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Guozhen Lu, USA
Jinhu Lü, China
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Mihai Mihǎilescu, Romania
Feliz Minhós, Portugal
Dumitru Motreanu, France
Roberta Musina, Italy
G. M. N’Guérékata, USA
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Stability theory has been significantly developed and
extended to dynamical system which will provide a deep
insight into a more comprehensive understanding of the
dynamic structure of complex dynamical systems and
therefore is of great significance for its application. The
overall aim of this special issue is to open a discussion among
researchers actively working in the field of stability theory
and relative applications. The issue covers a wide variety of
problems for neural networks and applications such as image
processing and pedestrian detection, difference equations,
dynamic equations on time scales, biological mathematics
including multigroup and reaction-diffusion epidemic
model, and soft computing. In the following, we briefly
review each of the papers by highlighting the significance of
the key contributions.

In “Periodic oscillation analysis for a coupled FHNnetwork
model with delays” by Y. Lin, the author provides new
results of periodic oscillatory behavior of three coupled
FHN neurons model by Chafee’s criterion of limit cycle.
In “Dynamical behaviors of the stochastic hopfield neural
networks with mixed time delays” by L. Wan et al., the
authors of this paper investigate dynamical behaviors of the
stochastic Hopfield neural networks with mixed time delays.

By employing the theory of stochastic functional differential
equations and linearmatrix inequality (LMI) approach, some
novel criteria on asymptotic stability, ultimate boundedness,
and weak attractor are derived.

Two papers in our special issue are devoted to discuss
applications of neural networks. In “Analysis of feature
fusion based on HIK SVM and its application for pedestrian
detection” by S.-Z. Su and S.-Y. Chen, the author adopt sup-
port vector machine (SVM) with the histogram intersection
kernel (HIK) as a classifier to detect pedestrians in low-
resolution visual images and at night time. In “Recursive
neural networks based on PSO for image parsing” by G.-R. Cai
and S.-L. Chen, the authors give an image parsing algorithm
based on Particle Swarm Optimization (PSO) and Recursive
Neural Networks (RNNs).

A theoretical article titled “𝐿𝜔-compactness in 𝐿𝜔-spaces”
presents some important properties of 𝐿𝜔-compactness. The
authors, S.-L. Chen and J.-L. Huang, reveal the Alexander
subbase lemma and the Tychonoff product theorem with
respect to 𝐿𝜔-compactness.

Six papers are concerned about dynamical analysis of
difference equations or dynamic equations on time scales. In
“Oscillation for higher order dynamic equations on time scales”
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by T. Sun et al., the authors present sufficient conditions to
ensure every solution of higher order dynamic equations on
time scales to be oscillatory or tend to zero. In “ℎ-Stability
for differential systems relative to initial time difference” by P.
Wang and X. Liu, the authors discuss ℎ-stability for differen-
tial systems with initial time difference and stability criteria
are formulated by using variation of parameter techniques.
In “Periodic solutions of second-order difference problem with
potential indefinite in sign” byH. Bin, the author obtains some
new results concerning the existence of nontrivial periodic
solution of second-order difference problem with potential
indefinite in sign by using Morse theory. In “Dynamics of a
family of nonlinear delay difference equations” by Q. He et al.,
the authors give sufficient conditions guaranteeing the glob-
ally asymptotical stability of a unique positive equilibrium of
nonlinear delay difference equations. In “Subharmonics with
minimal periods for convex discrete hamiltonian systems” by
H. Bin, by using variational methods and dual functional, the
author considers the subharmonics with minimal periods for
convex discrete Hamiltonian systems. In “Leader-following
consensus stability of discrete-time linear multiagent systems
with observer-based protocols” by B. Xu et al., the authors
obtain two types of distributed observer-based consensus
protocols to solve the leader-following consensus problem of
discrete-time multiagent systems on a directed communica-
tion topology.

There are two new results about epidemic models in this
special issue.

In “Stability analysis of a multigroup epidemic model with
general exposed distribution and nonlinear incidence rates” by
L. Zhang et al., the authors adopt Lyapunov functionals and
a graph-theoretical technique to derive sufficient conditions
ensuring the global dynamics. In “Traveling wave solutions
in a reaction-diffusion epidemic model” by S. Wang et al.,
the authors investigate a unique and strictly monotonic
traveling wave solutions in a reaction-diffusion epidemic
model throughmonotone iteration of a pair of classical upper
and lower solutions.
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The existence of periodic oscillation for a coupled FHN neural system with delays is investigated. Some criteria to determine the
oscillations are given. Simple and practical criteria for selecting the parameters in this network are provided. Some examples are
also presented to illustrate the result.

1. Introduction

Recently, several researchers have studied the dynamics of
coupled FHN neural systems [1–5]. Wang et al. have investi-
gated the following model [6]:
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(1)

The effects of time delay on bifurcation and synchro-
nization in the two synaptically coupled FHN neurons have
been investigated.The authors found that time delay can con-
trol the occurrence of bifurcation in the coupled FHN neural
model and synchronization is sometimes related to bifur-
cation transition. Fan and Hong introduced second time
delay in model (1) as follows [7]:
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(2)

Let 𝜏 = 𝜏
1
+ 𝜏
2
be a parameter. The authors have shown

that there is a critical value of the parameter; the steady state
of model (2) is stable when the parameter is less than the
critical value and unstable when the parameter is greater than
the critical value.Thus, the zero equilibrium loses its stability
when the parameter passes through the critical value, and a
Hopf bifurcation occurs and oscillations induced by the Hopf
bifurcation appeared. Zhen and Xu generated models (1) and
(2) to a three coupled FHN neurons network with time delay
as follows [8]:
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where 𝛼,𝛽 represent the synaptic strength of self-connection
and neighborhood interaction, respectively, and 𝑓(𝑥) is a
sufficiently smooth sigmoid amplification function such as
tanh(𝑥) and arctan(𝑥).Themethod of Lyapunov functional is
used to obtain the synchronization conditions of the neural
system. Noting that, for each neuron of model (3), the
synaptic strength of self-connection and neighborhoodinter-
action are the same under the same restrictive condition, the
dynamics of (3) are completely characterized by the following
system:
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where [𝑢
1
, 𝑢
2
]
𝑇 is a completely synchronous solution of sys-

tem (4). The Bautin bifurcation of synchronous solution for
this neural system (4) in which 𝛼, 𝛽 are regarded as the
bifurcating parameters is investigated. However, generally
speaking, the synaptic strength of self-connection, neigh-
borhoodinteraction for each neuron, and the time delays
are different. Therefore, in this paper, we will discuss the
following model:
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(𝑗 = 1, 3, 5) represent the time delays in signal transmission.
System (5) can be rewritten as follows:
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2
+ (𝛼
2
+ 𝑐
2
) 𝑢
3
−
1

3
𝑢
2

3
] 𝑢
3
− 𝑢
4

+ 𝛽
2
[𝑓 (𝑢
1
(𝑡 − 𝜏
1
)) + 𝑓 (𝑢

5
(𝑡 − 𝜏
5
))] ,

𝑢
󸀠

4
= 𝜀
2
𝑢
3
− 𝜀
2
𝑏
2
𝑢
4
,

𝑢
󸀠

5
= [𝑑
3
+ (𝛼
3
+ 𝑐
3
) 𝑢
5
−
1

3
𝑢
2

5
] 𝑢
5
− 𝑢
6

+ 𝛽
3
[𝑓 (𝑢
1
(𝑡 − 𝜏
1
)) + 𝑓 (𝑢

3
(𝑡 − 𝜏
3
))] ,

𝑢
󸀠

6
= 𝜀
3
𝑢
5
− 𝜀
3
𝑏
3
𝑢
6
.

(6)

It is known that if all solutions of system (6) are bounded
and there exists a unique unstable equilibriumpoint of system
(6), then this particular instability will force system (6) to
generate a limit cycle, namely, a periodic oscillation [9].
We will provide some restrictive conditions which are easy
to check to ensure the existence of periodic oscillation. It
was pointed out that bifurcating method to determine the
periodic solution of system (6) is very difficult.

In the following, we first assume that 𝑓(𝑢
𝑖
(𝑡 − 𝜏

𝑖
))

(𝑖 = 1, 3, 5) are continuous bounded monotone increasing
functions, satisfying

lim
𝑢𝑖→0

𝑓 (𝑢
𝑖
(𝑡))

𝑢
𝑖
(𝑡)

= 𝛾
𝑖
(> 0) , 𝑖 = 1, 3, 5; 𝑓 (0) = 0. (7)

For example, activation functions tanh(𝑢
𝑖
(𝑡)),

arctan(𝑢
𝑖
(𝑡)), and (1/2)(|𝑢

𝑖
(𝑡) + 1| − |𝑢

𝑖
(𝑡) − 1|) satisfy

condition (7). From assumption (7), the linearization of
system (6) about the zero point leads to the following:

𝑢
󸀠

1
= 𝑑
1
𝑢
1
− 𝑢
2

+ 𝛽
1
[𝛾
3
𝑢
3
(𝑡 − 𝜏
3
) + 𝛾
5
𝑢
5
(𝑡 − 𝜏
5
)] ,

𝑢
󸀠

2
= 𝜀
1
𝑢
1
− 𝜀
1
𝑏
1
𝑢
2
,

𝑢
󸀠

3
= 𝑑
2
𝑢
3
− 𝑢
4

+ 𝛽
2
[𝛾
1
𝑢
1
(𝑡 − 𝜏
1
) + 𝛾
5
𝑢
5
(𝑡 − 𝜏
5
)] ,

𝑢
󸀠

4
= 𝜀
2
𝑢
3
− 𝜀
2
𝑏
2
𝑢
4
,

𝑢
󸀠

5
= 𝑑
3
𝑢
5
− 𝑢
6

+ 𝛽
3
[𝛾
1
𝑢
1
(𝑡 − 𝜏
1
) + 𝛾
3
𝑢
3
(𝑡 − 𝜏
3
)] ,

𝑢
󸀠

6
= 𝜀
3
𝑢
5
− 𝜀
3
𝑏
3
𝑢
6
.

(8)

The matrix form of system (8) is as follows:

𝑈
󸀠

(𝑡) = 𝐴𝑈 (𝑡) + 𝐵𝑈 (𝑡 − 𝜏) , (9)

where 𝑈(𝑡) = (𝑢
1
(𝑡), 𝑢

2
(𝑡), . . . , 𝑢

6
(𝑡))
𝑇, 𝑈(𝑡 − 𝜏) = (𝑢

1
(𝑡 −

𝜏
1
), 0, 𝑢
3
(𝑡 − 𝜏
3
), 0, 𝑢
5
(𝑡 − 𝜏
5
), 0)
𝑇,
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𝐴 =(

(

𝑑
1

𝜀
1

0

0

0

0

−1

−𝜀
1
𝑏
1

0

0

0

0

0

0

𝑑
2

𝜀
2

0

0

0

0

−1

−𝜀
2
𝑏
2

0

0

0

0

0

0

𝑑
3

𝜀
3

0

0

0

0

−1

−𝜀
3
𝑏
3

)

)

,

𝐵 =(

(

0

0

𝛽
2
𝛾
1

0

𝛽
3
𝛾
1

0

0

0

0

0

0

0

𝛽
1
𝛾
3

0

0

0

𝛽
3
𝛾
3

0

0

0

0

0

0

0

𝛽
1
𝛾
5

0

𝛽
2
𝛾
5

0

0

0

0

0

0

0

0

0

)

)

.

(10)

2. Preliminaries

Lemma 1. Suppose that 𝑏
𝑖
> 0, 0 < 𝜀

𝑖
≪ 1, 𝑑

𝑖
< 0, (𝛼

𝑖
+ 𝑐
𝑖
)
2
+

(4/3)𝑑
𝑖
< 0 (𝑖 = 1, 2, 3); then each solution of system (6) is

bounded.

Proof. Note that the activation functions are bounded con-
tinuous nonlinear functions. Therefore, there exist 𝑁

𝑗
> 0

such that |𝑓(𝑢
𝑗
(𝑡 − 𝜏

𝑗
))| ≤ 𝑁

𝑗
(𝑗 = 1, 3, 5). Since 𝑑

𝑖
< 0,

(𝛼
𝑖
+ 𝑐
𝑖
)
2
+ (4/3)𝑑

𝑖
< 0 (𝑖 = 1, 2, 3), this implies that there

exist constants 𝑘
𝑖
> 0 such that for any values 𝑢

𝑖
we have

𝑑
𝑖
+(𝛼
𝑖
+ 𝑐
𝑖
)𝑢
𝑖
− (1/3)𝑢

2

𝑖
≤ −𝑘
𝑖
< 0 (𝑖 = 1, 2, 3). From (6)

we get

𝑑
󵄨󵄨󵄨󵄨𝑢1 (𝑡)

󵄨󵄨󵄨󵄨

𝑑𝑡
≤ −𝑘
1

󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑢2
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛽1
󵄨󵄨󵄨󵄨 (𝑁3 + 𝑁5) ,

𝑑
󵄨󵄨󵄨󵄨𝑢2 (𝑡)

󵄨󵄨󵄨󵄨

𝑑𝑡
≤ 𝜀
1

󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨 − 𝜀1𝑏1

󵄨󵄨󵄨󵄨𝑢2
󵄨󵄨󵄨󵄨 ,

𝑑
󵄨󵄨󵄨󵄨𝑢3 (𝑡)

󵄨󵄨󵄨󵄨

𝑑𝑡
≤ −𝑘
2

󵄨󵄨󵄨󵄨𝑢3
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑢4
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛽2
󵄨󵄨󵄨󵄨 (𝑁1 + 𝑁5) ,

𝑑
󵄨󵄨󵄨󵄨𝑢4 (𝑡)

󵄨󵄨󵄨󵄨

𝑑𝑡
≤ 𝜀
2

󵄨󵄨󵄨󵄨𝑢3
󵄨󵄨󵄨󵄨 − 𝜀2𝑏2

󵄨󵄨󵄨󵄨𝑢4
󵄨󵄨󵄨󵄨 ,

𝑑
󵄨󵄨󵄨󵄨𝑢5 (𝑡)

󵄨󵄨󵄨󵄨

𝑑𝑡
≤ −𝑘
3

󵄨󵄨󵄨󵄨𝑢5
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑢6
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛽3
󵄨󵄨󵄨󵄨 (𝑁1 + 𝑁3) ,

𝑑
󵄨󵄨󵄨󵄨𝑢6 (𝑡)

󵄨󵄨󵄨󵄨

𝑑𝑡
≤ 𝜀
3

󵄨󵄨󵄨󵄨𝑢5
󵄨󵄨󵄨󵄨 − 𝜀3𝑏3

󵄨󵄨󵄨󵄨𝑢6
󵄨󵄨󵄨󵄨 .

(11)

Noting that system (11) is the first-order linear sys-
tem of equations with constant coefficients, the eigen-
values of system (11) are 𝜆

𝑖1,𝑖2
= (−(𝑘

𝑖
+ 𝜀
𝑖
𝑏
𝑖
) ±

√(𝑘
𝑖
+ 𝜀
𝑖
𝑏
𝑖
)
2
− 4𝜀
𝑖
(𝑘
𝑖
𝑏
𝑖
+ 1))/2 (𝑖 = 1, 2, 3). Since 𝑘

𝑖
> 0, 𝜀

𝑖
>

0, 𝑏
𝑖
> 0 (𝑖 = 1, 2, 3),𝜆

𝑖1,𝑖2
< 0 if (𝑘

𝑖
+ 𝜀
𝑖
𝑏
𝑖
)
2
−4𝜀
𝑖
(𝑘
𝑖
𝑏
𝑖
+1) > 0 or

𝜆
𝑖1,𝑖2

are complex numbers with Re 𝜆
𝑖1,𝑖2
< 0 if (𝑘

𝑖
+ 𝜀
𝑖
𝑏
𝑖
)
2
−

4𝜀
𝑖
(𝑘
𝑖
𝑏
𝑖
+ 1) < 0 (𝑖 = 1, 2, 3). This implies that all solutions of

system (11), as well as the system, (6) are bounded according
to the theory of the first-order linear system of equations with
constant coefficients.

According to [10], there is the same oscillatory behavior
for systems (8) and (6). So, in order to investigate the periodic
oscillatory behavior of system (6), we only need to deal with
system (8).

Lemma 2. Suppose that matrix 𝐶 (= 𝐴 + 𝐵) is a nonsingular
matrix. Then, system (9) has a unique equilibrium point.

Proof. An equilibrium point 𝑢∗ = [𝑢∗
1
, 𝑢
∗

2
, . . . , 𝑢

∗

6
]
𝑇 is the

solution of the following algebraic equation:

𝐴𝑈
∗
+ 𝐵𝑈
∗
= (𝐴 + 𝐵)𝑈

∗
= 0. (12)

Assume that 𝑈∗ and 𝑉∗ are two equilibrium points of
system (9); then we have

(𝐴 + 𝐵) (𝑈
∗
−𝑉
∗
) = 𝐶 (𝑈

∗
−𝑉
∗
) = 0. (13)

Since𝐶 is a nonsingular matrix, implying that 𝑈∗− 𝑉∗ =
0 and 𝑈∗= 𝑉∗ system (9) has a unique equilibrium point.
Obviously, this equilibrium point is exactly the zero point.

3. Periodic Oscillation

Theorem 3. Suppose that 𝑏
𝑖
> 0, 0 < 𝜀

𝑖
≪ 1, 𝑑

𝑖
< 0,

(𝛼
𝑖
+ 𝑐
𝑖
)
2
+ (4/3)𝑑

𝑖
< 0 (𝑖 = 1, 2, 3), and 𝐶 is a non-

singularmatrix. Let 𝜏
∗
= min{𝜏

1
, 𝜏
3
, 𝜏
5
}, 𝜏∗ = max{𝜏

1
, 𝜏
3
, 𝜏
5
},

𝜌
1
, 𝜌
2
, . . . , 𝜌

6
, and 𝜔

1
, 𝜔
2
, . . . , 𝜔

6
denote the eigenvalues of

matrices 𝐴 and 𝐵, respectively. Assume that there is at least
one 𝜌
𝑖
> 0, 𝑖 ∈ (1, 2, . . . , 6), and the following inequalities hold:

󵄨󵄨󵄨󵄨𝜔𝑖
󵄨󵄨󵄨󵄨 𝜏∗𝑒
−𝜌𝑖𝜏∗ > 1,

󵄨󵄨󵄨󵄨𝜔𝑖
󵄨󵄨󵄨󵄨 𝜏
∗
𝑒
−𝜌𝑖𝜏
∗

> 1. (14)

Then, the trivial solution of system (8) is unstable, implying
that there is a periodic oscillatory solution of system (6).

Proof. From the assumptions, we know that system (8) has a
unique equilibrium point and all solutions are bounded. We
will prove that the unique equilibrium point is unstable. We
first discuss the case that 𝜏

1
= 𝜏
3
= 𝜏
5
= 𝜏
∗
in system (8). The

characteristic equation of system (8) is as follows:

det (𝜆𝐼 − 𝐴 − 𝐵𝑒−𝜆𝜏∗) = 0. (15)
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Equation (15) is equal to

6

∏

𝑘=1

(𝜆 − 𝜌
𝑘
− 𝜔
𝑘
𝑒
−𝜆𝜏∗) = 0. (16)

Therefore, we are led to an investigation of the nature of
the roots for the following equations:

𝜆 − 𝜌
𝑘
− 𝜔
𝑘
𝑒
−𝜆𝜏∗ = 0, 𝑘 = 1, 2, . . . , 6. (17)

For some 𝜌
𝑖
> 0, consider equation

𝜆 − 𝜌
𝑖
− 𝜔
𝑖
𝑒
−𝜆𝜏∗ = 0. (18)

If 𝜆 < 0 is a solution of (18), then |𝜆| = −𝜆; from (18) we
have

|𝜆| ≥
󵄨󵄨󵄨󵄨𝜔𝑖
󵄨󵄨󵄨󵄨 𝑒
|𝜆|𝜏∗ − 𝜌

𝑖
. (19)

Using the formula 𝑒𝑥 ≤ 𝑒𝑥(𝑥 > 0), leads to the fact that

1 ≥

󵄨󵄨󵄨󵄨𝜔𝑖
󵄨󵄨󵄨󵄨 𝑒
|𝜆|𝜏∗

|𝜆| + 𝜌
𝑖

=

󵄨󵄨󵄨󵄨𝜔𝑖
󵄨󵄨󵄨󵄨 𝜏∗𝑒
−𝜌𝑖𝜏∗ ⋅ 𝑒

(|𝜆|+𝜌𝑖)𝜏∗

(|𝜆| + 𝜌
𝑖
) 𝜏
∗

≥
󵄨󵄨󵄨󵄨𝜔𝑖
󵄨󵄨󵄨󵄨 𝜏∗𝑒
−𝜌𝑖𝜏∗ .

(20)

Equation (20) contradicts the first inequality of assump-
tion (14). Then, we discuss the case that 𝜏

1
= 𝜏
3
= 𝜏
5
=

𝜏
∗ in system (8). Similarly, if 𝜆 < 0 is a solution of the
equation 𝜆 − 𝜌

𝑖
− 𝜔
𝑖
𝑒
−𝜆𝜏
∗

= 0, we also have a contradic-
tion with the second inequality of assumption (14). Since
𝜏
∗
≤ 𝜏
𝑖
≤ 𝜏
∗ (𝑖 = 1, 3, 5), one can conclude that there exists

a positive real part of the eigenvalue of system (8) for any 𝜏
𝑖

(𝑖 = 1, 3, 5) under the assumptions.Thismeans that the trivial
solution of system (8) is unstable, implying that there is a
periodic oscillatory solution of system (6) based on Chafee’s
criterion.

Theorem 4. Suppose that 𝑏
𝑖
> 0, 0 < 𝜀

𝑖
≪ 1, 𝑑

𝑖
< 0,

(𝛼
𝑖
+ 𝑐
𝑖
)
2
+ (4/3)𝑑

𝑖
< 0 (𝑖 = 1, 2, 3), and 𝐶 is a nonsingular

matrix. Let 𝜌
𝑘
= 𝜌
𝑘1
+ 𝑖𝜌
𝑘2

(𝜌
𝑘2

may equal zero) and 𝜔
𝑘
=

𝜔
𝑘1
+ 𝑖𝜔
𝑘2

(𝜔
𝑘2

may equal zero) (𝑘 = 1, 2, . . . , 6) denote the
eigenvalues of matrices 𝐴 and 𝐵, respectively. If, for some 𝜌

𝑖
,

|𝜌
𝑖1
| < 𝜔

𝑖1
as 𝜌
𝑖1
< 0, then the trivial solution of system (8)

is unstable, implying that system (6) has a periodic oscillatory
solution.

Proof. The assumptions guarantee that system (8) has a
unique equilibrium point and all solutions are bounded. In
this case, we first consider 𝜏

1
= 𝜏
3
= 𝜏
5
= 𝜏
∗
in system (8).

Then, for some 𝜌
𝑖
, let 𝜆 = 𝜆

1
+ 𝑖𝜆
2
; from (18) we have

𝜆
1
− 𝜌
𝑖1
− 𝜔
𝑖1
𝑒
− 𝜆1𝜏∗ cos (𝜆

2
𝜏
∗
) = 0,

𝜆
2
− 𝜌
𝑖2
+ 𝜔
𝑖2
𝑒
− 𝜆1𝜏∗ sin (𝜆

2
𝜏
∗
) = 0.

(21)

We will show that 𝜆
1
> 0 and there is an eigenvalue

which has positive real part of system (18). Let 𝑓(𝜆
1
) =

𝜆
1
− 𝜌
𝑖1
− 𝜔
𝑖1
𝑒
−𝜆1𝜏∗ cos(𝜆

2
𝜏
∗
); then 𝑓(𝜆

1
) is a continuous

function of 𝜆
1
. If 𝜌
𝑖1
> 0, then select suitable delay 𝜏

∗
such

that 𝜔
𝑖1
cos(𝜆

2
𝜏
∗
) > −𝜌

𝑖1
. Therefore, 𝑓(0) = −𝜌

𝑖1
−

𝜔
𝑖1
cos(𝜆

2
𝜏
∗
) < 0. Noting that 𝑒−𝜆1𝜏∗ → 0 as 𝜆

1
→

+∞, obviously, there exists a suitably large 𝜆
1
(> 0) such

that 𝑓(𝜆
1
) = 𝜆

1
− 𝜌
𝑖1
− 𝜔
𝑖1
𝑒
−𝜆1𝜏∗ cos(𝜆

2
𝜏
∗
) > 0. By the

continuity of 𝑓(𝜆
1
), there exists a positive 𝜆

1

∗
∈ (0, 𝜆

1
) such

that 𝑓(𝜆
1

∗
) = 0. If 𝜌

𝑖1
< 0, since |𝜌

𝑖1
| < 𝜔

𝑖1
(𝜔
𝑖1
̸= 0),

then there exists a suitable delay 𝜏
∗
and a positive 𝜆

1
such

that 𝜔
𝑖1
cos(𝜆

2
𝜏
∗
) < −𝜌

𝑖1
and 𝜆

1
− 𝜔
𝑖1
𝑒
−𝜆1𝜏∗ cos(𝜆

2
𝜏
∗
) < 0

both hold. Then, 𝑓(0) = −𝜌
𝑖1
− 𝜔
𝑖1
cos(𝜆

2
𝜏
∗
) > 0 and

𝑓(𝜆
1
) = 𝜆
1
−𝜔
𝑖1
𝑒
−𝜆1𝜏∗ cos(𝜆

2
𝜏
∗
) < 0. Again, from the contin-

uity of 𝑓(𝜆
1
), there exists a positive 𝜆

1

∗∗
∈ (0, 𝜆

1
) such

that 𝑓(𝜆
1

∗∗
) = 0. Thus, there is an eigenvalue of system

(18) that has positive real part. Implying that the trivial solu-
tion of system (8) is unstable. Thus, the trivial solution of
system (6) is also unstable. Based on the theory of delay
differential equation, the oscillatory behavior of the solution
will maintain as time delay increasing.Therefore, for any 𝜏

𝑖
≥

𝜏
∗
(𝑖 = 1, 3, 5), system (8), as well as system, (6) generates

a periodic oscillatory solution. We select a suitable delay 𝜏
∗

such that system (6) has a periodic oscillatory solution. This
oscillation is said to be induced by time delay.

4. Simulation Result

The parameter values are selected as 𝛼
1
= −1.5, 𝛼

2
= −1.5,

𝛼
3
= −1.2; 𝑏

1
= 0.16, 𝑏

2
= 0.25, 𝑏

3
= 0.12; 𝑐

1
= 1.3, 𝑐

2
= 1.302,

𝑐
3
= 1.305; 𝑑

1
= −0.705, 𝑑

2
= −0.706, 𝑑

3
= −0.707; 𝛽

1
= 1.5,

𝛽
2
= 1.5, 𝛽

3
= 0.15; 𝜀

1
= 0.05, 𝜀

2
= 0.025, 𝜀

3
= 0.085,

respectively. It is easy to check that the conditions of Lemmas
1 and 2 hold.The activation functions are selected as arctan(𝑢)
and tanh(𝑢), respectively. In this case, 𝛾

1
= 𝛾
3
= 𝛾
5
= 1,

and eigenvalues of matrices 𝐴 and 𝐵 are 𝜌
1
= −0.6238, 𝜌

2
=

−0.0892, 𝜌
3
= −0.6682, 𝜌

4
= −0.0440, 𝜌

5
= −0.5493,

and 𝜌
6
= −0.1679, and 𝜔

1
= 1.7562, 𝜔

2
= −1.5000,

𝜔
3
= −0.2562, 𝜔

4
= 0, and 𝜔

5
= 0, 𝜔

6
= 0, respectively.

Since |𝜌
1
| = 0.6238 < 𝜔

1
, there is a periodic oscillatory

solution based on Theorem 4. Both in Figures 1 and 2, the
time delays are selected as 𝜏

1
= 10, 𝜏

2
= 8, and 𝜏

3
= 4.

Then, we change delays as 𝜏
1
= 1, 𝜏

2
= 2, 𝜏

3
= 3; activation

function is kept as tanh(𝑢); periodic oscillatory solution also
occurred (Figure 3). In Figure 4, the parameter values are
selected as 𝛼

1
= −0.95, 𝛼

2
= −1.2, 𝛼

3
= −1.25; 𝑏

1
= 0.18, 𝑏

2
=

0.2, 𝑏
3
= 0.16; 𝑐

1
= 1.4, 𝑐

2
= 1.42, 𝑐

3
= 1.45; 𝑑

1
= −0.7, 𝑑

2
=

−0.72, 𝑑
3
= −0.75; 𝛽

1
= 1.25, 𝛽

2
= 1.2, 𝛽

3
= 1.15; 𝜀

1
= 0.05,

𝜀
2
= 0.045, and 𝜀

3
= 0.065, respectively. The activation func-

tion is tanh(𝑢).The eigenvalues ofmatrices 𝐴 and 𝐵 are 𝜌
1
=

−0.6179, 𝜌
2
= −0.0911, 𝜌

3
= −0.6498, 𝜌

4
= −0.0792,

𝜌
5
= −0.6481, 𝜌

6
= −0.1123 and 𝜔

1
= 2.3654, 𝜔

2
= −1.2154,

𝜔
3
= −1.1500, 𝜔

4
= 0, 𝜔

5
= 0, and 𝜔

6
= 0, respectively. We

see that periodic oscillatory solution appeared.

5. Conclusion

This paper discusses a three coupled FHN neurons model
in which the synaptic strength of self-connection, neighbor-
hoodinteraction for each neuron, and the time delays are
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Figure 1: Periodic oscillatory behavior, activation function: arctan(𝑢), and delays: (10, 8, 4).
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Figure 2: Periodic oscillatory behavior, activation function: tanh(𝑢), and delays: (10, 8, 4).

0 100 200 300 400 500 600 700 800

0

1

2

−1

−2

(a) Solid line: 𝑢
1
(𝑡), dashed line: 𝑢

2
(𝑡), dotted line: 𝑢

3
(𝑡)

0 100 200 300 400 500 600 700 800

0
0.5

1
1.5

−0.5

−1

(b) Solid line: 𝑢
4
(𝑡), dashed line: 𝑢

5
(𝑡), dotted line: 𝑢

6
(𝑡)

Figure 3: Periodic oscillatory behavior, activation function: tanh(𝑢), and delays: (1, 2, 3).
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Figure 4: Periodic oscillatory behavior, activation function: tanh(𝑢), and delays: (9, 10, 12).

different. Two theorems are provided to determine the peri-
odic oscillatory behavior of the solutions based on Chafee’s
criterion of limit cycle. Computer simulation suggested that
those theorems only are sufficient conditions.
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We consider the leader-following consensus problem of discrete-time multiagent systems on a directed communication topology.
Two types of distributed observer-based consensus protocols are considered to solve such a problem. The observers involved in
the proposed protocols include full-order observer and reduced-order observer, which are used to reconstruct the state variables.
Two algorithms are provided to construct the consensus protocols, which are based on the modified discrete-time algebraic Riccati
equation and Sylvester equation. In light of graph andmatrix theory, some consensus conditions are established. Finally, a numerical
example is provided to illustrate the obtained result.

1. Introduction

In recent decades, the cooperate and control problem of
distributed dynamic systems has been a challenging research
field, owing to its widespread applications inmany areas such
as swarm of animals [1], collective motion of particles [2],
schooling for underwater vehicles [3, 4], neural networks
[5, 6], and distributed sensor networks [7].

The consensus problem, as one fundamental problem
for coordinated control of multiagent systems, has gained
significant attention from different research communities.
Consensus problem considers how to design an information
interaction protocol between agents and requires all agents
to converge to a common value [8, 9]. Based on matrix
theory, algebraic graph theory, and control theory, many
researchers have acquired abundant results in studying con-
sensus problem of multiagent systems. In [10], the authors
proposed a general framework for consensus problem in fixed
and switching networks and gave solution to the case with
communication time delays. Olfati-Saber et al. established
a general model for consensus problems of the multiagent
systems and introduced Lyapunov method to reveal the
contract with the connectivity of the graph theory and the
stability of the system in [11]. Sometimes, it is better to

consider a tracking consensus problem by adding a leader
which can make all agents reach a command trajectory with
any initial condition [12]. The leader-following consensus
problem has been addressed in many references [13–17].

Many proposed distributed consensus protocols need to
know neighbors’ state information, but it may be difficult to
measure this information. To make the system achieve con-
sensus, it often contains an observer in the control protocol,
which is used to estimate those unmeasurable state variables.
The distributed observer-based control laws were proposed
to solve first-order and second-order multiagent consensus
problems in [12, 17]. To estimate the general active leader’s
unmeasurable state variables, [18] proposed a distributed
algorithm for first-order agent, and [19] extended the results
of [18] to the time-delay case.The distributed observer-based
consensus protocols were addressed to solve multiagent
consensus with general linear or linearized agent dynamics
in [17, 20–24]. In [25], the author proposed an observer-type
consensus protocol to the consensus problem for a class of
fractional-order uncertain multiagent systems with general
linear dynamics. In [26], the authors proposed distributed
reduced-order observer-based protocols to solve consensus
problem, which were generalized to solve leader-following
consensus problem under switching topology by [27].
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The observer-based consensus protocol can be viewed as a
special case of the dynamic compensationmethod, which has
been investigated by [28–30].

Discrete-time dynamic systems are commonly involved
in the neural network, sampled control, signal filters, and
state estimators. The discrete-time neural network was stud-
ied by [31–33]. The sampled-data discrete-time coordination
of multiagent systems was investigated in [16, 34, 35]. The
first-order discrete-time consensus has been investigated
by [8, 9, 36–38]. In [39], the authors discussed discrete-
time second-order consensus protocols for dynamics with
nonuniform and time-varying communication delays under
dynamically switching topology.The distributed𝐻

∞
consen-

sus problemwas studied in [30] to solvemultiagent consensus
problemwith discrete-timehigh-dimensional linear coupling
dynamics subjected to external disturbances. The distributed
state-feedback protocols for linear discrete-time multiagent
were proposed in [40, 41]. The distributed observer-based
protocol was proposed to solve leader-following consensus
problem with linear discrete-time dynamics in [23, 42, 43].

Motivated by the above works, we focus our research
on a group of agents with discrete-time high-dimensional
linear coupling dynamics and directed interaction topology.
We propose distributed observer-based protocols for leader-
following multiagent systems. The full-order observer and
reduced-order observer are adopted to reconstruct the state
variables. Contrary to [23] and [40], the gain matrix design
approach used in this paper is based on themodified discrete-
time algebraic Riccati equations (MDARE) but not the nor-
mal discrete-time algebraic Riccati equations. The proposed
design method must be feasible if spectral radius of system
matrix is not greater than 1. Of course, the proposed design
method can be used to construct the consensus protocols
provided by [23] and [40]. Further, the separation principle
is shown to be valid, from which we can establish consensus
condition for closed-loop multiagent systems.

This paper is organized as follows. Section 2 presents the
related notations and the problem formulated with graph
theory. In Section 3, the distributed state feedback design is
considered. In Sections 4 and 5, the distributed full-order
and reduced-order observer-based consensus protocols are
proposed, respectively, which are the main results of this
paper. Section 6 presents a simulation example to illustrate
our established results. Finally, the conclusion is given in
Section 7.

2. Preliminaries and Problem Formulation

2.1. Notations and Graph Theory. Re(𝜉) denotes the real part
of 𝜉 ∈ 𝐶. Let 𝑅𝑚×𝑛 and 𝐶

𝑚×𝑛 be the set of 𝑚 × 𝑛 real
matrices and complex matrices, respectively. 1

𝑛
∈ 𝑅
𝑛 is

the column vector with all components equal to one. Let
𝐼 be the identity matrix with compatible dimension. For a
given matrix 𝐴, 𝑎

𝑖𝑗
represents its element of 𝑖th row and

𝑗th column, 𝐴𝑇 denotes its transpose, and 𝐴
𝐻 denotes its

conjugate transpose. A matrix is said to be Schur-stable if
all its eigenvalues are inside unit circle. 𝜌(𝐴) represents the
spectral radius of matrix 𝐴. 𝜆max(𝐴) and 𝜆min(𝐴) represent

itsmaximumandminimumeigenvalues of symmetricmatrix
𝐴, respectively. For symmetric matrices 𝐴 and 𝐵, 𝐴 > 𝐵

means that 𝐴 − 𝐵 is positive definite, that is, 𝐴 − 𝐵 > 0. ⊗
denotes Kronecker product, which satisfies (𝐴 ⊗ 𝐵)(𝐶 ⊗𝐷) =

(𝐴𝐶) ⊗ (𝐵𝐷).
We describe the interaction relationship among 𝑛 agents

by a simple weighted diagraph G = {V, 𝜀,𝑊}, where V =

{V
1
, V
2
, . . . , V

𝑛
} is the set of vertices and 𝜀 ⊂ V × V is the

set of edges. If (V
𝑖
, V
𝑗
) ∈ 𝜀, the vertex V

𝑗
is called a neighbor

of vertex V
𝑖
, and the index set of neighbors of vertex V

𝑖
is

denoted by N
𝑖
= {𝑗 | (V

𝑖
, V
𝑗
) ∈ 𝜀}. 𝑊 = [𝑤

𝑖𝑗
]
𝑛×𝑛

represents
weighted adjacency matrix associated with graph G, where
𝑤
𝑖𝑗
> 0 if (V

𝑖
, V
𝑗
) ∈ 𝜀 and𝑤

𝑖𝑗
= 0 otherwise.The degreematrix

𝐷 = diag{𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
} of digraph G is a diagonal matrix

with diagonal elements 𝑑
𝑖
= ∑
𝑛

𝑗=1
𝑤
𝑖𝑗
. Then, the Laplacian

matrix of G is defined as 𝐿 = 𝐷 − 𝑊. V
𝑖
is called globally

reachable node if there exists at least a directed path from
every other node to node V

𝑖
in digraph G. A directed graph

G has a globally reachable node if and only if there exists a
directed spanning tree inG (see [9]).

For a multiagent system with leader (labeled as 0), the
interaction topology is expressed by graph Ĝ, which contains
graphG and vertex V

0
and edges from other vertices to vertex

V
0
. Let 𝑔

𝑖
, 𝑖 = 1, 2, . . . , 𝑛, be weight of (V

𝑖
, V
0
). 𝑔
𝑖
> 0 if

(V
𝑖
, V
0
) is an edge of graph 𝐺 and 𝑔

𝑖
= 0 otherwise. Let

𝐺
𝑑
= diag{𝑔

1
, 𝑔
2
, . . . , 𝑔

𝑛
}.Thematrix 𝐿+𝐺

𝑑
has the following

property.

Lemma 1 (see [13]). Matrix 𝐿+𝐺
𝑑
is positive stable if and only

if graph Ĝ has a directed spanning tree with root V
0
.

2.2. Problem Formulation. Consider the multiagent system
which is composed of 𝑛 identical following agents and a
leader. Each following agent has dynamics modeled by the
discrete-time linear system:

𝑥
𝑖
(𝑘 + 1) = 𝐴𝑥

𝑖
(𝑘) + 𝐵𝑢

𝑖
(𝑘) ,

𝑦
𝑖
(𝑘) = 𝐶𝑥

𝑖
(𝑘) ,

(1)

where 𝑥
𝑖
(𝑘) ∈ 𝑅

𝑚, 𝑢
𝑖
(𝑘) ∈ 𝑅

𝑝, and 𝑦
𝑖
(𝑘) ∈ 𝑅

𝑞 are,
respectively, the state variable, control input, and measured
output of agent 𝑖.

The dynamics of the leader is given as

𝑥
0
(𝑘 + 1) = 𝐴𝑥

0
(𝑘) ,

𝑦
0
(𝑘) = 𝐶𝑥

0
(𝑘) ,

(2)

where 𝑥
0
(𝑘) is the state and 𝑦

0
(𝑘) is the measured output of

the leader. The leaderless consensus problem for multiagent
system has been investigated by [26, 28, 44], which require
the system matrix 𝐴 to be Schur-stable. There is not such
requirement to 𝐴 in this paper. 𝐴, 𝐵, 𝐶 are constant matrices
with compatible dimensions. It is assumed that (𝐴, 𝐵, and 𝐶)
is stabilizable and detectable.

The𝑥
0
(𝑘) is often called as “consensus reference state” and

assumed to be available only to a subgroup of the followers.
The main objective of leader-following consensus problem is
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to design distributed consensus protocol to make multiagent
system achieve consensus.

Definition 2. The leader-following multiagent system is said
to achieve consensus if the state variables of all following
agents satisfy lim

𝑘→∞
(𝑥
𝑖
(𝑘) − 𝑥

0
(𝑘)) = 0, 𝑖 = 1, 2, . . . , 𝑛 for

any initial state. One says that the protocol 𝑢
𝑖
(𝑘) can solve the

leader-following consensus problem if the closed-loop system
achieves consensus.

2.3. Preliminary Results. In this subsection, we introduce
some preliminary results which will be used to establish our
main results. Consider the following MDARE:

𝐴
𝑇
𝑃𝐴 − 𝑃 − 𝛿𝐴

𝑇
𝑃𝐵(𝐼 + 𝐵

𝑇
𝑃𝐵)
−1

𝐵
𝑇
𝑃𝐴 + 𝑄 = 0, (3)

where 𝑄 is any given positive definite matrix. Since 𝑄 is
positive definite, (𝐴, 𝑄1/2)must be detectable. The solvability
of the MDARE is addressed by the following lemma.

Lemma 3 (see [45, 46]). If (𝐴, 𝑄1/2) is detectable, (𝐴, 𝐵) is
stabilizable, then there exists a 𝛿

𝑐
∈ [0, 1) such that the

modified discrete time algebraic Riccati equation (3) has a
unique positive-definite solution 𝑃 for any 𝛿

𝑐
< 𝛿 ≤ 1.

Furthermore, 𝑃 = lim
𝑘→∞

𝑃
𝑘
for any initial condition 𝑃

0
≥ 0,

where 𝑃
𝑘
satisfies

𝑃
𝑘+1

= 𝐴
𝑇
𝑃
𝑘
𝐴 − 𝛿𝐴

𝑇
𝑃
𝑘
𝐵(𝐼 + 𝐵

𝑇
𝑃
𝑘
𝐵)
−1

𝐵
𝑇
𝑃
𝑘
𝐴 + 𝑄. (4)

Remark 4. The MDARE (3) is reduced, respectively, to the
well-known discrete-time Riccati equation (DARE) and Stain
equation as 𝛿 = 1 and 𝛿 = 0. The Stain equation has
a unique positive-definite solution if 𝐴 is Schur-stable. It
is well known that DARE has a unique positive-definite
solution if (𝐴, 𝐵) is stablizable. If the involved matrix 𝐴 is
not Schur-stable, it is easy to see that 0 < 𝛿

𝑐
≤ 1. More

details for issue 𝛿
𝑐
can be referenced to [45]. Moreover, if the

matrix 𝐴 has no eigenvalues with magnitude larger than 1

and (𝐴, 𝐶) is detectable, MDARE (3) has a unique positive-
definite solution 𝑃 for any 𝛿 satisfying 0 < 𝛿 ≤ 1.

Lemma 5. For a given 𝛿 satisfying 𝛿
𝑐
< 𝛿 ≤ 1, let 𝑃 be the

unique positive-definite solution of the MDARE (3). Choose a
feedback matrix 𝐾 = (𝐼 + 𝐵

𝑇
𝑃𝐵)
−1
𝐵
𝑇
𝑃𝐴. Then, 𝐴 − 𝑠𝐵𝐾 is

Schur-stable for any 𝑠 ∈ 𝐶(1, √1 − 𝛿).

Proof. From the MDARE (3), we have

(𝐴 − 𝑠𝐵𝐾)
∗
𝑃 (𝐴 − 𝑠𝐵𝐾) − 𝑃

= 𝐴
𝑇
𝑃𝐴 − (𝑠 + 𝑠

∗
) 𝐴
𝑇
𝑃𝐵(𝐼 + 𝐵

𝑇
𝑃𝐵)
−1

𝐵
𝑇
𝑃𝐴

+ 𝑠𝑠
∗
𝐾
𝑇
𝐵
𝑇
𝑃𝐵𝐾 − 𝑃

= 𝐴
𝑇
𝑃𝐴 − 𝑃 − (𝑠 + 𝑠

∗
− 𝑠𝑠
∗
) 𝐴
𝑇
𝑃𝐵(𝐼 + 𝐵

𝑇
𝑃𝐵)
−1

× 𝐵
𝑇
𝑃𝐴 − |𝑠|

2
𝐾
𝑇
𝐾

= 𝐴
𝑇
𝑃𝐴 − 𝑃 − (1 − |𝑠 − 1|

2
)𝐴
𝑇
𝑃𝐵(𝐼 + 𝐵

𝑇
𝑃𝐵)
−1

× 𝐵
𝑇
𝑃𝐴 − |𝑠|

2
𝐾
𝑇
𝐾

≤ 𝐴
𝑇
𝑃𝐴 − 𝑃 − 𝛿𝐴

𝑇
𝑃𝐵(𝐼 + 𝐵

𝑇
𝑃𝐵)
−1

𝐵
𝑇
𝑃𝐴

≤ −𝑄 < 0.

(5)

Thus, we know that if |𝑠 − 1| ≤ √1 − 𝛿, 𝐴 − 𝑠𝐵𝐾 is Schur-
stable.

3. Distributed State Feedback Design

In this section, we investigate the multiagent consensus via
state variable feedback control, which has been addressed by
[23]. Here, we also use the control protocol proposed by [23]
and provide a new design approach to construct the feedback
gain matrix.

The neighborhood disagreement error of agent 𝑖 is
defined as
𝜉
𝑖
(𝑘) = ∑

𝑗∈N𝑖

𝑤
𝑖𝑗
(𝑥
𝑗
(𝑘) − 𝑥

𝑖
(𝑘)) + 𝑔

𝑖
(𝑥
0
(𝑘) − 𝑥

𝑖
(𝑘)) .

(6)

Consider the following distributed state feedback proto-
col for agent 𝑖:

𝑢
𝑖
(𝑘) = 𝑐

1
(1 + 𝑑

𝑖
+ 𝑔
𝑖
)
−1

𝐾𝜉
𝑖
(𝑘) , (7)

where 𝑑
𝑖
= ∑
𝑗∈N𝑖

𝑤
𝑖𝑗
, 𝑐
1
is the coupling strength and 𝐾 is a

feedback gain matrix, which will be determined later.
Denote 𝑒

𝑖
(𝑘) = 𝑥

𝑖
(𝑘) − 𝑥

0
(𝑘) and 𝑒(𝑘) = [𝑒

𝑇

1
(𝑘), 𝑒
𝑇

2
(𝑘),

. . . , 𝑒
𝑇

𝑛
(𝑘)]
𝑇. Then, we can derive that the close loop system

has the global tracking error dynamics as follows [23]

𝑒 (𝑘 + 1) = [𝐼
𝑛
⊗ 𝐴 − 𝑐

1
Γ ⊗ (𝐵𝐾)] 𝑒 (𝑘) , (8)

where Γ = (𝐼 + 𝐷 + 𝐺
𝑑
)
−1
(𝐿 + 𝐺

𝑑
).

Definition 6 (see [23]). A covering circle 𝐶(𝑐
0
, 𝑟
0
) related to

matrix Γ is a closed circle in the complex plane centered at
𝑐
0
∈ 𝑅 and 𝜆

𝑖
∈ 𝐶(𝑐
0
, 𝑟
0
) for all 𝑖 = 1, 2, . . . , 𝑛.

Then, we provide a new design technique to construct
feedback gain matrix 𝐾, which is presented in the following
theorem.

Theorem7. Formultiagent system (1) and (2), assume that the
interconnection topology Ĝ has a directed spanning tree with
root V

0
. If there exists a covering circle 𝐶(𝑐

0
, 𝑟
0
) such that

0 <
𝑟
0

𝑐
0

< √1 − 𝛿
𝑐
, (9)

then there must exist fitted 𝑐
1
and𝐾 such that the global track-

ing error dynamics (8) is asymptotically stable. Furthermore,
by taking 𝛿 which satisfies

𝑟
0

𝑐
0

≤ √1 − 𝛿 < √1 − 𝛿
𝑐 (10)
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and solving the MDARE (3) to get the unique positive-definite
solution 𝑃, the feedback matrix 𝐾 and the coupling strength 𝑐

1

can be chosen as

𝐾 = (𝐼 + 𝐵
𝑇
𝑃𝐵)
−1

𝐵
𝑇
𝑃𝐴,

𝑐
1
=
1

𝑐
0

.

(11)

Proof. From (10), we know 𝛿 > 𝛿
𝑐
, which means that the

MDARE (3) has a unique positive-definite solution 𝑃. Any 𝜆
𝑖

satisfies |𝜆
𝑖
− 𝑐
0
| ≤ 𝑟

0
. Thus, |𝑐

1
𝜆
𝑖
− 1| ≤ 𝑟

0
/𝑐
0
< √1 − 𝛿.

According to Lemma 5, all 𝐴 − 𝑐
1
𝜆
𝑖
𝐵𝐾, 𝑖 = 1, 2, . . . , 𝑛 are

Schur-stable.
Let 𝑈 be a Schur transformation matrix of Γ such that

𝑈
𝑇
Γ𝑈 =

[
[
[
[

[

𝜆
1
∗ ⋅ ⋅ ⋅ ∗

0 𝜆
2
⋅ ⋅ ⋅ ∗

...
... d

...
0 0 ⋅ ⋅ ⋅ 𝜆

𝑛

]
]
]
]

]

. (12)

Then, we have

(𝑈 × 𝐼)
𝑇
[𝐼
𝑛
⊗ 𝐴 − 𝑐

1
Γ ⊗ (𝐵𝐾)] (𝑈 × 𝐼)

=

[
[
[
[
[

[

𝐴 − 𝑐
1
𝜆
1
𝐵𝐾 ∗ ⋅ ⋅ ⋅ ∗

0 𝐴 − 𝑐
1
𝜆
2
𝐵𝐾
𝑐
⋅ ⋅ ⋅ ∗

...
... d

...
0 0 ⋅ ⋅ ⋅ 𝐴 − 𝑐

1
𝜆
𝑛
𝐵𝐾
𝑐

]
]
]
]
]

]

.

(13)

Certainly, 𝑈 ⊗ 𝐼 is also a unitary matrix. Matrix [𝐼
𝑛
⊗ 𝐴 −

𝑐
1
Γ ⊗ (𝐵𝐾)] is Schur-stable if and only if all 𝐴 − 𝑐

1
𝜆
𝑖
𝐵𝐾, 𝑖 =

1, 2, . . . , 𝑛 are Schur-stable. Now, the proof is completed.

Remark 8. From condition (9), it is required that 0 < 𝑐
0
< 𝑟
0
,

which means that the covering circle should be located in the
open right half plane. Moreover, the small enough 𝑟

0
/𝑐
0
will

guarantee that the MDARE (3) is solvable, which is the key
point in the proposed design approach.Theweight parameter
in the feedback law (7) need not take 𝑐

1
(1 + 𝑑

𝑖
+ 𝑔
𝑖
)
−1, which

can be selected as 𝑐
1
(𝑑
𝑖
+ 𝑔
𝑖
)
−1, 𝑐
1
, and so on as long as there

exists a covering circle for the related matrix 𝑐
1
Γ that satisfies

the condition (9).

Next, we will discuss the covering circle of the matrix 𝑐
1
Γ.

Based onGershgorin disk theorem [47], all the eigenvalues of
(𝐼 + 𝐷 + 𝐺

𝑑
)
−1
(𝐼 + 𝑊) are located in the union of 𝑛 discs:

𝑛

⋃

𝑗=1

{𝑠 ∈ 𝐶 :

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑠 −
1

1 + 𝑑
𝑖
+ 𝑔
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝑑
𝑖

1 + 𝑑
𝑖
+ 𝑔
𝑖

} . (14)

It is easy to see that this union is included in a unit circle
{𝑠 : |𝑠| ≤ 1} and the circular boundaries of the union of 𝑛
discs have only one intersection with the circle at 𝑠 = 1. If
the interconnection topology Ĝ has a directed spanning tree
with root V

0
, we know that 𝐿+𝐺

𝑑
is nonsingular, and then, Γ is

nonsingular too.Noting that (𝐼+𝐷+𝐺
𝑑
)
−1
(𝐼+𝑊) = 𝐼−Γ, then

we know that all eigenvalues of matrix (𝐼 +𝐷+𝐺
𝑑
)
−1
(𝐼 +𝑊)

are not equal to 1. Thus, all eigenvalues of matrix Γ can be
covered by circle 𝐶(1, 𝑟

0
) with 𝑟

0
< 1. On the other hand, it is

necessary to assume that the interconnection topology Ĝ has
a directed spanning tree with root V

0
. Otherwise, there exists

at least one agent which cannot get the leader’s information
directly and indirectly. Certainly, if 𝐴 is not Schur-stable,
those agents cannot track the leader with some initial values.
From this point, the assumption that the interconnection
topology Ĝ has a directed spanning tree with root V

0
is

necessary.
An interesting special case is that matrix 𝐴 has no

eigenvalues with magnitude larger than 1, that is, 𝜌(𝐴) ≤

1. The well-known second-order discrete-time multiagent
system

𝑥
𝑖
(𝑘 + 1) = 𝑥

𝑖
(𝑘) + V

𝑖
(𝑘) ,

V
𝑖
(𝑘 + 1) = V

𝑖
(𝑘) + 𝑢

𝑖
(𝑘) ,

(15)

has been addressed in many references [34, 38]. The system
matrix 𝐴 of second-order discrete-time multiagent system is
[
1 1

0 1
], which has no eigenvalues with magnitude larger than

1.
According to Theorem 7, we present the following corol-

lary for this special case.

Corollary 9. For multiagent system (1) and (2) with 𝜌(𝐴) ≤
1, assume that the interconnection topology Ĝ has a directed
spanning tree with root V

0
. Take 𝛿 = 1 − max

𝑖
{|𝜆
𝑖
− 1|
2
}, and

solve theMDARE (3) to get the unique positive-definite solution
𝑃. Choose 𝐾 = (𝐼 + 𝐵

𝑇
𝑃𝐵)
−1
𝐵
𝑇
𝑃𝐴 and 𝐶

1
= 1. Then, the

distributed feedback control (7) guarantees that all following
agents can track leader.

Proof. According to Remark 4, we know 𝛿
𝑐
= 0 if 𝜌(𝐴) ≤ 1.

Select 𝛿 = 1 −max
𝑖
{|𝜆
𝑖
− 1|
2
}. From above analysis, we know

that 𝛿 > 0 and𝐶(1, 𝛿) are a covering circle.Thus, theMDARE
(3) is solvable. According to Theorem 7, we can obtain the
corollary directly.

4. Consensus Protocol Design with
Full-Order Observer

In many applications, each agent only accesses the neighbor’s
output variable. To solve leader-following consensus prob-
lem,we propose a new observer-based consensus protocol for
agent 𝑖, which consists of a distributed estimation law and a
feedback control law.

(i) Local estimation law for agent 𝑖:

𝑧
𝑖
(𝑘 + 1) = 𝐹𝑧

𝑖
(𝑘) + 𝐺𝑦

𝑖
(𝑘) + 𝑇𝐵𝑢

𝑖
(𝑘) ,

𝑥
𝑖
(𝑘) = 𝑇

−1
𝑧
𝑖
(𝑘) ,

(16)

where 𝑧
𝑖
(𝑘) ∈ 𝑅

𝑚 is the protocol state, 𝑥(𝑘) is the
constructed variable to estimate 𝑥

𝑖
(𝑘), and 𝐹 ∈ 𝑅

𝑚×𝑚,
𝐺 ∈ 𝑅

𝑚×𝑞, and 𝑇 ∈ 𝑅
𝑚×𝑚 are the designed parameter

matrices.
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(ii) Neighbor-based feedback control law for agent 𝑖:

𝑢
𝑖
(𝑘) = 𝑐

1
(1 + 𝑑

𝑖
+ 𝑔
𝑖
)
−1

𝐾𝜂
𝑖
(𝑘) , (17)

where the neighborhood disagreement observer error
𝜂
𝑖
(𝑘) of agent 𝑖 is denoted as

𝜂
𝑖
(𝑘) = ∑

𝑗∈N𝑖

𝑤
𝑖𝑗
(𝑥
𝑗
(𝑘) − 𝑥

𝑖
(𝑘)) + 𝑔

𝑖
(𝑥
0
(𝑘) − 𝑥

𝑖
(𝑘)) ,

(18)

and𝐾 is a given feedback gain matrix.

Next, an algorithm is provided to select the parameter
matrices used in estimation law (16).

Algorithm 10. Given that (𝐴, 𝐶) is observable. The parameter
matrices 𝐹, 𝐺, and 𝑇 used in estimation law (16) can be
constructed as follows.

(1) Select a Schur-stable 𝑚 × 𝑚 matrix 𝐹 with a set of
desired eigenvalues that contain no eigenvalues in
common with those of 𝐴.

(2) Select 𝐺 ∈ 𝑅
𝑚×𝑞 randomly such that (𝐹, 𝐺) is control-

lable.

(3) Solve Sylvester equation

𝑇𝐴 − 𝐹𝑇 = 𝐺𝐶 (19)

to get a nonsingular solution𝑇. If 𝑇 is singular, select another
𝐺 until 𝑇 is nonsingular.

Denote 𝑒
𝑖
(𝑘) = 𝑧

𝑖
(𝑘) − 𝑇𝑥

𝑖
(𝑘) and 𝑒(𝑘) = [𝑒

𝑇

1
(𝑘), 𝑒
𝑇

2
(𝑘),

. . . , 𝑒
𝑇

𝑛
(𝑘)]
𝑇.Then, aftermanipulations and combining (1) and

(16), we can obtain

𝑒
𝑖
(𝑘 + 1)

= 𝑧
𝑖
(𝑘 + 1) − 𝑇𝑥

𝑖
(𝑘 + 1)

= 𝐹𝑧 (𝑘) + 𝐺𝑦
𝑖
(𝑘) + 𝑇𝐵𝑢

𝑖
(𝑘) − 𝑇𝐴𝑥

𝑖
(𝑘) − 𝑇𝐵𝑈

𝑖
(𝑘)

= 𝐹𝑒
𝑖
(𝑘) + (𝐹𝑇 + 𝐺𝐶 − 𝑇𝐴) 𝑥

𝑖
(𝑘)

= 𝐹𝑒
𝑖
(𝑘) .

(20)

For tracking error 𝑒
𝑖
(𝑘) = 𝑥

𝑖
(𝑘) − 𝑥

0
(𝑘), we have

𝑒
𝑖
(𝑘 + 1)

= 𝐴𝑒
𝑖
(𝑘 + 1) + 𝑐

1
(1 + 𝑑

𝑖
+ 𝑔
𝑖
)
−1

𝐾𝜂
𝑖
(𝑘)

= 𝐴𝑒
𝑖
(𝑘 + 1) + 𝑐

1
(1 + 𝑑

𝑖
+ 𝑔
𝑖
)
−1

𝐾𝜉
𝑖
(𝑘)

+ 𝑐
1
(1 + 𝑑

𝑖
+ 𝑔
𝑖
)
−1

𝐾[𝜂
𝑖
(𝑘) − 𝜉

𝑖
(𝑘)]

= 𝐴𝑒
𝑖
(𝑘 + 1) − 𝑐

1
(1 + 𝑑

𝑖
+ 𝑔
𝑖
)
−1

× [

[

𝐾 ∑

𝑗∈N𝑖

𝑤
𝑖𝑗
(𝑒
𝑖
(𝑘) − 𝑒

𝑗
(𝑘)) + 𝑔

𝑖
𝑒
𝑖
]

]

+ 𝑐
1
(1 + 𝑑

𝑖
+ 𝑔
𝑖
)
−1

𝐾𝑇
−1

× [

[

∑

𝑗∈N𝑖

𝑤
𝑖𝑗
(𝑒
𝑖
(𝑘) − 𝑒

𝑗
(𝑘)) + 𝑔

𝑖
𝑒
𝑖
]

]

.

(21)

From (20) and (21), the error dynamics of closed-loop system
will be expressed as

[
𝑒 (𝑘 + 1)

𝑒 (𝑘 + 1)
]

= [
𝐼
𝑛
⊗ 𝐴 − 𝑐

1
Γ ⊗ (𝐵𝐾) 𝑐

1
Γ ⊗ (𝐵𝐾𝑇

−1
)

0 𝐼 ⊗ 𝐹
]

× [
𝑒 (𝑘)

𝑒 (𝑘)
] .

(22)

Obviously, the error dynamics system (22) is Schur-stable if
and only if 𝐼

𝑛
⊗𝐴−𝑐

1
Γ⊗(𝐵𝐾) and 𝐼⊗𝐹 are Schur-stable. Similar

toTheorem 7, we present the following theorem directly, and
the proof is omitted.

Theorem 11. For multiagent system (1) and (2), assume that
the interconnection topology Ĝ has a directed spanning tree
with root V

0
. If there exists a covering circle 𝐶(𝑐

0
, 𝑟
0
) such that

0 <
𝑟
0

𝑐
0

< √1 − 𝛿
𝑐
, (23)

then the distributed observer-based protocols (16) and (17)
can solve the discrete-time leader-following consensus problem.
Furthermore, the parameter matrices 𝐹, 𝐺, and 𝑇 used in
observer (16) are constructed by Algorithm 10. By taking 𝛿

satisfied
𝑟
0

𝑐
0

≤ √1 − 𝛿 < √1 − 𝛿
𝑐 (24)

and solving the MDARE (3) to get the unique positive-definite
solution 𝑃, the feedback matrix 𝐾 and the coupling strength 𝑐

1

can be chosen as

𝐾 = (𝐼 + 𝐵
𝑇
𝑃𝐵)
−1

𝐵
𝑇
𝑃𝐴,

𝑐
1
=
1

𝑐
0

.

(25)

Remark 12. Of course, when systemmatrix𝐴 satisfies 𝜌(𝐴) ≤
1, we can also establish similar corollaries as Corollary 9
in this section and the next section. In [23], three different
observer/controller architectures are proposed for dynamic
output feedback regulator design. Besides design feedback
matrix𝐾, another key technique is to choose an observer gain
matrix 𝐿 which makes 𝐼

𝑛
⊗ 𝐴 − 𝑐

1
Γ ⊗ (𝐿𝐶) Schur-stable. By

using duality property, solve the following MDARE:

𝐴𝑃𝐴
𝑇
− 𝑃 − 𝛿𝐴𝑃𝐶

𝑇
(𝐼 + 𝐶𝑃𝐶

𝑇
)
−1

𝐶𝑃𝐴
𝑇
+ 𝑄 = 0 (26)
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to get the unique positive definite solution 𝑃. Then, the
observer gain matrix 𝐿 is chosen as 𝐿 = 𝐴𝑃𝐶

𝑇
(𝐼 + 𝐶𝑃𝐶

𝑇
)
−1.

Thus, the proposed design method in this paper can also be
applied to construct the protocols proposed by [23]. In this
paper, we propose two new observer/controller architectures,
which will replenish cooperative observer and regulator
theory. Contrary to [23], our proposed approach must be
feasible if system matrix 𝐴 satisfies 𝜌(𝐴) ≤ 1.

5. Consensus Protocol Design with
Reduced-Order Observer

In this section, we assume that 𝐶 has full row rank, that
is, Rank(𝐶) = 𝑞. The following reduced-order observer-
based consensus protocol, which consists of a reduced-order
estimation law and a feedback control law, is proposed for
agent 𝑖.

(i) Local reduced-order estimation law for agent 𝑖:

V
𝑖
(𝑘 + 1) = 𝐹V

𝑖
(𝑘) + 𝐺𝑦

𝑖
(𝑘) + 𝑇𝐵𝑢

𝑖
(𝑘) , (27)

where V
𝑖
(𝑘) ∈ 𝑅

𝑚−𝑞 is the protocol state, 𝐹 ∈

𝑅
𝑚−𝑞×𝑚−𝑞, and 𝐺 ∈ 𝑅

𝑚−𝑞×𝑞 and 𝑇 ∈ 𝑅
𝑚−𝑞×𝑚 are

parameter matrices.
(ii) Neighbor-based feedback control law for agent 𝑖:

𝑢
𝑖
(𝑘) = 𝑐

1
(1 + 𝑑

𝑖
+ 𝑔
𝑖
)
−1

𝐾𝜁
𝑖
(𝑘) , (28)

where the disagreement error 𝜁
𝑖
(𝑘) of agent 𝑖 is given

as

𝜁
𝑖
(𝑘) = 𝑄

1
[

[

∑

𝑗∈N𝑖

𝑤
𝑖𝑗
(𝑦
𝑗
(𝑘) − 𝑦

𝑖
(𝑘)) + 𝑔

𝑖
(𝑦
0
(𝑘) − 𝑦

𝑖
(𝑘))]

]

+ 𝑄
2
[

[

∑

𝑗∈N𝑖

𝑤
𝑖𝑗
(V
𝑗
(𝑘)−V

𝑖
(𝑘))+𝑔

𝑖
(𝑇𝑥
0
(𝑘)−V

𝑖
(𝑘))]

]

,

(29)

and𝐾 is a gain matrix.

Similarly, an algorithm is presented to design the same
parameter matrices used in the protocols (27) and (28).

Algorithm 13. Given that (𝐴, 𝐶) is observable. The parameter
matrices 𝐹, 𝐺, 𝑇, 𝑄

1
, and 𝑄

2
can be constructed as follows.

(1) Select a Schur matrix 𝐹 ∈ 𝑅
(𝑚−𝑞)×(𝑚−𝑞) with a set

of desired eigenvalues that contain no eigenvalues in
common with those of 𝐴.

(2) Select 𝐺 ∈ 𝑅
(𝑚−𝑞)×𝑞 randomly such that (𝐹, 𝐺) is

controllable.
(3) Solve Sylvester equation

𝑇𝐴 − 𝐹𝑇 = 𝐺𝐶 (30)

to get the unique solution 𝑇, which satisfies that [ 𝐶
𝑇
] is

nonsingular. If [ 𝐶
𝑇
] is singular, go back to step (2) to select

another 𝐺 until [ 𝐶
𝑇
] is nonsingular.

(4) Compute matrices 𝑄
1
∈ 𝑅
𝑚×𝑞 and 𝑄

2
∈ 𝑅
𝑚×(𝑚−𝑞) by

[𝑄
1
𝑄
2
] = [
𝐶

𝑇
]
−1.

Now, we present the result related to reduced-order
observer.

Theorem 14. For multiagent system (1) and (2), assume that
the interconnection topology Ĝ has a directed spanning tree
with root V

0
. If there exists a covering circle 𝐶(𝑐

0
, 𝑟
0
) such that

0 <
𝑟
0

𝑐
0

< √1 − 𝛿
𝑐
, (31)

then the distributed observer-based protocols (16) and (17)
can solve the discrete-time leader-following consensus problem.
Furthermore, the parameter matrices 𝐹,𝐺, 𝑇,𝑄

1
, and𝑄

2
used

in protocols (27) and (28) are constructed by Algorithm 13. By
taking 𝛿 which satisfies

𝑟
0

𝑐
0

≤ √1 − 𝛿 < √1 − 𝛿
𝑐 (32)

and solving the MDARE (3) to get the unique positive-definite
solution 𝑃, the feedback matrix 𝐾 and the coupling strength 𝑐

1

can be chosen as

𝐾 = (𝐼 + 𝐵
𝑇
𝑃𝐵)
−1

𝐵
𝑇
𝑃𝐴,

𝑐
1
=
1

𝑐
0

.

(33)

Proof. To analyze convergence, denote 𝑒
𝑖
(𝑘) = 𝑥

𝑖
(𝑘) − 𝑥

0
(𝑘)

and 𝜀
𝑖
= V
𝑖
(𝑘) − 𝑇𝑥

0
(𝑘). Then, the dynamics of 𝑒

𝑖
(𝑘) and 𝜀

𝑖
(𝑘)

satisfy

𝑒
𝑖
(𝑘 + 1) = 𝐴𝑒

𝑖
(𝑘) − 𝑐

1
(1 + 𝑑

𝑖
+ 𝑔
𝑖
)
−1

𝐵𝐾𝑄
1
𝐶

× [

[

∑

𝑗∈N𝑖

𝑤
𝑖𝑗
(𝑒
𝑖
(𝑘) − 𝑒

𝑗
(𝑘)) + 𝑔

𝑖
𝑒
𝑖
(𝑘)]

]

− 𝑐
1
(1 + 𝑑

𝑖
+ 𝑔
𝑖
)
−1

𝐾𝑄
2

× [

[

∑

𝑗∈N𝑖

𝑤
𝑖𝑗
(𝜀
𝑖
(𝑘) − 𝜀

𝑗
(𝑘)) + 𝑔

𝑖
𝜀
𝑖
(𝑘)]

]

,

𝜀
𝑖
(𝑘 + 1) = V

𝑖
(𝑘 + 1) − 𝑇𝑥

0
(𝑘 + 1)

= 𝐹V
𝑖
(𝑘) + 𝐺𝐶𝑥

𝑖
(𝑘) − 𝑇𝐴𝑥

0
(𝑘)

− 𝑐
1
(1 + 𝑑

𝑖
+ 𝑔
𝑖
)
−1

𝑇𝐵𝐾𝑄
1
𝐶

× [

[

∑

𝑗∈N𝑖(𝑡)

𝑤
𝑖𝑗
(𝑥
𝑖
− 𝑥
𝑗
) + 𝑔
𝑖
(𝑥
𝑖
− 𝑥
0
)]

]

− 𝑐
1
(1 + 𝑑

𝑖
+ 𝑔
𝑖
)
−1

𝑇𝐵𝐾𝑄
2

× [

[

∑

𝑗∈N𝑖

𝑤
𝑖𝑗
(V
𝑖
− V
𝑗
) + 𝑔
𝑖
(V
𝑖
− 𝑇𝑥
0
)]

]
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= 𝐹𝜀
𝑖
(𝑘) + 𝐺𝐶𝑒

𝑖
(𝑘) − 𝑐

1
(1 + 𝑑

𝑖
+ 𝑔
𝑖
)
−1

𝑇𝐵𝐾𝑄
1
𝐶

× [

[

∑

𝑗∈N𝑖

𝑤
𝑖𝑗
(𝑒
𝑖
(𝑘) − 𝑒

𝑗
(𝑘)) + 𝑔

𝑖
𝑒
𝑖
(𝑘)]

]

− 𝑐
1
(1 + 𝑑

𝑖
+ 𝑔
𝑖
)
−1

𝑇𝐵𝐾𝑄
2

× [

[

∑

𝑗∈N𝑖

𝑤
𝑖𝑗
(𝜀
𝑖
(𝑘) − 𝜀

𝑗
(𝑘)) + 𝑔

𝑖
𝜀
𝑖
(𝑘)]

]

.

(34)

Let 𝑒 = (𝑒
𝑇

1
, 𝑒
𝑇

2
, . . . , 𝑒

𝑇

𝑛
)
𝑇 and 𝜀 = (𝜀

𝑇

1
, 𝜀
𝑇

2
, . . . , 𝜀

𝑇

𝑛
)
𝑇. From (34),

the closed-loop error dynamics can be represented as

[
𝑒 (𝑘 + 1)

𝜀 (𝑘 + 1)
]

= [
𝐼
𝑛
⊗ 𝐴 − 𝑐

1
Γ ⊗ 𝐵𝐾𝑄

1
𝐶 −𝑐

1
Γ ⊗ 𝐵𝐾𝑄

2

𝐼
𝑁
⊗ 𝐺𝐶 − 𝑐

1
Γ ⊗ 𝑇𝐵𝐾𝑄

1
𝐶 𝐼
𝑛
⊗ 𝐹 − 𝑐

1
Γ ⊗ 𝑇𝐵𝐾𝑄

2

]

× [
𝑒 (𝑘)

𝜀 (𝑘)
] ≜ 𝐻[

𝑒 (𝑘)

𝜀 (𝑘)
] .

(35)

It is easy to see that the leader-following multiagent system
achieves consensus if the closed-loop error dynamics system
(35) is Schur-stable.

Let 𝑇 = [
𝐼𝑛⊗𝐼𝑚 0

−𝐼𝑛⊗𝑇 𝐼𝑛⊗𝐼𝑚−𝑞
], which is nonsingular, and 𝑇

−1

=

[
𝐼𝑛⊗𝐼𝑚 0

𝐼𝑛⊗𝑇 𝐼𝑛⊗𝐼𝑚−𝑞
]. By step (2) of Algorithm 13, we have

𝐻 ≜ 𝑇𝐻𝑇
−1

= [

𝐼
𝑛
⊗ 𝐴 − 𝑐

1
Γ ⊗ (𝐵𝐾) −𝑐

1
Γ ⊗ (𝐵𝐾𝑄

2
)

0 𝐼
𝑛
⊗ 𝐹

] .

(36)

The matrix𝐻 is block upper triangular matrix with diagonal
block matrix entries 𝐼

𝑛
⊗ 𝐴 − 𝑐

1
Γ ⊗ (𝐵𝐾) and 𝐹. Because 𝐹 is

Schur-stable, the matrix 𝐻 is Schur-stable if and only if 𝐴 −

𝑐
1
Γ ⊗ (𝐵𝐾) is Schur-stable. The rest of the proof is omitted,

because it is very similar to the proof of Theorem 7.

6. Simulation Example

In this section, we give an example to illustrate the effective-
ness of the obtained result. The multiagent system consists of
four agents and one leader, that is, 𝑛 = 4.The following agents
and leader are, respectively, modeled by the linear dynamics
(1) and (2) with system matrices

𝐴 = [

[

0 3 0

0 0 1

−0.2 0.2 1.1

]

]

, 𝐵 = [

[

0

0

4

]

]

,

𝐶 = [0, 1, 1] .

(37)

The matrices 𝐿 and 𝐺 of the interaction graph Ĝ are given by

𝐿 =

[
[
[

[

2 −1 −1 0

−1 2 −1 0

−1 −1 3 −1

−1 0 −1 2

]
]
]

]

, 𝐺
𝑑
=

[
[
[

[

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

]
]
]

]

. (38)

By some simple computations, it is proper to take 𝑐
0
= 0.5768,

𝑟
0
= 0.5001. Therefore, take 𝑐

1
= 1.7337. By solving MDRAE

(3) with 𝛿 = 0.2482, the unique positive definite solution is

𝑃 =
[
[

[

2.7685 2.0965 −8.6525

2.0965 17.0036 −7.1766

−8.6525 −7.1766 59.3567

]
]

]

. (39)

Then, the gain matrix can be chosen as

𝐾 = (𝐼 + 𝐵
𝑇
𝑃𝐵)
−1

𝐵
𝑇
𝑃𝐴 = [−0.0499, −0.0593, 0.2445] .

(40)

The multiagent system adopts the consensus protocols (16)
and (17) with randomly initial state.Thematrices 𝐹,𝐺, and 𝑇
are designed as follows:

𝐹 = [

[

−0.1 0 0

1 −0.2 0

0 0 −0.3

]

]

, 𝐺 = [

[

1

0

3

]

]

,

𝑇 =
[
[

[

0 1 −0.9

0.4041 0.3342 0.4041

0.6306 4.3243 −0.9459

]
]

]

.

(41)

The state tracking errors showed in Figure 1, which show all
following agents can track the leader. As for the reduced-
order observer case, the matrices 𝐹, 𝐺, 𝑇, 𝑄

1
, and 𝑄

2

used in the protocols (27) and (28) can be constructed by
Algorithm 13 as follows:

𝐹 = [
−0.1 0

−0.1 −0.1
] , 𝐺 = [4, 7]

𝑇
,

𝑇 = [
1.1842 3.2895 0.5921

0.8535 5.6999 0.1009
] ,

𝑄
1
= [−0.7031, 0.0892, 0.9168]

𝑇
,

𝑄
2
=
[
[

[

1.2936 −0.6232

−0.1972 0.2736

0.1972 −0.2736

]
]

]

.

(42)

With consensus protocols (27) and (28), the state tracking
errors showed in Figure 2, which also show all following
agents, can track the leader.

7. Conclusions

This paper solves a leader-following consensus problem of
discrete-time multiagent system with distributed controllers
and observers.We provide a general framework for designing
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Figure 1: Error trajectories of three state components with full-
order observer.
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Figure 2: Error trajectories of three state components with reduced-
order observer.
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distributed consensus protocols by applying full state feed-
back information and measured output feedback informa-
tion. Furthermore, we propose a reduced-order observer-
based protocol to solve the leader-following consensus prob-
lem. The interconnection topology is modeled by graph,
whose connectivity is a key factor to guarantee that the
multiagent achieves consensus. The consensus problem is
transformed into the stability problem of error dynamical
system, which also preserves the property of the separation
principle. The gain matrices can be designed by solving the
MDARE and the Sylvester equation. Presented results could
be generalized to switching and jumping interaction topology
in future work.
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We investigate the oscillation of the following higher order dynamic equation: {𝑎
𝑛
(𝑡)[(𝑎

𝑛−1
(𝑡)(⋅ ⋅ ⋅ (𝑎

1
(𝑡)𝑥
Δ
(𝑡))
Δ

⋅ ⋅ ⋅ )
Δ

)
Δ

]
𝛼

}
Δ

+

𝑝(𝑡)𝑥
𝛽
(𝑡) = 0, on some time scale T, where 𝑛 ≥ 2, 𝑎

𝑘
(𝑡) (1 ≤ 𝑘 ≤ 𝑛) and 𝑝(𝑡) are positive rd-continuous functions on T and

𝛼, 𝛽 are the quotient of odd positive integers. We give sufficient conditions under which every solution of this equation is either
oscillatory or tends to zero.

1. Introduction

In this paper, we investigate the oscillation of the following
higher order dynamic equation:

{𝑎
𝑛
(𝑡) [(𝑎

𝑛−1
(𝑡) (⋅ ⋅ ⋅ (𝑎

1
(𝑡) 𝑥
Δ

(𝑡))
Δ

⋅ ⋅ ⋅ )

Δ

)

Δ

]

𝛼

}

Δ

+ 𝑝 (𝑡) 𝑥
𝛽

(𝑡) = 0,

(𝐸)

on some time scale T, where 𝑛 ≥ 2, 𝑎
𝑘
(𝑡) (1 ≤ 𝑘 ≤ 𝑛) and

𝑝(𝑡) are positive rd-continuous functions on T and 𝛼, 𝛽 are
the quotient of odd positive integers. Write

𝑆
𝑘
(𝑡, 𝑥 (𝑡)) =

{{

{{

{

𝑥 (𝑡) , if 𝑘 = 0,

𝑎
𝑘
(𝑡) 𝑆
Δ

𝑘−1
(𝑡, 𝑥 (𝑡)) , if 1 ≤ 𝑘 ≤ 𝑛 − 1,

𝑎
𝑛
(𝑡) [𝑆
Δ

𝑛−1
(𝑡, 𝑥 (𝑡))]

𝛼

, if 𝑘 = 𝑛,

(1)

then (𝐸) reduces to the following equation:

𝑆
Δ

𝑛
(𝑡, 𝑥 (𝑡)) + 𝑝 (𝑡) 𝑥

𝛽

(𝑡) = 0. (2)

Since we are interested in the oscillatory behavior of
solutions near infinity, we assume that sup T = ∞ and 𝑡

0
∈ T

is a constant. For any 𝑎 ∈ T, we define the time scale interval
[𝑎,∞)T = {𝑡 ∈ T : 𝑡 ≥ 𝑎}. By a solution of (2), we mean

a nontrivial real-valued function 𝑥(𝑡) ∈ 𝐶
1

rd[𝑇𝑥,∞), 𝑇
𝑥
≥ 𝑡
0
,

which has the property that 𝑆
𝑘
(𝑡, 𝑥(𝑡)) ∈ 𝐶

1

rd[𝑇𝑥,∞) for
0 ≤ 𝑘 ≤ 𝑛 and satisfies (2) on [𝑇

𝑥
,∞), where 𝐶1rd is the space

of differentiable functions whose derivative is rd-continuous.
The solutions vanishing in someneighborhood of infinitywill
be excluded from our consideration. A solution 𝑥(𝑡) of (2) is
said to be oscillatory if it is neither eventually positive nor
eventually negative; otherwise it is called nonoscillatory.

The theory of time scale, which has recently received a
lot of attention, was introduced by Hilger’s landmark paper
[1], a rapidly expanding body of the literature that has sought
to unify, extend, and generalize ideas from discrete calculus,
quantum calculus, and continuous calculus to arbitrary time
scale calculus, where a time scale is an nonempty closed
subset of the real numbers, and the cases when this time
scale is equal to the real numbers or to the integers rep-
resent the classical theories of differential or of difference
equations. Many other interesting time scales exist, and they
give rise to many applications (see [2]). The new theory
of the so-called “dynamic equations” not only unifies the
theories of differential equations and difference equations,
but also extends these classical cases to cases “in between,”
for example, to the so-called 𝑞-difference equations when
T = {1, 𝑞, 𝑞

2
, . . . , 𝑞

𝑘
, . . .}, which has important applications

in quantum theory (see [3]). In this work, knowledge and
understanding of time scales and time scale notation are
assumed; for an excellent introduction to the calculus on time
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scales, see Bohner and Peterson [2, 4]. In recent years, there
has been much research activity concerning the oscillation
and nonoscillation of solutions of various equations on time
scales, and we refer the reader to the papers [5–20].

Recently, Erbe et al. in [21–23] considered the third-order
dynamic equations

(𝑎 (𝑡) [𝑟 (𝑡) 𝑥
Δ

(𝑡)]
Δ

)

Δ

+ 𝑝 (𝑡) 𝑓 (𝑥 (𝑡)) = 0,

𝑥
ΔΔΔ

(𝑡) + 𝑝 (𝑡) 𝑥 (𝑡) = 0,

(𝑎 (𝑡) {[𝑟 (𝑡) 𝑥
Δ

(𝑡)]
Δ

}

𝛾

)

Δ

+ 𝑓 (𝑡, 𝑥 (𝑡)) = 0,

(3)

respectively, and established some sufficient conditions for
oscillation.

Hassan [24] studied the third-order dynamic equations

(𝑎 (𝑡) {[𝑟 (𝑡) 𝑥
Δ

(𝑡)]
Δ

}

𝛾

)

Δ

+ 𝑓 (𝑡, 𝑥 (𝜏 (𝑡))) = 0 (4)

and obtained some oscillation criteria, which improved and
extended the results that have been established in [21–23].

2. Main Results

In this section, we investigate the oscillation of (2). To do this,
we need the following lemmas.

Lemma 1 (see [25]). Assume that

∫

∞

𝑡0

[
1

𝑎
𝑛
(𝑠)

]

1/𝛼

Δ𝑠 = ∫

∞

𝑡0

Δ𝑠

𝑎
𝑖
(𝑠)

= ∞ ∀1 ≤ 𝑖 ≤ 𝑛 − 1, (5)

and 1 ≤ 𝑚 ≤ 𝑛. Then,

(1) lim inf
𝑡→∞

𝑆
𝑚
(𝑡, 𝑥(𝑡)) > 0 implies lim

𝑡→∞
𝑆
𝑖
(𝑡,

𝑥(𝑡)) = ∞ for 0 ≤ 𝑖 ≤ 𝑚 − 1;
(2) lim sup

𝑡→∞
𝑆
𝑚
(𝑡, 𝑥(𝑡)) < 0 implies lim

𝑡→∞
𝑆
𝑖
(𝑡,

𝑥(𝑡)) = −∞ for 0 ≤ 𝑖 ≤ 𝑚 − 1.

Lemma 2 (see [25]). Assume that (5) holds. If 𝑆Δ
𝑛
(𝑡, 𝑥(𝑡)) < 0

and 𝑥(𝑡) > 0 for 𝑡 ≥ 𝑡
0
, then there exists an integer 0 ≤ 𝑚 ≤ 𝑛

with𝑚 + 𝑛 even such that

(1) (−1)𝑚+𝑖𝑆
𝑖
(𝑡, 𝑥(𝑡)) > 0 for 𝑡 ≥ 𝑡

0
and𝑚 ≤ 𝑖 ≤ 𝑛;

(2) if𝑚 > 1, then there exists 𝑇 ≥ 𝑡
0
such that 𝑆

𝑖
(𝑡, 𝑥(𝑡)) >

0 for 1 ≤ 𝑖 ≤ 𝑚 − 1 and 𝑡 ≥ 𝑇.

Remark 3. Let 𝑎
𝑛
(𝑡) = ⋅ ⋅ ⋅ = 𝑎

1
(𝑡) = 1, and let T be the

set of integers. Then, Lemmas 1 and 2 are Lemma 1.8.10 and
Theorem 1.8.11 of [26], respectively.

Lemma 4. Assume that (5) holds. Furthermore, suppose that

∫

∞

𝑡0

1

𝑎
𝑛−1

(𝑢)
{∫

∞

𝑢

[
1

𝑎
𝑛
(𝑠)

∫

∞

𝑠

𝑝 (V) ΔV]
1/𝛼

Δ𝑠}Δ𝑢 = ∞.

(6)

If 𝑥(𝑡) is an eventually positive solution of (2), then there exists
𝑇 ≥ 𝑡
0
sufficiently large such that

(1) 𝑆Δ
𝑛
(𝑡, 𝑥(𝑡)) < 0 for 𝑡 ≥ 𝑇;

(2) either 𝑆
𝑖
(𝑡, 𝑥(𝑡)) > 0 for 𝑡 ≥ 𝑇 and 0 ≤ 𝑖 ≤ 𝑛 or

lim
𝑡→∞

𝑥(𝑡) = 0.

Proof. Pick 𝑡
1
≥ 𝑡
0
so that 𝑥(𝑡) > 0 on [𝑡

1
,∞)T. It follows

from (2) that

𝑆
Δ

𝑛
(𝑡, 𝑥 (𝑡)) = −𝑝 (𝑡) 𝑥

𝛽

(𝑡) < 0 for 𝑡 ≥ 𝑡
1
. (7)

By Lemma 2, we see that there exists an integer 0 ≤ 𝑚 ≤ 𝑛

with𝑚+𝑛 even such that (−1)𝑚+𝑖𝑆
𝑖
(𝑡, 𝑥(𝑡)) > 0 for 𝑡 ≥ 𝑡

1
and

𝑚 ≤ 𝑖 ≤ 𝑛, and 𝑥(𝑡) is eventually monotone.
We claim that lim

𝑡→∞
𝑥(𝑡) ̸= 0 implies𝑚 = 𝑛. If not, then

𝑆
𝑛−1

(𝑡, 𝑥(𝑡)) < 0(𝑡 ≥ 𝑡
1
) and 𝑆

𝑛−2
(𝑡, 𝑥(𝑡)) > 0 (𝑡 ≥ 𝑡

1
), and

there exist 𝑡
2
≥ 𝑡
1
and a constant 𝑐 > 0 such that 𝑥(𝑡) ≥ 𝑐 on

[𝑡
2
,∞)T. Integrating (2) from 𝑡 into∞, we get that for 𝑡 ≥ 𝑡

2

−𝑎
𝑛
(𝑡) [𝑆
Δ

𝑛−1
(𝑡, 𝑥 (𝑡))]

𝛼

= −𝑆
𝑛
(𝑡, 𝑥 (𝑡)) ≤ −𝑐

𝛽
∫

∞

𝑡

𝑝 (V) ΔV.

(8)

Thus,

𝑆
𝑛−1

(𝑡, 𝑥 (𝑡)) ≤ −𝑐
𝛽/𝛼

× ∫

∞

𝑡

[
1

𝑎
𝑛
(𝑠)

∫

∞

𝑠

𝑝 (V) ΔV]
1/𝛼

Δ𝑠 for 𝑡 ≥ 𝑡
2
.

(9)

Again, integrating the above inequality from 𝑡
2
into 𝑡, we

obtain that for 𝑡 ≥ 𝑡
2

𝑆
𝑛−2

(𝑡, 𝑥 (𝑡))

≤ 𝑆
𝑛−2

(𝑡
2
, 𝑥 (𝑡
2
))

− 𝑐
𝛽/𝛼

∫

𝑡

𝑡2

1

𝑎
𝑛−1

(𝑢)
{∫

∞

𝑢

[
1

𝑎
𝑛
(𝑠)

× ∫

∞

𝑠

𝑝 (V) ΔV]
1/𝛼

Δ𝑠}Δ𝑢.

(10)

It follows from (6) that lim
𝑡→∞

𝑆
𝑛−2

(𝑡, 𝑥(𝑡)) = −∞, which
is a contradiction to 𝑆

𝑛−2
(𝑡, 𝑥(𝑡)) > 0 (𝑡 ≥ 𝑡

1
). The proof is

completed.

Lemma 5. Assume that 𝑥(𝑡) is an eventually positive solution
of (2) such that 𝑆Δ

𝑛
(𝑡, 𝑥(𝑡)) < 0 for 𝑡 ≥ 𝑇 ≥ 𝑡

0
and 𝑆
𝑖
(𝑡, 𝑥(𝑡)) >

0 for 𝑡 ≥ 𝑇 and 0 ≤ 𝑖 ≤ 𝑛. Then,

𝑆
𝑖
(𝑡, 𝑥 (𝑡)) ≥ 𝑆

1/𝛼

𝑛
(𝑡, 𝑥 (𝑡)) 𝐵

𝑖+1
(𝑡, 𝑇)

𝑓𝑜𝑟 0 ≤ 𝑖 ≤ 𝑛 − 1, 𝑡 ≥ 𝑇,

(11)

and there exist 𝑇
1
> 𝑇 and a constant 𝑐 > 0 such that

𝑥 (𝑡) ≤ 𝑐𝐵
1
(𝑡, 𝑇) for 𝑡 ≥ 𝑇

1
, (12)
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where

𝐵
𝑖
(𝑡, 𝑇) =

{{{{

{{{{

{

∫

𝑡

𝑇

[
1

𝑎
𝑛
(𝑠)

]

1/𝛼

Δ𝑠, if 𝑖 = 𝑛,

∫

𝑡

𝑇

𝐵
𝑖+1

(𝑠, 𝑇)

𝑎
𝑖
(𝑠)

Δ𝑠, if 1 ≤ 𝑖 ≤ 𝑛 − 1.

(13)

Proof. Since 𝑆Δ
𝑛
(𝑡, 𝑥(𝑡)) < 0 (𝑡 ≥ 𝑇), it follows that 𝑆

𝑛
(𝑡, 𝑥(𝑡))

is strictly decreasing on [𝑇,∞)T. Then, for 𝑡 ≥ 𝑇,

𝑆
𝑛−1

(𝑡, 𝑥 (𝑡)) ≥ 𝑆
𝑛−1

(𝑡, 𝑥 (𝑡)) − 𝑆
𝑛−1

(𝑇, 𝑥 (𝑇))

= ∫

𝑡

𝑇

[
𝑆
𝑛
(𝑠, 𝑥 (𝑠))

𝑎
𝑛
(𝑠)

]

1/𝛼

Δ𝑠

≥ 𝑆
1/𝛼

𝑛
(𝑡, 𝑥 (𝑡)) 𝐵

𝑛
(𝑡, 𝑇)

𝑆
𝑛−2

(𝑡, 𝑥 (𝑡)) ≥ 𝑆
𝑛−2

(𝑡, 𝑥 (𝑡)) − 𝑆
𝑛−2

(𝑇, 𝑥 (𝑇))

= ∫

𝑡

𝑇

𝑆
𝑛−1

(𝑠, 𝑥 (𝑠))

𝑎
𝑛−1

(𝑠)
Δ𝑠

≥ 𝑆
1/𝛼

𝑛
(𝑡, 𝑥 (𝑡)) 𝐵

𝑛−1
(𝑡, 𝑇)

...

𝑆
1
(𝑡, 𝑥 (𝑡)) ≥ 𝑆

1
(𝑡, 𝑥 (𝑡)) − 𝑆

1
(𝑇, 𝑥 (𝑇))

= ∫

𝑡

𝑇

𝑆
2
(𝑠, 𝑥 (𝑠))

𝑎
2
(𝑠)

Δ𝑠 ≥ 𝑆
1/𝛼

𝑛
(𝑡, 𝑥 (𝑡)) 𝐵

2
(𝑡, 𝑇)

𝑆
0
(𝑡, 𝑥 (𝑡)) ≥ 𝑥 (𝑡) − 𝑥 (𝑇)

= ∫

𝑡

𝑇

𝑆
1
(𝑠, 𝑥 (𝑠))

𝑎
1
(𝑠)

Δ𝑠 ≥ 𝑆
1/𝛼

𝑛
(𝑡, 𝑥 (𝑡)) 𝐵

1
(𝑡, 𝑇) .

(14)

On the other hand, we have that for 𝑡 ≥ 𝑇,

𝑆
𝑛−1

(𝑡, 𝑥 (𝑡)) = ∫

𝑡

𝑇

[
𝑆
𝑛
(𝑠, 𝑥 (𝑠))

𝑎
𝑛
(𝑠)

]

1/𝛼

Δ𝑠 + 𝑆
𝑛−1

(𝑇, 𝑥 (𝑇))

≤ 𝑆
𝑛−1

(𝑇, 𝑥 (𝑇)) + 𝑆
1/𝛼

𝑛
(𝑇, 𝑥 (𝑇)) 𝐵

𝑛
(𝑡, 𝑇) .

(15)

Thus, there exist 𝑇
1
> 𝑇 and a constant 𝑏

1
> 0 such that

𝑆
𝑛−1

(𝑡, 𝑥 (𝑡)) ≤ 𝑏
1
𝐵
𝑛
(𝑡, 𝑇) for 𝑡 ≥ 𝑇

1
. (16)

Again,

𝑆
𝑛−2

(𝑡, 𝑥 (𝑡)) = 𝑆
𝑛−2

(𝑇
1
, 𝑥 (𝑇
1
)) + ∫

𝑡

𝑇1

𝑆
𝑛−1

(𝑠, 𝑥 (𝑠))

𝑎
𝑛−1

(𝑠)
Δ𝑠

≤ 𝑆
𝑛−2

(𝑇
1
, 𝑥 (𝑇
1
)) + 𝑏
1
∫

𝑡

𝑇

𝐵
𝑛
(𝑠, 𝑇)

𝑎
𝑛−1

(𝑠)
Δ𝑠.

(17)

Thus, there exists a constant 𝑏
2
> 0 such that

𝑆
𝑛−2

(𝑡, 𝑥 (𝑡)) ≤ 𝑏
2
∫

𝑡

𝑇

𝐵
𝑛
(𝑠, 𝑇)

𝑎
𝑛−1

(𝑠)
Δ𝑠

= 𝑏
2
𝐵
𝑛−1

(𝑡, 𝑇) for 𝑡 ≥ 𝑇
1
.

(18)

Again,

𝑆
𝑛−3

(𝑡, 𝑥 (𝑡)) = 𝑆
𝑛−3

(𝑇
1
, 𝑥 (𝑇
1
)) + ∫

𝑡

𝑇1

𝑆
𝑛−2

(𝑠, 𝑥 (𝑠))

𝑎
𝑛−2

(𝑠)
Δ𝑠

≤ 𝑆
𝑛−3

(𝑇
1
, 𝑥 (𝑇
1
)) + 𝑏
2
∫

𝑡

𝑇

𝐵
𝑛−1

(𝑠, 𝑇)

𝑎
𝑛−2

(𝑠)
Δ𝑠.

(19)

Thus, there exists a constant 𝑏
3
> 0 such that

𝑆
𝑛−3

(𝑡, 𝑥 (𝑡)) ≤ 𝑏
3
∫

𝑡

𝑇

𝐵
𝑛−1

(𝑠, 𝑇)

𝑎
𝑛−2

(𝑠)
Δ𝑠

= 𝑏
3
𝐵
𝑛−2

(𝑡, 𝑇) for 𝑡 ≥ 𝑇
1
.

(20)

The rest of the proof is by induction. The proof is completed.

Lemma 6 (see [2]). Let 𝑓 : R → R be continuously differen-
tiable and suppose that𝑔 : T → R is delta differentiable.Then,
𝑓 ∘ 𝑔 is delta differentiable and the formula

(𝑓 ∘ 𝑔)
Δ

(𝑡) = 𝑔
Δ

(𝑡) ∫

1

0

𝑓
󸀠
(ℎ𝑔 (𝑡) + (1 − ℎ) 𝑔

𝜎

(𝑡)) 𝑑ℎ. (21)

Lemma 7 (see [27]). If 𝐴, 𝐵 are nonnegative and 𝜆 > 1, then

𝐴
𝜆
− 𝜆𝐴𝐵

𝜆−1
+ (𝜆 − 1) 𝐵

𝜆
≥ 0. (22)

Now, we state and prove our main results.

Theorem 8. Suppose that (5) and (6) hold. If there exists a
positive nondecreasing delta differentiable function 𝜃 such that
for all sufficiently large 𝑇 ∈ [𝑡

0
,∞)T and for any positive

constants 𝑐
1
, 𝑐
2
, there is a 𝑇

1
> 𝑇 such that

lim sup
𝑡→∞

∫

𝑡

𝑇1

[𝜃 (𝑠) 𝑝 (𝑠) −
𝜃
Δ
(𝑠)

𝐵
𝛼

1
(𝑠, 𝑇)

𝛿
1
(𝑡, 𝑇, 𝑐

1
, 𝑐
2
)]Δ𝑠 = ∞,

(23)

where

𝛿
1
(𝑡, 𝑇, 𝑐

1
, 𝑐
2
) =

{{

{{

{

𝑐
1
, if 𝛼 < 𝛽,

1, if 𝛼 = 𝛽,

𝑐
2
𝐵
𝛼−𝛽

1
(𝑡, 𝑇) , if 𝛼 > 𝛽,

(24)

and 𝐵
1
(𝑡, 𝑇) is as in Lemma 5. Then, every solution of (2) is

either oscillatory or tends to zero.

Proof. Assume that (2) has a nonoscillatory solution 𝑥(𝑡) on
[𝑡
0
,∞)T. Then, without loss of generality, there is a 𝑡

1
≥ 𝑡
0
,

sufficiently large, such that 𝑥(𝑡) > 0 for 𝑡 ≥ 𝑡
1
. Therefore, we

get from Lemma 4 that there exists 𝑡
2
≥ 𝑡
1
such that

(i) 𝑆Δ
𝑛
(𝑡, 𝑥(𝑡)) < 0 for 𝑡 ≥ 𝑡

2
;

(ii) either 𝑆
𝑖
(𝑡, 𝑥(𝑡)) > 0 for 𝑡 ≥ 𝑡

2
and 0 ≤ 𝑖 ≤ 𝑛 or

lim
𝑡→∞

𝑥(𝑡) = 0.
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Let 𝑆
𝑖
(𝑡, 𝑥(𝑡)) > 0 for 𝑡 ≥ 𝑡

2
and 0 ≤ 𝑖 ≤ 𝑛. Consider

𝑤 (𝑡) = 𝜃 (𝑡)
𝑆
𝑛
(𝑡, 𝑥 (𝑡))

𝑥𝛽 (𝑡)
for 𝑡 ≥ 𝑡

2
. (25)

It follows from Lemma 6 that

(𝑥
𝛽
)
Δ

(𝑡) = 𝛽𝑥
Δ

(𝑡) ∫

1

0

(ℎ𝑥 (𝑡) + (1 − ℎ) 𝑥(𝑡)
𝜎
)
𝛽−1

𝑑ℎ > 0

for 𝑡 ≥ 𝑡
2
.

(26)

Then,

𝑤
Δ
= [

𝜃

𝑥𝛽
]

Δ

𝑆
𝜎

𝑛
(⋅, 𝑥) +

𝜃

𝑥𝛽
𝑆
Δ

𝑛
(⋅, 𝑥)

= [

[

𝜃
Δ

(𝑥𝛽)
𝜎
−

𝜃(𝑥
𝛽
)
Δ

𝑥𝛽(𝑥𝛽)
𝜎
]

]

𝑆
𝜎

𝑛
(⋅, 𝑥) − 𝜃𝑝

≤
𝜃
Δ

𝑥𝛽
𝑆
𝑛
(⋅, 𝑥) − 𝜃𝑝.

(27)

From (11) and (27), we get

𝑤
Δ

(𝑡) ≤
𝜃
Δ
(𝑡)

𝐵
𝛼

1
(𝑡, 𝑡
2
)
𝑥
𝛼−𝛽

(𝑡) − 𝜃 (𝑡) 𝑝 (𝑡) for 𝑡 ≥ 𝑡
2
. (28)

Now, we consider the following three cases.

Case 1. If 𝛼 = 𝛽, then

𝑥
𝛼−𝛽

(𝑡) = 1 for 𝑡 ≥ 𝑡
2
. (29)

Case 2. If 𝛼 > 𝛽, then it follows from (12) that there exist

𝑡
3
> 𝑡
2
and a constant 𝑐

2
> 0 such that

𝑥
𝛼−𝛽

(𝑡) ≤ 𝑐
2
𝐵
𝛼−𝛽

1
(𝑡, 𝑡
2
) for 𝑡 ≥ 𝑡

3
. (30)

Case 3. If 𝛼 < 𝛽, then

𝑥 (𝑡) ≥ 𝑥 (𝑡
2
) for 𝑡 ≥ 𝑡

2
. (31)

Thus,

𝑥
𝛼−𝛽

(𝑡) ≤ 𝑐
1
= 𝑥
𝛼−𝛽

(𝑡
2
) for 𝑡 ≥ 𝑡

2
. (32)

From (27)–(32), we obtain

𝑤
Δ

(𝑡) ≤
𝜃
Δ
(𝑡)

𝐵
𝛼

1
(𝑡, 𝑡
2
)
𝛿
1
(𝑡, 𝑡
2
, 𝑐
1
, 𝑐
2
) − 𝜃 (𝑡) 𝑝 (𝑡) for 𝑡 ≥ 𝑡

3
.

(33)

Integrating the above inequality from 𝑡
3
into 𝑡, we have

∫

𝑡

𝑡3

[𝜃 (𝑠) 𝑝 (𝑠) −
𝜃
Δ
(𝑠)

𝐵
𝛼

1
(𝑠, 𝑡
2
)
𝛿
1
(𝑠, 𝑡
2
, 𝑐
1
, 𝑐
2
)] Δ𝑠 ≤ 𝑤 (𝑡

3
) < ∞,

(34)

which gives a contradiction to (23). The proof is completed.

Theorem 9. Suppose that (5) and (6) hold. If there exists a
positive nondecreasing delta differentiable function 𝜃 such that
for all sufficiently large 𝑇 ∈ [𝑡

0
,∞)T and for any positive

constants 𝑐
1
, 𝑐
2
, there is a 𝑇

1
> 𝑇 such that

lim sup
𝑡→∞

∫

𝑡

𝑇1

[

[

𝜃 (𝑠) 𝑝 (𝑠)

−

(𝛼/𝛽)
𝛼

(𝜃
Δ
(𝑠))
𝛼+1

𝑎
𝛼

1
(𝑠)

(𝛼 + 1)
𝛼+1

(𝐵
2
(𝑠, 𝑇) 𝜃 (𝑠) 𝛿

2
(𝑠, 𝑇, 𝑐

1
, 𝑐
2
))
𝛼
]

]

Δ𝑠

= ∞,

(35)

where

𝛿
2
(𝑡, 𝑇, 𝑐

1
, 𝑐
2
) =

{{

{{

{

𝑐
1

if 𝛼 < 𝛽,

1, if 𝛼 = 𝛽,

𝑐
2
𝐵
(𝛽/𝛼)−1

1
(𝜎 (𝑡) , 𝑇) , if 𝛼 > 𝛽,

(36)

and 𝐵
1
(𝑡, 𝑇), 𝐵

2
(𝑡, 𝑇) are as in Lemma 5. Then, every solution

of (2) is either oscillatory or tends to zero.

Proof. Assume that (2) has a nonoscillatory solution 𝑥(𝑡) on
[𝑡
0
,∞)T. Then, without loss of generality, there is a 𝑡

1
≥ 𝑡
0
,

sufficiently large, such that 𝑥(𝑡) > 0 for 𝑡 ≥ 𝑡
1
. Therefore, we

get from Lemma 4 that there exists 𝑡
2
≥ 𝑡
1
such that

(i) 𝑆Δ
𝑛
(𝑡, 𝑥(𝑡)) < 0 for 𝑡 ≥ 𝑡

2
;

(ii) either 𝑆
𝑖
(𝑡, 𝑥(𝑡)) > 0 for 𝑡 ≥ 𝑡

2
and 0 ≤ 𝑖 ≤ 𝑛 or

lim
𝑡→∞

𝑥(𝑡) = 0.

Let 𝑆
𝑖
(𝑡, 𝑥(𝑡)) > 0 for 𝑡 ≥ 𝑡

2
and 0 ≤ 𝑖 ≤ 𝑛. Note that

(𝑥
𝛽
)
Δ

= 𝛽𝑥
Δ
∫

1

0

(ℎ𝑥 + (1 − ℎ) 𝑥
𝜎
)
𝛽−1

𝑑ℎ

= 𝛽𝑥
Δ
∫

1

0

(ℎ𝑥 + (1 − ℎ) 𝑥
𝜎
)
𝛽

ℎ𝑥 + (1 − ℎ) 𝑥
𝜎

𝑑ℎ

≥ 𝛽𝑥
Δ 𝑥
𝛽

𝑥𝜎
.

(37)

From (11), we have

(𝑥
𝛽
)
Δ

𝑥𝛽
≥ 𝛽

𝑥
Δ

𝑥𝜎
≥ 𝛽

𝑆
1/𝛼

𝑛
(⋅, 𝑥) 𝐵

2
(⋅, 𝑡
2
)

𝑎
1
𝑥𝜎

≥ 𝛽
(𝑆
𝜎

𝑛
(⋅, 𝑥))

1/𝛼

𝐵
2
(⋅, 𝑡
2
)

𝑎
1
𝑥𝜎

= 𝛽
(𝑤
𝜎
)
1/𝛼

𝑎
1
(𝜃
𝜎
)
1/𝛼

(𝑥
𝜎
)
(𝛽/𝛼)−1

𝐵
2
(⋅, 𝑡
2
) .

(38)
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Then it follows from (27) that for 𝑡 ≥ 𝑡
2
,

𝑤
Δ
= [

𝜃

𝑥𝛽
]

Δ

𝑆
𝜎

𝑛
(⋅, 𝑥) +

𝜃

𝑥𝛽
𝑆
Δ

𝑛
(⋅, 𝑥)

= [

[

𝜃
Δ

(𝑥𝛽)
𝜎
−

𝜃(𝑥
𝛽
)
Δ

𝑥𝛽(𝑥𝛽)
𝜎
]

]

𝑆
𝜎

𝑛
(⋅, 𝑥) − 𝜃𝑝

≤ 𝜃
Δ𝑤
𝜎

𝜃𝜎
− 𝛽

𝐵
2
(⋅, 𝑡
2
) 𝜃

𝑎
1

(𝑤
𝜎
)
1+(1/𝛼)

(𝜃
𝜎
)
1+(1/𝛼)

(𝑥
𝜎
)
(𝛽/𝛼)−1

− 𝜃𝑝.

(39)

Now, we consider the following three cases.

Case 1. If 𝛼 = 𝛽, then

(𝑥
𝜎
)
(𝛽/𝛼)−1

(𝑡) = 1 for 𝑡 ≥ 𝑡
2
. (40)

Case 2. If 𝛼 > 𝛽, then it follows from (12) that there exist

𝑡
3
> 𝑡
2
and a constant 𝑐 such that

𝑥 (𝑡) ≤ 𝑐𝐵
1
(𝑡, 𝑡
2
) for 𝑡 ≥ 𝑡

3
. (41)

Thus,

(𝑥
𝜎
)
(𝛽/𝛼)−1

(𝑡) ≥ 𝑐
2
𝐵
(𝛽/𝛼)−1

1
(𝜎 (𝑡) , 𝑡

2
) , (42)

with 𝑐
2
= 𝑐
(𝛽/𝛼)−1.

Case 3. If 𝛼 < 𝛽, then

𝑥 (𝑡) ≥ 𝑥 (𝑡
2
) for 𝑡 ≥ 𝑡

2
. (43)

Thus,

(𝑥
𝜎
)
(𝛽/𝛼)−1

(𝑡) ≥ 𝑐
1
= 𝑥
(𝛽/𝛼)−1

(𝑡
2
) . (44)

From (39)–(44), we obtain that for 𝑡 ≥ 𝑡
3
,

𝑤
Δ
≤
𝑤
𝜎

𝜃𝜎
𝜃
Δ
−
𝛽𝐵
2
(⋅, 𝑡
2
) 𝜃𝛿
2
(⋅, 𝑡
2
, 𝑐
1
, 𝑐
2
)

𝑎
1

(𝑤
𝜎
)
1+(1/𝛼)

(𝜃
𝜎
)
1+(1/𝛼)

− 𝜃𝑝

= −
𝛽𝐵
2
(⋅, 𝑡
2
) 𝜃𝛿
2
(⋅, 𝑡
2
, 𝑐
1
, 𝑐
2
)

𝑎
1

× {
(𝑤
𝜎
)
1+(1/𝛼)

(𝜃
𝜎
)
1+(1/𝛼)

−
𝑤
𝜎

𝜃𝜎

𝑎
1
𝜃
Δ

𝛽𝐵
2
(⋅, 𝑡
2
) 𝜃𝛿
2
(⋅, 𝑡
2
, 𝑐
1
, 𝑐
2
)
} − 𝜃𝑝.

(45)

Let

𝐴 =
𝑤
𝜎

𝜃𝜎
, 𝐵 = [

𝛼𝑎
1
𝜃
Δ

(𝛼 + 1) 𝛽𝐵
2
(⋅, 𝑡
2
) 𝜃𝛿
2
(⋅, 𝑡
2
, 𝑐
1
, 𝑐
2
)
]

𝛼

,

(46)

with 𝜆 = 1 + 1/𝛼. By Lemma 7, we have

𝑤
Δ
≤

(𝛼/𝛽)
𝛼

(𝜃
Δ
)
𝛼+1

𝑎
𝛼

1

(𝛼 + 1)
𝛼+1

(𝐵
2
(⋅, 𝑡
2
) 𝜃𝛿
2
(⋅, 𝑡
2
, 𝑐
1
, 𝑐
2
))
𝛼
− 𝜃𝑝. (47)

Integrating the above inequality from 𝑡
3
into 𝑡, it follows that

∫

𝑡

𝑡3

[

[

𝜃 (𝑠) 𝑝 (𝑠)

−

(𝛼/𝛽)
𝛼

(𝜃
Δ
(𝑠))
𝛼+1

𝑎
𝛼

1
(𝑠)

(𝛼 + 1)
𝛼+1

(𝐵
2
(𝑠, 𝑡
2
) 𝜃 (𝑠) 𝛿

2
(𝑠, 𝑡
2
, 𝑐
1
, 𝑐
2
))
𝛼
]

]

Δ𝑠

≤ 𝑤 (𝑡
3
) < ∞,

(48)

which gives a contradiction to (35). The proof is completed.

Remark 10. The trick used in the proofs of Theorems 8 and 9
is from [16].

Theorem11. Suppose that (5) and (6) hold. If for all sufficiently
large 𝑇 ∈ [𝑡

0
,∞)T,

∫

∞

𝑇

𝑝 (𝑢) [∫

𝑢

𝑇

Δ𝑠

𝑎
1
(𝑠)

]

𝛽

Δ𝑢 = ∞, (49)

then every solution of (2) is either oscillatory or tends to zero.

Proof. Assume that (2) has a nonoscillatory solution 𝑥(𝑡) on
[𝑡
0
,∞)T. Then, without loss of generality, there is a 𝑡

1
≥ 𝑡
0
,

sufficiently large, such that 𝑥(𝑡) > 0 for 𝑡 ≥ 𝑡
1
. Therefore, we

get from Lemma 4 that there exists 𝑡
2
≥ 𝑡
1
such that

(i) 𝑆Δ
𝑛
(𝑡, 𝑥(𝑡)) < 0 for 𝑡 ≥ 𝑡

2
;

(ii) either 𝑆
𝑖
(𝑡, 𝑥(𝑡)) > 0 for 𝑡 ≥ 𝑡

2
and 0 ≤ 𝑖 ≤ 𝑛 or

lim
𝑡→∞

𝑥(𝑡) = 0.

Let 𝑆
𝑖
(𝑡, 𝑥(𝑡)) > 0 for 𝑡 ≥ 𝑡

2
and 0 ≤ 𝑖 ≤ 𝑛. Then, for 𝑡 ≥ 𝑡

2
,

𝑥 (𝑡) = 𝑥 (𝑡
2
) + ∫

𝑡

𝑡2

𝑆
1
(𝑠, 𝑥 (𝑠))

𝑎
1
(𝑠)

Δ𝑠

≥ 𝑆
1
(𝑡
2
, 𝑥 (𝑡
2
)) ∫

𝑡

𝑡2

Δ𝑠

𝑎
1
(𝑠)

.

(50)

It follows from (2) that

−𝑆
Δ

𝑛
(𝑡, 𝑥 (𝑡)) ≥ 𝑝 (𝑡) [𝑆

1
(𝑡
2
, 𝑥 (𝑡
2
)) ∫

𝑡

𝑡2

Δ𝑠

𝑎
1
(𝑠)

]

𝛽

. (51)

Integrating the above inequality from 𝑡
2
into∞, we have

𝑆
𝑛
(𝑡
2
, 𝑥 (𝑡
2
)) ≥ 𝑆

𝛽

1
(𝑡
2
, 𝑥 (𝑡
2
)) ∫

∞

𝑡2

𝑝 (𝑢) [∫

𝑢

𝑡2

Δ𝑠

𝑎
1
(𝑠)

]

𝛽

Δ𝑢,

(52)

which gives a contradiction to (49). The proof is completed.

Theorem 12. Suppose that (5) and (6) hold. If for all suffi-
ciently large 𝑇 ∈ [𝑡

0
,∞)T,

lim sup
𝑡→∞

𝐵
𝛼

1
(𝑡, 𝑇) 𝛿

3
(𝑡, 𝑇, 𝑐

1
, 𝑐
2
) ∫

∞

𝑡

𝑝 (𝑠) Δ𝑠 > 1, (53)
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where

𝛿
3
(𝑡, 𝑇, 𝑐

1
, 𝑐
2
)

=

{{{{{{{

{{{{{{{

{

𝑐
1
, 𝑐
1
is any positive constant,

if 𝛼 < 𝛽,

1, if 𝛼 = 𝛽,

𝑐
2
𝐵
𝛽−𝛼

1
(𝑡, 𝑇) , 𝑐

2
is any positive constant,

if 𝛼 > 𝛽,

(54)

and 𝐵
1
(𝑡, 𝑇) is as in Lemma 5, then every solution of (2) is

either oscillatory or tends to zero.

Proof. Assume that (2) has a nonoscillatory solution 𝑥(𝑡) on
[𝑡
0
,∞). Then, without loss of generality, there is a 𝑡

1
≥ 𝑡
0
,

sufficiently large, such that 𝑥(𝑡) > 0 for 𝑡 ≥ 𝑡
1
. Therefore, we

get from Lemma 4 that there exists 𝑡
2
≥ 𝑡
1
such that

(i) 𝑆Δ
𝑛
(𝑡, 𝑥(𝑡)) < 0 for 𝑡 ≥ 𝑡

2
;

(ii) either 𝑆
𝑖
(𝑡, 𝑥(𝑡)) > 0 for 𝑡 ≥ 𝑡

2
and 0 ≤ 𝑖 ≤ 𝑛 or

lim
𝑡→∞

𝑥(𝑡) = 0.

Let 𝑆
𝑖
(𝑡, 𝑥(𝑡)) > 0 for 𝑡 ≥ 𝑡

2
and 0 ≤ 𝑖 ≤ 𝑛. Then, it follows

from (2) and (11) that for 𝑡 ≥ 𝑡
2
,

∫

∞

𝑡

𝑝 (𝑠) 𝑥
𝛽

(𝑠) Δ𝑠 ≤ 𝑆
𝑛
(𝑡, 𝑥 (𝑡)) ≤ [

𝑥 (𝑡)

𝐵
1
(𝑡, 𝑡
2
)
]

𝛼

. (55)

Using the fact that 𝑥(𝑡) is strictly increasing on [𝑡
2
,∞)T, we

obtain

𝑥
𝛽

(𝑡) ∫

∞

𝑡

𝑝 (𝑠) Δ𝑠 ≤ [
𝑥 (𝑡)

𝐵
1
(𝑡, 𝑡
2
)
]

𝛼

. (56)

Thus,

𝐵
𝛼

1
(𝑡, 𝑡
2
) 𝑥
𝛽−𝛼

(𝑡) ∫

∞

𝑡

𝑝 (𝑠) Δ𝑠 ≤ 1. (57)

Now, we consider the following three cases.

Case 1. If 𝛼 = 𝛽, then

𝑥
𝛽−𝛼

(𝑡) = 1 for 𝑡 ≥ 𝑡
2
. (58)

Case 2. If 𝛼 > 𝛽, then it follows from (12) that there exist

𝑡
3
> 𝑡
2
and a constant 𝑐 such that

𝑥 (𝑡) ≤ 𝑐𝐵
1
(𝑡, 𝑡
2
) for 𝑡 ≥ 𝑡

3
. (59)

Thus,

𝑥
𝛽−𝛼

(𝑡) ≥ 𝑐
2
𝐵
𝛽−𝛼

1
(𝑡, 𝑡
2
) , (60)

with 𝑐
2
= 𝑐
𝛽−𝛼.

Case 3. If 𝛼 < 𝛽, then

𝑥 (𝑡) ≥ 𝑥 (𝑡
2
) for 𝑡 ≥ 𝑡

2
. (61)

Thus,

𝑥
𝛽−𝛼

(𝑡) ≥ 𝑐
1
= 𝑥
𝛽−𝛼

(𝑡
2
) . (62)

From (57)–(62), we obtain that for 𝑡 ≥ 𝑡
3
,

𝐵
𝛼

1
(𝑡, 𝑡
2
) 𝛿
3
(𝑡, 𝑡
2
, 𝑐
1
, 𝑐
2
) ∫

∞

𝑡

𝑝 (𝑠) Δ𝑠 ≤ 1, (63)

which gives a contradiction to (53). The proof is completed.

3. Examples

In this section, we give some examples to illustrate our main
results.

Example 1. Consider the following higher order dynamic
equation:

𝑆
Δ

𝑛
(𝑡, 𝑥 (𝑡)) + 𝑡

𝛾
𝑥
𝛽

(𝑡) = 0, (64)

on an arbitrary time scale T with supT = ∞, where 𝑛 ≥ 2,
𝛼, 𝛽 and 𝑆

𝑘
(𝑡, 𝑥(𝑡)) (0 ≤ 𝑘 ≤ 𝑛) are as in (2) with 𝑎

𝑛
(𝑡) =

𝑡
𝛼−1

, 𝑎
𝑛−1

(𝑡) = ⋅ ⋅ ⋅ = 𝑎
1
(𝑡) = 𝑡, and 𝛾 > −1. Then, every

solution of (64) is either oscillatory or tends to zero.

Proof. Note that

∫

∞

𝑡0

[
1

𝑎
𝑛
(𝑠)

]

1/𝛼

Δ𝑠 = ∫

∞

𝑡0

[
1

𝑠𝛼−1
]

1/𝛼

Δ𝑠 = ∞,

∫

∞

𝑡0

Δ𝑠

𝑎
𝑖
(𝑠)

= ∫

∞

𝑡0

Δ𝑠

𝑠
= ∞ for 1 ≤ 𝑖 ≤ 𝑛 − 1,

∫

∞

𝑡0

𝑝 (𝑠) Δ𝑠 = ∫

∞

𝑡0

𝑠
𝛾
Δ𝑠 = ∞,

(65)

by Example 5.60 in [4]. Pick 𝑡
1
> 𝑡
0
such that

∫

𝑡1

𝑡0

1

𝑎
𝑛−1

(𝑢)
{∫

𝑡1

𝑢

[
1

𝑎
𝑛
(𝑠)

]

1/𝛼

Δ𝑠 }Δ𝑢 > 0. (66)

Then,

∫

∞

𝑡0

1

𝑎
𝑛−1

(𝑢)
{∫

∞

𝑢

[
1

𝑎
𝑛
(𝑠)

∫

∞

𝑠

𝑝 (V) ΔV]
1/𝛼

Δ𝑠}Δ𝑢

≥ [∫

∞

𝑡1

𝑝 (V) ΔV]
1/𝛼

× ∫

𝑡1

𝑡0

1

𝑎
𝑛−1

(𝑢)
(∫

𝑡1

𝑢

[
1

𝑎
𝑛
(𝑠)

]

1/𝛼

Δ𝑠)Δ𝑢 = ∞.

(67)
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Let 𝑇 ∈ [𝑡
0
,∞)T, sufficiently large, and 𝑢

1
> 𝑇 such that

∫
𝑢1

𝑇
(1/𝑎
1
(𝑠))Δ𝑠 > 1, then

∫

∞

𝑇

𝑝 (𝑢) [∫

𝑢

𝑇

1

𝑎
1
(𝑠)

Δ𝑠]

𝛽

Δ𝑢

≥ ∫

∞

𝑢1

𝑝 (𝑢) [∫

𝑢

𝑇

1

𝑎
1
(𝑠)

Δ𝑠]

𝛽

Δ𝑢

≥ ∫

∞

𝑢1

𝑝 (𝑢) Δ𝑢 = ∞.

(68)

Thus, conditions (5), (6), and (49) are satisfied. By
Theorem 11, every solution of (64) is either oscillatory
or tends to zero.

Example 2. Consider the following higher order dynamic
equation:

𝑆
Δ

𝑛
(𝑡, 𝑥 (𝑡)) +

1

𝑡1+𝛾
𝑥
𝛽

(𝑡) = 0, (69)

on an arbitrary time scale T with sup T = ∞, where 𝑛 ≥ 2,
𝑆
𝑘
(𝑡, 𝑥(𝑡)) (0 ≤ 𝑘 ≤ 𝑛) are as in (2) with 𝑎

𝑛
(𝑡) = 1, 𝑎

𝑛−1
(𝑡) =

𝑡
1/𝛼

, 𝑎
𝑛−2

(𝑡) = ⋅ ⋅ ⋅ = 𝑎
1
(𝑡) = 𝑡, 0 < 𝛾 < min{1, 𝛽}, and 𝛼, 𝛽 are

the quotient of odd positive integers with 𝛼 ≥ 1. Then, every
solution of (69) is either oscillatory or tends to zero.

Proof. Note that

∫

∞

𝑡0

[
1

𝑎
𝑛
(𝑠)

]

1/𝛼

Δ𝑠 = ∫

∞

𝑡0

Δ𝑠 = ∞,

∫

∞

𝑡0

1

𝑎
𝑛−1

(𝑠)
Δ𝑠 = ∫

∞

𝑡0

1

𝑠1/𝛼
Δ𝑠 = ∞,

∫

∞

𝑡0

1

𝑎
𝑖
(𝑠)

Δ𝑠 = ∫

∞

𝑡0

1

𝑠
Δ𝑠 = ∞ for 1 ≤ 𝑖 ≤ 𝑛 − 2.

(70)

Pick 𝑡
1
> 𝑡
0
such that ∫𝑡1

𝑡0

(Δ𝑢/𝑢
1/𝛼

) > 0, then

∫

∞

𝑡0

1

𝑎
𝑛−1

(𝑢)
{∫

∞

𝑢

[
1

𝑎
𝑛
(𝑠)

∫

∞

𝑠

𝑝 (V) ΔV]
1/𝛼

Δ𝑠}Δ𝑢

= ∫

∞

𝑡0

1

𝑢1/𝛼
{∫

∞

𝑢

[∫

∞

𝑠

1

V𝛾+1
ΔV]
1/𝛼

Δ𝑠}Δ𝑢

≥
1

𝛾
∫

∞

𝑡0

1

𝑢1/𝛼

{

{

{

∫

∞

𝑢

[∫

∞

𝑠

(V𝛾)Δ

V𝛾(V𝛾)𝜎
ΔV]

1/𝛼

Δ𝑠

}

}

}

Δ𝑢

=
1

𝛾
∫

∞

𝑡0

1

𝑢1/𝛼
[∫

∞

𝑢

(
1

𝑠𝛾
)

1/𝛼

Δ𝑠]Δ𝑢

≥
1

𝛾
∫

𝑡1

𝑡0

1

𝑢1/𝛼
[∫

∞

𝑡1

(
1

𝑠𝛾
)

1/𝛼

Δ𝑠]Δ𝑢

=
1

𝛾
[∫

∞

𝑡1

(
1

𝑠𝛾
)

1/𝛼

Δ𝑠]∫

𝑡1

𝑡0

Δ𝑢

𝑢1/𝛼

= ∞.

(71)

Let𝑀 = max{𝑐
1
, 1, 𝑐
2
}with 𝑐

1
, 𝑐
2
being positive constants,

𝜌 = min{𝛼, 𝛽}, and 𝛾 < 𝜏 < min{1, 𝛽}. Pick 𝑇
1
> 𝑇 > 0 such

that

1

𝑡𝛾
≥

2

𝑡𝜏
≥

2𝑀

[(1/2)
𝑛+(1/𝛼)

(𝑡 − 2𝑛−1𝑇)]
𝜌

for 𝑡 ≥ 𝑇
1
. (72)

Let 𝜃(𝑡) = 𝑡, then

𝐵
1
(𝑡, 𝑇)

= ∫

𝑡

𝑇

1

𝑎
1
(𝑢
1
)

× [∫

𝑢1

𝑇

1

𝑎
2
(𝑢
2
)

× [⋅ ⋅ ⋅ [∫

𝑢𝑛−2

𝑇

1

𝑎
𝑛−1

(𝑢
𝑛−1

)
[∫

𝑢𝑛−1

𝑇

Δ𝑢
𝑛
]

1/𝛼

×Δ𝑢
𝑛−1

] ⋅ ⋅ ⋅ ] Δ𝑢
2
]Δ𝑢
1

= ∫

𝑡

2
𝑛−1
𝑇

1

𝑢
1

× [∫

𝑢1

2
𝑛−2
𝑇

1

𝑢
2

[⋅ ⋅ ⋅ [∫

𝑢𝑛−2

2𝑇

[
1

𝑢
𝑛−1

∫

𝑢𝑛−1

𝑇

Δ𝑢
𝑛
]

1/𝛼

× Δ𝑢
𝑛−1

] ⋅ ⋅ ⋅ ] Δ𝑢
2
]Δ𝑢
1

≥ (
1

2
)

𝑛+(1/𝛼)

(𝑡 − 2
𝑛−1

𝑇) ,

∫

𝑡

𝑇1

[𝜃 (𝑠) 𝑝 (𝑠) −
𝜃
Δ
(𝑠)

𝐵
𝛼

1
(𝑠, 𝑇)

𝛿
1
(𝑠, 𝑇)]Δ𝑠

= ∫

𝑡

𝑇1

[
1

𝑠𝛾
−

1

𝐵
𝛼

1
(𝑠, 𝑇)

𝛿
1
(𝑠, 𝑇, 𝑐

1
, 𝑐
2
)] Δ𝑠

≥ ∫

𝑡

𝑇1

[

[

2

𝑡𝜏
−

𝑀

[(1/2)
𝑛+(1/𝛼)

(𝑡 − 2𝑛−1𝑇)]
𝜌
]

]

Δ𝑠

≥ ∫

𝑡

𝑇1

1

𝑡𝜏
Δ𝑠.

(73)

Thus,

lim sup
𝑡→∞

∫

𝑡

𝑇1

[𝜃 (𝑠) 𝑝 (𝑠) −
𝜃
Δ
(𝑠)

𝐵
𝛼

1
(𝑠, 𝑇)

𝛿
1
(𝑠, 𝑇, 𝑐

1
, 𝑐
2
)]Δ𝑠 = ∞.

(74)

So conditions (5), (6), and (23) are satisfied. Then, by
Theorem 8, every solution of (69) is either oscillatory or tends
to zero.
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We investigate a class of multigroup epidemic models with general exposed distribution and nonlinear incidence rates. For a
simpler case that assumes an identical natural death rate for all groups, and with a gamma distribution for exposed distribution
is considered. Some sufficient conditions are obtained to ensure that the global dynamics are completely determined by the basic
production number 𝑅

0
. The proofs of the main results exploit the method of constructing Lyapunov functionals and a graph-

theoretical technique in estimating the derivatives of Lyapunov functionals.

1. Introduction

Multigroup epidemic models have been used in the literature
to describe the transmission dynamics of many different
infectious diseases such as mumps, measles, gonorrhea,
HIV/AIDS and vector borne diseases such as Malaria [1]. In
the models, heterogeneous host population can be divided
into several homogeneous groups according to modes of
transmission, contact patterns, or geographic distributions,
so that within-group and intergroup interactions can be
modeled separately. It is well known that global dynamics
of multigroup models with higher dimensions, especially the
global stability of the endemic equilibrium, are a very chal-
lenging problem. Guo et al. [2] proposed a graph-theoretic
approach to the method of global Lyapunov functions and
used it to resolve the open problem on the uniqueness and
global stability of the endemic equilibrium of a multigroup
SIR model with varying subpopulation sizes. Subsequently, a
series of studies on the global stability ofmultigroup epidemic
models were produced in the literature (see e.g., [2–5]).

In the present paper, amore general multigroup epidemic
model is proposed and studied to describe the disease spread
in a heterogeneous host population with general exposed dis-
tribution and nonlinear incidence rate. The host population
is divided into 𝑚 distinct groups (𝑚 ≥ 1). For 1 ≤ 𝑖 ≤ 𝑚,

the 𝑖th group is further partitioned into four disjoint classes:
the susceptible individuals, exposed individuals, infectious
individuals, and recovered individuals, whose numbers of
individuals at time 𝑡 are denoted by 𝑆

𝑖
(𝑡), 𝐸
𝑖
(𝑡), 𝐼
𝑖
(𝑡), and𝑅

𝑖
(𝑡),

respectively. Susceptible individuals infected with the disease
but not yet infective are in the exposed (latent) class.

It is pointed in [6] that a fixed latent period can be
considered as an approximation of the mean latent period,
and this would be appropriate for those diseases whose
latent periods vary only relatively slightly. For example,
poliomyelitis has a latent period of 1–3 days (comparing to
its much longer infectious period of 14–20 days). However
disease such as tuberculosis, including bovine tuberculosis
(a disease spread from animal to animal mainly by direct
contact), may take months to develop to the infectious stage
and also can relapse. Since the time it takes from the moment
of new infection to the moment of becoming infectious may
differ from disease to disease, even for the same disease,
it differs from individual to individual, and it is indeed a
random variable. It is thus of interest from bothmathematical
and biological viewpoints to investigate whether sustained
oscillations are the result of general exposed distribution.

Following the method of [6], we also assume that the
disease does not cause deaths during the latent period, taking
the natural death rate into consideration. Let 𝑃(𝑡) denote
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the probability that an exposed individual remains in the
time 𝑡 after entering the exposed class. For 1 ≤ 𝑖, 𝑗 ≤ 𝑚,
𝛽
𝑖𝑗

≥ 0 denotes the coefficient of transmission between
compartments 𝑆

𝑖
and 𝐼
𝑗
. It is assumed that 𝑚-square matrix

(𝛽
𝑖𝑗
)
1≤𝑖,𝑗≤𝑚

is irreducible [7]. So the proportion of exposed
individuals can be expressed by the integral

𝐸
𝑖
(𝑡) =

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
∫

𝑡

0

𝑓
𝑖𝑗
(𝑆
𝑖
(𝑢) , 𝐼
𝑗
(𝑢)) 𝑒

−𝛿𝑗(𝑡−𝑢)𝑃
𝑗
(𝑡 − 𝑢) 𝑑𝑢, (1)

where the sum takes into account cross-infections from all
groups. Integrals in (1) are in the Riemann-Stieltjes sense.
𝑃
𝑗
(𝑡) satisfies the following reasonable properties:

(𝐴) 𝑃
𝑗
: [0,∞) → [0, 1] is nonincreasing, piecewise

continuous with possibly finitely many jumps and
satisfies 𝑃

𝑗
(0
+
) = 1, and lim

𝑡→∞
𝑃
𝑗
(𝑡) = 0 with

∫
∞

0
𝑃
𝑗
(𝑡)𝑑𝑡 is positive and finite.

Differentiating (1) gives

𝐸
󸀠

𝑖
(𝑡) =

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
𝑓
𝑖𝑗
(𝑆
𝑖
(𝑡) , 𝐼
𝑗
(𝑡))

+

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
∫

𝑡

0

𝑓
𝑖𝑗
(𝑆
𝑖
(𝑢) , 𝐼
𝑗
(𝑢)) 𝑒

−𝛿𝑗(𝑡−𝑢)

× 𝑃
󸀠

𝑗
(𝑡 − 𝑢) 𝑑𝑢 − 𝛿

𝑖
𝐸
𝑖
(𝑡) .

(2)

The first term on the right hand side in (2) is the rate at
which new infected individuals come into the exposed class,
and the last term explains the natural deaths. The second
term accounts for the rate at which the individuals move to
the infectious class (noting that 𝑃󸀠

𝑗
(𝑡 − 𝑢) ≤ 0 due to the

aformentioned property) from the exposed class; hence

𝐼
󸀠

𝑖
(𝑡) = −

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
∫

𝑡

0

𝑓
𝑖𝑗
(𝑆
𝑖
(𝑢) , 𝐼
𝑗
(𝑢)) 𝑒

−𝛿𝑗(𝑡−𝑢)

× 𝑃
󸀠

𝑗
(𝑡 − 𝑢) 𝑑𝑢 − (𝛿

𝑖
+ 𝜀
𝑖
+ 𝛾
𝑖
) 𝐼
𝑖
(𝑡) .

(3)

Let ℎ
𝑗
(𝑡) = −𝑃

󸀠

𝑗
(𝑡) be the probability density function for the

time (a random variable) it takes for an infected individual in
the 𝑖th group to become infectious. Then (4) becomes

𝐼
󸀠

𝑖
(𝑡) =

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
∫

𝑡

0

𝑓
𝑖𝑗
(𝑆
𝑖
(𝑢) , 𝐼
𝑗
(𝑢)) 𝑒

−𝛿𝑗(𝑡−𝑢)

× ℎ
𝑗
(𝑡 − 𝑢) 𝑑𝑢 − (𝛿

𝑖
+ 𝜀
𝑖
+ 𝛾
𝑖
) 𝐼
𝑖
(𝑡) .

(4)

Within the 𝑖th group, 𝜑
𝑖
(𝑆
𝑖
) denotes the growth rate of

𝑆
𝑖
, which includes both the production and the natural death

of susceptible individuals. Therefore, under the assumptions,

the model to be studied takes the following differential and
integral equations form:

𝑆
󸀠

𝑖
(𝑡) = 𝜑

𝑖
(𝑆
𝑖
(𝑡)) −

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
𝑓
𝑖𝑗
(𝑆
𝑖
(𝑡) , 𝐼
𝑗
(𝑡)) ,

𝐸
󸀠

𝑖
(𝑡) =

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
𝑓
𝑖𝑗
(𝑆
𝑖
(𝑡) , 𝐼
𝑗
(𝑡))

−

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
∫

𝑡

0

𝑓
𝑖𝑗
(𝑆
𝑖
(𝑢) , 𝐼
𝑗
(𝑢)) 𝑒

−𝛿𝑗(𝑡−𝑢)

× ℎ
𝑗
(𝑡 − 𝑢) 𝑑𝑢 − 𝛿

𝑖
𝐸
𝑖
(𝑡) ,

𝐼
󸀠

𝑖
(𝑡) =

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
∫

𝑡

0

𝑓
𝑖𝑗
(𝑆
𝑖
(𝑢) , 𝐼
𝑗
(𝑢)) 𝑒

−𝛿𝑗(𝑡−𝑢)

× ℎ
𝑗
(𝑡 − 𝑢) 𝑑𝑢 − (𝛿

𝑖
+ 𝜀
𝑖
+ 𝛾
𝑖
) 𝐼
𝑖
(𝑡) ,

𝑅
󸀠

𝑖
(𝑡) = 𝛾

𝑖
𝐼
𝑖
(𝑡) − 𝛿

𝑖
𝑅
𝑖
(𝑡) .

(5)

Since the variables 𝐸
𝑖
and𝑅

𝑖
do not appear in the first and

third equations of model (5), 𝐸
𝑖
(𝑡) and 𝑅

𝑖
(𝑡), 𝑖 = 1, . . . , 𝑚, can

be decoupled from the 𝑆
𝑖
(𝑡) and 𝐼

𝑖
(𝑡) equations; we only need

to consider the subsystem of (5) consisting of only the 𝑆
𝑖
and

𝐼
𝑖
equations:

𝑆
󸀠

𝑖
(𝑡) = 𝜑

𝑖
(𝑆
𝑖
(𝑡)) −

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
𝑓
𝑖𝑗
(𝑆
𝑖
(𝑡) , 𝐼
𝑗
(𝑡)) ,

𝐼
󸀠

𝑖
(𝑡) =

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
∫

𝑡

0

𝑓
𝑖𝑗
(𝑆
𝑖
(𝑢) , 𝐼
𝑗
(𝑢)) 𝑒

−𝛿𝑗(𝑡−𝑢)

× ℎ
𝑗
(𝑡 − 𝑢) 𝑑𝑢 − (𝛿

𝑖
+ 𝜀
𝑖
+ 𝛾
𝑖
) 𝐼
𝑖
(𝑡) ,

(6)

where 𝛿
𝑖
denotes the natural death rates of 𝐼

𝑖
compartments

in the 𝑖th group, 𝜀
𝑖
is the death rate caused by disease in the 𝑖th

group, and 𝛾
𝑖
is the rate of recovery of infectious individuals

in the 𝑖th group. In what follows we investigate the global
stability of system (5).

When 𝑚 = 1, 𝑃(𝑡) = 𝑒
𝜖𝑡, and with bilinear incidence

rate, system (5) will reduce to the standard SEIR ordinary
differential equation (ODE) model studied in [8, 9], and if
we further assume that 𝑃(𝑡) is a step function, system (5)
becomes the SEIRmodel with a discrete delay studied in [10].
Recently, a model of this type, but including the possibility
of disease relapse, has been proposed in [11, 12] to investigate
the transmission of herpes, and its global dynamics have been
completely investigated in [5, 13].

To express themain idea and the approachesmore clearly,
we consider a simpler case in which all groups share the
same natural death rate: 𝛿

𝑗
= 𝛿 for 𝑗 = 1, 2, . . . , 𝑚. Further,

we assume that the functions ℎ
𝑗
(𝑢) are disease specific only,
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implying that ℎ
𝑗
(𝑢) = ℎ(𝑢) for 𝑗 = 1, 2, . . . , 𝑚. We choose the

gamma distribution:

ℎ (𝑢) = ℎ
𝑛,𝑏
(𝑢) =

𝑢
𝑛−1

(𝑛 − 1)!𝑏
𝑛
𝑒
−𝑢/𝑏

, (7)

where 𝑏 > 0 is a real number and 𝑛 > 1 is an integer,
which is widely used and can approximate several frequently
used distributions. For example, when 𝑏 → 0

+, ℎ
𝑛,𝑏
(𝑠) will

approach the Dirac delta function, and when 𝑛 = 1, ℎ
𝑛,𝑏
(𝑠) is

an exponentially decaying function.
The main object of this paper is to carry out the well-

known “linear chain trick” to system (6), transfer system
into an equivalent ordinary differential equations system, and
establish its global dynamics. We derive the basic reproduc-
tive number 𝑅

0
and show that 𝑅

0
completely determines the

global dynamics of system (6).More specifically, if𝑅
0
≤ 1, the

disease-free equilibrium is globally asymptotically stable and
the disease dies out; if 𝑅

0
> 1, a unique endemic equilibrium

exists and is globally asymptotically stable, and the disease
persists at the endemic equilibrium. The global stability of
𝑃
∗ rules out any possibility for Hopf bifurcations and the

existence of sustained oscillations. We should point out here
that this work is motivated by Yuan and Zou [11, 12, 14]. In
the proof we demonstrate that the graph-theoretic approach
developed in [2, 3] can be successfully applied to construct
suitable Lyapunov functionals and thus prove the global
stability of the endemic equilibrium for model (6) with
general exposed distribution and nonlinear incidence rate.
Our work is also based on a recent work by Sun and Shi [15],
which resolved the dynamics of multigroup SEIR epidemic
models with nonlinear incidence of infection and nonlinear
removal functions between compartments.

In Section 2, we first give the model, preliminaries and
the basic reproduction number 𝑅

0
. The global stability of the

corresponding equilibria for 𝑅
0
≤ 1 and 𝑅

0
> 1 is shown,

respectively, in Section 3—the key results of this paper. And in
Section 4, some numerical simulations are shown to illustrate
the effectiveness of the proposed result.

2. Preliminaries

We make the following basic assumptions for the intrinsic
growth rate of susceptible individuals in the 𝑖th group 𝜑

𝑖
(𝑆
𝑖
)

and the transmission functions 𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
).

(𝐴
1
) 𝜑
𝑖
are 𝐶1 non-increasing functions on [0,∞) with

𝜑
𝑖
(0) > 0, and there is a unique positive solution

𝜉 = 𝑆
0

𝑖
for the equation 𝜑

𝑖
(𝜉) = 0. 𝜑

𝑖
(𝑆) > 0 for

0 ≤ 𝑆 < 𝑆
0

𝑖
, and 𝜑

𝑖
(𝑆) < 0 for 𝑆 > 𝑆0

𝑖
; that is

[𝜑
𝑖
(𝑆
𝑖
) − 𝜑
𝑖
(𝑆
0

𝑖
)] (𝑆
𝑖
− 𝑆
0

𝑖
) < 0,

for 𝑆
𝑖
̸= 𝑆
0

𝑖
, 𝑖 = 1, 2, . . . , 𝑚.

(8)

(𝐴
2
) 𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) ≤ 𝑐
𝑖𝑗
(𝑆
𝑖
)𝐼
𝑗
for all 𝐼

𝑗
> 0.

(𝐴
3
) 𝑐
𝑖𝑗
(𝑆
𝑖
) ≤ 𝑐
𝑖𝑗
(𝑆
0

𝑖
), 0 < 𝑆

𝑖
< 𝑆
0

𝑖
, 𝑖, 𝑗 = 1, . . . , 𝑚.

Following the technique and method in [14], define

𝑏̂ ≡
𝑏

1 + 𝛿𝑏
, (9)

which can absorb the exponential term 𝑒
−𝛿𝑢 into the delay

kernel. The second equation in (6) can be rewritten as

𝐼
󸀠

𝑖
(𝑡) =

𝑚

∑

𝑗=1

𝛽
𝑖𝑗

(1 + 𝛿𝑏)
𝑛
∫

𝑡

0

𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) ℎ
𝑛,̂𝑏
(𝑡 − 𝑢) 𝑑𝑢

− (𝛿 + 𝜀
𝑖
+ 𝛾
𝑖
) 𝐼
𝑖
.

(10)

For 𝑙 = 1, . . . , 𝑛, let

𝑦
𝑖,𝑙
(𝑡) =

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
𝑏̂

(1 + 𝛿𝑏)
𝑛
∫

𝑡

0

𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) ℎ
𝑙,̂𝑏
(𝑡 − 𝑢) 𝑑𝑢,

𝑖 = 1, 2, . . . , 𝑚.

(11)

Thus, for 𝑙 ∈ {2, . . . , 𝑛}, we obtain

̇𝑦
𝑖,𝑙
= ℎ
𝑙,̂𝑏
(0)

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
𝑏̂

(1 + 𝛿𝑏)
𝑛
𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
)

+

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
𝑏̂

(1+𝛿𝑏)
𝑛
∫

𝑡

−∞

(𝑙−1) (𝑡−𝑢)
𝑙−2

(𝑙−1)!𝑏̂
𝑙

𝑒
−(𝑡−𝑢)/𝑏̂

𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) 𝑑𝑢

−

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
𝑏̂

(1 + 𝛿𝑏)
𝑛
∫

𝑡

−∞

(𝑡 − 𝑢)
𝑙−1

(𝑙 − 1)!𝑏̂
𝑙+1

𝑒
−(𝑡−𝑢)/𝑏̂

𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) 𝑑𝑢

=
[𝑦
𝑖,𝑙−1

− 𝑦
𝑖,𝑙
]

𝑏̂

.

(12)

For 𝑙 = 1, we have

𝑦
𝑖,1
=

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
𝑏̂

(1 + 𝛿𝑏)
𝑛
∫

𝑡

−∞

𝑒
−(𝑡−𝑢)/𝑏̂

𝑏̂

𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) 𝑑𝑢,

𝑖 = 1, . . . , 𝑚.

(13)

It follows that

̇𝑦
𝑖,1
=

𝑚

∑

𝑗=1

𝛽
𝑖𝑗

(1 + 𝛿𝑏)
𝑛
𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
)

−

𝑚

∑

𝑗=1

𝛽
𝑖𝑗

(1 + 𝛿𝑏)
𝑛
∫

𝑡

−∞

𝑒
−(𝑡−𝑢)/𝑏̂

𝑏̂

𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) 𝑑𝑢

=

𝑚

∑

𝑗=1

𝛽
𝑖𝑗

(1 + 𝛿𝑏)
𝑛
𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) −

1

𝑏̂

𝑦
𝑖,1
, 𝑖 = 1, . . . , 𝑚.

(14)
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Thus the integro-differential system (6) is equivalent to
the ordinary differential equations

𝑆
󸀠

𝑖
(𝑡) = 𝜑

𝑖
(𝑆
𝑖
(𝑡)) −

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
𝑓
𝑖𝑗
(𝑆
𝑖
(𝑡) , 𝐼
𝑗
(𝑡)) ,

𝑦
󸀠

𝑖,1
(𝑡) =

1

(1 + 𝛿𝑏)
𝑛

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
𝑓
𝑖𝑗
(𝑆
𝑖
(𝑡) , 𝐼
𝑗
(𝑡)) −

1

𝑏̂

𝑦
𝑖,1
(𝑡) ,

𝑦
󸀠

𝑖,2
(𝑡) =

1

𝑏̂

(𝑦
𝑖,1
(𝑡) − 𝑦

𝑖,2
(𝑡)) , 𝑖 = 1, 2, . . . , 𝑚,

...

𝑦
󸀠

𝑖,𝑛
(𝑡) =

1

𝑏̂

(𝑦
𝑖,𝑛−1

(𝑡) − 𝑦
𝑖,𝑛
(𝑡)) ,

𝐼
󸀠

𝑖
(𝑡) =

1

𝑏̂

𝑦
𝑖,𝑛
(𝑡) − (𝛿 + 𝜀

𝑖
+ 𝛾
𝑖
) 𝐼i (𝑡) .

(15)

For initial condition

(𝑆
1
(0) , 𝑦

1,1
(0) , . . . , 𝑦

1,𝑛
(0) , 𝐼
1
(0) ,

𝑆
2
(0) , 𝑦

2,1
(0) , . . . , 𝑦

1,𝑛
(0) , 𝐼
2
(0) , . . . ,

𝑆
𝑚
(0) , 𝑦

𝑚,1
(0) , . . . , 𝑦

𝑚,𝑛
(0) , 𝐼
𝑚
(0)) ∈ R𝑚(𝑛+2),

(16)

the existence, uniqueness, and continuity of the solution
(𝑆
𝑖
, 𝑦
𝑖,1
, 𝑦
𝑖,2
, . . . , 𝑦

𝑖,𝑛
, 𝐼
𝑖
) of system (15) follow from the stan-

dard theory of Volterra integro-differential equation [16].
It can also be verified that every solution of (15) with
nonnegative initial condition remains nonnegative.

It follows from (𝐴
1
) and the first equation of (15) that

lim sup
𝑡→∞

𝑆
𝑖
(𝑡) ≤ 𝑆

0

𝑖
for all 𝑖 = 1, 2, . . . , 𝑚. Let 𝑁

𝜑𝑖
be the

maximum of the function 𝜑
𝑖
on R
+
and let 𝑞 be a positive real

number such that 𝑞 > 𝑏̂𝑁
𝜑𝑖
. Denote by Υ

𝑖
the 𝑖th tube for

system (15); that is,

Υ
𝑖
= (𝑆
𝑖
, 𝑦
𝑖,1
, 𝑦
𝑖,2
, . . . , 𝑦

𝑖,𝑛
, 𝐼
𝑖
) . (17)

It follows from a similar argument to that in [14] that we can
show that the set𝐷

𝜖
defined by

Γ
𝜖
= {(𝑆

𝑖
, 𝑦
𝑖,1
, 𝑦
𝑖,2
, . . . , 𝑦

𝑖,𝑛
, 𝐼
𝑖
) ∈ R𝑚(𝑛+2)
+

|

𝑆
𝑖
≤ 𝑆
0

𝑖
+ 𝜖, 𝑆
𝑖
+ (1 + 𝛿𝑏)

𝑛
𝑦
𝑖,1
≤ 𝑞 + 𝑆

0

𝑖
,

𝑦
𝑖,𝑙
≤
𝑞 + 𝑆
0

𝑖
+ 𝑙𝜖

(1 + 𝛿𝑏)
𝑛
,

𝐼
𝑖
≤

𝑞 + 𝑆
0

𝑖
+ (𝑛 + 1) 𝜖

𝑏̂(1 + 𝛿𝑏)
𝑛
(𝛿 + 𝜖

𝑖
+ 𝛾
𝑖
)

,

𝑖 = 1, 2, . . . , 𝑚, 𝑙 = 2, 3, . . . , 𝑛}

(18)

is a forward invariant compact absorbing set for system (15)
for 𝜖 > 0 and that the set Γ

0
(i.e., when 𝜖 = 0) is a forward

invariant compact set.

Under the assumption (𝐴
1
), we know that system (15)

always has the disease-free equilibrium

𝑃
0
= (𝑆
0

1
, 0, . . . , 0, 𝐼

0

1
, 𝑆
0

2
, 0, . . . , 0, 𝐼

0

2
, . . . , 𝑆

0

𝑚
, 0, . . . , 0, 𝐼

0

𝑚
)

∈ R𝑚(𝑛+2).
(19)

An equilibrium 𝑃
∗ of (6) has the form 𝑃

∗
=

(𝑆
∗

1
, 𝐼
∗

1
, 𝑆
∗

2
, 𝐼
∗

2
, . . . , 𝑆

∗

𝑚
, 𝐼
∗

𝑚
) ∈ R2𝑚 with 𝑆

∗

𝑖
> 0, 𝐼∗

𝑖
> 0,

𝑖 = 1, . . . , 𝑚. Translating to the equivalent system (15), 𝑃∗ is
corresponding to

𝑃
∗

= (𝑆
∗

1
, 𝑦
∗

1,1
, . . . , 𝑦

∗

1,𝑛
, 𝐼
∗

1
, 𝑆
∗

2
, 𝑦
∗

2,1
, . . . , 𝑦

∗

2,𝑛
, 𝐼
∗

2
, . . . ,

𝑆
∗

𝑚
, 𝑦
∗

𝑚,1
, . . . , 𝑦

∗

𝑚,𝑛
, 𝐼
∗

𝑚
) ∈ R𝑚(𝑛+2).

(20)

𝑃
∗ in the interior of Γ

0
is called an endemic equilibrium, and

it satisfies the following equilibrium equations:

0 = 𝜑
𝑖
(𝑆
∗

𝑖
) −

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
𝑓
𝑖𝑗
(𝑆
∗

𝑖
, 𝐼
∗

𝑗
) ,

0 =
1

(1 + 𝛿𝑏)
𝑛

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
𝑓
𝑖𝑗
(𝑆
∗

𝑖
, 𝐼
∗

𝑗
) −

1

𝑏̂

𝑦
∗

𝑖,1
,

0 =
1

𝑏̂

(𝑦
∗

𝑖,1
− 𝑦
∗

𝑖,2
) ,

...

0 =
1

𝑏̂

(𝑦
∗

𝑖,𝑛−1
− 𝑦
∗

𝑖,𝑛
) ,

0 =
1

𝑏̂

𝑦
∗

𝑖,𝑛
− (𝛿 + 𝜀

𝑖
+ 𝛾
𝑖
) 𝐼
∗

𝑖
.

(21)

The basic reproduction number 𝑅
0
is defined as the expected

number of secondary cases produced by single infectious
individual during its entire period of infectiousness in a
completely susceptible population. For system (15), we can
calculate it as the spectral radius of a matrix called the next
generation matrix. Let

F =

(
(
(
(
(
(
(

(

𝑐
11
(𝑆
0

1
) 𝛽
11

(1 + 𝛿𝑏)
𝑛

⋅ ⋅ ⋅

𝑐
1𝑚
(𝑆
0

1
) 𝛽
1𝑚

(1 + 𝛿𝑏)
𝑛

... d
...

𝑐
𝑚1
(𝑆
0

𝑚
) 𝛽
𝑚1

(1 + 𝛿𝑏)
𝑛

⋅ ⋅ ⋅

𝑐
𝑚𝑚

(𝑆
0

𝑚
) 𝛽
𝑚𝑚

(1 + 𝛿𝑏)
𝑛

)
)
)
)
)
)
)

)

,

V = diag (𝛿 + 𝜀
𝑖
+ 𝛾
𝑖
)

= (

𝛿 + 𝜀
1
+ 𝛾
1

0 ⋅ ⋅ ⋅ 0

0 𝛿 + 𝜀
2
+ 𝛾
2
⋅ ⋅ ⋅ 0

...
... d

...
0 0 ⋅ ⋅ ⋅ 𝛿 + 𝜀

𝑚
+ 𝛾
𝑚

).

(22)
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Then the next generation matrix is

FV
−1
=
(
(

(

𝑐11 (𝑆
0

1
) 𝛽11

(1 + 𝛿𝑏)
𝑛
(𝛿 + 𝜀1 + 𝛾1)

⋅ ⋅ ⋅

𝑐1𝑚 (𝑆
0

1
) 𝛽1𝑚

(1 + 𝛿𝑏)
𝑛
(𝛿 + 𝜀𝑚 + 𝛾𝑚)

... d
...

𝑐𝑚1 (𝑆
0

1
) 𝛽𝑚1

(1 + 𝛿𝑏)
𝑛
(𝛿 + 𝜀1 + 𝛾1)

⋅ ⋅ ⋅

𝑐𝑚𝑚 (𝑆
0

1
) 𝛽𝑚𝑚

(1 + 𝛿𝑏)
𝑛
(𝛿 + 𝜀𝑚 + 𝛾𝑚)

)
)

)

,

(23)

and hence, the basic reproduction number 𝑅
0
is

𝑅
0
= 𝜌 (FV

−1
) = max {|𝜆| ; 𝜆 ∈ 𝜎 (FV

−1
)} , (24)

where 𝜌(⋅) and 𝜎(⋅) denote the spectral radius and the set of
eigenvalues of a matrix, respectively. Since it can be verified
that system (15) satisfies conditions (𝐴

1
)–(𝐴
5
) of Theorem 2

of [17], we have the following proposition.

Lemma 1. For system (15), the disease-free equilibrium 𝑃
0
is

locally asymptotically stable if 𝑅
0
< 1, while it is unstable if

𝑅
0
> 1.

Following the method of [2], one defines a matrix

𝑀
0
= V−1F

=

(
(
(
(
(
(

(

𝑐11 (𝑆
0

1
) 𝛽11

(1 + 𝛿𝑏)
𝑛
(𝛿 + 𝜀1 + 𝛾1)

⋅ ⋅ ⋅

𝑐1𝑚 (𝑆
0

1
) 𝛽1𝑚

(1 + 𝛿𝑏)
𝑛
(𝛿 + 𝜀1 + 𝛾1)

... d
...

𝑐𝑚1 (𝑆
0

1
) 𝛽𝑚1

(1 + 𝛿𝑏)
𝑛
(𝛿 + 𝜀𝑚 + 𝛾𝑚)

⋅ ⋅ ⋅

𝑐𝑚𝑚 (𝑆
0

1
) 𝛽𝑚𝑚

(1 + 𝛿𝑏)
𝑛
(𝛿 + 𝜀𝑚 + 𝛾𝑚)

)
)
)
)
)
)

)

,

(25)

whose spectral radius has a similar threshold property to that
of 𝑅
0
, since both of the nonnegative matrices FV−1 and

𝑀
0 are irreducible, and hence from the Perron-Frobenius

theorem [7] that their spectral radii are given by each of
their simple eigenvalues. Thus, we obtain 𝑅

0
= 𝜌(FV−1) =

𝜌(V−1F) = 𝜌(𝑀
0
). Then the following lemma immediately

follows.

Lemma 2. 𝜌(𝑀0) ≤ 1 if and only if 𝑅
0
≤ 1.

3. Main Results

The following main theorems are summarized in terms of
system (15).

Theorem 3. Assume that the functions 𝜑
𝑖
and 𝑓

𝑖𝑗
satisfy

assumptions (𝐴
1
)–(𝐴
3
), and the matrix 𝐵 = (𝛽

𝑖𝑗
)
𝑚×𝑚

is
irreducible and 𝑅

0
is defined by (24).

(i) If 𝑅
0
≤ 1, then 𝑃

0
is the unique equilibrium of system

(15), and 𝑃
0
is globally asymptotically stable in Γ

0
.

(ii) If 𝑅
0
> 1, then 𝑃

0
is unstable, and system (15) is

uniformly persistent in Γ
0
.

Proof. Let us define 𝑀(𝑆) = (𝛽
𝑖𝑗
𝑐
𝑖𝑗
(𝑆
𝑖
)/(1 + 𝛿𝑏)

𝑛

(𝛿 + 𝜀
𝑖
+ 𝛾
𝑖
))
𝑚×𝑚

, where 𝑆 = (𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑚
)
𝑇. Note that

𝑀(𝑆
0
) = 𝑀

0. Since 𝐵 = (𝛽
𝑖𝑗
)
𝑚×𝑚

is irreducible, the matrix
𝑀
0 is also irreducible.
First we claim that there does not exist any endemic

equilibrium 𝑃
∗ in Ω. Suppose that 𝑆 ̸= 𝑆

0
. Then we have

0 < 𝑀(𝑆) < 𝑀
0. Since nonnegative matrix 𝑀(𝑆) + 𝑀

0

is irreducible, it follows from the Perron-Frobenius theorem
(see Corollary 2.1.5 of [7]) that 𝜌(𝑀(𝑆)) < 𝜌(𝑀

0
) ≤ 1.

This implies that 𝑀(𝑆)𝐼 = 𝐼 has only the trivial solution
𝐼 = 0, where 𝐼 = (𝐼

1
, . . . , 𝐼

𝑚
)
𝑇. Hence the claim is true.

Next we claim that the disease-free equilibrium 𝑃
0
is globally

asymptotically stable in Γ
0
. From the Perron-Frobenius (see

Theorem 2.1.4 of [7]), the nonnegative irreducible matrix
𝑀
0 has a strictly positive left eigenvector (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑚
)

associated with the eigenvalue 𝜌(𝑀0) such that

(𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑚
) 𝜌 (𝑀

0
) = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑚
)𝑀
0
. (26)

Using this positive eigenvector, we construct the following
Lyapunov function:

𝑉DFE =
𝑚

∑

𝑖=1

𝜔
𝑖

𝛿 + 𝜀
𝑖
+ 𝛾
𝑖

(

𝑛

∑

𝑗=1

𝑦
𝑖,𝑗
+ 𝐼
𝑖
) . (27)

Computing the derivative of 𝑉DFE along the solutions of (15)
in Γ
0
, we get

𝑉
󸀠

DFE =
𝑚

∑

𝑖=1

[

[

𝑚

∑

𝑗=1

𝜔
𝑖
𝛽
𝑖𝑗

(1 + 𝛿𝑏)
𝑛
(𝛿 + 𝜀

𝑖
+ 𝛾
𝑖
)
𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) − 𝜔
𝑖
𝐼
𝑖
]

]

≤

𝑚

∑

𝑖=1

[

[

𝑚

∑

𝑗=1

𝜔
𝑖
𝛽
𝑖𝑗
𝑐
𝑖𝑗
(𝑆
𝑖
)

(1 + 𝛿𝑏)
𝑛
(𝛿 + 𝜀

𝑖
+ 𝛾
𝑖
)
𝐼
𝑗
− 𝜔
𝑖
𝐼
𝑖
]

]

≤

𝑚

∑

𝑖=1

[

[

𝑚

∑

𝑗=1

𝜔
𝑖
𝛽
𝑖𝑗
𝑐
𝑖𝑗
(𝑆
0

𝑖
)

(1 + 𝛿𝑏)
𝑛
(𝛿 + 𝜀

𝑖
+ 𝛾
𝑖
)
𝐼
𝑗
− 𝜔
𝑖
𝐼
𝑖
]

]

= (𝜔
1
, . . . , 𝜔

𝑚
) [𝑀
0
𝐼 − 𝐼]

= [𝜌 (𝑀
0
) − 1] (𝜔

1
, . . . , 𝜔

𝑚
) 𝐼.

(28)

Thus, under the assumption 𝑅
0
= 𝜌(𝑀

0
) < 1, 𝑉󸀠DFE ≤ 0, and

𝑉
󸀠

DFE = 0 if and only if 𝐼 = 0 and 𝑆 = 𝑆
0
= (𝑆
0

1
, 𝑆
0

2
, . . . , 𝑆

0

𝑚
).

Suppose that 𝜌(𝑀0) = 1. Then it follows from the previous
that 𝑉󸀠DFE = 0 implies

(𝜔
1
, . . . , 𝜔

𝑚
)𝑀
0
𝐼 = (𝜔

1
, . . . , 𝜔

𝑚
) 𝐼. (29)

Hence, if 𝑆 ̸= 𝑆
0
, then (𝜔

1
, . . . , 𝜔

𝑚
)𝑀(𝑆) < (𝜔

1
, . . . , 𝜔

𝑚
)𝑀
0
=

𝜌(𝑀
0
)(𝜔
1
, . . . , 𝜔

𝑚
) = (𝜔

1
, . . . , 𝜔

𝑚
) and thus 𝐼 = 0 is the only

solution of (29). Summarizing the statements, we see that
𝑉
󸀠

DFE = 0 if and only if 𝐼 = 0 or 𝑆 = 𝑆
0
, which implies that

the compact invariant subset of the set where 𝑉󸀠DFE = 0 is
only the singleton 𝑃

0
. Thus, by LaSalle’s invariance principle



6 Abstract and Applied Analysis

[18], it follows that the disease-free equilibrium 𝐸
0 is globally

asymptotically stable in Γ
0
.

If 𝑅
0
= 𝜌(𝑀

0
) > 1, then

(𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑚
)𝑀
0
− (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑚
)

= [𝜌 (𝑀
0
) − 1] (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑚
) > 0,

(30)

and then, by continuity, we can obtain

𝑉
󸀠

DFE = (𝜔1, . . . , 𝜔𝑚) [𝑀
0
𝐼 − 𝐼] > 0, (31)

in a neighborhood of 𝑃
0
in Γ
0
; then 𝑃

0
is unstable.

Assume 𝑅
0
= 𝜌(𝑀

0
) > 1. By the uniform persistence

result from [19] and a similar argument as in the proof of
[2], the instability of 𝑃

0
implies the uniform persistence of

(15). This together with the dissipativity of (15) resulted from
the forward invariant and compact property of Γ

0
stated

previously, implies which that (15) has an equilibrium in Γ
0
,

denoted by 𝑃∗ (see, e.g., Theorem D.3 in [20]).

Inwhat followswe prove that the endemic equilibrium𝑃
∗

of system (15) is globally asymptotically stable when 𝑅
0
> 1.

Throughout the paper, we denote

𝐻(𝑧) = 𝑧 − 1 − ln 𝑧. (32)

Then𝐻(𝑧) ≥ 0 for 𝑧 > 0 and has global minimum at 𝑧 = 1.
For convenience of notations, set 𝛽

𝑖𝑗
= 𝛽
𝑖𝑗
𝑓
𝑖𝑗
(𝑆
∗

𝑖
, 𝐼
∗

𝑗
), 1 ≤

𝑖, 𝑗 ≤ 𝑚, and

𝐵 =

[
[
[
[
[
[
[
[
[
[
[

[

∑

𝑙 ̸=1

𝛽
1𝑙

−𝛽
21

⋅ ⋅ ⋅ −𝛽
𝑚𝑙

−𝛽
12

∑

𝑙 ̸=2

𝛽
2𝑙

⋅ ⋅ ⋅ −𝛽
𝑚2

...
... d

...

−𝛽
1𝑚

−𝛽
2𝑚

⋅ ⋅ ⋅ ∑

𝑙 ̸=𝑚

𝛽
𝑚𝑙

]
]
]
]
]
]
]
]
]
]
]

]

. (33)

Then, 𝐵 is also irreducible. One knows that the solution space
of the linear system

𝐵V = 0 (34)

has dimension 1 and

(V
1
, V
2
, . . . V
𝑚
) = (𝐶

11
, . . . , 𝐶

𝑚𝑚
) (35)

gives a base of this space, where 𝐶
𝑘𝑘

> 0, 𝑘 = 1, 2, . . . , 𝑚,
is the cofactor of the 𝑘th diagonal entry of 𝐵. To get the
global stability of 𝑃∗, the following assumptions in [15] are
proposed:

(𝐴
4
) : [𝜑
𝑖
(𝑆
𝑖
) − 𝜑
𝑖
(𝑆
∗

𝑖
)](𝑆
𝑖
− 𝑆
∗

𝑖
) < 0 for 𝑆

𝑖
̸= 𝑆
∗

𝑖
, 𝑆
𝑖
∈ [0, 𝑆

0

𝑖
],

(𝐴
5
) : For 𝑆

𝑖
̸= 𝑆
∗

𝑖
, [𝜑
𝑖
(𝑆
𝑖
)−𝜑
𝑖
(𝑆
∗

𝑖
)]⋅[𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
)−𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
)] <

0.

(𝐴
6
) : For 𝑆

𝑖
, 𝐼
𝑗
> 0,

(𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
) 𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) − 𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
) 𝑓
𝑖𝑗
(𝑆
∗

𝑖
, 𝐼
∗

𝑗
))

⋅ (

𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
) 𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
)

𝐼
𝑗

−

𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
) 𝑓
𝑖𝑗
(𝑆
∗

𝑖
, 𝐼
∗

𝑗
)

𝐼
∗

𝑗

) ≤ 0.

(36)

A difficult mathematical question for system (15) is that of
whether the endemic equilibrium 𝑃

∗ is unique when 𝑅
0
> 1

and whether 𝑃∗ is globally asymptotically stable when it is
unique. Our main global stability result is given.

Theorem 4. Consider system (15). Assume that (𝐴
4
)–(𝐴
6
)

hold and the matrix 𝐵 = (𝛽
𝑖𝑗
)
𝑚×𝑚

is irreducible. If 𝑅
0
> 1,

then there is a unique endemic equilibrium 𝑃
∗ for system (15),

and 𝑃∗ is globally asymptotically stable in Γ
0
.

Proof. We show that𝑃∗ is globally asymptotically stable in Γ
0
,

which implies that there exists a unique endemic equilibrium.
Consider a Lyapunov function as

𝑉EE = 𝑆
𝑖
− 𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
) ∫

𝑆𝑖

𝑆
∗

𝑖

𝑑𝜉

𝑓
𝑖𝑖
(𝜉, 𝐼
∗

𝑖
)

+ (1 + 𝛿𝑏)
𝑛 [

[

𝑛

∑

𝑗=1

(𝑦
𝑖,𝑗
− 𝑦
∗

𝑖,𝑗
− 𝑦
∗

𝑖,𝑗
ln
𝑦
𝑖,𝑗

𝑦
∗

𝑖,𝑗

)

+𝐼
𝑖
− 𝐼
∗

𝑖
− 𝐼
∗

𝑖
ln

𝐼
𝑖

𝐼
∗

𝑖

]

]

.

(37)

This function has a linear part 𝑉EE expressed by

𝐿EE = 𝑆𝑖 + (1 + 𝛿𝑏)
𝑛 [

[

𝑛

∑

𝑗=1

(𝑦
𝑖,𝑗
− 𝑦
∗

𝑖,𝑗
) + 𝐼
𝑖
− 𝐼
∗

𝑖

]

]

. (38)

First, calculating the derivatives of 𝐿EE, we obtain

𝐿
󸀠

EE = 𝜑𝑖 (𝑆𝑖) − (1 + 𝛿𝑏)
𝑛
(𝛿 + 𝜀

𝑖
+ 𝛾
𝑖
) 𝐼
𝑖
. (39)

Calculating the time derivative of𝑉EE along the solutions
of system (15) and using equilibrium equation (21), we have

𝑉
󸀠

EE = 𝐿
󸀠

EE −
𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
)

𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
)

̇𝑆
𝑖
+ (1 + 𝛿𝑏)

𝑛 [

[

𝑛

∑

𝑗=1

𝑦
∗

𝑖,𝑗

𝑦
𝑖,𝑗

̇𝑦
𝑖,𝑗
+
𝐼
∗

𝑖

𝐼
𝑖

̇𝐼
𝑖
]

]

= 𝜑
𝑖
(𝑆
𝑖
) − (1 + 𝛿𝑏)

𝑛
(𝛿 + 𝜀

𝑖
+ 𝛾
𝑖
) 𝐼
𝑖

−

{

{

{

(𝜑
𝑖
(𝑆
𝑖
) −

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
))

𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
)

𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
)
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Figure 1: Trajectories of 𝑆
1
(𝑡), 𝐼
1
(𝑡), 𝑆
2
(𝑡), and 𝐼

2
(𝑡) for 𝑅

0
= 0.051 < 1, and 𝑃

0
= (3, 0, 0, 0, 3, 0, 0, 0) is globally stable. 𝑆

1
(𝑡), 𝑆
2
(𝑡), 𝐼
1
(𝑡), and

𝐼
2
(𝑡) versus 𝑡 are illustrated by (a), (b), (c), and (d). Initial values are 𝑆

1
(0) = 9, 𝑆

2
(0) = 1, 𝑦

1,1
(0) = 2, 𝑦

1,2
(0) = 2, 𝑦

2,1
(0) = 0, 𝑦

2,2
(0) =

0, 𝐼
1
(0) = 6, and 𝐼

2
(0) = 2.

+ (1 + 𝛿𝑏)
𝑛 [

[

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) 𝑦
∗

𝑖,1

(1 + 𝛿𝑏)
𝑛
𝑦
𝑖,1

−
𝑦
∗

𝑖,1

𝑏̂

+
1

𝑏̂

𝑛

∑

𝑘=2

𝑦
∗

𝑖,𝑘
(
𝑦
𝑖,𝑘−1

𝑦
𝑖,𝑘

− 1)

+
𝑦
𝑖,𝑛
𝐼
∗

i

𝑏̂𝐼
𝑖

− (𝛿 + 𝜀
𝑖
+ 𝛾
𝑖
) 𝐼
∗

𝑖

]

]

}

}

}

= 𝜑
𝑖
(𝑆
𝑖
) (1 −

𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
)

𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
)
)

−

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
𝑓
𝑖𝑗
(𝑆
∗

𝑖
, 𝐼
∗

𝑗
)

𝑦
∗

𝑖,1
𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
)

𝑦
𝑖,1
𝑓
𝑖𝑗
(𝑆
∗

𝑖
, 𝐼
∗

𝑗
)

−
(1 + 𝛿𝑏)

𝑛

𝑏̂

𝑛

∑

𝑘=2

𝑦
∗

𝑖,𝑘
𝑦
𝑖,𝑘−1

𝑦
𝑖,𝑘

+
(1 + 𝛿𝑏)

𝑛

𝑏̂

𝑛𝑦
∗

𝑖
−
(1 + 𝛿𝑏)

𝑛

𝑏̂

𝑦
∗

𝑖,𝑛

𝑦
𝑖,𝑛
𝐼
∗

𝑖

𝑦
∗

𝑖,𝑛
𝐼
𝑖

+ (1 + 𝛿𝑏)
𝑛
(𝛿 + 𝜀

𝑖
+ 𝛾
𝑖
) 𝐼
∗

𝑖

+

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
𝑓
𝑖𝑗
(𝑆
∗

𝑖
, 𝐼
∗

𝑗
)

𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) 𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
)

𝑓
𝑖𝑗
(𝑆
∗

𝑖
, 𝐼
∗

𝑗
) 𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
)

− (1 + 𝛿𝑏)
𝑛
(𝛿 + 𝜀

𝑖
+ 𝛾
𝑖
) 𝐼
𝑖

= (𝜑
𝑖
(𝑆
𝑖
) − 𝜑
𝑖
(𝑆
∗

𝑖
)) (1 −

𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
)

𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
)
)

+

𝑚

∑

𝑗=1

𝛽
𝑖𝑗

{

{

{

𝑛 + 2 −
𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
)

𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
)
−

𝑛

∑

𝑘=2

𝑦
∗

𝑖,𝑘
𝑦
𝑖,𝑘−1

𝑦
𝑖,𝑘
𝑦
∗

𝑖,𝑘−1

−
𝑦
𝑖,𝑛
𝐼
∗

𝑖

𝑦
∗

𝑖,𝑛
𝐼
𝑖

−
𝐼
𝑖

𝐼
∗

𝑖

−

𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) 𝑦
∗

𝑖,1

𝑓
𝑖𝑗
(𝑆
∗

𝑖
, 𝐼
∗

𝑗
) 𝑦
𝑖,1

+

𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) 𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
)

𝑓
𝑖𝑗
(𝑆
∗

𝑖
, 𝐼
∗

𝑗
) 𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
)

}

}

}

.

(40)
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Figure 2: Numerical simulation of (45) with 𝑅
0
= 0.051 < 1; hence 𝑃

0
= (3, 0, 0, 0, 3, 0, 0, 0) is globally stable. Graphs (a) and (b) illustrate

that 𝑆
1
(t), 𝑦
1,1
(𝑡), 𝑦
1,2
(𝑡) and 𝐼

1
(𝑡) will eventually towards to steady state. Graphs (c) and (d) illustrate that 𝑆

2
(𝑡), 𝑦
2,1
(𝑡), 𝑦
2,2
(𝑡), and 𝐼

2
(𝑡) will

eventually towards to steady state. Initial values are 𝑆
1
(0) = 9, 𝑆

2
(0) = 1, 𝑦

1,1
(0) = 2, 𝑦

1,2
(0) = 2, 𝑦

2,1
(0) = 0, 𝑦

2,2
(0) = 0, 𝐼

1
(0) = 6, and

𝐼
2
(0) = 2.

It follows from the assumptions (𝐴
4
)-(𝐴
5
) that 𝑉󸀠EE can be

estimated by

𝑉
󸀠

EE ≤
𝑚

∑

𝑖,𝑗=1

𝛽
𝑖𝑗

{

{

{

𝐺
𝑖
(𝐼
𝑖
) − 𝐺
𝑗
(𝐼
𝑗
) + 𝐻(

𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
)

𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
)
)

+ 𝐻(

𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) 𝑦
∗

𝑖,1

𝑓
𝑖𝑗
(𝑆
∗

𝑖
, 𝐼
∗

𝑗
) 𝑦
𝑖,1

)

+

𝑛

∑

𝑘=2

𝐻(
𝑦
∗

𝑖,𝑘
𝑦
𝑖,𝑘−1

𝑦
𝑖,𝑘
𝑦
∗

𝑖,𝑘−1

)

+ 𝐻(
𝑦
𝑖,𝑛
𝐼
∗

𝑖

𝑦
∗

𝑖,𝑛
𝐼
𝑖

)

+ 𝐻(

𝐼
𝑗
𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
) 𝑓
𝑖𝑗
(𝑆
∗

𝑖
, 𝐼
∗

𝑗
)

𝐼
∗

𝑗
𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
) 𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
)

)
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Figure 3: Trajectories of 𝑆
1
(𝑡), 𝐼
1
(𝑡), 𝑆
2
(𝑡), and 𝐼

2
(𝑡) for 𝑅

0
= 1.67355 > 1, and 𝑃∗ = (0.347644, 0.0760948, 0.0760948, 4.51674, 0.330353,

0.0765909, 0.0765909, 4.4678) is globally stable. 𝑆
1
(𝑡), 𝑆
2
(𝑡), 𝐼
1
(𝑡), and 𝐼

2
(𝑡) versus 𝑡 are illustrated by (a), (b), (c), and (d). Initial values are

𝑆
1
(0) = 6, 𝑆

2
(0) = 2, 𝑦

1,1
(0) = 3, 𝑦

1,2
(0) = 3, 𝑦

2,1
(0) = 0.1, 𝑦

2,2
(0) = 0.1, 𝐼

1
(0) = 1.5, and 𝐼

2
(0) = 0.5.

+ [

[

𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
) 𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
)

𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
) 𝑓
𝑖𝑗
(𝑆
∗

𝑖
, 𝐼
∗

𝑗
)

− 1]

]

⋅[

[

1 −

𝐼
𝑗
𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
) 𝑓
𝑖𝑗
(𝑆
∗

𝑖
, 𝐼
∗

𝑗
)

𝐼
∗

𝑗
𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
) 𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
)

]

]

}

}

}

.

(41)

From the assumption (𝐴
6
) and (32), we know that

𝑉
󸀠

EE ≤
𝑚

∑

𝑖,𝑗=1

𝛽
𝑖𝑗
{𝐺
𝑖
(𝐼
𝑖
) − 𝐺
𝑗
(𝐼
𝑗
)} , (42)

where 𝐺
𝑖
(𝐼
𝑖
) = −𝐼

𝑖
/𝐼
∗

𝑖
+ ln(𝐼

𝑖
/𝐼
∗

𝑖
).

Obviously, the equalities in (41) and (42) hold if and only
if

𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
)

𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
)
= 1,

(1 −
𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
)

𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
)
) [𝜑
𝑖
(𝑆
𝑖
) − 𝜑
𝑖
(𝑆
∗

𝑖
)] = 0,

[

[

𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) 𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
)

𝑓
𝑖𝑗
(𝑆
∗

𝑖
, 𝐼
∗

𝑗
) 𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
)

− 1]

]

× [

[

1 −

𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
) 𝑓
𝑖𝑗
(𝑆
∗

𝑖
, 𝐼
∗

𝑗
) 𝐼
𝑗

𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
) 𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) 𝐼
∗

𝑗

]

]

= 0.

(43)

That is, 𝑆
𝑖
= 𝑆
∗

𝑖
, 𝐼
𝑖
= 𝐼
∗

𝑖
, 𝑖 = 1, 2, . . . , 𝑚. We can show

that 𝑉EE and 𝛽
𝑖𝑗
satisfy the assumptions of Theorem 3.1 and

Corollary 3.3 in [21]. Therefore, the function

𝐿 =

𝑛

∑

𝑖=1

V
𝑖
𝑉EE (44)

is a Lyapunov function for system (15); namely, 𝐿󸀠|
(15)

≤ 0

for 𝑃∗ ∈ Γ
0
. One can only show that the largest invariant

subset, where 𝐿󸀠|
(15)

= 0, is the singleton {𝑃
∗

} by the same
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Figure 4: Numerical simulation of (45) with𝑅
0
= 1.67355 > 1; hence 𝑃∗ = (0.347644, 0.0760948, 0.0760948, 4.51674, 0.330353, 0.0765909,

0.0765909, 4.4678) is globally stable. Graphs (a) and (b) illustrate that 𝑆
1
(𝑡), 𝑦
1,1
(𝑡), 𝑦
1,2
(𝑡), and 𝐼

1
(𝑡) will eventually towards to steady state.

Graphs (c) and (d) illustrate that 𝑆
2
(𝑡), 𝑦
2,1
(𝑡), 𝑦
2,2
(𝑡), and 𝐼

2
(𝑡) will eventually towards to steady state. Initial values are 𝑆

1
(0) = 6, 𝑆

2
(0) =

2, 𝑦
1,1
(0) = 3, 𝑦

1,2
(0) = 3, 𝑦

2,1
(0) = 0.1, 𝑦

2,2
(0) = 0.1, 𝐼

1
(0) = 1.5, and 𝐼

2
(0) = 0.5.

argument as in [2–5, 13, 21]. By LaSalle’s invariance principle,
𝑃
∗ is globally asymptotically stable in Γ

0
. This completes the

proof of Theorem 4.

Remark 5. We show a complete proof for global asymptotic
stability of unique endemic equilibrium of system (15). In the
case of 𝑓

𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) = 𝑆
𝑖
𝐼
𝑗
, system (15) will reduce to the system

studied in [14, 22]. HereTheorem 4 extends related results in
[14, 22] to a result to a more general case allowing a nonlinear
incidence rate. Our result also cover the related results of
single group model in [13] for the case of 𝑓(𝑆, 𝐼) = 𝑓(𝑆)𝐼.

4. Numerical Example

Consider the system (15) when 𝑚 = 2, 𝑛 = 2, 𝜑
𝑖
(𝑆
𝑖
(𝑡)) =

3 − 𝑆
𝑖
, and 𝑓

𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) = 𝑆
𝑖
𝐼
𝑗
, 𝑖, 𝑗 = 1, 2. One then has a two-

group model as follows:

𝑆
󸀠

1
(𝑡) = 3 − 𝑆

1
− [𝛽
11
𝑆
1
(𝑡) 𝐼
1
(𝑡) + 𝛽

12
𝑆
1
(𝑡) 𝐼
2
(𝑡)] ,

𝑦
󸀠

1,1
(𝑡) =

1

(1 + 𝛿𝑏)
𝑛
[𝛽
11
𝑆
1
(𝑡) 𝐼
1
(𝑡) + 𝛽

12
𝑆
1
(𝑡) 𝐼
2
(𝑡)]

−
1

𝑏̂

𝑦
1,1
(𝑡) ,
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𝑦
󸀠

1,2
(𝑡) =

1

𝑏̂

(𝑦
1,1
(𝑡) − 𝑦

1,2
(𝑡)) ,

𝐼
󸀠

1
(𝑡) =

1

𝑏̂

𝑦
1,2
(𝑡) − (𝛿 + 𝜀

1
+ 𝛾
1
) 𝐼
1
(𝑡) ,

𝑆
󸀠

2
(𝑡) = 3 − 𝑆

2
− [𝛽
21
𝑆
2
(𝑡) 𝐼
1
(𝑡) + 𝛽

22
𝑆
2
(𝑡) 𝐼
2
(𝑡)] ,

𝑦
󸀠

2,1
(𝑡) =

1

(1 + 𝛿𝑏)
𝑛
[𝛽
21
𝑆
2
(𝑡) 𝐼
1
(𝑡) + 𝛽

22
𝑆
2
(𝑡) 𝐼
2
(𝑡)]

−
1

𝑏̂

𝑦
2,1
(𝑡) ,

𝑦
󸀠

2,2
(𝑡) =

1

𝑏̂

(𝑦
2,1
(𝑡) − 𝑦

2,2
(𝑡)) ,

𝐼
󸀠

2
(𝑡) =

1

𝑏̂

𝑦
2,2
(𝑡) − (𝛿 + 𝜀

2
+ 𝛾
2
) 𝐼
2
(𝑡) .

(45)

If we choose parameters as 𝛽
11

= 5/24, 𝛽
12

= 1, 𝛽
21

=

1/36, 𝛽
22

= 1/2, 𝛿 = 0.8, 𝜀
1
= 2, 𝜀

2
= 2, 𝛾

1
= 1/4, and

𝛾
2
= 1/4, we can compute 𝑅

0
= 0.051 < 1, and hence

𝑃
0
= (3, 0, 0, 0, 3, 0, 0, 0) is the unique equilibrium of system

(45) and it is globally stable from Theorem 4 (see Figures 1
and 2).

On the other hand, if 𝛽
𝑖𝑗
are chosen as 𝛽

11
= 0.7, 𝛽

12
=

1, 𝛽
21
= 0.8, 𝛽

22
= 1, 𝛿 = 0.5, 𝜀

1
= 0.02, 𝜀

2
= 0.03, 𝛾

1
= 0.05,

and 𝛾
2
= 0, 05, we can compute 𝑅

0
= 1.67355 > 1, and hence

𝑃
∗

= (0.347644, 0.0760948, 0.0760948, 4.51674, 0.330353,
0.0765909, 0.0765909, 4.4678) is the unique equilibrium of
system (45) and it is globally stable from Theorem 4 (see
Figures 3 and 4).
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The concepts of𝛼𝜔-remote neighborhood family, 𝛾𝜔-cover, and 𝐿𝜔-compactness are defined in 𝐿𝜔-spaces.The characterizations of
𝐿𝜔-compactness are systematically discussed. Some important properties of 𝐿𝜔-compactness such as 𝜔-closed heredity, arbitrarily
multiplicative property, and preserving invariance under 𝜔-continuous mappings are obtained. Finally, the Alexander 𝜔-subbase
lemma and the Tychonoff product theorem with respect to 𝐿𝜔-compactness are given.

1. Introduction

Compactness is one of the most important notions in general
topology, fuzzy topology, and 𝐿-topology. Many research
workers have presented various kinds of compactness [1–19]
by means of introducing various operators, such as closure
operator, 𝜃-closure operator, 𝛿-closure operator, 𝑅-closure
operator, 𝑆-closure operator, 𝑆𝑅-closure operator, and 𝑃𝑆-
closure operator; because the above operators are all order
preserving. That is, they satisfy the following conditions: (i)
if 𝐴, 𝐵 ∈ 𝐿

𝑋 and 𝐴 ⩽ 𝐵, then 𝜔(𝐴) ⩽ 𝜔(𝐵); (ii) for any
𝐴 ∈ 𝐿

𝑋, 𝐴 ⩽ 𝜔(𝐴), where 𝜔 : 𝐿
𝑋

→ 𝐿
𝑋 can take and

of the above operators, 𝐿𝑋 is the family of all 𝐿-sets defined
on 𝑋 and with value in 𝐿, 𝐿 is a fuzzy lattice, and 1

𝑋
is the

greatest 𝐿-set of 𝐿𝑋. We introduced a kind of generalized
fuzzy space called 𝐿𝜔-space in [20] in order to unify various
elementary concepts in 𝐿-topological spaces. In the present
paper, we will propose and study a generalized compactness
which will be called 𝐿𝜔-compactness in 𝐿𝜔-spaces. The
𝐿𝜔-compactness is a unified form of 𝑁-compactness [16,
19], near 𝑁-compactness [5], almost 𝑁-compactness [6], 𝑆-
compactness [13], 𝑆𝑅-compactness [1], 𝑃𝑆-compactness [2],
𝛿-compactness [9], 𝜃-compactness [18], and so forth.

2. Preliminaries

Throughout this paper, 𝐿 denotes a fuzzy lattice, that is, a
completely distributive lattice with order-reserving involu-
tion 󸀠, 0 and 1 denote the least and greatest elements of 𝐿,

respectively, and 𝑀 denotes the set that consisting of all
nonzero ∨-irreducible elements of 𝐿. Let 𝑋 be a nonempty
crisp set, 𝐿𝑋 the set of all 𝐿-fuzzy sets (briefly, 𝐿-sets) on 𝑋,
and𝑀∗

(𝐿
𝑋
) = {𝑥

𝛼
: 𝛼 ∈ 𝑀, 𝑥 ∈ 𝑋} the set of all nonzero ∨-

irreducible elements (i.e., so-called molecules [17] or points
for short) of 𝐿𝑋.The least and the greatest elements of 𝐿𝑋 will
be denoted by 0

𝑋
and 1

𝑋
, respectively. For any 𝛼 ∈ 𝑀, 𝛽(𝛼) is

called the greatestminimal set of𝛼 [12], and𝛽∗
(𝛼) = 𝛽(𝛼)∩𝑀

is said to be the standard minimal set of 𝛼 [17].

Definition 1 (Chen and Cheng [20]). Let 𝑋 be a nonempty
crisp set.

(i) An operator 𝜔: 𝐿𝑋
→ 𝐿

𝑋 is said to be an 𝜔-operator
if (1) for all 𝐴, 𝐵 ∈ 𝐿

𝑋 and 𝐴 ⩽ 𝐵, 𝜔(𝐴) ⩽ 𝜔(𝐵); (2)
for all 𝐴 ∈ 𝐿

𝑋, 𝐴 ⩽ 𝜔(𝐴).
(ii) An 𝐿-set 𝐴 ∈ 𝐿

𝑋 is called an 𝜔-set if 𝜔(𝐴) = 𝐴.
(iii) Put Ω = {𝐴 ∈ 𝐿

𝑋
| 𝜔(𝐴) = 𝐴}, and call the pair

(𝐿𝑋
, 𝜔) an 𝐿𝜔-space.

Definition 2 (Chen and Cheng [20]). Let (𝐿𝑋, Ω) be an
𝐿𝜔-space, 𝐴 ∈ 𝐿

𝑋, and 𝑥
𝛼
∈ 𝑀

∗
(𝐿

𝑋
). If there exists a

𝑄 ∈ Ω such that 𝑥
𝛼
≰ 𝑄 and 𝑃 ⩽ 𝑄, then call 𝑃 an

𝜔-remote neighborhood (briefly, 𝜔𝑅-neighborhood) of 𝑥
𝛼
.

The collection of all 𝜔𝑅-neighborhoods of 𝑥
𝛼
is denoted by

𝜔𝜂(𝑥
𝛼
). If 𝐴 ≰ 𝑃 for each 𝑃 ∈ 𝜔𝜂(𝑥

𝛼
), then 𝑥

𝛼
is said

to be an 𝜔-adherence point of 𝐴 and the union of all 𝜔-
adherence points of𝐴 is called the𝜔-closure of𝐴 anddenoted
by 𝜔 cl(𝐴). If 𝐴 = 𝜔 cl(𝐴), then call 𝐴 an 𝜔-closed set and
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call 𝐴󸀠 an 𝜔-open set. If 𝑃 is an 𝜔-closed set and 𝑥
𝛼

≰

𝑃, then 𝑃 is said to be an 𝜔-closed remote neighborhood
(briefly, 𝜔CR-neighborhood) of 𝑥

𝛼
and the collection of all

𝜔CR-neighborhoods of 𝑥
𝛼
is denoted by 𝜔𝜂−(𝑥

𝛼
). Note that

𝜔𝐶(𝐿
𝑋
) and𝜔𝑂(𝐿𝑋

) are the family of all𝜔-closed sets and all
𝜔-open sets in 𝐿𝑋, respectively.

Definition 3 (Chen and Cheng [20]). Let (𝐿𝑋
, Ω) be an 𝐿𝜔-

space, 𝐴 ∈ 𝐿
𝑋, and 𝜔 int(𝐴) = ∨{𝐵 ∈ 𝐿

𝑋
| 𝐵 ⩽ 𝐴 and 𝐵

is an 𝜔-open set in 𝐿𝑋
}. We call 𝜔 int(𝐴) the 𝜔-interior of 𝐴.

Obviously, 𝐴 is 𝜔-open if and only if 𝐴 = 𝜔 int(𝐴).

Definition 4 (Huang and Chen [11]). Let (𝐿𝑋
, Ω) be an 𝐿𝜔-

space, let𝑁 be amolecular net in 𝐿𝑋, and let 𝑥
𝛼
∈ 𝑀

∗
(𝐿

𝑋
). If

𝑁 is eventually not in 𝑃 for each 𝑃 ∈ 𝜔𝜂
−
(𝑥

𝛼
), then 𝑥

𝛼
is said

to be an 𝜔-limit point of𝑁 (or𝑁 𝜔-converges to 𝑥
𝛼
). If𝑁 is

frequently not in 𝑃 for each 𝑃 ∈ 𝜔𝜂
−
(𝑥

𝛼
), then 𝑥

𝛼
is said to

be an 𝜔-cluster point of 𝑁 (or 𝑁 𝜔-accumulates to 𝑥
𝛼
). The

union of all 𝜔-limit points (𝜔-cluster points) of 𝑁 is written
by 𝜔-lim𝑁 (𝜔-𝑎𝑑𝑁).

Definition 5 (Huang and Chen [11]). Let (𝐿𝑋
, Ω) be an 𝐿𝜔-

space, let 𝐼 be an ideal in 𝐿
𝑋, and let 𝑥

𝛼
∈ 𝑀

∗
(𝐿

𝑋
). If

𝜔𝜂
−
(𝑥

𝛼
) ⊆ 𝐼, then 𝑥

𝛼
is called an 𝜔-limit point of 𝐼 (or 𝐼𝜔-

converges to 𝑥
𝛼
). If 𝑃 ∨ 𝐵 ̸= 1

𝑋
for each 𝑃 ∈ 𝜔𝜂

−
(𝑥

𝛼
) and

each 𝐵 ∈ 𝐼, then 𝑥
𝛼
is called an 𝜔-cluster point of 𝐼 (or 𝐼 𝜔-

accumulates to 𝑥
𝛼
).The union of all 𝜔-limit points (𝜔-cluster

points) of 𝐼 is denoted by 𝜔-lim 𝐼 (𝜔-𝑎𝑑𝐼).

Definition 6 (Chen and Cheng [20]). Let (𝐿𝑋
, Ω) be an 𝐿𝜔-

space, 𝑥
𝛼
∈ 𝑀

∗
(𝐿

𝑋
), and 𝛽, 𝛾 ∈ 𝜔𝑂(𝐿𝑋

). Then,

(i) 𝛽 is said to be an 𝜔-base in (𝐿𝑋
, Ω) if for each 𝐺 ∈

𝜔𝑂(𝐿
𝑋
), there exists a subfamily 𝜑 of 𝛽 such that 𝐺 =

∨
𝐵∈𝜑

𝐵;

(ii) 𝛾 is said to be an𝜔-subbase in (𝐿𝑋
, Ω) if the collection

consisting of all intersections of any finite elements in
𝛾 is an 𝜔-base in (𝐿𝑋

, Ω).

Definition 7 (Chen and Cheng [20]). Assume (𝐿𝑋, Ω
𝑖
) to be

an 𝐿𝜔
𝑖
-space (𝑖 = 1, 2) and 𝑓 : (𝐿

𝑋
, Ω

1
) → (𝐿

𝑌
, Ω

2
) an 𝐿-

valued Zadeh’s type function [17]. If 𝑓←
(𝐵) ∈ 𝜔

1
𝑂(𝐿

𝑋
) for

each 𝐵 ∈ 𝜔
2
𝑂(𝐿

𝑌
), then call 𝑓(𝜔

1
, 𝜔

2
)-continuous.

3. 𝐿𝜔-Compact Set and Its Characteristics

In this section, we will introduce the concepts of 𝛼𝜔-remote
neighborhood family and 𝛾𝜔-cover in an 𝐿𝜔-space first,
propose the notion of 𝐿𝜔-compactness by making use of
𝛼𝜔-remote neighborhood family next, and then discuss the
characteristics of 𝐿𝜔-compactness.

Definition 8. Suppose (𝐿𝑋, Ω) be an 𝐿𝜔-space, 𝐴 ∈ 𝐿
𝑋, 𝛼 ∈

𝑀, and Φ ⊆ 𝜔𝐶(𝐿
𝑋
). If there exists a 𝑃 ∈ Φ such that 𝑃 ∈

𝜔𝜂
−
(𝑥

𝛼
) for each molecule 𝑥

𝛼
in 𝐴, then Φ is called an 𝛼𝜔-

remote neighborhood family (briefly, 𝛼𝜔-RF) of𝐴, in symbol
∧Φ < 𝐴(𝛼𝜔). If there exists a nonzero ∨-irreducible element

𝜆 ∈ 𝛽
∗
(𝛼) with ∧Φ < 𝐴(𝜆𝜔), then Φ is said to be an (𝛼𝜔)−-

RF, in symbol ∧Φ ≪ 𝐴(𝛼𝜔).

Definition 9. Assume (𝐿𝑋
, Ω) be an 𝐿𝜔-space, 𝐴 ∈ 𝐿

𝑋, 𝛾󸀠 ∈
𝑀, and Γ ⊆ 𝜔𝑂(𝐿

𝑋
). If there is a 𝐵 ∈ Γ such that 𝐵(𝑥)�⩽𝛾 for

each 𝑥 ∈ 𝜏
𝛾
󸀠(𝐴) = {𝑥 ∈ 𝑋 | 𝐴(𝑥) ⩾ 𝛾

󸀠
}, then Γ is known as a

𝛾𝜔-cover. If there exists a prime element 𝑡 ∈ 𝛼∗
(𝛾) such that

Γ is a 𝑡𝜔-cover of 𝐴, then Γ is said to be a (𝛾𝜔)+-cover of 𝐴,
where 𝛼∗

(𝛾) is the standard maximal set of 𝛾 [17].

Definition 10. Assume (𝐿𝑋
, Ω) be an 𝐿𝜔-space and 𝐴 ∈ 𝐿

𝑋.
If every 𝛼𝜔-RF Φ of 𝐴 has a finite subfamily Ψ such that Ψ
is an (𝛼𝜔)−-RF, where 𝛼 ∈ 𝑀, then call 𝐴 an 𝛼𝐿𝜔-compact
set. If 𝐴 is an 𝛼𝐿𝜔-compact set for any 𝛼 ∈ 𝑀, then call 𝐴
an 𝐿𝜔-compact set. Specially, when 1

𝑋
is 𝛼𝐿𝜔-compact, we

call (𝐿𝑋
, Ω) an 𝛼𝐿𝜔-compact space, and if (𝐿𝑋

, Ω) is 𝛼𝐿𝜔-
compact for each 𝛼 ∈ 𝑀, we say that (𝐿𝑋

, Ω) is an 𝐿𝜔-
compact space.

Obviously, when 𝜔 is the 𝐿-closure operator on 𝐿𝑋, the
𝐿𝜔-compactness is just the𝑁-compactness in [19], and while
𝜔 takes the 𝜃-closure operator (resp., 𝛿-closure operator, 𝑅-
closure operator, 𝑆-closure operator,𝑃𝑆-closure operator, and
𝑆𝑅-closure operator) on𝐿𝑋, the𝐿𝜔-compactness is just the 𝜃-
compactness (resp., 𝛿-compactness, near𝑁-compactness, 𝑆-
compactness,𝑃𝑆-compactness, and 𝑆𝑅-compactness).There-
fore, the 𝐿𝜔-compactness is of the universal significance.

Example 11. Let (𝐿𝑋
, Ω) be an 𝐿𝜔-space and 𝐴 ∈ 𝐿

𝑋. If the
support 𝜎

0
(𝐴) = {𝑥 ∈ 𝑋 | 𝐴(𝑥) > 0} of 𝐴 is a finite set, then

𝐴 is an 𝐿𝜔-compact set.

Proof. Assume that 𝜎
0
(𝐴) = {𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑛
} and Φ is an 𝛼𝜔-

RF of 𝐴. For each 𝑖 ∈ {1, 2, . . . , 𝑛} we choose an 𝜔-closed set
𝑃
𝑖
∈ Φ with 𝛼 �⩽ 𝑃

𝑖
(𝑥

𝑖
). Being 𝛼 = sup𝛽∗

(𝛼), there is a 𝜆
𝑖
∈

𝛽
∗
(𝛼) such that 𝜆 �⩽ 𝑃

𝑖
(𝑥

𝑖
). Since 𝛽∗

(𝛼) is an upper directed
set, there is a 𝜆 ∈ 𝛽∗

(𝛼) with 𝜆 ⩾ 𝜆
𝑖
for each 𝑖 ∈ {1, 2, . . . , 𝑛},

and thus 𝜆
𝑖 �⩽ 𝑃

𝑖
(𝑥

𝑖
). Therefore Φ has a finite subfamily Ψ =

{𝑃
1
, 𝑃

2
, . . . , 𝑃

𝑛
} which is an (𝛼𝜔)−-RF of 𝐴. By Definition 10,

𝐴 is an 𝐿𝜔-compact set.

Now we give some characteristics of 𝐿𝜔-compactness as
follows.

Theorem 12. Let (𝐿𝑋
, Ω) be an 𝐿𝜔-space and 𝐴 ∈ 𝐿

𝑋. Then
𝐴 is an 𝐿𝜔-compact set if and only if the following conditions
hold:

(1) for each 𝛼 ∈ 𝑀, every 𝛼𝜔-RF Φ of 𝐴 has a finite
subfamily Ψ with ∧Ψ < 𝐴(𝛼𝜔);

(2) for each 𝛼 ∈ 𝑀, ifΦ = {𝑃} is an 𝛼𝜔-RF of 𝐴, thenΦ is
also an (𝛼𝜔)−-RF of 𝐴.

Proof. Necessity. Assume that 𝐴 is 𝐿𝜔-compact and Φ is an
𝛼𝜔-RF of 𝐴(𝛼 ∈ 𝑀). According to Definition 10, Φ has a
finite subfamilyΨwith ∧Ψ ≪ 𝐴(𝛼𝜔) and so it certainly holds
that ∧Ψ < 𝐴(𝛼𝜔). Thus (1) is satisfied. If Φ = {𝑃} is an 𝛼𝜔-
RF of 𝐴, then Φ has a finite Ψ with ∧Ψ ≪ 𝐴(𝛼𝜔) by the
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𝐿𝜔-compactness of 𝐴. Obviously, Ψ = Φ, and hence Φ is an
(𝛼𝜔)−-RF of 𝐴. Therefore (2) holds.

Sufficiency. Suppose that conditions (1) and (2) are satisfied,
and Φ is an 𝛼𝜔-RF of 𝐴 (𝛼 ∈ 𝑀). By (1), there is a finite
subfamily Ψ of Φ such that Ψ is an 𝛼𝜔-RF of 𝐴. Let 𝑃 = ∧Ψ.
Then {𝑃} is an 𝛼𝜔-RF of 𝐴. According to (2), {𝑃} is also an
𝛼𝜔-RF of 𝐴; that is, there exists a 𝜆 ∈ 𝛽∗

(𝛼) with 𝜆 �⩽ 𝑃(𝑥) =

∧{𝑄(𝑥) | 𝑄 ∈ Ψ} for each molecule 𝑥
𝜆
⩽ 𝐴. Since Ψ is

finite, we can choose an 𝜔-closed set 𝑄 ∈ Ψ with 𝜆 �⩽ 𝑄(𝑥);
that is, 𝑄 ∈ 𝜔𝜂

−
(𝑥

𝜆
). This shows that Ψ is an (𝛼𝜔)−-RF of 𝐴.

Therefore 𝐴 is 𝐿𝜔-compact.

Theorem 13. Let (𝐿𝑋
, Ω) be an 𝐿𝜔-space and 𝐴 ∈ 𝐿

𝑋. Then
𝐴 is an 𝐿𝜔-compact set if and only if for each 𝛾󸀠 ∈ 𝑀, every
𝛾𝜔-cover Γ of𝐴 has a finite subfamily Ξ such that Ξ is a (𝛾𝜔)+-
cover of 𝐴.

Proof. Necessity. Suppose that𝐴 is an 𝐿𝜔-compact set and Γ is
any 𝛾𝜔-cover of 𝐴 (𝛾󸀠 ∈ 𝑀). Put Φ = Γ

󸀠. Then Φ ⊆ 𝜔𝐶(𝐿
𝑋
),

and there is an𝜔-closed set𝐵󸀠
∈ Φwith𝐵(𝑥) �⩽ 𝛾 for each 𝑥 ∈

𝜏
𝛾
󸀠(𝐴); that is, 𝛾󸀠 �⩽ 𝐵

󸀠
(𝑥); equivalently, 𝐵󸀠

∈ 𝜔𝜂
−
(𝑥

𝛾
󸀠). This

implies thatΦ is a 𝛾󸀠𝜔-RF of𝐴. ThusΦ has a finite subfamily
Ψ which is a (𝛾󸀠𝜔)−-RF of 𝐴; that is, there exists 𝑡󸀠 ∈ 𝛽

∗
(𝛾

󸀠
)

such that for each 𝑥 ∈ 𝜏
𝛾
󸀠(𝐴) we can take an 𝜔-open set 𝐵 ∈

Ψ
󸀠 with 𝑡󸀠 �⩽ 𝐵

󸀠
(𝑥). In other words, there are 𝑡 ∈ 𝛼

∗
(𝛾) and

𝐵 ∈ Ψ
󸀠
= Ξ with 𝐵(𝑥) �⩽ 𝑡 for each 𝑥 ∈ 𝜏

𝛾
󸀠(𝐴). This means

that Ξ is a finite subfamily of Γ and a (𝛾𝜔)+-cover of 𝐴.

Sufficiency. Assume that every 𝛾𝜔-cover of 𝐴 has a finite
subfamily which is a (𝛾𝜔)+-cover of 𝐴 (𝛾󸀠 ∈ 𝑀). If Φ is an
𝛼𝜔-RF of 𝐴 (𝛼 ∈ 𝑀), then Γ = Φ

󸀠 is a 𝛾𝜔-cover of 𝐴 where
𝛾 = 𝛼

󸀠. Hence Γ has a finite subfamily Ξ which is a (𝛾𝜔)+-
cover of 𝐴 by the hypothesis. Write Ψ = Ξ

󸀠. One can easily
see that Ψ is a finite subfamily of Φ and is an (𝛼𝜔)−-RF of 𝐴.
Therefore 𝐴 is 𝐿𝜔-compact.

Theorem 14. Let (𝐿𝑋
, Ω) be an 𝐿𝜔-space and 𝐴 ∈ 𝐿

𝑋. Then
𝐴 is 𝐿𝜔-compact if and only if for each 𝛼 ∈ 𝑀 and each
Φ ⊆ 𝜔𝐶(𝐿

𝑋
) having 𝛼-finite intersection property for 𝐴 (i.e.,

for each finite subfamilyΨ ofΦ and each 𝜆 ∈ 𝛽∗
(𝛼) there exists

a molecule 𝑥
𝜆
⩽ 𝐴 with 𝑥

𝜆
⩽ ∧Ψ), there exists a molecule

𝑥
𝛼
⩽ 𝐴 with 𝑥

𝛼
⩽ ∧Φ.

Proof. Necessity. Grant that 𝐴 is an 𝐿𝜔-compact set, Φ ⊆

𝜔𝐶(𝐿
𝑋
), and Φ has 𝛼-finite intersection property for 𝐴 (𝛼 ∈

𝑀). If 𝑥
𝛼 �⩽ ∧ Φ for each 𝑥

𝛼
⩽ 𝐴, then Φ is an 𝛼𝜔-RF of

𝐴 by the hypothesis of Φ. Hence Φ has a finite subfamily
Ψ which is an (𝛼𝜔)

−-RF of 𝐴; that is, there is a 𝜆 ∈ 𝛽
∗
(𝛼)

satisfying 𝑥
𝜆 �⩽ ∧ Ψ for each 𝑥

𝜆
⩽ 𝐴; in other words,

∨
𝑥∈𝑋

(𝐴 ∧ (∧Ψ))(𝑥) 󳠡 𝜆. It contradicts the fact that Φ has
𝛼-finite intersection property for 𝐴. Hence the necessity is
proved.

Sufficiency. Assume that the condition holds and that Φ is
an 𝛼𝜔-RF of 𝐴. If for any finite subfamily Ψ of Φ, Ψ is not
an (𝛼𝜔)

−-RF of 𝐴, then for each 𝜆 ∈ 𝛽
∗
(𝛼) there exists a

molecule 𝑥
𝜆
⩽ 𝐴 with 𝑥

𝜆
⩽ ∧Ψ; that is, ∨

𝑥∈𝑋
(𝐴 ∧ (∧Ψ))(𝑥) ⩾

𝜆. This shows thatΦ has 𝛼-finite intersection property for 𝐴.
By the assumption we have 𝑥

𝛼
⩽ 𝐴 satisfying 𝑥

𝛼
⩽ ∧Ψ. It

contradicts that Φ is an 𝛼𝜔-RF of 𝐴. Therefore Φ has a finite
subfamily Ψ which is an (𝛼𝜔)−-RF of 𝐴, and hence 𝐴 is 𝐿𝜔-
compact.

Theorem 15. Let (𝐿𝑋
, Ω) be an 𝐿𝜔-space and𝐴 ∈ 𝐿

𝑋. Then𝐴
is 𝐿𝜔-compact if and only if for each 𝛼 ∈ 𝑀, every 𝛼-net in 𝐴
has an 𝜔-cluster point in 𝐴 with height 𝛼.

Proof. Necessity. Suppose that 𝐴 is an 𝐿𝜔-compact set and
that 𝑁 = {𝑁(𝑛) | 𝑛 ∈ 𝐷} is an 𝛼-net [16] in 𝐴. If 𝑁 does
not have any 𝜔-cluster point in 𝐴 with height 𝛼, then there
exists a 𝑃[𝑥] ∈ 𝜔𝜂−(𝑥

𝛼
) such that𝑁 is eventually in 𝑃[𝑋] for

each 𝑥
𝛼
⩽ 𝐴; that is, there is a 𝑛(𝑥) ∈ 𝐷 with 𝑁(𝑛) ⩽ 𝑃[𝑥]

whenever 𝑛 ⩾ 𝑛(𝑥). Write Φ = {𝑃[𝑥] | 𝑥
𝛼
⩽ 𝐴}. Obviously,

Φ is 𝛼𝜔-RF of 𝐴. By the 𝐿𝜔-compactness of 𝐴, Φ has a finite
subfamily Ψ = {𝑃[𝑥

𝑖
] | 𝑖 = 1, 2, . . . , 𝑚} which is an (𝛼𝜔)−-RF

of 𝐴; that is, there is an 𝑖 ∈ {1, 2, . . . , 𝑚} with 𝑦
𝑟�⩽𝑃[𝑋𝑖

] for
some 𝑟 ∈ 𝛽

∗
(𝛼) and each 𝑦

𝑟
⩽ 𝐴. Take 𝑃 = ∧

𝑚

𝑖=1
𝑃[𝑥

𝑖
]. Then

𝑦
𝑟�⩽𝑃 for each𝑦

𝑟
⩽ 𝐴. Since𝐷 is a directed set, there is an 𝑛

0
∈

𝐷, such that 𝑛
0
⩾ 𝑛(𝑥

𝑖
) and 𝑁(𝑛) ⩽ 𝑃[𝑥

𝑖
] (𝑖 = 1, 2, . . . , 𝑚)

whenever 𝑛 ⩾ 𝑛
𝑜
, and so𝑁(𝑛) ⩽ 𝑃. This shows that for each

𝑦
𝑟
⩽ 𝐴, ∨(𝑁(𝑛))�⩾𝑟 as long as 𝑛 ⩾ 𝑛

𝑜
. It contradicts the fact

that𝑁 is an 𝛼-net.Therefore𝑁 has at least an 𝜔-cluster point
in 𝐴 with height 𝛼.

Sufficiency. Assume that every 𝛼-net in 𝐴 has at least an 𝜔-
cluster point with hight 𝛼 for each 𝛼 ∈ 𝑀, Φ is an 𝛼𝜔-RF of
𝐴, and 2(Φ) is the set of all finite subfamilies of Φ. If for each
𝑟 ∈ 𝛽

∗
(𝛼) and each Ψ ∈ 2

(Φ), Ψ is not an 𝑟𝜔-RF of 𝐴; that is,
𝑥
𝑟
⩽ ∧Ψ for each 𝑥

𝑟
⩽ 𝐴, and hence there exists a molecule

𝑁(𝑟, Ψ) ⩽ 𝐴 satisfying 𝑁(𝑟, Ψ) ⩽ ∧Ψ. In 𝛽∗
(𝛼) × 2

(Φ), we
define the relation as follows: (𝑟

1
, Ψ

1
) ⩾ (𝑟

2
, Ψ

2
) if and only if

𝑟
1
⩾ 𝑟

2
andΨ

1
⊇ Ψ

2
, then𝛽∗

(𝛼)×2
(Φ) is a directed set with the

relation “⩾”. Let 𝑁 = {𝑁(𝑟, Ψ) | (𝑟, Ψ) ∈ 𝛽
∗
(𝛼) × 2

(Φ)
}. One

can easily see that𝑁 is an 𝛼-net in 𝐴. We assert that𝑁 does
not have any 𝜔-cluster point in 𝐴 with hight 𝛼. In fact, for
each 𝑥

𝛼
⩽ 𝐴, we can choose an 𝜔-closed set 𝑃 ∈ Φ with 𝑃 ∈

𝜔𝜂
−
(𝑥

𝛼
) by the definition of Φ. Taking 𝑟

1
∈ 𝛽

∗
(𝛼) and Ψ ∈

2
(Φ), we have 𝑃 ∈ Ψ according to (𝑟, Ψ) ⩾ (𝑟

1
, {𝑃}), and hence

𝑁(𝑟, Ψ) ⩽ ∧Ψ ⊆ 𝑃.This implies that𝑁 is eventually in 𝑃, and
thus 𝑥

𝛼
is not an 𝜔-cluster point of 𝑁. It is in contradiction

with the hypothesis of sufficiency. Consequently, 𝐴 is 𝐿𝜔-
compact.

Definition 16. Let (𝐿𝑋,Ω) be an 𝐿𝜔-space, letF be an 𝛼-filter
in 𝐿𝑋; that is, ∨

𝑥∈𝑋
(𝐹 ∧ 𝐴)(𝑥) ⩾ 𝛼 for each 𝐹 ∈ F and 𝑥

𝛼
∈

𝑀
∗
(𝐿

𝑋
). If 𝐹�⩽𝑃 and for each 𝑃 ∈ 𝜔𝜂

−
(𝑥

𝛼
) and each 𝐹 ∈ F,

then 𝑥
𝛼
is called an 𝜔-cluster point ofF.

Theorem 17. Let (𝐿𝑋
, Ω) be an 𝐿𝜔-space and 𝐴 ∈ 𝐿

𝑋. Then
𝐴 is 𝐿𝜔-compact if and only if for each 𝛼 ∈ 𝑀, every 𝛼-filter
containing 𝐴 as an element has an 𝜔-cluster point in 𝐴 with
hight 𝛼.

Proof. Necessity. Grant that 𝐴 is an 𝐿𝜔-compact set and that
F is an 𝛼-filter containing 𝐴 as an element. Then 𝐹 ∧ 𝐴 ∈ F
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for each 𝐹 ∈ F and ∨
𝑥∈𝑋

(𝐹 ∧ 𝐴)(𝑥) ⩾ 𝛼, and thus there
exists a molecule𝑁(𝐹, 𝑟) ⩽ 𝐴with hight 𝑟 for each 𝑟 ∈ 𝛽∗

(𝛼).
Define𝑁 = {𝑁(𝐹, 𝑟) ⩽ 𝐹∧𝐴 | (𝐹, 𝑟) ∈ F×𝛽

∗
(𝛼)} and define

a relation inF × 𝛽
∗
(𝛼) as follows:

(𝐹
1
, 𝑟

1
) ⩾ (𝐹

2
, 𝑟

2
) iff 𝐹

1
⩽ 𝐹

2
, 𝑟

1
⩾ 𝑟

2
. (1)

Evidently, F × 𝛽
∗
(𝛼) is a directed set with the relation “⩾”,

and then 𝑁 is an 𝛼-net in 𝐴. By the 𝐿𝜔-compactness of 𝐴
and Theorem 15,𝑁 has an 𝜔-cluster point in 𝐴 with hight 𝛼,
say 𝑥

𝛼
. We assert that 𝑥

𝛼
is also an 𝜔-cluster point of F. In

reality,𝑁 is frequently not in 𝑃 for each 𝑃 ∈ 𝜔𝜂
−
(𝑥

𝛼
); that is,

for each 𝐹 ∈ F there exist 𝐹
1
∈ F with 𝐹

1
⩽ 𝐹 and some

𝑟 ∈ 𝛽
∗
(𝛼) satisfying 𝑁(𝐹

1
, 𝑟) �⩽ 𝑃. Hence we have 𝐹 �⩽ 𝑃 by

virtue of the fact that𝑁(𝐹
1
, 𝑟) ⩽ 𝐹

1
⩽ 𝐹. This means that 𝑥

𝛼

is an 𝜔-cluster point ofF. Therefore the necessity is proved.

Sufficiency. Suppose that every 𝛼-filter containing 𝐴 as an
element has an 𝜔-cluster point in 𝐴 with hight 𝛼 for each
𝛼 ∈ 𝑀 and thatΦ is an 𝛼𝜔-RF of 𝐴. If for eachΨ ∈ 2

(Φ),Ψ is
not an (𝛼𝜔)−-RF of𝐴, then there exists amolecule𝑥

𝑟
⩽ 𝐴 and

𝑥
𝑟
⩽ ∧Ψ for each 𝑟 ∈ 𝛽

∗
(𝛼). Put F = {𝐹 ∈ 𝐿

𝑋
| ∃Ψ ∈ 2

(Φ)

with (∧Ψ) ∧ 𝐴 ⩽ 𝐹}. One can easily verify that F is an 𝛼-
filter containing 𝐴 as an element, and hence F has an 𝜔-
cluster point in 𝐴 with hight 𝛼 by the supposition, say 𝑥

𝛼
.

In accordance with Definition 16, we have 𝐹 �⩽ 𝑃 for each
𝑃 ∈ 𝜔𝜂

−
(𝑥

𝛼
) and each 𝐹 ∈ F, specially, ∧Ψ �⩽ 𝑃. Since Φ

is an 𝛼𝜔-RF of 𝐴, there exists an 𝜔-closed set 𝑄 ∈ Φ with
𝑄 ∈ 𝜔𝜂

−
(𝑥

𝛼
) for each 𝑥

𝛼
⩽ 𝐴. Obviously, {𝑄} ∈ 2(Φ), so𝑄�⩽𝑄,

and this is impossible. Hence there must be a Ψ ∈ 2
(Φ) which

is an (𝛼𝜔)−-RF of 𝐴. This shows that 𝐴 is 𝐿𝜔-compact.

Definition 18. Let 𝐼 be an ideal in 𝐿𝑋. If ∨
𝑥∈𝑋

𝐵
󸀠
(𝑥) ⩾ 𝛼 for

each 𝐵 ∈ 𝐼, then 𝐼 is called an 𝛼-ideal (𝛼 ∈ 𝑀).

Theorem 19. Let (𝐿𝑋
, Ω) be an 𝐿𝜔-space and 𝐴 ∈ 𝐿

𝑋. Then
𝐴 is 𝐿𝜔-compact if and only if every 𝛼-ideal 𝐼 whose 𝐴 is not
in 𝐼 has an 𝜔-cluster point in 𝐴 with hight 𝛼 for each 𝛼 ∈ 𝑀.

Proof. Necessity. Assume that 𝐴 is an 𝐿𝜔-compact set, 𝐼 is an
𝛼-ideal whose 𝐴 is not in 𝐼, and𝑁(𝐼) = {𝑁(𝐼)((𝑏, 𝐵)) = 𝑏 ⩽

𝐴 | (𝑏, 𝐵) ∈ 𝐷(𝐼)} where 𝐷(𝐼) = {(𝑏, 𝐵) | 𝑏 ∈ 𝑀
∗
(𝐿

𝑋
), 𝐵 ∈

𝐼 and 𝑏 �⩽ 𝐵}. Then 𝑁(𝐼) is an 𝛼-net in 𝐴. Hence 𝑁(𝐼) has
an 𝜔-cluster point in 𝐴 with hight 𝛼 by Theorem 15, say 𝑥

𝛼
.

Obviously, 𝑥
𝛼
is also an 𝜔-cluster point of 𝐼. Consequently,

the necessity is proved.

Sufficiency. Grant that every 𝛼-ideal whose 𝐴 is not in it has
an 𝜔-cluster point in 𝐴 with hight 𝛼 for each 𝛼 ∈ 𝑀 and
F is an 𝛼-filter containing 𝐴 as an element. Let 𝐼 = {𝐹

󸀠
∈

𝐿
𝑋

| 𝐹 ∈ F}. Evidently, 𝐼 is an 𝛼-ideal whose 𝐴 is not
in 𝐼. Now we will prove that F has an 𝜔-cluster point in
𝐴 with hight 𝛼. Actually, by the hypothesis we know that
𝐼 has an 𝜔-cluster point in 𝐴 with hight 𝛼, say 𝑥

𝛼
; that is,

𝐹
󸀠
∨ 𝑃 ̸= 1

𝑋
; equivalently, 𝐹 �⩽ 𝑃, for each 𝐹 ∈ F and each

𝑃 ∈ 𝜔𝜂
−
(𝑥

𝛼
). Therefore 𝑥

𝛼
is an 𝜔-cluster point of F in

line with Definition 16, and hence 𝐴 is an 𝐿𝜔-compact set by
Theorem 17. This implies that the sufficiency holds.

4. Some Important Properties of
𝐿𝜔-Compactness

In this section, we still further deliberate the properties of𝐿𝜔-
compactness in an 𝐿𝜔-space.

Theorem 20. Let (𝐿𝑋
, Ω) be an 𝐿𝜔-space and 𝐴, 𝐵 ∈ 𝐿𝑋. If 𝐴

is 𝐿𝜔-compact and 𝐵 is 𝜔-closed, then 𝐴 ∧ 𝐵 is 𝐿𝜔-compact.

Proof. Assume that 𝑁 is an 𝛼-net in 𝐴 ∧ 𝐵 (𝛼 ∈ 𝑀). Then
𝑁 is also an 𝛼-net in 𝐴. Since 𝐴 is 𝜔-compact, 𝑁 has an 𝜔-
cluster point in 𝐴 with hight 𝛼, say 𝑥

𝛼
. We assert that 𝑥

𝛼
⩽ 𝐵.

Actually, since 𝑁 is an 𝛼-net in 𝐵 and 𝑁 𝜔-accumulates 𝑥
𝛼
,

𝑁 has an 𝛼-subnet 𝑇 which 𝜔-converges to 𝑥
𝛼
and so 𝑥

𝛼
⩽

𝜔 cl(𝐵) = 𝐵. Hence 𝑥
𝛼
⩽ 𝐴∧𝐵, and thus𝐴∧𝐵 is 𝐿𝜔-compact

in accordance withTheorem 15.

This theorem shows that the 𝐿𝜔-compactness is heredi-
tary with respect to 𝜔-closed sets.

Theorem 21. Let𝐴 and 𝐵 be both 𝐿𝜔-compact sets in (𝐿𝑋
, Ω).

Then 𝐴 ∨ 𝐵 is also an 𝐿𝜔-compact set in (𝐿𝑋
, Ω).

Proof. Suppose thatΦ is an 𝛼𝜔-RF of𝐴∨𝐵 (𝛼 ∈ 𝑀). ThenΦ
is an 𝛼𝜔-RF of both 𝐴 and 𝐵. Owing to the 𝐿𝜔-compactness
of 𝐴, there are 𝜆

1
∈ 𝛽

∗
(𝛼) andΨ

1
∈ 2

(Φ) with ∧Ψ
1
< 𝐴(𝜆

1
𝜔).

Similarly, there exist 𝜆
2
∈ 𝛽

∗
(𝛼) and Ψ

2
∈ 2

(Φ) satisfying
∧Ψ

2
< 𝐴(𝜆

2
𝜔). Take 𝜆 = 𝜆

1
∧ 𝜆

2
and Ψ = Ψ

1
∪ Ψ

2
; then

𝜆 ∈ 𝛽
∗
(𝛼), Ψ ∈ 2

(Φ), and ∧Ψ < 𝐴(𝜆𝜔); that is, Ψ is an (𝛼𝜔)−-
RF of 𝐴 ∨ 𝐵. Consequently, 𝐴 ∨ 𝐵 is 𝐿𝜔-compact.

This theorem indicates that the 𝐿𝜔-compactness is
finitely additive.

Theorem 22. Let 𝐿 = [0, 1], (𝐿𝑋
, Ω) be an 𝐿𝜔-space and let

𝐴 ∈ 𝐿
𝑋 be an 𝐿𝜔-compact set. Then there exists a crisp point

𝑥 ∈ 𝑋 such that 𝐴(𝑥) = sup{𝐴(𝑡) | 𝑡 ∈ 𝑋}.

Proof. Let 𝛼 = sup{𝐴(𝑡) | 𝑡 ∈ 𝑋}; then 𝛼 ∈ [0, 1]. If 𝛼 = 0,
then 𝐴 = 0

𝑋
and hence 𝐴(𝑥) = sup{𝐴(𝑡) | 𝑡 ∈ 𝑋} holds for

each 𝑥 ∈ 𝑋. If 𝛼 > 0, and 𝐷 is the set of all natural numbers,
then we choose 𝑥𝑛

∈ 𝑋 with 𝐴(𝑥𝑛
) > 𝛼 − (1/𝑛) and 𝑁 =

{𝑥
𝑛

𝐴(𝑥
𝑛
)
| 𝑛 ∈ 𝐷}. Obviously,𝑁 is an 𝛼-net in 𝐴, and𝑁 has an

𝜔-cluster point 𝑥
𝛼
in 𝐴 by virtue of the 𝐿𝜔-compactness of

𝐴. Hence 𝐴(𝑥) ⩾ 𝛼 by 𝑥
𝛼
⩽ 𝐴. On the other hand, 𝐴(𝑥) ⩽ 𝛼

by the definition of 𝛼. Therefore 𝐴(𝑥) = 𝛼 = sup{𝐴(𝑡) | 𝑡 ∈
𝑋}.

This theorem implies that an 𝐿𝜔-compact set can reach
the maximum at some point in𝑋 as a function.

Theorem 23. Let (𝐿𝑋
, Ω

1
) and (𝐿𝑌

, Ω
2
) be an 𝐿𝜔

1
-space and

an 𝐿𝜔
2
-space, respectively, and let 𝑓 : 𝐿

𝑋
→ 𝐿

𝑌 be an
(𝜔

1
, 𝜔

2
)-continuous 𝐿-valued Zadeh’s type function. If 𝐴 is an

𝐿𝜔
1
-compact set in (𝐿𝑋

, Ω
1
), then 𝑓→

(𝐴) is an 𝐿𝜔
2
-compact

set in (𝐿𝑌
, Ω

2
).

Proof. Assume that Φ is an 𝛼𝜔
2
-RF of 𝑓→

(𝐴) and 𝑦
𝛼
∈

𝑀
∗
(𝐿

𝑌
) with 𝑦

𝛼
⩽ 𝑓

→
(𝐴)(𝛼 ∈ 𝑀). According to the
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definition of 𝑓, there is a molecule 𝑥
𝛼

∈ 𝑀
∗
(𝐿

𝑋
) such

that 𝑥
𝛼

⩽ 𝐴 and 𝑓
→
(𝑥

𝛼
) = 𝑦

𝛼
. Thus there is an 𝜔-

closed set 𝑄 ∈ Φ with 𝑓
→
(𝑥

𝛼
) �⩽ 𝑄; that is, 𝑥

𝛼 �⩽ 𝑓
←
(𝑄).

Since𝑓 is (𝜔
1
, 𝜔

2
)-continuous,𝑓←

(𝑄) is𝜔-closed in (𝐿𝑋
, 𝜔

1
),

and hence 𝑓←
(𝑄) ∈ 𝜔

1
𝜂
−
(𝑥

𝛼
). This means that 𝑓←

(Φ) =

{𝑓
←
(𝑄) | 𝑄 ∈ Φ} is an 𝛼𝜔

1
-RF of 𝐴. Therefore Φ has a

finite subfamily Ψ = {𝑄
1
, 𝑄

2
, . . . , 𝑄

𝑛
} such that 𝑓←

(Ψ) is an
(𝛼𝜔

1
)
−-RF of 𝐴. We assert thatΨ is an (𝛼𝜔

2
)
−-RF of 𝑓→

(𝐴).
In reality, there exists a 𝜆 ∈ 𝛽∗

(𝛼) with ∧𝑓←
(Ψ) < 𝐴(𝜆𝜔

1
) by

virtue of the fact that 𝑓←
(Ψ) is an (𝛼𝜔

1
)
−-RF of 𝐴. Since for

each 𝑦
𝜆
⩽ 𝑓

→
(𝐴) there exists a 𝑥

𝜆
⩽ 𝐴 satisfying 𝑓→

(𝑥
𝜆
) =

𝑦
𝜆
, and there exists a 𝑄 ∈ Ψ with 𝑓←

(𝑄) ∈ 𝜔
1
𝜂
−
(𝑥

𝜆
), that is,

𝑥
𝜆 �⩽ 𝑓

←
(𝑄). Hence 𝑦

𝜆
= 𝑓

→
(𝑥

𝜆
) ≰ 𝑄 by Lemma 3.1 in [19],

and so Ψ is an (𝛼𝜔
2
)
−-RF of 𝑓→

(𝐴). Consequently, 𝑓→
(𝐴)

is an 𝐿𝜔
2
-compact set in (𝐿𝑌, Ω

2
).

This theoremmeans that the 𝐿𝜔-compactness is topolog-
ical variant under (𝜔

1
, 𝜔

2
)-continuous 𝐿-valued Zadeh’s type

functions.

Definition 24. Let (𝑋,Ω) be a crisp 𝜔-space, and letP(𝑋) be
the set of all subsets of 𝑋, that is, all crisp sets on 𝑋 and 𝐴 ∈

𝐿
𝑋, where 𝜔 : P(𝑋) → P(𝑋) is a crisp 𝜔-operator which

satisfies the following conditions: (1)𝜔(𝑈) ⊆ 𝜔(𝑉) for each
𝑈,𝑉 ∈ P(𝑋) and 𝑈 ⊆ 𝑉; (2)𝑈 ⊆ 𝜔(𝑈) for each 𝑈 ∈ P(𝑋).

(i) If 𝜉
𝛼
(𝐴) = {𝑥 ∈ 𝑋 | 𝐴(𝑥) ⩽ 𝛼} ∈ 𝜔𝐶(𝑋), where

𝜔𝐶(𝑋) denotes the set of all crisp 𝜔-closed sets on 𝑋
and 𝛼 ∈ 𝑀, then 𝐴 is said to be an 𝐿-valued lower
semicontinuous function on𝑋.

(ii) Let Δ
𝐿
(Ω) be the set of all 𝐿-valued lower semicon-

tinuous functions on𝑋, and call the pair (𝐿𝑋, Δ
𝐿
(Ω))

the 𝐿𝜔-space topologically generated by (𝑋,Ω).

Theorem 25. Let (𝑋,Ω) be a crisp 𝜔-space and let
(𝐿𝑋

, Δ
𝐿
(Ω)) be the 𝐿𝜔-space topologically generated

by (𝑋,Ω). Then 𝐴 ∈ 𝐿
𝑋 is 𝐿𝜔-compact if and only if

𝜏
𝛼
(𝐴) = {x ∈ 𝑋 | 𝐴(𝑥) ⩾ 𝛼} is 𝜔-compact for each 𝛼 ∈ 𝑀.

Proof. Necessity. Provided that 𝐴 ∈ 𝐿
𝑋 is an 𝐿𝜔-compact set

in (𝐿𝑋
, Δ

𝐿
(Ω)) andΦ is an𝜔-open cover of 𝜏

𝛼
(𝐴)(𝛼 ∈ 𝑀), let

Γ = {𝜒
𝐺
| 𝐺 ∈ Φ} and 𝛾 = 𝛼

󸀠, where 𝜒
𝐺
is the characteristic

function of 𝐺. We assert that Γ is a 𝛾𝜔-cover of 𝐴. In fact, for
each 𝑥 ∈ 𝜏

𝛾
󸀠(𝐴), there is an𝜔-open set𝐺 ∈ Φwith 𝑥 ∈ 𝐺; that

is, 𝜒
𝐺
(𝑥) = 1. Hence 𝜒

𝐺
(𝑥) �⩽ 𝛾 by virtue of the fact that 𝛾 is a

prime element in 𝐿 with 𝛾 ̸= 1. Thus Φ has a finite subfamily
{𝐺

1
, 𝐺

2
, . . . , 𝐺

𝑚
} such that 𝜇 = {𝜒

𝐺𝑖
| 𝑖 = 1, 2, . . . , 𝑚} ∈ 2

(Γ)

which is a (𝛾𝜔)+-cover of 𝐴 in line with Theorem 13; that is,
there is an 𝑖 ∈ {1, 2, . . . , 𝑚} such that 𝜒

𝐺𝑖
∈ 𝜇 with 𝜒

𝐺𝑖
(𝑥) �⩽ 𝜆

for some 𝜆 ∈ 𝛼
∗
(𝛾) and each 𝑥 ∈ 𝜏

𝛼
(𝐴), and so 𝑥 ∈ 𝐺

𝑖
. This

implies that 𝜏
𝛼
(𝐴) ⊆ ∪

𝑚

𝑖=1
𝐺

𝑖
. Hence 𝜏

𝛼
(𝐴) is an𝜔-compact set

in (𝑋, Ω).

Sufficiency. Grant that 𝜏
𝛼
(𝐴) is an 𝜔-compact set in (𝑋, Ω)

for each 𝛼 ∈ 𝑀 and that Γ is a 𝛾𝜔-cover of 𝐴 where 𝛾 = 𝛼
󸀠.

Then there is an 𝜔-open set 𝐵
𝑥

∈ Γ with 𝐵
𝑥
(𝑥) �⩽ 𝛾 for

each 𝑥 ∈ 𝜏
𝛼
(𝐴), and hence there exists a prime element

𝑡(𝑥) ∈ 𝛼
∗
(𝛾) satisfying 𝐵

𝑥
(𝑥) �⩽ 𝑡(𝑥). Put 𝑙

𝑡(𝑥)
(𝐵

𝑥
) = {𝑦 ∈

𝑋 | 𝐵
𝑥
(𝑦) �⩽ 𝑡(𝑥)} and Φ = {𝑙

𝑡(𝑥)
(𝐵

𝑥
) | 𝑥 ∈ 𝜏

𝛼
(𝐴)}; then Φ

is an 𝜔-open cover of 𝜏
𝛼
(𝐴) according to 𝑥 ∈ 𝑙

𝑡(𝑥)
(𝐵

𝑥
) and

𝐵
𝑥
∈ Δ

𝐿
(Ω). Because of the 𝜔-compactness of 𝜏

𝛼
(𝐴),Φ has a

finite subfamily Ψ = {𝑙
𝑡(𝑥𝑖)

(𝐵
𝑥𝑖
) | 𝑖 = 1, 2, . . . , 𝑚} which is an

𝜔-open cover of 𝜏
𝛼
(𝐴); that is, there exists an 𝑖 ∈ {1, 2, . . . , 𝑚}

with 𝑥 ∈ 𝑙
𝑡(𝑥𝑖)

(𝐵
𝑥𝑖
); in other words, 𝐵

𝑥𝑖
(𝑥) �⩽ 𝑡(𝑥

𝑖
) for each

𝑥 ∈ 𝜏
𝛼
(𝐴). Take 𝑡 = ∧

𝑚

𝑖=1
𝑡(𝑥

𝑖
); evidently, 𝑡 ∈ 𝛼

∗
(𝛾) and

𝐵
𝑥𝑖
(𝑥) �⩽ 𝑡. Hence 𝜇 = {𝐵

𝑥𝑖
| 𝑖 = 1, 2, . . . , 𝑚} is a (𝛾𝜔)+-

cover of 𝐴, and thus 𝐴 is an 𝐿𝜔-compact set in (𝐿𝑋, Δ
𝐿
(Ω))

by Theorem 13.

This theorem indicates that the 𝐿𝜔-compactness is a good
extension in the sense of R. Lowen.

Theorem 26. Let (𝐿𝑋,Ω) be a stratified 𝜔𝑇
2
and𝐴 ∈ 𝐿

𝑋. If𝐴
is 𝐿𝜔-compact, then 𝐴 is 𝜔-closed.

Proof. We only prove that 𝑥
𝛼
⩽ 𝐴 for each 𝑥

𝛼
∈ 𝑀

∗
(𝐿

𝑋
)

with 𝑥
𝛼
⩽ 𝜔 cl(𝐴) by the definition of 𝜔-operator. Actually, if

𝑥
𝛼
⩽ 𝜔 cl(𝐴), then there exists a molecular net 𝑁 = {𝑥

(𝑛)

𝑡(𝑛)
∈

𝑀
∗
(𝐿

𝑋
) | 𝑛 ∈ 𝐷} in𝐴which𝜔-converges to𝑥

𝛼
in accordance

with Theorem 2 in [11]. Write 𝜆 = ∧
𝑚∈𝐷

∨
𝑛⩾𝑚

𝑡(𝑛); we assert
that 𝜆 ⩾ 𝛼. In fact, if 𝜆 �⩾ 𝛼, then there is a 𝑚 ∈ 𝐷 with
∨
𝑛⩾𝑚

𝑡(𝑛) �⩾ 𝛼, and let𝑑 = ∨
𝑛⩾𝑚

𝑡(𝑛). Since (𝐿𝑋
, Ω) is stratified,

the constant 𝐿-set [𝑑] on 𝑋 is 𝜔-closed and 𝑥
𝛼 �⩽ [𝑑], that

is, [𝑑] ∈ 𝜔𝜂
−
(𝑥

𝛼
). Obviously, 𝑁 is eventually in [𝑑], and it

contradicts the fact that 𝑁 𝜔-converges to 𝑥
𝛼
. Hence 𝜆 ⩾ 𝛼;

that is, ∨
𝑛⩾𝑚

𝑡(𝑛) ⩾ 𝛼 for each𝑚 ∈ 𝐷. For each 𝑟 ∈ 𝛽∗
(𝛼) and

each 𝑚 ∈ 𝐷 we choose 𝑛(𝑟,𝑚) ∈ 𝐷 such that 𝑛(𝑟,𝑚) ⩾ 𝑚

and 𝑡(𝑛(𝑟, 𝑚)) ⩾ 𝑟, and define the relation “⩾” in 𝛽∗
(𝛼) × 𝐷

as follows:

(𝑟
1
, 𝑚

1
) ⩾ (𝑟

2
, 𝑚

2
) iff 𝑟

1
⩾ 𝑟

2
, 𝑚

1
⩾ 𝑚

2
. (2)

Then 𝛽
∗
(𝛼) × 𝐷 is a directed set with the relation. Write

𝑆 = {𝑥
𝑛(𝑟,𝑚)

𝑡(𝑛(𝑟,𝑚))
| (𝑟, 𝑚) ∈ 𝛽

∗
(𝛼) × 𝐷}; then 𝑆 = 𝑁 ∘ 𝑅, where

𝑅 : 𝛽
∗
(𝛼) × 𝐷 → 𝐷 is defined as 𝑅(𝑛(𝑟,𝑚)) = 𝑛(𝑟,𝑚).

Evidently 𝑆 is a subnet of 𝑁 and 𝜔-converges to 𝑥
𝛼
, and 𝑆 is

an 𝛼-net in 𝐴. Being the 𝐿𝜔-compactness of 𝐴, 𝑆 has an 𝜔-
cluster point in𝐴with hight 𝛼, say 𝑧

𝛼
. Since (𝐿𝑋,Ω) is an𝜔𝑇

2

space, 𝑆 𝜔-converges to 𝑥
𝛼
and 𝜔-accumulates to 𝑧

𝛼
, 𝑧 = 𝑥

by Theorem 2.7 in [11], and hence 𝑥
𝛼
= 𝑧

𝛼
⩽ 𝐴. This implies

that 𝜔 cl(𝐴) ⩽ 𝐴; that is, 𝐴 is an 𝜔-closed set.

The following example shows that the stratified condition
inTheorem 26 can not be omitted.

Example 27. Let 𝑋 = {𝑥} be a single set, 𝐿 = [0, 1], and
let 𝜔 : 𝐿

𝑋
→ 𝐿

𝑋 be the fuzzy closure operator. Define
𝜔𝑂(𝐿

𝑋
) = {0

𝑋
, 𝑥

1/3
, 1

𝑋
}, where 𝐴 : 𝑥 → [0, 1] is defined

as 𝐴(𝑥) = 𝑥
𝛼
, 𝛼 ∈ [0, 1] for 𝑥 ∈ 𝑋. Obviously, (𝐿𝑋

, Ω) is both
an 𝐿𝜔-compact space and an 𝑁-compact space. According
to Example 11 we know that𝐴 = 𝑥

1/3
is an 𝐿𝜔-compact set in

(𝐿𝑋
, Ω), but 𝐴 is not 𝜔-closed.

The following theorems imply that the 𝐿𝜔-compactness
can strengthen 𝜔-seperation properties.
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Theorem 28. If (𝐿𝑋, Ω) is both 𝜔𝑇
2
and 𝐿𝜔-compact 𝐿𝜔-

space, then (𝐿𝑋
, Ω) is an 𝜔-regular space [11].

Proof. Let 𝐺 ∈ 𝐿
𝑋 be an 𝜔-closed pseudocrisp set and let 𝑥

𝜆

be a molecule which 𝑥 is not in supp 𝐺. By Definition 7.1 in
[19], there is an 𝛼 ∈ 𝑀 such that 𝐺(𝑥) > 0 implies 𝐺(𝑥) ⩾ 𝛼.
For each 𝑦

𝛼
∈ 𝑀

∗
(𝐿

𝑋
), there are 𝑃

𝑦
∈ 𝜔𝜂

−
(𝑥

𝜆
) and 𝑄

𝑦
∈

𝜔𝜂
−
(𝑦

𝛼
) satisfying 𝑃

𝑦
∨ 𝑃

𝑦
= 1

𝑋
by virtue of 𝑥 ̸= 𝑦 and the

𝜔𝑇
2
separation of (𝐿𝑋

, Ω). Put Φ = {𝑄
𝑦
| 𝑦

𝛼
⩽ 𝐺}; then

Φ is an 𝛼𝜔-RF of 𝐺. Since (𝐿𝑋
, Ω) is an 𝐿𝜔-compact space,

𝐺 is an 𝐿𝜔-compact set in accordance with Theorem 20, and
thus Φ has a finite subfamily Ψ = {𝑄

𝑦1
, 𝑄

𝑦2
, . . . , 𝑄

𝑦𝑛
} which

is an (𝛼𝜔)−-RF of 𝐺; that is, there is an 𝑟 ∈ 𝛽
∗
(𝛼) such that

for each molecule 𝑧
𝑟
⩽ 𝐺 we have 𝑖 ⩽ 𝑛 with 𝑧

𝑟 �⩽ 𝑄
𝑦𝑖
. Let

𝑄 = ∧
𝑛

𝑖=1
𝑄

𝑦𝑖
; then 𝑧

𝑟 �⩽ 𝑄; that is, 𝑟 �⩽ 𝑄(𝑧) for each 𝑧
𝑟
⩽ 𝐺.

Since 𝐺(𝑧) > 0 implies that 𝐺(𝑧) ⩾ 𝛼 ⩾ 𝑟, 𝐺(𝑧) �⩽ 𝑄(𝑧) for
each 𝑧 ∈ supp𝐺, and hence 𝑄 ∈ 𝜔𝜂

−
(𝐺). Write 𝑃 = ∨

𝑛

𝑖=1
𝑃𝑦

𝑖
;

then 𝑃 ∈ 𝜔𝜂
−
(𝑥

𝜆
) and

𝑃 ∨ 𝑄 = (∨
𝑛

𝑖=1
𝑃𝑦

𝑖
) ∨ (∧

𝑛

𝑖=1
𝑄𝑦

𝑖
) ⩾ ∨

𝑛

𝑖=1
(𝑃𝑦

𝑖
∨ 𝑄𝑦

𝑖
) = 1. (3)

Consequently, (𝐿𝑋, Ω) is an 𝜔-regular space.

Theorem 29. Let (𝐿𝑋
, Ω) be an 𝐿𝜔-compact 𝜔𝑇

2
space. Then

(𝐿𝑋
, Ω) is an 𝜔-normal space [11].

Proof. Let both 𝐺,𝐻 be 𝜔-closed pseudocrisp sets in (𝐿𝑋
, Ω)

with (supp𝐺) ∩ (supp𝐻) = 𝜙. Then there are 𝜆, 𝜇 ∈ 𝑀 such
that 𝐺(𝑥) > 0 if and only if 𝐺(𝑥) ⩾ 𝜆, and 𝐻(𝑥) > 0 if and
only if𝐻(𝑥) ⩾ 𝜇. According to the proof of Theorem 28, for
each molecule 𝑦

𝜇
⩽ 𝐺, there is an 𝜔-closed set 𝑃

𝑦
∈ 𝜔𝜂

−
(𝐺)

satisfying 𝜆 �⩽ 𝑃
𝑦
(𝑧) for each 𝑧 ∈ supp𝐺, and there is a 𝑄

𝑦
∈

𝜔𝜂
−
(𝑦

𝜇
) such that 𝑃

𝑦
∨ 𝑄

𝑦
= 1. One can easily see that Φ =

{𝑄
𝑦
| 𝑦

𝜇
⩽ 𝐵} is a 𝜇𝜔-RF of 𝐻. In line with Theorem 20

we know that 𝐻 is an 𝐿𝜔-compact set, and so Φ has a finite
subfamily Ψ = {𝑄

𝑦1
, 𝑄

𝑦2
, . . . , 𝑄

𝑦𝑛
} such that Ψ is a (𝜇𝜔)−-RF

of 𝐻. Put 𝑃 = ∨
𝑛

𝑖=1
𝑃𝑦

𝑖
; 𝑄 = ∧

𝑛

𝑖=1
𝑄

𝑦𝑖
; then 𝑃 ∈ 𝜔𝜂

−
(𝐺), 𝑄 ∈

𝜔𝜂
−
(𝐻) and 𝑃 ∨ 𝑄 = 1. Therefore (𝐿𝑋, Ω) is an 𝜔-normal

space.

5. The Tychonoff Product Theorem

In this section, we will first extend Alexandar’s subbase
Lemma in general topology and give the Alexandar’s 𝜔-
subbase lemma and next prove that the Tychonoff product
theorem holds in 𝐿𝜔-spaces.

Theorem 30 (Alexandar 𝜔-subbase lemma). Let (𝐿𝑋, Ω) be
an 𝐿𝜔-space, 𝐴 ∈ 𝐿

𝑋, and let 𝛾 be an 𝜔-subbase [20] in 𝐿𝑋.
If for each 𝛼𝜔-RF Φ of 𝐴 where Φ ⊆ 𝛾

󸀠
⊆ 𝜔𝐶(𝐿

𝑋
), there is a

finite subfamily Ψ of Φ with ∧Ψ ≪ 𝐴(𝛼𝜔)(𝛼 ∈ 𝑀), then 𝐴 is
𝐿𝜔-compact.

Proof. Suppose that Φ is an arbitrary 𝛼𝜔-RF of 𝐴. We will
prove thatΦ has a finite subfamilyΨwhich is an (𝛼𝜔)+-RF of
𝐴. In fact, if for each Ψ ∈ 2

(Φ), ∧Ψ ≪ 𝐴(𝛼𝜔) does not hold,
then 𝐻 = {Δ | Φ ⊆ Δ ⊆ 𝜔𝐶(𝐿

𝑋
), for all Ψ ∈ 2

(Δ)
, ∧Ψ ≪

𝐴(𝛼𝜔) does not hold} ̸= 0, and𝐻 is a partial-ordered set with
respect to the upper bound and hence there exists a maximal
elementΔ

0
in𝐻 by Zorn’s Lemma.We assert thatΔ

0
satisfies

the following conditions:
(1) ∧Δ

0
< 𝐴(𝛼 ⩾ 𝜔);

(2) if 𝑃 ∈ Δ
0
, then 𝑄 ∈ Δ

0
for each 𝑄 ∈ 𝜔𝐶(𝐿

𝑋
) with

𝑄 ⩾ 𝑃;
(3) if 𝑃,𝑄 ∈ 𝜔𝐶(𝐿

𝑋
) and 𝑃 ∨ 𝑄 ∈ Δ

0
, then 𝑃 ∈ Δ

0
or

𝑄 ∈ Δ
0
.

Actually, since ∧Φ < 𝐴(𝛼𝜔) and Φ ⊆ Δ
0
, condition (1)

holds. If𝑃 ∈ Δ
0
,𝑄 ∈ 𝜔𝐶(𝐿

𝑋
),𝑄 ⩾ 𝑃, and𝑄 is not inΔ

0
, then

Δ
∗
= Δ

0
∪ {𝑄} ∈ 𝐻 and Δ

0
⊂ Δ

∗. It contradicts the fact that
Δ

0
is the maximal element in𝐻 thus condition (2) holds. Let

𝑃,𝑄 ∈ 𝜔𝐶(𝐿
𝑋
). If 𝑃 and 𝑄 are both not in Δ

0
, then Δ

0
∪ {𝑃}

and Δ
0
∪ {𝑄} are both not in𝐻 by the maximality of Δ

0
, and

thus there are Ψ
1
, Ψ

2
∈ 2

(Δ 0) such that ∧(Ψ
1
∪ {𝑃}) ≪ 𝐴(𝛼𝜔)

and ∧(Ψ
2
∪ {𝑄}) ≪ 𝐴(𝛼𝜔) according to the definition of 𝐻;

that is, there are 𝑠, 𝑡 ∈ 𝛽
∗
(𝛼) with ∧(Ψ

1
∪ {𝑃}) < 𝐴(𝑠𝜔) and

∧(Ψ
2
∪ {𝑄}) < 𝐴(𝑡𝜔). Since 𝛽∗

(𝛼) is upper directed, we can
choose 𝑟 ∈ 𝛽∗

(𝛼) with 𝑟 ⩾ 𝑠 ∨ 𝑡. Now we prove ∧{Ψ
2
∪ Ψ

2
∪

{𝑃∨𝑄}} < 𝐴(𝑟𝜔). In reality, ifΨ
2
∪Ψ

2
does not have any 𝜔𝑅-

neighborhood of𝑥
𝑟
for each𝑥

𝑟
⩽ 𝐴, thenΨ

2
∪Ψdoes not have

any 𝜔𝑅-neighborhood of 𝑥
𝑠
and 𝑥

𝑡
, respectively, and hence

𝑃 ∈ 𝜔𝜂
−
(𝑥

𝑠
) and 𝑄 ∈ 𝜔𝜂

−
(𝑥

𝑡
). Particularly, 𝑃,𝑄 ∈ 𝜔𝜂

−
(𝑥

𝑟
)

and so𝑃∨𝑄 ∈ 𝜔𝜂
−
(𝑥

𝑟
).This shows that∧(Ψ

2
∪Ψ

2
∪{𝑃∨𝑄}) <

𝐴(𝑟𝜔). Therefore 𝑃∨𝑄 is not in Δ
0
by virtue of the definition

of Δ
0
and Ψ

1
, Ψ

2
∈ 2

(Δ 0). So, condition (3) holds.
From (2) and (3) we have the following result:

(4) If 𝑅 ∈ Δ
0
, 𝑃

𝑖
∈ 𝜔𝐶(𝐿

𝑋
) (𝑖 = 1, 2, . . . , 𝑛) and 𝑅 ⩽

∨
𝑛

𝑖=1
𝑃
𝑖
, then there is an 𝑖 ∈ {1, 2, . . . , 𝑛} satisfying 𝑃

𝑖
∈

Δ
0
.

Consider now 𝛾
󸀠
∩ Δ

0
. If 𝛾󸀠 ∩ Δ

0
is an 𝛼𝜔-RF of 𝐴, then

there is a finite subfamily 𝛿 of 𝛾󸀠 ∩ Δ
0
which is an (𝛼𝜔)−-RF

of 𝐴. Evidently, 𝛿 ∈ 2
(Δ 0); it is in contradiction with Δ

0
∈

𝐻. Hence 𝛾󸀠 ∩ Δ
0
is not an 𝛼𝜔-RF of 𝐴; that is, there is a

molecule 𝑥
𝛼
in 𝐴 meeting 𝑥

𝛼
⩽ ∧(𝛾

󸀠
∩ Δ

0
). We now verify

that 𝑥
𝛼
⩽ ∧Δ

0
. In fact, if there is𝑄 ∈ Δ

0
with 𝑥

𝛼 �⩽ 𝑄, then
by Definition 5 in [17] we can take a finite subfamily {𝑃

𝑖𝑗
|

𝑗 ∈ 𝐽
𝑖
, 𝑖 ∈ 𝐼} of 𝛾󸀠 satisfying 𝑄 = ∧

𝑖∈𝐼
∨
𝑗∈𝐽𝑖

𝑃
𝑖𝑗
, where 𝐽

𝑖
is a

finite set for each 𝑖 ∈ 𝐼. Because of 𝑥
𝛼 �⩽ 𝑄, we can choose

𝑖 ∈ 𝐼 with 𝑥
𝛼 �⩽ ∨

𝑗∈𝐽𝑖
𝑃
𝑖𝑗
. Since 𝑄 ⩽ ∨

𝑗∈𝐽𝑖
𝑃
𝑖𝑗
, there is a 𝑗 ∈ 𝐽

𝑖

such that 𝑃
𝑖𝑗
∈ Δ

0
by (4). Hence 𝑃

𝑖𝑗
∈ 𝛾

󸀠
∩ Δ

0
and 𝑥

𝛼 �⩽ 𝑃
𝑖𝑗
; it

contradicts the fact that 𝑥
𝛼
⩽ ∧(𝛾

󸀠
∩Δ

0
) ⩽ 𝑃

𝑖𝑗
; thus 𝑥

𝛼
⩽ ∧Δ

0
.

However, this is in contradiction with (1) again. This implies
that Φ has a finite subfamily Ψ with ∧Ψ ≪ 𝐴(𝛼𝜔). Therefore
𝐴 is an 𝐿𝜔-compact set in (𝐿𝑋

, Ω).

Theorem 31. Let {(𝐿𝑋𝑡 , Ω
𝑡
) | 𝑡 ∈ 𝑇} be a collection of 𝐿𝜔-

spaces and let (𝐿𝑋
, Ω) be the product space of them. If 𝐴

𝑡
is an

𝐿𝜔-compact set in (𝐿𝑋𝑡 , Ω
𝑡
) for each 𝑡 ∈ 𝑇, then the product

𝐴 = Π
𝑡∈𝑇
𝐴

𝑡
of all 𝐿𝜔-compact sets 𝐴

𝑡
(𝑡 ∈ 𝑇) is an 𝐿𝜔-

compact set in (𝐿𝑋
, Ω).

Proof. Assume that Φ is an 𝛼𝜔-RF of 𝐴(𝛼 ∈ 𝑀). By
Theorem 30 we can grant that every 𝜔-closed set in Φ is of
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the form 𝜌
←

𝑡
(𝐵

𝑡
) where 𝐵

𝑡
∈ 𝜔𝐶(𝐿

𝑋𝑡) and 𝜌
𝑡
: 𝐿

𝑋
→ 𝐿

𝑋𝑡 is
a protection because {𝜌←

𝑡
(𝑈

𝑡
) | 𝑈

𝑡
∈ 𝜔𝑂(𝐿

𝑋
), 𝑡 ∈ 𝑇} is an 𝜔-

subbase in (𝐿𝑋
, Ω) [20]. Now we consider the following two

cases.
(i) If there exists a 𝑡

0
∈ 𝑇 such that no molecule with

hight 𝛼 is contained in 𝐴
𝑡0
, then by the 𝐿𝜔-compactness of

𝐴
𝑡0
, there is an 𝑟 ∈ 𝛽∗

(𝛼) such that no molecule with hight 𝑟
is contained in 𝐴

𝑡0
. In reality, if there exists a molecule with

hight 𝑟 in 𝐴
𝑡0
for each 𝑟 ∈ 𝛽∗

(𝛼), say𝑁(𝑟), then𝑁 = {𝑁(𝑟) |

𝑟 ∈ 𝛽
∗
(𝛼)} is an 𝛼-net in 𝐴

𝑡0
by the directivity of 𝛽∗

(𝛼).
Since𝐴

𝑡0
is 𝐿𝜔-compact,𝑁 has an𝜔-cluster point in𝐴

𝑡0
with

hight 𝛼 according to Theorem 15. It is in contradiction with
the hypothesis of 𝐴

𝑡0
. Thus it can be seen that there exists an

𝑟 ∈ 𝛽
∗
(𝛼) with 𝐴

𝑡0
(𝑥

𝑡0) �⩾ 𝑟 for each 𝑥𝑡0 ∈ 𝑋
𝑡0
. Hence for

each 𝑥 ∈ 𝑋, we have

𝐴 (𝑥) = (Π
𝑡∈𝑇
𝐴

𝑡
) (𝑥)

= ∧
𝑡∈𝑇
𝐴

𝑡
(𝜌

𝑡
(𝑥)) ⩽ 𝐴

𝑡0
(𝜌

𝑡0
(𝑥)) = 𝐴

𝑡0
(𝑥

𝑡0) ,

(4)

and hence𝐴(𝑥) �⩾ 𝑟 for each 𝑥 ∈ 𝑋; that is, no molecule with
hight 𝑟 is contained in 𝐴. This shows that for each Ψ ∈ 2

(Φ),
Ψ is an (𝛼𝜔)−-RF of 𝐴.

(ii) Suppose that for each 𝑡 ∈ 𝑇, 𝐴
𝑡
contains a molecule

with hight 𝛼, say 𝑥𝑡

𝛼
. Since Φ ⊆ {𝜌

←

𝑡
(𝐵

𝑡
) | 𝐵

𝑡
∈ 𝜔𝐶(𝐿

𝑋
), 𝑡 ∈

𝑇}, we can take 𝑅 ⊆ 𝑇 such that Φ = ∪
𝑡∈𝑅
Φ

𝑡
, where Φ

𝑡
=

{𝜌
←

𝑡
(𝐵

𝑡
) | 𝐵

𝑡
∈ B

𝑡
⊆ 𝜔𝐶(𝐿

𝑋
)}. Now we prove that there

must be 𝑠 ∈ 𝑅 with ∧B
𝑠
< 𝐴(𝛼𝜔). In fact, if there is a crisp

point 𝑦𝑡
∈ 𝑋

𝑡
such that 𝑦𝑡

⩽ 𝐴
𝑡
∧ (∧B

𝑡
) for each 𝑡 ∈ 𝑅, then

we choose a crisp point 𝑧 in 𝑋 as follows: if 𝑡 ∈ 𝑅, 𝑧𝑡 = 𝑦
𝑡;

if 𝑡 is not in 𝑅, 𝑧𝑡 = 𝑥
𝑡. Taking any 𝜔-closed set 𝜌←

𝑡
(𝐵

𝑡
) in Φ,

where 𝑡 ∈ 𝑅 and 𝐵
𝑡
∈ B

𝑡
, we have

𝜌
←

𝑡
(𝐵

𝑡
) (𝑧) = 𝐵

𝑡
(𝑧

𝑡
) = 𝐵

𝑡
(𝑦

𝑡
) ⩾ (𝐴

𝑡
∧ (∧B

𝑡
)) (𝑦

𝑡
) ⩾ 𝛼,

(5)

that is, 𝑧
𝛼
⩽ 𝜌

←

𝑡
(𝐵

𝑡
), and hence 𝑧

𝛼
⩽ ∧Φ by the arbitrariness

of 𝜌←

𝑡
(𝐵

𝑡
) ∈ Φ. On the other hand,

𝐴 (𝑧) = ∧
𝑡∈𝑅
𝐴

𝑡
(𝑧

𝑡
) = (∧

𝑡∈𝑅
𝐴

𝑡
(𝑦

𝑡
)) ∧ (∧

𝑡∈𝑅
𝐴

𝑡
(𝑥

𝑡
)) ⩾ 𝛼.

(6)

This implies that 𝑧
𝛼
is a molecule in 𝐴; it contradicts the fact

that Φ is an 𝛼𝜔-RF of 𝐴. Consequently, there is 𝑠 ∈ 𝑅 with
∧B

𝑠
< 𝐴

𝑠
(𝛼); thus there is a finite subfamily Γ

𝑠
of B

𝑠
with

Γ
𝑠
< 𝐴

𝑠
(𝑟𝜔) for some 𝑟 ∈ 𝛽∗

(𝛼). Put Ψ = {𝜌
←

𝑠
(𝐵

𝑠
) | 𝐵

𝑠
∈ Γ

𝑠
};

then Ψ ∈ 2
(Φ). We assert that ∧Ψ < 𝐴(𝑟𝜔). Actually, for any

molecule 𝑒
𝑟
in 𝐴 with hight 𝑟 we have 𝐴

𝑠
(𝑒

𝑠
) ⩾ 𝐴(𝑒) ⩾ 𝑟;

that is, 𝑒𝑠
𝑟
is a molecule in 𝐴

𝑠
, where 𝑒 = {𝑒

𝑡
}
𝑡∈𝑇

∈ 𝑋. Hence
there exists an 𝜔-closed set 𝐵

𝑠
∈ Γ

𝑠
meeting 𝐵

𝑠
∈ 𝜔𝜂

−
(𝑒

𝑠

𝑟
) by

virtue of the fact that Γ
𝑠
is an 𝑟𝜔-RF of 𝐴

𝑠
; thus 𝜌←

𝑠
(𝐵

𝑠
)(𝑒) =

𝐵
𝑠
(𝑒

𝑠
) �⩾ 𝑟; that is, 𝜌←

𝑠
(𝐵

𝑠
) ∈ 𝜔𝜂

−
(𝑒

𝑟
). This shows that Ψ is an

𝑟𝜔-RF of𝐴.Therefore𝐴 is an 𝐿𝜔-compact set in (𝐿𝑋
, Ω).

Theorem32 (Tychonoff product theorem). Let (𝐿𝑋,Ω) be the
product space of a collection of 𝐿𝜔-spaces {(𝐿𝑋𝑡 , Ω

𝑡
) | 𝑡 ∈ 𝑇}.

Then (𝐿𝑋,Ω) is 𝐿𝜔-compact if and only if for each 𝑡 ∈ 𝑇, (𝐿𝑋𝑡 ,
Ω

𝑡
) is 𝐿𝜔-compact.

Proof. Necessity. Assume that (𝐿𝑋, Ω) is an 𝐿𝜔-compact
space. Since 𝜌

𝑡
: (𝐿

𝑋
, Ω) → (𝐿

𝑋𝑡 , Ω
𝑡
) is an 𝜔-continuous

𝐿-valued Zadeh’s type function for each 𝑡 ∈ 𝑇, (𝐿𝑋𝑡 , Ω
𝑡
) is

an 𝐿𝜔-compact space byTheorem 23.Therefore the necessity
holds.

Sufficiency. It follows fromTheorem 31.

The following example shows that the inverse theorem of
Theorem 31 does not hold.

Example 33. Let 𝐸 = {𝑒
1
, 𝑒

2
, . . .} be a countably infinite set,

𝑋
𝑡
= 𝐸 for each 𝑡 ∈ 𝑇 = {1, 2, . . .}, 𝐿 = [0, 1],Ω

𝑡
= [0, 1]

𝐸 and
let 𝜔 be a fuzzy closure operator. Then (𝐿𝑋𝑡 , Ω

𝑡
) is a discrete

𝐿𝜔-space for each 𝑡 ∈ 𝑇. Define 𝐴
𝑡
∈ 𝐿

𝑋𝑡 (𝑡 ∈ 𝑇) as follows:
if 𝑗 = 1, 𝐴

𝑡
(𝑒

𝑗
) = 1; if 𝑗 ⩾ 2, 𝐴

𝑡
(𝑒

𝑗
) = 1/𝑡.

Suppose that (𝐿𝑋
, Ω) is the product space of {(𝐿𝑋𝑡 , Ω

𝑡
) |

𝑡 ∈ 𝑇} and 𝐴 = Π
𝑡∈𝑇
𝐴

𝑡
. Now we prove that 𝐴 is an 𝐿𝜔-

compact set in (𝐿𝑋, Ω), but 𝐴
𝑡
is not an 𝜔-compact set in

(𝐿
𝑋𝑡 , Ω

𝑡
) for each 𝑡 ∈ 𝑇. In reality, for each 𝑥 = (𝑥

1
, 𝑥

2
, . . .) ∈

𝑋 we put 𝑥
𝑡
= 𝑒

𝑡

𝑗(𝑡)
, where 𝑥

𝑡
is a crisp point 𝑒

𝑗
in 𝑋

𝑡
; then

from the definitions of 𝐴
𝑡
and fuzzy product set 𝐴 we know

𝐴 (𝑥) = (Π
𝑡∈𝑇
𝐴

𝑡
) (𝑥) = ∧

𝑡∈𝑇
𝐴

𝑡
(𝑥

𝑡
) = ∧

𝑡∈𝑇
𝐴

𝑡
(𝑒

𝑡

𝑗(𝑡)
)

=

{{{{{{

{{{{{{

{

0, if there are infinite elements 𝑡
such that 𝑗 (𝑡) ⩾ 2.

1

𝑡
𝑅

, if there is a 𝑡
𝑅
∈ 𝑇such that 𝑗 (𝑡

𝑅
) ⩾ 2

and 𝑗 (𝑡) = 1whenever 𝑡 > 𝑡
𝑅
.

(7)
Thus it can be seen that 𝐴 ̸= 0

𝑋
and if 𝐴(𝑥) ⩾ 1/𝑡

𝑅
, then the

coordinates 𝑥
𝑡
= 𝑒

𝑡

𝑗(𝑡)
= 𝑒

1
of 𝑥 whenever 𝑡 > 𝑡

𝑅
. Obviously,

points in𝑋 satisfying the condition are only finite. Let𝛼 ∈ 𝑀,
that is, 𝛼 > 0, and letΦ be an 𝛼𝜔-RF of𝐴. Choose 𝑡

𝑅
∈ 𝑇with

1/𝑡
𝑅
< 𝛼. Since there are only finite molecule in 𝐴 with hight

𝛼, denote the finite crisp points as 𝑥1
, 𝑥

2
, . . . , 𝑥

𝑛. If (𝑥𝑖
)
𝛼
⩽ 𝐴

for each 𝑖 ∈ {1, 2, . . . , 𝑛}, then there is 𝑃
𝑖
∈ Φ with 𝑃

𝑖
(𝑥

𝑖
) < 𝛼.

Put 𝑠 = max{𝑃
𝑖
(𝑥

𝑖
) | 𝑃

𝑖
(𝑥

𝑖
) < 𝛼, 𝑖 ⩽ 𝑛}; then 𝑠 < 𝛼. Taking

𝑠
1
∈ (𝑠, 𝛼) and 𝑟 = max(𝑠

1
, 1/𝑡

𝑅
), we know that 𝐴 has at most

𝑛molecules with hight 𝑟, say (𝑥𝑖
)
𝑟
(𝑖 ⩽ 𝑛). By the definition

ofΦ, there is a 𝑃
𝑖
∈ Φ such that 𝑃

𝑖
∈ 𝜔𝜂

−
((𝑥

𝑖
)
𝑟
) for each (𝑥𝑖

)
𝑟

in 𝐴. Denote Ψ = {𝑃
𝑖
∈ Φ | 𝑃

𝑖
∈ 𝜔𝜂

−
((𝑥

𝑖
)
𝑟
), 𝑖 ⩽ 𝑛}; then

Ψ ∈ 2
(Φ) and Ψ is an 𝑟𝜔-RF of 𝐴. This implies that Ψ is an

(𝛼𝜔)
−-RF of 𝐴 by 𝑟 ∈ 𝛽∗

(𝛼). Hence 𝐴 is 𝐿𝜔-compact in (𝐿𝑋,
Ω). On the other hand, take𝐷 = 𝑇 and𝑁 = {𝑁(𝑚) | 𝑚 ∈ 𝐷}

where 𝑁(𝑚) = (𝑒
𝑚
)
1/𝑡

for each 𝑚 ∈ 𝐷 and each 𝑡 ∈ 𝑇; then
𝑁 is a (1/𝑡)-net in 𝐴

𝑡
. Since (𝐿𝑋𝑡 , Ω

𝑡
) is discrete,𝑁 does not

have any 𝜔-cluster point in 𝐴
𝑡
with hight 1/𝑡. Therefore 𝐴

𝑡

is not 𝐿𝜔-compact in (𝐿𝑋𝑡 , Ω
𝑡
) for each 𝑡 ∈ 𝑇 according to

Theorem 15.
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This paper investigates the relationship between an unperturbed differential system and a perturbed differential system that have
initial time difference. Notions of ℎ-stability for differential systems with initial time difference are introduced, and stability criteria
are formulated by using variation of parameter techniques.

1. Introduction

It is well known that, in applications, asymptotic stability is
more important than stability, because the desirable feature
is to know the size of the region of asymptotic stability.
However, when we study the asymptotic stability, it is not
easy to deal with nonexponential types of stability. Pinto [1]
introduced the notion of ℎ-stability with the intention of
obtaining results about stability for a weakly stable system
(at least, weaker than those given exponential stability and
uniform Lipschitz stability) under some perturbations and
developed the study of exponential stability to a variety of
reasonable systems called ℎ-systems. Since then, Choi and
Ryu [2], Choi et al. [3], and Choi and Koo [4] investigated
ℎ-stability problem for the nonlinear differential systems
respectively, and Choi et al. [5, 6] characterized the ℎ-
stability in variation for nonlinear difference systems via
𝑛
∞
-similarity and Lyapunov functions and obtained some

relative results. For the detailed results of ℎ-stability of
impulsive dynamic systems on time scale and others systems
can be found in [7–10].

At present, the investigation of differential systems with
initial time difference has attracted a lot of attention. This
is mainly because of the fact that when considering initial
value problems, it is impossible not to make errors in the
starting time in dealing with real world phenomena, that is,

the solutions of the unperturbed differential systemmay start
at some initial time and the solutions of the perturbed systems
may start at a different initial time. When we consider such a
change of initial time for each solution, we need to deal with
the problem of comparing between any two solutions which
start at different times. At present, there are two methods to
discuss the stability problem with initial time difference: one
is the differential inequalities and comparison principle, and
the other is the method of variation of parameters. For the
pioneering works in this area we can refer to the papers [11,
12]. After that, there are many stability results for various of
differential and difference systems; see [13–20]. However, the
above results were obtained by using comparison principle
and differential inequalities; there are few stability criteria by
using the method of variation of parameters; see [21–24].

In this paper, we attempt to extend the notion of ℎ-
stability to differential systems with initial time difference,
namely, initial time difference ℎ-stability (ITDℎS) and then
establish some stability criteria for such differential systems
by using the method of variation of parameters. The remain-
der of this paper is organized in the following manner. Some
preliminaries are presented in Section 2. The notions of ℎ-
stability for differential systems with initial time difference
are given in this section. In Section 3, several stability criteria
are established. Finally, an example is added to illustrate the
result obtained.
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2. Preliminaries

Let 𝑅+ = [0, +∞) and 𝑅𝑛 denotes the 𝑛-dimensional Euclid-
ean space with appropriate norm ‖ ⋅ ‖.

Consider the differential systems:

𝑥
󸀠
= 𝑓 (𝑡, 𝑥) , 𝑥 (𝑡

0
) = 𝑥
0
, 𝑡 ≥ 𝑡

0
, 𝑡
0
∈ 𝑅
+
, (1)

𝑥
󸀠
= 𝑓 (𝑡, 𝑥) , 𝑥 (𝜏

0
) = 𝑦
0
, 𝑡 ≥ 𝜏

0
, 𝜏
0
∈ 𝑅
+ (2)

and the perturbed differential system of (2):

𝑦
󸀠
= 𝐹 (𝑡, 𝑦) , 𝑦 (𝜏

0
) = 𝑦
0
, 𝑡 ≥ 𝜏

0
, 𝜏
0
∈ 𝑅
+
, (3)

where𝑓, 𝐹 ∈ 𝐶[𝑅
+
×𝑅
𝑛
, 𝑅
𝑛
] are locally Lipschitzian and𝑓 has

continuous partial derivatives 𝜕𝑓/𝜕𝑥 on 𝑅
+
× 𝑅
𝑛. The above

assumptions imply the existence and uniqueness of solutions
through (𝑡

0
, 𝑥
0
) and (𝜏

0
, 𝑦
0
). A special case of (3) is where

𝐹(𝑡, 𝑦) = 𝑓(𝑡, 𝑦)+𝑅(𝑡, 𝑦),𝑅(𝑡, 𝑦) is the perturbation term. Let
𝜂 = 𝜏
0
− 𝑡
0
> 0. Furthermore, suppose that 𝑥(𝑡, 𝑡

0
, 𝑥
0
) is the

given solution with respect to which we shall study stability
criteria.

Let us begin by defining the following notions.

Definition 1. The solution 𝑥(𝑡, 𝜏
0
, 𝑦
0
) of the system (2)

through (𝜏
0
, 𝑦
0
) is said to be initial time difference ℎ-stability

(ITDℎS) with respect to the solution 𝑥(𝑡 − 𝜂, 𝑡
0
, 𝑥
0
), where

𝑥(𝑡, 𝑡
0
, 𝑥
0
) is any solution of the system (1), if and only if there

exist 𝑐 ≥ 1 and a positive bounded continuous function ℎ

defined on 𝑅+ such that
󵄩󵄩󵄩󵄩𝑥 (𝑡, 𝜏0, 𝑦0) − 𝑥 (𝑡 − 𝜂, 𝑡

0
, 𝑥
0
)
󵄩󵄩󵄩󵄩

≤ 𝑐 [
󵄩󵄩󵄩󵄩𝑦0 − 𝑥

0

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝜏0 − 𝑡

0

󵄨󵄨󵄨󵄨] ℎ (𝑡) ℎ
−1
(𝜏
0
)

(4)

for 𝑡 ≥ 𝜏
0
and ℎ−1(𝑡) = 1/ℎ(𝑡).

Similarly, we can define initial time difference ℎ-stability
(ITDℎS) with respect to the solution 𝑦(𝑡, 𝜏

0
, 𝑦
0
) of the system

(3) through (𝜏
0
, 𝑦
0
).

We are now in a position to give the Alekseev’s formula,
which is an important tool in the subsequent discussion.

Lemma 2 (see [25]). If 𝑥(𝑡, 𝜏
0
, 𝑦
0
) is the solution of (2) and

exists for 𝑡 ≥ 𝜏
0
, any solution 𝑦(𝑡, 𝜏

0
, 𝑦
0
) of (3), with 𝑦(𝜏

0
) =

𝑦
0
, satisfies the integral equation:

𝑦 (𝑡, 𝜏
0
, 𝑦
0
) = 𝑥 (𝑡, 𝜏

0
, 𝑦
0
)

+ ∫

𝑡

𝜏0

Φ(𝑡, 𝑠, 𝑦 (𝑠, 𝜏
0
, 𝑦
0
)) 𝑅 (𝑠, 𝑦 (𝑠, 𝜏

0
, 𝑦
0
)) 𝑑𝑠

(5)

for 𝑡 ≥ 𝜏
0
, where Φ(𝑡, 𝜏

0
, 𝑦
0
) = 𝜕𝑥(𝑡, 𝜏

0
, 𝑦
0
)/𝜕𝑦
0
.

The following lemma will also be needed in our investi-
gations.

Lemma 3 (see [25]). Assume that 𝑥(𝑡, 𝑡
0
, 𝑥
0
) is the solution of

(1) through (𝑡
0
, 𝑥
0
), which exists for 𝑡 ≥ 𝑡

0
, and then

𝑥 (𝑡, 𝑡
0
, 𝑥
0
) = [∫

1

0

Φ(𝑡, 𝑡
0
, 𝑠𝑥
0
) 𝑑𝑠] 𝑥

0
, (6)

whereΦ(𝑡, 𝑡
0
, 𝑥
0
) = 𝜕𝑥(𝑡, 𝑡

0
, 𝑥
0
)/𝜕𝑥
0
.

3. Stability Criteria

We shall present, in this section, the stability criteria for
differential systems with initial time difference.

Theorem 4. Let 𝑥(𝑡, 𝜏
0
, 𝑦
0
) and 𝑥(𝑡−𝜂, 𝑡

0
, 𝑥
0
) be the solutions

of (2) and (1) through (𝜏
0
, 𝑦
0
) and (𝑡

0
, 𝑥
0
), respectively, 𝑡 ≥ 𝜏

0
.

Assume that
(i) V(𝑡, 𝜏

0
, V
0
) = 𝑥(𝑡, 𝜏

0
, 𝑦
0
)−𝑥(𝑡−𝜂, 𝑡

0
, 𝑥
0
), in which V

0
=

𝑦
0
− 𝑥
0
;

(ii) there exists a positive bounded continuously differen-
tiable function ℎ(𝑡) on 𝑅+ such that

lim inf
𝛿→0

−

󵄩󵄩󵄩󵄩󵄩
V (𝑡, 𝜏
0
, V
0
) + (𝑓 (𝑡, V, 𝜂)) 𝛿

󵄩󵄩󵄩󵄩󵄩
−
󵄩󵄩󵄩󵄩V (𝑡, 𝜏0, V0)

󵄩󵄩󵄩󵄩

𝛿

≤ ℎ
󸀠

(𝑡) ℎ
−1

(𝑡)
󵄩󵄩󵄩󵄩V (𝑡, 𝜏0, V0)

󵄩󵄩󵄩󵄩 ,

(7)

where 𝑓(𝑡, V, 𝜂) = 𝑓(𝑡, 𝑥(𝑡 − 𝜂, 𝑡
0
, 𝑥
0
) + V(𝑡, 𝜏

0
, V
0
)) −

𝑓(𝑡, 𝑥(𝑡 − 𝜂, 𝑡
0
, 𝑥
0
));

(iii) 𝑓 is locally Lipschitzian in time such that
󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥 (𝑡 − 𝜂, 𝑡

0
, 𝑥
0
)) − 𝑓 (𝑡 − 𝜂, 𝑥 (𝑡 − 𝜂, 𝑡

0
, 𝑥
0
))
󵄩󵄩󵄩󵄩

≤ 𝐿
1
(𝑡)

󵄨󵄨󵄨󵄨𝜂
󵄨󵄨󵄨󵄨

𝐿
2
(𝜏
0
)
,

(8)

where 𝐿
2
(𝜏
0
) = ∫

+∞

𝜏0

ℎ
−1
(𝑠)ℎ(𝜏

0
)𝐿
1
(𝑠)𝑑𝑠, 𝐿

1
(𝑠) ∈

𝐶[𝑅
+
, 𝑅
+
].

Then the solution 𝑥(𝑡, 𝜏
0
, 𝑦
0
) of the system (2) is ITDℎS

with respect to the solution 𝑥(𝑡 − 𝜂, 𝑡
0
, 𝑥
0
).

Proof. Define 𝑧(𝑡) = ‖V(𝑡, 𝜏
0
, V
0
)‖ for 𝑡 ≥ 𝜏

0
, and then 𝑧(𝜏

0
) =

‖𝑦
0
− 𝑥
0
‖. Also,

V󸀠 (𝑡, 𝜏
0
, V
0
) = 𝑥
󸀠
(𝑡, 𝜏
0
, 𝑦
0
) − 𝑥
󸀠
(𝑡 − 𝜂, 𝑡

0
, 𝑥
0
)

= 𝑓 (𝑡, V (𝑡, 𝜏
0
, V
0
) + 𝑥 (𝑡 − 𝜂, 𝑡

0
, 𝑥
0
))

− 𝑓 (𝑡 − 𝜂, 𝑥 (𝑡 − 𝜂, 𝑡
0
, 𝑥
0
)) .

(9)

Using a Taylor approximation for V(𝑡, 𝜏
0
, V
0
) and the condi-

tions (i) and (ii), we arrive at

𝐷
−
𝑧 (𝑡)

= lim
𝛿→0

inf
󵄩󵄩󵄩󵄩󵄩
V (𝑡, 𝜏
0
, V
0
) + V󸀠 (𝑡, 𝜏

0
, V
0
) 𝛿

󵄩󵄩󵄩󵄩󵄩
−
󵄩󵄩󵄩󵄩V (𝑡, 𝜏0, V0)

󵄩󵄩󵄩󵄩

𝛿

≤ ℎ
󸀠

(𝑡) ℎ
−1

(𝑡) 𝑧 (𝑡) + 𝐿
1
(𝑡)

󵄨󵄨󵄨󵄨𝜂
󵄨󵄨󵄨󵄨

𝐿
2
(𝜏
0
)
.

(10)

And then, from (10), we have

𝑧 (𝑡) ≤ ℎ (𝑡) ℎ
−1
(𝜏
0
)

× (𝑧 (𝜏
0
) +

󵄨󵄨󵄨󵄨𝜂
󵄨󵄨󵄨󵄨

𝐿
2
(𝜏
0
)
∫

+∞

𝜏0

ℎ
−1

(𝑠) ℎ (𝜏
0
) 𝐿
1
(𝑠) 𝑑𝑠) .

(11)
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Moreover, using the condition (iii), we obtain

𝑧 (𝑡) ≤ ℎ (𝑡) ℎ
−1
(𝜏
0
) (
󵄩󵄩󵄩󵄩𝑦0 − 𝑥

0

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝜂
󵄨󵄨󵄨󵄨) .

(12)

Then from (12), we get

󵄩󵄩󵄩󵄩𝑥 (𝑡, 𝜏0, 𝑦0) − 𝑥 (𝑡 − 𝜂, 𝑡
0
, 𝑥
0
)
󵄩󵄩󵄩󵄩

≤ [
󵄩󵄩󵄩󵄩𝑦0 − 𝑥

0

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝜏0 − 𝑡

0

󵄨󵄨󵄨󵄨] ℎ (𝑡) ℎ
−1
(𝜏
0
) .

(13)

So by Definition 1 with 𝑐 = 1, the solution 𝑥(𝑡, 𝜏
0
, 𝑦
0
) of (2)

is ITDℎS with respect to the solution 𝑥(𝑡 − 𝜂, 𝑡
0
, 𝑥
0
). This

completes the proof.

Remark 5. Set ℎ(𝑡) = 𝑒
−𝛽0𝑡, and then we can obtain Theorem

3.4 in [8].

Theorem 6. Let 𝑦(𝑡, 𝜏
0
, 𝑦
0
) be the solution of (3) through

(𝜏
0
, 𝑦
0
). Assume that

(i) the solution 𝑥(𝑡, 𝜏
0
, 𝑦
0
) of (2) is ITDℎS with respect to

the solution 𝑥(𝑡 − 𝜂, 𝑡
0
, 𝑥
0
) for 𝑡 ≥ 𝜏

0
, where 𝑥(𝑡, 𝑡

0
, 𝑥
0
)

is any solution of (1);
(ii) there exist 𝑐 ≥ 1, 𝛼 > 0 and a positive bounded

continuous function ℎ defined on 𝑅+ such that

󵄩󵄩󵄩󵄩Φ (𝑡, 𝑠, 𝑦 (𝑠))
󵄩󵄩󵄩󵄩 ≤ 𝑐ℎ (𝑡) ℎ

−1

(𝑠) ,

󵄩󵄩󵄩󵄩𝑅 (𝑠, 𝑦 (𝑠))
󵄩󵄩󵄩󵄩 ≤ 𝑟 (𝑠)

󵄩󵄩󵄩󵄩𝑦 (𝑠)
󵄩󵄩󵄩󵄩 ,

(14)

provided that 𝑦(𝑠, 𝜏
0
, 𝑦
0
) ≤ 𝛼, 𝑟(𝑠) ∈ 𝐶(𝑅

+
, 𝑅
+
) and

∫
+∞

𝜏0

𝑟(𝑠)𝑑𝑠 < +∞.

Then the solution 𝑦(𝑡, 𝜏
0
, 𝑦
0
) of (3) is ITDℎS with respect

to the solution 𝑥(𝑡 − 𝜂, 𝑡
0
, 𝑥
0
).

Proof. Define V(𝑡, 𝜏
0
, V
0
) = 𝑥(𝑡, 𝜏

0
, 𝑦
0
) − 𝑥(𝑡 − 𝜂, 𝑡

0
, 𝑥
0
) and

𝑧(𝑡) = ‖V(𝑡, 𝜏
0
, V
0
)‖, and then 𝑧(𝜏

0
) = ‖𝑦

0
−𝑥
0
‖.The condition

(i) yields

󵄩󵄩󵄩󵄩𝑥 (𝑡, 𝜏0, 𝑦0) − 𝑥 (𝑡 − 𝜂, 𝑡
0
, 𝑥
0
)
󵄩󵄩󵄩󵄩

≤ 𝑐 [
󵄩󵄩󵄩󵄩𝑦0 − 𝑥

0

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝜏0 − 𝑡

0

󵄨󵄨󵄨󵄨] ℎ (𝑡) ℎ
−1
(𝜏
0
) .

(15)

By Lemma 2, it follows that

𝑦 (𝑡, 𝜏
0
, 𝑦
0
) − 𝑥 (𝑡 − 𝜂, 𝑡

0
, 𝑥
0
)

= V (𝑡, 𝜏
0
, V
0
) + ∫

𝑡

𝜏0

Φ(𝑡, 𝑠, 𝑦 (𝑠)) 𝑅 (𝑠, 𝑦 (𝑠)) 𝑑𝑠.

(16)

Now taking the norms of both sides and using the triangle
inequality, we have

󵄩󵄩󵄩󵄩𝑦 (𝑡, 𝜏0, 𝑦0) − 𝑥 (𝑡 − 𝜂, 𝑡
0
, 𝑥
0
)
󵄩󵄩󵄩󵄩

≤ 𝑧 (𝑡) + ∫

𝑡

𝜏0

󵄩󵄩󵄩󵄩Φ (𝑡, 𝑠, 𝑦 (𝑠))
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑅 (𝑠, 𝑦 (𝑠))
󵄩󵄩󵄩󵄩 𝑑𝑠.

(17)

From (15), we obtain
󵄩󵄩󵄩󵄩𝑦 (𝑡, 𝜏0, 𝑦0) − 𝑥 (𝑡 − 𝜂, 𝑡

0
, 𝑥
0
)
󵄩󵄩󵄩󵄩

≤ 𝑐 [
󵄩󵄩󵄩󵄩𝑦0 − 𝑥

0

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝜏0 − 𝑡

0

󵄨󵄨󵄨󵄨] ℎ (𝑡) ℎ
−1
(𝜏
0
)

+ ∫

𝑡

𝜏0

󵄩󵄩󵄩󵄩Φ (𝑡, 𝑠, 𝑦 (𝑠))
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑅 (𝑠, 𝑦 (𝑠))
󵄩󵄩󵄩󵄩 𝑑𝑠.

(18)

Setting𝑀∗(𝑡) = ‖𝑦(𝑡, 𝜏
0
, 𝑦
0
) − 𝑥(𝑡 − 𝜂, 𝑡

0
, 𝑥
0
)‖ and using the

triangle inequality, we have

𝑀
∗

(𝑡) ≤ 𝑐 [
󵄩󵄩󵄩󵄩𝑦0 − 𝑥

0

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝜏0 − 𝑡

0

󵄨󵄨󵄨󵄨] ℎ (𝑡) ℎ
−1
(𝜏
0
)

+ ∫

𝑡

𝜏0

𝑐ℎ (𝑡) ℎ
−1

(𝑠) 𝑟 (𝑠)𝑀
∗

(𝑠) 𝑑𝑠

+ ∫

𝑡

𝜏0

𝑐ℎ (𝑡) ℎ
−1

(𝑠) 𝑟 (𝑠)
󵄩󵄩󵄩󵄩𝑥 (𝑠 − 𝜂, 𝑡

0
, 𝑥
0
)
󵄩󵄩󵄩󵄩 𝑑𝑠.

(19)

By using Lemma 3 and the condition (ii), we obtain
󵄩󵄩󵄩󵄩𝑥 (𝑡 − 𝜂, 𝑡

0
, 𝑥
0
)
󵄩󵄩󵄩󵄩 ≤ 𝛼𝑐ℎ (𝑡) ℎ

−1
(𝜏
0
) , for 󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 ≤ 𝛼. (20)

Hence,

𝑀
∗

(𝑡) ≤ 𝑐 {
󵄩󵄩󵄩󵄩𝑦0 − 𝑥

0

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝜏0 − 𝑡

0

󵄨󵄨󵄨󵄨} ℎ (𝑡) ℎ
−1
(𝜏
0
)

+ ∫

𝑡

𝜏0

𝑐ℎ (𝑡) ℎ
−1

(𝑠) 𝑟 (𝑠)𝑀
∗

(𝑠) 𝑑𝑠

+ 𝑐
2
𝛼ℎ (𝑡) ℎ

−1
(𝜏
0
) ∫

𝑡

𝜏0

𝑟 (𝑠) 𝑑𝑠.

(21)

Then we have

𝑁
∗

(𝑡) ≤ 𝑐 {
󵄩󵄩󵄩󵄩𝑦0 − 𝑥

0

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝜏0 − 𝑡

0

󵄨󵄨󵄨󵄨}

+ ∫

𝑡

𝜏0

𝑟
∗

(𝑠)𝑁
∗

(𝑠) 𝑑𝑠 + 𝑐
2
𝛼𝑁
1
(𝜏
0
) ,

(22)

where 𝑟
∗
(𝑡) = 𝑐𝑟(𝑡), 𝑁

∗
(𝑡) = ℎ

−1
(𝑡)ℎ(𝜏

0
)𝑀
∗
(𝑡), and

∫
+∞

𝜏0

𝑟(𝑠)𝑑𝑠 = 𝑁
1
(𝜏
0
).

By Gronwall’s inequality, one gets

𝑀
∗

(𝑡) ≤ {𝑐 [
󵄩󵄩󵄩󵄩𝑦0 − 𝑥

0

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝜏0 − 𝑡

0

󵄨󵄨󵄨󵄨] + 𝑐
2
𝛼𝑁
1
(𝜏
0
)}

× ℎ (𝑡) ℎ
−1
(𝜏
0
) 𝑒
𝑐𝑁1(𝜏0).

(23)

Moreover, set

𝑐
1
{
󵄩󵄩󵄩󵄩𝑦0 − 𝑥

0

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝜏0 − 𝑡

0

󵄨󵄨󵄨󵄨}

= {𝑐 [
󵄩󵄩󵄩󵄩𝑦0 − 𝑥

0

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝜏0 − 𝑡

0

󵄨󵄨󵄨󵄨] + 𝑐
2
𝛼𝑁
1
(𝜏
0
)} 𝑒
𝑐𝑁1(𝜏0)

(24)

and 𝑐
1
≥ 1, we get
󵄩󵄩󵄩󵄩𝑦 (𝑡, 𝜏0, 𝑦0) − 𝑥 (𝑡 − 𝜂, 𝑡

0
, 𝑥
0
)
󵄩󵄩󵄩󵄩

≤ 𝑐
1
{
󵄩󵄩󵄩󵄩𝑦0 − 𝑥

0

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝜏0 − 𝑡

0

󵄨󵄨󵄨󵄨} ℎ (𝑡) ℎ
−1
(𝜏
0
) .

(25)

From Definition 1, it follows that the solution of (3) is ITDℎS
with respect to the solution 𝑥(𝑡−𝜂, 𝑡

0
, 𝑥
0
).This completes the

proof.
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4. Example

Now, we shall illustrate Theorem 6 by a simple example.
Consider the differential systems

𝑥
󸀠
= −𝑥, 𝑥 (𝑡

0
) = 𝑥
0
, 𝑡 ≥ 𝑡

0
, 𝑡
0
∈ 𝑅
+
, (26)

𝑥
󸀠
= −𝑥, 𝑥 (𝜏

0
) = 𝑦
0
, 𝑡 ≥ 𝜏

0
, 𝜏
0
∈ 𝑅
+
, (27)

and the perturbed differential system of (27):

𝑦
󸀠
= −𝑦 +

1

𝑡2
𝑦, 𝑦 (𝜏

0
) = 𝑦
0
, 𝑡 ≥ 𝜏

0
, 𝜏
0
∈ 𝑅
+
. (28)

Define 𝑧(𝑡) = 𝑥(𝑡, 𝜏
0
, 𝑦
0
) − 𝑥(𝑡 − 𝜂, 𝑡

0
, 𝑥
0
); by direct

calculation, we have the solution of (27) given by𝑥(𝑡, 𝜏
0
, 𝑦
0
) =

𝑦
0
𝑒
−𝑡+𝜏0 , which exists for all 𝑡 ≥ 𝜏

0
, and Φ(𝑡, 𝜏

0
, 𝑦
0
) =

𝜕𝑥(𝑡, 𝜏
0
, 𝑦
0
)/𝜕𝑦
0
= 𝑒
−𝑡+𝜏0 , Φ(𝜏

0
, 𝜏
0
, 𝑦
0
) = 𝐼. ‖𝑧(𝑡)‖ ≤ (‖𝑦

0
−

𝑥
0
‖ + |𝜏
0
− 𝑡
0
|)𝑒
−𝑡+𝜏0 , and then the solution of system (27) is

ITDℎS with respect to 𝑥(𝑡 − 𝜂, 𝜏
0
, 𝑥
0
).

Now, let us begin to consider the perturbation term
𝐹(𝑡, 𝑦) = (1/𝑡

2
)𝑦 of (28), and we have ‖(1/𝑡2)𝑦‖ ≤ (1/𝑡

2
)‖𝑦‖,

where ∫
+∞

𝜏0

(1/𝑡
2
)𝑑𝑡 < +∞. Then by Theorem 6, we can

conclude that the solution 𝑦(𝑡, 𝜏
0
, 𝑦
0
) of (28) is ITDℎS with

respect to the solution 𝑥(𝑡 − 𝜂, 𝑡
0
, 𝑥
0
).
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We study the global asymptotic stability of the following difference equation: 𝑥
𝑛+1

= 𝑓(𝑥
𝑛−𝑘1

, 𝑥
𝑛−𝑘2

, . . . , 𝑥
𝑛−𝑘𝑠

; 𝑥
𝑛−𝑚1

, 𝑥
𝑛−𝑚2

, . . . ,

𝑥
𝑛−𝑚𝑡

), 𝑛 = 0, 1, . . . , where 0 ≤ 𝑘
1
< 𝑘
2
< ⋅ ⋅ ⋅ < 𝑘

𝑠
and 0 ≤ 𝑚

1
< 𝑚
2
< ⋅ ⋅ ⋅ < 𝑚

𝑡
with {𝑘

1
, 𝑘
2
, . . . , 𝑘

𝑠
}⋂{𝑚

1
, 𝑚
2
, . . . , 𝑚

𝑡
} = 0, the

initial values are positive, and 𝑓 ∈ 𝐶(𝐸𝑠+𝑡, (0, +∞)) with 𝐸 ∈ {(0, +∞), [0, +∞)}. We give sufficient conditions under which the
unique positive equilibrium 𝑥 of that equation is globally asymptotically stable.

1. Introduction

In this note, we consider a nonlinear difference equation
and deal with the question of whether the unique positive
equilibrium 𝑥 of that equation is globally asymptotically
stable. Recently, there has been much interest in studying the
global attractivity, the boundedness character, and the peri-
odic nature of nonlinear difference equations; for example,
see [1–22].

Amleh et al. [1] studied the characteristics of the differ-
ence equation:

𝑥
𝑛+1

= 𝑝 +
𝑥
𝑛−1

𝑥
𝑛

. (E1)

They confirmed a conjecture in [13] and showed that the
unique positive equilibrium 𝑥 = 𝑝 + 1 of (E1) is globally
asymptotically stable provided 𝑝 > 1.

Fan et al. [8] investigated the following difference equa-
tion:

𝑥
𝑛+1

= 𝑓 (𝑥
𝑛
, 𝑥
𝑛−𝑘
) . (E2)

They showed that the length of finite semicycle of (E2) is
less than or equal to 𝑘 and gave sufficient conditions under
which every positive solution of (E2) converges to the unique
positive equilibrium.

Kulenović et al. [11] investigated the periodic nature, the
boundedness character, and the global asymptotic stability of
solutions of the nonautonomous difference equation

𝑥
𝑛+1

= 𝑝
𝑛
+
𝑥
𝑛−1

𝑥
𝑛

, 𝑛 = 0, 1, 2, . . . , (E3)

where the initial values 𝑥
−1
, 𝑥
0
∈ 𝑅
+
≡ (0, +∞) and 𝑝

𝑛
is the

period-two sequence

𝑝
𝑛
= {

𝛼, if 𝑛 is even,
𝛽, if 𝑛 is odd,

with 𝛼, 𝛽 ∈ 𝑅
+
. (1)

Sun and Xi [20] studied the more general equation

𝑥
𝑛+1

= 𝑓 (𝑥
𝑛−𝑠
, 𝑥
𝑛−𝑡
) , 𝑛 = 0, 1, 2, . . . , (E4)

where 𝑠, 𝑡 ∈ {0, 1, 2, . . .} with 𝑠 < 𝑡, the initial values
𝑥
−𝑡
, 𝑥
−𝑡+1

, . . . , 𝑥
0
∈ 𝑅
+
and gave sufficient conditions under

which every positive solution of (E4) converges to the unique
positive equilibrium.

In this paper, we study the global asymptotic stability of
the following difference equation:

𝑥
𝑛+1

= 𝑓 (𝑥
𝑛−𝑘1

, 𝑥
𝑛−𝑘2

, . . . , 𝑥
𝑛−𝑘𝑠

; 𝑥
𝑛−𝑚1

, 𝑥
𝑛−𝑚2

, . . . , 𝑥
𝑛−𝑚𝑡

) ,

𝑛 = 0, 1, . . . ,

(2)
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where 0 ≤ 𝑘
1
< 𝑘
2
< ⋅ ⋅ ⋅ < 𝑘

𝑠
and 0 ≤ 𝑚

1
< 𝑚
2
<

⋅ ⋅ ⋅ < 𝑚
𝑡
with {𝑘

1
, 𝑘
2
, . . . , 𝑘

𝑠
}⋂{𝑚

1
, 𝑚
2
, . . . , 𝑚

𝑡
} = 0, the

initial values are positive and 𝑓 ∈ 𝐶(𝐸
𝑠+𝑡
, (0, +∞)) with

𝐸 ∈ {(0, +∞), [0, +∞)} and 𝑎 = inf
(𝑢1 ,𝑢2 ,...,𝑢𝑠 ,V1 ,V2,...,V𝑡)∈𝐸𝑠+𝑡 ×

𝑓(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑠
; V
1
, V
2
, . . . , V

𝑡
) ∈ 𝐸 satisfies the following

conditions:

(𝐻
1
) 𝑓(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑠
; V
1
, V
2
, . . . , V

𝑡
) is decreasing in 𝑢

𝑖

for any 𝑖 ∈ {1, 2, . . . , 𝑠} and increasing in V
𝑗
for any

𝑗 ∈ {1, 2, . . . , 𝑡}.

(𝐻
2
) Equation (2) has the unique positive equilib-

rium, denoted by 𝑥.

(𝐻
3
) The function 𝑓(𝑎, 𝑎, . . . , 𝑎; 𝑥, 𝑥, . . . , 𝑥) has only

fixed point in the interval (𝑎, +∞), denoted by 𝐴.

(𝐻
4
) For any 𝑦 ∈ 𝐸, 𝑓(𝑦, . . . , 𝑦; 𝑥, . . . , 𝑥)/𝑥 is

nonincreasing in 𝑥 ∈ (0, +∞).

(𝐻
5
) If (𝑥, 𝑦) ∈ 𝐸 × 𝐸 is a solution of the system

𝑦 = 𝑓 (𝑥, . . . , 𝑥; 𝑦, . . . , 𝑦) ,

𝑥 = 𝑓 (𝑦, . . . , 𝑦; 𝑥, . . . , 𝑥) ,

(3)

then 𝑥 = 𝑦.

2. Main Result

Theorem 1. Assume that (𝐻
1
)–(𝐻
5
) hold. Then the unique

positive equilibrium 𝑥 of (2) is globally asymptotically stable.

Proof. Let 𝑙 = max{𝑚
𝑡
, 𝑘
𝑠
}. Since

𝑎 = inf
(𝑢1 ,𝑢2,...,𝑢𝑠,V1 ,V2 ,...,V𝑡)∈𝐸𝑠+𝑡𝑓 (𝑢1, 𝑢2, . . . , 𝑢𝑠; V1, V2, . . . , V𝑡)

∈ 𝐸,

(4)

we have

𝑥 = 𝑓 (𝑥, 𝑥, . . . , 𝑥) > 𝑓 (𝑥 + 1, 𝑥, . . . , 𝑥) ≥ 𝑎. (5)

Claim 1.𝑓(𝐴, . . . , 𝐴; 𝑎, . . . , 𝑎) < 𝑥 < 𝐴.

Proof of Claim 1. Assume on the contrary that 𝑥 ≥ 𝐴. Then it
follows from (𝐻

1
), (𝐻
3
), and (𝐻

4
) that

𝐴 = 𝑓 (𝑎, . . . , 𝑎; 𝐴, . . . , 𝐴) > 𝑓 (𝑥, . . . , 𝑥; 𝐴, . . . , 𝐴)

=
𝑓 (𝑥, . . . , 𝑥; 𝐴, . . . , 𝐴)

𝐴
𝐴 ≥

𝑓 (𝑥, . . . , 𝑥)

𝑥
𝐴

= 𝐴.

(6)

This is a contradiction. Therefore 𝑥 < 𝐴. Obviously

𝑓 (𝐴, . . . , 𝐴; 𝑎, . . . , 𝑎) < 𝑓 (𝑥, . . . , 𝑥; 𝑥, . . . , 𝑥) = 𝑥. (7)

Claim 1 is proven.

Claim 2. For any𝑀 ≥ 𝐴, 𝐽 = [𝑎,𝑀] is an invariable interval
of (2).

Proof of Claim 2. For any 𝑥
0
, 𝑥
−1
, . . . , 𝑥

−𝑙
∈ 𝐽, we have from

(𝐻
4
) that

𝑎 ≤ 𝑥
1

= 𝑓 (𝑥
−𝑘1
, 𝑥
−𝑘2
, . . . , 𝑥

−𝑘𝑠
; 𝑥
−𝑚1
, 𝑥
−𝑚2
, . . . , 𝑥

−𝑚𝑡
)

≤
𝑓 (𝑎, . . . , 𝑎;𝑀, . . . ,𝑀)

𝑀
𝑀 ≤

𝑓 (𝑎, . . . , 𝑎; 𝐴, . . . , 𝐴)

𝐴
𝑀

= 𝑀.

(8)

By induction, wemay show that 𝑥
𝑛
∈ 𝐽 for any 𝑛 ≥ 1. Claim 2

is proven.

Let𝑚
0
= 𝑎,𝑀

0
= 𝑀 ≥ 𝐴 and for any 𝑖 ≥ 0,

𝑚
𝑖+1
= 𝑓 (𝑀

𝑖
, . . . ,𝑀

𝑖
; 𝑚
𝑖
, . . . , 𝑚

𝑖
) ,

𝑀
𝑖+1
= 𝑓 (𝑚

𝑖
, . . . , 𝑚

𝑖
;𝑀
𝑖
, . . . ,𝑀

𝑖
) .

(9)

Claim 3. For any 𝑛 ≥ 0, we have

𝑚
𝑛
≤ 𝑚
𝑛+1

< 𝑥 < 𝑀
𝑛+1

≤ 𝑀
𝑛
,

lim
𝑛→∞

𝑀
𝑛
= lim
𝑛→∞

𝑚
𝑛
= 𝑥.

(10)

Proof of Claim 3. From Claim 2, we obtain

𝑚
0
≤ 𝑚
1
= 𝑓 (𝑀

0
, . . . ,𝑀

0
; 𝑚
0
, . . . , 𝑚

0
)

< 𝑓 (𝑥, . . . , 𝑥) = 𝑥

< 𝑓 (𝑚
0
, . . . , 𝑚

0
;𝑀
0
, . . . ,𝑀

0
)

= 𝑀
1
≤ 𝑀
0
,

𝑚
1
= 𝑓 (𝑀

0
, . . . ,𝑀

0
; 𝑚
0
, . . . , 𝑚

0
)

≤ 𝑓 (𝑀
1
, . . . ,𝑀

1
; 𝑚
1
, . . . , 𝑚

1
) = 𝑚

2

< 𝑓 (𝑥, . . . , 𝑥) = 𝑥

< 𝑓 (𝑚
1
, . . . , 𝑚

1
;𝑀
1
, . . . ,𝑀

1
) = 𝑀

2

≤ 𝑓 (𝑚
0
, . . . , 𝑚

0
;𝑀
0
, . . . ,𝑀

0
)

= 𝑀
1
.

(11)

By induction, we have that for 𝑛 ≥ 0,

𝑚
𝑛
≤ 𝑚
𝑛+1

< 𝑥 < 𝑀
𝑛+1

≤ 𝑀
𝑛
. (12)

Set

𝛽 = lim
𝑛→∞

𝑚
𝑛

𝑎𝑛𝑑 𝛼 = lim
𝑛→∞

𝑀
𝑛
. (13)
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Then

𝛽 = 𝑓 (𝛼, . . . , 𝛼; 𝛽, . . . , 𝛽) ,

𝛼 = 𝑓 (𝛽, . . . , 𝛽; 𝛼, . . . , 𝛼) .

(14)

Thiswith (𝐻
2
) and (𝐻

5
) implies𝛼 = 𝛽 = 𝑥. Claim 3 is proven.

Claim 4.The equilibrium 𝑥 of (2) is locally stable.

Proof of Claim 4. Let 𝑀 = 𝐴 and 𝑚
𝑛
,𝑀
𝑛
be the same as

Claim 3. For any 𝜀 > 0 with 0 < 𝜀 < min{𝐴 − 𝑥, 𝑥 − 𝑎},
there exists 𝑛 > 0 such that

𝑥 − 𝜀 < 𝑚
𝑛
< 𝑥 < 𝑀

𝑛
< 𝑥 + 𝜀. (15)

Set 0 < 𝛿 = min{𝑥 − 𝑚
𝑛
,𝑀
𝑛
− 𝑥}. Then for any

𝑥
0
, 𝑥
−1
, . . . , 𝑥

−𝑙
∈ (𝑥 − 𝛿, 𝑥 + 𝛿), we have

𝑥
1
= 𝑓 (𝑥

−𝑘1
, . . . , 𝑥

−𝑘𝑠
; 𝑥
−𝑚1
, . . . , 𝑥

−𝑚𝑡
)

≤ 𝑓 (𝑚
𝑛
, . . . , 𝑚

𝑛
;𝑀
𝑛
, . . . ,𝑀

𝑛
)

= 𝑀
𝑛+1

≤ 𝑀
𝑛
,

𝑥
1
= 𝑓 (𝑥

−𝑘1
, . . . , 𝑥

−𝑘𝑠
; 𝑥
−𝑚1
, . . . , 𝑥

−𝑚𝑡
)

≥ 𝑓 (𝑀
𝑛
, . . . ,𝑀

𝑛
; 𝑚
𝑛
, . . . , 𝑚

𝑛
)

= 𝑚
𝑛+1

≥ 𝑚
𝑛
.

(16)

In similar fashion,we can show that for any 𝑘 ≥ 1,

𝑥
𝑘
∈ [𝑚
𝑛
,𝑀
𝑛
] ⊂ (𝑥 − 𝜀, 𝑥 + 𝜀) . (17)

Claim 4 is proven.

Claim 5. 𝑥 is the global attractor of (2).

Proof of Claim 5. Let {𝑥
𝑛
}
∞

𝑛=−𝑙
be a positive solution of (2),

and let 𝑀 = max{𝑥
1
, . . . , 𝑥

𝑙+1
, 𝐴} and 𝑚

𝑛
,𝑀
𝑛
be the same

as Claim 3. From Claim 2, we have 𝑥
𝑛
∈ [𝑚
0
,𝑀
0
] = [𝑎,𝑀]

for any 𝑛 ≥ 1. Moreover, we have

𝑥
𝑙+2

= 𝑓 (𝑥
𝑙+1−𝑘1

, . . . , 𝑥
𝑙+1−𝑘𝑠

; 𝑥
𝑙+1−𝑚1

, . . . , 𝑥
𝑙+1−𝑚𝑡

)

≤ 𝑓 (𝑚
0
, . . . , 𝑚

0
;𝑀
0
, . . . ,𝑀

0
) = 𝑀

1
,

𝑥
𝑙+2

= 𝑓 (𝑥
𝑙+1−𝑘1

, . . . , 𝑥
𝑙+1−𝑘𝑠

; 𝑥
𝑙+1−𝑚1

, . . . , 𝑥
𝑙+1−𝑚𝑡

)

≥ 𝑓 (𝑀
0
, . . . ,𝑀

0
; 𝑚
0
, . . . , 𝑚

0
) = 𝑚

1
.

(18)

In similar fashion, we may show 𝑥
𝑛
∈ [𝑚
1
,𝑀
1
] for any 𝑛 ≥

𝑙 + 2. By induction, we obtain

𝑥
𝑛
∈ [𝑚
𝑘
,𝑀
𝑘
] for 𝑛 ≥ 𝑘 (𝑙 + 1) + 1. (19)

It follows from Claim 3 that lim
𝑛→∞

𝑥
𝑛
= 𝑥. Claim 5 is

proven.

From Claims 4 and 5, Theorem 1 follows.

3. Applications

In this section, we will give two applications of Theorem 1.

Example 2. Consider equation

𝑥
𝑛+1

= 𝑝 +

∑
𝑡

𝑖=1
𝑎
𝑖
𝑥
𝑛−𝑚𝑖

∑
𝑠

𝑘=1
𝑏
𝑘
𝑥
𝑛−𝑛𝑘

+ √
∑
𝑡

𝑖=1
𝑎
𝑖
𝑥
𝑛−𝑚𝑖

∑
𝑠

𝑘=1
𝑏
𝑘
𝑥
𝑛−𝑛𝑘

, 𝑛 = 0, 1, . . . ,

(20)

where 0 ≤ 𝑛
1
< 𝑛
2
< ⋅ ⋅ ⋅ < 𝑛

𝑠
and 0 ≤ 𝑚

1
< 𝑚
2
< ⋅ ⋅ ⋅ < 𝑚

𝑡

with {𝑛
1
, 𝑛
2
, . . . , 𝑛

𝑠
}⋂{𝑚

1
, 𝑚
2
, . . . , 𝑚

𝑡
} = 0, 𝑝 > 0, 𝑎

𝑖
> 0

for any 𝑖 ∈ {1, 2, . . . , 𝑡} and 𝑏
𝑘
> 0 for any 𝑘 ∈ {1, 2, . . . , 𝑠},

and the initial conditions 𝑥
−𝑙
, . . . , 𝑥

0
∈ (0,∞) with 𝑙 =

max{𝑚
𝑡
, 𝑛
𝑠
}. Write 𝐴 = ∑

𝑡

𝑖=1
𝑎
𝑖
and 𝐵 = ∑𝑠

𝑘=1
𝑏
𝑘
. If 𝑝𝐵 > 𝐴,

then the unique positive equilibrium 𝑥 of (20) is globally
asymptotically stable.

Proof. Let 𝐸 = (0, +∞). It is easy to verify that
(𝐻
1
), (𝐻

2
), and (𝐻

4
) hold for (20). Note that 𝑎 =

inf
(𝑢1 ,𝑢2,...,𝑢𝑠,V1 ,V2 ,...,V𝑡)∈𝐸𝑠+𝑡𝑓(𝑢1, 𝑢2, . . . , 𝑢𝑠; V1, V2, . . . , V𝑡) = 𝑝.

Then

𝑥 = 𝑓 (𝑎, 𝑎, . . . , 𝑎; 𝑥, 𝑥, . . . , 𝑥) = 𝑝 +
𝐴𝑥

𝐵𝑝
+ √

𝐴𝑥

𝐵𝑝
(21)

has only solution

𝑥 = √[√𝑝𝐴𝐵 + √𝑝𝐴𝐵 + 4𝑝2𝐵 (𝐵𝑝 − 𝐴)] /2 (𝐵𝑝 − 𝑎)

(22)

in the interval (𝑝, +∞), which implies that (𝐻
3
) holds for

(20). In addition, let

𝑥 = 𝑝 +
𝑥𝐴

𝑦𝐵
+ √

𝑥𝐴

𝑦𝐵
,

𝑦 = 𝑝 +
𝑦𝐴

𝑥𝐵
+ √

𝑦𝐴

𝑥𝐵
,

(23)

then

𝑥

𝑦
=
𝑝 + 𝑥𝐴/𝑦𝐵 + √𝑥𝐴/𝑦𝐵

𝑝 + 𝑦𝐴/𝑥𝐵 + √𝑦𝐴/𝑥𝐵
. (24)

Therefore 𝑥/𝑦 = 1, which implies that (23) has unique
solution

𝑥 = 𝑦 = 𝑥 = 𝑝 +
𝐴

𝐵
+ √𝐴/𝐵. (25)

Thus (𝐻
5
) holds for (20). It follows from Theorem 1 that

the equilibrium 𝑥 = 𝑝 + 𝐴/𝐵 + √𝐴/𝐵 of (20) is globally
asymptotically stable.
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Example 3. Consider equation

𝑥
𝑛+1

=

𝑞 + ∑
𝑡

𝑖=1
𝑎
𝑖
𝑥
𝑛−𝑚𝑖

𝑝 + ∑
𝑠

𝑘=1
𝑏
𝑘
𝑥
𝑛−𝑛𝑘

, 𝑛 = 0, 1, . . . , (26)

where 0 ≤ 𝑛
1
< 𝑛
2
< ⋅ ⋅ ⋅ < 𝑛

𝑠
and 0 ≤ 𝑚

1
< 𝑚
2
<

⋅ ⋅ ⋅ < 𝑚
𝑡
with {𝑛

1
, 𝑛
2
, . . . , 𝑛

𝑠
}⋂{𝑚

1
, 𝑚
2
, . . . , 𝑚

𝑡
} = 0, 𝑝 >

0, 𝑞 > 0, 𝑎
𝑖
> 0 for any 1 ≤ 𝑖 ≤ 𝑡 and 𝑏

𝑗
> 0 for any

1 ≤ 𝑗 ≤ 𝑠, and the initial conditions 𝑥
−𝑙
, . . . , 𝑥

0
∈ (0,∞)

with 𝑙 = max{𝑚
𝑡
, 𝑛
𝑠
}. Write 𝐴 = ∑

𝑡

𝑖=1
𝑎
𝑖
and 𝐵 = ∑

𝑠

𝑘=1
𝑏
𝑘
.

If 𝑝 > 𝐴, then the unique positive equilibrium 𝑥 of (26) is
globally asymptotically stable.

Proof. Let 𝐸 = [0, +∞). It is easy to verify that (𝐻
1
)–(𝐻
4
)

hold for (26). In addition, the following equation

𝑥 =
𝑞 + 𝑥𝐴

𝑝 + 𝑦𝐵
,

𝑦 =
𝑞 + 𝑦𝐴

𝑝 + 𝑥𝐵

(27)

has unique solution

𝑥 = 𝑦 = 𝑥 =

𝐴 − 𝑝 + √(𝑝 − 𝐴)
2

+ 4𝐵𝑞

2𝐵
,

(28)

which implies that (𝐻
5
) holds for (26). It follows

from Theorem 1 that the equilibrium 𝑥 = (𝐴 − 𝑝 +

√(𝑝 − 𝐴)
2
+ 4𝐵𝑞)/2𝐵 of (26) is globally asymptotically

stable.
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This work presents the fusion of integral channel features to improve the effectiveness and efficiency of pedestrian detection. The
proposed method combines the histogram of oriented gradient (HOG) and local binary pattern (LBP) features by a concatenated
fusionmethod. Although neural network (NN) is an efficient tool for classification, the time complexity is heavy. Hence, we choose
support vector machine (SVM) with the histogram intersection kernel (HIK) as a classifier. On the other hand, although many
datasets have been collected for pedestrian detection, few are designed to detect pedestrians in low-resolution visual images and
at night time. This work collects two new pedestrian datasets—one for low-resolution visual images and one for near-infrared
images—to evaluate detection performance on various image types and at different times. The proposed fusion method uses only
images from the INRIA dataset for training but works on the two newly collected datasets, thereby avoiding the training overhead
for cross-datasets. The experimental results verify that the proposed method has high detection accuracies even in the variations
of image types and time slots.

1. Introduction

Pedestrian detection is an active area of research in the field
of computer vision [1, 2] and a preliminary task in various
applications, including intelligent video surveillance, auto-
motive robotics, content-based image annotation/retrieval,
and management of personal digital images. Large variations
in appearance caused by articulated body motion, viewpoint,
lighting conditions, occlusions, and cluttered backgrounds
present serious challenges. Hence, pedestrian detection in
still images is more difficult than that of faces [3].

Most pedestrian detection methods use a pretrained
binary classifier to find pedestrians in still images by scanning
the entire image. Such amethod is called the “sliding window
method” (or scanning window). The classifier is “fired”
if the image features inside the local search subwindow
satisfy certain criteria. At the core of the sliding window
framework are image descriptors and classifiers that are
based on these descriptors. According to features used for

pedestrian detection, thesemethods can be divided into three
groups: holistic-based methods, part-based methods, and
patch-based methods.

Holistic-based methods use global features, such as edge
templates, histogram of oriented gradient [4], and Haar-
like wavelet [5]. One popular holistic-based method is the
histogram of oriented gradient (HOG) method, which has
near-perfect classification performance when applied to the
original MIT pedestrian database and is widely used in
other computer vision tasks, such as scene classification,
object tracking, and pose estimation. Part-based methods
model a pedestrian as a set of parts, which include legs,
torso, arms, and head. Hypotheses concerning these parts are
generated by learning local features such as edgelet [6] and
orientation features.These parts are then assembled to form a
final humanmodel based on geometric constraints. Accurate
pedestrian detection depends on accurate part detection and
pedestrian representation by parts. Though this approach
is effective for dealing with partially occluded pedestrian
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detection, part detection is a difficult task. One example
of a patch-based method is implicit-shape-model- (ISM-)
based object detection, developed by Leibe et al. [7], which
combines both detection and segmentation in a probability
framework and requires only a few training images. However,
constructing a smart and discriminative codebook from
various perspectives remains an open problem.

Numerous descriptors used in pedestrian detection have
recently been proposed. Zhao and Thorpe [8] proposed a
pedestrian method by a pair of moving camera through
stereo-based segmentation and neural network-based recog-
nition. Dalal and Triggs [4] developed a descriptor similar to
scale invariant feature transform (SIFT) [9], which encodes
HOG in the detection window. HOG has been subsequently
extended to describe histograms that present information on
motion. Felzenszwalb et al. [10] recently appliedHOG to their
deformable part models and obtained promising results in
the PASCAL VOC Challenge. Zhu et al. [11] implemented
a cascade of rejecters based on HOG descriptors to achieve
near-real-time performance. Cascade models have also been
successfully used with other types of pedestrian descriptors,
such as edgelet features and the region of covariance (COV)
[12].

In order to integrate various pedestrian descriptors, many
works have proposed fusingmultiple features to detect pedes-
trians. Wojek et al. [13] combined the oriented histogram of
flowwithHOGorHaar on an onboard camera setup and con-
cluded that incorporating motion information considerably
enhances detection performance. Y. T. Chen and C. S. Chen
[14] proposed a method for detecting humans in a single
image, based on a novel cascade structure with metastages.
Their method includes both intensity-based rectangular fea-
tures and gradient-based 1D features in the feature pool of the
Real AdaBoost algorithm for weak classifier selection. Wang
et al. [15] combinedHOG and local binary pattern, trained by
a linear SVM, to solve the partial occlusion problem.

However, multicue pedestrian detection methods have
the following disadvantages for detecting pedestrians in still
images. First, optical flow information cannot be extracted
from a single image. Second, edgelet extraction or the COV
feature is computation-intensive. Finally, the AdaBoost has
too many parameters to tune, and the cascading test is
time-consuming and sensitive to occlusion. Therefore, this
work uses HOG and LBP features, which can be extracted
efficiently by integral images. An SVMwith a linear kernel or
HIK [16] has the advantage of ease of training in the training
stage and fast prediction in the test stage [17].

Although many datasets have been collected for pedes-
trian detection, few are designed to detect pedestrians in
cross-dataset, which is still a hot topic in computer vision.
Vazquez et al. [18] proposed an unsupervised domain adap-
tation of virtual and real worlds for pedestrian detection. Jain
and Learned-Miller [19] proposed an online approach for
quickly adapting a pretrained classifier to a new test dataset
without retraining the classifier. In this work, we collect
two new pedestrian datasets—one for low-resolution visual
images and one for near infrared images—to evaluate detec-
tion performance on various image types and at different
times.This work proposes cross-dataset pedestrian detection

by fusing integral channel features, which use only images
from the INRIA dataset for training but are effective on the
two newly collected datasets, thereby avoiding the training
overhead for cross-datasets.

The remainder of this paper is organized as follows.
Section 2 offers a description of the proposedmethod, includ-
ing the features, classifiers, and fusion. Section 3 presents
and offers a discussion of the relevant experimental results.
Finally, Section 4 draws a conclusion and presents sugges-
tions and directions for future work.

2. Proposed Pedestrian Detection Method

Sliding window-based object detection algorithms for static
images consist of two components: feature extraction and
classifier training. Feature extraction encodes the visual
appearance of a detected object using object descriptors.
Classifier training trains a classifier to determine whether
the current searching window contains a pedestrian. In this
section, we discuss the features and classifiers.

2.1. Feature Extraction. Several methods for describing pede-
strians have recently been proposed.Thiswork usesHOGand
LBP as pedestrian descriptors. All of these features can be
extracted using integral histogram techniques, accelerating
the computation process. They are complementary because
they encode gradient and texture information, respectively.

HOG. The HOG proposed by Dalal and Triggs [4] has
been widely used in the computer vision field, including
object detection, recognition, and classification. HOG is
similar to edge orientation histograms, shape context, and
the SIFT descriptor, but it is computed on a dense grid of
uniformly titled cells. Overlapping local contrast normal-
ization in blocks is conducted to improve accuracy. HOG
implementation involves dividing searchwindows into small-
connected regions, called cells, for which the histogram of
gradient directions is computed (Figure 1(a)). In this work,
an HOG descriptor is implemented using the following
parameters. Image derivatives in 𝑥 and 𝑦 directions are
obtained by applying the masks [−1 0 1] and [−1 0 1]𝑇,
respectively. The gradient orientation is linearly voted into
nine orientation bins in the range 0∘–180∘. A block size is 16
× 16; a cell size is 8 × 8; blocks overlap half of a cell in each
direction; Gaussian is weightingwith𝜎 = 4 using an L2-norm
for the feature vector in a block. The final vector consists of
all normalized block histograms, yielding 3780 dimensions.

LBP. Various applications have applied the local binary
pattern (LBP) extensively, which is highly effective in texture
classification and face recognition because it is invariant to
monotonic changes in the gray level [20]. Wang et al. [15]
noted that HOG performs poorly when the background is
cluttered with noisy edges and LBP is complementary when
it exploits the uniform pattern concept (Figure 2). In this
work, we adopt eight sample points and require bilinear
interpolation to find the red points in Figure 2(a) with a
radius of one and take the 𝑙

∞
distance as the distance to the

central pixel. The number of 0/1 transitions is no more than
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Figure 2: (a) Eight sample points of the local binary pattern; (b) examples of the uniform local binary pattern.

two. Different uniform patterns are counted into different
bins, and all nonuniform patterns are voted into one bin.
A cell includes 59 bins, and the L2-norm is adopted to
normalize the histogram. We used the procedure by Wang
et al. to extract the LBP feature and to directly establish
pattern histograms in the cells (16 × 16, without overlap, as
shown in Figure 1(b)). LBP histograms in the 32 cells are then
concatenated into a feature vector with dimensions of 59 × 32
= 1888 to describe the texture in the current search window.

2.2. Classifier Training. Linear SVMandAdaBoost arewidely
used for detecting pedestrians.This work focuses on an SVM
with different kernel functions because it is easy to train in
the training stage and can make rapid predictions in the
test stage. Linear SVMs learn the hyperplane that separates
pedestrians from the background in the original feature
space. Extended versions of SVM, such as RBF kernel SVMs,
transform data to a high and potentially infinite number

of dimensions. However, the extensions are seldom used
in pedestrian detection because more dimensions lead to
computational overload.

Maji et al. [16] recently approximated the histogram inter-
section kernel of SVM (HIKSVM) to accelerate prediction,
andWu [17] proposed a fast dual method for HIKSVM learn-
ing. Section 3 describes experiments conducted to compare
the performance of a linear SVM with that of HIKSVM. The
experimental results show that HIKSVM outperforms the
linear SVM. A brief introduction of HIKSVM follows.

Swain and Ballard [21] first proposed the HIK, which is
widely used as a measure of similarity between histograms.
Researchers have proven that HIK is positive definite and
can be used as a discriminative kernel function for SVMs.
However, the HIK requires memory and computation time
that is linearly proportional to the number of support vectors
because it is nonlinear. Maji et al. presented HIKSVMs with
a runtime complexity, that is, the logarithm of the number of
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support vectors. Based on precomputing auxiliary tables, an
approximate classifier can be constructed with runtime and
space requirements that are independent of the number of
support vectors.

For feature vectors x, y ∈ 𝑅𝑛
+
, the HIK can be expressed

as follows:

𝑘HI (x, y) =
𝑛

∑

𝑖 =1

min (𝑥 (𝑖) , 𝑦 (𝑖)) , (1)

and the corresponding discriminative function for a new
input vector x is

ℎ (x) =
𝑚

∑

𝑙 =1

𝛼
𝑙
𝑦
𝑙
𝑘 (𝑥, 𝑥

𝑙
) + 𝑏

=

𝑚

∑

𝑙 =1

𝛼
𝑙
𝑦
𝑙
(

𝑛

∑

𝑖 =1

min (𝑥 (𝑖) , 𝑥
𝑙
(𝑖))) + 𝑏.

(2)

Maji et al. noticed that for intersection kernels, the summa-
tions in (2) can be reformed as follows:

ℎ (x) =
𝑛

∑

𝑖 =1

(

𝑚

∑

𝑙 =1

𝛼
𝑙
𝑦
𝑙
min (𝑥 (𝑖) , 𝑥

𝑙
(𝑖))) + 𝑏

=

𝑛

∑

𝑖 =1

ℎ
𝑖
(𝑥 (𝑖)) + 𝑏,

(3)

where ℎ
𝑖
(𝑠) = ∑

𝑚

𝑙=1
𝛼
𝑙
𝑦
𝑙
min(𝑠, 𝑥

𝑙
(𝑖)). Consider the functions

ℎ
𝑖
(𝑠) at fixed point 𝑖; 𝑥

𝑙
(𝑖) represents the sorted values of 𝑥

𝑙
(𝑖)

in increasing order with corresponding values of 𝛼 and labels
given by 𝛼

𝑙
and 𝑦

𝑙
. According to the HIK, let 𝑟 be the largest

integer, such that 𝑥
𝑟
(𝑖) ≤ 𝑠; therefore,

ℎ
𝑖
(𝑠) =

𝑚

∑

𝑙 =1

𝛼
𝑙
𝑦
𝑙
min (𝑠, 𝑥

𝑙
(𝑖))

= ∑

1≤ 𝑙 ≤ 𝑟

𝛼
𝑙
𝑦
𝑙
𝑥
𝑙
(𝑖) + 𝑠 ∑

𝑟< 𝑙 ≤𝑚

𝛼
𝑙
𝑦
𝑙

= 𝐴
𝑖
(𝑟) + 𝑠𝐵

𝑖
(𝑟) ,

(4)

where 𝐴
𝑖
(𝑟) = ∑

1≤ 𝑙 ≤ 𝑟
𝛼
𝑙
𝑦
𝑙
𝑥
𝑙
(𝑖), 𝐵
𝑖
(𝑟) = ∑

𝑟 < 𝑙 ≤𝑚
𝛼
𝑙
𝑦
𝑙
. Clea-

rly, (4) is piecewise linear, and functions 𝐴
𝑖
and 𝐵

𝑖
are inde-

pendent of the input data.Therefore, s can be precomputed by

first finding the position of 𝑠 = 𝑥(𝑖) in the sorted list by binary
search, with a runtime complexity of 𝑂(log𝑚). Although
the runtime complexity of computing ℎ(𝑥) is 𝑂(𝑛 log𝑚), it
necessitates to double the storage that is required by the
standard implementation because the modified version must
store 𝑥

𝑙
and ℎ
𝑖
(𝑥
𝑙
).

Maji et al. found that the support distributions in each
dimension tend to be smooth and concentrated. Therefore,
the ℎ(𝑥) is relatively smooth and can be approximated by
simpler functions, greatly reducing the required storage and
accelerating the prediction. In this work, ℎ

𝑖
(𝑠) is computed

using a lookup table with a piecewise constant approxima-
tion.

2.3. Feature Fusion. The two main feature fusion methods
(Figure 3) are concatenated fusion (FF1) and weighted sum
(FF2). Concatenated fusion concatenates different feature
descriptors and then feeds the concatenated results into the
classifier. The weighted sum feeds different features into
individual classifiers and then combines classification scores
using a weighted sum.

This work fuses HOG and LBP features for detecting
pedestrians because both can be implemented by integral his-
togram approaches, accelerating the subsequent prediction
process, as described in Section 3. Let the output scores of the
individual SVM classifiers using HOG and LBP features be
𝑓HOG and 𝑓LBP, respectively. For the FF2 fusion method, the
final output score is then defined by the weighted sum

𝑓 = 𝛼𝑓HOG + (1 − 𝛼) 𝑓LBP, 0 < 𝛼 < 1. (5)

The values of 𝛼 to 𝛼 ∈ {𝛼 | 𝛼 = 0.1𝐾, 𝐾 = 1, 2, . . . , 9} are
herein. Section 3 verifies that FF1 performance is superior to
FF2 for all of the values of𝛼, andFF2has the best performance
when 𝛼 = 0.5. Hence, this work fuses HOG, LBP, and Haar
using HIKSVM by the FF1 method because this method is
highly accurate, as confirmed in Section 3.

3. Experimental Results

The accuracies achieved using various integral channel fea-
tures, different kernels of support vector machines, and
two feature fusion methods for detecting pedestrians are
extensively compared. Random noise blocks are added to
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Figure 4: Examples of pedestrian images: (a) INRIA; (b) XMU-VIS; (c) XMU-NIR.

Table 1: INRIA training and test sets, XMU-VIS test sets, and XMU-NIR datasets.

Training Test
Pedestrians Nonpedestrians Pedestrians Nonpedestrians

#imgs #win #imgs #win #imgs #win #imgs #win
INRIA 615 2416 1218 22111 288 1126 453 4484965
XMU-VIS — — — — 4207 10154 413 1834994
XMU-NIR — — — — 1057 2596 — —

the pedestrian image to test the robustness achieved using
various features and classifiers. Experimental results obtained
using the INRIA person dataset and two newly collected
Xiamen databases indicate that the combined HOG and LBP
features by the concatenated-fusion method using the SVM
with the HIK as a classifier yield the highest accuracy. The
multiple feature combination outperforms single features,
and the HIK consistently outperforms the linear SVM.

3.1. Dataset and Performance EvaluationMeasures. Thiswork
evaluates the performance of pedestrian detection using three
databases: the INRIA person database [4] and two new
databases collected at Xiamen University, called XMU-VIS
and XMU-NIR, respectively. The INRIA dataset contains
human images taken from several viewing angles under
various lighting conditions both indoors and outdoors.
Figure 4(a) shows samples of the INRIA dataset. INRIA
images fall into three groups, which are further divided into
training and testing sets. The first group is composed of 615
full-size positive images containing 1208 pedestrian instances
for training and 288 images containing 566 instances, for
testing. The second group comprises scale-normalized crops
of humans sized 64 × 128, including 2416 positive images for
training and 1126 positive images for testing. The third group
comprises full-size negative images including 1218 images for
training and 453 images for testing.

This work used 2416 scale-normalized crops of human
images as positive training samples and randomly sampled
22111 subimages from 1218 person-free training photographs
as negative training samples. All of the training images are
from the INRIA dataset, including the situations of test
images fromXMU-VIS or XMU-NIR datasets, to show cross-
dataset human detection. For the INRIA dataset, the 1126
cropped images of pedestrians were used for testing. The
negative test samples were obtained by scanning the 453
testing images in steps of eight pixels in the 𝑥- and 𝑦-
directions using five scales (0.8, 0.9, 1.0, 1.1, and 1.2) of image
size, yielding 4484965 negative cropping windows.

The XMU-VIS dataset was collected at various places
around Xiamen University and at different time. The size of
each pedestrian image in the XMU-VIS dataset is 640 × 480
smaller than that of INRIA in 720 × 576. The goal is to
simulate images captured by onboard cameras in intelligent
vehicles for detecting pedestrians in low resolution. The
XMU-VIS test set is composed of 4207 pedestrian images
with 10154 cropped images and 413 negative images with
1834994 cropped images. The XMU-NIR dataset was also
collected at various locations around Xiamen University and
at different times. The images captured by near-infrared
sensors were sized 1280× 720.TheXMU-NIR dataset consists
of 1057 pedestrian images, in which 2596 are pedestrians.
Table 1 summarizes the three datasets.
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Figure 5: Comparison of accuracies achieved by combining HOG and LBP features through FF1 and FF2 methods on the INRIA dataset.
The classifiers are linear SVM and HIKSVM in (a) and (b), respectively.

Feature fusion performance is measured by plotting the
number of false positives per window (FPPW) versus the
miss rate, as proposed by Dalal and Triggs [4] in Section 3.2.
This only measures classification performance and excludes
nonmaximum suppression and other postprocessing steps.
The FPPW miss rate curves are plotted in log-log space. To
avoid sampling bias, negative samples are selected as a fixed
set and are not boosted by bootstrap learning.

Pedestrian detection performance over cross-datasets
is measured by precision and recall curves, described in
Section 3.3. This is a measure of both classification and
location performance, including nonmaximum suppression
and various postprocessing steps. Efficiency and robustness
to occlusion of the proposed method are also discussed in
Sections 3.4.

3.2. Performance Evaluation of Feature Fusion. Asmentioned
in Section 2.3, the two main feature fusion methods are FF1
and FF2. This experiment was conducted to compare the
performances of FF1 and FF2. Both the linear SVM and
HIKSVM are applied on the INRIA dataset. HIKSVM is
approximated as 20 linear segments with a piecewise constant
function. Experimental results show that the FF1 method
outperforms FF2 for all of the values of 𝛼 and FF2 has the
best performance when 𝛼 = 0.5 (Figure 5). Therefore, FF1 is
selected by default for feature fusion hereafter.

The experimental results show that combining HOG and
LBP features through the FF1 method using the HIKSVM
classifier yields the best performance. Figure 6 shows a com-
parison of the results obtained by applying combined features
(single features or combining HOG and LBP features) and

different SVMs (HIKSVM or linear SVM) on the INRIA
and XMU-VIS datasets, respectively. Figure 6(a) shows that
applying feature HOG to the INRIA dataset is better than
applying feature LBP. In contrast, Figure 7(b) shows that
applying feature LBP is better than applying HOG on the
XMU-VIS dataset. The HIKSVM outperforms the linear
SVM, regardless of the features used. Combining HOG
and LBP features through the FF1 method with HIKSVM
as a classifier yields the best performance, regardless of
the INRIA or XMU-VIS datasets. Therefore, the proposed
method fusesHOGandLBP features through the FF1method
and uses the HIKSVM as a classifier. The method is then
applied to test images using the sliding window strategy
to evaluate pedestrian detection performance over cross-
datasets in Section 3.3.

3.3. Performance Evaluation of Pedestrian Detection over
Cross-Datasets. As shown in [2], the per-window measure
for pedestrian classification is flawed and fails to predict
full image performance for pedestrian detection. Therefore,
the proposed method is also evaluated on full images
using the PASCAL criteria in this section. The details are
described as follows. The proposed pedestrian detection,
fusing HOG and LBP features through the FF1 method
with the HIKSVM as a classifier, is used to find pedestrians
in an image by scanning the entire image with a fixed
size rectangle. A denoted window, labeled as a rectangle in
Figure 7, presents the framework of the proposed HIKSVM-
based pedestrian detection with sliding window scanning
on full images, called sliding window scanning. Various
sized windows are scanned to detect multiscale humans.
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Figure 6: Comparing accuracies achieved by applying single features (HOG and LBP) and fusing features (HOG + LBP) using HIKSVM and
FF1 to INRIA and XMU-VIS datasets.

Pedestrians Nonpedestrians
Training

Classifier

Testing: scan on multiscale images

Postprocessing

Detection results

Figure 7: Framework of the proposed HIKSVM-based pedestrian detection with sliding window scanning.

The local block features of each window are fed to the
HIKSVM-based pedestrian classifier to determine whether a
human exists in the window. Windows determining whether
a human exists are considered as candidate windows. After
performing multiscale sliding window scanning, candidate
windows of various sizes may overlap each other, specifi-
cally surrounding authentic humans. Overlapping windows
should be postprocessed to locate humans with an accurate

position. Two typical postprocessing methods, mean-shift
location and window overlapping handling, denoted by nms
and olp, respectively, are used and compared to determine the
proper postprocessing methods. Experimental results show
that the proposed pedestrian detection, fusing HOG and
LBP features through the FF1 method with the HIKSVM
classifier and window overlap postprocessing, is superior
(Figure 8).
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Figure 8: Comparison of precision and recalls achieved by using single features (HOG and LBP) and fusing HOG and LBP through various
postprocessing: (a) XMU-VIS; (b) XMU NIR.

3.4. Robustness Evaluation to Partial Occlusion. An exper-
iment was conducted to show that the proposed method
by concatenating HOG and LBP features through the FF1
method with an HIKSVM classifier is typically robust to
partial occlusion (Figures 9 and 10). The experiment was
designed to randomly add one to five random blocks of size
16 × 16 to the 1126 test-cropped images of pedestrians in the
INRIA dataset (Figure 11). Figure 11 shows that when random
blocks are added to the test-cropped images, the number
of missed pedestrians increases, regardless of the features
and SVMs used.The number of missed pedestrians increases
when more random blocks are added. Figure 12 shows that
the number ofmissing pedestrians for HOG and LBP is lower
than that when using a single feature, regardless of the SVM
that is used. In this experiment, a test sample is considered to
include a pedestrian when the SVM output score exceeds 0.5.

4. Conclusion

This work systematically compares integral channel features,
fusion methods, and kernels of SVM. The experimental
results show that fusing HOG and LBP features through
concatenation with the HIKSVM classifier yields the best

performance, even for cross-datasets. The comparison is
conducted using the INRIA person dataset for training and
two newly collected Xiamen databases, XMU-VIS and XMU-
NIR, combined with INRIA for testing.The results are as fol-
lows. First, directly concatenating various features as the final
feature for classification is better than the weighted fusion
of individual classifier results. Second, combining HOG and
LBP features outperforms using a single feature, regardless
of whether HIKSVM or linear SVM is used. As to kernel
mapping, there are also some non-linear kernels [22], such as
RBF and Chi2 kernel, which have reported obtaining better
performance than HIK. But non-linear kernels are time-
consuming in testing state; so, in this paper, we only discuss
the linear kernels for pedestrian detection. Third, HIKSVM
consistently outperforms linear SVM, evenwhennoise blocks
are added that cause the occlusion problem. Fourth, for
the postprocessing method, window-overlap-based postpro-
cessing outperforms the mean-shift-based postprocessing.
Finally, the proposed method is effective to detect pedestrian
locations, even for cross-datasets collected in Xiamen Uni-
versity and captured by low-resolution visual sensors or near-
infrared sensors. However, themethod proposed in this work
has certain limitations.Therefore, futureworks should extend
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Figure 9: Detection results on XMU-VIS. From left to right and top to down, the classifiers are HOG lin, LBP lin, HOG LBP lin, HOG HIK,
LBP HIK, and HOG LBP HIK.

Figure 10: Detection results on XMU-NIR. From left to right and top to down, the classifiers are HOG lin, LBP lin, HOG LBP lin,
HOG HIK, LBP HIK, and HOG LBP HIK.
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Figure 11: Examples of adding random blocks of size 16 × 16 to test-cropped images in the INRIA dataset.
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Figure 12: Comparison of missing rates using various combinations of features (single features or feature fusion) when random blocks were
added to test-cropped images.

the proposed method to construct a practical pedestrian
detection system for videos that integrates additional motion
features and scene geometry information.
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We investigate the traveling wave solutions in a reaction-diffusion epidemic model. The existence of the wave solutions is derived
through monotone iteration of a pair of classical upper and lower solutions. The traveling wave solutions are shown to be unique
and strictly monotonic. Furthermore, we determine the critical minimal wave speed.

1. Introduction

Recently, great attention has been paid to the study of the
traveling wave solutions in reaction-diffusion models [1–17].
In the sense of epidemiology, the traveling wave solutions
describe the transition from a disease-free equilibrium to an
endemic equilibrium; the existence and nonexistence of non-
trivial traveling wave solutions indicate whether or not the
disease can spread [11]. The results contribute to predicting
the developing tendency of infectious diseases, to determin-
ing the key factors of the spread of infectious disease, and to
seeking the optimum strategies of preventing and controlling
the spread of the infectious diseases [18–21].

Some methods have been used to derive the existence of
travelingwave solutions in reaction-diffusionmodels, and the
monotone iterationmethod has been proved to be an effective
one. Such a method reduces the existence of traveling wave
solutions to that of an ordered pair of upper-lower solutions
[6, 7, 9, 10, 14, 15].

In [22], Berezovsky and coworkers introduced a simple
epidemic model through the incorporation of variable pop-
ulation, disease-induced mortality, and emigration into the
classical model of Kermack and McKendrick [23]. The total
population (𝑁) is divided into two groups of susceptible (𝑆)

and infectious (𝐼); that is to say, 𝑁 = 𝑆 + 𝐼. The model
describing the relations between the state variables is

𝑑𝑆

𝑑𝑡
= 𝑟𝑁(1 −

𝑁

𝐾
) − 𝛽

𝑆𝐼

𝑁
− (𝜇 + 𝑚) 𝑆,

𝑑𝐼

𝑑𝑡
= 𝛽

𝑆𝐼

𝑁
− (𝜇 + 𝑑) 𝐼,

(1)

where the reproduction of susceptible follows a logistic equa-
tion with the intrinsic growth rate 𝑟 and the carrying capacity
𝐾, 𝛽 denotes the contact transmission rate (the infection rate
constant), 𝜇 is the natural mortality; 𝑑 denotes the disease-
induced mortality, and𝑚 is the per-capita emigration rate of
uninfected.

For model (1), the epidemic threshold, the so-called basic
reproduction number 𝑅

0
, is then computed as 𝑅

0
= 𝛽/(𝜇 +

𝑑). The disease will successfully invade when 𝑅
0
> 1 but will

die out if 𝑅
0
< 1. 𝑅

0
= 1 is usually a threshold whether the

disease goes to extinction or goes to an endemic. Large values
of 𝑅
0
may indicate the possibility of a major epidemic [19]. In

addition, the basic demographic reproductive number 𝑅
𝑑
is

given by 𝑅
𝑑
= 𝑟/(𝜇 + 𝑚). It can be shown that if 𝑅

𝑑
> 1 the

population grows, while 𝑅
𝑑
≤ 1 implies that the population

does not survive [22].
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For simplicity, rescaling model (1) by letting 𝑆 → 𝑆/𝐾,
𝐼 → 𝐼/𝐾, and 𝑡 → 𝑡/(𝜇 + 𝑑) leads to the following model:

𝑑𝑆

𝑑𝑡
= ]𝑅
𝑑
(𝑆 + 𝐼) [1 − (𝑆 + 𝐼)] − 𝑅

0

𝑆𝐼

𝑆 + 𝐼
− ]𝑆,

𝑑𝐼

𝑑𝑡
= 𝑅
0

𝑆𝐼

𝑆 + 𝐼
− 𝐼,

(2)

where ] = (𝜇+𝑚)/(𝜇+𝑑) is defined by the ratio of the average
life span of susceptibles to that of infectious.

For details, we refer the reader to [20, 22].
In this paper, we are interested in the existence of traveling

wave solutions in the following reaction-diffusion epidemic
model [20]:

𝜕𝑆

𝜕𝑡
= ]𝑅
𝑑
(𝑆 + 𝐼) [1 − (𝑆 + 𝐼)] − 𝑅

0

𝑆𝐼

𝑆 + 𝐼
− ]𝑆 + 𝑑

𝜕
2
𝑆

𝜕𝑥2
,

𝜕𝐼

𝜕𝑡
= 𝑅
0

𝑆𝐼

𝑆 + 𝐼
− 𝐼 + 𝑑

𝜕
2
𝐼

𝜕𝑥2
,

𝑆 (𝑥, 0) = 𝑆
0
(𝑥) , 𝐼 (𝑥, 0) = 𝐼

0
(𝑥) ,

(3)

where ], 𝑅
0
, 𝑅
𝑑
are all positive constants, 𝑑 is the diffusion

coefficient, and (𝑥, 𝑡) ∈ 𝑅 × 𝑅
+.

We are looking for the traveling wave solutions of model
(3) with the following form:

𝑆 (𝑥, 𝑡) = 𝑆 (𝜉) , 𝐼 (𝑥, 𝑡) = 𝐼 (𝜉) , 𝜉 = 𝑥 + 𝑐𝑡, (4)

satisfying the following boundary value conditions:

(𝑆 (−∞) , 𝐼 (−∞))
𝑇
= 𝐸
1
, (𝑆 (+∞) , 𝐼 (+∞))

𝑇
= 𝐸
2
,

(5)

where 𝐸
1
, 𝐸
2
are the equilibrium points of model (3).

This paper is arranged as follows. In Section 2, we con-
struct a pair of ordered upper-lower solutions of model (3)
and establish the uniqueness and strict monotonicity of the
traveling wave solutions.

2. Existence and Asymptotic Decay Rates

In this section, we will establish the existence of traveling
wave solutions of model (3) by constructing a pair of ordered
upper-lower solutions. The definition of the upper solution
and the lower solution is standard. We assume that the ineq-
uality between two vectors throughout this paper is compo-
nentwise.

Setting

𝑆̂ =
𝑅
𝑑
− 1

𝑅
𝑑

− 𝑆, 𝐼̂ = 𝐼, (6)

then model (3) can be written as

𝜕𝑆̂

𝜕𝑡
= −]𝑅

𝑑
(
𝑅
𝑑
− 1

𝑅
𝑑

− 𝑆̂ + 𝐼̂) [1 − (
𝑅
𝑑
− 1

𝑅
𝑑

− 𝑆̂ + 𝐼̂)]

+ 𝑅
0

((𝑅
𝑑
− 1) /𝑅

𝑑
− 𝑆̂) 𝐼̂

(𝑅
𝑑
− 1) /𝑅

𝑑
− 𝑆̂ + 𝐼̂

+ ](
𝑅
𝑑
− 1

𝑅
𝑑

− 𝑆̂) + 𝑑
𝜕
2
𝑆̂

𝜕𝑥2
,

𝜕𝐼̂

𝜕𝑡
= 𝑅
0

((𝑅
𝑑
− 1) /𝑅

𝑑
− 𝑆̂) 𝐼̂

(𝑅
𝑑
− 1) /𝑅

𝑑
− 𝑆̂ + 𝐼̂

− 𝐼̂ + 𝑑
𝜕
2
𝐼̂

𝜕𝑥2
,

(𝑆̂, 𝐼̂)
𝑇

(−∞) = (0, 0)
𝑇
, (𝑆̂, 𝐼̂)

𝑇

(+∞) = (𝑆̂
∗

, 𝐼̂
∗

)
𝑇

.

(7)

Formodel (3), the equilibria are𝐸
1
= ((𝑅
𝑑
−1)/𝑅

𝑑
, 0) and

𝐸
2
= (𝑆
∗
, 𝐼
∗
), where

𝑆
∗
=
]𝑅
0
𝑅
𝑑
− 𝑅
0
− ] + 1

]𝑅2
0
𝑅
𝑑

, 𝐼
∗
= (𝑅
0
− 1) 𝑆

∗
, (8)

and for model (7), the equilibria are 𝐸
1

= (0, 0) and 𝐸
2

=

(𝑆̂
∗

, 𝐼̂
∗

), where

𝑆̂
∗

=
(𝑅
0
− 1) (]𝑅

0
𝑅
𝑑
− ]𝑅
0
− ] + 1)

]𝑅2
0
𝑅
𝑑

,

𝐼̂
∗

=
(𝑅
0
− 1) (]𝑅

0
𝑅
𝑑
− 𝑅
0
− ] + 1)

]𝑅2
0
𝑅
𝑑

.

(9)

Obviously,

𝐼̂
∗

− 𝑆̂
∗

=
(] − 1) (𝑅

0
− 1)

]𝑅
0
𝑅
𝑑

,

𝑆̂
∗

=
𝑅
𝑑
− 1

𝑅
𝑑

− 𝑆
∗
, 𝐼̂
∗

= 𝐼
∗
.

(10)

For simplicity, we define the following functions and con-
stants:

𝛼
0
=

𝑅
𝑑
− 1

𝑅
𝑑

, 𝜙 (𝐼) = 𝛼
0
𝐼̂
∗

+ (𝐼̂
∗

− 𝑆̂
∗

) 𝐼;

𝛽
0
= 𝛼
0
(𝐼̂
∗

)
2𝑅
0
− 1

𝑅
0

(𝑅
0
− ] + 1) ;

𝛾
0
= 2] (𝑅

𝑑
− 1) (𝐼̂

∗

− 𝑆̂
∗

) − []𝐼̂
∗

+ (𝑅
0
− 1) 𝑆̂

∗

] ;

𝜓 (𝐼) = ]𝑅
𝑑
(𝐼̂
∗

− 𝑆̂
∗

)
2

𝐼
2
+ 𝛾
0
𝐼̂
∗

𝐼 + 𝛽
0
;

𝜂
0
= −

𝛾
0
𝐼̂
∗

2]𝑅
𝑑
(𝐼̂
∗

− 𝑆̂
∗

)
2
;

𝜑 (𝐼) = 1, 𝐼 > 0; 𝜑 (𝐼) = −1, 𝐼 ≤ 0;

𝐵 =
𝐼̂
∗

2
[1 + 𝜑(

𝐼̂
∗

2
− 𝜂
0
)] .

(11)

And we will always assume the following hypotheses
throughout the rest of this paper:
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[H1]

𝑅
0
> 1, 1 < 𝑅

𝑑
<

2𝑅
2

0
+ 2𝑅
0
− 2

3𝑅
2

0
− 2𝑅
0

,

max{
27𝑅
0
(𝑅
𝑑
− 1)
2

𝑅
3

𝑑

,
𝑅
0
− 1

𝑅
0
𝑅
𝑑
− 1

}

< ] <
−1

𝑅
0
𝑅
𝑑
− 𝑅
0
− 1

.

(12)

[H2]

] ≥ max{
𝑅
0

2 − 𝑅
𝑑

,
𝑅
3

0
− 2𝑅
2

0
+ 4𝑅
0
− 2

2𝑅
2

0
+ 2𝑅
0
− 2 − (3𝑅

2

0
− 2𝑅
0
) 𝑅
𝑑

} ,

𝜓 (𝐵) ≤ 0.

(13)

Then we can obtain the following.

Lemma 1. If [H1] holds, then 𝐸
2
and 𝐸

2
are endemic points of

model (3) and model (7), respectively.

Lemma 2. For model (7), if [H1] holds, then 𝐸
1
is unstable,

and 𝐸
2
is stable.

For the sake of convenience, let 𝑥 = √𝑑 𝑥̃. For simplicity,
we still use the variables 𝑆, 𝐼, and 𝑥 instead of 𝑆̂, 𝐼̂, and 𝑥̃,
respectively, then model (7) could be rewritten as

𝜕𝑆

𝜕𝑡
= −]𝑅

𝑑
(𝛼
0
− 𝑆 + 𝐼) [1 − (𝛼

0
− 𝑆 + 𝐼)]

+ 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

+ ] (𝛼
0
− 𝑆) +

𝜕
2
𝑆

𝜕𝑥2
,

𝜕𝐼

𝜕𝑡
= 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

− 𝐼 +
𝜕
2
𝐼

𝜕𝑥2
,

(𝑆, 𝐼)
𝑇

(−∞) = (0, 0)
𝑇
, (𝑆, 𝐼)

𝑇

(+∞) = (𝑆̂
∗

, 𝐼̂
∗

)
𝑇

.

(14)

Following the definition of quasi-monotonicity [17], we
can obtain the following results.

Lemma 3. Model (14) is a quasi-monotone decreasing system
in (𝑆, 𝐼) ∈ [𝐸

1
, 𝐸
2
].

Proof. Let

𝐹
1
(𝑆, 𝐼) = −]𝑅

𝑑
(𝛼
0
− 𝑆 + 𝐼) [1 − (𝛼

0
− 𝑆 + 𝐼)]

+ 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

+ ] (𝛼
0
− 𝑆) ,

𝐹
2
(𝑆, 𝐼) = 𝑅

0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

− 𝐼.

(15)

From [17], we can know that the functions 𝐹
1
(𝑆, 𝐼) and

𝐹
2
(𝑆, 𝐼) are said to possess a quasi-monotone nonincreasing

system, if the sign of 𝜕𝐹
1
(𝑆, 𝐼)/𝜕𝐼 and 𝜕𝐹

2
(𝑆, 𝐼)/𝜕𝑆 are both

nonpositive.
Since

𝜕𝐹
2
(𝑆, 𝐼)

𝜕𝑆
= −𝑅
0
(

𝐼

𝛼
0
− 𝑆 + 𝐼

)

2

≤ 0,

𝜕𝐹
1
(𝑆, 𝐼)

𝜕𝐼
= 𝑅
0
(

𝛼
0
− 𝑆

𝛼
0
− 𝑆 + 𝐼

)

2

+ 2]𝑅
𝑑
(𝛼
0
− 𝑆 + 𝐼) − ]𝑅

𝑑
,

𝜕

𝜕𝑆
(
𝜕𝐹
1
(𝑆, 𝐼)

𝜕𝐼
) = −2]𝑅

𝑑
− 2𝑅
0

(𝛼
0
− 𝑆) 𝐼

(𝛼
0
− 𝑆 + 𝐼)

3
≤ −2]𝑅

𝑑
< 0.

(16)

Then,

𝜕𝐹
1
(𝑆, 𝐼)

𝜕𝐼
≤ 𝑅
0
(

𝛼
0

𝛼
0
+ 𝐼

)

2

+ 2]𝑅
𝑑
(𝛼
0
+ 𝐼) − ]𝑅

𝑑
. (17)

Let

𝐺 (𝑧) =
𝛼
2

0
𝑅
0

𝑧2
+ 2]𝑅

𝑑
𝑧 − ]𝑅

𝑑
, 𝑧 ∈ [𝛼

0
, 𝛼
0
+
̂
𝐼
∗
] , (18)

then

𝐺
󸀠

(𝑧) = 2]𝑅
𝑑
−

2𝛼
2

0
𝑅
0

𝑧3
= 0, (19)

obviously, 𝑧∗ = 3
√𝛼
2

0
𝑅
0
/]𝑅
𝑑
is the unique real root of 𝐺󸀠(𝑧).

Since ] > 27𝑅
0
(𝑅
𝑑
− 1)
2
/𝑅
3

𝑑
, consider 𝛼

0
= (𝑅
𝑑
− 1)/𝑅

𝑑
,

then we can get

𝐺 (𝑧
∗
) =

(𝛼
2

0
𝑅
0
)
2/3

[(27𝛼
2

0
𝑅
0
)
1/3

− (]𝑅
𝑑
)
1/3

]

(𝑧
∗
)
2

< 0.
(20)

And
lim
𝑧→0

+

𝐺 (𝑧) = lim
𝑧→+∞

𝐺 (𝑧) = +∞; (21)

hence, 𝐺(𝑧) has two positive roots.
Since ] ≥ 𝑅

0
/(2 − 𝑅

𝑑
), thus 𝐺(𝛼

0
) = 𝑅
0
+ ]𝑅
𝑑
− 2] ≤ 0.

According to conditions [𝐻1] and [𝐻2], we can get

𝐺(𝛼
0
+
̂
𝐼
∗
) = ]𝑅

𝑑
− 2] + 2]𝑅

𝑑

̂
𝐼
∗
+ 𝑅
0
(

𝛼
0

𝛼
0
+
̂
𝐼∗

)

2

< ]𝑅
𝑑
− 2] + 2]𝑅

𝑑

̂
𝐼
∗
+ 𝑅
0

=

(3𝑅
2

0
𝑅
𝑑
− 2𝑅
2

0
− 2𝑅
0
𝑅
𝑑
− 2𝑅
0
+ 2) ]

𝑅
2

0

+

(𝑅
3

0
− 2𝑅
2

0
+ 4𝑅
0
− 2)

𝑅
2

0

≤ 0.

(22)

Then, 𝐺([𝛼
0
, 𝛼
0
+
̂
𝐼
∗
]) ≤ 0. Hence, 𝜕𝐹

1
(𝑆, 𝐼)/𝜕𝐼 ≤ 0.

That is to say, model (14) is a quasi-monotone system in
(𝑆, 𝐼) ∈ [𝐸

1
, 𝐸
2
].
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Since the traveling wave solution of model (14) has the
following form

𝑆 (𝜉) = 𝑆 (𝑥 + 𝑐𝑡) , 𝐼 (𝜉) = 𝐼 (𝑥 + 𝑐𝑡) , 𝜉 = 𝑥 + 𝑐𝑡, 𝑐 > 0;

(23)

substituting (23) into model (14), we can get the following
model:

𝑆
󸀠󸀠
− 𝑐𝑆
󸀠
− ]𝑅
𝑑
(𝛼
0
− 𝑆 + 𝐼) [1 − (𝛼

0
− 𝑆 + 𝐼)]

+ 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

+ ] (𝛼
0
− 𝑆) = 0,

𝐼
󸀠󸀠
− 𝑐𝐼
󸀠
+ 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

− 𝐼 = 0,

(𝑆, 𝐼)
𝑇

(−∞) = (0, 0)
𝑇
, (𝑆, 𝐼)

𝑇

(+∞) = (𝑆̂
∗

, 𝐼̂
∗

)
𝑇

.

(24)

Obviously, we can know the following.

Remark 4. Model (24) is also a quasi-monotone system in
(𝑆, 𝐼) ∈ [𝐸

1
, 𝐸
2
].

Nowwe establish the existence of travelingwave solutions
of model (24) through monotone iteration of a pair of
smooth upper and lower solutions. Following [17], we give the
definitions of the upper and lower solutions of model (24) as
follows, respectively.

Definition 5. A smooth function (𝑆(𝜉), 𝐼(𝜉))
𝑇 (𝜉 ∈ R) is an

upper solution of model (24) if its derivatives (𝑆
󸀠

, 𝐼
󸀠

)
𝑇 and

(𝑆
󸀠󸀠

, 𝐼
󸀠󸀠

) are continuous on R, and (𝑆, 𝐼)
𝑇 satisfies

𝑆
󸀠󸀠
− 𝑐𝑆
󸀠
− ]𝑅
𝑑
(𝛼
0
− 𝑆 + 𝐼) [1 − (𝛼

0
− 𝑆 + 𝐼)]

+ 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

+ ] (𝛼
0
− 𝑆) ≤ 0,

𝐼
󸀠󸀠
− 𝑐𝐼
󸀠
+ 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

− 𝐼 ≤ 0,

(25)

with the following boundary value conditions

(
𝑆

𝐼
) (−∞) = (

0

0
) , (

𝑆

𝐼
) (+∞) ≥ (

𝑆̂
∗

𝐼̂
∗) . (26)

Definition 6. A smooth function (𝑆(𝜉), 𝐼(𝜉))
𝑇 (𝜉 ∈ R) is a

lower solution of model (24) if its derivatives (𝑆
󸀠
, 𝐼
󸀠
)
𝑇 and

(𝑆
󸀠󸀠
, 𝐼
󸀠󸀠
) are continuous on R, and (𝑆, 𝐼)

𝑇 satisfies

𝑆
󸀠󸀠
− 𝑐𝑆
󸀠
− ]𝑅
𝑑
(𝛼
0
− 𝑆 + 𝐼) [1 − (𝛼

0
− 𝑆 + 𝐼)]

+ 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

+ ] (𝛼
0
− 𝑆) ≥ 0,

𝐼
󸀠󸀠
− 𝑐𝐼
󸀠
+ 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

− 𝐼 ≥ 0,

(27)

with the following boundary value conditions

(
𝑆

𝐼
) (−∞) = (

0

0
) , (

𝑆

𝐼
) (+∞) ≤ (

𝑆̂
∗

𝐼̂
∗) . (28)

The construction of the smooth upper-lower solution pair
is based on the solution of the following KPP equation:

𝑤
󸀠󸀠
− 𝑐𝑤
󸀠
+ 𝑓 (𝑤) = 0,

𝑤 (−∞) = 0, 𝑤 (+∞) = 𝑏,

(29)

where 𝑓 ∈ 𝐶
2
([0, 𝑏]) and 𝑓 > 0 in the open interval (0, 𝑏)

with 𝑓(0) = 𝑓(𝑏) = 0, 𝑓󸀠(0) = 𝑎
1
> 0, and 𝑓

󸀠
(𝑏) = −𝑏

1
< 0

[15]. First, let us recall the following result.

Lemma 7 (see [1, 15]). Corresponding to every 𝑐 ≥ 2√𝑎
1
,

model (29) has a unique (up to a translation of the origin)
monotonically increasing traveling wave solution 𝑤(𝜉) for 𝜉 ∈

𝑅. The traveling wave solution 𝑤 has the following asymptotic
behaviors.

(i) For the wave solution with noncritical speed 𝑐 > 2√𝑎
1
,

one has

𝑤 (𝜉) = 𝑎
𝜔
𝑒
((𝑐−√𝑐

2
−4𝑎1)/2)𝜉

+ 𝑜 (𝑒
((𝑐−√𝑐

2
−4𝑎1)/2)𝜉) 𝑎𝑠 𝜉 󳨀→ −∞,

𝑤 (𝜉) = 𝑏 − 𝑏
𝜔
𝑒
((𝑐−√𝑐

2
+4𝑏1)/2)𝜉

+ 𝑜 (𝑒
((𝑐−√𝑐

2
+4𝑏1)/2)𝜉) 𝑎𝑠 𝜉 󳨀→ +∞,

(30)

where 𝑎
𝜔
and 𝑏
𝜔
are positive constants.

(ii) For the wave with critical speed 𝑐 = 2√𝑎
1
, one has

𝑤 (𝜉) = (𝑎
𝑐
+ 𝑑
𝑐
𝜉) 𝑒
√𝑎1𝜉 + 𝑜 (𝜉𝑒

√𝑎1𝜉) 𝑎𝑠 𝜉 󳨀→ −∞,

𝑤 (𝜉) = 𝑏 − 𝑏
𝑐
𝑒
(√𝑎1−√𝑎1+𝑏1)𝜉

+ 𝑜 (𝑒
(√𝑎1−√𝑎1+𝑏1)𝜉) 𝑎𝑠 𝜉 󳨀→ +∞,

(31)

where the constant 𝑑
𝑐
is negative, 𝑏

𝑐
is positive, and 𝑎

𝑐
∈ 𝑅.

For constructing the upper solution of the model (24), we
start with the following model:

𝐼
󸀠󸀠
− 𝑐𝐼
󸀠
+ 𝐼 (𝐼̂

∗

− 𝐼)
𝛼
0
(𝑅
0
− 1)

𝛼
0
𝐼̂
∗

+ (𝐼̂
∗

− 𝑆̂
∗

) 𝐼

= 0,

𝐼 (−∞) = 0, 𝐼 (+∞) = 𝐼̂
∗

.

(32)

Define 𝑓(𝐼) = 𝐼(𝐼̂
∗

− 𝐼)(𝛼
0
(𝑅
0
− 1)/𝜙(𝐼)), 𝐼 ∈ [0, 𝐼̂

∗

], one
can verify that all of the following conditions are satisfied:

(i) 𝑓(𝐼) = 𝐼(𝐼̂
∗

− 𝐼)(𝛼
0
(𝑅
0
− 1)/𝜙(𝐼)) ∈ 𝐶

2
([0, 𝐼̂
∗

]);
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(ii) 𝑓(𝐼) > 0, for all 𝐼 ∈ (0, 𝐼̂
∗

) and 𝑓(0) = 𝑓(𝐼̂
∗

) = 0;

(iii) 𝑓󸀠(0) = 𝑅
0
− 1 > 0, 𝑓󸀠(𝐼̂∗) = −𝛼

0
(𝑅
0
− 1)
2
/𝑅
0
𝐼̂
∗

< 0.

From Lemma 7, we know that, for each 𝑐 ≥ 2√𝑅
0
− 1,

equation (32) has a unique traveling wave solution 𝐼(𝜉) (up
to a translation of the origin), satisfying the given boundary
value conditions (26).

Define

(
𝑆 (𝜉)

𝐼 (𝜉)
) = (

𝑆̂
∗

𝐼̂
∗
𝐼 (𝜉)

𝐼 (𝜉)

) , 𝜉 ∈ 𝑅, (33)

then we can get the following result.

Lemma 8. For each 𝑐 ≥ 2√𝑅
0
− 1, (33) is a smooth upper

solution of model (24).

Proof. On the boundary,

(
𝑆

𝐼
) (−∞) = (

0

0
) , (

𝑆

𝐼
) (+∞) ≥ (

𝑆̂
∗

𝐼̂
∗) . (34)

As for the 𝐼 component, we have

𝐼
󸀠󸀠

− 𝑐𝐼
󸀠

+ 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

− 𝐼

= −𝐼 (𝐼̂
∗

− 𝐼)
𝛼
0
(𝑅
0
− 1)

𝜙 (𝐼)

+ 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

− 𝐼

= −𝐼 (𝐼̂
∗

− 𝐼)
𝛼
0
(𝑅
0
− 1)

𝜙 (𝐼)

+ 𝑅
0

𝛼
0
𝐼̂
∗

− 𝑆̂
∗

𝐼

𝜙 (𝐼)

𝐼 − 𝐼

= −𝐼 (𝐼̂
∗

− 𝐼)
𝛼
0
(𝑅
0
− 1)

𝜙 (𝐼)

+ 𝐼

𝛼
0
(𝑅
0
− 1) 𝐼̂

∗

− (𝑅
0
𝑆̂
∗

− 𝑆̂
∗

+ 𝐼̂
∗

) 𝐼

𝜙 (𝐼)

= −𝐼 (𝐼̂
∗

− 𝐼)
𝛼
0
(𝑅
0
− 1)

𝜙 (𝐼)

+ 𝐼
𝛼
0
(𝑅
0
− 1) 𝐼̂

∗

− 𝛼
0
(𝑅
0
− 1) 𝐼

𝜙 (𝐼)

= 0.

(35)

As for the 𝑆 component, since ] > 1, then 𝐼̂
∗

− 𝑆̂
∗

= (] −

1)(𝑅
0
− 1)/]𝑅

0
𝑅
𝑑
> 0. And

(i) if 𝜂
0
< 𝐼̂
∗

/2, then max
𝜉∈[0,𝐼̂

∗

]
𝜓(𝐼) = 𝜓(𝐼̂

∗

) = 𝜓(𝐵);

(ii) if 𝜂
0
≥ 𝐼̂
∗

/2, then max
𝜉∈[0,𝐼̂

∗

]
𝜓(𝐼) = 𝜓(0) = 𝜓(𝐵).

Thus we can get:

𝑆
󸀠󸀠

− 𝑐𝑆
󸀠

− ]𝑅
𝑑
(𝛼
0
− 𝑆 + 𝐼) [1 − (𝛼

0
− 𝑆 + 𝐼)]

+ 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

+ ] (𝛼
0
− 𝑆)

=
𝑆̂
∗

𝐼̂
∗
(𝐼
󸀠󸀠

− 𝑐𝐼
󸀠

) − ]𝑅
𝑑
(𝛼
0
− 𝑆 + 𝐼) [1 − (𝛼

0
− 𝑆 + 𝐼)]

+ 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

+ ] (𝛼
0
− 𝑆)

=
𝑆̂
∗

𝐼̂
∗
(−𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

+ 𝐼) − ]𝑅
𝑑
(𝛼
0
− 𝑆 + 𝐼)

× [1 − (𝛼
0
− 𝑆 + 𝐼)] + 𝑅

0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

+ ] (𝛼
0
− 𝑆)

= (1 −
𝑆̂
∗

𝐼̂
∗
)𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

+
𝑆̂
∗

𝐼̂
∗
𝐼 − ]𝑅

𝑑
(𝛼
0
− 𝑆 + 𝐼)

× [1 − (𝛼
0
− 𝑆 + 𝐼)] + ] (𝛼

0
− 𝑆)

=
𝐼̂
∗

− 𝑆̂
∗

𝐼̂
∗

𝑅
0

𝛼
0
𝐼̂
∗

− 𝑆̂
∗

𝐼

𝜙 (𝐼)

𝐼 +
𝑆̂
∗

𝐼̂
∗
𝐼 − ]𝑅

𝑑

𝜙 (𝐼)

𝐼̂
∗

[1 −

𝜙 (𝐼)

𝐼̂
∗

]

+ ]
𝛼
0
𝐼̂
∗

− 𝑆̂
∗

𝐼

𝐼̂
∗

=

(𝐼̂
∗

− 𝑆̂
∗

) 𝐼𝜓 (𝐼)

(𝐼̂
∗

)
2

𝜙 (𝐼)

≤ 0.

(36)

Hence, (𝑆, 𝐼) forms a smooth upper solution for model (24).

For constructing the lower solution of the model (24), we
start with the following model:

𝐼
󸀠󸀠
− 𝑐𝐼
󸀠
+ 𝐼 [𝐼̂

∗

− (1 + 𝜀) 𝐼]
𝛼
0
(𝑅
0
− 1)

𝛼
0
𝐼̂
∗

+ (𝐼̂
∗

− 𝑆̂
∗

) 𝐼

= 0,

𝐼 (−∞) = 0, 𝐼 (+∞) =
𝐼̂
∗

1 + 𝜀
.

(37)

Define 𝑔(𝐼) = 𝐼[𝐼̂
∗

− (1 + 𝜀)𝐼](𝛼
0
(𝑅
0
− 1)/(𝛼

0
𝐼̂
∗

+ (𝐼̂
∗

−

𝑆̂
∗

)𝐼)), 𝐼 ∈ [0, 𝐼̂
∗

/(1 + 𝜀)]. One can easily verify that all of the
following conditions hold:

(i) 𝑔(𝐼) = 𝐼[𝐼̂
∗

−(1+𝜀)𝐼](𝛼
0
(𝑅
0
−1)/(𝛼

0
𝐼̂
∗

+(𝐼̂
∗

−𝑆̂
∗

)𝐼)) ∈

𝐶
2
([0, 𝐼̂
∗

/(1 + 𝜀)]);

(ii) 𝑔(𝐼) > 0, for all 𝐼 ∈ (0, 𝐼̂
∗

/(1+𝜀)) and𝑔(0) = 𝑔(𝐼̂
∗

/(1+

𝜀)) = 0;
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(iii) 𝑔󸀠(0) = 𝑅
0
− 1 > 0, 𝑔󸀠(𝐼̂∗/(1 + 𝜀)) = −(1 + 𝜀)𝛼

0
(𝑅
0
−

1)/(𝜀𝛼
0
+ (𝑅
0
/(𝑅
0
− 1))𝐼̂

∗

) < 0.

From Lemma 7, we know that, for each fixed 𝑐 ≥

2√𝑅
0
− 1, model (37) has a unique traveling wave solution

𝐼(𝜉) (up to a translation of the origin), satisfying the given
boundary value conditions (28).

Define

(
𝑆 (𝜉)

𝐼 (𝜉)
) = (

𝑆̂
∗

𝐼̂
∗
𝐼 (𝜉)

𝐼 (𝜉)

) , 𝜉 ∈ 𝑅, (38)

then we have the following result:

Lemma 9. For each fixed 𝑐 ≥ 2√𝑅
0
− 1, (38) is a lower

solution of model (24).

Proof. On the boundary,

(
𝑆

𝐼
) (−∞) = (

0

0
) , (

𝑆

𝐼
) (+∞) = (

𝑆̂
∗

1 + 𝜀

𝐼̂
∗

1 + 𝜀

) ≤ (
𝑆̂
∗

𝐼̂
∗) .

(39)

As for the 𝐼 component, we have

𝐼
󸀠󸀠
− 𝑐𝐼
󸀠
+ 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

− 𝐼

= −𝐼 [𝐼̂
∗
− (1 + 𝜀) 𝐼]

𝛼
0
(𝑅
0
− 1)

𝜙 (𝐼)
+ 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

− 𝐼

= −𝐼 [𝐼̂
∗
− (1 + 𝜀) 𝐼]

𝛼
0
(𝑅
0
− 1)

𝜙 (𝐼)
+ 𝐼 (𝐼̂

∗

− 𝐼)
𝛼
0
(𝑅
0
− 1)

𝜙 (𝐼)

= 𝜀(𝐼)
2𝛼0 (𝑅0 − 1)

𝜙 (𝐼)
≥ 0.

(40)

As for the 𝑆 component, we have

𝑆
󸀠󸀠
− 𝑐𝑆
󸀠
− ]𝑅
𝑑
(𝛼
0
− 𝑆 + 𝐼) [1 − (𝛼

0
− 𝑆 + 𝐼)]

+ 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

+ ] (𝛼
0
− 𝑆)

=
𝑆̂
∗

𝐼̂
∗
(𝐼
󸀠󸀠
− 𝑐𝐼
󸀠
) − ]𝑅

𝑑
(𝛼
0
− 𝑆 + 𝐼) [1 − (𝛼

0
− 𝑆 + 𝐼)]

+ 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

+ ] (𝛼
0
− 𝑆)

=
𝑆̂
∗

𝐼̂
∗
{[𝜀 (𝐼)

2 𝛼0 (𝑅0 − 1)

𝜙 (𝐼)
] − [𝑅

0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

− 𝐼]}

− ]𝑅
𝑑
(𝛼
0
− 𝑆 + 𝐼) [1 − (𝛼

0
− 𝑆 + 𝐼)] + 𝑅

0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

+ ] (𝛼
0
− 𝑆)

= 𝜀
𝑆̂
∗

𝐼̂
∗
(𝐼)
2𝛼0 (𝑅0 − 1)

𝜙 (𝐼)
+

(𝐼̂
∗

− 𝑆̂
∗

) 𝐼𝜓 (𝐼)

(𝐼̂
∗

)
2

𝜙 (𝐼)

≥ 0.

(41)

Thus (𝑆, 𝐼) forms a smooth lower solution formodel (24).

Next, we show that, by shifting the upper solution far
enough to the left, then the upper-lower solution in Lemmas
8 and 9 are ordered.

Lemma 10. Let 𝑐 ≥ 2√𝑅
0
− 1, (𝑆, 𝐼)𝑇 and (𝑆, 𝐼)

𝑇 be the upper
solution and the lower solution defined in (33) and (38), then
there exists a positive number 𝑟, such that (𝑆, 𝐼)

𝑇
(𝜉 + 𝑟) ≥

(𝑆, 𝐼)
𝑇
(𝜉) for all 𝜉 ∈ 𝑅.

Proof. Our proof is only for 𝑐 > 2√𝑅
0
− 1, and the proof for

the case of 𝑐 = 2√𝑅
0
− 1 is similar to it.

First, we derive the asymptotic behaviors of the upper
solution and the lower solution at infinities.

According to Lemma 7, when 𝜉 → −∞, we can obtain:

(
𝑆

𝐼
) (𝜉) = (

𝑆̂
∗

𝐼̂
∗
𝐴
1

𝐴
1

)𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉

+ 𝑜 (𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉) ,

(
𝑆

𝐼
) (𝜉) = (

𝑆̂
∗

𝐼̂
∗
𝐵
1

𝐵
1

)𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉

+ 𝑜 (𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉) .

(42)

And let 𝜎
0

= (1/2)(𝑐 −

√𝑐2 + 4(𝛼
0
(𝑅
0
− 1)
2
/𝑅
0
𝐼̂
∗

) < 0, 𝛿
0

= (1/2)(𝑐 −

√𝑐2 + 4((1 + 𝜀)𝛼
0
(𝑅
0
− 1)/(𝜀𝛼

0
+ (𝑅
0
/(𝑅
0
− 1))𝐼̂

∗

)) < 0,
when 𝜉 → +∞, we can get

(
𝑆

𝐼
) (𝜉) = (

𝑆̂
∗

𝐼̂
∗) − (

𝑆̂
∗

𝐼̂
∗
𝐴
2

𝐴
2

)𝑒
𝜎0𝜉 + 𝑜 (𝑒

𝜎0𝜉) ,

(
𝑆

𝐼
) (𝜉) =

1

1 + 𝜀
(
𝑆̂
∗

𝐼̂
∗) − (

𝑆̂
∗

𝐼̂
∗
𝐵
2

𝐵
2

)𝑒
𝛿0𝜉 + 𝑜 (𝑒

𝛿0𝜉) ,

(43)

where, 𝐴
1
, 𝐴
2
, 𝐵
1
, 𝐵
2
are all positive constants.
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Since for any 𝑟̃ > 0, 𝐼𝑟̃(𝜉) ≡ 𝐼(𝜉 + 𝑟̃) is also a solution of

model (32). Thus, (𝑆𝑟̃, 𝐼𝑟̃)
𝑇

(𝜉) is an upper solution of model
(24). So, according to Lemma 7, when 𝜉 → −∞, we can get:

(
𝑆
𝑟̃

𝐼
𝑟̃
) (𝜉) = (

𝑆̂
∗

𝐼̂
∗
𝐴
1

𝐴
1

)𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝑟̃𝑒

((𝑐−√𝑐
2
−4(𝑅0−1))/2)𝜉

+ 𝑜 (𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉) .

(44)

Since (𝑐 − √𝑐2 − 4(𝑅
0
− 1))/2 > 0, we can choose a large

enough number 𝑟̃ ≫ 0, such that

(

𝑆̂
∗

𝐼̂
∗
𝐴
1

𝐴
1

)𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝑟̃ > (

𝑆̂
∗

𝐼̂
∗
𝐵
1

𝐵
1

), (45)

hence, there exists a large number𝑁
1
≫ 1, such that

(
𝑆
𝑟̃

(𝜉)

𝐼
𝑟̃

(𝜉)

) > (
𝑆 (𝜉)

𝐼 (𝜉)
) , 𝜉 ∈ (−∞, −𝑁

1
] . (46)

By using a similar argument as above, there exists a large
enough number𝑁

2
≫ 1, such that

(
𝑆
𝑟̃

(𝜉)

𝐼
𝑟̃

(𝜉)

) > (
𝑆 (𝜉)

𝐼 (𝜉)
) , 𝜉 ∈ [𝑁

2
, +∞) . (47)

Second, we show that

(
𝑆
𝑟̃

(𝜉)

𝐼
𝑟̃

(𝜉)

) > (
𝑆 (𝜉)

𝐼 (𝜉)
) , 𝜉 ∈ [−𝑁

1
, 𝑁
2
] . (48)

We deal with such two possible cases:

Case 1. If

(
𝑆
𝑟̃

(𝜉)

𝐼
𝑟̃

(𝜉)

) > (
𝑆 (𝜉)

𝐼 (𝜉)
) , 𝜉 ∈ [−𝑁

1
, 𝑁
2
] , (49)

then, the proof is completed.

Case 2. If there exists a point 𝜉
0
∈ (−𝑁

1
, 𝑁
2
), such that

(
𝑆
𝑟̃

(𝜉
0
)

𝐼
𝑟̃

(𝜉
0
)

) ≤ (
𝑆 (𝜉
0
)

𝐼 (𝜉
0
)
) (50)

satisfying 𝑆
𝑟̃

(𝜉
0
) < 𝑆(𝜉

0
) or 𝐼𝑟̃(𝜉

0
) < 𝐼(𝜉

0
).

In this case, we use the Sliding Domain method [15].

Step 1. we shift (𝑆
𝑟̃

, 𝐼
𝑟̃

)
𝑇 to the left by increasing the number

𝑟̃ until finding a new number 𝑟
1
> 𝑟̃ such that (𝑆𝑟1 , 𝐼𝑟1)𝑇 >

(𝑆, 𝐼)
𝑇 on the smaller interval [−𝑁

1
, 𝑁
2
− (𝑟
1
− 𝑟̃)].

Step 2. we shift (𝑆
𝑟1

, 𝐼
𝑟1

)
𝑇 back to the right by decreasing 𝑟

1

to a smaller number 𝑟̃ < 𝑟
2

< 𝑟
1
such that one of the

branches of the upper solution touches its counterpart of
the lower solution at some point 𝜉

1
in the interval (−𝑁

1
+

(𝑟
1
− 𝑟
2
),𝑁
2
− (𝑟
1
− 𝑟̃)). On the endpoints of the interval

(−𝑁
1
+(𝑟
1
−𝑟
2
),𝑁
2
−(𝑟
1
−𝑟̃)), we still have (𝑆𝑟2 , 𝐼𝑟2)𝑇 > (𝑆, 𝐼)

𝑇.
Let𝑊(𝜉) = (𝑆

𝑟2

, 𝐼
𝑟2

)
𝑇
− (𝑆, 𝐼)

𝑇 and 𝐹 = (𝐹
1
, 𝐹
2
)
𝑇, where

𝐹
1
= −]𝑅

𝑑
(𝛼
0
− 𝑆 + 𝐼) [1 − (𝛼

0
− 𝑆 + 𝐼)]

+ 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

+ ] (𝛼
0
− 𝑆) ,

𝐹
2
= 𝑅
0

(𝛼
0
− 𝑆) 𝐼

𝛼
0
− 𝑆 + 𝐼

− 𝐼.

(51)

For 𝜉 ∈ (−𝑁
1
+ (𝑟
1
− 𝑟
2
),𝑁
2
− (𝑟
1
− 𝑟̃)), we get that

𝑊
󸀠󸀠

− 𝑐𝑊
󸀠

+ (

𝜕𝐹
1

𝜕𝑆
(𝑆 + 𝜁

1
𝜔
1
, 𝐼
𝑟2

)
𝜕𝐹
1

𝜕𝐼
(𝑆
𝑟2

, 𝐼 + 𝜁
2
𝜔
2
)

𝜕𝐹
2

𝜕𝑆
(𝑆 + 𝜁

3
𝜔
1
, 𝐼
𝑟2

)
𝜕𝐹
2

𝜕𝐼
(𝑆
𝑟2

, 𝐼 + 𝜁
4
𝜔
2
)

)𝑊

= 0,

(52)

where 𝜁
𝑖
∈ [0, 1], 𝑖 = 1, 2, 3, 4. Since the above model is

monotone and the cube [(0, 0), (𝑆̂
∗

, 𝐼̂
∗

)] is convex, thus we
can deduce by Maximum Principle that 𝑊 > 0 for 𝜉 ∈

[−𝑁
1
+(𝑟
1
−𝑟
2
),𝑁
2
−(𝑟
1
− 𝑟̃)]. So 𝜉

1
does not exist and we can

decrease 𝑟
2
further to 𝑟̃. It is calculated that the point 𝜉

0
does

not exist either. The proof of this lemma is completed.

To ease the burden of notations, we still use (𝑆, 𝐼)
𝑇 to

denote the shifted upper solution as given in Lemma 8. Let

𝐷
11

= −
𝑅
2

0
+ ]𝑅
0
𝑅
𝑑
+ ]𝑅
0
− 4𝑅
0
− 2] + 3

𝑅
0

,

𝐷
12

=
]𝑅
0
𝑅
𝑑
− 2𝑅
0
− 2] + 3

𝑅
0

,

𝐷
21

= −
(𝑅
0
− 1)
2

𝑅
0

,

𝐷
22

= −
𝑅
0
− 1

𝑅
0

,

𝜇
1
=

− (𝐷
11

+ 𝐷
22
) + √(𝐷

11
− 𝐷
22
)
2

+ 4𝐷
12
𝐷
21

2
,

𝜇
2
=

− (𝐷
11

+ 𝐷
22
) − √(𝐷

11
− 𝐷
22
)
2

+ 4𝐷
12
𝐷
21

2
.

(53)

With such constructed ordered upper-lower solution pair,
we can get the following.

Theorem 11. For 𝑐 ≥ 2√𝑅
0
− 1, model (24) has a unique

(up to a translation of the origin) traveling wave solution.
The traveling wave solution is strictly increasing and has the
following asymptotic properties:
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(i) if 𝑐 > 2√𝑅
0
− 1, when 𝜉 → −∞,

(
𝑆

𝐼
) (𝜉) = (

𝐴
1

𝐴
2

) 𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉

+ 𝑜 (𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉) .

(54)

when 𝜉 → +∞, and if 𝜇
1

̸= 𝜇
2
, then

(
𝑆

𝐼
) (𝜉) = (

𝑆̂
∗

𝐼̂
∗) − (

𝐴
1

𝐴
2

)𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

+ 𝑜 (𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

) ,

(55)

while 𝜇
1
= 𝜇
2
:

(
𝑆

𝐼
) (𝜉) = (

𝑆̂
∗

𝐼̂
∗) − (

𝐴
11

+ 𝐴
12
𝜉

𝐴
21

+ 𝐴
22
𝜉

)𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

+ 𝑜 (𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

) ,

(56)

where, 𝜇 = min{𝜇
1
, 𝜇
2
} > 0, 𝐴

11
, 𝐴
21

∈ R, 𝐴
1
, 𝐴
2
, 𝐴
1
, 𝐴
2
,

𝐴
12
and 𝐴

22
are all positive constants.

(ii) if 𝑐 = 2√𝑅
0
− 1, when 𝜉 → −∞,

(
𝑆

𝐼
) (𝜉) = (

𝐵
11

+ 𝐵
12
𝜉

𝐵
21

+ 𝐵
22
𝜉
) 𝑒
√𝑅0−1𝜉 + 𝑜 (𝜉𝑒

√𝑅0−1𝜉) , (57)

when 𝜉 → +∞, and if 𝜇
1

̸= 𝜇
2
, then

(
𝑆

𝐼
) (𝜉) = (

𝑆̂
∗

𝐼̂
∗) − (

𝐵
11

𝐵
22

)𝑒
(√𝑅0−1−√𝑅0−1+𝜇)𝜉

+ 𝑜 (𝑒
(√𝑅0−1−√𝑅0−1+𝜇)𝜉) ,

(58)

while 𝜇
1
= 𝜇
2
,

(
𝑆

𝐼
) (𝜉) = (

𝑆̂
∗

𝐼̂
∗) − (

𝐵
11

+ 𝐵
12
𝜉

𝐵
21

+ 𝐵
22
𝜉

)𝑒
(√𝑅0−1−√𝑅0−1+𝜇)𝜉

+ 𝑜 (𝑒
(√𝑅0−1−√𝑅0−1+𝜇)𝜉) ,

(59)

where 𝜇 = min{𝜇
1
, 𝜇
2
} > 0, 𝐵

12
, 𝐵
22

< 0, 𝐵
11
, 𝐵
21
, 𝐵
11
, 𝐵
21

∈

R, and 𝐵
11
, 𝐵
22
, 𝐵
12
, 𝐵
22
are all positive constants.

Proof. From Lemma 3 and Remark 4, we know that model
(24) is a quasi-monotone nonincreasing system in (𝑆, 𝐼) ∈

[𝐸
1
, 𝐸
2
], and by using the monotone iteration scheme given

in [3, 13], we can obtain the existence of the solution (𝑆, 𝐼)
𝑇 to

the first two equations in model (24) for every 𝑐 ≥ 2√𝑅
0
− 1,

which satisfies

(
𝑆 (𝜉)

𝐼 (𝜉)
) ≤ (

𝑆 (𝜉)

𝐼 (𝜉)
) ≤ (

𝑆 (𝜉)

𝐼 (𝜉)
) . (60)

According to the above inequality, we can get that, on
the boundary, the solution tends to (0, 0)

𝑇 as 𝜉 → −∞ and
(𝑆̂
∗

, 𝐼̂
∗

)
𝑇 as 𝜉 → +∞.

To derive the asymptotic decay rate of the traveling wave
solutions as 𝜉 → ±∞, we just let 𝑐 > 2√𝑅

0
− 1 and

𝑈 (𝜉) = (𝑆 (𝜉) , 𝐼 (𝜉))
𝑇
, −∞ < 𝜉 < +∞ (61)

be the traveling wave solution of model (24) generated form
the monotone iteration, since the case of (ii) 𝑐 = 2√𝑅

0
− 1 is

similar to it.
We differentiate model (24) with respect to 𝜉, and note

that 𝑈󸀠(𝜉) = (𝜒
1
, 𝜒
2
)
𝑇
(𝜉) satisfies

𝜒
󸀠󸀠

1
− 𝑐𝜒
󸀠

1
+ 𝐶
11

(𝑆, 𝐼) 𝜒
1
+ 𝐶
12

(𝑆, 𝐼) 𝜒
2
= 0,

𝜒
󸀠󸀠

2
− 𝑐𝜒
󸀠

2
+ 𝐶
21

(𝑆, 𝐼) 𝜒
1
+ 𝐶
22

(𝑆, 𝐼) 𝜒
2
= 0,

(62)

where
𝐶
11

(𝑆, 𝐼) = ]𝑅
𝑑
[1 − (𝛼

0
− 𝑆 + 𝐼)] − ]𝑅

𝑑
(𝛼
0
− 𝑆 + 𝐼)

−
𝑅
0
𝐼

𝛼
0
− 𝑆 + 𝐼

+
𝑅
0
(𝛼
0
− 𝑆) 𝐼

(𝛼
0
− 𝑆 + 𝐼)

2
− ],

𝐶
12

(𝑆, 𝐼) = −]𝑅
𝑑
[1 − (𝛼

0
− 𝑆 + 𝐼)] + ]𝑅

𝑑
(𝛼
0
− 𝑆 + 𝐼)

+
𝑅
0
(𝛼
0
− 𝑆)

𝛼
0
− 𝑆 + 𝐼

−
𝑅
0
(𝛼
0
− 𝑆) 𝐼

(𝛼
0
− 𝑆 + 𝐼)

2
,

𝐶
21

(𝑆, 𝐼) = −
𝑅
0
𝐼

𝛼
0
− 𝑆 + 𝐼

+
𝑅
0
(𝛼
0
− 𝑆) 𝐼

(𝛼
0
− 𝑆 + 𝐼)

2
,

𝐶
22

(𝑆, 𝐼) =
𝑅
0
(𝛼
0
− 𝑆)

𝛼
0
− 𝑆 + 𝐼

−
𝑅
0
(𝛼
0
− 𝑆) 𝐼

(𝛼
0
− 𝑆 + 𝐼)

2
− 1.

(63)

Now, we study the exponential decay rate of the traveling
wave solution as 𝜉 → −∞. The asymptotic model of model
(62) as 𝜉 → −∞ is

𝜆
󸀠󸀠
− 𝑐𝜆
󸀠
+ 𝐸
11
𝜆 + 𝐸
12
𝜇 = 0,

𝜇
󸀠󸀠
− 𝑐𝜇
󸀠
+ 𝐸
21
𝜆 + 𝐸
22
𝜇 = 0,

(64)

where
𝐸
11

= −] (𝑅
𝑑
− 1) , 𝐸

12
= ]𝑅
𝑑
+ 𝑅
0
− 2],

𝐸
21

= 0, 𝐸
22

= 𝑅
0
− 1.

(65)

The second equation of model (64) has two independent
solutions with the following form:

𝜇
(1)

(𝜉) = 𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉,

𝜇
(2)

(𝜉) = 𝑒
((𝑐+√𝑐

2
−4(𝑅0−1))/2)𝜉.

(66)
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Relating the second equation of model (62) with the
second equation of model (64), we can deduce that 𝜒

2
(𝜉) has

the following property as 𝜉 → −∞:

𝜒
2
(𝜉) = 𝛼 [1 + 𝑜 (1)] 𝑒

((𝑐−√𝑐
2
−4(𝑅0−1))/2)𝜉

+ 𝛽 [1 + 𝑜 (1)] 𝑒
((𝑐+√𝑐

2
−4(𝑅0−1))/2)𝜉

(67)

for some constants 𝛼 and 𝛽. Thus, we can obtain that

𝜒
2
(𝜉) = 𝛼𝑒

((𝑐−√𝑐
2
−4(𝑅0−1))/2)𝜉 + 𝛽𝑒

((𝑐+√𝑐
2
−4(𝑅0−1))/2)𝜉

+ Υ
1
(𝜉) + Υ

2
(𝜉) ,

(68)

where

lim
𝜉→−∞

Υ
1
(𝜉)

𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉

= 0,

lim
𝜉→−∞

Υ
2
(𝜉)

𝑒
((𝑐+√𝑐

2
−4(𝑅0−1))/2)𝜉

= 0.

(69)

So we obtain that

lim
𝜉→−∞

𝜒
2
(𝜉) − 𝛼𝑒

((𝑐−√𝑐
2
−4(𝑅0−1))/2)𝜉

𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉

= lim
𝜉→−∞

Υ
1
(𝜉) + Υ

2
(𝜉) + 𝛽𝑒

((𝑐+√𝑐
2
−4(𝑅0−1))/2)𝜉

𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉

= lim
𝜉→−∞

Υ
1
(𝜉)

𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉

+ 𝛽 lim
𝜉→−∞

𝑒
√𝑐
2
−4(𝑅0−1)𝜉

+ lim
𝜉→−∞

Υ
2
(𝜉)

𝑒
((𝑐+√𝑐

2
−4(𝑅0−1))/2)𝜉

lim
𝜉→−∞

𝑒
√𝑐
2
−4(𝑅0−1)𝜉 = 0.

(70)

Thus, 𝜒
2
(𝜉) = 𝛼[1 + 𝑜(1)]𝑒

((𝑐−√𝑐
2
−4(𝑅0−1))/2)𝜉.

Now, we consider the first equation of model (64). We
rewrite it as

𝜆
󸀠󸀠
− 𝑐𝜆
󸀠
− ] (𝑅

𝑑
− 1) 𝜆 = − (]𝑅

𝑑
+ 𝑅
0
− 2]) 𝜇. (71)

One can verify that (𝑐 − √𝑐2 − 4(𝑅
0
− 1))/2 is not a

characteristic of

𝜆
󸀠󸀠
− 𝑐𝜆
󸀠
− ] (𝑅

𝑑
− 1) 𝜆 = 0. (72)

The above equation has two independent solutions of the
following form:

𝜆
(1)

(𝜉) = 𝑒
((𝑐−√𝑐

2
+4](𝑅𝑑−1))/2)𝜉,

𝜆
(2)

(𝜉) = 𝑒
((𝑐+√𝑐

2
+4](𝑅𝑑−1))/2)𝜉.

(73)

Thus, when 𝜉 → −∞, 𝜒
1
(𝜉) has the following property:

𝜒
1
(𝜉) = 𝛼 [1 + 𝑜 (1)] 𝑒

((𝑐+√𝑐
2
+4](𝑅𝑑−1))/2)𝜉

+ 𝛽 [1 + 𝑜 (1)] 𝑒
((𝑐−√𝑐

2
+4](𝑅𝑑−1))/2)𝜉

+ 𝛾 [1 + 𝑜 (1)] 𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉

(74)

for some constants 𝛼, 𝛽; 𝛾 ̸= 0. Since 𝜒
1
(−∞) = 0, thus 𝛽 = 0.

So, when 𝜉 → −∞, we have the following formula:

(
𝜒
1
(𝜉)

𝜒
2
(𝜉)

) = (
𝛾 [1 + 𝑜 (1)] 𝑒

((𝑐−√𝑐
2
−4(𝑅0−1))/2)𝜉

𝛼 [1 + 𝑜 (1)] 𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉

) . (75)

Then, we study the exponential decay rate of the traveling
wave solution as 𝜉 → +∞. The asymptotic model of model
(62) as 𝜉 → +∞ is

𝜓
󸀠󸀠

1
− 𝑐𝜓
󸀠

1
+ 𝐷
11
𝜓
1
+ 𝐷
12
𝜓
2
= 0,

𝜓
󸀠󸀠

2
− 𝑐𝜓
󸀠

2
+ 𝐷
21
𝜓
1
+ 𝐷
22
𝜓
2
= 0.

(76)

By setting (𝜓
𝑖
)
󸀠
(𝜉) = 𝜓̃

𝑖
, 𝑖 = 1, 2, we rewrite model (76)

as a first order model of ordinary differential equation in the
four components (𝜓

1
, 𝜓̃
1
, 𝜓
2
, 𝜓̃
2
)
𝑇:

𝜓
󸀠

1
= 𝜓̃
1
,

𝜓̃
󸀠

1
= 𝑐𝜓̃
1
− 𝐷
11
𝜓
1
− 𝐷
12
𝜓
2
,

𝜓
󸀠

2
= 𝜓̃
2
,

𝜓̃
󸀠

2
= 𝑐𝜓̃
2
− 𝐷
21
𝜓
1
− 𝐷
22
𝜓
2
.

(77)

In the case of (i) 𝜇
1

̸= 𝜇
2
, we can obtain that the solution

of model (77) has the following form:

(𝜓
1
, 𝜓̃
1
, 𝜓
2
, 𝜓̃
2
)
𝑇

=

4

∑

𝑖=1

𝑐
𝑖
ℎ
𝑖
𝑒
𝜆𝑖𝜉, (78)

where

𝜆
1
=

𝑐 + √𝑐2 + 4𝜇
1

2
, 𝜆

2
=

𝑐 − √𝑐2 + 4𝜇
1

2
,

𝜆
3
=

𝑐 + √𝑐2 + 4𝜇
2

2
, 𝜆

4
=

𝑐 − √𝑐2 + 4𝜇
2

2
,

(79)

and ℎ
𝑖
(𝑖 = 1, 2, 3, 4) are the eigenvectors of the constant

matrix with 𝜆
𝑖
(𝑖 = 1, 2, 3, 4) as the corresponding eigenval-

ues, 𝑐
𝑖
(𝑖 = 1, 2, 3, 4) are arbitrary constants. Since

lim
𝜉→+∞

(𝜓
1
, 𝜓̃
1
, 𝜓
2
, 𝜓̃
2
)
𝑇

= 0, (80)

thus (𝜓
1
, 𝜓̃
1
, 𝜓
2
, 𝜓̃
2
)
𝑇

= 𝑐
2
ℎ
2
𝑒
𝜆2𝜉 + 𝑐

4
ℎ
4
𝑒
𝜆4𝜉, so when 𝜉 →

+∞, we can get that

(
𝜒
1
(𝜉)

𝜒
2
(𝜉)

) = (
𝜅
1
[Λ
1
+ 𝑜 (1)] 𝑒

((𝑐−√𝑐
2
+4𝜇1)/2)𝜉

𝜅
1
[Γ
1
+ 𝑜 (1)] 𝑒

((𝑐−√𝑐
2
+4𝜇1)/2)𝜉

)

+ (
𝜅
2
[Λ
2
+ 𝑜 (1)] 𝑒

((𝑐−√𝑐
2
+4𝜇2)/2)𝜉

𝜅
2
[Γ
2
+ 𝑜 (1)] 𝑒

((𝑐−√𝑐
2
+4𝜇2)/2)𝜉

) .

(81)
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Furthermore, we can obtain that

𝜒
1
(𝜉) = 𝜅

1
Λ
1
𝑒
((𝑐−√𝑐

2
+4𝜇1)/2)𝜉 + 𝜅

2
Λ
2
𝑒
((𝑐−√𝑐

2
+4𝜇2)/2)𝜉

+ Ω
11

(𝜉) + Ω
12

(𝜉) ,

𝜒
2
(𝜉) = 𝜅

1
Γ
1
𝑒
((𝑐−√𝑐

2
+4𝜇1)/2)𝜉 + 𝜅

2
Γ
2
𝑒
((𝑐−√𝑐

2
+4𝜇2)/2)𝜉

+ Ω
21

(𝜉) + Ω
22

(𝜉) ,

(82)

where

lim
𝜉→+∞

Ω
11

(𝜉)

𝑒
((𝑐−√𝑐

2
+4𝜇1)/2)𝜉

= 0, lim
𝜉→+∞

Ω
12

(𝜉)

𝑒
((𝑐−√𝑐

2
+4𝜇2)/2)𝜉

= 0,

lim
𝜉→+∞

Ω
21

(𝜉)

𝑒
((𝑐−√𝑐

2
+4𝜇1)/2)𝜉

= 0, lim
𝜉→+∞

Ω
22

(𝜉)

𝑒
((𝑐−√𝑐

2
+4𝜇2)/2)𝜉

= 0.

(83)

𝜅
1
, 𝜅
2
, Λ
1
, Λ
2
, Γ
1
, and Γ

2
are all constants.

Let 𝜇 = min{𝜇
1
, 𝜇
2
}, then

lim
𝜉→+∞

𝜒
1
(𝜉)

𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

= 𝜅
1
Λ
1
lim
𝜉→+∞

𝑒
((√𝑐
2
+4𝜇−√𝑐

2
+4𝜇1)/2)𝜉

+ 𝜅
2
Λ
2
lim
𝜉→+∞

𝑒
((√𝑐
2
+4𝜇−√𝑐

2
+4𝜇2)/2)𝜉

+ lim
𝜉→+∞

Ω
11

(𝜉)

𝑒
((𝑐−√𝑐

2
+4𝜇1)/2)𝜉

lim
𝜉→+∞

𝑒
((√𝑐
2
+4𝜇−√𝑐

2
+4𝜇1)/2)𝜉

+ lim
𝜉→+∞

Ω
12

(𝜉)

𝑒
((𝑐−√𝑐

2
+4𝜇2)/2)𝜉

lim
𝜉→+∞

𝑒
((√𝑐
2
+4𝜇−√𝑐

2
+4𝜇2)/2)𝜉

= Δ
1
(𝜅
1
, 𝜅
2
, Λ
1
, Λ
2
) ,

lim
𝜉→+∞

𝜒
2
(𝜉)

𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

= 𝜅
1
Γ
1
lim
𝜉→+∞

𝑒
((√𝑐
2
+4𝜇−√𝑐

2
+4𝜇1)/2)𝜉

+ 𝜅
2
Γ
2
lim
𝜉→+∞

𝑒
((√𝑐
2
+4𝜇−√𝑐

2
+4𝜇2)/2)𝜉

+ lim
𝜉→+∞

Ω
21

(𝜉)

𝑒
((𝑐−√𝑐

2
+4𝜇1)/2)𝜉

lim
𝜉→+∞

𝑒
((√𝑐
2
+4𝜇−√𝑐

2
+4𝜇1)/2)𝜉

+ lim
𝜉→+∞

Ω
22

(𝜉)

𝑒
((𝑐−√𝑐

2
+4𝜇2)/2)𝜉

lim
𝜉→+∞

𝑒
((√𝑐
2
+4𝜇−√𝑐

2
+4𝜇2)/2)𝜉

= Δ
2
(𝜅
1
, 𝜅
2
, Γ
1
, Γ
2
) ,

(84)

where

Δ
1
(𝜅
1
, 𝜅
2
, Λ
1
, Λ
2
) = {

𝜅
1
Λ
1
, 𝜇
1
< 𝜇
2
,

𝜅
2
Λ
2
, 𝜇
1
> 𝜇
2
,

Δ
2
(𝜅
1
, 𝜅
2
, Γ
1
, Γ
2
) = {

𝜅
1
Γ
1
, 𝜇
1
< 𝜇
2
,

𝜅
2
Γ
2
, 𝜇
1
> 𝜇
2
;

(85)

thus, when 𝜉 → +∞, we can get that

(
𝜒
1
(𝜉)

𝜒
2
(𝜉)

)

= (
Δ
1
(𝜅
1
, 𝜅
2
, Λ
1
, Λ
2
) (1 + 𝑜 (1)) 𝑒

((𝑐−√𝑐
2
+4𝜇)/2)𝜉

Δ
2
(𝜅
1
, 𝜅
2
, Γ
1
, Γ
2
) (1 + 𝑜 (1)) 𝑒

((𝑐−√𝑐
2
+4𝜇)/2)𝜉

) .

(86)

In the case of (ii) 𝜇
1
= 𝜇
2
, we can obtain that the solution

of model (77) has the following form:

(𝜓
1
, 𝜓̃
1
, 𝜓
2
, 𝜓̃
2
)
𝑇

= (𝐺
1
+ 𝐺
2
𝜉)𝐻
1,2

𝑒
𝜆1𝜉

+ (𝐺
3
+ 𝐺
4
𝜉)𝐻
3,4

𝑒
𝜆3𝜉,

(87)

where𝐻
1,2

is the eigenvector of the constantmatrix with 𝜆
1
=

𝜆
2
as the corresponding eigenvalues, 𝐻

3,4
is the eigenvector

of the constant matrix with 𝜆
3

= 𝜆
4
as the corresponding

eigenvalues, 𝐺
𝑖
(𝑖 = 1, 2, 3, 4) are arbitrary constants.

Since lim
𝜉→+∞

(𝜓
1
, 𝜓̃
1
, 𝜓
2
, 𝜓̃
2
)
𝑇

= 0, thus

(𝜓
1
, 𝜓̃
1
, 𝜓
2
, 𝜓̃
2
)
𝑇

= (𝐺
3
+ 𝐺
4
𝜉)𝐻
3,4

𝑒
𝜆3𝜉. (88)

So, when 𝜉 → +∞, we can get that

(
𝜒
1
(𝜉)

𝜒
2
(𝜉)

) = (

(𝐺
1,3

+ 𝐺
1,4

𝜉) 𝑒
𝜆3𝜉 + 𝑜 (𝑒

𝜆3𝜉)

(𝐺
2,3

+ 𝐺
2,4

𝜉) 𝑒
𝜆4𝜉 + 𝑜 (𝑒

𝜆4𝜉)

) . (89)

By comparing the upper solution and roughness of the
exponential dichotomy [24], we obtain the asymptotic decay
rate of the traveling wave solutions at +∞ given in Theorem
11.

According to the monotone iteration process [3], the
traveling wave solution𝑈(𝜉) is increasing; thus𝑈󸀠(𝜉) ≥ 0 and
𝑈
󸀠
(𝜉) = (𝜒

1
, 𝜒
2
)
𝑇
(𝜉) hold

𝜒
󸀠󸀠

1
− 𝑐𝜒
󸀠

1
+

𝜕𝐹
1

𝜕𝑆
𝜒
1
+

𝜕𝐹
1

𝜕𝐼
𝜒
2
= 0,

𝜒
󸀠󸀠

2
− 𝑐𝜒
󸀠

2
+

𝜕𝐹
2

𝜕𝑆
𝜒
1
+

𝜕𝐹
2

𝜕𝐼
𝜒
2
= 0,

(90)

satisfying

(𝜒
1
, 𝜒
2
)
𝑇

(𝜉) ≥ 0, (𝜒
1
, 𝜒
2
)
𝑇

(±∞) = 0. (91)

The strong Maximum Principle implies that (𝜒
1
, 𝜒
2
)
𝑇
(𝜉)

> 0. So the strict monotonicity of the traveling wave solutions
is concluded.
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Now, we use the Sliding domain method to prove the
uniqueness of the traveling wave solution. Let 𝑈

1
(𝜉) =

(𝑆
1
, 𝐼
1
)
𝑇
(𝜉) and 𝑈

2
(𝜉) = (𝑆

2
, 𝐼
2
)
𝑇
(𝜉) be the traveling wave

solution of model (24), with 𝑐 > 2√𝑅
0
− 1. Thus, there are

some positive numbers 𝐴
𝑖
, 𝐵
𝑖
(𝑖 = 1, 2, 3, 4), such that for a

big enough number𝑁 ≫ 1, when 𝜉 < −𝑁, we have

(
𝑆
1
(𝜉)

𝐼
1
(𝜉)

) = (
𝐴
1
𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉

𝐴
2
𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉

)

+ 𝑜(𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉) ,

(
𝑆
2
(𝜉)

𝐼
2
(𝜉)

) = (
𝐴
3
𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉

𝐴
4
𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉

)

+ 𝑜(𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉) ,

(92)

when 𝜉 > 𝑁,

(
𝑆
1
(𝜉)

𝐼
1
(𝜉)

) = (
𝑆̂
∗

− 𝐵
1
𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

𝐼̂
∗

− 𝐵
2
𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

)

+ 𝑜(𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

) ,

(
𝑆
2
(𝜉)

𝐼
2
(𝜉)

) = (
𝑆̂
∗

− 𝐵
3
𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

𝐼̂
∗

− 𝐵
4
𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

)

+ 𝑜(𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

) .

(93)

Since the traveling wave solutions of model (24) are trans-
lation-invariant, then for any 𝜃 ∈ 𝑅, 𝑈𝜃

1
(𝜉) ≡ 𝑈

1
(𝜉 + 𝜃) ≡

(𝑆
1
(𝜉+𝜃), 𝐼

1
(𝜉 + 𝜃))

𝑇 is also a travelingwave solution ofmodel
(24).Thus, by using the samemethod as above, when 𝜉 < −𝑁,
we can get

(
𝑆
1
(𝜉 + 𝜃)

𝐼
1
(𝜉 + 𝜃)

)

= (
𝐴
1
𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜃𝑒

((𝑐−√𝑐
2
−4(𝑅0−1))/2)𝜉

𝐴
2
𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜃𝑒

((𝑐−√𝑐
2
−4(𝑅0−1))/2)𝜉

)

+ 𝑜(𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉) ,

(94)

when 𝜉 > 𝑁,

(
𝑆
1
(𝜉 + 𝜃)

𝐼
1
(𝜉 + 𝜃)

)

= (
𝑆̂
∗

− 𝐵
1
𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜃

𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

𝐼̂
∗

− 𝐵
2
𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜃

𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

)

+ 𝑜(𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

) .

(95)

If 𝜃 is large enough, then we can obtain the following ineq-
ualities:

𝐴
1
𝑒
((𝑐+√𝑐

2
−4(𝑅0−1))/2)𝜃 > 𝐴

3
,

𝐴
2
𝑒
((𝑐+√𝑐

2
−4(𝑅0−1))/2)𝜃 > 𝐴

4
,

𝐵
1
𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜃

< 𝐵
3
,

𝐵
2
𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜃

< 𝐵
4
.

(96)

Thus, if 𝜃 is large enough, then 𝑈
𝜃

1
(𝜉) > 𝑈

2
(𝜉), for all 𝜉 ∈

𝑅 \ [−𝑁,𝑁].
Now, we consider model (24) on the interval [−𝑁,𝑁].
First, suppose that

𝑊(𝜉) ≡ 𝑈
𝜃

1
(𝜉) − 𝑈

2
(𝜉) ≥ 0, 𝜉 ∈ [−𝑁,𝑁] , (97)

then

𝑊
󸀠󸀠
− 𝑐𝑊
󸀠

+ (

𝜕𝐹
1

𝜕𝑆
(𝑆
2
+ 𝜁
1
𝜔
1
, 𝐼
1
)

𝜕𝐹
1

𝜕𝐼
(𝑆
1
, 𝐼
2
+ 𝜁
2
𝜔
2
)

𝜕𝐹
2

𝜕𝑆
(𝑆
2
+ 𝜁
3
𝜔
1
, 𝐼
1
)

𝜕𝐹
2

𝜕𝐼
(𝑆
1
, 𝐼
2
+ 𝜁
4
𝜔
2
)

)𝑊 = 0,

𝑊 (−𝑁) > 0, 𝑊 (𝑁) > 0,

(98)

where, 𝜁
𝑖
∈ (0, 1) (𝑖 = 1, 2, 3, 4), 𝜉 ∈ (−𝑁,𝑁). Since the

abovemodel ismonotone, by theMaximumPrinciple, we can
deduce that 𝑊(𝜉) > 0, 𝜉 ∈ [−𝑁,𝑁]. Consequently, we get
that 𝑈𝜃

1
(𝜉) > 𝑈

2
(𝜉), 𝜉 ∈ 𝑅.

Second, we suppose that there exists a point 𝜉
∗
∈ (−𝑁,𝑁)

such that

𝑆
𝜃

1
(𝜉
∗
) < 𝑆
2
(𝜉
∗
) (99)

or

𝐼
𝜃

1
(𝜉
∗
) < 𝐼
2
(𝜉
∗
) . (100)

In this case, we increase 𝜃, that is shifting 𝑈
𝜃

1
to the left,

so that 𝑈𝜃
1
(−𝑁) > 𝑈

2
(−𝑁) and 𝑈

𝜃

1
(𝑁) > 𝑈

2
(𝑁). According

to the monotonicity of 𝑈𝜃
1
and 𝑈

2
, we can find a number 𝜃 ∈

(0, 2𝑁) such that 𝑈𝜃
1
(𝜉 + 𝜃) > 𝑈

2
(𝜉), 𝜉 ∈ (−𝑁,𝑁). Shifting

𝑈
𝜃

1
(𝜉 + 𝜃) back until one component of 𝑈𝜃

1
(𝜉 + 𝜃) touches its

counterpart of𝑈
2
(𝜉) at some point 𝜉 ∈ (−𝑁,𝑁). Since𝑈𝜃

1
(𝜉+

𝜃) and𝑈
2
(𝜉) are strictly increasing, 𝜉 ∈ (−𝑁,𝑁), thus, we get

that 𝑈𝜃
1
(𝜉 + 𝜃) > 𝑈

2
(𝜉), 𝜉 = ±𝑁. However, by the Maximum

Principle for that component again, we find that components
of 𝑈𝜃
1
and 𝑈

2
are identically equal for all 𝜉 ∈ [−𝑁,𝑁] for a

larger number 𝜃. This is a contradiction, thus 𝑈𝜃
1
(𝜉) > 𝑈

2
(𝜉),

𝜉 ∈ 𝑅. Here, 𝜃 is a new number which is chosen by the above
mean.

Now, decrease the 𝜃 until one of the following happens.
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Case (a). There is a 𝜃 ≥ 0, such that𝑈𝜃
1
= 𝑈
2
(𝜉), 𝜉 ∈ 𝑅. In this

case, we have finished the proof.

Case (b).There are a 𝜃 and a point 𝜉
1
∈ 𝑅, such that one of the

components of𝑈𝜃
1
and𝑈

2
are equal. And𝑈

𝜃

1
≥ 𝑈
2
, 𝜉 ∈ 𝑅. On

𝑅 for that component, according to the Maximum Principle,
we find that𝑈𝜃

1
and𝑈

2
must be identical on that component.

We can return to Case (a).
Consequently, in either situation, their exists a number

𝜃 ≥ 0 such that

𝑈
𝜃

1
(𝜉) = 𝑈

2
(𝜉) , 𝜉 ∈ (−∞, +∞) . (101)

This ends of the proof.

ByTheorem 11, we can get the following theorem:

Theorem 12. For each 𝑐 ≥ 2√𝑅
0
− 1, model (3) has a unique

(up to a translation of the origin) traveling wave solution.
The traveling wave solution is strictly increasing and has the
following asymptotic properties:

(i) 𝑐 > 2√𝑅
0
− 1: when 𝜉 → −∞,

𝑆 (𝜉) =
𝑅
𝑑
− 1

𝑅
𝑑

− 𝐴
1
𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉

+ 𝑜 (𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉) ,

𝐼 (𝜉) = 𝐴
2
𝑒
((𝑐−√𝑐

2
−4(𝑅0−1))/2)𝜉 + 𝑜 (𝑒

((𝑐−√𝑐
2
−4(𝑅0−1))/2)𝜉) .

(102)

when 𝜉 → +∞, and if 𝜇
1

̸= 𝜇
2
, then

𝑆 (𝜉) = 𝑆
∗
+ 𝐴
1
𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

+ 𝑜 (𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

) ,

𝐼 (𝜉) = 𝐼
∗
− 𝐴
2
𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

+ 𝑜 (𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

) ,

(103)

if 𝜇
1
= 𝜇
2
,

𝑆 (𝜉) = 𝑆
∗
+ (𝐴
11

+ 𝐴
12
𝜉) 𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

+ 𝑜 (𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

) ,

𝐼 (𝜉) = 𝐼
∗
− (𝐴
21

+ 𝐴
22
𝜉) 𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

+ 𝑜 (𝑒
((𝑐−√𝑐

2
+4𝜇)/2)𝜉

) ,

(104)

where 𝜇 = min{𝜇
1
, 𝜇
2
} > 0, 𝐴

11
, 𝐴
21

∈ R 𝐴
1
, 𝐴
2
, 𝐴
1
, 𝐴
2
,

𝐴
12
and 𝐴

22
are all positive constants.

(ii) 𝑐 = 2√𝑅
0
− 1: when 𝜉 → −∞,

𝑆 (𝜉) =
𝑅
𝑑
− 1

𝑅
𝑑

− (𝐴
11

+ 𝐴
12
𝜉) 𝑒
√𝑅0−1𝜉 + 𝑜 (𝜉𝑒

√𝑅0−1𝜉) ,

𝐼 (𝜉) = (𝐴
11

+ 𝐴
12
𝜉) 𝑒
√𝑅0−1𝜉 + 𝑜 (𝜉𝑒

√𝑅0−1𝜉) .

(105)

when 𝜉 → +∞, and if 𝜇
1

̸= 𝜇
2
, then

𝑆 (𝜉) = 𝑆
∗
+ 𝐵
11
𝑒
(√𝑅0−1−√𝑅0−1+𝜇)𝜉 + 𝑜 (𝑒

(√𝑅0−1−√𝑅0−1+𝜇)𝜉) ,

𝐼 (𝜉) = 𝐼
∗
− 𝐵
22
𝑒
(√𝑅0−1−√𝑅0−1+𝜇)𝜉 + 𝑜 (𝑒

(√𝑅0−1−√𝑅0−1+𝜇)𝜉) ,

(106)

if 𝜇
1
= 𝜇
2
, then

𝑆 (𝜉) = 𝑆
∗
+ (𝐵
11

+ 𝐵
12
𝜉) 𝑒
(√𝑅0−1−√𝑅0−1+𝜇)𝜉

+ 𝑜 (𝑒
(√𝑅0−1−√𝑅0−1+𝜇)𝜉) ,

𝐼 (𝜉) = 𝐼
∗
− (𝐵
21

+ 𝐵
22
𝜉) 𝑒
(√𝑅0−1−√𝑅0−1+𝜇)𝜉

+ 𝑜 (𝑒
(√𝑅0−1−√𝑅0−1+𝜇)𝜉) ,

(107)

where 𝜇 = min{𝜇
1
, 𝜇
2
} > 0, 𝐵

12
, 𝐵
22

< 0, 𝐵
11
, 𝐵
21
, 𝐵
11
, 𝐵
21

∈

R, 𝐵
11
, 𝐵
22
, 𝐵
12
, 𝐵
22
are all positive constants.

Theorem 13. There is no monotone traveling wave solution of
model (24) for any 0 < 𝑐 < 2√𝑅

0
− 1. In other words, there

is no monotone traveling wave solution of model (3) for any
0 < 𝑐 < 2√𝑅

0
− 1.

Proof. Suppose there is a monotone traveling wave solution
L(𝜉) = (𝑙

1
(𝜉), 𝑙
2
(𝜉))
𝑇 of model (24) with the wave speed 𝑐

0
,

where 𝑐
0
∈ (0, 2√𝑅

0
− 1).

The asymptotic model of L(𝜉) = (𝑙
1
(𝜉), 𝑙
2
(𝜉))
𝑇 as 𝜉 →

−∞ is

𝜆
󸀠󸀠

− 𝑐
0
𝜆
󸀠

− ] (𝑅
𝑑
− 1) 𝜆 + (]𝑅

𝑑
+ 𝑅
0
− 2]) 𝜇 = 0,

𝜇
󸀠󸀠
− 𝑐
0
𝜇
󸀠
+ (𝑅
0
− 1) 𝜇 = 0.

(108)

The second function of (108) has two characteristics
as the following ones: (𝑐

0
+ √4(𝑅

0
− 1) − 𝑐

2

0
𝑖)/2, (𝑐

0
−

√4(𝑅
0
− 1) − 𝑐

2

0
𝑖)/2.Thus it has two independent solutions of

the following form:

𝜇
11

= 𝑒
(𝑐0/2)𝜉 cos(

√4 (𝑅
0
− 1) − 𝑐

2

0

2
𝜉) ,

𝜇
22

= 𝑒
(𝑐0/2)𝜉 sin(

√4 (𝑅
0
− 1) − 𝑐

2

0

2
𝜉) .

(109)
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Similar to the proof of Theorem 11, we can get that, when
𝜉 → −∞, 𝜒

2
(𝜉) can be described as the following equation:

𝜒
2
(𝜉) = 𝐾

1
𝑒
(𝑐0/2)𝜉 cos(

√4 (𝑅
0
− 1) − 𝑐

2

0

2
𝜉)

+ 𝐾
2
𝑒
(𝑐0/2)𝜉 sin(

√4 (𝑅
0
− 1) − 𝑐

2

0

2
𝜉) + h.o.t,

= √𝐾
2

1
+ 𝐾
2

2
𝑒
(𝑐0/2)𝜉 sin(

√4 (𝑅
0
− 1) − 𝑐

2

0

2
𝜉 + 𝜏 (𝜉))

+ h.o.t,
(110)

where tan(𝜏(𝜉)) = 𝐾
1
/𝐾
2
, and h.o.t is the short notation for

the higher order terms.
That is to say, 𝑙

2
(𝜉) is oscillating. Thus, any solution of

model (24) with 0 < 𝑐 < 2√𝑅
0
− 1 is not strictly mono-

tone.

Theorems 12 and 13 indicate that 𝑐 = 2√𝑅
0
− 1 is the crit-

ical minimal wave speed.
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We investigate the periodic solutions of second-order difference problem with potential indefinite in sign. We consider the
compactness condition of variational functional and local linking at 0 by introducing new number 𝜆

∗
. By using Morse theory,

we obtain some new results concerning the existence of nontrivial periodic solution.

1. Introduction

We consider the second-order discrete Hamiltonian systems

Δ
2
𝑥
𝑛−1

+𝑊
󸀠
(𝑛, 𝑥
𝑛
) = 0, 𝑥

𝑛+𝑇
= 𝑥
𝑛
, (1)

where 𝑇 ≥ 2 is a given integer, 𝑛 ∈ Z, 𝑥
𝑛
∈ R𝑁, Δ𝑥

𝑛
=

𝑥
𝑛+1

− 𝑥
𝑛
, Δ2𝑥
𝑛
= Δ(Δ𝑥

𝑛
), 𝑊󸀠 stands for the gradient of𝑊

with respect to the second variable. 𝑊 ∈ 𝐶
2
(Z × R𝑁,R) is

𝑇-periodic in the first variable and has the form 𝑊(𝑛, 𝑥) =

(1/2)𝑎|𝑥|
2
+ 𝐻(𝑛, 𝑥), where 𝑎 = 4 sin2(𝑚𝜋/𝑇) for some 𝑚 ∈

𝑍[0, 𝑟], 𝑟 = [𝑇/2], [⋅] stands for the greatest-integer function.
For integers 𝑎 ≤ 𝑏, the discrete interval {𝑎, 𝑎 + 1, . . . , 𝑏} is
denoted by 𝑍[𝑎, 𝑏].

In this paper we consider that𝐻 is sign changing, that is,

𝐻(𝑛, 𝑥) = 𝑏 (𝑛) (
1

𝑠
|𝑥|
𝑠
+ 𝐺
𝑠
(𝑛, 𝑥))

≜
1

𝑠
𝑏 (𝑛) |𝑥|

𝑠
+ 𝐺
𝑠
(𝑛, 𝑥) ,

(2)

Ω
+
= {𝑛 ∈ 𝑍[1, 𝑇]|𝑏(𝑛) > 0)}, Ω

−
= {𝑛 ∈ 𝑍[1, 𝑇]|𝑏(𝑛) < 0)}

are two nonempty subsets of 𝑍[1, 𝑇], where 𝑠 > 1, 𝑏(⋅) is a 𝑇-
periodic real function,𝐺

𝑠
∈ 𝐶
1
(Z×R𝑁,R), and𝐺

𝑠
(𝑛, 0) = 0.

Consider the second-order Hamiltonian system

̈𝑥 (𝑡) + 𝑊
󸀠

(𝑡, 𝑥) = 0, 𝑥 (0) = 𝑥 (𝑇) ,

̇𝑥 (0) = ̇𝑥 (𝑇) ,

(3)

where 𝑊 ∈ 𝐶
2
(R × R𝑁,R) is 𝑇-periodic in 𝑡, 𝑊(𝑡, 𝑥) =

(1/2)(𝐴(𝑡)𝑥, 𝑥) + 𝐻(𝑡, 𝑥). Here 𝐴(⋅) is a continuous, 𝑇-
periodic matrix-value function.

Systems (1) and (3) have been investigated by many
authors using various methods, see [1–5]. The dynamical
behavior of differential and difference equations was studied
by using various methods, and many interesting results have
obtained, see [6–10] and references therein.The critical point
theory [11–14] is a useful tool to investigate differential equa-
tions. Morse theory [15–19] has also been used to solve the
asymptotically linear problem. By minimax methods in criti-
cal point theory, Tang andWu [4], Antonacci [20, 21] consid-
ered the problem (3) with potential indefinite in sign, where
𝐻 is superquadratic at zero and infinity. By using Morse
theory, Zou and Li [10] study the existence of 𝑇-periodic
solution of (3), where 𝐻 is asymptotically superquadratic
and sign changing. Moroz [19] studies system (3) where𝐻 is
asymptotically subquadratic and sign changing.Motivated by
[5, 10, 19], we investigate periodic solutions for asymptotically
superquadratic or subquadratic discrete system (1).

By expression of 𝐻(𝑛, 𝑥), system (1) possesses a trivial
solution 𝑥 = 0. Here we are interested in finding the nonzero
𝑇-periodic solution of (1), andwedivide the problem into two
cases: 𝑠 > 2 and 1 < 𝑠 < 2. For 𝑠 = 2, one can refer to [22].
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Case 1 (asymptotically superquadratic case: 𝑠 > 2). In this
case, we replace 𝑝 with 𝑠 in (2). Letting 𝑔

𝑝
(𝑛, 𝑥) = 𝐺

󸀠

𝑝
(𝑛, 𝑥),

we rewrite (1) as

Δ
2
𝑥
𝑛−1

+ 𝑎𝑥
𝑛
+ 𝑏 (𝑛)

󵄨󵄨󵄨󵄨𝑥𝑛
󵄨󵄨󵄨󵄨

𝑝−2

𝑥
𝑛
+ 𝑔
𝑝
(𝑛, 𝑥
𝑛
) = 0,

𝑥
𝑛+𝑇

= 𝑥
𝑛
.

(4)

Furthermore, for all (𝑛, 𝑥) ∈ Z × R𝑁, we assume that 𝑔
𝑝

satisfies

(A1) 𝑔
𝑝
(𝑛, 𝑥) = 𝑜(|𝑥|) as |𝑥| → ∞ uniformly in 𝑛,

(A2) 𝑔
𝑝
(𝑛, 𝑥) = 𝑜(|𝑥|

𝑝−1
) as |𝑥| → 0 uniformly in 𝑛.

Case 2 (asymptotically subquadratic case: 1 < 𝑠 < 2). Here
we replace 𝑞 with 𝑠 in (2). Letting 𝑔

𝑞
(𝑛, 𝑥) = 𝐺

󸀠

𝑞
(𝑛, 𝑥), we

rewrite (1) as

Δ
2
𝑥
𝑛−1

+ 𝑎𝑥
𝑛
+ 𝑏 (𝑛)

󵄨󵄨󵄨󵄨𝑥𝑛
󵄨󵄨󵄨󵄨

𝑞−2

𝑥
𝑛
+ 𝑔
𝑞
(𝑛, 𝑥
𝑛
) = 0,

𝑥
𝑛+𝑇

= 𝑥
𝑛
.

(5)

For all (𝑛, 𝑥) ∈ Z ×R𝑁, we assume that 𝑔
𝑞
satisfies

(B1) 𝑔
𝑞
(𝑛, 𝑥) = 𝑜(|𝑥|

𝑞−1
) as |𝑥| → ∞ uniformly in 𝑛,

(B2) 𝑔
𝑞
(𝑛, 𝑥) = 𝑜(|𝑥|) as |𝑥| → 0 uniformly in 𝑛.

Before stating the main results, we introduce space 𝐸
𝑇
=

{𝑥 = {𝑥
𝑛
} ∈ 𝑆|𝑥

𝑛+𝑇
= 𝑥
𝑛
, 𝑛 ∈ Z}, where 𝑆 = {𝑥 =

{𝑥
𝑛
}|𝑥
𝑛

∈ R𝑁, 𝑛 ∈ Z}. For any 𝑥, 𝑦 ∈ 𝑆, 𝑎, 𝑏 ∈ R,
we define 𝑎𝑥 + 𝑏𝑦 = {𝑎𝑥

𝑛
+ 𝑏𝑦
𝑛
}
𝑛∈Z. Then 𝑆 is a linear

space. Let ⟨𝑥, 𝑦⟩
𝐸𝑇

= ∑
𝑇

𝑛=1
(𝑥
𝑛
, 𝑦
𝑛
), ‖𝑥‖

𝐸𝑇
= (∑
𝑇

𝑛=1
|𝑥
𝑛
|
2
)
1/2

,
for all 𝑥, 𝑦 ∈ 𝐸

𝑇
, where (⋅, ⋅) and | ⋅ | are the usual inner

product and norm in R𝑁, respectively. Obviously, 𝐸
𝑇
is a

Hilbert space with dimension 𝑁𝑇 and homeomorphism to
R𝑁𝑇. For 𝑟 > 1, let ‖𝑥‖

𝑟
= (∑
𝑇

𝑛=1
|𝑥
𝑛
|
𝑟
)
1/𝑟

, 𝑥 ∈ 𝐸
𝑇
. Moreover,

for simplicity, we write ⟨𝑥, 𝑦⟩ and ‖𝑥‖ instead of ⟨𝑥, 𝑦⟩
𝐸𝑇

and
‖𝑥‖
𝐸𝑇
, respectively.

Lemma 1. There exist positive numbers 𝑎
1
, 𝑎
2
, such that 𝑎

1
‖

𝑥‖
𝑟
≤‖ 𝑥 ‖≤ 𝑎

2
‖ 𝑥‖
𝑟
.

Inspired by [10, 19], one introduces two numbers as follows:

𝜆
∗
(𝑝) = inf

‖𝑥‖=1

{‖Δ𝑥‖
2

|

𝑇

∑

𝑛=1

𝑏 (𝑛)
󵄨󵄨󵄨󵄨𝑥𝑛

󵄨󵄨󵄨󵄨

𝑝

= 0} ,

𝜆
∗
(𝑞) = inf

‖𝑥‖=1

{‖Δ𝑥‖
2

|

𝑇

∑

𝑛=1

𝑏 (𝑛)
󵄨󵄨󵄨󵄨𝑥𝑛

󵄨󵄨󵄨󵄨

𝑞

= 0} .

(6)

Theorem 2. If 𝑎 < 𝜆
∗
(𝑝), then (4) has a nonzero 𝑇-periodic

solution.

Theorem 3. If 𝑎 < 𝜆
∗
(𝑞), then (5) has a nonzero 𝑇-periodic

solution.

Thispaper is divided into four sections. Section 2 contains
some preliminaries, and the proofs of Theorems 2 and 3 are
given in Sections 3 and 4, respectively.

2. Preliminaries

2.1. Variational Functional and (PS) Condition. For seeking
𝑇-periodic solution of (1), we consider variational functional
𝐽
𝑝

associated with (4) as 𝐽
𝑝
(𝑥) = (1/2)∑

𝑇

𝑛=1
|Δ𝑥
𝑛
|
2
−

(1/2)𝑎∑
𝑇

𝑛=1
|𝑥
𝑛
|
2
− 1/𝑝∑

𝑇

𝑛=1
𝑏(𝑛)|𝑥

𝑛
|
𝑝
− ∑
𝑇

𝑛=1
𝐺
𝑝
(𝑛, 𝑥
𝑛
), that

is

𝐽
𝑝
(𝑥) =

1

2
‖Δ𝑥‖
2
−
1

2
𝑎‖𝑥‖
2
−
1

𝑝

𝑇

∑

𝑛=1

𝑏 (𝑛)
󵄨󵄨󵄨󵄨𝑥𝑛

󵄨󵄨󵄨󵄨

𝑝

−

𝑇

∑

𝑛=1

𝐺
𝑝
(𝑛, 𝑥
𝑛
) , 𝑥 ∈ 𝐸

𝑇
.

(7)

Moreover, 𝑇-periodic solution of (5) is associated with the
critical point of functional

𝐽
𝑞
(𝑥) =

1

2
‖Δ𝑥‖
2
−
1

2
𝑎‖𝑥‖
2
−
1

𝑞

𝑇

∑

𝑛=1

𝑏 (𝑛)
󵄨󵄨󵄨󵄨𝑥𝑛

󵄨󵄨󵄨󵄨

𝑞

−

𝑇

∑

𝑛=1

𝐺
𝑞
(𝑛, 𝑥
𝑛
) , 𝑥 ∈ 𝐸

𝑇
.

(8)

We say that a𝐶1-functional 𝜑 on Hilbert space𝑋 satisfies
the Palais-Smale (PS) condition if every sequence {𝑥(𝑗)} in𝑋,
such that {𝜑(𝑥(𝑗))}, is bounded and 𝜑󸀠(𝑥(𝑗)) → 0 as 𝑗 → ∞

contains a convergent subsequence.

Lemma 4. Functional 𝐽
𝑝
satisfies (PS) condition if 𝑎 < 𝜆

∗
(𝑝).

Proof. Let {𝑥(𝑗)} ⊂ 𝐸
𝑇
be the (PS) sequence for functional 𝐽

𝑝
,

such that 𝐽
𝑝
(𝑥
(𝑗)
) is bounded, and 𝐽󸀠

𝑝
(𝑥
(𝑗)
) → 0 as 𝑗 → ∞.

Hence, for any 𝜀 > 0, there exist𝑁
𝜀
> 0 and constant 𝑐

1
> 0,

such that
󵄨󵄨󵄨󵄨󵄨
⟨𝐽
󸀠

𝑝
(𝑥
(𝑗)
) , 𝑥
(𝑗)
⟩
󵄨󵄨󵄨󵄨󵄨
≤ 𝜀

󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑗)󵄩󵄩󵄩󵄩󵄩

for 𝑗 ≥ 𝑁
𝜀
,

󵄨󵄨󵄨󵄨󵄨
𝐽
𝑝
(𝑥
(𝑗)
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝑐
1
.

(9)

To prove that 𝐽
𝑝
satisfies (PS) condition, it suffices to show

that ‖𝑥(𝑗)‖ is bounded in 𝐸
𝑇
. Suppose not that there exists a

subsequence {𝑥(𝑗𝑘)}, ‖ 𝑥(𝑗𝑘) ‖→ ∞ as 𝑘 → ∞. For simplicity,
we write as {𝑥(𝑗)} instead of {𝑥(𝑗𝑘)}. Without loss of generality,
we assume that there exists 𝑘 ∈ 𝑍[1, 𝑇], such that

󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑗)

𝑛

󵄨󵄨󵄨󵄨󵄨
󳨀→ ∞ as 𝑗 󳨀→ ∞ for 𝑛 ∈ 𝑍 [1, 𝑘] ,

𝑥
(𝑗)

𝑛
are bounded for 𝑛 ∈ 𝑍 [𝑘 + 1, 𝑇] .

(10)

Therefore for all 𝑛 ∈ [1, 𝑇], by assumption (A1), there exists
𝑐
2
> 0 such that

󵄨󵄨󵄨󵄨󵄨
𝐺
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝜀

󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑗)

𝑛

󵄨󵄨󵄨󵄨󵄨

2

+ 𝑐
2
,

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝜀

󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑗)

𝑛

󵄨󵄨󵄨󵄨󵄨
+ 𝑐
2

(11)
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for large 𝑗. By the previous argument, it follows that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑇

∑

𝑛=1

(𝑔
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
) , 𝑥
(𝑗)

𝑛
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

𝑇

∑

𝑛=1

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑗)

𝑛

󵄨󵄨󵄨󵄨󵄨

≤ 𝜀
󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑗)󵄩󵄩󵄩󵄩󵄩

2

+ 𝑐
2
𝑇
󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑗)󵄩󵄩󵄩󵄩󵄩

.

(12)

By (7), we have

𝑝𝐽
𝑝
(𝑥
(𝑗)
) − ⟨𝐽

󸀠

𝑝
(𝑥
(𝑗)
) , 𝑥
(𝑗)
⟩

= (
𝑝

2
− 1) (

󵄩󵄩󵄩󵄩󵄩
Δ𝑥
(𝑗)󵄩󵄩󵄩󵄩󵄩

2

− 𝑎
󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑗)󵄩󵄩󵄩󵄩󵄩

2

) − 𝑝

𝑇

∑

𝑛=1

𝐺
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
)

+

𝑇

∑

𝑛=1

(𝑔
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
) , 𝑥
(𝑗)

𝑛
) .

(13)

In terms of (9) and (11), for large 𝑗, it follows that

(
𝑝

2
− 1) (

󵄩󵄩󵄩󵄩󵄩
Δ𝑥
(𝑗)󵄩󵄩󵄩󵄩󵄩

2

− 𝑎
󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑗)󵄩󵄩󵄩󵄩󵄩

2

)

≤ 𝑝𝑐
1
+ 𝜀

󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑗)󵄩󵄩󵄩󵄩󵄩

+ (𝑝 + 1) 𝜀
󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑗)󵄩󵄩󵄩󵄩󵄩

2

+ 𝑝𝑐
2
𝑇 + 𝑐
2
𝑇
󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑗)󵄩󵄩󵄩󵄩󵄩

.

(14)

Set 𝑦(𝑗)
𝑛

= 𝑥
(𝑗)

𝑛
/‖𝑥
(𝑗)
‖. Dividing by ‖𝑥(𝑗)‖

2

in the previous
formula, it follows that

󵄩󵄩󵄩󵄩󵄩
Δ𝑦
(𝑗)󵄩󵄩󵄩󵄩󵄩

2

≤ 𝑎 +
2

𝑝 − 2
((𝑝 + 1) 𝜀 +

𝑐
2
𝑇 + 𝜀

󵄩󵄩󵄩󵄩𝑥
(𝑗)󵄩󵄩󵄩󵄩

+
𝑝𝑐
2
𝑇 + 𝑝𝑐

1

󵄩󵄩󵄩󵄩𝑥
(𝑗)󵄩󵄩󵄩󵄩

2
)

(15)

for large 𝑗. Therefore, by 𝜀 being chosen arbitrarily, there is a
subsequence that converges to 𝑦0 ∈ 𝐸

𝑇
such that

󵄩󵄩󵄩󵄩󵄩
Δ𝑦
0󵄩󵄩󵄩󵄩󵄩

2

≤ 𝑎,
󵄩󵄩󵄩󵄩󵄩
𝑦
0󵄩󵄩󵄩󵄩󵄩
= 1. (16)

On the other hand, we have

𝐽
𝑝
(𝑥
(𝑗)
) −

1

2
⟨𝐽
󸀠

𝑝
(𝑥
(𝑗)
) , 𝑥
(𝑗)
⟩

= (
1

2
−
1

𝑝
)

𝑇

∑

𝑛=1

𝑏 (𝑛)
󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑗)

𝑛

󵄨󵄨󵄨󵄨󵄨

𝑝

−

𝑇

∑

𝑛=1

𝐺
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
)

+
1

2

𝑇

∑

𝑛=1

(𝑔
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
) , 𝑥
(𝑗)

𝑛
) .

(17)

Then, by (9) and (11), for large 𝑗, we get
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(
1

2
−
1

𝑝
)

𝑇

∑

𝑛=1

𝑏 (𝑛)
󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑗)

𝑛

󵄨󵄨󵄨󵄨󵄨

𝑝

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐽
𝑝
(𝑥
(𝑗)
) −

1

2
⟨𝐽
󸀠

𝑝
(𝑥
(𝑗)
) , 𝑥
(𝑗)
⟩ +

𝑇

∑

𝑛=1

𝐺
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
)

−
1

2

𝑇

∑

𝑛=1

(𝑔
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
) , 𝑥
(𝑗)

𝑛
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑐
1
+
𝜀

2

󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑗)󵄩󵄩󵄩󵄩󵄩

+𝜀
󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑗)󵄩󵄩󵄩󵄩󵄩

2

+𝑐
2
𝑇+

1

2
(𝜀
󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑗)󵄩󵄩󵄩󵄩󵄩

2

+𝑐
2
𝑇
󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑗)󵄩󵄩󵄩󵄩󵄩

) .

(18)

By dividing by ‖𝑥
(𝑗)
‖
𝑝

in the previous formula, then by
𝑝 > 2, we have ∑𝑇

𝑛=1
𝑏(𝑛)|𝑦

(𝑗)

𝑛
|
𝑝

→ 0 as 𝑗 → ∞, that
is, ∑𝑇
𝑛=1

𝑏(𝑛)|𝑦
0

𝑛
|
𝑝
= lim

𝑗→∞
∑
𝑇

𝑛=1
𝑏(𝑛)|𝑦

(𝑗)

𝑛
|
𝑝
= 0. By the

definition of 𝜆
∗
(𝑝), see (6), we have ‖Δ𝑦0‖2 ≥ 𝜆

∗
(𝑝). This

contradicts with (16) and assumption 𝑎 < 𝜆
∗
(𝑝). The proof is

completed.

Lemma 5. Functional 𝐽
𝑞
satisfies (PS) condition if 𝑎 < 𝜆

∗
(𝑞).

The proof is similar to that of Lemma 4 and is omitted.

2.2. Eigenvalue Problem. Consider eigenvalue problem:

−Δ
2
𝑥
𝑛−1

= 𝜆𝑥
𝑛
, 𝑥

𝑛+𝑇
= 𝑥
𝑛
, 𝑥
𝑛
∈ R
𝑁
, (19)

that is,𝑥
𝑛+1
+(𝜆−2)𝑥

𝑛
+𝑥
𝑛−1

= 0,𝑥
𝑛+𝑇

= 𝑥
𝑛
. By the periodicity,

the difference system has complexity solution 𝑥
𝑛
= 𝑒
𝑖𝑛𝜃
𝑐 for

𝑐 ∈ CN, where 𝜃 = 2𝑘𝜋/𝑇, 𝑘 ∈ Z.Moreover,𝜆 = 2−𝑒−𝑖𝜃−𝑒𝑖𝜃 =
2(1−cos 𝜃) = 4 sin2(𝑘𝜋/𝑇). Let 𝜂

𝑘
denote the real eigenvector

corresponding to the eigenvalues 𝜆
𝑘
= 4 sin2(𝑘𝜋/𝑇), where

𝑘 ∈ 𝑍[0, 𝑟] and 𝑟 = [𝑇/2]. Since 𝑎 = 4 sin2(𝑚𝜋/𝑇) for some
𝑚 ∈ 𝑍[0, 𝑟], we can split space 𝐸

𝑇
as follows:

𝐸
𝑇
= 𝑊
−
⨁𝑊

0
⨁𝑊

+
, (20)

where

𝑊
−
= span {𝜂

𝑘
| 𝑘 ∈ 𝑍 [0,𝑚 − 1]} , 𝑊

0
= span {𝜂

𝑚
} ,

𝑊
+
= span {𝜂

𝑘
| 𝑘 ∈ 𝑍 [𝑚 + 1, 𝑟]} .

(21)

Bymeans of eigenvalue problem,we have |Δ𝑥
𝑛
|
2
−𝑎|𝑥
𝑛
|
2
=

(Δ𝑥
𝑛
, Δ𝑥
𝑛
) − 𝑎(𝑥

𝑛
, 𝑥
𝑛
) = (−Δ

2
𝑥
𝑛−1
, 𝑥
𝑛
) − 𝑎(𝑥

𝑛
, 𝑥
𝑛
) = (𝜆 −

𝑎)(𝑥
𝑛
, 𝑥
𝑛
) = (𝜆 − 𝑎)|𝑥

𝑛
|
2. Let

𝛿 =

{{{{{{{

{{{{{{{

{

min {4 sin2 (𝑚 + 1) 𝜋

𝑇
− 4 sin2𝑚𝜋

𝑇
,

4 sin2𝑚𝜋
𝑇

− 4 sin2 (𝑚 − 1) 𝜋

𝑇
} , 𝑚 ∈ 𝑍 [1, 𝑟] ,

4 sin2 𝜋
𝑇
, 𝑚 = 0.

(22)

Then ±(‖ Δ𝑥‖2 − 𝑎 ‖ 𝑥‖2) ≥ 𝛿 ‖ 𝑥‖2 for 𝑥 ∈ 𝑊±.
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On the other hand, associating to numbers 𝜆
∗
(𝑝) and

𝜆
∗
(𝑞) (see (6)), we set

Λ
∗
(𝑝) =

𝑇

∑

𝑛=1

𝑏 (𝑛)
󵄨󵄨󵄨󵄨𝑒𝑛
󵄨󵄨󵄨󵄨

𝑝

,

Λ
∗
(𝑞) =

𝑇

∑

𝑛=1

𝑏 (𝑛)
󵄨󵄨󵄨󵄨𝑒𝑛
󵄨󵄨󵄨󵄨

𝑞

,

(23)

where 𝑒
𝑛
= 𝑢 ∈ R𝑁 (𝑛 ∈ [1, 𝑇]) is the real eigenvector

corresponding to eigenvalue 𝜆
0
= 0. 𝑒 = (𝑒

𝑇

1
, 𝑒
𝑇

2
, . . . , 𝑒

𝑇

𝑁
)
𝑇
=

(𝑢
𝑇
, 𝑢
𝑇
, . . . , 𝑢

𝑇
)
𝑇
∈ 𝐸
𝑇
, where ∙𝑇 denotes the transpose of a

vector or a matrix. Moreover, letting |𝑢| = 𝑇
−1/2, we have

‖𝑒‖ = 1, ‖Δ𝑒‖ = 0. Therefore, by definition of 𝜆
∗
(𝑝), if

Λ
∗
(𝑝) = 0 then 𝜆

∗
(𝑝) = 0.

However, by assumption 𝜆
∗
(𝑝) > 𝑎 = 4sin 2(𝑚𝜋/𝑇) for

some 𝑚 ∈ 𝑍[0, 𝑟], thus 𝜆
∗
(𝑝) > 0. That is to say the equality

Λ
∗
(𝑝) = 0 cannot hold. Therefore our discussion will be

distinguished in two cases: Λ
∗
(𝑝) > 0 and Λ

∗
(𝑝) < 0.

2.3. Preliminaries. Let 𝑋 be a Hilbert space, and let 𝜑 ∈

𝐶
1
(𝑋,R) be a functional satisfying the (PS) condition. Write

crit(𝜑) = {𝑥 ∈ 𝑋 | 𝜑
󸀠
(𝑥) = 0} for the set of critical

points of functional 𝜑 and 𝜑𝑐 = {𝑥 ∈ 𝑋 | 𝜑(𝑥) ≤ 𝑐} for
the level set. Denote by 𝐻

𝑘
(𝐴, 𝐵) the 𝑘th singular relative

homology group with integer coefficients. Let 𝑥
0
∈ crit(𝜑)

be an isolated critical point with value 𝑐 = 𝜑(𝑥
0
), 𝑐 ∈ R, the

group 𝐶
𝑘
(𝜑, 𝑥
0
) = 𝐻

𝑘
(𝜑
𝑐
∩ 𝑈, (𝜑

𝑐
∩ 𝑈) \ {𝑥

0
}), and 𝑘 ∈ Z

is called the 𝑘th critical group of 𝜑 at 𝑥
0
, where 𝑈 is a closed

neighbourhood of 𝑢. Due to the excision of homology [13],
𝐶
𝑘
(𝜑, 𝑥
0
) is dependent on 𝑈.

Suppose that 𝜑(crit(𝜑)) is strictly bounded from below by
𝑎 ∈ R, then the critical groups of 𝜑 at infinity are formally
defined [11] as 𝐶

𝑘
(𝜑,∞) = 𝐻

𝑘
(𝑋, 𝜑
𝑎
), 𝑘 ∈ Z.

Proposition 6 (Proposition 2.3, [11]). Assume that 𝐶
2-

functional 𝜑 satisfying (PS) condition has a local linking at 0
with respect to 𝑋 = 𝑋

+

0
⨁𝑋
−

0
; that is, there exists 𝜌 > 0 such

that

𝜑 (𝑥) ≤ 𝜑 (0) for 𝑥 ∈ 𝑋−
0
and ‖𝑥‖ ≤ 𝜌,

𝜑 (𝑥) > 𝜑 (0) for 𝑥 ∈ 𝑋+
0
and 0 < ‖𝑥‖ ≤ 𝜌.

(24)

Then 𝐶
𝑘
(𝜑, 0) ̸= 0, 𝑘 = dim𝑋

−

0
.

By Propostion 6, one proves the following lemmas with
respect to 𝐸

𝑇
= 𝑋
+
⨁X−.

Lemma 7. If 𝑎 < 𝜆
∗
(𝑝), then 𝐶

𝑘
(𝐽
𝑝
, 0) ̸= 0, 𝑘 = dim𝑋

−,
where 𝑋− = 𝑊

−
⨁𝑊

0 as Λ
∗
(𝑝) > 0, 𝑋− = 𝑊

− as Λ
∗
(𝑝) <

0. Λ
∗
(𝑝) is defined by (23).

Proof. We first consider the following.

Case 1 (Λ
∗
(𝑝) > 0 and 𝑋+ = 𝑊

+, 𝑋− = 𝑊
−
⨁𝑊

0). By
𝑝 > 2, |𝑥|𝑝 = 𝑜(|𝑥|

2
) as |𝑥| → 0, then there exists 𝜃 ∈ (0, 1)

suitably small, such that |𝑥|𝑝 ≤ 𝛿/3(𝑏/𝑝 + 𝜀)|𝑥|
2 as |𝑥| < 𝜃,

where 𝛿 > 0 see (22) and 𝑏 = max{|𝑏(1)|, . . . , |𝑏(𝑇)|} > 0. By
assumption (A2) and 𝐺

𝑝
(𝑛, 0) = 0, for any given 𝜀 > 0, there

exists 𝜌
𝑛
∈ (0, 𝜃), such that |𝐺

𝑝
(𝑛, 𝑥
𝑛
)| ≤ 𝜀|𝑥

𝑛
|
𝑝 as |𝑥

𝑛
| ≤ 𝜌
𝑛
,

𝑛 ∈ 𝑍[1, 𝑇]. Thus

1

𝑝

𝑇

∑

𝑛=1

𝑏 (𝑛)
󵄨󵄨󵄨󵄨𝑥𝑛

󵄨󵄨󵄨󵄨

𝑝

+

𝑇

∑

𝑛=1

𝐺
𝑝
(𝑛, 𝑥
𝑛
)

≤ (
𝑏

𝑝
+ 𝜀)

𝑇

∑

𝑛=1

󵄨󵄨󵄨󵄨𝑥𝑛
󵄨󵄨󵄨󵄨

𝑝

≤
1

3
𝛿‖𝑥‖
2
.

(25)

Let 𝜌 = min{𝜌
1
, . . . , 𝜌

𝑇
}. For 0 <‖ 𝑥 ‖≤ 𝜌 < 1, it follows that

𝐽
𝑝
(𝑥) ≥

1

2
𝛿‖𝑥‖
2
−
1

3
𝛿‖𝑥‖
2
> 0, 𝑥 ∈ 𝑊

+
= 𝑋
+
. (26)

We need to prove that 𝐽
𝑝
(𝑥) ≤ 0 for 𝑥 ∈ 𝑋− = 𝑊−⨁𝑊

0,
‖𝑥‖ ≤ 𝜌. We first claim that

𝑇

∑

𝑛=1

𝑏 (𝑛)
󵄨󵄨󵄨󵄨𝑥𝑛

󵄨󵄨󵄨󵄨

𝑝

> 0, ∀𝑥 ∈ 𝑊
−
⨁𝑊

0
, 𝑥 ̸= 0. (27)

Indeed, by contradiction, assume that∑𝑇
𝑛=1

𝑏(𝑛)|𝑥
𝑛
|
𝑝
≤ 0, for

some 𝑥 ∈ 𝑊
−
⨁𝑊

0, 𝑥 ̸= 0. Since Λ
∗
(𝑝) = ∑

𝑇

𝑛=1
𝑏(𝑛)|𝑒

𝑛
|
𝑝
>

0, where 𝑒 = (𝑒
𝑇

1
, 𝑒
𝑇

2
, . . . , 𝑒

𝑇

𝑁
)
𝑇

= (𝑢
𝑇
, 𝑢
𝑇
, . . . , 𝑢

𝑇
)
𝑇

∈

𝑊
−
⨁𝑊

0, and (𝑊
−
⨁𝑊

0
) \ {0} is arcwise connected,

then there exists a 𝑥
0

∈ (𝑊
−
⨁𝑊

0
) \ {0}, such that

∑
𝑇

𝑛=1
𝑏(𝑛)|𝑥

0

𝑛
|
𝑝

= 0. Thus ‖Δ𝑥0‖2 ≥ 𝜆
∗
(𝑝)‖𝑥

0
‖
2 by the

definition of 𝜆
∗
(𝑝). On the other hand, by the definition of

𝑊
−
⨁𝑊

0, we have ‖Δ𝑥0‖2 ≤ 𝑎 ‖𝑥0‖2. This is a contradiction
with assumption 𝑎 < 𝜆

∗
(𝑝). So the claim (27) holds.

There exists 𝑐
4
> 0 by (27), such that ∑𝑇

𝑛=1
𝑏(𝑛)|𝑥

𝑛
|
𝑝
≥

𝑐
4
‖𝑥‖
𝑝

𝑝
for all 𝑥 ∈ 𝑊

−
⨁𝑊

0
\ {0}, where ‖𝑥‖

𝑝
=

(∑
𝑇

𝑛=1
|𝑥
𝑛
|
𝑝
)
1/𝑝

. For 𝑥 ∈ 𝑊
−
⨁𝑊

0, ‖𝑥‖ ≤ 𝜌, 𝜀 sufficiently
small, we have

𝐽
𝑝
(𝑥) ≤ −

1

𝑝

𝑇

∑

𝑛=1

𝑏 (𝑛)
󵄨󵄨󵄨󵄨𝑥𝑛

󵄨󵄨󵄨󵄨

𝑝

−

𝑇

∑

𝑛=1

𝐺
𝑝
(𝑛, 𝑥
𝑛
)

≤ −
𝑐
4

𝑝
‖𝑥‖
𝑝

𝑝
+ 𝜀‖𝑥‖

𝑝

𝑝
≤ 0.

(28)

Since 𝐽
𝑝
(0) = 0 and 𝐽

𝑝
satisfies (PS) condition by Lemma 4,

so by Proposition 6, we obtain that 𝐶
𝑘
(𝐽
𝑝
, 0) ̸= 0 for 𝑘 =

dim (𝑊
−
⨁𝑊

0
).

Case 2 (Λ
∗
(𝑝) < 0, 𝑋

+
= 𝑊
+
⨁𝑊

0
, 𝑋
−
= 𝑊
−
). It is easy

to see that 𝐽
𝑝
(𝑥) ≤ 0 by ‖Δ𝑥‖2 − 𝑎 ‖𝑥‖2 ≤ −𝛿 ‖𝑥‖2 and 𝑝 > 2,

where 𝑥 ∈ 𝑊− and ‖𝑥‖ ≤ 𝜌. We need to claim that 𝐽
𝑝
(𝑥) > 0,

for 𝑥 ∈ 𝑊+⨁𝑊
0, 0 < ‖𝑥‖ ≤ 𝜌.

Suppose not that there exists a sequence {𝑥(𝑗)} ⊂ 𝐸
𝑇
such

that

{𝑥
(𝑗)
} ⊂ 𝑊

+
⨁𝑊

0
\ {0} , 0 <

󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑗)󵄩󵄩󵄩󵄩󵄩

≤ 𝜌,

𝐽
𝑝
(𝑥
(𝑗)
) ≤ 0,

(29)
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for large 𝑗. For ‖ 𝑥(𝑗) ‖ ≤ 𝜌, by Lemma 1, we get
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑇

∑

𝑛=1

[
1

𝑝
𝑏 (𝑛)

󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑗)

𝑛

󵄨󵄨󵄨󵄨󵄨

𝑝

+ 𝐺
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
)]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

𝑇

∑

𝑛=1

[
𝑏

𝑝

󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑗)

𝑛

󵄨󵄨󵄨󵄨󵄨

𝑝

+ 𝜀
󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑗)

𝑛

󵄨󵄨󵄨󵄨󵄨

𝑝

] ≤ (
𝑏

𝑝
+ 𝜀)(

1

𝑎
1

)

𝑝
󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑗)󵄩󵄩󵄩󵄩󵄩

𝑝

.

(30)

Set 𝑦(𝑗)
𝑛
= 𝑥
(𝑗)

𝑛
/‖𝑥
(𝑗)
‖ .Then by (29) and the previous formula,

we have

0 ≥

𝐽
𝑝
(𝑥
(𝑗)
)

󵄩󵄩󵄩󵄩𝑥
(𝑗)󵄩󵄩󵄩󵄩

2
≥
1

2
(
󵄩󵄩󵄩󵄩󵄩
Δ𝑦
(𝑗)󵄩󵄩󵄩󵄩󵄩

2

− 𝑎)

− (
𝑏

𝑝
+ 𝜀)(

1

𝑎
1

)

𝑝
󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑗)󵄩󵄩󵄩󵄩󵄩

𝑝−2

.

(31)

On the other hand, ‖Δ𝑦(𝑗)‖
2

≥ 𝑎 by the definition of
𝑊
+
⨁𝑊

0. Hence by 𝑝 > 2, there exists a subsequence
converges to 𝑦0 ∈ 𝐸

𝑇
, such that ‖Δ𝑦0‖2 = 𝑎, that is 𝑦0 ∈

𝑊
0 and ‖𝑦

0
‖ = 1. Since ‖Δ𝑥(𝑗)‖

2

≥ 𝑎‖𝑥
(𝑗)
‖
2

for {𝑥(𝑗)} ⊂

𝑊
+
⨁𝑊

0, it follows from 𝐽
𝑝
(𝑥
(𝑗)
) ≤ 0 that

0 ≤
1

𝑝

𝑇

∑

𝑛=1

𝑏 (𝑛)
󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑗)

𝑛

󵄨󵄨󵄨󵄨󵄨

𝑝

+

𝑇

∑

𝑛=1

𝐺
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
)

≤
1

𝑝

𝑇

∑

𝑛=1

𝑏 (𝑛)
󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑗)

𝑛

󵄨󵄨󵄨󵄨󵄨

𝑝

+ 𝜀(
1

𝑎
1

)

𝑝
󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑗)󵄩󵄩󵄩󵄩󵄩

𝑝

.

(32)

Dividing by ‖𝑥
(𝑗)
‖
𝑝

in the previous inequality, then
∑
𝑇

𝑛=1
𝑏(𝑛)|𝑦

0

𝑛
|
𝑝
= lim
𝑗→∞

∑
𝑇

𝑛=1
𝑏(𝑛)|𝑦

(𝑗)

𝑛
|
𝑝
≥ 0.

Since 𝑒, 𝑦0 ∈ 𝑊
−
⨁𝑊

0, Λ
∗
(𝑝) = ∑

𝑇

𝑛=1
𝑏(𝑛)|𝑒

𝑛
|
𝑝
< 0

and (𝑊−⨁𝑊
0
) \ {0} is arcwise connected, then there exists

a 𝑦 ∈ (𝑊
−
⨁𝑊

0
) \ {0} such that ∑𝑇

𝑛=1
𝑏(𝑛)|𝑦

𝑛
|
𝑝
= 0. Thus

‖ Δ𝑥‖
2
≥ 𝜆
∗
(𝑝) ‖ 𝑥‖

2 by the definition of 𝜆
∗
(𝑝). On the other

hand, ‖ Δ𝑥‖2 ≤ 𝑎 ‖ 𝑥‖
2 by the definition of𝑊−⨁𝑊

0. This
is a contradiction with assumption 𝑎 < 𝜆

∗
(𝑝). That is to say,

the claim is valid.
By Proposition 6, we obtain 𝐶

𝑘
(𝐽
𝑝
, 0) ̸= 0, 𝑘 = dim 𝑊

−.
The proof is completed.

Lemma 8. If 𝑎 < 𝜆
∗
(𝑞), then 𝐶

𝑘
(𝐽
𝑞
,∞) ̸= 0 for 𝑘 = dim 𝑋

−,
where𝑋− = 𝑊−⨁𝑊

0 asΛ
∗
(𝑞) > 0,𝑋− = 𝑊− asΛ

∗
(𝑞) < 0.

The proof is similar to that of Lemma 7 and is omitted.

3. Proof of Theorem 2

Lemma 9. Let 𝑎 < 𝜆
∗
(𝑝). If there exists 𝐾

1
> 0 such that for

any 𝐾 > 𝐾
1
, 𝐽
𝑝
(𝑥) ≤ −𝐾, then one has ∑𝑇

𝑛=1
𝑏(𝑛)|𝑥

𝑛
|
𝑝
> 0,

and (𝑑/dt)𝐽
𝑝
(𝑡𝑥)|
𝑡=1

< 0.

Proof. We first claim that ‖ 𝑥 ‖ is sufficiently large, if 𝑥
satisfies condition of Lemma 9. Suppose not there exists𝑀 >

0 such that ‖ 𝑥 ‖≤ 𝑀. So there exists {𝑥(𝑗)} ⊂ 𝐸
𝑇
, 𝑥0 ∈ 𝐸

𝑇
,

such that 𝑥(𝑗) → 𝑥
0 as 𝑗 → ∞. Since for any 𝑗 > 𝐾

1
, we

have 𝐽
𝑝
(𝑥
(𝑗)
) ≤ −𝑗, thus 𝐽

𝑝
(𝑥
0
) = lim

𝑗→∞
𝐽
𝑝
(𝑥
(𝑗)
) = −∞. It is

a contradiction with 𝐽
𝑝
(𝑥
0
) = 𝑐.

If ‖𝑥‖ is large enough, thenwe can assume that |𝑥
𝑛
| is large

enough for 𝑛 ∈ 𝑍[1, 𝑘] and |𝑥
𝑛
| are bounded for 𝑛 ∈ 𝑍[𝑘 +

1, 𝑇].Therefore, by assumption (A1), for any given 𝜀 > 0, there
exists𝑀

1
> 0 such that

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑝
(𝑛, 𝑥
𝑛
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝜀

󵄨󵄨󵄨󵄨𝑥𝑛
󵄨󵄨󵄨󵄨 +

𝑀
1

𝑇
,

󵄨󵄨󵄨󵄨󵄨
𝐺
𝑝
(𝑛, 𝑥
𝑛
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝜀

󵄨󵄨󵄨󵄨𝑥𝑛
󵄨󵄨󵄨󵄨

2

+
𝑀
1

𝑇
,

∀ (𝑛, 𝑥
𝑛
) ∈ 𝑍 [1, 𝑇] ×R

𝑁
.

(33)

We claim that ∑𝑇
𝑛=1

𝑏(𝑛)|𝑥
𝑛
|
𝑝
> 0. Suppose not that, for 𝑗 >

𝐾
1
, there exists {𝑥(𝑗)} ⊂ 𝐸

𝑇
such that

𝑇

∑

𝑛=1

𝑏 (𝑛)
󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑗)

𝑛

󵄨󵄨󵄨󵄨󵄨

𝑝

≤ 0. (34)

By 𝐽
𝑝
(𝑥
(𝑗)
) ≤ −𝑗 ≤ 0, (33) and (34), we have

1

2

󵄩󵄩󵄩󵄩󵄩
Δ𝑥
(𝑗)󵄩󵄩󵄩󵄩󵄩

2

≤
𝑎

2

󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑗)󵄩󵄩󵄩󵄩󵄩

2

+

𝑇

∑

𝑛=1

𝐺
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
)

≤
𝑎

2

󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑗)󵄩󵄩󵄩󵄩󵄩

2

+ 𝜀
󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑗)󵄩󵄩󵄩󵄩󵄩

2

+𝑀
1
.

(35)

Set 𝑦(𝑗)
𝑛

= 𝑥
(𝑗)

𝑛
/‖𝑥
(𝑗)
‖ and divided by ‖𝑥(𝑗)‖

2

in the previous
inequality. Since 𝜀 can be small enough, then there exists a
subsequence that converges to 𝑦0 ∈ 𝐸

𝑇
, such that ‖Δ𝑦0‖2 ≤ 𝑎,

‖𝑦
0
‖ = 1. Moreover, by (33) and (34), we get

0 ≥
1

𝑝

𝑇

∑

𝑛=1

𝑏 (𝑛)
󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑗)

𝑛

󵄨󵄨󵄨󵄨󵄨

𝑝

≥ 𝑗 +
1

2

󵄩󵄩󵄩󵄩󵄩
Δ𝑥
(𝑗)󵄩󵄩󵄩󵄩󵄩

2

−
𝑎

2

󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑗)󵄩󵄩󵄩󵄩󵄩

2

−

𝑇

∑

𝑛=1

𝐺
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
) ≥ − (

𝑎

2
+ 𝜀)

󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑗)󵄩󵄩󵄩󵄩󵄩

2

−𝑀
1
.

(36)

Since 𝑝 > 2 and lim
𝑗→∞

‖𝑥
(𝑗)
‖ = ∞, divided by

‖𝑥
(𝑗)
‖
𝑝

in the previous inequality, we have ∑𝑇
𝑛=1

𝑏(𝑛)|𝑦
0

𝑛
|
𝑝
=

lim
𝑗→∞

∑
𝑇

𝑛=1
𝑏(𝑛)|𝑦

(𝑗)

𝑛
|
𝑝
= 0, that is, ‖ Δ𝑦0 ‖≥ 𝜆

∗
(𝑞), which

deduce a contradiction. So the claim ∑
𝑇

𝑛=1
𝑏(𝑛)|𝑥

𝑛
|
𝑝

> 0

holds.
Next we prove that (𝑑/𝑑𝑡)𝐽

𝑝
(𝑡𝑥)|
𝑡=1

< 0 holds. By con-
tradiction, there exists a sequence {𝑥(𝑗)} ⊂ 𝐸

𝑇
such that, for

𝑗 > 𝐾
1
,

𝑑

𝑑𝑡
𝐽
𝑝
(𝑡𝑥
(𝑗)
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=1

≥ 0. (37)

Then, by (7), we get

𝑑

𝑑𝑡
𝐽
𝑝
(𝑡𝑥
(𝑗)
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=1

=
󵄩󵄩󵄩󵄩󵄩
Δ𝑥
(𝑗)󵄩󵄩󵄩󵄩󵄩

2

− 𝑎
󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑗)󵄩󵄩󵄩󵄩󵄩

2

−

𝑇

∑

𝑛=1

𝑏 (𝑛)
󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑗)

𝑛

󵄨󵄨󵄨󵄨󵄨

𝑝

−

𝑇

∑

𝑛=1

(𝑔
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
) , 𝑥
(𝑗)

𝑛
) ,

(38)
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and by (37) and 𝐽
𝑝
(𝑥
(𝑗)
) ≤ −𝑗 < 0, it follows that

(1 −
𝑝

2
) (

󵄩󵄩󵄩󵄩󵄩
Δ𝑥
(𝑗)󵄩󵄩󵄩󵄩󵄩

2

− 𝑎
󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑗)󵄩󵄩󵄩󵄩󵄩

2

)

−

𝑇

∑

𝑛=1

(𝑔
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
) , 𝑥
(𝑗)

𝑛
) + 𝑝

𝑇

∑

𝑛=1

𝐺
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
)

=
𝑑

𝑑𝑡
𝐽
𝑝
(𝑡𝑥
(𝑗)
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=1

− 𝑝𝐽
𝑝
(𝑥
(𝑗)
) ≥ 0.

(39)

Set 𝑦(𝑗)
𝑛

= 𝑥
(𝑗)

𝑛
/‖𝑥
(𝑗)
‖ and divided by ‖𝑥

(𝑗)
‖
2

in the
previous formula; since 𝑝 > 2 and 𝜀 can be small enough,
then there exists a subsequence converges to 𝑦0 ∈ 𝐸

𝑇
such

that ‖ Δ𝑦0‖2 ≤ 𝑎, ‖𝑦0‖ = 1. Moreover, by (37) and the first
claim, we get

0 <

𝑇

∑

𝑛=1

𝑏 (𝑛)
󵄨󵄨󵄨󵄨󵄨
𝑥
(𝑗)

𝑛

󵄨󵄨󵄨󵄨󵄨

𝑝

≤
󵄩󵄩󵄩󵄩󵄩
Δ𝑥
(𝑗)󵄩󵄩󵄩󵄩󵄩

2

− 𝑎
󵄩󵄩󵄩󵄩󵄩
𝑥
(𝑗)󵄩󵄩󵄩󵄩󵄩

2

−

𝑇

∑

𝑛=1

(𝑔
𝑝
(𝑛, 𝑥
(𝑗)

𝑛
) , 𝑥
(𝑗)

𝑛
) .

(40)

Divided by ‖ 𝑥(𝑗)‖𝑝 in the previous formula, and by 𝑝 > 2,
it follows that ∑𝑇

𝑛=1
𝑏(𝑛)|𝑦

0

𝑛
|
𝑝
= 0. This is a contradiction

with the definition of 𝜆
∗
(𝑝) and condition 𝑎 < 𝜆

∗
(𝑝). So the

second claim holds. The proof is completed.

Based on Lemma 9, we introduce the following notations:

𝐽
−𝐾

𝑝
= {𝑥 ∈ 𝐸

𝑇
: 𝐽
𝑝
(𝑥) ≤ −𝐾} ,

𝐸
+

𝑝
= {𝑥 ∈ 𝐸

𝑇
:

𝑇

∑

𝑛=1

𝑏 (𝑛)
󵄨󵄨󵄨󵄨𝑥𝑛

󵄨󵄨󵄨󵄨

𝑝

> 0} ,

𝐸 (Ω
+
) = {𝑥 ∈ 𝐸

𝑇
: 𝑥
𝑛
= 0 for 𝑛 ∈ 𝑍 [1, 𝑇] \ Ω

+
} \ {0} .

(41)

Clearly, 𝐸(Ω
+
) ⊂ 𝐸

+

𝑝
. And by Lemma 9, we have 𝐽−𝐾

𝑝
⊂ 𝐸
+

𝑝
.

In order to describe the 𝐻
𝑞
(𝐸
𝑇
, 𝐽
−𝐾

𝑝
), we need to show the

following lemma.

Lemma 10. If 𝑎 < 𝜆
∗
(𝑝), then there exists 𝐾

1
> 0, such that

for any 𝐾 > 𝐾
1
, 𝐽−𝐾
𝑝

is a strong deformation retraction of 𝐸+
𝑝
.

Moreover, 𝐸(Ω
+
) and 𝐸+

𝑝
are homotopy equivalent.

Proof. Now we prove that 𝐽
−𝐾

𝑝
is a strong deformation

retraction of 𝐸+
𝑝
.

By Lemma 9, we have 𝐽
−𝐾

𝑝
⊂ 𝐸
+

𝑝
. Let 𝑥 ∈ 𝐸

+

𝑝
. By

Lemma 9, there exists a unique 𝑡
𝑝
= 𝑡
𝑝
(𝑥) > 0 such that

𝐽
𝑝
(𝑡
𝑝
𝑥) = −𝐾. By applying Implicit FunctionTheorem, 𝑡

𝑝
(𝑥)

is a continuous function in𝐸+
𝑝
. Let𝑇

𝑝
(𝑥) = max{𝑡

𝑝
(𝑥), 1} and

define 𝑓
𝑝
(𝑠, 𝑥) = (1 − 𝑠)𝑥 + 𝑠𝑇

𝑝
(𝑥)𝑥, then 𝑓

𝑝
: [0, 1] × 𝐸

+

𝑝
→

𝐽
−𝐾

𝑝
is a strong deformation retraction. Thus 𝐽−𝐾

𝑝
is a strong

deformation retraction of 𝐸+
𝑝
.

We next claim that 𝐸(Ω
+
) is a strong deformation retrac-

tion of𝐸+
𝑝
. Clearly, in terms of the notations, we have𝐸(Ω

+
) ⊂

𝐸
+

𝑝
. Let 𝜉

𝑝
: 𝑍[1, 𝑇] → R be a function such that

𝜉
𝑝
(𝑛) = 1 if 𝑛 ∈ Ω

+
, 𝜉

𝑝
(𝑛) = 0 if 𝑛 ∈ Ω

−
,

𝜉
𝑝
(𝑛) ∈ [0, 1] if 𝑛 ∈ 𝑍 [1, 𝑇] \ (Ω

+
∪ Ω
−
) .

(42)

Define

𝜁
𝑝
(𝑠, 𝑥
𝑛
) =

{{{{{

{{{{{

{

(1 − 2𝑠) 𝑥
𝑛
+ 2𝑠𝜉
𝑝
(𝑛) 𝑥
𝑛

if 0 ≤ 𝑠 ≤ 1

2
,

2 (1 − 𝑠) 𝜉
𝑝
(𝑛) 𝑥
𝑛
+ 2 (𝑠 −

1

2
)𝑃 (𝜉

𝑝
(𝑛) 𝑥
𝑛
)

if 1
2
≤ 𝑠 ≤ 1,

(43)

where 𝑃 : 𝐸
𝑇
→ 𝐸(Ω

+
) is a projection operator. Then 𝜁

𝑝
:

[0, 1] × 𝐸
+

𝑝
→ 𝐸(Ω

+
) is a deformation retraction. Indeed,

𝜁
𝑝
(0, 𝑥) = 𝑥, 𝜁

𝑝
(1, 𝑥) ∈ 𝐸 (Ω

+
) , for 𝑥 ∈ 𝐸+

𝑝
,

𝜁
𝑝
(𝑠, 𝑥) = 𝑥, for 𝑥 ∈ 𝐸 (Ω

+
) and 𝑠 ∈ [0, 1] .

(44)

For 𝑥 ∈ 𝐸+
𝑝
, if 𝑠 ∈ [0, 1/2], then

𝑇

∑

𝑛=1

𝑏 (𝑛)
󵄨󵄨󵄨󵄨󵄨
𝜁
𝑝
(𝑠, 𝑥
𝑛
)
󵄨󵄨󵄨󵄨󵄨

𝑝

= ∑

𝑛∈Ω+

𝑏 (𝑛)
󵄨󵄨󵄨󵄨𝑥𝑛

󵄨󵄨󵄨󵄨

𝑝

+ ∑

𝑛∈Ω−

𝑏 (𝑛) (1 − 2𝑠)
𝑝󵄨󵄨󵄨󵄨𝑥𝑛

󵄨󵄨󵄨󵄨

𝑝

≥

𝑇

∑

𝑛=1

𝑏 (𝑛)
󵄨󵄨󵄨󵄨𝑥𝑛

󵄨󵄨󵄨󵄨

𝑝

> 0,

(45)

where 0 ≤ (1 − 2𝑠)
𝑝
≤ 1, that is, 𝜁

𝑝
(𝑠, 𝑥) ∈ 𝐸

+

𝑝
. If 𝑠 ∈ (1/2, 1],

it follows that

𝑇

∑

𝑛=1

𝑏 (𝑛)
󵄨󵄨󵄨󵄨󵄨
𝜁
𝑝
(𝑠, 𝑥
𝑛
)
󵄨󵄨󵄨󵄨󵄨

𝑝

= ∑

𝑛∈Ω+

𝑏 (𝑛)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 (1 − 𝑠) 𝜉

𝑝
(𝑛) 𝑥
𝑛
+ 2 (𝑠 −

1

2
)𝑃 (𝜉

𝑝
(𝑛) 𝑥
𝑛
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

≥ 0.

(46)

We claim that the equality of the previous formula cannot
hold. Otherwise, 𝑃𝑥

𝑛
= −((1 − 𝑠)/(𝑠 − (1/2)))𝑥

𝑛
, for 𝑛 ∈ Ω

+
,

which implies that 𝑃𝑥
𝑛
= 0. Hence 𝑥

𝑛
= 0 in Ω

+
, which

contradicts with the fact 𝑥 ∈ 𝐸
+

𝑝
. So ∑𝑇

𝑛=1
𝑏(𝑛)|𝜁

𝑝
(𝑠, 𝑥
𝑛
)|
𝑝
>

0, that is, 𝜁
𝑝
(𝑠, 𝑥) ∈ 𝐸

+

𝑝
as 𝑠 ∈ (1/2, 1]. Therefore, 𝜁

𝑝

is a deformation retraction from 𝐸
+

𝑝
onto 𝐸(Ω

+
), and this

completes the proof.

Proof of Theorem 2. Since 𝐸(Ω
+
) is well known to be con-

tractile in itself, and by Lemma 10, it follows that 𝐽−𝐾
𝑝

is
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homotopically equivalent to 𝐸(Ω
+
) for 𝐾 large enough, then

the Betti numbers (cf. [11, 13]) are

𝛽
𝑘
= dim 𝐶

𝑘
(𝐽
𝑝
,∞) = dim 𝐻

𝑘
(𝐸
𝑇
, 𝐽
−𝐾

𝑝
)

= dim 𝐻
𝑘
(𝐸
𝑇
, 𝐸 (Ω

+
)) = 0, 𝑘 ∈ 𝑍 [0,𝑁𝑇] .

(47)

Now we suppose that system (4) has only trivial solution;
that is, 𝐽

𝑝
has only critical point 𝑥 = 0, then we have

the Morse-type numbers 𝑀
𝑘

= dim𝐶
𝑘
(𝐽
𝑝
, 0) for 𝑘 ∈

𝑍[0,𝑁𝑇] (cf. [13]). Moreover, by Lemma 7, 𝐶
𝑘
(𝐽
𝑝
, 0) ̸= 0 for

𝑘 = dim𝑊
− or 𝑘 = dim(𝑊−⨁𝑊

0
). Since 𝐽

𝑝
satisfies (PS)

condition by Lemma 4, then using Morse Relation, we have
the following.

0 =

𝑁𝑇

∑

𝑘=0

(−1)
𝑘
𝛽
𝑘
=

𝑁𝑇

∑

𝑘=0

(−1)
𝑘
𝑀
𝑘
̸= 0, (48)

which is a contradiction.Therefore, 𝐽
𝑝
has at least one critical

point 𝑥∗ ̸= 0 and system (4) has at least a nonzero 𝑇-periodic
solution.

4. Proof of Theorem 3

For convenience, we introduce the following notations:

𝐽
𝑐

𝑞
= {𝑥 ∈ 𝐸

𝑇
: 𝐽
𝑞
(𝑥) ≤ 𝑐} , 𝑐 ∈ R,

𝐸
+

𝑞
= {𝑥 ∈ 𝐸

𝑇
:

𝑇

∑

𝑛=1

𝑏 (𝑛)
󵄨󵄨󵄨󵄨𝑥𝑛

󵄨󵄨󵄨󵄨

𝑞

> 0} .

(49)

Clearly, 𝐸+
𝑞
∪ {0} is star-shaped with respect to the origin

and 𝐸(Ω
+
) ⊂ 𝐸
+

𝑞
, where 𝐸(Ω

+
) is given in Section 3. Similarly

with the proof of Lemmas 9 and 10, we have the following.

Lemma 11. Let 𝑎 < 𝜆
∗
(𝑞). Then there exists 𝜌 > 0 such that

(𝑑/𝑑𝑡)𝐽
𝑞
(𝑡𝑥)|
𝑡=1

> 0 for any 𝑥 ∈ 𝑀
𝜌
= {𝑥 ∈ 𝐵

𝜌
∩ 𝐸
+

𝑞
: 𝐽
𝑞
(𝑥) ≥

0}, where 𝐵
𝜌
stands for the closed ball in 𝐸

𝑇
of radius 𝜌 > 0

with the center at zero.

Lemma 12. Let 𝑎 < 𝜆
∗
(𝑞). Then there exists 𝜌 > 0 such that

(𝐽
0

𝑞
∩ 𝐵
𝜌
) \ {0} is a retract of 𝐸+

𝑞
∩ 𝐵
𝜌
, and 𝐸(Ω+) is a strong

deformation retraction of 𝐸+
𝑞
.

Proof of Theorem 3. We first prove that 𝐽0
𝑞
∩𝐵
𝜌
is contractible

in itself. In fact, it is sufficient to show that 𝐽0
𝑞
∩𝐵
𝜌
is starshaped

with respect to the origin; that is, 𝑥 ∈ 𝐽
0

𝑞
∩ 𝐵
𝜌
implies that

𝑡𝑥 ∈ 𝐽
0

𝑞
∩ 𝐵
𝜌
for all 𝑡 ∈ [0, 1].

Assume, by a contradiction, that there exists 𝑥
0
∈ 𝐽
0

𝑞
∩ 𝐵
𝜌

and 𝑡
0
∈ (0, 1), such that 𝐽

𝑞
(𝑡
0
𝑥
0
) > 0. It follows from

Lemma 11 that (𝑑/𝑑𝑡)𝐽
𝑞
(𝑡
0
𝑥
0
) > 0. By the monotonicity

arguments, this implies that

𝐽
𝑞
(𝑡𝑥
0
) > 0 ∀𝑡 ∈ [𝑡

0
, 1] . (50)

This contradicts the assumption 𝑥
0
∈ 𝐽
0

𝑞
, which implies

𝐽
𝑞
(𝑥
0
) ≤ 0.

On the other hand, since 𝐸(Ω
+
) is contractible in itself,

and 𝐸+
𝑞
∪ {0} is starshaped with respect to the origin, then

𝐸
+

𝑞
∩ 𝐵
𝜌
is contractible in itself. The retract of the set which

is contractible in itself is also contractible (cf. [19]); it follows
that the set (𝐽0

𝑞
∩ 𝐵
𝜌
) \ {0} is contractible by Lemma 12.

Combining the previous argument, 𝐽0
𝑞
∩𝐵
𝜌
and (𝐽0

𝑞
∩𝐵
𝜌
) \

{0} are contractible in themselves.

dim𝐶
𝑘
(𝐽
𝑞
, 0) = dim𝐻

𝑘
(𝐽
0

𝑞
∩ 𝐵
𝜌
, (𝐽
0

𝑞
∩ 𝐵
𝜌
) \ {0}) = 0,

𝑘 ∈ 𝑍 [0,𝑁𝑇] .

(51)

By Lemma 8, 𝐶
𝑘
(𝐽
𝑞
,∞) ̸= 0 for 𝑘 = dim(𝑊−⨁𝑊

0
) or 𝑘 =

dim𝑊
−.Therefore, byMorse Relation and the samemethods

in proof ofTheorem 2, it follows that 𝐽
𝑞
has at least one critical

point 𝑥∗ ̸= 0 and system (5) has at least a nonzero 𝑇-periodic
solution.
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This paper presents an image parsing algorithm which is based on Particle Swarm Optimization (PSO) and Recursive Neural
Networks (RNNs). State-of-the-art method such as traditional RNN-based parsing strategy uses L-BFGS over the complete data
for learning the parameters. However, this could cause problems due to the nondifferentiable objective function. In order to solve
this problem, the PSO algorithm has been employed to tune the weights of RNN for minimizing the objective. Experimental results
obtained on the Stanford background dataset show that our PSO-based training algorithm outperforms traditional RNN, Pixel
CRF, region-based energy, simultaneous MRF, and superpixel MRF.

1. Introduction

Image parsing is an important step towards understanding an
image, which is to perform a full-scene labeling. The task of
image parsing consists in labeling every pixel in the image
with the category of the object it belongs to. After a perfect
image parsing, every region and every object are delineated
and tagged [1]. Image parsing is frequently used in a wide
variety of tasks including parsing scene [2, 3], aerial image
[4], and facade [5].

During the past decade, the image parsing technique has
undergone rapid development. Some methods for this task
such as [6] rely on a global descriptor which can do very
well for classifying scenes into broad categories. However,
these approaches fail to gain a deeper understanding of the
objects in the scene. Many other methods rely on CRFs [7],
MRFs [8], or other types of graphical models [9, 10] to ensure
the consistency of the labeling and to account for context.
Also, there are many approaches for image annotation and
semantic segmentation of objects into regions [11]. Note
that most of the graphical-based methods rely on a pre-
segmentation into superpixels or other segment candidates
and extract features and categories from individual segments
and from various combinations of neighboring segments.
The graphical model inference pulls out the most consistent
set of segments which covers the image [1]. Recently, these

ideas have been combined to provide more detailed scene
understanding [12–15].

It is well known that many graphical methods are based
on neural networks. The main reason is that neural networks
have promising potential for tasks of classification, associative
memory, parallel computation, and solving optimization
problems [16]. In 2011, Socher et al. proposed a RNN-
based parsing algorithm that aggregates segments in a greedy
strategy using a trained scoring function [17]. It recursively
merges pairs of segments into supersegments in a semanti-
cally and structurally coherent way. The main contribution
of the approach is that the feature vector of the combination
of two segments is computed from the feature vectors of the
individual segments through a trainable function. Experi-
mental results on Stanford background dataset revealed that
RNN-basedmethod outperforms state-of-the-art approaches
in segmentation, annotation, and scene classification. That
being said, it is worth noting that the objective function
is nondifferentiable due to the hinge loss. This could cause
problems since one of the principles of L-BFGS, which is
employed as the training algorithm in RNN, is that the
objective should be differentiable.

Since Particle SwarmOptimization (PSO) [18] has proven
to be an efficient and powerful problem-solving strategy, we
use a novel nonlinear PSO [19] to tune the weights of RNN.
The main idea is to use particle swarm for searching good
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Features
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Figure 1: Hierarchical architecture of image parsing based on recursive neural network.

combination of weights to minimize the objective function.
The experimental results show that the proposed algorithm
has better performance than traditional RNN on Stanford
background dataset.

The rest of the paper is organized as follows: Section 2
provides a brief description of the RNN-based image parsing
algorithm. Section 3 describes how PSO and the proposed
algorithmwork. Section 4 presents the dataset and the experi-
mental results. Section 5 draws conclusions.

2. Image Parsing Based on
Recursive Neural Networks

The main idea behind recursive neural networks for image
parsing lies in that images are oversegmented into small
regions and each segment has a vision feature. These features
are then mapped into a “semantic” space using a recursive
neural network. Figure 1 outlines the approach for RNN-
based image parsing method. Note that the RNN computes
(i) a score that is higher when neighboring regions should
be merged into a larger region, (ii) a new semantic feature
representation for this larger region, and (iii) its class label.
After regions with the same object label are merged, neigh-
boring objects are merged to form the full scene image.These
merging decisions implicitly define a tree structure in which
each node has associated with the RNN outputs (i)–(iii), and
higher nodes represent increasingly larger elements of the
image. Details of the algorithm are given from Sections 2.1
to 2.3.

2.1. Input Representation of Scene Images. Firstly, an image
𝑥 is oversegmented into superpixels (also called segments)
using the algorithm from [20]. Secondly, for each segment,
compute 119 features via [10]. These features include color
and texture features, boosted pixel classifier scores (trained on

the labeled training data), and appearance and shape features.
Thirdly, a simple neural network layer has been used to map
these features into the “semantic” 𝑛-dimensional space in
which the RNN operates, given as follows.

Let 𝐹
𝑖
be the features described previously for each seg-

ment, where 𝑖 = 1, . . . , 𝑁segs and𝑁segs denotes the number of
segments in an image. Then the representation is given as

𝑎
𝑖
= 𝑓 (𝑊

sem
𝐹
𝑖
+ 𝑏

sem
) , (1)

where𝑊sem
∈ 𝑅
𝑛×119 is the matrix of parameters we want to

learn, 𝑏sem is the bias, and 𝑓 is applied element wise and can
be any sigmoid-like function. In [17], the original sigmoid is
function 𝑓(𝑥) = 1/(1 + 𝑒−𝑥) (Figure 2).

2.2. Greedy Structure Predicting. Since there are more than
exponentially many possible parse trees and no efficient
dynamic programming algorithms for RNN setting, there-
fore, Socher recommended a greedy strategy. The algorithm
finds the pairs of neighboring segments and adds their
activations to a set of potential child node pairs. Then the
network computes the potential parent representation for
these possible child nodes:

𝑝 (𝑖, 𝑗) = 𝑓 (𝑊[𝑐
𝑖
; 𝑐
𝑗
] + 𝑏) . (2)

With this representation, a local score can be determined by
using a simple inner product with a row vector𝑊score

∈ 𝑅
1×𝑛:

𝑠 (𝑖, 𝑗) = 𝑊
score

𝑝 (𝑖, 𝑗) . (3)

As illustrated in Figure 3, the recursive neural network is
different from the original RNN in that it predicts a score for
being a correct merging decision. The process repeats until
all pairs are merged and only one parent activation is left, as
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Figure 2: Illustration of the RNN training inputs: (a) a training image (red and blue are differently labeled regions). (b) An adjacency matrix
of image segments. (c) A set of correct trees which is oblivious to the order in which segments with the same label are merged.

𝑊
score

𝑠

𝑝
𝑊

𝐶1 𝐶2

Figure 3: Recursive neural network which is replicated for each pair
of input vectors.

shown in Figure 1. The final score that we need for structure
prediction is simply the sum of all the local decisions:

𝑠 (RNN (𝜃, 𝑥
𝑖
, 𝑦̂)) = ∑

𝑑∈𝑁(𝑦̂)

𝑠
𝑑
, (4)

where 𝜃 are all the parameters needed to compute a score 𝑠
with an RNN, 𝑦̂ is a parse for input 𝑥

𝑖
, and𝑁(𝑦̂) is the set of

nonterminal nodes.

2.3. Category Classifiers in the Tree. The main advantage of
the algorithm is that each node of the tree built by the RNN
has associated with it a distributed feature representation. To
predict class labels, a simple softmax layer is added to each
RNN parent node, as shown later:

label
𝑝
= softmax (𝑊label

𝑝) . (5)

When minimizing the cross-entropy error of this softmax
layer, the error will backpropagate and influence the RNN
parameters.

3. Nonlinear Particle Swarm
Optimization for Training FNN

As for traditional RNN-based method, the objective 𝐽 of
(5) is not differentiable due to the hinge loss. For training

RNN, Socher used L-BFGS over the complete training data
to minimize the objective, where the iteration of the swarm
relates to the update of the parameters of RNN. That being
said, it is worth noting that the basic principle of L-BFGS
is that the objective function should be differentiable. Since
the objective function for RNN is nondifferentiable, L-BFGS
could cause problems for computing the weights of RNN. To
solve this problem, a novel nonlinear PSO (NPSO) has been
used to tune the parameters of RNN.

3.1. Nonlinear Particle SwarmOptimization. As a population-
based evolutionary algorithm, PSO is initialized with a popu-
lation of candidate solutions. The activities of the population
are guided by some behavior rules. For example, let 𝑋

𝑖
(𝑡) =

(𝑥
𝑖1
(𝑡), 𝑥
𝑖2
(𝑡), . . . , 𝑥

𝑖𝐷
(𝑡)) (𝑥

𝑖𝑑
(𝑡) ∈ [−𝑥

𝑑max, 𝑥𝑑max]) be the
location of the 𝑖th particle in the 𝑡th generation, where 𝑥

𝑑max
is the boundary of the 𝑑th search space for a given problem
and 𝑑 = 1, . . . , 𝐷. The location of the best fitness achieved
so far by the 𝑖th particle is denoted as 𝑝

𝑖
(𝑡) and the index

of the global best fitness by the whole population as 𝑝
𝑔
(𝑡).

The velocity of 𝑖th particle is 𝑉
𝑖
(𝑡) = (V

𝑖1
(𝑡), V
𝑖2
(𝑡), . . . , V

𝑖𝐷
(𝑡)),

where V
𝑖𝑑
is in [−V

𝑑max, V𝑑max] and V𝑑max is themaximal speed
of 𝑑th dimension.The velocity and position update equations
of the 𝑖th particle are given as follows:

V
𝑖𝑑
(𝑡 + 1) = 𝑤 ⋅ V

𝑖𝑑
(𝑡) + 𝑐

1
𝑟
1
(𝑝
𝑖𝑑
− 𝑥
𝑖𝑑
(𝑡))

+ 𝑐
2
𝑟
2
(𝑝
𝑔𝑑
− 𝑥
𝑖𝑑
(𝑡)) ,

𝑥
𝑖𝑑
(𝑡 + 1) = 𝑥

𝑖𝑑
(𝑡) + V

𝑖𝑑
(𝑡 + 1) ,

(6)

where 𝑖 = 1, . . . , 𝑛 and 𝑑 = 1, . . . , 𝐷. 𝑤, 𝑐
1
, 𝑐
2
≥ 0. 𝑤 is the

inertia weight, 𝑐
1
and 𝑐
2
denote the acceleration coefficients,

and 𝑟
1
and 𝑟
2
are random numbers, generated uniformly in

the range [0, 1].
Note that a suitable value for the inertia weight provides

a balance between the global and local exploration abilities
of the swarm. Based on the concept of decrease strategy, our
nonlinear inertia weight strategy [19] chooses a lower value
of 𝑤 during the early iterations and maintains higher value
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𝑤initial

𝑤final

Iterations

𝑟 = 1

𝑟 = 1.5

𝑟 = 3

𝑟 = 4.5

0

𝑤
(
𝑡
)

itermax

Figure 4: Nonlinear strategy of inertia weight.

of 𝑤 than linear model [21]. This strategy enables particles to
search the solution spacemore aggressively to look for “better
areas”, thus will avoid local optimum effectively.

The proposed update scheme of 𝑤(𝑡) is given as follows:

𝑤 (𝑡) =

{{{{{{{{{{{{

{{{{{{{{{{{{

{

(1 −
2𝑡

itermax
)

𝑟
(𝑤initial + 𝑤final)

2

+
(𝑤initial − 𝑤final)

2
, 𝑡 ≤

itermax
2

,

(1 −
2 (𝑡 − (itermax/2))

itermax
)

1/𝑟

(𝑤initial − 𝑤final)

2

+𝑤final, 𝑡 >
itermax
2

,

(7)

where itermax is themaximumnumber of iterations, 𝑡 denotes
the iteration generation, and 𝑟 > 1 is the nonlinear
modulation index.

Figure 4 illustrates the variations of nonlinear inertia
weight for different values of 𝑟. Note that 𝑟 = 1 is equal to
the linear model. In [19], we showed that a choice of 𝑟 within
[2-3] is normally satisfactory.

3.2. Encoding Strategy and Fitness Evaluation. Let 𝜃 = (𝑊sem;
𝑊; 𝑊score; 𝑊label

) be the set of RNN parameters; then
each particle can be the expressed as the combination of all
parameters, as shown later:

𝑊
sem

𝑊 𝑊
score

𝑊
label (8)

During the iteration, each particle relates to a combination of
weights of neural networks. The goal is to minimize a fitness
function, given as

𝐽 (𝜃) =
1

𝑁

𝑁

∑

𝑖=1

𝑟
𝑖
(𝜃) +

𝜆

2
‖𝜃‖
2
, (9)

where 𝑟
𝑖
(𝜃) = 𝑠(RNN(𝜃, 𝑥

𝑖
, 𝑦
∗
)) + Δ(𝑥

𝑖
, 𝑙
𝑖
, 𝑦
∗
) −

max
𝑦𝑖∈𝑌(𝑥𝑖 ,𝑙𝑖)

(𝑠(RNN(𝜃, 𝑥
𝑖
, 𝑦
𝑖
))) and 𝑦

∗ denote the parse
tree generated by the greedy strategy according to parameter
𝜃. Minimizing this objective means minimize the error
between the parsing results, which is generated by the best
particle and the labeled training images (ground truth).

3.3. Summary of PSO-Based Training Algorithm.

Input includes a set of labeled images, the size of
the hidden layer 𝑛, the value of penalization term
for incorrect parsing decisions 𝜅, the regularization
parameter 𝜆, the population of particles𝑚, the values
of nonlinear parameter 𝑟 and the number of iterations
itermax.
Output includes the set of model parameters 𝜃 =

(𝑊
sem
, 𝑊, 𝑊

score
, and 𝑊label

), each with respect to
weights of a recursive neural network.

(1) Randomly initialize 𝑚 particles and randomize the
positions and velocities for entire population. Record
the global best location 𝑝

𝑔
of the population and the

local best locations 𝑝
𝑖
of the 𝑖th particle according to

(9), where 𝑖 = 1, 2, . . . , 𝑚.

(2) For each iteration, evaluate the fitness value of the 𝑖th
particle through (9). If (𝑓(𝑥

𝑖
)) < (𝑓(𝑝

𝑖
)), set𝑝

𝑖
= 𝑥
𝑖
as

the so far best position of the 𝑖th particle. If (𝑓(𝑥
𝑖
)) <

(𝑓(𝑝
𝑔
)), set 𝑝

𝑔
= 𝑥
𝑖
as the so far best position of the

population.

(3) Calculate the inertia weight through (7). Update the
position and velocity of particles according to (6).

(4) Repeat Step 2 and Step 3 until maximum number of
generation.

(5) Compute the weights of RNN according to the best
particle.

4. Experimental Results and Discussion

4.1. Description of the Experiments. In this section, PSO-
based RNN method is compared with traditional RNN
[17], pixel CRF [10], region-based energy [10], simultaneous
MRF [8], and superpixel MRF [8], by using images from
Stanford background dataset. All the experiments have been
conducted on a computer with Intel sixteen-core processor
2.67GHz processor and 32GB RAM.

As for RNN, Socher recommends that the size of the
hidden layer 𝑛 = 100, the penalization term for incorrect
parsing decisions 𝜅 = 0.05, and the regularization parameter
𝜆 = 0.001. As for the particle swarm optimization, we set
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Figure 5: Typical results of multiclass image segmentation and pixel-wise labeling with PSO-based recursive neural networks.

the population of particles𝑚 = 100, the number of iterations
itermax = 500, 𝑐1 = 𝑐2 = 2, 𝑤initial = 0.95, 𝑤final = 0.4, and
𝑟 = 2.5.

4.2. Scene Annotation. The first experiment aims at evaluat-
ing the accuracy of scene annotation on the Stanford back-
ground dataset. Like [17], we run fivefold cross-validation and
report pixel level accuracy in Table 1. Note that the traditional
RNN model influences the leaf embeddings through back-
propagation, while we use PSO to tune the weights of RNN.

As for traditional RNN model, we label the superpixels by
their most likely class based on the multinomial distribution
from the softmax layer at the leaf nodes. One can see that
in Table 1, our approach outperforms previous methods that
report results on this data, which means that the PSO-based
RNN constructs a promising strategy for scene annotation.
Some typical parsing results are illustrated in Figure 5.

4.3. Scene Classification. As described in [17], the Stanford
background dataset can be roughly categorized into three
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Table 1: Accuracy of pixel accuracy of state-of-the-art methods on
Stanford background dataset.

Method and semantic pixel accuracy in %

Pixel CRF, Gould et al. (2009) 74.3

Log. Regr. on superpixel features 75.9

Region-based energy, Gould et al. (2009) 76.4

Local labeling, Tighe and Lazebnik (2010) 76.9

Superpixel MRF, Tighe and Lazebnik (2010) 77.5

Simultaneous MRF, Tighe and Lazebnik (2010) 77.5

Traditional RNN, Socher and Fei-Fei (2011) 78.1

PSO-based RNN (our method) 78.3

scene types: city, countryside, and sea side. Therefore, like
traditional RNN, we trained SVM that using the average over
all nodes’ activations in the tree as features. That means the
entire parse tree and the learned feature representations of
the RNN are taken into account. As a result, the accuracy
has been promoted to 88.4%, which is better than traditional
RNN (88.1%) and Gist descriptors (84%) [6]. If only the top
node of the scene parse tree is considered, we will get 72%.
The results reveal that it does lose some information that is
captured by averaging all tree nodes.

5. Conclusions

In this paper, we have proposed an image parsing algorithm
that is based onPSO andRecursiveNeuralNetworks (RNNs).
The algorithm is an incremental version of RNN. The basic
idea is to solve the problem of nondifferentiable objective
function of traditional training algorithm such as L-BFGS.
Hence, PSO has been employed as an optimization tool to
tune the weights of RNN.The experimental results reveal that
the proposed algorithm has better performance than state-
of-the-art methods on Stanford background dataset. That
being said, the iteration of swarms dramatically increases the
runtime of the training process. Our future work may focus
on reducing the time complexity of the algorithm.

Acknowledgments

This work was supported by the National Nature Science
Foundation of China (No. 61202143, No. 61103052, and No.
11101187);Major Project of IndustryUniversity of Fujian Prov-
ince (2011H6020); Doctoral Program Foundation of Institu-
tions of Higher Education of China (No. 20090121110032);
Shenzhen Science and Technology Research Foundation
(Nos. JC200903180630A, ZYB200907110169A); The Natural
Science Foundation of XiamenCity, China (3502Z20123022).

References

[1] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning
hierarchical features for scene labeling,” IEEE Transactions on
Pattern Analysis and Machine Learning, no. 99, pp. 1–15, 2012.

[2] C. Liu, J. Yuen, and A. Torralba, “Nonparametric scene parsing
via label transfer,” IEEE Transactions on Pattern Analysis and
Machine Learning, vol. 33, no. 12, pp. 2368–2382, 2011.

[3] Z. Tu and S. C. Zhu, “Parsing images into regions, curves, and
curve groups,” International Journal of Computer Vision, vol. 69,
no. 2, pp. 223–249, 2006.

[4] J. Porway, Q. Wang, and S. C. Zhu, “A hierarchical and con-
textual model for aerial image parsing,” International Journal of
Computer Vision, vol. 88, no. 2, pp. 254–283, 2010.

[5] O. Teboul, L. Kokkinos, L. Simon, P. Koutsourakis, and N. Para-
gios, “Parsing facades with shape grammars and reinforcement
learning,” IEEE Transactions on Pattern Analysis and Machine
Learning. In press.

[6] A. Oliva and A. Torralba, “Modeling the shape of the scene:
a holistic representation of the spatial envelope,” International
Journal of Computer Vision, vol. 42, no. 3, pp. 145–175, 2001.

[7] S. Nowozin, P. V. Gehler, and C. H. Lampert, “On parameter
learning in CRF-based approaches to object class image seg-
mentation,” Lecture Notes in Computer Science, vol. 6316, no. 6,
pp. 98–111, 2010.

[8] J. Tighe and S. Lazebnik, “Superparsing: scalable nonparametric
image parsing with superpixels,” Lecture Notes in Computer
Science, vol. 6315, no. 5, pp. 352–365, 2010.

[9] X. He and R. Zemel, “Learning hybrid models for image anno-
tation with partially labeled data,” in Proceeding of Advances
in Neural Information Processing Systems 21, Proceedings of
the 22nd Annual Conference on Neural Information Processing
Systems, pp. 625–632, Vancouver, British Columbia, Canada,
December 2008.

[10] S. Gould, R. Fulton, and D. Koller, “Decomposing a scene into
geometric and semantically consistent regions,” in Proceedings
of the 12th International Conference on Computer Vision (ICCV
’09), pp. 1–8, Kyoto, Japan, October 2009.

[11] L. Zhu, Y. Chen, Y. Lin, C. Lin, and A. Yuille, “Recursive
segmentation and recognition templates for image parsing,”
IEEE Transactions on Pattern Analysis and Machine Learning,
vol. 34, no. 2, pp. 359–371, 2012.

[12] L. Zhu, Y. Chen, and A. Yuille, “Learning a hierarchical
deformable template for rapid deformable object parsing,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.
32, no. 6, pp. 1029–1043, 2010.

[13] F.Han and S. C. Zhu, “Bottom-up/top-down image parsingwith
attribute grammar,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 31, no. 1, pp. 59–73, 2009.
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We consider the subharmonics with minimal periods for convex discrete Hamiltonian systems. By using variational methods and
dual functional, we obtain that the systemhas a𝑝𝑇-periodic solution for each positive integer𝑝, and solution of systemhasminimal
period 𝑝𝑇 as H subquadratic growth both at 0 and infinity.

1. Introduction

Consider Hamiltonian systems

𝐽 ̇𝑢 (𝑡) + ∇𝐻 (𝑡, 𝑢 (𝑡)) = 0, 𝑢 (0) = 𝑢 (𝑝𝑇) , (1)

where 𝑢(𝑡) ∈ R2𝑁, 𝑡 ∈ R, ∇𝐻 stands for the gradient of 𝐻
with respect to the second variable, and 𝐽 = ( 0 −𝐼𝑁

𝐼𝑁 0
) is the

symplectic matrix with 𝐼
𝑁
the identity inR𝑁. Moreover,𝐻 is

𝑇-periodic in the variable 𝑡, 𝑝 ∈ N \ {0}.
Classically, solutions for systems (1) are called sub-

harmonics. The first result concerning the subharmonics
problem traced back to Birkhoff and Lewis in 1933 (refer
to [1]), in which there exists a sequence of subharmonics
with arbitrarily large minimal period, using perturbation
techniques. More results can be found in [1–5], where 𝐻 is
convexwith subquadratic growth both at 0 and infinity. Using
𝑍
𝑝
index theory and Clarke duality, Xu and Guo [1, 5] proved

that the number of solutions for systems (1) with minimal
period 𝑝𝑇 tends towards infinity as 𝑝 → ∞.

For periodic and subharmonic solutions for discrete
Hamiltonian systems, Guo and Yu [6, 7] obtained some
existence results by means of critical point theory, where they
introduced the action functional

𝐹 (𝑢) = −
1

2

𝑝𝑇

∑

𝑛=1

(𝐽Δ𝐿𝑢 (𝑛 − 1) , 𝑢 (𝑛)) −

𝑝𝑇

∑

𝑛=1

𝐻(𝑛, 𝐿𝑢 (𝑛)) . (2)

Using Clarke duality, periodic solution of convex discrete
Hamiltonian systems with forcing terms has been investi-
gated in [8]. Clarke duality was introduced in 1978 by Clarke
[9], and developed by Clarke, Ekeland, and others, see [10–
12]. This approach is different from the direct method of
variations; some scholars applied it to consider the periodic
solutions, subharmonic solutions with prescribed minimal
period of Hamiltonian systems; one can refer to [3, 5,
12–14] and references therein. The dynamical behavior of
differential and difference equations was studied by using
various methods; see [15–19]. We refer the reader to Agarwal
[20] for a broad introduction to difference equations.

Motivated by the works of Mawhin and Willem [12] and
Xu and Guo [21], we use variational methods and Clarke
duality to consider the subharmonics with minimal periods
for discrete Hamiltonian systems

𝐽Δ𝑢 (𝑛) + ∇𝐻 (𝑛, 𝐿𝑢 (𝑛)) = 0, 𝑢 (𝑛) = 𝑢 (𝑛 + 𝑝𝑇) , (3)

where 𝑢(𝑛) = ( 𝑢1(𝑛)
𝑢2(𝑛)

), 𝐿𝑢(𝑛) = ( 𝑢1(𝑛+1)
𝑢2(𝑛)

), 𝑢
𝑖
(𝑛) ∈ R𝑁 (𝑖 =

1, 2) with 𝑁 a given positive integer, and Δ𝑢(𝑛) = 𝑢(𝑛 +

1) − 𝑢(𝑛) is the forward difference operator. 𝑝, 𝑇 ∈ N \

{0}. Moreover, hamiltonian function𝐻 satisfies the following
assumption:

(A1) 𝐻 : Z × R2𝑁 → R is continuous differentiable on
R2𝑁,𝐻(𝑛, ⋅) convex for each 𝑛 ∈ Z and𝐻(𝑛 + 𝑇, 𝑢) =
𝐻(𝑛, 𝑢) for each 𝑢 ∈ R2𝑁;
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(A2) there exist constants 𝑎
1
> 0, 𝑎

2
> 0, 1 < 𝜃 < 2, such

that
𝑎
1

𝜃
|𝑢|
𝜃
≤ 𝐻 (𝑛, 𝑢) ≤

𝑎
2

𝜃
|𝑢|
𝜃
, 𝑢 ∈ R

2𝑁
, (4)

which implies 𝐻 subquadratic growth both at 0 and
infinity.

Theorem 1. Assume (A1) holds. 𝐻(𝑛, 𝑢) → +∞, 𝐻(𝑛, 𝑢)/
|𝑢|
2
→ 0, as |𝑢| → ∞ uniformly in 𝑛 ∈ Z. Then there

exists a 𝑝𝑇-periodic solution 𝑢
𝑝
of (3), such that ‖𝑢

𝑝
‖
∞
≜

max
𝑛∈𝑍[1,𝑝𝑇]

{|𝑢
𝑝
(𝑛)|} → ∞, and the minimal period 𝑇

𝑝
of

𝑢
𝑝
tends to +∞ as 𝑝 → ∞.

Theorem 2. Under the assumptions (A1) and (A2), if

𝑎
2

𝑎
1

≤

{{{{

{{{{

{

(
1

4
sin 𝜋

𝑝𝑇
)

𝜃/2

, when 𝑝𝑇 is even,

(
1

2
sin 𝜋

2𝑝𝑇
)

𝜃/2

, when 𝑝𝑇 is odd
(5)

for given integer 𝑝 > 1, then the solution of (3) has minimal
period 𝑝𝑇.

2. Clarke Duality and Eigenvalue Problem

First we introduce a space 𝐸
𝑝𝑇

with dimension 2𝑁𝑝𝑇 as
follows:

𝐸
𝑝𝑇
= {𝑢 = {𝑢 (𝑛)} ∈ 𝑆 | 𝑢 (𝑛 + 𝑝𝑇)

= 𝑢 (𝑛) , 𝑝 ∈ N \ {0} , 𝑛 ∈ Z} ,
(6)

where

𝑆 = {𝑢 = {𝑢 (𝑛)} | 𝑢 (𝑛) = (
𝑢
1
(𝑛)

𝑢
2
(𝑛)
) ∈ R

2𝑁
,

𝑢
𝑗
(𝑛) ∈ R

𝑁
, 𝑗 = 1, 2, 𝑛 ∈ Z} .

(7)

Equipped with inner product ⟨⋅, ⋅⟩ and norm ‖ ⋅ ‖ in 𝐸
𝑝𝑇

as

⟨𝑢, V⟩ =
𝑝𝑇

∑

𝑛=1

(𝑢 (𝑛) , V (𝑛)) ,

‖𝑢‖ = (

𝑝𝑇

∑

𝑛=1

|𝑢 (𝑛)|
2
)

1/2

, ∀𝑢, V ∈ 𝐸
𝑝𝑇
,

(8)

where (⋅, ⋅) and | ⋅ | denote the usual scalar product and
corresponding norm in R2𝑁, respectively. It is easy to see
that (𝐸

𝑝𝑇
, ⟨⋅, ⋅⟩) is a Hilbert space with 2𝑁𝑝𝑇 dimension,

which can be identified with R2𝑁𝑝𝑇. Then for any 𝑢 ∈ 𝐸
𝑝𝑇
,

it can be written as 𝑢 = (𝑢𝑇(1), 𝑢𝑇(2), . . . , 𝑢𝑇(𝑝𝑇))𝑇, where
𝑢(𝑗) = (

𝑢1(𝑗)

𝑢2(𝑗)
) ∈ R2𝑁, 𝑗 ∈ 𝑍[1, 𝑝𝑇], the discrete interval

{1, 2, . . . , 𝑝𝑇} is denoted by 𝑍[1, 𝑝𝑇], and ⋅𝑇 denotes the
transpose of a vector or a matrix.

Denote the subspace 𝑌 = {𝑢 ∈ 𝐸
𝑝𝑇
| 𝑢(1) = 𝑢(2) = ⋅ ⋅ ⋅ =

𝑢(𝑝𝑇) ∈ R2𝑁}. Let 𝑌 be the direct orthogonal complement of

𝐸
𝑝𝑇

to 𝑌. Thus 𝐸
𝑝𝑇

can be split as 𝐸
𝑝𝑇
= 𝑌⊕𝑌, and for any

𝑢 ∈ 𝐸
𝑝𝑇
, it can be expressed in the form 𝑢 = 𝑢̃ + 𝑢, where

𝑢̃ ∈ 𝑌, 𝑢 ∈ 𝑌.
Next we recall Clarke duality and some lemmas.
The Legendre transform (see [12])𝐻∗(𝑡, ⋅) of𝐻(𝑡, ⋅) with

respect to the second variable is defined by

𝐻
∗

(𝑡, V) = sup
𝑢∈𝑅
2𝑁

{(V, 𝑢) − 𝐻 (𝑡, 𝑢)} , (9)

where (⋅, ⋅) denotes the inner product inR2𝑁. It follows from
(A1) and (A2) that

(B1) 𝐻∗(𝑛, ⋅) is continuous differentiable on R2𝑁,
(B2) for 𝜏 = 𝜃/(𝜃 − 1), V ∈ R2𝑁, 𝑛 ∈ Z, one has

1

𝜏
(
1

𝑎
2

)

𝜏−1

|V|𝜏 ≤ 𝐻∗ (𝑛, V) ≤
1

𝜏
(
1

𝑎
1

)

𝜏−1

|V|𝜏. (10)

Associated with variational functional (2), the dual action
functional is defined by

𝜒 (V) =
𝑝𝑇

∑

𝑛=1

1

2
(𝐿 (𝐽ΔV (𝑛 − 1)) , V (𝑛))

+

𝑝𝑇

∑

𝑛=1

𝐻
∗

(𝑛, ΔV (𝑛)) , V ∈ 𝐸
𝑝𝑇
.

(11)

Indeed, by (11), we have 𝜒(V + 𝑢) = 𝜒(V) for any 𝑢 ∈ 𝑌
and V ∈ 𝑌. Therefore, 𝜒 can be restricted in subspace 𝑌
of 𝐸

𝑝𝑇
. Moreover, in terms of Lemma 2.6 in [8] and the

following lemma, the critical points of (11) correspond to the
subharmonic solutions of (3).

Lemma 3 (see [8, Theorem 1]). Assume that
(H1) 𝐻(𝑛, ⋅) ∈ 𝐶1(R2𝑁,R), 𝐻(𝑛, ⋅) is convex in the second

variable for 𝑛 ∈ Z,
(H2) there exists 𝛽 : Z → R2𝑁 such that for all (𝑛, 𝑢) ∈

Z ×R2𝑁,𝐻(𝑛, 𝑢) ≥ (𝛽(𝑛), 𝑢), and 𝛽(𝑛 + 𝑇) = 𝛽(𝑛),
(H3) there exist𝛼 ∈ (0, 2 sin(𝜋/𝑝𝑇)) and 𝛾 : Z → R+, such

that for any (𝑛, 𝑢) ∈ Z × R2𝑁, 𝐻(𝑛, 𝑢) ≤ (𝛼/2)|𝑢|2 +
𝛾(𝑛), and 𝛾(𝑛 + 𝑇) = 𝛾(𝑛),

(H4) for each 𝑢 ∈ R2𝑁, ∑𝑝𝑇
𝑛=1
𝐻(𝑛, 𝑢) → +∞ as |𝑢| → ∞.

Then system (3) has at least one periodic solution 𝑢, such
that V = −𝐽[𝑢 − (1/𝑝𝑇)∑𝑝𝑇

𝑛=1
𝑢(𝑛)]minimizes the dual action

𝜒(V) = ∑𝑝𝑇
𝑛=1
(1/2)(𝐿𝐽ΔV(𝑛 − 1), V(𝑛)) + ∑𝑝𝑇

𝑛=1
𝐻
∗
(𝑛, ΔV(𝑛)).

The following lemmas will be useful in our proofs, where
Lemma 4 can be proved by means of Euler formula 𝑒𝑖𝜃 =
cos 𝜃 + 𝑖 sin 𝜃, and Lemma 5 is a Hölder inequality.

Lemma 4. For any 𝑘 ∈ Z, ∑𝑝𝑇
𝑛=1

sin((2𝑘𝜋/𝑝𝑇)𝑛) =

∑
𝑝𝑇

𝑛=1
cos((2𝑘𝜋/𝑝𝑇)𝑛) = 0.

Lemma 5. For any 𝑢
𝑗
> 0, V

𝑗
> 0, 𝑘 ∈ Z, one has∑𝑘

𝑗=1
𝑢
𝑗
V
𝑗
≤

(∑
𝑘

𝑗=1
𝑢
𝑝

𝑗
)
1/𝑝

(∑
𝑘

𝑗=1
V𝑞
𝑗
)
1/𝑞

, where 𝑝 > 1, 𝑞 > 1 and 1/𝑝 + 1/𝑞 =
1.
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Lemma 6 (see [12, proposition 2.2]). Let𝐻 : R𝑚 → R be of
𝐶
1 and convex functional, −𝛽 ≤ 𝐻(𝑢) ≤ 𝛼𝑞−1|𝑢|𝑞 + 𝛾, where
𝑢 ∈ R𝑚, 𝛼 > 0, 𝑞 > 1, 𝛽 ≥ 0, 𝛾 ≥ 0. Then 𝛼−𝑝/𝑞𝑝−1|∇𝐻(𝑢)|𝑝 ≤
(∇𝐻(𝑢), 𝑢) + 𝛽 + 𝛾, where 1/𝑝 + 1/𝑞 = 1.

In order to know the form of 𝑢 ∈ 𝐸
𝑝𝑇
, we consider

eigenvalue problem

𝐿𝐽Δ𝑢 (𝑛 − 1) = 𝜆𝑢 (𝑛) , 𝑢 (𝑛 + 𝑝𝑇) = 𝑢 (𝑛) , (12)

where 𝑢(𝑛) = ( 𝑢1(𝑛)
𝑢2(𝑛)

), 𝐿𝑢(𝑛 − 1) = ( 𝑢1(𝑛)
𝑢2(𝑛−1)

) ∈ R2𝑁, 𝑛 ∈ Z,
𝜆 ∈ R. We can rewrite (12) as the following form:

𝑢
1
(𝑛 + 1) = (1 − 𝜆

2
) 𝑢
1
(𝑛) + 𝜆𝑢

2
(𝑛) ,

𝑢
2
(𝑛 + 1) = −𝜆𝑢

1
(𝑛) + 𝑢

2
(𝑛) ,

𝑢
1
(𝑛 + 𝑝𝑇) = 𝑢

1
(𝑛) , 𝑢

2
(𝑛 + 𝑝𝑇) = 𝑢

2
(𝑛) .

(13)

Denoting

𝑀(𝜆) = (
(1 − 𝜆

2
) 𝐼
𝑁
𝜆𝐼
𝑁

−𝜆𝐼
𝑁

𝐼
𝑁

) , (14)

then problem (12) is equivalent to

𝑢 (𝑛 + 1) = 𝑀 (𝜆) 𝑢 (𝑛) , 𝑢 (𝑛 + 𝑝𝑇) = 𝑢 (𝑛) . (15)

Letting 𝑢(𝑛) = 𝜇𝑛𝑐 be the solution of (15), for some 𝑐 ∈ C2𝑁,
we have 𝜇𝑐 = 𝑀(𝜆)𝑐 and 𝜇𝑝𝑇 = 1. Consider the polynomial
|𝑀(𝜆) − 𝜇𝐼

2𝑁
| = 0 and condition 𝜇𝑝𝑇 = 1; it follows that

𝜇 = 𝑒
2𝑘𝜋𝑖/𝑝𝑇

, 𝜆 = 2 sin 𝑘𝜋
𝑝𝑇
,

𝑘 ∈ 𝑍 [−𝑝𝑇 + 1, 𝑝𝑇 − 1] .

(16)

In the following we denote by 𝜇
𝑘
= 𝑒

2𝑘𝜋𝑖/𝑝𝑇, 𝜆
𝑘
=

2 sin(𝑘𝜋/𝑝𝑇), 𝑘 ∈ 𝑍[−𝑝𝑇 + 1, 𝑝𝑇 − 1], and 𝜌 ∈ R𝑁. By
(𝑀(𝜆

𝑘
) − 𝜇

𝑘
𝐼
2𝑁
)𝑐 = 0, it follows that

𝑐
𝑘
= (

𝜌

𝑖𝑒
(−𝑘𝜋𝑖/𝑝𝑇)

𝜌
) . (17)

Thus

𝑢
𝑘
(𝑛) = 𝜇

𝑛

𝑘
𝑐
𝑘
= 𝑒
2𝑘𝜋𝑛𝑖/𝑝𝑇

(
𝜌

𝑖𝑒
(−𝑘𝜋𝑖/𝑝𝑇)

𝜌
)

= (

cos(2𝑘𝜋
𝑝𝑇
𝑛)𝜌

− sin(2𝑘𝜋
𝑝𝑇

(𝑛 −
1

2
)) 𝜌

)

+ 𝑖(

sin(2𝑘𝜋
𝑝𝑇
𝑛)𝜌

cos(2𝑘𝜋
𝑝𝑇

(𝑛 −
1

2
)) 𝜌

) .

(18)

Let

𝜉
𝑘
(𝑛) = (

cos(2𝑘𝜋
𝑝𝑇
𝑛)𝜌

− sin(2𝑘𝜋
𝑝𝑇

(𝑛 −
1

2
))𝜌

) ,

𝜂
𝑘
= (

sin(2𝑘𝜋
𝑝𝑇
𝑛)𝜌

cos(2𝑘𝜋
𝑝𝑇

(𝑛 −
1

2
)) 𝜌

) .

(19)

Obviously, 𝜉
𝑘
(𝑛) and 𝜂

𝑘
(𝑛) satisfy (15). Moreover 𝐿𝐽Δ𝜉

𝑘
(𝑛 −

1) = 𝜆
𝑘
𝜉
𝑘
(𝑛), 𝐿𝐽Δ𝜂

𝑘
(𝑛 − 1) = 𝜆

𝑘
𝜂
𝑘
(𝑛), 𝜉

2𝑝𝑇+𝑘
(𝑛) = 𝜉

𝑘
(𝑛),

𝜂
2𝑝𝑇+𝑘

(𝑛) = 𝜂
𝑘
(𝑛), 𝜉

𝑝𝑇−𝑘
(𝑛) = 𝜉

𝑘
(𝑛), 𝜂

𝑝𝑇−𝑘
(𝑛) = −𝜂

𝑘
(𝑛).

For 𝑘 ̸=𝑝𝑇/2, subspace 𝑌
𝑘
is defined by

𝑌
𝑘

=

{{{{{{{{

{{{{{{{{

{

span {𝜉
𝑘 (𝑛) , 𝜂𝑘+(𝑝𝑇/2) (𝑛)} , 𝑘 ∈ 𝑍[−

𝑝𝑇

2
+ 1,

𝑝𝑇

2
− 1] \ {0} ,

𝑛 ∈ Z, if 𝑝𝑇 is even,

span {𝜉
𝑘 (𝑛) , 𝜂𝑘+((𝑝𝑇+1)/2) (𝑛)} , 𝑘 ∈ 𝑍[[−

𝑝𝑇

2
] , [

𝑝𝑇

2
]] \ {0} ,

𝑛 ∈ Z, if 𝑝𝑇 is odd,

(20)

where [⋅] denotes the greatest-integer function and

𝑌
𝑝𝑇/2

= span {𝜉
𝑝𝑇/2

(𝑛) , 𝑛 ∈ Z} ,

𝑌
−𝑝𝑇/2

= span {𝜉
−𝑝𝑇/2

(𝑛) , 𝑛 ∈ Z} .

(21)

Therefore,

𝑌 = ⊕𝑌
𝑘
, 𝑘 ∈ 𝑍 [−

𝑝𝑇

2
,
𝑝𝑇

2
] \ {0} , if 𝑝𝑇 is even,

𝑌 = ⊕𝑌
𝑘
, 𝑘 ∈ 𝑍 [[−

𝑝𝑇

2
] , [

𝑝𝑇

2
]] \ {0} , if 𝑝𝑇 is odd.

(22)

Moreover, for any 𝑢 = {𝑢(𝑛)} ∈ 𝐸
𝑝𝑇
, we may express 𝑢(𝑛) as

𝑢 (𝑛)

=

𝑝𝑇−1

∑

𝑘=−𝑝𝑇+1

[
[
[

[

(

cos(2𝑘𝜋
𝑝𝑇
𝑛) 𝑎

𝑘

− sin(2𝑘𝜋
𝑝𝑇

(𝑛 −
1

2
)) 𝑎

𝑘

)

+(

sin(2𝑘𝜋
𝑝𝑇
𝑛) 𝑏
𝑘

cos(2𝑘𝜋
𝑝𝑇

(𝑛 −
1

2
)) 𝑏

𝑘

)

]
]
]

]

,

(23)

where 𝑎
𝑘
, 𝑏
𝑘
∈ R𝑁.

Since (Δ𝑢(𝑛), Δ𝑢(𝑛)) = −(Δ2𝑢(𝑛 − 1), 𝑢(𝑛)), we consider
eigenvalue problem

−Δ
2
𝑢 (𝑛 − 1) = 𝜆𝑢 (𝑛) , 𝑢 (𝑛 + 𝑝𝑇) = 𝑢 (𝑛) , 𝑢 (𝑛) ∈ R

𝑁
,

(24)
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where Δ2𝑢(𝑛 − 1) = Δ𝑢(𝑛) − Δ𝑢(𝑛 − 1) = 𝑢(𝑛 + 1) −
2𝑢(𝑛) + 𝑢(𝑛 − 1). The second order difference equation (24)
has complexity solution 𝑢(𝑛) = 𝑒

𝑖𝑛𝜃
𝑐 for 𝑐 ∈ C𝑁, where

𝜃 = 2𝑘𝜋/𝑝𝑇. Moreover, 𝜆 = 2 − 𝑒−𝑖𝜃 − 𝑒𝑖𝜃 = 2(1 − cos 𝜃) =
4sin2(𝜃/2); that is, 𝜆 = 4sin2(𝑘𝜋/𝑝𝑇), 𝑘 ∈ 𝑍[0, 𝑝𝑇 − 1].

By the previous, it follows Lemma 7.

Lemma 7. For any 𝑢 ∈ 𝐸
𝑝𝑇
, one has −𝜆max‖𝑢‖

2
≤

∑
𝑝𝑇

𝑛=1
(𝐿𝐽Δ𝑢(𝑛−1), 𝑢(𝑛)) ≤ 𝜆max‖𝑢‖

2, and 0 ≤ ∑𝑝𝑇
𝑛=1
|Δ𝑢(𝑛)|

2
≤

𝜆
2

max‖𝑢‖
2, where

𝜆max = max
𝑘∈[0,𝑝𝑇−1]

{2 sin 𝑘𝜋
𝑝𝑇
}

=

{

{

{

2, if 𝑝𝑇 is even,
2 cos 𝜋

2𝑝𝑇
, if 𝑝𝑇 is odd.

(25)

Moreover, if 𝑢 ∈ 𝑌, then 4sin2(𝜋/𝑝𝑇)‖𝑢‖2 ≤ ∑𝑝𝑇
𝑛=1
|Δ𝑢(𝑛)|

2
≤

𝜆
2

max‖𝑢‖
2.

3. Proofs of Main Results

Lemma 8. Consider
𝑝𝑇

∑

𝑛=1

(𝐿𝐽Δ𝑢 (𝑛 − 1) , 𝑢 (𝑛))

≥ −(2 sin 𝜋

𝑝𝑇
)

−1 𝑝𝑇

∑

𝑛=1

|Δ𝑢 (𝑛)|
2
, ∀𝑢 ∈ 𝐸

𝑝𝑇
.

(26)

Proof. Letting 𝑢̃(𝑛) = 𝑢(𝑛) − (1/𝑝𝑇)∑𝑝𝑇
𝑛=1
𝑢(𝑛), then 𝑢̃ ∈ 𝑌.

By Lemmas 5 and 7, we have
𝑝𝑇

∑

𝑛=1

(𝐿𝐽Δ𝑢 (𝑛 − 1) , 𝑢 (𝑛))

=

𝑝𝑇

∑

𝑛=1

(𝐿𝐽Δ𝑢 (𝑛 − 1) , 𝑢̃ (𝑛))

≥ −(

𝑝𝑇

∑

𝑛=1

|𝐿𝐽Δ𝑢 (𝑛 − 1)|
2
)

1/2

⋅ (

𝑝𝑇

∑

𝑛=1

|𝑢̃ (𝑛)|
2
)

1/2

≥ −(

𝑝𝑇

∑

𝑛=1

|Δ𝑢 (𝑛)|
2
)

1/2

⋅ (2 sin 𝜋

𝑝𝑇
)

−1

(

𝑝𝑇

∑

𝑛=1

|Δ𝑢̃ (𝑛)|
2
)

1/2

= −(2 sin 𝜋

𝑝𝑇
)

−1 𝑝𝑇

∑

𝑛=1

|Δ𝑢 (𝑛)|
2
.

(27)

Lemma 9. If there exist 𝛼 ∈ (0, sin(𝜋/𝑝𝑇)), 𝛽 ≥ 0 and 𝛿 > 0,
such that

𝛿 |𝑢| − 𝛽 ≤ 𝐻 (𝑛, 𝑢) ≤
𝛼

2
|𝑢|
2
+ 𝛾 (28)

for all 𝑛 ∈ [1, 𝑝𝑇] and 𝑢 ∈ R2𝑁, then each solution of (3)
satisfies the inequalities

𝑝𝑇

∑

𝑛=1

|Δ𝑢 (𝑛)|
2
≤
2𝛼 (𝛽 + 𝛾) 𝑝𝑇 sin (𝜋/𝑝𝑇)

sin (𝜋/𝑝𝑇) − 𝛼
,

𝑝𝑇

∑

𝑛=1

|𝐿𝑢 (𝑛)| ≤
(𝛽 + 𝛾) 𝑝𝑇 sin (𝜋/𝑝𝑇)
𝛿 (sin (𝜋/𝑝𝑇) − 𝛼)

.

(29)

Proof. Let 𝑢 be the solution of (3). By Lemma 6, we have

1

2𝛼
|∇𝐻 (𝑛, 𝐿𝑢 (𝑛))|

2
≤ (∇𝐻 (𝑛, 𝐿𝑢 (𝑛)) , 𝐿𝑢 (𝑛)) + 𝛽 + 𝛾

= − (𝐽Δ𝑢 (𝑛) , 𝐿𝑢 (𝑛)) + 𝛽 + 𝛾.

(30)

Obviously, |𝐽Δ𝑢(𝑛)|2 = (−∇𝐻(𝑛, 𝐿𝑢(𝑛)), 𝐽Δ𝑢(𝑛)) = |∇𝐻(𝑛,
𝐿𝑢(𝑛))|

2 by (3), and it follows that (1/2𝛼)∑𝑝𝑇
𝑛=1
|𝐽Δ𝑢(𝑛)|

2
+

∑
𝑝𝑇

𝑛=1
(𝐽Δ𝑢(𝑛), 𝐿𝑢(𝑛)) ≤ (𝛽 + 𝛾)𝑝𝑇; that is,

1

2𝛼

𝑝𝑇

∑

𝑛=1

|Δ𝑢 (𝑛)|
2
+

𝑝𝑇

∑

𝑛=1

(𝐿𝐽Δ𝑢 (𝑛 − 1) , 𝑢 (𝑛))

≤ (𝛽 + 𝛾) 𝑝𝑇.

(31)

By means of Lemma 8, we have

[
1

2𝛼
− (2 sin 𝜋

𝑝𝑇
)

−1

]

𝑝𝑇

∑

𝑛=1

|Δ𝑢 (𝑛)|
2
≤ (𝛽 + 𝛾) 𝑝𝑇, (32)

which gives first conclusion.
Now,𝐻(𝑛, 0) ≤ 𝛾 in view of (28); therefore by convex and

Lemma 8, we have

𝛿

𝑝𝑇

∑

𝑛=1

|𝐿𝑢 (𝑛)| − 𝛽𝑝𝑇

≤

𝑝𝑇

∑

𝑛=1

𝐻(𝑛, 𝐿𝑢 (𝑛))

≤

𝑝𝑇

∑

𝑛=1

[𝐻 (𝑛, 0) + (∇𝐻 (𝑛, 𝐿𝑢 (𝑛)) , 𝐿𝑢 (𝑛))]
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≤ 𝛾𝑝𝑇 −

𝑝𝑇

∑

𝑛=1

(𝐽Δ𝑢 (𝑛) , 𝐿𝑢 (𝑛))

= 𝛾𝑝𝑇 −

𝑝𝑇

∑

𝑛=1

(𝐽𝐿Δ𝑢 (𝑛 − 1) , 𝑢 (𝑛))

≤ 𝛾𝑝𝑇 + (2 sin 𝜋

𝑝𝑇
)

−1 𝑝𝑇

∑

𝑛=1

|Δ𝑢 (𝑛)|
2

≤ 𝛾𝑝𝑇 +
𝛼 (𝛽 + 𝛾) 𝑝𝑇

sin (𝜋/𝑝𝑇) − 𝛼
,

(33)

which gives the second conclusion. The proof is completed.

Proof of Theorem 1. Let 𝑐
1
= max

𝑛∈Z|𝐻(𝑛, 0)|. By assumption
inTheorem 1, there exists𝑅 > 0, such that𝐻(𝑛, 𝑢) ≥ 1+𝑐

1
, for

𝑛 ∈ Z and |𝑢| ≥ 𝑅. Moreover, there exist 𝛼 ∈ (0, 2 sin(𝜋/𝑝𝑇)),
𝛾 > 0 such that

𝐻(𝑛, 𝑢) ≤
𝛼

2
|𝑢|
2
+ 𝛾, ∀ (𝑛, 𝑢) ∈ Z ×R

2𝑁
. (34)

Thus, by convex of 𝐻, for all (𝑛, 𝑢) ∈ Z × R2𝑁 with |𝑢| ≥ 𝑅,
we have

1 + 𝑐
1
≤ 𝐻(𝑛,

𝑅

|𝑢|
𝑢)

≤ 𝐻 (𝑛, 0) +
𝑅

|𝑢|
(𝐻 (𝑛, 𝑢) − 𝐻 (𝑛, 0))

≤
𝑅

|𝑢|
𝐻 (𝑛, 𝑢) + 𝑐

1
.

(35)

Therefore there exist 𝛽 > 0 and 𝛿 > 0, such that

𝐻(𝑛, 𝑢) ≥ 𝛿 |𝑢| − 𝛽, ∀ (𝑛, 𝑢) ∈ Z ×R
2𝑁
. (36)

Combining the previous argument, by Lemma 3, the system
(3) has a 𝑝𝑇-periodic solution 𝑢

𝑝
such that V

𝑝
= −𝐽[𝑢

𝑝
−

(1/𝑝𝑇)∑
𝑝𝑇

𝑛=1
𝑢
𝑝
(𝑛)] ∈ 𝑌minimizes the dual action

𝜒
𝑝
(V
𝑝
) =

𝑝𝑇

∑

𝑛=1

1

2
(𝐿𝐽ΔV

𝑝
(𝑛 − 1) , V

𝑝
(𝑛))

+

𝑝𝑇

∑

𝑛=1

𝐻
∗
(𝑛, ΔV

𝑝
(𝑛)) on 𝐸

𝑝𝑇
.

(37)

It follows that Δ𝑢
𝑝
(𝑛) = 𝐽ΔV

𝑝
(𝑛) and 𝐽V

𝑝
(𝑛) = 𝑢

𝑝
(𝑛) −

(1/𝑝𝑇)∑
𝑝𝑇

𝑛=1
𝑢
𝑝
(𝑛).

We next prove that ‖𝑢
𝑝
‖
∞
→ ∞ as 𝑝 → ∞.

Suppose not, there exist 𝑐
2
> 0 and a subsequence {𝑝

𝑘
}

such that

𝑝
𝑘
→ ∞,

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑝𝑘

󵄩󵄩󵄩󵄩󵄩∞
≤ 𝑐
2

as 𝑘 󳨀→ ∞. (38)

In terms of (3), it follows that ‖Δ𝑢
𝑝𝑘
‖
∞
≤ 𝑐
3
for some 𝑐

3
> 0,

and ‖V
𝑝𝑘
‖
∞
≤ 2𝑐
2
, ‖ΔV

𝑝𝑘
‖
∞
≤ 𝑐
3
. Consequently, by𝐻∗(𝑛, V) ≥

−𝐻(𝑛, 0) ≥ − 𝑐
1
, we have

𝑐
𝑝𝑘
= 𝜒
𝑝𝑘
(V
𝑝𝑘
)

=

𝑝𝑘𝑇

∑

𝑛=1

1

2
(𝐿𝐽ΔV

𝑝𝑘
(𝑛 − 1) , V

𝑝𝑘
(𝑛))

+

𝑝𝑘𝑇

∑

𝑛=1

𝐻
∗
(𝑛, ΔV

𝑝𝑘
(𝑛))

≥ −
1

2

𝑝𝑘𝑇

∑

𝑛=1

󵄨󵄨󵄨󵄨󵄨
𝐿𝐽ΔV

𝑝𝑘
(𝑛 − 1)

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
V
𝑝𝑘
(𝑛)
󵄨󵄨󵄨󵄨󵄨
− 𝑐
1
𝑝
𝑘
𝑇

≥ − (√2𝑐
2
𝑐
3
+ 𝑐
1
) 𝑝
𝑘
𝑇,

(39)

where 𝑛 ∈ 𝑍[1, 𝑝
𝑘
𝑇] and

󵄨󵄨󵄨󵄨󵄨
𝐿𝐽ΔV

𝑝𝑘
(𝑛 − 1)

󵄨󵄨󵄨󵄨󵄨
= (
󵄨󵄨󵄨󵄨󵄨
ΔV
2,𝑝𝑘
(𝑛)
󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
ΔV
1,𝑝𝑘
(𝑛 − 1)

󵄨󵄨󵄨󵄨󵄨

2

)

1/2

≤ √2
󵄩󵄩󵄩󵄩󵄩
ΔV
𝑝𝑘

󵄩󵄩󵄩󵄩󵄩∞
≤ √2𝑐

3
.

(40)

By (36), if |V| ≤ 𝛿, we have (V, 𝑢)−𝐻(𝑛, 𝑢) ≤ (V, 𝑢)−𝛿|𝑢|+
𝛽 ≤ 𝛽, and 𝐻∗(𝑛, V) ≤ 𝛽. Letting 𝜌 ∈ R𝑁 and |𝜌| = 1, in
terms of (12), ℎ

𝑝
associated with 𝜆

−1
= −2 sin(𝜋/𝑝𝑇) is given

by

ℎ
𝑝
(𝑛) =

𝛿

4 sin (𝜋/𝑝𝑇)

⋅ (

(cos 2𝜋
𝑝𝑇
𝑛 − sin 2𝜋

𝑝𝑇
𝑛)𝜌

(sin 2𝜋
𝑝𝑇
(𝑛 −

1

2
) + cos 2𝜋

𝑝𝑇
(𝑛 −

1

2
)) 𝜌

)

(41)

which belongs to 𝐸
𝑝𝑇
, and

󵄨󵄨󵄨󵄨󵄨
Δℎ𝑝 (𝑛)

󵄨󵄨󵄨󵄨󵄨

2

= (
𝛿

4 sin(𝜋/𝑝𝑇)
)

2

⋅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2 sin 𝜋
𝑝𝑇

(

(− sin 2𝜋
𝑝𝑇

(𝑛 +
1

2

) − cos 2𝜋
𝑝𝑇

(𝑛 +
1

2

))𝜌

(cos 2𝜋
𝑝𝑇

𝑛 − sin 2𝜋
𝑝𝑇

𝑛)𝜌

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

=
1

4

[2 + sin 2𝜋
𝑝𝑇

(2𝑛 + 1) − sin 2𝜋
𝑝𝑇

(2𝑛)] ⋅
󵄨󵄨󵄨󵄨
𝜌
󵄨󵄨󵄨󵄨

2
𝛿
2

≤ 𝛿
2
.

(42)
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Moreover, by Lemma 4 we have

𝑝𝑇

∑

𝑛=1

󵄨󵄨󵄨󵄨󵄨
ℎ
𝑝
(𝑛)
󵄨󵄨󵄨󵄨󵄨

2

=

𝑝𝑇

∑

𝑛=1

(
𝛿

4 sin(𝜋/𝑝𝑇)
)

2

⋅ (2 + sin 2𝜋
𝑝𝑇
(2𝑛 − 1) − sin 2𝜋

𝑝𝑇
(2𝑛))

󵄨󵄨󵄨󵄨𝜌
󵄨󵄨󵄨󵄨

2

= (
𝛿

4 sin(𝜋/𝑝𝑇)
)

2

2
󵄨󵄨󵄨󵄨𝜌
󵄨󵄨󵄨󵄨

2

𝑝𝑇 =
𝛿
2
𝑝𝑇

8sin2 (𝜋/𝑝𝑇)
.

(43)

Thus 𝑐
𝑝
= 𝜒

𝑝
(ℎ
𝑝
) ≤ ∑

𝑝𝑇

𝑛=1
(1/2)(𝐿𝐽Δℎ

𝑝
(𝑛 − 1), ℎ

𝑝
(𝑛)) +

𝛽𝑝𝑇 = ∑
𝑝𝑇

𝑛=1
(1/2)(−2 sin(𝜋/𝑝𝑇))|ℎ

𝑝
(𝑛)|
2
+ 𝛽𝑝𝑇 =

− 𝛿
2
𝑝𝑇/8 sin(𝜋/𝑝𝑇) + 𝛽𝑝𝑇. Combining (39), we have

8(√2𝑐
2
𝑐
3
+ 𝑐
1
+ 𝛽
1
) sin(𝜋/𝑝

𝑘
𝑇) ≥ 𝛿

2, which is impossible as 𝑘
large. So the claim lim

𝑝→∞
‖𝑢
𝑝
‖
∞
= ∞ is valid.

It remains only to prove that the minimal period 𝑇
𝑝
of 𝑢
𝑝

tends to +∞ as 𝑝 → ∞.
If not, there exists 𝑇 > 0 and a sequence {𝑝

𝑘
} such that

the minimal period 𝑇
𝑝𝑘

of 𝑢
𝑝𝑘

satisfies 1 ≤ 𝑇
𝑝𝑘
≤ 𝑇. By

assumption in Theorem 1, there exists 𝛼 ∈ (0, sin(𝜋/𝑇)) and
𝛾 > 0 such that

𝐻(𝑛, 𝑢) ≤
𝛼

2
|𝑢|
2
+ 𝛾, ∀ (𝑛, 𝑢) ∈ Z ×R

2𝑁
. (44)

By (36) and Lemma 9 with 𝑝𝑇 replaced by 𝑇
𝑝𝑘
, we get

𝑇𝑝
𝑘

∑

𝑛=1

󵄨󵄨󵄨󵄨󵄨
Δ𝑢
𝑝𝑘
(𝑛)
󵄨󵄨󵄨󵄨󵄨

2

≤

2𝛼 (𝛽 + 𝛾) 𝑇
𝑝𝑘
sin (𝜋/𝑇

𝑝𝑘
)

sin (𝜋/𝑇
𝑝𝑘
) − 𝛼

≤
2𝛼 (𝛽 + 𝛾) 𝑇 sin (𝜋/𝑇)

sin (𝜋/𝑇) − 𝛼
,

(45)

𝑇𝑝
𝑘

∑

𝑛=1

󵄨󵄨󵄨󵄨󵄨
𝐿𝑢
𝑝𝑘
(𝑛)
󵄨󵄨󵄨󵄨󵄨
≤

(𝛽 + 𝛾) 𝑇
𝑝𝑘
sin (𝜋/𝑇

𝑝𝑘
)

𝛿 (sin (𝜋/𝑇
𝑝𝑘
) − 𝛼)

≤

(𝛽 + 𝛾) 𝑇
𝑝𝑘
sin (𝜋/𝑇)

𝛿 (sin (𝜋/𝑇) − 𝛼)
.

(46)

Write 𝑢
𝑝𝑘
= 𝑢̃
𝑝𝑘
+ 𝑢
𝑝𝑘
, where 𝑢

𝑝𝑘
= (1/𝑇

𝑝𝑘
) ∑
𝑇𝑝
𝑘

𝑛=1
𝑢
𝑝𝑘
(𝑛) =

(1/𝑇
𝑝𝑘
) ∑
𝑇𝑝
𝑘

𝑛=1
𝐿𝑢
𝑝𝑘
(𝑛) ∈ 𝑌. Inequality (46) implies that

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑝𝑘

󵄩󵄩󵄩󵄩󵄩∞
≜ max
𝑛∈𝑍[1,𝑇𝑝

𝑘
]

{
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑝𝑘

󵄨󵄨󵄨󵄨󵄨
}

≤
1

𝑇
𝑝𝑘

𝑇𝑝
𝑘

∑

𝑛=1

󵄨󵄨󵄨󵄨󵄨
𝐿𝑢
𝑝𝑘
(𝑛)
󵄨󵄨󵄨󵄨󵄨
≤
(𝛽 + 𝛾) sin (𝜋/𝑇)
𝛿 (sin (𝜋/𝑇) − 𝛼)

.

(47)

By Lemma 7 and (45), it follows that

󵄩󵄩󵄩󵄩󵄩
𝑢̃
𝑝𝑘

󵄩󵄩󵄩󵄩󵄩

2

=

𝑇𝑝
𝑘

∑

𝑛=1

󵄨󵄨󵄨󵄨󵄨
𝑢̃
𝑝𝑘
(𝑛)
󵄨󵄨󵄨󵄨󵄨

2

≤ (2 sin 𝜋

𝑇
𝑝𝑘

)

−1𝑇𝑝
𝑘

∑

𝑛=1

󵄨󵄨󵄨󵄨󵄨
Δ𝑢
𝑝𝑘
(𝑛)
󵄨󵄨󵄨󵄨󵄨

2

≤ (2 sin(𝜋/𝑇))−1
2𝛼 (𝛽 + 𝛾) 𝑇 sin (𝜋/𝑇)

sin (𝜋/𝑇) − 𝛼

≤
𝛼 (𝛽 + 𝛾) 𝑇

sin (𝜋/𝑇) − 𝛼
,

(48)

which implies that {‖𝑢̃
𝑝𝑘
‖
∞
} is bounded, therefore

{‖𝑢
𝑝𝑘
‖
∞
} is bounded; a contradiction with the second

claim lim
𝑝→∞

‖𝑢
𝑝
‖
∞
= ∞. This completes the proof.

Proof of Theorem 2. Under the assumptions (A1) and (A2), all
conditions in Theorem 1 are satisfied. Then, for each integer
𝑝 > 1, there exists a 𝑝𝑇-periodic solution 𝑢 of (3) such that
V = −𝐽[𝑢 − (1/𝑝𝑇)∑𝑝𝑇

𝑛=1
𝑢(𝑛)] ∈ 𝑌minimizes the dual action

𝜒 (V) =
𝑝𝑇

∑

𝑛=1

1

2
(𝐿𝐽ΔV (𝑛 − 1) , V (𝑛))

+

𝑝𝑇

∑

𝑛=1

𝐻
∗

(𝑛, ΔV (𝑛)) on 𝐸
𝑝𝑇
.

(49)

If the critical point V of dual action functional 𝜒 has
minimal period 𝑝𝑇/𝑙 ∈ N \ {0}, where 𝑙 ∈ N \ {0}, then by
Lemma 7 with 𝑝𝑇 replaced by 𝑝𝑇/𝑙, we have the following
estimate:

4sin2 𝑙𝜋
𝑝𝑇

𝑝𝑇

∑

𝑛=1

|V (𝑛)|2 ≤
𝑝𝑇

∑

𝑛=1

|ΔV (𝑛)|2. (50)

By Lemma 5 and the previous inequality, we have

𝑝𝑇

∑

𝑛=1

(𝐿𝐽ΔV (𝑛 − 1) , V (𝑛))

≥ −(

𝑝𝑇

∑

𝑛=1

|𝐿𝐽ΔV (𝑛 − 1)|2)

1/2

⋅ (

𝑝𝑇

∑

𝑛=1

|V (𝑛)|2)

1/2

≥ −(

𝑝𝑇

∑

𝑛=1

|ΔV (𝑛)|2)

1/2
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⋅ (2 sin 𝑙𝜋
𝑝𝑇
)

−1

(

𝑝𝑇

∑

𝑛=1

|ΔV (𝑛)|2)

1/2

= −(2 sin 𝑙𝜋
𝑝𝑇
)

−1 𝑝𝑇

∑

𝑛=1

|ΔV (𝑛)|2

≥ −(2 sin 𝑙𝜋
𝑝𝑇
)

−1

(𝑝𝑇)
(1−2/𝜏)

(

𝑝𝑇

∑

𝑛=1

|ΔV (𝑛)|𝜏)

2/𝜏

,

(51)

where 𝜏 = 𝜃/(𝜃 − 1) > 2 for 1 < 𝜃 < 2. It follows from
assumption (B2) that

𝐻
∗

(𝑛, ΔV (𝑛)) ≥
1

𝜏
(
1

𝑎
2

)

𝜏−1

|ΔV (𝑛)|𝜏, (52)

thus

𝜒 (V) ≥ −(2 sin 𝑙𝜋
𝑝𝑇
)

−1

(𝑝𝑇)
(𝜏−2)/𝜏

(

𝑝𝑇

∑

𝑛=1

|ΔV (𝑛)|𝜏)

2/𝜏

+
1

𝜏
(
1

𝑎
2

)

𝜏−1 𝑝𝑇

∑

𝑛=1

|ΔV (𝑛)|𝜏

(53)

≥

(1/𝜏 − 1/2) 𝑝𝑇(𝑎
2

2
)
(𝜏−1)/(𝜏−2)

(sin (𝑙𝜋/𝑝𝑇))𝜏/(𝜏−2)
. (54)

One can obtain the previous inequality by minimizing in
(53) with respect to (∑𝑝𝑇

𝑛=1
|ΔV(𝑛)|𝜏)

1/𝜏

, and the minimum is
attained at (𝑝𝑇)1/𝜏(𝑎

2
)
(𝜏−1)/(𝜏−2)

/(sin(𝑙𝜋/𝑝𝑇))1/(𝜏−2).
On the other hand, let

V (𝑛) =
1

√𝑝𝑇
(

cos 2𝑘𝜋
𝑝𝑇
𝑛 ⋅ 𝑎
𝑘

− sin 2𝑘𝜋
𝑝𝑇

(𝑛 −
1

2
) ⋅ 𝑎
𝑘

), (55)

where 𝑎
𝑘
∈ R𝑁, 𝑘 ∈ 𝑍[[−𝑝𝑇/2], [𝑝𝑇/2]] \ {0}. Then V ∈ 𝑌

𝑘
,

and

ΔV (𝑛) = −2 sin 𝑘𝜋
𝑝𝑇

1

√𝑝𝑇
(

sin 2𝑘𝜋
𝑝𝑇

(𝑛 +
1

2
) ⋅ 𝑎
𝑘

cos 2𝑘𝜋
𝑝𝑇
𝑛 ⋅ 𝑎
𝑘

). (56)

Taking 𝑎
𝑘
= (𝑑, 0, . . . , 0)

𝑇
∈ R𝑁, where 𝑑 ∈ R, by Lemma 4,

it follows that

𝑝𝑇

∑

𝑛=1

(𝐿𝐽ΔV (𝑛 − 1) , V (𝑛))

=

𝑝𝑇

∑

𝑛=1

[−ΔV
2
(𝑛) V

1
(V) + ΔV

1
(𝑛 − 1) V

2
(𝑛)]

=

𝑝𝑇

∑

𝑛=1

1

𝑝𝑇
⋅ 2 sin 𝑘𝜋

𝑝𝑇

⋅ (cos2 2𝑘𝜋
𝑝𝑇
𝑛 ⋅ |𝑑|

2
+ sin2 2𝑘𝜋

𝑝𝑇
(𝑛 −

1

2
) ⋅ |𝑑|

2
)

= 𝜆
𝑘
⋅ |𝑑|
2
,

(57)

where 𝜆
𝑘
= 2 sin(𝑘𝜋/𝑝𝑇) and

𝑝𝑇

∑

𝑛=1

|ΔV (𝑛)|𝜏

=

𝑝𝑇

∑

𝑛=1

󵄨󵄨󵄨󵄨𝜆𝑘
󵄨󵄨󵄨󵄨

𝜏

(𝑝𝑇)
−𝜏/2

⋅ (sin2 2𝑘𝜋
𝑝𝑇

(𝑛 +
1

2
) + cos2 2𝑘𝜋

𝑝𝑇
𝑛)

𝜏/2

|𝑑|
𝜏

≤ 𝜆
𝜏

max ⋅ (𝑝𝑇)
1−(𝜏/2)

⋅ 2
𝜏/2

|𝑑|
𝜏
.

(58)

Therefore, taking 𝑘 = −[𝑝𝑇/2], by eigenvalue problem (24)
and (B2), it follows that

𝜒 (V) =
1

2

𝑝𝑇

∑

𝑛=1

(𝐿𝐽ΔV (𝑛 − 1) , V (𝑛))

+

𝑝𝑇

∑

𝑛=1

𝐻
∗

(𝑛, ΔV (𝑛))

≤ −
1

2
𝜆max ⋅ |𝑑|

2

+
1

𝜏
(
1

𝑎
1

)

𝜏−1 𝑝𝑇

∑

𝑛=1

|ΔV (𝑛)|𝜏

≤ −
1

2
𝜆max ⋅ |𝑑|

2
+
1

𝜏
(
1

𝑎
1

)

𝜏−1

𝜆
𝜏

max

⋅ (𝑝𝑇)
1−(𝜏/2)

⋅ 2
𝜏/2

|𝑑|
𝜏
.

(59)

Let 𝑓(𝜌) equal the right-hand side of (59) where 𝜌 = |𝑑|.
It is easy to see that the absolute minimum of 𝑓 is attained at
𝜌min = (𝑎1)

(𝜏−1)/(𝜏−2)
(𝑝𝑇)

1/2
/[𝜆
(𝜏−1)/(𝜏−2)

max ⋅ 2
𝜏/2(𝜏−2)

] and given
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by 𝑓min = (1/𝜏 − 1/2)𝑝𝑇(𝑎
2

1
)
(𝜏−1)/(𝜏−2)

/(2𝜆max)
𝜏/(𝜏−2). Hence,

by (19), let

𝜉 (𝑛) = 𝜉
−[𝑝𝑇/2]

(𝑛)

= (

cos 2𝑘𝜋
𝑝𝑇
𝑛 ⋅ 𝜌

− sin 2𝑘𝜋
𝑝𝑇

(𝑛 −
1

2
) ⋅ 𝜌

) ,

(60)

where 𝜌 ∈ R𝑁, 𝑘 = −[𝑝𝑇/2].
If 𝑝𝑇 is even, then 𝜉(𝑛) = (1, 1)𝑇 ⋅ (−1)𝑛𝜌. Set

𝑌
𝜌min
= {V ∈ 𝑌

−[𝑝𝑇/2]
: V (𝑛) = 𝜉 (𝑛) ,

𝜌 = (𝑑, 0, . . . , 0)
𝑇
∈ R
𝑁
, 𝑑 ∈ R} .

(61)

For V ∈ 𝑌
𝜌min

, we have

𝜒 (V) ≤ 𝑓min. (62)

Combining (54), (59), and (62), we have

(1/𝜏 − 1/2) 𝑝𝑇(𝑎
2

2
)
(𝜏−1)/(𝜏−2)

(sin(𝑙𝜋/𝑝𝑇))𝜏/(𝜏−2)

≤

(1/𝜏 − 1/2) 𝑝𝑇(𝑎
2

1
)
(𝜏−1)/(𝜏−2)

(2𝜆max)
𝜏/(𝜏−2)

.

(63)

By 𝜏 > 2, and 𝜃 = 𝜏/(𝜏 − 1), it follows that

sin (𝑙𝜋/𝑝𝑇)

(2𝜆max) ≤ (𝑎2/𝑎1)
2/𝜃
. (64)

For integer 𝑝 > 1, 𝑇 ≥ 1, 𝑙 ∈ N \ {0}, 𝑝𝑇/𝑙 ∈ N \ {0}, we have
0 < 𝑙𝜋/𝑝𝑇 ≤ 𝜋, 0 < 𝜋/𝑝𝑇 ≤ 𝜋/2.

If 𝑝𝑇 is even, then 𝜆max = 2. By assumption 𝑎
2
/𝑎
1
≤

((1/4) sin(𝜋/𝑝𝑇))𝜃/2 we have sin(𝑙𝜋/𝑝𝑇) ≤ sin(𝜋/𝑝𝑇), which
implies that 𝑙 = 1 or 𝑙 = 𝑝𝑇 − 1. If 𝑝𝑇 > 2, then 𝑝𝑇/𝑙 =
𝑝𝑇/(𝑝𝑇 − 1) ∉ N. So we have 𝑙 = 1.

If 𝑝𝑇 is odd, then 𝜆max = 2 cos(𝜋/2𝑝𝑇). By assumption
𝑎
2
/𝑎
1
≤ ((1/2) sin(𝜋/2𝑝𝑇))𝜃/2, we have sin(𝑙𝜋/𝑝𝑇) ≤

sin(𝜋/𝑝𝑇), so 𝑙 = 1. This completes the proof.
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This paper investigates dynamical behaviors of the stochastic Hopfield neural networks with mixed time delays. The mixed time
delays under consideration comprise both the discrete time-varying delays and the distributed time-delays. By employing the theory
of stochastic functional differential equations and linear matrix inequality (LMI) approach, some novel criteria on asymptotic
stability, ultimate boundedness, and weak attractor are derived. Finally, a numerical example is given to illustrate the correctness
and effectiveness of our theoretical results.

1. Introduction

The well-known Hopfield neural networks were firstly intro-
duced by Hopfield [1, 2] in early 1980s. Since then, both the
mathematical analysis and practical applications of Hopfield
neural networks have gained considerable research attention.
The Hopfield neural networks have already been successfully
applied in many different areas such as combinatorial opti-
mization, knowledge acquisition, and pattern recognition,
see, for example, [3–5]. In both the biological and artificial
neural networks, the interactions between neurons are gen-
erally asynchronous, which give rise to the inevitable signal
transmission delays. Also, in electronic implementation of
analog neural networks, time delay is usually time-varying
due to the finite switching speed of amplifiers. Note that con-
tinuously distributed delays have gained particular attention,
since a neural network usually has a spatial nature due to the
presence of an amount of parallel pathways of a variety of
axon sizes and lengths.

Recently, it has been well recognized that stochastic dis-
turbances are ubiquitous and inevitable in various systems,
ranging from electronic implementations to biochemical sys-
tems, which are mainly caused by thermal noise and envi-
ronmental fluctuations as well as different orders of ongoing
events in the overall systems [6, 7]. Therefore, considerable

attentions have been paid to investigate the dynamics of
stochastic neural networks, and many results on stochastic
neural networks with delays have been reported in the litera-
ture, see, for example, [8–30] and references therein. Among
which, some sufficient criteria on the stability of uncertain
stochastic neural networks were derived in [8–10]. Almost
sure exponential stability of stochastic neural networks was
discussed in [11–15]. In [16–22], mean square exponential
stability and pth moment exponential stability of stochastic
neural networks were investigated; Some sufficient criteria
on the exponential stability for impulsive stochastic neural
networks were established in [23–26]. In [27], the stability
of discrete-time stochastic neural networks was analyzed,
while exponential stability of stochastic neural networks with
Markovian jump parameters is investigated in [28–30].These
references mainly considered the stability of equilibrium
point of stochastic neural networks. What do we study when
the equilibrium point does not exist?

Except for stability property, boundedness and attractor
are also foundational concepts of dynamical systems. They
play an important role in investigating the uniqueness of
equilibrium, global asymptotic stability, global exponential
stability, the existence of periodic solution, its control and
synchronization [31, 32], and so on. Recently, ultimate bound-
edness and attractor of several classes of neural networks
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with time delays have been reported. Some sufficient cri-
teria were derived in [33, 34], but these results hold only
under constant delays. Following, in [35], the globally robust
ultimate boundedness of integrodifferential neural networks
with uncertainties and varying delays was studied. After that,
some sufficient criteria on the ultimate boundedness of neural
networks with both varying and unbounded delays were
derived in [36], but the concerned systems are deterministic
ones. In [37, 38], a series of criteria on the boundedness,
global exponential stability, and the existence of periodic
solution for nonautonomous recurrent neural networks were
established. In [39–41], the ultimate boundedness and attrac-
tor of the stochastic Hopfield neural networks with time-
varying delays were discussed. To the best of our knowledge,
for stochastic neural networks with mixed time delays, there
are few published results on the ultimate boundedness and
weak attractor.Therefore, the arising questions about the ulti-
mate boundedness, weak attractor, and asymptotic stability
of the stochastic Hopfield neural networks with mixed time
delays are important yet meaningful.

The left of the paper is organized as follows and some
preliminaries are in Section 2, Section 3 presents our main
results, a numerical example and conclusions will be in
Sections 4 and 5, respectively.

2. Preliminaries

Consider the following stochastic Hopfield neural networks
with mixed time delays:

𝑑𝑥 (𝑡) = [ − 𝐶𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜏(𝑡)

𝑔 (𝑥 (𝑠)) 𝑑𝑠 + 𝐽] 𝑑𝑡

+ [𝜎
1
𝑥 (𝑡) + 𝜎

2
𝑥 (𝑡 − 𝜏 (𝑡))] 𝑑𝑤 (𝑡) ,

(1)

where 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
)
𝑇 is the state vector associated with

the neurons, 𝐶 = diag{𝑐
1
, . . . , 𝑐

𝑛
}, 𝑐
𝑖

> 0 represents the
rate with which the 𝑖th unit will reset its potential to the
resting state in isolation when being disconnected from
the network and the external stochastic perturbation; 𝐴 =

(𝑎
𝑖𝑗
)
𝑛×𝑛

, 𝐵 = (𝑏
𝑖𝑗
)
𝑛×𝑛

and 𝐷 = (𝑑
𝑖𝑗
)
𝑛×𝑛

represent the con-
nection weight matrix; 𝐽 = (𝐽

1
, . . . , 𝐽

𝑛
)
𝑇, 𝐽
𝑖
denotes the

external bias on the 𝑖th unit; 𝑓
𝑗
and 𝑔

𝑗
denote activation

functions, 𝑓(𝑥(𝑡)) = (𝑓
1
(𝑥
1
(𝑡)), . . . , 𝑓

𝑛
(𝑥
𝑛
(𝑡)))
𝑇, 𝑔(𝑥(𝑡)) =

(𝑔
1
(𝑥
1
(𝑡)), . . . , 𝑔

𝑛
(𝑥
𝑛
(𝑡)))
𝑇; 𝜎
1
, 𝜎
2

∈ 𝑅
𝑛×𝑛 are the diffu-

sion coefficient matrices; 𝑤(𝑡) is one-dimensional Brownian
motion defined on a complete probability space (Ω,F, 𝑃)

with a natural filtration {F
𝑡
}
𝑡≥0

generated by {𝑤(𝑠) : 0 ≤ 𝑠 ≤

𝑡}; there exists a positive constant 𝜏 such that the transmission
delay 𝜏(𝑡) satisfies

0 ≤ 𝜏 (𝑡) ≤ 𝜏. (2)

The initial conditions are given in the following form:

𝑥 (𝑠) = 𝜉 (𝑠) , −𝜏 ≤ 𝑠 ≤ 0, 𝑗 = 1, . . . , 𝑛, (3)

where 𝜉(𝑠) = (𝜉
1
(𝑠), . . . , 𝜉

𝑛
(𝑠))
𝑇 is 𝐶([−𝜏, 0]; 𝑅𝑛)-valued func-

tion, F
0
-measurable 𝑅

𝑛-valued random variable satisfying
‖𝜉‖
2

𝜏
= sup

−𝜏≤𝑠≤0
𝐸‖𝜉(𝑠)‖

2

< ∞, ‖ ⋅ ‖ is the Euclidean norm,
and 𝐶([−𝜏, 0]; 𝑅

𝑛
) is the space of all continuous 𝑅𝑛-valued

functions defined on [−𝜏, 0].
Let 𝐹(𝑥

𝑡
, 𝑡) = −𝐶𝑥(𝑡) + 𝐴𝑓(𝑥(𝑡)) + 𝐵𝑓(𝑥(𝑡 − 𝜏(𝑡))) +

𝐷∫
𝑡

𝑡−𝜏(𝑡)
𝑔(𝑥(𝑠))𝑑𝑠+𝐽,𝐺(𝑥

𝑡
, 𝑡) = 𝜎

1
𝑥(𝑡)+𝜎

2
𝑥(𝑡−𝜏(𝑡)), where

𝑥
𝑡
= {𝑥 (𝑡 + 𝜃) : −𝜏 ≤ 𝜃 ≤ 0, 𝑡 ≥ 0} = 𝜑 (𝜃) . (4)

Then system (1) can be written by

𝑑𝑥 (𝑡) = 𝐹 (𝑥
𝑡
, 𝑡) 𝑑𝑡 + 𝐺 (𝑥

𝑡
, 𝑡) 𝑑𝑤 (𝑡) . (5)

Throughout this paper, the following assumption will be
considered.

(A1) There exist constants 𝑙−
𝑖
, 𝑙+
𝑖
,𝑚−
𝑖
and𝑚

+

𝑖
such that

𝑙
−

𝑖
≤
𝑓
𝑖
(𝑥) − 𝑓

𝑖
(𝑦)

𝑥 − 𝑦
≤ 𝑙
+

𝑖
,

𝑚
−

𝑖
≤
𝑔
𝑖
(𝑥) − 𝑔

𝑖
(𝑦)

𝑥 − 𝑦
≤ 𝑚
+

𝑖
,

∀𝑥, 𝑦 ∈ 𝑅. (6)

Remark 1. It follows from [42] that under the assumption
(A1), system (1) has a global solution on 𝑡 ≥ 0. Moreover,
under assumption 1, it is not difficult to prove that 𝐹(𝑥

𝑡
, 𝑡)

and 𝐺(𝑥
𝑡
, 𝑡) satisfy the local Lipschitz condition in [43].

Remark 2. We note that assumption (A1) is less conservative
than that in [8, 9, 39], since the constants 𝑙−

𝑖
, 𝑙+
𝑖
, 𝑚−
𝑖
and 𝑚

+

𝑖

are allowed to be positive, negative numbers, or zeros.

The notation 𝐴 > 0 (resp., 𝐴 ≥ 0) means that matrix
𝐴 is symmetric positive definite (resp., positive semidefinite).
𝐴
𝑇 denotes the transpose of the matrix𝐴. 𝜆min(𝐴) represents

the minimum eigenvalue of matrix 𝐴. Denote by 𝐶(𝑅
𝑛
×

[−𝜏,∞); 𝑅
+
) the family of continuous functions from 𝑅

𝑛
×

[−𝜏,∞) to 𝑅
+

= [0,∞). Let 𝐶
2,1
(𝑅
𝑛
× [−𝜏,∞); 𝑅

+
) be

the family of all continuous nonnegative functions 𝑉(𝑥, 𝑡)
defined on 𝑅

𝑛
× [−𝜏,∞) such that they are continuously

twice differentiable in 𝑥 and once in 𝑡. Given 𝑉 ∈ 𝐶
2,1
(𝑅
𝑛
×

[−𝜏,∞); 𝑅
+
), we define the functional L𝑉 : 𝐶([−𝜏, 0]; 𝑅

𝑛
) ×

𝑅
+
→ 𝑅 by

L𝑉 (𝜑, 𝑡) = 𝑉
𝑡
(𝜑 (0) , 𝑡) + 𝑉

𝑥
(𝜑 (0) , 𝑡) 𝐹 (𝜑, 𝑡)

+
1

2
trace [𝐺𝑇 (𝜑, 𝑡) 𝑉

𝑥𝑥
(𝜑 (0) , 𝑡) 𝐺 (𝜑, 𝑡)] ,

(7)

where 𝑉
𝑥
(𝑥, 𝑡) = (𝑉

𝑥1
(𝑥, 𝑡), . . . , 𝑉

𝑥𝑛
(𝑥, 𝑡)) and 𝑉

𝑥𝑥
(𝑥, 𝑡) =

(𝑉
𝑥𝑖𝑥𝑗

(𝑥, 𝑡))
𝑛×𝑛

.
The following lemmas will be used in establishing our

main results.

Lemma 3 (see [44]). For any positive definite matrix 𝑃 > 0,
scalar 𝛾 > 0, vector function 𝑓 : [0, 𝛾] → 𝑅

𝑛 such that
the integrations concerned are well defined, and the following
inequality holds:

(∫

𝛾

0

𝑓 (𝑠) 𝑑𝑠)

𝑇

𝑃(∫

𝛾

0

𝑓 (𝑠) 𝑑𝑠) ≤ 𝛾∫

𝛾

0

𝑓
𝑇

(𝑠) 𝑃𝑓 (𝑠) 𝑑𝑠. (8)
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Lemma 4 (see [43]). Suppose that system (5) satisfies the local
Lipschitz condition and the following assumptions hold.

(A2) There are two functions𝑉 ∈ 𝐶
2,1
(𝑅
𝑛
×[−𝜏,∞); 𝑅

+
) and

𝑈 ∈ 𝐶(𝑅
𝑛
×[−𝜏,∞); 𝑅

+
) and two probability measures

𝜇(⋅) and 𝜇(⋅) on [−𝜏, 0] such that

lim
‖𝑥‖→∞

inf
0≤𝑡≤∞

𝑉 (𝑥, 𝑡) = ∞, (9)

while for all (𝜑, 𝑡) ∈ 𝐶([−𝜏, 0]; 𝑅
𝑛
) × 𝑅
+,

L𝑉 (𝜑, 𝑡) ≤ 𝛼
1
− 𝛼
2
𝑉 (𝜑 (0) , 𝑡)

+ 𝛼
3
∫

0

−𝜏

𝑉 (𝜑 (𝜃) , 𝑡 + 𝜃) 𝑑𝜇 (𝜃)

− 𝑈 (𝜑 (0) , 𝑡)

+ 𝛼∫

0

−𝜏

𝑈(𝜑 (𝜃) , 𝑡 + 𝜃) 𝑑𝜇 (𝜃) ,

(10)

where 𝛼
1
≥ 0, 𝛼

2
> 𝛼
3
≥ 0 and 𝛼 ∈ (0, 1).

(A3) If there is a pair of positive constants 𝑐 and 𝑝 such that

𝑐‖𝑥‖
𝑝
≤ 𝑉 (𝑥, 𝑡) , ∀ (𝑥, 𝑡) ∈ 𝑅

𝑛
× [−𝜏,∞) . (11)

Then the unique global solution 𝑥(𝑡) to system (5) obeys

lim sup
𝑡→∞

𝐸‖𝑥 (𝑡)‖
𝑝
≤
𝛼
1

𝑐𝜀
, (12)

where 𝜀 = min{𝜀
1
, 𝜀
2
} while 𝜀

2
= − ln(𝛼)/𝜏 and 𝜀

1
> 0

is the unique root to the following equation:

𝛼
2
= 𝜀
1
+ 𝛼
3
𝑒
𝜀1𝜏. (13)

If, furthermore, 𝛼
1
= 0, then

lim sup
𝑡→∞

1

𝑡
ln (𝐸‖𝑥 (𝑡)‖𝑝) ≤ −𝜀,

lim sup
𝑡→∞

1

𝑡
ln (‖𝑥 (𝑡)‖) ≤ −

𝜀

𝑝
almost surely.

(14)

3. Main Results

Theorem 5. Suppose that there exist some matrices 𝑃 > 0,
𝑈
𝑖
= diag{𝑢

𝑖1
, . . . , 𝑢

𝑖𝑛
} ≥ 0 (𝑖 = 1, 2, 3) and positive constants

𝛾
1
, 𝛾
2
, 𝜆 such that 𝜆−1𝜏𝛾−1

2
∈ (0, 1) and

Σ = (

Δ
1

0 𝑃𝐴 + 𝐿
2
𝑈
1

𝑃𝐵 𝑈
3
𝑀
2

∗ Δ
2

0 𝐿
2
𝑈
2

0

∗ ∗ Δ
3

0 0

∗ ∗ ∗ Δ
4

0

∗ ∗ ∗ ∗ Δ
5

) < 0, (15)

where Δ
1
= (𝛾
1
+ 2𝜆)𝑃 + 2𝜎

𝑇

1
𝑃𝜎
1
− 𝑃𝐶 − 𝐶𝑃 + 𝑈

1
(𝜆𝐼 −

2𝐿
1
) + 𝑈
3
(𝜆𝐼 − 2𝑀

1
), Δ
2
= 2𝜎
𝑇

2
𝑃𝜎
2
+ (𝜆𝐼 − 2𝐿

1
)𝑈
2
, Δ
3
=

2(𝜆 − 1)𝑈
1
, Δ
4
= 2(𝜆 − 1)𝑈

2
, Δ
5
= 2(𝜆 − 1)𝑈

3
+ 𝛾
2
𝐷
𝑇
𝑃𝐷,

𝐿
1
= diag{𝑙−

1
𝑙
+

1
, . . . , 𝑙

−

𝑛
𝑙
+

𝑛
}, 𝐿
2
= diag{𝑙−

1
+ 𝑙
+

1
, . . . , 𝑙

−

𝑛
+ 𝑙
+

𝑛
},𝑀
1
=

diag{𝑚−
1
𝑚
+

1
, . . . , 𝑚

−

𝑛
𝑚
+

𝑛
},𝑀
2
= diag{𝑚−

1
+ 𝑚
+

1
, . . . , 𝑚

−

𝑛
+ 𝑚
+

𝑛
},

∗means the symmetric terms.

Then, the following results hold.

(i) System (1) is stochastically ultimately bounded; that is,
for any 𝛿 ∈ (0, 1), there exists a positive constant 𝐶 =

𝐶(𝛿) such that the solution 𝑥(𝑡) of system (1) satisfies

lim sup
𝑡→∞

𝑃 {‖𝑥 (𝑡)‖ ≤ 𝐶} ≥ 1 − 𝛿. (16)

(ii) If 𝛼
1
= 0, where 𝛼

1
= max(𝛾

3
, 0), 𝜀 > 0 is the same as

defined in Lemma 4,

𝛾
3
= 𝜆
−1
𝐽
𝑇
𝑃𝐽

+

𝑛

∑

𝑖=1

(𝑢
1𝑖
+ 𝑢
2𝑖
)

× { − 2𝑓
2

𝑖
(0) + 2𝜆

−1
𝑓
2

𝑖
(0)

+ 𝜆
−1
(𝑙
+

𝑖
+ 𝑙
−

𝑖
)
2

𝑓
2

𝑖
(0) }

+

𝑛

∑

𝑖=1

𝑢
3𝑖
{ − 2𝑔

2

𝑖
(0) + 2𝜆

−1
𝑔
2

𝑖
(0)

+ 𝜆
−1
(𝑚
+

𝑖
+ 𝑚
−

𝑖
)
2

𝑔
2

𝑖
(0) } ,

(17)

then

lim sup
𝑡→∞

1

𝑡
ln (𝐸‖𝑥 (𝑡)‖2) ≤ −𝜀,

lim sup
𝑡→∞

1

𝑡
ln (‖𝑥 (𝑡)‖) ≤ −

𝜀

2
almost surely.

(18)

Proof. Let the Lyapunov function 𝑉(𝑥, 𝑡) = 𝑥
𝑇
(𝑡)𝑃𝑥(𝑡).

Applying Itô’s formula in [42] to 𝑉(𝑡) along with system (1),
one may obtain the following:

𝑑𝑉 (𝑥, 𝑡) = 2𝑥
𝑇

(𝑡) 𝑃 [𝜎
1
𝑥 (𝑡) + 𝜎

2
𝑥 (𝑡 − 𝜏 (𝑡))] 𝑑𝑤 (𝑡)

+ L𝑉 (𝜑, 𝑡) 𝑑𝑡,

(19)

where

L𝑉 (𝜑, 𝑡) = 2𝑥
𝑇

(𝑡) 𝑃 [− 𝐶𝑥 (𝑡)+𝐴𝑓 (𝑥 (𝑡))+𝐵𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜏(𝑡)

𝑔 (𝑥 (𝑠)) 𝑑𝑠 + 𝐽]

+ [𝜎
1
𝑥 (𝑡) + 𝜎

2
𝑥 (𝑡 − 𝜏 (𝑡))]

𝑇

× 𝑃 [𝜎
1
𝑥 (𝑡) + 𝜎

2
𝑥 (𝑡 − 𝜏 (𝑡))]

≤ 2𝑥
𝑇

(𝑡) 𝑃 [−𝐶𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡))

+ 𝐵𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))]
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+ 2𝜆𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡)

+ 𝜆
−1
𝐽
𝑇
𝑃𝐽 + 𝜆

−1
(∫

𝑡

𝑡−𝜏(𝑡)

𝐷𝑔 (𝑥 (𝑠)) 𝑑𝑠)

𝑇

× 𝑃(∫

𝑡

𝑡−𝜏(𝑡)

𝐷𝑔 (𝑥 (𝑠)) 𝑑𝑠)

+ 2 [𝑥
𝑇

(𝑡) 𝜎
𝑇

1
𝑃𝜎
1
𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝜎
𝑇

2
𝑃𝜎
2
𝑥 (𝑡 − 𝜏 (𝑡))] .

(20)

From Lemma 3, it follows that

𝜆
−1
(∫

𝑡

𝑡−𝜏(𝑡)

𝐷𝑔 (𝑥 (𝑠)) 𝑑𝑠)

𝑇

𝑃(∫

𝑡

𝑡−𝜏(𝑡)

𝐷𝑔 (𝑥 (𝑠)) 𝑑𝑠)

≤ 𝜆
−1
(∫

𝑡

𝑡−𝜏

𝐷𝑔 (𝑥 (𝑠)) 𝑑𝑠)

𝑇

𝑃(∫

𝑡

𝑡−𝜏

𝐷𝑔 (𝑥 (𝑠)) 𝑑𝑠)

≤ 𝜆
−1
𝜏∫

𝑡

𝑡−𝜏

𝑔
𝑇

(𝑥 (𝑠))𝐷
𝑇
𝑃𝐷𝑔 (𝑥 (𝑠)) 𝑑𝑠

= 𝜆
−1
𝜏∫

0

−𝜏

𝑔
𝑇

(𝑥 (𝑡 + 𝜃))𝐷
𝑇
𝑃𝐷𝑔 (𝑥 (𝑡 + 𝜃)) 𝑑𝜃

= 𝜆
−1
𝜏∫

0

−𝜏

𝑔
𝑇
(𝜑 (𝜃))𝐷

𝑇
𝑃𝐷𝑔 (𝜑 (𝜃)) 𝑑𝜃.

(21)

From (A1), it follows that for 𝑖 = 1, . . . , 𝑛,

0 ≤ − 2

𝑛

∑

𝑖=1

𝑢
1𝑖
[𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑓

𝑖
(0) − 𝑙

+

𝑖
𝑥
𝑖
(𝑡)]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑓

𝑖
(0) − 𝑙

−

𝑖
𝑥
𝑖
(𝑡)]

= − 2

𝑛

∑

𝑖=1

𝑢
1𝑖
{𝑓
2

𝑖
(𝑥
𝑖
(𝑡)) − (𝑙

+

𝑖
+ 𝑙
−

𝑖
) 𝑥
𝑖
(𝑡) 𝑓
𝑖
(𝑥
𝑖
(𝑡))

+ 𝑙
+

𝑖
𝑙
−

𝑖
𝑥
2

𝑖
(𝑡) + 𝑓

2

𝑖
(0) − 2𝑓

𝑖
(0) 𝑓
𝑖
(𝑥
𝑖
(𝑡))

+ (𝑙
+

𝑖
+ 𝑙
−

𝑖
) 𝑥
𝑖
(𝑡) 𝑓
𝑖
(0) }

= − 2

𝑛

∑

𝑖=1

𝑢
1𝑖
{𝑓
2

𝑖
(𝑥
𝑖
(𝑡)) − (𝑙

+

𝑖
+ 𝑙
−

𝑖
) 𝑥
𝑖
(𝑡) 𝑓
𝑖
(𝑥
𝑖
(𝑡))

+𝑙
+

𝑖
𝑙
−

𝑖
𝑥
2

𝑖
(𝑡)}

+

𝑛

∑

𝑖=1

𝑢
1𝑖
[ − 2𝑓

2

𝑖
(0) + 4𝑓

𝑖
(0) 𝑓
𝑖
(𝑥
𝑖
(𝑡))

− 2 (𝑙
+

𝑖
+ 𝑙
−

𝑖
) 𝑥
𝑖
(𝑡) 𝑓
𝑖
(0) ]

≤ − 2

𝑛

∑

𝑖=1

𝑢
1𝑖
{𝑓
2

𝑖
(𝑥
𝑖
(𝑡)) − (𝑙

+

𝑖
+ 𝑙
−

𝑖
) 𝑥
𝑖
(𝑡) 𝑓
𝑖
(𝑥
𝑖
(𝑡))

+ 𝑙
+

𝑖
𝑙
−

𝑖
𝑥
2

𝑖
(𝑡)}

+

𝑛

∑

𝑖=1

𝑢
1𝑖
{ − 2𝑓

2

𝑖
(0) + 2 [𝜆𝑓

2

𝑖
(𝑥
𝑖
(𝑡)) + 𝜆

−1
𝑓
2

𝑖
(0)]

+ [𝜆𝑥
2

𝑖
(𝑡) + 𝜆

−1
(𝑙
+

𝑖
+ 𝑙
−

𝑖
)
2

𝑓
2

𝑖
(0)] }

= 2 (𝜆 − 1) 𝑓
𝑇

(𝑥 (𝑡)) 𝑈
1
𝑓 (𝑥 (𝑡)) + 2𝑓

𝑇

(𝑥 (𝑡)) 𝑈
1
𝐿
2
𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑈
1
(𝜆𝐼 − 2𝐿

1
) 𝑥 (𝑡)

+

𝑛

∑

𝑖=1

𝑢
1𝑖
{−2𝑓
2

𝑖
(0) + 2𝜆

−1
𝑓
2

𝑖
(0) + 𝜆

−1
(𝑙
+

𝑖
+ 𝑙
−

𝑖
)
2

𝑓
2

𝑖
(0)} .

(22)

Similarly, one derives that

0 ≤ − 2

𝑛

∑

𝑖=1

𝑢
2𝑖
[𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝑓

𝑖
(0) − 𝑙

+

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝑓

𝑖
(0) − 𝑙

−

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))]

≤ 2 (𝜆 − 1) 𝑓
𝑇

(𝑥 (𝑡 − 𝜏 (𝑡))) 𝑈
2
𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 2𝑓
𝑇

(𝑥 (𝑡 − 𝜏 (𝑡))) 𝑈
2
𝐿
2
𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑈
2
(𝜆𝐼 − 2𝐿

1
) 𝑥 (𝑡 − 𝜏 (𝑡))

+

𝑛

∑

𝑖=1

𝑢
2𝑖
{−2𝑓
2

𝑖
(0) + 2𝜆

−1
𝑓
2

𝑖
(0) + 𝜆

−1
(𝑙
+

𝑖
+ 𝑙
−

𝑖
)
2

𝑓
2

𝑖
(0)} ,

0 ≤ − 2

𝑛

∑

𝑖=1

𝑢
3𝑖
[𝑔
𝑖
(𝑥
𝑖
(𝑡)) − 𝑔

𝑖
(0) − 𝑚

+

𝑖
𝑥
𝑖
(𝑡)]

× [𝑔
𝑖
(𝑥
𝑖
(𝑡)) − 𝑔

𝑖
(0) − 𝑚

−

𝑖
𝑥
𝑖
(𝑡)]

≤ 2 (𝜆 − 1) 𝑔
𝑇

(𝑥 (𝑡)) 𝑈
3
𝑔 (𝑥 (𝑡)) + 2𝑔

𝑇

(𝑥 (𝑡)) 𝑈
3
𝑀
2
𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑈
3
(𝜆𝐼 − 2𝑀

1
) 𝑥 (𝑡)

+

𝑛

∑

𝑖=1

𝑢
3𝑖
{−2𝑔
2

𝑖
(0) + 2𝜆

−1
𝑔
2

𝑖
(0) + 𝜆

−1
(𝑚
+

𝑖
+ 𝑚
−

𝑖
)
2

𝑔
2

𝑖
(0)} .

(23)

Further from (20)–(23), one derives

L𝑉 (𝜑, 𝑡) ≤ 2𝑥
𝑇

(𝑡)𝑃 [−𝐶𝑥 (𝑡)+𝐴𝑓 (𝑥 (𝑡))+𝐵𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))]

+ 2𝜆𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡)

+ 𝜆
−1
𝜏∫

0

−𝜏

𝑔
𝑇
(𝜑 (𝜃))𝐷

𝑇
𝑃𝐷𝑔 (𝜑 (𝜃)) 𝑑𝜃
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+ 2 [𝑥
𝑇

(𝑡) 𝜎
𝑇

1
𝑃𝜎
1
𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝜎
𝑇

2
𝑃𝜎
2
𝑥 (𝑡 − 𝜏 (𝑡))]

+ 2 (𝜆 − 1) 𝑓
𝑇

(𝑥 (𝑡)) 𝑈
1
𝑓 (𝑥 (𝑡))

+ 2𝑓
𝑇

(𝑥 (𝑡)) 𝑈
1
𝐿
2
𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑈
1
(𝜆𝐼 − 2𝐿

1
) 𝑥 (𝑡)

+ 2 (𝜆 − 1) 𝑓
𝑇

(𝑥 (𝑡 − 𝜏 (𝑡))) 𝑈
2
𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 2𝑓
𝑇

(𝑥 (𝑡 − 𝜏 (𝑡))) 𝑈
2
𝐿
2
𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑈
2
(𝜆𝐼 − 2𝐿

1
) 𝑥 (𝑡 − 𝜏 (𝑡))

+ 2 (𝜆 − 1) 𝑔
𝑇

(𝑥 (𝑡)) 𝑈
3
𝑔 (𝑥 (𝑡))

+ 2𝑔
𝑇

(𝑥 (𝑡)) 𝑈
3
𝑀
2
𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) 𝑈
3
(𝜆𝐼 − 2𝑀

1
) 𝑥 (𝑡)

+ 𝛾
3
+ 𝛾
1
𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) − 𝛾
1
𝑉 (𝜑 (0) , 𝑡)

+ 𝛾
2
𝑔
𝑇

(𝑥 (𝑡))𝐷
𝑇
𝑃𝐷𝑔 (𝑥 (𝑡))

− 𝛾
2
𝑔
𝑇
(𝜑 (0))𝐷

𝑇
𝑃𝐷𝑔 (𝜑 (0))

≤ 𝜂
𝑇

(𝑡) Σ𝜂 (𝑡) − 𝛾
1
𝑉 (𝜑 (0) , 𝑡)

− 𝛾
2
𝑔
𝑇
(𝜑 (0))𝐷

𝑇
𝑃𝐷𝑔 (𝜑 (0)) + 𝛾

3

+ 𝜆
−1
𝜏∫

0

−𝜏

𝑔
𝑇
(𝜑 (𝜃))𝐷

𝑇
𝑃𝐷𝑔 (𝜑 (𝜃)) 𝑑𝜃

≤ 𝛾
3
− 𝛾
1
𝑉 (𝜑 (0) , 𝑡) − 𝑈 (𝜑 (0) , 𝑡)

+ 𝜆
−1
𝜏𝛾
−1

2
∫

0

−𝜏

𝑈(𝜑 (𝜃) , 𝑡 + 𝜃) 𝑑𝜃,

(24)

where 𝜂(𝑡) = (𝑥
𝑇
(𝑡), 𝑥𝑇(𝑡 − 𝜏(𝑡)), 𝑓𝑇(𝑥(𝑡)), 𝑓𝑇(𝑥(𝑡 − 𝜏(𝑡))),

𝑔
𝑇
(𝑥(𝑡)))

𝑇, 𝜑(0) = 𝑥(𝑡), 𝑈(𝑥, 𝑡) = 𝛾
2
𝑔
𝑇
(𝑥)𝐷
𝑇
𝑃𝐷𝑔(𝑥),

𝛾
3
= 𝜆
−1
𝐽
𝑇
𝑃𝐽

+

𝑛

∑

𝑖=1

(𝑢
1𝑖
+ 𝑢
2𝑖
)

× {−2𝑓
2

𝑖
(0) + 2𝜆

−1
𝑓
2

𝑖
(0) + 𝜆

−1
(𝑙
+

𝑖
+ 𝑙
−

𝑖
)
2

𝑓
2

𝑖
(0)}

+

𝑛

∑

𝑖=1

𝑢
3𝑖
{ − 2𝑔

2

𝑖
(0) + 2𝜆

−1
𝑔
2

𝑖
(0)

+ 𝜆
−1
(𝑚
+

𝑖
+ 𝑚
−

𝑖
)
2

𝑔
2

𝑖
(0) } .

(25)

Let 𝛼
1
= max(𝛾

3
, 0), 𝛼

2
= 𝛾
1
, 𝛼
3
= 0, 𝛼 = 𝜆

−1
𝜏𝛾
−1

2
, 𝑐 =

𝜆min(𝑃). Then it follows from Lemma 4 that

lim sup
𝑡→∞

𝐸‖𝑥 (𝑡)‖
2
≤

𝛼
1

𝜆min (𝑃) 𝜀
≤

𝛾
4

𝜆min (𝑃) 𝜀
, (26)

where 𝜀 > 0 is the same as defined in Lemma 4,

𝛾
4
= 𝜆
−1
𝐽
𝑇
𝑃𝐽

+

𝑛

∑

𝑖=1

(𝑢
1𝑖
+ 𝑢
2𝑖
) {2𝜆
−1
𝑓
2

𝑖
(0) + 𝜆

−1
(𝑙
+

𝑖
+ 𝑙
−

𝑖
)
2

𝑓
2

𝑖
(0)}

+

𝑛

∑

𝑖=1

𝑢
3𝑖
{2𝜆
−1
𝑔
2

𝑖
(0) + 𝜆

−1
(𝑚
+

𝑖
+ 𝑚
−

𝑖
)
2

𝑔
2

𝑖
(0)} .

(27)

Therefore, for any 𝛿 > 0, it follows from Chebyshev’s
inequality that

lim sup
𝑡→∞

𝑃{‖𝑥 (𝑡)‖ > √
𝛾
4

𝛿𝜆min (𝑃) 𝜀
}

≤ lim sup
𝑡→∞

𝐸‖𝑥 (𝑡)‖
2

𝛾
4
/𝛿𝜆min (𝑃) 𝜀

≤ 𝛿.

(28)

If, furthermore, 𝛼
1
= 0, then it follows from Lemma 4 that

(ii) holds.

Theorem 5 shows that there exists 𝑡
0
> 0 such that for any

𝑡 ≥ 𝑡
0
, 𝑃{‖𝑥(𝑡)‖ ≤ 𝐶} ≥ 1 − 𝛿. Let 𝐵

𝐶
denote by

𝐵
𝐶
= {𝑥 ∈ 𝑅

𝑛
| ‖𝑥 (𝑡)‖ ≤ 𝐶, 𝑡 ≥ 𝑡

0
} . (29)

Clearly, 𝐵
𝐶
is closed, bounded, and invariant. Moreover,

lim sup
𝑡→∞

inf
𝑦∈𝐵𝐶

󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑦
󵄩󵄩󵄩󵄩 = 0, (30)

with no less than probability 1 − 𝛿, which means that 𝐵
𝐶

attracts the solutions infinitely many times with no less than
probability 1−𝛿, so wemay say that 𝐵

𝐶
is a weak attractor for

the solutions.

Theorem 6. Suppose that all conditions of Theorem 5 hold,
then there exists a weak attractor 𝐵

𝐶
for the solutions of system

(1).

Remark 7. Compared with [39–41], assumption (A1) is less
conservative than that in [39] and system (1) includes mixed
time delays, which is more complex than that in [39–41]. In
addition, Lemma 4 is firstly used to investigate the dynamical
behaviors of stochastic neural networks with mixed time
delays. The bound for L𝑉 may be in a much weaker form.
Our results do not only deal with the asymptotic moment
estimation but also the path wise (almost sure) estimation.
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Figure 1: Time trajectories (a) as well as the set 𝐵
𝐶
and several typical phase portraits (b) for the system in Example 8 (color online). Where

initial values for 𝑡 < 0 are chosen as 𝑥(𝑡) = (50, 80). For (b), only phase portraits for 𝑡 ≥ 0 are shown.

4. Numerical Example

In this section, a numerical example is presented to demon-
strate the validity and effectiveness of our theoretical results.

Example 8. Consider the following stochastic Hopfield neu-
ral networks with mixed time delays:

𝑑𝑥 (𝑡) = [ − 𝐶𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜏(𝑡)

𝑔 (𝑥 (𝑠)) 𝑑𝑠 + 𝐽] 𝑑𝑡

+ [𝜎
1
𝑥 (𝑡) + 𝜎

2
𝑥 (𝑡 − 𝜏 (𝑡))] 𝑑𝑤 (𝑡) ,

(31)

where 𝐽 = (0.01, 0.01)
𝑇, 𝜏(𝑡) = 0.2| sin 𝑡|,

𝐴 = (
−0.2 0.3

0.2 −0.5
) , 𝐵 = (

0.5 −1

−1.4 0.8
) ,

𝐶 = (
1.2 0

0 1.2
) , 𝐷 = (

0.3 −0.1

0.1 0.4
) ,

𝜎
1
= (

0.2 0.1

0.3 0.2
) , 𝜎

2
= (

0.1 −0.2

−0.2 0.3
) ,

(32)

and 𝑓(𝑥) = 𝑔(𝑥) = tanh(𝑥), 𝑤(𝑡) is one-dimensional Brown-
ian motion. Then 𝐿

1
= 𝑀
1
= 0, 𝐿

2
= 𝑀
2
= diag{1, 1}. By

using theMatlab LMIControl Toolbox [45], for 𝛾
1
= 𝛾
2
= 𝜆 =

0.5, 𝜏 = 0.2, based onTheorem 5, such system is stochastically

ultimately bounded when 𝑃, 𝑈
1
, 𝑈
2
and 𝑈

3
are chosen as

follows:

𝑃 = (
0.3278 0.2744

0.2744 0.3567
) , 𝑈

1
= (

0.0668 0

0 0.2255
) ,

𝑈
2
= (

0.1263 0

0 0.1218
) , 𝑈

3
= (

0.0901 0

0 0.1031
) .

(33)

For 𝛿 = 0.01, 𝛾
1
= 𝛾
2
= 𝜆 = 0.5, 𝜏 = 0.2, we obtain

𝜀 = 0.5 and constant 𝐶 = 𝐶(𝛿) = √𝐽𝑇𝑃𝐽/𝜆min(𝑃)𝛿𝜆𝜀 =

√0.1141/0.0675 = 1.3001. Then 𝐵
𝐶
= {𝑥 ∈ 𝑅

2
| ‖𝑥(𝑡)‖ ≤

1.3001, 𝑡 ≥ 𝑡
0
}, 𝑃(𝑥 ∈ 𝐵

𝐶
) ≥ 0.99. For the system in

Example 8 (color online), Figure 1(a) shows time trajectories,
and Figure 1(b) shows the set 𝐵

𝐶
and several typical phase

portraits, where initial value for 𝑡 < 0 is chosen as 𝑥(𝑡) =

(50, 80). In Figure 1(b), only phase portraits for 𝑡 ≥ 0

are shown. From Figure 1, one can easily find that these
trajectories are almost all attracted by the set 𝐵

𝐶
.

5. Conclusion

In this paper, by using the theory of stochastic functional dif-
ferential equations and linear matrix inequality, new results
and sufficient criteria on the asymptotic stability, ultimate
boundedness, and attractor of stochastic Hopfield neural
networkswithmixed time delays are established. Anumerical
example is also presented to demonstrate the correctness of
our theoretical results.
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