the mapping
ϕ : E⟶ F is quadratic, that is ϕ satisfies the equality

ϕ v1 + v2ð Þ + ϕ v1 − v2ð Þ = 2ϕ v1ð Þ + 2ϕ v2ð Þ, ð3Þ

for all v1, v2 ∈ E.

Proof. Suppose that the mapping ϕ : E⟶ F satisfies the
functional equation (1). Replacing ðv1, v2,⋯,vlÞ by ð0, 0,⋯,0
Þ in (1), we get ϕð0Þ = 0. Now, setting ðv1, v2,⋯,vlÞ by ðv, 0,
⋯,0Þ in (1), we get ϕð−vÞ = ϕðvÞ for all v ∈ E. Therefore, the
function ϕ is an even function. Substituting ðv1, v2,⋯,vlÞ by
ðv, v, 0,⋯,0Þ and ðv, v, v, 0,⋯,0Þ in (1), we obtain ϕð2vÞ = 22
ϕðvÞ, ϕð3vÞ = 32ϕðvÞ, and so on, for every v ∈ E. In general,
for any nonnegative integer n > 0, we get ϕðnvÞ = n2ϕðvÞ for
all v ∈ E. Next, replacing ðv1, v2,⋯,vlÞ by ðv1, v2, 0,⋯,0Þ in
(1), we get our desired outcome.

4. Stability Results

Here, we consider j2j ≠ 1 and examine the Hyers-Ulam sta-
bility of the functional equation (1).
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Let us assume E and F are non-Archimedean β1-normed
space and complete non-Archimedean ðn, βÞ-normed space,
respectively, where n ≥ 2, 0 < β, β1 ≤ 1.

Define a mapping Δϕ : E⟶ F by

Δϕ v1, v2,⋯,vlð Þ = 〠
1≤i<j≤l

ϕ vi + vj
� �

+ 〠
1≤i<j≤l

ϕ vi − vj
� �

− 2 l − 1ð Þ 〠
1≤i≤l

ϕ við Þ,

ð4Þ

for all v1, v2,⋯, vl ∈ E.

Theorem 8. Let τ ∈ ½0,∞Þ and s ∈ ð0,∞Þ with sβ1 > β, and let
χ : F × F ×⋯ × F|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

n−1

⟶ ½0,∞Þ be a function. Suppose that ϕ

: E⟶ F be a mapping satisfies

Δϕ v1, v2,⋯,vlð Þ,w1,⋯,wn−1k kβ ≤ τ 〠
1≤j≤l

vj
�� ��s

β1
χ m1,⋯,mn−1ð Þ,

ð5Þ

for all v1, v2,⋯, vl and m1,⋯,mn−1 ∈ F. Then, there exists a
unique quadratic mapping Q2 : E⟶ F satisfies

ϕ vð Þ −Q2 vð Þ,w1,⋯,wn−1k kβ ≤ 2τ 2−2β
��� ��� vk ksβ1

χ m1,⋯,mn−1ð Þ,
ð6Þ

for all v ∈ E,m1,⋯,mn−1 ∈ F.

Proof. Replacing ðv1, v2,⋯,vlÞ by ðv, v, 0,⋯,0Þ in (5), we
obtain

ϕ 2vð Þ − 22ϕ vð Þ,w1,⋯,wn−1
�� ��

β
≤ 2τ vk ksβ1

χ m1,⋯,mn−1ð Þ,
ð7Þ

for all v ∈ E,m1,⋯,mn−1 ∈ F. Dividing both sides by j22βj, we
have

ϕ 2vð Þ
22 − ϕ vð Þ,w1,⋯,wn−1

����
����
β

≤ 2 2−2β
��� ���τ vk ksβ1

χ m1,⋯,mn−1ð Þ,

ð8Þ

for all v ∈ E,m1,⋯,mn−1 ∈ F. Replacing v by 2pv in (8), we
attain

ϕ 2p+1v
� �
22 p+1ð Þ −

ϕ 2pvð Þ
22p ,m1,⋯,mn−1

����
����
β

≤ 2 2−2 p+1ð Þβ
��� ���τ 2pvk ksβ1

χ m1,⋯,mn−1ð Þ

≤ 2 2−2β
��� ��� 2sβ1−2β��� ���pτ vk ksβ1

χ m1,⋯,mn−1ð Þ:

ð9Þ

As sβ1 > β and j2j ≠ 1, we obtain that

lim
p⟶∞

ϕ 2p+1v
� �
22 p+1ð Þ −

ϕ 2pvð Þ
22p ,m1,⋯,mn−1

����
����
β

= 0, ð10Þ

for all v ∈ E,m1,⋯,mn−1 ∈ F. From Remark 4, we conclude
that the sequence fϕð2pvÞ/22pg is a Cauchy sequence in F.
Since F is complete space, we can define Q2 : E⟶ F by

Q2 vð Þ = lim
p⟶∞

ϕ 2pvð Þ
22p , ð11Þ

for all v ∈ E. Next, our aim is to prove that the function Q2 is
quadratic. From (5), (11) and Lemma 5 that

ΔQ2 v1, v2,⋯,vlð Þ,m1,⋯,mn−1k kβ
= lim

p⟶∞
2−2pβ
��� ��� Δϕ 2pv1, 2pv2,⋯,2pvlð Þ,m1,⋯,mn−1k kβ

≤ lim
p⟶∞

2−2pβ
��� ���τ 〠

1≤j≤l
2pvj

�� ��s
β1
χ m1,⋯,mn−1ð Þ

≤ lim
p⟶∞

τ 2sβ1−2β
��� ���p 〠

1≤j≤l
vj

�� ��s
β1
χ m1,⋯,mn−1ð Þ,

ð12Þ

for all v1, v2,⋯, vl ∈ E and m1,⋯,mn−1 ∈ F. As sβ1 > β and
j2j ≠ 1, we obtain

ΔQ2 v1, v2,⋯,vlð Þ,m1,⋯,mn−1k kβ = 0, ð13Þ

for all v1, v2,⋯, vl ∈ E,m1,⋯,mn−1 ∈ F. By Lemma 6, we
have

ΔQ2 v1, v2,⋯,vlð Þ = 0, ð14Þ

for all v1, v2,⋯, vl ∈ E. Therefore, the function Q2 is qua-
dratic. Switching v through 2v in (7) and divide by j22βj, we
attain

ϕ 22v
� �
24 −

ϕ 2vð Þ
22 ,m1,⋯,mn−1

����
����
β

≤ 2τ 2−4β
��� ��� 2vk ksβ1

χ m1,⋯,mn−1ð Þ:

ð15Þ

Thus, by (7) and (15), we reach

ϕ vð Þ − ϕ 22v
� �
24 ,m1,⋯,mn−1

����
����
β

≤max ϕ 2vð Þ
22 − ϕ vð Þ,m1,⋯,mn−1

����
����
β

, ϕ 22v
� �
24 −

ϕ 2vð Þ
22 ,m1,⋯,mn−1

����
����
β

( )

≤max 2τ 2−2β
��� ��� vk ksβ1

χ m1,⋯,mn−1ð Þ, 2τ 2−4β
��� ��� vk ksβ1

χ m1,⋯,mn−1ð Þ
n o

:

ð16Þ
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As sβ1 > β and j2j ≠ 1, we obtain

ϕ vð Þ − ϕ 22v
� �
24 ,m1,⋯,mn−1

����
����
β

≤ 2−2β
��� ���2τ vk ksβ1χ m1,⋯,mn−1ð Þ,

ð17Þ

for all v ∈ E,m1,⋯,mn−1 ∈ F. By induction on p, we can con-
clude that

ϕ vð Þ − ϕ 2pvð Þ
22p ,m1,⋯,mn−1

����
����
β

≤ 2 2−2β
��� ���τ vk ksβ1χ m1,⋯,mn−1ð Þ,

ð18Þ

for all p ∈ℕ, v ∈ E, andm1,⋯,mn−1 ∈ F. Replacing v by 2v in
(18) and dividing both sides by j22βj, we have

ϕ 2vð Þ
22 −

ϕ 2p+1v
� �
22 p+1ð Þ ,m1,⋯,mn−1

����
����
β

≤ 2 2−4β
��� ���τ 2vk ksβ1

χ m1,⋯,mn−1ð Þ,

ð19Þ

for all v ∈ E, m1,⋯,mn−1 ∈ F, and p ∈ℕ. It follows from (7)
and (19) that

ϕ vð Þ − ϕ 2p+1v
� �
22 p+1ð Þ ,m1,⋯,mn−1

����
����
β

≤ 2 2−2β
��� ���τ vk ksβ1χ m1,⋯,mn−1ð Þ,

ð20Þ

for all v ∈ E, m1,⋯,mn−1 ∈ F, and p ∈ℕ. Passing the limit as
p tends to∞ in inequality (18), we can get (6). Next, we want
to prove that the function Q2 is unique. Let Q2′ be an another
quadratic mapping which satisfies (6),

Q2 vð Þ −Q2′ vð Þ,m1,⋯,mn−1
�� ��

β

= 2−2pβ
��� ��� Q2 2pvð Þ −Q2′ 2pvð Þ,m1,⋯,mn−1

�� ��
β

≤ 2−2pβ
��� ��� max Q2 2pvð Þ − ϕ 2pvð Þ,m1,⋯,mn−1k kβ, ϕ 2pvð Þk

n
−Q2′ 2pvð Þ,m1,⋯,mn−1

��
β

�
≤ 2 2−2pβ

��� ��� 2−2β��� ���τ 2pvk ksβ1χ m1,⋯,mn−1ð Þ

≤ 2τ 2sβ1−2β
��� ���p 2−2β��� ��� vk ksβ1χ m1,⋯,mn−1ð Þ:

ð21Þ

Taking the limit as p tends to∞ in the last inequality, we
obtain that

Q2 vð Þ −Q2′ vð Þ,m1,⋯,mn−1
�� ��

β
= 0, ð22Þ

for all v ∈ E,m1,⋯,mn−1 ∈ F. By Lemma 6, we conclude that
Q2ðvÞ =Q2′ðvÞ for all v ∈ E. Hence, Q2 is the unique quadratic
mapping which satisfies (6).

Theorem 9. Let τ ∈ ½0,∞Þ, s ∈ ð0,∞Þ with sβ1 < β. Let χ

: F × F ×⋯ × F|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
n−1

⟶ ½0,∞Þ be a function. Suppose that a

mapping ϕ : E⟶ F satisfies

Δϕ v1, v2,⋯,vlð Þ,m1,⋯,mn−1k kβ ≤ τ 〠
1≤j≤l

vj
�� ��s

β1
χ m1,⋯,mn−1ð Þ,

ð23Þ

for all v1, v2,⋯, vl and m1,⋯,mn−1 ∈ F. Then, there exists a
unique quadratic mapping Q2 : E⟶ F satisfies

ϕ vð Þ −Q2 vð Þ,m1,⋯,mn−1k kβ ≤ 2τ 2−sβ1
��� ��� vk ksβ1

χ m1,⋯,mn−1ð Þ,
ð24Þ

for all v ∈ E,m1,⋯,mn−1 ∈ F.

Proof. Switching ðv1, v2,⋯,vlÞ by ðv, v, 0,⋯,0Þ in (23), we
have

ϕ 2vð Þ − 22ϕ vð Þ,m1,⋯,mn−1
�� ��

β
≤ 2τ vk ksβ1χ m1,⋯,mn−1ð Þ,

ð25Þ

for all v ∈ E,m1,⋯,mn−1 ∈ F. Interchanging v by v/2 in (25),
we obtain

ϕ vð Þ − 22ϕ v
2

� 	
,m1,⋯,mn−1

��� ���
β
≤ 2τ 2−sβ1

��� ��� vk ksβ1
χ m1,⋯,mn−1ð Þ,

ð26Þ

for all v ∈ E,m1,⋯,mn−1 ∈ F. Replacing v by v/2p in (26), we
reach

22pϕ v
2p

� 	
− 22 p+1ð Þ ϕ

v

2p+1
� 	

,m1,⋯,mn−1

��� ���
β

≤ 2 22pβ
��� ���τ 2− p+1ð Þsβ1

��� ��� vk ksβ1
χ m1,⋯,mn−1ð Þ

≤ 2 2−sβ1
��� ��� 22β−sβ1

��� ���pτ vk ksβ1χ m1,⋯,mn−1ð Þ,

ð27Þ

for all v ∈ E and m1,⋯,mn−1 ∈ F. As sβ1 < β and j2j ≠ 1, we
have

lim
p⟶∞

22 p+1ð Þϕ
v

2p+1
� 	

− 22pϕ v
2p

� 	
,m1,⋯,mn−1

��� ���
β
= 0, ð28Þ

for all v ∈ E and m1,⋯,mn−1 ∈ F. From Remark 4, we con-
clude that the sequence f22pϕðv/2pÞg is a Cauchy sequence
in F. As F is complete space. We can define Q2 : E⟶ F by

Q2 vð Þ = lim
p⟶∞

22pϕ v
2p

� 	
, ð29Þ

for all v ∈ E. Next, our aim is to prove that the function Q2 is
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quadratic. From (23), (29) and Lemma 5 that

ΔQ2 v1, v2,⋯,vlð Þ,m1,⋯,mn−1k kβ
= lim

p⟶∞
22pβ
��� ��� Δϕ

v1
2p ,

v2
2p ,⋯, vl2p

� 	
,m1,⋯,mn−1

��� ���
β

≤ lim
p⟶∞

22pβ
��� ���τ 〠

1≤j≤l

v j
2p

��� ���s
β1

χ m1,⋯,mn−1ð Þ

≤ lim
p⟶∞

τ 22β−sβ1
��� ���p 〠

1≤j≤l
v j

�� ��s
β1
χ m1,⋯,mn−1ð Þ,

ð30Þ

for all v1, v2,⋯, vl ∈ E and m1,⋯,mn−1 ∈ F. Since sβ1 < β
and j2j ≠ 1, we have

ΔQ2 v1, v2,⋯,vlð Þ,m1,⋯,mn−1k kβ = 0, ð31Þ

for all v1, v2,⋯, vl ∈ E,m1,m2,⋯,mn−1 ∈ F. By Lemma 6, we
obtain

ΔQ2 v1, v2,⋯,vlð Þ = 0, ð32Þ

for all v1, v2,⋯, vl ∈ E. Therefore, the function Q2 is qua-
dratic. Switching v through v/2 in (25) and multiplying by ∣
22β ∣ , we reach

24ϕ v

22
� 	

− 22ϕ v
2

� 	
,m1,⋯,mn−1

��� ���
β
≤ 2τ 22β

��� ��� v

22
��� ���s

β1

χ m1,⋯,mn−1ð Þ:

ð33Þ

Thus, by (25) and (33), we obtain

ϕ vð Þ − 24ϕ v

22
� 	

,m1,⋯,mn−1

��� ���
β

≤max 22ϕ v
2

� 	
− ϕ vð Þ,m1,⋯,mn−1

��� ���
β
, 24ϕ v

22
� 	���


− 22ϕ v
2

� 	
,m1,⋯,mn−1

���
β

�

≤max 2τ v
2

��� ���s
β1

χ m1,⋯,mn−1ð Þ, 2τ 22β
��� ��� v

22
��� ���s

β1

χ m1,⋯,mn−1ð Þ

 �

:

ð34Þ

Since sβ1 < β and j2j ≠ 1, we attain

ϕ vð Þ − 24ϕ v

22
� 	

,m1,⋯,mn−1

��� ���
β
≤ 2−sβ1
��� ���2τ vk ksβ1χ m1,⋯,mn−1ð Þ,

ð35Þ

for all v ∈ E,m1,⋯,mn−1 ∈ F. By induction on p, we can con-
clude that

ϕ vð Þ − 22pϕ v
2p

� 	
,m1,⋯,mn−1

��� ���
β
≤ 2 2−sβ1

��� ���τ vk ksβ1
χ m1,⋯,mn−1ð Þ,

ð36Þ

for all p ∈ℕ, v ∈ E andm1,⋯,mn−1 ∈ F. Replacing v by v/2 in

(36) and multiplying both sides by ∣22β ∣ , we get.

22ϕ v
2

� 	
− 22 p+1ð Þϕ

v

2p+1
� 	

,m1,⋯,mn−1

��� ���
β

≤ 2 22β
��� ��� 2−2sβ1

��� ���τ vk ksβ1
χ m1,⋯,mn−1ð Þ,

ð37Þ

for all v ∈ E, m1,⋯,mn−1 ∈ F. It follows from (25) and (37)
that

ϕ vð Þ − 22 p+1ð Þϕ
v

2p+1
� 	

,m1,⋯,mn−1

��� ���
β
≤ 2 2−sβ1

��� ���τ vk ksβ1
χ m1,⋯,mn−1ð Þ,

ð38Þ

for all v ∈ E, m1,⋯,mn−1 ∈ F, and p ∈ℕ. Passing the limit as
p tends to ∞ in (36), we can get (24). Finally, we want to
prove that the function Q2 is unique. Consider an another
quadratic mapping Q2′ satisfying (24),

Q2 vð Þ −Q2′ vð Þ,m1,⋯,mn−1
�� ��

β

= 22pβ
��� ��� Q2

v
2p

� 	
−Q2′

v
2p

� 	
,m1,⋯,mn−1

��� ���
β

≤ 22pβ
��� ��� max Q2

v
2p

� 	
− ϕ

v
2p

� 	
,m1,⋯,mn−1

��� ���
β
, ϕ

v
2p

� 	���


−Q2′
v
2p

� 	
,m1,⋯,mn−1

���
β

�
≤ 2 22pβ

��� ��� 2−sβ1
��� ���τ v

2p
��� ���s

β1

χ m1,⋯,mn−1ð Þ

≤ 2τ 22β−sβ1
��� ���p 2−sβ1

��� ��� vk ksβ1
χ m1,⋯,mn−1ð Þ,

ð39Þ

for all v ∈ E and m1,⋯,mn−1 ∈ F. Taking the limit as p tends
to ∞, we obtain that

Q2 vð Þ −Q2′ vð Þ,m1,⋯,mn−1
�� ��

β
= 0, ð40Þ

for all v ∈ E,m1,⋯,mn−1 ∈ F. By Lemma 6, we conclude that
Q2ðvÞ =Q2′ðvÞ for all v ∈ E. So that the function Q2 is the
unique quadratic function. Hence, the proof is completed.

We obtain the following results of theorem with a gener-
alized control function when the domain E is a vector space
and codomain F be a complete non-Archimendean ðn, βÞ
-normed space, where n ≥ 2 and 0 < β ≤ 1.

Theorem 10. Let ψ : El ⟶ ½0,∞Þ be a function such that

lim
p⟶∞

1

22pβ

����
����ψ 2pv1, 2pv2,⋯,2pvlð Þ = 0, ð41Þ

for all v1, v2,⋯, vl ∈ E, and let χ : F × F ×⋯ × F|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
n−1

⟶ ½0,∞Þ

be a function. Suppose ϕ : E→ F be a mapping which satisfies

Δϕ v1, v2,⋯,vlð Þ,m1,⋯,mn−1k kβ ≤ ψ v1, v2,⋯,vlð Þχ m1,⋯,mn−1ð Þ,
ð42Þ
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for all v1, v2,⋯, vl ∈ E andm1,⋯,mn−1 ∈ F. Then, there exists
a quadratic mapping Q2 : E⟶ F such that

ϕ vð Þ −Q2 vð Þ,m1,⋯,mn−1k kβ ≤ ~ψ vð Þχ m1,⋯,mn−1ð Þ, ð43Þ

where

~ψ vð Þ = lim
p⟶∞

max 2−2iβ
��� ���ψ 2i−1v, 2i−1v, 0,⋯,0

� �
: 1 ≤ i ≤ p

n o
,

ð44Þ

for all v ∈ E,m1,⋯,mn−1 ∈ F. Moreover, if

lim
t⟶∞

lim
p⟶∞

max 2−2iβ
��� ���ψ 2i−1v, 2i−1v, 0,⋯,0

� �
: 1 + t ≤ i ≤ p + t

n o
= 0,

ð45Þ

for all v ∈ E. Then, the unique mapping Q2 is quadratic which
satisfies the inequality (43).

Proof. Setting ðv1, v2,⋯,vlÞ by ðv, v, 0,⋯,0Þ in (42) and divid-
ing both sides by j22βj, we have

ϕ 2vð Þ
22 − ϕ vð Þ,m1,⋯,mn−1

����
����
β

≤ 2−2β
��� ���ψ v, v, 0,⋯,0ð Þχ m1,⋯,mn−1ð Þ,

ð46Þ

for all v ∈ E and m1,⋯,mn−1 ∈ F. Replacing v by 2iv in (46)
and dividing both sides by ∣22iβ ∣ , we obtain

ϕ 2i+1v
� �
22 i+1ð Þ −

ϕ 2iv
� �
22i ,m1,⋯,mn−1

����
����
β

≤ 2−2iβ
��� ��� 2−2β��� ���ψ 2iv, 2iv, 0,⋯,0

� �
χ m1,⋯,mn−1ð Þ,

ð47Þ

for all v ∈ E, m1,⋯,mn−1 ∈ F, and i ∈ℕ. Taking the limit as i
tends to ∞ and considering (41), we attain

lim
i⟶∞

ϕ 2i+1v
� �
22 i+1ð Þ −

ϕ 2iv
� �
22i ,m1,⋯,mn−1

����
����
β

= 0, ð48Þ

for all v ∈ E and m1,⋯,mn−1 ∈ F. Utilizing Remark 4, it is
clear that the sequence fϕð2mvÞ/22mg is a Cauchy sequence.
As F is a complete space. We can define the mapping Q2
: E⟶ F by

lim
i⟶∞

ϕ 2i+1v
� �
22 i+1ð Þ −

ϕ 2iv
� �
22i ,m1,⋯,mn−1

����
����
β

= 0, ð49Þ

for all v ∈ E,m1,⋯,mn−1 ∈ F. Next, we want to prove that the

function Q2 is quadratic. So,

ΔQ2 v1, v2,⋯,vlð Þ,m1,⋯,mn−1k kβ
≤ 2−2pβ
��� ��� ΔQ2 2pv1, 2pv2,⋯,2pvlð Þ,m1,⋯,mn−1k kβ

≤ 2−2pβ
��� ���ψ 2pv, 2pv, 0,⋯,0ð Þχ m1,⋯,mn−1ð Þ,

ð50Þ

for all v1, v2,⋯, vl ∈ E and m1,⋯,mn−1 ∈ F. Taking the limit
as p⟶∞ and considering (41), we arrive

ΔQ2 v1, v2,⋯,vlð Þ,m1,⋯,mn−1k kβ = 0, ð51Þ

for all v ∈ E,m1,⋯,mn−1 ∈ F. Using Lemma 6, we conclude
that Q2 is quadratic. Switching v through 2v in (46) and
dividing by j22βj, we obtain

ϕ 22v
� �
24 −

ϕ 2vð Þ
22 ,m1,⋯,mn−1

����
����
β

≤ 2−4β
��� ���ψ 2v, 2v, 0,⋯,0ð Þχ m1,⋯,mn−1ð Þ,

ð52Þ

for all v ∈ E and m1,⋯,mn−1 ∈ F. Considering (46), we
receive

ϕ vð Þ − ϕ 22v
� �
24 ,m1,⋯,mn−1

����
����
β

≤max 2−2β
��� ���ψ v, v, 0,⋯,0ð Þ, 2−4β

��� ���ψ 2v, 2v, 0,⋯,0ð Þ
n o

χ m1,⋯,mn−1ð Þ:

ð53Þ

By induction on p, we reach

ϕ vð Þ − ϕ 2pvð Þ
22p ,m1,⋯,mn−1

����
����
β

≤max ψ 2t−1v, 2t−1v, 0,⋯,0
� �

22tβ
�� �� : 1 ≤ t ≤ p

( )
χ m1,⋯,mn−1ð Þ,

ð54Þ

for all v ∈ E and m1,⋯,mn−1 ∈ F. Replacing v by 2v in (54)
and dividing both sides by ∣22β ∣ , we have

ϕ 2vð Þ
22 −

ϕ 2 m+1ð Þv
� �
22 m+1ð Þ ,m1,⋯,mn−1

�����
�����
β

≤max ψ 2tv, 2tv, 0,⋯,0ð Þ
22 t+1ð Þβ�� �� : 1 ≤ t ≤ p

( )
χ m1,⋯,mn−1ð Þ,

ð55Þ

for all v ∈ E,m1,⋯,mn−1 ∈ F, and p ∈ℕ, which together with
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(46) implies

ϕ vð Þ − ϕ 2p+1v
� �
22 p+1ð Þ ,m1,⋯,mn−1

����
����
β

≤max ψ v, v, 0,⋯,0ð Þ
22β
�� �� , ψ 2tv, 2tv, 0,⋯,0ð Þ

22 t+1ð Þβ�� �� : 1 ≤ t ≤ p

( )
χ m1,⋯,mn−1ð Þ

≤max 2−2 t+1ð Þβ
��� ���ψ 2tv, 2tv, 0,⋯,0

� �
: 0 ≤ t ≤ p

n o
χ m1,⋯,mn−1ð Þ

≤max 2−2tβ
��� ���ψ 2t−1v, 2t−1v, 0,⋯,0

� �
: 1 ≤ t ≤ p + 1

n o
χ m1,⋯,mn−1ð Þ,

ð56Þ

for all v ∈ E, m1,⋯,mn−1 ∈ F, and p ∈ℕ. Passing the limit as
p tends to ∞ in (54), we get (43). Finally, we want to show
that the quadratic function Q2 is unique. Consider an
another quadratic function Q2′ satisfying (43). Hence,

lim
p⟶∞

2−2tβ
��� ���~ψ 2tv

� �
= lim

t⟶∞
2−2tβ
��� ��� lim

p⟶∞
max 2−2iβ

��� ���ψ 2i+t−1v, 2i+t−1v, 0,⋯,0
� �

: 1 ≤ i ≤ p
n o

≤ lim
t⟶∞

lim
p⟶∞

max 2−2iβ
��� ���ψ 2i−1v, 2i−1v, 0,⋯,0

� �
: 1 + t ≤ i ≤ p + t

n o
,

ð57Þ

for all v ∈ E and m1,⋯,mn−1 ∈ F. It follows from (45) that

Q2 vð Þ −Q2′ vð Þ,m1,⋯,mn−1
�� ��

β

≤ lim
t⟶∞

2−2tβ
��� ��� Q2 2tv

� �
−Q2′ 2tv

� �
,m1,⋯,mn−1

�� ��
β

≤ lim
t⟶∞

2−2tβ
��� ��� max Q2 2tv

� �
− ϕ 2tv

� �
,m1,⋯,mn−1

�� ��
β
, ϕ 2tv

� ���n
−Q2′ 2tv

� �
,m1,⋯,mn−1

��
β

�
≤ lim

t⟶∞
2−2tβ
��� ���~ψ 2tv

� �
χ m1,⋯,mn−1ð Þ = 0:

ð58Þ

From Lemma 6, we conclude that the quadratic function
Q2 is unique. This ends the proof of the theorem.

Theorem 11. Let ψ : El → ½0,∞Þ be a mapping such that

lim
p→∞

22pβ
��� ���ψ v1

2p
, v2
2p

,⋯, vl
2p

� 	
= 0, ð59Þ

for all v1, v2,⋯, vl ∈ E, and let χ : F × F ×⋯ × F|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
n−1

→ ½0,∞Þ be

a function. Suppose that ϕ : E→ F be a mapping satisfies

Δϕ v1, v2,⋯,vlð Þ,m1,⋯,mn−1k kβ ≤ ψ v1, v2,⋯,vlð Þχ m1,⋯,mn−1ð Þ,
ð60Þ

for all v1, v2,⋯, vl ∈ E andm1,⋯,mn−1 ∈ F. Then, there exists
a quadratic mapping Q2 : E→ F such that

ϕ vð Þ −Q2 vð Þ,m1,⋯,mn−1k kβ ≤ ~ψ vð Þχ m1,⋯,mn−1ð Þ, ð61Þ

where

~ψ vð Þ = lim
p→∞

max 22 i−1ð Þβ
��� ���ψ 2−iv, 2−iv, 0,⋯,0

� �
: 1 ≤ i ≤ p

n o
,

ð62Þ

for all v ∈ E and m1,⋯,mn−1 ∈ F. Moreover, if

lim
t→∞

lim
p→∞

max 22 i−1ð Þβ
��� ���ψ 2−iv, 2−iv, 0,⋯,0

� �
: 1 + t ≤ i ≤ p + t

n o
= 0,

ð63Þ

for all v ∈ E, then the quadratic mapping Q2 is unique which
satisfies (61).

Proof. Switching ðv1, v2,⋯,vlÞ by ðv, v, 0,⋯,0Þ in (60), we
have

ϕ 2vð Þ − 22ϕ vð Þ,m1,⋯,mn−1
�� ��

β
≤ ψ v, v, 0,⋯,0ð Þχ m1,⋯,mn−1ð Þ,

ð64Þ

for all v ∈ E,m1,⋯,mn−1 ∈ F. Interchanging v by v/2 in (64),
we obtain

ϕ vð Þ − 22ϕ v
2

� 	
,m1,⋯,mn−1

��� ���
β
≤ ψ

v
2 ,

v
2 , 0,⋯,0

� 	
χ m1,⋯,mn−1ð Þ,

ð65Þ

for all v ∈ E,m1,⋯,mn−1 ∈ F. Replacing v by v/2i−1 in (65)
and multiplying both sides by j22ði−1Þβj, we obtain

22 ið Þϕ
v

2i
� 	

− 22 i−1ð Þϕ
v

2 i−1ð Þ

� �
,m1,⋯,mn−1

����
����
β

≤ 22 i−1ð Þβ
��� ���ψ v

2i ,
v

2i , 0,⋯,0
� 	

χ m1,⋯,mn−1ð Þ,
ð66Þ

for all v ∈ E, m1,⋯,mn−1 ∈ F, and i ∈ℕ. Taking the limit as i
tends to ∞ and considering (59), we attain

lim
i→∞

∥22 ið Þϕ
v

2i
� 	

− 22 i−1ð Þϕ
v

2 i−1ð Þ

� �
,m1,⋯,mn−1∥β = 0, ð67Þ

for all v ∈ E,m1,⋯,mn−1 ∈ F. From Remark 4, we can con-
clude that the sequence f22mϕðv/2mÞg is a Cauchy sequence.
We know that F is a complete space; we define a mapping
Q2 : E→ F by

lim
i→∞

22 ið Þϕ
v

2i
� 	

− 22 i−1ð Þϕ
v

2 i−1ð Þ

� �
,m1,⋯,mn−1

����
����
β

= 0, ð68Þ

for all v ∈ E,m1,⋯,mn−1 ∈ F. Next, we prove that Q2 is
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quadratic. So,

ΔQ2 v1, v2,⋯,vlð Þ,m1,⋯,mn−1k kβ
≤ 22pβ
��� ��� ΔQ2

v1
2p ,

v2
2p ,⋯, vl2p

� 	
,m1,⋯,mn−1

��� ���
β

≤ 22pβ
��� ���ψ v

2p ,
v
2p , 0,⋯,0

� 	
χ m1,⋯,mn−1ð Þ,

ð69Þ

for all v1, v2,⋯, vl ∈ E and m1,⋯,mn−1 ∈ F. Taking the limit
as p→∞ and considering (59), we arrive

ΔQ2 v1, v2,⋯,vlð Þ,m1,⋯,mn−1k kβ = 0, ð70Þ

for all v ∈ E andm1,⋯,mn−1 ∈ F. By Lemma 6, we know that
Q2 is quadratic. Replacing v by v/2 in (65) and multiplying
both sides by j22βj, we obtain

24ϕ v

22
� 	

− 22ϕ v
2

� 	
,m1,⋯,mn−1

��� ���
β

≤ 22β
��� ���ψ v

22 ,
v

22 , 0,⋯,0
� 	

χ m1,⋯,mn−1ð Þ,
ð71Þ

for all v ∈ E and m1,⋯,mn−1 ∈ F. Considering (65), we
receive

ϕ vð Þ − 24ϕ v

22
� 	

,m1,⋯,mn−1

��� ���
β

≤max ψ
v
2 ,

v
2 , 0,⋯,0

� 	
, 22β
��� ���ψ v

22 ,
v

22 , 0,⋯,0
� 	n o

χ m1,⋯,mn−1ð Þ:

ð72Þ

By induction on p, we reach

ϕ vð Þ − 22pϕ v
2p

� 	
,m1,⋯,mn−1

��� ���
β

≤max 22 t−1ð Þβ
��� ���ψ 2−tv, 2−tv, 0,⋯,0

� �
: 1 ≤ t ≤ p

n o
χ m1,⋯,mn−1ð Þ,

ð73Þ

for all v ∈ E and m1,⋯,mn−1 ∈ F. Replacing v by v/2 in (73)
and multiplying both sides by ∣22β ∣ , we have

∥22ϕ v
2

� 	
− 22 m+1ð Þϕ

v

2 m+1ð Þ

� �
,m1,⋯,mn−1∥β

≤max 22 t−1ð Þβ
��� ���ψ v

2t ,
v
2t , 0,⋯,0

� 	
: 1 ≤ t ≤ p

n o
χ m1,⋯,mn−1ð Þ,

ð74Þ

which together with (65) implies

∥ϕ vð Þ − 22 p+1ð Þϕ
v

2p+1
� 	

,m1,⋯,mn−1∥β

≤max ψ
v
2 ,

v
2 , 0,⋯,0

� 	
, 22 t−1ð Þβ
��� ���ψ v

2t ,
v
2t , 0,⋯,0

� 	
: 1 ≤ t ≤ p

n o
χ m1,⋯,mn−1ð Þ

≤max 22 t−1ð Þβ
��� ���ψ v

2t ,
v
2t , 0,⋯,0

� 	
: 1 ≤ t ≤ p + 1

n o
χ m1,⋯,mn−1ð Þ,

ð75Þ

for all v ∈ E, m1,⋯,mn−1 ∈ F, and p ∈ℕ. Passing the limit as
p tends to∞ in (73), we get (61). At the end, we show that the

quadratic function Q2 is unique. Consider an another qua-
dratic mapping Q2′ which satisfies (61). Therefore,

lim
p→∞

22tβ
��� ���~ψ v

2t
� 	

= lim
t→∞

22tβ
��� ��� lim

p→∞
max 22 i−1ð Þβ

��� ���ψ v

2i+t ,
v

2i+t , 0,⋯,0
� 	

: 1 ≤ i ≤ p
n o

≤ lim
t→∞

lim
p→∞

max 22 i−1ð Þβ
��� ���ψ v

2i ,
v

2i , 0,⋯,0
� 	

: 1 + t ≤ i ≤ p + t
n o

,

ð76Þ

for all v ∈ E. It follows from (63) that

Q2 vð Þ −Q2′ vð Þ,m1,⋯,mn−1
�� ��

β

≤ lim
t→∞

22tβ
��� ��� Q2

v
2t

� 	
−Q2′

v
2t

� 	
,m1,⋯,mn−1

��� ���
β

≤ lim
t→∞

22 tð Þβ
��� ��� max Q2

v
2t

� 	
− ϕ

v
2t

� 	
,m1,⋯,mn−1

��� ���
β
, ϕ 2tv

� ���


−Q2′ 2tv
� �

,m1,⋯,mn−1
��
β

�
≤ lim

t→∞
22 t−1ð Þβ
��� ���~ψ v

2t
� 	

χ m1,⋯,mn−1ð Þ = 0:

ð77Þ

By Lemma 6, we conclude that the quadratic function Q2
is unique. This ends the proof of the theorem.

5. Conclusion

In this work, we introduced a new finite dimensional qua-
dratic functional equation (1) and obtained its solution to
show which satisfies the quadratic properties. Mainly, inves-
tigated Hyers-Ulam stability of considered domain E is a
non-Archimedean β-normed space in Theorem 8 and
Theorem 9 and examined by considered the domain E is a
vector space in Theorem 10 and Theorem 11. The results
obtained in this article may be further generalized to be in
non-Archimedean quasiðn, βÞ-Banach spaces. This could be
a potential future work.
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This manuscript deals with a class of Katugampola implicit fractional differential equations in b-metric spaces. The results are based
on the α − φ-Geraghty type contraction and the fixed point theory. We express an illustrative example.

1. Introduction and Preliminaries

An interesting extension and unification of fractional deriva-
tives of the type Caputo and the type Caputo-Hadamard is
called Katugampola fractional derivative that has been intro-
duced by Katugampola [1, 2]. Some fundamental properties
of this operator are presented in [3, 4]. Several results of
implicit fractional differential equations have been recently
provided (see [4–14] and the references therein). A new class
of mixed monotone operators with concavity and applica-
tions to fractional differential equations has been considered
in [15]. In [16], the authors presented some existence and
uniqueness results for a class of terminal value problem for
differential equations with Hilfer-Katugampola fractional
derivative.

On the other side, a novel extension of b-metric was sug-
gested by Czerwik [17, 18]. Although the b-metric standard
looks very similar to the metric definition, it has a quite
different structure and properties. For example, in the b
-metric topology framework, an open (closed) set is not open
(closed). Additionally, the b-metric function is not continu-
ous. These weaknesses make this new structure more inter-
esting (see [19–28]).

Throughout the paper, any mentioned set is nonempty.
We consider the following type of terminal value problems
of Katugampola implicit differential equations of noninteger
orders:

ρDr
0+ + ϑð Þ τð Þ = κ τ, ϑ τð Þ, ρDr

0+ + ϑð Þ τð Þð Þ, τ ∈ I ≔ 0, T½ �,
ϑ Tð Þ = ϑT ∈ℝ,

(

ð1Þ

with T > 0 and the function κ : I ×ℝ ×ℝ→ℝ is continuous.
Here, ρDr

0+ is the Katugampola fractional derivative of order
r ∈ ð0, 1�.

Set CðIÞ≔ fh ∣ h real continuous functions on I ≔ ½0, T�g.
Then, CðIÞ forms a Banach space with the norm kϑk∞ =

sup
τ∈I

jϑðτÞj.
Set L1ðIÞ≔ fϑ : I→ℝjϑ ismeasurable function and

Lebesgue integrableg. Then, L1ðIÞ becomes a Banach space
with the norm kϑkL1 =

Ð T
0 jϑðτÞjdt.
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Set Cr,ρðIÞ = fϑ : ð0, T�→ℝjτρð1−rÞϑðτÞ ∈ CðIÞg. Then, it
forms a Banach space kϑkC ≔ sup

τ∈I
kτρð1−rÞϑðτÞk. Here, Cr,ρðIÞ

is called the weighted space of continuous functions.

Definition 1 (Katugampola fractional integral) [1]. The Katu-
gampola fractional integrals of order r > 0 and ρ > 0 of a
function y ∈ Xp

c ðIÞ are defined by

ρTr
0+y τð Þ ρ

1−r

Γ rð Þ
ðt
0

sρ−1y sð Þ
τρ − sρð Þ1−r ds, τ ∈ I: ð2Þ

Definition 2 (Katugampola fractional derivatives) [1, 2]. The
generalized fractional derivatives of order r > 0 and ρ > 0
corresponding to the Katugampola fractional integrals (2)
defined for any τ ∈ I by

ρDr
0+y τð Þ = τ1−ρ

d
dt

� �n
ρTn−r

0+ yð Þ τð Þ = ρr−n+1

Γ n − rð Þ τ1−ρ
d
dt

� �nðt
0

sρ−1y sð Þ
τρ − sρð Þr−n+1 ds,

ð3Þ

where n = ½r� + 1; if the integrals exist.

Remark 1 ([1, 2]). As a basic example, we quote for r, ρ > 0
and θ > −ρ,

ρDr
0+τ

θ =
ρr−1Γ 1 + θ/ρð Þð Þ
Γ 1 − r + θ/ρð Þð Þ τ

θ−rρ: ð4Þ

Giving in particular,

ρDr
0+τ

ρ r−ið Þ = 0, for each i = 1, 2,⋯, n: ð5Þ

In fact, for r, ρ > 0 and θ > −ρ, we have

ρDr
0+τ

θ =
ρr−n+1

Γ n − rð Þ τ1−ρ
d
dt

� �nðt
0
sρ+θ−1 τρ − sρð Þn−r−1ds

=
ρr−1Γ 1 + θ/ρð Þð Þ

Γ 1 + n − r + θ/ρð Þð Þ n − r +
θ

ρ

� �
⋯ 1 − r +

θ

ρ

� �
τθ−rρ

=
ρr−1Γ 1 + θ/ρð Þð Þ
Γ 1 − r + θ/ρð Þð Þ τ

θ−rρ:

ð6Þ

If we put i = r − ðθ/ρÞ, we obtain from (6):

ρDr
0+τ

θ r−ið Þ = ρr−1
Γ r − i + 1ð Þ
Γ n − i + 1ð Þ n − ið Þ n − i − 1ð Þ⋯ 1 −mð Þτ−ρi:

ð7Þ

So, ρDr
0+τ

ρðr−iÞ = 0, ∀r, ρ > 0.

Theorem 1 ([2]). Let r, ρ, c ∈ℝ, be such that r, ρ > 0. Then,
for any κ, ω ∈ Xp

c ðIÞ, where 1 ≤ p ≤∞, we have

(1) Inverse property:

ρDr
0+

ρIr0+κ τð Þ = κ τð Þ, for all r ∈ 0, 1ð �: ð8Þ

(2) Linearity property: for all r ∈ ð0, 1Þ, we have

ρDr
0+ κ + ωð Þ τð Þ= ρDr

0+κ τð Þ+ρDr
0+ω τð Þ:

ρIr0+ κ + ωð Þ τð Þ= ρIr0+κ τð Þ+ρIr0+ω τð Þ:

(
ð9Þ

Lemma 1 ([2]). Let r, ρ > 0. If ϑ ∈ CðIÞ; then the fractional
differential equation ρDr

0+ + ϑðτÞ = 0, has a unique solution

ϑ τð Þ = C1τ
ρ r−1ð Þ + C2τ

ρ r−2ð Þ+⋯+Cnτ
ρ r−nð Þ, ð10Þ

where Ci ∈ℝ with i = 1, 2,⋯, n.

Proof. Let r, ρ > 0. from Remark 1, we have

ρDr
0+τ

ρ r−ið Þ = 0, for each i = 1, 2,⋯, n: ð11Þ

Then, the fractional equation ρDr
0+ϑðτÞ = 0 has a particu-

lar solution as follows:

ϑ τð Þ = Ciτ
ρ r−ið Þ, Ci ∈ℝ, for each i = 1, 2,⋯, n: ð12Þ

Thus, the general solution of ρDr
0+ϑðτÞ = 0 is a sum of

particular solutions (12), i.e.

ϑ τð Þ = C1τ
ρ r−1ð Þ + C2τ

ρ r−2ð Þ+⋯+Cnτ
ρ r−nð Þ, Ci ∈ℝ ; i = 1, 2,⋯, nð Þ:

ð13Þ

Lemma 2. Let r, ρ > 0. If ϑ,ρDr
0+ϑ ∈ CðIÞ and 0 < r ≤ 1, then

ρIr0+
ρDr

0+ϑ τð Þ = ϑ τð Þ + cτρ r−1ð Þ, ð14Þ

for some constant c ∈ℝ.

Proof. Let ρDr
0+ϑ ∈ CðIÞ be the fractional derivative (3) of

order 0 < r ≤ 1. If we apply the operator ρDr
0+ to

ρIr0+
ρDr

0+ϑðτ
Þ − ϑðτÞ and use the properties (8) and (9), we get

ρDr
0+

ρIr0+
ρDr

0+ϑ τð Þ − ϑ τð Þ½ �= ρDr
0+

ρIr0+
ρDr

0+ϑ τð Þ−ρDr
0+ϑ τð Þ

= ρDr
0+ϑ τð Þ−ρDr

0+ϑ τð Þ = 0:
ð15Þ

From the proof of Lemma 1, there exists c ∈ℝ, such that

ρIr0+
ρDr

0+ϑ τð Þ − ϑ τð Þ = cτρ r−1ð Þ, ð16Þ

which implies (14).
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Lemma 3. Let h ∈ L1ðI,ℝÞ and 0 < r ≤ 1 and ρ > 0 . A func-
tion ϑ ∈ CðIÞ forms a solution for

ρDr
0+ϑð Þ τð Þ = z τð Þ, τ ∈ I,

ϑ Tð Þ = ϑT ,

(
ð17Þ

if and only if ϑ fulfills

ϑ τð Þ = ϑT−
ρIr0+z Tð Þð Þ τ

T

� �ρ r−1ð Þ
+

ρr−1

Γ rð Þ
ðτ
0
sρ−1 τρ − sρð Þr−1z sð Þds:

ð18Þ

Proof. Let r, ρ > 0. and 0 < r ≤ 1. Suppose that ϑ satisfies
(17). Employing the operator ρIr0+ to the each side of the
equation

ρDr
0+ϑð Þ τð Þ = z τð Þ, ð19Þ

we find

ρIr0+
ρDr

0+ϑ τð Þ= ρIr0+z τð Þ: ð20Þ

From Lemma 2, we get

ϑ τð Þ + cτρ r−1ð Þ= ρIr0+z τð Þ, ð21Þ

for some c ∈ℝ. If we use the terminal condition ϑðTÞ = ϑT
in (21), we find

ϑ Tð Þ = ϑT= ρIr0+z Tð Þ − cTρ r−1ð Þ, ð22Þ

which shows

c = ρIr0+z Tð Þ − ϑTð ÞTρ 1−rð Þ: ð23Þ

Henceforth, we deduce (18).
Contrariwise, if ϑ achieves (18), then ðρDr

0+ϑÞðτÞ = zðτÞ;
for τ ∈ I and ϑðτÞ = ϑT .

Lemma 4. Contemplate the problem (1), and set g ∈ CðIÞ, and
ωðτÞ = ϰðτ, ϑðτÞ, ωðτÞÞ.

We presume ϑ achieves

ϑ τð Þ = ϑT−
ρIr0+ω Tð Þð Þ τ

T

� �ρ r−1ð Þ
+

ρ1−r

Γ rð Þ
ðτ
0
sρ−1 τρ − sρð Þr−1ω sð Þds:

ð24Þ

Then, ϑ forms a solution of (1).

Definition 3 [29, 30]. A function d : S × S⟶ ½0,∞Þ is called
b-metric if there is c ≥ 1 and d fulfills

(i) ðbM1Þ dðν, ϑÞ = 0 if and only if ν = ϑ

(ii) ðbM2Þ dðν, μÞ = dðμ, νÞ
(iii) ðbM3Þ dðμ, ϑÞ ≤ c½dðμ, νÞ + dðν, ϑÞ�

for all μ, ν, ϑ ∈ S. We say that the tripled (S, d, c) is b
-metric space (in short, b.m.s.).

Example 1 [29, 30]. Let d : CðIÞ × CðIÞ⟶ ½0,∞Þ be
described as

d ν, ϑð Þ = ν − ϑð Þ2�� ��
∞ ≔ sup

τ∈I
ν τð Þ − ϑ τð Þk k2, for all ν, ϑEC Ið Þ:

ð25Þ

Ergo, ðCðIÞ, d, 2Þ is b-metric space.

Example 2 [29, 30]. Set S = ½0, 1� and d : S × S⟶ ½0,∞Þ be
designated by

d ν, ϑð Þ = νr − ϑrj j, for all ν, ϑ ∈ S: ð26Þ

Henceforth, (S, d, r) with r ≥ 2 is b-metric space.

We set the following: fϕ : ½0,∞Þ→ ½0,∞Þjϕ is
continuous, increasing, ϕð0Þ = 0 and ϕðcμÞ ≤ cϕðμÞ ≤ cμ for c
> 1g.

For some c ≥ 1, we set F ≔ fλ : ½0,∞Þ→ ½0, ð1/c2ÞÞjλ is
nondecreasingg.

Definition 4 [29, 30]. A self-operator T, on a b.m.s. (S, d, c), is
called a generalized α − ϕ − Geraghty contraction whenever
there exists α : S × S⟶ ½0,∞Þ, and some L ≥ 0 such that for

D ν, ϑð Þ =max d ν, ϑð Þ, d ϑ, T ϑð Þð Þ, d ν, T νð Þð Þ, d ν, T ϑð Þð Þ + d ϑ, T νð Þð Þ
2s

	 

,

ð27Þ

N ν, ϑð Þ =min d ν, ϑð Þ, d ϑ, T ϑð Þð Þ, d ν, T νð Þð Þf g, ð28Þ
we have

α μ, νð Þφ c3d T μð Þ, T νð Þð Þ� �
≤ λ φ D μ, νð Þðð Þ φ D μ, νð Þðð Þ + Lψ N μ, νð Þð ,

ð29Þ

for all μ, ν, ϑ ∈ S, where λ ∈F , φ, ψ ∈Φ.

Remark 2. In the case when L = 0 in Definition 4 and the fact
that

d μ, νð Þ ≤D μ, νð Þ, for all μ, ν ∈ S, ð30Þ

the inequality (29) becomes

α μ, νð Þφ c3d T μð Þ, T νð Þð� �
≤ λ φ d μ, νð Þð Þφ d μ, νð Þð Þð Þ: ð31Þ

Definition 5 [29, 30]. Set α : S × S⟶ ½0,∞Þ. An operator T
: S⟶ S, is α − admissible if

α μ, νð Þ ≥ 1⇒ α T μð Þ, T νð Þð Þ ≥ 1, ð32Þ

for all μ, ν ∈ S.
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Definition 6 [29, 30]. Let (S, d, c) with c ≥ 1 be a b.m.s and α
: S × Sℝ∗

+.
We say that S is α − regular if for any sequence fνngn∈ℕ

in S such that xn ⟶ x as n⟶∞ and αðνn, νn+1Þ ≥ 1 for
each n; there exists a subsequence fνnðκÞgκ∈ℕ of fνngn with
αðνnðκÞ, xÞ ≥ 1 for all k.

Theorem 2 [29, 30].We presume that a self-operator T over a
complete b.m.s.

(S, d, c) with c ≥ 1 forms a generalized α − φ − Geraghty
contraction. Furthermore,

(i) T is α − admissible with initial value αðμ0, Tðμ0ÞÞ
≥ 1 for some μ0 ∈M

(ii) either T is continuous or M is α − regular

Then T possesses a fixed point. Furthermore, if

(iii) for all fixed points μ, ν of T , either αðμ, νÞ ≥ 1 or αð
ν, μÞ ≥ 1, then the found fixed point is unique

This manuscript launches the study of Katugampola
implicit fractional differential equations on b.m.s.

2. Main Results

Observe that ðCr,ρðIÞ, d, 2Þ is a complete b.m.s. with d : Cr,ρ
ðIÞ × Cr,ρðIÞ⟶ ½0,∞Þ described as

d ν, ϑð Þ = ν − ϑð Þ2�� ��C≔ sup
τ∈I

τρ 1−rð Þ ν τð Þ − ϑ τð Þj j2: ð33Þ

A function ϑ ∈ Cr,ρðIÞ is called a solution of (1) if it
archives

ϑ τð Þ = ϑT−
ρIr0+ω Tð Þð Þ τ

T

� �ρ r−1ð Þ
+

ρ1−r

Γ rð Þ
ðτ
0
sρ−1 τρ − sρð Þr−1ω sð Þds,

ð34Þ

with ωðτÞ = κðτ, ϑðτÞ, ωðτÞÞ ∈ CðIÞ.
In the sequel, we shall need the following hypotheses:
(H1) There exist φ ∈Φ, p : CðIÞ × CðIÞ⟶ ð0,∞Þ and q

: I ⟶ ð0, 1Þ so that for each ϑ, v, ϑ1, v1 ∈ Cr,ρðIÞ, and τ ∈ I

κ τ, ϑ, υð Þ − κ τ, ϑ1, υ1ð Þj j ≤ τρ/2 1−rð Þp ϑ, υð Þ ϑ − ϑ1j j + q τð Þ υ − υ1j j,
ð35Þ

with

ρ1−r

Γ rð Þ
ðT
0
sρ−1 Tρ − sρð Þr−1 p ϑ, υð Þ

1 − q ∗
ds

����
����
2

C

+
ρ1−r

Γ rð Þ
ðτ
0
sρ−1 τρ − sρð Þr−1 p ϑ, υð Þ

1 − q ∗
ds

����
����
2

C

≤ φ ϑ − υð Þ2�� ��C� �
ð36Þ

(H2) There are μ0 ∈ Cr,ρ(I) and θ : Cr,ρðIÞ × Cr,ρðIÞ⟶ℝ

, so that

θ μ0 τð Þ, ϑT−
ρIr0+ω Tð Þð Þ τ

T

� �ρ r−1ð Þ
+

ρ1−r

Γ rð Þ
ðτ
0
sρ−1 τρ − sρð Þr−1ω sð Þds

� �
≥ 0,

ð37Þ

with g ∈ CðIÞ and ωðτÞ = κðτ, μ0ðτÞ, ωðτÞÞ
(H3) For any τ ∈ I, and ϑ, v ∈ Cr,ρðIÞ, θðϑðτÞ, vðτÞÞ ≥ 0

implies

θ
ρ1−r

Γ rð Þ
ðτ
0
sρ−1 τρ − sρð Þr−1ω sð Þds, ρ

1−r

Γ rð Þ
ðτ
0
sρ−1 τρ − sρð Þr−1z sð Þds

� �
≥ 0,

ð38Þ

with ω, z ∈ CðIÞ so that

z τð Þ = κ τ, υ τð Þ, z τð Þð Þ,
ω τð Þ = κ τ, ϑ τð Þ, ω τð Þð Þ:

(
ð39Þ

(H4) If ϑnn∈N ⊂ CðIÞwith ϑn ⟶ ϑ and θðϑn, ϑn+1Þ ≥ , then

θ ϑn, ϑð Þ ≥ 1: ð40Þ

Theorem 3. We presume (H1)–(H4). Then, the problem (1)
possesses at least a solution on I.

Proof. Take the operator N : Cr , ρðIÞ⟶ Cr , ρðIÞ into
account that is described as

Nϑð Þ τð Þ = ϑT−ρIr0+ω Tð Þð Þ τ

T

� �ρ r−1ð Þ
+

ρ1−r

Γ rð Þ
ðτ
0
sρ−1 τρsρð Þr−1ω sð Þds,

ð41Þ

where ω ∈ CðIÞ, with ωðτÞ = κðτ, ϑðτÞ, ωðτÞÞ.

On account of Lemma 4, we deduce that solutions of (1)
are the fixed points of N .

Let Cr,ρðIÞ × Cr,ρðIÞ⟶ ð0,∞Þ be the function defined
by

α ϑ, υð Þ = 1, if θ ϑ τð Þυ τð Þð Þ ≥ 0, τ ∈ I,

α ϑ, υð Þ = 0, otherwise:

(
ð42Þ

First, we demonstrate that N form a generalized α − φ
-Geraghty operator. For any τ ∈ I and each ϑ, v ∈ CðIÞ, we
derive that

τρ 1−rð Þ Nϑð Þ τð Þ − τρ 1−rð Þ Nυð Þ τð Þ
 

≤ τρ 1−rð Þ ρIr0+ g − hð Þ Tð Þj j τ

T

� �ρ r−1ð Þ

+
ρ1−rτρ 1−rð Þ

Γ rð Þ
ðτ
0
sρ−1 τρ − sρð Þr−1 ω sð Þ − z sð Þj jds,

ð43Þ
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where ω, z∈CðIÞ, with

ω τð Þ = κ τ, ϑ τð Þ, ω τð Þð Þ, ð44Þ

z τð Þ = κ τ, v τð Þ, z τð Þð Þ: ð45Þ

From (H1), we have

ω τð Þ − z τð Þj j = κ τ, ϑ τð Þ, ω τð Þð Þ − κ τ, υ τð Þ, z τð Þð Þj j
≤ p ϑ, υð Þτρ/2 1−rð Þ ϑ τð Þ − υ τð Þj j + q τð Þ ω τð Þ − z τð Þj j
≤ p ϑ, υð Þ τρ 1−rð Þ ϑ τð Þ − υ τð Þj j2

� �1/2
+ q τð Þ ω τð Þ − z τð Þj j:

ð46Þ

Thus,

ω τð Þ − z τð Þj j p ϑ, υð Þ
1 − q ∗

ϑ − υð Þ2�� ��1/2
C
, ð47Þ

where q ∗ = supτ∈I jqðτÞj.
Next, we have

τρ 1−rð Þ Nϑð Þ τð Þ − τρ 1−rð Þ Nυð Þ τð Þ
  ≤ τρ 1−rð Þ ρIr0+ g − hð Þ Tð Þj j τ

T

� �ρ r−1ð Þ

+
ρ1−rτρ 1−rð Þ

Γ rð Þ
ðτ
0
sρ−1 τρ − sρð Þr−1 p ϑ, υð Þ

1 − q ∗
ϑ − υð Þ2�� ��1/2

C
ds

≤
ρ1−rτρ 1−rð Þ

Γ rð Þ
ðΤ
0
sρ−1 Τρ − sρð Þr−1 p ϑ, υð Þ

1 − q ∗
ϑ − υð Þ2�� ��1/2

C
ds

+
ρ1−rτρ 1−rð Þ

Γ rð Þ
ðτ
0
sρ−1 τρ − sρð Þr−1 p ϑ, υð Þ

1 − q ∗
ϑ − υð Þ2�� ��1/2

C
ds:

ð48Þ

Thus,

α ϑ, υð Þ τρ 1−rð Þ Nϑð Þ τð Þ − τρ 1−rð Þ Nυð Þ τð Þ
 2

≤ ϑ − υð Þ2�� ��Cα ϑ, υð Þ ρ1−r

Γ rð Þ
ðT
0
sρ−1 Tρ − sρð Þr−1 p ϑ, υð Þ

1 − q ∗
ds

����
����
2

C

+ ϑ − υð Þ2�� ��Cα ϑ, υð Þ ρ1−r

Γ rð Þ
ðT
0
sρ−1 τρ − sρð Þr−1 p ϑ, υð Þ

1 − q ∗
ds

����
����
2

C

≤ ϑ − υð Þ2�� ��Cϕ ϑ − υð Þ2�� ��C� �
:

ð49Þ

Hence,

α ϑ, vð Þφ 23d N ϑð Þ,N vð Þð� �
≤ λ φ d ϑ, vð Þðð Þφ d ϑ, vð Þð , ð50Þ

where λ ∈ ϝ, φ ∈Φ, with λðτÞ = 1/8t, and φðτÞ = τ.
So, N is generalized α − φ − Geraghty operator.
Let ϑ, v ∈ Cr ,ρðIÞ such that

α ϑ, vð Þ ≥ 1: ð51Þ

Accordingly, for any t ∈ I, we find

θ ϑ τð Þ, v τð Þð Þ ≥ 0: ð52Þ

This implies from (H3) that

θ Nu τð Þ,Nv τð Þð Þ ≥ 0, ð53Þ

which gives αðNðϑÞ,NðvÞÞ ≥ 1.
Ergo, N is a α-admissible.
Now, from (H2), there exists μ0 ∈ Cr ,ρðIÞ such that

α μ0,N μ0ð Þð Þ ≥ 1: ð54Þ

Finally, from (H4), if μnn∈N ⊂M with μn ⟶ μ and αð
μn, μn + 1Þ ≥ 1, then,

α μn, μð Þ ≥ 1: ð55Þ

Theorem 2 implies that fixed point ϑ of N forms a solu-
tion for (1).

3. An Example

The tripled ðCr ,ρð½0, 1�Þ, d, 2Þ is a complete b.m.s. with d
: Cr ,ρð½0, 1�Þ × Cr,ρð½0, 1�Þ⟶ ½0,∞Þ such that

d μ, ϑð Þ = μ − ϑð Þ2�� ��C: ð56Þ

We take the following fractional differential problem into
consideration

ρDr
0+μð Þ τð Þ = κ τ, μ τð Þ, ρDr

0+μð Þ τð Þð Þ, τ ∈ 0, 1½ �,
μ 1ð Þ = 2,

(

ð57Þ

with

κ τ, μ τð Þ, ϑ τð Þð Þ =
τρ/2 1−rð Þ 1 + sin μ τð Þj jð Þð Þ

4 1 + μ τð Þj jð Þ +
e−τ

2 1 + ϑ τð Þj jð Þ ; τ ∈ 0, 1½ �:

ð58Þ

Let τ ∈ ð0, 1�, and μ, ϑ ∈ Cr,ρð½0, 1�Þ. If |μðτÞ ∣ ≤ ∣ ϑðτÞ ∣ ,
then
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κ τ, μ τð Þ, μ1 τð Þð Þ − κ τ, ϑ τð Þ, ϑ1 τð Þð Þj j
= τρ/2 1−rð Þ 1 + sin μ τð Þj jð Þ

4 1 + μ τð Þj jð Þ −
1 + sin ϑ τð Þj jð Þ
4 1 + ϑ τð Þj jð Þ




+
e−τ

2 1 + μ1 τð Þj jð Þ −
e−τ

2 1 + ϑ1 τð Þj jð Þ



≤
τρ/2 1−rð Þ

4
μ τð Þ −j jϑ τð Þk k + τρ/2 1−rð Þ

4
sin μ τð Þj jð Þ − sin ϑ τð Þj jð Þj j

+
τρ/2 1−rð Þ

4
μ τð Þ sin ϑ τð Þj jð Þjk − ϑ τð Þj j sin μ τð Þj jð Þ∣

+
e−τ

2
μ1 τð Þ − ϑ1 τð ÞÞj j ≤ τρ/2 1−rð Þ

4
μ τð Þ − ϑ τð Þj j

+
τρ/2 1−rð Þ

4
sin μ τð Þj jð Þ − sin ϑ τð Þj jð Þj j

+
τρ/2 1−rð Þ

4
ϑ τð Þ sin ϑ τð Þj jð Þ − ϑ τð Þj j sin μ τð Þj jð Þ ∣jk

+
e−τ

2
μ1 τð Þ − ϑ1 τð ÞÞj j = τρ/2 1−rð Þ

4
μ τð Þ − ϑ τð Þj j

+
τρ/2 1−rð Þ

4
1 + υ τð Þj jð Þ sin μ τð Þj jð Þ −j sin ϑ τð Þj jð Þj

+
e−τ

2
u1 τð Þ − ϑ1 τð ÞÞj j ≤ τρ/2 1−rð Þ

4
μ τð Þ − ϑ τð Þj j

+
τρ/2 1−rð Þ

2
1 + ϑ τð Þj jð Þ × sin

μ τð Þ −j jϑ τð Þjk
2

� �
 cos μ τð Þj j + ϑ τð Þj j

2

� �


+
e−τ

2
μ1 τð Þ − ϑ1 τð Þj j ≤ τρ/2 1−rð Þ

4
2 + υ τð Þj jð Þ μ τð Þ − ϑ τð Þj j + e−τ

2
μ1 τð Þ − ϑ1 τð Þj j:

ð59Þ

In the case when ∣ϑðτÞ ∣ ≤ ∣ μðτÞ ∣ , we get

κ τ, μ τð Þð Þ − κ τ, ϑ τð Þð Þj j ≤ τp/2 1−rð Þ

4
2 + μ τð Þj j μ τð Þ − ϑ τð Þj j + e−τ

2
μ1 τð Þ − ϑ1 τð Þj j

�
:

ð60Þ

Hence,

κ τ, μ τð Þð Þ − κ τ, ϑ τð Þð Þj j

≤
Τp/2 1−rð Þ

4
min
τ∈I

2 + μ τð Þj j, 2 + ϑ τð Þj jf g μ τð Þ − ϑ τð Þj j

+
e−τ

2
μ1 τð Þ − ϑ1 τð Þj j:

ð61Þ

Thus, hypothesis (H1) is achieved with

p μ, ϑð Þ = Tρ/2 1−rð Þ

4
min
r∈I

2 + μ τð Þj j, 2 + ϑ τð Þj jf g, ð62Þ

q τð Þ = 1
2
e−τ: ð63Þ

Define the functions λðτÞ = ð1/8Þt, ϕðτÞ = τ, α : Cr,ρð½0,
1�Þ × Cr,ρð½0, 1�Þ→ℝ∗

+ with

α μ, ϑð Þ = 1, if δ μ τð Þ, ϑ τð Þð Þ ≥ 0, τ ∈ I,

α μ, ϑð Þ = 0, else

(
ð64Þ

and δ : Cr,ρð½0, 1�Þ × Cr,ρð½0, 1�Þ⟶ R with δðμ, ϑÞ = kμ − ϑ

kC .

Hypothesis (H2) is satisfied with μ0ðτÞ = μ0. Also, (H3)
holds the definition of the function δ. So, Theorem 3 yields
that problem (57) admits a solution.
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In this manuscript, we introduce the concept of complex-valued triple controlled metric spaces as an extension of rectangular
metric type spaces. To validate our hypotheses and to show the usability of the Banach and Kannan fixed point results discussed
herein, we present an application on Fredholm-type integral equations and an application on higher degree polynomial equations.

1. Introduction

Since the breakthrough of Banach [1] in 1922, where he was
able to show that a contractive mapping on a complete metric
space has a unique fixed point, the field of fixed point theory
has become an important research focus in the field of
mathematics; see [2–6]. Due to the fact that fixed point
theory has many applications in many fields of science, many
researchers have been working on generalizing his result by
either generalizing the type of contractions [7–10] or by
extending the metric space itself (b-metric spaces [11, 12],
controlled metric spaces [13], double controlled metric
spaces [14], etc.). On the other hand, Azam et al. [15] defined
complex-valued metric spaces and gave common fixed point
results. Rao et al. [16] introduced the complex-valued
b-metric spaces in the year 2013. Going in the same direc-
tion, recently, Ullah et al. [17] presented complex-valued

extended b-metric spaces to extend the idea of extended
b-metric spaces.

In this manuscript, following the path of the work done
in [18], we extend complex-valued rectangular extended b
-metric spaces [19] to complex-valued triple controlled met-
ric spaces. The layout of our manuscript is as follows. In the
second section, we present some backgrounds along with the
definition of complex-valued triple controlled metric spaces.
In the third section, we prove some fixed point results in such
spaces. In the fourth section, we present an application for
our findings. In closing, we present two open questions.

2. Preliminaries

In what follows, owing to Azam et al. [15], we recall several
notations and definitions which will be used in the sequel.
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Let ℂ be the set of all complex numbers and s1, s2 ∈ℂ.
The partial order on ℂ is defined as s1≺s2 if and only if Re
ðs1Þ ≤ Re ðs2Þ and Im ðs1Þ ≤ Im ðs2Þ. This implies that s1≺s2
if one of the below conditions is fulfilled:

(i) Re ðs1Þ = Re ðs2Þ, Im ðs1Þ < Im ðs2Þ
(ii) Re ðs1Þ < Re ðs2Þ, Im ðs1Þ = Im ðs2Þ
(iii) (Re ðs1Þ < Re ðs2Þ, Im ðs1Þ < Im ðs2Þ
(iv) Re ðs1Þ = Re ðs2Þ, Im ðs1Þ = Im ðs2Þ
Following [15], the authors in [17] developed the notion

of complex-valued extended b-metric spaces.

Definition 1 (see [17]). Let X be a nonempty set and ξ : X
×X⟶ ½1,∞Þ be a function. Then, Le : X2 ⟶ℂ is known
as a complex-valued extended b-metric space if the following
are satisfied for all s, κ, u ∈X:

(1) 0≺Leðs, κÞ and Leðs, κÞ = 0 if and only if s = κ

(2) Leðs, κÞ = Leðκ, sÞ
(3) Leðs, κÞ≺ξðs, κÞ½Leðs, uÞ + Leðu, κÞ�

Then, the pair ðX, LeÞ is known as a complex-valued
extended b-metric space.

As an extension of complex-valued extended b-metric
spaces, Ullah et al. in [19] introduced the concept of
complex-valued rectangular extended b-metric spaces.

Definition 2 (see [19]). Let X be a nonempty set and ξ : X2

⟶ ½1,∞Þ and Lr : X
2 ⟶ℂ. We say that ðX, LrÞ is a

complex-valued rectangular extended b-metric space if for
all a, b ∈X each of which is different from κ, v ∈X, we
have

(1) Lrðs, κÞ = 0 if and only if s = κ

(2) Lrðs, κÞ = Lrðκ, sÞ
(3) Lrða, bÞ≺ξða, bÞ½Lrða, κÞ + Lrðκ, vÞ + Lrðv, bÞ�

The authors in [20] have recently introduced the idea of
triple controlled metric type spaces as follows.

Definition 3 (see [20]). Let X be a nonempty set. Given three
functions ξ, ρ, ς : X2 ⟶ ½1,∞Þ and LT : X2 ⟶ ½0,∞Þ. We
say that ðX, LTÞ is a triple controlled metric type space if
for all a, b, κ, v ∈X, we have

(1) LTðs, κÞ = 0 if and only if s = κ

(2) LTðs, κÞ = LTðκ, sÞ
(3) LTða, bÞ ≤ ξða, κÞLTða, κÞ + ρðκ, vÞLTðκ, vÞ + ςðv, bÞ

LTðv, bÞ

Highly motivated by the abovementioned concepts, we
now present the definition of complex-valued triple
controlled metric spaces.

Definition 4. Let X be a nonempty set. Given three functions
ξ, ρ, ς : X2 ⟶ ½1,∞Þ and Lt : X2 ⟶ℂ. We say that ðX, LtÞ
is a complex-valued triple controlled metric space if for all
a, b ∈X, each of which is different from κ, v ∈X, we have

(1) Ltðs, κÞ = 0 if and only if s = κ

(2) Ltðs, κÞ = Ltðκ, sÞ
(3) Ltða, bÞ≺ξða, κÞLtða, κÞ + ρðκ, vÞLtðκ, vÞ + ςðv, bÞLtðv

, bÞ�

Throughout the rest of this paper, we will denote a
complex-valued triple controlled metric space by (CV-
TCMS). Next, we present the topology of (CV-TCMSs).

Definition 5. Let ðX, LtÞ be a (CV-TCMS).

(1) We say that a sequence fang is Lt-convergent to some
a ∈X if jLtðan, aÞj⟶ 0 as n⟶∞

(2) We say that a sequence fang is Lt-Cauchy if and only
if limn,m⟶∞ ∣ Ltðan, amÞ ∣ = 0

(3) We say that ðX, LtÞ is Lt-complete if for every
Lt-Cauchy sequence is Lt-convergent

(4) Let x ∈X. An open ball of center x and radius η > 0
in the (CV-TCMS) ðX, LtÞ is Bξðx, ηÞ = fb ∈X ∣ Lt
ðx, bÞ≺ηg

Note that a CV rectangular metric space is a CV-TCMS.
The converse is not true. Next, we present an example that
confirms this statement.

Example 1. LetX =Y ∪ZwhereY = fð1/kÞ ∣ k ∈ℕg andZ is
the set of positive integers. We define Lt : X

2 ⟶ℂ by

Lt a, bð Þ =

0, ⇔a = b,
2iβ, if a, b ∈Y,
iβ
2 , otherwise,

8>>><
>>>:

ð1Þ

where β > 0. Now, define ξ : X2 ⟶ ½1,∞Þ by ξða, bÞ = 4β.
Given ρ : X2 ⟶ ½1,∞Þ as ρða, bÞ = 3β and ς : X2 ⟶ ½1,∞Þ
as ςða, bÞ =max fa, bg + 2β.

Note that ðX, LtÞ is a CV-TCMS. On the other hand,
ðX, LtÞ is not a CV rectangular metric space. Indeed,

Lt
1
2 ,

1
3

� �
= 2iβ ≻ Lt

1
2 , 2
� �

+ Lt 2, 3ð Þ + Lt 3, 13

� �
= 3iβ

2 :

ð2Þ
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In this paper, we prove the Banach and Kannan fixed
point results in the setting of CV-TCMSs. Two related
applications are also investigated.

3. Main Results

Theorem 1. Let ðX, LtÞ be a Lt-complete CV-TCMS. Let
T : X⟶X satisfy LtðTx, TyÞ≺δLtðx, yÞ where 0 < δ < 1.
Assume that there exists x0 ∈X such that the sequence fxng
defined by xn = Tnx0 satisfies the following:

lim
n⟶∞

ξ xn, xn+1ð Þ ≤ 1
δ
,

lim
n⟶∞

ρ xn, xn+1ð Þ ≤ 1
δ
,

lim
n⟶∞

ς xn, yð Þ <∞,

lim
n⟶∞

ξ y, xnð Þ <∞for any y ∈X,

sup
m≥1

lim
n⟶∞

ξ xn, xn+1ð Þς xn, xmð Þ ≤ 1
δ
,

sup
m≥1

lim
n⟶∞

ρ xn, xn+1ð Þς xn, xmð Þ ≤ 1
δ
:

ð3Þ

Then, T has a unique fixed point in X:

Proof. First, we have Ltðxn, xn+1Þ≺δLtðxn−1, xnÞ≺δ2Ltðxn−2,
xn−1Þ≺ ⋯≺δnLtðx0, x1Þ. Then,

Lt xn, xn+1ð Þj j⟶ 0 as n⟶∞: ð4Þ

Now, let Li = Ltðxn+i, xn+i+1Þ. We need to consider the fol-
lowing two cases.

Case 1. Let xn = xm for some natural numbers n and m with
n ≠m. Without loss of generality, take m > n. If Tm−nðxnÞ =
xn; then, by choosing y = xn and p =m − n, we get T py = y,
which implies that y is a periodic point of T . Hence, Ltðy, T
yÞ = LtðT py, T p+1yÞ≺δpLtðy, TyÞ. Since δ ∈ ð0, 1Þ, we get ∣Ltð
y, TyÞ ∣ = 0, so y = Ty, that is, T has a fixed point.

From now on, we consider the following case.

Case 2. Assume that for all natural numbers n ≠m, we have
xn = Tnx0 ≠ Tmx0 = xm. Let n <m. To prove that fxng is a
Lt-Cauchy sequence, we need to consider the following two
subcases.

Subcase 1. If m = n + 2p + 1 (where p ≥ 1 is a fixed natural
number), then by the rectangle inequality of the CV-TCMS,
we have

∣Lt xn, xn+2p+1
� �

∣ ≤ ξ xn, xn+1ð Þ∣Lt xn, xn+1ð Þ∣ + ρ xn+1, xn+2ð Þ
� ∣Lt xn+1, xn+2ð Þ∣ + ς xn+2, xn+2p+1

� �
∣Lt xn+2, xn+2p+1
� �

∣
�

≤ ξ xn, xn+1ð Þ∣Lt xn, xn+1ð Þ∣ + ρ xn+1, xn+2ð Þ∣Lt xn+1, xn+2ð Þ∣
+ ς xn+2, xn+2p+1
� �

ξ xn+2, xn+3ð Þ ∣ Lt xn+2, xn+3ð Þ∣½
� +ρ xn+3, xn+4ð Þ ∣ Lt xn+3, xn+4ð Þ∣+ς xn+4, xn+2p+1

� �
� ∣ Lt xn+4, xn+2p+1

� �
∣ � ≤ ξ xn, xn+1ð Þδn∣L0∣ + ρ xn+1, xn+2ð Þδn+1

� ∣L0∣ + ς xn+2, xn+2p+1
� �

ξ xn+2, xn+3ð Þδn+2 ∣ L0∣+ρ xn+3, xn+4ð Þδn+3�
� ∣ L0∣+ς xn+4, xn+2p+1

� �
∣ Lt xn+4, xn+2p+1
� �

∣ � ≤ ξ xn, xn+1ð Þ
� δn∣L0∣ + ρ xn+1, xn+2ð Þδn+1∣L0∣ + ς xn+2, xn+2p+1

� �
ξ xn+2, xn+3ð Þδn+2

� ∣L0∣ + ς xn+2, xn+2p+1
� �

ρ xn+3, xn+4ð Þδn+3∣L0∣
+ ς xn+2, xn+2p+1
� �

ς xn+4, xn+2p+1
� �

ξ xn+4, xn+5ð Þ ∣ Lt xn+4, xn+5ð Þ∣½
+ρ xn+5, xn+6ð Þ ∣ Lt xn+5, xn+6ð Þ∣+ς xn+6, xn+2p+1

� �
� ∣ Lt xn+6, xn+2p+1

� �
∣ � ≤ ξ xn, xn+1ð Þδn∣L0∣ + ρ xn+1, xn+2ð Þδn+1∣L0∣

+ ς xn+2, xn+2p+1
� �

ξ xn+2, xn+3ð Þδn+2∣L0∣ + ς xn+2, xn+2p+1
� �

� ρ xn+3, xn+4ð Þδn+3∣L0∣ + ς xn+2, xn+2p+1
� �

ς xn+4, xn+2p+1
� �

� ξ xn+4, xn+5ð Þδn+4∣L0∣ + ς xn+2, xn+2p+1
� �

ς xn+4, xn+2p+1
� �

� ρ xn+5, xn+6ð Þδn+5∣L0∣ + ς xn+2, xn+2p+1
� �

ς xn+4, xn+2p+1
� �

� ς xn+6, xn+2p+1
� �

∣Lt xn+6, xn+2p+1
� �

∣ ≤⋯ = ξ xn, xn+1ð Þδn∣L0∣

+ ρ xn+1, xn+2ð Þδn+1∣L0∣ + 〠
p

l=1

Yl
i=1

ξ xn+2l , xn+2l+1ð Þ

� ς xn+2i, xn+2p+1
� �

δn+2l∣L0 + 〠
p

l=1

Yl
i=1

ρ xn+2l+1, xn+2l+2ð Þ

� ς xn+2i, xn+2p+1
� �

δn+2l+1 L0j j:
ð5Þ

Now, given that

sup
m≥1

lim
n⟶∞

ξ xn, xn+1ð Þς xn, xmð Þ ≤ 1
δ
,

sup
m≥1

lim
n⟶∞

ρ xn, xn+1ð Þς xn, xmð Þ ≤ 1
δ
,

ð6Þ

we can easily deduce that

∣Lt xn, xn+2p+1
� �

∣ ≤ δn−1 + δn−1 + 〠
p

l=1
δn+l + 〠

p

l=1
δn+l+1

" #
L0j j:

ð7Þ

Since limn⟶∞δn = 0, the last right-hand side goes to zero
at the limit n⟶∞ (for any integer p ≥ 1). Therefore,
f∣Ltðxn, xn+2p+1Þ ∣ gn is convergent.

Subcase 2. Let m = n + 2p (where p ≥ 1 is a fixed integer).
First, notice the following:

Lt xn, xn+2ð Þ≺δLt xn−1, xn+1ð Þ≺δ2Lt xn−2, xnð Þ≺ ⋯≺δnLt x0, x2ð Þ,
ð8Þ
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which leads us to conclude that

Lt xn, xn+2ð Þj j⟶ 0 as n⟶∞: ð9Þ

Thus, by Subcase 1 and using the rectangular inequality
of the complex-valued triple controlled metric, we have

Lt xn, xn+2p
� ��� �� ≤ ξ xn, xn+2p−3

� �
Lt xn, xn+2p−3
� ��� ��

+ ρ xn+2p−3, xn+2p−2
� �

Lt xn+2p−3, xn+2p−2
� ��� ��

+ ς xn+2p−2, xn+2p
� �

Lt xn+2p−2, xn+2p
� ��� �� ≤ ξ xn, xn+1ð Þδn L0j j

+ ρ xn+1, xn+2ð Þδn+1∣L0∣ + 〠
p−1

l=1

Yl
i=1

ξ xn+2l, xn+2l+1ð Þ

� ς xn+2i, xn+2p−3
� �

δn+2l L0j j + 〠
p−1

l=1

Yl
i=1

ρ xn+2l+1, xn+2l+2ð Þ

� ς xn+2i, xn+2p−3
� �

δn+2l+1 L0j j + ς xn+2p−2, xn+2p
� �

δn Lt x0, x2ð Þj j:
ð10Þ

Now, similar to Subcase 1, one can easily deduce that
fjLtðxn, xn+2pÞjgn is a convergent sequence as n⟶∞ (for
any integer p ≥ 1). Hence, by Subcases 1 and 2, we conclude
that fxng is a Lt-Cauchy sequence. Since ðX, LtÞ is a Lt
-complete CV-TCMS, there is ν ∈X such that fxng⟶ ν
as n⟶∞.

Now, if there existsN ∈ℕ such that xN = ν, then since we
deal with Case 2, one writes xn = Tnx0 ≠ ν for all n >N . Also,
xn = Tnx0 ≠ Tν for all n >N . Next, assume that there exists
N ∈ℕ with xN = TNx0 = Tν. Once again, we confirm that
xn = Tnx0∈fν, Tνg for all n >N . Thus, without loss of gener-
ality, we may assume xn∈fν, Tνg for all natural numbers n.
We have

Lt ν, Tνð Þ≺ξ ν, xnð ÞLt ν, xnð Þ + ρ xn, xn+1ð ÞLt xn, xn+1ð Þ
+ ς xn+1, Tνð ÞLt xn+1, Tνð Þ≺ξ ν, xnð ÞLt ν, xnð Þ
+ ρ xn, xn+1ð ÞLt xn, xn+1ð + ς xn+1, Tνð ÞδLt xn, νð Þ,

ð11Þ

which implies

∣Lt ν, Tνð Þ∣ ≤ ξ ν, xnð Þ∣Lt ν, xnð Þ∣ + ρ xn, xn+1ð Þ∣Lt xn, xn+1ð Þ∣
+ ς xn+1, Tνð Þδ Lt xn, νð Þj j:

ð12Þ

Therefore, in view of the assumptions in the theorem, as
n⟶∞, we deduce that ∣Ltðν, TνÞ ∣ = 0 and that is Tν = ν
as required.

In closing, assume there exist two fixed points of T , say ν
and μ where ν ≠ μ. Thus,

Lt ν, μð Þ = Lt Tν, Tμð Þ≺δLt ν, μð Þ ≺ Lt ν, μð Þ, ð13Þ

which is a contradiction. Therefore, the fixed point of T is
unique.

Theorem 2. Let ðX, LtÞ be a Lt-complete CV-TCMS and T be
a self mapping on X satisfying the following condition: for all
a, b ∈X, there exists 0 < δ < 1/2 such that

Lt Ta, Tbð Þ≺δ Lt a, Tað Þ + Lt b, Tbð Þ½ �, ð14Þ

and there exists x0 ∈X in order that the sequence fxng defined
by xn = Tnx0 satisfies the following:

lim
n⟶∞

ξ y, xnð Þ ≤ 1
δ
,

  lim
n⟶∞

ς xn, yð Þ < 1
δ
 for any y ∈X,

lim
n⟶∞

ρ xn, xn+1ð Þ ≤ 1
δ
:

ð15Þ

Then, T has a unique fixed point in X:

Proof. First of all, note that for all n ≥ 1, we have

Lt xn, xn+1ð Þ≺δ Lt xn−1, xnð Þ + Lt xn, xn+1ð Þ½ �: ð16Þ

Consequently,

Lt xn, xn+1ð Þ≺ δ

1 − δ
Lt xn−1, xnð Þ: ð17Þ

Since 0 < δ < 1/2, one has 0 < ðδ/ð1 − δÞÞ < 1. Set μ = δ/
ð1 − δÞ. One writes

∣Lt xn, xn+1ð Þ∣ ≤ μ∣Lt xn−1, xnð Þ∣ ≤ μ2∣Lt xn−2, xn−1ð Þ∣
≤⋯ ≤ μn Lt x0, x1ð Þj j: ð18Þ

Therefore,

Lt xn, xn+1ð Þj j⟶ 0 as n⟶∞: ð19Þ

Also, for all n,m ≥ 1, we have

Lt xn, xmð Þ≺δ Lt xn−1, xnð Þ + Lt xm−1, xmð Þ½ �: ð20Þ

By (19), we deduce that ∣Ltðxn, xmÞ ∣⟶0 as n,m⟶∞.
Hence, fxng is a Lt-Cauchy sequence. Since ðX, LtÞ is a
Lt-complete CV-TCMS, the sequence fxng converges to
some ν ∈X:

By the argument of the proof of Theorem 1, assume that
for all n ≥ 1, we have xn∈fν, Tνg. Thus,

Lt ν, Tνð Þ≺ξ ν, xnð ÞLt ν, xnð Þ + ρ xn, xn+1ð ÞLt xn, xn+1ð Þ
+ ς xn+1, Tνð ÞLt xn+1, Tνð Þ≺ξ ν, xnð ÞLt ν, xnð Þ
+ ρ xn, xn+1ð ÞLt xn, xn+1ð Þ + ς xn+1, Tνð Þ
� δ Lt xn, Txnð Þ + Lt ν, Tνð Þ½ �:

ð21Þ
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As n⟶∞, we obtain

∣Lt ν, Tνð Þ∣ ≤ 0 + 0 + 0 + lim sup
n⟶∞

ς xn+1, Tνð Þδ∣Lt ν, Tνð Þ∣

< Lt ν, Tνð Þj j:
ð22Þ

At the limit n⟶∞, we find that ∣Ltðν, TνÞ ∣ = 0 and
that is Tν = ν as required. Now, assume that we have two
fixed points of T , say ν and s. Therefore,

∣Lt ν, sð Þ∣ = ∣Lt Tν, T sð Þ∣ ≤ δ ∣Lt ν, νð Þ∣+∣Lt s, sð Þ ∣ð Þ = 0: ð23Þ

Hence, ν = s, as desired.

4. Applications

4.1. A Fredholm-Type Integral Equation. Consider the set X
= Cð½0, 1�,ℝÞ. Given the following Fredholm-type integral
equation

a′ tð Þ =
ð1
0
M t, s, a′ tð Þ
	 


ds, for t, s ∈ 0, 1½ �, ð24Þ

whereMðt, s, a′ðtÞÞ is a continuous function from ½0, 1�2 into
ℝ. Now, define

Lt : X ×X⟶ℂ

a, bð Þ↦ i sup
t∈ 0,1½ �

∣a tð Þ∣+∣b tð Þ ∣
2

� �
:

ð25Þ

Note that ðX, LtÞ is a complete CV-TCMS, where

ξ a, bð Þ = 2, ρ a, bð Þ = 1 and ς a, bð Þ = 3: ð26Þ

Theorem 3. Assume that for all a, b ∈X

(1) ∣Mðt, s, a′ðtÞÞ ∣ + ∣Mðt, s, bðtÞÞ ∣ ≤δð∣a′ðtÞ∣+∣bðtÞ ∣ Þ,
for some δ ∈ ½0, 1/4Þ

(2) Mðt, s, Ð 10Mðt, s, a′ðtÞÞdsÞ <Mðt, s, a′ðtÞÞ for all t, s

Then, the above integral equation has a unique solution.

Proof. Let T : X⟶X be defined by Ta′ðtÞ = Ð 10Mðt, s, a′
ðtÞÞds. Then,

Lt Ta′, Tb
	 


= i sup
t∈ 0,1½ �

∣Ta′ tð Þ∣+∣Tb tð Þ ∣
2

 !
: ð27Þ

Now, we have

Lt Ta′ tð Þ, Tb tð Þ
	 


= i
∣Ta′ tð Þ∣+∣Tb tð Þ ∣

2

= i
∣
Ð 1
0M t, s, a′ tð Þ
	 


ds∣+∣
Ð 1
0M t, s, b tð Þð Þds ∣

2

≺i

Ð 1
0 ∣M t, s, a′ tð Þ

	 

∣ ds +

Ð 1
0 ∣M t, s, b tð Þð Þ ∣ ds

2

= i

Ð 1
0 ∣M t, s, a′ tð Þ

	 

∣+∣M t, s, b tð Þð Þ ∣

	 

ds

2

≺i

Ð 1
0δ ∣a′ tð Þ∣+∣b tð Þ ∣
	 


ds

2
≺δLt a′ tð Þ, b tð Þ

	 

:

ð28Þ

Thus, LtðTa′, TbÞ≺δLtða′, bÞ. Since δ ∈ ½0, 1/4Þ, one
gets

ξ a, bð Þ < 1
δ
,

ρ a, bð Þ < 1
δ
,

ς a, bð Þ < 1
δ
:

ð29Þ

Therefore, all the hypotheses of Theorem 1 are satis-
fied, and hence, equation (24) has a unique solution.

4.2. A Polynomial Equation of a Degree Greater or Equal to 3.
The following is an application on higher degree polynomial
equations.

Theorem 4. For any natural number β ≥ 3 and real ∣α ∣ ≤1,
the following equation

αβ + 1 = β4 − 1
� �

αβ+1 + β4α ð30Þ

has a unique real solution.

Proof. It is not difficult to see that if ∣α ∣ >1, equation (30)
does not have a solution. So, let X = ½−1, 1� and for all α, r
∈X, let Ltðα, rÞ = ∣α − r ∣ +i ∣ α − r ∣ and ξðu, vÞ = 3, ρðu, vÞ
= 4 and ςðu, vÞ =max fu, vg + 2. Note that ðX, LtÞ is a Lt
-complete CV-TCMS. Now, let

Tα = αβ + 1
β4 − 1
� �

αβ + β4 : ð31Þ
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Notice that, since β ≥ 2, we can deduce that β4 ≥ 6. Thus,

Lt Tα, Trð Þ = ∣
αβ + 1

β4 − 1
� �

αβ + β4 −
rβ + 1

β4 − 1
� �

rβ + β4 ∣

+ i∣
αβ + 1

β4 − 1
� �

αβ + β4 −
rβ + 1

β4 − 1
� �

rβ + β4 ∣

= ∣
αβ − rβ

β4 − 1
� �

αβ + β4� �
β4 − 1
� �

rβ + β4� � ∣
+ i∣

αβ − rβ

β4 − 1
� �

αβ + β4� �
β4 − 1
� �

rβ + β4� � ∣
≺
∣α − r ∣
β4 + i

∣α − r ∣
β4 ≺

∣α − r ∣
6 + i

∣α − r ∣
6

= 1
6 Lt α, rð Þ:

ð32Þ

Hence,

Lt Tα, Trð Þ≺δLt α, rð Þ, where δ = 1
6 : ð33Þ

Moreover, it is easy to see that for all α0 ∈X, we have

αn = Tnα0 ≤
2
β4 : ð34Þ

Note that all the conditions of Theorem 1 are satisfied.
Thus, T possesses a unique fixed point in X, and equation
(30) has a unique real solution.

5. Conclusion

Finally, we would like to leave the following questions.

Question 1. Let ðX, LtÞ be a CV-TCMS and T : X⟶X.
Given a function ς : X2 ⟶ ½1,∞Þ. Suppose there exists δ ∈
ð0, 1Þ such that, for all s, r ∈X,

Lt T s, Trð Þ≺δς s, rð ÞLt s, rð Þ: ð35Þ

Under what conditions does T have a unique fixed point
in X?

Question 2. Let ðX, LtÞ be a CV-TCMS, and T : X⟶X.
Given a function ς : X2 ⟶ ½1,∞Þ. Suppose there exists δ ∈
ð0, 1/2Þ such that, for all s, r ∈X,

Lt T s, Trð Þ≺δς s, rð Þ Lt s, T sð Þ + Lt r, Trð Þ½ �: ð36Þ

Under what conditions does T have a unique fixed point
in X?
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In this paper, we study the asymptotic behavior of an incompressible Herschel-Bulkley fluid in a thin domain with Tresca boundary
conditions. We study the limit when the ε tends to zero, we prove the convergence of the unknowns which are the velocity and the
pressure of the fluid, and we obtain the limit problem and the specific Reynolds equation.

1. Introduction

In 1926, the model of Herschel-Bulkley fluid introduced is
called a non-Newtonian fluid, whose flow properties differ
in any way from those of any Newtonian fluids. There are
many phenomena in nature and industry exhibiting the
behavior of the Herschel-Bulkley fluid medium and has been
used in various publications to describe the flow of metals,
plastic solids, and some polymers. The literature concerning
this topic is extensive (see e.g., [1–14]). Further, let us men-
tion the works which is realized by many authors in this area,
for example, (see [2, 4, 9, 10, 13–21]).

This paper is to discuss the asymptotic behavior of steady
flow of Herschel-Bulkley fluid in a three-dimensional thin
layer with Tresca boundary conditions.

The paper is organized as follows. In Section 2, we intro-
duce some notations, preliminaries, and the mechanical
problem of the steady flow of Herschel-Bulkley fluid in a
three-dimensional thin layer. In Section 3, we investigate
some estimates and convergence theorem. To this aim, we
use the change of variable x3/ε, to transform the initial prob-

lem posed in the domain Ωε into a new problem posed on a
fixed domainΩ independent of the parameter ε. Finally, the a
priori estimate allows us to pass to the limit when ε tends to
zero, and we prove the convergence results and limit problem
with a specific weak form of the Reynolds equation and two-
dimensional constitutive equation of the model flow.

2. Problem Statement and
Variational Formulation

Let ω be fixed region in plan x = ðx1, x2Þ ∈ℝ2. We assume
that ω has a Lipschitz boundary and is the bottom of the fluid
domain. The upper surface Γε

1 is defined by x3 = εhðxÞ where
ð0 < ε < 1Þ is a small parameter that will tend to zero and h a
smooth bounded function such that 0 < h∗ < hðxÞ < h∗ for all
ðx, 0Þ ∈ ω and Γε

L the lateral surface. We denote by Ωε the
domain of the flow:

Ωε = x, x3ð Þ ∈ℝ3 : x, 0ð Þ ∈ ω, 0 < x3 < εh xð Þ� �
: ð1Þ
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The boundary of Ωε is Γε. We have Γε = Γ
ε
1 ∪ Γ

ε
L ∪ �ω

where Γ
ε
L is the lateral boundary.

(i) The law of conservation of momentum is defined by

uε∇uε = div σεð Þ + f ε inΩε, ð2Þ

where div ðσεÞ = ðσεij,jÞ and f ε = ð f εi Þ1≤i≤3 denote the
body forces.

(ii) The stress tensor σε is decomposed as follows

σεij = ~σεij − pεδij,

~σε = αε
D uεð Þ
D uεð Þj j + μ D uεð Þj jr−2D uεð Þ if D uεð Þ ≠ 0,

~σεj j ≤ αε if D uεð Þ = 0:

0BBBB@
ð3Þ

where αε ≥ 0 is the yield stress, μ > 0 is the constant
viscosity, uε is the velocity field, pε is the pressure,
δij is the Kronecker symbol, 1 < r ≤ 2 and DðuεÞ = 1
/2ð∇uε + ð∇uεÞTÞ. For any tensor D = ðdijÞ, the nota-
tion jDj represents the matrix norm: jDj =

ð∑
i,j
dijdijÞ1/2.

(iii) The incompressibility equation

div uεð Þ = 0 inΩε: ð4Þ

Our boundary conditions is described as

(iv) At the surface Γε
1 ∪ Γε

L, we assume that

uε = 0: ð5Þ

(v) On ω, there is a no-flux condition across ω so that

uε × n = 0: ð6Þ

(vi) The tangential velocity on ω is unknown and satisfies
Tresca boundary conditions:

σε
τj j < kεuετ = 0

σε
τj j = kε∃λ ≥ 0, uετ = −λσε

τ

 
inω: ð7Þ

Here, kε is the friction yield coefficient and j:j is the
Euclidean norm in ℝ2; n = ðn1, n2, n3Þ is the unitoutward
normal to Γε

1, and

uεn = uε:n = uεi :ni,
uετi = uεi − uεnni,
σε
n = σ:nð Þn = σε

ijninj,
σετi = σεijnj − σεnni:

ð8Þ

In order to, we observe that

Kε = φ ∈W1,r Ωεð Þ3 : φ = 0 onΓε
1 ∪ Γε

L, φ:n = 0 onω
n o

,

Kε
div = φ ∈ Kε : div φð Þ = 0f g,

Lr ′0 Ωεð Þ = q ∈ Lr ′ Ωεð Þ:
ð
Ωε

qdxdx3 = 0
� �

:

ð9Þ

A formal application of Green’s formula, using (1)–(6),
leads to the following weak formulation:

Find a velocity field uε ∈ Kε
div and pε ∈ Lr ′0 ðΩεÞ, ð1/r + 1/

r′ = 1Þ such that:

a uε, φ − uεð Þ + B uε, uε, φ − uεð Þ − pε, div φð Þ + j φð Þ
− j uεð Þ ≥ f ε, φ − uεð Þ, ð10Þ

for all φ ∈ Kε, where

a uε, φ − uεð Þ = μ
ð
Ωε

D uεð Þj jr−2D uεð ÞD vεð Þdxdx3,

B uε, uε, vð Þ = 〠
3

i=1

ð
Ωε

uεi
∂uε

∂xi
vdxdx3,

pε, div φð Þ =
ð
Ωε

pε div φdxdx3,

j vð Þ =
ð
ω

kε vj jdx + αε
ð
Ωε

D vð Þj jdxdx3,

f ε, vð Þ =
ð
Ωε

f εvdxdx3 = 〠
3

i=1

ð
Ωε

f εi vidxdx3:

ð11Þ

As in [6, 8], we can show that this variational problem has
a unique solution.

Now, we state some the following results (see, [15]).

∇uεk kLr Ωεð Þ ≤ C D uεð Þk kLr Ωεð Þ Korn inequalityð Þ, ð12Þ

uεk kLr Ωεð Þ ≤ εh∗
∂uε

∂z

���� ����
Lr Ωεð Þ

 for  i = 1, 2 Poincare′ inequality
� �

,

ð13Þ

ab ≤
ar

r
+ br ′

r′
,∀ a, bð Þ ∈ℝ2 Young inequalityð Þ: ð14Þ
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3. Change of the Domain and
Study of Convergence

Here, we apply the technique of scaling in Ωε on the coordi-
nate x3. With the variables z = x3/ε, we get

Ω = x, zð Þ ∈ℝ3 : x, 0ð Þ ∈ ω, 0 < z < h xð� �
: ð15Þ

Next, we denote by Γ = �Γ1 ∪ �ΓL ∪ �ω its boundary, then,
we define the following functions in Ω:

ûεi x, zð Þ = uεi x, x3ð Þ, i = 1, 2,
ûε3 x, zð Þ = ε−1uε3 x, x3ð Þ,
p̂ε x, zð Þ = εrpε x, x3ð Þ:

ð16Þ

Now, we assume that

f̂ x, zð Þ = εr f ε x, x3ð Þ, bα = εr−1αε, k̂ = εr−1kε, ð17Þ

and we consider the sets

K Ωð Þ = bφ ∈ W1,r Ωð Þ	 
3
: bφ = 0 onΓ1 ∪ ΓL ; bφ:n = 0 onω

n o
,

Kdiv Ωð Þ = bφ ∈ K Ωð Þ: div bφ = 0f g,

Vz = bφ ∈ Lr Ωð Þð Þ2 ; ∂bφ i

∂z
∈ Lr Ωð Þ: bφ = 0 onΓ1 ∪ ΓL

� �
,

~Vz = bφ ∈ Vz : bφ satisfy D′
� �n o

,

ð18Þ

where the condition ðD′Þ is given by

D′
� �ð

ω

bφ1
∂θ
∂x1

+ bφ2
∂θ
∂x2

� �
dxdz = 0, 

for all bφ ∈ Lr Ωð Þð Þ2 and θ ∈ C∞
0 Ωð Þ:

ð19Þ

By injecting the new data, unknown factors in (10) and
after multiplication by εr−1, we deduce that

a0 ûε, bφ − ûεð Þ + B0 ûε, ûε, bφð Þ − p̂ε, div bφ − ûεð Þð Þ
+ j0 bφð Þ − j0 ûεð Þ ≥ f̂ , bφ − ûε

� �
,∀bφ ∈ K Ωð Þ, ð20Þ

where

a0 ûε, bφ − ûεð Þ = 〠
2

i,j=1

ð
Ω

ε2μ ~D ûεð Þ r−2 1
2

∂ûεi
∂xj

+
∂ûεj
∂xi

 ! !" #

� ∂ bφ i − ûεið Þ
∂xj

dxdz +〠
2

i=1

ð
Ω

μ ~D ûεð Þ r−2

1
2

∂ûεi
∂z

+ ε2
∂ûε3
∂xi

� �� �
∂ bφ i − ûεið Þ

∂z
dxdz

+
ð
Ω

μ ~D ûεð Þ r−2ε2 ∂ûε3
∂z

� �
∂ bφ3 − ûε3ð Þ

∂z
dxdz

+〠
2

j=1

ð
Ω

ε2μ ~D ûεð Þ r−2 1
2 ε2

∂ûε3
∂xj

+
∂ûεj
∂z

 ! !

� ∂ bφ3 − ûε3ð Þ
∂xj

dxdz,

p̂ε, div bφ − ûεð Þð Þ =
ð
Ωε

p̂ε div bφ − ûεð Þdxdz,

B0 ûε, ûε, bφð Þ = 〠
2

i,j=1

ð
Ω

ε2ûεi
∂ûεj
∂xi

bφdxdz + 〠
2

i=1

ð
Ω

ε4ûεi
∂ûε3
∂xi

bφdxdz
+ 〠

2

j=1

ð
Ω

ε2ûε3
∂ûεj
∂z
bφ jdxdz +

ð
Ω

ε4ûε3
∂ûε3
∂z
bφ3dxdz,

j0 bφð Þ = bαð
Ω

~D bφð Þ dxdz + ð
ω

k̂ bφj jdx,

f̂
ε, bφ − ûε

� �
=〠

2

j=1

ð
Ω

f̂ i bφ i − ûεið Þdxdz +
ð
Ω

ε f̂ 3 bφ3 − ûε3ð Þdxdz,

~D ûεð Þ  = 1
4 〠

2

i,j=1
ε2

∂ûεi
∂xj

+
∂ûεj
∂xi

 !2 

+ 1
2〠

2

i=1

∂ûεi
∂z

+ ε2
∂ûε3
∂xi

� �2
+ ε2

∂ûε3
∂z

� �2
!1/2

:

ð21Þ

We now establish the estimates for the velocity field ûε

and the pressure p̂ε in Ω:

Theorem 1. Let ðûε, p̂εÞ ∈ KdivðΩÞ × Lr ′0 ðΩÞ be the solution of
variational problem (20), then there exists a constant C > 0
independent of ε such that:

〠
2

i,j=1
ε
∂ûεi
∂xj

�����
�����
r

Lr Ωð Þ
+ ε

∂ûε3
∂z

���� ����r
Lr Ωð Þ

+ 〠
2

i=1

∂ûεi
∂z

���� ����r
Lr Ωð Þ

+ ε2
∂ûε3
∂xi

���� ����r
Lr Ωð Þ

 !
≤ C:

ð22Þ

Proof. Choosing φ = 0 as test function in inequality (10), we
get

a uε, uεð Þ + B uε, uε, uεð Þ + αε
ð
Ωε

D uεð Þj jdxdx3

+
ð
ω

kε uεj jdx ≤ f ε, uεð Þ,
ð23Þ
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and because Bðuε, uε, uεÞ = 0, we obtain

a uε, uεð Þ + αε
ð
Ωε

D uεð Þj jdxdx3 +
ð
ω

kε uεj jdx ≤ f ε, uεð Þ: ð24Þ

Using now (13) and (14) will yield after some algebra

f ε, uεð Þ ≤ εh∗ ∇uεk kLr Ωð Þ f εk kLr ′ Ωεð Þ ≤
1
2 μCk ∇uεk krLr Ωεð Þ

+ εh∗ð Þr ′

r′ 1/2μrCkð Þr ′/r
f εk kr ′Lr ′ Ωεð Þ:

ð25Þ

From (24) and (25), we deduce that

a uε, uεð Þ + αε
ð
Ωε

D uεð Þj jdxdx3 +
ð
ω

kε uε − sj jdx

≤
1
2 μCk ∇uεk krLr Ωεð Þ +

εh∗ð Þr ′

r′ 1/2μrCkð Þr ′/r
f εk kr ′Lr ′ Ωεð Þ:

ð26Þ

We multiply (26) by εr−1, we get

εr−1a uε, uεð Þ + bαð
Ωε

~D ûεð Þ dxdz + ð
ω

k̂ ûεj jdx

≤
1
2 μCkε

r−1 ∇uεk krLr Ωεð Þ + εr−1
εh∗ð Þr ′

r′ 1/2μrCkð Þr ′/r
f εk kr ′Lr ′ Ωεð Þ:

ð27Þ

Now, since εr ′k f εkr ′
Lr ′ ðΩεÞ = ε1−rk f̂ kr ′Lr ′ ðΩÞ, it follows that

εr−1a uε, uεð Þ + bαð
Ω

~D ûεð Þ dxdz + ð
ω

k̂ ûεj jdx

≤
1
2 μCKε

r−1 ∇uεk krLr Ωεð Þ +
h∗ð Þr ′

r′ 1/2μrCkð Þr ′/r
f̂
��� ���r ′

Lr ′ Ωð Þ
:

ð28Þ

According to Korn’s inequality and (28), such that CK
independent of ε, we have

1
2 μCKε

r−1 ∇uεk krLr Ωεð Þ + bαð
Ω

~D ûεð Þ dxdz + ð
ω

k̂ ûεj jdx

≤
h∗ð Þr ′

r′ 1/2μrCkð Þr ′/r
f̂
��� ���r ′

Lr ′ Ωð Þ
:

ð29Þ

Using (29), we deduce (22), with C = ð1/2μCKÞ−1ðh∗Þr ′ /
r′ð1/2μrCkÞr ′/rk f̂ k

r ′
Lr ′ ðΩÞ, and

εr−1 ∇uεk krLr Ωεð Þ = ∇ûεk krLr Ωð Þ = 〠
2

i,j=1
ε
∂ûεi
∂xj

�����
�����
r

Lr Ωð Þ
+ ε

∂ûε3
∂z

���� ����r
Lr Ωð Þ

+ 〠
2

i=1

∂ûεi
∂z

���� ����r
Lr Ωð Þ

+ ε2
∂ûε3
∂xi

���� ����r
Lr Ωð Þ

 !
:

ð30Þ

Theorem 2. Under the conditions in Theorem (1), there exists
a constant C′ > 0 independent of ε such that

∂p̂ε

∂xi

���� ����
W−1,r ′ Ωð Þ

≤ C′  for i = 1, 2, ð31Þ

∂p̂ε

∂z

���� ����
W−1,r ′ Ωð Þ

≤ εC′: ð32Þ

Proof. To get the first estimate on the pressure in (31)–(32),
we choose in (20), bφ = ûε + ψ, ψ ∈W1,r

0 ðΩÞ3, to obtain

a0 ûε, ψð Þ + B0 ûε, ûε, ψð Þ − p̂ε, div ψð Þ
+ bαð

Ω

~D ûε + ψð Þ dxdz − bαð
Ω

~D ûεð Þ dxdz
≥ f̂

ε, ψ
� �

,

p̂ε, div ψð Þ ≤ a0 ûε, ψð Þ + B0 ûε, ûε, ψð Þ
+ bαð

Ω

~D ûε + ψð Þ dxdz − bαð
Ω

~D ûεð Þ dxdz
− f̂

ε, ψ
� �

:

ð33Þ

Keeping in mind that j~Dðûε + ψÞj ≤ ffiffiffi
2

p ðj~DðûεÞj + j~Dð
ψÞjÞ, it follows that

p̂ε, div ψð Þ ≤ a0 ûε, ψð Þ + B0 ûε, ûε, ψð Þ
+ bα ffiffiffi

2
p ð

Ω

~D ψð Þ dxdz + ffiffiffi
2

p
− 1

� �bαð
Ω

� ~D ûεð Þ dxdz − ð
Ω

f̂ψdxdz:

ð34Þ

Using Hölder formula, we get

p̂ε, div ψð Þ ≤ μ D ûεð Þk kr/r ′Lr Ωð Þ ψk kW1,r Ωð Þ3 + ûεk k2W1,r Ωð Þ3

� ψk kW1,r Ωð Þ3 + bα ffiffiffi
2

p
Ωj j1/r ′ ψk kW1,r Ωð Þ3

+
ffiffiffi
2

p
− 1

� �bα ~D ûεð Þ�� ��
Lr Ωð Þ3

+ f̂
��� ���

Lr ′ Ωð Þ3
ψk kW1,r Ωð Þ3 :

ð35Þ

By similar arguments, we choose in (20) bφ = ûε − ψ and
ψ ∈W1,r

0 ðΩÞ3 to obtain
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− p̂ε, div ψð Þ ≤ μ D ûεð Þk kr/r ′Lr Ωð Þ ψk kW1,r Ωð Þ3

+ C ûεk k2W1,r Ωð Þ3 ψk kW1,r Ωð Þ3 + bα ffiffiffi
2

p
Ωj j1/r ′

� ψk kW1,r Ωð Þ3 +
ffiffiffi
2

p
− 1

� �bα ~D ûεð Þ�� ��
Lr Ωð Þ3

+ f̂
��� ���

Lr ′ Ωð Þ3
ψk kW1,r Ωð Þ3 :

ð36Þ

We combine now (35) and (36) to see that

p̂ε, div ψð Þj j ≤ μ D ûεð Þk kr/r ′Lr Ωð Þ ψk kW1,r Ωð Þ3 + ûεk k2W1,r Ωð Þ3

� ψk kW1,r Ωð Þ3 + bα ffiffiffi
2

p
Ωj j1/r ′ ψk kW1,r Ωð Þ3

+
ffiffiffi
2

p
− 1

� �bα ~D ûεð Þ�� ��
Lr Ωð Þ3

+ f̂
��� ���

Lr ′ Ωð Þ3
ψk kW1,r Ωð Þ3 :

ð37Þ

Next, for i = 1, 2, we choose ψ = ðψ1, 0, 0Þ then ψ = ð0,
ψ2, 0Þ in the inequality (37) and using (22), we findð

Ω

∂p̂ε

∂xi
ψdxdz

  ≤ C1 + bα ffiffiffi
2

p
Ωj j1/r ′ + f̂ i

��� ���
Lr ′ Ωð Þ3

� �
� ψk kW1,r Ωð Þ3 +

ffiffiffi
2

p
− 1

� �bαC, ð38Þ

where jΩj =mesðΩÞ. Then, (31) holds for i = 1, 2.
To get (32), we take ψ = ð0, 0, ψ3Þ in the inequality (37) to

see that

1
ε

ð
Ω

∂p̂ε

∂z
ψdxdz

  ≤ C1 + bα ffiffiffi
2

p
Ωj j1/r ′ + f̂ 3

��� ���
Lr ′ Ωð Þ

� �
� ψk kW1,r Ωð Þ3 +

ffiffiffi
2

p
− 1

� �bαC: ð39Þ

The question which naturally arises is to know what will
be the asymptotic behavior of the fluid when the thickness of
the thin film is very small. Mathematically, it is about know-
ing: do the speed field and the pressure admit a limit when ε
tends towards zero and what is the limit problem who should
check this limit?

The answer to the first question is given in Theorem (3).
However, the answer to the second question will be dealt with
in Theorems (4), (7), and (8).

Theorem 3. Under the same assumptions as in Theorem (1)

and Theorem (2), there exist u⋆ = ðu⋆1 , u⋆2 Þ ∈ ~Vz and p⋆ ∈ Lr ′0
ðΩÞ such that:

ûεi ⇀ u⋆i , i = 1, 2 weakly in ~Vz , ð40Þ

ε
∂ûεi
∂xj

⇀ 0, i, j = 1, 2 weakly in Lr Ωð Þ, ð41Þ

ε
∂ûε3
∂z

⇀ 0, weakly in Lr Ωð Þ, ð42Þ

ε2
∂ûε3
∂xi

⇀ 0, i = 1, 2 weakly in Lr Ωð Þ, ð43Þ

εûε3 ⇀ 0, weakly in Lr Ωð Þ, ð44Þ

p̂ε ⇀ p⋆, weakly in Lr ′ Ωð Þ, p⋆  depend only of  x:

ð45Þ

Proof. By Theorem (1), there exists a constant C independent
of ε such that

∂ûεi
∂z

���� ����
Lr Ωð Þ

≤ C, i = 1, 2, ð46Þ

and using Poincare’s inequality, we deduce that

ûεik kLr Ωð Þ ≤ h∗
∂ûεi
∂z

���� ����
Lr Ωð Þ

, i = 1, 2: ð47Þ

that is to say, ûεi is bounded in Vz , i = 1, 2, this implies the
existence of û∗i in Vz such that ûεi converges to û∗i in LrðΩÞ.
The same, the inequality (22), we give

ε
∂ûεi
∂xj

�����
�����
Lr Ωð Þ

≤ C, ð48Þ

so ε∂ûεi /∂xj converges to ∂û∗i /∂xj and as kûεikLrðΩÞ ≤ C, then
∂ûεi /∂xj converges weakly to ∂û∗i /∂xj; which gives the con-
verges weakly of ∂ûεi /∂xj to 0 in LrðΩÞ.

Well thanks to the inequality: ε2k∂ûε3/∂xjkLrðΩÞ ≤ C,

we have the convergence ε2∂ûε3/∂xj ⟶ ∂û∗3 /∂xj and ε∂
ûε3/∂xj ⟶ ∂û∗3 /∂xj: This shows that ∂ûε3/∂xj converges
weakly to 0 in LrðΩÞ. Finally, using (31) and (32), we
get (45).

4. Study of the Limit Problem

In this section, we give both the equations satisfied by p∗

and u∗ in Ω and the inequalities for the trace of the velocity
u∗ðx, 0Þ and the stress ∂u∗/∂zðx, 0Þ on ω.
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Theorem 4. With the same assumptions of Theorem (3) the
solution ðu∗, p∗Þ satisfying the following relations

μ〠
2

i=1

ð
Ω

1
2

1
2
〠
2

i=1

∂u∗i
∂z

� �2
 !r−2/2

∂ u∗ið Þ
∂z

∂ bφ i − u∗ið Þ
∂z

dxdz

−
ð
Ω

p∗ xð Þ ∂bφ1

∂x1
+ ∂bφ2

∂x2

� �
dxdz

+ bα ffiffiffi
2

p

2

ð
Ω

∂bφ
∂z

  − ∂u∗

∂z

 � �
dxdz +

ð
ω

k̂ ∣bφ∣−∣u∗ ∣ð Þdx

≥〠
2

i=1

ð
Ω

f̂ i bφ i − u∗ið Þdxdz,∀bφ ∈WΓ1∪ΓL
,

ð49Þ

where

WΓ1∪ΓL
= bφ = bφ1, bφ2ð Þ ∈W1,r Ωð Þ2, bφ = 0 onΓ1 ∪ ΓL

� �
:

ð50Þ

The proof of this theorem is based on the following lemma.

Lemma 5 (Minty). Let E be a Banach spaces, T : E⟶ E′ a
monotone and hemicontinuous operator, and J : E⟶ �−∞,
+∞� a proper and convex functional. Let u ∈ E and f ∈ E′.
Then, the followings assertions are equivalent:

Tu ; v − uh iE ′×E + J vð Þ − J uð Þ ≥ f ; v − uh iE ′×E ′ ,∀v ∈ E,
Tv ; v − uh iE ′×E + J vð Þ − J uð Þ ≥ f ; v − uh iE ′×E,∀v ∈ E:

ð51Þ

Proof. By using Minty’s Lemma (5) and the fact that div ðûεÞ
= 0 in Ω, then (20) is equivalent to

a0 bφ , bφ − ûεð Þ + B0 bφ , bφ , bφ − ûεð Þ

− 〠
2

i=1
p̂ε, ∂bφ i

∂xi

� �
− p̂ε, ∂bφ3

∂z

� �
+ j0 bφð Þ − j0 ûεð Þ

≥ 〠
2

i=1

ð
Ω

f̂ i bφ i − ûεið Þdxdz +
ð
Ω

ε f̂ 3 bφ3 − ûε3ð Þdxdz:

ð52Þ

Using Theorem (3) and the fact that j0 is convex and lower
semicontinuous, ðlim inf j0ðûεÞ ≥ j0ðu∗ÞÞ, we obtain

μ〠
2

i=1

ð
Ω

1
2

1
2〠

2

i=1

∂bφ i

∂z

� �2 !r−2/2
∂ bφ ið Þ
∂z

∂ bφ i − u∗ið Þ
∂z

dxdz

−
ð
Ω

p∗
∂bφ1
∂x1

+ ∂bφ2
∂x2

� �
dxdz −

ð
Ω

p∗
∂bφ3
∂z

dxdz

+ j0 bφð Þ − j0 u∗ð Þ ≥ 〠
2

j=1

ð
Ω

f̂ i bφ i − u∗ið Þdxdz,

ð53Þ

and as
Ð
Ω
p∗∂bφ3/∂zdxdz = 0, because p∗ independent of z, we

deduce that

μ〠
2

i=1

ð
Ω

1
2

1
2〠

2

i=1

∂bφ i

∂z

� �2 !r−2/2
∂ bφ ið Þ
∂z

∂ bφ i − u∗ið Þ
∂z

dxdz

−
ð
Ω

p∗
∂bφ1
∂x1

+ ∂bφ2
∂x2

� �
dxdz + j0 bφð Þ − j0 u∗ð Þ

≥ 〠
2

j=1

ð
Ω

f̂ i bφ i − u∗ið Þdxdz:

ð54Þ

Using againMinty’s Lemma for the second time, thus, (54)
is equivalent to (49).

Theorem 6. The variational inequality (49) is equivalent the
following system

μ
ð
Ω

1
2

� �r/2 ∂u∗

∂z

 rdxdz + bαð
Ω

∂u∗

∂z

 dxdz + ð
ω

k̂ u∗j jdx

=
ð
Ω

f̂ u∗dxdz,

μ
ð
Ω

1
2

� �r/2 ∂u∗

∂z

 r−2 ∂u∗∂z
∂bψ
∂z

dxdz + bαð
Ω

∂bψ
∂z

 dxdz
+
ð
ω

k̂ bψ dx ≥ ð
Ω

f̂ bψdxdz,∀bψ ∈ Σ Kð Þ,
ð55Þ

where

Σ Kð Þ = bψ = bψ1, bψ2

	 

∈H1 Ωð Þ2 : bψ satisfy  D′

� �n o
:

ð56Þ

Theorem 7. Let us set

σ∗ = ~σ∗−∇p∗ and ~σ∗ = 1
2

� �r/2
μ
∂u∗

∂z

 r−2 ∂u∗∂z
+ bαπ, ð57Þ

then

−
∂
∂z

1
2
μ

1
2
〠
2

i=1

∂u∗i
∂z

� �2
 !r−2/2

∂u∗

∂z
+

ffiffiffi
2

p

2
bα ∂u∗/∂z

∂u∗/∂zj j

" #
= f̂−∇p∗,

ð58Þ

in W−1,r ′ðΩÞ2, where π ∈ L∞ðΩÞ2 and kπk∞,Ω ≤ 1:

Proof. For the proof of this theorem, we follow the same steps
as in [13] (Theorem (9)).
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Theorem 8. Under the assumptions of preceding theorems, u⋆

and p⋆ satisfy the following inequality

ð
ω

"
h3

12
∇p∗ + ~F + μ

ðh
0

ðy
0
A∗ x, ζð Þ ∂u

∗ x, ξð Þ
∂ξ

dξdy

+ bα ffiffiffi
2

p

2

ðh
0

ðy
0

∂u∗

∂z

  x, ξð Þdξdy

−
hμ
2

ðh
0
A∗ x, ζð Þ ∂u

∗ x, ξð Þ
∂ξ

dξ

−
bα ffiffiffi

2
p

h
4

ðh
0

∂u∗

∂z

  x, ξð Þdξ
#
:∇φ xð Þdx = 0,

ð59Þ

for all φ ∈W1,rðωÞ, where

~F xð Þ =
ðh
0
F x, yð Þdy − h

2
F x, hð Þ, F x, yð Þ =

ðh
0

ðξ
0
f̂ x, tð Þdtdξ,

A∗ x, ξð Þ = 1
2

1
2
〠
2

i=1

∂u∗

∂z
x, ξð Þ

� �2
 !r−2/2

:

ð60Þ

Proof. The proof can be found in [13].
The uniqueness of the limit velocity and pression are

given by the following theorem.

Theorem 9. The solution ðu∗, p∗Þ in Vz × Lr ′0 ðωÞ of inequality
(49) is unique.

Proof. Let ðu∗,1,p∗,1Þ and ðu∗,2,p∗,2Þ be two solutions of (49);
taking φ = u∗,2 and φ = u∗,1, respectively, as test function in
(59), we get

μ〠
2

i=1

ð
Ω

1
2

� �r/2
〠
2

i=1

∂u∗,1i

∂z

� �2 !r−2/2
∂u∗,1i

∂z
∂
∂z

u∗,1i −u∗,2i

	 

dxdz

≤ μ〠
2

i=1

ð
Ω

1
2

� �r/2
〠
2

i=1

∂u∗,2i

∂z

� �2 !r−2/2

� ∂u
∗,2
i

∂z
∂
∂z

u∗,1i −u∗,2i

	 

dxdz:

ð61Þ

Keeping in mind that for every x, y ∈ℝn

xj jr−2x − yj jr−2y, x − y
	 


≥ r − 1ð Þ xj j + yj jð Þr−2 x − yj j2,∀1
< r ≤ 2,

ð62Þ

we obtain

ð
Ω

∂u∗,1

∂z

 + ∂u∗,2

∂z

 � �r−2 ∂u∗,1
∂z

−
∂u∗,2

∂z

 2dxdz = 0, ð63Þ

where j∂u∗,j/∂zj = ð∑
2

i=1
ð∂u∗,ji /∂zÞ2Þ

1/2
, j = 1, 2.

Using Hölder’s inequality, we deduce

ð
Ω

∂
∂z

u∗,1 − u∗,2
	 
� �r

dxdz

≤ C
ð
Ω

∂u∗,1

∂z

  + ∂u∗,2

∂z

 � �r−2 ∂u∗,1
∂z

−
∂u∗,2

∂z

 2dxdz
 !r/2

×
ð
Ω

∂u∗,1

∂z

  + ∂u∗,2

∂z

 � �r
dxdz

� �2−r/2
,

ð64Þ

from (63) and (64), we deduce that ku∗,1−u∗,2kVz
= 0:

Finally, to prove the uniqueness of the pressure, we use
equation (59) with the two pressures p∗,1 and p∗,2, we find

ð
ω

h3

12∇ p∗,1−p∗,2
	 


∇φdx = 0: ð65Þ

Taking φ = p∗,1 − p∗,2 and using Poincaré inequality, we
obtain kp∗,1−p∗,2k

Lr ′ ðωÞ = 0. Then, p∗,1 = p∗,2.

5. Conclusion

In this work, the asymptotic behavior of an incompressible
Herschel-Bulkley fluid in a thin domain with Tresca boundary
conditions is considered, where we prove the convergence of
the unknowns which are the velocity and the pressure of the
fluid when the ε tends to zero. In addition, the limit problem
and the specific Reynolds equation are studied. The aim of
our next study is to complement and improve our current
results, which is to weaken the hypotheses of fixed point the-
ory by using the following concepts: weak contractual appli-
cations, applications that verify some characteristics, normal
global operating system, and closed graph applications. We
will state and give conclusions on the fixed point theory using
the concepts mentioned in recent references. On the other
hand, we will study the uniform convergent behavior of a
series of designations, of Banach space towards itself, with
fixed points, or nearly fixed points in order to show some
results in the fixed point theory applied on the problem stud-
ied in this paper. With the help of these results, we will intro-
duce some applications and provide some examples and
some notes regarding weak contraction mappings. In addi-
tion, we will mention and give some results of the fixed point
theory of weak contraction mappings by using the studied
algorithm in ([15, 22–35]).
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We consider a one-dimensional linear thermoelastic Bresse system with delay term, forcing, and infinity history acting on the shear
angle displacement. Under an appropriate assumption between the weight of the delay and the weight of the damping, we prove the
well-posedness of the problem using the semigroup method, where an asymptotic stability result of global solution is obtained.

1. Introduction

In this work, we considered with the following problem:

ρ1φtt − k φx + lw + ψð Þx − k0l wx − lφð Þ + μ1φt x, tð Þ + μ2φt x, t − τð Þ = 0,

ρ2ψtt − bψxx + k φx + lw + ψð Þ +
ð∞
0
g sð Þψxx x, t − sð Þds + γθx + f ψð Þ = 0,

ρ1wtt − k0 wx − lφð Þx + kl φx + lw + ψð Þ = 0,
ρ3θt + κqx + γψtx = 0,
αqt + βq + κθx = 0,

8>>>>>>>>>><
>>>>>>>>>>:

ð1Þ

ðx, tÞ ∈ ð0, 1Þ × ð0,∞Þ, with initial-boundary conditions

φ 0, tð Þ = φx 1, tð Þ = ψx 0, tð Þ = ψ 1, tð Þ =wx 0, tð Þ
=w 1, tð Þ = θ 0, tð Þ = q 1, tð Þ = 0, t ≥ 0,

ð2Þ

φ x, 0ð Þ = φ0 xð Þ, φt x, 0ð Þ = φ1 xð Þ, x ∈ 0, 1ð Þ,
ψ x, 0ð Þ = ψ0 xð Þ, ψt x, 0ð Þ = ψ1 xð Þ, x ∈ 0, 1ð Þ,
w x, 0ð Þ =w0 xð Þ,wt x, 0ð Þ =w1 xð Þ, x ∈ 0, 1ð Þ
θ x, 0ð Þ = θ0 xð Þ, q x, 0ð Þ = q0 xð Þ,
φt x, t − τð Þ = f0 x, t − τð Þ,

8>>>>>>>><
>>>>>>>>:

, ð3Þ

with τ > 0 is a time delay and μ1 and μ2 are positive real num-
bers. The function θ is the temperature difference, q is the
heat flux, and ρ1, ρ2, ρ3, k, l, k0, b, γ, κ, α, β are positive con-
stants. We use the energy method and assume that the relax-
ation function g satisfies the following hypotheses:

(G1) g : ℝ+ ⟶ℝ+ is a C1 function such that

g 0ð Þ > 0, b −
ð∞
0
g sð Þds = b − g0 = L > 0: ð4Þ

(G2) Let ζ be a positive constant with

g′ tð Þ ≤ −ζg tð Þ,∀t ≥ 0, ð5Þ
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and we suppose that the forcing term f ðψðx, tÞÞ satisfies
some hypotheses.

(A1) f : ℝ⟶ℝ such that

f ψ2� �
− f ψ1� ��� �� ≤ k0 ψ1�� ��θ − ψ2�� ��θ� �

ψ1 − ψ2�� �� ð6Þ

for all ψ1, ψ2 ∈ℝ,
where k0 > 0,θ > 0:
(A2)

0 ≤ f̂ ψð Þ ≤ f ψð Þψ for allψ ∈ℝ, ð7Þ

with

f̂ zð Þ =
ðz
0
f sð Þds: ð8Þ

Depending on some of the following parameters, we con-
sider

~η = 1 − αkρ3
ρ1

� �
ρ1
k

−
ρ2
b

� �
−
γ2α

b
,

k = k0:

ð9Þ

It is well known that, in the single wave equation, if μ2 = 0
, that is, in the absence of a delay, the energy of system expo-
nentially decays (see, e.g., [1–22]). On the contrary, if μ1 = 0,
that is, there exists only the delay part in the interior, the sys-
tem becomes unstable.

Bresse system is a mathematical model that describes the
vibration of a planar, linear shearable curved beam. The
model was first derived by Bresse [23], and it consists of three
coupled wave equations given by

ρ1φtt =Qx + lN + F1,
ρ2ψtt =Mx −Q + F2,
ρ1wtt =Nx − IQ + F3,

8>><
>>: ð10Þ

where

N = k0 wx − lφð Þ,
Q = k φx + lw + ψð Þ,
M = bψx:

ð11Þ

We use N ,Q, andM to denote the axial force, the shear force,
and the bending moment. Byw,φ, and ψ, we are denoting the
longitudinal, vertical, and shear angle displacements. Here,
ρ1 = ρA,ρ2 = ρI, b = EI, k0 = EA, k = k′GA, and l = R−1 (see,
e.g., [23]).

The Bresse system (10) is more general than the well-
known Timoshenko system where the longitudinal displace-
ment ω is not considered l = 0. The reader may refer to, for
example, [24–34].

System (10) is an undamped system, and its associated
energy remains constant when the time t evolves. To stabilize

system (10), many damping terms have been considered by
several authors (see, e.g., [1, 35–40]).

In the succeeding text, we will present some works, which
studied the stability of the dissipatif Bresse system. The paper
[41] was concerned with asymptotic stability of a Bresse sys-
tem with two frictional dissipations.

ρ1φtt − k φx + lw + ψð Þx − k0l wx − lφð Þ = −γ1φt ,
ρ2ψtt − bψxx + k φx + lw + ψð Þ = −γ2ψt ,
ρ1wtt − k0 wx − lφð Þx + lk φx + lw + ψð Þ = 0:

8>><
>>: ð12Þ

Under the condition of equal speeds of wave propagation,
the authors proved that the system is exponentially stable.
Otherwise, they show that Bresse system is not exponentially
stable. Then, they proved that the solution decays polynomi-
ally to zero with optimal decay rate, depending on the regu-
larity of initial data.

There are several works dedicated to the mathematical
analysis of the Bresse system. They are mainly concerned
with decay rates of solutions of the linear system. This is done
by adding suitable damping effects that can be of thermal,
viscous, or viscoelastic nature (see for instance [42–44]),
among others.

Concerning thermoelastic Bresse system, [37] considered

ρ1φtt − k φx + lw + ψð Þx − k0l wx − lφð Þ + lγθ1 = 0,
ρ2ψtt − bψxx + k φx + lw + ψð Þ + γθx = 0,
ρ1wtt − k0 wx − lφð Þx + kl φx + lw + ψð Þ + γθ1x = 0,
ρ3θt − θxx + γψtx = 0,
ρ3θ1x − θ1xx + γ wtx − lφtð Þ = 0,

8>>>>>>>><
>>>>>>>>:

ð13Þ

together with initial and specific boundary conditions and
proved an exponential and only polynomial-type decay sta-
bilities results.

2. Preliminaries and Well-Posedness

Firstly, we assume the following hypothesis:

μ2j j < μ1: ð14Þ

Using semigroup theory, we will prove that systems
(1)–(3) are well posed by introducing the following new var-
iable [17].

z x, ρ, tð Þ = φt x, t − τρð Þ, x ∈ 0, 1ð Þ, ρ ∈ 0, 1ð Þ, t > 0: ð15Þ

Then, we have

τzt x, ρ, tð Þ + zρ x, ρ, tð Þ = 0 in 0, 1ð Þ × 0, 1ð Þ × 0,∞ð Þ: ð16Þ

Further, let

ηt x, sð Þ = ψ x, tð Þ − ψ x, t − sð Þ, s ≥ 0: ð17Þ
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For this reason, we observe that

ηtt x, sð Þ + ηts x, sð Þ = ψt x, tð Þ: ð18Þ

Therefore, problem (1) takes the form

ρ1φtt − k φx + lw + ψð Þx − lk0 wx − lφð Þ + μ1φt x, tð Þ + μ2z x, 1, tð Þ = 0,
τzt x, ρ, tð Þ + zρ x, ρ, tð Þ = 0,

ρ2ψtt − Lψxx + k φx + lw + ψð Þ +
ð∞
0
g sð Þηtxx x, sð Þds + γθx + f ψ x, tð Þð Þ = 0,

ρ1wtt − k0 wx − lφð Þx + lk φx + lw + ψð Þ = 0,
ρ3θt + qx + γψtx = 0,
αqt + βq + θx = 0,
ηtt x, sð Þ + ηts x, sð Þ = ψt x, tð Þ:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð19Þ

The following are with the boundary conditions:

φ 0, tð Þ = φx 1, tð Þ = ψx 0, tð Þ = ψ 1, tð Þ =wx 0, tð Þ
=w 1, tð Þ = θ 0, tð Þ = q 1, tð Þ = 0, t ≥ 0:

ð20Þ

The initial conditions are as follows:

φ x, 0ð Þ = φ0 xð Þ, φt x, 0ð Þ = φ1 xð Þ,
ψ x, 0ð Þ = ψ0 xð Þ, x ∈ 0, 1ð Þ,
ψt x, 0ð Þ = ψ1 xð Þ,w x, 0ð Þ =w0 xð Þ,
wt x, 0ð Þ =w1 xð Þ, x ∈ 0, 1ð Þ,
θ x, 0ð Þ = θ0 xð Þ, q x, 0ð Þ = q0 xð Þ, x ∈ 0, 1ð Þ,
φt x,−tð Þ = f0 x, tð Þ in 0, 1ð Þ × 0, τð Þ,
z x, 1, tð Þ = f x, t − τð Þ in 0, 1ð Þ × 0, τð Þ,
ηt x, 0ð Þ = 0,∀t ≥ 0,
ηt 0, sð Þ = ηt 1, sð Þ = 0∀s ≥ 0,
η0 x, sð Þ = η0 sð Þ = 0∀s ≥ 0:

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

ð21Þ

Let ξ be positive constants such that

τ μ2j j < ξ < τ 2μ1 − μ2j jð Þ, ð22Þ

where τ is a real number with 0 < τ and μ1, μ2 are a positive
constants, and the initial data are ðφ0, φ1, ψ0, ψ1,w0,w1, f ,
θ0, q0, η0Þ.

If we set

U = φ, φt , z, ψ, ψt ,w,wt , θ, q, ηt
� �T , ð23Þ

then

U ′ = φt , φtt , zt , ψt , ψtt ,wt ,wtt , θt , qt , ηtt
� �T

: ð24Þ

Therefore, problems (19)–(21) can be written as

U ′ tð Þ = AU tð Þ + F,
U 0ð Þ = φ0, φ1,f1 :−,τð Þ, ψ0, ψ1,w0,w1, θ0, q0, η0ð Þ,

(

ð25Þ

where the operator A is defined by

A

φ

u

z

ψ

v

w

ϖ

θ

q

ϕ

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

=

u
k
ρ1

φx + lw + ψð Þx +
k0l
ρ1

wx − lφð Þ − μ1
ρ1

u−
μ2
ρ1

z :,1ð Þ

−
1
τ

� �
zρ

v

L
ρ2

ψxx −
k
ρ2

φx + lw + ψð Þ + 1
ρ2

ð∞
0
g sð Þϕxx sð Þds − γ

ρ2
θx

ϖ

k0
ρ1

wx − lφð Þx −
kl
ρ1

φx + lw + ψð Þ

−
1
ρ3

qx −
γ

ρ3
vx

−
β

α
q −

k
α
θx

−ϕs + v

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,

ð26Þ

F =

0
0
0
0

−
1
ρ2

f ψð Þ

0
0
0
0
0

0
BBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCA

: ð27Þ

We consider the following spaces:

H1
∗ 0, 1ð Þ = h ∈H1 0, 1ð Þ: h 0ð Þ = 0

	 

,

~H
1
∗ 0, 1ð Þ = h ∈H1 0, 1ð Þ: h 1ð Þ = 0

	 

,

H2
∗ 0, 1ð Þ =H2 0, 1ð Þ ∩H1

∗ 0, 1ð Þ,
~H
2
∗ 0, 1ð Þ =H2 0, 1ð Þ ∩ ~H

1
∗ 0, 1ð Þ,

H =H1
∗ 0, 1ð Þ × L2 0, 1ð Þ × L2 0, 1ð Þ,H1

0 0, 1ð Þ� �
× ~H

1
∗ 0, 1ð Þ × L2 0, 1ð Þ × ~H

1
∗ 0, 1ð Þ × L2 0, 1ð Þ

× ~H
1
∗ 0, 1ð Þ × L2 0, 1ð Þ × L2 0, 1ð Þ × L2 0, 1ð Þ

× L2g ℝ+,H1
0 0, 1ð Þ� �

,

ð28Þ
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where L2gðℝ+,H1
0ð0, 1ÞÞ denotes the Hilbert space of H1

0 −
valued functions on ℝ+, endowed with the inner product

V1, V2ð ÞL2g ℝ+,H1
0 Ωð Þð Þ =

ð1
0

ð1
0
g sð ÞV1x sð ÞV2x sð Þdsdx: ð29Þ

Wewill show under the assumption (22) that A generates
a C0 semigroup on H .

Now, we consider the vectors

U = φ, u, z, ψ, v,w, ϖ, θ, q, ϕð ÞT ,
�U = �φ, �u, �z, �ψ, �v, �w, �ϖ, �θ, �q, ϕ

� �T , ð30Þ

and we define the inner product

U , �U
� �

H
= k
ð1
0
φx + ψ + lwð Þ �φx + �ψ + l�wð Þdx + ρ2

ð1
0
v�vdx

+ ρ1

ð1
0
ϖ�ϖdx + k0

ð1
0
wx − lφð Þ �wx − l�φð Þdx

+ l
ð1
0
ψx �ψxdx + ρ1

ð1
0
u�udx + ξ

ð1
0

ð1
0
z�zdρdx

+ ρ3

ð1
0
θ�θdx + α

ð1
0
q�qdx

+
ð1
0

ð∞
0
g sð Þϕx sð Þϕx sð Þdxds,

ð31Þ

where the domain of A is defined by

D Að Þ =

U ∈H /φ ∈H2
∗ 0, 1ð Þ ; ψ,w ∈ ~H

2
∗ 0, 1ð Þ, u, θ ∈H1

∗ 0, 1ð Þ ;
v, ϖ, q ∈ ~H

1
∗ 0, 1ð Þ, u = z :,0ð Þ, zρ ∈ L2 0, 1ð Þ ; L2 0, 1ð Þ� �
, φx 1ð Þ = 0,wx 0ð Þ = ψx 0ð Þ = 0,

ϕs ∈ L
2
g ℝ+,H1

0 0, 1ð Þ� �
, ϕ x, 0ð Þ = 0,

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
:

ð32Þ

Important properties of the above metrics are stated in
the following lemmas. Although most of these results are
followed straightforwardly from the known results, they are
crucial for what follows. So for the convenience of the reader,
we give their proofs here.

Lemma 1. The operator A is dissipative and satisfies, for any
U ∈DðAÞ,

AU ,Uh iH = −β
ð1
0
q2dx + −μ1 +

μ2
2

+ ξ

2τ

� �ð1
0
u2dx

+ μ2
2

−
ξ

2τ

� �ð1
0
z2 x, 1ð Þdx

+ 1
2

ð1
0

ð∞
0
g′ sð Þ ϕx x, sð Þj j2dsdx ≤ 0:

ð33Þ

Proof. For any U ∈DðAÞ, using the inner product,

AU ,Uh iH =

u

k
ρ1

φx + lw + ψð Þx +
k0l
ρ1

wx − lφð Þ − μ1
ρ1

u−
μ2
ρ1

z :,1ð Þ

−
1
τ

� �
zρ

v

L
ρ2

ψxx −
k
ρ2

φx + lw + ψð Þ + 1
ρ2

ð∞
0
g sð Þϕxx sð Þds − γ

ρ2
θx

−ϖ
k0
ρ1

wx − lφð Þx −
kl
ρ1

φx + lw + ψð Þ

−
1
ρ3

qx −
γ

ρ3
vx

−
β

α
q −

1
α
θx

−ϕs + v

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,

φ

u

z

ψ

v

w

ϖ

θ

q

ϕ

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

* +

H

: ð34Þ
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Then,

AU ,Uh iH = k
ð1
0
ux + v + lϖð Þ φx + lw + ψð Þdx + k0

ð1
0
ϖx − luð Þ

� wx − lφð Þdx + k
ð1
0
φx + lw + ψð Þudx

+ k0l
ð1
0
wx − lφð Þudx − μ1

ð1
0
u2dx

− μ2

ð1
0
z x, 1ð Þudx + L

ð1
0
ψxxvdx

− k
ð1
0
φx + lw + ψð Þvdx − γ

ð1
0
θxvdx

+ k0

ð1
0
wx − lφð Þϖdx − kl

ð1
0
φx + lw + ψð Þϖdx

+ L
ð1
0
vxψxdx +

ð1
0

ð∞
0
g sð Þϕx sð Þ −ϕs + vð Þdxds

−
ð1
0
qxθdx − γ

ð1
0
uxθdx − β

ð1
0
q2dx −

ð1
0
θxqdx

− ξ
ð1
0

ð1
0
zzρdρdx:

ð35Þ

By the fact that

−β
ð1
0
q2dx − μ1

ð1
0
u2dx − μ2

ð1
0
z x, 1ð Þudx +

ð1
0

ð∞
0
g sð Þϕx sð Þ

� −ϕs + vð Þdxds − ξ

τ

ð1
0

ð1
0
z x, ρð Þzρ x, ρð Þdρdx

= −β
ð1
0
q2dx − μ1

ð1
0
u2dx − μ2

ð1
0
z x, 1ð Þudx +

ð1
0

ð∞
0
g sð Þϕx sð Þ

� −ϕs + vð Þdxds − ξ

2τ

ð1
0

ð1
0

∂
∂ρ

z2 x, ρð Þdρdx

= −β
ð1
0
q2dx − μ1

ð1
0
u2dx − μ2

ð1
0
z x, 1ð Þudx +

ð1
0

ð∞
0
g sð Þϕx sð Þ

� −ϕs + vð Þdxds − ξ

2τ

ð1
0
z2 x, 1ð Þ − z2 x, 0ð Þ	 


dx

= −β
ð1
0
q2dx − μ1

ð1
0
u2dx − μ2

ð1
0
z x, 1ð Þudx +

ð1
0

ð∞
0
g sð Þϕx sð Þ

� −ϕs + vð Þdxds − ξ

2τ

ð1
0
z2 x, 1ð Þdx + ξ

2τ

ð1
0
u2dx,

ð36Þ

and using Young’s inequality, we find

AU ,Uh iH ≤ −β
ð1
0
q2dx + −μ1 +

μ2
2 + ξ

2τ

� �ð1
0
u2dx

+ μ2
2 −

ξ

2τ

� �ð1
0
z2 x, 1ð Þdx

+ 1
2

ð1
0

ð∞
0
g′ sð Þ ϕx x, sð Þj j2dsdx:

ð37Þ

Keeping in mind condition (22), the desired result yields.

Lemma 2. The operator I − A is surjective.

Proof. We need to show that for all F = ð f1, f2, f3, f4, f5, f6,
f7 f8, f9, f10ÞT ∈H , there exists U ∈DðAÞ such that

U − AU =F , ð38Þ

that is,

−u + φ = f1 ∈H
1
∗ 0, 1ð Þ,

−k φx + lw + ψð Þx − k0l wx − lφð Þ + ρ1u + μ1u+μ2z :,1ð Þ = ρ1 f2 ∈ L
2 0, 1ð Þ,

z + τ−1zρ = τf3 ∈ L
2 0, 1ð Þ,H1 0, 1ð Þ� �

,

−v + ψ = f4 ∈ ~H
1
∗ 0, 1ð Þ,

−Lψxx + k φx + lw + ψð Þ + ρ2v −
ð∞
0
g sð Þϕxx sð Þds + γθx = ρ2 f5 ∈ L

2 0, 1ð Þ,

−ϖ +w = f6 ∈ ~H
1
∗ 0, 1ð Þ,

−k0 wx − lφð Þx + kl φx + lw + ψð Þ + ρ1ϖ = ρ1 f7 ∈ L
2 0, 1ð Þ,

qx + γvx + ρ3θ = ρ3 f8 ∈ L
2 0, 1ð Þ,

β + αð Þq + θx = αf9 ∈ L
2 0, 1ð Þ,

ϕ + ϕs − v = f10 ∈ L
2 0, 1ð Þ:

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð39Þ

From (39), we define

θ = α

k

ðx
0
f9 yð Þdy − α

k
β + αð Þ

ðx
0
q yð Þdy, ð40Þ

so θð0, tÞ = 0:
Inserting u = φ − f1, v = ψ − f4, ϖ =w − f6 and (39) into

(40), we get

−k φx + lw + ψð Þx − k0l wx − lφð Þ + ρ1φ + μ1u+μ2z :,1ð Þ = h1 ∈ L
2 0:1ð Þ,

−Lψxx + k φx + lw + ψð Þ + ρ2ψ −
ð∞
0
g sð Þϕxx sð Þds − γ β + αð Þq = h2 ∈ L

2 0:1ð Þ,

−k0 wx − lφð Þx + kl φx + lw + ψð Þ + ρ1w = h3 ∈ L
2 0:1ð Þ,

qx + β + αð Þ
ðx
0
q yð Þdy − γψx = h4 ∈ L

2 0:1ð Þ,

z + τ−1zρ = h5 ∈ L
2 0:1ð Þ,

ϕ + ϕs − v = h6 ∈ L
2 0:1ð Þ,

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð41Þ

where

h1 = ρ1 f1 + f2ð Þ,
h2 = ρ2 f4 + f5ð Þ − α

k
γf9,

h3 = ρ1 f6 + f7ð Þ,

h4 = γf4x + ρ3 f8 −
α

k

ðx
0
f9 yð Þdy

� �
,

h5 = z + τ−1zρ,
h6 = ϕ + ϕs − v:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð42Þ
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Furthermore, by (39), we can find as zðx, 0Þ = uðxÞ for
x ∈ ð0, 1Þ: Following the same last approach, we obtain by
using equation for z in (39)

z x, ρð Þ = u xð Þe−τρ + τe−τρ
ðρ
0
f3 x, sð Þeτρsds: ð43Þ

From (39), we obtain

z x, ρð Þ = φ xð Þe−τρ − f1e
−τρ + τe−τρ

ðρ
0
f3 x, sð Þeτρsds: ð44Þ

Then,

z x, 1ð Þ = φ xð Þe−τ + z0 xð Þ, ð45Þ

such that

z0 xð Þ = −f1e
−τ + τe−τ

ðρ
0
f3 x, sð Þeτsds: ð46Þ

We note that the last equation in (41) with ϕðx, 0Þ = 0
has a unique solution

ϕ x, sð Þ =
ðx
0
ey f10 x, yð Þ + v xð Þdyð Þe−s

� �

=
ðx
0
ey f10 x, yð Þ + ψ xð Þ − f4 xð Þdyð Þe−s

� �
:

ð47Þ

In order to solve (42), we consider

a φ, ψ,w, qð Þ, ~φ, ~ψ, ~w, ~qð Þð Þ = L ~φ, ~ψ, ~w, ~qð Þ, ð48Þ

where

a : H1
∗ 0, 1ð Þ × ~H

1
∗ 0, 1ð Þ × ~H

1
∗ 0, 1ð Þ × L2 0, 1ð Þ

h i2
⟶ℝ

ð49Þ

is the bilinear form given by

a φ, ψ,w, qð Þ, ~φ, ~ψ, ~w, ~qð Þð Þ

= k
ð1
0
φx + lw + ψð Þ ~φx + l~w + ~ψð Þdx + β + αð Þ

ð1
0
q~qdx

+ b
ð1
0
ψx~ψxdx + ρ2

ð1
0
ψ~ψdx − γ β + αð Þ

ð1
0
q~ψdx

+ ρ1

ð1
0
ψ~ψdx + γ β + αð Þ

ð1
0
ψ~qdx + ρ1

ð1
0
w~wdx

+ k0

ð1
0
wx − lφð Þ ~wx − l~φð Þdx +

ð1
0
φ~φ μ1 + μ2e

−τð Þdx

+ ρ3 β + αð Þ
ð1
0

ðx
0
q yð Þdy

ðx
0
~q yð Þdy

� �
dx:

L : H1
∗ 0, 1ð Þ × ~H

1
∗ 0, 1ð Þ × ~H

1
∗ 0, 1ð Þ × L2 0, 1ð Þ

h i
⟶ℝ

ð50Þ

is the linear form defined by

L ~φ, ~ψ, ~w, ~qð Þ =
ð1
0
h1~φdx +

ð1
0
h2~ψdx +

ð1
0
h3 ~wdx

+ α + βð Þ
ð1
0
h4

ðx
0
~q yð Þdydx +

ð1
0
μ1 f1μ2z0ð Þ~φdx:

ð51Þ

It is easy to verify that a is continuous and coercive,
and L is continuous. So applying the Lax-Milgram theo-

rem, we deduce that for all ð~φ, ~ψ, ~w, ~qÞ ∈H1
∗ð0, 1Þ × ~H

1
∗ð0,

1Þ × ~H
1
∗ð0, 1Þ × L2ð0, 1Þ, problem (48) admits a unique solu-

tion ðφ, ψ,w, qÞ ∈H1
∗ð0, 1Þ × ~H

1
∗ð0, 1Þ × ~H

1
∗ð0, 1Þ × L2ð0, 1Þ:

Since DðAÞ is dense in H consequently, using Lemmas 1
and 2, we conclude that A is a maximal monotone operator.
Hence, by Hille-Yosida theorem (see [45]), we have the fol-
lowing well-posedness result such that (25) is satisfied.

Theorem 3. LetU0 ∈H , then there exists a unique weak solu-
tion U ∈ Cðℝ+,HÞ of problems (1)–(3). Moreover, if U0 ∈D
ðAÞ, then U ∈ Cðℝ+,DðAÞÞ ∩ C1ðℝ+,HÞ:

Lemma 4. The operator F defined in (26) is locally Lipschitz
in H :

Proof. Let U = ðφ, u, z, ψ, v,w, ϖ, θ, q, ϕÞT , �U = ð�φ, �u, �z, �ψ, �v,
�w, �ϖ, �θ, �q, ϕÞT , then we have

F Uð Þ − F �U
� � 

H
≤ f ψð Þ − f �ψð Þk kL2 : ð52Þ

By using (6), Holder’s and Poincaré’s inequalities, we can
obtain

f ψð Þ − f �ψð Þk kL2 ≤ ψk kθ2θ + �ψk kθ2θ
� �

ψ − �ψk k ≤ c1 ψ − �ψk k,
ð53Þ

which gives us

F Uð Þ − F �U
� � 

H
≤ c1 ψ − �ψk kH : ð54Þ

Then, the operator F is locally Lipschitz inH . The proof
is hence complete.

3. Exponential Stability

Here, we present our stability result for the energy of the
solution of systems (1)–(3), by using the multiplier tech-
nique. So we define the energy of our system by
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E tð Þ = 1
2

ð1
0
ρ1φ

2
t + ρ2ψ

2
t + ρ1w

2
t + bψ2

x + ρ3θ
2 + αq2

�
+ k φx + ψ + lwð Þ2 + k0 wx − lφð Þ2�dx
+ ξ

2

ð1
0

ð1
0
z2 x, ρ, tð Þdρdx + 1

2

ð1
0

ð∞
0
g sð Þ ηtx x, sð Þ�� ��2dsdx

+
ð1
0
f̂ ψ tð Þð Þdx:

ð55Þ

The proof of the stability for our system is based on the
following lemmas:

Lemma 5. Let ðφ, ψ,w, θ, q, z, ηtÞ be the solution of (19)-(21).
Then, the energy functional, defined by (55), satisfies

E′ tð Þ ≤ −β
ð1
0
q2dx − C

ð1
0
ψ2
t dx − μ1 −

ξ

2τ
−

μ2j j
2

� �

� φtk k22 −
ξ

2τ
−

μ2j j
2

� �
z x, 1, tð Þk k22

+ 1
2

ð1
0

ð∞
0
g′ sð Þ ηtx x, sð Þ�� ��2dsdx,

ð56Þ

such that C > 0.

Proof.Multiplying ð1:1Þ1, ð1:1Þ2, ð1:1Þ3, ð1:1Þ4, and ð1:1Þ5 by
φt ,ψt ,wt ,θ, and q, respectively, and after simplification, we
have (56).

With the fact

d
dt

f̂ ψð Þ = f ψð Þψ, ð57Þ

it gives us (56).

Lemma 6. Let ðφ, ψ,w, θ, q, z, ηtÞ be the solution of (19)–(21).
We have

F1 tð Þ≔ αρ3

ð1
0
θ
ðx
0
q yð Þdydx ð58Þ

satisfies, for any ε1 > 0, the estimate

F1′ tð Þ ≤ −
ρ3
2

ð1
0
θ2dx + ε1

ð1
0
ψ2
t dx + c 1 + 1

ε1

� �ð1
0
q2dx: ð59Þ

Proof. Taking the derivative of F1, using the fourth and fifth
equations in (1) and performing integration by parts, we get

F1′ tð Þ = −ρ3k
ð1
0
θ2dx − αk

ð1
0
q2dx − αγ

ð1
0
ψtx

ð1
0
q yð Þdydx

− βρ3

ð1
0
θ
ðx
0
q yð Þdydx:

ð60Þ

According to Cauchy–Schwarz and Young’s inequalities
with ε1 > 0, we get (59).

Lemma 7. Let ðφ, ψ,w, θ, q, z, ηtÞ be the solution of (19)–(21).
We have

F2 tð Þ≔ −
ρ2ρ3
γ

ð1
0
θ
ðx
0
ψt yð Þdydx ð61Þ

satisfies, for any ε1, ε2, δ1>0, the estimate

F2′ tð Þ ≤ −
ρ2
γ

ð1
0
ψ2
t dx + ε2

ð1
0
φx + ψ + lwð Þ2dx

+ ε3 +
ρ3
γ

ε2
b2λ2

+ b2

2ε2λ2

 ! !ð1
0
ψ2
xdx

+ c 1 + 1
ε2

+ 1
ε3

� �ð1
0
θ2dx + c

ð1
0
q2dx

+ g0
4δ1

ð1
0

ð∞
0
g sð Þ ηtx x, sð Þ�� ��2dsdx:

+ δ1 + C1ð Þ
ð1
0
θ2xdx:

ð62Þ

Proof. For differentiation of F2, using equations in (1) and
integration by parts, we obtain

F2′ tð Þ = −ρ2

ð1
0
ψ2
t dx −

ρ2k
γ

ð1
0
qψtdx + ρ3

ð1
0
θ2dx

−
bρ3
γ

ð1
0
θψxdx +

kρ3
γ

ð1
0
φx + ψ + lwð Þ

ðx
0
θ yð Þdydx

+ ρ3
γ

ð1
0

ð∞
0
g sð Þηtx x, sð Þds

ðx
0
θx yð Þdydx

+ ρ3
γ

ð1
0
θ
ðx
0
f ψð Þdydx:

ð63Þ

Estimate (62) follows by using Cauchy–Schwarz,
Young’s, and Poincaré’s inequalities that

ð1
0
f ψð Þθj jdx ≤

ð1
0
ψj jθ ψj j θj jdx ≤ ψk kθ2 θ+1ð Þ ψk k2 θ+1ð Þ θk k

≤ C1

ð1
0
θ2dx:

ð64Þ

Lemma 8. Let ðφ, ψ,w, θ, q, z, ηtÞ be the solution of (19)–(21).
Then, the energy functional

F3 tð Þ≔ −ρ1

ð1
0
φφt +wwtð Þdx ð65Þ
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satisfies the estimate

F3′ tð Þ ≤ − ρ1 −
1
4ε4

� �ð1
0
φ2
t dx + c

ð1
0
ψ2
xdx + k0

ð1
0
wx − lφð Þ2dx

+ c
ð1
0
φx + ψ + lwð Þ2dx − ρ1

ð1
0
w2

t dx

+ ε5μ2 + μ1ε4ð Þ
ð1
0
φ2dx + μ2

4ε5

ð1
0
z2 x, 1, tð Þdx:

ð66Þ

Proof. Using (1)–(3) gives

F3′ tð Þ = −ρ1

ð1
0
φ2
t dx + k

ð1
0
φx + ψ + lwð Þ2dx

− k
ð1
0
φx + ψ + lwð Þψdx − ρ1

ð1
0
w2

t dx

+ k0

ð1
0
wx − lφð Þ2dx + μ1

ð1
0
φφtdx

+ μ2

ð1
0
φz x, 1, tð Þdx:

ð67Þ

Using Young’s and Poincaré’s inequalities, estimate (66)
is established.

Lemma 9. Let ðφ, ψ,w, θ, q, z, ηtÞ be the solution of (19)–(21).
Then, the energy functional

F4 tð Þ≔ ρ2

ð1
0
ψψtdx ð68Þ

satisfies for any δ2 > 0 the estimate

F4′ tð Þ ≤
b
2
+ δ2 + C2

� �ð1
0
ψ2
xdx + ρ2

ð1
0
ψ2
t dx

+ k2

b

ð1
0
φx + ψ + lwð Þ2dx + c

ð1
0
θ2dx

+ g0

4δ2

ð1
0

ð∞
0
g sð Þ ηtx x, sð Þ�� ��2dsdx:

ð69Þ

Proof. Taking the derivative of F4 and using the second equa-
tion in (1), it follows that

F4′ tð Þ = −b
ð1
0
ψ2
xdx + ρ2

ð1
0
ψ2
t dx + γ

ð1
0
ψxθdx

− k
ð1
0
φx + ψ + lwð Þdx

+
ð1
0
ψx xð Þ

ð∞
0
g sð Þηtx x, sð Þdsdx:−

ð1
0
ψf ψð Þdx,

ð70Þ

ð1
0
f ψð Þψj jdx ≤

ð1
0
ψj jθ ψj j ψj jdx ≤ ψk kθ2 θ+1ð Þ ψk k2 θ+1ð Þ ψk k

≤ C2

ð1
0
ψ2
xdx:

ð71Þ
Young’s and Poincaré’s inequalities for (70) yield (69).

Lemma 10. Let ðφ, ψ,w, θ, q, z, ηtÞ be the solution of
(19)–(21). Then, the energy functional

F5 tð Þ≔ −ρ1

ð1
0
φt wx − lφð Þdx − ρ1

ð1
0
wt φx + ψ + lwð Þdx

ð72Þ

satisfies the estimate

F5′ tð Þ ≤ − lk0 −
μ1
4ε6

−
μ2
4ε7

� �ð1
0
wx − lφð Þ2dx − lρ1

2

ð1
0
w2

t dx

+ lρ1 + ε6μ1ð Þ
ð1
0
φ2
t dx + c

ð1
0
ψ2
t dx

+ lk
ð1
0
φx + ψ + lwð Þ2dx + ε7μ2

ð1
0
z2 x, 1, tð Þdx:

ð73Þ

Proof. For differentiation of F5, using ð1:1Þ1 and ð1:1Þ3, we
arrive at

F5′ tð Þ = −lk0
ð1
0
wx − lφð Þ2dx − lρ1

ð1
0
w2

t dx + lρ1

ð1
0
φ2
t dx

+ lk
ð1
0
φx + ψ + lwð Þ2dx − ρ1

ð1
0
ψtwtdx

+ μ1

ð1
0
φt wx − lφð Þdx + μ2

ð1
0
z x, 1, tð Þ wx − lφð Þdx:

ð74Þ

Young’s inequality for (74) yields (73).

Lemma 11. Let ðφ, ψ,w, θ, q, z, ηtÞ be the solution of (19)-(21)
and let k = k0. Then, the functional

F6 tð Þ≔−ρ1

ð1
0
wx − lφð Þ

ðx
0
wt yð Þdydx

− ρ1

ð1
0
φt

ðx
0
φx + ψ + lwð Þdydx

ð75Þ

satisfies the estimate

F6′ tð Þ ≤ −
ρ1
2

ð1
0
φ2
t dx − k0

ð1
0
wx − lφð Þ2dx + ρ1

ð1
0
w2

t dx

+ k
ð1
0
φx + ψ + lwð Þ2dx + ρ1

2

ð1
0
ψ2
t dx:

ð76Þ
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Proof. A simple differentiation of F6, using the first and third
equations in (1), leads to

F6′ tð Þ = −ρ1

ð1
0
φ2
t dx − k0

ð1
0
wx − lφð Þ2dx + ρ1

ð1
0
w2

t dx

− ρ1

ð1
0
φt

ðx
0
ψt yð Þdy + k

ð1
0
φx + ψ + lwð Þ2dx

+ l k − k0ð Þ
ð1
0
wx − lφð Þ

ðx
0
φx + ψ + lwð Þdydx,

ð77Þ

and using Young’s and Cauchy-Schwarz inequalities,
with the fact that k = k0, gives (76).

Lemma 12. Let ðφ, ψ,w, θ, q, z, ηtÞ be the solution of
(19)–(21) and let (9) holds, and we have

F7 tð Þ≔ ρ2

ð1
0
ψt φx + ψ + lwð Þdx + bρ1

k

ð1
0
φtψxdx

+ bρ3
γ

ρ1
k

−
ρ2
b

� �ð1
0
θφtdx

−
b
γ

ρ1
k

−
ρ2
b

� �ð1
0
q φx + ψ + lwð Þdx

−
bl2ρ2
k0

ð1
0
ψψtdx +

blρ1
k0

ð1
0
ψwtdx

ð78Þ

satisfies, for any ε4, ε5, δ3 > 0, the estimate

F7′ tð Þ ≤ −
�
k
2
−

bη
γαε10

+ γ

4ε1
+ kbρ3
γ4ε2ρ1

ρ1
k

−
ρ2
b

� �

+ b
4ε3

�ð1
0
φx + ψ + lwð Þ2dx + ε8

ð1
0
w2

t dx

+
 
b2l2

k
+ bl2ρ2δ3

k0
+ bε3 +

bl2

k0
c1

+ 2
ε

b2λ1
+ b2

2ελ1

 !
+ c2

!ð1
0
ψ2
xdx

+ ε9

ð1
0
wx − lφð Þ2dx + c 1 + 1

ε8
+ bρ1ε4

k

� �

�
ð1
0
ψ2
t dx + c 1 + 1

ε8

� �ð1
0
q2dx + c

�
1 + 1

ε9

+ bρ3μ1
γρ1

ε5
ρ1
k

−
ρ2
b

� ��ð1
0
θ2dx +

�
bη
γα

ε10

+ γε1 +
kbρ3
γρ1

ε2
ρ1
k

−
ρ2
b

� ��ð1
0
θ2xdx

+ bρ1
k4ε4

+ bρ3μ1
4ε5γρ1

ρ1
k

−
ρ2
b

� �� �ð1
0
φ2
t dx

+ lε1
b2

ð1
0
w + ψð Þ2dx + ε

2

ð1
0
φx + ψð Þ2

+ g0bl
2ρ2

k04δ3

ð1
0

ð∞
0
g sð Þ ηtx x, sð Þ�� ��2dsdx:

ð79Þ

Proof. Taking the deviate of F7, we obtain

F7′ tð Þ = ρ2

ð1
0
ψtt φx + ψ + lwð Þdx + ρ2

ð1
0
ψt φx + ψ + lwð Þtdx

+ bρ1
k

ð1
0
φttψxdx −

bρ1
k

ð1
0
φtψxtdx

+ bρ3
γ

ρ1
k

−
ρ2
b

� �ð1
0
θtφtdx

+ bρ3
γ

ρ1
k

−
ρ2
b

� �ð1
0
θφttdx

−
b
γ

ρ1
k

−
ρ2
b

� �ð1
0
qt φx + ψ + lwð Þdx

−
b
γ

ρ1
k

−
ρ2
b

� �ð1
0
q φx + ψ + lwð Þtdx

−
bl2ρ2
k0

ð1
0
ψ2
t dx −

bl2ρ2
k0

ð1
0
ψttψdx

+ blρ1
k0

ð1
0
wttψdx +

blρ1
k0

ð1
0
wtψtdx:

ð80Þ

From the RHS of (80) and the relations in (1)–(3), we
arrive at

ρ2

ð1
0
ψtt φx + ψ + lwð Þdx

= −k
ð1
0
φx + ψ + lwð Þ2dx − γ

ð1
0
θx φx + ψ + lwð Þdx

− b
ð1
0
ψx φx + ψ + lwð Þxdx

−
ð1
0

ð∞
0
g sð Þψxx x, t − sð Þds φx + ψ + lwð Þdx

−
ð1
0
f ψð Þ φx + ψ + lwð Þdx,

ð81Þ

ρ1

ð1
0
φttψxdx = k

ð1
0
ψx φx + ψ + lwð Þxdx

+ k0l
ð1
0
wx − lφð Þdx − μ1

ð1
0
φtψxdx,

ð82Þ

ρ3

ð1
0
θtφtdx = k

ð1
0
qφxtdx + γ

ð1
0
ψtφxtdx, ð83Þ

ð1
0
θφttdx = −

k
ρ1

ð1
0
θx φx + ψ + lwð Þdx

+ lk0
ρ1

ð1
0
θ wx − lφð Þdx − μ1

ρ1

ð1
0
θφtdx,

ð84Þ

−
ð1
0
qt φx + ψ + lwð Þdx = β

α

ð1
0
q φx + ψ + lwð Þdx

+ k
α

ð1
0
θx φx + ψ + lwð Þdx,

ð85Þ
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−ρ2

ð1
0
ψttψdx = b

ð1
0
ψ2
xdx + k

ð1
0
ψ φx + ψ + lwð Þdx

− γ
ð1
0
θψxdx +

ð1
0

ð∞
0
g sð Þψxxdsψdx

+
ð1
0
f ψð Þψdx,

ð86Þ

ρ1

ð1
0
wttψdx = −k0

ð1
0
ψx wx − lφð Þdx

− kl
ð1
0
ψ φx + ψ + lwð Þdx:

ð87Þ

Invoking to (81)–(87) into (80), we arrive at

F7′ tð Þ = −k
ð1
0
φx + ψ + lwð Þ2dx + ρ2 −

bl2ρ2
k0

 !ð1
0
ψ2
t dx

+ lρ2 +
blρ1
k0

� �ð1
0
ψtwtdx +

bη
αγ

ð1
0
θx φx + ψ + lwð Þdx

−
b
γ

ρ1
k

−
ρ2
b

� �ð1
0
qψtdx −

bl
γ

ρ1
k

−
ρ2
b

� �ð1
0
qwtdx

+ blk0ρ3
γρ1

ρ1
k

−
ρ2
b

� �ð1
0
θ wx − lφð Þdx − γbl2

k0

ð1
0
θψxdx

+ bβ
αγ

ρ1
k

−
ρ2
b

� �ð1
0
q φx + ψ + lwð Þdx + b2l2

k0

ð1
0
ψ2
xdx

− bl
ð1
0
ψx wx − lφð Þdx − γ

ð1
0
θx φx + ψ + lwð Þdx

−
kbρ3
γρ1

ρ1
k

−
ρ2
b

� �ð1
0
θx φx + ψ + lwð Þdx

− b
ð1
0
ψx φx + ψ + lwð Þxdx +

bρ1
k

ð1
0
ψtφxtdx

−
bρ3μ1
γρ1

ρ1
k

−
ρ2
b

� �ð1
0
θφtdx −

ð1
0
f ψð Þ φx + ψ + lwð Þdx

+ bl2

k0

ð1
0
f ψð Þψdx + bl2ρ2

k0

ð1
0
ψx xð Þ

ð∞
0
g sð Þηtx x, sð Þ:dsdx:

ð88Þ

We thus have

ð1
0
φx f ψð Þj jdx ≤ φxk k ψk kθ2 θ+1ð Þ ψk k2 θ+1ð Þ

≤
ε

2b2
ð1
0
φ2
xdx +

b2

2ελ1

ð1
0
ψ2
xdx

≤
ε

b2

ð1
0
φx + ψð Þ2dx + ε

b2

ð1
0
ψ2dx + b2

2ελ1

ð1
0
ψ2
xdx

≤
ε

b2

ð1
0
φx + ψð Þ2dx + ε

b2λ1
+ b2

2ελ1

 !ð1
0
ψ2
xdx:

ð89Þ

Estimate (79) follows thanks to Young’s inequality and
the fact that k = k0.

Lemma 13. Let ðφ, ψ,w, θ, q, z, ηtÞ be the solution of
(19)–(21). Then, the energy functional

F8 tð Þ≔
ð1
0
ρ1φtφdx +

μ1
2

ð1
0
φ2dx: ð90Þ

Then, we have the following estimate, for any ε11 > 0,

F8′ tð Þ ≤ −K + ε11
K
2
+ μ2c

2

� �� �ð1
0
φ2
xdx +

K
2ε11

ð1
0
ψ2
xdx

+ μ2
2ε11

ð1
0
z2 x, 1, tð Þdx + ρ1

ð1
0
φ2
t dx,

ð91Þ

where c = 1/π2 is the Poincaré constant.

Proof. Taking the derivative of (90) with respect to t, we have

F8′ tð Þ = ρ1

ð1
0
φttφdx + ρ1

ð1
0
φ2
t dx + μ1

ð1
0
φtφdx: ð92Þ

Then, by using the first equation in (1), we find

F8′ tð Þ = k
ð1
0
φx + ψ + lwð Þxφdx − μ2

ð1
0
φz x, 1, tð Þdx + ρ1

ð1
0
φ2
t dx:

ð93Þ

Consequently, we arrive at

F8′ tð Þ = −k
ð1
0
φx + ψ + lwð Þφxdx − μ2

ð1
0
φz x, 1, tð Þdx + ρ1

ð1
0
φ2
t dx:

ð94Þ

Applying Young’s inequality and Poincaré’s inequality,
we find (90).

Lemma 14. Let ðφ, ψ,w, θ, q, z, ηtÞ be the solution of
(19)–(21). Then, we define the functional

F9 tð Þ≔
ð1
0

ð1
0
e−2τρz2 x, ρ, tð Þdρdx: ð95Þ

Then, the following result holds.

F9′ tð Þ ≤ −F9 tð Þ − c1
2τ

ð1
0
z2 x, 1, tð Þdx + 1

2τ

ð1
0
ψ2
t x, tð Þdx, ð96Þ

where c is a positive constant.
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Proof. Taking the deviate of (95) with respect to t and using
the equation (16), we get

d
dt

ð1
0

ð1
0
e−2τρz2 x, ρ, tð Þdρdx

� �

= −
1
τ

ð1
0

ð1
0
e−2τρzzρ x, ρ, tð Þdρdx

= −
ð1
0

ð1
0
e−2τρz2 x, ρ, tð Þdρdx

−
1
2τ

ð1
0

ð1
0

∂
∂ρ

e−2τρz2 x, ρ, tð Þ� �
dρdx:

ð97Þ

Making use of the estimate above, implies that there
exists a positive constant c1 such that (96) holds.

Theorem 15. Assume that η = 0 and k = k0: Then, ðφ, ψ,w,
θ, q, z, ηtÞ the solution of (19)–(21) satisfies

E tð Þ ≤ c0e
−c1t , t ≥ 0, ð98Þ

where the positive constant c0 is directly depending on initial
data and the uniform constant c1 is depending only on the
coefficients of the system. For N ,Ni > 0,

L tð Þ≔NE tð Þ + 〠
i=9

i=1
NiFi tð Þ, ð99Þ

Then, from (56), (59), (62), (66), (69), (73), (76), (79), (91),
and (96), we have

L ′ tð Þ ≤ −βN + c1 1 + 1
ε1

� �
+ cN2 + c 1 + 1

ε8

� �
N7

� �ð1
0
q2dx

−N μ1 −
ξ

2
−

μ2j j
2

� �
φtk k22 −N

ξ

2
−

μ2j j
2

� �
z x, 1, tð Þk k22

−
�
N1ρ3
2

−N2 C1 + 1 + 1
ε2

+ 1
ε3

� �
− cN4

− c 1 + 1
ε9

+ bρ3μ1
γρ1c

ε5
ρ1
k

−
ρ2
b

� �� �
N7

�ð1
0
θ2dx

+
�
ε1N1 − CN −N2

ρ2
γ

+ ρ2N4 + cN5 +
ρ1
2
N6

+ c 1 + 1
ε8

+ bρ1ε4
k

� �
N7 + ρ1N8 +

1
2τ

N9

�ð1
0
ψ2
t dx

+
�
ε2N2 + cN3 +

k2

b
N4 + lkN5 + kN6

−
�
k
2
−

b~η
αγε10

+ γ

4ε1
+ kbρ3
γ4ε2ρ1

ρ1
k

−
ρ2
b

� �

+ b
4ε3

�
N7

�ð1
0
φx + lw + ψð Þ2dx

+
�

ε3 +
ρ3
γ

ε2
b2λ2

+ b2

2ε2λ2

 ! !
N2 + cN3

+ δ2 +
b
2
+ C2

� �
N4 +

 
bl2ρ2δ3

k0
+ b2l2

k
+ bε3

+ bl2

k0
c1 + 2

ε

b2λ1
+ b2

2ελ1

 !
+ c2

!
N7

+ k
2ε11

− k + ε11
k
2
+ ε11

μ2c
2

� �
N8

�ð1
0
ψ2
xdx

+ −ρ1N3 −
lρ1
2
N5 + ρ1N6 + ε8N7

� �ð1
0
w2

t dx

+ k0N3 − lk0 −
μ1
4ε6

−
μ2
4ε7

� �
N5 − k0N6 + ε9N7

� �

�
ð1
0
wx − lφð Þ2dx + μ2

4ε5
N3 + ε7μ2N5 +

μ2
2ε11

N8 −
c1
2τ

N9

� �

�
ð1
0
z2 x, 1, tð Þdx + ε5μ2 + ε4μ1½ �N3

ð1
0
φ2dx

+
�
− 1 −

1
4ε4

� �
N3 + lρ1 + ε6μ1ð ÞN5 −

ρ1
2
N6

+ ρ1N8 +
bρ1
k4ε4

+ bρ3μ1
4ε5γρ1

ρ1
k

−
ρ2
b

� �� �
N7

�ð1
0
φ2
t dx

+ −k + ε11
k
2
+ μ2c

2

� �� �
N8

� �ð1
0
φ2
xdx

+
�

b~ηε10
αγ

+ γε1 +
kbρ3
γρ1

ε2
ρ1
k

−
ρ2
b

� �� �
N7

+N2δ1

�ð1
0
θ2xdx −N9F9 tð Þ +

 
N2g0

4δ1
+ N4g0

4δ2

+ N7g0bl
2ρ2

k04δ3
−N

ζ

2

!ð1
0

ð∞
0
g sð Þ ηtx x, sð Þ�� ��2dsdx:

ð100Þ

At this point, we have to choose our constants very care-
fully. First, choosing εii = 1, :::10 small enough such that

ε1 ≤
N2 ρ2/γð Þ + ρ2N4 + cN5 + ρ1/2ð ÞN6

N1
: ð101Þ

Moreover, we pick N9 large enough so that

μ2
4ε5

N3 + ε7μ2N5 +
μ2
2ε11

N8 −
c1
2τ

N9 ≤ 0,

N9 ≥
μ2/4ε5ð ÞN3 + ε7μ2N5 + μ2/2ε11ð ÞN8

c1/2τ
,

ð102Þ

and we take ε11 small enough such that

ε11 ≤
k

k/2 + μ2c/2ð ÞN8
: ð103Þ
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Next, choosing N5 large enough such that

N5ρ3κ

4
≥N4 γρ3 +

ρ3
2ε4

b + 2κð Þ
� �

: ð104Þ

After that, we can choose N large enough such that

N ≥
c1 1 + 1/ε1ð Þ + cN2 + c 1 + 1/ε8ð ÞN7

β
,

N2g0
4δ1

+ N4g0
4δ2

+ g0bl
2ρ2

k04δ3
−N

ζ

2
≤ 0:

ð105Þ

Thus, the relation (100) becomes

d
dt

L tð Þ ≤ −η1

ð1
0
ψ2
t + ψ2

x + φ2
t + φx + lw + ψð Þ2�

+ θ2 + q2
�
dx − η1

ð1
0

ð1
0
z2 x, ρ, tð Þdρdx,

ð106Þ

which leads by (55) that there exists also η2, such that

d
dt

L tð Þ ≤ −η2E tð Þ,∀t ≥ 0: ð107Þ

Lemma 16. For N large enough, there exist two positive con-
stants β1 and β2 depending on Ni, i = 1,⋯, 9 and εi, i = 1,⋯
, 11 such that

β1E tð Þ ≤L tð Þ ≤ β2E tð Þ,∀t ≥ 0: ð108Þ

Proof. We consider the functional

H tð Þ = 〠
i=9

i=1
NiFi tð Þ ð109Þ

and show that

H tð Þj j ≤ CE tð Þ, C > 0: ð110Þ

From (58), (61), (65), (68), (72), (75), (78), (90), and (95),
we obtain

H tð Þj j ≤N1 αρ3

ð1
0
θ
ðx
0
q yð Þdydx

����
����

+N2 −
ρ2ρ3
γ

ð1
0
θdx
ðx
0
ψt yð Þdydx

����
����

+N3 ρ1

ð1
0
φφt +wwtð Þdx

����
����

+N4 ρ2

ð1
0

ðx
0
ψψt t, xð Þdx

����
����

+N5 −ρ1

ð1
0
φt wx − lφð Þdx − ρ1

ð1
0
wt φx + ψ + lwð Þdx

����
����

+N6 −ρ1
ð1
0
wx − lφð Þ

ðx
0
wt yð Þdydx

����
− ρ1

ð1
0
φt

ðx
0
φx + ψ + lwð Þdydx

����
+N7 ρ2

ð1
0
φx + ψ + lwð Þdx + bρ1

k

ð1
0
φtψxdx

����
����

+N8

ð1
0
ρ1φφtdx +

μ1
2

ð1
0
φ2dx

����
����

+N9

ð1
0

ð1
0
e−2τρz2 x, ρ, tð Þdρdx:

ð111Þ

By using, the trivial relation

ð1
0
φ + lwð Þ2dx ≤ 2c

ð1
0
φx + lw + ψð Þ2dx + 2c

ð1
0
ψ2
xdx, ð112Þ

Young’s and Poincaré’s inequalities, we get

H tð Þj j ≤ α1

ð1
0
φ2
t dx + α2

ð1
0
ψ2
t dx + α3

ð1
0
w2

t

+ α4

ð1
0
ψ2
x + α5

ð1
0
θ2dx + α6

ð1
0
q2dx

+ α7

ð1
0

φx + lw + ψð Þ2 + wx − lφð Þ2� �
dx

+
ð1
0

ð1
0
z2 x, ρ, tð Þdρdx,

ð113Þ

where α1,⋯, α6 are the positive constants as follows:

α1 ≔
1
2 N3ρ1 +N8ρ1ð Þ,

α2 ≔
1
2 N4ρ2 +N2

ρ2ρ3
γ

� �
,

α3 =
1
2 N3ρ1 +N6ρ1ð Þ,

α4 ≔
bρ1
2k ,

α5 ≔
1
2 N1ρ3 +

ρ2ρ3
γ

� �
,

α6 ≔
1
2 N1ρ3 +N5τ0ρ3ð Þ,

α7 ≔
1
2 N7ρ2 + 3ρ1ð Þ:

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð114Þ
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From (113), we have

H tð Þj j ≤ ĈE tð Þ, ð115Þ

for

Ĉ = max α1, α2, α3, α4, α5, α6f g
min ρ1, ρ2, ρ3, k, b, κ, γ, δ, τ0f g : ð116Þ

Therefore, we get

L tð Þ −NE tð Þj j ≤ ĈE tð Þ: ð117Þ

Then, we can choose N large enough so that β1 =N − Ĉ
> 0. Then, (108) holds true for β2 =N + Ĉ > 0, and this con-
cludes the proof of the Lemma.

Combining now (107) and (108), we conclude that there
exists some Λ > 0 such that

d
dt

L tð Þ ≤ −ΛL tð Þ,∀t ≥ 0: ð118Þ

Integration of (118) yields

L tð Þ ≤L 0ð Þe−Λt ,∀t ≥ 0: ð119Þ

Finally, using (108) and (119), so (98) is satisfied, we thus
immediately reach to Theorem 15.

4. Conclusion and Perspective

In this current study, a one-dimensional linear thermoelastic
Bresse system with delay term, forcing, and infinity history
acting on the shear angle displacement is considered.
According to an appropriate assumption between the weight
of the delay and the weight of the damping, the well-
posedness of the problem using the semigroup method is
proved, where an asymptotic stability result of global solution
is obtained. In next article, we will generalize this result to
convex bounded domain with a holomorphic map, and let
x and y be two distinct fixed points for our problem. We will
suppose there is at least one complex geodesics passing
through two distinct variables. We will see that this method
of proof cannot be generalized to the case of a bounded
domain of a complex Banach space. Also, in the last part of
the next article, we will study the fixed points of the analytical
automorphisms of the open unit-ball B of a complex Banach
space. More precisely, we will assume that B is homogeneous
and we will show that, if the right hand side is an analytical
automorphism of B, there exists a complex geodesic which
we will specify formed of fixed points of the right hand. We
will see that the set of fixed points of the right hand can be
much larger by using the studied algorithm in ([46–51]).
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This paper deals with the existence and uniqueness of solutions of a new class of Moore-Gibson-Thompson equation with respect
to the nonlocal mixed boundary value problem, source term, and nonnegative memory kernel. Galerkin’s method was the main
used tool for proving our result. This work is a generalization of recent homogenous work.

1. Introduction

In this contribution, we are interested to study the existence
and uniqueness of solutions of the following problem

Lu x, tð Þ = auttt + βutt − c2Δu − bΔut −
ðt
0
h t − σð ÞΔu σð Þdσ = F x, tð Þ,

u x, 0ð Þ = u0 xð Þ, ut x, 0ð Þ = u1 xð Þ, utt x, 0ð Þ = u2 xð Þ,
∂u
∂η

=
ðt
0

ð
Ω

ξ, τð Þdξdτ, x ∈ ∂Ω:

8>>>>>><
>>>>>>:

ð1Þ

Here, a and β are physical parameters, and c is the speed
of sound. The convolution term

Ð t
0hðt − sÞΔuðsÞds reflects the

memory effect of materials due to vicoelasticity, F is a given
function, and h is the relaxation function satisfying

(H1) h ∈ C1ðℝ+,ℝ + Þ is a nonincreasing function
satisfying

h 0ð Þ > 0, 1 − h0 = l > 0, ð2Þ

where h0 =Gð∞Þ = Ð∞0 hðsÞds > 0, GðtÞ = Ð t0hðsÞds, and

h′′ > 0.
(H2) ∃ζ > 0 satisfying

h′ tð Þ ≤ −ζh tð Þ, t ≥ 0: ð3Þ

(H3)

β − a > 0 ð4Þ
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The phenomena resulting from sound waves (diffrac-
tion, interference, reflection) in terms of modeling are very
important. As the existence of the third derivative is very
important, especially in the field of thermodynamics
(EIT), the study of these models is considered the begin-
ning of an in-depth understanding of both convergent
and good behavior. From the results extracted, the equa-
tion of MGT resulted in nonlinear acoustics, for much
depth, see ([1–7]) and especially [8] where equation of
MGT appeared for the first time. Also, nonlinear problems
of great importance can be considered [9], where Galer-
kin’s method was applied in solving them, for more depth
([2, 3, 10–13]). Recently, in [14], the authors studied the
equation of MGT with memory. Likewise, in [1], the
authors used Galerkin’s method to demonstrate the ability
to solve a mixed problem of MGT equation in the
absence of viscous elasticity and memory. Based on work
[9] and the works we mentioned earlier, we want to
prove the existence and uniqueness of a weak solution
to the problem (1).

We divide this paper into the following: in the second
part, we put some definitions and appropriate spaces. Then,
we apply Galerkin’s method to prove the existence, and in
the fourth part, we demonstrate the uniqueness.

2. Preliminaries

We will define the spaces: VðQTÞ and WðQTÞ by

V QTð Þ = u ∈W1
2 QTð Þ: ut ∈W1

2 QTð Þ, u,∇u ∈ L2h QTð Þ� �
,

W QTð Þ = u ∈ V QTð Þ: u x, Tð Þ = 0f g,

L2h QTð Þ = u ∈ V QTð Þ:
ðT
0
h ∘ u tð Þdt<∞

� �
,

ð5Þ

where

h ∘ u tð Þ =
ð
Ω

ðt
0
h t − σð Þ u tð Þ − u σð Þð Þ2dσdx: ð6Þ

Consider the equation

a uttt , vð ÞL2 QTð Þ + β utt , vð ÞL2 QTð Þ − c2 Δu, vð ÞL2 QTð Þ
− b Δut , vð ÞL2 QTð Þ − Δw, vð ÞL2 QTð Þ = F, vð ÞL2 QTð Þ,

ð7Þ

where

w x, tð Þ =
ðt
0
h t − σð Þu x, σð Þdσ, ð8Þ

and ð:, :ÞL2ðQTÞ stands for the inner product in L2ðQTÞ, u is
supposed to be a solution of (1) and v ∈WðQTÞ. Evaluation
of the inner product in [9] gives

−a utt , vtð ÞL2 QTð Þ − β ut , vtð ÞL2 QTð Þ + c2 ∇u,∇vð ÞL2 QTð Þ
+ b ∇ut ,∇vð ÞL2 QTð Þ + ∇w,∇vð ÞL2 QTð Þ

= F, vð ÞL2 QTð Þ + c2
ðT
0

ð
∂Ω
v
ðt
0

ð
Ω

v ξ, τð Þdξdτ
� �

dsxdt

+ b
ðT
0

ð
∂Ω
v
ð
Ω

u ξ, tð Þdξdsxdt − b
ðT
0

ð
∂Ω
v
ð
Ω

u0 ξð Þdξdsxdt

+ a u2 xð Þ, v x, 0ð Þð ÞL2 Ωð Þ + β u1 xð Þ, v x, 0ð Þð ÞL2 Ωð Þ

+
ðT
0

ð
∂Ω
v
ðt
0

ð
Ω

w ξ, τð Þdξdτ
� �

dsxdt:

ð9Þ

We give two useful inequalities:

(i) Gronwall inequality. Let the nonnegative integrable
functions φðtÞ, ϕðtÞ on the interval I with the nonde-
creasing function hðtÞ. If ∀t ∈ I, we have

ϕ tð Þ ≤ φ tð Þ + c
ðt
0
ϕ sð Þds, ð10Þ

where c > 0, hence,

ϕ tð Þ ≤ φ tð Þ exp ctð Þ: ð11Þ

(ii) Trace inequality (see [15]). If Φ ∈W2
1ðΩÞ where Ω is

a bounded domain in ℝn with smooth boundary ∂Ω,
then for any ε > 0,

Φk k2L2 ∂Ωð Þ ≤ ε ∇Φk k2L2 Ωð Þ + l εð Þ Φk k2L2 Ωð Þ, ð12Þ

where lðεÞ > 0.

Definition 1. We call a generalized solution to the problem
(1) for each function u ∈ VðQTÞ that fulfills the equation (9)
for each v ∈WðQTÞ.

3. Solvability of the Problem

In this section, we use Galerkin’s method to prove the
existence of a generalized solution of our problem.

Theorem 2. If u0 ∈W1
2ðΩÞ, u1 ∈W1

2ðΩÞ, u2 ∈ L2ðΩÞ, and
F ∈ L2ðQTÞ, then there is at least one generalized solution
in VðQTÞ to problem (1).

Proof. Let fZkðxÞgk≥1 be a fundamental system in W1
2ðΩÞ,

such that ðZk, ZlÞΩ = δk,l.
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First, we will give an approximate solution of the problem
(1) in the form

uN x, tð Þ = 〠
N

k=1
Ck tð ÞZk xð Þ, ð13Þ

where CkðtÞ are constants given by the conditions, for k =
1,⋯,N ,

Lu x, tð Þ, Zl xð Þð ÞL2 Ωð Þ = F x, tð Þ, Zl xð Þð ÞL2 Ωð Þ ð14Þ

and can be determined from the relations

a uNttt , Zl xð Þ� 	
L2 Ωð Þ + β uNtt , Zl xð Þ� 	

L2 Ωð Þ + c2 ∇uN ,∇Zl xð Þ� 	
L2 Ωð Þ

+ b ∇uNt ,∇Zl xð Þ� 	
L2 Ωð Þ + ∇wN ,∇Zl xð Þ� 	

L2 Ωð Þ

= F x, tð Þ, Zl xð Þð ÞL2 Ωð Þ + c2
ð
∂Ω
Zl xð Þ

ðt
0

ð
Ω

uN ξ, τð Þdξdτ
� �

dsx

+ b
ð
∂Ω
Zl xð Þ

ðt
0

ð
Ω

uN ξ, τð Þdξdτ
� �

dsx

+
ð
∂Ω
Zl xð Þ

ðt
0

ð
Ω

wN ξ, τð Þdξdτ
� �

dsx,

ð15Þ
substitution of (13) into (15), and we find for l = 1,⋯,N .ð
Ω

〠
N

k=1
aC‴

k tð ÞZk xð ÞZl xð ÞβC‴
k tð ÞZk xð ÞZl xð Þ

n
+ c2Ck tð Þ∇Zk xð Þ:∇Zl xð Þ + bCk′ tð Þ∇Zk xð Þ:∇Zl xð Þ
+
ðt
0
h t − σð ÞCk σð Þdσ

� �
∇Zk xð Þ:∇Zl xð Þ

�
dx

= F x, tð Þ, Zl xð Þð ÞL2 Ωð Þ + c2 〠
N

k=1

ðt
0
Ck τð Þ

ð
∂Ω
Zl xð Þ

ð
Ω

Zk ξð Þdξdsx
� �

dτ

+ b〠
N

k=1

ðt
0
Ck′ τð Þ

ð
∂Ω
Zl xð Þ

ð
Ω

Zk ξð Þdξdsx
� �

dτ

+ 〠
N

k=1

ðt
0

ðτ
0
h τ − σð ÞCk σð Þdσ

� � ð
∂Ω
Zl xð Þ

ð
Ω

Zk ξð Þdξdsx
� �

dτ

ð16Þ
From (15) it follows that

〠
N

k=1
aC‴

k tð Þ Zk xð Þ, Zl xð Þð ÞL2 Ωð Þ + βCk″ tð Þ Zk xð Þ, Zl xð Þð ÞL2 Ωð Þ
n

+ c2Ck tð Þ ∇Zk xð Þ,∇Zl xð Þð ÞL2 Ωð Þ
+ bCk′ tð Þ ∇Zk xð Þ,∇Zl xð Þð ÞL2 Ωð Þ

+
ðt
0
h t − σð ÞCk σð Þdσ

� �
∇Zk xð Þ,∇Zl xð Þð ÞL2 Ωð Þ

�

= F x, tð Þ, Zl xð Þð ÞL2 Ωð Þ + c2 〠
N

k=1

ðt
0
Ck τð Þ

ð
∂Ω
Zl xð Þ

ð
Ω

Zk ξð Þdξdsx
� �

dτ

+ b〠
N

k=1

ðt
0
Ck′ τð Þ

ð
∂Ω
Zl xð Þ

ð
Ω

Zk ξð Þdξdsx
� �

dτ

+ 〠
N

k=1

ðt
0

ðτ
0
h τ − σð ÞCk σð Þdσ

� � ð
∂Ω
Zl xð Þ

ð
Ω

Zk ξð Þdξdsx
� �

dτ

ð17Þ

Let

Zk, Zlð ÞL2 Ωð Þ = δkl =
1, k = l

0, k ≠ l
,

(

∇Zk,∇Zlð ÞL2 Ωð Þ = γkl ,ð
∂Ω
Zl xð Þ

ð
Ω

Zk ξð Þdξds = χkl ,

F x, tð Þ, Zl xð Þð ÞL2 Ωð Þ = Fl tð Þ:

ð18Þ

Then, (17) can be written as

〠
N

k=1
aδklC

‴
k tð Þ + βδklCk″ tð Þ + c2Ck tð Þγkl

n
+
ðt
0
h t − σð ÞCk σð Þdσ

� �
γkl + bCk′ tð Þγkl

−
ðt
0
c2Ck τð Þχkl −

ðτ
0
h τ − σð ÞCk σð Þdσ

� �
χkl


 �
dτ
�
= Fl tð Þ:

ð19Þ

By differentiating (two times) with respect to t, it gives

〠
N

k=1
aδklC

‴
k tð Þ + βδklC

‴
k tð Þ + c2Ck″ tð Þγkl + h 0ð ÞCk′ tð Þγkl

n
+ bCk″ tð Þγkl − c2Ck tð Þχkl − bCk″ tð Þχkl − h 0ð ÞCk tð Þχkl

o
= Fl″ tð Þ:

ð20Þ

〠
N

k=1
aδklC

‴
k 0ð Þ + βδklCk″

n o
: ð21Þ

We find a system of differential equations of fifth order
with respect to t, constant coefficients, and the initial condi-
tions (21). Hence, we obtain a Cauchy problem of linear dif-
ferential equations with smooth coefficients that is uniquely
solvable. Thus, ∀n, ∃uN (x) satisfying (15).

Now, we prove that uN is sequence bounded. To do this,
we multiply each equation of (15) by the appropriate Ck′ðtÞ
summing over k from 1 toN . Hence, by integration the result
equality with respect to t from 0 to τ, and τ ≤ T , it gives

a uNttt , uNt
� 	

L2 Qτð Þ + β uNttt , uNt
� 	

L2 Qτð Þ + c2 ∇uN ,∇uNt
� 	

L2 Qτð Þ
+ b ∇uNt ,∇uNt
� 	

L2 Qτð Þ + ∇wN ,∇uNt
� 	

L2 Qτð Þ

= F, uNt
� 	

L2 Qτð Þ + c2
ðτ
0

ðτ
0
uNt x, tð Þ

ðt
0

ð
Ω

ξ, ηð Þdξdη
� �

dsxdt

+ b
ðτ
0

ð
∂Ω
uNt x, tð Þ

ðt
0

ð
Ω

uNt ξ, ηð Þdξdη
� �

dsxdt

+
ðτ
0

ð
∂Ω
uNt x, tð Þ

ðt
0

ð
Ω

wN ξ, ηð Þdξdη
� �

dsxdt:

ð22Þ
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Evaluation of the terms on the LHS of (22) gives

a uNttt , uNt
� 	

L2 Qτð Þ = a uNττ, uNτ
� 	

L2 Ωð Þ − a uNtt x, 0ð Þ, uNt x, 0ð Þ� 	
L2 Ωð Þ

− a
ðτ
0
utt x, tð Þk k2L2 Ωð Þdt,

ð23Þ

β uNtt , uNt
� 	

L2 Qτð Þ =
β

2 uNτ x, τð Þ�� ��2
L2 Ωð Þ −

β

2 uNt x, 0ð Þ�� ��2
L2 Ωð Þ,

ð24Þ

c2 ∇uN ,∇uNt
� 	

L2 Qτð Þ =
c2

c
∇uN x, τð Þ�� ��2

L2 Ωð Þ

−
c2

c
∇uN x, 0ð Þ�� ��2

L2 Ωð Þ,
ð25Þ

b ∇uNt ,∇uNt
� 	

L2 Qτð Þ = b
ðτ
0
∇uNt x, tð Þ�� ��2

L2 Ωð Þdt, ð26Þ

∇wN ,∇uNt
� 	

L2 Qτð Þ =
1
2 h∘∇u

N τð Þ − 1
2G τð Þ ∇uN x, τð Þ�� ��2

L2 Ωð Þ

−
1
2

ðτ
0
h′N tð Þdt

+ 1
2

ðτ
0
h tð Þ ∇uN x, τð Þ�� ��2

L2 Ωð Þdt,

ð27Þ

c2
ðτ
0

ð
∂Ω
uNt

ðt
0

ð
Ω

uN ξ, ηð Þdξdη
� �

dsxdt

= c2
ð
∂Ω
uN x, τð Þ

ðτ
0

ð
Ω

uN ξ, tð Þdξdtdsx

− c2
ð
∂Ω

ðτ
0
uN x, tð Þ

ð
Ω

uN ξ, tð Þdξdtdsx,

ð28Þ

So,

b
ðτ
0

ð
∂Ω
uNt

ðt
0

ð
Ω

uNt ξ, ηð Þdξdη
� �

dsxdt

= b
ð
∂Ω

ðτ
0
uNt x, tð Þ

ð
Ω

uN ξ, tð Þdξdtdsx

− b
ð
∂Ω

ðτ
0
uNt x, tð Þ

ð
Ω

uN ξ, 0ð Þdξdtdsx:

ð29Þ

Thus,

ðτ
0

ð
∂Ω
uNt

ðt
0

ð
Ω

wN ξ, ηð Þdξdη
� �

dsxdt

=
ð
∂Ω
uN x, τð Þ

ðτ
0

ð
Ω

uN ξ, tð Þdξdtdsx

−
ð
∂Ω

ðτ
0
uN x, tð Þ

ð
Ω

wN ξ, tð Þdξdtdsx:

ð30Þ

Taking into account the equalities (23)–(30) in (22), we
end up with

a uNττ, uNτ
� 	

L2 Ωð Þ +
β

2 uNτ x, τð Þ�� ��2
L2 Ωð Þ

+ c2

2 ∇uN x, τð Þ�� ��2
L2 Ωð Þ

1
2 h∘∇u

N τð Þ

−
1
2G τð Þ ∇uN x, τð Þ�� ��2

L2 Ωð Þ

= a uNtt x, 0ð Þ, uNt x, 0ð Þ� 	
L2 Ωð Þ +

β

2 uNτ x, 0ð Þ�� ��2
L2 Ωð Þ

+ c2

2 ∇uN x, 0ð Þ�� ��2
L2 Ωð Þ + a

ðτ
0
utt x, tð Þk k2L2 Ωð Þdt

+ b
ðτ
0
∇uNt x, tð Þ�� ��2

L2 Ωð Þdt +
1
2

ðτ
0
h′N tð Þdt

−
1
2

ðτ
0
h tð Þ ∇uN x, tð Þ�� ��2

L2 Ωð Þdt

+ c2
ð
∂Ω
uN x, τð Þ

ðτ
0

ð
Ω

uN ξ, tð Þdξdtdsx

− c2
ð
∂Ω

ðτ
0
uN x, tð Þ

ð
Ω

ξ, tð Þdξdtdsx

+ b
ð
∂Ω

ðτ
0
uNt x, tð Þ

ð
Ω

uN ξ, tð Þdξdtdsx

− b
ð
∂Ω

ðτ
0
uNt x, tð Þ

ð
Ω

uN ξ, 0ð Þdξdtdsx

+
ð
∂Ω
uN x, τð Þ

ðτ
0

ð
Ω

ξ, tð Þdξdtdsx

−
ð
∂Ω

ðτ
0
uN x, tð Þ

ð
Ω

wN ξ, tð Þdξdtdsx + F, uNt
� 	

L2 Qτð Þ

ð31Þ

Now, multiplying the equations of (15) by Ck″ðtÞ, collect
them from 1 to N and integrating the result with respect to
t from 0 to τ, and τ ≤ T , we find

a uNttt , uNtt
� 	

L2 Qτð Þ + β uNtt , uNtt
� 	

L2 Qτð Þ + c2 ∇uN ,∇uNtt
� 	

L2 Qτð Þ
+ b ∇uNt ,∇uNtt
� 	

L2 Qτð Þ + ∇wN ,∇uNtt
� 	

L2 Qτð Þ

= F, uNtt
� 	

L2 Qτð Þ + c2
ðτ
0

ð
∂Ω
uNtt x, tð Þ

ðt
0

ð
Ω

uN ξ, ηð Þdξdη
� �

dsxdt

+ b
ðτ
0

ð
∂Ω
uNtt x, tð Þ

ðt
0

ð
Ω

uNη ξ, ηð Þdξdη
� �

dsxdt

−
ðτ
0

ð
∂Ω
uNtt x, tð Þ

ðt
0

ð
Ω

wN ξ, ηð Þdξdη
� �

dsxdt

ð32Þ

With the same reasoning in (22), we find

a uNttt , uNtt
� 	

L2 Qτð Þ =
a
2 uNττ x, τð Þ�� ��2

L2 Ωð Þ −
a
2 uNtt x, 0ð Þ�� ��2

L2 Ωð Þ,

ð33Þ
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β uNtt , uNtt
� 	

L2 Qτð Þ = β
ðτ
0
uNtt x, tð Þ�� ��2

L2 Ωð Þdt, ð34Þ

c2 ∇uN ,∇uNtt
� 	

L2 Qτð Þ = c2 ∇uN x, τð Þ,∇uNτ x, τð Þ� 	
L2 Qτð Þ

− c2 ∇uN x, 0ð Þ,∇uNτ x, 0ð Þ� 	
L2 Ωð Þ

− c2
ðτ
0
∇uNt x, tð Þ�� ��2

L2 Ωð Þdt,

ð35Þ

b ∇uNt ,∇uNtt
� 	

L2 Qτð Þ =
b
2 ∇uNτ x, τð Þ�� ��2

L2 Ωð Þ

−
b
2 ∇uNt x, 0ð Þ�� ��2

L2 Ωð Þ,
ð36Þ

∇wN ,∇uNtt
� 	

L2 Qτð Þ

= 1
2 h′N τð Þ ∇uN x, τð Þ�� ��2

L2 Ωð Þ − 2 ∇wN τð Þ,∇uNτ
� 	

L2 Ωð Þ

n o
+ 1
2

ðτ
0
h″N tð Þdt − 1

2

ðτ
0
h′ tð Þ ∇uN x, tð Þ�� ��2

L2 Ωð Þdt,

ð37Þ

c2
ðτ
0

ð
∂Ω
uNtt

ðτ
0

ð
Ω

uN ξ, ηð Þdξdη
� �

dsxdt

= c2
ð
∂Ω
uNτ x, τð Þ

ðτ
0

ð
Ω

uN ξ, tð Þdξtdsx

− c2
ð
∂Ω

ðτ
0
uNt x, tð Þ

ð
Ω

uN ξ, tð Þdξdtdsx,

ð38Þ

b
ðτ
0

ð
∂Ω
uNtt x, tð Þ

ðt
0

ð
Ω

uNη ξ, ηð Þdξdη
� �

dsxdt

= b
ð
∂Ω
uNτ x, τð Þ

ð
Ω

uN ξ, τð Þdξdsx

− b
ð
∂Ω
uNτ x, τð Þ

ð
Ω

uN ξ, 0ð Þdξdsx

− b
ð
∂Ω

ðτ
0
uNt x, tð Þ

ð
Ω

uNt ξ, tð Þdξdtds:

ð39Þ

ðτ
0

ð
∂Ω
uNtt

ðt
0

ð
Ω

wN ξ, ηð Þdξdη
� �

dsxdt

=
ð
∂Ω
uNτ x, τð Þ

ðτ
0

ð
Ω

wN ξ, tð Þdξdtdsx

−
ð
∂Ω

ðτ
0
uNt x, tð Þ

ð
Ω

wN ξ, tð Þdξdtdsx:

ð40Þ

A substitution of equalities (33)–(40) in (22) gives

a
2 uNττ x, τð Þ�� ��2

L2 Ωð Þ +
b
2 ∇uNτ x, τð Þ�� ��2

L2 Ωð Þ
+ c2 ∇uN x, τð Þ,∇uNτ x, τð Þ� 	

L2 Ωð Þ

−
1
2 h′N τð Þ + h τð Þ ∇uN x, τð Þ�� ��2

L2 Ωð Þ

n
− 2 ∇wN τð Þ,∇uNτ
� 	

L2 Ωð Þ

o
= a
2 uNtt x, 0ð Þ�� ��2

L2 Ωð Þ + c2 ∇uN x, 0ð Þ,∇uNt x, 0ð Þ� 	
L2 Ωð Þ

+ b
2 ∇uNt x, 0ð Þ�� ��2

L2 Ωð Þ − β
ðτ
0
uNtt x, tð Þ�� ��2

L2 Ωð Þdt

+ c2
ðτ
0
∇ut x, tð Þk k2L2 Ωð Þ −

1
2

ðτ
0
h″N tð Þdt

+ 1
2

ðτ
0
h′ tð Þ ∇uN x, tð Þ�� ��2

L2 Ωð Þdt

+ c2
ð
∂Ω
uNτ x, τð Þ

ðτ
0

ð
Ω

uN ξ, tð Þdξdtdsx

− c2
ð
∂Ω

ðτ
0
uNt x, tð Þ

ð
Ω

uN ξ, tð Þdξdtdsx

+ b
ð
∂Ω
uNτ x, τð Þ

ð
Ω

uN ξ, τð Þdξdsx

− b
ð
∂Ω
uNτ x, τð Þ

ð
Ω

uN ξ, 0ð Þdξdsx

− b
ð
∂Ω

ðτ
0
uNt x, tð Þ

ð
Ω

uNt ξ, tð Þdξdtdsx

�
ð
∂Ω
uNτ x, tð Þ

ðτ
0

ð
Ω

wN ξ, tð Þdξdtdsx

−
ð
∂Ω

ðτ
0
uNt x, tð Þ

ð
Ω

wN ξ, tð Þdξdtdsx + F, uNtt
� 	

L2 Qτð Þ:

ð41Þ

Multiplying (32) by λ and using (41), we get

λa uNττ, uNτ
� 	

L2 Ωð Þ +
λβ

2 uNτ x, τð Þ�� ��2
L2 Ωð Þ

+ λc2

2 ∇uN x, τð Þ�� ��2
L2 Ωð Þ

λ

2 h∘∇u
N τð Þ

−
λ

2G τð Þ ∇uN x, τð Þ�� ��2
L2 Ωð Þ

a
2 uNττ x, τð Þ�� ��2

L2 Ωð Þ

+ b
2 ∇uNτ x, τð Þ�� ��2

L2 Ωð Þ + c2 ∇uN x, τð Þ,∇uNτ x, τð Þ� 	
L2 Ωð Þ

−
1
2 h′N τð Þ + h τð Þ ∇uN x, τð Þ�� ��2

L2 Ωð Þ

n
− 2 ∇wN τð Þ,∇uNτ
� 	

L2 Ωð Þ

o
= λ F, uNt
� 	

L2 Qτð Þ + F, uNtt
� 	

L2 Qτð Þ
+ λa uNtt x, 0ð Þ, uNt x, 0ð Þ� 	

L2 Ωð Þ

+ λa − βð Þ
ðτ
0
utt x, tð Þk k2L2 Ωð Þdt
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+ c2 − λb
� 	ðτ

0
∇uNt x, tð Þ�� ��2

L2 Ωð Þdt +
λ

2

ðτ
0
h′N tð Þdt

−
λ

2

ðτ
0
h tð Þ ∇uN x, tð Þ�� ��2

L2 Ωð Þdt

+ λc2
ð
∂Ω
uN x, τð Þ

ðτ
0

ð
Ω

uN ξ, tð Þdξdtdsx

+ λc2

2 ∇uN x, 0ð Þ�� ��2
L2 Ωð Þ

− λc2
ð
∂Ω

ðτ
0
uN x, tð Þ

ð
Ω

uN ξ, tð Þdξdtdsx

+ λβ

2 uNt x, 0ð Þ�� ��2
L2 Ωð Þ

+ λb − c2
� 	ð

∂Ω

ðτ
0
uNt x, tð Þ

ð
Ω

uN ξ, tð Þdξdtdsx

− λb
ð
∂Ω

ðτ
0
uNt x, tð Þ

ð
Ω

uN ξ, 0ð Þdξdtdsx

+ λ
ð
∂Ω
uN x, τð Þ

ðτ
0

ð
Ω

wN ξ, tð Þdξdtdsx

− λ
ð
∂Ω

ðτ
0
uN x, tð Þ

ð
Ω

wN ξ, tð Þdξdtdsx

+ a
2 uNtt x, 0ð Þ�� ��2

L2 Ωð Þ + c2 ∇uN x, 0ð Þ,∇uNt x, 0ð Þ� 	
L2 Ωð Þ

+ b
2 ∇uNt x, 0ð Þ�� ��2

L2 Ωð Þ −
1
2

ðτ
0
h″N tð Þdt

+ 1
2

ðτ
0
h′ tð Þ ∇uN x, tð Þ�� ��2

L2 Ωð Þdt

+ c2
ð
∂Ω
uNτ x, τð Þ

ðτ
0

ð
Ω

uN ξ, tð Þdξdtdsx

+ b
ð
∂Ω
uNτ x, τð Þ

ð
Ω

uN x, τð Þdξdsx

− b
ð
∂Ω
uNτ x, τð Þ

ð
Ω

uN ξ, 0ð Þdξdsx

− b
ð
∂Ω

ðτ
0
uNt ξ, tð Þdξdtdsx

ð
∂Ω

� uNτ x, τð Þ
ðτ
0

ð
Ω

wN ξ, tð Þdξdtdsx

−
ð
∂Ω

ðτ
0
uNτ x, tð Þ

ð
Ω

wN ξ, tð Þdξdtdsx: ð42Þ

where 0 < λ < 1:
With the help of Cauchy and the trace inequalities, we

can estimate all the terms in the RHS of (42) that gives

c2λ
ð
∂Ω
uN x, τð Þ

ðτ
0

ð
Ω

uN ξ, tð Þdξdtdsx

≤
c2λ
2ε1

ε ∇uN x, τð Þ�� ��2
L2 Ωð Þ + l εð Þ uN x, τð Þ�� ��2

L2 Ωð Þ

 �
+ c2λ

2 ε1T Ωj j ∂Ωj j
ðτ
0
uN x, tð Þ�� ��2

L2 Ωð Þdt,

ð43Þ

−c2λ
ð
∂Ω

ðτ
0
uN x, tð Þ

ð
Ω

uN ξ, tð Þdξdtdsx

≤
c2λ
2 ε
ðτ
0
∇uN x, tð Þ�� ��2

L2 Ωð Þdt

+ c2λ
2 l εð Þ + Ωj j ∂Ωj jð Þ

ðτ
0
uN x, tð Þ�� ��2

L2 Ωð Þdt,

ð44Þ

bλ − c2
� 	ð

∂Ω

ðτ
0
uNt x, tð Þ

ð
Ω

uN ξ, τð Þdξdtdsx

≤
bλ − c2
� 	

2 ε
ðτ
0
∇uNt x, tð Þ�� ��2

L2 Ωð Þdt
�

+ l εð Þ
ðτ
0
∇uNt x, tð Þ�� ��2

L2 Ωð Þdt
�

+ bλ − c2
� 	

2 Ωj j ∂Ωj j
ðτ
0
uN x, tð Þ�� ��2

L2 Ωð Þdt,

ð45Þ

−bλ
ð
∂Ω

ðτ
0
uNt x, tð Þ

ð
Ω

uN ξ, 0ð Þdξdtdsx

≤
bλ
2 ε

ðτ
0
∇uNt x, tð Þ�� ��2

L2 Ωð Þdt + l εð Þ
ðτ
0
uNt x, tð Þ�� ��2

L2 Ωð Þdt
� �

+ bλ
2 Ωj j ∂Ωj jT uN x, 0ð Þ�� ��2

L2 Ωð Þ,

ð46Þ

c2
ð
∂Ω
uNτ x, τð Þ

ðτ
0

ð
Ω

uN ξ, tð Þdξdtdsx

≤
c2

2
ε

ε2
∇uNτ x, τð Þ�� ��2

L2 Ωð Þ +
l εð Þ
ε2

uNτ x, τð Þ�� ��2
L2 Ωð Þ

� �

+ c2

2 ε2 Ωj j ∂Ωj jT
ðτ
0
uN x, tð Þ�� ��2

L2 Ωð Þdt,

ð47Þ

+b
ð
∂Ω
uNτ x, τð Þ

ð
Ω

uN ξ, τð Þdξdsx

≤
b
2ε3

ε ∇uNτ x, τð Þ�� ��2
L2 Ωð Þ + l εð Þ uNτ x, τð Þ�� ��2

L2 Ωð Þ

 �
+ b
2 ε3 Ωj j ∂Ωj j uN x, τð Þ�� ��2

L2 Ωð Þ,

ð48Þ

−b
ð
∂Ω
uNτ x, τð Þ

ð
Ω

uN ξ, 0ð Þdξdsx

≤
b
2ε4

ε ∇uNτ x, τð Þ�� ��2
L2 Ωð Þ + l εð Þ uNτ x, τð Þ�� ��2

L2 Ωð Þ

 �
+ b
2 ε4 Ωj j ∂Ωj j uN x, τð Þ�� ��2

L2 Ωð Þ,

ð49Þ

−b
ð
∂Ω
uNτ x, tð Þ

ð
Ω

uNτ ξ, τð Þdξdtdsx

≤
b
2

ðτ
0
∇uNτ x, τð Þ�� ��2

L2 Ωð Þdt

+ b
2 l εð Þ Ωj j ∂Ωj jð Þ

ðτ
0
uNτ x, tð Þ�� ��2

L2 Ωð Þdt,

ð50Þ
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−
λa
2 uNττ x, τð Þ�� ��2

L2 Ωð Þ −
λa
2 uNττ x, τð Þ�� ��2

L2 Ωð Þ
≤ λa uNττ x, τð Þ, uNτ x, τð Þ� 	

L2 Ωð Þ,
ð51Þ

−
c2ε7
2 ∇uN x, τð Þ�� ��2

L2 Ωð Þ −
c2

2ε7
∇uNτ x, τð Þ�� ��2

L2 Ωð Þ

≤ c2 uN x, τð Þ,∇uNτ x, τð Þ� 	
L2 Ωð Þ,

ð52Þ

λa uNtt x, 0ð Þ, uNτ x, 0ð Þ� 	
≤
λa
2 uNtt x, 0ð Þ�� ��2

L2 Ωð Þ +
λa
2 uNτ x, 0ð Þ�� ��2

L2 Ωð Þ,
ð53Þ

c2 ∇uN x, 0ð Þ, uNτ x, 0ð Þ� 	
L2 Ωð Þ

≤
c2

2 ∇uN x, 0ð Þ�� ��2
L2 Ωð Þ +

c2

2 ∇uNτ x, 0ð Þ�� ��2
L2 Ωð Þ:

ð54Þ

−
G τð Þ
2

1
ε8

+ 1
ε9

� �
∇uN x, τð Þ�� ��2

L2 Ωð Þ −
ε8
2 h∘∇uN τð Þ

−
ε9
2 G τð Þ ∇uN x, τð Þ�� ��2

L2 Ωð Þ
≤ 2 ∇wN x, τð Þ,∇uNτ x, τð Þ� 	

L2 Ωð Þ,

ð55Þ

ð
∂Ω
uNτ x, τð Þ

ðτ
0

ð
Ω

wN ξ, tð Þdξdtdsx

≤
1
2ε5

+ 1
2ε5′

� �
ε ∇uNτ x, τð Þ�� ��2

L2 Ωð Þ + l εð Þ uNτ x, τð Þ�� ��2
L2 Ωð Þ

 �

+ Ωj j ∂Ωj jT ε5
2

ðτ
0
h ∘ uN tð Þdt + ε5′

2 h0

ðτ
0
uN x, tð Þ�� ��2

L2 Ωð Þ

 !
,

ð56Þ

λ
ð
∂Ω
uN x, τð Þ

ðτ
0

ð
Ω

wN ξ, tð Þdξdtdsx

≤ λ
1
2ε6

+ 1
2ε6′

� �
ε ∇uN x, τð Þ�� ��2

L2 Ωð Þ + l εð Þ uN x, τð Þ�� ��2
L2 Ωð Þ

 �

+ λ Ωj j ∂Ωj jT ε6
2

ðτ
0
h ∘ uN tð Þdt + ε6′

2 h0

ðτ
0
uN x, τð Þ�� ��2

L2 Ωð Þ

 !
,

ð57Þ

ð
∂Ω

ðτ
0
uNt x, τð Þ

ð
Ω

wN ξ, tð Þdξdtdsx

≤ ε
ðτ
0
∇uNt x, tð Þ�� ��2

L2 Ωð Þdt + l εð Þ
ðτ
0
∇uNt x, tð Þ�� ��2

L2 Ωð Þdt
� �

+ 1
2 Ωj j ∂Ωj jT

ðτ
0
h ∘ uN tð Þdt + h0

ðτ
0
uN x, tð Þ�� ��2

L2 Ωð Þdt,
� �

ð58Þ

λ
ð
∂Ω

ðτ
0
uN x, tð Þ

ð
Ω

uN ξ, tð Þdξdtdsx

≤ λ ε
ðτ
0
∇uN x, tð Þ�� ��2

L2 Ωð Þdt + l εð Þ
ðτ
0
uN x, tð Þ�� ��2

L2 Ωð Þdt
� �

+ λ

2 Ωj j ∂Ωj jT
ðτ
0
h ∘ uN tð Þdt + h0

ðτ
0
uN x, tð Þ�� ��2

L2 Ωð Þdt
� �

,

ð59Þ

λ F, uNτ
� 	

L2 Qτð Þ ≤
λ

2

ðτ
0
F x, tð Þk k2L2 Ωð Þdt +

1
2

ðτ
0
utt x, tð Þk k2L2 Ωð Þdt:

ð60Þ

Combining inequalities (45)-(60) and equality (44) and
make use of the following inequality

m1 uN x, τð Þ�� ��2
L2 Ωð Þ

≤m1 uN x, tð Þ�� ��2
L2 Ωð Þ +m1 uNτ x, tð Þ�� ��2

L2 Ωð Þ

+m1 uN x, 0ð Þ�� ��2
L2 Ωð Þ,

m2 uNt x, τð Þ�� ��2
L2 Ωð Þ

≤m2 uNt x, tð Þ�� ��2
L2 Ωð Þ +m2 uNtt x, tð Þ�� ��2

L2 Ωð Þ

+m2 uNt x, 0ð Þ�� ��2
L2 Ωð Þ,

m3 ∇uN x, τð Þ�� ��2
L2 Ωð Þ

≤m3 ∇uN x, tð Þ�� ��2
L2 Qτð Þ +m3 ∇uNt x, tð Þ�� ��2

L2 Qτð Þ

+m3 ∇uN x, 0ð Þ�� ��2
L2 Ωð Þ,

h ∘ uN τð Þ
≤
1
2 h ∘ u

N tð Þdt + h0
2 uNt x, tð Þ�� ��2

L2 Qτð Þ −
ðτ
0
h′N tð Þdt,

h∘∇uN τð Þ
≤
1
2

ðτ
0
h∘∇uN tð Þdt + h0

2 ∇uNt x, tð Þ�� ��2
L2 Qτð Þ −

ðτ
0
h′N tð Þdt,

ð61Þ

where

m1 ≔
c2λ
ε1

l εð Þ + b
2 ε3 Ωj j ∂Ωj j + λ

1
2ε6

+ 1
2ε6′

� �
l εð Þ,

m2 ≔ l εð Þ c2

2ε2
+ b
2ε2

+ b
2ε4

+ 1
2ε5

+ 1
2ε5′

� �� �
,

m3 ≔
c2ε7
2 + h 0ð Þ + c2λ

2ε1
+ c2ε9

2 + λ
1
2ε6

+ 1
2ε6′

� �
ε,

ð62Þ
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and we have

c2λ
2ε1

l εð Þ uN x, τð Þ�� ��2
L2 Ωð Þ +

λ

2 β − að Þ uNt x, τð Þ�� ��2
L2 Ωð Þ

+ λ

2 c2 −G τð Þ� 	
∇uN x, τð Þ�� ��2

L2 Ωð Þ

+ b
2 −

c2ε
2ε2

−
bε
2ε3

−
bε
2ε4

−
c2

2ε7
−

ε

2ε5

�

−
ε

2ε5′
−
G τð Þ
2

1
ε8

+ 1
ε9

� ��
∇uNτ x, τð Þ�� ��2

L2 Ωð Þ

+ a
2 −

λa
2

� �
uNττ x, τð Þ�� ��2

L2 Ωð Þ

+ λ + 1
2

� �
h∘∇uN τð Þ + h ∘ uN τð Þ

≤ γ1

ðτ
0
uN x, tð Þ�� ��2

L2 Ωð Þdt + γ2

ðτ
0
uNt x, tð Þ�� ��2

L2 Ωð Þdt

+ c2λ
2 ε + λε +m3

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

α1

ðτ
0
∇uN x, tð Þ�� ��2

L2 Ωð Þdt

+ γ3

ðτ
0
∇uNτ x, tð Þ�� ��2

L2 Ωð Þdt +
λ + 3ð Þξ
2|fflfflfflffl{zfflfflfflffl}
α2

ðτ
0
h∘∇uN τð Þ

+ γ4

ðτ
0
h ∘ uN τð Þ + λa + β +m2

2

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

α3

ðτ
0
uNtt x, tð Þ�� ��2

L2 Ωð Þdt

+ bλ
2 Ωj j ∂Ωj jT + b

2 ε4 Ωj j ∂Ωj j +m1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

α4

uN x, 0ð Þ�� ��2
L2 Ωð Þ

+ λa
2 + λβ

2 +m2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

α5

uNt x, 0ð Þ�� ��2
L2 Ωð Þ

+ λ + 1
2

� �ðτ
0
F x, tð Þk k2L2 Ωð Þdt

+ λ

2 c
2 + c2

2 + 1
2 h 0ð Þ +m3

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

α6

∇uN x, 0ð Þ�� ��2
L2 Ωð Þ

+ b
2 + c2

2

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

α7

∇uNt x, 0ð Þ�� ��2
L2 Ωð Þ

+ λa
2 + a

2

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

α7

∇uNtt x, 0ð Þ�� ��2
L2 Ωð Þ,

ð63Þ
where

γ1 ≔
c2λ
2 ε1T ∂Ωj j Ωj j + c2λ

2 l εð Þ + ∂Ωj j Ωj jð Þ
�

+ bλ + c2
� 	

2 ∂Ωj j Ωj j + c2

2 ε2 +
c2

2 ε5′h0 +
λ + 1
2

� �

� ∂Ωj j Ωj jT + λl εð Þ +m1

�
,

γ2 ≔
bλ + c2
� 	

2 l εð Þ + bλ
2 l εð Þ + b

2 l εð Þ + ∂Ωj j Ωj jð Þ + l εð Þ
�

+ h0
2ξ + λ

2 +m2

�
,

ð64Þ

γ3 ≔ c2 + λb + bλ + c2
� 	

2 ε + b λ + 1ð Þ
2 ε

�

+ λε + h0λ
2 + h0

2ξ +m3

�
,

γ4 ≔
ε5
2 + λ + 1

2

� �
∂Ωj j Ωj jT + 3ξ

2

� �
: ð65Þ

Choosing ε2, ε3, ε4, ε5, ε5′ , ε7, ε8 and ε9 sufficiently large

α0 =
b
2 −

c2ε
2ε2

−
bε
2ε3

−
bε
2ε4

−
c2

2ε7
−

ε

2ε5
−

ε

2ε5′
−
G τð Þ
2

1
ε8

+ 1
ε9

� �
> 0:

ð66Þ

By using (2)-(4), the relation (64) reduces to

uN x, τð Þ�� ��2
L2 Ωð Þ + ∇uN x, τð Þ�� ��2

L2 Ωð Þ

+ uNτ x, τð Þ�� ��2
L2 Ωð Þ + ∇uNτ x, τð Þ�� ��2

L2 Ωð Þ

+ uNττ x, τð Þ�� ��2
L2 Ωð Þ + h ∘ uN τð Þ + h∘∇uN τð Þ

≤D
ðτ
0

uN x, tð Þ�� ��2
L2 Ωð Þ + ∇uN x, tð Þ�� ��2

L2 Ωð Þ

n
+ uNt x, tð Þ�� ��2

L2 Ωð Þ + ∇uNt x, tð Þ�� ��2
L2 Ωð Þ + uNtt x, tð Þ�� ��2

L2 Ωð Þ

+ h ∘ uN tð Þ + h∘∇uN tð Þ + Fk k2L2 Ωð Þ
o
dt

+D uN x, 0ð Þ�� ��2
W1

2 Ωð Þ + uNt x, 0ð Þ�� ��2
W1

2 Ωð Þ


+ uNtt x, 0ð Þ�� ��2

L2 Ωð Þ

�
,

≤D
ðτ
0

uN x, tð Þ�� ��2
L2 Ωð Þ + uNtt x, tð Þ�� ��2

L2 Ωð Þ

n
+ h ∘ uN tð Þ + h∘∇uN tð Þ + Fk k2L2 Ωð Þ

o
dt

+D uN x, 0ð Þ�� ��2
W1

2 Ωð Þ + uNt x, 0ð Þ�� ��2
W1

2 Ωð Þ


+ uNtt x, 0ð Þ�� ��2

L2 Ωð Þ + h ∘ uN 0ð Þ + h∘∇uN 0ð Þ
�
,

ð67Þ
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where

Using the inequality of Gronwall to (67) and integrating
the result from 0 to τ that gives

uN x, tð Þ�� ��2
W1

2 Qτð Þ + uNt x, tð Þ�� ��2
W1

2 Qτð Þ

+ uN x, tð Þ�� ��2
h,W1

2 Qτð Þ + uNtt x, tð Þ�� ��2
L2 Qτð Þ

≤DeDT u0 xð Þk k2W1
2 Ωð Þ + u1 xð Þk k2W1

2 Ωð Þ
n

+ u2 xð Þk k2L2 Ωð Þ + Fk k2L2 Ωð Þ
o
:

ð69Þ

where

u x, tð Þk k2h,W1
2 Qτð Þ ≔

ðτ
0
h ∘ u tð Þdt +

ðτ
0
h∘∇u tð Þdt,

u x, 0ð Þk k2h,W1
2 Qτð Þ = 0:

ð70Þ

We deduce from (69) that

uN x, tð Þ�� ��2
w1
2 Qτð Þ + uNt x, tð Þ�� ��2

w1
2 Qτð Þ

+ uN x, tð Þ�� ��2
h,W1

2 Qτð Þ + uNtt x, tð Þ�� ��2
L2 Qτð Þ ≤ A:

ð71Þ

Hence, fuNgN≥1 is sequence bounded in VðQTÞ, and we
can extract from it a subsequence for which we use the same
notation which converges weakly in VðQTÞ to a limit func-
tion uðx, tÞ, and we have to show that uðx, tÞ is a generalized
solution of (1). Since uNðx, tÞ⟶ uðx, tÞ in L2ðQTÞ and
uNðx, 0Þ⟶ ζðxÞ in L2ðΩÞ, then uðx, 0Þ = ζðxÞ.

Now to prove that (15) holds, we multiply each of the
relations (15) by a function plðtÞ ∈W1

2ð0, TÞ, plðTÞ = 0.
Hence, collect them the obtained equalities ranging from
l = 1 to l =N and integrating the result over t on ð0, TÞ.
If we let ηN =∑N

k=1plðtÞZkðxÞ, then we have

a uNtt , ηNt
� 	

L2 QTð Þ + β uNt , ηNt
� 	

L2 QTð Þ − c2 ∇uN ,∇ηN
� 	

L2 QTð Þ
− b ∇uNt ,∇ηN
� 	

L2 QTð Þ − ∇wN ,∇ηN
� 	

L2 QTð Þ
= a uNtt x, 0ð Þ, ηN 0ð Þ� 	

L2 Ωð Þ + β uNt x, 0ð Þ, ηN 0ð Þ� 	
L2 Ωð Þ

+ c2
ð
∂Ω

ðT
0
ηN x, tð Þ

ðt
0

ð
Ω

uN ξ, τð Þdξdτ
� �

dtdsx

+ b
ð
∂Ω

ðT
0
ηN x, tð Þ

ð
Ω

uN ξ, τð Þdξdtdsx

− b
ð
∂Ω

ðT
0
ηN x, tð Þ

ð
Ω

uN ξ, 0ð Þdξdtdsx

+
ð
∂Ω

ðT
0
ηN x, tð Þ

ðt
0

ð
Ω

wN ξ, τð Þdξdτ
� �

dtdsx

+ F, ηNt
� 	

L2 QTð Þ, ð72Þ

for all ηN of the form ∑N
k=1plðtÞZkðxÞ and α > 0:

Since

ðt
0

ð
Ω

uN ξ, τð Þ − u ξ, τð Þ� 	
dξdτ

� 	
≤

ffiffiffiffiffiffiffiffiffiffi
T Ωj j

p
uN − u
�� ��

L2 QTð Þ,

uN − u
�� ��

L2 QTð Þ → 0 asN →∞:

ð73Þ

Thus, the limit function u satisfies (15) for every ηN =
∑N

k=1plðtÞZkðxÞ.
We define the totality of all functions of the form ηN =

∑N
k=1plðtÞZkðxÞ by ℚN , with plðtÞ ∈W1

2ð0, TÞ, plðTÞ = 0.
But ∪N

l=1ℚN is dense in WðQTÞ, hence the relation (15)
holds ∀u ∈WðQTÞ. Then, we have shown that the limit
function uðx, tÞ is a generalized solution of problem (1)
in VðQTÞ.

4. Uniqueness of the Problem

Theorem 3. The problem (1) cannot have more than one gen-
eralized solution in VðQTÞ.

Proof. Suppose that ∃u1,u2 ∈ VðQTÞ two different generalized
solutions for the problem (1). Hence, the difference U =
u1 − u2 solves

aUttt + βUtt − c2ΔU − bΔUt −
ðt
0
h t − sð ÞΔU sð Þds = 0,

U x, 0ð Þ =Ut x, 0ð Þ =Utt x, 0ð Þ = 0,
∂U
∂η

=
ðt
0

ð
Ω

U ξ, τð Þdξdτ, x ∈ ∂Ω,

8>>>>>><
>>>>>>:

ð74Þ

D≔
max αi, i = 1⋯ 8f g

min c2λ/2ε1ð Þl εð Þ, λ/2ð Þ β − að Þ, λ/2ð Þ c2 −G τð Þð Þ, a/2ð Þ 1 − λð Þ, λ + 1/2ð Þ, 1, α0f g : ð68Þ
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and (9) gives

a Utt , vtð ÞL2 QTð Þ + β Ut , vtð ÞL2 QTð Þ + c2 ∇U ,∇vð ÞL2 QTð Þ
+ b ∇Ut ,∇vð ÞL2 QTð Þ + ∇Wt ,∇vð ÞL2 QTð Þ

= −c2
ðT
0

ð
∂Ω
v
ðt
0

ð
Ω

U ξ, τð Þdξdτ
� �

dsxdt

− b
ðT
0

ð
∂Ω
v
ð
Ω

U ξ, τð Þdξdsxdt

−
ðT
0

ð
∂Ω
vt

ð
Ω

W ξ, τð Þdξ
� �

dsxdt:

ð75Þ

where

W x, tð Þ =
ðt
0
h t − σð ÞU x, σð Þdσ: ð76Þ

Let the function

v x, tð Þ =
ðτ
t
U x, sð Þds 0 ≤ t ≤ τ,

0, τ ≤ t ≤ T:

8<
: ð77Þ

It is obvious that v ∈WðQTÞ and vtðx, tÞ = −Uðx, tÞ for
all t ∈ ½0, τ�. By integration by parts in the LHS of (75) that
yields

−a Utt , vtð ÞL2 QTð Þ = a Uτ x, τð Þ,U x, τð Þð ÞL2 Ωð Þ

− a
ðτ
0
Ut x, tð Þk k2L2 Ωð Þdt,

ð78Þ

−β Ut , vtð ÞL2 QTð Þ =
β

2 U x, τð Þk k2L2 Ωð Þ, ð79Þ

c2 ∇U ,∇vð ÞL2 QTð Þ =
c2

2 ∇v x, 0ð Þk k2L2 Ωð Þ, ð80Þ

∇W,∇vð ÞL2 QTð Þ ≤ h0

ðτ
0
∇v x, tð Þk k2L2 Ωð Þdt

+ h0
2

ðτ
0
∇U x, tð Þk k2L2 Ωð Þdt

+ h0
2

ðτ
0
h0∇U tð Þdt,

ð81Þ

b ∇Ut ,∇vð ÞL2 QTð Þ = b
ðτ
0
∇vt x, tð Þk k2L2 Ωð Þdt: ð82Þ

Plugging (78)–(82) into (75), we obtain

a Uτ x, τð Þ,U x, τð Þð ÞL2 Ωð Þ +
β

2 U x, τð Þk k2L2 Ωð Þ +
c2

2 ∇v x, 0ð Þk k2L2 Ωð Þ

= a
ðτ
0
Uτ x, tð Þk k2L2 Ωð Þdt − b

ðτ
0
vt x, tð Þk k2L2 Ωð Þdth0

�
ðτ
0
∇v x, tð Þk k2L2 Ωð Þdt +

h0
2

ðτ
0
∇U x, tð Þk k2L2 Ωð Þdt

+ h0
2 h0∇U tð Þdt −

ðT
0

ð
∂Ω
v
ðt
0

ð
Ω

W ξ, τð Þdξdτ
� �

dsxdt

− c2
ðT
0

ð
∂Ω
v
ðt
0

ð
Ω

U ξ, τð Þdξdτ
� �

dsxdt

− b
ðT
0

ð
∂Ω
v
ð
Ω

U ξ, τð Þdξdsxdt:

ð83Þ

Now since

v2 x, tð Þ =
ðτ
t
U x, sð Þds

� �2
≤ τ
ðτ
0
U2 x, sð Þds, ð84Þ

then

vk k2L2 QTð Þ ≤ τ2 Uk k2L2 QTð Þ ≤ T2 Uk k2L2 QTð Þ: ð85Þ

Applying the inequality of the trace, the RHS of (83)
gives

c2
ðT
0

ð
∂Ω
v
ðt
0

ð
Ω

U ξ, τð Þdξdτ
� �

dsxdt

≤
c2

2 T2 l εð Þ + Ωj j ∂Ωj jf g
ðτ
0
U x, tð Þk k2L2 Ωð Þdt

+ c2

2 ε
ðτ
0
∇v x, tð Þk k2L2 Ωð Þdt,

ð86Þ

b
ðT
0

ð
∂Ω
v
ð
Ω

U ξ, tð Þdξdsxdt

≤
b
2 T2l εð Þ + Ωj j ∂Ωj j� �ðτ

0
U x, tð Þk k2L2 Ωð Þdt

+ b
2 ε
ðτ
0
∇v x, tð Þk k2L2 Ωð Þdt,

ð87Þ

ðT
0

ð
∂Ω
v
ðt
0

ð
Ω

W ξ, τð Þdξdτ
� �

dsxdt

≤
1
2T

2 l εð Þ + Ωj j ∂Ωj jf g
ðτ
0
h ∘U tð Þdt

+ 1
2T

2h ∘ l εð Þ + Ωj j ∂Ωj jf g
ðτ
0
U x, tð Þk k2L2 Ωð Þdt

+ ε
ðτ
0
∇v x, tð Þk k2L2 Ωð Þdt:

ð88Þ
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Combining the relations (86)–(83) and (87)–(88), we
get

a Uτ x, τð Þ,U x, τð Þð ÞL2 Ωð Þ +
β

2 U x, τð Þk k2L2 Ωð Þ

+ c2

2 ∇v x, 0ð Þk k2L2 Ωð Þ

≤
c2

2 T2 l εð Þ + Ωj j ∂Ωj jð Þ + b + h0ð Þ
2 T2l εð Þ + Ωj j ∂Ωj j� 	� �

�
ðτ
0
U x, tð Þk k2L2 Ωð Þdt +

c2 + b
2 + 1

� �
ε + h 0ð Þ

� �
�
ðτ
0
∇v x, tð Þk k2L2 Ωð Þdt + a

ðτ
0
Ut x, tð Þk k2L2 Ωð Þdt

+ h0
2

ðτ
0
∇U x, tð Þk k2L2 Ωð Þdt +

h0
2

ðτ
0
h∘∇U tð Þdt

+ 1
2T

2 l εð Þ + Ωj j ∂Ωj jð Þ
ðτ
0
h ∘U tð Þdt:

ð89Þ

Next, multiplying (74) by Utt and integrating the result
over Qτ =Ω × ð0, τÞ, we find

a Uttt ,Uttð ÞL2 QTð Þ + β Utt ,Uttð ÞL2 QTð Þ − c2 ΔU ,Uttð ÞL2 QTð Þ
− b ΔUt ,Uttð ÞL2 QTð Þ − ΔW,Uttð ÞL2 QTð Þ = 0:

ð90Þ

An integration by parts in (91) yields

a Uttt ,Uttð ÞL2 QTð Þ =
a
2 Uττ x, τð Þk k2L2 Ωð Þ, ð91Þ

β Utt ,Uttð ÞL2 QTð Þ = β
ðτ
0
Utt x, tð Þk k2L2 Ωð Þdt, ð92Þ

−c2 ΔU ,Uttð ÞL2 QTð Þ = c2 ∇Uτ x, τð Þ,∇U x, τð Þð ÞL2 Ωð Þ

− c2
ðτ
0
∇Ut x, tð Þk k2L2 Ωð Þdt

− c2
ð
∂Ω
Uτ x, τð Þ

ðτ
0

ð
Ω

U ξ, ηð Þdξdη
� �

dsx

+ c2
ð
∂Ω

ðτ
0
Ut x, tð Þ

ð
Ω

U ξ, tð Þdξdtdsx,

ð93Þ

−b ΔUt ,Uttð ÞL2 QTð Þ =
b
2 ∇Ut x, τð Þk k2L2 Ωð Þ

− b
ð
∂Ω
Ut x, τð Þ

ð
Ω

U ξ, τð Þdξdsx

+ b
ðτ
0

ð
∂Ω
Ut x, tð Þ

ð
Ω

Ut ξ, tð Þdξdsxdt,

ð94Þ

∇W,∇Uttð ÞL2 QTð Þ = −
1
2 h

′∘∇U τð Þ − 1
2 h τð Þ ∇U x, τð Þk k2L2 QTð Þ

+ 2 ∇W τð Þ,∇Uτð ÞL2 Ωð Þ

−
1
2

ðτ
0
h′ tð Þ ∇U x, tð Þk k2L2 Ωð Þdt

+ 1
2

ðτ
0
h″∘∇U tð Þdt

+
ð
∂Ω
Uτ x, τð Þ

ðτ
0

ð
Ω

W ξ, σð Þdξdσdsx

−
ðτ
0

ð
∂Ω
Ut x, tð Þ

ð
Ω

W ξ, tð Þdξdsxdt:

ð95Þ

Substitution (91)–(95) into (90), we get the equality

a
2 Uττ x, τð Þk k2L2 Ωð Þ + c2 ∇Uτ x, τð Þ,∇U x, τð Þð ÞL2 Ωð Þ

+ b
2 ∇Uτ x, τð Þk k2L2 Ωð Þ −

1
2 h

′∘∇U τð Þ

−
1
2 h τð Þ ∇U x, τð Þk k2L2 Ωð Þ + 2 ∇W τð Þ,∇Uτð ÞL2 Ωð Þ

= −β
ðτ
0
Utt x, tð Þk k2L2 Ωð Þdt + c2

ðτ
0
∇Ut x, tð Þk k2L2 Ωð Þ

+ c2
ð
∂Ω
Uτ x, τð Þ

ðτ
0

ð
Ω

U ξ, tð Þdξdt
� �

dsx

− c2
ð
∂Ω

ðτ
0
Ut x, tð Þ

ð
Ω

U ξ, tð Þdξdtdsx

+ b
ð
∂Ω
Uτ x, τð Þ

ð
Ω

U ξ, τð Þdξdsx

− b
ðτ
0

ð
∂Ω
Ut x, tð Þ

ð
Ω

W ξ, tð Þdξdsxdt

+
ð
∂Ω
Uτ x, τð Þ

ðτ
0

ð
Ω

W ξ, σð Þdξdσdsx

−
ðτ
0

ð
∂Ω
Ut x, tð Þ

ð
Ω

W ξ, tð Þdξdsxdt

+ 1
2

ðτ
0
h′ tð Þ ∇U x, tð Þk k2L2 Ωð Þdt

−
1
2

ðτ
0
h″∘∇U tð Þdt:

ð96Þ

The RHS of (96) can be bounded as follows

c2
ð
∂Ω
Uτ x, τð Þ

ðT
0

ð
Ω

U ξ, tð Þdξdt
� �

dsx

≤
c2

2ε1′
ε ∇Uτ ξ, τð Þk k2L2 Ωð Þ + l εð Þ Uτ x, τð Þk k2L2 Ωð Þ
 �

+ c2

2 ε1′
T ∂Ωj j Ωj j

ðT
0

U x, tð Þk k2L2 Ωð Þdt,

ð97Þ
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−c2
ð
∂Ω

ðτ
0
Ut x, tð Þ

ð
Ω

U ξ, τð Þdξdtdsx

≤
c2

2

ðT
0

ε ∇Ut x, tð Þk k2L2 Ωð Þ + l εð Þ Ut x, tð Þk k2L2 Ωð Þ
n o

dt

+ c2

2 Ωj j ∂Ωj j
ðτ
0
U x, tð Þk k2L2 Ωð Þdt,

ð98Þ

b
ð
∂Ω
Uτ x, τð Þkk

ð
Ω

U ξ, τð Þdξdsx

≤
b

2ε2′
ε ∇Uτx ξ, τð Þk k2L2 Ωð Þ + l εð Þ Uτ x, τð Þk k2L2 Ωð Þ
 �

+ b
2 ε2

′T Ωj j ∂Ωj j U x, τð Þk k2L2 Ωð Þ,

ð99Þ

−b
ðτ
0

ð
∂Ω
Ut x, tð Þ

ð
Ω

U ξ, tð Þdξdsxdt

≤
b
2 l εð Þ + T Ωj j ∂Ωj jf g

ðτ
0
Ut x, tð Þk k2L2 Ωð Þdt

+ b
2 ε
ðτ
0
∇Ut x, tð Þk k2L2 Ωð Þdt,

ð100Þ

ð
∂Ω
Uτ x, τð Þ

ðτ
0

ð
Ω

W ξ, τð Þdξdt
� �

dsx

≤
1
2ε3

+ 1
2ε4

� �
ε ∇Uτ x, τð Þk k2L2 Ωð Þ + l εð Þ Uτ x, τð Þk k2L2 Ωð Þ
 �

+ 1
2 ε3Th0 ∂Ωj j Ωj j

ðτ
0
U x, tð Þk k2L2 Ωð Þdt

+ 1
2 ε4T ∂Ωj j Ωj j

ðτ
0
h ∘U tð Þdt,

ð101Þ

−
ð
∂Ω

ðτ
0
Ut x, tð Þ

ð
Ω

W ξ, tð Þdξdtdsx

≤
ðτ
0

ε ∇Ut x, tð Þk k2L2 Ωð Þ + l εð Þ Ut x, tð Þk k2L2 Ωð Þ
n o

dt

+ 1
2 h0 Ωj j ∂Ωj j

ðτ
0
U x, tð Þk k2L2 Ωð Þdt

+ 1
2 Ωj j ∂Ωj j

ðτ
0
h ∘U tð Þdt,

ð102Þ
So, combining inequalities (97)–(102), we obtain

a
2 Uττ x, τð Þk k2L2 Ωð Þ −

1
2 h

′∘∇U τð Þ − 1
2 h τð Þ ∇U x, τð Þk k2L2 Ωð Þ

+ c2 ∇Uτ x, τð Þ,∇U x, τð Þð ÞL2 Ωð Þ
+ 2 ∇W x, τð Þ,∇Uτ x, τð Þð ÞL2 Ωð Þ

+ b
2 −

c2

2ε1′
ε −

b

2ε2′
ε −

1
2ε3

+ 1
2ε4

� �
ε

� �
∇Uτ x, τð Þk k2L2 Ωð Þ

−
c2l εð Þ
2ε1′

+ bl εð Þ
2ε2′

+ 1
2ε3

+ 1
2ε4

� ��
l εð Þ Uτ x, τð Þk k2L2 Ωð Þ

−
b
2 ε2

′T Ωj j ∂Ωj j U x, τð Þk k2L2 Ωð Þ

≤ β
ðτ
0
Utt x, tð Þk k2L2 Ωð Þdt +

1
2T Ωj j ε3 + 1ð Þ

ðτ
0
h ∘U tð Þdt

+ 1
2

ðτ
0
h′′ ∘U tð Þdt − 1

2

ðτ
0
h′ tð Þ Uτ x, τð Þk k2L2 Ωð Þdt

+ c2 + c2

2 ε + b
2 ε

� �ðτ
0
∇Ut x, tð Þk k2L2 Ωð Þdt

+ c2

2 ε1′T Ωj j ∂Ωj j + 1
2 c2 + h0 + Th0ε4
� 	

Ωj j ∂Ωj j
� �

�
ðτ
0
U x, tð Þk k2L2 Ωð Þdt

+ b
2 l εð Þ + T Ωj j ∂Ωj jf g + 1

2 c2 + 1
� 	

l εð Þ
� �

�
ðτ
0
Ut x, tð Þk k2L2 Ωð Þdt: ð103Þ

Adding side to side (89) and (103) that gives

a Uτ x, τð Þ,U x, τð Þð ÞL2 Ωð Þ

+ β

2 −
b
2 ε2

′T Ωj j ∂Ωj j
� �

U x, τð Þk k2L2 Ωð Þ

� c
2

2 ∇v x, 0ð Þk k2L2 Ωð Þ +
a
2 Uττ x, τð Þk k2L2 Ωð Þ

+ c2 ∇Uτ x, τð Þ,∇U x, τð Þð ÞL2 Ωð Þ

+ b
2 −

c2

2ε1′
ε −

b

2ε2′
ε −

1
2ε3

+ 1
2ε4

� �
ε

� �

� ∇Uτ x, τð Þk k2L2 Ωð Þ −
c2

2ε1′
+ b

2ε2′
+ 1

2ε3
+ 1
2ε4

� �
l εð Þ

� �

� l εð Þ Uτ x, τð Þk k2L2 Ωð Þ −
1
2 h

′∘∇U τð Þ
+ 2 ∇W x, τð Þ,∇Uτ x, τð Þð ÞL2 Ωð Þ

≤ γ4

ðτ
0
U x, tð Þk k2L2 Ωð Þdt + a + b

2 l εð Þ + T Ωj j ∂Ωj jð Þ
�

+ c2

2 + 1
� �

l εð Þ
�ðτ

0
Ut x, tð Þk k2L2 Ωð Þdt

+ c2 + b
2 + 1

� �
ε + h0

� �ðτ
0
∇v x, tð Þk k2L2 Ωð Þdt

+ c2 + c2

2 ε + b
2 ε +

h0
4

� �ðτ
0
∇Ut x, tð Þk k2L2 Ωð Þdt

2

� 1
2 Ωj j ∂Ωj j ε3T + 1 + T2� 	

+ 1
2T

2l εð Þ
� �ðτ

0
h ∘U tð Þdt

−
1
2

ðτ
0
h′′∘∇U tð Þdt + h0

2

ðτ
0
h∘∇U tð Þdt

+ h 0ð Þ
4 + h0

2

� �ðτ
0
∇U x, tð Þk k2L2 Ωð Þdt,

ð104Þ
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where

γ4 ≔
c2

2 T2 l εð Þ + Ωj j ∂Ωj jð Þ + b
2 T2l εð Þ + Ωj j ∂Ωj j� 	�

+ 1
2T

2 l εð Þ + Ωj j ∂Ωj jh0ð Þ + c2

2ε1
ε1′T Ωj j ∂Ωj j

+ c2

2 Ωj j ∂Ωj j + 1
2 h0 Ωj j ∂Ωj j ε4T2 + 1

� 	�
:

ð105Þ

Now, the last term on the RHS of (104), we give the
function θ (x,t) by

θ x, tð Þ≔
ðt
0
U x, sð Þds: ð106Þ

Hence, we use (77), and we get

v x, tð Þ = θ x, τð Þ − θ x, tð Þ,∇v x, 0ð Þ = ∇θ x, τð Þ,

∇vk k2L2 Qτð Þ = ∇θ x, τð Þ−∇θ x, tð Þk k2L2 Ωð Þ

≤ 2 τ ∇θ x, τð Þk k2L2 Ωð Þ + ∇θ x, tð Þk k2L2 Qτð Þ
 �

:

ð107Þ

And using the inequalities

m1′ U x, τð Þk k2L2 Ωð Þ
≤m1′ U x, tð Þk k2L2 Qτð Þ +m1 Ut x, tð Þk k2L2 Qτð Þ,

m2′ Uτ x, τð Þk k2L2 Ωð Þ
≤m2′ Ut x, tð Þk k2L2 Qτð Þ +m2 Utt x, tð Þk k2L2 Qτð Þ,

m3′ ∇U x, τð Þk k2L2 Ωð Þ
≤m3′ ∇U x, tð Þk k2L2 Qτð Þ +m3 ∇Ut x, tð Þk k2L2 Qτð Þ,

m4′h ∘U τð Þ
≤m4′ 1 + ζ

2

� �ðτ
0
h′ ∘U tð Þdt +m4 ∇Ut x, τð Þk k2L2 Qτð Þ,

−
a
2 Uτ x, τð Þk k2L2 Ωð Þ −

a
2 U x, τð Þk k2L2 Ωð Þ

≤ a Uτ x, τð Þ,U x, τð Þð ÞL2 Ωð Þ,

−
c2

2ε3′
∇Uτ x, τð Þk k2L2 Ωð Þ −

c2

2 ε3′ ∇U x, τð Þk k2L2 Ωð Þ

≤ c2 ∇Uτ x, τð Þ,∇U x, τð Þð ÞL2 Ωð Þ,

−
1
4ε9

+ h0
4ε8

� �
∇Uτ x, τð Þk k2L2 Ωð Þ

− h0ε8 ∇U x, τð Þk k2L2 Ωð Þ − ε9h0∇U τð Þ
≤ 2 ∇W x, τð Þ,∇Uτ x, τð Þð ÞL2 Ωð Þ:

ð108Þ

Let

m1′≔
a
2 + b

2 ε2
′T Ωj j ∂Ωj j,

m2′≔ 1 + a
2 −

c2

2ε3′
−

c2

2ε1′
+ b

2ε2′
+ 1
2ε3

+ 1
2ε4

� �
l εð Þ,

8>>><
>>>:

m3′≔
c2

2 ε3′ + h0ε8,

ð109Þ

and we choose ε1′ , ε2′ , ε3′ , ε8 and ε9 sufficiently large

c2

2ε1′
ε + b

2ε2′
ε + c2

2ε3′
+ 1

4ε9
+ h0
4ε9

� �
ε < b

2 : ð110Þ

As τ is arbitrary, and we get

A≔
c2

2 − 2τε c2 + b
� 	

/2 + 1 + h0
� 	

> 0: ð111Þ

Thus, inequality (104) takes the form

β

2 U x, τð Þk k2L2 Ωð Þ + Uτ x, τð Þk k2L2 Ωð Þ + ∇U x, τð Þk k2L2 Ωð Þ

+ b
2 −

c2

2ε1′
ε −

b

2ε2′
ε −

c2

2ε3′
+ 1
4ε9

+ h0
4ε8|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

γ6

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

� ∇Uτ x, τð Þk k2L2 Ωð Þ −
1
2 h

′∘∇U τð Þ − h′ ∘U τð Þ

+ a
2 Uττ x, τð Þk k2L2 Ωð Þ + A ∇θ x, τð Þk k2L2 Ωð Þ

≤ γ4 +m1′
 �ðτ

0
U x, tð Þk k2L2 Ωð Þdt + γ5

ðτ
0
Ut x, tð Þk k2L2 Ωð Þdt

+ m3′ +
h0
4

� �ðτ
0
∇U x, tð Þk k2L2 Ωð Þdt

+ β +m2′
 �ðτ

0
Utt x, tð Þk k2L2 Ωð Þdt

+ c2 + c2

2 ε + b
2 ε +

h0
4 + h 0ð Þ

2 +m3′|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
γ7

8>>>><
>>>>:

9>>>>=
>>>>;

�
ðτ
0
∇Ut x, tð Þk k2L2 Ωð Þdt + 2ε c2 + b

� 	
2 + 1 + h0

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

γ8

�
ðτ
0
∇θ x, tð Þk k2L2 Ωð Þdt −

1
2

ðτ
0
h′′∘∇U tð Þdt

−
ε9
ζ
+ 1

� �ðτ
0
h′∘∇U tð Þdt

13Journal of Function Spaces



−
1
ζ

1
2 Ωj j ∂Ωj j ε3T + 1 + T2� 	

+ 1
2T

2l εð Þ + 1
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

γ9

�
ðτ
0
h′ ∘U tð Þdt, ð112Þ

where

γ5 ≔ a + b
2 l εð Þ + T Ωj j ∂Ωj jð Þ + c2

2 + 1
� �

l εð Þ + h 0ð Þ
2

+m1′ +m2′:
ð113Þ

We get

U x, τð Þk k2L2 Ωð Þ + Uτ x, τð Þk k2L2 Ωð Þ + ∇U x, τð Þk k2L2 Ωð Þ
− h′ ∘U τð Þ + ∇Uτ x, τð Þk k2L2 Ωð Þ + Uττ x, τð Þk k2L2 Ωð Þ
+ ∇θ x, τð Þk k2L2 Ωð Þ − h′∘∇U τð Þ

≤D′
ðτ
0

U x, tð Þk k2L2 Ωð Þ + Ut x, tð Þk k2L2 Ωð Þ
n

+ ∇U x, tð Þk k2L2 Ωð Þ − h′ ∘U tð Þ + ∇Ut x, tð Þk k2L2 Ωð Þ

+ Utt x, tð Þk k2L2 Ωð Þ + ∇θ x, tð Þk k2L2 Ωð Þ − h′∘∇U tð Þ
o
dt,

ð114Þ

where

Hence, applying Gronwall’s lemma to (114) gives

U x, τð Þk k2L2 Ωð Þ + Uτ x, τð Þk k2L2 Ωð Þ + ∇Uτ x, τð Þk k2L2 Ωð Þ
− h′ ∘U τð Þ + Uττ x, τð Þk k2L2 Ωð Þ + ∇U x, τð Þk k2L2 Ωð Þ
+ ∇θ x, τð Þk k2L2 Ωð Þ − h′∘∇U τð Þ ≤ 0,

ð116Þ

for all τ ∈ ½0, ðc2/4εðððc2 + bÞ/2Þ + 1 + h0ÞÞ�.
For the intervals, we use the same method

τ ∈
m − 1ð Þc2

4ε c2 + bð Þ/2ð Þ + 1 + h0ð Þ ,
mc2

4ε c2 + bð Þ/2ð Þ + 1 + h0ð Þ

 �

ð117Þ

to cover the whole interval ½0, T� and thus proving that
Uðx, τÞ = 0, ∀τ in ½0, T�: Hence, the uniqueness is proved.

5. Conclusion

The objective of this work is the study of solvability of the
Moore-Gibson-Thompson equation with viscoelastic mem-
ory term and integral condition by using the Galerkin
method. The MGT equation is a nonlinear partial differential
equation that arises in hydrodynamics and some physical
applications. Recent developments in numerical schemes
for solving MGT have placed immense interest in nonlinear
dispersive wave models. In the next work, we will try to use
the same method with Boussinesque and Hall-MHD equa-
tions which are nonlinear partial differential equation that
arises in hydrodynamics and some physical applications.
It was subsequently applied to problems in the percolation
of water in porous subsurface strata (see [6, 15–24], for

example, [10, 11, 25, 26]) by using some famous algo-
rithms (see [27–29]).
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In the paper, we consider new stability results of solution to class of coupled damped wave equations with logarithmic sources inℝn.
We prove a new scenario of stability estimates by introducing a suitable Lyapunov functional combined with some estimates.

1. Introduction

In the present paper, we consider an initial boundary value
problem with damping terms and logarithmic sources, for x
∈ℝn, t > 0

∂ttv1 + bv2 = ϕ xð ÞΔ v1 −
ðt
0
ϖ1 t − pð Þv1 pð Þdp

� �
+ kv1 ln v1j j,

∂ttv2 + bv1 = ϕ xð ÞΔ v2 −
ðt
0
ϖ2 t − pð Þv2 pð Þdp

� �
+ kv2 ln v2j j,

v1 x, 0ð Þ = v10 xð Þ, v2 x, 0ð Þ = v20 xð Þ,
∂tv1 x, 0ð Þ = v11 xð Þ, ∂tv2 x, 0ð Þ = v21 xð Þ,

8>>>>>>>>><
>>>>>>>>>:

ð1Þ

where b > 0, n ≥ 3, and k is a small positive real number. The
density function ρðxÞ > 0, for all x ∈ℝn, where ðϕðxÞÞ−1 = 1/ϕ
ðxÞ ≡ ρðxÞ, under homogeneous Drichlet boundary conditions.

A related initial boundary value problem was considered
by Han in [1]:

utt + ut − Δu + u + uj j2u = u ln uj j2, x ∈Ω, t ∈ 0, T½ Þ,
u x, 0ð Þ = u0 xð Þut x, 0ð Þ = u1 xð Þ, x ∈Ω,
u x, tð Þ = 0, x ∈ ∂Ω, t ∈ 0, T½ Þ,

8>><
>>:

ð2Þ

and the global existence of weak solutions was proved, for all
ðu0, u1Þ ∈H1

0 × L2 in ℝ3. The weak and strong damping
terms in logarithmic wave equation

utt + μut − Δu − ωΔut = u ln uj j, x ∈Ω, t ∈ 0,∞ð Þ,
u x, 0ð Þ = u0 xð Þut x, 0ð Þ = u1 xð Þ, x ∈Ω,
u x, tð Þ = 0, x ∈ ∂Ω, t ∈ 0,∞ð Þ

8>><
>>:

ð3Þ

were introduced by Lian and Xu [2]. The global exis-
tence, asymptotic behavior, and blowup at three different
initial energy levels (subcritical energy Eð0Þ < d, critical
initial energy Eð0Þ = d, and the arbitrary high initial
energy Eð0Þ > 0ðω = 0Þ) were proved. In [3], Al-Gharabli
established explicit and general energy decay results for
the problem

utt + Δ2u + u −
ðt
0
g t − sð ÞΔ2uds = ku ln uj j, x ∈Ω, t ∈ 0,∞ð Þ,

u x, 0ð Þ = u0 xð Þut x, 0ð Þ = u1 xð Þ, x ∈Ω,

u x, tð Þ = ∂u
∂υ

= 0, x ∈ ∂Ω, t ∈ 0,∞ð Þ:

8>>>>><
>>>>>:

ð4Þ
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When the density ϕðxÞ ≠ 1, Papadopoulos and Stavra-
kakis [4] considered the following semilinear hyperbolic
initial value problem:

utt + ϕ xð ÞΔu + δut + λf uð Þ = η xð Þ, x, tð Þ ∈ℝn ×ℝ+: ð5Þ

The authors proved local existence of solutions and
established the existence of a global attractor in the
energy space D1,2ðℝnÞ × L2gðℝnÞ, where ðϕðxÞÞ−1 ≔ gðxÞ.
Miyasita and Zennir [5] proved the global existence of
the following viscoelastic wave equation:

utt + aut − ϕ xð Þ Δu + ωΔut −
ðt
0
g t − sð ÞΔu sð Þds

� �
= u uj jp−1, x ∈ℝn, t > 0,

u x, 0ð Þ = u0 xð Þ, x ∈ℝn,
ut x, 0ð Þ = u1 xð Þ, x ∈ℝn:

8>>>><
>>>>:

ð6Þ

The novelty of our work lies primarily in the use of a
new condition between the weights of damping the exter-
nal forces, where we outline the effects of the damping
term with less conditions on the viscoelastic terms. We
also propose logarithmic nonlinearities in sources and
used classical arguments to estimate them. These nonlin-
earities make the problem very interesting in the applica-
tion point of view. In order to compensate for the lack of
classical Poincaré’s inequality in ℝn, we use the weighted
function to use generalized Poincaré’s one. The main
contribution of this paper is introduced in Theorem 8,
where we obtain decay estimates with positive initial
energy under a general assumption on the kernel. The
rest of the paper is outline as follows. In Section 2, we
give some preliminaries and our main results. In Section
3, we will prove the general decay of energy to the
problem.

2. Preliminaries and Main Results

We state some assumptions and definitions that will be useful
in this paper. With respect to the relaxation functions ϖ1, ϖ2,
we assume for i = 1, 2:

(H1) ϖ1, ϖ2 ∈ C1ðℝ+,ℝ+Þ satisfy for any t ≥ 0,

ϖi 0ð Þ > 0,
ð∞
0

ϖi pð Þdp = li0 <∞,1 −
ðt
0
ϖi pð Þdp = li > 0 ð7Þ

(H2) There exist nonincreasing differentiable functions
ζ1, ζ2 : ℝ+ ⟶ℝ+ that satisfy

ζi tð Þ > 0, ϖi′ tð Þ ≤ −ζi tð Þϖi tð Þ for t ≥ 0 ð8Þ

(H3) The function ρ : ℝn ⟶ℝ∗
+, ρðxÞ ∈ C0,γðℝnÞ with

γ ∈ ð0, 1Þ and ρ ∈ LsðℝnÞ ∩ L∞ðℝnÞ, where s = 2n/2n − qn +
2q

Definition 1 (see [4]). We define the function spaces of our
problem and their norms as follows:

H = v ∈ L2n/ n−2ð Þ ℝnð Þ∣∇v ∈ L2 ℝnð Þ� �nn o
: ð9Þ

Let the function spacesH as the closure of C∞
0 ðℝnÞ with

respect to the norm kvkH = ðv, vÞ1/2H for the inner product:

v,wð ÞH =
ð
ℝn

∇v · ∇wdx, ð10Þ

and L2ρðℝnÞ be defined with the norm kvkL2ρ = ðv, vÞ1/2L2ρ
for

v,wð ÞL2ρ =
ð
ℝn

ρvw dx: ð11Þ

For general q ∈ ½1,+∞Þ, LqρðℝnÞ is the weighted Lq space
under a weighted norm

vk kLqρ =
ð
ℝn

ρ vj jq dx
� �1/q

: ð12Þ

To distinguish the usual Lq space from the weighted one,
we denote the standard Lq norm by

vk kq =
ð
ℝn

vj jq dx
� �1/q

: ð13Þ

We denote an eigenpair fðλj,wjÞgj∈ℕ ⊂ℝ ×H by

−ϕ xð ÞΔwj = λ jwj x ∈ℝn ð14Þ

for any j ∈ℕ. Then, according to [4],

0 < λ1 ≤ λ2 ≤⋯≤ λj ≤⋯↑+∞ ð15Þ

holds and fwjg is a complete orthonormal system in H .
Now, we introduce Sobolev embedding and generalized

Poincaré’s inequalities.

Lemma 2. Let ρ satisfy (H3). Then, there are positive con-
stants CS > 0 and CP > 0 that depend only on n and ρ such
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that

vk k2n/ n−2ð Þ ≤ CS vk kH ,

vk kL2ρ ≤ CP vk kH
ð16Þ

for v ∈H .

Lemma 3 (see Lemma 2.2 in [6]). Let ρ satisfy (H3). Then, we
have

vk kLqρ ≤ Cq vk kH ,

Cq = CS ρk k1/qs

ð17Þ

for v ∈H , where s = 2n/ð2n − qn + 2qÞ for 1 ≤ q ≤ 2n/ðn − 2Þ.

The energy functional associated to problem (1) is given
by

E tð Þ = 1
2〠

2

i=1
∂tvi tð Þk k2L2ρ +

1
2〠

2

i=1
1 −
ðt
0
ϖi pð Þdp

� �
∇vi tð Þk k2

+ b v1 tð Þv2 tð Þk k2 + 1
2〠

2

i=1
ϖi∘∇við Þ tð Þ

−
k
2〠

2

i=1

ð
ℝn

ρ xð Þv2i ln vij jdx + k
4〠

2

i=1
vik k2L2ρ

≥
1
2〠

2

i=1
∥∂tvi tð Þ∥2L2ρ +

1
2〠

2

i=1
1 −
ðt
0
ϖi pð Þdp

� �
∇vi tð Þk k2

+ 1
2〠

2

i=1
ϖi∘∇við Þ tð Þ − k

2〠
2

i=1

ð
ℝn

ρ xð Þv2i ln vij jdx

+ k
4〠

2

i=1
vik k2L2ρ ,

ð18Þ

where

ϖ ∘ vð Þ =
ðt
0
ϖ t − pð Þ v tð Þ − v pð Þk k22dp: ð19Þ

With direct differentiation of (18), using (1), we obtain

∂tE tð Þ = −
1
2〠

2

i=1
ϖi tð Þ vik k2H − ϖi′∘∇vi

� �� �
≤ 0, ð20Þ

which let our system dissipative.

Lemma 4 (see [7]) (logarithmic Sobolev inequality). Lets u be
any function in H1

0ðΩÞ and a > 0 be any number. Then,

ð
Ω

v2 ln vj jdx ≤ 1
2

vk k22 ln vk k22 +
a2

2π
∇vk k22 − 1 + ln að Þ vk k22:

ð21Þ

Lemma 5 (see [8]) (logarithmic Gronwall inequality). Let c
> 0, γ ∈ L1ð0, T ;ℝ+Þ, and assume that the function ω : ½0, T
�⟶ ½1,∞Þ satisfies

ω tð Þ ≤ c 1 +
ðt
0
γ pð Þω pð Þ ln ω pð Þdp

� �
, 0 ≤ t ≤ T , ð22Þ

then

ω tð Þ ≤ c exp c
ðt
0
γ pð Þdp

� �
, 0 ≤ t ≤ T: ð23Þ

We define the following functionals

J tð Þ = 1
2〠

2

i=1
1 −
ðt
0
ϖi pð Þdp

� �
∇vi tð Þk k2

+ 1
2〠

2

i=1
ϖi∘∇við Þ tð Þ − k

2〠
2

i=1

ð
ℝn

ρ xð Þv2i ln vij jdx

+ k
4〠

2

i=1
vik k2L2ρ ,

I tð Þ = 1
2〠

2

i=1
1 −
ðt
0
ϖi pð Þdp

� �
∇vi tð Þk k2

+ 1
2〠

2

i=1
ϖi∘∇við Þ tð Þ − k

2〠
2

i=1

ð
ℝn

ρ xð Þv2i ln vij jdx:

ð24Þ

Then, we introduce

W = v1, v2ð Þ: v1, v2 ∈H : I tð Þ > 0, J tð Þ < df g ∪ 0f g:

〠
2

i=1
vik k2 < 4d for all t ∈ 0, T½ Þ:

ð25Þ

Lemma 6. Let ðv10, v11Þ, ðv20, v21Þ ∈H × L2ρðℝnÞ such that 0
<Eð0Þ < d and Iðt0Þ > 0. Then, we have

v1, v2ð Þ ∈W, ð26Þ

Theorem 7 (see [5]). Let ðv10, v11Þ, ðv20, v21Þ ∈H × L2ρðℝnÞ.
Under the assumptions (H1)–(H3). Then, problem (1) has a
global weak solution u in the space

v1, v2ð Þ ∈ C 0,+∞½ Þ ;Hð Þ ∩ C1 0,+∞½ Þ ; L2ρ ℝnð Þ
� �� �2

:

ð27Þ
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Then, the main result in this paper is the general decay of
energy to problem (1) which is given in the following
theorem.

Theorem 8. Assume the assumptions (H1)–(H3) hold and 0
<Eð0Þ < d. Let ðv1, v2Þ be the weak solution of problem (1)
with the initial data ðv10, v11Þ, ðv20, v21Þ ∈HðℝnÞ × L2ρðℝnÞ.
Then, there exist constant β > 0 such that the energy EðtÞ
defined by (18) satisfies for all t > 0,

E tð Þ ≤ β 1 +
ðt
t0

ξε0+1 pð Þdp
 !−1/ε0

, ε0 ∈ 0, 1ð Þ: ð28Þ

3. Asymptotic Behavior for Eð0Þ < d

The following technical lemmas are useful to prove the gen-
eral decay of energy to problem (1).

Lemma 9. Under the assumptions in Theorem 8, then the
functional ΦðtÞ defined by

Φ tð Þ =
ð
ℝn

ρ xð Þ v1 tð Þ∂tv1 + v2 tð Þ∂tv2 tð Þð Þdxdx ð29Þ

satisfies for any t ≥ 0,

Φ′ tð Þ ≤ 〠
2

i=1
∂tvi tð Þk k2L2ρ −

1
2
〠
2

i=1
li ∇vi tð Þk k2

+ 〠
2

i=1

1 − li
4ε

ϖi∘∇við Þ tð Þ

+ k〠
2

i=1

ð
ℝn

ρ xð Þv2i ln vij jdx:

ð30Þ

Proof. We differentiate ΦðtÞ, using (1), we can get

Φ′ tð Þ = 〠
2

i=1
∂tvik k2L2ρ − 〠

2

i=1
∇vik k2

+ 〠
2

i=1

ð
ℝn

∇vi tð Þ ·
ðt
0
ϖi t − pð Þ∇vi pð Þdpdx

− 2b
ð
ℝn

ρ xð Þv1v2dx + k〠
2

i=1

ð
ℝn

ρ xð Þv2i ln vij jdx:

ð31Þ

It follows from Young and Poincaré’s inequality that for
any ε > 0,

ð
ℝn

∇vi tð Þ ·
ðt
0
ϖi t − pð Þ∇vi pð Þdpdx

=
ð
ℝn

∇vi tð Þ ·
ðt
0
ϖi t − pð Þ ∇vi pð Þ−∇vi tð Þð Þdpdx

+
ðt
0
ϖi pð Þdp ∇vi tð Þk k22

≤ 1 − lið Þ ∇vik k2 + ε ∇vik k22 +
1
4ε

ð
ℝn

·
ðt
0
ϖi t − pð Þ ∇vi pð Þ−∇v tð Þð Þdp

� �2
dx

≤ 1 − li + εð Þ ∇vik k22 +
1 − li
4ε ϖi∘∇við Þ tð Þ:

ð32Þ

Exploit Young and Poincaré’s inequalities to estimate

2b
ð
ℝn

ρ xð Þv1v2dx ≤ εc∗ ∇vik k2L2ρ +
c∗
4ε ∇v2k k2L2ρ : ð33Þ

Inserting (32)–(33) into (31) yields for any ε > 0,

Φ′ tð Þ ≤ 〠
2

i=1
∂tvi tð Þk k2L2ρ − 〠

2

i=1
l − ε − εc∗ð Þ ∇vi tð Þk k2

+ 〠
2

i=1

1 − li
4ε ϖi∘∇við Þ tð Þ

+ k〠
2

i=1

ð
ℝn

ρ xð Þv2i ln vij jdx:

ð34Þ

Taking ε > 0 small enough in (34) such that

li − ε − εc∗ >
l
2 : ð35Þ

The proof is hence complete.

Lemma 10. Under the assumptions in Theorem 8, then the
functional ψðtÞ defined by

ψ tð Þ = −
ð
ℝn

ρ xð Þ∂tv1 tð Þ
ðt
0
ϖ1 t − pð Þ v1 tð Þ − v1 pð Þð Þdpdx

−
ð
ℝn

ρ xð Þ∂tv2 tð Þ
ðt
0
ϖ2 t − pð Þ v2 tð Þ − v2 pð Þð Þdpdx

ð36Þ
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satisfies for any δ > 0,

ψ′ tð Þ ≤ 〠
2

i=1
δ 1 − lið Þ2 + 1 + bc∗
� 	

∇vi tð Þk k2

− 〠
2

i=1

ðt
0
ϖi sð Þdp

� �
− 2δ


 �
∂tvi tð Þk k2L2ρ

+ C〠
2

i=1

ðt
0
ϖi sð Þdp

� �
ϖi∘∇við Þ tð Þ

−
ϖi 0ð Þc∗
4δ

〠
2

i=1
ϖi′∘ Δvi
� �

tð Þ

+ cε0 〠
2

i=1
ϖi∘∇við Þ1/ 1+ε0ð Þ:

ð37Þ

Proof. Taking the derivative of ψðtÞ and using (1), we con-
clude that

ψ′ tð Þ = 〠
2

i=1

ð
ℝn

∇vi tð Þ
ðt
0
ϖi t − pð Þ ∇vi tð Þ−∇vi pð Þð Þdpdx

−
ð
ℝn

ðt
0
ϖ1 t − pð Þ∇v1 pð Þdp

� �

�
ðt
0
ϖ1 t − pð Þ ∇v1 tð Þ−∇v1 pð Þð Þdp

� �
dx

−
ð
ℝn

ðt
0
ϖ2 t − pð Þ∇v2 pð Þdp

� �

�
ðt
0
ϖ2 t − pð Þ ∇v2 tð Þ−∇v2 pð Þð Þdp

� �
dx

+ b
ð
ℝn

ρ xð Þv2
ðt
0
ϖ1 t − pð Þ v1 tð Þ − v1 pð Þð Þdpdx

+ b
ð
ℝn

ρ xð Þv1
ðt
0
ϖ2 t − pð Þ v2 tð Þ − v2 pð Þð Þdpdx

− k〠
2

i=1

ð
ℝn

ρ xð Þvi ln vij j
ðt
0
ϖi t − pð Þ vi tð Þ − vi pð Þð Þdpdx

− 〠
2

i=1

ðt
0
ϖi pð Þdp ∂tvik k2L2ρ

− 〠
2

i=1

ð
ℝn

ρ xð Þ∂tvi
ðt
0
ϖi′ t − pð Þ vi tð Þ − vi pð Þð Þdpdx:

ð38Þ

We then use Young and Poincaré’s inequalities; we can
get for any δ > 0,

ð
ℝn

∇vi tð Þ
ðt
0
ϖi t − pð Þ ∇vi tð Þ−∇vi pð Þð Þdpdx

≤ δ ∇vik k2 + 1
4δ

ðt
0
ϖi pð Þdp

� �
ϖi∘∇við Þ tð Þ:

ð39Þ

The second and third terms can be treated as

ð
ℝn

ðt
0
ϖi t − pð Þ∇vi pð Þdp

� � ðt
0
ϖi t − pð Þ ∇vi tð Þ−∇vi pð Þð Þdp

� �
dx

≤ δ 1 − lið Þ2 ∇vik k2 + 1 + 1
4δ

� � ðt
0
ϖi pð Þdp

� �
ϖi∘∇við Þ tð Þ:

ð40Þ

The fourth and fifth terms will be estimated by

ð
ℝn

ρ xð Þv2
ðt
0
ϖ1 t − pð Þ v1 tð Þ − v1 pð Þð Þdpdx

≤ δc∗ ∇v2k k2 + c∗
4δ

ðt
0
ϖ1 pð Þdp

� �
ϖ1∘∇v1ð Þ tð Þ,

ð
ℝn

ρ xð Þv1
ðt
0
ϖ2 t − pð Þ v2 tð Þ − v2 pð Þð Þdpdx

≤ δc∗ ∇v1k k2 + c∗
4δ

ðt
0
ϖ2 pð Þdp

� �
ϖ2∘∇v2ð Þ tð Þ,

ð41Þ

respectively.
For the last term, we have

ð
ℝn

ρ xð Þ∂tvi
ðt
0
ϖi′ t − pð Þ vi tð Þ − vi pð Þð Þdpdx

≤ δ ∂tvik k2L2ρ +
c∗
4δ

ðt
0
− ϖi′ pð Þdp

� �
ϖi′∘∇vi
� �

tð Þ

≤ δ ∂tvik k2L2ρ −
ϖi 0ð Þc∗
4δ ϖi′∘∇vi

� �
tð Þ:

ð42Þ

Let ε0 ∈ ð0, 1Þ and gðsÞ = sε0ðjln sj − sÞ. Notice that g is
continous on ð0,∞Þ, its limit at 0 is 0, and its limit at ∞ is
−∞. Then, g has a maximummε0

on ½0,∞Þ, so the following
inequality holds

s ln sj j ≤ s2 +mε0
s1−ε0 , for all s > 0: ð43Þ

Using the Cauchy-Schwartz’s inequality and applying
(43), yields, for any δ > 0,

k
ð
ℝn

ρ xð Þvi ln ∣vi∣
ðt
0
ϖi t − pð Þ vi tð Þ − vi pð Þð Þdpdx

≤ k
ð
ℝn

ρ xð Þ v2i +mε0
vij j1−ε0� �

·
ðt
0
ϖi t − pð Þ vi tð Þ − vi pð Þð Þdpdx

����
����

≤ c
ð
ℝn

ρ xð Þv2i
ðt
0
ϖi t − pð Þ vi tð Þ − vi pð Þð Þdpdx

����
����

+ δ∥vi∥
2
L2ρ
+
ð
ℝn

ðt
0
ϖi t − pð Þ vi tð Þ − vi pð Þð Þdpdx

����
����
2/ 1+ε0ð Þ

≤ δc∗∥∇vi∥
2
2 +

1
4δ ϖi∘∇við Þ tð Þ + cε0 ϖi∘∇við Þ1/ 1+ε0ð Þ:

ð44Þ
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Combining (39)–(44) with (39) gives us (37) with

C = bc∗ + 2
4δ + 2δ: ð45Þ

Therefore, the proof is complete.

Now, we define a Lyapunov functional LðtÞ by

L tð Þ =ME tð Þ + ε1Φ tð Þ + ε2ψ tð Þ, ð46Þ

whereM, ε1, and ε2 are positive constants which will be taken
later.

It is easy to see that LðtÞ and EðtÞ are equivalent in the
sense that there exist two positive constants β1 and β2 such
that

β1E tð Þ ≤L tð Þ ≤ β2E tð Þ: ð47Þ

Remark 11 (see [3]). Since ζi is nonincreasing, we have

ζi tð Þ ϖi∘∇viÞð Þ1/ 1+ε0ð Þ ≤ C −E ′ tð Þ
� �1/ 1+ε0ð Þ

: ð48Þ

Proof of Theorem 8. For any fixed t0 > 0, we have for any t
≥ t0,

ðt
0
ϖi pð Þdp ≥

ðt0
0
ϖi pð Þdp≔ ϖi0: ð49Þ

It follows from (37), (30), and (20) that

L ′ tð Þ =ME ′ tð Þ + ε1Φ′ tð Þ + ψ′ tð Þ

≤ −〠
2

i=1
ϖi0 − 2δ − ε1ð Þ ∂tvi tð Þk k2L2ρ

− 〠
2

i=1

li
2 ε1 − δ 1 − lið Þ2 + 1 + bc∗

� �
 �
∇vi tð Þk k22

+ 〠
2

i=1
C1ε1 + Cli½ � ϖi∘∇við Þ tð Þ − M

2 〠
2

i=1
ϖi tð Þ vi tð Þk k2

+ ε1k〠
2

i=1

ð
ℝn

ρ xð Þv2i ln vij jdx + ε1cε0 〠
2

i=1
ϖi∘∇viÞð Þ1/ 1+ε0ð Þ

+ C3 〠
2

i=1
ϖi′∘∇vi
� �

tð Þ:

ð50Þ

Using the logarithmic Sobolev inequality, we have

L ′ tð Þ ≤ −〠
2

i=1
ϖi0 − 2δ − ε1ð Þ ∂tvt ið Þk k2L2ρ

+ C3 〠
2

i=1
ϖi′∘∇vi
� �

tð Þ

− 〠
2

i=1

li
2 ε1 − δ 1 − lið Þ2 + 1 + bc∗ − ε1k

α2

2π

� �
 �

∇vi tð Þk k22 + 〠
2

i=1
C1ε1 + Cli½ � ϖi∘∇við Þ tð Þ

−
M
2 〠

2

i=1
ϖi tð Þ vi tð Þk k2 + ε1k

1
2〠

2

i=1
vik k22 ln vik k22

− ε1k 1 + ln αð Þ〠
2

i=1
vik k22 + ε1cε0 〠

2

i=1
ϖi∘∇viÞð Þ1/ 1+ε0ð Þ:

ð51Þ

Recalling (18) and EðtÞ ≤Eð0Þ < d, we get

ln vk k22 < ln 4
k
E tð Þ

� �
< ln 4

k
E 0ð Þ

� �
< ln 4

k
d

� �
: ð52Þ

Now, we take ε1 > 0 small enough so that

ϖi0 − 2δ − ε1ð Þ > 0: ð53Þ

For any fixed ε1 > 0, we pick δ > 0 so small that

li
2 ε1 − δ 1 − lið Þ2 + 1

� �
> li
4 ε1: ð54Þ

On the other hand, we chooseM > 0 large enough so that
(47) holds, and further

C3 =
M
2 −

ϖi 0ð Þ
4δ > 0: ð55Þ

We can conclude that there exist two positive constantm
and C′ such that

L ′ tð Þ ≤ −mE tð Þ + C′〠
2

i=1
ϖi∘∇við Þ tð Þ + ε1cε0 〠

2

i=1
ϖi∘∇viÞð Þ1/ 1+ε0ð Þ:

ð56Þ

Multiplying (56) by ζðtÞ =min fζ1, ζ2g by (H2) and use
the fact that

ϖi∘∇við Þ tð Þ ≤ c ϖi∘∇við Þ1/ 1+ε0ð Þ tð Þ, ð57Þ

and (48), we get

ζ tð ÞL ′ tð Þ ≤ −mζ tð ÞE tð Þ + c −E ′ tð Þ
� �1/ 1+ε0ð Þ

: ð58Þ
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Multiply (58) by ζε0ðtÞEε0ðtÞ and recall that ζ′ðtÞ ≤ 0 to
obtain

ζε0+1 tð ÞEε0 tð ÞL ′ tð Þ ≤ −mζε0 tð ÞEε0+1 tð Þ + c ζEð Þε0 tð Þ −E ′ tð Þ
� �1/ 1+ε0ð Þ

:

ð59Þ

Using Young’s inequality, for any δ > 0,

ζε0+1 tð ÞEε0 tð ÞL ′ tð Þ ≤ −mζε0+1 tð ÞEε0+1 tð Þ
+ c δζε0+1 tð ÞEε0+1 tð Þ − cδE ′ tð Þ
� �

≤ − m − δcð Þζε0+1 tð ÞEε0+1 tð Þ − cE ′ tð Þ,
ð60Þ

which implies

ζε0+1Eε0L + cE
� �

tð Þ ≤ − m − δcð Þvε0+1 tð ÞEε0+1 tð Þ: ð61Þ

It is clear that to get

L1 tð Þ = ζε0+1Eε0L + cE
� �

~E tð Þ: ð62Þ

By using (61) and ζ′ðtÞ ≤ 0, we arrive at

L1′ tð Þ = ζε0+1Eε0L + cE
� �

≤ −m′ζε0 tð ÞEε0+1 tð Þ: ð63Þ

Integration over ðt0, tÞ leads to for some constant m′ > 0
such that

L1 tð Þ ≤m′ 1 +
ðt
t0

ζε0+1 pð Þdp
 !−1/ε0

: ð64Þ

The equivalence ofL1ðtÞ and E completes Proof of The-
orem 8.

Remark 12.

(1) We mention here that we have coupled our system
without the classical way, i.e., our idea is not to couple
equations in the logarithmic nonlinear terms

(2) Most contribution here is to obtain our nonexistence
result with less conditions on the viscoelastic terms
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This paper is concerned with the blow-up of certain solutions with positive initial energy to the following quasilinear wave equation:
utt −MðN uðtÞÞΔpð·Þu + gðutÞ = f ðuÞ. This work generalizes the blow-up result of solutions with negative initial energy.

1. Introduction

Let Ω be an open bounded Lipschitz domain in ℝnðn ≥ 1Þ,
T > 0,QT =Ω × ð0, TÞ. We consider the following nonlinear
hyperbolic equation:

utt −M N u tð Þð ÞΔp xð Þu + g utð Þ = f uð Þ, x, tð Þ ∈QT ,
u x, tð Þ = 0, x ∈ ∂Ω, t ∈ 0, Tð Þ,
u x, 0ð Þ = u0 xð Þ, ut x, 0ð Þ = u1 xð Þ, x ∈Ω:

8>><
>>:

ð1Þ

Here, ∂Ω is a Lipschitz continuous boundary. The initial
conditions meet the following:

u0 ∈W
1,p ·ð Þ
0 Ωð Þ,

u1 ∈ L
2 Ωð Þ:

ð2Þ

The Kirchhoff function M : ℝ+ ⟶ℝ+ is continuous
and has the standard form:

M τð Þ = a + bγτγ−1, a, b ≥ 0, γ ≥ 1, a + b > 0, γ > 1 if b > 0:
ð3Þ

The elliptic nonhomogeneous pðxÞ-Laplacian operator is
defined by

Δp xð Þu = ∇ · ∇uj jp xð Þ−2∇u
� �

, ð4Þ

where ∇· is the vectorial divergence and ∇ is the gradient of u.
The functional

N u tð Þ =
ð
Ω

∇uj jp xð Þ

p xð Þ dx, ð5Þ

is the naturally associated pðxÞ-Dirichlet energy integral. The
term with a variable exponent

f uð Þ = c x, tð Þ uj jq xð Þ−2u, ð6Þ

plays the role of a source, and the dissipative term with a
variable exponent

g utð Þ = d x, tð Þ utj jr xð Þ−2ut , ð7Þ

is a strong damping term.

Hindawi
Journal of Function Spaces
Volume 2021, Article ID 5592918, 9 pages
https://doi.org/10.1155/2021/5592918

https://orcid.org/0000-0002-5354-5448
https://orcid.org/0000-0002-7895-4168
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5592918


The coefficients c and d are continuous in QT and satisfy

0 < c− = inf
x,tð Þ∈QT

c x, tð Þ ≤ c x, tð Þ ≤ c+ = sup
x,tð Þ∈QT

c x, tð Þ < σ <∞,

ð8Þ

0 < d− = inf
x,tð Þ∈QT

d x, tð Þ ≤ d x, tð Þ ≤ d+ = sup
x,tð Þ∈QT

d x, tð Þ <∞,

ð9Þ
where σ is a constant defined in (38). We assume that the
Kirchhoff function M, defined by (3), satisfies the following
hypotheses:

(i) For 1 < α ≤ β <min fn/p+, np−/p+ðn − p−Þg, there
exist m2 ≥m1 > 0 such that

m1τ
α−1 ≤M τð Þ ≤m2τ

β−1, τ ∈ℝ+: ð10Þ

(ii) For all τ ∈ℝ+, it holds that

ðτ
0
M sð Þds = M̂ τð Þ ≥M τð Þτ: ð11Þ

The exponents pð·Þ, qð·Þ, and rð·Þ are continuous and
satisfy

2 ≤min p−, r−f g ≤ p xð Þ, r xð Þf g ≤max p+, r+f g < q−

≤ q xð Þ ≤ q+ < p−α ≤ p−β ≤ p+α ≤ p+β ≤ p∗ xð Þ, ð12Þ

where the constants α and β are given in (10) and

p− = ess inf
x∈Ω

p xð Þ,

p+ = ess sup
x∈Ω

p xð Þ,

q− = ess inf
x∈Ω

q xð Þ,

q+ = ess sup
x∈Ω

q xð Þ,

r− = ess inf
x∈Ω

r xð Þ,

r+ = ess sup
x∈Ω

r xð Þ:

ð13Þ

Also, we can define p∗ðxÞ by

p∗ xð Þ =
np xð Þ

ess sup
x∈Ω

n − r xð Þð Þ , if p+ < n,

+∞, if p+ ≥ n:

8>><
>>: ð14Þ

We also assume that pð·Þ, qð·Þ, and rð·Þ satisfy the log-
Hölder continuity condition

ξ xð Þ − ξ yð Þj j ≤ −
L

log x − yj j , for a:e:,x, y ∈Ω, x − yj j < δ,

ð15Þ

for L > 0, 0 < δ < 1.
Problem (1) models several physical and biological sys-

tems such as viscoelastic fluids, filtration processes through
a porous medium, and fluids with viscosity dependent on
temperature. In the intention of problem (1), we can see that
it is linked to the following equation presented by Kirchhoff
and Hensel [1] in 1883:

ρ
∂2u
∂t2

−
P0
h

+ E
2L

ðL
0

∂u
∂x

����
����dx

� �
∂2u
∂x2

+ g utð Þ = f uð Þ: ð16Þ

The parameters L, h, E, ρ, and P0 represent, respectively,
the length of the string, the area of the cross-section, Young’s
modulus of the material, the mass density, and the initial ten-
sion. This equation is an extension of the classic d’Alembert’s
wave equation by looking at the effects of changes in the
length of the string during the vibrations. As for this prob-
lem, it has been studied. More precisely, for gðutÞ = ut , the
global existence and nonexistence results can be found in
[2, 3], and for gðutÞ = jutjput , p > 0, the main results of exis-
tence and nonexistence are in the paper [4]. In recent years,
hyperbolic problems with a constant exponent have been
studied by many authors; we refer to interesting works [5–
7]. However, only a little research has been done regarding
hyperbolic problems with nonlinearities of the variable expo-
nent type; some interesting works can be found in [8–13].

Recently, in [14], Piskin studied the following wave equa-
tion with variable exponent nonlinearities:

utt−M ∥∇u∥2
� �

Δu + utj jp xð Þ−2ut = uj jq xð Þ−2u: ð17Þ

The author proved, by using the modified energy func-
tional method, the existence of solutions. We have also
looked at the asymptotic behavior of the Kirchhoff wave
equation problems. We can say that the investigation into
the determination of the type, as well as the rate of decay,
was the focus of attention of many researchers whose work
was represented in [15, 16]. Motivated by previous studies,
in this work, we consider problem (1), which is more inter-
esting and applicable in the real approach of sciences, so a
finite-time blow-up for certain solutions with positive and
also negative initial energy has been proved. More precisely,
our aim here is to find sufficient conditions on the variable
exponents pð·Þ, qð·Þ, and rð·Þ and the initial data for which
the blow-up occurs. This paper is organized as follows. After
the introduction in the first section, we will give some prelim-
inaries in Section 2. Then, in Section 3, we state the main
results which will be proved in Sections 4 and 5.

2 Journal of Function Spaces



2. Preliminaries

Regarding some definitions and basic properties of the gener-
alized Lebesgue-Sobolev spaces LpðxÞðΩÞ and W1,pðxÞðΩÞ,
where Ω is an open subset of ℝn, we refer to the book of
Musielak [17] and the papers [18, 19]. Let

C+ �Ω
� �

≔ h : h ∈ C �Ω
� �

, h xð Þ > 1, for all x ∈ �Ω
	 


: ð18Þ

For any h ∈ Cð�ΩÞ, we write

h+ = sup
x∈Ω

h xð Þ,

h− = inf
x∈Ω

h xð Þ:
ð19Þ

Then, for any pðxÞ ∈ C+ð�ΩÞ, we define the variable expo-
nent Lebesgue space as follows:

Lp ·ð Þ Ωð Þ = u : Ω⟶ℝmeasurable : ϱp ·ð Þ μuð Þ<+∞,  for some μ > 0
n o

,

ð20Þ

where ϱpð·Þ is the pð·Þ modular of u, and it is defined by

ϱp ·ð Þ uð Þ =
ð
Ω

uj jp xð Þdx: ð21Þ

It is equipped with the following so-called Luxemburg
norm on this space defined by the formula

uk kp ·ð Þ = inf μ > 0 :

ð
Ω

u xð Þ
μ

����
����
p xð Þ

dx ≤ 1
( )

: ð22Þ

Variable exponent Lebesgue spaces resemble classical
Lebesgue spaces in many aspects: they are Banach spaces,
the Hölder inequality holds, they are reflexive if and only if
1 < p− ≤ p+ <∞, and their continuous functions are dense if
p+ <∞.

Lemma 1. Suppose that pð·Þ satisfies (15); then,

uk kp ·ð Þ ≤ C ∇uk kp ·ð Þ, ∀u ∈W1,p ·ð Þ
0 Ωð Þ, ð23Þ

where C > 0 is a constant that depends only on p−, p+, and Ω.

Lemma 2. If pð·Þ ∈ Cð�ΩÞ and q : Ω⟶ ½1,∞Þ are measurable
functions such that

ess inf
x∈Ω

p∗ xð Þ − q xð Þð Þ > 0, with p∗ xð Þ =
np xð Þ

ess sup
x∈Ω

n − p xð Þð Þ , if q− < n,

∞, if q− ≥ n,

8>><
>>:

ð24Þ

then the embedding W1,pð·Þ
0 ðΩÞ°Lqð·ÞðΩÞ is continuous and

compact.

Lemma 3. Let 1 < p− ≤ p+ < +∞. The spaces Lpð·ÞðΩÞ and
W1,pð·ÞðΩÞ are separable, uniformly convex, and reflexive
Banach spaces. The conjugate space of Lpð·ÞðΩÞ is Lp′ð·ÞðΩÞ,
where

1
p xð Þ + 1

p′ xð Þ
= 1, ∀x ∈Ω: ð25Þ

For u ∈ Lpð·ÞðΩÞ and v ∈ Lp′ð·ÞðΩÞ, we have

ð
Ω

u xð Þv xð Þ dx
����

���� ≤ 1
p−

+ 1

p′
� �−

0
@

1
A∥u∥p ·ð Þ∥v∥p′ ·ð Þ: ð26Þ

Lemma 4. If p ≥ 1 is a measurable function on Ω and u ∈
Lpð·ÞðΩÞ, then kukpð·Þ ≤ 1 and ρpð·ÞðuÞ ≤ 1 are equivalent. For

u ∈ Lpð·ÞðΩÞ, we have

uk kp ·ð Þ ≤ 1 implies ρp ·ð Þ uð Þ ≤ uk kp ·ð Þ,

uk kp ·ð Þ > 1 implies ρp ·ð Þ uð Þ ≥ uk kp ·ð Þ:
ð27Þ

Lemma 5. If pðxÞ ∈ ½1,∞Þ is a measurable function onΩ, then

min ∥u∥p
−

p ·ð Þ,∥u∥
p+

p ·ð Þ
n o

≤ ρp ·ð Þ uð Þ ≤max ∥u∥p
−

p ·ð Þ,∥u∥
p+

p ·ð Þ
n o

,

ð28Þ

for all u ∈ Lpð·ÞðΩÞ.

3. Main Results

Now, we state without proof the following existence result.

Proposition 6. Assume that (2) holds and the coefficients a, b,
c, and d satisfy (3) and (9) and the exponents p, q, and r satisfy
(12). Then, problem (1) has a unique weak solution such that

u ∈ L∞ 0, Tð Þ,W1,p ·ð Þ
0 Ωð Þ

� �
,

ut ∈ L
∞ 0, Tð Þ, L2 Ωð Þ� �

,

utt ∈ L
∞ 0, Tð Þ,W−1,p′ ·ð Þ

0 Ωð Þ
� �

,

8>>>><
>>>>:

ð29Þ

where p′ð·Þ is the conjugate exponent of pð·Þ.

Remark 7. The proof can be established by employing the
Galerkin method as in the work of Antontsev [8].

We first define the energy function. Let

E tð Þ≔ 1
2 utk k2L2 Ωð Þ + M̂ N u tð Þð Þ −Ψ tð Þ, ð30Þ
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where

M̂ N u tð Þð Þ = aN u tð Þ + bγ N u tð Þ½ �γ,

Ψ tð Þ =
ð
Ω

c x, tð Þ
q xð Þ uj jq xð Þdx:

ð31Þ

In order to investigate the properties of EðtÞ, the follow-
ing lemma is necessary.

Lemma 8. Suppose that u is a solution of problem (1) that sat-
isfies (29); then, we have

Et tð Þ = −
ð
Ω

ct x, tð Þ
q xð Þ uj jq xð Þdx −

ð
Ω

d x, tð Þ utj jr xð Þdx: ð32Þ

Proof. By using the energy function (30) and problem (1), we
directly deduce (32).

We also introduce the following lemma.

Lemma 9. Suppose that the conditions of Lemmas 1–5 hold.
Then, there exists a constant C > 1, which is a generic constant
that depends on Ω only, such that

ϱs/q
−

q ·ð Þ uð Þ ≤ C ∇uk kαp−p ·ð Þ + ϱq ·ð Þ uð Þ
� �

, ð33Þ

for any u ∈W1,pð·Þ
0 ðΩÞ and αp− ≤ s ≤ αq−.

Proof. If ϱqð·ÞðuÞ > 1, then

ϱs/q
−

q ·ð Þ uð Þ ≤ ϱαq ·ð Þ uð Þ ≤ C ∇uk kαp−p ·ð Þ + ϱq ·ð Þ uð Þ
� �

: ð34Þ

If ϱqð·ÞðuÞ ≤ 1, then we deduce by Lemma 4 that kukqð·Þ
≤ 1. Then, Lemmas 2 and 5 imply

ϱs/q
−

q ·ð Þ uð Þ ≤ ϱαp
−/q−

q ·ð Þ uð Þ ≤max ∥u∥q
−

q ·ð Þ,∥u∥
q+

q ·ð Þ
n oαp−/q−

= ∥u∥αp
−

q ·ð Þ ≤ C∥∇u∥αp
−

p ·ð Þ:
ð35Þ

Let B be the best constant of the Sobolev embedding

W1,p ·ð Þ
0

°
Lq ·ð Þ: ð36Þ

We set

B1 = max 1, B, m1
c+α p+ð Þα−1

 !1/αp+
8<
:

9=
;, ð37Þ

σ =min 1, q−m1
Bq−
1 α p+ð Þα

� �
min Γ

1− q−/αp+ð Þ
1 , Γ1− q+/αp+ð Þ

1
n o� �

,

ð38Þ

Γ1 =
m1 p+ð Þ1−α
c+Bq−

1

 !αp+/ q−−αp+ð Þ
, ð39Þ

E1 =
m1 p+ð Þ−α

q−α
q− − p+ð Þ

 �
Γ1: ð40Þ

Now, the main results of the blow-up for certain solu-
tions with positive/negative initial energy are given by the fol-
lowing theorems.

Theorem 10. Let the assumptions of Proposition 6 be satisfied,
and assume that

c+ < σ, ct x, tð Þ ≥ ~σ ≥ 0, ∀ x, tð Þ ∈QT ,

0 <E 0ð Þ <E1, Γ1 < Γ0 = ∇u0k kαp+p ·ð Þ ≤ B−αp+
1 :

ð41Þ

Then, the solutions of (1) blow up in finite time:

T∗ ≤
1 − λ

μλFλ/ 1−λð Þ 0ð Þ
, λ, μ > 0: ð42Þ

Theorem 11. Let the assumptions of Proposition 6 be satisfied,
and assume that

E 0ð Þ < 0: ð43Þ

Then, the solution of (1) blows up in finite time (42).

4. Proof of Theorem 10

To prove Theorem 10, we need the following lemmas.

Lemma 12. Let the assumptions of Theorem 10 hold; then,
there exists σ > 0 such that for any c+ < σ, there exist a con-
stant Γ2 > Γ1 such that

∇u ·, tð Þk kαp+p ·ð Þ ≥ Γ2, ∀t ≥ 0: ð44Þ

Proof. By using the hypothesis (10) and the function (30), we
obtain

E tð Þ ≥ M̂ tð Þ −Ψ tð Þ ≥ m1
α p+ð Þα ρ

α
p ·ð Þ ∇uð Þ − c+

q−
ρq ·ð Þ uð Þ

≥
m1

α p+ð Þα min ∇uk kαp−p ·ð Þ , ∇uk kαp+p ·ð Þ
n o

−
c+

q−
max uk kq−q ·ð Þ, uk kq+q ·ð Þ

n o
≥

m1
α p+ð Þα min ∇uk kαp−p ·ð Þ , ∇uk kαp+p ·ð Þ

n o

−
c+

q−
max B1 ∇uk kp ·ð Þ

� �q−
, B1 ∇uk kp ·ð Þ
� �q+� �

= m1
α p+ð Þα min Γp−/p+ , Γ

n o

−
c+

q−
max Bαp+

1 Γ
� �q−/αp+

, Bαp+

1 Γ
� �q+/αp+� �

≔ ψ Γð Þ, ∀Γ ∈ℝ+,

ð45Þ
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where Γ = k∇ukαp+pð·Þ . Let the function

ϕ : 0, 1½ �⟶ℝ, ð46Þ

be defined by

ϕ Γð Þ = m1
α p+ð Þα Γ −

c+

q−
Bαp+

1 Γ
� �q−/αp+

: ð47Þ

Notice that ϕðΓÞ = ψðΓÞ, for 0 < Γ ≤ B−αp+
1 . It is easy to

check that the function ϕ is increasing for 0 < Γ < Γ1 and
decreasing for Γ1 < Γ ≤∞. On the other hand, by (38), we
deduce that, for any c+ < σ, since Eð0Þ <E1 = ϕðΓ1Þ, there
exists a positive constant Γ2 ∈ ðΓ1,∞Þ such that ϕðΓ2Þ =Eð0Þ.
Then, we have ϕðΓ0Þ = ψðΓ0Þ ≤Eð0Þ = ϕðΓ2Þ. This implies
that Γ0 ≥ Γ2.

Now, we suppose on the contrary that k∇uðt0Þkαp
+

pð·Þ < Γ2

for some t0 > 0. Then, there exists t1 > 0 such that Γ1 <
k∇uðt1Þkαp

+

pð·Þ . Using the monotonicity of ϕðΓÞ, we have

E t1ð Þ ≥ ϕ ∇u t1ð Þk kαp+p ·ð Þ
� �

> ϕ Γ2ð Þ =E 0ð Þ, ð48Þ

which contradicts EðtÞ <Eð0Þ, for all t ∈ ð0, TÞ.

Lemma 13. Let the assumptions of Theorem 10 hold. Then, in
light of Lemma 12, we have

ρq ·ð Þ uð Þ ≥ κ, κ > 0: ð49Þ

Proof. By using (30), we get

c+

q−
ρq ·ð Þ uð Þ ≥Ψ tð Þ ≥ −E 0ð Þ + m1

α p+ð Þα ρ
α
p ·ð Þ ∇uð Þ + 1

2 utk k2L2 Ωð Þ

≥
m1

α p+ð Þα ρ
α
p ·ð Þ ∇uð Þ − ψ Γ2ð Þ

≥
c+

q−
max Bαp+

1 Γ2
� �q−/αp+

, Bαp+

1 Γ2
� �q+/αp+� �

≔ κ:

ð50Þ

Let

H tð Þ =E1 −E tð Þ: ð51Þ

Lemma 14. Let the assumptions of Theorem 10 be satisfied;
then, we have

0 <H 0ð Þ ≤H tð Þ ≤ σ

q−
ρq ·ð Þ uð Þ: ð52Þ

Proof. Using (30), (32), and (51), we obtain

0 <H 0ð Þ ≤H tð Þ ≤E1 −
1
2 utk k2L2 Ωð Þ + M̂ N u tð Þð Þ
h i

+Ψ tð Þ:
ð53Þ

Then, the use of (10) gives

E1 −
1
2 utk k2L2 Ωð Þ − M̂ N u tð Þð Þ
 �

≤E1 −
ðN u tð Þ

0
M τð Þdτ

≤E1 −
m1

α p+ð Þα min ∇uk kαp−p ·ð Þ , ∇uk kαp+p ·ð Þ
n o

≤E1 −
m1

α p+ð Þα min Γp−/p+
2 , Γ2

n o
≤E1 −

m1
α p+ð Þα min Γp−/p+

1 , Γ1
n o

=E1 −
m1

α p+ð Þα Γ1:

ð54Þ

Now, recalling E1 in (38), we have

E1 −
1
2 utk k2L2 Ωð Þ − M̂ N u tð Þð Þ
 �

≤ −
m1 p+ð Þ1−α

q−α
Γ1 < 0:

ð55Þ

On the other hand, we use (9) to get

Ψ tð Þ ≤ c+

q−
ρq ·ð Þ uð Þ ≤ σ

q−
ρq ·ð Þ uð Þ: ð56Þ

Combining (55) with (56) gives (52).

Corollary 15. Under the assumptions of Lemma 9, we have

(i) kuksq− ≤ Cðk∇ukαp−pð·Þ + kukq−q−Þ

(ii) ρs/q
−

qð·Þ ≤ CðjHðtÞj + kutk2L2ðΩÞ + ρqð·ÞðuÞÞ

(iii) kuksq− ≤ CðjHðtÞj + kutk2L2ðΩÞ + kukq−q−Þ

for any u ∈W1,pð·Þ
0 ðΩÞ and αp− ≤ s ≤ αq−.

Lemma 16. Assume that (12) and (15) hold. Then, the solu-
tion of (1) satisfies

ϱq ·ð Þ uð Þ ≥ C uk kq−q− , ð57Þ

for some C > 0.

Proof. Let

Ω+ = x ∈Ω/∣u∣≥1f g,
Ω− = x ∈Ω/∣u∣<1f g:

ð58Þ
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We have

ϱq ·ð Þ uð Þ =
ð
Ω+

uj jq xð Þdx +
ð
Ω−

uj jq xð Þdx

≥
ð
Ω+

uj jq xð Þdx + c1

ð
Ω−

uj jq xð Þdx
� �q+/q−

:

ð59Þ

This implies

c2 ϱq ·ð Þ uð Þ
� �q−/q+

+ ϱq ·ð Þ uð Þ ≥ uk kq−q− : ð60Þ

Now, given (52), (60) leads to

ϱq ·ð Þ uð Þ ≥ 1 + c2
q−

σ

� � q−/q+ð Þ−1" #−1
uk kq−q− : ð61Þ

Thus, (57) follows.

Lemma 17. Suppose that (12) holds, and u is a solution of (1).
Then,

ϱr ·ð Þ uð Þ ≤ C ϱr
−/q−
q ·ð Þ uð Þ + ϱr

+/q−
q ·ð Þ uð Þ

� �
: ð62Þ

Proof.

ϱr ·ð Þ uð Þ ≤
ð
Ω−

uj jr−dx +
ð
Ω+

uj jr+dx

≤ C
ð
Ω−

uj jq−dx
� �r−/q−

+
ð
Ω+

uj jq−dx
� �r+/q−

" #

≤ C uk kr−q− + uk kr+q−
� �

≤ C ϱr
−/q−
q ·ð Þ uð Þ + ϱr

+/q−
q ·ð Þ uð Þ

� �
:

ð63Þ

We set

F tð Þ =H 1−λ tð Þ + ε u, utj jL2 Ωð Þ, ð64Þ

for ε small, which will be specified later, and for

0 < λ ≤min αq− − r+

q− r+ − 1ð Þ ,
q− − 2
2q−

� �
: ð65Þ

Now, we are in a position to prove Theorem 10.

Proof.We differentiate (64) and use the equation in (1) to get

F t tð Þ = 1 − λð ÞH−λ tð ÞH t tð Þ + ε utk k2L2 Ωð Þ + u, uttj jL2 Ωð Þ
� �

≥ 1 − λð ÞH−λ tð ÞH t tð Þ
+ ε utk k2L2 Ωð Þ −M N u tð Þð Þϱp ·ð Þ ∇uð Þ + c−ϱq ·ð Þ uð Þ
� �

− εd+ g utð Þ, uj jL2 Ωð Þ ≥ 1 − λð ÞH−λ tð ÞH t tð Þ

+ ε utk k2L2 Ωð Þ −
m2
p−ð Þβ−1

ϱ
β
p ·ð Þ ∇uð Þ + c−ϱq ·ð Þ uð Þ

 !

− εd+ g utð Þ, uj jL2 Ωð Þ ≥ 1 − λð ÞH−λ tð ÞH t tð Þ

+ ε utk k2L2 Ωð Þ −
m2
p−ð Þβ−1

ϱαp ·ð Þ ∇uð Þ + c−ϱq ·ð Þ uð Þ
 !

− εd+ g utð Þ, uj jL2 Ωð Þ:

ð66Þ

Adding and subtracting the term εð1 − ηÞq−HðtÞ, for
0 < η < 1, from the right-hand side of (56), by using (49)
and (10), we get

F t tð Þ ≥ 1 − λð ÞH−λ tð ÞH t tð Þ + ε 1 − ηð Þq−H tð Þ − εd+ g utð Þ, uj jL2 Ωð Þ

+ ε utk k2L2 Ωð Þ −
m2
p−ð Þβ−1

ϱαp ·ð Þ ∇uð Þ + c−ϱq ·ð Þ uð Þ
 !

+ ε 1 − ηð Þq− −E1 +
1
2 utk k2L2 Ωð Þ + M̂ N u tð Þð Þ − c−

q−
ϱq ·ð Þ uð Þ

� �
≥ 1 − λð ÞH−λ tð ÞH t tð Þ + ε 1 − ηð Þq−H tð Þ − εd+ g utð Þ, uj jL2 Ωð Þ

+ ε utk k2L2 Ωð Þ −
m2
p−ð Þβ−1

ραp ·ð Þ ∇uð Þ + c−ϱq ·ð Þ uð Þ
 !

+ ε 1 − ηð Þq− −
E1c

+

q−κ
−

c−

q−

� �
ϱq ·ð Þ uð Þ + 1

2 utk k2L2 Ωð Þ

� �

+ ε 1 − ηð Þq− m1
α p+ð Þα ϱ

α
p ·ð Þ ∇uð Þ

� �
:

ð67Þ

Then, for η small enough, we have

F t tð Þ ≥ 1 − λð ÞH−λ tð ÞH t tð Þ − εd+ g utð Þ, uj jL2 Ωð Þ

+ εδ H tð Þ + utk k2L2 Ωð Þ + ϱαp ·ð Þ ∇uð Þ + ϱq ·ð Þ uð Þ
� �

,

ð68Þ

where

δ =min 1 − ηq−, 1 + 1 − ηð Þq−
2 , 1 − ηð Þq−m1

α p+ð Þα
�

−
m2
p−ð Þβ−1

, ηc− − 1 − ηð ÞE1c
+

κ

)
:

ð69Þ
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Recall Young’s inequality

XY ≤
δ1X

l1

l1
+ δ−l21 Yl2

l2
, ð70Þ

where X, Y ≥ 0, δ1 > 0, l1, l2 ∈ℝ+, such that ð1/l1Þ + ð1/l2Þ
= 1. Applying (70) to estimate the term jgðutÞ, ujL2ðΩÞ,
we get

ð
Ω

utj jr xð Þ−1∣u∣dx ≤
1
r−

ð
Ω

δ
r xð Þ
1 uj jr xð Þdx + r+ − 1

r+

ð
Ω

δ
−r xð Þ/ r xð Þ−1ð Þ
1 utj jr xð Þdx,

ð71Þ

where

δ
−r xð Þ/ r xð Þ−1ð Þ
1 = ξH−λ tð Þ, ð72Þ

where ξ is a large constant to be specified later.
Now, by using (32) and (49), we get

ϱr ·ð Þ utð Þ ≤ H t tð Þ
d+

−
~σ

q+d+
ϱq ·ð Þ uð Þ ≤ H t tð Þ

d+
−

~σκ

q+d+
≤
H t tð Þ
d+

:

ð73Þ

Combining (73) and (71) yields

ð
Ω

utj jr xð Þ−1∣u∣dx ≤
1
r−

ð
Ω

ξ1−r xð Þ uj jr xð ÞHλ r xð Þ−1ð Þ tð Þd

+ r+ − 1ð Þξ
r+d+

H−λ tð ÞH t tð Þ:
ð74Þ

Substituting (74) in (68), we obtain

F t tð Þ ≥ 1 − λð Þ − ε
r+ − 1ð Þξ
r+

 �
H−λ tð ÞH t tð Þ

+ εδ H tð Þ + utk k2L2 Ωð Þ + ϱαp ·ð Þ ∇uð Þ + ϱq ·ð Þ uð Þ
� �

− ε
ξ1−r

−
d+

r−
C1H

λ r+−1ð Þ tð Þϱr ·ð Þ uð Þ:
ð75Þ

To estimate the last term in (75), we use (62) and (52)
to get

Hλ r+−1ð Þ tð Þϱr ·ð Þ uð Þ ≤ C ϱ
r−/q−ð Þ+λ r+−1ð Þ
q ·ð Þ uð Þ + ϱ

r+/q−ð Þ+λ r+−1ð Þ
q ·ð Þ uð Þ

� �
:

ð76Þ

Then, we use (65) and Lemma 9, for

s = r+ + λq− r+ − 1ð Þ ≤ αq−,
s = r− + λq− r+ − 1ð Þ ≤ αq−,

ð77Þ

to deduce from (76) that

Hλ r+−1ð Þ tð Þϱr ·ð Þ uð Þ ≤ C ∇uk kαp−p ·ð Þ + ϱq ·ð Þ uð Þ
� �

: ð78Þ

By exploiting Lemmas 5 and 12, we get

ϱαp ·ð Þ ∇uð Þ ≥ C ∇uk kαp−p ·ð Þ: ð79Þ

Combining (75), (78), and (79) leads to

F t tð Þ ≥ 1 − λð Þ − ε
r+ − 1ð Þξ
r+

 �
H−λ tð ÞH t tð Þ + ε δ −

ξ1−r
−
d+

r−
C

 !

� H tð Þ + utk k2L2 Ωð Þ + ∇uk kαp−p ·ð Þ + ϱq ·ð Þ uð Þ
h i

:

ð80Þ

Now, we pick ξ large enough and ε so small such that

δ2 = δ −
ξ1−r

−
d+

r−
C > 0,

ε ≤
1 − λð Þr+
ξ r+ − 1ð Þ ,

F 0ð Þ =H 1−λ 0ð Þ + ε u0, u1j jL2 Ωð Þ > 0:

ð81Þ

Then, by using (57), (80) takes the form

F t tð Þ ≥ δ2ε H tð Þ + utk k2L2 Ωð Þ + ∇uk kαp−p ·ð Þ + uk kq−q−
h i

: ð82Þ

Therefore, we get

F tð Þ ≥F 0ð Þ > 0, for all t ≥ 0: ð83Þ

On the other hand, the application of the Hölder
inequality yields

u, utj jL2 Ωð Þ
��� ���1−λ ≤ C uk k1/ 1−λð Þ

q− utk k1/ 1−λð Þ
L2 Ωð Þ , ð84Þ

and from (70), we get

u, utj jL2 Ωð Þ
��� ���1−λ ≤ C uk kθ1/ 1−λð Þ

q− + utk kθ2/ 1−λð Þ
L2 Ωð Þ

h i
, ð85Þ

for ð1/θ1Þ + ð1/θ2Þ = 1. Setting θ1/ð1 − λÞ = ð2/ð1 − 2λÞÞ ≤ q−,
we get θ2 = 2ð1 − λÞ by virtue of (65). Therefore, (85) takes
the form

u, utj jL2 Ωð Þ
��� ���1−λ ≤ C uk ksq− + utk k2L2 Ωð Þ

h i
, ð86Þ

where s = 2/ð1 − 2λÞ. By recalling Corollary 15, we get

u, utj jL2 Ωð Þ
��� ���1−λ ≤ C H tð Þj j + utk k2L2 Ωð Þ + uk kq−q−

� �
: ð87Þ
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Now, (87) and the following Minkowski’s inequality

X + Yð Þi ≤ 2i−1 Xi + Yi� �
, ð88Þ

will give

F1/ 1−λð Þ tð Þ = H 1−λ tð Þ + ε u, utj jL2 Ωð Þ
h i1/ 1−λð Þ

≤ 2λ/ 1−λð Þ H tð Þ + ε1/ 1−λð Þ u, utj jL2 Ωð Þ
��� ���1−λ� �

≤ C H tð Þj j + utk k2L2 Ωð Þ + uk kq−q−
� �

≤ C H tð Þ + utk k2L2 Ωð Þ + ∇uk kαp−p ·ð Þ + uk kq−q−
� �

:

ð89Þ

By combining (82) and (89), we obtain

F t tð Þ ≥ μF tð Þ1/ 1−λð Þ tð Þ, ð90Þ

where μ is a positive constant. A simple integration of (90)
over ð0, tÞ yields

F1/ 1−λð Þ tð Þ ≥ 1
F−λ/ 1−λð Þ 0ð Þ − μλt/ 1 − λð Þð Þ

, ð91Þ

which implies that the solution blows up in finite time T∗,
such that

T∗ ≤
1 − λ

μλFλ/ 1−λð Þ 0ð Þ
: ð92Þ

This completes the proof of Theorem 10.

5. Proof of Theorem 11

We set

H tð Þ≔−E tð Þ: ð93Þ

To prove our main result, we first establish the following
lemma.

Lemma 18. Let u be the solution of (1). Then, there exists a
constant C > 0 such that

∇u t, xð Þk kp ·ð Þ ≥ C, ∀t ≥ 0: ð94Þ

Proof. Suppose that, by contradiction, there exists a sequence
tk such that

∇u t, xð Þk kp ·ð Þ ⟶ 0,  as k⟶∞: ð95Þ

Then, by using Lemmas 2 and 5, we get

lim
k→∞

E tkð Þ ≥ 0, ð96Þ

which contradicts the fact that EðtÞ < 0, ∀t ≥ 0.

Using (93) and (94) and applying the same procedures
used to prove Theorem 10 will give the proof of Theorem 11.
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