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In this work, some novel optical solutions for the (1 + 1)-dimensional generalized M-fractional coupled nonlinear Schrödinger
system (GMFCNLS) arising in ocean engineering, plasma waves, and nonlinear optics have been investigated. After utilizing a
modified (G′/G, 1/G)-expansion method and the G′/ðbG′ +G + aÞ-expansion method, many types of novel optical solutions
including the bell-shape soliton solutions, the blow-up solutions, the periodic wave solutions, and the mixed solitary wave
solutions are obtained; if we select different values of wave velocity, coefficients, and orders, the dynamic properties and
physical structures of these optical solutions are simulated and discussed, which can help us to further understand the inner
structure of the system.

1. Introduction

In recent years, due to the wide application of nonlinear partial
differential equations (PDE) especially fractional PDE models
in engineering and mathematical physics, many topics in these
fields have been characterized, including mechanics [1, 2], eco-
logical and economic systems [3], atmospheric space science
[4], and optical fiber systems [5–7]. For a better explanation
of the complex feature of these phenomena, searching for ana-
lytic explicit solutions of these models plays an important and
significant role. Up to now, many powerful methods for this
subject have been built: the improved F-expansion method
[8], the G′/G-expansion method [9], the improved G′/G2

-expansion method [10], the improved (m +G′/G)-expansion
method [11], the (G′/G, 1/G)-expansion method [12], the
improved extended Tanh technique [13], the subequation tech-
nique [14], the Sine-Gordon expansion method [15], the EXP
(−φðξÞ) technique [16], the Bäcklund transformation method
[17], the Darboux transformation method [18], the Hirota
bilinear method [19], the first integral method [20], the Jacobi
elliptic function expansion method [21], the Lie symmetry
method [22], the new Kudryashov method [23], etc. [24–30].

Some classical definitions about the fractional derivative
are discussed and established by many researchers till now,
including Riemann-Liouville’s fractional derivatives [31],
Caputo’s fractional derivatives [32], He’s fractional deriva-
tive [33], Jumarie’s fractional derivative [34], Atangana’s
fractional derivative [35], conformable fractional derivative
[36], and the M-fractional derivative [37–39], which will
be utilized in this article.

In the present article, we consider the following (1 + 1
)-dimensional generalized M-fractional coupled nonlinear
Schrödinger equations (GMFCNLS) in the form [40–48]

iDα
t q1 + iρDβ

x q1 + σD2β
x q1 + δ q1j j2 + γ q2j j2À Á

q1 = 0, 0 < α ≤ 1, 0 < β ≤ 1,

iDα
t q2 − iρDβ

x q2 + σD2β
x q2 + δ γ q1j j2 + q2j j2À Á

q2 = 0,

8<
:

ð1Þ

where Dα
t =Dγ2,α

M,t ,D
β
x =Dγ1,β

M,x ,D
2β
x =Dγ1,β

M,x ðDγ1,β
M,x Þ,D3β

x =Dγ1,β
M,x ð

Dγ1,β
M,x ðDγ1,β

M,x ÞÞ mean the M-fractional derivative [37]. The
coefficients ρ, σ, δ, γ are real constants; q1 = q1ðx, tÞ, and q2
= q2ðx, tÞ are two complex valued functions with respect to
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the time t and the propagation distance x. In fact, Equation
(1) occur in many fields, such as nonlinear optics, ocean
engineering, and plasma waves. If we select ρ = 0, functions
q1, q2 represent the amplitudes of circularly polarized waves
in a nonlinear optical fiber, nonzero constant δ represents
self-focusing and self-defocusing nonlinearity, and nonzero
constant γ represents cross-phase modulation and self-
phase modulation [40]; the authors investigated the analyti-
cal solutions of Equation (1) by using the extended trial
equation method [41], bifurcation analysis method [42],
fractional Riccati method [43], Kudryashov’s method [44],
etc. [45]. If we select α = β = 1, ρ = λ/2, σ = 1/2, and δ = 1,
Equation (1) is focused in ocean engineering; functions q1,
q2 represent the complex envelope amplitudes of the two
modulated weak resonant waves in two polarizations. The
quadratic dispersions and cubic terms represent the interac-
tions; furthermore, various interesting phenomena, includ-
ing nonlinear pulse stabilization, pedestal elimination in
compressed pulses, and multicomponent Bose-Einstein con-
densation, can be described in Equation (1) [46]. The exact
solutions of Equation (1) have been found by utilizing the
generalized Kudryashov procedure in Ref. [47] and direct
Ansatz method in Ref. [48].

Here, let us review some basic definitions and properties
about the M-fractional derivative which will be further used
in this paper.

Definition 1. For a function f ðtÞ: ½0,∞Þ⟶ R, we defined
the M-fractional derivative operator f ðtÞ of order α as

Dγ,α
M,t f tð Þ = lim

ε⟶0

f tEγ εt1−α
À ÁÀ Á

− f tð Þ
ε

, γ > 0, 0 < α ≤ 1,

ð2Þ

where EγðtÞ =∑∞
k=0t

k/Γðγk + 1Þ is a truncated Mittag-Leffler
function of one parameter.

Also, we have the following important properties
[37–39]:

(1) Dγ,α
M,t f ðtÞ = ðt1−α/Γðγ + 1ÞÞðdf ðtÞ/dtÞ

(2) Dγ,α
M,tðaf ðtÞ + bgðtÞÞ = aDγ,α

M,t f ðtÞ + bDγ,α
M,tgðtÞ, ∀a, b ∈

R

(3) Dγ,α
M,tð f ðtÞgðtÞÞ = f ðtÞDγ,α

M,tgðtÞ + gðtÞDγ,α
M,t f ðtÞ

(4) Dγ,α
M,tð f ðtÞ/gðtÞÞ = ½gðtÞDγ,α

M,t f ðtÞ − f ðtÞDγ,α
M,tgðtÞ�/g2ðt

Þ
(5) Dγ,α

M,tð f ∘ gÞðtÞ = f ′ðgðtÞÞDγ,α
M,tgðtÞ = ðt1−α/Γðγ + 1ÞÞf

′ðgðtÞÞðdgðtÞ/dtÞ
The paper is organized as follows: In Section 2, we intro-

duce the modified (G′/G, 1/G)-expansion method and the
G′/ðbG′ +G + aÞ-expansion method, while in Section 3,
some new types of soliton pulse solutions of the GMFCNLS
are found and discussed by utilizing the proposed method.
Finally, the conclusion is presented in Section 4.

2. Description of the Two Methods

2.1. The Modified (G′/G, 1/G)-Expansion Method. The
(G′/G, 1/G)-expansion method has been proposed by many
authors recently [12, 49]; we give some formal modification
about this method in order to simplify the solving procedure
for Equation (1); a brief description of the technique is pre-
sented as follows.

Step 1. Consider the following nonlinearM-fractional partial
differential equation:

E u, uαt , uβx , uuβx ,⋯
� �

= 0: ð3Þ

Step 2. Using a wave transformation,

u x, tð Þ = u ξð Þ, ξ = Γ γ1 + 1ð Þ
β

kxβ + Γ γ2 + 1ð Þ
α

ωtα, γ1,2 > 0,

ð4Þ

where constants k and ω are to be determined latter. Equa-
tion (3) is converted into a nonlinear ordinary differential
equation (ODE):

O u, u′, u″, uu′,⋯
� �

= 0: ð5Þ

Step 3. Assume that Equation (3) has the following solution:

u = 〠
N

i=0
aiψ

i + 〠
N

i=1
biψ

i−1ϕ, ð6Þ

where N is a balance number, ϕ = ϕðξÞ =G′/G, ψ = ψðξÞ =
1/G, and ai, bi and variable function ξ = ξðx, tÞ are deter-
mined later. And G =GðξÞ is a solution of the following aux-
iliary ODE:

G″ = εG − εμ, ð7Þ

where ε = ±1, μ is an arbitrary real number. We can find the
following constrained condition:

ϕ′ = ε − εμψ − ϕ2,
ψ′ = −ϕψ,
ϕ2 = ε − 2εμψ − ε b2 − εc2 − μ2

À Á
ψ2,

8>><
>>: ð8Þ

where arbitrary constants μ, b and c satisfied the relation
a2 + b2 + μ2 ≠ 0. Equation (7) admits the following solutions.
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Case 1. When ε = 1, we have G = b cosh ξ + c sinh ξ + μ;
thus,

ϕ = G′
G

= b sinh ξ + c cosh ξ

b cosh ξ + c sinh ξ + μ
,

ψ = 1
G

= 1
b cosh ξ + c sinh ξ + μ

:

ð9Þ

Case 2. When ε = −1, we have G = b cos ξ + c sin ξ + μ; thus,

ϕ = G′
G

= −b sin ξ + c cos ξ
b cos ξ + c sin ξ + μ

,

ψ = 1
G

= 1
b cos ξ + c sin ξ + μ

:

ð10Þ

Step 4. Substitute Equations (8) and (6) into Equation (5),
and set the coefficients of ψiði = 0, 1, 2,⋯,NÞ and ψi−1ϕði =
1, 2,⋯,NÞ to zero to yield a set of algebraic equations
(AEs) for ai, bi, b, c, μ, k, and ω. After solving the AEs and
substituting each of the solutions ϕðξÞ, ψðξÞ from (9) and
(10) along with (4) into Equation (3), we can get the solu-
tions of Equation (3).

Remark 2. It was noticed that Refs. [12, 49] were focused on
collecting the coefficients of ϕi and ϕψi−1 to zero, but we are
collecting the coefficients of ψi and ψi−1ϕ to zero, each of
these two ways is correct; the collected direction is decided
by the solutions’ forms of these target equations.

2.2. The G′/ðbG′ +G + aÞ-Expansion Method. With the sim-
ilar steps about the technique 2.1, we give the main steps
about this method.

Step 1. Assume that Equation (3) has the following solution:

u = 〠
N

i=0
ciF

i, ð11Þ

where F = FðξÞ =G′/bG′ +G + a and ci and variable func-
tion ξ = ξðx, tÞ are determined later. b ≠ 0, a are arbitrary
constants, and G =GðξÞ is a solution of the following auxil-
iary ODE:

G″ = −
λ

b
G′ − μ

b2
G −

μ

b2
a, ð12Þ

where λ and μ are two arbitrary real numbers. We can find
the following constrained condition:

F ′ = λ − μ − 1ð ÞF2 + 1
b

2μ − λð ÞF −
1
b2

μ: ð13Þ

Equation (13) admits the following solutions.

Case 1. When Δ = λ2 − 4μ > 0, we have G = −a + p1
eð1/2bÞð−λ−

ffiffiffi
Δ

p Þξ + p2e
ð1/2bÞð−λ+ ffiffiffi

Δ
p Þξ; a, p1, and p2 are arbitrary

constants that satisfy a2 + p21 + p22 ≠ 0, so does in Case 2; thus,

Case 2. When Δ = λ2 − 4μ < 0, we have

G = e−λ/2bξ p1 cos
ffiffiffiffiffiffi
−Δ

p

2b ξ

 !
+ p2 sin

ffiffiffiffiffiffi
−Δ

p

2b ξ

 ! !
− a,

F2 =
λp1 −

ffiffiffiffiffiffi
−Δ

p
p2

� �
cos

ffiffiffiffiffiffi
−Δ

p
/2bξ

� �
+ λp2 +

ffiffiffiffiffiffi
−Δ

p
p1

� �
sin

ffiffiffiffiffiffi
−Δ

p
/2bξ

� �
b λ − 2ð Þp1 −

ffiffiffiffiffiffi
−Δ

p
p2

� �
cos

ffiffiffiffiffiffi
−Δ

p
/2bξ

� �
+ b λ − 2ð Þp2 +

ffiffiffiffiffiffi
−Δ

p
p1

� �
sin

ffiffiffiffiffiffi
−Δ

p
/2bξ

� � ,

F2 =
F2:1 =

λ − 2μ
2b λ − μ − 1ð Þ +

ffiffiffiffiffiffi
−Δ

p

2b λ − μ − 1ð Þ tan
ffiffiffiffiffiffi
−Δ

p

2b ξ

 !
, λ − 2ð Þp2 +

ffiffiffiffiffiffi
−Δ

p
p1 = 0,

F2:2 =
λ − 2μ

2b λ − μ − 1ð Þ −
ffiffiffiffiffiffi
−Δ

p

2b λ − μ − 1ð Þ cot
ffiffiffiffiffiffi
−Δ

p

2b ξ

 !
, λ − 2ð Þp1 −

ffiffiffiffiffiffi
−Δ

p
p2 = 0:

8>>>>><
>>>>>:

ð15Þ

Step 2. Substitute Equations (11) and (13) into Equation (5),
and set the coefficients of Fi to zero to yield a set of AEs for
ci, b, λ, μ, k, and ω. After solving the AEs and substituting

each of the solutions F1, F2 along with (11) and (4) into
Equation (3), we can get the solutions of Equation (3).

In the following, we will use these two methods to solve
the GMFCNLS.

3. Exact Solutions to the GMFCNLS

3.1. Exact Solutions. We can give the following function and
traveling wave transformation:

q1 = u ξð Þeiη1 ,
q2 = v ξð Þeiη2 , ð16Þ

F1 =
p1 λ +

ffiffiffiffi
Δ

p� �
+ p2 λ −

ffiffiffiffi
Δ

p� �
e
ffiffiffi
Δ

p /bξ

bp1 λ − 2 +
ffiffiffiffi
Δ

p� �
+ bp2 λ − 2 −

ffiffiffiffi
Δ

p� �
e
ffiffiffi
Δ

p /bξ
=

λ p2 − p1ð Þ −
ffiffiffiffi
Δ

p
p2 + p1ð Þ

h i
sinh

ffiffiffiffi
Δ

p
/2bξ

� �
+ λ p2 + p1ð Þ −

ffiffiffiffi
Δ

p
p2 − p1ð Þ

h i
cosh

ffiffiffiffi
Δ

p
/2bξ

� �
b λ − 2ð Þ p2 − p1ð Þ −

ffiffiffiffi
Δ

p
p2 + p1ð Þ

h i
sinh

ffiffiffiffi
Δ

p
/2bξ

� �
+ b λ − 2ð Þ p2 + p1ð Þ −

ffiffiffiffi
Δ

p
p2 − p1ð Þ

h i
cosh

ffiffiffiffi
Δ

p
/2bξ

� � ,

F1 =
F1:1 =

λ − 2μ
2b λ − μ − 1ð Þ −

ffiffiffiffi
Δ

p

2b λ − μ − 1ð Þ tanh
ffiffiffiffi
Δ

p

2b ξ

 !
, λ − 2ð Þ p2 − p1ð Þ −

ffiffiffiffi
Δ

p
p2 + p1ð Þ = 0,

F1:2 =
λ − 2μ

2b λ − μ − 1ð Þ −
ffiffiffiffi
Δ

p

2b λ − μ − 1ð Þ coth
ffiffiffiffi
Δ

p

2b ξ

 !
, λ − 2ð Þ p2 + p1ð Þ −

ffiffiffiffi
Δ

p
p2 − p1ð Þ = 0:

8>>>>><
>>>>>:

ð14Þ
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Figure 1: The 3D plot, 2D plot, and contour plot of Re ðq1Þ1 with α = 1, β = 1, and γ1 = γ2 = 1.
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Figure 2: The 3D plot, 2D plot, and contour plot of Re ðq1Þ1 with α = 0:18, β = 0:9, and γ1 = γ2 = 1.

–5

–5

5
10 0.0

0.5

1.0

1.5

2.0

0

1.0
0.5
0.0

5 10 –5 50

0.5

1.0

2.0

1.5

10
x

0.2

0.4

0.6

0.8

1.0
|(q1)2.1|

|(q
1)

2.
1|

x

t

Figure 3: The 3D plot, 2D plot, and contour plot of bell-shape soliton solution jðq1Þ2:1j.
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ξ = Γ γ1 + 1ð Þ
β

kxβ + Γ γ2 + 1ð Þ
α

ωtα,

η1 =
Γ γ1 + 1ð Þ

β
k1x

β + Γ γ2 + 1ð Þ
α

c1t
α,

η2 =
Γ γ1 + 1ð Þ

β
k2x

β + Γ γ2 + 1ð Þ
α

c2t
α,

γ1, γ2 > 0,

ð17Þ

where constants k, k1, k2 and ω, c1, c2 are to be determined
latter.

Substituting Equations (16) and (17) into Equation (1)
and separating the real part and the imaginary part, we
obtain

σk2uξξ − k21σ + ρk1 + c1
À Á

u + δ u2 + γv2
À Á

u = 0,

σk2vξξ − k22σ − ρk2 + c2
À Á

v + δ γu2 + v2
À Á

v = 0,
ω + ρk + 2σkk1ð Þuξ = 0,
ω − ρk + 2σkk2ð Þvξ = 0:

8>>>>><
>>>>>:

ð18Þ

From (18), we obtain

ω = −σk k1 + k2ð Þ: ð19Þ

According to the homogeneous balance method, we
assume that Equation (18) has the following solutions:

u ξð Þ = a0 + a1ψ + a2ϕ,
v ξð Þ = b0 + b1ψ + b2ϕ:

(
ð20Þ

Substitute Equations (20) and (8) into Equation (18),
and set the coefficients of ψi and ψi−1ϕ to zero to yield a
set of AEs for the unknowns a0, a1, a2, b0, b1, b2, k, k1, k2,
c1, c2, and ω.

ψ0 :−c1a0 + δa30 + 3δεa0a22 + γδa0b
2
0 + 2γδεa2b0b2 + γδεa0b

2
2

− ρa0k1 − σa0k
2
1 = 0,

ϕ :−c1a2 + 3δa20a2 + δεa32 + γδa2b
2
0 + 2γδa0b0b2 + γδεa2b

2
2

− ρa2k1 − σa2k
2
1 = 0,

ψ :−c1a1 + k2εσa1 + 3δa20a1 − 6δεμa0a22 + 3δεa1a22 + γδa1b
2
0

+ 2γδa0b0b1 − 4γδεμa2b0b2 + 2γδεa2b1b2
− 2γδεμa0b22 + γδεa1b

2
2 − ρa1k1 − σa1k

2
1 = 0,

ϕψ :−k2εμσa2 + 6δa0a1a2 − 2δεμa32 + 2γδa2b0b1 + 2γδa1b0b2
+ 2γδa0b1b2 − 2γδεμa2b22 = 0,

ψ2 :−3k2εμσa1 + 3δa0a21 − 3b2δεa0a22 + 3c2δε2a0a22
+ 3δεμ2a0a22 − 6δεμa1a22 + 2γδa1b0b1 + γδa0b

2
1

− 2b2γδεa2b0b2 + 2c2γδε2a2b0b2 + 2γδεμ2a2b0b2
− 4γδεμa2b1b2 − b2γδεa0b

2
2 + c2γδε2a0b

2
2

+ γδεμ2a0b
2
2 − 2γδεμa1b22 = 0,

ϕψ2 :−2b2k2εσa2 + 2c2k2ε2σa2 + 2k2εμ2σa2
+ 3δa21a2 − b2δεa32 + c2δε2a32 + δεμ2a32 + γδa2b

2
1

+ 2γδa1b1b2 − b2γδεa2b
2
2 + c2γδε2a2b

2
2

+ γδεμ2a2b
2
2 = 0,

ψ3 :−2b2k2εσa1 + 2c2k2ε2σa1 + 2k2εμ2σa1
+ δa31 − 3b2δεa1a22 + 3c2δε2a1a22 + 3δεμ2a1a22
+ γδa1b

2
1 − 2b2γδεa2b1b2 + 2c2γδε2a2b1b2

+ 2γδεμ2a2b1b2 − b2γδεa1b
2
2 + c2γδε2a1b

2
2

+ γδεμ2a1b
2
2 = 0,

ψ0 :−c2b0 + γδa20b0 + γδεa22b0 + δb30 + 2γδεa0a2b2
+ 3δεb0b22 + ρb0k2 − σb0k

2
2 = 0,

ϕ :2γδa0a2b0 − c2b2 + γδa20b2 + γδεa22b2 + 3δb20b2
+ δεb32 + ρb2k2 − σb2k

2
2 = 0,

ψ :2γδa0a1b0 − 2γδεμa22b0 − c2b1 + k2εσb1 + γδa20b1
+ γδεa22b1 + 3δb20b1 − 4γδεμa0a2b2 + 2γδεa1a2b2
− 6δεμb0b22 + 3δεb1b22 + ρb1k2 − σb1k

2
2 = 0,

ϕψ :2γδa1a2b0 + 2γδa0a2b1 − k2εμσb2 + 2γδa0a1b2
− 2γδεμa22b2 + 6δb0b1b2 − 2δεμb32 = 0,

ψ2 :γδa21b0 − b2γδεa22b0 + c2γδε2a22b0 + γδεμ2a22b0
− 3k2εμσb1 + 2γδa0a1b1 − 2γδεμa22b1 + 3δb0b21
− 2b2γδεa0a2b2 + 2c2γδε2a0a2b2 + 2γδεμ2a0a2b2
− 4γδεμa1a2b2 − 3b2δεb0b22 + 3c2δε2b0b22
+ 3δεμ2b0b22 − 6δεμb1b22 = 0,

ϕψ2 :2γδa1a2b1 − 2b2k2εσb2 + 2c2k2ε2σb2 + 2k2εμ2σb2
+ γδa21b2 − b2γδεa22b2 + c2γδε2a22b2 + γδεμ2a22b2
+ 3δb21b2 − b2δεb32 + c2δε2b32 + δεμ2b32 = 0,

ψ3 :−2b2k2εσb1 + 2c2k2ε2σb1 + 2k2εμ2σb1 + γδa21b1
− b2γδεa22b1 + c2γδε2a22b1 + γδεμ2a22b1 + δb31
− 2b2γδεa1a2b2 + 2c2γδε2a1a2b2 + 2γδεμ2a1a2b2
− 3b2δεb1b22 + 3c2δε2b1b22 + 3δεμ2b1b22 = 0:

ð21Þ

6 Journal of Function Spaces



–10 –5 5 10

–10 –5 5 100

x

–1

1

2

3

4

–4

–2

0

2

45
Re (q1)5.1

Re
 (q

1)
5.

1

–5

–5
–10

0
5

10
0

1

2

35
0

x

t

Figure 9: The 3D plot, 2D plot, and contour plot of the singular wave pulse Re ðq1Þ5:1.
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Figure 10: The 3D plot, 2D plot, and contour plot of the singular periodic wave pulse Re ðq1Þ5:2.
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Solving the AEs along with (16) and (17) results in the
following solutions:

Family 3 (ε = 1). In this situation, we produce the following
solutions of the above AEs.

Case 1.

a0 = a1 = b0 = b1 = 0,

a2 = ±k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−σ
2δ γ + 1ð Þ

r
,

b2 = ±k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−σ
2δ γ + 1ð Þ

r
,

b =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 + μ2

p
,

c1 = −
1
2 k

2σ − k1ρ − k21σ,

c2 = −
1
2 k

2σ + k2ρ − k22σ:

ð22Þ

From Equations (9), (16), (17), and (20), we deduce the
traveling wave solutions of Equation (1) as follows:

q1ð Þ1 = ±k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−σ
2δ γ + 1ð Þ

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 + μ2

p
sinh ξ1 + c cosh ξ1ffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 + μ2
p

cosh ξ1 + c sinh ξ1 + μ
eiη1:1 ,

q2ð Þ1 = ±k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−σ
2δ γ + 1ð Þ

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 + μ2

p
sinh ξ1 + c cosh ξ1ffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 + μ2
p

cosh ξ1 + c sinh ξ1 + μ
eiη2:1 ,

ξ1 =
kΓ γ1 + 1ð Þ

β
xβ −

σk k1 + k2ð ÞΓ γ2 + 1ð Þ
α

tα,

η1:1 =
k1Γ γ1 + 1ð Þ

β
xβ −

1
2 k

2σ + k1ρ + k21σ
� �

Γ γ2 + 1ð Þ
α

tα,

η2:1 =
k2Γ γ1 + 1ð Þ

β
xβ −

1
2 k

2σ − k2ρ + k22σ
� �

Γ γ2 + 1ð Þ
α

tα:

ð23Þ

Selecting the following parameters in ðq1Þ1, we can get
some graphical simulation in Figures 1 and 2.

k = α = β = γ = 1,
σ = −4,
δ = 1,
c = 3,
μ = 4,
b = 5,

k1 = 0:5,
k2 = 1:5,
ρ = 4:

ð24Þ

Case 2.

a0 = b0 = a2 = b2 = 0,

a1 = ±k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ b2 − c2
À Á
δ γ + 1ð Þ

s
,

b1 = ±k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ b2 − c2
À Á

1 − γð Þ
δ

s
,

c1 = k2σ − k21σ − k1ρ,
c2 = k2σ − k22σ + k2ρ:

ð25Þ

From Case 2, we get the following traveling wave solu-
tion of Equation (1):

q1ð Þ2 =
±k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ b2 − c2
À Á

/δ γ + 1ð Þ
q

eiη1:2

b cosh ξ2 + c sinh ξ2 + μ
,

q2ð Þ2 =
±k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ b2 − c2
À Á

1 − γð Þ/δ
q

eiη2:2

b cosh ξ2 + c sinh ξ2 + μ
,

ξ2 =
kΓ γ1 + 1ð Þ

β
xβ − σk k1 + k2ð ÞΓ γ2 + 1ð Þ

α
tα,

η1:2 =
k1Γ γ1 + 1ð Þ

β
xβ + k2σ − k21σ − k1ρ

À ÁΓ γ2 + 1ð Þ
α

tα,

η2:2 =
k2Γ γ1 + 1ð Þ

β
xβ + k2σ − k22σ + k2ρ

À ÁΓ γ2 + 1ð Þ
α

tα:

ð26Þ

In this result, we can deduce the traveling wave solution
of Equation (1) as follows:

q1ð Þ2:1 = ±k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2σ
δ γ + 1ð Þ

s
sech ξ2e

iη1:2 ,

q2ð Þ2:1 = ±k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ 1 − γð Þ

δ

r
sech ξ2e

iη2:2 ,

μ = c = 0,

q1ð Þ2:2 = ±k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σ

δ γ + 1ð Þ

s
csch ξ2e

iη1:2 ,

q2ð Þ2:2 = ±k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σ 1 − γð Þ

δ

r
csch ξ2e

iη2:2 ,

μ = b = 0:

ð27Þ

Selecting k = k1 = 1, k2 = 2, δ = 1, ρ = −1, α = β = 1, γ =
γ1 = γ2 = 1, and σ = 1 in ðq1Þ2:1 and σ = −1 in ðq1Þ2:2, we
obtain the famous bell-shape soliton solutions and blow-up
solution which is simulated in Figures 3 and 4.
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Remark 4. If we let α = β = 1, ρ = λ/2, σ = 1/2, and δ = 1, the
solutions ðq1Þ2:1, ðq2Þ2:1 and ðq1Þ2:2, ðq2Þ2:2 contain solutions
(8) and (14) in Refs. [48].

Family 5 (ε = −1). In this situation, we produce the following
solutions of the above AEs.

Case 3.

a0 = a1 = b0 = b1 = 0,

a2 = −k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−σ
2δ γ + 1ð Þ

r
,

b2 = −k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−σ
2δ γ + 1ð Þ

r
,

μ =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 + b2

p
,

c1 =
1
2 k

2σ − k1ρ − k21σ,

c2 =
1
2 k

2σ + k2ρ − k22σ:

ð28Þ

From Equations (10), (16), (17), and (20), we can deduce
the following periodic solutions of Equation (1):

q1ð Þ3 =
k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−σ/2δ γ + 1ð Þp

b sin ξ3 − c cos ξ3ð Þeiη1:3
b cos ξ3 + c sin ξ3 +

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 + b2

p ,

q2ð Þ3 =
k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−σ/2δ γ + 1ð Þp

b sin ξ3 − c cos ξ3ð Þeiη2:3
b cos ξ3 + c sin ξ3 +

ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 + b2

p ,

ξ3 =
kΓ γ1 + 1ð Þ

β
xβ − σk k1 + k2ð ÞΓ γ2 + 1ð Þ

α
tα,

η1:3 =
k1Γ γ1 + 1ð Þ

β
xβ + 1

2 k
2σ − k1ρ − k21σ

� �
Γ γ2 + 1ð Þ

α
tα,

η2:3 =
k2Γ γ1 + 1ð Þ

β
xβ + 1

2 k
2σ + k2ρ − k22σ

� �
Γ γ2 + 1ð Þ

α
tα:

ð29Þ

If we select the following parameters, the periodic pulse
solutions can be simulated in Figures 5 and 6.

k = α = β = γ = ρ = 1,
σ = −0:5,
δ = 2,
c = 4,
μ = 5,
b = 3,

k1 =
1
6 ,

k2 =
1
3 ,

ρ = 1:

ð30Þ

Case 4.

a0 = a2 = b0 = b2 = 0,

a1 = ±k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σ b2 + c2

À Á
δ γ + 1ð Þ

s
,

b1 = ±k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σ b2 + c2

À Á
δ γ + 1ð Þ

s
,

μ = 0,
c1 = −k2σ − k21σ − k1ρ,
c2 = −k2σ − k22σ + k2ρ:

ð31Þ

In this result, we have

q1ð Þ4 =
±k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σ b2 + c2

À Á
/δ γ + 1ð Þ

q
b cos ξ4 + c sin ξ4

eiη1:4 ,

q2ð Þ4 =
±k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σ b2 + c2

À Á
/δ γ + 1ð Þ

q
b cos ξ4 + c sin ξ4

eiη2:4 ,

ξ4 =
kΓ γ1 + 1ð Þ

β
xβ − σk k1 + k2ð ÞΓ γ2 + 1ð Þ

α
tα,

η1:4 =
k1Γ γ1 + 1ð Þ

β
xβ − k2σ + k21σ + k1ρ

À ÁΓ γ2 + 1ð Þ
α

tα,

η2:4 =
k2Γ γ1 + 1ð Þ

β
xβ − k2σ + k22σ − k2ρ

À ÁΓ γ2 + 1ð Þ
α

tα:

ð32Þ

Thus,

q1ð Þ4:1 = ±k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σ

δ γ + 1ð Þ

s
sec ξ4eiη1:4 ,

q2ð Þ4:1 = ±k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σ

δ γ + 1ð Þ

s
sec ξ4eiη2:4 ,

c = 0,

q1ð Þ4:2 = ±k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σ

δ γ + 1ð Þ

s
csc ξ4eiη1:4 ,

q2ð Þ4:2 = ±k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σ

δ γ + 1ð Þ

s
csc ξ4eiη2:4 ,

b = 0:

ð33Þ

The singular trigonometric function solutions ðq1Þ4 can
be simulated in Figures 7 and 8 by selecting k = α = β = γ =
γ1 = γ2 = 1, σ = −1, δ = 25, c = 4, b = 3, k1 = 1/3, k2 = 2/3, ρ =
1/3, and t = 1 in ðq1Þ4 and k = 1, σ = −1, δ = 1, k1 = 1, k2 = 2,
ρ = 1, β = 1, α = 1, γ = 1, γ1 = 2, and γ2 = 2 in ðq1Þ4:1.
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In the following, let us consider the G′/bG′ +G + a
method; we assume that Equation (18) has the following
solutions:

u ξð Þ = a0 + a1F + a−1F
−1 = a0 + a1

G′
bG′ +G + a

+ a−1
G′

bG′ +G + a

 !−1

,

v ξð Þ = b0 + b1F + b−1F
−1 = b0 + b1

G′
bG′ + G + a

+ b−1
G′

bG′ +G + a

 !−1

:

8>>>>>><
>>>>>>:

ð34Þ

Substituting Equations (34) and (13) into Equation (18),
without loss of generality, we chose b = 1 here, and set the
coefficients of Fi to zero to yield the following AEs:

F0 :k2λσa−1 − k2λ2σa−1 − 2k2μσa−1 + 3k2λμσa−1
− 2k2μ2σa−1 + δa30 + k2λμσa1 − 2k2μ2σa1 + 6δa−1a0a1
+ 2γδa1b−1b0 + γδa0b

2
0 + 2γδa0b−1b1 + 2γδa−1b0b1

− a0c1 − ρa0k1 − σa0k21 = 0,

F1 :k2λ2σa1 + 2k2μσa1 − 6k2λμσa1 + 6k2μ2σa1 + 3δa20a1
+ 3δa−1a21 + γδa1b

2
0 + 2γδa1b−1b1 + 2γδa0b0b1

+ γδa−1b
2
1 − a1c1 − ρa1k1 − σa1k

2
1 = 0,

F2 :3k2λσa1 − 3k2λ2σa1 − 6k2μσa1 + 9k2λμσa1 − 6k2μ2σa1
+ 3δa0a21 + 2γδa1b0b1 + γδa0b

2
1 = 0,

F3 :2k2σa1 − 4k2λσa1 + 2k2λ2σa1 + 4k2μσa1 − 4k2λμσa1
+ 2k2μ2σa1 + δa31 + γδa1b

2
1 = 0,

F−1 :k2λ2σa−1 + 2k2μσa−1 − 6k2λμσa−1 + 6k2μ2σa−1
+ 3δa−1a20 + 3δa2−1a1 + γδa1b

2
−1 + 2γδa0b−1b0

+ γδa−1b
2
0 + 2γδa−1b−1b1 − a−1c1 − ρa−1k1 − σa−1k

2
1 = 0,

F−2 :3k2λμσa−1 − 6k2μ2σa−1 + 3δa2−1a0 + γδa0b
2
−1

+ 2γδa−1b−1b0 = 0,

F−3 : 2k2μ2σa−1 + δa3−1 + γδa−1b
2
−1 = 0,

F0 :k2λσb−1 − k2λ2σb−1 − 2k2μσb−1 + 3k2λμσb−1
− 2k2μ2σb−1 + 2γδa0a1b−1 + γδa20b0 + 2γδa−1a1b0
+ δb30 + k2λμσb1 − 2k2μ2σb1 + 2γδa−1a0b1 + 6δb−1b0b1
− b0c2 + ρb0k2 − σb0k

2
2 = 0,

F1 :γδa21b−1 + 2γδa0a1b0 + k2λ2σb1 + 2k2μσb1 − 6k2λμσb1
+ 6k2μ2σb1 + γδa20b1 + 2γδa−1a1b1 + 3δb20b1 + 3δb−1b21
− b1c2 + ρb1k2 − σb1k

2
2 = 0,

F2 :γδa21b0 + 3k2λσb1 − 3k2λ2σb1 − 6k2μσb1 + 9k2λμσb1
− 6k2μ2σb1 + 2γδa0a1b1 + 3δb0b21 = 0,
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Figure 13: The changes of Re ðq1Þ2 for the different values of a, β and t.
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F3 :2k2σb1 − 4k2λσb1 + 2k2λ2σb1 + 4k2μσb1 − 4k2λμσb1
+ 2k2μ2σb1 + γδa21b1 + δb31 = 0,

F−1 :k2λ2σb−1 + 2k2μσb−1 − 6k2λμσb−1 + 6k2μ2σb−1
+ γδa20b−1 + 2γδa−1a1b−1 + 2γδa−1a0b0 + 3δb−1b20
+ γδa2−1b1 + 3δb2−1b1 − b−1c2 + ρb−1k2 − σb−1k

2
2 = 0,

F−2 :3k2λμσb−1 − 6k2μ2σb−1 + 2γδa−1a0b−1 + γδa2−1b0
+ 3δb2−1b0 = 0,

F−3 : 2k2μ2σb−1 + γδa2−1b−1 + δb3−1 = 0,

F0 :k2λσa−1 − k2λ2σa−1 − 2k2μσa−1 + 3k2λμσa−1
− 2k2μ2σa−1 + δa30 + k2λμσa1 − 2k2μ2σa1 + 6δa−1a0a1
+ 2γδa1b−1b0 + γδa0b

2
0 + 2γδa0b−1b1 + 2γδa−1b0b1

− a0c1 − ρa0k1 − σa0k
2
1 = 0,

F1 :k2λ2σa1 + 2k2μσa1 − 6k2λμσa1 + 6k2μ2σa1 + 3δa20a1
+ 3δa−1a21 + γδa1b

2
0 + 2γδa1b−1b1 + 2γδa0b0b1

+ γδa−1b
2
1 − a1c1 − ρa1k1 − σa1k

2
1 = 0,

F2 :3k2λσa1 − 3k2λ2σa1 − 6k2μσa1 + 9k2λμσa1 − 6k2μ2σa1
+ 3δa0a21 + 2γδa1b0b1 + γδa0b

2
1 = 0,

F3 :2k2σa1 − 4k2λσa1 + 2k2λ2σa1 + 4k2μσa1 − 4k2λμσa1
+ 2k2μ2σa1 + δa31 + γδa1b

2
1 = 0,

F−1 :k2λ2σa−1 + 2k2μσa−1 − 6k2λμσa−1 + 6k2μ2σa−1
+ 3δa−1a20 + 3δa2−1a1 + γδa1b

2
−1 + 2γδa0b−1b0

+ γδa−1b
2
0 + 2γδa−1b−1b1 − a−1c1 − ρa−1k1 − σa−1k

2
1 = 0,

F−2 :3k2λμσa−1 − 6k2μ2σa−1 + 3δa2−1a0 + γδa0b
2
−1

+ 2γδa−1b−1b0 = 0,

F−3 : 2k2μ2σa−1 + δa3−1 + γδa−1b
2
−1 = 0,

F0 :k2λσb−1 − k2λ2σb−1 − 2k2μσb−1 + 3k2λμσb−1
− 2k2μ2σb−1 + 2γδa0a1b−1 + γδa20b0 + 2γδa−1a1b0 + δb30
+ k2λμσb1 − 2k2μ2σb1 + 2γδa−1a0b1 + 6δb−1b0b1 − b0c2
+ ρb0k2 − σb0k

2
2 = 0,

F1 :γδa21b−1 + 2γδa0a1b0 + k2λ2σb1 + 2k2μσb1 − 6k2λμσb1
+ 6k2μ2σb1 + γδa20b1 + 2γδa−1a1b1 + 3δb20b1 + 3δb−1b21
− b1c2 + ρb1k2 − σb1k

2
2 = 0,

F2 :γδa21b0 + 3k2λσb1 − 3k2λ2σb1 − 6k2μσb1 + 9k2λμσb1
− 6k2μ2σb1 + 2γδa0a1b1 + 3δb0b21 = 0,

F3 :2k2σb1 − 4k2λσb1 + 2k2λ2σb1 + 4k2μσb1 − 4k2λμσb1
+ 2k2μ2σb1 + γδa21b1 + δb31 = 0,

F−1 :k2λ2σb−1 + 2k2μσb−1 − 6k2λμσb−1 + 6k2μ2σb−1
+ γδa20b−1 + 2γδa−1a1b−1 + 2γδa−1a0b0 + 3δb−1b20
+ γδa2−1b1 + 3δb2−1b1 − b−1c2 + ρb−1k2 − σb−1k

2
2 = 0,

F−2 :3k2λμσb−1 − 6k2μ2σb−1 + 2γδa−1a0b−1 + γδa2−1b0
+ 3δb2−1b0 = 0,

F−3 : 2k2μ2σb−1 + γδa2−1b−1 + δb3−1 = 0,

F0 :k2λσa−1 − k2λ2σa−1 − 2k2μσa−1 + 3k2λμσa−1
− 2k2μ2σa−1 + δa30 + k2λμσa1 − 2k2μ2σa1 + 6δa−1a0a1
+ 2γδa1b−1b0 + γδa0b

2
0 + 2γδa0b−1b1 + 2γδa−1b0b1

− a0c1 − ρa0k1 − σa0k
2
1 = 0,

F1 :k2λ2σa1 + 2k2μσa1 − 6k2λμσa1 + 6k2μ2σa1 + 3δa20a1
+ 3δa−1a21 + γδa1b

2
0 + 2γδa1b−1b1 + 2γδa0b0b1

+ γδa−1b
2
1 − a1c1 − ρa1k1 − σa1k

2
1 = 0,

F2 :3k2λσa1 − 3k2λ2σa1 − 6k2μσa1 + 9k2λμσa1 − 6k2μ2σa1
+ 3δa0a21 + 2γδa1b0b1 + γδa0b

2
1 = 0,

F3 :2k2σa1 − 4k2λσa1 + 2k2λ2σa1 + 4k2μσa1 − 4k2λμσa1
+ 2k2μ2σa1 + δa31 + γδa1b

2
1 = 0,

F−1 :k2λ2σa−1 + 2k2μσa−1 − 6k2λμσa−1 + 6k2μ2σa−1
+ 3δa−1a20 + 3δa2−1a1 + γδa1b

2
−1 + 2γδa0b−1b0

+ γδa−1b
2
0 + 2γδa−1b−1b1 − a−1c1 − ρa−1k1 − σa−1k

2
1 = 0,

F−2 :3k2λμσa−1 − 6k2μ2σa−1 + 3δa2−1a0 + γδa0b
2
−1

+ 2γδa−1b−1b0 = 0,

F−3 : 2k2μ2σa−1 + δa3−1 + γδa−1b
2
−1 = 0,

F0 :k2λσb−1 − k2λ2σb−1 − 2k2μσb−1 + 3k2λμσb−1
− 2k2μ2σb−1 + 2γδa0a1b−1 + γδa20b0 + 2γδa−1a1b0
+ δb30 + k2λμσb1 − 2k2μ2σb1 + 2γδa−1a0b1 + 6δb−1b0b1
− b0c2 + ρb0k2 − σb0k

2
2 = 0,
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F1 :γδa21b−1 + 2γδa0a1b0 + k2λ2σb1 + 2k2μσb1 − 6k2λμσb1
+ 6k2μ2σb1 + γδa20b1 + 2γδa−1a1b1 + 3δb20b1 + 3δb−1b21
− b1c2 + ρb1k2 − σb1k

2
2 = 0,

F2 :γδa21b0 + 3k2λσb1 − 3k2λ2σb1 − 6k2μσb1 + 9k2λμσb1
− 6k2μ2σb1 + 2γδa0a1b1 + 3δb0b21 = 0,

F3 :2k2σb1 − 4k2λσb1 + 2k2λ2σb1 + 4k2μσb1 − 4k2λμσb1
+ 2k2μ2σb1 + γδa21b1 + δb31 = 0,

F−1 :k2λ2σb−1 + 2k2μσb−1 − 6k2λμσb−1 + 6k2μ2σb−1
+ γδa20b−1 + 2γδa−1a1b−1 + 2γδa−1a0b0 + 3δb−1b20
+ γδa2−1b1 + 3δb2−1b1 − b−1c2 + ρb−1k2 − σb−1k

2
2 = 0,

F−2 :3k2λμσb−1 − 6k2μ2σb−1 + 2γδa−1a0b−1 + γδa2−1b0
+ 3δb2−1b0 = 0,

F−3 : 2k2μ2σb−1 + γδa2−1b−1 + δb3−1 = 0: ð35Þ

After solving the above equations, we have the following:

Case 5.

a0 = b0 = a−1 = b−1 = 0,

a1 = ±k μ − 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σ

δ γ + 1ð Þ

s
,

b1 = ±k μ − 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σ

δ γ + 1ð Þ

s
,

λ = 2μ,
c1 = −2k2 μ − 1ð Þμσ − k1ρ − k21σ,
c2 = −2k2 μ − 1ð Þμσ + k2ρ − k22σ:

ð36Þ

From Case 5, we can determine the following solutions:

q1ð Þ5:1 =
±k μ − 1ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2σ/δ γ + 1ð Þp
2μ p2 − p1ð Þ −

ffiffiffiffi
Δ

p
p2 + p1ð Þ

h i
sinh

ffiffiffiffi
Δ

p
/2bξ5

� �
+ 2μ p2 + p1ð Þ −

ffiffiffiffi
Δ

p
p2 − p1ð Þ

h i
cosh

ffiffiffiffi
Δ

p
/2bξ5

� �n o
b 2 μ − 1ð Þ p2 − p1ð Þ −

ffiffiffiffi
Δ

p
p2 + p1ð Þ

h i
sinh

ffiffiffiffi
Δ

p
/2bξ5

� �
+ b 2 μ − 1ð Þ p2 + p1ð Þ −

ffiffiffiffi
Δ

p
p2 − p1ð Þ

h i
cosh

ffiffiffiffi
Δ

p
/2bξ5

� � eiη1:5 ,

q2ð Þ5:1 =
±k μ − 1ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2σ/δ γ + 1ð Þp
2μ p2 − p1ð Þ −

ffiffiffiffi
Δ

p
p2 + p1ð Þ

h i
sinh

ffiffiffiffi
Δ

p
/2bξ5

� �
+ 2μ p2 + p1ð Þ −

ffiffiffiffi
Δ

p
p2 − p1ð Þ

h i
cosh

ffiffiffiffi
Δ

p
/2bξ5

� �n o
b 2 μ − 1ð Þ p2 − p1ð Þ −

ffiffiffiffi
Δ

p
p2 + p1ð Þ

h i
sinh

ffiffiffiffi
Δ

p
/2bξ5

� �
+ b 2 μ − 1ð Þ p2 + p1ð Þ −

ffiffiffiffi
Δ

p
p2 − p1ð Þ

h i
cosh

ffiffiffiffi
Δ

p
/2bξ5

� � eiη2:5 ,

q1ð Þ5:2 =
±k μ − 1ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2σ/δ γ + 1ð Þp
2μp1 −

ffiffiffiffiffiffi
−Δ

p
p2

� �
cos

ffiffiffiffiffiffi
−Δ

p
/2bξ5

� �
+ 2μp2 +

ffiffiffiffiffiffi
−Δ

p
p1

� �
sin

ffiffiffiffiffiffi
−Δ

p
/2bξ5

� �h i
b 2 μ − 1ð Þp1 −

ffiffiffiffiffiffi
−Δ

p
p2

� �
cos

ffiffiffiffiffiffi
−Δ

p
/2bξ5

� �
+ b 2 μ − 1ð Þp2 +

ffiffiffiffiffiffi
−Δ

p
p1

� �
sin

ffiffiffiffiffiffi
−Δ

p
/2bξ5

� � eiη1:5 ,

q2ð Þ5:2 =
±k μ − 1ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2σ/δ γ + 1ð Þp
2μp1 −

ffiffiffiffiffiffi
−Δ

p
p2

� �
cos

ffiffiffiffiffiffi
−Δ

p
/2bξ5

� �
+ 2μp2 +

ffiffiffiffiffiffi
−Δ

p
p1

� �
sin

ffiffiffiffiffiffi
−Δ

p
/2bξ5

� �h i
b 2 μ − 1ð Þp1 −

ffiffiffiffiffiffi
−Δ

p
p2

� �
cos

ffiffiffiffiffiffi
−Δ

p
/2bξ5

� �
+ b 2 μ − 1ð Þp2 +

ffiffiffiffiffiffi
−Δ

p
p1

� �
sin

ffiffiffiffiffiffi
−Δ

p
/2bξ5

� � eiη2:5 ,

ξ5 =
kΓ γ1 + 1ð Þ

β
xβ − σk k1 + k2ð ÞΓ γ2 + 1ð Þ

α
tα, Δ = 4μ2 − 4μ,

η1:5 =
k1Γ γ1 + 1ð Þ

β
xβ − 2k2 μ − 1ð Þμσ + k1ρ + k21σ

À ÁΓ γ2 + 1ð Þ
α

tα,

η2:5 =
k2Γ γ1 + 1ð Þ

β
xβ − 2k2 μ − 1ð Þμσ − k2ρ + k22σ

À ÁΓ γ2 + 1ð Þ
α

tα:

ð37Þ
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For solutions ðq1Þ5:1, ðq2Þ5:1, we have Δ > 0, μ ∈ ð−∞,0Þ
∪ ð1,∞Þ.

For solutions ðq1Þ5:2, ðq2Þ5:2, we have Δ < 0, μ ∈ ð0, 1Þ.

Remark 6. If we select ðμ − 1 +
ffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − μ

p Þp1 = ð1 − μ +ffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − μ

p Þp2, μ ∈ ð−∞,0Þ ∪ ð1,+∞Þ, and μp1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μð1 − μÞp

p2, μ ∈ ð0, 1Þ, these solutions ðq1Þ5:1, ðq2Þ5:1, and ðq1Þ5:2,
ðq2Þ5:2 contain the following solutions which including the
kink and antikink wave solutions.

q1ð Þ5:1:1 = ± k
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σμ μ − 1ð Þ
δ γ + 1ð Þ

s
tanh

ffiffiffiffiffiffiffiffiffiffiffiffi
μ − μ2

p
b

ξ5

 !
eiη1:5 ,

q2ð Þ5:1:1 = ± k
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σμ μ − 1ð Þ
δ γ + 1ð Þ

s
tanh

ffiffiffiffiffiffiffiffiffiffiffiffi
μ − μ2

p
b

ξ5

 !
eiη2:5 ,

q1ð Þ5:1:2 = ± k
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σμ μ − 1ð Þ
δ γ + 1ð Þ

s
coth

ffiffiffiffiffiffiffiffiffiffiffiffi
μ − μ2

p
b

ξ5

 !
eiη1:5 ,

q2ð Þ5:1:2 = ± k
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σμ μ − 1ð Þ
δ γ + 1ð Þ

s
coth

ffiffiffiffiffiffiffiffiffiffiffiffi
μ − μ2

p
b

ξ5

 !
eiη2:5 ,

q1ð Þ5:2:1 = ± k
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σμ 1 − μð Þ
δ γ + 1ð Þ

s
cot

ffiffiffiffiffiffiffiffiffiffiffiffi
μ − μ2

p
b

ξ5

 !
eiη1:5 ,

q2ð Þ5:2:1 = ± k
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σμ 1 − μð Þ
δ γ + 1ð Þ

s
cot

ffiffiffiffiffiffiffiffiffiffiffiffi
μ − μ2

p
b

ξ5

 !
eiη2:5 ,

q1ð Þ5:2:2 = ± k
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σμ 1 − μð Þ
δ γ + 1ð Þ

s
tan

ffiffiffiffiffiffiffiffiffiffiffiffi
μ − μ2

p
b

ξ5

 !
eiη1:5 ,

q2ð Þ5:2:2 = ± k
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σμ 1 − μð Þ
δ γ + 1ð Þ

s
tan

ffiffiffiffiffiffiffiffiffiffiffiffi
μ − μ2

p
b

ξ5

 !
eiη2:5 : ð38Þ

Selecting

k = α = β = γ = b = ρ = δ = k1 = 1,
μ = 2,
λ = 4,
σ = −1,
k2 = 2,

γ1 = γ2 = 1,
p1 = 4,
p2 = 10,

ð39Þ

we obtain the unbounded solitary wave solution ðq1Þ5:1
which is simulated in Figure 9.

Selecting

k = k1 = b = c = 1,

μ = 1
2 ,

λ = 1,
σ = −1,
δ = 1,
k2 = 2,

ρ = 3
2 ,

γ1 = γ2 = 1,
p1 = −1,

p2 =
13
2 ,

ð40Þ

we obtain the periodic wave solution ðq1Þ5:2 which is
simulated in Figure 10.

Case 6.

a0 = b0 = 0,

a1 = ±k μ − 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σ

δ γ + 1ð Þ

s
,

b1 = ±k μ − 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σ

δ γ + 1ð Þ

s
,

a−1 = ±kμ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σ

δ γ + 1ð Þ

s
,

λ = 2μ,

b−1 = ±kμ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σ

δ γ + 1ð Þ

s
,

c1 = −k1ρ − k21σ − 8k2 −1 + μð Þμσ,
c2 = k2ρ − k22σ − 8k2 −1 + μð Þμσ:

ð41Þ

From Case 6, we obtain the following solutions:
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Clearly, we can find that F6:1, F6:2 contain the following

solutions:

F6:1:1 = −
μ

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1 + μð Þμp tanh 1

b

ffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − μ

p
ξ6

� �
,

p1 =
μ − 1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − μ

p
μ − 1 +

ffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − μ

p p2,

μ ∈ −∞,0ð Þ ∪ 1,∞ð Þ,

F6:1:2 = −
μ

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1 + μð Þμp coth 1

b

ffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − μ

p
ξ6

� �
,

p1 =
1 − μ +

ffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − μ

p
μ − 1 +

ffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − μ

p p2,

μ ∈ −∞,0ð Þ ∪ 1,∞ð Þ,

F6:2:1 =
μ2

b 1 − 3μ + 3μ2ð Þ −
1 − μð Þ ffiffiffiffiffiffiffiffiffiffiffiffi

μ − μ2
p

b 1 − 3μ + 3μ2ð Þ tan
ffiffiffiffiffiffiffiffiffiffiffiffi
μ − μ2

p
b

ξ6

 !
,

p1 =
1 − 2μffiffiffiffiffiffiffiffiffiffiffiffi
μ − μ2

p p2, μ ∈ 0, 1ð Þ,

F6:2:2 =
μ2

b 1 − 3μ + 3μ2ð Þ + 1 − μð Þ ffiffiffiffiffiffiffiffiffiffiffiffi
μ − μ2

p
b 1 − 3μ + 3μ2ð Þ cot

ffiffiffiffiffiffiffiffiffiffiffiffi
μ − μ2

p
b

ξ6

 !
,

p1 =
ffiffiffiffiffiffiffiffiffiffiffiffi
μ − μ2

p
2μ − 1 p2, μ ∈ 0, 1ð Þ: ð43Þ

The mixed solitary wave solutions and trigonometric
function solutions are simulated in Figures 11 and 12 after
selecting the following parameters for ðq1Þ6:1 and ðq2Þ6:2:

b = 1,
σ = −1,

γ = γ1 = γ2 = δ = k = k1 = 1,
μ = k2 = 2,
ρ = 1,
p1 = 16,
p2 = 22,
Δ = 8,

ð44Þ

q1ð Þ6:1 = ±k −1 + μð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σ

δ γ + 1ð Þ

s
F6:1 ± kμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σ

δ γ + 1ð Þ

s
F−1
6:1

 !
eiη1:6 ,

q2ð Þ6:1 = ±k −1 + μð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σ

δ γ + 1ð Þ

s
F6:1 ± kμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σ

δ γ + 1ð Þ

s
F−1
6:1

 !
eiη2:6 ,

F6:1 =
2μ p2 − p1ð Þ −

ffiffiffiffi
Δ

p
p2 + p1ð Þ

h i
sinh

ffiffiffiffi
Δ

p
/2bξ6

� �
+ 2μ p2 + p1ð Þ −

ffiffiffiffi
Δ

p
p2 − p1ð Þ

h i
cosh

ffiffiffiffi
Δ

p
/2bξ6

� �
b 2 μ − 1ð Þ p2 − p1ð Þ −

ffiffiffiffi
Δ

p
p2 + p1ð Þ

h i
sinh

ffiffiffiffi
Δ

p
/2bξ6

� �
+ b 2 μ − 1ð Þ p2 + p1ð Þ −

ffiffiffiffi
Δ

p
p2 − p1ð Þ

h i
cosh

ffiffiffiffi
Δ

p
/2bξ6

� � , μ ∈ −∞,0ð Þ ∪ 1,∞ð Þ,

q1ð Þ6:2 = ±k −1 + μð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σ

δ γ + 1ð Þ

s
F6:2 ± kμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σ

δ γ + 1ð Þ

s
F−1
6:2

 !
eiη1:6 ,

q2ð Þ6:2 = ±k −1 + μð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σ

δ γ + 1ð Þ

s
F6:2 ± kμ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2σ

δ γ + 1ð Þ

s
F−1
6:2

 !
eiη2:6 ,

F6:2 =
2μp1 −

ffiffiffiffiffiffi
−Δ

p
p2

� �
cos

ffiffiffiffiffiffi
−Δ

p
/2bξ6

� �
+ 2μp2 +

ffiffiffiffiffiffi
−Δ

p
p1

� �
sin

ffiffiffiffiffiffi
−Δ

p
/2bξ6

� �
b 2 λ − 1ð Þp1 −

ffiffiffiffiffiffi
−Δ

p
p2

� �
cos

ffiffiffiffiffiffi
−Δ

p
/2bξ6

� �
+ b 2 λ − 1ð Þp2 +

ffiffiffiffiffiffi
−Δ

p
p1

� �
sin

ffiffiffiffiffiffi
−Δ

p
/2bξ6

� � , μ ∈ 0, 1ð Þ,

ξ6 =
kΓ γ1 + 1ð Þ

β
xβ − σk k1 + k2ð ÞΓ γ2 + 1ð Þ

α
tα, Δ = 4μ2 − 4μ,

η1:6 =
k1Γ γ1 + 1ð Þ

β
xβ − 8k2 μ − 1ð Þμσ + k1ρ + k21σ

À ÁΓ γ2 + 1ð Þ
α

tα,

η2:6 =
k2Γ γ1 + 1ð Þ

β
xβ − 8k2 μ − 1ð Þμσ − k2ρ + k22σ

À ÁΓ γ2 + 1ð Þ
α

tα:

ð42Þ
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b = 0:5,
σ = −1,

γ = γ1 = γ2 = δ = k = k1 = 1,
μ = 0:5,
k2 = 2,
ρ = 1,
p1 = −2,
p2 = 4,
Δ = −1:

ð45Þ

3.2. Results and Discussion. After utilizing the two methods,
we get many types of exact solutions of Equation (1), includ-
ing the solitary wave solution, the famous bell-shape soliton
solution, the kink and antikink solutions, the blow-up pat-
tern solution, and the unbounded solutions and the periodic
wave solution. Compared with some other techniques [43,
44, 47], these two methods can be used to obtain some gen-
eral solutions, including the mixed solitary wave solutions
and periodic wave solutions of Equation (1).

Some structures of these solutions are simulated in above
Figures 1–12. The visualization can help us to better under-
standing the dynamic behavior and physical and propaga-
tion characteristics of the coupled model. For example,
from Figures 1 and 2, if we let t = 0:1, α = β = 1, we can find
that the waveform of Re ðq1Þ1 is distorted between ð−1:6,−
1:4Þ but changes dramatically with the fractional order α =
0:18, β = 0:9, γ1 = γ2 = 1. The real part of ðq1Þ2 changes very
slowly when the values of time variable t and fractional
order factor α, β vary in a small range (see Figure 13), but
the values shake rapidly since t > 1, α, β > 0:1 after compar-
ing Figures 13(a)–13(c), the ranges of Re ðq1Þ2 vary from ð
−5 × 10−11, 1:5 × 10−10Þ to ð−10−1, 10−1Þ. We believe that
these simulations can help us to further understand the
inner structure of this model.

4. Conclusion

In brief, six types of new exact solutions for the GMFCNLS
have been found after utilizing the modified ðG′/G, 1/GÞ
and G′/ðbG′ +G + aÞ methods. Some propagation behavior
of these solutions is discussed and simulated, the graphs of
which shows that these explicit solutions are propagated
through different patterns; the efficient and significant
method can be used to many other nonlinear models such
as (2 + 1)-dimensional breaking soliton equation,
Ginzburg-Landau’s equation, Ostrovsky’s equation, and
Boussinesq-Burgers’ equation. Finally, all these solutions
obtained in the present article have been checked by the
mathematical software.
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The Genocchi polynomial has been increasingly used as a convenient tool to solve some fractional calculus problems, due to their
nice properties. However, like some other members in the Appell polynomials, the nice properties are always limited to the
interval defined in ½0, 1�. In this paper, we extend the Genocchi polynomials to the general shifted Genocchi polynomials, Sða,bÞn
ðxÞ, which are defined for interval ½a, b�. New properties for this general shifted Genocchi polynomials will be introduced,
including the determinant form. This general shifted Genocchi polynomials can overcome the conventional formula of finding
the Genocchi coefficients of a function f ðxÞ that involves f ðn−1ÞðxÞ which may not be defined at x = 0, 1. Hence, we use the
general shifted Genocchi polynomials to derive the operational matrix and hence to solve the Fredholm-type fractional integro-
differential equations with arbitrary domain ½a, b�.

1. Introduction

The Genocchi polynomials, GnðxÞ, is one of the members of
the Appell polynomials, AnðxÞ, satisfying the differential
relation ðdAn ðxÞÞ/dx = nAn−1ðxÞ, n = 1, 2, 3,⋯. Besides,
many new results are obtained in the field of number theory
and combinatory [1–4], the Genocchi polynomials are also
applied successfully to solve some kind of fractional calculus
problems, and its advantages were described in [5–9] mostly
via its operational matrix. However, most of the results are
applied over the interval ½0, 1�. Furthermore, for function
approximation by using the Genocchi polynomials, the con-
ventional formula of finding the Genocchi coefficients of a
function f ðxÞ involves f ðn−1ÞðxÞ which may not be defined
at x = 0, 1. To overcome these drawbacks, we propose the
general shifted Genocchi polynomials which are more suit-
able for larger interval ½a, b�, where a, b ≥ 0. Hence, in this
paper, with the new general shifted Genocchi polynomials,
we derive its operational matrix, and then, we solve the frac-

tional integro-differential equation (FIDE) with arbitrary
domain, i.e., not limited to interval ½0, 1�.

FIDE is an equation which contains a fractional deriva-
tive term 0D

α
x f ðxÞ, where α denotes the fractional order

derivative with dαe = n, i.e., (n − 1 < α ≤ n) and an integral
kernel operator term ~Kf ðxÞ = Ð Kðx, t, f ðtÞÞdt. This paper
considers the arbitrary domain FIDE of the 2nd-kind non-
homogeneous Fredholm type of the following special class:

0D
α
x f xð Þ = h xð Þ + λ

ðb
a
K x, tð Þf tð Þdt,

f ið Þ xið Þ = yi, i = 1,⋯, n,
ð1Þ

where f ðxÞ is the unknown function to be solved, Kðx, tÞ is
the integral kernel, 0D

α
xðxÞ is Caputo’s fractional derivative,

and hðxÞ is the nonhomogeneous forced term.
On top of that, solving FIDE is always not an easy task,

and reliable numerical methods are needed. Furthermore,
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for the Fredholm-type problems, the existing numerical
methods are mostly applicable for interval ½0, 1�. Some of
the early published works which for FIDE in ½0, 1� are
including the collocation method via polynomial spline
function [10], the fractional differential transform method
[11], and the Taylor expansion method [12]. In this research
direction, some researches focus on solving the special class
of FIDE, which includes solving fractional partial integro-
differential equations by the resolvent kernel method, the
Laplace transform [13], and the Laguerre polynomial [14],
solving fractional integro-differential equations via the
fractional-order Euler polynomials [15] and the Jacobi wave-
lets [16], solving fourth-order time FIDE with a weakly sin-
gular kernel by compact finite difference scheme [17] and
nonlinear time-fractional partial integro-differential equa-
tion by finite difference scheme [18], and solving nonlinear
two-dimensional fractional integro-differential equations
via hybrid function [19]. However, the FIDE with the arbi-
trary domain is relatively less concerned by researchers,
and so far, the successful methods applied to this type of
problem are limited to the Chebyshev wavelet method
[20]. For more methods as well as theories of FIDE/FDE,
we refer the readers to some well-known books such as
[21, 22].

The rest of the paper is organized as follows: Section 2 is
devoted to preliminary results including basic definition,
properties and determinant form of the general shifted
Genocchi polynomials, Sða,bÞn ðxÞ, function approximation by
Sða,bÞn ðxÞ, and theorem for the analytical expression of the
integral of the product of the two general shifted Genocchi
polynomials Tðn,mÞ =

Ð b
aS

ða,bÞ
n ðxÞSða,bÞm ðxÞdx. Section 3 is the

main result of this paper, which includes the derivation of
a new operational matrix associated with the general shifted
Genocchi polynomials. Besides that, the procedure of
approximating the integral kernel in terms of the general
shifted Genocchi polynomials and analytical expression of
the kernel matrix is also explained in this section. Sections
4 and 5 are devoted to the procedure used in this paper
and some numerical examples. Section 6 is the conclusion
of this paper.

2. Preliminary Results

Here, first, we recall the function approximation by the orig-
inal Genocchi polynomials. For this purpose, we may
approximate a continuous function f ðxÞ in interval ½0, 1� in
terms of the Genocchi polynomials, GnðxÞ, as the basis [23,
24] as follows:

f xð Þ = 〠
∞

n=1
cnGn xð Þ, ð2Þ

where GnðxÞ are the Genocchi polynomials and the Genoc-
chi coefficients are denoted by cn. But normally, this process
is done by using the truncated Genocchi series as follows:

f xð Þ ≃〠
N

n=1
cnGn xð Þ, ð3Þ

where in matrix notation,

f xð Þ = CTG xð Þ, ð4Þ

where C = ½c1, c2,⋯,cN �T is the Genocchi coefficient matrix
and GðxÞ = ½G1ðxÞ,G2ðxÞ,⋯,GNðxÞ�T is the Genocchi basis
matrix. The Genocchi coefficients, cn, can be calculated as

cn =
1
2n! f n−1ð Þ 0ð Þ + f n−1ð Þ 1ð Þ
� �

, n = 1, 2,⋯N: ð5Þ

2.1. General Shifted Genocchi Polynomials: Definitions and
Basic Properties. Equation (5) fails to work for functions that
are not ðn − 1Þ-differentiable at the points x = 0 or x = 1. An
example is given as follows where the coefficient, c3, is
undefined:

Let N = 3, x3/2 ≈∑3
n=1cnGnðxÞ = c1G1ðxÞ + c2G2ðxÞ + c3

G3ðxÞ, we obtain

c3 =
1

2 3!ð Þ
d2

dx2
x3/2
�����
x=0

+ d2

dx2
x3/2
�����
x=1

 !

= 1
2 3!ð Þ

3
4 ffiffiffi

x
p
����
x=0

+ 3
4 ffiffiffi

x
p
����
x=1

� �
:

ð6Þ

To avoid this problem, we define the general shifted
Genocchi polynomials by shifting GnðxÞ from the interval
½0, 1� to the interval ½a, b�, 0 ≤ a ≤ b, i.e., SnðxÞ =Gnððx − aÞ
/ðb − aÞÞ, which results in the following definition:

Definition 1. The general shifted Genocchi polynomials
Sða,bÞn ðxÞ of order n is defined over the interval ½a, b� as

S a,bð Þ
n xð Þ =Gn

x − a
b − a

� �
= 〠

n

k=0

n

k

 !
gn−k

x − a
b − a

� �k
= 〠

n

r=0

n

r

 !
s a,bð Þ
n−r x

r ,

ð7Þ

where sða,bÞn−r =∑n
k=r

 
ððð−aÞk−rÞðgn−kÞÞ

n

k

 !
k

r

 !!
/
 
ðb − aÞk n

r

 !!

is the general shifted Genocchi number, and let Sða,bÞ0
ðxÞ = 0.

The generating function for the general shifted Genocchi
polynomials can be expressed as

2t
et + 1 e

x−að Þ/ b−að Þð Þt = 〠
∞

n=0
S a,bð Þ
n

tn

n!
, tj j < πð Þ: ð8Þ
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If we choose a = 2, b = 4, the first few terms of the general
shifted Genocchi polynomials are

S 2,4ð Þ
1 xð Þ = 1,

S 2,4ð Þ
2 xð Þ = x − 3,

S 2,4ð Þ
3 xð Þ = 3

4 x
2 −

9
2 x + 6,

S 2,4ð Þ
4 xð Þ = 1

2 x
3 −

9
2 x

2 + 12x − 9,

S 2,4ð Þ
5 xð Þ = 5

16 x
4 −

15
4 x3 + 15x2 − 45

2 x + 10:

ð9Þ

Figures 1 and 2 show the first few original Genocchi
polynomials and the general shifted Genocchi polynomials.

Some of the important properties inherited from the
classical Genocchi polynomials are

dS a,bð Þ
n xð Þ
dx

= n
b − a

S a,bð Þ
n−1 xð Þ, n ≥ 1, ð10Þ

dkS a,bð Þ
n xð Þ
dxk

=

0, n ≤ k,

k!
n

k

 !

b − að Þk
S a,bð Þ
n−k xð Þ, n > k,

8>>>><
>>>>:

k, n ∈ℕ ∪ 0f g,

ð11Þ

S a,bð Þ
n að Þ + S a,bð Þ

n bð Þ =Gn 0ð Þ +Gn 1ð Þ = 0, n > 1: ð12Þ

Theorem 2. Given an arbitrary integrable continuous func-
tion f ðxÞ ∈ CN−1ðRÞ, it can be approximated in terms of the
general shifted Genocchi polynomials Sða,bÞn ðxÞ up to order N
(i.e., polynomial degree = N − 1) by

f xð Þ ≈ 〠
N

j=1
cjS

a,bð Þ
j xð Þ =CTS xð Þ: ð13Þ

Then, the general shifted Genocchi coefficient cj is given
by

cj =
b − að Þj−1
2 j!ð Þ f j−1ð Þ að Þ + f j−1ð Þ bð Þ

� �
: ð14Þ

Proof. Let f ðxÞ =∑N
k=1ckS

ða,bÞ
k ðxÞ. Using Equations (11) and

(12), for 1 ≤ j

f j−1ð Þ að Þ + f j−1ð Þ bð Þ

= 〠
N

k=1
ck

dj−1

dxj−1
S a,bð Þ
k að Þ + S a,bð Þ

k bð Þ
� �

= 〠
N

k=j
ck

j − 1ð Þ!
k

j − 1

 !

b − að Þj−1
S a,bð Þ
k− j−1ð Þ að Þ + S a,bð Þ

k− j−1ð Þ bð Þ
� �

= cj

j − 1ð Þ!
j

j − 1

 !

b − að Þj−1
S a,bð Þ
1 að Þ + S a,bð Þ

1 bð Þ
� �

+ 〠
N

k=j+1
ck

j − 1ð Þ!
k

j − 1

 !

b − að Þj−1
S a,bð Þ
k− j−1ð Þ að Þ + S a,bð Þ

k− j−1ð Þ bð Þ
� �

= 2cj
j!ð Þ

b − að Þj−1
:

ð15Þ

Rearrange the above equation, we obtain cj = ððb − aÞj−1Þ
/ð2ðj!ÞÞð f ðj−1ÞðaÞ + f ðj−1ÞðbÞÞ.
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Figure 1: The first few original Genocchi polynomials (in interval
½0, 1�).
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Figure 2: The first few general shifted Genocchi polynomials (in
interval ½2, 4�).
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2.2. Determinant Form of the General Shifted Genocchi
Polynomial Sequence. In this subsection, we will explain that
this new general shifted Genocchi polynomial sequence can
be also expressed in determinant form and recurrence rela-
tion, via modifying the work in [25, 26] for the shifted Gen-
occhi polynomial sequence. For this process, we shift the
order of the general shifted Genocchi polynomial sequence

from n to n + 1; that is, we have Shða,bÞn ðxÞ = Sða,bÞn+1 ðxÞ, where
Shða,bÞn ðxÞ denotes the general shifted Genocchi polynomial
sequence.

Lemma 3. The determinant form of the general shifted Gen-
occhi polynomial sequence, Shða,bÞn ðxÞ, which n > 0, is given by

and the recurrence relation of the general shifted Genocchi
polynomial sequence, Shða,bÞn ðxÞ, can be written as

Sh a,bð Þ
n xð Þ = 1

sn,n
xn − 〠

n−1

j=0
sn,jSh

a,bð Þ
j xð Þ

 !
: ð17Þ

In order to obtain values for si,j, we follow Costabile
et al.’s method [25], which we summarize as follows:

Step 1. From Sða,bÞn ðxÞ =∑n
r=0

n

r

 !
sða,bÞn−r xr , we obtain the gen-

eral shifted Genocchi number, sða,bÞi ; hence, we calculate the
lower triangular Toeplitz matrix, TS, with entries

ti,j =
s a,bð Þ
i+1−j

i + 1 − jð Þ! : ð18Þ

Step 2. Calculate the upper triangular matrix S via

S =D−1
2 T−1

S D−1
1 , ð19Þ

where D1 = diag fði + 1Þ!∣i = 0, 1,⋯g and D2 = diag f1/i!ji
= 0, 1,⋯g. The values for si,j can be obtained using the
entries of S.

To show the result of the determinant form of the general

shifted Genocchi polynomial sequence, we present that Shð2,5Þ3
ðxÞ (a = 2, b = 5, n = 3) and Shð2,5Þ4 ðxÞ (a = 2, b = 5, n = 4) are
given by

Sh 2,5ð Þ
3 xð Þ = −1ð Þ3

1/4!

1 x
3

x2

32
x3

33

1 7
6

29
18

133
54

0 1
2

7
6

29
12

0 0 1
3

7
6

�����������������

�����������������

,

Sh 2,5ð Þ
4 xð Þ = −1ð Þ4

1/5!

1 x
3

x2

32
x3

33
x4

34

1 7
6

29
18

133
54

641
162

0 1
2

7
6

29
12

133
27

0 0 1
3

7
6

29
9

0 0 0 1
4

7
6

����������������������

����������������������

:

ð20Þ

Hence, the determinant form of the above general shifted
Genocchi polynomial sequence is as follows:

S 2,5ð Þ
4 xð Þ = Sh 2,5ð Þ

3 xð Þ = 4
27 x

3 −
14
9 x2 + 40

9 x −
77
27 ,

S 2,5ð Þ
5 xð Þ = Sh 2,5ð Þ

4 xð Þ = 5
81 x

4 −
70
81 x

3 + 100
27 x2 −

385
81 x + 50

81 :

ð21Þ

2.3. Integral of Product of the General Shifted Genocchi
Polynomials. In this subsection, we derive the analytical
expression for the integral of the product of the two general

Sh a,bð Þ
n xð Þ = −1ð ÞnQn

i=0si,i

1 x
b − a

x2

b − að Þ2 ⋯
xn−1

b − að Þ n−1ð Þ
xn

b − að Þn
s0,0 s1,0 s2,0 ⋯ sn−1,0 sn,0

0 s1,1 s2,0 ⋯ sn−1,1 sn,1

⋮ ⋱ ⋱   ⋮ ⋮

⋮   ⋱ ⋱ ⋮ ⋮

0 ⋯        

�������������������

�������������������

, ð16Þ
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shifted Genocchi polynomials which will be used frequently
in the later parts of the paper. This results in the following
theorem:

Theorem 4. Given any two general shifted Genocchi polyno-
mials Sða,bÞn ðxÞ, Sða,bÞm ðxÞ, for 0 ≤ x

γ a,bð Þ
n,m xð Þ =

ð
S a,bð Þ
n xð ÞS a,bð Þ

m xð Þdx =
ðx
0
S a,bð Þ
n xð ÞS a,bð Þ

m xð Þdx

= 〠
n−1

r=0
−1ð Þr b − að Þ n rð Þ

m + 1ð Þ r+1ð Þ

Á S a,bð Þ
n−r xð ÞS a,bð Þ

m+1+r xð Þ − S a,bð Þ
n−r 0ð ÞS a,bð Þ

m+1+r 0ð Þ
� �

,

ð22Þ

where nðrÞ is the falling factorial and ðm + 1Þðr+1Þ is the rising
factorial. For ½a, b�, 0 ≤ a ≤ b, we have

γ a,bð Þ
n,m = γ a,bð Þ

n,m bð Þ − γ a,bð Þ
n,m að Þ =

ðb
a
S a,bð Þ
n xð ÞS a,bð Þ

m xð Þdx

= 〠
n−1

r=0
−1ð Þr b − að Þ n rð Þ

m + 1ð Þ r+1ð Þ

Á S a,bð Þ
n−r bð ÞS a,bð Þ

m+1+r bð Þ − S a,bð Þ
n−r að ÞS a,bð Þ

m+1+r að Þ
� �

= 〠
n−1

r=0
−1ð Þr b − að Þ n rð Þ

m + 1ð Þ r+1ð Þ

Á S a,bð Þ
n−r bð ÞS a,bð Þ

m+1+r bð Þ − gn−rgm+1+r

� �
,

ð23Þ

where gk = Sða,bÞk ðaÞ =Gkð0Þ.

Proof. In order to prove this theorem, we need the following
expression:

dS a,bð Þ
m xð Þ
dx

= m
b − a

S a,bð Þ
m−1 xð Þ,ðx

0
S a,bð Þ
m xð Þdx = b − a

m + 1 S a,bð Þ
m+1 xð Þ − S a,bð Þ

m+1 0ð Þ
� �

:

ð24Þ

For

γ a,bð Þ
n,m xð Þ =

ðx
0
S a,bð Þ
n xð ÞS a,bð Þ

m xð Þdx, ð25Þ

and hence, using integration by parts, we have

γ a,bð Þ
n,m xð Þ = S a,bð Þ

n xð Þ
b − að Þ S a,bð Þ

m+1 xð Þ − S a,bð Þ
m+1 0ð Þ

� �
m + 1

0
@

1
A

−
ðx
0

n
b − a

S a,bð Þ
n−1 xð Þ

� � b − að Þ S a,bð Þ
m+1 xð Þ − S a,bð Þ

m+1 0ð Þ
� �

m + 1 dx

= S a,bð Þ
n xð Þ

b − að Þ S a,bð Þ
m+1 xð Þ − S a,bð Þ

m+1 0ð Þ
� �

m + 1

0
@

1
A

−
n

m + 1

ðx
0
S a,bð Þ
n−1 xð ÞS a,bð Þ

m+1 xð Þdx

+ n
m + 1 S

a,bð Þ
m+1 0ð Þ

ðx
0
S a,bð Þ
n−1 xð Þdx

= b − a
m + 1 S

a,bð Þ
n xð Þ S a,bð Þ

m+1 xð Þ − S a,bð Þ
m+1 0ð Þ

� �
−

n
m + 1

ðx
0
S a,bð Þ
n−1 xð ÞS a,bð Þ

m+1 xð Þdx

+ b − a
m + 1 S

a,bð Þ
m+1 0ð Þ S a,bð Þ

n xð Þ − S a,bð Þ
n 0ð Þ

� �
= b − a
m + 1 S a,bð Þ

n xð ÞS a,bð Þ
m+1 xð Þ − S a,bð Þ

n 0ð ÞS a,bð Þ
m+1 0ð Þ

� �
−

n
m + 1

ðx
0
S a,bð Þ
n−1 xð ÞS a,bð Þ

m+1 xð Þdx:

ð26Þ

By using Equation (25), we obtain

γ a,bð Þ
n,m xð Þ = b − að Þ S a,bð Þ

n xð ÞS a,bð Þ
m+1 xð Þ − S a,bð Þ

n 0ð ÞS a,bð Þ
m+1 0ð Þ

m + 1

 !

−
n

m + 1 γ
a,bð Þ
n−1,m+1 xð Þ

= b − að Þ S a,bð Þ
n xð ÞS a,bð Þ

m+1 xð Þ − S a,bð Þ
n 0ð ÞS a,bð Þ

m+1 0ð Þ
m + 1

 !

−
n

m + 1 b − að Þ S a,bð Þ
n−1 xð ÞS a,bð Þ

m+2 xð Þ − S a,bð Þ
n−1 0ð ÞS a,bð Þ

m+2 0ð Þ
m + 2

 ! 

−
n − 1
m + 2 γ

a,bð Þ
n−2,m+2 xð Þ

!

= b − að Þ S a,bð Þ
n xð ÞS a,bð Þ

m+1 xð Þ − S a,bð Þ
n 0ð ÞS a,bð Þ

m+1 0ð Þ
m + 1

 !

+ −1ð Þ1 b − að Þn
m + 1

S a,bð Þ
n−1 xð ÞS a,bð Þ

m+2 xð Þ − S a,bð Þ
n−1 0ð ÞS a,bð Þ

m+2 0ð Þ
m + 2

 

+ −1ð Þ2n n − 1ð Þ
m + 1ð Þ m + 2ð Þ γ

a,bð Þ
n−2,m+2 xð Þ

!
=⋯:

ð27Þ

These processes continue recursively for n times, and
then, we will obtain
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=⋯ = 〠
n−1

r=0
−1ð Þr b − að Þ n n − 1ð Þ⋯ n − r + 1ð Þ

m + 1ð Þ⋯ m + rð Þ
Á S a,bð Þ

n−r xð ÞS a,bð Þ
m+1+r xð Þ − S a,bð Þ

n−r 0ð ÞS a,bð Þ
m+1+r 0ð Þ

� �

= 〠
n−1

r=0
−1ð Þr b − að Þ n rð Þ

m + 1ð Þ r+1ð Þ

Á S a,bð Þ
n−r xð ÞS a,bð Þ

m+1+r xð Þ − S a,bð Þ
n−r 0ð ÞS a,bð Þ

m+1+r 0ð Þ
� �

:

ð28Þ

3. Main Result

3.1. General Shifted Genocchi Polynomial Operational
Matrix of Fractional Derivative. In this section, we will
derive the analytical expression of the general shifted Genoc-

chi polynomial operational matrix of fractional derivative in
the Caputo sense, which is the N ×N matrix 0Pα

S , where

0D
αS xð Þ
x = 0P

α
SS xð Þ,

0D
α
x

S a,bð Þ
1

S a,bð Þ
2

⋮

S a,bð Þ
N

2
666664

3
777775 =

ρ11 ρ12 ⋯ ρ1N

ρ21 ρ22 ⋯ ρ2N

⋮ ⋯ ⋯ ⋮

ρN1 ρN2 ⋯ ρNN

2
666664

3
777775

S a,bð Þ
1

S a,bð Þ
2

⋮

S a,bð Þ
N

2
666664

3
777775:

ð29Þ

To derive the 0Pα
S , we first prove the following Lemma 5.

Lemma 5. Caputo’s fractional derivative of fractional order α

of a general shifted Genocchi polynomial, Sða,bÞi ðxÞ, of order i
is given by

Proof. For n − 1 < α ≤ n, n = dαe

0D
α
xS

a,bð Þ
i xð Þ = 1

Γ n − αð Þ
ðx
0
x − tð Þn−α−1 dn

dtn
Gi

t − a
b − a

� �
dt

= 1
Γ n − αð Þ

ðx
0
x − tð Þn−α−1 dn

dtn
〠
i

r=0

i

r

 !
gi−r

t − a
b − a

� �r

dt

= 1
Γ n − αð Þ〠

i

r=n

i

r

 !
gi−r

b − að Þr n!
r

n

 !

Á
ðx
0
x − tð Þn−α−1 t − að Þr−ndt

= 1
Γ n − αð Þ〠

i

r=n

i

r

 !
gi−r

b − að Þr n!
r

n

 !

Á
ðx
0
x − tð Þn−α−1 〠

r−n

k=0

r − n

k

 !
tk −að Þr−n−kdt

= 1
Γ n − αð Þ〠

i

r=n
〠
r−n

k=0

−að Þr−n−k
i

r

 !
r − n

k

 !
gi−r

b − að Þr n!

Á
r

n

 !ðx
0
x − tð Þn−α−1tkdt:

ð31Þ

Substitute t = xu,

0D
α
xS

a,bð Þ
i xð Þ = 1

Γ n − αð Þ〠
i

r=n
〠
r−n

k=0

−að Þr−n−k
i

r

 !
r − n

k

 !
gi−r

b − að Þr n!

Á
r

n

 !
xn−α+k

ð1
0
1 − uð Þn−α−1ukdu

= 1
Γ n − αð Þ〠

i

r=n
〠
r−n

k=0

−að Þr−n−k
i

r

 !
r − n

k

 !
gi−r

b − að Þr n!

Á
r

n

 !
xn−α+kB k + 1, n − αð Þ = 1

Γ n − αð Þ

Á 〠
i

r=n
〠
r−n

k=0

−að Þr−n−k
i

r

 !
r − n

k

 !
gi−r

b − að Þr n!
r

n

 !
xn−α+k

Á Γ k + 1ð ÞΓ n − αð Þ
Γ n − α + k + 1ð Þ

= 〠
i

r=n
〠
r−n

k=0

−að Þr−n−ki!gi−r
b − að Þr i − rð Þ! r − n − kð Þ!Γ n − α + k + 1ð Þ x

n−α+k,

ð32Þ

where Bðx, yÞ is the beta function which can be found usingÐ 1
0u

x−1ð1 − uÞy−1du for Re ðxÞ, Re ðyÞ > 0.

0D
α
xS

a,bð Þ
i xð Þ = 〠

i

r= αd e
〠
r− αd e

k=0

−að Þr− αd e−ki!gi−rx
αd e−α+k

b − að Þr i − rð Þ! r − αd e − kð Þ!Γ αd e − α + k + 1ð Þ , n − 1 < α ≤ n, n ∈ℕ, i ≥ α

0, i < α:

8>><
>>: ð30Þ
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Hence, we obtain the theorem for operational matrix 0Pα
S

as follows:

Theorem 6. Given a set Sða,bÞi ðxÞ, i = 1,⋯N of the N general
shifted Genocchi polynomials, the general shifted Genocchi
polynomial operational matrix of fractional derivative in
the Caputo sense of order α over the interval ½0, 1� is the
N ×N matrix 0P

α
S , given by

0P
α
S =M αð Þ =

0 0 ⋯ 0

⋮ ⋮ ⋯ ⋮

0 0 ⋯ 0

〠
αd e

k= αd e
ρ αd e,1 〠

αd e

k= αd e
ρ αd e,2 ⋯ 〠

αd e

k= αd e
ρ αd e,N

⋮ ⋮ ⋯ ⋮

〠
i

k= αd e
ρi,1 〠

i

k= αd e
ρi,2 ⋯ 〠

i

k= αd e
ρi,N

⋮ ⋮ ⋯ ⋮

〠
N

k= αd e
ρN ,1 〠

N

k= αd e
ρN ,2 ⋯ 〠

N

k= αd e
ρN ,N

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

,

ð33Þ

where ρi,j is given by

ρi,j =
b − að Þj−1
2 j!ð Þ 〠

i

r=n
〠
r−n

k=0

−að Þr−n−ki!gi−r an−α+k−j+1 + bn−α+k−j+1
� �

b − að Þr i − rð Þ! r − n − kð Þ!Γ n − α + k − j + 2ð Þ :

ð34Þ

Proof. Let 0D
α
xS

ða,bÞ
i ðxÞ =∑N

j=1ρijS
ða,bÞ
j ðxÞ. Then, using the func-

tion approximation as in Theorem 2 and Caputo’s fractional

derivative for Sða,bÞi ðxÞ in Lemma 5, we have

ρij =
b − að Þj−1
2 j!ð Þ

dj−1

dxj−1 0D
α
xS

a,bð Þ
i xð Þ

���
x=a

+ dj−1

dxj−1 0D
α
xS

a,bð Þ
i xð Þ

���
x=b

 !

= b − að Þj−1
2 j!ð Þ

dj−1

dxj−1
〠
i

r=n
〠
r−n

k=0

−að Þr−n−ki!gi−rxn−α+k
b − að Þr i − rð Þ! r − n − kð Þ!Γ n − α + k + 1ð Þ

�����
x=a

 

+ dj−1

dxj−1
〠
i

r=n
〠
r−n

k=0

−að Þr−n−ki!gi−rxn−α+k
b − að Þr i − rð Þ! r − n − kð Þ!Γ n − α + k + 1ð Þ

�����
x=b

!

= b − að Þj−1
2 j!ð Þ × 〠

i

r=n
〠
r−n

k=0

−að Þr−n−ki!gi−r j − 1ð Þ!
n − α + k

j − 1

 !
xn−α+k− j+1

��
x=a + xn−α+k−j+1

��
x=b

� �
b − að Þr i − rð Þ! r − n − kð Þ!Γ n − α + k + 1ð Þ

= b − að Þj−1
2 j!ð Þ 〠

i

r=n
〠
r−n

k=0

−að Þr−n−ki!gi−r an−α+k− j+1 + bn−α+k−j+1
� �

b − að Þr i − rð Þ! r − n − kð Þ!Γ n − α + k − j + 2ð Þ : ð35Þ

As the formula given in Theorem 6 may fail to work for
a = 0, we use the matrix approach to derive the 0Pα

S as given
in Theorem 8. To prove Theorem 8, we need the following
lemma:

Lemma 7. The matrix ΘN defined as ΘN = Ð 10ð0Dα
xSðxÞÞ ∗

STðxÞdx is given by

ΘN = θik½ �N×N =
ð1
0
0D

α
xGi xð ÞGk xð Þdx

� �
N×N

, ð36Þ

where

θik = 〠
i

r= αd e
〠
k

p=0

i!
k

p

 !
gi−rgk−p

i − rð Þ! r − α + p + 1ð ÞΓ r − α + 1ð Þ :
ð37Þ

Proof. From Caputo’s fractional derivative of the Genocchi
polynomials [5, 23, 24], we have

0D
α
xGi xð Þ = 〠

i

r= αd e

i!gi−r
i − rð Þ!Γ r − α + 1ð Þ x

r−α

0D
α
xGi xð ÞGk xð Þ = 〠

i

r= αd e

i!gi−r
i − rð Þ!Γ r − α + 1ð Þ x

r−α

 !
〠
k

p=0

k

p

 !
gk−px

p

 !

= 〠
i

r= αd e
〠
k

p=0

i!gi−r
i − rð Þ!Γ r − α + 1ð Þ

k

p

 !
gk−px

r−α+p:

ð38Þ

Integrate both sides, and we obtain

ð1
0
0D

α
xGi xð ÞGk xð Þdx = 〠

i

r=
〠
k

p=0

i!gi−r
i − rð Þ!Γ r − α + 1ð Þ

k

p

 !
gk−p

ð1
0
xr−α+pdx

= 〠
i

r= αd e
〠
k

p=0

i!
k

p

 !
gi−rgk−p

i − rð Þ! r − α + p + 1ð ÞΓ r − α + 1ð Þ :

ð39Þ

Theorem 8. Given a set Sða,bÞi ðxÞ, i = 1,⋯N of the N general
shifted Genocchi polynomials, the general shifted Genocchi
polynomial operational matrix of Caputo’s fractional deriva-
tive of order α over the interval ½a, b� is the N ×N matrix 0P

α
S ,

given by

0P
α
S =ΘNT a,bð Þ−1 , ð40Þ

where ΘN is given in Lemma 7 and Tða,bÞ = ½γða,bÞnm �N×N with
elements γða,bÞnm is given in Theorem 4.
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Proof. From Equation (29),

0D
α
xS xð Þ = 0Pα

SS xð Þ,
0D

α
xS xð Þð ÞST xð Þ = 0Pα

SS xð ÞST xð Þ,ð1
0

0D
α
xS xð Þð ÞST xð Þdx = 0Pα

S

ð1
0
S xð ÞST xð Þdx

� �
,

ΘN = 0Pα
ST

0,1ð Þ
0 ,

Pα
S =ΘNT 0,1ð Þ−1 :

ð41Þ

3.2. Approximation of Integral Kernel by the General Shifted
Genocchi Polynomials. Here, we approximate the integral
kernel Kðx, tÞ in terms of the truncated series of the general
shifted Genocchi polynomials Sða,bÞn ðxÞ:

K x, tð Þ = 〠
∞

i=1
〠
∞

j=1
kijS

a,bð Þ
i xð ÞS a,bð Þ

j tð Þ ≈ 〠
N

i=1
〠
N

j=1
kijS

a,bð Þ
i xð ÞS a,bð Þ

j tð Þ

= ST xð ÞKSS tð Þ:
ð42Þ

We present two approaches for obtaining the kernel
matrix KS.

3.2.1. Method 1: Conventional Genocchi Coefficient Formula.
Using the conventional method of finding the Genocchi
coefficients for a single variable function f ðxÞ, we can extend
the formula to a two-variable function Kðx, tÞ which is con-
tinuous and ðN − 1Þ differentiable in interval ½0, 1�. This
results in the following theorem:

Theorem 9. Let Kðx, tÞ be a two-variable continuous func-
tion in CN−1ð½0, 1�Þ. Then, Kðx, tÞ can be approximated in
terms of the general shifted Genocchi polynomials up to order

N , i.e., Kðx, tÞ ≈∑N
i=1∑

N
j=1kijS

ða,bÞ
i ðxÞSða,bÞj ðtÞ = STðxÞKSSðtÞ,

N ∈ℕ, where S is the general shifted Genocchi polynomial
basis matrix and KS is the N ×N integral kernel matrix in
the general shifted Genocchi basis given by

KS = kij
Â Ã

N×N ,

kij =
b − að Þi+j−2
4 i!j!ð Þ K i−1,j−1ð Þ

x,tð Þ a, að Þ + K i−1,j−1ð Þ
x,tð Þ a, bð Þ

�
+ K i−1,j−1ð Þ

x,tð Þ b, að Þ + K i−1,j−1ð Þ
x,tð Þ b, bð Þ

�
,

ð43Þ

where

K i−1,j−1ð Þ
x,tð Þ a, bð Þ = ∂i−1

∂xi−1
∂j−1

∂t j−1
K x, tð Þ

�����
x=a,t=b

: ð44Þ

Proof. Assume that the kernel Kðx, tÞ is approximated using
N number of the general shifted Genocchi polynomials, i.e.,

K x, tð Þ ≈ = 〠
N

i=1
〠
N

j=1
kijS

a,bð Þ
i xð ÞS a,bð Þ

j tð Þ

= 〠
N

j=1
〠
N

i=1
kijS

a,bð Þ
i xð Þ

 !
S a,bð Þ
j tð Þ:

ð45Þ

Set ϕjðxÞ =∑N
i=1kijS

ða,bÞ
i ðxÞ. Hence, Kðx, tÞ =∑N

j=1ϕjðxÞ
Sða,bÞj ðtÞ. Using the formula of the general shifted Genocchi

coefficients for Sða,bÞj ðtÞ (i.e., Theorem 2 with respect to t var-
iable),

ϕj xð Þ = b − að Þj−1
2 j!ð Þ

∂j−1K x, tð Þ
∂t j−1

�����
t=a

+ ∂j−1K x, tð Þ
∂t j−1

�����
t=b

 !
:

ð46Þ

Now using the above expression of ϕjðxÞ together with
the formula of the general shifted Genocchi coefficients for

Sða,bÞi ðxÞ (i.e., with respect to x variable) instead, we obtain

kij =
b − að Þi−1
2 i!ð Þ

∂i−1ϕj xð Þ
∂xi−1

�����
x=a

+
∂i−1ϕj xð Þ
∂xi−1

�����
x=b

 !

= b − að Þi−1
2 i!ð Þ

∂i−1

∂xi−1
b − að Þ j−1
2 j!ð Þ

∂j−1K x, tð Þ
∂t j−1

�����
t=a

+ ∂j−1K x, tð Þ
∂t j−1

�����
t=b

 !�����
x=a

"

+ ∂i−1

∂xi−1
b − að Þj−1
2 j!ð Þ

∂j−1K x, tð Þ
∂t j−1

�����
t=a

+ ∂j−1K x, tð Þ
∂t j−1

�����
t=b

 !�����
x=b

#

= b − að Þi−1 b − að Þ j−1
4 i!j!ð Þ

∂i−1

∂xi−1
∂j−1K x, tð Þ

∂t j−1

�����
x=a,t=a

 "

+ ∂i−1

∂xi−1
∂j−1K x, tð Þ

∂t j−1

�����
x=a,t=b

!
+ ∂i−1

∂xi−1
∂j−1K x, tð Þ

∂t j−1

�����
x=b,t=a

 

+ ∂i−1

∂xi−1
∂j−1K x, tð Þ

∂t j−1

�����
x=b,t=b

!#
:

ð47Þ

In a similar way, the above approach can be extended to
finding the general shifted Genocchi coefficients for the
approximation of a multivariable function.

3.2.2. Method 2: Matrix Method. The classical way will not
work for the kernel function not differentiable at x, t = 0, 1;
then, we can adopt the matrix approach similar to that of
finding the general shifted Genocchi coefficients in Theorem
2 to arrive at the following theorem:

Theorem 10. Let Kðx, tÞ be a two-variable continuous func-
tion in CN−1ð½a, b�Þ. Then, Kðx, tÞ can be approximated in
terms of the general shifted Genocchi polynomials up to order

N , i.e., Kðx, tÞ ≈ ∑N
i=1∑

N
j=1kijS

ða,bÞ
i ðxÞSða,bÞj ðtÞ = STðxÞKSSðtÞ,

N ∈ℕ, where S is the general shifted Genocchi polynomial
basis matrix and KS is the N ×N integral kernel matrix in
the general shifted Genocchi basis given by
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KS = T a,bð Þ
� �−1

NS T a,bð Þ
� �−1

, ð48Þ

where

NS = ηpq

h i
N×N

=
ðb
a

ðb
a
K x, tð ÞS a,bð Þ

p xð ÞS a,bð Þ
q tð Þdxdt

� �
N×N

,

T a,bð Þ
� �−1

= γ a,bð Þ
n,m

h i
N×N

� �−1

= 〠
n−1

r=0

−1ð Þr b − að Þn rð Þ
m + 1ð Þ r+1ð Þ S a,bð Þ

n−r bð ÞS a,bð Þ
m+1+r bð Þ − gn−rgm+1+r

� �" #
N×N

 !−1

:

ð49Þ

Proof. From, Kðx, tÞ ≈ STðxÞKSSðtÞ,

S xð ÞK x, tð Þ = S xð ÞST xð ÞKSS tð Þ,ðb
a
S xð ÞK x, tð Þdx =

ðb
a
S xð ÞST xð Þdx

� �
KSS tð Þ

= T a,bð ÞKSS tð Þ,ðb
a
S xð ÞK x, tð Þdx

� �
ST tð Þ = T a,bð ÞKSS tð ÞST tð Þ,

ðb
a

ðb
a
K x, tð ÞS xð ÞST tð Þdxdt = T a,bð ÞKS

ðb
a
S tð ÞST tð Þdt

� �
,

ð50Þ

where Tða,bÞ =
Ð b
aSðxÞSTðxÞdx =

Ð b
aSðtÞSTðtÞdt. Define NS =Ð b

a

Ð b
aKðx, tÞSðxÞSTðtÞdxdt. Thus,

NS = T a,bð ÞKST a,bð Þ,

KS = T a,bð Þ
� �−1

NS T a,bð Þ
� �−1

:
ð51Þ

16

15
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9
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7
1 1.2

Exact solution
Approximate solution

1.4 1.6
x

1.8 2

Example 1: Graph of exact solution versus approximate solution

Figure 3: Comparison of exact solution f ðxÞ (red colour) and approximate solution f ∗ðxÞ (dot line) of Example 1 for N = 4:

Table 1: Comparison of the approximate solution f ∗ðxÞ using
N = 4 with exact solution f ðxÞ = 2x2 + 3x + 2 and absolute errors
for Example 1.

t Exact sol. f xð Þ Approx. sol. f ∗ xð Þ Abs. error
f xð Þ − f ∗ xð Þj j

1.0 7.0000000000 7.0000000000 0

1.1 7.7200000000 7.7200000000 0

1.2 8.4800000000 8.4800000000 0

1.3 9.2800000000 9.2800000000 0

1.4 10.1200000000 10.1200000000 0

1.5 11.0000000000 11.0000000000 0

1.6 11.9200000000 11.9200000000 0

1.7 12.8800000000 12.8800000000 0

1.8 13.8800000000 13.8800000000 0

1.9 14.9200000000 14.9200000000 0

2.0 16.0000000000 16.0000000000 0
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4. Procedure of Solving Arbitrary Domain
Fractional Integro-differential Equation

We will adopt the same approach as the other operational
matrix methods for solving FIDE by approximating each term
in the equation by the general shifted Genocchi polynomials.
From the following class of the 2nd-kind Fredholm FIDE,

0D
α
x f xð Þ = h xð Þ + λ

ðb
a
K x, tð Þf tð Þdt, ð52Þ

f ið Þ xið Þ = yi, i = 1,⋯,m: ð53Þ
Now, we approximate each term in Equation (52) with the

corresponding approximation using theN order of the general
shifted Genocchi polynomials,

0D
α
x f xð Þ ≈CT

0 P
α
SS xð Þ,

h xð Þ ≈HTS xð Þ,
K x, tð Þ ≈ ST xð ÞKSS tð Þ:

ð54Þ

Hence, FIDE in Equation (52) in matrix form becomes:

ST xð Þ 0Pα
Sð ÞTC = ST xð ÞH + λ

ðb
a
ST xð ÞKSS tð ÞST tð ÞCdt,

ST xð Þ 0Pα
Sð ÞTC = ST xð ÞH + λST xð ÞKS

ðb
a
S tð ÞST tð Þdt

� �
C,

ST xð Þ 0Pα
Sð ÞTC −H − λKST

a,bð ÞC
� �

= 0,

ð55Þ

where Tða,bÞ = Ð baSðtÞSTðtÞdt = ½γða,bÞnm �N×N . Then, we select the
N equally spaced points within the interval ½a, b�, i.e., vr = a
+ ððb − aÞðr − 1ÞÞ/ðN − 1Þ, r = 1,⋯,N as the collocation
points and substituting these into Equation (55), and we
obtain a system of N + 1 algebraic equations in terms of the
N general shifted Genocchi coefficients C = ½c1 ⋯ cN �T .
Choosing anyN − 1 equations from the above system together
with the initial conditions, f ðx0Þ = STðxÞC = y0, we can solve
for the general shifted Genocchi coefficients C = ½c1 ⋯ cN �T
of the unknown function f ðxÞ. The approximate solution f ∗

ðxÞ =CTSðxÞ will be compared to the exact solution f ðxÞ over
the interval ½a, b�.

5. Numerical Examples

Here are two examples of FIDE of Equation (1) which are
solved using the proposed method via the general shifted
Genocchi polynomials and its operational matrix. The com-
putation was done via Maple software.

Example 1. Consider the following FIDE:

0D
5/3ð Þ
x f xð Þ = 6x1/3

ffiffiffi
3

p
Γ 2/3ð Þ
π

−
471
10 x2 +

ð2
1
x2t3 f tð Þdt:

ð56Þ

Let f ð1Þ = 7, the exact solution is f ðxÞ = 2x2 + 3x + 2.
Since ½a, b� = ½1, 2�, we use the general shifted Genocchi

0.80

0.78

0.76

0.74

0.72

0.70

0.68

2 2.5

Exact solution
Approximate solution for N = 4

3
x

3.5 4

Example 2: Graph of exact solution versus approximate solution for 
N = 4 over interval [2,4]

Figure 4: Comparison of exact solution f ðxÞ (red colour) and approximate solution f ∗ðxÞ (dot line) of Example 2 for N = 4.
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polynomials over the interval ½1, 2�, i.e., Sð1,2Þi ðxÞ to solve the

problem. Let us choose N = 4 to approximate f ðxÞ ≈∑4
i=1ci

Sð1,2Þi ðxÞ.

The proposed method gives the general shifted Genoc-
chi coefficients as c1 = 23/2, c2 = 9/2, c3 = 2/3, c4 = 0, and

therefore, the approximate solution produced is f ∗ðxÞ = c1
Sð1,2Þ1 ðxÞ + c2S

ð1,2Þ
2 ðxÞ + c3S

ð1,2Þ
3 ðxÞ + c4S

ð1,2Þ
4 ðxÞ = 2x2 + 3x + 2

which reproduces the exact solution over the interval ½1, 2�.
Figure 3 shows both f ðxÞ and f ∗ðxÞ over the interval ½1, 2�.
The numerical results and absolute errors are shown in
Table 1.

Example 2. Consider the following FIDE:

0D
1/2
x f xð Þ =

ffiffiffi
x

p
x + 1ð Þ3/2 + x + 1ð Þ tan h−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x/ x + 1ð Þp� �

x + 1ð Þ5/2 ffiffiffi
π

p

+ x ln 3
5

� �
− 4

� �
+
ð4
2
xtf tð Þdt:

ð57Þ

Let f ð2Þ = 2/3, the exact solution is f ðxÞ = x/ðx + 1Þ. Let
us choose orders of N = 4 of the general shifted Genocchi

polynomials over the interval ½a, b� = ½2, 4� to approximate
f ðxÞ and compare the graphs and absolute errors between
the exact solution and approximate solutions of orders
N = 4. Figure 4 shows both f ðxÞ and f ∗ðxÞ of orders N = 4
over the interval ½2, 4�. The numerical results and absolute
errors are shown in Table 2, which shows our method of high
accuracy.

6. Conclusion

In this paper, the 2nd-kind nonhomogeneous Fredholm
FIDE is solved using the general shifted Genocchi polyno-
mials Sða,bÞn ðxÞ. We introduce the general shifted Genocchi
polynomials and derive the formula for computing the gen-
eral shifted Genocchi coefficients. Some new properties for
the general shifted Genocchi polynomials were introduced
including the determinant form. Also, we derive the analyt-
ical expression of the integral of the product of the general
shifted Genocchi polynomials, Tðn,mÞ; the integral kernel
matrix, KS; and the general shifted Genocchi polynomial
operational matrix of Caputo’s fractional derivatives, 0Pα

S .
By approximating each term in the FIDE in terms of the
general shifted Genocchi polynomials, the equation is trans-
formed into a system of algebraic equations. With the use of
the collocation method over the interval ½a, b� and the initial
condition given, the arbitrary domain Fredholm FIDE can
be solved with very high accuracy with only few terms of
the general shifted Genocchi polynomials. For future work,
we hope we can extend this approach to other types of
Appell polynomials, such as the Bernoulli polynomials
which had been used widely such as in [27]. Apart from that,
we hope we can use this general shifted Genocchi polyno-
mial approach to solve other kinds of fractional calculus
problems, such as those in [28, 29], or inverse fractional cal-
culus problems [30, 31].
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Ordinary differential equations describe several phenomena in different fields of engineering and physics. Our aim is to use the
reproducing kernel Hilbert space method (RKHSM) to find a solution to some ordinary differential equations (ODEs) that are
described by using the global derivative. In this research, we used the RKHSM to construct new numerical solutions for
nonlinear ODEs with global derivative. The used method systematically produces analytic and approximate solutions in the
series’s form. We tested three applications for showing the performance of the RKHSM.

1. Introduction

In the last decades, the rate of change has been increasingly
used for understanding the instantaneous changes that arise
in widespread fields. Thinking of the derivative as repre-
senting a rate of change is very useful when solving physics
problems. The derivative plays a fundamental role in form-
ing the ordinary differential equations (ODEs) that are of
great importance because of their ability to describe numer-
ous phenomena in physics, such as electrical networks,
oscillating and vibrating systems, satellite orbits, and chem-
ical reactions. Finding the ODEs’ solutions is the key to
understanding nature, but it is hard and sometimes impos-
sible to get the exact solutions of most real-life ODEs, espe-
cially the nonlinear ones. And for such a case, one resorts
to numerical methods.

The RKHSM is a widely used numerical method for
solving nonlinear ODEs (NODEs). This method which was
proposed in 1908 [1] is an effective numerical method for
complex nonlinear problems without discretization. Many

researchers applied it to solve several types of equations
[2–14]. The principal advantages of this method are

(1) the feature that is it is easy to be applied, especially
because it is meshfree

(2) its capability to deal with diverse complex differen-
tial equations

(3) the uniform convergence between the numerical and
exact solutions as well as their derivatives

This research aims to provide a new convenient method
using the reproducing kernel (RK) theory for obtaining the
solution of some nonlinear ODEs that are described by using
the global derivative.

In this paper and for the first time, the RKHSM is used
for constructing numerical solutions for the nonlinear ODEs
with global derivative.

The next section shows some basic definitions and
theorems concerning RK theory and global derivative. The
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description of the RKHSM and its application to the pro-
posed problem are presented in the third section. The
RKHSM’s effectiveness and the solutions’ accuracy are vali-
dated through three applications in the fourth section.
Finally, the conclusion is given.

2. Preliminaries

This section covers the theory required to understand the
RKHSM we will apply to solve some important nonlinear
ODEs with global derivative.

Definition 1. A global derivative of a differentiable function f
is [15]

Dgf xð Þ = lim
x1⟶x

f x1ð Þ − f xð Þ
g x1ð Þ − g xð Þ , ð1Þ

in which the function g is an increasing nonzero.

Remark 2. If the function g is differentiable then [15]

Dgf xð Þ = lim
x1⟶x

f x1ð Þ − f xð Þð Þ/ x1 − xð Þð Þ
g x1ð Þ − g xð Þð Þ/ x1 − xð Þð Þ =

f ′ xð Þ
g′ xð Þ

: ð2Þ

Remark 3. The global derivative covers the following three
cases that we are going to deal with throughout the numer-
ical part:

(1) Case 1: let us choose gðxÞ = x :

Dgf xð Þ = f ′ xð Þ
g′ xð Þ

=
f ′ xð Þ
xð Þ′

=
f ′ xð Þ
1

= f ′ xð Þ: ð3Þ

Hence, the classical derivative is a special case of global
derivative.

(2) Case 2: let us choose gðxÞ = xα :

Dgf xð Þ = f ′ xð Þ
g′ xð Þ

=
f ′ xð Þ
xαð Þ′

=
1

αxα−1
f ′ xð Þ: ð4Þ

Hence, the fractal derivative is a special case of global
derivative.

(3) Case 3: let us choose gðxÞ = sin ðxÞ:

Dgf xð Þ = f ′ xð Þ
g′ xð Þ

=
f ′ xð Þ

sin xð Þð Þ′
=

1
cos xð Þ f ′ xð Þ: ð5Þ

Definition 4. A function K : X × X⟶ℂ which satisfies

(1) Kð·, xÞ ∈H for all x ∈ X

(2) h f , Kð·, xÞi = f ðxÞ for all f ∈H and for all x ∈ X

is called a reproducing kernel of H ;H is a Hilbert space over
X ≠∅:

Definition 5. We set [16].

An inner product on W2
2½0, T� is

f , gh iW2
2
= 〠

1

j=0
f jð Þ 0ð Þg jð Þ 0ð Þ +

ðT
0
f ″ xð Þg″ xð Þdx, ð7Þ

and its norm is denoted by

fk kW2
2
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f , fh iW2

2

q
, ð8Þ

for all f , g ∈W2
2½0, T�:

Theorem 6. The function

Sτ xð Þ =
xτ +

1
2
x2τ −

1
6
x3 , x ≤ τ,

τx +
1
2
τ2x −

1
6
τ3 , x > τ,

8>><
>>: ð9Þ

is the reproducing kernel function of W2
2½0, T�,

For the proof of this theorem, see [17].

Definition 7. We set [16].

W2
2 0, T½ � = f xð ÞjThe functions f and f ′ are absolutely continuous in 0, T½ �, f ′′ ∈ L2 0, T½ �, and f 0ð Þ = 0

n o
: ð6Þ

W1
2 0, T½ � = f xð Þjf is absolutely continuous in 0, T½ � and f ′ ∈ L2 0, T½ �

o
:

n
ð10Þ
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An inner product on W1
2½0, T� is

f , gh iW1
2
= f 0ð Þg 0ð Þ +

ðT
0
f ′ xð Þg′ xð Þdx, ð11Þ

and its norm is denoted by

fk kW1
2
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f , fh iW1

2

q
, ð12Þ

for all f , g ∈W1
2½0, T�:

Theorem 8. The function

Rτ xð Þ =
1 + x , x ≤ τ,

1 + τ , x > τ,

(
ð13Þ

is the reproducing kernel function of W1
2½0, T�:

For the proof of this theorem, see [17].

3. Solution Methodology

We now consider the 1st-order nonlinear ODE,

Dgf xð Þ = F x, f xð Þð Þ, x ∈ 0, T½ �, T ∈ℝ∗,

f 0ð Þ = λ,  

(
ð14Þ

where Dg is the global derivative, f is the unknown, F is a
function of x and f ðxÞ, and λ is a constant.

To apply the RKHSM, let us begin with making a change
of variable to homogenize the initial condition f ð0Þ = λ:

u xð Þ = f xð Þ − λ: ð15Þ

Replacing f ðxÞ by uðxÞ + λ in (14) gives

Dgu xð Þ = �F x, u xð Þð Þ, x ∈ 0, T½ �, T ∈ℝ∗,

u 0ð Þ = 0,  

(
ð16Þ

where �F is a nonlinear function of x and uðxÞ:
The second step is to define a linear operator A : W2

2½0
, T�⟶W1

2½0, T� such that

Au xð Þ =Dgu xð Þ: ð17Þ

We use this linear operator to get

Au xð Þ = �F x, u xð Þð Þ, x ∈ 0, T½ �, T ∈ℝ∗,

u 0ð Þ = 0:  

(
ð18Þ

The next step is to build an orthogonal function system

of W2
2½0, T�: Let

ψi xð Þ = A∗κi xð Þ, ð19Þ

where

(i) κiðxÞ = RxiðxÞ ; RxiðxÞ represents the RK function of

W1
2½0, T�

(ii) The set fxig∞i=1 is dense in ½0, T�
(iii) A∗ is the adjoint of A

Now, to find f�ψig∞i=1, we need to use Gram-Schmidt’s
process:

�ψi xð Þ = 〠
i

k=1
ϖikψk xð Þ, ϖii > 0, i = 1, 2,⋯: ð20Þ

where fψig∞i=1 denotes the function system in W2
2½0, T�

obtained by

ψi xð Þ = A∗κi xð Þ = A∗κi ηð Þ, Sx ηð Þh iW2
2
= κi ηð Þ, ASx ηð Þh iW1

2

= Rηi
ηð Þ, ASx ηð Þ

D E
W1

2

= AηSx ηð Þjη=xi : ð21Þ

And the coefficients ϖik can be found by

ϖij =

1
ψ1k k , for i = j = 1,

1
ei
, for i = j ≠ 1,

−
1
ei
〠
i−1

k=j
Cikϖkj, for i > j,

8>>>>>>>>><
>>>>>>>>>:

ð22Þ

where ei = ðkψik2 −∑i−1
k=1C

2
ikÞ

1/2, Cik = hψi, �ψkiW2
2
:

Theorem 9. Suppose fxig∞i=1 is dense in ½0, T�, then fψig∞i=1 is
the complete system of W2

2½0, T�:

Proof. We know that ψiðxÞ ∈W2
2½0, T�: So, for each fixed u

ðxÞ ∈W2
2½0, T�, it follows

u xð Þ, ψi xð Þh iW2
2
= 0, i = 1, 2,⋯: ð23Þ

Since

u xð Þ, ψi xð Þh iW2
2
= u xð Þ, A∗κi xð Þh iW2

2

= Au xð Þ, κi xð Þh iW1
2

= Au xið Þ = 0,

ð24Þ

and fxig∞i=1 is dense on the interval ½0, T�, we have

Au xð Þ = 0: ð25Þ
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Then,

A−1 Au xð Þð Þ = A−1 0ð Þ, ð26Þ

that gives

u xð Þ = 0: ð27Þ

Lemma 10. Assume u ∈W2
2½0, T�, then

u ið Þ xð Þ
 

C
≤C u xð Þk kW2

2
, i = 0, 1, ð28Þ

where C ≥ 0 and kuðxÞkC = max
x∈½0,T�

juðxÞj:

Proof. ∀x ∈ ½0, T� we have

u ið Þ xð Þ = u ·ð Þ, ∂ ið Þ
x Sx ·ð Þ

D E
W2

2

, i = 0, 1: ð29Þ

Using the expression of ∂ðiÞx Sxð·Þ, we can reach

∂ ið Þ
x Sx

 
W2

2

≤Ci, i = 0, 1: ð30Þ

Consequently,

u ið Þ xð Þ
��� ��� = u ·ð Þ, ∂ ið Þ

x Sx ·ð Þ
D E

W2
2

����
����

≤ ∂ ið Þ
x Sx

 
W2

2

uk kW2
2

≤Ci uk kW2
2
, i = 0, 1:

ð31Þ

where C =max
i=0,1

fCig: Then Lemma 10 follows from (31).

Theorem 11. Assume fxig∞i=1 is dense in ½0, T� and problem
(18) has a solution that should be unique onW2

2½0, T�: There-
fore, the solution of (18) is

u xð Þ = 〠
∞

i=1
〠
i

k=1
ϖik

�F xk, u xkð Þð Þ�ψi xð Þ: ð32Þ

While the solution of (14) is

f xð Þ = 〠
∞

i=1
〠
i

k=1
ϖik

�F xk, u xkð Þð Þ�ψi xð Þ + λ: ð33Þ

Proof. Firstly, the fact that f�ψiðxÞg∞i=1 is a complete ortho-
normal basis in W2

2½0, T� allows us to write

u xð Þ = 〠
∞

i=1
u xð Þ, �ψi xð Þh iW2

2
�ψi xð Þ

= 〠
∞

i=1
u xð Þ, 〠

i

k=1
ϖikψk xð Þ

* +
W2

2

�ψi xð Þ

= 〠
∞

i=1
〠
i

k=1
ϖik u xð Þ, ψk xð Þh iW2

2
�ψi xð Þ

= 〠
∞

i=1
〠
i

k=1
ϖik u xð Þ, A∗κk xð Þh iW2

2
�ψi xð Þ

= 〠
∞

i=1
〠
i

k=1
ϖik Au xð Þ, κk xð Þh iW1

2
�ψi xð Þ

= 〠
∞

i=1
〠
i

k=1
ϖik Au xð Þ, Rx xkð Þh iW1

2
�ψi xð Þ

= 〠
∞

i=1
〠
i

k=1
ϖik

�F xk, u xkð Þð Þ�ψi xð Þ,

ð34Þ

with �Fðxk, uðxkÞÞ = AuðxkÞ:
Secondly, by replacing gðςÞ by its formula (32) in the

transformation (15), we get

u xð Þ = 〠
∞

i=1
〠
i

k=1
ϖik

�F xk, u xkð Þð Þ�ψi xð Þ + λ: ð35Þ

We now write the RKHSM’s solution unðxÞ as

un xð Þ = 〠
n

i=1
〠
i

k=1
ϖik

�F xk, u xkð Þð Þ�ψi xð Þ: ð36Þ

The space W2
2½0, T� is a Hilbert space, hence

〠
∞

i=1
〠
i

k=1
ϖik

�F xk, u xkð Þð Þ�ψi xð Þ <∞, ð37Þ

which means that unðxÞ converges to uðxÞ in the norm.

Theorem 12.

(1) unðxÞ converges uniformly to uðxÞ
(2) un′ðxÞ converges uniformly to u′ðxÞ
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Proof. For the first result, we need to estimate the term on
the left below:

∀x ∈ 0, T½ �,
un xð Þ − u xð Þj j = un ·ð Þ − u ·ð Þ, Sx ·ð Þh iW2

2

��� ���
≤ Sxk kW2

2
un − uk kW2

2

≤C0 un − uk kW2
2
,

ð38Þ

where C0 is a constant.
Following the same way, we get

un′ xð Þ − u′ xð Þ�� �� ≤ ∂xSxk kW2
2
un′ − u′

 
W2

2
, ð39Þ

due to the uniform boundedness of ∂xSxð·Þ, we have

∂xSxk kW2
2
≤C1, ð40Þ

where C1 is a positive constant.
Therefore

un′ xð Þ − u′ xð Þ�� �� ≤C1 un′ − u′
 

W2
2
: ð41Þ

4. A Numerical Experiment

This section is the numerical part that assures the efficiency
of the proposed method by testing three examples. The rate
of convergence of the presented method is as follows [18]:

Ocð Þn =
−ln En/En/2ð Þ

ln 2ð Þ , ð42Þ

where

En = max
x∈ 0,1½ �

f xð Þ − f n xð Þj j: ð43Þ

Now, how to apply the RKHSM can be summarized in
the following procedure:

Step 1. Fix n:

Step 2. Set ψiðxiÞ = AηSxðηÞjη=xi .

Step 3. Calculate the orthogonalization coefficients ϖij

using (22).

Step 4. Set �ψiðxiÞ =∑i
k=1ϖikψkðxiÞ, ϖii > 0, i = 1, 2,⋯, n.

Step 5. Choose an initial guess u0ðx1Þ.

Step 6. Set i = 1.

Step 7. Set Λi =∑i
k=1ϖik

�Fðxk, uðxkÞÞ.

Step 8. uiðxiÞ =∑i
ℓ=1Λℓ�ψℓðxℓÞ.
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Figure 1: Exact and RKHSM’s solutions for Example 1 with
gðxÞ = x:
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Figure 2: Absolute error of the RKHSM for Example 1 with
gðxÞ = x:
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Figure 3: Exact and RKHSM’s solutions for Example 1 with
gðxÞ = x0:9.
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Step 9. If i < n, set i = i + 1: Go to Step 7. Else stop.

where xi = i/n, i = 1, 2,⋯, n and n is the number of col-
location points.

Example 1. Taking the following linear ODE with global
derivative:

Dgf xð Þ = x, x ∈ 0, 1½ �,
f 0ð Þ = 0:  

(
ð44Þ
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Figure 8: Absolute error of the RKHSM for Example 1 with
gðxÞ = sin ðxÞ:

Table 1: Rate of convergence for Example 1 with gðxÞ = x:

n Maximum absolute error Ocð Þn
2 0.0833 ——
4 0.0250 1.74

8 0.0069 1.85

16 0.0018 1.92

32 0.0005 1.96

64 0.0001 1.98

128 0.0000 1.99
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Figure 7: Exact and RKHSM’s solutions for Example 1 with
gðxÞ = sin ðxÞ:
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Figure 4: Absolute error of the RKHSM for Example 1 with
gðxÞ = x0:9:
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Figure 5: RKHSM's solutions for Example 1 with gðxÞ = xα :
α = 1, α = 0:9, and α = 0:8:
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Figure 6: Absolute errors of the RKHSM for Example 1 with
gðxÞ = xα and α ∈ f1 ; 0:9 ; 0:8g:
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Figure 14: Absolute errors of the RKHSM for Example 2 with
gðxÞ = xα and α ∈ f1 ; 0:9 ; 0:8g:
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Figure 11: Exact and RKHSM’s solutions for Example 2 with
gðxÞ = x0:9:
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Figure 12: Absolute error of the RKHSM for Example 2 with
gðxÞ = x0:9:
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Figure 13: RKHSM's solutions for Example 2 with gðxÞ = xα :
α = 1, α = 0:9, and α = 0:8:
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Figure 10: Absolute error of the RKHSM for Example 2 with
gðxÞ = x:
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Figure 9: Exact and RKHSM’s solutions for Example 2 with
gðxÞ = x:
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As the initial condition is homogeneous. We can then
directly define a bounded linear operator A as

A : W2
2 0, 1½ � ⟶ W1

2 0, 1½ �
f xð Þ ⟶ A f xð Þ =Dgf xð Þ:

ð45Þ

Taking n = 100 collocation points in which xi = i/n, i =
1, 2⋯ , n: The approximate solution for Example 1 is found
using the RKHSM for different cases of the function gðxÞ in
the global derivative when gðxÞ equals x,xα, and sin ðxÞ: For
each case, the results are compared with the exact solution.
Figure 1 shows the exact solution and the RKHSM’s solution
with gðxÞ = x: The absolute error of this case is plotted in
Figure 2. In Figure 3, we compared the exact solution with
the RKHSM’s solution when gðxÞ = xα with α = 0:9, and its
absolute error is given in Figure 4, whereas in Figures 5
and 6, we depicted the obtained results for α = 1,0:9, and
0:8 together. Figures 7 and 8 are where the results of the last
case of gðxÞ are given. We can see from these figures that the
graphs’ behavior is very similar. To highlight more compar-
isons between the RKHSM and the exact solution, we gave
the rate of convergence for gðxÞ = x in Table 1, and we drew

the absolute error for each case through the figures pre-
sented. What we can observe here is that the RKHSM’s solu-
tion is very close to the exact one. And this confirms that the
proposed method is effective.

Example 2. Taking the following linear ODE with global
derivative:

Dgf xð Þ = x2, x ∈ 0, 1½ �,
f 0ð Þ = 0:  

(
ð46Þ
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Figure 18: Absolute error of the RKHSM for Example 3 with
gðxÞ = x:
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Figure 17: Exact and RKHSM’s solutions for Example 3 with
gðxÞ = x:
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Figure 15: Exact and RKHSM’s solutions for Example 2 with
gðxÞ = sin ðxÞ:
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Figure 16: Absolute error of the RKHSM for Example 2 with
gðxÞ = sin ðxÞ:

Table 2: Rate of convergence for Example 2 with gðxÞ = x:

n Maximum absolute error Ocð Þn
2 0.0833 ——
4 0.0167 2.32

8 0.0035 2.26

16 0.0008 2.18

32 0.0002 2.11

64 0.0000 2.06

8 Journal of Function Spaces



As the initial condition is homogeneous. We can then
directly define a bounded linear operator A as

A : W2
2 0, 1½ � ⟶ W1

2 0, 1½ �
f xð Þ ⟶ A f xð Þ =Dgf xð Þ:

ð47Þ

Taking n = 100 collocation points in which x = i/n,
i = 1, 2⋯ , n: The approximate solution for Example 2 is
found using the RKHSM for different cases of the function
gðxÞ in the global derivative when gðxÞ equals x,xα, and sin
ðxÞ: For each case, the results are compared with the exact
solution of each case. Figure 9 shows the exact solution and
the RKHSM’s solution with gðxÞ = x: The absolute error of
this case is plotted in Figure 10. In Figure 11, we compared
the exact solution with the RKHSM’s solution when gðxÞ =
xα with α = 0:9, and its absolute error is given in Figure 12,
whereas in Figures 13 and 14, we depicted the obtained
results for α = 1,0:9, and 0:8 together. Figures 15 and 16 are
where the results of the last case of gðxÞ are given. We can

see from these figures that the graphs’ behavior is very simi-
lar. To highlight more comparisons between the RKHSM
and the exact solution, we gave the rate of convergence for
gðxÞ = x in Table 2, and we drew the absolute error for each
case through the figures presented. What we can observe here
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Figure 22: Exact and RKHSM’s solutions for Example 3 with
gðxÞ = sin ðxÞ:
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Figure 23: Absolute error of the RKHSM for Example 3 with
gðxÞ = sin ðxÞ:
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Figure 21: Exact and RKHSM’s solutions for Example 3 with
gðxÞ = x0:6:
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Figure 20: Exact and RKHSM’s solutions for Example 3 with
gðxÞ = x0:8:
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Figure 19: Exact and RKHSM’s solutions for Example 3 with
gðxÞ = x0:9:
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is that the RKHSM’s solution is very close to the exact one.
And this confirms that the proposed method is effective.

Example 3. Taking the following linear ODE with global
derivative:

Dgf xð Þ = f xð Þ2 + 1, x ∈ 0, 1½ �,
f 0ð Þ = 0:  

(
ð48Þ

As the initial condition is homogeneous. We can then
directly define a bounded linear operator A as

A : W2
2 0, 1½ � ⟶ W1

2 0, 1½ �
f xð Þ ⟶ A f xð Þ =Dgf xð Þ:

ð49Þ

Takingn = 100 collocation points in which x = i/n, i = 1,
2⋯ , n: The approximate solution for Example 3 is found
using the RKHSM for different cases of the function gðxÞ in
the global derivative when gðxÞ equals x,xα, and sin ðxÞ: For
each case, the results are compared with the exact solution of
each case. Figure 17 shows the exact solution and the
RKHSM’s solution with gðxÞ = x: The absolute error of this
case is plotted in Figure 18. In Figures 19–21, we compared
the exact solution with the RKHSM’s solution when gðxÞ =
xα with α ∈ f0:9,0:8,0:6g: Figures 22 and 23 are where the
results of the last case of gðxÞ are given.We can see from these
figures that the graphs’ behavior is very similar. To highlight
more comparisons between the RKHSM and the exact solu-
tion, we gave the rate of convergence for gðxÞ = x in Table 3,
and we drew the absolute error for each case through the fig-
ures presented. What we can observe here is that the
RKHSM’s solution is very close to the exact one. And this con-
firms that the proposed method is effective.

5. Conclusion

In this paper, an efficient method, named the reproducing
kernel Hilbert space method, is applied successfully for solv-
ing nonlinear ODEs described by using the global derivative.
The accuracy and applicability of the RKHSM are validated
by computing the numerical solutions at many grid points.
The results show that the RKHSM is a powerful method
to deal with many other nonlinear problems that arise in
a large variety of physical problems with different types
of derivatives.
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This paper derives a computationally efficient and fast-running solver for the approximate solution of fractional differential
equations with impulsive effects. In this connection, for approximating the fractional-order integral operator, a B-spline
version of interpolation by corresponding equal mesh points is adopted. An illustrative example illustrates the accuracy of the
new solver results as compared with those of the previous study. The proposed solver’s performance is evaluated by the
fractional Rössler and susceptible-exposed-infectious impulsive systems. Moreover, the effect of impulsive behaviors is shown
for various values of impulsive.

1. Introduction

The impulsive differential equations (IDEs) are mostly
investigated systems together with short-time perturbations
[1–4]. Impulsive control systems have been studied in many
fields such as economics [5], chemostat [6], population ecol-
ogy [7, 8], engineering [9], and neural networks [10, 11].
Many theoretical and numerical researchers have investi-
gated IDEs in many studies. In [12–15], the existence and
uniqueness theorems on IDEs have been analyzed. In addi-
tion, analytical and numerical solutions of this kind of equa-
tion have been investigated in [16–21] and etc.

Nowadays, one of the most famous branches of mathe-
matical science is the fractional calculus with arbitrary frac-
tional order [22]. The fractional calculus is applied to the
model of many phenomena including control [23], mechan-
ics [24], physics [25–27], stock market [28], electronics [29],
biology [30], and epidemiology [31, 32]. Recently, fractional
impulsive differential equations (FIDEs) are considered in
simulations of many systems including chaotic and hyperch-
aotic systems [33–35], control [36], and neural networks
[37]. The existence of the solutions of FIDEs is studied in
[38] by using the fixed point method. The existence of solu-

tions for FIDEs with the integral jump and antiperiodic con-
ditions is investigated in [39]. Furthermore, the existence of
solutions of these equations is analyzed through a global
bifurcation approach in [40]. The existence and stability
results are presented in [41].

To the best of the author’s knowledge, developing a fast-
running solver requires FIDE up to date. This motivates our
interest to designate an accurate computational technique
for solving the following FIDE:

CD
β
0,tu tð Þ −Q t, u tð Þð Þ = 0, t ∈ϒ ′ ≔ϒ \T ,

Δu tð Þ = u t+nð Þ − u tnð Þ = Kn u tnð Þð Þ, n = 1, 2,⋯, i, i ∈ℕ
u 0+ð Þ = u0,

ð1Þ
where 0 < β < 1, Y ≔ ½0, T�, T ≔ ft1, t2,⋯, tig, where every
tn satisfies 0 = t0 < t1 <⋯ < ti < ti+1 = T , and plus Q : Y ×
= R⟶ = R is jointly continuous function. Moreover, Kn
≔ R⟶ = R, and i = ½T/τ�, where τ = ti+1 − ti denotes the
impulsive interval. Furthermore, uðt−nÞ = limε⟶0−uðtn + εÞ
and uðt+nÞ = limε⟶0+uðtn + εÞ indicate the left and right
limits of uðtÞ at t = tn, respectively.
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Throughout this paper, we do choose the Riemann-
Liouville fractional integral [42] and fractional derivative in
the Caputo sense [43, 44] which are formulated as

J
β
0,tu tð Þ = 1

Γ βð Þ
ðt
0
u ςð Þ t − ςð Þβ−1dς,

CD
β
0,tu tð Þ = 1

Γ p − βð Þ
ðt
0

u pð Þ ςð Þ
t − ςð Þβ+1−p

dς, p ∈ =N ,
ð2Þ

where t, β, ς ∈ = R+ and p − 1 < β ≤ p. In addition, the
unknown function, uðtÞ, is continuously differentiable
ðp − 1Þ − times.

The rest of the paper is arranged as follows. Section 2
suggests an implicit numerical technique, by using base
spline interpolation for discretizing the FIDE. Section 3
investigates the performance and accuracy of the new solver
by analysing the fractional impulsive Rössler and SEI sys-
tems. To sum up, Section 4 proffers the concluding remarks
and statements.

2. Theoretical Argument

The proposed benefits of this section are twofold:

(1) It gives a fractional order approximation of the inte-
gral nonlocal operators

(2) It provides an accurate and computationally efficient
technique for solving FIDE (1)

Thereafter, we consider that tm =mℏ, m = f0, 1,⋯, rg,
and ℏ = ½T/r� means the uniform step size, and r ∈ =N:

Proposition 1. Assume that uðtÞ ∈ C2ðYÞ be a function, β > 0
and kuð2ÞðtÞk∞ ≤M, where M > 0. The approximation of the

nonlocal integral, J β
0,tr ½uðtÞ�, using the B-spline interpolation

can be stated as follows:

J
β
0,tr u tð Þ½ � ≈ 〠

r

m=0
am,rum ≡ J

β
0,tr u tð Þ½ �

� �
approx

, ð3Þ

where

am,r =
ℏβ

Γ β + 2ð Þ

×

r − 1ð Þβ+1 − r − β − 1ð Þ rð Þβ, m = 0,

r −m + 1ð Þβ+1 + r −m − 1ð Þβ+1 − 2 r −mð Þβ+1, 1 ≤m ≤ r − 1,

1, m = r:

8>>><
>>>:

ð4Þ

In addition, the truncation error of (3) is

J
β
0,tr u tð Þ½ � − J

β
0,tr u tð Þ½ �

� �
approx



∞
≤

rβM
8Γ β + 1ð Þ ℏ

2+β: ð5Þ

Proof. The uðtÞ − approximation function, SmðtÞ, in ½tm,
tm+1� ⊆T ;m = 0, 1,⋯, r − 1, by considering the B-spline
interpolation is stated as

um tð Þ ≈ Sm tð Þ = t − tm
tm+1 − tm

� �
u tm+1ð Þ + t − tm+1

tm − tm+1

� �
u tmð Þ:

ð6Þ

Substituting (6) into (2), we obtain the time discretiza-
tion form of (2) as follows:

J
β
0,tr u tð Þ½ � ≈

ðtr
0+

1
Γ βð Þ Sm ζð Þ tr − ζð Þβ−1dζ

= 〠
r−1

m=0

ðtm+1

tm

tr − ζð Þβ−1
Γ βð Þ

ζ − tm+1
tm − tm+1

dζ
 !

u tmð Þ

+ 〠
r−1

m=0

ðtm+1

tm

tr − ζð Þβ−1
Γ βð Þ

ζ − tm
tm+1 − tm

dζ
 !

u tm+1ð Þ:

ð7Þ

After rearranging and simplifying the above equation, it
leads to (3) where the coefficients am,r are given by (4).

Subsequently, the B-spline interpolation polynomial Sm
ðtÞ satisfies

Em tð Þ≔ um tð Þ − Sm tð Þ = t − tmð Þ t − tm+1ð Þ u′′ ηmð Þ
2 , ð8Þ

where ηm ∈ ðtm, tm+1Þ and EmðtÞ denote error function.
Therefore, we have

J
β
0,tr u tð Þ½ � − J

β
0,tr u tð Þ½ �

� �
approx



∞

= 1
Γ βð Þ

ðtr
0

tr − ςð Þβ−1E ςð Þ



∞
dς

= 1
Γ βð Þ 〠

r−1

m=0

ðtm+1

tm

tr − ςð Þβ−1 u′′ ηmð Þ
2 t − tmð Þ t − tm+1ð Þ



∞

dς

≤
M

8Γ βð Þ ℏ
2 〠
r−1

m=0

ðtm+1

tm

tr − ςð Þβ−1dς = tβr M
8Γ β + 1ð Þ ℏ

2

= rβM
8Γ β + 1ð Þ ℏ

β+2:

ð9Þ

In the rest of this section, we designate a fast-running
technique for solving FIDE (1) by means of Proposition 1.
FIDE (1) is able to state the following two equivalent equa-
tions with the same solutions:

u tð Þ = u0 + 〠
n

j=1
Kj uj

À Á
+ J

β
0,tQ t, u tð Þð Þ, n = 1, 2,⋯, i

ð10Þ
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or

u tð Þ =

u0 +
1

Γ βð Þ
ðt
0
Q ς, u ςð Þð Þdς, t ∈ 0, t1½ �,

u0 + K1 u1ð Þ + 1
Γ βð Þ

ðt
0
Q ς, u ςð Þð Þdς, t ∈ t1, t2ð �,

⋮ ⋮

u0 + 〠
i

j=1
Kj uj

À Á
+ 1
Γ βð Þ

ðt
0
Q ς, u ςð Þð Þdς, t ∈ ti, Tð �:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð11Þ

By using the presented approximation in Proposition 1,
we get the following approximation:

J
β
0,trQ t, u tð Þð Þ ≈ 〠

r

m=0
am,rQ tm, umð Þ: ð12Þ

Therefore, by replacing (12) with (10) (or (11)), the fol-
lowing equation derives

ur = u0 + 〠
i

j=1
Kj uj

À Á
+ 〠

r

m=0
am,rQ tm, umð Þ, ð13Þ

where am,r is given by (4). Due to the nonlinear source term
Qðt, ·Þ, we have

upr = u0 +
ℏβ

Γ β + 1ð Þ 〠
r−1

m=0
bm,rQ tm, umð Þ, ð14Þ

where

bm,r = r −mð Þβ − r −m − 1ð Þβ, 0 ≤m ≤ r − 1: ð15Þ

Ultimately, replacing upr in the righthand side of (13)
yields

ur = u0 + 〠
i

j=1
K j uj

À Á
+Q tr , uprð Þ + 〠

r−1

m=0
am,rQ tm, umð Þ: ð16Þ

3. Numerical Application and Discussion

This section evaluates the accuracy and computational effi-
ciency of the proposed numerical technique. To evaluate
the computational impact of this solver, the mean absolute
error (EM),

EM = 1
M

〠
M

m=1
AEm, ð17Þ

where AEm = jJ β
0,tm ½uðtÞ� − ðJ β

0,tm ½uðtÞ�Þapproxj and M repre-

sents the number of interior mesh points, and the conver-
gence order (Ch,M)

Ch,M = logℏ EMð Þ ð18Þ

is considered evaluation criteria. All the computational
results are implemented with MATLAB R2019a on an
AMD Ryzen 7 5700U @ 1.80GHz machine. Furthermore,
a comparison is made with the IM algorithm that was for-
mulated and investigated in [45, 46].

Example 2. Let uðtÞ = πt sin ðπtÞ. Then, we get

J
β
0,t u tð Þ½ � = − β + 2ð Þ

π1/2+β ffiffi
t

p
Γ 3 + βð Þ

Á t2π2 + β
À Á

S3/2+β,1/2 πtð Þ + β2π2tS1/2+β,3/2 πtð Þ − πtð Þ5/2+β
� �

,

ð19Þ

where β > 0 and Sη,νðtÞ define the Lommel function as

Sδ,ϱ tð Þ = tδ+1 1F2 1½ � ; 1/2 δ − ϱ + 3ð Þ, 1/2 δ + ϱ + 3ð Þ½ � ; −1/4ð Þt4À Á
δ + 1ð Þ2 − ϱ2

,

ð20Þ

where  
s Fdðu1,⋯, us ; v1,⋯, vd ; tÞ defines the generalized

hypergeometric function.

The performance of the presented method is described

by J
β
0,t½πt sin ðπtÞ� in Example 2 which is shown in

Table 1. Table 1 shows the values of EM , Ch,M , and compu-
tational times of Equation (19) with ℏ = f0:01,0:005,0:002g
and β = f0:4,0:7,0:9g in the interval t ∈ ½0, 1�. The numerical
results display the improved accuracy of the presented
scheme compared to the IM scheme [45] in the viewpoint
of the EM , Ch,M , and computational times. Figure 1 depicts
the curves of Equation (19) for β = f0:1,0:2,⋯, 1g with step
size ℏ = 0:01. The outcomes in Figure 1 and Table 1 show
that the proposed scheme is more accurate and has less com-
putational time than the IM scheme [45].

3.1. Application of the Suggested Solver. In this section, the
performance of the suggested solver is investigated for
FIDEs.

Application 3. The fractional Rössler system is stated as

CD
β1
0,tx tð Þ = − y tð Þ + z tð Þð Þ,

CD
β2
0,ty tð Þ = x tð Þ + αy tð Þ,

CD
β3
0,tz tð Þ = x tð Þ − θð Þz tð Þ + χ,
x 0ð Þ = x0, y 0ð Þ = y0, z 0ð Þ = z0,

ð21Þ

where 2 ≤ θ ≤ 11 and 0 < β1, β2 and β3 ≤ 1.

In Figure 2, we plot the phase curves of the integer-order
and fractional Rössler chaotic system (21) by means of the
suggested scheme with initial conditions x0 = 0:25, y0 = 0:2,
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and z0 = 0:2 for β3 = 0:8 and β1 = 0:96, β2 = 0:9, and θ = 8
with step size ℏ = 0:002 and T = 100.

We can rewrite system (21) into the following system:

CD
β
0,tu tð Þ = Au tð Þ +Ψ tð Þ,
u 0ð Þ = u0,

ð22Þ

where β = ðβ1, β2, β3Þ, uðtÞ = ½xðtÞ, yðtÞ, zðtÞ�T ,

A =
0 −1 −1
1 α 0
0 0 θ

2
664

3
775, ð23Þ

and ΨðtÞ = ½0, 0,−xðtÞzðtÞ + χ�T .

Hence, the fractional impulsive control of chaotic system
(22) is defined as

CD
β
0,tu tð Þ = Au tð Þ +Ψ tð Þ, t ∈ϒ ′ ≔ϒ \ t1, t2,⋯, tif g, ϒ ≔ 0, T½ �,
Δu tð Þ = u t+nð Þ − u tnð Þ = B u tnð Þð Þ, n = 1, 2,⋯, i,
u 0+ð Þ = u0,

ð24Þ

where B = diag ð−0:58,−0:68,−0:78Þ with initial conditions

x 0+ð Þ = 0:25, y 0+ð Þ = 0:2, z 0+ð Þ = 0:2: ð25Þ

System (24) with the nonfractional term, i.e., for
β = ð1, 1, 1Þ, and fractional term was studied in [47–49].

In Figure 3, we depict the numerical approximations of
system (24) by using the suggested method with the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

0

0.5

J𝛽
0,

t{u
(t)

}

1

1.5

2

𝛽

Figure 1: Comparison of the numerical results for Equation (19) applying the proposed scheme for β = f0:1,0:2,⋯, 1g with step size
ℏ = 0:01.

Table 1: Comparison of EM , Ch,M , and computational times (sec) of J β
0,t ½πt sin ðπtÞ�, for the IM [45] and proposed schemes, when β =

f0:4,0:7,0:9g and step sizes ℏ = f0:01,0:005,0:002g in t ∈ ½0, 1�.

β Step size
IM scheme Proposed solver

EM Ch,M CPU time EM Ch,M CPU time

0.4

0:01 2:49 × 10−3 1.30 1.375 7:86 × 10−5 2.05 0.610

0:005 9:50 × 10−4 1.31 4.843 2:00 × 10−5 2.04 1.906

0:002 3:62 × 10−4 1.32 19.468 5:18 × 10−6 2.03 7.203

0.7

0:01 2:57 × 10−4 1.79 1.297 5:16 × 10−5 2.14 0.641

0:005 8:17 × 10−5 1.78 4.937 1:29 × 10−5 2.13 1.922

0:002 2:58 × 10−5 1.76 19.109 3:32 × 10−6 2.11 7.359

0.9

0:01 3:17 × 10−5 2.25 1.344 3:67 × 10−5 2.22 0.609

0:005 9:09 × 10−6 2.19 4.703 9:10 × 10−6 2.19 1.859

0:002 2:59 × 10−6 2.14 19.641 2:27 × 10−6 2.17 7.234
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impulsive intervals τ = 0:01, in the interval t ∈ ½0, 10� and
step size ℏ = 0:002 for β1 = 0:96, β2 = 0:9, and β3 = 0:8. We
can view the effects of the impulsive behaviors on this sys-
tem for θ = 4 in these figures.

Application 4. Assume that the functions SðtÞ, EðtÞ, and IðtÞ
denote susceptible, exposed, and infectious pests densities at

time t, respectively. Furthermore, the η defines the death rate
of exposed and infectious pests. The fractional susceptible-
exposed-infectious (SEI) chaotic system is stated as

CD
β1
0,tS tð Þ = cS tð Þ 1 − S tð Þ

K

� �
−

lS tð ÞI tð Þ
1 + nS tð Þ ,
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Figure 2: Phase curves of the integer-order (L : β1 = β2 = β3 = 1) and fractional (R : β1 = 0:96, β2 = 0:9, β3 = 0:8) Rössler chaotic systems for
α = 0:4, χ = 2, and θ = 8 with step size ℏ = 0:02 and T = 100.
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CD
β2
0,tE tð Þ = lS tð ÞI tð Þ

1 + nS tð Þ − ϕ + ηð ÞE tð Þ,
CD

β3
0,tI tð Þ = ϕE tð Þ − ηI tð Þ,
S 0ð Þ = S0, E 0ð Þ = E0, I 0ð Þ = I0, ð26Þ

where 0 < β1, β2 and β3 ≤ 1. Moreover, SðtÞ grows logisti-
cally with a carrying capacity K in the absence of IðtÞ and
with an intrinsic birth rate constant rc.

In Figure 4, we plot the phase curves of the integer-order and
fractional SEI system (26) by means of the suggested scheme
with initial conditions x0 = 0:1, y0 = 0:2, and z0 = 0:3, plus
c = 1, K = 4, d = 1:2, ϕ = 0:8, n = 0:2, and η = 0:2 for β1 = 1,
β2 = 0:9, and β3 = 0:9 with step size ℏ = 0:005 and T = 100.

We can rewrite system (26) into the following system:

CD
β
0,tu tð Þ = Au tð Þ +Ψ tð Þ,
u 0ð Þ = u0,

ð27Þ
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Figure 3: Numerical results of fractional Rössler system without and with, τ = 0:01, impulsive effects for α = 0:4, χ = 2, and θ = 4, based on
the presented scheme for β1 = 0:96, β2 = 0:92, and β3 = 0:80 with step size ℏ = 0:005 and T = 10.
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where β = ðβ1, β2, β3Þ, uðtÞ = ½xðtÞ, yðtÞ, zðtÞ�T ,

A =
c 0 0
0 − α + ηð Þ 0
0 α −η

2
664

3
775,

Ψ tð Þ =

−
c
K
S tð Þ − l

1 + nS tð Þ I tð Þ
� �

S tð Þ

l
1 + nS tð Þ I tð Þ
� �

S tð Þ

0

2
6666664

3
7777775
: ð28Þ
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Figure 4: Phase curves of the integer-order (L : β1 = β2 = β3 = 1) and fractional (R : β1 = 0:99, β2 = 0:90, β3 = 0:70) SEI chaotic systems with
step size ℏ = 0:005 and T = 100.
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Hence, the fractional impulsive control of chaotic system
(27) is defined as

CD
β
0,tu tð Þ = Au tð Þ +Ψ tð Þ, t ∈ϒ ′ ≔ϒ \ t1, t2,⋯, tif g,
Δu tð Þ = u t+nð Þ − u tnð Þ = B u tnð Þð Þ, n = 1, 2,⋯, i,
u 0+ð Þ = u0,

ð29Þ

where Y ≔ ½0, T�, B = diag ð−0:6,−0:6,−0:6Þ with initial
conditions

x 0+ð Þ = 0:25,
y 0+ð Þ = 0:2,
z 0+ð Þ = 0:2:

ð30Þ

Time

0

0.5

1

x
 (t

)

SEI functions x (t), y (t), z (t) of fractional SEI system

Time

0

0.5

1

y
 (t

)

Time

0.5

1

1.5

z
 (t

)

Time

0

0.05

0.1

x
 (t

)

SEI functions x (t), y (t), z (t) of impulsive fractional SEI system

Time

0

0.05

0.1

0.15

y
 (t

)

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

Time

0

0.1

0.2

0.3

z
 (t

)

Figure 5: Numerical results of the fractional SEI system without and with, τ = 0:5, impulsive effects based on the presented scheme for
β1 = 0:99, β2 = 0:90, and β3 = 0:70, with step size ℏ = 0:005 and T = 10.
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System 24 with the nonfractional term, i.e., for β =
ð1, 1, 1Þ, was studied in [50].

In Figure 5, we depict the numerical approximations of
systems (26) and (29) by using the suggested method with
the impulsive intervals τ = 0:5, in the interval t ∈ ½0,100�
and step size ℏ = 0:005 for β1 = 0:99, β2 = 0:90, and β3 =
0:70. We can view the effects of the impulsive behaviors on
this system in these figures.

4. Conclusion

In the framework of this study, an implicit numerical algo-
rithm for computing the approximate solutions of fractional
impulsive differential equations was presented. This numer-
ical solver relies on the B-spline interpolation to reasonably
approximate the nonlocal integral operators. An illustrative
example showed the accuracy of the comparison of the
results obtained by the IM scheme and proposed numerical
technique. The results confirmed the superiority of the pre-
sented scheme. Then, the proposed algorithm for solving
the fractional chaotic dynamic Rössler and SEI systems was
applied, and the results were studied using phase figures.
To top it all off, the fractional impulsive systems were
approximated by the presented method, and the achieve-
ment results of the impulsive behavior were analyzed.
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In this article, a new version of the generalized F-expansion method is proposed enabling to obtain the exact solutions of the
Biswas-Arshed equation and Boussinesq equation defined by Atangana’s beta-derivative. First, the new version generalized F-
expansion method is introduced, and then, the exact solutions of the nonlinear fractional differential equations expressed with
Atangana’s beta-derivative are given. When the results are examined, it is seen that single, combined, and mixed Jacobi elliptic
function solutions are obtained. From the point of view, it is understood that the new version generalized F-expansion method
can give significant results in finding the exact solutions of equations containing beta-derivatives.

1. Introduction

In recent years, many articles have been published on
obtaining numerical and exact solutions of some physical
phenomena that can be mathematically modeled using frac-
tional derivatives [1–4]. Many physical phenomena are usu-
ally expressed in nonlinear fractional partial differential
equations. These equations have application areas such as
biology, engineering, dynamics, control theory, signal pro-
cessing, chemistry, continuum mechanics, and physics,
respectively. There are different types of fractional derivative
operators defined in the literature. Examples of these deriva-
tive operators are Riemann-Liouville derivative [5], Jumarie’s
modified Riemann-Liouville derivative [6], Caputo derivative
[7], Caputo-Fabrizio [8], and Atangana-Baleanu derivative
[9]. It is very substantial to find the exact solutions of the non-
linear fractional differential equations. Different methods aim-
ing to find analytical, numerical, and exact solutions of the
nonlinear partial differential equations including these deriva-
tive operators have been improved as follows: unified method
[10], modified trial equationmethod [11], extended trial equa-
tion method [12], fractional local homotopy perturbation

transformation method [13], Fourier spectral method [14],
variational iteration method [15], Laplace transforms [16],
Chebyshev-Tau method [17], finite difference method [18],
finite element method [19], etc.

A new definition of the fractional derivative called as
conformable derivative has been given, and the exact solu-
tions of the time-heat differential equation created by using
this derivative are obtained [20, 21]. In later years, Atangana
et al. [22] gave some new features and definitions about the
conformable derivative. By using these definitions and prop-
erties, some methods have been applied [23, 24]. In the next
year, a new definition of fractional derivative called as beta-
derivative was given by Atangana et al. [25]. In that article,
they obtained the analytical solution of the Hunter-Saxton
equation. Exact solutions of the Hunter-Saxton, Sharma-
Tasso-Olver, space-time fractional modified Benjamin-
Bona-Mahony, and time fractional Schrödinger equations
expressed by Atangana’s beta-derivative are obtained by
using the first integral method [26]. They applied the frac-
tional subequation method to obtain the exact solutions of
the space-time conformable generalized Hirota-Satsuma
coupled KdV equation, coupled mKdV equation, and
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space-time resonance nonlinear Schrodinger equations cre-
ated with Atangana’s beta-derivative [27, 28]. Ghanbari
and Gomez-Aguilar attained the exact solutions by applying
the generalized exponential rational function method to the
Radhakrishnan-Kundu-Lakshmanan equation with Atanga-
na’s beta-derivative [29]. Like the problems discussed in this
article, it is very difficult to find analytical and numerical
solutions for nonlinear partial differential equations involv-
ing fractional order derivative, especially problems with
complex coefficients and absolute value functions. For this
reason, the motivation to research the exact solutions of
these problems has occurred. From this point of view, it is
considered to apply the new version generalized F-
expansion method in order to determine solutions such as
rational forms of Jacobi elliptic functions that are not in
the literature. The double-period Jacobi elliptic functions
and their rational combinations, which cannot be found by
every method in the literature, can be reached with a new
generalized F-expansion method. This method can be suc-
cessfully applied to a wide variety of equations.

In this article, for the first time, the new version general-
ized F-expansion method has been investigated in order to
find the exact solutions of the differential equations consisting
of Atangana’s beta-derivative. With this offered method, it is
aimed at finding new and several exact solutions of fractional
order differential equations that are not actual in the literature.
This method, which has been discussed in some studies in the
literature, has been applied to various nonlinear partial differ-
ential equations [30–32]. There are different F-expansion
methods that allow procuring the elliptic function solutions,
which are among these exact solutions [33–36].

Firstly we will investigate the exact solutions of the
Biswas-Arshed equation with Atangana’s beta-derivative:

iA0D
β
t ϕ + k1ϕxx + k2

A
0D

β
t ϕxð Þ + i l1ϕxxx + l2

A
0D

β
t ϕxxð Þ

� �
− i ε ϕj j2ϕÀ Á

x
+ μϕ ϕj j2À Á

x
+ θ ϕj j2ϕx

À Á
= 0,  0 < β ≤ 1ð Þ,

ð1Þ

where ϕ = ϕðx, tÞ is a complex function [37–40]; k1 and k2
are the parameters of the group velocity dispersion and the
spatiotemporal dispersion, respectively; l1 and l2 are the
parameters of the third-order dispersion and the spatiotem-
poral third-order dispersion, respectively; ε is the parameter
of the self-steepening effect; and μ and θ present the param-
eters of the nonlinear dispersions. Also, we will research the
exact solutions of the Boussinesq equation with the beta-
derivative [41]

A
0D

β
t Ψ + bD2β

x Ψ + cD2β
x Ψ2À Á

+ γD4β
x Ψ = 0,  0 < β ≤ 1ð Þ,

ð2Þ

where b, c, and γ are constants. Also, c is the parameter con-
trolling nonlinearity, and γ is the dispersion parameter
depending on the rigidity characteristics of the material
and compression.

The remaining lines of the article are regulated as fol-
lows: in Section 2, Atangana’s conformable fractional deriv-
ative and its properties are given. In Section 3, the new
version generalized F-expansion method is explained in detail.
Applications of the method are given in Sections 4 and 5. This
article is completed with conclusions in Section 6.

2. The Properties and Definition of Beta-
Derivative

There are different definitions of the conformable fractional
derivatives in literature. One of them is given by Khalil et al.
in the paper [20]. Then, Abdeljawad developed the basic
concepts in this conformable fractional calculus [42]. The
conformable derivative of the function g : ½0,∞Þ of the order
α from type t > 0, α ∈ ð0, 1Þ is as follows:

0D
α
t g tð Þf g = lim

ε⟶0

g t + εt1−α
À Á

− g tð Þ
ε

: ð3Þ

When g which is α-differentiable in the interval of ð0, aÞ,
a > 0 and lim

ε⟶0+
gðαÞðtÞ exists, then it can be defined as gðαÞð0Þ

= lim
ε⟶0+

gðαÞðtÞ.
The other conformable fractional derivative called as the

beta-derivative is defined in [22] as

A
0D

α

t g tð Þf g = lim
ε⟶0

g t + ε t + 1/Γ αð Þð Þð Þ1−αÀ Á
− g tð Þ

ε
: ð4Þ

The mathematical model considered in the study that
depends on Atangana’s conformable fractional derivative is
selected because it provides some properties of the basic
derivative rules. According to all these cases, the various fea-
tures of Atangana’s conformable fractional derivative are as
follows:

(i) If h ≠ 0 and g functions are differentiable according
to beta in the range β ∈ ð0, 1�, then the equation that
the functions f and g can satisfy for all the real
numbers q and r is as follows:

A
0D

α
x qg xð Þ + rh xð Þf g = qA0D

α
x g xð Þf g + rA0D

α
x h xð Þf g: ð5Þ

(ii) Let us take any constant p. It can be easily seen that
it satisfies the following equality:

A
0D

α
x pf g = 0: ð6Þ

(iii) A
0D

α
xfgðxÞhðxÞg = hðxÞA0Dα

xfgðxÞg + gðxÞA0Dα
xfhðxÞg

(iv) A
0D

α
xfgðxÞ/hðxÞg = ðhðxÞA0Dα

xfgðxÞg − gðxÞA0Dα
xfhðx

ÞgÞ/h2ðxÞ

If λ = ðx + ð1/ΓðαÞÞÞα−1v is substituted instead of λ in
Equation (4) and v⟶ 0, when λ⟶ 0, it is observed as
follows:
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A
0D

α

x g xð Þf g = x + 1
Γ αð Þ

� �1−α dg xð Þ
dx

, ð7Þ

with

η = δ

α
x + 1

Γ αð Þ
� �α

, ð8Þ

where δ is any constant. Therefore, the relation between
Atangana’s conformable fractional derivative and the clas-
sical derivative is determined as follows:

A
0D

α

x g ηð Þf g = δ
dg ηð Þ
dη

: ð9Þ

3. Definition of the New Version of
Generalized F-Expansion Method

In this section, the application steps of the new version of the
generalized F-expansion method to obtain the combined
and mixed Jacobi elliptic function solutions of differential
equations will be given [30–32]. With this new method, dif-
ferent and new results can be acquired from the results
obtained from other methods.

Let us consider the partial differential equation with the
Atangana (beta) fractional derivative as

~S ϕ, A0D
β

t ϕ, A0D
β

xϕ, A0D
2β
t ϕ, A0D

2β
x ϕ,:⋯ ,

� �
= 0,  0 < β ≤ 1ð Þ,

ð10Þ

where ϕðx, t,⋯Þ is an unknown function, x, t,⋯ is the inde-
pendent variables, and ~S is a polynomial of ϕ and its frac-
tional derivatives, in which the highest-order derivatives
and the nonlinear terms are contained. When we imple-
mented the wave transform to Equation (10),

ϕ x, tð Þ = ϕ ηð Þ,

η = τ

β
x + 1

Γ βð Þ
� �β

+ λ

β
t + 1

Γ βð Þ
� �β

,
ð11Þ

where τ and λ are constants that will be determined later; we
can diminish Equation (10) to nonlinear ordinary differen-
tial equation

H ϕ, ϕ′, ϕ″, ϕ‴,⋯
� �

= 0, ð12Þ

where the prime demonstrates differentiation pursuant to η.
Suppose that the solution function of Equation (12) is as fol-
lows:

ϕ ηð Þ = a0 + 〠
M

i=1
aiF

i + bi
Fi + ci

F ′
F

 !i

+ di
F

F ′

� �i
 !

, ð13Þ

where a0, ai, bi, ci, diði = 1, 2, 3,⋯,MÞ are constants, F = FðηÞ
, and F ′ = F ′ðηÞ. FðηÞ and F ′ðηÞ functions in Equation (13)
provide the following equation:

F ′2 ηð Þ = PF4 ηð Þ +QF2 ηð Þ + R, ð14Þ

and using Equation (14), the related derivatives are found as
follows:

F″ ξð Þ = 2PF3 ξð Þ +QF ξð Þ,
F‴ ξð Þ = 6PF2 ξð Þ +Q

À Á
F ′ ξð Þ,

F 4ð Þ ξð Þ = 24P2F5 ξð Þ + 20PQF3 ξð Þ + Q2 + 12PR
À Á

F ξð Þ,
F 5ð Þ ξð Þ = 120P2F4 ξð Þ + 60PQF2 ξð Þ +Q2 + 12PR

À Á
F ′ ξð Þ,

⋯

8>>>>>>>>><
>>>>>>>>>:

ð15Þ

where P,Q, and R are all coefficients. To determine the value
of M in Equation (13), we use the derivatives in Equation
(15). The process of finding the number M is called the bal-
ancing process. The number M is a positive number and is
determined by balancing the highest-order derivative terms
in Equation (12) with the highest-power nonlinear terms.

When finding this number in terms of FM , 1/FM , ðF ′/FÞM
and ðF/F ′ÞM in the solution function (12) are considered
with respect to Equation (14) in conjunction with the degree
of derivatives. Therefore, proposed solution function (13)
arranged and requisite terms in place of Equation (12) are

attached to ðF ′ÞkFlðk = 0, 1 ; l = 0,±1,±2,⋯Þ function; then,
the polynomial is attained. When this polynomial equation
is set to zero, then a system of algebraic equations is attained
with the coefficients with respect to zero. When the algebraic
equation system is solved according to the specified algo-
rithm, the necessary τ, λ, and a0, ai, bi, ci, diði = 1, 2, 3,⋯,M
Þ coefficients for the solution function are found. Thence,
the new combined and mixed Jacobi elliptic function solu-
tions are gained. If different values of P,Q, and R are taken,
diverse Jacobi elliptic function solutions FðηÞ can be attained
from Equation (14).

4. Application of the New Version Method to
the Biswas-Arshed Equation

In this section, the new version generalized F-expansion
method is implemented to the Biswas-Arshed equation with
Atangana’s beta-derivative. The Biswas-Arshed equation
with Atangana’s beta-derivative defines pulse propagation
through optical fiber. Optical fibers are the main element
of data transmission in telecommunications systems. The
main aim of the researchers is to improve the quality of
transmitted signals, reduce losses, and increase transmission
speed. For this reason, it is important to obtain the solutions
of such physical equations.

Hosseini et al. found the exact solutions of Equation (1)
via the Jacobi and Kudryashov methods [37]. Akbulut and
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Islam implemented modified extended auxiliary equation
mapping and improved F-expansion methods to acquire
the exact solutions of Eq. (1) in [39]. On the other hand,
Han et al. utilized the polynomial full discriminant system
method to find the exact solutions of Eq. (1) in [40]. Jacobi
elliptic function solutions can be found with the methods
in the literature, but it is very difficult to find rational func-
tion solutions containing the Jacobi elliptic functions we
obtained with the method we used in this article, because
the method we used includes not only the F function, which
expresses the Jacobi elliptic function solutions obtained from
the elliptic differential equation, but also the F ′/F and F/F ′
functions. Thus, the rational function solutions or combined
containing Jacobi elliptic functions are reached by this way.

Firstly, we acquaint wave transformation for this com-
plex variable equation:

ϕ x, tð Þ = ϕ ηð Þeiφ x,tð Þ,

η = x −
ρ

β
t + 1

Γ βð Þ
� �β

,

φ x, tð Þ = −kx + ω

β
t + 1

Γ βð Þ
� �β

,

ð16Þ

where ρ, κ, and ω are constants which represents the speed
of the wave, frequency, and wave number, respectively. By
using the wave transformation in Equation (16), Equation
(1) reduces the real and imaginary parts as follows:

2κρl2 − 3κl1 + ωl2 + ρk2 − k1ð Þϕ″ ηð Þ
+ κ3l1 − κ2ωl2 + κ2k1 − κωk2 + ω
À Á

ϕ ηð Þ
+ κε + κθð Þϕ3 ηð Þ = 0,

ð17Þ

ρl2 − l1ð Þϕ‴ ηð Þ + À−κ2ρl2 + 3κ2l1 − 2κωl2 − κρk2

+ 2κk1 − ωk2 + ρÞϕ′ ηð Þ + 3ε + 2μ + θð Þϕ2 ηð Þϕ′ ηð Þ = 0:
ð18Þ

From Equation (12), the following equations are easily
obtained:

ρ = l1
l2
,

ε = −2μ − θ

3 ,

ω
2κ2l1l2 + 2κk1l2 − κk2l1 + l1

l2 2κl2 + k2ð Þ :

ð19Þ

When these obtained values are substituted in Equation
(17), the following second-order nonlinear ordinary differ-
ential equation is found:

−κl1 +
2κ2l1l2 + 2κk1l2 − κk2l1 + l1

2κl2 + k2
+ l1k2

l2
− k1

� �
ϕ″ ηð Þ

+
�
κ3l1 −

κ2 2κ2l1l2 + 2κk1l2 − κk2l1 + l1
À Á

2κl2 + k2

−
κk2 2κ2l1l2 + 2κk1l2 − κk2l1 + l1
À Á

l2 2κl2 + k2ð Þ
+ 2κ2l1l2 + 2κk1l2 − κk2l1 + l1

l2 2κl2 + k2ð Þ + κ2k1

�
ϕ ηð Þ

+ κ
−2μ − θ

3

� �
+ κθ

� �
ϕ3 ηð Þ = 0:

ð20Þ

According to the balance procedure for the functions ϕ
″ðηÞ and ϕ3ðηÞ in Equation (20), we can find M = 1, so the
solution of Equation (1) is assumed that it provides the fol-
lowing equation:

ϕ ηð Þ = a0 + a1F ηð Þ + b1
F ηð Þ + c1

F ′ ηð Þ
F ηð Þ

 !
+ d1

F ηð Þ
F ′ ηð Þ

 !
:

ð21Þ

When the calculated ϕ″ðηÞ and ϕ3ðηÞ expressions from
Equation (21) are replaced in Equation (20), a zero polyno-
mial dependent on FðηÞ and F ′ðηÞ is obtained. When the
algebraic equation system, which is found by equating the
coefficients of this zero polynomial to zero, is resolved with
the help of the Mathematica package program, the a0, a1,
b1, c1, d1, and κ coefficients are obtained. While applying
the method, since the number of variables is more than the
number of equations in the solution of the nonlinear alge-
braic system of equations, some constants in the partial dif-
ferential equations are taken as arbitrary parameters and the
parametric solutions of the system are reached. When the
obtained coefficients and the inverse transformation are
substituted to the solution function (21), the following exact
solutions are obtained, which depends on the elliptic func-
tions of FðηÞ and F ′ðηÞ. If the elliptic function here is spe-
cially chosen as FðηÞ = snðηÞ, where P =m2, Q = −ð1 +m2Þ,
and R = 1, then the new combined and mixed exact solutions
are specified in the following cases.

Case 1.

a0 = b1 = c1 = d1 = 0,
a1 = a1,

l1 =
κ θ − μð Þl2a21 k2 κ2 +Q

À Á
− 2κ

À Á
3P ,

ð22Þ

k1 =
κ θ − μð Þa21 k22 + l2

À Á
κ2 +Q
À Á

− 2κk2 + 1
À Á

3P : ð23Þ

4 Journal of Function Spaces



Substituting Equation (22) into Equation (21), we attain
single Jacobi elliptic function solutions of Equation (1).

ϕ η1ð Þ = A1e
iφ1 sn η1ð Þ, ð24Þ

where η1 = x − ðκðθ − μÞa21ðk2ðκ2 − 1 −m2Þ − 2κÞ/3m2βÞ
ðt + ð1/ΓðβÞÞÞβ, A1 = a1, and φ1 = −κx − ðκðθ − μÞa21ð1 +m2

+ κ2 + κk2ð1 +m2 − κ2ÞÞ/3m2βÞðt + ð1/ΓðβÞÞÞβ.

Case 2.

a0 = a1 = c1 = d1 = 0,
b1 = b1,

l1 =
κ θ − μð Þl2b21 k2 κ2 +Q

À Á
− 2κ

À Á
3R ,

ð25Þ

k1 =
κ θ − μð Þb21 k22 + l2

À Á
κ2 +Q
À Á

− 2κk2 + 1
À Á

3R : ð26Þ

If the obtained coefficients in expression (25) are subro-
gated in the solution function (21), we find the Jacobi elliptic
function solution of Equation (1).

ϕ η2ð Þ = A2e
iφ2ns η2ð Þ, ð27Þ

where η2 = x − ðκðθ − μÞb21ðk2ðκ2 − 1 −m2Þ − 2κÞ/3βÞðt + ð1/
ΓðβÞÞÞβ, A2 = b1, and φ2 = −κx − ðκðθ − μÞb21ð1 +m2 + κ2 +
κk2ð1 +m2 − κ2ÞÞ/3βÞðt + ð1/ΓðβÞÞÞβ.

Case 3.

a0 = a1 = b1 = d1 = 0,
c1 = c1,

l1 =
κ θ − μð Þl2c21 k2 κ2 − 2Q

À Á
− 2κ

À Á
3 ,

ð28Þ

k1 =
κ θ − μð Þc21 k22 + l2

À Á
κ2 − 2Q
À Á

− 2κk2 + 1
À Á

3 : ð29Þ

When the obtained coefficients in Equation (28) are set
into Equation (21), we attain new types of the combined
Jacobi elliptic function solution as follows:

ϕ η3ð Þ = A3e
iφ3cs η3ð Þdn η3ð Þ, ð30Þ

where η3 = x − ðκðθ − μÞc21ðk2ðκ2 + 2ð1 +m2ÞÞ − 2κÞ/3βÞðt +
ð1/ΓðβÞÞÞβ, A3 = c1, and φ3 = −κx + ðκðθ − μÞc21ð2 + 2m2 −
κ2 + κk2ð2 + 2m2 + κ2ÞÞ/3βÞðt + ð1/ΓðβÞÞÞβ.

Case 4.

a0 = a1 = b1 = c1 = 0,
d1 = d1,

l1 =
κ θ − μð Þl2d21 k2 κ2 − 2Q

À Á
− 2κ

À Á
3 Q2 − 4PR
À Á ,

ð31Þ

k1 =
κ θ − μð Þd21 k22 + l2

À Á
κ2 − 2Q
À Á

− 2κk2 + 1
À Á

3 Q2 − 4PR
À Á : ð32Þ

When achieved coefficients in Equation (31) are replaced
into Equation (21), we gain new exact solution called as
combined Jacobi elliptic function solutions of Equation (1)
as follows:

ϕ η4ð Þ = A4e
iφ4 sc η4ð Þnd η4ð Þ, ð33Þ

where η4 = x − ðκðθ − μÞd21ðk2ðκ2 + 2ð1 +m2ÞÞ − 2κÞ/3ð1 − 2
m2 +m4ÞβÞðt + ð1/ΓðβÞÞÞβ, A4 = d1, and φ4 = −κx + ðκðθ − μ

Þd21ð2 + 2m2 − κ2 + κk2ð2 + 2m2 + κ2ÞÞ/3ðm2 − 1Þ2βÞðt + ð1/
ΓðβÞÞÞβ.

Case 5.

a0 = c1 = d1 = 0,
a1 = a1,

b1 = −
ffiffiffi
R
P

r
a1,

l1 =
κ θ − μð Þl2a21 k2 κ2 + 6

ffiffiffiffiffiffi
PR

p
+Q

� �
− 2κ

� �
3P ,

ð34Þ

k1 =
κ θ − μð Þa21 k22 + l2

À Á
κ2 + 6

ffiffiffiffiffiffi
PR

p
+Q

� �
− 2κk2 + 1

� �
3P :

ð35Þ

Substituting the coefficients in Equation (34) into Equa-
tion (21), we get the exact solutions of Equation (1).

ϕ η5ð Þ = A5e
iφ5

msn2 η5ð Þ − 1
À Á

sn η5ð Þ , ð36Þ

where η5 = x − ðκðθ − μÞa21ðk2ðκ2 − 1 −m2 + 6mÞ − 2κÞ/3m2

βÞðt + ð1/ΓðβÞÞÞβ, A5 = a1/m, and φ5 = −κx − ðκðθ − μÞa21ð1
+m2 − 6m + κ2 + κk2ð1 +m2 − 6m − κ2ÞÞ/3m2βÞ
ðt + ð1/ΓðβÞÞÞβ.
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Case 6.

a0 = a1 = b1 = 0,
c1 = c1,

d1 = −c1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 − 4PR

p
,

ð37Þ

l1 = κðθ − μÞl2c1ð6k2c1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 − 4PR

p
+ c1ðk2ðκ2 − 2QÞ − 2κ

ÞÞ/3, k1 = κðθ − μÞc1ð6c1ðk22 + l2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 − 4PR

p
+ c1ððk22 + l2Þð

κ2 − 2QÞ − 2κk2 + 1ÞÞ/3:
When obtained coefficients in Equation (37) are replaced

into Equation (21), we get new exact solution named as
mixed Jacobi elliptic function solutions of Equation (1) as
follows:

ϕ η6ð Þ = A3e
iφ6

cn2 η6ð Þ dn2 η6ð Þ − 1
À Á

+ dn2 η6ð Þ
cn η6ð Þdn η6ð Þsn η6ð Þ , ð38Þ

where η6 = x − ðκðθ − μÞc1ð6k2c1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4 − 2m2 + 1

p
+ c1ðk2ðκ2

+ 2 + 2m2Þ − 2κÞÞ/3βÞðt + ð1/ΓðβÞÞÞβ and φ6 = −κx + ðκðθ
− μÞc21ð6ðm2 − 1Þð1 + κk2Þ + 2 + 2m2 − κ2 + κk2ð2 + 2m2 +
κ2ÞÞ/3βÞðt + ð1/ΓðβÞÞÞβ.

Case 7.

a0 = d1 = 0,

a1 = −
ffiffiffi
P

p
c1b1 = −

ffiffiffi
P

p
c1,

c1 = c1,

l1 =
2κ θ − μð Þc21l2 k2 Q + 6

ffiffiffiffiffiffi
PR

p
− 2κ2

� �
− 4κ

� �
3 ,

ð39Þ

k1 =
2κ θ − μð Þc21 2 − 4κk2 − k22 + l2

À Á
Q + 6

ffiffiffiffiffiffi
PR

p
− 2κ2

� �� �
3 :

ð40Þ
When acquired coefficients in Equation (39) are put into

Equation (21), we attain new exact combined Jacobi elliptic
function solution of Equation (1).

ϕ η7ð Þ = A3e
iφ7

cn η7ð Þdn η7ð Þ −msn2 η7ð Þ − 1
À Á

sn η7ð Þ , ð41Þ

where η7 = x − ð2κðθ − μÞc21ðk2ð−1 −m2 + 6m − 2κ2Þ − 2κÞ/3
βÞðt + ð1/ΓðβÞÞÞβ and φ7 = −κx + ð2κðθ − μÞc21ð1 +m2 − 6m
− 2κ2 + κk2ð1 +m2 − 6m + 2κ2ÞÞ/3βÞðt + ð1/ΓðβÞÞÞβ.

Remark 1.When the literature review of the obtained results
is made, it is seen that all Jacobi elliptic function solutions
obtained by the new version generalized F-expansion
method of Equation (1) are new and different wave solu-
tions. Besides, two- and three-dimensional graphics of the
attained exact solution functions are shown in Figures 1–7
with appropriate coefficient values.

5. Application of the New Version Method to
the Boussinesq Equation with Beta-
Derivative

In this section, the implementation of the new version of the
generalized F-expansion method to Boussinesq equation
with beta-derivative is presented. Firstly, we acquaint wave
transformation of Equation (2) as follows:

Ψ x, tð Þ = ψ ϑð Þ,

ϑ = k
β

x + 1
Γ βð Þ

� �β

−
σ

β
t + 1

Γ βð Þ
� �β

,
ð42Þ

where k and σ are constants. Equation (2) is reduced to a
nonlinear 4-order ordinary differential equation in the fol-
lowing form under the transformation (42):

σ2 + bk2
À Á

ψ″ + ck2 ψ2À Á′′ + γk4ψ ıvð Þ = 0: ð43Þ

If Equation (43) is integrated twice according to ϑ and
the integration constant is assumed to be zero, then a non-
linear second-order ordinary differential equation is found
as follows:

σ2 + bk2
À Á

ψ + ck2ψ2 + γk4ψ″ = 0: ð44Þ

According to the proposed new version of generalized F-
expansion method, before applying the solution function
(13) to Equation (44), the balance operation is performed.
The balance procedure is applied between the ψ″ term con-
taining the highest-order derivative and the nonlinear ψ2

terms of the highest order in Equation (44). Accordingly,
as a result of the transactions made between the terms pro-
viding balancing M = 1 is found, thus, the solution function
of Equation (2) is as follows:

ψ ϑð Þ = a0 + a1F ϑð Þ + a2F
2 ϑð Þ + b1

F ϑð Þ + b2
F2 ϑð Þ

+ c1
F ′ ϑð Þ
F ϑð Þ

 !
+ c2

F ′ ϑð Þ
F ϑð Þ

 !2

+ d1
F ϑð Þ
F ′ ϑð Þ

 !
+ d2

F ϑð Þ
F ′ ϑð Þ

 !2

:

ð45Þ

When the computed ψ″ðϑÞ and ψ2ðϑÞ terms from Equa-
tion (45) are substituted in Equation (44), a zero polynomial
dependent on FðηÞ and F ′ðηÞ is attained. When the alge-
braic equation system is solved with the help of the Mathe-
matica package program, the a0, a1, a2, b1, b2, c1, c2, d1, d2,
k, and σ coefficients are acquired. When the obtained coeffi-
cients and the inverse transformation are substituted to the
solution function (45), the following exact solutions are
found, which depends on FðηÞ and F ′ðηÞ. If the elliptic
function here is specially chosen as FðηÞ = snðηÞ, where P
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Figure 2: Three-dimensional graphs of the solution ϕðη2Þ for different β = 0:01, 0:55, 0:98 corresponding to the values b1 = 1/3, m = 1/2,
κ = −1, θ = 0:3, μ = 0:2, and k2 = 1.
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Figure 1: Three- and two-dimensional graphs of the solution ϕðη1Þ for different β = 0:01, 0:55, 0:98 corresponding to the values a1 =m
= 1/2, κ = −1, θ = 0:3, μ = 0:2, and k2 = 1.
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Figure 3: Three- and two-dimensional graphs of the solution ϕðη3Þ for different β = 0:01, 0:55, 0:98 corresponding to the values c1 = 1/4,
m = 1/2, κ = −1, θ = 0:3, μ = 0:2, and k2 = 1.
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=m2, Q = −ð1 +m2Þ, and R = 1, then the new exact solu-
tions are specified in the following cases.

Case 1.

a0 =
4k4Qγ − 8k4γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 + 12PR

p
ck2

+ 2Qc2,

a1 = b1 = c1 = d1 = 0,

b2 = −
Q2 − 4PR
À Á

6k2γ + cc2
À Á
c

,

ð46Þ

a2 = −
6k2γ − cc2

c
,

c2 = c2,

d2 =
−96k2PRγ

c
,

σ = −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16k4γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 + 12PR

p
− bk2

q
:

ð47Þ

When obtained coefficients in Equation (46) are replaced
into Equation (45), we get new exact solution named as
mixed Jacobi elliptic function solutions of Equation (2) as
follows:

where B1 = ð4k2γð−1 −m2Þ − 8γk4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 14m2 +m4

p
+ 2ck2c2ð

−1 −m2Þ/k2cÞ, B2 = ð−6k2γ − cc2Þ/c, B3 = ð−1 + 2m2 −m4Þð6
k2γ + cc2Þ/c, B4 = c2, B5 = −96k2m2γ/c, and ϑ1 = ðk/βÞ
ðx + ð1/ΓðβÞÞÞβ + ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16k4γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 14m2 +m4

p
− bk2

q
/βÞ

ðt + ð1/ΓðβÞÞÞβ.

Case 2.

a0 =
4k4Qγ − 2k4γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 + 12PR

p
ck2

+ 2Qc2,

a1 = b1 = c1 = d1 = d2 = 0,
b2 = 4PR −Q2À Á

c2,

ð49Þ

a2 = −
6k2γ − cc2

c
,

c2 = c2,

σ = −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k4γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 + 12PR

p
− bk2

q
:

ð50Þ

Substituting Equation (49) into Equation (45), we find
mixed Jacobi elliptic function solutions of Equation (2).

ψ ϑ2ð Þ = B6 + B7
sn2 ϑ2ð Þdn2 ϑ2ð Þ − 1

sn2 ϑ2ð Þ , ð51Þ

where B6 = 2k2γðm2 − 2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 14m2 +m4

p Þ/c, B7 = 6k2γ/c,
and ϑ2 = k/βðx + ð1/ΓðβÞÞÞβ + ðffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4k4γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 14m2 +m4

p
− bk2

q
/βÞðt + ð1/ΓðβÞÞÞβ.

Case 3.

a0 =
4k4Qγ − 2k4γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 + 12PR

p
ck2

+ 2Qc2,

a1 = b1 = c1 = d1 = d2 = 0,

b2 =
4PR −Q2À Á

6k2γ + cc2
À Á
c

,

ð52Þ

a2 = −c2,
c2 = c2,

σ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4k4γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 + 12PR

p
− bk2

q
:

ð53Þ

Using Equations (45) and (52), we obtain the following
mixed Jacobi elliptic functions of Equation (2).

ψ ϑ1ð Þ = B1 + B2
cn2 ϑ1ð Þdn2 ϑ1ð Þ

sn2 ϑ1ð Þ + B3
sn2 ϑ1ð Þ

cn2 ϑ1ð Þdn2 ϑ1ð Þ
+ B4

m2sn2 ϑ1ð Þcn2 ϑ1ð Þ + sn2 ϑ1ð Þdn2 ϑ1ð Þ + cn2 ϑ1ð Þdn2 ϑ1ð ÞÀ Á2
sn2 ϑ1ð Þcn2 ϑ1ð Þdn2 ϑ1ð Þ

+ B5
sn2 ϑ1ð Þcn2 ϑ1ð Þdn2 ϑ1ð Þ2

m2sn2 ϑ1ð Þcn2 ϑ1ð Þ + sn2 ϑ1ð Þdn2 ϑ1ð Þ + cn2 ϑ1ð Þdn2 ϑ1ð ÞÀ Á ,
ð48Þ

ψ ϑ3ð Þ = B8 B9 + B10dn
2 ϑ3ð Þ − 2dn4 ϑ3ð Þ − cn2 ϑ3ð Þ 2 + B11ð Þdn2 ϑ3ð Þ − 3

À ÁÂ Ã
ccn2 ϑ3ð Þdn2 ϑ3ð Þ , ð54Þ
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where B8 = 2k2γ, B9 = 3 − 3m2, B10 =m2 − 4, B11 =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 14m2 +m4

p
, and ϑ3 = k/βðx + ð1/ΓðβÞÞÞβ − ðffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4k4γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 14m2 +m4

p
− bk2

q
/βÞðt + ð1/ΓðβÞÞÞβ

Remark 2. When the results of Equation (2), which are
found using the new version generalized F-expansion
method, are examined, the solutions of single, combined,
and mixed Jacobi elliptic functions are new. And these solu-
tions are obtained for the first time in the literature. Further-
more, two- and three-dimensional graphics of the attained
exact solutions are drawn in Figures 8–10 according to the
selected parameter values.

6. Conclusions

In this paper, the new version generalized F-expansion
method is applied for the first time to acquire new exact
solutions of the Biswas-Arshed and Boussinesq equations
defined by Atangana’s beta-derivative. This method makes
it possible to get dissimilar states of the new Jacobi elliptic
function solutions. The new results for the Biswas-Arshed
and Boussinesq equations seem to be very diverse and sur-
prising. These exact solutions consist of single, combined,
and mixed Jacobi elliptic function solutions. Thus, none
of the solution functions obtained by the various methods
in Ref. [37–41] articles contain the solutions found by the
method used in this article. Owing to the F ′/F and F/F ′
terms contained in the finite series in the applied method,
various rational solution combinations of the double-
period Jacobi elliptic functions, which have not yet been
found in the literature, have been reached. Also, the
graphs (Figures 1–10) drawn for these solution functions
help us comprehend the complex wave phenomena of
the considered physical problems. It is also shown in the
Mathematica package program that all exact solutions
obtained in this study provide the fractional Biswas-
Arshed equation and Boussinesq equation with the beta-
derivative. Also, we would like to mention that all codes
were written using Mathematica 11 on an HP Z420 work-
station, with an Intel (R) Xeon(R) CPU E5-1620 3.8GHz
processor, 32GB RAM DDR3, and 1TB storage. As a
result, we can say that the new version generalized F-
expansion method gives very effective results in obtaining
the exact solutions of the nonlinear differential equations
defined by Atangana’s beta-derivative and contributes to
the literature. In our further work, we will implement
the new version generalized F-expansion method to other
complex fractional systems defined by Atangana’s beta-
derivative. Also, the method offered in this paper can be
generalized in future work for advanced definitions like
the paper [43].
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In this paper, we investigate new types of nonlocal implicit problems involving piecewise Caputo fractional operators. The
existence and uniqueness results are proved by using some fixed point theorems. Furthermore, we present analogous results
involving piecewise Caputo-Fabrizio and Atangana–Baleanu fractional operators. The ensuring of the existence of solutions is
shown by Ulam-Hyer’s stability. At last, two examples are given to show and approve our outcomes.

1. Introduction

It merits noticing that fractional calculus (FC) has gotten
significant thought from scientists and researchers. It is a
result of its wide scope of uses in different fields and disci-
plines. The crucial concepts and definitions of FC have been
presented in [1, 2]. In [3, 4], the authors introduced some
fundamental history of fractional calculus and its applica-
tions to engineering and different areas of science.

Many classes of fractional differential equations (FDEs)
have been intensively investigated in the last decades, for
instance, theories involving the existence of unique solutions
have been notarized [5–7]. Numerical and analytical
methods have been evolving with the target to solve such
equations [8–10]. These equations have been tracked as use-
ful in modeling some real-world problems with incredible
achievement.

The qualitative properties of solutions represent a very
important aspect of the theory of FDEs. The formerly afore-
said region has been studied well for classical differential
equations. However, for FDEs, there are many aspects that
require further studying and reconnoitering. The attention
on the existence and uniqueness has been especially focused
by applying Riemann-Liouville (R-L), Caputo, Hilfer, and
other FDs, see [11–15].

In this regard, Agarwal et al. [16] investigated the exis-
tence of solutions of the following Caputo type FDE:

CD
ϑ
0+υ ϰð Þ = f ϰ, υ ϰð Þð Þ, ϰ ∈ 0, T½ �, 0 < ϑ < 1,

υ 0ð Þ + g υð Þ = υ0:
ð1Þ

The basic theory of implicit FDEs with Caputo FD has
been investigated by Kucche et al. [17]. Wahash et al. [18]
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considered the following nonlocal implicit FDEs with ψ-
Caputo FD

D
ϑ;ψ
a+ υ ϰð Þ = f ϰ, υ ϰð Þ,Dϑ;ψ

a+ υ ϰð Þ
� �

, ϰ ∈ a, T½ �, 0 < ϑ < 1

υ að Þ + g υð Þ = υa:

ð2Þ

Problem (2) with ψðϰÞ = ϰ has been studied by Bench-
ohra and Bouriah [19].

Motivated by the above works and inspired by [20], we
consider the piecewise Caputo implicit FDE (PC-IFDE) of
the type:

PCD
ϑ
0+υ ϰð Þ =Φ ϰ, υ ϰð Þ, PCDϑ

0+υ ϰð Þ
� �

,

υ 0ð Þ = υ0,
ð3Þ

and the following piecewise Caputo nonlocal implicit FDE
(PC-NIFDE):

PCD
ϑ
0+υ ϰð Þ =Φ ϰ, υ ϰð Þ, PCDϑ

0+υ ϰð Þ
� �

,

υ 0ð Þ + g υð Þ = υ0,
ð4Þ

where 0 < ϑ ≤ 1,ϰ ∈ J≔ ½0, b�,υ0 ∈ℝ,Φ ∈CðJ ×ℝ,ℝÞ, g ∈C
ðJ,ℝÞ, and PCD

ϑ
0+ represent the piecewise Caputo FD of

order ϑ defined by

PCD
ϑ
0+ f ϰð Þ =

Df ϰð Þ: if ϰ ∈ 0, ϰ1½ �,
CD

ϑ
ϰ1
f ϰð Þ: if ϰ ∈ ϰ1, b½ �,

8<
: ð5Þ

where D f ðϰÞ≔ ðd/dϰÞf ðϰÞ is a classical derivative on 0 ≤ ϰ

≤ ϰ1 and
CD

ϑ
ϰ1

is standard Caputo FD on ϰ1 ≤ ϰ ≤ b.
It is essential to note that the utilization of nonlinear

condition υð0Þ + gðυÞ = υ0 in physical issues yields better
impact than the initial condition υð0Þ = υ0 (see [21]).

We pay attention to the topic of the novel piecewise
operators. As far as we could possibly know, no outcomes
in the literature are addressing the qualitative aspects of
the aforesaid problems by using the piecewise FC. Conse-
quently, by conquering this gap, we will examine the
existence, uniqueness, and Ulam-Hyers stability results of
piecewise Caputo problems (3) and (4) based on the
standard fixed point theorems due to Banach-type and
Schauder-type. Furthermore, we present similar results con-
taining piecewise Caputo-Fabrizio (PCF) type and piecewise
Atangana-Baleanu (PAB) type. An open problem with
respect to another function is suggested.

Remark 1.

(i) If gðυÞ ≡ 0, then problem (4) reduces to the PC-
IFDE (3).

(ii) If PCD
ϑ
0+υðϰÞ = CD

ϑ
ϰ1
υðϰÞ, then problem (4) has been

studied by Benchohra and Bouriah [19], Haoues
et al. [22], and Abdo et al. [11] for ψðϰÞ = ϰ.

(iii) Our current results for problem (4) stay available on
PC-IFDE (3).

The substance of this paper is coordinated as follows:
Section 2 presents a few required outcomes and fundamen-
tals about piecewise FC. Our key outcomes for problem (4)
are proved in Section 3. Two examples to make sense of
the gained outcomes are built in Section 4. Toward the
end, we encapsulate our study in the end section.

2. Primitive Results

In this section, we present some concepts of a piecewise FC.
Let

C ≔C J,ℝð Þ = η : J⟶ℝ ; ηk k =max
ϰ∈J

η ϰð Þj j
n o

: ð6Þ

Obviously C is a Banach space under kηk.

Definition 2 [20]. Let ϑ > 0, and η : J⟶ℝ be a continuous.
Then, the piecewise version of RL integral is given by

PRLI
ϑ
0+η ϰð Þ =

Iη ϰð Þ, if ϰ ∈ 0, ϰ1½ �,
RLI

ϑ
ϰ1
η ϰð Þ if ϰ ∈ ϰ1, b½ �,

8<
: ð7Þ

where IηðϰÞ =
Ð ϰ1
0 ηðϰÞdϰ and RLI

ϑ
ϰ1
ηðϰÞ = 1/ðΓðϑÞÞÐ ϰ

ϰ1
ðϰ − tÞÞϑ−1ηðtÞdt:

Definition 3 [20]. Let 0 < ϑ ≤ 1, and η : J⟶ℝ be a contin-
uous. Then, the piecewise version of Caputo derivative is
given by

PCD
ϑ
0+η ϰð Þ =

Dη ϰð Þ, if ϰ ∈ 0, ϰ1½ �,
CD

ϑ
ϰ1
η ϰð Þ if ϰ ∈ ϰ1, b½ �,

8<
: ð8Þ

where DηðϰÞ = ðd/dϰÞηðϰÞ and CD
ϑ
ϰ1
ηðϰÞ = 1/ðΓð1 − ϑÞÞÐ ϰ

ϰ1
ðϰ − tÞÞ−ϑη′ðtÞdt:

Lemma 4 [20]. Let 0 < ϑ ≤ 1, and f ð0Þ = 0: Then, the follow-
ing PC-FDE

PCD
ϑ
0+η ϰð Þ = f ϰð Þ,
η 0ð Þ = ϰ0,

ð9Þ
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has the following solution

η ϰð Þ =
η 0ð Þ +

ðϰ1
0
η ϰð Þdϰ, if ϰ ∈ 0, ϰ1½ �,

η ϰ1ð Þ + 1
Γ ϑð Þ

ðϰ
ϰ1

ϰ − tð Þ
!ϑ−1

η tð Þdt if ϰ ∈ ϰ1, b½ �:

8>>>><
>>>>:

ð10Þ

Lemma 5 [20]. Let ϑ ∈ ð0, 1�, and for a given function, η ∈C .
Then,

PRLI
ϑ
0+

PCD
ϑ
0+η ϰð Þ =

IDη ϰð Þ = η ϰð Þ − η 0ð Þ, if ϰ ∈ 0, ϰ1½ �,
RLI

ϑ
ϰ1
CD

ϑ
ϰ1
η ϰð Þ = η ϰð Þ − η ϰ1ð Þ, if ϰ ∈ ϰ1, b½ �:

8<
:

ð11Þ

For our aim, we need the Banach fixed-point theorem
[23] and the Schauder fixed-point theorem [24].

3. Main Results

In this section, we give some qualitative analyses of the PC-
IFDE and PC-NIFDE.

Lemma 6. Let Φðϰ, υ, ωÞ: J ×ℝ ×ℝ⟶ℝ be continuous.
Then, PC-NIFDE (4) is equivalent to

υ ϰð Þ =
υ0 − g υð Þ +

ðϰ1
0
Φυ tð Þdt if ϰ ∈ 0, ϰ1½ �,

υ ϰ1ð Þ − g υð Þ + 1
Γ ϑð Þ

ðϰ
ϰ1

ϰ − tð Þ
!ϑ−1

Φυ tð Þdt, if ϰ ∈ ϰ1, b½ �,

8>>>><
>>>>:

ð12Þ

where Φυ ∈C satisfies the functional equation

Φυ ϰð Þ =
Φ ϰ, υ0 − g υð Þ +

ðϰ1
0
Φυ tð Þdt,Φυ ϰð Þ

� �
if ϰ ∈ 0, ϰ1½ �,

Φ ϰ, υ ϰ1ð Þ − g υð Þ + 1
Γ ϑð Þ

ðϰ
ϰ1

ϰ − tð Þ
!ϑ−1

Φυ tð Þdt,Φυ ϰð Þ
0
@

1
A, if ϰ ∈ ϰ1, b½ �:

8>>>>><
>>>>>:

ð13Þ

Proof. Let PCD
ϑ
0+υðϰÞ =ΦυðϰÞ.

Then, by applying PRLI
ϑ
0+ , we obtain

PRLI
ϑ
0+

PCD
ϑ
0+υ ϰð Þ = PRLI

ϑ
0+Φυ ϰð Þ: ð14Þ

In view of Lemma 5, we have

Case 1. For ϰ ∈ ½0, ϰ1�,

υ ϰð Þ = υ 0ð Þ +
ðϰ1
0
Φυ tð Þdt: ð15Þ

Case 2. For ϰ ∈ ½ϰ1, b�,

υ ϰð Þ = υ ϰ1ð Þ + 1
Γ ϑð Þ

ðϰ
ϰ1

ϰ − tð Þ
!ϑ−1

Φυ tð Þdt: ð16Þ

Using the nonlocal condition in both cases, we obtain

υ ϰð Þ =
υ0 − g υð Þ +

ðϰ1
0
Φυ tð Þdt, if ϰ ∈ 0, ϰ1½ �,

υ ϰ1ð Þ − g υð Þ + 1
Γ ϑð Þ

ðϰ
ϰ1

ϰ − tð Þ
!ϑ−1

Φυ tð Þdt, if ϰ ∈ ϰ1, b½ �:

8>>>><
>>>>:

ð17Þ

So, we get (12). On the other hand, let (13) be satisfied.
Set

υ ϰð Þ =
υ0 − g υð Þ +

ðϰ1
0
Φυ tð Þdt if ϰ ∈ 0, ϰ1½ �,

υ ϰ1ð Þ − g υð Þ + 1
Γ ϑð Þ

ðϰ
ϰ1

ϰ − tð Þ
!ϑ−1

Φυ tð Þdt, ifϰ ∈ ϰ1, b½ �:

8>>>><
>>>>:

ð18Þ

This implies that

PCD
ϑ
0+υ ϰð Þ =

d
dϰ

υ0 − g υð Þ +
ðϰ1
0
Φυ tð Þdt

� �
if ϰ ∈ 0, ϰ1½ �,

CD
ϑ
ϰ1

υ ϰ1ð Þ − g υð Þ + 1
Γ ϑð Þ

ðϰ
ϰ1

ϰ − tð Þ
!ϑ−1

Φυ tð Þdt
0
@

1
A, if ϰ ∈ ϰ1, b½ �:

8>>>>><
>>>>>:

ð19Þ

Since DIΦυðϰÞ = ðd/dϰÞÐ ϰ10 ΦυðtÞdt =ΦυðϰÞ on 0 ≤ ϰ ≤
ϰ1, and CD

ϑ
ϰ1
Iϑϰ1

ΦυðϰÞ =ΦυðϰÞ on ϰ1 ≤ ϰ ≤ b, we obtain
PCD

ϑ
0+υðϰÞ =ΦυðϰÞ, and hence

PCD
ϑ
0+υ ϰð Þ =Φ ϰ, υ ϰð Þ, PCDϑ

0+υ ϰð Þ
� �

, for each ϰ ∈ J: ð20Þ

The next assumptions will be applied in the sequel:
(Assu1) The functions Φ : J ×ℝ ×ℝ⟶ℝ,

Ω : ℝ+ ⟶ ð0,∞Þ, and φ, ψ : J⟶ℝ are continuous with
Ω that is a nondecreasing such that

Φ ϰ, υ, ωð Þj j ≤ φ ϰð ÞΩ υj jð Þ + ψ ϰð Þ ωj j, for each ϰ, υ, ωð Þ
∈ J ×ℝ ×ℝ:

ð21Þ

(Assu2) g : C ⟶ℝ is continuous and compact with
jgðυÞj ≤ ajυj + b, for υ ∈C ,a, b > 0:

(Assu3) There exist κ1, κ2 > 0, such that 0 < κ1, κ2 < 1,
and

Φ ϰ, υ, ωð Þ −Φ ϰ, �υ, �ωð Þj j ≤ κ1 υ − �υj j
+ κ2 ω − �ωj j, for each ϰ ∈ J, υ, ω, �υ, �ω ∈ℝ:

ð22Þ
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(Assu4) There exists κ3 > 0, such that 0 < κ3 < 1 and jgðυÞ
− gðωÞj ≤ κ3jυ − ωj, for υ, ω ∈C :

Now, we shall prove the existence theorem for (4) based
on Schauder’s theorem.

Theorem 7. Let (Assu1) and (Assu2) hold.
Then, piecewise Caputo FNIDE (4) has at least one solu-

tion on J:

Proof. Consider the operator Q : C ⟶C , such that ðQυÞ
ðϰÞ = υðϰÞ, i.e.,

Qυð Þ ϰð Þ =
υ0 − g υð Þ +

ðϰ1
0
Φυ tð Þdt, if ϰ ∈ 0, ϰ1½ �,

υ ϰ1ð Þ − g υð Þ + 1
Γ ϑð Þ

ðϰ
ϰ1

ϰ − tð Þ
!ϑ−1

Φυ tð Þdt, if ϰ ∈ ϰ1, b½ �,

8>>>><
>>>>:

:

ð23Þ

where Φυ ∈C , with ΦυðϰÞ ≔ Φðϰ, υðϰÞ,ΦυðϰÞÞ: Define
the ball

Sβ = υ ∈C : υk kC ≤ β
È É

, ð24Þ

where

β ≥max
(

υ0j j + aβ + b + φ⋆Ω βð Þ
1 − ψ⋆ b, υ ϰ1ð Þj j

+ aβ + b + φ⋆Ω βð Þ
1 − ψ⋆

b − ϰ1ð Þϑ
Γ ϑ + 1ð Þ

)
,

ð25Þ

φ⋆ = sup jφðϰÞj, and ψ⋆ = sup jψðϰÞj, with 0 < ψ⋆ < 1:

For any υ ∈ Sβ, and by (Assu 1), we have

Φυ ϰð Þj j = Φ ϰ, υ ϰð Þ,Φυ ϰð Þð Þj j
≤ φ ϰð ÞΩ υk kC

À Á
+ ψ ϰð Þ Φυ ϰð Þj j

≤ φ⋆Ω βð Þ + ψ⋆ Φυk kC :
ð26Þ

Since ψ⋆ < 1, we obtain

Φυk kC ≤
φ⋆Ω βð Þ
1 − ψ⋆ : ð27Þ

Hence, the proceed is in the following steps:

Step 1. QðSβÞ is bounded.

Case 1. For ϰ ∈ ½0, ϰ1�, we have

Qυð Þ ϰð Þj j ≤ υ0j j + sup
υ∈Sβ

g υð Þj j + sup
ϰ∈0,ϰ1�

ðϰ1
0
Φυ tð Þj jdt

≤ υ0j j + a υk kC + b + φ⋆Ω βð Þ
1 − ψ⋆ ϰ1

≤ υ0j j + aβ + b + φ⋆Ω βð Þ
1 − ψ⋆ ϰ1 ≤ β:

ð28Þ

Case 2. For ϰ ∈ ½ϰ1, b�, we have

Qυð Þ ϰð Þj j ≤ sup
ϰ∈ϰ1,b�

υ ϰ1ð Þj j + sup
υ∈Sβ

g υð Þj j

+ 1
Γ ϑð Þ sup

ϰ∈ϰ1,b�

ðϰ
ϰ1

ϰ − tð Þϑ−1 Φυ tð Þj jdt

≤ υ ϰ1ð Þj j + a υk kC + b + φ⋆Ω βð Þ
1 − ψ⋆

b − ϰ1ð Þϑ
Γ ϑ + 1ð Þ

≤ υ ϰ1ð Þj j + aβ + b + φ⋆Ω βð Þ
1 − ψ⋆

b − ϰ1ð Þϑ
Γ ϑ + 1ð Þ ≤ β:

ð29Þ

From (28) and (29), we conclude that kQυkC ≤ β: Thus,
QðSβÞ ⊂ Sβ: Since Sβ is bounded, then QðSβÞ is bounded.

Step 2. Q : Sβ ⟶ Sβ is continuous. Let a sequence ðυnÞ
such that υn ⟶ υ in Sβ as n⟶∞: Then, for ϰ ∈ ½0, ϰ1�,
we have

Qυnð Þ ϰð Þ − Qυð Þ ϰð Þj j ≤ g υnð Þ − g υð Þj j +
ðϰ1
0

Φυn
tð Þ −Φυ tð Þ�� ��dt:

ð30Þ

For ϰ ∈ ½ϰ1, b�, we have

Qυnð Þ ϰð Þ − Qυð Þ ϰð Þj j ≤ υn ϰ1ð Þ − υ ϰ1ð Þj j + g υnð Þ − g υð Þj j

+ 1
Γ ϑð Þ

ðϰ
ϰ1

ϰ − tð Þ
!ϑ−1

Φυn
tð Þ −Φυ tð Þ�� ��dt,

ð31Þ

where Φυ,Φυn
∈C , with Φυn

ðϰÞ≔Φðϰ, υnðϰÞ,Φυn
ðϰÞÞ and

ΦυðϰÞ≔Φðϰ, υðϰÞ,ΦυðϰÞÞ: Since υn ⟶ υ as n⟶∞ and
Φυ,Φυn

,Φ, and g are continuous, the Lebesgue dominated
convergence theorem gives that

Qυn −Qυk kC ⟶ 0, as n⟶∞: ð32Þ

Step 3. QðSβÞ is equicontinuous. Let ϰ ∈ 0, ϰ1�, then ϰm <
ϰn∈0, ϰ1�, we have

Qυð Þ ϰnð Þ − Qυð Þ ϰmð Þj j ≤ g υ ϰnð Þð Þ − g υ ϰmð Þð Þj j
+ ϰn − ϰmð Þφ

⋆Ω βð Þ
1 − ψ⋆ :

ð33Þ
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Let ϰ ∈ ½ϰ1, b�, then ϰm < ϰn∈½ϰ1, b�, we have

Qυð Þ ϰnð Þ − Qυð Þ ϰmð Þj j

≤ g υ ϰnð Þð Þ − g υ ϰmð Þð Þj j + 1
Γ ϑð Þ

ðϰn
ϰ1

ϰn − tð Þϑ−1Φυ tð Þdt
�����

−
1

Γ ϑð Þ
ðϰm
ϰ1

ϰm − tð Þϑ−1Φυ tð Þdt
�����

≤ g υ ϰnð Þð Þ − g υ ϰmð Þð Þj j + 1
Γ ϑð Þ

ðϰn
ϰ1

ϰn − tð Þϑ−1

− ϰm − tð Þϑ−1 Φυ tð Þj jdt + 1
Γ ϑð Þ

ðϰm
ϰn

ϰm − tð Þϑ−1 Φυ tð Þj jdt

≤ g υ ϰnð Þð Þ − g υ ϰmð Þð Þj j + ϰn − ϰ1ð Þϑ
Γ ϑ + 1ð Þ

φ⋆Ω βð Þ
1 − ψ⋆

+ ϰm − ϰnð Þϑ − ϰm − ϰ1ð Þϑ
Γ ϑ + 1ð Þ + ϰm − ϰnð Þϑ

Γ ϑ + 1ð Þ

 !
φ⋆Ω βð Þ
1 − ψ⋆

≤ g υ ϰnð Þð Þ − g υ ϰmð Þð Þj j + 2 ϰm − ϰnð Þϑ
Γ ϑ + 1ð Þ

φ⋆Ω βð Þ
1 − ψ⋆ :

ð34Þ

Since g is continuous and compact, (33) and (34) give

Qυð Þ ϰnð Þ − Qυð Þ ϰmð Þj j⟶ 0, as ϰm ⟶ ϰn: ð35Þ

That means Q is relatively compact on Sβ. So, Q is
completely continuous due to the Arzela–Ascolli theorem.
Thus, Schauder’s theorem shows that problem (4) has at
least one solution.

Next, we prove the uniqueness theorem for (4) based on
Banach’s theorem.

Theorem 8. Let (Assu3)-(Assu4) hold.
If maxϰ∈Jfζ1, ζ2g = ζ < 1, then PC-NIFDE (4) has a

unique solution on J, where

ζ1 ≔ κ3 +
κ1

1 − κ2
ϰ1,

ζ2 ≔ κ3 +
κ1

1 − κ2

b − ϰ1ð Þϑ
Γ ϑ + 1ð Þ :

ð36Þ

Proof. Consider υ and �υ in C , then

Φυ ϰð Þ −Φ�υ ϰð Þj j
= Φ ϰ, υ ϰð Þ,Φυ ϰð Þð Þ −Φ ϰ, �υ ϰð Þ,Φ�υ ϰð Þð Þj j
≤ κ1 υ ϰð Þ − �υ ϰð Þj j + κ2 Φυ ϰð Þ −Φ�υ ϰð Þj j,

ð37Þ

which implies that

Φυ ϰð Þ −Φ�υ ϰð Þj j ≤ κ1
1 − κ2

υ ϰð Þ − �υ ϰð Þj j: ð38Þ

Hence, we have two cases:

Case 1. For ϰ ∈ ½0, ϰ1�,

Qυð Þ ϰð Þ − Q�υð Þ ϰð Þj j
≤ g υð Þ − g �υð Þj j +

ðϰ1
0
Φυ tð Þ −Φ�υ tð Þj jdt

≤ κ3 +
κ1ϰ1
1 − κ2

� �
υ − �υk kC :

ð39Þ

Case 2. For ϰ ∈ ½ϰ1, b�,

Qυð Þ ϰð Þ − Q�υð Þ ϰð Þj j
≤ g υð Þ − g �υð Þj j + 1

Γ ϑð Þ
ðϰ
ϰ1

ϰ − tð ÞÞϑ−1 Φυ tð Þ −Φ�υ tð Þj jdt

≤ κ3 +
b − ϰ1ð Þϑ
Γ ϑ + 1ð Þ

κ1
1 − κ2

 !
υ − �υk kC :

ð40Þ

Consequently,

Qυ −Q�υk kC ≤ ζ υ − �υk kC : ð41Þ

Since ζ < 1, Q is a contraction. Thus, Banach’s theorem
shows that PC-NIFDE (4) has a unique solution that exists
on J.

3.1. An Analogous Results. In this part, we show some anal-
ogous results according to our preceding outcomes.

3.1.1. Piecewise Caputo-Fabrizio NIFDE (PCF-NIFDE). Con-
sider the following PCF-NIFDE

PCFD
ϑ
0+υ ϰð Þ =Φ ϰ, υ ϰð Þ, PCFDϑ

0+υ ϰð Þ
� �

,

υ 0ð Þ + g υð Þ = υ0,
ð42Þ

where PCFD
ϑ
0+ is the piecewise derivative in the Caputo-

Fabrizio sense (see [20]) defined by

PCFD
ϑ
0+υ ϰð Þ =

Dυ ϰð Þ = dυ
dx

, if ϰ ∈ 0, ϰ1½ �,

CFD
ϑ
ϰ1
υ ϰð Þ = 2 − ϑð Þℵ ϑð Þ

2 1 − ϑð Þ
ðϰ
ϰ1

exp λ ϰ − tð Þð Þυ′ ϰð Þdt if ϰ ∈ ϰ1, b½ �,

8>>><
>>>:

ð43Þ

where ℵðϑÞ = ð2/2 − ϑÞ,λ = ðϑ/ϑ − 1Þ, and CFD
ϑ
ϰ1
are the clas-

sical Caputo-Fabrizio FD (see [25]).
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Let ΦυðϰÞ≔Φðϰ, υðϰÞ,ΦυðϰÞÞ ; based on PCF-NIFDE
(42), the results in Theorems 7 and 8 can be presented by

υ ϰð Þ =
υ0 − g υð Þ + IΦυ ϰð Þ, if ϰ ∈ 0, ϰ1½ �

υ ϰ1ð Þ − g υð Þ + CFI
ϑ
ϰ1
Φυ ϰð Þ, if ϰ ∈ ϰ1, b½ �

8<
:

=
υ0 − g υð Þ +

ðϰ1
0
Φυ tð Þdt, if ϰ ∈ 0, ϰ1½ �,

υ ϰ1ð Þ − g υð Þ + 2 1 − ϑð Þ
ℵ ϑð Þ 2 − ϑð ÞΦυ ϰð Þ + 2ϑ

ℵ ϑð Þ 2 − ϑð Þ
ðϰ
ϰ1

Φυ tð Þdt, if ϰ ∈ ϰ1, b½ �,

8>>>><
>>>>:

ð44Þ

where IΦυðϰÞ =
Ð ϰ1
0 ΦυðtÞdt and CFI

ϑ
0+ are a Caputo-Fabrizio

integral on ϰ1 ≤ ϰ ≤ b (see [25]):

3.1.2. Piecewise Atangana-Baleanu NIFDE (PAB-NIFDE).
Consider the following PAB-NIFDE

PABD
ϑ
0+υ ϰð Þ =Φ ϰ, υ ϰð Þ, PABDϑ

0+υ ϰð Þ
� �

,

υ 0ð Þ + g υð Þ = υ0,
ð45Þ

where PABD
ϑ
0+ is the piecewise derivative in the Atangana-

Baleanu sense defined by (see [20])

PABD
ϑ
0+υ ϰð Þ =

Dυ ϰð Þ =
dυ
dx

, if ϰ ∈ 0, ϰ1½ �,

ABD
ϑ
0+υ ϰð Þ = 2 − ϑð Þℵ ϑð Þ

2 1 − ϑð Þ
ðϰ
ϰ1

exp λ ϰ − tð Þð Þυ′ ϰð Þdt if ϰ ∈ ϰ1, b½ �,

8>>><
>>>:

ð46Þ

where ℵðϑÞ is the normalization function that satisfies ℵð1Þ
=ℵð0Þ = 1; λ = ðϑ/ðϑ − 1ÞÞ, and ABD

ϑ
0+ are the classical

Atangana-Baleanu FD ([26]).
Based on PAB-NIFDE (45), the results in Theorems 7

and 8 can be presented by

where ABI
ϑ
0+ is the Atangana-Baleanu integral on ϰ1 ≤ ϰ ≤ b

(see [26]):

Remark 9. Following the strategy of proof utilized in the pre-
vious part, we can get the existence results for nonlinear
problems (42) and (45).

3.2. UH Stability Analysis. In this portion, we give the UH
Stability of problem (4).

Definition 10. PC-NIFDE (4) is UH stable if there exists a
Kf > 0, such that for all ε > 0 and each solution ω ∈C of
the inequality.

PCD
ϑ
0+ω ϰð Þ −Φω ϰð Þ

��� ��� ≤ ε, ϰ ∈ J, ð48Þ

there exists a solution υ ∈C of PC-NIFDE (4) that satisfies

ω ϰð Þ − υ ϰð Þj j ≤ Kf ε, ð49Þ

where ΦωðϰÞ≔ PCD
ϑ
0+ωðϰÞ and ΦωðϰÞ =Φðϰ, ωðϰÞ,ΦωðϰÞÞ:

Remark 11. ω ∈C satisfies inequality (48) if there exist func-
tion σ ∈C with

(i) jσðϰÞj ≤ ε,ϰ ∈ J

(ii) For all ϰ ∈ J

PCD
ϑ
0+ω ϰð Þ =Φω ϰð Þ + σ ϰð Þ: ð50Þ

Lemma 12. Let 0 < ϑ ≤ 1, and ω ∈C is a solution of inequal-
ity (48). Then, ω satisfies

ω ϰð Þ −W 0 −
ðϰ1
0
Φω tð Þdt

����
���� ≤ ϰ1ε, if ϰ ∈ 0, ϰ1½ �,:

ω ϰð Þ −W 1 −
1

Γ ϑð Þ
ðϰ
ϰ1

ϰ − tð Þ
!ϑ−1

Φω tð Þdt
������

������
≤

b − ϰ1ð Þϑ
Γ ϑ + 1ð Þ ε, if ϰ ∈ ϰ1, b½ �,

ð51Þ

where W 0 = ω0 − gðωÞ and W 1 = ωðϰ1Þ − gðωÞ:

Proof. Let ω be a solution of (48).

υ ϰð Þ =
υ0 − g υð Þ + IΦυ ϰð Þ, if ϰ ∈ 0, ϰ1½ �

υ ϰ1ð Þ − g υð Þ + ABI
ϑ
ϰ1
Φυ ϰð Þ, if ϰ ∈ ϰ1, b½ �

8<
: =

υ0 − g υð Þ +
ðϰ1
0
Φυ tð Þdt, if ϰ ∈ 0, ϰ1½ �,

υ ϰ1ð Þ − g υð Þ + 1 − ϑ

ℵ ϑð ÞΦυ ϰð Þ + ϑ

ℵ ϑð Þ
1

Γ ϑð Þ
ðϰ
ϰ1

ϰ − tð Þϑ−1Φυ tð Þdt, if ϰ ∈ ϰ1, bf �,

8>>><
>>>:

ð47Þ
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By part (ii) of Remark 11, we have

PCD
ϑ
0+ω ϰð Þ =Φω ϰð Þ + σ ϰð Þ,

ω 0ð Þ + g ωð Þ = ω0:
ð52Þ

Then, the solution of problem (52) is

ω ϰð Þ =
W 0 +

ðϰ1
0
Φω tð Þ + σ tð Þ½ �dt, if ϰ ∈ 0, ϰ1½ �,

W 1 +
1

Γ ϑð Þ
ðϰ
ϰ1

ϰ − tð Þ
!ϑ−1

Φω tð Þ + σ tð Þ½ �dt, if ϰ ∈ ϰ1, b½ �:

8>>>><
>>>>:

:

ð53Þ

Again by (i) of Remark 11, we obtain

ω ϰð Þ −W 0 −
ðϰ1
0
Φω tð Þdt

����
����

≤
ðϰ1
0
σ tð Þj jdt ≤ εϰ1, for ϰ ∈ 0, ϰ1½ �,

ω ϰð Þ −W 1 −
1

Γ ϑð Þ
ðϰ
ϰ1

ϰ − tð ÞÞϑ−1Φω tð Þdt
�����

�����
≤

1
Γ ϑð Þ

ðϰ
ϰ1

ϰ − tð Þϑ−1 σ tð Þj jdt

≤
b − ϰ1ð Þϑ
Γ ϑ + 1ð Þ ε, for ϰ ∈ ϰ1, b½ �:

ð54Þ

Theorem 13. Under the assumptions of Theorem 8. Then, the
solution of PC-NIFDE (4) is HU and GHU stable.

Proof. Let ω ∈C be a solution of inequality (48), and υ ∈C
be a unique solution of the following PC-NIFDE.

PCD
ϑ
0+υ ϰð Þ =Φυ ϰð Þ, ð55Þ

From Lemma 12, we obtain

υ ϰð Þ =
V 0 +

ðϰ1
0
Φυ tð Þdt, if ϰ ∈ 0, ϰ1½ �,

V 1 +
1

Γ ϑð Þ
ðϰ
ϰ1

ϰ − tð Þϑ−1Φυ tð Þdt, if ϰ ∈ ϰ1, b½ �,

8>>><
>>>:

:

ð56Þ

where V 0 = υ0 − gðυÞ and V 1 = υðϰ1Þ − gðυÞ: Clearly, if
υð0Þ + gðυÞ = ωð0Þ + gðωÞ, then V 0 =W 0, and V 1 =W 1:
Hence, (56) becomes

υ ϰð Þ =
W 0 +

ðϰ1
0
Φυ tð Þdt, if ϰ ∈ 0, ϰ1½ �,

W 1 +
1

Γ ϑð Þ
ðϰ
ϰ1

ϰ − tð Þϑ−1Φυ tð Þdt, if ϰ ∈ ϰ1, b½ �:

8>>><
>>>:

:

ð57Þ

Using Lemma 12 and (Assu 4) for ϰ ∈ 0, ϰ1�, we have

ω ϰð Þ − υ ϰð Þj j = ω ϰð Þ −W 0 −
ðϰ1
0
Φυ tð Þdt

����
����

≤ ω ϰð Þ −W 0 −
ðϰ1
0
Φω tð Þdt

����
����

+
ðϰ1
0
Φω tð Þ −Φυ tð Þj jdt

≤ εϰ1 +
κ1

1 − κ2

ðϰ1
0
ω tð Þ − υ tð Þj jdt:

ð58Þ

Using classical Gronwall’s Lemma [27], we obtain

ω ϰð Þ − υ ϰð Þj j ≤ εϰ1 exp
ðϰ1
0

κ1
1 − κ2

� �
dt

= εϰ1 exp
κ1ϰ1
1 − κ2

� �
≔ εK0:

ð59Þ

For ϰ ∈ ϰ1, b�, we have

ω ϰð Þ − υ ϰð Þj j = ω ϰð Þ −W 1 −
1

Γ ϑð Þ
ðϰ
ϰ1

ϰ − tð Þϑ−1Φυ tð Þdt
�����

�����
≤ ω ϰð Þ −W 1 −

1
Γ ϑð Þ

ðϰ
ϰ1

ϰ − tð Þϑ−1Φω tð Þdt
�����

�����
+ 1
Γ ϑð Þ

ðϰ
ϰ1

ϰ − tð Þϑ−1 Φω tð Þ −Φυ tð Þj jdt

≤
b − ϰ1ð Þϑ
Γ ϑ + 1ð Þ ε +

κ1
1 − κ2

1
Γ ϑð Þ

ðϰ
ϰ1

ϰ − tð Þϑ−1 ω tð Þ − υ tð Þj jdt:

ð60Þ

Using fractional Gronwall’s Lemma [27], we obtain

ω ϰð Þ − υ ϰð Þj j ≤ b − ϰ1ð Þϑ
Γ ϑ + 1ð Þ ε +

ε

Γ ϑ + 1ð Þ
κ1

1 − κ2

× 1
Γ ϑð Þ

ðϰ
ϰ1

ϰ − tð Þϑ−1 b − ϰ1ð Þϑdt

≤
b − ϰ1ð Þϑ
Γ ϑ + 1ð Þ ε +

κ1 b − ϰ1ð Þϑ
Γ ϑ + 1ð Þ 1 − κ2ð Þ

b − ϰ1ð Þϑ
Γ ϑ + 1ð Þ ε

= b − ϰ1ð Þϑ
Γ ϑ + 1ð Þ

κ1
1 − κ2ð Þ + 1

Γ ϑ + 1ð Þ
� �

ε≔ εK1:

ð61Þ
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It follows from (59) and (61) that

ω ϰð Þ − υ ϰð Þj j ≤
K0ε, for ϰ ∈ 0, ϰ1½ �,
K1ε, for ϰ ∈ ϰ1, b½ �,

(
ð62Þ

where

K0 = ϰ1 exp
κ1ϰ1
1 − κ2

� �
,

K1 =
b − ϰ1ð Þϑ
Γ ϑ + 1ð Þ

κ1
1 − κ2ð Þ + 1

Γ ϑ + 1ð Þ
� �

:

ð63Þ

Hence, PC-NIFDE (4) is UH stable in C . Moreover,
if there exists a nondecreasing function, φ : ℝ+ ⟶ℝ+,
such that φðεÞ = ε. Then, from (62), we have

ω ϰð Þ − υ ϰð Þj j ≤
K0φ εð Þ, for ϰ ∈ 0, ϰ1½ �,
K1φ εð Þ, for ϰ ∈ ϰ1, b½ �,

(
ð64Þ

with φð0Þ = 0, which proves PC-NIFDE (4) is GUH
stable in C :

4. Examples

In this portion, we present two examples to illustrate the
reported results.

Example 1. Consider the following PC-NIFDE

PCD
1/3
0+ υ ϰð Þ =Φ ϰ, υ ϰð Þ, PCD1/3

0+ υ ϰð Þ
� �

, ϰ ∈0, 1½ �,

υ 0ð Þ + 〠
n

i=1
ciυ ϰið Þ = 1

4 ,

ð65Þ

or

υ′ ϰð Þ =Φ ϰ, υ ϰð Þ, υ′ ϰð Þ
� �

, ϰ ∈ 0, 12

� �
,

CD
1/3
1/2+υ ϰð Þ =Φ ϰ, υ ϰð Þ, CD1/3

1/2+υ ϰð Þ
� �

, if ϰ ∈ 1
2 , 1
� �

,

υ 0ð Þ + 〠
n

i=1
ciυ ϰið Þ = 1

4 ,

ð66Þ

where ϑ = 1/3,υ0 = 1/4,0 < ϰ1 = 1/2 <⋯ < ϰn < 1 = b, and
ci are positive constants with ∑n

i=1ci < 1/5: Set

Φ ϰ, υ, ωð Þ = e−ϰ

8 + eϰð Þ 2 + υj j + ωj jð Þ , ϰ ∈ 0, 1½ �, υ, ω ∈ 0,∞½ Þ,

g υð Þ = 〠
n

i=1
ciυ ϰið Þ, υ ∈ 0,∞½ Þ:

ð67Þ

Let υ, ω, �υ, �ω ∈ ½0,∞Þ, ϰ ∈ ½0, 1�. Then,

f ϰ, υ, ωð Þ − f ϰ, �υ, �ωð Þj j
≤

e−ϰ

8 + eϰð Þ
υ − �υj j + ω − �ωj j

2 + υj j + ωj jð Þ 2 + �υj j + �ωj jð Þ
����

����
≤
1
9 υ − �υj j + 1

9 ω − �ωj j:

ð68Þ

Hence, the condition (Assu3) holds with κ1 = κ2 = 1/9:
Also we have

g υð Þ − g ωð Þj j = 〠
n

i=1
ciυ ϰið Þ − 〠

n

i=1
ciω ϰið Þ

�����
�����

≤ 〠
n

i=1
ci υ − ωj j ≤ 1

5 υ − ωj j:
ð69Þ

Hence, the condition (Assu4) holds with κ3 = 1/5. More-
over, the following condition

max ζ1, ζ2f g =max κ3 +
κ1

1 − κ2
ϰ1, κ3 +

κ1
1 − κ2

b − ϰ1ð Þϑ
Γ ϑ + 1ð Þ

( )

=max 21
80 ,

1
5 + 1

8
ffiffiffi
23

p
Γ 4/3ð Þ

( )

= 1
5 + 1

8
ffiffiffi
23

p
Γ 4/3ð Þ

< 1,

ð70Þ

is satisfied with ϰ1 = ð1/2Þ, and b = 1: Thus, with the
assistance of Theorem 8, problem (65) has a unique solution
½0, 1�. Further, since 1 − ðκ1ϰ1/1 − κ2Þ = ð15/16Þ < 1, and 1
− ððb − ϰ1Þϑ/Γðϑ + 1ÞÞðκ1/1 − κ2Þ = 1 − ð1/8 ffiffiffi

23
p

Γð4/3ÞÞ < 1,
then

K0 = ϰ1 exp
κ1ϰ1
1 − κ2

� �
= 1
2 e

1/16 > 0, ð71Þ

and

K1 =
b − ϰ1ð Þϑ
Γ ϑ + 1ð Þ

κ1
1 − κ2ð Þ + 1

Γ ϑ + 1ð Þ
� �

= 1/8ð Þ + 1/ Γ 4/3ð Þð Þð Þffiffiffi
23

p
Γ 4/3ð Þ

> 0,
ð72Þ

which implies that problem (65) is HU stable.
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Example 2. Consider the following PC-NIFDE

PCD
1/2
1/4+υ ϰð Þ =Φ ϰ, υ ϰð Þ, PCD1/2

1/4+υ ϰð Þ
� �

, ϰ ∈ 1
4 , 1
� �

,

υ
1
4

� �
+ 1
2 sin υ ϰð Þ

3

� �
+ 1
9 = 1,

ð73Þ

or

υ′ ϰð Þ =Φ ϰ, υ ϰð Þ, υ′ ϰð Þ
� �

, ϰ ∈ 1
4 ,

1
2

� �
,

CD
1/2
1/2+υ ϰð Þ =Φ ϰ, υ ϰð Þ, CD1/2

1/2+υ ϰð Þ
� �

, if ϰ ∈ 1
2 , 1
� �

,

υ
1
4

� �
+ 1
2 sin υ ϰð Þ

3

� �
+ 1
9 = 1,

ð74Þ

where ϰ1 = ð1/2Þ,ϑ = ð1/2Þ,υ0 = 1: Set

Φ ϰ, υ ϰð Þ, ω ϰð Þð Þ = 1
10 + ϰ2ð Þ

υ ϰð Þ + ω ϰð Þ
1 + υ ϰð Þj j + ω ϰð Þj jð Þ + 1

90

� �
,

ð75Þ

for ϰ ∈ ½ð1/4Þ, 1�,υ, ω ∈ ½0,∞Þ, and

g υð Þ = 1
2 sin υ

3
� �

+ 1
9 , υ ∈ 0,∞½ Þ: ð76Þ

Let υ, ω ∈ ½0,∞Þ and ϰ ∈ ½ð1/4Þ, 1�. Then,

Φ ϰ, υ, ωð Þj j = 1
10 + ϰ2ð Þ

υ + ω

1 + υj j + ωj jð Þ + 1
90

� �����
����

≤
1

10 + ϰ2ð Þ υj j + ωj j + 1
90

� �
:

ð77Þ

Putting ΩðjυjÞ = jυj + ð1/90Þ, and φðϰÞ = ψðϰÞ = ð1/ð10
+ ϰ2ÞÞ Then, jΦðϰ, υ, ωÞj ≤ φðϰÞΩðjυjÞ + ψðϰÞjωj valid for
any ðϰ, υ, ωÞ ∈ ½ð1/4Þ, 1� × ½0,∞Þ × ½0,∞Þ, and ψ⋆ = ð16/161Þ
< 1. Also, jgðυÞj ≤ ð1/6Þjυj + ð1/9Þ = ajυj + b: Hence, ðAssu1Þ
and ðAssu2Þ hold. Thus, all the assumptions of Theorem 7 are
satisfied. Hence, problem (73) has a solution on ½ð1/4Þ, 1�.

5. Conclusions

Somewhat recently, numerous methodologies have been
proposed to portray behaviors of some complex world prob-
lems emerging in numerous scholarly fields. One of these
problems is the multistep behavior shown by certain prob-
lems. In this regard, Atangana and Araz [20] introduced
the concept of piecewise derivative. As an extra contribution
to this subject, existence, uniqueness, and UH stability
results for PC-NIFDE (4) involving a piecewise Caputo FD
have been obtained. Our approach to this work has been
based on Banach’s and Schaefer’s fixed-point theorem and

Gronwall’s Lemma. In light of our current results, the solu-
tion form for analogous problems containing piecewise
Caputo-Fabrizio and Atangana–Baleanu operators have
been presented. Finally, we have created two examples to
validate the results obtained.

As an open problem, it will be very interesting to study
the present problems on piecewise fractional operators with
another function that is more general; precisely, one has to

consider in problem (2) with PCD
ϑ;ψ
0+ such that

PCD
ϑ;ψ
0+ f ϰð Þ =

Dψ : if ϰ ∈ 0, ϰ1½ �,
CD

ϑ;ψ
ϰ1

f ϰð Þ: if ϰ ∈ ϰ1, b½ �,

8<
: ð78Þ

where Dψ ≔ ðð1/ðψ′ðϰÞÞÞðd/dϰÞÞ and CD
ϑ;ψ
0+ are ψ-Caputo

FD of order ϑ introduced by Almeida [28]:
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In this paper, with classic Legendre polynomials, a method of particular solutions (MPS, for short) is proposed to solve a kind of
second-order differential equations with a variable coefficient on a unit interval. The particular solutions, satisfying the natural
Dirichlet boundary conditions, are constructed with orthogonal Legendre polynomials for the variable coefficient case.
Meanwhile, we investigate the a-priori error estimates of the MPS approximations. Two a-priori error estimations in H1- and
L∞-norms are shown to depict the convergence order of numerical approximations, respectively. Some numerical examples
and convergence rates are provided to validate the merits of our proposed meshless method.

1. Introduction

In the past decades, various numerical methods are designed
for solving kinds of differential equations, such as finite
element method [1–3], spectral method [4–6], shifted
Legendre approximation [7, 8], and differential transforma-
tion method [9, 10]. To avoid the constraints and workload
of region divisions, a new family of computational methods
has emerged. The so-called meshless or mesh-free methods
have been investigated and used by many researchers. The
advantage of meshless methods reads that the interpolation
accuracy is not significantly affected by the nodal distribu-
tion. And hence meshless methods attract great attentions
in various disciplines for treating a large variety of engineer-
ing problems. In fact, the MPS is originally proposed with
the radial basis functions for solving various kinds of differ-
ential equations. Recently, the MPS has been continuously
employed to solve various interesting models and proven
to be an effective method in numerical simulations. For
more details about this numerical scheme, please refer to
[11–13] and the references cited therein.

To the best of our current knowledge, the meshless
schemes, including Kansa method [14], method of fun-
damental solutions [15], method of particular solutions
[16, 17], element-free Galerkin method [18], local point

interpolation [19], and boundary knot method [20], are
widely used to approximate a large class of partial differential
equations in science and engineering fields. As reported in
the literatures, the MPS has been applied to solve the
Navier-Stokes problem [21], wave propagation problem
[22], and time-fractional diffusion problem [23]. Despite
the effectiveness of the MPS, there are some disadvan-
tages such as the ill-conditioned collocation matrix, the
uncertainty of the shape parameters, and difficulties in
deriving the closed-form particular solutions for general
differential operators, and for more details, please refer
to [12, 17, 24–26] and the references cited therein.

In order to overcome these disadvantages, lots of works
have been done on efficient numerical schemes for the
MPS. And many basis functions have been designed to dis-
cretize partial differential equations. Chebyshev polynomials
[11, 27], polynomials basis functions [16, 18, 28], and trigo-
nometric functions [29] were employed with their closed-
form particular solutions to approximate kinds of models.
However, few results about error estimates of the MPS are
illustrated in the current literatures.

In this paper, Legendre polynomials are used to design
the particular solutions for the MPS. Specially, boundary
conditions are naturally imposed, and the corresponding
discretized scheme is constructed in a collocation scheme.
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The closed-form particular solutions for given differential
operators with variable coefficients are derived via recursive
relationships of Legendre polynomials. Compared with the
radial basis functions for the MPS, our proposed scheme
provides a simple approach to effectively solve a kind of
differential equations with variable coefficients.

Meanwhile, with an orthogonal projector and the Aubin-
Nitsche duality argument, we provide rigorous studies on
two a-priori error estimates for this numerical method. For
sufficiently smooth solutions, the a-priori error estimations
show that asymptotic super-exponential convergence orders
of the MPS approximations are readily achieved in H1- and
L∞-norms.

The remainder of this paper is organized as follows.
Some preliminaries and a brief review of the MPS are pre-
sented in Section 2. The numerical procedures of the MPS
for solving differential equations with variable coefficients
are proposed in Section 3. In Section 4, two a-priori error
estimates are given in different norms with rigorous proofs.
And three numerical examples are provided with numerical
errors and convergence orders to demonstrate the effective-
ness of the proposed methods in Section 5. Furthermore,
some conclusions and discussions are listed in Section 6.
And in the last part, an appendix is given to sketch a rigor-
ous proof for the recalled lemma.

2. Preliminaries

Let us introduce some basic notations which will be used in
the sequel. Hereafter, we select a unit interval I = ð−1, 1Þ to
show the sketch of the MPS approximations and a-priori
error estimates and adopt the standard notation Wm,qðIÞ
for Sobolev space on I. Setting Wm,q

0 ðIÞ = fv ∈Wm,qðIÞ:
ðdkv/dxkÞð±1Þ = 0, 0 ≤ k ≤m − 1g, we denote Hm

0 ðIÞ =Wm,2
0

ðIÞ and k·km = k·km,2. Specially, k·k∞ and k·k denote the
norms in L∞ðIÞ and L2ðIÞ, respectively. We use C and c to
denote different constants in different formulae. For simplic-
ity, we omit subscripts if m = 0. Particularly, if m = 1, we set

H1
0 Ið Þ = v ∈W1,2 Ið Þ: v ±1ð Þ = 0

È É
: ð1Þ

Thereby, the scalar product in L2ðIÞ and bilinear form in
H1ðIÞ are defined as

v,wð Þ =
ð
I
v xð Þw xð Þdx,∀v,w ∈ L2 Ið Þ, ð2Þ

a v,wð Þ =
ð
I
ω xð Þv′ xð Þw′ xð Þdx,∀v,w ∈H1 Ið Þ: ð3Þ

We define the following polynomial sets:

~PN = pN xð Þ: the degree of pN xð Þ ≤Nf g,
PN = v ∈ ~PN : v ±1ð Þ = 0

È É
:

ð4Þ

2.1. Legendre Polynomials. We denote by LiðxÞ the i-th
degree Legendre polynomial with x ∈ I. Three-term recur-
rence relationship for Legendre polynomials reads

i + 1ð ÞLi+1 xð Þ = 2i + 1ð ÞxLi xð Þ − iLi−1 xð Þ, i ≥ 1, ð5Þ

and L0ðxÞ = 1, L1ðxÞ = x.
We recall that fLiðxÞgi≥1 satisfy

Li ±1ð Þ = ±1ð Þi, i ≥ 1, ð6Þ

and hence there holds

Li xð Þ − Li+2 xð Þ ∈ PN xð Þ, 0 ≤ i ≤N − 2: ð7Þ

Also, there is an orthogonality

Li xð Þ, Lj xð ÞÀ Á
=

0, i ≠ j,
2

2i + 1 , i = j:

8<
: ð8Þ

And for i ≤N , it is obvious that L′iðxÞ ∈ ~PN−1 and

2i + 1ð ÞLi xð Þ = Li+1′ xð Þ − Li−1′ xð Þ, i ≥ 1: ð9Þ

2.2. The Method of Particular Solutions. In this subsection,
we consider the second-order differential equation with
homogeneous Dirichlet boundary condition:

ω xð Þ u xð Þð Þ′
� �

′ = f xð Þ, x ∈ I,
u ±1ð Þ = 0,

8<
: ð10Þ

and the constraint on ωðxÞ will be stated in the sequel.
By (3), we obtain the equivalent weak formulation of

(10) reads: finding u ∈H1
0ðIÞ such that

a u, vð Þ = − f , vð Þ,∀v ∈H1
0 Ið Þ: ð11Þ

In view of (9), we design the corresponding particular
solutions for (10) as

ψi xð Þ = Li+1 xð Þ − Li−1 xð Þ
2i + 1 , i ≥ 1, ð12Þ

which guarantee ψið±1Þ = 0.
And then we define P N as

P N = span ψ1 xð Þ, ψ2 xð Þ,⋯, ψN−1 xð Þf g, ð13Þ

where ψiðxÞ satisfies the homogeneous Dirichlet boundary
conditions in (10). For more details about the completeness
of P N in (13), please refer to [30].
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According to (13), the MPS approximation of uðxÞ can
be stated as

uN xð Þ = 〠
N−1

j=1
cjψj xð Þ,∀x ∈ I, ð14Þ

where fcjgN−1
i=1 are the coefficients to be determined. For

the sake of convenience, we use fxkgMk=1 to denote the col-
locations in the interval. And then the corresponding
equivalent collocation scheme for (10) reads: finding uN ∈
P N such that

ω xkð Þ uN xkð Þð Þ′
� �

′, vk
� �

= f xkð Þ, vkð Þ, k = 1, 2,⋯,M,

ð15Þ

where vk = δðx − xkÞ denotes the Dirac delta distribution on
xk. For readers interested in the collocation approximations,
please refer to [31].

3. The Model Problem and Its
Approximation Scheme

3.1. The Model Problem with ωðxÞ = 1 − x2. In the following
parts, we focus on ωðxÞ = 1 − x2. Since there does not exist
any positive constant c satisfying ωðxÞ ≥ c in I, we miss the
sufficient conditions for the uniqueness of (10). And hence
we have to restate the uniqueness of the solution for (11)
with some novel techniques.

Theorem 1. For ωðxÞ = 1 − x2, there exists a unique weak
solution u ∈H1

0ðIÞ of (11).

Proof. For any v,w ∈H1ðIÞ, there holds

a v,wð Þj j ≤ vk k1 wk k1, ð16Þ

where we used ωðxÞj j ≤ 1. One directly states the continu-
ation of the bilinear form and also the existence of
solutions.

Now we are at the point to investigate the uniqueness
of the solution for (10). Obviously, the bilinear form is not
elliptic. We have to prove the uniqueness with new tech-
niques. Assuming there exist two solutions u1 and u2 sat-
isfying (10), one readily gets that for all x ∈ I, there almost
holds

ω xð Þu1′ xð Þ
� �

′ = ω xð Þu2′ xð Þ
� �

′, ð17Þ

which means

1 − x2
À Á

U′ xð Þ
� �

′ = 0, x ∈ I,

U ±1ð Þ = 0,

8<
: ð18Þ

where UðxÞ = u1ðxÞ − u2ðxÞ.

Now, we turn to prove that the solution of boundary
value problem (18) is zero. And hence we employ integra-
tions by parts to get the unique solution

U xð Þ = c1
2 ln 1 + x

1 − x
+ c2, a:e:x ∈ I: ð19Þ

Considering the boundary conditions and properties of
function ln ðxÞ at x = ±1, we easily declare that c1 = 0 and
c2 = 0, which means UðxÞ = 0, a:e:x ∈ I. Then, we readily
depict that u1ðxÞ = u2ðxÞ, a:e:x ∈ I, which directly verifies
the uniqueness of solution of (11).

3.2. The MPS with Legendre Polynomials. Noticing that, one
of the challenges of the MPS is how to derive closed-
form particular solutions for given differential operators.
Although the particular solutions are not unique, it is
always a complicated task to find appropriate particular
solutions for given differential operators. In general, find-
ing or designing closed-form particular solutions are non-
trivial (for more details on this topic, please refer to [32]
and the references therein).

It is well-known that the size of globally dense matrices
in the MPS grows with the increase of collocation points
and will cause bigger condition numbers of resultant matri-
ces. Hence, the crucial task of the MPS is to choose pertinent
~PN such that the basis functions are as simple as possible.
According to the recursive relationships of Legendre polyno-
mials, we derive efficient basis functions for corresponding
particular solutions bit by bit.

With (9), it is direct to state that

Li+1 xð Þ − Li−1 xð Þ
2i + 1

� �
′ = Li xð Þ, i ≥ 1: ð20Þ

And then we have

1 − x2
À Á Li+1 xð Þ − Li−1 xð Þ

2i + 1

� �
′

� �
′ = 1 − x2

À Á
Li xð ÞÀ Á′: ð21Þ

Hence, the basis functions for the approximations of the
right hand term can be set as

ϕi xð Þ = 1 − x2
À Á

Li xð ÞÀ Á′
= 1 − x2
À Á

Li′ xð Þ − 2xLi xð Þ, 1 ≤ i ≤N − 1,
ð22Þ

which satisfy the following identity

1 − x2
À Á

ψi xð Þð Þ′
� �

′ = ϕi xð Þ, 1 ≤ i ≤N − 1: ð23Þ

One readily gets that the discretized formulation of (11)
reads: finding uN ∈P N such that

a uN , vNð Þ = − f , vNð Þ,∀vN ∈P N : ð24Þ

The details about the equivalent weak formulation can
be found in [31]. Meanwhile, the existence and uniqueness
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of the numerical solution in P N of (24) can be readily
proved by the same techniques given in Theorem 1.

4. The A-Priori Error Estimates

In this section, we study a-priori error estimates of the MPS
approximations by an orthogonal projector. For any w ∈
H1

0ðIÞ, there holds

w xð Þ = 〠
∞

i=1
ŵiψi xð Þ: ð25Þ

In view of orthogonal properties of Legendre polyno-
mials and (20), we get the following identities:

ψi
′ xð Þ = Li xð Þ, i ≥ 1: ð26Þ

We recall the first derivative orthogonal projector
1ΠN

0 : H1
0ðIÞ↦P N such that

w − 1ΠN
0 w

À Á′, v′N� �
= 0, vN ∈P N : ð27Þ

Here, an error estimate for this first derivative orthogonal
projector is shown in the following lemma.

Lemma 2 (see [4, 33]). For all v ∈H1
0ðIÞ ∩HmðIÞðm ≥ 1Þ,

there holds

v − 1ΠN
0 v

 
l
≤ cNl−m vk km, l = 0, 1: ð28Þ

4.1. The A-Priori Error Estimate in H1-Norm. The Aubin-
Nitsche duality argument is employed to investigate error
estimates of the MPS approximations in H1-norm.

Lemma 3 (See [34, 35]). For bounded interval I and F ∈
H−1ðIÞ, we set yF as the unique solution of the following
homogeneous boundary value problem

yF′ , v′
� �

= F, vh i, ð29Þ

where h·, · i stands for the dual product on H−1ðIÞ ×H1
0ðIÞ.

Then, yF ∈H
1ðIÞ, and there holds

yFk k1 ≤ c Fk k−1: ð30Þ

By the above results, we derive the following a-priori error
estimate.

Theorem 4. Let u and uN be the solutions of (11) and (15),
respectively. Then for all u ∈H1

0ðIÞ ∩HmðIÞ, it holds that

u − uNk k1 ≤ CN1−m uk km: ð31Þ

Proof. It follows that

u − uNk k1 == sup
F∈H−1 Ið Þ

F, u − uNh ij j
Fk k−1

=4:3ð Þ sup
F∈H−1 Ið Þ

u − uNð Þ′, y′F
� �

Fk k−1

= sup
F∈H−1 Ið Þ

u − uNð Þ′, yF − 1ΠN
0 yF

À Á′� �
Fk k−1

= sup
F∈H−1 Ið Þ

u − 1ΠN−1
0 u

À Á′, yF − 1ΠN
0 yF

À Á′� �
Fk k−1

≤ u − 1ΠN
0 u

À Á′  · sup
F∈H−1 Ið Þ

yF − 1ΠN
0 yF

 
1

Fk k−1
≤

4:2ð Þ 4:4ð Þ
c u − 1ΠN

0 u
À Á′ 

≤
4:2ð Þ

CN1−m uk km:
ð32Þ

Then, the a-priori error estimation in (31) is yielded.

4.2. The A-Priori Error Estimate in L∞-Norm. In this subsec-
tion, we give the corresponding error estimate in L∞-norm
with a rigorous relationship during L∞ðIÞ and H1ðIÞ.

Lemma 5. For all v ∈H1ðIÞ, there holds the following
estimate

vk k2∞ ≤ vk k2 + 4 v′
 2: ð33Þ

Proof. Since the interval is bounded, one gets that Wm,2ðIÞ
⊂Wm,1ðIÞ. By the embedding theorems (refer to Chapter
12 in [36]), we know that W1,1ðIÞ is embedded in L∞ðIÞ.
Furthermore, H1ðIÞ is a subset of W1,1ðIÞ due to the
bounded interval I. Hence, H1ðIÞ is embedded in L∞ðIÞ.
About the constants within the above estimate, please refer
to the Theorem 1.9 in [37] for further details. And a theoret-
ical proof is listed in the appendix, which improves the proof
given in [38].

Theorem 6. Let u and uN be the solutions of (11) and (15),
respectively. Then, for all u ∈H1

0ðIÞ ∩HmðIÞ, there holds

u − uNk k∞ ≤ CN1−m uk km: ð34Þ

Proof. It is clear that u − uN ∈H1ðIÞ. Then,

u − uNk k2∞ ≤
4:6ð Þ

u − uNk k2 + 4 u − uNð Þ′ 2
≤ C2

I + 4
À Á

u − uNð Þ′ 2
≤
4:5ð Þ

cN2 1−mð Þ uk k2m,

ð35Þ
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where CI denotes the constant within the Poincaré inequal-
ity. One readily gets that the desired result listed in (34)
holds.

The above two a-priori error estimations, which are
given in H1- and L∞- norms, show that an asymptotic
super-exponential convergence order for the MPS approxi-
mations can be achieved for any sufficiently smooth
solution.

5. Numerical Results

In the following different kinds of numerical examples, we
show the approximation data in tables and figures, which
illustrate the efficiency of the MPS for (10). For simplicity,
we evenly select distributed nodes as the collocation points.

Example 7. Setting the boundary value problem (10) with

f xð Þ = 4x4 − 10x2 + 2
À Á

e1−x
2 , ð36Þ

we get the analytic solution

u xð Þ = 1 − e1−x
2
: ð37Þ

Obviously, this analytic solution is sufficient smooth
on I. The numerical data listed in Table 1 show error esti-

mates of numerical approximations and the first deriva-
tives of numerical solutions versus N , respectively. And
two a-priori error estimations with L∞- and L2-norms
verify our theoretical analyses. Hence, by the numerical
data in the first five columns, we obtain the high accuracy
property of the MPS approximations.

Table 1: Errors of u − uN and orders of convergence for Example 7.

N u − uNk k∞ u − uNð Þ′ 
∞

u − uNk k u − uNð Þ′  Order

2 2.6781e-01 1.6331e-00 1.3512e-00 4.3813e-00 /

4 2.6248e-02 3.6964e-01 1.3282e-01 7.1212e-01 2.6620

8 9.9027e-05 3.9703e-03 4.8942e-04 5.9872e-03 6.9139

16 1.1428e-10 2.0526e-08 5.5757e-10 2.9599e-08 17.6304

32 9.9920e-16 7.9936e-15 3.5289e-15 1.4668e-14 20.9041

64 6.6613e-16 5.5511e-15 2.2505e-15 6.9826e-15 1.0401

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1

–0.2
–0.4
–0.6
–0.8

–1
–1.2
–1.4
–1.6
–1.8

0
Solutions

Approximation solution
Analytical solution

(a) N = 2

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1

–0.2
–0.4
–0.6
–0.8

–1
–1.2
–1.4
–1.6
–1.8

0

Approximation solution
Analytical solution

Solutions

(b) N = 4

Figure 1: Pointwise curve of u and uN at two different N .
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Figure 2: Errors of kðu − uNÞ′k versus N in the semi-logarithmic
scale.

5Journal of Function Spaces



The last column depicts the convergent orders, which
will validate the high efficiency of the MPS. Since the errors
arrive at the machine accuracy, the convergence order,
1.0401 in the last column, has no essential significance. Here,
the convergence order is calculated by

logNi+1/Ni

errori
errori+1

, ð38Þ

where the subscripts denote corresponding i-th and ði + 1Þ-
th information. It is obvious that for any sufficiently smooth
analytic solution, the convergence orders of the MPS can be
sharply enhanced by the increased N .

For the given right-hand side function f in (36), the ana-
lytic solutions and the MPS approximations of N = 2 and
N = 4 are pointwise delineated in Figure 1.

And numerical results of kðu − uNÞ′k are shown by the
semi-logarithmic scale in Figure 2. By the Poincaré inequal-
ity, we know that the approximation errors in H1-norm are
naturally consistent with our proposed a-priori error esti-
mates. These figures show the efficiency of the MPS approx-
imations for this example.

Following the above numerical data shown in Table 1
and Figures 1 and 2, it is clear that the numerical errors
decrease exponentially with increased N . And hence, the
convergence and high accuracy of our proposed numerical
scheme are demonstrated.

Example 8. We consider the boundary value problem (10)
with

f xð Þ = −2πx cos πxð Þ − π2 1 − x2
À Á

sin πxð Þ, ð39Þ

and the corresponding analytic solution reads

u xð Þ = sin πxð Þ: ð40Þ

By our proposed MPS schemes, corresponding numeri-
cal errors are listed in Table 2. Also convergence orders are
given, which depict the finite algebraic convergence proper-
ties. Since numerical data of N = 32 and N = 64 approach the
machine accuracy, which lead to that the last convergence
order 0:9125 is unworthy of consideration. And the curves
of numerical solution and analytic solution are shown in
Figure 3.

Considering the above results and figures, we readily
know the sharply approximation properties of the MPS.

Example 9. In this example, we consider the boundary value
problem (10) with

f xð Þ = 5 6x2 − 1
À Á

1 − x2
À Á3/2, ð41Þ

Solutions

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1

1.5

0.5

–0.5

–1

–1.5

0

1

Approximation solution
Analytical solution

(a) N = 2

Solutions

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1

1.5

0.5

–0.5

–1

–1.5

0

1

Approximation solution
Analytical solution

(b) N = 4

Figure 3: u and uN at two different N .

Table 2: Errors of u − uN and orders of convergence for Example 8.

N u − uNk k∞ u − uNð Þ′ 
∞

u − uNk k u − uNð Þ′  Order

2 2.2879e-01 2.5276e+00 8.6146e-01 5.7626e+00 /

4 1.7595e-02 3.8416e-01 5.6339e-02 6.8030e-01 3.0934

8 1.5157e-05 8.6969e-04 3.3639e-05 1.3211e-03 9.0126

16 4.1144e-13 2.4593e-11 1.7072e-12 3.8911e-11 25.0161

32 4.4408e-16 1.7763e-15 1.3686e-15 4.3076e-15 13.0729

64 1.1102e-15 4.4408e-15 4.8534e-15 6.9881e-15 0. 9125
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and the corresponding analytic solution

u xð Þ = 1 − x2
À Á5/2

: ð42Þ

Since the third derivative of this solution is singular at
the boundary points x = ±1, the convergence order is not
exponential. By the MPS schemes, numerical errors of our
proposed approximations are listed in Table 3. And the
convergence orders are shown in the last column, which
depict the finite algebraic convergence properties.

Furthermore, considering accumulations of round-off
errors and convergence orders, we show that the MPS
approximations perform well for this kind of second-order
differential equations.

Here, we present Figure 4 to show the errors of numeri-
cal solutions against various N by semi-logarithmic scale.
The error curve of kðu − uNÞ′k is around the reference line,
whose slope reads k = −1:5. This indicates that our error
estimates uniformly predict the numerical errors of the
MPS, which is consistent with the regularity of the given
solution.

In the light of kinds of classical solutions with different
smoothness, we demonstrate that our a-priori error estimates
uniformly predict the errors of the MPS approximations.
Furthermore, considering accumulations of round-off errors,
the current section verifies our theoretical results for the
model problems with the proposed MPS approximations.

6. Conclusions

The highlight of this work is that we skillfully employed
Legendre polynomials to solve second-order differential
equations by the MPS. To investigate the efficiency and
accuracy of proposed numerical schemes, we study the
errors of corresponding numerical approximations. By
orthogonal projector and Aubin-Nitsche duality argument,
we obtain the a-priori error estimate in H1-norm with
rigorous analyses. Meanwhile, with the help of relation-
ships between L∞- and H1-norms on any bounded inter-
val, we readily get corresponding a-priori error estimate
in L∞-norm. In the numerical examples, three analytic
solutions with different regularity are selected: One is with
finite smoothness and others are with infinite regularity.
Furthermore, convergence orders and numerical errors
are listed to confirm our theoretical results, which also val-
idate the efficiency and high accuracy of the MPS.

The success of dealing with this typical model problem
by the MPS will pave the way for solving other more chal-
lenging models in science and engineering applications. In
our ongoing researches, corresponding further discussions
have been listed for the MPS in high dimensional domains,
such as how to design the basis functions and corresponding
particular solutions based on orthogonal polynomials and
how to select collocation points for singular domains.
Fortunately, the tensor product of orthogonal polyno-
mials will help us to reformulate the particular solutions
and corresponding discretizations. We believe that this
method will be applicable for a large amount of partial
differential equations and is an efficient numerical scheme
in applications.

Appendix

A. The Proof of Lemma 4.3

This appendix follows the proof of both Theorem 7.10 in
[39] and (3.9) in [38] and gives a rigorous proof for Lemma
5 on any bounded interval ða, bÞ.

Firstly, we proceed from ∀v ∈ C∞½a, b�. By the first mean
value theorem of integrals, we know that there exists a σ ∈
ða, bÞ satisfying

vk k2 =
ðb
a
v xð Þj j2dx = v σð Þj j2 b − að Þ: ðA:1Þ

Table 3: Errors of u − uN and orders of convergence for Example 9.

N u − uNk k∞ u − uNð Þ′ 
∞

u − uNk k u − uNð Þ′  Order

2 4.0971e-01 2.2952e-00 2.0526e-00 6.5743e-00 /

4 4.7082e-02 7.9970e-01 2.4208e-01 1.4037e-00 2.2734

8 9.9885e-04 5.8015e-02 4.9670e-03 8.3329e-02 4.0929

16 1.8621e-05 7.0230e-03 7.9775e-05 9.9683e-03 3.0659

32 2.2089e-06 7.4329e-04 1.3539e-05 1.0517e-03 3.2444

64 3.7025e-07 3.2285e-05 2.3867e-06 4.5686e-05 4.5230

k = –1.5

100

10–6

10–4

10–2

ǁ (
u 

− 
u N

)′ 
ǁ

8 12 16 20 24 28 32 36 40 44 48
N

Figure 4: Errors of kðu − uNÞ′k versus N in semi-logarithmic scale
and reference convergence line.
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Meanwhile, by the Newton-Leibniz integration formula,
we have

v xð Þ = v σð Þ +
ðx
σ

v′ tð Þdt: ðA:2Þ

One readily gets

v xð Þj j2 = v σð Þ +
ðx
σ

v′ tð Þdt
����

����
2
≤ 2 v σð Þj j2 +

ðx
σ

v′ tð Þdt
����

����
2

" #

≤ 2 v σð Þj j2 +
ðx
σ
v′ tð Þ
�� ��2dt� �1/2 ðx

σ

dt
� �1/2����

����
2" #

= 2 v σð Þj j2 + x − σj j
ðx
σ
v′ tð Þ
�� ��2dt� �

≤
A:1ð Þ 2

b − a
vk k2 + 2 b − aj j v′

 2:
ðA:3Þ

Hence, in view of C∞½a, b� is dense in H1ða, bÞ, then for
any v ∈H1ða, bÞ, there exists fvkðxÞg ∈ C∞½a, b� satisfying

v − vkk k1 ⟶ 0, k⟶∞: ðA:4Þ

Now it is obvious that

vk − vl ∈ C
∞ a, b½ �,∀k, l: ðA:5Þ

By (A.3), one arrives at

vk xð Þ − vl xð Þj j2 ≤ 2
b − a

vk − vlk k2 + 2 b − aj j · vk − vlð Þ′ 2:
ðA:6Þ

Then for ∀x ∈ ½a, b� and k, l⟶∞, there holds

max
x∈ a,b½ �

vk xð Þ − vl xð Þj j2

≤
A:4ð Þ 2

b − a
vk − vlk k2 + 2 b − aj j · vk − vlð Þ′ 2 ⟶A:3ð Þ 0,

ðA:7Þ

which means that fvkðxÞg is a Cauchy sequence in C½a, b�.
Meanwhile, in the light of the completeness of C½a, b�, we

know that there exists ~v ∈ C½a, b� such that

vk ⟶
C a,b½ �

~v, k⟶∞, ðA:8Þ

i.e.,

max
x∈ a,b½ �

vk xð Þ − ~v xð Þj j⟶ 0, k⟶∞: ðA:9Þ

Secondly, we identify the relationship between v and ~v.
By Minkowski’s inequality and Lebesgue integration, we
have

ð
a,bð Þ

v − ~vj j2
 !1/2

≤
ð

a,bð Þ
v − vkj j2

 !1/2

+
ð

a,bð Þ
vk − ~vj j2

 !1/2

,
ðA:10Þ

then for k⟶∞, there holds

ð
a,bð Þ

v − ~vj j2
 !1/2

≤ lim
k⟶∞

max
x∈ a,b½ �

~v xð Þ − vk xð Þj j b − að Þ1/2

+ lim
k⟶∞

vk − ~vk k1
= 0,

ðA:11Þ

i.e.,

ð
a,bð Þ

v − ~vj j2 = 0: ðA:12Þ

Therefore,

v xð Þ = ~v xð Þ, a:e:x ∈ a, b½ �: ðA:13Þ

Finally, by (A.3), we know that for all vk, there holds

vk xð Þj j2 ≤ 2
b − a

vkk k2 + 2 b − aj j · v′k
 2: ðA:14Þ

Then,

~v xð Þj j2 =A:5ð Þ lim
k⟶∞

vk xð Þj j2

≤
2

b − a
lim

k⟶∞
vkk k2 + 2 b − aj j · lim

k⟶∞
v′k
 2

=A:3ð Þ 2
b − a

vk k2 + 2 b − aj j · v′
 2:

ðA:15Þ

With the help of (A.13), we directly get

v xð Þj j2 ≤ 2
b − a

vk k2 + 2 b − aj j · v′
 2, a:e:x ∈ a, bð Þ,

ðA:16Þ

which means

vk k2∞ ≤
2

b − a
vk k2 + 2 b − aj j · v′

 2: ðA:17Þ

This is the desired result in Lemma 5.
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Recently, conformable calculus has appeared in many abstract uses in mathematics and several practical applications in
engineering and science. In addition, many methods and numerical algorithms have been adapted to it. In this paper, we will
demonstrate, use, and construct the cubic B-spline algorithm to deal with conformable systems of differential boundary value
problems concerning two points and two fractional parameters in both regular and singular types. Here, several linear and
nonlinear examples will be presented, and a model for the Lane-Emden will be one of the applications presented. Indeed, we
will show the complete construction of the used spline through the conformable derivative along with the convergence theory,
and the error orders together with other results that we will present in detail in the form of tables and graphs using
Mathematica software. Through the results we obtained, it became clear to us that the spline approach is effective and fast, and
it requires little compulsive and mathematical burden in solving the problems presented. At the end of the article, we
presented a summary that contains the most important findings, what we calculated, and some future suggestions.

1. Introduction

At present, in addition to the past tens of years, the applica-
tions of FDPs have expanded to include many physical and
engineering applications [1–3]. In one place, we find appli-
cation for them in kinetics energy [4], anomalous diffusion
[5], movement of fluids [6], movement of waves [7], electri-
cal engineering [8], and some of the fields of computer
science [9], whilst in another place, we see some abstract
uses of theories and definitions, which are originally found
to organize the mathematical aspect of fractional derivatives

in solving several fractional models like cholera outbreak
[10] and partial FDPs [11]. From the definition of Riemann,
the fractional differential began, and then different definitions
appeared, such as Caputo, Fabrizio, and Atangana [12, 13].

Many of the definitions of fractional derivatives have
strong features that make them a target in the modeling of
many scientific phenomena, and at the same time, they have
weaknesses in some characteristics that made some
researchers search for a mathematically appropriate defini-
tion that is consistent with many of the laws and theorems
found in the classical derivative. Therefore, in this paper,
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we will use the definition of the CD as a new approach to
solving BVPs in their regular and singular states by adopting
the CBSA to it. Conformable calculus proposed by [14] and
theorized by [15] appears in several fields of applied sciences
and abstract analysis as stellar mathematical agents to char-
acterize hereditary behaviors with the memory of many sub-
stances. The CD has been successfully exercised in diverse
physical and engineering application fields (herein, we try
to list it briefly so that we do not prolong the reader and
do not increase the size of the paper as much as possible)
as in the formulation of fuzzy differential problems [16], in
Newton mechanics [17], in Burgers’ model [18], in popula-
tion growth model [19], and in traveling wave field [20].

Systems of BVPs which are a mixture of several FDPs
subject to given BCs represent very important issues in
solving real-world models. Because of this rise, studying
numerical and analytical solutions to these systems is an
enticing topic for scientists. These kinds of systems are usu-
ally difficult to solve analytically, especially for singular,
nonlinear, and nonhomogenous cases. To this end, exten-
sive research has been carried out to obtain numerical
schemes and various methods as utilized in the literature
as follows: n [21], the authors applied the Adomian decom-
position scheme; in [22], the authors described the sinc
collocation algorithm; and in [23] the authors utilized the
fractional Lagrangian approach.

The spline approach is an ongoing research subject in
various diverse and pervasive science areas such as numeri-
cal analysis, signal processing, and computational physics
[24–26]. It is a crucial method for solving-modeling many
FDPs like singular BVPs [27], nonfractional Bratu-type
BVPs [28], nonfractional LEP [29], and fractional physiol-
ogy problem [30] (herein, we try to list it briefly so that we
do not prolong the reader and do not increase the size of
the paper as much as possible). CBS is the most common
BS, which Schoenberg coined the expression BS, and it is
an abbreviation of the word “basis spline”. In computational
mathematics, BS is a spline function with the lowest descrip-
tion interval for a given degree of smoothness and domain
decomposition.

Here, we will show the complete construction of the used
CBSA through the CD along with the convergence theory
and other results that we will present in detail in the form
of tables and graphs using the Mathematica software. Any-
how, we will solve the following:

(i) Conformable system of FDPs of regular type:

Tθ1Ψ + a1 ςð ÞTδ1Ψ + a2 ςð ÞΨ + Tθ2Φ + a3 ςð ÞTδ2Φ

+ a4 ςð ÞΦ +N1 Ψ,Φð Þ
=F1 ςð Þ,

Tθ2Φ + b1 ςð ÞTδ2Φ + b2 ςð ÞΦ + Tθ1Ψ + b3 ςð ÞTδ1Ψ

+ b4 ςð ÞΨ +N2 Ψ,Φð Þ
=F2 ςð Þ,

ð1Þ

concerning the BC

Ψ að Þ = α1,Φ að Þ = α2,

Ψ bð Þ = β1,Φ bð Þ = β2:
ð2Þ

(ii) Conformable LEP of singular type as

Tθ1Ψ +
η1
ς
Tδ1Ψ + a2 ςð ÞΨ + a4 ςð ÞΦ +N1 Ψ,Φð Þ =F1 ςð Þ,

Tθ2Φ +
η2
ς
Tδ2Φ + b2 ςð ÞΦ + b4 ςð ÞΨ +N2 Ψ,Φð Þ =F2 ςð Þ,

ð3Þ

concerning the BC

Ψ 0ð Þ = ρ1,Φ 0ð Þ = ε1,

Ψ 1ð Þ = ρ2,Φ 1ð Þ = ε2:
ð4Þ

Herein, Ψ =ΨðςÞ, Φ =ΦðςÞ, 0 < δ1, δ2 ≤ 1, 1 < θ1, θ2 ≤ 2,
αp, βp, ρp, εp ∈ℝ, η1, η2 ≥ 0, and Tδ1 , Tδ2 , Tθ1 , Tθ2 stands
for CDs of order δ1, δ2, θ1, θ2, respectively; N1 and N2 are
nonlinear functions in Ψ, Φ, F1ðςÞ, and F2ðςÞ; and aqðςÞ
and bqðςÞ with q = 1:2:3:4 are continuous functions.

Further, the CD of TδHðςÞ is expressed as

TωH ςð Þ = lim
ξ⟶0

H ωd e−1ð Þ ς + ξς ωd e−ωÀ Á
−H ωd e−1ð Þ ςð Þ

ξ
, ð5Þ

with ω ∈ ðn,n + 1�, H : ½0,∞Þ⟶ℝ be n-differentiable
for all ς > 0, and TδHðςÞ = ςdδe−δH ðdδeÞðςÞ:

The motivation of our article can be summarized as
follows: Often, real solutions to FDPs are not available and
cannot be calculated or predicted because most of the prob-
lems are of nonlinear or nonhomogeneous type, or their coef-
ficients are variables and not constants. Therefore, dealing
with these issues, in this case, requires the utilization of
numerical methods and algorithms, and here in our paper,
we proposed the CBSA for ease of dealing with it and the ease
of writing its computer program and because it is also accu-
rate and does not require combining it with other numerical
methods to obtain the required approximation. In addition
to its convergence, its error order is guaranteed by the theo-
ries and results that we presented in our coming sections.

The basic structure herein was built as next. Section 2
proposes and formulates the CBSA for handling systems of
BVPs concerning the CD. Section 3 deals with solving a
singular system of conformable LEP by using the CBSA.
Section 4 explores and discusses the convergence analysis
together with the error order of the utilized CBSA. In Section
5, by using tables and graphs, some treatment examples are
examined to offer the accuracy and fineness of the CBSA
using Mathematica 11 software. At the end of the article,
we presented a summary that contains the most important
findings, what we calculated, and some future suggestions.
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2. Formulation of the CBSA for Handling
Systems of BVPs

In this section, the CBSA is used to construct and obtain
approximations of the mentioned systems of conformable
FDPs for both regular and singular types. Herein, we will
consider two computational cases according to the nature
of the shapes functions N1ðΨ,ΦÞ and N2ðΨ,ΦÞ.

Assume that Π : fa = ς0 < ς1 <⋯ < ςr−1 < ςr = bg be a
partition of ½a, b� with mesh points ςk = a +kh, k = 0, 1,

⋯, r wherein ς0 = a, ςr = b, and h = ðb − aÞ/r. By introduc-
ing knots ς−2 < ς−1 < ς0 and ςr < ςr+1 < ςr+2, Π becomes

Π : ς−2 < ς−1 < ς0 = a < ς1 <⋯ < ςr = b < ςr+1 < ςr+2f g: ð6Þ

Define ζ3ðΠÞ = fnðςÞ ∈ C2½a, b�g such that nðςÞ is piece-
wise, 3rd-degree polynomials around Π. Anyhow, the 3rd-
degree BSs is

To solve (1) and (2) together with (3) and (4) numer-
ically, TδBk,3ðςÞ and TθBk,3ðςÞ evaluation is needed,
where 0 < δ ≤ 1 and 1 < θ ≤ 2. Using the propositions of
CD, one has

TδBk,3 ςð Þ = ς1−δ

2h3

ς − ςk−2ð Þ2, ςk−2 ≤ ς < ςk−1,

−3 ς − ςk−1ð Þ2 + 2h ς − ςk−1ð Þ +h2, ςk−1 ≤ ς < ςk,

3 ςk+1 − ςð Þ2 − 2h ςk+1 − ςð Þ −h2, ςk ≤ ς < ςk+1,

− ςk+2 − ςð Þ2, ςk+1 ≤ ς < ςk+2,

0, otherwise:

8>>>>>>>><>>>>>>>>:
ð8Þ

TθBk,3 ςð Þ = ς2−θ

h3

ς − ςk−2, ςk−2 ≤ ς < ςk−1,

h − 3 ς − ςk−1ð Þ, ςk−1 ≤ ς < ςk,

h − 3 ςk+1 − ςð Þ, ςk ≤ ς < ςk+1,

ςk+2 − ςð Þ, ςk+1 ≤ ς < ςk+2,

0, otherwise:

8>>>>>>>><>>>>>>>>:
ð9Þ

To formulate the required approximation using the
CBSA, let

bΨ ςð Þ = 〠
r+1

k=−1
μkBk,3 ςð Þ,

bΦ ςð Þ = 〠
r+1

k=−1
νkBk,3 ςð Þ,

ð10Þ

be a cubic BS interpolating function of ΨðςÞ and ΦðςÞ,
respectively, with knots Π, where μk, νk are unknown,

and Bk,3ðςÞ are the 3rd-degree BS functions which are
defined in (7).

Therefore, from (7), (8), and (9) the value of bΨðςÞ, Tδ1bΨðςÞ, Tθ1 bΨðςÞ and bΦðςÞ, Tδ2 bΦðςÞ, Tθ2 bΦðςÞ at knot ςk
can be simplified as

bΨ ςkð Þ = 〠
r+1

k=−1
μkBk,3 ςkð Þ

= μk−1Bk−1,3 ςkð Þ + μkBk,3 ςkð Þ + μk+1Bk+1,3 ςkð Þ,

Tδ1 bΨ ςkð Þ = 〠
r+1

k=−1
μkT

δ1Bk,3 ςkð Þ

= μk−1T
δ1Bk−1,3 ςkð Þ + μkT

δ1Bk,3 ςkð Þ
+ μk+1T

δ1Bk+1,3 ςkð Þ,

Tθ1 bΨ ςkð Þ = 〠
r+1

k=−1
μkT

θ1Bk,3 ςkð Þ

= μk−1T
θ1Bk−1,3 ςkð Þ + μkT

θ1Bk,3 ςkð Þ
+ μk+1T

θ1Bk+1,3 ςkð Þ,

ð11Þ

where B’s, Tδ1B’s, and Tθ1B’s are given, respectively, as

Bk−1,3 ςkð Þ = 1
6
,

Bk,3 ςkð Þ = 2
3
,

Bk+1,3 ςkð Þ = 1
6
:

ð12Þ

Bk,3 ςð Þ = 1
6h3

ς − ςk−2ð Þ3, ςk−2 ≤ ς < ςk−1,

−3 ς − ςk−1ð Þ3 + 3h ς − ςk−1ð Þ2 + 3h2 ς − ςk−1ð Þ +h3, ςk−1 ≤ ς < ςk,

−3 ςk+1 − ςð Þ3 + 3h ςk+1 − ςð Þ2 + 3h2 ςk+1 − ςð Þ +h3, ςk ≤ ς < ςk+1,

ςk+2 − ςð Þ3, ςk+1 ≤ ς < ςk+2,

0, otherwise:

8>>>>>>>><>>>>>>>>:
ð7Þ
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Tδ1Bk−1,3 ςkð Þ = 1
2h

ς1−δ1k ,

Tδ1Bk,3 ςkð Þ = 0,

Tδ1Bk+1,3 ςkð Þ = −
1
2h

ς1−δ1k :

ð13Þ

Tθ1Bk−1,3 ςkð Þ = 1
h2 ς

2−θ1
k ,

Tθ1Bk,3 ςkð Þ = −
2
h2 ς

2−θ1
k ,

Tθ1Bk+1,3 ςkð Þ = 1
h2 ς

2−θ1
k :

ð14Þ

Anyhow, one can write

bΨ ςkð Þ = 1
6
μk−1 +

2
3
μk +

1
6
μk+1,

Tδ1 bΨ ςkð Þ = −
1
2h

ς1−δ1k μk−1 +
1
2h

ς1−δ1k μk+1,

Tθ1 bΨ ςkð Þ = 1
h2 ς

2−θ1
k μk−1 −

2
h2 ς

2−θ1
k μk +

1
h2 ς

2−θ1
k μk+1:

ð15Þ

Similarly, one can get the following regarding bΦ :

bΦ ςkð Þ = 1
6
νk−1 +

2
3
νk +

1
6
νk+1,

Tδ2 bΦ ςkð Þ = −
1
2h

ς1−δ2k νk−1 +
1
2h

ς1−δ2k νk+1,

Tθ2 bΦ ςkð Þ = 1
h2 ς

2−θ2
k νk−1 −

2
h2 ς

2−θ2
k νk +

1
h2 ς

2−θ2
k νk+1:

ð16Þ

Firstly, we will theorize the linear conformable BVP
systems. In this case, N1ðΨ,ΦÞ =N2ðΨ,ΦÞ = 0 in (1).
Thus, the approximation solutions (10) and their CDs
should satisfy the given differential equation at points ς
= ςk when k = 1, 2,⋯, r. This can be done by substituting
(10) with (1). Anyhow, the resulting formulas for k = 1,
2,⋯, r should be

with the BCs

bΨ ςkð Þ = α1, fork = a,bΨ ςkð Þ = β1, fork = b,bΦ ςkð Þ = α2, fork = a,bΦ ςkð Þ = β2, fork = b:

ð18Þ

To proceed more, (15) and (16) are substituted into (17)
and (18) and will be resulting in ½G�2ðr+3Þ×2ðr+3ÞB =Q system
of unknowns μ−1, μ0,⋯, μr+1, ν−1, and ν0,⋯, νr+1 with

B = μ−1, μ0,⋯,μr+1, ν−1, ν0,⋯,νr+1½ �T ,

Q = 6 α1,h2F1 ς0ð Þ,h2F1 ς1ð Þ,⋯,h2F1 ςrð Þ, β1, α2,h
2F2

Â
Á ς0ð Þ,h2F2 ς1ð Þ,⋯,h2F2 ςrð Þ, β2

Ã
:

ð19Þ

Herein, ½G�2ðr+3Þ×2ðr+3Þ and its corresponding elements
are provided by

G =

G1 ⋯ G2

⋮ ⋱ ⋮

G3 ⋯ G4

2664
3775: ð20Þ

G1 =

1 4 1 0 ⋯ 0 0

g1 ς0ð Þ p1 ς0ð Þ q1 ς0ð Þ 0 ⋯ 0 0

0 g1 ς1ð Þ p1 ς1ð Þ q1 ς1ð Þ 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 ⋯ ⋯ 0 g1 ςrð Þ p1 ςrð Þ q1 ςrð Þ
0 ⋯ ⋯ 0 1 4 1

2666666666664

3777777777775
,

ð21Þ

G2 =

0 0 0 0 ⋯ 0 0

g2 ς0ð Þ p2 ς0ð Þ q2 ς0ð Þ 0 ⋯ 0 0

0 g2 ς1ð Þ p2 ς1ð Þ q2 ς1ð Þ 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 ⋯ ⋯ 0 g2 ςrð Þ p2 ςrð Þ q2 ςrð Þ
0 ⋯ ⋯ 0 0 0 0

2666666666664

3777777777775
,

ð22Þ

Tθ1 bΨ ςkð Þ + a1 ςkð ÞTδ1 bΨ ςkð Þ + a2 ςkð Þ bΨ ςkð Þ + Tθ2 bΦ ςkð Þ + a3 ςkð ÞTδ2 bΦ ςkð Þ + a4 ςkð Þ bΦ ςkð Þ =F1 ςkð Þ,
Tθ2 bΦ ςkð Þ + b1 ςkð ÞTδ2 bΦ ςkð Þ + b2 ςkð Þ bΦ ςkð Þ + Tθ1 bΨ ςkð Þ + b3 ςkð ÞTδ1 bΨ ςkð Þ + b4 ςkð Þ bΨ ςkð Þ =F2 ςkð Þ,

(
ð17Þ
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G3 =

0 0 0 0 ⋯ 0 0

g3 ς0ð Þ p3 ς0ð Þ q3 ς0ð Þ 0 ⋯ 0 0

0 g3 ς1ð Þ p3 ς1ð Þ q3 ς1ð Þ 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 ⋯ ⋯ 0 g3 ςrð Þ p3 ςrð Þ q3 ςrð Þ
0 ⋯ ⋯ 0 0 0 0

2666666666664

3777777777775
,

ð23Þ

G4 =

1 4 1 0 ⋯ 0 0

g4 ς0ð Þ p4 ς0ð Þ q4 ς0ð Þ 0 ⋯ 0 0

0 g4 ς1ð Þ p4 ς1ð Þ q4 ς1ð Þ 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 ⋯ ⋯ 0 g4 ςrð Þ p4 ςrð Þ q4 ςrð Þ
0 ⋯ ⋯ 0 1 4 1

2666666666664

3777777777775
:

ð24Þ

Also, the coefficients in the submatrices G1, G2, G3, and
G4 have the form

g1 ςkð Þ = 6ς2−θ1k − a1 ςkð Þ3hς1−δ1k +h2a2 ςkð Þ,
p1 ςkð Þ = −12ς2−θ1k + 4h2a2 ςkð Þ,
q1 ςkð Þ = 6ς2−θ1k + a1 ςkð Þ3hς1−δ1k +h2a2 ςkð Þ:

ð25Þ

g2 ςkð Þ = 6ς2−θ2k + a3 ςkð Þ3hς1−δ2k +h2a4 ςkð Þ,
p2 ςkð Þ = −12ς2−θ2k + 4h2a4 ςkð Þ,
q2 ςkð Þ = 6ς2−θ2k + a3 ςkð Þ3hς1−δ2k +h2a4 ςkð Þ:

ð26Þ

g3 ςkð Þ = 6ς2−θ2k + b1 ςkð Þ3hς1−δ2k +h2b2 ςkð Þ,
p3 ςkð Þ = −12ς2−θ2k + 4h2b2 ςkð Þ,
q3 ςkð Þ = 6ς2−θ2k + b1 ςkð Þ3hς1−δ2k +h2b2 ςkð Þ:

ð27Þ

g4 ςkð Þ = 6ς2−θ1k + b3 ςkð Þ3hς2−δ1k +h2b4 ςkð Þ,
p4 ςkð Þ = −12ς2−θ1k + 4h2b4 ςkð Þ,
q4 ςkð Þ = 6ς2−θ1k + b3 ςkð Þ3hς1−δ1k +h2b4 ςkð Þ:

ð28Þ

Secondly, we will theorize the nonlinear conformable
BVP systems in this case of N1ðΨ,ΦÞ and N2ðΨ,ΦÞ are
nonlinear functions of Ψ and Φ differ from zero. Anyhow,
the substituting of (10) and its CDs in (1) and (2) at ς = ςk
when k = 0, 1,⋯, r will gives

F1 ςkð Þ = 〠
r+1

k=−1
μk Tθ1Bk,3 ςkð Þ + a1 ςkð ÞTδ1Bk,3 ςkð Þ + a2 ςkð ÞBk,3 ςkð Þ
h i

+ 〠
r+1

k=−1
νk Tθ2Bk,3 ςkð Þ + a3 ςkð ÞTδ2Bk,3 ςkð Þ + a4 ςkð ÞBk,3 ςkð Þ
h i

+N1 〠
r+1

k=−1
μkBk,3 ςkð Þ, 〠

r+1

k=−1
νkBk,3 ςkð Þ

 !
:

ð29Þ

F2 ςkð Þ = 〠
r+1

k=−1
νk Tθ2Bk,3 ςkð Þ + b1 ςkð ÞTδ2Bk,3 ςkð Þ + b2 ςkð ÞBk,3 ςkð Þ
h i

+ 〠
r+1

k=−1
μk Tθ1Bk,3 ςkð Þ + b3 ςkð ÞTδ1Bk,3 ςkð Þ + b4 ςkð ÞBk,3 ςkð Þ
h i

+N2 〠
r+1

k=−1
μkBk,3 ςkð Þ, 〠

r+1

k=−1
νkBk,3 ςkð Þ

 !
:

ð30Þ

subject to the same BCs (18).
Recalling, the BS functions at fςkgrk=0 are determined by

substitution (12), (13), and (14) in (29), (30), and (18).

3. The CBSA for Handling Singular
Systems of CDs

Now, we will spend the CBSA to build a numerical solution
for the singular conformable LEP. We start by overcoming
the singularity at ς = 0 and then employing our proposed
procedure scheme.

To solve the singular LEP in its CD case, we first write
(3) in the standard form as

Tθ1Ψ ςð Þ + η1
ς
Tδ1Ψ ςð Þ +Q1 ς,Ψ ςð Þ,Φ ςð Þð Þ = 0,

Tθ2Φ ςð Þ + η2
ς
Tδ2Φ ςð Þ +Q2 ς,Ψ ςð Þ,Φ ςð Þð Þ = 0,

ð31Þ

concerning the BC

Ψ 0ð Þ = ρ1,Φ 0ð Þ = ε1,

Ψ 1ð Þ = ρ2,Φ 1ð Þ = ε2,
ð32Þ

where the set functions Q1 and Q2 are given as

Q1 ς,Ψ ςð Þ,Φ ςð Þð Þ = a2 ςð ÞΨ ςð Þ + a4 ςð ÞΦ ςð Þ +N1 Ψ ςð Þ,Φ ςð Þð Þ −F1 ςð Þ,
Q2 ς,Ψ ςð Þ,Φ ςð Þð Þ = b2 ςð ÞΦ ςð Þ + b4 ςð ÞΨ ςð Þ +N2 Ψ ςð Þ,Φ ςð Þð Þ −F2 ςð Þ:

ð33Þ

More focused, to take off the singularity ς = 0, one can be
employing the following next steps:
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Multiplying (31) with ς gives

ςTθ1Ψ ςð Þ + η1T
δ1Ψ ςð Þ + ςQ1 ς,Ψ ςð Þ,Φ ςð Þð Þ = 0,

ςTθ2Φ ςð Þ + η2T
δ2Φ ςð Þ + ςQ2 ς,Ψ ςð Þ,Φ ςð Þð Þ = 0:

ð34Þ

(i) Taking the CD of order δ1 and δ2, respectively, from
both sides of (34), one has

Tδ1 ςTθ1Ψ ςð Þ
� �

+ η1T
δ1Tδ1Ψ ςð Þ + Tδ1 ςQ1 ς,Ψ ςð Þ,Φ ςð Þð Þð Þ = 0,

Tδ2 ςTθ2Φ ςð Þ
� �

+ η2T
δ2Tδ2Φ ςð Þ + Tδ2 ςQ2 ς,Ψ ςð Þ,Φ ςð Þð Þð Þ = 0:

ð35Þ

(ii) Using the properties of the CD, one obtains

ς1−δ1Tθ1Ψ ςð Þ + ςTδ1Tθ1Ψ ςð Þ + η1T
δ1Tδ1Ψ ςð Þ

+ ς1−δ1Q1 ς,Ψ ςð Þ,Φ ςð Þð Þ + ςTδ1Q1 ς,Ψ ςð Þ,Φ ςð Þð Þ = 0,

ς1−δ2 Tθ2Φ ςð Þ + ςTδ2Tθ2Φ ςð Þ + η2T
δ2Tδ2Φ ςð Þ

+ ς1−δ2Q2 ς,Ψ ςð Þ,Φ ςð Þð Þ + ςTδ2Q2 ς,Ψ ςð Þ,Φ ςð Þð Þ = 0:
ð36Þ

(iii) Substituting θ1 = θ2 = 2 and δ1 = δ2 = 1 in (36) at ς
= 0, one gets

η1 + 1ð ÞΨ′′ 0ð Þ +Q1 0,Ψ ςð Þ,Φ ςð Þð Þ = 0,

η2 + 1ð ÞΦ′′ 0ð Þ +Q2 0,Ψ ςð Þ,Φ ςð Þð Þ = 0:
ð37Þ

Putting (10) in (31), (32), and (37) at ς = ςk it follows
that

Tθ1 bΨ ςkð Þ + η1
ςk

Tδ1 bΨ ςkð Þ +Q1 ςk, bΨ ςkð Þ, bΦ ςkð Þ
� �

= 0, fork = 1,⋯, r,

η1 + 1ð Þ bΨ ′′ 0ð Þ +Q1 0, bΨ ςkð Þ, bΦ ςkð Þ
� �

= 0, fork = 0,

Tθ2 bΦ ςkð Þ + η2
ςk

Tδ2 bΦ ςkð Þ +Q2 ςk, bΨ ςkð Þ, bΦ ςkð Þ
� �

= 0, fork = 1,⋯, r,

η2 + 1ð Þ bΦ ′′ 0ð Þ +Q2 0, bΨ ςkð Þ, bΦ ςkð Þ
� �

= 0, fork = 0,

bΨ ς0ð Þ = ρ1, for ς0 = 0,bΨ ςrð Þ = ρ2, for ςr = 1,bΦ ς0ð Þ = ε1, for ς0 = 0,bΦ ςrð Þ = ε2, for ςr = 1:

ð38Þ

This drives a system of 2ðr + 3Þ equations with the
same number of unknowns which can be treated to obtain
the vectors μk and νk; consequently an approximation of
ΨðςÞ and ΦðςÞ.

4. Error and Convergence Analysis

Herein, to guarantee the behavior of the approximate CBSA
solutions, we utilized two main analyses: the first one
concerning error analysis and the second one concerning
convergence analysis.

Using the CBSA approximations (15) and (16), the
following relations can be established:

h

6
1
6

� �bΨ ′ ςk−1ð Þ + 2
3

� �bΨ ′ ςkð Þ + 1
6

� �bΨ ′ ςk+1ð Þ
� �
=
1
2
ς1−δ1k

bΨ ςk+1ð Þ + bΨ ςk−1ð Þ
h i

,
ð39Þ

h2Tθ1 bΨ ςkð Þ = ς2−θ1k 6 bΨ ςk+1ð Þ + bΨ ςkð Þ
� �h

− 2h 2 bΨ ′ ςkð Þ + bΨ ′ ςk+1ð Þ
� �i

:
ð40Þ

In notation for the operator Eεð bΨðςkÞÞ = bΨðςk+ϵÞ with
ϵ ∈ℤ, we can write (39) and (40) as

h

6
1
6

� �
E−1 +

2
3

� �
I +

1
6

� �
E

� � bΨ ′ ςkð Þ = 1
2
ς1−δ1k E + E−1Â Ã

Ψ ςkð Þ,

ð41Þ

h2Tθ1 bΨ ςkð Þ = ς2−θ1k 6 E + Ið ÞΨ ςkð Þ − 2h 2I + Eð ÞΨ′ ςkð Þ
h i

:

ð42Þ

Moreover, if Λ = d/dς, we have got

E bΨ ςkð Þ
� �

= bΨ ςk +hð Þ = 〠
∞

k=0

hk bΨ kð Þ
ςkð Þ

k!

= 〠
∞

k=0

hΛð Þk
k!

bΨ ςkð Þ = e hΛð Þ bΨ ςkð Þ:
ð43Þ

It implies that E = ehΛ. Similarly, we have E−1 = e−hΛ and
we can get

E + E−1 = 2 1 +
hΛð Þ2
2!

+
hΛð Þ4
4!

+
hΛð Þ6
6!

+⋯
 !

,

E − E−1 = 2 hΛ +
hΛð Þ3
3!

+
hΛð Þ5
5!

+
hΛð Þ7
7!

+⋯
 !

:

ð44Þ
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Thus, (39) can be represented serially as

1 +
1
3

hΛð Þ2
2!

+
hΛð Þ4
4!

+
hΛð Þ6
6!

+⋯
 !" # bΨ ′ ςkð Þ

= ς1−δ1k Λ +
h2Λ3

3!
+
h4Λ5

5!
+
h6Λ7

7!
+⋯

� �
Ψ ςkð Þ,

ð45Þ

bΨ ′ ςkð Þ = ς1−δ1k Λ +
h2Λ3

3!
+
h4Λ5

5!
+
h6Λ7

7!
+⋯

� �
Á 1 +

hΛð Þ2
6

+
hΛð Þ4
72

+
hΛð Þ6
2160

+⋯
 !" #−1

Ψ ςkð Þ,

ð46Þ

bΨ ′ ςkð Þ = ς1−δ1k Λ +
h2Λ3

3!
+
h4Λ5

5!
+
h6Λ7

7!
+⋯

� �
Á 1 −

hΛð Þ2
6

+
hΛð Þ4
72

+
hΛð Þ6
2160

+⋯
 !"

+
hΛð Þ2
6

+
hΛð Þ4
72

+⋯
 !2

+⋯
#
Ψ ςkð Þ

= ς1−δ1k Λ +
h2Λ3

3!
+
h4Λ5

5!
+
h6Λ7

7!
+⋯

� �
Á 1 −

hΛð Þ2
6

+
hΛð Þ4
72

−
hΛð Þ6
2160

+⋯
 !

Ψ ςkð Þ

= ς1−δ1k Λ −
h4Λ5

180
+ h6Λ7

1512
−⋯

� �
Ψ ςkð Þ:

ð47Þ

Hence, after ranking, one can write

Tδ1 bΨ ςkð Þ = ς1−δ1k Ψ′ ςkð Þ − h4

180
ς1−δ1k Ψ 5ð Þ ςkð Þ+⋯

= Tδ1Ψ ςkð Þ − h4

180
ς1−δ1k Ψ 5ð Þ ςkð Þ+⋯:

ð48Þ

By applying the same technique as (40), we may extract

Tθ1 bΨ ςkð Þ = ς2−θ1k Ψ′′ ςkð Þ − h2

12
ς2−θ1k Ψ 4ð Þ ςkð Þ + h4

360
ς2−θ1k Ψ 6ð Þ ςkð Þ+⋯

= Tθ1Ψ ςkð Þ − h2

12
ς2−θ1k Ψ 4ð Þ ςkð Þ + h4

360
ς2−θ1k Ψ 6ð Þ ςkð Þ+⋯:

ð49Þ

Let us now describe the expression e1ðςÞ =ΨðςÞ − bΨðςÞ
for error. Using (48) and (49) in eðςkÞ expansion of the
Taylor series, one gets

e1 ςk +hð Þ = e ςkð Þ +he′ ςkð Þ + h2

2!
e′′ ςkð Þ+⋯

= Ψ ςkð Þ − bΨ ςkð Þ
� �

+h Ψ′ ςkð Þ − bΨ ′ ςkð Þ
� �

+
h2

2!
Ψ′′ ςkð Þ − bΨ ′′ ςkð Þ
� �

+⋯

= Ψ ςkð Þ − bΨ ςkð Þ
� �

+hςδ1−1k Tδ1 bΨ ςkð Þ − Tδ1Ψ ςkð Þ
� �

+
h2

2!
ςθ1−2k Tθ1 bΨ ςkð Þ − Tθ1Ψ ςkð Þ

� �
+⋯:

ð50Þ

Hence,

e1 ςk +hð Þ = −
h4

24
Ψ 4ð Þ ςkð Þ + h5

180
Ψ 5ð Þ ςkð Þ + h6

720
Ψ 6ð Þ ςkð Þ+⋯:

ð51Þ

Similarly, we have

e2 ςk +hð Þ = −
h4

24
Φ 4ð Þ ςkð Þ + h5

180
Φ 5ð Þ ςkð Þ + h6

720
Φ 6ð Þ ςkð Þ+⋯:

ð52Þ

As a score, it is obvious that our CBSA approximation is
Oðh4Þ accurate.

In the convergence approach, we will prove the conver-
gence of the CBSA for Dirichlet BC. Let ΨðςÞ and ΦðςÞ be
the exact solutions of (1) and (2). Also, let bΨðςÞ and bΦðςÞ
in (10) be the cubic BS approximations to ΨðςÞ and ΦðςÞ,
respectively. Due to round-off errors in computations, we
will assume that S1ðςÞ =∑r+1

k=−1bμkBk,3ðςÞ and S2ðςÞ =
∑r+1

k=−1bνkBk,3ðςÞ be the computed BS approximations to bΨ
ðςÞ and bΦðςÞ, respectively, where bμk = ðbμ−1, bμ0,⋯,bμr+1Þ
and bνk = ðbν−1, bν0,⋯,bνr+1Þ.

To estimate the errors kðΨðςÞ,ΦðςÞÞ − ð bΨðςÞ, bΦðςÞÞk∞
we must estimate kðΨðςÞ,ΦðςÞÞ − ðS1ðςÞ, S1ðςÞÞk∞ and

kðS1ðςÞ, S1ðςÞÞ − ð bΨðςÞ, bΦðςÞÞk∞, wherein k:k represents
the ∞-norm.

Firstly, we will consider the linear cases as follows:

L1 bΨ , bΦ� �
=F1 ςð Þ,

L2 bΨ , bΦ� �
=F2 ςð Þ,

ð53Þ

with the BCs (2) will lead to the linear system GB =Q.

L1 S1, S2ð Þ =F∗
1 ςð Þ,

L2 S1, S2ð Þ =F∗
2 ςð Þ,

ð54Þ

with the BCs (2) will lead to the linear system GB∗ =Q∗.

7Journal of Function Spaces



Then it follows that GðB − B∗Þ = ðQ −Q∗Þ, where

B − B∗ = bμ−1 − μ−1ð Þ,⋯, bμr+1 − μr+1ð Þ, bν−1 − ν−1ð Þ,⋯, bνr+1 − νr+1ð Þ½ �T ,
ð55Þ

Q −Q∗ = 6h2 0, F1 ς0ð Þ −F∗
1 ς0ð Þð Þ,⋯, F1 ςrð Þð½

−F∗
1 ςrð ÞÞ, 0, 0, F2 ς0ð Þð

−F∗
2 ς0ð ÞÞ,⋯, F2 ςrð Þ −F∗

2 ςrð Þð Þ, 0�:
ð56Þ

Theorem 1. Suppose that ΨðςÞ,ΦðςÞ ∈ C5½a, b� and Π : fa
= ς0 < ς1 <⋯ < ςr−1 < ςr = bg be the equally spaced partition
of ½a, b� with step size h. If S is the cubic BS function that
interpolates the values of the function u at the knots ς0,⋯,
ςr ∈Π, then there exist constants γq which do not depend
on h such that for ς ∈ ½a, b� with b > a ≥ 0, we have

Ψ ςð Þ,Φ ςð Þð Þ − S1 ςð Þ, S1 ςð Þð Þk k∞ ≤ γ1h
4,

Tδ Ψ ςð Þ,Φ ςð Þð Þ − Tδ S1 ςð Þ, S1 ςð Þð Þ
 

∞
≤ γ2h

4, 0 < δ ≤ 1,

Tθ Ψ ςð Þ,Φ ςð Þð Þ − Tθ S1 ςð Þ, S1 ςð Þð Þ
 

∞
≤ γ3h

2, 1 < θ ≤ 2:

ð57Þ

Proof. Using the prior results, one can find

F1 ςkð Þ −F∗
1 ςkð Þj j = L1 bΨ , bΦ� �

− L1 S1, S2ð Þ
��� ���

≤ Tθ1 bΨ ςkð Þ − Tθ1S1 ςkð Þ
��� ���
+ a1 ςkð Þj j Tδ1 bΨ ςkð Þ − Tδ1S1 ςkð Þ

��� ���
+ a2 ςkð Þj j bΨ ςkð Þ − S1 ςkð Þ

��� ���
+ Tθ2 bΦ ςkð Þ − Tθ2S2 ςkð Þ
��� ���

+ a3 ςkð Þj j Tδ2 bΦ ςkð Þ − Tδ2S2 ςkð Þ
��� ���

+ a4 ςkð Þj j bΦ ςkð Þ − S2 ςkð Þ
��� ���:

ð58Þ

Again, one can write

F1 ςkð Þ −F∗
1 ςkð Þj j ≤ γ3h

2 + a1 ςkð Þk k∞ γ2h
4

+ a2 ςkð Þk k∞ γ1h
4 + γ3′h2

+ a3 ςkð Þk k∞γ2′h4 + a4 ςkð Þk k∞γ1′h4:

ð59Þ

Since h≪ 1, one has

F1 ςkð Þ −F∗
1 ςkð Þk k ≤Mh2, ð60Þ

F2 ςkð Þ −F∗
2 ςkð Þk k ≤M1h

2: ð61Þ

From (60) and (61), we can find

Q −Q∗k k∞ ≤ 6h4M: ð62Þ

The matrix G is monotone and thus nonsingular [31].
Hence, we can write

B − B∗ð Þ =G−1 Q −Q∗ð Þ: ð63Þ

Now, we determine row sums S−1, S0,⋯, S2ðr+2Þ of the
matrix G as follows:

S−1 = 6,

Sp = 〠
r

q=0
apq = 6h2a2 ςkð Þ + 6h2a4 ςkð Þ,p = 0,⋯, r + 1,

Sr+1 = 6,

Sr+2 = 6,

Sp
′ = 〠

2r+3

q=r+3
apq = 6h2b2 ςkð Þ + 6h2b4 ςkð Þ,p = r + 3,⋯, 2r + 3,

S2r+4 = 6:
ð64Þ

Thus, if akq indicates the ðk,qÞth element of the matrix
G, then we can write

Sk = 〠
2r+4

q=−1
akq,k = −1,⋯, 2r + 4: ð65Þ

Let a−1pk indicates the ðk,qÞth element of G−1. Then, the
matrix norms are defined as

G−1  = max
−1≤p≤2r+4

〠
2r+4

k=−1
a−1pk

�� ��: ð66Þ

So, we have

I =G−1G = 〠
2r+4

k=−1
a−1pkakq,p = −1,⋯, 2r + 4,q = −1,⋯, 2r + 4,

ð67Þ

and kG−1Gk = 1 which gives also

〠
2r+4

q=−1
〠
2r+4

k=−1
a−1pkakq = 1,p = −1,⋯, 2r + 4,

〠
2r+4

k=−1
a−1pk 〠

2r+4

q=−1
akq

 !
= 1,p = −1,⋯, 2r + 4,

〠
2r+4

k=−1
a−1pkSk = 1,p = −1,⋯, 2r + 4: ð68Þ
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Let S∗
k =min Sk. Then we get

〠
2r+4

k=−1
a−1pk ≤

1
S∗

k

, ð69Þ

where S∗
k = 6h2 min ða2ðςkÞ + a4ðςkÞ, b2ðςkÞ + b4ðςkÞÞ = 6

h2M. Thus

B − B∗k k = G−1  Q −Q∗ðk k ≤h2M̂: ð70Þ

Using the definition of cubic BS basis functions in (7),
one can obtain that

〠
r+1

k=−1
Bk,3 ςð Þ�� �� ≤ 5

3
, a ≤ ς ≤ b, ð71Þ

S1 ςð Þ − bΨ ςð Þ, S2 ςð Þ − bΦ ςð Þ
� � 

∞

= 〠
r+1

k=−1
bμkBk,3 ςð Þ − 〠

r+1

k=−1
μkBk,3 ςð Þ, 〠

r+1

k=−1
bνkBk,3 ςð Þ − 〠

r+1

k=−1
νkBk,3 ςð Þ

 !


= bμk − μk, bνk − νkð Þk k 〠
r+1

k=−1
Bk,3 ςð Þ�� �� ≤ 5

3
h2M̂:

ð72Þ

Hence,

S1 ςð Þ, S1 ςð Þð Þ − bΨ ςð Þ, bΦ ςð Þ
� � 

∞

= S1 ςð Þ − bΨ ςð Þ, S2 ςð Þ − bΦ ςð Þ
� � 

∞

≤
5
3
h2M̂:

ð73Þ

Thus, kðΨðςÞ,ΦðςÞÞ − ðS1ðςÞ, S1ðςÞÞk∞ ≤ γ1h
4 and

kðΨðςÞ,ΦðςÞÞ − ð bΨðςÞ, bΦðςÞÞk∞ ≤wh2.

5. Application and Numerical Simulation

To highlight the importance and strength of what we pre-
sented in terms of analysis and mathematical construction
concerning the CBSA, we need to discuss several practical
examples, and this is what we will present in this special part.

Hither, bΨðςkÞ, bΦðςkÞ will approximate ΨðςkÞ,ΦðςkÞ,
respectively. Indeed, AΨðςkÞ = jΨ − bΨjðςkÞ and AΦðςkÞ = j
Φ − bΦjðςkÞ denote the absolute errors, whilst RΨðςkÞ = jΨ
− bΨjjΨj−1ðςkÞ and RΦðςkÞ = jΦ − bΦjjΦj−1ðςkÞ denote the
relative errors.

Example 2.We test the following conformable linear system:

T4/3Ψ ςð Þ − 3ς3T1/2Ψ ςð Þ + T5/4Φ ςð Þ
+ T1/3Φ ςð Þ + 1 + ςð ÞΦ ςð Þ =F1 ςð Þ,

T5/4Φ ςð Þ + cosh ςð ÞT1/3Φ ςð Þ + ς3

ς2 1 − ςð Þ + 1
Φ ςð Þ + T4/3Ψ ςð Þ

+ T1/2Ψ ςð Þ + 2ς2 − 3ς
À Á

Ψ ςð Þ =F2 ςð Þ,

ð74Þ

F1 ςð Þ = −2ς2/3 − 2ς3/4 − 2ς5/3 + 6ς7/4

− ς2 + 3ς8/3 − 3ς7/2 + ς4 + 6ς9/2,

F2 ςð Þ = 1 − 2ςð Þ ffiffi
ς

p
− ς2/3 + 2ς3/4 −1 + 3ςð Þ

+ ς3 3 − 5ς + 2ς2
À Á

−
−1 + ςð Þς4
1 + ς2 − ς3

+ ς5/3 −2 + 3ςð Þ cosh ςð Þ,

ð75Þ

concerning the BCs

Ψ 0:5ð Þ = 0:25,Φ 0:5ð Þ = −0:125,

Ψ 1ð Þ =Φ 1ð Þ = 0:
ð76Þ

Herein, the exact solutions are

Ψ ςð Þ = ς 1 − ςð Þ,
Φ ςð Þ = ς2 ς − 1ð Þ:

ð77Þ

Concerning Example 2 and using CBSA, the related
numerical solutions for r = 10 are displayed in Table 1.
Additionally, the graphics of AΨðςkÞ and AΦðςkÞ for r =
10 are given in Figure 1. Hither, it can be observed from
the figure and table that the result data is sufficient accuracy
and are firmly connected.

Example 3.We test the following conformable nonlinear sys-
tem:

T3/2Ψ ςð Þ + T1/4Ψ ςð Þ + T3/2Ψ ςð ÞΨ ςð Þ
+ exp Φ ςð Þð Þ + cos ςð ÞΦ ςð Þ =F1 ςð Þ,

T3/2Φ ςð Þ + T1/4Φ ςð Þ + T1/2Ψ ςð ÞT1/4Φ ςð Þ
+ ln Ψ ςð Þð Þ + 2ςΦ ςð Þ =F2 ςð Þ, ð78Þ

F1 ςð Þ = e−2ς2 e2ς2 1 + ς2 + cos ςð Þ ln 1 + ς2
À ÁÀ ÁÀ Áh

+ 2
ffiffi
ς

p
−1 + 2ς2
À Á

+ 2
ffiffi
ς

p
eς2 −1 − ς5/4 + 2ς2
À �,

F2 ςð Þ = 1
1 + ς2

−
2 ffiffi

ς
p 1 − ς2
À Á
1 + ς2

+ 2ς7/4 − 4eς2ς13/4
� �

+ e−2ς2 + 2ς ln 1 + ς2
À Á

,
ð79Þ
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concerning the BCs

Ψ 1ð Þ = e−1,Φ 1ð Þ = ln 2ð Þ,
Ψ 2ð Þ = e−4,Φ 2ð Þ = ln 5ð Þ:

ð80Þ

Herein, the exact solutions are

Ψ ςð Þ = e−ς2 ,

Φ ςð Þ = ln 1 + ς2
À Á

:
ð81Þ

Table 1: Solutions result with r = 10 in Example 2.

ςk Ψ ςkð Þ bΨ ςkð Þ AΨ ςkð Þ Φ ςkð Þ bΦ ςkð Þ AΦ ςkð Þ
0.50 0.2500 0.2500 0 -0.125000 -0.125000 0

0.55 0.2475 0.2475 0 -0.136125 -0.136125 1:1102 × 10−16

0.60 0.2400 0.2400 1:9429 × 10−16 -0.144000 -0.144000 2:4980 × 10−16

0.65 0.2275 0.2275 2:7756 × 10−17 -0.147875 -0.147875 1:3045 × 10−15

0.70 0.2100 0.2100 9:4369 × 10−16 -0.147000 -0.147000 3:0531 × 10−16

0.75 0.1875 0.1875 1:1102 × 10−16 -0.140625 -0.140625 1:1657 × 10−15

0.80 0.1600 0.1600 9:4369 × 10−16 -0.128000 -0.128000 8:3267 × 10−17

0.85 0.1275 0.1275 2:7756 × 10−17 -0.108375 -0.108375 1:3739 × 10−15

0.90 0.0900 0.0900 1:1935 × 10−15 -0.081000 -0.081000 2:3592 × 10−16

0.95 0.0475 0.0475 1:2490 × 10−16 -0.045125 -0.045125 1:2212 × 10−15

1.00 0 0 0 0 0 0

0.5 0.80.70.6 0.9 1.0
𝜍
k

2. ⨯ 10–16

4. ⨯ 10–16

6. ⨯ 10–16

8. ⨯ 10–16

1. ⨯ 10–15

1.2⨯10–15

A
𝛹

 (𝜍
k
)

(a)

0.5

2. ⨯ 10–16

4. ⨯ 10–16

6. ⨯ 10–16

8. ⨯ 10–16

1. ⨯ 10–15

1.2 ⨯ 10–15

1.4 ⨯ 10–15

0.80.70.6 0.9 1.0
𝜍
k

A
𝛷

 (𝜍
k
)

(b)

Figure 1: Graphical results with r = 10 in Example 2: (a) AΨðςkÞ and (b) AΦðςkÞ.
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Concerning Example 3 and to show the compatibility
between ðΨðςkÞ,ΦðςkÞÞ and ð bΦðςkÞ, bΨðςkÞÞ, the values of
AΨðςkÞ and AΦðςkÞ are summarized in Tables 2 and 3,
respectively, for r = f10,20,40,80,160g. Additionally, the
graphics of AΨðςkÞ and AΦðςkÞ for r = 160 are given in
Figure 2. Whilst, the graphics of ðΨðςkÞ, bΨðςkÞÞ and ðΦð
ςkÞ, bΦðςkÞÞ for r ∈ f20, 40g are given in Figure 3. Again, it
can be observed from the figure and table that the result data
is sufficient accuracy and firmly connected.

Example 4. We test the following linear conformable LEP
system:

T4/3Ψ ςð Þ + 2
ς
T1/2Ψ ςð Þ + ςΦ ςð Þ + eςΨ ςð Þ =F1 ςð Þ,

T4/3Φ ςð Þ + 1
ς
T1/2Φ ςð Þ + 2 sin ςð ÞΦ ςð Þ + 2ςΨ ςð Þ =F2 ςð Þ,

ð82Þ

F1 ςð Þ = eς + ς − ς2 + ς3 + 2π 1 + 2ς1/6
À Á

cos πςð Þ
+ 4

ffiffi
ς

p
+ 2ς2/3 + ς2eς − π2ς8/3

À Á
sin πςð Þ,

F2 ςð Þ = 2 ς5/6 − ς−1/4 1 + 2ςð Þ + 2 1 − ς + ς2
À Á

sin ςð Þ
+ 2ς 1 + ς2

À Á
sin πςð Þ,

ð83Þ

concerning the BCs

Ψ 0ð Þ =Φ 0ð Þ = 1,

Ψ 1ð Þ =Φ 1ð Þ = 1:
ð84Þ

Herein, the exact solutions are

Ψ ςð Þ = ς2 sin πςð Þ + 1,

Φ ςð Þ = ς2 − ς + 1:
ð85Þ

Concerning Example 4 and to show the compatibility
between ðΨðςkÞ,ΦðςkÞÞ and ð bΦðςkÞ, bΨðςkÞÞ, the values of
ðAΨðςkÞ,RΨðςkÞÞ and ðAΦðςkÞ,RΦðςkÞÞ are summarized
together in Table 4 for r = 60. Whilst the graphics of
ðAΨðςkÞ,RΨðςkÞÞ and ðAΦðςkÞ,RΦðςkÞÞ for r = 60 are
given in Figure 4. Indeed, the graphics of ðΨðςkÞ, bΨðςkÞÞ
and ðΦðςkÞ, bΦðςkÞÞ for r ∈ f60, 80g are given in Figure 5.
Hither, it can be observed from the figure and table that the
result data is sufficient accuracy and are firmly connected.

Example 5. We test the following nonlinear singular LEP
system:

T5/4Ψ ςð Þ + 2
ς
T1/5Ψ ςð Þ + sinh ςð ÞΦ2 ςð Þ + Ψ ςð Þ

Ψ2 ςð Þ + 1
=F1 ςð Þ,

T5/4Φ ςð Þ − 1
ς
T1/5Φ ςð Þ + 2 cos Ψ ςð Þð Þ =F2 ςð Þ,

ð86Þ

F1 ςð Þ = ς3/4 −3 + 6ςð Þ + ς−1/5 1 − 6ς + 6ς2
À Á

+
2 + ς − 3ς2 + 2ς3

2 + 0:5 2 + ς − 3ς2 + 2ς3ð Þ2
+ cos2 ςð Þ sinh ςð Þ,

F2 ςð Þ = −ς3/4 − cos 0:5 2 + ς − 3ς2 + 2ς3
À ÁÀ Á

+ ς−1/5 sin ςð Þ,
ð87Þ

concerning the BCs

Ψ 0ð Þ =Φ 0ð Þ = 1,

Ψ 1ð Þ = 1,Φ 1ð Þ = cos 1ð Þ:
ð88Þ

Herein, the exact solutions are

Ψ ςð Þ = ς3 − 1:5ς2 + 0:5ς + 1,

Φ ςð Þ = cos ςð Þ:
ð89Þ

Table 2: Solutions result of AΨðςkÞ with r = f10,20,40,80,160g in Example 3.

ςk r = 10 r = 20 r = 40 r = 80 r = 160
1 0 0 0 0 0

1.1 1:41417 × 10−4 3:53949 × 10−5 8:85131 × 10−6 2:21299 × 10−6 5:53257 × 10−7

1.2 2:17765 × 10−4 5:44737 × 10−5 1:36205 × 10−5 3:40526 × 10−6 8:51323 × 10−7

1.3 2:41486 × 10−4 6:03663 × 10−5 1:50913 × 10−5 3:77281 × 10−6 9:43202 × 10−7

1.4 2:27054 × 10−4 5:67117 × 10−5 1:41747 × 10−5 3:54349 × 10−6 8:85859 × 10−7

1.5 1:88993 × 10−4 4:71574 × 10−5 1:17837 × 10−5 2:94558 × 10−6 7:36374 × 10−7

1.6 1:40251 × 10−4 3:49512 × 10−5 8:73088 × 10−6 2:18229 × 10−6 5:45546 × 10−7

1.7 9:11547 × 10−5 2:26784 × 10−5 5:66277 × 10−6 1:41527 × 10−6 3:53789 × 10−7

1.8 4:89733 × 10−5 1:21551 × 10−5 3:03330 × 10−6 7:57986 × 10−7 1:89475 × 10−7

1.9 1:80044 × 10−5 4:45136 × 10−6 1:10975 × 10−6 2:77246 × 10−7 6:92995 × 10−8

2 0 0 0 0 0
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Table 3: Solutions result of AΦðςkÞ with r = f10,20,40,80,160g in Example 3.

ςk r = 10 r = 20 r = 40 r = 80 r = 160
1 0 0 0 0 0

1.1 3:76804 × 10−7 1:68330 × 10−8 6:23761 × 10−10 4:57952 × 10−10 1:33368 × 10−16

1.2 3:49244 × 10−6 1:00246 × 10−6 2:58702 × 10−7 6:51818 × 10−8 1:63269 × 10−8

1.3 9:15243 × 10−6 2:44919 × 10−6 6:22382 × 10−7 1:56226 × 10−7 3:90960 × 10−8

1.4 1:47071 × 10−5 3:85284 × 10−6 9:74249 × 10−7 2:44253 × 10−7 6:11065 × 10−8

1.5 1:86288 × 10−5 4:83271 × 10−6 1:21920 × 10−6 3:05490 × 10−7 7:64158 × 10−8

1.6 1:97846 × 10−5 5:10561 × 10−6 1:28643 × 10−6 3:22237 × 10−7 8:05984 × 10−8

1.7 1:76475 × 10−5 4:54048 × 10−6 1:14322 × 10−6 2:86312 × 10−7 7:16099 × 10−8

1.8 1:25707 × 10−5 3:22885 × 10−6 8:12645 × 10−7 2:03502 × 10−7 5:08967 × 10−8

1.9 5:94475 × 10−6 1:52547 × 10−6 3:83849 × 10−7 9:61176 × 10−8 2:40391 × 10−8

2 0 0 0 0 0
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Figure 2: Graphical results with r = 160 in Example 3: (a) AΨðςkÞ and (b) AΦðςkÞ.
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Figure 3: Graphical results of ðΨðςkÞ, bΨðςkÞÞ and ðΦðςkÞ, bΦðςkÞÞ in Example 3 as red: Ψ, blue: Φ, black stars: ð bΨ , bΦÞ: (a) r = 10 and (b)
r = 40.
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Table 4: Solutions result with r = 60 in Example 4.

ςk bΨ ςkð Þ AΨ ςkð Þ RΨ ςkð Þ bΦ ςkð Þ AΦ ςkð Þ RΦ ςkð Þ
0 0 0 0 0 0 0

0.1 1.00322 1:257708 × 10−4 1:253833 × 10−4 0:910011 1:123178 × 10−5 1:234262 × 10−5

0.2 1.02363 1:163980 × 10−4 1:137241 × 10−4 0:840011 1:091802 × 10−5 1:299764 × 10−5

0.3 1.07291 9:657157 × 10−5 9:001727 × 10−5 0:790009 9:231926 × 10−6 1:168598 × 10−5

0.4 1.15223 6:463408 × 10−5 5:609774 × 10−5 0:760007 6:638852 × 10−6 8:735332 × 10−6

0.5 1.25002 2:332187 × 10−5 1:865750 × 10−5 0:750004 3:618730 × 10−6 4:824973 × 10−6

0.6 1.34238 2:035114 × 10−5 1:516049 × 10−5 0:760001 7:687164 × 10−7 1:011469 × 10−6

0.7 1.39636 5:596469 × 10−5 4:007731 × 10−5 0:789999 1:289339 × 10−6 1:632074 × 10−6

0.8 1.37611 7:143946 × 10−5 5:191132 × 10−5 0:839998 2:083354 × 10−6 2:480184 × 10−6

0.9 1.25025 5:543125 × 10−5 4:433423 × 10−5 1:25025 1:502923 × 10−6 1:651564 × 10−6

1 1 0 0 1 0 0
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Figure 4: Graphical results with r = 60 in Example 4 as black: A and blue: R: (a) ðAΨðςkÞ,RΨðςkÞÞ and (b) ðAΦðςkÞ,RΦðςkÞÞ.
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Figure 5: Graphical results of ðΨðςkÞ, bΨðςkÞÞ and ðΦðςkÞ, bΦðςkÞÞ in Example 4 as blue: Ψ, red: Φ, and black stars: ð bΨ , bΦÞ: (a) r = 60, and
(b) r = 80.

13Journal of Function Spaces



Concerning Example 5 and to show the compatibility
between ðΨðςkÞ,ΦðςkÞÞ and ð bΦðςkÞ, bΨðςkÞÞ, the values of
ðAΨðςkÞ,RΨðςkÞÞ and ðAΦðςkÞ,RΦðςkÞÞ are summarized
together in Table 5 for r = 60. Indeed, the graphics of
ðΨðςkÞ, bΨðςkÞÞ and ðΦðςkÞ, bΦðςkÞÞ for r = 60 are given
in Figure 6. Hither, it can be observed from the figure
and table that the result data is sufficient accuracy and
are firmly connected.

6. Summary and Future Suggestions

Throughout this study, the CBSA is used to get soft and fine-
ness approximations of BVPs for conformable systems
concerning two points and two fractional parameters in both
regular and singular types. Several linear and nonlinear
examples will be examined, and a model for the Lane-
Emden will be one of the applications presented. The
complete construction of the used spline through the CD
along with the convergence theory, and the error orders
together with other results are utilized in detail in the form
of tables and graphs using Mathematica 11 software. From
the reported results, it can be concluded that CBSA is a very

effective scheme that obtains numerical approximations to
conformable systems of BVPs. The main characteristics
noted here are that the spline approach is effective and fast,
and it requires little compulsive and mathematical burden
in solving the problems presented. In the coming work, we
will apply the CBSA to solve the Lotka-Volterra model
despite CD.

Abbreviations

CD: Conformable derivative
BVP: Boundary value problem
CBSA: Cubic B-spline algorithm
FDP: Fractional differential problem
BS: B-spline
LEP: Lane-Emden problem
BC: Boundary condition.
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Table 5: Solutions result with r = 60 in Example 5.

ςk bΨ ςkð Þ AΨ ςkð Þ RΨ ςkð Þ bΦ ςkð Þ AΦ ςkð Þ RΦ ςkð Þ
0 1 0 0 1 0 0

0.1 1.036 4:687946 × 10−7 4:525045 × 10−7 0:995004 4:007344 × 10−7 4:027465 × 10−7

0.2 1.048 4:781665 × 10−7 4:562657 × 10−7 0:980066 1:038737 × 10−6 1:059864 × 10−7

0.3 1.042 4:717943 × 10−7 4:527776 × 10−7 0:955335 1:677880 × 10−6 1:756324 × 10−6

0.4 1.024 4:499979 × 10−7 4:394512 × 10−7 0:921059 2:198900 × 10−6 2:387355 × 10−6

0.5 1.000 4:099687 × 10−7 4:099687 × 10−7 0:877580 2:526306 × 10−6 2:878711 × 10−6

0.6 0.976 3:505588 × 10−7 3:591791 × 10−7 0:825333 2:609380 × 10−6 3:161598 × 10−6

0.7 0.958 2:734979 × 10−7 2:854884 × 10−7 0:764840 2:414309 × 10−6 3:156611 × 10−6

0.8 0.952 1:837305 × 10−7 1:929942 × 10−7 0:696705 1:920084 × 10−6 2:755944 × 10−6
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Figure 6: Graphical results with r = 60 in Example 5 as red: Ψ, blue: Φ, and black stars: ð bΨ , bΦÞ: (a) ðΨðςkÞ, bΨðςkÞÞ and (b) ðΦðςkÞ, bΦðςkÞÞ.
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numerical simulation of the related mathematical equations
in the manuscript.
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Casson nanofluid plays a vital role in food industries with sodium alginate nanoparticles. That is why many researchers used
Casson nanofluid in their study. Due to this, the main objective of this study is to investigate the inclined microchannel flow of
a Casson nanofluid based on sodium alginate (SA) under a few stresses. Because the plate at y = d is stationary and the plate at
y = 0 is in motion, the fluid flows. Physically existent things utilize partial differential equations as a method of derivation. By
using dimensionless variables, the underlying PDEs are dimensionless. Applying Fourier’s and Fick’s laws to the time-fractional
model makes the classical model dimensionally stable by generalization. A generalized fractional model is solved using the
Laplace and Fourier integral transformations. In addition, the parametric influence of other physical elements, such as the
Casson parameter, coupling velocity, temperature, and stress parameters, is considered (Grashof, Schmidt, and Prandtl
numbers). Concentration distributions are shown using graphs and discussed with accompanying text. We compute and
describe the Sherwood number, rate of heat transfer, and skin friction. It is concluded that skin friction and Nusselt number
can be enhanced by adding nanoparticle. Also, the fractional derivative makes the study more realistic by incorporating Fick’s
and Fourier’s laws as compared to the classical one.

1. Introduction

The term “nanomaterials” means materials that have a size
of 100 nanometers or less, while nanotechnology refers to
the kind of technology that produces these materials. The
structure of nanomaterials as well as their characteristics is
taken into consideration when classifying them into one of
four groups [1]. Choi [2] was the first researcher to investi-
gate the terminology associated with nanofluids. He came
up with the term “nanofluid” to describe the fluids that
included particles with diameters of less than 100 nanome-
ters. Karthik et al. explained the rationale behind why nano-
sized particles are favored over microsized particles in a
variety of applications [3]. Significant improvements in

thermophysical characteristics have been seen when com-
paring nanoparticles to microparticles. Nanofluids may be
used for a variety of purposes, including the cooling of air
conditioning systems, the cooling of power plants, and the
improvement of diesel generator efficiency [4]. Normally,
water and ethylene glycol are used as the basis fluids in heat
transfer systems. The manufacturing of nanoparticles
involves the use of a variety of components, which may be
generally classified as metallic, such as copper [5], metal
oxide, such as iron oxide, and carbon-based, such as graph-
ite. CuO [6], chalcogenide sulfides, selenides, and tellurides,
all of which were discussed [7], along with several other par-
ticles, such as carbon nanotubes [8]. According to the avail-
able research, the average size of a single particle ranges from

Hindawi
Journal of Function Spaces
Volume 2023, Article ID 2824703, 11 pages
https://doi.org/10.1155/2023/2824703

https://orcid.org/0000-0002-3723-0796
https://orcid.org/0000-0001-8485-7113
https://orcid.org/0000-0001-8704-998X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/2824703


20 to 100 nm [9, 10]. A type of nanofluid flow in a porous
media with Newtonian heating and magnetohydrodynamic
flow of Casson-type fluid is studied by Khan et al. [11].

In 1959, Casson came out with the first Casson fluid
model. Oka [12] was the first person to look at fluids from
Casson in tubes. Honey, blood, soup, jelly, stuff, slurries,
and artificial fluids are all types of Casson fluids. Ahmad
et al. [13] wrote about Casson nanofluid that was heated in
a Newtonian way. Khan et al. [14] investigated the effects
of a magnetic field, a chemical reaction, heat generation,
and Newton cooling law, on the flow of Casson fluid over
a moving stretched surface in a porous medium. Further-
more, Mackolil and Mahanthesh [15] examined the exact
and statistical analysis of Casson nanofluid. Statistical tech-
niques like probable error and regression are used to exam-
ine the rate of heat transfer and skin friction. Besides, many
studies are reported to investigate the statistical analysis for
various nanofluids [16–18]. Recently, Satya Narayana et al.
[19] report a 3D flow for Casson-type couple stress nano-
fluid. It is discovered that the non-Newtonian pair stress
fluid’s temperature is greater than that of the viscous case.
For increased heat transmission, it may be proposed that
the matching viscous fluid in industrial applications be
switched out for the Casson couple stress nanofluid.

Couple stress fluids (CSF) are different from standard
viscous fluids in that they have a specific material constant.
These fluids’ (CSFs) rheological characteristics have a wide
range of applications such as the crude oil extraction pro-
cess, the solidification of liquid crystals, electrostatic precip-
itations, aerodynamic heating phenomena, and colloidal and
suspension solutions [20]. Stokes [21] developed the idea of
CSF theory, where he incorporated CSFs into account in
addition to the classical Cauchy stress. It is the most straight-
forward modification of the theory of the conventional fluid
that takes into account polar effects like the presence of CSs
and body couples. Stokes provides a thorough explanation of
CSF theory in his work Theories of Fluids with Microstruc-
ture [22], where he also lists a variety of issues that scholars
have examined in relation to couple stress theory. The phe-
nomena of pumping fluids, the synthesis of lubricants and
biological processes, the solidification of liquid crystals, and
the solidification of animal blood are only a few illustrations
of the extraordinary applications of CSF models in our
everyday life. Researchers have taken the CSF model into
consideration for a variety of scientific and physical prob-
lems. Many fascinating problems involving CSFs or micro-
polar fluids may be found in the references [23, 24]. Khan
et al. [25] used the time-fractional derivative definitions of
Caputo-Fabrizio to find the solutions to the two phase CS
fluid channel flow. Ali et al. [26] have looked at the flow of
laminar and unstable pair stress fluid between infinite num-
bers of plates. Using lubricant as the base fluid, Laplace and
Fourier transforms were used to find exact solutions. They
found that adding nanoparticles to engine oil made the oil
12.8% more effective.

Fractional calculus [27] is the study of the many ways
that differentiation and integration can be used to find the
power of real and complex numbers. Ross [28] explained
how fractional calculus changed from 1695 to 1900. Many

physical and natural problems cannot be shown by the clas-
sical derivative, so fractional calculus is used to solve these
problems. Scientists have been very interested in fractional
derivatives for the past 30 years. In response to this interest,
many scientists have come up with different ways to explain
what a fractional derivative is. Riemann-Liouville [29] was
the most typical approach to describing things in the 18th
century. Despite the fact that the R-L formulation of the
fractional derivative has been shown to perform effectively
in many physical contexts, there are two basic approaches
to applying this concept. Differentiating the constant term
may not result in zero, and certain aspects of the Laplace
transform are irrelevant in practice. Caputo fractional deriv-
atives are utilized in physics, chemistry, economics, and
other fields of research. They may also be employed in
everyday situations. CFD is used to investigate processes
such as diffusion, signal processing, material mechanical
characteristics, image processing, pharmacokinetics, damp-
ing, and bioengineering. CFD [30] is a modified version of
fractional calculus that corrects the issues produced by the
R-L formulation. However, since the CFD kernel contains
a singularity, CFD cannot be utilized to represent certain
materials with large differences [31]. It cannot give a good
description of what happened. Caputo-Fabrizio [32]
suggests a new definition with a kernel that is not singular
to get around the singularity problem in CFD. Several
researchers [33–37] looked at this new idea as part of their
work. CF fractional derivative is used by a number of studies
to look at the effect on memory. Akhtar [38] used time-
fractional Caputo and CF derivatives to study the flow of
couple stress fluids (CSFs) between two parallel plates.

The existing literature does not take into consideration
the fact that by utilizing Fick’s and Fourier’s laws, closed-
form solutions for the flow of Casson fluid down a micro-
channel may be discovered. In terms of pair stress, we
focused on the plate’s motion at y = 0, which generates a
flow SA-based Casson nanofluid through an inclined micro-
channel. The governing partial differential equations are
nondimensionalized by employing dimensionless variables,
and the energy and mass equations are fractionalized using
Fick’s and Fourier’s laws. Caputo’s definition is applied to
the fractional model, and the resulting partial differential
equations (PDEs) are solved by combining Laplace and Fou-
rier transforms. Tables and figures are used to graphically
present the data. It is possible to calculate the effect of vari-
ous parameters on the skin friction, Nusselt number, and
Sherwood number.

2. Mathematical Formulation

Consider the flow of CS SA-based Casson nanofluid along
with the inclined microchannel. The flow is considered in
the x-direction. Initially ðt ≤ 0Þ, both the fluid and the plates
are at rest with the same concentration Cd and temperature
Td . After some time ðt > 0Þ, the plate at y = 0 is carried with
constant velocity u0HðtÞ, where u0 is the characteristic
velocity, while the second plate stays static. The moving
plate’s temperature and concentration rise to T1 and C1,
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respectively, and then remain constant, as illustrated in
Figure 1.

The continuity and momentum equation of the CSNF
and energy equation are given by

∇ ⋅ V
!
= 0,

ρnf
∂V
!

∂t
= −∇p − μnf∇ × ∇ ×V

!
− λ∇ × ∇ × ∇ × ∇ × V

!

+ g ρβTð Þnf T − T∞ð Þ + ρnf b
!
1,

ρCpð Þnf
∂T
!

∂t
= knf∇ × ∇ × T

!
,

Dnf
∂C
!

∂t
= knf∇ × ∇ × C

!
: ð1Þ

Since unidirectional flow has been taken into consider-
ation, the provided flow’s velocity, temperature, and concen-
tration fields are as follows:

V
!
= u ζ, tð Þ, 0, 0ð Þ,

T
!
= T ζ, tð Þ, 0, 0ð Þ,

C
!
= C ζ, tð Þ, 0, 0ð Þ:

9>>>>=
>>>>;

ð2Þ

Equation for an incompressible Casson fluid flow

τ = τ0 + μnfγ
·,

τ =
2 μn +

Pλffiffiffiffiffiffi
2π

p
� �

eab, π > πc,

2 μn +
Pλffiffiffiffiffiffiffi
2πc

p
� �

eab, π < πc:

8>>><
>>>:

ð3Þ

Under these, we get the final problem formulation as
follows:

ρnf
∂u ζ, tð Þ

∂t
= μnf 1 +

1
β

� �
∂2u ζ, tð Þ

∂ζ2
− λ

∂4u ζ, tð Þ
∂ζ4

+ ρβTð Þnfg cos γð Þ T − Tdð Þ
+ ρβCð Þnfg cos γð Þ C − Cdð Þ,

ð4Þ

∂T ζ, tð Þ
∂t

= −
1

ρCPð Þnf
∂q ζ, tð Þ

∂ζ
: ð5Þ

Fourier’s law:

1
knf

q ζ, tð Þ = −
∂T ζ, tð Þ

∂ζ
: ð6Þ

The thermal balance equation:

∂C ζ, tð Þ
∂t

= −
∂S ζ, tð Þ
∂ζ

: ð7Þ

Fick’s law:

1
Dnf

S ζ, tð Þ = −
∂C ζ, tð Þ

∂ζ
: ð8Þ

These are the physical conditions:

u ζ, tð Þjt−0 = 0, u ζ, tð Þjζ=0 = u0H tð Þ, u ζ, tð Þjζ=d = 0,

T ζ, tð Þ = Td , C ζ, tð Þ = Cd , t = 0,

T ζ, tð Þ = T1, C ζ, tð Þ = C1, ζ = 0,

T ζ, tð Þ = Td , C ζ, tð Þ = Cd , ζ = d,

∂2u 0, tð Þ
∂ζ2

=
∂2u d, tð Þ

∂ζ2
= 0:

9>>>>>>>>>>=
>>>>>>>>>>;

ð9Þ

Terms for ðρCpÞnf , ðρβTÞnf , ðρβCÞnf , μnf , ρnf ,Dnf , knf are
given by Khan et al. [11].

μnf = μf
1

1 − ϕð Þ2:5 ,

ρnf = ρf 1 − ϕð Þ + ρsϕ,

ρnf = ρf 1 − ϕð Þ + ρsϕ,

ρCp

À Á
nf = ρCp

À Á
f
1 − ϕð Þ + ρCp

À Á
s
ϕ,

ρβTð Þnf = ρβTð Þf 1 − ϕð Þ + ρβTð Þsϕ,
ρβCð Þnf = ρβCð Þf 1 − ϕð Þ + ρβCð Þsϕ,

Dnf =Df
1

1 + ϕ
:

ð10Þ

B0

x

y

d

𝜕2u (0,t)
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= 0
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= 0
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,t)
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, C
 (𝜁

,t)
 =

 C
d

, 𝜁
 =

 d

Figure 1: Geometry of the flow.
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To get a PDE system without dimensions, we define the
following variables without dimensions:

u∗ =
u
u0

,

ζ∗ =
ζ

d
,

T∗ =
T − Td

T1 − Td
,

t∗ =
υt

d2
,

C∗ =
C − Cd

C1 − Cd
,

q∗ =
qd

kf T1 − Tdð Þ ,

S∗ =
Sd

kf C1 − Cdð Þ :

ð11Þ

By eliminating the ∗ signs and replacing them with these
dimensionless variables, Equations (4)–(9) become

∂u ζ, tð Þ
∂t

= b2
b1

β1
∂2u ζ, tð Þ

∂ζ2
−

1
b1

λ
∂4u ζ, tð Þ

∂ζ4

+
b3
b1

T ζ, tð ÞGr cos γð Þ

+ b4
b1

C ζ, tð ÞGm cos γð Þ,

ð12Þ

∂T ζ, tð Þ
∂t

= −
b6
Prb5

∂q ζ, tð Þ
∂ζ

, ð13Þ

q ζ, tð Þ = −
∂T ζ, tð Þ

∂ζ
, ð14Þ

Sc
∂C ζ, tð Þ

∂t
= −

1
b7

∂S ζ, tð Þ
∂ζ

, ð15Þ

S ζ, tð Þ = −
∂C ζ, tð Þ

∂ζ
, ð16Þ

u ζ, tð Þjt−0 = 0, u ζ, tð Þjy=0 = 1, u d, tð Þjζ=d = 0,

T ζ, tð Þ = Td , C ζ, tð Þ = 0, t = 0,

T ζ, tð Þ = 1, C ζ, tð Þ = 1, ζ = 0,

T ζ, tð Þ = 0, C ζ, tð Þ = 0, ζ = d,

∂2u 0, tð Þ
∂ζ2

=
∂2u d, tð Þ

∂ζ2
= 0,

9>>>>>>>>>>=
>>>>>>>>>>;

ð17Þ

b1 = 1 − ϕ + ϕ
ρs
ρf

,

b2 =
1

1 − ϕð Þ2:5 ,

b3 = 1 − ϕ + ϕ
ρβTð Þs
ρβTð Þf

,

b4 = 1 − ϕ + ϕ
ρβCð Þs
ρβCð Þf

,

b5 = 1 − ϕ + ϕ
ρCp

À Á
s

ρCp

À Á
f

,

b6 =
ks + 2kf − 2ϕ kf − ks

À Á
ks + 2kf + ϕ kf − ks

À Á ,

b7 =
1

1 + ϕ
,

β1 = 1 +
1
β
:

ð18Þ

The general FAFL are used in the following ways:

q ζ, tð Þ = −CD
1−α
t

∂T ζ, tð Þ
∂ζ

� �
, 0 < α ≤ 1, ð19Þ

S ζ, tð Þ = −CD
1−α
t

∂C ζ, tð Þ
∂ζ

� �
, 0 < α ≤ 1: ð20Þ

In this equation, CD1−α
t ð:Þ stands for the Caputo time-

fractional operator, and its definition is as follows:

CD
α
t K1 ζ, tð Þð Þ = 1

Γ 1 − αð Þ
ðt
0
t − sð Þ−αK1 ζ, tð Þds = K ζ, tð Þ ∗ ξα tð Þ:

ð21Þ

In this case, ξαðtÞ = t−α/Γð1 − αÞ is the singular power
law kernel. Moreover,

L ξα tð Þð Þ = 1
s 1−αð Þ ,

ξ1−α tð Þ ∗ ξα tð Þð Þ = 1,

ξ0 tð Þ = L−1
1
s

� �
= 1,

ξ1 tð Þ = L−1 1ð Þ = δ tð Þ:

ð22Þ

In this instance, δðtÞ is for a Dirac delta function. It is
possible to write using Equation (21) and the properties
mentioned in (22):

CD
0
t K1 ζ, tð Þð Þ = K1 ζ, tð Þ − K1 ζ, 0ð Þ,

CD
1
t K1 ζ, tð Þð Þ = ∂C ζ, tð Þ

∂t
:

9>=
>; ð23Þ
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Equations (19) and (20) may be written using the
Caputo fractional derivative.

∂T ζ, tð Þ
∂t

=
b6
b5Pr

CD
1−α
t

∂2T ζ, tð Þ
∂ζ2

, ð24Þ

Sc
∂C ζ, tð Þ

∂t
=

1
b7

CD
1−α
t

∂2C ζ, tð Þ
∂ζ2

 !
: ð25Þ

In order to derive the simplified form of Equations (24)
and (25), we consider the time-fractional integral operator:

vαt K1 ζ, tð Þð Þ = ξ1−α
∗K1

À Á
tð Þ = 1

Γ αð Þ
ðt
0
t − sð Þα−1K1 ζ, sð Þds:

ð26Þ

The inverse operator of the fractional derivative CDα
t

described in Equation (26) is Equation (21). Equations (24)
and (25) may be expressed using the properties described
in [39] as follows:

CD
α
t T ζ, tð Þ = b6

b5Pr
∂2T ζ, tð Þ

∂ζ2

 !
, ð27Þ

CD
α
t C ζ, tð Þ = 1

b7Sc
∂2C ζ, tð Þ

∂ζ2

 !
: ð28Þ

3. Solution of the Problem

3.1. Solution of Energy Field. When we apply the LT to
Equation (27), we obtain

Prsα�T ζ, sð Þ = b6
b5

d2�T ζ, sð Þ
dζ2

 !
, ð29Þ

and the transformed ICs and BCs are given by

�u ζ, tð Þ = �T ζ, tð Þ = ,�C ζ, 0ð Þ = 0, t = 0,

�u ζ, sð Þ = �T ζ, sð Þ = �C ζ, sð Þ = 1
s
,
∂2�u ζ, sð Þ

∂ζ2
= 0, ζ = 0,

�T ζ, sð Þ = �C ζ, sð Þ = �u ζ, sð Þ = ∂2�u ζ, sð Þ
∂ζ2

= 0, ζ = 1:

9>>>>>>>=
>>>>>>>;

ð30Þ

Now, using the conditions in Equation (30), we apply the
FSFT to Equation (29), and we get

�T k, sð Þ = kπb6
b5Pr

1
s sα + Lð Þ
� �

, ð31Þ

where L = ðkπÞ2ðb6/Prb5Þ.

u
(𝜁

,t)

𝜁

𝛼 = 0.1

0

0.5
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𝛼 = 0.7
𝛼 = 1.0

Figure 2: Influence of several values of α on velocity profile.
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Figure 3: Impact of different values of β on velocity profile.
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Figure 4: Impact of different values of ϕ on velocity profile.
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When inverse transformations are used, Equation (31)
looks like this:

T ζ, tð Þ = 1 − ζð Þ − 2〠
∞

k=1

1
kπ

⋅ Eα

− kπð Þ2tα
Pr

b6
b5

 !
sin kπζð Þ:

ð32Þ

3.2. Solution of Concentration Field. Applying the LT to
Equation (28), we get the following:

sα�C ζ, sð Þ = 1
Scb7

d2�C ζ, sð Þ
dζ2

 !
: ð33Þ

Now, using the conditions in Equation (30), we apply the
FSFT to Equation (33), and we get

�C k, sð Þ = kπ
b7Sc

1

s sα + L′
� �

0
@

1
A, ð34Þ

where L′ = ðkπÞ2/Sc.
When inverse LT and FSFT are used, Equation (31)

looks like this:

C ζ, tð Þ = 1 − ζð Þ − 2〠
∞

k=1

1
kπ

⋅ Eα

− kπð Þ2tα
b7Sc

 !
sin kπζð Þ, ð35Þ

when the Mittag-Leffler function Eαð−αtαÞ =∑∞
k=0ð−αtÞk/

Γðαk + 1Þ is used.

u
(𝜁

,t)
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Figure 5: Impact of different values of Gr on velocity profile.
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Figure 6: Impact of different values of Gm on velocity profile.
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Figure 7: Impact of different values of λ on velocity profile.
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Figure 8: Impact of α on temperature distribution.
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3.3. Solution of Momentum Equation. LT applied to Equa-
tion (12) allows us to write

�u ζ, sð Þ = b2
b1

1 +
1
β

� �
d2�u ζ, sð Þ

dζ2
−

λ

b1

d4�u ζ, sð Þ
dζ4

+
b4
b1

Gm cos γð Þ�C ζ, sð Þ + 1
b1

b3Gr cos γð Þ�T ζ, sð Þ:

ð36Þ

Using Equation (36), the finite Fourier sine transform,
and the substitution of Equations (31) and (34), we obtain

�u k, sð Þ = R1
R2s

+
R1

R2 s + R2ð Þ
+
b6
b5

Grkπ
PrR2

b3
b1

cos γð Þ 1
s sα + Lð Þ −

1
s + R2ð Þ sα + Lð Þ

� �

+
Gmkπ
b7ScR2

b4
b1

cos γð Þ 1

s sα + L′
� � −

1

s + R2ð Þ sα + L′
� �

0
@

1
A:

ð37Þ

Applying the inverse LT, we get the following expression
for Equation (37).

�u k, tð Þ = R1
R2

1 + e−R2t
À Á

+ Gr
kπ

b3
b1

cos γð Þ 1 − Eα

b6
b5

− kπð Þ2
Pr

tα
 ! !

+
Gm
kπ

b4
b1

cos γð Þ 1 − Eα

− kπð Þ2
b7Sc

tα
 ! !

−
b6
b5

Grkπ
PrR2

b3
b1

cos αð Þ
ðτ
0
tα−1Eα,α −Ltαð Þ ∗ e−R2 t−τð Þdτ

−
Gmkπ
Scb7R2

b4
b1

cos αð Þ
ðτ
0
tα−1Eα,α −L′tα

� �
∗ e−R2 t−τð Þdτ:

ð38Þ

The final accurate solution to Equation (36) is obtained
by transforming Equation (36) using inverse FSFT.

where R = ðb2/b1Þð1 + ð1/βÞÞ,R1 = RðkπÞ + ðλ/b1ÞðkπÞ3,
and R2 = kπR1.
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Figure 9: Impact of ϕ on temperature distribution.
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Figure 10: Impact of α on concentration distribution.

u ζ, tð Þ =

1 − ζð Þ + 2〠
∞

k=1

1
kπ

exp −kπR2tð Þ sin kπζð Þ + 2Gr
b3
b1

cos γð Þ〠
∞

k=1

1
kπ

1 − Eα

b6
b5

− kπð Þ2
Pr

tα
 ! !

sin kπζð Þ

+2Gm
b4
b1

cos γð Þ〠
∞

k=1

1
kπ

1 − Eα

− kπð Þ2
b7Sc

tα
 ! !

sin kπζð Þ − 2
b6
b5

Gr
Pr

b3
b1

cos γð Þ〠
∞

k=1

kπ
R2

sin kπζð Þ

ðτ
0
tα−1Eα,α −Ltαð Þ × e−R2 t−τð Þdτ − 2

Gm
b7Sc

b4
b1

cos γð Þ〠
∞

k=1

kπ
R2

sin kπζð Þ
ðτ
0
tα−1Eα,α −L′tα

� �
× e−R2 t−τð Þdτ

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

, ð39Þ
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3.4. Skin Friction and Nusselt Number. The comparative
from Ahmad et al. [39] obtains skin friction terms from
Equation (39) and Nusselt number expressions from Equa-
tion (32).

Cf =
1

1 − ϕð Þ2:5 1 +
1
β

� �
∂u ζ, tð Þ

∂ζ

����
ζ=0

− λ
∂3u ζ, tð Þ

∂ζ3

�����
ζ=0

,

Nu = −b6
∂T ζ, tð Þ

∂ζ

����
ζ=0

:

ð40Þ

4. Result and Discussion

An investigation of the unsteady, unidirectional, and incom-
pressible flow of couple stress SA-based Casson nanofluid
through inclined microchannel is worked out in this article.
A fractional model is developed by using the laws of Fourier
and Fick, respectively. By combining the Laplace and Fourier
finite sine transforms, it is possible to find closed-form
solutions. After being calculated and put into a table, the
skin friction, Sherwood number, and Nusselt number of
the boundary layer flow are each given as a number.
Figures 2–12 show how the distributions of speed, tempera-
ture, and concentration change when different embedded
parameters are changed.

Figures 2, 8, and 10 demonstrate how the fractional
parameter α impacts the profile of fluid velocity, the distri-
bution of temperatures, and the distribution of concentra-
tions. Different integral velocity profiles are created, which
is different from the classical model. The easiest way to fit
these many integral profiles might be to use real data or
results from experiments.

Figure 3 shows what happens to the speed profile when
the Casson parameter β is changed. When the value of the
Casson parameter β rises, the flow decelerates, as shown by
the graphs. The science behind this is that when the value
of β is raised, the viscous forces that provide resistance and
slow the flow are also raised.

The effects of volume friction ϕ on velocity profile, tem-
perature distribution, and concentration distribution are
depicted in Figures 4, 9, and 11. As a result of sedimentation,
the range is between 0 and 0.04 when it reaches 0.08 when it
is measured. A rise in the nanoparticle volume friction per-
centage will, in either scenario, result in a lower temperature,
as well as a change in the concentration distribution and the
velocity profile.

Figures 5 and 6 show how Gr and Gm influence the
velocity of the SA-based Casson nanofluid under CS. These
pictures show that a function of these values that rises
implies that the velocity goes up. Because they are going
up, the buoyancy forces are going up, which causes the vis-
cosity of the fluid to move down, which makes the fluid
move faster. There is evidence that this statement is true.

The velocity profile flattens out when the couple stress
parameter λ drops, as seen in Figure 7, which shows how
λ affects velocity. Physics-wise, this behavior happens

because increasing λ also increases the viscosity, which slows
the Casson nanofluid based on SA.

The concentration is shown in Figure 12 for various
Schmidt number Sc values. As the Schmidt number rises,
the concentration boundary layer thickness falls. The
Schmidt number decreased both the consecration and the

Table 1: Thermophysical properties.

Material
Base fluids Nanoparticles

SA Al2O3 Cu TiO2 Ag
ρ kg/m3À Á

989 3970 8933 4250 10500

cp J/kgKð Þ 4175 765 385 686.2 235

K W/mKð Þ 0.613 40 401 8.9528 429

β × 10−5 K−1À Á
0.99 0.85 1.67 0.9 1.89

C
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Figure 12: Impact of Sc on concentration distribution.
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Figure 11: Impact of ϕ on concentration distribution.
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velocity profile since it measures the proportion of viscous
forces to mass diffusivity. Physically, the velocity of the
SA-based Casson nanofluid decreases as viscous forces rise.

Table 1 displays the thermophysical characteristics of
nanoparticles for your review. Table 2 displays the variation
in skin friction caused by different parameter values. Skin
friction is significant in several engineering areas, especially
civil engineering. The viscous forces and, consequently, the
surface friction increase as β raises. Skin friction is decreased
by raising Gr and Gm. By raising Gr and Gm, the buoyancy
forces rise, the viscosity drops, and the surface friction goes
down as a result. Table 2 clearly illustrates how skin friction
reduces as volume friction ϕ increases.

The Nusselt number is shown in Table 3. An increase in
momentum diffusivity leads to a decrease in the thickness of

the thermal boundary layer, which in turn decreases the
Nusselt number since the Prandtl number Pr measures the
relationship between momentum and thermal diffusivity.
By putting α = 1,M = 0, Gr = Gm = 0, t = 1, β⟶∞, and
ϕ = 0, our solution is reduced to the solution of Akhtar
and Shah [40], which is presented in Figure 13, which val-
idates our solution.

5. Conclusion

This article describes how the classical model is now turned
into a time-fractional model utilizing Fick’s and Fourier’s
equations in line with Caputo’s definition. Laplace and Fou-
rier integral transforms are used to get accurate solutions.
Visual illustrations and physical descriptions are used to
show how different embedded elements affect the distribu-
tions of velocity, temperature, and concentration. The pres-
ent work’s main conclusions are as follows:

(1) Using Fick’s and Fourier’s laws, the time derivative is
adapted into a time-fractional model

(2) The fractional models offer a wider range of answers
since they are more realistic. Considering the rele-
vant data, these solutions could be the best

(3) In accordance with the concept of skin friction, the
impact of different variables on skin friction is
completely different from the impact of velocity

(4) By increasing the volume friction, as a result, the tem-
perature profile, concentration profile, and velocity
profile decrease

Nomenclature

V
!
: Velocity vector

knf : Thermal conductivity of the nanofluid
Td : Embedded temperature
Cd : Embedded concentration

b
!

1:
Body force vector

ρnf : Density of nanofluid
g: Gravitational acceleration
ðβTÞnf : Coefficient of thermal expansion of nanofluid
ðCpÞnf : Heat capacitance of the nanofluid

C
!
: Concentration vector

T
!
: Temperature vector

p: Pressure
μnf : Dynamic viscosity of nanofluid
λ: Couple stress parameter
β: Casson fluid parameter
γ: Inclination angle
π = eab: Factor of the deformation rate
μn: Plastic dynamic viscosity
Pλ: Yield stress of fluid
Nu: Nusselt number
Cf : Skin friction
Gr: Grashof number
Gm: Mass Grashof number

u
(𝜁

,t) 0.5

1.0

𝜁

Present solution

0.0
0.0

0.5 1.0

Solution by Akhtar and Shah [40]

Figure 13: Comparison of the current solution with Akhtar and
Shah [40].

Table 2: The effect of different parameters onCf .

t α β λ ϕ Gm Gr Cf
0.9 0.5 2 2 0.01 5 2 1.06033

0.9 0.6 2 2 0.01 5 2 1.00032

0.9 0.5 3 2 0.01 5 2 4.00632

0.9 0.5 2 4 0.01 5 2 5.23687

0.9 0.5 2 2 0.03 5 2 1.71032

0.9 0.5 2 2 0.01 10 2 0.23124

0.9 0.5 2 2 0.01 5 3 0.91119

Table 3: The effect of different parameters on Nu.

t α ϕ Nu
1 0.5 0.01 2.32203

1.5 0.5 0.01 2.92772

1 0.6 0.01 2.00024

1 0.5 0.03 3.94575
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Pr: Prandtl number
Sc: Schmidt number
ϕ: Volume friction of nanofluid
Cðζ, tÞ: Concentration
Tðζ, tÞ: Temperature
Vðζ, tÞ: Velocity
d: Distance between parallel plates
Dnf : Thermal diffusivity of nanofluid.
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This paper deals with the study of fractional Kundu-Eckhaus equation (FKEE) and fractional massive Thirring problem
(FMTP) that appear in the quantum field theory, weakly nonlinear dispersive water waves, and nonlinear optics. Since
the variational iteration method involves integration, the Laplace transform involves convolution theorem in recurrence
relation to derive the series solution. To avoid some assumptions and hypothesis, we apply a two-scale approach for
such a nonlinear complex model. The fractional differential equation may be transformed into its partner equation using
He’s fractional complex transform, and then, the nonlinear elements can be readily handled using the homotopy
perturbation method (HPM). Numerical results are derived in a rapid converge series form to improve the accuracy of
the scheme greatly. Graphical representations and error distribution show that the two-scale approach is a very
convenient tool.

1. Introduction

In recent years, fractional calculus (FC) has assumed a
greater significance in mathematical theory and widely used
in many fields including ecology, physics, astronomy, and
economics. Researchers are increasingly realizing that the
fractional framework may be compatible with a wide range
of phenomena in common applied sciences after the con-
cepts of FC were successfully applied to a variety of different
features. Mathematical models of many physical processes
are developed using fractional differential equations. They
are employed not only in mathematics but also in physics,
dynamical systems, power systems, and applied science
[1–3]. Kundu and Eckhaus [4, 5] introduced the FKKE
which is studied in quantum field theory and many disper-
sion phenomena.

iDα
ξΨ ς, ξð Þ +Ψςς + 2Ψ Ψj j2À Á

ς
+Ψ Ψj j4 = 0, 0 < α ≤ 1: ð1Þ

The FKKE is a combination of Lax couples, higher
conserved portion, particular soliton solution, and rogue
wave solution. It is very essential to develop a scientific
design that acts on behalf of ultrashort light pulses in a glass
fiber. This model will be used to demonstrate the propaga-
tion of light across an optical cable. The fractional massive
Thirring problem (FMTP)

i Dα
ξΨ +Ψς

À Á
+Φ +Ψ Φj j2 = 0

i Dα
ξΦ +Φς

À Á
+Ψ +Φ Ψj j2 = 0

ð2Þ

was autonomously introduced in 1958 by Thirring. It is a
nonlinear coupled fractional differential equation which
appears in the quantum field theory [6, 7]. Feng and
Wang [8] discussed the algebraic curve method to obtain
the explicit particular solitary solutions for the Kundu
equation and the derivative Schrodinger equation. Yi and
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Liu [9] employed the bifurcation approach to explore the
bifurcations of traveling wave solutions for the Kundu equa-
tion. Luo and Nadeem [10] established Mohand transform
with HPM to obtain the numerical solution of FKEE and
coupled FMTP.

Many authors [11–13] have studied the various features
of this equation, its generalities, and relationship with other
nonlinear equations. It is classified to a variation of famous
integrable equations such as nonlinear Schrodinger equation
and also several nonlinear equations through a gauge trans-
formation. Many researchers have studied this equation
through various approaches such as gauge transformation
[14], Lie symmetry method [15], Bernoulli subequation
method [16], Backlund transformation [17], sine-Gordon
expansion approach [18], Darboux transformation [19],
and rogue wave solutions [20]. A lot of researchers intro-
duced numerous semianalytical and numerical methods to
study the fractional derivatives and fractional differential
equations. He [21] constructed a technique which is called
HPM that does not depend upon a small parameter to
estimate the approximate solution of a nonlinear model.
Later, Nadeem and Li [22] combined HPM with the Laplace
transform to find the approximate solution of nonlinear
vibration systems and nonlinear wave equations. It can be
seen that HPM is a powerful tool and effective for nonlinear
problems [23, 24]. It is however challenging to identify the
analytical solutions for the most of the problems, and there-
fore, these problems can be tended by semianalytical
methods. The objective of this paper is to suggest two-scale
approach for quantum phenomena in fractal environments.
The two-scale approach is the most friendly approach which
converts fractional differential equations into its differential
partner equations to make it extremely easy for the solution
procedure.

The structure of this paper is formed as follows: in Sec-
tion 2, we briefly explain the concept of HPM for a nonlinear
problem. A two-scale approach with a numerical problem
has been presented in Sections 3 and 4. In Section 5, we will
explain the obtained results and discussion through our
suggested approach. Section 6 will be our conclusions.

2. Basic Idea of Homotopy
Perturbation Method

We assume the following nonlinear problem to present the
concept of HPM [22]:

T1 Ψð Þ − h rð Þ = 0, r ∈Ω, ð3Þ

with boundary conditions

T2 Ψ, ∂Ψ
∂S

� �
= 0, Ψ ∈ Γ, ð4Þ

where T1 is particular operators, T2 is a boundary operator,
hðrÞ is a known function, and Γ is the boundary of the
domain Ω. We can divide operator T1 into two parts, R

and S with considering linear and nonlinear operators,
respectively. Thus, Equation (2) may also be stated as

R Ψð Þ + S Ψð Þ − h rð Þ = 0: ð5Þ

According to the homotopy strategy, we develop a
homotopy ρðr, θÞ: Ω × ½0, 1�⟶ℝ which satisfies

H Ψ, θð Þ = 1 − θð Þ R Ψð Þ − R Ψ0ð Þ½ � + θ R Ψð Þ − S Ψð Þ − h rð Þ½ �,
ð6Þ

or

H Ψ, θð Þ = R Ψð Þ − R Ψ0ð Þ + pL Ψ0ð Þ + θ S Ψð Þ − h rð Þ½ � = 0,
ð7Þ

where θ ∈ ½0, 1� is termed as homotopy parameter and Ψ0 is
an initial guess of Equation (2) that complies with the
boundary conditions. Since the definition of HPM states that
θ is estimated as a small parameter, so, we may consider
the solution of Equation (5) in terms of a power series
of θ such as

Ψ =Ψ0 + θΨ1 + θ2Ψ2+⋯: ð8Þ

Choosing θ = 1, the estimated solution of Equation (2)
is acquired as

Ψ = lim
θ⟶1

Ψ =Ψ0 +Ψ1 +Ψ2 +Ψ3+⋯: ð9Þ

The nonlinear terms are evaluated as

SΨ ς, ξð Þ = 〠
∞

n=0
θnHn Ψð Þ, ð10Þ

where polynomials HnðΨÞ are presented such as

Hn Ψ0 +Ψ1+⋯+Ψnð Þ

= 1
n!

∂n

∂θn
S 〠

∞

i=0
θiΨi

 ! !
θ=0

, n = 0, 1, 2,⋯:
ð11Þ

Since the series depends on the nonlinear operator S,
therefore, the results obtained in Equation (8) are convergent.

3. Fractional Complex Transform

In this segment, we illustrate the concept of fractional com-
plex transform in such a way that it concerts a fractional
problem into its differential parts such as [25–27]

ΔS = Δξα

Γ 1 + αð Þ , ð12Þ

where ΔS is nominated as a slighter scale. On a slighter scale,
FKEE reacts discontinuously, in particular at the top of the
solitary wave, whereas the heavier scale forecasts a coherent
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solitary wave. We use this transformation of Equation (12)
in a fractional differential problem to change a fractal space
in a lighter scale. Thus, a smooth space refers to a smooth
space with a heavier scale, also called as the two-scale trans-
form [28, 29].

4. Numerical Application

Example 1. We may rewrite Equation (1) such as

∂αΨ
∂ξα

= iΨςς + i2Ψ Ψj j2À Á
ς
+ iΨ Ψj j4, ð13Þ

with the following initial conditions

Ψ ς, 0ð Þ = μeiς: ð14Þ

Now, we use Equation (12) to convert it in differential
parts. So, Equation (13) can be written as

∂Ψ
∂S

= iΨςς + 2iΨ Ψj j2À Á
ς
+ iΨ Ψj j4: ð15Þ

We may write it as follows:

∂Ψ
∂S

= iΨςς + 2i ΨΨς
�Ψ +Ψ2 �Ψς

À Á
+ iΨ3 �Ψ

2, ð16Þ

where jΨj2 =Ψ�Ψ and �Ψ is the conjugate of Ψ.

We can select Ψðς, 0Þ = μeiς by using the given initial values.
Thus, HPM can be employed to Equation (16) to get the
following series:

∂Ψ1
∂S

= iΨ0ςς + 2i Ψ0Ψ0ς �Ψ0 +Ψ2
0 �Ψ0ς

À Á
+ iΨ3

0 �Ψ
2
0,

∂Ψ2
∂S

= iΨ1ςς + 2i Ψ0Ψ0ς �Ψ1 +Ψ0Ψ1ς �Ψ0 +Ψ1Ψ0ς �Ψ0
�

+Ψ2
0 �Ψ1ς + 2Ψ0Ψ1ς �Ψ0ς

+ i 2�Ψ0 �Ψ1Ψ
3
0 + 3Ψ2

0Ψ1 �Ψ
2
0

� �
,

∂Ψ3
∂S

= iΨ2ςς + 2i Ψ0Ψ0ς �Ψ2 +Ψ0Ψ1ς �Ψ1 +Ψ0Ψ2ς �Ψ0
�

+Ψ1Ψ0ς �Ψ1 +Ψ1Ψ1ς �Ψ0 +Ψ2Ψ0ς �Ψ0 +Ψ2
0 �Ψ2ς

+ 2Ψ0Ψ1 �Ψ1ς +Ψ2
1 �Ψ0ς

�
+ i �Ψ

2
1Ψ

3
0 + 2�Ψ0 �Ψ2Ψ

3
0

�
+ 6Ψ2

0Ψ1 �Ψ0 �Ψ1 + 3Ψ0Ψ
2
1 �Ψ

2
0 + 3Ψ2

0Ψ2 �Ψ
2
0
�
:

ð17Þ

Hence, the derived results are obtained as follows:

Ψ0 = μeiς,

Ψ1 = iμeiς μ4 − 1
À Á

S,

Ψ2 = −μeiς μ4 − 1
À Á2 S2

2 ,

Ψ3 = μeiς i + 4μ2 − iμ4
À Á

μ4 − 1
À Á2 S3

6 :

ð18Þ

On continuing this process, we can achieve the following
series:

Ψ ς, Sð Þ = μeiς + iμeiς μ4 − 1
À Á

S − μeiς μ4 − 1
À Á2 S2

2

+ μeiς i + 4μ2 − iμ4
À Á

μ4 − 1
À Á2 S3

6 +⋯:

ð19Þ

Using Equation (12), we can get

Ψ ς, ξð Þ = μeiς + iμeiς μ4 − 1
À Á ξα

Γ 1 + αð Þ

−
μeiς

2 μ4 − 1
À Á2 ξα

Γ 1 + αð Þ
� �2

+ μeiς

6 i + 4μ2 − iμ4
À Á

μ4 − 1
À Á2 ξα

Γ 1 + αð Þ
� �3

+⋯,

ð20Þ

which can be in closed form of [30, 31] at α = 1

Ψ ς, ξð Þ = eiς

1 + 1/μ4 − 1ð Þe4iξÂ Ã1/4 : ð21Þ

Example 2. We may rewrite Equation (2) such as

∂αΨ
∂ξα

+ ∂Ψ
∂ς

� �
− iΦ − iΨ Φj j2 = 0,

∂αΦ
∂ξα

+ ∂Φ
∂ς

� �
− iΨ − iΦ Ψj j2 = 0,

ð22Þ

with the following initial conditions:

Ψ ς, 0ð Þ = μeiς,

Φ ς, 0ð Þ = ηeiς:
ð23Þ
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Now, we use Equation (12) to convert it in differential
parts. So, the above system of Equation (22) becomes as

∂Ψ
∂S

+ ∂Ψ
∂ς

− iΦ − iΨ Φj j2 = 0,

∂Φ
∂S

+ ∂Φ
∂ς

− iΨ − iΦ Ψj j2 = 0:
ð24Þ

We may write it as follows:

∂Ψ
∂S

+ ∂Ψ
∂ς

− iΦ − iΨΦ�Φ = 0,

∂Φ
∂S

+ ∂Φ
∂ς

− iΨ − iΦΨ�Ψ = 0,
ð25Þ

where jΨj2 =Ψ�Ψ and jΦj2 =Φ�Φ with �Ψ and �Φ are the
conjugate of Ψ and Φ, respectively.

We can select Ψðς, 0Þ = μeiς and Φðς, 0Þ = ηeiς by using
the given initial values. Thus, HPM can be employed to
Equation (25) to get the following series:

∂Ψ1
∂S

+ ∂Ψ0
∂ς

− iΦ0 − iΨ0Φ0 �Φ0 = 0, Ψ1 ς, 0ð Þ = 0,

∂Φ1
∂S

+ ∂Φ0
∂ς

− iΨ0 − iΦ0Ψ0 �Ψ0 = 0, Ψ1 ς, 0ð Þ = 0,

∂Ψ2
∂S

+ ∂Ψ1
∂ς

− iΦ1 − i Ψ0Φ0 �Φ1 +Ψ0Φ1 �Φ0 +Ψ1Φ0 �Φ0
À Á

= 0,

 Ψ2 ς, 0ð Þ = 0,

∂Φ2
∂S

+ ∂Φ1
∂ς

− iΨ1 − i Φ0Ψ0 �Ψ1 +Φ0Ψ1 �Ψ0 +Φ1Ψ0 �Ψ0
À Á

= 0,

 Φ2 ς, 0ð Þ = 0,

∂Ψ3
∂S

+ ∂Ψ2
∂ς

− iΦ2 − i Ψ0Φ0 �Φ2 +Ψ0Φ1 �Φ2
À

+Ψ0Φ2 �Φ0 +Ψ1Φ0 �Φ1 +Ψ1Φ1 �Φ0 +Ψ2Φ0 �Φ0Þ = 0,
 Ψ3 ς, 0ð Þ = 0,

∂Φ3
∂S

+ ∂Φ2
∂ς

− iΨ2 − i Φ0Ψ0 �Ψ2 +Φ0Ψ1 �Ψ1 +Φ0Ψ2 �Ψ0
À

+Φ1Ψ0 �Ψ1 +Φ1Ψ1 �Ψ0 +Φ2Ψ0 �Ψ0Þ = 0, Φ3 ς, 0ð Þ = 0:
ð26Þ

Hence, the derived results are obtained as follows:

Ψ ς, 0ð Þ = μeiς,

Φ ς, 0ð Þ = ηeiς,

Ψ1 ς, Sð Þ = ieiς η − μ + η2μ
Â Ã

S,

Φ1 ς, Sð Þ = ieiς μ − η + μ2η
Â Ã

S,

Ψ2 ς, Sð Þ = i2eiς η3 + 2μ + η4μ + 2η2μ −2 + μ2
À ÁÂ

+ η −2 + 3μ2
À ÁÃ S2

2 ,

Φ2 ς, Sð Þ = i2eiς μ3 + 2η + μ4η + 2μ2η −2 + η2
À ÁÂ

+ μ −2 + 3η2
À ÁÃ S2

2 :

ð27Þ

On continuing this process, we can achieve the following
series:

Ψ ς, Sð Þ = μeiς + ieiς η − μ + η2μ
Â Ã

S + i2eiς η3 + 2μ + η4μ
Â

+ 2η2μ −2 + μ2
À Á

+ η −2 + 3μ2
À ÁÃ S2

2 +⋯,

Φ ς, Sð Þ = ηeiς + ieiς μ − η + μ2η
Â Ã

S + i2eiς μ3 + 2η + μ4η
Â

+ 2μ2η −2 + η2
À Á

+ μ −2 + 3η2
À ÁÃ S2

2 +⋯:

ð28Þ
Using Equation (12), we can get

Ψ ς, ξð Þ = μeiς + ieiς η − μ + η2μ
Â Ã

ηα + i2

2 e
iς η3 + 2μ + η4μ
Â

+ 2η2μ −2 + μ2
À Á

+ η −2 + 3μ2
À ÁÃ ηα

Γ 1 + αð Þ
� �2

+⋯,

Φ ς, ξð Þ = ηeiς + ieiς μ − η + μ2η
Â Ã

ηα + i2

2 e
iς μ3 + 2η + μ4η
Â

+ 2μ2η −2 + η2
À Á

+ μ −2 + 3η2
À ÁÃ ηα

Γ 1 + αð Þ
� �2

+⋯:

ð29Þ
By solving the above equations and using the approxi-

mate solution,

Ψ ς, ξð Þ = 〠
N

i=0
Ψi ς, ηð Þ 1

n

� �i

,

Φ ς, ξð Þ = 〠
N

i=0
Φi ς, ηð Þ 1

n

� �i

:

ð30Þ

5. Results and Discussion

This segment presents the results and discussion for the ana-
lytical solution of the FKKE and FMTP. It is believed that
after a small number of repetitions, the predicted results
quickly approach the exact solution. Figure 1 have been
demonstrated into two parts: (a) the real part of the surface
solution and (b) the imaginary part of the surface solution at
−1 ≤ ς ≤ 1 and 0 ≤ ξ ≤ 1 with α = 1. Figure 2 provides (a) real
part of plot distribution and (b) imaginary part of plot distri-
bution for α = 0:25, 0:50, 0:75, 1 at ξ = 1. Similarly, Figure 3
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Figure 2: Plot distribution for different values of α at ξ = 1.
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Figure 1: Surface solution of Equation (13) when α = 1.
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has been divided into two parts: (a) real part of Ψ and Φ and
(b) imaginary part of Ψ and Φ at −1 ≤ ς ≤ 1 and 0 ≤ ξ ≤ 5
with α = 1. Figure 4 provides (a) real part of plot distribution
for Ψ and Φ and (b) imaginary part of plot distribution
for Ψ and Φ for α = 0:25, 0:50, 0:75, 1 at ξ = 1. We con-
sider μ = η = 2 for the graphical representation in both
examples.

6. Conclusion

In the present work, we have successfully applied a two-scale
approach for the analytical solution of the FKKE and FMTP
that arises in quantum field theory. This two-scale approach
is capable to handle the PDES of fractional order without
any small perturbation theory. We converted the fractional
derivative into classical form and implemented the scheme
of HPM. The obtained results declare that the two-scale
approach possesses a high level of accuracy. The leading
novelty of the suggested approach consists of the following
beauty that it can deal promptly without any discretization.
We used Mathematica 11 to represent the graphical struc-
tures and the iterative results. The graphical representations
and plot distributions reveal that this approach has an excel-
lent performance in finding the analytical solution of the
FKKE and FMTP. In the future, we believe that the two-
scale approach is suitable and feasible for other fractional
differential problems arising in science and engineering.
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Themain goal of this paper is to introduce a new scheme for the approximate solution of 1D, 2D, and 3Dwave equations. The recurrence
relation is very important to deal with the approximate solution of differential problems. We construct a scheme with the help of the
Laplace-Carson integral transform (LcIT) and the homotopy perturbation method (HPM), called Laplace-Carson homotopy integral
transform method (LcHITM). LcIT produces the recurrence relation and destructs the restriction of variables whereas HPM gives the
successive iteration of the relation using the initial conditions. The convergence analysis is provided to study the wave equation with
multiple dimensions. Some numerical examples are considered to show the efficiency of this scheme. Graphical representation and
plot distribution between the approximate and the exact solution predict the high rate of convergence of this approach.

1. Introduction

Numerous physical phenomena in real world are modeled
using partial differential equations (PDEs) in a variety of
applied science fields including fluid dynamics, mathemati-
cal biology, quantum physics, chemical kinetics, and linear
optics [1–3]. There are various perturbation approaches that
can be used to analytically solve the PDEs. Although the
calculations for these strategies are pretty straightforward,
their limitations are predicated on the assumption of small
parameters. As a result, many researchers are searching for
novel methods to get around these restrictions. Various
researchers and scientists have studied multiple novel
methods for getting the analytical solution that are reason-
ably close to the precise solutions such as homotopy analysis
method [4], modified extended tanh method [5], new
Kudryashov’s method [6], Chun-Hui He’s iteration method
[7], subequation method [8], exp-function method [9], mod-
ified exponential rational method [10], homotopy asymp-
totic method [11], modified extended tanh expansion [12],

fractal variational iteration transform method [13], Laplace
homotopy perturbation transform method [14], residual
power series (RPS) method [15], and Adomian decomposi-
tion method [16]. In the past, many experts and researchers
established the application of the homotopy perturbation
method (HPM) [17, 18] in various physical problems,
because this approach consistently transforms the challeng-
ing issue into a straightforward resolution. The method
yields a physical problem, because this approach consistently
transforms the challenging issue into a straightforward reso-
lution. The method yields a very rapid convergence of the
solution perturbation theory and showed the ability to be a
very strong mathematical tool.

The wave equation, which describes the wave propaga-
tion phenomenon, is a partial differential equation for a sca-
lar function. It is influenced by time and one or more spatial
factors. The wave equations perform an important role in
different area of engineering, physics, and scientific applica-
tions. Wazwaz [19] studied linear and nonlinear problems in
bounded and unbounded domains using the variational
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iteration method. Ghasemi et al. [20] employed the homo-
topy perturbation method to derive the numerical solution
of two-dimensional nonlinear differential equation. Keskin
and Oturanc [21] applied reduced differential transform
method to various wave equations. Ullah et al. [22] proposed
optimal homotopy asymptotic method to obtain the analytic
series solution of wave equations. Adwan et al. [23] pre-
sented the numerical solution of multidimensional wave
equations and showed the accuracy of proposed techniques.
Jleli et al. [24] studied the framework of the homotopy per-
turbation transform method for analytic treatment of wave
equations. Mullen and Belytschko [25] provided the finite
element scheme for the examination of two-dimensional
wave equation and considered some semidiscretizations.
These schemes have many limitations and assumptions in
finding the approximate solution of the problems. To over-
come these limitations and restriction of variable, we intro-
duce a new iterative strategy for the approximate solution
of multidimensional wave problem.

The variational iteration method (VIM), Laplace trans-
form, and homotopy analysis method (HAM) have some
limitations such as VIM involves the integration and pro-
duces the constant of integration, Laplace transform involves
the convolution theorem, and HAM also considered some
assumptions. The Laplace-Carson integral transform is very
easy to implement to the differential problems. The purpose
of this paper is to apply LcHITM with the combination of
the Laplace-Carson integral transform and the HPM for
wave problems of different dimensions. Less computations,
fast convergence, and significant results make this scheme
unique and different than other approaches of literature.
This strategy derives the series of solution with fast conver-
gence and yields the approximate solution very close to the
precise solution. This approach is more useful and reliable
for the solution of these problems. This paper is introduced
as follows: in Section 2, we give a brief detail of the Laplace-
Carson integral transform. In Section 3, we present the for-
mulation of LcHITM for solving multidimensional prob-
lems. We provide the convergence analysis in Section 4.
Some numerical applications are demonstrated to show the
effectiveness in Section 5, and eventually, we discuss the con-
clusion in Section 6.

2. Preliminary Definitions of LcIT

In this section, we describe a few fundamental characteristics
and concepts of LcIT that are very helpful in the formulation
of this scheme.

Definition 1. Let ϑðϕÞ be a function precise for σ ≥ 0; then,

L ϑ ϕð Þf g = F sð Þ =
ð∞
0
ϑ ϕð Þe−σϕdϕ ð1Þ

is called the Laplace transform.

Definition 2. The LcIT of a function ϑðϕÞ is defined as [26]

Lc ϑ ϕð Þ½ � = R σð Þ = σ
ð∞
0
ϑ ϕð Þe−σϕdϕ, ϕ ≥ 0, k1 ≤ σ ≤ k2, ð2Þ

where Lc represents the symbol of LcIT, k1 and k2 are con-
stants, and σ is the independent variable of the transformed
function ϕ. Conversely, since RðσÞ is the LcIT of function
ϑðϕÞ, then

Lc
−1 R σð Þ½ � = ϑ ϕð Þ: ð3Þ

Lc
−1 is called inverse LcIT.

Proposition 3. LetLcfϑ1ðϕÞg = R1ðσÞandLcfϑ2ðϕÞg = R2ðσÞ;
then [27]

Lc au1 ϕð Þ + bu2 ϕð Þf g = aS ϑ1 ϕð Þf g + bS ϑ2 ϕð Þf g,
⇒Lc au1 ϕð Þ + bu2 ϕð Þf g = aR1 σð Þ + bR2 σð Þ:

ð4Þ

Proposition 4. If AfϑðϕÞg = RðσÞ, the differential properties
are defined as [26, 27]

Lc ϑ′ ϕð Þ
n o

= σR σð Þ − σϑ 0ð Þ,

Lc ϑ′′ ϕð Þ
n o

= σ2R σð Þ − σ2ϑ 0ð Þ − σϑ′ 0ð Þ,

Lc ϑm ϕð Þf g = σmR σð Þ − σmϑ 0ð Þ − σm−1ϑ′ 0ð Þ−⋯−σϑm−1 0ð Þ:
ð5Þ

3. Formulation of LcHITM

In this segment, we formulate the strategy of LcHITM for
finding the approximate solutions of 1D, 2D, and 3D wave
equation flows. We observe that this strategy is independent
of integration and any hypothesis during the formulation of
this scheme. We consider a differential problem such that

ϑ′′ ς, ϕð Þ = ϑ ς, ϕð Þ + g ϑð Þ + g ς, ϕð Þ, ð6Þ

with initial condition

ϑ ς, 0ð Þ = a1,
ϑϕ ς, 0ð Þ = a2,

ð7Þ

where ϑ denotes the function in region of time ϕ, gðϑÞ
is considered as a nonlinear term, and gðς, ϕÞ is source
term arbitrary constant a. Employing LcIT on Equation
(6), it yields

Lc ϑ′′ ς, ϕð Þ
h i

= Lc ϑ ς, ϕð Þ + g ϑð Þ + g ς, ϕð Þ½ �: ð8Þ
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Using proposition (5) of LcIT, we obtain

σ2R σð Þ − σ2ϑ ς, 0ð Þ − σϑ′ ς, 0ð Þ = Lc ϑ ς, ϕð Þ + g ϑð Þ + g ς, ϕð Þ½ �:
ð9Þ

Hence, RðσÞ is evaluated such as

R σ½ � = ϑ ς, 0ð Þ + ϑ′ ς, 0ð Þ
σ

+ 1
σ2 Lc ϑ ς, ϕð Þ + g ϑð Þ + g ς, ϕð Þ½ �:

ð10Þ

Operating inverse LcIT on Equation (10), we get

ϑ ς, ϕð Þ = ϑ ς, 0ð Þ + ϕϑ′ ς, 0ð Þ + Lc
−1 1

σ2
Lc ϑ ς, ϕð Þ + g ϑð Þ + g ς, ϕð Þf g

� �
:

ð11Þ

Using initial conditions, we get

ϑ ς, ϕð Þ = a1 + ϕa2 + Lc
−1 1

σ2
Lc ϑ ς, ϕð Þ + g ϑð Þ + g ς, ϕð Þf g

� �
:

ð12Þ

Using proposition (4), we obtain

ϑ ς, ϕð Þ = a1 + ϕa2 + Lc
−1 1

σ2
Lc g ς, ϕð Þf g

� �
+ Lc

−1 1
σ2 Lc ϑ ς, ϕð Þ + g ϑð Þ½ �
� �

:

ð13Þ

This implies that

ϑ ς, ϕð Þ =G ς, ϕð Þ + Lc
−1 1

σ2
Lc ϑ ς, ϕð Þ + g ϑð Þ½ �

� �
: ð14Þ

Equation (14) is called the formulation of LcHITM of
Equation (6) and

G ς, ϕð Þ = a1 + ϕa2 + Lc
−1 1

σ2
Lc g ς, ϕð Þf g

� �
: ð15Þ

We introduce HPM in such a way that

ϑ ϕð Þ = 〠
∞

i=0
piϑi nð Þ = ϑ0 + p1ϑ1 + p2ϑ2+⋯, ð16Þ

and nonlinear terms gðϑÞ are evaluated by considering
an algorithm:

g ϑð Þ = 〠
∞

i=0
piHi ϑð Þ =H0 + p1H1 + p2H2+⋯, ð17Þ

where Hn polynomials are derived as

Hn ϑ0 + ϑ1+⋯+ϑnð Þ = 1
n!

∂n

∂pn
g 〠

∞

i=0
piϑi

 ! !
p=0

, n = 0, 1, 2,⋯:

ð18Þ

Use Equations (16)–(18) in Equation (14) to compare
the identical power of p such as

p0 : ϑ0 ς, ϕð Þ =G ς, ϕð Þ,

p1 : ϑ1 ς, ϕð Þ = Lc
−1 1

σ2 Lc ϑ0 ς, ϕð Þ +H0 ϑð Þf g
� �

,

p2 : ϑ2 ς, ϕð Þ = Lc
−1 1

σ2 Lc ϑ1 ς, ϕð Þ +H1 ϑð Þf g
� �

,

p3 : ϑ3 ς, ϕð Þ = Lc
−1 1

σ2 Lc ϑ2 ς, ϕð Þ +H2 ϑð Þf g
� �

,

⋮:

ð19Þ

On proceeding this process, this yields

ϑ ς, ϕð Þ = ϑ0 + ϑ1 + ϑ2+⋯ = 〠
∞

i=0
ϑi: ð20Þ

Thus, Equation (20) is the approximate result of the
differential problem (6).

4. Convergence Analysis

Let P and Q be Banach spaces where X : P⟶Q is a nonlin-
ear mapping. If the series produced by HPM is

ϑn P, ςð Þ = X ϑn−1 P, ςð Þð Þ = 〠
n−1

i=0
ϑi P, ςð Þ, n = 1, 2, 3⋯ ,

ð21Þ

the following conditions must be true:

(1) kϑnðP, ςÞ − ϑðP, ςÞk ≤ φnkϑðP, ςÞ − ϑðP, ςÞk
(2) ϑnðP, ςÞ is forever in the neighbourhood of ϑðP, xÞ

meaning ϑnðP, ςÞ ∈ BðϑðP, ςÞ, rÞ = fϑ∗ðP, ςÞ/kϑ∗ðP, ςÞ
− ϑðP, ςÞkg

(3) limn⟶∞ϑnðP, xÞ = ϑðP, ςÞ

Proof.

(1) We demonstrate condition (1) by recognition on n,
such as kϑ1 − ϑk = kGðϑ0Þ − ϑk, and the Banach fixed
point theorem states that X has a fixed point ϑ, i.e.,
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XðϑÞ = ϑ; therefore,

ϑ1 − ϑk k = G ϑ0ð Þ − ϑk k = G ϑ0ð Þ −G ϑð Þk k
≤ φ ϑ0 − ϑk k = φ ϑ P, ςð Þ − ϑk k, ð22Þ

where X is a nonlinear mapping. Consider that kϑn−1 − ϑk
≤ φn−1kϑðP, 0Þ − ϑðP, xÞk is an induction hypothesis; then,

ϑn − ϑk k = G ϑn−1ð Þ − G ϑð Þk k ≤ φ ϑn−1 − ϑk k ≤ φφn−1 ϑ P, ςð Þ − ϑk k
ð23Þ

(2) Our initial challenge is to demonstrate the ϑðP, ςÞ
∈ BðϑðP, ςÞ, rÞ, which is attained by replacing m.
Thus, m = 1, kϑðP, ςÞ − ϑðP, ςÞk = kϑðP, 0Þ − ϑðP, ςÞk
≤ r with ϑðP, 0Þ as an initial condition. Consider
that kϑðP, xÞ − ϑðP, ςÞk ≤ r for m − 2 is an induction
theory, so

ϑ P, ςð Þ − ϑ P, ςð Þk k = ϑm−2 P, ςð Þ − f m Pð Þ
Γ δ −m + 1ð Þ x

δ−m


≤ ϑm−1 P, ςð Þ − ϑ P, ςð Þk k
+ f m Pð Þ

Γ δ −m + 1ð Þ x
δ−m


 = r

ð24Þ

Now, ∀n ≥ 1, using (1) we get

ϑn − ϑk k ≤ φn ϑ P, ςð Þ − ϑk k ≤ φnr ≤ r: ð25Þ

(3) Using condition (2) and limn⟶∞φn = 0, it provides
that limn⟶∞kϑn − ϑk = 0; hence,

lim
n⟶∞

ϑn = ϑ ð26Þ

Thus, ϑ converges.

5. Numerical Applications

We illustrate some numerical applications to check the
validity and authenticity of LcHITM. We observe that this
strategy is extremely convenient to utilize and generate the
series of convergence much easier than other schemes. We
also study the physical behaviors of these surface solutions.
The error distribution is obtained graphically to show that
the results obtained by LcHITM are very close to the
precise results.

5.1. Example 1. Suppose a one-dimensional wave equation

∂2ϑ
∂ϕ2

= ∂2ϑ
∂ς2

− 3ϑ, ð27Þ

with the initial condition

ϑ ς, 0ð Þ = 0,
ϑϕ ς, 0ð Þ = 2 cos ςð Þ,

ð28Þ

and boundary condition

ϑ 0, ϕð Þ = sin 2ϕð Þ,
ϑς π, ϕð Þ = − sin 2ϕð Þ:

ð29Þ

Using LcIT on Equation (27), we obtain RðσÞ such as

R σ½ � = ϑ ς, 0ð Þ + ϑ′ ς, 0ð Þ
σ

+ 1
σ2

A
∂2ϑ
∂ς2

− 3ϑ
" #

: ð30Þ

Using inverse LcIT, it yields

ϑ ς, ϕð Þ = ϑ ς, 0ð Þ + ϕϑϕ ς, 0ð Þ + Lc
−1 1

σ2
Lc

∂2ϑ
∂ς2

− 3ϑ
( )" #

:

ð31Þ

Now, apply HPM to obtain He’s polynomials

〠
∞

i=0
piϑi ς, ϕð Þ = 2ϕ cos ςð Þ + Lc

−1 1
σ2

Lc 〠
∞

i=0
pi
∂2ϑi
∂ς2

− 3〠
∞

i=0
piϑ

( )" #
:

ð32Þ

Evaluating similar components of p, we obtain

p0 : ϑ0 ς, ϕð Þ = ϑ ς, 0ð Þ = 2ϕ cos ςð Þ,

p1 : ϑ1 ς, ϕð Þ = Lc
−1 1

σ2
Lc

∂2ϑ0
∂ς2

− 3ϑ0

( )" #
= −

2ϕð Þ3
3! cos ςð Þ,

p2 : ϑ2 ς, ϕð Þ = Lc
−1 1

σ2
Lc

∂2ϑ1
∂ς2

− 3ϑ1

( )" #
= 2ϕð Þ5

5! cos ςð Þ,

p3 : ϑ3 ς, ϕð Þ = Lc
−1 1

σ2
Lc

∂2ϑ2
∂ς2

− 3ϑ2

( )" #
= −

2ϕð Þ7
7! cos ςð Þ,

p4 : ϑ4 ς, ϕð Þ = Lc
−1 1

σ2
Lc

∂2ϑ3
∂ς2

− 3ϑ3

( )" #
= 2ϕð Þ9

9! cos ςð Þ,

⋮:

ð33Þ

In the similar way, we can consider the approximate
series such as
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ϑ ς, ϕð Þ = ϑ0 ς, ϕð Þ + ϑ1 ς, ϕð Þ + ϑ2 ς, ϕð Þ + ϑ3 ς, ϕð Þ + ϑ4 ς, ϕð Þ+⋯,

ς, ϕð Þ = cos ςð Þ 2ϕ −
2ϕð Þ3
3! + 2ϕð Þ5

5! −
2ϕð Þ7
7! + 2ϕð Þ9

9!

 !
+⋯,

ð34Þ

which can approach to

ϑ ς, ϕð Þ = cos ςð Þ sin 2ϕð Þ: ð35Þ

Figure 1 contains two diagrams: (a) the LcHITM results
of ϑðς, ϕÞ and (b) the exact results of ϑðς, ϕÞ at −2 ≤ ς ≤ 2 and
0 ≤ ϕ ≤ 0:5 for 1D wave problem. Figure 2 represents the
graphical error of 1D wave equation between the approxi-
mate and the precise solutions at 0 ≤ ς ≤ 20 with ϕ = 0:5.
We observe that the current approach demonstrates the
strong agreement with the precise answer to the problem
(5.1) only after a few iterations. The rate of convergence
shows that LcHITM is a relatable approach for ϑðς, ϕÞ. It
states that we can effectively model any surface in accor-
dance with the desired physical processes appearing in
science and engineering.

5.2. Example 2. Suppose a two-dimensional wave equation

∂2ϑ
∂ϕ2

= 2 ∂2ϑ
∂ς2

+ ∂2ϑ
∂ξ2

 !
+ 6ϕ + 2ς + 4ξ, ð36Þ

with the initial condition

ϑ ς, ξ, 0ð Þ = 0,
ϑϕ ς, ξ, 0ð Þ = 2 sin ςð Þ sin ξð Þ,

ð37Þ

and boundary condition

ϑ 0, ξ, ϕð Þ = ϕ3 + 2ϕ2ξ,
ϑς π, ξ, ϕð Þ = ϕ3 + πϕ2 + 2ϕ2ξ,

ϑ ς, 0, ϕð Þ = ϕ3 + ϕ2ς,
ϑς ς, π, ϕð Þ = ϕ3 + 2πϕ2 + ϕ2ς:

ð38Þ

Apply LcIT on

Lc
∂2ϑ
∂ϕ2

" #
= Lc 2 ∂2ϑ

∂ς2
+ ∂2ϑ
∂ξ2

 !
+ 6ϕ + 2ς + 4ξ

" #
: ð39Þ

Using the property functions of LcIT, we obtain

σ2R σð Þ − ϑ ς, 0ð Þ − ϑ′ ς, 0ð Þ
σ

= Lc 2 ∂2ϑ
∂ς2

+ ∂2ϑ
∂ξ2

 !
+ 6ϕ + 2ς + 4ξ

" #
,

σ2R σð Þ − ϑ ς, 0ð Þ − ϑ′ ς, 0ð Þ
σ

= Lc 2 ∂2ϑ
∂ς2

+ ∂2ϑ
∂ξ2

 !" #
+ 6Lc ϕ½ � + 2ςLc 1½ � + 4ξLc 1½ �:

ð40Þ

Hence, RðσÞ is evaluated. Using LcIT on Equation (36),

we obtain RðσÞ such as

R σ½ � = 6
σ3

+ 2ς
σ2

+ 4ξ
σ2 + ϑ ς, 0ð Þ + ϑ′ ς, 0ð Þ

σ
+ 1
σ2 Lc 2 ∂2ϑ

∂ς2
+ ∂2ϑ
∂ξ2

 " #
:

ð41Þ

Using inverse LcIT, it yields

ϑ ς, ξ, ϕð Þ = ϕ3 + ςϕ2 + 2ξϕ2 + ϑ ς, 0ð Þ + ϕϑϕ ς, 0ð Þ

+ Lc
−1 1

σ2
Lc 2 ∂2ϑ

∂ς2
+ ∂2ϑ
∂ξ2

 ( )" #
:

ð42Þ

Now, apply HPM to obtain He’s polynomials

〠
∞

i=0
piϑi ς, ξ, ϕð Þ = ϕ3 + ςϕ2 + 2ξϕ2 + 2ϕ sin ςð Þ sin ξð Þ

+ Lc
−1 1

σ2 Lc 2 〠
∞

i=0
pi
∂2ϑi
∂ς2

+ 〠
∞

i=0
pi
∂2ϑi
∂ξ2

 !( )" #
:

ð43Þ

Evaluating similar components of p, we obtain

p0 : ϑ0 ς, ξ, ϕð Þ = ϑ ς, 0ð Þ = ϕ3 + ςϕ2 + 2ξϕ2 + 2ϕ sin ςð Þ sin ξð Þ,

p1 : ϑ1 ς, ξ, ϕð Þ = Lc
−1 1

σ2
Lc

∂2ϑ0
∂ς2

+ ∂2ϑ0
∂ξ2

( )" #
= −

2ϕð Þ3
3! sin ςð Þ sin ξð Þ,

p2 : ϑ2 ς, ξ, ϕð Þ = Lc
−1 1

σ2
Lc

∂2ϑ1
∂ς2

+ ∂2ϑ1
∂ξ2

( )" #
= 2ϕð Þ5

5! sin ςð Þ sin ξð Þ,

p3 : ϑ3 ς, ξ, ϕð Þ = Lc
−1 1

σ2
Lc

∂2ϑ2
∂ς2

+ ∂2ϑ2
∂ξ2

( )" #
= −

2ϕð Þ7
7! sin ςð Þ sin ξð Þ,

p4 : ϑ4 ς, ξ, ϕð Þ = Lc
−1 1

σ2
Lc

∂2ϑ3
∂ς2

+ ∂2ϑ3
∂ξ2

( )" #
= 2ϕð Þ9

9! sin ςð Þ sin ξð Þ,

⋮:

ð44Þ

In the similar way, we can consider the approximate
series such as

ϑ ς, ξ, ϕð Þ = ϑ0 ς, ξ, ϕð Þ + ϑ1 ς, ξ, ϕð Þ + ϑ2 ς, ξ, ϕð Þ + ϑ3 ς, ξ, ϕð Þ
+ ϑ4 ς, ξ, ϕð Þ+⋯,

ϑ ς, ξ, ϕð Þ = ϕ3 + ςϕ2 + 2ξϕ2 + sin ςð Þ sin ξð Þ

Á 2ϕ − 2ϕð Þ3
3! + 2ϕð Þ5

5! −
2ϕð Þ7
7! + 2ϕð Þ9

9!

 !
+⋯,

ð45Þ

which can approach to

ϑ ς, ξ, ϕð Þ = ϕ3 + ςϕ2 + 2ξϕ2 + sin ςð Þ sin ξð Þ sin 2ϕð Þ: ð46Þ

Figure 3 contains two diagrams: (a) the LcHITM results
of ϑðς, ξ, ϕÞ and (b) the exact results of ϑðς, ξ, ϕÞ at −1 ≤ ς ≤ 1
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and 0 ≤ ϕ ≤ 0:1 with ξ = 0:5 for 2D wave problem. Figure 4
represents the graphical error of 2D wave equation between
the approximate and the precise solutions at 0 ≤ ς ≤ 20 with
ξ = 0:01 and ϕ = 0:01. We observe that current approach
demonstrates the strong agreement with the precise answer
to the problem (5.2) only after a few iterations. The rate of
convergence shows that LcHITM is a reliable approach for
ϑðς, ξ, ϕÞ. It states that we can effectively model any surface
in accordance with the desired physical processes appearing
in nature.

5.3. Example 3.Consider the three-dimensional wave problem

∂2ϑ
∂ϕ2

= ς2

18
∂2ϑ
∂ς2

+ ξ2

18
∂2ϑ
∂ξ2

+ η2

18
∂2ϑ
∂η2

− ϑ, ð47Þ

with the initial condition

ϑ ς, ξ, η, 0ð Þ = 0,

ϑϕ ς, ξ, η, 0ð Þ = ς4ξ4η4,
ð48Þ

0.5

0.0 0.4

0.2

0.0

–2
–1

0
x

t

2

1

ϑ(ϛ,𝜙)

(a) Surface plot for approximate results

0.5

0.0 0.4

0.2

0.0

–2
–1

0
x

t

2
1

ϑ(ϛ,ϕ)

(b) Surface plot for precise results

Figure 1: Surface solutions of 1D wave equation.

Exact
Approximate

5 10 15 20
t

–0.5

0.5

Figure 2: Graphical error between the approximate and the precise results of ϑðς, ϕÞ.
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and boundary condition

ϑ 0, ξ, η, ϕð Þ = 0,

ϑ 1, ξ, η, ϕð Þ = ξ4η4 sinh ϕð Þ,
ϑ ς, 0, η, ϕð Þ = 0,
ϑ ς, 1, η, ϕð Þ = ς4η4 sinh ϕð Þ,
ϑ ς, ξ, 0, ϕð Þ = 0,

ϑ ς, ξ, 1, ϕð Þ = ς4ξ4 sinh ϕð Þ:

ð49Þ

Using LcIT on Equation (47), we obtain RðσÞ such as

R σ½ � = ϑ ς, 0ð Þ + ϑ′ ς, 0ð Þ
σ

+ 1
σ2

Lc
ς2

18
∂2ϑ
∂ς2

+ ξ2

18
∂2ϑ
∂ξ2

+ η2

18
∂2ϑ
∂η2

− ϑ

" #
:

ð50Þ

Using inverse LcIT, it yields

ϑ ς, ξ, η, ϕð Þ = ϑ ς, 0ð Þ + ϕϑϕ ς, 0ð Þ + Lc
−1

Á 1
σ2 Lc

ς2

18
∂2ϑ
∂ς2

+ ξ2

18
∂2ϑ
∂ξ2

+ η2

18
∂2ϑ
∂η2

− ϑ

( )" #
:

ð51Þ

Now, apply HPM to obtain He’s polynomials

〠
∞

i=0
piϑ ς, ξ, η, ϕð Þ = ϕς4ξ4η4 + Lc

−1 1
σ2

Lc 〠
∞

i=0
pi
ς2

18
∂2ϑi
∂ς2

("

+ 〠
∞

i=0
pi
ξ2

18
∂2ϑi
∂ξ2

+ 〠
∞

i=0
pi
η2

18
∂2ϑi
∂η2

− 〠
∞

i=0
piϑ

)#
:

ð52Þ

Evaluating similar components of p, we obtain

p0 : ϑ0 ς, ξ, η, ϕð Þ = ϑ ς, ξ, η, 0ð Þ = ϕς4ξ4η4,

p1 : ϑ1 ς, ξ, ϕð Þ = Lc
−1 1

σ2 Lc
ς2

18
∂2ϑ0
∂ς2

+ ξ2

18
∂2ϑ0
∂ξ2

+ η2

18
∂2ϑ0
∂η2

− ϑ0

( )" #
= ϕ3

3! ς
4ξ4η4,

p2 : ϑ2 ς, ξ, ϕð Þ = Lc
−1 1

σ2 Lc
ς2

18
∂2ϑ1
∂ς2

+ ξ2

18
∂2ϑ1
∂ξ2

+ η2

18
∂2ϑ1
∂η2

− ϑ1

( )" #
= ϕ5

5! ς
4ξ4η4,

p3 : ϑ3 ς, ξ, ϕð Þ = Lc
−1 1

σ2 Lc
ς2

18
∂2ϑ2
∂ς2

+ ξ2

18
∂2ϑ2
∂ξ2

+ η2

18
∂2ϑ2
∂η2

− ϑ2

( )" #
= ϕ7

7! ς
4ξ4η4,

p4 : ϑ4 ς, ξ, ϕð Þ = Lc
−1 1

σ2 Lc
ς2

18
∂2ϑ3
∂ς2

+ ξ2

18
∂2ϑ3
∂ξ2

+ η2

18
∂2ϑ3
∂η2

− ϑ3

( )" #
= ϕ9

9! ς
4ξ4η4,

⋮:

ð53Þ
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(a) Surface plot for approximate results
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(b) Surface plot for precise results

Figure 3: Surface solutions of 2D wave equation.
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Figure 4: Graphical error between the approximate and the precise
results of ϑðς, ξ, ϕÞ.
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In the similar way, we can consider the approximate series
such as

ϑ ς, ξ, η, ϕð Þ = ϑ0 ς, ξ, η, ϕð Þ + ϑ1 ς, ξ, η, ϕð Þ + ϑ2 ς, ξ, η, ϕð Þ
+ ϑ3 ς, ξ, η, ϕð Þ + ϑ4 ς, ξ, η, ϕð Þ+⋯,

ϑ ς, ξ, η, ϕð Þ = ς4ξ4η4 ϕ + ϕ3

3! +
ϕ5

5! +
ϕ7

7! +
ϕ9

9!

� �
+⋯, ð54Þ

which can approach to

ϑ ς, ξ, η, ϕð Þ = ς4ξ4η4 sinh ϕð Þ: ð55Þ

Figure 5 contains two diagrams: (a) the LcHITM results of
ϑðς, ξ, η, ϕÞ and (b) the exact results of ϑðς, ξ, η, ϕÞ at −5 ≤ ς

≤ 5 and 0 ≤ ϕ ≤ 0:05 with ξ = 0:5 and η = 0:5 for 3D wave
problem. Figure 6 represents the graphical error of 3D wave
equation between the approximate and the precise solutions
at 0 ≤ ς ≤ 10with ξ = 0:5, ς = 0:5, and ϕ = 0:1. We observe that
the current approach demonstrates the strong agreement with
the precise answer to the problem (5.3) only after a few itera-
tions. The rate of convergence shows that LcHITM is a reliable
approach for ϑðς, ξ, η, ϕÞ. It states that we can effectively
model any surface in accordance with the desired physical
processes appearing in nature.

6. Conclusion

In this paper, we construct a new scheme known as the
Laplace-Carson homotopy integral transform method (Lc
HITM) for obtaining the approximate solution of 1D, 2D,
and 3D wave equations. The main advantage of LcIT is that
the recurrence relation produces the iteration without any
assumption of a small parameter. HPM helps to produce suc-
cessive iterations in the recurrence relation. The obtained
results show that this approach is very simple to utilize and
derive the series solution in the convergence form. Some graph-
ical results are demonstrated to show the physical nature of
these wave problems. The graphical error of plot distortion
shows that LcHITMhas the best agreement with the exact solu-
tion. We encourage the readers can extend this scheme for the
numerical solution of a nonlinear coupled system of fractional
order in science and engineering for their future work.
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Figure 5: Surface solutions of 3D wave equation.
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Figure 6: Graphical error between the approximate and the precise
results of ϑðς, ξ, η, ϕÞ.
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The fractional-stochastic Radhakrishnan-Kundu-Lakshmanan equation (FSRKLE) is considered here. To attain new hyperbolic,
elliptic, rational, and trigonometric stochastic-fractional solutions, we use two various methods such as the sine-cosine and the
Jacobi elliptic function methods. The solutions acquired are important in understanding some interesting physical phenomena
due to the significance of the Radhakrishnan-Kundu-Lakshmanan equation in designing the propagation of solitons through
an optical fiber. Furthermore, we graph some of the obtained solutions in 3D to display the influence of fractional derivative
and multiplicative noise on these solutions. Finally, we show that when the order of fractional derivative decreases, the surface
shrinks, while the multiplicative noise stabilizes the solutions of FSRKLE a round zero.

1. Introduction

Partial differential equations (PDEs) are found in several
areas of applied science, including quantum mechanics,
plasma physics, nonlinear optics, surface of water waves,
hydrodynamics, molecular biology, fluid dynamics, elastic
media, and biology. Obtaining solutions of PDEs is crucial
for understanding physical phenomena. Therefore, many
effective methods, including exp-function method [1], auxil-
iary equation [2], Darboux transformation [3], sine-cosine
[4], Jacobi elliptic function [5], exp ð−ϕðςÞÞ-expansion [6],
sine-Gordon expansion [7], ðG′/GÞ-expansion [8–10], gen-
eralized Kudryashov [11], perturbation [12–14], extended
trial equation [15, 16], Jacobi elliptic function [17, 18],
Riccati equation [19], tanh-coth [20], homotopy perturbation
[21], modified decomposition [22], and F-expansion [23],
have been constructed to attain exact solutions of PDEs.

Researchers and scientists have focused their attention
over the last two decades on fractional differential equations
(FDEs) that have been found to be more precise than classi-
cal differential equations in explaining complex physical

phenomena in the real life. The idea of fractional derivative
has been used to define various phenomena including fluid
dynamics porous medium, signal processing, viscoelastic
materials, ocean wave, electromagnetism, photonic, chaotic
systems, wave propagation, optical fiber communication,
plasma physics, and nuclear physics. Recently, Atangana
and Goufo [24] have suggested the new conformable frac-
tional derivative called beta-derivative. From this point, let
us define the Atangana conformable derivative (ACD) for
the function ψ : ð0,∞Þ⟶ℝ of order β ∈ ð0, 1� as follows:

Dβ
xψ xð Þ = lim

ε⟶0

ψ x + ε x + 1/Γ βð Þð Þð Þ1−β
� �

− ψ xð Þ
ε

: ð1Þ

The ACD satisfies the following properties for any con-
stant a and b: (1) Dβ

x ½aφðxÞ + bψðxÞ� = aDβ
xφðxÞ + bDβ

xψðxÞ,
(2) Dβ

x ½a� = 0, (3) Dβ
xψðθÞ = ðx + ð1/ΓðβÞÞÞ1−βdψ/dx, (4) If

θ = a/βðx + ð1/ΓðβÞÞÞβ, then Dβ
xψðθÞ = adψ/dθ.

Stochastic partial differential equations (SPDEs), on the
other hand, have been widely addressed as theoretical
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equations for spatial-temporal physical, chemical, and
biological systems related to random perturbations. The
significance of involving stochastic impacts in complex sys-
tem modeling has been emphasized. For example, there is
gaining awareness in using SPDEs to mathematically model
complex phenomena in information systems, condensed
matter physics, biology, climate systems, electrical and
mechanical engineering, materials sciences, and finance.

It is worth noting that two forms widely utilized for sto-
chastic integral are Itô and Stratonovich [25]. Modeling
problems primarily determine which form is acceptable;
however, once that form is selected, an equivalent equation
of the other form can be produced using the same solutions.
As a result, the following relationship can be utilized to
switch between Itô (written as

Ð t
0ϕdW) and Stratonovich

(written as
Ð t
0ϕ ∘ dW):

ðt
0
σϕ sð ÞdW sð Þ =

ðt
0
σϕ sð Þ ∘ dW sð Þ − σ2

2

ðt
0
ϕ sð Þds, ð2Þ

where WðtÞ is a Brownian motion (BM).
To satisfy a higher degree of quality agreement, the fol-

lowing stochastic Radhakrishnan-Kundu-Lakshmanan
equation (FSRKLE) [26–28] is considered:

idφ + γ1D
β
xxφ − iγ2D

β
xφ + γ3 φj j2φ − iγ4φD

β
x φj j2À Áh

−−iγ5D
β
x φj j2φÀ Á

+ iγ6D
β
xxxφ

i
dt + iσφ ∘ dW = 0,

ð3Þ

where φ ∈ℂ, γk for k = 1, 2, 3, 4, 5, 6 are constants and σ is
the noise strength and φ ∘ dW is multiplicative Brownian
motion in the Stratonovich sense. Recently, many investiga-
tors have created exact solutions of FSRKLE (3), with β = 0
and σ = 0, using different methods such as extended simple
equation method [29], first integral method [30], sine-
cosine method [31], Lie group analysis [32], and trial equa-
tion method [33].

The motivation of this article is to attain the exact solu-
tions for FSRKLE (3). We use two separate approaches, the
sine-cosine and the Jacobi elliptic function methods, to
provide a wide range of solutions, including hyperbolic, trig-
onometric, rational, and elliptic functions. The acquired
solutions are helpful for understanding several fascinating
scientific events because of the significance of the RKL in
describing the propagation of solitons through an optical
fiber. Also, by creating 3D representations of the obtained
FSRKLE (3) solutions, we examine the effect of BM on
these solutions.

The article is in the following format: in Section 2, we
determine the wave equation of the FSRKLE (3) by applying
a suitable wave transformation. To develop the analytical
solutions for the FSRKLE in Section 3, we use two different
approaches (3). In Section 4, the impact of the BM on the
solutions obtained is examined. The final section of the
document is the conclusion.

2. Wave Equation for FSRKLE

To obtain the wave equation of the FSRKLE (3), the follow-
ing transformation is utilized:

φ x, tð Þ = ψ ζð Þe iq x,tð Þ−σW tð Þ−σ2tð Þ,

ζ = 1
β

x + 1
Γ βð Þ

� �β

− νt,

q x, tð Þ = −
k
β

x + 1
Γ βð Þ

� �β

+ ωt,

ð4Þ

where the function ψ is deterministic and ν,k, and ω are
unknown constants. Putting Equation (4) into Equation (3)
and utilizing

dφ = −νψ′ + iωψ + 1
2 σ

2ψ − σ2ψ

� �
dt − σψdW

� �
e iq x,tð Þ−σW tð Þ−σ2t½ �,

= −νψ′ + iωψ
� �

dt − σψ ∘ dW
h i

e iq x,tð Þ−σW tð Þ−σ2tð Þ,
ð5Þ

where ð1/2Þσ2ψ is the Itô correction term, and

Dβ
xφ = ψ′ − ikψ

� �
e iq x,tð Þ−σW tð Þ−σ2tð Þ,

Dβ
xxφ = ψ′′ − 2ikψ′ − k2ψ

h i
e iq x,tð Þ−σW tð Þ−σ2tð Þ,

Dβ
xxxφ = ψ′′′ − 3ikψ′′ − 3k2ψ′ + ik3ψ

h i
e iq x,tð Þ−σW tð Þ−σ2tð Þ

φDβ
x φj j2À Á

= 2ψ2ψ′e iq x,tð Þ−3σW tð Þ−3σ2tð Þ,

Dβ
x φj j2φÀ Á

= 3ψ2ψ′ − ikψ3
� �

e iq x,tð Þ−3σW tð Þ−3σ2tð Þ,
ð6Þ

we get for imaginary part

γ6k
3ψ′′′ − 3γ6k2 + γ2 + 2kγ1 + ν

À Á
ψ′

− 3γ5 + 2γ4ð Þψ2ψ′e −2σW tð Þ−2σ2tð Þ = 0,
ð7Þ

and for real part

γ1 + 3kγ6ð Þψ′′ − k2γ1 + kγ2 − k3γ6
À Á

ψ

+ γ3 − kγ5ð Þψ3e −2σW tð Þ−2σ2tð Þ = 0:
ð8Þ

Taking expectation Eð·Þ on both sides for Equations (7)
and (8) and using

E eσW tð Þ
� �

= e σ2/2ð Þt , ð9Þ
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we have

γ6k
3ψ′′′ − 3γ6k2 + γ2 + 2kγ1 + ν

À Á
ψ′ − 3γ5 + 2γ4ð Þψ2ψ′ = 0,

ð10Þ

γ1 + 3kγ6ð Þψ′′ − ω + k2γ1 + kγ2 + k3γ6
À Á

ψ − kγ5 − γ3ð Þψ3 = 0:
ð11Þ

Integrating Equation (10), we get

γ6k
3ψ′′ − 3γ6k2 + γ2 + 2kγ1 + ν

À Á
ψ − γ5 +

2
3 γ4

� �
ψ3 = 0:

ð12Þ

We obtain the next constraint conditions where the
same function ψ achieves both Equations (11) and (12):

γ1 + 3kγ6
γ6

= ω + k2γ1 + kγ2 + k3γ6
3γ6k2 + γ2 + 2kγ1 + ν

= 3 kγ5 − γ3ð Þ
3γ5 + 2γ4

, ð13Þ

whenever

γ3 = −
3γ5γ1 + γ1γ4 + 6kγ6γ5 + 3kγ6γ4

3γ6
, ð14Þ

ω = 8k3γ26 + 8k2γ1γ6 + 2kγ21 + 2kγ2γ6 + γ1γ2 + ν 3kγ6 + γ1ð Þ
γ6

:

ð15Þ
Plugging Equation (14) into Equation (11), we have the

wave equation as follows:

ψ′′ − ℏ1ψ
3 − ℏ2ψ = 0, ð16Þ

where

ℏ1 =
3γ5γ1 + γ1γ4 + 9kγ6γ5 + 3kγ6γ4

3γ6 γ1 + 3kγ6ð Þ , ð17Þ

ℏ2 =
9k3γ26 + 9k2γ1γ6 + 2kγ21 + 3kγ2γ6 + γ1γ2 + ν 3kγ6 + γ1ð Þ

γ6 γ1 + 3kγ6ð Þ :

ð18Þ
3. The Exact Solutions of the FSRKLE

We employ two various methods such as the Jacobi elliptic
function [18] and sine-cosine [4], to determine the exact
solutions to Equation (16). As a consequence, we can obtain
the solutions of the FSRKLE (3).

3.1. Jacobi Elliptic Function Method. We suppose the solu-
tions of Equation (16) has the type

ψ ζð Þ = a + bsn θζð Þ, ð19Þ

where snðθζÞ = snðθζ,mÞ, for 0 <m < 1, is Jacobi elliptic sine
function and a, b, and θ are undefined constants. Differenti-

ate Equation (19) twice, we get

ψ′′ ζð Þ = − m2 + 1
À Á

bθ2sn θζð Þ + 2m2bθ2sn3 θζð Þ: ð20Þ

Putting Equations (19) and (20) into Equation (16), we
obtain

2m2bθ2 − ℏ1b
3À Á
sn3 θζð Þ − 3ℏ1ab2sn2 θζð Þ

− m2 + 1
À Á

bθ2 + 3ℏ1a2b + ℏ2b
Â Ã

sn θζð Þ
− ℏ1a

3 + aℏ2
À Á

= 0:
ð21Þ

Equating each coefficient of ½snðθζÞ�n to zero, we have for
n = 0, 1, 2, 3,

ℏ1a
3 + aℏ2 = 0,

m2 + 1
À Á

bθ2 + 3ℏ1a2b + ℏ2b = 0,

3ℏ1ab2sn2 = 0,
2m2bθ2 − ℏ1b

3 = 0:

ð22Þ

The outcomes of solving the previous equations are

a = 0,

b = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2ℏ2
m2 + 1ð Þℏ1

s
,

θ2 = −ℏ2
m2 + 1ð Þ :

ð23Þ

As a result, using (19), the solution of Equation (16) is

ψ ζð Þ = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2ℏ2
m2 + 1ð Þℏ1

s
sn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ℏ2

m2 + 1ð Þ

s
ζ

 !
: ð24Þ

Hence, the exact solution of the FSRKLE (3) is

φ x, tð Þ = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2ℏ2
m2 + 1ð Þℏ1

s
sn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ℏ2

m2 + 1ð Þ

s
1
β

x + 1
Γ βð Þ

� �β

− νt

 ! !
e iq x,tð Þ−σW tð Þ−σ2t½ �,

ð25Þ

for ℏ2 < 0 and ℏ1 > 0: If m⟶ 1, then solution (25) tends to

φ x, tð Þ = ±
ffiffiffiffiffiffiffiffi
−ℏ2
ℏ1

s
tanh

ffiffiffiffiffiffiffiffi
−ℏ2
2

r
1
β

x + 1
Γ βð Þ

� �β

− νt

 ! !
e iq x,tð Þ−σW tð Þ−σ2t½ �:

ð26Þ

Analogously, we can replace sn in (19) with cnðξÞ =
cnðξ,mÞ and dnðξ,mÞ = dnðξ,mÞ to obtain the following
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solutions of Equation (16):

ψ ζð Þ = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2ℏ2
2m2 − 1ð Þℏ1

s
cn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2

2m2 − 1ð Þ

s
ζ

 !
,

ψ ζð Þ = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2ℏ2
2 −m2ð Þℏ1

s
dn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2

2 −m2ð Þ

s
ζ

 !
:

ð27Þ

Thus, the exact solutions of the FSRKLE (3) are as
follows:

φ x, tð Þ = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2ℏ2
2m2 − 1ð Þℏ1

s
cn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ℏ2

2m2 − 1ð Þ

s
1
β

x + 1
Γ βð Þ

� �β

− νt

 ! !
e iq x,tð Þ−σW tð Þ−σ2t½ �,

ð28Þ

for ℏ2/ð2m2 − 1Þ > 0, ℏ1 < 0, and

φ x, tð Þ = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2ℏ2
2 −m2ð Þℏ1

s
dn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2

2 −m2ð Þ

s
1
β

x + 1
Γ βð Þ

� �β

− νt

 ! !
e iq x,tð Þ−σW tð Þ−σ2t½ �,

ð29Þ

for ℏ2 > 0, ℏ1 < 0, respectively. If m⟶ 1, then the Equa-
tions (28) and (29) tends to

φ x, tð Þ = ±
ffiffiffiffiffiffiffiffiffiffi
−2ℏ2
ℏ1

s
sech

ffiffiffiffiffi
ℏ2

p 1
β

x + 1
Γ βð Þ

� �β

− νt

 ! !
e iq x,tð Þ−σW tð Þ−σ2tð Þ,

ð30Þ

for ℏ2 > 0, ℏ1 < 0:

3.2. Sine-Cosine Method. Suppose the solution ψ of Equation
(16) takes the form

ψ ζð Þ = AY n, ð31Þ

where

Y = cos Bζð Þ orY = sin Bζð Þ: ð32Þ

Setting Equation (31) into Equation (16), we get

−AB2 −n2Y n + n n − 1ð ÞY n−2Â Ã
− ℏ1A

3Y 3n − ℏ2AY
n = 0,

ð33Þ

rewriting the above equation

ℏ2A −AB2n2
À Á

Y n + n n − 1ð ÞAB2Y n−2 + ℏ1A
3Y 3n = 0: ð34Þ

Balancing the term of Y in Equation (34), we obtain

n − 2 = 3n⇒ n = −1: ð35Þ

Plugging Equation (35) into Equation (34),

ℏ2A −AB2À Á
Y −1 + ℏ1A

3 + 2AB2À Á
Y −3 = 0: ð36Þ

We get by setting each coefficient of Y −3 and Y −1 equal
to zero

ℏ2A −AB2 = 0, ð37Þ

ℏ1A
3 + 2AB2 = 0: ð38Þ

By solving Equations (37) and (38), we get

B =
ffiffiffiffiffi
ℏ2

p
andA =

ffiffiffiffiffiffiffiffiffiffi
−2ℏ2
ℏ1

s
: ð39Þ

Hence, the solution of Equation (16) is

ψ ζð Þ = A sec Bζð Þ orψ ζð Þ = A csc Bζð Þ: ð40Þ

Depending on the sign of ℏ1 and ℏ2, there are numerous
cases:

Case 1. If ℏ2 > 0 and ℏ1 < 0, then FSRKLE (3) has the
solutions

φ x, tð Þ =
ffiffiffiffiffiffiffiffiffiffi
−2ℏ2
ℏ1

s
sec

ffiffiffiffiffi
ℏ2

p 1
β

x + 1
Γ βð Þ

� �β

− νt

 !" #
e i − k/βð Þ x+ 1/Γ βð Þð Þð Þβ+ωtð Þ−σW tð Þ−σ2tð Þ,

ð41Þ

or

φ x, tð Þ =
ffiffiffiffiffiffiffiffiffiffi
−2ℏ2
ℏ1

s
csc

ffiffiffiffiffi
ℏ2

p 1
β
xβ − νt

� �� �
e i − k/βð Þ x+ 1/Γ βð Þð Þð Þβ+ωtð Þ−σW tð Þ−σ2tð Þ:

ð42Þ

Case 2. If ℏ2 < 0 and ℏ1 < 0, then the analytical solutions of
FSRKLE (3) have the form

φ x, tð Þ = i

ffiffiffiffiffiffiffi
2ℏ2
ℏ1

s
sec h

ffiffiffiffiffiffiffiffi
−ℏ2

p 1
β

x + 1
Γ βð Þ

� �β

− νt

 !" #
e i − k/βð Þ x+ 1/Γ βð Þð Þð Þβ+ωtð Þ−σW tð Þ−σ2tð Þ,

ð43Þ

or

φ x, tð Þ =
ffiffiffiffiffiffiffi
2ℏ2
ℏ1

s
csc h

ffiffiffiffiffiffiffiffi
−ℏ2

p 1
β

x + 1
Γ βð Þ

� �β

− νt

 !" #
e i − k/βð Þ x+ 1/Γ βð Þð Þð Þβ+ωtð Þ−σW tð Þ−σ2tð Þ:

ð44Þ

Case 3. If ℏ2 < 0 and ℏ1 > 0, then the solutions of FSRKLE (3)
are

φ x, tð Þ =
ffiffiffiffiffiffiffiffiffiffi
−2ℏ2
ℏ1

s
sec h

ffiffiffiffiffiffiffiffi
−ℏ2

p 1
β

x + 1
Γ βð Þ

� �β

− νt

 !" #
e i − k/βð Þ x+ 1/Γ βð Þð Þð Þβ+ωtð Þ−σW tð Þ−σ2tð Þ,

ð45Þ
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or

φ x, tð Þ = −i

ffiffiffiffiffiffiffiffiffiffi
−2ℏ2
ℏ1

s
csc h

ffiffiffiffiffiffiffiffi
−ℏ2

p 1
β

x + 1
Γ βð Þ

� �β

− νt

 !" #
e i − k/βð Þ x+ 1/Γ βð Þð Þð Þβ+ωtð Þ−σW tð Þ−σ2tð Þ:

ð46Þ

Case 4. If ℏ2 > 0 and ℏ1 > 0, then FSRKLE (3) has the
solutions

φ x, tð Þ = i

ffiffiffiffiffiffiffi
2ℏ2
ℏ1

s
sec

ffiffiffiffiffi
ℏ2

p 1
β

x + 1
Γ βð Þ

� �β

− νt

 !" #
e i − k/βð Þ x+ 1/Γ βð Þð Þð Þβ+ωtð Þ−σW tð Þ−σ2tð Þ,

ð47Þ

or

φ x, tð Þ = i

ffiffiffiffiffiffiffi
2ℏ2
ℏ1

s
csc

ffiffiffiffiffi
ℏ2

p 1
β

x + 1
Γ βð Þ

� �β

− νt

 !" #
e i − k/βð Þ x+ 1/Γ βð Þð Þð Þβ+ωtð Þ−σW tð Þ−σ2t½ �,

ð48Þ

where ℏ1,ℏ2 are defined in (17).

Remark 1. Setting β = 1 and σ = 0 in Equations (41), (42),
and (45), we get the identical solutions as asserted in [31].

4. Effect of BM and Fractional Derivative on
the Solutions

Here, the impact of BM and the fractional derivative on the
exact solutions of the FSRKLE (3) is described. Fix the con-
stants γ1 = γ2 = γ4 = γ5 = γ6 = 1, k = −1,ν = 3, and m = 0:5.
Hence, γ3 = 5/3,ℏ1 = 4/3, and ℏ2 = −1. Now, we present some
diagrams for various value of σ (intensity of noise) and for
t ∈ ½0, 5�, x ∈ ½0, 6�. We apply the MATLAB to simulate the
solutions of Equation (3).

Firstly, the impact of noise: in Figure 1, when σ = 0, we
note that the surface fluctuates.

In Figure 2, if the noise appeared, then after small transit
behaviors, the surface gets more planer when the intensity of
noise increases as follows:

Secondly, the impact of fractional derivative: in Figures 3
and 4, if σ = 0, we can observe that as β increases, the surface
extends:
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Figure 1: 3D diagram of Equations (25) and (45) with σ = 0:
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5. Conclusions

In this paper, we obtained the exact solutions of the fractional-
stochastic Radhakrishnan-Kundu-Lakshmanan Equation (3).
To obtain rational, elliptic, trigonometric, and hyperbolic sto-
chastic solutions, we used two different methods: the Jacobi
elliptic function and the sine-cosine. Because of the priority

of the FSRKLE in fluid dynamics and plasma physics, the
results produced are useful for understanding some exciting
physical phenomena. Finally, we plotted the obtained solu-
tions using MATLAB tools to provide a number 3D diagram
to demonstrate the impact of fractional derivative and multi-
plicative noise on these solutions. In future work, we can con-
sider the FSRKLE (3) with additive noise.
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Figure 3: 3D diagram of Equation (25) with σ = 0 and various β.
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Figure 4: 3D diagram of Equation (45) with σ = 0 and various β.
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In this paper, the higher nonlinear problems of fractional advection-diffusion equations and systems of nonlinear fractional
Burger’s equations are solved by using two sophisticated procedures, namely, the q-homotopy analysis transform method and
the residual power series method. The proposed methods are implemented with the Caputo operator. The present techniques
are utilised in a very comprehensive and effective manner to obtain the solutions to the suggested fractional-order problems.
The nonlinearity of the problem was controlled tactfully. The numerical results of a few examples are calculated and analyzed.
The tables and graphs are constructed to understand the higher accuracy and applicability of the current method. The
obtained results that are in good contact with the actual dynamics of the given problem, which is verified by the graphs and
tables. The present techniques require fewer calculations and are associated with a higher degree of accuracy, and therefore can
be extended to solve other high nonlinear fractional problems.

1. Introduction

The most powerful tool for researchers to simulate various
physical phenomena in applied sciences and nature is known
as fractional partial differential equations (FPDEs). The fol-
lowing physical phenomena have been accurately modelled
by FPDEs: optics [1], economics [2], fluid traffic [3], electro-
dynamics [4], hepatitis B virus [5], tuberculosis [6], air foil
[7], modelling of earth quack nonlinear oscillation [8], prop-
agation of spherical waves [9], Chaos theory [10], fractional
COVID-19 model [11], finance [12], pine wilt disease [13],
Zener [14], cancer chemotherapy [15], traffic flow model
[16], Poisson-Nernst-Planck diffusion [17], diabetes [18],
biomedical and biological [19], and many other numerous
applications in various branches of applied mathematics

(see [20–22]). Due to these numerous applications, FPDEs
and factional calculus have gained more attention from
researchers as compared to ordinary calculus.

To obtain the approximate solutions to the above models,
researchers use and develop a variety of analytical approaches.
The frequently used methods are optimal homotopy asymp-
totic method (OHAM) [23], Iterative Laplace transform
method [24], extended direct algebraic method (EDAM) [25],
Adomian decomposition method (ADM) [26], the Finite
difference method (FDM) [27], the homotopy perturbation
transform technique along with transformation (HPTM)
[28], the (G/G′)-expansion method [29], the Haar wavelet
method (HWM) [30], standard reductive perturbation method
[31], the variational iteration procedure with transformation
(VITM) [32], and the differential transform method (DTM)
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[33]. In this context, Hassan et al. have presented the solutions
of some nonlinear FPDEs which can be seen in [34–36]. Some
useful methods can be seen in [37–39].

Obtaining the analytical solutions of FPDEs and their
systems has been a difficult task for researchers in recent
years. In this circumstance, Prakash and Kaur use q-
HATM [40] to solve the time-fractional Navier Stokes equa-
tion. Similarly, q-HATM was implemented by Kumar et al.
and used to obtain the solutions of the fractional long-
wave equations in the regularised form [41]. The Schrodinger
generalized form of fractional order was solved by Veeresha
et al. using q-HATM [42]. The q-HATM convergence was
done by El-Tawil and Huseen [43]. The RPSM technique was
used by Alquran to solve the drainage equation in [44] and
the fractional-order Phi-4 equation in [45]. The Whitham-
Broer-Kaup equation of fractional order was analysed byWang
and Chen by using RPSM [46]. RPSM has been used in [47] to
find the solution of the fractional Biswas-Milovic equation of
multidimensions. Komashynska et al. used the RPSM [48] to
solve a system of multipantograph delay differential equations.
In [49], RPSM was used to find an approximation solution for
the fractional-order Sharma-Tasso-Olever equation. The solu-
tions to the fractional order Schrodinger equations were deter-
mined using RPSM in [50]. The RPSM has been used to solve a
variety of problems, including the gas dynamic equation [51],
the Emden-Fowler equation, Berger-Fisher equation, and the
Benney-Lin equation in its fractional format, solved by RPSM
in [52]. Similarly, RPSM was used by Al-Smadi [53] to over-
come the solutions to initial value problems.

In this paper, the solutions of systems of fractional Ber-
ger’s equations and nonlinear advection equations were
examined by combining two analytical techniques, q-HAM
and RPSM. The results are compared to each other as well
as the exact solution to the given problems. The current
methods are used to compare the solutions methodologies
for the analysis of the higher nonlinear problems of frac-
tional advection-diffusion equations and systems of nonlin-
ear fractional Burger’s equations in the Caputo sense. The
obtained approximate series solutions are fast converging
towards the exact solutions of the targeted problems, accord-
ing to quantitative analysis. It is found that the techniques
under discussion are simple and effective for the solutions
of FPDE systems. The graphs and tables for the solutions
to the targeted problems via RPSM and q-HATM. It is con-
firmed that the obtained solutions are in good contact with
the exact solution to the problems. The fractional order solu-
tions are convergent towards the integer order solutions,
which shows the reliability of the fractional solutions. The
presented techniques have a wide range of applications and
could be used to examine approximate analytical solutions
of other nonlinear FPDEs and multidimensional systems of
FPDEs in the future.

This paper will be formatted as follows: in the second
section, some basic definitions are discussed. In Section 3,
the methodology is described, and in Section 4, two separate
techniques are used to compare certain numerical results.
The conclusion and references are found in the fifth and
final section of the paper.

2. Basic Definitions

In this section we will discuss some important definitions

2.1. Definition. The Caputo operator in [54, 55] is given as.

Dδ
t f tð Þ =

dnf tð Þ
dtn

, δ = n ∈N ,

1
Γ n − δð Þ

ðt
0
t − xð Þn−δ−1 f nð Þ xð Þdx, n < δ < n + 1, n ∈N:

8>>><
>>>:

ð1Þ

2.2. Definition. An expansion of power series (PS) at point
t = t0 is known as fractional PS and is given by [56].

〠
∞

n=0
an t − t0ð Þnδ = a0 + a1 t − t0ð Þδ + a2 t − t0ð Þ2δ+⋯,

&

〠
∞

n=0
f n xð Þ t − t0ð Þnδ = f0 xð Þ + f1 xð Þ t − t0ð Þδ

+ f2 xð Þ t − t0ð Þ2δ+⋯,n − 1 < δ ≤ n, t ≥ t0,
ð2Þ

note FPS can be expanded at point t0 is

υ x, tð Þ = 〠
∞

n=0

Dnδ
t υ x, t0ð Þ

Γ nδ + 1ð Þ t − t0ð Þnδ, 0 ≤ n − 1

< δ ≤m, x ∈ I, t0 ≤ t < t0 +R,
ð3Þ

which is the Taylor’s series expansion form.

2.3. Laplace Transform (LT). The LT for continuous function
gðtÞ is defined as [57]

G sð Þ =L g tð Þ½ � =
ð∞
0
e−stg tð Þdt, ð4Þ

where GðsÞ is the LT for the function gðtÞ.
2.4. Definition. The LTL½υðx, tÞ� of Caputo fractional deriv-
ative is given by [57]

L Dnδ
t υ x, tð Þ

h i
= snδL υ x, tð Þ½ � − 〠

n−1

k=0
snδ−k−1υk x, 0ð Þ, n − 1 < nδ ≤ n:

ð5Þ

2.5. Definition. The LT of two function kðtÞ × gðtÞ is defined
by [57]

L k × g½ � =L k tð Þ½ � ×L g tð Þ½ �, ð6Þ

As k × g, represent the product between k and g,

k × gð Þt =
ðt
0
k tð Þg t − xð Þdt: ð7Þ
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2.6. Definition. The LT of fractional derivative is defined as
[57]

L Dδ
t g xð Þ

� �
= sδG sð Þ − 〠

n−1

k=0
sδ−1−kgk 0+ð Þ, n < δ ≤ n + 1: ð8Þ

where the LT of gðxÞ is denoted by GðsÞ.
2.7. Theorem. Assume that the series solution ∑∞

k=0ukðx, tÞ
=∑∞

k=0ukðx, tÞð1/nÞk is convergent to the solution u for a
prescribed value of h. If the truncated series

〠
m

k=0
uk x, tð Þ = 〠

m

k=0
uk x, tð Þ 1

n

� �
ð9Þ

is used as an approximation to the solution uðx, tÞ of prob-
lem, then an upper bound for the error, Em is estimated as

Em ≤
r/nð Þm+1

1 − r/nð Þ uo x, tð Þk k ð10Þ

Proof. See [43]

2.8. Theorem. suppose that uðtÞ ∈ C½t0, t0 + R� and Dkα
t uðtÞ

∈ Cðt0, t0 + RÞf ork = 0, 1, 2,⋯, n + 1,
where 0 < α ≤ 1. Then u could be represented by:

u tð Þ = 〠
n

k=0

Dkαu
t0

� �
t0ð Þ

Γ kα + 1ð Þ t − t0ð Þkα + J n+1ð Þα
t0

D n+1ð Þα
t0

u tð Þ, t0 ≤ t ≤ t0 + R:

ð11Þ

Proof. See [58].

2.9. Theorem. If jDðn+1Þαt0
uðtÞj ≤M on t0 ≤ t ≤ d, where 0 < α

≤ 1, then the reminder RnðtÞ of the generalized Taylor’s
series will satisfies the inequality:

Rn tð Þj j ≤ M
Γ n + 1ð Þα + 1ð Þ t − t0ð Þ n+1ð Þα, t0 ≤ t ≤D: ð12Þ

Proof. See [58].

2.10. Theorem. Suppose that u has a Fractional power series
representation at t0 of the form

u tð Þ = 〠
∞

n=0
cn t − t0ð Þnα, 0 ≤m − 1 < α ≤m, t0 ≤ t < t0 + R,

ð13Þ

where R is the radius of convergence. Then u is analytic in
ðt0, t0 + RÞ:

Proof. See [58].

3. RPSM and Q-HATM Procedures

To understand main concept of RPSM and q-HATM [59] for
system of FPDEs, we consider the following FPDEs system,

Dδ
t υ x, y, z, tð Þ =N υ x, y, z, tð Þð Þ + R υ x, y, z, tð Þð Þ, 0 < δ ≤ 1, t > 0,

Dδ
t ϑ x, y, z, tð Þ =N ϑ x, y, z, tð Þð Þ + R ϑ x, y, z, tð Þð Þ, 0 < δ ≤ 1, t > 0,

Dδ
t ϖ x, y, z, tð Þ =N ϖ x, y, z, tð Þð Þ + R ϖ x, y, z, tð Þð Þ, 0 < δ ≤ 1, t > 0,

8>><
>>:

ð14Þ

with initial condition,

υ x, y, z, 0ð Þ = f x, y, zð Þ,
ϑ x, y, z, 0ð Þ = g x, y, zð Þ,
ϖ x, y, z, 0ð Þ = h x, y, zð Þ,

8>><
>>: ð15Þ

whereDδ
t the Caputo fractional derivative, R is linear andN is

nonlinear operator, respectively, in Eq. (14).

3.1. RPSM Procedure for FPDEs System [60]. Eq. (14) can be
simplified as

υ x, y, z, tð Þ = 〠
k

n=0
f n xð Þ tnδ

Γ 1 + nδð Þ , 0 < δ ≤ 1,−∞<x, y, z<∞,0 ≤ t < R,

ϑ x, y, z, tð Þ = 〠
k

n=0
gn xð Þ tnδ

Γ 1 + nδð Þ , 0 < δ ≤ 1,−∞<x, y, z<∞,0 ≤ t < R,

ϖ x, y, z, tð Þ = 〠
k

n=0
hn xð Þ tnδ

Γ 1 + nδð Þ , 0 < δ ≤ 1,−∞<x, y, z<∞,0 ≤ t < R,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð16Þ

where υðx, y, z, tÞ, ϑðx, y, z, tÞ, and ϖðx, y, z, tÞ is the kth trun-
cated series of form

υk x, y, z, tð Þ = 〠
k

n=0
f n x, y, zð Þ tnδ

Γ 1 + nδð Þ ,

ϑk x, y, z, tð Þ = 〠
k

n=0
gn x, y, zð Þ tnδ

Γ 1 + nδð Þ ,

ϖk x, y, z, tð Þ = 〠
k

n=0
hn x, y, zð Þ tnδ

Γ 1 + nδð Þ :

8>>>>>>>>>>><
>>>>>>>>>>>:

ð17Þ

In RPSM the zeroth approximate solution of υðx, y, z, tÞ,
ϑðx, y, z, tÞ, and ϖðx, y, z, tÞ is given by

υ0 x, y, z, tð Þ = υ x, 0ð Þ = f x, y, zð Þ,
ϑ0 x, y, z, tð Þ = ϑ x, 0ð Þ = g x, y, zð Þ,
ϖ0 x, y, z, tð Þ = ϖ x, 0ð Þ = h x, y, zð Þ:

8>><
>>: ð18Þ
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Eq. (17), implies that,

υk x, y, z, tð Þ = f x, y, zð Þ + 〠
k

n=1
f n x, y, zð Þ tnδ

Γ 1 + nδð Þ , k = 1, 2,⋯,

ϑk x, y, z, tð Þ = g x, y, zð Þ + 〠
k

n=1
gn x, y, zð Þ tnδ

Γ 1 + nδð Þ , k = 1, 2,⋯,

ϖk x, y, z, tð Þ = h x, y, zð Þ + 〠
k

n=1
hn x, y, zð Þ tnδ

Γ 1 + nδð Þ , k = 1, 2,⋯,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð19Þ

for Eq. (14), the residual function is given by

Re sυ x, y, z, tð Þ =Dδ
t υ x, y, z, tð Þ −N υ x, y, z, tð Þð Þ − R υ x, y, z, tð Þð Þ,

Re sϑ x, y, z, tð Þ =Dδ
t ϑ x, y, z, tð Þ −N ϑ x, y, z, tð Þð Þ − R ϑ x, y, z, tð Þð Þ,

Re sϖ x, y, z, tð Þ =Dδ
t ϖ x, y, z, tð Þ −N ϖ x, y, z, tð Þð Þ − R ϖ x, y, z, tð Þð Þ,

8>><
>>:

ð20Þ

so, the kth residual function becomes

As in [61, 62], it is clear that Re sðx, y, z, tÞ = 0 and
limnto∞ Re skðx, y, z, tÞ = Re sðx, y, z, tÞ. Therefore, Dnδ

t Re
sυðx, y, z, tÞ = 0, Dnδ

t Re sϑðx, y, z, tÞ = 0, and Dnδ
t Re sϖðx, y,

z, tÞ = 0. In the Caputo definition, the constant has zero
derivative therefore Dnδ

t Re sðx, y, z, 0Þ =Dnδ
t Re skðx, y, z, 0Þ

= 0, k = 0, 1,⋯, n which mean that Dnδ
t of Re sυðx, y, z, tÞ,

Re sϑðx, y, z, tÞ, Re sϖðx, y, z, tÞ, and Re skðx, y, z, tÞ are t = 0
matching at n = 0, 1,⋯, k ; .

To determine f1ðx, y, zÞ, f2ðx, y, zÞ, f3ðx, y, zÞ,⋯, g1ðx,
y, zÞ, g2ðx, y, zÞ, g3ðx, y, zÞ,⋯, and h1ðx, y, zÞ, h2ðx, y, zÞ, h3
ðx, y, zÞ,⋯, we substitute k = 0, 1,⋯, in Eq. (17), and then

the obtained results are put in Eq. (19). In the final step,

we apply D
ðkÞδ
t on both sides we obtained the following

D
kð Þδ
t Re sυ,k x, y, z, 0ð Þ = 0, k = 0, 1,⋯,

D
kð Þδ
t Re sϑ,k x, y, z, 0ð Þ = 0, k = 0, 1,⋯,

D
kð Þδ
t Re sϖ,k x, y, z, 0ð Þ = 0, k = 0, 1,⋯:

8>>><
>>>:

ð22Þ

3.2. Q-HATM Procedure for FPDEs System [63]. Using LT,
Eq. (14) can be simplified as

Re sυ,k x, y, z, tð Þ =Dδ
t υk x, y, z, tð Þ −N υk x, y, z, tð Þð Þ − R υk x, y, z, tð Þð Þ,

Re sϑ,k x, y, z, tð Þ =Dδ
t ϑk x, y, z, tð Þ −N ϑk x, y, z, tð Þð Þ − R ϑk x, y, z, tð Þð Þ,

Re sϖ,k x, y, z, tð Þ =Dδ
t ϖk x, y, z, tð Þ −N ϖk x, y, z, tð Þð Þ − R ϖk x, y, z, tð Þð Þ:

8>><
>>: ð21Þ

sδL υ x, y, z, tð Þf g − 〠
n−1

k=0
sδ−k−1υ kð Þ x, y, z, 0ð Þ +L Rυ x, y, z, tð Þ +Nυ x, y, z, tð Þf g =L f x, y, z, tð Þf g,

sδL ϑ x, y, z, tð Þf g − 〠
n−1

k=0
sδ−k−1ϑ kð Þ x, y, z, 0ð Þ +L Rϑ x, y, z, tð Þ +Nϑ x, y, z, tð Þf g =L g x, y, z, tð Þf g,

sδL ϖ x, y, z, tð Þf g − 〠
n−1

k=0
sδ−k−1ϖ kð Þ x, y, z, 0ð Þ +L Rϖ x, y, z, tð Þ +Nϖ x, y, z, tð Þf g =L h x, y, z, tð Þf g,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð23Þ
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so Eq. (23), implies that

L υ x, y, z, tð Þf g − 1
sδ
〠
n−1

k=0
sδ−k−1υ kð Þ x, y, z, 0ð Þ + 1

sδ
L Rυ x, y, z, tð Þ½

+Nυ x, y, z, tð Þ − f x, y, z, tð Þ� = 0,

L ϑ x, y, z, tð Þf g − 1
sδ
〠
n−1

k=0
sδ−k−1ϑ kð Þ x, y, z, 0ð Þ + 1

sδ
L Rϑ x, y, z, tð Þ½

+Nϑ x, y, z, tð Þ − g x, y, z, tð Þ� = 0,

L ϖ x, y, z, tð Þf g − 1
sδ
〠
n−1

k=0
sδ−k−1ϖ kð Þ x, y, z, 0ð Þ + 1

sδ
L Rϖ x, y, z, tð Þ½

+Nϖ x, y, z, tð Þ − h x, y, z, tð Þ� = 0:

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð24Þ

We define the nonlinear operator is

N θ x, y, z, t ; qð Þ½ � = L θ x, y, z, t ; qð Þf g − 1
sδ
〠
n−1

k=o
sδ−k−1θ kð Þ x, y, z, t ; qð Þ 0+ð Þ

+ 1
sδ
L Rυ x, y, z, tð Þ +Nυ x, y, z, tð Þ − f x, y, z, tð Þ½ �,

N θ x, y, z, t ; qð Þ½ � = L θ x, y, z, t ; qð Þf g − 1
sδ
〠
n−1

k=o
sδ−k−1θ kð Þ x, t ; qð Þ 0+ð Þ

+ 1
sδ
L Rϑ x, y, z, tð Þ +Nϑ x, y, z, tð Þ − g x, y, z, tð Þ½ �,

N θ x, y, z, t ; qð Þ½ � = L θ x, t ; qð Þf g − 1
sδ
〠
n−1

k=o
sδ−k−1θ kð Þ x, y, z, t ; qð Þ 0+ð Þ

+ 1
sδ
L Rϖ x, y, z, tð Þ +Nϖ x, y, z, tð Þ − h x, y, z, tð Þ½ �,

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

ð25Þ

where q ∈ ½0, ð1/nÞ�, θðx, y, z, t ; qÞ is real function of x, y, z, t,
and q.

Homotopy can be constructed as

1 − nqð Þ L θ x, y, z, t ; qð Þ − υ0 x, y, z, tð Þf g½ � = ℏqH x, y, z, tð ÞN θ x, y, z, t ; qð Þ½ �,
1 − nqð Þ L θ x, y, z, t ; qð Þ − ϑ0 x, y, z, tð Þf g½ � = ℏqH x, y, z, tð ÞN θ x, y, z, t ; qð Þ½ �,
1 − nqð Þ L θ x, y, z, t ; qð Þ − ϖ0 x, y, z, tð Þf g½ � = ℏqH x, y, z, tð ÞN θ x, y, z, t ; qð Þ½ �:

8>><
>>:

ð26Þ

In Eq. (26), the auxiliary parameter, nonzero auxiliary
function and embedding parameter are h ≠ 0, Hðx, y, z, tÞ
and n ≥ 1, q ∈ ½0, ð1/nÞ�, respectively. L denotes Laplacian
operator and υ0, ϑ0, and ϖ0 are the initial conditions. The
following results are obtained at q = 0 and q = 1/n,

θ x, y, z, t ; 0ð Þ = υ0 x, y, z, tð Þ and θ x, y, z, t ; 1
n

� �
= υ x, y, z, tð Þ,

θ x, y, z, t ; 0ð Þ = ϑ0 x, y, z, tð Þ and θ x, y, z, t ; 1
n

� �
= ϑ x, y, z, tð Þ,

θ x, y, z, t ; 0ð Þ = ϖ0 x, y, z, tð Þ and θ x, y, z, t ; 1
n

� �
= ϖ x, y, z, tð Þs:

8>>>>>>>><
>>>>>>>>:

ð27Þ

By using Taylor theorem θðx, y, z, t ; qÞ can be expressed as

θ x, y, z, t ; qð Þ = υ0 x, y, z, tð Þ + 〠
∞

m=1
υm x, y, z, tð Þqm,

θ x, y, z, t ; qð Þ = ϑ0 x, y, z, tð Þ + 〠
∞

m=1
ϑm x, y, z, tð Þqm,

θ x, y, z, t ; qð Þ = ϖ0 x, y, z, tð Þ + 〠
∞

m=1
ϖm x, y, z, tð Þqm,

8>>>>>>>>>><
>>>>>>>>>>:

ð28Þ

where

υm x, y, z, tð Þ = 1
m!

∂mθ x, y, z, t ; qð Þ
∂qm

� �����
q=0

,

ϑm x, y, z, tð Þ = 1
m!

∂mθ x, y, z, t ; qð Þ
∂qm

� �����
q=0

,

ϖm x, y, z, tð Þ = 1
m!

∂mθ x, y, z, t ; qð Þ
∂qm

� �����
q=0

:

8>>>>>>>>>><
>>>>>>>>>>:

ð29Þ

After simplification, we have

υm x, y, z, tð Þ = υ0 x, y, z, tð Þ + 〠
∞

m=1
υm x, y, z, tð Þ 1

n

� �m

,

ϑm x, y, z, tð Þ = ϑ0 x, y, z, tð Þ + 〠
∞

m=1
ϑm x, y, z, tð Þ 1

n

� �m

,

ϖm x, y, z, tð Þ = ϖ0 x, y, z, tð Þ + 〠
∞

m=1
ϖm x, y, z, tð Þ 1

n

� �m

,

8>>>>>>>>>><
>>>>>>>>>>:

ð30Þ

Taking them-times derivatives of Eq. (26), put q = 0, implies
the zeroth order solution

L υm x, y, z, tð Þ − kmυm−1 x, y, z, tð Þf g = ℏH x, y, z, tð ÞRm υ
 

m−1
� �

,

L ϑm x, y, z, tð Þ − kmϑm−1 x, y, z, tð Þf g = ℏH x, y, z, tð ÞRm ϑ
 

m−1

� �
,

L ϖm x, y, z, tð Þ − kmϖm−1 x, y, z, tð Þf g = ℏH x, y, z, tð ÞRm ϖ
 
m−1

� �
:

8>>>>>><
>>>>>>:

ð31Þ

where the vectors are defined as

υ
 

m = υ0 x, y, z, tð Þ, υ1 x, y, z, tð Þ,⋯,υm x, y, z, tð Þf g,

ϑ
 

m = ϑ0 x, y, z, tð Þ, ϑ1 x, y, z, tð Þ,⋯,ϑm x, y, z, tð Þf g,
ϖ
 

m = ϖ0 x, y, z, tð Þ, ϖ1 x, y, z, tð Þ,⋯,ϖm x, y, z, tð Þf g:

8>>><
>>>:

ð32Þ

The following recursive formula is obtained by taking inverse
LT of Eq. (31),
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υm x, y, z, tð Þ = km x, y, z, tð Þυm−1 x, y, z, tð Þ + ℏL−1 H x, y, z, tð ÞRm υ
 

m−1
� �n o

,

ϑm x, y, z, tð Þ = km x, y, z, tð Þϑm−1 x, y, z, tð Þ + ℏL−1 H x, y, z, tð ÞRm ϑ
 

m−1

� �� �
,

ϖm x, y, z, tð Þ = km x, y, z, tð Þϖm−1 x, y, z, tð Þ + ℏL−1 H x, y, z, tð ÞRm ϖ
 

m−1
� �n o

:

8>>>>>><
>>>>>>:

ð33Þ

Where

Rm υ
 
m−1

� �
= 1

m − 1ð Þ!
∂m−1N θ x, y, z, t ; qð Þ½ �

∂qm−1

" #�����
q=0

,

Rm ϑ
 

m−1

� �
= 1

m − 1ð Þ!
∂m−1N θ x, y, z, t ; qð Þ½ �

∂qm−1

" #�����
q=0

,

Rm ϖ
 
m−1

� �
= 1

m − 1ð Þ!
∂m−1N θ x, y, z, t ; qð Þ½ �

∂qm−1

" #�����
q=0

,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð34Þ

km =
0, m ≤ 1,
n, m > 1:

(
ð35Þ

Eq. (33) and Eq. (35) are known q-HATM series solutions for
the given system.

4. Numerical Results

4.1. Example. Consider nonlinear advection-diffusion equa-
tion of the form [64]

∂δυ
∂tδ

= −υ
∂υ
∂x

+ υ − υ2, 0 < δ ≤ 1, ð36Þ

with ICs

υ x, 0ð Þ = e−x, ð37Þ

and exact solution at δ = 1

υ x, tð Þ = et−x: ð38Þ

4.1.1. RPSM-Solution

(1) 1st Iteration. Using RPSM, the kth truncated series of Eq.
(36), can obtain

υk x, tð Þ = 〠
k

n=0
f n xð Þ tnδ

Γ 1 + nδð Þ , ð39Þ

the 1st approximate is given as

υ0 x, tð Þ = υ x, 0ð Þ = f xð Þ, ð40Þ

Eq. (39) should be written as

υk x, tð Þ = f xð Þ + 〠
k

n=1
f n xð Þ tnδ

Γ 1 + nδð Þ , k = 1, 2,⋯, ð41Þ

put k = 1 in Eq. (41), we get

υ1 x, tð Þ = f xð Þ + f1 xð Þ tδ

Γ 1 + δð Þ , ð42Þ

where υðx, 0Þ = f ðxÞ = e−x,

υ1 x, tð Þ = e−x + f1 xð Þ tδ

Γ 1 + δð Þ : ð43Þ

The residual function of Eq. (36), is given by

Resυ x, tð Þ = ∂δυ
∂tδ

+ υ
∂υ
∂x

− υ + υ2: ð44Þ

The kth residual function Resυðx, tÞ is given by,

Resυk x, tð Þ = ∂δυk
∂tδ

+ υk
∂υk
∂x

− υk + υ2k, ð45Þ

put k = 1 in the Eq. (45), we obtain

Resυ1 x, tð Þ =
f1 xð Þ + e−x + f1 xð Þ tδ

Γ 1 + δð Þ
� �

−e−x + f 1′ xð Þ
tδ

Γ 1 + δð Þ
� �

− e−x + f1 xð Þ tδ

Γ 1 + δð Þ
� �

+ e−2x + f1 xð Þ e−xtδ

Γ 1 + δð Þ + 2e−x f1 xð Þ e−xtδ

Γ 1 + δð Þ
� �

,

8>>>><
>>>>:

ð46Þ

we have

Resυ1 x, 0ð Þ = 0: ð47Þ

Eq. (46), will become

f1 xð Þ = e−x: ð48Þ

(2) 2nd Iteration. for k = 2 Eq. (41), can be written as

υ2 x, tð Þ = f xð Þ + f1 xð Þ tδ

Γ 1 + δð Þ + f2 xð Þ t2δ

Γ 1 + 2δð Þ , ð49Þ

where f ðxÞ = e−x, and f1ðxÞ = e−x ,

υ2 x, tð Þ = e−x + e−xtδ

Γ 1 + δð Þ + f2 xð Þ t2δ

Γ 1 + 2δð Þ , ð50Þ

put k = 2 in Eq. (45), we obtain
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as we know that

D k−1ð Þδ
t Resυk x, tð Þ = 0, ð53Þ

for k = 2 Eq. (53), become as

Dδ
t Resυ2 x, tð Þ = 0, ð54Þ

using Dδ
t on Eq. (52), we get

Dδ
t Resυ2 x, tð Þ =

f2 xð Þ + e−x + f2 xð Þ tδ

Γ 1 + δð Þ
� �

−e−x + f 2′ xð Þ
tδ

Γ 1 + δð Þ
� �

− e−x + f2 xð Þ tδ

Γ 1 + δð Þ
� �

+ e−x + f2 xð Þ tδ

Γ 1 + δð Þ
� �2

,

8>>>><
>>>>:

ð55Þ

put Dδ
t Resυ2ðx, 0Þ = 0 in Eq. (55), we obtain

f2 xð Þ = e−x: ð56Þ

(3) 3rd Iteration. Put k = 3 in Eq. (41), we obtain

υ3 x, tð Þ = f xð Þ + f1 xð Þ tδ

Γ 1 + δð Þ + f2 xð Þ t2δ

Γ 1 + 2δð Þ + f3 xð Þ t3δ

Γ 1 + 3δð Þ ,

ð57Þ

where f ðxÞ = e−x, f1ðxÞ = e−x, and f2ðxÞ = e−x,

υ3 x, tð Þ = e−x + e−xtδ

Γ 1 + δð Þ +
e−xt2δ

Γ 1 + 2δð Þ + f3 xð Þ t3δ

Γ 1 + 3δð Þ ,

ð58Þ

put k = 3 in Eq. (45) we obtain

put k = 3 in Eq. (53), we obtain

D2δ
t Resυ3 x, tð Þ = 0, ð61Þ

applying D2δ
t on both sides of the Eq. (60), we get

D2δ
t Resυ2 x, tð Þ = f3 xð Þ + e−x + f3 xð Þ tδ

Γ 1 + δð Þ
� �

−e−x + f 3′ xð Þ
tδ

Γ 1 + δð Þ
� �

− e−x + f3 xð Þ tδ

Γ 1 + δð Þ
� �

+ e−x + f3 xð Þ tδ

Γ 1 + δð Þ
� �2

,

ð62Þ

put Dδ
t Resυ2ðx, 0Þ = 0 in Eq. (62), we obtain

f2 xð Þ = e−x: ð63Þ

The RPSM solution of Eq. (36), is given as

υ x, tð Þ = f xð Þ + f1 xð Þ tδ

Γ 1 + δð Þ + f2 xð Þ t2δ

Γ 1 + 2δð Þ + f3 xð Þ t3δ

Γ 1 + 3δð Þ+⋯,

υ x, tð Þ = e−x + e−xtδ

Γ 1 + δð Þ +
e−xt2δ

Γ 1 + 2δð Þ +
e−xt3δ

Γ 1 + 3δð Þ+⋯:

ð64Þ

4.1.2. Q-HATM Solution

Resυ2 x, tð Þ = ∂δυ2
∂tδ

+ υ2
∂υ2
∂x

− υ2 + υ21, ð51Þ

Resυ2 x, tð Þ = e−x + f2 xð Þ tδ

Γ 1 + δð Þ
� �

+ e−x + e−xtδ

Γ 1 + δð Þ + f2 xð Þ t2δ

Γ 1 + 2δð Þ
� �

−e−x −
e−xtδ

Γ 1 + δð Þ + f 2′ xð Þ
t2δ

Γ 1 + 2δð Þ
� �

− e−x + e−xtδ

Γ 1 + δð Þ + f2 xð Þ t2δ

Γ 1 + 2δð Þ
� �

+ e−x + e−xtδ

Γ 1 + δð Þ + f2 xð Þ t2δ

Γ 1 + 2δð Þ
� �2

,
ð52Þ

Resυ3 x, tð Þ = ∂δυ3
∂tδ

+ υ3
∂υ3
∂x

− υ3 + υ23, ð59Þ

Resυ3 x, tð Þ =

e−x + e−xtδ

Γ 1 + δð Þ + f3 xð Þ t2δ

Γ 1 + 2δð Þ
� �

+ e−x + e−xtδ

Γ 1 + δð Þ +
e−xt2δ

Γ 1 + 2δð Þ + f3 xð Þ t3δ

Γ 1 + 3δð Þ
� �

−e−x −
e−xtδ

Γ 1 + δð Þ −
e−xt2δ

Γ 1 + 2δð Þ + f 3′ xð Þ
t3δ

Γ 1 + 3δð Þ
� �

− e−x + e−xtδ

Γ 1 + δð Þ +
e−xt2δ

Γ 1 + 2δð Þ + f3 xð Þ t3δ

Γ 1 + 3δð Þ
� �

+ e−x + e−xtδ

Γ 1 + δð Þ +
e−xt2δ

Γ 1 + 2δð Þ + f3 xð Þ t3δ

Γ 1 + 3δð Þ
� �2

,

0
BBBBBBBBB@

ð60Þ
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(1) 1st Iteration. Taking LT of Eq. (36), and simplifying

sδL υ x, tð Þ½ � − 〠
n−1

k=0
sδ−k−1υk x, 0ð Þ +L υ

∂υ
∂x

− υ + υ2
� �

= 0,

L υ x, tð Þ½ � − 1
sδ
sδ−1υ0 x, 0ð Þ + 1

sδ
L υ

∂υ
∂x

− υ + υ2
� �

= 0,

L υ x, tð Þ½ � − e−x

s
+ 1
sδ
L υ

∂υ
∂x

− υ + υ2
� �

= 0:

ð65Þ

The nonlinear term N is defined as

N θ x, t ; qð Þ½ � =L θ x, t ; qð Þ½ � − e−x

s
+ 1
sδ
L υ

∂υ
∂x

− υ + υ2
� �

:

ð66Þ

Using the procedure of q-HATM

υm x, tð Þ = kmυm−1 x, tð Þ + hL−1 Rm υm−1ð Þ½ �, ð67Þ

put m = 1 in the Eq. (67), we obtain

υ1 x, tð Þ = k1υ0 x, tð Þ + hL−1 R1 υ0ð Þ½ �, ð68Þ

Rm υm−1ð Þ =L υm−1ð Þ − 1 − km
n

� �
e−x

s

+ 1
sδ
L 〠

m−1

i=0
υi
∂υm−1−i
∂x

− υm−1 + 〠
m−1

i=0
υiυm−1−i

 !
,

ð69Þ
put m = 1 in Eq. (69), we obtain

R1 υ0ð Þ =L υ0ð Þ − 1 − k1
n

� �
e−x

s
+ 1
sδ
L υ0

∂υ0
∂x

− υ0 + υ0υ0

� �
,

R1 υ0ð Þ =L e−xð Þ − 1 − k1
n

� �
e−x

s
+ 1
sδ
L e−x

∂
∂x

e−x − e−x + e−xe−x
� �

,

R1 υ0ð Þ =
e−x

s
−
e−x

s
+ 1
sδ
L −e−2x − e−x + e−2x
À Á

,

R1 υ0ð Þ = −
e−x

sδ+1
,

ð70Þ

put in Eq. (68), we obtain

υ1 x, tð Þ = hL−1 −
e−x

sδ+1

� �
,

υ1 x, tð Þ = −
e−xhtδ

Γ 1 + δð Þ :
ð71Þ

(2) 2nd Iteration. Put m = 2 in the Eq. (67), we obtain

υ2 x, tð Þ = k2υ1 x, tð Þ + hL−1 R2 υ1ð Þ½ �, ð72Þ

put m = 2 in Eq. (69), we obtain

R2 υ1ð Þ =L υ1ð Þ − 1 − k2
n

� �
e−x

s

+ 1
sδ
L υ0

∂υ1
∂x

+ υ1
∂υ0
∂x

− υ1 + υ1υ0 + υ0υ1

� �
,

= −
e−xh

sδ+1
+ e−xht

s2δ+1
,

ð73Þ

put in Eq. (72), we obtain

υ2 x, tð Þ = −
e−xnhtδ

Γ 1 + δð Þ + hL−1 −
e−xh
sδ+1

+ e−xht
s2δ+1

� �
,

υ2 x, tð Þ = −
e−xnhtδ

Γ 1 + δð Þ −
e−xh2tδ

Γ δ + 1ð Þ +
e−xh2t2δ

Γ 2δ + 1ð Þ :
ð74Þ

(3) 3rd Iteration. Put m = 3 in the Eq. (67), we obtain

υ3 x, tð Þ = k3υ2 x, tð Þ + hL−1 R3 υ2ð Þ½ �, ð75Þ

put m = 3 in Eq. (69), we obtain

R3 υ2ð Þ =L υ2ð Þ −
e−x

s

+ 1
sδ
L υ0

∂υ2
∂x

+ υ1
∂υ1
∂x

+ υ2
∂υ0
∂x

− υ2 + υ0υ2 + υ1υ1 + υ2υ0

� �
,

= −
e−xnh

sδ+1
−
e−xh2

sδ+1
+ 2e−xh2

s2δ+1
+ e−xnh

s2δ+1
−
e−xh2

s3δ+1
,

ð76Þ

put in Eq. (75), we obtain

υ3 x, tð Þ = n −
e−xnhtδ

Γ 1 + δð Þ −
e−xh2tδ

Γ δ + 1ð Þ +
e−xh2t2δ

Γ 2δ + 1ð Þ

 !
+ hL−1 −

e−xnh
sδ+1

−
e−xh2

sδ+1
+ 2e−xh2

s2δ+1
+ e−xnh

s2δ+1
−
e−xh2

s3δ+1

" #
,

υ3 x, tð Þ = −
e−xn2htδ

Γ 1 + δð Þ −
e−xnh2tδ

Γ δ + 1ð Þ +
e−xnh2t2δ

Γ 2δ + 1ð Þ −
e−xnh2tδ

Γ δ + 1ð Þ −
e−xh3tδ

Γ δ + 1ð Þ +
2e−xh3t2δ
Γ 2δ + 1ð Þ +

e−xnh2t2δ

Γ 2δ + 1ð Þ −
e−xh3t3δ

Γ 3δ + 1ð Þ :
ð77Þ
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The q-HATM solution of Eq. (36), is given as

4.2. Example. The system of 3D Burgers’ equation are [65,
66]

υδt + υυx + ϑυy + ϖυz − υxx − υyy − υzz = 0,

ϑδt + υϑx + ϑϑy + ϖϑz − ϑxx − ϑyy − ϑzz = 0,

ϖδ
t + υϖx + ϑϖy + ϖϖz − ϖxx − ϖyy − ϖzz = 0,

8>>><
>>>:

ð79Þ

the initial condition of Eq. (79), are

υ x, y, z, 0ð Þ = −0:5x + y + z, ϑ x, y, z, 0ð Þ
= x − 0:5y + z, ϖ x, y, z, 0ð Þ = x + y − 0:5z:

ð80Þ

The exact solution of the Eq. (79) at δ = 1, are

υ x, y, z, tð Þ = −0:5x + y + z − 2:25xt
1 − 2:25t2 ,

ϑ x, y, z, tð Þ = x − 0:5y + z − 2:25yt
1 − 2:25t2 ,

ϖ x, y, z, tð Þ = x + y − 0:5z − 2:25zt
1 − 2:25t2 :

8>>>>>><
>>>>>>:

ð81Þ

4.2.1. RPSM-Solution

(1) 1st Iteration. The kth truncated series of the solution of
Eq. (79), using RPSM, we obtain

υk x, y, z, tð Þ = 〠
k

n=0
f n x, y, zð Þ tnδ

Γ 1 + nδð Þ ,

ϑk x, y, z, tð Þ = 〠
k

n=0
gn x, y, zð Þ tnδ

Γ 1 + nδð Þ ,

ϖk x, y, z, tð Þ = 〠
k

n=0
hn x, y, zð Þ tnδ

Γ 1 + nδð Þ ,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð82Þ

the zeroth RPSM approximate solution of Eq. (79), is given by

υ0 x, y, z, tð Þ = υ x, y, z, 0ð Þ = f x, y, zð Þ,
ϑ0 x, y, z, tð Þ = ϑ x, y, z, 0ð Þ = g x, y, zð Þ,
ϖ0 x, y, z, tð Þ = ϖ x, y, z, 0ð Þ = h x, y, zð Þ,

8>><
>>: ð83Þ

the Eq. (82), should be written as

υk x, y, z, tð Þ = f x, y, zð Þ + 〠
k

n=1
f n x, y, zð Þ tnδ

Γ 1 + nδð Þ , k = 1, 2,⋯,

ϑk x, y, z, tð Þ = g x, y, zð Þ + 〠
k

n=1
gn x, y, zð Þ tnδ

Γ 1 + nδð Þ , k = 1, 2,⋯,

ϖk x, y, z, tð Þ = h x, y, zð Þ + 〠
k

n=1
hn x, y, zð Þ tnδ

Γ 1 + nδð Þ , k = 1, 2,⋯,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð84Þ

put k = 1 in Eq. (84), we get

υ1 x, y, z, tð Þ = f x, y, zð Þ + f1 x, y, zð Þ tδ

Γ 1 + δð Þ ,

ϑ1 x, y, z, tð Þ = g x, y, zð Þ + g1 x, y, zð Þ tδ

Γ 1 + δð Þ ,

ϖ1 x, y, z, tð Þ = g x, y, zð Þ + g1 x, y, zð Þ tδ

Γ 1 + δð Þ ,

8>>>>>>>>><
>>>>>>>>>:

ð85Þ

where

υ x, y, z, 0ð Þ = f x, y, zð Þ = −0:5x + y + z,
ϑ x, y, z, 0ð Þ = g x, y, zð Þ = x − 0:5y + z,
ϖ x, y, z, 0ð Þ = h x, y, zð Þ = x + y − 0:5z,

8>><
>>:

υ1 x, y, z, tð Þ = −0:5x + y + z + f1 x, y, zð Þ tδ

Γ 1 + δð Þ ,

ϑ1 x, y, z, tð Þ = x − 0:5y + z + g1 x, y, zð Þ tδ

Γ 1 + δð Þ ,

ϖ1 x, y, z, tð Þ = x + y − 0:5z + h1 x, y, zð Þ tδ

Γ 1 + δð Þ :

8>>>>>>>>><
>>>>>>>>>:

ð86Þ

υ x, tð Þ = υ0 x, tð Þ + υ1 x, tð Þ + υ2 x, tð Þ + υ3 x, tð Þ+⋯,

υ x, tð Þ = e−x −
e−xhtδ

Γ 1 + δð Þ −
e−xnhtδ

Γ 1 + δð Þ −
e−xh2tδ

Γ δ + 1ð Þ +
e−xh2t2δ

Γ 2δ + 1ð Þ −
e−xn2htδ

Γ 1 + δð Þ −
e−xnh2tδ

Γ δ + 1ð Þ +
e−xnh2t2δ

Γ 2δ + 1ð Þ

−
e−xnh2tδ

Γ δ + 1ð Þ −
e−xh3tδ

Γ δ + 1ð Þ +
2e−xh3t2δ
Γ 2δ + 1ð Þ +

e−xnh2t2δ

Γ 2δ + 1ð Þ −
e−xh3t3δ

Γ 3δ + 1ð Þ+⋯:

ð78Þ
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The residual function of Eq. (79), is given by

Resυ x, y, z, tð Þ = ∂δυ
∂tδ

+ υ
∂υ
∂x

+ ϑ
∂υ
∂y

+ ϖ
∂υ
∂z

−
∂2υ
∂x2

−
∂2υ
∂y2

−
∂2υ
∂z2

,

Resϑ x, y, z, tð Þ = ∂δϑ
∂tδ

+ υ
∂ϑ
∂x

+ ϑ
∂ϑ
∂y

+ ϖ
∂ϑ
∂z

−
∂2ϑ
∂x2

−
∂2ϑ
∂y2

−
∂2ϑ
∂z2

,

Resϖ x, y, z, tð Þ = ∂δϖ
∂tδ

+ υ
∂ϖ
∂x

+ ϑ
∂ϖ
∂y

+ ϖ
∂ϖ
∂z

−
∂2ϖ
∂x2

−
∂2ϖ
∂y2

−
∂2ϖ
∂z2

,

8>>>>>>>>><
>>>>>>>>>:

ð87Þ

where the kth residual function of Resυðx, y, tÞ, Resϑðx, y, tÞ,

and Resϖðx, y, tÞ is given by

Resυk x, y, z, tð Þ = ∂δυk
∂tδ

+ υk
∂υk
∂x

+ ϑk
∂υk
∂y

+ ϖk
∂υk
∂z

−
∂2υk
∂x2

−
∂2υk
∂y2

−
∂2υk
∂z2

,

Resϑk x, y, z, tð Þ = ∂δϑk
∂tδ

+ υk
∂ϑk
∂x

+ ϑk
∂ϑk
∂y

+ ϖk
∂ϑk
∂z

−
∂2ϑk
∂x2

−
∂2ϑk
∂y2

−
∂2ϑk
∂z2

,

Resϖk x, y, z, tð Þ = ∂δϖk

∂tδ
+ υk

∂ϖk

∂x
+ ϑk

∂ϖk

∂y
+ ϖk

∂ϖk

∂z
−
∂2ϖk

∂x2
−
∂2ϖk

∂y2
−
∂2ϖk

∂z2
,

8>>>>>>>>><
>>>>>>>>>:

ð88Þ

put k = 1 in the Eq. (88), we obtain

Resυ1 x, y, z, tð Þ = ∂δυ1
∂tδ

+ υ1
∂υ1
∂x

+ ϑ1
∂υ1
∂y

+ ϖ1
∂υ1
∂z

−
∂2υ1
∂x2

−
∂2υ1
∂y2

−
∂2υ1
∂z2

,

Resϑ1 x, y, z, tð Þ = ∂δϑ1
∂tδ

+ υ1
∂ϑ1
∂x

+ ϑ1
∂ϑ1
∂y

+ ϖ1
∂ϑ1
∂z

−
∂2ϑ1
∂x2

−
∂2ϑ1
∂y2

−
∂2ϑ1
∂z2

,

Resϖ1 x, y, z, tð Þ = ∂δϖ1
∂tδ

+ υ1
∂ϖ1
∂x

+ ϑ1
∂ϖ1
∂y

+ ϖ1
∂ϖ1
∂z

−
∂2ϖ1
∂x2

−
∂2ϖ1
∂y2

−
∂2ϖ1
∂z2

,

8>>>>>>>>><
>>>>>>>>>:

ð89Þ

= f1 x, y, zð Þ + −0:5x + y + z + f1 x, y, zð Þ tδ

Γ 1 + δð Þ
� �

−0:5 + f 1′ x, y, zð Þ tδ

Γ 1 + δð Þ
� �

+ x − 0:5y + z + f1 x, y, zð Þ tδ

Γ 1 + δð Þ
� �

1 + f 1′ x, y, zð Þ tδ

Γ 1 + δð Þ
� �

+ x + y − 0:5z + f1 x, y, zð Þ tδ

Γ 1 + δð Þ
� �

1 + f 1′ x, y, zð Þ tδ

Γ 1 + δð Þ
� �

− f 1′′ x, y, zð Þ tδ

Γ 1 + δð Þ
� �

− f 1′′ x, y, zð Þ tδ

Γ 1 + δð Þ
� �

− f 1′′ x, y, zð Þ tδ

Γ 1 + δð Þ
� �

,

= g1 x, y, zð Þ + −0:5x + y + z + g1 x, y, zð Þ tδ

Γ 1 + δð Þ
� �

1 + g1′ x, y, zð Þ tδ

Γ 1 + δð Þ
� �

+ x − 0:5y + z + g1 x, y, zð Þ tδ

Γ 1 + δð Þ
� �

−0:5 + g1′ x, y, zð Þ tδ

Γ 1 + δð Þ
� �

+ x + y − 0:5z + g1 x, y, zð Þ tδ

Γ 1 + δð Þ
� �

1 + g1′ x, y, zð Þ tδ

Γ 1 + δð Þ
� �

− g1′′ x, y, zð Þ tδ

Γ 1 + δð Þ
� �

− g1′′ x, y, zð Þ tδ

Γ 1 + δð Þ
� �

− g1′′ x, y, zð Þ tδ

Γ 1 + δð Þ
� �

,

= h1 x, y, zð Þ + −0:5x + y + z + h1 x, y, zð Þ tδ

Γ 1 + δð Þ
� �

1 + h1′ x, y, zð Þ tδ

Γ 1 + δð Þ
� �

+ x − 0:5y + z + h1 x, y, zð Þ tδ

Γ 1 + δð Þ
� �

1 + h1′ x, y, zð Þ tδ

Γ 1 + δð Þ
� �

+ x + y − 0:5z + h1 x, y, zð Þ tδ

Γ 1 + δð Þ
� �

−0:5 + h1′ x, y, zð Þ tδ

Γ 1 + δð Þ
� �

− h1′′ x, y, zð Þ tδ

Γ 1 + δð Þ
� �

− h1′′ x, y, zð Þ tδ

Γ 1 + δð Þ
� �

− h1′′ x, y, zð Þ tδ

Γ 1 + δð Þ
� �

,

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð90Þ
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we know that

Resυ1 x, y, z, 0ð Þ = 0,
Resϑ1 x, y, z, 0ð Þ = 0,
Resϖ1 x, y, z, 0ð Þ = 0,

8>><
>>: ð91Þ

put in Eq. (90), we obtain

f1 x, y, zð Þ = −2:25x,
g1 x, y, zð Þ = −2:25y,
h1 x, y, zð Þ = −2:25z:

8>><
>>: ð92Þ

(2) 2nd Iteration. Put k = 2 in Eq. (84), we obtain

where

υ x, y, z, 0ð Þ = f x, y, zð Þ = −0:5x + y + z, f1 x, y, zð Þ = −2:25x
ϑ x, y, z, 0ð Þ = g x, y, zð Þ = x − 0:5y + z, g1 x, y, zð Þ = −2:25y,
ϖ x, y, z, 0ð Þ = h x, y, zð Þ = x + y − 0:5z, h1 x, y, zð Þ = −2:25z,

υ2 x, y, z, tð Þ = −0:5x + y + z −
2:25xtδ
Γ 1 + δð Þ + f2 x, y, zð Þ t2δ

Γ 1 + 2δð Þ ,

ϑ2 x, y, z, tð Þ = x − 0:5y + z −
2:25ytδ
Γ 1 + δð Þ + g2 x, y, zð Þ t2δ

Γ 1 + 2δð Þ ,

ϖ2 x, y, z, tð Þ = x + y − 0:5z − 2:25ztδ
Γ 1 + δð Þ + h2 x, y, zð Þ t2δ

Γ 1 + 2δð Þ ,

8>>>>>>>>><
>>>>>>>>>:

ð94Þ

put k = 2 in the Eq. (88), we obtain

Resυ2 x, y, z, tð Þ = ∂δυ2
∂tδ

+ υ2
∂υ2
∂x

+ ϑ2
∂υ2
∂y

+ ϖ2
∂υ2
∂z

−
∂2υ2
∂x2

−
∂2υ2
∂y2

−
∂2υ2
∂z2

,

Resϑ2 x, y, z, tð Þ = ∂δϑ2
∂tδ

+ υ2
∂ϑ2
∂x

+ ϑ2
∂ϑ2
∂y

+ ϖ2
∂ϑ2
∂z

−
∂2ϑ2
∂x2

−
∂2ϑ2
∂y2

−
∂2ϑ2
∂z2

,

Resϖ2 x, y, z, tð Þ = ∂δϖ2
∂tδ

+ υ2
∂ϖ2
∂x

+ ϑ2
∂ϖ2
∂y

+ ϖ2
∂ϖ2
∂z

−
∂2ϖ2
∂x2

−
∂2ϖ2
∂y2

−
∂2ϖ2
∂z2

,

8>>>>>>>>><
>>>>>>>>>:

ð95Þ

Resυ2 x, y, z, tð Þ = −2:25x + f2 x, y, zð Þ tδ

Γ 1 + δð Þ + −0:5x + y + z −
2:25xtδ
Γ 1 + δð Þ + f2 x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

−0:5 − 2:25tδ
Γ 1 + δð Þ + f 2′ x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

+ x − 0:5y + z −
2:25ytδ
Γ 1 + δð Þ + f2 x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

1 + f 2′ x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

+ x + y − 0:5z − 2:25ztδ
Γ 1 + δð Þ + f2 x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

1 + f 2′ x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

− f2 ′′ x, y, zð Þ t2δ

Γ 1 + 2δð Þ − f2 ′′ x, y, zð Þ t2δ

Γ 1 + 2δð Þ

−f2 ′′ x, y, zð Þ t2δ

Γ 1 + 2δð Þ ,

Resϑ2 x, y, z, tð Þ = −2:25y + g2 x, y, zð Þ tδ

Γ 1 + δð Þ + −0:5x + y + z −
2:25xtδ
Γ 1 + δð Þ + g2 x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

1 + g2 ′ x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

+ x − 0:5y + z −
2:25ytδ
Γ 1 + δð Þ + g2 x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

−0:5 − 2:25tδ
Γ 1 + δð Þ + g2 ′ x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

+ x + y − 0:5z − 2:25ztδ
Γ 1 + δð Þ + g2 x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

1 + g2′ x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

− g2 ′′ x, y, zð Þ t2δ

Γ 1 + 2δð Þ − g2 ′′ x, y, zð Þ t2δ

Γ 1 + 2δð Þ

−g2′′ x, y, zð Þ t2δ

Γ 1 + 2δð Þ
�
,

Resϖ2 x, y, z, tð Þ = −2:25z + h2 x, y, zð Þ tδ

Γ 1 + δð Þ + −0:5x + y + z −
2:25xtδ
Γ 1 + δð Þ + h2 x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

1 + h2′ x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

+ x − 0:5y + z −
2:25ytδ
Γ 1 + δð Þ + h2 x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

1 + h2′ x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

+ x + y − 0:5z − 2:25ztδ
Γ 1 + δð Þ + h2 x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

−0:5 − 2:25tδ
Γ 1 + δð Þ + h2′ x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

− h2 ′′ x, y, zð Þ t2δ

Γ 1 + 2δð Þ

−h2′′ x, y, zð Þ t2δ

Γ 1 + 2δð Þ − h2′′ x, y, zð Þ t2δ

Γ 1 + 2δð Þ ,

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð96Þ

υ2 x, y, z, tð Þ = f x, y, zð Þ + f1 x, y, zð Þ tδ

Γ 1 + δð Þ + f2 x, y, zð Þ t2δ

Γ 1 + 2δð Þ ,

ϑ2 x, y, z, tð Þ = g x, y, zð Þ + g1 x, y, zð Þ tδ

Γ 1 + δð Þ + g2 x, y, zð Þ t2δ

Γ 1 + 2δð Þ ,

ϖ2 x, y, z, tð Þ = h x, y, zð Þ + h1 x, y, zð Þ tδ

Γ 1 + δð Þ + h2 x, y, zð Þ t2δ

Γ 1 + 2δð Þ ,

8>>>>>>>>><
>>>>>>>>>:

ð93Þ
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we know that

D k−1ð Þδ
t Resυk x, y, z, tð Þ = 0,

D k−1ð Þδ
t Resϑk x, y, z, tð Þ = 0,

D k−1ð Þδ
t Resϖk x, y, z, tð Þ = 0,

8>>><
>>>:

ð97Þ

put k = 2 in Eq. (97), we obtain

Dδ
t Resυ2 x, y, z, tð Þ = 0,

Dδ
t Resϑ2 x, y, z, tð Þ = 0,

Dδ
t Resϖ2 x, y, z, tð Þ = 0,

8>><
>>: ð98Þ

applying Dδ
t , on both sides of the Eq. (96), we get

Dδ
t Resυ2 x, y, z, tð Þ =

f2 x, y, zð Þ + −0:5x + y + z −
2:25xtδ
Γ 1 + δð Þ + f2 x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

−2:25 + f 2′ x, y, zð Þ tδ

Γ 1 + δð Þ
� �

+ −2:25x + f2 x, y, zð Þ tδ

Γ 1 + δð Þ
� �

−0:5 − 2:25tδ
Γ 1 + δð Þ

�

+f 2′ x, y, zð Þ t2δ

Γ 1 + 2δð Þ
�
+ x − 0:5y + z −

2:25ytδ
Γ 1 + δð Þ + f2 x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

f 2′ x, y, zð Þ tδ

Γ 1 + δð Þ
� �

+ −2:25y + f2 x, y, zð Þ tδ

Γ 1 + δð Þ
� �

1 + f 2′ x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

+ x + y − 0:5z − 2:25ztδ
Γ 1 + δð Þ + f2 x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

f 2′ x, y, zð Þ tδ

Γ 1 + δð Þ
� �

+ −2:25z + f2 x, y, zð Þ tδ

Γ 1 + δð Þ
� �

1 + f 2′ x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

− f 2′′ x, y, zð Þ tδ

Γ 1 + δð Þ
� �

− f 2′′ x, y, zð Þ tδ

Γ 1 + δð Þ
� �

− f 2′′ x, y, zð Þ tδ

Γ 1 + δð Þ
� �

,

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

Dδ
t Resϑ2 x, y, z, tð Þ =

g2 x, y, zð Þ + −0:5x + y + z −
2:25xtδ
Γ 1 + δð Þ + g2 x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

g2′ x, y, zð Þ tδ

Γ 1 + δð Þ
� �

+ −2:25x + g2 x, y, zð Þ tδ

Γ 1 + δð Þ
� �

1 + g2′ x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

+ x − 0:5y + z −
2:25ytδ
Γ 1 + δð Þ + g2 x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

−2:25 + g2′ x, y, zð Þ tδ

Γ 1 + δð Þ
� �

+ −2:25y + g2 x, y, zð Þ tδ

Γ 1 + δð Þ
� �

−0:5 − 2:25tδ
Γ 1 + δð Þ + g2′ x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

+ x + y − 0:5z − 2:25ztδ
Γ 1 + δð Þ + g2 x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

g2′ x, y, zð Þ tδ

Γ 1 + δð Þ
� �

+ −2:25z + g2 x, y, zð Þ tδ

Γ 1 + δð Þ
� �

1 + g2′ x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

−g2 ′′ x, y, zð Þ tδ

Γ 1 + δð Þ − f 2′′ x, y, zð Þ tδ

Γ 1 + δð Þ − g2′′ x, y, zð Þ tδ

Γ 1 + δð Þ ,

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

Dδ
t Resϖ2 x, y, z, tð Þ =

h2 x, y, zð Þ + −0:5x + y + z −
2:25xtδ
Γ 1 + δð Þ + h2 x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

h2′ x, y, zð Þ tδ

Γ 1 + δð Þ
� �

+ −2:25x + h2 x, y, zð Þ tδ

Γ 1 + δð Þ
� �

1 + h2′ x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

+ x − 0:5y + z −
2:25ytδ
Γ 1 + δð Þ + h2 x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

h2′ x, y, zð Þ tδ

Γ 1 + δð Þ
� �

+ −2:25y + f2 x, y, zð Þ tδ

Γ 1 + δð Þ
� �

1 + h2′ x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

+ x + y − 0:5z − 2:25ztδ
Γ 1 + δð Þ + h2 x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

−2:25 + h2′ x, y, zð Þ tδ

Γ 1 + δð Þ
� �

+ −2:25z + h2 x, y, zð Þ tδ

Γ 1 + δð Þ
� �

−0:5 − 2:25tδ
Γ 1 + δð Þ + h2′ x, y, zð Þ t2δ

Γ 1 + 2δð Þ
� �

−h2 ′′ x, y, zð Þ tδ

Γ 1 + δð Þ − h2′′ x, y, zð Þ tδ

Γ 1 + δð Þ − h2′′ x, y, zð Þ tδ

Γ 1 + δð Þ ,

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð99Þ
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we know that

Dδ
t Resυ2 x, y, z, 0ð Þ = 0,

Dδ
t Resϑ2 x, y, z, 0ð Þ = 0,

Dδ
t Resϖ2 x, y, z, 0ð Þ = 0,

8>><
>>: ð100Þ

put in Eq. (99), we obtain

f2 x, y, zð Þ = −2:25x + 4:5y + 4:5z,
g2 x, y, zð Þ = 4:5x − 2:25y + 4:5z,
h2 x, y, zð Þ = 4:5x + 4:5y − 2:25z:

8>><
>>: ð101Þ

The solution of Eq. (79), in term of RPSM is given by

υ x, y, z, tð Þ = f x, y, zð Þ + f1 x, y, zð Þ tδ

Γ 1 + δð Þ + f2 x, y, zð Þ t2δ

Γ 1 + 2δð Þ+⋯,

ϑ x, y, z, tð Þ = g x, y, zð Þ + g1 x, y, zð Þ tδ

Γ 1 + δð Þ + g2 x, y, zð Þ t2δ

Γ 1 + 2δð Þ+⋯,

ϖ x, y, z, tð Þ = h x, y, zð Þ + h1 x, y, zð Þ tδ

Γ 1 + δð Þ + h2 x, y, zð Þ t2δ

Γ 1 + 2δð Þ+⋯,

8>>>>>>>>><
>>>>>>>>>:

υ x, y, z, tð Þ = −0:5x + y + z −
2:25xtδ
Γ 1 + δð Þ +

−2:25x + 4:5y + 4:5zð Þt2δ
Γ 1 + 2δð Þ +⋯,

ϑ x, y, z, tð Þ = x − 0:5y + z −
2:25ytδ
Γ 1 + δð Þ +

4:5x − 2:25y + 4:5zð Þt2δ
Γ 1 + 2δð Þ +⋯,

ϖ x, y, z, tð Þ = x + y − 0:5z − 2:25ztδ
Γ 1 + δð Þ +

4:5x + 4:5y − 2:25zð Þt2δ
Γ 1 + 2δð Þ +⋯:

8>>>>>>>>><
>>>>>>>>>:

ð102Þ

4.2.2. Q-HATM Solution

(1) 1st Iteration. Taking LT of Eq. (79), and simplifying we
obtain

The nonlinear term N is defined as

L υ x, y, z, tð Þ½ � − −0:5x + y + zð Þ
s

+ 1
sδ
L υ

∂υ
∂x

+ ϑ
∂υ
∂y

+ ϖ
∂υ
∂z

−
∂2υ
∂x2

−
∂2υ
∂y2

−
∂2υ
∂z2

 !
= 0,

L ϑ x, y, z, tð Þ½ � − x − 0:5y + zð Þ
s

+ 1
sδ
L υ

∂ϑ
∂x

+ ϑ
∂ϑ
∂y

+ ϖ
∂ϑ
∂z

−
∂2ϑ
∂x2

−
∂2ϑ
∂y2

−
∂2ϑ
∂z2

 !
= 0,

L ϖ x, y, z, tð Þ½ � − x + y − 0:5zð Þ
s

+ 1
sδ
L υ

∂ϖ
∂x

+ ϑ
∂ϖ
∂y

+ ϖ
∂ϖ
∂z

−
∂2ϖ
∂x2

−
∂2ϖ
∂y2

−
∂2ϖ
∂z2

 !
= 0:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð103Þ

N θ x, y, z, t ; qð Þ½ � =L θ x, y, z, t ; qð Þ½ � − −0:5x + y + zð Þ
s

+ 1
sδ
L υ

∂υ
∂x

+ ϑ
∂υ
∂y

+ ϖ
∂υ
∂z

−
∂2υ
∂x2

 

−
∂2υ
∂y2

−
∂2υ
∂z2

!
,

N θ x, y, z, t ; qð Þ½ � =L θ x, y, z, t ; qð Þ½ � − x − 0:5y + zð Þ
s

+ 1
sδ
L υ

∂ϑ
∂x

+ ϑ
∂ϑ
∂y

+ ϖ
∂ϑ
∂z

−
∂2ϑ
∂x2

 

−
∂2ϑ
∂y2

−
∂2ϑ
∂z2

!
,

N θ x, y, z, t ; qð Þ½ � =L θ x, y, z, t ; qð Þ½ � − x + y − 0:5zð Þ
s

+ 1
sδ
L υ

∂ϖ
∂x

+ ϑ
∂ϖ
∂y

+ ϖ
∂ϖ
∂z

−
∂2ϖ
∂x2

 

−
∂2ϖ
∂y2

−
∂2ϖ
∂z2

!
:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð104Þ
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Use the procedure of q-HATM

put m = 1 in the Eq. (105), we obtain

put m = 1 in Eq. (107), we get

υm x, y, z, tð Þ = kmυm−1 x, y, z, tð Þ + hL−1 Rm υm−1ð Þ½ �,
ϑm x, y, z, tð Þ = kmϑm−1 x, y, z, tð Þ + hL−1 Rm ϑm−1ð Þ½ �,
ϖm x, y, z, tð Þ = kmϖm−1 x, y, z, tð Þ + hL−1 Rm ϖm−1ð Þ½ �,

8>><
>>: ð105Þ

υ1 x, y, z, tð Þ = k1υ0 x, y, z, tð Þ + hL−1 R1 υ0ð Þ½ �,
ϑ1 x, y, z, tð Þ = k1ϑ0 x, y, z, tð Þ + hL−1 R1 ϑ0ð Þ½ �,
ϖ1 x, y, z, tð Þ = k1ϖ0 x, y, z, tð Þ + hL−1 R1 ϖ0ð Þ½ �,

8>><
>>: ð106Þ

Rm υm−1ð Þ =L υm−1ð Þ − 1 − km
n

� �
−0:5x + y + zð Þ

s

� �
+ 1
sδ
L 〠

m−1

i=0
υi
∂υm−1−i
∂x

+ 〠
m−1

i=0
ϑi
∂υm−1−i
∂y

 

+ 〠
m−1

i=0
ϖi

∂υm−1−i
∂z

−
∂2υm−1
∂x2

−
∂2υm−1
∂y2

−
∂2υm−1
∂z2

!
,

Rm ϑm−1ð Þ =L ϑm−1ð Þ − 1 − km
n

� �
x − 0:5y + zð Þ

s

� �
+ 1
sδ
L 〠

m−1

i=0
υi
∂ϑm−1−i
∂x

+ 〠
m−1

i=0
ϑi
∂ϑm−1−i
∂y

 

+ 〠
m−1

i=0
ϖi

∂ϑm−1−i
∂z

−
∂2ϑm−1
∂x2

−
∂2ϑm−1
∂y2

−
∂2ϑm−1
∂z2

!
,

Rm ϖm−1ð Þ =L ϖm−1ð Þ − 1 − km
n

� �
x + y − 0:5zð Þ

s

� �
+ 1
sδ
L 〠

m−1

i=0
υi
∂ϖm−1−i

∂x
+ 〠

m−1

i=0
ϑi
∂ϖm−1−i

∂y

 

+ 〠
m−1

i=0
ϖi

∂ϖm−1−i
∂z

−
∂2ϖm−1
∂x2

−
∂2ϖm−1
∂y2

−
∂2ϖm−1
∂z2

!
,

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð107Þ

R1 υ0ð Þ =L υ0ð Þ − 1 − k1
n

� �
−0:5x + y + zð Þ

s

� �
+ 1
sδ
L υ0

∂υ0
∂x

+ ϑ0
∂υ0
∂y

�

+ϖ0
∂υ0
∂z

−
∂2υ0
∂x2

−
∂2υ0
∂y2

−
∂2υ0
∂z2

#
,

R1 ϑ0ð Þ =L ϑ0ð Þ − 1 − k1
n

� �
x − 0:5y + zð Þ

s

� �
+ 1
sδ
L υ0

∂ϑ0
∂x

+ ϑ0
∂ϑ0
∂y

�

+ϖ0
∂ϑ0
∂z

−
∂2ϑ0
∂x2

−
∂2ϑ0
∂y2

−
∂2ϑ0
∂z2

#
,

R1 ϖ0ð Þ =L ϖ0ð Þ − 1 − k1
n

� �
x + y − 0:5zð Þ

s

� �
+ 1
sδ
L υ0

∂ϖ0
∂x

+ ϑ0
∂ϖ0
∂y

�

+ϖ0
∂ϖ0
∂z

−
∂2ϖ0
∂x2

−
∂2ϖ0
∂y2

−
∂2ϖ0
∂z2

#
,

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

= 1
sδ
L 2:25x½ � = 2:25x

sδ+1
,

= 1
sδ
L 2:25y½ � = 2:25y

sδ+1
,

= 1
sδ
L 2:25z½ � = 2:25z

sδ+1
:

8>>>>>>><
>>>>>>>:

ð108Þ
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Put in Eq. (106), we obtain

(2) 2nd Iteration. Put m = 2 in the Eq. (105), we obtain
put m = 2 in Eq. (107), we obtain
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Figure 1: 3D plots of (a) RPSM, (b) Exact, and (c) q-HATM υ − solutions at δ = 1 of Example 4.1.

υ1 x, y, z, tð Þ = 2:25hxtδ
Γ δ + 1ð Þ ,

ϑ1 x, y, z, tð Þ = 2:25hytδ
Γ δ + 1ð Þ ,

ϖ1 x, y, z, tð Þ = 2:25hztδ
Γ δ + 1ð Þ :

8>>>>>>>>><
>>>>>>>>>:

ð109Þ

υ2 x, y, z, tð Þ = k2υ1 x, y, z, tð Þ + hL−1 R2 υ1ð Þ½ �,
ϑ2 x, y, z, tð Þ = k2ϑ1 x, y, z, tð Þ + hL−1 R2 ϑ1ð Þ½ �,
ϖ2 x, y, z, tð Þ = k2ϖ1 x, y, z, tð Þ + hL−1 R2 ϖ1ð Þ½ �,

8>><
>>: ð110Þ
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after simplification we obtain
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Figure 2: 2D plots of (a) RPSM, (b) Exact, and (c) q-HATM υ − solutions at δ = 1 of Example 4.1.

R2 υ1ð Þ =L υ1ð Þ − 1 − k2
n

� �
−0:5x + y + zð Þ

s

� �
+ 1
sδ
L υ0

∂υ1
∂x

+ υ1
∂υ0
∂x

+ ϑ0
∂υ1
∂y

+ ϑ1
∂υ0
∂y

�

+ϖ0
∂υ1
∂z

+ ϖ1
∂υ0
∂z

−
∂2υ1
∂x2

−
∂2υ1
∂y2

−
∂2υ1
∂z2

!
,

R2 ϑ1ð Þ =L ϑ1ð Þ − 1 − k2
n

� �
x − 0:5y + zð Þ

s

� �
+ 1
sδ
L υ0

∂ϑ1
∂x

+ υ1
∂ϑ0
∂x

+ ϑ0
∂ϑ1
∂y

+ ϑ1
∂ϑ0
∂y

�

+ϖ0
∂ϑ1
∂z

+ ϖ1
∂ϑ0
∂z

−
∂2ϑ1
∂x2

−
∂2ϑ1
∂y2

−
∂2ϑ1
∂z2

!
,

R2 ϖ1ð Þ =L ϖ1ð Þ − 1 − k2
n

� �
x + y − 0:5zð Þ

s

� �
+ 1
sδ
L υ0

∂ϖ1
∂x

+ υ1
∂ϖ0
∂x

+ ϑ0
∂ϖ1
∂y

+ ϑ1
∂ϖ0
∂y

�

+ϖ0
∂ϖ1
∂z

+ ϖ1
∂ϖ0
∂z

−
∂2ϖ1
∂x2

−
∂2ϖ1
∂y2

−
∂2ϖ1
∂z2

!
,

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð111Þ
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Put Eq. (112) in Eq. (110), we obtain

The solution of Eq. (79), in term of q-HATM is given by

0.5

v 
(x

, t
)

0
0.2

0.4
0.6

0.8

RPSM

1

0
0.2

0.4
0.6 tx

0.8
1

1
1.5

2
2.5

𝛿 = 1
𝛿 = 0.9

(a)

0.5

v 
(x

, t
)

0
0.2

0.4
0.6

0.8

q-HATM

1

0
0.2

0.4
0.6 tx

0.8
1

1
1.5

2
2.5

𝛿 = 1
𝛿 = 0.9

(b)

Figure 3: The 3D plots of example 4.1 for fractional order δ = 1,0:9:

Table 1: Solution comparison of RPSM, q-HATM, and Exact with different time and spaces of Example 4.1.

x t
RPSM RPSM q-HATM q-HATM Exact
δ = 0:9 δ = 1 δ = 0:9 δ = 1 δ = 1

0.25

0.001

0.7804183 0.7795799 0.7804183 0.7795799 0.7795799

0.50 0.6077903 0.6071374 0.6077903 0.6071374 0.6071374

0.75 0.4733476 0.4728391 0.4733476 0.4728391 0.4728391

1 0.3686435 0.3682475 0.3686435 0.3682475 0.3682475

0.25

0.005

0.7857118 0.7827045 0.7857118 0.7827045 0.7827045

0.50 0.6119130 0.6095709 0.6119130 0.6095709 0.6095709

0.75 0.4765583 0.4747342 0.4765583 0.4747342 0.4747342

1 0.3711440 0.3697234 0.3711440 0.3697234 0.3697234

R2 υ1ð Þ =
4:5hy
sδ+1

+ 4:5hz
sδ+1

,

R2 ϑ1ð Þ =
4:5hx
sδ+1

+ 4:5hz
sδ+1

,

R2 ϖ1ð Þ =
4:5hx
sδ+1

+ 4:5hy
sδ+1

:

8>>>>>>><
>>>>>>>:

ð112Þ

υ2 x, y, z, tð Þ = 2:25nhxtδ
Γ δ + 1ð Þ + 4:5h2ytδ

Γ δ + 1ð Þ +
4:5h2ztδ
Γ δ + 1ð Þ ,

ϑ2 x, y, z, tð Þ = 2:25nhytδ
Γ δ + 1ð Þ + 4:5h2xtδ

Γ δ + 1ð Þ +
4:5h2ztδ
Γ δ + 1ð Þ ,

ϖ2 x, y, z, tð Þ = 2:25nhztδ
Γ δ + 1ð Þ + 4:5h2xtδ

Γ δ + 1ð Þ +
4:5h2ytδ
Γ δ + 1ð Þ :

8>>>>>>>>><
>>>>>>>>>:

ð113Þ

17Journal of Function Spaces



1.0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.2 0.4
x

0.6 0.8 1

v (x, y, z, t)

RPSM

(a)

1.0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.2 0.4
x

0.6 0.8 1

v (x, y, z, t)

Exact

(b)

1.4

0.5

0.7

0.6

0.8

0.9

1.0

1.1

1.2

1.3

0 0.2 0.4
x

0.6 0.8 1

v (x, y, z, t)

q-HATM

(c)

Figure 4: 2D-solutions plots of (a) RPSM, (b) Exact, and (c) q-HATM, at δ = 1 of Example 4.2.

υ x, y, z, tð Þ = υ0 x, y, z, tð Þ + υ1 x, y, z, tð Þ + υ2 x, y, z, tð Þ,
ϑ x, y, z, tð Þ = ϑ0 x, y, z, tð Þ + ϑ1 x, y, z, tð Þ + ϑ2 x, y, z, tð Þ,
ϖ x, y, z, tð Þ = ϖ0 x, y, z, tð Þ + ϖ1 x, y, z, tð Þ + ϖ2 x, y, z, tð Þ,

8>><
>>:

υ x, y, z, tð Þ = −0:5x + y + z + 2:25xtδ
Γ 1 + δð Þ +

2:25nhxtδ
Γ δ + 1ð Þ + 4:5h2ytδ

Γ δ + 1ð Þ +
4:5h2ztδ
Γ δ + 1ð Þ ,

ϑ x, y, z, tð Þ = x − 0:5y + z + 2:25ytδ
Γ 1 + δð Þ +

2:25nhytδ
Γ δ + 1ð Þ + 4:5h2xtδ

Γ δ + 1ð Þ +
4:5h2ztδ
Γ δ + 1ð Þ ,

ϖ x, y, z, tð Þ = x + y − 0:5z + 2:25ztδ
Γ 1 + δð Þ +

2:25nhztδ
Γ δ + 1ð Þ + 4:5h2xtδ

Γ δ + 1ð Þ +
4:5h2ytδ
Γ δ + 1ð Þ :

8>>>>>>>>><
>>>>>>>>>:

ð114Þ
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Figure 5: 3D-solutions plots of (a) RPSM, (b) Exact, and (c) q-HATM, at δ = 1 of Example 4.2.
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Figure 6: The 3D plots at fractional order δ of Example 4.2.
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5. Results and Discussion

Here, we will discuss the numerical solutions. In Figure 1,
3D plots of (a) RPSM, (b) Exact, and (c) q-HATM ψ −
solutions at δ = 1 of Example 4.1 are presented. Which are
in closed contact with the exact solution of Example 4.1. In
Figure 2, 2D plots of (a) RPSM, (b) Exact, and (c) q-
HATM ψ − solutions at δ = 1 of Example 4.1 are presented,
from which the validity of the proposed methods are con-
firmed. While in Figure 3, 3D plots of Example 4.1 for frac-
tional order δ = 1,0:9 are plotted. Numerical values of
Example 4.1 are presented in Table 1. In Figure 4, 2D-
solutions plots and Figure 5 of (a) RPSM, (b) Exact, and
(c) q-HATM, at δ = 1 of Example 4.2 are plotted. The RPSM
and q-HATM solutions are very closed to the exact solution.
The RPSM and q-HATM solutions graphs at different frac-
tional order are plotted in Figure 6.

6. Conclusion

In this paper, the solutions of nonlinear systems of fractional
Burger’s equations and advection diffusion equation are calcu-
lated by using q-HATM and RPSM. The proposed methods
provide the results with higher degree of accuracy and using
very few terms of their series solutions. The solutions compar-
ison of both techniques are compared with the actual solutions
of each problem. The comparison has shown the best compro-
mise between the solutions of the suggested techniques. The
fractional-order solutions are calculated successfully and
shown to be convergent towards the integer-order solutions.
The novelty of this paper is given in the nonlinear fractional
solutions which provide the more accurate results as compared
to other studies in literature. In the future, the suggested tech-
niques can be utilised easily for the solutions of higher dimen-
sional and nonlinear FPDEs and their systems because of their
simple and straightforward implementation.
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The fractional problem for partial differential equation has many applications in science and technology. The main objective of the
paper is to investigate the convergence of the mild solution of the diffusion equation with time and space fractional. We consider
the problem in two cases which are forward problem and inverse problem. We use new techniques to overcome some of the
complex assessments.

1. Introduction

Fractional calculation has been shown to provide many
important applications in natural sciences, such as in biolog-
ical systems, signal processing, fluid mechanics, electrical
networks, optical, and viscosity [1–8]. With the development
of mathematics, there are now many different definitions
of fractional derivatives, for example, Riemann-Liouville,
Caputo, Hadamard, and Riesz. Let us refer many various
papers on fractional differential equation, for example,
Manimaran et al., Tuan et al., Long et al., Long L.D.
et al., and Ngoc et al. [9–14]; Adiguzel et al., Li et al.,
Afshari et al., Alqahtani et al., Karapınar et al., Salim
et al., Karapinar et al., and Abdeljawad et al. [15–22];
and Bachir et al., Salim et al., and Baitichea et al.
[23–25]. Although most of them have been extensively
studied, most mathematicians are interested and studied
two derivatives which are Caputo and Riemann-Liouville
derivatives.

In this paper, for α, β ∈ ð0, 1Þ, we are interested to study
the following problem:

∂αt u x, tð Þ + −Δð Þβu x, tð Þ =H x, tð Þ, x, tÞ ∈ 0, πð Þ × 0, Tð Þ,
u 0, tð Þ = u π, tð Þ = 0ð , t ∈ 0, Tð Þ,

(

ð1Þ

with the initial condition

u x, 0ð Þ = u0 xð Þ, 0 < x < π, ð2Þ

or the terminal condition

u x, Tð Þ = f xð Þ, 0 < x < π: ð3Þ

There are many results related to the Problem (1) in both
aspects: theoretical analysis and numerical analysis. The
existence and well-posedness of Problems (1)–(2) and
(1)–(3) has been studied in [26]. Jin et al. [27] applied two
semidiscrete schemes of Galerkin FEM method in order to
approximate the solution of Problems (1) and (2). In [28],
the authors investigated a reaction-diffusion equation with
a Caputo fractional derivative in time. In [29], the authors
established the existence and uniqueness of the weak solu-
tion and the regularity of the solution for coupled fractional
diffusion system. Mu et al. [30] investigated some initial-
boundary value problems for time-fractional diffusion equa-
tions. Let us now mention some previous works on terminal
value problem Problems (1)–(3). The main current applica-
tions of the terminal value problem are hydrodynamic
inversion and spoil the image. In [31], the authors used var-
iable total variation to approximate the backward problem
for a time-space fractional diffusion equation. Under the

Hindawi
Journal of Function Spaces
Volume 2022, Article ID 1938290, 8 pages
https://doi.org/10.1155/2022/1938290

https://orcid.org/0000-0001-9664-6743
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/1938290


interesting paper [32], Ngoc et al. considered the terminal
value problem for nonlinear model.

Dα
0+u − uxx = F uð Þ: ð4Þ

Our main purpose of this paper is to study the conver-
gence of Problem (1) when β⟶ 1−. This result gives us
the relationship between the solutions of the two Problem
(1) with the case 0 < β < 1 and β = 1. To the best of our
knowledge, the research direction on this convergence topic
is still limited. The main techniques to solve the our problem
is to use Mittag-Leffler evaluations with the combination of
the Wright function.

This paper is organized as follows. In Section 2, we focus
premilinaries with some background on the definition and
evaluations of Mittag-Leffler functions.

2. Premilinaries

Let us consider the Mittag-Leffler function, which is
defined by

Eα,β zð Þ = 〠
∞

n=0

zn

Γ nα + βð Þ : ð5Þ

ðz ∈ℂÞ, for α > 0 and β ∈ℝ. When β = 1, it is abbrevi-
ated as EαðzÞ = Eα,1ðzÞ.

Lemma 2.1. The following equality holds (See [33]):

Eα,1 −zð Þ =
ð∞
0
Φα θð Þe−zθdθ, for z ∈ℂ, ð6Þ

where the Wright function ΦαðθÞ is defined by

Φα θð Þ≔ 〠
∞

j=0

θj

j!Γ −αj + 1 − αð Þ , 0 < α < 1: ð7Þ

In addition, ΦαðθÞ is a probability density function,
that is,

Φα θð Þ ≥ 0, for θ > and
ð∞
0
Φα θð Þ = 1: ð8Þ

Lemma 2.2. For α ∈ ð0, 1Þ and b > −1, the following proper-
ties hold (See [33]):

ð∞
0
θbΦα θð Þdθ = Γ b + 1ð Þ

Γ bα + 1ð Þ : ð9Þ

Let a given positive number σ ≥ 0. Let us also define
the Hilbert scale space as follows:

ℍσ Ωð Þ = ψ ∈ L2 Ωð Þ: 〠
∞

j=1
j2σ ψ, φj

D E2
<+∞

( )
, ð10Þ

with the following norm kψkℍσðΩÞ = ð∑∞
j=1 j

2σhψ, φji2Þ
ð1/2Þ

:

Here we give the following lemma, which will help our
proofs later:

Lemma 2.3. Let ε, ε′ > 0. Then we get the following:

Eα,1 −j2βtα
� �

− Eα,1 −j2tα
À Á

≤ C1 α, εð Þtαε 1 − βð Þεε′ j2ε+εε′:
ð11Þ

Eα,α −j2βtα
� �

− Eα,α −j2tα
À Á

≤ C2 α, εð Þtαε 1 − βð Þεε′ j2ε+εε′:
ð12Þ

Proof. Let us now to study the difference jEα,1ð−j2βtαÞ −
Eα,1ð−j2tαÞj for 0 < β < 1. Since the definition of Wright
function as in Lemma 2.1, we get that

Eα,1 −j2βtα
� �

− Eα,1 −j2tα
À Á

=
ð∞
0
Φα θð Þ exp −j2βtαθ

� �
dθ

−
ð∞
0
Φα θð Þ exp −j2tαθ

À Á
dθ:

ð13Þ

Since j ≥ 1 and 0 < β ≤ 1, we know easily that exp
ð−j2βtαθÞ > exp ð−j2tαθÞ. Hence, we find that

exp −j2βtαθ
� �

− exp −j2tαθ
À Á

= exp −j2βtαθ
� �

1 − exp − j2 − j2β
� �

tαθ
� �� �

:
ð14Þ

Using the inequality 1 − e−z ≤ Cεz
ε for any ε > 0, we

find that

exp −j2βtαθ
� �

− exp −j2tαθ
À Á

≤ Cε j2 − j2β
� �ε

tαεθε: ð15Þ

Combining Problems (13) and (15), we derive that

Eα,1 −j2βtα
� �

− Eα,1 −j2tα
À Á

≤ Cε j2 − j2β
� �ε

tαε
ð∞
0
θεΦα θð Þdθ

� �

= Cε

Γ ε + 1ð Þ
αε + 1 j2 − j2β

� �ε
tαε:

ð16Þ

For any ε′ > 0 and noting that log ðjÞ ≤ j for any j ≥ 1, it is
obvious to see that

j2 − j2β = j2 1 − exp − 2 − 2βð Þ log jð Þð Þð Þ
≤ j2 2 − 2βð Þε′ log jð Þj jε′

≲ 1 − βð Þε′ j2+ε′:
ð17Þ

This implies that

j2 − j2β
� �ε

≲ 1 − βð Þεε′ j2ε+εε′: ð18Þ
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From some above observations, we get that

Eα,1 −j2βtα
� �

− Eα,1 −j2tα
À Á

≤ C1 α, εð Þtαε 1 − βð Þεε′ j2ε+εε′:
ð19Þ

By a similar argument as above, we also obtain the
desired result, Problem (12).

3. Initial Value Problem

In this section, we focus the following initial value problem
under the linear case:

∂αt v = − −Δð Þβv x, tð Þ +H x, tð Þ, x, tð Þ ∈ 0, πð Þ × 0, Tð Þ,
v 0, tð Þ = v π, tð Þ = 0, t ∈ 0, Tð Þ,
v x, 0ð Þ = v0 xð Þ, x ∈ 0, πð Þ,

8>><
>>:

ð20Þ

where v0 and source function H are defined later.

Theorem 3.1. Let v0 ∈ℍpðΩÞ and H ∈ L∞ð0, T ;ℍpðΩÞÞ for
any p > 0. Then we get

vβ :,tð Þ−v∗ :,tð Þ 
ℍs Ωð Þ

≲ 1 − βð Þp−s/2 v0k kℍp Ωð Þ + Hk kL∞ 0,T ;ℍp Ωð Þð Þ
h i ð21Þ

for any 0 < s < p.

Proof. The mild solution to Problem (20) with 0 < β < 1 is
defined by

vβ x, tð Þ = 〠
∞

j=1
Eα,1 −j2βtα
� � ðπ

0
v0 xð Þφj xð Þdx

� �
φj xð Þ

+ 〠
∞

j=1

ðt
0
t − rð Þα−1Eα,α −j2β t − rð Þα

� �
Hj rð Þdr

� �
φj xð Þ,

ð22Þ

and the mild solution to Problem (20) with β = 1 is
defined by

v∗ x, tð Þ = 〠
∞

j=1
Eα,1 −j2tα
À Á ðπ

0
v0 xð Þφj xð Þdx

� �
φj xð Þ

+ 〠
∞

j=1

ðt
0
t − rð Þα−1Eα,α −j2 t − rð ÞαÀ Á

Hj rð Þdr
� �

φj xð Þ:

ð23Þ

By subtracting both sides of the two expressions above,
we get the following difference:

vβ x, tð Þ − v∗ x, tð Þ

= 〠
∞

j=1
Eα,1 −j2βtα
� �

− Eα,1 −j2tα
À Áh i ðπ

0
v0 xð Þφj xð Þdx

� �
φj xð Þ

+ 〠
∞

j=1

ðt
0
t − rð Þα−1 Eα,α −j2β t − rð Þα

� ���

− Eα,α −j2 t − rð ÞαÀ Á�
Hj rð Þdr

�
φj xð Þ

=M1 x, tð Þ +M2 x, tð Þ:
ð24Þ

Let us first consider the term M1. By applying Parse-
val’s equality and Lemma 2.3, we find that

M1 :,tð Þk k2ℍs Ωð Þ = 〠
∞

j=1
j2s Eα,1 −j2βtα

� �
− Eα,1 −j2tα

À Áh i2

Á
ðπ
0
v0 xð Þφj xð Þdx

� �2

≤ C1 α, ε, δð Þj j2t2αε 1 − βð Þ2εδ 〠
∞

j=1
j2s+4ε+2εδ

Á
ðπ
0
v0 xð Þφj xð Þdx

� �2
,

ð25Þ

where any delta > 0. Hence, we know that the upper bound

M1 :,tð Þk kℍs Ωð Þ ≲ 1 − βð Þεδ v0k kℍs+2ε+εδ Ωð Þ: ð26Þ

Let us now treat the second termM2. By using Parseval’s
equality, we get that

M2 :,tð Þk k2ℍs Ωð Þ = 〠
∞

j=1
j2s
ðt
0
t − rð Þα−1 Eα,α −j2β t − rð Þα

� ���

− Eα,α −j2r t −ð ÞαÀ ÁÁ
Hj rð Þdr

�2

Á〠
∞

j=1
j2s
ðt
0
t − rð Þα−1 Eα,α −j2β t − rð Þα

� ���

− Eα,α −j2 t − rð ÞαÀ Á�2
Hj rð Þ�� ��2dr�:

ð27Þ

In view of the second estimate of Lemma 2.3, we derive
that

Eα,α −j2β t − rð Þα
� �

− Eα,α −j2 t − rð ÞαÀ Á� �2
≤ C2 α, ε, ε′

� ���� ���2 t − rð Þ2αε 1 − βð Þ2εε′ j 4ε+2εε′ð Þ
ð28Þ
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Combining Problems (27) and (28), we derive that

M2 :,tð Þk k2ℍs Ωð Þ ≤ C2 α, ε, ε′
� ���� ���2 1 − βð Þ2εε′

ðt
0
t − rð Þα−1+2αε

Á 〠
∞

j=1
j2s+4ε+2εε′ Hj rð Þ�� ��2 !

dr

= C2 α, ε, ε′
� ���� ���2 1 − βð Þ2εε′

Á
ðt
0
t − rð Þα−1+2αε H rð Þk kℍs+2ε+εε ′ Ωð Þdr

≤ C2 α, ε, ε′
� ���� ���2 1 − βð Þ2εε′

Á
ðt
0
t − rð Þα−1+2αεdr

� �
Hk k2

L∞ 0,T ;ℍs+2ε+εε ′ Ωð Þ
À Á:

ð29Þ
It is obvious to see that the integral termÐ t

0ðt − rÞðα−1+2αεÞdr is convergent. Hence, we obtain that the
following estimate:

M2 :,tð Þk kℍs Ωð Þ ≤ C2 α, ε, ε′
� ���� ��� 1 − βð Þεε′ Hk k

L∞ 0,T ;ℍs+2ε+εε ′ Ωð Þ
À Á:

ð30Þ
Combining Problems (24), (25), and (30), we find that

vβ :,tð Þ−v∗ :,tð Þ 
ℍs Ωð Þ

≤ M1 :,tð Þk kℍs Ωð Þ+ M2 :,tð Þk kℍs Ωð Þ

≲ 1 − βð Þεδ v0k kℍs+2ε+εδ Ωð Þ + 1 − βð Þεε′ Hk k
L∞ 0,T ;ℍs+2ε+εε ′ Ωð Þ
À Á:

ð31Þ

Since p > s, we can choose

ε = p − s
4 , δ = ε′ = 2: ð32Þ

This implies that

vβ :,tð Þ−v∗ :,tð Þ 
ℍs Ωð Þ ≲ 1 − βð Þp−s/2 v0k kℍp Ωð Þ + Hk kL∞ 0,T ;ℍp Ωð Þð Þ

h i
:

ð33Þ

4. Terminal Value Problem

Theorem 4.1. Let f ∈ℍbðΩÞ and H ∈ L∞ð0, T ;ℍbðΩÞÞ.
Then we get

uβ :,tð Þ−u∗ :,tð Þ 
Lm 0,T ;ℍs Ωð Þð Þ

≲ 1 − βð Þb−s−2β−2/2 fk kℍb Ωð Þ + Hk kL∞ 0,T ;ℍb Ωð Þð Þ
� �

+ 1 − βð Þb−s+2β+2/2 Hk kL∞ 0,T ;ℍb Ωð Þð Þ,
ð34Þ

for 1 <m < 1/α and b > s + 2β + 2.

Proof. The mild solution to terminal value Problem (1) for
0 < β < 1 is given by

uβ x, tð Þ = 〠
∞

j=1

Eα,1 −j2βtα
À Á

Eα,1 −j2βTαÀ Á ðπ
0
f xð Þφj xð Þdx

� �
φj xð Þ

− 〠
∞

j=1

Eα,1 −j2βtα
À Á

Eα,1 −j2βTα
À Á ðT

0
T − rð Þα−1Eα,α

�

Á −j2β T − rð Þα
� �

Hj rð Þdr
�
φj xð Þ

+ 〠
∞

j=1

ðt
0
t − rð Þα−1Eα,α −j2β t − rð Þα

� �
Hj rð Þdr

� �
φj xð Þ,

ð35Þ

where

Hj rð Þ =
ðπ
0
H x, rð Þφj xð Þdx: ð36Þ

The mild solution to terminal value Problem (1) for
β = 1 is given by

u∗ x, tð Þ = 〠
∞

j=1

Eα,1 −j2tα
À Á

Eα,1 −j2Tα
À Á ðπ

0
f xð Þφj xð Þdx

� �
φj xð Þ

− 〠
∞

j=1

Eα,1 −j2tα
À Á

Eα,1 −j2Tα
À Á ðT

0
T − rð Þα−1Eα,α

�

Á −j2β T − rð Þα
� �

Hj rð Þdr
�
φj xð Þ

+ 〠
∞

j=1

ðt
0
t − rð Þα−1Eα,α −j2 t − rð ÞαÀ Á

Hj rð Þdr
� �

φj xð Þ:

ð37Þ

Taking the difference of Problems (35) and (37) on
both sides, we get the following bound:

uβ x, tð Þ − u∗ x, tð Þ

= 〠
∞

j=1

Eα,1 −j2βtα
À Á

Eα,1 −j2βTα
À Á − Eα,1 −j2tα

À Á
Eα,1 −j2TαÀ Á

 ! ðπ
0
f xð Þφ j xð Þdx

� �
φ j xð Þ

− 〠
∞

j=1

Eα,1 −j2βtα
À Á

Eα,1 −j2βTα
À Á ðT

0
T − rð Þα−1 Eα,α −j2β T − rð Þα

� ���

− Eα,α −j2 T − rð ÞαÀ Á�
Hj rð Þdr

�
φj xð Þ

+ 〠
∞

j=1

Eα,1 −j2βtα
À Á

Eα,1 −j2βTαÀ Á − Eα,1 −j2tα
À Á

Eα,1 −j2Tα
À Á

 !

Á
ðT
0
T − rð Þα−1Eα,α −j2 T − rð ÞαÀ Á

Hj rð Þdr
� �

φ j xð Þ
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+ 〠
∞

j=1

ðt
0
t − rð Þα−1 Eα,α −j2β t − rð Þα

� ���

− Eα,α −j2 t − rð ÞαÀ Á�
Hj rð Þdr

�
φj xð Þ

= J1 x, tð Þ + J2 x, tð Þ + J3 x, tð Þ + J4 x, tð Þ:

ð38Þ

Step 1. Estimation of the Term J1.
In order to evaluate J1, we need to control the compo-

nent

M1 =
Eα,1 −j2βtα
À Á

Eα,1 −j2βTα
À Á − Eα,1 −j2tα

À Á
Eα,1 −j2Tα
À Á : ð39Þ

It is obvious to compute the above term as follows:

M1 =
Eα,1 −j2βtα
À Á

− Eα,1 −j2tα
À Á

Eα,1 −j2βTαÀ Á
−
Eα,1 −j2βTαÀ Á

− Eα,1 −j2TαÀ Á
Eα,1 −j2βTα
À Á

Eα,1 −j2Tα
À Á :

ð40Þ

Since the fact that

Eα,1 −j2βTα
� �

≥
C−
α

1 + j2βTα
≤

Cα

j2β Tα + 1ð Þ , ð41Þ

we know that

Eα,1 −j2βtα
À Á

− Eα,1 −j2tα
À Á

Eα,1 −j2βTα
À Á

≤
C1 α, εð Þ Tα + 1ð Þ

Cα

tαε 1 − βð Þεε′ j2ε+εε′+2β:
ð42Þ

By a similar explanation as above, we find that

Eα,1 −j2βTα
À Á

− Eα,1 −j2Tα
À Á

Eα,1 −j2βTα
À Á

Eα,1 −j2Tα
À Á ≲ Tαε 1 − βð Þεε′ j2ε+εε′+2β+2, ð43Þ

where the hidden constant depends on α, T , ε, ε′. From two
above observation, we find that

M1 =
Eα,1 −j2βtα
À Á

Eα,1 −j2βTαÀ Á − Eα,1 −j2tα
À Á

Eα,1 −j2Tα
À Á ≲ 1 − βð Þεε′ j2ε+εε′+2β+2,

ð44Þ

where the hidden constant depends on α, T , ε. Hence, we
obtain that

J1k k2ℍs Ωð Þ = 〠
∞

j=1
j2s

Eα,1 −j2βtα
À Á

Eα,1 −j2βTα
À Á − Eα,1 −j2tα

À Á
Eα,1 −j2Tα
À Á

 !2

Á
ðπ
0
f xð Þφj xð Þdx

� �2

≲ 1 − βð Þ2εε′ 〠
∞

j=1
j2s+4ε+2εε′+4β+4

ðπ
0
f xð Þφj xð Þdx

� �2
:

ð45Þ

It implies that the following bound

J1k kℍs Ωð Þ ≲ 1 − βð Þεε′ fk kℍs+2ε+εε′+2β+2 Ωð Þ: ð46Þ

Step 2. Estimation of the Term J3.
By using Parseval’s equality and noting that Problem

(44), we find that

J3k k2ℍs Ωð Þ = 〠
∞

j=1
j2s

Eα,1 −j2βtα
À Á

Eα,1 −j2βTα
À Á − Eα,1 −j2tα

À Á
Eα,1 −j2TαÀ Á

 !2

Á
ðT
0
T − rð Þα−1Eα,α −j2 T − rð ÞαÀ Á

Hj rð Þdr
� �2

≲ 1 − βð Þ2εε′ 〠
∞

j=1
j2s+4ε+2εε′+4β+4

ðT
0
T − rð Þα−1dr

� �

Á
ðT
0
T − rð Þα−1 Hj rð Þ�� ��2dr� �2

,

ð47Þ

where we have used the fact that Eα,αð−j2ðT − rÞαÞ ≤ Cα.
Hence, we find that

J3k k2ℍs Ωð Þ ≲
Tα

α
1 − βð Þ2εε′

ðT
0
T − rð Þα−1 H rð Þk kℍs+2ε+εε′+2β+2 Ωð Þdr

� �
≲ 1 − βð Þ2εε′ Hk k2

L∞ 0,T ;ℍs+2ε+εε ′+2β+2 Ωð Þ
À Á:

ð48Þ

Step 3. Estimation of the Term J2.
By using Parseval’s equality, we derive that

J2k k2ℍs Ωð Þ = 〠
∞

j=1
j2s

Eα,1 −j2βtα
À Á

Eα,1 −j2βTαÀ Á
 !2 ðT

0
T − rð Þα−1

�

Á Eα,α −j2β T − rð Þα
� �

− Eα,α −j2 T − rð ÞαÀ Á� �
Hj rð Þdr

�2
:

ð49Þ
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It is easy to verify that

Eα,1 −j2βtα
À Á

Eα,1 −j2βTα
À Á ≲ 1 + Tα j2β

1 + tα j2β
≤ Tαt−α: ð50Þ

Using Hölder’s inequality, we derive that

ðT
0
T − rð Þα−1 Eα,α −j2β T − rð Þα

� �
− Eα,α −j2 T − rð ÞαÀ Á� �

Hj rð Þdr
� �2

≤
ðT
0
T − rð Þα−1dr

� � ðT
0
T − rð Þα−1 Eα,α −j2β T − rð Þα

� ���

− Eα,α −j2 T − rð ÞαÀ Á�2
Hj rð Þ�� ��2dr�

≲
ðT
0
T − rð Þα−1 Eα,α −j2β T − rð Þα

� ��
− Eα,α −j2 T − rð ÞαÀ Á�2

Hj rð Þ�� ��2dr:
ð51Þ

By a similar explanation, we can get that the following
bound:

Eα,α −j2βtα
� �

− Eα,α −j2tα
À Á

≤ C2 α, ε, γð Þtαε 1 − βð Þεγ j2ε+εγ,
ð52Þ

for any γ > 0. This implies that

Eα,α −j2β T − rð Þα
� �

− Eα,α −j2 T − rð ÞαÀ Á� �2
≲ T − rð Þ2αε 1 − βð Þ2εγ j4ε+2εγ:

ð53Þ

Hence, we get that the following bound:

ðT
0
T − rð Þα−1 Eα,α −j2β T − rð Þα

� �
− Eα,α −j2 T − rð ÞαÀ Á� �2

Hj rð Þ�� ��2dr
≲ 1 − βð Þ2εγ

ðT
0
T − rð Þα+2αε−1 j4ε+2εγ Hj rð Þ�� ��2dr:

ð54Þ

Combining Problems (49), (50), and (54), we derive that

J2k k2ℍs Ωð Þ ≲ t−2α 1 − βð Þ2εγ
ðT
0
T − rð Þα+2αε−1

Á 〠
∞

j=1
j2s+4ε+2εγ Hj rð Þ�� ��2 !

dr

= t−2α 1 − βð Þ2εγ
ðT
0
T − rð Þα+2αε−1 H rð Þk k2ℍs+2ε+εγ Ωð Þdr

≤ t−2α 1 − βð Þ2εγ
ðT
0
T − rð Þα+2αε−1dr

� �
Á Hk k2L∞ 0,T ;ℍs+2ε+εγ Ωð Þð Þ:

ð55Þ

It is obvious to see that

ðT
0
T − rð Þα+2αε−1dr = Tα+2αε

α + 2αε : ð56Þ

So, we obtain that the following confirmation

J2k kℍs Ωð Þ ≲ 1 − βð Þεγt−α Hk kL∞ 0,T ;ℍs+2ε+εγ Ωð Þð Þ: ð57Þ

Step 4. Estimation of the Term J4.
By using Parseval’s equality and Hölder’s inequality, we

get that

J4k k2ℍs Ωð Þ = 〠
∞

j=1
j2s

ðt
0
t − rð Þα−1 Eα,α −j2β t − rð Þα

� ���

− Eα,α −j2 t − rð ÞαÀ Á�
Hj rð Þdr

�2

≤
ðt
0
t − rð Þα−1dr

� �
〠
∞

j=1
j2s

Á
ðt
0
t − rð Þα−1 Eα,α −j2β T − rð Þα

� ���

− Eα,α −j2 t − rð ÞαÀ Á�2
Hj rð Þ�� ��2dr�:

ð58Þ

By a similar techniques as in Probelem (54), we derive
that

ðt
0
t − rð Þα−1 Eα,α −j2β t − rð Þα

� �
− Eα,α −j2 t − rð ÞαÀ Á� �2

Hj rð Þ�� ��2dr
≲ 1 − βð Þ2εγ

ðt
0
t − rð Þα+2αε−1 j4ε+2εγ Hj rð Þ�� ��2dr:

ð59Þ

By review two latter observations, we can deduce that

J4k k2ℍs Ωð Þ ≲ 1 − βð Þ2εγ
ðt
0
t − rð Þα+2αε−1 〠

∞

j=1
j2s+4ε+2εγ Hj rð Þ�� ��2 !

dr

= 1 − βð Þ2εγ
ðt
0
t − rð Þα+2αε−1 H rð Þk k2ℍs+2ε+εγ Ωð Þdr

≤ 1 − βð Þ2εγ
ðt
0
t − rð Þα+2αε−1dr

� �
Hk k2L∞ 0,T ;ℍs+2ε+εγ Ωð Þð Þ:

ð60Þ

The above inequality implies that the following estimate:

J4k kℍs Ωð Þ ≲ 1 − βð Þεγ
ðt
0
t − rð Þα+2αε−1dr

� �
Hk kL∞ 0,T ;ℍs+2ε+εγ Ωð Þð Þ

ð61Þ

By similar computation as above, we deduce that

J4k kℍs Ωð Þ ≲ 1 − βð Þεγ Hk kL∞ 0,T ;ℍs+2ε+εγ Ωð Þð Þ: ð62Þ
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Combining four steps as above, we deduce that

uβ :,tð Þ−u∗ :,tð Þ 
ℍs Ωð Þ

≤ J1k kℍs Ωð Þ + J2k kℍs Ωð Þ + J3k kℍs Ωð Þ + J4k kℍs Ωð Þ

≲ 1 − βð Þεε′ fk kℍs+2ε+εε′+2β+2 Ωð Þ + Hk k
L∞ 0,T ;ℍs+2ε+εε ′+2β+2 Ωð Þ
À Á� �

+ 1 − βð Þεγ t−α + 1ð Þ Hk kL∞ 0,T ;ℍs+2ε+εγ Ωð Þð Þ:
ð63Þ

Let us choose

ε = b − s − 2β − 2
4 , ε′ = 2, γ = 2 b − s + 2β + 2

b − s − 2β − 2 : ð64Þ

Then from some above observations, we deduce that the
following estimate:

uβ :,tð Þ−u∗ :,tð Þ 
ℍs Ωð Þ

≲ 1 − βð Þb−s−2β−2/2 fk kℍb Ωð Þ + Hk kL∞ 0,T ;ℍb Ωð Þð Þ
� �

+ 1 − βð Þb−s+2β+2/2 t−α + 1ð Þ Hk kL∞ 0,T ;ℍb Ωð Þð Þ:
ð65Þ

This estimate implies that the desired result, Problem (34).

5. Conclusion

In this work, we consider the fractional problem for partial
differential equation. We investigate the convergence of
the mild solution of the diffusion equation with time and
space fractional. Moreover, we consider the problem in
two cases which are forward problem and inverse problem
by using new techniques to overcome some of the com-
plex assessments.
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In this article, we acquire a variety of new exact traveling wave solutions in the form of trigonometric, hyperbolic, and rational
functions for the nonlinear time-fractional Clannish Random Walker’s Parabolic (CRWP) equation in the sense of beta-
derivative by employing the two modified methods, namely, modified ðG′/G2Þ − expansion method and modified F −
expansion method. The obtained solutions are verified for aforesaid equations through symbolic soft computations. To
promote the essential propagated features, some investigated solutions are exhibited in the form of 2D and 3D graphics by
passing on the precise values to the parameters under the constrain conditions. The obtained solutions show that the presented
methods are effective, straight forward, and reliable as compared to other methods. These methods can also be used to extract
the novel exact traveling wave solutions for solving any types of integer and fractional differential equations arising in
mathematical physics.

1. Introduction

Investigation of the exact traveling wave solutions for frac-
tional nonlinear partial differential equations (PDEs) plays
an important role in the study of nonlinear physical phe-
nomena. Fractional equations, both partial and ordinary
ones, have been applied in modeling of many physical, engi-
neering, chemistry, biology, etc. in recent years [1]. There
are several definitions of fractional derivatives such as Rie-
mann Liouville [2], conformable fractional derivative [3],
beta derivative [4], and new truncated M-fractional deriva-
tive [5] are available in literature. Many powerful methods
for obtaining exact solutions of nonlinear fractional PDEs
have been presented as Hirota’s bilinear method [6], sine-
cosine method [7], tanh-function method [8], exponential
rational function method [9], Kudryashov method [10],

sine-Gordon expansion method [11], modified ðG′/GÞ
-expansion method [12], extended ðG′/GÞ-expansion
method [13], ðG′/GÞ-expansion method [14], tanh-coth
expansion method [15], Jacobi elliptic function expansion
method [16], first integral method [17], sardar-subequation
method [18], new subequation method [19], extended direct
algebraic method [20], exp ð−ϕðηÞÞ method [21], Expa func-
tion method [22], ð1/G′Þ, ðG′/G, 1/GÞ, and modified ðG′/
G2Þ − expansion methods [23, 24], Kudryashov method
[25], modified expansion function method [26], new auxil-
iary equation method [27], extended Jacobi’s elliptic expan-
sion function method [28], extended sinh-Gordon equation
expansion method [29], modified simplest equation method
[30], and many more.

The time-fractional Clannish Random Walker’s Para-
bolic (CRWP) equation [31, 32] is a model that can
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determine the behavior of two species A and B of random
walker who execute a concurrent one- dimensional random
walk characterized by an intensification of the clannishness
of the members of one species A at point x at a time t, uðx
, tÞ, can be expressed by the time- fractional CRWP equation
as

Dα1
t u + sux + quux + ruxx = 0, ð1Þ

where α1 is a parameter describing the order of the fractional
time derivative and 0 < α1 ≤ 1:.

The major concern of this existing study is to utilize the
novel meanings of fractional-order derivative, named beta
fractional derivative [4], for time-fractional CRWP equation,
and to find the novel comprehensive exact traveling wave
solutions in the form of hyperbolic, trigonometric, and ratio-
nal functions by employ two modified methods, modified ð
G′/G2Þ − expansion method [33] and modified F − expan-
sion method [34]. Beta-derivative has some interesting con-
sequences in diverse areas including fluid mechanics, optical
physics, chaos theory, biological models, disease analysis,
and circuit analysis. To the best of our knowledge, the
obtained solutions are more general and in different form
which have never been reported in previously published
studies [31, 32]. Our results also enrich the variety of the
dynamics of higher-dimensional nonlinear wave field. It is
hoped that these results will provide some valuable informa-
tion in the higher-dimensional nonlinear field.

By using the modified ðG′/G2Þ − expansion method [33],
traveling wave solutions have been found for the nonlinear
Schrödinger equation along third-order dispersion. Different
types of traveling wave solutions of the Fokas-Lenells equa-
tions have been determined in [35] by this method. Alyah-
daly found the general exact traveling wave solutions to the
nonlinear evolution equations in [36]. Gepreel and Nofal
[37] obtained the analytical solutions for nonlinear evolution
equations in mathematical physics. Siddique and Mehdi
found the exact traveling wave solutions for two prolific con-
formable M-fractional differential equations in [23]. Exact
solutions for nonlinear integral member of Kadomstev-
Petviashvili hierarchy differential equations have been deter-
mined by Gepreel [38].

A modified F–expansion method is proposed by taking
full advantages of F expansion method and Riccati equation
in seeking exact solutions of nonlinear PDEs. Darvishi and
Najafi [39] used a modified F-expansion method to handle
the foam Drainage equation. Aasaraai [40] used this method
to construct new solutions of the nonlinear ð1 + 2Þ-dimen-
sional Maccari’s system. Aasaraai and Mehrlatifan [41]
applied this method to coupled system of equation. Ali
et al. [42] derived dispersive analytical soliton solutions of
some nonlinear wave’s dynamical model with the help of
modified F–expansion method. Darvishi et al. [43] found
traveling wave solutions for the ð3 + 1Þ-dimensional break-
ing soliton equation.

This article organized it as follows: in Section 2, we pres-
ent beta-derivative and its properties. The descriptions of
strategies are given in Section 3. In Section 4, we present a

mathematical analysis of the models and its solutions via
proposed methods. In Section 5, some graphical representa-
tions for some analytical solutions are presented. Some con-
clusions are drawn in the last section.

2. Beta-Derivative and Its Properties

Definition: suppose a function hðxÞ that is defined ∀ non-
negative x. Therefore, the beta-derivative of the function hð
xÞ is given as [4]:

Dβ h xð Þð Þ = lim
ε⟶0

h x + ε x + 1/Γ βð Þð Þð Þ1−β
� �

− h xð Þ
ε

, 0 < β ≤ 1:

ð2Þ

Properties: assuming that a and b are real numbers, gðxÞ
and hðxÞ are two functions β − differentiable and β ∈ ð0, 1�,
then, the following relations can be satisfied

i:Dβ ag xð Þ + bh xð Þð Þ = aDβ g xð Þð Þ + bDβ h xð Þð Þ,∀a, b ∈ R:
ð3Þ

ii:Dβ g xð Þh xð Þð Þ = h xð ÞDβ g xð Þð Þ + g xð ÞDβ h xð Þð Þ: ð4Þ

iii:Dβ g xð Þ
h xð Þ
� �

= h xð ÞDβ g xð Þð Þ + g xð ÞDβ h xð Þð Þ
h xð Þð Þ2 : ð5Þ

iv:Dβ g xð Þð Þ = dg xð Þ
dx

x + 1
Γ βð Þ

� �1−β
: ð6Þ

3. Description of Strategies

3.1. The Modified ðG′/G2Þ-Expansion Method. Let us con-
sider the nonlinear PDE is in the form

Q u, ut , ux, uxx, uxt , utt ,⋯ð Þ = 0, ð7Þ

where u = uðx, tÞ is an unknown function, and Q is a poly-
nomial depending on uðx, tÞ and its various partial
derivatives.

Step 1. By wave transformation

η = x − νt, u x, tð Þ =U ηð Þ: ð8Þ

Here, ν is the speed of traveling wave.
The wave variable permits us to reduce Eq. (8) into a

nonlinear ordinary differential equation (ODE) for U =Uð
ηÞ:

R U ,U ′,U ′′,U ′′′,⋯
� �

= 0, ð9Þ

where R is a polynomial of UðηÞ and its total derivative
with respect to η.
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Step 2. Extend the solutions of Eq. (9) in the following form

U ηð Þ = 〠
m

i=0
αi

G′
G2

 !i

, ð10Þ

where αiði = 0, 1, 2, 3,⋯,mÞ are constants and find to be
later. It is important that αi ≠ 0: Integerm can be determined
by considering the homogenous balance between the gov-
erning nonlinear terms and the highest order derivatives in
Eq. (9).

The function G =GðηÞ satisfies the following Riccati
equation,

G′
G2

 !
′ = λ1

G′
G2

 !2

+ λ0, ð11Þ

where λ0 and λ1 are constants. We gain the below solu-
tions to Eq. (11) due to different conditions of λ0:

When λ0λ1 < 0,

G′
G2

 !
= −

ffiffiffiffiffiffiffiffiffiffiffiffi
λ0λ1j jp
λ1

+
ffiffiffiffiffiffiffiffiffiffiffiffi
λ0λ1j jp
2

C1 sinh
ffiffiffiffiffiffiffiffiffi
λ0λ1

p
η

� �
+ C2 cosh

ffiffiffiffiffiffiffiffiffi
λ0λ1

p
η

� �
C1 cosh

ffiffiffiffiffiffiffiffiffi
λ0λ1

p
η

� �
+ C2 sinh

ffiffiffiffiffiffiffiffiffi
λ0λ1

p
η

� �
2
4

3
5:

ð12Þ

When λ0λ1 > 0,

G′
G2

 !
=

ffiffiffiffiffi
λ0
λ1

s
C1 cos

ffiffiffiffiffiffiffiffiffi
λ0λ1

p
η

� �
+ C2 sin

ffiffiffiffiffiffiffiffiffi
λ0λ1

p
η

� �
C1 sin

ffiffiffiffiffiffiffiffiffi
λ0λ1

p
η

� �
− C2 sin

ffiffiffiffiffiffiffiffiffi
λ0λ1

p
η

� �
2
4

3
5:
ð13Þ

When λ0 = 0 and λ1 ≠ 0,

G′
G2

 !
= −

C1
λ1 C1η + C2ð Þ : ð14Þ

where C1 and C2 are arbitrary constant.

Step 3. By substituting Eq. (10) into Eq. (9) along with Eq.

(11) and tracing all coefficients of eachðG′/G2Þi to zero, then
solving that algebraic equations generated in the term ai,
λ0, λ1, C1, C2 and other parameters.

Step 4. By substituting Eq. (10) of which αi, ν and other
parameters that are found in step 3 into Eq. (8), we get the
solutions of Eq. (7).

3.2. The Modified F − Expansion Method. Here, we will
describe the basic steps of F − expansion method [34].

U ηð Þ = a0 + 〠
m

i=1
aiF

i ηð Þ + 〠
m

i=1
biF

−i ηð Þ, ð15Þ

where a0,ai, and bi are constants to be determined. FðηÞ sat-

isfies the Riccati equation:

F ′ ηð Þ = A + BF ηð Þ + CF2 ηð Þ, ð16Þ

where A,B, and C are constants to be determined. The prime
denotes d/dη. Integer m can be determined by considering
the homogenous balance between the governing nonlinear
terms and the highest order derivatives of UðηÞ in Eq. (9).
Given different values of A, B, and C, the different Riccati
function solution FðηÞ can be obtained from Eq. (16) (see
Table 1).

Step 1. Consider Eqs. (7), (8), and (9).

Step 2. Extend the solution of Eq. (9) in the following form

Step 3. Substituting Eq. (15) along with Eq. (16) into Eq. (9)
and collect coefficients of FiðηÞ to zero yields a system of
algebraic equations for ai and bi:

Step 4. Solve the system of algebraic equations, probably
with the aid of Mathematica. ai and bi can be expressed by
A, B, and C (or the coefficients of Eq. (9)). Substituting these
results into (16), we can obtain the general form of traveling
wave solutions to Eq. (9).

Step 5. Selecting A, B, C, and FðηÞ from Table 1 and
substituting them along with ai and bi into Eq. (15), a series
of soliton-like solutions, trigonmetric function solutions,
and rational solutions to Eq. (7) can be obtained.

The modified F-expansion method is more effective in
obtaining the soliton-like solution, trigonometric function
solutions, exponential solutions, and rational solutions of
the nonlinear partial deferential equations. This method will
yield more rich types solutions of the nonlinear partial def-
erential equations. It shows that the modified F-expansion
method is more powerful in constructing exact solutions of
nonlinear PDEs.

4. Application

Time-fractional Clannish Random Walker’s Parabolic
equation:

Let us assume the transformations:

u x, tð Þ =U ηð Þ, η = x −
c
β

t + 1
Γ βð Þ

� �β

, ð17Þ

where c is constant. By using Eq. (17) into Eq. (1), we get
the following ordinary differential equation.

2 s − cð ÞU + qU2 + 2rU ′ = 0: ð18Þ

In the following subsections, the proposed methods are
applied to extract the required solutions:

4.1. Solutions with the Modified ðG′/G2Þ − Expansion
Method. By applying the homogenous balance technique
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between the terms U ′ and U2 into Eq. (18), we get m = 1:
For m = 1, Eq. (10) reduces into

U ηð Þ = a0 + a1
G′
G2

 !
, ð19Þ

where a0 and a1 are unknown parameters. By using Eq. (19)
along with Eq. (11) into Eq. (18) and summing up all coeffi-
cients of same order of ðG′/G2Þ, we get the set of algebraic

equations involving a0, a1 and other parameters. Solving
the obtained set of algebraic equations with Mathematica,
we reach the following results:

a0 = ± 2ir
ffiffiffiffiffi
λ0

p ffiffiffiffiffi
λ1

p
q

, a1 =
−2rλ1
q

, c = s ± 2ir
ffiffiffiffiffi
λ0

p ffiffiffiffiffi
λ1

p
: ð20Þ

Now we use the Eqs. (19) and (12)–(14) into Eq. (19)
and set the below cases.

ifλ0λ1 < 0, then

u1 x, tð Þ = ± 2ir
ffiffiffiffiffiffiffiffiffi
λ0λ1

p
q

+ 2r
ffiffiffiffiffiffiffiffiffiffiffiffi
λ0λ1j jp
q

1 − λ1
2

C1 sinh
ffiffiffiffiffiffiffiffiffi
λ0λ1

p
η

� �
+ C2 cosh

ffiffiffiffiffiffiffiffiffi
λ0λ1

p
η

� �
C1 cosh

ffiffiffiffiffiffiffiffiffi
λ0λ1

p
η

� �
+ C2 sinh

ffiffiffiffiffiffiffiffiffi
λ0λ1

p
η

� �
2
4

3
5

0
@

1
A:

ð21Þ

If λ0λ1 > 0,then

u2 x, tð Þ = ± 2ir
ffiffiffiffiffiffiffiffiffi
λ0λ1

p
q

−
2rλ1
q

ffiffiffiffiffi
λ0
λ1

s
C1 cos

ffiffiffiffiffiffiffiffiffi
λ0λ1

p
η

� �
+ C2 sin

ffiffiffiffiffiffiffiffiffi
λ0λ1

p
η

� �
C1 sin

ffiffiffiffiffiffiffiffiffi
λ0λ1

p
η

� �
− C2 cos

ffiffiffiffiffiffiffiffiffi
λ0λ1

p
η

� �
2
4

3
5

0
@

1
A,

ð22Þ

If λ0 = 0, λ1 ≠ 0,then

u3 x, tð Þ = 2r
q

C1
C1η + C2

� �
: ð23Þ

4.2. Solutions with the Modified F − Expansion Method. By
applying the homogenous balance technique between the
terms U ′ and U2 into Eq. (18), we get m = 1: For m = 1,
Eq. (15) reduces into:

U ηð Þ = a0 + a1F + b1
F
, ð24Þ

where a0 and a1 are unknown parameters. By using Eq. (24)
along with Eq. (16) into Eq. (18) and summing up all the
coefficients of same order of F, we get the set of algebraic
equations involving a0, a1 and other parameters. Solving
the obtained set of algebraic equations with Mathematica,
we reach the following results.

Table 1: Relations between A, B, C and corresponding FðηÞ in Eq. (16) [34].

A B C F ηð Þ
0 1 -1 1/2 + 1/2 tanh η/2ð Þ
0 -1 1 1/2 − 1/2 coth η/2ð Þ
1/2 0 -1/2 coth ηð Þ ± csch ηð Þ, tanh ηð Þ ± i sech ηð Þ
1 0 -1 tanh ηð Þ, coth ηð Þ
1/2 0 ½ sec ηð Þ + tan ηð Þ, csc ηð Þ − cot ηð Þ
-1/2 0 -1/2 sec ηð Þ − tan ηð Þ, csc ηð Þ + cot ηð Þ
1(-1) 0 1(-1) tan ηð Þ, cot ηð Þ
0 0 ≠ 0 − 1/Cη +mð Þ mis an arbitrary constantð Þ
Arbitrary constant 0 0 Aη

Arbitrary constant ≠ 0 0 exp Bð Þ − Að Þ/B
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Figure 1: 2D and 3D graphics for hyperbolic traveling wave
solution (21)
at fβ = 0:5, r = 1, q = 1, λ0 = 0:5, λ1 = 0:5, C1 = 1, C2 = 0, c = 1g:
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Put Eq. (24) into Eq. (18) along with the solution of Eq.
(16), we get

For A = 0, B = 1, and C = −1:

a0 = −
2r
q
, a1 =

2r
q
, b1 = 0, c = s − r: ð25Þ

Put Eq. (25) into Eq. (24) along with the solution of Eq.
(16), we get

u1 x, tð Þ = −
r
q

1 − tanh η

2
� �� �

: ð26Þ

For A = 0, B = −1, and C = 1.

a0 =
2r
q
, a1 = −

2r
q
, b1 = 0, c = s + r, ð27Þ

u2 x, tð Þ = r
q

1 + coth η

2
� �� �

: ð28Þ

For A = 1/2, B = 0, C = −1/2.
Family-I

a0 = −
r
q
, a1 =

r
q
, b1 = 0, c = s − r, ð29Þ

u3 x, tð Þ = −
r
q

1 − coth ηð Þ + csch ηð Þð Þð Þ: ð30Þ

Family-II

a0 = −
r
q
, a1 = 0, b1 =

r
q
, c = s − r, ð31Þ

u4 x, tð Þ = −
r
q

1 − 1
coth ηð Þ + csch ηð Þð Þ

� �
: ð32Þ

Family-III

a0 =
2r
q
, a1 =

r
q
, b1 =

r
q
, c = 2r + s, ð33Þ

u5 x, tð Þ = 2r
q

2 + coth ηð Þ + csch ηð Þð Þ + 1
coth ηð Þ + csch ηð Þð Þ

� �� �
:

ð34Þ
For A = 1, B = 0, C = −1.
Family-I

a0 = −
2r
q
, a1 =

2r
q
, b1 =

r
q
, c = s − 2r, ð35Þ

u6 x, tð Þ = −
2r
q

1 − tanh ηð Þð Þ: ð36Þ

Family-II

a0 =
2r
q
, a1 = 0, b1 =

2r
q
, c = 2r + s, ð37Þ
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Figure 2: 2D and 3D graphics for hyperbolic traveling wave
solution (26) at fβ = 0:5, r = 1, q = 1, c = 1g.
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Figure 3: 2D and 3D graphics for hyperbolic traveling wave
solution (28) at fβ = 0:5, r = 1, q = 1, c = 1g.
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u7 x, tð Þ = 2r
q

1 + 1
tanh ηð Þ

� �
: ð38Þ

Family-III

a0 =
4r
q
, a1 =

2r
q
, b1 =

2r
q
, c = 4r + s, ð39Þ

u8 x, tð Þ = 2r
q

2 + tanh ηð Þ + 1
tanh ηð Þ

� �� �
: ð40Þ

For A = C = 1/2, B = 0.
Family-I

a0 = −
ir
q
, a1 = −

r
q
, b1 = 0, c = s − ir, ð41Þ

u9 x, tð Þ = −
r tan ηð Þ + sec ηð Þð Þ

q
−
ir
q
, ð42Þ

Family-II

a0 =
ir
q
, a1 = 0, b1 =

ir
q
, c = s + ir, ð43Þ

u10 x, tð Þ = ir
q tan ηð Þ + sec ηð Þð Þ + ir

q
: ð44Þ
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Figure 4: 2D and 3D graphics for hyperbolic traveling wave
solution (30) at fβ = 0:5, r = 1, q = 1, c = 1g.
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Figure 5: 2D and 3D graphics for hyperbolic traveling wave
solution (32) at fβ = 0:5, r = 1, q = 1, c = 1g:
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Figure 6: 2D and 3D graphics for hyperbolic traveling wave
solution (34) at fβ = 0:5, r = 1, q = 1, c = 1g:
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Family-III

a0 = −
2ir
q
, a1 = −

r
q
, b1 =

r
q
, c = s − 2ir, ð45Þ

u11 x, tð Þ = −
r tan ηð Þ + sec ηð Þð Þ − 1/ tan ηð Þ + sec ηð Þð Þð Þð Þ

q
−
2ir
q
:

ð46Þ
For A = C = −1/2, B = 0.
Family-I

a0 =
ir
q
, a1 =

r
q
, b1 = 0, c = s + ir, ð47Þ

u12 x, tð Þ = −
r sec ηð Þ − tan ηð Þð Þ

q
+ ir

q
: ð48Þ

Family-II

a0 =
ir
q
, a1 = 0, b1 = −

r
q
, c = s + ir, ð49Þ

u13 x, tð Þ = −
r

q sec ηð Þ − tan ηð Þð Þ + ir
q
: ð50Þ

Family-III

a0 =
2ir
q
, a1 =

r
q
, b1 = −

r
q
, c = s + 2ir, ð51Þ

u14 x, tð Þ = −
r sec ηð Þ − tan ηð Þð Þ + 1/ sec ηð Þ − tan ηð Þð Þð Þð Þ

q
+ 2ir

q
:

ð52Þ
For A = C = −1, B = 0.
Family-I

a0 = −
2ir
q
, a1 =

2r
q
, b1 = 0, c = s − 2ir, ð53Þ

u15 x, tð Þ = 2r cot ηð Þ
q

−
2ir
q
: ð54Þ

Family-II

a0 =
2ir
q
, a1 = 0, b1 = −

2r
q
, c = s + 2ir, ð55Þ

u16 x, tð Þ = −
2r

q cot ηð Þ + 2ir
q
: ð56Þ

Family-III

a0 =
4ir
q
, a1 =

2r
q
, b1 = −

2r
q
, c = s + 4ir, ð57Þ
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Figure 7: 2D and 3D graphics for trigonometric traveling wave
solution (22) at fβ = 0:5, r = 1, q = 1, λ0 = 0:5, λ1 = 0:5, C1 = 0, C2
= 1, c = 1g:
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Figure 8: 2D and 3D graphics for trigonometric traveling wave
solution (42) at fβ = 0:5, r = 1, q = 1, c = 1g:
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u17 x, tð Þ = 2r cot ηð Þ − 1/cot ηð Þð Þð Þ
q

+ 4ir
q
: ð58Þ

For A = 0, B = 0.

a0 = 0, a1 = −
2Cr
q

, b1 = 0, c = s, ð59Þ

u18 x, tð Þ = 2Cr
q Cη + εð Þ : ð60Þ

For B = 0, C = 0.

a0 = 0, a1 = 0, b1 =
2Ar
q

, c = s, ð61Þ

u19 x, tð Þ = 2Ar
q Aηð Þ : ð62Þ

For C = 0.

a0 =
2Br
q

, a1 = 0, b1 =
2Ar
q

, c = Br + s, ð63Þ

u20 x, tð Þ = 2Ar
q exp Bηð Þ − Að Þ/B + 2Br

q
: ð64Þ

5. Results and Discussion

In this section, we discuss the graphical interpretation of
obtained results. Two powerful analytical methods, namely,
modified ðG′/G2Þ − expansion method and modified F −
expansion method, are used to extract the trigonometric,
hyperbolic, and rational wave solutions of the governing
model. The physical significance of these solutions is shown
by assigning particular values of free parameters. The solu-
tions to Eqs. (22), (42), (44), (46), (48), (50), (52), (54),
(56), and (58) present as trigonometric function solutions;
the solutions of (21), (26), (28), (30), (32), (34), (36), (38),
and (40) present as hyperbolic function solutions; and the
solutions of (23), (60), (62), and (64) present as rational
function solutions. We explain the dynamic performance
of the hyperbolic function answers of Eqs. (21), (26), (28),
(30), (32), and (34) which are illustrated in Figures 1–6. In
particular, Figures 1–6 demonstrate the 3D shape and 2D
graph for different values of the fractional parameter β for
the trigonometric function answers of Eqs. (21), (26), (28),
(30), (32), and (34). Finally, we explain the dynamic perfor-
mance of the trigonometric function answers of Eqs. (22)
and (34) in Figures 7 and 8, which depict the 3D shape
and 2D graph for different values of the fractional parameter
β for the trigonometric function answers of Eqs. (22) and
(34). The implemented mathematical simulations acknowl-
edge that the answers are of periodic wave shapes and of
rational, hyperbolic, and trigonometric categorizations. Fur-
thermore, through observing the construction of the
acquired solutions, it could be understood that the parame-
ter β of fractional derivatives has important role in the for-
mulation of all the solutions.

6. Conclusions

In this work, we applied the modified ðG′/G2Þ-expansion
method and modified F − expansion method in a satisfac-
tory way to find the novel exact traveling wave solutions of
the time-fractional CRWP equation in the sense of beta-
derivative. Various obtained solutions are in the form of
hyperbolic, trigonometric, and rational forms. To describe
the physical phenomena of the time-fractional CRWP
model, some solutions are plotted in the form of 2D and
3D by assigning the specific value to the parameters under
the constrain conditions. All algebraic computations and
graphical representations in this work have been provided
for the obtained solutions at various parameters values with
the help of Mathematica. It is essential to note that these new
solutions of the time-fractional CRWP equation have not
been exposed in literature by employed our two analytical
modified mathematical methods. Lastly, the studied
methods can be potentially applied to solve various nonlin-
ear PDEs that are apparent in many important nonlinear
scientific phenomena in physics and engineering.
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The aim of this paper is to investigate the approximate solutions of nonlinear temporal fractional models of Gardner and
Cahn-Hilliard equations. The fractional models of the Gardner and Cahn-Hilliard equations play an important role in
pulse propagation in dispersive media. The time-fractional derivative is observed in the conformable framework. In this
orientation, a reliable computationally algorithm is designed and developed by following a residual error and multivariable
power series expansion. Basically, the approximate solutions of pulse wave function of the fractional higher-order Gardner
and Cahn-Hilliard equations are obtained in the form of a conformable convergent fractional series. Relevant consequences
are theoretically and numerically investigated under the conformable sense. Besides, the analysis of the error and
convergence of the developed technique are discussed. Some of the unidirectional homogeneous physical applications of
the posed models in a finite compact regime are tested to confirm the theoretical aspects, demonstrate different
evolutionary dynamics, and highlight the superiority of the novel developed algorithm compared to other existing
analytical methods. For this purpose, associated graphs are displayed in two and three dimensions. Growing and decaying
modes of the fractional parameters are analyzed for several α values. From a numerical viewpoint, the simulations and results
declare that the proposed iterative algorithm is indeed straightforward and appropriate with efficiency for long-wavelength
solutions of nonlinear partial differential equations.

1. Introduction

Nonlinear parabolic partial differential equations are super-
able mathematical tools for describing different evolutionary
dynamics, long-wave propagation, growing and decaying
modes, and phase separation of many nonlinear physical
system [1–4]. Many applications of nonlinear temporal evo-

lution and phase field models may be obtained from various
engineering topics, for instance, cosmology, gravity waves,
aerodynamics, blood flow, thermodynamics, incompressible,
and inviscid fluid [5–9]. On the other aspect as well, the
fractional partial systems play out a significance role in
modeling several fascinating nonlinear physical complex
systems and realizing the interactions of particles, basic
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physics, phase transition, and the process of dynamic that
rule such systems. Indeed, they, in the recent past, have been
witnessed by scientists owing to its excellent applications
in different fields of sciences, including magneto-acoustic
propagation in plasma, electromagnetic, chemical kinetics,
control theory, quantum mechanics, dissipative systems,
gas-solid flows, granular fluids, and hydrodynamics [10–18].
Nevertheless, different types of fractional operators have
been moderated by Riemann-Liouville, Atangana-Baleanu,
Erdelyi-Kober, Riesz-Caputo, Hadamard, Grünwald-
Letnikov, and local-fractional derivatives and conform-
able. Although the concept of the nonlocal fractional is
more acceptable because of the physical long-term fea-
tures, a deficiency is there as chain, quotient, and Leibniz
rules. In this point, the local fractional operators are
based on natural generalization of fractional derivatives
to avoid the violation of nonnormal rules, keep the local
nature of the derivatives, and explore features of certain
convergence [19–23].

So long, many effective techniques have been success-
fully developed and implemented to deal with various cate-
gories of temporal fractional nonlinear evolution equations,
such as variational iteration method, differential transform
method, homotopy perturbation method, reproducing
kernel method, operational matrix method, and Galerkin
finite element method, in addition to many traveling
wave techniques, including tan(ϕðξÞ/2)-expansion method,
generalized Kudryashov method, tanh-coth method, and
expð−ϕðϵÞÞ method [24–31]. Finding exact traveling wave,
approximate and soliton solutions of higher order temporal
fractional partial differential equations in nonlinear wave
situations are an issue for knowing the dynamics system of
dispersive waves in the phase fields. In this framework, we
plan to build approximate and accurate analytical solution
for a class of nonlinear homogeneous time-fractional para-
bolic partial differential equations of higher order equipped
with appropriate initial conditions in terms of conformable
sense using a novel analytical-computational algorithm.
The main contribution lies in designing a superb iteration
algorithm to obtain accurate approximate solutions of the
posed models in the form of a rapid convergence series
at a lower cost of calculations. This algorithm is free of
linearization, perturbation, and any restrictive assump-
tions for handling dispersive and nonlinear terms. To
begin with, we consider the following well-known model
for the nonlinear third-order time fractional Gardner
equation [13, 14]

∂αtu + 6 u − λ2u2� �
ux +uxxx = 0, 0 < α ≤ 1, ð1Þ

where λ is nontrivial constant parameter, α signifies the
order of time-dependent derivatives of fractional order,
and u =uðx, tÞ is wave-profile function scaling spatio-
temporal durations of x ∈ ½a, b� and t ≥ 0. Typically, ∂αt
represents the variance of u with time and fixed location,
and the nonlinear terms uux and u2ux refer to wave
steepening while the linear dispersive term uxxx refers
to wave effects. Therefore, it has a vital role regarding

interactions of dispersion and nonlinearity in soliton theory.
Hereinafter, ∂αt stands to the temporal conformable deriva-
tive. The aforementioned phase-field model is widely used
in several practical applications, such as phase incompress-
ible and inviscid fluids, quantum field theory, curvature
flows, quantum mechanics, and gravitational field. Further,
it describes a variety of nonlinear wave propagation phenom-
ena in plasma and solid states [13].

In this investigation as well, we focus on the fourth and
sixth order time-fractional Cahn-Hilliard equations [24, 25]:

∂αtu = μux + −uxx −u +u3� �
xx

, 0 < α ≤ 1, ð2Þ

and

∂αtu = μuux + uxx +u −u3� �
xxxx

, 0 < α ≤ 1, ð3Þ

where μ is constant parameter with μ ≠ 0: Herein, the non-
linear terms denote the chemical potential of the model,
while uxxxx and uxxxxxx denote the dispersive wave
effects of the fourth and sixth order system, respectively.
This model is profitably used in multiphase incompressible
fluid flows, phase ordering dynamics, tumor growth simu-
lation, surface reconstruction, phase separation, image
inpainting, spinodal decomposition, and microstructures
with elastic inhomogeneity, see [24, 32] for a detailed discus-
sion. Furthermore, the posed models (1)–(3) are involved
with initial condition

u x, 0ð Þ = f0 xð Þ,x ∈ a, b½ �, ð4Þ

where f0ðxÞ is a smooth analytic function of x.
Several types of nonlinear temporal fractional evolution

equations have been established in the literature, but several
do not assume soliton solutions [33]. Anyhow, the nonlinear
time-fractional Gardner and Cahn-Hilliard models are prof-
itably used to describe many nonlinear dispersive wave phe-
nomena arising in nonlinear optics, capillary waves, and
plasma physics [34–41]. In [34], nonlocal fourth-order frac-
tional Cahn-Hilliard equation with advection and reaction
terms has been considered in the sense of Caputo to investi-
gate the approximate solutions using the homotopy analysis
method. Using the new iterative method and q-homotopy
analysis method [24], Akinyemi et al. successfully obtained
analytical-approximate solutions of the nonlinear fourth
and sixth order time-fractional Cahn-Hilliard equations. In
[25], homotopy perturbation method has been applied to
solve fourth-order Cahn-Hilliard equation with Caputo frac-
tional derivative. Akagi et al. discussed the existence and
uniqueness of weak solutions to space-fractional Cahn-
Hilliard equation in a bounded domain [35]. Ran and Zhou
constructed an implicit difference scheme for the fourth-
order time-fractional Cahn-Hilliard equations [36]. In [37],
Fourier spectral method has been implemented for time-
fractional nonlinear Allen-Cahn and Cahn-Hilliard phase-
field models. Prakasha et al. [13] proposed two computa-
tional methods for time-fractional Gardner equation and
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fourth-order Cahn-Hilliard equation in light of Caputo's
concept. Arafa and Elmahdy [38] designed residual power
series algorithm to solve fractional nonlinear Gardner and
Cahn-Hilliard equations under Caputo sense. Hosseini
et al. [39] proposed a new technique based on expansion
method for finding exact solutions of time-fractional Con-
formable Cahn-Hilliard equation. Moreover, Jafari et al.
[40] developed the fractional subequation method to con-
struct exact-analytical solutions for fractional Cahn-Hilliard
model.

By and large, no conventional approach can be found
to produce analytical solutions, soliton solutions, or travel-
ing wave solutions of closed-form for such nonlinear
fractional-types dispersive PDEs. So, there have been found
demand for sophisticated reliable methods to find analytical
and approximate solutions to such problems. This paper
formulates an iterative computational algorithm for creating
analytical-approximate solutions of a class of nonlinear
higher-order time-fractional parabolic partial differential
equations by utilizing a novel fractional parameter, the
conformable derivative. Estimation of errors for the said
algorithm is derived as well. Indeed, several numerical exam-
ples have been checked in one-dimensional space to verify
the great flexibility and efficiency of the novel developed
algorithm, among which the third-order homogeneous
time-fractional Gardner equation and fourth and sixth-
order homogeneous time-fractional Cahn-Hilliard equa-
tions. For this purpose, a comparison study is performed
between the presented method and other existing methods.
Hereinafter, some notations and auxiliary results are
retrieved. In Section 3, an analytical algorithm is expanded
to solve nonlinear time-fractional parabolic partial differen-
tial equations. In Section 4, certain applications are stated
to back up the theoretical concept. Further, several numerical
techniques and discussions are reported. In Section 5, some
concluding remarks are given.

2. Preliminaries and Principal Results

Fractional calculus has been introduced and developed an
interesting tool to explain the memory and characteristics
of many processes in a variety of fields of pure and applied
science. In recent literature, it has been used to formulate
many nonlinear partial differential equation systems and
exploited to provide a comprehensive and clear explanation
of dynamics, dispersion, wave propagation, and evolutionary
models in view of spacetime change. In this direction, differ-
ent fractional derivatives have been suggested to handle such
partial equations like Feller, Riemann-Liouville, Caputo-
Fabrizio, Riesz, Grünwald, Mittag-Leffler, and conformable
concepts [41–44]. Consequently, the conformable operator
has been modified as a natural generalization of the standard
notation of derivatives [45]. In this portion, the primary
concept of conformable fractional derivative and some inter-
esting properties is highlighted. It also briefly illustrates the
concept and characteristics of the residual series expansion
under the conformable operator to complete the theoretical
aspect of this work.

Definition 1 (see [45]). Given a real-valued function uðtÞ on
½0,∞Þ, the conformable derivative of uðtÞ at α ∈ ð0, 1Þ is
given by

∂αtu tð Þ = lim
ε⟶0

u t + εt1−α
� �

−u tð Þ
ε

, t > 0, ð5Þ

where ∂αtuð0Þ is understood to mean ∂αtuð0Þ = lim
t⟶0+

∂αtuðtÞ:

Definition 2 (see [46]). Given a real-valued function uðtÞ on
½s,∞Þ, if uðtÞ is α-differentiable; then, the α-fractional
integral is given by

I α
su tð Þ =

ðt
s

u ξð Þ
ξ1−α

dξ, t > s ≥ 0, α ∈ 0, 1ð �, ð6Þ

provided that the integral is Riemann improper.

The following results are some of the basic characteris-
tics gained in terms of ∂αtuðtÞ. For additional properties,
we refer to [47–50] and the references therein.

Lemma 3. Let α ∈ ð0, 1� and the functions vðtÞ, uðtÞ be α-
differentiable at a point t ∈ ½0,∞Þ: Then, for all real constants
a1, a2, a3, a4, the following properties hold:

(i) ∂αtðℯ1vðtÞ + ℯ2uðtÞÞ = ℯ1∂
α
tvðtÞ + ℯ2∂

α
tuðtÞ

(ii) ∂αt½vðtÞuðtÞ� = vðtÞ∂αtuðtÞ +uðtÞ∂αtvðtÞ
(iii) ∂αt½vðtÞ/uðtÞ� = ðuðtÞ∂αtvðtÞ − vðtÞ∂αtuðtÞÞ/

u2ðtÞ, uðtÞ ≠ 0

(iv) ∂αtðta3Þ = a3t
a3−α

(v) ∂αtða4Þ = 0

(vi) If uðtÞ is differentiable, then it also holds that
∂αtuðtÞ = t1−αduðtÞ/dt

Lemma 4 (see [46]). Given the real-valued functions uðtÞ
and vðtÞ on ½0,∞Þ, let α ∈ ð0, 1�, uðtÞ be first order differen-
tiable and α-differentiable and let vðtÞ be first order differen-
tiable on the range of uðtÞ. So, the use of the known chain
rule yield

∂αt u ∘ vð Þ tð Þ = t1−αv′ tð Þu′ v tð Þð Þ: ð7Þ

Definition 5 (see [47]). Given a real-valued function uðx, tÞ
on ½a, b� × ½s,∞Þ, the αth order conformable partial deriva-
tive at a point t ∈ ½0,∞Þ is defined as

∂αtu x, tð Þ = lim
ε⟶0

u x, t + ε t − sð Þ1−α� �
−u x, tð Þ

ε
, α ∈ 0, 1ð �:

ð8Þ
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Definition 6 (see [47]). Given a real-valued function uðx, tÞ
on ½a, b� × ½s,∞Þ, the αth order conformable integral is
defined as

I α
su x, tð Þ =

ðt
s

u x, ξð Þ
ξ − sð Þ1−α

dξ, α ∈ 0, 1ð �: ð9Þ

Definition 7 (see [47]). The fractional series expansion at t0
can be defined as follows

〠
∞

i=0
Ci xð Þ t − t0ð Þiα =C0 xð Þ +C1 xð Þ t − t0ð Þα

+C2 xð Þ t − t0ð Þ2α+⋯,t0 > 0,
ð10Þ

where α ∈ ð0, 1�, CiðxÞ is the ith unknown coefficient, t ∈
½t0, t0 + γ1/αÞ, γ > 0, and γ1/α is the radius of convergence.

Theorem 8 (see [47]). Given a real-valued function uðx, tÞ
on ½a, b� × ½t0, t0 + r1/αÞ, let uðx, tÞ has many conformable
partial derivatives at any point t ∈ ½0,∞Þ with the following
fractional series expansion at t0:

u x, tð Þ = 〠
∞

i=0
Ci xð Þ t − t0ð Þiα, α > 0, t0 > 0: ð11Þ

Then, CiðxÞ, i = 0, 1, 2,⋯, can be calculated by

Ci xð Þ = ∂iαt0u x, t0ð Þ
i!αi

, ð12Þ

in which ∂iαt0uðx, t0Þ is the ith conformable partial deriva-

tive of uðx, tÞ about t0 so that ∂iαt0uðx, t0Þ = ∂αt0 :∂
α
t0
⋯

∂αt0uðx, t0Þ (i-times).

3. Fundamentals of Conformable Fractional
Residual Series Approach

Conformable fractional residual series (CFRS) technique is a
semianalytic computational algorithm specifically developed
to deal with emerging partial differential equations in vari-
ous nonlinear dynamical phenomena. This technique is
based on extending the generalized arbitrary order Taylor
series and minimizing the residual errors to detect the
unknown compounds. It possesses many attractive and
stimulating features and remarkable ability to deal with
nonlinear terms profitably without putting any constraints
or transformation of the governing models. Consequently,
it has gained wide popularity and has recently become an
exciting focus of research and a hot tool used in various
applied and computational sciences [41–44]. In this por-
tion, a new algorithm is developed to obtain accurate
approximate solutions of the nonlinear homogeneous
higher-order time-fractional parabolic partial differential
equation involving initial conditions in a limited space
time domain. In this context, let us see the nonlinear gen-

eralized time fractional sixth order partial differential
equation as follows

∂αtu x, tð Þ +N u,u2,u3,ux,uxx,u3x,u4x,u2
x,u2

xx

� �
+u6x x, tð Þ = 0, 0 < α ≤ 1,

ð13Þ

along with the condition

v x, 0ð Þ = f0 xð Þ, ð14Þ

x ∈ ½a, b�, t ≥ 0, α is the order of conformable time-
fractional index, uix = ∂iuðx, tÞ/∂xi, i = 3, 4, 5, 6, f0ðxÞ
is a given analytical function, and uðx, tÞ is an unknown
sufficiently differentiable wave-profile function. Herein, N
indicates the nonlinear operator from a Banach space B

to itself in terms of uux, uu2
xx, u2

xuxx, uuxu3x, and
u2u4x over a one-dimensional spatiotemporal domain.

Based on the proposed algorithm, the solution uðx, tÞ
of (13) has following form of fractional series expansion at
t0 = 0:

u x, tð Þ = 〠
∞

i=0
Ci xð Þ t

iα

i!αi
, t ≥ t0, ð15Þ

provided that vðx, 0Þ =C0ðxÞ = f0ðxÞ. So, the n-term
truncated series solution unðx, tÞ of uðx, tÞ in view of
the initial condition (14) can be described as

un x, tð Þ =C0 xð Þ + 〠
n

i=1
Ci xð Þ t

iα

i!αi
: ð16Þ

Basically, the residual error Rsðx, tÞ of model (13) is
defined as

Rs x, tð Þ = ∂αtu x, tð Þ
+N u,u2,u3,ux,uxx,u3x,u4x,u2

x,u2
xx

� �
+u6x x, tð Þ,

ð17Þ

and thus the n-term truncated residual of Rsðx, tÞ is
expressed by

Rn
s x, tð Þ = ∂αtun x, tð Þ +N un,u2

n,⋯,u2
nxx

� �
+un6x x, tð Þ,

ð18Þ

where unkx = ∂kunðx, tÞ/∂xk , Rsðx, tÞ = 0 = ∂ðn−1Þα
t Rs

ðx, tÞ, n = 1, 2, 3,⋯,x ∈ ½a, b�, 0 ≤ t <T , T ≡ t0 + r1/α,
and ∂ðn−1Þα

t Rn
s ðx, tÞjt=0 ≡ 0 for each n = 1, 2, 3,⋯:

To demonstrate the main steps of the residual series
algorithm in finding out the values of unknown parameters
CiðxÞ of the n-term truncated solution (16), set n = 1
and equate R1

sðx, tÞ to zero at t = 0, so that C1ðxÞ can
be acquired. Thereafter, by applying the operator ∂αt on both
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sides of the resulting relevant equation for n = 2, and solving
∂αtR

2
sðx, 0Þ = 0, the coefficient C2ðxÞ can be acquired as

well. Continuing likewise, the rest of coefficients CiðxÞ for
each i ≥ 3 of the fractional series expansion (16) can be
acquired. To complete the presentation and clarification,
the underlying algorithm is dedicated.

Lemma 9. Let uðx, tÞ be the solution of PDEs (13) and (14)
that has nth order partial derivatives in conformable sense at
any point t ∈ ½t0, t0 + r1/αÞ and the fractional expansion
of equation (15) at t0 = 0. If there exist ηðxÞ > 0 so that

j∂ðn+1Þα
t uðx, ξÞj ≤ ηðxÞ for all 0 < ξ < t, then, the remain-

der term holds the underlying inequality

P k x, tð Þj j ≤ η xð Þ
n + 1ð Þ!αn+1 t

n+1ð Þα, ð19Þ

in which P kðx, tÞ =∑∞
k=n+1ð∂kαt uðx, ξÞ/αkk!Þtkα:

Corollary 10. Let uðx, tÞ and unðx, tÞ be respectively the
analytic and approximate solutions of PDEs (13) and (14).
If there exists ξ ∈ ½0, 1� so that kun+1ðx, tÞk ≤ ξkunðx, tÞk
for each ðx, tÞ ∈ ½a, b� × ½t0,T Þ, and k f0ðxÞk <∞ for
x ∈ ½a, b�. Then, unðx, tÞ converges to uðx, tÞ as soon
as n⟶∞.

Proof. Since kun+1ðx, tÞk ≤ ξkunðx, tÞk for each ðx, tÞ ∈
½a, b� × ½t0,T Þ, then, ku1ðx, tÞk ≤ ξku0ðx, tÞk = ξk f0ðxÞk,
and then, ku2ðx, tÞk ≤ ξ2k f0ðxÞk. Subsequently, we have
kunðx, tÞk ≤ ξnk f0ðxÞk. This leads to ∑∞

k=n+1kukðx, tÞk
≤ k f0ðxÞk∑∞

k=n+1λ
k. Thus, it can be observed that

u x, tð Þ −un x, tð Þk k = 〠
∞

k=n+1
uk x, tð Þ

�����
�����

≤ 〠
∞

k=n+1
uk x, tð Þk k

≤ 〠
∞

k=n+1
λk f0 xð Þk k

= λn+1

1 − λ
f0 xð Þk k⟶ 0 forn⟶∞:

ð20Þ

4. Numerical Experiments and Discussion

Temporal fractional evolution equations are efficient
approaches for modeling nonlinear waves and knowing the
basic physics, phase separation properties, and evolutionary
dynamics that govern these equations. The fractional Gard-
ner and Cahn-Hilliard equations are unidirectional temporal

Consider the nonlinear generalized time fractional sixth order partial differential equation (13) along with the initial condition (14).
Let uðx, tÞ be a solution of model (13) and (14) that has nth order partial derivatives in conformable sense at any point t ∈ ½t0,T Þ.
Then, to obtain the nth approximation, execute the underlying steps:
Step A. Expand the solution uðx, tÞ of model (13) about t0 = 0 as follows
uðx, tÞ =∑∞

i=0CiðxÞðtiα/i!αiÞ, t ≥ t0:
Step B. Give a definition of the nth-truncated solution of uðx, tÞ in view of the initial condition (14) as follows
unðx, tÞ =C0ðxÞ +∑n

i=1CiðxÞðtiα/i!αiÞ:
Step C. Do truncate the nth residual error of Rsðx, tÞ so
Rn

s ðx, tÞ = ∂αtunðx, tÞ +N ðun,u2
n,⋯,u2

nxxÞ +un6xðx, tÞ,
where unkx = ∂kunðx, tÞ/∂xk .
Step D. Invoke the series solution obtained in Step B to the nth-truncated residual error obtained in Step C as follows

Rn
s ðx, tÞ = ∂αtðC0ðxÞ +∑n

i=1CiðxÞðtiα/i!αiÞÞ +N ½ðC0ðxÞ +∑n
i=1CiðxÞðtiα/i!αiÞÞ, ðC0ðxÞ +∑n

i=1CiðxÞðtiα/i!αiÞÞ2,⋯,
ðC0ðxÞ +∑n

i=1CiðxÞðtiα/i!αiÞÞ2xx
� + ðC0ðxÞ +∑n

i=1CiðxÞðtiα/i!αiÞÞ6x:
Step E. Employ ∂ðn−1Þα

t for every n = 1, 2, 3,⋯ to the obtained equation in Step D to get

∂ðn−1Þα
t Rm

s ðx, tÞ = ∂nα
t ðC0ðxÞ +∑n

i=1CiðxÞðtiα/i!αiÞÞ + ∂ðn−1Þα
t N ½ðC0ðxÞ +∑n

i=1CiðxÞðtiα/i!αiÞÞ,
ðC0ðxÞ +∑n

i=1CiðxÞðtiα/i!αiÞÞ2,⋯, ðC0ðxÞ +∑n
i=1CiðxÞðtiα/i!αiÞÞ2xx

� + ∂ðn−1Þα
t ðC0ðxÞ +∑n

i=1CiðxÞðtiα/i!αiÞÞ6x:
Step F. To obtain the first few terms for CiðxÞ with the aid of ∂ðn−1Þα

t Rn
s ðx, 0Þ = 0 execute the following subroutine:

F1. In Step E, put n=1, compute R1
sðx, tÞ and find solution for R1

sðx, 0Þ = 0 to get C1ðxÞ.
F2. Once again, in Step E, set n=2, compute ∂αtR

2
sðx, tÞ and find solution for ∂αtR

2
sðx, 0Þ = 0 to get C2ðxÞ.

F3. Once again, n Step E, set n = 3, compute ∂2αt R3
sðx, tÞ and find solution for ∂2αt R3

sðx, 0Þ = 0 to get C3ðxÞ.
F4. Proceed for arbitrary order k by setting n = k, computing ∂ðk−1Þαt Rk

sðx, tÞ, and establishing the new equation ∂ðk−1Þαt Rk
sðx, 0Þ = 0

to get the kth coefficients CkðxÞ.
Step G. Keep the new components in an infinite series form. In fact, the closed form of the solution can be established in such way,
that is, uðx, tÞ = lim

k⟶∞
ukðx, tÞ, if the relation of the pattern is very regular. If it was not the case, the solutions ukðx, tÞ can be

approximately obtained. Then, Stop.

Algorithm 1
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nonlinear parabolic partial differential equations, describe
nonlinear wave propagation phenomena, and phase-field
separation models [13, 24]. It balances the dispersion and
nonlinearity effects of the soliton dynamics. In this portion,
the conformable power series algorithm in view of the resid-
ual error functions is applied to solve the homogeneous
third-order time-fractional Gardner equation as well as the
homogeneous fourth and sixth-order time-fractional Cahn-
Hilliard equations, which are very common species of
higher-order fractional temporal evolution. The simulation
of such models is investigated as well. More representative
results are introduced with physical interpretations for vari-
ous fractional parameters to hold up the theoretical frame-
work and produce visualization of wave function behavior.
Moreover, different comparisons are produced to justify
the effect of our new method. Calculations are performed
by Mathematica 12.2 computing system [51].

4.1. Solution of Nonlinear Third-Order Fractional Gardner
Equation. The one-dimensional nonlinear third-order frac-
tional Gardner equation (FGE) considered in this portion
can be presented in view of the conformable time derivative
as follows [13, 14]:

∂αtu = −6 u − λ2u2� �
ux −uxxx, 0 < α ≤ 1, ð21Þ

along with the underlying initial condition

u x, 0ð Þ = 1
2 + 1

2 tanh x

2
� �

, ð22Þ

where λ is constant, λ ≠ 0, x ∈ ½a, b�, t ≥ 0, u =uðx, tÞ is a
sufficiently differentiable function representing the wave-
profile scaling spatiotemporal duration of wave propagation
in dispersed media. Typically, the nonlinear terms in this
model refer to wave steepening, and uxxx refers to wave
scattering. The aforementioned equation defines an indis-
pensable model for different nonlinear physical applications
in plasma, surface tension, hydrodynamics, etc. [14]. The
exact solution of the posed model when α = 1 and λ = 1 is
given by

u x, tð Þ = 1
2 + 1

2 tanh x − t

2

� �
: ð23Þ

According the CFRS algorithm, the fractional series
solution uðx, tÞ of the FGE (21) about t = 0 can be estab-
lished as follows

u x, tð Þ = 〠
∞

i=0
Ci xð Þ t

iα

αii!
, ð24Þ

provided that C0ðxÞ =uðx, 0Þ = 1/2ð1 + tanh ðx/2ÞÞ: Sub-
sequently, the nth fractional series unðx, tÞ in view of the
initial condition (22) can be truncated as follows

un x, tð Þ = 1
2 + 1

2 tanh x

2
� �

+ 〠
n

i=1
Ci xð Þ t

iα

αii!
, ð25Þ

and the residual error functionRsðx, tÞ can be expressed as

Rs x, tð Þ = ∂αtu + 6 u − λ2u2� �
ux +uxxx, 0 < α ≤ 1,

ð26Þ

in whichRsðx, tÞ = 0 = ∂ðn−1Þα
t Rsðx, tÞ, n = 1, 2, 3,⋯, for

each x ∈ ½a, b� and t ≥ 0:
In this direction as well, the nth truncated error

Rn
s ðx, tÞ of Rsðx, tÞ can be expressed as

Rn
s x, tð Þ = ∂αtun + 6 un − λ2u2

n

� �
unx +unxxx, ð27Þ

provided that Rn
s ðx, tÞ⟶Rsðx, tÞ as n⟶∞, and

∂ðn−1Þα
t Rn

s ðx, tÞjt=0 ≡ 0 for each n = 1, 2, 3,⋯:

By viewing the representation of the truncated series (25)
and minimizing the residual error (27) of the governing
equation, the unknown coefficients CiðxÞ can be computed
for each value of i = 1, 2,⋯,n in order to obtain the nth
approximate solution unðx, tÞ. To begin with, the first
fractional series solution at n = 1 assumes the form

u1 x, tð Þ = 1
2 + 1

2 tanh x

2
� �

+ 1
α
C1 xð Þtα, ð28Þ

as well as the first residual function assumes the form

R1
s x, tð Þ = ∂αtu1 + 6 u1 − λ2u2

1
� �

u1x +u1xxx: ð29Þ

Consequently, putting u1ðx, tÞ into R1
sðx, tÞ to get

R1
s x, tð Þ =C1 xð Þ + 6

α3
αC0 xð Þ +C1 xð Þtαð Þ

� αC0′ xð Þ +C1′ xð Þtα
� �
� α − λ2 αC0 xð Þ +C1 xð Þtαð Þ� �
+ 1
α

αC
3ð Þ
0 xð Þ +C

3ð Þ
1 xð Þtα

� �
:

ð30Þ

Herein, with the aid of R1
sðx, tÞjt=0 = 0, it yields

C1 xð Þ + 6C0 xð Þ 1 − λ2C0 xð Þ� �
C0′ xð Þ +C

3ð Þ
0 xð Þ = 0, ð31Þ

which implies

C1 xð Þ = −
1
8 1 + 4 − 3λ2

� �
cosh xð Þ + 3 1 − λ2

� �
sinh xð Þ� �

� sech4 x

2
� �

:

ð32Þ
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Hence, the first series solution u1ðx, tÞ can be read as

u1 x, tð Þ = 1
2 + 1

2 tanh x

2
� �

−
1
8α 1 + 4 − 3λ2

� �
cosh xð Þ + 3 1 − λ2

� �
sinh xð Þ� �

� sech4 x

2
� �

tα:

ð33Þ

Sequentially, the second truncated series u2ðx, tÞ can be
computed for n = 2 in (27) such that

R2
s x, tð Þ = ∂αtu2 + 6 u2 − λ2u2

2
� �

u2x +u2xxx, ð34Þ

where u2ðx, tÞ =u1ðx, tÞ + ð1/2α2ÞC2ðxÞt2α: By employ-
ing the conformable operator ∂αt on both sides of equation
(34), we get that

∂αtR
2
s x, tð Þ =C2 xð Þ + 6∂αt u2 − λ2u2

2
� �

u2x

+ 1
α

C
3ð Þ
1 xð Þ +C

3ð Þ
2 xð Þtα

� �
:

ð35Þ

Consequently, solving the term ∂αtR
2
sðx, tÞjt=0 = 0 in

the aforementioned equation with the help of Mathematica's
symbolic architecture [51] leads to

C2 xð Þ = −
1
64 sech7 x

2
� �

24 1 − λ2
� �

cosh x

2
� ��

− 6 22 − 37λ2 + 15λ4
� �

cosh 3x
2

� �

+ 24 − 42λ2 + 18λ4
� �

cosh 5x
2

� �

+ 206 − 204λ2
� �

sinh x

2
� �

− 129 − 222λ2 + 90λ4
� �

sinh 3x
2

� �

+ 25 − 42λ2 + 18λ4
� �

sinh 5x
2

� ��
:

ð36Þ

Hence, the solution u2ðx, tÞ can be given as

u2 x, tð Þ = 1
2 + 1

2 tanh x

2
� �

−
1
8α 1 + 4 − 3λ2

� �
cosh xð Þ�

+ 3 1 − λ2
� �

sinh xð Þ� sech4 x

2
� �

tα

−
1

128α2 sech7 x

2
� �

24 1 − λ2
� �

cosh x

2
� ��

− 6 22 − 37λ2 + 15λ4
� �

cosh 3x
2

� �

+ 24 − 42λ2 + 18λ4
� �

cosh 5x
2

� �

+ 206 − 204λ2
� �

sinh x

2
� �

− 129 − 222λ2 + 90λ4
� �

sinh 3x
2

� �

+ 25 − 42λ2 + 18λ4
� �

sinh 5x
2

� ��
t2α:

ð37Þ

Continuing in this manner, the truncated series u3ðx, tÞ
of the series expansion (25) may be computed by applying
n = 3 in (27), allowing ∂2αt to act on both sides of the new rel-
evant equation then establishing ∂2αR3

sðx, tÞ/∂t2jt=0 = 0
with the aid of Mathematica. To finish our process, we can
assume that u2ðx, tÞ is our approximate solution of the
FGE (21) along with condition (22). Moreover, the values
of CnðxÞ for each n ≥ 3 may be counted likewise. In what
follows, the achieved n terms in the form of an infinite series
leads to the solution uðx, tÞ of the FGEs (21)–(22). Espe-
cially, the solution of FGEs (21) and (22) at α = 1 and λ = 1
can be written in the form

u x, tð Þ = 1
2 + 1

2 tanh x

2
� �

−
1
4 sech2 x

2
� �

t

− csch3 xð Þ sinh4 x

2
� �

t2

+ 1
48 2 − cosh xð Þð Þ sech4 x

2
� �

t3

−
1
384 sinh 3x

2

� �
− 11 sinh x

2
� �� �

� sech5 x

2
� �

t4+⋯,

ð38Þ

which agrees with the analytical solution acquired by
q-homotopy analysis transform method (q-HATM), frac-
tional natural decomposition method (FNDM) [13], and q
-homotopy analysis method (q-HAM) [14], so that

u x, tð Þ = 1
2 + 1

2 tanh x − t

2

� �
: ð39Þ

In what follows, some graphic representations achieved
by the presented algorithm for FGEs (21) and (22) are dis-
played in Figures 1 and 2. At lease three-dimensional surface
plots of the exact solution whereas the fourth approximate
solution are depicted in Figure 1 for diverse values of α with
λ = 1 over a large enough spatio temporal domain ½−20, 20�
× ½0, 3�. In Figure 2, the moving and evolutionary dynamics
of fractional wave function of FGEs (21) and (22) are pro-
vided in 2D graph over ½−10, 10� versus t at λ = 1 based on
different values of α that are given as α = 1, 0:75, 0:5, and
0:25, respectively. From these graphs, it can be observed the
tremendous influence of the fractional parameters α on the
solutions’ consistency with respect to the time t. By measur-
ing the absolute error ju −u3j, the achieved numerical solu-
tions of FGEs (21) and (22) are given in Table 1 for distinct
values of x and fixed t = 0:2 when α = 1 and λ = 1 and
compared with absolute errors obtained in [13] as well. The
efficiency of our method is straightforward from these
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Figure 1: Surface wave behavior of u4ðx, tÞ of FGEs (21) and (22) with λ = 1 for diverse α: (a) exact, (b) α = 0:75, (c) α = 0:5, and
(d) α = 0:25.
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Figure 2: Elevation of wave surface of u4ðx, tÞ of FGEs (21) and (22) with λ = 1 and fixed t for various values of α, in which exact blue,
α = 1 red, α = 0:75 green, α = 0:5 yellow, and α = 0:25 gray.
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results. Moreover, Table 2 provides the absolute errors
between the exact solutions and the third approximate solu-
tions of FGEs (21) and(22) for different values of fractional
order α such as α = f1, 0:95, 0:75, 0:5,0:25g at t = 0:2 and
λ = 1. These results show good agreement between the
solutions when the fractional values differ.

4.2. Solution of Nonlinear Fourth-Order Time-Fractional
Cahn-Hilliard Equation. The one-dimensional nonlinear
fourth-order fractional Cahn-Hilliard (FCH4) equation
considered in this portion can be presented in terms of the
conformable time derivative as follows [24, 25]:

∂αtu = μux + 6uu2
x + 3u2 − 1
� �

uxx −uxxxx, 0 < α ≤ 1,
ð40Þ

along with the underlying initial condition

u x, 0ð Þ = tanh xffiffiffi
2

p
� �

, ð41Þ

where μ is aconstant, μ ≠ 0, x ∈ ½a, b�, t ≥ 0, u =uðx, tÞ is
sufficiently differentiable function representing the wave-
profile scaling spatiotemporal duration of wave propagation
in dispersed media. Herein, the nonlinear terms in this
model refer to chemical potential dynamics, and uxxxx

refers to wave scattering. This equation has various applica-
tions in topology optimization, surface reconstruction, phase
separation, phase ordering dynamics, magneto-acoustic
propagation in plasma, multiphase incompressible fluid
flows, image inpainting, and so forth [25, 32]. The exact
solution of the posed model when α = 1 and μ = 1 is given by

u x, tð Þ = tanh x + tffiffiffi
2

p
� �

: ð42Þ

By performing the CFRS algorithm, the fractional series
solution uðx, tÞ of the FCH4 equation (40) about t = 0
can be constructed as follows

u x, tð Þ = 〠
∞

i=0
Ci xð Þ t

iα

αii!
, ð43Þ

provided that C0ðxÞ =uðx, 0Þ= tanh ðx/
ffiffiffi
2

p Þ: Subse-
quently, the nth fractional series unðx, tÞ in view of the
initial condition (41) can be truncated by

un x, tð Þ = tanh xffiffiffi
2

p
� �

+ 〠
n

i=1
Ci xð Þ t

iα

αii!
, ð44Þ

and the error function Rsðx, tÞ can be expressed as

Rs x, tð Þ = ∂αtu − μux − 6uu2
x − 3u2 − 1
� �

uxx

+uxxxx, 0 < α ≤ 1,
ð45Þ

in whichRsðx, tÞ = 0 = ∂ðn−1Þα
t Rsðx, tÞ, n = 1, 2, 3,⋯, for

each x ∈ ½a, b� and t ≥ 0:
In this orientation as well, the nth truncated error

Rn
s ðx, tÞ of Rsðx, tÞ can be expressed as

Rn
s x, tð Þ = ∂αtun − μunx − 6unu

2
nx

− 3u2
n − 1

� �
unxx +unxxxx,

ð46Þ

provided that Rn
s ðx, tÞ⟶Rsðx, tÞ as n⟶∞, and

∂ðn−1Þα
t Rn

s ðx, tÞjt=0 ≡ 0 for each n = 1, 2, 3,⋯:

By viewing the representation of the truncated series (44)
and minimizing the residual error (46) of the governing
equation, the unknown coefficients CiðxÞ can be computed
for each value of i = 1, 2,⋯,n in order to obtain the nth

Table 1: Comparison of numerical outcomes for FGEs (21) and (22) with = 0:2,α = 1, and λ = 1.

xi u x, tð Þ u3 x, tð Þ u −u3j j u −u3j j uj j−1 FNDM [13] q-HATM [13]

0:1 0:475021 0:475020 9:95627 × 10−7 2:09596 × 10−6 9:95627 × 10−7 9:95627 × 10−7

0:2 0:500000 0:499997 2:61331 × 10−6 5:22661 × 10−6 2:61331 × 10−6 2:61331 × 10−6

0:3 0:524979 0:524975 4:12217 × 10−6 7:85207 × 10−6 4:12217 × 10−6 4:12217 × 10−6

0:4 0:549834 0:549829 5:46303 × 10−6 9:93579 × 10−6 5:46303 × 10−6 5:46303 × 10−6

0:5 0:574443 0:574436 6:58827 × 10−6 1:14690 × 10−5 6:58827 × 10−6 6:58827 × 10−6

Table 2: Absolute errors ju −u3j for different values of fractional order α at t = 0:2,λ = 1 of FGEs (21) and (22).

xi α = 1 α = 0:95 α = 0:75 α = 0:5 α = 0:25
0:1 9:95627 × 10−7 1:33546 × 10−6 3:56984 × 10−6 8:10067 × 10−6 2:05633 × 10−5

0:2 2:61331 × 10−6 3:01435 × 10−6 5:77678 × 10−6 3:93725 × 10−5 1:30242 × 10−4

0:3 4:12217 × 10−6 5:86542 × 10−6 2:67443 × 10−5 3:11823 × 10−5 1:65983 × 10−4

0:4 5:46303 × 10−6 6:13259 × 10−6 3:87654 × 10−5 1:92139 × 10−4 3:65432 × 10−4

0:5 6:58827 × 10−6 8:43010 × 10−6 1:65438 × 10−5 1:00045 × 10−4 3:76543 × 10−4
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approximate solution unðx, tÞ. To begin with, the first frac-
tional series solution at n = 1 has the form

u1 x, tð Þ = tanh xffiffiffi
2

p
� �

+ 1
α
C1 xð Þtα, ð47Þ

as well as the first residual function has the form

R1
s x, tð Þ = ∂αtu1 − μu1x − 6u1u

2
1x

− 3u2
1 − 1

� �
u1xx +u1xxxx:

ð48Þ

Consequently, putting u1ðx, tÞ into R1
sðx, tÞ to get

R1
s x, tð Þ =C1 xð Þ − μ C0′ xð Þ +C1′ xð Þ t

α

α

� �

−
3 αC0 xð Þ +C1 xð Þtαð Þ

α3

� 2 αC0′ xð Þ +C1′ xð Þtα
� �2�

+ αC0 xð Þ +C1 xð Þtαð Þ αC0′′ xð Þ +C1′′ xð Þtα
� ��

+C0′′ xð Þ +C1′′ xð Þ t
α

α
+ C

4ð Þ
0 xð Þ +C

4ð Þ
1 xð Þ t

α

α

� �
:

ð49Þ

Hence, by using R1
sðx, tÞjt=0 = 0, it yields

C1 xð Þ − μC0′ xð Þ − 6C0 xð ÞC0′ xð Þ2 +C0″ xð Þ
− 3C0″ xð ÞC0 xð Þ2 +C

4ð Þ
0 xð Þ = 0,

ð50Þ

which yields

C1 xð Þ = μffiffiffi
2

p sech2 xffiffiffi
2

p
� �

: ð51Þ

Hence, the solution u1ðx, tÞ is obtained as

u1 x, tð Þ = tanh xffiffiffi
2

p
� �

+ μffiffiffi
2

p
α
sech2 xffiffiffi

2
p
� �

tα: ð52Þ

Sequentially, we can compute the series u2ðx, tÞ by
assuming n = 2 in the nth truncated error (46) such that

R2
s x, tð Þ = ∂αtu2 − μu2x − 6u2u

2
2x

− 3u2
2 − 1

� �
u2xx +u2xxxx,

ð53Þ

where u2ðx, tÞ = tanh ðx/ ffiffiffi
2

p Þ + ðμ/ ffiffiffi
2

p
αÞ sech2ðx/

ffiffiffi
2

p Þtα
+ ð1/2α2ÞC2ðxÞt2α: Then, by employing the conformable

differential operator ∂αt on both sides of equation (53), we
get that

∂αtR
2
s x, tð Þ =C2 xð Þ − μC1′ xð Þ − μC2′ xð Þ t

α

α
− ∂αt 6u2u

2
2x + 3u2

2 − 1
� �

u2xx

� �
+C1″ xð Þ +C2″ xð Þ t

α

α
+C

4ð Þ
1 xð Þ +C

4ð Þ
2 xð Þ t

α

α
:

ð54Þ

Now, solving the term ∂αtR
2
sðx, tÞjt=0 = 0 in the above

equation with the help of Mathematica's symbolic architec-
ture [51] leads to

C2 xð Þ = −μ2 tanh xffiffiffi
2

p
� �

sech2 xffiffiffi
2

p
� �

: ð55Þ

Hence, the solution u2ðx, tÞ can be given by

u2 x, tð Þ = tanh xffiffiffi
2

p
� �

+ μffiffiffi
2

p
α
sech2 xffiffiffi

2
p
� �

tα

− μ2 tanh xffiffiffi
2

p
� �

sech2 xffiffiffi
2

p
� �

t2α

2α2 :
ð56Þ

Similarly, the truncated series u3ðx, tÞ of the series
expansion (44) can be calculate by assuming n = 3 in (46),
then, by solving the term ∂2αR3

sðx, tÞ/∂t2jt=0 = 0 with the
aid of Mathematica's symbolic architecture [51], we get

C3 xð Þ = μ3ffiffiffi
2

p Cosh
ffiffiffi
2

p
x

� �
− 2

� �
sech4 xffiffiffi

2
p
� �

, ð57Þ

which reveals that u3ðx, tÞ has the form

u3 x, tð Þ = tanh xffiffiffi
2

p
� �

+ μffiffiffi
2

p
α
sech2 xffiffiffi

2
p
� �

tα

−
μ2

2α2 tanh xffiffiffi
2

p
� �

sech2 xffiffiffi
2

p
� �

t2α

+ μ3

6
ffiffiffi
2

p
α3

Cosh
ffiffiffi
2

p
x

� �
− 2

� �
sech4 xffiffiffi

2
p
� �

t3α:

ð58Þ

Proceeding likewise, the solution u4ðx, tÞ will have the
form

u4 x, tð Þ = tanh xffiffiffi
2

p
� �

+ μffiffiffi
2

p
α
sech2 xffiffiffi

2
p
� �

tα

−
μ2

2α2 tanh xffiffiffi
2

p
� �

sech2 xffiffiffi
2

p
� �

t2α

+ μ3

6
ffiffiffi
2

p
α3

Cosh
ffiffiffi
2

p
x

� �
− 2

� �
sech4 xffiffiffi

2
p
� �

t3α

−
μ4

48α4 sinh 3xffiffiffi
2

p
� �

− 11 sinh xffiffiffi
2

p
� �� �

sech5 xffiffiffi
2

p
� �

t4α:

ð59Þ
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To close this method, it is assumed that u4ðx, tÞ is an
approximate solution, and CnðxÞ, n ≥ 5 can be followed
likewise. Later, by gathering the terms, uðx, tÞ of the posed
model (40) and (41) may be predicted. In particular, the
solution of FCH4 equation (40) and (41) at α = 1 and μ = 1
can be written in the form

u x, tð Þ = tanh xffiffiffi
2

p
� �

+ 1ffiffiffi
2

p sech2 xffiffiffi
2

p
� �

t

−
1
2 tanh xffiffiffi

2
p
� �

sech2 xffiffiffi
2

p
� �

t2

+ 1
6
ffiffiffi
2

p Cosh
ffiffiffi
2

p
x

� �
− 2

� �
sech4 xffiffiffi

2
p
� �

t3

−
1
48 sinh 3xffiffiffi

2
p
� �

− 11 sinh xffiffiffi
2

p
� �� �

� sech5 xffiffiffi
2

p
� �

t4+⋯,

ð60Þ

which agrees with the analytical solution acquired by homo-
topy perturbation method (HPM) [25], q-HAM, and new
iterative method (NIM) [24], so that

u x, tð Þ = tanh x + tffiffiffi
2

p
� �

: ð61Þ

In the following, 3D graphical simulation of u4ðx, tÞ of
FCH4 model (40) and (41) with respect to different frac-
tional parameter α are shown in Figure 3 for μ = 1 over
½−20, 20� × ½0, 2�: In Figure 4, 3D surface plots of FCH4

model (40) and (41) are depicted with fix α = 0:75 versus
μ such that μ = 1 and μ = 0:75 over the spatiotemporal
domain ½−6, 6� × ½0, 3�. Further, the obtained absolute errors
ju −u4j are reported in Table 3 and compared to those
results provided in [24] at μ = 1 and α = 1. The superiority
of the present method follows from those results.

(i) Exponential wave solution of FCH4 equation

This segment is an attempt to gain an effective approxi-
mate solution to FCH4 equation (40) with the initial condi-
tion [24]

u x, 0ð Þ = ⅇλx, ð62Þ

where λ is an arbitrary constant with λ ≠ 0:
According the CFRS algorithm, the nth fractional series

solution unðx, tÞ of the FCH4 equation (40) about t = 0 in
view of the initial condition (62) can be expressed as

un x, tð Þ = eλx + 〠
n

i=1
Ci xð Þ t

iα

αii!
: ð63Þ

With the aid of the nth truncated error Rn
s ðx, tÞ of

(46), the unknown coefficients CiðxÞ of the series expan-
sion (63) can be computed for each value of i = 1, 2,⋯,n.
To achieve this goal, let the first fractional series solution
of FCH4 equations (40) and (62) at n = 1 takes the form

u1 x, tð Þ = ⅇλx + 1
α
C1 xð Þtα: ð64Þ
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Figure 3: Surface wave behavior of u4ðx, tÞ of the FCH4 model (40) and (41) with μ = 1 for diverse α: (a) exact, (b) α = 0:75, (c) α = 0:5,
and (d) α = 0:25.
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Now, substitute u1ðx, tÞ into R1
sðx, tÞ and then solve

R1
sðx, tÞjt=0 = 0 to get

C1 xð Þ = λ μ − λ 1 − 9ⅇ2λx + λ2
� �� �

ⅇλx: ð65Þ

Hence, the solution u1ðx, tÞ is

u1 x, tð Þ = ⅇλx + λ

α
μ − λ 1 − 9ⅇ2λx + λ2

� �� �
ⅇλxtα: ð66Þ

Sequentially, substitute u2ðx, tÞ into the second trun-
cated residual errorR2

sðx, tÞ, apply the conformable opera-
tor ∂αt on both sides of the resulting equation, and solve

∂αtR
2
sðx, tÞjt=0 = 0 with the aid of Mathematica's symbolic

architecture [51] to get

C2 xð Þ = λ2 675λ2ⅇ4λx + λ + λ3 − μ
� �2�

− 54λ 2 λ + 7λ3
� �

− μ
� �

ⅇ2λx
�
ⅇλx,

ð67Þ

which implies that the second series solution is

u2 x, tð Þ = ⅇλx 1 + λ

α
μ − λ 1 − 9ⅇ2λx + λ2

� �� �
tα

�

+ λ2

2α2 675λ2ⅇ4λx + λ + λ3 − μ
� �2�

− 54λ 2 λ + 7λ3
� �

− μ
� �

ⅇ2λx
�
t2α
�
:

ð68Þ
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Figure 4: Surface plots of FCH4 model (40) and (41) with fix α = 0:75 versus μ: (a) μ = 1 and (b) μ = 0:75.

Table 3: Comparison of numerical results for FCH4 model (21)-(22) with λ = 1 and α = 1.

ti xi u x, tð Þ u4 x, tð Þ u −u4j j u −u4j j uj j−1 q-HAM [24] NIM [24]

0:01

0:0 0:007071 0:007071 2:35697 × 10−12 3:33332 × 10−10 2:356975 × 10−12 1:151971 × 10−7

0:1 0:077625 0:077625 2:25475 × 10−12 2:90466 × 10−11 2:823765 × 10−10 1:810671 × 10−7

0:2 0:147411 0:147411 1:96920 × 10−12 1:33586 × 10−11 5:749512 × 10−11 6:167394 × 10−8

0:3 0:215758 0:215758 1:53980 × 10−12 7:13667 × 10−12 3:757261 × 10−11 1:165205 × 10−9

0:05

0:0 0:035341 0:035341 7:36197 × 10−9 2:08315 × 10−7 7:713501 × 10−8 4:940148 × 10−5

0:1 0:105670 0:105670 7:00209 × 10−9 6:62637 × 10−8 1:124520 × 10−6 8:990891 × 10−5

0:2 0:174958 0:174958 6:07535 × 10−9 3:47246 × 10−8 2:387229 × 10−7 3:218897 × 10−5

0:3 0:242555 0:242555 4:70990 × 10−9 1:94178 × 10−8 1:516340 × 10−7 4:548965 × 10−7

0:08

0:0 0:056508 0:056508 7:71350 × 10−8 1:36502 × 10−6 7:361971 × 10−9 1:306675 × 10−5

0:1 0:126596 0:126596 7:30464 × 10−8 5:77003 × 10−7 1:736922 × 10−7 2:224480 × 10−5

0:2 0:195443 0:195443 6:30668 × 10−8 3:22687 × 10−7 3:622408 × 10−8 7:794449 × 10−6

0:3 0:262415 0:262415 4:85727 × 10−8 1:85099 × 10−7 2:328496 × 10−8 1:257660 × 10−7

0:10

0:0 0:070593 0:070592 2:35226 × 10−7 3:33214 × 10−6 2:352262 × 10−7 9:109940 × 10−5

0:1 0:140486 0:140486 2:22113 × 10−7 1:58103 × 10−6 2:722916 × 10−6 1:740220 × 10−4

0:2 0:209006 0:209006 1:91136 × 10−7 9:14497 × 10−7 5:848640 × 10−7 6:321236 × 10−5

0:3 0:275534 0:275534 1:46559 × 10−7 5:31908 × 10−7 3:686350 × 10−7 8:108096 × 10−7
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In the same fashion, the third and fourth series solutions
of FCH4 equations (40) and (62) can be obtained succes-
sively as follows

u3 x, tð Þ = ⅇλx 1 + λ

α
μ − λ 1 − 9ⅇ2λx + λ2

� �� �
tα

�

+ λ2

2α2 675λ2ⅇ4λx + λ + λ3 − μ
� �2�

− 54λ 2 λ + 7λ3
� �

− μ
� �

ⅇ2λx
�
t2α

+ λ3

6α3 123039λ3ⅇ6λx
�

− 675λ2 41λ + 713λ3 − 15μ
� �

ⅇ4λx

+ μ − λ 1 + λ2
� �� �3 + 81λ 3μ2 − 12μ λ + 7λ3

� ��
+ λ2 13 + 194λ2 + 757λ4

� ��
ⅇ2λx

�
t3α
�
,

ð69Þ

u4 x, tð Þ =u3 x, tð Þ + λ4

24α4 972λ μ − 2 λ + 7λ3
� �� ��

� μ2 − 4μ λ + 7λ3
� ��

+ λ2 5 + 82λ2 + 365λ4
� ��

ⅇ2λx

+ 1350λ2 75μ2 − 10λμ 41 + 713λ2
� ��

+ λ2 613 + 22898λ2 + 226477λ4
� �Þⅇ4λx

− 15876λ3 732λ + 23484λ3 − 217μ
� �

ⅇ6λx

+ 39110121λ4ⅇ8λx + λ + λ3 − μ
� �4�ⅇλxt4α:

ð70Þ

To close the process, we assume that u4ðx, tÞ is the
approximate solution. Following the same procedure, the
values of CnðxÞ, n ≥ 5 can be also computed. Thus, the
expression of the series solution uðx, tÞ of the FCH4 equa-
tion (40) along with condition (62) at α = 1 and μ = 1 can be
written in the form

u x, tð Þ = ⅇλx 1 + λ 1 − λ 1 − 9ⅇ2λx + λ2
� �� �

t

�

+ λ2

2! λ + λ3 − 1
� �2 − 54λ 2 λ + 7λ3

� �
− 1

� �
ⅇ2λx

�
+ 675λ2ⅇ4λx

�
t2 + λ3

3! 123039λ3ⅇ6λx
�

− 675λ2 41λ + 713λ3 − 15
� �

ⅇ4λx

+ 1 − λ 1 + λ2
� �� �3 + 81λ 3 − 12 λ + 7λ3

� ��
+ λ2 13 + 194λ2 + 757λ4

� ��
ⅇ2λx

�
t3

+ λ4

4! 972λ 1 − 2 λ + 7λ3
� �� �

1 − 4 λ + 7λ3
� ���

+ λ2 5 + 82λ2 + 365λ4
� ��

ⅇ2λx

+ 1350λ2 75 − 10λ 41 + 713λ2
� ��

+ λ2 613 + 22898λ2 + 226477λ4
� ��

ⅇ4λx

− 15876λ3 732λ + 23484λ3 − 217
� �

ⅇ6λx

+ 39110121λ4ⅇ8λx + λ + λ3 − 1
� �4�

t4+⋯
�
:

ð71Þ

In the following, the 3D behaviors of surface wave func-
tion u4ðx, tÞ of FCH4 model (40) and (62) are displayed in
Figure 5 for the parameters μ = 1 and λ = −0:05 with respect
to α = 1 and α = 0:75 on ½−10, 10� × ½0, 1�. While the frac-
tional level curves of u3ðx, tÞ for FCH4 model (40) and
(62) are shown in Figure 6 compared to the third approxi-
mate solutions obtained in [24] for fix t = 1 on ½−15, 15�
for various α values when λ = −0:05 and λ = 0:05. Error esti-
mate for the third approximate solutions of FCH4 model
(40) and (62) is provided in Table 4 by computing the abso-
lute errors ju3 −uqHAMj and ju3 −uNIMj based on the
results achieved by q-HAM and NIM [24] for α = 1, μ = 1,
and λ = 0:01. From this comparison, it is evident that the
results obtained by CFRS are in good agreement with those
presented in the literature.

4.3. Solution of Nonlinear Sixth-Order Time-Fractional
Cahn-Hilliard Equation. The one-dimensional nonlinear
sixth-order fractional Cahn-Hilliard (FCH6) equation
considered in this portion can be presented in terms of the
conformable time derivative as follows [24]:

∂αtu = μuux − 18uu2
xx − 36u2

xuxx − 24uuxuxxx

− 3u2 − 1
� �

uxxxx +uxxxxxx,
ð72Þ

with the condition

u x, 0ð Þ = tanh xffiffiffi
2

p
� �

, ð73Þ

0 < α ≤ 1, μ is a constant, μ ≠ 0, x ∈ ½a, b�, t ≥ 0, u =u

ðx, tÞ is sufficiently differentiable function representing the
wave-profile scaling spatiotemporal duration of wave prop-
agation in dispersed media. Herein, the nonlinear terms in
this model refer to chemical potential dynamics, and
uxxxxxx refers to wave scattering. This equation has
applications in topology optimization, surface reconstruc-
tion, phase separation, phase ordering dynamics, magneto-
acoustic propagation in plasma, multiphase incompressible
fluid flows, image inpainting, and so forth [32].

According the CFRS algorithm, the nth fractional series
solution unðx, tÞ of the FCH6 equation (72) about t = 0 in
view of the initial condition (73) can be expressed as

un x, tð Þ = tanh xffiffiffi
2

p
� �

+ 〠
n

i=1
Ci xð Þ t

iα

αii!
, ð74Þ
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and the residual error function Rsðx, tÞ is

Rs x, tð Þ = ∂αtu − μuux + 18uu2
xx + 36u2

xuxx

+ 24uuxuxxx + 3u2 − 1
� �

uxxxx

−uxxxxxx:

ð75Þ

For this purpose, the nth truncated error of Rsðx, tÞ
can be expressed in the form

Rn
s x, tð Þ = ∂αtun − μununx + 18unu

2
nxx + 36u2

nxunxx

+ 24ununxunxxx + 3u2
n − 1

� �
unxxxx

−unxxxxxx:

ð76Þ

Thus, by minimizing the residual error (76) of the gov-
erning equation, the unknown coefficients CiðxÞ of series
expansion (74) for each value of i = 1, 2,⋯,n can be com-
puted. Subsequently, the series solution atn = 1 has the form

u1 x, tð Þ = tanh xffiffiffi
2

p
� �

+ 1
α
C1 xð Þtα, ð77Þ

whereas the first residual function has the form

R1
s x, tð Þ = ∂αtu1 − μu1u1x + 18u1u

2
1xx + 36u2

1xu1xx

+ 24u1u1xu1xxx + 3u2
1 − 1

� �
u1xxxx

−u1xxxxxx:

ð78Þ
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Figure 5: Surface plots of FCH4 model (40)-(62) at μ = 1 and λ = −0:05 for diverse α: (a) α = 1 and (b) α = 0:75.
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Figure 6: Fractional level curves of u3ðx, tÞ of FCH4 model (40) and (62) with t = 1 and μ = 1: blue for q-HAM [24], red α = 1, pink
α = 0:75, green α = 0:5, yellow α = 0:25, gray α = 0:1 ; (a) λ = −0:05 and (b) λ = 0:05.

Table 4: Comparison of absolute errors of FCH4 model (40) and (62) with = 1,μ = 1, and λ = 0:01.

ti
x = 1 x = 5 x = 20

u3 −uqHAM



 

 u3 −uNIMj j u3 −uqHAM



 

 u3 −uNIMj j u3 −uqHAM



 

 u3 −uNIMj j
0:5 8:8741 × 10−9 7:7088 × 10−8 1:0333 × 10−8 8:7056 × 10−8 1:8620 × 10−8 1:4221 × 10−7

1:0 7:0993 × 10−8 6:1670 × 10−7 8:2659 × 10−8 6:9645 × 10−7 1:4896 × 10−7 1:1377 × 10−6

1:5 2:3960 × 10−7 2:0814 × 10−6 2:7898 × 10−7 2:3505 × 10−6 5:0274 × 10−7 3:8396 × 10−6

2:0 5:6794 × 10−7 4:9336 × 10−6 6:6128 × 10−7 5:5716 × 10−6 1:1917 × 10−6 9:1012 × 10−6

2:5 1:1093 × 10−6 9:6360 × 10−6 1:2916 × 10−6 1:0882 × 10−5 2:3275 × 10−6 1:7776 × 10−5
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Now, putting u1ðx, tÞ into R1
sðx, tÞ to get

R1
s x, tð Þ =C1 xð Þ − μ

α2
αC0 xð Þ +C1 xð Þtαð Þ

� αC0′ xð Þ +C1′ xð Þtα
� �
+ 36
α3

αC0′ xð Þ +C1′ xð Þtα
� �2

� αC0′′ xð Þ +C1′′ xð Þtα
� �
+ 18
α3

αC0 xð Þ +C1 xð Þtαð Þ

� αC0′′ xð Þ +C1′′ xð Þtα
� �2
+ 24
α3

αC0 xð Þ +C1 xð Þtαð Þ
� αC0′ xð Þ +C1′ xð Þtα
� �
� αC

3ð Þ
0 xð Þ +C

3ð Þ
1 xð Þtα

� �
+ 3
α3

αC0 xð Þ +C1 xð Þtαð Þ2

� αC
4ð Þ
0 xð Þ +C

4ð Þ
1 xð Þtα

� �
−
1
α

αC
4ð Þ
0 xð Þ +C

4ð Þ
1 xð Þtα

� �
−
1
α

αC
6ð Þ
0 xð Þ +C

6ð Þ
1 xð Þtα

� �
:

ð79Þ

By utilizing the fact R1
sðx, tÞjt=0 = 0, it yields

C1 xð Þ + 36C0′ xð Þ2C0′′ xð Þ +C0 xð Þ
� 18C0′ ′ xð Þ2 −C0′ xð Þ μ − 24C 3ð Þ

0 xð Þ
� �� �

+ 3C0 xð Þ2C 4ð Þ
0 xð Þ −C

4ð Þ
0 xð Þ −C

6ð Þ
0 xð Þ = 0,

ð80Þ

which implies that

C1 xð Þ = μffiffiffi
2

p sech2 xffiffiffi
2

p
� �

tanh xffiffiffi
2

p
� �

: ð81Þ

Therefore, the solution u1ðx, tÞ is

u1 x, tð Þ = tanh xffiffiffi
2

p
� �

+ μffiffiffi
2

p
α
sech2 xffiffiffi

2
p
� �

tanh xffiffiffi
2

p
� �

tα:

ð82Þ

Sequentially, the second truncated series u2ðx, tÞ can be
obtained by setting n = 2 in (76) such that

R2
s x, tð Þ = ∂αtu2 − μu2u2x + 18u2u

2
2xx + 36u2

2xu2xx

+ 24u2u2xu2xxx + 3u2
2 − 1

� �
u2xxxx

−u2xxxxxx,
ð83Þ

where u2ðx, tÞ = tanh ðx/
ffiffiffi
2

p Þ + ðμ/ ffiffiffi
2

p
αÞ sech2ðx/ ffiffiffi

2
p Þ

tanh ðx/ ffiffiffi
2

p Þtα + ð1/2α2ÞC2ðxÞt2α: By employing the oper-
ator ∂αt on both sides of equation (83), we get

∂αtR
2
s x, tð Þ =C2 xð Þ − μ C0 xð Þ +C1 xð Þ t

α

α
+C2 xð Þ t

2α

2α2
� �

� C0′ xð Þ + C1′ xð Þtα
α

+ C2′ xð Þt2α
2α2

 !

− ∂αt 18u2u
2
2xx + 36u2

2xu2xx

�
+ 24u2u2xu2xxx + 3u2

2 − 1
� �

u2xxxx

�
−C

6ð Þ
0 xð Þ − C

6ð Þ
1 xð Þtα

α
−
C

6ð Þ
2 xð Þt2α
2α2 :

ð84Þ

Solving the term ∂αtR
2
sðx, tÞjt=0 = 0 with the aid of

Mathematica's symbolic architecture [51] leads to

C2 xð Þ + 36C0′ xð Þ 2C1′ xð ÞC0″ xð Þ +C0′ xð ÞC1″ xð Þ
� �

+C0 xð Þ 36C0″ xð ÞC1″ xð Þ −C1′ xð Þ μ − 24C 3ð Þ
0 xð Þ

� ��
+ 24C0′ xð ÞC 3ð Þ

1 xð ÞÞ −C1 xð Þ C0′ xð Þ μ − 24C 3ð Þ
0 xð Þ

� ��
+ 6 3C0″ xð Þ2 +C0 xð ÞC 4ð Þ

0 xð Þ
� ��

−C
4ð Þ
1 xð Þ + 3C0 xð Þ2C 4ð Þ

1 xð Þ −C
6ð Þ
1 xð Þ = 0,

ð85Þ

which implies that

C2 xð Þ = μ

2 ζ1 xð Þ sech4 xffiffiffi
2

p
� �

tanh xffiffiffi
2

p
� �

, ð86Þ

in which ζ1ðxÞ = μð3 − cosh ð ffiffiffi
2

p
xÞÞ − 3

ffiffiffi
2

p
sech4ðx/ ffiffiffi

2
p Þ

ð249 − 163 cosh ð ffiffiffi
2

p
xÞ + 8 cosh ð2 ffiffiffi

2
p

xÞÞ:
Therefore, the series solution u2ðx, tÞ can be given as

u2 x, tð Þ = tanh xffiffiffi
2

p
� �

+ μffiffiffi
2

p
α
sech2 xffiffiffi

2
p
� �

tanh xffiffiffi
2

p
� �

tα

+ μ

4α2 ζ1 xð Þ sech4 xffiffiffi
2

p
� �

tanh xffiffiffi
2

p
� �

t2α:

ð87Þ

Following the same procedure, the series u3ðx, tÞ of
(74) can be computed through setting n = 3 in (76) and
solving the term ∂2αR3

sðx, tÞ/∂t2jt=0 = 0 to get C3ðxÞ as
follows

C3 xð Þ = μ

8 ζ2 xð Þ sech6 xffiffiffi
2

p
� �

tanh xffiffiffi
2

p
� �

, ð88Þ
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where

ζ2 xð Þ =
ffiffiffi
2

p
μ2 35 − 24 cosh

ffiffiffi
2

p
x

� �
+ cosh 2

ffiffiffi
2

p
x

� �� �
− 18

ffiffiffi
2

p
−28600273 + 33907584 cosh

ffiffiffi
2

p
x

� ��
− 7525233 cosh 2

ffiffiffi
2

p
x

� �
+ 585152 cosh 3

ffiffiffi
2

p
x

� �
− 12286 cosh 4

ffiffiffi
2

p
x

� �
+ 32 cosh 5

ffiffiffi
2

p
x

� ��
� sech8 xffiffiffi

2
p
� �

− 48μ 2499 − 96 cosh
ffiffiffi
2

p
x

� ��

− 20 −89 + 184 cosh
ffiffiffi
2

p
x

� �� �
sech4 xffiffiffi

2
p
� ��

,

ð89Þ

which implies that u3ðx, tÞ has the form

u3 x, tð Þ = tanh xffiffiffi
2

p
� �
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To close the process, we suppose that u3ðx, tÞ is the
approximate solution. Then, CnðxÞ, n ≥ 4, can be com-
puted similarly. Anyhow, the n-term sequential solution
can be written in the form Unðx, tÞ =∑n

k ukðx, tÞ as well
as the solution uðx, tÞ of the FCH6 equation (72) along
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Figure 9: Surface of absolute error for FCH6 model (72) and (73) at μ = 0:01 and α = 0:5: (a) ju2 −uqHAMj and (b) ju2 −uNIMj.
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Figure 8: Surface of absolute error for FCH6 model (72) and (73) at μ = 0:01 and α = 0:75: (a) ju2 −uqHAMj and (b) ju2 −uNIMj.
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Figure 7: Surface wave behavior of u3ðx, tÞ of FCH6 model (72) and (73) with μ = 0:01 for diverse α: (a) α = 0:75 and (b) α = 0:5.
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with condition (73) can be predicted as uðx, tÞ = lim
n⟶∞

Un

ðx, tÞ:
In Figure 7, the behaviors of surface wave function

u3ðx, tÞ for FCH6 model (72) and (73) are presented in
3D with μ = 0:01 for diverse α such that α = 0:75 and α =
0:5. While the surface plots of absolute error for FCH6 model
(72) and (73) based on the results obtained in [24] at μ = 0:01
are depicted in Figures 8 and 9 for α = 0:75 and α = 0:5,
respectively. From these graphs, it is evident that the
achieved results are in good agreement with those obtained
in [24].

5. Concluding Remarks

In this paper, we have investigated the fractional parabolic
partial differential models of Gardner and Cahn-Hilliard
equations in conformable sense. Using the fractional resid-
ual method, the approximate solution has been successfully
acquired of the posed problems without imposing any
unsanctified restrictions. Numerical simulation has been
carried out to highlight the ability of the suggested method.
In this context, it can be concluded that the implemented
approximation algorithm is a superior tool for computa-
tional purposes, it is computer oriented, it is relatively better
compared to the existing numerical methods, and it is a
straightforward and simple methodology that needs a few
iterations to get accurate solutions. From the graphic repre-
sentations, it is noticed that the solution behavior is harmo-
nious for different fractional values and consistent with the
integer value. In future work, multivariate series expansion
based on residual error can be employed for multidimen-
sional fractional evolution models in terms of the conform-
able derivative.
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The Black-Scholes equation (BSe) is fascinating in the business world for predicting the performance of financial investment
valuation systems. The Caputo fractional derivative (CFD) and Caputo-Fabrizio fractional derivative operators are used in this
research to analyze the BSe. The Adomian decomposition method (ADM) and the new iterative transform (NIM) approach
are combined alongside the Yang transform. In addition, the convergence and uniqueness results for the aforementioned
framework have been calculated. The existence and uniqueness results have been established and frequently accompanied
innovative aspects of the prospective system in fixed point terminologies. To provide additional insight into such concepts, a
variety of illustrations and tabulations are used. Additionally, the provided techniques regulate and modify the obtained
analytical results in a really productive fashion, allowing us to modify and regulate the converging domains of the series
solution in a pragmatic manner.

1. Introduction

Recently, the investigation of modified derivatives and inte-
grals has grown in prominence in recent decades, owing to
its appealing implications in a wide range of disciplines,
including Maxwell fluids [1, 2], circuit theory [3], and epi-
demics [4, 5]. As an outgrowth of conventional integer analy-
sis, fractional calculus (FC) has been exploited to examine the
implications and integrals of indefinite powers. Because
integer-order derivative and integral operators are being used
to simulate all real-world processes, numerous researchers
have proposed multiple variations of fractional operators as
a modification of the fractional formulations [6–9]. The inter-
action effect in FC has been utilized to represent numerous
processes in thermodynamics, chemical engineering, biome-
chanics, and other disciplines, despite the fact that the ana-
lyzed formulae in FC are typically reluctant to analyze
complicated phenomena [10–14]. In addition, fractional dif-

ferential formulas have a higher granularity than integer dif-
ferential operators. Illustrations comprise Katugampola,
Weyl, Hadamard, Caputo, Riesz, Riemann, and Liouville,
Weyl, Jumarie, Caputo and Fabrizio [15], and Grünwald and
Letnikov [16]. Likewise, the Liouville-Caputo and Caputo-
Fabrizio fractional filtrations are thought to be ideal.

It is imperative to address fractional-order nonlinear
partial differential equations (NPDEs) that regulate the fore-
going experimental results in order to successfully compre-
hend such occurrences. There is, however, no universal
comprehensive principle that applies to NPDEs in an
attempt to obtain a numerical approach. Researchers have
determined successful approaches to derive meaningful
numerical methods for NPDEs in recent times, including
the inverse scattering transform Sin-Cos method (SCM)
[17], homotopy perturbation method (HPM) [18], Adomian
decomposition method (ADM) [19, 20], new iterative trans-
form method (NITM) [21], variation iteration method
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(VIM) [22], G/G′ expansion method [23], Lie symmetry
analysis (LSA) [24], Haar wavelet method [25], inverse scat-
tering transform [26], simple equation method [27], Bäck-
lund transformation [28], and henceforth.

In 1973, Fischer Black and Myron Scholes formulated a
mathematical formula for passive investment valuation.
The pioneering Black-Scholes equation (BSe) is at the core
of contemporary financial economics, and it is indeed tough
to communicate about mainstream capitalism without men-
tioning the revolutionary BSe.

The objective of this paper is to leverage the Yang
decomposition method (YDM) and the Yang iterative trans-
form method (YITM) to modify the results into a BSe. The
fractional interpretation of BSe is characterized in financial
services by [29]:

Dδ
ϱU + ϖ2

2 S2 ∂
2U

∂S2 + ζS
∂U
∂S

− ζU = 0, ð1Þ

subject to the playoff mapping

U S ,Tð Þ =max S − E, 0ð Þ, ð2Þ

where UðS , ϱÞ denotes the alternative means worth at S
asset prices of the moment, ϱ, and T indicates the termina-
tion term. The symbol E symbolizes share value. The param-
eter ζ represents the uncertainty of borrowing until it
matures. The continual ϖ indicates the unpredictability of
a trading asset. The required assumptions are also entailed:
a continuous uncertainty risk premium u, no operating
charges, the capacity to transact an unrestricted quantity of
inventory, and no restrictions on market manipulation. Ulti-
mately, we provide European alternatives. It is also worth
mentioning that Uð0, ϱÞ = 0 and UðS ,T Þ ≈ S as S ↦∞:
The parabolic diffusion problem can perhaps be described
as the BSe in (1). Inducing the modifications that follow:

S = E exp y1ð Þ,

ϱ =T −
2τ
ϖ2 ,

U = EU y1, ϱð Þ,

ð3Þ

then (1) diminishes to

Dδ
ϱU y1, ϱð Þ = ∂2U y1, ϱð Þ

∂y21
+ ζ − 1ð Þ ∂U y1, ϱð Þ

∂y1
− ζU y1, ϱð Þ,

ð4Þ

related initial condition (ICs) are

U y1, 0ð Þ =max exp y1ð Þ − 1, 0ð Þ, ð5Þ

where ζ designates the threshold when the direct connection
involving wage growth and market instability coincides. Cen
and Le proposed the generalized fractional BSe in [30]. The

BSe is stated as follows:

Dδ
ϱU y1, ϱð Þ = −0:08 2 + sin y1ð Þ2y21

∂2U y1, ϱð Þ
∂y21

− 0:06y1
∂U y1, ϱð Þ

∂y1
+ 0:06U y1, ϱð Þ,

ð6Þ

supplemented ICs

U y1, 0ð Þ =max y1 − 25 exp −0:06ð Þ, 0ð Þ: ð7Þ

The fractional BSe considering a particular resource has
been widely explored ([31, 32]). The fractional BSe is a ver-
sion of the classical BSe that expands its restrictions. The BSe
was implemented by Meng and Wang [33] to analyze frac-
tional potential assessment. The fractional BSe was used to
determine the insured guarantee valuation for treasury
foreign trade in China. Their results indicate that the frac-
tional BSe surpasses the traditional BSe when it pertains to
measuring the impact of the pricing system [34]. The
Black-Scholes financial theory was calculated using the
HPM by Fall et al. [35]. By adopting the Ornstein-
Uhlenbeck Procedures, Matadi and Zondi [36] explored
the consistent values of BSe. The computational estimation
of fractional BSe emerging in the banking system was dem-
onstrated by Kumar et al. [37]. Employing a novel fractional
operator, Yavuz and Özdemir [38] suggested a novel strategy
for the European efficient market hypothesis.

The ADM introduced a well-known concept during
George Adomian’s significant surge in 1980. For example,
it has been frequently applied to deal with a variety of com-
plex PDEs like the K(2,2) and K(3,3) models [19], biological
population model [39], Swift-Hohenberg model [40], and
henceforth. The ADM is essential because it overcomes the
necessity for a smaller component in the considerations,
eliminating the challenges that occur with classic Adomian
approaches. The main objective of this research was to lever-
age the ADM to analyze fractional-order BSe using a
recently designed integral transformation known as the
“Yang transformation” [41].

Daftardar-Gejji and Jafari [42] proposed NITM in 2006,
which is frequently adopted by scholars owing to its useful-
ness in fractional ODES and PDEs. If a precise result
emerges, the iterative method leads to it through repeated
estimates. For methodological concerns, a significant frac-
tion of projections can be considered with a satisfactory
amount of precision for specific issues. For managing non-
linearity components, the NITM sometimes does not require
a restrictive assumption. For instance, researchers exploited
NITM to develop analytical results for the fractional Schrö-
dinger equation in [43], and Wang and Liu used NITM to
address the fractional Fornberg-Whitham model in [44].
Widatalla and Liu used NITM to develop the Laplace
decomposition algorithm in [22].

Due to the aforesaid tendency, we apply the YDM and
the YITM to achieve the expressive result of the fractional-
order BSe. For renewability algorithmic techniques, the Yang
transform efficiently integrates the ADM and NITM. The
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Yang transform is a combination of a few different trans-
forms. Both these proposed techniques produce interpretive
findings in the sense of a convergent series. The Caputo-
Fabrizio fractional derivative operator is used to explain
quantitative categorizations of the BSe. The offered method-
ologies are well demonstrated in modeling and enumeration
investigations. The exact-analytical findings are a valuable
way to analyze the dynamics of systems that are problematic
to computationally analyze, notably for fractional PDEs.
Financial and monetary phenomena can be investigated
using this approximate expression.

2. Preliminaries

In this part, we address several key ideas, conceptions, and
terminologies related to fractional derivative operators
involving index and exponential decay as a kernel, as well
as the Yang transform’s specific repercussions.

Definition 1 (see [9]). The Caputo fractional derivative ðCFDÞ
is described as follows:

c
0Dδ

ϱU ϱð Þ =

1
Γ r − δð Þ

ðϱ
0

U rð Þ y1ð Þ
ϱ − y1ð Þδ+1−r

dy1, r − 1 < δ < r,

dr

dϱr
U ϱð Þ, δ = r:

8>>><
>>>:

ð8Þ

Definition 2 (see [15]). The Caputo fractional derivative oper-
ator is described as follows:

CFDδ
ϱ U ϱð Þð Þ = 2 − δð ÞA δð Þ

2 1 − δð Þ
ðϱ
0
exp −

δ ϱ − y1ð Þ
1 − δ

� �
U′ ϱð Þdϱ,

ð9Þ

where U ∈H1ða1, a2ÞðSobolev spaceÞ, a1 < a2, δ ∈ ½0, 1�, and
AðδÞ signifies a normalization function as AðδÞ =Að0Þ =
Að1Þ = 1:

Definition 3 (see [15]). The fractional integral of the Caputo-
Fabrizio operator is defined as

CFI δ
ϱ U ϱð Þð Þ = 2 1 − δð Þ

2 − δð ÞA δð ÞU ϱð Þ + 2δ
2 − δð ÞA δð Þ

ðϱ
0
U y1ð Þdy1:

ð10Þ

Definition 4 (see [41]). The Yang transform is described as
follows:

Y U φð Þ½ � = Y s1ð Þ =
ð∞
0
U φð Þ exp −

φ

s1

� �
dφ, φ > 0: ð11Þ

The Yang transform of a range of vital expressions is as
follows:

Y 1½ � = s1,
Y φ½ � = s21,

⋮

Y φδ

Γ δ + 1ð Þ
� �

= sδ+11 :

ð12Þ

Definition 5 (see [41]). The Yang transform of the CFD
operator is mentioned as

Y c
0Dδ

ϱ U ϱð Þð Þ, s
n o

= φ−δQ sð Þ − 〠
δ−1

κ=0
φ1−δ−κ sð ÞU κð Þ 0ð Þ, r − 1

< δ < r, φ > 0:
ð13Þ

Definition 6 (see [45]). The Yang transform of the Caputo-
Fabrizio fractional derivative operator is stated as

Y CF
0 Dδ

ϱ U φð Þð Þ, s1
n o

= Y U φð Þ − s1U 0ð Þ½ �
1 + δ s1 − 1ð Þ : ð14Þ

Definition 7 (see [46]). The Mittag-Leffler function for single
parameter is defined as

Eδ zð Þ = 〠
∞

κ=0

zκ1
Γ κδ + 1ð Þ , δ, z1 ∈ℂ,R δð Þ ≥ 0: ð15Þ

3. Algorithmic Configuration for
Nonlinear PDEs

Let us surmise the fractional version of nonlinear PDE:

Dδ
ϱU y1, ϱð Þ + LU y1, ϱð Þ +NU y1, ϱð Þ =Q y1, ϱð Þ, ϱ > 0, 0 < δ ≤ 1

ð16Þ

having ICs

U y1, 0ð Þ =G y1ð Þ, ð17Þ

where Dδ
ϱ = ∂δUðy1, ϱÞ/∂ϱδ represents the Caputo-Fabrizio

fractional derivative considering the order δ ∈ ð0, 1� whilst
L and N indicates the linear and nonlinear functionals,
respectively. Furthermore, Qðy1, ϱÞ indicates the source
term.

3.1. Construction of Yang Decomposition Method. Incorpo-
rating the Yang transformation to (16), we obtain

Y Dδ
ϱU y1, ϱð Þ + �LU y1, ϱð Þ + �NU y1, ϱð Þ

h i
= Y Q y1, ϱð Þ½ �:

ð18Þ
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Initially, we implement the Yang transform differentia-
bilty criteria to CFD, and then further implement the
Caputo-Fabrizio fractional derivative operator as described
in the following:

φ−δU y1, ϱð Þ = 〠
n−1

p=0
φ1−δ−pU pð Þ 0ð Þ

+ Y �LU y1, ϱð Þ + �NU y1, ϱð Þ� �
+ Y Q y1, ϱð Þ½ �,

ð19Þ

1
1 + δ φ − 1ð ÞU y1, ϱð Þ = φ

1 + δ φ − 1ð ÞU 0ð Þ

+ Y �LU y1, ϱð Þ + �NU y1, ϱð Þ� �
+ Y Q y1, ϱð Þ½ �:

ð20Þ

The inverse Yang transform of (19) and (20), respec-
tively, gives

U y1, ϱð Þ = Y−1 〠
n−1

p=0
φ1−δ−pU pð Þ 0ð Þ + φδY Q y1, ϱð Þ½ �

" #

− Y−1 φδY �LU y1, ϱð Þ + �NU y1, ϱð Þ� �h i
,

ð21Þ

U y1, ϱð Þ = Y−1 φU 0ð Þ + 1 + δ φ − 1ð Þð ÞY Q y1, ϱð Þ½ �½ �
− Y−1 1 + δ φ − 1ð Þð ÞY �LU y1, ϱð Þ + �NU y1, ϱð Þ� �� �

:

ð22Þ
The infinite series Uðy1, ϱÞ illustrates the result of the

Yang decomposition approach:

U y1, ϱð Þ = 〠
∞

p=0
Up y1, ϱð Þ: ð23Þ

As a consequence, the nonlinear component �Nðy1, ϱÞ
can be assessed employing the Adomian decomposition
approach, as follows:

�NU y1, ϱð Þ = 〠
∞

p=0
~Ap U0,U1,⋯ð Þ, p = 0, 1,⋯, ð24Þ

where

~Ap U0,U1,⋯ð Þ = 1
q!

dp

dδp
�N 〠

∞

j=0
δjUj

 !" #
δ=0

, q > 0: ð25Þ

Putting (20) and (24) into (21) and (22), respectively, we
attain

〠
∞

p=0
Up y1, ϱð Þ =G y1ð Þ + ~G y1ð Þ − Y−1 φδY �LU y1, ϱð Þ + 〠

∞

p=0
~Ap

" #" #
,

ð26Þ

〠
∞

p=0
Up y1, ϱð Þ =G y1ð Þ + ~G y1ð Þ

− Y−1 1 + δ φ − 1ð Þð ÞY �LU y1, ϱð Þ + 〠
∞

p=0
~Ap

" #" #
:

ð27Þ

As a nutshell, the iterative approach for (26) and (27) is
as follows:

U0 y1, ϱð Þ =G y1ð Þ + ~G y1ð Þ, p = 0,

Uq+1 y1, ϱð Þ = −Y−1 φδY �L Up y1, ϱð Þ� 	
+ 〠

∞

p=0
~Ap

" #" #
, q ≥ 1,

Uq+1 y1, ϱð Þ = −Y−1 1 + δ φ − 1ð Þð ÞY �L Up y1, ϱð Þ� 	
+ 〠

∞

p=0
~Ap

" #" #
, q ≥ 1:

ð28Þ

3.2. Formation of Yang Iterative Transform Method. Imple-
menting the Yang transform to (16) incorporates the ICs
(17), ones obtain

Y Dδ
ϱU y1, ϱð Þ + �LU y1, ϱð Þ + �NU y1, ϱð Þ

h i
= Y Q y1, ϱð Þ½ �:

ð29Þ

First, we apply the differentiation rule of Yang transform
for CFD, and then we consider for Caputo-Fabrizio frac-
tional derivative operator, respectively, and we get

Y U y1, ϱð Þ½ � = φδ 〠
n−1

p=0
φ1−δ−p ϱð ÞU pð Þ φ, 0ð Þ

− φδY �LU y1, ϱð Þ + �NU y1, ϱð Þ� �
+ φδY Q y1, ϱð Þ½ �,

ð30Þ

Y U y1, ϱð Þ½ � = φδ 〠
n−1

p=0
φ1−δ−p ϱð ÞU pð Þ φ, 0ð Þ

− 1 + δ φ − 1ð Þð ÞY �LU y1, ϱð Þ + �NU y1, ϱð Þ� �
+ 1 + δ φ − 1ð Þð ÞY Q y1, ϱð Þ½ �:

ð31Þ
Using the fact of the inverse Yang transform of (30) and

(31), respectively, produces

U y1, ϱð Þ =G φð Þ + Y−1 φδY Q y1, ϱð Þ½ �
n o

− Y−1 φδY �LU y1, ϱð Þ + �NU y1, ϱð Þ� �n o
,

ð32Þ

U y1, ϱð Þ =G φð Þ + Y−1 1 + δ φ − 1ð Þð ÞY Q y1, ϱð Þ½ �f g
− Y−1 1 + δ φ − 1ð Þð ÞY �LU y1, ϱð Þ + �NU y1, ϱð Þ� �
 �

:

ð33Þ
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Employing the recursive approach, we determine

U y1, ϱð Þ = 〠
∞

p=0
Up y1, ϱð Þ: ð34Þ

Moreover, utilizing the linearity �L of the operator, thus
we have

�L 〠
∞

p=0
Up y1, ϱð Þ

 !
= 〠

∞

p=0
�L Up y1, ϱð Þ� �

, ð35Þ

and the nonlinearity �N handled by (see [42])

�N 〠
∞

p=0
Up y1, ϱð Þ

 !
= �N U0 y1, ϱð Þð Þ

+ 〠
∞

q=1
�N 〠

p

κ=0
Up y1, ϱð Þ

 !
− �N 〠

p−1

κ=0
Up y1, ϱð Þ

 !" #

= �N U0ð Þ + 〠
∞

q=1
Dp,

ð36Þ

where Dp = �Nð∑p
κ=0UpÞ − �Nð∑p−1

κ=0UpÞ:
Inserting (37), (39), and (36) into (32) and (33), respec-

tively, we observe

〠
∞

p=0
Up y1, ϱð Þ = G φð Þ + Y−1 φδY Q y1, ϱð Þ½ �

n o

− Y−1 φδY �L 〠
p

κ=0
Up y1, ϱð Þ

 !
+ �N U0ð Þ + 〠

p

κ=1
Dp

" #( )
,

ð37Þ

〠
∞

p=0
Up y1, ϱð Þ = G φð Þ + Y−1 1 + δ φ − 1ð Þð ÞY Q y1, ϱð Þ½ �f g

− Y−1 1 + δ φ − 1ð Þð ÞY �L 〠
p

p=0
Up y1, ϱð Þ

 !
+ �N U0ð Þ + 〠

p

q=1
Dp

" #( )
:

ð38Þ

Ultimately, for CFD, we develop appropriate analysis

procedure:

U0 y1, ϱð Þ =G φð Þ + Y−1 φδL Q y1, ϱð Þ½ �
n o

,

U1 y1, ϱð Þ = −Y−1 φδY �L U0 y1, ϱð Þð Þ + �N U0 y1, ϱð Þð Þ� �n o
,

⋮

Uq+1 y1, ϱð Þ = −Y−1 φδY �L Up y1, ϱð Þ� 	
+Dp

� �n o
:

ð39Þ

The exploratory procedure for the Caputo-Fabrizio frac-
tional derivative operator is shown then:

U0 y1, ϱð Þ = G φð Þ + Y−1 1 + δ φ − 1ð Þð ÞL Q y1, ϱð Þ½ �f g,
U1 y1, ϱð Þ = −Y−1 1 + δ φ − 1ð Þð ÞY �L U0 y1, ϱð Þð Þ + �N U0 y1, ϱð Þð Þ� �
 �

,
⋮

Uq+1 y1, ϱð Þ = −Y−1 1 + δ φ − 1ð Þð ÞY �L Up y1, ϱð Þ� 	
+Dp

� �
 �
:

ð40Þ

Eventually, the q-term result in series formulation is gen-
erated by (37), (39), and (40), and we have

U y1, ϱð Þ ≊U0 y1, ϱð Þ +U1 y1, ϱð Þ +U2 y1, ϱð Þ
+⋯ +Up y1, ϱð Þ, q ∈ℕ:

ð41Þ

4. Mathematical Formulations of BSM via
Caputo-Fabrizio Fractional
Derivative Operator

The coming parts will illustrate how well the adequate con-
ditions ensure the formation of a unique solution. Our
hypothesis of the existence of solutions in the scenario of
YDM is developed by [47].

Theorem 8 (Uniqueness theorem). For 0 < ε < 1, then system
(24) has a unique solution, where ε = ðK1 + K2 + K3Þð1 + δð
ϱ − 1ÞÞ:

Proof. Surmise that there is a set of continuous mappings in
the Banach space Ω = ðℂ½I �, k:kÞ Considering I = ½0,T �,
present the norm k:k To continue this, suppose a mapping
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V : Ω↦Ω such that

Uℓ+1 y1, ϱð Þ =U y1, ϱð Þ + Y−1 1 + δ φ − 1ð Þð ÞY L Uℓ y1, ϱð Þ½ �½½
+ �P Uℓ y1, ϱð Þ½ � +N Uℓ y1, ϱð Þ½ ���, ℓ ≥ 0,

ð42Þ

where L½Uðy1, ϱÞ� ≡ ∂3Uðy1, ϱÞ/∂y21 and �P½Uðy1, ϱÞ� ≡ ∂Uðy1
, ϱÞ/∂y1: Here, suppose that L½Uðy1, ϱÞ� and N½Uðy1, ϱÞ� are
also Lipschitzian with j�PU − �PÛj <K1jU − Ûj and jLU − LÛ
j <K2jU − Ûj, where K1 and K2 are Lipschitz constant,
respectively, and U, Û are distinct functional values.

VU −V Û
�� �� =max

ϱ∈I
Y−1 1 + δ φ − 1ð Þð ÞY L U y1, ϱð Þ½ �½½

+ �P U y1, ϱð Þ½ � +N U y1, ϱð Þ½ ���
− Y−1 1 + δ φ − 1ð Þð ÞY L Û y1, ϱð Þ� ���
+ �P Û y1, ϱð Þ� �

+N Û y1, ϱð Þ� ���j
≤max

ϱ∈I
Y−1 1 + δ φ − 1ð Þð ÞY L U y1, ϱð Þ½ �½½

− L Û y1, ϱð Þ� ��� + Y−1 1 + δ φ − 1ð Þð ÞY �P U y1, ϱð Þ½ ���
− �P Û y1, ϱð Þ� ��� + Y−1 1 + δ φ − 1ð Þð ÞY N U y1, ϱð Þ½ �½½
−N Û y1, ϱð Þ� ���j ≤max

ϱ∈I
K1Y−1 1 + δ φ − 1ð Þð ÞY U y1, ϱð Þj½�

− Û y1, ϱð Þ� +K2Y−1 1 + δ φ − 1ð Þð ÞY U y1, ϱð Þ − Û y1, ϱð Þ � �
+K3Y−1 1 + δ φ − 1ð Þð ÞY U y1, ϱð Þ − Û y1, ϱð Þ � ��

≤max
ϱ∈I

K1 +K2 +K3ð ÞY−1 1 + δ φ − 1ð Þð ÞY U y1, ϱð Þ − Û y1, ϱð Þ � �
≤ K1 +K2 +K3ð ÞY−1 1 + δ φ − 1ð Þð ÞY U y1, ϱð Þ − Û y1, ϱð Þ�� ��� �
= K1 +K2 +K3ð ÞY−1 1 + δ φ − 1ð Þð Þφ U y1, ϱð Þ − Û y1, ϱð Þ�� ��� �
= K1 +K2 +K3ð Þ 1 + δ ϱ − 1ð Þð Þ U y1, ϱð Þ − Û y1, ϱð Þ�� ��:

ð43Þ

For 0 < ε < 1, the functional is contraction. As a result of
the Banach contraction fixed point hypothesis, (16) has a
fixed value. This produces the intended outcome.

Theorem 9 (Convergence analysis). Equation (16) has a
generic type solution and will be convergent.

Proof. Surmise that Ŝℓ be the nth partial sum, that is, Ŝℓ =
∑ℓ

m=0Uℓðy1, ϱÞ: Further, we exhibit fŜℓg is a Cauchy
sequence in Banach space U:

We do it by contemplating a novel kind of Adomian
polynomials.

�R Ŝℓ
� 	

= ~Hℓ + 〠
ℓ−1

p=0
~Hp,

N Ŝℓ
� 	

= ~Hℓ + 〠
ℓ−1

c=0
~Hc:

ð44Þ

Now

Ŝℓ − Ŝp
�� �� =max

ϱ∈I
Ŝℓ − Ŝp
  =max

ϱ∈I
〠
ℓ

m=q+1
Û y1, ϱð Þ


, m = 1, 2, 3,⋯ð Þ

≤max
ϱ∈I

Y−1 1 + δ φ − 1ð Þð ÞY 〠
ℓ

m=q+1
L Uℓ−1 y1, ϱð Þ½ �

" #" #
+ Y−1 1 + δ φ − 1ð Þð ÞY 〠

ℓ

m=q+1
�P Uℓ−1 y1, ϱð Þ½ �

" #" #

+ Y−1 1 + δ φ − 1ð Þð ÞY 〠
ℓ

m=q+1
~Hℓ−1 y1, ϱð Þ

" #" #
=max

ϱ∈I
Y−1 1 + δ φ − 1ð Þð ÞY 〠

ℓ−1

m=q
L Uℓ y1, ϱð Þ½ �

" #" #
+ Y−1 1 + δ φ − 1ð Þð ÞY 〠

ℓ−1

m=q
�P Uℓ y1, ϱð Þ½ �

" #" #

+ Y−1 1 + δ φ − 1ð Þð ÞY 〠
ℓ−1

m=q
~Hℓ y1, ϱð Þ

" #" #
≤max

ϱ∈I
Y−1 1 + δ φ − 1ð Þð ÞY 〠

ℓ−1

m=q
L Ŝℓ−1
� 	

− L Ŝq−1
� 	" #" #

+ Y−1 1 + δ φ − 1ð Þð ÞY 〠
ℓ−1

m=q
�P Ŝℓ−1
� 	

− �P Ŝq−1
� 	" #" #

+ Y−1 1 + δ φ − 1ð Þð ÞY 〠
ℓ−1

m=q
N Ŝℓ−1
� 	

−N Ŝq−1
� 	" #" #

≤max
ϱ∈I

Y−1 1 + δ φ − 1ð Þð ÞY L Ŝℓ−1
� 	

− L Ŝq−1
� 	� �� �

+ Y−1 1 + δ φ − 1ð Þð ÞY �P Ŝℓ−1
� 	

− �P Ŝq−1
� 	� �� �

+ Y−1 1 + δ φ − 1ð Þð ÞY N Ŝℓ−1
� 	

−N Ŝq−1
� 	� �� �

≤K1 max
ϱ∈I

Y−1 1 + δ φ − 1ð Þð ÞY Ŝℓ−1
� 	

− Ŝq−1
� 	� �� � 

+K2 max
ϱ∈I

Y−1 1 + δ φ − 1ð Þð ÞY Ŝℓ−1
� 	

− Ŝq−1
� 	� �� � 

+K3 max
ϱ∈I

Y−1 1 + δ φ − 1ð Þð ÞY Ŝℓ−1
� 	

− Ŝq−1
� 	� �� � 

= K1 +K2 +K3ð ÞY−1 1 + δ φ − 1ð Þð Þφ Ŝℓ−1 − Ŝq−1
�� ��:�

= K1 +K2 +K3ð Þ 1 + δ ϱ − 1ð Þð Þ Ŝℓ−1 − Ŝq−1
�� ��:

ð45Þ

Assume n = q + 1 ; then

Ŝq+1 − Ŝp
�� �� ≤ ε Ŝp − Ŝq−1

�� �� ≤ ε2 Ŝq−1 − Ŝq−2
�� �� ≤⋯≤ εp Ŝ1 − Ŝ0

�� ��,
ð46Þ

where ε = ð1 + δðϱ − 1ÞÞ: In view of triangular variant, we
have

Ŝℓ − Ŝp
�� �� ≤ Ŝq+1 − Ŝp

�� �� + Ŝq+2 − Ŝq+1
�� �� +⋯ + Ŝℓ − Ŝℓ−1

�� ��
≤ εp + εq+1 +⋯ + εℓ−1
� �

Ŝ1 − Ŝ0
�� ��

≤ εp
1 − εℓ−p

ε

� �
U1k k,

ð47Þ
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since 0 < ε < 1, we have ð1 − εℓ−pÞ < 1, and then

Ŝℓ − Ŝp
�� �� ≤ εp

1 − ε
max
ϱ∈I

U1k k: ð48Þ

Thus, jU1j <∞ (since Uðy1, ϱÞ is bounded). Also, as q
↦∞, then kŜℓ − Ŝpk↦ 0: Therefore, fŜ1g is a Cauchy
sequence in K: Ultimately, ∑∞

n=0Uℓ is convergent, and the
direct result is obtained.

Theorem 10 (see [47]) (Error estimate). The absolute inac-
curacy of the (16) through (24) sum is determined as

max
ϱ∈I

U y1, ϱð Þ − 〠
p

ℓ=1
Uℓ y1, ϱð Þ


 ≤ εp

1 − ε
max
ϱ∈I

U1k k: ð49Þ

5. Mathematical Description of BSM Time-
Fractional Systems

Here, we construct the estimated analytical solution of BSM
considering the CFD and Caputo-Fabrizio fractional deriva-
tive operators utilizing the Yang decomposition approach.

5.1. Yang Decomposition Method

Example 1 (see [29]). Surmise the fractional-order BSM (4)
supplemented with the (5).

Case 1. To begin, we utilize the Caputo fractional derivative
operator employing the Yang decomposition approach to
analyze the (4). Implementing the Yang transform on (4),
we get

Y Dδ
ϱU y1, ϱð Þ

h i
= Y ∂2U y1, ϱð Þ

∂y21
+ ζ − 1ð Þ ∂U y1, ϱð Þ

∂y1
− ζU y1, ϱð Þ

" #
:

ð50Þ

Utilizing the Yang transform’s differentiation criteria
gives

φ−δ ϱð ÞY U y1, ϱð Þ½ � = ϕ ϱð Þ〠
p−1

p=0
φ1−δ−pU pð Þ 0ð Þ

+ Y ∂2U y1, ϱð Þ
∂y21

+ ζ − 1ð Þ ∂U y1, ϱð Þ
∂y1

− ζU y1, ϱð Þ
" #

:

ð51Þ

Utilizing (5), we find

Y U y1, ϱð Þ½ � = φ max exp y1ð Þ − 1, 0ð Þ

+ φδY ∂2U y1, ϱð Þ
∂y21

+ ζ − 1ð Þ ∂U y1, ϱð Þ
∂y1

− ζU y1, ϱð Þ
" #

:

ð52Þ

Applying the inverse Yang transform produces

U y1, ϱð Þ = Y−1 φ:max exp y1ð Þ − 1, 0ð Þ½ �

+ Y−1 φδY ∂2U y1, ϱð Þ
∂y21

+ ζ − 1ð Þ ∂U y1, ϱð Þ
∂y1

− ζU y1, ϱð Þ
" #" #

:

ð53Þ

To determine this, apply the Yang decomposition
approach as follows:

U0 y1, ϱð Þ = Y−1 φ:max exp y1ð Þ − 1, 0ð Þ½ �
=max exp y1ð Þ − 1, 0ð Þ: ð54Þ

We predict that the unidentified mapping Uðy1, ϱÞ may
be expressed as an infinite series of the pattern

U y1, ϱð Þ = 〠
∞

p=0
Up y1, ϱð Þ,

〠
∞

p=0
Uq+1 y1, ϱð Þ = Y−1 φδY 〠

∞

p=0
U y1, ϱð Þð Þy1y1

""

+ ζ − 1ð Þ〠
∞

p=0
U y1, ϱð Þð Þy1 − ζ〠

∞

p=0
U y1, ϱð Þð Þ

#
�, p = 0, 1, 2,⋯,

ð55Þ

U1 y1, ϱð Þ = Y−1 φδY U0 y1, ϱð Þð Þy1y1 + ζ − 1ð Þ U0 y1, ϱð Þð Þy1 + ζU0

h ih i
= ζ max exp y1ð Þ, 0ð Þ − ζ max exp y1 − 1ð Þ, 0ð Þ½ �Y−1 φδ+1

h i
= ζ max exp y1ð Þ, 0ð Þ − ζ max exp y1 − 1ð Þ, 0ð Þ½ � ϱδ

Γ δ + 1ð Þ ,

U2 y1, ϱð Þ = Y−1 1
φδ ϱð ÞY U1 y1, ϱð Þð Þy1y1 + ζ − 1ð Þ U1 y1, ϱð Þð Þy1 + ζU1

h i� �

= −ζ2 max exp y1ð Þ, 0ð Þ + ζ2 max exp y1 − 1ð Þ, 0ð Þ
h i ϱ2δ

Γ 2δ + 1ð Þ ,

U3 y1, ϱð Þ = Y−1 1
φδ ϱð ÞY U2 y1, ϱð Þð Þy1y1 + ζ − 1ð Þ U2 y1, ϱð Þð Þy1 + ζU2

h i� �

= −ζ3 max exp y1ð Þ, 0ð Þ + ζ3 max exp y1 − 1ð Þ, 0ð Þ
h i ϱ3δ

Γ 3δ + 1ð Þ :

⋮

ð56Þ

For Example 1, the series form solution is developed as
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follows:

U y1, ϱð Þ =U0 y1, ϱð Þ +U1 y1, ϱð Þ +U2 y1, ϱð Þ +U3 y1, ϱð Þ+⋯
=max exp y1 − 1ð Þ, 0ð Þ

� 1 − ζϱδ

Γ δ + 1ð Þ + ζ2ϱ2δ

Γ 2δ + 1ð Þ −
ζ3ϱ3δ

Γ 3δ + 1ð Þ+⋯
" #

+max exp y1ð Þ, 0ð Þ

� 1 − 1 + ζϱδ

Γ δ + 1ð Þ −
ζ2ϱ2δ

Γ 2δ + 1ð Þ + ζ3ϱ3δ

Γ 3δ + 1ð Þ+⋯
" #

=max exp y1 − 1ð Þ, 0ð ÞEδ −ζ ϱð Þδ
� �

+max exp y1ð Þ, 0ð ÞEδ 1 − ζ ϱð Þδ
� �

:

ð57Þ

Case 2. The Caputo-Fabrizio fractional derivative operator
and the Yang decomposition approach are now used to solve
equation (4). Assuming (50) and implementing the Yang
transform’s differentiation criteria, we obtain

1
1 + δ 1 − φð ÞY U y1, ϱð Þ½ � = 1

1 + δ 1 − φð Þ〠
p−1

p=0
φ1−δ−p ϱð ÞU pð Þ 0ð Þ

+ Y ∂2U y1, ϱð Þ
∂y21

+ ζ − 1ð Þ ∂U y1, ϱð Þ
∂y1

− ζU y1, ϱð Þ
" #

:

ð58Þ

Utilizing (5), we obtain

Y U y1, ϱð Þ½ � = φ max exp y1ð Þ − 1, 0ð Þ + 1 + δ φ − 1ð Þð ÞY

� ∂2U y1, ϱð Þ
∂y21

+ ζ − 1ð Þ ∂U y1, ϱð Þ
∂y1

− ζU y1, ϱð Þ
" #

,

U y1, ϱð Þ = Y−1 φ:max exp y1ð Þ − 1, 0ð Þ½ � + Y−1

� 1 + δ φ − 1ð Þð ÞY ∂2U y1, ϱð Þ
∂y21

+ ζ − 1ð Þ ∂U y1, ϱð Þ
∂y1

− ζU y1, ϱð Þ
" #" #

:

ð59Þ

Employing the Yang decomposition approach produces

Q0 y1, ϱð Þ = Y−1 φ max exp y1ð Þ − 1, 0ð Þ½ � =max exp y1ð Þ − 1, 0ð Þ:
ð60Þ

We predict that the unidentified mapping Uðy1, ϱÞ may

be expressed as an infinite series of the pattern

U y1, ϱð Þ = 〠
∞

p=0
Up y1, ϱð Þ,

〠
∞

p=0
Uq+1 y1, ϱð Þ = Y−1 1 + δ φ − 1ð Þð ÞY 〠

∞

p=0
U y1, ϱð Þð Þy1y1

""

+ ζ − 1ð Þ〠
∞

p=0
U y1, ϱð Þð Þy1 − ζ〠

∞

p=0
U y1, ϱð Þð Þ

#
�, p = 0, 1, 2,⋯,

ð61Þ

U1 y1, ϱð Þ = Y−1 1 + δ φ − 1ð Þð ÞY U0 y1, ϱð Þð Þy1y1
hh

+ ζ − 1ð Þ U0 y1, ϱð Þð Þy1 + ζU0
i
�

= ζ max exp y1ð Þ, 0ð Þ − ζ max exp y1 − 1ð Þ, 0ð Þ½ �
� 1 + δ ϱ − 1ð Þð Þ,

U2 y1, ϱð Þ = Y−1 1 + δ φ − 1ð Þð ÞY U1 y1, ϱð Þð Þy1y1
hh

+ ζ − 1ð Þ U1 y1, ϱð Þð Þy1 + ζU1

i
�

= − ζ2 max exp y1ð Þ, 0ð Þ + ζ2 max exp y1 − 1ð Þ, 0ð Þ
h i

� 1 − δð Þ2 + 2ϱδ 1 − δð Þ + ρ2δ2

2

 !
,

U3 y1, ϱð Þ = Y−1 1 + δ φ − 1ð Þð ÞY U2 y1, ϱð Þð Þy1y1
hh

+ ζ − 1ð Þ U2 y1, ϱð Þð Þy1 + ζU2
i
�

= −
ζ3 max exp y1ð Þ, 0ð Þ + ζ3 max exp y1 − 1ð Þ, 0ð Þ
h i

A3 δð Þ

× 1 − δð Þ3 + 3ϱ2δ2 1 − δð Þ ρ
2

2 + 3ϱδ 1 − δð Þ2 + ϱ3δ3

3

 !
,⋮

ð62Þ
For Example 1, the series form solution is developed as

follows:

U y1, ϱð Þ =U0 y1, ϱð Þ +U1 y1, ϱð Þ +U2 y1, ϱð Þ +U3 y1, ϱð Þ
+⋯, = max exp y1 − 1ð Þ, 0ð Þ

� 1 − ζϱδ

Γ δ + 1ð Þ + ζ2ϱ2δ

Γ 2δ + 1ð Þ −
ζ3ϱ3δ

Γ 3δ + 1ð Þ+⋯
" #

+max exp y1ð Þ, 0ð Þ

� 1 − 1 + ζϱδ

Γ δ + 1ð Þ −
ζ2ϱ2δ

Γ 2δ + 1ð Þ + ζ3ϱ3δ

Γ 3δ + 1ð Þ+⋯
" #

=max exp y1 − 1ð Þ, 0ð ÞEδ −ζ ϱð Þδ
� �

+max exp y1ð Þ, 0ð ÞEδ 1 − ζ ϱð Þδ
� �

:

ð63Þ

Considering the Taylor series expansion and assigning
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δ = 1, the exact findings of Example 1 can be determined as

U y1, ϱð Þ =max exp y1 − 1ð Þ, 0ð Þ exp −ζϱð Þ
+max exp y1ð Þ, 0ð Þ 1 − exp −ζϱð Þ½ �: ð64Þ

Example 2 (see [30]). Surmise the fractional-order BSM (6)
supplemented with the (7).

Case 1. To begin, we utilize the Caputo fractional derivative
operator, employing the Yang decomposition approach to
analyze the (6). Implementing the Yang transform on (6),
we get

Y Dδ
ϱU y1, ϱð Þ

h i
= Y −0:08 2 + sin y1ð Þ2y21

∂2U y1, ϱð Þ
∂y21

"

− 0:06y1
∂U y1, ϱð Þ

∂y1
+ 0:06U y1, ϱð Þ

�
:

ð65Þ

Utilizing the Yang transform’s differentiation criteria,
gives

φ−δY U y1, ϱð Þ½ � = 〠
n−1

p=0
φ1−δ−p ϱð ÞU pð Þ 0ð Þ

+ Y −0:08 2 + sin y1ð Þ2y21
∂2U y1, ρð Þ

∂y21

"

− 0:06y1
∂U y1, ϱð Þ

∂y1
+ 0:06U y1, ϱð Þ

�
:

ð66Þ

Utilizing (7), we find

Y U y1, ϱð Þ½ � = φ:max y1 − 25 exp −0:06ð Þ, 0ð Þ

+ φδY −0:08 2 + sin y1ð Þ2y21
∂2U y1, ϱð Þ

∂y21

"

− 0:06y1
∂U y1, ϱð Þ

∂y1
+ 0:06U y1, ϱð Þ

�
:

ð67Þ

Applying the inverse Yang transform produces

U y1, ϱð Þ = Y−1 φ:max y1 − 25 exp −0:06ð Þ, 0ð Þ½ �

+ Y−1 φδY −0:08 2 + sin y1ð Þ2y21
∂2U y1, ϱð Þ

∂y21

""

− 0:06y1
∂U y1, ϱð Þ

∂y1
+ 0:06U y1, ϱð Þ

��
:

ð68Þ

To determine this, apply the Yang decomposition

approach as follows:

Q0 y1, ϱð Þ = Y−1 φ:max y1 − 25 exp −0:06ð Þ, 0ð Þ½ �
=max y1 − 25 exp −0:06ð Þ, 0ð Þ: ð69Þ

We predict that the unidentified mapping Uðy1, ϱÞ may
be expressed as an infinite series of the pattern

U y1, ϱð Þ = 〠
∞

p=0
Up y1, ϱð Þ,

〠
∞

p=0
Uq+1 y1, ϱð Þ = Y−1 φδY 〠

∞

p=0
U y1, ϱð Þð Þy1y1

""

+ ζ − 1ð Þ〠
∞

p=0
U y1, ϱð Þð Þy1 − ζ〠

∞

p=0
U y1, ϱð Þð Þ

##
, p = 0, 1, 2,⋯,

ð70Þ

U1 y1, ϱð Þ = Y−1 φδY U0 y1, ϱð Þð Þy1y1 + ζ − 1ð Þ U0 y1, ϱð Þð Þy1 + ζU0
h ih i

= ζ max exp y1ð Þ, 0ð Þ − ζ max exp y1 − 1ð Þ, 0ð Þ½ �Y−1 φδ+1
h i

= ζ max exp y1ð Þ, 0ð Þ − ζ max exp y1 − 1ð Þ, 0ð Þ½ � ϱδ

Γ δ + 1ð Þ ,

U2 y1, ϱð Þ = Y−1 1
φδ ϱð ÞY U1 y1, ϱð Þð Þy1y1 + ζ − 1ð Þ U1 y1, ϱð Þð Þy1 + ζU1

h i� �

= −ζ2 max exp y1ð Þ, 0ð Þ + ζ2 max exp y1 − 1ð Þ, 0ð Þ
h i ϱ2δ

Γ 2δ + 1ð Þ ,

U3 y1, ϱð Þ = Y−1 1
φδ ϱð ÞY U2 y1, ϱð Þð Þy1y1 + ζ − 1ð Þ U2 y1, ϱð Þð Þy1 + ζU2

h i� �

= −ζ3 max exp y1ð Þ, 0ð Þ + ζ3 max exp y1 − 1ð Þ, 0ð Þ
h i ϱ3δ

Γ 3δ + 1ð Þ :

⋮

ð71Þ

For Example 2, the series form solution is developed as
follows:

U y1, ϱð Þ =U0 y1, ϱð Þ +U1 y1, ϱð Þ +U2 y1, ϱð Þ +U3 y1, ϱð Þ
+⋯ =max y1 − 25 exp −0:06ð Þ, 0ð Þ
+ y1 −max y1 − 25 exp −0:06ð Þð Þ, 0ð Þ

× 1 − 1 − 0:06ϱδ
Γ δ + 1ð Þ −

0:0036ϱ2δ
Γ 2δ + 1ð Þ −

0:000216ϱ3δ
Γ 3δ + 1ð Þ +⋯

� �
=max y1 − 25 exp −0:06ð Þ, 0ð Þ

+ y1 −max y1 − 25 exp −0:06ð Þ, 0ð Þð Þ 1 − Eδ 0:06 ϱð Þδ
� �h i

:

ð72Þ

Case 2. The Caputo-Fabrizio fractional derivative operator
and the Yang decomposition approach are now used to solve
the (6).
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Assuming (65) and implementing the Yang transform’s
differentiation criteria, we obtain

1
1 + δ φ − 1ð ÞY U y1, ϱð Þ½ � = 1

1 + δ φ − 1ð Þ〠
n−1

p=0
φ1−δ−p ϱð ÞU pð Þ 0ð Þ

+ Y −0:08 2 + sin y1ð Þ2y21
∂2U y1, ϱð Þ

∂y21
− 0:06y1

∂U y1, ϱð Þ
∂y1

+ 0:06U y1, ϱð Þ
" #

:

ð73Þ

Utilizing (7), we obtain

Y U y1, ϱð Þ½ � = φ:max y1 − 25 exp −0:06ð Þ, 0ð Þ

+ 1 + δ φ − 1ð Þð ÞY −0:08 2 + sin y1ð Þ2y21
∂2U y1, ϱð Þ

∂y21

"

− 0:06y1
∂U y1, ϱð Þ

∂y1
+ 0:06U y1, ϱð Þ

�
:

ð74Þ

Employing the inverse Yang transform gives

U y1, ϱð Þ = Y−1 φ:max y1 − 25 exp −0:06ð Þ, 0ð Þ½ � + Y−1

� 1 + δ φ − 1ð Þð ÞY −0:08 2 + sin y1ð Þ2y21
∂2U y1, ϱð Þ

∂y21

""

− 0:06y1
∂U y1, ϱð Þ

∂y1
+ 0:06U y1, ϱð Þ

��
:

ð75Þ

Employing the Yang decomposition approach, we obtain

Q0 y1, ϱð Þ = Y−1 φ:max y1 − 25 exp −0:06ð Þ, 0ð Þ½ �
=max y1 − 25 exp −0:06ð Þ, 0ð Þ: ð76Þ

We predict the unidentified mapping Uðy1, ϱÞ may be
expressed as an infinite series of the pattern

U y1, ϱð Þ = 〠
∞

p=0
Up y1, ϱð Þ,

〠
∞

p=0
Uq+1 y1, ϱð Þ = Y−1 1 + δ φ − 1ð Þð ÞY −0:08 2 + sin y1ð Þ2y21 〠

∞

p=0
U y1, ϱð Þð Þy1y1 − 0:06y1 〠

∞

p=0
U y1, ϱð Þð Þy1 + 0:06〠

∞

p=0
U y1, ϱð Þð Þ

" #" #
, p = 0, 1, 2,⋯,

ð77Þ
U1 y1, ϱð Þ = Y−1 1 + δ φ − 1ð Þð ÞY −0:08 2 + sin y1ð Þ2y21 U0 y1, ϱð Þð Þy1y1 − 0:06y1 U0 y1, ϱð Þð Þy1 − 0:06U0

h ih i
= −0:06y1 + 0:06 max y1 − 25 exp −0:06ð Þ, 0ð Þ½ � 1 − δ ϱ − 1ð Þð Þ,

U2 y1, ϱð Þ = Y−1 1 + δ φ − 1ð Þð ÞY −0:08 2 + sin y1ð Þ2y21 U1 y1, ϱð Þð Þy1y1 − 0:06y1 U1 y1, ϱð Þð Þy1 − 0:06U1
h ih i

= −0:0036y1 + 0:0036 max y1 − 25 exp −0:06ð Þ, 0ð Þ½ �ð Þ 1 − δð Þ2 + 2ϱδ 1 − δð Þ + ϱ2δ2

2

 !
,

U3 y1, ϱð Þ = Y−1 1 + δ φ − 1ð Þð ÞY −0:08 2 + sin y1ð Þ2y21 U2 y1, ϱð Þð Þy1y1 − 0:06y1 U2 y1, ϱð Þð Þy1 − 0:06U2
h ih i

= −
−0:000216y1 + 0:00216 max y1 − 25 exp −0:06ð Þ, 0ð Þ½ �

A3 δð Þ

× 1 − δð Þ3 + 3ϱ2δ2 1 − δð Þ ϱ
2

2 + 3ϱδ 1 − δð Þ2 + ϱ3δ3

3

 !
,

⋮ ð78Þ
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For Example 2, the series form solution is developed as
follows:

U y1, ϱð Þ =U0 y1, ϱð Þ +U1 y1, ϱð Þ +U2 y1, ϱð Þ +U3 y1, ϱð Þ
+⋯ =max y1 − 25 exp −0:06ð Þ, 0ð Þ
− 0:06y1 − 0:06 max y1 − 25 exp −0:06ð Þ, 0ð Þð Þ 1 − δ ϱ − 1ð Þð Þ
− 0:0036y1 − 0:0036 max y1 − 25 exp −0:06ð Þ, 0ð Þð Þ

� 1 − δð Þ2 + 2ϱδ 1 − δð Þ + ϱ2δ2

2

 !
−:⋯

ð79Þ

Considering the Taylor series expansion and assigning
δ = 1, the exact findings of Example 2 can be determined as

U y1, ϱð Þ =max y1 − 25 exp −0:06ð Þ, 0ð Þ
+ y1 −max y1 − 25 exp −0:06ð Þ, 0ð Þð Þ 1 − exp −0:06ϱð Þ½ �:

ð80Þ

5.2. Yang Iterative Transform Method

Example 3 (see [29]). Surmise the fractional-order BSM (4)
supplemented with the (5).

Case 1. To begin, we utilize the Caputo fractional derivative
operator, employing the Yang decomposition approach to
analyze the (4). Implementing the Yang transform on (4),
we get

φ−δY U y1, ϱð Þ½ � = 〠
n−1

p=0
φ1−δ−p ϱð ÞU pð Þ 0ð Þ

+ Y ∂2U y1, ϱð Þ
∂y21

+ ζ − 1ð Þ ∂U y1, ϱð Þ
∂y1

− ζU y1, ϱð Þ
" #

:

ð81Þ

It follows that

Y U y1, ϱð Þ½ � = φ:max exp y1ð Þ − 1, 0ð Þ + φδ ϱð ÞY

� ∂2U y1, ϱð Þ
∂y21

+ ζ − 1ð Þ ∂U y1, ϱð Þ
∂y1

− ζU y1, ϱð Þ
" #

:

ð82Þ

In view of the proposed algorithm in Section 3.2, we find

U0 y1, ϱð Þ = Y−1 φδ max exp y1ð Þ − 1, 0ð Þ
h i

=max exp y1ð Þ − 1, 0ð Þ,

U1 y1, ϱð Þ = Y−1 φδY U0 y1, ϱð Þð Þy1y1 + ζ − 1ð Þ U0 y1, ϱð Þð Þy1 + ζU0
h ih i

= ζ max exp y1ð Þ, 0ð Þ − ζ max exp y1 − 1ð Þ, 0ð Þ½ �Y−1 ϕ sð Þ
φδ+1 sð Þ
� �

= ζ max exp y1ð Þ, 0ð Þ − ζ max exp y1 − 1ð Þ, 0ð Þ½ � ϱδ

Γ δ + 1ð Þ ,

U2 y1, ϱð Þ = Y−1 φδY U1 y1, ϱð Þð Þy1y1 + ζ − 1ð Þ U1 y1, ϱð Þð Þy1 + ζU1
h ih i

= −ζ2 max exp y1ð Þ, 0ð Þ + ζ2 max exp y1 − 1ð Þ, 0ð Þ
h i ϱ2δ

Γ 2δ + 1ð Þ ,

U3 y1, ϱð Þ = Y−1 φδY U2 y1, ϱð Þð Þy1y1 + ζ − 1ð Þ U2 y1, ϱð Þð Þy1 + ζU2
h ih i

= −ζ3 max exp y1ð Þ, 0ð Þ + ζ3 max exp y1 − 1ð Þ, 0ð Þ
h i ϱ3δ

Γ 3δ + 1ð Þ :

⋮

ð83Þ

The result in series representation is

U y1, ϱð Þ =U0 y1, ϱð Þ +U1 y1, ϱð Þ +U2 y1, ϱð Þ +U3 y1, ϱð Þ + :⋯

ð84Þ

Eventually, we have

U y1, ϱð Þ =U0 y1, ϱð Þ +U1 y1, ϱð Þ +U2 y1, ϱð Þ +U3 y1, ϱð Þ
+⋯ =max exp y1 − 1ð Þ, 0ð Þ

� 1 − ζϱδ

Γ δ + 1ð Þ + ζ2ϱ2δ

Γ 2δ + 1ð Þ −
ζ3ϱ3δ

Γ 3δ + 1ð Þ+⋯
" #

+max exp y1ð Þ, 0ð Þ 1 − 1 + ζϱδ

Γ δ + 1ð Þ −
ζ2ϱ2δ

Γ 2δ + 1ð Þ

"

+ ζ3ϱ3δ

Γ 3δ + 1ð Þ+⋯
#
=max exp y1 − 1ð Þ, 0ð ÞEδ −ζ ϱð Þδ

� �

+max exp y1ð Þ, 0ð ÞEδ 1 − ζ ϱð Þδ
� �

:

ð85Þ

Case 2. The (4) is now addressed utilizing the Caputo-
Fabrizio fractional derivative operator and the Yang iterative
transform method.

Assuming (4) and implementing the Yang transform’s
differentiation criteria, we obtain

1
1 + δ φ − 1ð ÞY U y1, ϱð Þ½ � = 1

1 + δ φ − 1ð Þ〠
p−1

p=0
φ1−δ−p ϱð ÞU pð Þ 0ð Þ

+ Y ∂2U y1, ϱð Þ
∂y21

+ ζ − 1ð Þ ∂U y1, ϱð Þ
∂y1

− ζU y1, ϱð Þ
" #

:

ð86Þ

It follows that

Y U y1, ϱð Þ½ � = φ:max exp y1ð Þ − 1, 0ð Þ + 1 + δ φ − 1ð Þð ÞY

� ∂2U y1, ϱð Þ
∂y21

+ ζ − 1ð Þ ∂U y1, ϱð Þ
∂y1

− ζU y1, ϱð Þ
" #

:

ð87Þ

In view of the proposed algorithm in Section 3.2, we find

U0 y1, ϱð Þ = Y−1 φ:max exp y1ð Þ − 1, 0ð Þ½ � =max exp y1ð Þ − 1, 0ð Þ,
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U1 y1, ϱð Þ = Y−1 1 + δ φ − 1ð Þð ÞY U0 y1, ϱð Þð Þy1y1
hh

+ ζ − 1ð Þ U0 y1, ϱð Þð Þy1 + ζU0
ii

= ζ max exp y1ð Þ, 0ð Þ − ζ max exp y1 − 1ð Þ, 0ð Þð Þ 1 − δ ϱ − 1ð Þð Þ,

U2 y1, ϱð Þ = Y−1 1 + δ φ − 1ð Þð ÞY U1 y1, ϱð Þð Þy1y1
hh

+ ζ − 1ð Þ U1 y1, ϱð Þð Þy1 + ζU1

i
�

= − ζ2 max exp y1ð Þ, 0ð Þ + ζ2 max exp y1 − 1ð Þ, 0ð Þ
h i� �

� 1 − δð Þ2 + 2ϱδ 1 − δð Þ + ϱ2δ2

2

 !
,

U3 y1, ϱð Þ = Y−1 1 + δ φ − 1ð Þð ÞY U2 y1, ϱð Þð Þy1y1 + ζ − 1ð Þ U2 y1, ϱð Þð Þy1 + ζU2
h ih i

= − ζ3 max exp y1ð Þ, 0ð Þ + ζ3 max exp y1 − 1ð Þ, 0ð Þ
h i� �

× 1 − δð Þ3 + 3ϱδ 1 − δð Þ2 + 3 ϱ
2

2 δ2 1 − δð Þ + ϱ3δ3

3

 !
:

⋮

ð88Þ

The result in series representation is

U y1, ϱð Þ =U0 y1, ϱð Þ +U1 y1, ϱð Þ +U2 y1, ϱð Þ +U3 y1, ϱð Þ + :⋯

ð89Þ

Eventually, we have

U y1, ϱð Þ =U0 y1, ϱð Þ +U1 y1, ϱð Þ +U2 y1, ϱð Þ +U3 y1, ϱð Þ
+⋯ =max exp y1 − 1ð Þ, 0ð Þ

� 1 − ζ 1 + δ ϱ − 1ð Þð Þ − ζ2 1 − δð Þ2 + 2ϱδ 1 − δð Þ + ϱ2δ2

2

 !" #
−⋯

#

+max exp y1ð Þ, 0ð Þ −ζ 1 + δ ϱ − 1ð Þð Þ − ζ2
h

� 1 − δð Þ2 + 2ϱδ 1 − δð Þ + ϱ2δ2

2

 !
−⋯

#
:

ð90Þ

Example 4 (see [30]). Surmise the fractional-order BSM (6)
supplemented with the (7).

Case 1. To begin, we utilize the Caputo fractional derivative
operator employing the Yang iterative transform method to
analyze the (6). Implementing the Yang transform on (6), we
get

φ−δY U y1, ϱð Þ½ � = 〠
p−1

p=0
φ1−δ−p ϱð ÞU pð Þ 0ð Þ + Y

� −0:08 2 + sin y1ð Þ2y21
∂2U y1, ϱð Þ

∂y21

"

− 0:06y1
∂U y1, ϱð Þ

∂y1
+ 0:06U y1, ϱð Þ

�
:

ð91Þ

It follows that

Y U y1, ϱð Þ½ � = φ:max y1 − 25 exp −0:06ð Þ, 0ð Þ + φδY

� −0:08 2 + sin y1ð Þ2y21
∂2U y1, ϱð Þ

∂y21

"

− 0:06y1
∂U y1, ϱð Þ

∂y1
+ 0:06U y1, ϱð Þ

�
:

ð92Þ

In view of the proposed algorithm in Section 3.2, we
have

U0 y1, ϱð Þ = Y−1 φ:max y1 − 25 exp −0:06ð Þ, 0ð Þ½ �
=max y1 − 25 exp −0:06ð Þ, 0ð Þ,

U1 y1, ϱð Þ = Y−1 φδY −0:08 2 + sin y1ð Þ2y21 U0 y1, ϱð Þð Þy1y1
hh

− 0:06y1 U0 y1, ϱð Þð Þy1 − 0:06U0
i
�

= −0:06y1 + 0:06 max y1 − 25 exp −0:06ð Þ, 0ð Þ½ �Y−1

� φδ+1 sð Þ
h i

= −0:06y1 + 0:06 max½

� y1 − 25 exp −0:06ð Þ, 0ð Þ� ϱδ

Γ δ + 1ð Þ ,

U2 y1, ϱð Þ = Y−1 φδY −0:08 2 + sin y1ð Þ2y21 U1 y1, ϱð Þð Þy1y1
hh

− 0:06y1 U1 y1, ϱð Þð Þy1 − 0:06U1
i
�

= −0:0036y1 + 0:0036 max½

� y1 − 25 exp −0:06ð Þ, 0ð Þ� ϱ2δ

Γ 2δ + 1ð Þ ,

U3 y1, ϱð Þ = Y−1 φδY −0:08 2 + sin y1ð Þ2y21 U2 y1, ϱð Þð Þy1y1
hh

− 0:06y1 U2 y1, ϱð Þð Þy1 − 0:06U2
i
�

= −0:000216y1 + 0:00216 max½

� y1 − 25 exp −0:06ð Þ, 0ð Þ� ϱ3δ

Γ 3δ + 1ð Þ ,⋮

ð93Þ

The result in series representation is

U y1, ϱð Þ =U0 y1, ϱð Þ +U1 y1, ϱð Þ +U2 y1, ϱð Þ +U3 y1, ϱð Þ+:⋯
ð94Þ
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Consequently, we have

U y1, ϱð Þ =U0 y1, ϱð Þ +U1 y1, ϱð Þ +U2 y1, ϱð Þ +U3 y1, ϱð Þ
+⋯, = max y1 − 25 exp −0:06ð Þ, 0ð Þ
+ y1 −max y1 − 25 exp −0:06ð Þð Þð Þ

× 1 − 1 − 0:06ϱδ
Γ δ + 1ð Þ −

0:0036ϱ2δ
Γ 2δ + 1ð Þ −

0:000216ϱ3δ
Γ 3δ + 1ð Þ +⋯

� �
=max y1 − 25 exp −0:06ð Þ, 0ð Þ

+ y1 −max y1 − 25 exp −0:06ð Þð Þð Þ 1 − Eδ 0:06 ϱð Þδ
� �h i

:

ð95Þ

Case 2. The Caputo-Fabrizio fractional derivative operator
and the Yang iterative transform method are now used to
solve the (6).

Assuming (6) and implementing the Yang transform’s
differentiation criteria, we obtain

1
1 + δ φ − 1ð ÞY U y1, ϱð Þ½ � = 1

1 + δ φ − 1ð Þ〠
n−1

p=0
φ1−δ−p ϱð ÞU pð Þ 0ð Þ

+ Y −0:08 2 + sin y1ð Þ2y21
∂2U y1, ϱð Þ

∂y21
− 0:06y1

∂U y1, ϱð Þ
∂y1

+ 0:06U y1, ϱð Þ
" #

:

ð96Þ

It follows that

Y U y1, ϱð Þ½ � = φ:max y1 − 25 exp −0:06ð Þ, 0ð Þ + 1 + δ φ − 1ð Þð ÞY

� −0:08 2 + sin y1ð Þ2y21
∂2U y1, ϱð Þ

∂y21
− 0:06y1

∂U y1, ϱð Þ
∂y1

+ 0:06U y1, ϱð Þ
" #

:

ð97Þ

In view of the proposed algorithm in Section 3.2, we
have

U0 y1, ϱð Þ = Y−1 φ:max y1 − 25 exp −0:06ð Þ, 0ð Þ½ �
=max y1 − 25 exp −0:06ð Þ, 0ð Þ,

U1 y1, ϱð Þ = Y−1 1 + δ φ − 1ð Þð ÞY −0:08 2 + sin y1ð Þ2y21 U0 y1, ϱð Þð Þy1y1
hh

− 0:06y1 U0 y1, ϱð Þð Þy1 − 0:06U0
i
� = −0:06y1 + 0:06 maxð

� y1 − 25 exp −0:06ð Þ, 0ð ÞÞ 1 − δ ϱ − 1ð Þð Þ,

U2 y1, ϱð Þ = Y−1 1 + δ φ − 1ð Þð ÞY −0:08 2 + sin y1ð Þ2y21 U1 y1, ϱð Þð Þy1y1
hh

− 0:06y1 U1 y1, ϱð Þð Þy1 − 0:06U1
i
�

= −0:0036y1 + 0:0036 max y1 − 25 exp −0:06ð Þ, 0ð Þð Þ

� 1 − δð Þ2 + 2ϱδ 1 − δð Þ + ϱ2δ2

2

 !
,

U3 y1, ϱð Þ = Y−1 1 + δ φ − 1ð Þð ÞY −0:08 2 + sin y1ð Þ2y21 U2 y1, ϱð Þð Þy1y1
hh

− 0:06y1 U2 y1, ϱð Þð Þy1 − 0:06U2
i
�

= − −0:000216y1 + 0:00216 max y1 − 25 exp −0:06ð Þ, 0ð Þ½ �ð Þ

× 1 − δð Þ3 + 3ϱδ 1 − δð Þ2 + 3δ2 1 − δð Þ ϱ
2δ2

2 + ϱ3δ3

3

 !
,⋮

ð98Þ

The result in series representation is

U y1, ϱð Þ =U0 y1, ϱð Þ +U1 y1, ϱð Þ +U2 y1, ϱð Þ +U3 y1, ϱð Þ + :⋯

ð99Þ

Consequently, we have

U y1, ϱð Þ =U0 y1, ϱð Þ +U1 y1, ϱð Þ +U2 y1, ϱð Þ +U3 y1, ϱð Þ
+⋯ =max y1 − 25 exp −0:06ð Þ, 0ð Þ
− 0:06y1 − 0:06 max y1 − 25 exp −0:06ð Þ, 0ð Þð Þ 1 + δ ϱ − 1ð Þð Þ
− 0:0036y1 − 0:0036 max y1 − 25 exp −0:06ð Þ, 0ð Þð Þ

� 1 − δð Þ2 + 2ϱδ 1 − δð Þ + ϱ2δ2

2

 !
−⋯:

ð100Þ

5.3. Results and Explanation. Throughout this investigation,
two distinct methodologies are being employed to assess the
precise analytical solutions of fractional-order BSe. For var-
ious spatial and temporal parameters, the CFD and
Caputo-Fabrizio fractional derivative operators in MATLAB
package 21 facilitate appropriate numerical findings for the
BSe option revenue frameworks utilizing multiple orders.

We built modeling tests for many Brownian deforma-
tions involving different y1 parameters, and the results are
shown in Table 1 for Examples 1 and 3, respectively.
Table 2 illustrates a computational evaluation of the HPM
[35] and the Yang decomposition technique for (4) in accor-
dance with absolute error, considering both fractional deriv-
ative operators into account.

Table 3 illustrates the results of a mathematical model
for the BSe used in Examples 2 and 4. Table 4 reports the
interpretation of an evaluation of the HPM [35] and pre-
dicted approaches. The synthetically produced profiles are
significantly better reliable and pragmatic than the old ones,
as evidenced by this analysis.

For Example 1, Figure 1 displays the evolution of the Yang
decomposition technique’s data from Uðy1, ϱÞ: Figures 1(a)
and 1(b) exhibit the performance of precise and approxima-
tion BSe option pricing findings using the CFD operator,
whilst Figures 2(a) and 2(b) presents the profile for different
Brownian motion δ = 0:9 and δ = 0:8, respectively.
Figures 3(a) and 3(b) indicate the absolute errors conducted
and fractional-order fluctuation of Uðy1, ϱÞ: At δ =
0:7,0:8,0:9,1:0: The multiple fractional orders act similarly.

Trying to continue in the analogous trend, Figures 4(a)
and 4(b) visually depict the precise-approximate repercus-
sions Uðy1, ϱÞ for (6) using the Yang decomposition
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Figure 1: Three-dimensional illustration via CFD of Example 1 when δ = 1. (a) Exact solution. (b) Approximate solution.

Table 4: For estimated outcomes of Uðy1, ϱÞ at δ = 1 considering multiple choices of y1 and ϱ, examine HPM [35], YDMCFD,and YDMCF of
Example 2.

y1 ϱ Exact −HPMk k Exact − YDMCFDk k Exact − YDMCFk k

0.1

0.6 3:00450 × 10−10 2:00000 × 10−11 2:00000 × 10−11

0.7 2:00000 × 10−9 4:4796 × 10−6 1:80000 × 10−10

0.8 9:50000 × 10−9 8:80000 × 10−10 8:80000 × 10−10

0.9 3:89000 × 10−8 2:76000 × 10−9 2:76000 × 10−9

1.0 7:70000 × 10−8 6:70000 × 10−9 6:70000 × 10−9

0.3

0.6 5:780000 × 10−10 4:00000 × 10−11 4:00000 × 10−11

0.7 4:80000 × 10−9 3:60000 × 10−10 3:60000 × 10−10

0.8 2:98000 × 10−8 1:76000 × 10−9 1:76000 × 10−9

0.9 6:45000 × 10−8 5:52000 × 10−9 5:52000 × 10−9

1.0 2:47000 × 10−7 1:34000 × 10−8 1:34000 × 10−8

0.5

0.6 7:96600 × 10−10 6:00000 × 10−11 6:00000 × 10−11

0.7 6:785000 × 10−9 5:40000 × 10−10 5:40000 × 10−10

0.8 3:98000 × 10−8 2:64000 × 10−9 2:64000 × 10−9

0.9 9:31000 × 10−8 8:28000 × 10−9 8:28000 × 10−9

1.0 3:003000 × 10−7 2:01000 × 10−8 2:01000 × 10−8

0.7

0.6 9:890000 × 10−10 8:00000 × 10−11 8:00000 × 10−11

0.7 9:80000 × 10−9 7:20000 × 10−10 7:20000 × 10−10

0.8 4:94000 × 10−8 3:52000 × 10−9 3:52000 × 10−9

0.9 2:89000 × 10−7 1:10400 × 10−8 1:10400 × 10−8

1.0 3:60089 × 10−7 2:68000 × 10−8 2:68000 × 10−8

0.9

0.6 2:9900 × 10−9 1:00000 × 10−10 1:00000 × 10−10

0.7 11:00011 × 10−9 9:00000 × 10−10 9:00000 × 10−10

0.8 6:40000 × 10−8 4:40000 × 10−9 4:40000 × 10−9

0.9 2:87000 × 10−7 1:38000 × 10−8 1:38000 × 10−8

1.0 4:89000 × 10−7 3:35000 × 10−8 3:35000 × 10−8
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Figure 4: Three-dimensional illustration via CFD of Example 1 when δ = 1. (a) Exact solution. (b) Approximate solution.
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Figure 2: Three-dimensional illustration of the approximate solution via CFD of Example 1 when (a) δ = 0:9 and δ = 0:8:
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Figure 3: Three-dimensional illustration via the CFD of Example 1. (a) Absolute error. (b) Multiple fractional-order.
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approach on the contents of the choices, whilst Figures 5(a)
and 5(b) present the profile for Brownian motion δ = 0:9
and δ = 0:8, respectively. The absolute error and sensitivity
of gathered information for (6) involving different numerical
and Brownian movements of δ = 0:7,0:8,0:9 and 1 are illus-
trated in Figures 6(a) and 6(a). Furthermore, Figure 6(b)
refers to the dynamic of the two-dimensional alternatives
of the analysis values Uðy1, ϱÞ for (6). Finally, we deduce that
as the amount of the time-dependent component improves,
the hierarchy of the feature images tends to rise as well. It is
important to remember that the fractional order has a simu-
latory effect on the diffusion mechanism.

6. Conclusion

The Adomian decomposition approach and the new itera-
tive transform procedure have been leveraged to analyze
the Yang transform. To interact effectively with the BSe,
the Caputo and Caputo-Fabrizio fractional derivative opera-

tors have been constructed. Considering the supposition of
fractional order, numerous new outcomes have been pre-
sented. To clarify the crucial aspects of the fractional frame-
works under evaluation, diverse visualizations were
attempted to explicate these results. The suggested scheme
identifies the findings without any underlying limitations,
deconvolution, or quantization. Our transformation has
been described in terms of refinement and inventiveness.
When comparing our results to those discovered in existing
academic publications, it becomes clear that our approaches
in the European Choice Valuation framework are excep-
tional. The schemes’ effective and comprehensive execution
is investigated and confirmed in an attempt to display that
it may be applicable to other nonlinear evolutionary models
that emerge in business and accountancy.

Data Availability

No data were used to support this study.
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In this paper, we obtain the novel exact traveling wave solutions in the form of trigonometric, hyperbolic and
exponential functions for the nonlinear time fractional generalized reaction Duffing model and density dependent fractional
diffusion-reaction equation in the sense of beta-derivative by using three fertile methods, namely, Generalized tanh (GT)
method, Generalized Bernoulli (GB) sub-ODE method, and Riccati-Bernoulli (RB) sub-ODE method. The derived solutions to
the aforementioned equations are validated through symbolic soft computations. To promote the vital propagated features;
some investigated solutions are exhibited in the form of 2D and 3D graphics by passing on the specific values to the parameters
under the confine conditions. The accomplished solutions show that the presented methods are not only powerful mathematical
tools for generating more solutions of nonlinear time fractional partial differential equations but also can be applied to
nonlinear space-time fractional partial differential equations.

1. Introduction

Soliton theory has much importance because many equations
of mathematical physics have the solution of soliton type.
Waves are generated when some disturbance occurs in the
phenomena. Soliton interaction takes place when two or more
soliton come close to each other. Solitons exhibit particle-like
properties because the energy is—at any instant—confined to
a limited region of space. The most important technical appli-
cation of the soliton is that these are used in the optical fibers
to carry the digital information. In electromagnetic soliton
studies, the transverse electromagnetic wave travels between
two strips of super conducting metal.

Fractional calculus has captured the interest of several
scholars during the past two centuries. Multiple nonlinear

aspects, biological processes, fluid mechanics, chemical
processes, etc., are modelled using them. Fractional order
partial differential equations (PDEs) serve as the generali-
zation of PDEs in the traditional integer-order. The litera-
ture contains several dentitions of fractional derivatives,
such as the Hadamard derivative (1892) [1], the Weyl
derivative [2], Riesz derivative [3], He’s fractional derivative
[4], Local derivative [5], Riemann-Liouville [6, 7], Abel-
Riemann derivative [8], Caputo [9], Caputo-Fabrizio [10],
Atangana-Baleanu derivative in the context of Caputo [11],
the conformable fractional derivative [12, 13], and the new
truncated M-fractional derivative [14]. Atangana et al. in
[15] have recently created the new beta-derivative which
satisfies a lot of characteristics that have been considered as
limitations for the fractional derivatives. This derivative has
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some appealing consequences in diverse areas including fluid
mechanics, optical physics, chaos theory, biological models,
disease analysis, circuit analysis, and others.

Nonlinear fractional differential equations (NLFDEs)
occur more frequently in engineering applications and dif-
ferent research areas [16–20]. Then, many real-life problems
can be modeled by ordinary or partial differential equations
involving the derivatives of fractional order. In order to bet-
ter understand and apply these physical phenomena in prac-
tical scientific research, it is important to find their exact
solutions. Finding exact solutions of most of the NLFDEs
is not easy, so searching and constructing exact solutions
of NLFDEs is a continuing investigation. Recently, many
powerful methods for obtaining exact solutions of nonlinear
partial differential equations (NLPDEs) have been presented,
such as exponential rational function method [21], expa
function, and the hyperbolic function methods [22]. ðG′/GÞ-
expansion method [23, 24], ðG′/G, 1/GÞ-expansion method
[25, 26], Sardar-subequation method [27], new subequation
method [28], Riccati equation method [29], homotopy pertur-
bation method [30], extended direct algebraic method [31],
Kudryashov method [32], Exp-function method [33], the
modified extended exp-function method [34], F-expansion
method [35], the Backlund transformation method [36], the
extended tanh-method [37], Jacobi elliptic function expansion
methods [38], extended sinh-Gordon equation expansion
method [39], and different other methods [40–43].

The core aim of this work is to establish the exact travel-
ing wave solutions of the fractional generalized reaction
doffing model arising in mathematical biology [44, 45] and
the density dependent fractional diffusion-reaction equation
with the beta-derivative based on three different methods,
the Generalized tanh (GT) method [46], Generalized Ber-
noulli (GB) sub-ODE method [47], and Riccati-Bernoulli
(RB) sub-ODE method [48]. These methods are the most
direct and effective algebraic methods used for obtaining
the exact traveling wave solutions of nonlinear partial differ-
ential equations. In [49], Jafari et al. applied the fractional
subequation method to construct exact solutions of the frac-
tional generalized reaction Duffing model and in [50],
Eslami et al. applied the first integral method to obtain the
exact solutions of fractional generalized reaction Duffing
model and the exact solutions of fractional diffusion-
reaction equation. Uddin et al. [44] obtained the close form
solutions of the fractional generalized reaction Duffing
model and the density dependent fractional diffusion
reaction equation by using the ðG′/G, 1/GÞ-expansion
method. In [51] Xia et al. applied hyperbolic function to
obtain new explicit and exact travelling wave solutions for
a class of nonlinear evolution equations. Sonmezoglu [52]
applied extended Jacobi elliptic function expansion to con-
struct the exact solutions of these models.

This paper is organized as follows: In Section 2, we pres-
ent beta derivative and its properties. The descriptions of
strategies are given in Section 3. In Sections 4 and 5, we pres-
ent a mathematical analysis of the models and its solutions
via proposed methods. In Section 6, the graphical compari-
sons of our obtained exact traveling wave solutions are
represented in both 2D and 3D plots for various values of

parameters. At the end, conclusions are announced in
Section 7.

2. Beta Derivative and Its Properties

Definition. The beta-derivative is defined as [15, 53]

A
0D

α

x f xð Þð Þ = lim
ε⟶0

f x+∈ x + 1/Γ αð Þð Þð Þð Þ − f xð Þ
∈

, 0 < α ≤ 1:

ð1Þ

Properties of Beta Derivative. Beta derivative has the fol-
lowing properties:

(1)

A
0D

α
x af xð Þ + bg xð Þ½ � = aAo D

α
x f xð Þ + bAo D

α
xg xð Þ ð2Þ

(2) A
0D

α
xðcÞ = 0, for any constant c

(3)

A
0D

α

x f xð Þ:g xð Þ½ � = g xð ÞAo Dα
x f xð Þ + f xð ÞAo Dα

xg xð ÞA0
ð3Þ

(4)

A
0D

α

x

f xð Þ
g xð Þ
� �

= g xð Þa0Dα
x f xð Þ − f xð Þa0Dα

xg xð Þ
g2 xð Þ ð4Þ

Considering ∈ = ðx + ð1/ΓðαÞÞÞα−1h, h⟶ 0 when
∈⟶0, therefore we have

A
0D

α

x f xð Þ = x + 1
Γ αð Þ

� �1−α df xð Þ
d xð Þ , ð5Þ

with ξ = ðl/αÞðx + ð1/ΓðαÞÞÞα, where l is a constant.

(5)

A
0D

α

x

f ξð Þ
g xð Þ
� �

= l
df ξð Þ
d ξð Þ : ð6Þ

The proofs of the above beta properties were simply pre-
sented in [11].

3. Description of Strategies

3.1. Riccati-Bernoulli (RB) Sub-ODE Method. In this section,
we represent the basic steps of the RB sub-ODE method
[48]. Let us consider the nonlinear partial differential equa-
tion of the following form:

F u, ux, ut , uxx, utt , uxt ,⋯ð Þ = 0, ð7Þ
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where u = uðx, tÞ is an unknown function and F is a polyno-
mial depending on uðx, tÞ and its various partial derivatives.

Step 1. By wave transformation

u x, tð Þ = u ξð Þ, ξ = sx + nt + d: ð8Þ

The wave variable permits us to reduce Equation (8) into
a nonlinear ordinary differential equation for u = uðξÞ:

H u, u′, u″,⋯
� �

= 0, ð9Þ

where H is a polynomial of uðξÞ and its total derivative with
respect to ξ.

Step 2. Assume that the solution of Equation (9) can be
expressed as:

u′ = a1u
2−m + b1u + c1u

m, ð10Þ

where a1, b1, c1 and m are constant to be determined later.

Equation (10) has the solution as follows:

Case 1. When m = 1, the solution of Equation (10) is

u ξð Þ = Ce a1+b1+c1ð Þξ: ð11Þ

Case 2. When m ≠ 1, b1 = 0, c1 = 0, the solution of Equation
(10) is

u ξð Þ = a1 m − 1ð Þð Þ ξ − c1ð Þð Þð Þ 1/ m−1ð Þð Þ: ð12Þ

Case 3. When m ≠ 1, b1 ≠ 0, c1 = 0, then solution of Equation
(10)

u ξð Þ = −
a1
b1

+ Ceb1 m−1ð Þξ
� � 1/ m−1ð Þð Þ

: ð13Þ

Case 4.When m ≠ 1, a1 = 0, b12 − 4a1c1 < 0, thus the solution
of Equation (10)

u ξð Þ = −
b1
2a1

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a1c1 − b1

2p
2a1

 

� tan 1 −mð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a1c1 − b1

2p
2 ξ + Cð Þ

 !! 1/ m−1ð Þð Þ
,

u ξð Þ = −
b1
2a1

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a1c1 − b1

2p
2a1

 

� cot 1 −mð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a1c1 − b1

2p
2 ξ + Cð Þ

 !! 1/ m−1ð Þð Þ
:

ð14Þ

Case 5. When m ≠ 1, a1 ≠ 0, b12 − 4a1c1 > 0, the solutions of
Equation (10) are

u ξð Þ = −
b1
2a1

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1

2 − 4a1c1
p

2a1

 

� cot 1 −mð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1

2 − 4a1c1
p
2 ξ + Cð Þ

 !! 1/ m−1ð Þð Þ
,

ð15Þ

u ξð Þ = −
b1
2a1

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1

2 − 4a1c1
p

2a1

 

� tan 1 −mð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1

2 − 4a1c1
p
2 ξ + Cð Þ

 !! 1/ 1−mð Þð Þ
:

ð16Þ
Case 6. When m ≠ 1, a1 ≠ 0, b12 − 4a1c1 = 0, the solution of
Equation (10) is

u ξð Þ = 1
a1 m − 1ð Þ ξ + Cð Þ −

b1
2a1

� � 1/ 1−mð Þð Þ
, ð17Þ

where C is an arbitrary constant.

4. Mathematical Analyses of the Models and
Its Solutions

4.1. For Fractional Generalized Reaction Duffing Model.
Here, we consider the fractional generalized reaction Duffing
model in the forms in [45].

∂2αu x, tð Þ
∂t2α

+ p
∂2αu x, tð Þ

∂x2α
+ qu x, tð Þ

+ ru2 x, tð Þ + su3 x, tð Þ = 0, t > 0, 0 < α ≤ 1,
ð18Þ

where p, q, r and s are all constants.
If we take r = 0, Equation (18) reduces to the following

nonlinear wave equation:

∂2αu x, tð Þ
∂t2α

+ p
∂2αu x, tð Þ

∂x2α
+ qu x, tð Þ + su3 x, tð Þ = 0, t > 0, 0 < α ≤ 1:

ð19Þ

Let us assume the transformation:

u x, tð Þ = u ξð Þ, ξ = k
α

x + 1
Γ αð Þ

� �α

−
c
α

t + 1
Γ αð Þ

� �α

, ð20Þ

where k and c are constants.
By using Equation (20) into Equation (19), we get the

following ODE:

c2u″ + pk2u″ + qu + su3 = 0: ð21Þ
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In the following sections, the proposed methods are
applied to extract the required solutions:

4.2. Solutions with GT Method [46]. Considering the
homogenous balancing between the terms u″ and u3 in
Equation (21), we get N = 1. For N = 1, we write the solution
of Equation (9) in the following form [46]:

u ξð Þ = a0 + a1φ ξð Þ, ð22Þ

where a0 and a1 are unknown parameters.
Substituting Equation (22) into Equation (21) and

setting each coefficient polynomial to zero gives a set of
algebraic equations for a0 and a1 as follows:

φ3 : 2c2a1 + 2k2pa1 + sa31 = 0, ð23Þ

φ2 : 3sa0a12 = 0, ð24Þ
φ1 : 2c2Ca1 + 2Ck2pa1 + qa1 + 3sa20a1 = 0, ð25Þ

φ0 : qa0 + sa30 = 0: ð26Þ
Solving the system of algebraic equations in (23) with the

help of software MATHEMATICA, we obtain the following
solutions:

a0 = 0, a1 = ±
ffiffiffi
q

pffiffiffiffi
C

p ffiffi
s

p , c = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2Ck2p − q

p
ffiffiffi
2

p ffiffiffiffi
C

p : ð27Þ

Case 1. For C<0,

u1 x, tð Þ = ±
ffiffiffi
q

p ffiffi
s

p −i tanh
ffiffiffiffiffiffi
−C

p
ξ

� �
, ð28Þ

u2 x, tð Þ = ±
ffiffiffi
q

p ffiffi
s

p −i coth
ffiffiffiffiffiffi
−C

p
ξ

� �
: ð29Þ

Case 2. For C>0.

u3 x, tð Þ = ±
ffiffiffi
q

p ffiffi
s

p tan
ffiffiffiffi
C

p
ξ

� �� �
: ð30Þ

u4 x, tð Þ = ∓
ffiffiffi
q

p ffiffi
s

p cot
ffiffiffiffi
C

p
ξ

� �� �
: ð31Þ

4.3. Solutions with GB Sub-ODE Method [47]. Consider the
homogenous balancing in Equation (21), we get N = 1. For
N = 1, we write the solution of Equation (9) in the following
form:

u ξð Þ = a0 + a1φ ξð Þ, ð32Þ

where a0 and a1 are unknown parameters.
Substituting Equation (32) into Equation (21) and

setting each coefficient polynomial to zero gives a set of
algebraic equations for a0 and a1 as follows:

φ3 : 2c2μ2a1 + 2k2pμ2a1 + sa1
3 = 0, ð33Þ

φ2 : −3c2λμa1 − 3k2pλμa1 + 3sa0a21 = 0, ð34Þ

φ1 : qa1 + c2λ2a1 + k2pλ2a1 + 3sa20a1 = 0, ð35Þ

φ0 : qa0 + sa30 = 0: ð36Þ
Solving the system of algebraic equations in (33) with the

help of software MATHEMATICA, we obtain the following
solutions:

a0 = ±i
ffiffiffi
q

p ffiffi
s

p , a1 = ± 2i ffiffiffiqp
μffiffi

s
p

λ
, c1 = ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2q − k2pλ2

p
λ

: ð37Þ

Case 1.

u1 x, tð Þ = ±i
ffiffiffi
q

p ffiffi
s

p ∓
i
ffiffiffi
q

pffiffi
s

p tanh λ

2 ξ
� �

− 1
� �

: ð38Þ

Case 2.

u2 x, tð Þ = ±i
ffiffiffi
q

p ffiffi
s

p ∓
i
ffiffiffi
q

pffiffi
s

p coth λ

2 ξ
� �

− 1
� �

: ð39Þ

4.4. Solutions with RB Sub-ODE Method. Considering the
homogenous balancing in Equation (21), we get N = 1. For
N = 1, Equation (9) has the solution:

u′ = a1u
2−m + b1u + c1u

m, ð40Þ

where a1, b1, c1, and m are constant to be determined later.
Setting m = 0 and each coefficient polynomial to zero

gives a set of algebraic equations for a1, b1, and c1 as follows:

u3 : s + 2c2a21 + 2k2pa21 = 0, ð41Þ

u2 : 3c2a1b1 + 3k2pa1b1 = 0, ð42Þ

u1 : q + c2b1
2 + k2pb1

2 + 2c2a1c1 + 2k2pa1c1 = 0, ð43Þ

u0 : c2b1c1 + k2pb1c1 = 0: ð44Þ
Solving the system of algebraic equations in (41) with the

help of software MATHEMATICA, we obtain the following
solutions:

a1 = −
ffiffi
s

p
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−c2 − k2p

p ,

b1 = 0,

c1 = −
qffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−c2 − k2p
p ffiffi

s
p :

ð45Þ

Case 1. When m = 1, we have

u ξð Þ = Ce − ffiffi
s

pð Þ/ ffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffi
−c2−k2p

pð Þð Þ− q/
ffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffi
−c2−k2p

p ffiffi
s

p	 
	 
	 

ξ
: ð46Þ
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Case 2. When m ≠ 1, a1 ≠ 0, and b21 − 4a1c1 < 0, we have

u ξð Þ =
ffiffiffi
q

p ffiffi
s

p tan
ffiffiffi
q

pffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − k2p

p ξ + Cð Þ
 !

, ð47Þ

u ξð Þ = −
ffiffiffi
q

p ffiffi
s

p cot
ffiffiffi
q

pffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − k2p

p ξ + Cð Þ
 !

: ð48Þ

5. Density Dependent Fractional Diffusion
Reaction Equation

Density dependent fractional diffusion reaction equation
which is widely used in mathematical biology in the
form [44, 45]

∂αu x, tð Þ
∂tα

+ ku x, tð Þ ∂
αu x, tð Þ
∂xα

=D
∂2αu x, tð Þ

∂x2α
+ au x, tð Þ − bu2 x, tð Þ, t > 0, 0 < α ≤ 1,

ð49Þ

Let us assume the transformation:

u x, tð Þ = u ξð Þ, ξ = p
α

x + 1
Γ αð Þ

� �α

−
c
α

t + 1
Γ αð Þ

� �α

: ð50Þ

Here p and c are constants. By using Equation (50)
into Equation (49), we get the following ODE:

Dp2u′′ − cu′ − kpuu′ + au − bu2 = 0: ð51Þ

5.1. Solutions with GT Method [46]. By applying homog-
enous balancing technique between the terms u″ and uu′
into Equation (51), we get N = 1. For N = 1, we write the
solution of Equation (9) in the following form [46]:

u ξð Þ = a0 + a1φ ξð Þ, ð52Þ

where a0 and a1 are unknown parameters.
Substituting Equation (52) into Equation (51) and

setting each coefficient polynomial to zero gives a set of
algebraic equations for a0 and a1 as follows:

φ3 : 2Dp2a1 − kpa21 = 0,

φ2 : ca1 − kpa0a1 − ba1
2 = 0,

φ1 : aa1 + 2CDp2a1 − 2ba0a1 − Ckpa21 = 0,

φ0 : aa0 − ba20 + cCa1 − Ckpa0a1 = 0:

ð53Þ

By using the software MATHEMATICA, we obtain the
following solutions:

a0 =
a
2b , a1 = ± ia

2b
ffiffiffiffi
C

p , c = ± ia

2
ffiffiffiffi
C

p , p = 0: ð54Þ

Case 1. For C<0,

u1 x, tð Þ = a
2b ± a

2b tanh
ffiffiffiffiffiffi
−C

p
ξ

� �
, ð55Þ

u2 x, tð Þ = a
2b ± a

2b coth
ffiffiffiffiffiffi
−C

p
ξ

� �
: ð56Þ

Case 2. For C>0,

u3 x, tð Þ = a
2b ± ia

2b tan
ffiffiffiffi
C

p
ξ

� �� �
, ð57Þ

u4 x, tð Þ = a
2b ∓

ia
2b cot

ffiffiffiffi
C

p
ξ

� �� �
: ð58Þ

5.2. Solutions with GB Sub-ODE Method. By applying
homogenous balancing technique between the terms into
Equation (51), we get N = 1. For N = 1, we write the solution
of Equation (9) in the following form [47]:

u ξð Þ = a0 + a1φ ξð Þ, ð59Þ

where a0 and a1 are unknown parameters.
Substituting Equation (59) into Equation (51) and

setting each coefficient polynomial to zero gives a set of
algebraic equations for a0 and a1 as follows:

φ3 : 2Dp2μ2a1 − kpμa21 = 0,

φ2 : cμa1 − 3Dp2λμa1 − kpμa0a1 − ba1
2 + kpλa1

2 = 0,

φ1 : aa1 − cλa1 +Dp2λ2a1 − 2ba0a1 + kpλa0a1 = 0,

φ0 : aa0 − ba20 = 0:
ð60Þ

By using the software MATHEMATICA, we obtain the
following solutions:

a0 =
a
b
, a1 = −

aμ
bλ

, c = −
4ab2D − a2k2

4b2Dλ
, p = −

ak
2bDλ : ð61Þ

Case 1.

u1 x, tð Þ = a
b
+ a
2b tanh λ

2 ξ
� �

− 1
� �

: ð62Þ

Case 2.

u2 x, tð Þ = a
b
+ a
2b coth λ

2 ξ
� �

− 1
� �

: ð63Þ

5.3. Solutions with RB Sub-ODE Method. By applying
homogenous balancing technique, the terms u″ and uu′ into
Equation (54) we get N = 1.
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Figure 1: 2D and 3D graphics of Case 1 for hyperbolic traveling wave solution (28) at fα = 0:6, k = 0:7, q = 1, s = 1, C = −1, c = 0:5g:
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Figure 2: 2D and 3D graphics of Case 1 for hyperbolic traveling wave solution (29) at fα = 0:6, k = 0:7, q = 1, s = 1, C = −1, c = 0:5:g.
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For N = 1, Equation (9) has the solution given as:

u′ = a1u
2−m + b1u + c1u

m, ð64Þ

where a1, b1, c1 and m are constant to be determined later.
Substituting Equation (64) into Equation (51), setting

m = 0 and each coefficient polynomial to zero gives a set of
algebraic equations for a1, b1, and c1 as follows:

u4 : −kpa1 + 2Dp2a21 = 0, ð65Þ

u3 : −b + ca1 − kpb1 + 3Dp2a1b1 = 0, ð66Þ

u2 : a + cb1 +Dp2b1
2 − kpc1 + 2Dp2a1c1 = 0, ð67Þ

u1 : cc1 +Dp2b1c1 = 0: ð68Þ

By using the software MATHEMATICA, we obtain the
following solutions:

a1 =
k

2Dp , b1 = −
ak

2bDp , c1 = 0, c = 4b2D + ak2
	 


p

2bk : ð69Þ

Case 1. When m = 1, we have

u ξð Þ = Ce k/ 2Dpð Þð Þ− ak/ 2bDpð Þð Þð Þξ: ð70Þ

Case 2. When m ≠ 1, b1 ≠ 0, and c1 = 0, we have

u ξð Þ = −
b
a
+ Ce ak/ 2bDpð Þð Þξð Þ

� �−1
: ð71Þ

The above obtained solutions to the fractional general-
ized reaction Duffing model and density dependent frac-
tional diffusion reaction equation are compared with those
available in the earlier study and claimed to be recorded in
the literature for the first time [25, 45].

6. Results and Discussions

To show the dynamics and behavior of our obtained solu-
tions, various exact traveling wave solutions in Equations
(28), (29), (30), (31), (38), (39), (48), (55), (57), and (62)
are graphically represented and compared in both 3D and
2D plots in Figures 1–10 for various parameters’ values. A
3D plot highlights the amount of variation over a while or
compares multiple wave items. The 2D line plots are used
to represent very high and low frequency and amplitude.
The plots are constructed with unique values of α ∈ ð0, 1�
for different values of free parameters. The plots denote
many natures, such as the trigonometric, hyperbolic and sol-
itary wave solutions, and other forms of the solution gener-
ated by the correct physical description by choosing different
free parameters. We can observe from the plotted graphs in
Figures 1–10 that the wave’s frequency and amplitude
change with the change of fractional and time parameters.

7. Conclusions

In this article, three methods GT, GB sub-ODE, and RB sub-
ODE have been applied to construct a variety of novel exact
traveling wave solutions in the form of exponential,
hyperbolic, and trigonometric functions of the generalized
reaction Duffing model and density dependent fractional
diffusion reaction equation arising in Mathematical biology.
We have also depicted some of the obtained solutions graph-
ically (3D surface graphs and 2D line plots) and concluded
that the results we obtained are accurate, efficient, and versa-
tile in mathematical physics. It is worth to noticing that
compared to previous works [25, 26, 44, 45]; the results
obtained in this paper are presented for the first time. Lastly,
it can be concluded that our offered methods are more effec-
tive, reliable, and powerful, which give bounteous consistent
solutions to NLPFDEs arise in different fields of nonlinear
sciences.
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In this work, we are concerned with some qualitative analyses of fractional-order partial hyperbolic functional differential
equations under the ψ-Caputo type. To be precise, we investigate the existence and uniqueness results based on the nonlinear
alternative of the Leray-Schauder type and Banach contraction mapping. Moreover, we present two similar results to nonlocal
problems. Then, the guarantee of the existence of solutions is shown by Ulam-Hyer’s stability. Two examples will be given to
illustrate the abstract results. Eventually, some known results in the literature are extended.

1. Introduction

Since fractional calculus (FC) has a decent global correlation
execution to reflect the historical reliance process of the
improvement of system functions and can likewise describe
the characteristics of the dynamic system itself, it turned into
a strong mathematical gadget to describe a few complex
developments, unpredictable phenomena, memory high-
lights, and other aspects. FC theory was vastly utilized by
mathematicians as well as scientific experts, engineers, finan-
cial analysts, scholars, and physicists (see [1–4]). Riemann,
in 1876, suggested the definition of the Riemann-Liouville
(RL) fractional derivative (FD). Caputo originally proposed
one more definition of FD through a changed RL fractional
integral (FI) toward the start of the twentieth century, to be
specific, a Caputo FD. One issue in this field is the major and
extraordinary number of possible various definitions of FD
and FI; settling on the choice of the best operator for every

specific framework is a significant issue. One method for
conquering this issue is to consider overall definitions, of
which the classical ones can be viewed as specific cases [5, 6].

In this regard, Almeida [7] and Sousa and de Oliveira [8]
recently introduced ψ-Caputo FD and ψ-Hilfer FD of one
variable, respectively, from which it is feasible to obtain a
wide class of FDs already well established. Sousa and de Oli-
veira [9] have very recently expanded ψ-Hilfer FD with two
variables. Therefore, one of the aims of this work is to intro-
duce some qualitative analyses of solutions based on ψ-
Caputo FD with two variables.

Then again, functional differential equations (FDEs) and
fractional FDEs with finite delay show up frequently in
applications as models of equations, and consequently, the
investigation of these kinds of equations has gotten incredi-
ble consideration somewhat recently; see, for instance,
[10–14] and the references in those. The literature connected
with the existence of solutions of fractional partial FDEs
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with a finite delay was processed very slowly; see, for
instance, [15–19].

The background and survey in the literature relative to
classical fractional partial hyperbolic FDEs can be found in
the monograph of Abbas et al. [19]. Sousa and de Oliveira
[9] discussed the stability of fractional partial hyperbolic
DEs without delay under the ψ-Hilfer operator. Baitiche
et al. [20] established the existence result of coupled systems
of fractional partial hyperbolic DEs without delay.

This work is concerned with the existence, uniqueness,
and Ulam-Hyer (HU) stability of the solution to the ψ-
Caputo-type fractional partial hyperbolic FDE with finite
delay:

CD
r;ψ
0+z ϰ, τð Þ =F ϰ, τ,z ϰ,τð Þ

� �
, ϰ, τð Þ ∈ J1 ≔ 0, c½ � × 0, d½ �,

z ϰ, τð Þ = φ ϰ, τð Þ, ϰ, τð Þ ∈ J2 ≔ −κ1, c½ � × −κ2, d½ � \ 0, c�ð × 0, d�ð ,
z ϰ, 0ð Þ = ϕ1 ϰð Þ,z 0, τð Þ = ϕ2 τð Þ, ϰ ∈ 0, c½ �, τ ∈ 0, d½ �,

ð1Þ

and the ψ-Caputo-type fractional nonlocal partial hyper-
bolic FDE with finite delay:

CD
r;ψ
ℓ+ z ϰ, τð Þ =F ϰ, τ,z ϰ,τð Þ

� �
, ϰ, τð Þ ∈ J1 ≔ 0, c½ � × 0, d½ �,

z ϰ, τð Þ = φ ϰ, τð Þ, ϰ, τð Þ ∈ J2 ≔ −κ1, c½ � × −κ2, d½ � \ 0, c�ð × 0, d�ð ,
z ϰ, 0ð Þ + h1 zð Þ = ϕ1 τð Þ,z 0, τð Þ + h1 zð Þ = ϕ2 τð Þ, ϰ ∈ 0, c½ �, τ ∈ 0, d½ �,

ð2Þ

where c, d, κ1, κ2 > 0,r = ðμ, νÞ ∈ ð0, 1� × ð0, 1�,CDr;ψ
ℓ+ is the ψ-

Caputo FD of order r with respect to another function ψ,
which is increasing, and ∂ψ/∂u, ∂ψ/∂τ ≠ 0, for ðϰ, τÞ ∈ J1,
ℓ = ð0, 0Þ,φð·, · Þ ∈C ≔Cð½−κ1, 0� × ½−κ2, 0�,ℝÞ,
F : J1 ×C ⟶ℝ,ϕ1 : ½0, c�⟶ℝ,ϕ2 : ½0, d�⟶ℝ are abso-
lutely continuous with ϕ1ðϰÞ = φðϰ, 0Þ,ϕ2ðτÞ = φð0, τÞ,
∀ϰ ∈ ½0, c�,∀τ ∈ ½0, d�, and h1, h2 : CðJ1,ℝÞ⟶ℝ are
continuous.

This paper is concerned with the qualitative analyses of
fractional partial hyperbolic FDEs, which are very new, and
the implementation of the ψ-fractional operator makes it
more general and novel, unlike the classical fractional oper-
ators. To be precise, we are interested in investigating the
existence, uniqueness, and Ulam-Hyer’s stability results for
our problems (1)–(2). These results initiate the investigation
of ψ-Caputo fractional partial hyperbolic FDEs with a finite
delay, which mainly includes a more general fractional oper-
ator based on another function ψ. To be certain, in the anal-
ysis of our results, we essentially use fixed point theorems
(FPTs) of the Leray-Schauder type and Banach type. Our
outcomes can be interpreted as extensions of preceding
results that Abbas et al. [19] and Sousa and de Oliveira [9]
obtained for classical FHDEs, which can be considered a
contribution to the literature.

The rest of the work has been organized as follows. Sec-
tion 2 is devoted to some essential connotations of ψ-frac-
tional calculus with auxiliary lemmas to problems at hand.
The existence, uniqueness, and UH stability results based

on fixed point techniques are provided in Section 3. Suitable
examples are given in Section 4. In Section 5, we present the
conclusions.

2. Preliminary Results

In this section, we give some notations and essential defini-
tions of fractional partial integrals and derivatives (FPIs
and FPDs) and some function spaces to simplify the forth-
coming analysis. Let J1 = ½0, c� × 0, d�, J2 ≔ ½−κ1, c� × −κ2, d�
\ ð0, c� × ð0, d�, where c, d, κ1, κ2 > 0,ℓ = ð0, 0Þ, and r = ðμ, ν
Þ ∈ ð0, 1� × ð0, 1�. Denote C ≔Cð½−κ1, 0� × −½κ2, 0�,ℝÞ the
space of continuous functions on ½−κ1, 0� × −κ2, 0�. Note that
C is the Banach space with the norm

zk kC = sup
ϰ,τð Þ∈ −κ1,0½ �× −κ2,0½ �

z ϰ, τð Þj j, ð3Þ

and let CðJ1,ℝÞ be the Banach space with the norm

zk k∞ = sup
ϰ,τð Þ∈ 0,c½ �× 0,d½ �

z ϰ, τð Þj j: ð4Þ

The space L1ðJ1,ℝÞ is endowed with the norm

zk kL1 =
ðc
0

ðd
0
z ϰ, τð Þj jdϰdτ: ð5Þ

For any zðϰ,τÞ : ½−κ1, c� × −κ2, d�⟶ℝ, where ðϰ, τÞ ∈ J1,
we have

z ϰ,τð Þ θ, θð Þ = z ϰ + θ, τ + θð Þ, for θ, θð Þ ∈ −κ1, 0½ � × −κ2, 0½ �:
ð6Þ

Define the space Cð½−κ1, c� × −κ2, d�,ℝÞ as

C c,dð Þ = z : −κ1, c½ � × −κ2, d�⟶ℝ : z J2
= φ ∈C , z

�� ��
J1
∈ C J1,ℝð Þ

n o
,

ð7Þ

where zjJ1 is the restriction of z to J1, which is a Banach space
with the norm

zk kC c,dð Þ
= sup

ϰ,τð Þ∈ −κ1,c½ �× −κ2,d½ �
z ϰ, τð Þj j: ð8Þ

In the forthcoming analysis, let us consider ψð·Þ to be an
increasing and positive monotone function on J1 with ψϰð·
Þ, ψτð·Þ ≠ 0 on J1, where ψϰ = ∂ψ/∂ϰ and ψτ = ∂ψ/∂τ: On
the whole paper, keep in mind ψθ−1ðy,mÞ≔
ðψðyÞ − ψðmÞÞθ−1:

Definition 1 (see [9]). Let ℓ = ð0, 0Þ,r = ðμ, νÞ, where μ, ν > 0.
Then, the ψ-RL FPI of a function of two variables zðϰ, τÞ ∈
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L1ðJ1,ℝÞ of order r is given by

I
r;ψ
ℓ+ z ϰ, τð Þ = 1

Γ μð ÞΓ νð Þ
ðϰ
0

ðτ
0
ψϰ θð Þψτ ζð Þψμ−1 ϰ, θð Þψν−1 τ, ζð Þz θ, ζð Þdθdζ:

ð9Þ

Also, we have

I
μ
0+z ϰ, τð Þ = 1

Γ μð Þ
ðϰ
0
ψϰ θð Þψμ−1 ϰ, θð Þz θ, τð Þdθ,

I ν
0+z ϰ, τð Þ = 1

Γ νð Þ
ðτ
0
ψτ θð Þψν−1 τ, θð Þz ϰ, θð Þdθ:

ð10Þ

Definition 2 (see [9]). Let ℓ = ð0, 0Þ, and r = ðμ, νÞ, where 0
< μ, ν ≤ 1. Then, the ψ-RL FPD of a function zðϰ, τÞ ∈L1ð
J1,ℝÞ of order r is defined by

D
r;ψ
ℓ+ z ϰ, τð Þ = 1

ψϰψτ

∂2

∂ϰ∂τ

 !
I

1−r;ψ
ℓ+ z ϰ, τð Þ: ð11Þ

Definition 3 (see [9]). Let ℓ = ð0, 0Þ,r = ðμ, νÞ, where 0 < μ, ν
≤ 1, and ψ ∈ C1ðJ1,ℝÞ. Then, the ψ-Caputo FPD of a func-
tion zðϰ, τÞ ∈ C1ðJ1,ℝÞ of order r is defined by

CD
r;ψ
ℓ+ z ϰ, τð Þ =I

1−r;ψ
ℓ+

1
ψϰψτ

∂2

∂ϰ∂τ

 !
z ϰ, τð Þ: ð12Þ

Lemma 4 (see [9]). Let r = ðμ, νÞ ∈ ð0,∞Þ × ð0,∞Þ, and ξ1,
ξ2 > −1: Then,

I
r;ψ
ℓ+ ψ

ξ1−1 ϰ, 0ð Þψξ2−1 τ, 0ð Þ = Γ ξ1ð Þ
Γ μ + ξ1ð Þ

Γ ξ2ð Þ
Γ ν + ξ2ð Þψ

μ+ξ1−1 ϰ, 0ð Þψν+ξ2−1 τ, 0ð Þ:

ð13Þ

Lemma 5 (see [9]). Let r = ðμ, νÞ ∈ ð0, 1� × ð0, 1�, and ξ1, ξ2
> −1: Then,

D
r;ψ
ℓ+ ψ

ξ1−1 ϰ, 0ð Þψξ2−1 τ, 0ð Þ = Γ ξ1ð Þ
Γ μ − ξ1ð Þ

Γ ξ2ð Þ
Γ ν − ξ2ð Þψ

μ−ξ1−1 ϰ, 0ð Þψν−ξ2−1 τ, 0ð Þ:

ð14Þ

Lemma 6 (see [7]). Let 0 < r < 1, and h : ½c, d�⟶ℝ is con-
tinuous. Then,

CD
r,ψ
c+ I

r,ψ
c+ h ϰð Þ = h ϰð Þ,I r,ψ

c+
C
D

r,ψ
c+ h ϰð Þ = h ϰð Þ − h cð Þ: ð15Þ

Lemma 7. The following problem

CD
r;ψ
0+z ϰ, τð Þ = f ϰ, τð Þ, ϰ, τð Þ ∈ 0, c½ � × 0, d½ �,

z ϰ, 0ð Þ = ϕ1 ϰð Þ,z 0, τð Þ = ϕ2 τð Þ, ϰ ∈ 0, c½ �, τ ∈ 0, d½ �,
ð16Þ

with ϕ1ð0Þ = ϕ2ð0Þ which has a solution zðϰ, τÞ ∈Cð½0, c�
× 0, d�,ℝÞ if and only if zðϰ, τÞ satisfies

z ϰ, τð Þ = η ϰ, τð Þ +I
r;ψ
0+ f ϰ, τð Þ, ϰ, τð Þ ∈ 0, c� × 0, d�, ð17Þ

where ηðϰ, τÞ = ϕ1ðϰÞ + ϕ2ðτÞ − ϕ1ð0Þ:

Proof. The proof is primitive and similar to the proof of
Lemma 3.2 given in [21], so it can be omitted.

Here, we only refer to source [22] of the results of Leray-
Schauder and Banach FPT.

3. Main Results

Let us begin by describing what we mean by a solution to
problem (1).

Definition 8. A function z is a solution of (1), if z ∈C ðc,dÞ and
ðD2zϰτÞðϰ, τÞ exists and is integrable.

Theorem 9. Let the following assumptions hold:
(A1) F : J1 ×C ⟶ℝ is continuous.
(A2) There exists LF> 0 such that

F ϰ, τ, zð Þ −F ϰ, τ, υð Þj j ≤ LF z − υk kC , ϰ, τð Þ ∈ J1, z, υ ∈C :

ð18Þ

If

σ≔
ψμ c, 0ð Þψν d, 0ð Þ
Γ μ + 1ð ÞΓ ν + 1ð Þ LF < 1, ð19Þ

then there exists a unique solution for the ψ-Caputo problem
(1) on ½−κ1, c� × −κ2, dÞ:

Proof. Consider the operatorK : C ðc,dÞ ⟶C ðc,dÞ defined by
ðKzÞðϰ, τÞ = zðϰ, τÞ, i.e.,

Kzð Þ ϰ, τð Þ =
φ ϰ, τð Þ, ϰ, τð Þ ∈ J2,

η ϰ, τð Þ + 1
Γ μð ÞΓ νð Þ

ðϰ
0

ðτ
0
ψu θð Þψμ−1 ϰ, θð Þψτ ζð Þψν−1 τ, ζð Þ ×F θ, ζ, z θ,ζð Þ

� �
dζdθ, ϰ, τð Þ ∈ J1,

8><
>: ð20Þ
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where ηðϰ, τÞ≔ ϕ1ðϰÞ + ϕ2ðτÞ − ϕ1ð0Þ:
Let z, ω ∈C ðc,dÞ, and ðϰ, τÞ ∈ ½−κ1, c� × ½−κ2, d�. Then,

Kzð Þ ϰ, τð Þ − Kωð Þ ϰ, τð Þj j
≤

1
Γ μð ÞΓ νð Þ

ðϰ
0

ðτ
0
ψϰ θð Þψμ−1 ϰ, θð Þψτ ζð Þψν−1 τ, ζð Þ

× F θ, ζ, z θ,ζð Þ
� �

−F θ, ζ, ω θ,ζð Þ
� ���� ���dζdθ

≤
LF

Γ μð ÞΓ νð Þ
ðϰ
0

ðτ
0
ψϰ θð Þψμ−1 ϰ, θð Þψτ ζð Þψν−1 τ, ζð Þ

× z θ,ζð Þ − ω θ,ζð Þ
��� ���

C
dζdθ

≤
LF

Γ μð ÞΓ νð Þ z − ωk kC c,dð Þ

ðϰ
0
ψu θð Þψμ−1 ϰ, θð Þ

ðτ
0
ψτ ζð Þψν−1 τ, ζð Þdζdθ

≤
LF

Γ μð ÞΓ νð Þ z − ωk kC c,dð Þ

ψν d, 0ð Þ
ν

ðϰ
0
ψϰ θð Þψμ−1 ϰ, θð Þdθ

≤
LFψ

μ c, 0ð Þψν d, 0ð Þ
Γ μ + 1ð ÞΓ ν + 1ð Þ z − ωk kC c,dð Þ

:

ð21Þ

which implies

Kzð Þ − Kωð Þk kC c,dð Þ
≤ σ z − ωk kC c,dð Þ

: ð22Þ

Since σ < 1, the operator K is a contraction. This means
that K has a unique fixed point by Banach’s FPT.

Theorem 10. Let (A1) and the following assumption hold:
(A3) There exist p, q ∈ CðJ1,ℝÞ such that

F ϰ, τ, zð Þj j ≤ p ϰ, τð Þ + q ϰ, τð Þ zk kC , ϰ, τð Þ ∈ J1, z ∈C : ð23Þ

If ρ≔ kqk∞ψμðc, 0Þψνðd, 0Þ/Γðμ + 1ÞΓðν + 1Þ < 1, then
there exists at least one solution for the ψ-Caputo problem
(1) on ½−κ1, c� × −κ2, d�:

Proof. Consider the operatorK : C ðc,dÞ ⟶C ðc,dÞ defined by
(20); then, we show thatK is completely continuous.

Step 1: K is continuous. Let fzng be a sequence such
that zn ⟶ z in C ðc,dÞ: Then,

Kznð Þ ϰ, τð Þ − Kzð Þ ϰ, τð Þj j
≤

1
Γ μð ÞΓ νð Þ

ðϰ
0

ðτ
0
ψϰ θð Þψμ−1 ϰ, θð Þψτ ζð Þψν−1 τ, ζð Þ

× F θ, ζ, zn θ,ζð Þ

� �
−F θ, ζ, z θ,ζð Þ
� ���� ���dζdθ

≤
1

Γ μð ÞΓ νð Þ
ðc
0

ðd
0
ψϰ θð Þψμ−1 ϰ, θð Þψτ ζð Þψν−1 τ, ζð Þ

× sup
θ,ζð Þ∈J1

F θ, ζ, zn θ,ζð Þ

� �
−F θ, ζ, z θ,ζð Þ
� ���� ���dζdθ

≤
ψμ c, 0ð Þψν d, 0ð Þ
Γ μ + 1ð ÞΓ ν+1ð Þ F :,:,zn :,:ð Þ

� �
−F :,:,z :,:ð Þ
� ���� ���

∞
:

ð24Þ

Since F is continuous, kðKznÞ − ðKzÞkC ðc,dÞ
⟶ 0, as n

⟶∞:
Step 2: KðBξÞ is bounded in C ðc,dÞ,

whereBξ = fz ∈C ðc,dÞ : kzkC ðc,dÞ
≤ ξg, for any ξ > 0:

Set

ξ >max φk kC ,
λ

1 − ρ

� �
, ð25Þ

where

λ≔ ηk k∞ + pk k∞ψμ c, 0ð Þψν d, 0ð Þ
Γ μ + 1ð ÞΓ ν + 1ð Þ

� 	
: ð26Þ

For ðϰ, τÞ ∈ J2, we get

Kzð Þ ϰ, τð Þj j ≤ sup
ϰ,τð Þ∈J2

φ ϰ, τð Þj j = φk kC : ð27Þ

Let ðϰ, τÞ ∈ J1, and z ∈ Bξ: Then,

Kzð Þ ϰ, τð Þj j ≤ η ϰ, τð Þj j + 1
Γ μð ÞΓ νð Þ

ðϰ
0

ðτ
0
ψϰ θð Þψμ−1 ϰ, θð Þψτ ζð Þψν−1 τ, ζð Þ

× F θ, ζ, z θ,ζð Þ
� ���� ���dζdθ

≤ η ϰ, τð Þj j + 1
Γ μð ÞΓ νð Þ

ðϰ
0

ðτ
0
ψϰ θð Þψμ−1 ϰ, θð Þψτ ζð Þψν−1 τ, ζð Þp θ, ζð Þdζdθ

+ 1
Γ μð ÞΓ νð Þ

ðϰ
0

ðτ
0
ψϰ θð Þψμ−1 ϰ, θð Þψτ ζð Þψν−1 τ, ζð Þq θ, ζð Þ z θ,ζð Þ

��� ���
C
dζdθ

≤ ηk k∞ + pk k∞
Γ μð ÞΓ νð Þ

ðϰ
0

ðτ
0
ψϰ θð Þψμ−1 ϰ, θð Þψτ ζð Þψν−1 τ, ζð Þdζdθ

+
qk k∞ zk kC c,dð Þ
Γ μð ÞΓ νð Þ

ðϰ
0

ðτ
0
ψϰ θð Þψμ−1 ϰ, θð Þψτ ζð Þψν−1 τ, ζð Þdζdθ

≤ ηk k∞ + pk k∞ + qk k∞ξ

 � ψμ c, 0ð Þψν d, 0ð Þ

Γ μ + 1ð ÞΓ ν + 1ð Þ = λ + ρξ:

ð28Þ

Due to (25), (27), and (28), kðKzÞkC ðc,dÞ
≤ ξ, or ðKzÞ ∈

Bξ, which implies that KðBξÞ is bounded in C ðc,dÞ.
Step 3:KðBξÞ is equicontinuous in C ðc,dÞ. Let z ∈ Bξ, and

ðϰ1, τ1Þ, ðϰ2, τ2Þ ∈ ½−κ1, c� × ½−κ2, d� with ϰ1 < ϰ2,τ1 < τ2: If ð
ϰ1, τ1Þ, ðϰ2, τ2Þ ∈ J1 and z ∈ Bξ: Then,

Kzð Þ ϰ2, τ2ð Þ − Kzð Þ ϰ1, τ1ð Þj j
≤ η ϰ2, τ2ð Þ − η ϰ1, τ1ð Þj j + 1

Γ μð ÞΓ νð Þ
ðϰ1
0

ðτ1
0
ψϰ θð Þψτ ζð Þ ψμ−1 ϰ2, θð Þψν−1 τ2, ζð Þ�

− ψμ−1 ϰ1, θð Þψν−1 τ1, ζð Þ × F θ, ζ, z θ,ζð Þ
� ���� ���dζdθ

+ 1
Γ μð ÞΓ νð Þ

ðϰ2
ϰ1

ðτ2
τ1

ψϰ θð Þψτ ζð Þ ψμ−1 ϰ2, θð Þψν−1 τ2, ζð Þ� 
F θ, ζ, z θ,ζð Þ
� ���� ���dζdθ

+ 1
Γ μð ÞΓ νð Þ

ðϰ1
0

ðτ2
τ1

ψϰ θð Þψτ ζð Þ ψμ−1 ϰ2, θð Þψν−1 τ2, ζð Þ� 
F θ, ζ, z θ,ζð Þ
� ���� ���dζdθ

+ 1
Γ μð ÞΓ νð Þ

ðϰ2
ϰ1

ðτ1
0
ψϰ θð Þψτ ζð Þ ψμ−1 ϰ2, θð Þψν−1 τ2, ζð Þ� 

F θ, ζ, z θ,ζð Þ
� ���� ���dζdθ

≤ η ϰ2, τ2ð Þ − η ϰ1, τ1ð Þk k∞ + pk k∞ + qk k∞ξ

Γ μð ÞΓ νð Þ
ðϰ1
0

ðτ1
0
ψu θð Þψτ ζð Þ ψμ−1 ϰ2, θð Þψν−1 τ2, ζð Þ�

− ψμ−1 ϰ1, θð Þψν−1 τ1, ζð Þdζdθ + pk k∞ + qk k∞ξ

Γ μð ÞΓ νð Þ
ðϰ2
ϰ1

ðτ2
τ1

ψϰ θð Þψτ ζð Þ

� ψμ−1 ϰ2, θð Þψν−1 τ2, ζð Þ� 
dζdθ + pk k∞ + qk k∞ξ

Γ μð ÞΓ νð Þ
ðϰ1
0

ðτ2
τ1

ψϰ θð Þψτ ζð Þ

� ψμ−1 ϰ2, θð Þψν−1 τ2, ζð Þ� 
dζdθ + pk k∞ + qk k∞ξ

Γ μð ÞΓ νð Þ
ðϰ2
ϰ1

ðτ1
0
ψϰ θð Þψτ ζð Þ

� ψμ−1 ϰ2, θð Þψν−1 τ2, ζð Þ� 
dζdθ ≤ η ϰ2, τ2ð Þ − η ϰ1, τ1ð Þk k∞

+ pk k∞ + qk k∞ξ

Γ μ + 1ð ÞΓ ν + 1ð Þ 2ψν τ2, 0ð Þψμ ϰ2, ϰ1ð Þ + 2ψμ ϰ2, 0ð Þψν τ2, τ1ð Þ½

+ ψν τ1, 0ð Þψμ ϰ1, 0ð Þ − ψν τ2, 0ð Þψμ ϰ2, 0ð Þ − 2ψν τ2, τ1ð Þψμ ϰ2, ϰ1ð Þ�:

ð29Þ
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If −κ1 ≤ ϰ1 ≤ ϰ2 ≤ 0, and −κ2 ≤ τ1 ≤ τ2 ≤ 0, then

Kzð Þ ϰ2, τ2ð Þ − Kzð Þ ϰ1, τ1ð Þj j ≤ φ ϰ2, τ2ð Þ − φ ϰ1, τ1ð Þj j:
ð30Þ

If −κ1 ≤ ϰ1 < 0 < ϰ2 ≤ c, and −κ2 ≤ τ1 < 0 < τ2 ≤ d, then

Kzð Þ ϰ2, τ2ð Þ − Kzð Þ ϰ1, τ1ð Þj j
≤ Kzð Þ ϰ2, τ2ð Þ − Kzð Þ 0, 0ð Þj j + Kzð Þ 0, 0ð Þ − Kzð Þ ϰ1, τ1ð Þj j
≤ η ϰ2, τ2ð Þ − η 0, 0ð Þk k∞ + pk k∞ + qk k∞ξ

Γ μ + 1ð ÞΓ ν + 1ð Þ 2ψν τ2, 0ð Þψμ ϰ2, 0ð Þ½

+ 2ψμ ϰ2, 0ð Þψν τ2, 0ð Þ + ψν 0, 0ð Þψμ 0, 0ð Þ − ψν τ2, 0ð Þψμ ϰ2, 0ð Þ
−2ψν τ2, 0ð Þψμ ϰ2, 0ð Þ� + φ 0, 0ð Þ − φ ϰ1, τ1ð Þj j:

ð31Þ

In all previous cases, as ϰ1 ⟶ ϰ2, τ1 ⟶ τ2, and the
uniform continuity of η on J1 and φ on J2 implies that for
any ε > 0, there exists δ > 0, independent of ϰ1, ϰ2, τ1, τ2
and z, such that jðKzÞðϰ2, τ2Þ − ðKzÞðϰ1, τ1Þj ≤ ε whenever
jψðϰ2Þ − ψðϰ1Þj ≤ δ/2 and jψðτ2Þ − ψðτ1Þj ≤ δ/2: Therefore,
KðBξÞ is equicontinuous. It follows from the Arzela–Ascoli
theorem that K is compact.

Step 4: KðBξÞ a priori bounds. ∃ an open set Ω ⊆C ðc,dÞ
with z ≠ℵKz, for ℵ ∈ ð0, 1Þ, and z ∈ ∂Ω: Let ðϰ, τÞ ∈ ½−κ1,
c� × ½−κ2, d� and z ∈C ðc,dÞ with z ≠ℵKz, for some ℵ ∈ ð0, 1
Þ: Then,

z ϰ, τð Þj j ≤ℵ η ϰ, τð Þj j + ℵ
Γ μð ÞΓ νð Þ

ðϰ
0

ðτ
0
ψϰ θð Þψμ−1 ϰ, θð Þψτ ζð Þψν−1 τ, ζð Þ F θ, ζ, z θ,ζð Þ

� ���� ���dζdθ
≤ η ϰ, τð Þj j + 1

Γ μð ÞΓ νð Þ
ðϰ
0

ðτ
0
ψϰ θð Þψμ−1 ϰ, θð Þψτ ζð Þψν−1 τ, ζð Þ

� p θ, ζð Þ + q θ, ζð Þ z θ,ζð Þ
��� ���

C

h i
dζdθ

≤ ηk k∞ + pk k∞ψμ c, 0ð Þψν d, 0ð Þ
Γ μ + 1ð ÞΓ ν + 1ð Þ

+ qk k∞
Γ μð ÞΓ νð Þ

ðϰ
0

ðτ
0
ψu θð Þψμ−1 ϰ, θð Þψτ ζð Þψν−1 τ, ζð Þ zk kC c,dð Þ

dζdθ:

ð32Þ

If ðϰ, τÞ ∈ J1, then (32) becomes

z ϰ, τð Þk k∞ ≤ ηk k∞ + pk k∞ψμ c, 0ð Þψν d, 0ð Þ
Γ μ + 1ð ÞΓ ν + 1ð Þ

+ qk k∞
Γ μð ÞΓ νð Þ

ðϰ
0

ðτ
0
ψϰ θð Þψμ−1 ϰ, θð Þψτ ζð Þψν−1 τ, ζð Þ z θ, ζð Þk k∞dζdθ

≤ ηk k∞ + pk k∞ + qk k∞ z ϰ, τð Þk k∞
Γ μ + 1ð ÞΓ ν + 1ð Þ ψμ c, 0ð Þψν d, 0ð Þ,

ð33Þ

which implies

z ϰ, τð Þk k∞ ≤
λ

1 − ρ
≔M: ð34Þ

For ðϰ, τÞ ∈ J2,kzðϰ, τÞk∞ = kφkC :
Consequently,

zk k∞ =max M, φk kC
� �

≔ ξ∗: ð35Þ

Set

Ω = z ∈C c,dð Þ : zk k∞ < ξ∗ + 1
n o

: ð36Þ

Through our choice Ω, nothing z ∈ ∂Ω such that z =ℵ
Kz,0 <ℵ < 1:

As conclusion, the Leray-Schauder FPT shows that K
has a fixed point z ∈Ω ⊂C ðc,dÞ such that z =Kz which is a
solution to problem.

We now provide two results on the nonlocal problem
(2), and their proofs are quite similar to the preceding
results. In addition, the results in Theorems 9 and 10 can
be presented by

Theorem 11. Let (A1) and (A2) be satisfied. If there exist
Lh1 , Lh2 > 0 such that

h1 zð Þ − h1 υð Þj j ≤ Lh1 z − υk k∞,  for z, υ ∈C J1,ℝð Þ,
h2 zð Þ − h2 υð Þj j ≤ Lh2 z − υk k∞, for z, υ ∈C J1,ℝð Þ,

ð38Þ

with Λ≔ Lh1 + Lh2 + σ < 1, where σ is defined by (19); then,

there exists a unique solution for the ψ-Caputo problem (2)
on ½−κ1, c� × −κ2, d�:

Theorem 12. Let (A1) and (A3) be satisfied. If there exist
dh1 , dh2 > 0 such that

h1 zð Þk k ≤ dh1 1 + zk k∞

 �

, for z ∈C J1,ℝnð Þ,
h2 zð Þk k ≤ dh2 1 + zk k∞


 �
, for z ∈C J1,ℝnð Þ,

ð39Þ

Kzð Þ ϰ, τð Þ =
φ ϰ, τð Þ, ϰ, τð Þ ∈ J2,

η ϰ, τð Þ + h1 zð Þ + h2 zð Þ + 1
Γ μð ÞΓ νð Þ ×

ðϰ
0

ðτ
0
ψϰ θð Þψμ−1 ϰ, θð Þψτ ζð Þψν−1 τ, ζð ÞF θ, ζ, z θ,ζð Þ

� �
dζdθ ϰ, τð Þ ∈ J1:

8><
>:

ð37Þ
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with ρ < 1, where ρ is defined by (A3); then, there exists at
least one solution for the ψ-Caputo problem (2) on ½−κ1, c�
× ½−κ2, d�:

Now, we provide the UH and GUH stability of the ψ
-problem (2).

Definition 13. (see (2)). Problem ((2)) is UH stable if there
exists a χφ > 0 such that ∀ε > 0 and each solution ωðϰ, τÞ ∈
C ðc,dÞ of the inequality

CD
r;ψ
ℓ+ ω ϰ, τð Þ −F ϰ, τ, ω ϰ,τð Þ

� ���� ��� ≤ ε, ϰ, τð Þ ∈ J1,

ω ϰ, τð Þ − φ ϰ, τð Þj j ≤ ε, ϰ, τð Þ ∈ J2,
ð40Þ

there exists a solution zðϰ, τÞ ∈C ðc,dÞ of (2) satisfies

ω ϰ, τð Þ − z ϰ, τð Þk kC c,dð Þ
≤ χφε: ð41Þ

Remark 14. ωðϰ, τÞ ∈C ðc,dÞ satisfies (40) iff there exists ςðϰ,
τÞ ∈C ðc,dÞ with

(i) jςðϰ, τÞj ≤ ε,ϰ ∈ J1

(ii) for all ϰ ∈ J1

CD
r;ψ
ℓ+ ω ϰ, τð Þ =F ϰ, τ, ω ϰ,τð Þ

� �
+ ς ϰ, τð Þ: ð42Þ

Lemma 15. Let r = ðμ, νÞ ∈ ð0, 1� × ð0, 1�, and ωðϰ, τÞ ∈C ðc,dÞ
is a solution of (40). Then, ωðϰ, τÞ satisfies

ω ϰ, τð Þ − ω0 ϰ, τð Þ − 1
Γ μð ÞΓ νð Þ

ðϰ
0
ψϰ θð Þψμ−1 ϰ, θð Þ

ðτ
0
ψτ ζð Þψν−1 τ, ζð ÞF

����
� θ, ζ, ω θ,ζð Þ
� �

dζdθ
��� ≤ ε

ψν d, 0ð Þ
Γ ν + 1ð Þ

ψμ c, 0ð Þ
Γ μ + 1ð Þ ,

ð43Þ

for ðϰ, τÞ ∈ J1, where ω0ðϰ, τÞ = ηðϰ, τÞ + h1ðωÞ + h2ðωÞ.
Moreover, jωðϰ, τÞ − φðϰ, τÞj = 0, for ðϰ, τÞ ∈ J2:

Proof. Let ωðϰ, τÞ is a solution of (40). It follows from (ii) of
Remark 14that

CD
r;ψ
ℓ+ ω ϰ,τð Þ =F ϰ, τ, ω ϰ,τð Þ

� �
+ ς ϰ, τð Þ, ϰ, τð Þ ∈ J1,

ω ϰ, τð Þ = φ ϰ, τð Þ, ϰ, τð Þ ∈ J2,
ω ϰ, 0ð Þ + h1 ωð Þ = ϕ1 ϰð Þ, ω 0, τð Þ + h2 ωð Þ = ϕ2 τð Þ, ϰ, τð Þ ∈ J1:

ð44Þ

Then, the solution of problem (44) is

Once more by (i) of Remark 14, we get

ω ϰ, τð Þ − ω0 ϰ, τð Þ − 1
Γ μð ÞΓ νð Þ

ðϰ
0
ψϰ θð Þψμ−1 ϰ, θð Þ

ðτ
0
ψτ ζð Þψν−1 τ, ζð ÞF θ, ζ, ω θ,ζð Þ

� �
dζdθ

����
����

≤
1

Γ μð ÞΓ νð Þ
ðϰ
0

ðτ
0
ψϰ θð Þψμ−1 ϰ, θð Þψτ ζð Þψν−1 τ, ζð Þ ς θ, ζð Þj jdζdθ

≤
ε

Γ μð ÞΓ νð Þ
ðϰ
0
ψϰ θð Þψμ−1 ϰ, θð Þ

ðτ
0
ψτ ζð Þψν−1 τ, ζð Þdζdθ

= ε
ψν τ, 0ð Þ
Γ ν + 1ð Þ

1
Γ μð Þ

ðϰ
0
ψϰ θð Þψμ−1 ϰ, θð Þdθ

= ε
ψν τ, 0ð Þ
Γ ν + 1ð Þ

ψμ ϰ, 0ð Þ
Γ μ + 1ð Þ ≤ ε

ψν d, 0ð Þ
Γ ν + 1ð Þ

ψμ c, 0ð Þ
Γ μ + 1ð Þ ,

ð46Þ

for ðϰ, τÞ ∈ J2: For ðϰ, τÞ ∈ J2, we obtain jωðϰ, τÞ − φðϰ, τÞj
= jφðϰ, τÞ − φðϰ, τÞj = 0:

Theorem 16. Under assumptions of Theorem 9, the solution
of the problem (2) is HU and GHU stable on ½−κ1, c� × −κ2, d�:

Proof. Let ωðϰ, τÞ ∈C be a solution of (40), and zðϰ, τÞ ∈
C ðc,dÞ is a unique solution of the following problem:

CD
r;ψ
ℓ+ z ϰ, τð Þ =F ϰ, τ,z ϰ,τð Þ

� �
, ϰ, τð Þ ∈ J1,

z ϰ, τð Þ = φ ϰ, τð Þ, ϰ, τð Þ ∈ J2,

z ϰ, 0ð Þ + h1 zð Þ = ω ϰ, 0ð Þ + h1 ωð Þ,z 0, τð Þ + h2 zð Þ
= ω 0, τð Þ + h2 ωð Þ, ϰ, τð Þ ∈ J1:

ð47Þ

The previous problem has a solution

ω ϰ, τð Þ =
φ ϰ, τð Þj j, ϰ, τð Þ ∈ J2,

η ϰ, τð Þ + h1 ωð Þ + h2 ωð Þ + 1
Γ μð ÞΓ νð Þ ×

ðϰ
0

ðτ
0
ψϰ θð Þψμ−1 ϰ, θð Þψτ ζð Þψν−1 τ, ζð Þ F θ, ζ, ω θ,ζð Þ

� �
+ ς θ, ζð Þ

h i
dζdθ, ϰ, τð Þ ∈ J1:

8><
>:

ð45Þ

z ϰ, τð Þ =
φ ϰ, τð Þ, ϰ, τð Þ ∈ J2,

z0 ϰ, τð Þ + 1
Γ μð ÞΓ νð Þ

ðϰ
0
ψϰ θð Þψμ−1 ϰ, θð Þ

ðτ
0
ψτ ζð Þψν−1 τ, ζð ÞF θ, ζ, z θ,ζð Þ

� �
dζdθ ϰ, τð Þ ∈ J1,

8><
>: ð48Þ
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where z0ðϰ, τÞ≔ ηðϰ, τÞ + h1ðzÞ + h2ðzÞ:
Since zðϰ, 0Þ + h1ðzÞ = ωðϰ, 0Þ + h1ðωÞ and zð0, τÞ + h2ð

zÞ = ωð0, τÞ + h2ðωÞ, we have z0ðϰ, τÞ = ω0ðϰ, τÞ: Indeed,

z0 ϰ, τð Þ = η ϰ, τð Þ + h1 zð Þ + h2 zð Þ
= η ϰ, τð Þ − z ϰ, 0ð Þ + ω ϰ, 0ð Þ + h1 ωð Þ − z 0, τð Þ + ω 0, τð Þ + h2 ωð Þ
= η ϰ, τð Þ − ϕ1 ϰð Þ + ϕ1 ϰð Þ + h1 ωð Þ − ϕ2 τð Þ + ϕ2 τð Þ + h2 ωð Þ
= η ϰ, τð Þ + h1 ωð Þ + h2 ωð Þ = ω0 ϰ, τð Þ:

ð49Þ

Hence, (48) becomes

z ϰ, τð Þ

=
φ ϰ, τð Þ, ϰ, τð Þ ∈ J2,

ω0 ϰ, τð Þ + 1
Γ μð ÞΓ νð Þ

ðϰ
0
ψϰ θð Þψμ−1 ϰ, θð Þ

ðτ
0
ψτ ζð Þψν−1 τ, ζð ÞF θ, ζ, z θ,ζð Þ

� �
dζdθ ϰ, τð Þ ∈ J1:

8><
>:

ð50Þ

Note that, jωðϰ, τÞ − zðϰ, τÞj = 0, for all ðϰ, τÞ ∈ J2:
Using Lemma 15 and (A2), for ðϰ, τÞ ∈ J1, we have

ω ϰ, τð Þ − z ϰ, τð Þj j = ω ϰ, τð Þ − ω0 ϰ, τð Þ − 1
Γ μð ÞΓ νð Þ

ðϰ
0
ψϰ θð Þψμ−1 ϰ, θð Þ

ðτ
0
ψτ

����
� ζð Þψν−1 τ, ζð ÞF θ, ζ, z θ,ζð Þ

� �
dζdθ

���
≤ ω ϰ, τð Þ − ω0 ϰ, τð Þ − 1

Γ μð ÞΓ νð Þ
ðϰ
0
ψϰ θð Þψμ−1 ϰ, θð Þ

ðτ
0
ψτ ζð Þψν−1 τ, ζð ÞF

����
� θ, ζ, ω θ,ζð Þ
� �

dζdθ
��� + 1

Γ μð ÞΓ νð Þ
ðϰ
0
ψϰ θð Þψμ−1 ϰ, θð Þ

ðτ
0
ψτ ζð Þψν−1 τ, ζð Þ Fj

� θ, ζ, ω θ,ζð Þ
� �

−F θ, ζ, z θ,ζð Þ
� ����dζdθ

≤ ε
ψν d, 0ð Þ
Γ ν + 1ð Þ

ψμ c, 0ð Þ
Γ μ + 1ð Þ + LF ω θ,ζð Þ − z θ,ζð Þ

��� ���
C

ψν d, 0ð Þ
Γ ν + 1ð Þ

ψμ c, 0ð Þ
Γ μ + 1ð Þ ≤ ε

σ

LF
+ σ ω − zk kC c,dð Þ,

ð51Þ

which implies

ω − zk kC c,dð Þ ≤
σ

LF 1 − σð Þ ε: ð52Þ

Taking χφ ≔ σ/LFð1 − σÞ such that σ < 1, then (51)
becomes

ω − zk kC c,dð Þ ≤ χφε: ð53Þ

Hence, problem (2) is UH stable. Moreover, if there
exists a nondecreasing function Ψ : ½0,∞Þ⟶ 0,∞Þ such
that ΨðεÞ = ε, then we have with Ψð0Þ = 0,

ω − zk kC c,dð Þ ≤Ψ εð Þ, ð54Þ

which proves that problem (2) is also GUH stable.

4. Examples

In this portion, we provide two examples of partial hyper-
bolic FDEs having fractional order and satisfying the
obtained results. All computational work will be performed
through MATLAB.

Example 1. Consider a ψ-Caputo fractional partial hyper-
bolic FDE

CD
r;ψ
0+z ϰ, τð Þ = 1

2eϰ+τ+2 1 + z ϰ − 1, τ − 2ð Þj jð Þ , ϰ, τð Þ ∈ 0, 1½ � × 0, 1½ �,

z ϰ, τð Þ = ϰ + τ2, ϰ, τð Þ ∈ −1, 1½ � × −2, 1½ � \ 0, 1�ð × 0, 1�ð ,
z ϰ, 0ð Þ = ϰ,z 0, τð Þ = τ2, ϰ, τ ∈ 0, 1½ �,

ð55Þ

where r = ðμ, νÞ, μ = 1/2, ν = 1/3,φðϰ, τÞ = ϰ + τ2,
c = d = 1,κ1 = 1,κ2 = 2,ϕ1ðϰÞ = ϰ,ϕ2ðτÞ = τ2: Consider Fðϰ, τ,
�zÞ = 1/ð3eϰ+τ+2ð1 + �zðϰ − 1, τ − 2ÞÞÞ, for ðϰ, τ, �zÞ ∈ 0, 1� × 0, 1
� ×Cð½−1, 0� × −2, 0�,ℝÞ: Let z, υ ∈Cð½−1, 0� × −2, 0�,ℝÞ,
and ðϰ, τÞ ∈ 0, 1� × 0, 1�: Then,

F ϰ, τ, z ϰ,τð Þ
� �

−F ϰ, τ, υ ϰ,τð Þ
� ���� ���

≤
1
3e2 z ϰ − 1, τ − 2ð Þ − υ ϰ − 1, τ − 2ð Þj j ≤ 1

3e2 z − υk kC :
ð56Þ

So, assumptions (A1) and (A2) are satisfied with LF= 1
/3e2: Moreover, the condition σ = 2/ð35/6e2 ffiffiffi

π
p

Γð1/3ÞÞ < 1
with ψðϰÞ = ϰ/3,ψðτÞ = τeτ−1/3 and c = d = 1: Hence, Theo-
rem 9 shows that problem (55) has a unique solution defined
on ½−1, 1� × ½−2, 1�:

Example 2. Consider a ψ-Caputo fractional partial hyper-
bolic FDE

CD
r;ψ
0+z ϰ, τð Þ = e−ϰ−τ

4 + eϰ+τ
1 + z ϰ − 1, τ − 2ð Þj j

1 + z ϰ − 1, τ − 2ð Þj jð Þ
� 	

,

� ϰ, τð Þ ∈ 0, 13

� �
× 0, 13

� �
,

z ϰ, τð Þ = ϰ2 + τ, ϰ, τð Þ ∈ −1, 13

� �
× −2, 13

� �
\ 0, 13

��
× 0, 13

��
,

z ϰ, 0ð Þ = ϰ2,z 0, τð Þ = τ, ϰ, τ ∈ 0, 13

� �
, ð57Þ

where r = ðμ, νÞ, μ = 1/2, ν = 1/3,φðϰ, τÞ = ϰ2 + τ,
c = d = 1/3,κ1 = 1,κ2 = 2,ϕ1ðϰÞ = ϰ2,ϕ2ðτÞ = τ: Consider Fðϰ,
τ, �zÞ = ðe−ϰ−τ/ð4 + eϰ+τÞÞð1 + �z/ð1 + �zÞÞ, for ðϰ, τ, �zÞ ∈ ½0, 1/3�
× ½0, 1/3� ×Cð½−1, 0� × −2, 0�,ℝÞ: Let z ∈Cð½−1, 0� × −2, 0�,
ℝÞ, and ðϰ, τÞ ∈ ½0, 1/3� × ½0, 1/3�: Then,

F ϰ, τ, z ϰ,τð Þ
� ���� ��� ≤ e−ϰ−τ

4 + eϰ+τ
1 +

z ϰ,τð Þ
1 + z ϰ,τð Þ

�����
����� ≤ e−ϰ−τ

4 + eϰ+τ
+ e−ϰ−τ

4 + eϰ+τ
z ϰ,τð Þ
��� ���

≤
e−ϰ−τ

4 + eϰ+τ
+ e−ϰ−τ

4 + eϰ+τ
zk kC :

ð58Þ

Thus, (A3) holds with pðϰ, τÞ = qðϰ, τÞ = e−ϰ−τ/ð4 + eϰ+τÞ,
where kqk∞ = 1/5: To verify that ρ < 1, we select ψðϰÞ = eϰ/3
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and ψðτÞ = ffiffiffiffiffiffiffiffiffiffi
τ + 1

p
, then find that

ψμ c, 0ð Þ = ψ cð Þ − ψ 0ð Þð Þμ = ec/3

 �1/2 = ffiffiffiffiffiffiffi

e1/9
p

,

ψν d, 0ð Þ = ψ dð Þ − ψ 0ð Þð Þν =
ffiffiffiffiffiffiffiffiffiffi
d + 1

p� �1/3
= 2

ffiffiffi
2
3

r !1/3

,

ð59Þ

and ρ ≈ 0:314 < 1: So, all assumptions of Theorem 10 are
satisfied. Hence, Theorem 10 shows that problem (57) has
a solution defined on ½−1, 1/3� × ½−2, 1/3�:

Remark 3. Our current outcomes on problems (1) and (2)
can be interpreted as extensions of preceding results of
Abbas et al. [19], for ψðϰÞ = ϰ.

Remark 4. As special cases, it is possible to obtain other
results for similar problems involving various FDs such as
Caputo-Katugampola FD (for ðϰÞ = ðϰρÞ,ρ > 0), Caputo-
Hadamard FD (for ψðϰÞ = ln ðϰÞ), and other FDs, for differ-
ent choices of ψð·Þ:

5. Conclusion

Somewhat recently, several fractional definitions have been
proposed to describe the behaviors of some complex world
problems arising in many scientific fields. In this regard,
Sousa and de Oliveira [9] introduced the concept of the mul-
tivariate partial fractional derivative with respect to another
function. As an additional contribution to this topic, exis-
tence and uniqueness results have been obtained for two
types of Cauchy and nonlocal fractional partial hyperbolic
FDEs (1) and (2) involving ψ-Caputo FD with two variables.
We have presented several results based on Banach’s and
Leray-Schauder’s fixed point theorem. In light of our present
results, special cases of similar problems containing several
partial fractional operators have been presented according
to different choices of the ψ function. Moreover, we have
provided the stability results in UH and GUH sense. Lastly,
two suitable examples that validate the obtained results were
given.

It is interesting to approach current problems with infi-
nite delay, and this is what we are thinking of in future
research. One can also study the same present problem in
terms of the generalized fractional derivative that was
recently proposed in [23, 24].
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We use a new integral transform approach to solve the fractional Harry Dym equation and fractional Rosenau-Hyman equation in
this work. The Elzaki transform and the integral transformation are combined in the suggested method (ET). To handle two
nonlinear problems, we first construct the Elzaki transforms of the Caputo fractional derivative (CFD) and Atangana-Baleanu
fractional derivative (ABFD). The ultimate purpose of this study is to find an error analysis that demonstrates that our final
result converges to the exact and approximate result. The convergent series form solution demonstrates the method’s efficiency
in resolving several types of fractional differential equations. Furthermore, the solutions obtained in this study agree well with
the exact solutions; thus, this strategy is powerful and efficient as an alternate way for obtaining approximate solutions to both
linear and nonlinear fractional differential equations.

1. Introduction

Fractional calculus FC history dates back 300 years. FC origi-
nated with Leibniz’s usage of the nth derivative notation in his
papers in 1695. L’Hopital raises a query from Leibniz about
the result of his nth derivative notation if the order of “n” is 1
/2 [1]. Many phenomena in engineering and other fields can
be effectively represented by models based on fractional calcu-
lus, that is, the theory of fractional derivatives and integrals of
fractional noninteger order. Respectable interest in fractional
calculus has been utilised in several studies in recent years, such
as regular variation in thermodynamics, biophysics, blood flow
phenomena, aerodynamics, viscoelasticity, electrical circuits,
electro-analytical chemistry, biology, and control theory [2–5].

Due to their prevalence in a wide range of applications and
accurate description of nonlinear processes, researchers are
increasingly focusing on fractional order differential equa-
tions, particularly fractional partial differential equations
(FPDEs). FPDEs are the most common mathematical tools
used to simulate diverse physical phenomena in applied sci-
ences such as physics, engineering, and other social sciences.

Many applications of science and engineering, including as
material sciences, biology, chemistry, fluid dynamics, chemical
kinetics, and many other physical processes, use modelling in
the form of FPDE systems [6–10]. For the solution of
fractional-order PDE problems, different analytical and numer-
ical methodologies have been developed in the literature. The
numerical schemes are a finite difference scheme with nonuni-
form time steps [11–13], a higher order numerical scheme [14],
an implicit finite-difference scheme [15], a compact difference
scheme [16], Adomian decomposition method [17], homotopy
analysis transformmethod [18], fractional-order reduced differ-
ential transformmethod [19], variational iterationmethod [20],
natural transform decomposition method [21], Elzaki trans-
form decomposition method [22], iterative methods [23–25],
andmuchmore [26–30]. The abovementioned techniques have
the straight forward implementations to both linear and nonlin-
ear FDEs.

In the present study, we implement the Elzaki transform in
connection with the CFD and ABC operators to solve two non-
linear problems. We consider fractional Harry Dym equation
and fractional Rosenau-Hyman equation of the form
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Dρ
τψ υ, τð Þ = ψ3 υ, τð Þψυυυ υ, τð Þ, ð1Þ

having initial source

ψ υ, 0ð Þ = a −
3
ffiffiffi
b

p

2
υ

 !2/3

, ð2Þ

and

Dρ
τψ υ, τð Þ = ψ υ, τð Þψυυυ υ, τð Þ + ψ υ, τð Þψυ υ, τð Þ + 3ψυ υ, τð Þψυυ υ, τð Þ,

ð3Þ

having initial source

ψ υ, 0ð Þ = −
8
3
c cos2

υ

4

� �
: ð4Þ

TheHarry Dym is a crucial dynamical equation that is used
in a variety of physical systems. The Harry Dym equation was
initially published in Kruskal and Moser [31] and is credited to
Harry Dym in an unpublished study from 1973-1974. It
denotes a system in which dispersion and nonlinearity are
inextricably linked. Harry Dym is a totally integrable nonlinear
evolution equation that obeys an infinite number of conversion
rules but lacks the Painleve property. The Harry Dym equation
is closely related to the Korteweg-de Vries equation, and this
equation has been used to hydrodynamic problems [32]. The
Sturm-Liouville operator is linked to the Lax pair of the Harry
Dym equation. This operator is spectrally transformed into the
Schrodinger operator by the Liouville transformation [33].
Rosenau and Hyman [34] found the Rosenau-Hyman equa-
tion, which arises in the creation of patterns in liquid drops
with compaction solutions. The Rosenau-Hyman equation
compact on investigations is useful in applied sciences and
mathematical physics [35–38].

The following is how the rest of the paper is structured: we
begin with basic preliminaries and definitions of fractional cal-
culus in Section 2. The proposed method’s general methodol-
ogy is introduced in Section 3. Section 4 focuses on applying
the approach to a set of test problems, using graphs and tables
to demonstrate the technique’s efficiency. The discussion and
conclusion of this work were delivered in Section 5.

2. Preliminaries

In this section, we mention the following basic definitions of
fractional calculus.

Definition 1. The fractional derivative in Caputo manner
(CFD) is given as [39]

C
0D

ρ
τ κ τð Þð Þ =

1
Γ m − ρð Þ

ðτ
0

κm ηð Þ
τ − ηð Þρ+1−m dη, m − 1 < ρ <m,

dm

dτm
κ τð Þ, ρ =m:

8>>><>>>:
ð5Þ

Definition 2. The Atangana-Baleanu Caputo operator (ABC)
is defined as [40]

ABC
m Dρ

τ κ τð Þð Þ = N ρð Þ
1 − ρ

ðτ
m
κ′ ηð ÞEρ −

ρ τ − ηð Þρ
1 − ρ

� �
dη, ð6Þ

where κ ∈H1ðα, βÞ, β > α, ρ ∈ ½0, 1�. A normalisation
function equal to 1 when ρ = 0 and ρ = 1 is represented by
NðρÞ in Eq. (6).

Definition 3. The fractional integral operator in ABC man-
ner is given as [40]

ABC
m Iρτ κ τð Þð Þ = 1 − ρ

N ρð Þ κ τð Þ + ρ

Γ ρð ÞN ρð Þ
ðτ
m
κ ηð Þ τ − ηð Þρ−1dη:

ð7Þ

Definition 4. For exponential function in set A, the Elzaki
transform is given as [41, 42]

A = κ τð Þ: ∃G, p1, p2 > 0, κ τð Þj j <Ge τj j/pj , if τ ∈ −1ð Þj × 0,∞½ Þ
n o

:

ð8Þ

G is a finite number, but p1 and p2 may be finite or infi-
nite for a function selected in the set.

Definition 5. The Elzaki transform of κðτÞ is given as [42]

E κ τð Þf g μð Þ = ~U μð Þ = μ
ð∞
0
e−τ/μκ τð Þdτ, ð9Þ

where τ ≥ 0, p1 ≤ μ ≤ p2.

Theorem 6. (Elzaki transformation convolution theorem,
[43]) The following equality holds:

E κ ∗ vf g = 1
μ
E κð ÞE vð Þ, ð10Þ

where Ef:g represents Elzaki transform.

Definition 7. The Elzaki transform of C
0D

ρ
τðκðτÞÞ CFD oper-

ator is as [44]

E C
0D

ρ
τ κ τð Þð Þ� �

μð Þ = μ−ρ ~U μð Þ − 〠
m−1

k=0
μ2−ρ+kκk 0ð Þ, ð11Þ

where m − 1 < ρ <m.

Theorem 8. The Elzaki transform of ABC
m Dρ

τðκðτÞÞ ABC oper-
ator is as

E ABC
m Dρ

τ κ τð Þð Þ� �
μð Þ = N ρð Þμ

ρμρ + 1 − ρ

~U μð Þ
μ

− μκ 0ð Þ
 !

, ð12Þ

where EfκðτÞgμ = ~UðμÞ.
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Proof. From Definition 2, we get

E ABC
m Dρ

τ κ τð Þð Þ� �
μð Þ =E

N ρð Þ
1 − ρ

ðτ
0
κ′ ηð ÞEρ −

ρ τ − ηð Þρ
1 − ρ

� �
dη

	 

μð Þ:

ð13Þ

Then, from Elzaki transform definition and its convolu-
tion, we obtain

E ABC
m Dρ

τ κ τð Þð Þ� �
μð Þ =E

N ρð Þ
1 − ρ

ðτ
0
κ′ ηð ÞEρ −

ρ τ − ηð Þρ
1 − ρ

� �
dη

	 

=
N ρð Þ
1 − ρ

1
μ
E κ′ ηð Þ
n o

E Eρ −
ρτρ

1 − ρ

� �
dη

	 

=
N ρð Þ
1 − ρ

~U μð Þ
μ

− μκ 0ð Þ
" # ð∞

0
e−1/μEρ −

ρτρ

1 − ρ

� �
dτ

� �

=
N ρð Þμ

ρμρ + 1 − ρ

~U μð Þ
μ

− μκ 0ð Þ
" #

:

ð14Þ

3. Description of the Technique via a New
Integral Transform

In this part, we presented the general methodology used in
this article to solve fractional nonlinear PDE as

Dρ
τψ υ, τð Þ + L ψ υ, τð Þð Þ +N ψ υ, τð Þð Þ = θ υ, τð Þ,

υ, τð Þ ∈ 0, 1½ � × 0, T½ �, κ − 1 < ρ < κ,
ð15Þ

with initial source

∂zψ
∂τz

υ, 0ð Þ = κz υð Þ, z = 0, 1,⋯, κ − 1, ð16Þ

and the boundary sources

ψ 0, τð Þ = γ0 τð Þ, ψ υ, τð Þ = γ1 τð Þ, τ ≥ 0, ð17Þ

Here, known functions are κz , θ, γ0, and γ1. In Eq. (15),
Dρ
τψðυ, τÞ represents the Caputo or ABC fractional deriva-

tives whereas Lð:Þ and Nð:Þ are linear and nonlinear terms.
(1)-(2) and (3)-(4) represent the problems to be solved. By
means of Elzaki transform of CFD in Eq. (11) and ABC in
Eq. (12), we take Efψðυ, τÞgðμÞ = ~ζðυ, μÞ in Eq. (15). Thus,
by means of Caputo fractional derivative, we get

~ζ υ, μð Þ = μρ eθ υ, μð Þ −E L ψ υ, τð Þð Þ +N ψ υ, τð Þð Þ½ �
� �

+ μ2ψ υ, 0ð Þ:
ð18Þ

Also by means of ABC derivative, we get

~ζ υ, μð Þ = ρμρ + 1 − ρ

N ρð Þ
� � eθ υ, μð Þ −E L ψ υ, τð Þð Þ +N ψ υ, τð Þð Þ½ �

� �
+ μ2ψ υ, 0ð Þ:

ð19Þ

Here, E½θðυ, τÞ� = eθðυ, μÞ. Now by taking the Elzaki trans-
form of the boundary conditions, we obtain

E γ0 τð Þ½ � = ~ζ 0, μð Þ,E γ1 τð Þ½ � = ~ζ 1, μð Þ, μ ≥ 0: ð20Þ

We get the solution of Eqs. (15)-(17) by means of perturba-
tion technique

~ζ υ, μð Þ = 〠
∞

E=0
XE~ζE υ, μð Þ,E = 0, 1, 2,⋯: ð21Þ

In Eq. (15), the nonlinear terms are calculated as

N ψ υ, τð Þ½ � = 〠
∞

E=0
XEφE υ, τð Þ, ð22Þ

and the terms υEðυ, τÞ are taken in [45] as

υE ψ0, ψ1,⋯,ψEð Þ = 1
E!

∂E

∂ωE
N 〠

∞

i=0
ωiψi

 !" #
λ=0

,E = 0, 1, 2,⋯:

ð23Þ

For Caputo operator, the solution is determined as by
putting Eqs. (21) and (22) into Eq. (18),

〠
∞

E=0
XE~ζ υ, μð Þ = −Xμρ E L 〠

∞

E=0
XEψE υ, τð Þ

 !
+ 〠

∞

E=0
XEφE υ, τð Þ

" # !
+ μρ eθ υ, μð Þ

� �
+ μ2ψ υ, 0ð Þ:

ð24Þ

Also for Atangana-Baleanu operator, the solution is
determined as by putting Eqs. (21) and (22) into Eq. (19),

〠
∞

E=0
XE~ζ υ, μð Þ = −X

ρμρ + 1 − ρ

N ρð Þ
� �

E L 〠
∞

E=0
XEψE υ, τð Þ

 !
+ 〠

∞

E=0
XEφE υ, τð Þ

" # !

+
ρμρ + 1 − ρ

N ρð Þ
� � eθ υ, μð Þ

� �
+ μ2ψ υ, 0ð Þ:

ð25Þ

Then, by solving (24) and (25) in terms of X , the given
Caputo homotopies are obtained:

X0 : ~ζ0 υ, μð Þ = μρ eθ υ, μð Þ
� �

+ μ2ψ υ, 0ð Þ,

X1 : ~ζ1 υ, μð Þ = −μρE L ψ0 υ, τð Þð Þ + φ0 υ, τð Þ½ �,
X2 : ~ζ2 υ, μð Þ = −μρE L ψ1 υ, τð Þð Þ + φ1 υ, τð Þ½ �,

⋮

Xn+1 : ~ζn+1 υ, μð Þ = −μρE L ψn υ, τð Þð Þ + φn υ, τð Þ½ �:
ð26Þ
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In addition, the ABC homotopies are obtained as given:

X0 : ~ζ0 υ, μð Þ = ρμρ + 1 − ρ

N ρð Þ
� �eθ υ, μð Þ + μ2ψ υ, 0ð Þ,

X1 : ~ζ1 υ, μð Þ = −
ρμρ + 1 − ρ

N ρð Þ
� �

E L ψ0 υ, τð Þð Þ + φ0 υ, τð Þ½ �,

X2 : ~ζ2 υ, μð Þ = −
ρμρ + 1 − ρ

N ρð Þ
� �

E L ψ1 υ, τð Þð Þ + φ1 υ, τð Þ½ �,

⋮

Xn+1 : ~ζn+1 υ, μð Þ = −
ρμρ + 1 − ρ

N ρð Þ
� �

E L ψn υ, τð Þð Þ + φn υ, τð Þ½ �:

ð27Þ

When X ⟶ 1, we get Eqs. (26) and (27) approximate
solution for Eqs. (24) and (25) as

Δn υ, μð Þ = 〠
n

σ=0

~ζσ υ, μð Þ: ð28Þ

Now by taking inverse ET of Eq. (28), we get the approx-
imate solution of Eq. (15)

ψ υ, μð Þ ≅ ψn υ, τð Þ =E−1 ρn υ, μð Þf gj : ð29Þ

4. Applications

In this part, we will solve problems in Eqs. (1)-(4) by imple-
menting Elzaki transform. First, we implement Elzaki trans-
form technique in combination with Caputo derivative to
solve problem (1) having initial source (2). By taking the
Elzaki transform, we get

~ζ υ, μð Þ = μρE ψ3 υ, τð Þψυυυ υ, τð Þ �
+ μ2ψ υ, 0ð Þ: ð30Þ

Now applying Elzaki perturbation transform technique
in Eq. (30), we obtain

〠
∞

E=0
XE~ζE υ, μð Þ = +μ2ψ υ, 0ð Þ: ð31Þ

On taking Elzaki inverse transform of Eq. (31), we get

〠
∞

E=0
XEψE υ, μð Þ =XE−1 μρE 〠

∞

E=0
XEφE υ, τð Þ

 !" #" #
+E−1 μ2ψ υ, 0ð Þ �

:

ð32Þ

In Eq. (43), the υEð:Þ denotes the nonlinear terms given
in Eq. (24),

φ0 ψð Þ = ψ3
0 ψ0ð Þυυυ,

φ1 ψð Þ = ψ3
0 ψ1ð Þυυυ + 3ψ2

0ψ1 ψ0ð Þυυυ,
⋮:

ð33Þ

Thus by considering powers of X , we get Caputo opera-
tor solution as

X0 : ψ0 υ, τð Þ =E−1 μ2 a −
3
ffiffiffi
b

p

2
υ

 !2/3" #
= a −

3
ffiffiffi
b

p

2
υ

 !2/3

,

X1 : ψ1 υ, τð Þ =E−1 μρE L φ0 υ, τð Þð Þ½ �½ � = −b3/2 a −
3
ffiffiffi
b

p

2
υ

 !−1/3
τρ

Γ ρ + 1ð Þ ,

X2 : ψ2 υ, τð Þ =E−1 μρE L φ1 υ, τð Þð Þ½ �½ � = −
b3

2
a −

3
ffiffiffi
b

p

2
υ

 !−4/3
τ2ρ

Γ 2ρ + 1ð Þ ,

⋮:

ð34Þ

The series form solution of the problem is given as

which gives the solution at ðρ = 1Þ as ða − 3
ffiffiffi
b

p
/2ðυ + bτÞÞ2/3.

Now, we implement Elzaki transform technique in com-
bination with Atangana-Baleanu operator to solve same
problem. By taking the Elzaki transform, we get

~ζ υ, μð Þ = ρμρ + 1 − ρ

N ρð Þ
� �

E ψ3 υ, τð Þψυυυ υ, τð Þ �
+ μ2ψ υ, 0ð Þ: ð36Þ

Now applying Elzaki perturbation transform technique
to (36), we obtain

〠
∞

E=0
XE~ζE υ, μð Þ =X

ρμρ + 1 − ρ

N ρð Þ
� �

E 〠
∞

E=0
XEφE υ, τð Þ

 !" #
+ μ2ψ υ, 0ð Þ:

ð37Þ

On taking Elzaki inverse transform of Eq. (37), we get

〠
∞

E=0
XEψE υ, τð Þ =XE−1 ρμρ + 1 − ρ

N ρð Þ
� �

E 〠
∞

E=0
XEφE υ, τð Þ

 !" #" #
+E−1 μ2ψ υ, 0ð Þ �

:

ð38Þ

ψ υ, τð Þ = a −
3
ffiffiffi
b

p

2
υ

 !2/3

− b3/2 a −
3
ffiffiffi
b

p

2
υ

 !−1/3
τρ

Γ ρ + 1ð Þ −
b3

2
a −

3
ffiffiffi
b

p

2
υ

 !−4/3
τ2ρ

Γ 2ρ + 1ð Þ+⋯
 !

, ð35Þ
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In Eq.(38), υEð:Þ denotes the nonlinear terms given in
Eq. (23). By repeating the same process for nonlinear terms,
we obtain the following terms:

Thus, the approximate solution by means of ABC oper-
ator is given as

which gives the solution at ðρ = 1Þ as ða − 3
ffiffiffi
b

p
/2ðυ + bτÞÞ2/3.

Second, we implement Elzaki transform technique in
combination with Caputo derivative to solve problem (3) hav-
ing initial source (4). By taking the Elzaki transform, we get

Now applying Elzaki perturbation transform technique
in Eq. (41), we obtain

〠
∞

E=0
XE~ζE υ, μð Þ =XμρE 〠

∞

E=0
XEφE υ, τð Þ

 !" #
+ μ2ψ υ, 0ð Þ: ð42Þ

On taking Elzaki inverse transform of Eq. (42), we get

〠
∞

E=0
XEψE υ, μð Þ =XE−1 μρE 〠

∞

E=0
XEφE υ, τð Þ

 !" #" #
+E−1 μ2ψ υ, 0ð Þ �

:

ð43Þ

X0 : ψ0 υ, τð Þ =E−1 μ2 a −
3
ffiffiffi
b

p

2
υ

 !2/3" #
= a −

3
ffiffiffi
b

p

2
υ

 !2/3

,

X1 : ψ1 υ, τð Þ =E−1 ρμρ + 1 − ρ

N ρð Þ
� �

E φ0 υ, τð Þ½ �
� �

=
−b3/2 a − 3

ffiffiffi
b

p
/2

� �
υ

� �−1/3
N ρð Þ

0B@
1CA ρτρ

Γ ρ + 1ð Þ + 1 − ρ

� �
,

X2 : ψ2 υ, τð Þ =E−1 ρμρ + 1 − ρ

N ρð Þ
� �

E φ1 υ, τð Þ½ �
� �

=
−b3/2 a − 3

ffiffiffi
b

p
/2

� �
υ

� �−4/3
N2 ρð Þ

0B@
1CA ρτρð Þ2

Γ 2ρ + 1ð Þ +
2ρ 1 − ρð Þτρ
Γ ρ + 1ð Þ + 1 − ρð Þ2

 !
,

⋮:

ð39Þ

ψ υ, τð Þ = 〠
n

σ=0
ψσ υ, τð Þ = a −

3
ffiffiffi
b

p

2
υ

 !2/3

+
−b3/2 a − 3

ffiffiffi
b

p
/2

� �
υ

� �−1/3
N ρð Þ

0B@
1CA ρτρ

Γ ρ + 1ð Þ + 1 − ρ

� �

+
−b3/2 a − 3

ffiffiffi
b

p
/2

� �
υ

� �−4/3
N2 ρð Þ

0B@
1CA ρτρð Þ2

Γ 2ρ + 1ð Þ +
2ρ 1 − ρð Þτρ
Γ ρ + 1ð Þ + 1 − ρð Þ2

 !
+⋯,

ð40Þ

~ζ υ, μð Þ = μρE ψ υ, τð Þψυυυ υ, τð Þ + ψ υ, τð Þψυ υ, τð Þ + 3ψυ υ, τð Þψυυ υ, τð Þ½ � + μ2ψ υ, 0ð Þ: ð41Þ
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In Eq. (43), υEð:Þdenotes the nonlinear terms given inEq. (24),

Thus by considering powers of X , we get Caputo opera-
tor solution as

X0 : ψ0 υ, τð Þ =E−1 μ2 −
8
3
c cos2

υ

4

� �� �� �
= −

8
3
c cos2

υ

4

� �
,

X1 : ψ1 υ, τð Þ =E−1 μρE L φ0 υ, τð Þð Þ½ �½ � = −
2
3
c2 sin

υ

2

� � τρ

Γ ρ + 1ð Þ ,

X2 : ψ2 υ, τð Þ =E−1 μρE L φ1 υ, τð Þð Þ½ �½ � +E−1 μρE υ1 υ, τð Þ½ �½ � = 1
3
c3 cos

υ

2

� � τ2ρ

Γ 2ρ + 1ð Þ ,

⋮:

ð45Þ

The series form solution of the problem is given as

ψ υ, τð Þ = −
8
3
c cos2

υ

4

� �
−
2
3
c2 sin

υ

2

� � τρ

Γ ρ + 1ð Þ +
1
3
c3 cos

υ

2

� � τ2ρ

Γ 2ρ + 1ð Þ+⋯
� �

,

ð46Þ

which gives the solution at ðρ = 1Þ as, −8/3c cos2
ð1/4ðυ − cτÞÞ.

Now, we implement Elzaki transform technique in combi-
nation with Atangana-Baleanu operator to solve same problem.

Table 1: Comparison of absolute errors of proposed method solution at various fractional-orders with a, b = 1 for problem 1.

τ υ ρ = 0:4 ρ = 0:6 ρ = 0:8 ρ = 1 ETMCFDð Þ ρ = 1 ETMABCð Þ

0.01

0.2 3.0035700000E-04 2.0035600000E-04 1.0035400000E-04 3.5300000000E-07 3.5300000000E-07

0.4 3.0033900000E-04 2.0033800000E-04 1.0033600000E-04 3.3500000000E-07 3.3500000000E-07

0.6 3.0031800000E-04 2.0031700000E-04 1.0031500000E-04 3.1400000000E-07 3.1400000000E-07

0.8 3.0029400000E-04 2.0029300000E-04 1.0029100000E-04 2.9000000000E-07 2.9000000000E-07

1 3.0026800000E-04 2.0026700000E-04 1.0026500000E-04 2.6400000000E-07 2.6400000000E-07

0.02

0.2 3.0071500000E-04 2.0071200000E-04 1.0071000000E-04 7.0700000000E-07 7.0700000000E-07

0.4 3.0067800000E-04 2.0067500000E-04 1.0067300000E-04 6.7000000000E-07 6.7000000000E-07

0.6 3.0063600000E-04 2.0063300000E-04 1.0063100000E-04 6.2800000000E-07 6.2800000000E-07

0.8 3.0058900000E-04 2.0058600000E-04 1.0058400000E-04 5.8100000000E-07 5.8100000000E-07

1 3.0053500000E-04 2.0053200000E-04 1.0053000000E-04 5.2700000000E-07 5.2700000000E-07

0.03

0.2 3.0107100000E-04 2.0106700000E-04 1.0106400000E-04 1.0600000000E-06 1.0600000000E-06

0.4 3.0101600000E-04 2.0101200000E-04 1.0100900000E-04 1.0050000000E-06 1.0050000000E-06

0.6 3.0095300000E-04 2.0094900000E-04 1.0094600000E-04 9.4200000000E-07 9.4200000000E-07

0.8 3.0088200000E-04 2.0087800000E-04 1.0087500000E-04 8.7100000000E-07 8.7100000000E-07

1 3.0080100000E-04 2.0079700000E-04 1.0079400000E-04 7.9000000000E-07 7.9000000000E-07

0.04

0.2 3.0142700000E-04 2.0142200000E-04 1.0141800000E-04 1.4130000000E-06 1.4130000000E-06

0.4 3.0135400000E-04 2.0134900000E-04 1.0134500000E-04 1.3400000000E-06 1.3400000000E-06

0.6 3.0127000000E-04 2.0126500000E-04 1.0126100000E-04 1.2560000000E-06 1.2560000000E-06

0.8 3.0117600000E-04 2.0117100000E-04 1.0116700000E-04 1.1620000000E-06 1.1620000000E-06

1 3.0106700000E-04 2.0106200000E-04 1.0105800000E-04 1.0530000000E-06 1.0530000000E-06

0.05

0.2 3.0178400000E-04 2.0177900000E-04 1.0177300000E-04 1.7670000000E-06 1.7670000000E-06

0.4 3.0169200000E-04 2.0168700000E-04 1.0168100000E-04 1.6750000000E-06 1.6750000000E-06

0.6 3.0158700000E-04 2.0158200000E-04 1.0157600000E-04 1.5700000000E-06 1.5700000000E-06

0.8 3.0146900000E-04 2.0146400000E-04 1.0145800000E-04 1.4520000000E-06 1.4520000000E-06

1 3.0133300000E-04 2.0132800000E-04 1.0132200000E-04 1.3160000000E-06 1.3160000000E-06

φ0 ψð Þ = ψ0 ψ0ð Þυ + 3 ψ0ð Þυ ψ0ð Þυυ + ψ0 ψ0ð Þυυυ,
φ1 ψð Þ = ψ1 ψ0ð Þυ + ψ0 ψ1ð Þυ + 3 ψ1ð Þυ ψ0ð Þυυ + 3 ψ0ð Þυ ψ1ð Þυυ + ψ1 ψ0ð Þυυυ + ψ0 ψ1ð Þυυυ,

⋮:

ð44Þ
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By taking the Elzaki transform, we get

~ζ υ, μð Þ = ρμρ + 1 − ρ

N ρð Þ
� �

E ψ υ, τð Þψυυυ υ, τð Þ½

+ ψ υ, τð Þψυ υ, τð Þ + 3ψυ υ, τð Þψυυ υ, τð Þ� + μ2ψ υ, 0ð Þ:
ð47Þ

Now applying Elzaki perturbation transform technique to
Eq. (47), we obtain

〠
∞

E=0
XE~ζE υ, μð Þ =X

ρμρ + 1 − ρ

N ρð Þ
� �

E 〠
∞

E=0
XEφE υ, τð Þ

 !" #
+ μ2ψ υ, 0ð Þ: ð48Þ

On taking Elzaki inverse transform of Eq. (48), we get

〠
∞

E=0
XEψE υ, τð Þ =XE−1 ρμρ + 1 − ρ

N ρð Þ
� �

E 〠
∞

E=0
XEφE υ, τð Þ

 !" #" #
+E−1 μ2ψ υ, 0ð Þ �

:

ð49Þ

In Eq. (38), υEð:Þ denotes the nonlinear terms given in Eq.
(23). By repeating the same process for nonlinear terms, we
obtain the following terms:

Table 2: Comparison of absolute errors of proposed method solution at various fractional-orders with c = 0:5 for problem 2.

τ υ ρ = 0:4 ρ = 0:6 ρ = 0:8 ρ = 1 ETMCFDð Þ ρ = 1 ETMABCð Þ

0.01

0.2 5.0265200000E-04 3.3503800000E-04 1.6749500000E-04 2.0000000000E-08 2.0000000000E-08

0.4 1.0002620000E-03 6.6670800000E-04 3.3329700000E-04 2.1000000000E-08 2.1000000000E-08

0.6 1.4878770000E-03 9.9171600000E-04 4.9576800000E-04 1.9000000000E-08 1.9000000000E-08

0.8 1.9606260000E-03 1.3068160000E-03 6.5328500000E-04 1.9000000000E-08 1.9000000000E-08

1 2.4137850000E-03 1.6088580000E-03 8.0427600000E-04 1.8000000000E-08 1.8000000000E-08

0.02

0.2 5.0535100000E-04 3.3681900000E-04 1.6839800000E-04 8.2000000000E-08 8.2000000000E-08

0.4 1.0055720000E-03 6.7019200000E-04 3.3503200000E-04 8.2000000000E-08 8.2000000000E-08

0.6 1.4957440000E-03 9.9686700000E-04 4.9831800000E-04 8.0000000000E-08 8.0000000000E-08

0.8 1.9709720000E-03 1.3135820000E-03 6.5662400000E-04 7.7000000000E-08 7.7000000000E-08

1 2.4265060000E-03 1.6171720000E-03 8.0837000000E-04 7.4000000000E-08 7.4000000000E-08

0.03

0.2 5.0779200000E-04 3.3845200000E-04 1.6925200000E-04 1.8600000000E-07 1.8600000000E-07

0.4 1.0103250000E-03 6.7333600000E-04 3.3662600000E-04 1.8400000000E-07 1.8400000000E-07

0.6 1.5027620000E-03 1.0014910000E-03 5.0063600000E-04 1.7900000000E-07 1.7900000000E-07

0.8 1.9801840000E-03 1.3196410000E-03 6.5964500000E-04 1.7300000000E-07 1.7300000000E-07

1 2.4378200000E-03 1.6246040000E-03 8.1206200000E-04 1.6500000000E-07 1.6500000000E-07

0.04

0.2 5.1008200000E-04 3.4000300000E-04 1.7008800000E-04 3.3200000000E-07 3.3200000000E-07

0.4 1.0147360000E-03 6.7627600000E-04 3.3814400000E-04 3.2700000000E-07 3.2700000000E-07

0.6 1.5092490000E-03 1.0057910000E-03 5.0282100000E-04 3.1800000000E-07 3.1800000000E-07

0.8 1.9886830000E-03 1.3252570000E-03 6.6247400000E-04 3.0700000000E-07 3.0700000000E-07

1 2.4482470000E-03 1.6314820000E-03 8.1550800000E-04 2.9300000000E-07 2.9300000000E-07

0.05

0.2 5.1227100000E-04 3.4150300000E-04 1.7092100000E-04 5.1800000000E-07 5.1800000000E-07

0.4 1.0189040000E-03 6.7907600000E-04 3.3961600000E-04 5.1100000000E-07 5.1100000000E-07

0.6 1.5153560000E-03 1.0098610000E-03 5.0491600000E-04 4.9800000000E-07 4.9800000000E-07

0.8 1.9966670000E-03 1.3305580000E-03 6.6517100000E-04 4.8000000000E-07 4.8000000000E-07

1 2.4580280000E-03 1.6379590000E-03 8.1877900000E-04 4.5700000000E-07 4.5700000000E-07

X0 : ψ0 υ, τð Þ =E−1 μ2 −
8
3
c cos2

υ

4

� �� �� �
= −

8
3
c cos2

υ

4

� �� �
,

X1 : ψ1 υ, τð Þ =E−1 ρμρ + 1 − ρ

N ρð Þ
� �

E φ0 υ, τð Þ½ �
� �

=
−2/3c2 sin υ/2ð Þ

N ρð Þ
� �

ρτρ

Γ ρ + 1ð Þ + 1 − ρ

� �
,

X2 : ψ2 υ, τð Þ =E−1 ρμρ + 1 − ρ

N ρð Þ
� �

E φ1 υ, τð Þ½ �
� �

=
1/3c3 cos υ/2ð Þ

N2 ρð Þ

� �
ρτρð Þ2

Γ 2ρ + 1ð Þ +
2ρ 1 − ρð Þτρ
Γ ρ + 1ð Þ + 1 − ρð Þ2

 !
,

⋮:

ð50Þ
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Thus, the approximate solution by means of ABC oper-
ator is given as

which gives the solution at ðρ = 1Þ as, −8/3c cos2
ð1/4ðυ − cτÞÞ.

5. Results and Discussion

In this article, a detailed investigation of error analysis between
exact and approximate solutions, as stated by Tables 1 and 2,
has been conducted with greater accuracy. In table, calculating
the absolute error at various fractional-orders demonstrates the

simplicity and accuracy of the provided method. The error
analysis between the exact and approximate solutions is shown
in Tables 1 and 2, indicating that the series solution quickly
converges to a small value. Also, in Tables 3 and 4, we show
the numerical simulation of the proposed method solution.
As a result, we will only use the third order of the series solution
throughout the numerical evolution. The correctness of the
error analytical result will be increased by inserting more terms
of approximation solution. Figures 1 and 2 depict the

Table 3: Comparison of the exact and proposed method solution at various values of ρ with a, b = 1 for problem 1.

τ υ ρ = 0:4 ρ = 0:6 ρ = 0:8 ρ = 1 approxð Þ ρ = 1 exactð Þ

0.01

0.2 2.391919 2.392019 2.392119 2.392219 2.392219

0.4 2.260796 2.260896 2.260996 2.261096 2.261096

0.6 2.125753 2.125853 2.125953 2.126053 2.126054

0.8 1.986275 1.986375 1.986475 1.986575 1.986576

1 1.841714 1.841814 1.841914 1.842015 1.842014

0.02

0.2 2.391918 2.392018 2.392118 2.392218 2.392218

0.4 2.260795 2.260895 2.260995 2.261095 2.261096

0.6 2.125752 2.125852 2.125952 2.126052 2.126053

0.8 1.986274 1.986374 1.986474 1.986574 1.986575

1 1.841713 1.841813 1.841913 1.842013 1.842014

0.03

0.2 2.391917 2.392017 2.392117 2.392217 2.392218

0.4 2.260794 2.260894 2.260994 2.261094 2.261095

0.6 2.125751 2.125851 2.125951 2.126051 2.126052

0.8 1.986273 1.986373 1.986473 1.986573 1.986574

1 1.841712 1.841812 1.841912 1.842012 1.842013

0.04

0.2 2.391916 2.392016 2.392116 2.392216 2.392217

0.4 2.260793 2.260893 2.260993 2.261093 2.261094

0.6 2.125750 2.125850 2.125950 2.126051 2.126052

0.8 1.986272 1.986372 1.986472 1.986572 1.986573

1 1.841711 1.841811 1.841911 1.842011 1.842012

0.05

0.2 2.391915 2.392015 2.392115 2.392215 2.392216

0.4 2.260792 2.260892 2.260992 2.261093 2.261094

0.6 2.125749 2.125849 2.125949 2.126050 2.126051

0.8 1.986271 1.986371 1.986471 1.986572 1.986573

1 1.841710 1.841810 1.841910 1.842011 1.842012

ψ υ, τð Þ = 〠
n

σ=0
ψσ υ, τð Þ = −

8
3
c cos2

υ

4

� �� �
+

−2/3c2 sin υ/2ð Þ
N ρð Þ

� �
ρτρ

Γ ρ + 1ð Þ + 1 − ρ

� �
+

1/3c3 cos υ/2ð Þ
N2 ρð Þ

� �
ρτρð Þ2

Γ 2ρ + 1ð Þ +
2ρ 1 − ρð Þτρ
Γ ρ + 1ð Þ + 1 − ρð Þ2

 !
+⋯,

ð51Þ
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Table 4: Comparison of the exact and proposed method solution at various values of ρ with c = 0:5 for problem 2.

τ υ ρ = 0:4 ρ = 0:6 ρ = 0:8 ρ = 1 approxð Þ ρ = 1 exactð Þ

0.01

0.2 -1.330522 -1.330354 -1.330186 -1.330019 -1.330019

0.4 -1.321077 -1.320744 -1.320410 -1.320077 -1.320077

0.6 -1.305094 -1.304598 -1.304102 -1.303606 -1.303606

0.8 -1.282732 -1.282079 -1.281425 -1.280772 -1.280772

1 -1.254215 -1.253410 -1.252605 -1.251801 -1.251801

0.02

0.2 -1.330541 -1.330372 -1.330204 -1.330036 -1.330035

0.4 -1.321116 -1.320780 -1.320445 -1.320110 -1.320110

0.6 -1.305151 -1.304652 -1.304154 -1.303656 -1.303656

0.8 -1.282808 -1.282150 -1.281493 -1.280837 -1.280837

1 -1.254307 -1.253498 -1.252689 -1.251881 -1.251881

0.03

0.2 -1.330560 -1.330390 -1.330221 -1.330052 -1.330052

0.4 -1.321153 -1.320816 -1.320480 -1.320143 -1.320143

0.6 -1.305208 -1.304706 -1.304205 -1.303705 -1.303705

0.8 -1.282882 -1.282221 -1.281561 -1.280902 -1.280901

1 -1.254399 -1.253585 -1.252773 -1.251961 -1.251961

0.04

0.2 -1.330579 -1.330409 -1.330239 -1.330069 -1.330069

0.4 -1.321191 -1.320852 -1.320514 -1.320176 -1.320176

0.6 -1.305263 -1.304760 -1.304257 -1.303754 -1.303754

0.8 -1.282955 -1.282291 -1.281629 -1.280966 -1.280966

1 -1.254489 -1.253672 -1.252856 -1.252041 -1.252041

0.05

0.2 -1.330597 -1.330426 -1.330256 -1.330085 -1.330085

0.4 -1.321228 -1.320888 -1.320549 -1.320209 -1.320209

0.6 -1.305318 -1.304813 -1.304308 -1.303803 -1.303803

0.8 -1.283028 -1.282361 -1.281696 -1.281031 -1.281031

1 -1.254578 -1.253758 -1.252939 -1.252121 -1.252120

2.0
1.9

1.8
1.7
1.6

1.5
1.4

1.3

0 0.2 0.4 0.6 0.8 1 0.8 0.6 0.4 0.2 0

𝜐𝜏

Exact

(a)

2.0
1.9

1.8
1.7
1.6

1.5
1.4

1.3

0 0.2 0.4 0.6 0.8 1 0.8 0.6 0.4 0.2 0

𝜐𝜏

Analytical

(b)

Figure 1: The graphical layout of the exact solution, proposed method solution at ρ = 1 and at various fractional orders of ρ = 1,0:8,0:6,0:4
with a, b = 1 for problem 1.
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behaviour of the exact and proposed approach solutions and
describe the properties of the approximate solution. We also
present the proposed approach solution at different fractional-
orders for a better understanding of the problems characteris-
tics. We concluded that the recommended technique solution
was in good agreement with the exact solution based on the
tables and graphs.

6. Conclusion

The main goal of this study is to use an efficient technique to
determine the solution to the fractional Harry Dym equation
and fractional Rosenau-Hyman equation. The proposed
method is used in addition to two fractional derivatives:
Caputo fractional derivative and Atangana-Baleanu frac-
tional derivative. Tables and figures are used to specify the
results of the comparative solution. The tables and figures
show that the suggested technique solution and the exact
result have a better understanding. From the derived results,

it shows the reliability of the algorithm, and it is greatly suit-
able for nonlinear fractional partial differential equation.
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In this paper, we study the Ulam-Hyers-Mittag-Leffler stability for a linear fractional order differential equation with a fractional
Caputo-type derivative using the fractional Fourier transform. Finally, we provide an enumeration of the chemical reactions of the
differential equation.

1. Introduction

Fractional differential equations have more attention in the
research area of mathematics, and there has been significant
progress in this field. However, this idea is not new and as
old as differential equations. The differential equations of
fractional order have proved to be valuable tools in modeling
multiple phenomena in different areas of science and
engineering. Indeed, it has many uses in biology, physics,
electromagnetics, mechanics, electrochemistry, etc. [1–3].
Fractional calculus was initiated from a question raised by
L’Hospital to Leibnitz, which related to his generalization
of meaning of notation ðdny/dxnÞd for the derivative of
order n ∈N ≔ 0, 1, 2,⋯, when n = 1/2?. In his reply, dated
September 30, 1695, Leibnitz wrote to L’Hospital [4], “This
is an apparent paradox from which one-day useful conse-
quences will be drawn.” Recently, Ozaktas and Kutay [5]
published on this topic, dealing with different characteristics
in different ways.

A functional equation is stable if for each approximate
answer there is a definite quantity about it. In 1940, the sim-

ulation and a hit theory suggested by Ulam [6] prompted the
study of stability issues for numerous functional equations.
He gave the University of Wisconsin Mathematical Collo-
quium a long form of talks, presenting a variety of unre-
solved questions. He raised one of the questions that were
connected to the stability of the functional equation: “Give
conditions for a linear function near an approximately linear
function to exist.” The first result concerning the stability of
functional equations was presented by Hyers [7] in 1941.
The stability of the form is subsequently referred to as
Hyers-Ulam stability. In 1978, the generalization associated
with the Hyers theorem given by Rassias [8] makes it possi-
ble for the Cauchy difference to be unbounded. In 2004, Jung
[9] studied the Hyers-Ulam stability of the differential equa-
tions ϑðsÞp′ðsÞ = pðsÞ. Jung [10, 11] continuously published
the general setting for Hyers-Ulam stability of first-order
linear differential equations. In 2006, Jung [12] concentrated
on the Hyers-Ulam stability of an arrangement of differen-
tial equations with coefficients through the utilization of a
matrix approach. Ponmana Selvan et al. [13] have solved
the different types of Ulam stability for the approximate
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solution of a special type of mth-order linear differential
equation with initial and boundary conditions.

Zhang and Li [14] studied the Ulam stabilities of m
-dimensional fractional differential systems with order 1 <
α < 2 in 2011, and in the same year, Li and Zhang [15]
proved the stability of fractional order derivative for differ-
ential equations. In 2013, Ibrahim [16] investigated the
Ulam-Hyers stability for iterative Cauchy fractional differen-
tial equations and Lane-Emden equations. Kalvandi et al.
[17], Liu et al. [18], and Vu et al. [19] presented and proved
the different types of Hyers-Ulam stability of a linear frac-
tional differential equations.

In 2012, Wang et al. [20] carried out pioneering work
on the Hyers-Ulam stability for fractional differential equa-
tions with Caputo derivative using a fixed point approach,
and in the same year, Wang and Zhou [21] proved the
Hyers-Ulam stability of nonlinear impulsive problems for
fractional differential equations. Wang et al. [22] investi-
gated the Mittag-Leffler-Ulam-Hyers stability of fractional
evolution equations.

In 2020, Unyong et al. [23] studied Ulam stabilities of
linear fractional order differential equations in Lizorkin
space using the fractional Fourier transform, and in the same
year, Hammachukiattikul et al. [24] derived some Ulam-
Hyers stability outcomes for fractional differential equations.
In the next year, Ganesh et al. [25] derived some Mittag-Lef-
fler-Hyers-Ulam stability, which makes sure the existence
and individuation of an answer for a delay fractional differ-
ential equation by using the fractional Fourier transform. In
2022, Ganesh et al. [26] carried out pioneering in the field
with the Hyers-Ulam stability for fractional order implicit
differential equations with two Caputo derivatives using a
fractional Fourier transform.

Motivated and inspired by the above results, in this
paper, because of the help of fractional Fourier transform,
we would like to investigate the Ulam-Hyers-Mittag-Leffler
and Ulam-Hyers-Rassias-Mittag-Leffler stability of linear
fractional order differential equations with the fractional
Caputo-type derivative of the form:

CDσ
0+p

� �
sð Þ + η p sð Þ = q sð Þ, ð1Þ

where qðsÞ is a m − times continuously differentiable func-
tion and CDσ

0+ is the fractional Caputo-type derivative of
order σ ∈ ðm − 1,mÞ,m ∈N+.

2. Preliminaries

The following definitions, theorems, notations, and lemmas
will be used to obtain the main objectives of this paper.

Definition 1 (see [27]). The one dimension fractional Fourier
transform with rotational angle σ of function pðsÞ ∈L ′ðRÞ
is given by

Fσ p sð Þ½ � ωð Þ = p̂σ ωð Þ =
ð
R

Kσ s, ωð Þp sð Þds, ω ∈R, ð2Þ

where the kernel

Kσ s, ωð Þ =
Cσe

i p2+ω2ð Þ cot σð Þ/2ð Þ−ipω cosec σ, if σ ≠mπ,
1ffiffiffiffiffiffi
2π

p e−ipω, if σ =
π

2
,

8><
>:

Cσ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − i cot σ

2π

r
:

ð3Þ

As such, the inversion formula of fractional Fourier
transform is given by

p sð Þ = 1
2π

ð
R

Kσ s, ωð Þp̂σ ωð Þdω, s ∈R, ð4Þ

where the kernel

�Kσ s, ωð Þ =
C ′σe −i p2+ω2ð Þ cot σð Þ/2ð Þ+ipω cosec σ, if σ ≠mπ,
1ffiffiffiffiffiffi
2π

p eipω, if σ =
π

2
,

8><
>:

C ′σ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π 1 + i cot σð Þ

p
:

ð5Þ

Definition 2. The Mittag-Leffler function is given in the
following manner:

Eσ sð Þ = 〠
∞

m=0

sm

Γ σm + 1ð Þ ,  σ > 0ð Þ One parameterð Þ,

Eσ,μ sð Þ = 〠
∞

m=0

sm

Γ σm + μð Þ ,  σ > 0, μ > 0ð Þ Two parametersð Þ:

ð6Þ

where σ and μ are nonnegative constant.

Definition 3 (see [28]). The fractional integral operator of
order s > 0 of a function p ∈L1ðR+Þ is written as

Iσ0+p sð Þ = 1
Γ σð Þ

ðs
0
s − uð Þ σ−1ð Þp uð Þ du, s > 0, ð7Þ

where Γð:Þ is the gamma function and Re > 0.

Definition 4 (see [28]). The Riemann-Liouville fractional
order derivative of s > 0,m − 1 < σ <m,m ∈N , is written as

RLDσ
0+p

� �
sð Þ = 1

Γ m − σð Þ
d
ds

� �mðs
0
s − uð Þ m−σ−1ð Þp uð Þdu,

ð8Þ

where the function pðsÞ is a continuous derivatives upto
order ðm − 1Þ.
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Definition 5 (see [28]). The fractional Caputo-type derivative
of order s > 0,m − 1 < σ <m,m ∈N , is written as

CDσ
0+p

� �
sð Þ = 1

Γ m − σð Þ
ðs
0
s − uð Þ m−σ−1ð Þp nð Þ uð Þdu, ð9Þ

where the function pðsÞ is a continuous derivatives up to
order ðm − 1Þ. Then, let s > 0, σ ∈R,m − 1 < σ <m,m ∈N .
The relation between Caputo and Riemann-Liouville frac-
tional derivative is given by

CDσ
0+p

� �
sð Þ = Dσ

0+pð Þ sð Þ − 〠
m−1

k=0

s − að Þk−σ
Γ k − σ + 1ð Þ p

kð Þ 0ð Þ: ð10Þ

Definition 6. Equation (1) has Ulam-Hyers-Mittag-Leffler
stability, if there exist a continuously differentiable function
pðsÞ satisfying the inequality

CDσ
0+p

� �
sð Þ + η p sð Þ − q sð Þ

��� ��� ≤ εEσ sð Þ,∀s > 0, ð11Þ

for every ε > 0, there exists a solution pσðsÞ satisfying
Equation (1) such that

p sð Þ − pσ sð Þj j ≤HεEσ sð Þ, ð12Þ

where H is a nonnegative and stability constant.

Definition 7. The considered ϕ : ð0,∞Þ⟶ ð0,∞Þ is a func-
tion. Equation (1) has Ulam-Hyers-Rassias-Mittag-Leffler
stability, if there exist a continuously differentiable function
pðsÞ satisfying the inequality

CDσ
0+p

� �
sð Þ + η p sð Þ − q sð Þ

��� ��� ≤ εϕ sð ÞEσ sð Þ,∀s > 0, ð13Þ

for every ε > 0, there exists a solution pσðsÞ satisfying
Equation (1) such that

p sð Þ − pσ sð Þj j ≤Hϕ sð ÞεEσ sð Þ, ð14Þ

where H is a nonnegative and stability constant.

3. Main Results

In this section, we will investigate to help of fractional
Fourier transform to study the Ulam-Hyers-Mittag-Leffler
stability of (1).

Theorem 8. If a function pðsÞ satisfies the inequality (11) for
every ε > 0, there exists a solution pσðsÞ satisfying Equation
(1) such that

p sð Þ − pσ sð Þj j ≤HεEσ sð Þ: ð15Þ

Proof. Let us choose a function yðsÞ follow as

y sð Þ = CDσ
0+p

� �
sð Þ + ηp sð Þ − q sð Þ: ð16Þ

Now,

y sð Þ = Dσpð Þ sð Þ − 〠
m−1

k=0

sk−σ

Γ k − σ + 1ð Þ p
kð Þ 0ð Þ + ηp sð Þ − q sð Þ,∀s > 0:

ð17Þ

Taking Fσ (the fractional Fourier transform oprator)
onto both sides of Equation (17), we have

Fσ y sð Þf g =Fσ Dσp sð Þ − 〠
m−1

k=0

sk−σ

Γ k − σ + 1ð Þ p
kð Þ 0ð Þ + ηp sð Þ − q sð Þ

( )

= iωn/σ� 	σ
Fσ p sð Þf g − eiω

n/σa 〠
m−1

k=0
ak

sk−σ

Γ k − σ + 1ð Þ iωn/σð Þk−σ+1
+ ηFσ p sð Þð Þ − Ĝa ωð Þ,

ð18Þ

where pðkÞð0Þ = ak, for k = 0, 1,⋯,m − 1 and

Fσ p sð Þf g = Fσ y sð Þf g
iωn/σð Þ + ηð Þ

+
eiω

n/σa

iωn/σð Þ + ηð Þ 〠
m−1

k=0

ak
iωn/σð Þ + ηð Þ +

Ĝa ωð Þ
iωn/σð Þ + ηð Þ :

ð19Þ

Setting

pσ sð Þ = 〠
p−1

k=n
akpk 0ð Þ +

ðs
0
s − νð Þν−1Eσ η s − νð Þν−1
 �

q sð Þdν:

ð20Þ

By using fractional Fourier transform to (20), we have

Fσ pσ sð Þf g = eiω
n/σa

iωn/σð Þ + ηð Þ 〠
m−1

k=0

ak
iωn/σð Þ + ηð Þ +

Ĝa ωð Þ
iωn/σð Þ + ηð Þ :

ð21Þ

Hence,

CDσ
0+p

� �
sð Þ + η p sð Þ = iωn/σ� 	σ

Fσ p sð Þf g

− eiω
n/σa 〠

m−1

k=0
ak

sk−σ

Γ k − σ + 1ð Þ iωn/σð Þk−σ+1
+ ηFσ p sð Þð Þ − Ĝa ωð Þ

= q sð Þ:
ð22Þ
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Since Fσ is one-to-one operator, ð CDσ
0+pÞðsÞ + η pðsÞ =

qðsÞ. Now, its follows form (19) and (21) that

Fσ p sð Þf g −Fσ pσ sð Þf g = Fσ y sð Þf g
iωn/σð Þ + ηð Þ : ð23Þ

Using the convolution property, we obtain

Fσ p sð Þ − pσ sð Þf g =Fσ y sð Þf g ∗ 1
iωn/σð Þ + ηð Þ = y sð Þ ∗ yσ sð Þ,

ð24Þ

where yσðsÞ = 1/ððiωn/σÞ + ηÞ. In view of (13), we have

y sð Þj j ≤ εEσ sð Þ,∀s > 0: ð25Þ

Now, applying the modules on both sides of Equation
(24), we get

p sð Þ − pσ sð Þj j =
ðs
0
s − xð Þσ−1Eσ η s − νð Þσð Þ ∗ y sð Þdν

����
����

≤ y sð Þj j
ðs
0
s − νð Þσ−1Eσ η s − νð Þσð Þdν

����
����

≤ εEσ sð Þ
ðs
0
s − νð Þσ−1Eσ η s − xð Þσð Þdν

����
����

≤HεEσ sð Þ:

ð26Þ

where H = jÐ s0ðs − xÞσ−1Eσðηðs − xÞσÞdνj. Thus Equation (1)
has Ulam-Hyers-Mittag-Leffler stability.

Corollary 9. The considered ϕ : ð0,∞Þ⟶ ð0,∞Þ is a func-
tion. If a function pðsÞ satisfies the inequality (13), for every
ε > 0, there exists a solution pσðsÞ satisfying Equation (1)
such that

p sð Þ − pa sð Þj j ≤Hϕ sð ÞεEσ sð Þ,∀s > 0: ð27Þ

i.e., Equation (1) has Ulam-Hyers-Rassias-Mittag-Leffler
stability.

4. Applications

In this section, the standard kinetic equation in the chem-
ical reaction that will be used to analyze this experimental
data is revealed by the equation as follows: where L =
xylan; M = xylose; N = products of decomposition; r1 =
release rate of sugar; r2 = decomposition rate of sugar. The
model is presented in Figure 1.

Material balance for components: }L} and }M} for the
first-order kinetic equation, we get

−
dNL sð Þ

ds
= r1NL sð Þ, ð28Þ

in which the initial concentration at s = 0 is presented by NL

=NL0
. Also, we have the same direction for material M:

−
dNM sð Þ

ds
= r1NL sð Þ − r2NM sð Þ, ð29Þ

in which the initial concentration at s = 0 is presented by
NM =NM0

. Equation (29) can be integrated and, using the
provided boundary condition, yields

NL sð Þ =NL0
  exp −r1sð Þ: ð30Þ

Substituting (30) for (29) yields

dNM sð Þ
ds

+ r2NM sð Þ = r1NL0
  exp −r1sð Þ: ð31Þ

Now, if we take the fractional Caputo derivative in (31)
instead of the classical ones, we have

CDσNM sð Þ + r2NM sð Þ = r1NL0
  exp −r1sð Þ: ð32Þ

Figure 2 shows the solution of Equation (32) for various
r1 and r2.

5. Conclusions

In this paper, the objective is investigated by using the frac-
tional Fourier transform to study the Ulam-Hyers-Mittag-
Leffler stability of linear fractional differential equations.
The required outcomes have been achieved by using the
fractional Fourier transform. We could reach the suitable
approximation value of xylose after a certain period of time,
which is crucial for analyzing the kinetic equation in the
chemical reaction process.

Xylan Xylose Decomposed products

r2r1

Figure 1: The presented model.
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Figure 2: Solution of Equation (32) for different values ðr1 =
0:012&r2 = 0:005Þ,ðr1 = 0:014&r2 = 0:005Þ, and ðr1 = 0:025&r2 =
0:005Þ with σ = 1/2.
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The main motivation of this study is to introduce a novel auxiliary result of Simpson’s formula by employing the Mercer scheme
for twice differentiable functions involving the Atangana-Baleanu (AB) fractional integral operator concerned with the Mittag-
Leffler as a nonsingular or nonlocal kernel. Thus, by employing Mercer’s convexity on twice differentiable mappings along
with Hölder’s and power-mean inequalities, one can develop a variety of new Simpson’s error estimates. Lastly, some
applications to q-digamma function and modified Bessel functions are presented. Furthermore, the graphical illustrations
described the efficiency and applicability of the proposed technique with success. We make links between our findings and a
number of well-known discoveries in the literature. It is hoped that the proposed methodology will provide a new venue in the
numerical techniques for calculating the quadrature formulae.

1. Introduction

Convex functions have gained a lot of popularity in recent
years. Convex functions are frequently used in various areas
of current analysis in a variety of mathematical disciplines.
They are magical, especially in optimization theory, because
they have so many useful properties. Inequality theory and
convex functions have a strong relationship. Convex func-
tions can be used to obtain a variety of important and useful
inequalities. Due to wide range of implementations, it is
among the most advanced branches of mathematical model-
ing. Convex functions are the topic of research in a number
of disciplines due to their applicability in inequality theory
and defined as:

ϕ κϰ + 1 − κð Þϰ1ð Þ ≤ κϕ ϰð Þ + 1 − κð Þϕ ϰ1ð Þ, ð1Þ

where ϕ : ½ζ1, ζ2� ⊆R⟶R is a convex function which
holds for all ϰ, ϰ1 ∈ ½ζ1, ζ2� and κ ∈ ½0, 1�.

Additional information of different types of convexity
and their contribution to inequalities can be found here,
see [1, 2]. The improvement and exploration of the integral
inequalities referring to convex functions is primarily moti-
vated based on the research and findings presented in these
books. Because of their wide range of implementations such
as probability theory, information theory, computational
problems, and optimization, the Jensen and related inequal-
ities are essential and well-known inequalities for convex
functions. See [3, 4] and references there in.

One of the most significant inequality that we may say is
the natural extension of convex function is Jensen-Mercer
inequality [5] given as:

ϕ ζ1 + ζ2 − 〠
n

j=1
Θj ϰj

 !
≤ ϕ ζ1ð Þ + ϕ ζ2ð Þ − 〠

n

j=1
Θj ϕ ϰj

� �
, ð2Þ
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where ϕ on ½ζ1, ζ2� is a convex function ∀ϰj ∈ ½ ζ1, ζ2� and all
Θj ∈ ½0, 1� where

〠
n

j=1
Θj = 1: ð3Þ

It is the most effective inequality in predicting the esti-
mations of bounds of distance functions in information the-
ory [6].

Many researchers put an effort in this direction to build
new results such as fractional variants of Hermite Jensen-
Mercer type inequalities along with applications [7], Moradi
and Furuichi worked for the improvement and generaliza-
tion of Jensen-Mercer-type inequalities [8], Kian and Mosle-
hian worked for the improvement of operator Jensen-
Mercer inequality [9], Niezgoda worked on generalization
of Mercer’s result on convex function [10], and Harovath
gave some notes on Jensen-Mercer inequality [11]. A lot of
work has been done on Jensen-Mercer-type inequality in
Yang’s Calculus, one can see [12, 13].

An inequality which is notable as Simpson’s inequality is
as follows.

Theorem 1 (see [14]). Suppose that ϕ : ½ζ1, ζ2�⟶ℝ is a
four-time continuously differentiable mapping on ðζ1, ζ2Þ,
and let kϕð4Þk∞ = supϰ∈ðζ1 ,ζ2Þjϕð4ÞðϰÞj <∞, then the following
inequality holds:

1
3

ϕ ζ1ð Þ + ϕ ζ2ð Þ
2

+ 2ϕ
ζ1 + ζ2

2

� �� �
−

1
ζ2 − ζ1

ðζ2
ζ1

ϕ ϰð Þdϰ
�����

�����
≤

1
2880

ϕ 4ð Þ
			 			

∞
ζ2 − ζ1ð Þ4:

ð4Þ

The results of Simpson type inequalities for convex map-
pings have been looked by various writers because convex
theory is an excellent technique to deal with a sizable num-
ber of issues from various mathematical disciplines. Specifi-
cally, differentiable functions are utilized to demonstrate
some Simpson’s type inequalities for s-convex functions
[15], and then, the inequality extended to Riemann-
Liouville fractional integrals [16]. A lot of work has been
done utilizing this inequality for first derivative, one can
see [17, 18].

Sarikaya et al. [19] explored numerous Simpson type
inequalities for functions whose second derivatives are con-
vex. The first and second outcomes on fractional Simpson
inequality for twice differentiable functions were established
in [14, 20]. With the help of these articles, the aim of this
paper is to extend the results given in [19] for twice differen-
tiable functions to generalized fractional integrals. Nowa-
days, twice differentiable functions are topic of interest for
most of the researchers. We will use Mercer convexity along
with twice differentiability for Simpson type inequalities to
improve our outcomes and give new bounds.

Here, a lemma that is given in [14] stated as follows.

Lemma 2. If there is a mapping ϕ : ½ζ1, ζ2�⟶ℝ that is
absolutely continuous on ðζ1, ζ2Þ considering ϕ′′ ∈ L1ð½ζ1, ζ2
�Þ, then the following equality holds:

1
6

ϕ ζ1ð Þ + 4ϕ
ζ1 + ζ2

2

� �
+ ϕ ζ2ð Þ

� �

−
2ϖ−1Γ ϖ + 1ð Þ

ζ2 − ζ1ð Þϖ Jϖζ2−ϕ
ζ1 + ζ2

2

� �
+ Jϖζ1+ϕ

ζ1 + ζ2
2

� �� �

= ζ2 − ζ1ð Þ2
8 ϖ + 1ð Þ

ð1
0

1
3

1 − 2ϖ 1 − κð Þ + 2 − 3κϖ
� �

κ

 �� �

× ϕ′′ 1 + κ

2
ζ2 +

1 − κ

2
ζ1

� �� �
+ ϕ′′ 1 + κ

2
ζ1 +

1 − κ

2
ζ2

� �� �� �
dκ:

ð5Þ

We will extend this result for a new fractional integral
operator along with mercer convexity. It is not easy to deal
with double derivative; we have worked on double derivative
for a new operator along with Mercer convexity. It is
completely new idea, and in this way, the generalized out-
comes will increase its worth and captures interest of many
scholars toward this field.

The generalization of classical calculus, fractional calcu-
lus, is widely used in sciences, particularly engineering. The
classical calculus offers an excellent method for modelling
and explaining numerous essential dynamic processes in
most sections of applied sciences. The hypothesis of frac-
tional calculus was developed to merge and generalise n
-fold integration and integer-order differentiation. The field
of applied sciences includes fractional analysis. Many results
based on fractional models have been published in various
fields of science [21].

The fractional operators of integral and derivative helps in
improving the relationships between mathematics and other
specialisations by providing solutions that are more closely
related to real-world problems. Fractional integral and deriva-
tive operators have evolved over time [22, 23]. Some fractional
numerical simulations can be seen in [24, 25]. In their review
article “Fractional calculus in the sky,” [26] D. Baleanu and R.
P. Agrwal, two esteemed professors, provide the most recent
compact review of fractional calculus.

Definition 3 (see [27]). Let ζ2 > ζ1, ϖ ∈ ½0, 1� and ϕ ∈H1ðζ1,
ζ2Þ, then the new fractional derivative is:

ABC
ζ1

Dϖ
κ ϕ κð Þ½ � = B ϖð Þ

1 − ϖ

ðκ
ζ1

ϕ′ ϰð ÞEϖ −ϖ
κ − ϰð Þϖ
1 − ϖð Þ

� �
dϰ: ð6Þ

Definition 4 (see [27]). Let ϕ ∈H1ðζ1, ζ2Þ, ζ1 > ζ2, ϖ ∈ ½0, 1�,
then we have:

ABR
ζ1

Dϖ
κ ϕ κð Þ½ � = B ϖð Þ

1 − ϖ

d
dκ

ðκ
ζ1

ϕ ϰð ÞEϖ −ϖ
κ − ϰð Þϖ
1 − ϖð Þ

� �
dϰ: ð7Þ
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Definition 5 (see [27]). Let ϕ ∈H1ðζ1, ζ2Þ, then with nonlocal
kernel, the fractional integral operator is defined as:

AB
ζ1
Iϖκ ϕ κð Þf g = 1 − ϖ

B ϖð Þ ϕ κð Þ + ϖ

B ϖð ÞΓ ϖð Þ
ðκ
ζ1

ϕ ϰ1ð Þ κ − ϰ1ð Þϖ−1dϰ1,

ð8Þ

where ζ2 > ζ1, ϖ ∈ ½0, 1�:

In [28], AB-fractional integral operator’s right hand side
is:

AB
ζ2
Iϖκ ϕ κð Þf g = 1 − ϖ

B ϖð Þ ϕ κð Þ + ϖ

B ϖð ÞΓ ϖð Þ
ðζ2
κ

ϕ ϰ1ð Þ ϰ1 − κð Þϖ−1dϰ1:

ð9Þ

Because the normalization function BðϖÞ is positive, any
positive function has a positive fractional AB-integral. It is
worth noting that the classical integral is obtained when
the order is ϖ⟶ 1, while the initial function is obtained
when the order is ϖ⟶ 0. In the theory of integral inequal-
ities involving AB operators, there has been some recent
progress. One can see in [29, 30].

The purpose of this analysis is to utilize the AB integral
operator to propose novel Mercer type inequalities for con-
vex functions. The utmost objective is to acquire outcomes
that create particular Mercer type inequalities by employing
AB operators and elaborate the facts more appropriately in
terms of the operator’s qualities and kernel structure.
Inequalities of the classical Mercer type and their different
versions are created in the case when we have ϖ = 1 in the
obtained results. This significant achievement is attributed
to the AB fractional integral operator exhibiting the heredity
characteristic. The exponential and power law functions are
not as good as the generalized Mittag-Leffler function with
robust memory entangled in the AB fractional formulation.
Furthermore, the Atangana-Baleanu fractional-order deriva-
tive is at the same time Liouville-Caputo and Caputo-
Fabrizio thus possesses Markovian and non-Markovian
properties. Meanwhile, the graphical construction represents
the comparison between the error and error estimates clearly
with the aid of MATLAB 2021 package. Finally, the obtained
outcomes were backed up by diminished outcomes and
implementations.

2. Novel Simpson’s Atangana-
Baleanu Inequalities

Here, we present Mercer type Simpson’s inequalities for
Atangana-Baleanu integral operator for differentiable func-
tions on ðν1, ν2Þ. For this, we give a new Atangana-
Baleanu integral operator auxiliary identity that will serve
to produce subsequent results for improvements.

Lemma 6. If there is a mapping ϕ : ½ν1, ν2�⟶ℝ that is
absolutely continuous on ðν1, ν2Þ considering ϕ′′ ∈ L1ð½ν1,
ν2�Þ, where ζ1, ζ2 ∈ ½ν1, ν2�, then the following equality holds:

1
6

ϕ ν1 + ν2 − ζ1ð Þ + 4ϕ ν1 + ν2 −
ζ1 + ζ2

2

� �
+ ϕ ν1 + ν2 − ζ2ð Þ

� �

−
2ϖ−1

ζ2 − ζ1ð Þϖ
AB
ν1+ν2−ζ1ð ÞI

ϖ
ν1+ν2−ζ1+ζ2/2ð Þϕ ν1 + ν2 −

ζ1 + ζ2
2

� ��

+ AB
ν1+ν2−ζ2ð ÞI

ϖ
ν1+ν2−ζ1+ζ2/2ϕ ν1 + ν2 −

ζ1 + ζ2
2

� ��

+ 2 1 − ϖð Þ2ϖ−1
B ϖð Þ ζ2 − ζ1ð Þϖ ϕ ν1 + ν2 −

ζ1 + ζ2
2

� �

= ζ2 − ζ1ð Þ2
8 ϖ + 1ð Þ

ð1
0

1
B ϖð ÞΓ ϖð Þ

1
3

1 − 2ϖ 1 − κð Þ + 2 − 3κϖ
� �

κ

 �� �

× ϕ′′ ν1 + ν2 −
1 + κ

2
ζ2 +

1 − κ

2
ζ1

� �� ��

+ ϕ′′ ν1 + ν2 −
1 + κ

2
ζ1 +

1 − κ

2
ζ2

� �� ��
dκ:

ð10Þ

Proof. We note that

I1 =
1

B ϖð ÞΓ ϖð Þ
ð1
0

1
3 1 − 2ϖ 1 − κð Þ + 2 − 3κϖ

� �
κ


 �� �

× ϕ′′ ν1 + ν2 −
1 + κ

2 ζ2 +
1 − κ

2 ζ1

� �� �� �
dκ,

ð11Þ

using integration by parts; we obtain

= 1
B ϖð ÞΓ ϖð Þ

1
3 1 − 2ϖ 1 − κð Þ + 2 − 3κϖ

� �
κ


 �� �

� ϕ′ ν1 + ν2 − 1 + κð Þ/2ð Þζ2 + 1 − κð Þ/2ð Þζ1ð Þð Þ
ζ1 − ζ2ð Þ/2

" #�����
1

0

−
1

B ϖð ÞΓ ϖð Þ
ð1
0

2 ϖ + 1ð Þ
3 − ϖ + 1ð Þκϖ

� �

� ϕ′ ν1 + ν2 − 1 + κð Þ/2ð Þζ2 + 1 − κð Þ/2ð Þζ1ð Þð Þ
ζ1 − ζ2ð Þ/2

" #
dκ

= −2 1 − 2ϖð Þ
3 ζ1 − ζ2ð ÞB ϖð ÞΓ ϖð Þ ϕ′ ν1 + ν2 −

ζ1 + ζ2
2

� �

−
2

ζ1 − ζ2ð ÞB ϖð ÞΓ ϖð Þ ×
ð1
0

2 ϖ + 1ð Þ
3 − ϖ + 1ð Þκϖ

� �

� ϕ′ ν1 + ν2 −
1 + κ

2 ζ2 +
1 − κ

2 ζ1

� �� �� �
dκ

= 2 1 − 2ϖð Þ
3 ζ2 − ζ1ð ÞB ϖð ÞΓ ϖð Þ ϕ′ ν1 + ν2 −

ζ1 + ζ2
2

� �

+ 4 ϖ + 1ð Þ
3 ζ2 − ζ1ð Þ2B ϖð ÞΓ ϖð Þ

ϕ ν1 + ν2 − ζ2ð Þ

+ 8 ϖ + 1ð Þ
3 ζ2 − ζ1ð Þ2B ϖð ÞΓ ϖð Þ

ϕ ν1 + ν2 −
ζ1 + ζ2

2

� �

−
4ϖ ϖ + 1ð Þ

ζ2 − ζ1ð Þ2B ϖð ÞΓ ϖð Þ

ð1
0
κϖ−1ϕ ν1 + ν2 −

1 + κ

2 ζ2 +
1 − κ

2 ζ1

� �� �
dκ:

ð12Þ
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By the change of the variable ϰ = ν1 + ν2 − ððð1 + κÞ/2Þ
ζ2 + ðð1 − κÞ/2Þζ1Þ for κ ∈ ½0, 1�, we have

= 2 1 − 2ϖð Þ
3 ζ2 − ζ1ð ÞB ϖð ÞΓ ϖð Þϕ′ ν1 + ν2 −

ζ1 + ζ2
2

� �

+ 4 ϖ + 1ð Þ
3 ζ2 − ζ1ð Þ2B ϖð ÞΓ ϖð Þ

ϕ ν1 + ν2 − ζ2ð Þ

+ 8 ϖ + 1ð Þ
3 ζ2 − ζ1ð Þ2B ϖð ÞΓ ϖð Þ

ϕ ν1 + ν2 −
ζ1 + ζ2

2

� �

−
8ϖ ϖ + 1ð Þ2ϖ−1

B ϖð ÞΓ ϖð Þ ζ2 − ζ1ð Þϖ+2
ðν1+ν2−ζ1+ζ2/2
ν1+ν2−ζ2

ϕ ϰð Þ

� ν1 + ν2 −
ζ1 + ζ2

2

� �
− ϰ

� �ϖ−1
dϰ:

ð13Þ

Add and subtract ð1 − ϖÞ/BðϖÞð8ðϖ + 1Þ2ϖ−1Þ/ð
ðζ2 − ζ1Þϖ+2Þϕðν1 + ν2 − ððζ1 + ζ2Þ/2ÞÞ in Equation (13); we
have

= 2 1 − 2ϖð Þ
3 ζ2 − ζ1ð ÞB ϖð ÞΓ ϖð Þ ϕ′ ν1+ν2−

ζ1+ζ2
2

� �

+ 4 ϖ + 1ð Þ
3 ζ2 − ζ1ð Þ2B ϖð ÞΓ ϖð Þ

ϕ ν1 + ν2 − ζ2ð Þ

+ 8 ϖ + 1ð Þ
3 ζ2 − ζ1ð Þ2B ϖð ÞΓ ϖð Þ

ϕ ν1 + ν2 −
ζ1 + ζ2

2

� �

−
1 − ϖð Þ
B ϖð Þ

8 ϖ + 1ð Þ2ϖ−1
ζ2 − ζ1ð Þϖ+2

ϕ ν1 + ν2 −
ζ1 + ζ2

2

� �"

+ 8ϖ ϖ + 1ð Þ2ϖ−1
B ϖð ÞΓ ϖð Þ ζ2 − ζ1ð Þϖ+2

ðν1+ν2−ζ1+ζ2/2
ν1+ν2−ζ2

ϕ ϰð Þ

� ν1 + ν2 −
ζ1 + ζ2

2

� �
− u

� �ϖ−1
dϰ

#

+ 1 − ϖð Þ
B ϖð Þ

8 ϖ + 1ð Þ2ϖ−1
ζ2 − ζ1ð Þϖ+2

ϕ ν1 + ν2 −
ζ1 + ζ2

2

� �
,

ð14Þ

= 2 1 − 2ϖð Þ
3 ζ2 − ζ1ð ÞB ϖð ÞΓ ϖð Þϕ′ ν1 + ν2 −

ζ1 + ζ2
2

� �

+ 4 ϖ + 1ð Þ
3 ζ2 − ζ1ð Þ2B ϖð ÞΓ ϖð Þ

ϕ ν1 + ν2 − ζ2ð Þ

+ 8 ϖ + 1ð Þ
3 ζ2 − ζ1ð Þ2B ϖð ÞΓ ϖð Þ

ϕ ν1 + ν2 −
ζ1 + ζ2

2

� �
−
8 ϖ + 1ð Þ2ϖ−1
ζ2 − ζ1ð Þϖ+2

� AB
ν1+ν2−ζ2ð ÞI

ϖ
ν1+ν2− ζ1+ζ2ð Þ/2ð Þð Þϕ ν1 + ν2 −

ζ1 + ζ2
2

� �� �

+ 1 − ϖð Þ
B ϖð Þ

8 ϖ + 1ð Þ2ϖ−1
ζ2 − ζ1ð Þϖ+2

ϕ ν1 + ν2 −
ζ1 + ζ2

2

� �
:

ð15Þ

Similarly, we have

I2 =
1

B ϖð ÞΓ ϖð Þ
ð1
0

1
3 1 − 2ϖ 1 − κð Þ + 2 − 3κϖ

� �
κ


 �� �

× ϕ′′ ν1 + ν2 −
1 + κ

2 ζ1 +
1 − κ

2 ζ2

� �� �� �
dκ,

ð16Þ

using integration by parts; we obtain

= −2 1 − 2ϖð Þ
3 ζ2 − ζ1ð ÞB ϖð ÞΓ ϖð Þ ϕ′ ν1 + ν2 −

ζ1 + ζ2
2

� �

+ 4 ϖ + 1ð Þ
3 ζ2 − ζ1ð Þ2B ϖð ÞΓ ϖð Þ

ϕ ν1 + ν2 − ζ1ð Þ

+ 8 ϖ + 1ð Þ
3 ζ2 − ζ1ð Þ2B ϖð ÞΓ ϖð Þ

ϕ ν1 + ν2 −
ζ1 + ζ2

2

� �

−
4ϖ ϖ + 1ð Þ

ζ2 − ζ1ð Þ2B ϖð ÞΓ ϖð Þ

ð1
0
κϖ−1ϕ

� ν1 + ν2 −
1 + κ

2 ζ1 +
1 − κ

2 ζ2

� �� �
dκ:

ð17Þ

By the change of the variable ϰ = ν1 + ν2 − ððð1 + κÞ/2Þ
ζ1 + ðð1 − κÞ/2Þζ2Þ for κ ∈ ½0, 1�, we have

= −2 1 − 2ϖð Þ
3 ζ2 − ζ1ð ÞB ϖð ÞΓ ϖð Þϕ′ ν1+ν2−

ζ1+ζ2
2

� �

+ 4 ϖ + 1ð Þ
3 ζ2 − ζ1ð Þ2B ϖð ÞΓ ϖð Þ

ϕ ν1 + ν2 − ζ1ð Þ

+ 8 ϖ + 1ð Þ
3 ζ2 − ζ1ð Þ2B ϖð ÞΓ ϖð Þ

ϕ ν1 + ν2 −
ζ1 + ζ2

2

� �
,

ð18Þ

−
8ϖ ϖ + 1ð Þ2ϖ−1

B ϖð ÞΓ ϖð Þ ζ2 − ζ1ð Þϖ+2
ðν1+ν2−ζ1
ν1+ν2−ζ1+ζ2/2

ϕ ϰð Þ

· ϰ − ν1 + ν2 −
ζ1 + ζ2

2

� �� �ϖ−1
dϰ:

ð19Þ

Add and subtract ð1 − ϖ/BðϖÞÞð8ðϖ + 1Þ2ϖ−1/
ðζ2 − ζ1Þϖ+2Þϕðν1 + ν2 − ζ1 + ζ2/2Þ in Equation (19); we have

= −2 1 − 2ϖð Þ
3 ζ2 − ζ1ð ÞB ϖð ÞΓ ϖð Þ ϕ′ ν1+ν2−

ζ1+ζ2
2

� �

+ 4 ϖ + 1ð Þ
3 ζ2 − ζ1ð Þ2B ϖð ÞΓ ϖð Þ

ϕ ν1 + ν2 − ζ1ð Þ

+ 8 ϖ + 1ð Þ
3 ζ2 − ζ1ð Þ2B ϖð ÞΓ ϖð Þ

ϕ ν1 + ν2 −
ζ1 + ζ2

2

� �

−
1 − ϖð Þ
B ϖð Þ

8 ϖ + 1ð Þ2ϖ−1
ζ2 − ζ1ð Þϖ+2

ϕ ν1 + ν2 −
ζ1 + ζ2

2

� �"
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+ 8ϖ ϖ + 1ð Þ2ϖ−1
B ϖð ÞΓ ϖð Þ ζ2 − ζ1ð Þϖ+2

ðν1+ν2−ζ1
ν1+ν2−ζ1+ζ2/2

ϕ ϰð Þ

· ν1 + ν2 −
ζ1 + ζ2

2

� �
− ϰ

� �ϖ−1
dϰ�

+ 1 − ϖð Þ
B ϖð Þ

8 ϖ + 1ð Þ2ϖ−1
ζ2 − ζ1ð Þϖ+2

ϕ ν1 + ν2 −
ζ1 + ζ2

2

� �
,

ð20Þ

= −2 1 − 2ϖð Þ
3 ζ2 − ζ1ð ÞB ϖð ÞΓ ϖð Þ ϕ′ ν1 + ν2 −

ζ1 + ζ2
2

� �

+ 4 ϖ + 1ð Þ
3 ζ2 − ζ1ð Þ2B ϖð ÞΓ ϖð Þ

ϕ ν1 + ν2 − ζ1ð Þ

+ 8 ϖ + 1ð Þ
3 ζ2 − ζ1ð Þ2B ϖð ÞΓ ϖð Þ

ϕ ν1 + ν2 −
ζ1 + ζ2

2

� �
−
8 ϖ + 1ð Þ2ϖ−1
ζ2 − ζ1ð Þϖ+2

� AB
ν1+ν2−ζ1ð ÞI

ϖ
ν1+ν2−ζ1+ζ2/2ð Þϕ ν1 + ν2 −

ζ1 + ζ2
2

� �� �

+ 1 − ϖð Þ
B ϖð Þ

8 ϖ + 1ð Þ2ϖ−1
ζ2 − ζ1ð Þϖ+2

ϕ ν1 + ν2 −
ζ1 + ζ2

2

� �
:

ð21Þ

Add Equations (15) and (21), also multiplying both sides
by ðζ2 − ζ1Þ2/8ðϖ + 1Þ, then we get

1
6 ϕ ν1 + ν2 − ζ1ð Þ + 4ϕ ν1 + ν2 −

ζ1 + ζ2
2

� �
+ ϕ ν1 + ν2 − ζ2ð Þ

� �

−
2ϖ−1

ζ2 − ζ1ð Þϖ
AB
ν1+ν2−ζ1ð ÞI

ϖ
ν1+ν2−ζ1+ζ2/2ð Þϕ ν1 + ν2 −

ζ1 + ζ2
2

� ��

+AB
ν1+ν2−ζ2ð ÞI

ϖ
ν1+ν2−ζ1+ζ2/2ϕ ν1 + ν2 −

ζ1 + ζ2
2

� ��

+ 2 1 − ϖð Þ2ϖ−1
B ϖð Þ ζ2 − ζ1ð Þϖ ϕ ν1 + ν2 −

ζ1 + ζ2
2

� �
:

ð22Þ

This concludes Lemma’s proof.

Remark 7. If we choose ϖ = 1, ν1 = ζ1, and ν2 = ζ2 in Lemma
6, then we have

1
6 ϕ ζ1ð Þ + 4ϕ ζ1 + ζ2

2

� �
+ ϕ ζ2ð Þ

� �
−

1
ζ2 − ζ1

ðζ2
ζ1

ϕ ϰð Þdϰ

= ζ2 − ζ1ð Þ2
48

ð1
0
4κ − 3κ2 − 1

 �

· ϕ″ 1 + κ

2 ζ1 +
1 − κ

2 ζ2

� �
+ ϕ″ 1 + κ

2 ζ2 +
1 − κ

2 ζ1

� �� �
dκ,

ð23Þ

which is a new equality in literature.

Remark 8. If we choose ν1 = ζ1 and ν2 = ζ2 in Lemma 6, then
we have

1
6 ϕ ζ1ð Þ + 4ϕ ζ1 + ζ2

2

� �
+ ϕ ζ2ð Þ

� �
−

2ϖ−1
ζ2 − ζ1ð Þϖ

· AB
ζ2
Iϖζ1+ζ2/2ð Þϕ

ζ1 + ζ2
2

� �
+AB
ζ1
Iϖζ1+ζ2/2ϕ

ζ1 + ζ2
2

� �� �

+ 2 1 − ϖð Þ2ϖ−1
B ϖð Þ ζ2 − ζ1ð Þϖ ϕ

ζ1 + ζ2
2

� �

= ζ2 − ζ1ð Þ2
8 ϖ + 1ð Þ

ð1
0

1
B ϖð ÞΓ ϖð Þ

1
3 1 − 2ϖ 1 − κð Þ + 2 − 3κϖ

� �
κ


 �� �

× ϕ′′ 1 + κ

2 ζ1 +
1 − κ

2 ζ2

� �
+ ϕ′′ 1 + κ

2 ζ2 +
1 − κ

2 ζ1

� �� �� �
dκ,

ð24Þ

which is a new equality via the Atangana-Baleanu in frac-
tional calculus.

Theorem 9. Let ϕ be defined as in Lemma 6, and if jϕ′′j is
convex on ½ν1, ν2�, then we have the following inequality:

1
6

ϕ ν1 + ν2 − ζ1ð Þ + 4ϕ ν1 + ν2 −
ζ1 + ζ2

2

� �
+ ϕ ν1 + ν2 − ζ2ð Þ

� �����
−

2ϖ−1

ζ2 − ζ1ð Þϖ
AB
ν1+ν2−ζ1ð ÞI

ϖ
ν1+ν2−ζ1+ζ2/2ð Þϕ ν1 + ν2 −

ζ1 + ζ2
2

� ��

+ AB
ν1+ν2−ζ2ð ÞI

ϖ
ν1+ν2−ζ1+ζ2/2ϕ ν1 + ν2 −

ζ1 + ζ2
2

� ��

+ 2 1 − ϖð Þ2ϖ−1
B ϖð Þ ζ2 − ζ1ð Þϖ ϕ ν1 + ν2 −

ζ1 + ζ2
2

� ������
≤

ζ2 − ζ1ð Þ2
8 ϖ + 1ð Þ Y1 ϖð Þ 2 ϕ′′ ν1ð Þ�� �� + 2 ϕ′′ ν2ð Þ�� �� − ϕ′′ ζ1ð Þ�� �� + ϕ′′ ζ2ð Þ�� ��h ih i

,

ð25Þ

where Y1ðϖÞ is defined by

Y1 ϖð Þ =

1
B ϖð ÞΓ ϖð Þ

1 − ϖð Þ2
3 ϖ + 2ð Þ , if 0 < ϖ ≤

1
2 ,

1
B ϖð ÞΓ ϖð Þ 2 κϖð Þϖ+2

ϖ + 2ð Þ −
1 − 2ϖð Þκϖ + ϖ + 1ð Þ κϖð Þ2

3

 !
+ 1 − ϖð Þ2
3 ϖ + 2ð Þ

 !
, if ϖ > 1

2 :

8>>>><
>>>>:

ð26Þ
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Proof. We will start the proof by looking at modulus in
Lemma 6,

1
6 ϕ ν1 + ν2 − ζ1ð Þ + 4ϕ ν1 + ν2 −

ζ1 + ζ2
2

� �
+ ϕ ν1 + ν2 − ζ2ð Þ

� �����
−

2ϖ−1
ζ2 − ζ1ð Þϖ

AB
ν1+ν2−ζ1ð ÞI

ϖ
ν1+ν2−ζ1+ζ2/2ð Þϕ ν1 + ν2 −

ζ1 + ζ2
2

� ��

+AB
ν1+ν2−ζ2ð ÞI

ϖ
ν1+ν2−ζ1+ζ2/2ϕ ν1 + ν2 −

ζ1 + ζ2
2

� ��

+ 2 1 − ϖð Þ2ϖ−1
B ϖð Þ ζ2 − ζ1ð Þϖ ϕ ν1 + ν2 −

ζ1 + ζ2
2

� ������
≤

ζ2 − ζ1ð Þ2
8 ϖ + 1ð Þ

1
B ϖð ÞΓ ϖð Þ

ð1
0

1
3 1 − 2ϖ 1 − κð Þ + 2 − 3κϖ

� �
κ


 �� �����
����

× ϕ′′ ν1 + ν2 −
1 + κ

2 ζ2 +
1 − κ

2 ζ1

� �� �����
����

�

+ ϕ′′ ν1 + ν2 −
1 + κ

2 ζ1 +
1 − κ

2 ζ2

� �� �����
����
�
dκ:

ð27Þ

By using the convexity of jϕ′′j with Jensen-Mercer
Inequality, we have

1
6 ϕ ν1 + ν2 − ζ1ð Þ + 4ϕ ν1 + ν2 −

ζ1 + ζ2
2

� �
+ ϕ ν1 + ν2 − ζ2ð Þ

� �����
−

2ϖ−1
ζ2 − ζ1ð Þϖ

AB
ν1+ν2−ζ1ð ÞI

ϖ
ν1+ν2−ζ1+ζ2/2ð Þϕ ν1 + ν2 −

ζ1 + ζ2
2

� ��

+AB
ν1+ν2−ζ2ð ÞI

ϖ
ν1+ν2−ζ1+ζ2/2ϕ ν1 + ν2 −

ζ1 + ζ2
2

� ��

+ 2 1 − ϖð Þ2ϖ−1
B ϖð Þ ζ2 − ζ1ð Þϖ ϕ ν1 + ν2 −

ζ1 + ζ2
2

� ������
≤

ζ2 − ζ1ð Þ2
8 ϖ + 1ð Þ

1
B ϖð ÞΓ ϖð Þ

ð1
0

1
3 1 − 2ϖ 1 − κð Þ + 2 − 3κϖ

� �
κ


 �� �����
����

× ϕ′′ ν1ð Þ�� �� + ϕ′′ ν2ð Þ�� �� − 1 + κ

2 ϕ′′ ζ2ð Þ�� �� + 1 − κ

2 ϕ′′ ζ1ð Þ��� ��

+ ϕ′′ ν1ð Þ�� �� + ϕ′′ ν1ð Þ�� �� − 1 + κ

2 ϕ′′ ζ1ð Þ�� �� + 1 − κ

2 ϕ′′ ζ2ð Þ��� ��
dκ:

ð28Þ

⇒ To evaluate the above integral, assume the mapping
ς : ½0, 1�⟶ℝ where

ς κð Þ = 1
B ϖð ÞΓ ϖð Þ

1
3 1 − 2ϖ 1 − κð Þ + 2 − 3κϖ

� �
κ


 �� �
withϖ > 0:

ð29Þ

(1) If 0 < ϖ ≤ ð1/2Þ, then we have

ð1
0
ς κð Þj jdκ = 1

B ϖð ÞΓ ϖð Þ
1 − ϖ2

3 ϖ + 2ð Þ : ð30Þ

(2) If ϖ > ð1/2Þ, then there exists a real number κϖ such
that 0 < ϖ < 1, and we have

ð1
0
ς κð Þj jdκ = 1

B ϖð ÞΓ ϖð Þ 2 κϖð Þϖ+2
ϖ + 2 −

1 − 2ϖð Þκϖ + ϖ + 1ð Þ κϖð Þ2
3

 !
+ 1 − ϖ2

3 ϖ + 2ð Þ

 !
:

ð31Þ

Hence, we have

⇒ 1
6 ϕ ν1 + ν2 − ζ1ð Þ + 4ϕ ν1 + ν2 −

ζ1 + ζ2
2

� �
+ ϕ ν1 + ν2 − ζ2ð Þ

� �����
−

2ϖ−1
ζ2 − ζ1ð Þϖ

AB
ν1+ν2−ζ1ð ÞI

ϖ
ν1+ν2−ζ1+ζ2/2ð Þϕ ν1 + ν2 −

ζ1 + ζ2
2

� ��

+ AB
ν1+ν2−ζ2ð ÞI

ϖ
ν1+ν2−ζ1+ζ2/2ϕ ν1 + ν2 −

ζ1 + ζ2
2

� ��

+ 2 1 − ϖð Þ2ϖ−1
B ϖð Þ ζ2 − ζ1ð Þϖ ϕ ν1 + ν2 −

ζ1 + ζ2
2

� ������
≤

ζ2 − ζ1ð Þ2
8 ϖ + 1ð Þ Y1 ϖð Þ 2 ϕ′′ ν1ð Þ�� �� + 2 ϕ′′ ν2ð Þ�� �� − ϕ′′ ζ1ð Þ�� �� + ϕ′′ ζ2ð Þ��h i���h i

:

ð32Þ

This concludes theorem’s proof.

Remark 10. If we choose ϖ = 1 and κϖ = 1/3, in Theorem 9,
then we have the inequality

1
6 ϕ ν1 + ν2 − ζ1ð Þ + 4ϕ ν1 + ν2 −

ζ1 + ζ2
2

� �
+ ϕ ν1 + ν2 − ζ2ð Þ

� �����
−

1
ζ2 − ζ1

ðν1+ν2−ζ1
ν1+ν2−ζ2

ϕ ϰð Þdϰ
�����

≤
ζ2 − ζ1ð Þ2
162 2 ϕ′′ ν1ð Þ�� �� + 2 ϕ′′ ν2ð Þ�� �� − ϕ′′ ζ1ð Þ�� �� + ϕ′′ ζ2ð Þ�� ��h ih i

,

ð33Þ

which is Mercer variant of an identity proved by Sarikaya
et al. in [19].

Remark 11. If we choose ϖ = 1, ν1 = ζ1, and ν2 = ζ2 in Theo-
rem 9, then κϖ = 1/3, and we have the inequality

1
6 ϕ ζ1ð Þ + 4ϕ ζ1 + ζ2

2

� �
+ ϕ ζ2ð Þ

� �
−

1
ζ2 − ζ1

ðζ2
ζ1

ϕ ϰð Þdϰ
�����

�����
≤

ζ2 − ζ1ð Þ2
162 ϕ′′ ζ1ð Þ�� �� + ϕ′′ ζ2ð Þ�� ��h i

,

ð34Þ

which is proved by Sarikaya et al. in [19].
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Remark 12. If we choose ν1 = ζ1 and ν2 = ζ2 in Theorem 9,
then we have the inequality

1
6 ϕ ζ1ð Þ + 4ϕ ζ1 + ζ2

2

� �
+ ϕ ζ2ð Þ

� �����
−
2ϖ−1Γ 1 + ϖð Þ

ζ2 − ζ1ð Þϖ Jϖζ2−ϕ
ζ1 + ζ2

2

� �
+ Jϖζ1+ϕ

ζ1 + ζ2
2

� �� ������
≤

ζ2 − ζ1ð Þ2
8 ϖ + 1ð Þ Ω1 ϖð Þ ϕ′′ ζ1ð Þ�� ��+ ϕ′′ ζ2ð Þ�� i���h i

,

ð35Þ

which is proved by Hezenci et al. in [14].

Remark 13. If we choose ϖ = 1 and κϖ = 1/3 in Remark 12
then we have the inequality

1
6 ϕ ζ1ð Þ + 4ϕ ζ1 + ζ2

2

� �
+ ϕ ζ2ð Þ

� �
−

1
ζ2 − ζ1

ðζ2
ζ1

ϕ ϰð Þdϰ
�����

�����
≤

ζ2 − ζ1ð Þ2
162 ϕ′′ ζ1ð Þ�� �� + ϕ′′ ζ2ð Þ�� ��h i

,

ð36Þ

which is proved by Sarikaya et al. in [19].

Theorem 14. Let ϕ be defined as in Lemma 6, then for q > 1,
there is a mapping jϕ′′jq that is convex on ½ν1, ν2�, then we
have identity:

1
6

ϕ ν1 + ν2 − ζ1ð Þ + 4ϕ ν1 + ν2 −
ζ1 + ζ2

2

� �
+ ϕ ν1 + ν2 − ζ2ð Þ

� �����
−

2ϖ−1

ζ2 − ζ1ð Þϖ
AB
ν1+ν2−ζ1ð ÞI

ϖ
ν1+ν2−ζ1+ζ2/2ð Þϕ ν1 + ν2 −

ζ1 + ζ2
2

� ��

+ AB
ν1+ν2−ζ2ð ÞI

ϖ
ν1+ν2−ζ1+ζ2/2ϕ ν1 + ν2 −

ζ1 + ζ2
2

� ��

+ 2 1 − ϖð Þ2ϖ−1
B ϖð Þ ζ2 − ζ1ð Þϖ ϕ ν1 + ν2 −

ζ1 + ζ2
2

� ������
≤

ζ2 − ζ1ð Þ2
8 ϖ + 1ð Þ Y1 ϖ, pð Þ 1

B ϖð ÞΓ ϖð Þ 2 ϕ′′ ν1ð Þ�� ��q + 2 ϕ′′ ν2ð Þ�� ��qh�

− ϕ′′ ζ2ð Þ�� ��q + ϕ′′ ζ1ð Þ�� ��q� i
Þ1/q,

ð37Þ

where p, q > 1 are conjugate exponents and Y is defined by

Y1 ϖ, pð Þ = 1
B ϖð ÞΓ ϖð Þ

ð1
0

1
3

1 − 2ϖ 1 − κð Þ + 2 − 3κϖ
� �

κ

 �����

����
p

dκ
� �1/p

:

ð38Þ

Proof. Using Hölder’s inequality in Lemma 6, we obtain

1
6 ϕ ν1 + ν2 − ζ1ð Þ + 4ϕ ν1 + ν2 −

ζ1 + ζ2
2

� �
+ ϕ ν1 + ν2 − ζ2ð Þ

� �����
−

2ϖ−1
ζ2 − ζ1ð Þϖ

AB
ν1+ν2−ζ1ð ÞI

ϖ
ν1+ν2−ζ1+ζ2/2ð Þϕ ν1 + ν2 −

ζ1 + ζ2
2

� ��

+ AB
ν1+ν2−ζ2ð ÞI

ϖ
ν1+ν2−ζ1+ζ2/2ϕ ν1 + ν2 −

ζ1 + ζ2
2

� ��

+ 2 1 − ϖð Þ2ϖ−1
B ϖð Þ ζ2 − ζ1ð Þϖ ϕ ν1 + ν2 −

ζ1 + ζ2
2

� ������
≤

ζ2 − ζ1ð Þ2
8 ϖ + 1ð Þ × 1

B ϖð ÞΓ ϖð Þ
ð1
0

1
3 1 − 2ϖ 1 − κð Þ½
�����

��

+ 2 − 3κϖ
� �

κ
�Þjpdκ1/p 1

B ϖð ÞΓ ϖð Þ
ð1
0
ϕ′′
���

· ν1 + ν2 −
1 + κ

2 ζ2 +
1 − κ

2 ζ1

� �� �����
q

dκ
�1/q

+ 1
B ϖð ÞΓ ϖð Þ

ð1
0

1
3 1 − 2ϖ 1 − κð Þ + 2 − 3κϖ

� �
κ


 �� �����
����
p

dκ
� �1/p

· 1
B ϖð ÞΓ ϖð Þ

ð1
0
ϕ′′ ν1 + ν2 −

1 + κ

2 ζ1 +
1 − κ

2 ζ2

� �� �����
����
q

dκ
� �1/q)

:

ð39Þ

By using the convexity of jϕ′′jq with Jensen-Mercer
Inequality, we obtain

1
6 ϕ ν1 + ν2 − ζ1ð Þ + 4ϕ ν1 + ν2 −

ζ1 + ζ2
2

� �
+ ϕ ν1 + ν2 − ζ2ð Þ

� �����
−

2ϖ−1
ζ2 − ζ1ð Þϖ

AB
ν1+ν2−ζ1ð ÞI

ϖ
ν1+ν2−ζ1+ζ2/2ð Þϕ ν1 + ν2 −

ζ1 + ζ2
2

� ��

+ AB
ν1+ν2−ζ2ð ÞI

ϖ
ν1+ν2−ζ1+ζ2/2ϕ ν1 + ν2 −

ζ1 + ζ2
2

� ��

+ 2 1 − ϖð Þ2ϖ−1
B ϖð Þ ζ2 − ζ1ð Þϖ ϕ ν1 + ν2 −

ζ1 + ζ2
2

� ������
≤

ζ2 − ζ1ð Þ2
8 ϖ + 1ð Þ

1
B ϖð ÞΓ ϖð Þ

ð1
0

1
3 1 − 2ϖ 1 − κð Þ + 2 − 3κϖ

� �
κ


 �� �����
����
p

dκ
� �1/p

× 1
B ϖð ÞΓ ϖð Þ

ð1
0

ϕ′′ ν1ð Þ�� ��q + ϕ′′ ν2ð Þ�� ��q���

−
1 + κ

2 ϕ′′ ζ2ð Þ�� ��q + 1 − κ

2 ϕ′′ ζ1ð Þ�� ��q� ��
dκÞ1/q

+ 1
B ϖð ÞΓ ϖð Þ

ð1
0

ϕ′′ ν1ð Þ�� ��q + ϕ′′ ν2ð Þ�� ��q��

−
1 + κ

2 ϕ′′ ζ2ð Þ�� ��q + 1 − κ

2 ϕ′′ ζ1ð Þ�� ��q� ��
dκÞ

1/q
)
:

ð40Þ

⇒ 1
6 ϕ ν1 + ν2 − ζ1ð Þ + 4ϕ ν1 + ν2 −

ζ1 + ζ2
2

� �
+ ϕ ν1 + ν2 − ζ2ð Þ

� �����
−

2ϖ−1
ζ2 − ζ1ð Þϖ

AB
ν1+ν2−ζ1ð ÞI

ϖ
ν1+ν2−ζ1+ζ2/2ð Þϕ ν1 + ν2 −

ζ1 + ζ2
2

� ��

+ AB
ν1+ν2−ζ2ð ÞI

ϖ
ν1+ν2−ζ1+ζ2/2ϕ ν1 + ν2 −

ζ1 + ζ2
2

� ��

+ 2 1 − ϖð Þ2ϖ−1
B ϖð Þ ζ2 − ζ1ð Þϖ ϕ ν1 + ν2 −

ζ1 + ζ2
2

� ������
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≤
ζ2 − ζ1ð Þ2
8 ϖ + 1ð Þ

1
B ϖð ÞΓ ϖð Þ

ð1
0

1
3 1 − 2ϖ 1 − κð Þ + 2 − 3κϖ

� �
κ


 �� �����
����
p

dκ
� �1/p

× 1
B ϖð ÞΓ ϖð Þ ϕ′′ ν1ð Þ�� ��q + ϕ′′ ν2ð Þ�� ��q − 3 ϕ′′ ζ2ð Þ�� ��q + f ′′ ζ1ð Þ�� ��q

4

 ! !1/q(

+ 1
B ϖð ÞΓ ϖð Þ ϕ′′ ν1ð Þ�� ��q + ϕ′′ ν2ð Þ�� ��q − ϕ′′ ζ2ð Þ�� ��q + 3 ϕ′′ ζ1ð Þ�� ��q

4

 ! !1/q)
:

ð41Þ
This concludes theorem’s proof.

Corollary 15. If we choose ϖ = 1, ν1 = ζ1, and ν2 = ζ2 in The-
orem 14, then tϖ = 1/3, and we have the inequality

1
6

ϕ ζ1ð Þ + 4ϕ
ζ1 + ζ2

2

� �
+ ϕ ζ2ð Þ

� �
−

1
ζ2 − ζ1

ðζ2
ζ1

ϕ ϰð Þdϰ
�����

�����
≤

ζ2 − ζ1ð Þ2
162

Y 1, pð Þ ϕ′′ ζ1ð Þ�� ��q + ϕ′′ ζ2ð Þ�� ��qh i1/q
,

ð42Þ

which is given by Hezenci et al. in [14].

Theorem 16. Let ϕ be defined as in Lemma 6, then for q > 1,
there is a mapping jϕ′′jq that is convex on ½ν1, ν2�, then we

have identity:

1
6

ϕ ν1 + ν2 − ζ1ð Þ + 4ϕ ν1 + ν2 −
ζ1 + ζ2

2

� �
+ ϕ ν1 + ν2 − ζ2ð Þ

� �����
−

2ϖ−1

ζ2 − ζ1ð Þϖ
AB
ν1+ν2−ζ1ð ÞI

ϖ
ν1+ν2−ζ1+ζ2/2ð Þϕ ν1 + ν2 −

ζ1 + ζ2
2

� ��

+ AB
ν1+ν2−ζ2ð ÞI

ϖ
ν1+ν2−ζ1+ζ2/2ϕ ν1 + ν2 −

ζ1 + ζ2
2

� ��

+ 2 1 − ϖð Þ2ϖ−1
B ϖð Þ ζ2 − ζ1ð Þϖ ϕ ν1 + ν2 −

ζ1 + ζ2
2

� ������
≤

ζ2 − ζ1ð Þ2
8 ϖ + 1ð Þ Y1 ϖð Þ1−1/q Y1 ϖð Þ ϕ′′ ν1ð Þ�� ��q + ϕ′′ ν2ð Þ�� ��qh i�n

−
Y1 ϖð Þ + Y2 ϖð Þð Þ ϕ′′ ζ2ð Þ�� ��q + Y1 ϖð Þ − Y2 ϖð Þð Þ ϕ′′ ζ1ð Þ�� ��q

2

!1/q

+ Y1 ϖð Þ ϕ′′ ν1ð Þ�� ��q + ϕ′′ ν2ð Þ�� ��qh i�

−
Y1 ϖð Þ + Y2 ϖð Þð Þ ϕ′′ ζ1ð Þ�� ��q + Y1 ϖð Þ − Y2 ϖð Þð Þ ϕ′′ ζ2ð Þ�� ��q

2

!1/q)
,

ð43Þ

where Y1ðϖÞ is defined in Theorem 9 and Y2ðϖÞ is
defined by

Proof. By applying the power-mean inequality in Lemma 6,
we get

1
6 ϕ ν1 + ν2 − ζ1ð Þ + 4ϕ ν1 + ν2 −

ζ1 + ζ2
2

� �
+ ϕ ν1 + ν2 − ζ2ð Þ

� �����
−

2ϖ−1
ζ2 − ζ1ð Þϖ

AB
ν1+ν2−ζ1ð ÞI

ϖ
ν1+ν2−ζ1+ζ2/2ð Þϕ ν1 + ν2 −

ζ1 + ζ2
2

� ��

+ AB
ν1+ν2−ζ2ð ÞI

ϖ
ν1+ν2−ζ1+ζ2/2ϕ ν1 + ν2 −

ζ1 + ζ2
2

� ��

+ 2 1 − ϖð Þ2ϖ−1
B ϖð Þ ζ2 − ζ1ð Þϖ ϕ ν1 + ν2 −

ζ1 + ζ2
2

� ������
≤

ζ2 − ζ1ð Þ2
8 ϖ + 1ð Þ × 1

B ϖð ÞΓ ϖð Þ
ð1
0

1
3 1 − 2ϖ 1 − κð Þ + 2 − 3κϖ

� �
κ


 �� �����
����dκ

� �1−1/q"

× 1
B ϖð ÞΓ ϖð Þ

ð1
0

1
3 1 − 2ϖ 1 − κð Þ + 2 − 3κϖ

� �
κ


 �� �����
����

�

× ϕ′′ ν1 + ν2 −
1 + κ

2 ζ2 +
1 − κ

2 ζ1

� �� �����
����
q

dκ
�1/q

+ 1
B ϖð ÞΓ ϖð Þ

ð1
0

1
3 1 − 2ϖ 1 − κð Þ + 2 − 3κϖ

� �
κ


 �� �����
����dκ

� �1−1/q

× 1
B ϖð ÞΓ ϖð Þ

ð1
0

1
3 1 − 2ϖ 1 − κð Þ + 2 − 3κϖ

� �
κ


 �� �����
����

�

× ϕ′′ ν1 + ν2 −
1 + κ

2 ζ1 +
1 − κ

2 ζ2

� �� �����
����
q

dκ
�1/q#

:

ð45Þ

⇒ To evaluate the above integral, assume the mapping
ς : ½0, 1�⟶ℝ, where

ς κð Þ = 1
B ϖð ÞΓ ϖð Þ

1
3 1 − 2ϖ 1 − κð Þ + 2 − 3κϖ

� �
κ


 �� �
withϖ > 0:

ð46Þ

(1) Let us consider 0 < ϖ ≤ ð1/2Þ, then we have

Y2 ϖð Þ =

1
B ϖð ÞΓ ϖð Þ

3 − ϖ − 2ϖ2� �
18 ϖ + 3ð Þ , if 0 < ϖ ≤

1
2 ,

1
B ϖð ÞΓ ϖð Þ 2 κϖð Þϖ+3

ϖ + 3ð Þ −
3 1 − 2ϖð Þ κϖð Þ2 + 4 ϖ + 1ð Þ κϖð Þ3

18

 !
+ 1 − ϖð Þ2
3 ϖ + 2ð Þ

 !
, if ϖ > 1

2 :

8>>>><
>>>>:

ð44Þ
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ð1
0
ς κð Þj jκdκ = 1

B ϖð ÞΓ ϖð Þ
3 − ϖ − 2ϖ2

18 ϖ + 3ð Þ
� �

: ð47Þ (2) If ϖ > ð1/2Þ, then there exists a real number κϖ such
that 0 < ϖ < 1, and we have

Since jϕ′′jq is convex and taking into account Jensen-
Mercer Inequality, we obtain

1
B ϖð ÞΓ ϖð Þ

ð1
0

1
3 1 − 2ϖ 1 − κð Þ + 2 − 3κϖ

� �
κ


 �� �����
����

· ϕ′′ ν1 + ν2 −
1 + κ

2 ζ2 +
1 − κ

2 ζ1

� �� �����
����
q

dκ

≤
1

B ϖð ÞΓ ϖð Þ
ð1
0

1
3 1 − 2ϖ 1 − κð Þ + 2 − 3κϖ

� �
κ


 �� �����
����

× ϕ′′ ν1ð Þ�� ��q + ϕ′′ ν2ð Þ�� ��qh
−

1 + κ

2 ϕ′′ ζ2ð Þ�� ��q + 1 − κ

2 ϕ′′ ζ1ð Þ�� ��q� ��
dκ

= Y1 ϖð Þ ϕ′′ ν1ð Þ�� ��q +ϕ′′ ν2ð Þ�� ��qh i

−
Y1 ϖð Þ + Y2 ϖð Þð Þ ϕ′′ ζ2ð Þ�� ��q + Y1 ϖð Þ − Y2 ϖð Þð Þ ϕ′′ ζ1ð Þ�� ��q

2 :

ð49Þ

And similarly,

1
B ϖð ÞΓ ϖð Þ

ð1
0

1
3 1 − 2ϖ 1 − κð Þ + 2 − 3κϖ

� �
κ


 �� �����
����

· ϕ′′ ν1 + ν2 −
1 + κ

2 ζ1 +
1 − κ

2 ζ2

� �� �����
����
q

dκ

≤
1

B ϖð ÞΓ ϖð Þ
ð1
0

1
3 1 − 2ϖ 1 − κð Þ + 2 − 3κϖ

� �
κ


 �� �����
����

× ϕ′′ ν1ð Þ�� ��q + ϕ′′ ν2ð Þ�� ��qh
−

1 + κ

2 ϕ′′ ζ1ð Þ�� ��q + 1 − κ

2 ϕ′′ ζ2ð Þ�� ��q� ��
dκ

= Y1 ϖð Þ ϕ′′ ν1ð Þ�� ��q + ϕ′′ ν2ð Þ�� ��qh i

−
Y1 ϖð Þ + Y2 ϖð Þð Þ ϕ′′ ζ1ð Þ�� ��q + Y1 ϖð Þ − Y2 ϖð Þð Þ ϕ′′ ζ2ð Þ�� ��q

2 :

ð50Þ

Finally, we obtain

⇒ 1
6 ϕ ν1 + ν2 − ζ1ð Þ + 4ϕ ν1 + ν2 −

ζ1 + ζ2
2

� ������
+ ϕ ν1 + ν2 − ζ2ð Þ� − 2ϖ−1

ζ2 − ζ1ð Þϖ

· AB
ν1+ν2−ζ1ð ÞI

ϖ
ν1+ν2−ζ1+ζ2/2ð Þϕ ν1 + ν2 −

ζ1 + ζ2
2

� ��

+ AB
ν1+ν2−ζ2ð ÞI

ϖ
ν1+ν2−ζ1+ζ2/2ϕ ν1 + ν2 −

ζ1 + ζ2
2

� �
�

+ 2 1 − ϖð Þ2ϖ−1
B ϖð Þ ζ2 − ζ1ð Þϖ ϕ ν1 + ν2 −

ζ1 + ζ2
2

� �
j

≤
ζ2 − ζ1ð Þ2
8 ϖ + 1ð Þ Y1 ϖð Þ1−1/q Y1 ϖð Þ ϕ′′ ν1ð Þ�� ��q + ϕ′′ ν2ð Þ�� ��qh i�n

−
Y1 ϖð Þ + Y2 ϖð Þð Þ ϕ′′ ζ2ð Þ�� ��q + Y1 ϖð Þ − Y2 ϖð Þð Þ ϕ′′ ζ1ð Þ�� ��q

2

!1/q

+ Y1 ϖð Þ ϕ′′ ν1ð Þ�� ��q + ϕ′′ ν2ð Þ�� ��qh i�

−
Y1 ϖð Þ + Y2 ϖð Þð Þ ϕ′′ ζ1ð Þ�� ��q + Y1 ϖð Þ − Y2 ϖð Þð Þ ϕ′′ ζ2ð Þ�� ��q

2

!1/q)
:

ð51Þ

This completes the proof.

Remark 17. If we choose ϖ = 1 and κϖ = ð1/3Þ, in Theorem
16, then we have the inequality

1
6 ϕ ν1 + ν2 − ζ1ð Þ + 4ϕ ν1 + ν2 −

ζ1 + ζ2
2

� �
+ ϕ ν1 + ν2 − ζ2ð Þ

� �����
−

1
ζ2 − ζ1

ðν1+ν2−ζ1
ν1+ν2−ζ2

ϕ ϰð Þdϰ
�����

≤ ζ2 − ζ1ð Þ2 1
162

� �1−1/q 1
162 ϕ′′ ν1ð Þ�� ��q + 1

162 ϕ′′ ν2ð Þ�� ��q��

−
59
3527 ϕ′′ ζ1ð Þ�� ��q + 133

3527 ϕ′′ ζ2ð Þ�� ��q� ��1/q

+ 1
162 ϕ′′ ν1ð Þ�� ��q + 1

162 ϕ′′ ν2ð Þ�� ��q�

−
59
3527 ϕ′′ ζ2ð Þ�� ��q + 133

3527 ϕ′′ ζ1ð Þ�� ��q� ��1/q
#
,

ð52Þ

which is Mercer variant of an identity proved by Sarikaya
et al. in [19].

Remark 18. If we take ϖ = 1, ν1 = ζ1, and ν2 = ζ2 in Theorem
16, then Theorem 16 reduce to

ð1
0
ς κð Þj jκdκ = 1

B ϖð ÞΓ ϖð Þ 2 κϖð Þϖ+3
ϖ + 3 −

3 1 − 2ϖð Þ κϖð Þ2 + 4 ϖ + 1ð Þ κϖð Þ3
18

 !
+ 3 + ϖ − 2ϖ2

18 ϖ + 3ð Þ

 !
: ð48Þ
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1
6 ϕ ζ1ð Þ + 4ϕ ζ1 + ζ2

2

� �
+ ϕ ζ2ð Þ

� �
−

1
ζ2 − ζ1

ðζ2
ζ1

ϕ ϰð Þdϰ
�����

�����
≤ ζ2 − ζ1ð Þ2 1

162

� �1−1/q 59
3527 ϕ′′ ζ1ð Þ�� ��q + 133

3527 ϕ′′ ζ2ð Þ�� ��q� �1/q
"

+ 59
3527 ϕ′′ ζ2ð Þ�� ��q + 133

3527 ϕ′′ ζ1ð Þ�� ��q� �1/q
#
,

ð53Þ

which is proved by Sarikaya et al. in [19].

Remark 19. If we take ν1 = ζ1 and ν2 = ζ2 in Theorem 16,
then Theorem 16 reduce to

1
6 ϕ ζ1ð Þ + 4ϕ ζ1 + ζ2

2

� �
+ ϕ ζ2ð Þ

� �
−
2ϖ−1Γ 1 + ϖð Þ

ζ2 − ζ1ð Þϖ
�����

· Jϖζ2−ϕ
ζ1 + ζ2

2

� �
+ Jϖζ1+ϕ

ζ1 + ζ2
2

� �� �����
≤

ζ2 − ζ1ð Þ2
8 ϖ + 1ð Þ Ω1 ϖð Þ1−1/q

·
Ω1 ϖð Þ +Ω2 ϖð Þð Þ ϕ′′ ζ2ð Þ�� ��q + Ω1 ϖð Þ −Ω2 ϖð Þð Þ ϕ′′ ζ1ð Þ�� ��q

2

 !1/q(

+ Ω1 ϖð Þ +Ω2 ϖð Þð Þ ϕ′′ ζ1ð Þ�� ��q + Ω1 ϖð Þ −Ω2 ϖð Þð Þ ϕ′′ ζ2ð Þ�� ��q
2

 !1/qg,

ð54Þ

which is proved by Hezenci et al. in [14].

Remark 20. If we take ϖ = 1 in Remark 19, then we have

1
6 ϕ ζ1ð Þ + 4ϕ ζ1 + ζ2

2

� �
+ ϕ ζ2ð Þ

� �
−

1
ζ2 − ζ1

ðζ2
ζ1

ϕ ϰð Þdϰ
�����

�����
≤ ζ2 − ζ1ð Þ2 1

162

� �1−1/q 59
3527 ϕ′′ ζ1ð Þ�� ��q + 133

3527 ϕ′′ ζ2ð Þ�� ��q� �1/q
"

+ 59
3527 ϕ′′ ζ2ð Þ�� ��q + 133

3527 ϕ′′ ζ1ð Þ�� ��q� �1/q
�, ð55Þ

which is proved by Sarikaya et al. in [19].

3. Applications

3.1. Q-Digamma Function. The φq-digamma function,
which is described as the logarithmic derivative of the q
-gamma function, is an essential function related to the q
-gamma function. A few papers had also additionally been
utilized that explore the monotonicity and complete mono-
tonicity characteristics for functions linked with the q
-gamma and q-digamma functions, which tends to result
in remarkable inequalities. One can see in [31, 32].

Assume the q-analogue of the digamma function φ for
0 < q < 1 is the q-digamma function φq and is (see [33,
34]) given as:

φq = − ln 1 − qð Þ + ln q〠
∞

k=0

qk+ϰ

1 − qk+ϰ
= − ln 1 − qð Þ + ln q〠

∞

k=0

qkϰ

1 − qkϰ
:

ð56Þ

For q ≥ 1 and ϰ > 0,q-digamma function φq can be given
as:

φq = − ln q − 1ð Þ + ln q ϰ −
1
2 − 〠

∞

k=0

q− k+ϰð Þ

1 − q− k+ϰð Þ

" #

= − ln q − 1ð Þ + ln q ϰ −
1
2 − 〠

∞

k=0

q−kϰ
1 − q−kϰ

" #
:

ð57Þ

Proposition 21. Assume that ζ1, ζ2, ν1, ν2 ∈ℝ such that 0
< ν1 < ν2,q ≥ 1,0 < q < 1, and q−1 = 1 − p−1. Then, the follow-
ing inequality is valid:

1
6

φq
′ ν1 + ν2 − ζ1ð Þ + 4φq

′ ν1 + ν2 −
ζ1 + ζ2

2

� �
+ φq

′ ν1 + ν2 − ζ2ð Þ
� �����

−
φq ν1 + ν2 − ζ1ð Þ − φq ν1 + ν2 − ζ2ð Þ

ζ2 − ζ1
j

≤ ζ2 − ζ1ð Þ2 1
162

� �1−1/q 1
162

φ 3ð Þ
q ν1ð Þ

��� ���q��

+ 1
162

φ 3ð Þ
q ν2ð Þ

��� ���q − 59
3527

φ 3ð Þ
q ζ1ð Þ

��� ���q�

+ 133

3527
φ 3ð Þ
q ζ2ð Þ

��� ���qÞg1/q + 1
162

φ 3ð Þ
q ν1ð Þ

��� ���q�

+ 1
162

φ 3ð Þ
q ν2ð Þ

��� ���q − 59

3527
φ 3ð Þ
q ζ2ð Þ

��� ���q�

+ 133

3527
φ 3ð Þ
q ζ1ð Þ

��� ���qÞg1/q�: ð58Þ

Proof. The assertion can be obtained immediately by using
Remark 17 with the ϕðϰÞ⟶ φq

′ðϰÞ for all q > 0, and conse-

quently, ϕ′′ðϰÞ≔ φð3Þ
q ðϰÞ is convex on the same interval ð0

,∞Þ:

Proposition 22. Assume that ζ1, ζ2 are the real numbers such
that 0 < ζ1 < ζ2,q ≥ 1,0 < q < 1, and q−1 = 1 − p−1. Then, the
following inequality is valid:

1
6

φq
′ ζ1ð Þ + 4φq

′ ζ1 + ζ2
2

� �
+ φq

′ ζ2ð Þ
� �

−
φq ζ2ð Þ − φq ζ1ð Þ

ζ2 − ζ1

����
����

≤ ζ2 − ζ1ð Þ2 1
162

� �1−1/q 59
3527

φ 3ð Þ
q ζ1ð Þ

��� ���q + 133
3527

φ 3ð Þ
q ζ2ð Þ

��� ���q� �1/q
"

+ 59

3527
φ 3ð Þ
q ζ2ð Þ

��� ���q + 133

3527
φ 3ð Þ
q ζ1ð Þ

��� ���q� �1/q
#
:

ð59Þ

Proof. The assertion can be obtained immediately by using
Remark 18 with the ϕðϰÞ⟶ φq′ðϰÞ for all q > 0, and con-

sequently, ϕ′′ðϰÞ≔ φð3Þ
q ðϰÞ is convex on the same interval

ð0,∞Þ:
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3.2. Modified Bessel Function. Bessel functions were named
after Friedrich Wilhelm Bessel (1784-1846); however, Daniel
Bernoulli is generally credited with being the first to intro-
duce the concept of Bessels functions in 1732. Numerous
results about Bessel functions have been established by uti-
lizing its generating function (see [35]).

We know the first type of modified Bessel function Bτ1,
which has the series interpretation (see [33], p.77).

Bτ1
ϰð Þ = Σn≥0

ϰ/2ð Þτ1+2n
n!Γ τ1 + n + 1ð Þ : ð60Þ

where ϰ ∈R and τ1 > −1, while the second type modified
Bessel function ϕτ1 (see [33], p.78) is usually defined as

ϕτ1 ϰð Þ = π

2
B−τ1 ϰð Þ −Bτ1

ϰð Þ
sin τ1π

: ð61Þ

Consider the function Ψτ1
ðϰÞ: R⟶ ½1,∞Þ defined by

Ψτ1
ϰð Þ = 2τ1Γ τ1 + 1ð Þϰ−τ1ϕτ1 ϰð Þ, ð62Þ

Here, first, second- and third-order derivative formula of
Ψτ1

ðϰÞ is given as in [33]:

Ψτ1
′ ϰð Þ = ϰ

2 τ1 + 1ð ÞΨτ1+1 ϰð Þ, ð63Þ

Ψτ1
′′ ϰð Þ = ϰ2

4 τ1 + 1ð Þ τ1 + 2ð ÞΨτ1+2 ϰð Þ + 1
2 τ1 + 1ð ÞΨτ1+1 ϰð Þ,

ð64Þ
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Figure 1: Three-dimensional illustration of the error and error bounds for (43).
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Figure 2: Three-dimensional illustration of the error and error bounds for (53).
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Ψτ1
′′′ ϰð Þ = ϰ3

4 τ1 + 1ð Þ τ1 + 2ð Þ τ1 + 3ð ÞΨτ1+3 ϰð Þ

+ 3ϰ
4 τ1 + 1ð Þ τ1 + 2ð ÞΨτ1+2 ϰð Þ:

ð65Þ

Proposition 23. Suppose that ζ1, ζ2, ν1, ν2 ∈ℝ such that 0
< ν1 < ν2, and τ1 > −1. Then, we have

1
6

ν1 + ν2 − ζ1ð Þ
2 τ1 + 1ð Þ Ψτ1+1 ν1 + ν2 − ζ1ð Þ

�����
+ 4

ν1 + ν2 − ζ1 + ζ2ð Þ/2ð Þð Þ
2 τ1 + 1ð Þ Ψτ1+1 ν1 + ν2 −

ζ1 + ζ2
2

� �

+ ν1 + ν2 − ζ2
2 τ1 + 1ð Þ Ψτ1+1 ν1 + ν2 − ζ2ð Þ

�
−
Ψm ν1 + ν2 − ζ1ð Þ −Ψm ν1 + ν2 − ζ2ð Þ

ζ2 − ζ1
j

≤ ζ2 − ζ1ð Þ2 1
162

� �1−1/q
× 1

162
ν31

4 τ1 + 1ð Þ τ1 + 2ð Þ τ1 + 3ð ÞΨτ1+3 ν1ð Þ
���

+ 3ν1
4 τ1 + 1ð Þ τ1 + 2ð ÞΨτ1+2 ν1ð Þ

�q

+ 1
162

ν32
4 τ1 + 1ð Þ τ1 + 2ð Þ τ1 + 3ð ÞΨτ1+3 ν2ð Þ
�

+ 3ν2
4 τ1 + 1ð Þ τ1 + 2ð ÞΨτ1+2 ν2ð Þ

�q

−
59
3527

ζ31
4 τ1 + 1ð Þ τ1 + 2ð Þ τ1 + 3ð ÞΨτ1+3 ζ1ð Þ

 (

+ 3ζ1
4 τ1 + 1ð Þ τ1 + 2ð ÞΨτ1+2 ζ1ð Þ

�q

+ 133
3527

ζ32
4 τ1 + 1ð Þ τ1 + 2ð Þ τ1 + 3ð ÞΨτ1+3 ζ2ð Þ
 

+ 3ζ2
4 τ1 + 1ð Þ τ1 + 2ð ÞΨτ1+2 ζ2ð Þ

�q�)1/q

+ 1
162

ν31
4 τ1 + 1ð Þ τ1 + 2ð Þ τ1 + 3ð ÞΨτ1+3 ν1ð Þ
��

+ 3ν1
4 τ1 + 1ð Þ τ1 + 2ð ÞΨτ1+2 ν1ð Þ

�q

+ 1
162

ν32
4 τ1 + 1ð Þ τ1 + 2ð Þ τ1 + 3ð ÞΨτ1+3 ν2ð Þ
�

+ 3ν2
4 τ1 + 1ð Þ τ1 + 2ð ÞΨτ1+2 ν2ð Þ

�q

−
59

3527
ζ32

4 τ1 + 1ð Þ τ1 + 2ð Þ τ1 + 3ð ÞΨτ1+3 ζ2ð Þ
 (

+ 3ζ2
4 τ1 + 1ð Þ τ1 + 2ð ÞΨτ1+2 ζ2ð Þ

�q

+ 133

3527
ζ31

4 τ1 + 1ð Þ τ1 + 2ð Þ τ1 + 3ð ÞΨτ1+3 ζ1ð Þ
 

+ 3ζ1
4 τ1 + 1ð Þ τ1 + 2ð ÞΨτ1+2 ζ1ð Þ

�q�)1/q35:
ð66Þ

Proof. The required result follows immediately from Remark
17 utilizing ϕðϰÞ =Ψτ1

′ðϰÞ, ϰ > 0, and the identities (66) and
(63).

Proposition 24. Suppose that τ1 > −1 and 0 < ζ1 < ζ2: Then,
we have

1
6

ζ1
2 τ1 + 1ð ÞΨτ1+1 ζ1ð Þ + 4

ζ1 + ζ2
4 τ1 + 1ð ÞΨτ1+1

ζ1 + ζ2
2

� �
+ ζ2
2 τ1 + 1ð ÞΨτ1+1 ζ2ð Þ

� �����
−
Ψm ζ2ð Þ −Ψm ζ1ð Þ

ζ2 − ζ1

����
≤ ζ2 − ζ1ð Þ2 1

162

� �1−1/q
× 59

3527
ζ31

4 τ1 + 1ð Þ τ1 + 2ð Þ τ1 + 3ð ÞΨτ1+3 ζ1ð Þ
 ("

+ 3ζ1
4 τ1 + 1ð Þ τ1 + 2ð ÞΨτ1+2 ζ1ð Þ

�q

+ 133
3527

ζ32
4 τ1 + 1ð Þ τ1 + 2ð Þ τ1 + 3ð ÞΨτ1+3 ζ2ð Þ

 

+ 3ζ2
4 τ1 + 1ð Þ τ1 + 2ð ÞΨτ1+2 ζ2ð Þ

�q�1/q

+ 59

3527
ζ32

4 τ1 + 1ð Þ τ1 + 2ð Þ τ1 + 3ð ÞΨτ1+3 ζ2ð Þ + 3ζ2
4 τ1 + 1ð Þ τ1 + 2ð ÞΨτ1+2 ζ2ð Þ

 !q(

+ 133
3527

ζ31
4 τ1 + 1ð Þ τ1 + 2ð Þ τ1 + 3ð ÞΨτ1+3 ζ1ð Þ + 3ζ1

4 τ1 + 1ð Þ τ1 + 2ð ÞΨτ1+2 ζ1ð Þ
 !q)1/q35:

ð67Þ

Proof. The required result follows immediately from Remark
18 utilizing ϕðϰÞ =Ψτ1

′ðϰÞ,ϰ > 0, and the identities (66) and
(63).

4. Conclusion

The study deal with the investigation of Simpson-Mercer
type inequalities for twice differentiable functions. Adopting
the novel approach, we extended the study of Simpson-
Mercer type integral inequalities using Hölder’s and
power-mean integral inequalities via Atangana-Baleanu
(AB) fractional integral operators. It is interesting to extend
such findings to the Atangana-Baleanu (AB) operator and
also to other convexities. Various representations were used
to explain the findings to clarify the important aspects of the
fractional inequalities under consideration, such as
Figures 1–3, which illustrate the error bounds for the domi-
nant findings. We believe that our newly introduced idea
and concept will have very deep research in the captivating
field of numerical analysis and inequalities. The strategy’s
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Figure 3: Three-dimensional illustration of the error and error bounds for (55).

12 Journal of Function Spaces



effective and productive execution is investigated and con-
firmed in order to show that it may be applied to coordi-
nated convex functions that emerge in fractional calculus,
especially to fractal and fractional integral operators.
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For fuzzy fractional functional evolution equations, the concept of global and local existence and uniqueness will be presented in
this work. We employ the contraction principle and successive approximations for global and local existence and uniqueness,

respectively, as given
c
0D

H
q xðIÞ = f ðI, xIÞ +

ÐI
0 gðI, s, xsÞds,I ≥I0,I ∈ ½0, T�,

xðIÞ = ψðI −I0Þ = ψ0 ∈ Cσ,I0 ≥I ≥I0 − σ,
x′ðIÞ = ψ′ðIÞ = ψ1,

8<
: where Cσ denotes the set of fuzzy continuous

mapping defined on ½I0 − σ, T� and σ > 1. We also use this method to solve fuzzy fractional functional evolution equations
with fuzzy population models and distributed delays using fuzzy fractional functional evolution equations. To explain these
results, some theorems are given. Finally, certain fuzzy fractional functional evolution equations are illustrated.

1. Introduction

In reality, to show fractional-order demeanor which can
change with time and space in case of a large number of
physical processes, fractional calculus authorizes the opera-
tions of differentiation and integration of fractional-order.
The fractional-order can be applied to both imaginary and
real numbers. Because of its wide range of applications in
disciplines like mechanics, electrical engineering, signal
processing, thermal systems, robotics and control, signal
processing, and many others, the theory of fuzzy sets con-
tinues to attract academics’ attention [1–3]. Therefore, it
has been noticed that it is the center of increasing interest
of researchers during the past few years.

In real-world systems, delays can be recognized every-
where, and there has been widespread interest in the study
of delay differential equations for many years. Fractional dif-
ferential equations are becoming more important in system

models in biology, chemistry, physics, and other sciences.
There is a large form of evidence about functional differen-
tial equations and their methods. On the other hand, we
can seldom be certain that dynamic in a system is perfectly
modeled using deterministic ordinary differential equations
because the knowledge of dynamical systems is either
unclear or incomplete. If the model’s underlying structure
is based on subjective decisions, one way to incorporate
these is to use the fuzziness aspect, which contributes to
the consideration of fuzzy fractional functional evolution
equations. In the context of fuzzy-valued analysis and set-
valued differential equations, fuzzy differential equations
were first studied as a separate subject. The analysis of fuzzy
differential equations can be expressed in a variety of ways.
In biology, chemistry, physics, and other sciences, fractional
differential equations are becoming more significant in sys-
tem models. The reader is referred to the monographs [4,
5], and the references therein, as there is a large quantity
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of literature dealing with delay differential equations and
their applications. As a new branch of fuzzy mathematics,
the study of fuzzy delay differential equations is growing in
popularity. Over the last few years, both theory and applica-
tions have been widely discussed. The study of fuzzy delay
fractional functional evolution equations has numerous
interpretations in the literature.

Puri and Ralescu defined H-differentiability for fuzzy
functions using the Hukuhara derivative of multivalued
functions. In the context of fuzzy differential equations in a
time-dependent manner, Seikkala and Kaleva proposed
and investigated this definition. The fuzzy initial value issue
has a unique local solution if f is continuous and satisfies the
Lipschitz condition with respect to u, as Kaleva established
in [6].

U ′ Ið Þ = f I, uð Þ, u 0ð Þ = u0 on Em,Dð Þ: ð1Þ

He proved that the Peano theorem is invalid in [6], since
metric space ðEm,DÞ can be locally compact. Peano’s exis-
tence theorem for FDEs on ðEm,DÞ was proven by Nieto
[7] if f is bounded and continuous. Buckley and Feuring
[8] gave reasonable general formulation to the fuzzy first-
order initial value problem. Citations [9, 10] present the
existence of theorems for solutions to the fuzzy initial value
problem under a wide range of assumptions. This H-differ-
entiability-based approach has the disadvantage of having
an increasing length of support for each solution of FDE.
As a result, this method is inappropriate for modeling and
fails to describe any of the complex properties of ordinary
differential equations, that is, stability, periodicity, bifurca-
tion, and other phenomena [11]. This problem is solved
using FDE, which can be read as a family of differential
inclusions [12]. We do not have a derivative for fuzzy-
number-valued equations, which is a key drawback of differ-
ential inclusions.

The above-mentioned method for fuzzy-number-valued
functions with highly generalized differentiability was
recently solved by Bede and Gal [13]. The derivative is main-
tained in this case, and the support length of the FDE solu-
tion may decrease, but the uniqueness is lost. On fuzzy
differential equations, there is a lot of literature. In compar-
ison, FFDEs and their implementations were only briefly
mentioned in a few articles. Park and his colleagues’ [14]
approximate solutions of fuzzy functional integral equations
were studied. Park et al. [15] examined the presence of
almost periodic and asymptotically almost periodic solutions
for FFDEs. For nonlinear fuzzy neutral functional differen-
tial equations, Balasubramaniam and Muralisankar [16]
investigate local uniqueness and existence theorem. Guo
et al. [17] developed existence results for fuzzy impulsive
functional differential equations using Hüllermeier’s level-
wise method [13], which they then applied to fuzzy popula-
tion models. Abbas et al. [18, 19] worked on a partial differ-
ential equation. Niazi et al. [20], Iqbal et al. [21], Shafqat
et al. [22], Abuasbeh et al. [23], and Alnahdi et al.’s [24] exis-
tence and uniqueness of the FFEE were investigated.

Khastan et al. proved the existence of two fuzzy solutions
for fuzzy delay differential equations using the concept of
generalized differentiability. Hoa et al. established the global
existence and uniqueness results for fuzzy delay differential
equations using the concept of generalized differentiability.
Moreover, the authors have extended and generalized some
comparison theorems and stability theorems for fuzzy delay
differential equations with the definition of a new Lyapunov-
like function. Besides that, some very important extensions
of the fuzzy delay dierential equations were introduced.
The author considered the FDE with the initial value

X ′ Ið Þ = f I, x Ið Þð Þ, x I0ð Þ = x0 ∈ Ed, ð2Þ

where f : ½0,∞Þ × Ed ⟶ Ed and the symbol ′ denotes the
first type of Hukuhara derivative, that is, the classical Huku-
hara derivative. O. Kaleva also discussed the properties of
differentiable fuzzy mappings and showed that if f is contin-
uous and f ðI, xÞ satisfies the Lipschitz condition concerning
to x, then, there exists a unique local solution for the fuzzy
initial value problem. V. Lupulescu proved several theorems
stating the existence, uniqueness, and boundedness of solu-
tions to fuzzy differential equations with the concept of the
inner product on the fuzzy space. Guo et al. [25] and Shu
et al. [26] studied the fractional differential equation.

In [27], V. Lupulescu considered the fuzzy functional
differential equation

x′ Ið Þ = f I, xIð Þ,I ≥I0,

x Ið Þ = ϕ I − t0ð Þ ∈ Ed,I0 ≥I ≥I0 − σ,
ð3Þ

where f : ½0,∞Þ × Cσ ⟶ Ed and the symbol ′ denotes the
first type Hukuhara derivative called classical Hukuhara
derivative. The author studied the local and global existence
and uniqueness results by using the method of successive
approximations and contraction principle.

We used Caputo derivative to prove the uniqueness and
existence of several uniqueness and existence theorems for
fuzzy fractional functional differential equations (FFFDEs)
under certain conditions, inspired by the above research:

c
0D

H
q x Ið Þ = f I, xIð Þ +

ðI
0
g I, s, xsð Þds,I ≥I0,I ∈ 0, T½ �,

x Ið Þ = ψ I −I0ð Þ = ψ0 ∈ Cσ,I0 ≥I ≥I0 − σ

x′ Ið Þ = ψ′ Ið Þ = ψ1,
ð4Þ

where Cσ denotes the set of fuzzy continuous mapping
defined on ½I0 − σ, T� and σ > 1. xI denotes the fuzzy map-
ping xðIsÞ,I0 − σ ≤ s ≤ T ; that is, xI ∈ Cσ. The goal of this
study is to use the method of contraction principle and con-
secutive approximations to show local and global uniqueness
and existence theorems for the fuzzy fractional functional
differential Equation (4) under certain conditions.

The following is a description of the paper’s structure. As
a warm-up, we will make some basic observations on fuzzy
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sets and the differentiability and integrability features of
fuzzy functions. In Section 3, we show the local uniqueness
and existence theorem for the solution to the initial value
problem for FFFDEs using the successive approximation
method. Section 4 proves the global uniqueness and exis-
tence theorem for the initial value solution. A problem
involving fuzzy fractional functional differential equations
is solved using contraction theory. Finally, we apply what
we have learned about FDEs to two different forms of fuzzy
differential equations: FFFDEs with fuzzy population and
distributed delays models.

2. Preliminaries

The set of all nonempty, compact convex subsets of Rm is
denoted by K cðRmÞ. The Hausdorff distance between sets
A, B ∈K cðRmÞ is defined as

dH A, Bð Þ =max sup
a∈A

inf
b∈B

a − bj jj j, sup
b∈B

inf
a∈A

a − bj jj j
� �

: ð5Þ

Denote fEm = x : Rm ⟶ 0, 1j ; x satisfies ðaÞ − ðdÞ
belowg.

In the above equation,

(a) x is normal due to the exists of Rm, xðu0Þ = 1

(b) x is fuzzy convex, for Rm, 0 ≤ λ ≤ 1, xðλu + ð1 − λÞv
Þ ≥min fxðuÞ, xðvÞg

(c) x is upper semicontinuous function on Rm

(d) ½x�0 = clfs ∈ Rm/xðIÞ > 0g is compact

1 < β ≤ 2, represent ½x�β = fu ∈ Rm/xðIÞ ≥ βg. Then,
from (a) to (b), it shows, β-level set ½x�βI ∈K cðRmÞ∀1 ≤ β
≤ 2. We define ~0 ∈ Em as ~0ðuÞ = 1 if u = 0 and ~0ðuÞ = 0 if u
≠ 0 for later purposes.

Using Zadeh’s extension theorem, we can have scalar
multiplication and addition in fuzzy number space Em as
shown in

x ⊕ y½ �β = x½ �β ⊕ y½ �β, kx½ �β = k x½ �β, ð6Þ

where x, y ∈ Em, k ∈ Rm and 1 ≤ β ≤ 2.
Define D : Em × Em ⟶ R+ by notation

D x, yð Þ = sup
1≤β≤2

dH x½ �β, y½ �β
n o

: ð7Þ

whereD is Hausdorff a metric for nonempty compact sets in
Rm and ðEm,DÞ is a complete metric space [28].

It is very simple to notice that D is a metric in Em. By
using the properties of Dðx, yÞ:

(a) ðEm,DÞ is a complete metric space

(b) Dðx ⊕ z, y ⊕ zÞ =Dðx, yÞ and Dðx, yÞ =Dðx, yÞ∀x, y
, z ∈ Em

(c) Dðλx, λyÞ = jλjDðx, yÞ∀x, y ∈ Em and λ ∈ Rm

(d) Dðx, yÞ ≤Dðx, zÞ +Dðz, yÞ
If we denote kxkG =Dðx, ~0Þ, x ∈ Em, then, kxkG has

properties of an usual norm onEm [29]:

(i) kxkG = 0 if x = ~0

(ii) kλxkG = jλjkxkG∀x, y ∈ Em

(iii) kx + ykG ≤ kxkG + kykG∀x, y ∈ Em

(iv) Dðβx, γxÞ ≤ jβ − γjDðx, ~0Þ, ∀β, γ ≥ 1 orβ, γ ≤ 1, x ∈
Em

On Em, we can describe subtraction !, also known as H
-difference [30], as follows: s ⊖ v has significance if ω ∈ Em,
x = y + z exists.

Suppose a, b ∈ Rm, f ∈CðI, EmÞ, if we represent k f k =
Hð f , ~0Þ, then, k f k has properties of an usual norm on Em

[29],

(i) k f k = 0 if f = ~0

(ii) kλf k = jλjk f k∀f ∈ℂðI, EmÞ, λ ∈ Rm

(iii) k f ⊕ hk ≤ k f k ⊕ khk∀f , h ∈ ðI, EmÞ
(iv) Hðβf , γf Þ ≤ jβ − γjHð f , ~0Þ, ∀β, γ ≥ 0 or β, γ ≤ 0, f

∈ℂðI, EmÞ

Definition 1. The mapping F : I⟶ Em is Hukuhara differ-
entiable at I ∈ I if exists G ′ðIÞ ∈ Em similar to the limits:

lim
h⟶0+

G I0 + hð Þ ⊖G I0ð Þ
h

and lim
h⟶0+

G I0ð Þ ⊖G I0 − hð Þ
h

,

ð8Þ

and is equal and exists to G ′ðIÞ.

We can remember some properties of integrability and
measurability for fuzzy set-valued mappings [28].

Definition 2. If G : I⟶ Em is fuzzy function, that is

G Ið Þ½ �β = G
β
1 Ið Þ, Gβ

2 Ið Þ
h i

, β ∈ 1, 2½ �, ð9Þ

and there exists G ′ðI0Þ for some I0 ∈ I, and now

G ′ I0ð Þ
h iβ

= G
β
1

� �
′ I0ð Þ, G

β
2

� �
′ I0ð Þ

h i
, β ∈ 1, 2½ �: ð10Þ

Definition 3. The mapping G : I ∈ Em is strongly measurable
if for all β ∈ ½1, 2�, then, the set-valued function Gβ : I⟶
MjRmdefine by GβðIÞ = ½GðIÞ�β is Lebesgue measurable.
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The mapping G : I ∈ Em is known as integrably bounded
if there exists an integrable function j like

xj jj j ≤ J Ið Þ∀x ∈ G0 Ið Þ: ð11Þ

Definition 4. Suppose G : I ∈ Em. Then, the equation defines
integral of G over I, which is expressed by

Ð
IGðIÞdt,

½Ð IGðIÞdt�β = Ð IGβðIÞdI = fÐ IGðIÞdI/f : I ⟶ Rm is
measurable selection forGβg∀β ∈ ½1, 2�.

Also, strongly measurable and integrably bounded map-
ping G : I ⟶ Em is said to be integrable over I if and only if

ð
I
G Ið ÞdI ∈ Em: ð12Þ

Proposition 5 (Aumann [31]). G is integrable if G : I ∈ Em is
integrably bounded and strongly measurable.

Proposition 6 (Kaleve [28]). It is integrable over I if G : I
⟶ Em is continuous. Furthermore, function FðIÞ = ÐI

I0
G

ðsÞds,I0,I ∈ I is differentiable in this case, and F ′ðIÞ = G

ðIÞ.

Proposition 7 (Kaleve [28]). Suppose G ,H : I ∈ Em be inte-
grable and λ ∈ Rm. Now

(i)
Ð
IðGðIÞ ⊕HðIÞÞdI =

Ð
IGðIÞdI ⊕

Ð
1HðIÞdI

(ii)
Ð
IλGðIÞdI = λ

Ð
IFðIÞdI

(iii) DðG ,HÞ is integrable
(iv) DðÐ IGðIÞdI,

Ð
IHðIÞdIÞÐ IDðG ,HÞðIÞdI

(v)
ÐI2
I0
GðIÞdI =

ÐI1
I0
GðIÞdI +

ÐI2
I1
GðIÞdI, for I0,

I1,I2 ∈ I

If I is compact interval of Rm, then represent ℂðI, EmÞ =
f f : I ⟶ Em ; f is continuous functions on Ig, equipped with
metric

D x, yð Þ = sup
I∈I

D x Ið Þ, y Ið Þð Þ: ð13Þ

Now, ðℂ,HÞ is a complete metric space.
We call Cσ space Cð½−σ, 0�, EmÞ for positive numbers σ.

Represent it as well:

Dσ x, yð Þ = sup
I∈ −σ,0½ �

D x Ið Þ, y Ið Þð Þ, ð14Þ

metric on space Cσ. For a given constant ρ > 0, put Bρ ≔ fφ
∈ Cσ ;Dσðφ, 0Þ ≤ ρg.

Suppose xð:Þ ∈ Cð½−σ,∞Þ, EmÞ. Now, for all I ∈ ½0,∞Þ,
denoted by x1 element of Cσ defined by x1ðsÞ = xðI + sÞ, s ∈
½−σ, 0�.

Definition 8 (Fuzzy Strongly Continuous Semigroups) [30,
31]. A family fTðIÞ,I ≥ 0g is fuzzy strongly continuous
semigroup of operators from Em into itself if

(i) Tð0Þ = k identity mapping on Em

(ii) TðI ⊕mÞ = TðIÞTðmÞ∀I,m ≥ 0

(iii) function h : ½0,∞½⟶Em, defined by hðIÞ = TðIÞx
at I = 0∀x ∈ Em is continuous

lim
I⟶0+

T Ið Þx = x: ð15Þ

(iv) There are two constants R > 0 and ω like

D T Ið Þx, T Ið Þyð Þ ≤ ReωD x, yð Þ, forI ≥ 0, x, y ∈ Em: ð16Þ

Specially, if ω = 0 and Rm = 1, fTðIÞ,I ≥ 0g is a con-
traction fuzzy semigroup.

Lemma 9. If G : ½0,∞Þ × Cσ ⟶ Em is jointly continuous
function and x : ½−σ,∞Þ⟶ Em is continuous function,
now, function I↦GðI, xIÞ: ½0,∞Þ⟶ Em is also
continuous.

Proof. Assume that fixed ðτ, φÞ × Cσ and ε > 0. G : ½0,∞Þ ×
Cσ ⟶ Em are jointly continuous, there exists δ1 > 0 that is
for all ðI, ψÞ ∈ ½0,∞Þ × Cσ with jI − τj +Dσðφ, ψÞ < δ1, D½
GðI, ψÞ, Gðτ, φÞ� < ε. On the other way, x : ½−σ,∞Þ⟶
Em is continuous; now, it is uniformly continuous on com-
pact interval I1 = ½max f−σ, τ − σ − δ1g, τ + δ1�. There exists
δ2 > 0; for all I1,I2 ∈ I1 with jI1 −I2j < δ2, we have
D½xðI1Þ, xðI2Þ� < δ1/2. After, for all s ∈ ½−σ, 0�, τ + s ∈ I1,
and I + s ∈ I1 if jI − τj < δ1/2, now, jðI + sÞ − ðτ + sÞj < δ2,
and it shows that

Dσ xI, xτð Þ = sup
−σ≤s≤0

D xI sð Þ, xτ sð Þ½ �

= sup
−σ≤s≤0

D x I + sð Þ, x τ + sð Þ½ � ≤ δ1/2:
ð17Þ

Therefore, jI − τj +DσðxI, xτÞ < δ1, since G is jointly
continuous, D½GðI, xIÞ, Gðτ, xτÞ� < ε. This implies that
function I↦ GðI, xIÞ: ½0,∞Þ⟶ Em is continuous.

Remark 10. If G : ½0,∞Þ × Cσ ⟶ Em is jointly continuous
function and x : ½−σ,∞Þ⟶ Em is continuous function,
then, functionI↦ GðI, x1Þ: ½0,∞Þ⟶ Em on each compact
interval ½τ, T� is integrable. Furthermore, function FðIÞ = ÐI

τ

Gðs, xsÞds,I ∈ ½τ, T� is differentiable in this case, and F ′ðIÞ
=GðI, xIÞ.

Remark 11. If G : ½0,∞Þ × Cσ ⟶ Em is jointly continuous
function and x : ½−σ,∞Þ⟶ Em is continuous function,
then, function I↦GðI, x1Þ: ½0,∞Þ⟶ Em on each
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compact interval ½τ, T� is bounded. On each compact inter-
val ½0, T�, function I↦ GðI, 0Þ: ½0,∞Þ⟶ Em is also
bounded.

Definition 12. We say that G : ½0,∞Þ × Cσ ⟶ Em is locally
Lipschitz if a, b ∈ ½0,∞Þ and ρ > 0, and there exists L > 0,

D G½ I, φð Þ, G I, ψð Þ ≤ LDσ φ, ψð Þ, a ≤I ≤ b, φ, ψ ∈ Bρ:

ð18Þ

Lemma 13. Assume that G : ½0,∞Þ × Cσ ⟶ Em is locally
Lipschitz and continuous. Now, for all compact interval J ⊂
½0,∞Þ and ρ > 0, there exists K > 0,

D G I, φð Þ, ~0� �
≤K ,I ∈ J , φ ∈ Bρ: ð19Þ

Proof. I ∈ J , then

D G I, φð Þ, ~0� �
≤D G I, φð Þ,G I, 0ð Þ½ � +D G I, 0ð Þ, ~0� �
≤ LDσ φ, 0ð Þ +D G I, 0ð Þ, ~0� �

≤ ρL + η,
ð20Þ

where η≔ sup
I∈J

D½GðI, 0Þ, ~0�.

Definition 14 (see [32]). The RL fractional derivative is
defined as

aD
p
I f Ið Þ = d

dI

� 	n+1ðI
a
I − τð Þn−p f τð Þdτ, n ≤ p ≤ n + 1:

ð21Þ

Definition 15 (see [32]). The Caputo fractional derivatives
c
aD

α
IfðIÞ of order α ∈ E+ are defined by

c
aD

α
I f Ið Þ= aD

α
I f Ið Þ − 〠

n−1

k=0

f kð Þ að Þ
k!

I − að Þk
 !

, ð22Þ

respectively, where n = ½α� + 1 for α ∉N0 ; n = α for α ∈N0.
We investigate the Caputo fractional derivative of order

1 < α ≤ 2 in this study; e.g.,

c
aD

3/2
I f Ið Þ= aD

3/2
I f Ið Þ − 〠

n−1

k=0

f kð Þ að Þ
k!

I − að Þk
 !

: ð23Þ

Definition 16 (see [33]). The Wright function ψα is defined
by

ψα θð Þ = 〠
∞

n=0

−θð Þn
n!Γ −αn + 1 − αð Þ

=
1
π
〠
∞

n=1

−θð Þn
n − 1ð Þ!Γ nαð Þ sin nπαð Þ,

ð24Þ

where θ ∈ℂ with 0 < α < 1.

Lemma 17 (see [33]). Let fCðIÞgI ∈ Rm be a strongly con-
tinuous cosine family in X satisfying kCðIÞkLbðXÞ ≤MeωjIj,
I ∈ Rm, and let A be the infinitesimal generator of fCðIÞg
I ∈ Rm. Then, for Re λ > ω, λ2 ∈ ρðAÞ

λR λ2 ; A

 �

x =
ð∞
0
e−λIC Ið ÞxdI, R λ2 ; A


 �
x

=
ð∞
0
e−λIS Ið ÞxdI, for x ∈ X:

ð25Þ

Lemma 18. For xðIÞ = ψ0, if uI is the solution of Equation
(4), then, the solution uI is given by

xI = Cq Ið Þψ0 +Kq Ið Þψ1 +
ðI
0
I − sð Þq−1Pq I − sð Þ

� f s, xsð Þ +
ðI
0
g I, s, xsð Þds

� 
ds,I ∈ 0, T½ �,

ð26Þ

such that

Cq Ið Þ =
ð∞
0
MqC Iqζð Þdζ,Kq Ið Þ =

ðI
0
Cq sð Þds, Pq Ið Þ

=
ð∞
0
qζMqC Iqζð Þdζ,

ð27Þ

where CqðIÞ and KqðIÞ are continuous with Cð0Þ = I and
Kð0Þ = I, jCqðIÞj ≤ c, c > 1 and jKqðIÞj ≤ c, c > 1, ∀I ∈ ½0,
T�.

3. Local Uniqueness and Existence

For G : ½0,∞Þ × Cσ ⟶ Em, we assume the fuzzy Caputo
functional equation:

C
0D

q
Hx Ið Þ = f I, xIð Þ +

ðI
0
g I, s, xsð Þds,I ≥I0,I ∈ 0, T½ �,

x Ið Þ = ψ I −I0ð Þ = ψ0 ∈ Cσ,I0 ≥I ≥I0 − σ,

u′ Ið Þ = ψ′ Ið Þ = ψ1:

ð28Þ

According to the solution of FFFDE (4) on interval
½I0, b�, we mean continuous function x : ½I0 − σ, bÞ⟶
Em; that is, xðIÞ = φðI −I0Þ for I ∈ ½I0 − σ, b� for I ∈
½0, T� and x is differentiable on ðI0, b� and c

0D
q
HxðIÞ =

f ðI, xIÞ +
ÐI
0 gðI, s, xsÞds,I ∈ ½0, T�.

Theorem 19. Suppose set G : ½0,∞Þ × Cσ ⟶ Em is locally
Lipschitz and continuous. Now, for all ðI0, φÞ ∈ ½0,∞Þ × Cσ,
there exists I >I0 ; that is, FFFDE (4) has unique solution
x : ½I0 − σ,I�⟶ Em.
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Proof. Any positive number will satisfy as ρ > 0. Then, there
exists L > 0; that is, G is Lipschitz locally.

D G I, φð Þ, G I, ψð Þ½ � ≤ LDσ φ, ψð Þ,I0 ≤I ≤ h, φ, ψ ∈ B2ρ,
ð29Þ

for some h >I0. According to Lemma 13, there exists
K > 0, D½FðI, φÞ, ~0� ≤K for ðI, φÞ ∈ ½I0, h� × B2ρ. Sup-
pose T ≔min fh, ρ/Kg. We assume set Em of all functions
x ∈ Cð½I0 − σ, T�, EmÞ; then, xðIÞ = φðI −I0Þ on ½I0 − σ,
I0� andD½xðIÞ, ~0� ≤ 2ρ on ½I0, T�. If y ∈ Em, we define con-
tinuous function ω : ½I0 − σ, T�⟶ Em by

Now, for I ∈ ½0, T�

D w Ið Þ, ~0� �
≥D

ðI
0
f s, ysð Þ, ~0�ds� 

+
ðI
0
D

ðI
0

g I, s, ysð Þ, ~0
 �
ds

� 
ds ≥ 2ρT ,

ð31Þ

and so ω ∈ Em. We will use method of successive approxima-
tions to solve (4) by constructing series of continuous func-
tions. xm : ½I0 − σ, T�⟶ Em beginning with initial
continuous function

x0 Ið Þ≔
f I, xIð Þ +

ðI
0
g I, s, xsð Þds,I ≥I0,I0 ≥I ≥I0 − σ,

φ 0ð Þ + Cq Ið Þψ0 +Kq Ið Þψ1I ∈ 0, T½ �:
ð32Þ

Clearly, D½c0Dq
Hx

0ðIÞ, ~0� ≤ ρ on ½0, T�. Further, define

xm+1 Ið Þ≔
f I, xIð Þ +

ðI
0
g I, s, xsð Þds,I ≥I0,I0 ≥I ≥I0 − σ,

φ 0ð Þ + Cq Ið Þψ0 +Kq Ið Þψ1 +
ðI
0
I − sð Þq−1Pq I − sð Þ f s, xmsð Þ +

ðI
0
g I, s, xmsð Þds

� 
ds,I ∈ 0, T½ �,

ð33Þ

if = 0, 1,⋯ . Then, for I ∈ ½0, T�, now

D x1 Ið Þ, u0 Ið Þ� �
≤D

ðI
0
I − sð Þq−1Pq I − sð Þ

�

� f s, x0s

 �

+
ðI
0
g I, s, x0s

 �

ds
� 

ds, ~0
	

≤K T − 0ð Þ:
ð34Þ

By Equations (29) and (33), we find

D xm+1 Ið Þ, xm Ið Þ� �
≤D

ðI
0
I − sð Þq−1Pq I − sð Þ

�

� f s, xmsð Þ +
ðI
0
g I, s, xmsð Þds

� 
ds,

ðI
0
I − sð Þq−1Pq I − sð Þ

� f s, xm−1
s


 �
+
ðI
0
g I, s, xm−1

s

 �

ds
� 

ds
!

≤
ðI
0
L2Dσ xms +

ðI
0
g I, s, xmsð Þ

� 
,

�

xm−1
s +

ðI
0
g I, s, xm−1

s

 �

ds
� 	

ds

≤
ðI
0
L2 sup

θ∈ s−T ,s½ �
D xm θð Þ +

ðI
0
g I, s, xm θð Þð Þds

� 
,

�

xm−1 θð Þ +
ðI
0
g I, s, xm−1 θð Þ
 �

ds
� 	

ds,I ∈ 0, T½ �:

ð35Þ

In particular,

D x2 Ið Þ, x1 Ið Þ� �
=
K

L2
L2 I − Tð Þ� �2

2!
,I ∈ 0, T½ �: ð36Þ

If we suppose

D xm Ið Þ, xm−1 Ið Þ� �
≤
K

L2
L2 I − Tð Þ� �m

m!
,I ∈ 0, T½ �, ð37Þ

now

D xm+1 Ið Þ, xm Ið Þ� �
=
K

L2
L2 I − Tð Þ� �m+1

m + 1ð Þ! ,I ∈ 0, T½ �: ð38Þ

(37) holds for any m ≥ 2, according to mathematical
induction. As a result, the sequence ∑∞

m=2D½xmðIÞ, xm−1ðIÞ�
is a sequence fxmgm≥0 that is uniformly convergent on ½0, T�.
As a result, there is a continuous function x : ½0, T�⟶ Em,

w Ið Þ≔
f I, xIð Þ +

ðI
0
g I, s, xsð Þds,I ≥I0, t0 ≥I ≥I0 − σ,

φ 0ð Þ + Cq Ið Þψ0 +Kq Ið Þψ1 +
ðI
0
I − sð Þq−1Pq I − sð Þ f s, ysð Þ +

ðI
0
g I, s, ysð Þds

� 
ds ∈ 0, T½ �:

ð30Þ
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which is sup
0≤I≤T

D½xmðIÞ, xðIÞ�⟶ 0 as m⟶∞. Since then

D f s, xmsð Þ +
ðI
0
g I, s, xmsð Þds

� 
, f s, xm−1

s

 �

+
ðI
0
g I, s, xm−1

s

 �

ds
� � 	

≤ L2Dσ xms +
ðI
0
g I, s, xmsð Þds

� 
, xs +

ðI
0
g I, s, xsð Þds

� � 	
ds

≤ sup
0≤I≤T

D xm Ið Þ, x Ið Þ½ �:

ð39Þ

We have deduced

D f s, xmsð Þ +
ðI
0
g I, s, xmsð Þds

� 
ds,

�

f s, xm−1
s


 �
+
ðI
0
g I, s, xm−1

s

 �

ds
� 

ds
	
⟶ 0,

ð40Þ

uniformly on ½0, T� as m⟶∞. Therefore,

D

ðI
0

f s, xmsð Þ +
ðI
0
g I, s, xmsð Þds

� 
ds,

�
ðI
0

f s, xm−1
s


 �
+
ðI
0
g t, s, xm−1

s


 �
ds

� 
ds
	

≤
ðI
0
D f s, xmsð Þ +

ðI
0
g I, s, xmsð Þds

� 
ds,

�

f s, xm−1
s


 �
+
ðI
0
g I, s, xm−1

s

 �

ds
� 

ds
	
ds:

ð41Þ

It follows that

lim
m⟶∞

ðI
0

f s, xmsð Þ +
ðI
0
g I, s, xmsð Þds

� 
ds

=
ðI
0

f s, xm−1
s


 �
+
ðI
0
g I, s, xm−1

s

 �

ds
� 

ds,I ∈ 0, T½ �:

ð42Þ

Extending x to ½I0 − σ,I0� in usual way by xðIÞ = f ðI,
xIÞ +

ÐI
0 gðI, s, xsÞds forI ∈ ½0, T�, then, by (33), we obtain

that

x Ið Þ =
f I, xIð Þ +

ðI
0
g I, s, xsð Þds,I ≥I0,I0 ≥I ≥I0 − σ,

φ 0ð Þ + Cq Ið Þψ0 +Kq Ið Þψ1 +
ðI
0
I − sð Þq−1Pq I − sð Þ f s, xsð Þ +

ðI
0
g I, s, xsð Þ

� 
ds,∈ 0, T½ �,

ð43Þ

and x is the solution for Equation (4). To prove uniqueness,
suppose y : ½I0 − σ, T�⟶ Em be second solution for (4).

For all I ∈ ½0, T�,

D x Ið Þ, y Ið Þ½ � =D

ðI
0
I − sð Þq−1Pq I − sð Þ f s, xsð Þ½

�

+
ðI
0
g I, s, xsð Þds


ds,
ðI
0
I − sð Þq−1Pq I − sð Þ

� f s, ysð Þ +
ðI
0
g I, s, ysð Þds

� 
ds
	
≤Dσ xs, ysð Þ

≤ L2
ðI
0

sup
θ∈ s−σ,s½ �

D x θð Þ, y θð Þ½ �ds:

ð44Þ

If we assume ξðsÞ≔ sup
r∈½s−σ,s�

D½xðrÞ, yðrÞ�, s ∈ ½0, T�, now

ξ Ið Þ ≤ L2
ðI
0
ξ sð Þds, ð45Þ

and by Gronwall’s lemma, we obtained ξðIÞ = 0 on ½0, T�. This
establishes uniqueness solutions for (4).

Remark 20. The contraction principle can be used to prove
local uniqueness and existence theorem for initial value
problems (28). Suppose P : Em ⟶ Em be defined as

Pxð Þ Ið Þ =
f I, xIð Þ +

ðI
0
g I, s, xsð Þds,I ≥I0,I0 ≥I ≥I0 − σ,

φ 0ð Þ + Cq Ið Þψ0 +Kq Ið Þψ1 +
ðI
0
I − sð Þq−1Pq I − sð Þ f s, xsð Þ +

ðI
0
g I, s, xsð Þds

� 
ds,I ∈ 0, T½ �,

ð46Þ

For I ∈ ½0, T�,

D Pxð Þ Ið Þ, Pyð Þ Ið Þ½ � =D

ðI
0
I − sð Þq−1Pq I − sð Þ f s, xsð Þ½

�

+
ðI
0
g I, s, xsð Þds


ds,
ðI
0
I − sð Þq−1

� Pq I − sð Þ f s, ysð Þ +
ðI
0
g I, s, ysð Þds

� 
ds
	

≤ L2Dσ xs, ysð Þ ≤ L2
ðI
0

sup
θ∈ s−σ,s½ �

D x θð Þ, y θð Þ½ �ds

≤ L2ID x, yð Þ:
ð47Þ

Hence

D Px, Pyð Þ ≤ L2ID x, yð Þ∀x, y ∈ Em, ð48Þ

where P : Em ⟶ Em is contraction only if LI < 2. However,
if we deal with successive approximations indirectly (33), we
can show that iterations converge, and initial value problem
(28) has unique solution on interval ½0, T� under merely the
assumption KT < ρ, without constraint LI < 2. The dis-
crepancy is resolved by noting that all functions x ∈ Cð½I0
− σ, T�, EmÞ, xðIÞ = φðI −I0Þ on ½0, T� have several
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equivalent metrics on space Em. In fact, metric

Dσ x, yð Þ = sup
I0−σ≤I≤T

D x Ið Þ, y Ið Þ½ �e−aI, a > 0, ð49Þ

is equivalent to metric Dðx, yÞ. Then

D x, yð Þe−aT ≤Dσ x, yð Þ ≤D x, yð Þ∀x, y ∈ Em: ð50Þ

Using metric (49) and function G : ½0,∞Þ × Cσ ⟶ Em

is continuous and satisfies the global Lipschitz condition:

D G I, φð Þ, G I, ψð Þ½ � ≤ L2Dσ φ, ψð Þ, 0 ≤I ≤ T , φ, ψ ∈ Cσ:

ð51Þ

In [34], uniqueness and existence of solution for (28) on
interval ½0, T� were illustrated.

Theorem 21. Let function G : ½0,∞Þ × Cσ ⟶ Em be locally
Lipschitz and continuous. If ðI0, φÞ, ðI0, ψÞ ∈ ½0,∞Þ × Cσ
and xðφÞ: ½I0 − σ, ω1Þ⟶ Em and xðψÞ: ½I0 − σ, ω2Þ⟶
Em are unique solutions of (28) with xðIÞ = f ðI, xIÞ +

ÐI
0 g

ðI, s, xsÞds on ½I0 − σ,I0�, now

D x φð Þ Ið Þ, x ψð Þ Ið Þ½ � ≤Dσ φ, ψð ÞeL2 I−0ð Þ∀I ∈ I0, ω½ Þ,
ð52Þ

where ω =min fω1, ω2g.

Proof. On ½I0, ωÞ solution, xðφÞ satisfies relation

x Ið Þ =
f I, xIð Þ +

ðI
0
g I, s, xsð Þds,I ≥I0,I0 ≥I ≥I0 − σ,

φ 0ð Þ + Cq Ið Þψ0 +Kq Ið Þψ1 +
ðI
0
I − sð Þq−1Pq I − sð Þ f s, xsð Þ +

ðI
0
g I, s, xsð Þds

� 
ds,I ∈ 0, ω½ �,

ð53Þ

and xðψÞ satisfies the same relation as φ, but with ψ instead
of φ. Then, for I ∈ ½I0, ωÞ,

D x φð Þ Ið Þ, x ψð Þ Ið Þ½ � ≤D φ 0ð Þ, ψ 0ð Þ½ � +D Cq Ið Þφ0, Cq Ið Þψ0
� �

+D Kq Ið Þφ1,Kq Ið Þψ1
� �

+
ðI
0
D I − sð Þq−1Pq I − sð Þ�

� f s, xsð Þ +
ðI
0
g I, s, xsð Þds

� 
ds, I − sð Þq−1Pq I − sð Þ

� f s, ysð Þ +
ðI
0
g I, s, ysð Þds

� 
ds

≤Dσ φ, ψð Þ

+Dσ φ0, ψ0ð Þ +Dσ φ1, ψ1ð Þ

+ L2
ðI
0

sup
r∈ I0−σ,s½ �

Dσ x φð Þ rð Þ, x ψð Þ rð Þ½ �ds:

ð54Þ

If suppose ωðsÞ = sup
r∈½I0−σ,s�

Dσ½xðφÞðrÞ, xðψÞðrÞ�,I0 ≤ s ≤

I, then

ω Ið Þ ≤Dσ φ, ψð ÞeLI,I0 ≤I < ω, ð55Þ

implying that (52) holds.

4. Global Existence and Uniqueness

For a given constant a > 0, consider set Em
a of all functions

x ∈ Cð½I0 − σ,∞Þ, EmÞ; that is, xðIÞ = f ðI, xIÞ +
ÐI
0 gðI, s,

xsÞds on ½I0 − σ,I0� and sup
I≥I0−σ

D½xðIÞ, ~0�e−aI <∞. On

Em
a , define the following metric:

Dσ x, yð Þ = sup
II0−σ

D x Ið Þ, y Ið Þ½ �e−aI: ð56Þ

Lemma 22. ðEm
a ,DaÞ is complete metric space.

Proof. Suppose fxmgm≥2 be Cauchy sequence in Em
a . Now,

for each ε > 0, there exists mε ∈ℕ∀m, p ≥mε, and we obtain
Dσðxm, ypÞ < ε. Hence

D xm Ið Þ, yp Ið Þ
h i

≤Dσ xm, yp
� �

eaI ≤ εeI, ð57Þ

and so

D xm Ið Þ, xp Ið Þ� �
≤ εeaI∀m, p ≥mε andI ≥I0 − σ: ð58Þ

For each I ≥I0 − σ, fxmðIÞgm≥2 is Cauchy sequence in
Em. ðEm,DÞ is a complete metric space, and there exists
xðIÞ = lim

m⟶∞
xmðIÞ for I ≥I0 − σ. Now, x ∈ Eσ. Evidently,

xðIÞ = f ðI, xIÞ +
ÐI
0 gðI, s, xsÞds on ½I0 − σ,I0�. From

(58), we get lim
p⟶∞

D½xmðIÞ, xðIÞ� ≤ εeaI, ∀m ≥mε and I ≥

I0. Now, x is continuous function on ½I0,∞Þ. Suppose
ε > 0 and s ≥I0. Then, there exists m =mε

′ ∈ℕ, D½xmðIÞ,
xðIÞ�ðε/6ÞeaðI−sÞ, ∀I ≥I0. Since xm is continuous function,
now, there exists δ1ε > 1, D½xmðIÞ, xmðsÞ� ≤ ðε/3Þ for I ≥I0.
Sincexm is continuous function, then, there exists δ1ε > 1 that
is D½xmðIÞ, xmðsÞ� ≤ ðε/3Þ for I ≥I0 with jI − sj ≤ δ1ε .
There exists δ2ε > 1; that is, eaðI−sÞ ≤ 2 for I ≥I0 with jI −
sj ≤ δ2ε . Assume δε =min fδ1ε , δ2εg. Now, for every I ≥I0
with jI − sj ≤ δε,

D x Ið Þ, x sð Þ½ � ≤D x Ið Þ, xm Ið Þ½ � +D xm Ið Þ, xm sð Þ½ �
+D xm sð Þ, x sð Þ½ � ≤ ε

6

� �
ea I−sð Þ +

ε

3
+
ε

6
≤ ε,

ð59Þ

where x is continuous function on ½I0,∞Þ. Now

sup
I≥I0−σ

D x Ið Þ, ~0� �
e−aI <∞: ð60Þ
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Since

D x Ið Þ, ~0� �
≤D x Ið Þ, xm Ið Þ½ � +D xm Ið Þ, ~0� �

∀I

≥I0 − σ andm ≥ 1:
ð61Þ

Now

sup
I≥I0−σ

D x Ið Þ, 0̂� �
e−aI ≤ sup

I≥I0−σ
D x Ið Þ, xm Ið Þ½ �e−aI

+ sup
I≥I0−σ

D xm Ið Þ, ~0� �
e−aI

=Dσ x, xmð Þ + sup
I≥I0−σ

D xm Ið Þ, ~0� �
e−aI,

ð62Þ

lim
m⟶∞

Dσðx, xmÞ = 1 and xm ∈ Em
a ∀m ≥ 2, we get

sup
I≥I0−σ

D x Ið Þ, ~0� �
e−aI <∞: ð63Þ

Moreover, x ∈ Em
a . So, ðEm

a ,DaÞ is complete metric space.
The fuzzy differential Equation (28) is then considered

under the following conditions:
ðJ1Þ There exist L > 0; that is

D G I, φð Þ, G I, ψð Þ½ � < L2Dσ φ, ψð Þ∀φ, ψ ∈ Cσ andI ≥ 1:
ð64Þ

ðJ2ÞG : ½0,∞Þ × Cσ ⟶ Em is jointly continuous.
ðJ3Þ There exists M > 0 and b > 0,

D G I, 0ð Þ, ~0� �
≤MebI∀I ≥ 1: ð65Þ

Suppose P : Cð½−σ,∞Þ, EmÞ⟶ Cð½−σ,∞Þ, EmÞ, defined
as

Lemma 23. If G : ½0,∞Þ × Cσ ⟶ Em satisfies assumptions
ðJ1Þ − ðJ2Þ and a > b, then, PðEm

a Þ ⊂ Em
a .

Proof. Suppose x ∈ Em
a . For each I ≥I0,

D Pxð Þ Ið Þ, 0̂� �
=D φ 0ð Þ + Cq Ið Þψ0 +Kq Ið Þψ1 +

ðI
0
I − sð Þq−1

�

� Pq I − sð Þ f s, xsð Þ +
ðI
0
g I, s, xsð Þds

� 
ds, ~0


≤D φ 0ð Þ, ~0� �

+D Cq Ið Þψ0, ~0
� �

+D Kq Ið Þψ1, ~0
� �

+D

ðI
0
I − sð Þq−1Pq I − sð Þ f s, xsð Þ½

�

+
ðI
0
g I, s, xsð Þds


ds, ~0


≤D φ 0ð Þ, ~0� �

+D Cq Ið Þψ0, ~0
� �

+D Kq Ið Þψ1, ~0
� �

+
ðI
0

L2Dσ xs, ~0

 �

+Mebs
� �

ds ≤D φ 0ð Þ, ~0� �
+D Cq Ið Þψ0, ~0

� �
+D Kq Ið Þψ1, ~0

� �
+ L2

ðI
0

Dσ xs, ~0

 �
 �

ds +
M
b
ebI:

ð67Þ

Since x ∈ Em
a , there exists ρ > 1, D½xðIÞ, ~0� ≤ ρeaI∀I ≥

I0 − σ,

sup
θ∈ −σ,0½ �

D x I + 0ð Þ, ~0� �
≤D φ 0ð Þ, ~0� �

≤ ρeaI∀I ≥I0,

D Pxð Þ Ið Þ, ~0� �
≤D φ 0ð Þ, ~0� �

+D Cq Ið Þψ0, ~0
� �

+D Kq Ið Þψ1, ~0
� �

+ L2
ðI
0

sup
θ∈ −σ,0½ �

D x I + 0ð Þ, ~0� �
ds +

M
b
ebI

≤D φ 0ð Þ, ~0� �
+D Cq Ið Þψ0, ~0

� �
+D Kq Ið Þψ1, ~0

� �
+
ρL2

a
eaI0 +

M
b
ebI:

ð68Þ

Thus

sup
t≥I0

D Pxð Þ Ið Þ, ~0� �
e−aI ≤ sup

I≥I0

�
D φ 0ð Þ, ~0� �

+D Cq Ið Þψ0, ~0
� �

+D Kq Ið Þψ1, ~0
� �

+
ρL2

a
eaI0 +

M
b
ebI
	
e−aI

≤D φ 0ð Þ, ~0� �
+D Cq Ið Þψ0, ~0

� �
+D Kq Ið Þψ1, ~0

� �
+
1
b

ρL2 +M

 �

:

ð69Þ

Pxð Þ Ið Þ =
f I, xIð Þ +

ðI
0
g I, s, xsð Þds,I ≥I0,I0 ≥I ≥I0 − σ,

Dσ φ, ψð Þ + Cq Ið Þψ0 +Kq Ið Þψ1 +
ðI
0
I − sð Þq−1Pq I − sð Þ f s, xsð Þ +

ðI
0
g I, s, xsð Þ

� 
ds,I ∈ 0, T½ �:

8>>><
>>>:

ð66Þ
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Let

3K = sup
θ∈ I0−σ,I0½ �

D φ 0ð Þ, ~0� �
+D Cq Ið Þψ0, ~0

� �
+D Kq Ið Þψ1, ~0

� �
:

ð70Þ

Now

sup
I≥I0

D Pxð Þ Ið Þ, ~0� �
e−aI ≤ 3K +

1
b

ρL2 +M

 �

<∞, ð71Þ

and Px ∈ Em
a .

Lemma 24. If F : ½0,∞Þ × Cσ ⟶ Em satisfies ðJ1Þ − ðJ3Þ
and L < a, then, P is contraction on Em

a .

Proof. Suppose x, y ∈ Em
a . Now, for each I ≥I0

D Pxð Þ Ið Þ, Pyð Þ Ið Þ½ � =D

ðI
0
I − sð Þq−1Pq I − sð Þ

�

� f s, xsð Þ +
ðI
0
g I, s, xsð Þds

� 
ds,
ðI
0
I − sð Þq−1Pq I − sð Þ

� f s, ysð Þ +
ðI
0
g I, s, ysð Þds

� 
ds

≤
ðI
0
L2Dσ xs, ysð Þds

= L2
ðI
0

sup
r∈ −σ,0½ �

D x r + sð Þ, y r + sð Þ½ �ds

= L2
ðI
0

sup
θ∈ s−σ,s½ �

D x θð Þ, y θð Þ½ �ds:

ð72Þ

From (29), D½xðIÞ, yðIÞ� ≤Dσðx, yÞeaI∀I ≥I0 − σ. So

sup
r∈ −σ,0½ �

D x rð Þ, y rð Þ½ � ≤Dσ x, yð ÞeI∀I ≥I0: ð73Þ

For every I ≥I0,

D Pxð Þ Ið Þ, Pyð Þ Ið Þ½ � ≤ L2 sup
r∈ −σ,0½ �

D x rð Þ, y rð Þ½ �ds

=
L2

a
Da x, yð ÞeaI0 ea I−I0ð Þ − 1

h i
,

ð74Þ

and so

Dσ Px, Pyð Þ = sup
I≥I0−σ

D Pxð Þ Ið Þ, Pyð Þ Ið Þ½ �e−aI

≤
L2

a
Da x, yð Þ ≤Da x, yð Þ:

ð75Þ

Hence

L2

a
< 1: ð76Þ

Therefore, P is contraction on Em
a .

Theorem 25. Let function G : ½0,∞Þ × Cσ ⟶ Em satisfies
assumptions ðJ1Þ − ðJ3Þ. Then, for each ðI0, φÞ ∈ Cσ, FFDE
(28) has unique solution on ½I0,∞Þ.

Proof. Assume

a >max b, L2
� �

: ð77Þ

We can deduce that the operator P : Ea ⟶ Ea is con-
traction using Lemmas 23 and 24. As a result, there is only
one x ∈ Em

a , which is Px = x. x is continuous function,

x Ið Þ = f I, xIð Þ +
ðI
0
g I, s, xsð Þds, ð78Þ

on ½I0 − σ, T�. Moreover,

x Ið Þ = Cq Ið Þψ0 +Kq Ið Þψ1 +
ðI
0
I − sð Þq−1Pq I − sð Þ

� f s, xsð Þ +
ðI
0
g I, s, xsð Þ

� 
ds,

ð79Þ

for every T ≥I0. Since x is continuous and G satisfies ðJ2Þ,
by Lemma 9 and Remark 10,

s↦ f s, xsð Þ +
ðI
0
g I, s, xsð Þds, ð80Þ

is an integrable function on ½I0, T�. By Remark 10, x is dif-
ferentiable function and

c
0D

H
q x Ið Þ = f I, xIð Þ +

ðI
0
g I, s, xsð Þds, ð81Þ

for every I0 ≥ T . Theorem 25 is proved.

5. Applications

5.1. Fuzzy Fractional Functional Evolution Equations with
Distributed Delay. In below sections, we will look at class
of delay fuzzy fractional functional evolution equations with
distributed delay. Consider following delay fuzzy fractional
functional differential equations with m ∈ℕ and 0 < σ1 <
σ2 < σm < σ delay times:
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c
0D

H
q x Ið Þ =

ðI
−σ

G0 s, xI I + sð Þð Þ +
ðI
0
g I, s, xsð Þds

� 	
ds + 〠

m

i=1
G i I, xI I − σið Þð Þ,

x Ið Þ = ψ I −I0ð Þ = ψ0 ∈ Cσ,

x′ Ið Þ = ψ′ Ið Þ = ψ1,

ð82Þ

where G i : ½0,∞Þ × Em ⟶ Em, i = 0, 1,⋯,m, are some
functions. Let, function G i : ½0,∞Þ × Cσ ⟶ Em satisfies the
following assumptions:

ðJ1 ′Þ There exist Li > 0,

D G i I, xð Þ, G i I, yð Þ½ � ≤ Li x, y½ �∀x, y ∈ Em andI ≥ 0: ð83Þ

ðJ2 ′ÞG i : ½0,∞Þ × Em ⟶ Em is jointly continuous.
ðJ3 ′Þ There exist Mi > 0 and bi > 0 that is

D G i I, 0ð Þ, ~0� �
≤Mie

biI∀I ≥ 0: ð84Þ

Then, function G : ½0,∞Þ × Cσ ⟶ Em is defined as

G I, φð Þ =
ðI
−σ

G0 I0, φ I0ð Þð Þ +
ðI
0
g I0, s, xsð Þds

� 	
ds

+ 〠
m

i=1
G i I, φ I − σið Þð Þ,

ð85Þ

and satisfies also assumptions ðJ1Þ − ðJ2Þ. F is jointly con-
tinuous. For all i = 0, 1,⋯,m. For function G i, suppose Li
be Lipschitz constant. Now

D G I, φð Þ, G I, φð Þ½ �

≤
ðI
−σ
D F0 I0, φ I0ð Þð Þ,F0 I0, ψ I0ð Þð Þ½ �dI0

+ 〠
m

i=1
D F i I, φ −σið Þ, ψ −σið Þð Þ½ �

≤ σL0 + 〠
m

i=1
Li

 !
Dσ φ, ψð Þ,

ð86Þ

and G satisfies ðJ1Þ. We obtain

D G I, 0ð Þ, ~0� �
≤D a, ~0

� �
+
ðI
−σ
D F0 I0, 0ð Þ, ~0� �

dI0

+ 〠
m

i=1
D G i I0, 0ð Þ, ~0� �

=D a, ~0
� �

+
M0
b0

1 − eb0σ
� �

+ 〠
m

i=1
Mie

biI:

ð87Þ

Now, we find Mm+1 > 1 and bm+1 > 1,

D a, ~0
� �

+
M0
b0

� 	
1 − eb0σ
� �

≤Mm+1e
bm+1I∀I ≥ 0, ð88Þ

and we get

D G I, φð Þ, ~0� �
≤MebI0∀I ≥ 0, ð89Þ

where M ≔max fMi ; i = 1, 2,⋯,m + 1g and b =max fbi ; i
= 1, 2,⋯,m + 1g. As a result, G satisfies ðJ3Þ.

As a result, we get below result.

5.2. Fuzzy Population Models. First, we demonstrate how to
use the following method to explain the initial problem for
fuzzy fractional functional delay differential equation:

c
0D

H
q x Ið Þ = f I, xIð Þ +

ðI
0
g I, s, xsð Þds,I ≥I0,I ∈ 0, T½ �,

x Ið Þ = ψ I −I0ð Þ = ψ0 ∈ Cσ,I0 ≥I ≥I0 − σ,

x′ Ið Þ = ψ′ Ið Þ = ψ1,
ð90Þ

where G : ½0,∞Þ × Em ⟶ Em is derived from the continu-
ous function F : ½0,∞Þ × Rm ⟶ Rm using Zadeh’s exten-
sion concept. Since ½GðI, xIÞ�β = f ðI, ½xI�βÞ∀β ∈ ½1, 2� and
x ∈ Em, then, Kaleva [10] denotes

x Ið Þ½ �β = xβ1 Ið Þ, xβ2 Ið Þ
h i

, x′ Ið Þ
h iβ

= xβ1
� �

′ Ið Þ, xβ2
� �

′ Ið Þ
h i

, φ Ið Þ½ �β = φ
β
1 Ið Þ, φβ

2 Ið Þ
h i

,

G I, x I − σð Þð Þ½ �β = G
β
1 I, xβ1 I − σð Þ, xβ2 I − σð Þ
� �

, Gβ
2 I, xβ1 I − σð Þ, xβ2 I − σð Þ
� �h i

,

G
β
1 I, xβ1 I − σð Þ, xβ2 I − σð Þ
� �

=min F I, uð Þ ; u ∈ xβ1 I − σð Þ, xβ2 I − σð Þ
h in o

,

G
β
2 I, xβ1 I − σð Þ, xβ2 I − σð Þ
� �

=max F I, uð Þ ; u ∈ xβ1 I − σð Þ, xβ2 I − σð Þ
h in o

:

ð91Þ

Problem (90) is now transformed into the following
parameterized delay differential model using these notations:

xβ1
� �

′ Ið Þ = G
β
1 I, xβ1 I − σð Þ, xβ2 I − σð Þ
� �

,I ≥ 0,

xβ2
� �

′ Ið Þ = G
β
2 I, xβ1 I − σð Þ, xβ2 I − σð Þ
� �

,I ≥ 0,

ð92Þ

with initial conditions

xβ1
� �

Ið Þ = φ
β
1 ,−σ ≤I ≤I0,

xβ2
� �

′ Ið Þ = φ
β
2 ,−σ ≤I ≤I0:

ð93Þ

We can solve the methods (92) and (93). If ðxβ1 , xβ2 Þ is the
solution (92) and (93), we can establish a fuzzy solution
xðIÞ for Equation (90) using representation theorem of
Negoita-Ralescu [35]:

x Ið Þ½ �β = xβ1 , x
β
2

h i
∀β ∈ 1, 2½ �: ð94Þ

5.2.1. Fuzzy Fractional Functional Time-Delay Malthusian
Model. Suppose the initial value problem for a Malthusian
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model with a fuzzy fractional functional time delay in the
example:

N ′ Ið Þ = rN I − 1ð Þ,I ≥ 0,

N Ið Þ =N 0,−1 ≤I ≤ 0,
ð95Þ

N 0½ �β = 1 − βð Þ −1, 1½ �, β ∈ 1, 2½ � and r > 1: ð96Þ
Zadeh’s extension concept is used to obtain function

G : Em ⟶ Em described by GðN ðI − 1ÞÞ = rN ðI − 1Þ
from function f ðuÞ = ru, u ∈ Rm.

If ½N ðIÞ�β = ½N 1ðIÞ,N 2ðIÞ�, then

N ′ Ið Þ
h iβ

= N 1′ Ið Þ,N 2′ Ið Þ
h i

, rN I − 1ð Þ½ �β

= rN 1 I − 1ð Þ, rN 2 I − 1ð Þ½ �:
ð97Þ

As a result, we solve fractional functional differential
equations:

N 1′ Ið Þ = rN 1 I − 1ð Þ,I ≥ 0,

N 2 Ið Þ = −α,−1 ≤I ≤ 0,
ð98Þ

N 2′ Ið Þ = rN 2 I − 1ð Þ,I ≥ 0,

N 1 Ið Þ = α,−1 ≤I ≤ 0,
ð99Þ

where α = 1 − α. The system of steps is used to solve Equa-
tion (98). For 0 ≤I ≤ 1, we get

−rα,

N 1 0ð Þ = −α,

(
ð100Þ

with solution N 1ðIÞ = −α − rαI for 0 ≤I ≤ 1. For 1 ≤I

≤ 2, we get

−rα − r2α I − 1ð Þ,
N 1 1ð Þ = −α − rα,

(
ð101Þ

with the solution N 1ðIÞ = −α − rα − rαI − ð1/2Þr2α
ðI − 1Þ2 for 1 ≤I ≤ 2. For each n ∈ℕ, the solution of (98)
has polynomial form N 1ðIÞ =∑n+1

p=1apI
p on ½n, n + 1�. Also,

the solution of (99) has polynomial form when N − 2ðIÞ
=∑n+1

p=1bpI
p on ½n, n + 1�. According to Negoita-Ralescu

representation theorem [35], the solution of (95) has form
on ½n, n + 1�:

N Ið Þ½ �β = 〠
n+1

p=1
apI

p, 〠
n+1

p=1
bpI

p

" #
, ð102Þ

for every β ∈ ½1, 2� and n ∈ℕ.

Example 1. One of the deficiency of population models in
time-delay Malthusian model is that in every case, when
population change instantly, birth rate is supposed to

change. Moreover, when members of the population hit a
certain age before giving birth, we should assume time delay
in the model [34].

N ′ Ið Þ = rN I − σð Þ, ð103Þ

where population growth rate at time I is determined by
population at time I − σ.

Also, assume, for time-delay Malthusian model, a more
realistic approach should take into account both effect of a
time delay and changing of environment. Therefore, it is
interesting and necessary to study the general delay-
distributed equation:

N ′ Ið Þ = 〠
n

p=1
rpN I − σp


 �
+
ðI
−σ
rN I + sð Þds: ð104Þ

5.2.2. Fuzzy Fractional Functional Ehrlich Ascites Tumor
Model. To explain tumor model of fuzzy fractional function
Ehrlich Ascites, consider fuzzy delay equation:

N ′ Ið Þ = rN I − 1ð Þ 1 −N I − 1ð Þð Þ,I ≥ 0,

N Ið Þ =N 0,−1 ≤I ≤ 0,
ð105Þ

where ½N 0�β = α½−1, 1�, α = ðð1 − βÞ/2Þ, β ∈ ½0, 1�. Assume
that r ∈ ð0, 2�. The function G : Em ⟶ Em, defined by Gð
N ðI − 1ÞÞ = rN ðI − 1Þð1 −N ðI − 1ÞÞ, is obtained from
function f ðuÞ = ruð1 − uÞ, u ∈ Rm, using Zadeh’s extension
principle. We get

N ′ Ið Þ
h iβ

= rN I − 1ð Þ 1 −N I − 1ð Þð Þ½ �β, β ∈ 0, 1½ �:
ð106Þ

We remark, function f ðuÞ = ruð1 − uÞ is increasing on
ð−∞,1/2Þ and decreasing on ð1/2,∞Þ, and max

u∈R
f ðuÞ = r/4.

Using the procedure of steps [36] and Negoita-Ralescu
representation theorem [35], we can obtain the solution
to (105). If 0 ≤I ≤ 1, now, we have

N ′ Ið Þ = rN 0 2 −N 0ð Þ,I ≥ 0,

N 0ð Þ = α,−1 ≤I ≤ 1:
ð107Þ

Since α ≤ 1/2, then, for 0 ≤I ≤ 1,

N ′ Ið Þ
h iβ

= rN 0 1 −N 0ð Þ½ �β = min
−α≤u≤α

f uð Þ, max
−α≤u≤α

f uð Þ
h i

= −rα 1 + αð Þ, rα 1 − αð Þ½ �:
ð108Þ

As a result, we solve differential equations on ½0, 1�

N ′ Ið Þ
h iβ

= −rα 1 + αð Þ, rα 1 − αð Þ½ �, ð109Þ
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with initial condition

N 0ð Þ½ �β = −α, α½ �: ð110Þ

Further, for (52) on [0,1], the solution

N Ið Þ½ �β = N 11 Ið Þ,N 21 Ið Þ½ �,I ∈ 0, 1½ �, ð111Þ

where

N 11 Ið Þ = −α − rα 1 + αð ÞI,N 21 Ið Þ
= α + rα 1 − αð ÞI, β ∈ 0, 1½ �: ð112Þ

Moreover, N 11ðIÞ ≤ 0 and 1/2 ≤N 21ðIÞ ≤ 1 on ½0, 1�,
for 1 ≤I ≤ 2,

N ′ Ið Þ
h iβ

= rN I − 1ð Þ 1 −N I − 1ð Þð Þ½ �β

= min
N 11 I−1ð Þ≤u≤N 21 I−1ð Þ

f uð Þ, max
N 11 I−1ð Þ≤u≤N 21 I−1ð Þ

f uð Þ
� 

= −rα + rα 1 + αð Þ I − 1ð Þ 1 + α + rα 1 + αð Þ I − 1ð Þð Þ, r
2

4
1 −

r
4

� �� 
:

ð113Þ

As it follows, we solve the differential equation on ½1
, 2�:

N ′ Ið Þ
h iβ

= −rα + rα 1 + αð Þ I − 1ð Þ 1 + α + rα 1 + αð Þ I − 1ð Þð Þ, r
2

4
1 −

r
4

� �� 
:

ð114Þ

As a result, we get (105) on ½1, 2�, as follows:

N Ið Þ½ �β = N 12 Ið Þ,N 22 Ið Þ½ �, β ∈ 1, 2½ �, ð115Þ

where

N 12 Ið Þ = −α − 2rα 1 + αð Þ − rα 1 + αð Þ I − 1ð Þ

− r2α 1 + αð Þ 2 + αð Þ I − 1ð Þ2
2

− r3α2
I − 1ð Þ3

3
,

N 22 Ið Þ = α + rα 1 − αð Þ + r2

4
1 −

r
4

� �
I,I ∈ 0, 1½ �: ð116Þ

This procedure can be continued on [21, 37].

Example 2. To explain the Ehrlich ascities tumor, the follow-
ing logistic equation was suggested in [9]:

N ′ Ið Þ = rN I − σð Þ 1 −
N I − σð Þ

K

� 	
: ð117Þ

The delay associated cell cycle [37] is represented by σ,
where r is net tumor replication and K is caring capacity.
This equation differs from the traditional Verhulst-
Hutchinson equation [38], which has only one delay
expression.

Many independent characteristics of state variables can
affect population dynamics: natural and social resources,
medical care, job environment, and crime, habitations. Clas-
sically, the exact value of these attributes cannot always be
calculated and evaluated since they are unknown and can
only be conjectured. As a result, the Ehrlich ascities tumor
model should be a more realistic solution.

6. Conclusion

The solution to fuzzy fractional functional differential equa-
tions possesses global uniqueness and existence, as shown in
this paper. We have used the successive approximation
method to prove a local uniqueness and existence result.
Future research on fuzzy neutral fractional functional differ-
ential equations could benefit from the findings of this study.
Other alternative research approaches include a fuzzy frac-
tional functional differential equation approach based on
other fuzzy differentiability concepts (see [8, 11]).

Data Availability

No new data were created this study.

Conflicts of Interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Authors’ Contributions

All authors contributed equally to the writing of this paper.
All authors read and approved the final manuscript.

Acknowledgments

This work was supported by the Deanship of Scientific
Research, Vice Presidency for Graduate Studies and Scien-
tific Research, King Faisal University, Saudi Arabia [Project
No. GRANT560], King Faisal University (KFU), Ahsa, Saudi
Arabia. The authors, therefore, acknowledge technical and
financial support of DSR at KFU.

References

[1] B. Ahmad and J. J. Nieto, “Existence results for a coupled sys-
tem of nonlinear fractional differential equations with three-
point boundary conditions,” Computers & Mathematics with
Applications, vol. 58, no. 9, pp. 1838–1843, 2009.

[2] B. Ahmad, S. K. Ntouyas, R. P. Agarwal, and A. Alsaedi, “On
fractional differential equations and inclusions with nonlocal
and average-valued (integral) boundary conditions,” Advances
in Difference Equations, vol. 2016, 18 pages, 2016.

[3] S. S. Mansouri, M. Gachpazan, and O. S. Fard, “Existence,
uniqueness and stability of fuzzy fractional differential equa-
tions with local Lipschitz and linear growth conditions,”
Advances in Difference Equations, vol. 2017, 13 pages, 2017.

[4] S. S. Chang and L. A. Zadeh, “On fuzzy mapping and control,”
Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by
Lotfi a Zadeh, pp. 180–184, 1996.

13Journal of Function Spaces



[5] M. Chen and C. Han, “Some topological properties of solu-
tions to fuzzy differential systems,” Information Sciences,
vol. 197, pp. 207–214, 2012.

[6] O. Kaleva, “The Cauchy problem for fuzzy differential equa-
tions,” Fuzzy Sets and Systems, vol. 35, no. 3, pp. 389–396,
1990.

[7] J. J. Nieto, “The Cauchy problem for continuous fuzzy differ-
ential equations,” Fuzzy Sets and Systems, vol. 102, no. 2,
pp. 259–262, 1999.

[8] J. J. Buckley and T. Feuring, “Fuzzy differential equations,”
Fuzzy Sets and Systems, vol. 110, no. 1, pp. 43–54, 2000.

[9] S. Song and C. Wu, “Existence and uniqueness of solutions to
Cauchy problem of fuzzy differential equations,” Fuzzy Sets
and Systems, vol. 110, no. 1, pp. 55–67, 2000.

[10] X. Xiaoping and F. Yongqiang, “On the structure of solutions
for fuzzy initial value problem,” Fuzzy Sets and Systems,
vol. 157, no. 2, pp. 212–229, 2006.

[11] P. Diamond, “Stability and periodicity in fuzzy differential
equations,” IEEE Transactions on Fuzzy Systems, vol. 8, no. 5,
pp. 583–590, 2000.

[12] E. Hüllermeier, “An approach to modelling and simulation of
uncertain dynamical systems,” International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems, vol. 5, no. 2,
pp. 117–137, 1997.

[13] B. Bede and S. G. Gal, “Generalizations of the differentiability
of fuzzy-number-valued functions with applications to fuzzy
differential equations,” Fuzzy Sets and Systems, vol. 151,
no. 3, pp. 581–599, 2005.

[14] J. Y. Park, S. Y. Lee, and J. U. Jeong, “The approximate solu-
tions of fuzzy functional integral equations,” Fuzzy Sets and
Systems, vol. 110, no. 1, pp. 79–90, 2000.

[15] J. Y. Park, I. H. Jung, and M. J. Lee, “Almost periodic solutions
of fuzzy systems,” Fuzzy Sets and Systems, vol. 119, no. 3,
pp. 367–373, 2001.

[16] P. Balasubramaniam and S. Muralisankar, “Existence and
uniqueness of fuzzy solution for the nonlinear fuzzy integro-
differential equations,” Applied Mathematics Letters, vol. 14,
no. 4, pp. 455–462, 2001.

[17] M. Guo, X. Xue, and R. Li, “Impulsive functional differential
inclusions and fuzzy population models,” Fuzzy Sets and Sys-
tems, vol. 138, no. 3, pp. 601–615, 2003.

[18] A. Abbas, R. Shafqat, M. B. Jeelani, and N. H. Alharthi, “Signif-
icance of chemical reaction and Lorentz force on third-grade
fluid flow and heat transfer with Darcy–Forchheimer law over
an inclined exponentially stretching sheet embedded in a
porous medium,” Symmetry, vol. 14, no. 4, p. 779, 2022.

[19] A. Abbas, R. Shafqat, M. B. Jeelani, and N. H. Alharthi, “Con-
vective heat and mass transfer in third-grade fluid with Darcy–
Forchheimer Relation in the presence of thermal-diffusion and
diffusion-thermo effects over an exponentially inclined
stretching sheet surrounded by a porous medium: a CFD
study,” Processes, vol. 10, no. 4, p. 776, 2022.

[20] A. U. K. Niazi, J. He, R. Shafqat, and B. Ahmed, “Existence,
uniqueness, and Eq–Ulam-type stability of fuzzy fractional dif-
ferential equation,” Fractal and Fractional, vol. 5, no. 3, p. 66,
2021.

[21] N. Iqbal, A. U. K. Niazi, R. Shafqat, and S. Zaland, “Existence
and uniqueness of mild solution for fractional-order con-
trolled fuzzy evolution equation,” Journal of Function Spaces,
vol. 2021, Article ID 5795065, 8 pages, 2021.

[22] R. Shafqat, A. U. K. Niazi, M. B. Jeelani, and N. H. Alharthi,
“Existence and uniqueness of mild solution where α ∈ (1,2)
for fuzzy fractional evolution equations with uncertainty,”
Fractal and Fractional, vol. 6, no. 2, p. 65, 2022.

[23] K. Abuasbeh, R. Shafqat, A. U. K. Niazi, and M. Awadalla,
“Local and global existence and uniqueness of solution for
time-fractional fuzzy Navier–Stokes equations,” Fractal and
Fractional, vol. 6, no. 6, p. 330, 2022.

[24] A. S. Alnahdi, R. Shafqat, A. U. K. Niazi, and M. B. Jeelani,
“Pattern formation induced by fuzzy fractional-order model
of COVID-19,” Axioms, vol. 11, no. 7, p. 313, 2022.

[25] Y. Guo, M. Chen, X. B. Shu, and F. Xu, “The existence and
Hyers-Ulam stability of solution for almost periodical frac-
tional stochastic differential equation with fBm,” Stochastic
Analysis and Applications, vol. 39, no. 4, pp. 643–666, 2021.

[26] Y. Shi, “A study on the mild solution of impulsive fractional
evolution equations,” Applied Mathematics and Computation,
vol. 273, pp. 465–476, 2016.

[27] V. Lupulescu, “On a class of fuzzy functional differential equa-
tions,” Fuzzy Sets and Systems, vol. 160, no. 11, pp. 1547–1562,
2009.

[28] O. Kaleva, “Fuzzy differential equations,” Fuzzy Sets and Sys-
tems, vol. 24, no. 3, pp. 301–317, 1987.

[29] C. G. Gal and S. G. Gal, “Semigroups of operators on spaces of
fuzzy-number-valued functions with applications to fuzzy dif-
ferential equations,” 2013, https://arxiv.org/abs/1306.3928.

[30] D. Otrocol and V. Ilea, “Ulam stability for a delay differential
equation,” Open Mathematics, vol. 11, no. 7, pp. 1296–1303,
2013.

[31] R. J. Aumann, “Integrals of set-valued functions,” Journal of
Mathematical Analysis and Applications, vol. 12, no. 1,
pp. 1–12, 1965.

[32] I. Podlubny, Fractional differential equations, Academic Press,
1999.

[33] J. J. Nieto and R. R. López, “Applications of contractive-like
mapping principles to fuzzy equations,” Revista Matemática
Complutense, vol. 19, no. 2, pp. 361–383, 2006.

[34] C. C. Travis and G. F. Webb, “Cosine families and abstract
nonlinear second order differential equations,” Acta Mathe-
matica Hungarica, vol. 32, no. 1-2, pp. 75–96, 1978.

[35] C. V. Negoiță and D. A. Ralescu, Applications of Fuzzy Sets to
Systems Analysis, Birkhäuser, Basel, Switzerland, 1975.

[36] Y. Kuang, Delay Differential Equations: With Applications in
Population Dynamics, Academic press, 1993.

[37] K. H. Jack, “Theory of functional differential equations,”
Applied Mathematical Sciences, vol. 3, 1981.

[38] R. Schuster and H. Schuster, “Reconstruction models for the
Ehrlich ascites tumor of the mouse,”Mathematical population
dynamics, vol. 2, pp. 335–348, 1995.

14 Journal of Function Spaces

https://arxiv.org/abs/1306.3928


Research Article
Some New Generalized Fractional Newton’s Type Inequalities for
Convex Functions

Jarunee Soontharanon,1 Muhammad Aamir Ali ,2 Hüseyin Budak ,3 Pinar Kösem,3

Kamsing Nonlaopon ,4 and Thanin Sitthiwirattham 5

1Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok,
Bangkok 10800, Thailand
2Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, China
3Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey
4Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
5Mathematics Department, Faculty of Science and Technology, Suan Dusit University, Bangkok 10300, Thailand

Correspondence should be addressed to Kamsing Nonlaopon; nkamsi@kku.ac.th

Received 21 April 2022; Revised 1 July 2022; Accepted 1 August 2022; Published 2 September 2022

Academic Editor: Behrouz Parsa Moghaddam

Copyright © 2022 Jarunee Soontharanon et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we establish some new Newton’s type inequalities for differentiable convex functions using the generalized
Riemann-Liouville fractional integrals. The main edge of the newly established inequalities is that these can be turned into
several new and existing inequalities for different fractional integrals like Riemann-Liouville fractional integrals, k-fractional
integrals, Katugampola fractional operators, conformable fractional operators, Hadamard fractional operators, and fractional
operators with the exponential kernel without proving one by one. It is also shown that the newly established inequalities are
the refinements of the previously established inequalities inside the literature.

1. Introduction

The fascinating idea of inequalities has long been a topic of
discussion in various mathematical disciplines. Fractional cal-
culus, quantum calculus, operator theory, numerical analysis,
operator equations, network theory, and quantum informa-
tion theory are just a few fascinating applications. This is a
very active study topic right now, and the interplay between
different areas has enriched it. Numerical integration and def-
inite integral estimation are important aspects of applied sci-
ences. Among the numerical techniques, Simpson’s rules are
crucial that can be stated as follows:

(1) Simpson’s 1/3 rule:

ðθ2
θ1

G ϰð Þdϰ ≈ θ2 − θ1
6 G θ1ð Þ +G

θ1 + θ2
2

� �
+G θ2ð Þ

� �

ð1Þ

(2) Simpson’s 3/8 rule (Newton rule):

ðθ2
θ1

G ϰð Þdϰ ≈ θ2 − θ1
8 G θ1ð Þ + 3G θ1 + 2θ2

3

� �
+ 3G 2θ1 + θ2

3

� �
+G θ2ð Þ

� �

ð2Þ

Researchers have used fractional calculus to develop differ-
ent fractional integral inequalities that are beneficial in
approximation theory due to their importance. Inequalities
like Hermite-Hadamard, Simpson’s, midpoint, Ostrowski’s,
and trapezoidal inequalities are examples of inequalities that
may be used to find the boundaries of numerical integration
formulas. The bounds of trapezoidal formula and inequality
of Hermite-Hadamard type using the Riemann-Liouville frac-
tional integrals were established in [1]. Set [2] used differentia-
ble convexity and established fractional Ostrowski’s type
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inequalities. _Iscan andWu [3] proved some bounds of numer-
ical integration and inequality of the Hermite-Hadamard type
for reciprocal convex functions via Riemann-Liouville frac-
tional integrals. The bounds of midpoint and a new version
of fractional inequality of Hermite-Hadamard type were
established by Sarikaya and Yildrim in [4]. The bounds for
Simpson’s 1/3 formula were obtained by Sarikaya et al. [5]
using the general convexity and Riemann-Liouville fractional
integral operators. In [6], the authors found some new bounds
for Simpson’s 1/3 formula using the Riemann-Liouville frac-
tional integrals. The authors of [7] used s-convexity and found
some bounds for Simpson’s 1/3 formula. In 2020, Sarikaya and
Ertugral [8] gave a new class of fractional integrals called
generalized fractional integrals and established Hermite-
Hadamard-type inequalities connected to the newly defined
class of integrals. Themain advantage of the newly defined class
of fractional integral operators is that it can be converted into
the classical integral, Riemann-Liouville fractional integrals, k
-fractional integrals, Hadamard fractional integrals, etc. In [9],
Zhao et al. obtained some bounds for a trapezoidal formula
using the reciprocal convex functions and generalized fractional
integral operators. Budak et al. [10] established some bounds for
Simpson’s 1/3 formula for differentiable convex functions using
the generalized fractional integrals. Some bounds for the q-
Simpson’s and Newton’s type inequalities were proved by
Budak et al. in [11]. Siricharuanun et al. proved some inequal-
ities of Simpson and Newton type by using quantum numbers
in [12]. Until recent years, Newton-type inequalities for frac-
tional integrals had not been proven. Recently, Sitthiwirattham
et al. [13] used the Riemann-Liouville fractional integrals oper-
ators and obtained some bounds for Newton formula.

Motivated by the ongoing studies, we obtain some new
bounds/inequalities for Newton formula using the convexity
and generalized fractional integrals. The main edge of newly
established inequalities is that these can be converted into classi-
cal Newton inequalities, Riemann-Liouville fractional Newton
inequalities and new Newton inequalities for k-fractional inte-
grals without establishing one by one. These results can be help-
ful in finding the error bounds of Newton formulas in fractional
calculus, which is the main motivation of this paper. Moreover,
the main difference between the results proved in [11–13] and
the results of this paper is that while the papers [11, 12] are
derived on Newton type inequalities for quantum integrals and
the paper [13] focus on Newton type inequalities for Riemann-
Liouville fractional integrals operators, we prove some inequal-
ities of Newton type by using the generalized fractional integrals.
These inequalities generalize the results of the paper [13] and
give some new inequalities for k-fractional integrals, Hadamard
fractional integrals, conformable fractional integrals, etc.

On the other hand, there are many other papers related to
our topic. One can consult [14–25] and references therein for
more inequalities via fractional integrals. Moreover, several
papers focused on the functions of bounded variation to prove
some important inequalities such as the Ostrowski type [26],
Simpson type [27, 28], trapezoid type [29, 30], and midpoint
type [31]. For more applications of fractional calculus in other
areas of mathematical sciences, one can consult [32–41].

A description of the paper is as follows: In Section 2, the
fundamentals of fractional calculus, as well as other perti-

nent research in this field, are briefly discussed. In Section
3, we develop an essential identity that is vital in identifying
the key outcomes of the paper. In Section 4, we use general-
ized fractional integrals to derive some new Newton’s type
inequalities for differentiable convex functions. For func-
tions of bounded variation, Section 5 contains certain frac-
tional Newton-type inequalities. Section 6 concludes with
some future study ideas.

2. Fractional Integrals and Related Inequalities

Several fundamental fractional integral notations and con-
cepts are reviewed in this section. Different fractional inte-
grals are also used to recall various inequalities.

Definition 1. A function G : I ⟶ℝ, where I is an interval
in ℝ, is called convex, if it satisfies the inequality

G tϰ + 1 − tð Þyð Þ ≤ tG ϰð Þ + 1 − tð ÞG yð Þ, ð3Þ

where ϰ, y ∈ I and t ∈ ½0, 1�.

Definition 2 ([42, 43]). Let G ∈ L1½θ1, θ2�: The Riemann-
Liouville fractional integrals (RLFIs) Jαθ1+G and Jαθ2−G of
order α > 0 with θ1 ≥ 0 are defined as follows:

Jαθ1+G ϰð Þ = 1
Γ θ1ð Þ

ðϰ
θ1

ϰ − tð Þα−1G tð Þdt, ϰ > θ1,

Jαθ2−G ϰð Þ = 1
Γ αð Þ

ðθ2
ϰ

t − ϰð Þα−1G tð Þdt, ϰ < θ2,
ð4Þ

respectively, where the well-known Gamma function is rep-
resented by Γ.

Definition 3 ([44]). Let G ∈ L1½θ1, θ2�: The k-Riemann-Liou-
ville fractional integrals (KRLFIs) J α,k

θ1+G and J α,k
θ2−,kG of

order α, k > 0 with θ1 ≥ 0 are defined as follows:

J α,k
θ1+G ϰð Þ = 1

kΓk αð Þ
ðϰ
θ1

ϰ − tð Þ α/kð Þ−1G tð Þdt, ϰ > θ1,

J α,k
θ2−,kG ϰð Þ = 1

kΓk αð Þ
ðθ2
ϰ

t − ϰð Þ α/kð Þ−1G tð Þdt, ϰ < θ2,
ð5Þ

respectively, where Γk is the well-known k-Gamma function.

Definition 4 ([8]). Let G ∈ L1½θ1, θ2�: The generalized frac-
tional integrals (GRLFIs) θ1þIφG and θ2−IφG with θ1 ≥ 0
are defined as follows:

θ1þIφG ϰð Þ =
ðϰ
θ1

φ ϰ − tð Þ
ϰ − t

G tð Þdt, ϰ > θ1,

θ2−IφG ϰð Þ =
ðθ2
ϰ

φ t − ϰð Þ
t − ϰ

G tð Þdt, ϰ < θ2,
ð6Þ
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respectively, where the mapping is φ : ½0,∞Þ⟶ ½0,∞Þ. One
can consult [8] for further information of function φ.

Remark 5. The GRLFIs are significant because they can be con-
verted into classical Riemann integrals, RLFIs, and KFIs for φð
λÞ = λ, φðλÞ = λα/ΓðαÞ and φðλÞ = λα/k/kΓkðαÞ, respectively.
For more choices of the function φ, one can recapture the differ-
ent fractional integrals like Katugampola fractional operators,
conformable fractional integrals, Hadamard fractional operators,
and fractional operators with the exponential kernel (see [8]).

In [45], Ertuğral and Sarikaya used GRLFIs and proved
the following Simpson’s type inequalities for differentiable
convex functions.

Theorem 6. Let G : I ⊂ℝ⟶ℝ be a differentiable function
over I∘ andG′ ∈ L1½θ1, θ2�: If jG′j is convex over ½θ1, θ2�, then
the following inequality holds:

1
6

G θ1ð Þ + 4G
θ1 + θ2

2

� �
+G θ2ð Þ

� �����
−

1
2Θ 1ð Þ θ1þIφG

θ1 + θ2
2

� �
+ θ2−IφG

θ1 + θ2
2

� �� �����
≤
θ2 − θ1
2Θ 1ð Þ Ω tð Þ G′ θ1ð Þ�� �� + G′ θ2ð Þ�� ��h i

,

ð7Þ

where

Ω tð Þ =
ð1
0

Θ tð Þ
2

−
Θ 1ð Þ
3

����
����dt,

Θ ϰð Þ =
ðϰ
0

φ θ2 − θ1ð Þ/2tð Þ
t

dt:

ð8Þ

It is worth mentioning here that the inequality (7) can be
turned into classical Simpson’s inequality, RLFIs Simpson’s
inequality, and KRLFIs inequality as follows:

(i) For φðtÞ = t, the following Simpson’s inequality for
classical Riemann-integral holds (see [5]):

1
6 G θ1ð Þ + 4G θ1 + θ2

2

� �
+G θ2ð Þ

� �
−

1
θ2 − θ1

ðθ2
θ1

G ϰð Þdϰ
�����

�����
≤
5 θ2 − θ1ð Þ

72 G′ θ1ð Þ�� �� + G′ θ2ð Þ�� ��h i
ð9Þ

(ii) For φðtÞ = tα/ΓðαÞ, the following Simpson’s inequal-
ity for RLFIs holds (see [45]):

1
6 G θ1ð Þ + 4G θ1 + θ2

2

� �
+G θ2ð Þ

� �����
−

Γ α + 1ð Þ
21−α θ2 − θ1ð Þα Jαθ1+G

θ1 + θ2
2

� �
+ Jαθ2−G

θ1 + θ2
2

� �� �����
≤
θ2 − θ1

2 Ϝ αð Þ G′ θ1ð Þ�� �� + G′ θ2ð Þ�� ��h i
,

ð10Þ

where

Ϝ αð Þ = 2
3

� � 1/að Þ+1 α

α + 1
� �

+ 1
2 α + 1ð Þ −

1
3 ð11Þ

(iii) For φðtÞ = tα/k/kΓkðαÞ, the following Simpson’s
inequality for KRLFIs holds (see [45]):

1
6 G θ1ð Þ + 4G θ1 + θ2

2

� �
+G θ2ð Þ

� �����
−

Γk α + kð Þ
21−α/k θ2 − θ1ð Þα/k

J α,k
θ1+G

θ1 + θ2
2

� �
+ J α,k

θ2−
G

θ1 + θ2
2

� �� ������
≤
θ2 − θ1

2 Ϝ α, kð Þ G′ θ1ð Þ�� �� + G′ θ2ð Þ�� ��h i
,

ð12Þ

where

Ϝ α, kð Þ = 2
3

� �k/α+1 α

α + k

� �
+ k
2 α + kð Þ −

1
3 ð13Þ

Remark 7. If we set α = k = 1 in (10) and (12), then we obtain
the classical Simpson’s inequality (9).

3. An Identity

In this section, we prove an integral equality in order to
demonstrate the primary findings of the paper. For brevity,
we shall use the following notation throughout the paper:

Y ϰð Þ =
ðϰ
0

φ θ2 − θ1ð Þ/3ð Þuð Þ
u

du < +∞: ð14Þ

Lemma 8. If G : I ⊂ℝ⟶ℝ is a function such thatG is dif-
ferentiable over I∘ and G′ ∈ L1½θ1, θ2�, then the following
identity holds for GRLFIs:

1
3Y 1ð Þ θ1þIφG

2θ1 + θ2
3

� �
+ ð2θ1þθ2Þ=3þIφG

θ1 + 2θ2
3

� ��

+ ðθ1þ2θ2Þ=3þIφG θ2ð Þ
i
−
1
8

G θ1ð Þ + 3G
2θ1 + θ2

3

� ��

+ 3G
θ1 + 2θ2

3

� �
+G θ2ð Þ

�
= θ2 − θ1

9Y 1ð Þ I1 + I2 + I3½ �,

ð15Þ

where

I1 =
ð1
0

Y tð Þ − 5Y 1ð Þ
8

� �
G′ tθ1 + 1 − tð Þ 2θ1 + θ2

3

� �
dt,

I2 =
ð1
0

Y tð Þ − Y 1ð Þ
2

� �
G′ t

2θ1 + θ2
3

+ 1 − tð Þ θ1 + 2θ2
3

� �
dt,
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I3 =
ð1
0

Y tð Þ − 3Y 1ð Þ
8

� �
G′ t

θ1 + 2θ2
3

+ 1 − tð Þθ2
� �

dt:

ð16Þ

Proof. Using the laws of integration by parts and variables
change, we have

I1 =
ð1
0

Y tð Þ − 5Y 1ð Þ
8

� �
G′ tθ1 + 1 − tð Þ 2θ1 + θ2

3

� �
dt

= 3
θ2 − θ1ð Þ

ð1
0

φ θ2 − θ1ð Þ/3ð Þtð Þ
t

G tθ1 + 1 − tð Þ 2θ1 + θ2
3

� �
dt

−
Y 1ð Þ
θ2 − θ1

15
8 G

2θ1 + θ2
3

� �
+ 9
8G θ1ð Þ

� �

= 3
θ2 − θ1

θ1þIφG
2θ1 + θ2

3

� �
−

Y 1ð Þ
θ2 − θ1

15
8 G

2θ1 + θ2
3

� �
+ 9
8G θ1ð Þ

� �
:

ð17Þ

Also, we have

I2 =
ð1
0

Y tð Þ − Y 1ð Þ
2

� �
G′ t

2θ1 + θ2
3 + 1 − tð Þ θ1 + 2θ2

3

� �
dt

= 3
θ2 − θ1

ð2θ1þθ2Þ=3þIφG
θ1 + 2θ2

3

� �

−
Y 1ð Þ
θ2 − θ1

3
2G

θ1 + 2θ2
3

� �
+ 3
2G

2θ1 + θ2
3

� �� �
,

ð18Þ

I3 =
ð1
0

Y tð Þ − 3Y 1ð Þ
8

� �
G′ t

θ1 + 2θ2
3 + 1 − tð Þθ2

� �
dt

= 3
θ2 − θ1

ðθ1þ2θ2Þ=3þIφG θ2ð Þ − Y 1ð Þ
θ2 − θ1

9
8G θ2ð Þ
�

+ 15
8 G

θ1 + 2θ2
3

� ��
:

ð19Þ
As a consequence, we may get the resultant equality by

adding (17)–(19) and multiplying the resultant one by ðθ2
− θ1Þ/9Yð1Þ.

4. Newton’s Inequalities for Convex Functions

We will utilize GRLFIs to demonstrate some new Newton’s
inequalities for differentiable convex functions in this sec-
tion. We use the following notations for sake of brevity:

A1 αð Þ =
ð1
0
t Y tð Þ − 3Y 1ð Þ

8

����
����dt,

A2 αð Þ =
ð1
0
Y tð Þ − 3Y 1ð Þ

8

����
����dt,

A3 αð Þ =
ð1
0
t Y tð Þ − Y 1ð Þ

2

����
����dt,

A4 αð Þ =
ð1
0
Y tð Þ − Y 1ð Þ

2

����
����dt,

A5 αð Þ =
ð1
0
t Y tð Þ − 5Y 1ð Þ

8

����
����dt,

A6 αð Þ =
ð1
0
Y tð Þ − 5Y 1ð Þ

8

����
����dt: ð20Þ

Theorem 9. If jG′j is a convex function and assumptions of
Lemma 8 hold, then we obtain the following Newton’s type
inequality:

1
3Y 1ð Þ θ1þIφG

2θ1 + θ2
3

� �
+ ð2θ1þθ2Þ=3þIφG

θ1 + 2θ2
3

� ������
+ ðθ1þ2θ2Þ=3þIφG θ2ð Þ

i
−
1
8

G θ1ð Þ + 3G
2θ1 + θ2

3

� ��

+ 3G
θ1 + 2θ2

3

� �
+G θ2ð Þ

�j
≤

θ2 − θ1
27Y 1ð Þ G′ θ2ð Þ�� �� 3A2 αð Þ − A1 αð Þ + 2A4 αð Þð

h
− A3 αð Þ + A6 αð Þ − A5 αð ÞÞ + G′ θ1ð Þ�� �� A1 αð Þð
+ A4 αð Þ + A3 αð Þ + 2A6 αð Þ + A5 αð ÞÞ�:

ð21Þ

Proof. Using the convexity of jG′j and the modulus in (15),
we get

1
3Y 1ð Þ θ1þIφG

2θ1 + θ2
3

� �
+ ð2θ1þθ2Þ=3þIφG

θ1 + 2θ2
3

� ������
+ ðθ1þ2θ2Þ=3þIφG θ2ð Þ

i
−
1
8 G θ1ð Þ + 3G 2θ1 + θ2

3

� ��

+ 3G θ1 + 2θ2
3

� �
+G θ2ð Þ

�j
≤
θ2 − θ1

9

ð1
0
Y tð Þ − 3Y 1ð Þ

8

����
���� G′ t

θ1 + 2θ2
3 + 1 − tð Þθ2

� �����
����dt

�

+
ð1
0
Y tð Þ − Y 1ð Þ

2

����
���� G′ t

2θ1 + θ2
3 + 1 − tð Þ θ1 + 2θ2

3

� �����
����dt

+
ð1
0
Y tð Þ − 5Y 1ð Þ

8

����
���� G′ tθ1 + 1 − tð Þ 2θ1 + θ2

3

� �����
����dt
�

= θ2 − θ1
9

ð1
0
Y tð Þ − 3Y 1ð Þ

8

����
���� G′ 3 − t

3 θ2 +
t
3 θ1

� �����
����dt

�

+
ð1
0
Y tð Þ − Y 1ð Þ

2

����
���� G′ 2 − t

3 θ2 +
1 + t
3 θ1

� �����
����dt

+
ð1
0
Y tð Þ − 5Y 1ð Þ

8

����
���� G′ 1 − t

3 θ2 +
2 + t
3 θ1

� �����
����dt
�

≤
θ2 − θ1

9 G′ θ2ð Þ�� ��ð1
0

3 − t
3 Y tð Þ − 3Y 1ð Þ

8

����
����dt

�

+ G′ θ1ð Þ�� ��ð1
0

t
3 Y tð Þ − 3Y 1ð Þ

8

����
����dt + G′ θ2ð Þ�� ��ð1

0

2 − t
3 Y tð Þj
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−
Y 1ð Þ
2 jdt + G′ θ1ð Þ�� ��ð1

0

1 + t
3 Y tð Þ − Y 1ð Þ

2

����
����dt

+ G′ θ2ð Þ�� ��ð1
0

1 − t
3 Y tð Þ − 5Y 1ð Þ

8

����
����dt

+ G′ θ1ð Þ�� ��ð1
0

2 + t
3 Y tð Þ − 5Y 1ð Þ

8

����
����dt�

= θ2 − θ1
27Y 1ð Þ G′ θ2ð Þ�� �� 3A2 αð Þ − A1 αð Þ + 2A4 αð Þð

h
− A3 αð Þ + A6 αð Þ − A5 αð ÞÞ + G′ θ1ð Þ�� �� A1 αð Þð
+ A4 αð Þ + A3 αð Þ + 2A6 αð Þ + A5 αð ÞÞ�:

ð22Þ

The proof is now completed.

Remark 10. In Theorem 9, we have the following:

(i) By setting φðtÞ = t, we reclaim the inequality estab-
lished in ([13], Remark 3)

(ii) By setting φðtÞ = tα/ΓðαÞ, we reclaim the inequality
established in ([13], Theorem 4)

Corollary 11. By setting φðtÞ = tα/k/kΓkðαÞ in Theorem 9, we
get the following new Newton’s inequality for KRLFIs:

3α/k−1Γk α + 1ð Þ
θ2 − θ1ð Þα/k

J α,k
θ1+G

2θ1 + θ2
3

� �
+ J α,k

2θ1+θ2ð Þ/3+G
θ1 + 2θ2

3

� �������
+ J α,k

θ1+2θ2ð Þ/3+G θ2ð Þ
i
−
1
8

G θ1ð Þ + 3G
2θ1 + θ2

3

� ��

+ 3G
θ1 + 2θ2

3

� �
+G θ2ð Þ

�j
≤
θ2 − θ1
27

G′ θ2ð Þ�� �� 3A2 α, kð Þ − A1 α, kð Þ + 2A4 α, kð Þð
h

− A3 α, kð Þ + A6 α, kð Þ − A5 α, kð ÞÞ + G′ θ1ð Þ�� �� A1 α, kð Þð
+ A4 α, kð Þ + A3 α, kð Þ + 2A6 α, kð Þ + A5 α, kð ÞÞ�,

ð23Þ

where

A1 α, kð Þ =
ð1
0
t tα/k −

3
8

����
����dt = α

α + 2k
3
8

� � α+2kð Þ/α
+ k
α + 2k

−
3
16

,

A2 α, kð Þ =
ð1
0
tα/k −

3
8

����
����dt = 2α

α + k
3
8

� � α+kð Þ/α
+ k
α + k

−
3
8
,

A3 α, kð Þ =
ð1
0
t tα/k −

1
2

����
����dt = α

α + 2k
1
2

� � α+2kð Þ/α
+ k
α + 2k

−
1
4
,

A4 α, kð Þ =
ð1
0
tα/k −

1
2

����
����dt = 2α

α + k
1
2

� � α+kð Þ/α
+ 1
α + k

−
1
2
,

A5 α, kð Þ =
ð1
0
t tα/k −

5
8

����
����dt = α

α + 2k
5
8

� � α+2kð Þ/a
+ k
α + 2k

−
5
16

,

A6 α, kð Þ =
ð1
0
tα/k −

5
8

����
����dt = 2α

α + k
5
8

� � α+kð Þ/a
+ k
α + k

−
5
8
:

ð24Þ

Theorem 12. If jG′jq, q ≥ 1 is a convex function and assump-
tions of Lemma 8 hold, then we get the following Newton’s
type inequality:

1
3Y 1ð Þ θ1þIφG

2θ1 + θ2
3

� �
+ ð2θ1þθ2Þ=3þIφG

θ1 + 2θ2
3

� ������
+ ðθ1þ2θ2Þ=3þIφG θ2ð Þ

i
−
1
8

G θ1ð Þ + 3G
2θ1 + θ2

3

� ��

+ 3G
θ1 + 2θ2

3

� �
+G θ2ð Þ

�j
≤
θ2 − θ1
9Y 1ð Þ A1− 1/qð Þ

2 αð Þ G′ θ2ð Þ�� ��q 3A2 αð Þ − A1 αð Þ
3

��

+ G′ θ1ð Þ�� ��q A1 αð Þ
3
Þ1/q

+ A1− 1/qð Þ
4 αð Þ

· G′ θ2ð Þ�� ��q 2A4 αð Þ − A3 αð Þ
3

+ G′ θ1ð Þ�� ��q A4 αð Þ + A3 αð Þ
3

� �1/q

+ A1− 1/qð Þ
6 αð Þ G′ θ2ð Þ�� ��A6 αð Þ − A5 αð Þ

3

�

+ G′ θ1ð Þ�� ��q 2A6 αð Þ + A5 αð Þ
3

Þ1/q�: ð25Þ

Proof. Applying power mean inequality in (15) after taking
the modulus, we have

1
3Y 1ð Þ θ1þIφG

2θ1 + θ2
3

� �
+ ð2θ1þθ2Þ=3þIφG

θ1 + 2θ2
3

� ������
+ ðθ1þ2θ2ÞþIφG θ2ð Þ

i
−
1
8 G θ1ð Þ + 3G 2θ1 + θ2

3

� ��

+ 3G θ1 + 2θ2
3

� �
+G θ2ð Þ

�j θ2 − θ1
9Y 1ð Þ

ð1
0
Y tð Þ − 3Y 1ð Þ

8

����
���� G′���

· 3 − t
3 θ2 +

t
3 θ1

� �����dt +
ð1
0
Y tð Þ − Y 1ð Þ

2

����
���� G′��

· 2 − t
3 θ2 +

1 + t
3 θ1

� �����dt +
ð1
0
Y tð Þ − 5Y 1ð Þ

8

����
���� G′��

· 1 − t
3 θ2 +

2 + t
3 θ1

� �����dt�
≤
θ2 − θ1
9Y 1ð Þ

ð1
0
Y tð Þ − 3Y 1ð Þ

8

����
����dt

� �1− 1/qð Þ ð1
0
Y tð Þ − 3Y 1ð Þ

8

����
���� G′���"

· 3 − t
3 θ2 +

t
3 θ1

� �����
q

dt
� 1/qð Þ

+
ð1
0
Y tð Þ − Y 1ð Þ

2

����
����dt

� �1− 1/qð Þ

·
ð1
0
Y tð Þ − Y 1ð Þ

2

����
���� G′ 2 − t

3 θ2 +
1 + t
3 θ1

� �����
����
q

dt
� � 1/qð Þ

+
ð1
0
Y tð Þ − 5Y 1ð Þ

8

����
����dt

� �1− 1/qð Þ ð1
0
Y tð Þ − 5Y 1ð Þ

8

����
���� G′���

· 1 − t
3 θ2 +

2 + t
3 θ1

� �����
q

dt
�1/q#

:

ð26Þ
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Using the convexity of jG′jq, we have
θ2 − θ1
3Y 1ð Þ θ1þIφG

2θ1 + θ2
3

� �
+ ð2θ1þθ2Þ=3þIφG

θ1 + 2θ2
3

� ������
+ ðθ1þ2θ2Þ=3þIφG θ2ð Þ

i
−
1
8 G θ1ð Þ + 3G 2θ1 + θ2

3

� ��

+ 3G θ1 + 2θ2
3

� �
+G θ2ð Þ

�j
≤
θ2 − θ1
9Y 1ð Þ

ð1
0
Y tð Þ − 3Y 1ð Þ

8

����
����dt

� �1− 1/qð Þ"

× G′ θ2ð Þ�� ��qð1
0

3 − t
3 Y tð Þ − 3Y 1ð Þ

8

����
����dt + G′ θ1ð Þ�� ��q�

·
ð1
0

t
3 Y tð Þ − 3Y 1ð Þ

8

����
����dtÞ

1/qð Þ
+
ð1
0
Y tð Þ − Y 1ð Þ

2

����
����dt

� �1− 1/qð Þ

× G′ θ2ð Þ�� ��qð1
0

2 − t
3 Y tð Þ − Y 1ð Þ

2

����
����dt + G′ θ1ð Þ�� ��q�

·
ð1
0

1 + t
3 Y tð Þ − Y 1ð Þ

2

����
����dtÞ

1/qð Þ
+
ð1
0
Y tð Þ − 5Y 1ð Þ

8

����
����dt

� �1− 1/qð Þ

× G′ θ2ð Þ�� ��qð1
0

1 − t
3 Y tð Þ − 5Y 1ð Þ

8

����
����dt

�

+ G′ θ1ð Þ�� ��qð1
0

2 + t
3 Y tð Þ − 5Y 1ð Þ

8

����
����dtÞ

1/qð Þ�
= θ2 − θ1

9Y 1ð Þ A1− 1/qð Þ
2 αð Þ G′ θ2ð Þ�� ��q 3A2 αð Þ − A1 αð Þ

3

��

+ G′ θ1ð Þ�� ��q A1 αð Þ
3 Þ

1/qð Þ
+ A1− 1/qð Þ

4 αð Þ

G′ θ2ð Þ�� ��q 2A4 αð Þ − A3 αð Þ
3 + G′ θ1ð Þ�� ��q A4 αð Þ + A3 αð Þ

3

� �1/q

+ A1− 1/qð Þ
6 αð Þ G′ θ2ð Þ�� ��A6 αð Þ − A5 αð Þ

3

�

+ G′ θ1ð Þ�� ��q 2A6 αð Þ + A5 αð Þ
3 Þ

1/qð Þ�: ð27Þ

Thus, the proof is completed.

Remark 13. In Theorem 12, we have the following:

(i) By setting φðtÞ = t, we reclaim the inequality estab-
lished in ([13], Remark 4)

(ii) By setting φðtÞ = tα/ΓðαÞ, we reclaim the inequality
established in ([13], Theorem 5)

Corollary 14. By setting φðtÞ = tα/k/kΓkðαÞ in Theorem 12,
we obtain the following new Newton’s inequality for KRLFIs:

3 α/kð Þ−1Γk α + 1ð Þ
θ2 − θ1ð Þα/k

J α,k
θ1+G

2θ1 + θ2
3

� �
+ J α,k

2θ1+θ2ð Þ/3+G
θ1 + 2θ2

3

� �������
+ J α,k

θ1+2θ2ð Þ/3+G θ2ð Þ� − 1
8
G θ1ð Þ½

+ 3G
2θ1 + θ2

3

� �
+ 3G

θ1 + 2θ2
3

� �
+G θ2ð Þ�j

≤
θ2 − θ1

9
A1− 1/qð Þ
2 α, kð Þ G′ θ2ð Þ�� ��q 3A2 α, kð Þ − A1 α, kð Þ

3

��

+ G′ θ1ð Þ�� ��q A1 α, kð Þ
3

Þ
1/qð Þ

+ A1− 1/qð Þ
4 α, kð Þ

· G′ θ2ð Þ�� ��q 2A4 α, kð Þ − A3 α, kð Þ
3

+ G′ θ1ð Þ�� ��q A4 α, kð Þ + A3 α, kð Þ
3

� � 1/qð Þ

+ A1− 1/qð Þ
6 α, kð Þ G′ θ2ð Þ�� ��A6 α, kð Þ − A5 α, kð Þ

3

�
+ G′ θ1ð Þ�� ��q 2A6 α, kð Þ + A5 α, kð Þ

3
Þ 1/qð Þ�: ð28Þ

Theorem 15. If jG′jq, q > 1 is a convex function and assump-
tions of Lemma 8 hold, then we have the following Newton’s
type inequality:

1
3Y 1ð Þ θ1þIφG

2θ1 + θ2
3

� �
+ ð2θ1þθ2Þ=3þIφG

θ1 + 2θ2
3

� ������
+ ðθ1þ2θ2Þ=3þIφG θ2ð Þ� − 1

8
G θ1ð Þ½

+ 3G
2θ1 + θ2

3

� �
+ 3G

θ1 + 2θ2
3

� �
+G θ2ð Þ�j

≤
θ2 − θ1
9Y 1ð Þ A 1/pð Þ

7 α, pð Þ 5 G′ θ2ð Þ�� ��q + G′ θ1ð Þ�� ��q
6

 ! 1/qð Þ2
4

+ A 1/pð Þ
8 α, pð Þ G′ θ2ð Þ�� ��q + G′ θ1ð Þ�� ��q

2

 ! 1/qð Þ

+ A 1/pð Þ
9 α, pð Þ G′ θ2ð Þ�� ��q + 5 G′ θ1ð Þ�� ��q

6

 ! 1/qð Þ�, ð29Þ

where q−1 + p−1 = 1 and

A7 α, pð Þ =
ð1
0
Y tð Þ − 3Y 1ð Þ

8

����
����
p

dt,

A8 α, pð Þ =
ð1
0
Y tð Þ − Y 1ð Þ

2

����
����
p

dt,

A9 α, pð Þ =
ð1
0
Y tð Þ − 5Y 1ð Þ

8

����
����
p

dt:

ð30Þ

Proof. Applying Hölder’s inequality in (15) after taking the
modulus, we have

1
3Y 1ð Þ θ1þIφG

2θ1 + θ2
3

� �
+ ð2θ1þθ2Þ=3þIφG

θ1 + 2θ2
3

� ������
+ ðθ1þ2θ2Þ=3þIφG θ2ð Þ� − 1

8 G θ1ð Þ + 3G 2θ1 + θ2
3

� ��

+ 3G θ1 + 2θ2
3

� �
+G θ2ð Þ�j

= θ2 − θ1
9Y 1ð Þ

ð1
0
Y tð Þ − 3Y 1ð Þ

8

����
���� G′ 3 − t

3 θ2 +
t
3 θ1

� �����
����dt

�

+
ð1
0
Y tð Þ − Y 1ð Þ

2

����
���� G′ 2 − t

3 θ2 +
1 + t
3 θ1

� �����
����dt

+
ð1
0
Y tð Þ − 5Y 1ð Þ

8

����
���� G′ 1 − t

3 θ2 +
2 + t
3 θ1

� �����
����dt�

≤
θ2 − θ1
9Y 1ð Þ

ð1
0
Y tð Þ − 3Y 1ð Þ

8

����
����
p

dt
� � 1/pð Þ"

·
ð1
0
G′ 3 − t

3 θ2 +
t
3 θ1

� �����
����
q

dt
� � 1/qð Þ

+
ð1
0
Y tð Þ − Y 1ð Þ

2

����
����
p

dt
� � 1/pð Þ

·
ð1
0
G′ 2 − t

3 θ2 +
1 + t
3 θ1

� �����
����
q

dt
� � 1/qð Þ

+
ð1
0
Y tð Þ − 5Y 1ð Þ

8

����
����
p

dt
� � 1/pð Þ

·
ð1
0
G′ 1 − t

3 θ2 +
2 + t
3 θ1

� �����
����
q

dt
� � 1/qð Þ

�: ð31Þ
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From convexity of jG′jq, q > 1, we obtain

θ2 − θ1
3Y 1ð Þ θ1þIφG

2θ1 + θ2
3

� �
+ ð2θ1þθ2Þ=3þIφG

θ1 + 2θ2
3

� ������
+ ðθ1þ2θ2Þ=3þIφG θ2ð Þ� − 1

8 G θ1ð Þ + 3G 2θ1 + θ2
3

� ��

+ 3G θ1 + 2θ2
3

� �
+G θ2ð Þ�j

≤
θ2 − θ1
9Y 1ð Þ

ð1
0
Y tð Þ − 3Y 1ð Þ

8

����
����
p

dt
� � 1/pð Þ"

· G′ θ2ð Þ�� ��qð1
0

3 − t
3 dt + G′ θ1ð Þ�� ��qð1

0

t
3 dt

� � 1/qð Þ

+
ð1
0
Y tð Þ − Y 1ð Þ

2

����
����
p

dt
� � 1/pð Þ

G′ θ2ð Þ�� ��qð1
0

2 − t
3 dt

�

+ G′ θ1ð Þ�� ��qð1
0

1 + t
3 dtÞ

1/qð Þ
+
ð1
0
Y tð Þ − 5Y 1ð Þ

8

����
����
p

dt
� � 1/pð Þ

· G′ θ2ð Þ�� ��qð1
0

1 − t
3 dt + G′ θ1ð Þ�� ��qð1

0

2 + t
3 dt

� � 1/qð Þ�
= θ2 − θ1

9Y 1ð Þ A 1/pð Þ
7 α, pð Þ 5 G′ θ2ð Þ�� ��q + G′ θ1ð Þ�� ��q

6

 ! 1/qð Þ2
4

+ A 1/pð Þ
8 α, pð Þ G′ θ2ð Þ�� ��q + G′ θ1ð Þ�� ��q

2

 ! 1/qð Þ

+ A 1/pð Þ
9 α, pð Þ G′ θ2ð Þ�� ��q + 5 G′ θ1ð Þ�� ��q

6

 ! 1/qð Þ�: ð32Þ

Thus, the proof is completed.

Remark 16. In Theorem 15, we have the following:

(i) By setting φðtÞ = t, we reclaim the inequality estab-
lished in ([13], Remark 5)

(ii) By setting φðtÞ = tα/ΓðαÞ, we reclaim the inequality
established in ([13], Theorem 6)

Corollary 17. By setting φðtÞ = tα/kkΓkðαÞ in Theorem 15, we
obtain the following new Newton’s inequality for KRLFIs:

3 a/kð Þ−1Γk α + 1ð Þ
θ2 − θ1ð Þα/k

J α,k
θ1+G

2θ1 + θ2
3

� �
+ J α,k

2θ1+θ2ð Þ/3+G
θ1 + 2θ2

3

� �������
+ J α,k

θ1+2θ2ð Þ/3+G θ2ð Þ� − 1
8

G θ1ð Þ + 3G
2θ1 + θ2

3

� ��

+ 3G
θ1 + 2θ2

3

� �
+G θ2ð Þ�j ≤ θ2 − θ1

9

· A 1/pð Þ
7 α, p, kð Þ 5 G′ θ2ð Þ�� ��q + G′ θ1ð Þ�� ��q

6

 ! 1/qð Þ2
4

+ A 1/pð Þ
8 α, k, pð Þ G′ θ2ð Þ�� ��q + G′ θ1ð Þ�� ��q

2

 ! 1/qð Þ

+ A 1/pð Þ
9 α, k, pð Þ G′ θ2ð Þ�� ��q + 5 G′ θ1ð Þ�� ��q

6

 ! 1/qð Þ�, ð33Þ

where q−1 + p−1 = 1 and

A7 α, k, pð Þ =
ð1
0
tα/k −

3
8

����
����
p

dt,

A8 α, k, pð Þ =
ð1
0
tα/k −

1
2

����
����
p

dt,

A9 α, k, pð Þ =
ð1
0
tα/k −

5
8

����
����
p

dt:

ð34Þ

5. Fractional Newton-Type Inequality for
Functions of Bounded Variation

In this section, we prove a Newton-type inequality for func-
tion of bounded variation via generalized fractional
integrals.

Theorem 18. Let G : ½θ1, θ2�⟶ℝ be a function of bounded
variation on ½θ1, θ2�: Then we have the following Newton-type
inequality for generalized fractional integrals:

1
3Y 1ð Þ θ1þIφG

2θ1 + θ2
3

� �
+ ð2θ1þθ2Þ=3þIφG

θ1 + 2θ2
3

� ������
+ ðθ1þ2θ2Þ=3þIφG θ2ð Þ� − 1

8
G θ1ð Þ + 3G

2θ1 + θ2
3

� ��

+ 3G
θ1 + 2θ2

3

� �
+G θ2ð Þ�j ≤ 5

24
∨
θ1

θ2
Gð Þ, ð35Þ

where ∨
c
dðGÞ denotes the total variation of G on ½c, d�.

Proof. Define the mapping ΨφðϰÞ by

Ψφ ϰð Þ =

Y
3

θ2 − θ1

2θ1 + θ2
3 − ϰ

� �� �
−
5Y 1ð Þ
8 , for θ1 ≤ ϰ ≤

2θ1 + θ2
3 ;

Y
3

θ2 − θ1

θ1 + 2θ2
3 − ϰ

� �� �
−
Y 1ð Þ
2 , for 2θ1 + θ2

3 < ϰ ≤
θ1 + 2θ2

3 ;

Y
3

θ2 − θ1
θ2 − ϰð Þ

� �
−
3Y 1ð Þ
8 , for θ1 + 2θ2

3 < ϰ ≤ θ2:

8>>>>>>>><
>>>>>>>>:

ð36Þ
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It follows from that

ðθ2
θ1

Ψφ ϰð ÞdG ϰð Þ =
ð 2θ1+θ2ð Þ/3

θ1

Y
3

θ2 − θ1

2θ1 + θ2
3 − ϰ

� �� �
−
5Y 1ð Þ
8

� �
dG ϰð Þ

+
ð θ1+2θ2ð Þ/3

2θ1+θ2ð Þ/3
Y

3
θ2 − θ1

θ1 + 2θ2
3 − ϰ

� �� �
−
Y 1ð Þ
2

� �
dG ϰð Þ

+
ðθ2

θ12+θ2ð Þ/3
Y

3
θ2 − θ1

θ2 − ϰð Þ
� �

−
3Y 1ð Þ
8

� �
dG ϰð Þ:

ð37Þ

Integrating by parts, we get

ð 2θ1+θ2ð Þ/3

θ1

Y
3

θ2 − θ1

2θ1 + θ2
3 − ϰ

� �� �
−
5Y 1ð Þ
8

� �
dG ϰð Þ

= Y
3

θ2 − θ1

2θ1 + θ2
3 − ϰ

� �� �
−
5Y 1ð Þ
8

� �
G ϰð Þ

����
· 2θ1+θ2ð Þ/3
θ1

+
ð 2θ1+θ2ð Þ/3

θ1

φ 2θ1 + θ2ð Þ/3ð Þ − ϰð Þ
2θ1 + θ2ð Þ/3ð Þ − ϰ

G ϰð Þdϰ

= −
5Y 1ð Þ
8 G

2θ1 + θ2
2

� �
−
3Y 1ð Þ
8 G θ1ð Þ+θ1+IφG

2θ1 + θ2
3

� �
:

ð38Þ

Similarly, we have

ð θ1+2θ2ð Þ/3

2θ1+θ2ð Þ/3
Y

3
θ2 − θ1

θ1 + 2θ2
3 − ϰ

� �� �
−
Y 1ð Þ
2

� �
dG ϰð Þ

= −
Y 1ð Þ
2 G

θ1 + 2θ2
2

� �
−
Y 1ð Þ
2 G

2θ1 + θ2
2

� �

+ 2θ1 + θ2
3 + IφG

2θ1 + θ2
3

� �
,

ð39Þ
ðθ2

θ1+2θ2ð Þ/3
Y

3
θ2 − θ1

θ2 − ϰð Þ
� �

−
3Y 1ð Þ
8

� �
dG ϰð Þ

= −
3Y 1ð Þ
8 G θ2ð Þ − 5Y 1ð Þ

8 G
θ1 + 2θ2

2

� �

+ θ1 + 2θ2
3 + IφG θ2ð Þ:

ð40Þ

By putting the equalities (38)–(40) in (37), we have

1
3Y 1ð Þ θ1þIφG

2θ1 + θ2
3

� �
+ 2θ1 + θ2

3 + IφG
θ1 + 2θ2

3

� ������
+ θ1 + 2θ2

3 + IφG θ2ð Þ� − 1
8 G θ1ð Þ + 3G 2θ1 + θ2

3

� ��

+ 3G θ1 + 2θ2
3

� �
+G θ2ð Þ�j =

ðθ2
θ1

Ψφ ϰð ÞdG ϰð Þ: ð41Þ

It is well known that if g,G : ½θ1, θ2�⟶ℝ are such that
g is continuous on ½θ1, θ2� and G is of bounded variation on
½θ1, θ2�, then

Ð θ2
θ1
gðtÞdGðtÞ exist and

ðθ2
θ1

g tð ÞdG tð Þ
�����

����� ≤ sup
t∈ θ1,θ2½ �

g tð Þj j ∨
θ1

θ2
Gð Þ: ð42Þ

On the other hand, using (42), we get

1
3Y 1ð Þ θ1þIφG

2θ1 + θ2
3

� �
+ 2θ1 + θ2

3 + IφG
θ1 + 2θ2

3

� ������
+ θ1 + 2θ2

3 + IφG θ2ð Þ� − 1
8 G θ1ð Þ + 3G 2θ1 + θ2

3

� ��

+ 3G θ1 + 2θ2
3

� �
+G θ2ð Þ�j = 1

3Y 1ð Þ
ðθ2
θ1

Ψφ ϰð ÞdG ϰð Þ
�����

�����
≤

1
3Y 1ð Þ

ð 2θ1+θ2ð Þ/3

θ1

Y
3

θ2 − θ1

2θ1 + θ2
3 − ϰ

� �� �������
"

−
5Y 1ð Þ
8 ÞdG ϰð Þj +

ð θ1+2θ2ð Þ/3

2θ1+θ2ð Þ/3

�����
· Y

3
θ2 − θ1

θ1 + 2θ2
3 − ϰ

� �� �
−
Y 1ð Þ
2

� �
dG ϰð Þj

+
ðθ2

θ1+2θ2ð Þ/3
Y

3
θ2 − θ1

θ2 − ϰð Þ
� �

−
3Y 1ð Þ
8

� �
dG ϰð Þ

�����
������

≤
1

3Y 1ð Þ sup
ϰ∈ θ1, 2θ1+θ2ð Þ/3½ �

Y
3

θ2 − θ1

2θ1 + θ2
3 − ϰ

� �� �����
"

−
5Y 1ð Þ
8 j ∨

θ1

2θ1+θ2ð Þ/3
Gð Þ + sup

ϰ∈ 2θ1+θ2ð Þ/3, θ1+2θ2ð Þ/3½ �
Yj

·
3

θ2 − θ1

θ1 + 2θ2
3 − ϰ

� �� �
−
Y 1ð Þ
2 j ∨

2θ1+θ2ð Þ/3

θ1+2θ2ð Þ/3
Gð Þ

+ sup
ϰ∈ θ1+2θ2ð Þ/3,θ2½ �

Y
3

θ2 − θ1
θ2 − ϰð Þ

� �����
−
3Y 1ð Þ
8 j ∨

θ1+2θ2ð Þ/3
θ2

Gð Þ� = 1
3Y 1ð Þ

5Y 1ð Þ
8 ∨

θ1

2θ1+2θ2ð Þ/3
Gð Þ

�

+ Y 1ð Þ
2 ∨

2θ1+2θ2ð Þ/3

θ1+2θ2ð Þ/3
Gð Þ + 5Y 1ð Þ

8 ∨
θ1+2θ2ð Þ/3

θ2
Gð Þ� ≤ 5

24 ∨θ1
θ2

Gð Þ:

ð43Þ

This completes the proof.

Remark 19. In Theorem 18, we have the following:

(i) If we take φðtÞ = t, then we recapture the inequality
proved in ([46], Corollary 3)

(ii) If we set φðtÞ = tα/ΓðαÞ, then we recapture the
inequality established in ([13], Theorem 7)
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Corollary 20. If we choose φðtÞ = ðtðα/kÞ/kΓkðαÞÞ, then we
obtain the following new Newton’s inequality for KRLFIs:

3 α/kð Þ−1Γk α + 1ð Þ
θ2 − θ1ð Þα/k

J α,k
θ1

+G
2θ1 + θ2

3

� �
+ J α,k

2θ1+θ2ð Þ/3

������
+G

θ1 + 2θ2
3

� �
+ J α,k

θ1+2θ2ð Þ/3 +G θ2ð Þ
�

−
1
8

G θ1ð Þ + 3G
2θ1 + θ2

3

� ��

+ 3G
θ1 + 2θ2

3

� �
+G θ2ð Þ

�
j ≤ 5

24
∨
θ1

θ2
Gð Þ:

ð44Þ

6. Conclusion

We demonstrated some new Simpson’s second-type
inequalities for differentiable convex functions using
Riemann-Liouville fractional integrals. Furthermore, we
established fractional Newton-type inequalities for bounded
variation functions. It is also shown that the newly estab-
lished inequalities are an extension of the previously
obtained inequalities. It is worth to mentioning here that
we can obtain similar inequalities via Katugampola frac-
tional operators, conformable fractional operators, Hada-
mard fractional operators, and fractional operators with
the exponential kernel for different choices of the function
φ. In their future work, future researchers can get similar
inequalities for various types of convexity and coordinated
convexity on fractals, which is an exciting and new problem.
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SARS-CoV-2 is a strain of the large coronavirus family that has led to COVID-19 disease. The virus has been one of the deadliest
known viruses in the world to date. Rapid mutations and the creation of new strains cause researchers to focus on the dynamic
behaviors of the virus and to analyze it accurately through clinical research and mathematical models. In this paper, from the
point of view of mathematical modeling, we intend to focus on the dynamic behavior of the system and examine its analytical
and numerical aspects in two different structures. In other words, by recalling newly formulated hybrid fractional-fractal
operators, we present a fractal-fractional probability-based model of SARS-CoV-2 virus for the first time and extract its
equivalent compact fractal-fractional IVP to investigate its existence and stability criteria. A type of special admissible
contractions will help us in this regard. Moreover, based on the source data, we simulate our system according to algorithms
derived by Adams-Bashforth method and explain the effects of variation of the dimension of fractal and fractional order on
dynamics of solutions. Finally, we transform our fractal-fractional model into a Caputo probability-based model of SARS-CoV-
2 to derive solutions via the operational matrix method under Taylor’s basis. The numerical simulations show close behaviors
for both of models.

1. Introduction

From birth to death, humans are always at risk for a variety of
diseases; the source of these infectious diseases is mainly
microorganisms such as parasites, fungi, viruses, and bacteria.
Over the centuries, various epidemics have killed millions of
people everywhere on the planet and caused great loss of life
and property to families and governments. Recently, in late
2019, the international community contracted a new type of
viral respiratory disease that was reported to have originated

in Wuhan, China. For the sake of rapid spread of this
unknown disease in Wuhan, scientists have used a variety of
terms to describe the viral cause of the disease. According to
the standard classifications in virology and considering its geo-
graphical location, it was first temporarily named Wuhan
coronavirus and then the new coronavirus 2019 (2019-nCov).
Finally, in 2020, an international committee from the World
Health Organization (WHO), which works to classify viruses,
used the official title SARS-CoV-2, which interprets the severe
acute respiratory syndrome of coronavirus 2 [1]; and later, in
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order not to be confused with the SARS virus, the committee
used the abbreviated title COVID-19 [2].

Extensive medical research was conducted worldwide to
identify the nature and spread of the virus, and on January
20, human-to-human transmission of the virus was proved
[3]. The virus has also been shown to be transmitted via respi-
ratory droplets such as coughing and sneezing and even talk-
ing indoors without ventilation [4, 5]. In addition, subsequent
studies have shown that the best site for infection is the nasal
cavity, through which it gradually and immediately enters the
lungs and infects it [6]. However, other studies have shown
that some wild animals, such as bats, mice, rabbits, and mink,
can also transmit the SARS-CoV-2 virus to humans [7]. In
these two years, no part of the human environments has been
spared from the virus, even the most remote islands. As of
March 10, 2022, more than 450 million people have been
infected with COVID-19, of which more than six million
have died, based on the approved reports of theWorld Health
Organization [8]. In some cases, people with the SARS-CoV-
2 virus have severe clinical symptoms and are hospitalized,
but in most cases, patients with the SARS-CoV-2 virus do
not need to be admitted to treatment centers and are treated
with antiviral drugs such as remdesivir [9].

Due to the high rate of transmission of the virus and the
development of its various strains, there was a need for
definitive treatment to control the epidemic. Therefore,
knowledge of the pathobiology of the SARS-CoV-2 virus
was essential. Because vaccines are always an important tool
in the fight against all epidemics, we have also seen extensive
efforts to produce safe and effective vaccines for the SARS-
CoV-2 virus by large pharmaceutical companies. Of course,
it should be noted that in addition to mass vaccination to
eradicate the virus completely, it is necessary for human
societies to continue to maintain social distance and use
masks indoors. It is still unknown whether the vaccines are
effective in killing the disease.

In this regard, to accurately analyze the prevalence of the
SARS-CoV-2 virus worldwide and predict its upward or
downward trends, researchers turned to simulating the
dynamics of the virus by mathematical models. Of course,
it should be noted that in recent decades, mathematical
models have always been helpful in studying the dynamics
of various types of diseases and engineering processes, and
through various modeling, scientists and researchers have
been able to achieve their study goals. In this direction, frac-
tional mathematical models are among the most widely used
methods in the field of accurate analysis and evaluation of
data. Known fractional operators such as Caputo, Atan-
gana-Baleanu, and Caputo-Fabrizio fractional derivatives
are efficient mathematical tools for defining and designing
mathematical systems, so that their role can be clearly
observed in newly published papers, for example, the model-
ling of anthrax in animals [10], genetic regulatory networks
[11], mumps virus [12], Zika virus [13], mosaic disease [14],
computer viruses [15], thermostat control [16], pantograph
equation [17], Q-fever [18], hybrid equation of p-Laplacian
operators [19], geographical models [20, 21], codynamics
of COVID-19 and diabetes [22], chemical compounds such
as methylpropane [23], and immunogenic tumor [24]. Also,

due to difficulties of solving fractional differential equations
analytically, developing efficient numerical methods with
different fractional operators for such equations becomes
an important focus for researchers; for example, in [25],
fractional derivative generalized Atangana-Baleanu differen-
tiability has been implemented to solve fuzzy fractional
differential equations. Also, in 2021, Erturk et al. [26] used
fractional calculus theory to investigate the motion of a
beam on an internally bent nanowire. In [27], Jajarmi et al.
presented a new and general fractional formulation to inves-
tigate the complex behaviors of a capacitor microphone
dynamical system. Alqhtani et al. [28] presented that two
important physical examples that are of current and recur-
ring interests are considered, in which the classical time
derivative was modeled with the Caputo fractional deriva-
tive leading the system of equations to subdiffusive
fractional reaction-diffusion models of predator-prey type,
together with some numerical experiments. In [29], Aljhani
et al. discuss a one-dimensional time-fractional Gray-Scott
model with Liouville-Caputo, Caputo-Fabrizio-Caputo,
and Atangana-Baleanu-Caputo fractional derivatives. They
also utilize the fractional homotopy analysis transformation
method to obtain approximate solutions.

Numerous articles about SARS-CoV-2 or COVID-19
have recently been published in scientific journals around
the world, including a few examples: DarAssi et al. [30] pre-
sented a model of SARS-CoV-2 with hospitalization in the
form of a variable-order fractional model of Caputo’s
differential equations, in which they studied the asymptotic
stability of the system. In the same direction, Gu et al. [31]
also designed the comprehensive Caputo model of SARS-
CoV-2 virus in the framework of the constant-order
operator and analyzed the stable solutions of the system
w.r.t. the index R0 (reproduction number). Under a five-
compartmental SEIRD model, and using real data from Ital-
ian medical authorities, Rajagopal et al. [32] conducted a
case study of the disease and analyzed system behavior in
both classical and fractional modes. In another case research
of the prevalence of SARS-CoV-2 in France and Colombia,
Quintero and Gutiérrez-Carvajal [33] examined the evolu-
tion of the disease under the bound optimization method.
In 2021, Zamir et al. [34] formulated a model of COVID-
19 in nine subclasses and focused the elimination and con-
trol of the infection caused by COVID-19. Jain et al. [35]
presented a prediction model of COVID-19 by using numer-
ous machine learning models, such as SVM, Naïve Bayes, K-
nearest neighbors, AdaBoost, gradient boosting, XGBoost,
random forest, ensembles, and neural networks. Baleanu
et al. [36] introduced a generalized version of fractional
models for the COVID-19 pandemic, including the effects
of isolation and quarantine. In [37], Ali et al. investigate
the transmission dynamics of a fractional-order mathemati-
cal model of COVID-19 under five subclasses, susceptible,
exposed, asymptomatic infected, symptomatic infected, and
recovered, using the Caputo fractional derivative. In 2022,
Ozkose et al. [38] developed a new model of the Omicron
strain of SARS-CoV-2 virus and, based on data collected
across the United Kingdom, studied the relationship
between this strain and heart attack. They also analyzed
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the sensitivity of the system and fitting of the parameters
using the LCM method.

In addition to these articles, many other researchers have
published articles on COVID-19 dynamics and evaluated a
variety of models under different conditions and assump-
tions. For instances, we can mention stochastic models of
COVID-19 [39], or even various case studies of COVID-19
from all over the world like [40–44]. Most researchers simul-
taneously studied the models of COVID-19 analytically and
numerically and evaluated the types of dynamic behaviors of
the solutions under singular and nonsingular systems that
can be mentioned like [45, 46]. In the theoretical study of
all these mentioned models, the theoretical results are
among the basic parts of the analysis of mathematical
models, because the existence of a solution for a system
allows us to continue to study other properties such as stable
solutions, equilibrium solutions, numerical solutions, and
their simulations. Usually, fixed point theory is effective in
this field, and its role can be observed in boundary and
initial value problems [47].

By defining mathematical models and the refinement of
numerical approaches, there is a need to use new mathemat-
ical operators with high computational capabilities to model
processes. As a result, Atangana [48] used fractal derivatives
to introduce a new type of hybrid operators and introduced
fractional-fractal derivatives into the world of modeling in
2017. In fact, to define these advanced operators, he used
two arguments to represent the order of the operator and
the dimension of the operator, which he called the fractional
order and the fractional dimension of the fractional-
fractional derivatives, respectively [48]. Atangana then
divided these derivatives into three different categories and,
with the help of different integral kernels, extracted the
numerical algorithms associated with them. Then, in the last
year, these numerical techniques were used in some new
studies in which researchers simulated the approximate
solutions of fractional-fractal models of new infectious dis-
eases. In 2021, Arfan et al. [49] designed a prey-predation
structure for the four-compartmental fractal-fractional
model of syn-ecosymbiosis and examined some conditions
for species survival in an ecological system. Abdulwasaa
et al. [50] conducted a case study with these fractal-
fractional operators in which they examined the dynamics
of new cases and the number of deaths from the COVID-
19 epidemic over a specific period of time in India. Shah
et al. [51] conducted the same study on a new model in
Pakistan. Khan et al. [52] simulated and evaluated models
of smoking at the incidence rate under the Caputo fractal-
fractional derivative operator. Arif et al. [53] utilized the
same fractal-fractional operators in engineering to analyze
MHD stress fluid in a single channel. Alqhtani et al. [54]
studied three models of fractal-fractional Michaelis-Menten
enzymatic reaction (FFMMER) and presented these models
based on three different kernels, namely, power law, expo-
nential decay, and Mittag-Leffler kernels.

In this work, considering the importance of symptomatic
and asymptomatic populations in spreading of virus, we
present the new fractal-fractional probability-based model
of SARS-CoV-2 virus by dividing the total population into

four subclasses such as susceptible, asymptomatic, symp-
tomatic, and recovered individuals. In [55], the authors
designed a five-compartmental Caputo fractional epidemic
model for the novel coronavirus in which the impact of envi-
ronmental transmission is considered in the final result. This
model motivates us to study an extended model of transmis-
sion of SARS-CoV-2 virus via advanced hybrid operators. In
this paper, we get help from these newly extended hybrid
fractal-fractional operators and discuss a new hybrid model
of transmission of SARS-CoV-2 virus analytically and
numerically. If we want to focus on the novelty and contri-
bution of this manuscript, it is notable that for the first time,
our system is a fractal-fractional probability-based model of
SARS-CoV-2 virus in which we apply new hybrid fractal-
fractional derivatives for modeling of the power law type
kernel. Also, in this model, a probability-based structure of
transmission of virus is considered. In other words, if p is
the probability that both categories susceptible and infected
interact and this leads to the asymptomatic category, in that
case, ð1 − pÞ stands for the portion of the infected persons
that may automatically belong to the symptomatic category.
On the other hand, it should be kept in mind that when peo-
ple become infected with the SARS-CoV-2 virus, they may
not have any symptoms, but at the same time, some people
may experience severe complications and show specific
symptoms. Therefore, the feature of our model is that we
have divided the group of people infected with the virus into
two categories: symptomatic and asymptomatic. Also, from
mathematical point of view, a specific approach of fixed
point methods is applied via ϕ-admissible ϕ-ψ-contractions
to discuss the existence criterion, in which it shows the
applicability of new fixed point techniques in the applied
problems. Also, another novelty of this study is that in addi-
tion to fractal-fractional analysis of the SARS-CoV-2 model,
we extend its Caputo-type version to compare our previous
results with solutions of the fractional model under the Tay-
lor operational matrix method. Also, note that in this paper,
we consider both fractional and fractal-fractional derivatives
as the full memory. We can study similar models by using
the short memory. In this direction, refer to [56, 57].

In this study, from a numerical point of view, we present
two numerical techniques for the approximate solution of
the considered model of SARS-CoV-2 virus under two
different fractional operator derivative. The first technique
is the Adams-Bashforth technique which is applied to
probability-based model of SARS-CoV-2 under fractal-
fractional operator in this study. The ABM is a very stable
technique and allows us explicitly to determine the numeri-
cal solution at an instant time from the solutions in the pre-
vious instants. Using the higher-order Adams-Bashforth
method actually becomes more unstable as the timestep is
reduced. So that, the corrector step need to be added to
avoid much of this instability. This can be mentioned as a
disadvantage of AB technique. The second method is a col-
location type of the well-known spectral methods; fractional
Taylor operational matrix method is applied to solve
probability-based model of SARS-CoV-2 under Caputo
operator first time in this paper. The main advantage of
spectral methods is that they are easy to apply for both finite
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and infinite intervals and when the solution of a given prob-
lem is smooth, spectral methods have very good error prop-
erties, namely, the so-called “exponential convergence.”
Thanks to these advantages, for solving many different types
of integral and differential equations numerically, spectral
methods received considerable interest in recent years.
When the solution is not smooth enough, the stability and
accuracy of these methods are decreasing, which is an
important disadvantage because of limiting the applicability.
In this work, we compare our results obtained from
FTOMM with the Adams-Bashforth simulations.

The structure of the manuscript is arranged as follows:
some definitions of ϕ-admissible ϕ-ψ-contractions and
fractal-fractional derivatives are presented in the next sec-
tion. We describe our main fractal-fractional model in Sec-
tion 3 along with the meanings of parameters. Under two
different fixed point methods, we guarantee the existence
property for solutions of the system in Section 4. Section 5
deals with the Lipschitz and uniqueness properties. Then,
in Section 6, we discuss UHR-stable solutions for each four
state functions separately. To predict the future of state func-
tions and their analysis numerically, we simulate them via
the Adams-Bashforth method in two subsections of Section
7. In the next step, in Section 8, we give the Caputo-type
of transmission of the SARS-CoV-2 virus, and in several
subsections, we describe our method via the Taylor opera-
tional matrix technique, and after some simulations, we
compare our numerical results in both fractal-fractional
and fractional systems in the context of some graphs and
tables. The conclusions and further study suggestions are
presented in Section 9.

2. Basic Concepts

Some basic notions on the fractal-fractional operators and
fixed point theory are assembled.

Let Ψ display a subclass of nondecreasing operators like
ψ : ½0,∞Þ⟶ ½0,∞Þ s.t.

〠
∞

j=1
ψj tð Þ <∞,ψ tð Þ < t,∀t > 0: ð1Þ

Definition 1 (see [58]). Let X be a normed space and F : X
⟶X and ϕ : X2 ⟶ℝ≥0.

ðpÞF is ϕ-ψ-contraction if for u1, u2 ∈X,

ϕ ͷ1, ͷ2ð Þd Fͷ1,Fͷ2ð Þ ≤ ψ d ͷ1, ͷ2ð Þð Þ: ð2Þ

(q) F is ϕ-admissible if ϕðͷ1, ͷ2Þ ≥ 1 yields ϕðFͷ1,
Fͷ2Þ ≥ 1.

Definition 2 (see [48]). Let F be fractal differentiable on ða,
bÞ of order ν. The fractional-fractal ωth-derivative of the
function F via the power law type kernel in the Riemann-
Liouville sense is defined by

FFPDω,ν
a,t F tð Þ = 1

Γ n − ωð Þ
d
dtν
ðt
a
t −mð Þn−ω−1F mð Þ dm,

� n − 1 < ω, ν ≤ n ∈ℕð Þ,
ð3Þ

where dFðmÞ/dmν = limt⟶mððFðtÞ −FðmÞÞ/ðtν −mνÞÞ
is the fractal derivative.

It is known that if ν = 1, then the fractal-fractional deriv-
ative FFPDω,ν

a,t is reduced to the standard derivative RLDω
a,t of

order ω.

Definition 3 (see [48]). Let F be continuous on ða, bÞ. The
fractional-fractal integral of the function F with fractional
order ω and fractal order ν is

FFPIω,ν
a,t F tð Þ = ν

Γ ωð Þ
ðt
a
mν−1 t −mð Þω−1F mð Þ dm: ð4Þ

3. Description of the Model for SARS-CoV-
2 Virus

Khan et al. [59, 60] modeled a mathematical structure of
dynamics of SARS-CoV-2 virus in the form of four initial
value problems equipped with four state functions S , P 1,
P 2, and R, which are a part of total population. This
model is

dS tð Þ
dt

=Θ − rP 1 tð ÞS tð Þ − rsP 2 tð ÞS tð Þ − b + b1ð ÞS tð Þ,
dP 1 tð Þ

dt
= p rP 1 tð ÞS tð Þ + rsP 2 tð ÞS tð Þ½ � − b1 + b2 + r1ð ÞP 1 tð Þ,

dP 2 tð Þ
dt

= 1 − pð Þ rP 1 tð ÞS tð Þ + rsP 2 tð ÞS tð Þ½ � + qr1P 1 tð Þ − b1 + b3 + r2ð ÞP 2 tð Þ,
dR tð Þ
dt

= r1 1 − qð ÞP 1 tð Þ + r2P 2 tð Þ + bS tð Þ − b1R tð Þ,

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð5Þ
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where SðtÞ stands for the people belonging to the suscepti-
ble category, P 1ðtÞ is the people belonging to the asymp-
tomatic category, P 2ðtÞ is the people belonging to the
symptomatic category, and RðtÞ stands for the people
belonging to the recovered category at the time t ∈ J≔ ½0,
T�, ðT > 0Þ. Based on these assumptions, the infected catego-
ries are taken to be symptomatic class and asymptomatic

class, because asymptomatic persons are considered as the
main factor of transmission of disease. It is to be noted that
the variables, constants, and parameters are nonnegative.

Inspired by the aforesaid standard epidemic model,
we here consider the fractal-fractional epidemic
probability-based model of the SARS-CoV-2 virus in the
following structure:

subject to

S 0ð Þ = S0 > 0,

P 1 0ð Þ =P 1,0 ≥ 0,

P 2 0ð Þ =P 2,0 ≥ 0,

R 0ð Þ =R0 ≥ 0,

ð7Þ

where FFPDω,ν
0,t is the fractional-fractal derivative of the frac-

tional order ω ∈ ð0, 1� and the fractal order ν ∈ ð0, 1� via the
power law type kernel. We have

N tð Þ = S tð Þ +P 1 tð Þ +P 2 tð Þ +R tð Þ, ð8Þ

in which as we said above, N ðtÞ means the total population
at the time t ∈ J≔ ½0, T�, ðT > 0Þ.

About parameters, the total natural death rate along with
the rate of disease-related death for both infected groups is
specified by the symbols b1, b2, and b3, respectively. We
show the rate of transmission of disease by r, and its reduced

rate is denoted by the symbol s. The vaccination rate is given
by b, and Θ stands for the newborn rate. The probability of
the asymptomatic persons is illustrated by p, and the proba-
bility of these persons that recover in the symptomatic step
is specified by q. Moreover, r2 is the recovery rate in relation
to asymptomatic persons and accordingly, and r1 is the
recovery rate in relation to the symptomatic persons.

4. Existence of Solutions

In this position, we shall get help fixed point theory to the
suggested fractal-fractional IVP (6). For the qualitative
analysis, we define the Banach space X = Y 4, where Y =
CðJ,ℝÞ, as

Xk kX = S ,P 1,P 2,Rð Þk kX
=max S tð Þj j + P 1 tð Þj j + P 2 tð Þj j + R tð Þj j: t ∈ Jf g:

ð9Þ

We write the R.H.S. of model (6) by

Hence,

FFPDω,ν
0,t S tð Þ =Θ − rP 1 tð ÞS tð Þ − rsP 2 tð ÞS tð Þ − b + b1ð ÞS tð Þ,

FFPDω,ν
0,t P 1 tð Þ = p rP 1 tð ÞS tð Þ + rsP 2 tð ÞS tð Þ½ � − b1 + b2 + r1ð ÞP 1 tð Þ,

FFPDω,ν
0,t P 2 tð Þ = 1 − pð Þ rP 1 tð ÞS tð Þ + rsP 2 tð ÞS tð Þ½ � + qr1P 1 tð Þ − b1 + b3 + r2ð ÞP 2 tð Þ,

FFPDω,ν
0,t R tð Þ = r1 1 − qð ÞP 1 tð Þ + r2P 2 tð Þ + bS tð Þ − b1R tð Þ,

8>>>>>><>>>>>>:
ð6Þ

F1 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þ =Θ − rP 1 tð ÞS tð Þ − rsP 2 tð ÞS tð Þ − b + b1ð ÞS tð Þ,
F2 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þ = p rP 1 tð ÞS tð Þ + rsP 2 tð ÞS tð Þ½ � − b1 + b2 + r1ð ÞP 1 tð Þ,
F3 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þ = 1 − pð Þ rP 1 tð ÞS tð Þ + rsP 2 tð ÞS tð Þ½ � + qr1P 1 tð Þ − b1 + b3 + r2ð ÞP 2 tð Þ,
F4 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þ = r1 1 − qð ÞP 1 tð Þ + r2P 2 tð Þ + bS tð Þ − b1R tð Þ:

8>>>>><>>>>>:
ð10Þ

RLDω
0,tS tð Þ = νtν−1F1 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þ,

RLDω
0,tP 1 tð Þ = νtν−1F2 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þ,

RLDω
0,tP 2 tð Þ = νtν−1F3 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þ,

RLDω
0,tR tð Þ = νtν−1F4 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þ:

8>>>>>><>>>>>>:
ð11Þ
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By (11), we derive the following IVP:

 RLDω
0,tX tð Þ = νtν−1F t,X tð Þð Þ, ω, ν ∈ 0, 1ð �,

X 0ð Þ =X0,

(
ð12Þ

where

X tð Þ = S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð ÞT ,
X0 = S0,P 1,0,P 2,0,R0ð ÞT ,

F t,X tð Þð Þ =

F1 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þ,
F2 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þ,
F3 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þ,
F4 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þ:

8>>>>><>>>>>:
ð13Þ

Now, the fractional-fractal integral acts on (12), and
it becomes

X tð Þ =X 0ð Þ + ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1F m,X mð Þð Þ dm:

ð14Þ

In other words, the extended form of the above
fractal-fractional integral is represented as

Consider the operator G : X⟶X as

G X tð Þð Þ =X 0ð Þ + ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1F m,X mð Þð Þdm:

ð16Þ

In the preceding, we recall the required fixed point
theorem in connection with our aim for proving the
existence results.

Theorem 4 (see [58]). Assume ðX, dÞ as a Banach space,
ϕ : X ×X⟶ℝ, ψ ∈Ψ, and F : X⟶X as an ϕ-ψ-con-
traction s.t.

(1) F is ϕ-admissible

(2) ∃u0 ∈X, s:t:ϕðͷ0,Fͷ0Þ ≥ 1

(3) for any sequence fͷng in X with ͷn ⟶ ͷ and ϕðͷn,
ͷn+1Þ ≥ 1 for all n ≥ 1, we have ϕðͷn, ͷÞ ≥ 1, ∀n ∈ℕ

Then, ∃ͷ ∗ s.t. Fðͷ ∗Þ = ͷ ∗.

Now, the first existence result is proved here under some
special operators.

Theorem 5. Let ∃T : ℝ ×ℝ⟶ℝ, ∃ a continuous map
F : J ×X⟶X, and ∃ a nondecreasing map ψ ∈Ψ. Let
(B1)∀X1,X2 ∈X, and t ∈ J,

F t,X1 tð Þð Þ −F t,X2 tð Þð Þj j ≤ ~ℓψ X1 tð Þ −X2 tjð Þjð , ð17Þ

with TðX1ðtÞ,X2ðtÞÞ ≥ 0, where ~ℓ = ðΓðν + ωÞÞ/ðνTν+ω−1

ΓðνÞÞ.
(B2) X0 ∈X exists so that ∀t ∈ J,

T X0 tð Þ,G X0 tð Þð Þð Þ ≥ 0, ð18Þ

and also, the inequality

T X1 tð Þ,X2 tð Þð Þ ≥ 0, ð19Þ

gives

T G X1 tð Þð Þ,G X2 tð Þð Þð Þ ≥ 0, ð20Þ

for any X1,X2 ∈X and t ∈ J.
(B3)∀fXngn≥1 belonging to X with Xn ⟶X and

T Xn tð Þ,Xn+1 tð Þð Þ ≥ 0, ð21Þ

for each n and t ∈ J, we get

S tð Þ = S0 +
ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1F1 m, S mð Þ,P 1 mð Þ,P 2 mð Þ,R mð Þð Þ dm,

P 1 tð Þ =P 1,0 +
ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1F2 m, S mð Þ,P 1 mð Þ,P 2 mð Þ,R mð Þð Þ dm,

P 2 tð Þ =P 2,0 +
ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1F3 m, S mð Þ,P 1 mð Þ,P 2 mð Þ,R mð Þð Þ dm,

R tð Þ =R0 +
ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1F4 m, S mð Þ,P 1 mð Þ,P 2 mð Þ,R mð Þð Þ dm:

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

ð15Þ
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T Xn tð Þ,X tð Þð Þ ≥ 0: ð22Þ

In such a case, ∃ is a solution for the fractal-fractional
problem (12), and so there exists a solution for the given
fractal-fractional epidemic model of SARS-CoV-2 virus (6).

Proof. Let X1 and X2 be two members belonging to X with

T X1 tð Þ,X2 tð Þð Þ ≥ 0, ð23Þ

for each t ∈ J. Then, by definition of the Beta function, we
may write

G X1 tð Þð Þ −G X2 tð Þð Þj j

≤
ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1 F m,X1 mð Þð Þ −F m,X2 mð Þð Þj j dm

≤
ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1~ℓψ X1 mð Þ −X2 mjð Þð dm

≤
ν~ℓTν+ω−1B ν, ωð Þ

Γ ωð Þ ψ X1 −X2k kXð Þ

=
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ

~ℓψ X1 −X2k kXð Þ:

ð24Þ

Consequently, we have

G X1ð Þ −G X2ð Þk kX ≤
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ

~ℓψ X1 −X2k kXð Þ

= ψ X1 −X2k kXð Þ:
ð25Þ

Now, ϕ : X ×X⟶ ½0,∞Þ is introduced by the this rule:

ϕ X1,X2ð Þ =
1 if T X1 tð Þ,X2 tð Þð Þ ≥ 0,

0 otherwise:

(
ð26Þ

Then, for every X1,X2 ∈X, we will get

ϕ X1,X2ð Þd G X1ð Þ,G X2ð Þð Þ ≤ ψ d X1,X2ð Þð Þ: ð27Þ

Thus, G is found as an ϕ-ψ-contraction. To verify that G
is ϕ-admissible, let X1,X2 ∈X be arbitrary and ϕðX1,X2Þ
≥ 1. By definition of ϕ, we have

T X1 tð Þ,X2 tð Þð Þ ≥ 0: ð28Þ

Then, by ðP2Þ, TðGðX1ðtÞÞ,GðX2ðtÞÞÞ ≥ 0 is satisfied.
Again, the definition of ϕ gives ϕðGðX1Þ,GðX2ÞÞ ≥ 1. Thus,
G is ϕ-admissible.

On the other hand, the condition ðP2Þ guarantees the
existence of X0 ∈X. In this case, for each t ∈ J, TðX0ðtÞ,
GðX0ðtÞÞÞ ≥ 0 holds. Clearly, we get ϕðX0,GðX0ÞÞ ≥ 1.
These show that the conditions (1) and (2) of Theorem 4
are fulfilled.

Now, we assume that fXngn≥1 is a sequence in X s.t.
Xn ⟶X , and for all n, ϕðXn,Xn+1Þ ≥ 1. By virtue of
definition of ϕ,

T Xn tð Þ,Xn+1 tð Þð Þ ≥ 0: ð29Þ

Therefore, in the light of hypothesis ðP3Þ, we obtain

T Xn tð Þ,X tð Þð Þ ≥ 0: ð30Þ

This indicates that ϕðXn,XÞ ≥ 1 for every n. This guar-
antees the condition (3) of Theorem 4. Ultimately, by utiliz-
ing Theorem 4, we conclude that it found a fixed point for G
like X∗ ∈X: This implies that X∗ = ðS∗,P ∗

1 ,P
∗
2 ,R

∗ÞT is
interpreted as a solution of the fractal-fractional model of
SARS-CoV-2 (6) and the argument is finally completed.

In the sequel, we use the Leray-Schauder criterion to
prove the existence result.

Theorem 6 (see [61]). Regard X as a Banach space, E as a
bounded closed set in X with the convexity property, and an
open set O ⊆ E with 0 ∈O. The compact continuous map G : �O
⟶ E, either

(i) G possesses fixed point in �O or

(ii) ∃∈∂O and μ ∈ ð0, 1Þ s.t. ϰ = μGðϰÞ.

Theorem 7. Assume F ∈ CðJ ×X,XÞ along with the
following:

(C1): φ ∈ L1ðJ,ℝ+Þ and an increasing map B ∈ Cð½0,∞Þ,
ð0,∞ÞÞ exist provided that

F t,X tð Þð Þj j ≤ φ tð ÞB X tð Þj jð Þ ð31Þ

(C2): There exist γ > 0 with

γ

Λ + Δφ∗
0B γð Þ > 1, ð32Þ

in which φ∗
0 = supt∈JjφððtÞÞj and Λ, Δ are given in () and ()

Then, a solution exists for fractal-fractional problem (12),
and so a solution exists for the given fractal-fractional model
of SARS-CoV-2 virus (6) on J.

Proof. We define a map G : X⟶X as in (15) and the ball

V ε = X ∈X : Xk kX ≤ ε
� �

, ð33Þ

for some ε > 0. From the continuity of F , we yield the
continuity of operator G. (C1) gives
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G X tð Þð Þj j ≤ X 0ð Þj j + ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω F m,X mð Þð ÞÞj jdm

≤X0 +
ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þωφ mð ÞB X mð Þð Þdm

≤X0 +
νTν+ω−1B ν, ωð Þ

Γ ωð Þ φ∗
0B Xk kXð Þ

≤X0 +
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ φ∗

0B εð Þ,

ð34Þ

for X ∈ Vε. Consequently, we obtain

G X tð Þð Þk k ≤X0 +
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ φ∗

0B εð Þ <∞: ð35Þ

This gives the uniformally boundedness of the operator G
onX. We now verify the equicontinuity of operator G. For the
purpose, arbitrarily, take t, t′ ∈ ½0, T� such that t < t′ and X

∈ V ε. Assuming

sup
t,X∈J×V ε

F t,X tð Þð Þj j =F∗ <∞, ð36Þ

estimate

G X t′
� �� �

−G X tð Þð Þ
��� ���

=
ν

Γ ωð Þ
ðt′
0
mν−1 t′ −m

� �ω−1
F m,X mð Þð Þj jdm

�����
−

ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1 F m,X mð Þð Þj jdm

����
≤

νF∗

Γ ωð Þ
ðt′
0
mν−1 t′ −m

� �ω−1
dm −

ðt
0
mν−1 t −mð Þωdm

 !

≤
νF∗B ν, ωð Þ

Γ ωð Þ t′ν+ω−1 − tν+ω−1
h i

=
νF∗Γ νð Þ
Γ ν + ωð Þ t′ν+ω−1 − tν+ω−1

h i
,

ð37Þ

which is independent of X, as t′ ⟶ t, the R.H.S. of above,
tends to 0. It implies that

G X t′
� �� �

−G X tð Þð Þ
��� ���

X
⟶ 0: ð38Þ

This confirms the equicontinuity ofG. Arzelà-Ascoli’s the-
orem implies the compactness of operator G on Vε. The
hypothesis of Theorem 6 on the operator G has now been
verified. Utilizing (C2), we construct

ℙ = X ∈X : Xk kX < γ
� �

, ð39Þ

for some γ > 0 via

X0 +
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ φ∗

0B γð Þ < γ: ð40Þ

Utilizing (C1) and by (35), we write

GXk kX ≤X0 +
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ φ∗

0B Xð Þ: ð41Þ

Now, we assume the existence of X ∈ ∂ℙ and α ∈ ð0, 1Þ
subject to X = αGðXÞ. For such α and X, by (41), one may
write that

γ = Xk kX = α GXk kX
<X0 +

νTν+ω−1Γ νð Þ
Γ ν + ωð Þ φ∗

0B Xk kXð Þ

<X0 +
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ φ∗

0B γð Þ < γ,

ð42Þ

which is impossible. Therefore, (ii) is not valid, and by Theo-
rem 6, G possesses a fixed point in ℙ. Therefore, the fractal-
fractional model of SARS-CoV-2 virus (6) admits a solution
and so proof is complete.

5. Uniqueness Result

Lemma 8. Assume S ,P 1,P 2,R, S∗,P ∗
1 ,P

∗
2 ,R

∗ ∈ Y = C
ðJ,ℝÞ. Let (H1) kSk ≤ λ1, kP 1k ≤ λ2, kP 1k ≤ λ3, and
kRk ≤ λ4 for some λ1, λ2, λ3, λ4 > 0.

Then, the kernels F1, F2, F3, and F4 given in (10) satis-
fied the Lipschitz property w.r.t. the corresponding compo-
nents if ϖ1, ϖ2, ϖ3, ϖ4 < 1, where

ϖ1 = qλ1 + r,

ϖ2 = r + s,

ϖ3 = r + b,

ϖ4 = r:

ð43Þ

Proof. Starting from the kernel F1, for each S , S∗ ∈ Y ,
we estimate

F1 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þk
−F1 t, S∗ tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þk

= p − qS tð ÞP 2 tð Þ − rS tð Þð Þk
− p − qS∗ tð ÞP 2 tð Þ − rS∗ tð Þð Þk

≤ q P 2 tð Þk k + r½ � S tð Þ − S∗ tð Þk k
≤ qλ3 + r½ � S tð Þ − S∗ tð Þk k
= ϖ1 S tð Þ − S∗ tð Þk k:

ð44Þ

This shows that the kernel F1 is Lipschitz w.r.t. S

with constant ϖ1 < 1. Regarding the kernel function F2,
for each P 1,P ∗

1 ∈ Y ≔ CðJ,ℝÞ, we estimate
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F2 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þk
−F2 t, S tð Þ,P ∗

1 tð Þ,P 2 tð Þ,R tð Þð Þk
= qS tð ÞP 2 tð Þ − r + sð ÞP 1 tð Þð Þk

− qS∗ tð ÞP 2 tð Þ − r + sð ÞP ∗
1 tð Þð Þk

≤ r + s½ � P 1 tð Þ −P ∗
1 tð Þk k

= ϖ2 P 1 tð Þ −P ∗
1 tð Þk k:

ð45Þ

This leads that F2 is Lipschitz w.r.t. P 1 with con-
stant ϖ2 < 1. Now for each P 2,P ∗

2 ∈ Y , we have

F3 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þk
−F3 t, S tð Þ,P 1 tð Þ,P ∗

2 tð Þ,R tð Þð Þk
= sP 1 tð Þ − r + bð ÞP 2 tð Þð Þk

− sP 1 tð Þ − r + bð ÞP ∗
2 tð Þð Þk

≤ r + b½ � P 2 tð Þ −P ∗
2 tð Þk k

= ϖ3 P 2 tð Þ −P ∗
2 tð Þk k:

ð46Þ

This shows that F3 is Lipschitz w.r.t. P 2 with con-
stant ϖ3 < 1. Now for each R,R∗ ∈ Y , we have

F4 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þk
−F4 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R∗ tð Þð Þk

= bP 2 tð Þ − rR tð Þð Þ − bP 2 tð Þ − rR∗ tð Þð Þk k
≤ r½ � R tð Þ −R∗ tð Þk k = ϖ4 R tð Þ −R∗ tð Þk k:

ð47Þ

This shows that F4 is Lipschitz w.r.t. R with
constant ϖ4 < 1. From the above, we conclude that the
kernels F i, i = 1, 2, 3, 4, are Lipschitzian w.r.t. the corre-
sponding component with constants ϖi, i = 1, 2, 3, 4,
respectively.

We study the uniqueness result for solution to the presumed
fractal-fractional model (6) based on the conclusions gained
in Lemma 8.

Theorem 9. Assume (H1), then the given fractal-fractional
model of SARS-CoV-2 virus (6) has a unique solution if

νTν+ω−1Γ νð Þ
Γ ν + ωð Þ ϖi < 1, i ∈ 1, 2, 3, 4: ð48Þ

Proof. The outcome of the theorem is assumed to be inva-
lid. That is to say, there is another solution for the given
fractional-fractal model of SARS-CoV-2 virus (6). Assume
that ðS∗ðtÞ,P ∗

1 ðtÞ,P ∗
2 ðtÞ,R∗ðtÞÞ is another solution with

ðS0; ;P 1,0,P 2,0,RÞ such that by (16), we have

Now, we can estimate

S tð Þ − S∗ tð Þj j ≤ ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1

× F1 m, S mð Þ,P 1 mð Þ,P 2 mð Þ,R mð Þð Þj
−F1 m, S∗ mð Þ,P ∗

1 mð Þ,P ∗
2 mð Þ,R∗ mð Þð Þjdm

≤
ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1ϖ1 S − S∗k kdm

≤
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ ϖ1 S − S∗k k,

ð50Þ

and so

1 −
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ ϖ1

� 	
S − S∗k k ≤ 0: ð51Þ

It is true if kS − S∗k = 0, and accordingly, S = S∗. Next,
from

P 1 −P ∗
1k k ≤ 1 −

νTν+ω−1Γ νð Þ
Γ ν + ωð Þ ϖ2

� 	
P 1 −P ∗

1k k, ð52Þ

S∗ tð Þ = S0 +
ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1F1 m, S∗ mð Þð Þ,P ∗

1 mð Þ,P ∗
2 mð Þ,R∗ mð Þdm,

P ∗
1 tð Þ =P 1,0 +

ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1F2 m, S∗ mð Þð Þ,P ∗

1 mð Þ,P ∗
2 mð Þ,R∗ mð Þdm,

P ∗
2 tð Þ =P 2,0 +

ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1F3 m, S∗ mð Þð Þ,P ∗

1 mð Þ,P ∗
2 mð Þ,R∗ mð Þdm,

R∗ tð Þ =R0 +
ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1F4 m, S∗ mð Þð Þ,P ∗

1 mð Þ,P ∗
2 mð Þ,R∗ mð Þdm:

ð49Þ
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we get

1 −
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ ϖ2

� 	
P 1 −P ∗

1k k ≤ 0: ð53Þ

This implies that kP 1 −P ∗
1k = 0 and so P 1 =P ∗

1 : Also,
we have

P 2 −P ∗
2k k ≤ 1 −

νTν+ω−1Γ νð Þ
Γ ν + ωð Þ ϖ3

� 	
P 2 −P ∗

2k k: ð54Þ

This gives

1 −
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ ϖ3

� 	
P 2 −P ∗

2k k ≤ 0: ð55Þ

This implies that kP 2 −P ∗
2k = 0 and so P 2 =P ∗

2 :
Finally, from

R −R∗k k ≤ 1 −
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ ϖ4

� 	
R −R∗k k, ð56Þ

we get

1 −
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ ϖ4

� 	
R −R∗k k ≤ 0: ð57Þ

This implies that kR −R∗k = 0 and so R =R∗: Conse-
quently, we get

S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þ = S∗ tð Þ,P ∗
1 tð Þ,P ∗

2 tð Þ,R∗ tð Þð Þ:
ð58Þ

This shows that the fractal-fractional model of SARS-
CoV-2 virus (6) has exactly one solution.

6. UH and UHR Stability Criterion

We now proceed to review stable solutions in the context of
the Ulam-Hyers (UH) and Ulam-Hyers-Rassias (UHR) to
the given fractal-fractional model of SARS-CoV-2 virus (6).

Definition 10. The fractal-fractional model of SARS-CoV-2
virus (6) is UH-stable if ∃0 <MFi

∈ℝ, i = 1, 2, 3, 4 s.t. ∀εi >
0 and ∀, ðS∗,P ∗

1 ,P
∗
2 ,R

∗Þ ∈X fulfilling

FFPD
ω,ν
0,t S

∗ tð Þ −F1 t, S∗ tð Þ,P ∗
1 tð Þ,P ∗

2 tð Þ,R∗ tð Þð Þ
��� ��� < ε1,

FFPD
ω,ν
0,t P

∗
1 tð Þ −F2 t, S∗ tð Þ,P ∗

1 tð Þ,P ∗
2 tð Þ,R∗ tð Þð Þ

��� ��� < ε2,

FFPD
ω,ν
0,t P

∗
2 tð Þ −F3 t, S∗ tð Þ,P ∗

1 tð Þ,P ∗
2 tð Þ,R∗ tð Þð Þ

��� ��� < ε3,

FFPD
ω,ν
0,t R

∗ tð Þ −F4 t, S∗ tð Þ,P ∗
1 tð Þ,P ∗

2 tð Þ,R∗ tð Þð Þ
��� ��� < ε4:

8>>>>>>>>>><>>>>>>>>>>:
ð59Þ

There exist ðS ,P 1,P 2,RÞ ∈X satisfying the given fractal-
fractional model of SARS-CoV-2 virus (6) with

S∗ tð Þ − S tð ÞÞj j ≤MF1
ε1,∀t ∈ J,

P ∗
1 tð Þ −P 1 tð ÞÞj j ≤MF2

ε2,∀t ∈ J,

P ∗
2 tð Þ −P 2 tð ÞÞj j ≤MF3

ε3,∀t ∈ J,

R∗ tð Þ −R tð ÞÞj j ≤MF4
ε4,∀t ∈ J:

8>>>>><>>>>>:
ð60Þ

Definition 11. The given fractal-fractional model of SARS-
CoV-2 virus (6) is generalized UH-stable if ∃MFi

∈ Cðℝ+,
ℝ+Þ, i = 1, 2, 3, 4 with MFi

ð0Þ = 0 s.t. ∀εi > 0 and ∀ðS∗,P ∗
1 ,

P ∗
2 ,R

∗Þ ∈X fulfilling

FFPD
ω,ν
0,t S

∗ tð Þ −F1 t, S∗ tð Þ,P ∗
1 tð Þ,P ∗

2 tð Þ,R∗ tð Þð Þ
��� ��� < ε1,

FFPD
ω,ν
0,t P

∗
1 tð Þ −F2 t, S∗ tð Þ,P ∗

1 tð Þ,P ∗
2 tð Þ,R∗ tð Þð Þ

��� ��� < ε2,

FFPD
ω,ν
0,t P

∗
2 tð Þ −F3 t, S∗ tð Þ,P ∗

1 tð Þ,P ∗
2 tð Þ,R∗ tð Þð Þ

��� ��� < ε3,

FFPD
ω,ν
0,t R

∗ tð Þ −F4 t, S∗ tð Þ,P ∗
1 tð Þ,P ∗

2 tð Þ,R∗ tð Þð Þ
��� ��� < ε4:

8>>>>>>>>>><>>>>>>>>>>:
ð61Þ

There exist a solution ðS ,P 1,P 2,RÞ ∈X of the given
fractal-fractional model of SARS-CoV-2 virus (6) with

S∗ tð Þ − S tð ÞÞj j ≤MF1
ε1,∀t ∈ J,

P ∗
1 tð Þ −P 1 tð ÞÞj j ≤MF2

ε2,∀t ∈ J,

P ∗
2 tð Þ −P 2 tð ÞÞj j ≤MF3

ε3,∀t ∈ J,

R∗ tð Þ −R tð ÞÞj j ≤MF4
ε4,∀t ∈ J:

8>>>>><>>>>>:
ð62Þ

Remark 12. Note that ðS∗,P ∗
1 ,P

∗
2 ,R

∗Þ ∈X is a solution of
(59) iff ∃η1, η2, η3, η4 ∈ Cð½0, T�,ℝÞ (depending upon S∗,
P ∗

1 ,P
∗
2 ,R

∗, respectively) so that for all t ∈ J,

(i) jηiðtÞj < εi, ði = 1, 2, 3, 4Þ
(ii) We have

FFPDω,ν
0,t S

∗ tð Þ −F1 t, S∗ tð Þ,P ∗
1 tð Þ,P ∗

2 tð Þ,R∗ tð Þð Þ�� �� + η1 tð Þ,
FFPDω,ν

0,t P
∗
1 tð Þ −F2 t, S∗ tð Þ,P ∗

1 tð Þ,P ∗
2 tð Þ,R∗ tð Þð Þ�� �� + η2 tð Þ,

FFPDω,ν
0,t P

∗
2 tð Þ −F3 t, S∗ tð Þ,P ∗

1 tð Þ,P ∗
2 tð Þ,R∗ tð Þð Þ�� ��η3 tð Þ,

FFPDω,ν
0,t R

∗ tð Þ −F4 t, S∗ tð Þ,P ∗
1 tð Þ,P ∗

2 tð Þ,R∗ tð Þð Þ�� ��η4 tð Þ

8>>>>>><>>>>>>:
ð63Þ

Definition 13. The fractal-fractional model of SARS-CoV-2
virus (6) is UHR-stable w.r.t. functions Ψi, i = 1, 2, 3, 4, if ∃
0 <MFi ,Ψi

∈ℝ, i = 1, 2, 3, 4 s.t. ∀εi > 0 and ∀ðS∗,P ∗
1 ,P

∗
2 ,

R∗Þ ∈X fulfilling
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FFPD
ω,ν
0,t S

∗ tð Þ −F1 t, S∗ tð Þ,P ∗
1 tð Þ,P ∗

2 tð Þ,R∗ tð Þð Þ
��� ��� < ε2Ψ2 tð Þ:
FFPD

ω,ν
0,t P

∗
1 tð Þ −F2 t, S∗ tð Þ,P ∗

1 tð Þ,P ∗
2 tð Þ,R∗ tð Þð Þ

��� ��� < ε2Ψ2 tð Þ,
FFPD

ω,ν
0,t P

∗
2 tð Þ −F3 t, S∗ tð Þ,P ∗

1 tð Þ,P ∗
2 tð Þ,R∗ tð Þð Þ

��� ��� < ε3Ψ3 tð Þ,
FFPD

ω,ν
0,t R

∗ tð Þ −F4 t, S∗ tð Þ,P ∗
1 tð Þ,P ∗

2 tð Þ,R∗ tð Þð Þ
��� ��� < ε4Ψ4 tð Þ:

8>>>>>>>>>><>>>>>>>>>>:
ð64Þ

There exist ðS ,P 1,P 2,RÞ ∈X satisfying the given fractal-
fractional model of SARS-CoV-2 virus (6) with

S∗ tð Þ − S tð ÞÞj j ≤MF1,Ψ1
ε1Ψ1 tð Þ,∀t ∈ J,

P ∗
1 tð Þ −P 1 tð ÞÞj j ≤MF2,Ψ1

ε2Ψ2 tð Þ,∀t ∈ J,

P ∗
2 tð Þ −P 2 tð ÞÞj j ≤MF3,Ψ3

ε3Ψ3 tð Þ,∀t ∈ J,

R∗ tð Þ −R tð ÞÞj j ≤MF4,Ψ1
ε4Ψ4 tð Þ,∀t ∈ J:

8>>>>><>>>>>:
ð65Þ

Definition 14. The given fractal-fractional model of SARS-
CoV-2 virus (6) is generalized UHR-stable w.r.t. Ψi, i = 1, 2
, 3, 4, if ∃MFi ,Ψi

∈ℝ, i = 1, 2, 3, 4 with MFi
ð0Þ = 0 s.t. ∀εi > 0

and ∀ðS∗,P ∗
1 ,P

∗
2 ,R

∗Þ ∈X fulfilling

FFPD
ω,ν
0,t S

∗ tð Þ −F1 t, S∗ tð Þ,P ∗
1 tð Þ,P ∗

2 tð Þ,R∗ tð Þð Þ
��� ��� <Ψ1 tð Þ,
FFPD

ω,ν
0,t P

∗
1 tð Þ −F2 t, S∗ tð Þ,P ∗

1 tð Þ,P ∗
2 tð Þ,R∗ tð Þð Þ

��� ��� <Ψ2 tð Þ,
FFPD

ω,ν
0,t P

∗
2 tð Þ −F3 t, S∗ tð Þ,P ∗

1 tð Þ,P ∗
2 tð Þ,R∗ tð Þð Þ

��� ��� <Ψ3 tð Þ,
FFPD

ω,ν
0,t R

∗ tð Þ −F4 t, S∗ tð Þ,P ∗
1 tð Þ,P ∗

2 tð Þ,R∗ tð Þð Þ
��� ��� <Ψ4 tð Þ:

8>>>>>>>>>><>>>>>>>>>>:
ð66Þ

There exist a solution ðS ,P 1,P 2,RÞ ∈X of the given
fractal-fractional model of SARS-CoV-2 virus (6) with

S∗ tð Þ − S tð ÞÞj j ≤MF1,Ψ1
Ψ1 tð Þ,∀t ∈ J,

P ∗
1 tð Þ −P 1 tð ÞÞj j ≤MF2,Ψ2

Ψ2 tð Þ,∀t ∈ J,

P ∗
2 tð Þ −P 2 tð ÞÞj j ≤MF3,Ψ3

Ψ3 tð Þ,∀t ∈ J,

R∗ tð Þ −R tð ÞÞj j ≤MF4,Ψ4
Ψ4 tð Þ,∀t ∈ J:

8>>>>><>>>>>:
ð67Þ

Remark 15. Note that ðS∗,P ∗
1 ,P

∗
2 ,R

∗Þ ∈X is a solution of
(64) iff there exists η1, η2, η3, η4 ∈ Cð½0, T�,ℝÞ (depending
upon S∗,P ∗

1 ,P
∗
2 ,R

∗, respectively) so that for all t ∈ J,

(i) jηiðtÞj <ΨiðTÞεi, ði = 1, 2, 3, 4Þ
(ii) We have

FFPDω,ν
0,t S

∗ tð Þ =F1 t, S∗ tð Þ,P ∗
1 tð Þ,P ∗

2 tð Þ,R∗ tð Þð Þ + η1 tð Þ,
FFPDω,ν

0,t P
∗
1 tð Þ =F2 t, S∗ tð Þ,P ∗

1 tð Þ,P ∗
2 tð Þ,R∗ tð Þð Þ + η2 tð Þ:

FFPDω,ν
0,t P

∗
2 tð Þ =F3 t, S∗ tð Þ,P ∗

1 tð Þ,P ∗
2 tð Þ,R∗ tð Þð Þ + η3 tð Þ,

FFPDω,ν
0,t R

∗ tð Þ =F4 t, S∗ tð Þ,P ∗
1 tð Þ,P ∗

2 tð Þ,R∗ tð Þð Þ + η4 tð Þ

8>>>>>><>>>>>>:
ð68Þ

Theorem 16. The given fractal-fractional model of SARS-
CoV-2 virus (6) is UH-stable on J≔ ½0, T�, and it is general-
ized UH-stable such that

νTν+ω−1Γ νð Þ
Γ ν + ωð Þ ϖi < 1, i ∈ 1, 2, 3, 4f g, ð69Þ

where ϖi are given by () provided that the assumption (H1) is
valid.

Proof. Let ε1 > 0 and S∗ ∈ Y be arbitrary so that

 FFPDω,ν
0,t S

∗ tð Þ −F1 t, S∗ tð Þ,P ∗
1 tð Þ,P ∗

2 tð Þ,R∗ tð Þð Þ�� �� < ε1:

ð70Þ

Then, in view of Remark 12, we can find a function η1ðtÞ
satisfying

FFPDω,ν
0,t S

ast tð Þ =F1 t, Sast tð Þ,P ast
1 tð Þ,P ast

2 tð Þ,R∗ tð Þ
 �
+ η1 tð Þ,

ð71Þ

with jη1ðtÞj ≤ ε1. So

S∗ tð Þ = S0 +
ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1F1 m, S∗ mð Þ,P ∗

1ð

� mð Þ,P ∗
2 mð Þ,R∗ mð ÞÞdm

+
ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1η1 mð Þdm:

ð72Þ

By Theorem 9, let S ∈ Y be the unique solution of the
given fractal-fractional model of NOV-COV-2 virus ().
Then, SðtÞ is given by

S tð Þ = S0 +
ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1F1

� m, S mð Þ,P 1 mð Þ,P 2 mð Þ,R mð Þð Þdm:

ð73Þ
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Then,

S∗ tð Þ − S tð Þj j ≤ ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1 η1 mð Þj jdm

+
ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1

× F1 m, S∗ mð Þ,P ∗
1 mð Þ,P ∗

2 mð Þ,R∗ mð Þð Þj
−F1 m, S mð Þ,P 1 mð Þ,P 2 mð Þ,R mð Þð Þjdm,

≤
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ ε1 +

νTν+ω−1Γ νð Þ
Γ ν + ωð Þ ϖ1 S∗ − Sk k:

ð74Þ

Hence, we get

S∗ − Sk k ≤ νTν+ω−1Γ νð Þ
 �
/ Γ ν + ωð Þð Þ
 �

ε1
1 − νTν+ω−1Γ νð Þ
 �

/ Γ ν + ωð Þð Þ
 �
ϖ1

: ð75Þ

If we let MF1
= ððνTν+ω−1ΓðνÞÞ/ðΓðν + ωÞÞÞ/ð1 − ððν

Tν+ω−1ΓðνÞÞ/ðΓðν + ωÞÞÞϖ1Þ, then kS∗ − Sk ≤MF1
ε1. Sim-

ilarly, we have

P ∗
1 −P 1k k ≤MF2

ε2, P ∗
2 −P 2k k ≤MF3

ε3, R∗ −Rk k ≤MF4
ε4,

ð76Þ

where

MFi
=

νTν+ω−1Γ νð Þ
 �
/ Γ ν + ωð Þð Þ

1 − νTν+ω−1Γ νð Þ
 �
/ Γ ν + ωð Þð Þ
 �

ϖi

, i ∈ 2, 3, 4f gð Þ:

ð77Þ

Hence, the UH stability of the given fractal-fractional
model (6) is fulfilled. Next, by assuming

MFi
εið Þ = νTν+ω−1Γ νð Þ
 �

/ Γ ν + ωð Þð Þ
 �
εi

1 − νTν+ω−1Γ νð Þ
 �
/ Γ ν + ωð Þð Þ
 �

ϖi

, i ∈ 1, 2, 3, 4f gð Þ,

ð78Þ

with MFi
ð0Þ = 0, the generalized UH stability of the given

fractional-fractal model (6) is fulfilled.

In the next result, UHR stability for the given fractal-
fractional model of SARS-CoV-2 (6) is studied:

Theorem 17. The condition ðH1Þ is assumed to be held:
(H′): ∃ increasing mappings Ψi ∈ Cð½0, T�,ℝ+Þ, ði ∈ f1, 2,

3, 4g and ∃ΛΨi
> 0 such that ∀t ∈ J,

FFPJ ω,ν
0,t Ψi tð Þ <ΛΨi

Ψi tð Þ, i ∈ 1, 2, 3, 4f gð : ð79Þ

Then, the given fractal-fractional model of SARS-CoV-2
virus (6) is UHR and generalized UHR-stable.

Proof. For every ε1 > 0 and ∀S∗ ∈ Y satisfying

FFPDω,ν
0,t S

∗ tð Þ −F1 t, S∗ tð Þ,P ∗
1 tð Þ,P ∗

2 tð Þ,R∗ tð Þð Þ�� �� < ε1Ψ1 tð Þ,
∃η tð Þ s:t:

FFPDω,ν
0,t S

∗ tð Þ =F1 t, S∗ tð Þ,P ∗
1 tð Þ,P ∗

2 tð Þ,R∗ tð Þð Þ + η1 tð Þ,
ð80Þ

with η1ðtÞ ≤ ε1Ψ1ðtÞ. It follows that

S∗ tð Þ = S0 +
ν

Γ ωð Þ
ðt
0
tν−1 t − tð Þω−1F1 t, S∗ tð Þ,P ∗

1 tð Þ,P ∗
2 tð Þ,R∗ tð Þð Þdt

+
ν

Γ ωð Þ
ðt
0
tν−1 t − tð Þω−1η1 tð Þdt:

ð81Þ

By Theorem 9, let S ∈ Y be the unique solution of the
given fractal-fractional model of SARS-CoV-2 virus (6).
Then, SðtÞ is given by

S tð Þ = S0 +
ν

Γ ωð Þ
ðt
0
tν−1 t − tð Þω−1F1 t, S tð Þ,P 1 tð Þ,P 2 tð Þ,R tð Þð Þdt:

ð82Þ

Then, by (61),

S∗ tð Þ − S tð Þj j ≤ ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1 h1 mð Þj jdm

+ ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1

× F1 m, S∗ mð Þ,P ∗
1 mð Þ,P ∗

2 mð Þ,R∗ mð Þð Þj
−F1 m, S mð Þ,P 1 mð Þ,P 2 mð Þ,R mð Þð Þdmj

≤
ε1ν

Γ ωð Þ
ðt
0
mν−1 t −mð Þω−1Ψ1 mð Þdm

+
νTν+ω−1Γ νð Þ
Γ ν + ωð Þ ϖ1 S∗ − Sk k

≤ ε1ΛΨ1
Ψ1 +

νTν+ω−1Γ νð Þ
Γ ν + ωð Þ ϖ1 S∗ − Sk k:

ð83Þ

Accordingly, it gives

S∗ − Sk k ≤ ε1ΛΨ1
Ψ1

1 − νTν+ω−1Γ νð Þ
 �
/ Γ ν + ωð Þð Þ
 �

ϖ1
: ð84Þ

If we let

M F1,Ψ1ð Þ =
ΛΨ1

1 − νTν+ω−1Γ νð Þ
 �
/ Γ ν + ωð Þð Þ
 �

ϖ1
, ð85Þ
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then kS∗ − Sk ≤ ε1MðF1,Ψ1ÞΨ1: Similarly, we have

P ∗
1 −P 1k k ≤ ε2M F2,Ψ2ð ÞΨ2, P ∗

2 −P 2k k
≤ ε3M F3,Ψ3ð ÞΨ3, R∗ −Rk k
≤ ε4M F4,Ψ4ð ÞΨ4,

ð86Þ

where

M Fi ,Ψið Þ =
ΛΨi

1 − νTν+ω−1Γ νð Þ
 �
/ Γ ν + ωð Þð Þ
 �

ϖi

, i ∈ 1, 2, 3, 4f gð Þ:

ð87Þ

Hence, the given fractal-fractional model of SARS-CoV-
2 virus (6) is stable in the sense of UHR. Along with this, by
setting εi = 1 ; ði ∈ f1, 2, 3, 4gÞ, the mentioned fractal-
fractional model of SARS-CoV-2 virus (6) is generalized
UHR-stable.

7. Numerical Algorithms and Simulations

7.1. Numerical Adams-Bashforth Method. In this section, we
describe the numerical scheme in relation to the fractal-
fractional model of SARS-CoV-2 virus (6). For this, we have
taken help from the technique regarding two-step Lagrange
polynomials called fractional Adams-Bashforth method
(ABM). To begin this process, we follow the numerical
method of fractal-fractional integral equations (15) using a
new approach at tn+1. In other words, we discretize the
mentioned equation (15) for t = tn+1, and we have

S tn+1ð Þ = S0 +
ν

Γ ωð Þ
ðtn+1
0

tn+1 −mð Þω−1H 1 mð Þ dm,

P 1 tn+1ð Þ =P 1,0 +
ν

Γ ωð Þ
ðtn+1
0

tn+1 −mð Þω−1H 2 mð Þ dm,

P 2 tn+1ð Þ =P 2,0 +
ν

Γ ωð Þ
ðtn+1
0

tn+1 −mð Þω−1H 3 mð Þ dm,

R tn+1ð Þ =R0 +
ν

Γ ωð Þ
ðtn+1
0

tn+1 −mð Þω−1H 4 mð Þ dm,

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
ð88Þ

where

H 1 mð Þ =mν−1F1 m, S mð Þ,P 1 mð Þ,P 2 mð Þ,R mð Þð Þ,
H 2 mð Þ =mν−1F2 m, S mð Þ,P 1 mð Þ,P 2 mð Þ,R mð Þð Þ,
H 3 mð Þ =mν−1F3 m, S mð Þ,P 1 mð Þ,P 2 mð Þ,R mð Þð Þ,
H 4 mð Þ =mν−1F4 m, S mð Þ,P 1 mð Þ,P 2 mð Þ,R mð Þð Þ:

8>>>>><>>>>>:
ð89Þ

By approximating above integrals, we get

S tn+1ð Þ = S0 +
ν

Γ ωð Þ〠
n

l=0

ðtl+1
tl

tn+1 −mð Þω−1H 1 mð Þdm,

P 1 tn+1ð Þ =P 1,0 +
ν

Γ ωð Þ〠
n

l=0

ðtl+1
tl

tn+1 −mð Þω−1H 2 mð Þdm,

P 2 tn+1ð Þ =P 2,0 +
ν

Γ ωð Þ〠
n

l=0

ðtl+1
tl

tn+1 −mð Þω−1H 3 mð Þdm,

R tn+1ð Þ =R0 +
ν

Γ ωð Þ〠
n

l=0

ðtl+1
tl

tn+1 −mð Þω−1H 4 mð Þdm:

0BBBBBBBBBBBBBBBB@
ð90Þ

In the sequel, we approximate the functionsH 1,H 2,H 3
, and H 4, introduced by (89), on the interval ½tl, tl+1� via
two-step Lagrange interpolation polynomials with the step
size h = tl − tl−1 as

H∗
1,l mð Þ ≃ m − tl−1

h tν−1l F1 ml, S l,P 1,l,P 2,l,Rlð Þ

−
m − tl
h tν−1l−1 F1 ml−1, S l−1,P 1,l−1,P 2,l−1,Rl−1ð Þ,

H∗
2,l mð Þ ≃ m − tl−1

h tν−1l F2 ml, S l,P 1,l,P 2,l,Rlð Þ

−
m − tl
h tν−1l−1 F2 ml−1, S l−1,P 1,l−1,P 2,l−1,Rl−1ð Þ,

H∗
3,l mð Þ ≃ m − tl−1

h tν−1l F3 ml, S l,P 1,l,P 2,l,Rlð Þ

−
m − tl
h tν−1l−1 F3 ml−1, S l−1,P 1,l−1,P 2,l−1,Rl−1ð Þ,

H∗
4,l mð Þ ≃ m − tl−1

h tν−1l F4 ml, S l,P 1,l,P 2,l,Rlð Þ

−
m − tl
h tν−1l−1 F4 ml−1, S l−1,P 1,l−1,P 2,l−1,Rl−1ð Þ:

ð91Þ

Then, we have

S tn+1ð Þ = S0 +
ν

Γ ωð Þ〠
n

l=0

ðtl+1
tl

tn+1 −mð Þω−1H∗
1,l mð Þdm,

P 1 tn+1ð Þ =P 1,0 +
ν

Γ ωð Þ〠
n

l=0

ðtl+1
tl

tn+1 −mð Þω−1H∗
2,l mð Þdm,

P 2 tn+1ð Þ =P 2,0 +
ν

Γ ωð Þ〠
n

l=0

ðtl+1
tl

tn+1 −mð Þω−1H∗
3,l mð Þdm,

R tn+1ð Þ =R0 +
ν

Γ ωð Þ〠
n

l=0

ðtl+1
tl

tn+1 −mð Þω−1H∗
4,l mð Þdm:

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
ð92Þ
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By evaluating above integrals directly, the approximate
solutions of the given fractional-fractal model of SARS-
CoV-2 virus (6) are given by

Sn+1 = S0 +
νhω

Γ ω + 2ð Þ〠
n

l=0
tν−1l F1 tl , S l ,P 1,l ,P 2,l ,Rlð ÞY n,lð Þ
h

− tν−1l−1 F1 tl−1, S l−1,P 1,l−1,P 2,l−1,Rl−1ð ÞŶ n,lð Þ
i
,

P 1,n+1 =P 1,0 +
νhω

Γ ω + 2ð Þ〠
n

l=0
tν−1l F2 tl, S l ,P 1,l ,P 2,l ,Rlð ÞY n,lð Þ
h

− tν−1l−1 F2 tl−1, S l−1,P 1,l−1,P 2,l−1,Rl−1ð ÞŶ n,lð Þ
i
,

P 2,n+1 =P 2,0 +
νhω

Γ ω + 2ð Þ〠
n

l=0
tν−1l F3 tl, S l ,P 1,l ,P 2,l ,Rlð ÞY n,lð Þ
h

− tν−1l−1 F3 tl−1, S l−1,P 1,l−1,P 2,l−1,Rl−1ð ÞŶ n,lð Þ
i
,

Rn+1 =R0 +
νhω

Γ ω + 2ð Þ〠
n

l=0
tν−1l F4 tl , S l,P 1,l ,P 2,l ,Rlð ÞY n,lð Þ
h

− tν−1l−1 F4 tl−1, S l−1,P 1,l−1,P 2,l−1,Rl−1ð ÞŶ n,lð Þ
i
,

ð93Þ

where

Y n,lð Þ = n + 1 − lð Þω n − l + 2 + ωð Þ − n − lð Þω n − l + 2 + 2ωð Þ,
Ŷ n,lð Þ = n + 1 − lð Þω+1 − n − lð Þω n − l + 1 + ωð Þ,

ð94Þ

where ω is the fractional order of the given fractal-fractional
system (6).

7.2. Simulations Based on Adams-Bashforth Method. In this
section, using the AB method for fractal-fractional, we pres-
ent approximate solutions for the fractal-fractional
probability-based model of SARS-CoV-2 virus (6). We dem-
onstrate simulations to observe the behavior of four sub-
classes of SARS-CoV-2, which are S , P 1, P 2, and R

under the different set of parameters.
To provide a numerical simulation, we start by deter-

mining the value of the parameters by using reported cases
in Turkey from 01 January 2021 to 03 July 2021. The birth
rate for the Turkey in 2021 is 15.408 births per 1000 people,
and the death rate is b1 = 5:5 per 1000 people. The Turkey’s
population on 1st of January was N = 84339067. Since we
use the day as time limit, we can calculate the newborn rate
as Θ = ð84339067 × 15:408Þ/ð1000 × 365Þ. To estimate the
remaining parameters, we use the curve fitting technique
with the data reported for SARS-CoV-2. Using this method,
we determine the parameters as follows: p = 0:4, r = 0:003, s
= 0:05, b = 0:05, r1 = 0:05, and r2 = 0:6, and we assume q =
0:2, b2 = 0:04, and b3 = 0:6. Also, the stepsize for the time
interval is choosen as h = 10−3. As a first visualization, in
Figure 1, we demonstrate the real data versus present model
simulation. Then, behaviors of four subclasses are presented

in Figures 2(a)–2(d) with the chosen initial values S = 100,
P 1 = 90, P 2 = 80, and R = 70, respectively, and under vari-
ous fractal-fractional orders ω and v.

Now, we simulate and discuss the dynamics of the model
based on the parameters provided by [60]. Based on this
source, we assume Θ = 30, r = 0:003, s = 0:05, b = 0:05, b1
= 0:05, p = 0:4, b2 = 0:04, r1 = 0:05, q = 0:2, b3 = 0:6, and r2
= 0:6. Finally, the initial values for state functions are Sð0Þ
= 0:5, P 1ð0Þ = 0:3, P 2ð0Þ = 0:2, and Rð0Þ = 0:1: In differ-
ent figures, we will show the behaviors of four state functions
S , P 1, P 2, and R by assuming different values for fractal
and fractional orders ω = ν = 1:00,0:99,0:98,0:97,0:96,0:95.

In Figures 3(a) and 3(b), we illustrate the obtained
dynamics of all four state functions S , P 1, P 2, and R by
the use of ABM with the vaccination rate (a) b = 0:05 and
(b) b = 0:1, respectively. The great impact of the vaccine
can be clearly observed from these illustrations as increasing
the vaccination rate decreases the infected population and
increases the recovered population.

In Figure 4, the susceptible subclass SðtÞ is demon-
strated with the initial value Sð0Þ = 0:5. From this illustra-
tion, we observed that the graphs of this category of people
converge quickly to a stable case at higher fractal-fractional
orders and slowly to such a stable case at lower fractal-
fractional orders. Also, we can see that by increasing the
fractal-fractional orders, the density of SðtÞ also increases.

In Figure 5, the asymptomatic subclass P 1ðtÞ is demon-
strated with the initial value P 1ðtÞ = 0:3. From this illustra-
tion, we observed that the graphs of this category of people
converge quickly to a stable case at higher fractal-fractional
orders and slowly to such a stable case at lower fractal-
fractional orders. Also, we can see that by increasing the
fractal-fractional orders, the density of asymptomatic cate-
gory P 1ðtÞ also increases.
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Figure 1: Simulated data vs. Real data for the SARS-CoV-2 cases in
Turkey from 01 January 2021 to 03 July 2021.
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Figure 2: Continued.
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In Figure 6, the symptomatic subclass P 2ðtÞ is pre-
sented with the initial value P 2ðtÞ = 0:2. From this illustra-
tion, we can see that the graphs of this category of people
converge quickly to a stable case at higher fractal-

fractional orders and slowly to such a stable case at lower
fractal-fractional orders. Also, we can see that by increasing
the fractal-fractional orders, the density of symptomatic
category P 2ðtÞ also increases.
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Figure 2: Behaviors of each compartments: (a) SðtÞ, (b) P 1ðtÞ, (c) P 2ðtÞ, and (d) RðtÞ under various fractal-fractional orders ω = v =
1,0:95,0:90,0:85,0:80 with the estimated parameters from the reported data.
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ω = v = 1.
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In Figure 7, the recovered category RðtÞ is demon-
strated with the initial value RðtÞ = 0:1. From this illustra-
tion, we observed that the graphs of this category of
people converge quickly to a stable case at higher fractal-
fractional orders and slowly to such a stable case at lower

fractal-fractional orders. Also, we can see that by increas-
ing the fractal-fractional orders, the density of recovered
population RðtÞ also increases.

It is seen that the graphs of all four category of people
have the similar behaviors regarding to different values of
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Figure 4: Behavior of SðtÞ by changing fractal-fractional order ω and v.
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Figure 5: Behavior of P 1ðtÞ by changing fractal-fractional order ω and v.
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fractal-fractional orders, and they converge quickly to a sta-
ble case at higher fractal-fractional orders and slowly to such
a stable case at lower fractal-fractional orders. Also, the den-
sities of all four group of population are increasing as the
fractal-fractional order increases.

8. Model Dynamics in the Caputo Sense

In this section, we convert the presented fractal-fractional
epidemic probability-based model of SARS-CoV-2 virus
(6) into a Caputo-type model. The main motivation of this
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Figure 6: Behavior of P 2ðtÞ by changing fractal-fractional order ω and v.
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replacement is to compare the proposed model in two differ-
ent type and capture the memory effects on the given model

by using different fractional-order dynamics. The new
formulation of the proposed model is as follows:

where

CDω
0,tu tð Þ= RLI

η−ω
0,t

dη

dtη
u tð Þ

� 
, η − 1 < ω ≤ η, η ∈ℕ: ð96Þ

The Caputo fractional derivative satisfies the Newton–
Leibniz formula for every 0 < ω < 1, that is,

RLIω
0,t

CDω
0,tu tð Þ
 �

= u tð Þ − 〠
ωd e−1

j=0
u jð Þ 0ð Þ t

j

j!
: ð97Þ

In recent years, many researchers have developed a
number of numerical methods to solve different types of
fractional-order models. In this section, our aim is to use a
new method called the FTOMM (see ref. [62, 63]) method
(fractional Taylor operational matrix method), to solve the
probability-based model of the SARS-CoV-2 virus (95) in
the Caputo settings.

8.1. Function Approximation and Operational Matrix. The
Taylor vector of the fractional order is given as [64]

Tnκ = 1, tκ, t2κ,⋯, tnκ
� �

, ð98Þ

where n ∈ℕ and κ > 0: Let Tnκ ⊂ S where S ∈ L2½0, 1�: For
any φ ∈M, since M = spanf1, tκ, t2κ,⋯, tnκg is a vector
space of finite dimension in S, thus φ possesses a unique best
apporoximation φ∗, that is,

∀bφ ∈M, φ − φ∗k k ≤ φ − bφk k: ð99Þ

Then, the function φ is approximated by the fractional-
order Taylor vector by

φ ≃ φ∗ = 〠
n

j=0
gjt

jκ =GTTnκ, ð100Þ

where GT = ½g0, g1,⋯, gm� are the unique coefficients.

Consider Fðt,wÞ as an operational matrix of ωth-integra-

tion with ðm + 1Þ2 dimension. Then, the ωth-R-L-integration
of the Taylor vector defined in equation (98) is

RLIω
0,tTnκ tð Þ = F t,ωð ÞTnk tð Þ: ð101Þ

By applying the ωth-R-L integral for Tnκ, it becomes

RLIω
0,t Tnκ tð Þð Þ = 1

Γ ω + 1ð Þ t
ω,

Γ κ + 1ð Þ
Γ κ + ω + 1ð Þ t

κ+ω,⋯,
Γ nκ + 1ð Þ

Γ nκ + ω + 1ð Þ t
nκ+ω

� 	
:

ð102Þ

Thus, (102) can be reformulated as

RLIω
0,t Tnκ tð Þð Þ = tωSωTnκ tð Þ, ð103Þ

where

Sω = diag
1

Γ ω + 1ð Þ ,
Γ κ + 1ð Þ

Γ κ + ω + 1ð Þ ,
Γ 2κ + 1ð Þ

Γ 2κ + ω + 1ð Þ ,⋯,
Γ nκ + 1ð Þ

Γ nκ + ω + 1ð Þ
� 	

:

ð104Þ

Set Φðt,ωÞ = tωSω. In this case, the fractional Taylor oper-
ational matrix of integration is reformulated by

F t,ωð Þ = diag Φ t,ωð Þ,Φ t,ωð Þ,⋯,Φ t,ωð Þ
h i

: ð105Þ

The product of two Taylor basis vectors is

RLIω
0,t Tnκ tð ÞTT

nκ tð Þ
 �
= tωPω ∗ Tnκ tð ÞTT

nκ tð Þ
 �
, ð106Þ

where

CDω
0,tS tð Þ =Θ − rP 1 tð ÞS tð Þ − rsP 2 tð ÞS tð Þ − b + b1ð ÞS tð Þ,

CDω
0,tP 1 tð Þ = p rP 1 tð ÞS tð Þ + rsP 2 tð ÞS tð Þ½ � − b1 + b2 + r1ð ÞP 1 tð Þ,

CDω
0,tP 2 tð Þ = 1 − pð Þ rP 1 tð ÞS tð Þ + rsP 2 tð ÞS tð Þ½ � + qr1P 1 tð Þ − b1 + b3 + r2ð ÞP 2 tð Þ,

CDω
0,tR tð Þ = r1 1 − qð ÞP 1 tð Þ + r2P 2 tð Þ + bS tð Þ − b1R tð Þ,

8>>>>>><>>>>>>:
ð95Þ
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Again, by utilizing RLIω
0,t on the matrix (108), we get

8.2. Application of FTOMM on the SARS-CoV-2 Model. In
this part, the suggested FTOMM method is utilized to the
model of SARS-CoV-2 virus given in (95).

We start by expanding CDω
0,tSðtÞ, CDω

0,tP 1ðtÞ,
CDω

0,tP 2ðtÞ, and CDω
0,tRðtÞ with the help of a fractional

Taylor basis vector as following:

CDω
0,tS tð Þ ≈ CTTnκ tð Þ,

CDω
0,tP 1 tð Þ ≈ KTTnκ tð Þ,

CDω
0,tP 2 tð Þ ≈ LTTnκ tð Þ,

CDω
0,tR tð Þ ≈NTTnκ tð Þ:

8>>>>>><>>>>>>:
ð110Þ

Next, operating the ωth-R-L integral on above equa-
tions and using initial values Sð0Þ,P 1ð0Þ,P 2ð0Þ, and R

ð0Þ, we get

S tð Þ ≈ CTF t,ωð ÞTnκ tð Þ + S 0ð Þ,
P 1 tð Þ ≈ KTF t,ωð ÞTnκ tð Þ +P 1 0ð Þ,
P 2 tð Þ ≈ LTF t,ωð ÞTnκ tð Þ +P 2 0ð Þ,
R tð Þ ≈NTF t,ωð ÞTnκ tð Þ +R 0ð Þ:

8>>>>>><>>>>>>:
ð111Þ

Substituting (110) and (111) into SARS-CoV-2 model
(95), we get

CTTnκ tð Þ =Θ − r KT F t,ωð ÞTnκ tð Þ + S1 0ð Þ
� �

CTF t,ωð ÞTnκ tð Þ + S 0ð Þ
� �h i

− rs KT F t,ωð ÞTnκ tð Þ +P 1 0ð Þ
� �

CTF t,ωð ÞTnκ tð Þ + S 0ð Þ
� �h i

− b + b1ð Þ CTF t,ωð ÞTnκ tð Þ + S 0ð Þ
� �

,

Pω =

1
Γ ω + 1ð Þ

Γ κ + 1ð Þ
Γ κ + ω + 1ð Þ ⋯

Γ nκ + 1ð Þ
Γ nκ + ω + 1ð Þ

Γ κ + 1ð Þ
Γ κ + ω + 1ð Þ

Γ 2κ + 1ð Þ
Γ 2κ + ω + 1ð Þ ⋯

Γ n + 1ð Þκ + 1ð Þ
Γ n + 1ð Þκ + ω + 1ð Þ

⋮ ⋮ ⋮ ⋮
Γ nκ + 1ð Þ

Γ κ + ω + 1ð Þ
Γ n + 1ð Þκ + 1ð Þ

Γ n + 1ð Þκ + ω + 1ð Þ ⋯
Γ 2nκ + 1ð Þ

Γ 2nκ + ω + 1ð Þ

2666666666664

3777777777775
, ð107Þ

Tnκ tð ÞTT
nκ tð Þ =

1 tω t2ω ⋯ tnω

tω t2ω t3ω ⋯ t n+1ð Þω

t2ω t3ω t4ω ⋯ t n+2ð Þω

⋮ ⋮ ⋮ ⋮ ⋮

tnω t n+1ð Þω t n+2ð Þω ⋯ t2nω

2666666664

3777777775
: ð108Þ

RLIω
0,t Tnκ tð ÞTT

nκ tð Þ
 �
=

1
Γ ω + 1ð Þ

Γ κ + 1ð Þ
Γ κ + ω + 1ð Þ t

ω ⋯
Γ nκ + 1ð Þ

Γ nκ + ω + 1ð Þ t
nω

Γ κ + 1ð Þ
Γ κ + ω + 1ð Þ t

ω Γ 2κ + 1ð Þ
Γ 2κ + ω + 1ð Þ t

2ω ⋯
Γ n + 1ð Þκ + 1ð Þ

Γ n + 1ð Þκ + ω + 1ð Þ t
n+1ð Þω

⋮ ⋮ ⋮ ⋮
Γ nκ + 1ð Þ

Γ κ + ω + 1ð Þ t
nω Γ n + 1ð Þκ + 1ð Þ

Γ n + 1ð Þκ + ω + 1ð Þ t
n+1ð Þω ⋯

Γ 2nκ + 1ð Þ
Γ 2nκ + ω + 1ð Þ t

2nω

2666666666664

3777777777775
: ð109Þ
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Figure 8: Continued.
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Figure 8: Comparisons between the ABM and FTOMM for the parametric values.
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KTTnκ tð Þ = pr KTF t,ωð ÞTnκ tð Þ +P 1 0ð Þ
� �

CTF t,ωð ÞTnκ tð Þ + S 0ð Þ
� �h i

+ prs KT F t,ωð ÞTnκ tð Þ +P 1 0ð Þ
� �

CTF t,ωð ÞTnκ tð Þ + S 0ð Þ
� �h i

− b1 + b2 + r1ð Þ KTF t,ωð ÞTnκ tð Þ +P 1 0ð Þ
� �

,

LTTnκ tð Þ = 1 − pð Þr KT F t,ωð ÞTnκ tð Þ +P 1 0ð Þ
� �h

� CTF t,ωð ÞTnκ tð Þ + S 0ð Þ
� �i
+ 1 − pð Þrs KTF t,ωð ÞTnκ tð Þ +P 1 0ð Þ

� �h
� CTF t,ωð ÞTnκ tð Þ + S 0ð Þ
� �

�

+ qr1ð Þ KTF t,ωð ÞTnκ tð Þ +P 1 0ð Þ
� �

− b1 + b3 + r2ð Þ LT F t,ωð ÞTnκ tð Þ +P 2 0ð Þ
� �

,

NTTnκ tð Þ = r1 1 − qð Þ KTF t,ωð ÞTnκ tð Þ +P 1 0ð Þ
� �

+ r2 LT F t,ωð ÞTnκ tð Þ +P 2 0ð Þ
� �

+ b CT F t,ωð ÞTnκ tð Þ + S 0ð Þ
� �

− b1 NTF t,ωð ÞTnκ tð Þ +R 0ð Þ
� �

:

ð112Þ

Now, by using above equations and collocation points
t j = j/n, where j = 0, 1,⋯n, we derive a system of 4n + 4
algebraic nonlinear equations with 4n + 4 unknown coeffi-
cients. This system is solved efficiently for the unknown
coefficient vectors CT , KT , LT , and NT by using the New-
ton method in MATLAB software.
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Figure 9: Absolute error comparisons between the ABM and FTOMM for the parametric values.
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As a final step, substituting the vectors of coefficients CT ,
KT , LT , and NT into (111), we obtain for SðtÞ, P 1ðtÞ, P 2ðtÞ,
and RðtÞ approximately.

8.3. Simulations Based on FTOMM Method and Comparison
with Adams-Bashforth Method. In this section, all graphical
results of the fractional SARS-CoV-2 model (95) by using
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Figure 10: SðtÞ by changing ω where m = 7.
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Figure 11: P 1ðtÞ by changing ω where m = 7.
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FTOMM and their comparison between ABM are illustrated
through Figures 8–14. To see the correctness and having a
comparison, we illustrate the graphical representation of
the presented model at several values of ω.

In Figure 8, we present a comparison of obtained solu-
tions by use of the ABM and FTOMM for the parametric
values assumed in subsection 7.2. From Figures 8(a)–8(d),
we can clearly conclude that the both acquired numerical
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Figure 12: P 2ðtÞ by changing ω where m = 7.
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Figure 13: RðtÞ by changing ω where m = 7.
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solutions of four state functions SðtÞ, P 1ðtÞ, P 2ðtÞ, and
RðtÞ by use of ABM and FTOMM are identical.

In Table 1, we present the solutions of four subclasses
SðtÞ, P 1ðtÞ, P 2ðtÞ, and RðtÞ obtained by use of the

Adams-Bashforth and fractional Taylor operational matrix
methods.

In Figure 9, we give the graphical illustration of the abso-
lute errors of four subclasses SðtÞ, P 1ðtÞ, P 2ðtÞ, and RðtÞ
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Figure 14: Comparisons between the ABM and FTOMM for the parametric values of S2.
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obtained by the Adams-Bashforth and fractional Taylor
operational matrix methods.

In this part, by using FTOMM, we simulate and discuss
the behavior of the model based on the parametric values of
the set S2 provided by [60]. From this source, we assume the
new parametric values to be Θ = 20, r = 0:079, s = 0:0001, b

= 0:9, b1 = 0:16, p = 0:29, b2 = 0:11, r1 = 0:45, q = 0:2, b3 =
0:8, and r2 = 0:9. Finally, the initial values for state functions
are the following:

S 0ð Þ = 0:5,

P 1 0ð Þ = 0:3,

P 2 0ð Þ = 0:2,

R 0ð Þ = 0:1:

ð113Þ

In Figures 10–13, we present the behaviors of solutions
of four state functions SðtÞ, P 1ðtÞ, P 2ðtÞ, andRðtÞ, respec-
tively, which are obtained by using FTOMM for some values
of ω = 1:00,0:90,0:80,0:70,0:60,0:50 where t ∈ ½0,150�.

From Figure 10, we can see the illustration of SðtÞ with
initial value Sð0Þ = 0:5 for several values of ω. It can be
observed from this graph that the order of fractional deriva-
tive has an effect on convergence of people of susceptible
category to stable case. Namely, at higher fractional orders,
it converges slowly to a stable case, while at lower fractional
order, this process is more quickly. About the density of S
ðtÞ, we can observe that by increasing the fractional order,
the density also increases. Also, we can clearly see that the
fractional orders are highly consistent with integer order
when using FTOMM.

From Figures 11–13, we can see the illustration of P 1ðtÞ,
P 2ðtÞ, and RðtÞ with P 1ð0Þ = 0:3, P 2ð0Þ = 0:2, and Rð0Þ
= 0:1, respectively, for some values of ω. It can be observed
from these graphs that at higher fractional orders, people of
asymptomatic, symptomatic, and recovered categories con-
verge slowly to a stable case, while at lower fractional order,
it is more quickly. Also, we observe that by increasing the
fractional orders, the densities of SðtÞ, P 1ðtÞ, P 2ðtÞ, and
RðtÞ increases too.

In Figure 14, we present the comparison of the obtained
solutions by use of the ABM and FTOMM for the paramet-
ric values of set S2. From Figures 14(a)–14(d), we can clearly
see that the both obtained approximate solutions of four
state functions SðtÞ, P 1ðtÞ, P 2ðtÞ, and RðtÞ by use of
ABM and FTOMM are behaving identical.

It is clear from all figures that both obtained solutions by
fractional Taylor operational matrix method and Adams-
Bashforth method are identical. We can conclude that frac-
tional Taylor operational matrix method gives almost the
same results as the results acquired by Adams-Bashforth
technique. Also, more accurate results can be obtained by
enhancing the value of m and κ. Due to the simplicity of
FTOMM, it is effective and has advantages for mathematical
modelling of dynamics of SARS-CoV-2 virus.

9. Conclusions

In this manuscript, a fractal-fractional epidemic probability-
based model of the SARS-CoV-2 virus with four compart-
ments including susceptible, asymptomatic, symptomatic,
and recovered was designed. By recalling a special group of
contractions, named ϕ-admissible ϕ-ψ-contractionas, we
proved the existence property for fixed points of a fractal-

Table 1: Compared approximate results of four state functions
obtained by ABM and FTOMM. (a) S, (b) P 1, (c) P 2, and (d) R).

(a)

t S ABMð Þ S FTOMMð Þ
0 0.50 0.50

25 266.9033 269.7917

50 129.1402 130.4819

75 114.4625 115.8542

100 115.6538 117.1644

125 115.6506 115.2917

150 115.6489 115.1839

(b)

t P 1 ABMð Þ P 1 FTOMMð Þ
0 0:30 0:30
25 2.6859 1.9753

50 54.1815 52.9918

75 53.1316 53.3214

100 52.6601 52.7443

125 52.6713 53.5863

150 52.6717 53.9160

(c)

t P 2 ABMð Þ P 2 FTOMMð Þ
0 0:20 0:20
25 1.9753 0.8732

50 10.7542 10.1061

75 9.2629 9.1954

100 9.2682 9.2501

125 9.2702 9.3729

150 9.2702 9.1423

(d)

t R ABMð Þ R FTOMMð Þ
0 0:10 0:10
25 150.9550 158.0875

50 270.5701 270.5721

75 271.7889 271.7783

100 269.6428 269.7108

125 269.2052 269.9315

150 269.0798 266.3295
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fractional operator which is the same soultion of the
mentioned system. Furthermore, other theoretical properties
like stable solutions and their uniqueness for each compart-
ments of the fractal-fractional model were established. We
derived numerical solutions via the Adams-Bashforth and
simulated them from several aspects such as variations of
fractal-fractional dimension orders. Further, we formulated
a Caputo type of the fractional model and compared its solu-
tions obtained by the FTOMM method, with the previous
ones of the fractal-fractional model. All simulations showed
similar and close outcomes. From all illustrations presented
in this work, we observed that the population of infected
people converge quickly to a stable case at higher fractal-
fractional orders and slowly to such a stable case at lower
fractal-fractional orders. Also, we can see that by increasing
the fractal-fractional orders, the density of susceptible popu-
lation also increases. Also, from Figure 3, we can see that the
probability of disease extinction increases with vaccination
rate. All the numerical results and calculations are obtained
with the help of MATLAB version R2019A. In the future,
we aim to compare the results of our methods in the frame-
work of other types of nonsingular kernels. Also, as a future
study, the techniques introduced in this study can be
modified to apply to other diseases and new variants of
SARS-CoV-2 for different compartments.
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This article discusses dynamics of the fractal double-chain deoxyribonucleic acid model. This structure contains two long elastic
homogeneous strands that serve as two polynucleotide chains of deoxyribonucleic acid molecules, bounded by an elastic
membrane indicating hydrogen bonds between the base pairs of two chains. The semi-inverse variational principle and
auxiliary equation method are employed to extricate soliton solutions. The collection of retrieved exact solutions includes
bright, dark, periodic, and other solitons. The constraint conditions emerge naturally which ensure the presence of these
solutions. Additionally, 2D and 3D graphs showing the impact of fractals on solutions are included. These plots use
appropriate parameter values. Furthermore, sensitivity analysis of the considered model is also acknowledged. The outcomes
reveal that these techniques are reliable, effective, and applicable to various biological systems.

1. Introduction

Deoxyribonucleic acid (DNA) is an interesting nonlinear
model of biological sciences [1, 2]. Since it is needed for pro-
tein-coding, inheritance, and genetic instruction manual for
life, it contains instructions for cell growth, reproduction,
and death of a human. DNA molecules are the foundation of
life so their dynamics are one of the interesting problems in
biophysics. Researchers have been studying this structure
during the last decades [3, 4]. The study of DNA mechanism
predicts the presence of significant nonlinear structures. It
has been established that localized waves are caused by nonlin-
earity and these waves are fascinating because they can trans-
mit power without causing power loss [5–7].

Nonlinear partial differential equations (NLPDEs) have
been considered for studying several nonlinear physical phe-
nomena. Many physicists and mathematicians have worked
hard to develop further precise alternatives to NLPDEs for a
better understanding of these processes. Therefore, exact solu-
tions of NLPDEs are essential for exploring physical explana-
tions and qualitative aspects of different mechanisms [8–18].
These solutions demonstrate the dynamics of several nonlin-
ear complex models symbolically and physically. Numerous
methods were implemented to attain exact and wave solutions
of the nonlinear governing model [19–26].

This paper introduces the fractal double-chain DNAmodel
to scrutinize the double-helix structure. Fractal calculus has
been a flourishing subject of biology, mathematics, and physics
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because it deals with the modeling of distinct nonlinear proce-
dures [27–34]. Since the fractal model covers many powerful
properties, which the traditional system fails to explain. The
field of biophysics greatly benefits from a unique class of soli-
tary wave solutions referred to as solitons of proposed prob-
lems [3]. Wave packets known as solitons propagate at a
constant pace and maintain their shape despite nonlinearities
and dispersion [35–43]. Semi-inverse scheme and auxiliary
equation method (AEM) are two effective techniques imple-
mented to derive a set of solitons in this manuscript.

The Ritz-like approach linked with the variational prin-
ciple termed as He’s semi-inverse variational method [44]
is applied to attain the bright solitons of fractal DNA model
which may aid biologists to comprehend its physical signifi-
cance. An effective and straightforward algebraic method for
finding soliton solutions is the semi-inverse scheme [45].
Many authors contributed to develop this technique to ana-
lyze fractal models in distinct scientific fields [33, 46, 47].
Another method adopted here is AEM that retrieves dark,
periodic, bright, and other shaped solitons. This reliable
strategy is employed to obtain dual-mode solutions of vari-
ous equations found in literature [48, 49]. It is the generali-
zation of many existing techniques. By using various values
of the parameters and fractal dimension, the nonlinear
dynamics of DNA strands can be addressed. The sensitivity
analysis assesses how different uncertainties affect the overall
level of uncertainty in a mathematical model. Specific
boundaries that are dependent on one or more parameters
have been applied using this technique.

The rest of the article is organize as follows: The governing
model is included in Section 2. In section 3, soliton solutions
are extracted along with geometrical analysis by employing
semi-inverse method. Section 4 comprises solitons obtained
via AEMwith graphs. Section 5 of the report discusses the find-
ings. Section 6 provides a sensitivity analysis of the suggested
system. The article’s conclusion is provided in Section 7.

2. Governing System

Consider the following two general nonlinear dynamical
equations which describe double-chain model of DNA:

uττ − β2
1uxx = σ1u + ξ1uv + η1u

3 + α1uv
2, ð1Þ

vττ − β2
2vxx = σ2v + ξ2u

2 + η2u
2v + α2v

3 + a, ð2Þ

where u is the difference between the top and bottom
strands’ longitudinal displacements, i.e., the deviations of the
bases from their equilibrium positions along the direction of
the phosphodiester bridge, which joins the two bases of the
same strands, v is the difference between the bottom and top
strands’ transverse displacements, i.e., the bases displacement
from its equilibrium point with the pathway of hydrogen bond
which joins two bases of base pair where

β1 = ±G
ν
, β2 = ±H

ν
, σ1 = −

2η
νbh

h −moð Þ, σ2 = −
2η
νb

, ξ1 = 2ξ2 =
2
ffiffiffi
2

p
ηmo

νbh2
,

η1 = η2 = −
2ηmo

νbh3
, α1 = α2 =

4ηmo

νbh3
, a =

ffiffiffi
2

p
η

νb
h −moð Þ,

ð3Þ

where H, b, G, and ν represent the tension density, cross-
sectional area, Young’s modulus, and the mass density of each
strand, h is the distance between the strands, while η is the
stiffness and mo is the membrane height in positive equilib-
rium. The difference between the longitudinal displacements
of the bottom and top strands is u in equation (1), as opposed
to v, which represents the difference between the transverse
displacements of the lower and higher strands.

Noq using a transformation:

v = eu + f , ð4Þ

where e and f are constants, to simplify Equation (1)
into the system of equations as follows:

uττ − β2
1uxx = u3 η1 + α1e

2� �
+ u2 2α1ef + ξ1eð Þ + u σ1 + f ξ1 + α1 f

2� �
,

ð5Þ

uττ − β2
2uxx = u3 η2 + α2e

2� �
+ u2 3α2ef +

ξ2
e
+ η2 f

e

� �

+ u σ2 + 3α2 f 2
� �

+ σ2 f
e

+ α2 f
3

e
+ a
e
:

ð6Þ

Comparing Equations (4) and (5), we infer that f = h/
ffiffiffi
2

p
and H =G. So, Equation (5) can be written as

uττ − β2
1uxx = Su3 + Tu2 +Vu, ð7Þ

where

S = ζ

h3
−2 + 4e2
� �

,

T = 6
ffiffiffi
2

p
eζ

h2
,

V = −2ζ
mo

+ 6ζ
h

� �
,

ζ = ηmo

νb
,

β1 =
G
ν
:

ð8Þ

3. Mathematical Analysis

The wave transformation uðx, τÞ = uðδÞ, δ = lx + κτ reduces
Equation (7) to the following ODE:

κ2 − l2β2
1

� �
u′′ − Su3 − Tu2 −Vu = 0, where κ2 − l2β2

1 ≠ 0:
ð9Þ
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According to [50, 51], a fractal DNAmodel can be written as

κ2 − l2β2
1

� � d
dδγ

du
dδγ

� �
− Su3 − Tu2 −Vu = 0, ð10Þ

where γ and du/dδγ are the fractal dimensional value and
derivative, respectively, stated as

du
dδγ

= Γ 1 + κð Þ lim
δ−δo⟶Δδ

u δð Þ − u δoð Þ
δ − δoð Þκ , Δδ ≠ 0: ð11Þ

The variational principle [44] can be used to produce the
following trial-functional:

J =
ð
Ldδ =

ð
K − Eð Þdδ: ð12Þ

The variational formulation of Equation (10) is given as

J =
ð∞
0

κ2 − l2β2
1

� � du
dδγ

� �2
+ Su3 + Tu2 +Vu

" #
dδγ, ð13Þ

where K = ðκ2 − l2β2
1Þ½du/dδγ�2 is the kinetic energy and

E = −Su3 − Tu2 −Vu is the potential energy.

L = κ2 − l2β2
1

� � du
dδγ

� �2
+ Su3 + Tu2 +Vu,

H = κ2 − l2β2
1

� � du
dδγ

� �2
− Su3 − Tu2 −Vu:

ð14Þ

The above equations are the Lagrangian and Hamiltonian.
Using the two scale transformation,

A = δγ: ð15Þ

Equation. (13) can be written as

J =
ð∞
0

κ2 − l2β2
1

� � du
dA

� �2
+ Su3 + Tu2 + Vu

" #
dA: ð16Þ

3.1. Soliton Solutions of Fractal Model.Using Ritz technique, one
can construct the solitary wave solution as

u = C sec h DAð Þ, ð17Þ

whereC andD are constants to be further calculated. Putting
Equation (17) into Equation (16), we have

J = C2

12D πCT + 6V + 2SC2� �
+ C2D

6 κ2 − l2β2
1

� �
: ð18Þ

Setting J stationary with respect to C and D, it results,

∂J
∂C

= C
12D 3πCT + 12V + 8SC2� �

+ CD
3 κ2 − l2β2

1
� �

, ð19Þ

∂J
∂D

= −
C2

12D2 πCT + 6V + 2SC2� �
+ C2

6 κ2 − l2β2
1

� �
:

ð20Þ
From Equations (19) and (20), we have

C = ±
−5πT +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25π2T2 − 1152SV

p� �
24S ,

D = ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5πT −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25π2T2 − 1152SV

p� �
πT − 288SV

288 l2β2
1 − κ2

� �
S

vuut
:

ð21Þ

Now, Equation (17) can be described as

u x, τð Þ = ±
−5πT +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25π2T2 − 1152SV

p� �
24S

sec h ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5πT −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25π2T2 − 1152SV

p� �
πT − 288SV

288 l2β2
1 − κ2

� �
S

vuut A

2
64

3
75:

ð22Þ

Inserting the value of u in Equation (4), then, we have

v x, τð Þ = ±e
−5πT +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25π2T2 − 1152SV

p� �
24S

sec h ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5πT −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25π2T2 − 1152SV

p� �
πT − 288SV

288 l2β2
1 − κ2

� �
S

vuut A

2
64

3
75 + f ,

ð23Þ

where A = ðlx + κτÞγ.
Additionally, we look another soliton solution in the

form:

u = P sec h4 QAð Þ, ð24Þ

where P and Q are constants to be further calculated.
Substituting Equation (24) in Equation (16), we have

J = P2

135135Q 16640PT + 30888V + 10752SP2� �
+ 128P2Q

315 κ2 − l2β2
1

� �
:

ð25Þ

Whenwe keep J stationary with respect to P andQ, it gives

∂J
∂P

= P
45045Q 16640PT + 20592V + 14336SP2� �

+ 256PQ
315 κ2 − l2β2

1
� �

,

ð26Þ

∂J
∂Q

= −
P2

135135Q2 16640PT + 30888V + 10752SP2� �
+ 128P2

315 κ2 − l2β2
1

� �
:

ð27Þ
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From Equations (26) and (27), we have

P = ±
−325T +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
105625T2 − 486486SV

p� �
504S ,

Q = ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10T 325T −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
105625T2 − 486486SV

p� �
− 18711SV

99792 l2β2
1 − κ2

� �
S

vuut
:

ð28Þ

Equation (24) becomes

u x, τð Þ = ±
−325T +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
105625T2 − 486486SV

p� �
504S

sec h4 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10T 325T −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
105625T2 − 486486SV

p� �
− 18711SV

99792 l2β2
1 − κ2

� �
S

vuut A

2
64

3
75:
ð29Þ

Plugging the value of u in Equation (4), we have

v x, τð Þ = ±e
−325T +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
105625T2 − 486486SV

p� �
504S

sec h4 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10T 325T −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
105625T2 − 486486SV

p� �
− 18711SV

99792 l2β2
1 − κ2

� �
S

vuut A

2
64

3
75 + f

ð30Þ

where A = ðlx + κτÞγ.

4. Illustration of the AEM

The following statement illustrates the general NLPDE
structure:

Q u, ut , ux, uut , utuxx, uutt ,⋯ð Þ = 0, ð31Þ

where Q is polynomial function of u and its derivatives
in relation to two independent variables t and x. Use the
single variable conversion δ = lx − κt to reduce Equation
(31) into ODE of the form:

R u, u′, u′′, uu′′,⋯
� �

= 0: ð32Þ

Here, R is a polynomial function with both linear and
nonlinear terms and the superscripts of u show its ordinary
derivative with respect to δ. The algorithm of AEM suggests
the initial solution of Equation (32) as

u δð Þ = 〠
M

i=0
diβ

iϕ δð Þ, ð33Þ

satisfying the auxiliary equation

ϕ′ δð Þ = 1
ln βð Þ aβ−ϕ δð Þ + c + bβϕ δð Þ

� �
, ð34Þ

where d0, d1, d2, …, dM are coefficients to be evaluated
such that dM ≠ 0. The value ofM is determined by balancing
the highest order derivative and nonlinear term involved in
Equation (9).

Now, putting Equation (33) into Equation (9) and per-
forming few steps of algebra yields a system of algebraic
equations in βϕðδÞ.

The family of solutions of Equation (34) can be obtained
as follows:

Family 1. When c2 − 4ab < 0 and b ≠ 0,

βϕ δð Þ = −c
2b +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ab − c2

p

2b tan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ab − c2

p

2 δ

 !
,

βϕ δð Þ = −c
2b −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ab − c2

p

2b cot
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ab − c2

p

2 δ

 !
:

ð35Þ

Family 2. When c2 − 4ab > 0 and b ≠ 0,

βϕ δð Þ = −c
2b −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − 4ab

p

2b tan h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − 4ab

p

2 δ

 !
,

βϕ δð Þ = −c
2b −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − 4ab

p

2b cot h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − 4ab

p

2 δ

 !
:

ð36Þ

Family 3. When c2 + 4a2 < 0 and b ≠ 0 and b = −a,

βϕ δð Þ = c
2a −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4a2 − c2

p

2a tan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4a2 − c2

p

2 δ

 !
,

βϕ δð Þ = c
2a +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4a2 − c2

p

2a cot
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4a2 − c2

p

2 δ

 !
:

ð37Þ

Family 4. When c2 + 4a2 < 0 and b ≠ 0 and b = −a,

βϕ δð Þ = c
2a +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 + c2

p

2a tan h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 + c2

p

2 δ

 !
,

βϕ δð Þ = c
2a +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 + c2

p

2a cot h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 + c2

p

2 δ

 !
:

ð38Þ

Family 5. When c2 − 4a2 < 0 and b = a,

βϕ δð Þ = −c
2a +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 − c2

p

2a tan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 − c2

p

2 δ

 !
,

βϕ δð Þ = −c
2a −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 − c2

p

2a cot
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2 − c2

p

2 δ

 !
:

ð39Þ
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Family 6. When c2 − 4a2 > 0 and b = a,

βϕ δð Þ = −c
2a −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4a2 + c2

p

2a tan h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4a2 + c2

p

2 δ

!
,

βϕ δð Þ = −c
2a −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4a2 + c2

p

2a cot h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4a2 + c2

p

2 δ

 !
:

ð40Þ

Family 7. When c2 = 4ab,

βϕ δð Þ = −
2 + cδ
2bδ : ð41Þ

Family 8. When ab < 0, c = 0 and b ≠ 0,

βϕ δð Þ = −
ffiffiffiffiffiffi
−a
b

r
tan h

ffiffiffiffiffiffiffiffi
−ba

p
δ

� �
,

βϕ δð Þ = −
ffiffiffiffiffiffi
−a
b

r
cot h

ffiffiffiffiffiffiffiffi
−ba

p
δ

� �
:

ð42Þ

Family 9. When c = 0 and a = −b,

βϕ δð Þ = 1 + e−2bδ

−1 + e−2bδ
: ð43Þ

Family 10. When a = b = 0,

βϕ δð Þ = cos h cδð Þ + sin h cδð Þ: ð44Þ

Family 11. When a = c = K and b = 0,

βϕ δð Þ = eKδ − 1: ð45Þ

Family 12. When b = c = K and a = 0,

βϕ δð Þ = eKδ

1 − eKδ
: ð46Þ

Family 13. When c = a + b,

βϕ δð Þ = −
1 − ae a−bð Þδ

1 − be a−bð Þδ : ð47Þ

Family 14. When c = −ða + bÞ,

βϕ δð Þ = a − e a−bð Þδ

b − e a−bð Þδ : ð48Þ

Family 15. When a = 0,

βϕ δð Þ = cecδ

1 − becδ
: ð49Þ

Family 16. When c = a = b ≠ 0,

βϕ δð Þ = 1
2

ffiffiffi
3

p
tan

ffiffiffi
3

p

2 aδ

 !
− 1

" #
: ð50Þ

Family 17. When a = b and c = 0,

βϕ δð Þ = tan aδð Þ: ð51Þ

Family 18. When b = 0,

βϕ δð Þ = ecδ −
m
n
: ð52Þ
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Figure 1: We consider κ = 2, l = 1, β1 = 1, S = −1, T = 2, V = 1, and γ = 0:5,0:7,0:9 for the solution described by Equation (22). (a) The 3D
sketch of juj2 taking γ = 0:5. (b) 2D-plot of juj2 with three distinct γ values.
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4.1. Application of AEM. The balancing principle employed
to Equation (9) yields the value of index M = 1. Hence,
Equation (33) takes the form:

u δð Þ = d0 + d1β
ϕ δð Þ: ð53Þ

Now, invoking Equation (53) into Equation (9) gives a

system of equations which is further evaluated via Maple,
it generates

d0 =
3V qΘ − 1ð Þ

2T , d1 =
3bVΘ
T

, S = 2T2

9V , l

= −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4abκ2 − c2κ2ð Þ/Θp

−V
β1

,
ð54Þ
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Figure 2: We suggest κ = 2, l = 1, β1 = 1, S = −1, T = 2, V = 1, and γ = 0:5,0:7,0:9 for the solution obtained in Equation (29). (a) The 3D-plot
of juj2 with γ = 0:7. (b) The 2D-plot of juj2 with distinct values of γ.
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Figure 3: We suggest κ = −1, β1 = 1, T = 2, V = 1, c = 3, a = 1, b = 1, and γ = 0:5,0:7,0:9. for the solution u1,1 . (a) The 3D graph of u1,1ðx, tÞ
with γ = 0:3. (b) The 2D graph of u1,1ðx, tÞ with distinct values of γ.
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where

Θ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−1
4ab − c2

r
: ð55Þ

Insertion of Equation (54) into Equation (53) results to

u δð Þ = 3V cΘ − 1ð Þ
2T + 3bVΘ

T
βϕ δð Þ: ð56Þ

By substituting the solutions specified by Equation (34)

into Equation (58), the solutions retrieved are
For Family 1, when c2 − 4ab < 0 and b ≠ 0,

u1,1 x, tð Þ = 3V cΘ − 1ð Þ
2T + 3VΘ

T
−c
2 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ab − c2

p
tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ab − c2

p

2 δγ
 !" #

,

ð57Þ
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Figure 4: We take κ = −1, β1 = 1, T = 2, V = 1, c = 3, a = 1, b = 1, and γ = 0:5,0:7,0:9. for the solution ju3,1j. (a) The 3D graph of u3,1ðx, tÞ
with γ = 0:3. (b) The 2D graph of u3,1ðx, tÞ with distinct values of γ.
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Figure 5: We take κ = −1, β1 = 1, T = 2, V = 1, c = 3, a = 1, b = 1, and γ = 0:5,0:7,0:9 for the solution ju3,2j. (a) The 3D graph of u3,2ðx, tÞ with
γ = 0:3. (b) The 2D graph of u3,2ðx, tÞ with distinct values of γ.
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Figure 6: We take κ = −1, β1 = 1, T = 2, V = 1, c = 3, a = 1, b = 1, and γ = 0:5,0:7,0:9 for the solution ju5,1j. (a) The 3D graph of u5,1ðx, tÞ with
γ = 0:3. (b) The 2D graph of u5,1ðx, tÞ with distinct values of γ.
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Figure 10: We take κ = −1, β1 = 1, T = 2, V = 1, c = 3, a = 1, b = 1, and γ = 0:5,0:7,0:9 for the solution ju8,2j. (a) The 3D graph of u8,2ðx, tÞ
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For Family 5, when c2 − 4a2 < 0 and b = a,
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For Family 7, when c2 = 4ab,
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5. Results and Discussion

This section covers the graphical interpretation of the results
and the impact of the fractal parameter on them. Two power-
ful integration approaches, namely, semi-inverse scheme and
AEM are used to extract soliton solutions of governing model.
It has been established that the approaches currently provided
for the double-chain DNA model, which were utilized to cre-
ate closed-form exact results, are novel and distinct from those
currently in use. The innovative solitonic solution structure
and the new equations that yielded distinct types of solutions
are the observable characteristics for finding solutions from
the method outlined. Graphics that elaborate the various novel
exact solitons in the forms of dynamics and nonlinear waves
are presented for a physical description of the solutions that
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have been achieved. The semi-inverse principle offers bright
soliton solutions Equations (22), (23), (29), and (30) of the
aforesaid system. The physical significance of these solitons
is shown in terms of modulus of uðx, tÞ by assigning particular
values of free parameters. Equations (23) and (30) show the
same graphical behavior with just translation given in Equa-
tion (4) as in the figures. In Figures 1 and 2, these solitons in
the form of 3D plots for fractal dimension value γ = 0:8 and
2D graphs for γ = 0:5,0:7,0:9 are provided. Dual-wave peri-
odic, dark, bright solitons are raised by executing AEM. The
dynamics of DNA strands uðx, tÞ and vðx, tÞ are presented
in Figures 3–12. 3D sketches for fractal value γ = 0:3 and 2D
graphics for γ = 0:5,0:7,0:9 are provided. The fractal impact
is displayed by the irregularity in the curves of solutions. A
few representative solutions are graphically illustrated to con-
sider the appropriate connotation of dual-wave behaviors of
the DNA system. The propagation of solitons and collisions
of dual-mode pulses are examined using graphs. It is impor-
tant to note that the proposed schemes may be used to gener-
ate soliton solutions for any NLPDE.

6. Sensitivity Analysis

The sensitive analysis of the formulated soliton solutions is
demonstrated in this section. There are several research publi-
cations on the methods and applications of sensitivity analysis
of parameter uncertainty to mathematical problems. The goal
of the study is to identify and classify the different types of
uncertainty that can affect how well a mathematical equation
or framework performs in relation to its inputs. Results are
presented based on various parametric values, and sensitivity
is investigated by taking into account how a little change in
input can significantly alter output. A detailed analysis of
Equation (9) is introduced in Figures 13 and 14.

7. Conclusion

In this manuscript, semi-inverse method and AEM have been
successfully applied to the double-chain DNA model that is
one of the interesting models of current biophysics since it is
related to an organism’s life. It is likely that the well-known
cubic nonlinear Klein-Gordon equation is the linearly reduced
model to (1). The fractal DNA system has a high influence
because it is used to describe the nonlinear dynamics of
DNA molecules. The dark, periodic, bright, and other soliton
solutions are derived which may help biologists for physical
simulation of suggested equations. It should be highlighted
that our results are novel and different from those of earlier
investigations [3, 9]. The semi-inverse scheme is a fascinating
integration tool to deduce variational principles for various
differential models, whereas AEM is compelling to derive a
family of dual-wave solitons of any NLPDE. The relevant
choices of parameters enable us to discuss fractal behavior of
the system. Also, the nature of attained solutions is reviewed
by their 3D and 2D graphics. By using various initial condi-
tions, the system is subjected to sensitivity analysis, which is
then visualized using graphs. The acquired effects might help
spark original suggestions for future biological applications.
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The aim of this paper is to derive oscillation criteria of the following fourth-order differential equation with delay term
ðrðxÞðz ′′′ðxÞÞγÞ′ +∑n

i=1qiðxÞf ðzðηiðxÞÞÞ = 0, under the assumption
Ð∞
x0
r−1/γðsÞds =∞: The results are based on comparison with

the oscillatory behaviour of second-order delay equations and the generalised Riccati transformation. Not only do the provided
theorems provide an entirely new technique but also they vastly improve on a number of previously published conclusions.
We give three examples to illustrate our findings.

1. Introduction

Higher-order neutral differential equations have recently
been recognized as being sufficient to describe a variety of
real applications [1–4]. As a result, many researchers have
studied the qualitative behaviour of solutions of these equa-
tions (see [5–8]). The research of oscillation and oscillatory
behaviour of these equations, which has been investigated
using multiple approaches and techniques, has received spe-
cial attention (see [9–11]). The attempt to improve the work
and obtain a generalised platform that covers all special
cases inspires the investigation of fourth- and higher-order
equations.

In this work, we are concerned with oscillation of fourth-
order delay differential equations of the form

r xð Þ z′′′ xð Þ
� �γ� �

′ + 〠
n

i=1
qi xð Þf z ηi xð Þð Þð Þ = 0, ð1Þ

where x ≥ x0. Throughout this work, we suppose the
following:

(i) r ∈ C1ð½x0,∞Þ, RÞ and γ is a quotient of odd positive
integers

(ii) The following condition holds:

ð∞
x0

1
r1/γ sð Þ ds =∞, ð2Þ

for rðxÞ > 0, r′ðxÞ > 0, and

(iii) qi, ηi ∈ Cð½x0,∞Þ, RÞ, qiðxÞ ≥ 0, ηiðxÞ ≤ x, limx⟶∞ηi
ðxÞ =∞ (i = 1, 2,⋯), and f ∈ CðR, RÞ such that

f xð Þ
xγ

≥ ℓ > 0, for x ≠ 0: ð3Þ

By a solution of (1), we mean a function z ∈ C3½xz ,∞Þ,
xz ≥ x0, that has the property rðxÞðz′′′ðxÞÞγ ∈ C1½xz ,∞Þ and
fulfills (1) on ½xz ,∞Þ. If a solution of (1) has arbitrarily large
zeros on ½xz ,∞Þ, then it is considered oscillatory; otherwise,
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it is called nonoscillatory. Equation (1) is said to be oscilla-
tory if all its solutions are oscillatory.

Next, we give some previous findings in the literature
that are relevant to the present work. Grace [12] has studied
the equation

r xð Þz n−vð Þ xð Þ
� � vð Þ

+ q xð Þf z g xð Þ½ �ð Þ = 0, ð4Þ

in addition to Agarwal et al. [13] and Xu and Xia [14]
who have studied the equation

z n−1ð Þ xð Þ z n−1ð Þ xð Þ
��� ���γ−1� �

′ + f x, z η xð Þð Þð Þ = 0, ð5Þ

subject to condition (2). Zhang et al. [15] obtained oscil-
latory criteria of the equation

r xð Þ z′′′ xð Þ
� �γ� �

′ + q xð Þzγ η xð Þð Þ = 0, ð6Þ

with the condition

ð∞
x0

1
r1/γ uð Þ du <∞: ð7Þ

Baculikova et al. [16] used the comparison theory to
prove that if

y′ xð Þ + q xð Þf δηn−1 xð Þ
n − 1ð Þ!r1/γ η xð Þð Þ

� �
f y1/γ η xð Þð Þ� �

= 0 ð8Þ

is oscillatory, then

r xð Þ z n−1ð Þ xð Þ
� �γ� �

′ + q xð Þf z η xð Þð Þð Þ = 0 ð9Þ

is oscillatory for even n. Grace et al. [7] presented oscil-
lation criteria for fourth-order delay differential equations of
the form

r3 r2 r1z′
� �

′
� �

′
� �

′ xð Þ + q xð Þz η xð Þð Þ = 0, ð10Þ

under the assumption

ð∞
x0

dt
ri xð Þ <∞, i = 1, 2, 3: ð11Þ

Using the Riccati transformation, an oscillation criterion
for fourth-order neutral delay differential equation of the
form

r xð Þ z xð Þ + p xð Þz η xð Þð Þð Þ½ �′′′
� �αh i

′ +
ðb
a
q x, ξð Þf z g x, ξð Þð Þð Þ dξ = 0

ð12Þ

was obtained by Chatzarakis et al. [17]. By using the
technique of the Riccati transformation and the theory of

comparison with first-order delay equations, Bazighifan
and Abdeljawad [18] established some new oscillation cri-
teria for fourth-order advanced differential equations with
p-Laplacian-like operator of the form

b xð Þ z′′′ xð Þ�� ��p−2z′′′ xð Þ
� �

′ + 〠
j

i=1
qi xð Þg z ηi xð Þð Þð Þ = 0: ð13Þ

Very recently, Bazighifan et al. [19] established new cri-
teria for the oscillatory behaviour of the following fourth-
order differential equations with middle term

r xð Þ z′′′ xð Þ�� ��p1−2z′′′ xð Þ
� �

′ + σ xð Þ z′′′ xð Þ�� ��p1−2z′′′ xð Þ + q xð Þ z τ xð Þð Þj jp2−2z τ xð Þð Þ = 0,

ð14Þ

by the comparison technique and employing the Riccati
transformation under the condition

ð∞
x0

1
r sð Þ exp −

ðs
x0

σ ηð Þ
r ηð Þ dη

 !" #1/p1−1
ds =∞: ð15Þ

For convenience, in the present work, we denote

δ xð Þ =
ð∞
x

1
r1/γ sð Þ ds,

ψ xð Þ = π xð Þ 〠
n

i=1
ℓqi xð Þ η3i xð Þ

x3

� �γ

+ μx2 − 2γ
2r1/γ xð Þδγ+1 xð Þ

 !
,

φ xð Þ = π′ xð Þ
π xð Þ + γ + 1ð Þμx2

2r1/γ xð Þδ xð Þ ,

φ∗ xð Þ = τ′ xð Þ
τ xð Þ + 2

δ xð Þ ,

ψ∗ = τ xð Þ
ð∞
x

ℓ
r xð Þ

ð∞
x
〠
n

i=1
qi sð Þ

ηγi sð Þ
sγ

ds
 !1/γ

dx + 1 − r−1/γ xð Þ
δ2 xð Þ

 !
,

ð16Þ

where π, τ ∈ C1ððx0,∞Þ, ð0,∞ÞÞ. The generalised Riccati
transformation is defined as

ω xð Þ≔ π xð Þ
r xð Þ z′′′

� �γ
xð Þ

zγ xð Þ + 1
δγ xð Þ

0
@

1
A, ð17Þ

ϑ xð Þ≔ τ xð Þ z′ xð Þ
z xð Þ + 1

δ xð Þ

 !
: ð18Þ

We remark that in the study of the asymptotic behaviour
of the positive solutions of (1), there are only two cases:

Case 1. zðjÞðxÞ > 0 for j = 1, 2, 3,

Case 2. zðjÞðxÞ > 0 for j = 1, 3 and z′′ðxÞ < 0:
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In this work, using the Riccati approach and a compari-
son with a second-order equation, we shall obtain oscillation
criteria for (1).

2. Some Significant Auxiliary Lemmas

The following lemmas serve as a basis for our findings.

Lemma 1 (see [20]). Let α be a ratio of two odd numbers;
H > 0 and K are constants. Then,

P α+1ð Þ/α − P −Qð Þ α+1ð Þ/α ≤
P
α
Q1/α +Q1/αP −

1
α
Q 1+αð Þ/α, PQ ≥ 0, α ≥ 1,

αα

α + 1ð Þα+1
Kα+1

Hα ≥ Km −Hm α+1ð Þ/α, H > 0:

ð19Þ

Lemma 2 (see [17]). Let f ðjÞÞ > 0 and f ðn+1Þ < 0 for all j = 0
, 1,⋯, n. Then,

n!
xn

f xð Þ ≥ n − 1ð Þ!
xn−1

d
dx

f xð Þ: ð20Þ

Lemma 3 (see [21]). The equation

a xð Þ m′ xð Þγ
� �� �

′ + q xð Þmγ xð Þ = 0, ð21Þ

where a ∈ C½x0,∞Þ, aðxÞ > 0, and qðxÞ > 0, is nonoscillatory if
and only if there exist x ≥ x0 and σ ∈ C1½x,∞Þ such that

σ′ xð Þ + γ

r1/γ xð Þσ
1+1/γ xð Þ + q xð Þ ≤ 0, ð22Þ

for x ≥ x0.

Lemma 4 (see [22]). Suppose that h ∈ Cnð½x0,∞Þ, ð0,∞ÞÞ;
then,

h n−1ð Þ xð Þh nð Þ xð Þ ≤ 0, ð23Þ

for every λ ∈ ð0, 1Þ and x ≥ xλ.

3. Oscillation Criteria

In this section, we shall obtain some oscillation criteria for
equation (1).

Lemma 5. Suppose that z is a solution of (1) such that z > 0
and zðjÞ > 0 for all j = 1, 2, 3. If we have the function ω ∈ C1½
x,∞Þ defined in (17), where π ∈ C1ð½x0,∞Þ, ð0,∞ÞÞ, then

ω′ xð Þ ≤ −ψ xð Þ + φ xð Þω xð Þ − γμx2

2 r xð Þπ xð Þð Þ1/γ ω
γ+1ð Þ/γ xð Þ,

ð24Þ

for all x > x1, where x1 is large enough.

Proof. Let z be a solution of (1) where z > 0 and zðjÞðxÞ > 0
for all j = 1, 2, 3. Thus, from Lemma 4, we get

z′ xð Þ ≥ μ

2 x
2z′′′ xð Þ, ð25Þ

for all μ ∈ ð0, 1Þ and for every large x. From (17), we have
that ωðxÞ > 0 for x ≥ x1, and

ω′ xð Þ = π′ xð Þ
r xð Þ z′′′ xð Þ

� �γ
xð Þ

zγ xð Þ + 1
δγ xð Þ

0
@

1
A + π xð Þ

r xð Þ z′′′ xð Þ
� �γ� �

′
zγ xð Þ

− γπ xð Þ
zγ−1 xð Þz′ xð Þr xð Þ z′′′ xð Þ

� �γ
z2γ xð Þ + γπ xð Þ

r1/γ xð Þδγ+1 xð Þ
:

ð26Þ

Using (25) and (17), we acquire

ω′ xð Þ ≤ π′ xð Þ
π xð Þ ω xð Þ + π xð Þ

r xð Þ z′′′ xð Þ
� �γ� �

′
zγ xð Þ

− γπ xð Þ μ2 x
2
r xð Þ z′′′ xð Þ

� �γ+1
zγ+1 xð Þ + γπ xð Þ

r1/γ xð Þδγ+1 xð Þ

≤
π′ xð Þ
π xð Þ ω xð Þ + π xð Þ

r xð Þ z′′′ xð Þ
� �γ� �

′
zγ xð Þ

− γπ xð Þ μ2 x
2r xð Þ ω xð Þ

π xð Þr xð Þ −
1

r xð Þδγ xð Þ
� � γ+1ð Þ/γ

+ γπ xð Þ
r1/γ xð Þδγ+1 xð Þ

:

ð27Þ

Letting P = ωðxÞ/ðπðxÞrðxÞÞ, Q = 1/ðrðxÞδγðxÞÞ, and α
= γ and by using Lemma 1, we get

ω xð Þ
π xð Þr xð Þ −

1
r xð Þδγ xð Þ

� � γ+1ð Þ/γ

≥
ω xð Þ

π xð Þr xð Þ
� � γ+1ð Þ/γ

−
1

γr1/γ xð Þδ xð Þ γ + 1ð Þ ω xð Þ
π xð Þr xð Þ −

1
r xð Þδγ xð Þ

� �
:

ð28Þ

From Lemma 2, we obtain zðxÞ ≥ ðx/3Þz′ðxÞ, and hence,

z ηi xð Þð Þ
z xð Þ ≥

η3i xð Þ
x3

: ð29Þ

From (1), (27), and (28), we obtain

ω′ xð Þ ≤ π′ xð Þ
π xð Þ ω xð Þ − ℓπ xð Þ〠

n

i=1
qi xð Þ η3i xð Þ

x3

� �γ

− γπ xð Þ μ2 x
2r xð Þ ω xð Þ

π xð Þr xð Þ
� � γ+1ð Þ/γ

− γπ xð Þ μ2 x
2r xð Þ −1

γr1/γ xð Þδ xð Þ γ + 1ð Þ ω xð Þ
π xð Þr xð Þ −

1
r xð Þδγ xð Þ

� �� �

+ γπ xð Þ
r1/γ xð Þδγ+1 xð Þ :

ð30Þ
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This implies that

ω′ xð Þ ≤ π′ xð Þ
π xð Þ + γ + 1ð Þμx2

2r1/γ xð Þδ xð Þ

 !
ω xð Þ

−
γμx2

2r1/γ xð Þπ1/γ xð Þω
γ+1ð Þ/γ xð Þ

− π xð Þ 〠
n

i=1
ℓqi xð Þ η3i xð Þ

x3

� �γ

+ μx2 − 2γ
2r1/γ xð Þδγ+1 xð Þ

 !
:

ð31Þ

Thus,

ω′ xð Þ ≤ −ψ xð Þ + φ xð Þω xð Þ − γμx2

2 r xð Þπ xð Þð Þ1/γ ω
γ+1ð Þ/γ xð Þ:

ð32Þ

The proof is completed.

Lemma 6. Let z be a solution of (1) such that z > 0 and zðjÞ

ðxÞ > 0 for j = 1, 3 and z′′ðxÞ < 0. If the function ϑ ∈ C1½x,∞
Þ is defined in (18) such that τ ∈ C1ððx0,∞Þ, ð0,∞ÞÞ, then

ϑ′ xð Þ ≤ φ∗ xð Þϑ xð Þ − ψ∗ xð Þ − 1
τ xð Þ ϑ

2 xð Þ, ð33Þ

for all x > x1, where x1 is large enough.

Proof. Let z be a solution of (1) where z > 0 and zðjÞðxÞ > 0
for j = 1, 3 and z′′ðxÞ < 0. From Lemma 2, we have that zð
xÞ ≥ xz′ðxÞ. Integrating this inequality from ηðxÞ to x, we
obtain

z ηi xð Þð Þ ≥ ηi xð Þ
x

z xð Þ: ð34Þ

Hence, from (3) we have

f z ηi xð Þð Þð Þ ≥ ℓ
η
γ
i xð Þ
xγ

zγ xð Þ: ð35Þ

By integrating (1) from x to u and since z′ðxÞ > 0, we get

r uð Þ z′′′ uð Þ
� �γ

− r xð Þ z′′′ xð Þ
� �γ

=

−
ðu
x
〠
n

i=1
qi sð Þf z ηi sð Þð Þð Þds ≤ −ℓzγ xð Þ

ðu
x
〠
n

i=1
qi sð Þ

η
γ
i sð Þ
sγ

ds:

ð36Þ

Now letting u⟶∞ yields

r xð Þ z′′′ xð Þ
� �γ

≥ ℓzγ xð Þ
ð∞
x
〠
n

i=1
qi sð Þ

η
γ
i sð Þ
sγ

ds, ð37Þ

and so

z′′′ xð Þ ≥ z xð Þ ℓ
r xð Þ

ð∞
x
〠
n

i=1
qi sð Þ

ηγi sð Þ
sγ

ds

 !1/γ

: ð38Þ

Integrating this from x to ∞ gives

z′′ xð Þ ≤ −z xð Þ
ð∞
x

ℓ
r xð Þ

ð∞
x
〠
n

i=1
qi sð Þ

η
γ
i sð Þ
sγ

ds
 !1/γ

dx: ð39Þ

From (18), we have that ϑðxÞ > 0 for x ≥ x1 and by differ-
entiating, we get

ϑ′ xð Þ = τ′ xð Þ
τ xð Þ ϑ xð Þ + τ xð Þ z′′ xð Þ

z xð Þ − τ xð Þ ϑ xð Þ
τ xð Þ −

1
δ xð Þ

� �2
+ τ xð Þ
r1/r xð Þδ2 xð Þ

:

ð40Þ

Now, using Lemma 1 with P = ϑðxÞ/τðxÞ, Q = 1/δðxÞ,
and α = 1 yields

θ xð Þ
τ xð Þ −

1
δ xð Þ

� �2
≥

θ xð Þ
τ xð Þ
� �2

−
1

δ xð Þ
2ϑ xð Þ
τ xð Þ −

1
δ xð Þ

� �
:

ð41Þ

From (1), (40), and (41), we have the following:

ϑ′ xð Þ ≤ τ′ xð Þ
τ xð Þ ϑ xð Þ − τ xð Þ

ð∞
x

ℓ
r xð Þ

ð∞
x
〠
n

i=1
qi sð Þ

ηγi sð Þ
sγ

ds
 !1/γ

dx

− τ xð Þ ϑ xð Þ
τ xð Þ
� �2

−
1

δ xð Þ
2ϑ xð Þ
τ xð Þ −

1
δ xð Þ

� � !

+ τ xð Þ
r1/γ xð Þδ2 xð Þ

:

ð42Þ

This implies that

ϑ′ xð Þ ≤ τ′ xð Þ
τ xð Þ + 2

δ xð Þ

 !
ϑ xð Þ − 1

τ xð Þ ϑ
2 xð Þ

− τ xð Þ
ð∞
x

ℓ
r xð Þ

ð∞
x
〠
n

i=1
qi sð Þ

η
γ
i sð Þ
sγ

ds
 !1/γ

dx + 1 − r−1/γ xð Þ
δ2 xð Þ

 !
:

ð43Þ

Thus,

ϑ′ xð Þ ≤ φ∗ xð Þϑ xð Þ − ψ∗ xð Þ − 1
τ xð Þ ϑ

2 xð Þ: ð44Þ

The proof is completed.
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Lemma 7. Let z be a solution of (1) with z > 0. If π ∈ Cðx0,∞Þ
such that

ð∞
x0

ψ sð Þ − 2
μs2

� �γ r sð Þπ sð Þ φ sð Þð Þγ+1
γ + 1ð Þγ+1

 !
ds =∞, ð45Þ

for some μ ∈ ð0, 1Þ, then z does not fulfill Case 1.

Proof. Let z be a solution of (1) such that z > 0. From Lemma
5, we obtain that (24) holds. Using Lemma 1 with

K = φ xð Þ,H = γμx2

2 r xð Þπ xð Þð Þ1/γ� � , ð46Þ

and m = ω, we get

ω′ xð Þ ≤ −ψ xð Þ + 2
μx2

� �γ r xð Þπ xð Þ φ xð Þð Þγ+1
γ + 1ð Þγ+1 : ð47Þ

Now, integrating from x1 to x yields

ð∞
x1

ψ sð Þ − 2
μs2

� �γ r sð Þπ sð Þ φ sð Þð Þγ+1
γ + 1ð Þγ+1

 !
ds ≤ ω x1ð Þ, ð48Þ

which contradicts (45). So, the proof is complete.

Lemma 8. Let z be a solution of (1) with z > 0 and zðjÞðxÞ > 0
for j = 1, 3 and z′′ðxÞ < 0. If τ ∈ Cð½x0,∞ÞÞ such that

ð∞
x0

ψ∗ sð Þ − 1
4
τ sð Þ φ∗ sð Þð Þ2

� �
ds =∞, ð49Þ

then z does not fulfill Case 2.

Proof. Let z be a solution of (1) such that z > 0. From Lemma
6, we get that (33) holds. Using Lemma 1 with

H = φ∗ xð Þ, K = 1
τ xð Þ , γ = 1,m = ϑ, ð50Þ

we obtain

ω′ xð Þ ≤ −ψ∗ xð Þ + 1
4 τ xð Þ φ∗ xð Þð Þ2: ð51Þ

Integrating from x1 to x gives

ð∞
x1

ψ∗ sð Þ − 1
4 τ sð Þ φ∗ sð Þð Þ2

� �
ds ≤ ω x1ð Þ, ð52Þ

which contradicts (49). This completes the proof.

Theorem 9. Let π, τ ∈ C½x0,∞Þ such that (45) and (49) hold
for some μ ∈ ð0, 1Þ. Then, equation (1) is oscillatory.

Proof. The proof is very similar to the proofs of Lemmas 7
and 8.

Now, by using the comparison method, we develop addi-
tional oscillation results for (1) in the following theorem:

Theorem 10. Let (2) hold and assume that

r xð Þ
x2γ

z′ xð Þ
� �γ	 


′ + ψ xð Þzγ xð Þ = 0, ð53Þ

z′′ xð Þ + z xð Þ
ð∞
x

ℓ
r xð Þ

ð∞
x
〠
n

i=1
qi sð Þ

η
γ
i sð Þ
sγ

ds

 !1/γ

dx = 0,

ð54Þ

are both oscillatory; then, (1) is oscillatory.

Proof. Assume the contrary that (1) has a positive solution z,
and by virtue of Lemma 3 and if we set πðxÞ = 1 in (24), then
we get

ω′ xð Þ + γμx2

2r1/γ xð Þω
γ+1ð Þ/γ + ψ xð Þ ≤ 0: ð55Þ

Hence, we have that (53) is nonoscillatory, which is a
contradiction. If we set τðxÞ = 1 in (33), then we obtain

ϑ′ xð Þ + ψ∗ xð Þ + ϑ2 xð Þ ≤ 0: ð56Þ

Thus, equation (54) is nonoscillatory, which is a contra-
diction. The proof is now complete.

It is well known (see Řehák [23])) that if

ð∞
x0

1
r xð Þ dx =∞, lim

x⟶∞
inf

ðx
x0

1
r sð Þ ds

 !ð∞
x
q sð Þds > 1

4 ,

ð57Þ

then equation (21) with γ = 1 is oscillatory.

Theorem 11. Let (2) hold. Assume that

ð∞
x0

x2

r xð Þ dx =∞, ð58Þ

and

lim
x⟶∞

inf
ðx
x0

s2

r sð Þ ds
 !ð∞

x
ψ sð Þds > 1

2λ1
, ð59Þ
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for some constant λ1 ∈ ð0, 1Þ and

lim
x⟶∞

inf
ð∞
x

ð∞
x

ℓ
r xð Þ

ð∞
x
〠
n

i=1
qi sð Þ

η
γ
i sð Þ
sγ

ds

 !
dx

 !
ds > 1

4
,

ð60Þ

then every solution of (1) is oscillatory.
The proof is obvious.

4. Examples

In this section, we provide some examples to prove that the
results of Section 3 are valid.

Example 1. Consider

z 4ð Þ xð Þ + q0 − x2

x4
+ 1
x2

� �
z xð Þ = 0,  x ≥ 1, ð61Þ

where q0 > 0.
Let γ = 1, rðxÞ = 1, qðxÞ = ððq0 − x2Þ/x4 + ð1/x2ÞÞ = q0/x,

and ηðxÞ = x.
Hence, we have

δ x0ð Þ =∞,ψ xð Þ = q0
x
, φ xð Þ = 3

x
, φ∗ xð Þ = 1

x
, ψ∗ xð Þ = q0

6x :

ð62Þ

If we set πðxÞ = x3, τðxÞ = x, and ℓ = 1, then condition
(45) becomes

ð∞
x0

ψ sð Þ − 2
μs2

� �γ r sð Þπ sð Þ φ sð Þð Þγ+1
γ + 1ð Þγ+1

 !
ds

=
ð∞
x0

q0
s
−

9
2μs

� �
ds = q0 −

9
2μ

� �ð∞
x0

1
s
ds

=∞,  if q0 >
9
2μ :

ð63Þ

Therefore, from Lemma 7, if q0 > 9/2μ, then (61) has no
positive solution z satisfying z′′ðxÞ > 0. Also, condition (49)
becomes

ð∞
x0

ψ∗ sð Þ − 1
4 τ sð Þ φ∗ sð Þð Þ2

� �
ds =

ð∞
x0

q0
6s −

1
4s

� �
ds =∞,  if q0 >

3
2 :

ð64Þ

From Lemma 8, if q0 > 3/2, then (61) has no positive
solution z satisfying z′′ðxÞ < 0. Thus, from Theorem 9 every
solution of (61) is oscillatory if q0 > max f9/2μ, 3/2g:

Example 2. Consider the following differential equation rep-
resenting equation (1),

x3 z′′′ xð Þ
� �3� �

′ + c − x4

x7
+ 1
x3

� �
z3 εxð Þ = 0, x ≥ 1,

ð65Þ

where c > 0 and 0 < ε < 1 are constants.
Here, γ = 3, rðxÞ = x3, qðxÞ = ððc − x4Þ/x7Þ + ð1/x3Þ = c/x7

, and ηðxÞ = εx. Hence,

δ xð Þ =∞,ψ xð Þ = cε9

x
, φ xð Þ = 6

x
, φ∗ xð Þ = 1

x
, ψ∗ xð Þ = cε3

48

� �1/3 1
x
:

ð66Þ

If we set πðxÞ = x6, τðxÞ = x, and ℓ = 1, then condition
(45) yields

ð∞
x0

ψ sð Þ − 2
μs2

� �γ r sð Þπ sð Þ φ sð Þð Þγ+1
γ + 1ð Þγ+1

 !
ds

=
ð∞
x0

cε9

s
−

81
2μ3s

� �
ds = cε9 −

81
2μ3

� �ð∞
x0

1
s
ds:

ð67Þ

Therefore, from Lemma 7, if c > 3/4ε3, then (65) has a
solution z > 0 satisfying z′′ðxÞ > 0. Also, from condition
(49) we have

ð∞
x0

ψ∗ sð Þ − 1
4 τ sð Þ φ∗ sð Þð Þ2

� �
ds

=
ð∞
x0

cε3

48

� �1/3 1
s
−

1
4s

 !
ds = cε3

48

� �1/3
−
1
4

 !ð∞
x0

1
s
ds:

ð68Þ

Thus, from Theorem 9, every solution of (65) is oscilla-
tory if

c >max 3
4ε3 ,

81
2ε9μ3

� �
: ð69Þ

Example 3. Consider

z 4ð Þ xð Þ + q0x − x2

x5
+ 1
x3

� �
z

x
2
� �

= 0, x ≥ 1, ð70Þ

where q0 > 0.
Let γ = 1, rðxÞ = 1, qðxÞ = ðððq0x − x2Þ/x5Þ + ð1/x3ÞÞ = q0

/x4, and ηðxÞ = x/2. When ℓ = 1 is used, condition (59)
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becomes

lim
x⟶∞

inf
ðx
x0

s2

r sð Þ ds
 !ð∞

x

q0
s4
ds

= lim
x⟶∞

inf x3

3

� �ð∞
x

q0
s4
ds = q0

9 > 1
4 ,

ð71Þ

and condition (60) gives

lim
x⟶∞

inf
ð∞
x

ð∞
x

ℓ
r xð Þ

ð∞
x
q sð Þ η

γ sð Þ
sγ

ds
� �

dx
� �

ds

= lim
x⟶∞

inf
ð∞
x

ð∞
x

ð∞
x

q0
2s4 ds

� �
dx

� �
ds = q0

6 > 1
4 :

ð72Þ

Therefore, from Theorem 11, all solutions of (70) are
oscillatory if q0 > 2:25.

5. Conclusion

In this paper, we have established some new sufficient cri-
teria which ensure that every solution of the fourth-order
differential equations (1) is oscillatory. The approach we
used was based on comparisons with the oscillatory behav-
iour of second-order delay equations and the Riccati trans-
formation. Several illustrative examples have also been
presented.
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The fractional-stochastic Drinfel’d–Sokolov–Wilson equations (FSDSWEs) perturbed by the multiplicative Wiener process are
studied. The mapping method is used to obtain rational, hyperbolic, and elliptic stochastic solutions for FSDSWEs. Due to the
importance of FSDSWEs in describing the propagation of shallow water waves, the derived solutions are significantly more
useful and effective in understanding various important challenging physical phenomena. In addition, we use the MATLAB
Package to generate 3D graphs for specific FSDSWE solutions in order to discuss the impact of fractional order and the
Wiener process on the solutions of FSDSWEs.

1. Introduction

Partial differential equations (PDEs) have grown in popularity
because of their broad spectrum of applications in nonlinear
science including engineering [1], civil engineering [2], quan-
tum mechanics [3], soil mechanics [4], statistical mechanics
[5], population ecology [6], economics [7], and biology [8, 9].
Therefore, finding exact solutions is critical for a better under-
standing of nonlinear phenomena. To acquire exact solutions
to these equations, a variety of methods such as Darboux trans-
formation [10], Hirota’s function [11], sine-cosine [12, 13],
ðG′/GÞ-expansion [14–16], perturbation [17, 18], Riccati-
Bernoulli sub-ODE [19], exp ð−ϕðςÞÞ-expansion [20, 21],
tanh-sech [22, 23], Jacobi elliptic function [24, 25], and Ric-
cati equation method [26] have been used.

Recently, fractional derivatives are used to characterize a
wide range of physical phenomena in mathematical biology,
engineering disciplines, electromagnetic theory, signal
processing, and other scientific research. These new
fractional-order models are better than the previously used
integer-order models because fractional-order derivatives
and integrals allow for the modeling of distinct substances’
memory and hereditary capabilities.

The conformable fractional derivative (CFD) helps us to
develop an idea of how physical phenomena act. The CFD is
very useful for modelling a variety of physical issues since
differential equations with CFD are simpler to solve numer-
ically than those with Caputo fractional derivative or the
Riemann-Liouville. Currently, authors are focusing on frac-
tional calculus and creating new operators such the Caputo
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Fabrizio, Caputo, Riemann Liouville, and Atangana Baleanu
derivatives. The conformable fractional operator [27–30]
eliminates some of the restrictions of current fractional
operators and provides standard calculus properties such
as the derivative of the quotient of two functions, the prod-
uct of two functions, Rolle’s theorem, the chain rule, and the
mean value theorem. Here, we use CFD stated in [29].
Therefore, let us state the definition of CFD and its proper-
ties as follows [29]:

The CFD of φ : ℝ+ ⟶ℝ of order α is defined as

Dα
yφ xð Þ = lim

ε⟶0

φ y + εy1−α
� �

− φ yð Þ
ε

: ð1Þ

The CFD satisfies

(1) Dα
y ½aφðyÞ + bψðyÞ� = aDα

xφðyÞ + bDα
xψðyÞ, a, b ∈ℝ

(2) Dα
y ½C� = 0, C is a constant

(3) Dα
y ðφ ∘ ψÞðyÞ = x1−αψ′ðyÞφðψðyÞÞ

(4) Dα
y ½xy� = yyy−α, y ∈ℝ

(5) Dα
yψðyÞ = y1−αðdψ/dyÞ

On the other hand, in the practically physical system,
random perturbations emerge from a variety of natural
sources. They cannot be avoided, because noise can cause
statistical properties and significant phenomena. Conse-
quently, stochastic differential equations emerged and they
started to play a major role in modeling phenomena in
oceanography, physics, biology, chemistry, atmosphere, fluid
mechanics, and other fields.

Therefore, we consider in this paper the following
fractional-stochastic Drinfel’d–Sokolov–Wilson equations
(FSDSWEs):

dΨ + γ1ΦD
α
xΦ½ �dt = σΨdβ, ð2Þ

dΦ + γ2D
α
xxxΦ + γ3ΨDα

xΦ + γ4ΦD
α
xΨ½ �dt = σΦdβ, ð3Þ

where γk for k = 1, 2, 3, 4 are nonzero parameters. Dα, for 0
< α ≤ 1, is CFD [29]. βðtÞ is a standard Wiener process
(SWP), and σ is the noise strength.

The Drinfel’d–Sokolov–Wilson equations (DSWEs) ((2)
and (3)), with α = 1 and σ = 0, evolved from shallow water
wave models initially given by Drinfel’d and Sokolov [31,
32] and later refined by Wilson [33]. Due to the importance
of DSWEs, several authors have created analytical solutions
for this system using a variety of methods, including exp-
function method [34], truncated Painlevè method [35], F
− expansion method [36], Bäcklund transformation of Ric-
cati equation [37], homotopy analysis method [38], and tanh
and extended tanh methods [39]. Furthermore, a few authors
obtained exact solutions for fractional DSW using various
methods such as Jacobi elliptical function method [40] and
complete discrimination system for polynomial method [41],
while the analytical fractional-stochastic solutions of
FSDSWEs ((2) and (3)) have never been obtained before.

Our aim of this paper is to attain a wide range of solu-
tions including rational, hyperbolic, and elliptic functions
for FSDSWEs ((2) and (3)) by using the mapping method.
This is the first study to obtain exact solutions to FSDSWEs
with combination of a stochastic term and fractional deriva-
tive. Also, we utilize MATLAB to generate 3D diagrams for a
number of the FSDSWEs ((2) and (3)) developed in this
study to demonstrate how the SWP affects these solutions.

This paper will be formatted as follows. In Section 2, the
mapping method is used to generate analytic solutions for
FSDSWEs ((2) and (3)). In Section 3, we investigate the
effect of the SWP and fractional order on the derived solu-
tions. Section 4 presents the paper’s conclusion.

2. Analytical Solutions of FSDSWEs

First, let us derive the wave equation of FSDSWEs as follows.

2.1. Wave Equation for FSDSWEs. Let us apply the following
wave transformation

Ψ x, tð Þ = ψ μð Þe σβ tð Þ− 1/2ð Þσ2tð Þ,Φ x, tð Þ
= φ μð Þe σβ tð Þ− 1/2ð Þσ2tð Þ, μ
= 1
α
xα + ωt,

ð4Þ

to attain the wave equation of FSDSWEs ((2) and (3)), where
ψ and φ are real deterministic functions and ω is a constant.
Putting Equation (4) into Equations (2) and (3) and using

dΨ = ωψ′dt + σψdβ
h i

e σβ tð Þ− 1/2ð Þσ2tð Þ,

dΦ = ωφ′dt + σφdβ
h i

e σβ tð Þ− 1/2ð Þσ2tð Þ,

Dα
xΦ = φ′e σβ tð Þ− 1/2ð Þσ2tð Þ,

Dα
xΨ = ψ′e σβ tð Þ− 1/2ð Þσ2tð Þ,

Dα
xxxΦ = φ′′′e σβ tð Þ− 1/2ð Þσ2tð Þ,

ð5Þ

we attain

ωψ′ + γ1φφ′e
σβ tð Þ− 1/2ð Þσ2tð Þ = 0, ð6Þ

ωφ′ + γ2φ′′′ + γ3ψφ′e
σβ tð Þ− 1/2ð Þσ2tð Þ + γ4φψ′e

σβ tð Þ− 1/2ð Þσ2tð Þ = 0:
ð7Þ

Taking expectation Eð·Þ for Equations (6) and (7), we get

ωψ′ + γ1φφ′e− 1/2ð Þσ2tE eσβ tð Þ
� �

= 0, ð8Þ

ωφ′ + γ2φ′′′ + γ3ψφ′ + γ4φψ′
h i

e− 1/2ð Þσ2tE eσβ tð Þ
� �

= 0:

ð9Þ
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Since βðtÞ is a normal distribution, then EðeσβðtÞÞ =
eðσ

2/2Þt: Now, Equations (8) and (9) take the type

ωψ′ + γ1φφ′ = 0, ð10Þ

ωφ′ + γ2φ′′′ + γ3ψφ′ + γ4φψ′ = 0: ð11Þ
Integrating Equation (10) and putting the constants of

integration equal zero, we get

ψ = −
γ1
ω
φ2 + C, ð12Þ

where C is the integral constant. Plugging Equation (12) into
(11) and using Equation (10), we have

γ2φ′′′ −
γ1γ3
2ω + γ1γ4

ω

h i
φ2φ′ + ω + Cγ3½ �φ′ = 0: ð13Þ

Integrating Equation (13), we obtain

φ′′ − ℓ1φ
3 + ℓ2φ = 0, ð14Þ

where

ℓ1 =
γ1γ3
6γ2ω

+ γ1γ4
3γ2ω

,

ℓ2 =
ω

γ2
+ Cγ3

γ2
:

ð15Þ

2.2. The Mapping Method Description. Here, let us describe
the mapping method stated in [42]. Assuming the solutions
of Equation (14) have the form

φ μð Þ = 〠
N

i=0
aiχ

i, ð16Þ

where N is fixed by balancing the linear term of the highest
order derivative φ′′ with nonlinear term φ3, ai, for i = 1, 2,
⋯aN , are constants to be calculated and χ satisfies the first
kind of elliptic equation

χ′ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 pχ

4 + qχ2 + r

r
, ð17Þ

where p, q, and r are real parameters.
We notice that Equation (17) has a variety of solutions

depending on p, q, and r as follows (Table 1).
snðμÞ = snðμ,mÞ, cnðμÞ = cnðμ,mÞ, dnðμ,mÞ = dnðμ,mÞ

are the Jacobi elliptic functions (JEFs) for 0 <m < 1: When
m⟶ 1, the JEFs are converted into the hyperbolic func-
tions shown below:

2.3. Solutions of FSDSWEs. Now, let us determine the
parameter N by balancing φ′′ with φ3 in Equation (14) as

N + 2 = 3N ⟹N = 1: ð19Þ

Rewriting Equation (17) with N = 1 as

φ = a0 + a1χ: ð20Þ

Differentiating Equation (20) twice, we have, by using (17),

φ′′ = a1qχ + a1pχ
3: ð21Þ

Substituting Equations (20) and (21) into Equation (14),
we obtain

a1p − ℓ1a
3
1

� �
χ3 − 3a0a21ℓ1χ2 + a1q − 3ℓ1a20a1 + ℓ2a1

� �
χ − ℓ1a

3
0 − ℓ2a0

� �
= 0:

ð22Þ

Putting each coefficient of χk for k = 0, 1, 2, 3 equal
zero, we get

a1p − ℓ1a
3
1 = 0,

3a0a21ℓ1 = 0,
a1q − 3ℓ1a20a1 + ℓ2a1 = 0,

ℓ1a
3
0 − ℓ2a0 = 0:

ð23Þ

Solving these equations, we obtain

a0 = 0, a1

= ±
ffiffiffiffi
p
ℓ1

r
, q = −ℓ2: ð24Þ

cn μð Þ⟶ sech μð Þ, sn μð Þ⟶ tanh μð Þ, cs μð Þ⟶ csch μð Þ,
ds⟶ csch μð Þ, dn μð Þ⟶ sech μð Þ:

ð18Þ
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Hence, the solution of Equation (14) is

φ μð Þ = ±
ffiffiffiffi
p
ℓ1

r
χ μð Þ, ð25Þ

for p/ℓ1 > 0: There are two sets depending only on p and ℓ1
as follows.

First set: if p > 0 and ℓ1 > 0, then the solutions φðμÞ, from
Table 1, of wave Equation (14) are as follows (Table 2).

If m⟶ 1, then Table 2 degenerates to Table 3.
Now, using Table 2 (or Table 3 when m⟶ 1) and

Equations (25) and (12), we get the solutions of FSDSWEs
((2) and (3)), for p/ℓ1 > 0, as follows:

Φ x, tð Þ = φ μð Þe σβ tð Þ− 1/2ð Þσ2tð Þ, ð26Þ

Table 1: All possible solutions for Equation (17) for different values of p, q, and r.

Case p q r χ μð Þ
1 2m2 − 1 +m2� �

1 sn μð Þ
2 2 2m2 − 1 −m2 1 −m2� �

ds μð Þ
3 2 2 −m2 1 −m2� �

cs μð Þ
4 −2m2 2m2 − 1 1 −m2� �

cn μð Þ
5 −2 2 −m2 m2 − 1

� �
dn μð Þ

6 m2

2
m2 − 2
� �

2
1
4

sn μð Þ
1 ± dn μð Þ

7 m2

2
m2 − 2
� �

2
m2

4
sn μð Þ

1 ± dn μð Þ

8 −1
2

m2 + 1
� �

2
− 1 −m2� �2

4
mcn μð Þ ± dn μð Þ

9 m2 − 1
2

m2 + 1
� �

2
m2 − 1
� �

4
dn μð Þ

1 ± sn μð Þ

10 1 −m2

2
1 −m2� �

2
1 −m2� �

4
cn μð Þ

1 ± sn μð Þ

11 1 −m2� �2
2

1 −m2� �2
2

1
4

sn μð Þ
dn ± cn μð Þ

12 2 0 0
c
μ

13 0 1 0 ceμ

Table 2: All possible solutions for wave Equation (14) when p > 0.

Case p q r χ μð Þ φ μð Þ

1 2m2 − 1 +m2� �
1 sn μð Þ ±

ffiffiffiffi
p
ℓ1

r
sn μð Þ

2 2 2m2 − 1 −m2 1 −m2� �
ds μð Þ ±

ffiffiffiffi
p
ℓ1

r
ds μð Þ

3 2 2 −m2 1 −m2� �
cs μð Þ ±

ffiffiffiffi
p
ℓ1

r
cs μð Þ

4
m2

2
m2 − 2
� �

2
1/4 or m2/4

sn μð Þ
1 ± dn μð Þ ±

ffiffiffiffi
p
ℓ1

r
sn μð Þ

1 ± dn μð Þ

5
1 −m2

2
1 −m2� �

2
1 −m2� �

4
cn μð Þ

1 ± sn μð Þ ±
ffiffiffiffi
p
ℓ1

r
cn μð Þ

1 ± sn μð Þ

6
1 −m2� �2

2
1 −m2� �2

2
1
4

sn μð Þ
dn ± cn μð Þ ±

ffiffiffiffi
p
ℓ1

r
sn μð Þ

dn ± cn μð Þ

7 2 0 0
c
μ

±
ffiffiffiffi
p
ℓ1

r
c
μ
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Table 3: All possible solutions for wave Equation (14) when p > 0 and m⟶ 1.

Case p q r χ μð Þ φ μð Þ

1 2 −2 1 tanh μð Þ ±
ffiffiffiffi
p
ℓ1

r
tanh μð Þ

2 2 1 0 sech μð Þ ± ffiffiffiffiffiffiffiffi
p/ℓ1

p
sech μð Þ

3 2 1 0 csch μð Þ ± ffiffiffiffiffiffiffiffi
p/ℓ1

p
csch μð Þ

4
1
2

−1
2

1
4

tanh μð Þ
1 ± sech μð Þ ±

ffiffiffiffi
p
ℓ1

r tanh μð Þ
1 ± sech μð Þ

5 2 0 0
c
μ

±
ffiffiffiffi
p
ℓ1

r
c
μ

Table 4: All possible solutions for wave Equation (14) when p < 0 and m⟶ 1.

Case p q r χ μð Þ φ μð Þ

1 −2 1 0 sech μð Þ ±
ffiffiffiffi
p
ℓ1

r
sech μð Þ

2
−1
2 2 0 2 sech μð Þ ±2

ffiffiffiffi
p
ℓ1

r
sech μð Þ

Table 5: All possible solutions for wave Equation (14) when p < 0.

Case p q r χ μð Þ φ μð Þ

1 −2m2 2m2 − 1 1 −m2� �
cn μð Þ ±

ffiffiffiffi
p
ℓ1

r
cn μð Þ

2 −2 2 −m2 m2 − 1
� �

dn μð Þ ±
ffiffiffiffi
p
ℓ1

r
dn μð Þ

3
−1
2

m2 + 1
� �

2
− 1 −m2� �2

4
mcn μð Þ ± dn μð Þ ±

ffiffiffiffi
p
ℓ1

r
mcn μð Þ ± dn μð Þ½ �

4
m2 − 1

2
m2 + 1
� �

2
m2 − 1
� �

4
dn μð Þ

1 ± sn μð Þ ±
ffiffiffiffi
p
ℓ1

r
dn μð Þ

1 ± sn μð Þ
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Figure 1: 3D plot of Equations (28) and (29) with σ = 0 and α = 1:
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Figure 2: 3D plot of Equations (28) and (29) with σ = 1, 2 and α = 1.
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Figure 3: 3D plot of Equation (28) with σ = 0 and different α.
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Ψ x, tð Þ = −
γ1
ω
φ2 μð Þ + C

h i
e σβ tð Þ− 1/2ð Þσ2tð Þ, ð27Þ

where μ = ðxα/αÞ + ωt:
Second set: if p < 0 and ℓ1 < 0, then the solutions φðμÞ,

from Table 1, of wave Equation (14) are as follows.
If m⟶ 1, then Table 3 degenerates to Table 4.
In this case, using Table 5 (or Table 4 when m⟶ 1), we

can get the analytical solutions of FSDSWEs ((2) and (3)) as
stated in Equations (26) and (27).

3. The Impact of Noise and Fractional Order on
the Solutions

The impact of the noise and fractional order on the acquired
solutions of FSDSWEs ((2) and (3)) is addressed. MATLAB
tools are used to generate graphs for the following solutions:

Φ x, tð Þ =
ffiffiffiffi
p
ℓ1

r
cn

xα

α
+ ωt

� �
e σβ tð Þ− 1/2ð Þσ2tð Þ, ð28Þ

Ψ x, tð Þ = −
γ1p
ωℓ1

cn2
xα

α
+ ωt

� �	 

e σβ tð Þ− 1/2ð Þσ2tð Þ, ð29Þ

with C = 0, p = −2m2, γ1 = γ2 = 1, γ3 = γ4 = 3, p = −2, q = 2
−m2, and m = 0:5: Then, ℓ1 = −6/7 and ω = 7/4:

Firstly the impact of noise: in the absence of the noise, the
surface is periodic (not flat) as we see in Figure 1.

While in Figure 2, if the noise is introduced and its
strength σ is raised, the surface becomes substantially flatter
as follows.

Secondly the impact of fractional order: in Figures 3
and 4, if σ = 0, we can see that the surface expands when
α is increasing.

From the previous simulations, we may examine the
nature of the solution as a double-periodic wave in
physical form. We may conclude that it is critical to
incorporate some fluctuation when modelling any phe-
nomenon since the ignored terms may have an influence
on the solutions.

4. Conclusions

In this paper, we considered the fractional-stochastic Drin-
fel’d–Sokolov–Wilson equations. This equation is well
known in mathematical physics, population dynamics,
surface physics, plasma physics, and applied sciences. The
analytical solutions to FSDSWEs ((2) and (3)) were success-
fully attained by utilizing the mapping method. Due to the
importance of FSDSWEs, these established solutions are
significantly more useful and effective in understanding a
variety of critical physical processes. In addition, we utilized
the MATLAB software to demonstrate how multiplicative
noise and fractional order affected the solutions of
FSDSWEs. We may employ additive noise to address the
FSDSWEs ((2) and (3)) in future study.

Data Availability

All data are available in this paper.
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Figure 4: 3D plot of Equation (29) with σ = 0 and different α.
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In this study, we propose a new iterative scheme (NIS) to investigate the approximate solution of the fourth-order parabolic partial
differential equations (PDEs) that arises in transverse vibration problems. We introduce the Mohand transform as a new operator
that is very easy to implement coupled with the homotopy perturbation method. This NIS is capable of reducing the linearization,
perturbation, and restrictive assumptions that ruin the nature of the numerical problems. Some numerical examples are
demonstrated to legitimate the accuracy and authenticity of this NIS. The computational results are obtained in the shape of a
series that converges only after a few iterations. The comparison of the graphical representations shows that NIS is a very
simple but also an effective approach for other numerical problems involving complex variables.

1. Introduction

Many physical phenomena of differential equations in complex
variables play an important role in science and engineering
such as physics, chemical energy, biology, medicine, and
engineering [1–3]. These physical phenomena are of great
interest in this modern era and are introduced by parabolic
PDEs. It is still very difficult to investigate the exact solution
of the PDEs in most numerical problems. Therefore, most of
the researchers introduced numerous analytical and numerical
approaches to provide the approximate solution for these PDEs
such as the quintic B-spline collocation method [4], q-HATM
[5], quintic B-spline [6], Legendre wavelet method [7], homo-
topy perturbation transform method [8], and so on [9–11].

Consider the fourth-order parabolic PDEs with variable
coefficients [12, 13]

∂2Ψ
∂η2

+ α ξ, §, θð Þ ∂
4Ψ

∂ξ4
+ 1
§ β ξ, §, θð Þ ∂

4Ψ

∂§4 + 1
θ
γ ξ, §, θð Þ ∂

4Ψ

∂θ4
= g ξ, §, θ, ηð Þ,

ð1Þ

where α, β, γ > 0, subjected to the following initial conditions

Ψ ξ, §, θ, 0ð Þ = f1 ξ, §, θð Þ,
∂Ψ
∂η

ξ, §, θ, 0ð Þ = f2 ξ, §, θð Þ,
ð2Þ

and boundary conditions

Ψ a, §, θ, ηð Þ = g0 §, θ, ηð Þ,
Ψ b, §, θ, ηð Þ = g1 §, θ, ηð Þ,
Ψ ξ, a, θ, ηð Þ = k0 ξ, θ, ηð Þ,
Ψ ξ, b, θ, ηð Þ = k1 ξ, θ, ηð Þ,
Ψ ξ, §, a, ηð Þ = h0 ξ, §, ηð Þ,
Ψ ξ, §, b, ηð Þ = h1 ξ, §, ηð Þ,
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∂2Ψ
∂ξ2

a, §, θ, ηð Þ = �g0 §, θ, ηð Þ,

∂2Ψ
∂ξ2

b, §, θ, ηð Þ = �g1 §, θ, ηð Þ,

∂2Ψ
∂§2 ξ, a, θ, ηð Þ = �k0 ξ, θ, ηð Þ,

∂2Ψ
∂§2 ξ, b, θ, ηð Þ = �k1 ξ, θ, ηð Þ,

∂2Ψ
∂θ2

ξ, §, a, ηð Þ = �h0 ξ, §, ηð Þ,

∂2Ψ
∂θ2

ξ, §, b, ηð Þ = �h1 ξ, §, ηð Þ, ð3Þ

where f j, gj, hj, kj, �gj,
�hj, and �kj are continuous functions and j

varies from 0 to 1.
Wazwaz [14] used the Adomian decomposition method

to examine the analytical solution of transverse vibrations of
a uniform flexible beam. Aziz et al. [15] studied the fourth-
order nonhomogeneous parabolic partial differential equa-
tions that govern the behavior of a vibrating beam by using
a new three-level method based on the parametric quintic
spline in space and finite difference discretization in time.
Biazar and Ghazvini [16] used the variational iteration
method for the analytical solution of the fourth-order para-
bolic equations. Dehghan and Manafian [17] applied HPM
for the solution of the fourth-order parabolic PDEs. El-
Gamel [18] used the sinc-Galerkin method to examine the
fourth-order PDEs in one space variable coefficient. Rashidi-
nia and Mohammadi [19] reported new three-level implicit
methods for the numerical solution of the fourth-order non-
homogeneous parabolic PDEs with variable coefficients.
Mittal and Jain [20] applied the quintic B-spline method,
and Birol [21] used the reduced differential transformation
method for the fourth-order nonhomogeneous parabolic
partial differential equation. Khan and Sultana [22] used
the parametric septic spline for the numerical solution of
the fourth-order parabolic PDEs.

The homotopy perturbation method (HPM) was devel-
oped by He [23, 24]. HPM gives the solution in the form
of a rapid and consecutive series toward the exact solution.
Dehghan and Manafian [17] used HPM to obtain the
numerical results for the linear and nonlinear boundary
value problems. The convergence rate of HPM can be stud-
ied through [25]. Nadeem et al. [13] applied the Laplace
transform coupled with the homotopy perturbation method
to solve the fourth-order parabolic PDEs with variable coef-
ficients. Luo et al. [26] introduced a combined form of the
Mohand transform and the homotopy perturbation method
to provide the analytical solution of the delay differential
equations. Recently, many integral transformations have
been introduced to find the approximate solution of ordi-
nary and partial differential equations such as the Elzaki
transform [27, 28], Sumudu transform [29], Aboodh trans-

formation [30], Mohand transform [31], and homotopy
perturbation method [24].

In this paper, we construct the idea of NIS with the help
of the Mohand transform and the homotopy perturbation
method for obtaining the approximate solution of partial
differential equations. This NIS provides the results in the
form of a series that converges to the exact solution very
rapidly. This scheme does not require any linearization,
variation, and limiting expectations. In particular, this study
is organized as follows. In Section (2), we recall some basic
definitions of the Mohand transform. In Sections (3) and
(4), first, we present the basic idea of HPM and then formu-
late the idea of NIS for finding the approximate solution of
PDEs. We illustrate three examples to present the accuracy
and validity of NIS in Section (5). We give a brief discussion
of the obtained results in Section (6), and finally, the conclu-
sion is presented in Section (7).

2. Fundamental Concepts of the
Mohand Transform

In this section, we introduce some basic definitions and pre-
liminary concepts of the Mohand transform, which reveals
the idea of its implementations to functions.

Definition 1. Mohand and Mahgoub [31] presented a new
scheme Mohand transform Mð:Þ in order to gain the results
of ordinary differential equations, which is defined as

M Ψ ηð Þf g = R wð Þ =w2
ð∞
0
Ψ ηð Þe−wηdη, k1 ≤w ≤ k2: ð4Þ

On the other hand, if RðwÞ is the Mohand transform of a
function ΨðηÞ, then ΨðηÞ is the inverse of RðwÞsuch that

M−1 R wð Þf g =Ψ ηð Þ, M−1 is the inverseMohand operator:
ð5Þ

Definition 2. If ΨðηÞ = ηn,

R wð Þ = n!
wn−1 : ð6Þ

Definition 3. If MfΨðηÞg = RðwÞ, then it has the following
differential properties:

(i) MfΨ′ðηÞg =wRðwÞ −w2Fð0Þ
(ii) MfΨ′′ðηÞg =w2RðwÞ −w3Fð0Þ −w2F ′ð0Þ
(iii) MfFunðηÞg =wnRðwÞ −wn+1Fð0Þ −wnF ′ð0Þ −⋯−

wnFn−1ð0Þ
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3. Basic Idea of HPM

In this segment, we illustrate a nonlinear functional equation
to explain the basic view of HPM [32, 33]. Consider

T Ψð Þ − g hð Þ = 0, h ∈Ω, ð7Þ

with conditions

S Ψ, ∂Ψ
∂n

� �
= 0, h ∈ Γ, ð8Þ

where T and S are known as the general functional operator
and boundary operator, respectively, and gðhÞ is a known
function with Γ as an interval of the domain Ω. We now
divide T into two units such thatT1 represents a linear
and T2 a nonlinear operator. As a result, we can express
Equation (8) such that

T1 Ψð Þ + T2 Ψð Þ − g hð Þ = 0: ð9Þ

Assume a homotopy ϑðh, pÞ: Ω × ½0, 1�⟶ℍ in such a
way that it is appropriate for

H ϑ, pð Þ = 1 − pð Þ T1 ϑð Þ − T1 Ψ0ð Þ½ � + p T1 ϑð Þ − T2 ϑð Þ − g hð Þ½ �,
ð10Þ

or

H ϑ, pð Þ = T1 ϑð Þ − T1 Ψ0ð Þ + qL Ψ0ð Þ + p T2 ϑð Þ − g hð Þ½ � = 0,
ð11Þ

where p ∈ ½0, 1� is the embedding parameter and Ψ0 is an
initial guess of Equation (7), which is suitable for the
boundary conditions. The theory of HPM states that p is
considered a slight variable, and the solution of Equation
(7) in the resulting form of pis

ϑ = ϑ0 + pϑ1 + p2ϑ2 + p3ϑ3+⋯ = 〠
∞

i=0
piϑi: ð12Þ

Let p = 1, and then the particular solution of Equation
(8) is written as

Ψ = lim
p⟶1

ϑ = ϑ0 + ϑ1 + ϑ2 + ϑ3+⋯ = 〠
∞

i=0
ϑi: ð13Þ

The nonlinear terms can be calculated as

T2Ψ x, tð Þ = 〠
∞

n=0
pnHn Ψð Þ: ð14Þ

Then, He’s polynomials HnðΨÞ can be obtained using
the following expression:

Hn Ψ0 +Ψ1+⋯+Ψnð Þ = 1
n!

∂n

∂pn
T2 〠

∞

i=0
piΨi

 ! !
p=0

, n = 0, 1, 2,⋯:

ð15Þ

The series solution in Equation (14) is mostly conver-
gent due to the convergence rate of the series depending
on the nonlinear operator T2.

4. Formulation of NIS

This segment presents the formulation of a new iterative
scheme (NIS) for obtaining the approximate solution of
the fourth-order parabolic PDEs. Let us consider a second-
order differential equation of the form

Ψ′′ ξ, ηð Þ +Ψ ξ, ηð Þ + g Ψð Þ = g ξ, ηð Þ, ð16Þ

with the following conditions:

Ψ ξ, 0ð Þ = a,
Ψ′ ξ, 0ð Þ = b,

ð17Þ

where Ψ is a function in time domain η, gðΨÞ represents a
nonlinear term, and gðηÞ is a source term, whereas a and b
are constants. Rewrite Equation (16) again as

Ψ′′ ξ, ηð Þ = −Ψ ξ, ηð Þ − g Ψð Þ + g ξ, ηð Þ: ð18Þ

Now, taking MT on both sides of Equation (18), we
obtain

M Ψ′′ ξ, ηð Þ
h i

=M −Ψ ξ, ηð Þ − g Ψð Þ + g ξ, ηð Þ½ �: ð19Þ

Applying the differential properties of MT, we get

w2R w½ � −w3Ψ ξ, 0ð Þ −w2Ψ′ ξ, 0ð Þ =M −Ψ ξ, ηð Þ − g Ψð Þ + g ξ, ηð Þ½ �:
ð20Þ

Thus, RðwÞ can be obtained from Equation (20) such
that

R w½ � =wu ξ, 0ð Þ +Ψ′ ξ, 0ð Þ − 1
w2 M Ψ ξ, ηð Þ + g Ψð Þ − g ξ, ηð Þ½ �:

ð21Þ

Operating the inverse Mohand transform on Equation
(21), we get

Ψ ξ, ηð Þ =G ξ, ηð Þ −M−1 1
w2 M Ψ ξ, ηð Þ + g Ψð Þ½ �
� �

, ð22Þ

where Equation (22) is called the NIS and

G ξ, ηð Þ =M−1 wu 0ð Þ +Ψ′ 0ð Þ + 1
w2 g ξ, ηð Þ

� �
: ð23Þ
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Now, we apply HPM on Equation (22). Let

Ψ ηð Þ = 〠
∞

i=0
piΨi nð Þ =Ψ0 + p1Ψ1 + p2Ψ2+⋯, ð24Þ

and nonlinear terms gðΨÞ can be calculated by using the
following formula:

g Ψð Þ = 〠
∞

i=0
piHi Ψð Þ =H0 + p1H1 + p2H2+⋯, ð25Þ

where Hn ′s is He’s polynomial, which may be computed
using the following procedure:

Hn Ψ0 +Ψ1+⋯+Ψnð Þ = 1
n!

∂n

∂pn
g 〠

∞

i=0
piΨi

 ! !
p=0

, n = 0, 1, 2,⋯:

ð26Þ

Put Equations (24)–(26) in Equation (22), and com-
paring the similar factors of p, we get the following
consecutive elements:

p0 : Ψ0 ξ, ηð Þ = G ξ, ηð Þ,

p1 : Ψ1 ξ, ηð Þ = −M−1 1
w2 M Ψ0 ξ, ηð Þ +H0 Ψð Þf g
� �

,

p2 : Ψ2 ξ, ηð Þ = −M−1 1
w2 M Ψ1 ξ, ηð Þ +H1 Ψð Þf g
� �

,

p3 : Ψ3 ξ, ηð Þ = −M−1 1
w2 M Ψ2 ξ, ηð Þ +H2 Ψð Þf g
� �

,

⋮:

ð27Þ

In continuing the similar process, we can summarize
this series to get the approximate solution such that

Ψ ξ, ηð Þ =Ψ0 +Ψ1 +Ψ2+⋯ = 〠
∞

i=0
Ψi: ð28Þ

Thus, Equation (28) is to be considered an approxi-
mate solution of differential equations of Equation (16).

5. Numerical Examples

In this part, we consider three numerical problems to check
the authenticity and validity of NIS. We also demonstrate
the solution surface of the illustrated problems for the
behavior and a better understanding of this strategy where
we see that the solution graphs of the approximate solution
and the particular solution coincide with each other only
after a few iterations.

5.1. Example 1. Consider the one-dimensional fourth-order
parabolic PDEs

∂2Ψ
∂η2

+ 1
ξ
+ ξ4

120

 !
∂4Ψ
∂ξ4

= 0, ð29Þ

with the initial conditions

Ψ ξ, 0ð Þ = 0,

Ψη ξ, 0ð Þ = 1 + ξ5

120 :
ð30Þ

Applying MT on Equation (29) together with the differ-
ential property as defined in Equation (6), we get

w2R wð Þ −w3Ψ ξ, 0ð Þ −w2Ψη ξ, 0ð Þ = −M 1
ξ
+ ξ4

120

 !
∂4Ψ
∂ξ4

" #
:

ð31Þ

Thus, RðwÞ yields

R wð Þ =wΨ ξ, 0ð Þ −Ψη ξ, 0ð Þ − 1
w2 M

1
ξ
+ ξ4

120

 !
∂4Ψ
∂ξ4

" #
:

ð32Þ

Using the inverse Mohand transform, we get

Ψ ξ, ηð Þ =Ψ ξ, 0ð Þ − ηΨη ξ, 0ð Þ −M−1 1
w2M

1
ξ
+ ξ4

120

 !
∂4Ψ
∂ξ4

( )" #
:

ð33Þ

Applying MHPTM to get He’s polynomials, we get

〠
∞

i=0
piΨi nð Þ =Ψ ξ, 0ð Þ − ηΨη ξ, 0ð Þ −M−1 1

w2 M
1
ξ
+ ξ4

120

 !
〠
∞

i=0
pi
∂4Ψi

∂ξ4

( )" #
:

ð34Þ

Observing the similar powers of p, we get

p0 : Ψ0 ξ, ηð Þ = 1
ξ
+ ξ4

120

 !
η,

p1 : Ψ1 ξ, ηð Þ = −M−1 1
w2 M

1
ξ
+ ξ4

120

 !
∂4Ψ0
∂ξ4

( )" #
= −

1
ξ
+ ξ4

120

 !
η3

3! ,

p2 : Ψ2 ξ, ηð Þ = −M−1 1
w2M

1
ξ
+ ξ4

120

 !
∂4Ψ1
∂ξ4

( )" #
= 1

ξ
+ ξ4

120

 !
η5

5! ,

p3 : Ψ3 ξ, ηð Þ = −M−1 1
w2 M

1
ξ
+ ξ4

120

 !
∂4Ψ2
∂ξ4

( )" #
= −

1
ξ
+ ξ4

120

 !
η7

7! ,

p4 : Ψ4 ξ, ηð Þ = −M−1 1
w2M

1
ξ
+ ξ4

120

 !
∂4Ψ3
∂ξ4

( )" #
= 1

ξ
+ ξ4

120

 !
η9

9! ,

⋮:

ð35Þ
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In continuing this process, the approximate solution
results can be summarized as

Ψ ξ, ηð Þ =Ψ0 ξ, ηð Þ +Ψ1 ξ, ηð Þ +Ψ2 ξ, ηð Þ +Ψ3 ξ, ηð Þ +Ψ4 ξ, ηð Þ+⋯

= 1 + ξ5

120

 !
η −

η3

3! +
η5

5! −
η7

7! +
η9

9!

� �
+⋯:

ð36Þ

This series converges to the particular solution

Ψ ξ, ηð Þ = 1 + ξ5

120

 !
sin η: ð37Þ

5.2. Example 2. Consider the two-dimensional fourth-order
parabolic PDEs

∂2Ψ
∂η2

+ 2 1
ξ2

+ ξ4

6!

 !
∂4Ψ
∂ξ4

+ 2 1
§2 + §4

6!

� �
∂4Ψ
∂§4 = 0, ð38Þ

with the initial conditions

Ψ ξ, §, 0ð Þ = 0,

Ψη ξ, §, 0ð Þ = 2 + ξ6

6! +
§6
6! :

ð39Þ

Applying NIM, we get

Ψ ξ, §, ηð Þ =Ψ ξ, §, 0ð Þ − ηΨη ξ, §, 0ð Þ −M−1

� 1
w2 M 2 1

ξ2
+ ξ4

6!

 !
∂4Ψ
∂ξ4

+ 2 1
§2 + §4

6!

� �
∂4Ψ
∂§4

( )" #
:

ð40Þ

This equation provides He’s polynomials

〠
∞

i=0
piΨi nð Þ =Ψ ξ, §, 0ð Þ − ηΨη ξ, §, 0ð Þ −M−1

� 1
w2 M 2 1

ξ2
+ ξ4

6!

 !
〠
∞

i=0
pi
∂4Ψi

∂ξ4
+ 2 1

§2 + §4
6!

� �
〠
∞

i=0
pi
∂4Ψi

∂§4

( )" #
:

ð41Þ

Observing the similar powers of p, we get

p0 : Ψ0 ξ, §, ηð Þ = 2 + ξ6

6! +
§6
6!

 !
η,

p1 : Ψ1 ξ, §, ηð Þ = −M−1 1
w2 M 2 1

ξ2
+ ξ4

6!

 !
∂4Ψ
∂ξ4

+ 2 1
§2 + §4

6!

� �
∂4Ψ
∂§4

( )" #

= − 2 + ξ6

6! +
§6
6!

 !
η3

3! ,

p2 : Ψ2 ξ, §, ηð Þ = −M−1 1
w2 M 2 1

ξ2
+ ξ4

6!

 !
∂4Ψ
∂ξ4

+ 2 1
§2 + §4

6!

� �
∂4Ψ
∂§4

( )" #

= 2 + ξ6

6! +
§6
6!

 !
η5

5! ,

p3 : Ψ3 ξ, §, ηð Þ = −M−1 1
w2 M 2 1

ξ2
+ ξ4

6!

 !
∂4Ψ
∂ξ4

+ 2 1
§2 + §4

6!

� �
∂4Ψ
∂§4

( )" #

= − 2 + ξ6

6! +
§6
6!

 !
η7

7! ,

p4 : Ψ4 ξ, §, ηð Þ = −M−1 1
w2 M 2 1

ξ2
+ ξ4

6!

 !
∂4Ψ
∂ξ4

+ 2 1
§2 + §4

6!

� �
∂4Ψ
∂§4

( )" #

= 2 + ξ6

6! +
§6
6!

 !
η9

9! ,

⋮: ð42Þ

In continuing this process, the approximate solution
results can be summarized as

Ψ ξ, §, ηð Þ =Ψ0 ξ, §, ηð Þ +Ψ1 ξ, §, ηð Þ +Ψ2 ξ, §, ηð Þ
+Ψ3 ξ, §, ηð Þ +Ψ4 ξ, §, ηð Þ+⋯

= 2 + ξ6

6! +
§6
6!

 !
η −

η3

3! +
η5

5! −
η7

7! +
η9

9!

� �
+⋯:

ð43Þ

This series converges to the particular solution

Ψ ξ, §, ηð Þ = 2 + ξ6

6! +
§6
6!

 !
sin η: ð44Þ

5.3. Example 3. Consider the three-dimensional fourth-order
parabolic PDEs

∂2Ψ
∂η2

+ 2 §+θ
cos ξð Þ − 1

� �
∂4Ψ
∂ξ4

+ ξ + θ

2 cos §ð Þ − 1
� �

∂4Ψ
∂§4

+ §+ξ
2 cos θð Þ − 1
� �

∂4Ψ
∂θ4

= 0,
ð45Þ

with the initial conditions

Ψ ξ, §, θ, 0ð Þ = ξ + § + θ − cos ξð Þ + cos §ð Þ + cos θð Þð Þ,
Ψ ξ, §, θ, 0ð Þ = cos ξð Þ + cos §ð Þ + cos θð Þð Þ − ξ + § + θð Þ:

ð46Þ
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Applying NIM, we get

Ψ ξ, §, θ, ηð Þ =Ψ ξ, §, 0ð Þ − ηΨη ξ, §, 0ð Þ −M−1

� 1
w2 M 2 §+θ

cos ξð Þ − 1
� �

∂4Ψ
∂ξ4

+ ξ + θ

2 cos §ð Þ − 1
� �

∂4Ψ
∂§4

("

+ §+ξ
2 cos θð Þ − 1
� �

∂4Ψ
∂θ4

)#
:

ð47Þ

This equation provides He’s polynomials

p0 : Ψ0 ξ, §, θ, ηð Þ =wΨ ξ, §, 0ð Þ −Ψη ξ, §, 0ð Þ 1 − ηð Þ,

p1 : Ψ1 ξ, §, θ, ηð Þ = −M−1 1
w2 M 2 §+θ

cos ξð Þ − 1
� �

∂4Ψ
∂ξ4

("

+ ξ + θ

2 cos §ð Þ − 1
� �

∂4Ψ
∂§4 + §+ξ

2 cos θð Þ − 1
� �

∂4Ψ
∂θ4

)#
,

p2 : Ψ2 ξ, §, θ, ηð Þ = −M−1 1
w2 M 2 §+θ

cos ξð Þ − 1
� �

∂4Ψ
∂ξ4

("

+ ξ + θ

2 cos §ð Þ − 1
� �

∂4Ψ
∂§4 + §+ξ

2 cos θð Þ − 1
� �

∂4Ψ
∂θ4

)#
,

p3 : Ψ3 ξ, §, θ, ηð Þ = −M−1 1
w2 M 2 §+θ

cos ξð Þ − 1
� �

∂4Ψ
∂ξ4

("

+ ξ + θ

2 cos §ð Þ − 1
� �

∂4Ψ
∂§4 + §+ξ

2 cos θð Þ − 1
� �

∂4Ψ
∂θ4

)#
,

p4 : Ψ4 ξ, §, θ, ηð Þ = −M−1 1
w2 M 2 §+θ

cos ξð Þ − 1
� �

∂4Ψ
∂ξ4

("

+ ξ + θ

2 cos §ð Þ − 1
� �

∂4Ψ
∂§4 + §+ξ

2 cos θð Þ − 1
� �

∂4Ψ
∂θ4

)#
,

ð48Þ

which gives

Ψ0 ξ, §, ηð Þ = ξ + § + θ − cos ξð Þ − cos §ð Þ − cos θð Þð Þ 1 − ηð Þ,

Ψ1 ξ, §, ηð Þ = ξ + § + θ − cos ξð Þ − cos §ð Þ − cos θð Þð Þ η2

2! −
η3

3!

� �
,

Ψ2 ξ, §, ηð Þ = ξ + § + θ − cos ξð Þ − cos §ð Þ − cos θð Þð Þ η4

4! −
η5

5!

� ��
,

Ψ3 ξ, §, ηð Þ = ξ + § + θ − cos ξð Þ − cos §ð Þ − cos θð Þð Þ η6

6! −
η7

7!

� �
,

Ψ4 ξ, §, ηð Þ = ξ + § + θ − cos ξð Þ − cos §ð Þ − cos θð Þð Þ η8

8! −
η9

9!

� �
,

⋮:

ð49Þ

In continuing this process, the approximate solution
results can be summarized as

Ψ ξ, ηð Þ =Ψ0 ξ, ηð Þ +Ψ1 ξ, ηð Þ +Ψ2 ξ, ηð Þ +Ψ3 ξ, ηð Þ +Ψ4 ξ, ηð Þ+⋯
= ξ + § + θ − cos ξð Þ − cos §ð Þ − cos θð Þð Þ

� 1 − η + η2

2! −
η3

3! +
η4

4! −
η5

5! +
η6

6! −
η7

7! +
η8

8! −
η9

9! +⋯
� �

:

ð50Þ

This series converges to the particular solution

Ψ ξ, ηð Þ = ξ + § + θ − cos ξð Þ − cos §ð Þ − cos θð Þð Þe−η: ð51Þ

6. Results and Discussion

In this segment, we present the discussion of some graphical
representations in Figures 1–3. It can be seen that the formu-
lated series converges to the particular solution only after a
few iterations very rapidly. Figures 1(a) and 1(b) represent
the comparison between the approximate solution and the
exact solution of Equations (36) and (37) at 0 ≤ η ≤ 1 and 0
≤ ξ ≤ 10, respectively. Figures 2(a) and 2(b) show the com-
parison between the approximate solution and the particular
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(a) Approximate solution of Ψðξ, ηÞ for Equation (29)
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(b) Particular solution of Ψðξ, ηÞ for Equation (29)

Figure 1: Surface solutions for the one-dimensional parabolic differential equation.
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solution of Equations (43) and (44) at 0 ≤ η ≤ 3 and 0 ≤ ξ ≤
10, respectively, and similarly, Figures 3(a) and 3(b) repre-
sent the comparison between the approximate solution and
the particular solution of Equations (50) and (51) at 0 ≤ η
≤ 1 and 0 ≤ ξ ≤ 10, respectively. This comparison shows that
NIS is easy to implement and does not require any heavy
calculation for the computation of the approximate solution
of the fourth-order parabolic PDEs with variable coefficients.

7. Conclusion and Future Work

In this analysis, we successfully employed the NIS to exam-
ine the approximate solution of the fourth-order parabolic
partial differential equations with variable coefficients. The
Mohand transform coupled with HPM has been used to
construct the idea of this scheme. This NIS approach is
applicable for both the linear and nonlinear partial differen-
tial equations. This approach does not require the recurrence
relation for the assumption of a variable. This NIS formu-
lates the obtained results of the illustrated problems in the
form of a series that converges to the particular solution very
rapidly. This approach has an advantage of direct implemen-
tation to the numerical problems and confirms the accuracy

with full agreement. This NIS is also applicable for the other
partial differential equations with fractional derivatives in
science and engineering.
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(b) Particular solution of Ψðξ, §, ηÞ for Equation (38)

Figure 2: Surface solutions for the two-dimensional parabolic differential equation.
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Figure 3: Surface solutions for the three-dimensional parabolic differential equation.
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This study examines a new approach for the approximate solution of hyperbolic telegraph equations emerging in magnetic fields
and electrical impulse transmissions. We introduce a Laplace-Carson transform coupled with the homotopy perturbation method
which is called the Laplace-Carson homotopy perturbation method (Lc-HPM). The most significant feature of this approach is
that we do not require any restriction of variables and hypotheses to find the results of nonlinear problems. Further, HPM using
He’s is applied to reduce the number of computations in nonlinear terms. We demonstrate some graphical results to show thatLc
-HPM is a simple and suitable approach for linear and nonlinear problems.

1. Introduction

Most of the nonlinear vibration phenomena are described by
unsteady reactions, chaos, splitting processes, and some
other multiple norms of motion. This vibration study starts
from a large number of components such as high elastic
deflection, electrical charge force, and complex absorption
[1]. In this manner, a more proper comprehensive knowl-
edge of the nonlinear vibration phenomena is important
for the investigation of vibratory incidents. Recently, numer-
ous researchers have paid much attention for the study of
the applications of hyperbolic equations. Azab and Gamel
[2] constructed a new approach built on a numerical strategy
for the study of telegraph equations. Pandit et al. [3] applied
a finite difference scheme to find the results of the hyperbolic
telegraph problem. Evans and Bulut [4] proposed a new
approach to determine the precise results of the telegraph
problems in explicit form. Srinivasa and Rezazadeh [5]
obtained the numerical solution of the one-dimensional tele-
graph equation via the wavelet technique. Ding et al. [6]
used a nonpolynomial cubic spline approach in space direc-
tion for the study of the telegraph equation. Saadatmandi
and Dehghan [7] used the Chebyshev tau method to achieve

the numerical solution of the hyperbolic telegraph equation.
Lakestani and Saray [8] applied scaling functions for the
solution of the telegraph equation. Later, Sharifi and Rashi-
dinia [9] applied extended cubic B-spline for the solution
of the hyperbolic telegraph equation and also showed the
convergence and stability of the method. Khater and Lu
[10] investigated the stable analytical solutions of the non-
linear fractional nonlinear time–space telegraph equation
by applying the trigonometric-quantic-B-spline method.
Das and Gupta [11] used the homotopy analysis method to
find the explicit solutions of the telegraph equations. A
broad study of hyperbolic telegraph equation can be studied
in [12–15].

The basic concept of the homotopy perturbation method
(HPM) was suggested by He [16–18] to obtain the solution
of some differential equations. Later, many researchers [19,
20] constructed a scheme coupled with Laplace transform
and HPM to examine the solution of differential equations.
Recently, Aggarwal et al. [21] used Laplace-Carson trans-
form for the first kind of Volterra integrodifferential equa-
tion. Later, Kumar and Qureshi [22] obtained the exact
solutions of non-integer-order initial value problems with
the Caputo operator and confirmed the accuracy of this
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approach. Thange and Gade [23] introduced some proper-
ties of the Laplace-Carson transform with fractional order
with the help of convolution theorem. In this paper, we
introduce a new approach Laplace-Carson homotopy per-
turbation method (Lc-HPM) built on Laplace-Carson
transform and HPM for the study of hyperbolic telegraph
equation. We observe that this strategy is simple to handle
and produces the results in the form of series only after a
few iterations. This article is arranged as follows: in Section
2, we define the Laplace-Carson transform and its basic
properties. In Section 3, we introduce the basic idea of
HPM to decompose the nonlinear terms. In Section 4, we
illustrate some applications to indicate the competence of
Lc-PTM, and at last, some results are discussed with con-
clusion in Sections 5 and 6, respectively.

2. Fundamental Concepts of Laplace-
Carson Transform

Definition 1. Let f ðtÞ be a function precise for t ≥ 0; then,

L f tð Þf g = F sð Þ = θ
ð∞
0
f tð Þe−stdt ð1Þ

is called the Laplace transform and s is the independent var-
iable of the transformed function t.

Definition 2. Aggarwal et al. [21] introduced Laplace-Carson
transform for the solution of first kind of Volterra integro-
differential problem; then,

Lc g tð Þf g = R θð Þ = θ
ð∞
0
g tð Þe−θtdt, k1 ≤ θ ≤ k2, ð2Þ

where Lc is denoted as Laplace-Carson transform and θ is
the independent variable of the transformed function t. On
the other hand, let RðθÞ be the Laplace-Carson transform
of a function gðtÞ; then, gðtÞ is the inverse of RðθÞ so that

L−1
c R θð Þf g = g tð Þ, ð3Þ

where L−1
c is called inverse Laplace-Carson transform.

Definition 3. If gðtÞ = tm, then the Laplace-Carson transform
is applied as

Lc g tð Þf g = R θð Þ = m!

θm
: ð4Þ

Properties 4. If LcfgðtÞg = RðθÞ, then it has the following
differential properties [21, 23]:

(a) Lcfg′ðtÞg = θRðθÞ − θGð0Þ
(b) Lcfg′′ðtÞg = θ2RðθÞ − θ2Gð0Þ − θG′ð0Þ
(c) LcfgmðtÞg = θmRðθÞ − θmGð0Þ − θm−1G′ð0Þ −⋯−θ

Gm−1ð0Þ

3. Basic Idea of HPM

In this segment, we illustrate a nonlinear functional equation
to explain the basic view HPM [24, 25]. Consider

T uð Þ − g hð Þ = 0, h ∈Ω, ð5Þ

with conditions

S u, ∂u
∂n

� �
= 0, h ∈ Γ, ð6Þ

where T and S are known as general functional operator and
boundary operator, respectively, and gðhÞ is known function
with Γ as a interval of the domain Ω. We now divide T into
two units such as T1 which represents a linear and T2 a non-
linear operator. As a result, we can express Equation (6) such
as

T1 uð Þ + T2 uð Þ − g hð Þ = 0: ð7Þ

Assume a homotopy vðh, θÞ: Ω × ½0, 1�⟶ℍ in such a
way that it is appropriate for

H v, θð Þ = 1 − θð Þ T1 vð Þ − T1 u0ð Þ½ � + θ T1 vð Þ − T2 vð Þ − g hð Þ½ �
ð8Þ

or

H v, θð Þ = T1 vð Þ − T1 u0ð Þ + qL u0ð Þ + θ T2 vð Þ − g hð Þ½ � = 0,
ð9Þ

where θ ∈ ½0, 1� is embedding parameter and u0 is an initial
guess of Equation (5), which is suitable for the boundary
conditions. The theory of HPM states that θ is considered
as a slight variable and the solution of Equation (5) in the
resulting form of θ.

v = v0 + θv1 + θ2v2 + θ3v3+⋯ = 〠
∞

i=0
θivi: ð10Þ

Let θ = 1; then, the particular of Equation (6) is written
as

u = lim
θ⟶1

v = v0 + v1 + v2 + v3+⋯ = 〠
∞

i=0
vi: ð11Þ

The nonlinear terms can be calculated as

T2u x, tð Þ = 〠
∞

n=0
θnHn uð Þ: ð12Þ

Then, He’s polynomials HnðuÞ can be obtained using the
following expression:
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Hn u0 + u1+⋯+unð Þ

= 1
n!

∂n

∂θn
T2 〠

∞

i=0
θiui

 ! !
θ=0

, n = 0, 1, 2,⋯:
ð13Þ

The series solution in Equation (12) is mostly convergent
due to and the convergence rate of the series depending on
the nonlinear operator T2.

4. Numerical Applications

In this section, we incorporate the concept of Lc-PTM for
obtaining the approximate solution of linear and nonlinear
telegraph equations. We observe that only after iteration,
this scheme produces excellent accuracy. Mathematical Soft-
ware 11.0.1 is used to perform the calculations. We present
some 2D and 3D graphs for better understanding the behav-
ior of this scheme.

4.1. Example 1. Consider one-dimensional linear hyperbolic
telegraph equation

∂2u
∂x2

= ∂2u
∂t2

+ ∂u
∂t

+ u, ð14Þ

with conditions

u x, 0ð Þ = ex ,
ut x, 0ð Þ = −ex,
u 0, tð Þ = e−t ,
ux 0, tð Þ = e−t :

ð15Þ

Applying Laplace-Carson transform to Equation (14),
we get

Lc
∂2u
∂x2

" #
=Lc

∂2u
∂t2

+ ∂u
∂t

+ u

" #
: ð16Þ

Using the properties of Laplace-Carson transform, we
get

θ2u θ, tð Þ − θ2u 0, tð Þ − θu′ 0, tð Þ =Lc
∂2u
∂t2

+ ∂u
∂t

+ u

" #
, ð17Þ

which may be solved further as

u θ, tð Þ = u 0, tð Þ + 1
θ
u′ 0, tð Þ + 1

θ2
Lc

∂2u
∂t2

+ ∂u
∂t

+ u

( )
:

ð18Þ

Applying inverse Laplace-Carson transform, we get

u x, tð Þ = u 0, tð Þ + xu′ 0, tð Þ +L−1
c

1
θ2

Lc
∂2u
∂t2

+ ∂u
∂t

+ u

( )" #
:

ð19Þ

Now, we introduce HPM on Equation (38); we get

〠
∞

n=0
θnun x, tð Þ = u 0, tð Þ + xu′ 0, tð Þ + θL−1

c

�
"
1
θ2

L

(
∂2

∂t2
〠
∞

n=0
θnun x, tð Þ

+ ∂
∂t

〠
∞

n=0
θnun x, tð Þ + 〠

∞

n=0
θnun x, tð Þ

)#
:

ð20Þ

On comparing, the following iterations can be obtained:

θ0 : u0 x, tð Þ = e−t + xe−t ,

θ1 : u1 x, tð Þ =L−1
c

1
θ2

Lc
∂2u0
∂t2

+ ∂u0
∂t

+ u0

( )" #

= e−t
x2

2! + e−t
x3

3! ,

θ2 : u2 x, tð Þ =L−1
c

1
θ2

Lc
∂2u1
∂t2

+ ∂u1
∂t

+ u1

( )" #

= e−t
x4

4! + e−t
x5

5! ,

θ3 : u3 x, tð Þ =L−1
c

1
θ2

Lc
∂2u2
∂t2

+ ∂u2
∂t

+ u2

( )" #

= e−t
x6

6! + e−t
x7

7! :

⋮

ð21Þ

Hence, the solution can be expressed as

u x, tð Þ == u1 x, tð Þ + u2 x, tð Þ + u3 x, tð Þ+⋯,

u x, tð Þ == e−t + xe−t + x2

2! e
−t + x3

3! e
−t + x4

4! e
−t

+ x5

5! e
−t + x6

6! e
−t + x7

7! e
−t+⋯,

u x, tð Þ = ex−t:

ð22Þ

4.2. Example 2. Consider another linear hyperbolic telegraph
equation

∂2u
∂x2

= ∂2u
∂t2

+ 4 ∂u
∂t

+ 4u, ð23Þ
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with initial conditions

u x, 0ð Þ = 1 + e2x,
ut x, 0ð Þ = −2,
u 0, tð Þ = 1 + e−2t ,
ux 0, tð Þ = 2:

ð24Þ

Applying Laplace-Carson transform to Equation (23),
we get

Lc
∂2u
∂x2

" #
=Lc

∂2u
∂t2

+ 4 ∂u
∂t

+ 4u
" #

: ð25Þ

Using the properties of Laplace-Carson transform, we
get

θ2u θ, tð Þ − θ2u 0, tð Þ − θu′ 0, tð Þ =Lc
∂2u
∂t2

+ 4 ∂u
∂t

+ 4u
" #

,

ð26Þ

which may be solved further as

u θ, tð Þ = u 0, tð Þ + 1
θ
u′ 0, tð Þ + 1

θ2
Lc

∂2u
∂t2

+ 4 ∂u
∂t

+ 4u
( )

:

ð27Þ

Applying inverse Laplace-Carson transform, we get

u x, tð Þ = u 0, tð Þ + xu′ 0, tð Þ +L−1
c

� 1
θ2

Lc
∂2u
∂t2

+ 4 ∂u
∂t

+ 4u
( )" #

:
ð28Þ

Now, we introduce HPM on Equation (28); we get

〠
∞

n=0
θnun x, tð Þ = u 0, tð Þ + xu′ 0, tð Þ + θL−1

c

�
"
1
θ2

L

(
∂2

∂t2
〠
∞

n=0
θnun x, tð Þ

+ 4 ∂
∂t

〠
∞

n=0
θnun x, tð Þ + 4〠

∞

n=0
θnun x, tð Þ

)#
:

ð29Þ

On comparing, the following iterations can be obtained:

θ0 : u0 x, tð Þ = 1 + e−2t + 2x,

θ1 : u1 x, tð Þ =L−1
c

1
θ2

Lc
∂2u0
∂t2

+ 4 ∂u0
∂t

+ 4u0

( )" #

= 4 x
2

2! + 8 x
3

3! ,

θ2 : u2 x, tð Þ =L−1
c

1
θ2

Lc
∂2u1
∂t2

+ 4 ∂u1
∂t

4 + u1

( )" #

= 16 x
4

4! + 32 x
5

5! ,

θ3 : u3 x, tð Þ =L−1
c

1
θ2

Lc
∂2u2
∂t2

+ 4 ∂u2
∂t

+ 4u2

( )" #

= 64 x
6

6! + 128 x
7

7! :

⋮

ð30Þ

Hence, the solution can be expressed as

u x, tð Þ = u1 x, tð Þ + u2 x, tð Þ + u3 x, tð Þ+⋯,

u x, tð Þ = 1 + e−2t + 2x + 4 x
2

2! + 8 x
3

3! + 16 x
4

4!

+ 32 x
5

5! + 64 x
6

6! + 128 x
7

7! ,

u x, tð Þ = e2x + e−2t:

ð31Þ

4.3. Example 3. Consider nonlinear hyperbolic telegraph
equation

∂2u
∂t2

+ 2 ∂u
∂t

= ∂2u
∂x2

+ u3 − u, ð32Þ

with conditions

u x, 0ð Þ = 1
2 + 1

2 tanh x
8 + 5
� �

,

ut x, 0ð Þ = 3
16 sec h2 x

8 + 5
� �

,

u 0, tð Þ = 1
2 + 1

2 tanh 3t
8 + 5

� �
,

ux 0, tð Þ = 1
16 sec h2 3t

8 + 5
� �

:

ð33Þ

Applying Laplace-Carson transform on Equation (32),
we get

Lc
∂2u
∂x2

" #
=Lc

∂2u
∂t2

+ 2 ∂u
∂t

− u3 + u

" #
: ð34Þ
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(a) Analytical solution of uðx, tÞ for Equation (14)
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(b) Particular solution of uðx, tÞ for Equation (14)

Figure 1: Surface solutions for nonlinear hyperbolic telegraph equation.
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Figure 2: Surface solutions for linear hyperbolic telegraph equation.
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Figure 3: Surface solutions for nonlinear hyperbolic telegraph equation.
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Using the properties of Laplace-Carson transform, we
get

θ2u θ, tð Þ − θ2u 0, tð Þ − θu′ 0, tð Þ =Lc
∂2u
∂t2

+ 2 ∂u
∂t

− u3 + u

" #
,

ð35Þ

which may be solved further as,

u θ, tð Þ = u 0, tð Þ + 1
θ
u′ 0, tð Þ + 1

θ2
Lc

∂2u
∂t2

+ 2 ∂u
∂t

− u3 + u

( )
:

ð36Þ

Applying inverse Laplace-Carson transform,

u x, tð Þ = u 0, tð Þ + xu′ 0, tð Þ +L−1
c

� 1
θ2

Lc
∂2u
∂t2

+ 2 ∂u
∂t

− u3 + u

( )" #
:

ð37Þ

Now, we introduce HPM on Equation (32); we get

〠
∞

n=0
θnun x, tð Þ = u 0, tð Þ + xu′ 0, tð Þ + θL−1

c

�
"
1
θ2

L

(
∂2

∂t2
〠
∞

n=0
θnun x, tð Þ + 2 ∂

∂t
〠
∞

n=0
θnun

� x, tð Þ − 〠
∞

n=0
θnu3n x, tð Þ + 〠

∞

n=0
θnun x, tð Þ

#
:

ð38Þ

On comparing, the following iterations can be obtained:

θ0 : u0 x, tð Þ = 1
2 + 1

2 tanh 3t
8 + 5

� �
+ x

1
2 sec h2 3t

8 + 5
� �

,

θ1 : u1 x, tð Þ =L−1
c

1
θ2

Lc
∂2u0
∂t2

+ 2 ∂u0
∂t

− u30 + u0

( )" #
,

θ2 : u2 x, tð Þ =L−1
c

1
θ2

Lc
∂2u1
∂t2

+ ∂u1
∂t

+ u1 − 3u20u1

( )" #
,

θ3 : u3 x, tð Þ =L−1
c

"
1
θ2

Lc

(
∂2u2
∂t2

+ ∂u2
∂t

+ u2 − 3u0u21 − 3u20u2

)#
:

⋮
ð39Þ

The other iterations are computed with the help of Wol-
fram Mathematica to obtain u1, u2, u3,⋯, which turns to the
particular solution such as

u x, tð Þ = 1
2 + 1

2 tanh x
8 + 3t

8 + 5
� �

: ð40Þ

5. Results and Discussion

This segment presents the discussion of the solution behav-
iors for the hyperbolic telegraph equations. Figure 1 repre-
sents the physical behavior at 0 ≤ x ≤ 5 and 0 ≤ t ≤ 0:5,
whereas Figure 2 shows the physical behavior at 0 ≤ x ≤ 1
and 0 ≤ t ≤ 5 for the linear telegraph equations. We observe
that the solution graphs turn to the particular solution very
rapidly only after a few computations of iterations. Figure 3
represents the solution behavior of nonlinear hyperbolic
telegraph equation at 0 ≤ x ≤ 5 and 0 ≤ t ≤ 0:5. The solution
graph of the approximate solution is computed only for one
iteration which coincides with the exact solation. Graphical
representation and physical behavior of the linear and non-
linear hyperbolic telegraph equations demonstrate that the
results obtained by Lc-HPM are accurate and agreed with
the results of exact solutions which confirm the authenticity
of this approach.

6. Conclusion

In this article, we successfully conducted Lc-HPM for find-
ing the approximate solution of hyperbolic telegraph equa-
tions. We provided the results in the form of series without
any discretization, linearization, or assumptions. The pro-
posed strategy predicts the following fruitful remarks:

(i) Lc-HPM is a direct approach to find the approxi-
mate solution of the problems

(ii) This scheme has less computational work, and there
is no restriction of variables to obtain the solution

(iii) Lc-HPM is applicable for both linear and nonlinear
problems that provides the series solution only after
a few iterations

(iv) We made all calculations with the help of Mathema-
tica Software 11.0.1

(v) This approach is also applicable for other nonlinear
fractional partial differential equations in science
and engineering for future problems
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The main goal of the paper is to approximate two types of inverse problems for conformable heat equation (or called parabolic
equation with conformable operator); as follows, we considered two cases: the right hand side of equation such that Fðx, tÞ and
Fðx, tÞ = φðtÞf ðxÞ. Up to now, there are very few surveys working on the results of regularization in Lp spaces. Our paper is
the first work to investigate the inverse problem for conformable parabolic equations in such spaces. For the inverse source
problem and the backward problem, use the Fourier truncation method to approximate the problem. The error between the
regularized solution and the exact solution is obtained in Lp under some suitable assumptions on the Cauchy data.

1. Introduction

Partial differential equations (PDEs) have applications in
many branches of science and engineering; see for example
[1–8]. In this paper, for s > 1, we consider the initial value
problem for the conformable heat equation (or called para-
bolic equation with conformable operator)

C∂β

∂tβ
y x, tð Þ − kΔy x, tð Þð Þ + −Δð Þsy x, tð Þ = F x, tð Þ, x ∈D, t ∈ 0, Tð Þ

y x, tð Þ = 0, x ∈ ∂D, t ∈ 0, Tð Þ
y x, Tð Þ = yT xð Þ, x ∈D

8>>>><
>>>>:

:

ð1Þ

Here, D ⊂ℝN (N ≥ 1) is a bounded domain with the
smooth boundary ∂D, and T > 0 is a given positive number.
Here, C∂β/∂tβ is called the conformable time derivative with
order β ∈ ð0, 1Þ (Khalil et al. [9]) for a given function f : ½0,
∞Þ⟶ℝ; the C∂β/∂tβ of order β ∈ ð0, 1� is defined by

C∂β

∂tβ
f tð Þ = lim

ϵ⟶0

f t + ϵt1−β
� �

− f tð Þ
ϵ

, ð2Þ

for all t > 0. For some ð0, t0Þ, t0 > 0 and the lim
t⟶t+0

ðC∂β/∂tβÞ
f ðtÞ exist, then ðC∂β/∂tβÞf ðt0Þ = lim

t⟶t+0
ðC∂β/∂tβÞf ðtÞ. Some

properties of C∂β/∂tβ can be found in more detail in [10,
11]. C∂β/∂tβ is a natural extension of usual derivative, it pre-
serves basic properties of the classical derivative [10, 11], and
it is a local and limit-based operator. In [10, 12, 13], we saw
some applications. For the convenience of the reader, we will
consider two models related to Problem (1) that most math-
ematicians often study.

(i) The first part of the paper deals with the final value
problem for Problem (1) with a linear source func-
tion. The new feature of this part is the appearance
of observed data, namely, ðyT ,δ, FδÞ ∈LpðDÞ × L∞ð
0, T ;LpðDÞÞ. This result is well described in Theo-
rem 3. We investigated the problem of restoring the
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temperature function yðx, tÞ, in the fact that the cou-
ple ðyT , FÞ are noised by the measurement data ð
yT ,δ, FδÞ such that:

yT ,δ − yT
�� ��

Lp Dð Þ ≤ δ

Fδ − Fk kL∞ 0,T ;Lp Dð Þð Þ ≤ δ

8<
: : ð3Þ

(ii) The second part of the paper deals with the final
value problem for Problem (1) with F is a linear
source function as follows: Fðx, tÞ =ΦðtÞf ðxÞ, where
both functions ðΦ, f , gÞ are perturbed by ðΦδ, f δ,
gδÞ in Lpð0, TÞ ×LpðDÞ ×LpðDÞ, respectively

Φδ −Φk kLp 0,Tð Þ ≤ δ

yT ,δ − yT
�� ��

Lp 0,Dð ≤ δ

f δ − fk kLp Dð Þ ≤ δ

:

8>>><
>>>:

ð4Þ

The main contributions and novelties of this paper are
stated as follows. As we know, two inverse problems are
ill-posed in the sense of Hadamard. The well-posed problem
satisfies three conditions above: the solution is existence, the
solution is uniqueness, and the solution continues on data
The problem that violates one of the above three conditions
is an ill-posed problem. We need to regularize this problem,
to give a good approximation. The number of works on the
regularized problem with input data in L2 is quite abun-
dant. The results of this study can be found in the following
documents, attached to the regularization methods: the
Tikhonov method, see [14, 15], the Fractional Tikhonov
method, see [16], the fractional Landweber method, see
[17, 18], the Quasi Boundary method, see [19], the trunca-
tion method, see [20], and their references.

However, for p ≠ 2, results for regularized problem inLp

are quite rare. We confirm that our paper is the first result
for the inverse problem for the conformable parabolic equa-
tion when the observed data is in the Lp space with p ≠ 2. If
the data is not in L2, the use of Parseval equality is not fea-
sible. In this case, we used the embedding between Lp and
Hilbert scales spaces XsðDÞ. These results are well described
in Theorem 3 and Theorem 5. The main analytical tech-
nique in our paper is to use some embeddings and some
analysis estimators related to Hölder inequality. To do this,
we learn many interesting techniques from N.H. Tuan [21].

This paper is organized as follows. In Section 2, we state
some function spaces and embeddings. In Section 3, we deal
with the regularized solution for the inverse source problem
for (1). Section 4 gives the mild solution of backward prob-
lem in case F = 0. After that, we solve two problems in the
case of observed data in Lp space.

2. Preliminary Results

Let us recall that the spectral problem

−Δð Þsem xð Þ = λsmem xð Þ, x ∈D

em xð Þ = 0, x ∈ ∂D

(
ð5Þ

admits the eigenvalues 0 < λ1 ≤ λ2 ≤⋯≤λm≤⋯ with λm
⟶∞ as m⟶∞. The corresponding eigenfunctions are
em ∈H1

0ðDÞ.

Definition 1 (Hilbert scale space). We recall the Hilbert scale
space, which is given as follows:

Xn Dð Þ = f ∈L2 Dð Þ, 〠
∞

m=1
λ2nm

ð
D

f xð Þem xð Þdx
� �2

<∞
( )

,

ð6Þ

for any n ≥ 0. It is well-known that XnðDÞ is a Hilbert
space corresponding to the norm

fk kXn Dð Þ = 〠
∞

m=1
λ2nm

ð
D

f xð Þem xð Þdx
� �2

 !1/2

, f ∈Xn Dð Þ:

ð7Þ

Lemma 2 (See [22]). The following statement is true:

Lp Dð Þ↪Xμ Dð Þ, if − N
4
< μ ≤ 0, p ≥ 2N

N − 4μ

Xμ Dð Þ↪Lp Dð Þ, if 0 ≤ μ < N
4
, p ≤ 2N

N − 4μ

9>>>=
>>>;
: ð8Þ

3. Regularization of Backward Problem

In order to find a precise formulation for solutions, we con-
sider the mild solution in Fourier series yðx, tÞ =∑∞

m=1ymðtÞ
emðxÞ, with ymðtÞ =

Ð
D
yðx, tÞemðxÞdx. Taking the inner

product of the equations of Problem (1) with em gives

C∂β

∂tβ
y :,tð Þ, emh i+kλm

C∂β

∂tβ
y :,tð Þ, emh i−λsm y :,tð Þ, emh i = F :,tð Þ, emh i, t ∈ 0,Tð Þ

y :,0ð Þ, emh i = y0, emh i

8><
>: : ð9Þ
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The first equation of (9) is a differential equation with a
conformable derivative as follows:

C∂β

∂tβ
ym tð Þ − λsm 1 + kλmð Þ−1ym tð Þ = 1 + kλmð Þ−1Fn tð Þ: ð10Þ

Because of the result in [23], the solution of Problem (1)
is

y :,tð Þ, emh i = exp −
λsm

1 + kλm

tβ

β

� �
y 0ð Þ, emh i

+ 1
1 + kλm

ðt
0
θβ−1 exp λsm

1 + kλm

θβ−tβ

β

 !
F :,θð Þ, emh idθ:

ð11Þ

Letting t = T , we follow from (11) that

ð
D

yT xð Þem xð Þdx
� �

= exp −
λsm

1 + kλm

Tβ

β

 ! ð
D

y0 xð Þem xð Þdx
� �

+ 1
1 + kλm

ðT
0
θβ−1 exp λsm

1 + kλm

θβ−Tβ

β

 !

�
ð
D

F :,θð Þem xð Þdx
� �

dθ:

ð12Þ

From (12), we have

ð
D

y0 xð Þem xð Þdx
� �

= exp −
λsm

1 + kλm

Tβ

β

 ! !−1 ð
D

yT xð Þem xð Þdx
� ��

−
1

1 + kλm

ðT
0
θβ−1 exp λsm

1 + kλm

θβ − Tβ

β

 !

�
ð
D

F x, θð Þem xð Þdx
� �

dθ
�
:

ð13Þ

Substituting (13) into (12), we obtain

y :,tð Þ, emh i = exp λsm
1 + kλm

Tβ − tβ

β

 !ð
D

yT xð Þem xð Þdx

−
1

1 + kλm

ðT
t
θβ−1 exp λsm

1 + kλm

θβ − tβ

β

 !

�
ð
D

F x, θð Þem xð Þdx
� �

dθ

ð14Þ

This leads to

y x, tð Þ = 〠
+∞

m=1
exp λsm

1 + kλm

Tβ − tβ

β

 ! ð
D

yT xð Þem xð Þdx
� �

em xð Þ

− 〠
+∞

m=1

1
1 + kλm

ðT
t
θβ−1 exp λsm

1 + kλm

θβ − tβ

β

 ! 

�
ð
D

F x, θð Þem xð Þdx
� �

dθ
�
em xð Þ:

ð15Þ

4. The Mild Solution of Backward Problem in
Case F = 0

In this section, we investigate the existence and regularity of
mild solutions of Problem (1). Firstly, we consider the fol-
lowing initial value problem

C∂β

∂tβ
y x, tð Þ − kΔy x, tð Þð Þ + −Δð Þsy x, tð Þ = 0, x ∈D, t ∈ 0, Tð Þ

y x, tð Þ = 0, x ∈ ∂D, t ∈ 0, Tð Þ
y x, Tð Þ = yT xð Þ, x ∈D, t ∈ 0, Tð Þ

8>>>><
>>>>:

:

ð16Þ

According to (15), in this case, we have

y x, tð Þ = 〠
+∞

m=1
exp λsm

1 + kλm

Tβ − tβ

β

 ! ð
D

yT xð Þem xð Þdx
� �

em xð Þ:

ð17Þ

4.1. The Ill-Posedness of Problem (1). In order to prove that
the solution to the backward problem is unstable
atFðx, tÞ = 0, let us take the perturbed final
datayT ,jðxÞ ∈L2ðDÞ, by choosingyT ,jðxÞ = ejðxÞλ−1/2j . For s
> 3/2, let us choose input final data yTðxÞ = 0; we know that
an error in L2ðDÞ norm between two input final data as fol-
lows:

yT ,j − yT
��� ���

L2 Dð Þ
= ejλ

−1/2
j

��� ���
L2 Dð Þ

= λ−1/2j this leads to lim
j⟶∞

yT ,j − yT
��� ���

L2 Dð Þ
= lim

j⟶∞
λ−1/2j = 0:

ð18Þ

Therefore, we obtain

yj x, tð Þ = exp
λsj

1 + kλj

Tβ − tβ

β

 !
yT ,j xð Þ: ð19Þ

First of all, we have λsj/ð1 + kλ jÞ = ðλs−1j Þ/ðð1/λjÞ + kÞ ≥ ð
λs−1j Þ/ðð1/λjÞ + kÞ, and ððTβ − tβÞ/βÞ ≥ 0; this implies that
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exp λs

1 + kλj

Tβ − tβ

β

 !
≥ exp

λs−1j

λ−11 + k

Tβ − tβ

β

 !
: ð20Þ

Next, using the inequality exp ðxÞ ≥ x, for x > 0, this
leads to:

yj ·, tð Þ
��� ���

L2 Dð Þ
≥ exp

λs−1j

λ−11 + k

Tβ − tβ

β

 !
1

λ1/2j

�����
�����
L2 Dð Þ

≥
λs−3/2j

λ−11 + k

Tβ − tβ

β
·

ð21Þ

For s > 3/2, and from (21), we get

lim
j⟶∞

yj :,tð Þ
��� ���

L2 Dð Þ
≥ lim

j⟶∞

λs−3/2j

λ−11 + k

Tβ − tβ

β
⟶ +∞: ð22Þ

Thus, Problem (1), in general, ill-posed in the Hadamard
sense in L2ðDÞ-norm.

4.2. Regularization of inverse Problem (1) in LpðDÞ space.
From (15), we know that the explicit formula of the mild
solution

y x, tð Þ = 〠
+∞

m=1
exp λsm

1 + kλm

Tβ − tβ

β

 ! ð
D

yT xð Þem xð Þdx
� �

em xð Þ

− 〠
+∞

m=1

1
1 + kλm

ðT
t
θβ−1 exp λsm

1 + kλm

θβ − tβ

β

 ! 

�
ð
D

F x, θð Þem xð Þdx
� �

dθ
�
em xð Þ:

ð23Þ

By applying the Fourier truncation method, we have its
approximation

yδ x, tð Þ = 〠
m≤Mδ

exp λsm
1 + kλm

Tβ − tβ

β

 ! ð
D

yT ,δ xð Þem xð Þdx
� �

em xð Þ

− 〠
m≤Mδ

1
1 + kλm

ðT
t
θβ−1 exp λsm

1 + kλm

θβ − tβ

β

 ! 

�
ð
D

Fδ x, θð Þem xð Þdx
� �

dθ
�
em xð Þ:

ð24Þ

Here, Mδ is parameter regularization which is defined
later.

Theorem 3. For s > 1, taking ðyT , FÞ ∈Lpð0, TÞ ×L∞ð0, T
;LpðDÞÞ for any 0 ≤ t ≤ T for any 1/β < p < 2, assume that
ðyT , FÞ is observed by the couple ðyT ,δ, FδÞ such that

yT ,δ − yT
�� ��

Lp Dð Þ + F − Fδk kL∞ 0,T ;Lp Dð Þð Þ ≤ δ, δ > 0: ð25Þ

Let us assume that u ∈L∞ð0, T ;Xn+σÞ for σ > 0 and 0
< n <N/4. With Mδ such that

lim
δ⟶0

Mδ = +∞, lim
δ⟶0

Mδj jn+N/2p−N/4 exp Tβ

β
Ms−1

δ k−1
 !

δ = 0:

ð26Þ

Then, the error estimate

yδ − yk kL2N/N−4n Dð Þ is of order max

� Mδj jn+N/2p−N/4 exp Mδð Þs−1k−1 T
β

β

 !
δ, Mδj j−σ

( )
:

ð27Þ

Remark 4. One choice for Mδ such that

Mδ = T−ββ 1 − αð Þk
	 
1/s−1

log 1
δ

� �� �1/s−1
, for 0 < α < 1:

ð28Þ

then kyδ − yk
L2N/ðN−4nÞðDÞ is of order max fδα

½log ð1/δÞ�ðn+N/2p−N/4Þ/ðs−1Þ, ½log ð1/δÞ�−σ/ðs−1Þg.

Proof. Let

V δ x, tð Þ = 〠
m≤N δ

exp λsm
1 + kλm

Tβ − tβ

β

 ! ð
D

yT xð Þem xð Þdx
� �

em xð Þ

− 〠
m≤Mδ

1
1 + kλm

ðT
t
θβ−1 exp λsm

1 + kλm

θβ − tβ

β

 ! 

�
ð
D

F x, θð Þem xð Þdx
� �

dθ
�
em xð Þ:

ð29Þ

It is clear that

yδ ·, tð Þ − y ·, tð Þk kXn Dð Þ ≤ yδ ·, tð Þ −V δ ·, tð Þk kXn Dð Þ
+ V δ ·, tð Þ − y ·, tð Þk kXn Dð Þ:

ð30Þ

We continue to consider the two components of the
right hand side.
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Step 1:

yδ x, tð Þ −V δ x, tð Þ

= 〠
λm≤Mδ

exp λsm
1 + kλm

Tβ − tβ

β

 !

·
ð
D

yT ,δ xð Þ − yT xð Þ� �
em xð Þdx

� �
em xð Þ

− 〠
λm≤Mδ

1
1 + kλm

ðT
t
θβ−1 exp λsm

1 + kλm

θβ − tβ

β

  

·
ð
D

Fδ x, θð Þ − F x, θð Þð Þem xð Þdx
� �

dθ
�
Þem xð Þ

=H 1 x, tð Þ −H 2 x, tð Þ:

ð31Þ

For s > 1, it is easy to see that λsmð1 + kλmÞ−1 ≤ λs−1m

ðλ−1m + kÞ−1 ≤ λs−1m k−1. The first term H 1ðx, tÞ on XnðDÞ is
bounded by

H 1 :,tð Þk k2Xn Dð Þ = 〠
λm≤Mδ

λ2nm exp 2λsm
1 + kλm

Tβ − tβ

β

 !

�
ð
D

yT ,δ xð Þ − yT xð Þ� �
em xð Þdx

� �2

= 〠
λm≤Mδ

λ2n+N/p−N/2
m λNp−2N/2p

m exp

� 2λs−1m k−1
Tβ

β

 ! ð
D

yT ,δ xð Þ − yT xð Þ� �
em xð Þdx

� �2

≤ Mδj j2n+N/p−N/2 exp 2 Mδj js−1k−1Tβ

β

 !
〠

λm≤Mδ

λNp−2N/2p
m

�
ð
D

yT ,δ xð Þ − yT xð Þ� �
em xð Þdx

� �2

≤ Mδj j2n+N/p−N/2 exp 2 Mδj js−1k−1Tβ

β

 !
yT ,δ − yT
�� ��

XNp−2N/4p ·

ð32Þ

Since the Sobolev space embedding LpðDÞ⟶
XðNp−2NÞ/4pðDÞ, we have

yT ,δ − yT
�� ��

XNp−2N/4p Dð Þ ≤ C1 N , pð Þ yT ,δ − yT
�� ��

Lp Dð Þ: ð33Þ

This follows from (32) that

H 1 :,tð Þk kXn Dð Þ ≤ Mδð Þn+N/2p−N/4 exp Mδð Þs−1k−1Tβ

β

 !
C1 N , pð Þδ:

ð34Þ

The second term H 2ðx, tÞ is estimated as follows:

H 2 :,tð Þk k2Xn Dð Þ = 〠
λm≤Mδ

λ2nm
1 + kλm

ðT
t
θβ−1 exp λsm

1 + kλm

θβ − tβ

β

  

�
ð
D

F x, θð Þ − Fδ x, θð Þð Þem xð Þdx
� �

dθ
�
Þ
2

ð35Þ

By the same arguments as above, we find that

H 2 ·, tð Þk k2Xn Dð Þ ≤ 〠
λm≤Mδ

λ2nm

ðT
t
θβ−1 exp λs−1m k−1

θβ − tβ

β

 ! 

�
ð
D

F x, θð Þ − Fδ x, θð Þð Þem xð Þdx
� �

dθ
�2

≤ exp 2 Mδð Þs−1k−1 T
β

β

 !
〠

λm≤Mδ

λ2nm

�
ðT
t
θβ−1

ð
D

F x, θð Þ − Fδ x, θð Þð Þem xð Þdx
� �

dθ
� �2

ð36Þ

We can see that λ2n+N/p−N/2
m ≤ jMδj2n+N/p−N/2 and

Ð T
t

θβ−1dθ ≤ ðTβ − tβÞ/β ≤ Tβ/β. From (36), using Holder’s
inequality, we get

〠
λm≤Mδ

λ2nm

ðT
t
θβ−1

ð
D

F x, θð Þ − Fδ x, θð Þð Þem xð Þdx
� �

dθ
� �2

≤ 〠
λm≤Mδ

λ2n+N/p−N/2
m λNp−2N/2p

m

ðT
t
θβ−1dθ

� �

·
ðT
t
θβ−1

ð
D

F x, θð Þ − Fδ x, θð Þð Þem xð Þdx
� �2

dθ

 !

≤ β−1Tβ Mδj j2n+N/p−N/2
ðT
t
θβ−1 〠

λm≤Mδ

λ2n+N/p−N/2
m

 

·
ð
D

F x, θð Þ − Fδ x, θð Þð Þem xð Þdx
� �2

dθ

!

≤ β−1Tβ Mδj j2n+N/p−N/2
ðT
t
θβ−1 Fδ ·, tð Þ − F ·, tð Þk k2XNp−2N/4pdθ

� �
:

ð37Þ

This latter inequality together with Sobolev embedding
LpðDÞ⟶XðNp−2NÞ/4pðDÞ gives us

〠
λm≤Mδ

λ2nm

ðT
t
θβ−1

ð
D

F x, θð Þ − Fδ x, θð Þð Þem xð Þdx
� �

dθ
� �2

≤ β−1 C2 N , pð Þj j2Tβ Mδð Þ2n+N/p−N/2

·
ðT
t
θβ−1 F x, θð Þ − Fδ x, θð Þk k2Lp Dð Þdθ

� �
≤ β−2 C2 N , pð Þj j2T2β Mδj j2n+N/p−N/2 F − Fδk kL∞ 0,T ;Lp Dð Þð Þ
≤ β−2 C2 N , pð Þj j2T2β Mδj j2n+N/p−N/2δ2:

ð38Þ
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Combining (36) and (38), we get

H 2 ·, tð Þk k2Xn Dð Þ ≤ exp 2 Mδð Þs−1k−1 T
β

β

 !

� C2 N , pð Þj j2T2β Mδj j2n+N/p−N/2β−2δ2:

ð39Þ

Taking the square root on the both sides, we have

H 2 ·, tð Þk kXn Dð Þ ≤ exp Mδð Þs−1k−1 T
β

β

 !

� C2 N , pð Þj jTβ Mδj jn+N/2p−N/4β−1δ:

ð40Þ

From (34) and (40), we deduce that

yδ ·, tð Þ −V δ ·, tð Þk kXn Dð Þ
≤ H 1 ·, tð Þk kXn Dð Þ + H 2 ·, tð Þk kXn Dð Þ

≤ Mδj jn+N/2p−N/4 exp Mδð Þs−1k−1Tβ

β

 !
C1 N , pð Þδ + exp

· Mδð Þs−1k−1 T
β

β

 !
C2 N , pð Þj jTβ Mδj jn+N/2p−N/4β−1δ

≤ Mδj jn+N/2p−N/4 exp Mδð Þs−1k−1 T
β

β

 !
δ

· C1 N , pð Þ + C2 N , pð Þj jTββ−1
	 


:

ð41Þ

Step 2: Estimate of kuð·, tÞ −V δð·, tÞkXnðDÞ.
From the definition (23) and (29), we have

y ·, tð Þ −V δ ·, tð Þk k2Xn Dð Þ = 〠
λm>Mδ

λ2nm

ð
D

u ·, tð Þem xð Þdx
� �2

= 〠
λm>Mδ

λ−2σm λ2n+2σm

ð
D

u ·, tð Þem xð Þdx
� �2

≤ Mδj j−2σ uk k2L∞ 0,T ;Xn+σ Dð Þð Þ:

ð42Þ

Therefore, we get

y ·, tð Þ −V δ ·, tð Þk kXn Dð Þ ≤ Mδj j−σ uk kL∞ 0,Tð ;Xn+σ Dð Þ: ð43Þ

Combining two steps and noting that XnðDÞ↪
L2N/ðN−4nÞ, ð0 < n <N/4Þ, we deduce that

yδ ·, tð Þ − y ·, tð Þk kL Dð Þ
≤ C3 N , nð Þ yδ ·, tð Þ −V δ ·, tð Þk kXn Dð Þ

+ C3 N , nð Þ V δ ·, tð Þ − y ·, tð Þk kXn Dð Þ
≤ C3 N , nð Þ Mδj jn+N/2p−N/4 exp

· Mδð Þs−1k−1 T
β

β

 !
δ C1 N , pð Þ + C2 N , pð Þj jTββ−1
	 


+ C3 N , nð Þ Mδj j−σ uk kL∞ 0,Tð ;Xn+σ Dð Þ:

ð44Þ

The proof of Theorem 3 is completed. In the following
theorem, we give a regularization result in the case that F
has a split form Fðx, tÞ =ΦðtÞf ðxÞ.

Theorem 5. For s > 1, let us assume that the input data Φδ

, gδ, f δ such that

Φδ −Φk kLp 0,Tð Þ + yT ,δ − yT
�� ��

Lp Dð Þ + f δ − fk kLp Dð Þ ≤ δ:

ð45Þ

Assume that u ∈L∞ð0, T ;Xn+σðDÞÞ for any σ > 0, then
we construct a regularized solution defined by

W δ x, tð Þ = 〠
m≤Bδ

exp λsm
1 + kλm

Tβ − tβ

β

 ! ð
D

yT ,δ xð Þem xð Þdx
� �

em xð Þ

− 〠
m≤Bδ

1
1 + kλm

ðT
t
θβ−1 exp λsm

1 + kλm

θβ − tβ

β

 ! 

�
ð
D

f xð Þem xð Þdx
� �

Φδ θð Þdθ
�
em xð Þ:

ð46Þ

Then, the error kW δð:,tÞ−yð:,tÞkL2N/ðN−4nÞðDÞ is of order

max fδjBδj−σ, jBδjn+ðN/2pÞ−ðN/4Þ exp ððBs−1
δ k−1TβÞ/βÞδg:

Remark 6. Bδ = ðT−ββkÞ1/ðs−1Þð1 − αÞ1/ðs−1Þ log ð1/δÞ1/ðs−1Þ,
then the error

W δ :,tð Þ−y :,tð Þk kL2N/N−4n Dð Þ is of order max

� δ log 1
δ

� �����
����
−σ/s−1

log 1
δ

� �����
����
n+N/2p−N/4/s−1

δα
( )

:
ð47Þ

Proof. Since Fðx, tÞ =ΦðtÞf ðxÞ, we know that

Zδ x, tð Þ = 〠
m≤Bδ

exp λsm
1 + kλm

Tβ − tβ

β

 ! ð
D

yT xð Þem xð Þdx
� �

em xð Þ

− 〠
m≤Bδ

1
1 + kλm

ðT
t
θβ−1 exp λsm

1 + kλm

θβ − tβ

β

 ! 

�
ð
D

f xð Þem xð Þdx
� �

Φ θð Þdθ
�
em xð Þ:

ð48Þ
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The triangle inequality allows us to obtain that

W δ ·, tð Þ − y ·, tð Þk kXn Dð Þ ≤ W δ ·, tð Þ −Zδ ·, tð Þk kXn Dð Þ
+ Zδ ·, tð Þ − y ·, tð Þk kXn Dð Þ:

ð49Þ

Next, we will evaluate the right side of (49), by the same
way as demonstrated in (42),

y ·, tð Þ −Zδ ·, tð Þk k2Xn Dð Þ ≤ Bδj j−2σ uk k2L∞ 0,T ;Xn+σ Dð Þð Þ: ð50Þ

It is easy to see that

W δ x, tð Þ −Zδ x, tð Þ = J 1 x, tð Þ + J 2 x, tð Þ + J 3 x, tð Þ: ð51Þ

whereby

J 1 x, tð Þ = 〠
λm≤Bδ

exp λsm
1 + kλm

Tβ − tβ

β

 !

�
ð
D

yT ,δ xð Þ − yT xð Þ� �
em xð Þdx

� �
em xð Þ,

J 2 x, tð Þ = − 〠
λm≤Bδ

ðT
t
θβ−1 exp λsm

1 + kλm

θβ − tβ

β

 !
Φδ θð Þdθ

" #

�
ð
D

f δ xð Þ − f xð Þð Þem xð Þ
� �

em xð Þ,

J 3 x, tð Þ = 〠
λm≤Bδ

ðT
t
θβ−1 exp λsm

1 + kλm

θβ − tβ

β

 !
Φ θð Þ −Φδ θð Þð Þdθ

" #

�
ð
D

f xð Þem xð Þdx
� �

em xð Þ:

ð52Þ

We will divide this review into several steps as follows:
Step 1: Estimate of kJ 1ð·, tÞkXnðDÞ, we obtain that

J 1 ·, tð Þk kXn Dð Þ ≤ C4 N , pð Þ Bδj jn+N/2p−N/4 exp Bs−1
δ k−1

Tβ

β

 !
δ:

ð53Þ

Step 2: Due to Parseval’s equality, the term
kJ 2ð·, tÞkXnðDÞ can be bounded as follows:

J 2 ·, tð Þk kXn Dð Þ = 〠
λm≤Bδ

λ2nm

ðT
t
θβ−1 exp λsm

1 + kλm

θβ − tβ

β

 !
Φδ θð Þdθ

" #2

�
ð
D

f δ xð Þ − f xð Þð Þem xð Þdx
� �2

:

ð54Þ

Thank to Holder’s inequality, we derive that for p > 1
and p∗ = 1 + ð1/ðp − 1ÞÞ, one has
ðT
t
θβ−1 exp λsm

1 + kλm

θβ − tβ

β

 !
Φδ θð Þdθ

�����
�����

≤
ðT
0
Φδj jpdθ

� �1/p ðT
t
θp

∗ β−1ð Þ exp p∗
λsm

1 + kλm

θβ − tβ

β

 !
dθ

 !1/p∗

≤ exp λs−1m k−1
Tβ

β

 !
Φδk kLp∗ 0,Tð Þ

ðT
0
θp

∗ β−1ð Þdθ
� �1/p∗

≤
p − 1
pβ − 1

� �p−1/p
Tpβ−1/p exp λs−1m k−1

Tβ

β

 !
Φδk kLp 0,Tð Þ:

ð55Þ

The latter inequality leads to

J 2 :,tð Þk k2Xn Dð Þ

= 〠
λm≤Bδ

λ2nm

ðT
t
θβ−1 exp λsm

1 + kλm

θβ − tβ

β

 !
Φδ θð Þdθ

" #2

·
ð
D

f δ xð Þ − f xð Þð Þem xð Þdx
� �2

≤
p − 1
pβ − 1

� �2p−2/p
T2pβ−2/p Φδ θð Þk k2Lp 0,Tð Þ

× 〠
λm≤Bδ

λ2n+N/p−N/2
m λNp−2N/2p

m exp

· 2Tβλs−1m k−1

β

 ! ð
D

f δ xð Þ − f xð Þð Þem xð Þdx
� �2

≤
p − 1
pβ − 1

� �2p−2/p
T2pβ−2/p Φδ θð Þk k2Lp 0,Tð Þ Bδj j2n+N/p−N/2 exp

· 2Tβ Bδj js−1k−1
β

 !
× 〠

λm≤Bδ

λ2n+N/p−N/2
m

ð
D

f δ xð Þ − f xð Þð Þem xð Þdx
� �2

≤
p − 1
pβ − 1

� �2p−2/p
T2pβ−2/p Φδ θð Þk k2Lp 0,Tð Þ Bδj j2n+N/p−N/2

× exp 2Tβ Bδj js−1k−1
β

 !
f δ − fk kXNp−2N/4p Ωð Þ:

ð56Þ

where s > 1/β. In view of Sobolev embedding LpðDÞ°
XðNp−2NÞ/4pðDÞ, we derive that the following estimate

J 2 :,tð Þk kXn Dð Þ ≤ C6 p, β, T ,Nð Þ Φδk kLp 0,Tð Þ Bδj jn+N/2p−N/4 exp

� Tβ Bδj js−1k−1
β

 !
δ,

ð57Þ

where

C6 p, β, T ,Nð Þ = p − 1
pβ − 1

� �p−1/p
Tpβ−1/pC5 N , pð Þ: ð58Þ
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Step 3: Let us now to consider the term kJ 3ð:,tÞkXnðDÞ.
By applying Hölder’s inequality, we get that for p > 1 and
p∗ = 1/ðp − 1Þ ·

ðT
t
θβ−1 exp λsm

1 + kλm

νβ − tβ

β

� �
Φ θð Þ −Φδ θð Þð Þdθ

����
����

≤
ðT
0
Φ θð Þ −Φδ θð Þj jsdν

� �1/p

·
ðT
t
θp

∗ β−1ð Þ exp p∗
λsm

1 + kλm

θβ − tβ

β

 !
dν

 !1/p∗

≤ exp λs−1m k−1Tβ

β

 !
Φδ −Φk kLp 0,Tð Þ

ðT
t
νs

∗ β−1ð Þdν
� �1/p∗

≤
p − 1
pβ − 1

� �p−1/p
Tpβ−1/p exp Tβλs−1m k−1

β

 !
Φ −Φδk kLp 0,Tð Þ

≤
p − 1
pβ − 1

� �p−1/p
Tpβ−1/p exp Tβλs−1m k−1

β

 !
δ:

ð59Þ

This inequality together with Parseval’s equality allows
us to derive that

J 3 :,tð Þk k2Xn Dð Þ

= 〠
λm≤Bδ

λ2nm

ðT
t
θβ−1 exp λsm

1 + kλm

θβ − tβ

β

 !
Φ θð Þ −Φδ θð Þð Þdθ

 !2

·
ð
D

f xð Þem xð Þdx
� �2

≤
p − 1
pβ − 1

� �2p−2/p
T2pβ−2/pδ2 〠

λm≤Bδ

λ2n+N/p−N/2
m λNp−2N/2p

m exp

· 2λs−1m k−1Tβ

β

 ! ð
D

f xð Þem xð Þdx
� �2

≤
p − 1
pβ − 1

� �2p−2/p
T2pβ−2/pδ2 Bδj j2n+N/p−N/2 exp

· 2Tβ Bδj js−1k−1
β

 !
fk kXNp−2N/4p Ωð Þ:

ð60Þ

By the fact that LpðDÞ°XðNp−2NÞ/4pðDÞ, we deduce that

J 3 :,tð Þk kXn Dð Þ ≤ C6 p, β, T ,Nð Þ fk kLp Dð Þ Bδj jn+N/2p−N/4 exp

� Tβ Bδj js−1k−1
β

 !
δ:

ð61Þ

Combining Step 1 to Step 3, we get

J 1 :,tð Þk kXn Dð Þ+ J 2 :,tð Þk kXn Dð Þ+ J 3 :,tð Þk kXn Dð Þ

≤ C4 N , pð Þ Bδj jn+N/2p−N/4 exp Bδj js−1k−1Tβ

β

 !
δ

+ C6 p, β, T ,Nð Þ Bδj jn+N/2p−N/4 exp Tβ Bδj js−1k−1
β

 !
δ

· Φδk kLp 0,Tð Þ + fk kLp Dð Þ
	 


:

ð62Þ

Finally, combining the reviews from above, we conclude
that

W δ ·, tð Þ − y ·, tð Þk kXn Dð Þ
≤ δ Bδj j−σ uk kL∞ 0,T ;Xn+σ Dð Þð Þ

+ C4 N , pð Þ Bδj jn+N/2p−N/4 exp Bs−1
δ k−1

Tβ

β

 !
δ

+ C6 p, β, T ,Nð Þ Bδj jn+N/2p−N/4 exp

· Tβ Bδj js−1k−1
β

 !
δ Φδk kLp 0,Tð Þ + fk kLp Dð Þ
	 


:

ð63Þ

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no competing interests.
The corresponding author is a full-time member of the
School of Mathematics, Iran University of Science and Tech-
nology, Narmak, Tehran, Iran

Authors’ Contributions

All authors conceived of the study, participated in its design
and coordination, drafted the manuscript, participated in
the sequence alignment, and read and approved the final
manuscript.

Acknowledgments

The author Le Dinh Long is supported by Van Lang
University.

References

[1] F. M. Alharbia, D. Baleanu, and A. Ebaid, “Physical properties
of the projectile motion using the conformable derivative,”
Chinese Journal of Physics, vol. 58, pp. 18–28, 2019.

[2] A. A. Kilbas, O. I. Marichev, and S. G. Samko, Fractional Inte-
grals and Derivatives (Theory and Applications), 1993.

[3] N. H. Tuan, Y. E. Aghdam, H. Jafari, and H. Mesgarani, “A
novel numerical manner for two-dimensional space fractional
diffusion equation arising in transport phenomena,”

8 Journal of Function Spaces



Numerical Methods for Partial Differential Equations, vol. 37,
no. 2, pp. 1397–1406, 2021.

[4] E. Karapinar, H. D. Binh, N. H. Luc, and N. H. Can, “On con-
tinuity of the fractional derivative of the time-fractional semi-
linear pseudo-parabolic systems,” Adv. Difference Equ.,
vol. 2021, no. 1, article 70, 2021.

[5] R. S. Adigüzel, Ü. Aksoy, E. Karapinar, and İ. M. Erhan, “On
the solution of a boundary value problem associated with a
fractional differential equation,” Mathematical Methods in
the Applied Sciences, 2020.

[6] R. Sevinik-Adıgüzel, Ü. Aksoy, E. Karapınar, and İ. M. Erhan,
“Uniqueness of solution for higher-order nonlinear fractional
differential equations with multi-point and integral boundary
conditions,” Revista de la Real Academia de Ciencias Exactas,
Físicas y Naturales. Serie A. Matemáticas, vol. 115, no. 3, article
155, 2021.

[7] R. S. Adiguzel, U. Aksoy, E. Karapinar, and I. M. Erhan, “On
the solutions of fractional differential equations via Geraghty
type hybrid contractions,” Applied and Computational Mathe-
matics, vol. 20, no. 2, pp. 313–333, 2021.

[8] N. D. Phuong, “Note on a Allen-Cahn equation with Caputo-
Fabrizio derivative,” Results in Nonlinear Analysis, vol. 4, no. 3,
pp. 179–185, 2021.

[9] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, “A new
definition of fractional derivative,” Journal of Computational
and Applied Mathematics, vol. 264, pp. 65–70, 2014.

[10] T. Abdeljawad, “On conformable fractional calculus,” Journal
of Computational and Applied Mathematics, vol. 279, pp. 57–
66, 2015.

[11] A. Jaiswal and D. Bahuguna, “Semilinear conformable frac-
tional differential equations in Banach spaces,” Differential
Equations and Dynamical Systems, vol. 27, no. 1-3, pp. 313–
325, 2019.

[12] O. Acan, M. M. Al Qurashi, and D. Baleanu, “New exact solu-
tion of generalized biological population model,” The Journal
of Nonlinear Sciences and Applications, vol. 10, no. 7,
pp. 3916–3929, 2017.

[13] M. Bouaouid, K. Hilal, and S. Melliani, “Nonlocal telegraph
equation in frame of the conformable time-fractional deriva-
tive,” Advances in Mathematical Physics, vol. 2019, Article ID
7528937, 7 pages, 2019.

[14] H. T. Nguyen, D. L. Le, and V. T. Nguyen, “Regularized solu-
tion of an inverse source problem for a time fractional diffu-
sion equation,” Applied Mathematical Modelling, vol. 40,
no. 19-20, pp. 8244–8264, 2016.

[15] A. Qian and Y. Li, “Optimal error bound and generalized
Tikhonov regularization for identifying an unknown source
in the heat equation,” Journal of Mathematical Chemistry,
vol. 49, no. 3, pp. 765–775, 2011.

[16] S. Yang, X. Xiong, and Y. Nie, “Iterated fractional Tikhonov
regularization method for solving the spherically symmetric
backward time-fractional diffusion equation,” Applied Numer-
ical Mathematics, vol. 160, pp. 217–241, 2021.

[17] F. Yang, J.-L. Fu, P. Fan, and X.-X. Li, “Fractional Landweber
iterative regularization method for identifying the unknown
source of the time-fractional diffusion problem,” Acta Appli-
candae Mathematicae, vol. 175, no. 1, p. 13, 2021.

[18] N. D. Phuong, N. H. Luc, and L. D. Long, “Modified quasi
boundary value method for inverse source problem of the bi-
parabolic equation,” Advances in Theory of Nonlinear Analysis
and its Applications, vol. 4, no. 3, pp. 132–142, 2020.

[19] T. Wei and J. Wang, “A modified quasi-boundary value
method for an inverse source problem of the time-fractional
diffusion equation,” Applied Numerical Mathematics, vol. 78,
pp. 95–111, 2014.

[20] F. Yang, P. Zhang, and X.-X. Li, “The truncation method for
the Cauchy problem of the inhomogeneous Helmholtz equa-
tion,” Applicable Analysis, vol. 98, no. 5, pp. 991–1004, 2019.

[21] N. H. Tuan, “On some inverse problem for bi-parabolic equa-
tion with observed data in Lp spaces,” Opuscula Mathematica,
vol. 42, no. 2, pp. 305–335, 2022.

[22] N. H. Tuan and T. Caraballo, “On initial and terminal value
problems for fractional nonclassical diffusion equations,” Pro-
ceedings of the American Mathematical Society, vol. 149, no. 1,
pp. 143–161, 2021.

[23] N. H. Tuan, T. B. Ngoc, D. Baleanu, and D. O’Regan, “Onwell-
posedness of the sub-diffusion equation with conformable
derivative model,” Communications in Nonlinear Science and
Numerical Simulation, vol. 89, article 105332, 2020.

9Journal of Function Spaces



Research Article
A New Modified Technique of Adomian Decomposition
Method for Fractional Diffusion Equations with Initial-
Boundary Conditions

Saadia Masood ,1 Hajira ,2 Hassan Khan ,2,3 Rasool Shah ,2 Saima Mustafa ,1

Qasim Khan ,2,4 Muhammad Arif ,2 Fairouz Tchier ,5 and Gurpreet Singh 6

1Department of Mathematics, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan 46000
2Department of Mathematics, Abdul Wali Khan University Mardan, Pakistan
3Department of Mathematics, Near East University TRNC, Mersin 10, Turkey
4Department of Mathematics and Information Technology, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po,
New Territories, Hong Kong
5Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
6School of Mathematical Sciences, Dublin City University, Ireland

Correspondence should be addressed to Hassan Khan; hassanmath@awkum.edu.pk
and Qasim Khan; qasim.khan@awkum.edu.pk

Received 7 April 2022; Accepted 25 May 2022; Published 5 August 2022

Academic Editor: Yusuf Gurefe

Copyright © 2022 Saadia Masood et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In general, solving fractional partial differential equations either numerically or analytically is a difficult task. However,
mathematicians have tried their best to make the task easy and promoted various techniques for their solutions. In this regard,
a very prominent and accurate technique, which is known as the new technique of the Adomian decomposition method, is
developed and presented for the solution of the initial-boundary value problem of the diffusion equation with fractional view
analysis. The suggested model is an important mathematical model to study the behavior of degrees of memory in diffusing
materials. Some important results for the given model at different fractional orders of the derivatives are achieved. Graphs
show the obtained results to confirm the accuracy and validity of the suggested technique. These results are in good contact
with the physical dynamics of the targeted problems. The obtained results for both fractional and integer orders problems are
explained through graphs and tables. Tables and graphs support the physical behavior of each problem and the best of physical
analysis. From the results, it is concluded that as the fractional order derivative is changed, the graphs or paths of dynamics
are also changed. Therefore, we now choose the best solution or dynamic of the problem at a particular derivative order. It is
analyzed that the present technique is one of the best techniques to handle the solutions of fractional partial differential
equations having initial and boundary conditions (BCs), which are very rare in literature. Furthermore, a small number of
calculations are done to achieve a very high rate of convergence, which is the novelty of the present research work. The
proposed method provides the series solution with twice recursive formulae to increase the desired accuracy and is preferred
among the best techniques to find the solution of fractional partial differential equations with mixed initials and BCs.

1. Introduction

Fractional Calculus (FC) is the study of derivatives and inte-
gration of fractional orders. The idea was first initiated by
L’Hospital, who wrote a letter to Leibniz about the noninte-

ger order of derivatives in 1665. After that, the devoted work
done by Euler, Lagrange, Abel, and Liouville gives more
extension to the field, which is very popular nowadays
because of its essential applications in the areas of biology,
physics, fluid mechanics, and other sciences [1–3].
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Fractional-order differential equations (FPDEs) have a
great contribution in the modeling of a variety of complex
natural and nonlinear phenomena. FPDEs have made a
significant contribution to various scientific research fields,
including a diverse range of processes and systems, memo-
ries, and various branches of mathematics. The modeling
of FPDEs, whether they are with respect to time or space,
is more convergent, and many natural phenomena are accu-
rately described by them. The researchers in the fields of
anomalous diffusion, dielectric polarization, control theory,
and other problems of physical phenomena are interested
in FPDEs [4–10]. Since the fractional order of the derivative
works more accurately than integer order in describing the
properties related to hereditary and where the future state
is influenced by the past state, FPDEs give the highest contri-
bution to explaining such types of systems. Psychology, biol-
ogy, acoustics, chemistry [11], physics, colored noises [12],
and continuum mechanics [13] are some of the scientific
phenomena and problems that FPDEs are used to model.
Special applications of FPDEs can be found in various
branches of physics and hydrology, including [14–22].
FPDEs have grown in popularity because, by definition, the
fractional derivative is global, whereas the integer order
derivative is local [23–25].

In recent years, the development of numerical and ana-
lytical methodologies for the solution of FPDEs is a hot topic
among the researchers. Obtaining numerical or analytical
solutions to FPDEs is never a simple task for mathemati-
cians. Many researchers, on the other hand, have devised a
number of novel techniques for dealing with FPDE solu-
tions. Some of the important techniques include the Haar
wavelet method (HWM) [26], the Laplace transform method
[27], the Elzaki transform decomposition method (ETDM)
[28], the Adomian decomposition method (ADM) [29], the
finite difference technique [30, 31], the natural transform
decomposition approach [32], the Legendre base method
[33], the homotopy analysis method [34], the differential
transform method [35], the variational iteration approach
[36], and the Bernstein polynomial [37].

Many researchers have studied the time-fractional dif-
fusion equations (TFDEs) because of their various applica-
tions in science and engineering and other branches of
applied sciences. TFDEs are broadly found in physical,
biological, and engineering processes [38–41]. The TFDEs
are used by Nigmatulin [39] to describe diffusion in media
with spectral geometry. The TFDEs are being investigated
by many researchers, both analytically and numerically
[42, 43]. The solution method of the Laplace transform
and a similar method is used to obtain the invariant solu-
tion of TFDEs by Gorenlfo et al. [44, 45], and Lin and Zu
applied a finite difference scheme in the Legendre spectral
method and in space for TFDEs [46]. Dhaigude and
Nikam [13] and Schneider and Wyss [43] worked on
TFDEs and wave equations to obtain the solution. More-
over, the existence and uniqueness of the targeted prob-
lems are shown in [47]. Here, the researchers either used
only one from initial boundary conditions (IBCs) to solve
the problems. In the current research article, a modified
method of ADM is implemented to solve TFDEs with

both IBCs suggested by Ali in [48]. The same procedure is
applied to the problems of having both initial and BCs in
[49] with the homotopy perturbation method, and the results
are excellent. Ali applied this new technique in [50] with a var-
iational iteration method to initial-boundary value problems.
The procedure becomes accurate because there is a new initial
approximate solution with each new iteration. For justifica-
tion, some examples are discussed in this paper.

ADM was first introduced by Adomian [51] in the
1980s, and it was observed that the technique is beneficial
for nonlinear equations. Wazwaz [52] applied the same
method to solve different kinds of differential equations.
Niu and Wang [53] used the decomposition method to find
the solution of fractional heat-like and wave-like equations.
Niu and Wang [53] applied this method to boundary value
problems to calculate a one-step optimal homotopy analysis
method. Pandir and Yildirim used the homotopy perturba-
tion method and ADM in conformable sense [54]. The
mathematicians have made several modifications to ADM
which have improved the accuracy of the technique, and
some of them are [55–57]. Here, a modified technique is
implemented to solve the initial and boundary value prob-
lems (IBVPs) of TFDEs. In the literature, various authors
have used numerical and analytical techniques for the solu-
tion of the initial value problems of FPDEs and their
systems. However, only a few attempts were made to solve
IBVPs of FPDEs and their systems. In this regard, Elaf Jaafar
Ali has made a contribution and developed a new technique
to solve FPDEs. He modified the existing techniques of
ADM to solve IBVPs of FPDEs.

In this paper, we will work on the solution of TFDEs by
using a new technique of the Adomian decomposition
method (ADM). In literature, some important numerical
and analytical techniques have been used for the solutions
of time and space fractional diffusion equations [25, 54]. In
this article, the work of Elaf Jafaar Ali is further extended
to solve IBVPs of TFDEs. The general description of the pro-
posed method is implemented to solve some examples of the
suggested problems. The analytical solutions of FPDEs with
initial and boundary conditions are very difficult to investi-
gate. In the current work, the analytical solutions of TFDEs
are obtained in a very simple and straightforward procedure
and provide the closed-form solutions. The less computa-
tional work and simplicity are the uniqueness of the present
modified technique. The obtained results are displayed
through graphs. The graphical representations have shown
that there is a close contact between the exact and the
approximate solutions of the problems. The solutions are
obtained for various fractional-order problems. The frac-
tional order solutions provide useful information about the
dynamics of the suggested problems. It is observed that the
proposed technique has a very effective procedure for solv-
ing FPDEs and their systems with IBCs. However, some lim-
itations are observed while using the present technique, that
is, if the FPDEs or their systems have a higher number of
IBCs, then the proposed method required a large number
of calculations to achieve the results. Mostly, the suggested
methods have smaller accuracy at a greater time value and
their accuracy increased at a smaller time value. For higher
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nonlinear problems, the solution components are not easy to
compute, so very few terms are calculated to achieve the
required solution.

2. Preliminaries

Some definitions that are related to our study are considered
in this section.

2.1. Definition. The integral operator of Reimann-Liouville
having order δ is given by [40]

Iδσh
� �

σð Þ =
1

Γ δð Þ
ðτ
0
σ − νð Þδ−1dν, δ > 0,

h σð Þ, δ = 0,

8><
>: ð1Þ

where Γ is the gamma function and can be written as

Γ ωð Þ =
ð∞
0
e−σσω−1dτ, ω ∈ℂ: ð2Þ

2.2. Definition. The expression for Caputo for fractional
order δ is as follows:

Dδh
� �

σð Þ = ∂δh σð Þ
∂τδ

=
Im−δ ∂δh σð Þ

∂τδ

" #
, m − 1 < δ ≤m,m ∈ℕ,

∂δh σð Þ
∂τδ

,

8>>>><
>>>>:

ð3Þ

where m ∈ℕ, σ > 0, g ∈ℂτ, and τ ≥ 1.

2.3. Lemma. For j − 1 < δ ≤ j with j ∈ℕ and h ∈ℂτ with
τ ≥ −1, then [58]

IδIb = Iδ+bh σð Þ, b, δ ≥ 0,

Iδσλ = Γ λ + 1ð Þ
Γ δ + λ + 1ð Þσ

δ+λ, δ > 0, λ>−1, σ > 0,

IδDδh σð Þ = h σð Þ − 〠
j−1

k=0
hk 0+ð Þ σ

k

k!
,

8>>>>>>><
>>>>>>>:

ð4Þ

where σ > 0, j − 1 < δ ≤ j.

2.4. Definition. The Mittag-Leffler function EδðρÞ for δ > 0 is

Eδ ρð Þ = 〠
∞

m=0

ρm

Γ mδ + 1ð Þ
� �

, δ > 0, ρ ∈ℂ: ð5Þ

3. Adomian Decomposition Method

This method was discovered by Adomian in 1994 for the
solution of linear and nonlinear differential and integrodif-
ferential equations [29]. To understand the method, let us
consider an equation of the following form:

F ϑ σð Þð Þ = g σð Þ, ð6Þ

where F is a nonlinear differential operator and g is the known
function.Wewill split the linear term in FðϑðσÞÞ into the form
Lϑ + Rϑ, where L is the invertible operator, chosen as the
highest order derivative, R represents the linear operator,
and then, Equation (6) has the representation as follows:

Rϑ + Rϑ +Nϑ = g, ð7Þ

where Nϑ is the nonlinear term of FðϑðσÞÞ. Apply R−1 to
Equation (7) on both sides.

ϑ = φ +R−1 gð Þ −R−1 Rϑð Þ −R−1 Nϑð Þ, ð8Þ

where the constant of integration is φ, and Rφ = 0.
The following infinite series shows the solution of

ADM as

ϑ = 〠
∞

n=0
ζn: ð9Þ

The Nϑ is a nonlinear term represented by An, defined
as follows:

Nϑ = 〠
∞

n=0
An: ð10Þ

Using the following to calculate An,

An =
1
n!

dn

dψn
N 〠

∞

k=0
ψkυk
� � !

, n = 0, 1,⋯: ð11Þ

Equation (6) has a solution in the form of a series
as follows:

ϑ0 = φ +R−1 gð Þ, n = 0,
ϑn+1 =R−1 Rϑnð Þ −R−1 Anð Þ, n ≥ 0:

(
ð12Þ

4. Modification of ADM

To understand the main idea of the proposed technique, we
will take the following one-dimensional equation [48]:

Dδ
τ ϑ σ, τð Þð Þ = ∂2ϑ σ, τð Þ

∂σ2
+w σ, τð Þ, 0 < σ < 1, τ > 0, 0 < δ < 1,

ð13Þ

having the IBCs as follows:

ϑ σ, τð Þ = ℓ0 σð Þ,  ∂ϑ σ, 0ð Þ
∂τ

= ℓ1 σð Þ, 0 ≤ σ ≤ 1,

ϑ 0, τð Þ = ℏ0 τð Þ, ϑ 1, τð Þ = ℏ1 τð Þ, τ > 0:

8<
:

ð14Þ

The source term is represented by wðσ, τÞ.
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The new initial solution ðϑ∗nÞ calculated for Equation
(13) can be written in operator form as

ϑ∗n = ϑn σ, τð Þ + 1 − σð Þ ℏ0 τð Þ − ϑn 0, τð Þ½ � + σ ℏ1 τð Þ − ϑn 1, τð Þ½ �:
ð15Þ

In operator form, Equation (13) can be written as

Rϑ = ∂2ϑ σ, τð Þ
∂σ2

+w σ, τð Þ: ð16Þ

R is

R = ∂δ

∂τδ
, ð17Þ

so R−1 is

R−1 :ð Þ = Iδ :ð Þdτ: ð18Þ

Applying R−1 to Equation (16), we obtained

ϑ σ, τð Þ = ϑ σ, 0ð Þ +R−1 ∂2ϑ σ, τð Þ
∂σ2 +w σ, τð Þ

 !
, ð19Þ

where n = 0, 1,⋯:
The initial approximation can be written as

ϑ0 σ, τð Þ = ϑ σ, 0ð Þ +R−1 w σ, τð Þð Þ, ð20Þ

and hence, the iteration formula is

ϑn+1 σ, τð Þ =R−1 ∂2ϑ∗ σ, τð Þ
∂σ2

 !
: ð21Þ

The initial solutions u∗n of Equation (13) satisfied both
the IBCs, as given in the following:

at τ = 0, ϑ∗n σ, 0ð Þ = ϑn σ, 0ð Þ,
 σ = 0, ϑ∗n 0, τð Þ = ℏ0 τð Þ,
 σ = 1, ϑ∗n 1, τð Þ = ℏ1 τð Þ:

ð22Þ

The proposed technique works effectively for two-
dimensional problems.

5. Numerical Results

In this section, some illustrative examples are solved by the
new technique of ADM.

5.1. Example. Consider TFDE of the following form [59]:

∂δϑ σ, τð Þ
∂τδ

= ∂2ϑ σ, τð Þ
∂σ2

+ Γ 4 + δð Þ
6 σ4 2 − σð Þτ3

− 4σ2 6 − 5σð Þτ3+σ, 0 ≤ σ ≤ 2, 0 < δ ≤ 1,
ð23Þ

having the IBCs as follows:

ϑ σ, 0ð Þ = 0,
ϑ 0, τð Þ = ϑ 2, τð Þ = 0:

ð24Þ

The problem has the analytical solution at δ = 1 as follows:

ϑ σ, τð Þ = σ4 2 − σð Þτ3+δ: ð25Þ

Applying the suggested method of ADM to Equation (23),
we have

ϑ∗n σ, τð Þ = ϑn σ, τð Þ + 1 − σð Þ 0 − ϑn 0, τð Þ½ � + σ 0 − ϑn 2, τð Þ½ �,
ð26Þ

where n = 0, 1,⋯.
Applying R to Equation (23), we have

Rϑ = ∂2ϑ σ, τð Þ
∂σ2

+ Γ 4 + δð Þ
6 σ4 2 − σð Þτ3 − 4σ2 6 − 5σð Þτ3+σ,

ð27Þ

where R = ∂δ/∂τδ and R−1 is

R−1 :ð Þ = Iδ :ð Þdτ: ð28Þ

Operating Equation (23) by mathcalR−1, we have

ϑ σ, τð Þ = u σ, 0ð Þ +R−1

� ∂2ϑ σ, τð Þ
∂σ2

+ Γ 4 + δð Þ
6 σ4 2 − σð Þτ3 − 4σ2 6 − 5σð Þτ3+σ

 !
:

ð29Þ

Using ADM solution, the initial approximation becomes

ϑ0 σ, τð Þ = ϑ σ, 0ð Þ +R−1 Γ 4 + δð Þ
6 σ4 2 − σð Þτ3 − 4σ2 6 − 5σð Þτ3+σ

� �

= 0 + Γ 4 + δð ÞΓ 4ð Þσ4 2 − σð Þτ3+δ
6Γ 4 + δð Þ −

4σ2 6 − 5σð ÞΓ 4 + δð Þτ3+2δ
Γ 4 + 2δð Þ

= σ4 2 − σð Þτ3+δ − 24σ2 + 20σ3� �
Γ 4 + δð Þτ3+2δ

Γ 4 + 2δð Þ ,

ϑ0 σ, τð Þ = σ4 2 − σð Þτ3+δ − 24σ2Γ 4 + δð Þτ3+2δ
Γ 4 + 2δð Þ + 20σ3Γ 4 + δð Þτ3+2δ

Γ 4 + 2δð Þ :

ð30Þ

With the help of initial approximation ϑ∗n , the formula
for iterations is
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ϑn+1 σ, τð Þ =R−1 ∂2ϑ∗n
∂σ2

 !
: ð31Þ

Use the IBCs in Equation (26), for n = 0:

ϑ∗0 σ, τð Þ = ϑ0 σ, τð Þ + 1 − σð Þ 0 − ϑ0 0, τð Þ½ � + σ 0 − ϑ0 2, τð Þ½ �

= σ4 2 − σð Þτ3+δ − 24σ2Γ 4 + δð Þτ3+2δ
Γ 4 + 2δð Þ + 20σ3Γ 4 + δð Þτ3+2δ

Γ 4 + 2δð Þ

= σ4 2 − σð Þτ3+δ − 24σ2 + 20σ3� �
Γ 4 + δð Þτ3+2δ

Γ 4 + 2δð Þ

+ 1 − σð Þ 0 − 0½ � + σ 0 − 0 − −16Γ 4 + δð Þτ3+2δ
Γ 4 + 2δð Þ

� �� 	
,

ϑ∗0 σ, τð Þ = σ4 2 − σð Þτ3+δ − 24σ2Γ 4 + δð Þτ3+2δ
Γ 4 + 2δð Þ

+ 20σ3Γ 4 + δð Þτ3+2δ
Γ 4 + 2δð Þ −

16σΓ 4 + δð Þτ3+2δ
Γ 4 + 2δð Þ :

ð32Þ

From Equation (31), we have

ϑ1 σ, τð Þ =R−1 ∂2ϑ0∗
∂σ2

 !

=R−1 24σ2 − 20σ3
� �

τ3+δ −
48 − 120σΓ 4 + δð Þτ3+2δ

Γ 4 + 2δð Þ
� �

,

ϑ1 σ, τð Þ = 24σ2Γ 4 + δð Þτ3+2δ
Γ 4 + 2δð Þ −

20σ3Γ 4 + δð Þτ3+2δ
Γ 4 + 2δð Þ

−
48Γ 4 + δð Þτ3+3δ

Γ 4 + 3δð Þ + 120σΓ 4 + δð Þτ3+3δ
Γ 4 + 3δð Þ :

ð33Þ

For n = 1, Equation (26) becomes

ϑ∗1 σ, τð Þ = ϑ1 σ, τð Þ + 1 − σð Þ 0 − ϑ1 0, τð Þ½ � + σ 0 − ϑ1 2, τð Þ½ �

= 24σ2Γ 4 + δð Þτ3+2δ
Γ 4 + 2δð Þ −

20σ3Γ 4 + δð Þτ3+2δ
Γ 4 + 2δð Þ

−
48Γ 4 + δð Þτ3+3δ

Γ 4 + 3δð Þ + 120σΓ 4 + δð Þτ3+3δ
Γ 4 + 3δð Þ 1 − σð Þ

� 0 + 48Γ 4 + δð Þτ3+3δ
Γ 4 + 3δð Þ

� 	

+ σ 0 + 64Γ 4 + δð Þτ3+2δ
Γ 4 + 3δð Þ −

192Γ 4 + δð Þτ3+3δ
Γ 4 + 3δð Þ

� 	
,

ϑ∗1 σ, τð Þ = 24σ2Γ 4 + δð Þτ3+2δ
Γ 4 + 2δð Þ −

20σ3Γ 4 + δð Þτ3+2δ
Γ 4 + 2δð Þ

−
120σΓ 4 + δð Þτ3+3δ

Γ 4 + 3δð Þ + 64σΓ 4 + δð Þτ3+2δ
Γ 4 + 2δð Þ :

ð34Þ

From Equation (31), we have

ϑ2 σ, τð Þ = L−1
∂2ϑ∗1
∂σ2

 !

= L−1
48Γ 4 + δð Þtau3+2δ

Γ 4 + 2δð Þ −
120σΓ 4 + δð Þτ3+2δ

Γ 4 + 2δð Þ
� �

,

ϑ2 σ, τð Þ = 48Γ 4 + δð Þτ3+3δ
Γ 4 + 3δð Þ −

120σΓ 4 + δð Þτ3+3δ
Γ 4 + 3δð Þ : ð35Þ

For n = 2, Equation (26) becomes

ϑ∗2 σ, τð Þ = ϑ2 σ, τð Þ + 1 − σð Þ 0 − ϑ2 0, τð Þ½ � + σ 0 − ϑ2 2, τð Þ½ �

= 48 − 120σð ÞΓ 4 + δð Þτ3+3δ
Γ 4 + 3δð Þ

+ 1 − σð Þ 0 − ϑ2 0, τð Þ½ � + σ 0 − ϑ2 2, τð Þ½ �,

= 48 − 120σð ÞΓ 4 + δð Þτ3+3δ
Γ 4 + 3δð Þ

+ 1 − σð Þ 0 − 48Γ 4 + δð Þτ3+3δ
Γ 4 + 3δð Þ

� 	

+ σ 0 + 192Γ 4 + δð Þτ3+3δ
Γ 4 + 3δð Þ

� 	

= −120σΓ 4 + δð Þτ3+3δ
Γ 4 + 3δð Þ + 48σΓ 4 + δð Þτ3+3δ

Γ 4 + 3δð Þ

+ 192σΓ 4 + δð Þτ3+3δ
Γ 4 + 3δð Þ ,

ϑ∗2 σ, τð Þ = 120σΓ 4 + δð Þτ3+3δ
Γ 4 + 3δð Þ : ð36Þ

From Equation (31), we have

ϑ3 σ, τð Þ = L−1
∂2ϑ∗2
∂σ2

 !
,

=R−1 0ð Þ = 0:
⋮

ð37Þ

Thus, the series form of ADM solution is

ϑ σ, τð Þ = ϑ0 σ, τð Þ + ϑ1 σ, τð Þ + ϑ2 σ, τð Þ + ϑ3 σ, τð Þ+⋯

= σ4 2 − σð Þτ3+δ − 24σ2Γ 4 + δð Þτ3+2δ
Γ 4 + 2δð Þ

+ 20σ3Γ 4 + δð Þτ3+2δ
Γ 4 + 2δð Þ + 24σ2Γ 4 + δð Þτ3+2δ

Γ 4 + 2δð Þ

−
20σ3Γ 4 + δð Þτ3+2δ

Γ 4 + 2δð Þ −
48Γ 4 + δð Þτ3+3δ

Γ 4 + 3δð Þ

+ 120σΓ 4 + δð Þτ3+3δ
Γ 4 + 3δð Þ + 48Γ 4 + δð Þτ3+3δ

Γ 4 + 3δð Þ

−
120σΓ 4 + δð Þτ3+3δ

Γ 4 + 3δð Þ + 0+⋯,

ϑ σ, τð Þ = σ4 2 − σð Þτ3+δ: ð38Þ
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5.2. Example. Consider the TFDE of the following form [59]:

∂δϑ σ, τð Þ
∂τδ

= ∂2ϑ σ, τð Þ
∂σ2

+ 3Γ 1/2ð Þ
4 τσ4 σ − 1ð Þ

− 4σ2 5σ − 3ð Þτ3/2, 0 ≤ σ ≤ 1, 0 < δ ≤ 1,
ð39Þ

having the IBCs as follows:

ϑ σ, 0ð Þ = 0,
ϑ 0, τð Þ = ϑ 1, τð Þ = 0:

ð40Þ

With analytical solution at δ = 1/2 as follows:

ϑ σ, τð Þ = σ4 σ − 1ð Þτ3/2: ð41Þ

Apply the suggested method of ADM to Equation (39),
we have

ϑ∗n σ, τð Þ = ϑn σ, τð Þ + 1 − σð Þ 0 − ϑn 0, τð Þ½ � + σ 0 − ϑn 1, τð Þ½ �,
ð42Þ

where n = 0, 1,⋯.
Applying R to Equation (39), we have

Rϑ = ∂2ϑ σ, τð Þ
∂σ2

+ Γ
1
2

� �
4τσ4 σ − 1ð Þ − 4σ2 5σ − 3ð Þτ3/2,

ð43Þ

where R = ∂δ/∂τδ and R−1 is defined as

R−1 :ð Þ = Iδ :ð Þdτ: ð44Þ

Operating Equation (39) by R−1, we have

ϑ σ, τð Þ = ϑ σ, 0ð Þ +R−1 3Γ 1/2ð Þ
4 τσ4 σ − 1ð Þ − 4σ2 5σ − 3ð Þτ3/2

� �
:

ð45Þ

Using ADM solution, the initial approximation becomes

ϑ0 σ, τð Þ = ϑ σ, 0ð Þ +R−1 3Γ 1/2ð Þ
4 τσ4 σ − 1ð Þ − 4σ2 5σ − 3ð Þτ3/2

� �

= 0 + 3Γ 1/2ð ÞΓ 2ð Þτδ+1σ4 σ − 1ð Þ
4Γ δ + 2ð Þ −

4σ2 5σ − 3ð ÞΓ 5/2ð Þτ3/2+δ
Γ 5/2 + δð Þ ,

ϑ0 σ, τð Þ = 3Γ 1/2ð ÞΓ 2ð Þτδ+1σ4 σ − 1ð Þ
4Γ δ + 2ð Þ −

20σ3Γ 5/2ð Þτ3/2+δ
Γ 5/2 + δð Þ + 12σ2Γ 5/2ð Þτ3/2+δ

Γ 5/2 + δð Þ :

ð46Þ

With the help of initial approximation u∗n , the formula
for iterations is

ϑn+1 σ, τð Þ =R−1 ∂2ϑ∗n
∂σ2

 !
: ð47Þ

For n = 0, put the IBCs into Equation (42).

ϑ∗0 σ, τð Þ = ϑ0 σ, τð Þ + 1 − σð Þ 0 − ϑ0 0, τð Þ½ � + σ 0 − ϑ0 1, τð Þ½ �

= 3Γ 1/2ð ÞΓ 2ð Þτδ+1σ4 σ − 1ð Þ
4Γ δ + 2ð Þ −

20σ3Γ 5/2ð Þτ3/2+δ
Γ 5/2 + δð Þ

+ 12σ2Γ 5/2ð Þτ3/2+δ
Γ 5/2 + δð Þ + 1 − σð Þ 0 − 0½ � + σ

� 0 + 8Γ 5/2ð Þτ3/2+δ
Γ 5/2 + δð Þ

� 	
,

ϑ∗0 σ, τð Þ = 3Γ 1/2ð ÞΓ 2ð Þτδ+1σ4 σ − 1ð Þ
4Γ δ + 2ð Þ −

20σ3Γ 5/2ð Þτ3/2+δ
Γ 5/2 + δð Þ

+ 12σ2Γ 5/2ð Þτ3/2+δ
Γ 5/2 + δð Þ + 8σΓ 5/2ð Þτ3/2+δ

Γ 5/2 + δð Þ :

ð48Þ

From Equation (47), we have

ϑ1 σ, τð Þ =R−1 ∂2ϑ∗0
∂σ2

 !

=R−1 3Γ 1/2ð ÞΓ 2ð Þτδ+1 20σ3 − 12σ2
� �

4Γ δ + 2ð Þ

 

−
4 30σ − 6ð ÞΓ 5/2ð Þτ3/2+δ

Γ 5/2 + δð Þ

!
,

ϑ1 σ, τð Þ = 3Γ 1/2ð ÞΓ 2ð Þτ2δ+1 20σ3 − 12σ2
� �

4Γ 2δ + 2ð Þ

−
120σΓ 5/2ð Þτ3/2+2δ

Γ 5/2 + 2δð Þ + 24Γ 5/2ð Þτ3/2+2δ
Γ 5/2 + 2δð Þ :

ð49Þ

For n = 1 Equation (42), we get

ϑ∗1 σ, τð Þ = ϑ1 σ, τð Þ + 1 − σð Þ 0 − ϑ1 0, τð Þ½ � + σ 0 − ϑ1 1, τð Þ½ �

= 3Γ 1/2ð ÞΓ 2ð Þτ2δ+1 20σ3 − 12σ2
� �

4Γ 2δ + 2ð Þ −
120σΓ 5/2ð Þτ3/2+2δ

Γ 5/2 + 2δð Þ

+ 24Γ 5/2ð Þτ3/2+2δ
Γ 5/2 + 2δð Þ + 1 − σð Þ 0 − 24Γ 5/2ð Þτ3/2+2δ

Γ 5/2 + 2δð Þ
� �

+ σ 0 − 24Γ 1/2ð ÞΓ 2ð Þτ2δ+1
4Γ 2δ + 2ð Þ + 96Γ 5/2ð Þτ3/2+2δ

Γ 5/2 + 2δð Þ
� �

,

ϑ∗1 σ, τð Þ = 3Γ 1/2ð ÞΓ 2ð Þτ2δ+1 20σ3 − 12σ2
� �

4Γ 2δ + 2ð Þ −
24Γ 1/2ð ÞΓ 2ð Þτ2δ+1

4Γ 2δ + 2ð Þ :

ð50Þ
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From Equation (47), we have

ϑ2 σ, τð Þ =R−1 ∂2ϑ∗1
∂σ2

 !
=R−1 3 120σ − 24ð ÞΓ 1/2ð Þτ2δ+1

4Γ 2δ + 2ð Þ
� �

,

ϑ2 σ, τð Þ = 3 120σ − 24ð ÞΓ 1/2ð Þτ3δ+1
4Γ 3δ + 2ð Þ :

ð51Þ

Equation (42), for n = 2, is

ϑ∗2 σ, τð Þ = ϑ2 σ, τð Þ + 1 − σð Þ 0 − ϑ2 0, τð Þ½ � + σ 0 − ϑ2 1, τð Þ½ �

= 3 120σ − 24ð ÞΓ 1/2ð Þτ3δ+1
4Γ 3δ + 2ð Þ + 1 − σð Þ

� 0 − 72Γ 1/2ð Þτ3δ+1
Γ 3δ + 2ð Þ

� 	
+ σ 0 − 288Γ 1/2ð Þτ3δ+1

Γ 3δ + 2ð Þ
� 	

,

ϑ∗2 σ, τð Þ = 144σΓ 1/2ð ÞΓ 2ð Þτ3δ+1
4Γ 3δ + 2ð Þ −

144Γ 1/2ð ÞΓ 2ð Þτ3δ+1
4Γ 3δ + 2ð Þ :

ð52Þ

From Equation (47), we get

ϑ3 σ, τð Þ =R−1 ∂2ϑ∗2
∂σ2

 !
,

=R−1 0ð Þ = 0:
⋮

ð53Þ

The series form of ADM solution is

ϑ σ, τð Þ = ϑ0 σ, τð Þ + ϑ1 σ, τð Þ + ϑ2 σ, τð Þ

+ ϑ3 σ, τð Þ+⋯ 3Γ 1/2ð ÞΓ 2ð Þτ2δ+1 20σ3 − 12σ2
� �

4Γ 2δ + 2ð Þ

−
4 30σ − 6ð ÞΓ 5/2ð Þτ3/2+2δ

Γ 5/2 + 2δð Þ
3 120σ − 24ð ÞΓ 1/2ð Þτ3δ+1

4Γ 3δ + 2ð Þ + 0+⋯:

ð54Þ

6. Results and Discussion

In Figure 1, the 3D graph of exact and approximate solutions
to Example 5.1 is presented. The comparison showed that
the graphs of exact and obtained solutions are in good agree-
ment and confirms the validity of the proposed method. In
Figure 2, the 2D plot of the exact and approximate solution
is constructed and again confirms the validity of the

0
0 0.2 0.40.6 0.8 1.5

0.5
2

1
0

0.5

1

Approximate
solution

1.5

2

2.5

𝜏
𝜎

0
0 0.20.4 0.6 0.8 1.5

0.5
2

1
0

0.5

1

Exact
solution

1.5

2

2.5

𝜏
𝜎

Figure 1: 3D plots of the exact and approximate solution for δ = 1 of Example 5.1.
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Figure 2: 2D plots of the exact and approximate solution for δ = 1 of Example 5.1.
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suggested technique. Figure 3 represents the fractional order
solutions of Example 5.1 at δ = 0:3,0:6,0:8,1. The solutions at
different fractional orders of the derivative provide the useful
information about the dynamics of Example5.1. In Figures 4
and 5, 3D and 2D graphs of exact and obtained solutions are

highlighted. From both the presentations, greater accuracy
has been observed and the graphs of the derived results are
found to be identical to the exact solution of Example 5.2.
In Figure 6, the solution of Example 5.2 at different time
levels is calculated and obtained useful dynamics for
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Figure 3: (a) 3D and (b) 2D plots for different fractional value of δ for Example 5.1.
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Figure 4: 3D plots of the exact and approximate solution for δ = 1 of Example 5.2.
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Figure 5: 2D plots of the exact and approximate solution for δ = 1 of Example 5.2.
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Figure 6: 2D plots for approximate solution of Example 5.2 at τ = 0:25,0:5,0:75,1.

Table 1: Absolute error of Example 5.1 at τ = 0:8.

σ
Exact −ADMj j Exact −ADMj j Exact −ADMj j

δ = 0:3 δ = 0:5 δ = 0:7
0.2 6:26 × 10−11 4:41 × 10−10 1:58 × 10−10

0.4 5:3 × 10−10 1:2 × 10−10 6:0 × 10−11

0.6 7:0 × 10−11 8:0 × 10−10 2:8 × 10−10

0.8 4:3 × 10−9 3:3 × 10−9 1:0 × 10−10

1 4.7 × 10−9 2:0 × 10−10 2:0 × 10−10

1.2 1:9 × 10−9 5:1 × 10−9 2:5 × 10−9

1.4 1:6 × 10−8 5:0 × 10−9 2:0 × 10−9

1.6 2:0 × 10−9 6:0 × 10−9 1:0 × 10−9

1.8 2:6 × 10−8 8:6 × 10−9 5:0 × 10−10

2 2:0 × 10−8 1:0 × 10−8 2:0 × 10−9

Table 2: Absolute error of Example 5.2 at δ = 1/2.

σ
Exact −ADMj j Exact −ADMj j Exact −ADMj j

τ = 0:3 τ = 0:5 τ = 0:7
0.1 8:748 × 10−21 3:6348 × 10−20 5:8352 × 10−20

0.2 1:5 × 10−22 2:1 × 10−22 3:9 × 10−22

0.3 1:67 × 10−22 3:20 × 10−20 4:59 × 10−20

0.4 1:60 × 10−20 6:1 × 10−21 1:443 × 10−19

0.5 1:30 × 10−22 1:3 × 10−20 3:00 × 10−19

0.6 1:27 × 10−20 2:1 × 10−20 1:11 × 10−19

0.7 4:2 × 10−20 7:0 × 10−21 4:40 × 10−19

0.8 1:5 × 10−20 1:98 × 10−19 1:17 × 10−19

0.9 3:9 × 10−20 0.000 3:55 × 10−19

1 0.000 1:722 × 10−19 0.000
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Example 5.2. Table 1 shows the solutions at fractional orders
δ = 0:3, 0:5, and 0:7 of Example 5.1. For this purpose, the
modified approach of ADM is applied to obtain the solu-
tions. The results are listed in the table, which has confirmed
that the suggested method gives the solutions that are in
close contact with the analytical solution of the problem.
The absolute errors are given for the given analytical and
ADM solutions in the table. According to the table, the pro-
posed techniques have the desired degree of accuracy in
terms of exact problem solution. In Table 2, the solutions
of Example 5.2 are given at different time levels, that is, τ
= 0:3,0:5,0:7. It is verified from Table 2 that the method pro-
vides excellent results at different time levels.

7. Conclusion

In this article, the Adomian decomposition method is imple-
mented along with some new modifications to solve
fractional partial differential equation boundary value prob-
lems. The proposed technique was found to be very efficient
in handling the solution of fractional-order boundary value
problems. In particular, the suggested procedure is used to
solve some illustrative examples of time-fractional diffusion
equations. The solutions are calculated for both fractional
and integer order problems, and the present method is
observed to be very simple and useful for the solutions to
such problems. A comparison between exact and analytical
solutions is made with the help of plots and tables. The
graphical representation is presented to confirm the validity
of the present technique. The solution graphs have con-
firmed that the derived results are in close contact with the
problem’s actual solution. Figures 1 and 4 represent 3D solu-
tion plots of Example 5.1 and 5.2, respectively, at δ = 1. Both
the graphs displayed a very convincing contact between the
exact and approximate solutions. In Figures 2 and 5, 2D
solution plots are also constructed to confirm the validity
of the proposed method. The fractional-order solutions of
Example 5.1 and 5.2 are represented in Figures 3 and 6.
From the graphical representation of fractional-order prob-
lems, it is confirmed that very accurate and useful informa-
tion is obtained as compared to the integer order of the
problems. It is concluded that the solutions at fractional-
order derivatives are very useful to analyze the dynamics of
the targeted problems of IBVPs. The dual use of initial con-
ditions has made the procedure suitable for using both IBCs
simultaneously, which was not the case in the earlier related
literature. The solution obtained at each fractional order is
found to be converging to the integer order of the targeted
problems. Moreover, the proposed method is more accurate
and competent to find the solution of nonlinear fractional
partial differential equations and, in the future, can be mod-
ified for other important fractional nonlinear partial differ-
ential equations with higher dimensions.
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With the help of the k-Gamma function, a new form of Gamma operator is given in this article. Voronovskaya type theorem,
weighted approximation, rates of convergence, and pointwise estimates have been found for approximation features of the
newly described operator. Finally, numerical examples have been provided to demonstrate that the operator is approaching the
function.

1. Introduction

One of the most important topics in mathematical analysis
is approximation theory. The theory is studied in almost
every subject, including engineering and physics. Many
mathematicians have made investigation in this area. In
1885 [1], Weierstrass claimed that polynomials can
approximate every function in the closed interval ½a, b�.
Besides, theorems about this subject are prepared by Kor-
ovkin around 1950 [2]. The Korovkin approximation the-
orem is one of the well-known theorems in mathematics.
Their theorems indicate that a series of positive linear
operators can converge to the identity operator under spe-
cific condition [2]. As a result using these theorems, some
studies on linear and positive linear operators have been
added to the literature. For example, King [3] introduced
the Bernstein operator to preserve the function a2ðhÞ = h2

in 2003. Then, King constructed a new set of operators
with respect to the test functions f1, h, h2g and obtained
their linear combinations. On the other hand, one of these
operators is the Gamma operator which is constructed by

Lupas and Müller [4]. The classical Gamma operator in
[4] is expressed as follows:

Km φ ; yð Þ = ym+1

Γ m + 1ð Þ
ð∞
0
e−yvvmφ

m
v

� �
dv,∀y ∈ 0,∞ð Þ,m ∈ℕ:

ð1Þ

Then, in the literature, some researchers introduced
the generalizations of Gamma and beta functions and also
the extensions of Gamma-type operators and their exten-
sions [5–14]. One of the studies of this topic was by Daz
and Pariguan [15]; they introduced and researched k-
Gamma function when they were assessing Feynman inte-
grals. k-Gamma function has been showed up various
effects on mathematics and applications. One of these
effects has been working the Schrodinger equation for har-
monium and related models in view of important opera-
tions in quantum chemistry [16]. The others have used k
-Gamma function for combinatorial analysis in statistic.
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According to these studies, the k-Gamma function was
defined by Daz and Pariguan as follows:

Γk zð Þ =
ð∞
0
tz−1e−t

k/kdt, k ∈ℝ, Re zð Þ > 0ð Þ: ð2Þ

As can be seen from the definition, Γk is a one parameter
deformation of the classical Gamma function such that Γk
⟶ Γ as k⟶ 1: For k = 2, it reduces to an integral of
Gaussian functions [17]. When we get u = −tk/k in equation
(2), we find the expression ΓkðzÞ = kðz/kÞ−1Γðz/kÞ, and all
properties of the classic Gamma operator can be generalized
into k-Gamma function. It also led to a few new conclusions
for k-Gamma function. A few of them are given that

Γk kð Þ = 1,
Γk z + kð Þ = zΓk zð Þ,

zð Þn,k =
Γk z + nkð Þ
Γk zð Þ ,

ð3Þ

in [15]. For more such properties of k-Gamma and related
functions, we can refer to the article [11, 15, 17].

The primary goal of this research is to give the k-Gamma
operator given by (4) and its approximation properties. For
the operator in (4), in Section 2, we will use Korovkin theo-
rem in [18]. Then, in Section 3, we will consider the Voro-
novskaya type theorem. In Section 4, we will examine the
weighted approximation. Later, we will give the rates of con-
vergence with Peetre’s K-functional and Lipschitz class in
Section 5. Moreover, in Section 6, we will obtain pointwise
estimates, and finally, in Section 7, we will show the numer-
ical examples for the operators in (4).

2. A New Modification of Gamma Operators
Defined with the Help of k-Gamma Function

We shall see a new type of Gamma operators defined with
the help of the k-Gamma function in this section, and some
findings will be presented in the rest of the article. In this
paper, we will use the expressions azðhÞ = hz and ψy,z =
ðh − yÞz , y ∈ ð0,∞Þ as polynomial functions. The modified
representation of the classical Gamma operator is shown as
follows:

K∗
m φ ; yð Þ = ym+1+ 1/kð Þ

Γk mk + k + 1ð Þ
ð∞
0
e−yv vkð Þm+ 1/kð Þφ

m
v

� �
dv,∀y ∈ 0,∞ð Þ, k > 0,m ∈ℕ,

ð4Þ

where for v > 0, φ ∈ Cγð0,∞Þ = fφ ∈ Cð0,∞Þ: φðuÞ =OðuγÞ,
asu⟶∞g for m > γ. Here Cð0,∞Þ is the set of continuous
functions on ð0,∞Þ: This modified operator is clearly posi-
tive and linear in this case. Furthermore, the new Gamma
operator defined with the help of the k-Gamma function is
directly preserved constant, and test functions are provided
in case of limit.

We note that for special case of k = ð1/pÞðp ∈ℕÞ in (4),
we have Schurer variant of Gamma operators in (1).

The following lemma will be presented without proof
and used in fundamental theorems for the rest of the paper.

Lemma 1. Let y ∈ ð0,∞Þ: The following are the moment
values:

K∗
m a0 hð Þ ; yð Þ = a0 yð Þ,

K∗
m a1 hð Þ ; yð Þ = mk

mk + 1
a1 yð Þ,

K∗
m a2 hð Þ ; yð Þ = mkð Þ2

mk + 1ð Þ mk − k + 1ð Þ a2 yð Þ,

K∗
m a3 hð Þ ; yð Þ = mkð Þ3

mk + 1ð Þ mk − k + 1ð Þ mk − 2k + 1ð Þ a3 yð Þ,

K∗
m a4 hð Þ ; yð Þ = mkð Þ4

mk + 1ð Þ mk − k + 1ð Þ mk − 2k + 1ð Þ mk − 3k + 1ð Þ a4 yð Þ:

ð5Þ

By generalizing the moment values, we have the following
lemma.

Lemma 2. Let y ∈ ð0,∞Þ and z ∈ℕ, K∗
mða0ðhÞ ; yÞ = a0ðyÞ:

Then, the general formula for the following moment values
is obtained

K∗
m az hð Þ ; yð Þ = mkð ÞzQz−1

i=0 mk − ki + 1ð Þ az yð Þ, z = 1, 2,⋯: ð6Þ

Lemma 3. Let y ∈ ð0,∞Þ: Using the equations in Lemma 1,
the following are obtained:

K∗
m ψy,0 hð Þ ; y
� �

= 1,

K∗
m ψy,1 hð Þ ; y
� �

= −1
mk + 1

a1 yð Þ,

K∗
m ψy,2 hð Þ ; y
� �

= mk2 − k + 1
mk + 1ð Þ mk − k + 1ð Þ a2 yð Þ,

K∗
m ψy,3 hð Þ ; y
� �

= m3k3

mk + 1ð Þ mk − k + 1ð Þ mk − 2k + 1ð Þ

 

−
3m2k2

mk + 1ð Þ mk − k + 1ð Þ +
3mk
mk + 1

− 1

!
a3 yð Þ,

K∗
m ψy,4 hð Þ ; y
� �

= m4k4

mk + 1ð Þ mk − k + 1ð Þ mk − 2k + 1ð Þ mk − 3k + 1ð Þ

 

− 4
m3k3

mk + 1ð Þ mk − k + 1ð Þ mk − 2k + 1ð Þ

+6 m2k2

mk + 1ð Þ mk − k + 1ð Þ − 4
mk

mk + 1
+ 1

!
a4 yð Þ:

ð7Þ

As a result of our research, the Schurer variant of
Gamma operators have not been defined or used. Also, if it
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is realized that k ∈ℝ+, it is obtained that our operators are a
generalization of the Schurer type operators.

Throughout this paper, we use the norm kφk = sup fφð
yÞ: y ∈ ð0,∞Þg for φ ∈ Cð0,∞Þ:

Lemma 4. Let φ ∈ CBð0,∞Þ: Then, we get

K∗
m φ ; yð Þk k ≤ φk k: ð8Þ

Proof. By using the result of Lemma 1, we have

K∗
m φð Þk k ≤ ym+1+ 1/kð Þ

Γk mk + k + 1ð Þ
ð∞
0
e−yv vkð Þm+ 1/kð Þ φ

m
v

� ���� ���dv
≤ φk k ym+1+ 1/kð Þ

Γk mk + k + 1ð Þ
ð∞
0
e−yv vkð Þm+ 1/kð Þdv

= φk kK∗
m a0 hð Þ ; yð Þ = φk k:

ð9Þ

Thus, we obtain the desired result. Because the moments
are conserved in the limit state of the Korovkin test func-
tions, K∗

m is an approximation process on any compact T
⊂ ð0,∞Þ, according to the Korovkin theorem in [18].

Theorem 5. Let φ ∈ Cð0,∞Þ ∩ E, where E = fφ : lim
y⟶∞

ðφ/1
+ y2Þ = k constantg. Then, consistently in each compact sub-
set of ð0,∞Þ, we have

lim
m⟶∞

K∗
m φ ; yð Þ = φ yð Þ: ð10Þ

Proof. By using Lemma 1, when z = 0, 1, 2, we get

lim
m⟶∞

K∗
m az hð Þ ; yð Þ = az yð Þ ð11Þ

for uniformly each compact subset of ð0,∞Þ. Then, using
the Korovkin theorem in [18], we give lim

m⟶∞
K∗

mðφ ; yÞ = φð
yÞ for uniformly each compact subset of ð0,∞Þ.

3. Voronovskaya Type Theorem

By establishing Voronovskaya’s theorem below, we will illus-
trate the asymptotic behavior of ðK∗

mÞm≥1 operators in this
section.

Theorem 6. Let φ ∈ Cð0,∞Þ ∩ E such that φ′, φ′′ ∈ Cð0,∞Þ
∩ E: The following limit is valid:

lim
m⟶∞

m K∗
m φ ; yð Þ − φ yð Þ½ � = −

1
k
yφ′ yð Þ + 1

2
y2φ′′ yð Þ: ð12Þ

Proof. From the definition of Taylor formula

φ hð Þ = φ yð Þ + φ′ yð Þ h − yð Þ + 1
2φ

′′ yð Þ h − yð Þ2 +Ω h, yð Þ h − yð Þ2,
ð13Þ

where

Ω h, yð Þ = φ′′ δð Þ − φ′′ yð Þ
2 , ð14Þ

such that δ lying between y and h and

lim
h⟶y

Ω h, yð Þ = 0: ð15Þ

When the ðK∗
mÞm≥1 operator is applied to (13), we get

K∗
m φ ; yð Þ = φ yð Þ + φ′ yð ÞK∗

m h − yð Þ ; yð Þ + 1
2φ

′′ yð ÞK∗
m h − yð Þ2 ; y� �

+ K∗
m Ω h, yð Þ h − yð Þ2 ; y� �

:

ð16Þ

To get the formula

m K∗
m φ ; yð Þ − φ yð Þ½ � = φ′ yð ÞmK∗

m h − yð Þ ; yð Þ
+ 1
2φ

′′ yð ÞmK∗
m h − yð Þ2 ; y� �

+mK∗
m Ω h, yð Þ h − yð Þ2 ; y� �

,

ð17Þ

multiply both sides of the last inequality by m. In the limit
case, this equation is

lim
m⟶∞

m K∗
m φ ; yð Þ − φ yð Þ½ � = φ′ yð Þ lim

m⟶∞
mK∗

m h − yð Þ ; yð Þ

+ 1
2φ

′′ yð Þ lim
m⟶∞

mK∗
m h − yð Þ2 ; y� �

+ lim
m⟶∞

mK∗
m Ω h, yð Þ h − yð Þ2 ; y� �

:

ð18Þ

We know the values

lim
m⟶∞

mK∗
m h − yð Þ ; yð Þ = lim

m⟶∞
m

−1
mk + 1

� �
y = −1

k
y,

lim
m⟶∞

mK∗
m h − yð Þ2 ; y� �

= lim
m⟶∞

m
mk2 − k + 1

mk + 1ð Þ mk − k + 1ð Þ

" #
y2 = y2,

ð19Þ

using Lemma 3. So, we have

lim
m⟶∞

m K∗
m φ ; yð Þ − φ yð Þ½ � = −1

k
yφ′ yð Þ + 1

2φ
′′ yð Þy2

+ lim
m⟶∞

mK∗
m Ω h, yð Þψy,2 hð Þ ; y
� �

:

ð20Þ

We show that the limit to the right of the equation in
(20) is equal to zero. It can easily be said from the Cauchy-
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Schwarz inequality that

mK∗
mΩ h, yð Þψy,2 hð Þ ; y

�
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K∗

m Ω2 h, yð Þ ; y� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2K∗

m ψy,4 hð Þ ; y
� �r

:

ð21Þ

Then, using Korovkin theorem, we have

lim
m⟶∞

K∗
m Ω2 h ; yð Þ, y� �

=Ω2 y, yð Þ = 0, ð22Þ

since Ω2ðy, yÞ = 0 and Ωð:,yÞ ∈ Cð0,∞Þ ∩ E and bounded as
h⟶∞ and in view of fact that

K∗
m ψy,4 hð Þ ; y
� �

=O
1
m2


 �
, ð23Þ

where K∗
mðψy,4ðhÞ ; yÞ = ð3m2k4 +mð18k4 − 22k3 + 6k2Þ − 6

k3 + 11k2 − 6k + 1Þ/ððmk + 1Þðmk − k + 1Þðmk − 2k + 1Þðmk
− 3k + 1ÞÞ: The proof is completed when equations (21) and
(22) are written in (13).

4. Weighted Approximation

The Korovkin theorem for weighted approximation of the
operators in (4) is given in this section. To demonstrate this,
we will follow the theorems given by Gadjiev [19].

Consider ϑðyÞ = 1 + y2 as continuous weighted function
on ℝ, with lim

jyj⟶∞
ϑðyÞ =∞, ϑðyÞ ≥ 1 for all y ∈ ½0,∞Þ: Let

us have a look at the weighted spaces below. The property
jφðyÞj ≤NφϑðyÞ represents the weighted space of real-
valued functions φ on ℝ. This subspace is denoted by

Bϑ 0,∞½ Þ = φ : 0,½ ∞Þ⟶ 0,½ ∞Þ: φ yð Þj j ≤Nφϑ yð Þ, y ∈ 0,½ ∞Þ� 
:

ð24Þ

Nφ is a constant depending on the functions φ.
Since, the weighted subspaces of Bϑ½0,∞Þ is given by

Cϑ 0,∞½ Þ = φ ∈ Bϑ 0,∞½ Þ: φ is continous onℝf g = C 0,∞½ Þ ∩ Bϑ 0,∞½ Þ:
ð25Þ

Eventually, additional subspace for all φ ∈ Cϑ½0,∞Þ for
which lim

jyj⟶∞
φðyÞ/ϑðyÞ exists finitely defined as

Cκ
ϑ 0,∞½ Þ = φ ∈ Cϑ 0,∞½ Þ: lim

yj j⟶∞

φ yð Þ
ϑ yð Þ = κφ exists and it is finite

� �
:

ð26Þ

This κφ is a constant dependent on the φ functions. All
three mapping spaces above are normed spaces endowed
with

φk kϑ = sup
y∈ 0,∞ð Þ

φ yð Þj j
ϑ yð Þ : ð27Þ

Lemma 7. Let φ ∈ Cϑð0,∞Þ: Then, for the modified operator
K∗

mðφÞ, we have

K∗
m φð Þk kϑ ≤ C φk kϑ, ð28Þ

which imply that the sequence of the modified operators K∗
m

ðφÞ is an approximation process from Cϑð0,∞Þ to Bϑð0,∞Þ
:

Proof. The desired result of this lemma is easily obtained
from properties of the modified Gamma operator and
Lemma 1.

Gadjiev proposed a weighted approach to linear positive
operator sequences for unbounded intervals in [19]. The fol-
lowing theorem is similar to the Gadjiev theorem.

Theorem 8. Let φ ∈ Cκ
ϑð0,∞Þ: For the modified Gamma oper-

ator, the following equality holds:

lim
m⟶∞

K∗
m φ ; yð Þ − φ yð Þk kϑ = 0: ð29Þ

Proof. It will be enough to show that equivalence is attained
for lim

m⟶∞
kK∗

mðaz ; yÞ − azkϑ = 0, z = 0, 1, 2 using the theorem
in [19]. For z = 0, we have kK∗

mða0 ; yÞ − a0kϑ = 0: Now, let
us examine the cases z = 1, 2. When the necessary results
for these situations are used,

K∗
m a1 ; yð Þ − a1k kϑ = sup

y∈ 0,∞ð Þ

K∗
m a1 ; yð Þ − a1j j

1 + y2

= sup
y∈ 0,∞ð Þ

mk/mk + 1ð Þy − yj j
1 + y2

≤
mk

mk + 1 − 1
����

���� sup
y∈ 0,∞ð Þ

y
1 + y2

: ≤
1

mk + 1

����
����

ð30Þ

is obtained. If we take the limit of this expression, it becomes

lim
m⟶∞

1
mk + 1 = 0: ð31Þ

Then, we have

K∗
m a2 ; yð Þ − a2k kϑ = sup

y∈ 0,∞ð Þ

K∗
m a2 ; yð Þ − a2j j

1 + y2

= sup
y∈ 0,∞ð Þ

m2k2/ mk + 1ð Þ mk − k + 1ð Þð Þy2 − y2
�� ��

1 + y2

≤
m2k2

mk + 1ð Þ mk − k + 1ð Þ − 1
�����

����� sup
y∈ 0,∞ð Þ

y2

1 + y2

≤
mk2 − 2mk + k − 1
mk + 1ð Þ mk − k + 1ð Þ

�����
�����:

ð32Þ
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If we take the limit of this expression, it becomes

lim
m⟶∞

mk2 − 2mk + k − 1
mk + 1ð Þ mk − k + 1ð Þ = 0: ð33Þ

As a result of the equations obtained above, the evidence
is finished.

5. The Rates of Convergence

Now, we can concentrate on the rates of convergence the
modified Gamma operator in terms of the modulus continu-
ity. We shall now show that K∗

mðφÞ outperforms the classical
operator in terms of error estimation. Let us define the fol-
lowing in light of this goal.

The modulus of continuity of w is denoted by ωy0
ðφ, δÞ

for interval ð0, y0�, y0 ≥ 0 and can be described as follows:

ωy0
φ, δð Þ = sup

h−yj j≤δ;y,h∈ 0,y0ð �
φ hð Þ − φ yð Þj j: ð34Þ

The modulus of continuity ωy0
ðφ, δÞ⟶ 0 is easily

understood as δ⟶ 0 for the function φ ∈ CBð0,∞Þ, where
CBð0,∞Þ is defined as space of all continuous and bounded
functions on the interval ð0,∞Þ: Now, let us look at the rates
of convergence theorem for ðK∗

mÞm≥1.

Theorem 9. For y0 > 0 and φ ∈ CBð0,∞Þ, let ωy0+1ðφ, δÞ be
the modulus of continuity on the finite interval ð0, y0 + 1� ⊂
ð0,∞Þ: Then, the following inequality exists:

K∗
m φ ; yð Þ − φ yð Þj j ≤ 3Nφ

mk2 − k + 1
mk + 1ð Þ mk − k + 1ð Þ

 !
y20 1 + y0ð Þ2

+ 2ωy0+1 φ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mk2 − k + 1
mk + 1ð Þ mk − k + 1ð Þ y

2
0

s0
@

1
A,

ð35Þ

where Nφ is a constant only according as φ:

Proof. Now, let φ ∈ CBð0,∞Þ,0 < y ≤ y0, and h > y0 + 1:Then,
we can conclude that

φ hð Þ − φ yð Þj j ≤ φ hð Þj j + φ yð Þj j ≤ 3Nφ h − yð Þ2 1 + y0ð Þ2 ð36Þ

for h − y > 1: Then, again let φ ∈ CBð0,∞Þ, 0 < y ≤ y0: So, the
following inequality holds

φ hð Þ − φ yð Þj j ≤ ωy0+1 φ, h − yj jð Þ ≤ ωy0+1 φ, δð Þ 1 + 1
δ
h − yj j


 �
ð37Þ

for h ≤ y0 + 1: As a result, from the above inequalitiy, we

deduce that

φ hð Þ − φ yð Þj j ≤ 3Nφ h − yð Þ2 1 + y0ð Þ2 + ωy0+1 φ, δð Þ 1 + 1
δ
h − yj j


 �
ð38Þ

for 0 < y ≤ y0 and 0 < h <∞: Applying K∗
m and Cauchy-

Schwarz inequality to (38), we obtain

K∗
m φ ; yð Þ − φ yð Þj j ≤ 3NφK

∗
m h − yð Þ2 ; y� �

1 + y0ð Þ2

+ ωy0+1 φ, δð Þ 1 + 1
δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K∗

m h − yð Þ2 ; y� �q
 �

≤ 3Nφ

mk2 − k + 1
mk + 1ð Þ mk − k + 1ð Þ

 !
1 + y0ð Þ2

+ 2ωy0+1 φ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mk2 − k + 1
mk + 1ð Þ mk − k + 1ð Þ


 �
y20

s0
@

1
A:

ð39Þ

By choosing δ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððmk2 − k + 1Þ/ððmk + 1Þðmk − k + 1ÞÞÞy20

p
, we can conclude the proof.

Let

C2
B 0,∞ð Þ = φ ∈ CB 0,∞ð Þ: φ′, φ′′ ∈ CB 0,∞ð Þ

n o
, ð40Þ

with the norm

φk kC2
B 0,∞ð Þ = φk kCB 0,∞ð Þ + φ′

�� ��
CB 0,∞ð Þ + φ′′

�� ��
CB 0,∞ð Þ ð41Þ

also

φk kCB 0,∞ð Þ = sup
y∈ 0,∞ð Þ

φ yð Þj j ð42Þ

in [20].

Theorem 10. Let K∗
m be the operator defined in (4). Then, for

any φ ∈ C2
Bð0,∞Þ, we have

K∗
m φ ; yð Þ − φ yð Þj j ≤ 1

2

ffiffiffi
τ

p
2 +

ffiffiffi
τ

p� �
φk kC2

B 0,∞ð Þ, ð43Þ

where τ is K∗
mðψy,2 ; yÞ in Lemma 3.

Proof. Let φ ∈ C2
Bð0,∞Þ. When referring to the Taylor series,

obtain

φ hð Þ = φ yð Þ + φ′ yð Þ h − yð Þ + 1
2φ

′′ ξð Þ h − yð Þ2, ð44Þ

where ξ between y and h, from which it follows:

φ hð Þ − φ yð Þj j ≤N1 h − yj j + 1
2N2 h − yð Þ2, ð45Þ
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where

N1 = sup
y∈ 0,∞ð Þ

φ′ yð Þ�� �� = φ′
�� ��

CB 0,∞ð Þ ≤ φk kC2
B 0,∞ð Þ,

N2 = sup
y∈ 0,∞ð Þ

φ′′ yð Þ�� �� = φ′′
�� ��

CB 0,∞ð Þ ≤ φk kC2
B 0,∞ð Þ,

ð46Þ

because of (41). Thus, we have

φ hð Þ − φ yð Þj j ≤ h − yj j + 1
2 h − yð Þ2


 �
φk kC2

B 0,∞ð Þ: ð47Þ

Since

K∗
m φ ; yð Þ − φ yð Þj j = K∗

m φ hð Þ − φ yð Þ ; yð Þj j ≤ K∗
m φ hð Þ − φ yð Þj j ; yð Þ,

ð48Þ

and K∗
mðjh − yj ; yÞ ≤ K∗

mððh − yÞ2 ; yÞ1/2 = ffiffiffi
τ

p , we get

K∗
m φ ; yð Þ − φ yð Þj j ≤ K∗

m h − yj j ; yð Þ + 1
2K

∗
m h − yð Þ2 ; y� �
 �

φk kC2
B 0,∞ð Þ

≤
1
2
ffiffiffi
τ

p
2 +

ffiffiffi
τ

p� �
φk kC2

B ; 0,∞ð Þ:

ð49Þ

The desired result is obtained.

The Peetre’s K-functional is expressed by

K∗
2 φ, δð Þ = infC2

B 0,∞ð Þ φ − uk kCB 0,∞ð Þ + δ uk kC2
B 0,∞ð Þ : u ∈ C

2
B 0,∞ð Þ

n o
:

ð50Þ

The second-order modulus of continuity is defined by

ω2 φ, δð Þ = sup
0<u<δ

sup
y∈ 0,∞ð Þ

φ y + 2uð Þ − 2φ y + uð Þ + φ uð Þj j ð51Þ

in [20]. The relation ω2 and K∗
2 is as follows:

K∗
2 φ, δð Þ ≤N ω2 φ ; δð Þ +min 1, δð Þ φk kCB 0,∞ð Þ

n o
ð52Þ

in [21].

Theorem 11. Let K∗
mð:;:Þ be the operator defined in (4). Then,

for any φ ∈ CBð0,∞Þ, we have

K∗
m φ ; yð Þ − φ yð Þj j ≤ 2N ω2 φ ;

ffiffiffiffiffiffiffiffiffi
Δm,y

q� �
+min 1, Δm,y

� �
φk kCB 0,∞ð Þ

n o
,

ð53Þ

where N is a positive constant and Δm,y =
ffiffiffi
τ

p ð2 + ffiffiffi
τ

p Þ/2 and
τ = K∗

mðψy,2 ; yÞ:

Proof.We prove this by using Theorem 10. Let u ∈ C2
Bð0,∞Þ.

Since

K∗
m φ ; yð Þ − φ yð Þj j ≤ K∗

m φ − u ; yð Þj j + K∗
m φ ; yð Þ − u yð Þj j + φ yð Þ − u yð Þj j

≤ 2 φ − uk kCB 0,∞ð Þ +
1
2
ffiffiffi
τ

p
2 +

ffiffiffi
τ

p� �
uk kC2

B 0,∞ð Þ

≤ 2 φ − uk kCB 0,∞ð Þ +
1
4
ffiffiffi
τ

p
2 +

ffiffiffi
τ

p� �
uk kC2

B 0,∞ð Þ


 �
:

ð54Þ

By taking infimum over all u ∈ C2
Bð0,∞Þ on the right side

of the last inequality and by using (50), we get

K∗
m φ ; yð Þ − φ yð Þj j ≤ 2K∗

2 φ ;
ffiffiffi
τ

p 2 + ffiffiffi
τ

p� �
4


 �
: ð55Þ

This completes the proof, by using equation (52).

6. Pointwise Estimates

Let us look at some pointwise estimates of rates of conver-
gence of K∗

mðφ ; yÞ. At first, the relationship between the
local approximation and the local smoothness of the func-
tion is given. In this direction, let us give the following defi-
nitions. Let s ∈ ð0, 1� and Î ⊂ ð0,∞Þ: In this case, a function
φ ∈ CBð0,∞Þ can be called LipNφ

ðsÞ on Î if the following con-

dition holds:

φ vð Þ − φ yð Þj j ≤Nφ,s v − yj js, v ∈ 0,∞ð Þand y ∈ Î, ð56Þ

where Nφ,s is a constant that relies on φ and s mentioned
above.

Theorem 12. Let φ ∈ CBð0,∞Þ ∩ LipNφ
ðsÞ such that s and Î

given as above. In the circumstances, we give

K∗
m φ ; yð Þ − φ yð Þj j ≤Nφ,s

mk2 − k + 1
mk + 1ð Þ mk − k + 1ð Þ a2 yð Þ

 !s/2"

+ 2 d y, Î
� �� �si, y ∈ 0,∞ð Þ,

ð57Þ

where Nφ,s given above and dðy, ÎÞ is the distance between y

and Î. This distance is described as:

d y, Î
� �

= inf v − yj j, v ∈ Î�  ð58Þ

Proof. Let us define the closure of the set Î as €I. Then, one
can argue that at least one point v0 ∈€I occurs where

d y, Î
� �

= y − v0j j: ð59Þ

Then, due to the monotonicity properties of ðK∗
mÞm≥1, we
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deduce that

K∗
m φ ; yð Þ − φ yð Þj j ≤ K∗

m φ vð Þ − φ v0ð Þj j ; yð Þ + K∗
m φ yð Þ − φ v0ð Þj j ; yð Þ

≤Nφ,s K
∗
m v − v0j js ; yð Þ + y − v0j js½ �

≤Nφ,s K
∗
m v − yj js ; yð Þ + 2 y − v0j js½ �:

ð60Þ

Then, from the definition of Hölder’s inequality, we have

K∗
m φ ; yð Þ − φ yð Þj j ≤Nφ,s K∗

m v − yj j2 ; y� �S/2 + 2 d y, Î
� �� �sh i

=Nφ,s
mk2 − k + 1

mk + 1ð Þ mk − k + 1ð Þ a2 yð Þ
 !S/2

+ 2 d y, Î
� �� �s2

4
3
5,

ð61Þ

which concludes the theorem.

Now, let us try to determine the local direct approxima-
tion of the new Gamma operator modification. Let us start

with the Lipschitz type maximum function of order s pre-
sented in [22] for this goal, that is,

ω
~
s φ, yð Þ = sup

0<v<∞, v≠y

φ vð Þ − φ yð Þj j
v − yj js , ð62Þ

where s ∈ ð0, 1� and y ∈ ð0,∞Þ:

Theorem 13. For φ ∈ CBð0,∞Þ and ω~
s ∈ ð0, 1�, the following

inequality holds:

K∗
m φ ; yð Þ − φ yð Þj j ≤ ω

~
s φ, yð ÞK∗

m
mk2 − k + 1

mk + 1ð Þ mk − k + 1ð Þ a2 yð Þ
 !s/2

ð63Þ

for y ∈ ð0,∞Þ:

2

0.1

0.2

0.3

0.4

0.5

4 6 8 10

Figure 1: Graphics of the K∗
m operator for k = 1/3, 1, 3, 30, respectively, andm = 10 is fixed (blue for k = 1/3, orange for k = 1, green for k = 3,

red for k = 30, and purple for φðyÞ).

0.1

0.2

0.3

0.4

0.5

2 4 6 8 10

Figure 2: Graphics of the K∗
m operator form = 10,20,60, respectively, and k = 3 is fixed (blue form = 10, orange form = 20, green form = 60,

and red for φðyÞ).
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Proof. Thanks to the definition of ω~
sðϕ, yÞ given above and

well-known Hölder inequality, we deduce that

K∗
m φ ; yð Þ − φ yð Þj j ≤ K∗

m φ vð Þ − φ yð Þj j ; yð Þ ≤ ω
~
s φ, yð ÞK∗

m v − yj js ; yð Þ
≤ ω

~
s φ, yð ÞK∗

m v − yj j2 ; y� �s/2
≤ ω

~
s φ, yð ÞK∗

m
mk2 − k + 1

mk + 1ð Þ mk − k + 1ð Þ a2 yð Þ
 !s/2

:

ð64Þ

As a result, the desired outcome is achieved.

Now, finally, let us consider the following Lipschitz type
space with two parameters, c, d > 0, such that

Lipc,dN sð Þ = φ ∈ C 0,∞ð Þ: φ vð Þ − φ yð Þj j ≤N
v − yj js

cy2 + dy + vð Þs/2
; y, v ∈ 0,∞ð Þ

 !

ð65Þ

introduced in [23] where s ∈ ð0, 1� and N is a positive
constant.

Theorem 14. For φ ∈ Lipc,dN ðsÞ and y ∈ ð0,∞Þ, then, we have

K∗
m φ ; yð Þ − φ yð Þj j ≤N

mk2 − k + 1
� �

/ mk + 1ð Þ mk − k + 1ð Þð Þ� �
a2 yð Þ

cy2 + dy

" #
,

ð66Þ

where c, d > 0:

Proof. The proof is divided into two parts. For the first, we
use s = 1, which means

K∗
m φ ; yð Þ − φ yð Þj j ≤ K∗

m φ vð Þ − φ yð Þj j ; yð Þ,

≤NK∗
m

v − yj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cy2 + dy + 1

p
; y

 !
,

≤
Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cy2 + dy
p K∗

m v − yj j ; yð Þ,

ð67Þ

for φ ∈ Lipc,dN ðsÞ and y ∈ ð0,∞Þ. We conclude that

K∗
m φ ; yð Þ − φ yð Þj j ≤ Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cy2 + dy
p K∗

m v − yj j2 ; y� �� �1/2

≤N
mk2 − k + 1
� �

/ mk + 1ð Þ mk − k + 1ð Þð Þ� �
a2 yð Þ

cy2 + dy

" #1/2
,

ð68Þ

by using the well-known Cauchy-Schwarz inequality, which
validates the theory for s = 1: Then, let us consider s ∈ ð0, 1Þ:
For φ ∈ Lipc,dN ðsÞ and y ∈ ð0,∞Þ, we obtain that

K∗
m φ ; yð Þ − φ yð Þj j ≤ N

cy2 + dyð Þs/2
K∗

m v − yj js ; yð Þ: ð69Þ

We derive that

K∗
m φ ; yð Þ − φ yð Þj j ≤ N

cy2 + dyð Þs/2
K∗

m v − yj js ; yð Þ

≤
N

cy2 + dyð Þs/2
K∗

m v − yj j ; yð Þð Þs
ð70Þ

with the help of the well-known Hölder inequality. Finally,
we have

K∗
m φ ; yð Þ − φ yð Þj j ≤ N

cy2 + dyð Þs/2
K∗

m v − yj j2 ; y� �� �s/2

≤N
mk2 − k + 1
� �

/ mk + 1ð Þ mk − k + 1ð Þð Þ� �
a2 yð Þ

cy2 + dy

" #s/2
,

ð71Þ

which completes the proof by applying the well-known
Cauchy-Schwarz inequality.

For the case of c = 1 and d = 0, we have the following
corollary.

Corollary 15. The local estimate in parametric Lipschitz
space is obtained for special fixed parameters c = 1 and d =
0.

K∗
m φ ; yð Þ − φ yð Þj j ≤N

mk2 − k + 1
mk + 1ð Þ mk − k + 1ð Þ

 !
ð72Þ

for φ ∈ Lip1,0N ðsÞ and y ∈ ð0,∞Þ:

7. Numerical Example

In this section of the article, we provide some numerical
examples to verify the rates of convergence of K∗

mðφ ; yÞ in
two dimensions (m = 10 is fixed for Figure 1 and k = 3 is
fixed for Figure 2). In our first example, we compare the
operator K∗

mðφ ; yÞ with the classical Gamma operator.
In this example, K∗

mðφ ; yÞ and φðyÞ = y2e−y applied for
φ : ½0, 10�⟶ ½0,∞Þ:

In Figure 1, it is seen that the operator puts closer to the
function as the value of k gets larger (m = 10 is fixed). In
Figure 2, it is seen that the operator puts closer to the func-
tion as the value of m gets larger (k = 3 is fixed).

8. Concluding Remarks

We have defined a new form of Gamma operator by consid-
ering k-Gamma function. With the operator defined, the
conditions of the Korovkin theorem are completed. Later,
Voronovskaya type theorem, weighted approximation, the
rates of convergence, and pointwise estimates are obtained.
Finally, we give numerical example to confirm its
approximation.
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In this paper, we propose an innovative approach to determine the approximate solution of the coupled time-fractional Keller-
Segel (K-S) model. We use the fractional complex transform (FCT) to switch the model into its differential partner, and then,
the homotopy perturbation method (HPM) is introduced to tackle its nonlinear elements using He’s polynomials. This two-
scale theory helps to define the physical meaning of the FCT for the solution of the K-S model. Some examples are illustrated
to show that the proposed scheme presents the significant results. The considerable findings show that this strategy does not
require any assumptions and also reduces the massive computations without imposing any constraints. This technique is also
suitable in functional studies of fractal calculus due to its powerful and robust support for nonlinear problems.

1. Introduction

Fractional differential equations (FDEs) are the generaliza-
tions of classical differential equations with integer orders.
It is worth reporting that some mathematical models of
integer-order derivatives particularly nonlinear models do
not work adequately for most of the cases [1–3]. This is
because integer order derivatives are limited operators and
are inappropriate for infinite variance whereas fractional
order derivatives are worldwide to take account of the dom-
ination of the neighborhood. In recent years, nonlinear
FDEs in mathematical physics are competing against a prin-
cipal role in miscellaneous domains, such as biological
science, applied science, signal processing, control theory,
finance, and fractal dynamics [4–7].

In 1970, Keller and Segel introduced a hypothesis to
express the combination system of cellular slime mold by
chemical fascination. The K-S model has broadly been prac-
ticed for chemotaxis terms due to its competency to capture

the key facts and its impulsive nature. The significance of
chemotaxis has achieved much attraction due to its crucial
function in a broad variety of biological occurrences [8, 9].
In this article, we examine the coupled time-fractional K-S
model of the form

∂δη
∂℘δ

= a
∂2η
∂I2 −

∂
∂I

η
∂
∂I

χ ςð Þ
� �

,

∂δς
∂℘δ

= b
∂2ς
∂I2 + cu − dv,

ð1Þ

subject to the initial solutions, we get

η I, 0ð Þ = η0 Ið Þ,
ς I, 0ð Þ = ς0 Ið Þ,

ð2Þ
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where ηðI, ℘Þ and ςðI, ℘Þ represent the bacterial density
and the concentration of chemical substance as a function
of I and ℘, respectively, and DIðηðI,℘ÞDIχðςÞÞ denotes
the chemotactic term and shows that the cells are sensitive
to the chemicals and are attracted by them [10]. The sensi-
tivity function χðςÞ is a smooth function which describes
the cell’s perception and response to the chemical stimulus
ς while a, b, c, and d are positive constants. If δ = 1, the
time-fractional K-S model (1) leads to a simple nonlinear
differential equation that has been studied extensively
whereas Dδ

℘ taken as Caputo’s sense [11] and Dδ
℘ = ∂δ/∂℘δ

is He’s fractional derivative defined [12, 13]

∂δη
∂℘δ

= 1
Γ n − δð Þ

dn

dtn

ð
s−℘ð Þn−δ−1 η0 sð Þ − η sð Þ½ �ds: ð3Þ

Many actions in physics and engineering can be pre-
cisely characterized by utilizing differential equations with
various sorts of fractional derivatives. The finding of the
approximate and exact solution of FDEs is a very crucial
challenge. There have been a lot of developments to solve
FDEs in nonlinear dynamics. FDEs are used extensively
because they do not have exact solutions, and thus, approx-
imate and numerical solutions are needed. The homotopy
perturbation method (HPM) [14] is one of the most famous
approaches to achieve the series solutions of linear and
nonlinear differential equations of arbitrary orders. Later,
various methods have been developed to show that HPM a
is very efficient and powerful tool for finding the approxi-
mate solution to FDEs [15–18]. In order to get the solution
of the K-S model, many powerful and efficient techniques
have been suggested to obtain the analytical solutions such
as Laplace homotopy perturbation method [19], iterative
method [20], homotopy perturbation Sumudu transform
[21], and natural homotopy transform method [22] with a
logic sensitivity function and small diffusivity. Some partial
differential equations with fractional order are not easy to
solve, and then, their approximate solution can be evaluated.
The two-scale approach converts the fractional order to a
simple partial differential equation which is now easy to
solve by the homotopy perturbation method.

This study presents the idea of a two-scale method to
obtain the solution of the fractional K-S model in Caputo
sense. The FCT converts the model into its differential
partner, and then, HPM is introduced to bring down the
nonlinear terms in algebraic series. The quality of the cur-
rent method is appropriate to provide the analytical results
to the given examples. This study is summarized as follows:
In Section (2), we recall some basic definitions of fractional
calculus. We present the idea of the homotopy perturbation
method and the two-scale approach in Sections (3) and (4),
respectively. Some numerical examples are provided to
demonstrate the performance of this approach in Section
(5) and the discussion of results in Section (6). The conclu-
sion is given in Section (7).

2. Preliminary Concepts

Definition 1. The Riemann-Liouville fractional integral oper-
ator of order δ > 0 of a function f ðtÞ ∈ Cμ, μ ≥ −1, is defined
as [23]

Jδ f ℘ð Þ = 1
Γ 1+δð Þ

ð℘
0
℘−τð Þf τð Þdτ, J0 f ℘ð Þ = f ℘ð Þ: ð4Þ

Definition 2. The Caputo fractional derivative of f ð℘Þ in the
Caputo sense is given [23]

Dγw I,℘ð Þ =

1
Γ γ−δð Þ

ð℘
0
℘−τð Þγ−δ−1 ∂

γw I,℘ð Þ
∂τγ

dτ, γ − 1 < δ < γ,

∂w I,℘ð Þ
∂℘γ

, δ = γ ∈ℕ:

8>>><
>>>:

ð5Þ

Lemma 3. If γ − 1 < δ ≤ γ, γ ∈ℕ, ℘>0, w ∈ Cγ
−1, then

Dδ Jδw ℘ð Þ =w ℘ð Þ,

Dδ Jδw ℘ð Þ =w ℘ð Þ − 〠
γ−1

k=0
wk 0+ð Þ℘

k

k!
, ℘ > 0:

ð6Þ

The fractional derivatives are considered in Caputo
sense which allows the conditions to deal with the expression
of the problems.

3. Basic Idea of the Homotopy
Perturbation Method

In this segment, we explain the fundamental concept of
HPM. Let the following nonlinear equation [24]

L ηð Þ − f ϱð Þ = 0, ϱ ∈ϒ , ð7Þ

with boundary conditions

B η, ∂η
∂n

� �
= 0, ϱ ∈Θ, ð8Þ

where L is a general function with boundary operator B, f ðϱÞ
is analytic function, and Θ is the boundary of the domain ϒ .
The operator L can normally be separated into two operators
with M as a linear and N being a nonlinear operator. Thus,
Equation (7) can be accompanied as follows:

M ηð Þ +N ηð Þ − f ϱð Þ = 0: ð9Þ

Let us consider ςðr, pÞ:ϒ × ½0, 1�⟶ℝ that confirms or

H ς, qð Þ = 1 − qð Þ L ςð Þ −M η0ð Þ½ � + q L ςð Þ −N ςð Þ − f ϱð Þ½ �,
ð10Þ
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H ς, qð Þ = L ςð Þ −M η0ð Þ + qM η0ð Þ + q N ςð Þ − f ϱð Þ½ � = 0,
ð11Þ

where q ∈ ½0, 1� is said to be a homotopy parameter and η0 is
an initial approximation of Equation (7). According to
HPM, we can take q as a small element, and suppose that
the solution of Equation (11) can be written as a power series
of q:

ς = ς0 + qv1 + q2ς2+⋯: ð12Þ

Considering q = 1, the approximate solution of Equation
(7) is obtained as follows:

η = lim
q⟶1

ς = ς0 + ς1 + ς2 + ς3+⋯: ð13Þ

Using Equations (11) and (12), we can identify the sim-
ilar powers of q to obtain the following series solution form:

q0 : ς0 − f Ið Þ = 0,
q1 : ς1 −H ς0ð Þ = 0,

q2 : ς2 −H ς0, ς1ð Þ = 0,
q3 : ς3 −H ς0, ς1, ς2ð Þ = 0,

⋮,

ð14Þ

where Hðς0, ς1, ς2,⋯,ςjÞ depending upon ς0, ς1, ς2,⋯, ςj
called He’s polynomials can be computed by adopting the
following rule:

H ς0, ς1, ς2,⋯,ςj
� �

= 1
j!
∂j

∂qj
N 〠

j

i=0
ςiq

i

 !�����
q=0

: ð15Þ

The system of nonlinear equations in (14) is evidently
simple to calculate, and thus, the components ςi, i ≥ 0 of
HPM can be identified easily which leads to the series solu-
tions very rapidly.

4. Fractional Complex Transform

The dimension and scale are highly important elements due
to its impressive outcomes and properties of the configura-
tion through the modeling of a problem. FCT is a systematic
technique that turns FDEs into its differential parts in a
steady period and is described as [25–27]

ΔS = Δ℘δ

Γ 1 + δð Þ , ð16Þ

where ΔS is the slighter scale and Δ℘ is the greater scale. The
time fractional K-S model reacts discontinuously on a sligh-
ter scale, particularly at the highest point whereas it antici-
pates a plane solitary wave on the greater scale. Thus,
Equation (11) is considered two-scale transform [28–30].
The outcomes of any study problem depend on the scale.

For an observable scale, the fluid is consistent; therefore,
Newton’s laws can be applied; however, they are illegitimate
at the molecular scale. If the motion is free of time, then
Newton’s law is acceptable; otherwise, it can be revoked.

4.1. Convergence Theorem. Let P and Q be the Banach spaces
and ς : P⟶Q be a contraction nonlinear mapping. If the
sequence generated by HPM such as

ηn P,℘ð Þ = ς ηn−1 P,℘ð Þð Þ = 〠
n−1

i=0
ηi P,℘ð Þ, n = 1,2,3,⋯, ð17Þ

then the following conditions must be true:

(1) kηnðP,℘Þ − ηðP,℘Þk ≤ φnkψðP,℘Þ − ηðP,℘Þk
(2) ηnðP, ℘Þ is always in the neighborhood of ηðP, ℘Þ

meaning ηnðP,℘Þ ∈ BðηðP,℘Þ, rÞ = fη∗ðP,℘Þ/kη∗ðP,℘Þ
− ηðP,℘Þkg

(3) limn⟶∞ηnðP,℘Þ = ηðP,℘Þ

Proof.

(1) We prove condition (1) by induction on n, kη1 − ηk
= kGðη0Þ − ηk, and according to the Banach fixed
point theorem, ς has a fixed point η meaning ςðηÞ
= η; therefore,

η1 − ηk k = G η0ð Þ − ηk k = G η0ð Þ − G ηð Þk k ≤ φ η0 − ηk k = φ ψ P,℘ð Þ − ηk k,
ð18Þ

since ς is a contraction mapping. Assume that kηn−1 − ηk ≤
φn−1kψðP, 0Þ − ηðP,℘Þk is an induction hypothesis, then

ηn − ηk k = G ηn−1ð Þ −G ηð Þk k ≤ φ ηn−1 − ηk k ≤ φφn−1 ψ P,℘ð Þ − ηk k
ð19Þ

(2) The first concern is to demonstrate that ψðP,℘Þ ∈ B
ðηðP,℘Þ, rÞ, and this is achieved by induction on m.
So, for m = 1, kψðP,℘Þ − ηðP,℘Þk = kηðP, 0Þ − ηðP,℘Þ
k ≤ r with ηðP, 0Þ the initial condition. Assume that
kψðP,℘Þ − ηðP,℘Þk ≤ r for m − 2 is an induction
hypothesis, then

ψ P,℘ð Þ − η P,℘ð Þk k = ψm−2 P,℘ð Þ − f m Pð Þ
Γ δ −m + 1ð Þ℘

δ−m
���

≤ ψm−1 P,℘ð Þ − η P,℘ð Þk k + f m Pð Þ
Γ δ −m + 1ð Þ℘

δ−m
����

���� = r:

ð20Þ
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Now, for all n ≥ 1, using condition (1), we have

ηn − ηk k ≤ φn ψ P,℘ð Þ − ηk k ≤ φnr ≤ r: ð21Þ

(3) Using condition (2) and the fact that limn⟶∞ϕn = 0
yields that limn⟶∞kηn − ηk = 0; therefore,

lim
n⟶∞

ηn = η: ð22Þ

Thus, η converges.

5. Numerical Examples

In this segment, we implement a two-scale method to
achieve the approximate solution of the K-S model in one
dimension. Results disclose that this approach is an
extremely efficient and powerful aid for solving FDEs.

5.1. Example 1. Consider the K-S model in one dimension
given as

∂δη
∂℘δ

= a
∂2η
∂I2 −

∂
∂I

η
∂
∂I

χ ςð Þ
� �

,

∂δς
∂℘δ

= b
∂2ς
∂I2 + cη − dς,

ð23Þ

with the initial conditions

η I, 0ð Þ =me−I
2 ,

ς I, 0ð Þ = ne−I
2
:

ð24Þ

Considering that the sensitivity function χðςÞ = 0; thus,
the chemotactic term is zero, i.e., ∂/∂Iðη ∂/∂IχðςÞÞ = 0
and using

S = ℘δ

Γ 1 + δð Þ : ð25Þ

Thus, the coupled K-S model of Equation (23) becomes

∂η
∂S

= ∂η
∂S

,

∂ς
∂S

= b
∂2ς
∂I2 + cη − dς:

ð26Þ

We can use HPM with He’s polynomials on the system
of Equation (26), and we get

∂η1
∂S

= a
∂2η0
∂I2 , η1 I, 0ð Þ, ð27Þ

∂ς1
∂S

= b
∂2ς0
∂I2 + cη0 − dς0, ς1 I, 0ð Þ, ð28Þ

∂η2
∂S

= a
∂2η1
∂I2 , η2 I, 0ð Þ, ð29Þ

∂ς2
∂S

= b
∂2ς1
∂I2 + cη1 − dς1, ς2 I, 0ð Þ, ð30Þ

∂η3
∂S

= a
∂2η2
∂I2 , η3 I, 0ð Þ, ð31Þ

∂ς3
∂S

= b
∂2ς2
∂I2 + cη2 − dς2, ς3 I, 0ð Þ: ð32Þ

With the help of Equation (24), we can get the following
iterations:

η I, 0ð Þ =me−I
2 , ð33Þ

ς I, 0ð Þ = ne−I
2 , ð34Þ

η1 I, Sð Þ = 2am −1 + 2I2� 	
e−I

2
S, ð35Þ

ς1 I, Sð Þ = 2bn 2I2 − 1
� �

+ cm − dnð Þ� 	
e−I

2
S, ð36Þ

η2 I, Sð Þ = 4a2m 3 − 12I2 + 4I4� 	
e−I

2 S2

2 , ð37Þ

ς2 I, Sð Þ = d −cm + dnð Þ + 2acm −1 + 2I2� ��
+ 2b −1 + 2I2� �

cm − 2dnð Þ

+ 4b2 3 − 12I2 + 4I4� �	
e−I

2 S2

2 ,
ð38Þ

η3 I, Sð Þ = 8a3m −15 + 90I2 − 60I4 + 8I6� 	
e−I

2 S3

6 , ð39Þ

ς3 I, Sð Þ = d2 cm − dnð Þ + 2bd −2cm + 3dnð Þ −1 + 2I2� ��
+ 4a2cm 3 − 12I2 + 4I4� �
+ 4b2 cm − 3dnð Þ 3 − 12I2 + 4I4� �
+ 8b3n −15 + 90I2 − 60I4 + 8I6� �
+ 2acm d − 2dx2 + b 6 − 24I2 + 8I4� �
 �	

e−I
2 S3

6 :

ð40Þ
In the same way, other of the elements can be identified.

So, the series solution of Equation (23) with the help of
Equation (25) is as follows:

η I,℘ð Þ =me−I
2 + 2ame−I

2
−1 + 2I2� 	 ℘δ

Γ 1 + δð Þ
� �

+ 2a2me−I
2 3 − 12I2 + 4I4� 	 ℘δ

Γ 1 + δð Þ
� �2

+ 4
3 a

3me−I
2
−15 + 90I2 − 60I4 + 8I6� 	 ℘δ

Γ 1 + δð Þ
� �3

,

ð41Þ

4 Journal of Function Spaces



ς I,℘ð Þ = ne−I
2 + 2bn 2I2 − 1

� �
+ cm − dnð Þ� 	

e−I
2 ℘δ

Γ 1 + δð Þ
� �

+ 1
2 d −cm + dnð Þ + 2acm −1 + 2I2� ��

+ 2b −1 + 2I2� �
cm − 2dnð Þ

+ 4b2 3 − 12I2 + 4I4� �	
e−I

2 ℘δ

Γ 1 + δð Þ
� �2

+ 1
6 12b2cm + 4bcdm − 120b3n − 36b2dn
�

− 6bd2n − d3n − 48b2cmx2 − 8bcdmx2

+ 72b3nx2144b2dnx2 + 12bd2nx2 + 16b2cmx4

− 48b3nx4 − 48b2dnx4 + 64b3nx6 + 4a2cm 3 − 12I2 + 4I4� �
+ 2amc d − 2dx2 + b 6 − 24I2 + 8I4� �� ��e−I2 ℘δ

Γ 1 + δð Þ
� �3

:

ð42Þ

Only some of terms are evaluated while the other
terms can be obtained using the iterative formula. As a
result, the solution of the system of Equation (23) is as
follows:

η I,℘ð Þ = η I, 0ð Þ + η1 I, 0ð Þ + η2 I, 0ð Þ + η3 I, 0ð Þ+⋯,
ς I,℘ð Þ = ς I, 0ð Þ + ς1 I, 0ð Þ + ς2 I, 0ð Þ + ς3 I, 0ð Þ+⋯:

ð43Þ

5.2. Example 2.

∂δη
∂℘δ

= a
∂2η
∂I2 −

∂
∂I

η
∂
∂I

χ ςð Þ
� �

,

∂δς
∂℘δ

= b
∂2ς
∂I2 + cη − dς,

ð44Þ

with the initial conditions

η I, 0ð Þ =me−I
2 ,

ς I, 0ð Þ = ne−I
2
:

ð45Þ

Considering that the sensitivity function χðςÞ = ς; thus,
the chemotactic term becomes ∂/∂Iðη∂/∂IχðhÞÞ = ∂η/∂I
∂h/∂I + η∂2h/∂I2 and using
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(a) Surface solution of ηðI, ℘Þ when δ = 0:25
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(b) Surface solution of ηðI, ℘Þ when δ = 0:50
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(c) Surface solution of ηðI, ℘Þ when δ = 0:75
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Figure 1: The surface solution of ηðI, ℘Þ for distinct values of δ.
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S = ℘δ

Γ 1 + δð Þ : ð46Þ

Thus, the coupled K-S model of Equation (44)
becomes

∂η
∂S

= a
∂2η
∂I2 −

∂η
∂I

∂h
∂I

− η
∂2h
∂I2 , ð47Þ

∂ς
∂S

= b
∂2ς
∂I2 + cη − dς: ð48Þ

Now, using the two-scale approach, with the help of
Equation (45), we can get the following iterations directly

η I, 0ð Þ =me−I
2 , ð49Þ

ς I, 0ð Þ = ne−I
2 , ð50Þ

η1 I, Sð Þ = 2m a 2I2 − 1
� �

− ne−I
2 4I2 − 1
� �h i

S, ð51Þ

ς1 I, Sð Þ = 2bn 2I2 − 1
� �

+ cm − dnð Þ� 	
e−I

2
S, ð52Þ

η2 I, Sð Þ = 2me−3I
2
−cmeI

2
−1 + 4I2� �h

+ 2a2e2I2 3 − 12I2 + 4I4� �
− 2aneI2 7 − 58I2 + 40I4� �
+ n deI

2
−1 + 4I2� �

− 2beI2 3 − 18I2 + 8I4� �n
+ 2n 1 − 18I2 + 24I4� �oi S2

2 ,

ð53Þ
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(a) Surface solution of ςðI, ℘Þ when δ = 0:25
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Figure 2: The surface solution of ςðI, ℘Þ for distinct values of δ.
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ς2 I, Sð Þ = 2e−2I2 2b2eI2
n 3 − 12I2 + 4I4� �h

+ beI
2
cm −1 + 2I2� �

+ dn 1 − 6I − 2I2 + 4I3� �� �
+I −d2eI

2
n − 2aceI2

m −3 + 2I2� ��
+ cm deI

2 + 4n −3 + 4I2� �� i S2
2 :

ð54Þ
In the same way, other of the elements can be identi-

fied. So, the series solution of Equation (44) with the help
of Equation (46) is as follows:

η I, Sð Þ =me−I
2 + 2m a 2I2 − 1

� �
− ne−I

2 4I2 − 1
� �h i ℘δ

Γ 1 + δð Þ
� �

+me−3I
2
−cmeI

2
−1 + 4I2� �

+ 2a2e2I2 3 − 12I2 + 4I4� �h
− 2aneI2 7 − 58I2 + 40I4� �

+ n deI
2
−1 + 4I2� �n

− 2beI2 3 − 18I2 + 8I4� �
+ 2n 1 − 18I2 + 24I4� �oi ℘δ

Γ 1 + δð Þ
� �2

,

ð55Þ

ς I, Sð Þ = ne−I
2 + e−I

2 2bn 2I2 − 1
� �

+ cm − dnð Þ� 	 ℘δ

Γ 1 + δð Þ
� �

+ e−2I
2 2b2eI2

n 3 − 12I2 + 4I4� �
+ beI

2
cm −1 + 2I2� ��h

+ dn 1 − 6I − 2I2 + 4I3� �Þ +I −d2eI
2
n − 2aceI2

m −3 + 2I2� ��

+ cm deI
2 + 4n −3 + 4I2� �� i ℘δ

Γ 1 + δð Þ
� �2

:

ð56Þ

6. Results and Discussion

In this segment, we demonstrate the validity and the accu-
racy of the two-scale approach through the 3D graphical
representations. We also present the graphical models and
physical behaviors of the time-fractional K-S model. Mathe-
matica program 11.0.1. is used to calculate the iterations and
the graphical representations. Figures 1–4 show the surface
graphs of the K-S model for ηðI, ℘Þ and ςðI, ℘Þ, respec-
tively, at different values of δ with 0 ≤I ≤ 2 and 0 ≤ ℘≤2.
On behalf of graphical illustrations, we adopt m = 0:000012,
n = 0:000016, a = 0:5, b = 3, c = 1, d = 2. The graphical illus-
trations have validated the convergence of fractional-order
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(b) Surface solution of ηðI, ℘Þ when δ = 0:50
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Figure 3: The surface solution of ηðI, ℘Þ for distinct values of δ.
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solutions in the direction of integer-order solutions. We cal-
culate the iteration only up to 3 terms, and the series of the
solution converges to the exact solution very rapidly. Some
more iterations can be evaluated for more accuracy of the
approximate solutions. It is noted that the obtained
solutions are similar which legitimize the reliability of the
proposed strategies:

7. Conclusion

In this study, we have successfully applied a hybrid strategy
where FCT has coupled with HPM to investigate the approx-
imate solution of the nonlinear time fractional K-S model.
The current association is not just helpful for fractional-
order differential equations but also other differential equa-
tions with some variants. The main advantage of FCT is that
it deals with the nonlinear problems straightforward to cus-
tomize FDEs into their differential parts. We performed two
numerical illustrations of the fractional K-S model to exam-
ine the reliability of the suggested approach. The results
indicate that the two-scale approach is a more effective and
powerful strategy in determining the analytical solutions of
nonlinear differential equations. Thus, we conclude that

our proposed scheme is suitable and can be considered for
the other nonlinear fractional partial differential equations
with fractal derivatives in future study.
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In the present paper, we deal with some fractional integral inequalities for strongly reciprocally ðp, hÞ-convex functions. We
established fractional version of Hermite-Hadamard and Fejér type inequalities for strongly reciprocally ðp, hÞ-convex
functions. Our results extend and generalize many exiting results of literate.

1. Introduction

The convex functions nowadays are widely used in many
branches of mathematics like optimization theory, func-
tional analysis, and modeling theory [1, 2]. The interesting
geometry of convex functions makes its study distinct from
other functions. From geometric point of view, a function
ψðxÞ is convex provided that the line segment connecting
any two points of its graph lies on or above the graph of
function. The new inequalities in analysis are always appre-
ciable [3, 4].

Since the classical convexity is not enough to attain cer-
tain goals in applied mathematics, so the classical convexity
has been generalized in many directions. For recent general-
izations, one can see [5, 6].

For the class of convex functions, various inequalities
have been developed [7, 8], but the most famous inequality
is Hermite-Hadamard’s inequality. It is stated as follows:

Let ψ : M ⊆ℝ⟶ℝ be a convex function, and let d1,
d2 ∈M with d1d2; then, the following double inequality
holds:

ψ
d1 + d2

2

� �
≤

1
d2 − d1

ðd2
d1

ψ xð Þdx ≤ ψ d1ð Þ + ψ d2ð Þ
2 : ð1Þ

In [9], Fejér gave the weighted version of Hermite-
Hadamard inequality (1) as follows:

Let ψ : ½d1, d2� ⊆ℝ⟶ℝ be a convex function and w
: ½d1, d2�⟶ℝ a non-negative, integrable, and symmetric
function about ðd1 + d2Þ/2; then, the following inequality
holds:

ψ
d1 + d2

2

� �ðd2
d1

w xð Þdx ≤
ðd2
d1

ψ xð Þw xð Þdx ≤ ψ d1ð Þ + ψ d2ð Þ
2

ðd2
d1

w xð Þdx:

ð2Þ

The aim of present paper is to establish fractional ver-
sion of Hermite-Hadamard and Fejér type inequalities for
a more generalized class of functions. The present paper is
organized as follows: The §2 is concerned with some prelim-
inary material. In Section 3, we give some basic results for
strongly reciprocally (p,h)-convex functions, and in Sections
4 and 5, we develop Hermite-Hadamard and Fejér type
inequalities, respectively, for strongly reciprocally (p,h
)-convex function. Moreover, the last section is devoted for
fractional integral inequalities.

2. Preliminaries

In this section, we give a brief review of some preliminaries.
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Definition 1 (p-convex set see [10, 11]). A set M = ½d1, d2�
⊆ℝ \ f0g is p -convex set, if

jxp + 1 − jð Þypð Þ1/p
h i

∈M, ð3Þ

for all x, y ∈M, j ∈ ½0, 1�, where p = 2u + 1 or p = a/b, a = 2v
+ 1, b = 2w + 1 and u, v,w ∈N .

Definition 2 (p-convex function see [10]). Let M = ½d1, d2�
⊆ℝ \ f0g be a p -convex set. A function ψ : M = ½d1, d2�
⟶ℝ is called p-convex function, if

ψ jxp + 1 − jð Þypð Þ1/p
h i

≤ jψ xð Þ + 1 − jð Þψ yð Þ ∈M, ð4Þ

holds for all x, y ∈M and j ∈ ½0, 1�.

Definition 3 (Strongly convex function see [4]). A function
ψ : M = ½d1, d2�⟶ℝ is called strongly convex function
with modulus μ on M, where μ ≥ 0, if

ψ jx + 1 − jð Þyð Þ ≤ jψ xð Þ + 1 − jð Þψ yð Þ − μj 1 − jð Þ y − xð Þ2,
ð5Þ

holds for all x, y ∈M and j ∈ ½0, 1�.

Definition 4 (Strongly p-convex function see [12]). A func-
tion ψ : M = ½d1, d2�⟶ℝ is called strongly p-convex func-
tion, if

ψ jxp + 1 − jð Þypð Þ1/p
h i

≤ jψ xð Þ + 1 − jð Þψ yð Þ − μj 1 − jð Þ yp − xpð Þ2,
ð6Þ

holds for all x, y ∈M and j ∈ ½0, 1�.

Definition 5 (Harmonic convex set see [11, 13]). A set M =
½d1, d2� ⊆ℝ \ f0g is said to be harmonic convex set, if

xy
jx + 1 − jð Þy ∈M, ð7Þ

for all x, y ∈M and j ∈ ½0, 1�.

Definition 6 (Harmonic convex function see [11, 14]). Let
M = ½d1, d2� ⊆ℝ \ f0g be the harmonic convex set. A func-
tion ψ : M = ½d1, d2� ⊆ℝ \ f0g⟶ℝ is harmonic convex
function, if

ψ
xy

jx + 1 − jð Þy
� �

1 − jð Þψ xð Þ + jψ yð Þ, ð8Þ

holds for all x, y ∈M and j ∈ ½0, 1�:

Definition 7 (p-harmonic convex set see [11, 15]). A set M
= ½d1, d2� ⊆ℝ \ f0g is p -harmonic convex set, if

xpyp

jxp + 1 − jð Þyp
� �1/p
" #

∈M, ð9Þ

for all x, y ∈M and j ∈ ½0, 1�.

Definition 8 (p-harmonic convex function see [11, 15]). Let
M = ½d1, d2� ⊆ℝ \ f0g be p-harmonic convex set. A function
ψ : M = ½d1, d2� ⊆ℝ \ f0g⟶ℝ is p-harmonic convex, if

ψ
xpyp

jxp + 1 − jð Þyp
� �1/p
" #

≤ 1 − jð Þψ xð Þ + jψ yð Þ, ð10Þ

holds for all x, y ∈M and j ∈ ½0, 1�.

Definition 9 (Strongly reciprocally convex function see [16]).
Let M be an interval and let μ ∈ ð0,∞Þ. A function ψ : M
= ½d1, d2� ⊆ℝ \ f0g⟶ℝ is said to be strongly reciprocally
convex function with modulus μ on M, if

ψ
xy

jx + 1 − jð Þy
� �

≤ 1 − jð Þψ xð Þ + jψ yð Þ − μj 1 − jð Þ 1
x
−
1
y

� �2
,

ð11Þ

holds for all x, y ∈M and j ∈ ½0, 1�:

Definition 10 (Strongly reciprocally p-convex function see
[17]). Let M be a p -harmonic convex set and let μ ∈ ð0,∞Þ
. A function ψ : M = ½d1, d2� ⊆ℝ \ f0g⟶ℝ is said to be
strongly reciprocally p-convex function with modulus μ on
M, if

ψ
xpyp

jxp + 1 − jð Þyp
� �1/p
" #

≤ 1 − jð Þψ xð Þ + jψ yð Þ − μj 1 − jð Þ 1
xp

−
1
yp

� �2
,

ð12Þ

holds for all x, y ∈M and j ∈ ½0, 1�:

Definition 11 (h-convex function see [18]). Choose the func-
tions ψ, h : M = ½d1, d2�⟶ℝ that are non-negative; then, ψ
is called h-convex function, if

ψ jx + 1 − jð Þyð Þ ≤ h jð Þψ xð Þ + h 1 − jð Þψ yð Þ, ð13Þ

for all x, y ∈M and j ∈ ½0, 1�.

Now, we are ready to introduce a new class of convex
functions by generalizing the concept of strongly recipro-
cally p-convex functions, which we will call strongly recipro-
cally (p,h)-convex functions.

Definition 12 (Strongly reciprocally ðp, hÞ-convex function).
LetM be a p-harmonic convex set and let μ ∈ ð0,∞Þ. A func-
tion ψ : M = ½d1, d2� ⊆ℝ \ f0g⟶ℝ is said to be strongly
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reciprocally ðp, hÞ-convex function with modulus μ on M, if

ψ
xpyp

jxp + 1 − jð Þyp
� �1/p
" #

≤ h 1 − jð Þψ xð Þ + h jð Þψ yð Þ − μj 1 − jð Þ 1
xp

−
1
yp

� �2
,

ð14Þ

hold for all x, y ∈M and j ∈ ½0, 1�.
Throughout the paper, for convenience, we represent the

class of strongly reciprocally (p, h) convex functions by SRð
p, hÞ.

Remark 13. Inserting hðjÞ = j in Definition 12, we obtain
Definition 10, and inserting hðjÞ = j and p = 1, Definition
12 reduces to Definition 9.

Similarly, from Definition 12, Definitions 6 and 8 can be
obtained by inserting hðjÞ = j, μ = 0, p = 1, and hðjÞ = j with
μ = 0, respectively.

3. Basic Results

This section collects some basic and straight forward facts
based on algebraic operations.

The following proposition is concerned about the addi-
tion of two functions from SRðp, hÞ.

Proposition 14. Let ψ, σ : M⟶ℝ be two strongly recipro-
cally (p,h)-convex functions with modulus μ on M; then, ψ
+ σ : M⟶ℝ is also strongly reciprocally (p,h)-convex func-
tion with modulus μ∗ on M, where μ∗ = 2μ.

Proof.We will start by definition of strongly reciprocally (p,h
)-convexity of ψ and σ:

ψ + σð Þ xpyp

jxp + 1 − jð Þyp
� �1/p

= ψ
xpyp

jxp + 1 − jð Þyp
� �1/p
" #

+ σ
xpyp

jxp + 1 − jð Þyp
� �1/p
" #

≤ h jð Þψ xð Þ + h 1 − jð Þψ yð Þ − μj 1 − jð Þ 1
yp

−
1
xp

� �2

+ h jð Þσ xð Þ + h 1 − jð Þσ yð Þ − μj 1 − jð Þ 1
yp

−
1
xp

� �2
,

ð15Þ

which in turns implies that

ψ + σð Þ xpyp

jxp + 1 − jð Þyp
� �1/p

≤ h jð Þ ψ + σð Þ xð Þ + h 1 − jð Þ ψ + σð Þ yð Þ − 2μj 1 − jð Þ 1
yp

−
1
xp

� �2

= h jð Þ ψ + σð Þ xð Þ + h 1 − jð Þ ψ + σð Þ yð Þ − μ∗ j 1 − jð Þ 1
yp

−
1
xp

� �2
,

ð16Þ

where μ∗ = 2μ and μ ≥ 0. This completes the proof.

Our next result is concerned with the scalar multiplica-
tion of strongly reciprocally (p,h)-convex function.

Proposition 15. Let ψ : M⟶ℝ be a strongly reciprocally
(p,h)-convex function; then, for any λ ≥ 0, λψ : M⟶ℝ is
also strongly reciprocally (p,h)-convex function with modulus
ν∗ on M, where ν∗ = λμ.

Proof. Let λ ≥ 0, ψ ∈ SRðp, hÞ, we obtain

λψ
xpyp

jxp + 1 − jð Þyp
� �1/p
" #

+ λ ψ
xpyp

jxp + 1 − jð Þyp
� �1/p
" #" #

≤ λ h jð Þψ xð Þ + h 1 − jð Þψ yð Þ − μj 1 − jð Þ 1
yp

−
1
xp

� �2
" #

= h jð Þλψ xð Þ + h 1 − jð Þλψ yð Þ − λμj 1 − jð Þ 1
yp

−
1
xp

� �2

= h jð Þλψ xð Þ + h 1 − jð Þλψ yð Þ − ν∗ j 1 − jð Þ 1
yp

−
1
xp

� �2
,

ð17Þ

where ν∗ = λμ and μ ≥ 0. This completes the proof.

Proposition 16. Let ψi : M⟶ℝ, where 1 ≤ i ≤ n be in SR
ðp, hÞ with modulus μ; then, for λi ≥ 0 where 1 ≤ i ≤ n, the
function ψ : M⟶ℝ, where ψ =∑n

i=1λiψi is also in SRðp, h
Þ with modulus γ ≥ 0, where γ =∑n

i=1λiμ.

Proof. Let M is a p-harmonic convex set. Then, ∀x, y ∈M
and j ∈ ½0, 1�, we have

ψ
xpyp

jxp + 1 − jð Þyp
� �1/p
" #

= 〠
n

i=1
λiψi

xpyp

jxp + 1 − jð Þyp
� �1/p
" #

≤ 〠
n

i=1
λi h jð Þψi xð Þ + h 1 − jð Þψi yð Þ½ −μj 1 − jð Þ 1

yp
−

1
xp

� �2
#

= h jð Þ〠
n

i=1
λiψi xð Þ + h 1 − jð Þ〠

n

i=1
λiψi yð Þ

− 〠
n

i=1
λi μj 1 − jð Þ 1

yp
−

1
xp

� �2
" #

= h jð Þf xð Þ + h 1 − jð Þψ yð Þ − γj 1 − jð Þ 1
yp

−
1
xp

� �2
,

ð18Þ

where γ =∑n
i=1λiμ. This completes the proof.

Proposition 17. Let ψi : M⟶ℝ, where 1 ≤ i ≤ n be
strongly reciprocally (p,h)-convex functions with modulus μ;
then ψ =max fψi, i = 1, 2,⋯, ng, is also strongly reciprocally
(p,h)-convex functions with modulus μ.

Proof. Let M is p-harmonic convex set. Then ∀x, y ∈M and
j ∈ ½0, 1�, we have

ψ
xpyp

jxp + 1 − jð Þyp
� �1/p
" #

=max ψi
xpyp

jxp + 1 − jð Þyp
� �1/p
" #

, i = 1, 2, 3,⋯, n
( )

= ψc
xpyp

jxp + 1 − jð Þyp
� �1/p
" #

≤ h jð Þψc xð Þ + h 1 − jð Þψc yð Þ − μj 1 − jð Þ 1
yp

−
1
xp

� �2

= h jð Þ max ψi xð Þf g + h 1 − jð Þ max ψi yð Þf g

− μj 1 − jð Þ 1
yp

−
1
xp

� �2

= h jð Þψ xð Þ + h 1 − jð Þψ yð Þ − μj 1 − jð Þ 1
yp

−
1
xp

� �2
:

ð19Þ

This completes the proof.

3Journal of Function Spaces



Our next intension is to develop Hermite-Hadamard’s
inequality for this generalization.

4. Hermite-Hadamard Type Inequality

Theorem 18. Let M ⊂ℝ \ f0g be an interval. If ψ : M⟶ℝ
be a strongly reciprocally (p,h)-convex function with modulus
μ ≥ 0 and ψ ∈ L½d1, d2�, then for hð1/2Þ ≠ 0, we have

1
2h 1/2ð Þ ψ

2dp1d
p
2

dp1 + dp2

 !1/p

+ μ

12
dp2 − dp1
dp1d

p
2

 !2" #

≤
p dp1d

p
2

� �
dp2 − dp1

ðd2
d1

ψ xð Þ
x1+p

dx

≤
ð1
0
h 1 − jð Þψ d1ð Þ + h jð Þψ d2ð Þ½ � dj − μ

6
dp2 − dp1
dp1d

p
2

 !2

:

ð20Þ

Proof. Since, ψ ∈ SRðp, hÞ, and allowing j = 1/2 yields

ψ
2xpyp
xp + yp

� �1/p
" #

≤ h
1
2

� �
ψ xð Þ + h

1
2

� �
ψ yð Þ − μ

1
2

� � 1
2

� � 1
xp

−
1
yp

� �2
:

ð21Þ

Let x = ½ððdp1dp2Þ/ðjdp1 + ð1 − jÞdp2ÞÞ1/p� and y = ½
ððdp1dp2Þ/ðjdp2 + ð1 − jÞdp1ÞÞ1/p� and integrating (21) w.r.t j over
½0, 1�, we obtain

ψ
2dp1d

p
2

dp1 + dp2

 !1/p" #
≤ h

1
2

� �
ψ

dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1/p" #

+ h
1
2

� �
ψ

dp1d
p
2

jdp2 + 1 − jð Þdp1

 !1/p" #

−
μ

4
dp2 − dp1
dp1d

p
2

 !2

1 − 2jð Þ2
ð1
0
ψ

2dp1d
p
2

dp1 + dp2

 !1/p" #
dj

≤
ð1
0
h

1
2

� �
ψ

dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1/p" #
dj

+
ð1
0
h

1
2

� �
ψ

dp1d
p
2

jdp2 + 1 − jð Þdp1

 !1/p" #
dj

−
μ

4
dp2 − dp1
dp1d

p
2

 !2ð1
0
1 − 2jð Þ2djψ 2dp1d

p
2

dp1 + dp2

 !1/p" #

≤ 2h 1
2

� �
p dp1d

p
2

� �
dp2 − dp1

ðd2
d1

ψ xð Þ
x1+p

dx −
μ

12
dp2 − dp1
dp1d

p
2

 !2

,

ð22Þ

and

ψ
2dp1d

p
2

dp1 + dp2

 !1/p" #
+ μ

12
dp2 − dp1
dp1d

p
2

 !2

≤ 2h 1
2

� �
p dp1d

p
2

� �
dp2 − dp1

ðd2
d1

ψ xð Þ
x1+p

dx
1

2h 1/2ð Þ

� ψ
2dp1d

p
2

dp1 + dp2

 !1/p" #
+ μ

12
dp2 − dp1
dp1d

p
2

 !2" #

≤
p dp1d

p
1

� �
dp2 − dp1

ðd2
d1

ψ xð Þ
x1+p

dx,

ð23Þ

which gives one side of (20).
For the right side of (20), since ψ ∈ SRðp, hÞ, so by setting

x = d1 and y = d2, we obtain the following result:

ψ
dp1d

p
2

jdp1 + 1 − jð Þdp2

 !1/p" #
≤ h 1 − jð Þψ d1ð Þ + h jð Þψ d2ð Þ

− μj 1 − jð Þ 1
dp1

−
1
dp2

� �2
:

ð24Þ

Integrating (24) w.r.t j over ½0, 1�, we obtain
ð1
0
ψ

dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1/p" #
dj ≤

ð1
0
h 1 − jð Þψ d1ð Þdj +

ð1
0
h jð Þψ d2ð Þdj

− μ
dp2 − dp1
dp1d

p
2

 !2ð1
0
j 1 − jð Þdj,

ð25Þ

and

p dp1d
p
2

� �
dp2 − dp1

ðd2
d1

ψ xð Þ
x1+p

dx ≤
ð1
0
h 1 − jð Þψ d1ð Þ + h jð Þψ d2ð Þ½ �dj − μ

6
dp2 − dp1
dp1d

p
2

 !2

,

ð26Þ

which is right side of (20), which completes the proof.

Remark 19.

(1) Inserting hðjÞ = j and p = 1 in Theorem 18, we
obtained Hermite-Hadamard inequality for strongly
reciprocally convex function [16] (Theorem 3.1)

(2) Insertion hðjÞ = j, p = 1, and μ = 0 in Theorem 18
yields Hermite-Hadamard inequality for harmonic
convex functions [14] (Theorem 2.4)

Now, we develop Fejér type inequality for this new class
of convex functions.

5. Fejér Type Inequality

Theorem 20. Let M ⊂ℝ \ f0g be an interval. If ψ : M⟶ℝ
be a strongly reciprocally (p,h)-convex function with modulus
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μ ≥ 0, then for hð1/2Þ ≠ 0, we have

1
2h 1/2ð Þ ψ

2dp1d
p
2

dp1 + dp2

 !1/p" #ðd2
d1

w xð Þ
x1+p

dx

"
+ μ

2dp1d
p
2

� �2
ðd2
d1

2dp1d
p
2 − dp1 + dp2
� �

xp
� �2

w xð Þ
x1+3p

dx

#

≤
ðd2
d1

ψ xð Þw xð Þ
x1+p

dx ≤ ψ d1ð Þ + ψ d2ð Þ½ �
ðd2
d1

h
dp1 dp2 − xp
� �

xp dp2 − dp1
� �

 !
w xð Þ
x1+p

dx

−
μ

dp1d
p
2

ðd2
d1

xp − dp1
� �

dp2 − xp
� �

w xð Þ
x1+3p

dx,

ð27Þ

holds for d1, d2 ∈M with d1 ≤ d2 and ψ ∈ L½d1, d2�, where
w : M⟶ℝ is a non-negative integrable function that sat-
isfies

w
dp1d

p
2

xp

 !1/p

=w
dp1d

p
2

dp1 + dp2 − xp

 !1/p" #
: ð28Þ

Proof. Since ψ ∈ SRðp, hÞ, and allowing j = 1/2 yields

ψ
2xpyp
xp + yp

� �1/p
" #

≤ h
1
2

� �
ψ xð Þ + h

1
2

� �
ψ yð Þ − μ

1
2

� � 1
2

� � 1
xp

−
1
yp

� �2
:

ð29Þ

Inserting x = ½ðdp1dp2/jdp1 + ð1 − jÞdp2Þ1/p� and y = ½
ðdp1dp2/jdp2 + ð1 − jdp1Þ1/p� in (29), we obtain

ψ
2dp1d

p
2

dp1 + dp2

 !1/p" #
≤ h

1
2

� �
ψ

dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1/p" #
+ h

1
2

� �
ψ

dp1d
p
2

jdp2 + 1 − jð Þdp1

 !1/p" #

−
μ

4
jdp1 + 1 − jð Þdp2

dp1d
p
2

−
jdp2 + 1 − jð Þdp1

dp1d
p
2

 !2

:

ð30Þ

Since, w is a non-negative symmetric and integrable
function, so

ψ
2dp1d

p
2

dp1 + dp2

 !1/p" #
w

dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1/p" #

≤ h
1
2

� �
ψ

dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1/p" #
w

dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1/p" #

+ h
1
2

� �
ψ

dp1d
p
2

jdp2 + 1 − jð Þdp1

 !1/p" #
w

dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1/p" #

−
μ

4
jdp1 + 1 − jð Þdp2

dp1d
p
2

−
jdp2 + 1 − jð Þdp1

dp1d
p
2

 !2

w
dp1d

p
2

jdp1 + 1 − jð Þdp2

 !1/p" #
:

ð31Þ

Integrating inequality (31) w.r.t j over ½0, 1�, we obtain

ð1
0
ψ

2dp1d
p
2

dp1 + dp2

 !1/p" #
w

dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1/p" #
dj

≤
ð1
0
h

1
2

� �
ψ

dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1/p" #
w

dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1/p" #
dj

+
ð1
0
h

1
2

� �
ψ

dp1d
p
2

jdp2 + 1 − jð Þdp1

 !1/p" #
w

dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1/p" #
dj

−
μ

4

ð1
0

jdp1 + 1 − jð Þdp2
dp1d

p
2

−
jdp2 + 1 − jð Þdp1

dp1d
p
2

 !2

w
dp1d

p
2

jdp1 + 1 − jð Þdp2

 !1/p" #
dj,

ð32Þ

and

ψ
2dp1d

p
2

dp1 + dp2

 !1/p" #ðb1
a1

w xð Þ
x1+p

dx + μ

2dp1d
p
2

� �2
ðd2
d1

� 2dp1d
p
2 − dp1 + dp2
� �

xp
� �2

w xð Þ
x1+3p

dx

≤ 2h 1
2

� �ðb1
a1

ψ xð Þw xð Þ
x1+p

dx,

ð33Þ

so,

1
2h 1/2ð Þ ψ

2dp1d
p
2

dp1 + dp2

 !1/p" #ðd2
d1

w xð Þ
x1+p

dx

"
+ μ

2dp1d
p
2

� �2
ðd2
d1

2dp1d
p
2 − dp1 + dp2
� �

xp
� �2

w xð Þ
x1+3p

dx

#

≤
ðd2
d1

ψ xð Þw xð Þ
x1+p

dx,

ð34Þ

which is left side of (27).

Finally, for the right side of (27), since ψ ∈ SRðp, hÞ and by
setting x = d1 and y = d2, we obtain the following result:

ψ
dp1d

p
2

jdp1 + 1 − jð Þdp2

 !1/p" #
≤ h 1 − jð Þψ d1ð Þ + h jð Þψ d2ð Þ − μj 1 − jð Þ 1

dp1
−

1
dp2

� �2
:

ð35Þ

Since w is a non-negative symmetric and integrable
function, so

ψ
dp1d

p
2

jdp1 + 1 − jð Þdp2

 !1/p" #
w

dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1/p" #

≤ h 1 − jð Þψ d1ð Þw dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1/p" #

+ h jð Þψ d2ð Þw dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1/p" #

− μj 1 − jð Þ 1
dp1

−
1
dp2

� �2
w

dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1/p" #
:

ð36Þ
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Integrating inequality (36) w.r.t j over ½0, 1�, we obtain

ð1
0
ψ

dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1/p" #
w

dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1/p" #
dj

≤
ð1
0
h 1 − jð Þψ d1ð Þw dp1d

p
2

jdp1 + 1 − jð Þdp2

 !1/p" #
dj

+
ð1
0
h jð Þψ d2ð Þw dp1d

p
2

jdp1 + 1 − jð Þdp2

 !1/p" #
dj

− μ
ð1
0
j 1 − jð Þ 1

dp1
−

1
dp2

� �2
w

dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1/p" #
dj,

ð37Þ

and

ðd2
d1

ψ xð Þw xð Þ
x1+p

dx ≤ ψ d1ð Þ + ψ d2ð Þ½ �
ðb1
a1

h
dp1 dp2 − xp
� �

xp dp2 − dp1
� �

 !
w xð Þ
x1+p

dx

−
μ

dp1d
p
2

ðd2
d1

xp − dp1
� �

dp2 − xp
� �

w xð Þ
x1+3p

dx,

ð38Þ

which is the right side of inequality (27); this completes
the proof.

Remark 21.

(1) Inserting hðjÞ = j and p = 1 in Theorem 20, we
obtained Fejér type inequality for strongly recipro-
cally convex function [16] (Theorem 3.7)

(2) Insertion hðjÞ = j, in Theorem 20, yields Fejér type
inequality for strongly reciprocally p-convex func-
tions [17] (Theorem 3.5)

6. Fractional Integral Inequalities

Fractional integral inequalities are important to study means
[19–22]. This section is devoted for some fractional integral
inequalities for functions whose derivatives are in SRðp, hÞ.
A source for results of the desired type is the following
lemma.

Lemma 22 see ([23], Lemma 2.1). Let ψ : M = ½d1, d2� ⊆ℝ is
differentiable defined on the interiorM ofM. If ψ′ ∈ L½d1, d2�
and λ ∈ ½0, 1�, then

1 − λð Þψ 2dp1d
p
2

dp1 + dp2

 !1/p" #
+ λ

ψ d1ð Þ + ψ d2ð Þ
2

� �
−
p dp1d

p
2

� �
dp2 − dp1

ðd2
d1

ψ xð Þ
x1+p

dx

= dp2 − dp1
� �
2p dp1d

p
2

� � ð1/2
0

2j − λð Þ dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1+ 1/pð Þ
ψ′ ap1b

p
1

jap1 + 1 − jð Þbp1

 !1/p" #
dj

2
4

+
ð1
1/2

2j − 2 + λð Þ dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1+ 1/pð Þ
ψ′ dp1d

p
2

jdp1 + 1 − jð Þdp2

 !1/p" #
dj

3
5:
ð39Þ

As a first application of Lemma 22, we prove the following
result.

Theorem 23. Let M = ½d1, d2� ⊂ℝ \ f0g be a p -harmonic
convex set, and let ψ : M = ½d1, d2� ⊆ℝ \ f0g⟶ℝ be differ-
entiable defined on the interior M of M. If M ′ ∈ L½d1, d2� and
jψ′jq is strongly reciprocally (p,h)-convex function on M, q
≥ 1, and λ ∈ ½0, 1�, then

1 − λð Þψ 2dp1d
p
2

dp1 + dp2

 !1/p" #
+ λ

ψ d1ð Þ + ψ d2ð Þ
2

� �
−
p dp1d

p
2

� �
dp2 − dp1

ðd2
d1

ψ xð Þ
x1+p

dx

�����
�����

≤
dp2 − dp1
� �
2p dp1d

p
2

� � k1 p, d1, d2ð Þ1− 1/qð Þ k15 p, d1, d2ð Þ ψ′ d1ð Þ�� ��q + k17 p, d1, d2ð Þ ψ′ d2ð Þ�� ��qhh
+ k7 p, d1, d2ð Þμ�1/q

i
+ k2 p, d2, d1ð Þ1− 1/qð Þ k18 p, d2, d1ð Þ ψ′ d1ð Þ�� ��qh

+ k16 p, d2, d1ð Þ ψ′ d2ð Þ�� ��q+k8 p, d2, d1ð Þμ�1/q
i
,

ð40Þ

where

k1 p, d1, d2ð Þ =
ð1/2
0

2j − λj j dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1+ 1/pð Þ
dj, ð41Þ

k2 p, d2, d1ð Þ =
ð1
1/2

2j − 2 + λj j dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1+ 1/pð Þ
dj,

ð42Þ

k15 p, d1, d2ð Þ =
ð1/2
0
h 1 − jð Þ 2j − λj j dp1d

p
2

jdp1 + 1 − jð Þdp2

 !1+ 1/pð Þ
dj,

ð43Þ

k16 p, d2, d1ð Þ =
ð1
1/2
h jð Þ 2j − 2 + λj j dp1d

p
2

jdp1 + 1 − jð Þdp2

 !1+ 1/pð Þ
dj,

ð44Þ

k17 p, d1, d2ð Þ =
ð1/2
0
h jð Þ 2j − λj j dp1d

p
2

jdp1 + 1 − jð Þdp2

 !1+ 1/pð Þ
dj,

ð45Þ

k18 p, d2, d1ð Þ =
ð1
1/2
h 1 − jð Þ 2j − 2 + λj j dp1d

p
2

jdp1 + 1 − jð Þdp2

 !1+ 1/pð Þ
dj,

ð46Þ

k7 p, d1, d2ð Þ =
ð1/2
0
j j − 1ð Þ 2j − λj j dp1d

p
2

jdp1 + 1 − jð Þdp2

 !1+ 1/pð Þ
1

dp2
−

1

dp1

� �2

dj,

ð47Þ

k8 p, d2, d1ð Þ =
ð1
1/2
j j − 1ð Þ 2j − 2 + λj j dp1d

p
2

jdp1 + 1 − jð Þdp2

 !1+ 1/pð Þ
1

dp2
−

1

dp1

� �2

dj:

ð48Þ
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Proof. Using Lemma 22 and power mean inequality, we have

1 − λð Þψ 2dp1d
p
2

dp1 + dp2

 !1/p" #
+ λ

ψ d1ð Þ + ψ d2ð Þ
2

� �
−
p dp1d

p
2

� �
dp2 − dp1

ðd2
d1

ψ xð Þ
x1+p

dx

�����
�����

≤
dp2 − dp1
� �
2p dp1d

p
2

� � ð1/2
0

2j − λð Þ dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1+ 1/pð Þ������
������ × ψ′ dp1d

p
2

jdp1 + 1 − jð Þdp2

 !1/p" #�����
�����dj

2
4

+
ð1
1/2

2j − 2 + λð Þ dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1+ 1/pð Þ
������

������ × ψ′ dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1/p" #�����
�����dj
3
5:

≤
dp2 − dp1
� �
2p dp1d

p
2

� � ð1/2
0

2j − λð Þj j dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1+ 1/pð Þ
dj

0
@

1
A

1− 1/qð Þ2
64

×
ð1/2
0

2j − λð Þj j dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1+ 1/pð Þ
× ψ′ dp1d

p
2

jdp1 + 1 − jð Þdp2

 !1/p" #�����
�����
q

dj

0
@

1
A

1/q

+
ð1
1/2

2j − 2 + λð Þj j dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1+ 1/pð Þ
dt

0
@

1
A

1− 1/qð Þ

×
ð1
1/2

2j − 2 + λð Þj j dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1+ 1/pð Þ0
@

1
A

× ψ′ dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1/p" #�����
�����
q

dj

1
A

1/q3
5:

ð49Þ

Since jψ′ðxÞjq ∈ SRðp, hÞ, so

1 − λð Þψ 2dp1d
p
2

dp1 + dp2

 !1/p" #
+ λ

ψ d1ð Þ + ψ d2ð Þ
2

� �
−
p dp1d

p
2

� �
dp2 − dp1

ðd2
d1

ψ xð Þ
x1+p

dx

�����
�����

≤
dp2 − dp1
� �
2p dp1d

p
2

� � ð1/2
0

2j − λð Þj j dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1+ 1/pð Þ
dj

0
@

1
A

1− 1/qð Þ2
64

×
ð1/2
0

2j − λð Þj j dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1+ 1/pð Þ0
@

× h 1 − jð Þ ψ′ d1ð Þ�� ��q + h jð Þ ψ′ d2ð Þ�� ��q − μj 1 − jð Þ 1
dp2

−
1
dp1

� �2
" #

dj

!1/q

+
ð1
1/2

2j − 2 + λð Þj j dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1+ 1/pð Þ
dj

0
@

1
A

1− 1/qð Þ

×
ð1
1/2

2j − 2 + λð Þj j dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1+ 1/pð Þ0
@

× h 1 − jð Þ ψ′ d1ð Þ�� ��q + h jð Þ ψ′ d2ð Þ�� ��q − μj 1 − jð Þ 1
dp2

−
1
dp1

� �2
" #

dj

!1/q#

= dp2 − dp1
� �
2p dp1d

p
2

� � k1 p, d1, d2ð Þ1− 1/qð Þ k15 p, d1, d2ð Þ ψ′ d1ð Þ�� ��qhh

+ k17 p, d1, d2ð Þ ψ′ d2ð Þ�� ��q + k7 p, d1, d2ð Þμ
i1/q

+ k2 p, d2, d1ð Þ1− 1/qð Þ k18 p, d2, d1ð Þ ψ′ d1ð Þ�� ��q + k16 p, d2, d1ð Þ ψ′ d2ð Þ�� ��qh
+ k8 p, d2, d1ð Þμ�1/q

i
:

ð50Þ

This completes the proof.

Remark 24. Inserting μ = 0 and hðjÞ = j in Theorem 23, we
obtained [23] Theorem 2.2.

For q = 1, Theorem 23 reduces to the following result.

Corollary 25. Let M = ½d1, d2� ⊂ℝ \ f0g be a p -harmonic
convex set, and let ψ : M = ½d1, d2� ⊆ℝ \ f0g⟶ℝ be differ-
entiable defined on the interior M of M . If ψ′ ∈ L½d1, d2� and
jψ′jq is in SRðp, hÞ on M and λ ∈ ½0, 1�, then

1 − λð Þψ 2dp1d
p
2

dp1 + dp2

 !1/p" #
+ λ

ψ d1ð Þ + ψ d2ð Þ
2

� �
−
p dp1d

p
2

� �
dp2 − dp1

ðd2
d1

ψ xð Þ
x1+p

dx

�����
�����

≤
dp2 − dp1
� �
2p dp1d

p
2

� � k15 p, d1, d2ð Þ + k18 p, d2, d1ð Þð Þ ψ′ d1ð Þ�� ��h
+ k16 p, d2, d1ð Þð +k17 p, d1, d2ð ÞÞ ψ′ d2ð Þ�� �� + k7 p, d1, d2ð Þð
+ k8 p, d2, d1ð ÞÞμ�,

ð51Þ

where k15, k16 , k17 , k18, k7 , and k8 are given by (43) to
(48).

Remark 26. Inserting hðjÞ = j and μ = 0 in Corollary 25, we
obtained [23] Corollary 2.3.

Using Lemma 22, we can prove the following result.

Theorem 27. Let M = ½d1, d2� ⊂ℝ \ f0g be a p -harmonic
convex set, and let ψ : M = ½d1, d2� ⊆ℝ \ f0g⟶ℝ be differ-
entiable defined on the interior M of M. If M ′ ∈ L½d1, d2� and
jψ′jq is in SRðp, hÞ on M, r, q > 1, ð1/rÞ + ð1/qÞ = 1 and λ ∈
½0, 1�, then

1 − λð Þψ 2dp1d
p
2

dp1 + dp2

 !1/p" #
+ λ

ψ d1ð Þ + ψ d2ð Þ
2

� �
−
p dp1d

p
2

� �
dp2 − dp1

ðd2
d1

ψ xð Þ
x1+p

dx

�����
�����

≤
dp2 − dp1
� �
2p dp1d

p
2

� � × λr+1 + 1 − λð Þr+1
2 r + 1ð Þ

 !1/r

� k19 q, p ; d1, d2ð Þ ψ′ d1ð Þ�� ��q�
+ k21 q, p ; d1, d2ð Þ ψ′ d2ð Þ�� ��q+k13 q, p ; d1, d2ð ÞμÞ1/q

h
+ k22 q, p ; d2, d1ð Þ ψ′ d1ð Þ�� ��q + k20 q, p ; d2, d1ð Þ ψ′ d2ð Þ�� ��q + k14 q, p ; d2, d1ð Þμ
� �1/q	

,

ð52Þ

where

k19 q, p ; d1, d2ð Þ =
ð1/2
0
h 1 − jð Þ dp1d

p
2

jdp1 + 1 − jð Þdp2

 !q+ q/pð Þ
dj,

ð53Þ

k20 q, p ; d2, d1ð Þ =
ð1
1/2
h jð Þ dp1d

p
2

jdp1 + 1 − jð Þdp2

 !q+ q/pð Þ
dj, ð54Þ

k21 q, p ; d1, d2ð Þ =
ð1/2
0
h jð Þ dp1d

p
2

jdp1 + 1 − jð Þdp2

 !q+ q/pð Þ
dj, ð55Þ

k22 q, p ; d2, d1ð Þ =
ð1
1/2
h 1 − jð Þ dp1d

p
2

jdp1 + 1 − jð Þdp2

 !q+ q/pð Þ
dj,

ð56Þ
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k13 q, p ; d1, d2ð Þ =
ð1/2
0
j j − 1ð Þ dp1d

p
2

jdp1 + 1 − jð Þdp2

 !q+ q/pð Þ
1

bp1
−

1

ap1

� �2

dj,

ð57Þ

k14 q, p ; d2, d1ð Þ =
ð1
1/2
j j − 1ð Þ2j − 2 + λ

dp1d
p
2

jdp1 + 1 − jð Þdp2

 !q+ q/pð Þ
1

dp2
−

1

dp1

� �2

dj:

ð58Þ

Proof. Using Lemma 22, we have

1 − λð Þψ 2dp1d
p
2

dp1 + dp2

 !1/p" #
+ λ

ψ d1ð Þ + ψ d2ð Þ
2

� �
−
p dp1d

p
2

� �
dp2 − dp1

ðd2
d1

ψ xð Þ
x1+p

dx

�����
�����

≤
dp2 − dp1
� �
2p dp1d

p
2

� � ð1/2
0

2j − λð Þ dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1+ 1/pð Þ������
������ × ψ′ dp1d

p
2

jdp1 + 1 − jð Þdp2

 !1/p" #�����
�����dj

2
4

+
ð1
1/2

2j − 2 + λð Þ dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1+ 1/pð Þ������
������ × ψ′ dp1d

p
2

jdp1 + 1 − jð Þdp2

 !1/p" #�����
�����dj
3
5:
ð59Þ

Applying Holder’s integral inequality,

1 − λð Þψ 2dp1d
p
2

dp1 + dp2

 !1/p" #
+ λ

ψ d1ð Þ + ψ d2ð Þ
2

� �
−
p dp1d

p
2

� �
dp2 − dp1

ðd2
d1

ψ xð Þ
x1+p

dx

�����
�����

≤
dp2 − dp1
� �
2p dp1d

p
2

� � ð1/2
0

2j − λð Þj jrdj
� �1/r ð1/2

0

dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1+ 1/pð Þ������
0
@

2
4

× ψ′ dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1/p" #�����
q

dj

1
A

1/q

+
ð1
1/2

2j − 2 + λð Þj jrdj
� �1/r ð1

1/2

dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1+ 1/pð Þ������
0
@

× ψ′ dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1/p" #�����
q

dj

1
A

1/q3
5

= dp2 − dp1
� �
2p dp1d

p
2

� � ð1/2
0

2j − λð Þj jrdj
� �1/r ð1/2

0

dp1d
p
2

jdp1 + 1 − jð Þdp2

 !q+ q/pð Þ0
@

2
4

× ψ′ dp1d
p
2

jdp1 + 1 − jð Þdp2

 !1/p" #�����
�����
q

dj

1
A

1/q

+
ð1
1/2

2j − 2 + λð Þj jrdj
� �1/r

�
ð1
1/2

dp1d
p
2

jdp1 + 1 − jð Þdp2

 !q+ q/pð Þ
× ψ′ dp1d

p
2

jdp1+ 1−jð Þdp2

 !1/p" #�����
�����
q

dj

0
@

1
A

1/q3
5:
ð60Þ

Since jψ′ðxÞjq ∈ SRðp, hÞ, so

1 − λð Þψ 2dp1d
p
2

dp1 + dp2

 !1/p" #
+ λ

ψ d1ð Þ + ψ d2ð Þ
2

� �
−
p dp1d

p
2

� �
dp2 − dp1

ðd2
d1

ψ xð Þ
x1+p

dx

�����
�����

≤
dp2 − dp1
� �
2p dp1d

p
2

� � ð1/2
0

2j − λð Þj jrdj
� �1/r

×
ð1/2
0

dp1d
p
2

jdp1 + 1 − jð Þdp2

 !q+ q/pð Þ0
@

2
4

× h 1 − jð Þ ψ′ d1ð Þ�� ��q + h jð Þ ψ′ d2ð Þ�� ��q − μj 1 − jð Þ 1
dp2

−
1
dp1

� �2
" #

dj

!1/q

+
ð1
1/2

2j − 2 + λð Þj jrdj
� �1/r ð1

1/2

dp1d
p
2

jdp1 + 1 − jð Þdp2

 !q+ q/pð Þ0
@

× h 1 − jð Þ ψ′ d1ð Þ�� ��q + h jð Þ ψ′ d2ð Þ�� ��q − μj 1 − jð Þ 1
dp2

−
1
dp1

� �2
" #

dj

!1/q#

≤
dp2 − dp1
� �
2p dp1d

p
2

� � ð1/2
0

2j − λð Þj jrdj
� �1/r"

× k19 q, p ; d1, d2ð Þ ψ′ d1ð Þ�� ��q + k21 q, p ; d1, d2ð Þ ψ′ d2ð Þ�� ��q�

× +k13 q, p ; d1, d2ð ÞμÞ1/q +
ð1/2
0

2j − 2 + λð Þj jrdj
� �1/r

× k22 q, p ; d2, d1ð Þ ψ′ d1ð Þ�� ��q + k20 q, p ; d2, d1ð Þ ψ′ d2ð Þ�� ��q�
+ k14 q, p ; d2, d1ð ÞμÞ1/q

i

≤
dp2 − dp1
� �
2p dp1d

p
2

� � × λr+1 + 1 − λð Þr+1
2 r + 1ð Þ

 !1/r

× k19 q, p ; d1, d2ð Þ ψ′ d1ð Þ�� ��q��h

+ k21 q, p ; d1, d2ð Þ ψ′ d2ð Þ�� ��q + k13 q, p ; d1, d2ð Þμ
�1/q

+ k22 q, p ; d2, d1ð Þ ψ′ d1ð Þ�� ��q+k20 q, p ; d2, d1ð Þ ψ′ d2ð Þ�� ��q�
+ k14 q, p ; d2, d1ð ÞμÞ1/q

�i
:

ð61Þ

Which is the required result.

Remark 28. Inserting hðjÞ = j and μ = 0 in Theorem 27, we
obtained [23] Theorem 2.5.

For λ = 0, Theorem 27 reduces to the following result.

Corollary 29. Let M = ½d1, d2� ⊂ℝ \ f0g be a p-harmonic
convex set, and let ψ : M = ½d1, d2� ⊆ℝ \ f0g⟶ℝ be differ-
entiable defined on the interior M of M. If ψ′ ∈ L½d1, d2� and
jψ′jq is in SRðp, hÞ on M, r, q > 1, ð1/rÞ + ð1/qÞ = 1 and λ ∈
½0, 1�, then

ψ
2dp1d

p
2

dp1 + dp2

 !1/p" #
−
p dp1d

p
2

� �
dp2 − dp1

ðd2
d1

ψ xð Þ
x1+p

dx

�����
�����

≤
dp2 − dp1
� �
2p dp1d

p
2

� � × 1
2 r + 1ð Þ
� �1/r

k19 q, p ; d1, d2ð Þ ψ′ d1ð Þ�� ��q�h

+ k21 q, p ; d1, d2ð Þ ψ′ d2ð Þ�� ��q + k13 q, p ; d1, d2ð Þμ
�1/q

+ k22 q, p ; d2, d1ð Þ ψ′ d1ð Þ�� ��q + k20 q, p ; d2, d1ð Þ ψ′ d2ð Þ�� ��q�
+ k14 q, p ; d2, d1ð ÞμÞ1/q

i
,

ð62Þ

where k19, k20, k21, k22, k13, and k14 are given by (53)-(58).
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Remark 30. Inserting hðjÞ = j and μ = 0 in Corollary 29, we
obtained [23] Corollary 3.5.

For λ = 1, Theorem 27 reduces to the following result.

Corollary 31. Let M = ½d1, d2� ⊂ℝ \ f0g be a p -harmonic
convex set, and let ψ : M = ½d1, d2� ⊆ℝ \ f0g⟶ℝ be differ-
entiable defined on the interior M of M. If M ′ ∈ L½a1, b1� and
j f ′jq is in SRðp, hÞ on M, r, q > 1, ð1/rÞ + ð1/qÞ = 1 and λ ∈ ½
0, 1� then,

ψ d1ð Þ + ψ d2ð Þ
2

−
p dp1d

p
2

� �
dp2 − dp1

ðd2
d1

ψ xð Þ
x1+p

dx

�����
�����

≤
dp2 − dp1
� �
2p dp1d

p
2

� � × 1
2 r + 1ð Þ
� �1/r

k19 q, p ; d1, d2ð Þ ψ′ d1ð Þ�� ��q�h

+ k21 q, p ; d1, d2ð Þ ψ′ d2ð Þ�� ��q + k13 q, p ; d1, d2ð Þμ
�1/q

+ k22 q, p ; d2, d1ð Þ ψ′ d1ð Þ�� ��q + k20 q, p ; d2, d1ð Þ ψ′ d2ð Þ�� ��q�
+ k14 q, p ; d2, d1ð ÞμÞ1/q

i
,

ð63Þ

where k19, k20, k21, k22, k13, and k14 are given by (53)-(58).

Remark 32. Inserting hðjÞ = j and μ = 0 in Corollary 31, we
obtained [23] Corollary 3.6.

For λ = 1/3, Theorem 27 reduces to the following result.

Corollary 33. Let M = ½d1, d2� ⊂ℝ \ f0g be a p-harmonic
convex set, and let ψ : M = ½d1, d2� ⊆ℝ \ f0g⟶ℝ be differ-
entiable defined on the interior M of M. If ψ′ ∈ L½d1, d2� and
jψ′jq is in SRðp, hÞ on M, r, q > 1, ð1/rÞ + ð1/qÞ = 1 and λ ∈
½0, 1� then,

1
6

ψ d1ð Þ + 4ψ
2dp1d

p
2

dp1 + dp2

 !1/p" #
+ ψ d2ð Þ

" #
−
p dp1d

p
2

� �
dp2 − dp1

ðd2
d1

ψ xð Þ
x1+p

dx

�����
�����

≤
dp2 − dp1
� �
2p dp1d

p
2

� � × 1 + 2r+1

6:3r r + 1ð Þ
� �1/r

k19 q, p ; d1, d2ð Þ ψ′ d1ð Þ�� ��q�h

+ k21 q, p ; d1, d2ð Þ ψ′ d1ð Þ�� ��q + k13 q, p ; d1, d2ð Þμ
�1/q

+ k22 q, p ; d2, d1ð Þ ψ′ d1ð Þ�� ��q + k20 q, p ; d2, d1ð Þ ψ′ d2ð Þ�� ��q�
+ k14 q, p ; d2, d1ð ÞμÞ1/q

i
,

ð64Þ

where k19, k20, k21, k22, k13, and k14 are given by (53)-(58).

Remark 34. Inserting hðjÞ = j and μ = 0 in Corollary 33, we
obtained [23] Corollary 3.7.

For λ = 1/2, Theorem 27) reduces to the following result.

Corollary 35. Let M = ½d1, d2� ⊂ℝ \ f0g be a p-harmonic
convex set, and let ψ : M = ½d1, d2� ⊆ℝ \ f0g⟶ℝ be differ-
entiable defined on the interior M of M. If ψ′ ∈ L½d1, d2� and
jψ′jq is in SRðp, hÞ on M, r, q > 1, ð1/rÞ + ð1/qÞ = 1 and λ ∈

½0, 1� then,

1
4

ψ d1ð Þ + 2ψ
2dp1d

p
2

dp1 + dp2

 !1/p" #
+ ψ d2ð Þ

" #
−
p dp1d

p
2

� �
dp2 − dp1

ðd2
d1

ψ xð Þ
x1+p

dx

�����
�����

≤
dp2 − dp1
� �
2p dp1d

p
2

� � × 2
4:2r r + 1ð Þ
� �1/r

k19 q, p ; d1, d2ð Þ ψ′ d1ð Þ�� ��q��h

+ k21 q, p ; d1, d2ð Þ ψ′ d2ð Þ�� ��q + k13 q, p ; d1, d2ð ÞμÞ1/q

+ k22 q, p ; d2, d1ð Þ ψ′ d1ð Þ�� ��q + k20 q, p ; d2, d1ð Þ ψ′ d2ð Þ�� ��q�
+ k14 q, p ; d2, d1ð ÞμÞ1/q

i
ð65Þ

where k19, k20, k21, k22, k13, and k14 are given by (53)–(58).

Remark 36. Inserting hðjÞ = j and μ = 0 in Corollary 35, we
obtained [23] Corollary 3.8.

7. Conclusion

Convexity plays very important role in pure and applied
mathematics. In many problems, the classical definition of
convexity is not enough, so the definition of convex func-
tions is generalized in various directions. In this paper, we
developed a new generalization called strongly reciprocally
(p,h)-convex function. We have also developed Hermite-
Hadamard and Fejér type inequality for this generalization.
Moreover, we conclude that the results proved in this article
are the generalization of results in [14, 16, 17, 23].
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Convexity plays a vital role in pure and applied mathematics specially in optimization theory, but the classical convexity is not
enough to fulfil the needs of modern mathematics; hence, it is important to study generalized notion of convexity. Fraction
integral operators also become an important tool for solving problems of model physical and engineering processes that are
found to be best described by fractional differential equations. The aim of this paper is to study MT-h-convex functions via
fractional integral operators. We establish several Hermite–Hadamard-type inequalities for MT-h-convex function via classical
and generalized fractional integrals. We also obtain special means related to our results and present some error estimates for
the trapezoidal formulas.

1. Introduction

One of the most important notions in mathematics is convex
functions which are very important for both pure and
applied mathematicians. Convex functions are helpful in
solving problems of optimization theory and many other
problems of applied nature.

Definition 1. Let J ⊆R and Jo be interior of J , a mapping
ψ : J ⟶R said to be convex on J , if the following inequal-
ity holds for all c, d ∈ J and λ ∈ ½0, 1�,

ψ λc + 1 − λdð Þð Þ ≤ λψ cð Þ + 1 − λð Þψ dð Þ: ð1Þ

The mapping ψ is said to be concave if −ψ is convex.
The theory of inequalities got the attention of many

researchers, and the new inequalities are always appreciable
not only in real analysis but also the researchers working in

applied sciences use inequalities as a very effective tool for
analyzing different practical problems and to study various
properties of solution of different equations [1]. Jensen-
type inequalities, Hardy-type inequalities [2], Gagliardo-
Nirenberg-type inequalities [3], Grüss-type inequalities [4],
Ostrowski-type inequality [5, 6], etc. are extensively studied
in the literature. The most famous inequality in literature is
known as Hermite–Hadamard inequality, which has funda-
mental role in convex analysis. The Hermite–Hadamard-
type inequalities for different classes of convex function
can be found in [7, 8] and references therein.

Let ψ : J ⊆R⟶R be a convex mapping defined on the
interval J of real numbers and c, d ∈ J . Then, the Hermite–
Hadamard inequality is as follows:

ψ
c + d
2

� �
≤

1
c − d

ðd
c
ψ λð Þdλ ≤ ψ cð Þ + ψ dð Þ

2 , ð2Þ
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with c < d and c, d ∈ J . If ψ is concave, then both the
inequalities reverse their direction.

Hermite–Hadamard inequality is the most important
inequality so far in inequality theory, and several exten-
sions of this inequality are given by researchers in recent
years [9]. Our motivation is to establish a generalized ver-
sion of Hermite–Hadamard-type inequality for MT-h-
convex functions. It is worthy to mention here that several
results of literature can be obtained from our established
results as a particular case by taking suitable values of
involved parameters.

Since classical notion of convexity is not enough for solv-
ing today’s problems, so this notion has been generalized by
several researchers to meet the needs of modern mathemat-
ics. Now, we present some generalized notions of convexity.

Definition 2 (see [10]). Let h : I ⟶R be a nonnegative
mapping, h ≠ 0. The mapping ψ : J ⟶R is said to be h
-convex, if ψ is nonnegative and for all c, d ∈ J , λ ∈ ð0, 1Þ,
the following inequality holds:

ψ λc + 1 − λð Þdð Þ ≤ h λð Þψ cð Þ + h 1 − λð Þψ dð Þ: ð3Þ

The mapping is said to be h-concave if inequality (3) is
reversed.

Definition 3 (see [11, 12]). A mapping ψ : J ⊆R⟶R is
said to be MT-convex on J if it is nonnegative and satisfies
the following inequality:

ψ λc + 1 − λð Þdð Þ ≤
ffiffiffi
λ

p

2
ffiffiffiffiffiffiffiffiffiffi
1 − λ

p ψ cð Þ +
ffiffiffiffiffiffiffiffiffiffi
1 − λ

p

2
ffiffiffi
λ

p ψ dð Þ: ð4Þ

Motivated by the above two notions, we introduce the
following notion of MT-h-convex function.

Definition 4. A mapping ψ : J ⊆R⟶R is said to be MT-
h-convex on J , if for all c, d ∈ J and hðλÞ ∈ ð0, 1Þ, it is non-
negative and satisfies the following inequality:

ψ λc + 1 − λð Þdð Þ ≤
ffiffiffiffiffiffiffiffiffi
h λð Þp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp ψ cð Þ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp

2
ffiffiffiffiffiffiffiffiffi
h λð Þp : ð5Þ

Fraction integral operators also become an important
tool for solving problems of model physical and engineering
processes that are found to be best described by fractional
differential equations. Fractional calculus creates a diversity
in inequality theory of convex analysis [13, 14].

The following generalized fractional integral operators
were introduced by Ertugral and Sariaya [15] as follows:

Let ρ : ½0,∞Þ⟶ ½0,∞Þ be such that

ð1
0

ρ λð Þ
λ

dλ <∞, ð6Þ

then the left-hand-sided and right-hand-sided generalized
fractional integral operators are defined as:

+
c Jρψ vð Þ =

ðv
c

ρ v − λð Þ
v − λ

ψ λð Þ, v > c, ð7Þ

−
d Jρψ vð Þ =

ðd
v

ρ λ − vð Þ
λ − v

ψ λð Þ, v < d, ð8Þ

respectively.
The following remark justifies the generality of the above

fractional integral operators.

Remark 5. (1) If ρðλÞ = λ, then (7) and (8) convert to usual
Riemann fractional integral, respectively

J+c ψ vð Þ =
ðv
c
ψ λð Þdλ, v > c,

J−dψ vð Þ =
ðd
v
ψ λð Þdλ, v < d:

ð9Þ

(2) If ρðλÞ = λη/ΓðηÞ, then (7) and (8) reduce to the
Riemann-Liouville integral [14, 16]

Jηc+ψ vð Þ = 1
Γ ηð Þ

ðv
c
v − λð Þη−1ψ λð Þdλ, v > c,

Jηd−ψ vð Þ = 1
Γ ηð Þ

ðd
v
λ − vð Þη−1ψ λð Þdλ, v < d:

ð10Þ

Here, ΓðηÞ = Ð∞0 t−mmη−1dm and J0c+ψðvÞ = J0d−ψðvÞ = ψ
ðvÞ.

Note that, for η = 1, the Riemann-Liouville integral con-
verts to the classical integrals. For the other interesting spe-
cial cases of (7) and (8), we refer to the readers [17, 18].

The aim of this paper is to establish Hermite–
Hadamard-type inequalities for the proposed notion of
MT-h-convex function in the setting of classical and gener-
alized fractional integral operators. As applications of our
results, we present special means related with our results.
We also establish some error estimates for the trapezoidal
formula.

2. Hermite–Hadamard-Type Inequalities via
Classical Fractional Integral

First, we present the following identity that has been
obtained in [19] which will play a crucial role in the proof
of our main results.

Lemma 6. Let ψ : J ⊂R⟶R be a differentiable function

on Jo and c, d ∈ J with c < d. If ψ′ ∈ L1½c, d�, then the
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following inequality holds:

d − vð Þψ dð Þ + v − cð Þψ cð Þ
d − c

−
1

d − c

ðd
c
ψ sð Þds

= v − cð Þ2
d − c

ð1
0
1 − λð Þψ′ λv + 1 − λð Þcð Þdλ

+ d − vð Þ2
d − c

ð1
0
1 − λð Þψ′ λv + 1 − λð Þdð Þdλ,

ð11Þ

for each v ∈ ½c, d�.

Theorem 7. Let ψ : J ⊂R+ ⟶R be a differentiable func-
tion on Jo such that ψ′ ∈ L1½c, d� where c, d ∈ J . If jψ′j is
MT-h-convex function on ½c, d� and jψ′j ≤Q where v ∈ ½c, d�
, then we have

d − vð Þψ dð Þ + v − cð Þψ cð Þ
d − c

−
1

d − c

ðd
c
ψ sð Þds

����
����

≤Q
v − cð Þ2 + d − vð Þ2

d − c
× 1

2
S1 + S2ð Þ

� �
,

ð12Þ

where

S1 =
ð1
0
1 − λð Þ

ffiffiffiffiffiffiffiffiffi
h λð Þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp dλ, S2 =

ð1
0
1 − λð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp
ffiffiffiffiffiffiffiffiffi
h λð Þp dλ,

ð13Þ

with hðλÞ/hð1 − λÞ <∞ is finite.

Proof. From Lemma 6, we have

d − vð Þψ dð Þ + v − cð Þψ cð Þ
d − c

−
1

d − c

ðd
c
ψ sð Þds

= v − cð Þ2
d − c

ð1
0
1 − λð Þψ′ λv + 1 − λð Þcð Þdλ

+ d − vð Þ2
d − c

ð1
0
1 − λð Þψ′ λv + 1 − λð Þdð Þdλ:

ð14Þ

Applying mode on both sides,

d − vð Þψ dð Þ + v − cð Þψ cð Þ
d − c

−
1

d − c

ðd
c
ψ sð Þds

����
����

≤
v − cð Þ2
d − c

ð1
0
1 − λð Þ ψ′ λv + 1 − λð Þcð Þ�� ��dλ

+ d − vð Þ2
d − c

ð1
0
1 − λð Þ ψ′ λv + 1 − λð Þdð Þ�� ��dλ:

ð15Þ

Employing MT-h-convexity of jψ′j, we have

≤
v − cð Þ2
d − c

ð1
0
1 − λð Þ

" ffiffiffiffiffiffiffiffiffi
h λð Þp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp ψ′ vð Þ�� ��

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp

2
ffiffiffiffiffiffiffiffiffi
h λð Þp ψ′ cð Þ�� ��#dλ + d − vð Þ2

d − c

ð1
0
1 − λð Þ

�
ffiffiffiffiffiffiffiffiffi
h λð Þp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp ψ′ vð Þ�� �� + ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h 1 − λð Þp
2
ffiffiffiffiffiffiffiffiffi
h λð Þp ψ′ dð Þ�� ��" #

dλ:

ð16Þ

Since jψ′ðvÞj ≤Q, so

≤Q
v − cð Þ2
d − c

"ð1
0
1 − λð Þ

ffiffiffiffiffiffiffiffiffi
h λð Þp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp dλ

+
ð1
0
1 − λð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp

2
ffiffiffiffiffiffiffiffiffi
h λð Þp dλ

#
+Q

d − vð Þ2
d − c

�
ð1
0
1 − λð Þ

ffiffiffiffiffiffiffiffiffi
h λð Þp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp dλ +

ð1
0
1 − λð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp

2
ffiffiffiffiffiffiffiffiffi
h λð Þp dλ

" #

≤Q
v − cð Þ2
d − c

1
2 S1 + S2ð Þ
� �

+Q
d − vð Þ2
d − c

1
2 S1 + S2ð Þ
� �

≤Q
v − cð Þ2 + d − vð Þ2

d − c
× 1

2 S1 + S2ð Þ
� �

:

ð17Þ

The proof is completed.

Corollary 8. In Theorem 7, if we substitute hðλÞ = λ, we get
[20] Theorem 7.

Remark 9. If we take v = ðc + dÞ/2 in Theorem 7, then we
obtain

d − vð Þψ dð Þ + v − cð Þψ cð Þ
d − c

−
1

d − c

ðd
c
ψ sð Þds

����
����

≤
1
4 d − cð ÞQ × S1 + S2ð Þ:

ð18Þ

Theorem 10. Let ψ : J ⊂R+ ⟶R be a differentiable func-
tion on Jo such that ψ′ ∈ L1½c, d� where c, d ∈ J . If jψ′jq is
MT-h-convex mapping on ½c, d� and q > 1, ð1/pÞ + ð1/qÞ = 1
also jψ′j ≤Q and v ∈ ½c, d�, then we have

d − vð Þψ dð Þ + v − cð Þψ cð Þ
d − c

−
1

d − c

ðd
c
ψ sð Þds

≤
v − cð Þ2 + d − vð Þ2

d − c
× 1

p + 1

� �1/p

× Qq
ð1
0

ffiffiffiffiffiffiffiffiffi
h λð Þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp dλ

 !1/q

:

ð19Þ
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Proof. Assume that p > 1 and using Lemma 6, we have

d − vð Þψ dð Þ + v − cð Þψ cð Þ
d − c

−
1

d − c

ðd
c
ψ sð Þds

����
����

≤
v − cð Þ2
d − c

ð1
0
1 − λð Þ ψ′ λv + 1 − λð Þcð Þ�� ��dλ

+ d − vð Þ2
d − c

ð1
0
1 − λð Þ ψ′ λv + 1 − λð Þdð Þ�� ��dλ:

ð20Þ

Using Hölder inequality,

≤
v − cð Þ2
d − c

ð1
0
1 − λð Þpdλ

� �1/p ð1
0
ψ′ λv + 1 − λð Þcð Þ�� ��qdλ� �1/q

+ d − vð Þ2
d − c

ð1
0
1 − λð Þpdλ

� �1/p ð1
0
ψ′ λv + 1 − λð Þdð Þ�� ��qdλ� �1/q

:

ð21Þ

Since jψ′jq is MT-h-convex mapping and jψðvÞj ≤Q, so
we have

≤
v − cð Þ2
d − c

× 1
p + 1

� �1/p
×
 ð1

0

" ffiffiffiffiffiffiffiffiffi
h λð Þp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp ψ′ vð Þ�� ��q

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp

2
ffiffiffiffiffiffiffiffiffi
h λð Þp + ψ′ cð Þ�� ��q#!1/q

+ d − vð Þ2
d − c

× 1
p + 1

� �1/p
×
 ð1

0

" ffiffiffiffiffiffiffiffiffi
h λð Þp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp ψ′ vð Þ�� ��q

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp

2
ffiffiffiffiffiffiffiffiffi
h λð Þp + ψ′ dð Þ�� ��q#! 1

q
:

ð22Þ

Some small calculations yield that

ð1
0

ffiffiffiffiffiffiffiffiffi
h λð Þp

h 1 − λð Þ dλ =
ð1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp
h λð Þ dλ: ð23Þ

This implies that

≤
v − cð Þ2
d − c

× 1
p + 1

� �1/p
× Qq

ð1
0

ffiffiffiffiffiffiffiffiffi
h λð Þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp dλ

 !1/q

+ d − vð Þ2
d − c

× 1
p + 1

� �1/p
× Qq

ð1
0

ffiffiffiffiffiffiffiffiffi
h λð Þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp dλ

 !1/q

= v − cð Þ2 + d − vð Þ2
d − c

× 1
p + 1

� �1/p
× Qq

ð1
0

ffiffiffiffiffiffiffiffiffi
h λð Þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp dλ

 !1/q

:

ð24Þ

The proof is completed.

Corollary 11. In Theorem 10, if we substitute hðλÞ = λ, we
get [20] Theorem 2.4.

Remark 12. If we take v = ðc + dÞ/2 in Theorem 10, then we
obtain

d − vð Þψ dð Þ + v − cð Þψ cð Þ
d − c

−
1

d − c

ðd
c
ψ sð Þds

����
����

≤
d − cð Þ
2

� �
× 1

p + 1

� �1/p
× Qq

ð1
0

ffiffiffiffiffiffiffiffiffi
h λð Þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp dλ

 !1/q

:

ð25Þ

Theorem 13. Let ψ : J ⊂R+ ⟶R be a differentiable func-
tion on Jo such that ψ′ ∈ L1½c, d� with c < d where c, d ∈ J . If
jψ′jq is MT-h-convex function on ½c, d� with q > 1 and jψ′
ðvÞj ≤Q where v ∈ ½c, d�, then we have

d − vð Þψ dð Þ + v − cð Þψ cð Þ
d − c

−
1

d − c

ðd
c
ψ sð Þds

����
����

≤
v − cð Þ2 + d − vð Þ2

d − c
× 1

2

� �1− 1/qð Þ 1
2
QqS1 +

1
2
QqS2

� �1/q
,

ð26Þ

where

S1 =
ð1
0
1 − λð Þ

ffiffiffiffiffiffiffiffiffi
h λð Þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp dλ,

S2 =
ð1
0
1 − λð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp
ffiffiffiffiffiffiffiffiffi
h λð Þp dλ,

ð27Þ

with hðλÞ/hð1 − λÞ <∞ is finite.

Proof. Using Lemma 6, Hölder inequality, and MT-h-
convexity of jψ′jq, we have

d − vð Þψ dð Þ + v − cð Þψ cð Þ
d − c

−
1

d − c

ðd
c
ψ sð Þds

����
����

≤
v − cð Þ2
d − c

ð1
0
1 − λð Þ ψ′ λv + 1 − λð Þcð Þ�� ��dλ

+ d − vð Þ2
d − c

ð1
0
1 − λð Þ ψ′ λv + 1 − λð Þdð Þ�� ��dλ

≤
v − cð Þ2
d − c

ð1
0
1 − λð Þdλ

� �1− 1/qð Þ

�
ð1
0
1 − λð Þ ψ′ λv + 1 − λð Þcð Þ�� ��qdλ� �1/q

+ d − vð Þ2
d − c

ð1
0
1 − λð Þdλ

� �1− 1/qð Þ

�
ð1
0
1 − λð Þ ψ′ λv + 1 − λð Þdð Þ�� ��qdλ� �1/q
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≤
v − cð Þ2
d − c

× 1
2

� �1− 1/qð Þ ð1
0
1 − λð Þ

ffiffiffiffiffiffiffiffiffi
h λð Þp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp ψ′ vð Þ�� ��q

� dλ +
ð1
0
1 − λð Þ

ffiffiffiffiffiffiffiffiffi
h λð Þp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp ψ′ cð Þ�� ��qdλ

!1/q

+ d − vð Þ2
d − c

× 1
2

� �1− 1/qð Þ
×
 ð1

0
1 − λð Þ

ffiffiffiffiffiffiffiffiffi
h λð Þp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp

� ψ′ vð Þ�� ��qdλ + ð1
0
1 − λð Þ

ffiffiffiffiffiffiffiffiffi
h λð Þp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp ψ′ cð Þ�� ��qdλ

!1/q

≤
v − cð Þ2
d − c

× 1
2

� �1− 1/qð Þ 1
2Q

qS1 +
1
Qq S2

� �1/q

+ d − vð Þ2
d − c

× 1
2

� �1− 1/qð Þ 1
2Q

qS1 +
1
Qq S2

� �1/q

≤
v − cð Þ2 + d − vð Þ2

d − c
× 1

2

� �1− 1/qð Þ 1
2Q

qS1 +
1
2Q

qS2

� �1/q
:

ð28Þ

The proof is completed.

Corollary 14. In Theorem 13, if we substitute hðλÞ = λ, we
get [20] Theorem 2.6.

Remark 15. If we take v = ðc + dÞ/2 in Theorem 13, then we
obtain

d − vð Þψ dð Þ + v − cð Þψ cð Þ
d − c

−
1

d − c

ðd
c
ψ sð Þds

����
����

≤
d − cð Þ
2 × 1

2

� �1− 1/qð Þ 1
2Q

qS1 +
1
2Q

qS2

� �1/q
:

ð29Þ

3. Hermite–Hadamard-Type Inequalities via
Generalized Fractional Operators

To establish Hermite–Hadamard-type inequalities via gen-
eralized fractional operators for MT-h-convex function, we
need the following identity [21].

Lemma 16. Let ψ : [c,d] ⟶R be differentiable function on
ðc, dÞ with c < d such that ψ ∈ L1½c, d�. Then, for each t ∈ ð0,
1Þ, we have

1 − tð ÞηΩ 1ð Þ + tη∇ 1ð Þ
d − c

ψ vð Þ

−
1

d − c
1 − tð Þη w−Iρψ cð Þ� �

+ tη v+Iρψ dð Þ� �� 	
= 1 − tð Þη+1

ð1
0
Ω λð Þψ′ λv + 1 − λð Þcð Þdλ

− tη+1
ð1
0
∇ λð Þψ′ λv + 1 − λð Þdð Þdλ,

ð30Þ

where v = tc + ð1 − tÞd, and

Ω λð Þ =
ðλ
0

ρ v − cð Þsð Þ
s

ds <∞,

∇ λð Þ =
ðλ
0

ρ d − vð Þsð Þ
s

ds <∞:

ð31Þ

Theorem 17. Let ψ : ½c, d�⟶R be a differentiable function
on ðc, dÞ and ψ′ ∈ L1½c, d� with 0 ≤ c < d and η > 0. Then, the
following inequality holds for each t ∈ ð0, 1Þ. If jψ′j is MT-h-
convex on ½c, d�,

1 − tð ÞηΩ 1ð Þ + tη∇ 1ð Þ
d − c

ψ vð Þ
����

−
1

d − c
1 − tð Þη v−Iρψ cð Þ� �

+ tη v+Iρψ dð Þ� �� 	����
≤

1 − tð Þη+1
2

M1 ψ′ vð Þ�� �� +N1 ψ′ cð Þ�� ��h i
+ tη+1

2
M1 ψ′ vð Þ�� �� +N1jψ′ dð Þ
h i

,

ð32Þ

where the constants M1,M2,N1, and N2 are

M1 =
ð1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h λð Þ

h 1 − λð Þ

s
Ω λð Þj jdλ,

M2 =
ð1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h λð Þ

h 1 − λð Þ

s
∇ λð Þj jdλ,

N1 =
ð1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þ
h λð Þ

s
Ω λð Þj jdλ,

N2 =
ð1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þ
h λð Þ

s
∇ λð Þj jdλ:

ð33Þ

Proof. From Lemma 16, we have

1 − tð ÞηΩ 1ð Þ + tη∇ 1ð Þ
d − c

ψ vð Þ

−
1

d − c
1 − tð Þη v−Iρψ cð Þ� �

+ tη v+Iρψ dð Þ� �� 	
= 1 − tð Þη+1

ð1
0
Ω λð Þψ′ λv + 1 − λð Þcð Þdλ

− tη+1
ð1
0
∇ λð Þψ′ λv + 1 − λð Þdð Þdλ:

ð34Þ
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Using mode property on both sides, we obtain

1 − tð ÞηΩ 1ð Þ + tη∇ 1ð Þ
d − c

ψ vð Þ
����

−
1

d − c
1 − tð Þη v−Iρψ cð Þ� �

+ tη v+Iρψ dð Þ� �� 	����
≤ 1 − tð Þη+1

ð1
0
Ω λð Þj j ψ′ λv + 1 − λð Þcð Þ�� ��dλ

+ tη+1
ð1
0
∇ λð Þj j ψ′ λv + 1 − λð Þdð Þ�� ��dλ:

ð35Þ

Sincejψ′j is MT-h-convex, so we have

≤ 1 − tð Þη+1
ð1
0
Ω λð Þj j

ffiffiffiffiffiffiffiffiffi
h λð Þp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp ψ′ vð Þ�� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h 1 − λð Þp
2
ffiffiffiffiffiffiffiffiffi
h λð Þp ψ′ cð Þ�� ��" #

+ tη+1
ð1
0
∇ λð Þj j

ffiffiffiffiffiffiffiffiffi
h λð Þp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp ψ′ vð Þ�� �� + ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h 1 − λð Þp
2
ffiffiffiffiffiffiffiffiffi
h λð Þp ψ′ dð Þ�� ��" #

dλ:

ð36Þ

After simplification, we obtain desired result

= 1 − tð Þη+1
2 M1 ψ′ vð Þ�� �� +N1 ψ′ cð Þ�� ��h i

+ tη+1

2 M1 ψ′ vð Þ�� �� +N1jψ′ dð Þ
h i

:

ð37Þ

Corollary 18. In Theorem 17, if we substitute hðλÞ = λ, we
get [21] Theorem 2.1.

Theorem 19. Let ψ : ½c, d�⟶R be a differentiable function
over ðc, dÞ and ψ′εL1½c, d� with 0 ≤ c < d and η > 0. If jψ′jq is
MT-h-convex with q > 1. Then for each t ∈ ð0, 1Þ, the follow-
ing inequality holds:

1 − tð ÞηΩ 1ð Þ + tη∇ 1ð Þ
d − c

ψ vð Þ
����

−
1

d − c
1 − tð Þη v−Iρψ cð Þ� �

+ tη v+Iρψ dð Þ� �� 	����
≤ 1 − tð Þη+1

ð1
0

����Ω λð Þpdλ
� �1/p

� 1
2

ψ′ vð Þ�� ��q + ψ′ cð Þ�� ��q
 �ð1
0

ffiffiffiffiffiffiffiffiffi
h λð Þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp dλ

 !1/q

+ tη+1
ð1
0

����Ω λð Þpdλ
� �1/p

� 1
2

ψ′ vð Þ�� ��q + ψ′ dð Þ�� ��q
 �ð1
0

ffiffiffiffiffiffiffiffiffi
h λð Þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp dλ

 !1/q

,

ð38Þ

where ð1/pÞ + ð1/qÞ = 1 and p > 1.

Proof. By using Lemma 16, Hölder’s inequality, and MT-h-
convexity of jψ′jq, we get

1 − tð ÞηΩ 1ð Þ + tη∇ 1ð Þ
d − c

ψ vð Þ − 1
d − c

����
����

� 1 − tð Þη v−Iρψ cð Þ� �
+ tη v+Iρψ dð Þ� �� 	

≤ 1 − tð Þη+1
ð1
0
Ω λð Þj j ψ′ λv + 1 − λð Þcð Þ�� ��dλ

+ tη+1
ð1
0
∇ λð Þj j ψ′ λv + 1 − λð Þdð Þ�� ��dλ

≤ 1 − tð Þη+1
ð1
0

����Ω λð Þpdλ
� �1/p ð1

0
ψ′ λv + 1 − λð Þcð Þ�� ��qdλ� �1/q

+ tη+1
ð1
0
∇ λð Þj jpdλ

� �1/p ð1
0
ψ′ λv + 1 − λð Þdð Þ�� ��qdλ� �1/q

≤ 1 − tð Þη+1
ð1
0

����Ω λð Þpdλ
� �1/p ð1

0

" ffiffiffiffiffiffiffiffiffi
h λð Þp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp ψ′ vð Þ�� ��q

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp

2
ffiffiffiffiffiffiffiffiffi
h λð Þp ψ′ cð Þ�� ��q#dλ

!1/q

+ tη+1
ð1
0

����∇ λð Þpdλ
� �1/p

�
 ð1

0

" ffiffiffiffiffiffiffiffiffi
h λð Þp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp ψ′ vð Þ�� ��q + ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h 1 − λð Þp
2
ffiffiffiffiffiffiffiffiffi
h λð Þp ψ′ dð Þ�� ��q#dλ

!1/q

:

ð39Þ

Since,

ð1
0

ffiffiffiffiffiffiffiffiffi
h λð Þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp dλ =

ð1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp
ffiffiffiffiffiffiffiffiffi
h λð Þp dλ, ð40Þ

this implies that

≤ 1 − tð Þη+1
ð1
0

����Ω λð Þpdλ
� �1/p 1

2 ψ′ vð Þ�� ��q + ψ′ cð Þ�� ��q
 �

�
ð1
0

ffiffiffiffiffiffiffiffiffi
h λð Þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp dλ

!1/q

+ tη+1
ð1
0

����Ω λð Þpdλ
� �1/p

�
 
1
2 ψ′ vð Þ�� ��q + ψ′ dð Þ�� ��q
 �ð1

0

ffiffiffiffiffiffiffiffiffi
h λð Þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp dλ

!1/q

:

ð41Þ

The proof is completed.

Corollary 20. If we substitute hðλÞ = λ in Theorem 19, we
obtain [21] Theorem 7.

Theorem 21. Let ψ : ½c, d�⟶R be a differentiable function
on ðc, dÞ and ψ′ ∈ L1½c, d� with 0 ≤ c < d and η > 0. If function
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jψ′jq is MT-h-convex on ½c, d� for q > 1, then for each tεð0, 1Þ,
we have

1 − tð ÞηΩ 1ð Þ + tμ∇ 1ð Þ
d − c

ψ vð Þ
����

−
1

d − c
1 − tð Þη v−Iρψ cð Þ� �

+ tη v+Iρψ ηð Þ� �� 	����
≤

1
2

� �1/q
1 − tð Þη+1

ð1
0
Ω λð Þj jdλ

� 1− 1/qð Þ

� M1 ψ′ vð Þ�� ��q +N1 ψ′ cð Þ�� ��q
 �1/q
+ 1

2

� �1/q
tη+1

ð1
0
∇ λð Þj jdλ

� 1− 1/qð Þ

� M2 ψ′ vð Þ�� ��q +N2 ψ′ dð Þ�� ��q
 �1/q
:

ð42Þ

Proof. By using Lemma 16, power mean integral inequality,
and MT-h-convexity of jψ′jq, we have

1 − tð ÞηΩ 1ð Þ + tμ∇ 1ð Þ
d − c

ψ vð Þ
����

−
1

d − c
1 − tð Þη v−Iρψ cð Þ� �

+ tη v+Iρψ ηð Þ� �� 	����
≤ 1 − tð Þη+1

ð1
0
Ω λð Þj j ψ′ λv + 1 − λð Þcð Þ�� ��dλ

+ tη+1
ð1
0
∇ λð Þj j ψ′ λv + 1 − λð Þdð Þ�� ��dλ

≤ 1 − tð Þη+1
ð1
0
Ω λð Þj jdλ

� �1− 1/qð Þ ð1
0
Ω λð Þj j ψ′ λvð + 1 − λð Þc�� ��qdλ� �1/q

+ tη+1
ð1
0
∇ λð Þdλ

� �1− 1/qð Þ ð1
0
∇ λð Þj j ψ′ λvð + 1 − λð Þd�� ��qdλ� �1/q

≤ 1 − tð Þη+1
ð1
0
Ω λð Þj jdλ

� �1− 1/qð Þ ð1
0
Ω λð Þj j

" ffiffiffiffiffiffiffiffiffi
h λð Þp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp ψ′ vð Þ�� ��q

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp

2
ffiffiffiffiffiffiffiffiffi
h λð Þp ψ′ vð Þ�� ��q#dλ

!1/q

+ tη+1
ð1
0
∇ λð Þj jdλ

� �1− 1/qð Þ

×
 ð1

0
∇ λð Þj j

" ffiffiffiffiffiffiffiffiffi
h λð Þp

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp ψ′ vð Þ�� ��q + ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h 1 − λð Þp
2
ffiffiffiffiffiffiffiffiffi
h λð Þp ψ′ dð Þ�� ��q#dλ

!1/q

≤
1
2

� �1/q
1 − tð Þη+1

ð1
0
Ω λð Þj jdλ

� 1− 1/qð Þ
M1 ψ′ vð Þ�� ��q +N1 ψ′ cð Þ�� ��q
 �1/q

+ 1
2

� �1/q
tη+1

ð1
0
∇ λð Þj jdλ

� 1− 1/qð Þ
M2 ψ′ vð Þ�� ��q +N2 ψ′ dð Þ�� ��q
 �1/q

:

ð43Þ

The proof is completed.

Corollary 22. If we substitute identity function hðλÞ = λ in
Theorem 21, we obtain [21] Theorem 2.3.

4. Application to Special Means

In this section, we present applications of our results in spe-
cial means. Firstly, we give definitions of special means.

(1) The arithmetic mean

A = A c, dð Þ = c + d
2 ; c, d ∈R: ð44Þ

(2) The logarithmic mean

L c, dð Þ = d − c
ln dj j − ln cj j ; cj j ≠ dj j, cd ≠ 0, c, d ∈R: ð45Þ

(3) The generalized logarithmic mean

Ln c, dð Þ = dn+1 − cn+1

d − cð Þ n + 1ð Þ

" #1/n
; n ∈ℤ − 1, 0, c, d ∈R, c ≠ d:

ð46Þ

Now, using the results of §2, we give some applications
to special means of real numbers.

Proposition 23. Assume that c, d ∈R, 0 < c < d and n ∈ℤ, j
nj ≥ 2. Then, ∀ q ≥1 following inequality holds:

A cn, dnð Þ − Lnn c, dð Þj j

≤
d − c
2

� �
× 1

p + 1

� �1/p
× Qq

ð1
0

ffiffiffiffiffiffiffiffiffi
h λð Þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp dλ

 !1/q

A cn, dnð Þ − Lnn c, dð Þj j

≤
d − cð Þ
2

× 1
2

� �1− 1/qð Þ 1
2
QqS1 +

1
2
QqS2

� �1/q
:

ð47Þ

Proof. For ψðvÞ = vn the statement follows by Remark 12 and
15 where v ∈R, n ∈ℤ, jnj ≥ 2.

Proposition 24. Assume that c, d ∈R, 0 < a < d. Then, ∀ q
≥1, we have

A c−1, d−1
� �

− L−1 c, dð Þ�� ��
≤

d − c
2

� �
× 1

p + 1

� �1/p
× Qq

ð1
0

ffiffiffiffiffiffiffiffiffi
h λð Þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp dλ

 !1/q

A c−1, d−1
� �

− L−1 c, dð Þ�� ��
≤

d − cð Þ
2

× 1
2

� �1− 1/qð Þ 1
2
QqS1 +

1
2
QqS2

� �1/q
:

ð48Þ

Proof. The statement follows by Remark 12 and 15 for ψ
ðvÞ = 1/v.
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5. Estimates of Error for Trapezoidal Formula

Assume that f is a division c = v0 < v1 <⋯<vn−1 < vn = d of
interval ½c, d� and consider the quadrature formula

ð1
0
ψ vð Þd vð Þ = Tr ψ, fð Þ + Er ψ, fð Þ, ð49Þ

where

Tr ψ, fð Þ = 〠
n−1

k=0

ψ vkð Þψ vk+1ð Þ
2 vk+1 − vkð Þ, ð50Þ

for the trapezoidal version Erðψ, f Þ donates the associ-
ated approximation error.

Proposition 25. Let ψ : J ⊆R⟶R be a differentiable
function on Jo such that ψ′ ∈ L1½c, d�, where c, d ∈ J with c
< d and jψ′jq is MT-h-convex on ½c, d�. Then, in 24, for every
division f of ½c, d� and jψ′ðvÞj ≤Q, v ∈ ½c, d�, the trapezoidal
error estimate satisfies

Er ψ, fð Þj j ≤ 1
2

� �
× 1

p + 1

� �1/p

× Qq
ð1
0

ffiffiffiffiffiffiffiffiffi
h λð Þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp dλ

 !1/q

〠
n−1

k=0
vk+1 − vkð Þ2,

ð51Þ

where p > 1, ð1/pÞ + ð1/qÞ = 1.

Proof. On applying Remark 12 on the subinterval ½vk, vk+1�
ðk = 0, 1, 2,⋯, n − 1Þ of the division, we have

ðd
c
ψ vð Þdv − Tr ψ, fð Þ

����
����

= 〠
n−1

k=0

ðvk+1
vk

ψ vð Þdv − ψ vkð Þ + ψ vk+1ð Þ
2 vk+1 − vkð Þ

( )�����
�����

≤ 〠
n−1

k=0

ðvk+1
vk

ψ vð Þdv − ψ vkð Þ + ψ vk+1ð Þ
2 vk+1 − vkð Þ

�����
�����

≤
1
2

� �
× 1

p + 1

� �1/p
× Qq

ð1
0

ffiffiffiffiffiffiffiffiffi
h λð Þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h 1 − λð Þp dλ

 !1/q

� 〠
n−1

k=0
vk+1 − vkð Þ2:

ð52Þ

With this, the proof is completed.

Proposition 26. Let ψ : J ⊆R⟶R be a differentiable
function on Jo such that ψ′ ∈ L1½c, d�, where c, d ∈ J with c
< d and jψ′jq is MT-h-convex on ½c, d� where q ≥ 1, for every

division f of ½c, d� and jψ′ðvÞj ≤Q, v ∈ ½c, d�, the trapezoidal
error estimate satisfies

Er ψ, fð Þj j ≤ 1
2

� �2− 1/qð Þ 1
2
QqS1 +

1
2
QqS2

� �1/q
〠
n−1

k=0
vk+1 − vkð Þ2:

ð53Þ

Proof. By using Remark 15, the proof comes the same as
Proposition 25.

6. Conclusion

Convexity and fractional integral operators are the most
important notions to deal with the problems of today’s
world. In the present paper, we introduced a more general
notion of convexity, called as MT-h-convexity. The classical
and generalized fractional integral operators are used to
establish the most famous and most studied Hermite–
Hadamard-type inequalities for the proposed class of convex
functions. Applications of presented results to special means
are also given. Corollaries and remarks presented in this
paper justify the generality of our results. It is interesting
to establish Hermite–Hadamard-type inequalities for the
other variants of fractional integral operators, like Caputo
fractional integral operators and Atangana fractional inte-
gral operators.
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The approximate solutions of the time fractional advection-dispersion equation are presented in this article. The nonlocal nature
of solute movement and the nonuniformity of fluid flow velocity in the advection-dispersion process lead to the formation of a
heterogeneous system, which can be modeled using a fractional advection-dispersion equation, which generalizes the classical
advection-dispersion equation and replaces the time derivative with the fractional Caputo derivative. Researchers use a variety
of numerical techniques to study such fractional models, but the nonlocality of the derivative having fractional order leads to
high computation complexity and complex calculations, so the task is to find an efficient technique that requires less
computation and provides greater accuracy when numerically solving such models. A innovative techniques, homotopy
perturbation method and new iteration method, are used in connection with the Elzaki transform to solve the “fractional
advection-dispersion equation” which provides the solution in the convergent series form. When the homotopy perturbation
method is used with the Elzaki transform, fast convergent series solutions can be obtained with less computation. By solving
some cases of time-fractional advection-dispersion equation with varied initial conditions with the help of new iterative
transform method and homotopy perturbation transform method demonstrates the usefulness of the proposed methods.

1. Introduction

For the past 300 years, fractional calculus has been used to
generalize the integration and differentiation of integer order
to arbitrary order. Due to its nonlocal nature, fractional
differential equations are well adapted to explain diverse
phenomena in engineering and science, and the researchers’
growing interest in this field has led to solving real-world
problems in type of fractional differential equations. In addi-
tion, fractional derivatives can be used for description in a
variety of phenomena that have memory and hereditary
properties by mathematical way [1–5]. Fractional order dif-
ferential equations have been shown to be a valuable tool for
revealing hidden characteristics in a variety of real-world

processes, including physical sciences, signal processing,
electromagnetics, earthquakes, traffic flow, and the study of
viscoelastic material properties and many more processes
[6–11]. The historical and nonlocal distributed effects are
considered via fractional differential coefficients; an out-
standing literature on this topic may be found in numerous
monographs [12–15]. For this reason, many authors are
attracted to knowing the properties of fractional differential
equations and vast applications in modeling and engineering
fields [16–19].

The ADE is used in the study of solute transport or
Brownian motion of particles in a fluid that occurs when
advection and particle dispersion occur at the same time
[20, 21]. The fractional advection-dispersion equation better
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represents the phenomenon of anomalous particle diffusion
in the transport process; in anomalous diffusion, solute trans-
port is faster or faster than the time’s inferred square root
given by Baeumer et al. [22]. The equation is used to investi-
gate groundwater pollution, smoke or dust pollution of the
atmosphere, and the spread of chemical solutes and pollutant
discharges [23]. As a result, FADE has caught the interest of
numerous researchers. As a result, the researchers are inter-
ested in solving the FADE to determine the solute concentra-
tion at a specific time and location [24, 25]. Jaiswal et al. [26]
discovered an analytical solution for one-dimensional ADE.
Huang et al. [27] developed finite element solutions to the
one-dimensional fractional flux ADE. El-Sayed et al. [28]
investigated the intermediate fractional ADE. Momani and
Odibat [23] used the ADM and variational iteration
approach to solve the space-time fractional ADE. In this
aspect, Yildirim and Kocak [29] use the homotopy perturba-
tion methodology in Caputo sense to solve the space-time
fractional ADE, whereas Hikal and Abu Ibrahim [30] use
the Adomian decomposition method. Using the generalized
finite rate chemistry model, Alliche and Chikh [31] investi-
gated the nonpremixed chaotic fire of the hydrogen-air
downward injector system. Liu et al. [32] investigated various
advection-dispersion models using numerical methods. For
solar cosmic-ray transport, Rocca et al. [33] established the
fractional diffusion-advection equation general solution.
Ramani et al. [34] proposed the fractional reduced differential
transform method for revisiting the time-fractional Rosenau-
Hyman problem’s analytical-approximate formulation.

We apply both the novel iterative method presented by
Gejji and Jafari [35] and the homotopy perturbation trans-
form method proposed by Madani et al. [36] and Khan
and Wu in the current paper [37]. The first technique has
been shown to be effective in solving a wide range of nonlin-
ear equations, including algebraic equations, integral equa-
tions, ordinary and partial differential equations of integer
and fractional order, and systems of equations. The new iter-
ative method is straightforward to explain and use with
computer packages, and it produces superior results than
the previous Adomain decomposition [38], homotopy per-
turbation [39], and variational iteration methods [40]. The
second technique combines the Elzaki transformation, the
homotopy perturbation method, and He’s polynomials in a
simple manner. The suggested algorithm generates a solu-
tion in a rapid convergent series, which could lead to a
closed solution. This method has the advantage of being able
to combine two powerful methods for finding exact solu-
tions to linear and nonlinear partial differential equations.

2. Basic Definitions

2.1. Definition. The fractional operator Dσ having order σ in
Abel-Riemann manner is calculated as [41–43]

Dσν φð Þ =

dj

dφȷ
ν φð Þ, σ = ȷ,

1
Γ ȷ − σð Þ

d
dφȷ

ðφ
0

ν φð Þ
φ − μð Þσ−ȷ+1 dμ, ȷ − 1 < σ < ȷ,

8>>><
>>>:

ð1Þ

where j ∈ Z+, σ ∈ R+, and

D−σν φð Þ = 1
Γ σð Þ

ðφ
0
φ − μð Þσ−1ν μð Þdμ, 0 < σ ≤ 1: ð2Þ

2.2. Definition. The Abel-Riemann integration operator ȷμ

having fractional order is given as [35–37]

ȷσν φð Þ = 1
Γ σð Þ

ðφ
0
φ − μð Þσ−1ν φð Þdφ, φ > 0, σ > 0:

ð3Þ

With basic properties:

ȷσφȷ = Γ ȷ + 1ð Þ
Γ ȷ + σ + 1ð Þφ

ȷ+μ,

Dσφȷ = Γ ȷ + 1ð Þ
Γ ȷ − σ + 1ð Þφ

ȷ−μ:

ð4Þ

2.3. Definition. The fractional Caputo operator Dσ having
order σ is calculated as [41–43]

CDσν φð Þ =

1
Γ ȷ − σð Þ

ðφ
0

νȷ μð Þ
φ − μð Þσ−ȷ+1 dμ, ȷ − 1 < σ < ȷ,

dȷ

dφȷ
ν φð Þ, ȷ = σ:

8>>><
>>>:

ð5Þ

with the following properties:

ȷσφD
σ
φg φð Þ = g φð Þ − 〠

m

k=0
gk 0+ð Þφ

k

k!
, forφ > 0, and ȷ − 1 < σ ≤ ȷ, ȷ ∈N ,

Dσ
φȷ

σ
φg φð Þ = g φð Þ:    

ð6Þ

2.4. Definition. The Elzaki transform of Caputo operator is
calculated as [41, 42]

E Dσ
φg φð Þ

h i
= s−σE g φð Þ½ � − 〠

ȷ−1

k=0
s2−σ+kg kð Þ 0ð Þ, where ȷ − 1 < σ < ȷ:

ð7Þ

3. Idea of New Iterative Transform
Method (NITM)

Let us consider the partial differential equation having frac-
tional order in the form of

Dσ
ρζ μ, ρð Þ +Nζ μ, ρð Þ +Mζ μ, ρð Þ = h μ, ρð Þ, n ∈N , n − 1 < σ ≤ n,

ð8Þ
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having initial condition

ζk μ, 0ð Þ = gk μð Þ, k = 0, 1, 2,⋯, n − 1, ð9Þ

where N and M are linear and nonlinear components.
By taking the Elzaki transform of Equation (8), we have

E Dσ
ρζ μ, ρð Þ

h i
+ E Nζ μ, ρð Þ +Mζ μ, ρð Þ½ � = E h μ, ρð Þ½ �: ð10Þ

By using Elzaki differentiation property

E ζ μ, ρð Þ½ � = 〠
m

k=0
s2−σ+ku kð Þ μ, 0ð Þ + sσE h μ, ρð Þ½ �

− sσE Nζ μ, ρð Þ +Mζ μ, ρð Þ½ �:
ð11Þ

On taking Elzaki inverse transform of Equation (11),

ζ μ, ρð Þ = E−1 〠
m

k=0
s2−σ+kuk μ, 0ð Þ + sσE h μ, ρð Þ½ �

( )" #

− E−1 sσE Nζ μ, ρð Þ +Mζ μ, ρð Þ½ �½ �:
ð12Þ

Now by using iterative technique, we get

ζ μ, ρð Þ = 〠
∞

m=0
ζm μ, ρð Þ, ð13Þ

N 〠
∞

m=0
ζm μ, ρð Þ

 !
= 〠

∞

m=0
N ζm μ, ρð Þ½ �: ð14Þ

The nonlinear term N is recognized as

N 〠
∞

m=0
ζm μ, ρð Þ

 !
= ζ0 μ, ρð Þ +N 〠

m

k=0
ζk μ, ρð Þ

 !

−M 〠
m

k=0
ζk μ, ρð Þ

 !
:

ð15Þ

By substituting Equations (13), (14), and (15) in
Equation (12), we get

〠
∞

m=0
ζm μ, ρð Þ = E−1 sσ 〠

m

k=0
s2−μ+kuk μ, 0ð Þ + E h μ, ρð Þ½ �

 !" #

− E−1 sσE N 〠
m

k=0
ζk μ, ρð Þ

 !
−M 〠

m

k=0
ζk μ, ρð Þ

 !" #" #
:

ð16Þ

Thus, the iterative formula is given as

ζ0 μ, ρð Þ = E−1 sσ 〠
m

k=0
s2−μ+kuk μ, 0ð Þ + sσE g μ, ρð Þð Þ

 !" #
,

ζ1 μ, ρð Þ = −E−1 sσE N½ ζ0 μ, ρð Þ½ � +M ζ0 μ, ρð Þ½ �½ �,

ζm+1 μ, ρð Þ = −E−1 sσE −N 〠
m

k=0
ζk μ, ρð Þ

 !
−M 〠

m

k=0
ζk μ, ρð Þ

 !" #" #
,

ð17Þ

Lastly, Equations (8) and (9) give series form result for
m-term as

ζ μ, ρð Þ ≅ ζ0 μ, ρð Þ + ζ1 μ, ρð Þ + ζ2 μ, ρð Þ+⋯,+ζm μ, ρð Þ, m = 1, 2,⋯:

ð18Þ

4. Idea of Homotopy Perturbation Transform
Method (HPTM)

Let us consider the fractional partial differential equation
having general form.

Dσ
ρζ μ, ρð Þ +Mζ μ, ρð Þ +Nζ μ, ρð Þ = h μ, ρð Þ, ρ > 0, 0 < σ ≤ 1,

ζ μ, 0ð Þ = g μð Þ, ν ∈R:  

ð19Þ

By taking the Elzaki transform of Equation (19)

E Dσ
ρζ μ, ρð Þ +Mζ μ, ρð Þ +Nζ μ, ρð Þ

h i
= E h μ, ρð Þ½ �, ρ > 0, 0 < σ ≤ 1,

ζ μ, ρð Þ = s2g μð Þ + sσE h μ, ρð Þ½ � − sσE Mζ μ, ρð Þ +Nζ μ, ρð Þ½ �:
ð20Þ

On taking Elzaki inverse transform, we have

ζ μ, ρð Þ = F x, ρð Þ − E−1 sσE Mζ μ, ρð Þ +Nζ μ, ρð Þf g½ �, ð21Þ

where

μ, ρð Þ = E−1 s2g μð Þ + sσE h μ, ρð Þ½ �� �
= g νð Þ + E−1 sσE h μ, ρð Þ½ �½ �:

ð22Þ

The perturbation technique of parameter p is given as

ζ μ, ρð Þ = 〠
∞

k=0
pkζk μ, ρð Þ, ð23Þ

where perturbation parameter is denoted by p and p ∈ ½0, 1�.
The nonlinear terms can be calculated as

Nζ μ, ρð Þ = 〠
∞

k=0
pkHk ζkð Þ, ð24Þ
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where Hn represents He’s polynomials in terms of ζ0, ζ1,
ζ2,⋯, ζn, and can be expressed as

Hn ζ0, ζ1,⋯,ζnð Þ = 1
σ n + 1ð ÞD

k
p N 〠

∞

k=0
pkζk

 !" #
p=0

, ð25Þ

where Dk
p = ∂k/∂pk:

Substituting Equations (24) and (25) in Equation (21),
we have

〠
∞

k=0
pkζk μ, ρð Þ

= F μ, ρð Þ − p

× E−1 sσE M〠
∞

k=0
pkζk μ, ρð Þ + 〠

∞

k=0
pkHk ζkð Þ

( )( )" #
:

ð26Þ

On comparison of both sides coefficient of p, we get

p0 : ζ0 μ, ρð Þ = F μ, ρð Þ,
p1 : ζ1 μ, ρð Þ = E−1 sσE Mζ0 μ, ρð Þ +H0 ζð Þð Þ½ �,
p2 : ζ2 μ, ρð Þ = E−1 sσE Mζ1 μ, ρð Þ +H1 ζð Þð Þ½ �,

⋮

pk : ζk μ, ρð Þ = E−1 sσE Mζk−1 μ, ρð Þ +Hk−1 ζð Þð Þ½ �, k > 0, k ∈N:

ð27Þ

The ζkðμ, ρÞ term can be calculated easily resulting
convergent series. By taking p⟶ 1,

ζ μ, ρð Þ = lim
M⟶∞

〠
M

k=1
ζk μ, ρð Þ: ð28Þ

4.1. Example. Consider the time-fractional ADE

Dσ
ρζ μ, ρð Þ = ℓD2

μζ μ, ρð Þ −Dμζ μ, ρð Þ, ð29Þ

with initial condition

ζ μ, 0ð Þ = e−μ, ð30Þ

where ℓ is the ratio of constant diffusivity and the drift veloc-
ity. The exact solution is

ζ μ, ϕ, ρð Þ = e 1+ℓð Þρ−μ: ð31Þ

By taking the Elzaki transform of Eq. (29), we get

E ν μ, ϕ, ρð Þ½ � = s2 e−μð Þ + sσE ℓD2
μζ μ, ρð Þ −Dμζ μ, ρð Þ

h i
: ð32Þ

On taking Elzaki inverse transform, we have

ν μ, ϕ, ρð Þ = e−μ + E−1 sσE ℓD2
μζ μ, ρð Þ −Dμζ μ, ρð Þ

h i� �
: ð33Þ

Thus by using NITM, we have

ζ0 μ, ρð Þ = e−μ,

ζ1 μ, ρð Þ = E−1 sσE ℓD2
μζ0 μ, ρð Þ −Dμζ0 μ, ρð Þ

n oh i
= e−μ

ℓ + 1ð Þρσ
Γ σ + 1ð Þ ,

ζ2 μ, ρð Þ = E−1 sσE ℓD2
μζ1 μ, ρð Þ −Dμζ1 μ, ρð Þ

n oh i
= e−μ

ℓ + 1ð Þ2 ρσð Þ2
Γ 2σ + 1ð Þ ,

ζ3 μ, ρð Þ = E−1 sσE ℓD2
μζ2 μ, ρð Þ −Dμζ2 μ, ρð Þ

n oh i
= e−μ

ℓ + 1ð Þ3 ρσð Þ3
Γ 3σ + 1ð Þ ,

⋮

ζn μ, ρð Þ = E−1 sσE ℓD2
μζn μ, ρð Þ −Dμζn μ, ρð Þ

n oh i
= e−μ

ℓ + 1ð Þn ρσð Þn
Γ nσ + 1ð Þ , n ≥ 0:

ð34Þ

The series form solution is given as

ζ μ, ρð Þ = ζ0 μ, ρð Þ + ζ1 μ, ρð Þ + ζ2 μ, ρð Þ + ζ3 μ, ρð Þ+⋯ζn μ, ρð Þ:
ð35Þ

Thus, we have

ζ μ, ρð Þ = e−μ 1 + ℓ + 1ð Þρσ
Γ σ + 1ð Þ + ℓ + 1ð Þ2ρ2σ

Γ 2σ + 1ð Þ

(

+ ℓ + 1ð Þ3ρ3σ
Γ 3σ + 1ð Þ +⋯+ ℓ + 1ð Þn ρσð Þn

Γ nσ + 1ð Þ

)
:

ð36Þ

Now by using the HPTM, we have

〠
∞

n=0
pnwn μ, ρð Þ = e−μð Þ + p E−1 sσE 〠

∞

n=0
pnHn wð Þ

" # !( )
:

ð37Þ
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By Comparing coefficient of p on both sides, we get:

p0 : w0 μ, ρð Þ = e−μ,

p1 : w1 μ, ρð Þ = E−1 sσE H0 wð Þð Þf g� �
= e−μ

ℓ + 1ð Þρσ
Γ σ + 1ð Þ ,

p2 : w2 μ, ρð Þ = E−1 sσE H1 wð Þð Þf g� �
= e−μ

ℓ + 1ð Þ2 ρσð Þ2
Γ 2σ + 1ð Þ ,

p3 : w3 μ, ρð Þ = E−1 sσE H2 wð Þð Þf g� �
= e−μ

ℓ + 1ð Þ3 ρσð Þ3
Γ 3σ + 1ð Þ ,

⋮

pn : wn μ, ρð Þ = E−1 sσE Hn−1 wð Þð Þf g� �
= e−μ

ℓ + 1ð Þn ρσð Þn
Γ nσ + 1ð Þ :

ð38Þ

The solution in series form by means of HPM is
given as

ζ μ, ρð Þ = 〠
∞

n=0
pnwn μ, ρð Þ: ð39Þ

Thus, we have

ζ μ, ρð Þ = e−μ 1 + ℓ + 1ð Þρσ
Γ σ + 1ð Þ + ℓ + 1ð Þ2ρ2σ

Γ 2σ + 1ð Þ

(

+ ℓ + 1ð Þ3ρ3σ
Γ 3σ + 1ð Þ +⋯+ ℓ + 1ð Þn ρσð Þn

Γ nσ + 1ð Þ

)
:

ð40Þ

4.2. Example. Consider the time-fractional ADE

Dσ
ρζ μ, ρð Þ = ℓD2

μζ μ, ρð Þ −Dμζ μ, ρð Þ, ð41Þ

with initial conditions

ζ μ, 0ð Þ = μ3 − μ2: ð42Þ

By taking the Elzaki transform of Equation (29), we
get

E ν μ, ϕ, ρð Þ½ � = s2 μ3 − μ2
� �

+ sσE ℓD2
μζ μ, ρð Þ −Dμζ μ, ρð Þ

h i
:

ð43Þ

On taking Elzaki inverse transform, we have

ν μ, ϕ, ρð Þ = μ3 − μ2
� �

+ E−1 sσE ℓD2
μζ μ, ρð Þ −Dμζ μ, ρð Þ

h i� �
:

ð44Þ

Thus by using NITM, we have

ζ0 μ, ρð Þ = μ3 − μ2,

ζ1 μ, ρð Þ = E−1 sσE ℓD2
μζ0 μ, ρð Þ −Dμζ0 μ, ρð Þ

n oh i
= −3μ2 + 2μ 1 + 3ℓð Þ − 2ℓ
� 	 ρσ

Γ σ + 1ð Þ ,

ζ2 μ, ρð Þ = E−1 sσE ℓD2
μζ1 μ, ρð Þ −Dμζ1 μ, ρð Þ

n oh i
= 6μ − 2 − 12ℓf g ρσð Þ2

Γ 2σ + 1ð Þ ,

ζ3 μ, ρð Þ = E−1 sσE ℓD2
μζ2 μ, ρð Þ −Dμζ2 μ, ρð Þ

n oh i
= −6 ρσð Þ3

Γ 3σ + 1ð Þ :

⋮

ð45Þ

The series form solution is given as

ζ μ, ρð Þ = ζ0 μ, ρð Þ + ζ1 μ, ρð Þ + ζ2 μ, ρð Þ + ζ3 μ, ρð Þ+⋯ζn μ, ρð Þ:
ð46Þ

Thus, we have

ζ μ, ρð Þ = μ3 − μ2
� �

+ −3μ2 + 2μ 1 + 3ℓð Þ − 2ℓ
� 	 ρσ

Γ σ + 1ð Þ

+ 6μ − 2 − 12ℓf g ρσð Þ2
Γ 2σ + 1ð Þ − 6 ρσð Þ3

Γ 3σ + 1ð Þ+⋯:

ð47Þ

Now by applying the HPTM, we have

〠
∞

n=0
pnwn μ, ρð Þ = e−μð Þ + p E−1 sσE 〠

∞

n=0
pnHn wð Þ

" # !( )
:

ð48Þ
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By comparing coefficient of p on both sides, we get

p0 : w0 μ, ρð Þ = μ3 − μ2,

p1 : w1 μ, ρð Þ = E−1 sσE H0 wð Þð Þf g� �
= −3μ2 + 2μ 1 + 3ℓð Þ − 2ℓ
� 	 ρσ

Γ σ + 1ð Þ ,

p2 : w2 μ, ρð Þ = E−1 sσE H1 wð Þð Þf g� �
= 6μ − 2 − 12ℓf g ρσð Þ2

Γ 2σ + 1ð Þ ,

p3 : w3 μ, ρð Þ = E−1 sσE H2 wð Þð Þf g� �
= −6 ρσð Þ3

Γ 3σ + 1ð Þ :

⋮

ð49Þ

The solution in series form by means of HPM is
given as

ζ μ, ρð Þ = 〠
∞

n=0
pnwn μ, ρð Þ: ð50Þ

Thus, we have

ζ μ, ρð Þ = μ3 − μ2
� �

+ −3μ2 + 2μ 1 + 3ℓð Þ − 2ℓ
� 	 ρσ

Γ σ + 1ð Þ

+ 6μ − 2 − 12ℓf g ρσð Þ2
Γ 2σ + 1ð Þ − 6 ρσð Þ3

Γ 3σ + 1ð Þ+⋯:

ð51Þ

4.3. Example. Consider the time-fractional ADE

Dσ
ρζ μ, ρð Þ = ℓD2

μζ μ, ρð Þ −Dμζ μ, ρð Þ, ð52Þ

with initial conditions

ζ μ, 0ð Þ = cos μð Þ: ð53Þ

By taking the Elzaki transform of Equation (29), we
get

E ν μ, ϕ, ρð Þ½ � = s2 cos μð Þð Þ + sσE ℓD2
μζ μ, ρð Þ −Dμζ μ, ρð Þ

h i
:

ð54Þ

On taking Elzaki inverse transform, we have

ν μ, ϕ, ρð Þ = cos μð Þ + E−1 sσE ℓD2
μζ μ, ρð Þ −Dμζ μ, ρð Þ

h i� �
:

ð55Þ

Thus by using NITM, we have

ζ0 μ, ρð Þ = cos μð Þ,

ζ1 μ, ρð Þ = E−1 sσE ℓD2
μζ0 μ, ρð Þ −Dμζ0 μ, ρð Þ

n oh i
= sin μð Þ − ℓ cos μð Þð Þ ρσ

Γ σ + 1ð Þ ,

ζ2 μ, ρð Þ = E−1 sσE ℓD2
μζ1 μ, ρð Þ −Dμζ1 μ, ρð Þ

n oh i
= −cos μð Þ − 2ℓ sin μð Þ + ℓ2 cos μð Þ� � ρσð Þ2

Γ 2σ + 1ð Þ ,

ζ3 μ, ρð Þ = E−1 sσE ℓD2
μζ2 μ, ρð Þ −Dμζ2 μ, ρð Þ

n oh i
= −sin μð Þ + 3ℓ cos μð Þ + 3ℓ2 sin μð Þ − ℓ3 cos μð Þ� �
� ρσð Þ3
Γ 3σ + 1ð Þ :

⋮
ð56Þ

The series form solution is given as

ζ μ, ρð Þ = ζ0 μ, ρð Þ + ζ1 μ, ρð Þ + ζ2 μ, ρð Þ + ζ3 μ, ρð Þ+⋯ζn μ, ρð Þ:
ð57Þ

Thus, we have

ζ μ, ρð Þ = cos μð Þ + sin μð Þ − ℓ cos μð Þð Þ ρσ

Γ σ + 1ð Þ

+ −cos μð Þ − 2ℓ sin μð Þ + ℓ2 cos μð Þ� � ρσð Þ2
Γ 2σ + 1ð Þ

+ −sin μð Þ + 3ℓ cos μð Þ + 3ℓ2 sin μð Þ − ℓ3 cos μð Þ� �
� ρσð Þ3
Γ 3σ + 1ð Þ :

ð58Þ

Now by applying the HPTM, we have

〠
∞

n=0
pnwn μ, ρð Þ = e−μð Þ + p E−1 sσE 〠

∞

n=0
pnHn wð Þ

" # !( )
:

ð59Þ
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By Comparing coefficient of p on both sides, we get:

p0 : w0 μ, ρð Þ = cos μð Þ,
p1 : w1 μ, ρð Þ = E−1 sσE H0 wð Þð Þf g� �

= sin μð Þ − ℓ cos μð Þð Þ ρσ

Γ σ + 1ð Þ ,

p2 : w2 μ, ρð Þ = E−1 sσE H1 wð Þð Þf g� �
= −cos μð Þ − 2ℓ sin μð Þ + ℓ2 cos μð Þ� �
� ρσð Þ2
Γ 2σ + 1ð Þ ,

p3 : w3 μ, ρð Þ = E−1 sσE H2 wð Þð Þf g� �
= −sin μð Þ + 3ℓ cos μð Þ + 3ℓ2 sin μð Þ�

− ℓ3 cos μð Þ� ρσð Þ3
Γ 3σ + 1ð Þ :

⋮

ð60Þ

The solution in series form by means of HPM is given as

ζ μ, ρð Þ = 〠
∞

n=0
pnwn μ, ρð Þ: ð61Þ

Thus, we have

ζ μ, ρð Þ = cos μð Þ + sin μð Þ − ℓ cos μð Þð Þ ρσ

Γ σ + 1ð Þ

+ −cos μð Þ − 2ℓ sin μð Þ + ℓ2 cos μð Þ� � ρσð Þ2
Γ 2σ + 1ð Þ

+ −sin μð Þ + 3ℓ cos μð Þ + 3ℓ2 sin μð Þ − ℓ3 cos μð Þ� �
� ρσð Þ3
Γ 3σ + 1ð Þ :

ð62Þ

5. Results and Discussion

We implemented NITM and HPTM for finding the approx-
imate solutions of time-fractional ADE. The analytical solu-
tion and exact solution are shown in Figures 1(a) and 1(b) at
σ = 1, whereas Figures 1(c) and 1(d) show the absolute error
and the solution at various fractional order. Figures 2 and 3
show the behavior of the proposed method solution at vari-
ous fractional orders. Table 1 shows the comparison of the
exact and suggested methods solution in addition with the
absolute error at various fractional order. Finally, the figures
and table show that the suggested techniques have higher
degree of accuracy and rapid convergence towards the exact
results.
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Figure 1: Nature of the exact and proposed technique results of example 1.
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Figure 2: Nature of the proposed method solutions at different fractional orders for problem 2.
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Figure 3: Nature of the proposed method solutions at different fractional orders for problem 3.
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6. Conclusion

The solutions for time-fractional ADE are successfully
obtained using NITM and HPTM in this paper. The study
reveals that the derivative having fractional order, as well
as the location and time factors, has an impact on solute
concentration. For varying values of the fractional parameter
σ, solutions are plotted with spatial and time coordinates for
three cases. We compare actual and analytical results with
the use of graphs and tables, which are in strong agreement
with one another, to demonstrate the effectiveness of the
proposed methods. Also, the results achieved by imple-
menting the suggested approaches are compared at various

fractional orders, confirming that the result comes closer to
the exact solution as the value moves from fractional to inte-
ger order. The methods should be extended to solve space-
time fractional ADE in two or three dimensions. As a result,
the NITM and HPTM are effective methods in finding exact
and approximate solutions for nonlinear differential equa-
tions arising in science and engineering.

Data Availability

The numerical data used to support the findings of this
study are included within the article.

Table 1: Analysis of the approximate solution by NITM and HPTM for problem 1.

η ξ
Exact −NITMj j Exact −NITMj j Exact −HPTMj j Exact −HPTMj j

σ = 0:5 σ = 1 σ = 0:7 σ = 1

0.1

0.5 7.65212627 × 10−02 3.0000000 × 10−10 2.34826106 × 10−02 3.0000000 × 10−10

1 4.64124920 × 10−02 2.0000000 × 10−10 1.42429233 × 10−02 2.0000000 × 10−10

1.5 2.81505993 × 10−02 1.0000000 × 10−10 8.63876960 × 10−03 1.0000000 × 10−10

2 1.70742016 × 10−02 1.0000000 × 10−10 5.23967870 × 10−03 1.0000000 × 10−10

2.5 1.03560267 × 10−02 4.0000000 × 10−11 3.17802575 × 10−03 4.0000000 × 10−11

3 6.28124775 × 10−03 2.0000000 × 10−11 1.92757006 × 10−03 2.0000000 × 10−11

3.5 3.80976934 × 10−03 2.0000000 × 10−11 1.16913033 × 10−03 2.0000000 × 10−11

4 2.31074191 × 10−03 1.0000000 × 10−11 7.09113390 × 10−04 1.0000000 × 10−11

4.5 1.40153581 × 10−03 1.0000000 × 10−11 4.30099010 × 10−04 1.0000000 × 10−11

5 8.50074443 × 10−04 3.0000000 × 10−12 2.60868239 × 10−04 3.0000000 × 10−12

0.2

0.5 1.09371292 × 10−01 5.8000000 × 10−09 3.65660312 × 10−02 5.8000000 × 10−09

1 6.63370423 × 10−02 3.5000000 × 10−09 2.21784191 × 10−02 3.5000000 × 10−09

1.5 4.02354500 × 10−02 2.1000000 × 10−09 1.34518911 × 10−02 2.1000000 × 10−09

2 2.44040340 × 10−02 1.3000000 × 10−09 8.15898440 × 10−03 1.3000000 × 10−09

2.5 1.48017948 × 10−02 7.8000000 × 10−10 4.94867420 × 10−03 7.8000000 × 10−10

3 8.97774240 × 10−03 4.7000000 × 10−10 3.00152262 × 10−03 4.7000000 × 10−10

3.5 5.44527602 × 10−03 2.9000000 × 10−10 1.82051550 × 10−03 2.9000000 × 10−10

4 3.30272686 × 10−03 1.7000000 × 10−10 1.10419847 × 10−03 1.7000000 × 10−10

4.5 2.00320511 × 10−03 1.0000000 × 10−10 6.69730230 × 10−04 1.0000000 × 10−10

5 1.21500531 × 10−03 6.4000000 × 10−11 4.06211915 × 10−04 6.4000000 × 10−11

0.3

0.5 1.35218250 × 10−01 2.9900000 × 10−08 4.73151582 × 10−02 2.9900000 × 10−08

1 8.20140147 × 10−02 1.8100000 × 10−08 2.86980942 × 10−02 1.8100000 × 10−08

1.5 4.97440144 × 10−02 1.1000000 × 10−08 1.74062739 × 10−02 1.1000000 × 10−08

2 3.01712698 × 10−02 6.7000000 × 10−09 1.05574388 × 10−02 6.7000000 × 10−09

2.5 1.82998002 × 10−02 4.0400000 × 10−09 6.40341033 × 10−03 4.0400000 × 10−09

3 1.10993899 × 10−02 2.4500000 × 10−09 3.88386470 × 10−03 2.4500000 × 10−09

3.5 6.73212028 × 10−03 1.4900000 × 10−09 2.35568301 × 10−03 1.4900000 × 10−09

4 4.08323736 × 10−03 9.0000000 × 10−10 1.42879398 × 10−03 9.0000000 × 10−10

4.5 2.47660865 × 10−03 5.4000000 × 10−10 8.66607360 × 10−04 5.4000000 × 10−10

5 1.50213907 × 10−03 3.3200000 × 10−10 5.25623929 × 10−04 3.32000000 × 10−10
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Some researchers have combined two powerful techniques to establish a new method for solving fractional-order differential
equations. In this study, we used a new combined technique, known as the Elzaki residual power series method (ERPSM), to
offer approximate and exact solutions for fractional multipantograph systems (FMPS) and pantograph differential equations
(PDEs). In Caputo logic, the fractional-order derivative operator is measured. The Elzaki transform method and the residual
power series method (RPSM) are combined in this novel technique. The suggested technique is based on a new version of
Taylor’s series that generates a convergent series as a solution. Establishing the coefficients for a series, like the RPSM,
necessitates computing the fractional derivatives each time. As ERPSM just requires the concept of a zero limit, we simply
need a few computations to get the coefficients. The novel technique solves nonlinear problems without the need for He’s and
Adomian polynomials, which is an advantage over the other combined methods based on homotopy perturbation and
Adomian decomposition methods. The relative, recurrence, and absolute errors of the problems are analyzed to evaluate the
efficiency and consistency of the presented method. Graphical significances are also identified for various values of fractional-
order derivatives. As a result, the procedure is quick, precise, and easy to implement, and it yields outstanding results.

1. Introduction

Many differential equations (DEs) that arise in applications
are sufficiently complicated that closed-form solutions are
not always feasible. Numerical methods offered a powerful
substitute means for solving the DEs under the given initial
conditions. Numerous methods have been developed in
recent years to solve fractional-order differential equations
(FODEs), including the homotopy perturbation method
[1], the differential transform method [2], the operational
matrix method [3], the conformable Shehu transform
decomposition method [4], the variational iteration method
[5], the Jacobi collocation method [6], the conformable
Shehu transform iterative method [7], the spectral tau
method [8], the Legendre wavelet method [9], the fractional
natural decomposition method [10], the power series method

with the conformable operator [11], and the Chebyshev poly-
nomial method [12].

Integral equations (IEs), DEs, and delay differential
equations (DDEs) are all solved by employing integral trans-
forms [13–17], which are among the most valuable tech-
niques in mathematics. The conversion of DEs and IEs
into terms of a simple algebraic equation is enabled by the
appropriate selection of integral transform. The origins of
integral transforms can be traced back to Laplace’s work in
the 1780s and Fourier’s work in 1822 [18]. In the beginning,
ordinary and partial DEs were solved using the Laplace
transform and the Fourier transform, which are two well-
known transforms. These transforms were then applied to
FODEs [19–24]. In recent years, researchers have proposed
lots of new different transformations to solve a variety of
mathematical problems. FODEs are solved using the
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Aboodh transform [25], fractional complex transform [26],
travelling wave transform [27], Sumudu transform [28],
and ZZ transform [29]. These transformations are paired
with additional analytical, numerical, or homotopy-based
techniques to handle FODEs [30–35]. Numerous mathema-
ticians have recently become interested in a transformation
known as the Elzaki transform (ET) [36–41]. The ET was
introduced by Elzaki to facilitate the process of solving ordi-
nary and partial DEs in the time domain [42]. The ET is
derived from the classical Fourier integral transform.

We examine the functions in set H, which are described
as

H = Θ τð Þj∃M,ϒ 1,ϒ 2 > 0, Θ τð Þj <Me τj j/ϒ j if τ ∈ −1ð Þj × 0½ ,∞Þ
n o

:

ð1Þ

The formula for E-T is as follows:

E Θ τð Þ½ � = ℘ υð Þ = υ
ð∞
0
Θ τð Þe− τ/υð Þdτ, ϒ 1 ≤ υ ≤ϒ 2: ð2Þ

The following are the key advantages of the ET [36–45]:

(i) The ET can easily be applied to the initial value
problems with less computational work

(ii) The ET has unit-preserving properties and may be
used to solve problems without resorting to the
frequency domain

(iii) Numerous nonlinear DEs with variable coefficients,
namely, the time-fractional wavelike equations, can
be solved with it

(iv) It may handle a variety of difficult problems in engi-
neering, physics, fluid mechanics, chemistry, and
dynamics, such as Maxwell’s equations and fluid
flow problems

The Jordanian mathematician, Arqub, created the RPSM
in 2013 [46]. The RPSM is a semianalytical method; it is a
combination of Taylor’s series and the residual error func-
tion. It provides series solutions of linear and nonlinear
DEs in the form of convergence series. In 2013, RPSM was
implemented for the first time to find solutions to fuzzy
DEs. Furthermore, this method has been successfully used
to solve a wide range of FODEs, including time-fractional
KdV-Burgers equations [47], time-fractional Schrödinger
equations [48], the SIR epidemic model of fractional order
[49], conformable-type Coudrey–Dodd–Gibbon–Sawada–
Kotera [50], time-fractional Swift–Hohenberg problems
[51], time-fractional Phi-4 equation [52], and the
Zakharov–Kuznetsov equation [53].

Researchers combined two powerful methods to develop
a new method for solving FODEs. Some of these groups are
described as a combination of the Adomian decomposition
method and the Sumudu transform [54], as well as the
homotopy analysis method and the natural transform [55]
and the Laplace transformation with homotopy perturbation

approach [56]. In this study, we applied the novel combined
technique, known as the ERPSM, to provide approximate
and exact solutions for FMPS and PDEs. To assess the effi-
ciency and consistency of the proposed method, the relative,
recurrence, and absolute errors of the problems are exam-
ined. Graphical significance is also found for various values
of fractional-order derivatives. As a result, the technique is
rapid, precise, and simple to use, and it produces excellent
results. The set of rules for this new technique depends on
transforming the given equation into the ET space, in the
second step; establishing a series solution by using the new
form of the Taylor series; and then acquiring the solution
in the real space of the equation by applying the inverse ET.

This novel technique can be used to construct power
series expansion solutions for linear and nonlinear FODEs
without perturbation, linearization, or discretization. Unlike
the classical power series method, this method does not need
to match the coefficients of the corresponding terms, and a
recursion relation is not needed. The new method handles
nonlinear problems without the need for He’s and Adomian
polynomials, which is an advantage over existing combina-
tion methods based on homotopy perturbation and Ado-
mian decomposition methods. This technique finds the
coefficients of the series, relying on the limit concept but
not the fractional derivatives as in the RPSM. Thus, only a
few calculations are required to determine the coefficients
related to RPSM. The closed-form and approximate solu-
tions can be obtained by the proposed method through a
quick convergence series.

A PDE is a special kind of delay differential equation
(DDE) with a proportional delay. In 1851, the first-time
device named “pantograph” was used in the construction
of an electric locomotive, which is where this name origi-
nated from that time. British Railways decided to make a
new kind of electric locomotive in 1960. The target was to
construct a new kind of electric locomotive that moves trains
faster. The pantograph was a prominent part of the new fast-
speed electric locomotive. Pantographs take current from an
overhead wire, which is necessary for the locomotive to
move. Therefore, Ockendon and Taylor observed the mech-
anism of the pantograph. As a result, they built a special
kind of DDE form:

dΘ
dτ

=ΩΘ τð Þ + σΘ ƛτð Þ, τ ≥ 0, ð3Þ

where Ω, σ are real constants and 0 < k < 1, ƛ ∈ R: This arti-
cle was first published in 1971 [57]. Then, such a type of
DDE was named PDE. Various studies on PDEs have
recently been published in the scientific literature [58–60].
PDEs are widely used in probability theory, nonlinear
dynamical systems, astrophysics, quantum mechanics, elec-
trodynamics, and cell growth [61–64]. In this study, we con-
sider the following FMPS:

Dω
τΘ1 τð Þ =Ω1Θ1 τð Þ +Λ1 τ,Θ1 τð Þ,Θ2 τð Þ,Θ1 ϖ1τð Þ,Θ2 ϖ2τð Þð Þ,

ð4Þ
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Dω
τΘ2 τð Þ =Ω2Θ2 τð Þ +Λ2 τ,Θ1 τð Þ,Θ2 τð Þ,Θ1 ϖ1τð Þ,Θ2 ϖ2τð Þð Þ,

ð5Þ
subject to the initial conditions

Θ1 0ð Þ =I1,
Θ2 0ð Þ =I2,

ð6Þ

where 0 < ϖ1, ϖ2 ≤ 1,I1,I2 are finite constants; Λ1,Λ2 are
analytical functions; and Dω

τ is the Caputo fractional deriva-
tive (CFD). The FMPS is a type of DDE that arises in a num-
ber of physics and engineering applications, including
quantum mechanics, dynamical systems, electronic systems,
and population dynamics [65, 66].

The following linear PDE is given as

Dω
τΘ τð Þ = lΘ τð Þ + 〠

s

j=1
mjΘ ujτ

� �
+ 〠

t

j=1
pjD

ω
τΘ qjτ
� �

+ g τð Þ,

ð7Þ

where 0 < ω ≤ 1, τ ≥ 0, l,mj, pj ∈ R, 0 < ω ≤ 1, uj > 0, and qj
< 1. Dω

τ is the CFD of order ω, with the following initial con-
dition:

Θ 0ð Þ = ϕ: ð8Þ

The nonlinear PDE is as follows:

Dω
τΘ τð Þ = ξ τω,Θ τð Þ,Θ ƛτð Þ,Dω

τΘ ƛτð Þð Þ, ð9Þ

with the initial condition

Θ 0ð Þ =I: ð10Þ

Definition 1 (see [67]) (a novel fractional Taylor series for-
mula in E-T). Assume that ΘðτÞ is a piecewise continuous
and exponential order and that the E-T of ΘðτÞ,
E½ΦðτÞ� = ℘ðυÞ is provided by a fractional Taylor series.

℘ υð Þ = 〠
∞

ν=0
ℏνυ

νω+2, ð11Þ

where ℏν is the νth coefficient of the novel fractional Taylor
series formula in E-T.

Lemma 2. Assume that Θ1ðτÞ and Θ2ðτÞ are piecewise con-
tinuous and of exponential-order functions, and E½Θ1ðτÞ� =
℘1ðυÞ, E½Θ2ðτÞ� = ℘2ðυÞ, and λ1,λ2 are constants. Then, the
following axioms hold [67]:

(i) lim
υ⟶0

ð1/υ2Þ℘ðυÞ = ℏ0

(ii) E½Dω
τΘðτÞ� = ð℘ðυÞ/υωÞ −∑ν−1

r=0 υ
r−ω+2ΘðrÞð0Þ, ν − 1

< ω ≤ ν

(iii) E½Dνω
τ ΘðτÞ� = ℘ðυÞ/υνω −∑ν−1

r=0υ
ðr−νÞω+2ΘðrÞð0Þ, 0 <

ω ≤ 1

The framework of this study is as follows. The fundamen-
tal recommendation beyond the ERPSM with convergence
and absolute error analysis for FMPS is demonstrated in
Section 2. We also demonstrated numerical examples of
FMPS to exemplify the competency, potential, and straight-
forwardness of the new combined technique. The linear
and nonlinear PDEs are discussed in Sections 3 and 4, respec-
tively. Finally, our findings are summarized in Section 5.

2. The ERPSM to Demonstrate the FMPS

In this section, we use ERPSM to construct the solutions of
the FMPS as in Equations (4) and (5). The main algorithm
of this method for solving the FMPS can be summarized
by the following steps: applies the E-T to Equation (4). As
a result, we get an algebraic form in E-T space. In the second
step, using the novel fractional Taylor’s series formula in E-
T, we represent the solution in the E-T space of the algebraic
equation obtained in the first step. The coefficients of this
expansion are determined with the help of residual function
and limit concept. As a result, we have found a solution to
the problem in its original space by taking the inverse E-T.

In the next subsection, we derive the main algorithms of
the ERPSM for the FMPS.

2.1. The Algorithm of ERPSM for Solving FMPS. We use the
following algorithm to create the solution with the help of
ERPSM for the FMPS as shown in Equations (4) and (5):

Step 1. Rewrite Equations (4) and (5). We have

Dω
τΘ1 τð Þ −Ω1Θ1 τð Þ −Λ1 τ,Θ1 τð Þ,Θ2 τð Þ,Θ1 ϖ1τð Þ,Θ2 ϖ2τð Þð Þ = 0,

ð12Þ

Dω
τΘ2 τð Þ −Ω2Θ2 τð Þ −Λ2 τ,Θ1 τð Þ,Θ2 τð Þ,Θ1 ϖ1τð Þ,Θ2 ϖ2τð Þð Þ = 0:

ð13Þ

Step 2. We get the following result by implementing the E-T
on both sides of Equations (12) and (13).

E Dω
τΘ1 τð Þ½ � − E Ω1Θ1 τð Þ½ �

− E Λ1 τ,Θ1 τð Þ,Θ2 τð Þ,Θ1 ϖ1τð Þ,Θ2 ϖ2τð Þð Þ½ � = 0,
ð14Þ

E Dω
τΘ2 τð Þ½ � − E Ω2Θ2 τð Þ½ �

− E Λ2 τ,Θ1 τð Þ,Θ2 τð Þ,Θ1 ϖ1τð Þ,Θ2 ϖ2τð Þð Þ½ � = 0:
ð15Þ

By utilizing the second part of Lemma 2, Equations (14)
and (15) become as follows:

℘1 υð Þ = υ2Θ 0ð Þ + υωΩ1℘1 υð Þ + υωΛ/
1 υð Þ, ð16Þ

℘2 υð Þ = υ2Θ 0ð Þ + υωΩ2℘2 υð Þ + υωΛ/
2 υð Þ, ð17Þ
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where

E Λ1 τ,Θ1 τð Þ,Θ2 τð Þ,Θ1 ϖ1τð Þ,Θ2 ϖ2τð Þð Þ½ � =Λ/
1 υð Þ,

E Λ2 τ,Θ1 τð Þ,Θ2 τð Þ,Θ1 ϖ1τð Þ,Θ2 ϖ2τð Þð Þ½ � =Λ/
2 υð Þ,

E Θ1 τð Þ½ � = ℘1 υð Þ,
E Θ2 τð Þ½ � = ℘2 υð Þ:

ð18Þ

Step 3. Assume that algebraic equations (16) and (17) have
the solution in the expansion form as

℘1 υð Þ = 〠
∞

ν=0
ℏ1νυ

νω+2,

℘2 υð Þ = 〠
∞

ν=0
ℏ2νυ

νω+2:

ð19Þ

The κth-truncated series of ℘1ðυÞ and ℘2ðυÞ are as

℘1κ υð Þ = 〠
κ

ν=0
ℏ1νυ

νω+2,

℘2κ υð Þ = 〠
κ

ν=0
ℏ2νυ

νω+2:

ð20Þ

Step 4. By utilizing the following lemma,

ℏ1,0 = lim
υ⟶0

1
υ2

Θ1 τð Þ =Θ1 0ð Þ,

ℏ2,0 = lim
υ⟶0

1
υ2

Θ2 τð Þ =Θ2 0ð Þ:
ð21Þ

The κth-truncated series becomes

℘κ,1 υð Þ =Θ1 0ð Þυ2 + 〠
κ

ν=1
ℏ1νυ

νω+2, ð22Þ

℘κ,2 υð Þ =Θ2 0ð Þυ2 + 〠
κ

ν=1
ℏ2,νυ

νω+2: ð23Þ

Step 5. Consider the Elzaki residual function (ERF) of Equa-
tions (22) and (23) separately, as well as the κth-truncated
Elzaki residual functions (ERFs), so that

ERes1 υð Þ = ℘1 υð Þ − υ2Θ 0ð Þ − υωΩ1℘1 υð Þ − υωΛ/
1 υð Þ, ð24Þ

ERes2 υð Þ = ℘2 υð Þ − υ2Θ 0ð Þ − υωΩ2℘2 υð Þ − υωΛ/
2 υð Þ, ð25Þ

ERes1,κ υð Þ = ℘1,κ υð Þ − υ2Θ 0ð Þ − υωΩ1℘1,κ υð Þ − υωΛ/
1 υð Þ,

ð26Þ

ERes2,κ υð Þ = ℘2,κ υð Þ − υ2Θ 0ð Þ − υωΩ2℘2,κ υð Þ − υωΛ/
2 υð Þ:

ð27Þ

Step 6. Replace the succession arrangement of ℘1,κðυÞ and
℘2,κðυÞ in Equations (26) and (27).

Step 7. To highlight important facts, we extend some features
that arise in the RPSM [67–69].

That is obvious.

E Re s υð Þ = 0: ð28Þ

Therefore,

lim
κ⟶∞

EResk υð Þ = ERes υð Þ: ð29Þ

Since, lim
υ⟶0

ð1/υ2ÞE Re sðυÞ = 0: It is clear that lim
υ⟶0

ð1/υ2Þ
EReskðυÞ = 0: As a result, we get the following:

lim
υ⟶0

1
υkω+2

ERes1 υð Þ
� �

= lim
υ⟶0

1
υkω+2

ERes1,κ υð Þ
� �

= 0,  k = 1, 2, 3,⋯,

lim
υ⟶0

1
υkω+2

ERes2 υð Þ
� �

= lim
υ⟶0

1
υkω+2

ERes2,κ υð Þ
� �

= 0, k = 1, 2, 3,⋯:

ð30Þ

Step 8. Replace the κth attained values of ℏ1,κ and ℏ2,κ into the
κth-truncated series of ℘1,κðυÞ and ℘2,κðυÞ to become the κth-
approximate explanation of Equations (16) and (17).

Step 9. Use the inverse E-T on ℘1,κðυÞ and ℘2,κðυÞ to obtain
the κth-approximate solution Θ1,κðτÞ and Θ2,κðτÞ in the
original space.

The next theorem clarifies and establishes the conditions
for the series solutions to converge.

Theorem 3. Let Z be a Banach space denoted with a suitable
norm k:k over which the sequence of partial sums ∑∞

κ=0℘κðυÞ
is defined. Assume that the initial guess ℘0 remains inside
the ball Brð℘Þ of the solution ℘ðυÞ. Then, the series solu-
tion ∑∞

κ=0℘κðυÞ converges if ∃θ > 0 such that k℘ν+1ðυÞk ≤
θk℘νðυÞk.

Proof. A sequence of partial sums is defined as

Y0 = ℘0 υð Þ,
Y1 = ℘0 υð Þ + ℘1 υð Þ,

Y2 = ℘0 υð Þ + ℘1 υð Þ + ℘2 υð Þ,
Y3 = ℘0 υð Þ + ℘1 υð Þ + ℘2 υð Þ + ℘3 υð Þ,

⋮⋮⋮

Yν = ℘0 υð Þ + ℘1 υð Þ + ℘2 υð Þ + ℘3 υð Þ+⋯+℘ν υð Þ:

ð31Þ

Next is that we would have to show that fYνg∞ν=0 is a
Cauchy sequence in Z. To demonstrate this, consider the
following relationship:
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Yν+1 − Yνk k = ℘ν+1 υð Þk k ≤ θ ℘ν υð Þk k ≤ θ2 ℘ν−1 υð Þk k
≤ θ3 ℘ν−2 υð Þk k ≤ θ4 ℘ν−3 υð Þk k⋯≤θν+1 ℘0 υð Þk k,

ð32Þ

where ν = 0, 1, 2,⋯.
For every ν, κ ∈Ν, ν ≥ κ, we have

Yν − Yκk k = Yν − Yν−1ð Þ + Yν−1 − Yν−2ð Þ + Yν−2 − Yν−3ð Þk
+ Yν−3 − Yν−4ð Þ⋯ Yκ+1 − Yκð Þk:

ð33Þ

From triangle inequality, we have

Yν − Yν−1ð Þ + Yν−1 − Yν−2ð Þ + Yν−2 − Yν−3ð Þk
+ Yν−3 − Yν−4ð Þ+⋯ Yκ+1 − Yκð Þk ≤ Yν − Yν−1ð Þk k
+ Yν−1 − Yν−2ð Þk k + Yν−2 − Yν−3ð Þk k + Yν−3 − Yν−4ð Þk k
+⋯+ Yκ+1 − Yκð Þk k,

ð34Þ

and

Yν − Yν−1ð Þk k + Yν−1 − Yν−2ð Þk k + Yν−2 − Yν−3ð Þk k
+ Yν−3 − Yν−4ð Þk k+⋯+ Yκ+1 − Yκð Þk k ≤ θν ℘0 υð Þk k
+ θν−1 ℘0 υð Þk k + θν−2 ℘0 υð Þk k+⋯+θκ+1 ℘0 υð Þk k

= 1 − θν−κ

1 − θ
θκ+1 ℘0 υð Þk k:

ð35Þ

Therefore,

Yν − Yκk k = 1 − θν−κ

1 − θ
θκ+1 ℘0 υð Þk k: ð36Þ

Showing that the sequence is bounded, we can obtain for
0 < θ < 1 that

lim
ν,κ⟶∞

Yν − Yκk k = 0: ð37Þ

This proves that the sequence of partial sums generated
by ERPSM is Cauchy and hence convergent.

In the next theorem, we determine the maximum trun-
cation error.

Theorem 4. Let ℘ðυÞ be the approximate solution of the trun-
cated finite series ∑∞

ν=0℘νðυÞ: Assume it is attainable to
acquire a real number θ ∈ ð0, 1Þ, in order that k℘ν+1ðυÞk ≤
θk℘νðυÞk,∀ν ∈Ν; furthermore, the utmost absolute error is

℘ υð Þ − 〠
κ

ν=0
℘ν υð Þ

�����
����� ≤ θκ+1

1 − κ
℘0 υð Þk k: ð38Þ

Proof. Let the series ∑κ
ν=0℘νðυÞ be finite, then

℘ υð Þ − 〠
κ

ν=0
℘ν υð Þ

�����
����� = 〠

∞

κ+1
℘ν υð Þ

�����
�����, ≤ 〠

∞

κ+1
℘ν υð Þk k,

≤ 〠
∞

κ+1
θκ ℘0 υð Þk k,

≤ θκ+1 1 + θ + θ2 + θ3+⋯
� �

℘0 υð Þk k,

≤
θκ+1

1 − θ

 !
℘0 υð Þk k:

ð39Þ

This proof is complete.

In the next subsection, two problems of FMPS are estab-
lished to illustrate the performance and appropriateness of
the proposed method.

2.2. Numerical Examples. To demonstrate the execution and
capability of ERPSM, we investigated two interesting and
important problems for FMPS:

Problem 5. Consider the following FMPS:

Dω
τΘ1 τð Þ −Θ1 τð Þ +Θ2 τð Þ −Θ1

τ

2
� �

+ eτ
ω/2 − e−τ

ω = 0,

ð40Þ

Dω
τΘ2 τð Þ +Θ1 τð Þ +Θ2 τð Þ +Θ2

τ

2
� �

− e− τω/2ð Þ − eτ
ω = 0,

ð41Þ
with the initial conditions Θ1ð0Þ = 1 and Θ2ð0Þ = 1:

Applying the E-T to Equations (40) and (41), we get

E Dω
τΘ1 τð Þ −Θ1 τð Þ +Θ2 τð Þ −Θ1

τ

2
� �

+ eτ
ω/2 − e−τ

ω
h i

= 0,

ð42Þ

E Dω
τΘ2 τð Þ +Θ1 τð Þ +Θ2 τð Þ +Θ2

τ

2
� �

− e− τω/2ð Þ − eτ
ω

h i
= 0:

ð43Þ
We have the following results from Equations (42) and

(43) using the procedure mentioned in Subsection 2.1:

℘1 υð Þ = υ2Θ1 0ð Þ + υω℘1 υð Þ − υω℘2 υð Þ + 4υω℘1
υ

2
� �

− 2 υω+2

2 − υ
+ υω+2

1 + υ
,

ð44Þ

℘2 υð Þ = υ2Θ2 0ð Þ − υω℘1 υð Þ − 4υω℘2
υ

2
� �

+ 2 υω+2

2 + υ
+ υω+2

1 − υ
:

ð45Þ
Assume that Equations (44) and (45) have a series

solution in the following form:
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℘1 υð Þ = 〠
∞

ν=0
ℏ1,νυ

νω+2,

℘2 υð Þ = 〠
∞

ν=0
ℏ2,νυ

νω+2:

ð46Þ

The κth-truncated expansion is as follows:

℘1,κ υð Þ = 〠
κ

ν=0
ℏ1,νυ

νω+2,

℘2,κ υð Þ = 〠
κ

ν=0
ℏ2,νυ

νω+2:

ð47Þ

By using the first part of Lemma 2, the κth-truncated
series becomes

℘1,κ υð Þ = υ2 + 〠
κ

ν=1
ℏ1,νυ

νω+2,

℘2,κ υð Þ = υ2 + 〠
κ

ν=1
ℏ2,νυ

νω+2:

ð48Þ

The ERFs are formulated as

ERes1 υð Þ = ℘1 υð Þ − υ2Θ1 0ð Þ − υω℘1 υð Þ + υω℘2 υð Þ

− 4υω℘1
υ

2
� �

+ 2 υω+2

2 − υ
−

υω+2

1 + υ
,

ERes2 υð Þ = ℘2 υð Þ − υ2Θ2 0ð Þ + υω℘1 υð Þ + 4υω℘2
υ

2
� �

− 2 υω+2

2 + υ
−

υω+2

1 − υ
:

ð49Þ

The κth-truncated ERF takes the following form:

ERes1,κ υð Þ = ℘1,κ υð Þ − υ2Θ1 0ð Þ − υω℘1,κ υð Þ + υω℘2,κ υð Þ

− 4υω℘1,κ
υ

2
� �

+ 2 υω+2

2 − υ
−

υω+2

1 + υ
,

ERes2,κ υð Þ = ℘2,κ υð Þ − υ2Θ2 0ð Þ + υω℘1,κ υð Þ + 4υω℘2,κ
υ

2
� �

− 2 υω+2

2 + υ
−

υω+2

1 − υ
:

ð50Þ

Substitute κ = 1, 2, 3, 4, 5 into Equations (65) and (66)
and solve the following expression to find the unknown
coefficients.

lim
υ⟶0

1
υkω+2

ERes1,κ υð Þ
� �

= 0,

lim
υ⟶0

1
υkω+2

ERes2,κ υð Þ
� �

= 0:
ð51Þ

Thus, we have

ℏ1,1 = 1,

ℏ2,1 = −1,

ℏ1,2 = 2 + 1
2ð Þω −

3Γ ω + 1ð Þ
2 ,

ℏ2,2 =
1
2ð Þω + Γ ω + 1ð Þ

2 ,

ℏ1,3 =
1

81+ω 8ð + 2ω+4 + 23ω+4 − 2ω+2 3 + 4ω+1
� �

Γ ω + 1ð Þð
+ 38ωΓ 2ω + 1ð ÞÞ,

ℏ2,3 = −2 − 21−ω − 2−3ω + 1 − 2−2ω−1
� �

Γ ω + 1ð Þ + 5
8Γ 2ω + 1ð Þ,

ℏ1,4 = −
1

43ω+2 −16 − 2ω+5 − 24ω+5 − 23ω+6 − 25ω+5 − 26ω+6
�

+ 2ω+3 3 + 23ω+1 + 3 2ð Þ5ω+1 + 22ω+2
� �

× Γ ω + 1ð Þ
+ 23ω+1 23ω+1 − 3

� �
Γ 2ω + 1ð Þ + 3 2ð Þ6ωΓ 3ω + 1ð Þ�,

ℏ2,4 =
1

43ω+2 16 + 22ω+5 + 23ω+5 − 24ω+5 + 25ω+5 + 2ω+3
�

� 1 − 22ω+1 + 23ω+2 + 25ω+1
� �

Γ ω + 1ð Þ − 23ω+1 8ω+1 + 5
� �

� Γ 2ω + 1ð Þ + 7
3Γ 3ω + 1ð Þ26ω

�
,

ℏ1,5 = 4 + 2−9ω+1 + 2−7ω+2 + 2−6ω+1 + 2−5ω+2 + 2−4ω+1 + 2−3ω+1

+ 4−ω+1 + 2−10ω − 1
3Γ 3ω + 1ð Þ − 3 × 2−4 ω+1ð ÞΓ 3ω + 1ð Þ

+ 5 × 27Γ 4ω + 1ð Þ − 4Γ ω + 1ð Þ − 1
3Γ 3ω + 1ð Þ

− 3 × 2−4 ω+1ð ÞΓ 3ω + 1ð Þ + 5 × 27Γ 4ω + 1ð Þ − 4Γ ω + 1ð Þ
− 3ð Þ 2ð Þ−9ω−1Γ ω + 1ð Þ − 2−7ω+1Γ ω + 1ð Þ
− 2−5ω+1Γ ω + 1ð Þ − 2−6ωΓ ω + 1ð Þ − 3ð Þ 2ð Þ−4ωΓ ω + 1ð Þ
− 3ð Þ 4ð Þ−ωΓ ω + 1ð Þ − 8ð Þ−ωΓ ω + 1ð Þ + 3

4Γ 2ω + 1ð Þ
+− 32ð Þ−4ωΓ ω + 1ð Þ − 34ð Þ−ωΓ ω + 1ð Þ − 8ð Þ−ωΓ ω + 1ð Þ,

ℏ2,5 = −4 − 2−8ω+1 − 2−7ω+1 − 2−5ω+2 − 2−4ω+1 − 3 × 2−3ω+1

− 2−ω+2 − 2−10ω + 4ω + 1ð ÞΓ ω + 1ð Þ
27ω −

7Γ 3ω + 1ð Þ
3 × 2 4ω+4ð Þ

+ 2Γ ω + 1ð Þ − Γ ω + 1ð Þ
29ω+1 −

Γ ω + 1ð Þ
26ω−1 − 2−4ωΓ ω + 1ð Þ

− 4−ωΓ ω + 1ð Þ + 3ð Þ 8ð Þ−ωΓ ω + 1ð Þ + 5
4Γ 2ω + 1ð Þ

+ 5 × Γ 2ω + 1ð Þ
27ω+3 + Γ 2ω + 1ð Þ

24ω + Γ 3ω + 1ð Þ
24

+ 17Γ 4ω + 1ð Þ
384 :

ð52Þ
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We have the following 5th-order approximate solution
in the original space for Equations (40) and (41) when ω =
1 uses the procedure mentioned in Subsection 2.1:

Θ1,5 τð Þ = 1 + τ + τ2

2! +
τ3

3! +
τ4

4! +
τ5

5! ,
ð53Þ

Θ2,5 τð Þ = 1 − τ + τ2

2! −
τ3

3! +
τ4

4! −
τ5

5! :
ð54Þ

Equations (53) and (54) represent the first five terms of
eτ and e−τ, respectively, and therefore the exact solutions of
Equations (40) and (41).

The following 2-D graphs show the absolute and relative
error for Example 1.

Figures 1 and 2 demonstrate the 2-D graphs of absolute
and relative errors in the intervals τ ∈ ½0, 1� over the ten-step
approximate and exact solutions of Equation (40) at ω = 1,
respectively. According to the figures, the approximate solu-
tion is extremely close to the precise solution. Figures 3 and
4 are graphs of absolute and relative errors in the intervals
τ ∈ ½0, 1� over the ten-step approximate and exact solutions
of Equation (41) at ω = 1, respectively. One can perceive
the equivalent verdicts depicted for Equation (40).

Error functions are presented to observe the exactness
and capability of the numerical method. To prove the exact-
ness and capability of ERPSM, we selected three kinds of

error functions, such as absolute, residual, and error
functions.

Table 1 shows the absolute and relative errors at reason-
able nominated grid points in the interval τ ∈ ½0, 1� among
the five-step approximate and exact solutions of Equations
(40) and (41) at ω = 1 attained using ERPSM. Table 1 shows
that the approximate and exact solutions are quite close to
each other, confirming the effectiveness of the recommended
strategy.

Problem 6. Consider the following FMPS:

Dω
τΘ1 τð Þ +Θ1 τð Þ + e−τ

ω cos τω

2

� �
Θ2

τ

2
� �

+ 2e− 3/4ð Þτω cos

� τω

2

� �
sin τω

4

� �
Θ1

τ

4
� �

= 0,

ð55Þ

Dω
τΘ2 τð Þ − eτ

ω

Θ2
1
τ

2
� �

+Θ2
2
τ

2
� �

= 0, ð56Þ

with the initial conditions Θ1ð0Þ = 1,Θ2ð0Þ = 0:

0.2 0.4 0.6 0.8 1.0
τ

|Θ2–Θ2
10|

2.×10–9

4.×10–9

6.×10–9

8.×10–9

Figure 1

0.2 0.4 0.6 0.8 1.0
τ

5.×10–10
1.×10–9
1.5×10–9
2.×10–9
2.5×10–9
3.×10–9
3.5×10–9

|Θ1–Θ1
10|

Θ1

Figure 2

0.2 0.4 0.6 0.8 1.0
τ

|Θ2–Θ2
10|

1.×10–9

2.×10–9

3.×10–9

4.×10–9

5.×10–9

6.×10–9

7.×10–9

Figure 3

0.2 0.4 0.6 0.8 1.0
τ

5.×10–9

1.×10–8

1.5×10–8

|Θ2–Θ2
10|

Θ2

Figure 4
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Applying the E-T to Equations (55) and (56), we get

E Dω
τΘ1 τð Þ +Θ1 τð Þ + e−τ

ω cos τω

2

� �
Θ2

τ

2
� �

+ 2e− 3/4ð Þτω cos
	

� τω

2

� �
sin τω

4

� �
Θ1

τ

4
� �


= 0,

ð57Þ

E Dω
τΘ2 τð Þ − eτ

ω

Θ2
1
τ

2
� �

+Θ2
2
τ

2
� �h i

= 0: ð58Þ

Using the approach mentioned in Subsection 2.1, we
obtain the following results from Equations (57) and (58) as

℘1 υð Þ = υ2Θ1 0ð Þ − υω℘1 υð Þ

− υωE E−1 υ2

1 + υ

	 

E−1 4υ2

4 + υ2

	 

E−1 4℘2

υ

2
� �h i	 


− 2υωE E−1 4υ2
4 + 3υ

	 

E−1 4υ2

4 + υ2

	 

E−1 4υ3

16 + υ2

	 
	

� E−1 16℘1
υ

4
� �h ii

,

ð59Þ

℘2 υð Þ = υ2Θ2 0ð Þ + υωE E−1 υ2

1 − υ

	 

E−1 4℘1

υ

2
� �h i� �2	 


− E−1 4℘2
υ

2
� �h i� �2

:

ð60Þ

Assume that Equations (59) and (60) have the series
solution in the following form:

℘1 υð Þ = 〠
∞

ν=0
ℏ1,νυ

νω+2,

℘2 υð Þ = 〠
∞

ν=0
ℏ2,νυ

νω+2:

ð61Þ

The κth-truncated expansions are as

℘1,κ υð Þ = 〠
κ

ν=0
ℏ1,νυ

νω+2,

℘2,κ υð Þ = 〠
κ

ν=0
ℏ2,νυ

νω+2:

ð62Þ

By using the first part of Lemma 2, the κth-truncated
expansions become

℘1,κ υð Þ = υ2 + 〠
κ

ν=1
ℏ1,νυ

νω+2,

℘2,κ υð Þ = υ2 + 〠
κ

ν=1
ℏ2,νυ

νω+2:

ð63Þ

The ERFs are formulated as

ERes1 υð Þ = ℘1 υð Þ − υ2 + υω℘1 υð Þ

+ υωE E−1� υ2

1 + υ

	 

E−1 4υ2

4 + υ2
E−1 4℘2

υ

2
� �h i	 


+ 2υωE E−1 4υ2
4 + 3υ

	 

E−1 4υ2

4 + υ2

	 

E−1 4υ3

16 + υ2

	 
	

� E−1 16℘1
υ

4
� �h ii

,

ERes2 υð Þ = ℘2 υð Þ − υωE E−1 υ2

1 − υ

	 

E−1 4℘1

υ

2
� �h i� �2	 


+ E−1 4℘2
υ

2
� �h i� �2

:

ð64Þ

The κth-truncated ERF takes the following form:

ERes1,κ υð Þ = ℘1,κ υð Þ − υ2 + υω℘1,κ υð Þ

+ υωE E−1 υ2

1 + υ

	 

E−1 4υ2

4 + υ2

	 

E−1 4℘2,κ

υ

2
� �h i	 


+ 2υωE E−1 4υ2
4 + 3υ

	 

E−1 4υ2

4 + υ2

	 

E−1 4υ3

16 + υ2

	 
	

� E−1 16℘1,κ
υ

4
� �h ii

,

ð65Þ

Table 1: The absolute and relative error of Example 1.

τ
Θ1

Abs:error
Θ1

Rel:error
Θ2

Abs:error
Θ2

Rel:error
0:2 9:149350321813188 × 10−8 7:490854479152386 × 10−8 8:641131510334077 × 10−8 1:055430186034679 × 10−7

0:4 6:030974603721262 × 10−6 4:042683174006208 × 10−6 5:379368972713294 × 10−6 8:025075491218842 × 10−6

0:6 7:080039050877396 × 10−5 3:885607815121622 × 10−5 5:963609402637182 × 10−5 1:086640481073082 × 10−4

0:8 4:102618258010615 × 10−4 1:843425212040309 × 10−4 3:262974505549021 × 10−4 7:261883310726820 × 10−4

1:0 1:615161333333059 × 10−3 5:941846488086295 × 10−4 1:212774566900720 × 10−3 3:296663066666799 × 10−3
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ERes2,κ υð Þ = ℘2, κ υð Þ − υωE E−1 υ2

1 − υ

	 

E−1 4℘1,κ

υ

2
� �h i� �2	 


+ E−1 4℘2,κ
υ

2
� �h i� �2

:

ð66Þ

Substitute κ = 1, 2, 3, 4, 5 into Equations (65) and (66)
and solve the following expression to find the unknown
coefficients.

lim
υ⟶0

1
υkω+2

E Re s1,κ υð Þ
� �

= 0,

lim
υ⟶0

1
υkω+2

E Re s2,κ υð Þ
� �

= 0:
ð67Þ

Thus, we have

ℏ1,1 = −1,

ℏ2,1 = 1,

ℏ1,2 = 1 − 1
2ð Þω −

Γ ω + 1ð Þ
2 ,

ℏ2,2 = −
1

2ð Þω−1 + Γ ω + 1ð Þ,

ℏ1,3 =
3
8Γ 2ω + 1ð Þ + 2−1 2ω+1 + 1

� �
Γ 1/2ð Þ + ωð Þffiffiffi
π

p

+ Γ ω + 1ð Þ 1
2 −

1
22ω

� �
− 1 + 21−3ω + 2−ω,

ℏ2,3 =
1
8ω −2 + 2ω+1 − 24ω+1Γ 1/2ð Þ + ωð Þffiffiffi

π
p − 2ωΓ ω + 1ð Þ

� �

+ 1
2Γ 2ω + 1ð Þ,

ℏ1,4 = 1 + 2−6ω+1 − 2−5ω+1 − 2−3ω+1 − 2−ω

−
1
2Γ ω + 1ð Þ − 1

2 × 8ω Γ 2ω + 1ð Þ

−
2−2ω−1 4ω + 23ω+1 − 4

� �
Γ 1/2ð Þ + ωð Þffiffiffi

π
p −

3
8Γ 2ω + 1ð Þ

−
7
96Γ 3ω + 1ð Þ +

ffiffiffi
π

p
Γ 3ω + 1ð Þ

43ω+1Γ 1/2 + ωð Þ

−
3Γ 3ω + 1ð Þ 2ω + 1ð Þ

22ω+3Γ ω + 1ð Þ −
Γ 3ω + 1ð Þ 4ω+1 + 2ω − 1

� �
25ω+1Γ 2ω + 1ð Þ

+ Γ ω + 1ð Þ 8ω + 1ð ÞΓ 2ω + 1ð Þ + 8ωΓ 3ω + 1ð Þð Þ
25ωΓ 2ω + 1ð Þ ,

ℏ2,4 = −
Γ 3ω + 1ð Þ 2ω − 3ð Þ

24ω−1Γ 2ω + 1ð ÞΓ ω + 1ð Þ

−
Γ 3ω + 1ð Þ −2ω+1 + 3 + 2ωΓ ω + 1ð Þ� �

8ωΓ 2ω + 1ð Þ
+ Γ 3ω + 1ð Þ
4ωΓ ω + 1ð ÞΓ ω + 1ð Þ +

Γ 3ω + 1ð Þ
6 + 3Γ 2ω + 1ð Þ

23ω+2

+ Γ ω + 1ð Þ
8ω −

Γ 3ω + 1ð Þ
2ωΓ ω + 1ð Þ + 2ω+1 + 1

� �
Γ 1/2ð Þ + ωð Þ

8ω ffiffiffi
π

p

−
Γ ω + 1ð Þ
25ω−1 + 2 + 4ω − 8ωð Þ

26ω−1 :

ð68Þ

We have the following 5th-order approximate solution
in the original space for Equations (55) and (56) when ω =
1 using the procedure mentioned in Subsection 2.1:

Θ1,5 τð Þ = 1 − τ + τ3

3 −
τ4

6 + τ5

30 ,
ð69Þ

Θ2,5 τð Þ = τ −
τ3

6 + τ5

120 :
ð70Þ

Equations (69) and (70) represent the first five terms of
e−τ cos τ and sin τ, respectively, and therefore the exact solu-
tions of Equations (55) and (56).

In the next section, we will use our new ERPSM to find
approximate and exact solutions to linear PDE.

3. The ERPSM to Demonstrate the Linear PDE

In this section, we use our new ERPSM to construct the solu-
tions of the linear PDE as in Equation (7). In the next sub-
section, we derive the main algorithms of the ERPSM for
the linear PDE.

3.1. The Algorithm of ERPSM for Solving Linear PDE. In this
subsection, we exploit ERPSM to create the solution to the
linear PDE. We start by taking E-T on Equation (7). We
get the following:

E Dω
τΘ τð Þ½ � = lE Θ τð Þ½ � + 〠

s

j=1
mjE Θ ujτ

� �� 

+ 〠
t

j=1
pjE Dω

τΘ qjτ
� �h i

+ E g τð Þ½ �:
ð71Þ

By using the second part of Lemma 2, Equation (71)
becomes

℘ υð Þ = υ2ϕ + υωl℘ υð Þ + υω 〠
s

j=1
mi

℘ ujυ
� �
ui2

+ 〠
t

j=1
pj

℘ qjυ
� �
qj

2 − υ2ϕ

0
@

1
A + υωG υð Þ:

ð72Þ
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Assuming that algebraic equation (72) has the solution
in the expansion form as

℘ υð Þ = 〠
∞

ν=0
ℏνυ

νω+2: ð73Þ

The κth-truncated series of ℘ðυÞ is as follows:

℘κ υð Þ = 〠
κ

ν=0
ℏνυ

νω+2: ð74Þ

By using the first part of Lemma 2, we have the follow-
ing:

ℏ0 = ϕ: ð75Þ

The κth-truncated series becomes

℘k υð Þ = ϕυ2 + 〠
k

ν=1
ℏνυ

νω+2: ð76Þ

Now, define the ERF in the following form:

ERes υð Þ = ℘ υð Þ − υ2ϕ − υωl℘ υð Þ − υω 〠
s

j=1
mj

℘ ujυ
� �
uj

2

− 〠
t

j=1
pj

℘ qjυ
� �
qj

2 − υ2ϕ

0
@

1
A − υϖG υð Þ:

ð77Þ

The κth-ERF is as follows:

EResk υð Þ = ℘k υð Þ − υ2ϕ − υϖl℘k υð Þ − υϖ 〠
s

j=1
mi

℘k ujυ
� �
uj

2

− 〠
t

j=1
pj

℘k qjυ
� �
qj

2 − υ2ϕ

0
@

1
A − υϖG υð Þ:

ð78Þ

To highlight basic points, we generalize certain features
that arise in the RPSM [67–69].

It is understandable that

ERes υð Þ = 0: ð79Þ

Therefore,

lim
κ⟶∞

EResk υð Þ = E Re s υð Þ: ð80Þ

Since, lim
υ⟶0

ð1/υ2ÞEResðυÞ = 0: It is obvious that lim
υ⟶0

ð1/υ2ÞEReskðυÞ = 0: As a result, we get the following:

lim
υ⟶0

1
υkω+2

E Re s υð Þ
� �

= lim
υ⟶0

1
υkω+2

E Re sk υð Þ
� �

= 0, k = 1, 2, 3,⋯:

ð81Þ

To determine the first undefined coefficient ℏ1, sub-
stitute k = 1, in Equations (76) and (78). As a result,
we obtain as following:

ERes1 υð Þ = ℘1 υð Þ − υ2ϕ − υωl℘1 υð Þ − υω 〠
s

j=1
mj

℘1 ujυ
� �
uj

2

− 〠
s

j=1
pj

℘1 qjυ
� �
qj

2 − υ2ϕ

0
@

1
A − υωG υð Þ,

ð82Þ

℘1 υð Þ = ϕυ2 + ℏ1υ
2+ω, ð83Þ

℘1 ujυ
� �

= ϕu2j υ
2 + ℏ1uj

ω+2υω+2, ð84Þ

℘1 qjυ
� �

= ϕq2j υ
2 + ℏ1qj

ω+2υω+2: ð85Þ

Using Equations (83), (84), and (85) in (82), we get
the following:

E Re s1 υð Þ = ϕυ2 + ℏ1υ
ω+2� �

− υ2ϕ − υωl ϕυ2 + ℏ1υ
ω+2� �

− υω 〠
s

j=1
mi

ϕu2j υ
2 + ℏ1uj

ω+2υω+2

uj
2

− 〠
t

j=1
pj

ϕq2j υ
2 + ℏ1qj

ω+2υω+2

qj
2 − υ2ϕ

 !

− υωG υð Þ,
ð86Þ

ERes1 υð Þ = ℏ1υ
ω+2 − υωl ϕυ2 + ℏ1υ

ω+2� �
− υω 〠

s

j=1
mj ϕυ

2 + ℏ1uj
ωυω+2

� �

− 〠
t

j=1
pj ℏ1qj

ωυω+2
� �

− υωG υð Þ:

ð87Þ

Dividing υ2+ω by Equation (87), we get

1
υ2+ω

ERes1 υð Þ = ℏ1
1

υ2+ω
υω+2 −

1
υ2+ω

υωl ϕυ2 + ℏ1υ
ω+2� �

−
1

υ2+ω
υω 〠

s

j=1
mj ϕυ

2 + ℏ1uj
ωυω+2

� �

−
1

υ2+ω
〠
t

j=1
pj ℏ1qj

ωυω+2
� �

−
1

υ2+ω
υωG υð Þ:

ð88Þ
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By using lim
υ⟶0

to the Equation (88), we get

lim
υ⟶0

1
υ2+ω

ERes1 υð Þ = ℏ1 − l ϕ + ℏ1 limυ⟶0
υ2

� �
− 〠

s

j=1
mj ϕ + ℏ1uj

ω lim
υ⟶0

υ2
� �

− 〠
t

j=1
pj ℏ1qj

ω
� �

− lim
υ⟶0

1
υ2

G υð Þ:

ð89Þ

When we put lim
υ⟶0

ðð1/υ2+ωÞERes1ðυÞÞ = 0 into Equation

(89), we get

ℏ1 =
lϕ +∑s

j=1mjϕ + g 0ð Þ
1 − ∑t

j=1pjqj
ω

: ð90Þ

In the same manner, to determine the second undefined
coefficient, put k = 2 in Equations (76) and (78); we get the fol-
lowing:

℘k υð Þ = ϕυ2 + ℏ1υ
ω+2 + ℏ2υ

2ω+2, ð91Þ

℘k ujυ
� �

= ϕu2j υ
2 + ℏ1u

ω+2
j υω+2 + ℏ2u

2ω+2
j υ2ω+2, ð92Þ

℘k qjυ
� �

= ϕq2j υ
2 + ℏ1q

ω+2
j υω+2 + ℏ2q

2ω+2
j υ2ω+2, ð93Þ

ERes2 υð Þ = ℘2 υð Þ − υ2ϕ − υϖl℘2 υð Þ − υϖ 〠
s

j=1
mi

℘2 ujυ
� �
uj

2

− 〠
t

j=1
pj

℘2 qjυ
� �
qj

2 − υ2ϕ

0
@

1
A − υϖG υð Þ:

ð94Þ

Using Equations (91), (92), and (93) in (94), we get the fol-
lowing:

ERes2 υð Þ = ℏ1υ
ω+2 + ℏ2υ

2ω+2 − lϕυ2+ω + lℏ1υ
2ω+2 + lℏ2υ

3ω+2� �
− υω 〠

s

j=1
mj

ϕuj
2υ2 + ℏ1uj

ϖ+2υϖ+2 + ℏ2uj
2ω+2υ2ω+2

ρi
2

− 〠
t

j=1
pj

ℏ1qj
ω+2υω+2 + ℏ2qj

2ω+2υ2ω+2

qj
2

 !

− υωG υð Þ:
ð95Þ

Dividing υ2+2ω on Eq. (95), we have the following results:

1
υ2ω+2

ERes2 υð Þ = ℏ2 − lℏ1 − lℏ2υ
ω + 〠

s

j=1
mjω1uj

ω

+ 〠
s

j=1
mjℏ2uj

2ωυω + 〠
t

j=1
pjℏ2qj

2ω

−
1
υ2

1
υω

G υð Þ − g 0ð Þ
� �

:

ð96Þ

Apply lim
υ⟶0

to Equation (96), we get

lim
υ⟶0

1
υ2ω+2

ERes2 υð Þ = ℏ2 − lℏ1 − lℏ2υ
ω + 〠

s

j=1
mjℏ1uj

ω

+ 〠
s

j=1
mjϕℏ2uj

2ω lim
υ⟶0

υω + 〠
t

j=1
pjℏ2qj

2ω

− lim
υ⟶0

1
υ2

E Dω
τg τð Þ½ �:

ð97Þ

By using the second part of Lemma 2, we have

1
υω

G υð Þ − g 0ð Þ = E Dω
τg τð Þ½ �: ð98Þ

Put lim
υ⟶0

ð1/υ2ω+2ÞERes2ðυÞ = 0 in Equation (97), and we

have the second coefficient in the following form:

ℏ2 =
lℏ1 +∑s

j=1mjℏ1uj
ω + Dω

τg τð Þð Þ 0ð Þ
1 −∑t

j=1pjqj
2ω : ð99Þ

Now, to define the third coefficient, put k = 3 in Equations
(76) and (78), and repeat the same steps. We get the following:

ERes3 υð Þ = ℏ1υ
ω+2 1 − 〠

t

j=1
pjqj

ω

 !
+ ℏ2υ

2ω+2 1 − 〠
t

j=1
rjqj

2ω
 !

+ ℏ3υ
3ω+2 − lϕυ2+ω − lℏ1υ

2ω+2 − lℏ2υ
3ω+2

− lℏ3υ
4ω+2 − ϕυω+2 〠

s

j=1
mj − ℏ1υ

2ω+2 〠
s

j=1
mjuj

ω

− ℏ2υ
3ω+2 〠

s

j=1
mjuj

2ω − ℏ3υ
4ω+2 〠

s

j=1
mjuj

3ω

− ℏ3υ
3ω+2 〠

t

j=1
pjqj

3ω − υωG υð Þ:

ð100Þ

Divide υ2+3ω by Equation (100).
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1
υ3ω+2

ERes3 υð Þ = ℏ3 − lℏ2 − lℏ3υ
ω − ℏ2 〠

s

j=1
mjuj

2ω

− ℏ3υ
ω 〠

s

j=1
mjuj

3ω − ℏ3 〠
t

j=1
pjqj

3ω −
1
υ2

� 1
υ2ω

G υð Þ − 1
υ2ω−2

g 0ð Þ − 1
υω−2

Dω
τg τð Þð Þ 0ð Þ

� �
,

ð101Þ

By using lim
υ⟶0

to Equation (101), we get the third part of

Lemma 2 in the following form:

D2ω
τ g τð Þ� �

0ð Þ = lim
υ⟶0

1
υ2

1
υ2ω

G υð Þ − 1
υ2ω−2

g 0ð Þ − 1
υω−2

Dω
τg τð Þð Þ 0ð Þ

� �
:

ð102Þ

Put lim
υ⟶0

ð1/υ3ω+2ÞERes3ðυÞ = 0, in Equation (101); as a

result, we get

ℏ3 =
lℏ ν−1ð Þ +∑s

j=1ℏ ν−1ð Þmjuj
ν−1ð Þω + D ν−1ð Þω

τ g τð Þ
� �

0ð Þ
1 −∑t

j=1pjqj
νω

� � :

ð103Þ

As a consequence of the generalization, we acquire the
following:

ℏν =

ℏ0, ν = 0,

lℏ ν−1ð Þ +∑l
i=1ℏ ν−1ð Þmjuj

ν−1ð Þω + D ν−1ð Þω
ϒ g τð Þ

� �
0ð Þ

1 − ∑t
j=1pjqj

νω
� � , ν = 1, 2, 3,⋯:

8>>><
>>>:

ð104Þ

The κth-approximate solution of Equation (72) is as fol-
lows:

℘k υð Þ = ℏ0υ
2 +

lϕ +∑s
j=1βmjϕ + g 0ð Þ

1 −∑t
j=1pjqj

ω

 !
υ2+ϖ

+
lℏ1 +∑s

j=1mjℏ1uj
ω + Dω

τg τð Þð Þ 0ð Þ
1 −∑t

j=1pjqj
2ω

 !
υ2+2ω

+
lℏ2 +∑s

j=1ℏ2mjuj
2ω + D2ω

τ g τð Þ� �
0ð Þ

1 −∑t
j=1pjqj

3ω
� �

0
@

1
Aυ2+3ω+⋯

+
lℏ κ−1ð Þ +∑l

i=1ℏ κ−1ð Þmjuj
κ−1ð Þω + D κ−1ð Þω

τ g τð Þ
� �

0ð Þ
1 −∑t

j=1pjqj
κω

� � υ2+κω:

ð105Þ

By taking inverse E-T on Equation (105), we get the κth-
step approximate solution in the original space of Equation (7).

Θκ τð Þ = ℏ0 +
lϕ +∑s

j=1mjϕ + g 0ð Þ
1 − ∑t

j=1pjqj
ω

 !
τω

Γ ω + 1ð Þ

+
lℏ1 +∑s

j=1mjℏ1uj
ω + Dω

τg τð Þð Þ 0ð Þ
1 − ∑t

j=1pjqj
2ω

 !
τ2ω

Γ 2ω + 1ð Þ

+
αℏ2 +∑s

j=1ℏ2mjuj
2ω + D2ω

τ g τð Þ� �
0ð Þ

1 − ∑t
j=1pjqj

3ω
� �

0
@

1
A τ3ω

Γ 3ω + 1ð Þ+⋯

+
lℏ κ−1ð Þ +∑l

i=1ℏ κ−1ð Þmjuj
κ−1ð Þω + D κ−1ð Þω

τ g τð Þ
� �

0ð Þ
1 −∑t

j=1pjqj
κω

� � τκω

Γ κω + 1ð Þ :

ð106Þ

In the next subsection, one PDE problem is established to
illustrate the performance and appropriateness of the suggested
method.

3.2. Numerical Example. In this subsection, we provided a
problem to validate the performance and effectiveness of
ERPSM for linear PDE.

Example 1. Consider the following linear PDE:

Dω
τΘ τð Þ = −Θ τð Þ + 1

10Θ
4
5 τ
� �

+ 1
2

5
4

� �ω

Dω
τΘ

4τ
5

� �

+ 8τω
25 −

1
2

� �
e − 4τω/5ð Þð Þ + e−τ

ω , 0 < ω ≤ 1,

ð107Þ

subject to the initial condition

Θ 0ð Þ = 0: ð108Þ

By comparing Equation (107) with (7), we get

ℏ0 = 0,
l = −1,

g τð Þ = 8τω
25 −

1
2

� �
e − 4τω/5ð Þð Þ + e−τ

ω ,

t = s = 1,
m1 = 0:1,

u1 = q1 = 0:8,

p1 =
1
2

5
4

� �w

:

ð109Þ

The recurrence relation that defines the values of the
series coefficients as a result of Equation (104) is

ℏν =
0, ν = 0,

1/10ð Þ 4/5ð Þ ν−1ð Þω − 1
� �

ℏ ν−1ð Þ + D ν−1ð Þω
τ g

� �
0ð Þ

1 − 1/2ð Þ 5/4ð Þω 4/5ð Þνω , ν = 1, 2, 3,⋯:

8>><
>>:

ð110Þ
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First of all, we will compute a few of the terms of

ðDðν−1Þω
τ gÞð0Þ.
Expand the following form in a few terms to accomplish

this:

g τð Þ = 8τω
25 −

1
2

� �
e − 4τω/5ð Þð Þ + e−τ

ω ,

g τð Þ = 1
2 −

7τω
25 + 21τ2ω

250 −
27τ3ω
1250 + 437τ4ω

75000 −
113τ5ω
75000 ,

Dω
τ g τð Þ½ � = −

7Γ ω + 1ð Þ
25 + 21τωΓ 2ω + 1ð Þ

250Γ ω + 1ð Þ −
27τ2ωΓ 3ω + 1ð Þ
1250Γ 2ω + 1ð Þ

+ 437τ3ωΓ 4ω + 1ð Þ
75000Γ 3ω + 1ð Þ −

113τ4ωΓ 5ω + 1ð Þ
75000Γ 4ω + 1ð Þ ,

D2ω
τ g τð Þ½ � = 21Γ 2ω + 1ð Þ

250 −
27τωΓ 3ω + 1ð Þ
1250Γ ω + 1ð Þ

+ 437τ2ωΓ 4ω + 1ð Þ
75000Γ 2ω + 1ð Þ −

113τ3ωΓ 5ω + 1ð Þ
75000Γ 3ω + 1ð Þ ,

D3ω
τ g τð Þ½ � = −

27Γ 3ω + 1ð Þ
1250 + 437τωΓ 4ω + 1ð Þ

75000Γ ω + 1ð Þ
−
113τ2ωΓ 5ω + 1ð Þ
75000Γ 2ω + 1ð Þ ,

D4ω
τ g τð Þ½ � = 437Γ 4ω + 1ð Þ

75000 −
113τωΓ 5ω + 1ð Þ
75000Γ ω + 1ð Þ ,

D5ω
τ g τð Þ½ � = −

113Γ 5ω + 1ð Þ
75000 : ð111Þ

Returning to Equation (110), we can easily find the
values of ℏν, for ν = 1, 2, 3, 4, 5, respectively, as

ℏ0 = 0,

ℏ1 = 1,

ℏ2 =
2 5ð Þω 25 + 7Γ ω + 1ð Þð Þ − 5 4ð Þω

25 4ω − 2 5ð Þωð Þ ,

ℏ3 =
16 − 2 5ð Þ1+2ω� �

2ð 5ð Þω 5 4ð Þω − 2 5ð Þω 25 + 7Γ ω + 1ð Þð Þð Þ
125 4ω − 2 5ð Þωð Þ 16ω − 2 25ð Þωð Þ

+ 21Γ 2ω + 1ð Þ
250 − 53−2ω16ω ,

ℏ4 =
27Γ 3ω + 1ð Þ

625 64ð Þω 125ð Þ−ω − 1250 −
64ω − 10 125ð Þωð Þ

5 64ð Þω − 10 125ð Þω

× 64ð Þϖ − 10 100ð Þϖ� �
−5 4ð Þϖ 5ð Þ−ϖ + 50 + 14Γ ϖ + 1ð Þ� �

125 2 − 4ϖ 5ð Þ−ϖ� �
64ϖð − 2 100ð Þϖ

 

+ 21Γ 2ϖ + 1ð Þ
250 − 53−2ϖ16ϖ

�
,

ℏ5 =
−437Γ 4ω + 1ð Þ

37500 256ð Þω 625ð Þ−ω − 75000 −
256ð Þω − 10 625ð Þω

5 256ð Þω − 10 625ð Þω
� �

× 27Γ 3ω + 1ð Þ
625 64ð Þω 125ð Þ−ω − 1250 −

64ω − 10 125ð Þωð Þ
5 64ð Þω − 10 125ð Þω

�

× 64ð Þω − 10 100ð Þωð Þ −5 4ð Þω 5ð Þ−ω + 50 + 14Γ ω + 1ð Þð Þ
125 2 − 4ω 5ð Þ−ωð Þ 64ωð − 2 100ð Þω

�

+ 21Γ 2ω + 1ð Þ
250 − 53−2ω16ω

��
:

ð112Þ

For ω = 1, we have the following:

ℏ0 = 0,
ℏ1 = 1,
ℏ2 = −2,
ℏ3 = 3,
ℏ4 = −4,
ℏ5 = 5:

ð113Þ

The 5th-term approximate solution is as follows:

℘5 υð Þ = υ2+1 − 2υ2+2 + 3υ2+3 − 4υ2+4 + 5υ2+5: ð114Þ

By taking inverse E-T on both sides of Equation (114),

Θ5 τð Þ = τ − τ2 + τ3

2 −
τ4

6 + τ5

24 : ð115Þ

Equation (115) represents first five terms of τe−τ; there-
fore, the exact solution of Equation (107) is τe−τ at ω = 1:

The following 2-D graphs show the absolute and relative
errors for Example 1.

Figures 5 and 6 demonstrate the 2-D graphs of absolute
and relative errors in the intervals τ ∈ ½0, 1� over the ten-step
approximate and exact solutions of Equation (107) at ω = 1,
respectively. According to the figures, the approximate solu-
tion is extremely close to the exact solution.

Table 2 shows the absolute and relative errors at reason-
able nominated grid points in the interval τ ∈ ½0, 1� among
the five-step approximate and exact solutions of Equation
(107) at ω = 1 attained using ERPSM. From Table 2, it can
be perceived that the approximate solution is in eminent
contract with the exact solution, and this sanctions the effi-
ciency of the recommended method. The convergence of the
approximate solution to the exact solution for Equation
(107) has been shown numerically as in Table 3. From the
obtained results, it is evident that the present technique is
an effective and convenient algorithm to solve certain clas-
ses of fractional-order DEs with fewer calculations and iter-
ation steps.

In the next section, we will use our new ERPSM to find
approximate and exact solutions to nonlinear PDE.
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4. The ERPSM to Demonstrate the
Nonlinear PDE

In this section, we use our new ERPSM to construct the solu-
tions of the nonlinear PDE as in Equation (9). In the next
subsection, we derive the main algorithms of the ERPSM
for the nonlinear PDE.

4.1. The Algorithm of ERPSM for Solving Nonlinear PDE.We
summarized the method of finding the ERPS solution for the
nonlinear PDE with the following algorithm:

Step 1. Rewriting Equation (9), we have

Dω
τΘ τð Þ − ξ τω,Θ τð Þ,Θ ƛτð Þ,Dω

τΘ ƛτð Þð Þ = 0: ð116Þ

Step 2. E-T is used on both sides of Equation (116).

E Dω
τΘ τð Þ½ � − E ξ τω,Θ τð Þ,Θ ƛτð Þ,Dω

τΘ ƛτð Þð Þ½ � = 0: ð117Þ

By using the second part of Lemma 2, we get the follow-
ing:

℘ υð Þ − υ2ℏ − υω℘ υð Þ = 0, ð118Þ

where E½ΘðτÞ� = ℘ðυÞ and E½ξðτω,ΘðτÞ,ΘðƛτÞ,Dω
τΘðƛτÞÞ�

= ℘ðυÞ.

Step 3. Assume that the solution to Equation (118) has the
following extension:

℘ υð Þ = 〠
∞

ν=0
ℏνυ

νω+2: ð119Þ

Introduce the κth-truncated series in the following form:

℘k υð Þ = 〠
k

ν=0
ℏνυ

νω+2: ð120Þ

Step 4. By using the first part of Lemma 2, we have

ℏ0 =Θ 0ð Þ =I: ð121Þ

Step 5. The κth-truncated series of ℘ðυÞ becomes as follows:

℘k υð Þ =Iυ2 + 〠
k

ν=1
ℏνυ

νω+2: ð122Þ

Step 6. Describe the ERF and the κth-ERF of Equation (118),
respectively, as follows:

ERes υð Þ = ℘ υð Þ − υ2I − υω℘ υð Þ, ð123Þ

EResκ υð Þ = ℘κ υð Þ − υ2I − υω℘κ υð Þ: ð124Þ
Step 7. Replace the succession arrangement of ℘kðυÞ as in
Equation (120) with (124).

Step 8. Solve the succeeding expression for ν = 1, 2, 3,⋯, κ
step by step to obtain the unknown coefficients

lim
υ⟶0

1
υκω+2

E Resκ υð Þ½ �
� �

= 0, κ = 1, 2, 3,⋯: ð125Þ

Step 9. Replace the attained values of ℏν into the κth-trun-
cated series of ℘κðυÞ to obtain the κth-approximate solution
of Equation (118).

Step 10. Use the inverse E-T on ℘kðυÞ to obtain the κth-
approximate solution ΘκðτÞ in the original space.

In the next subsection, we determine the appropriateness
of the recommended method for nonlinear PDFs.

0.2 0.4 0.6 0.8 1.0
τ

1.×10–6

2.×10–6

3.×10–6

4.×10–6

5.×10–6

|Θ–Θ10|
|Θ|

Figure 6

Table 2: The absolute and relative errors of Example 1.

τ Abs:error Rel:error
0:2 5:1605107029284450 × 10−7 3:1515310030359390 × 10−6

0:4 3:1981585744245145 × 10−5 1:1927729870749216 × 10−4

0:6 3:5301834358408835 × 10−4 1:0720689345454725 × 10−3

0:8 1:9234953728893833 × 10−3 5:3510220976640050 × 10−3

1:0 7:1205587664326390 × 10−3 1:9355685668873270 × 10−2

0.2 0.4 0.6 0.8 1.0
τ

|Θ–Θ10|

5.×10–7

1.×10–6

1.5×10–6

2.×10–6

Figure 5
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4.2. Numerical Examples. In this subsection, we will provide
two problems with nonlinear PDEs to validate the perfor-
mance and effectiveness of ERPSM.

Example 2. Examine the following nonlinear fractional pan-
tograph differential equation:

Dω
τ Θ τð½ � = 1 − 2Θ2 τ

2
� �

, 1 < ω ≤ 2, 0 ≤ τ ≤ 1, ð126Þ

subject to the initial condition

Θ 0ð Þ = 1: ð127Þ

By employing E-T on Equation (126),

℘ υð Þ − υ2 − υ2+ω + 2υωE E−1 4℘ 2υð Þ½ �� �2h i
= 0: ð128Þ

Assume that algebraic equation (128) has the solution in
the expansion form as

℘ υð Þ = 〠
∞

ν=0
ℏνυ

νω+2: ð129Þ

The κth-truncated series of Equation (128) is as follows:

℘k υð Þ = 〠
k

ν=0
ℏνυ

νω+2: ð130Þ

By using the first part of Lemma 2, we get

ℏ0 =Θ 0ð Þ = 1: ð131Þ

The κth-truncated series becomes as follows:

℘k υð Þ = υ2 + 〠
k

ν=1
ℏνυ

νω+2: ð132Þ

Now, define the ERF in the following form:

E Res υð Þ½ � = ℘ υð Þ − υ2 − υ2+ω + 2υωE E−1 4℘ 2υð Þ½ �� �2h i
:

ð133Þ

The κth-ERF is as follows:

E Resκ υð Þ½ � = ℘κ υð Þ − υ2 − υ2+ω + 2υωE E−1 4℘κ 2υð Þ½ �� �2h i
:

ð134Þ

Therefore,

lim
υ⟶0

1
υκω+2

E Resκ υð Þ½ � = 0: ð135Þ

To determine the undefined coefficients ℏν, substitute
κ = 1, 2, 3, 4, 5, in Equations (132) and (134) and then utilize
(135); thus, we have

ℏ1 = −1,

ℏ2 = 4 2ð Þ−ω,

ℏ3 = −
2Γ 1/2ð Þ + ωð Þffiffiffi

π
p

Γ 1 + ωð Þ −
16
8ð Þω ,

ℏ4 =
8
ffiffiffi
3

p
27ð ÞωΓ 2/3ð Þ + ωð ÞΓ 1/3ð Þ + ωð Þ

64ð Þω ffiffiffi
π

p
Γ 1 + ωð ÞΓ 1/2ð Þ + ωð Þ

+ 64
64ð Þω + 8Γ 1/2ð Þ + ωð Þ

8ð Þω ffiffiffi
π

p
Γ 1 + ωð Þ ,

ℏ5 = −
128

ffiffiffi
3

p
Γ 1/2ð Þ + ωð ÞΓ 1/2 + 2ωð Þ

3 54ð ÞωΓ 1/3ð Þ + ωð ÞΓ 2/3ð Þ + ωð ÞΓ 1 + ωð Þ
−

32Γ 1/2ð Þ + 2ωð Þ
16ð ÞωΓ 1/2ð Þ + ωð ÞΓ 1 + ωð Þ

−
16

ffiffiffi
3

p
4ð ÞωΓ 1/2ð Þ + ωð Þ2Γ 1/2ð Þ + 2ωð Þ

3 ffiffiffi
π

p 27ð ÞωΓ 1/3ð Þ + ωð ÞΓ 2/3ð Þ + ωð ÞΓ 1 + ωð Þ2

−
256
1024ð Þω −

32
ffiffiffi
3

p
27ð ÞωΓ 1/3ð Þ + ωð ÞΓ 2/3ð Þ + ωð Þffiffiffi

π
p 1024ð ÞωΓ 1/2ð Þ + ωð ÞΓ 1 + ωð Þ

−
32Γ 1/2ð Þ + ωð Þ
128ð Þω ffiffiffi

π
p

Γ 1 + ωð Þ :

ð136Þ

The five-step approximate solution of Equation (128) is
as follows:

Table 3: The recurrence errors jΘ5ðτÞ −Θ4ðτÞj of the five-step approximate solution with different values of ω for Example 1.

τ ω = 0:7 ω = 0:8 ω = 0:9 ω = 1:0
0:2 5:5251129381940380 × 10−7 3:557469322866979 × 10−8 2:210719076023441 × 10−9 1:337989787908603 × 10−10

0:4 6:2509517206696540 × 10−6 5:691950916587166 × 10−7 5:002286239854830 × 10−8 4:281567321307531 × 10−9

0:6 2:5838396081572233 × 10−5 2:881550151522252 × 10−6 3:101552986356802 × 10−7 3:251315184617906 × 10−8

0:8 7:0721445608883680 × 10−5 9:107121466539466 × 10−6 1:131888166924002 × 10−7 1:370101542818409 × 10−7

1:0 1:5443160141456830 × 10−4 2:223418326791861 × 10−5 3:089573833214964 × 10−6 4:181218087214387 × 10−7
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℘5 υð Þ = υ2 − υ2+ω + 4 2ð Þ−ωυ2+2ω + ℏ3υ
2+3ω + ℏ4υ

2+4ω + ℏ5υ
2+5ω:

ð137Þ

By taking inverse E-T at both sides of Equation (137),

Θ5 τð Þ = 1 − τω

Γ 1 + ωð Þ + 4 2ð Þ−ω ϒ 2ω

Γ 1 + 2ωð Þ + ℏ3
τ3ω

Γ 1 + 3ωð Þ
+ ℏ4

τ4ω

Γ 1 + 4ωð Þ + ℏ5
τ5ω

Γ 1 + 5ωð Þ :

ð138Þ

For ω = 2, Equation (138) becomes

Θ5 τð Þ = 1 − τ2

2! +
τ4

4! −
τ6

6! +
τ8

8! −
τ10

10! : ð139Þ

Equation (139) represents the first six terms of cos τ;
therefore, the exact solution of Equation (126) is cos τ at
ω = 2:

The following 2-D graphs show the behavior of approx-
imate and exact solutions to Example 2.

Figure 7 shows the performance of the five-step approx-
imate solution of Equation (126) for various values of ω and
exact solution at ω = 2: Clearly, the findings for various frac-
tional ω values converge to the result in the case of ω = 2:
Furthermore, the approximate solution does overlap with
the exact solution, which indicates the accuracy and effec-
tiveness of the suggested method.

The following 2-D graphs show the absolute and relative
errors for Example 2.

Figures 8 and 9 demonstrate the 2-D graphs of absolute
and relative errors in the intervals τ ∈ ½0, 1� over the five-step
approximate and exact solutions of Equation (126) at ω = 1,
respectively. The approximate solution is extremely close to
the exact solution, as seen in the figures.

Table 4 shows the absolute and relative errors at reason-
able nominated grid points in the interval τ ∈ ½0, 1� among
the five-step approximate and exact solutions of Equation

(126) at ω = 1 attained using ERPSM. From Table 4, it can
be perceived that the approximate and exact solutions are in
very good agreement, and this sanctions the efficiency of the
recommended method. The convergence of the approximate
solution to the exact solution for Equation (126) has been
shown numerically as in Table 5. From the obtained results,
it is evident that the present technique is an effective and con-
venient algorithm to solve certain classes of fractional-order
DEs with fewer calculations and iteration steps.

Example 3. Consider the following nonlinear PDE:

Dω
τΘ τð Þ = 1

2Θ τð Þ + 1
21−ω Θ

τ

2
� �

Dω
τΘ

τ

2
� �

,  τ ≥ 0, 0 < ω ≤ 1,

ð140Þ

0.2 0.4 0.6 0.8 1.0
τ

0.5

0.6

0.7

0.8

0.9

1.0

Θ(τ)

ω=1.0
ω=0.8
Exact

ω=0.6
ω=0.9
ω=0.7

Figure 7

0.2 0.4 0.6 0.8 1.0
τ

|Θ–Θ5|
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Figure 8

0.2 0.4 0.6 0.8 1.0
τ

2.×10–10

4.×10–10

6.×10–10

|Θ–Θ5|
|Θ|

Figure 9

Table 4: The absolute and relative errors of Example 2.

τ Abs:error Rel:error
0:2 0:0 0:0
0:4 3:508304757815494 × 10−14 3:808982011678268 × 10−14

0:6 4:535483100198689 × 10−12 5:495319744192834 × 10−12

0:8 1:429608653680247 × 10−10 2:051951896683681 × 10−10

1:0 7:120558766432639 × 10−9 2:051765518966810 × 10−9
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subject to the initial condition

Θ 0ð Þ = 1: ð141Þ

By employing the E-T on Equation (140),

℘ υð Þ = υ2 + υω

2 ℘ υð Þ + υω

21−ω E E−1 4℘ υ

2
� �h i

E−1 4℘ υ/2ð Þ
υω

− υ2−ω
	 
	 


:

ð142Þ

Assume that algebraic equation (142) has the solution in
the expansion form as

℘ υð Þ = 〠
∞

ν=0
ℏνυ

νω+2: ð143Þ

The κth-truncated series of Equation (142) is as follows:

℘k υð Þ = 〠
k

ν=0
ℏνυ

νω+2: ð144Þ

By employing the first part of Lemma 2, we get

ℏ0 =Θ 0ð Þ = 1: ð145Þ

The κth-truncated series of Equation (142) becomes as
follows:

℘k υð Þ = υ2 + 〠
k

ν=1
ℏνυ

νω+2: ð146Þ

Now, define the ERF in the following form:

E Re s υð Þ = ℘ υð Þ − υ2 −
υω

2 ℘ υð Þ − υω

21−ω

� E E−1 4℘ υ

2
� �h i

E−1 4℘ υ/2ð Þ
υω

− υ2−ω
	 
	 


:

ð147Þ

The κth-ERF is as follows:

EResκ υð Þ = ℘κ υð Þ − υ2 −
υω

2 ℘κ υð Þ − υω

21−ω

� E E−1 4℘κ

υ

2
� �h i

E−1 4℘κ υ/2ð Þ
υω

− υ2−ω
	 
	 


:

ð148Þ

To determine the undefined coefficients ℏν, substitute κ
= 1, 2, 3, 4 in Equations (146) and (148) and then solve
the equation lim

υ⟶0
ð1/υκω+2ÞE½Re sκðυÞ� = 0. By utilizing this

algorithm, we get the following first four coefficients of the
series Equation (146):

ℏ1 = 1,

ℏ2 =
1 + 2ω

−1 + 2ω+1 ,

ℏ3 = −
8ω − 16ω − 2 32ð Þωð ÞΓ 1/2ð Þ + ωð Þ + ffiffiffi

π
p 2ω − 4ω − 8ω − 16ω − 2 32ð Þωð ÞΓ 1 + ωð Þffiffiffi

π
p

Γ 1 + ωð Þ 8 32ð Þω + 22ω+2 − 2 8ωð Þ − 8 16ωð Þ − 2ω
� � ,

ℏ4 =
ffiffiffi
π

p 2 − 2−ω − 2 4ð Þω + 4 2ð Þ2ω + 5 2ð Þω� �
Γ 1 + 3ωð Þ

2 2ð Þω − 1ð Þ2 2 8ð Þω − 1ð Þ 2 4ð Þω − 1ð ÞΓ 1/2ð Þ + ωð ÞΓ 1 + ωð Þ2

+ 4ω 16ω + 8ω + 2ω + 1ð ÞΓ 1/2ð Þ + ωð Þffiffiffi
π

p 2 2ð Þω − 1ð Þ 2 8ð Þω − 1ð Þ 2 4ð Þω − 1ð ÞΓ 1 + ωð Þ
+ 1 + 2 8ð Þω + 4ω + 3 2ð Þω + 64ð Þω + 16ð Þω + 2ð ÞωÞð Þ

2 2ð Þω − 1ð Þ 2 8ð Þω − 1ð Þ 2 4ð Þω − 1ð Þ
+ 3 + 3 2ð Þωð ÞΓ 3ωð Þ

2 2ð Þω − 1ð Þ 2 8ð Þω − 1ð Þ 2 4ð Þω − 1ð ÞΓ 1 + ωð Þ3 :

ð149Þ

The four-step approximate solution of Equation (142) is
as follows:

℘4 υð Þ = υ2 + υ2+ω + 1 + 2ω
1 − 2ω+1
� �

υ2+2ω + ℏ3υ
2+3ω + ℏ4υ

2+4ω:

ð150Þ

By employing inverse E-T on both sides of Equation
(150),

Table 5: The recurrence errors jΘ5ðτÞ −Θ4ðτÞj of the five-step approximate solution with different values of ω for Example 2.

τ ω = 0:7 ω = 0:8 ω = 0:9 ω = 1:0
0:2 6:296560270772086 × 10−20 1:969389500244771 × 10−21 5:554963006701661 × 10−22 2:821869488536155 × 10−24

0:4 2:279598318393725 × 10−17 1:008327424125322 × 10−18 4:022222859549857 × 10−19 2:889594356261023 × 10−21

0:6 7:155401866274551 × 10−16 3:876349353331781 × 10−17 1:893795546581747 × 10−17 1:666285714285714 × 10−19

0:8 8:253027478106390 × 10−15 5:162636411521651 × 10−16 2:912400444857598 × 10−16 2:958944620811287 × 10−18

1:0 5:499819058543307 × 10−14 3:846463867665569 × 10−15 2:426030253023737 × 10−15 2:755731922398591 × 10−17
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Θ4 τð Þ = 1 + τω

Γ 1 + ωð Þ +
1 + 2ω
1 − 2ω+1
� �

τ2ω

Γ 1 + 2ωð Þ
+ ℏ3

τ3ω

Γ 1 + 3ωð Þ + ℏ4
τ4ω

Γ 1 + 4ωð Þ :
ð151Þ

Forω = 1in Equation (151), it becomes

Θ4 τð Þ = 1 + τ + τ2

2! +
τ3

3! +
τ4

4! : ð152Þ

Equation (152) represents the first five terms of eτ; there-
fore, the exact solution of Equation (140) is eτ at ω = 1:

Table 6 shows the absolute and relative errors of the five-
step approximate solution of the nonlinear PDE of Example
3 at ω = 1 on various chosen grid points in the interval τ ∈
½0, 1�. The numerical findings in Table 6 prove that the
approximate solution converges to the exact solution
quickly. This indicates the accuracy and effectiveness of the
suggested scheme.

The following 2-D graphs show the behavior of approx-
imate and exact solutions to Example 3.

Figure 10 exemplifies the performance of the five-step
approximate solutions of Equation (140) for some values
of ω and exact solution at ω = 1: Apparently, results in cases
of fractional values of ω converging result in the case of ω
= 1: Furthermore, the approximate result overlaps with the
precise result at ω = 1, and this once more agrees with the
efficiency and precision of the recommended scheme.

The following 2-D graphs show the absolute and relative
errors for Example 3.

Figures 11 and 12 demonstrate the 2-D graphs of abso-
lute and relative errors in the intervals τ ∈ ½0, 1� over the
nine-step approximate and exact solutions of Equation
(140) at ω = 1, respectively. The approximate solution is
extremely close to the exact solution, as seen in the figures.

5. Conclusion

In this paper, we describe a novel method for solving FMPS
and PDEs that combines the RPSM with the E-T. To assess
the effectiveness and reliability of ERPSM for FMPS and
PDEs, the absolute, relative, and recurrence errors of linear
and nonlinear problems are studied graphically and numer-
ically. The interpretation of the 2-D plots and tables for dif-
ferent values of fractional order also validates that the
approximate solution is rapidly convergent to the exact solu-
tion. The numerical and graphical consequences confirm
that the ERPSM is extremely effective and precise.

The ERPSM stands apart from other numerical methods
in four major ways. This method has the advantage of
requiring no minor or major physical parameter assump-
tions in the problem. As a result, it applies to both weakly
and strongly nonlinear problems, overcoming some of the
inherent limits of traditional perturbation approaches.
Second, while addressing nonlinear problems, the ERPSM

0.2 0.4 0.6 0.8 1.0
τ

|Θ–Θ9|

2.×10–8

4.×10–8

6.×10–8
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Figure 11
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|Θ|

Figure 12

Table 6: The absolute and relative errors of Example 3.

τ Abs:error Rel:error
0:2 9:149350321813188 × 10−8 7:490854479152386 × 10−8

0:4 6:030974603721262 × 10−6 4:042683174006208 × 10−6

0:6 7:080039050877396 × 10−5 3:885607815121622 × 10−5

0:8 4:102618258010615 × 10−4 1:843425212040309 × 10−4

1:0 1:615161333333059 × 10−3 5:941846488086295 × 10−4

0.2 0.4 0.6 0.8 1.0
τ

2

3

4

5
Θ(τ)

ω=1.0
ω=0.8
Exact

ω=0.6
ω=0.9
ω=0.7

Figure 10
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does not require He’s polynomials or Adomian polynomials.
To solve nonlinear DEs, only a very small number of calcu-
lations are needed. As a consequence, it outperforms homo-
topy analysis and Adomian decomposition methods
significantly. Third, the ERPSM provided a simple and rapid
way to observe the coefficients of the recommended series as
a solution to the problem. In contrast to the traditional
RPSM, establishing the coefficients for a series requires com-
puting the fractional derivative every time, while the ERPSM
only requires the concept of the limit at zero in establishing
the coefficients for the series. Finally, unlike conventional
analytic approximation techniques, the ERPSM can create
expansion solutions for linear and nonlinear FODEs without
the need for perturbation, linearization, or discretization.

Therefore, we conclude that our novel technique is sim-
ple to apply, accurate, adaptive, and efficient according to
the results. It is significant to consider that implementing
the ERPSM to solve other kinds of ordinary and partial
DEs of noninteger order is actively attainable. For example,
fractional KdV equations, fractional phi-4 equations, and
fractional Schrodinger equations.
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In this article, we investigate the fractional-order Fokker-Planck equations with the help of the Yang transform decomposition
method (YTDM). The YTDM combines Yang transform, Adomian decomposition method, and Adomian polynomials into
one method. In the Caputo sense, fractional derivatives of space and time are studied. The convergent series form solution
demonstrates the method’s efficiency in resolving several types of fractional differential equations. Compared to other methods
of finding approximate and exact solutions for nonlinear partial differential equations, this technique is more efficient and
time-consuming.

1. Introduction

Fractional calculus, which can be thought of as a general-
ization of integer-order differentiation and integration, has
received much attention in recent decades. Many defini-
tions have been proposed for fractional derivatives, includ-
ing Riesz, Grunwald-Letnikov, Caputo, Riemann-Liouville,
and conformable fractional definitions [1–4]. Noninteger
order integral and differential operators contain all histor-
ical conditions of the function in a weighted form known
as the memory effect. In any case, fractional differential
equations (FDEs), specifically fractional partial differential
equations, are used to analyze a broad range of physical
systems (FPDEs). FPDEs have gained attention due to
their widespread application in electrical circuits, electro-
chemistry, quantum physics, and theoretical biology
[5–8]. Furthermore, the nonlocal property of FPDEs is
the most important feature for using them in such and
other applications, whereas the differential operator having
order integer is local. In this light, the next state of a frac-
tional system is determined by both its current and histor-
ical states. This ensures that the mathematical model
components in physical processes and dynamic systems

are highly consistent. However, it is not easy to solve those
FDEs, particularly for numerical calculations [9–11]. To
handle partial differential equations (PDEs), having order
fraction is of physical importance, and effective, trustwor-
thy, and appropriate numerical methods are required
[12–14]. Several major strategies have been utilized in this
regard, including the fractional operational matrix method
(FOMM) [15], Elzaki transform decomposition method
(ETDM) [16, 17], homotopy analysis method (HAM)
[18], homotopy perturbation method (HPM) [19, 20], iter-
ative Laplace transform method [21], and variational iter-
ation method (FVIM) [22].

The Fokker-Planck equation is a well-known statistical
physics equation that Fokker and Planck first proposed to
describe a particle’s Brownian motion and the change in
probability of a random function in time and space [23].
An uncontrolled, second-order truncation of the Kramers-
Moyal expansion of the chemical master equation can also
be used to obtain the chemical Fokker-Planck equation. This
equation proves to be more accurate than the chemical mas-
ter equation’s linear-noise approximation. The Fokker-
Planck equation appears in many natural science phenom-
ena, such as probability flux, polymer dynamics, electron
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relaxation, solid-state systems, quantum optics, and other
practical and theoretical models [24].

We have studied Fokker-Planck equations of fractional-
order having general form as

φ
γ
I μ,Ið Þ = L φμ μ,Ið Þ + φμμ μ,Ið Þ

� �
+Nφμμ μ,Ið Þ, μ,I > 0, γ ∈ 0, 1ð �,

ð1Þ

with the initial condition

φ μ, 0ð Þ = ζ μð Þ: ð2Þ

In biological molecules, chemical physics, energy con-
sumption, and engineering, the fractional Fokker-Planck
equation (F-FPE) has been successfully applied. Indeed, frac-
tional diffusion, a special kind of F-FPE, has also been used
in numerous scenarios such as frequency-dependent damp-
ing behaviour of materials, viscoelasticity, and diffusion pro-
cesses [17]. Unfortunately, finding an accurate solution for
FDEs, in general, is difficult. To approximate these solutions,
various numerical and analytical techniques are used. Some
of the advanced numerical and approximate methods used
for F-FPEs include the Laplace transform method [18], the
multistep reduced differential transform method [25], the
predictor-corrector approach [26], the Adomian decomposi-
tion method (ADM) [27], and the variational iteration
method (VIM) [28].

In this research, we used the Yang transform decompo-
sition method (YTDM) to solve time-fractional F-FPEs.
The Yang transform was proposed by Xiao-Jun Yang and
can be utilized to solve a variety of differential equations
with constant coefficients. The Adomian decomposition
method [29] is a well-known methodology to solve linear
and nonlinear differential and partial differential equations
and integrodifferential and FDEs that yield accurate solu-
tions in a concurrent series form. The results of the sug-
gested strategy are convincing and offering specific
solutions to the problems at work. The fractional problem
results obtained through the given approach are also used
to analyze the problems fractionally. It has been confirmed
that the proposed technique can be implemented to solve
various fractional PDEs and related systems.

2. Preliminaries

We covered several fundamental definitions of fractional
calculus as well as Yang transform theory features in this
part.

Definition 1. The fractional Caputo derivative is defined as

Dγ
φφ μ,Ið Þ = 1

Γ k − γð Þ
ðI
0

I − ϑð Þk−γ−1φ kð Þ μ, ϑð Þdϑ, k − 1

< γ ≤ k, k ∈N:

ð3Þ

Definition 2. Xiao-Jun Yang introduced the Yang Laplace

transform in 2018. φðIÞ or MðuÞ determines the Yang
transform for a function φðIÞ and is provided as

Y φ Ið Þf g =M uð Þ =
ð∞
0
e−I/uφ Ið ÞdI,I > 0, u ∈ −I1,I2ð Þ:

ð4Þ

The inverse Yang transform is given as

Y−1 M uð Þf g = φ Ið Þ: ð5Þ

Definition 3. For nth derivatives, the Yang transform is given
as

Y φn Ið Þf g = M uð Þ
un

− 〠
n−1

k=0

φk 0ð Þ
un−k−1

,∀n = 1, 2, 3,⋯: ð6Þ

Definition 4. For derivative having fractional order, the Yang
transform is

Y φγ Ið Þf g = M uð Þ
uγ

− 〠
n−1

k=0

φk 0ð Þ
uγ− k+1ð Þ , 0 < γ ≤ n: ð7Þ

3. Idea of YTDM

The general methodology for solving fractional partial differ-
ential equations is given as

Dγ
Iφ μ,Ið Þ =P 1 μ,Ið Þ +Q1 μ,Ið Þ, 0 < γ ≤ 1, ð8Þ

with initial sources

φ μ, 0ð Þ = φ μð Þ,
∂
∂I

φ μ, 0ð Þ = ζ μð Þ,
ð9Þ

where Caputo fractional derivative having order γ is repre-
sented by Dγ

I = ∂γ/∂Iγ; P 1 and Q1 are linear and nonlinear
functions, respectively.

On employing Yang transform, we get

Y Dγ
Iφ μ,Ið Þ� �

= Y P 1 μ,Ið Þ +Q1 μ,Ið Þ½ �: ð10Þ

By using Yang differentiation property, we have

1
uγ

M uð Þ − uφ 0ð Þ − u2φ′ 0ð Þ
n o

= Y P 1 μ,Ið Þ +Q1 μ,Ið Þ½ �:
ð11Þ

From above equation

M φð Þ = uφ 0ð Þ + u2φ′ 0ð Þ + uγY P 1 μ,Ið Þ +Q1 μ,Ið Þ½ �:
ð12Þ
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On applying inverse Yang transform, we have

φ μ,Ið Þ = φ 0ð Þ + φ′ 0ð Þ + Y−1 uγ½ Y P 1 μ,Ið Þ +Q1 μ,Ið Þ½ �:
ð13Þ

The solution in terms of infinite sequence φðμ,IÞ by
means of YTDM is

φ μ,Ið Þ = 〠
∞

m=0
φm μ,Ið Þ: ð14Þ

Now, the nonlinear terms by means of Adomian polyno-
mials are decomposed as

Q1 μ,Ið Þ = 〠
∞

m=0
Am: ð15Þ

The Adomian polynomials all forms of nonlinearity are
given as

Am = 1
m!

∂m

∂ℓm
Q1 〠

∞

k=0
ℓkμk, 〠

∞

k=0
ℓkIk

 !( )" #
ℓ=0

: ð16Þ

By substituting Equation (35) and Equation (38) into
(34), we have

〠
∞

m=0
φm μ,Ið Þ = φ 0ð Þ + φ′ 0ð Þ + Y−1uγ

� Y P 1 〠
∞

m=0
μm, 〠

∞

m=0
Im

 !
+ 〠

∞

m=0
Am

( )" #
:

ð17Þ

The below terms are derived.

φ0 μ,Ið Þ = φ 0ð Þ +Iφ′ 0ð Þ,
φ1 μ,Ið Þ = Y−1 uγY+ P 1 μ0,I0ð Þ +A0f g½ �,

ð18Þ

thus for m ≥ 1, the general term is given as

φm+1 μ,Ið Þ = Y−1 uγY+ P 1 μm,Imð Þ +Amf g½ �: ð19Þ

Theorem 5. Here, we will study the convergence analysis as
same manner in [30] of the YTDM applied to the fractional
order partial differential equation. Let us consider the Hilbert
space H which may define by H = L2ððα, βÞX½0, T�Þ the set of
applications:

u : α, βð ÞX 0, T½ �⟶with
ð

α,βð ÞX 0,T½ �
u2 x, sð Þdsdθ < +∞:

ð20Þ

Now, we consider the fractional partial differential equa-

tion in the above assumptions and let us denote

Y uð Þ = ∂γu
∂Iγ , ð21Þ

then the fractional partial differential equation becomes in an
operator form

Y uð Þ = −φ
∂ν x,Ið Þ

∂x
−w

∂3ν x,Ið Þ
∂x3

: ð22Þ

The YTDM is convergence if the following two hypotheses
are satisfied:

H1: ðYðuÞ − YðvÞ, u − vÞ ≥ kku − vk2 ; k > 0, ∀u, vεH
H2: whatever may be M > 0, there exist a constant CðM

Þ > 0 such that for u, vεH with kuk ≤M and kvk ≤M we have
ðYðuÞ − YðvÞ, u − vÞ ≤ CðMÞku − vkkwk for every wεH

4. Applications

Here, in this part, we implemented YTDM for solving vari-
ous time-fractional Fokker-Planck equation.

Example 1. Consider F-FPEs of the form

∂γ

∂Iγ φ μ,Ið Þð Þ + ∂
∂μ

μ

6 φ μ,Ið Þ
� �

−
∂2

∂μ2
μ2

12φ μ,Ið Þ
� �

= 0, μ,I > 0, γ ∈ 0, 1ð �,
ð23Þ

with the initial condition

φ μ, 0ð Þ = μ2: ð24Þ

On employing Yang transform, we get

Y ∂γφ
∂Iγ

� 	
= Y −

∂
∂μ

μ

6 φ μ,Ið Þ
� �

+ ∂2

∂μ2
μ2

12φ μ,Ið Þ
� �" #

:

ð25Þ

By using Yang differentiation property, we have

1
uγ

M uð Þ − uφ 0ð Þf g = Y
"
−

∂
∂μ

μ

6 φ μ,Ið Þ
� �

+ ∂2

∂μ2
μ2

12φ μ,Ið Þ
� �#

,

M uð Þ = uφ 0ð Þ + uγY
"
−

∂
∂μ

μ

6 φ μ,Ið Þ
� �

+ ∂2

∂μ2
μ2

12φ μ,Ið Þ
� �#

:

ð26Þ
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On applying inverse Yang transform, we have

φ μ,Ið Þ = φ 0ð Þ + Y−1
"
uγ
(
Y
 
−

∂
∂μ

μ

6 φ μ,Ið Þ
� �

+ ∂2

∂μ2
μ2

12φ μ,Ið Þ
� �!)#

,

φ μ,Ið Þ = μ2 + Y−1
"
uγ
(
Y
 
−

∂
∂μ

μ

6 φ μ,Ið Þ
� �

+ ∂2

∂μ2
μ2

12φ μ,Ið Þ
� �!)#

:

ð27Þ

The solution in terms of infinite sequence φðμ,IÞ by
means of YTDM is

φ μ,Ið Þ = 〠
∞

m=0
φm μ,Ið Þ,

〠
∞

m=0
φm μ,Ið Þ = μ2 + Y−1

"
uγY

"
−

∂
∂μ

μ

6 φ μ,Ið Þ
� �

+ ∂2

∂μ2
μ2

12φ μ,Ið Þ
� �##

:

ð28Þ

By comparing Equation (28) both sides, we get

φ0 μ,Ið Þ = μ2: ð29Þ

On m = 0,

φ1 μ,Ið Þ = μ2
Iγ

2Γ γ + 1ð Þ : ð30Þ

On m = 1,

φ2 μ,Ið Þ = μ2
I2γ

8Γ 2γ + 1ð Þ : ð31Þ

On m = 2,

φ3 μ,Ið Þ = μ2
I3γ

24Γ 3γ + 1ð Þ : ð32Þ

The YTDM solution remaining components φm for ðm
≥ 3Þ are calculated easily. Thus, we define the series form

solution as

φ μ,Ið Þ = 〠
∞

m=0
φm μ,Ið Þ = φ0 μ,Ið Þ + φ1 μ,Ið Þ

+ φ2 μ,Ið Þ + φ3 μ,Ið Þ +⋯,

φ μ,Ið Þ = μ2 + μ2
Iγ

2Γ γ + 1ð Þ + μ2
I2γ

8Γ 2γ + 1ð Þ

+ μ2
I3γ

24Γ 3γ + 1ð Þ+⋯:

ð33Þ

The YTDM solution at γ = 1 is

φ μ,Ið Þ = μ2 expI/2: ð34Þ

In Figure 1, the first graph shows the exact and second
the analytical solution graph, which shows the close contact
with each other. In Figure 1, the third and fourth graphs are
the three- and two-dimensional graphs concerning different
fractional order of problem 1. The figures show that the sug-
gested technique agrees with the actual solution for the given
problem. As fractional order approaches integer order,
fractional-order solution surfaces converge to the integer-
order surface, as depicted by graphs. It means that we may
physically model any surface based on the physical events
observed in nature.

Example 2. Consider F-FPEs of the form

∂
∂Iγ φ μ,Ið Þð Þ + ∂

∂μ
μφ μ,Ið Þð Þ − ∂2

∂μ2
μ2

2 φ μ,Ið Þ
� �

= 0, μ,I > 0, γ ∈ 0, 1ð �,
ð35Þ

with the initial condition

φ μ, 0ð Þ = μ: ð36Þ

On employing Yang transform, we get

Y ∂γφ
∂Iγ

� 	
= Y −

∂
∂μ

μφ μ,Ið Þð Þ + ∂2

∂μ2
μ2

2 φ μ,Ið Þ
� �" #

:

ð37Þ

By using Yang differentiation property, we have

1
uγ

M uð Þ − uφ 0ð Þf g = Y
"
−

∂
∂μ

μφ μ,Ið Þð Þ

+ ∂2

∂μ2
μ2

2 φ μ,Ið Þ
� �#

,
ð38Þ
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M uð Þ = uφ 0ð Þ + uγY
"
−

∂
∂μ

μφ μ,Ið Þð Þ

+ ∂2

∂μ2
μ2

2 φ μ,Ið Þ
� �#

:

ð39Þ

On applying inverse Yang transform, we have

φ μ,Ið Þ = φ 0ð Þ + Y−1
"
uγ
(
Y
 
−

∂
∂μ

μφ μ,Ið Þð Þ

+ ∂2

∂μ2
μ2

2 φ μ,Ið Þ
� �!)#

,

φ μ,Ið Þ = μ + Y−1
"
uγ
(
Y
 
−

∂
∂μ

μφ μ,Ið Þð Þ

+ ∂2

∂μ2
μ2

2 φ μ,Ið Þ
� �!)#

:

ð40Þ

The solution in terms of infinite sequence φðμ,IÞ by
means of YTDM is

φ μ,Ið Þ = 〠
∞

m=0
φm μ,Ið Þ,

〠
∞

m=0
φm μ,Ið Þ = μ + Y−1

"
uγY

"
−

∂
∂μ

μφ μ,Ið Þð Þ

+ ∂2

∂μ2
μ2

2 φ μ,Ið Þ
� �##

:

ð41Þ

By comparing Equation (41) both sides, we get

φ0 μ,Ið Þ = μ: ð42Þ

On m = 0,

φ1 μ,Ið Þ = μ
Iγ

Γ γ + 1ð Þ : ð43Þ

On m = 1,

φ2 μ,Ið Þ = μ
I2γ

Γ 2γ + 1ð Þ : ð44Þ

On m = 2,

φ3 μ,Ið Þ = μ
I3γ

Γ 3γ + 1ð Þ : ð45Þ

The YTDM solution remaining components φm with ð
m ≥ 3Þ are calculated easily. Thus, we define the series form

solution as

φ μ,Ið Þ = 〠
∞

m=0
φm μ,Ið Þ = φ0 μ,Ið Þ + φ1 μ,Ið Þ

+ φ2 μ,Ið Þ + φ3 μ,Ið Þ+⋯,

φ μ,Ið Þ = μ + μ
Iγ

Γ γ + 1ð Þ + μ
I2γ

Γ 2γ + 1ð Þ + μ
I3γ

Γ 3γ + 1ð Þ+⋯:

ð46Þ

The YTDM solution at γ = 1 is

φ μ,Ið Þ = μ expI: ð47Þ

In Figure 2, the first graph shows the exact and sec-
ond the analytical solution graph, which shows the close
contact with each other. In Figure 2, the third and
fourth graphs are the three- and two-dimensional graphs
concerning different fractional order of problem 2. The
figures show that the suggested technique agrees with
the actual solution for the given problem. As fractional
order approaches integer order, fractional-order solution
surfaces converge to the integer-order surface, as
depicted by graphs. It means that we may physically
model any surface based on the physical events observed
in nature.

Example 3. Consider F-FPEs of the form

∂
∂Iγ φ μ,Ið Þð Þ + ∂

∂μ
4
μ
φ2 μ,Ið Þ

� �
−

∂
∂μ

μ

3 φ μ,Ið Þ
� �

−
∂2

∂μ2
φ2 μ,Ið Þ
 �

= 0, μ,I > 0, γ ∈ 0, 1ð �,

ð48Þ

with the initial condition

φ μ, 0ð Þ = μ2: ð49Þ

On employing Yang transform, we get

Y ∂γφ
∂Iγ

� 	
= Y
"

∂
∂μ

μ

3 φ μ,Ið Þ
� �

+ ∂2

∂μ2
φ2 μ,Ið Þ
 �

−
∂
∂μ

4
μ
φ2 μ,Ið Þ

� �#
:

ð50Þ
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By using Yang differentiation property, we have

1
uγ

M uð Þ − uφ 0ð Þf g = Y
"

∂
∂μ

μ

3 φ μ,Ið Þ
� �

+ ∂2

∂μ2
φ2 μ,Ið Þ
 �

−
∂
∂μ

4
μ
φ2 μ,Ið Þ

� �#
,

M uð Þ = uφ 0ð Þ + uγY
"

∂
∂μ

μ

3 φ μ,Ið Þ
� �

+ ∂2

∂μ2
φ2 μ,Ið Þ
 �

−
∂
∂μ

4
μ
φ2 μ,Ið Þ

� �#
:

ð51Þ

On applying inverse Yang transform, we have

φ μ,Ið Þ = φ 0ð Þ + Y−1
"
uγ
(
Y
 

∂
∂μ

μ

3 φ μ,Ið Þ
� �

+ ∂2

∂μ2
φ2 μ,Ið Þ
 �

−
∂
∂μ

4
μ
φ2 μ,Ið Þ

� �!)#
,

φ μ,Ið Þ = μ2 + Y−1
"
uγ
(
Y
 

∂
∂μ

μ

3 φ μ,Ið Þ
� �

+ ∂2

∂μ2
φ2 μ,Ið Þ
 �

−
∂
∂μ

4
μ
φ2 μ,Ið Þ

� �!)#
:

ð52Þ

Now, by assuming that the infinite series form the func-
tion φðμ,IÞ which is unknown, it has the solution as

φ μ,Ið Þ = 〠
∞

m=0
φm μ,Ið Þ: ð53Þ

Thus, the nonlinear terms are defined by the Adomian
polynomial φ2 =∑∞

m=0 Am. Using specific concepts, Equa-
tion (52) can be rewritten in the form

〠
∞

m=0
φm μ,Ið Þ = φ μ, 0ð Þ + Y−1

"
uγY

"
∂
∂μ

μ

3 φ μ,Ið Þ
� �

+ 〠
∞

m=0
Am

##
,

〠
∞

m=0
φm μ,Ið Þ = μ2 + Y−1

"
uγY

"
∂
∂μ

μ

3 φ μ,Ið Þ
� �

+ 〠
∞

m=0
Am

##
:

ð54Þ

Now, by Adomian polynomial Q1, the nonlinear terms
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Figure 1: Nature of the exact solution, analytical solution, and solution at various fractional orders of problem 1.
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are decomposed according to Equation (38),

A0 = φ2
0,

A1 = 2φ0φ1,
A2 = 2φ0φ2 + φ2ð Þ2:

ð55Þ

By comparing Equation (54) both sides, we get

φ0 μ,Ið Þ = μ2: ð56Þ

On m = 0,

φ1 μ,Ið Þ = μ2
Iγ

Γ γ + 1ð Þ : ð57Þ

On m = 1,

φ2 μ,Ið Þ = μ2
I2γ

Γ 2γ + 1ð Þ : ð58Þ

On m = 2,

φ3 μ,Ið Þ = μ2
I3γ

Γ 3γ + 1ð Þ : ð59Þ

The YTDM solution remaining components φm with ð
m ≥ 3Þ are calculated easily. Thus, we define the series form
solution as

φ μ,Ið Þ = 〠
∞

m=0
φm μ,Ið Þ = φ0 μ,Ið Þ + φ1 μ,Ið Þ

+ φ2 μ,Ið Þ + φ3 μ,Ið Þ+⋯,

φ μ,Ið Þ = μ2 + μ2
Iγ

Γ γ + 1ð Þ + μ2
I2γ

Γ 2γ + 1ð Þ

+ μ2
I3γ

Γ 3γ + 1ð Þ+⋯:

ð60Þ

The YTDM solution at γ = 1 is

φ μ,Ið Þ = μ2 expI: ð61Þ
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Figure 2: Nature of the exact solution, analytical solution, and solution at various fractional orders of problem 2.
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In Figure 3, the first graph shows the exact and sec-
ond the analytical solution graph, which shows the close
contact with each other. In Figure 3, the third and
fourth graphs are the three- and two-dimensional graphs
concerning different fractional order of problem 3. The
figures show that the suggested technique agrees with
the actual solution for the given problem. As fractional
order approaches integer order, fractional-order solution
surfaces converge to the integer-order surface, as
depicted by graphs. It means that we may physically
model any surface based on the physical events observed
in nature.

Example 4. Consider F-FPEs of the form

∂
∂Iγ φ μ,Ið Þð Þ − ∂

∂μ
φ μ,Ið Þ − ∂2

∂μ2
φ μ,Ið Þ

= 0,I > 0, γ ∈ 0, 1ð �,
ð62Þ

with the initial condition

φ μ, 0ð Þ = μ: ð63Þ

On employing Yang transform, we get

Y ∂γφ
∂Iγ

� 	
= Y ∂

∂μ
φ μ,Ið Þ + ∂2

∂μ2
φ μ,Ið Þ

" #
: ð64Þ

By using Yang differentiation property, we have

1
uγ

M uð Þ − uφ 0ð Þf g = Y ∂
∂μ

φ μ,Ið Þ + ∂2

∂μ2
φ μ,Ið Þ

" #
,

M uð Þ = uφ 0ð Þ + uγY ∂
∂μ

φ μ,Ið Þ + ∂2

∂μ2
φ μ,Ið Þ

" #
:

ð65Þ
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Figure 3: Nature of the exact solution, analytical solution, and solution at various fractional orders of problem 3.
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On applying inverse Yang transform, we have

φ μ,Ið Þ = φ 0ð Þ + Y−1 uγ Y ∂
∂μ

φ μ,Ið Þ + ∂2

∂μ2
φ μ,Ið Þ

 !( )" #
,

φ μ,Ið Þ = μ + Y−1 uγ Y ∂
∂μ

φ μ,Ið Þ + ∂2

∂μ2
φ μ,Ið Þ

 !( )" #
:

ð66Þ

The solution in terms of infinite sequence φðμ,IÞ by
means of YTDM is

φ μ,Ið Þ = 〠
∞

m=0
φm μ,Ið Þ,

〠
∞

m=0
φm μ,Ið Þ = μ + Y−1 uγY ∂

∂μ
φ μ,Ið Þ + ∂2

∂μ2
φ μ,Ið Þ

" #" #
:

ð67Þ

By comparing Equation (67) both sides, we get

φ0 μ,Ið Þ = μ: ð68Þ

On m = 0,

φ1 μ,Ið Þ = Iγ

Γ γ + 1ð Þ : ð69Þ

On m = 1,

φ2 μ,Ið Þ = 0: ð70Þ

On m = 2,

φ3 μ,Ið Þ = 0: ð71Þ

The YTDM solution remaining components φm with ð
m ≥ 3Þ are calculated easily. Thus, we define the series form
solution as

φ μ,Ið Þ = 〠
∞

m=0
φm μ,Ið Þ = φ0 μ,Ið Þ + φ1 μ,Ið Þ

+ φ2 μ,Ið Þ + φ3 μ,Ið Þ +⋯,

φ μ,Ið Þ = μ + Iγ

Γ γ + 1ð Þ + 0 + 0 +⋯:

ð72Þ
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Figure 4: Nature of the exact solution, analytical solution, and solution at various fractional orders of problem 4.
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The YTDM solution at γ = 1 is

φ μ,Ið Þ = μ +I: ð73Þ

In Figure 4, the first graph shows the exact and second
the analytical solution graph, which shows the close contact
with each other. In Figure 4, the third and fourth graphs are
the three- and two-dimensional graphs concerning different
fractional order of problem 4. The figures show that the sug-
gested technique agrees with the actual solution for the given
problem. As fractional order approaches integer order,
fractional-order solution surfaces converge to the integer-
order surface, as depicted by graphs. It means that we may
physically model any surface based on the physical events
observed in nature.

Example 5. Consider F-FPEs of the form

∂γ

∂Iγ φ μ,Ið Þð Þ − 1 − μð Þ ∂
∂μ

φ μ,Ið Þ − eIμ2
� � ∂2

∂μ2
φ μ,Ið Þ

= 0,I > 0, γ ∈ 0, 1ð �,
ð74Þ

with the initial condition

φ μ, 0ð Þ = 1 + μ: ð75Þ

On employing Yang transform, we get

Y ∂γφ
∂Iγ

� 	
= Y 1 − μð Þ ∂

∂μ
φ μ,Ið Þ + eIμ2

� � ∂2

∂μ2
φ μ,Ið Þ

" #
:

ð76Þ

By using Yang differentiation property, we have

1
uγ

M uð Þ − uφ 0ð Þf g = Y
"
1 − μð Þ ∂

∂μ
φ μ,Ið Þ

+ eIμ2
� � ∂2

∂μ2
φ μ,Ið Þ

#
,

M uð Þ = uφ 0ð Þ + uγY
"
1 − μð Þ ∂

∂μ
φ μ,Ið Þ

+ eIμ2
� � ∂2

∂μ2
φ μ,Ið Þ

#
:

ð77Þ
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Figure 5: Nature of the exact solution, analytical solution, and solution at various fractional orders of problem 5.
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On applying inverse Yang transform, we have

φ μ,Ið Þ = φ 0ð Þ + Y−1
"
uγ
(
Y
 

1 − μð Þ ∂
∂μ

φ μ,Ið Þ

+ eIμ2
� � ∂2

∂μ2
φ μ,Ið Þ

!)#
,

φ μ,Ið Þ = 1 + μð Þ + Y−1
"
uγ
(
Y
 

1 − μð Þ ∂
∂μ

φ μ,Ið Þ

+ eIμ2
� � ∂2

∂μ2
φ μ,Ið Þ

!)#
:

ð78Þ

The solution in terms of infinite sequence φðμ,IÞ by
means of YTDM is

φ μ,Ið Þ = 〠
∞

m=0
φm μ,Ið Þ, ð79Þ

〠
∞

m=0
φm μ,Ið Þ = 1 + μð Þ + Y−1

"
uγY

"
1 − μð Þ ∂

∂μ
φ μ,Ið Þ

+ eIμ2
� � ∂2

∂μ2
φ μ,Ið Þ

##
:

ð80Þ

By comparing Equation (80) both sides, we get

φ0 μ,Ið Þ = 1 + μ: ð81Þ

On m = 0,

φ1 μ,Ið Þ = 1 + μð Þ Iγ

Γ γ + 1ð Þ : ð82Þ

On m = 1,

φ2 μ,Ið Þ = 1 + μð Þ I2γ

Γ 2γ + 1ð Þ : ð83Þ

On m = 2,

φ3 μ,Ið Þ = 1 + μð Þ I3γ

Γ 3γ + 1ð Þ : ð84Þ

The YTDM solution remaining components φm with ð
m ≥ 3Þ are calculated easily. Thus, we define the series form

solution as

φ μ,Ið Þ = 〠
∞

m=0
φm μ,Ið Þ = φ0 μ,Ið Þ + φ1 μ,Ið Þ

+ φ2 μ,Ið Þ + φ3 μ,Ið Þ+⋯,

φ μ,Ið Þ = 1 + μð Þ + 1 + μð Þ Iγ

Γ γ + 1ð Þ + 1 + μð Þ I2γ

Γ 2γ + 1ð Þ

+ 1 + μð Þ I3γ

Γ 3γ + 1ð Þ+⋯:

ð85Þ

The YTDM solution at γ = 1 is

φ μ,Ið Þ = expI 1 + μð Þ: ð86Þ

In Figure 5, the first graph shows the exact and second
the analytical solution graph, which shows the close contact
with each other. In Figure 5, the third and fourth graphs are
the three- and two-dimensional graphs concerning different
fractional order of problem 5. The figures show that the sug-
gested technique agrees with the actual solution for the given
problem. As fractional order approaches integer order,
fractional-order solution surfaces converge to the integer-
order surface, as depicted by graphs. It means that we may
physically model any surface based on the physical events
observed in nature.

5. Conclusion

The Adomian decomposition approach was expanded in
this paper to find explicit and numerical solutions to the F-
FPEs. The proposed method is an effective and powerful
strategy for solving the proposed equations. The plotted
graphs confirm the strong relationship between the exact
and analytical results. The approaches provide series form
solutions with a higher convergence rate to exact results.
While providing quantitatively accurate results, the Ado-
mian decomposition method requires less computational
work than existing approaches.
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The main intention of this research article is to introduce a new class of generalized fractional differential equations that fall into
the categories of Sturm-Liouville’s, Langevin’s, and hybrid’s problems involving Y-Caputo fractional derivatives. The existence of
the solutions of the proposed equations is discussed by using the technique of the measure of noncompactness related to the fixed
point theorem, which is a generalization of Darbo’s fixed point theorem. Additionally, pertinent examples are provided along with
the different values of the function Y to confirm the validity of the reported results.

1. Introduction

Fractional differential equations (FDEs) with their various
branches such as Hybrid Equation (HE), Langevin Equation
(LE), and Sturm-Liouville Equation (SLE) are currently well
established, due to the number of papers and books edited
worldwide. These types of equations have been applied in
many applications in different fields, such as engineering
and science. Since in recent years, it has achieved a great deal
of development and interest by many researchers, for some
of these developments in the theory of fractional differential
equations, one can look at the monographs of Kilbas et al.
[1] and Podlubny [2], where they presented some properties
and applications appropriate for various types of fractional

operators. Dhage and Lakshmikantham [3] and Dhage
et al. [4] made excellent results on hybrid problems, as did
Zhao et al. [5] and Ahmad and Ntouyas [6]. The LE [7] is
formulated to be a powerful tool for describing the evolution
of physical phenomena in volatile environments. Some of
recent Langevin’s problem is studied through [8–10]. How-
ever, SLE has many applications in distinct areas of technical
knowledge and engineering [11, 12]. The mix of both frac-
tional SLE and fractional LE might give an adequate
description of the dynamic processes described in a fractal
medium where fractal and memory properties are inserted
with a scattered memory kernel. Recently, the authors in
[13] suggested an approach to the fractional model of
the SLE and LE. Indeed, they discussed the existence of
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solutions to the considered systems through fixed point
techniques and mathematical inequalities. Muensawat
et al. [14] studied antiperiodic BVPs for fractional systems
of generalized SL and LE. Boutiara et al. [15] considered
fractional LE under Caputo function-dependent kernel
fractional derivatives. Existence theorem for psi-fractional

HEs has been proven by Suwan et al. [16]. Some qualita-
tive analyses for multiterm LEs with generalized Caputo
FDs and diffusion FDE with ABC operators can be found
in [17, 18]. The authors in [19] considered a hybrid LE
involving Caputo FD and Riemann-Liouville (RL) frac-
tional integral (FI) as follows:

Motivated by the above works aforesaid and inspired by
[19, 21], in this paper, we deal with the existence of solutions

for the following BVP to the nonlinear fractional hybrid–
Sturm-Liouville–Langevin differential equation:

where cDr,Y denotes the Y-Caputo FD of order r ∈ fζ, ξg,
0 < ζ, ξ ≤ 1. Here, M ∈ CðΠ ×ℝ,ℝ \ f0gÞ, N ∈ CðΠ ×ℝ,
ℝÞ,ν, μ : Π⟶Π are given functions, p ∈ CðΠ,ℝ \ f0gÞ,
and q ∈ CðΠ,ℝÞ. As in Banach spaces, a closed and bounded
set is not generally a compact set; just continuity of the
functionM does not ensure the existence of a solution to dif-
ferential equations. Our arguments are principally founded
on Darbo’s fixed point technique mixed with the technique
of measures of noncompactness to set up the existence of
solutions for (2). In particular, problem (2) is formed as an
overarching structure comprising both fractional SLE, LE,
and HE, subjected to boundary conditions involving Y-
Caputo FDs. In fact, choosing qðσÞ ≡ 0 on the one hand
and pðσÞ ≡ 1, qðσÞ = λ, and λ ∈ℝ, on the other hand, reduces
the problem (2) into the fractional Sturm-Liouville problem
and the fractional Langevin problem, respectively. Besides,
if we set pðσÞ ≡ 1 and qðσÞ ≡ 0, the problem (2) reduces to
the fractional sequential hybrid problem.

Observe also that the current results are consistent
with some of the literature results when YðσÞ = σ, and
they are new even for the special case: YðσÞ = log σ and
YðσÞ = σρ:

Here is a brief outline of the paper. In Section 2, we
provide some preliminary facts. Sections 3 and 4 handle
the formulation of solutions and the existence of solutions
for (2) by using the generalized Darbo’s fixed point theo-
rem (D’sFPT) along with the approach of measures of
noncompactness in the Banach algebras. Lastly, we give
pertinent examples.

2. Preliminaries

Let us start this section with some auxiliary results used in
the forthcoming analysis.

Definition 1 (see [1]). The Y-RL FI of order ζ > 0 for an
integrable function ϑ : Π⟶ℝ is given by

I
ζ;Y
a+ ϑ σð Þ = 1

Γ ζð Þ
ðσ
a
Y ′ ςð Þ Y σð Þ − Y ςð Þð Þζ−1ϑ ςð Þdς, ð3Þ

where Γ is the gamma function. One can deduce that

Dσ I
ζ;Y
a+ ϑ σð Þ

� �
= Y ′ σð ÞI ζ−1;Y

a+ ϑ σð Þ, ζ > 1, ð4Þ

where Dσ = d/dt:

Definition 2 (see [20]). For n − 1 < ζ < nðn ∈ℕÞ and ϑ, Y ∈
CnðΠ,ℝÞ, the Y-Caputo FD of a function ϑ of order ζ is
given by

cD
ζ;Y
a+ ϑ σð Þ =I

n−ζ;Y
a+

Dσ

Y ′ σð Þ

 !n

ϑ σð Þ, ð5Þ

where n = ½ζ� + 1 for ζ ∉ℕ and n = ζ for ζ ∈ℕ.

cDζ cDξ ϑ σð Þ
M σ, ϑ ν σð Þð Þð Þ
� �

− λϑ σð Þ
� �

=N σ, ϑ μ σð Þð Þ,I γϑ μ σð Þð Þ, σ ∈ 0, 1�,ð

ϑ 0ð Þ = 0, cDξ
ϑ σð Þ

M σ, ϑ ν σð Þð Þð Þ
� �

σ=0
= 0, ϑ 1ð Þ = ζϑ κð Þ,  0 < κ < 1, ζ, λ ∈ℝ:

8>>><
>>>:

ð1Þ

cDζ,Y p σð ÞcDξ,Y ϑ σð Þ
M σ, ϑ ν σð Þð Þð Þ
� �

− q σð Þϑ σð Þ
� �

=N σ, ϑ μ σð Þð Þ, σ ∈Π = a, b½ �,ð

ϑ að Þ = 0, p bð ÞcDξ,Y ϑ σð Þ
M σ, ϑ ν σð Þð Þð Þ
� �

σ=b
+ q bð Þϑ bð Þ = 0,

8>>><
>>>:

ð2Þ
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Also, we can express Y-Caputo FD by

Lemma 3 (see [1, 20]). Let ζ, ξ > 0 and ϑ ∈ L1ðΠ,ℝÞ. Then,

I
ζ;Y
a+ I

ξ;Y
a+ ϑ σð Þ =I

ζ+ξ;Y
a+ ϑ σð Þ, a:e:σ ∈Π: ð7Þ

In particular, if ϑ ∈ CðΠ,ℝÞ, then I
ζ;Y
a+ I

ξ;Y
a+ ϑðσÞ =

I
ζ+ξ;Y
a+ ϑðσÞ, σ ∈Π:

Lemma 4 (see [20]). Let ζ > 0. Then, the following holds:
If ϑ ∈ CðΠ,ℝÞ, then

cD
ζ;Y
a+ I

ζ;Y
a+ ϑ σð Þ = ϑ σð Þ, σ ∈Π: ð8Þ

If ∈CnðΠ,ℝÞ,n − 1 < ζ < n. Then,

I
ζ;Y
a+

c
D

ζ;Y
a+ ϑ σð Þ = ϑ σð Þ − 〠

n−1

k=0

ϑ
k½ �
Y að Þ
k!

Y σð Þ − Y að Þ½ �k, σ ∈Π:

ð9Þ

Lemma 5 (see [1, 20]). Let σ > a, ζ ≥ 0, and ξ > 0: Then,

(i) I ζ;Y
a+ ðYðσÞ − YðaÞÞξ−1 = ðΓðξÞ/Γðξ + ζÞÞ

ðYðσÞ − YðaÞÞξ+ζ−1

(ii) cD
ζ;Y
a+ ðYðσÞ − YðaÞÞξ−1 = ðΓðξÞ/Γðξ − ζÞÞ

ðYðσÞ − YðaÞÞξ−ζ−1

(iii) cD
ζ;Y
a+ ðYðσÞ − YðaÞÞk = 0, for k < n,n ∈ℕ

Let Bðυ,~rÞ be the closed ball in the Banach space E; if
υ = 0, then Br ≡ Bð0,~rÞ: Let ~X⊂E, such that ~X and Conv
~X are a closure and a convex closure of ~X, respectively.
And let ME be the family of the nonempty and bounded
subsets of E, while PE denotes the subfamily of all relatively
compact subsets of ME.

Definition 6 (see [22]). We say that ~χ : ME ⟶ 0,∞Þ is a
noncompactness measure in E if all the assumptions
below hold:

(i) ker~χ = f~X ∈ME : ~χð~XÞ = 0g is nonempty and ker
~χ ⊂ PE

(ii) ~Y ⊂ ~X, then ~χð~Y Þ ≤ ~χð~XÞ
(iii) ~χð~Y Þ = ~χð~Y Þ = ~χðConv~Y Þ

(iv) ~χðλ1~Y + λ2 ~XÞ ≤ λ1~χð~Y Þ + λ2~χð~XÞ, λ1 + λ2 = 1

(v) In the case of ð~Y nÞ being a sequence of closed
subsets of ME with ~Y n+1 ⊂ ~Y nðn ≥ 1Þ and limn⟶∞
~χð~Y nÞ = 0, then ∩ ∞

n=1~Y n ≠∅

Definition 7 (see [22]). Let ~Y be a nonempty bounded set
and ⊂~C be a Banach space. We say that M ∈ ~Y is a modulus
of continuous function, denoted by ωðM, εÞ; if ∀M ∈ ~Y and
∀e > 0, we have

ω M, εð Þ = sup M σð Þ −M ςð Þj j: σ, ς ∈Π, σ − ςj j ≤ εf g:
ð10Þ

Moreover,

ω ~Y , ε
� �

= sup ω M, εð Þ: M ∈ ~Y
n o

,

ω0 ~Y
� �

= lim
ε⟶0

ω ~Y , e
� �

:
ð11Þ

Definition 8 (see [23]). A noncompactness measure ~χ in ~C
satisfies the condition ðmÞ if

~χ MNð Þ ≤ Mk k~χ Nð Þ + Nk k~χ Mð Þ, ð12Þ

for all M,N ∈MCðΠÞ, where ~C ≔ CðΠÞ is the Banach
algebra.

Lemma 9 (see [24]). The condition (m) may be grasped by
the noncompactness measure ϑ0 on ~C :

Set

S = Y : 0,∞ð Þ⟶ b,∞ð Þ: ∀ υnð Þ ⊂ 0,∞ð Þ, lim
n⟶∞

Y υnð Þ
n

= b⟺ lim
n⟶∞

υn = 0
o
:

ð13Þ

Now, we present D’sFPT and generalized D’sFPT to prove
that there exists at least one fixed point.

Theorem 10 (see [25, 26]). Let ~C be a Banach space and
Ξ ⊂ ~C be a nonempty, bounded, convex, and closed set.
Let K : Ξ⟶ Ξ be continuous. Assume that there is 0 ≤

cD
ζ;Y
a+ ϑ σð Þ =

ðσ
a

Y ′ ςð Þ Y σð Þ − Y ςð Þð Þn−ζ−1
Γ n − ζð Þ

Dσ

Y ′ ςð Þ

 !n

ϑ ςð Þdς, if ζ ∉ℕ,

Dσ

Y ′ σð Þ

 !n

ϑ σð Þ, if ζ ∈ℕ:

8>>>>><
>>>>>:

ð6Þ
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θ < 1 with υ as a noncompactness measure in ~C meeting
the following requirements:

υ K ~Y
� �

≤ θ~χ ~Y
� �

,Θ ≠ ~Y ⊆ Ξ: ð14Þ

Then, K has a fixed point in Ξ:

Theorem 11 (see [26]). Let ~C be a Banach space and V ⊂ ~C
be a nonempty, bounded, convex, and closed set, and let
K : V ⟶V be continuous. Assume there exist Θ ∈ S and
0 ≤ θ < 1 such that for each nonempty subset D of V with
~χðKDÞ > 0,

Θ ~χ KDð Þð Þ ≤ Θ ~χ Dð Þð Þð Þθ, ð15Þ

where ~χ is a noncompactness measure in ~C . Then, K has
a fixed point in V .

3. Solution Formulation

This section presents a formulation of the solution to
problem (2) along with the assumptions required in the
forthcoming analysis. Foremost, we denote by ð~C , k:kÞ the
space of real valued continuous functions defined on a unit
interval Π. It is clearly the Banach space with the norm:

ϑk k = sup
σ∈Π

ϑ σð Þj j, for ϑ ∈ ~C : ð16Þ

Multiplication is defined as the usual product of real
functions.

To prove the existence of solutions to (2), we need the
following lemma:

Lemma 12. The problem (2) is equivalent to the following
fractional integral equation:

ϑ σð Þ =M σ, ϑ ν σð Þð Þð Þ I ξ,Y 1
p
I ζ,YN

� �
σ, ϑ μ σð Þð Þð Þ

�

−I ξ,Y q
p
ϑ

� �
σð Þ− Y σð Þ − Y að Þð Þξ

p σð ÞΓ ξ + 1ð Þ I ζ,YN b, ϑ μ bð Þð Þð Þ
)
:

ð17Þ

Proof. Applying the ζth-Y-RL integral on (2), we obtain

cDξ,Y ϑ σð Þ
M σ, ϑ ν σð Þð Þð Þ
� �

= I ζ,YN σ, ϑ μ σð Þð Þð Þ − q σð Þϑ σð Þ + k1
p σð Þ ,

ð18Þ

where k1 ∈ℝ. From the BCs of (2), we get

k1 = −I ζ,YN b, ϑ μ bð Þð Þð Þ: ð19Þ

Taking the ξth-Y-RL integral of (18), one has

ϑ σð Þ
M σ, ϑ ν σð Þð Þð Þ
� �

= I ξ,Y 1
p
I ζ,YN

� �
σ, ϑ μ σð Þð Þð Þ −I ξ,Y q

p
ϑ

� �
σð Þ

�

−
Y σð Þ − Y að Þð Þξ
p σð ÞΓ ξ + 1ð Þ I ζ,YN b, ϑ μ bð Þð Þð Þ

)
+ k2,

ð20Þ
where k2 ∈ℝ: The BCs of (2) give k2 = 0. In this regard, if we
apply the ξth-Y-Caputo FD and ζth-Y-Caputo FD to both
sides of (17) and use Lemma 5, then the problem (2) imme-
diately is established.

Before giving the essential result, we shall investigate
formula (17) under the following assumptions:

(i) (AS1) Both functions v, μ : Π⟶Π are continuous

(ii) (AS2) M ∈ CðΠ ×ℝ,ℝ \ f0gÞ, and N ∈ CðΠ ×
ℝ2,ℝÞ

(iii) (AS3) There exists a real number ρ ∈ ða, bÞ with
M σ, vð Þ −M σ, ϑð Þj j
≤ v − ϑj j + dð Þρ − dρ, ∀σ ∈Π, ϑ, v ∈ℝ, d ∈ℝ+:

ð21Þ

(iv) (AS4) There exists a continuous nondecreasing
function φ : ℝ+ ⟶ℝ+ with φð0Þ = 0 such that

N σ, ϑð Þj j ≤ φ ϑk kð Þ, σ ∈Π, ϑ ∈ℝ: ð22Þ

(v) (AS5) There exists r0 > 0 such that

r0 + dð Þρ − dρ +N½ � φ r0ð Þ
~p

Y bð Þ − Y að Þð Þζ+ξ
Γ ζ + ξ + 1ð Þ

(

+ ~q
~p
r0 Y bð Þ − Y að Þð Þζ

Γ ζ + 1ð Þ

+ 1
~p
φ r0ð Þ Y bð Þ − Y að Þð Þζ+ξ

Γ ζ + 1ð ÞΓ ξ + 1ð Þ

)
≤ r0,

where

Λ≔
φ r0ð Þ
~p

Y bð Þ − Y að Þð Þζ+ξ
Γ ζ + ξ + 1ð Þ + ~q

~p
r0 Y bð Þ − Y að Þð Þζ

Γ ζ + 1ð Þ

(

+ 1
~p
φ r0ð Þ Y bð Þ − Y að Þð Þζ+ξ

Γ ζ + 1ð ÞΓ ξ + 1ð Þ

)
≤ 1,

N = sup M σ, 0ð Þj j: σ ∈Πf g,
~p = sup

σ∈Π
p σð Þ, ~q = sup

σ∈Π
q σð Þ:

ð24Þ
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4. Existence Result

The aim of this section is to discuss the existence of solu-
tions to the problem (2). For this end, we apply Theorems
10 and 11.

Theorem 13 Under hypotheses (AS1)–(AS5). Then, the
problem (2) has a least one solution in the Banach algebra ~C .

Proof. Consider the operator K : ~C ⟶ ~C on the Banach
algebra ~C as

Kϑð Þ σð Þ = Fϑð Þ σð Þ Gϑð Þ σð Þ, ð25Þ

where

Fϑð Þ σð Þ =M σ, ϑ v σð Þð Þð Þ,

Gϑð Þ σð Þ =I ξ,Y 1
p
I ζ,YN

� �
σ, ϑ μ σð Þð Þð Þ

−I ξ,Y q
p
ϑ

� �
σð Þ − Y σð Þ − Y að Þð Þξ

p σð ÞΓ ξ + 1ð Þ G Nð Þ,

G Nð Þ =I ζ,YN b, ϑ μ bð Þð Þð Þ:
ð26Þ

From (AS4), we have

G Nð Þk k ≤ Y bð Þ − Y að Þð Þζ
Γ ζ + 1ð Þ Y ϑk kð Þ: ð27Þ

For the sake of simplicity, we put

Q
χ
Y σ, ςð Þ = Y ′ ςð Þ Y σð Þ − Y ςð Þð Þχ−1

Γ χð Þ , χ > 0: ð28Þ

Now, we divide the proof into several steps.

Step 1. K transforms ~C into itself.
At first, we show that ∀ϑ ∈ ~C implies that ðKϑÞ ∈ ~C , i.e.,

ðFϑÞðGϑÞ ∈ ~C for all ϑ ∈ ~C . Certainly, (AS1) and (AS2)
guarantee that if ϑ ∈ ~C , then ðFϑÞ ∈ ~C . It remains to prove
if ϑ ∈ ~C , then ðGϑÞ ∈ ~C . Let ϑ ∈ ~C and σ2, σ1 ∈Π with σ2 >
σ1. By hypothesis (AS4), we get

Gϑ σ1ð Þ −Gϑ σ2ð Þj j
= 1
~p

ðσ1
a
Q
ζ+ξ
Y σ1, ςð ÞM ς, ϑ ςð Þð Þdς

				
−
ðσ2
a
Q
ζ+ξ
Y σ2, ςð ÞM ς, ϑ ςð Þð Þdς

				
+ ~q
~p

ðσ1
a
Q
ζ
Y σ1, ςð Þϑ ςð Þdς −

ðσ2
a
Q
ζ+ξ
Y σ2, ςð Þϑ ςð Þdς

				
				

+ 1
~p

G Nð Þj j
Γ ξ + 1ð Þ Y σ2ð Þ − Y að Þð Þξ − Y σ1ð Þ − Y að Þð Þξ

� �

≤
1
~p

ðσ2
a

Q
ζ+ξ
Y σ1, ςð Þ −Q

ζ+ξ
Y σ2, ςð Þ

h i
M ς, ϑ ςð Þð Þdς

				
				

+ 1
~p

ðσ1
σ2

Q
ζ+ξ
Y σ1, ςð ÞM ς, ϑ ςð Þð Þdς

					
					

+ ~q
~p

ðσ2
a

Q
ζ
Y σ1, ςð Þ −Q

ζ
Y σ2, ςð Þ

h i
M ς, ϑ ςð Þð Þdς

				
				

+ ~q
~p

ðσ1
σ2

Q
ζ
Y σ1, ςð ÞM ς, ϑ ςð Þð Þdς

					
					

+ 1
~p

G Nð Þj j
Γ ξ + 1ð Þ Y σ2ð Þ − Y að Þð Þξ − Y σ1ð Þ − Y að Þð Þξ

� �

≤
1
~p

φ ϑk kð Þ
Γ ζ + ξ + 1ð Þ Y σ1ð Þ − Y að Þð Þζ+ξ

			h
− Y σ2ð Þ − Y að Þð Þζ+ξ− Y σ1ð Þ − Y σ2ð Þð Þζ+ξ

			
+ Y σ1ð Þ − Y σ2ð Þð Þζ+ξ

i
+ ~q
~p

ϑk k
Γ ζ + 1ð Þ Y σ1ð Þ − Y að Þð Þζ − Y σ2ð Þ − Y að Þð Þζ

			h
− Y σ1ð Þ − Y σ2ð Þð Þζ

			 + Y σ1ð Þ − Y σ2ð Þð Þζ
i

+ 1
~p
φ ϑk kð Þ Y bð Þ − Y að Þð Þζ

Γ ζ + 1ð ÞΓ ξ + 1ð Þ
� Y σ2ð Þ − Y að Þð Þξ − Y σ1ð Þ − Y að Þð Þξ
� �

,

ð29Þ

which tends to be zero uniformly once σ2 ⟶ σ1. It is clear
that Gϑ ∈ ~C for all ϑ ∈ ~C .

Step 2. An estimate of kKϑk for ϑ ∈ ~C .
Let ϑ ∈ ~C and σ ∈Π. Then, by using our hypothesis,

we have

Kϑð Þ σð Þj j = Fϑð Þ σð Þ Gϑð Þ σð Þj j
≤ M σ, ϑ v σð Þð Þð Þ −M σ, 0ð Þj j + M σ, 0ð Þj jð Þ

× 1
~p

ðσ
a
Q
ζ+ξ
Y σ, ςð Þ N ς, ϑ μ ςð Þð Þð Þj jdς

�

+ ~q
~p

ðσ
a
Q
ζ
Y σ, ςð Þ ϑ ςð Þj jdς + 1

~p
G Nð Þj j
Γ ξ + 1ð Þ Y σð Þ − Y að Þð Þξ



≤ ϑk k + dð Þρ − dρ +N½ �

� 1
~p

ðσ
a
Q
ζ+ξ
Y σ, ςð ÞY ϑk kð Þdς

(
+ ~q
~p

ðσ
a
Q
ζ
Y σ, ςð Þ ϑk kdς

+ 1
~p
φ ϑk kð Þ Y bð Þ − Y að Þð Þζ+ξ

Γ ζ + 1ð ÞΓ ξ + 1ð Þ

)
:

ð30Þ
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Therefore,

Kϑk k ≤ ϑk k + dð Þρ − dρ +N½ � φ ϑk kð Þ
~p

Y bð Þ − Y ςð Þð Þζ+ξ
Γ ζ + ξ + 1ð Þ

(

+ ~q
~p

ϑk k Y bð Þ − Y ςð Þð Þζ
Γ ζ + 1ð Þ + 1

~p
φ ϑk kð Þ Y bð Þ − Y að Þð Þζ+ξ

Γ ζ + 1ð ÞΓ ξ + 1ð Þ

)
:

ð31Þ
Step 3. The operator K is continuous on Br0

. Here, Br0

is a subset of ~C defined by

Br0
= ϑ σð Þ ∈ ~C : ϑk k ≤ r0 : σ ∈Π
n o

, ð32Þ

with a fixed radius r0, which satisfies the inequality (AS5).
We shall need to show the continuity of F and G on

Br0
, separately. For any ε > 0 and ϑ, v ∈Br0

, there exists

0 < δ < ðε + dρÞ1/ρ − d,∋kϑ − vk ≤ δ; it follows for σ ∈Π that

Fϑ σð Þ −Fv σð Þj j = M σ, ϑ ν σð Þð Þð Þ −M σ, v ν σð Þð Þð Þj j
≤ ϑ ν σð Þð Þ − ν σð Þð Þj j + dð Þρ − dρ

≤ ϑ − vk k + dð Þρ − dρ ≤ δ + dð Þρ − dρ < ε:

ð33Þ
Therefore, F is continuous on Br0

. The continuity of
the operator G is obtained by Lebesgue dominated conver-
gence (LDC) theorem. Indeed, let ðϑnÞ be a sequence such
that ϑn ⟶ ϑ in Br0

with kϑn − ϑk⟶ 0 as n⟶ 0: As
μ : Π⟶Π is continuous, we obtain

ϑn μ σð Þð Þj j ≤ r0, ∀n ∈ℕ,∀σ ∈Π: ð34Þ
Since N is continuous on Π × ½−r0, r0�, it is uniformly

continuous on Π × ½−r0, r0�: Now, we set

G0 = max
σ,ϑð Þ∈Π× −r0,r0½ �

Gϑð Þ σð Þj j, ð35Þ

κ0 =
G0 Y bð Þ − Y að Þð Þζ

Γ ζ + 1ð Þ : ð36Þ

Applying the LDC theorem, we get

lim
n⟶∞

Gϑnð Þ σð Þ = lim
n⟶∞

1
~p

ðσ
a
Q
ζ+ξ
Y σ, ςð Þ N ς, ϑn μ ςð Þð Þð Þj jdς

�

+ ~q
~p

ðσ
a
Q
ζ
Y σ, ςð Þ ϑn ςð Þj jdς

+ G ϑnð Þj j
Γ ξ + 1ð Þ Y σð Þ − Y að Þð Þξ




= 1
~p

ðσ
a
Q
ζ+ξ
Y σ, ςð Þ N ς, ϑ μ ςð Þð Þð Þj jdς

�

+ ~q
~p

ðσ
a
Q
ζ
Y σ, ςð Þ ϑ ςð Þj jdς

+ 1
~p

G ϑð Þj j
Γ ξ + 1ð Þ Y σð Þ − Y að Þð Þξ



= Gϑð Þ σð Þ:

ð37Þ
Thus, G is continuous in Br0

.

Due to the continuity of F and G , the operator K is
continuous in Br0

.

Step 4. We estimate ϑ0ðFΞÞ and ϑ0ðGΞÞ for ∅≠ Ξ ⊂Br0
.

At first, we estimate ϑ0ðFΞÞ. Since ν : Π⟶Π is
uniformly continuous, we obtain for any ε > 0, ∃δ > 0 with
ðδ < εÞ, ∀σ1, σ2 ∈Π with jσ2 − σ1j < δ, which implies jνðσ2Þ
− νðσ1Þj < ε. Taking ϑ ∈ Ξ and σ1, σ2 ∈Π with jσ2 − σ1j < δ,
under hypothesis (AS5), we get

Fϑð Þ σ2ð Þ − Fϑð Þ σ1ð Þj j
= M σ2, ϑ ν σ2ð Þð Þð Þ −M σ1, ϑ ν σ1ð Þð Þð Þj j
≤ M σ2, ϑ ν σ2ð Þð Þð Þ −M σ2, ϑ ν σ1ð Þð Þð Þj j

+ M σ2, ϑ ν σ1ð Þð Þð Þ −M σ1, ϑ ν σ1ð Þð Þð Þj j
≤ ϑ ν σ2ð Þð Þ − ϑ ν σ1ð Þð Þj j + dð Þρ − dρ½ � + ω M, εð Þ
≤ ω Ξ, εð Þ + dð Þρ − dρ½ � + ω M, εð Þ:

ð38Þ

Considering

ω M, εð Þ = sup M σ2, ϑð Þ −M σ1, ϑð Þj j: σ1, σ2 ∈Π, σ2 − σ1j jf
< ε, ϑ ∈ −r0, r0½ �g,

ð39Þ

then we can write (38) as

ω FΞ, εð Þ ≤ ω Ξ, εð Þ + bð Þp − bp
� �

+ ω M, εð Þ: ð40Þ

Obviously, Mðσ, ϑÞ is uniformly continuous on Π ×
½−r0, r0�, and ωðM, εÞ⟶ 0 once ε⟶ 0. Hence, (40)
becomes as follows:

ω0 FΞð Þ ≤ ω0 Ξð Þ + bð Þp − bp: ð41Þ

Next, since μ : Π⟶Π is uniformly continuous, we
have ∀ε > 0, ∃δ > 0 with ðδ = δðεÞÞ, ∀σ1, σ2 ∈Π with jσ2 −
σ1j < δ, which implies jμðσ2Þ − μðσ1Þj < ε: Take into account
equations (32), (35), and (36) for each ε > 0: Set

δ =min 1
2 ,

Γ ξ + 1ð Þε
κ0

, p
∗Γ ζ + 1ð Þε
q∗r0

, p
∗Γ ζ + ξ + 1ð Þε

4G0

� 

:

ð42Þ

Choosing ϑ ∈ Ξ and σ1, σ2 ∈Π with jσ2 − σ1j ≤ δ yields
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For simplicity’s sake, we set

H
χ
Y σð Þ = Y σð Þ − Y að Þð Þχ, χ > 0: ð44Þ

The factors H ζ
Yðσ2Þ −H

ζ
Yðσ1Þ, H ξ

Yðσ2Þ −H
ξ
Yðσ1Þ, and

H
ζ+ξ
Y ðσ2Þ −H

ζ+ξ
Y ðσ1Þ can be estimated as in the following

cases:
Case 1. If 0 ≤HYðσ1Þ < δ,HYðσ2Þ ≤ 2δ, then

H
ζ
Y σ2ð Þ −H

ζ
Y σ1ð Þ ≤H

ζ
Y σ2ð Þ < 2δð Þζ ≤ 2ζδ ≤ 2δ,

H
ξ
Y σ2ð Þ −H

ξ
Y σ1ð Þ ≤H

ξ
Y σ2ð Þ < 2δð Þξ ≤ 2ξδ ≤ 2δ,

H
ζ+ξ
Y σ2ð Þ −H

ζ+ξ
Y σ1ð Þ ≤H

ζ+ξ
Y σ2ð Þ < 2δð Þζ+ξ ≤ 2ζ+ξδ ≤ 4δ:

ð45Þ

Case 2. If 0 <HYðσ1Þ <HYðσ2Þ ≤ δ, then

H
ζ
Y σ2ð Þ −H

ζ
Y σ1ð Þ ≤H

ζ
Y σ2ð Þ < δζ ≤ ζδ < 2δ,

H
ξ
Y σ2ð Þ −H

ξ
Y σ1ð Þ ≤H

ξ
Y σ2ð Þ < δξ ≤ ξδ < 2δ,

H
ζ+ξ
Y σ2ð Þ −H

ζ+ξ
Y σ1ð Þ ≤H

ζ+ξ
Y σ2ð Þ < δζ+ξ ≤ ζ + ξð Þδ < 4δ:

ð46Þ

Case 3. If δ ≤HYðσ1Þ <HYðσ2Þ ≤ 1, then

H
ζ
Y σ2ð Þ −H

ζ
Y σ1ð Þ < ζδ < 2δ,

H
ξ
Y σ2ð Þ −H

ξ
Y σ1ð Þ < ξδ < 2δ and σa+ξ2 − σa+ξ

1 < ζ + ξð Þδ < 4δ:
ð47Þ

Accordingly, we obtain jGϑðσ2Þ −Gϑðσ1Þj ≤ ε, which
implies that ωðGϑ, εÞ ≤ ε:

Let ε⟶ 0. Then,

ω0 GΞð Þ = 0: ð48Þ

Step 5. We estimate ω0ðKΞÞ for ∅ = Ξ ∈Br0
.

By Lemma 9 and equations (32), (41), and (48), we
obtain

ω0 KΞð Þ = ω0 FΞ:GΞð Þ FΞk kω0 GΞð Þ + GΞk kω0 FΞð Þ
≤ F Br0

 ��� ��ω0 GΞð Þ + G Br0

 ��� ��ω0 FΞð Þ

≤ ω0 Ξð Þ + dð Þρ − dρ½ � φ r0ð Þ
~p

Y σð Þ − Y ςð Þð Þζ+ξ
Γ ζ + ξ + 1ð Þ

(

+ ~q
~p
r0 Y σð Þ − Y ςð Þð Þζ

Γ ζ + 1ð Þ + 1
~p
φ r0ð Þ Y bð Þ − Y að Þð Þζ+ξ

Γ ζ + 1ð ÞΓ ξ + 1ð Þ

)

= ω0 Ξð Þ + dð Þρ − dρ½ �Λ:
ð49Þ

Since Λ ≤ 1, the assumption (AS5) gives

ω0 KΞð Þ + dρ ≤ ω0 Ξð Þ + dð Þρ: ð50Þ

Thanks to Theorem 10, the contractive condition is ful-
filled with φðϑÞ = ϑ + b, where φ ∈ S. By applying Theorem
11, K has at least fixed point in Br0

. Hence, the problem
(2) has at least one solution in Br0

.

5. Examples

Here, we provide two examples to illustrate previous results.

Example 14. Consider the problem (2) with following
specific data:

p σð Þ = 1, q σð Þ = λ = 1
100 , Y σð Þ = σ: ð51Þ

Then, the problem (2) reduces to

Gϑ σ1ð Þ − Gϑ σ2ð Þj j = 1
~p

ðσ1
a
Q
ζ+ξ
Y σ1, ςð ÞM σ, ϑ ςð Þð Þdς −

ðσ2
a
Q
ζ+ξ
Y σ2, ςð ÞM ς, ϑ ςð Þð Þdς

				
				 + ~q

~p

ðσ1
a
Q
ζ
Y σ1, ςð Þϑ ςð Þdς −

ðσ2
a
Q
ζ
Y σ2, ςð Þϑ ςð Þdς

				
				

+ 1
~p

G Nð Þj j
Γ ξ + 1ð Þ Y σ2ð Þ − Y að Þð Þξ − Y σ1ð Þ − Y að Þð Þξ

� �

≤
1
~p

G0
Γ ζ + ξ + 1ð Þ Y σ1ð Þ − Y að Þð Þζ+ξ − Y σ2ð Þ − Y að Þð Þζ+ξ

			h − Y σ1ð Þ − Y σ2ð Þð Þζ+ξ
			 + Y σ1ð Þ − Y σ2ð Þð Þζ+ξ

i

+ ~q
~p

r0
Γ ζ + 1ð Þ Y σ1ð Þ − Y að Þð Þζ − Y σ2ð Þ − Y að Þð Þζ

			h − Y σ1ð Þ − Y σ2ð Þð Þζ
			

+ Y σ1ð Þ − Y σ2ð Þð Þζ
i
+ 1
~p

κ0
Γ ξ + 1ð Þ Y σ2ð Þ − Y að Þð Þξ − Y σ1ð Þ − Y að Þð Þξ

� �
:

ð43Þ
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where

a = 0, b = 1, ζ = 1
4 , ξ =

1
2 , λ =

1
100 , ν σð Þ = e σ−1ð Þ

2 , μ σð Þ = ffiffiffi
σ

p
:

ð53Þ

Mðσ, ϑÞ = ffiffiffiffiffiffiffiffiffiffiffiffiffiffijϑj + 42
p

,N ðσ, ϑÞ = ð1/10Þ sin ðϑÞ, d = 16,
and N = supσ∈0,1�jMðσ, 0Þj = 4. Thus, (AS1) and (AS2) hold.

For (AS3), we obtain ρ = 1/2. Furthermore, let zðϑÞ =ffiffiffiffiffiffiffiffiffiffiffiffiffiffijϑj + 42
p

− 22: Then, zð0Þ = 0, and it is a concave function.
Since zðσÞ is concave. As a result, the subadditive property
of the concave function allows us to conclude

M σ, ϑ2ð Þ −M σ, ϑ1ð Þj j = z ϑ2ð Þ − z ϑ1ð Þj j
≤ z ϑ2 − ϑ1ð Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϑ2 − ϑ1j j + 42

q
− 22:
ð54Þ

Thus, (AS3) holds, with ρ = 1/2. Moreover, for every σ
∈Π and ϑ ∈ℝ, we obtain

N σ, ϑð Þj j = σ

10 sin ϑ σð Þ½ �
			 			 ≤ 1

10 ϑ σð Þj j, ∀σ ∈Π: ð55Þ

Hence, (AS4) holds with φðkϑkÞ = ð1/10Þϑ. Finally,
(AS5) permitted to provide us the range of r0 which is
obviously

0 < r0 ≤ 1:7924: ð56Þ

Accordingly, (AS5) confirms that the illustrated exam-
ple (52) has a solution in ~C due to

Λ = 0:544529299 < 1: ð57Þ

Example 15. Depending on the previous example, we pres-
ent some special cases of Y with different values for some
parameters as in Table 1.

6. Conclusions

In this work, we have successfully studied some qualitative
properties of the solution to a fractional problem that
integrates three different types of BVP; more precisely, we
have investigated the existence of the solutions of the
Sturm-Liouville–Langevin–hybrid-type FDEs. Our analysis
has been based on the technique of the measure of noncom-
pactness along with the generalized Darbo’s fixed point the-
orem. The results were consistent with some of the literature
results when YðσÞ = σ, and they are new even for the special
case: YðσÞ = log σ and YðσÞ = σρ:

The problem studied can be extended to a more general
problem containing Y-Hilfer FD, and this is what we are
considering in future research.
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Table 1: Examples with some special cases of the Y function.

Y σð Þ a, b½ � ζ ξ ~p ~q r0 Λ

σ 0, 1½ � 1
4

1
2

1 1
100 0 < r0 ≤ 1:7924 0:5445 < 1

eσ 0, 1½ � 1
3

3
4 2 2

25 0 < r0 ≤ 0:385 0:1613 < 1

ln σð Þ 1, e½ � 2
3

1
3

3
5

1
25 0 < r0 ≤ 1:2603 0:3034 < 1

2σ 1, 2½ � 1
2

1
2

3
2

1
35 0 < r0 ≤ 0:1807 0:0449 < 1

cD1/4 cD1/2 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϑ e σ−1ð Þ/2
 �

+ 42
q

2
64

3
75 −

1
100 ϑ σð Þ

3
75 = σ

10 sin ϑ
ffiffiffi
σ

p �� �
, σ ∈Π = 0, 1½ �,

ϑ 0ð Þ = 0, 22
ϑ σð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϑ e σ−1ð Þ/2
 �

+ 42
q
2
64

3
75
σ=1

+ 1
100 ϑ 1ð Þ = 0,

8>>>>>>>>><
>>>>>>>>>:

ð52Þ
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This article presents a new iterative method (NIM) for the investigation of the approximate solution of the Klein-Gordon and
sine-Gordon equations. This approach is formulated on the combination of the Mohand transform and the homotopy
perturbation method. Mohand transform (MT) is capable to handle the linear terms only, thus we introduce homotopy
perturbation method (HPM) to tackle the nonlinear terms. This NIM derives the results in the form of a series solution. The
proposed method emphasizes the stability of the derived solutions without any linearization, discretization, or hypothesis.
Graphical representation and absolute error demonstrate the efficiency and authenticity of this scheme. Some numerical
models are illustrated to show the compactness and reliability of this strategy.

1. Introduction

Many linear and nonlinear phenomena appear in several areas
of scientific fields like physics, chemistry and biology can be
modeled by different type of partial differential equation
[1–4]. A broad class of analytical methods and numerical
methods have been introduced such as (G′/G)-expansion
method [5], Exp-function method [6], Homotopy perturba-
tion method [7], Homotopy analysis method [8], Laplace
transform [9], Residual power series [10], Quasi wavelet
method [11], Fourier series [12], Chebyshev-Tau method
[13], Haar wavelets method [14], trial equation method [15]
and Two scale approach [16] to handle these linear and non-
linear PDEs but to reach exact solutions is not an easy way.
In past few decades, The Klein-Gordon and sine-Gordon
equations are a type of hyperbolic partial differential equation
which are often used to describe and simulate the physical
phenomena in a variety of fields of engineering and science,

i.e., physics, fluid dynamics, mathematical biology and quan-
tum mechanics. Let us consider the Klein-Gordon and sine-
Gordon [17],

Iηη ξ, ηð Þ −Iξξ ξ, ηð Þ + c1I ξ, ηð Þ + c2G I ξ, ηð Þð Þ = f1 ξ, ηð Þ,
ð1Þ

Iηη ξ, ηð Þ −Iξξ ξ, ηð Þ + c3 sin I ξ, ηð Þð Þ = f2 ξ, ηð Þ, ð2Þ
where I is a function of ξ and η; G is a nonlinear function, f1
and f2 are known analytic functions whereas c1, c2 and c3 are
constants.

In recent years, The Klein-Gordon and sine-Gordon equa-
tions have attracted more attention from the scientists due to
its applications in plasma, nonlinear wave equations, studying
the solutions and condensed matter physics and relativistic
physics as a model of dispersive phenomena. Yousif and Mah-
mood [18] used variational iteration method coupled with
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homotopy perturbation method to investigate the approximate
solution of Klein-Gordon an sine-Gordon equations. Nadeem
and Li [17] applied the He-Laplace method to obtain the ana-
lytical solution of Klein-Gordon an sine-Gordon equations.
Liu.et al. [19] employed Yang transformation for the approxi-
mate solution of Klein-Gordon an sine-Gordon equations.
Agom and Ogunfiditimi [20] utilized modified Adomian
decomposition method for nonlinear Klein-Gordon equations
with quadratic nonlinearity. Ikram et. al [21] obtained the
approximate solution of linear Klein-Gordon equations using
Haar wavelet approach. Lotfi and Alipanah [22] used Legendre
spectral element method for solving sine-Gordon equation. Lu
[23] applied modified homotopy perturbation method for the
solution of sine-Gordon equation. Many authors applied vari-
ous approaches to investigate the approximate solution of the
Klein-Gordon and sine-Gordon equations [24–26].

The homotopy perturbation method (HPM) was first
developed by a Chinese mathematician He [27, 28] to pres-
ent the analytical solution of linear and nonlinear partial dif-
ferential equation. Later, Nadeem and Li [29] combined
HPM with Laplace transform for solving nonlinear vibration
systems and nonlinear wave equations to show the accuracy
and validity of HPM. Khan and Qingbiao [30] used HPM
using He’s polynomials for the solution of nonlinear equa-
tions. Many authors have performed the accuracy of HPM
for different system of PDEs. [31–34].

The main purpose of this paper is to develop a new iter-
ative method (NIM) where Mohand transform is combined
with homotopy perturbation method for obtaining the
approximate solution of Klein-Gordon and sine-Gordon
equations. This scheme derive the results in aspect of series
without any linearization, variation and limiting expecta-
tions. In addition, this study is organized as follow: In Sec-
tion 2, we present some basic definitions of Mohand
transform. In Section 3, we formulate the idea of new itera-
tive method (NIM) for obtaining the solution of illustrated
problems. In Section 4, we executed NIM for finding the
approximate solution of the problems to show the accuracy
and validity of this approach. Finally, we present some
results and discussion in Section 5 and conclusion in Section
6.

2. Fundamentals Concepts of
Mohand Transform

In this section, we introduce some basic definitions and pre-
liminaries concepts of Mohand transform which reveals the
idea of its implementations to functions.

Definition 1. Let IðηÞ be a function precise for η ≥ 0 [17],
then

L I ηð Þ½ � = V θð Þ =
ð∞
0
I ηð Þe−θηdη, ð3Þ

is said to be Laplace transform, where η is function (i.e. a
function of time domain), defined on ½0,∞Þ to a function
of θ (i.e. of frequency domain).

Definition 2. If VðθÞ symbolizes the Laplace transform of
IðηÞ, then

I ηð Þ =L−1V θð Þ, ð4Þ

is termed as inverse Laplace transform of VðθÞ.

Definition 3. Mohand and Mahgoub [35] presented a new
scheme Mohand transform Mð:Þ in order to gain the results
of ordinary differential equations and is defined as

M I ηð Þf g = R θð Þ = θ2
ð∞
0
I ηð Þe−θηdt, k1 ≤ θ ≤ k2: ð5Þ

On the other hand, if RðθÞ is the Mohand transform of a
function IðηÞ, then IðηÞ is the inverse of RðθÞ such as

M−1 R θð Þf g =I ηð Þ,M−1 is inverseMohand operator: ð6Þ

Definition 4. If IðηÞ = ηm,

R θð Þ = m!

θm−1 : ð7Þ

Definition 5. If MfIðηÞg = RðθÞ ,then it has the following
differential properties [36]

(i) MfI′ðηÞg = θRðθÞ − θ2Ið0Þ
(ii) MfI′′ðηÞg = θ2RðθÞ − θ3Fð0Þ − θ2I′ð0Þ
(iii) MfImðηÞg = θmRðθÞ − θm+1Ið0Þ − θmI′ð0Þ −⋯−

θmIm−1ð0Þ

3. Formulation of New Iterative Method (NIM)

This segment presents the construction of new iterative
method (NIM) for obtaining the approximate solution of
Klein-Gordon and sine-Gordon equations. Let us consider
a nonlinear second order differential equation of the form,

Iηη ξ, ηð Þ +Iη ξ, ηð Þ +I ξ, ηð Þ + g Ið Þ = g ξ, ηð Þ, ð8Þ

with the following conditions

I ξ, 0ð Þ = a1,Iη ξ, 0ð Þ = a2, ð9Þ

where I is a function in time domain η, gðIÞ represents
nonlinear term, gðηÞ is a source term whereas a1 and a2
are constants. Rewrite Eq. (8) again

Iηη ξ, ηð Þ +Iη ξ, ηð Þ = −I ξ, ηð Þ − g Ið Þ + g ξ, ηð Þ: ð10Þ

Now, taking MT on both sides of Eq. (10), we obtain

M Iηη ξ, ηð Þ +Iη ξ, ηð Þ� �
=M −I ηð Þ − g Ið Þ + g ηð Þ½ �: ð11Þ
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Figure 1: Surfaces plots for the linear Klein-Gordon equation.

Table 2: The absolute error of Iðξ, ηÞ for different values of ξ at
η = 0:01.

ξ Exact solution Approximate solution Absolute error

0.5 1.47929 1.47951 0.00022

1 1.84126 1.8416 0.00034

1.5 1.99725 1.99764 0.00039

2 1.90907 1.90943 0.00036

2.5 1.59831 1.59857 0.00026

3 1.14105 1.14118 0.00013

3.5 0.649213 0.649255 0.000042

4 0.243232 0.243238 6 × 10−6

4.5 0.0225187 0.0225188 1 × 10−7

5 0.0411236 0.0411238 2 × 10−7
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Figure 2: Surfaces plots for the nonlinear Klein-Gordon equation.

Table 1: The absolute error of Iðξ, ηÞ for different values of ξ at
η = 0:01.

ξ Exact solution Approximate solution Absolute error

0.5 1.47948 1.47948 0.0000

1 1.84152 1.84152 0.0000

1.5 1.99754 1.99754 0.0000

2 1.90935 1.90935 0.0000

2.5 1.59852 1.59852 0.0000

3 1.14117 1.14117 0.0000

3.5 0.649267 0.649267 0.0000

4 0.243248 0.243248 0.0000

4.5 0.0225199 0.0225199 0.0000

5 0.0411257 0.0411257 0.0000
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Applying the differential properties of MT, we get

θ2R θ½ � − θ3I ξ, 0ð Þ − θ2Iη ξ, 0ð Þ + θR θ½ � − θ2I ξ, 0ð Þ =M −I ξ, ηð Þ − g Ið Þ + g ξ, ηð Þ½ �:

ð12Þ

Thus RðθÞ can be obtained from Eq. (12) such as

R θ½ � = θ2a1 + θ2a2 + θ3a1
θ + θ2
� � −

M I ξ, ηð Þ + g Ið Þ − g ξ, ηð Þ½ �
θ + θ2
� � :

ð13Þ

Operating inverse Mohand transform, on Eq. (13), we
get

I ξ, ηð Þ =G ξ, ηð Þ −M−1 M I½ �
θ + θ2
� � + M g Ið Þ½

θ + θ2
� �

" #
, ð14Þ

where

G ξ, ηð Þ =M−1 θ2a1 + θ2a2 + θ3a1
θ + θ2
� � +M

g ξ, ηð Þ
θ + θ2
� �
" #" #

: ð15Þ

Now, we apply HPM on Eq. (14). Let

I ξ, ηð Þ = 〠
∞

i=0
piIi mð Þ =I0 + p1I1 + p2I2+⋯, ð16Þ

and nonlinear terms gðIÞ can be calculated by using formula,

g Ið Þ = 〠
∞

i=0
piHi Ið Þ =H0 + p1H1 + p2H2+⋯, ð17Þ

where Hm′s is the He’s polynomial, which may be computed
using the following procedure.

Hm I0 +I1+⋯+Imð Þ = 1
m!

∂m

∂pm
g 〠

∞

i=0
piIi

 ! !
p=0

,m = 0, 1, 2,⋯

ð18Þ

Put Eqs. (16), (17) and (18) in Eq. (14) and comparing the
similar factors of p, we get the following consecutive elements

p0 : I0 ξ, ηð Þ = G ξ, ηð Þ,

p1 : I1 ξ, ηð Þ = −M−1 1
θ + θ2
� �M I +H0 Ið Þf g
" #

,

p2 : I1 ξ, ηð Þ = −M−1 1
θ + θ2
� �M I +H1 Ið Þf g
" #

,

p3 : I1 ξ, ηð Þ = −M−1 1
θ + θ2
� �M I +H2 Ið Þf g
" #

,

⋮
ð19Þ

on continuing the similar process, we can summarize this
series to get the approximate solution such as

I ξ, ηð Þ =I0 ξ, ηð Þ + p1I1 ξ, ηð Þ + p2I2 ξ, ηð Þ++p3I3 ξ, ηð Þ+⋯:

ð20Þ

Let p = 1 in above equation, thus the analytical solution of
Eq. (8) is as follows

I ξ, ηð Þ =I0 +I1 +I2+⋯ = 〠
∞

i=0
Ii: ð21Þ

Thus, Eq. (21) is considered as an approximate solution of
nonlinear differential equation (8).

4. Numerical Examples

In this part, we test two examples for the authenticity and
validity of MHPTM. We also demonstrate 2D plots for a
better understanding of this strategy where we see that the
solution graphs of the approximate solution and the exact
solution coincide with each other only after a few iterations.

Exact
Approximate

1 2 3 4 5 6
𝜉

0.5

1.0

1.5

2.0

𝜂

(𝜉, 𝜂)

Figure 3: 2D Plot for IðηÞ with various parameter of η:

Table 3: The absolute error of Iðξ, ηÞ for different values of η.
η Exact solution Approximate solution Absolute error

0.1 1.57580 1.57582 0.00022

0.2 1.5908 1.59088 0.00034

0.3 1.61579 1.61595 0.00039

0.4 1.65078 1.65094 0.00036

0.5 1.69573 1.69569 0.00026

0.6 1.7506 1.74993 0.00067

0.7 1.81531 1.81327 0.00204

0.8 1.88971 1.88515 0.00456

0.9 1.9736 1.96485 0.00875

1.0 2.06668 2.05142 0.00875
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4.1. Example 1. Consider a linear Klein-Gordon equation

∂2I
∂η2

−
∂2I
∂ξ2

=I, ð22Þ

with the initial condition

I ξ, 0ð Þ = 1 + sin ξð Þ,Iη ξ, 0ð Þ = 0, ð23Þ

Applying MT on Eq. (22) together with the differential
property as defined in Eq. (7), we get

θ2R θð Þ − θ3I 0ð Þ − θ2I′ 0ð Þ =M I + ∂2I
∂η2

" #
: ð24Þ

Using Eq. (23) into Eq. (24) for solving RðθÞ, it yields

R θð Þ = θ 1 + sin ξð Þð Þ +M I + ∂2I
∂η2

" #
: ð25Þ

Using inverse Mohand transform on Eq. (25), we get

I ξ, ηð Þ = 1 + sin ξð Þ +M−1 1
θ2

M I + ∂2I
∂η2

( )" #
ð26Þ

Applying MHPTM to get the He’s polynomials

〠
∞

i=0
piIi mð Þ = 1 + sin ξð Þ +M−1 1

θ2
M 〠

∞

i=0
piIi + 〠

∞

i=0
pi
∂2I
∂η2

!( )" #
:

ð27Þ

Observing the similar powers of p, we get

p0 : I0 ξ, ηð Þ = 1 + sin ξð Þ,

p1 : I1 ηð Þ =M−1 1
θ2

M I0 +
∂2I0
∂η2

( )" #
= η2

2 ,

p2 : I2 ξ, ηð Þ =M−1 1
θ2

M I0 +
∂2I0
∂η2

( )" #
= 2 η

4

4! ,

p3 : I3 ξ, ηð Þ =M−1 1
θ2

M I0 +
∂2I0
∂η2

( )" #
= 2 η

6

6! ,

p4 : I4 ξ, ηð Þ =M−1 1
θ2

M I0 +
∂2I0
∂η2

( )" #
= 2 η

8

8! ,

⋮:

ð28Þ

On continuing this process, the results of obtained series
cab be summarized as,

I ξ, ηð Þ =I0 ξ, ηð Þ +I1 ξ, ηð Þ +I2 ξ, ηð Þ +I3 ξ, ηð Þ +I4 ξ, ηð Þ+⋯,

= 1 + sin ξð Þ + η2

2 + 2 η
4

4! + 2 η
6

6! + 2 η
8

8! +⋯:

ð29Þ

This series converges to the exact solution

I ξ, ηð Þ = sin ξð Þ + cosh ηð Þ: ð30Þ

4.2. Example 2. Consider a nonlinear Klein-Gordon equation

∂2I
∂η2

−
∂2I
∂ξ2

=I2, ð31Þ

with the initial condition

I ξ, 0ð Þ = 1 + sin ξð Þ,Iη ξ, 0ð Þ = 0: ð32Þ

Applying MT on Eq. (18) together with the differential

Exact
Approximate

5 10 15 20
𝜉

0.5

1.0

1.5

2.0

𝜂

(𝜉, 𝜂)

Figure 4: 2D Plot for IðηÞ with various parameter of η.
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1.8
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𝜂
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Figure 5: 2D Plot for IðηÞ with various parameter of η.
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property as defined in Eq. (2), we get

θ2R θð Þ − θ3I 0ð Þ − θ2I′ 0ð Þ =M I2 + ∂2I
∂η2

" #
: ð33Þ

Using Eq. (21) into Eq. (22) for solving RðθÞ, it yields

R θð Þ = θ 1 + sin ξð Þð Þ +M I2 + ∂2I
∂η2

" #
: ð34Þ

Using inverse Mohand transform on Eq. (18), we get

I ξ, ηð Þ = 1 + sin ξð Þ +M−1 1
θ2

M I2 + ∂2I
∂η2

( )" #
: ð35Þ

Applying MHPTM to get the He’s polynomials

〠
∞

i=0
piIi mð Þ = 1 + sin ξð Þ +M−1 1

θ2
M 〠

∞

i=0
piI2

i + 〠
∞

i=0
pi
∂2I
∂η2

!( )" #
:

ð36Þ

Observing the similar powers of p, we get

On continuing this process, the approximate solution
cab be summarized as,

I ξ, ηð Þ =I0 ξ, ηð Þ +I1 ξ, ηð Þ +I2 ξ, ηð Þ +I3 ξ, ηð Þ +I4 ξ, ηð Þ+⋯,
ð38Þ

which is in full agreement with [17, 18].

4.3. Example 3. Consider a nonlinear sine-Gordon equation

∂2I
∂η2

−
∂2I
∂ξ2

= sin Ið Þ, ð39Þ

with the initial condition

I ξ, 0ð Þ = π

2 ,Iη ξ, 0ð Þ = 0: ð40Þ

Let sin ðIÞ =I − ðI3/6Þ + ðI5/120Þ, Thus above equa-
tion becomes as

∂2I
∂η2

−
∂2I
∂ξ2

=I −
I3

6 + I5

120 : ð41Þ

Applying MT on Eq. (41) together with the differential

p0 : I0 ξ, ηð Þ = 1 + sin ξð Þ,

p1 : I1 ηð Þ =M−1 1
θ2

M I2
0 +

∂2I0
∂η2

( )" #
= η2

2 ,

p2 : I2 ξ, ηð Þ =M−1 1
θ2

M 2I0I1 +
∂2I1
∂η2

( )" #
= 2 η

4

4! ,

p3 : I3 ξ, ηð Þ =M−1 1
θ2

M I2
1 + 2I0I2 +

∂2I2
∂η2

( )" #
= 2 η

6

6! ,

p4 : I4 ξ, ηð Þ =M−1 1
θ2

M 2I1I2 + 2I0I3 +
∂2I3
∂η2

( )" #
= 2 η

8

8! ,

⋮:

I0 ξ, ηð Þ = 1 + sin ξð Þ,

I1 ξ, ηð Þ = 1 + sin ξð Þ + sin2 ξð Þ� � η2
2 ,

I2 ξ, ηð Þ = − −8 − 9 sin ξð Þ + sin 3ξð Þð Þ η
4

48 ,

I3 ξ, ηð Þ = 119 − 68 cos 2ξð Þ + 5 cos 4ξð Þ + 134 sin ξð Þ + 2 sin 3ξð Þð Þ η6

2880 ,

I4 ξ, ηð Þ = 681 − 67 cos ξð Þ − 404 cos 2ξð Þ − 27 cos 3ξð Þ + 19 cos 4ξð Þ + 1007 sin ξð Þ − 272 sin 2ξð Þ − 147 sin 3ξð Þ + 160 sin 4ξð Þ + 10 sin 5ξð Þð Þ η8

80640 ,

⋮:

ð37Þ
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property as defined in Eq. (7), we get

θ2R θð Þ − θ3I 0ð Þ − θ2I′ 0ð Þ =M
∂2I
∂ξ2

+I −
I3

6 + I5

120

" #
:

ð42Þ

Using Eq. (40) into Eq. (42) for solving RðθÞ, it yields

R θð Þ = θ
π

2
� �

+M
∂2I
∂ξ2

+I −
I3

6 + I5

120

" #
: ð43Þ

Using inverse Mohand transform on Eq. (43), we get

I ξ, ηð Þ = π

2 +M−1 1
θ2

M
∂2I
∂ξ2

+I −
I3

6 + I5

120

( )" #
: ð44Þ

Applying MHPTM to get the He’s polynomials

〠
∞

i=0
piIi mð Þ = π

2 +M−1 1
θ2

M 〠
∞

i=0
pi
∂2Ii

∂ξ2
+ 〠

∞

i=0
piIi − 〠

∞

i=0
pi
I3

i

6 + 〠
∞

i=0
pi

I5
i

120

�( )" #
:

ð45Þ

Observing the similar powers of p, we get

On continuing this process, the approximate solution
cab be summarized as,

I ξ, ηð Þ =I0 ξ, ηð Þ +I1 ξ, ηð Þ +I2 ξ, ηð Þ +I3 ξ, ηð Þ +I4 ξ, ηð Þ+⋯,
ð48Þ

which is in full agreement with [17, 18].

5. Results and Discussion

In this segment, we demonstrate the validity and the accu-
racy of NIM though the graphical representations. Figure 1
shows the surface solution of linear Klein-Gordon equation
for −5 ≤ ξ ≤ 5 at η = 1 and Figure 2 shows the surface solu-
tion of nonlinear Klein-Gordon equation for −10 ≤ ξ ≤ 10
at η = 0:01. The absolute errors in Tables 1–3 show the com-
parison between other approaches and the approximate
solution obtained by NIM. We also compare the NIM results
in Figures 3, 4 and 5 to show the accuracy of the present
approach at ξ = π and ξ = 20 with different values of η. These
results show the high accuracy and validity of this approach.

All the computations and graphical representations are
made with wolfram Mathematica software. These plot distri-
bution and absolute error show that NIM is powerful,
straight forward and easy to implement for such kind of lin-
ear and nonlinear partial differential equations. We observe
that the approximate of sine-Gordon Eq. (39) is independent
of ξ variable due to its independent of initial condition in Eq.
(40). Thus, it appropriate solution obtained by NIM is also
independent of ξ variable.

6. Conclusion

In this study, we have successfully employed the new itera-
tive method (NIM) to obtain the approximate solution of
Klein-Gordon and sine-Gordon equations. The obtained
results are derived in the form of series and all are in full
agreement which shows that NIM is a very simple and
straightforward approach for linear and nonlinear problems.
The Mohand transform has been used directly without any
perturbation theory and recurrence relation which ruins
the physical nature of the problem. We also demonstrate
the absolute error and 2D plot distribution with various time

p0 : I0 ξ, ηð Þ = π

2 ,

p1 : I1 ηð Þ =M−1 1
θ2

M
∂2I0
∂η2

+I0 −
I3

0
6 + I5

0
120

( )" #
,

p2 : I2 ξ, ηð Þ =M−1 1
θ2

M
∂2I1
∂η2

+I1 −
1
2I

2
0I1 +

1
24I

4
0I1

( )" #
,

p3 : I3 ξ, ηð Þ =M−1 1
θ2

M
∂2I2
∂η2

+ 1
2I0I

2
1 +

1
12I

3
0I

2
1 +I2 −

1
2I

2
0I2 +

1
24I

4
0I2

( )" #
,

⋮:

ð46Þ

I0 ξ, ηð Þ = π

2 ,

I1 ξ, ηð Þ = π

2 −
π3

48 + π5

3840

	 �
η2

2 ,

I2 ξ, ηð Þ = π

2 −
π3

12 + π5

240 −
π7

11520 + π9

1474560

	 �
η5

5! ,

I3 ξ, ηð Þ = −
3π3

8 −
3π5

64 + 3π7

1280 −
11π9

184320 + 23π11

707788800 −
π13

235929600

	 �
η5

5! +
π

2 −
7π3

48 + 61π5

3840 −
19π7

23040 + 6451π9

2264833200 −
23347π11

21742387200 + π13

56620800

	 �
η6

6! ,

⋮:

ð47Þ
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parameters. The solution graphs and absolute errors have
confirmed the validity and reliability of NIM toward the
solutions of other nonlinear partial differential equations in
science and engineering.
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In this paper, the (2 + 1)-dimensional nonlinear conformable fractional stochastic Schrödinger system (NCFSSS) generated by the
multiplicative Brownian motion is treated. To get new rational, trigonometric, hyperbolic, and elliptic stochastic solutions, we use
two different methods: the sine-cosine and the Jacobi elliptic function methods. Moreover, we use the MATLAB tools to plot our
figures to introduce a variety of 2D and 3D graphs to highlight the effect of the multiplicative noise on the exact solutions of the
NCFSSS. Finally, we illustrate that the multiplicative Brownian motion stabilizes the solutions of NCFSSS a round zero.

1. Introduction

Stochastic partial differential equations (SPDEs) can be used
to represent a wide range of complicated nonlinear physical
processes. These kinds of equations appear in a variety of
areas including physics, finance, climate dynamics, chemis-
try, biology, geophysical, engineering, and other fields [1–3].

On the other side, fractional partial differential equations
(FPDEs) have gotten a lot of interest because they may illus-
trate the fundamental components underlying real-world
issues. They have been seen in a number of physical phe-
nomena, such as viscoelastic materials with relaxation and
creeping functions, the motion of a heavy meager surface
in a Newtonian fluid, and relapse subordinate dissipative
occupancy of components. As a result, FPDEs are employed
in a range of fields, including predicting, describing, and

modeling the mechanisms engaged in finance, polymeric
materials, a kinematic model of neutron points, engineering,
electrical circuits, solid-state physics, optical fibers, chemical
kinematics, biogenetics, plasma physics, physics of con-
densed matter, meteorology, electromagnetic, elasticity, and
oceanic spectacles [4–9].

The exact solutions of PDEs are important in nonlinear
science. As a result, various analytical techniques, such as
tanh-sech [10, 11], Darboux transformation [12], sine-cosine
[13, 14], extended simple equation [15], extended sinh-
Gordon equation expansion [16], F-expansion [17], Kudrya-
shov technique [18], generalized Kudryashov [19–21], exp ð
−ϕðςÞÞ-expansion [22], ðG′/GÞ-expansion [23–25], Hirota’s
function [26], perturbation [5, 27], the Jacobi elliptic function
[28, 29], and Riccati-Bernoulli sub-ODE [30], have been cre-
ated to deal with these types of equations.
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To reach a better level of qualitative agreement, the follow-
ing (2 + 1)-dimensional nonlinear conformable fractional sto-
chastic Schrödinger system (NCFSSS) is addressed:

idu + γ1D
α
xyu + γ2uv

h i
dt + iσudB = 0, ð1Þ

γ3D
α
xv + γ4D

α
y uj j2� �

= 0, ð2Þ

where v ∈ℝ while u ∈ℂ. Dα is the conformable derivative
(CD) [31], and γi are arbitrary constants for i = 1, ::, 4. BðtÞ
is a Brownian motion (BM), and udB is multiplicative noise
in the Itô sense.

The NCFSSS ((1) and (2)) is crucial in atomic physics,
and the functions v and u have diverse physical meanings
in various disciplines of physics such as plasma physics
[32] and fluid dynamics [33]. In the hydrodynamic con-
text, v is the induced mean flow, and u is the envelope
of the wave packet [33], while, in the context of water
waves, v is the velocity potential of the mean flow interact-
ing with the surface waves and u is the amplitude of a sur-
face wave packet [34]. The multiplicative noise iσudB
plays an important role in the theory of measurements
continuous in time in open quantum systems. For more
physical interpretations, we refer to [35, 36] and the refer-
ences therein.

Recently, many authors have established exact solutions
of NCFSSS ((1) and (2)) with σ = 0 and α = 1 by employing
various techniques, such as applied Kudryashov approach
[37], direct approach [38], and the extended modified auxil-
iary equation [39]. Moreover, Bilal and Ahmad [40] applied
three methods such as generalized Kudryashov, modified
direct algebraic, and ðG′/G2Þ-expansion function to attain
diverse forms of optical solutions of the NCFSSS ((1) and
(2)) with σ = 0, while the exact solutions of the NCFSSS
((1) and (2)) has not yet been studied.

The motivations of this work are to obtain the exact
fractional stochastic solutions of NCFSSS ((1) and (2)).
This is the first investigation to acquire the exact solutions
of NCFSSS ((1) and (2)) in the presence of stochastic term
and fractional-space derivatives. To accomplish a wide
variety of solutions, such as trigonometric, hyperbolic,
elliptic, and rational functions, we apply two different
methods such as the Jacobi elliptic function and the
sine-cosine methods. Also, we study the effect of BM on
the obtained solutions of NCFSSS ((1) and (2)) by using
MATLAB to create 3D and 2D diagrams for some of the
obtained solutions here.

The document is laid out as follows: we define and state
some features of the CD and BM in Section 2. We employ an
appropriate wave transformation in Section 3 to derive the
wave equation of NCFSSS ((1) and (2)). While in Section
4, we utilize two methods to create the analytic solutions of
the NCFSSS ((1) and (2)). In Section 5, the influence of the
BM on the obtained solutions is investigated. The conclusion
of the document is displayed last.

2. Preliminaries

Here, we define and state some features of the CD and BM.

Definition 1 (see [31]). Let ϕ : ð0,∞Þ⟶ℝ, then the CD of
ϕ of order α ∈ ð0, 1� is defined as

Dα
xϕ xð Þ = lim

κ⟶0

ϕ x + κx1−α
� �

− ϕ xð Þ
κ

: ð3Þ

Theorem 2. Let ϕ,H : ð0,∞Þ⟶ℝ be differentiable and
also α be differentiable functions, then

Dα
x ϕ ∘Hð Þ xð Þ = x1−αH ′ xð Þϕ′ H xð Þð Þ: ð4Þ

Let us state some properties of the CD. If a and b are con-
stant, then

(1) Dα
x ½aϕðxÞ + bHðxÞ� = aDα

xϕðxÞ + bDα
xHðxÞ

(2) Dα
x ½a� = 0

(3) Dα
x ½xb� = bxb−α

(4) Dα
xHðxÞ = x1−αðdH/dxÞ

In next definition, we define Brownian motion BðtÞ.

Definition 3. Stochastic process fBðtÞgt≥0 is said a Brownian
motion if it satisfies:

(1) Bð0Þ = 0
(2) BðtÞ is continuous function of t ≥ 0
(3) Bðt2Þ − Bðt1Þ is independent for t1 < t2

(4) Bðt2Þ − Bðt1Þ has a normal distribution ℵð0, t2 − t1Þ

3. Wave Equation for NCFSSS

The next wave transformation is used to get the wave equa-
tion of the NCFSSS ((1) and (2)):

u x, y, tð Þ = φ ζð Þe iℏ−σB tð Þ− 1/2ð Þσ2tð Þ,
v x, y, tð Þ = ψ ζð Þe −σB tð Þ− 1/2ð Þσ2tð Þ,

ð5Þ

with

ζ = ζ1
α
xα + ζ2

α
yα − ζ3t,

h = h1
α
xα + h2

α
yα − h3t,

ð6Þ

where φ and ψ are deterministic functions and ζk and ℏk for
k = 1, 2, 3, are nonzero constants. Plugging Equation (5) into
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Equations (1) and (2) and using

du = −ζ3φ′ + iℏ3φ
� �

dt − σφdB
h i

e iℏ−σB tð Þ− 1/2ð Þσ2tð Þ,

Dα
xyu = ζ1ζ2φ′′ + i ℏ2ζ1 + ℏ1ζ2ð Þφ′ − ℏ1ℏ2φ

h i
e iℏ−σB tð Þ− 1/2ð Þσ2tð Þ,

Dα
y uj j2� �

= 2ζ2φφ′e −σB tð Þ− 1/2ð Þσ2tð Þ,Dα
xv = ζ1ψ′e −σB tð Þ− 1/2ð Þσ2tð Þ,

ð7Þ

we get for imaginary part

ζ3 = ℏ2ζ1 + ℏ1ζ2, ð8Þ

and for real part

ζ1ζ2φ′′ − ℏ3 + γ1ℏ1ℏ2ð Þφ + γ2φψe
−σB tð Þ− 1/2ð Þσ2tð Þ = 0, ð9Þ

γ3ζ1ψ′ + 2γ4ζ2φφ′e
−σB tð Þ− 1/2ð Þσ2tð Þ = 0: ð10Þ

Taking expectation Eð·Þ on both sides for Equations (9)
and (10), we have

ζ1ζ2φ′′ − ℏ3 + γ1ℏ1ℏ2ð Þφ + γ2φψe
− 1/2ð Þσ2tE e−σB tð Þ

� �
= 0,

ð11Þ

γ3ζ1ψ′ + 2γ4ζ2φφ′e− 1/2ð Þσ2tE e−σB tð Þ
� �

= 0: ð12Þ

Since BðtÞ is standard Gaussian process, hence Eð
e−σBðtÞÞ = eðσ

2/2Þt . Now Equations (11) and (12) have the
form

ζ1ζ2φ′′ − ℏ3 + γ1ℏ1ℏ2ð Þφ + γ2φψ = 0, ð13Þ

γ3ζ1ψ′ + 2γ4ζ2φφ′ = 0: ð14Þ

Integrating Equation (14) once and setting the integral
constant equal zero yields

ψ = −
γ4ζ2
γ3ζ1

φ2: ð15Þ

Plugging Equation (15) into Equation (13), we get the
following wave equation

φ′′ −Λ1φ
3 −Λ2φ = 0, ð16Þ

where

Λ1 =
γ2γ4
γ3ζ

2
1
,

Λ2 =
ℏ3 + γ1ℏ1ℏ2ð Þ

ζ1ζ2
:

ð17Þ

4. The Exact Solutions of the NCFSSS

To find the exact solutions of Equation (16), we use two dif-
ferent methods such as sine-cosine [13, 14] and the Jacobi
elliptic function [29] methods. As a result, we are able to
obtain the exact solutions of the NCFSSS ((1) and (2)).

4.1. Sine-Cosine Method. Assume the solution φ of Equation
(16) has the form

φ ζð Þ = AY n, ð18Þ

where

Y = cos Bζð Þ orY = sin Bζð Þ: ð19Þ

Setting Equation (18) into Equation (16) we get

−AB2 −n2Y n + n n − 1ð ÞY n−2� �
−Λ1A

3Y 3n −Λ2AY
n = 0,

ð20Þ

rewriting the above equation

Λ2A − AB2n2
� �

Y n + n n − 1ð ÞAB2Y n−2 +Λ1A
3Y 3n = 0: ð21Þ

Equalizing the term of Y in Equation (21), we attain

n − 2 = 3n⇒ n = −1: ð22Þ

Substituting Equation (22) into Equation (21)

Λ2A − AB2� �
Y −1 + Λ1A

3 + 2AB2� �
Y −3 = 0: ð23Þ

Equating each coefficient of Y −3 and Y −1 to zero, we have

Λ2A − AB2 = 0,
Λ1A

3 + 2AB2 = 0:
ð24Þ

By solving these equations, we get

B =
ffiffiffiffiffiffi
Λ2

p
,

A =
ffiffiffiffiffiffiffiffiffiffiffi
−2Λ2
Λ1

s
:

ð25Þ

Hence, the solution of Equation (16) is

φ ζð Þ = A sec Bζð Þ orφ ζð Þ = A csc Bζð Þ: ð26Þ

There are many cases depending on the sign ofΛ1 andΛ2:
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Case 1. If Λ2 > 0 and Λ1 < 0, then the exact solutions of the
NCFSSS ((1) and (2)) are

u x, y, tð Þ =
ffiffiffiffiffiffiffiffiffiffiffi
−2Λ2
Λ1

s
sec

ffiffiffiffiffiffi
Λ2

p
ζ

h i
e iℏ−σB tð Þ− 1/2ð Þσ2tð Þ,

v x, y, tð Þ = 2Λ2γ4ζ2
Λ1γ3ζ1

sec2
ffiffiffiffiffiffi
Λ2

p
ζ

h i
e −σB tð Þ− 1/2ð Þσ2tð Þ,

ð27Þ

or

u x, y, tð Þ =
ffiffiffiffiffiffiffiffiffiffiffi
−2Λ2
Λ1

s
csc

ffiffiffiffiffiffi
Λ2

p
ζ

h i
e iℏ−σB tð Þ− 1/2ð Þσ2tð Þ,

v x, y, tð Þ = 2Λ2γ4ζ2
Λ1γ3ζ1

csc2
ffiffiffiffiffiffi
Λ2

p
ζ

h i
e −σB tð Þ− 1/2ð Þσ2tð Þ:

ð28Þ

Case 2. If Λ2 < 0 and Λ1 < 0, then the exact solutions of the
NCFSSS ((1) and (2)) are

u x, y, tð Þ = i

ffiffiffiffiffiffiffiffi
2Λ2
Λ1

s
sech

ffiffiffiffiffiffiffiffiffi
−Λ2

p
ζ

h i
e iℏ−σB tð Þ− 1/2ð Þσ2tð Þ,

v x, y, tð Þ = 2Λ2γ4ζ2
Λ1γ3ζ1

sec h2
ffiffiffiffiffiffiffiffiffi
−Λ2

p
ζ

h i
e −σB tð Þ− 1/2ð Þσ2tð Þ,

ð29Þ

or

u x, y, tð Þ =
ffiffiffiffiffiffiffiffi
2Λ2
Λ1

s
csch

ffiffiffiffiffiffiffiffiffi
−Λ2

p
ζ

h i
e iℏ−σB tð Þ− 1/2ð Þσ2tð Þ,

v x, y, tð Þ = −2Λ2γ4ζ2
Λ1γ3ζ1

csc h2
ffiffiffiffiffiffiffiffiffi
−Λ2

p
ζ

h i
e −σB tð Þ− 1/2ð Þσ2tð Þ:

ð30Þ

Case 3. If Λ2 < 0 and Λ1 > 0, then the exact solutions of the
NCFSSS ((1) and (2)) are

u x, y, tð Þ =
ffiffiffiffiffiffiffiffiffiffiffi
−2Λ2
Λ1

s
sech

ffiffiffiffiffiffiffiffiffi
−Λ2

p
ζ

h i
e iℏ−σB tð Þ− 1/2ð Þσ2tð Þ,

v x, y, tð Þ = 2Λ2γ4ζ2
Λ1γ3ζ1

sec h2
ffiffiffiffiffiffiffiffiffi
−Λ2

p
ζ

h i
e −σB tð Þ− 1/2ð Þσ2tð Þ,

ð31Þ

or

u x, y, tð Þ = −i

ffiffiffiffiffiffiffiffiffiffiffi
−2Λ2
Λ1

s
csch

ffiffiffiffiffiffiffiffiffi
−Λ2

p
ζ

h i
e iℏ−σB tð Þ− 1/2ð Þσ2tð Þ,

v x, y, tð Þ = −2Λ2γ4ζ2
Λ1γ3ζ1

csc h2
ffiffiffiffiffiffiffiffiffi
−Λ2

p
ζ

h i
e −σB tð Þ− 1/2ð Þσ2tð Þ:

ð32Þ

Case 4. If Λ2 > 0 and Λ1 > 0, then the exact solution of the
NCFSSS ((1) and (2)) are

u x, y, tð Þ = i

ffiffiffiffiffiffiffiffi
2Λ2
Λ1

s
sec

ffiffiffiffiffiffi
Λ2

p
ζ

h i
e iℏ−σB tð Þ− 1/2ð Þσ2tð Þ,

v x, y, tð Þ = 2Λ2γ4ζ2
Λ1γ3ζ1

sec2
ffiffiffiffiffiffi
Λ2

p
ζ

h i
e −σB tð Þ− 1/2ð Þσ2tð Þ,

ð33Þ

or

u x, y, tð Þ = i

ffiffiffiffiffiffiffiffi
2Λ2
Λ1

s
csc

ffiffiffiffiffiffi
Λ2

p
ζ

h i
e iℏ−σB tð Þ− 1/2ð Þσ2tð Þ,

v x, y, tð Þ = 2Λ2γ4ζ2
Λ1γ3ζ1

csc2
ffiffiffiffiffiffi
Λ2

p
ζ

h i
e −σB tð Þ− 1/2ð Þσ2tð Þ,

ð34Þ

where Λ1 and Λ2 are defined in (17) and ζ = ðζ1/αÞxα + ðζ2
/αÞyα − ζ3t and h = ðh1/αÞxα + ðh2/αÞyα + h3t:

4.2. The Jacobi Elliptic Function Method. We suppose that
the solution to Equation (16) has the type

φ ζð Þ = a + bsn ρζð Þ, ð35Þ

where a, b, and ρ are undefined constants and snðρζÞ = snð
ρζ,mÞ is the Jacobi elliptic sine function (Latin: sinus ampli-
tudinis) for 0 <m < 1. Differentiate Equation (35) two times,
we have

φ′′ ζð Þ = − m2 + 1
� �

bρ2sn ρζð Þ + 2m2bρ2sn3 ρζð Þ: ð36Þ

Plugging Equations (35) and (36) into Equation (16), we
attain

2m2bρ2 −Λ1b
3� �
sn3 ρζð Þ − 3Λ1ab

2sn2 ρζð Þ
− m2 + 1
� �

bρ2 + 3Λ1a
2b +Λ2b

� �
sn ρζð Þ

− Λ1a
3 + aΛ2

� �
= 0:

ð37Þ

Putting each coefficient of ½snðρζÞ�n to be zero for n = 0
, 1, 2, 3, we have

Λ1a
3 + aΛ2 = 0,

m2 + 1
� �

bρ2 + 3Λ1a
2b +Λ2b = 0,

3Λ1ab
2sn2 = 0,

2m2bρ2 −Λ1b
3 = 0:

ð38Þ
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When we solve the previous equations, we get

a = 0,

b = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2Λ2
m2 + 1ð ÞΛ1

s
,

ρ2 = −Λ2
m2 + 1ð Þ :

ð39Þ

As a result, using (35), the solution of Equation (16) is

φ ζð Þ = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2Λ2
m2 + 1ð ÞΛ1

s
sn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Λ2
m2 + 1ð Þ

s
ζ

 !
: ð40Þ

Therefore, the exact solution of the NCFSSS ((1) and (2))
is

u x, y, tð Þ = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2Λ2
m2 + 1ð ÞΛ1

s
sn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Λ2
m2 + 1ð Þ

s
ζ

 !
e iℏ−σB tð Þ− 1/2ð Þσ2tð Þ,

ð41Þ

v x, y, tð Þ = γ4ζ2m
2Λ2

m2 + 1ð Þγ3ζ1Λ1
sn2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Λ2
m2 + 1ð Þ

s
ζ

 !
e −σB tð Þ− 1/2ð Þσ2tð Þ,

ð42Þ
for Λ2 < 0 and Λ1 > 0: If m⟶ 1, then the solutions (41)
and (42) turn to:

u x, y, tð Þ = ±
ffiffiffiffiffiffiffiffiffi
−Λ2
Λ1

s
tanh

ffiffiffiffiffiffiffiffiffi
−Λ2
2

r
ζ

 !
e iℏ−σB tð Þ− 1/2ð Þσ2tð Þ,

v x, y, tð Þ = γ4ζ2Λ2
2γ3ζ1Λ1

tanh2
ffiffiffiffiffiffiffiffiffi
−Λ2
2

r
ζ

 !
e −σB tð Þ− 1/2ð Þσ2tð Þ:

ð43Þ

In the same way, we can substitute sn in (35) with cnðξ
Þ = cnðξ,mÞ (wherecnis the elliptic cosine (Latin: cosinus
amplitudinis)) and dnðξ,mÞ = dnðξ,mÞ (where dn is the
delta amplitude (Latin: delta amplitudinis)) to derive the
solutions of Equation (16) as follows:

φ ζð Þ = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2Λ2
2m2 − 1ð ÞΛ1

s
cn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Λ2

2m2 − 1ð Þ

s
ζ

 !
,

φ ζð Þ = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2Λ2
2 −m2ð ÞΛ1

s
dn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Λ2
2 −m2ð Þ

s
ζ

 !
:

ð44Þ

Therefore, the solutions of the NCFSSS ((1) and (2)) are
as follows:

u x, y, tð Þ = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2Λ2
2m2 − 1ð ÞΛ1

s
cn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Λ2

2m2 − 1ð Þ

s
ζ

 !
e iℏ−σB tð Þ− 1/2ð Þσ2tð Þ,

ð45Þ

v x, y, tð Þ = 2γ4ζ2m2Λ2
γ3ζ1Λ1 2m2 − 1ð Þ cn

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Λ2

2m2 − 1ð Þ

s
ζ

 !
e −σB tð Þ− 1/2ð Þσ2tð Þ,

ð46Þ

for ðΛ2/ð2m2 − 1ÞÞ < 0, Λ1 > 0, and

u x, y, tð Þ = ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2m2Λ2
2m2 − 1ð ÞΛ1

s
dn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Λ2

2m2 − 1ð Þ

s
ζ

 !
e iℏ−σB tð Þ− 1/2ð Þσ2tð Þ,

ð47Þ

v x, y, tð Þ = 2γ4ζ2m2Λ2
γ3ζ1Λ1 2 −m2ð Þ dn

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Λ2
2 −m2ð Þ

s
ζ

 !
e −σB tð Þ− 1/2ð Þσ2tð Þ,

ð48Þ

for Λ2 < 0 and Λ1 > 0, respectively. If m⟶ 1, then the
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Figure 1: 3D diagrams of Equation (41).
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solutions (45) and (46) and (47) and (48) turn to:

u x, y, tð Þ = ±
ffiffiffiffiffiffiffiffiffiffiffi
−2Λ2
Λ1

s
sech

ffiffiffiffiffiffiffiffiffi
−Λ2

p
ζ

� �
e iℏ−σB tð Þ− 1/2ð Þσ2tð Þ,

v x, y, tð Þ = k2m2Λ2 sec h2
ffiffiffiffiffiffiffiffiffi
−Λ2

p
ζ

� �
e −σB tð Þ− 1/2ð Þσ2tð Þ,

ð49Þ

for Λ2 < 0 and Λ1 > 0:

5. The Effect of BM on NCFSSS Solutions

The effect of BM on the exact solutions of the NCFSSS ((1)
and (2)) is discussed here. Fix the parameters γ1 = γ2 = −1,
γ3 = 1, γ4 = −2,ℏ1 = ℏ2 = ζ1 = ζ2 = 1,ℏ3 = −1, and m = 0:5.
Hence, ζ3 = −2,Λ1 = 2, and Λ2 = −2. Now, for various values
of α (the fractional derivative order) and σ (noise intensity),
we provide a number of graphs for t ∈ ½0, 5� and x ∈ ½0, 6�. To
draw these graphs, we use the MATLAB tools. In the follow-
ing Figure 1, if σ = 0, we can observe how the surface fluctu-
ates as the value of α changes:

While in Figures 2 and 3, we can observe that after small
transit patterns, the surface smooths significantly when
noise is incorporated, and its intensity increases σ = 1, 2 for
different value of α.

Figure 4 shows 2D graphs of Equation (41) with σ =
0,0:5,1, 2 and with α = 1, which highlight the above results.

We may infer from Figures 1–4 the following:

(1) As fractional-order α decreases, the surface shrinks

(2) The solutions of NCFSSS are stabilized by BM
around zero

6. Conclusions

In this paper, we considered the (2 + 1)-dimensional nonlin-
ear conformable fractional stochastic Schrödinger system
((1) and (2)) which has never been examined before with
stochastic term and fractional space at the same time. We
employed two different methods such as the sine-cosine
and the Jacobi elliptic function methods to get elliptic,
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𝜎 = 1, 𝛼 = 0.5

𝜎 = 2, 𝛼 = 0.5

21
3 4 5

0.8

0.6

0.4

So
lu

tio
n

0.2

0
6

4
2

00

21
3 4 5

0.8

0.6

0.4

So
lu

tio
n

0.2

0
6

4
2

00

2 3 444
2

21
3 44

2

Figure 3: 3D diagrams of Equation (41) with α = 0:5.

Time (t)

So
lu

tio
n 

(u
)

0.6

0.5

0.4

0.3

0.2

0.1

0.2 0.4 0.6 0.8 1
0

𝜎 = 0
𝜎 = 5

𝜎 = 1
𝜎 = 2

Figure 4: 2D diagrams of Equation (41).

6 Journal of Function Spaces



trigonometric, rational, and hyperbolic fractional stochastic
solutions. These obtained solutions are useful in describing
some of interesting physical phenomena due to the impor-
tance of the NCFSSS in plasma physics and fluid dynamics.
Finally, the effect of BM on the exact solution of the NCFSSS
((1) and (2)) is demonstrated by introducing 3D and 2D
graphs for some analytical fractional stochastic solutions.
In future study, we can address the NCFSSS ((1) and (2))
with multidimensional multiplicative noise.
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This paper is aimed at establishing the generalized forms of Riemann-Liouville fractional inequalities of the Hadamard type for a
class of functions known as strongly exponentially ðα, h −mÞ-p-convex functions. These inequalities provide some general
formulas from which one can get associated inequalities for various types of exponentially convex and strongly convex
functions. Refinements of well-known inequalities are also deducible from the established theorems.

1. Introduction

The notion of convexity is utilized significantly for finding
solutions of essential mathematical problems in subjects of
science and engineering. Leading with major developments
in several branches of mathematics, convexity made its
way in statistics, geometric function theory, graph theory,
and economics. In recent decades, classes of functions
related to convex functions are frequently used in proving
new fractional integral inequalities in the form of numer-
ous refinements and generalizations of classical
inequalities.

Let I be an interval of real numbers. A function f : I
⟶ℝ satisfying f ðxt + ð1 − tÞyÞ ≤ t f ðxÞ + ð1 − tÞf ðyÞ, for
all x, y ∈ I and t ∈ ½0, 1�, is called convex function.

A convex function satisfies the well-known Hadamard
inequality:

f
x + y
2

� �
≤

1
y − x

ðy
x
f ξð Þdξ ≤ f xð Þ + f yð Þ

2 : ð1Þ

If f is concave function, then, (1) holds in a reverse
order. The inequality (1) had/has been studied by many

researchers and consequently obtained a lot of its variants
by introducing new classes of functions. For example, in
[1], it is studied for s-convex functions; in [2], it is studied
for ðp − hÞ-convex functions; in [3, 4], it is studied for har-
monically convex functions; in [5], it is studied for strongly
harmonically convex and strongly p-convex functions. Our
goal in this paper is to study the inequality (1) for strongly
exponentially ðα, h −mÞ-p-convex functions.

Definition 1 (see [6]). A function f : ð0, b�⟶ℝ is called
strongly exponentially (α, h-m)-p-convex with modulus c
≥ 0, if f is nonnegative and

f txp +m 1 − tð Þypð Þ1/p
� �

≤ h tαð Þ f xð Þ
eηx

+mh 1 − tαð Þ f yð Þ
eηy

− cmh tαð Þh 1 − tαð Þ yp − xpj j2
eη xp+ypð Þ ,

ð2Þ

holds, while J ⊆ℝ is an interval containing ð0, 1Þ and h : J
⟶ℝ is a nonnegative function along with x, y,m−1y,
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ðtxp +mð1 − tÞypÞ1/p ∈ ð0, b�, t ∈ ð0, 1Þ, p ∈ℝ \ f0g, and ðα,
mÞ ∈ ½0, 1�2.

By using (2), one can find various classes of functions
closely related with the convex function and strongly convex
functions already defined by different authors. Strongly con-
vex functions provide the refinements of convex functions.

In [2], Theorem 5, if we take I⊂ð0,∞Þ, p ∈ℝ \ f0g, and
hðtÞ = t, then, we have the following theorem.

Theorem 2. Let f :½a, b� ⊂ ð0,∞Þ⟶ℝ be a positive function
such that f ∈ L1½a, b�. If f is a p-convex function on ½a, b�, p
∈ℝ \ f0g. Then, the following integral inequality holds:

f
ap + bp

2

� �1/p !
≤

p

bp − ap

ðb
a

f tð Þ
t1−p

dt ≤
f að Þ + f bð Þ

2
: ð3Þ

Our aim in this paper is the derivation of compact forms
of Hadamard-type inequalities for strongly exponentially ðα
, h −mÞ-p-convex functions via Riemann-Liouville fractional
integrals involving monotone functions. The established for-
mulas will generate Hadamard-type inequalities for frac-
tional Riemann-Liouville integrals which have been
published by various authors in the recent past (see Remarks
11 & 23). Also, Hadamard-type inequalities are deducible for
some new classes of functions (see Corollaries 12–32). In the
following, we give the definition of Riemann-Liouville frac-
tional integrals:

Definition 3. Let f ∈ L1½a, b�. Then, Riemann-Liouville frac-
tional integral operators of order μ for a function f , where
RðμÞ > 0, are given by

Iμa+ f xð Þ = 1
Γ μð Þ

ðx
a
x − tð Þμ−1 f tð Þdt, x > a,

Iμb− f xð Þ = 1
Γ μð Þ

ðb
x
t − xð Þμ−1 f tð Þdt,  x < b:

ð4Þ

Next, we give Hadamard-type inequalities via Riemann-
Liouville fractional integrals of convex functions as follows:

Theorem 4 (see [7]). Let f : ½a, b�⟶ℝ be a positive func-
tion with 0 ≤ a < b and f ∈ L1½a, b�. If f is a convex function
on ½a, b�, then, the following fractional integral inequality
holds:

f
a + b
2

� �
≤

Γ μ + 1ð Þ
2 b − að Þμ Iμa+ f bð Þ + Iμb− f að Þ� �

≤
f að Þ + f bð Þ

2
,

ð5Þ

with μ > 0.

Theorem 5 (see [8]).With the assumptions given in Theorem
4, one can have the fractional integral inequality as follows:

f
a + b
2

� �
≤
2μ−1Γ μ + 1ð Þ

b − að Þμ Iμ a+bð Þ/2ð Þ+ f bð Þ + Iμ a+bð Þ/2ð Þ− f að Þ
h i

≤
f að Þ + f bð Þ

2
,

ð6Þ

with μ > 0.

Theorem 6 (see [7]). Let f : ½a, b�⟶ℝ be a differentiable
mapping on ða, bÞ with a < b. If j f ′j is convex on ½a, b�, then,
the following fractional integral inequality holds:

f að Þ + f bð Þ
2

−
Γ μ + 1ð Þ
2 b − að Þμ Iμa+ f bð Þ + Iμb− f að Þ� �����

����
≤

b − a
2 μ + 1ð Þ 1 −

1
2μ

� �
f ′ að Þ�� �� + f ′ bð Þ�� ��h i

:

ð7Þ

The definition of k-fractional Riemann-Liouville integral
operators is given as follows:

Definition 7 (see [9]). Let f ∈ L1½a, b�, k > 0. Then, k-frac-
tional Riemann-Liouville integrals for a function f of order
μ where RðμÞ > 0 are given by

kI
μ
a+ f xð Þ = 1

kΓk μð Þ
ðx
a
x − tð Þ μ/kð Þ−1 f tð Þdt, x > a,

kI
μ
b− f xð Þ = 1

kΓk μð Þ
ðb
x
t − xð Þ μ/kð Þ−1 f tð Þdt, x < b,

ð8Þ

where Γkð:Þ is defined as follows:

Γk μð Þ =
ð∞
0
tμ−1e− tk/kð Þdt, R μð Þ > 0: ð9Þ

The generalized form of Riemann-Liouville fractional
integrals is given in the following definition:

Definition 8 (see [10]). Let f ∈ L1½a, b�. Also, let ψ be an
increasing and positive monotone function on ða, b�, having
a continuous derivative ψ′ on ða, bÞ. The left-sided and
right-sided fractional integrals of a function f with respect
to another function ψ on ½a, b� of order μ where RðμÞ > 0
are given by

Iμ,ψa+ f xð Þ = 1
Γ μð Þ

ðx
a
ψ′ tð Þ ψ xð Þ − ψ tð Þð Þμ−1 f tð Þdt, x > a,

Iμ,ψb− f xð Þ = 1
Γ μð Þ

ðb
x
ψ′ tð Þ ψ tð Þ − ψ xð Þð Þμ−1 f tð Þdt, x < b:

ð10Þ

The definition of the k-analogue of the abovementioned
definition is given as follows:
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Definition 9 (see [11]). Let f , ψ, μ be the same as in the
abovementioned definition. Then, for k > 0, the k-analogue
of (10) and is given by

kI
μ,ψ
a+ f xð Þ = 1

kΓk μð Þ
ðx
a
ψ′ tð Þ ψ xð Þ − ψ tð Þð Þ μ/kð Þ−1 f tð Þdt, x > a,

kIμ,ψb− f xð Þ =
1

kΓk μð Þ
ðb
x
ψ′ tð Þ ψ tð Þ − ψ xð Þð Þ μ/kð Þ−1 f tð Þdt, x < b:

ð11Þ

Using the fact that ΓkðμÞ = kðμ/kÞ−1Γðμ/kÞ in (10) after
replacing μ by μ/k, we get

k−μ/kIμ,ψa+ f xð Þ = kI
μ,ψ
a+ f xð Þ,

k−μ/kIμ,ψb− f xð Þ = kI
μ,ψ
b− f xð Þ:

ð12Þ

For further detailed study on fractional integrals, we
refer the readers to [12, 13]. In the next section, we formu-
late the Hadamard-type inequalities for strongly exponen-
tially ðα, h −mÞ-p-convex function via integrals (10) which
are compact forms of a plenty of well-known Hadamard-
type inequalities holding for classes of convex, strongly con-
vex, and exponentially convex functions. Specifically, one
can have refinements of the inequalities proved in recent
decades. Several special case inequalities in the form of cor-
ollaries are also given.

2. Main Results

We will use the following notations for terms which will
appear frequently in the results of this section

cμ,m ψp að Þ, ψp bð Þð Þ = cm μ μ + 1ð Þ ψp bð Þ − ψp að Þð Þ2 + 2
h

� ψp að Þ
m

−mψp bð Þ
� �2

+ 2μ ψp bð Þ − ψp að Þð Þ

� ψp að Þ
m

−mψp bð Þ
� �	

,

Rh,H
α,μ,m,η ψp að Þ, ψp bð Þð Þ = cmμ g2 ηð Þh 1

2α
� �

ψp bð Þ − ψp að Þð Þ2
eη ψp að Þ+ψp bð Þð Þ

"

+mg3 ηð ÞH 1
2

� �
ψp bð Þ − ψp að Þ/m2
 �
 �2
eη ψp að Þ/m2ð Þ+ψp bð Þð Þ

#
ð1
0
h tαð ÞH tð Þtμ−1dt,

Fμ,m ψp að Þ, ψp bð Þð Þ = cm μ μ + 1ð Þ ψp bð Þ − ψp að Þð Þ2 + μ2 + 5μ + 8

 �h

� ψp að Þ
m

−mψp bð Þ
� �2

+ 2μ μ + 3ð Þ × ψp bð Þ − ψp að Þð Þ

� ψp að Þ
m

−mψp bð Þ
� �	

,

Ah,H
α,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ = μ g2 ηð Þh 1

2α
� �

f ψ að Þð Þ
eηψ að Þ

�

+mg3 ηð ÞH 1
2

� �
f ψ bð Þð Þ
eηψ bð Þ

	ð1
0
h tαð Þtμ−1dt,

Bh,H
α,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ =mμ g2 ηð Þh 1

2α
� �

f ψ bð Þð Þ
eηψ bð Þ

�

+mg3 ηð ÞH 1
2

� �
f ψp að Þ/m2
 �
e ηψ að Þ/m2ð Þ

	ð1
0
H tð Þtμ−1dt:

ð13Þ

Theorem 10. Let f , ψ : ½ap,mbp� ⊂ ð0,∞Þ⟶ℝ, range ðψÞ
⊂ ½ap,mbp� be the positive functions such that f ∈ L1½ap,m
bp�, and ψ be a differentiable and strictly increasing. If f is
strongly exponentially ðα, h −mÞ-p-convex function on ½ap,
mbp� such that p, η ∈ℝ and p ≠ 0, then, for ðα,mÞ ∈ ð0, 1�2,
the following fractional integral inequalities hold:

(i) If p > 0,

f
ψp að Þ +mψp bð Þ

2

� �1/p
 !

+
cμ,m ψp að Þ, ψp bð Þð Þg1 ηð Þh 1/2αð ÞH 1/2ð Þ

μ + 1ð Þ μ + 2ð Þ

≤
Γ μ + 1ð Þ

mψp bð Þ − ψp að Þð Þμ g2 ηð Þh 1
2α

� �
× Iμ,ψψ−1 ψp að Þð Þ+ f ∘ ϕð Þ ψ−1 mψp bð Þð Þ
 ��

+mμ+1g3 ηð ÞH 1
2

� �
Iμ,ψψ−1 ψp bð Þð Þ− f ∘ ϕð Þ ψ−1 ψp að Þ

m

� �� �	
≤ Ah,H

α,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ + Bh,H
α,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ

− Rh,H
α,μ,m,η ψp að Þ, ψp bð Þð Þ,

ð14Þ

with μ > 0, HðtÞ = hð1 − tαÞ, ϕðtÞ = ψ1/pðtÞ for all t ∈ ½ap,m
bp� and

g1 ηð Þ = e−η ψp að Þ+ψp bð Þð Þ, if η > 0,
e−η mψp bð Þ+ ψp að Þ/mð Þð Þ, if η < 0,

(

g2 ηð Þ = e−η mψp bð Þð Þ1/p , if η < 0,
e−ηψ að Þ, if η > 0,

(

g3 ηð Þ =
e−ηψ bð Þ, if η < 0,

e−η ψp að Þ/mð Þ1/p , if η > 0

(
ð15Þ

(ii) For p < 0, one can have
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f
ψp að Þ +mψp bð Þ

2

� �1/p
 !

+
cμ,m ψp að Þ, ψp bð Þð Þg1 ηð Þh 1/2αð ÞH 1/2ð Þ

μ + 1ð Þ μ + 2ð Þ

≤
Γ μ + 1ð Þ

mψp bð Þ − ψp að Þð Þμ g2 ηð Þh 1
2α

� �
× Iμ,ψψ−1 ψp að Þð Þ− f ∘ ϕð Þ ψ−1 mψp bð Þð Þ
 ��

+mμ+1g3 ηð ÞH 1
2

� �
Iμ,ψψ−1 ψp bð Þð Þ+ f ∘ ϕð Þ ψ−1 ψp að Þ

m

� �� �	
≤ Ah,H

α,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ + Bh,H
α,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ

− Rh,H
α,μ,m,η ψp að Þ, ψp bð Þð Þ,

ð16Þ

with μ > 0, HðtÞ = hð1 − tαÞ, ϕðtÞ = ψ1/pðtÞ for all t ∈ ½mbp,
ap� and

g1 ηð Þ = e−η ψp að Þ+ψp bð Þð Þ, if η < 0,
e−η mψp bð Þ+ ψp að Þ/mð Þð Þ, if η > 0,

(

g2 ηð Þ = e−η mψp bð Þ1/pð , if η > 0,
e−ηψ að Þ, if η < 0,

(

g3 ηð Þ =
e−ηψ bð Þ, if η > 0,

e−η ψp að Þ/mð Þ1/p , if η < 0

(
ð17Þ

Proof. ðiÞ The following inequality holds for a strongly expo-
nentially ðα, h −mÞ-p-convex function

f
ψp xð Þ +mψp yð Þ

2

� �1/p
 !

≤ h
1
2α
� �

f ψ xð Þð Þ
eηψ xð Þ

+mH
1
2

� �
f ψ yð Þð Þ
eηψ yð Þ −

cmh 1/2αð ÞH 1/2ð Þ ψp yð Þ − ψp xð Þð Þ2
eη ψp xð Þ+ψp yð Þð Þ :

ð18Þ

By setting ψðxÞ = ðψpðaÞt +mð1 − tÞψpðbÞÞ1/p, ψðyÞ =
ððψpðaÞ/mÞð1 − tÞ + ψpðbÞtÞ1/p in (18) and then integrating
on ½0, 1� after multiplying with tμ−1, one can get

1
μ
f

ψp að Þ +mψp bð Þ
2

� �1/p
 !

≤ h
1
2α
� �

ð1
0

f ψp að Þt +m 1 − tð Þψp bð Þð Þð Þ1/p
�

eη ψp að Þt+m 1−tð Þψp bð Þð Þ1/p tμ−1dt +mH
1
2

� �

×
ð1
0

f ψp að Þ/mð Þ 1 − tð Þ + ψp bð ÞÞtð Þ1/p
� �

eη ψp að Þ/mð Þ 1−tð Þ+ψp bð ÞÞtð Þ1/p tμ−1dt − cmh
1
2α
� �

H
1
2

� �
ð1
0

1 − tð Þ ψp að Þ/mð Þ −mψp bð Þð Þ + t ψp bð Þ − ψp að Þð Þð Þ2
eη 1−tð Þ ψp að Þ/mð Þ+mψp bð Þð Þ+t ψp bð Þ+ψp að Þð Þð Þ1/p tμ−1dt:

ð19Þ

Setting ψðuÞ = ψpðaÞt +mð1 − tÞψpðbÞ and ψðvÞ = ðψpða
Þ/mÞð1 − tÞ + ψpðbÞt in (19) and multiplying by μ, after
applying Definition 3, the following inequality can be
obtained:

f
ψp að Þ +mψp bð Þ

2

� �1/p
 !

≤
Γ μ + 1ð Þ

mψp bð Þ − ψp að Þð Þμ

� g2 ηð Þh 1
2α
� �

Iμψp að Þð Þ+ f ∘ ϕð Þ mψp bð Þð Þ +mμ+1g3 ηð ÞH
�

� 1
2

� �
× Iμψp bð Þð Þ− f ∘ ϕð Þ ψp að Þ

m

� �	

−
cμ,m ψp að Þ, ψp bð Þð Þg1 ηð Þh 1/2αð ÞH 1/2ð Þ

μ + 1ð Þ μ + 2ð Þ :

ð20Þ

Now, by using definition of strongly exponentially ðα, h
−mÞ-p-convex function for f and then integrating the
resulting inequality on ½0, 1� after multiplying with tμ−1,
one can get

g2 ηð Þh 1
2α
� �ð1

0
f ψp að Þt +m 1 − tð Þψp bð Þð Þ1/p
� �

tμ−1dt +mg3

� ηð ÞH 1
2

� �ð1
0
f ψp að Þt +m 1 − tð Þψp bð Þð Þ1/p
� �

tμ−1dt

≤
Ah,H
α,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ

μ
+
Bh,H
α,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ

μ

−
Rh,H
α,μ,m,η ψp að Þ, ψp bð Þð Þ

μ
:

ð21Þ

Again, using substitution as considered in (20) leads to
the second inequality of (14)

(ii) The proof is followed on same lines as the proof of (i)

Remark 11. The aforementioned version of the Hadamard
inequalities gives (i) [4], Theorem 4 for p = −1, m = α = 1, h
= ψ = I, and c = η = 0; (ii) [3], Theorem 2.4 for p = −1, m =
α = μ = 1, h = ψ = I, and c = η = 0; (iii) [14], Theorem 3.10
for h = ψ = I and c = η = 0; (iv) [15], Corollary 2.2 for α = p
= 1, ψ = I, and c = η = 0; (v) Theorem 2 for α =m = p = 1, h
= ψ = I, and c = η = 0; (vi) [16], Theorem 2.1 for α = p = 1,
h = ψ = I, and c = η = 0; (vii) [14], Theorem 2.2 for ψ = I
and c = η = 0; (viii) Theorem 1 for α = μ =m = 1, h = ψ = I,
and c = η = 0; (ix) [17], Theorem 2.1 for α = μ =m = 1, p =
−1, hðtÞ = ts, ψ = I, and c = η = 0; (x) [1], Theorem 2.1 for α
= μ =m = p = 1, hðtÞ = ts, ψ = I, and c = η = 0; and (xi) [6],
Theorem 3 for ψ = I. Moreover, the refinements of all the
deduced results will occur for c > 0.

Corollary 12. ðiÞ For p > 0, one can have for the strongly ðα
, h −mÞ-p-convex function the following fractional integral
inequality:
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f
ψp að Þ +mψp bð Þ

2

� �1/p
 !

+
cμ,m ψp að Þ, ψp bð Þð Þh 1/2αð ÞH 1/2ð Þ

μ + 1ð Þ μ + 2ð Þ

≤
Γ μ + 1ð Þ

mψp bð Þ − ψp að Þð Þμ h
1
2α

� �
× Iμ,ψψ−1 ψp að Þð Þ+ f ∘ ϕð Þ ψ−1 mψp bð Þð Þ
 ��

+mμ+1H
1
2

� �
Iμ,ψψ−1 ψp bð Þð Þ− f ∘ ϕð Þ ψ−1 ψp að Þ

m

� �� �	
≤ Ah,H

α,μ,m,0 f ψ að Þð Þ, f ψ bð Þð Þð Þ + Bh,H
α,μ,m,0 f ψ að Þð Þ, f ψ bð Þð Þð Þ

− Rh,H
α,μ,m,0 ψp að Þ, ψp bð Þð Þ

ð22Þ

Proof. The abovementioned inequality can be deduced by
setting η = 0 in (14).

(ii) For p < 0, one can have for the strongly ðα, h −mÞ-p
-convex function the following fractional integral inequality:

f
ψp að Þ +mψp bð Þ

2

� �1/p
 !

+
cμ,m ψp að Þ, ψp bð Þð Þh 1/2αð ÞH 1/2ð Þ

μ + 1ð Þ μ + 2ð Þ

≤
Γ μ + 1ð Þ

mψp bð Þ − ψp að Þð Þμ h
1
2α
� �

× Iμ,ψψ−1 ψp að Þð Þ− f ∘ ϕð Þ ψ−1 mψp bð Þð Þ
 ��

+mμ+1H
1
2

� �
Iμ,ψψ−1 ψp bð Þð Þ+ f ∘ ϕð Þ ψ−1 ψp að Þ

m

� �� �	
≤ Ah,H

α,μ,m,0 f ψ að Þð Þ, f ψ bð Þð Þð Þ + Bh,H
α,μ,m,0 f ψ að Þð Þ, f ψ bð Þð Þð Þ

− Rh,H
α,μ,m,0 ψp að Þ, ψp bð Þð Þ

ð23Þ

Proof. The abovementioned inequality can be deduced by
setting η = 0 in (16).

Corollary 13. ðiÞ For p > 0, one can have for the strongly
exponentially ðh −mÞ-p-convex function the following frac-
tional integral inequality:

f
ψp að Þ +mψp bð Þ

2

� �1/p
 !

+
cμ,m ψp að Þ, ψp bð Þð Þg1 ηð Þh2 1/2ð Þ

μ + 1ð Þ μ + 2ð Þ

≤
h 1/2ð ÞΓ μ + 1ð Þ
mψp bð Þ − ψp að Þð Þμ g2 ηð Þ × Iμ,ψψ−1 ψp að Þð Þ+ f ∘ ϕð Þ ψ−1 mψp bð Þð Þ
 �h

+mμ+1g3 ηð ÞH 1
2

� �
Iμ,ψψ−1 ψp bð Þð Þ− f ∘ ϕð Þ ψ−1 ψp að Þ

m

� �� �	
≤ Ah,H

1,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ + Bh,H
1,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ

− Rh,H
1,μ,m,η ψp að Þ, ψp bð Þð Þ

ð24Þ

Proof. The abovementioned inequality can be deduced by
setting α = 1 in (14).

(ii) For p < 0, one can have for the strongly exponentially
ðh −mÞ-p-convex function the following fractional integral
inequality:

f
ψp að Þ +mψp bð Þ

2

� �1/p
 !

+
cμ,m ψp að Þ, ψp bð Þð Þg1 ηð Þh2 1/2ð Þ

μ + 1ð Þ μ + 2ð Þ

≤
h 1/2ð ÞΓ μ + 1ð Þ
mψp bð Þ − ψp að Þð Þμ g2 ηð Þ × Iμ,ψψ−1 ψp að Þð Þ− f ∘ ϕð Þ ψ−1 mψp bð Þð Þ
 �h

+mμ+1g3 ηð ÞH 1
2

� �
Iμ,ψψ−1 ψp bð Þð Þ+ f ∘ ϕð Þ ψ−1 ψp að Þ

m

� �� �	
≤ Ah,H

1,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ + Bh,H
1,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ

− Rh,H
1,μ,m,η ψp að Þ, ψp bð Þð Þ

ð25Þ

Proof. The abovementioned inequality can bed deduced by
setting α = 1 in (16).

Corollary 14. ðiÞ For p > 0, one can have for the strongly
exponentially ðs,mÞ-p-Godunova-Levin function the follow-
ing fractional integral inequality:

f
ψp að Þ +mψp bð Þ

2

� �1/p
 !

+
cμ,m ψp að Þ, ψp bð Þð Þg1 ηð Þ22s

μ + 1ð Þ μ + 2ð Þ

≤
Γ μ + 1ð Þ

2s mψp bð Þ − ψp að Þð Þμ g2 ηð ÞIμ,ψψp að Þð Þ+ f ∘ ϕð Þ ψ−1 mψp bð Þð Þ
 �h

+mμ+1g3 ηð ÞIμ,ψψp bð Þð Þ− f ∘ ϕð Þ ψ−1 ψp að Þ
m

� �� �	
≤ At−s , 1−tð Þ−s

α,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ + Bt−s , 1−tð Þ−s
α,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ

− Rt−s , 1−tð Þ−s
α,μ,m,η ψp að Þ, ψp bð Þð Þ

ð26Þ

Proof. The abovementioned inequality can be deduced by
setting α = 1 and hðtÞ = t−s in (2.1).

(ii) For p < 0, one can have for the strongly exponentially
ðs,mÞ-p-Godunova-Levin function the following fractional
integral inequality:

f
ψp að Þ +mψp bð Þ

2

� �1/p
 !

+
cμ,m ψp að Þ, ψp bð Þð Þg1 ηð Þ22s

μ + 1ð Þ μ + 2ð Þ

≤
Γ μ + 1ð Þ

2s mψp bð Þ − ψp að Þð Þμ g2 ηð ÞIμ,ψψp að Þð Þ− f ∘ ϕð Þ ψ−1 mψp bð Þð Þ
 �h

+mμ+1g3 ηð ÞIμ,ψψp bð Þð Þ+ f ∘ ϕð Þ ψ−1 ψp að Þ
m

� �� �	
≤ At−s , 1−tð Þ−s

α,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ + Bt−s , 1−tð Þ−s
α,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ

− Rt−s , 1−tð Þ−s
α,μ,m,η ψp að Þ, ψp bð Þð Þ

ð27Þ

Proof. The abovementioned inequality can be deduced by
setting α = 1 and hðtÞ = t−s in (16).

Corollary 15. ðiÞ For p > 0, one can have for the strongly
exponentially ðs,mÞ-p-convex function in the third sense the
following fractional integral inequality:
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f
ψp að Þ +mψp bð Þ

2

� �1/p
 !

+
cμ,m ψp að Þ, ψp bð Þð Þg1 ηð Þ

22s μ + 1ð Þ μ + 2ð Þ

≤
Γ μ + 1ð Þ

mψp bð Þ − ψp að Þð Þμ g2 ηð ÞIμ,ψψp að Þð Þ+ f ∘ ϕð Þ ψ−1 mψp bð Þð Þ
 �h

+mμ+1g3 ηð ÞIμψp bð Þð Þ− f ∘ ϕð Þ ψ−1 ψp að Þ
m

� �� �	
≤ Ats , 1−tð Þs

α,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ + Bts , 1−tð Þs
α,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ

− Rts , 1−tð Þs
α,μ,m,η ψp að Þ, ψp bð Þð Þ

ð28Þ

Proof. The abovementioned inequality can be deduced by
setting α = 1 and hðtÞ = ts in (14).

(ii) For p < 0, one can have for the strongly exponentially
ðs,mÞ-p-convex function in third sense the following frac-
tional integral inequality:

f
ψp að Þ +mψp bð Þ

2

� �1/p
 !

+
cμ,m ψp að Þ, ψp bð Þð Þg1 ηð Þ

22s μ + 1ð Þ μ + 2ð Þ

≤
Γ μ + 1ð Þ

mψp bð Þ − ψp að Þð Þμ g2 ηð ÞIμ,ψψp að Þð Þ− f ∘ ϕð Þ ψ−1 mψp bð Þð Þ
 �h

+mμ+1g3 ηð ÞIμψp bð Þð Þ+ f ∘ ϕð Þ ψ−1 ψp að Þ
m

� �� �	
≤ Ats , 1−tð Þs

α,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ + Bts , 1−tð Þs
α,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ

− Rts , 1−tð Þs
α,μ,m,η ψp að Þ, ψp bð Þð Þ

ð29Þ

Proof. The abovementioned inequality can be deduced by
setting α = 1 and hðtÞ = ts in (16).

Corollary 16. ðiÞ For p > 0, one can have for the strongly
exponentially ðα,mÞ-p-convex function the following frac-
tional integral inequality:

f
ψp að Þ +mψp bð Þ

2

� �1/p
 !

+
cμ,m ψp að Þ, ψp bð Þð Þg1 ηð Þ 2α − 1ð Þ

22α μ + 1ð Þ μ + 2ð Þ

≤
Γ μ + 1ð Þ

mψp bð Þ − ψp að Þð Þμ g2 ηð ÞIμ,ψψ−1 ψp að Þð Þ+ f ∘ ϕð Þ ψ−1 mψp bð Þð Þ
 �h

+mμ+1g3 ηð Þ 2α − 1ð ÞIμ,ψψ−1 ψp bð Þð Þ− f ∘ ϕð Þ ψp að Þ
m

� �	
≤ Atα , 1−tαð Þ

α,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ + Btα , 1−tð Þα
α,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ

− Rtα , 1−tαð Þ
α,μ,m,η ψp að Þ, ψp bð Þð Þ

ð30Þ

Proof. The abovementioned inequality can be deduced by
setting hðtÞ = t in (14).

(ii) For p < 0, one can have for the strongly exponentially
ðα,mÞ-p-convex function the following fractional integral
inequality:

f
ψp að Þ +mψp bð Þ

2

� �1/p
 !

+
cμ,m ψp að Þ, ψp bð Þð Þg1 ηð Þ 2α − 1ð Þ

22α μ + 1ð Þ μ + 2ð Þ

≤
Γ μ + 1ð Þ

mψp bð Þ − ψp að Þð Þμ g2 ηð ÞIμ,ψψ−1 ψp að Þð Þ− f ∘ ϕð Þ ψ−1 mψp bð Þð Þ
 �h

+mμ+1g3 ηð Þ 2α − 1ð ÞIμ,ψψ−1 ψp bð Þð Þ+ f ∘ ϕð Þ ψp að Þ
m

� �	
≤ Atα, 1−tαð Þ

α,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ + Btα , 1−tð Þα
α,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ

− Rtα , 1−tαð Þ
α,μ,m,η ψp að Þ, ψp bð Þð Þ

ð31Þ

Proof. The abovementioned inequality can be deduced by
setting hðtÞ = t in (16).

Corollary 17. ðiÞ For p > 0, one can have for the strongly
exponentially p-convex function the following fractional inte-
gral inequality:

f
ψp að Þ + ψp bð Þ

2

� �1/p
 !

+ cg1 ηð Þ μ2 − μ + 2

 �

ψp bð Þ − ψp að Þð Þ2
4 μ + 1ð Þ μ + 2ð Þ

≤
Γ μ + 1ð Þ

ψp bð Þ − ψp að Þð Þμ g2 ηð ÞIμ,ψψ−1 ψp að Þð Þ+ f ∘ ϕð Þ ψ−1 ψp bð Þð Þ
 �h
+ g3 ηð ÞIμ,ψψ−1 ψp bð Þð Þ− f ∘ ϕð Þ ψ−1 ψp að Þð Þ
 �i
≤ At, 1−tð Þ

1,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ + Bt, 1−tð Þ
1,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ

− Rt, 1−tð Þ
1,μ,m,η ψp að Þ, ψp bð Þð Þ

ð32Þ

Proof. The abovementioned inequality can be deduced by
setting α =m = 1 and hðtÞ = t in (14).

(ii) For p < 0, one can have for strongly exponentially p
-convex function the following fractional integral inequality

f
ψp að Þ + ψp bð Þ

2

� �1/p
 !

+ cg1 ηð Þ μ2 − μ + 2

 �

ψp bð Þ − ψp að Þð Þ2
4 μ + 1ð Þ μ + 2ð Þ

≤
Γ μ + 1ð Þ

ψp bð Þ − ψp að Þð Þμ g2 ηð ÞIμ,ψψ−1 ψp að Þð Þ− f ∘ ϕð Þ ψ−1 ψp bð Þð Þ
 �h
+ g3 ηð ÞIμ,ψψ−1 ψp bð Þð Þ+ f ∘ ϕð Þ ψ−1 ψp að Þð Þ
 �i
≤ At, 1−tð Þ

1,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ + Bt, 1−tð Þ
1,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ

− Rt, 1−tð Þ
1,μ,m,η ψp að Þ, ψp bð Þð Þ

ð33Þ

Proof. The abovementioned inequality can be deduced by
setting α =m = 1 and hðtÞ = t in (16).
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Corollary 18. For the strongly exponentially ðα, h −mÞ-HA-
convex function, the following inequality holds:

f
2ψ að Þψ bð Þ

ψ bð Þ +mψ að Þ
� �

+ cmh 1/2αð ÞH 1/2ð Þ
μ + 1ð Þ μ + 2ð Þ μ μ + 1ð Þ 1

ψ bð Þ −
1

ψ að Þ
� �2

"

+ 2
1

mψ að Þ −
m

ψ bð Þ
� �2

+ 2μ
1

ψ bð Þ −
1

ψ að Þ
� �

× 1
mψ að Þ −

m
ψ bð Þ

� �#

≤
Γ μ + 1ð Þ ψ að Þψ bð Þð Þμ

ψ bð Þ −mψ að Þð Þμ h
1
2α

� �
Iμ,ψψ−1 1/ψ að Þð Þ− f ∘ ϕð Þ ψ−1 m

ψ bð Þ
� �� ��

+mμ+1H
1
2

� �
× Iμ,ψψ−1 1/ψ bð Þð Þ+ f ∘ ϕð Þ ψ−1 1

mψ að Þ
� �� �	

≤ Ah,H
α,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ + Bh,H

α,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ

− Rh,H
α,μ,m,η

1
ψ að Þ ,

1
ψ bð Þ

� �
:

ð34Þ

Proof. The abovementioned inequality can be deduced by
setting p = −1 in (16).

Corollary 19. For the strongly exponentially ðα,mÞ-HA-con-
vex function, the following inequality holds:

f
2ψ að Þψ bð Þ

ψ bð Þ + ψ að Þm
� �

+ cmg1 ηð Þ 2α − 1ð Þ
22α μ + 1ð Þ μ + 2ð Þ μ μ + 1ð Þ ψ bð Þ − ψ að Þ

ψ að Þψ bð Þ
� �2

"

+ 2
ψ bð Þ − ψ að Þm2

ψ að Þψ bð Þm
� �2

+ 2μ ψ að Þ − ψ bð Þð Þ ψ bð Þ − ψ að Þm2

 �

m ψ að Þψ bð Þð Þ2
#

≤
Γ μ + 1ð Þ ψ að Þψ bð Þð Þμ
2α ψ bð Þ −mψ að Þð Þμ g2 ηð ÞIμ,ψψ−1 1/ψ að Þð Þ− f ∘ ϕð Þ ψ−1 m

ψ bð Þ
� �� ��

+mμ+1g3 ηð Þ 2α − 1ð ÞIμ,ψψ−1 1/bð Þ+ f ∘ ϕð Þ ψ−1 1
mψ að Þ
� �� �	

≤ Atα , 1−tαð Þ
α,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ + Btα , 1−tαð Þ

α,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ
− Rtα , 1−tαð Þ

α,μ,m,η ψp að Þ, ψp bð Þð Þ:
ð35Þ

Proof. The abovementioned inequality can be deduced by
setting p = −1 and hðtÞ = t in (16).

Corollary 20. For the strongly exponentially ðs,mÞ-HA-con-
vex function, the following inequality holds:

f
2ψ að Þψ bð Þ

ψ að Þm + ψ bð Þ
� �

+ cmg1 ηð Þ
22s μ + 1ð Þ μ + 2ð Þ μ μ + 1ð Þ ψ bð Þ − ψ að Þ

ψ að Þψ bð Þ
� �2

"

+ 2
ψ bð Þ − ψ að Þm2

ψ að Þψ bð Þm
� �2

+ 2μ ψ að Þ − ψ bð Þð Þ ψ bð Þψ að Þm2

 �

m ψ að Þψ bð Þð Þ2
#

≤
Γ μ + 1ð Þ ψ að Þψ bð Þð Þμ

ψ bð Þψ að Þmð Þμ g2 ηð ÞIμ,ψ1/ψ að Þð Þ− f ∘ ϕð Þ ψ−1 m
b

� �� �h

+mμ+1g3 ηð ÞIμ,ψψ−1 1/ψ bð Þð Þ+ f ∘ ϕð Þ ψ−1 1
mψ að Þ
� �� �	

≤ Ats , 1−tð Þs
1,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ + Bts , 1−tð Þs

1,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ
− Rts , 1−tð Þs

1,μ,m,η ψp að Þ, ψp bð Þð Þ:
ð36Þ

Proof. The abovementioned inequality can be deduced by
setting p = −1, α = 1, and hðtÞ = ts in (16).

Corollary 21. For the Godunova-Levin type of strongly expo-
nentially ðs,mÞ-HA-convex function, the following inequality
holds:

f
2ψ að Þψ bð Þ

ψ bð Þ +mψ að Þ
� �

+ 22sg1 ηð Þcm
μ + 1ð Þ μ + 2ð Þ μ μ + 1ð Þ 1

ψ bð Þ −
1

ψ að Þ
� �2

"

+ 2
1

mψ að Þ −
m

ψ bð Þ
� �2

+ 2μ
1

ψ bð Þ −
1

ψ að Þ
� �

× 1
mψ að Þ −

m
ψ bð Þ

� �#

≤
2sΓ μ + 1ð Þ ψ að Þψ bð Þð Þμ

ψ bð Þ −mψ að Þð Þμ g2 ηð ÞIμ,ψψ−1 1/ψ að Þð Þ− f ∘ ϕð Þ ψ−1 m
ψ bð Þ
� �� ��

+mμ+1g3 ηð Þ × Iμ,ψψ−1 1/ψ bð Þð Þ+ f ∘ ϕð Þ ψ−1 1
mψ að Þ
� �� �	

≤ At−s , 1−tð Þ−s
1,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ + Bt−s , 1−tð Þ−s

1,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ
− Rt−s , 1−tð Þ−s

1,μ,m,η ψp að Þ, ψp bð Þð Þ:
ð37Þ

Proof. The abovementioned inequality can be deduced by
setting p = −1, α = 1, and hðtÞ = t−s in (2.2).

The second variant of Hadamard inequality for strongly
exponentially ðα, h −mÞ-p-convex function is proved as
follows.

Theorem 22. Under the assumption of Theorem 10, the fol-
lowing fractional integral inequalities hold:

(i) For p > 0, one can have

f
ψp að Þ +mψp bð Þ

2

� �1/p
 !

+
Fμ,m ψp að Þ, ψp bð Þð Þg1 ηð Þh 1/2αð ÞH 1/2ð Þ

4 μ + 1ð Þ μ + 2ð Þ

≤
2μΓ μ + 1ð Þ

mψp bð Þ − ψp að Þð Þμ g2 ηð Þh 1
2α

� �
× Iψ−1 ψp að Þ+mψp bð Þð Þ/2ð Þ

�

+μ,ψ f ∘ ϕð Þ ψ−1 mψp bð Þð Þ
 �
+mμ+1H

1
2

� �
g3 ηð ÞIψ−1 ψp að Þðð

+mψp bð ÞÞ/2mÞ−μ,ψ f ∘ ϕð Þ ψ−1 ψp að Þ
m

� �� �	
≤ Ah,H

α,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ + Bh,H
α,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ

− Rh,H
α,μ,m,η ψp að Þ, ψp bð Þð Þ,

ð38Þ

with μ > 0, HðtÞ = hð1 − tαÞ, ϕðzÞ = z1/p for all z ∈ ½ap,mbp�
and
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g1 ηð Þ = e−η ψp að Þ+ψp bð Þð Þ, if η > 0,
e−η mψp bð Þ+ ψp að Þ/mð Þð Þ, if η < 0,

(

g2 ηð Þ = e−η mψp bð Þð Þ1/p , if η < 0,
e−ηψ að Þ, if η > 0,

(

g3 ηð Þ =
e−ηψ bð Þ, if η < 0,

e−η ψp að Þ/mð Þ1/p , if η > 0

(
ð39Þ

(ii) For p < 0, one can have

f
ψp að Þ +mψp bð Þ

2

� �1/p
 !

+
Fμ,m ψp að Þ, ψp bð Þð Þg1 ηð Þh 1/2αð ÞH 1/2ð Þ

4 μ + 1ð Þ μ + 2ð Þ

≤
2μΓ μ + 1ð Þ

mψp bð Þ − ψp að Þð Þμ g2 ηð Þh 1
2α

� ��
× Iμ,ψψ−1 ψp að Þ+mψp bð Þð Þ/2ð Þ− f ∘ ϕð Þ ψ−1 mψp bð Þð Þ
 �
+mμ+1H

1
2

� �
g3 ηð ÞIμ,ψψ−1 ψp að Þ+mψp bð Þð Þ/2mð Þ+ f ∘ ϕð Þ ψ−1 ψp að Þ

m

� �� �	
≤ Ah,H

α,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ + Bh,H
α,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ

− Rh,H
α,μ,m,η ψp að Þ, ψp bð Þð Þ,

ð40Þ

with μ > 0, ϕðzÞ = z1/p for all z ∈ ½mbp, ap� and

g1 ηð Þ = e−η ψp að Þ+ψp bð Þð Þ, if η < 0,
e−η mψp bð Þ+ ψp að Þ/mð Þð Þ, if η > 0,

(

g2 ηð Þ = e−η mψp bð Þð Þ1/p , if η > 0,
e−ηψ að Þ, if η < 0,

(

g3 ηð Þ =
e−ηψ bð Þ, if η > 0,

e−η ψp að Þ/mð Þ1/p , if η < 0

(
ð41Þ

Proof. (i) Let ψðxÞ = ðððψpðaÞtÞ/2Þ +mðð2 − tÞ/2ÞψpðbÞÞ1/p,
ψðyÞ = ððψpðaÞ/mÞðð2 − tÞ/2Þ + ððψpðbÞtÞ/2ÞÞ1/p in (18) and
integrating the resulting inequality over the interval ½0, 1�
after multiplying with tμ−1, we get

1
μ
f

ψp að Þ +mψp bð Þ
2

� �1/p
 !

≤ h
1
2α
� �ð1

0

f ψp bð Þtð Þ/2ð Þ +m 2 − tð Þ/2ð Þψp bð Þð Þ1/p
� �

eη ψp bð Þtð Þ/2ð Þ+m 2−tð Þ/2ð Þψp bð Þð Þ1/p tμ−1dt

+mH
1
2

� �ð1
0

f ψp að Þ/mð Þ 2 − tð Þ/2ð Þ + ψp bð Þtð Þ/2ð Þð Þ1/p
� �

eη ψp að Þ/mð Þ 2−tð Þ/2ð Þ+ ψp bð Þtð Þ/2ð Þð Þ1/p tμ−1dt

− cmh
1
2α
� �

H
1
2

� �
ð1
0

t/2ð Þ ψp bð Þ − ψp að Þð Þ + 2 − tð Þ/2ð Þ ψp að Þ/mð Þ −mψp bð Þð Þð Þ2
eη 2−tð Þ/2ð Þ ψp að Þ/mð Þ+mψp bð Þð Þ+ t/2ð Þ ψp bð Þ+ψp að Þð Þð Þ1/p tμ−1dt:

ð42Þ

Setting ψðuÞ = ððψpðbÞtÞ/2Þ +mðð2 − tÞ/2ÞψpðbÞ and ψð
vÞ = ðψpðaÞ/mÞðð2 − tÞ/2Þ + ððψpðbÞtÞ/2Þ in (42), then, by
applying Definition 3, we get the following inequality:

f
ψp að Þ +mψp bð Þ

2

� �1/p
 !

≤
2μΓ μ + 1ð Þ

mψp bð Þ − ψp að Þð Þμ

� h
1
2α
� �

g2 ηð ÞIμ,ψψ−1 ψp að Þ+mψp bð Þð Þ/2ð Þ+ f ∘ ϕð Þ ψ−1 mψp bð Þð Þ
 ��

+mμ+1g3 ηð ÞH 1
2

� �
× Iμψ−1 ψp að Þ+mψp bð Þð Þ/2mð Þ− f ∘ ϕð Þ ψ−1 ψp að Þ

m

� �� �	

−
Fμ,m ψp að Þ, ψp bð Þð Þg1 ηð Þh 1/2αð ÞH 1/2ð Þ

4 μ + 1ð Þ μ + 2ð Þ :

ð43Þ

Now, again, using strongly exponentially ðα, h −mÞ-p
-convexity of f and integrating the resulting inequality over
½0, 1� after multiplying with tμ−1, we get

g2 ηð Þh 1
2α
� �ð1

0
f

ψp að Þt
2 +m

2 − t
2

� �
ψp bð Þ

� �� �1/p
tμ−1dt

+mg3 ηð ÞH 1
2

� �ð1
0
f

ψp að Þt
2 +m

2 − t
2

� �
ψp bð Þ

� �1/p
 !

tμ−1dt

≤
Ah,H
α,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ

μ
+
Bh,H
α,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ

μ

−
Rh,H
α,μ,m,η ψp að Þ, ψp bð Þð Þ

μ
:

ð44Þ

Again, using substitution as considered in (42) leads to
the second inequality of (38)

(ii) The proof is followed on the same lines as the proof
of (i)

Remark 23. The aforementioned version of the Hadamard
inequalities give (i) [18], Theorem 2.4 for c = 0 and ψ = I;
(ii) [14], Theorem 2.4 for c = η = 0 and ψ = I; (iii) [19], The-
orem 7 for α =m = 1, c = η = 0, and hðtÞ = t; (iv) [19], Theo-
rem 7 for α =m = 1, c = η = 0, and h = ψ = I; (v) Theorem 3
for α =m = p = 1, c = η = 0, and h = ψ = I; (vi) [20], Theorem
2.1 for α = 1 = p, c = η = 0, and h = ψ = I; (vii) [21], Theorem
4 for α =m = 1, p = −1, c = η = 0, and h = ψ = I; (viii) [3],
Theorem 2.4 for p = −1, α = μ =m = 1, c = η = 0, and h = ψ
= I; (ix) [22], Theorem 7 for α = μ =m = p = 1, c = η = 0, hð
tÞ = t−s, and ψ = I; (x) [23], Theorem 3.1 for α = μ =m = 1,
p = −1, c = η = 0, hðtÞ = t−s, and ψ = I; (xi) Theorem 1 for α
= μ =m = 1, c = η = 0, and h = ψ = I; (xii) [24], Theorem
2.3 for α = μ =m = 1, η = 0, and h = ψ = I; (xiii) [25], Theo-
rem 6 for α = μ =m = p = 1, η = 0, and h = ψ = I; (xiv) [17],
Theorem 2.1 for α = μ =m = 1, p = −1, c = η = 0, hðtÞ = ts,
and ψ = I; (xv) [1], Theorem 2.1 for α = μ = p =m = 1, c = η
= 0, hðtÞ = ts, and ψ = I; and (xvi) [5], Theorem 2.1 for α
= μ =m = 1, p = −1, η = 0, and h = ψ = I. Moreover, the
refinements of all the deduced results will occur for c > 0.
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Corollary 24. ðiÞ For p > 0, one can have for the strongly ðα
, h −mÞ-p-convex function the following fractional integral
inequality:

f
ψp að Þ +mψp bð Þ

2

� �1/p
 !

+
cμ,m ψp að Þ, ψp bð Þð Þh 1/2αð ÞH 1/2ð Þ

μ + 1ð Þ μ + 2ð Þ

≤
Γ μ + 1ð Þ

mψp bð Þ − ψp að Þð Þμ h
1
2α

� �
× Iμ,ψψ−1 ψp að Þð Þ+ f ∘ ϕð Þ ψ−1 mψp bð Þð Þ
 ��

+mμ+1H
1
2

� �
Iμ,ψψ−1 ψp bð Þð Þ− f ∘ ϕð Þ ψ−1 ψp að Þ

m

� �� �	
≤ Ah,H

α,μ,m,0 f ψ að Þð Þ, f ψ bð Þð Þð Þ + Bh,H
α,μ,m,0 f ψ að Þð Þ, f ψ bð Þð Þð Þ

− Rh,H
α,μ,m,0 ψp að Þ, ψp bð Þð Þ

ð45Þ

Proof. The abovementioned inequality can be deduced by
setting η = 0 in (14).

(ii) For p < 0, one can have for the strongly ðα, h −mÞ-p
-convex function the following fractional integral inequality:

f
ψp að Þ +mψp bð Þ

2

� �1/p
 !

+
cμ,m ψp að Þ, ψp bð Þð Þh 1/2αð ÞH 1/2ð Þ

μ + 1ð Þ μ + 2ð Þ

≤
Γ μ + 1ð Þ

mψp bð Þ − ψp að Þð Þμ h
1
2α
� �

× Iμ,ψψ−1 ψp að Þð Þ− f ∘ ϕð Þ ψ−1 mψp bð Þð Þ
 ��

+mμ+1H
1
2

� �
Iμ,ψψ−1 ψp bð Þð Þ+ f ∘ ϕð Þ ψ−1 ψp að Þ

m

� �� �	
≤ Ah,H

α,μ,m,0 f ψ að Þð Þ, f ψ bð Þð Þð Þ + Bh,H
α,μ,m,0 f ψ að Þð Þ, f ψ bð Þð Þð Þ

− Rh,H
α,μ,m,0 ψp að Þ, ψp bð Þð Þ

ð46Þ

Proof. The abovementioned inequality can be deduced by
setting η = 0 in (14); then, one can obtain the required
inequality.

Corollary 25. ðiÞ For p > 0, one can have for the strongly
exponentially ðh −mÞ-p-convex function the following frac-
tional integral inequality:

f
ψp að Þ +mψp bð Þ

2

� �1/p
 !

+
Fμ,m ψp að Þ, ψp bð Þð Þg1 ηð Þh2 1/2ð Þ

4 μ + 1ð Þ μ + 2ð Þ

≤
2μh 1/2ð ÞΓ μ + 1ð Þ
mψp bð Þ − ψp að Þð Þμ g2 ηð Þ × Iμ,ψψ−1 ψp að Þ+mψp bð Þð Þ/2ð Þ+ f ∘ ϕð Þ ψ−1 mψp bð Þð Þ
 �h

+mμ+1g3 ηð ÞIμ,ψψ−1 ψp að Þ+mψp bð Þð Þ/2mð Þ− f ∘ ϕð Þ ψ−1 ψp að Þ
m

� �� �	

≤At, 1−tð Þ
1,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ + Bt, 1−tð Þ

1,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ
− Rt, 1−tð Þ

1,μ,m,η ψp að Þ, ψp bð Þð Þ
ð47Þ

Proof. If α = 1 in (38), then, the abovementioned inequality
is obtained.

(ii) For p < 0, one can have for the strongly exponentially
ðh −mÞ-p-convex function the following fractional integral
inequality:

f
ψp að Þ +mψp bð Þ

2

� �1/p
 !

+
Fμ,m ψp að Þ, ψp bð Þð Þg1 ηð Þh2 1/2ð Þ

4 μ + 1ð Þ μ + 2ð Þ

≤
2μh 1/2ð ÞΓ μ + 1ð Þ
mψp bð Þ − ψp að Þð Þμ g2 ηð Þ × Iμ,ψψ−1 ψp að Þ+mψp bð Þð Þ/2ð Þ− f ∘ ϕð Þ ψ−1 mψp bð Þð Þ
 �h

+mμ+1g3 ηð ÞIμ,ψψ−1 ψp að Þ+mψp bð Þð Þ/2mð Þ+ f ∘ ϕð Þ ψ−1 ψp að Þ
m

� �� �	

≤ At, 1−tð Þ
1,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ + Bt, 1−tð Þ

1,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ
− Rt, 1−tð Þ

1,μ,m,η ψp að Þ, ψp bð Þð Þ
ð48Þ

Proof. The abovementioned inequality can be deduced by
setting α = 1 in (40).

Corollary 26. ðiÞ For p > 0, one can have for the strongly
exponentially ðs,mÞ-p-convex function the following frac-
tional integral inequality:

f
ψp að Þ +mψp bð Þ

2

� �1/p
 !

+
Fμ,m ψp að Þ, ψp bð Þð Þg1 ηð Þ

22s+2 μ + 1ð Þ μ + 2ð Þ

≤
2μ−sΓ μ + 1ð Þ

mψp bð Þ − ψp að Þð Þμ g1 ηð ÞIμ,ψψp að Þ+mψp bð Þð Þ/2ð Þ+ f ∘ ϕð Þ ψ−1 mbð Þ
 �h

+mμ+1Iμψ−1 ψp að Þ+mψp bð Þð Þ/2mð Þ− f ∘ ϕð Þ ψ−1 ψp að Þ
m

� �� �	

≤ Ats , 1−tð Þs
1,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ + Bts , 1−tð Þs

1,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ
− Rts , 1−tð Þs

1,μ,m,η ψp að Þ, ψp bð Þð Þ
ð49Þ

Proof. The abovementioned inequality can be deduced by
setting α = 1 and hðtÞ = ts in (38).

(ii) For p < 0, one can have for the strongly exponentially
ðs,mÞ-p-convex function the following fractional integral
inequality

f
ψp að Þ +mψp bð Þ

2

� �1/p
 !

+
Fμ,m ψp að Þ, ψp bð Þð Þg1 ηð Þ

22s+2 μ + 1ð Þ μ + 2ð Þ

≤
2μ−sΓ μ + 1ð Þ

mψp bð Þ − ψp að Þð Þμ g1 ηð ÞIμ,ψψp að Þ+mψp bð Þð Þ/2ð Þ− f ∘ ϕð Þ ψ−1 mbð Þ
 �h

+mμ+1Iμψ−1 ψp að Þ+mψp bð Þð Þ/2mð Þ+ f ∘ ϕð Þ ψ−1 ψp að Þ
m

� �� �	

≤ Ats , 1−tð Þs
1,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ + Bts , 1−tð Þs

1,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ
− Rts , 1−tð Þs

1,μ,m,η ψp að Þ, ψp bð Þð Þ
ð50Þ

Proof. The abovementioned inequality can be deduced by
setting α = 1 and hðtÞ = ts in (40).

Corollary 27. ðiÞ For p > 0, one can have for the strongly
exponentially Godunova-Levin type of ðs,mÞ-p-convex func-
tion the following fractional integral inequality:
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f
ψp að Þ +mψp bð Þ

2

� �1/p
 !

+
22sFμ,m ψp að Þ, ψp bð Þð Þg1 ηð Þ

4 μ + 1ð Þ μ + 2ð Þ

≤
2μ+sΓ μ + 1ð Þ

mψp bð Þ − ψp að Þð Þμ g2 ηð ÞIμ,ψψ−1 ψp að Þ+mψp bð Þð Þ/2ð Þ+ f ∘ ϕð Þ ψ−1 mψp bð Þð Þ
 �h

+mμ+1g3 ηð ÞIμ,ψψ−1 ψp að Þ+mψp bð Þð Þ/2mð Þ− f ∘ ϕð Þ ψ−1 ψp að Þ
m

� �� �	

≤ At−s , 1−tð Þ−s
1,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ + Bt−s , 1−tð Þ−s

1,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ
− Rt−s , 1−tð Þ−s

1,μ,m,η ψp að Þ, ψp bð Þð Þ
ð51Þ

Proof. The abovementioned inequality can be deduced by
setting α = 1 and hðtÞ = t−s in (38).

(ii) For p < 0, one can have for the strongly exponentially
Godunova-Levin type of ðs,mÞ-p-convex function the fol-
lowing fractional integral inequality:

f
ψp að Þ +mψp bð Þ

2

� �1/p
 !

+
22sFμ,m ψp að Þ, ψp bð Þð Þg1 ηð Þ

4 μ + 1ð Þ μ + 2ð Þ

≤
2μ+sΓ μ + 1ð Þ

mψp bð Þ − ψp að Þð Þμ g2 ηð ÞIμ,ψψ−1 ψp að Þ+mψp bð Þð Þ/2ð Þ− f ∘ ϕð Þ ψ−1 mψp bð Þð Þ
 �h

+mμ+1g3 ηð ÞIμ,ψψ−1 ψp að Þ+mψp bð Þð Þ/2mð Þ+ f ∘ ϕð Þ ψ−1 ψp að Þ
m

� �� �	

≤ At−s , 1−tð Þ−s
1,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ + Bt−s , 1−tð Þ−s

1,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ
− Rt−s , 1−tð Þ−s

1,μ,m,η ψp að Þ, ψp bð Þð Þ
ð52Þ

Proof. The abovementioned inequality can be deduced by
setting α = 1 and hðtÞ = t−s in (40).

Corollary 28. ðiÞ For p > 0, one can have for the strongly
exponentially ðα,mÞ-p-convex function the following frac-
tional integral inequality:

f
ψp að Þ +mψp bð Þ

2

� �1/p
 !

+
2α − 1ð ÞFμ,m ψp að Þ, ψp bð Þð Þg1 ηð Þ

22α+2 μ + 1ð Þ μ + 2ð Þ

≤
2μ−αΓ μ + 1ð Þ

mψp bð Þ − ψp að Þð Þμ g2 ηð ÞIμ,ψψ−1 ψp að Þ+mψp bð Þð Þ/2ð Þ+ f ∘ ϕð Þψ−1 mψp bð Þð Þð Þ
h

+mμ+1g3 ηð Þ 2α − 1ð ÞIμ,ψψ−1 ψp að Þ+mψp bð Þð Þ/2mð Þ− f ∘ ϕð Þ ψ−1 ψp að Þ
m

� �� �	

≤ Atα , 1−tαð Þ
1,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ + Btα , 1−tð Þα

1,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ
− Rtα , 1−tð Þα

1,μ,m,η ψp að Þ, ψp bð Þð Þ
ð53Þ

Proof. The abovementioned inequality can be deduced by
setting hðtÞ = t in (38).

(ii) For p < 0, one can have for the strongly exponentially
ðα,mÞ-p-convex function the following fractional integral
inequality:

f
ψp að Þ +mψp bð Þ

2

� �1/p
 !

+
2α − 1ð ÞFμ,m ψp að Þ, ψp bð Þð Þg1 ηð Þ

22α+2 μ + 1ð Þ μ + 2ð Þ

≤
2μ−αΓ μ + 1ð Þ

mψp bð Þ − ψp að Þð Þμ g2 ηð ÞIμ,ψψ−1 ψp að Þ+mψp bð Þð Þ/2ð Þ− f ∘ ϕð Þψ−1 mψp bð Þð Þð Þ
h

+mμ+1g3 ηð Þ 2α − 1ð ÞIμ,ψψ−1 ψp að Þ+mψp bð Þð Þ/2mð Þ+ f ∘ ϕð Þ ψ−1 ψp að Þ
m

� �� �	

≤ Atα , 1−tαð Þ
1,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ + Btα , 1−tð Þα

1,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ
− Rtα , 1−tð Þα

1,μ,m,η ψp að Þ, ψp bð Þð Þ
ð54Þ

Proof. The abovementioned inequality can be deduced by
setting hðtÞ = t in (40).

Corollary 29. ðiÞ For p > 0, one can have for strongly expo-
nentially p-convex function the following fractional integral
inequality:

f
ψp að Þ + ψp bð Þ

2

� �1/p
 !

+
cg1 ηð Þ ψp bð Þ − ψp að Þð Þ2

� �
2 μ + 1ð Þ μ + 2ð Þ

≤
2μ−1Γ μ + 1ð Þ
ψp bð Þ − ψp að Þð Þμ g2 ηð ÞIμ,ψψ−1 ψp að Þ+mψp bð Þð Þ/2ð Þ+ f ∘ ϕð Þ ψ−1 ψp bð Þð Þ
 �h

+ g3 ηð ÞIμ,ψψ−1 ψp að Þ+ψp bð Þð Þ/2ð Þ− f ∘ ϕð Þ ψ−1 ψp að Þð Þ
 �i
≤ Atα , 1−tαð Þ

1,μ,1,η f ψ að Þð Þ, f ψ bð Þð Þð Þ + Btα , 1−tð Þα
1,μ,1,η f ψ að Þð Þ, f ψ bð Þð Þð Þ

− Rtα , 1−tð Þα
1,μ,1,η ψp að Þ, ψp bð Þð Þ

ð55Þ

Proof. The abovementioned inequality can be deduced by
setting α =m = 1 and hðtÞ = t in (38).

(ii) For p < 0, one can have for the strongly exponentially
p-convex function the following fractional integral inequal-
ity:

f
ψp að Þ + ψp bð Þ

2

� �1/p
 !

+
cg1 ηð Þ ψp bð Þ − ψp að Þð Þ2

� �
2 μ + 1ð Þ μ + 2ð Þ

≤
2μ−1Γ μ + 1ð Þ
ψp bð Þ − ψp að Þð Þμ g2 ηð ÞIμ,ψψ−1 ψp að Þ+mψp bð Þð Þ/2ð Þ− f ∘ ϕð Þ ψ−1 ψp bð Þð Þ
 �h

+ g3 ηð ÞIμ,ψψ−1 ψp að Þ+mψp bð Þð Þ/2ð Þ+ f ∘ ϕð Þ ψ−1 ψp að Þð Þ
 �i
≤ Atα , 1−tαð Þ

1,μ,1,η f ψ að Þð Þ, f ψ bð Þð Þð Þ + Btα , 1−tð Þα
1,μ,1,η f ψ að Þð Þ, f ψ bð Þð Þð Þ

− Rtα , 1−tð Þα
1,μ,1,η ψp að Þ, ψp bð Þð Þ

ð56Þ

Proof. The abovementioned inequality can be deduced by
setting α =m = 1 and hðtÞ = t in (40).
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Corollary 30. For the strongly exponentially ðα,mÞ-HA
-convex function, the following inequality holds:

f
2ψ að Þψ bð Þ

ψ að Þ +mψ bð Þ
� �

+ 2α − 1ð Þcmg1 ηð Þ
22α+2 μ + 1ð Þ μ + 2ð Þ μ μ + 1ð Þ ψ bð Þ − ψ að Þ

ψ að Þψ bð Þ
� �2

"

+ μ2 + 5μ + 8

 � ψ bð Þ − ψ að Þm2

ψ að Þψ bð Þm
� �2

+ 2μ μ + 3ð Þ ψ að Þ − ψ bð Þð Þ
m ψ að Þψ bð Þð Þ2

#

≤
2μ−αΓ μ + 1ð Þ ψ að Þψ bð Þð Þμ

ψ bð Þ − ψ að Þmð Þμ g2 ηð ÞIμ,ψψ bð Þ+mψ að Þð Þ/2ð Þ− f ∘ ϕð Þ
h

� ψ−1 m
ψ bð Þ
� �� �

+mμ+1g3 ηð Þ × 2α − 1ð ÞIμ ψ að Þ+mψ bð Þð Þ/ 2ψ að Þψ bð Þmð Þð Þ+ f ∘ ϕð Þ

� ψ−1 1
ψ að Þm
� �� �	

≤ Atα , 1−tαð Þ
1,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ

+ Btα , 1−tð Þα
1,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ − Rtα , 1−tð Þα

1,μ,m,η
1

ψ að Þ ,
1

ψ bð Þ
� �

:

ð57Þ

Proof. The abovementioned inequality can be deduced by
setting p = −1 and hðtÞ = t in (40).

Corollary 31. For the strongly exponentially ðs,mÞ-HA-con-
vex function, the following inequality holds:

f
2ψ að Þψ bð Þ

ψ að Þ +mψ bð Þ
� �

+ cmg1 ηð Þ
22s+2 μ + 1ð Þ μ + 2ð Þ μ μ + 1ð Þ ψ bð Þ − ψ að Þ

ψ að Þψ bð Þ
� �2

"

+ μ2 + 5μ + 8

 � ψ bð Þ − ψ að Þm2

ψ að Þψ bð Þm
� �2

+ 2μ μ + 3ð Þ ψ að Þ − ψ bð Þð Þ
m ψ að Þψ bð Þð Þ2

 !#

≤
2μ−sΓ μ + 1ð Þ ψ að Þψ bð Þð Þμ

ψ bð Þ − ψ að Þmð Þμ g2 ηð ÞIμ,ψψ bð Þ+mψ að Þð Þ/2ð Þ− f ∘ ϕð Þ ψ−1 m
ψ bð Þ
� �� ��

+mμ+1g3 ηð Þ × Iμ,ψψ að Þ+mψ bð Þð Þ/ 2ψ að Þψ bð Þmð Þð Þ+ f ∘ ϕð Þ ψ−1 1
am

� �� �	

≤Ats , 1−tð Þs
1,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ + Bts , 1−tð Þs

1,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ

− Rts , 1−tð Þs
1,μ,m,η

1
ψ að Þ ,

1
ψ bð Þ

� �
:

ð58Þ

Proof. The abovementioned inequality can be deduced by
setting p = −1, α = 1, and hðtÞ = ts in (40).

Corollary 32. For the Godunova-Levin type of the strongly
exponentially ðs,mÞ-HA-convex function, the following
inequality holds:

f
2ψ að Þψ bð Þ

ψ að Þ +mψ bð Þ
� �

+ cmg1 ηð Þ
22s+2 μ + 1ð Þ μ + 2ð Þ μ μ + 1ð Þ ψ bð Þ − ψ að Þ

ψ að Þψ bð Þ
� �2

"

+ μ2 + 5μ + 8

 � ψ bð Þ − ψ að Þm2

ψ að Þψ bð Þm
� �2

+ 2μ μ + 3ð Þ ψ að Þ − ψ bð Þð Þ
m ψ að Þψ bð Þð Þ2

 !#

≤
2μ+sΓ μ + 1ð Þ ψ að Þψ bð Þð Þμ

ψ bð Þ − ψ að Þmð Þμ g2 ηð ÞIμ,ψψ bð Þ+mψ að Þð Þ/2ð Þ− f ∘ ϕð Þ
h

� ψ−1 m
ψ bð Þ
� �� �

+mμ+1g3 ηð ÞIμ ψ að Þ+mψ bð Þð Þ/ 2ψ að Þψ bð Þmð Þð Þ+ f ∘ ϕð Þ

� ψ−1 1
ψ að Þm
� �� �	

≤ At−s, 1−tð Þ−s
1,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ

+ Bt−s , 1−tð Þ−s
1,μ,m,η f ψ að Þð Þ, f ψ bð Þð Þð Þ − Rt−s , 1−tð Þ−s

1,μ,m,η
1

ψ að Þ ,
1

ψ bð Þ
� �

:

ð59Þ

Proof. The abovementioned inequality can be deduced by
setting p = −1, α = 1, and hðtÞ = t−s in (40).

Remark 33. Using (12) with replacement of μ by μ/k in all
the abovementioned inequalities, the k-fractional versions
of all the abovementioned results can be obtained.

3. Conclusion

Some inequalities of the Hadamard type for the strongly
exponentially ðα, h −mÞ-p-convex functions using general-
ized Riemann-Liouville fractional integrals have been
proved. These inequalities give refinements of different
Hadamard-type inequalities related to various types of con-
vexities. The outcomes of this paper can also provide the k
-fractional versions of established inequalities via parametric
substitution along with constant multiplier.
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A new integral transform method for regularized long-wave (RLW) models having fractional-order is presented in this study.
Although analytical approaches are challenging to apply to such models, semianalytical or numerical techniques have received
much attention in the literature. We propose a new technique combining integral transformation, the Elzaki transform (ET),
and apply it to regularized long-wave equations in this study. The RLW equations describe ion-acoustic waves in plasma and
shallow water waves in seas. The results obtained are extremely important and necessary for describing various physical
phenomena. This work considers an up-to-date approach and fractional operators in this context to obtain satisfactory
approximate solutions to the proposed problems. We first define the Elzaki transforms of the Caputo fractional derivative
(CFD) and Atangana-Baleanu fractional derivative (ABFD) and implement them for solving RLW equations. We can readily
obtain numerical results that provide us with improved approximations after only a few iterations. The derived solutions were
found to be in close contact with the exact solutions. Furthermore, the suggested procedure has attained the best level of
accuracy. In fact, when compared to other analytical techniques for solving nonlinear fractional partial differential equations,
the present method might be considered one of the finest.

1. Introduction

Fractional calculus (FC) is a model discipline of mathemat-
ics that focuses entirely on fractional-order derivatives and
integration. Fractional derivatives and fractional integra-
tions are noninteger-order derivatives and integration that
can model various phenomena in engineering and science.
FC began in 1695 when L’Hospital asked Leibniz, “What
would be the physical meaning of fractional derivative?”
This question inspired many great scientists in the eigh-
teenth and nineteenth centuries to focus on fractional
calculus, which has a wide range of applications in applied
science and technology. Many researchers have demon-

strated that fractional generalizations of integer-order
models efficiently represent natural phenomena [1–5]. The
classical derivatives are local. In contrast, the Caputo frac-
tional derivative is nonlocal, i.e., we can study changes in
the neighborhood of a point using classical derivatives. Still,
wemay analyze changes in an interval usingCaputo fractional
derivatives. Because of this quality, the Caputo fractional
derivative can be used to model a wider range of physical
phenomena, including solidmechanics [6, 7], diffusion proce-
dures [8], continuum and statistical mechanics [9], electro-
magnetism [10], viscoelastic materials [11], fluid mechanics
[12], propagation of spherical flames [13], viscoelastic mate-
rials [14], and so on [15–17].

Hindawi
Journal of Function Spaces
Volume 2022, Article ID 2754507, 16 pages
https://doi.org/10.1155/2022/2754507

https://orcid.org/0000-0001-9832-1424
https://orcid.org/0000-0001-5905-5696
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2754507


Fractional differential equations have been studied for
decades due to their widespread application in science and
engineering. Fractional partial differential equations are used
to describe various phenomena in acoustics, electromag-
netics, material science, viscoelasticity, electrochemistry,
and plasma physics. Fractional differential equations have
numerical solutions that are of great interest. For fractional
differential equations, no method provides an accurate solu-
tion. Only series solution methods or linearization can gen-
erate approximate solutions [18–21]. Nonlinear phenomena
can be found in various engineering and science domains,
including chemical kinetics, nonlinear spectroscopy, solid
state physics, fluid physics, computational biology, quantum
mechanics, and thermodynamics. Different higher-order
nonlinear partial differential equations (PDEs) define the
idea of nonlinearity. Nonlinear models for all physical sys-
tems describe basic phenomena. The literature has presented
integrative transform approaches for solving fractional
differential equations. Elzaki transform (ET) is an integral
transform [22] in this context. Several scholars [23–30] have
looked at some essential solution approaches for real-world
issues, as well as numerical simulations obtained using the
novel integral transformation.

In this article, three alternative fractional homogeneous
RLW equations are studied; the RLW equations, according
to some scientists, are the best equations than the classical
Korteweg-de Vries (KdV) equation [31]. We use the Elzaki
transform combined with the CFD and ABC operator [32]
to solve three special RLW problems. The approximate
solutions are then obtained, and the numerical simulations
of the solutions are analyzed [33, 34] and provided the
nonlinear RLW equations.

Dδ
Iφ ψ,Ið Þ − φψψI ψ,Ið Þ + φψ ψ,Ið Þ + φ ψ,Ið Þφψ ψ,Ið Þ = 0,

ð1Þ

having initial source

φ ψ, 0ð Þ = 3α sec h2 δζð Þ, ð2Þ

Dδ
Iφ ψ,Ið Þ − 2φψψI ψ,Ið Þ + φψ ψ,Ið Þ = 0, ð3Þ

having initial source

φ ψ, 0ð Þ = e−ψ, ð4Þ

Dδ
Iφ ψ,Ið Þ + φψψψψ ψ,Ið Þ = 0, ð5Þ

having initial source

φ ψ, 0ð Þ = sin ψ: ð6Þ

Equation (1) is known as a general regularized long-
wave equation (GRLWE) having fractional-order, whereas
Equations (3) and (5) represents fractional regularized
long-wave equations (RLWEs).

Magnetohydrodynamic waves in plasma, ion-acoustic
waves in plasma, stress waves in compressed gas bubble

mixes, rotating tube flow, and longitudinal dispersive waves
in elastic rods are just some of the applications of the RLW
equations. The RLW equations are suitable models for many
significant physical structures in applied physics and engi-
neering. They also work on a variety of liquid flow phenom-
ena where diffusion is essential, such as in viscous or shock
situations. It can be used to simulate any nonlinear wave dif-
fusion problem, including dissipation. Depending on the
problem modeling [35], this dissipation could result in heat
conduction, viscosity, thermal radiation, chemical reaction,
mass diffusion, or other sources. Many necessary ocean
research and engineering phenomena, such as minor fre-
quency shallow-water waves and long-waves, are defined
by fractional RLW equations. Several experts in ocean
shallow liquid waves are interested in nonlinear waves
described using the RLW equations having fractional-
order. The fractional RLW equations were used to represent
nonlinear waves in the ocean. Indeed, the tsunami’s massive
surface waves are defined by fractional RLW equations.
Huge internal waves in the ocean’s interior caused by
temperature differences that can destroy marine ships could
be defined as fractional RLW equations in the existing,
exceedingly complex framework.

The article is given as follows: In Section 2, some
basic definitions are essential for the formulation of the
problem. The method is described in Section 3, using a
novel integral transformation. Section 4 presents the main
results, numerical simulations, and graphical representa-
tions. Finally, Section 5 presents all of the research study’s
significant findings.

2. Preliminaries

The fundamental concepts with and without a singular
kernel of fractional derivatives, fractional integrals, and their
Elzaki transform are presented in this section.

Definition 1. The Caputo fractional derivative (CFD) is
defined as [1]

CDδ
I μ Ið Þð Þ =

1
Γ m − δð Þ

ðI
0

μm ηð Þ
I − ηð Þδ+1−m

dη,m − 1 < δ <m,

dm

dIm μ Ið Þ, δ =m:

8>>><>>>:
ð7Þ

Definition 2. The Atangana-Baleanu derivative having
fractional-order in theCaputomanner (ABC) is defined as [36]

ABCDδ
I μ Ið Þð Þ = N δð Þ

1 − δ

ðI
m
μ′ ηð ÞEδ −

δ I − ηð Þδ
1 − δ

" #
dη, ð8Þ

where μ ∈H1ðα, βÞ, β > α, δ ∈ ½0, 1�. A normalization func-
tion equal to 1 when δ = 0 and δ = 1 is represented by NðδÞ
in Equation (8).
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Definition 3. The ABC operator fractional integral is given
by [36].

IδI μ Ið Þð Þ = 1 − δ

N δð Þμ Ið Þ + δ

Γ δð ÞN δð Þ
ðI
m
μ ηð Þ I − ηð Þδ−1dη:

ð9Þ

Definition 4. In set A, the exponential function Elzaki trans-
form is defined as [37, 38]

A = μ Ið Þ: ∃G, p1, p2 > 0, μ Ið Þj j <Ge Ij j/pj , if I ∈ −1ð Þj × 0,∞½ Þ
n o

:

ð10Þ

G is a finite number for a specific function in the set, but
p1, p2 can be finite or infinite.

Definition 5. The Elzaki transformation of a function μðIÞ is
given by [38].

E μ Ið Þf g ϖð Þ = ~U ϖð Þ = ϖ
ð∞
0
e−I/ϖμ Ið ÞdI, ð11Þ

where I ≥ 0, p1 ≤ ϖ ≤ p2.

Theorem 6 (Elzaki transformation convolution theorem,
[39]). The following equality holds:

E μ ∗ vf g = 1
ϖ
E μð ÞE vð Þ, ð12Þ

where Elzaki transform is represented by Ef:g.

Definition 7. The Elzaki transform of the CFD operator Dδ
I

ðμðIÞÞ is given by [40].

E CD
δ
I μ Ið Þð Þ

n o
ϖð Þ = ϖ−δ ~U ϖð Þ − 〠

m−1

k=0
ϖ2−δ+kμk 0ð Þ, ð13Þ

where m − 1 < δ <m.

Theorem 8. The ABC fractional derivative Dδ
IðμðIÞÞ Elzaki

transform is defined as [32].

E ABCD
δ
I μ Ið Þð Þ

n o
ϖð Þ = N δð Þϖ

δϖδ + 1 − δ

~U ϖð Þ
ϖ

− ϖμ 0ð Þ
 !

,

ð14Þ

where EfμðIÞgϖ = ~UðϖÞ.

Proof. From Definition 2, we have

E ABCD
δ
I μ Ið Þð Þ

n o
ϖð Þ =E

N δð Þ
1 − δ

ðI
0
μ′ ηð ÞEδ −

δ I − ηð Þδ
1 − δ

" #
dη

( )
ϖð Þ:

ð15Þ

Then, taking into account the Elzaki transform’s defini-
tion and convolution, we get

E ABCDδ
I μ Ið Þð Þ

n o
ϖð Þ =E

N δð Þ
1 − δ

ðI
0
μ′ ηð ÞEδ −

δ I − ηð Þδ
1 − δ

" #
dη

( )

=
N δð Þ
1 − δ

1
ϖ
E μ′ ηð Þ
n o

E Eδ −
δIδ

1 − δ

" #
dη

( )

=
N δð Þ
1 − δ

~U ϖð Þ
ϖ

− ϖμ 0ð Þ
" #

�
ð∞
0
e−1/ϖEδ −

δIδ

1 − δ

" #
dI

" #

=
N δð Þϖ

δϖδ + 1 − δ

~U ϖð Þ
ϖ

− ϖμ 0ð Þ
" #

:

ð16Þ

3. Description of the Technique via a New
Integral Transform

The essential technique that was employed in this research
will be presented in this section of the study. We use the
following fractional nonlinear PDE general form to study
this methodology:

Dδ
Iφ ψ,Ið Þ + L φ ψ,Ið Þð Þ +N φ ψ,Ið Þð Þ = θ ψ,Ið Þ,

ψ,Ið Þ ∈ 0, 1½ � × 0, T½ �, κ − 1 < δ < κ,
ð17Þ

having initial source

∂zφ
∂Iz ψ, 0ð Þ = μz ψð Þ, z = 0, 1,⋯, κ − 1, ð18Þ

and the boundary sources

φ 0,Ið Þ = γ0 Ið Þ,
φ 1,Ið Þ = γ1 Ið Þ,

I ≥ 0,

ð19Þ

where known functions are μz , θ, γ0, and γ1. In Equation
(17), Dδ

Iφðψ,IÞ represents the Caputo or ABC fractional
derivatives, Lð:Þ and Nð:Þ denote the linear and nonlinear
terms. The recursive steps for handling the specified prob-
lems are described (1)-(2), (3)-(4), and (5)-(6). We investi-
gate Efφðψ,IÞgðϖÞ = ~ζðψ, ϖÞ for Equation (17) by taking
the Elzaki transform with the aid of CFD in Equation (13)
and ABC in Equation (14). The modified functions for the
Caputo fractional derivative can then be obtained.
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~ζ ψ, ϖð Þ = ϖδ eθ ϖ,Ið Þ −E L φ ψ,Ið Þð Þ +N φ ψ,Ið Þð Þ½ �
� �

+ ϖ2φ ψ, 0ð Þ:
ð20Þ

We also get the modified functions for the ABC deriva-
tive, which are as follows.

~ζ ψ, ϖð Þ = δϖδ + 1 − δ

N δð Þ
� � eθ ψ, ϖð Þ −E L φ ψ,Ið Þð Þ +N φ ψ,Ið Þð Þ½ �

� �
+ ϖ2φ ψ, 0ð Þ,

ð21Þ

where E½θðψ,IÞ� = eθðψ, ϖÞ. We also get when we consider
the Elzaki transforms of the boundary conditions

E γ0 Ið Þ½ � = ~ζ 0, ϖð Þ,
E γ1 Ið Þ½ � = ~ζ 1, ϖð Þ,

ϖ ≥ 0:

ð22Þ

The solution to Equations (17)–(19) is then obtained by
using the perturbation method as

~ζ ψ, ϖð Þ = 〠
∞

E=0
XE~ζE ψ, ϖð Þ,E = 0, 1, 2,⋯: ð23Þ

The nonlinear component in Equation (17) can be calcu-
lated as

N φ ψ,Ið Þ½ � = 〠
∞

E=0
XEΨE ψ,Ið Þ, ð24Þ

and the parts ΨEðψ,IÞ are define in as

ΨE φ0, φ1,⋯,φEð Þ = 1
E!

∂E

∂νE
N 〠

∞

i=0
νiφi

 !" #
λ=0

,E = 0, 1, 2,⋯:

ð25Þ

By putting Equations (23) and (24) into Equation (20),
we obtain the components of the Caputo operator’s solution:

〠
∞

E=0
XE~ζ ψ, ϖð Þ = −Xϖδ E L 〠

∞

E=0
XEφE ψ,Ið Þ

 !
+ 〠

∞

E=0
XEΨE ψ,Ið Þ

" # !
+ ϖδ eθ ψ, ϖð Þ

� �
+ ϖ2φ ψ, 0ð Þ:

ð26Þ

and by putting Equations (23) and (24) into Equation (21),
we have the recursive relation that provides the Atangana-
Baleanu operator’s solution:

〠
∞

E=0
XE~ζ ψ, ϖð Þ = −X

δϖδ + 1 − δ

N δð Þ
� �

E L 〠
∞

E=0
XEφE ψ,Ið Þ

 !" 

+ 〠
∞

E=0
XEΨE ψ,Ið Þ

#!

+
δϖδ + 1 − δ

N δð Þ
� � eθ ψ, ϖð Þ

� �
+ ϖ2φ ψ, 0ð Þ:

ð27Þ

Thus, on solving Equations (26) and (27) with respect to
X , the given Caputo homotopies are identified:

X0 : ~ζ0 ψ, ϖð Þ = ϖδ eθ ψ, ϖð Þ
� �

+ ϖ2φ ψ, 0ð Þ,

X1 : ~ζ1 ψ, ϖð Þ = −ϖδE L φ0 ψ,Ið Þð Þ +Ψ0 ψ,Ið Þ½ �,
X2 : ~ζ2 ψ, ϖð Þ = −ϖδE L φ1 ψ,Ið Þð Þ +Ψ1 ψ,Ið Þ½ �,

⋮

Xn+1 : ~ζn+1 ψ, ϖð Þ = −ϖδE L φn ψ,Ið Þð Þ +Ψn ψ,Ið Þ½ �:
ð28Þ

Furthermore,wedetermine theABChomotopies as follows:

X0 : ~ζ0 ψ, ϖð Þ = δϖδ + 1 − δ

N δð Þ
� �eθ ψ, ϖð Þ + ϖ2φ ψ, 0ð Þ,

X1 : ~ζ1 ψ, ϖð Þ = −
δϖδ + 1 − δ

N δð Þ
� �

E L φ0 ψ,Ið Þð Þ +Ψ0 ψ,Ið Þ½ �,

X2 : ~ζ2 ψ, ϖð Þ = −
δϖδ + 1 − δ

N δð Þ
� �

E L φ1 ψ,Ið Þð Þ +Ψ1 ψ,Ið Þ½ �,

⋮

Xn+1 : ~ζn+1 ψ, ϖð Þ = −
δϖδ + 1 − δ

N δð Þ
� �

E L φn ψ,Ið Þð Þ +Ψn ψ,Ið Þ½ �:

ð29Þ

WhenX ⟶ 1, we can assume that Equations (28) and (29)
represent the approximate solution to Equations (26) and (27);
thus, the result is determined by

Δn ψ, ϖð Þ = 〠
n

σ=0

~ζσ ψ, ϖð Þ: ð30Þ

Weget the approximate solution of Equation (17), by taking
the inverse ET to Equation (30).

φ ψ, ϖð Þ ≅ φn ψ,Ið Þ =E−1�� Δn ψ, ϖð Þf g: ð31Þ

4. Applications

In this part, we will examine the problems in Equations
(1)–(6) by means of Elzaki transform. First, we implement
the Elzaki transform technique with the aid of Caputo deriv-
ative to solve problem (1) having initial source (2). By taking
the Elzaki transform, we get
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~ζ ψ, ϖð Þ = ϖδE φψψI ψ,Ið Þ − φψ ψ,Ið Þ − φ ψ,Ið Þφψ ψ,Ið Þ
h i

+ ϖ2φ ψ, 0ð Þ:

ð32Þ

We use the Elzaki perturbation transform approach to
solve Equation (32) and obtain

〠
∞

E=0
XE~ζE ψ, ϖð Þ =XϖδE 〠

∞

E=0
XEφE ψ,Ið Þ

 !
ψψI

24
− 〠

∞

E=0
XEφE ψ,Ið Þ

 !
ψ

35
−XϖδE 〠

∞

E=0
XEΨE ψ,Ið Þ

 !" #
+ ϖ2φ ψ, 0ð Þ:

ð33Þ

We now have by taking the Elzaki inverse transform to
Equation (33),

〠
∞

E=0
XEφE ψ, ϖð Þ =XE−1 ϖδE 〠

∞

E=0
XEφE ψ,Ið Þ

 !
ψψI

2424
− 〠

∞

E=0
XEφE ψ,Ið Þ

 !
ψ

##

−XE−1 ϖδE 〠
∞

E=0
XEΨE ψ,Ið Þ

 !" #" #
+E−1 ϖ2φ ψ, 0ð Þ� �

:

ð34Þ

The ΨEð:Þ values in Equation (34) are functions that
indicate the nonlinear terms assumed in Equation (26) and
are analyzed as follows:

Ψ0 φð Þ = φ0 φ0ð Þψ,
Ψ1 φð Þ = φ0 φ1ð Þψ + φ1 φ0ð Þψ,

Ψ2 φð Þ = φ0 φ2ð Þψ + φ1 φ1ð Þψ + φ2 φ0ð Þψ,
⋮

ð35Þ

Then, by examining the associated powers of X , we
obtain the terms of the Caputo operator solution:

X0 : ~ζ0 ψ,Ið Þ =E−1 ϖ23α sec h2 δψð Þ� �
= 3α sec h2 δψð Þ,

X1 : ~ζ1 ψ,Ið Þ =E−1 ϖδE L φ0 ψ,Ið Þð Þ½ �
h i

−E−1 ϖδE Ψ0 ψ,Ið Þ½ �
h i

= 3αδ 1 + 6αδ + cos h 2δψð Þf g sec h4 δψð Þ tan h δψð Þ Iδ

Γ δ + 1ð Þ ,

X2 : ~ζ2 ψ,Ið Þ =E−1 ϖδE L φ1 ψ,Ið Þð Þ½ �
h i

−E−1 ϖδE Ψ1 ψ,Ið Þ½ �
h i

= −
3
32

αδ2 −8 − 96α − 576α2
	

+ 3 −3 − 16α + 144α2

 �

cos h 2δψð Þ
+ 48α cos h 4δψð Þ

+ cos h 6δψð Þg sec h8 δψð Þ I2δ

Γ 2δ + 1ð Þ ,

⋮ ð36Þ

As a result, the approximate solution to the problem is

φ ψ,Ið Þ = 3α sec h2 δψð Þ + 3αδ 1 + 6αδf
 

+ cos h 2δψð Þg sec h4 δψð Þ tan h δψð Þ Iδ

Γ δ + 1ð Þ
−

3
32

αδ2 −8 − 96α − 576α2 + 3 −3 − 16α + 144α2

 �

cosh 2δψð Þ	
+ 48α cosh 4δψð Þ + cosh 6δψð Þg sec h8 δψð Þ I2δ

Γ 2δ + 1ð Þ ,+⋯
!
,

ð37Þ

providing the problem’s integer-order ðδ = 1Þ solution, φðψ,
IÞ = 3α sec h2ðδðψ − ð1 + αÞIÞÞ.

On the other hand, we use the Elzaki transform in com-
bination with the Atangana-Baleanu operator to solve the
problem. First, we use the Elzaki transform to solve the
problem:

~ζ ψ, ϖð Þ = δϖδ + 1 − δ

N δð Þ
� �

E φψψI ψ,Ið Þ − φψ ψ,Ið Þ − φ ψ,Ið Þφψ ψ,Ið Þ
h i

+ ϖ2φ ψ, 0ð Þ:
ð38Þ

To Equation (38), we use the Elzaki perturbation trans-
form approach and get

〠
∞

E=0
XE~ζE ψ, ϖð Þ =X

δϖδ + 1 − δ

N δð Þ
� �

E

� 〠
∞

E=0
XEφE ψ,Ið Þ

 !
ψψI

− 〠
∞

E=0
XEφE ψ,Ið Þ

 !
ψ

24 35
−X

δϖδ + 1 − δ

N δð Þ
� �

E 〠
∞

E=0
XEΨE ψ,Ið Þ

 !" #
+ ϖ2φ ψ, 0ð Þ:

ð39Þ

By taking the inverse ET of Equation (39), we get
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The ΨEð:Þ terms in Equation (40) are nonlinear
polynomials that were described in Equation (25). We

derive the following results by repeating the methods for
nonlinear polynomials:

As a result, based on the ABC operator, the approximate
solution is as follows:

〠
∞

E=0
XEφE ψ,Ið Þ =XE−1 δϖδ + 1 − δ

N δð Þ
� �

E 〠
∞

E=0
XEφE ψ,Ið Þ

 !
ψψI

− 〠
∞

E=0
XEφE ψ,Ið Þ

 !
ψ

24 3524 35
−XE−1 δϖδ + 1 − δ

N δð Þ
� �

E 〠
∞

E=0
XEΨE ψ,Ið Þ

 !" #" #
+E−1 ϖ2φ ψ, 0ð Þ� �

:

ð40Þ

X0 : φ0 ψ,Ið Þ = E−1 ϖ23α sec h2 δψð Þ� �
= 3α sec h2 δψð Þ,

X1 : φ1 ψ,Ið Þ =E−1 δϖδ + 1 − δ

N δð Þ
� �

E φ0 ψ,Ið Þ½ �
� 

−E−1 δϖδ + 1 − δ

N δð Þ
� �

E Ψ0 ψ,Ið Þ½ �
� 

= −
3αδ 1 + 6αδ + cosh 2δψð Þf g sec h4 δψð Þ tanh δψð Þ

N δð Þ
δIδ

Γ δ + 1ð Þ + 1 − δ

 !
, ð41Þ

X2 : φ2 ψ,Ið Þ =E−1 δϖδ + 1 − δ

N δð Þ
� �

E φ1 ψ,Ið Þ½ �
� 

−E−1 δϖδ + 1 − δ

N δð Þ
� �

E Ψ1 ψ,Ið Þ½ �
� 

= −
−3/32αδ2 −8 − 96α − 576α2 + 3 −3 − 16α + 144α2


 �
cosh 2δψð Þ + 48α cosh 4δψð Þ + cosh 6δψð Þ	 �

sec h8 δψð Þ
N δð Þð Þ2

�
δIδ
� �2
Γ 2δ + 1ð Þ +

2δ 1 − δð ÞIδ

Γ δ + 1ð Þ + 1 − δð Þ2
0B@

1CA,

⋮ ð42Þ

φ ψ,Ið Þ = 〠
n

σ=0
φσ ψ,Ið Þ = 3α sec h2 δψð Þ − 3αδ 1 + 6αδ + cosh 2δψð Þf g sec h4 δψð Þ tanh δψð Þ

N δð Þ
δIδ

Γ δ + 1ð Þ + 1 − δ

 !

−
−3/32αδ2 −8 − 96α − 576α2 + 3 −3 − 16α + 144α2


 �
cosh 2δψð Þ + 48α cosh 4δψð Þ + cosh 6δψð Þ	 �

sec h8 δψð Þ
N δð Þð Þ2

2

�
δIδ
� �2
Γ 2δ + 1ð Þ +

2δ 1 − δð ÞIδ

Γ δ + 1ð Þ + 1 − δð Þ2
0B@

1CA+⋯,

ð43Þ
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providing the problem’s integer-order ðδ = 1Þ solution, φðψ,
IÞ = 3α sec h2ðδðψ − ð1 + αÞIÞÞ.

Secondly, we implement the Elzaki transform technique
with the aid of Caputo derivative to solve problem (3) having
initial source (4). By taking the Elzaki transform, we get

~ζ ψ, ϖð Þ = ϖδE 2φψψI ψ,Ið Þ − φψ ψ,Ið Þ
h i

+ ϖ2φ ψ, 0ð Þ:
ð44Þ

We use the Elzaki perturbation transform approach to
solve Equation (44) and obtain

〠
∞

E=0
XE~ζE ψ, ϖð Þ =XϖδE 〠

∞

E=0
XEφE ψ,Ið Þ

 !
ψψI

24
− 〠

∞

E=0
XEφE ψ,Ið Þ

 !
ψ

#
+ ϖ2φ ψ, 0ð Þ:

ð45Þ

We now have by taking the Elzaki inverse transform to
Equation (45),

〠
∞

E=0
XE~ζE ψ,Ið Þ =XE−1 ϖδE 〠

∞

E=0
XEφE ψ,Ið Þ

 !" #" #
+E−1 ϖ2φ ψ, 0ð Þ� �

:

ð46Þ

Then, by examining the associated powers of X , we
obtain the terms of the Caputo operator solution:

X0 : φ0 ψ,Ið Þ =E−1 ϖ2e−ψ
� �

= e−ψ,

X1 : φ1 ψ,Ið Þ =E−1 ϖδE L φ0 ψ,Ið Þð Þ½ �
h i

,

= e−ψ
Iδ

Γ δ + 1ð Þ ,

X2 : φ1 ψ,Ið Þ =E−1 ϖδE L φ1 ψ,Ið Þð Þ½ �
h i

,

= e−ψ
I2δ

Γ 2δ + 1ð Þ ,

⋮

ð47Þ

As a result, the approximate solution to the problem is

φ ψ,Ið Þ = e−ψ + e−ψ
Iδ

Γ δ + 1ð Þ + e−ψ
I2δ

Γ 2δ + 1ð Þ+⋯, ð48Þ

providing the problem’s integer-order ðδ = 1Þ solution φðψ,
IÞ = eðI−ψÞ.

On the other hand, we use the Elzaki transform in
combination with the Atangana-Baleanu operator to solve

the problem. First, we use the Elzaki transform to solve
the problem:

~ζ ψ, ϖð Þ = δϖδ + 1 − δ

N δð Þ
� �

E φψψI ψ,Ið Þ − φψ ψ,Ið Þ
h i� �

+ ϖ2φ ψ, 0ð Þ:

ð49Þ

To Equation (49), we use the Elzaki perturbation
transform approach and get

〠
∞

E=0
XE~ζE ψ, ϖð Þ = δϖδ + 1 − δ

N δð Þ
� �

� E 〠
∞

E=0
XEφE ψ,Ið Þ

 !
ψψI

240@
− 〠

∞

E=0
XEφE ψ,Ið Þ

 !
ψ

#!
+ ϖ2φ ψ, 0ð Þ:

ð50Þ

By taking the inverse ET of the last equation, we get

〠
∞

E=0
XE~ζE ψ,Ið Þ =XE−1

� δϖδ + 1 − δ

N δð Þ
� �

E 〠
∞

E=0
XEφE ψ,Ið Þ

 !" #" #
+E−1 ϖ2φ ψ, 0ð Þ� �

:

ð51Þ

Thus, on comparing both sides

X0 : φ0 ψ,Ið Þ =E−1 ϖ2e−ψ
� �

= e−ψ,

X1 : φ1 ψ,Ið Þ =E−1 δϖδ + 1 − δ

N δð Þ
� �

E φ0ð ÞψψI − φ0ð Þψ
h i� 

=
e−ψ

N δð Þ
Iδ

Γ δð Þ + 1 − δ

 !
,

X2 : φ2 ψ,Ið Þ =E−1 δϖδ + 1 − δ

N δð Þ
� �

E φ1ð ÞψψI − φ1ð Þψ
h i� 

=
e−ψ

N δð Þð Þ2
δ2I2δ

Γ 2δ + 1ð Þ +
1 − δð ÞδI2δ

Γ δ + 1ð Þ + 1 − δð Þ2
 !

ð52Þ

As a result, based on the ABC operator, the approxi-
mate solution is as follows:
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φ ψ,Ið Þ = e−ψ +
e−ψ

N δð Þ
Iδ

Γ δð Þ + 1 − δ

 !

+
e−ψ

N δð Þð Þ2
δ2I2δ

Γ 2δ + 1ð Þ +
1 − δð ÞδI2δ

Γ δ + 1ð Þ + 1 − δð Þ2
 !

+⋯,

ð53Þ

providing the problem’s integer-order ðδ = 1Þ solution, φ
ðψ,IÞ = eðI−ψÞ.

Finally, we use the Elzaki transform approach with the
aid of Caputo and ABC derivative operators to solve the
problem in Equations (5)–(6). To Equations (5)–(6), we first
apply the Elzaki transform with the aid of Caputo derivative:

~ζ ψ, ϖð Þ = ϖδE φψψψψ ψ,Ið Þ
h i

+ ϖ2φ ψ, 0ð Þ: ð54Þ

We use the Elzaki perturbation transform approach to
solve Equation (54) and obtain

〠
∞

E=0
XE~ζE ψ, ϖð Þ =XϖδE 〠

∞

E=0
XEφE ψ, ϖð Þ

 !
ψψψψ

24 35
+ ϖ2φ ψ, 0ð Þ:

ð55Þ

We now have by taking the Elzaki inverse transform to
Equation (55)

〠
∞

E=0
XEφE ψ,Ið Þ =XE−1 ϖδE 〠

∞

E=0
XEφE ψ,Ið Þ

 !" #" #
+E−1 ϖ2φ ψ, 0ð Þ� �

:

ð56Þ

Then, by examining thsse associated powers of X , we
obtain the terms of the Caputo operator solution:

X0 : φ0 ψ,Ið Þ =E−1 ϖ2 sin ψ
� �

= sin ψ,

X1 : φ1 ψ,Ið Þ =E−1 ϖδE L φ0 ψ,Ið Þð Þ½ �
h i

,

= − sin ψ
Iδ

Γ δ + 1ð Þ ,

X2 : φ1 ψ,Ið Þ =E−1 ϖδE L φ1 ψ,Ið Þð Þ½ �
h i

,

= sin ψ
I2δ

Γ 2δ + 1ð Þ ,

⋮

ð57Þ

As a result, the approximate solution to the problem is

φ ψ,Ið Þ = sin ψ − sin ψ
Iδ

Γ δ + 1ð Þ + sin ψ
I2δ

Γ 2δ + 1ð Þ+⋯,

ð58Þ

providing the problems integer-order ðδ = 1Þ solution φðψ,
IÞ = sin ψeð−IÞ.

On the other hand, we use the Elzaki transform in
combination with the Atangana-Baleanu operator to solve
the problem. First, we use the Elzaki transform to solve
the problem:

~ζ ψ, ϖð Þ = δϖδ + 1 − δ

N δð Þ
� �

E φψψψψ ψ,Ið Þ
h i� �

+ ϖ2φ ψ, 0ð Þ:

ð59Þ

To Equation (59), we use the Elzaki perturbation
transform approach and get

〠
∞

E=0
XE~ζE ψ, ϖð Þ = δϖδ + 1 − δ

N δð Þ
� �

� E 〠
∞

E=0
XEφE ψ,Ið Þ

 !
ψψψψ

24 350@ 1A
+ ϖ2φ ψ, 0ð Þ:

ð60Þ

By taking the inverse ET of the last equation, we get

〠
∞

E=0
XEφE ψ,Ið Þ =XE−1 δϖδ + 1 − δ

N δð Þ
� �

E 〠
∞

E=0
XEφE ψ,Ið Þ

 !" #" #
+E−1 ϖ2φ ψ, 0ð Þ� �

:

ð61Þ

Thus, on comparing both sides

X0 : φ0 ψ,Ið Þ =E−1 ϖ2 sin ψ
� �

= sin ψ,

X1 : φ1 ψ,Ið Þ =E−1 δϖδ + 1 − δ

N δð Þ
� �

E φ0ð Þψψψψ
h i� 

=
sin ψ

N δð Þ
Iδ

Γ δð Þ + 1 − δ

 !
,

X2 : φ2 ψ,Ið Þ =E−1 δϖδ + 1 − δ

N δð Þ
� �

E φ1ð Þψψψψ
h i� 

=
sin ψ

N δð Þð Þ2
δ2I2δ

Γ 2δ + 1ð Þ +
1 − δð ÞδI2δ

Γ δ + 1ð Þ + 1 − δð Þ2
 !

:

ð62Þ
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As a result, based on the ABC operator, the approxi-
mate solution is as follows:

φ ψ,Ið Þ = sin ψ +
sin ψ

N δð Þ
Iδ

Γ δð Þ + 1 − δ

 !

+
sin ψ

N δð Þð Þ2
δ2I2δ

Γ 2δ + 1ð Þ +
1 − δð ÞδI2δ

Γ δ + 1ð Þ + 1 − δð Þ2
 !

+⋯,

ð63Þ

providing the problems integer-order ðδ = 1Þ solution, φð
ψ,IÞ = sin ψ exp ð−IÞ.

5. Results and Discussion

Figures 1(a) and 1(b) demonstrates the comparison between
approximate solution and exact solution, while Figures 1(c)
and 1(d) shows the 3D and 2D behavior of proposed
methods results at different fractional-orders of the problem
given by Equation (1). Figure 1 indicates that approximate
solution obtained by the suggested techniques is more close
to exact solution. We have shown the exact and approximate
solutions in Figures 2(a) and 2(b), and the results to the
problem given by Equation (3) with respect to various values
of fractional parameter in Caputo and Atangana-Baleanu
manner can be seen in Figures 2(c) and 2(d). Figures 3(a)
and 3(b) represents the comparison between proposed
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Figure 1: Example 1 solution graph (a) exact solution, (b) analytical solution at δ = 1, (c) analytical solution at various fractional-orders of δ,
and (d) I = 0:5.
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method solution and exact solution, whereas Figures 3(c)
and 3(d) shows the behavior of the proposed methods as
various fractional-orders of the problem given by Equation
(5). On the other hand, in Tables 1–3 we presented the
absolute error analysis of RLW equation obtained with

the help of proposed method at various values of ψ and
I. It is observed from tables that proposed method solu-
tion are in good contact with the exact solution and have
high level of precisions between results and shows absolute
error between results.
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Figure 2: Example 2 solution graph (a) exact solution, (b) analytical solution at λ = 1, (c) analytical solution at various fractional-orders of δ,
and (d) I = 0:5.
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Figure 3: Example 3 solution graph (a) exact solution, (b) analytical solution at δ = 1, (c) analytical solution at various fractional-orders of δ,
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6. Conclusion

The approximate solutions of some particular regularized
long-wave equations of fractional-order are determined in this
paper using a new integral transform method known as the
Elzaki transformation. To begin, we consider the Elzaki trans-
form of the fractional Atangana-Baleanu operator and used it
to solve the proposed problems. The used scheme’s trustwor-
thiness and efficiency are based on its capacity to provide an
appropriate convergence zone for the solution. The excellent
accuracy of the findings and the simplicity of the solution
approach confirm suggested method supremacy over other
numerical methods. Also, we have shown how the Caputo
and Atangana-Baleanu fractional operators differ when it
comes to finding approximate solutions to the illustrative
examples. To ensure the validity of the suggested technique,
we showed the results in graphs and tables. The representa-
tions of graphs and tables demonstrate that the results
obtained by suggested scheme are very accurate. In addition,
the behavior of fractional-order results is discussed which con-
firm that the solution gets closer as the fractional-order tends
toward integer-order. Finally, the approximation solution
strategy employed is highly efficient and applicable to a wide
range of nonlinear equations defining real systems.
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In this paper, we study the existence and uniqueness of the solution for a coupled system of mixed fractional differential equations.
The main results are established with the aid of “Mönch’s fixed point theorem.” In addition, an applied example that supports the
theoretical results reached through this study is included.

1. Introduction

Fractional calculus has an extended history, going all the
way back to Leibniz’s 17th-century explanation of the
derivative order in 1965. Mathematicians use fractional
calculus to study how derivatives and integrals of noninte-
ger order work and how they change over time. Subse-
quently, the subject attracted the interest of numerous
famous mathematicians, including Fourier, Laplace, Abel,
Liouville, Riemann, and Letnikov. For current and wide-
ranging analyses of fractional derivatives and their applica-
tions, we recommend the monographs [1, 2], and the
recently mentioned papers [3, 4].

Many problems in various scientific branches can be suc-
cessfully studied using partial differential equations, such as
theoretical physics, biology, viscosity, electrochemistry, and
other physical processes see [5–9]. For example, but not lim-
ited, the authors in [10] employed the fractional derivative of
the ψ-Caputo type in modeling the logistic population equa-
tion, through which they were able to show that the model
with the fractional derivative led to a better approximation
of the variables than the classical model. In addition, the
authors in [11] employed the fractional derivative of the ψ-

Caputo type and used the kernel Rayleigh, to improve the
model again in modeling the logistic population equation.

The obvious difference between the ordinary differential
equation and the fractional differential equation is that the
latter is an equation that contains fractional derivatives and
also comes in a relationship so that the definition of the frac-
tional derivative is an integral equation on the other side of
this equation. Fractional derivatives have drawn the atten-
tion of researchers in various fields of research. One of the
main goals of solving these equations is to investigate
whether these derivatives will help in the future in improv-
ing the accuracy of predicting the values of variables in var-
ious mathematical models in all sciences, whether in
scientific or human aspects.

Before starting this research for solutions to these prob-
lems, which are recently considered in the applied sciences,
verifying the issue of the existence and uniqueness of such
equations is an indispensable thing. To study these condi-
tions, most of the researchers use the most important fixed
point theorems in the Banach space, such as the Banach con-
traction principle and Leray- Schauder theorem see [12–18].

In 2016, Aljoudi et al. [19] published a study investigat-
ing the existence results for the following boundary value
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problem (sequential Hadamard type).

HD
ν1
1 + ηHD

ν1−1
1

� �
ξ ωð Þ = φ1 ω, ξ ωð Þ, ζ ωð Þ,HDr1

1 ζ ωð Þ� �
,

HD
ν2
1 + ηHD

ν2−1
1

� �
ζ ωð Þ = φ2 ω, ξ ωð Þ,HDr2

1 ξ ωð Þ, ζ ωð Þ� �
,

ξ 1ð Þ = 0, ξ eð Þ = HI
θ1ζ ε1ð Þ,

ζ 1ð Þ = 0, ζ eð Þ = HI
θ2ξ ε2ð Þ,

8>>>>>>>><
>>>>>>>>:

ð1Þ

where HDð:Þ
1 , ν1, ν2 ∈ ð1, 2�, r1, r2 ∈ ð0, 1Þ is the Hadamard

fractional derivative, and HIθ1 is the Hadamard fractional
integral with order θ1, θ2 > 0, φ1, φ2 ∈ Cð½1, e� ×ℝ3,ℝÞ, ε1,
ε2 ∈ ½1, e�.

In 2017, Ahmad and Ntouyas [20] published a study
investigating the existence results for the following initial
value problem

CHD
ν1
1

CHD
ν2
1 x tð Þ − f1 t, xtð Þ

� �
= f2 t, xtð Þ, t ∈ 1, b½ �,

x tð Þ = φ tð Þ, t ∈ 1 − τ, 1½ �,
CHD

ν2
1 x tð Þ = μ ∈ℝ,

8>>><
>>>:

ð2Þ

where CHD
νi
1 , νi ∈ ð0, 1Þ, i = 1, 2 is the Hadamard fractional

derivative, f i ∈ ½1, b� × Cð½−τ, 0�,ℝÞ⟶ℝ, φ ∈ Cð½1 − τ, 1�,
ℝÞ,xt ∈ Cð½−τ, 0�,ℝÞ, where xtðγÞ = xðt + γÞ, γ ∈ ½−τ, 0�:

Many researchers went deeper in their research beyond
the issue of verifying the issue of the existence of a solution
to such equations and studied the issue of the stability of
these solutions, it can be seen in [21, 22]. Furthermore,
many specialists in this field have taken an interest in hybrid
partial differential equations see [23–26].

Newly, interest in fractional calculus has increased from
a purely mathematical theory and from an applied point of
view in various sciences. Focusing on the theory, there are
many experts in this field who have studied the existence
of solutions for many types’ fractional differential equations
(FDEs) using the most famous fixed-point theories such as
Banach’s principle and nonlinear Leary-Schauder alterna-
tive. While a few of them tried other theories to examine
the existence of solutions to these problems, Derbazi and
Baitiche [27] publish one of these scientific papers.

The aim of this paper is to investigate the existence of
solutions for the following nonlinear sequential fractional
differential equation subject to the Dirichlet boundary con-
ditions.

CDα1 CHDβ1ψ tð Þ
� �

= ς t, ψ tð Þ, φ tð Þð Þ,
CDα2 CHDβ2φ tð Þ

� �
= ξ t, ψ tð Þ, φ tð Þð Þ,

ψ að Þ = ψ Tð Þ = 0, φ að Þ = φ Tð Þ = 0,

8>>>><
>>>>:

ð3Þ

where CDαi , CHDβi are the Caputo and Caputo-Hadamard
fractional derivatives of order 0 < αi, βi ≤ 1, i = 1, 2:
, a ≤ t ≤ T .

In this work, we will try to follow the researchers and
specialists in this field, by working to prove the existence
of a solution to the problem presented above. In which the
work will be presented in this format: Section 2 contains
some basic results for fractional calculus. Section 3 shows
an important result for the establishment of our main find-
ings, and after that, we present our main findings. In Section
4, an applied example is obtained illustrating what has been
obtained in the theoretical aspect of this manuscript. In Sec-
tion 5, a conclusion and future work section is introduced.

2. Preliminaries

This part is dedicated to presenting some definitions, postu-
lates, and theorems related to the fixed point concept of
solutions of differential equations, which will be used to ver-
ify the existence of a solution to the system of equations
given by Equation (3).

Definition 1 (see [7]). The Hadamard fractional integral of
order ν for a continuous function φ is defined as

HI
ν
φ ωð Þ = 1

Γ νð Þ
ðω
a

ln ω

τ

� �q−1 1
τ
φ τð Þdτ, ν > 0: ð4Þ

Definition 2 (see [7]). The Hadamard fractional derivative of
order ν > 0 for a continuous function φ : ½a,∞Þ⟶ℝ is
defined as

HD
ν
φ ωð Þ = δn HI

ν
φ

� �
ωð Þ, ð5Þ

n − 1 < ν < n, n = ½ν� + 1, where δ = ωðd/dωÞ, ½ν� denotes
the integer part of the real number v.

Definition 3 (see [5]). The Caputo-Hadamard fractional
derivative of order ν for at least n − times differentiable func-
tion φ : ½a,∞Þ⟶ℝ is defined as

CHD
ν
φ ωð Þ = 1

Γ n − νð Þ
ðω
a

ln ω

τ

� �n−ν−1
δn

g τð Þ
τ

dτ: ð6Þ

Lemma 4 (see [20]). Let u ∈ Cn
δð½a, T�,ℝÞ,where Cn

δ½a, T� =
fu : ½a, T�⟶ℝ : δðn−1Þu ∈ C½a, T�g, then HIνðHDνuÞðωÞ =
uðωÞ −∑n

k=1ckðln ðω/aÞÞν−k, and

HI
ν CHD

ν
u

� �
ωð Þ = u ωð Þ − 〠

n−1

k=0
ck ln ω

a

� �k
: ð7Þ

Denote the Banach space of all continuous functions z
from ½a, T� into Q by Cð½a, T�,QÞ,

accompanied by the norm: kzk∞ = sup
a≤t≤T

fzðtÞg.
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Definition 5 (see [28]). The Kuratowski measure of noncom-
pactness kð·Þ.

Defined on bounded set U of Banach space Q is

k Uð Þ≔ inf r > 0 : U = ∪m
i=1Ui and diam Uið Þ ≤ r for 1 ≤ i ≤mf g:

ð8Þ

Lemma 6 (see [28]). Given the Banach space Q with U, V are
two bounded proper subsets of Q, then the following proper-
ties hold true

(I) If U ⊂V , then kðUÞ ≤ kðVÞ ;
(II) kðUÞ = kð�UÞ = kðconv UÞ ;
(III) U is relativly compact⇄ kðUÞ = 0 ;
(IV) kðδUÞ = jδjkðUÞ, δ ∈ℝ ;
(V) kðU ∪ VÞ =max fkðUÞ, kðVÞg ;
(VI) kðU + VÞ ≤ kðUÞ + kðVÞ,U +V = fxjx = u + v, u

∈U , v ∈ Vg ;
(VII) kðU + yÞ = kðUÞ, ∀y ∈Q:

Lemma 7 (see [29]). Given an equicontinuous and bounded
set S ⊂ Cð½a, T�,QÞ, then the function.

ω↦ kðSðωÞÞ is continuous on ½a, T�, kCðSÞ =maxω∈½a,T�k
ðSðωÞÞ, and

k
ðT
a
x τð Þdτ

� �
≤
ðT
a
k x τð Þð Þdτ

� �
, S τð Þ = x τð Þ: x ∈ Sf g: ð9Þ

Definition 8 (see [3]). Given the function ψ : ½a, T� ×Q
⟶Q, ψ satisfy the Carathéodory conditions, if the follow-
ing conditions applies:

(I) ψðω, zÞ is measurable in ω for z ∈Q ;
(II) ψðω, zÞ is continuous in z ∈Q for ω ∈ ½a, T�:

Theorem 9 (Mönch’s fixed point theorem [4]). Given a
bounded, closed, and convex subset Ω ⊂Q, such that 0 ∈Ω,
let also Τ be a continuous mapping of Ω into itself.

If S = convΤðSÞ, or S = ΤðSÞ ∪ f0g, then kðSÞ = 0, satisfied
∀S ⊂Ω, then Τ has a fixed point.

3. Existence Results

Let B = fðψðtÞ, φðtÞÞjðψ, φÞ ∈ Cð½a, T�,ℝÞ × Cð½a, T�,ℝÞg:
Obviously, the defined set B is a Banach space with
kðψ, φÞkB = kψk∞ + kφk∞.

The measurable functions ðψ, φÞ ∈ Cð½a, T�,ℝÞ × Cð½a,
T�,ℝÞ are said to be solutions of problem Equation (3) if
they satisfy problem (3) associated with the given boundary
conditions, our next lemma will introduce the solutions of
Equation (3), which indeed needed to investigate the exis-
tence results.

Lemma 10. If p, q ∈ Cð½a, T�,ℝÞ, then the solution of

CD
α1 CHD

β1ψ tð Þ
� �

= p tð Þ,
CD

α2 CHD
β2φ tð Þ

� �
= q tð Þ,

ψ að Þ = ψ Tð Þ = 0, φ að Þ = φ Tð Þ = 0:

8>>>><
>>>>:

ð10Þ

With 0 < αi, βi ≤ 1, i = 1, 2:a ≤ t ≤ T , is given by

ψ tð Þ = 1
Γ α1ð ÞΓ β1ð Þ

ðt
a

ðr
a

ln t
r

� �β1−1
r − xð Þα1−1p xð Þdx dr

r

−
ln t/að Þ
n T/að Þ

� �β1 1
Γ α1ð ÞΓ β1ð Þ

ðT
a

ðr
a

� ln T
r

� �β1−1

r − xð Þα1−1p xð Þdx dr
r
,

ð11Þ

φ tð Þ = 1
Γ α2ð ÞΓ β2ð Þ

ðt
a

ðr
a

ln t
r

� �β2−1

r − xð Þα2−1q xð Þdx dr
r

−
ln t/að Þ
n T/að Þ

� �β2 1
Γ α2ð ÞΓ β2ð Þ

ðT
a

ðr
a

� ln T
r

� �β2−1

r − xð Þα2−1q xð Þdx dr
r
:

ð12Þ

Proof. Apply RLIαi , i = 1, 2 to Equation (10), respectively,
implies

CHD
β1ψ tð Þ = RLI

α1p tð Þ + c0, c0 ∈ℝ, ð13Þ

CHD
β2φ tð Þ = RLI

α2q tð Þ + d0, d0 ∈ℝ: ð14Þ

Now, apply HIβi , i = 1, 2 to Equation (13) and Equation
(14), respectively, implies

ψ tð Þ = HI
β1 RLI

α1p
� �

tð Þ + c0
ln t/að Þð Þβ1
Γ β1 + 1ð Þ + c1, c0, c1 ∈ℝ,

ð15Þ

φ tð Þ = HI
β2 RLI

α2q
� �

tð Þ + d0
ln t/að Þð Þβ2

Γ β2 + 1ð Þ + d1, d0, d1 ∈ℝ:

ð16Þ

Using the conditions ψðaÞ = 0, φðaÞ = 0 in Equation (15)
and Equation (16), respectively, yields c1, d1 are both zeros.
Again the conditions ψðTÞ = 0, φðTÞ = 0 in Equation (15)
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and Equation (16), respectively, give

c0 = −
Γ β1 + 1ð Þ
ln T/að Þð Þβ1

HI
β1 RLI

α1p
� �

Tð Þ,

d0 = −
Γ β2 + 1ð Þ
ln T/að Þð Þβ2

HI
β2 RLI

α2q
� �

Tð Þ:
ð17Þ

Back substituting ci, di, i = 1, 2 obtained above in equa-
tions Equation (15) and Equation (16), we get

ψ ðtÞ = HIβ1ðRLIα1pÞðtÞ − ðln ðt/aÞ/ln ðT/aÞÞβ1HIβ1ðRLIα1
pÞðTÞ, and φðtÞ = HIβ2ðRLIα2qÞðtÞ − ðln ðt/aÞ/ln ðT/aÞÞβ2

HIβ2ðRLIα2qÞðTÞ . The proof is completed.

To begin formulating theoretical results regarding the
problem of having a solution to the system of fractional dif-
ferential equations given by Equation (3). We will force the
following conditions to be hold true.

(C1). Assume the functions ς, ξ : ½a, T� ×ℝ2 ⟶ℝ sat-
isfy Carathéodory conditions.

(C2). ∃lς, lξ ∈ L∞ð½a, T�,ℝ+Þ, and there exist a nonde-
creasing continuous function ϑς, ϑξ : ℝ+ ⟶ℝ+, such that
, ∀t ∈ ½a, T�, ∀ðψ, φÞ ∈ B, we have

ς t, ψ, φð Þk k∞ ≤ lς tð Þϑς ψk k∞ + φk k∞
� �

,
ξ t, ψ, φð Þk k∞ ≤ lξ tð Þϑξ ψk k∞ + φk k∞

� �
:

ð18Þ

(C3). Let S ⊂ B × B, be a bounded set, and ∀t ∈ ½a, T�,
then

κ ς t, Sð Þð Þ ≤ lς tð Þκ Sð Þ,
κ ξ t, Sð Þð Þ ≤ lξ tð Þκ Sð Þ:

ð19Þ

Also, one can use the fact that ðr − aÞα1 ≤ ðT − aÞα1 , to
deduce that

Ξ1 = sup
a≤t≤T

1
Γ α1ð ÞΓ β1ð Þ

ðt
a

ðr
a

ln t
r

� �β1−1
r − xð Þα1−1dx dr

r

(

+ ln t/að Þ
ln T/að Þ
� �β1 1

Γ α1ð ÞΓ β1ð Þ
ðT
a

ðr
a

ln T
r

� �β1−1
r − xð Þα1−1dx dr

r

)

≤
2 T − að Þα1 ln T/að Þð Þα1
Γ α1 + 1ð ÞΓ β1 + 1ð Þ ,

Ξ2 = sup
a≤t≤T

1
Γ α2ð ÞΓ β2ð Þ

ðt
a

ðr
a

ln t
r

� �β2−1
r − xð Þα2−1dx dr

r

(

+ ln t/að Þ
ln T/að Þ
� �β2 1

Γ α2ð ÞΓ β2ð Þ
ðT
a

ðr
a

ln T
r

� �β2−1
r − xð Þα2−1dx dr

r

)

≤
2 T − að Þα2 ln T/að Þð Þα2
Γ α2 + 1ð ÞΓ β2 + 1ð Þ :

ð20Þ

Theorem 11. Assume that the conditions (C1), (C2), and
(C3) are satisfied. If max fΞ1

�lς, Ξ2
�lξg < 1, then there exist at

least one solution for the boundary value problem Equation
(3) on ½a, T�.

Proof. Beginning with introducing the following continuous
operator ϒ : B⟶ B, asϒ = ðϒ 1ðψ, φÞðtÞ,ϒ 2ðψ, φÞðtÞÞ,
where

ϒ 1 ψ, φð Þ tð Þ = 1
Γ α1ð ÞΓ β1ð Þ

ðt
a

ðr
a

ln t
r

� �β1−1
r − xð Þα1−1 ς x, ψ xð Þ, φ xð Þð Þk kdx dr

r

−
ln t/að Þ
n T/að Þ

� �β1 1
Γ α1ð ÞΓ β1ð Þ

ðT
a

ðr
a

� ln T
r

� �β1−1
r − xð Þα1−1 ς x, ψ xð Þ, φ xð Þð Þk kdx dr

r
,

ϒ 2 ψ, φð Þ tð Þ = 1
Γ α2ð ÞΓ β2ð Þ

ðt
a

ðr
a

ln t
r

� �β2−1
r − xð Þα2−1ξ x, ψ xð Þ, φ xð Þð Þdx dr

r

−
ln t/að Þ
n T/að Þ

� �β2 1
Γ α2ð ÞΓ β2ð Þ

ðT
a

ðr
a

� ln T
r

� �β2−1
r − xð Þα2−1ξ x, ψ xð Þ, φ xð Þð Þdx dr

r
:

ð21Þ

According to the conditions (C1) and (C2), the operator
ϒ is well defined. Then, the following operator equation can
be an equivalent equation to the fractional equations given
by Equation (11) and Equation (12)

ψ, φð Þ =ϒ ψ, φð Þ: ð22Þ

Subsequently, proving the existence of the solution to
Equation (22) is equivalent to proving the existence of a
solution to Equation (3).

Let Θε = fðψ, φÞ ∈ B : kðψ, φÞk ≤ ε, ε > 0g be a closed
bounded convex ball in B with ε ≥�lςΞ1ϑςðεÞ +�lξΞ2ϑξðεÞ,
where �lς = sup

a≤t≤T
lςðtÞ,.

For the possibility of applying Mönch’s fixed point theo-
rem, we will proceed in the proof in the form of four steps,
and thus, we achieve the desired goal by proving the exis-
tence of a solution to the equation given in Equation (3).

Firstly, we show that ϒΘε ⊂Θε, for this, we lett ∈ ½a, T�,
and for any ðψ, φÞ ∈Θε, we have

ϒ 1 ψ, φð Þk k∞ ≤
1

Γ α1ð ÞΓ β1ð Þ
ðt
a

ðr
a

� ln t
r

� �β1−1
r − xð Þα1−1 ς x, ψ xð Þ, φ xð Þð Þk k∞dx

dr
r

+ ln t/að Þ
ln T/að Þ
� �β1 1

Γ α1ð ÞΓ β1ð Þ
ðT
a

ðr
a

� ln T
r

� �β1−1
r − xð Þα1−1 ς x, ψ xð Þ, φ xð Þð Þk k∞dx

dr
r
:

ð23Þ

Based on (C2), ∀t ∈ ½a, T�, observe that

ς t, ψ tð Þ, φ tð Þð Þk k∞ ≤ lς tð Þϑς ψ tð Þk k∞ + φ tð Þk k∞
� �

≤�lςϑς εð Þ,
ð24Þ
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then

ϒ 1 ψ, φð Þk k∞ ≤
1

Γ α1ð ÞΓ β1ð Þ
ðt
a

ðr
a

ln t
r

� �β1−1

� r − xð Þα1−1lς tð Þϑς ψ tð Þk k∞ + φ tð Þk k∞
� �

dx
dr
r

+ ln t/að Þ
ln T/að Þ
� �β1 1

Γ α1ð ÞΓ β1ð Þ
ðT
a

ðr
a

� ln T
r

� �β1−1
r − xð Þα1−1lς tð Þϑς ψ tð Þk k∞ + φ tð Þk k∞

� �
dx

dr
r
,

≤�lςϑς ψ tð Þk k∞ + φ tð Þk k∞
� �

sup
a≤t≤T

� 1
Γ α1ð ÞΓ β1ð Þ

ðt
a

ðr
a

ln t
r

� �β1−1
r − xð Þα1−1dx dr

r

(

+ ln t/að Þ
ln T/að Þ
� �β1 1

Γ α1ð ÞΓ β1ð Þ
ðT
a

ðr
a

ln T
r

� �β1−1
r − xð Þα1−1dx dr

r

)

≤�lςΞ1ϑς εð Þ:
ð25Þ

Similarly,

ϒ 2 ψ, φð Þk k∞ ≤
1

Γ α2ð ÞΓ β2ð Þ
ðt
a

ðr
a

ln t
r

� �β2−1

� r − xð Þα2−1lξ tð Þϑξ ψ tð Þk k∞ + φ tð Þk k∞
� �

dx
dr
r

+ ln t/að Þ
n T/að Þ

� �β2 1
Γ α2ð ÞΓ β2ð Þ

ðT
a

ðr
a

� ln T
r

� �β2−1
r − xð Þα2−1lξ tð Þϑξ ψ tð Þk k∞ + φ tð Þk k∞

� �
dx

dr
r

≤�lξΞ2ϑξ εð Þ:
ð26Þ

Equation (25) and Equation (26) imply that

ϒ ψ, φð Þk kB = ϒ 1 ψ, φð Þk k∞ + ϒ 2 ψ, φð Þk k∞ ≤�lςΞ1ϑς εð Þ+ ≤�lξΞ2ϑξ εð Þ ≤ ε:

ð27Þ

This proves that ϒΘε ⊂Θε.
Secondly, we need to show the continuity for ϒ to see

this, we take the sequence fun = ðψn, φnÞg ∈Θε, such that
un ⟶ u = ðψ, φÞ as n⟶∞:.

Owing to the Carathéodory continuity of ς, it is obvious
that

ς ·ð Þ, ψn ·ð Þ, φn ·ð Þð Þ⟶ ς ·ð Þ, ψ ·ð Þ, φ ·ð Þð Þas n⟶∞: ð28Þ

Keeping in mind was given in (C2), one can deduce that

ln t
r

� �β1−1
r − xð Þα1−1 ς rð Þ, ψn rð Þ, φn rð Þð Þ − ς rð Þ, ψ rð Þ, φ rð Þð Þk k∞

≤�lςϑς εð Þ ln t
r

� �β1−1
r − xð Þα1−1

 !
:

ð29Þ

Together with the Lebesgue dominated convergence the-
orem and the fact that the function

r↦�lςϑςðεÞððln ðt/rÞÞβ1−1ðr − xÞα1−1Þ is the Lebsegue inte-
grable on ½a, T�, we have

1
Γ α1ð ÞΓ β1ð Þ

ðt
a

ðr
a

ln t
r

� �β1−1
r − xð Þα1−1 ς rð Þ, ψn rð Þ, φn rð Þð Þ − ς rð Þ, ψ rð Þ, φ rð Þð Þk k∞dx

dr
r

 

+ ln t/að Þ
ln T/að Þ
� �β1 1

Γ α1ð ÞΓ β1ð Þ
ðT
a

ðr
a

ln T
r

� �β1−1
r − xð Þα1−1 ς rð Þ, ψn rð Þ, φn rð Þð Þk

− ς rð Þ, ψ rð Þ, φ rð Þð Þk∞dx
dr
r

�
⟶ 0as n⟶∞:

ð30Þ

Yields to kϒ 1ðψn, φnÞðtÞ −ϒ 1ðψ, φÞðtÞk∞ ⟶ 0
as n⟶∞:∀t ∈ ½a, T�, we get

ϒ 1 ψn, φnð Þ −ϒ 1 ψ, φð Þk k∞ ⟶ 0 as n⟶∞, ð31Þ

that is the operator ϒ 1 is continuous.
In a like manner, we have

ϒ 2 ψn, φnð Þ −ϒ 2 ψ, φð Þk k∞ ⟶ 0 as n⟶∞, ð32Þ

Combining (31) and (32), we obtain

ϒ ψn, φnð Þ −ϒ ψ, φð Þk k∞ ⟶ 0 as n⟶∞: ð33Þ

From equation (33), we conclude that the operator ϒ is
continuous.

Third, to verify the equicontinuity for the operator ϒ , let
t1, t2 ∈ ½a, T�, ðt1 < t2Þ, and for any ðψ, φÞ ∈Θε, then

ϒ 1 ψ, φð Þ t2ð Þ −ϒ 1 ψ, φð Þ t1ð Þk k∞
≤

1
Γ α1ð ÞΓ β1ð Þ

ðt1
a

ðr
a

ln t2
r

� �β1−1
− ln t1

r

� �β1−1
" #

� r − xð Þα1−1 ς x, ψ xð Þ, φ xð Þð Þk k∞dx
dr
r

+ 1
Γ α1ð ÞΓ β1ð Þ

ðt1
t1

ðr
a

� ln t2
r

� �β1−1
r − xð Þα1−1 ς x, ψ xð Þ, φ xð Þð Þk k∞dx

dr
r

+ ln t2/að Þð Þβ1 − ln t2/að Þð Þβ1

l n T/að Þð Þβ1Γ α1ð ÞΓ β1ð Þ

 !ðT
a

ðr
a

ln T
r

� �β1−1

� r − xð Þα1−1 ς x, ψ xð Þ, φ xð Þð Þk k∞dx
dr
r
,

≤ �lς tð Þϑς εð Þ� �
× 1

Γ α1ð ÞΓ β1ð Þ
ðt1
a

ðr
a

ln t2
r

� �β1−1
− ln t1

r

� �β1−1
" # 

� r − xð Þα1−1dx dr
r
+ 1
Γ α1ð ÞΓ β1ð Þ

ðt1
t1

ðr
a

ln t2
r

� �β1−1
r − xð Þα1−1dx dr

r

+ ln t2/að Þð Þβ1 − ln t1/að Þð Þβ1

ln T/að Þð Þβ1Γ α1ð ÞΓ β1ð Þ

" #ðT
a

ðr
a

ln T
r

� �β1−1
r − xð Þα1−1dx dr

r

!

⟶ 0 as t1 ⟶ t2:

ð34Þ
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Similarly, we get

ϒ 2 ψ, φð Þ t2ð Þ −ϒ 2 ψ, φð Þ t1ð Þk k∞
≤ �lξ tð Þϑξ εð Þ� �

× 1
Γ α2ð ÞΓ β2ð Þ

ðt1
a

ðr
a

ln t2
r

� �β2−1
− ln t1

r

� �β2−1
" #

r − xð Þα2−1dx dr
r

 

+ 1
Γ α2ð ÞΓ β2ð Þ

ðt1
t1

ðr
a

ln t2
r

� �β2−1
r − xð Þα2−1dx dr

r

+ ln t2/að Þð Þβ2 − ln t2/að Þð Þβ2

l n T/að Þð Þβ2Γ α2ð ÞΓ β2ð Þ

" #ðT
a

ðr
a

ln T
r

� �β2−1
r − xð Þα2−1dx dr

r

!
⟶ 0 as t1 ⟶ t2:

ð35Þ

Note that the R.H.S’s of the above inequalities of Equa-
tion (34) and Equation (35) are free of ðψ, φÞ ∈Θε, which
implies that ϒ is equicontinuous and bounded.

Fourth and finally, we need to satisfy Mönch’s hypothe-
sis, so we letU =U1 ∩U2,.

where U1,U2 ⊆Θε: Moreover, U1,U2 are assumed to be
bounded and equicontinuous, such that

U1 ⊂ conv ϒ 1 U1ð Þ ∪ 0f gð Þ, andU2 ⊂ conv ϒ 2 U2ð Þ ∪ 0f gð Þ:
ð36Þ

Thus, the functions I1ðtÞ = κðU1ðtÞÞ,I2ðtÞ = κðU2ðtÞÞ
are continuous on ½a, T�.

Based on lemma Equation(10), lemma Equation (11),
and (C3), we get

I1 tð Þ = κ U1 tð Þð Þ ≤ κ conv ϒ 1 U1ð Þ tð Þ ∪ 0f gð Þð Þ ≤ κ ϒ 1 U1ð Þ tð Þð Þ

≤ κ
1

Γ α1ð ÞΓ β1ð Þ
ðt1
a

ðr
a

ln t2
r

� �β1−1
− ln t1

r

� �β1−1
" #(

� r − xð Þα1−1 ς x, ψ xð Þ, φ xð Þð Þk k∞dx
dr
r

+ 1
Γ α1ð ÞΓ β1ð Þ

ðt1
t1

ðr
a

ln t2
r

� �β1−1

� r − xð Þα1−1 ς x, ψ xð Þ, φ xð Þð Þk k∞dx
dr
r

+ ln t2/að Þð Þβ1 − ln t2/að Þð Þβ1

ln T/að Þ

 !

� 1
Γ α1ð ÞΓ β1ð Þ

ðT
a

ðr
a

ln T
r

� �β1−1
r − xð Þα1−1 ς x, ψ xð Þ, φ xð Þð Þk k∞dx

dr
r
: ψ, φð Þ ∈U1

)

≤
1

Γ α1ð ÞΓ β1ð Þ
ðt1
a

ðr
a

ln t2
r

� �β1−1
− ln t1

r

� �β1−1
" #

r − xð Þα1−1κ ς x,U1 xð Þð Þð Þdx dr
r

+ 1
Γ α1ð ÞΓ β1ð Þ

ðt1
t1

ðr
a

ln t2
r

� �β1−1
r − xð Þα1−1κ ς x,U1 xð Þð Þð Þdx dr

r

+ ln t2/að Þð Þβ1 − ln t2/að Þð Þβ1

ln T/að Þ

 !
1

Γ α1ð ÞΓ β1ð Þ
ðT
a

ðr
a

ln T
r

� �β1−1

� r − xð Þα1−1κ ς x,U1 xð Þð Þð Þdx dr
r

≤
1

Γ α1ð ÞΓ β1ð Þ
ðt1
a

ðr
a

ln t2
r

� �β1−1
− ln t1

r

� �β1−1
" #

� r − xð Þα1−1lς xð Þκ U1 xð Þð Þdx dr
r

+ 1
Γ α1ð ÞΓ β1ð Þ

ðt1
t1

ðr
a

ln t2
r

� �β1−1

� r − xð Þα1−1lς xð Þκ U1 xð Þð Þdx dr
r

+ ln t2/að Þð Þβ1 − ln t2/að Þð Þβ1

ln T/að Þ

 !
1

Γ α1ð ÞΓ β1ð Þ
ðT
a

ðr
a

� ln T
r

� �β1−1
r − xð Þα1−1lς xð Þκ U1 xð Þð Þdx dr

r
≤ Ξ1�lς I1k k∞:

ð37Þ

That is
kI1k ≤ Ξ1

�lςkI1k, but it is assumed that max fΞ1
�lς, Ξ2

�lξg < 1, which implies that kI1k∞ = 0, i.e.,

I1 tð Þ = 0,∀t ∈ a, T½ �: ð38Þ

In a like manner, we have I2ðtÞ = 0, ∀t ∈ ½a, T�: So κðU
ðtÞÞ ≤ κðU1ðtÞÞ = 0 and.

κðUðtÞÞ ≤ κðU2ðtÞÞ = 0, which implies that UðtÞ is rela-
tively compact in B × B: Now, Arzela-Ascoli is applicable,
which means that U is relatively compact in Θε:, and there-
fore, using theorem 9, we deduce that the operator ϒ has a
fixed point ðψ, φÞ (solution of the problem Equation (3))
on Θε: And that ends the proof.

4. Example

In this section, we provide an applied example that supports
the theoretical results reached through this study.

Define ψ0 = fψ = ðψ1, ψ2,⋯, ψn,⋯Þ: lim
n⟶∞

ψn = 0g, it is
obvious that z0 is a Banach space withkψk∞ = sup

n≥1
jψnj: For

this, we consider the following boundary value problem:

CD
0:5 CHD

0:75
ψ tð Þ

� �
= ς t, ψ tð Þ, φ tð Þð Þ, t ∈ 1, 3½ �,

CD
0:6 CHD

0:9
φ tð Þ

� �
= ξ t, ψ tð Þ, φ tð Þð Þ, t ∈ 1, 3½ �,

ψ 1ð Þ = ψ 3ð Þ = 0, 0, 0,⋯, 0,⋯ð Þ, φ 1ð Þ = φ 3ð Þ = 0, 0, 0,⋯, 0,⋯ð Þ:

8>>>><
>>>>:

ð39Þ

Here, α1 = 0:5, β1 = 0:75, α2 = 0:6, β2 = 0:9, a = 1, and T
= 3:

Now, let us take for example

ς t, ψ tð Þ, φ tð Þð Þ = 1
ln t + 10

1
4n + ln 1 + ψnj j + φnj jð Þ
� �� 	

, n ≥ 1,

ξ t, ψ tð Þ, φ tð Þð Þ = t
10

1
n4

+ tan−1 1 + ψnj j + φnj jð Þ
� �� 	

, n ≥ 1:

ð40Þ

∀t ∈ ½1, 3�, withfψngn≥1, fφngn≥1 ∈ ψ0, assumption (C1)
of theorem 11 is satisfied. Furthermore,

ς t, ψ, φð Þk k∞ ≤
1

ln t + 10
1
4n + ln 1 + ψnj j + φnj jð Þ
� �










∞

≤
1

ln t + 10 ψk k + 1ð Þ = lς tð Þϑς ψk kð Þ:
ð41Þ

Similarly,

ξ t, ψ, φð Þk k∞ ≤
t
10

1
n4

+ tan−1 1 + ψnj j + φnj jð Þ
� �










∞

≤
t
10 ψk k + 1ð Þ = lξ tð Þϑξ ψk kð Þ:

ð42Þ

That is (C2) of theorem 11 is satisfied as well.
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Next, if we consider the bounded subset S ⊂ ψ0 × ψ0, we
obtain

κ ς t, Sð Þð Þ ≤ lς tð Þκ Sð Þ,
κ ξ t, Sð Þð Þ ≤ lξ tð Þκ Sð Þ,

ð43Þ

where in our case, we have lςðtÞ = 1/ln t + 9, lξðtÞ = t/10; the
latter two inequalities show that the condition (C2) of the
theorem 11 is satisfied.

Finally, we calculate

�lς =
1
10 , Ξ1 ≤

2 T − að Þα1 ln T/að Þð Þα1
Γ α1 + 1ð ÞΓ β1 + 1ð Þ = 3:6411,

�lξ =
3
10 , Ξ2 ≤

2 T − að Þα2 ln T/að Þð Þα2
Γ α2 + 1ð ÞΓ β2 + 1ð Þ = 0:9376:

ð44Þ

Then, max fΞ1
�lς, Ξ2

�lξg =max f0:3611, 0:28128g =
0:3611 < 1: So all conditions of theorem 11 satisfied, that is
the problem Equation (39) has at least one
solutionðψ, φÞ ∈ Cð½1, 3�, ψ0Þ × Cð½1, 3�, ψ0Þ.

5. Conclusion

In the current paper, we studied the existence and unique-
ness of solution for a coupled system of a mixed fractional
differential equations. The main results are established by
the aid “Mönch’s fixed point theorem.” In addition, an
applied example that supports the theoretical results reached
through this study is included. For future work, more inves-
tigations can be performed for such a system by applying
another type of fractional derivatives to verify the existence
and uniqueness issue, stability via Ulam-Hyeres technique
is also possible to be verified.
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In this paper, we are interested in the problem of determining the source function for the Sobolev equation with fractional
Laplacian. This problem is ill-posed in the sense of Hadamard. In order to edit the instability instability of the solution, we
applied the fractional Landweber method. In the theoretical analysis results, we show the error estimate between the exact
solution and the regularized solution by using an a priori regularization parameter choice rule and an a posteriori
regularization parameter choice rule. Finally, we investigate the convergence of the source function when fractional order
β⟶ 1+.

1. Introduction

Let Ω be a bounded domain in ℝNðN ≥ 1Þ with sufficiently
smooth boundary ∂Ω. In this paper, we are interested to
study the following pseudo-parabolic equation

ut − aΔut + −Δð Þβu = F x, tð Þ, inΩ × 0, Tð �,
uj∂Ω = 0, inΩ,

(
ð1Þ

where a > 0 is the diffusion coefficient, F is the source func-
tion, and u desribe the distribution of the temperature at
position x and time t. The paramater β is the fractional
order of Laplacian operator with β ≥ 1.

Pseudo-parabolic equations or called Sobolev equation
describe describing various important physical phenomena,
such as heat conduction involving two temperatures [1],
homogeneous liquid permeability in fractured rock [2], uni-
directional propagation of long waves in a nonlinearly dis-
persed medium [3], and its references.

Until now, the results on fractional pseudo-parabolic
equations equation are not rich we can mention them in a
few some few papers, for example, [1, 4–6]. From the frac-
tion operator ð−ΔÞβ appearing in the main equation which
is nonlocal, many scientists believe that it describes some
physical phenomena more accurately than classical integrals
differential equation. Properties of fractional operator ð−ΔÞβ
have been described in detail in [1].

For equation (1) we usually divide it into three forms.

(i) The first type is an initial value problem, i.e., deter-
mining u when the initial value uðx, 0Þ = u0ðxÞ and
the source function F is known. The results in this
category are vibrant and plentiful ([7, 8])

(ii) The second type is terminal value problem, i.e.,
recovering the function u from the terminal value
data uðx, TÞ = uTðxÞ and the source function data
F. To the best of our knowledge, there are limited
results for the terminal value problem. We can list
some recent papers, for example, [9–13]. In general,
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the terminal value problem is an ill-posed problem;
namely, a solution does do not exist, and if a solu-
tion exists, it does not depend continuously on the
data. The results of the regularized method for this
form were recently investigated by [14, 15]

(iii) The last type is inverse source problem, i.e., recov-
ering the source function F if we know the initial
value data uðx, 0Þ = u0ðxÞ and the terminal data
uðx, TÞ = uTðxÞ

The main purpose of this paper is to determine the
source function F = ψðtÞf ðxÞ with the split form when we
know that

u x, Tð Þ = g xð Þ, u x, 0ð Þ = 0, x ∈Ω: ð2Þ

The question of determining the function f when we
know ψ and g will be studied carefully in this paper. It is sur-
prising that the problem of determining the source function
for the pseudo-parabolic equation has not been investigated
before. We detail the objective of the problem. In practice,
the given dataðψδ, gδÞis noisy by the observed data ðψ, gÞ
by level δ > 0 such that

ψδ − ψk kL∞ 0,Tð Þ + gδ − gk kL2 Ωð Þ ≤ δ: ð3Þ

Our main task here is to construct a regularized method
which looking for the function f δ and claims claim that

lim∥f δ − f ∥ = 0, when δ⟶ 0+, ð4Þ

in the appropriate norm. It can be claimed that our paper
was one of the first works on the inverse source problem
for the Sobolev equation.

In [7], Tuan-Long-Thinh used the Tikhonov regulariza-
tion method to regularize regularized an inverse source
problem for time fractional diffusion equation. They also
introduced two methods, a priori and a posteriori parameter
choice rules, to obtain the convergence estimate of the regu-
larized methods. In [16], the authors studied the problem of
finding the source distribution for the linear biparabolic
equation when we have the final observation. Ma et al. [17]
identified the unknown space-dependent source term in a
time-fractional diffusion equation by applying the general-
ized and revised generalized Tikhonov regularization
methods. There are many different regularized methods,
and in this paper, we choose the fractional Landweber regu-
larization method. The Landweber regularization method
was first derived from [18] where the authors applied the fil-
ter regularization technique for solving a linear inverse prob-
lem. Up to now, the Landweber regularization method has
been applied to solve many inverse problems, for example,
[19–21] and references therein. This method is beneficial
very useful for investigating for the linear ill-posed equation.
Recently, Binh et al. [22] studied an inverse source problem
for the Rayleigh–Stokes problem using the Tikhonov
method.

For the reader’s convenience, we would like to outline
the main results and novelties of the paper briefly:

(i) The first goal of this paper is to provide the frac-
tional Landweber method to solve this inverse
space-dependent source problem for pseudo-
parabolic equation. We give the ill-posedness of
our inverse source problem and introduce the con-
vergence rate of the fractional Landweber regular-
ized solution. In addition, we obtain the
convergence rate by using an apriori parameter
choice rule and an a posteriori parameter choice
rule. Looking back at the articles [19–21], we realize
that the source functions in these papers do not
depend on the time function. So, the computation
is not complicated. Meanwhile, the source function
of the current paper depends on the function ψ
which makes the calculation more cumbersome.
The presence of (3) makes our problem more clearly
complex complex than [19–21]. One point to note is
that the method in the article [23] can be applied to
our model, but we approach it differently, in a differ-
ent way.

(ii) The second interesting point in the paper is the
investigation of the convergence of the source func-
tion when the order of derivative approaches 1.
Comparing the difference between the source func-
tion of equation (1) with β > 1 and the classical
pseudo-parabolic equation β = 1 will help us under-
stand more information about problem (1).

The paper is organized as follows. Section 2 states some
preliminary theoretical knowledge. In Section 3, we give the
Fourier formula of the source function and also present the
ill-posedness of our problem. The conditional stability for
the source function source function is also discussed in the
same section. Section 4 provides the fractional Landweber
regularization method and states a convergence estimate
under a priori assumption on the exact solution. The poster-
iori parameter choice rule is also shown in section 4. Finally,
in Section 5, we prove the convergence of the source func-
tion in Hilbert scales space with the appropriate assumption
of ψ and g.

2. Preliminary Results

Let us consider the operator A = −Δ on V ≔H 1
0ðΩÞ ∩H2

ðΩÞ, and assume that the operator A has the eigenvalues
λj such that 0 < λ1 ≤ λ2 ≤⋯≤ λj ≤⋯ which approach ∞
as j goes to ∞, The corresponding eigenfunctions are
denoted by ej ∈ V . Now, let us define fractional powers
of A and its domain. For all s ≥ 0, we define by A s the
following operator:

A sv≔ 〠
∞

j=1
v, ej
� �

λsjej, v ∈D A sð Þ = v ∈ L2 Ωð Þ: 〠
∞

j=1
v, ej
� ��� ��2λ2sj <∞

( )
:

ð5Þ
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The domain ℍsðΩÞ =DðA sÞ is the Banach space
equipped with the norm

vk kD A sð Þ ≔ 〠
∞

j=1
v, ej
� ��� ��2λ2sj

 !1/2

, v ∈D A sð Þ: ð6Þ

We introduce the following two lemmas, which are
useful and helpful in the next proofs.

Lemma 1. Let ψ : ½0, T�⟶ℝ such that ψ0 ≤ ψðtÞ ≤ ψ1
where ψ0 and ψ1 are positive numbers. Let us assume that
β ≥ 1. Then, the following estimates are true:

ðT
0
exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds ≤ ψ1

1 + aλj

λ
β
j

,

1 + aλj

λ
β
j

1 − exp −Tλβ1 1 + aλ1ð Þ−1
� �h i

ψ0

≤
ðT
0
exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds:

ð7Þ

Proof. Since ψðtÞ ≤ ψ1, we infer thatðT
0
exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þ

� ds ≤ ψ1

ðT
0
exp − T − sð Þλβj 1 + aλj

� �−1� �
ds = ψ1

1 + aλj

λ
β
j

:

ð8Þ

Since ψðtÞ ≥ ψ0 > 0, we infer that
ðT
0
exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þ

� ds ≥ ψ0

ðT
0
exp − T − sð Þλβj 1 + aλj

� �−1� �
� ds = 1 + aλj

λ
β
j

1 − exp −Tλβj 1 + aλj

� �−1� �h i
ψ0 ·

ð9Þ

Let us consider the following function:

Φ zð Þ = zβ

1 + az
, z > 0: ð10Þ

The derivative of it is equal to

Φ′ zð Þ = aβzβ−1 + βzβ − zβ

1 + azð Þ2 > 0: ð11Þ

This implies that Φ is an increasing function on ð0, +∞Þ.

Therefore, we get that

λ
β
j 1 + aλj

� �−1 ≥ λ
β
1 1 + aλ1ð Þ−1: ð12Þ

It follows from (9) that

ðT
0
exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þ

� ds ≥ 1 + aλj

λ
β
j

1 − exp −Tλβ1 1 + aλ1ð Þ−1
� �h i

ψ0:
ð13Þ

The proof of the Lemma 1 is completed.

Lemma 2. Let ψ0, ψ1 be positive constants such that ψ0
< ψ < ψ1. By choosing δ ∈ ð0, ψ1/4Þ, and Bðψ0, ψ1Þ = ψ1
+ ðψ0/4Þ, we obtain

4−1ψ0 ≤ ψδ tð Þj j ≤B ψ0, ψ1ð Þ: ð14Þ

Proof. The proof is completed in [26], page 4.

3. Inverse Source Problem: Explicit Form
and Ill-Posedness

Let us first give the explicit of Fourier form of the mild solu-
tion to problems (1) and (2). First, taking the inner product
of both sides of (1) with ejðxÞ, we find that

d
dt

ð
Ω

u x, tð Þej xð Þdx
	 


+ aλj

ð
Ω

u x, tð Þej xð Þdx
	 


+ λ
β
j

ð
Ω

u x, tð Þej xð Þdx
	 


=
ð
Ω

F x, tð Þej xð Þdx,
ð15Þ

and from the initial condition uðx, 0Þ = 0, we have that
ð
Ω

u x, Tð Þej xð Þdx =
ðT
0
exp − T − sð Þλβj 1 + aλj

� �−1� �
�
ð
Ω

F x, sð Þej xð Þdx
	 


ds,
ð16Þ

since Fðx, sÞ = ψðsÞf ðxÞ; we know that

ð
Ω

f xð Þej xð Þdx =
Ð
Ω
g xð Þej xð ÞdxÐ T

0 exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds

·

ð17Þ

Hence, the source function is defined as follows:

f xð Þ = 〠
∞

j=1

Ð
Ω
g xð Þej xð ÞdxÐ T

0 exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds

2
4

3
5ej xð Þ:

ð18Þ

Let us prove the ill-posedness of inverse source problems
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(1) and (2). Logically, we will consider the source function
problem as the problem of finding f satisfying (18). From
now on, we only treat the source term (18).

Theorem 3. The problem of determining f that satisfies (18)
is ill-posed in the sense of Hadamard.

Proof. We defined a linear operator Y : L2ðΩÞ⟶ L2ðΩÞ as
follows:

Y f xð Þ = 〠
∞

j=1

ðT
0
exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds

	 


< f , ej > ej xð Þ =
ð
Ω

k x, ξð Þf ξð Þdξ:

ð19Þ

Due to kðx, ξÞ = kðξ, xÞ, we know Y is a self-adjoint oper-
ator. Next, its compactness is explained as follows. Let us
define the finite rank operators YN as follows:

YN f xð Þ = 〠
N

j=1

ðT
0
exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds

	 

< f , ej > ej xð Þ:

ð20Þ

By some simple calculations and using Lemma 1, we
have

∥YN f − Y f ∥2L2 Ωð Þ ≤ ψ2
1 λ−11 + a
� �2

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
A2

1

〠
+∞

j=N+1

<f , ej >
�� ��2

λ
2β−2
j

: ð21Þ

From (21), we have

YN f − Y f ∥2L2 Ωð Þ ≤
A2

1

λ
2β−2
N

�����
�����f ∥2L2 Ωð Þ ⟶ 0 in L L2 Ωð Þ ; L2 Ωð Þ� �

asN ⟶∞:

ð22Þ

Therefore, Y is a compact operator. The SVDs for the
linear self-adjoint compact operator Y are

Y =
ðT
0
exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds

	 

, ð23Þ

and corresponding eigenvectors are ej which is an orthonor-
mal basis in L2ðΩÞ. Therefore, the inverse source problem
we introduced above can be formulated as an operator equa-
tion Y f ðxÞ = gðxÞ where by gðxÞ is the numerator in for-
mula (18), and by Kirsch, we can conclude that it is ill-
posed. The final time data gi = λiei, by (18), the source term

corresponding to gi is

f i xð Þ = 〠
∞

j=1

ðT
0
exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds

	 
−1

�
ð
Ω

g xð Þej xð Þdx
	 


ej xð Þ

≥
1
λ1

+ a
	 
−1

1 − exp −Tλβi 1 + aλið Þ−1
� �h i−1

ψ−1
0

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A2

λ
β
i ,

ð24Þ

whereby A1 is defined in formula (21). The input final data
g = 0, by (18), the source term corresponding to g is f = 0.
We have error in L2ðΩÞ norm between gm and g

lim
i⟶+∞

∥gi − g∥L2 Ωð Þ = lim
i⟶+∞

λ−1i = 0: ð25Þ

Then, the error in L2 norm between f i and f is estimated
as follows:

f i − fk kL2 Ωð Þ ≥
λi
A2

⟶ lim
i⟶+∞

f i − fk kL2 Ωð Þ ≥ +∞: ð26Þ

From (25) and (26), we deduce that the solution to prob-
lem (1) is unstable in L2ðΩÞ.

Next, we consider stability of the inverse source problem.

Theorem 4. If f ∈DðA sÞ such that

fk kD A sð Þ ≤E, s = k β − 1ð Þ
2

≥ 0, ð27Þ

then we get

fk kL2 Ωð Þ ≤C
−k/ k+2ð Þ
1 E2/ k+2ð Þ gk kk/ k+2ð Þ

L2 Ωð Þ , ð28Þ

where C1 = ða½1 − exp ð−Tλβ1 ð1 + aλ1ÞÞ
−1�ψ0Þ.

Proof. From (18) and the Hölder inequality, it gives

fk k2L2 Ωð Þ = 〠
∞

j=1

Ð
Ω
g xð Þej xð ÞdxÐ T

0 exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds

2
4

3
52

≤ 〠
∞

j=1

Ð
Ω
g xð Þej xð Þ� �2k/ k+2ð Þ

Ð T
0 exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds

h i2
�
ð
Ω

g xð Þej xð Þdx
	 
4/k+2

≤ 〠
∞

j=1

Ð
Ω
f xð Þej xð Þdx� �2

Ð T
0 exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds

� �k
0
B@

1
CA

2/k+2

� 〠
∞

j=1

ð
Ω

g xð Þej xð Þdx
	 
2

 !k/k+2

·

ð29Þ
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Applying Lemma 1 and the priori boundary condition
(27), we have

〠
∞

j=1

Ð
Ω
f xð Þej xð Þdx� �2

Ð T
0 exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds

� �k
= 〠

∞

j=1

ð
Ω

f xð Þej xð Þdx
	 
2

λ
k β−1ð Þ
j

� a 1 − exp −Tλβ1 1 + aλ1ð Þ−1
� �h i

ψ0

� �−k
≤E2 C1ð Þ−k:

ð30Þ

Combining (29) to (30), one has

∥f ∥L2 Ωð Þ ≤C
−k/ k+2ð Þ
1 E2/ k+2ð Þ∥g∥k/ k+2ð Þ

L2 Ωð Þ , ð31Þ

where C1 = ða½1 − exp ð−Tλβ1 ð1 + aλ1Þ−1Þ�ψ0Þ. The proof of
this theorem is completed.

4. A Fractional Landweber Method and
Convergent Rate

In this section, we apply the fractional Landweber regulari-
zation method to solve the inverse source problem (1) and
give a convergence estimate. The construction of this
method and its iterative implementation are clarified in
[19]. We denote the fractional Landweber regularization
solution with the observed data by

f c δð Þ,δ xð Þ = 〠
∞

j=1
1 − 1 − b

λ−11 + a

λ
β−1
j

 !2" #c δð Þ

�
Ð
Ω
gδ xð Þej xð Þdx� �

ej xð ÞÐ T
0 exp − T − sð Þλβj 1 + aλj

� �−1� �
ψδ sð Þds

,

ð32Þ

f dc δð Þ,δ xð Þ = 〠
∞

j=1
1 − 1 − b

λ−11 + a

λ
β−1
j

 !2 !c δð Þ2
4

3
5d

�
Ð
Ω
gδ xð Þej xð Þdx� �

ej xð ÞÐ T
0 exp − T − sð Þλβj 1 + aλj

� �−1� �
ψδ sð Þds

,

ð33Þ

f dc δð Þ xð Þ = 〠
∞

j=1
1 − 1 − b

λ−11 + a

λβ−1j

 !2 !c δð Þ2
4

3
5d

�
Ð
Ω
g xð Þej xð Þdx� �

ej xð ÞÐ T
0 exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds

·

ð34Þ
It is obvious to see that formulas (33) and (34) are more

complicated. For simplicity, we put Cβða, s, λjÞ = exp ð−ðT −

sÞλβj ð1 + aλjÞ−1Þ. Expressions (33) and (34) become

f dc,δ xð Þ = 〠
∞

j=1
1 − 1 − b

λ−11 + a

λ
β−1
j

 !2 !c δð Þ2
4

3
5d

�
Ð
Ω
gδ xð Þej xð Þdx� �

ej xð ÞÐ T
0Cβ a, s, λj

� �
ψδ sð Þds

, 12 < d < 1,

ð35Þ

f dc xð Þ = 〠
∞

j=1
1 − 1 − b

λ−11 + a

λ
β−1
j

 !2 !c δð Þ2
4

3
5d

�
Ð
Ω
g xð Þej xð Þdx� �

ej xð ÞÐ T
0Cβ a, s, λj

� �
ψ sð Þds

, 12 < d < 1,

ð36Þ

where d ∈ ð1/2, 1� is called the fractional parameter and cðδÞ
≥ 1 is a regularization parameter and b ∈ ð0, ðλβ−11 /λ−11 + aÞ2Þ.
If d = 1, it is the classical Landweber method. Next, we have
the following lemmas:

Lemma 5. For 0 < λ < 1, τ > 0, n ∈ℕ, let rnðλÞ≔ ð1 − λÞn,
we get

rn λð Þλτ ≤ θτ n + 1ð Þ−τ, ð37Þ

where

θτ =
1, 0 ≤ τ ≤ 1,
ττ, τ > 1:

(
ð38Þ

Proof. Please see in [19].

Lemma 6. For ð1/2Þ < d < 1, cðδÞ ≥ 1, choosing b ∈ ð0,
ðλβ−11 /λ−11 + aÞ2Þ then 0 < bðλ−11 + a/λβ−11 Þ2 < 1, by denoting

z = bðλ−11 + a/λβ−11 Þ2, we have the following estimates:

að Þ 1 − 1 − zð Þc½ �d z
b

� �−1/2
≤ b1/2c1/2,

bð Þ 1 − zð Þc z
b

� �ς/2
≤

ς

2b

� �ς/2
c−ς/2:

ð39Þ

Proof. The proof can be found in [19].

4.1. A Priori Parameter Choice Rule

Theorem 7. Suppose that f is given by (18) such that ∥f
∥DðAkðβ−1ÞÞ ≤E for any E > 0. Let the data ðψ, g, ψδ, gδÞ satisfy
(3). If we choose ½cðδÞ� = ðE/δÞ2/k+1, then we obtain

∥f rc δð Þ,δ − f ∥L2 Ωð Þis of order δ
k/k+1, ð40Þ

where f dcðδÞ,δ is a regularized solution defined in (35).
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Proof. By using the triangle inequality, we have

∥f dc δð Þ,δ − f ∥L2 Ωð Þ ≤ ∥f dc δð Þ,δ − f dc δð Þ∥L2 Ωð Þ+∥f dc δð Þ − f ∥L2 Ωð Þ ·
ð41Þ

We receive ∥f dcðδÞ,δ − f dcðδÞ∥L2ðΩÞ as follows:

f dc δð Þ,δ xð Þ − f dc δð Þ xð Þ = 〠
∞

j=1
1 − 1 − b

λ−11 + a

λ
β−1
j

 !2 !c δð Þ2
4

3
5d

�
Ð
Ω
gδ xð Þej xð Þdxej xð ÞÐ T

0Cβ a, s, λj

� �
ψδ sð Þds

−
Ð
Ω
g xð Þej xð Þdxej xð ÞÐ T

0Cβ a, s, λj

� �
ψ sð Þds

 !
·

ð42Þ

From (42), we get

∥f dc δð Þ,δ − f dc δð Þ∥L2 Ωð Þ =〠∞
j=1 1 − 1 − b

λ−11 + a

λβ−1j

 !2 !c δð Þ2
4

3
5d Ð

Ω
gδ xð Þ − g xð Þð Þej xð ÞdxÐ T

0Cβ a, s, λj

� �
ψδ sð Þds

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I 1

+〠∞
j=1 1 − 1 − b

λ−11 + a

λβ−1j

 !2 !c δð Þ2
4

3
5d Ð

Ω
g xð Þej xð ÞdxÐ T

0Cβ a, s, λj

� �
ψδ sð Þds

−
Ð
Ω
g xð Þej xð ÞdxÐ T

0Cβ a, s, λj

� �
ψ sð Þds

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
I 2

·

ð43Þ

Using (43), Lemma 6, and Lemma 1 and noting that

jðλ−11 + aÞ/λβ−1j j−1, we provide the estimation ofI 1 as follows:

I 1 ≤ 〠
∞

j=1
1 − 1 − b

λ−11 + a

λβ−1j

 !2 !c δð Þ2
4

3
5d

λ−11 + a

λβ−1j

�����
�����
−1

× λ−11 + a

λ
β−1
j

�����
����� λ

β−1
j

λ−11 + a

�����
����� 4ψ0

Ð
Ω
gδ xð Þ − g xð Þð Þej xð Þdx

1 − exp −Tλ1 1 + aλ1ð Þ−1� � ��
 !

≤ c δð Þ½ �1/2b1/24ε ψ0 1 − exp −Tλ1 1 + aλ1ð Þ−1� �� � �−1
:

ð44Þ

Next, we have the estimation of I 2

I 2 ≤ 〠
∞

j=1

Ð T
0Cβ a, s, λj

� �
ψ sð Þ − ψδð ÞdsÐ T

0Cβ a, s, λj

� �
ψδ sð Þds

×
Ð
Ω
g xð Þej xð Þdxej xð ÞÐ T

0Cβ a, s, λ j

� �
ψ sð Þds

�����
�����

≤
4δ
ψ0

fk kL2 Ωð Þ:

ð45Þ

Combining (42) to (45), we derive that

f dc δð Þ,δ − f dc δð Þ
��� ���

L2 Ωð Þ
≤ c δð Þ½ �1/2b1/24δ

� ψ0 1 − exp −Tλ1 1 + aλ1ð Þ−1� �� � �−1 + 4δ
ψ0

fk kL2 Ωð Þ:

ð46Þ

Next, we give

f dc δð Þ − f
��� ���2

L2 Ωð Þ
= 〠

∞

j=1
1 − 1 − 1 − b

λ−11 + a

λβ−1j

 !2 !c δð Þ2
4

3
5d

2
64

3
75
2

�
Ð
Ω
g xð Þej xð ÞdxÐ T

0Cβ a, s, λ j

� �
ψ sð Þds

�����
�����
2

≤ 〠
∞

j=1
1 − 1 − 1 − b

λ−11 + a

λβ−1j

 !2 !c δð Þ2
4

3
5d

2
64

3
75
2

� λ−k β−1ð Þ
j fk k2D Ak β−1ð Þð Þ ≤ 〠

∞

j=1
1 − b

λ−11 + a

λβ−1j

�����
�����
2" #2c δð Þ

λ
−k β−1ð Þ
j E2:

ð47Þ

From estimate (13) and Lemma 1, we arrive at

ðT
0
exp − T − sð Þλβj 1 + aλj

� �−1� �
� ds ≥ 1 + aλj

λβj
1 − exp −Tλβ1 1 + aλ1ð Þ−1

� �h i

≥
aλj

λ
β
j

1 − exp −Tλβ1 1 + aλ1ð Þ−1
� �h i

≥ aλ− β−1ð Þ
j

� 1 − exp −Tλβ1 1 + aλ1ð Þ−1
� �h i

:

ð48Þ

Hence,

λ
− β−1ð Þ
j ≤

Ð T
0 exp − T − sð Þλβj 1 + aλj

� �−1� �
ds

a 1 − exp −Tλβ1 1 + aλ1ð Þ−1
� �h i

≤
λ−11 + a
� �

λ
β−1
j a 1 − exp −Tλβ1 1 + aλ1ð Þ−1

� �h i ·
ð49Þ

The above estimate (49) implies that

λ
−k β−1ð Þ
j ≤

λ−11 + a
� �k

λ
k β−1ð Þ
j ak 1 − exp −Tλβ1 1 + aλ1ð Þ−1

� �h ik : ð50Þ

From observation above, using Lemma 6, we conclude
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that

∥f dc δð Þ − f ∥2L2 Ωð Þ ≤ 〠
∞

j=1
1 − b

λ−11 + a

λ
β−1
j

�����
�����
2" #2c δð Þ

� λ−11 + a
� �
λ

β−1ð Þ
j

 !k
E2

ak 1 − exp −Tλβ1 1 + aλ1ð Þ−1
� �h ik

≤
k
2b

	 
k

c δð Þ½ �−k E2

ak 1 − exp −Tλβ1 1 + aλ1ð Þ−1
� �h ik ·

ð51Þ

From (47) and (50), we have

∥f dc δð Þ − f ∥L2 Ωð Þ ≤
k
2b

	 
k/2
c δð Þ½ �−k/2

� E2

ak/2 1 − exp −Tλβ1 1 + aλ1ð Þ−1
� �h ik/2 : ð52Þ

Combining (68) to (52), it can be seen

∥f dc δð Þ − f ∥L2 Ωð Þ ≤ c δð Þ½ �1/2b1/24δ ψ0 1 − exp −Tλ1 1 + aλ1ð Þ−1� �� � �−1
+ 4δ
ψ0

∥f ∥L2 Ωð Þ +
k
2b

	 
k/2

� c δð Þ½ �−k/2 E

ak/2 1 − exp −Tλβ1 1 + aλ1ð Þ−1
� �h ik/2 ·

ð53Þ

By substituting cðδÞ = ½ðE/δÞ2/k+1� in the above expression,
we deduce that

∥f dc δð Þ,δ − f ∥L2 Ωð Þ ≤ δk/k+1Ek/k+1 L1 +L2ð Þ, ð54Þ

where

L1 = b1/24 ψ0 1 − exp −Tλ1 1 + aλ1ð Þ−1� �� � �−1
+ 4δk/k+1ψ−1

0 C−k/k+2
1 ∥g∥k/k+2,

L2 =
k
2b

	 
k/2 E

ak/2 1 − exp −Tλβ1 1 + aλ1ð Þ−1
� �h ik/2 ·

ð55Þ

The proof of Theorem 7 is completed.

4.2. A Posteriori Parameter Choice Rule. In order to obtain a
posteriori convergence error estimate, we apply Morozov’s dis-
crepancy principle, which is introduced in [18]. Furthermore,
we learn the analysis techniques from previous papers [19–21].

Let us assume that σ > 1 is a fixed constant. By a similar
claim in [19–21], we provide that the general a posteriori
rule in the following:

∥Y f dc δð Þ,δ − gδ∥L2 Ωð Þ ≤ σδ: ð56Þ

From here on, in this subsection, we need to assume fur-
ther to further assume that cðδÞ is a natural number that
greater than 1: If ∥gδ∥L2ðΩÞ ≥ σδ, then the equation (56)
exists in a unique solution.

Lemma 8. Set RðcðδÞÞ = ∥Y f δcðδÞ,δ − gδ∥L2ðΩÞ where 0 < δ < ∥
gδ∥L2ðΩÞ. Then, we declare that

(a) RðcðδÞÞ is a continuous function

(b) RðcðδÞÞ⟶ 0 as cðδÞ⟶ +∞
(c) RðcðδÞÞ⟶ ∥gδ∥L2ðΩÞ as cðδÞ⟶ 0

(d) RðcðδÞÞ is a strictly increasing function for cðδÞ ∈ ð0
,+∞Þ

Proof. The proof of Lemma 8 is simple and completely sim-
ilar to that in [19–21]. Hence, we omit it here.

Lemma 9. Let us assume that (56) holds. Then, cðδÞ satisfies

c δð Þ ≤ 2K2
β ψ1, a, T , λ1, ψ0ð Þ

σ2 − 2

 !1/k+1
k + 1
2b

	 

E2/k+1δ−2/k+1 ·

ð57Þ

Proof. From the definition of cðδÞ, d ∈ ð1/2, 1�, 0 < b

jðλ−11 + aÞ/λβ−1j j2 < 1, ∥f ∥DðAkðβ−1ÞÞ ≤E, we have

∥Yf dc δð Þ,δ − gδ∥
2
L2 Ωð Þ = ∥〠

∞

j=1
1 − 1 − 1 − b λ−11 + a

� �
λ
1−β
j

��� ���2	 
c δð Þ−1" #d2
4

3
5

�
ð
Ω

gδ xð Þej xð Þdx
	 


∥2L2 Ωð Þ:

ð58Þ

Using the inequality ða + bÞ2 ≤ 2ða2 + b2Þ, we derive that

Y f dc δð Þ−1,δ − gδ
��� ���2

L2 Ωð Þ

≤ 2 〠∞
j=1 1 − 1 − 1 − b λ−11 + a

� �
λ1−βj

���� ���2	 
c δð Þ−1" #d2
4

3
5 ð

Ω

gδ xð Þ − g xð Þð Þej xð Þdx
	 
������

������
2

L2 Ωð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
O1

+ 2 〠∞
j=1 1 − 1 − 1 − b λ−11 + a

� �
λ1−βj

��� ���2	 
c δð Þ−1" #d2
4

3
5 ð

Ω

g xð Þej xð Þdx
	 
������

������
2

L2 Ωð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
O2

:

ð59Þ

(Step 1) Due to ½1 − ½1 − ð1 − bjðλ−11 + aÞλ1−βj j2Þ
cðδÞ−1

�
d

�
≤ 1 and ∥gδ − g∥L2ðΩÞ ≤ δ, from (59), the esti-
mate of O1 is as follows:
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O1 ≤ 2δ2: ð60Þ

(Step 2) O2 can be bounded as follows:

O2 ≤ 2∥〠
∞

j=1
1 − b λ−11 + a

� �
λ
1−β
j

��� ���2	 
c δð Þ−1 ðT
0
Cβ a, s, λj

� �
ψ sð Þds

����
����

�
ð
Ω

f xð Þej xð Þdx
	 


∥2L2 Ωð Þ ≤ 2∥〠
∞

j=1
1 − b λ−11 + a

� �
λ
1−β
j

��� ���2	 
c δð Þ−1

�
ðT
0
Cβ a, s, λj

� �
ψ sð Þds

����
����k+1

Ð
Ω
f xð Þej xð Þdx� �

Ð T
0Cβ a, s, λj

� �
ψ sð Þds

��� ���k ∥
2
L2 Ωð Þ

≤ 2∥〠
∞

j=1
1 − b λ−11 + a

� �
λ
1−β
j

��� ���2	 
c δð Þ−1
λ−11 + a
� �

λ
1−β
j

��� ���k+1
�Kβ ψ1, a, T , λ1, ψ0ð ÞE∥2L2 Ωð Þ,

ð61Þ

where

Kβ ψ1, a, T , λ1, ψ0ð Þ = ψ1j jk+1 a 1 − exp −Tλβ1 1 + aλ1ð Þ−1
� �h i

ψ0

��� ���−k:
ð62Þ

Thanks for the two articles [24, 25], we get the following
inequality:

1 − ωð Þsωr ≤ rr s + 1ð Þ−r , ð63Þ

for 0 < ω < 1, r > 0, ands ∈ℕ. Combining (58) and (63), we
deduce that

σ2δ2 ≤ 2δ2 + 2 k + 1
2b

	 
k+1 1
c δð Þ
	 
k+1

K2
β ψ1, a, T , λ1, ψ0ð ÞE2:

ð64Þ

This implies that

c δð Þ ≤ 2K2
β ψ1, a, T , λ1, ψ0ð Þ

σ2 − 2

 !1/k+1
k + 1
2b

	 

E2/k+1δ−2/k+1 ·

ð65Þ

Theorem 10. Let f dcðδÞ,δ be the regularized solution which is
defined in (33). Suppose that condition (3) is satisfied, and
the parameter regularization is chosen by (56). Then we get
the following estimate:

∥f dc δð Þ,δ − f ∥L2 Ωð Þis of order δ
k/k+1 · ð66Þ

Proof. By the triangle inequality, we receive

∥f dc δð Þ,δ − f ∥L2 Ωð Þ ≤ ∥f dc δð Þ,δ − f dc δð Þ∥L2 Ωð Þ+∥f dc δð Þ − f ∥L2 Ωð Þ ·
ð67Þ

Firstly, we have

∥f dc δð Þ,δ − f dc δð Þ∥L2 Ωð Þ ≤ c δð Þ½ �1/2b1/24δ
� ψ0 1 − exp −Tλ1 1 + aλ1ð Þ−1� �� � �−1
+ 4δ
ψ0

∥f ∥L2 Ωð Þ:

ð68Þ

Secondly, we find that

f dc δð Þ − f
��� ���

L2 Ωð Þ
= 〠

∞

j=1
1 − 1 − 1 − b λ−11 + a

� �
λ1−βj

��� ���2	 
c δð Þ" #d2
4

3
5

������
�
Ð
Ω
g xð Þej xð Þdx� �

ej ·ð ÞÐ T
0Cβ a, s, λj

� �
ψ sð Þds

��� ���
������
L2 Ωð Þ

:

ð69Þ

In view of Hölder inequality, we follow from (69) that

f dc δð Þ − f
��� ���

L2 Ωð Þ
≤V 1V 2, ð70Þ

where

V 1 = 〠
∞

j=1
1 − b λ−11 + a

� �
λ
1−β
j

��� ���2	 
κ δð Þ ð
Ω

f xð Þej xð Þdx
	 


ej ·ð Þ
�����

�����
1/k+1

,

V 2 = 〠
∞

j=1
1 − 1 − 1 − b λ−11 + a

� �
λ
1−β
j

��� ���2	 
c δð Þ" #d2
4

3
5 Ð

Ω
g xð Þej xð Þdx� �

ej ·ð ÞÐ T
0Cβ a, s, λj

� �
ψ sð Þds

��� ���
������

������
k/k+1

:

ð71Þ

To continue the proof, we divide it into two steps.

(Step 1) In the estimate of V 1, we have

V 1 ≤ ∥〠
∞

j=1
1 − b λ−11 + b

� �
λ
1−β
j

��� ���2	 
c δð Þ

� λk β−1ð Þ
j

ð
Ω

f xð Þej xð Þdx
	 


ej ·ð Þ∥1/k+1L2 Ωð Þ:

ð72Þ

(Step 2) In the estimate of V 2, we have
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V 2 ≤ 〠
∞

j=1
1 − 1 − 1 − b λ−11 + a

� �
λ
1−β
j

��� ���2	 
c δð Þ" #d2
4

3
5

������
0
@

�
Ð
Ω
g xð Þ − gδ xð Þð Þej xð Þdx� �

ej ·ð ÞÐ T
0Cβ a, s, λj

� �
ψ sð Þds

��� ���
������
L2 Ωð Þ

+ 〠
∞

j=1
1 − 1 − 1 − b λ−11 + a

� �
λ
1−β
j

��� ���2	 
c δð Þ" #d2
4

3
5

������
�
Ð
Ω
gδ xð Þej xð Þdx� �

ej ·ð ÞÐ T
0Cβ a, s, λj

� �
ψ sð Þds

��� ���
������
L2 Ωð Þ

!k/k+1

:

ð73Þ

From (73), we have

V 2 ≤ 〠
∞

j=1
1 − b λ−11 + a

� �
λ
1−β
j

��� ���2	 
c δð Þ# Ð
Ω
g xð Þ − gδ xð Þð Þej xð Þdx� �

ej ·ð ÞÐ T
0Cβ a, s, λj

� �
ψ sð Þds

��� ���
������

������
L2 Ωð Þ

0
B@

+ 〠
∞

j=1
1 − 1 − 1 − b λ−11 + a

� �
λ1−βj

��� ���2	 
c δð Þ" #d2
4

3
5 Ð

Ω
gδ xð Þej xð Þdx� �

ej ·ð ÞÐ T
0Cβ a, s, λj

� �
ψ sð Þds

��� ���
������

������
L2 Ωð Þ

1
CA

k/k+1

≤ δk/k+1 1 + σð Þk/k+1 sup
λ j>1

λβ−1j

ψ0 λ−1j + a
� �

1 − exp −Tλ1 1 + aλ1ð Þ−1� � ���� ���
2
64

3
75
k/k+1

:

ð74Þ

Substituting (73) into (69), it gives

f dc δð Þ − f
��� ���

L2 Ωð Þ
≤ δk/k+1E1/k+1 1 + σð Þk/k+1 1

ψ0a 1 − exp −Tλ1 1 + aλ1ð Þ−1� � �
" #k/k+1

·

ð75Þ

Substituting (65) into (68) and combining estimate (75),
we conclude that

f dc δð Þ,δ − f
��� ���

L2 Ωð Þ
≤ δk/k+1E1/k+1 R1 +R2ð Þ, ð76Þ

where

R1 =
2K2

β ψ1, a, T , λ1, ψ0ð Þ
� �k/2 k+1ð Þ

k + 1/2bð Þ1/2b1/24
σ2 − 2ð Þ−1/2 k+1ð Þ ψ0 1 − exp −Tλ1 1 + aλ1ð Þ−1� �� � �
+ 4δk/k+1ψ−1

0 C−k/k+2
1 gk kk/k+2,

R2 = 1 + σð Þk/k+1 1
ψ0a 1 − exp −Tλ1 1 + aλ1ð Þ−1� � �
" #k/k+1

:

ð77Þ

Theorem 10 is proven.

5. Convergence of the Source Function
when β⟶ 1

In this section, we will first prove the convergence of the
source function when β⟶ 1.

Theorem 11. Let the Cauchy data g ∈DðA r+2βðΩÞÞ for any
r ≥ 0. Let the function ψ ∈ L∞ð0, TÞ. Then, we have the fol-
lowing estimate:

f βð Þ xð Þ − f 1ð Þ xð Þ
��� ���

D A r Ωð Þð Þ
≲ β − 1ð Þ2− β−1ð Þε∥ψ∥L∞ 0,Tð Þ∥g∥D A r+2β Ωð Þð Þ,

ð78Þ

where ε > 0 satisfies that 2 − ðβ − 1Þε > 0.

Proof. Using the inequality je−m − e−nj ≤ Cεjm − njε, we find
that for z > 0

exp −hλβj 1 + aλj

� �−1� �
− exp −hλ j 1 + aλj

� �−1� ���� ���
≤ Cεh

ε λ
β
j − λj

1 + aλj

�����
�����
ε

≤
Cε

a
hελ−εj λ

β
j − λj

��� ���ε · ð79Þ

Let us recall Lemma 12 which is proved in [27].

Lemma 12. Assume that 0 ≤ a ≤ b and 0 < z. For any ε > 0,
there always exists �Cε > 0 such that

(a) If z < 1 then

za − zb
��� ��� ≤ �Cε b − að Þεza−ε ð80Þ

(b) If z ≥ 1 then

za − zb
��� ��� ≤ �Cε b − að Þεzb+ε ð81Þ

Let us divide the set of natural number into two sets in
the following:

ℕ =ℕ1 ∪ℕ2, ð82Þ

where

ℕ1 = j ∈ℝ, λj ≤ 1
� �

,

ℕ2 = j ∈ℝ, λj > 1
� �

:
ð83Þ

Let us assume that j ∈ℕ1. Let us recall that the assump-
tion β ≥ 1. By applying Lemma 12, we know that since λj ≤ 1
then for any θ > 0

λ
β
j − λj

��� ��� ≤ �C1,θλ
1−θ
j β − 1ð Þθ: ð84Þ
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It follows from (79) that

exp −hλβj 1 + aλj

� �−1� �
− exp −hλ j 1 + aλj

� �−1� ���� ���
≤
Cε

�Cε
1,θ

a
hελ−εj λ

1−θð Þε
j β − 1ð Þθε ≤ Cε

�Cε
1,θ

a
hελ−θεj β − 1ð Þθε ·

ð85Þ

Let us assume that j ∈ℕ2. By applying Lemma 12, we
know that since λj > 1, then

λ
β
j − λj

��� ��� ≤ �C2,θλ
β+θ
j β − 1ð Þθ: ð86Þ

It follows from (79) that

exp −hλβj 1 + aλj

� �−1� �
− exp −hλj 1 + aλj

� �−1� ���� ���
≤
Cε

�Cε
1,θ

a
hελ−εj λ

β+θð Þε
j β − 1ð Þθε ≤ Cε

�Cε
1,θ

a
hελ−ε+βε+θεj β − 1ð Þθε:

ð87Þ

Let us review that

f βð Þ xð Þ = 〠
∞

j=1

Ð
Ω
g xð Þej xð ÞdxÐ T

0 exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds

2
4

3
5ej xð Þ:

ð88Þ

By in view of Parseval’s equality, we find that

f 1ð Þ xð Þ = 〠
∞

j=1

Ð
Ω
g xð Þej xð ÞdxÐ T

0 exp − T − sð Þλj 1 + aλj

� �−1� �
ψ sð Þds

2
4

3
5ej xð Þ:

ð89Þ

Since two above observations, we derive that

f βð Þ xð Þ − f 1ð Þ xð Þ
��� ���2

D A r Ωð Þð Þ

= 〠
∞

j=1

Ð
Ω
g xð Þej xð ÞdxÐ T

0 exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds

2
4

−
Ð
Ω
g xð Þej xð ÞdxÐ T

0 exp − T − sð Þλj 1 + aλj

� �−1� �
ψ sð Þds

3
52

λ2rj :

ð90Þ

First, if λj ≤ 1, then using the estimate (85), we get that

ðT
0
exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þ

����
� ds −

ðT
0
exp − T − sð Þλj 1 + aλj

� �−1� �
ψ sð Þdsj

≤
Cε

�Cε
1,θ

a
λ−θεj β − 1ð Þθε

ðT
0
T − sð Þεds

	 

ψk kL∞ 0,Tð Þ

≤M1 ψk kL∞ 0,Tð Þλ
−θε
j β − 1ð Þθε,

ð91Þ

whereM1 = ðCε
�Cε
1,θ/aÞðT1+ε/1 + εÞ: By a similar explanation,

if λj > 1, then using the estimate (87), we get that

ðT
0
exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þ

����
� ds −

ðT
0
exp − T − sð Þλ j 1 + aλj

� �−1� �
ψ sð Þdsj

≤
Cε

�Cε
1,θ

a
λ
−ε+βε+θε
j β − 1ð Þθε

ðT
0
T − sð Þεds

	 

∥ψ∥L∞ 0,Tð Þ

≤M1∥ψ∥L∞ 0,Tð Þλ
−ε+βε+θε
j β − 1ð Þθε:

ð92Þ

By using Lemma 1, we find that

ðT
0
exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds

� �

�
ðT
0
exp − T − sð Þλj 1 + aλj

� �−1� �
ψ sð Þds

� �

≥ 1 − exp −Tλβ1 1 + aλ1ð Þ−1
� �h i2

ψ0j j2 1 + aλj

λ
β
j

 !2

=M2
2

1 + aλj

λ
β
j

 !2

≥M2
2a

2λ
2−2β
j ,

ð93Þ

where we denote

M2 = 1 − exp −Tλβ1 1 + aλ1ð Þ−1
� �h i

ψ0j j: ð94Þ

From some of the above observations, we get that

∥f βð Þ xð Þ − f 1ð Þ xð Þ∥2D A r Ωð Þð Þ

= 〠
λ j≤1

Ð
Ω
g xð Þej xð ÞdxÐ T

0 exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds

2
4

−
Ð
Ω
g xð Þej xð ÞdxÐ T

0 exp − T − sð Þλj 1 + aλj

� �−1� �
ψ sð Þds

3
52

λ2rj
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+ 〠
λ j>1

Ð
Ω
g xð Þej xð ÞdxÐ T

0 exp − T − sð Þλβj 1 + aλj

� �−1� �
ψ sð Þds

2
4

−
Ð
Ω
g xð Þej xð ÞdxÐ T

0 exp − T − sð Þλj 1 + aλj

� �−1� �
ψ sð Þds

3
52

λ2rj

≤
M1
M2

2

	 
2
β − 1ð Þ2θε∥ψ∥2L∞ 0,Tð Þ 〠

λ j≤1
λ
2θε−4+4β+2r
j

:

ð
Ω

g xð Þej xð Þdx
	 
2

+ M1
M2

2

	 
2
β − 1ð Þ2θε∥ψ∥2L∞ 0,Tð Þ

:〠
λ j>1

λ
2θε−4+4β+2r−2ε+2βε
j

ð
Ω

g xð Þej xð Þdx
	 
2

:

ð95Þ

Noting that β ≥ 1, we have that

1 ≤
λj

λ1

	 
2βε−2ε
: ð96Þ

This implies the following estimate:

∥f βð Þ xð Þ − f 1ð Þ xð Þ∥2D A r Ωð Þð Þ ≲ β − 1ð Þ2θε∥ψ∥2L∞ 0,Tð Þ

�〠
∞

j=1
λ
2θε−4+4β+2r−2ε+2βε
j

ð
Ω

g xð Þej xð Þdx
	 
2

:
ð97Þ

Let us choose θ and ε such that 2θε + 2βε = 4 + 2ε: In
order to choose such number θ and ε, we need to choose ε
> 0 if β = 1 and such that

0 < ε < 2
β − 1 , β > 1: ð98Þ

Let θ be such that θ = ð2/εÞ + 1 − β: Then since (()(97)),
we deduce that

∥f βð Þ xð Þ − f 1ð Þ xð Þ∥D A r Ωð Þð Þ ≲ β − 1ð Þθε∥ψ∥L∞ 0,Tð Þ∥g∥D A r+2β Ωð Þð Þ
= β − 1ð Þ2− β−1ð Þε∥ψ∥L∞ 0,Tð Þ∥g∥D A r+2β Ωð Þð Þ:

ð99Þ
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