Internet of Things and Big Data Analytics for a Green Environment

Lead Guest Editor: Yousef Farhaoui
Guest Editors: Badraddine Aghoutane, Mohammed Fattah, and Bharat Bhushan

Internet of Things and Big Data Analytics for a Green Environment

Internet of Things and Big Data Analytics for a Green Environment

Lead Guest Editor: Yousef Farhaoui
Guest Editors: Badraddine Aghoutane, Mohammed
Fattah, and Bharat Bhushan

Copyright © 2021 Hindawi Limited. All rights reserved.
This is a special issue published in "Mathematical Problems in Engineering." All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Chief Editor

Guangming Xie (D), China

Academic Editors

Kumaravel A (iD, India
Waqas Abbasi, Pakistan
Mohamed Abd El Aziz (D), Egypt
Mahmoud Abdel-Aty (D), Egypt
Mohammed S. Abdo, Yemen
Mohammad Yaghoub Abdollahzadeh
Jamalabadi (D), Republic of Korea
Rahib Abiyev (D), Turkey
Leonardo Acho (D), Spain
Daniela Addessi (D) Italy
Arooj Adeel (D), Pakistan
Waleed Adel (D), Egypt
Ramesh Agarwal (D), USA
Francesco Aggogeri (D), Italy
Ricardo Aguilar-Lopez (iD, Mexico
Afaq Ahmad (D), Pakistan
Naveed Ahmed (D), Pakistan
Elias Aifantis (iD) USA
Akif Akgul (D), Turkey
Tareq Al-shami (D), Yemen
Guido Ala, Italy
Andrea Alaimo (D), Italy
Reza Alam, USA
Osamah Albahri (D), Malaysia
Nicholas Alexander (D), United Kingdom
Salvatore Alfonzetti, Italy
Ghous Ali (D), Pakistan
Nouman Ali (D), Pakistan
Mohammad D. Aliyu (D), Canada
Juan A. Almendral (D), Spain
A.K. Alomari, Jordan

José Domingo Álvarez (iD, Spain
Cláudio Alves (D), Portugal
Juan P. Amezquita-Sanchez, Mexico
Mukherjee Amitava, India
Lionel Amodeo, France
Sebastian Anita, Romania
Costanza Arico (i), Italy
Sabri Arik, Turkey
Fausto Arpino (D), Italy
Rashad Asharabi (D), Saudi Arabia
Farhad Aslani (D), Australia
Mohsen Asle Zaeem (D), USA

Andrea Avanzini (D), Italy
Richard I. Avery (D), USA
Viktor Avrutin (D), Germany
Mohammed A. Awadallah (iD, Malaysia
Francesco Aymerich (D), Italy
Sajad Azizi (D), Belgium
Michele Bacciocchi (D) Italy
Seungik Baek (D), USA
Khaled Bahlali, France
M.V.A Raju Bahubalendruni, India

Pedro Balaguer (D), Spain
P. Balasubramaniam, India

Stefan Balint (D), Romania
Ines Tejado Balsera (iD, Spain
Alfonso Banos (iD, Spain
Jerzy Baranowski (D), Poland
Tudor Barbu (iD, Romania
Andrzej Bartoszewicz (D), Poland
Sergio Baselga (D), Spain
S. Caglar Baslamisli (D), Turkey

David Bassir (ID, France
Chiara Bedon (D), Italy
Azeddine Beghdadi, France
Andriette Bekker (D), South Africa
Francisco Beltran-Carbajal (ID, Mexico
Abdellatif Ben Makhlouf (D), Saudi Arabia
Denis Benasciutti (D), Italy
Ivano Benedetti (D), Italy
Rosa M. Benito (D), Spain
Elena Benvenuti (D), Italy
Giovanni Berselli, Italy
Michele Betti (D), Italy
Pietro Bia (D), Italy
Carlo Bianca (D), France
Simone Bianco (D), Italy
Vincenzo Bianco, Italy
Vittorio Bianco, Italy
David Bigaud (D), France
Sardar Muhammad Bilal (D), Pakistan
Antonio Bilotta (D), Italy
Sylvio R. Bistafa, Brazil
Chiara Boccaletti (D), Italy
Rodolfo Bontempo (iD, Italy
Alberto Borboni (D), Italy
Marco Bortolini, Italy

Paolo Boscariol, Italy
Daniela Boso (iD, Italy
Guillermo Botella-Juan, Spain
Abdesselem Boulkroune (D), Algeria
Boulaïd Boulkroune, Belgium
Fabio Bovenga (iD, Italy
Francesco Braghin (D), Italy
Ricardo Branco, Portugal
Julien Bruchon (DD, France
Matteo Bruggi (D), Italy
Michele Brun (D), Italy
Maria Elena Bruni, Italy
Maria Angela Butturi (D), Italy
Bartłomiej Błachowski (D), Poland
Dhanamjayulu C(D), India
Raquel Caballero-Águila (D), Spain
Filippo Cacace (D), Italy
Salvatore Caddemi (iD) Italy
Zuowei Cai (D), China
Roberto Caldelli (D), Italy
Francesco Cannizzaro (D) Italy
Maosen Cao (D), China
Ana Carpio, Spain
Rodrigo Carvajal (D), Chile
Caterina Casavola, Italy
Sara Casciati, Italy
Federica Caselli (D), Italy
Carmen Castillo (D), Spain
Inmaculada T. Castro (D), Spain
Miguel Castro (D) Portugal
Giuseppe Catalanotti (D), United Kingdom
Alberto Cavallo (iD, Italy
Gabriele Cazzulani (iD, Italy
Fatih Vehbi Celebi, Turkey
Miguel Cerrolaza (iD, Venezuela
Gregory Chagnon (D), France
Ching-Ter Chang (D), Taiwan
Kuei-Lun Chang (D), Taiwan
Qing Chang (iD, USA
Xiaoheng Chang (iD, China
Prasenjit Chatterjee (D), Lithuania
Kacem Chehdi, France
Peter N. Cheimets, USA
Chih-Chiang Chen (iD), Taiwan
He Chen (D), China

Kebing Chen (D), China
Mengxin Chen (iD, China
Shyi-Ming Chen (D), Taiwan
Xizhong Chen (D), Ireland
Xue-Bo Chen (D), China
Zhiwen Chen (D), China
Qiang Cheng, USA
Zeyang Cheng, China
Luca Chiapponi (D), Italy
Francisco Chicano (D), Spain
Tirivanhu Chinyoka (D), South Africa
Adrian Chmielewski (D), Poland
Seongim Choi (iD, USA
Gautam Choubey (D), India
Hung-Yuan Chung (D), Taiwan
Yusheng Ci, China
Simone Cinquemani (D), Italy
Roberto G. Citarella (D), Italy
Joaquim Ciurana (iD, Spain
John D. Clayton (Di, USA
Piero Colajanni (D), Italy
Giuseppina Colicchio, Italy
Vassilios Constantoudis (iD, Greece
Enrico Conte, Italy
Alessandro Contento (iD, USA
Mario Cools (D), Belgium
Gino Cortellessa, Italy
Carlo Cosentino (D), Italy
Paolo Crippa (iD, Italy
Erik Cuevas (D), Mexico
Guozeng Cui (D), China
Mehmet Cunkas (D), Turkey
Giuseppe D'Aniello (D), Italy
Peter Dabnichki, Australia
Weizhong Dai (D) USA
Zhifeng Dai (D), China
Purushothaman Damodaran (iD, USA
Sergey Dashkovskiy, Germany
Adiel T. De Almeida-Filho (D), Brazil
Fabio De Angelis (D), Italy
Samuele De Bartolo (D), Italy
Stefano De Miranda (D) Italy
Filippo De Monte (D) Italy

José António Fonseca De Oliveira
Correia (iD, Portugal
Jose Renato De Sousa (D), Brazil
Michael Defoort, France
Alessandro Della Corte, Italy
Laurent Dewasme (iD, Belgium
Sanku Dey (D), India
Gianpaolo Di Bona (D), Italy
Roberta Di Pace (iD, Italy
Francesca Di Puccio (D), Italy
Ramón I. Diego (iD), Spain
Yannis Dimakopoulos (D), Greece
Hasan Dinçer (iD, Turkey
José M. Domínguez (D), Spain
Georgios Dounias, Greece
Bo Du (iD, China
Emil Dumic, Croatia
Madalina Dumitriu (D), United Kingdom
Premraj Durairaj (D), India
Saeed Eftekhar Azam, USA
Said El Kafhali (D), Morocco
Antonio Elipe (D), Spain
R. Emre Erkmen, Canada

John Escobar (iD, Colombia
Leandro F. F. Miguel (D), Brazil
FRANCESCO FOTI (D), Italy
Andrea L. Facci (iD, Italy
Shahla Faisal (iD, Pakistan
Giovanni Falsone (D), Italy
Hua Fan, China
Jianguang Fang, Australia
Nicholas Fantuzzi (D), Italy
Muhammad Shahid Farid (D), Pakistan
Hamed Faroqi, Iran
Yann Favennec, France
Fiorenzo A. Fazzolari (DD, United Kingdom
Giuseppe Fedele (D), Italy
Roberto Fedele (D), Italy
Baowei Feng (D), China
Mohammad Ferdows (iD, Bangladesh
Arturo J. Fernández (D), Spain
Jesus M. Fernandez Oro, Spain
Francesco Ferrise, Italy
Eric Feulvarch (D), France
Thierry Floquet, France

Eric Florentin (D), France
Gerardo Flores, Mexico
Antonio Forcina (D), Italy
Alessandro Formisano, Italy
Francesco Franco (D), Italy
Elisa Francomano (D) Italy
Juan Frausto-Solis, Mexico
Shujun Fu(i), China
Juan C. G. Prada (iD, Spain
HECTOR GOMEZ (D), Chile
Matteo Gaeta (D) Italy
Mauro Gaggero (D), Italy
Zoran Gajic (D), USA
Jaime Gallardo-Alvarado (D), Mexico
Mosè Gallo (D), Italy
Akemi Gálvez (D), Spain
Maria L. Gandarias (iD, Spain
Hao Gao (D), Hong Kong
Xingbao Gao (iD, China
Yan Gao (D), China
Zhiwei Gao (D), United Kingdom
Giovanni Garcea (D) Italy
José García (D), Chile
Harish Garg (iD, India
Alessandro Gasparetto (D), Italy
Stylianos Georgantzinos, Greece
Fotios Georgiades (D), India
Parviz Ghadimi (D), Iran
Ștefan Cristian Gherghina (D), Romania
Georgios I. Giannopoulos (D), Greece
Agathoklis Giaralis (D), United Kingdom
Anna M. Gil-Lafuente (D), Spain
Ivan Giorgio (D), Italy
Gaetano Giunta (D), Luxembourg
Jefferson L.M.A. Gomes (D), United
Kingdom
Emilio Gómez-Déniz (D), Spain
Antonio M. Gonçalves de Lima (D), Brazil
Qunxi Gong (iD, China
Chris Goodrich, USA
Rama S. R. Gorla, USA
Veena Goswami (D), India
Xunjie Gou (D), Spain
Jakub Grabski (D) Poland

Antoine Grall (D), France
George A. Gravvanis (D), Greece
Fabrizio Greco (D), Italy
David Greiner (D), Spain
Jason Gu (iD, Canada
Federico Guarracino (D), Italy
Michele Guida (D), Italy
Muhammet Gul(D), Turkey
Dong-Sheng Guo (iD, China
Hu Guo (iD, China
Zhaoxia Guo, China
Yusuf Gurefe, Turkey
Salim HEDDAM (iD, Algeria
ABID HUSSANAN, China
Quang Phuc Ha, Australia
Li Haitao (D), China
Petr Hájek (iD, Czech Republic
Mohamed Hamdy (iD, Egypt
Muhammad Hamid (D), United Kingdom
Renke Han (D), United Kingdom
Weimin Han (D), USA
Xingsi Han, China
Zhen-Lai Han (i), China
Thomas Hanne (iD, Switzerland
Xinan Hao (D), China
Mohammad A. Hariri-Ardebili (D), USA
Khalid Hattaf (iD) Morocco
Defeng He (iD, China
Xiao-Qiao He, China
Yanchao He, China
Yu-Ling He (D), China
Ramdane Hedjar (D), Saudi Arabia
Jude Hemanth (iD, India
Reza Hemmati, Iran
Nicolae Herisanu (D), Romania
Alfredo G. Hernández-Diaz (D), Spain
M.I. Herreros (D), Spain
Eckhard Hitzer (D) Japan
Paul Honeine (D), France
Jaromir Horacek (D), Czech Republic
Lei Hou (iD) China
Yingkun Hou (D), China
Yu-Chen Hu (D), Taiwan
Yunfeng Hu, China

Can Huang (iD, China
Gordon Huang (iD), Canada
Linsheng Huo (D), China
Sajid Hussain, Canada
Asier Ibeas (D), Spain
Orest V. Iftime (D), The Netherlands
Przemyslaw Ignaciuk (iD), Poland
Giacomo Innocenti (D), Italy
Emilio Insfran Pelozo (D), Spain
Azeem Irshad, Pakistan
Alessio Ishizaka, France
Benjamin Ivorra (D), Spain
Breno Jacob (D), Brazil
Reema Jain (D), India
Tushar Jain (iD, India
Amin Jajarmi (D), Iran
Chiranjibe Jana (iD) India
Łukasz Jankowski (D), Poland
Samuel N. Jator (D), USA
Juan Carlos Jáuregui-Correa (D), Mexico
Kandasamy Jayakrishna, India
Reza Jazar, Australia
Khalide Jbilou, France
Isabel S. Jesus (D), Portugal
Chao Ji (iD, China
Qing-Chao Jiang (D), China
Peng-fei Jiao (D), China
Ricardo Fabricio Escobar Jiménez (iD, Mexico
Emilio Jiménez Macías (D), Spain
Maolin Jin, Republic of Korea
Zhuo Jin, Australia
Ramash Kumar K (iD, India
BHABEN KALITA © Di, USA
MOHAMMAD REZA KHEDMATI © , Iran
Viacheslav Kalashnikov (D), Mexico
Mathiyalagan Kalidass (D), India
Tamas Kalmar-Nagy (D), Hungary
Rajesh Kaluri (D) India
Jyotheeswara Reddy Kalvakurthi, India
Zhao Kang (iD, China
Ramani Kannan (D), Malaysia
Tomasz Kapitaniak (iD, Poland
Julius Kaplunov, United Kingdom
Konstantinos Karamanos, Belgium
Michal Kawulok, Poland

Irfan Kaymaz (D), Turkey
Vahid Kayvanfar (D), Qatar
Krzysztof Kecik (D), Poland
Mohamed Khader (D), Egypt
Chaudry M. Khalique (D), South Africa
Mukhtaj Khan (D), Pakistan
Shahid Khan (D), Pakistan
Nam-Il Kim, Republic of Korea
Philipp V. Kiryukhantsev-Korneev (iD, Russia
P.V.V Kishore (iD, India
Jan Koci (D), Czech Republic
Ioannis Kostavelis (iD), Greece
Sotiris B. Kotsiantis (D), Greece
Frederic Kratz (iD), France
Vamsi Krishna (D), India
Edyta Kucharska, Poland
Krzysztof S. Kulpa (iD, Poland
Kamal Kumar, India
Prof. Ashwani Kumar (iD, India
Michal Kunicki (D), Poland
Cedrick A. K. Kwuimy (D), USA
Kyandoghere Kyamakya, Austria
Ivan Kyrchei (D), Ukraine
Márcio J. Lacerda (D), Brazil
Eduardo Lalla (D), The Netherlands
Giovanni Lancioni (D), Italy
Jaroslaw Latalski (D), Poland
Hervé Laurent (D), France
Agostino Lauria (D) Italy
Aimé Lay-Ekuakille (D), Italy
Nicolas J. Leconte (D), France
Kun-Chou Lee (D), Taiwan
Dimitri Lefebvre (iD, France
Eric Lefevre (D), France
Marek Lefik, Poland
Yaguo Lei (D), China
Kauko Leiviskä (D), Finland
Ervin Lenzi (D), Brazil
ChenFeng Li (D), China
Jian Li ${ }^{\text {D }}$, USA
Jun Li (D) China
Yueyang Li $(\mathbb{D}$, China
Zhao Li (D), China

Zhen Li(D), China
En-Qiang Lin, USA
Jian Lin (iD, China
Qibin Lin, China
Yao-Jin Lin, China
Zhiyun Lin (D), China
Bin Liu (D), China
Bo Liu (D), China
Heng Liu (D), China
Jianxu Liu (D), Thailand
Lei Liu (D), China
Sixin Liu (iD, China
Wanquan Liu (D), China
Yu Liu (D), China
Yuanchang Liu (iD, United Kingdom
Bonifacio Llamazares (D), Spain
Alessandro Lo Schiavo (D), Italy
Jean Jacques Loiseau (iD, France
Francesco Lolli (D), Italy
Paolo Lonetti (iD, Italy
António M. Lopes (iD, Portugal
Sebastian López, Spain
Luis M. López-Ochoa (iD, Spain
Vassilios C. Loukopoulos, Greece
Gabriele Maria Lozito (D), Italy
Zhiguo Luo (D), China
Gabriel Luque (D), Spain
Valentin Lychagin, Norway
YUE MEI, China
Junwei Ma (iD, China
Xuanlong Ma (D), China
Antonio Madeo (D) Italy
Alessandro Magnani (D), Belgium
Toqeer Mahmood (D), Pakistan
Fazal M. Mahomed (D), South Africa
Arunava Majumder (iD) India
Sarfraz Nawaz Malik, Pakistan
Paolo Manfredi (D), Italy
Adnan Maqsood (iD, Pakistan
Muazzam Maqsood, Pakistan
Giuseppe Carlo Marano (D) Italy
Damijan Markovic, France
Filipe J. Marques (D), Portugal
Luca Martinelli (D), Italy
Denizar Cruz Martins, Brazil

Francisco J. Martos (iD, Spain
Elio Masciari (iD, Italy
Paolo Massioni (D), France
Alessandro Mauro (iD, Italy
Jonathan Mayo-Maldonado (D), Mexico
Pier Luigi Mazzeo (D), Italy
Laura Mazzola, Italy
Driss Mehdi (iD, France
Zahid Mehmood (iD), Pakistan
Roderick Melnik (iD), Canada
Xiangyu Meng (D), USA
Jose Merodio (D), Spain
Alessio Merola (D), Italy
Mahmoud Mesbah (D), Iran
Luciano Mescia (D), Italy
Laurent Mevel (D), France
Constantine Michailides (D), Cyprus
Mariusz Michta (iD, Poland
Prankul Middha, Norway
Aki Mikkola (D), Finland
Giovanni Minafò (D) Italy
Edmondo Minisci (D), United Kingdom
Hiroyuki Mino (D), Japan
Dimitrios Mitsotakis (D), New Zealand
Ardashir Mohammadzadeh (D), Iran
Francisco J. Montáns (iD, Spain
Francesco Montefusco (D) Italy
Gisele Mophou (D), France
Rafael Morales (D), Spain
Marco Morandini (D), Italy
Javier Moreno-Valenzuela (DD, Mexico
Simone Morganti (D), Italy
Caroline Mota (D), Brazil
Aziz Moukrim (D), France
Shen Mouquan (D), China
Dimitris Mourtzis (D), Greece
Emiliano Mucchi (D) Italy
Taseer Muhammad, Saudi Arabia
Ghulam Muhiuddin, Saudi Arabia
Amitava Mukherjee (ID) India
Josefa Mula (D), Spain
Jose J. Muñoz (D), Spain
Giuseppe Muscolino, Italy
Marco Mussetta (D), Italy

Hariharan Muthusamy, India
Alessandro Naddeo (iD), Italy
Raj Nandkeolyar, India
Keivan Navaie (D), United Kingdom
Soumya Nayak, India
Adrian Neagu (D), USA
Erivelton Geraldo Nepomuceno (D), Brazil
AMA Neves, Portugal
Ha Quang Thinh Ngo (iD, Vietnam
Nhon Nguyen-Thanh, Singapore
Papakostas Nikolaos (D), Ireland
Jelena Nikolic (iD), Serbia
Tatsushi Nishi, Japan
Shanzhou Niu (D), China
Ben T. Nohara (D), Japan
Mohammed Nouari (D), France
Mustapha Nourelfath, Canada
Kazem Nouri (D), Iran
Ciro Núñez-Gutiérrez (D), Mexico
Wlodzimierz Ogryczak, Poland
Roger Ohayon, France
Krzysztof Okarma (iD, Poland
Mitsuhiro Okayasu, Japan
Murat Olgun (D), Turkey
Diego Oliva, Mexico
Alberto Olivares (iD, Spain
Enrique Onieva (D), Spain
Calogero Orlando (iD, Italy
Susana Ortega-Cisneros (iD, Mexico
Sergio Ortobelli, Italy
Naohisa Otsuka (D) Japan
Sid Ahmed Ould Ahmed Mahmoud (D), Saudi Arabia
Taoreed Owolabi (D), Nigeria
EUGENIA PETROPOULOU (D), Greece
Arturo Pagano, Italy
Madhumangal Pal, India
Pasquale Palumbo (D), Italy
Dragan Pamučar, Serbia
Weifeng Pan (D), China
Chandan Pandey, India
Rui Pang, United Kingdom
Jürgen Pannek (iD, Germany
Elena Panteley, France
Achille Paolone, Italy

George A. Papakostas (D), Greece
Xosé M. Pardo (iD), Spain
You-Jin Park, Taiwan
Manuel Pastor, Spain
Pubudu N. Pathirana (D), Australia
Surajit Kumar Paul (D), India
Luis Payá (D), Spain
Igor Pažanin (D), Croatia
Libor Pekař (D), Czech Republic
Francesco Pellicano (iD) Italy
Marcello Pellicciari (D), Italy
Jian Peng (iD, China
Mingshu Peng, China
Xiang Peng (D), China
Xindong Peng, China
Yuexing Peng, China
Marzio Pennisi (D), Italy
Maria Patrizia Pera (iD), Italy
Matjaz Perc (D), Slovenia
A. M. Bastos Pereira (iD, Portugal

Wesley Peres, Brazil
F. Javier Pérez-Pinal (D), Mexico

Michele Perrella, Italy
Francesco Pesavento (iD, Italy
Francesco Petrini (D), Italy
Hoang Vu Phan, Republic of Korea
Lukasz Pieczonka (D), Poland
Dario Piga (D), Switzerland
Marco Pizzarelli (D), Italy
Javier Plaza (iD, Spain
Goutam Pohit (iD, India
Dragan Poljak (iD, Croatia
Jorge Pomares (D), Spain
Hiram Ponce (D), Mexico
Sébastien Poncet (D), Canada
Volodymyr Ponomaryov (D), Mexico
Jean-Christophe Ponsart (D), France
Mauro Pontani (D) Italy
Sivakumar Poruran, India
Francesc Pozo (iD, Spain
Aditya Rio Prabowo (D), Indonesia
Anchasa Pramuanjaroenkij (D), Thailand
Leonardo Primavera (D), Italy
B Rajanarayan Prusty, India

Krzysztof Puszynski (D), Poland
Chuan Qin (D), China
Dongdong Qin, China
Jianlong Qiu (D), China
Giuseppe Quaranta (D), Italy
DR. RITU RAJ (D), India
Vitomir Racic (D), Italy
Carlo Rainieri (D) Italy
Kumbakonam Ramamani Rajagopal, USA
Ali Ramazani (D), USA
Angel Manuel Ramos (D), Spain
Higinio Ramos (iD, Spain
Muhammad Afzal Rana (iD, Pakistan
Muhammad Rashid, Saudi Arabia
Manoj Rastogi, India
Alessandro Rasulo (iD, Italy
S.S. Ravindran (D), USA

Abdolrahman Razani (D), Iran
Alessandro Reali (D), Italy
Jose A. Reinoso (D), Spain
Oscar Reinoso (iD, Spain
Haijun Ren (D), China
Carlo Renno (iD, Italy
Fabrizio Renno (D), Italy
Shahram Rezapour (D), Iran
Ricardo Riaza (iD, Spain
Francesco Riganti-Fulginei (iD, Italy
Gerasimos Rigatos (D), Greece
Francesco Ripamonti (iD, Italy
Jorge Rivera (D), Mexico
Eugenio Roanes-Lozano (D), Spain
Ana Maria A. C. Rocha (D), Portugal
Luigi Rodino (D), Italy
Francisco Rodríguez (iD), Spain
Rosana Rodríguez López, Spain
Francisco Rossomando (iD, Argentina
Jose de Jesus Rubio (D), Mexico
Weiguo Rui (D), China
Rubén Ruiz (D), Spain
Ivan D. Rukhlenko (D), Australia
Dr. Eswaramoorthi S. (D), India
Weichao SHI (D), United Kingdom
Chaman Lal Sabharwal (D), USA
Andrés Sáez (ID, Spain

Bekir Sahin, Turkey
Laxminarayan Sahoo (iD) India
John S. Sakellariou (D), Greece
Michael Sakellariou (iD, Greece
Salvatore Salamone, USA
Jose Vicente Salcedo (iD), Spain
Alejandro Salcido (D), Mexico
Alejandro Salcido, Mexico
Nunzio Salerno (D), Italy
Rohit Salgotra (iD, India
Miguel A. Salido (ID, Spain
Sinan Salih (D), Iraq
Alessandro Salvini (iD, Italy
Abdus Samad (iD) India
Sovan Samanta, India
Nikolaos Samaras (D), Greece
Ramon Sancibrian (D), Spain
Giuseppe Sanfilippo (D), Italy
Omar-Jacobo Santos, Mexico
J Santos-Reyes (iD, Mexico
José A. Sanz-Herrera (D), Spain
Musavarah Sarwar, Pakistan
Shahzad Sarwar, Saudi Arabia
Marcelo A. Savi (D), Brazil
Andrey V. Savkin, Australia
Tadeusz Sawik (D), Poland
Roberta Sburlati, Italy
Gustavo Scaglia (iD, Argentina
Thomas Schuster (D), Germany
Hamid M. Sedighi (D), Iran
Mijanur Rahaman Seikh, India
Tapan Senapati (D), China
Lotfi Senhadji (D), France
Junwon Seo, USA
Michele Serpilli, Italy
Silvestar Šesnić (D), Croatia
Gerardo Severino, Italy
Ruben Sevilla (D), United Kingdom
Stefano Sfarra (D), Italy
Dr. Ismail Shah (iD, Pakistan
Leonid Shaikhet (D), Israel
Vimal Shanmuganathan (ID, India
Prayas Sharma, India
Bo Shen (iD, Germany
Hang Shen, China

Xin Pu Shen, China
Dimitri O. Shepelsky, Ukraine
Jian Shi (D) China
Amin Shokrollahi, Australia
Suzanne M. Shontz (iD, USA
Babak Shotorban (iD, USA
Zhan Shu (D), Canada
Angelo Sifaleras (D), Greece
Nuno Simões (D), Portugal
Mehakpreet Singh (iD), Ireland
Piyush Pratap Singh (ID, India
Rajiv Singh, India
Seralathan Sivamani (iD, India
S. Sivasankaran (iD), Malaysia

Christos H. Skiadas, Greece
Konstantina Skouri (D), Greece
Neale R. Smith (D), Mexico
Bogdan Smolka, Poland
Delfim Soares Jr. (iD, Brazil
Alba Sofi (D), Italy
Francesco Soldovieri (D) Italy
Raffaele Solimene (D), Italy
Yang Song (iD, Norway
Jussi Sopanen (D), Finland
Marco Spadini (D) Italy
Paolo Spagnolo (iD, Italy
Ruben Specogna (D), Italy
Vasilios Spitas (D), Greece
Ivanka Stamova (iD, USA
Rafał Stanisławski (D) Poland
Miladin Stefanović (D), Serbia
Salvatore Strano (D) Italy
Yakov Strelniker, Israel
Kangkang Sun (iD, China
Qiuqin Sun (iD, China
Shuaishuai Sun, Australia
Yanchao Sun (ID, China
Zong-Yao Sun (ID, China
Kumarasamy Suresh (D), India
Sergey A. Suslov (D), Australia
D.L. Suthar, Ethiopia
D.L. Suthar (D), Ethiopia

Andrzej Swierniak, Poland
Andras Szekrenyes (D), Hungary
Kumar K. Tamma, USA

Yong (Aaron) Tan, United Kingdom Marco Antonio Taneco-Hernández (iD, Mexico
Lu Tang (iD), China
Tianyou Tao, China
Hafez Tari (D), USA
Alessandro Tasora (iD, Italy
Sergio Teggi (iD, Italy
Adriana del Carmen Téllez-Anguiano (D), Mexico
Ana C. Teodoro (ID), Portugal
Efstathios E. Theotokoglou (iD), Greece
Jing-Feng Tian, China
Alexander Timokha (iD), Norway
Stefania Tomasiello (iD, Italy
Gisella Tomasini (D), Italy
Isabella Torcicollo (iD), Italy
Francesco Tornabene (D), Italy
Mariano Torrisi (D), Italy
Thang nguyen Trung, Vietnam
George Tsiatas (iD), Greece
Le Anh Tuan (D), Vietnam
Nerio Tullini (D), Italy
Emilio Turco (D), Italy
Ilhan Tuzcu (D), USA
Efstratios Tzirtzilakis (D), Greece FRANCISCO UREÑA (D), Spain
Filippo Ubertini (D), Italy
Mohammad Uddin (D), Australia
Mohammad Safi Ullah (iD, Bangladesh
Serdar Ulubeyli (iD, Turkey
Mati Ur Rahman (iD, Pakistan
Panayiotis Vafeas (D), Greece
Giuseppe Vairo (D), Italy
Jesus Valdez-Resendiz (D), Mexico
Eusebio Valero, Spain
Stefano Valvano (D) Italy
Carlos-Renato Vázquez (D), Mexico
Martin Velasco Villa (D), Mexico
Franck J. Vernerey, USA
Georgios Veronis (D), USA
Vincenzo Vespri (D), Italy
Renato Vidoni (D) Italy
Venkatesh Vijayaraghavan, Australia

Anna Vila, Spain
Francisco R. Villatoro (iD, Spain
Francesca Vipiana (iD, Italy
Stanislav Vítek (iD, Czech Republic
Jan Vorel (D), Czech Republic
Michael Vynnycky (D), Sweden
Mohammad W. Alomari, Jordan
Roman Wan-Wendner (D), Austria
Bingchang Wang, China
C. H. Wang (D), Taiwan

Dagang Wang, China
Guoqiang Wang (iD), China
Huaiyu Wang, China
Hui Wang (D), China
J.G. Wang, China

Ji Wang (iD, China
Kang-Jia Wang (D), China
Lei Wang (D), China
Qiang Wang, China
Qingling Wang (iD, China
Weiwei Wang (iD), China
Xinyu Wang (iD, China
Yong Wang (D), China
Yung-Chung Wang (D), Taiwan
Zhenbo Wang (D), USA
Zhibo Wang, China
Waldemar T. Wójcik, Poland
Chi Wu (iD), Australia
Qiuhong Wu, China
Yuqiang Wu, China
Zhibin Wu(iD, China
Zhizheng Wu (iD), China
Michalis Xenos (ID, Greece
Hao Xiao (iD), China
Xiao Ping Xie (ID, China
Qingzheng Xu (D), China
Binghan Xue (D), China
Yi Xue (D), China
Joseph J. Yame (ID, France
Chuanliang Yan (D), China
Xinggang Yan (D), United Kingdom
Hongtai Yang (D), China
Jixiang Yang (D), China
Mijia Yang, USA
Ray-Yeng Yang, Taiwan

Zaoli Yang (D), China
Jun Ye (D), China
Min Ye (D), China
Luis J. Yebra (D), Spain
Peng-Yeng Yin (D), Taiwan
Muhammad Haroon Yousaf (D), Pakistan
Yuan Yuan, United Kingdom
Qin Yuming, China
Elena Zaitseva (D), Slovakia
Arkadiusz Zak (iD, Poland
Mohammad Zakwan (i), India
Ernesto Zambrano-Serrano (iD, Mexico
Francesco Zammori (D) Italy
Jessica Zangari (D) Italy
Rafal Zdunek (D), Poland
Ibrahim Zeid, USA
Nianyin Zeng (D), China
Junyong Zhai (D), China
Hao Zhang (iD, China
Haopeng Zhang (iD, USA
Jian Zhang (iD, China
Kai Zhang, China
Lingfan Zhang (D), China
Mingjie Zhang (D), Norway
Qian Zhang (D), China
Tianwei Zhang (D) China
Tongqian Zhang (iD, China
Wenyu Zhang (D), China
Xianming Zhang (D), Australia
Xuping Zhang (iD, Denmark
Yinyan Zhang, China
Yifan Zhao (D), United Kingdom
Debao Zhou, USA
Heng Zhou (D), China
Jian G. Zhou (D), United Kingdom
Junyong Zhou (iD, China
Xueqian Zhou (D), United Kingdom
Zhe Zhou (D), China
Wu-Le Zhu, China
Gaetano Zizzo (D), Italy
Mingcheng Zuo, China

Contents

Mobile, Divisible, and Safe E-Cash System
Ting Huang (iD
Research Article (3 pages), Article ID 5537965, Volume 2021 (2021)
An Improved Image Steganography Scheme Based on Partial Preservation Embedding Algorithm for Wireless Visual Sensor Networks
Qian Shen (iD), Tao Jiang (D), Yongjun Zhu (iD) and Yin Wu (D)
Research Article (15 pages), Article ID 6618134, Volume 2021 (2021)

Research Article Mobile, Divisible, and Safe E-Cash System

Ting Huang
College of Computer and Information Technology, China Three Gorges University, Yichang, Hubei 443002, China
Correspondence should be addressed to Ting Huang; 3451292652@qq.com

Received 6 January 2021; Revised 26 February 2021; Accepted 11 March 2021; Published 19 April 2021
Academic Editor: Mohammed Fattah
Copyright © 2021 Ting Huang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Mobile, divisible, and safe e-cash system adapts on mobile terminals for e-payment which can circulate in multiple banks. The usage of the divisible e-cash does not need pass bank, which the bank has not the bottleneck of e-business. The author's thesis discusses on the withdrawal protocol, payment protocol, transferable protocol, deposit protocol, and update of e-cash, based on elliptic curve cryptography (ECC).The system is simple, efficient, secure, and fit for the mobile e-payment terminals in which storage, power, operand capacity, and network bandwidth supply are extraordinarily restricted. The system can protect from double spending, non-frameability, eavesdropping, tampering, and "perfect crime" effectively too. It can save from mis-identity attacks, two-layer anonymity attacks, and linking attacks.

1. Introduction

With the development of science and technology and the progress of society, e-cash began to enter people's lives and gradually changed people's consumption concept and mode. Compared with the traditional paper money, e-cash has the advantages of fast transmission, wide coverage, and convenient use, which has replaced the paper money with an irreversible trend. But the e-cash systems use online payment nowadays. The usage of every e-cash system must pass the bank [1]; thus, the bank has turned into the bottleneck of the payment. The e-cash [2] only circulates in a single bank, which cannot meet the needs of reality. The e-cash system [3] based on RSA encryption algorithm problem which needs exponentiation compute. The e-cash [4] cannot be circulated in user's e-business. This paper researches on mobile, divisible, and safe e-cash system. The e-cash in this study is divisible, and the usage of the divisible e-cash system need not pass bank, which the bank has not the bottleneck of e-business. Meanwhile, the system can protect from double spending. ECC in this paper needs no exponentiation operation compared to RSA. The research effectively improves the efficiency and security of mobile e-cash system, which provides the theoretical basis and technical support for an electronic transaction system nowadays. In the system, the consumer can recover the lost
money even if the phone has crashed and all the files are removed accidentally or the e-cash wallet has been lost. The e-cash in this study can circulate in all the banks, which can meet the needs of reality. The e-cash in this study can circulate in user's e-business, which circulates any time offline between the users before getting saved in the bank. In comparison with the protocol in [5], the proposed protocol can protect from eavesdropping, tampering, and "perfect crime" effectively too. The e-cash in this study and its signatures cannot be forgery. It can save from misidentity attacks, two-layer anonymity attacks, and linking attacks. The system is simple, efficient, secure, and fit for the mobile e-payment terminals in which storage, power, operand capacity, and network bandwidth supply are extraordinarily restricted. The e-cash in the system has a usage period. When the usage period ends, the bank will delete the e-cash. Thus, the storage space of the bank is saved.

2. Design of Protocol

2.1. Withdrawal Protocol

(1) The user withdraws I yuan from the bank ${ }_{m}$. He takes $\mathrm{a} \epsilon_{R} Z_{n}$ and then computes $\delta=H\left(a+S K_{U}\right)$. Next, he enters δ in the database, encrypts IDnU, δ, and ,I by the symmetric key, and sends them to the bank ${ }_{m}$.
(2) The bank k_{m} produces the e-cash: $\alpha_{\mathrm{I}}=H\left[\left(\right.\right.$ ISK $_{B \mathrm{~m} 1}+$ $\left.\left.\delta S K_{B \mathrm{~m} 2}\right)\left\|S K_{B \mathrm{~m}}\right\| t_{1} \| b\right]$ and computes $\beta_{I}=H\left[\left(c G_{x}\right) \|\right.$ $\left.\alpha_{I}\left\|t_{1}\right\| I\right], \gamma_{I}=c+\beta_{I} \mathrm{SK}$ Bm , and $b, c \in_{R} Z_{n}$. The bank ${ }_{m}$ enters $\alpha_{\mathrm{I}}, b, \delta, t_{1}$, in the database, encrypts IDnU, I, $\alpha_{\mathrm{I}}, \beta_{I}, \gamma_{I}$, and t_{1} and sends to the user.
(3) The user decrypts IDnU, I, $\alpha_{\mathrm{I}}, \beta_{I}, \gamma_{I}$, and t_{1} and saves them to the database.
2.2. Payment Protocol. The user pays the e-cash to the merchant $_{0}$ by the credit center. First $\alpha_{\mathrm{i}}=H\left(b_{1}\left\|t_{2}\right\| S K_{U}\left\|\alpha_{I}\right\| j \| i\right), \quad \beta_{\mathrm{i}}=H\left[\left(c_{1} G\right)_{x}\left\|\alpha_{i}\right\| t_{2}\|j\| i\right]$, $\gamma_{i}=c_{1}+\beta_{i} S K_{U}, b_{1}, c_{1} \in Z_{n}, d, e_{1}, e_{2} \in Z_{n}, d \neq 0, \varepsilon=H\left(\alpha_{i}\right)$, $\varepsilon_{1}=d I D_{n U}-\varepsilon e_{1}, \varepsilon_{2}=d-\varepsilon e_{2}, \alpha_{\mathrm{i}}, \beta_{\mathrm{i}}, \gamma_{i}, i, j, t_{2}, \varepsilon, \varepsilon_{1}, \varepsilon_{2}$ are sent to the credit center. The e-cash cannot be used the next time. Then the credit center checks $\beta_{i} \stackrel{?}{=} H\left[\left(\gamma_{i} G-\beta_{i} P K_{U}\right)\left\|\alpha_{i}\right\| t_{2}\|j\| i\right]$ and saves $i, \alpha_{\mathrm{i}}, \beta_{\mathrm{i}}, \gamma_{i}, \varepsilon, \varepsilon_{1}, \varepsilon_{2}$. It gets $\varphi=H\left[i \|\left(S K_{C} P K_{M}\right)_{x}\right]$ and sends φ, NAU, and Timestamp to the merchant ${ }_{0}$. The merchant ${ }_{0}$ checks $\varphi \stackrel{?}{=} H\left[i \|\left(P K_{C} S K_{M}\right)_{x}\right]$ and then sends the goods to the user. The user receives the goods, gets $f=H\left[\left(S K_{U} P K_{C}\right)_{x}\right]$, deletes $\alpha_{\mathrm{i}}, \beta_{\mathrm{i}}, \gamma_{i}, i$, and sends f, merchant's address, NAU, and timestamp to the credit center. The credit center checks $f^{?} \stackrel{=}{=} H\left[\left(S K_{C} P K_{M}\right)_{x}\right]$, comupters $\varphi \prime=H\left[i\left\|\left(S K_{C} P K_{M}\right)_{x}\right\| \alpha_{i}\right]$, and sends i, α_{i}, NAU, $f, \varepsilon, \varepsilon_{1}, \varepsilon_{2}$, and timestamp to the merchant $_{0}$. The merchant ${ }_{0}$ tests $\varphi!\stackrel{?}{=} H\left[i\left\|\left(S K_{M} P K_{C}\right)_{x}\right\| \alpha_{i}\right]$ and saves $\alpha_{\mathrm{i}}, i, \varepsilon, \varepsilon_{1}, \varepsilon_{2}$.

The protocol that the merchant ${ }_{0}$ pays the e-cash to the merchant $_{\mathrm{i}}(i=1,2, \ldots, \mathrm{n})$ or factory is the same as the payments that the user pays to merchant.
2.3. Transferable Protocol. The e-cash can circulate in the user's e-business. First, the user ${ }_{1}$ computes $\varepsilon=H\left(\alpha_{i}\right), \varepsilon_{1}=$ $\mathrm{d} I D_{n U 1}-\varepsilon e_{1}, \varepsilon_{2}=d-\varepsilon e_{2}, d, e_{1}, e_{2} \in Z_{n}, d \neq 0, b_{1}, c_{1} \in Z_{n}$, $\alpha_{i}=H\left(b_{1}\left\|t_{3}\right\| S K_{U 1}\left\|\alpha_{I}\right\| j \| i\right), \quad \beta_{\mathrm{i}}=H\left[\left(c_{1} G\right)_{x}\left\|\alpha_{i}\right\| t_{3}\|j\| i\right], \gamma_{i}=$ $c_{1}+\beta_{i} S K_{U 1}$, and sends $\alpha_{\mathrm{i}}, \beta_{\mathrm{i}}, \gamma_{i}, i, j, t_{3}, \varepsilon, \varepsilon_{1}$, and timestamp the e-cash cannot use again. Then the user 2 tests $\beta_{i} \stackrel{?}{=} H\left[\left(\gamma_{i} G-\beta_{i} P K_{U 1}\right)\left\|\alpha_{i}\right\| t_{3}\|j\| i\right]$ and saves $\alpha_{\mathrm{i}}, \beta_{\mathrm{i}}, \gamma_{i}, i, j, t_{3}$, $\varepsilon, \varepsilon_{1}, \varepsilon_{2}$.
2.4. Deposit Protocol. When the person saves the e-cash to the bank, the bank must verify the correctness of the e-cash. The distributed bank must check whether the used e-cash is less than or equal to the distributed e-cash. If the used e-cash is more than the distributed e-cash, the bank can trace the person's identification. When the person saves the e-cash to the bank k_{n}, the e-cash will save in the bank k_{n}; when the person saves the e-cash to the bank m_{m} (not the distributed bank k_{n}), the bank m_{m} will send the e-cash to the bank k_{n}. After the e-cash in the bank ${ }_{\mathrm{n}}$ is dealt well, the person finishes the deposit. The central bank that has the highest grade among banks can test the trading process of the bank to check the business errors and punishment them. Thus, the e-cash can circulate in all the banks, which can meet the needs of reality.
2.5. Update of the E-Cash. When the usage period of the e-cash is over, the person tells the bank and fetches the new e-cash.

3. Discussion of Safety and Efficiency

$\alpha_{\mathrm{i}}, \beta_{\mathrm{i}}$, and γ_{i} are the right signatures of the e-cash i. Because $\gamma_{i} G-\beta_{i} P K_{U}=\left(c+\beta_{i} S K_{U}\right) G-\beta_{i} P K_{U}=c G$,
$\beta_{i} \stackrel{?}{=} H\left[\left(\gamma_{i} G-\beta_{i} P K_{U}\right)\left\|\alpha_{i}\right\| t_{2}\|j\| i\right]$ is verified. The e-cash and its signatures cannot be forged.

The e-cash and its signatures contain SK. Any attacker must gain SK so as to forge the e-cash and its signatures, which must solve ECDLP. ECDLP cannot be solved, so that the e-cash and its signatures cannot be forged. It can save from mis-identity attacks, two-layer anonymity attacks, and linking attacks. Therefore, the e-cash is safe and divisible.

When the user pays the e-cash with value i for the first time, the user sends $\alpha_{i}=H\left(b_{1}\left\|t_{2}\right\| S K_{U}\left\|\alpha_{I}\right\| i \| i\right)(i<I)$. The e-cash with value I-i can use next. When he pays the e-cash with value k for the second time, the user sends $\alpha_{i}=H\left(b_{1}\left\|t_{2}\right\| S K_{U}\left\|\alpha_{I}\right\| j \| k\right)(j=i+k)$. Similarly, the e-cash can be used repeatedly until $(j=I)$. Thus, the usage of the divisible e-cash need not pass bank, which the bank has not the bottleneck of e-business.
3.1. Non-Frameability. $\varepsilon_{1}=d I D_{n U}-\varepsilon e_{1}$, so the user's identification is sent with the e-cash. Thus, illegal users cannot frame other users, due to the security against mis-identity attacks, two-layer anonymity attacks, and linking attacks.

When a person uses the e-cash normally, his identity cannot be gained. However, the bank will trace the identity of the user when his e-cash is used repeatedly.

If the person spends the e-cash repeatedly, the bank will find when his e-cash was deposited. Because b is not the same as different e-cash, $\varepsilon=H\left(\alpha_{i}\right)$ and $\alpha_{I}=H\left[\left(I S K_{B m 1}+\right.\right.$ $\left.\left.\delta S K_{B m 2}\right)\left\|S K_{B m}\right\| t_{1} \| b\right]$ are different when the user's demand is the same. When the person uses the same e-cash repeatedly, the bank will fetch the other $\left(\varepsilon \prime, \varepsilon_{1}^{\prime}, \varepsilon_{2}^{\prime}\right) . d \neq 0, \varepsilon_{1}^{\prime}=$ $d I D_{n U}-\varepsilon \prime e_{1}$, and $\varepsilon_{2}^{\prime}=d-\varepsilon \prime e_{2}$. Thus, $\mathrm{ID}_{\mathrm{nU}}=\left(\left(\varepsilon \prime \varepsilon_{1}-\varepsilon \varepsilon_{1}^{\prime}\right) /\right.$ $\left.\left(\varepsilon \prime \varepsilon_{2}-\varepsilon \varepsilon_{2}^{\prime}\right)\right)(\bmod \mathrm{n})=\left(\left(\varepsilon \prime d I D_{n U}-\varepsilon d I D_{n U}\right) /(\varepsilon \prime d-\varepsilon d)\right)$. The bank will check the user's identity $\mathrm{ID}_{\mathrm{nU}}$. Thus, the system can prevent from double spending. So the system is safe, and the bank must be reliable and safe.

The anonymity and untraceability of signatures facilitate criminals to kidnap, launder, and extort money. So it is necessary to design a fair and controllable e-cash system. If he extorts money from the victim, the criminal can only ask the victim to transfer the money. After the victim transfers the e-cash, the criminal obtains the e-cash $\left(I, \alpha_{\mathrm{I}}, \varepsilon, \varepsilon_{1}, \varepsilon_{2}\right)$ and releases the victim. Then the victim can report to the bank that the e-cash $\left(I, \alpha_{\mathrm{I}}, \varepsilon, \varepsilon_{1}, \varepsilon_{2}\right)$ is obtained by extorting means. When the criminal is spending the e-cash, the merchant can call the police and arrest the criminal. After the case is solved, the bank will return the recovered e-cash to the victim. The system can protect from non-frameability, eavesdropping, tampering, and "perfect crime" effectively. So the system is secure.

The time of protocol realization and storage capacity in mobile, divisible, and safe e-cash systems are key to efficiency. 160b of ECC of the paper has the same function with 1024b of RSA [6]. The e-cash system [3] is based on RSA. ECC in the paper needs no exponentiation operation
compared to RSA. The calculation of ECC is very little compared to RSA. Therefore the efficiency of the system runs faster. The e-cash of spending process [3] is $\bar{S} \prime, \bar{T} \prime, \bar{R} \prime$, $\widehat{K}, \widehat{S}, \widehat{S}_{0}, \widehat{S_{1}}, \widehat{S_{2}}, \widetilde{C}, \widetilde{T}, \mathrm{~b}, \mathrm{t}, \mathrm{B}_{1}, D_{1}, D_{2}, \pi_{2}$, the storage space of the e-cash is $1024 * 10+128+1024 * 5=15488$ bit. While the e -cash of spending process in the paper is $i, \alpha_{\mathrm{i}}, \beta_{\mathrm{i}}$, and γ_{i}, the storage space of the e-cash is $32+128+128+192=$ 480 bit(The actual cost in the experimental system), which decreases 96.9% of the storage space and the network bandwidth. Therefore, the system is simple, efficient, and fit for the mobile e-payment terminals in which storage, power, operand capacity, and network bandwidth supply are extraordinarily restricted.

The e-cash in the system has a usage period. When the usage period ends, the bank will delete the e-cash. Thus, the storage space is saved.

The e-cash in the system can circulate in multiple banks, which does not confine to the bank that distributes the e-cash.

The e-cash [1] is inseparable. When the user withdraws the money from the bank, he can only use the money at one time. The merchant has to deposit it in the bank to verify the authenticity. Therefore, the bank has become a bottleneck. The e-cash can be divided. After the user withdraws the money from the bank, he can spend several times without frequently looking for the bank to withdraw money. The merchant does not have to deposit every money that they receive into the bank for verification. When the merchant needs to deposit money, the bank will verify the authenticity of the cash and find out the illegal e-cash.

The e-cash [4] cannot work between the users. However, the e-cash in the system can circulate any time offline between the users before getting saved in the bank.

4. Conclusions

The mobile, divisible, and safe e-cash system adapts on mobile terminals for e-payment which can circulate in multiple banks. The usage of the divisible e-cash needs not pass bank, which the bank has not the bottleneck of e-business. Experimental tests have been made, which prove that the system is simple, efficient, security, and fit for the mobile e-payment terminals in which storage, power, operand capacity, and network bandwidth supply are extraordinarily restricted.

Data Availability

The data used in the study are available at https://www. hindawi.com/publish-research/authors/research-data/
\#composing-a-data-availability-satement.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The author thanks 2020 International Conference on Artificial Intelligence and Advanced Manufacture for publishing the article "Electronic Cash System based on MultiBank Mobile Divisible, Recoverable and Transferable".

References

[1] X. Liu and Q. Xu, "Improved e-cash system with anonymous user suspension"" Application Research of Computers, vol. 33, no. 10, pp. 3099-3104, Oct. 2016.
[2] D. Shao, B. Kang, and J. Wang, "Analysis and improvement of two electronic cash schemes," Journal of Computer Applications, vol. 37, pp. 1-6, 2017.
[3] X. Liu and Bo Zhang, "improved endorsed E-cash system with DAA-A," Journal of Computer Research and Development, vol. 53, no. 10, pp. 2412-2429, 2016.
[4] Y. Liang, X. Zhang, and Z. Zheng, "Electronic cash system based on certificateless group signature," Journal on Communications, vol. 37, no. 5, pp. 184-190, 2016.
[5] Z. Jiang-xiao, F. Chun-hui, Ma Jin-xin et al., "Transferable e-cash system with arbitrarily spending order," Transactions of Beijing Institute of Technology, vol. 39, no. 3, pp. 283-289, 2019.
[6] A. J. Menezes, T. Okamoto, and S. A. Vanstone, "Reducing elliptic curve logarithms to logarithms in a finite field," IEEE Transactions on Information Theory, vol. 39, no. 5, pp. 1639-1646, 1993.

An Improved Image Steganography Scheme Based on Partial Preservation Embedding Algorithm for Wireless Visual Sensor Networks

Qian Shen (D), ${ }^{1}$ Tao Jiang (${ }^{2}{ }^{2}$ Yongjun Zhu ${ }^{(1)}{ }^{3}$ and Yin Wu (${ }^{4}$
${ }^{1}$ Faculty of Automation, Huaiyin Institute of Technology, Huai'an 223000, China
${ }^{2}$ Nanjing Electronic Devices Institute, Nanjing 210000, China
${ }^{3}$ School of Electronic \& Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
${ }^{4}$ College of Information Science \& Technology, Nanjing Forestry University, Nanjing 210000, China

Correspondence should be addressed to Qian Shen; qianshen@hyit.edu.cn
Received 7 November 2020; Accepted 14 February 2021; Published 28 February 2021
Academic Editor: Mohammed Fattah
Copyright © 2021 Qian Shen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

With the continuous improvement of encryption algorithms, some applications based on the architecture of wireless visual sensor networks have gradually shifted their attention to the imperceptibility and antijamming performance of secret images. To reduce the probability of secret images being detected, the current research focuses on hiding secret data in the least-significant bit of the cover image in the spatial domain or embedding data into the coefficients of the high-frequency band in the transformational domain, which usually leads to poor performance in a hostile environment. Therefore, some researchers proposed to substitute the coefficients of the medium-frequency band in the transformational domain with secret information to enhance the anti-interference performance. However, this idea would severely affect the imperceptibility of secret images. As a result, an improved version based on the partial preservation embedding algorithm was designed in this paper. Theory analysis and simulation results indicate that the proposed scheme performs better than the existing methods by directly substituting the coefficients of the medium-frequency band in the transformational domain, especially in the case of strong noise interference.

1. Introduction

Because of the convenience in networking, low cost in maintenance, and strong resistance to natural disasters, Wireless Visual Sensor Networks (WVSN) are suitable for various applications such as traffic management and intelligent monitoring. Recently, continuous progress has been made in the security and compressibility of image encryption systems owing to the development of chaos and compressive sensing (CS) technology [1-4]. However, some applications might have specific requirements. For example, most of the tactical reconnaissance missions in battlefields need to transmit scenes obtained by visual acquisition nodes through the wireless channels, during which the corresponding electromagnetic signals exposed in the air are easy to be accessed by enemies. The most common solution is to
use various encryption algorithms to improve the security of data before transmitting. To get satisfactory security performance, systems designed for this kind of applications are also required that secret images must be imperceptible [5]. As a result, confidential information is generally transmitted by means of hiding in unrelated images. In this case, the hidden data should be safely transmitted in the channel and accurately reconstructed at the receiving terminals, while there are no strict requirements on the reconstruction accuracy of cover images. To delve into these questions, researchers combined information security theory with signal processing technology and then proposed the basic concept and specific scheme of information hiding [6-12].

Nowadays, image hiding has become a hotspot of relevant areas. Since images are naturally redundant, they are quite suitable for embedding confidential information.

According to the basic architecture of image hiding systems, the key indicators include not only the security and antiinterference performance but also the maximum information embedding capacity and imperceptibility [5]. Traditional image steganography schemes focused on hiding secret data to the least significant bit (LSB) of cover images in the spatial domain or replacing the coefficients of the highfrequency band in the transformational domain with secret images [13-15]. These methods are simple and feasible to be utilized. Moreover, the desired imperceptibility could be obtained because the human visual system is insensitive to changes in the low-significant bits of pixel values. Nevertheless, even basic image processing operations (compression, filtering, etc.) would cause serious distortion to secret information [16]. More importantly, the propagation in a wireless channel is likely to be affected by various kinds of interference, which is unqualified to WVSN applications.

To address this problem, Li et al. [17] designed a reversible image steganography scheme based on block compressive sensing (BCS). In the front node, each element of bit-serialized pixels in the secret image would be hidden into one nonoverlapping block. When secret information was being extracted, a priori knowledge of the strong correlation between adjacent pixels on the boundary of each block could be utilized to recognize hidden information from each block of the stego image. However, this method requires the terminal users to take the correlation between adjacent pixels on the blocks' boundary as an evaluation function for extracting secret images, which results in low maximum embedding capacity because for that size of blocks must be big enough to ensure the accuracy of judgment. For example, the maximum embedding rate would be less than 0.05% if employing 16×16 blocks. Furthermore, for special cover images, such as images with flat texture in the vertical or horizontal direction, it is likely to have misjudgement in the process of extracting hidden information by the weak correlation between adjacent pixels on some boundaries. It would definitely reduce the accuracy of the extracted information. In conclusion, the BCS-based steganography method exhibits low practical value because of its low embedding rate and poor universality. Later, some other research studies were proposed to hide secret images in the space of the medium-frequency band to boost the maximum embedding capacity and antijamming performance [18, 19]. However, it would lead to a sharp decrease in the similarity between the stego image and cover image, which affected the imperceptibility of the secret image.

To improve the imperceptibility of secret images without reducing the antijamming performance and the maximum embedding capacity, this paper designed an optimized image steganography scheme based on the partial preservation embedding algorithm (ISS-PPEA). The rest of this paper would be organized as follows. First, the preliminary knowledge would be briefly introduced in the next section. Then, in Section 3, the framework of the proposed system and the detailed steps are explained in detail. In addition, the simulation results and the corresponding analysis are illustrated in Section 4. Lastly, all the work in this paper would be summarized in Section 5.

2. Preliminary Knowledge

Due to the characteristics of deterministic randomness, extreme sensitivity to initial states, etc., chaotic systems are widely used as the generator of encryption sequences in image encryption systems. In addition, CS has been considered as an optimal technique to counter threats caused by open channel, big data, and harsh communication circumstances in WVSN. Since the image encryption algorithm based on CS and nonuniform quantization (IEA-CS-NQ) has been proved to be safe enough for WVSN [20], this paper takes it directly as part of the proposed scheme. To make the designed system easier to be understood, the main steps of the encryption part in IEA-CS-NQ would be reviewed in this section as follows.
2.1. Measurement. In sensor nodes, scenes are directly acquired by a micromirror array controlled by the measurement matrices. Therefore, the core problem in this step is the construction of it. Considering the Restricted Isometry Property (RIP), building the Gaussian random matrix and Bernoulli random matrix are the preferable solutions. However, due to the security requirements, the measurement matrix is generally generated indirectly by the secret key transferred, which makes this plan inappropriate. As a result, IEA-CS-NQ employs the chaotic sequence to construct a cyclic matrix to boost the generation efficiency of the measurement matrix. More importantly, it has been proved that this Toeplitz-structured matrix provides better performance in irrelevant measurements. The circulant matrix is as follows:

$$
\Phi=\sqrt{\frac{1}{m}} \cdot\left[\begin{array}{cccc}
S_{1}(n) & S_{1}(n-1) & \cdots & S_{1}(1) \tag{1}\\
S_{1}(1) & S_{1}(n) & \cdots & S_{1}(2) \\
\vdots & \vdots & \ddots & \vdots \\
& & & \\
S_{1}(m-1) & S_{1}(m-2) & \ldots & S_{1}(m)
\end{array}\right]
$$

which would be employed to measure the original scene, whose elements $S_{1}(1)$ and $S_{1}(2), \ldots, S_{1}(n)$ are pseudorandom sequences generated by specific chaotic systems. Here, the symbol n represents the length of the serialized original image, while m stands for the sequence length obtained by compressive measurement. Thus, the compression ratio (CR) could be defined as m / n. Besides, the coefficient $\sqrt{1 / m}$ is the scale factor to realize the column normalization. Then, the process of measuring could be represented as follows:

$$
\begin{equation*}
y=\Phi \cdot x \tag{2}
\end{equation*}
$$

where x represents the serialized scene and y stands for the measurement result.
2.2. Quantization. As we know, the calculation result should be quantized to match the data type of pixel values in the digital image. However, the traditional uniform quantization
(UQ) method would lead to significant loss of data accuracy because of the uneven distribution of quantization resources. Moreover, it is vulnerable against CPA based on differential analysis algorithms. Therefore, IEA-CS-NQ designed a nonuniform quantization (NQ) method by adding a nonlinear pretreatment function with adaptive parameters to solve these problems. This function,

$$
\begin{equation*}
z=\frac{1}{1+e^{-a(y-\mathrm{os})}} \tag{3}
\end{equation*}
$$

contains two parameters regulated by the measurement result y. The parameter a determines the convergence rate, while the parameter os determines the convergence centre of the result z.
2.3. Confusion and Substitution. The last step of encryption in IEA-CS-NQ is the process of confusion and substitution. To be specific, the confusion is controlled by an index sequence I ranging from 1 to m, which is generated by a chaotic system. Substitution is operated by the following formula:

$$
\begin{equation*}
C(i)=Q_{\mathrm{rc}}(i) \oplus B(i), \tag{4}
\end{equation*}
$$

with the help of chaotic sequence B. Here, C is the cipher image to be sent, and i represents the index of the sequence. In addition, Q_{rc} stands for the result of confusion.

After all steps mentioned above have been completed, the corresponding cipher image could be obtained. Theory analysis and simulation experiments have proved that IEA-CS-NQ performs better in terms of security and antijamming.

3. The Proposed Scheme

The structure of the image steganography scheme proposed by this paper is illustrated in Figure 1. It could be divided into two parts: the encryption-hiding process in sensor nodes and the extraction-decryption process in terminal user nodes.

For sensor nodes, the information which is being necessary to generate chaotic sequences is extracted from the secret key allocated in a safe way firstly. Then, the construction of the measurement matrix, generation of the confusion sequence, substitution sequence, and embedding position are completed based on the generated sequences. After that, the secret image containing information about the current scene captured by a sensor node could be obtained by executing the encryption process of IEA-CS-NQ. And, it would be embedded into the medium-frequency band in the Discrete Cosine Transformation (DCT) coefficients of a cover image bit by bit with the proposed partial preservation embedding algorithm (PPEA) afterwards. Finally, Inverse Discrete Cosine Transformation (IDCT) would be performed to obtain the stego image that is visually similar to the cover image, and it would be sent to the
database nodes or terminal user nodes through the wireless channel.

After the stego image is captured by terminal users, DCT should be conducted to acquire coefficients containing secret information. Then, the secret image about the original scene captured by the sensor node could be extracted by the inverse scheme of PPEA used in the sensor node. Afterwards, the estimation of the original scene would be reconstructed by the decryption part in IEA-CS-NQ. In most applications, the terminal user just needs to precisely get the original scene, and there is no requirement for the quality of reconstruction for the cover image. However, as the cover image reconstructed in the terminal node is equivalent to the stego image transmitted in the wireless channel, the accurate reestablishment of the cover image is beneficial to the improvement in the imperceptibility of secret images.

Without loss of generality, this paper assumes that the size of the cover image in the sensor node is $\sqrt{N_{1}} \times \sqrt{N_{1}}$, and the size of the scene in front of the sensor is $\sqrt{N_{2}} \times \sqrt{N_{2}}$. Besides, all images are eight-bit grey-scale, whose elements range from 0 to 255 . The Orthogonal Matching Pursuit (OMP) is taken as the reconstruction algorithm of CS for the reason that this paper does not concern the corresponding design. The workflow of the designed system would be introduced in the following steps by taking the hiding process as an example.
3.1. IEA-CS-NQ. According to Figure 1, the scene at the sensor node would be captured and encrypted by IEA-CSNQ. The necessary information such as parameter values and initial values used by chaotic systems are extracted from the key sequence allocated in a safe way. After all steps in the encryption part of IEA-CS-NQ are accomplished, the secret image containing information about the original scene could be obtained, which is clearly the object to be hidden. On the basis of equation (1), its size should be $m \times \sqrt{N_{2}}$ if the measurement matrix Φ has m rows. In this situation, the number of bits that need to be hidden is $8 m \times \sqrt{N_{2}}$.
3.2. DCT Transformation. As described earlier in this article, the hiding method designed is executed in the mediumfrequency band in the transformational domain of the cover image. For the sake of convenience, DCT was selected to convert the cover image from the spatial domain to the frequency domain by the following formula:

$$
\begin{align*}
F(u, v)= & \alpha(u) \alpha(v) \sum_{k=0}^{N_{1}-1} \sum_{l=0}^{N_{1}-1} f(k, l) \cos \left[\frac{(2 k+1) u \pi}{2 N_{1}}\right] \tag{5}\\
& \cdot \cos \left[\frac{(2 l+1) v \pi}{2 N_{1}}\right]
\end{align*}
$$

where $f(k, l)$ stands for the $k^{\text {th }}$ row and the $l^{\text {th }}$ column element in the cover image. In addition, $\alpha(u)$ and $\alpha(v)$ are the normalization coefficients defined by

Figure 1: The framework of the proposed scheme.

$$
\alpha(u), \alpha(v)= \begin{cases}\sqrt{\frac{1}{N_{1}}}, & u, v=0 \tag{6}\\ \sqrt{\frac{2}{N_{1}}}, \quad u, v=1,2, \ldots, N_{1}-1 .\end{cases}
$$

In the practical image processing operation, for reducing the complexity of DCT, the cover image is usually divided into nonoverlapping image blocks with equal size before transmitting. Thus, the final results calculated by equation (5) are generally DCT coefficient blocks. Current research has proven that, in the process of image segmentation, the accuracy of the reconstructed image would be reduced, and the segmentation effect would be obvious if the block size is too small. However, if the size of the block is oversize, the complexity of the transformation would increase dramatically. Therefore, most researchers chose a compromise that the block size was set to 16×16.

This paper also assumes that the block size of the cover image and the corresponding DCT coefficient matrix are both 16×16, by which $\sqrt{N_{1}}$ could be divisible. Research studies have proved that most elements in the DCT coefficient matrix block are close to zero, for the reason that digital images usually contain a large amount of redundant data. Besides, the upper left to lower right elements in the coefficient block are generally considered as the low-frequency to high-frequency DCT coefficients. That is to say, the major information is concentrated in the upper left
corner of the DCT coefficient block, while the minor information is concentrated in the lower right corner. If all coefficients in a block are serialized with the zigzag order, the elements of the obtained vector could be considered as a coefficient sequence ordered by importance, and the specific process is drawn in Figure 2. It can be found that the coefficient matrix arranges its elements in the order indicated by the dotted line from the top left corner to the lower right corner. As a result, the importance of elements in this sequence is gradually descending. For facilitating subsequent theoretical analysis and simulation experiments, the lowfrequency, medium-frequency, and high-frequency bands in the DCT coefficient matrix of an image block sizing 16×16 are defined as the elements whose indexes are $1 \sim 15$, $16 \sim 143$, and $144 \sim 256$ in the zigzag sequence, respectively.
3.3. Secret Information Embedding. As we all know, the physiological structure of the human eyes determines that the human visual system is only sensitive to the information expressed by the high-significant bits in the pixel values of an image, and it is rather difficult for them to distinguish changes in the low-significant bits. In other words, the information contained in different significant bits could be considered to have different weights. As for DCT, this characteristic is directly reflected by the fact that different frequency coefficients are of different importance.

To intuitively perceive the different importances of coefficients in different bands, the standard Baboon image with size 256×256 was taken as an example to conduct

Figure 2: The diagram of the zigzag structure in the DCT coefficient matrix.
experiments. Suppose that fifteen low-frequency DCT coefficients, thirty medium-frequency DCT coefficients, or sixty high-frequency DCT coefficients were lost, the peak signal-tonoise ratio (PSNR) values of the corresponding reconstructed images were 26.97, 38.67, and 41.80, respectively. They are plotted in Figure 3. Surely, the extent of information loss in the reconstructed image is not positively correlated with the number of lost coefficients, but closely related to the frequency band of the lost coefficients. Specifically, the number of coefficients lost in the low-frequency band is the least, but the information loss in the reconstructed image is the most severe. The degree of loss in high-frequency coefficients is the worst, while the information loss is slightest. It means that the lowfrequency coefficients are definitely essential during image reconstruction. Besides, even if the medium- and high-frequency coefficients are severely lost, the reconstruction would not be significantly affected.

Based on the conclusion mentioned above, this paper proposed to embed secret information into the mediumfrequency band in the DCT coefficient matrix of the cover image to improve the antijamming performance of the image steganography system without significant influence on the reconstruction accuracy. Without loss of generality, it is assumed that the size of the cover image is 512×512, and the size of the original scene at the sensor node is 128×128. In addition, the value of CR utilized in IEA-CS-NQ is marked with cr. Clearly, the cover image could be transformed into 1024 groups of DCT coefficient block sizing 16×16, while the measurement result acquired by the sensor node could be converted into 1024 groups of bit sequence with $128 \in \mathrm{cr}$ elements. According to the condition that $\mathrm{cr} \in(0,1]$, the lengths of the bit sequence in each group assembled by the measurement results are certainly less than 128, which ensures that each group of the bit sequence could be embedded into the medium-frequency coefficients of one DCT coefficient block.

It is necessary to specify the embedding positions and the specific hiding method in the hiding process. As shown in Figure 1, the positions are determined by the sequence generated by a specific chaotic system. Before the $l^{\text {th }}$ group of operation, a total of 128 elements from $(128 \cdot(l-1)+1)^{\text {th }}$ to $(128 \cdot l)^{\text {th }}$ in the chaotic sequence are indexed by values to get a sequence correlated to the embedding positions. Then, the elements indexed from 1 to $128 \cdot \mathrm{cr}$ in this sequence
would add 15 to be taken as the embedding positions of the current group. The process of hiding the $i^{\text {th }}$ bit $B(i)$ for the $l^{\text {th }}$ group of operation into the $j^{\text {th }}$ element $A(j)$ in the corresponding DCT coefficient sequence A would be taken as an example to demonstrate PPEA. Suppose that $B(i)=0$, the embedding operation designed by

$$
A^{\prime}(j)= \begin{cases}A(j), & A(j) \leq-\alpha \cdot\left|\overline{A_{\mathrm{mid}}}\right| \tag{7}\\ -\alpha \cdot\left|\overline{\mathrm{A}_{\mathrm{mid}}}\right|, & -\alpha \cdot\left|\overline{A_{\mathrm{mid}}}\right|<A(j)\end{cases}
$$

would be applied to hide the bit sequence in the mediumfrequency band of the DCT coefficient matrix orderly. Otherwise, the embedding operation would be

$$
A^{\prime}(j)= \begin{cases}A(j), & \alpha \cdot\left|\overline{A_{\mathrm{mid}}}\right| \leq A(j) \tag{8}\\ \alpha \cdot\left|\overline{A_{\mathrm{mid}}}\right|, & A(j)<\alpha \cdot\left|\overline{A_{\mathrm{mid}}}\right|\end{cases}
$$

Here, the conditions $l \in\{1,2, \ldots, 1024\}$, $i \in\{1,2, \ldots, 128 \cdot \mathrm{cr}\}$, and $j \in\{16,17, \ldots, 143\}$ should be met. Besides, the symbol $\left|\overline{A_{\text {mid }}}\right|$ represents the absolute value of the average for all 128 medium-frequency coefficients $A(16) \sim A(143)$. In addition, the parameter α is utilized to regularize the region size, whose value could be increased to enhance the antijamming performance of the steganography system or be reduced properly to improve the imperceptibility for secret information. Sign $A^{\prime}(j)$ is the result of the embedding operation for the medium-frequency band coefficient $A(j)$ chosen from one group of DCT coefficients.

According to equations (7) and (8), the designed PPEA could improve the imperceptibility of secret information for the reason that it preserves most elements in the process of steganography. In other words, it only affects the elements valued between $-\alpha \cdot\left|\overline{A_{\text {mid }}}\right|$ and $\alpha \cdot\left|\overline{A_{\text {mid }}}\right|$ in the mediumfrequency band of DCT coefficients for the cover image. Besides, the result of the embedding operation is constrained outside the interval $\left(-\alpha \cdot\left|\overline{A_{\text {mid }}}\right|, \alpha \cdot\left|\overline{A_{\text {mid }}}\right|\right)$, which could guarantee the antijamming performance of the steganography system. Indeed, the result of the embedding operation is not only determined by the absolute value of the average for all medium-frequency band coefficients but also by the region regulation parameter α.
3.4. IDCT Transformation. Before data is transmitted through the wireless channel, the modified coefficient blocks obtained by the embedding operation should be converted to the stego image by applying IDCT. The obtained stego image would be visually safe but contains confidential information, which means the entire steganography is completed.

According to the structure shown in Figure 1, the ex-traction-decryption process in terminal user nodes is the inverse operation corresponding to the encryption-hiding process in sensor nodes. It is worth mentioning that each bit extracted is determined by the sign of the corresponding coefficient. After the extraction process is completed, the reconstructed scene could be obtained by directly applying the decryption part in IEA-CS-NQ.

Figure 3: Reconstruction results of the Baboon image in different coefficient-loss situations. (a) No loss. (b) Fifteen low-frequency DCT coefficient losses. (c) Thirty medium-frequency DCT coefficient losses. (d) Sixty high-frequency DCT coefficient losses.

4. Simulation and Analysis

For simplicity, simulation experiments were conducted with scenes of size 128×128 and cover images of size 512×512. According to the definition of the mediumfrequency band and the designed embedding scheme introduced above, the maximum number of bits embedded is half of the number of elements in the DCT coefficient block for the cover image. Therefore, one secret image of size no more than 128×128 could be embedded in a cover image. The security performance of ISS-PPEA could be obtained by analysing the experimental results. Moreover, the imperceptibility of the secret information, the anti-interference performance, and the operating efficiency of the system were also evaluated.

Some standard images were taken as examples to verify the effectiveness of the proposed scheme in conditions of zero-mean additive white Gaussian noise (AWGN) with standard deviations of 2% or 6.25% occlusion by rectangular shape in the corresponding stego images. Assuming that CR was set to 0.7 , the results shown in Figure 4 indicated that ISS-PPEA had satisfactory imperceptibility and robustness.

4.1. Security Performance

4.1.1. Ability of Resisting CPA. According to the conclusion that IEA-CS-NQ is invulnerable to various kinds of attacks [20], ISS-PPEA could also be safe enough to resist common attacks including CPA because IEA-CS-NQ is directly utilized by the image steganography scheme proposed in this paper.
4.1.2. Key Space and Key Sensitivity. Current research suggests that the key space in a safe cryptosystem should be larger than 2^{112} when confronting brute-force attacks [21]. Actually, it depends on the complexity of the chaotic system utilized in the designed steganography scheme. Due to the Optimized Coupled Map Lattice (OCML) model applied, the IEA-CS-NQ and specified embedding positions in ISSPPEA require a key stream of more than 240 bits if the data precision is 16 bit, which is enough to satisfy the demand for key space. Moreover, users could tailor the size of the key
space on the basis of realistic situation and system requirements. In other words, the size of the key space in the designed scheme could easily meet the needs of different applications.

Key sensitivity is also an important characteristic of cryptosystems. Generally speaking, it requires that the cipher images encrypted with different secret keys should be totally different, and that the decrypted images obtained by incorrect keys would lose all useful information about the original image. However, due to the imperceptibility demanded of secret information in steganography systems, the corresponding requirements in the encryption part should be removed. To be specific, the stego images obtained with different secret keys might be visually similar. It was assumed that there existed a slight difference between the two groups of keys k_{1} and k_{2}, which resulted in a 0.001 deviation of the parameters in the corresponding chaotic system for generating the confusion sequence. Then, hiding the confidential Bridge scene into the Baboon cover image was taken as an example to verify the key sensitivity of ISSPPEA. As shown in Figure 5, the difference between stego image A obtained with key k_{1} and stego image B obtained with key k_{2} is visually hard to be discovered, and it reflects the admirable imperceptibility in the steganography system. However, in the extraction-decryption process, the reconstructed images obtained from stego image A with different secret keys would be completely different according to Figure 6. It means that, even if there exists a tiny deviation in the secret key during the extraction-decryption process, the information in the original scene would be unrecoverable. Moreover, it is believed that the secret image annotated in Figure 1 is still extremely sensitive to key variations due to IEA-CS-NQ utilized in the designed scheme. In summary, the key sensitivity of ISS-PPEA conforms to the requirements in image steganography systems.
4.1.3. Statistical Histogram. By analysing the statistical histograms of the cover image and stego image, the change rule of the pixel values' distribution could be revealed, and then, some features of the corresponding steganography system might be leaked [22]. However, as shown in Figure 7, the stego images obtained mostly retained the statistical features of the original cover

Figure 4: Experimental results of standard images in different interference situations. (a) The cover images of (i) Baboon, (ii) Barbara, and (iii) Pepper. (b) The scenes of (i) Bridge, (ii) Couple, and (iii) Lena. (c) The stego images of (i) Baboon, (ii) Barbara, and (iii) Pepper with AWGN. (d) The reconstruction results of (i) Bridge, (ii) Couple, and (iii) Lena by stego images with AWGN. (e) The stego images of (i) Baboon, (ii) Barbara, and (iii) Pepper with occlusion. (f) The reconstruction results of (i) Bridge, (ii) Couple, and (iii) Lena by stego images with occlusion.

FIgure 5: The key sensitivity in the encryption-hiding process for ISS-PPEA. (a) The cover image of Baboon. (b) The confidential scene of Bridge. (c) The stego image A obtained with key k_{1}. (d) The stego image B obtained with key k_{2}. (e) The difference between stego images A and B.

FIGURE 6: The key sensitivity in the extraction-decryption process for ISS-PPEA. (a) The cover image of Baboon. (b) The confidential scene of Bridge. (c) The reconstructed image A obtained from stego image A with key k_{1}. (d) The reconstructed image B obtained from stego image A with key k_{2}. (e) The difference between two reconstructed images A and B.
images, making it difficult for attackers to extract the information about the system from the statistical features of the stego images.
4.1.4. Correlation Coefficients. Generally speaking, the cipher images obtained by a cryptosystem could effectively eliminate the correlation between adjacent pixels of the scene image acquired by the sensor node. However, to optimize the imperceptibility of the secret information contained in the stego image, it is necessary for the stego image to maintain the characteristics of correlation similar to that of the corresponding cover image. An example of embedding the scene of Bridge into the cover image of Baboon is conducted to evaluate the characteristics of correlation in ISS-PPEA. The relationship of 1024 groups of adjacent pixel pairs in horizontal, vertical, and diagonal directions in the cover image and the corresponding stego image are drawn in Figure 8. Owing to the similar distribution of correlation, it could be considered that exploring system characteristics from adjacent pixel values is difficult for attackers. In addition, the correlation coefficients listed in Table 1 further provided evidence for the above conclusion.
4.1.5. Randomness Analysis. Information entropy $H(s)$ is usually used to estimate the statistical measure of uncertainty. It could be defined as

$$
\begin{equation*}
H(s)=\sum_{i=0}^{255} P\left(s_{i}\right) \log _{2} \frac{1}{P\left(s_{i}\right)} \tag{9}
\end{equation*}
$$

Here, the symbol s is a discrete random variable, and $P\left(s_{i}\right)$ represents the probability density function of the appearance of s_{i}. If all values have the same probability, that is, $P\left(s_{i}\right)=1 / 2^{8}$, then the value of $H(s)$ should be 8 . The information entropy of a meaningful image must be less than that. For an image steganography system, the information entropy of the stego image should be close to that of the corresponding cover image to improve the imperceptibility of the secret information. Some scene images embedded to cover images were taken as examples to evaluate this performance in ISS-PPEA. According to the results listed in Table 2, the characteristics of randomness in the cover images could be well preserved in the corresponding stego images. Therefore, the random characteristics of ISSPPEA are believed to meet the design requirements.

Figure 7: The statistical histograms for ISS-PPEA. (a) Histogram of the cover image for (i) Baboon, (ii) Barbara, or (iii) Pepper. (b) Histogram of the stego image using the cover image for (i) Baboon, (ii) Barbara, or (iii) Pepper.

FIgure 8: The correlation of adjacent pixel pairs for ISS-PPEA. (a) The correlation in the cover image of Baboon by (i) horizontal direction, (ii) vertical direction, or (iii) diagonal direction. (b) The correlation in the stego image using the cover image of Baboon by (i) horizontal direction, (ii) vertical direction, or (iii) diagonal direction.

Table 1: The correlation coefficients of adjacent pixel pairs in the cover image and stego image for ISS-PPEA.

Cover image/Scene	Horizontal direction	Vertical direction	Diagonal direction
Baboon/Bridge	$0.7317 / 0.7598$	$0.8578 / 0.8698$	$0.7093 / 0.7304$
Barbara/Couple	$0.9621 / 0.9643$	$0.9098 / 0.9197$	$0.8897 / 0.9052$
Pepper/Lena	$0.9828 / 0.9826$	$0.9861 / 0.9857$	$0.9768 / 0.9766$
Average value	$0.8922 / 0.9022$	$0.9179 / 0.9251$	$0.8586 / 0.8707$

Table 2: The information entropies in cover images and stego images for ISS-PPEA.

Cover image/Scene	Cover image	Stego image
Baboon/Bridge	7.1560	7.1235
Barbara/Couple	7.6332	7.6752
Pepper/Lena	7.6396	7.6644
Average value	7.4763	7.4877

5. Imperceptibility

Existing research shows that when observing an image, the human visual system would be highly adaptive to extract its structure information. And, it judges the degree of distortion by comparing the differences in the image structure information. Thus, the image steganography system should minimize the visual difference between the stego image and the corresponding cover image to reduce the detectability of secret information. According to the diagram illustrated in Figure 1, the imperceptibility of the secret information is primarily determined by the structural similarity between the stego image and the cover image and is positively correlated with it. Therefore, the Structural Similarity Index (SSIM) is utilized to evaluate the imperceptibility of secret information. It could be calculated with

$$
\begin{equation*}
\operatorname{SSIM}(x, y)=l(x, y)^{\alpha} \cdot c(x, y)^{\beta} \cdot s(x, y)^{\gamma} . \tag{10}
\end{equation*}
$$

Within this formula, there are definitions of

$$
\begin{align*}
& l(x, y)=\frac{2 \mu_{x} \mu_{y}+C_{1}}{\mu_{x}^{2}+\mu_{y}^{2}+C_{1}}, \tag{11}\\
& c(x, y)=\frac{2 \sigma_{x} \sigma_{y}+C_{2}}{\sigma_{x}^{2}+\sigma_{y}^{2}+C_{2}}, \tag{12}\\
& s(x, y)=\frac{\sigma_{x y}+C_{3}}{\sigma_{x} \sigma_{y}+C_{3}} \tag{13}
\end{align*}
$$

Here, the symbols x and y represent the pixel values of the stego image and the corresponding cover image. Signs μ_{x} and σ_{x} are the average and variance of the stego image, respectively. Symbol $\sigma_{x y}$ stands for the covariance between the stego image and the cover image. Besides, C_{1}, C_{2}, and C_{3} are constants with small values, which are used to ensure the stability of the denominators for equations (11) to (13). Parameters α, β, and γ are conveyed to adjust the weight distribution of brightness (average), contrast (variance), and structural information in the model. Surely, from the perspective of image information composition, SSIM defines the structure information as a special property reflecting the
scene structure independent of brightness and contrast and models the whole scene information as a combination of brightness, contrast, and structure. According to the definition of SSIM, the mean value of pixel values is taken as the estimation of brightness, while the standard deviation of pixel values is used as the estimation of contrast, and the covariance between two images acts as the estimation of the approximate degree of structure. In general, there are $C_{1}=\left(k_{1} \cdot L\right)^{2}, \quad C_{2}=\left(k_{2} \cdot L\right)^{2}, \quad C_{3}=C_{2} / 2, \quad k_{1}=0.01$, $k_{2}=0.03$, and $L=255$. Equation (10) could be simplified to

$$
\begin{equation*}
\operatorname{SSIM}(x, y)=\frac{\left(2 \mu_{x} \mu_{y}+C_{1}\right)\left(2 \sigma_{x y}+C_{2}\right)}{\left(\mu_{x}^{2}+\mu_{y}^{2}+C_{1}\right)\left(\sigma_{x}^{2}+\sigma_{y}^{2}+C_{2}\right)} \tag{14}
\end{equation*}
$$

when $\alpha=\beta=\gamma=1$. On the basis of equations (7) and (8), the designed steganography scheme could modify the region adjustment parameter α to meet the requirements for different applications. Specifically, the smaller α would result in the smaller loss of the medium-frequency band of DCT coefficients in the encryption-hiding process. It means a larger SSIM of the stego image and the corresponding cover image, which optimizes the imperceptibility of the secret information. However, in this situation, the anti-interference performance would be influenced due to the smaller judgment threshold used for information extraction. On the contrary, if the value of the parameter α is enlarged, the loss of the medium-frequency band of DCT coefficients would increase. It means a smaller SSIM of the stego image and the corresponding cover image, which degrades the imperceptibility of the secret information. However, the antijamming performance would be optimized because of the larger judgment threshold used for information extraction. In general, it is necessary to balance the relationship between the imperceptibility and anti-interference performance according to the requirements for different applications. Then, the appropriate region adjustment parameter could be found out.

Assuming that CR was set to 0.7 for measurement and zero-mean AWGN with standard deviation of 2/4/6 existed in the channel, experiments were conducted with different region adjustment parameters to verify the theoretical analysis mentioned above. As shown in Figure 9, the larger parameter α correlated with better anti-interference performance and worse imperceptibility. Moreover, the environment with greater noise intensity would be related to the more obvious improvement in the anti-interference performance. Conversely, the smaller parameter α would result in worse anti-interference performance and better imperceptibility. And, greater AWGN strength correlates with the more obvious improvement in the imperceptibility.

Figure 9: The reconstruction performance of ISS-PPEA with the channel containing AWGN. (a) The PSNR values of the reconstructed image with the channel containing zero-mean AWGN with standard deviations of (i) 2 , (ii) 4 , or (iii) 6. (b) The SSIM values of the stego image and the cover image with the channel containing zero-mean AWGN with standard deviations of (i) 2 , (ii) 4 , or (iii) 6 . (c) The SSIM values of the reconstructed image and the original scene with the channel containing zero-mean AWGN with standard deviations of (i) 2, (ii) 4 , or (iii) 6 .

6. Anti-Interference Performance

In the steganography applications based on the WVSN structure, the data transmitted in the wireless channel is not only easy to be affected by various kinds of interference but also easy to be attacked by hackers artificially. To obtain most
of the scene information captured by the sensor node, the requirements for anti-interference performance of the system must be taken seriously. Most current schemes hid secret information into the LSB of the cover images in the spatial domain or into the coefficients of the high-frequency band of the cover images in the transformational domain.

FIGURe 10: The PSNR values of the reconstructed image under AWGN interference of different intensities for PM and BT. (a) The cover image is Baboon, and the scene is Bridge. (b) The cover image is Barbara, and the scene is Couple. (c) The cover image is Pepper, and the scene is Lena.

Figure 11: The SSIM values of the stego image and cover image under AWGN interference of different intensities for PM and BT. (a) The cover image is Baboon, and the scene is Bridge. (b) The cover image is Barbara, and the scene is Couple. (c) The cover image is Pepper, and the scene is Lena.

These methods are unable to meet the specific requirements of WVSN. Therefore, this paper proposed to hide the measurement results of the scenes into the medium-frequency DCT coefficients of the cover image bitwise randomly, which is surely beneficial to reduce the influence of AWGN and improve the anti-interference performance of the system. Because ISS-PPEA involves the entire structure of IEA-CS-NQ, the reconstruction accuracy in front of occlusion would not be worse than that in the existing literatures. Since the designed embedding algorithm has
little effect on the image reconstruction ability in the case of data loss, this section would merely evaluate the system performance under AWGN interference.

By comparing ISS-PPEA with the similar embedding method proposed by Poljicak et al. [19], it could be found that
(1) In the scheme proposed by Poljicak, the binarization treatment for the coefficients selected by the embedding operation was carried out on the basis of the average of the medium-frequency DCT coefficient,

Figure 12: The SSIM values of the reconstructed image and scene under AWGN interference of different intensities for PM and BT. (a) The cover image is Baboon, and the scene is Bridge. (b) The cover image is Barbara, and the scene is Couple. (c) The cover image is Pepper, and the scene is Lena.
which significantly affected the SSIM for the stego image and the cover image. In ISS-PPEA, the coefficients chosen by the embedding operation are modified by the partial preservation treatment method described in equations (7) and (8) based on the region adjustment parameter according to specific requirements for applications. It could sharply reduce the number of DCT coefficients that have to be changed in the hiding process. Indeed, ISS-PPEA could help to improve the SSIM and imperceptibility.
(2) According to the embedding method described in equations (7) and (8), the proposed scheme could make the revised coefficients have regional distribution. That is to say, compared with the binarization treatment method designed in [19], the absolute value of stego coefficients in ISS-PPEA is larger, and the probability of misjudgement in the process of extracting sign is surely lower for the same AWGN. In other words, ISS-PPEA could improve the accuracy of information reconstruction.

Several groups of standard images were applied to verify the theoretical analysis mentioned above. The designed steganography scheme based on the partial preservation treatment was compared with the available scheme based on the binarization treatment by assuming that zero-mean AWGN with standard deviations of 2/4/6 existed in the channel. The results are drawn in Figures $10-12$. It is worth mentioning that the symbols PM and BT are taken as the abbreviations for the proposed partial preservation treatment method and the available binarization treatment method, respectively. As shown in Figure 10, with AWGN interference of different intensities, the reconstruction result of the proposed scheme is more accurate. Moreover, the higher the noise intensity is, the more obvious the improvement of PSNR would be. According to Figure 11, the
designed scheme significantly boosts the SSIM value for the stego image and the cover image. It means that the imperceptibility of secret information has been improved by the proposed method. Figure 12 shows that ISS-PPEA contributes to enhance the structural similarity of the reconstructed image and scene information. It should be noted that although the PSNR and SSIM values shown in Figures 10-12 were quite small, this would not affect the correctness of the experimental results and conclusions. In practice, it is easy to choose a better reconstruction algorithm to improve the performance of the reconstruction.

As mentioned above, the ISS-PPEA designed by this paper could improve the reconstruction precision for the scene information under noisy environment, comparing with current schemes based on hiding secret data in the LSB of the cover image in the spatial domain or embedding data into the coefficients of the high-frequency band in the transformational domain. When comparing with the binarization embedding treatment method designed in the literature [19], the partial preservation scheme is better at improving the imperceptibility and reconstruction accuracy of scene information, which is equivalent to improving the anti-interference performance.

7. Efficiency

The operating efficiency of the image steganography system based on the partial preservation embedding algorithm would be evaluated from the aspects of time complexity, space complexity, information embedding rate, communication efficiency, and system consumption in this part.
7.1. Time and Space Complexity. Suppose the size of the cover image is $\sqrt{n_{1}} \times \sqrt{n_{1}}$. According to the system framework shown in Figure 1, the size of objects and results
of DCT/IDCT operation is still $\sqrt{n_{1}} \times \sqrt{n_{1}}$. Therefore, the time and space complexity of the proposed system are both $O\left(n_{1}\right)$, equal to the existing schemes.
7.2. Information Embedding Rate and Communication Efficiency. For image steganography systems, the information embedding rate is defined as the ratio of the information amount in the confidential scene to the cover image. And, the communication efficiency could be considered as the ratio of the data volume in the scene to be hidden and the stego image transmitted in the channel.

Indeed, the information embedding rate of the system is closely related to the information embedding method, while the communication efficiency is connected with the compression ratio during the measurement operation in CS. Suppose the size of the cover image is $\sqrt{n_{1}} \times \sqrt{n_{1}}$, the size of the scene is $\sqrt{n_{2}} \times \sqrt{n_{2}}$, and the compression ratio during measurement is 1 . According to the definition that the medium-frequency DCT coefficients occupy 50% space of the cover image, the proposed system could work normally as long as the condition $n_{1} / 16 \geq n_{2}$ is met. Therefore, the maximum embedding capacity of the steganography system is $n_{1} / 2$ bits, and the maximum embedding rate of information is $6.25 \%\left(\left(n_{1} / 16\right) / n_{1}\right)$. Since the communication efficiency is n_{2} / n_{1}, the communication efficiency would be the maximum value of 6.25% if $n_{2}=n_{1} / 16$. In addition, if the compression ratio is less than 1 , the communication efficiency of the system would be improved accordingly.
7.3. System Consumption. According to the scheme designed in Figure 1, a sensor node only needs to complete the work of scene information acquisition, encryption, and embedding, which corresponds with limited consumption requirements. Reconstruction is confined to the terminal user node with powerful hardware for its difficulty. Therefore, it can be considered that the image steganography scheme designed by this paper is very suitable for the applications with WVSN architecture.

8. Conclusions

The key technical problems of available image steganography schemes employed by applications with the structure of WVSN were firstly analysed in this paper. It was found that the performance of existing systems in the hostile environment was unsatisfactory. Besides, the current solutions based on the medium-frequency band in the transformational domain of the cover image have greatly affected the SSIM of the stego image and cover image. Thus, to settle these problems, an image steganography scheme based on PPEA is proposed in this paper. Theoretical analysis and simulation results have proved that the designed scheme possesses the following advantages:
(1) Due to IEA-CS-NQ being taken as part of the proposed scheme, it could be considered that the proposed ISS-PPEA inherits its advantages of high-
level encryption efficiency and the ability to resist all kinds of attacks including CPA
(2) Comparing with existing schemes of embedding scene information into LSB in the spatial domain or hiding it to the high-frequency band in the transformational domain, the proposed scheme has better performance in the hostile communication environment
(3) The designed PPEA performs better in terms of optimizing the imperceptibility and boosting the reconstruction accuracy of the original scene information, when making a comparison with the existing method proposed by Poljicak et al. [19]
(4) The proposed scheme could adapt to different performance requirements in various applications by setting region adjustment parameters, which ensures its practical value

Data Availability

The simulation results used to support the findings of this study are included within this article.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

This work was supported by the Youth Program of National Natural Science Foundation of China (31700478).

References

[1] S. Y. Chen and T. Y. Tsou, "Compressive sensing-based adaptive top-k query over compression domain in wireless sensor networks," in Proceedings of the 2017 IEEE Wireless Communications and Networking Conference, pp. 1-6, San Francisco, CA, USA, May 2017.
[2] S. A. Unde and P. P. Deepthi, "Design and analysis of compressive sensing based lightweight encryption scheme for multimedia IoT," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, Article ID 2897839, 2019.
[3] Y. Zhang, L. Y. Zhang, J. Zhou, L. Liu, F. Chen, and X. He, "A review of compressive sensing in information security field," IEEE Access, vol. 4, no. 4, pp. 2507-2519, 2016.
[4] L. Chen, B. Ma, X. Zhao, and S. Wang, "Differential cryptanalysis of a novel image encryption algorithm based on chaos and Line map," Nonlinear Dynamics, vol. 87, no. 3, pp. 1797-1807, 2017.
[5] M. Saidi, H. Hermassi, R. Rhouma, and S. Belghith, "A new adaptive image steganography scheme based on DCT and chaotic map," Multimedia Tools and Applications, vol. 76, no. 11, pp. 13493-13510, 2017.
[6] R.-Z. Wang, C.-F. Lin, and J.-C. Lin, "Image hiding by optimal LSB substitution and genetic algorithm," Pattern Recognition, vol. 34, no. 3, pp. 671-683, 2001.
[7] P. Tsai, Y.-C. Hu, and H.-L. Yeh, "Reversible image hiding scheme using predictive coding and histogram shifting," Signal Processing, vol. 89, no. 6, pp. 1129-1143, 2009.
[8] C.-C. Chang, M.-H. Lin, and Y.-C. Hu, "A fast and secure image hiding scheme based on LSB substitution," International Journal of Pattern Recognition and Artificial Intelligence, vol. 16, no. 4, pp. 399-416, 2002.
[9] Y.-H. Yu, C.-C. Chang, and I.-C. Lin, "A new steganographic method for color and grayscale image hiding," Computer Vision and Image Understanding, vol. 107, no. 3, pp. 183-194, 2007.
[10] M. Li, L. Wang, J. Fan, Y. Zhang, K. Zhou, and H. Fan, "Fidelity preserved data hiding in encrypted highly autocorrelated data based on homomorphism and compressive sensing," IEEE Access, vol. 7, no. 1, pp. 69808-69825, 2019.
[11] X. Zhang, F. Peng, and M. Long, "Robust coverless image steganography based on DCT and LDA topic classification," IEEE Transactions on Multimedia, vol. 20, no. 12, pp. 32233238, 2018.
[12] S. W. Sari, E. H. Rachmawanto, and A. C. Sari, "A good performance OTP encryption image based on DCT-DWT steganography," Telkomnika, vol. 15, no. 4, pp. 1987-1995, 2017.
[13] C.-K. Chan and L. M. Cheng, "Hiding data in images by simple LSB substitution," Pattern Recognition, vol. 37, no. 3, pp. 469-474, 2004.
[14] C.-H. Yang, C.-Y. Weng, S.-J. Wang, and H.-M. Sun, "Adaptive data hiding in edge areas of images with spatial LSB domain systems," IEEE Transactions on Information Forensics and Security, vol. 3, no. 3, pp. 488-497, 2008.
[15] A. S. El-Rahman, "A comparative analysis of image steganography based on DCT algorithm and steganography tool to hide nuclear reactors confidential information," Computers \& Electrical Engineering, vol. 70, no. 1, pp. 380-399, 2018.
[16] B. Hu, L. Li, J. Qian et al., "Perceptual evaluation of compressive sensing image recovery," in Proceedings of the 2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX), pp. 1-6, Lisbon, Portugal, June 2016.
[17] M. Li, D. Xiao, and Y. Zhang, "Reversible data hiding in block compressed sensing images," ETRI Journal, vol. 38, no. 1, pp. 159-163, 2016.
[18] X. Chai, Z. Gan, Y. Chen et al., "A visually secure image encryption scheme based on compressive sensing," Signal Processing, vol. 1, no. 134, pp. 35-51, 2016.
[19] A. Poljicak, G. Botella, C. Garcia, L. Kedmenec, and M. PrietoMatias, "Portable real-time DCT-based steganography using OpenCL," Journal of Real-Time Image Processing, vol. 14, no. 1, pp. 87-99, 2018.
[20] Q. Shen, W. Liu, Y. Lin et al., "Designing an image encryption scheme based on compressive sensing and non-uniform quantization for wireless visual sensor networks," Sensors, vol. 19, no. 14, Article ID 3081, 2019.
[21] E. Barker and A. Roginsky, Recommendation for the Transitioning of Cryptographic Algorithms and Key Sizes, NIST Special Publication, Princeton, NJ, USA, 2010pp. 800-131, CiteSeerx.
[22] Q. Shen and W. Liu, "A novel digital image encryption algorithm based on orbit variation of phase diagram," International Journal of Bifurcation and Chaos, vol. 27, no. 13, Article ID 1750204, 2017.

