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1. Introduction

Development of novel engineering solutions that incorporate
robotic systems offers huge potential, as both assistive devices
and therapeutic aids, for patients with reduced motor and/or
cognitive abilities. Indeed, such technologies are capable of
outperforming existing therapeutic systems for improving
patients’ achievable functional recovery. As a result, advanced
engineering solutions for rehabilitation robotics have received
a considerable amount of interest in recent years, from both
the academic community and the industrial sector. Emphasis
is typically focused on the improvement of sensor systems,
control engineering, computer vision, robotic mechanics,
human-machine interfaces, modelling and simulation, in-
built intelligence, and informatics, to meet the broad range
of challenges posed during patient rehabilitation.

This special issue is aimed at exhibiting the latest research
achievements, findings, and ideas in the field of rehabilitation
robotics and systems. Researchers were invited to contribute
with their original research articles, as well as review articles,
that summarize the most recent developments in the field of
rehabilitation robotics and systems.

Potential topics included but were not limited to the
following:

(i) Plasticity and motor-learning robotic devices
(ii) Assistive and therapeutic robotic aids
(iii) Upper and lower limb rehabilitation robotics
(iv) Human-machine and brain-machine interfaces
(v) Mobile, wearable, and prosthetic robotic devices

(vi) Sensors, intelligent sensors, and sensor networks

(vii) Artificial intelligence-based rehabilitation systems
(viii) Complex, nonlinear, and intelligent systems

(ix) Vision, awareness,
processing

perception, and signal

(x) Sensor networks for precise motion control and
visual servoing

(xi) Adaptive control, robust control, and active dis-
turbance rejection control

(xii) Modelling and simulation for
habilitation systems

robotic re-

(xiii) Networked rehabilitation robotics
(xiv) Intelligent automation of rehabilitation robotics

(xv) Informational monitoring, control, and data fu-
sion for rehabilitation systems

2. The Papers

A total of 22 papers were submitted to this special issue.
After peer review, finally 13 of them were accepted and
published, covering a wide range of the topics proposed in
the call for papers.

Three interesting papers are based on reviews of lit-
erature papers on rehabilitation robotics and systems.
Firstly, a work by G. Carpino et al. includes a meta-analysis
of robot-mediated lower limbs rehabilitation for stroke-
affected patients; it is aimed at evaluating the effectiveness
of the robotic approach using wearable robots or opera-
tional machines with respect to the conventional approach.
The primary assessed outcome is the patient’s ability to
regain walking independence, whereas the secondary
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outcome is the average walking speed. Also, E. D. Oiia et al.
conduct a systematic literature review to identify the
contribution of robotics to upper limb neurorehabilitation,
highlighting its relationship with the rehabilitation cycle,
and to clarify the prospective research directions in the
development of more autonomous rehabilitation processes.
In addition, a series of technical requirements that should
be considered when designing and implementing auton-
omous robotic systems for rehabilitation are presented and
discussed. Lastly, T. Eiammanussakul and V. Sangver-
aphunsiri review the training activities that were realized by
rehabilitation robots in the literature to offer insights into
developing a novel robot suitable for stroke rehabilitation.
The control system of the lower limb rehabilitation robot in
sitting position of the authors’ previous work is discussed
in detail to demonstrate the behavior of the robot while
training a subject. A preliminary experiment is conducted
on a healthy subject to show that the robot can perform
active assistive exercises with various training activities and
assist the subject to complete the training with a desired
level of assistance.

Next, other six papers are more directed towards the
experimental evaluation of rehabilitation mechanics. Thus,
W. Liang and Y. Yu propose the so-called manipulability
inclusive principle (MIP) to evaluate the assistive mech-
anism’s assistive feasibility and assistive effect through the
manipulability comparison between the assisted limb and
slave-active-assistive mechanism. The optimization based
on MIP can make the assistive mechanism realize better
kinematical performance and assistance. Another paper by
B. D. M. Chaparro-Rico et al. presents an experimental
characterization of NURSE, a device for arm motion
guidance. The laboratory setup and testing modes are
presented. Two exercises for the upper limb are used to test
the NURSE behavior. Trajectories and linear accelerations
are tested when the device performs the exercises with and
without load. Z. Ray and E. D. Engeberg face the problem of
autonomously preventing grasped objects from slipping
out of prosthetic hands for limb-absent people. Their paper
explores a human-inspired grasp reflex controller for
prosthetic hands to prevent slip of objects when they are
rotated. This human-inspired grasped object slip pre-
vention controller is evaluated with six different objects in
benchtop tests and by 12 able-bodied subjects during re-
alistic tasks of daily life. Moreover, in another article, M.
Wu, M. R. Haque, and X. Shen present a new sit-to-stand
(STS) control approach for powered lower limb prostheses,
which can regulate the power delivery of the prosthetic
knee joint to obtain natural STS motion like that displayed
by healthy subjects. Mimicking the dynamic behavior of the
knee in both phases of the STS, a unified control structure
provides the desired control actions by combining an
impedance function with a time-based ramp-up function.
In addition, H. Guang et al. present an interactive upper
limb rehabilitation robot with a parallel mechanism and an
isometric screen embedded in the platform to display
trajectories. In the dynamic modeling for impedance
control, the effects of friction and inertia are reduced by
introducing the principle of virtual work and derivative of
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the Jacobian matrix. To achieve the assist-as-needed im-
pedance control for arbitrary trajectories, the strategy
based on orthogonal deviations is proposed. Simulations
and experiments were performed to validate the dynamic
modeling and impedance control. Lastly, in a study by M.
R. Afzal et al,, a wearable system based on the reaction
wheel is used to deliver light-touch-based balance bio-
feedback on the subject’s back. The system can sense torso
tilt and, using reaction wheels, generates light-touch. A
group of 7 healthy young individuals performed balance
tasks under 12 trial combinations based on two conditions
each of standing stance and surface types and three of
biofeedback device status.

A last group of four papers is directly focused demon-
strating implementations for rehabilitation. A paper by J.
Cantillo-Negrete et al. presents the implementation of a
brain-computer interface system, coupled to a robotic hand
orthosis, driven by hand motor imagery of healthy subjects
and the paralyzed hand of stroke patients. A novel pro-
cessing stage is designed using a bank of temporal filters, the
common spatial patterns algorithm for feature extraction,
and particle swarm optimization for feature selection. The
system’s performance shows that it has potential to be used
for hand rehabilitation of stroke patients. The aim of an
article by J. C. Castillo et al. is in the line of robotic therapies
in which a robot can perform partially or autonomously a
therapy session, endowing a social robot with the ability of
assisting therapists in apraxia of speech rehabilitation ex-
ercises. The authors integrate computer vision and machine-
learning techniques to detect the mouth pose of the user, and
on top of that, our social robot performs autonomously the
different steps of the therapy using multimodal interaction.
Then, M. A. Padilla-Castafieda et al. introduce the devel-
opment and evaluation of a robotic-assisted rehabilitation
system as a new methodology of assisted physiotherapy in
orthopedics. The proposal consists of an enhanced end-
effector haptic interface mounted in a passive mechanism
for allowing patients to perform upper limb exercising and
integrates virtual reality games conceived explicitly for
assisting the treatment of the forearm after injuries at the
wrist or elbow joints. The authors design specific game
scenarios enriched by proprioceptive and haptic force
feedback in three training modes: passive, active, and
assisted exercising. Finally, in a study by E. Beretta et al., a
group of 18 children and adolescents with hemiplegia, an
impairment due to acquired brain injuries, was enrolled
and underwent intensive rehabilitation treatment in-
cluding flank physical therapy and constrained-induced
movement therapy or Armeo®Spring therapy. The effects
of the treatments are assessed using clinical functional
scales and upper limb kinematic analysis during horizontal
and vertical motor tasks. The results of this study may be of
help to define the best rehabilitation treatment for each
patient, depending on the goal, and may thus support
clinical decision.
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In this paper, from the aspect of kinematics, we reveal the physical significance of assistance for the assistive mechanism. Then,
Manipulability Inclusive Principle (MIP) is proposed to evaluate assistive mechanism’s assistive feasibility and assistive effect
through the manipulability comparison between the assisted limb and slave-active-assistive mechanism. The optimization based
on MIP can make the assistive mechanism realize better kinematical performance and assistance. The design and optimization of
the assistive mechanism should keep the assistive mechanism from interfering with human’s movements in the expected
workspace. More importantly, it should also keep the assistive mechanism not only have better kinematical performance on
symmetry, isotropy, etc. but also be able to provide better assistance for human. The application on the human lower-limb
straight-walking power-assisting mechanism shows that the design and optimization based on MIP can find out the assistive
mechanism which satisfies assistive feasibility and realizes better assistive effect in the whole expected workspace.

1. Introduction

For the purpose of helping the elders and disabled, a power-
assisting robot [1, 2] has been devised and defined as an
active mechanical device that fits closely for the operator’s
body and works in concert with the operator’s movements.
In the last century, late 60s and early 70s, the Hardiman
project [3], a large two-armed, bipedal exoskeletal system,
operated at GE was controlled by using a master-slave
system. The Belgrade exoskeleton [4] was a human-sized
lower-extremity robot designed to help the paraplegics re-
alize rehabilitation. The Lokomat system [5] is a walker
system for standing assistance [6].

In recent years, there are more assistive devices
appeared. The wearable power-assisting system also becomes
an attractive method of power assisting since it can be
adapted to a wide range of applications. For example, Sarcos
Exoskeleton [7], Wearable Power Suit [8], and Hybrid
Assistive Limb (HAL) [9] are full-body assistive robots;

MGA Exoskeleton [10], SUEFUL-6 [11], and CADEN-7 [12]
focus on upper-limb assistance; Berkeley Lower Extremity
Exoskeleton (BLEEX) [13], MIT Exoskeleton [14], Robo-
Knee [15], Human Universal Load Carrier (HULC) [16],
Wearable Walking Helper-KH [17], and Bodyweight Sup-
port System [18] are the assistive robots which are used for
lower-limb assistance. On the power-assisting robot, we also
have made some research studies, such as PAWL [19, 20]
which is designed for human lower-limb assistance, upper-
limb assistive mechanism [21], and a parallel assisting
mechanism for hip joint 3-DOF power assisting [22].

In this paper, we focus on the wearable assistive
mechanism which belongs to the following type: the human
is acting actively, and simultaneously, the assistive robot
works actively to provide assistance with matching human’s
moving intention, where [7-22] all belong to this type.
When this kind of assistive mechanism is mounted to the
human body, the assistive mechanism and human are
considered as a parallel mechanism, where the active joints
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of this parallel mechanism are divided into two types:
master-active joints and slave-active joints. For this parallel
mechanism, it has several kinds of problems, such as
selecting slave-active joints, confirming types of joints,
configurations and sizes, motion interference, sensors, and
control. All these problems will have the influence on the
final assistance, including assistive feasibility and assistive
effect.

In order to realize better assistance, these problems
should be partly considered during the assistive mechanism
design and optimization, where the rest is determined by the
sensors and control. Generally, for the mechanism design
and optimization [23, 24], researchers have considered it
from these aspects: workspace, symmetry, isotropy, and so
on. For this parallel mechanism which consists of the
assistive mechanism and human, by considering that the
assistive mechanism’s own special characteristic is that the
assistive mechanism and human cooperate together to re-
alize assistance; the design and optimization should keep the
assistive mechanism from interfering with human’s move-
ments in the expected workspace. And especially, the design
and optimization should also keep the assistive mechanism
not only have better kinematical performance on symmetry,
isotropy etc., but also be able to provide better assistance for
human. In recent research studies, the research in [30] uses
the Jacobian matrices to analyze the assistive isotropy and
assistive efficiency; researchers in [31] use the global per-
formance index to represent the dexterity, and the manip-
ulability ellipsoids for the 4-DOF assistive robot is obtained
in [32]. However, the research studies shown in [30-32] have
not considered the influence of the motions of the human
limb. For example, the problem of assistive feasibility should
compare the manipulability between the assistive mecha-
nism and the human limb. Additionally, compared to
[30-32], this paper will show more systemic research on
optimization problem including assistive feasibility and
assistive efliciency.

In this paper, from the aspect of kinematics, we propose
Manipulability Inclusive Principle (MIP), which is derived
from the physical significance of assistance and based on
robotics manipulability theory [25-27], to consider the
problems during assistive mechanism’s design and opti-
mization. The prototype of MIP first appeared in our pre-
study [22], used on hip joint 3-DOF assistive mechanism’s
design and optimization. The MIP is related to actuators’
maximum velocities, assistive mechanism’s fixed and con-
nected locations, mechanical structure, configuration, types
of joints, sizes, and so on. The optimization algorithm based
on MIP is helpful for designing and optimizing the assistive
mechanism in terms of kinematics, finding out the structure
which can realize better kinematical performance and as-
sistance. In theory, the MIP is also applicable for many kinds
of power-assisting robots which belong to the type where
human is acting actively, and the assistive mechanism is
matching human’s moving intention.

The MIP has been partially discussed in the pre-work
[22, 28, 29], where the content in this paper is the sup-
plement for the pre-work. For the sake of discussing, an
example of lower-limb assistive robot is used in this paper.

Journal of Healthcare Engineering

This paper is organized as follows: some definitions and the
problems are shown in Section 2. Section 3 presents the
definition of MIP. In Section 4, with some examples and
analysis, the MIP is proved to be able to evaluate lower-limb
assistive mechanism’s design and optimization. Conclusions
are presented in Section 5.

2. Slave-Active-Assistive Mechanism

As well known, for the human lower limb, hip joint has 3
DOFs, and the knee joint is a 1-DOF joint. Similar to the
lower-limb straight-walking assistive robots in [16, 17], in
this paper, the lower-limb straight-walking assistive mech-
anism also only assists hip joint’s and knee joint’s flex-
ion/extension motions, where the assistive mechanism
includes a revolute joint and a prismatic joint as shown in
Figure 1. This assistive mechanism is fixed to the human
waist and connected to the calf with a revolute joint. For
example, research studies in [16, 17] place the assistive
robots just as shown in Figure 1(a), where the assistive
mechanism is in the behind of the human body; Figure 1(b)
shows the model where the assistive mechanism is in front of
the human body.

For the sake of discussing and understanding, before
discussing the problems for this lower-limb assistive
mechanism, first of all, we propose some important and
useful definitions for power assisting as follows.

2.1. Master-Active Joint and Slave-Active Joint. When the
assistive mechanism is mounted to the human body, the
assistive mechanism and human can be considered as
a parallel mechanism. In general, the joints of parallel
mechanism are divided into two types: active joints and
passive joints, where the joint with driven source is defined
as the active joint and the joint without driven source is
defined as the passive joint. If too many joints are considered
as active joints, it will lead to an interference between these
active joints, and if too few joints are considered as active
joints, this parallel mechanism cannot be driven well. Hence
for a parallel mechanism, the number of active joints should
be equal to the number of the DOFs of the parallel
mechanism.

However, during assisting, both human’s joints and the
actuators installed on the assistive mechanism are with the
driven source, providing power on human motions, where
the assistance cannot be realized without these actuators.
Hence, in this parallel mechanism which consists of the
assistive mechanism and human, there is a problem that the
number of active joints is not equal to the number of the
DOFs of the parallel mechanism, where it seems that this
problem will lead to interference between the human and
assistive mechanism. This problem can be considered as
follows:

For a power-assisting robot, the human is at the master
level and generating the moving intention, and the assistive
mechanism is at the slave level to match human’s moving
intention, where the assistive mechanism itself cannot
generate moving intention. Therefore, for the active joints in
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FIGURE 1: Lower-limb assistive mechanism for straight-walking assistance.

this parallel mechanism, human’s joints are acting actively
and generating moving intention; therefore, human’s joints
are defined as master-active joints; the assistive mechanism
is matching human’s moving intention and then working
actively to provide necessary assistance; therefore, assistive
mechanism’s joints with driven sources are defined as slave-
active joints.

The slave-active joints drive the parallel mechanism to
match human’s movements; therefore, the number of slave-
active joints should be equal to the number of the DOFs of
this parallel mechanism. In addition, when selecting dif-
ferent assistive mechanisms’ joints as slave-active joints, the
assistive results will be different.

In this paper, the parallel mechanism, which consists of
the lower limb and assistive mechanism, has 2 DOFs just the
same as the lower limb; therefore, it is necessary to use 2
slave-active joints to assist the lower limb. By considering the
actuators’ installed locations and weight, the revolute joint
(with rotary actuator) and prismatic joint (with linear ac-
tuator) are selected as slave-active joints just as shown in
Figure 1. The left revolute joint connecting the assistive
mechanism and lower limb is passive joint.

2.2. Assisted Limb and Slave-Active-Assistive Mechanism.
For power assisting, the active joints are divided into master-
active joints and slave-active joints. In other words, human
and master-active joints are at the master level, and assistive
mechanism and slave-active joints are at the slave level. For
these two levels, we can have another two definitions.

The assisted limb represents the part of the human body
which is to be assisted and only driven by the master-active
joints. In this paper, the assisted limb is the human lower
limb, and the master-active joints are composed of the hip
joint and the knee joint.

Slave-Active-Assistive Mechanism (SAAM), a parallel
mechanism consisting of the assistive mechanism and
assisted limb, is only driven by the slave-active joints, where
in this parallel mechanism, master-active joints are also
considered as passive joints. The reason for proposing the
definition of SAAM is that since the assistive mechanism is

finally mounted to the assisted limb, discussing assistive
mechanism’s assistive performance should combine with the
assisted limb.

The discussions and comparisons in this paper are based
on these two definitions: the assisted limb representing lower
limb’s performance and SAAM representing assistive
mechanism’s performance. Actually, the assisted limb and
SAAM are acting simultaneously as a whole during assisting.
By comparing their kinematical performances, assistive
mechanism’s assistive results can be judged in terms of
kinematics.

2.3. Problems: Assistive Feasibility and Assistive Effect.
Combined with the definitions above, the problems for
lower-limb assistive mechanism’s design and optimization
are discussed as follows. As shown in Figure 1, the assistive
mechanism is mounted to the assisted limb with different
locations, and the assistive results may be different. Besides,
the parameters such as actuators’ maximum velocities,
mechanical structure, types of joints and actuators, and sizes
would also have the influence on the assistive results. In
general, with different parameters, assistive mechanism’s
assistive results are different.

Therefore, the purpose in this paper is optimizing lower-
limb assistive mechanism’s parameters to realize better
assistive results, where in this paper, the discussions focus on
the parameters of actuators’ maximum velocities and
assistive mechanism’s fixed location.

Realizing better assistive results includes a double
meaning;: first, the assistive mechanism must satisfy assistive
feasibility; then further, it should realize better assistive
effect. Assistive feasibility means that the assistive mecha-
nism is able to provide necessary assistance on the expected
motions, where in this paper, the expected motions are lower
limb’s straight-walking motions. Assistive effect is used to
evaluate the final assistance, where the assistive effect in-
cludes three aspects such as assistive efficiency, assistive
ability, and assistive isotropy.

In order to realize better assistive results, during lower-
limb assistive mechanism’s design and optimization, we



should consider these two problems: assistive feasibility and
assistive effect, where these two problems also exist in many
other assistive mechanisms.

2.3.1. Problem of Assistive Feasibility. On the problem of
assistive feasibility, it does have three concerns.

First, the corresponding type of SAAM end-effector’s
DOF should be the same as the lower limb. Second, SAAM
end-effector’s DOF space and lower-limb end-effector’s
DOF space should be in the same space. Avoiding interfering
lower limb’s movements, these two concerns ensure that
when the slave-active joints are without actuators, the
assistive mechanism can move with lower limb’s
movements.

Third, the assistive mechanism, where the slave-active
joints are driven by the actuators, should be able to catch the
lower limb’s movements. As said before, during the assisting
process, the assistive mechanism is acting actively to match
lower limb’s moving intention. If the assistive mechanism
cannot catch lower limb’s movements, the assistive mech-
anism still cannot assist even if their end-effectors’ DOF
spaces are in the same space.

Thus, satisfying these three concerns ensures that the
assistive mechanism is able to shadow lower limb’s move-
ments and provide necessary assistance for the lower limb.

2.3.2. Problem of Assistive Effect. Another problem is the
assistive effect. When the assistive mechanism satisfies
assistive feasibility, SAAM end-effector’s and lower-limb
end-effector’s DOF spaces are in the same space. However,
since the DOF direction and magnitude may be different, the
assistive effect may be different.

In order to realize better assistive effect, it is necessary to
discuss its included three aspects further. Assistive ability
means the assisting power which the assistive mechanism
owns. Assistive efficiency shows that how much assistive
mechanism’s assisting power can apply on assisted limb’s
motions. And the similarity of assistive ability on each DOF
is considered as assistive isotropy.

Assistive mechanism’s assistive feasibility and assistive
effect are related to the parameters, such as actuators’
maximum velocities, assistive mechanism’s fixed location,
and so on. Therefore, proposing an evaluation criterion
which can consider the assistive feasibility and assistive effect
is of great significance. Then the evaluation criterion can be
used for assistive mechanism’s design and optimization.

In this paper, Manipulability Inclusive Principle (MIP) is
proposed to consider the problems of assistive feasibility and
assistive effect. When SAAM’s manipulability ellipsoid and
lower limb’s manipulability ellipsoid are in the same space,
their end-effector’s DOF spaces are also in the same space.
Then, while SAAM’s manipulability ellipsoid can cover lower
limb’s manipulability ellipsoid, the assistive mechanism sat-
isfies assistive feasibility to provide assistance on all the DOFs.
The assistive effect is considered from the differences of
principle axes” directions and volume and axes’ magnitude
between SAAM’s and lower limb’s manipulability ellipsoids.
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Better assistance means the assistive mechanism can use
less power to realize more assistance. In order to realize
better assistance in the whole expected workspace, opti-
mization based on MIP is helpful for optimizing assistive
mechanism in terms of kinematics.

3. Manipulability Inclusive Principle

In order to consider the problems of assistive feasibility and
assistive effect, from the aspect of kinematics, Manipulability
Inclusive Principle (MIP) is proposed to evaluate lower-limb
assistive mechanism’s design and optimization to realize
better assistance. In the following, we will show the defi-
nition of the MIP evaluation criterion which is derived from
the physical significance of assistance.

3.1. Physical Significance of Assistance for Assistive
Mechanism. Let us see an example, where the lower limb
and assistive mechanism in Figure 1(b) is simply represented
as an RR-R-PR parallel mechanism ABCD shown in Figure 2.
In this parallel mechanism, lower limb ABC and assistive
mechanism DC are connected at C; assistive mechanism’s
fixed location is D, and connected location is C. As the
discussion for the definitions of master-active joints and
slave-active joints before, here master-active joints A and B
separately represent hip joint and knee joint; rotary actuator
and linear actuator are adopted as the two slave-active joints’
driven sources; the left revolute joint C is a passive joint.
Figure 2 shows that the lower limb and assistive
mechanism are at three different postures, where on the
distance, there are DC = DC' and AC = AC". In this ex-
ample, we focus on the assistance on the directions which are
vertical to the direction from assistive mechanism’s fixed

L, — —
location D to end-effector C, such as EF, E'F', E"F", and so
on. Assume that each joint for the lower limb and assistive
mechanism separately has its own maximum velocity; at
posture (1), when lower limb’s end-effector C moves on

direction EF at maximum velocity, the slave-active joint D
also just reaches its maximum velocity to make the assistive
mechanism shadow lower limb’s movement to provide
certain assistance on this direction. N

Compared to the results on the direction EF of posture (1),
intuitively at posture (2), lower-li_m‘>b end-effector’s maximum

velocity decreases on direction E'F', so that slave-active joint
D is able to use lower velocity to shadow lower limb’s
movement in this direction, where in this case assistive
mechanism also can assist the lower limb much better on this
direction; at posture (3), the distance between D and C”
becomes much shorter, leading that even slave-active joint D
uses its maximum velocity, assistive mechanism _still cannot

shadow and assist the lower limb on direction E'F’.

The above is an intuitive description; however, it reveals
the physical significance of assistance described as following.
After the assistive mechanism is mounted to the assisted
limb, when lower limb’s end-effector reaches maximum
velocity on a certain direction, in this case, that slave-active
joints’ velocities do not exceed their own maximum
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Distance DC = DC/
Distance AC = AC”

—— Posture (1)
- == Posture (2)
----- Posture (3)

FiGure 2: Lower limb with assistive mechanism at different
postures.

velocities ensures the assistive mechanism is able to shadow
the lower limb’s movement to assist lower limb in this di-
rection. And further, that slave-active joints can use lower
velocities to shadow lower limb’s movement means assistive
mechanism can provide better assistance in this direction.

In other words, combined with the definitions of the
assisted limb and SAAM, the physical significance of assis-
tance also can be described as following. While SAAM end-
effector’s maximum velocity is not lower than assisted-limb
end-effector’s velocity on a certain direction, it means during
the assisted limb’s movements even assisted limb’s end-ef-
fector reaches its maximum velocity, and slave-active joints’
velocities are still lower than or equal to their own maximum
velocities. Then, in this case, it ensures the assistive mecha-
nism is able to shadow assisted limb’s movement to assist on
this direction. Therefore, we can compare assisted limb end-
effector’s and SAAM end-effector’s maximum velocities to
evaluate the assistive result in a certain direction.

In order to evaluate the assistive results on all the di-
rections, comparing their end-effectors’ maximum velocities
one direction by one direction is a feasible method. For
example, in this example, through comparing, at posture (2),
the assistive mechanism can shadow lower limb’s move-
ments on all the directions; at posture (3), the assistive
mechanism can shadow lower limb’s movements on part of
the whole directions.

However, the aforementioned method will incur a huge
cost and will be ineffective to be applicable in practices,
whereas another method based on the manipulability
concept is adopted to consider evaluating assistive results on
all the directions. Manipulability is a useful means of
quantifying end-effector’s velocity on each DOF, where it
includes two ideas: manipulability direction and manipu-
lability magnitude of each DOF. As a mathematical tool,
velocity manipulability ellipsoid is used to describe end-
effector’s velocities on all the directions: along the manip-
ulability direction of the major axis of the manipulability
ellipsoid, the end-effector can move at large velocity, while

along the manipulability direction of the minor axis, small
end-effector velocities are obtained. In this paper, the ve-
locity manipulability ellipsoid is simply called as manipu-
lability ellipsoid.

Therefore, this adopted method, MIP, is based on
comparing assisted limb’s manipulability and SAAM’s
manipulability to consider the two problems of assistive
feasibility and assistive effect, whereas in this paper, the
manipulability only represents end-effector’s manipulability.
Then, the definition of MIP can be derived from the physical
significance of assistance as follows.

3.2. Definition of Manipulability Inclusive Principle. Based on
the manipulability concept, during the design and optimi-
zation for the assistive mechanism which belongs to the type
where human is acting actively and simultaneously the
assistive mechanism is matching human’s moving intention
just as shown in Section 1, the Manipulability Inclusive
Principle (MIP) evaluation criterion is proposed to evaluate
the assistive mechanism’s assistive feasibility and assistive
effect in terms of kinematics. Assuming that SAAM and the
assisted limb are both at the same posture, for the same end-
effector, the definition of MIP can be set out as follows:

(i) On the assistive feasibility, if assisted limb’s ma-
nipulability ellipsoid is whole inclusive by SAAM’s
manipulability ellipsoid, the assistive mechanism can
shadow the assisted limb’s movements well to satisfy
assistive feasibility and be used to provide power
assisting on all the DOFs.

(ii) On the assistive effect, if the corresponding ma-
nipulability directions of SAAM align with assisted
limb’s better, the assistive efficiency is higher; if the
manipulability magnitude of SAAM is larger, the
assistive mechanism owns more assistive ability; if
the manipulability magnitude of SAAM on each
DOF is closer, the assistive isotropy is better.

Assisting all the DOFs also means assisting all the di-
rections, and manipulability directions represent the di-
rections of the manipulability ellipsoid’s principle axes.

As for the definition of MIP, from the macroscopic
perspective, three inclusive cases can be derived from the
assistive feasibility: whole inclusive case, part inclusive case,
and no inclusive case. The whole inclusive case ensures that
the assistive mechanism satisfies assistive feasibility to
shadow assisted limb’s movements well to assist all the
DOFs, while the part inclusive case or no inclusive case
means the assistive mechanism cannot assist assisted limb’s
movements in some directions or at all.

From the microscopic perspective, the inclusive results
will have the influence on the assistive effect. The assisted
limb’s manipulability directions represent assisted limb’s
most needed assisted directions. The SAAM’s manipulability
directions are the directions where SAAM can provide its
largest assistance. Therefore, the SAAM’s manipulability
directions align with assisted limb’s better, the assistive
efficiency is higher. In practice, as their directions cannot
align completely, the other two factors, assistive ability and



assistive isotropy, are needed to be considered. Too small
assistive ability will lead to that SAAM’s manipulability
ellipsoid cannot cover assisted limb’s, while too large
assistive ability means a waste. Hence, during design and
optimization for the assistive mechanism, we should select
suitable actuators for the assistive mechanism to make the
assistive mechanism satisfy assistive feasibility. With the
limited assistive ability, we should keep the assistive
mechanism have close assistive ability in each direction or
DOF. Then, this assistive mechanism can realize better
assistive effect.

From assisted limb’s manipulability and SAAM’s ma-
nipulability, the following can be obtained: Manipulability
Ellipsoid of Assisted Limb (ME-al) and Manipulability
Directions of Assisted Limb (MD-al) where in this case, the
assisted limb is without assistive mechanism, the Manipu-
lability Ellipsoid of SAAM (ME-saam) and Manipulability
Directions of SAAM (MD-saam) where the SAAM is only
driven by the slave-active joints. Then, EV-al and EV-saam
separately represent end-effector’s velocity of assisted limb
and end-effector’s velocity of SAAM, respectively.

4. MIP Studies with the Example of
Lower-Limb Assistance

With Manipulability Inclusive Principle (MIP), it is neces-
sary to validate that MIP is applicable on the lower-limb
assistive mechanism, and then, the design and optimization
for the lower-limb assistive mechanism can be operated with
MIP. Therefore, it is needed to validate that MIP is applicable
to evaluate assistive feasibility for lower-limb assistive
mechanism and then, analyze and discuss the factors which
will have the influence on assistive feasibility and assistive
effect.

In this section, the validation, analysis, and discussion all
are based on the manipulability. Manipulability can be
obtained through singular value decomposition of the ki-
nematical Jacobian. Associated with the normalized kine-
matical Jacobian J, there is a mathematical form:

J=U-S-V. (1)

Consequently, the above equation can generate a velocity
manipulability ellipsoid which represents end-effector’s
moving velocities on all the directions. The principal axes of
the ellipsoid, representing the manipulability directions of
all the DOFs, are aligned with the matrix U, and the length of
each principal axis which is equal to manipulability mag-
nitude of each DOF is diagonal with matrix S. With the
computing results, we can draw manipulability ellipsoids
locating their centers at the locations of the end-effector in
the workspace so that the globe characteristics of the end-
effector’s velocities can be represented in the whole.

In this section, the Jacobian and manipulability for
assisted limb and SAAM are built at first. With the results
generated from the Jacobian and manipulability, the vali-
dation on evaluating assistive feasibility for MIP is operated
with some examples. Then, through the analysis between
ME-al and ME-saam, an inclusive judgement algorithm is
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FIGURE 3: RR-R-PR mechanical configuration.
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proposed to evaluate the inclusive cases. By learning about
all kinds of inclusive cases, we can find out which inclusive
case is our need. At last with the analysis and discussion on
the influence factors of MIP, we will find the ways to im-
prove assistance.

4.1. Jacobian and Manipulability for Lower Limb and SAAM.
As shown in Figure 3, the reference coordinate A - XY is
located at the hip joint. In this parallel mechanism ABCD, [,
represents the length between hip joint A and knee joint B,
and [, is the length from knee joint B to assistive mechanism’s
connected location C; 8, and 6, are the angular variables for
the hip joint and knee joint on the motions of flex-
ion/extension; in this assistive mechanism, 6; represents the
angular variable for revolute joint C, and d, represents the
variable of the length of the prismatic joint. In this paper, the
unit of the length is (cm), and the unit for the angular variable
is (rad); hence, the unit of linear velocity is (cm/s), and the
unit of angular velocity is (rad/s). Therefore, the Jacobian for
the lower limb and SAAM can be built as follows.

For lower limb, master-active joints A and B can de-
termine the position of end-effector C, where f, represents
its X-position component, and f, is the X-position com-
ponent. The expressions for f, and f, are as follows:

f1=1cosb; +1,cos(0; +6,), (2)

fo=1sin6; +1,sin(6; +6,). (3)

For the assistive mechanism end-effector’s position C, f
and f, separately represents its X-position component and
Y-position component,

f3=x,+d,cosb,, (4)

fa=yo+dysinb;, (5)

where (x,, y,) represents assistive mechanism’s fixed lo-
cation D. While the assistive mechanism is mounted to the
lower limb, there are x = f, = f3and y. = f, = f,, where
(xc» yc) represents the position of C.
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For the lower limb which is driven by the master-active
joints A and B, combined with Equations (2) and (3), the
Jacobian is

. . . . qT
[xc yC]T=]01-[91 92] > (6)
where [*]7 is the transpose of matrix [*]. In Equation (6),
Joi1 s
T :[911 9121|) 7)
921 9

where gy, =0f,/00,, g, =0f,/00,, g, =0f,/00,, and
922 = 0f 4100,

The Jacobian of SAAM is about the velocity relation
between end-effector C and slave-active joints in the parallel
mechanism ABCD; therefore, the Jacobian of SAAM has the
following mathematical form:

[ %c )"C]Tzfoz' [93 6'14]T~ (8)

Then, it is needed to find out the expression of J,. As C
connects the lower limb and assistive mechanism, the ve-
locity of SAAM’s end-effector C is related to the lower limb
and assistive mechanism. Lower limb’s Jacobian is expressed
as Equation (6), and combined with Equations (4) and (5),
the Jacobian of the assistive mechanism is

[%c Yc]Tzfoa' [93 d4]T,
[931 932] ©)
]03 = >
9a1 Ya

where g3, =0f3/00;, g3, =0f3/00,, g, =0f,/00;, and
gup = 0f,4/00,. When the assistive mechanism is mounted to
the lower limb, there is

Joo- [0 8] =T0s- [0 d,]

r (10)

Therefore, the SAAM which is only driven by the slave-
active joints, its Jacobian is

(- 18, 8,]" + 100+ [0, d,]")
2

[xc YC]T:

(11)

_ UorJo1 " Jos + Jo3)
B Y >
2 [93 d4]
where [+]" represents the pseudo-inverse of [x],

Joo = o1 - T4y - Jo3 + Jo3)/2. When assisted limb is not at the
singular postures, the Jacobian for SAAM becomes

<101 Jot ‘103[93 d4]T+]03' [93 d4]T>
2

[’&c Ye f=

. . T
:]03' [93 d4] >
(12)
where []7! represents the inverse matrix of [*], Jo, = Jo3-

In this case, the Jacobian for SAAM and assistive mechanism
are the same.

Then for assisted limb’s and SAAM’s separate Jacobian
shown in Equations (6) and (8), the inputs are needed to be
normalized [25] with their maximum input velocities, and
the outputs are also needed to be normalized by limiting
them with the maximum expected output velocities, where
usually the maximum expected output velocities are assisted
limb end-effector’s maximum moving velocities. After
normalization, there are

[W ﬁ]T=Aa§-Jm-on[<efimax (efimaxr’
(13)

|5 (yfi,ax]T:A&l oA | wf’smf’
(14)

where (0))mae (02)max (03)maw @and (dy) .y are the maxi-
mum velocities of master-active joints and slave-active
joints, and (X¢)mae (Vco)maex are end-effector’s maximum
expected output velocities. Matrices A,;, Ay, and Ay, are
defined as

AOl = diag((él)max’ (éz)max)’
A02 = diag(<é3)max’ (d4)max)’ (15)
A03 = dlag( (XC)max’ ())C)max)’

where diag(-) represents a diagonal matrix. In Equations
(13) and (14), the value of the inputs for lower limb and
SAAM is between 0 and 1, and the outputs are also the same.
According to Equation (1), through the singular value
decomposition [25] of the normalized matrices Jj,and J,,
which separately describe the kinematical performance
without and with the assistive mechanism, there are

J 6:’0 = UOi(, ’ S()io ) Vo:’or
-1
](;i(, = Ags + Joi, - Aoiy (16)
ip=1,2.

Some results, such as ME-al, MD-al, ME-saam, and MD-
saam can be obtained from Equation (16). With the inputs,
EV-al and EV-saam also can be obtained through Equations
(6) and (8).

With the results above, in the following parts, it will
validate and show MIP can be applicable on lower-limb
assistive mechanism’s design and optimization to evaluate
the assistive feasibility and assistive ability.

4.2. MIP Study on Assistive Feasibility Validation. In this
part, with some examples, MIP will be validated to be ap-
plicable to evaluate assistive feasibility for the lower-limb
assistive mechanism. For a certain posture, satistying
assistive feasibility means the assistive mechanism can assist
on all the directions. Hence, the first step is to validate
assistive feasibility by considering one direction, and then,
the validation extends to all the directions logically.
Since MIP describes the relation between end-effectors’
manipulability and velocities, the validation is based on



end-effectors’ maximum output velocities comparison and
manipulability magnitude comparison.

At first, end-effectors’ maximum output velocities on
a certain direction for the lower limb and SAAM should be
performed. As their end-effectors have the same two
translational DOFs in the X -V planar, v, and v, sepa-
rately represents X-velocity component and Y-velocity
component for end-effectors’ velocity of the lower limb (EV-
al); v,, and v, also separately represent X-velocity com-
ponent and Y-velocity component for end-effectors’ velocity
of SAAM (EV-saam). For lower limb and SAAM, while their
end-effectors separately reaches the maximum velocity on
direction (j;),, the constraint equations are

.91' :(él)maxor'.6 | = 0 max’ (17)
[ (le (Vly) ] //(J )w’
'6 ‘ 93)max0r 'd | max’ (18)

[(szw (V ) ]//])w,

where in this paper, (i), represents the results of case (w).
In Equation (17), the constraint equations mean almost on
all the directions, while lower limb’s end-effector reaches its
maximum velocity, only one master-active joint can reach its
maximum velocity, where only on four directions both lower
limb’s master-active joints can reach maximum velocities
simultaneously. Equation (18) also shows similar meaning
for the SAAM.
e
Then for the manipulability, on direction (j;),,
limb’s manipulability magnitude is

(M) = V(S5 (D), co8? (@), + (85, (4)),, sin? (o),
(0‘1)w—<( D [Uor (1) U01(2)] >

the lower

(19)

Here, (#, %) represents two vectors’ intersection angle.
And on this direction, the manipulability magnitude of
SAAM is

(M) = (8% (1), 082 (ay),, + (S5, (4)),, sin® (@),

(“2)w—<( Dw [Upa (1) U02(2)] ).

(20)

In this paper, the items in a certain matrix H are defined
as

H() Hn+1) ---
H = : : : . (21)
H(n) H(2n) - H(nxm)

nxm

Combined with Equations (17)-(20), on a certain di-
rection, lower limb end-effector’s and SAAM end-effector’s
maximum output velocities comparison is shown between
Equations (17) and (18), and manipulability magnitude
comparison is shown between Equations (19) and (20).
Based on these two comparisons, the following examples will
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show MIP is applicable to evaluate assistive feasibility for the
lower-limb assistive mechanism.

In these examples, assume the parameters are set as
I, =30(cm), I, = 30(cm), (6 )max = /5 (rad/s), (0 )max =
n/4(cm/s), x, = 30 (cm), y, = 0(cm), (05),,. = 71/4 (rad/s),
(d4)rpax = 24(cm/s), and (xC)max = ()'/C)max = ll : (93)max +
L - (0,) max = 42.951 (cm/s). As shown in Figure 4, for
posture (a): {0, = 11/6, 8, = n/3}, through the singular value
decomposition of (Jg,;), and (Jg,), there are

—0.938 0.344
(UOI)a = >

0.344 0.938 (22)
(301)u = diag(0.92,0.23),

0.996 —-0.09
(UOZ)a =

0.09 0.996 (23)

(Sy2), = diag(0.84,0.57),

where (Uy,), represents the MD-al, and (S,,;), represents
the manipulability magnitude of assisted limb on each DOF.
Similarly, (Uy,), represents the MD-saam, and (Sy,), is the
manipulability magnitude of SAAM for each DOF.

Both the end-effectors of the assisted limb and SAAM
move along direction a, : [0.938,—-0.344]. According to the
constraint Equations (17) and (18), while the velocities of
lower limb’s joints are {9 = —(0))ax = 715,60, = —0. 541}
where master-active joint A reaches its maximum velocity,
and in the SAAM, the velocities slave-active’s joints are
{ (6 Jmax = —77/4, d =-9. 531} where 9 reaches its
maximum velocity, the assisted limb’s end- effector and
SAAM’s end-effector separately reaches their maximum
velocities on directiona,

[ (1)a ] G- [_(él)max} :[ 44.511 ] (24)

L (vly)al ] -0.541 -16.323

[ (VZx)al
L (VZ}V)a]

where the result of 44.511/(-16.323) = 34.494/(-12.651) =
0.938/(—0.344) shows end-effectors’ velocities are along
direction a,. In Figure 4, on direction a,, it also shows both
the EV-al and EV-saam parallel with a,, where EV-al is the
resultant velocity of v, and v,, and EV-saam is the re-
sultant velocity of v,, and v,,. In Figure 4, end-effectors’
maximum velocities comparison between Equations (24)
and (25) shows that lower limb’s end-effector can reach
larger velocity than SAAM’s end-effector in this case. From
the aspect of manipulability, on direction a,, lower limb’s
manipulability magnitude is

(’/nl)a1 = \/(Sgl (1))a cos? (Ocl)a1 + (Sél (4))u Sin2 (061 )“1
=0.92,

-9.531 -12.651

:=(Joz)u- [_(93)m] =[ u ] (25)

(26)

where (a;), = {(0.938,-0.344), (-0.938,0.344)) = 0. The
manipulability magnitude of SAAM is
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FIGURE 4: Maximum velocities comparison on different directions
at posture (a): {0, = n/6, 0, = n/3}.

(1), = V(S5 (D), c08? (a3),,, + (S5, (4)), 5in° (a3),,
=0.8,
(27)
where (ocz)a] = {(0.938,-0.344), (0.996,0.09)) = 0.044.

Thereby, there is (m,), > (m,),. In this example, the
comparison results mean that while SAAM’s manipulability
magnitude is smaller than lower limb’s, SAAM end-effec-
tor’s velocity is also smaller than lower limb end-effector’s.

In the second example, on direction a, : [-0.807,0.184],
while the velocities of lower limb’s joints are:
{6, =3.429,0, = (0,),,, = m/4}, and the velocities of

max

assistive ~ mechanism’s  joints  are: {93 = (63)max
= 71/4,d, = 4.839}, their end-effectors’ maximum velocities
on direction a, are

[ (Vi)a, | o [ 3.429 ] [ —36.96] o8

=Votla | ¢; =
(1), ] “1(62) e 8.442
[ (720, ] 0 ~36.96
1 =Un)a [ ( 3)""“"] = [ ] (29)
! (sz)az ] 4.839 8.442

The results in Equations (28) and (29) mean, just as shown
in Figure 4, on direction a,, the end-effectors for the lower limb
and SAAM can achieve the same maximum velocity. Their
separate manipulability magnitude is (m,), = (m,), = 0.816.
In this example, it means while the manipulability magnitude for
lower limb and SAAM is equal, the maximum output velocities
on the certain direction are also equal.

The last example is on direction a; :

{6, =0.524,0, = = (6,), = -1/4}, a

(d4)maLX = 24}. Therefore, we can have

ooy Lo L )
[((:Z;] ~Uoke [(Z;:j ) [ 24(.)09 ]

[0, 1], where there are
nd { = -0.047,d, =

Surely, SAAM can act quicker than the lower limb just as
shown in Figure 4 on direction a;. Their manipulability
magnitude on this direction is (m,;), =0.383 and
(mz)a3 =0.573. There is (ml)a3 < (mz) Thereby, in this
example, while SAAM end-effector’s manlpulablhty mag-
nitude is larger than lower limb end-effector’s, SAAM end-
effector’s velocity is also larger than lower limb end-effec-
tor’s. Therefore, it can ensure the assistive mechanism
shadows and assist lower limb’s movement on this direction.

Through these three examples, the comparison results
verify that on a certain direction, if SAAM end-effector’s
manipulability magnitude is equal to, larger than, or smaller
than lower limb end-effector’s, SAAM end-effector’s max-
imum velocities are equal to, larger than, or smaller than
lower limb end-effector’s. It shows the end-effectors’ ma-
nipulability magnitude comparison is directly related to end-
effectors’ maximum velocities comparison.

Further, as well known, the manipulability magnitude and
velocity for mechanism’s end-effector have the same change
tendency, where the manipulability magnitude becomes
smaller or larger on certain directions, and the maximum
velocity also decreases or increases on certain directions.
Thereby, we can extend the comparison results from one
direction to all directions logically: if SAAM’s manipulability
magnitude is larger than lower limb’s on all the directions,
assistive mechanism satisfies the assistive feasibility since it
can shadow lower-limb end-effector’s velocity on all the di-
rections; if SAAM’s manipulability magnitude is smaller than
lower limb’s on all the directions, assistive mechanism cannot
satisfy the assistive feasibility since it cannot shadow lower-
limb end-effector’s velocity at all; if SAAM’s manipulability
magnitude is larger than, equal to, or smaller than lower
limb’s on part of all the directions, the assistive mechanism
may or may not shadow lower limb’s velocity on part of all the
directions, where in this case, the assistive mechanism also
cannot satisfy assistive feasibility.

The above can be concluded as follows: when assisted
limb’s manipulability magnitude is smaller than or equal to
SAAM’s on all directions, in other words, when ME-al is
whole inclusive by ME-saam, the assistive mechanism can
shadow the assisted limb’s movements well to satisfy
assistive feasibility and be used to provide assistance on all
the directions. This conclusion accords to the assistive
feasibility evaluation criterion shown in the definition of
MIP; therefore, MIP is proved to be applicable to evaluate
lower-limb assistive mechanism’s assistive feasibility.

In order to evaluate assistive feasibility for assistive
mechanism, manipulability magnitude comparison with one
direction by one direction is almost inefficient. Therefore, it
is necessary to find an inclusive judgement algorithm which
can judge the inclusive case on the whole directions quickly.

4.3. Inclusive Judgement Algorithm. Since the manipula-
bility ellipsoid is used to represent the manipulability
magnitude on the whole directions, we can compare the
ME-al and ME-saam in terms of geometry to obtain the
manipulability magnitude comparison results on all the
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FIGURE 5: Inclusive cases between ME-al and ME-saam. (a) Initial, (b) after rotation, (c) internally tangent, (d) externally tangent, (e)

internally inclusive, (f) externally inclusive.

directions. Through the inclusive judgement algorithm, we
can judge whether the assistive mechanism can satisfy
assistive feasibility or not.

At first, according to the first two concerns shown in the
problem of assistive feasibility, lower limb end-effector’s and
SAAM end-effector’s DOF spaces should be in the same
space. It means their manipulability ellipsoids should be also
in the same space. For the lower limb assistance, the ma-
nipulability ellipsoids of lower limb and SAAM both de-
generate to ellipses. That whether these two ellipses are in the
same space or not can be judged by their major and minor
axes’ normal lines: if these two normal lines are parallel to
each other, these two ellipses are in the same space; oth-
erwise they are not in the same space.

Then, the third concern can be judged by the intersection
of these two ellipses. Assuming the intersection angles be-
tween these two ellipses and axis X are y, and y,, just as
shown in Figure 5(a), the expressions for the manipulability
ellipses of lower limb and SAAM are

(cosy; - x +siny, ~y)2 . (=siny, - x + cosy, ~y)2 _

1)
S2(1) S (4)
(cosy, - x +siny, - y)2 (=siny, - x + cosy, - y)2 1
(1) S$2(4) o
(31)

For the sake of computation, make the same rotations for
these two ellipses. Then, Figure 5(b) is the rotation results of
Figure 5(a), where the major and minor axes of MD-al align
with axes X and Y. There are

2 2

X y _
Sf(l) +Sf(4) =1, (32)

(=siny-x +cosy - y)* B

. 2
(cosy-x+siny-y) : =1, (33)
S2(4)

3 (1)

where y =y, —y,.
Since the ME-al and ME-saam are both odd symmetry
about axis X as shown in Figure 5(b), we can only discuss

the case of y>0 to judge their intersection or inclusive
cases,

y=0. (34)

By solving the set of Equations (32)-(34) which are
quadratic equations about {x, y} to obtain real roots, there
exist three cases: two roots, sole root, and no root. The cases
of roots are directly related to the intersection or inclusive
cases.

For example, just as shown in Figure 5(b), ME-al is part
inclusive by ME-saam with two different points of in-
tersection, where in this case, the set of equations has two
roots. When the set of equations has sole root, the inclusive
cases are internally tangent (Figure 5(c)) or externally
tangent (Figure 5(d)), where we can separate them by
considering their major and minor axes extremities distri-
bution. If the set of equations has no root, it means ME-al
and ME-saam have no point of intersection. In this case, it
also has two types which can also be separated by consid-
ering their major and minor axes extremities distribution:
internally inclusive (Figure 5(e)) and externally inclusive
(Figure 5(f)).

The inclusive cases between ME-al and ME-saam
are considered to be divided into three types: part inclusive
case (Figures 5(a) and 5(b)), no inclusive case (Figures 5(c)
and 5(e)), and whole inclusive case (Figures 5(d) and 5(f)).
With this inclusive judgement algorithm, the inclusive case
between ME-al and ME-saam can be obtained quickly.

In the following part, through the study on kinds of
inclusive cases, we can understand which case is as our
expected. Moreover, by the study on all kinds of inclusive
cases, we can further understand MIP is applicable to
evaluate assistive feasibility for lower-limb assistive
mechanism, where it is also needed to check whether this
inclusive judgement algorithm is applicable to judge in-
clusive cases or not.

4.4. Cases of Part Inclusive, No Inclusive, and Whole Inclusive.
Through comparing the ME-al and ME-saam with inclusive
judgement algorithm, for a certain assistive mechanism, at
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different postures there may exist three cases: part inclusive
case, no inclusive case, and whole inclusive case.

4.4.1. Part Inclusive Case. For posture (a): {0, = /6,
0, = n/3}, combined with Equation (22), we can draw the
ME-al (denoted with dashed ellipse) with (Uy,;), and (S,;),
to represent the manipulability of lower limb just as shown
in Figure 6. Similarly, the ME-saam (denoted with solid
ellipse) is generated with (U ,), and (Sy,), to represent the
manipulability of SAAM. In Figure 6, ME-al is part inclusive
by the ME-saam, where by the inclusive judgement algo-
rithm, the set of Equations (32)-(34) also shows that it has
two different roots in this case.

With MIP, for the part inclusive case, there must be the
conclusion: in different directions, SAAM end-effector’s
manipulability magnitude may be smaller than, equal to, or
larger than lower-limb end-effector’s; correspondingly, on
these different directions, SAAM end-effector’s maximum
velocity is smaller than, equal to, or larger than lower limb’s.
In Figure 4, the maximum velocities comparison results on
different directions certify this conclusion.

As the discussion before (Figure 4), in direction aj,
SAAM cannot catch lower limb’s movement; on direction
a,, their end-effectors’ maximum velocities are equal; on
direction a;, SAAM end-effector’s maximum velocity is
larger than lower-limb end-effector’s.

The above means, for the case of part inclusive, in
some directions, the assistive mechanism cannot shadow
lower limb’s movements to assist, but on the rest of the
directions it can.

4.4.2. No Inclusive Case. At posture (b): {0, =-1.1,
0, = 2.02}, there are

0. [ 0.52 0.854
0 0.854 ~0.52 |
Sy,),, = diag (0.64, 0.35),
(Ol)b — g (35)
©) 0.517 0.856
%2071 0.856 ~0.517 |’

(Sy2), = diag(0.57,0.06).

In this case, with the inclusive judgement algorithm, the
set of Equations (32)-(34) shows it has no real roots, and the
major and minor axes extremities of ME-al are at the outer of
ME-saam. Hence, this posture belongs to no inclusive case
just as shown in Figure 7. According to MIP, in this case, on
all the directions, SAAM’s manipulability magnitude is
smaller than lower limb’s (Figure 7); correspondingly,
SAAM end-effector’s maximum velocities are also smaller
than lower limb end-effector’s. This conclusion can be
certified by the maximum velocities comparison results
shown in Figure 8.

As shown in Figure 8, while lower limb and SAAM move
along direction b, : [0.854,—0.52], there are
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FIGURE 6: Part inclusive case at posture (a): {0, = n/6, 0, = n/3}.
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In Equations (36) and (37), lower limb end-effector’s
velocity is larger. On direction b, : [0.52,0.854], there are

[ (Vi | o [(él)max] :[ 8.8 ] (38)

_(vl}’)bz | —0.3 14.58

[ (VZx)bz 1
L (VZJ’)bZ ]

The results in Equations (38) and (39) also show SAAM
cannot catch lower limb end-effector’s velocities.

Therefore, in the case of no inclusive, SAAM cannot
catch lower-limb end-effector’s movements on all the di-
rections. Moreover, since SAAM end-effector’s velocities are
lower than lower limb end-effector’s, it will drag lower limb’s
movements. Hence, in the case of no inclusive, the assistive
mechanism cannot assist the lower limb at all.

= o)y - [(93)max:| - [ 1.56 ] (39)

-1.35 2.55

4.4.3. Whole Inclusive Case. In order to assist the lower limb
on all the directions, part inclusive case and no inclusive case
must be avoided. For posture (c): {8, = n/5, 0, = 3.02}, there
are

) [ -0.615 0.788 ]
el 0788 0.615 |
Sy1). = diag (0.556, 0.005),
( Ol)c — g _ (40)
) ~0.084 0.996
%2771 0.996 0.084 |

(Sp). = diag(0.603, 0.566).

For this posture, by the inclusive judgement algorithm,
the set of Equations (32)-(34) shows it has no real roots, and
the major and minor axes extremities of ME-al are at the
inner of ME-saam. Therefore, ME-al is whole inclusive by
ME-saam just as shown in Figure 9. According to MIP, in the
case of whole inclusive, SAAM end-effector’s velocities are
larger than lower-limb end-effector’s on all the directions.

In this case, as shown in Figure 10, on direction
¢; : [-0.615,0.788], there are

[ (Vi)e, | . '(él)max] _ [ —9.06 ] (41)

_(Vly)c] | | —0.49 11.61

[ (VZx)cl ]
L (VZ}’)C] }

And on direction ¢, : [-0.788,—-0.615], we have

= (o). - -(93)max] - [ ~18.39 ] (42)

| —1.62 23.55

[ (12, ] [(6,) -1.83

= . max = R 43
| (viy), Uor) | 0.007 } [—1.41] (43)
[ (VZx)cz 1

0.48 ] [—22.44

-%)cl_:"””[—(a)m )@
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From the results above shown in Equations (41)-(44), on
these directions, SAAM’s end-effector can act quicker than
lower limb’s end-effector. Thereby, in the case of whole
inclusive, the assistive mechanism can shadow lower limb’s
movements well to provide power assisting for lower limb on
all the directions.

Through the study on these three kinds of inclusive cases,
it shows the inclusive case can be confirmed with the in-
clusive judgement algorithm effectively. It also shows the
MIP is quite useful on evaluating assistive feasibility for
lower limb assistive mechanism. In order to provide assis-
tance on all the directions, the ME-al must be whole in-
clusive by ME-saam. Otherwise, when the ME-saam cannot
cover ME-al on some directions, it means the assistive
mechanism cannot provide power assisting on these di-
rections, and even worse, human will feel difficulty increased
on these directions. Hence, only the case of whole inclusive
ensures the assistive mechanism can be used to assist lower
limb’s movements on all the directions.

Therefore, the problem of evaluating assistive feasibility in
fact is converted to the following: with the inclusive judge-
ment algorithm, comparing the ME-saam and ME-al to as-
certain assistive mechanism’s assistive feasibility. Through the
study on these parts, MIP is validated to be able to evaluate
assistive feasibility for lower-limb assistive mechanism.
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Different from the problem of evaluating assistive fea-
sibility whose answer is about being able to assist or being
not able to assist these two aspects, the problem of evaluating
effect is about that how the assistive mechanism assist lower
limb, where the evaluation for assistive effect is shown in
Section 4. In the next part, we will analyze and discuss the
influence factors for assistive feasibility and assistive effect.

4.5. Study on the Influence Factors of MIP. As the discussions
above, for a certain assistive mechanism, at different pos-
tures, the inclusive cases may be different. Our purpose is the
assistive mechanism can satisfy assistive feasibility and re-
alize better assistive effect in the whole expected workspace.
Thereby, it is necessary to analyze and discuss which factors
will have the influence on MIP, and then, we can develop the
assistance for the assistive mechanism, where the influence
on MIP also means the influence on inclusive results or
assistive results.

The definition of MIP is based on manipulability which
can be obtained through kinematical Jacobian. Hence, the
MIP is related to mechanical structure, sizes, types of joints,
actuators’ maximum velocities, assistive mechanism’s con-
nected and fixed locations, and so on. In this paper, we focus
on the influence factors of actuators’ maximum velocities
and assistive mechanism’s fixed location.

4.5.1. Influence Factor of Actuators’ Maximum Velocities.
In this part, we will discuss the factor of actuators’ maximum
velocities, where in this case, only actuators’ maximum
velocities change. At posture (d), which is the same as
posture (a), for the slave-active joints, the maximum velocity
of (d,) . decreases from 24 (cm/s) to 8.28 (cm/s), and
(05)max decreases from m/4(rad/s) to 0.18 (rad/s). Then,
SAAM’s manipulability becomes

) [0.996 —0.09]
27471 0.09 0.996 |’
(Sy2), = diag(0.2,0.2),

(45)

while the manipulability of lower limb remains the same as
posture (a) shown in Equation (22).

Compared to Figure 6, the inclusive case becomes from
part inclusive case to no inclusive case just as shown in
Figure 11. It shows the change of actuators’ maximum
velocities will have the influence on the MIP.

The change will also have the influence on end-effector’s
velocity. Compared to Figure 4, in Figure 12, besides di-
rections d, (= a,), d, (= a,), and d; (= a;), SAAM end-ef-
fector’s velocities also decrease on the other directions.

In this case, if the maximum velocities of actuators
change, inclusive results will also change. In addition, in this
case, driven by the assistive mechanism, the ME-saam in
Figure 11 becomes a circle which possesses good features on
symmetry and isotropy, where Figure 12 also shows SAAM
end-effector’s velocities on each direction are equal. How-
ever, in this case the assistive mechanism cannot assist at all.
Therefore, during the design and optimization for assistive
mechanism, only considering the symmetry and isotropy is

13
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v
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dy: (0, 1) Manipulability scale:

Figure 11: Influence with the change of actuators’ maximum
velocities at posture (d)(=(a)): {6, = 7/6, 0, = n/3}.

not enough. For assistive mechanism, we must also consider
the basic feature for assistive mechanism at first: assistive
feasibility.

4.5.2. Influence Factor of Fixed Location. For assistive
mechanism’s fixed location D (x, y,), in Figure 13, it shows
only D changes from (30, 0) to (15, —30) with the same
actuators, where lower limb is at posture (e) which is also the
same as posture (a). In this case, the manipulability mag-
nitude of SAAM becomes (S,,), = diag(1.40,0.57). Com-
pared to (Sy,), = diag(0,84,0.57), the manipulability
magnitude of revolute DOF is enhanced. Then compared to
Figure 6, the inclusive case becomes from part inclusive case
to whole inclusive case.

In this case, just as shown in Figure 14, SAAM end-
effector’s velocities are also enhanced. Compared to Figure 4,
in Figure 14, SAAM end-effector’s velocities becomes larger
than lower limb end-effector’s on all the directions. It shows
that changing fixed location will also have influence on the
MIP.

From the discussions on the MIP influence factors, for
the same posture, actuators’ maximum velocities change and
fixed location change will have influence on the inclusive
case or assistive feasibility. Moreover, the changes of these
factors will also have influence on the assistive effect. For
example, at posture (a), the intersection angle between the
major axes of MD-al and MD-saam in Figure 6 is 0.436 (rad).
While the fixed location changes, at the same posture (e) just
as shown in Figure 13, the intersection angle decreases to
0.192(rad), where this development means after changing
parameters, the MD-saam can align with MD-al much better
to realize higher assistive efficiency. Meanwhile, compared
to Figure 6, the volume of ME-saam in Figure 13 becomes
much larger showing its assistive ability is enhanced. The
change of assistive isotropy can be easily seen by comparing
the ME-saam in Figures 6 and 11.

Hence, based on MIP, the optimization by considering
the influence factors is helpful to make the assistive
mechanism fit MIP. In other words, optimizing these pa-
rameters can relieve the problem of assistive feasibility,
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where changing the parameters can make no inclusive case
or part inclusive case become whole inclusive case. And
optimizing the parameters also makes sense for developing
the assistive effect.

Through the studies on MIP in this section, it is certified
that MIP can be used as the evaluation criterion for eval-
uating assistive feasibility and assistive effect for lower-limb
assistive mechanism design and optimization. In order to
realize better assistance in the whole expected workspace, the
optimization algorithm based on MIP is needed.

5. Conclusions

In this paper, by considering satisfying assistive feasibility
and realizing better assistive effect, the Manipulability In-
clusive Principle (MIP) evaluation criterion for assistive
mechanism design and optimization is proposed. This
principle can be applicable on the assistive mechanisms
which belong to the type where the human is acting actively,

® D(15, -30)
R

A

X

B
®
Y
e;: (0.938, -0.344) 12.0 (cm/s)
- Velocity scale: o

T ok ey (<081, 0.18)

FIGURE 14: Maximum velocity comparison on different directions
at posture (e)(=(a)) while fixed location changes.

and simultaneously the assistive mechanism is matching
human’s moving intention.

In order to ensure that the expected assistive mechanism
satisfies assistive feasibility, the manipulability ellipsoid of
the assisted limb must be whole inclusive by the slave-active-
assistive mechanism’s manipulability ellipsoid. The inclusive
cases can be confirmed with the inclusive judgement al-
gorithm. The MIP also shows that different parameters, such
as actuators’ maximum velocities, fixed and connected lo-
cations, types of joints, mechanical structure, and sizes, will
have the influence on the assistive results.

The manipulability inclusive principle can also be ap-
plied on other various assistive mechanisms. Through
building the model for the assisted limb and slave-active-
assistive mechanism and then comparing their manipula-
bility, manipulability inclusive principle is useful for eval-
uating assistive mechanism’s assistive feasibility and assistive
effect during design and optimization.
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The use of robotic rehabilitation in orthopaedics has been briefly explored. Despite its possible advantages, the use of computer-
assisted physiotherapy of patients with musculoskeletal injuries has received little attention. In this paper, we detailed the de-
velopment and evaluation of a robotic-assisted rehabilitation system as a new methodology of assisted physiotherapy in orthopaedics.
The proposal consists of an enhanced end-effector haptic interface mounted in a passive mechanism for allowing patients to perform
upper-limb exercising and integrates virtual reality games conceived explicitly for assisting the treatment of the forearm after injuries
at the wrist or elbow joints. The present methodology represents a new approach to assisted physiotherapy for strength and motion
recovery of wrist pronation/supination and elbow flexion-extension movements. We design specific game scenarios enriched by
proprioceptive and haptic force feedback in three training modes: passive, active, and assisted exercising. The system allows the
therapist to tailor the difficulty level on the observed motion capacity of the patients and the kinesiology measurements provided by
the system itself. We evaluated the system through the analysis of the muscular activity of two healthy subjects, showing that the
system can assign significant working loads during typical physiotherapy treatment profiles. Subsequently, a group of ten patients
undergoing manual orthopaedic rehabilitation of the forearm tested the system, under similar conditions at variable intensities.
Patients tolerated changes in difficulty through the tests, and they expressed a favourable opinion of the system through the
administered questionnaires, which indicates that the system was well accepted and that the proposed methodology was feasible for
the case study for subsequently controlled trials. Finally, a predictive model of the performance score in the form of a linear
combination of kinesiology observations was implemented in function of difficult training parameters, as a way of systematically
individualising the training during the therapy, for subsequent studies.

1. Introduction

Musculoskeletal disorders or lesions in conjunction are one
of the leading causes of chronic disability around the world.
For example, in the United States, orthopaedic surgery is one
of the first causes of medical visits and physical therapy is
one of the nonmedicated treatments [1].

Among orthopaedic injuries, wrist fractures had a high
incidence in the elderly population in 2001 [2]; forearm
fractures of the distal radius are the most common in humans

[3]. Patients with a distal radial fracture must require staying
out of work around 67 days up to 20 weeks for recovery, what
poses relevant economic and social implications. Indeed, at
the moment of suffering the radius injury, more than half of
the patients are currently employed [4]. A study for evaluating
the relationship of pain, occupational performance, and
quality of life in a women population after upper limb
fractures indicates that half of the reported problems were
related with productivity, almost 40% with self-care, and 10%
with leisure [5].
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Although less frequent, elbow fractures might lead to severe
limitations of the forearm, affecting its fundamental role in
placing and supporting the hand in the space and as a stabiliser
[6]. Elbow fractures can occur at the distal humerus, the
proximal radius, or the proximal ulna. Such injuries result in
considerable variability of postfracture symptoms (swelling,
pain, and loss of motion) and might lead to functional dis-
ability [4, 6] because these joints should hold mobility, stability,
strength, and absence of pain [7, 8]. Loss of motion of the elbow
may affect essential independent functions in daily life activ-
ities, including personal care, mobility, eating, or even walking
safely with aids especially for the elderly [8].

The treatment depends on the lesion severity; if the
fracture is stable and without dislocation of fragments, a cast
or a splint made of thermoplastic material is used for external
immobilisation of the lesion area. An unstable and dislocated
fracture requires a surgical intervention of reduction and
stabilisation and the following immobilisation with a cast or
a splint [8, 9]. In any case, after the immobilisation period, an
early rehabilitation treatment consisting of exercise physio-
therapy must start as early as possible to have a positive
recovery of the forearm motion. Four aspects have been
suggested as crucial factors for recovery functional movement
in patients with fractures affecting the forearm joints: the
number of therapy visits [10], the intensity and individual-
ising level of the therapy, the adherence to the postoperative
treatment [10], and the objective and continuous monitoring
of the patient evolution during the intervention. Thus, on the
one hand, the need for reducing the duration of the post-
operative treatment for functional restoration is a crucial
factor for many patients. On the other hand, the need for
therapists for incrementing the number of attending patients
with a better understanding of the progress of the patients
motivates the research of treatment strategies that would
optimise the type, intensity, and duration of the treatment
according to the patient’s condition.

An approach based on rehabilitation robotics with
physiotherapy games would be a valuable tool for rendering
the physiotherapy process more efficient. However, most of
the current research in rehabilitation robotics focuses on
neurorehabilitation for patients with lesions at the central
nervous system (CNS), with more emphasis on stroke patients
and with lesser extent in patients with other neural injuries,
such as in the spinal cord. Exoskeletons [11-14] or end-
effector robots [15] in combination with virtual reality (VR)
serious games [16-19] have shown advantages for the neu-
romotor rehabilitation of upper limbs [20-23]: to mention,
higher intensity of the training, higher level of motor control
of the joints, longer duration, and more number of the
sessions [13, 24], which can give variable assistance [25] or
resistance [26] force feedback and may provide kinesiology
information of the patient performance that facilitates the
evaluation during the treatment [23], among others.

Unfortunately, despite the possible benefits, the high
incidence of musculoskeletal injuries, and the current de-
mand for faster and better physical therapies, the use of
robotics for orthopaedic rehabilitation remains practically
uncovered, and the research in this field is quite scarce, in
comparison with neurorehabilitation systems [27].
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The main difference between neuromotor and ortho-
paedic rehabilitation relies on the clinical goal of the recovery.
For neurologic patients (with injuries at the level of the CNS),
the primary goal is to achieve a cortical reorganisation which
could lead to the restoration of motor functionalities [28, 29].
Instead, for orthopaedic patients (with musculoskeletal le-
sions but without cognitive impairments), the primary goal of
any system should be the restoration of functional ranges of
motion, muscular strength recovery, and pain reduction
[5, 6, 8, 9, 30]. Robotic neurorehabilitation focuses on the
mobilisation of the limbs through complex multijoint
movements (reaching, grasp, and bimanual coordination,
among others) and neuroplasticity stimulation with cognitive
task assignment [17]. After a period of immobilisation, ro-
botic rehabilitation in orthopaedics should focus on mobi-
lisation of single joints within moderate increments [8, 9, 30].

Due to its severity, the treatment of a musculoskeletal
lesion, such as elbow fracture, must be carried out with
precaution and special care must be taken during all the
phases of the intervention [8]. First, if the fracture is stable and
without dislocation of fragments, a cast or a splint made of
thermoplastic material is used for external immobilisation of
the lesion area. An unstable and dislocated fracture requires
a surgical intervention of reduction and stabilisation and the
following immobilisation with a cast or a splint [31]. Aside
from ensuring stabilisation of fragments, immobilisation aids
to decrease pain and swelling and importantly prevents ra-
diological deformity [32]. However, a common complication
of postsurgery immobilisation is the development of joint
stiffness and consequently long-term loss of range of motion
[33]; in the case of the elbow, up to 25% of distal humerus
fractures result in elbow stiffness [34]. For this reason, the
rehabilitation must start as early as possible, immediately after
the absence of severe pain, oedema, or instability of fragments
[31]. Besides preventing contracture formation and post-
traumatic rigidity, this facilitates the recovery of functional
range of motion (RoM) and muscular strength [6].

The rehabilitation relies on the intensive practice of
isolated movements [6, 8], actively performed by the patient
or passively assisted by the therapist. Usually, the orthopaedic
rehabilitation consists of three subsequent set of exercises:
passive, active-assistive, and active. Passive exercises consist of
the manual mobilisation of the patients’ articulations per-
formed by the therapist. Then, active-assistive exercises are
performed when patients’ muscles are still feeble and they
have difficulties to perform the exercises independently. Fi-
nally, active exercises are performed in the latest phase
(usually the longer) of the rehabilitation when the patient can
move without external assistance [8, 9]. Mobilisation must be
done gradually from passive to active movements of the single
joints, starting from moderate movements within reduced
RoM and mild working loads, especially at the early days after
immobilisation, up to functional RoM and higher loads for
strength recovery. This process is challenging for the therapist:
it must focus on functional motion recovery and avoiding at
the same time any aggressive movement that may provoke
postinjury complications, for example, trauma to the arm’s
brachialis muscle and the elbow joint capsule due to forced
passive manipulation of the elbow [33].
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With these motivations, some devices have been designed
specifically for wrist [15, 35-38] and elbow joints [36, 39], but
to date, they have not been integrated with physiotherapy
applications specifically designed for such patients. In par-
ticular, Vanderniepen et al. [39] presented an elbow orthosis
intended explicitly for orthopaedic rehabilitation of the elbow,
with an adaptable compliance mechanism designed for slow
and constrained motions in a single DoF for protection of the
patient and then for extending its device to an exoskeleton
considering the shoulder [14]. Both apparatus seem suitable for
orthopaedic rehabilitation of the upper limb. However, they
did not include any integration with specific software for this
purpose, and they did not report any experience with patients.

On the contrary, even if some of the rehabilitation robots
reported for neurorehabilitation could have the potential use
in orthopaedic rehabilitation, the adopted human-robot in-
teraction schemes and assisted physiotherapy approaches of
such systems cannot be directly applied for the needs of
orthopaedic patients [40, 41]. At most, they should be used
with precaution, but in any case, it is not clear if neuro-
rehabilitation approaches would be valid for orthopaedic
lesions, given the noticeable different clinical goals [41].

Up to the best of our knowledge, nowadays, the work
reported by Schwickert et al. [42] is the only study detailing
the use of robotic-assisted rehabilitation in orthopaedics with
patients for proximal humerus fractures in virtual environ-
ments using the ArmeoSpring system (Hocoma AG, Zurich,
Switzerland). The study consisted of an uncontrolled in-
tervention of eight case series, with robotic sessions 2-3 times
per week during 2—4 weeks in robotic sessions in combination
with manual therapy; some single- to multijoint movements
were tested with patients playing in goal-oriented game
scenarios and with difficulty increments manually adjusted.
Their results indicated that the system was safe and the
treatment was feasible. However, the study gives no details
regarding the specificity of the games for the characteristics of
orthopaedic physiotherapy and nor the adopted criteria of
how to adapt the difficulty levels during the sessions, which is
not a straightforward aspect but still an open-research aspect.
Thus, more research should be done both for the development
of new devices and software-based physiotherapy method-
ologies for orthopaedic patients and for studying the feasi-
bility, validation, and effectiveness of such developments
through clinical experimentation with patients.

On these bases, we developed a robotic system for the
orthopaedic rehabilitation of the upper limb, which in-
tegrates a novel methodology for assisted physiotherapy in
VR serious games. The system consists of four modules: (1)
a robotic rehabilitation device (PERCRO-BRANDO); (2) VR
serious games for motion task execution of the forearm; (3)
the therapist graphic interface; and (4) and a task difficulty
adaptation module based on the monitored patient kine-
siological performance through time.

The BRANDO robot consists of the integration of a 6-DoF
end-effector-based robotic arm and a passive arm, mounted
together in a common platform. Three of the 6 DoFs are
actuated allowing the mobilisation of the elbow and shoulder
joints. The three passive DoFs correspond to a 3-DoF gimbal
for passive motions of the wrist joint. The passive arm

provides full gravity compensation of the upper limb, to aid
the patient to perform movements without carrying its
weight, which is often considered a useful configuration in
manual physiotherapy [6]. The VR serious game applications
were conceived for assigning isolated motion tasks of
pronation/supination (PS) or flexion/extension (FE) move-
ments within constrained RoM and moderate but in-
cremental strength loads, within motivating game scenarios at
different levels of difficulty. With the user-friendly graphical
interface, the therapist can evaluate the current mobility of the
FE and PS, modify the difficulty parameters of the exergames,
and monitor the kinetic progress during the sessions. Finally,
the task difficulty adaptation module allows to help the
therapists to tailor the physical demanding of exercises based
on the monitored kinesiological information and through the
estimation of the performance score through a regression
model, previously calibrated experimentally.

To the best of our knowledge, the system described in this
paper is the first one designed that combines these four
components in a single framework on the basis of the specific
needs of orthopaedic rehabilitation of the upper limb, in par-
ticular for the recovery of strength and range of motion of elbow
movements affecting the forearm. With the aim of studying the
suitability of the proposed methodology with the system, we
carried out two experiments: first in healthy subjects and second
in a group of patients under orthopaedic rehabilitation of the
forearm. Firstly, through the analysis of electromyographic
surface signals (SEMG) placed at the arm muscles of the two
healthy subjects practising with the system under the same
conditions conceived for patients, we verified the capability of
the method of assigning different working loads without
physically overloading the patients until their muscular fatigue.
Secondly, we tested the system on ten patients (9 performing PS
movements and 7 performing PS and FE movements) con-
firming not only the acceptance by the patients but also its
functional ability in delivering customised demanding levels of
exercises systematically and safely. In conclusion, the proposed
system is a suitable platform for carrying out more clinical
studies towards the validation and effectiveness of robotic-
assisted orthopaedic rehabilitation of the forearm and paves
the way to the design of new therapeutic interventions for the
rehabilitation of other upper limb fractures.

The rest of the paper is organised as follows: Section 2
presents the development of the full rehabilitation system.
Section 3 presents the assessment of the system performance
with the healthy volunteers and the feasibility and accep-
tance assessment by patients. Section 4 presents the dis-
cussion, and Section 5 the conclusions.

2. The BRANDO Rehabilitation System

Our system called BRANDO consists of the robotic device
integrated with a control scheme for active/passive re-
habilitation of the upper limb, through VR exercising gaming
scenarios. With this system, we propose a new methodology
of assisted physiotherapy for the orthopaedic rehabilitation of
the forearm, as detailed in this section.



2.1. Robotic Rehabilitation Device. The BRANDO system
(Figure 1(a)) consists of a haptic interface in the form of a 6-
DoF robotic arm with 3 actuated DoFs [43], enhanced with
a 3-DoF passive gimbal for the patient’s hand and mounted in
a passive mechanism for giving support to the upper limb [44].

The haptic interface consists of a 3 actuated DoF end-
effector (EE) mechanism (Figure 1(b)), kinematically equiva-
lent to 2 orthogonal, one incident rotational joints (q; +25° and
¢>+45°) and one prismatic joint (g;=0.630 mm) that drives
a barrel along a third incident axis. The following direct kine-
matic equations define the tracking of the EE position in space:

x = Leos(ay) cos(ay),
y = Lsin(q;) cos(q,), (1)
z = -Lsin(q,),

where L = g5 + L, is the length of the barrel’s displacement,
with L, = 441 mm being the minimum displacement.

Two DoFs are actuated by means of a differential trans-
mission, composed of 2 capstans acting on a commonly driven
pulley. The differential transmission was designed to allowing
high kinematic isotropy along x- and z-directions and high
regularity of the diagonal elements of the corresponding mass
matrix of the mechanism. Three brushed DC motors are used
for actuation: two grounded motors for reducing the amount
of moving mass and the third motor for providing the
translational motion of the barrel. No reduction gear was
employed to minimise the backlash. The mechanism allows
backdrivability of the DoFs with low friction perceived at the
EE. Two weights are fixed to the rear of the barrel to coun-
terbalance its weight in the central position of the workspace.

A passive gimbal with three spherical DoFs was mounted
at the EE to allow the patient to handle the interface (wrist
position W). The gimbal allows the tracking of the
flexion/extension (FE) and abduction/adduction (AA) of the
wrist and the pronation/supination (PS) of the elbow of the
patient. It includes two buttons to let the patient trigger
simple commands during the exercises.

The passive mechanism consists of one prismatic joint to
adjust the height of the interface to the vertical position of
the hand of the patient and a balancing column to mount
a 2-DoF passive arm. The mechanism allows compensating
the weight of the forearm through an ergonomic base
supported by an industrial tool (with a maximum payload of
4kg). A mobile platform mounts the full mechanism and
allows placing the full device stable in the clinical room.

The full BRANDO system resulted in the optimal con-
figuration shown in Figure 1(c). The configuration allows the
patient to place comfortably in a seated posture and perform
upper limb movements by placing the wrist within a minimal
workspace of 400 x 800 x 800 mm up to an approximately
900 x 800 x 1500 mm conic workspace, under maximum
continuous force feedback of 10N up to a peak force of 20 N.

2.2. Patient’s Upper Limb Tracking and Modelling. The sys-
tem integrates a virtual reality model of the human upper
limb [45], consisting of a multibody rigid dynamic system
with 7 DoFs for the arm (Figure 2(a)) and 17 DoFs with 18
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links for the hand (Figure 2(b)), in the form of revolute joints
[46]. We implemented the model in the XVR software for
VR (VRMedia s.r.l, Pisa, Italy) and C++ using the PhysX
SDK (Nvidia, USA) for the physics engine simulation.

The tracking of the patient’s movements is done by the
estimation of the joint angles of the patient limb (g, to g,),
given the estimated positions W, E, and S using the analytical
inverse kinematic solution reported in [47]. The shoulder
position S is estimated from the starting posture of the patient
sitting and with the elbow half flexed. The estimation of the
elbow position E is according to the physical interpretation
illustrated in Figure 2(b), where due to the redundant
mechanism of the upper limb, even fixing W, the elbow E is
still free to swivel on an arc with origin ¢ lying in a plane that is
orthogonal to the composed axis from the wrist to the
shoulder S [47]. Given the local coordinates frame by the
vectors n, u, and v, it is possible to geometrically estimate E in
function of the swivel angle ¢, as detailed in [47], where n is the
normal vector of the wrist-shoulder axis, u is the projection of
the arbitrary unit vector a on the plane which corresponds to
¢ =0, L, is the length of the upper arm, and L, is the length of
the forearm.

For the game scenarios presented in this paper, we set up
the swivel angle to two possible training postures, for the
games in Section 2.4: (1) with the arm adducted at 10” ap-
proximately and (2) with the arm abducted at about 80°. Both
configurations were estimated empirically with an extendable
goniometer (Lafayette Instrument Co, Inc; model 01135)
during preliminary tests. For the first posture, variations of
the swivel angle were minimised by instructing the patient to
avoid shoulder movements or by fixing the upper arm to the
trunk with an elastic bandage; for the second posture, the
swivel angle was maintained by placing the patient’s upper
arm in the arm support of the device. Possible singularities
occurring at the elbow fully extended were procedurally
detected and corrected at runtime using the gradient in-
formation of the position in joint space.

2.3. Control Scheme for Patient-Robot Interaction. The con-
trol scheme was implemented at two levels (Figure 3). An
industrial PC with a real-time operating system (xPC Target by
MathWorks©) runs the low-level controller. This controller
estimates the EE position in space given the q angular posi-
tions of the robot joints, executes the gravity compensation
(G(q)) to avoid carrying the load of the robot arm, and
performs the proportional-derivative (PD) position control for
placing the EE in space. The high-level controller runs on
a graphics workstation. This controller runs (1) the inverse
kinematics for tracking the patient’s movements; (2) the virtual
reality games; (3) the target pose selection and the minimum-
jerk reference path generator to the target position; and (4) the
haptic feedback rendering. The communication between low-
level and high-level controllers is executed via UDP.

The motion tasks consist of placing the current EE po-
sition (p) until touching a virtual object T at different target
positions in the game. The interaction loop consists of three
phases: (1) selecting T and computing the corresponding
target position (pr); (2) exerting haptic forces (Fp,q) tending
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FIGURE 1: BRANDO rehabilitation robotic system consisting of a 6-DoF robot device mounted on the passive mobile platform, with
a passive handle attached at the end-effector. (a) The full final system. (b) The mechanism of the 6-DoF robotic arm. (c) Conical workspace of

the robot, with a minimum reachable square workspace of 400 x 800 x 800 mm.
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FIGURE 2: A simulation model of the upper limb. (a) 7-DoF kinematic model of the arm. (b) 17-DoF kinematic model of the hand, with the
physical interpretation as a multirigid body system with spring-damper joints. (c) Elbow position as a function of the swivel angle ¢.

to place p at a reference position (p..f), by following a ref-
erence minimum-jerk trajectory R; and (3) exerting collision
forces (Feopision) When the virtual hand (pya,q) touches T.
The trajectory R from the starting position ps to pr is
generated in real time given the polynomial time law re-

)
ttask

t } t 4
Pref(t):Ps+<10( ) —15(—) +6<
t ttask
(2)

task
where t is the current time and t,,y is the assigned time for
completing the task. The equation assumes that the velocity
and acceleration are zero at the beginning and the end of R. R
could be linear or circular, depending on the motion task:
linear for reaching or circular for single-joint motion tasks.

X (pr—Ps)s

Positioning the EE is done by a PD controller given the
proportional (K,) and derivative control coefficients (K,), as
follows:

Fpath (1) = KPAP + KdAp’

(3)
AP = Pref(t) - P(t)

The therapist can manually adjust the values of K, K,
and t,,.. The value of K, is within the range [0, 1]Nm, while
for stability, Ky is proportionally computed to keep the ratio
K,/Kq always constant; such a ratio has been determined
empirically during the preliminary tests. As illustrated in
Figure 4(a), during the passive or active-assisted training, the
resulting haptic positioning forces are exerted as an aid to
the patient to follow the reference trajectory towards the
target position. For the active exercise, the generated force
field is applied to the patient movement by pushing the EE
towards the opposite side of the current target object T [26]
(Figure 4(b)). The resulting resistance force is generated by
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FIGURE 4: Force feedback scheme to the patient during the execution of elbow joint movements. (a) The assisted mode is activated during
passive or active-assisted exercising by aiding the patient to follow a trajectory from the starting to the target positions, where the target
position corresponded to the current target object in the VR scenario. (b) The resistive mode is activated during assisted exercising, pushing

the end-effector towards the opposite side of the patient movement.

placing pr at the opposite limit position of the training
workspace with respect to T. This solution provided opposite
resistive forces to the patient during active training, pro-
portional to the amount of elbow joint excursion.

Finally, for safety reasons, manually locking the end-
effector position by the therapist is also possible at any
moment, which is useful for recording the motion limits of
the patient at the beginning of the session.

2.4. Virtual Reality Gaming Scenarios. A software application
with VR game scenarios designed explicitly for elbow’s FE and
wrist’s PS motion tasks was developed [36]. Two haptic

feedback modes were considered: free PS movements with
weight support, while variable force assistance/resistance for
FE movements. The software provides the therapist with
a user-friendly graphical user interface (GUI) (developed in
Python) which allows the therapist to intuitively set the pa-
rameters of the current session (speed, the range of move-
ments, and workloads), to select the training modality
(passive/active), manually calibrate, and personalise the ex-
ercise parameters (Figure 5). After the physiotherapist has
chosen the training modality (passive/active) and the game
parameters, the system allows him/her to monitor the ki-
nesiology patients’ performance (RoM, joint angular veloci-
ties, and tolerated haptic force intensities), as well as the
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TaBLE 1: Design specification of the simulated tasks to perform during training exercises.

Exercise Scenario Upper arm posture Movement Joint motion Virtual task
1 Bells Adducted Upward/downward FE Ring

2 Balls Abducted Lateral/medial FE Hit

3 Balloons Adducted Internal/external PS Burst

patients’ achievements regarding game exercises (score, time
for completing the task, and the achieved difficulty level). At
the end of each session, it could be possible also to generate
a report with graphs and statistics corresponding to the
patients’ evolution (knowledge of performance).

2.4.1. Session Calibration. The session starts with the eval-
uation of the current motion capacity of the patient. First, the
patient is sitting in the correct posture in front of the screen, as
explained in Section 2.2. Second, the therapist sets up the
lengths of the patient’s upper limb and calibrates the training
movements. For FE, the calibration is defined by M(q
qELEX’ 94> qgea tbase’KEX KFLEX FEX FFLEX)patrent’ where q
and g;"** are the maxrmum extension and flexion angles of
the elbow, ¢4, and q4 are the mean and peak angular ve-
locities, ty,,. is the amount of time for performing movements
within ROM et = [ g5 "], and F* and F*™'UX are the
tolerated interacting force amplitudes that the robot will exert
during the training. The therapist manually adjusts the gains
KEX and KX of the PD controller in a way that the ob-
served q, relies on the range [q,, g} . For security, Kgx and
K'LEX are constrained to be incrementally tuned up by it-
eratively testing the force step by step within a range of
[0,0.2n]Nm/rad, where n=1...10 is the applied n-test by
the therapist on the GUL

For PS, the calibration is defined by M(qtRON,
', gs, g5 a )patiens Where g2 and g3" are the angular
limits of the pronation and supination movements, and ¢
and qpea are the mean and peak angular velocities of the
wrist during PS.

2.4.2. VR Games for Motion Recovery. Three kinds of
movements commonly used in manual therapies were se-
lected: (1) FE with the upper arm adducted (exercise 1); (2) FE
with the upper arm abducted (exercise 2); and (3) PS with the
arm adducted (exercise 3). Correspondingly, three different
VR exergaming scenarios were created (Figure 5). The sce-
narios simulate different virtual tasks to complete through
repetitive movements (Table 1). A scene for touching and
ringing a bell with the index finger is for exercise 1 (scenario
Bells; Figure 5(a)). A scenario for hitting a tennis ball on
a table is for exercise 2 (scenario Balls; Figure 5(a)). A scenario
for exercise 3 is avoiding collisions with balloons gradually
getting closer to the virtual hand by bursting them by ori-
enting the pointer through wrist PS movements (scenario
Balloons; Figure 5(b)).

With the aim to motivate the patient to perform chal-
lenging movements and to sustain his/her attention and
interest, the difficulty level of the training may increment
over the sessions. At the end of the session, the therapist may
assess the observed patient’s performance; then, the current

calibration and game parameters may be used as a baseline
for the calibration of the next session and for historical
comparison of the patient evolution.

For this purpose, the GUT allows the therapist to manually
modify the game (Figures 5(a) and 5(b)) and consequently the
demanding working load level, at any time during the
training. To aid the therapist to systematically individualise
the training as a function of the game input parameters, a
predictive model of patient performance indicates in the GUI
the expected performance score (normalised difficulty level
from 0 to 10, as detailed in Section 3.4.2).

For FE movements, the following game parameters
define the difficulty of both Bells and Balls exergames, as
illustrated in Figure 5(a):

(1) The training workspace RoM,,, within the range of
(1.0, 1.5] times the current patient RoMpqgient

(2) The virtual object’s size

(3) The timeout (t:,g.) for completing the task by scaling
[0.5, 1.5] the registered t,s value

(4) The number of positions of objects within RoMyork

(5) The sequence of appearance of objects at a random
position (random sequence) or at an arbitrary lo-
cation in alternate sequences of the extension and
flexion (random mirror sequence)

(6) The exerted haptic forces Force,q by scaling the im-
pedance gain K, proportionally to the calibrated gains
(K or KjHP for extension and flexion, resp.), within a
range of [0 1] for the assistance feedback and [0, 0.5] for
the resistive one

For PS movements, the difficulty parameters of Balloons
game are the following, as illustrated in Figure 5(b):

(1) The game workspace RoM,,,;. beyond RoM
(2) The speed and size of the balloons.

(3) The sequence of appearance of balloons in an ordered
sequence, at random within RoMp,gen,, OF farther
within the lateral cones defined by the intersection
RON[work n ROMpatient'

(4) The frequency rate of the balloons progressively rises
as the number score of the patient increases.

patient*

Figure 5(c) shows a patient performing a rehabilitation
session with the BRANDO system while receiving super-
vision of a physiotherapist.

3. Experimental Assessment of System
Feasibility and Performance

3.1. Objectives of the Study. The objective of the study was to
bear out the suitability of the system to be used as an aided
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TaBLE 2: Clinical characteristics of the patients’ population of the pilot study.

Flex

PS

Ext Pron Sup Ro JAMAR VAS DASH

Patient Gender Age Fracture injury Injury treatment o
deg) (de de de test test test
(deg) (deg) (deg) (deg) (deg) (deg)
P1 M 24 Humerus radius o Operative with 00 500 g ug g9 1y 2 7133
and ulna internal fixation
P2 w gy [Humerus radius o Operative with 500 g5y g g 0 1 5433
and ulna internal fixation
P3 M 66  Radius, capitate  OPoPerativewith o0 0s 56 95 121 16 4 6333
a fixed splint
P4 w35 Humerus radius o Operativewith 5, 505 g9 49 110 o 5 5333
and ulna internal fixation
Distal epifisi, radius, Operative with
P5 w 22 ulnar styloid, . P . 128 31 97 80 30 110 15 6 47,41
. internal fixation
scaphoid
Operative for
P6 M 42 Humerus removal of internal 90 -5 95 78 55 133 48 6 49.17
fixation
P7 M 45 Humerss radius o Operativewith )0,y 5 5 gy 36 7 50
and ulna internal fixation
P8 W 60 Ep1ﬁs1,. radius, ullnar Nonoperatlve. with o o . 68 56 124 5 5 67.50
styloid, scaphoid a fixed splint
P9 M 58 Capitate Nonoperative with —  — 52 57 109 0 5 7767
a fixed splint
PI0 M 33 Radius, capitate  OPerative with —  — e 75 137 20 2 485

internal fixation

method for orthopaedic physiotherapy of the forearm in-
volving both PS and FE joint movements. To this aim, we
investigated the following three aspects:

(1) The capability of the system to assign different levels of
physiotherapy exercises of the forearm, involving both
PS and FE joint movements; thus, to elucidate whether,
despite the variable working loads, the training
remained under controlled and moderate motion
conditions according to the current clinical condition of
the patient, to avoid any harmful movement, as a
fundamental requirement in orthopaedic rehabilitation.

(2) The effects of the variable difficulty training condi-
tions on the kinesiologic patient’s performance (de-
manding incremental movements regarding higher
ranges of motion, opposite force resistance, and
speed) and its possible relationship with their current
clinical condition; then, to design a new predictive
model of the patient’s progress, as a tool for the
therapist for individualising the training intensity.

(3) The evaluation and acceptance of the system by
patients.

For these purposes, the experimental procedure was
separated into two parts: (i) a preliminary evaluation of the
functionality of the system in healthy subjects and (ii) a pilot
study with patients undergoing manual physiotherapy due
to forearm lesions.

3.2. Recruitment and Patient Population. Two healthy vol-
unteers and ten patients (six males and four females; 47.20 +
20.47 years old) were recruited at the USL 5 Rehabilitation

Centre at Fornacette (Pisa), Italy. Nine performed PS training,
while seven performed both PS and FE movements. All pa-
tients received a medical indication of the following traditional
rehabilitation physiotherapy of the forearm due to fracture(s)
at the elbow or wrist joints and after at least a period of 7 to 10
days after the splint withdrawal. None presented fragments
instability, severe pain sensation, kinaesthetic or tactile sen-
sorial disorders in the upper limb, or cognitive impairment.
The subjects were informed regarding the aspects of the study
and signed their informed consent before the experimental
sessions. The study was reviewed by the local ethics committee.

All patients underwent a battery of clinical assessments:
(i) the ranges of motion with extendable goniometers and
following standard procedures [7], (ii) the strength of the
affected hand by the Jamar strength test [48], and (iii) the pain
sensation using the VAS pain test (Visual Analogue Scale for
the pain test) [49]. The musculoskeletal ability to perform
activities of daily life applying the Italian version of the DASH
Questionnaire (Disabilities of the Arm Shoulder and Hand
Questionnaire) normalised to a scale from 0 to 100 where the
zero score means no impairment and proper functionality,
while 100 means severe impairment and limited function-
ality [50]. The patients presented reduction of mobility at the
limits of functional FE RoM (90.17 +23.08°, with 104.25+
28.89° of flexion below a functional range of 130° [51] and
13.83 +18.48° of extension) and also at the limits of functional
PS RoM (118.60 + 11.07°, with 58.80 + 20.89° of pronation and
59.80+20.27° of supination), presented a small registered
hand strength of 15.40 +16.09 kg, reported mild pain sen-
sation of 4.3+2.0, and self-perceived disability of 59.46 +
10.79% according to the DASH score. Table 2 shows the
clinical characteristics of the patient population.
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3.3. Preliminary Evaluation in Healthy Subjects. With the
first aim of evaluating the functionality of the system, we
recruited two healthy volunteers for testing the system before
the evaluation in patients. We were particularly interested in
studying the capability of the system for assigning incremental
working profiles at moderate loads, under safe conditions at
any moment and without overloading the patients.

We analysed their muscular activity to verify the ef-
tectiveness of the system in assigning different working loads
in a training session under similar conditions, as for patients.

The subjects were invited to perform 45 minutes of training
with the Bells game. Three motion velocities (low, medium, and
high), under three haptic feedback modalities, were applied:
zero force (ZF), assistance force (AF), and resistance force (RF)
teedback. Two different force intensities were used for AF and
RF, for a total of 15 working load combinations: 3 velocities x
(2 AF + 2 RF + 1 ZF). The velocity levels for FE were 80°/s (low),
110°/s (medium), and 190°/s (high) (corresponding to move-
ments within an RoM of 125° in time periods of 1.5, 0.9 s, and
0.65s, resp.). The force feedback consisted of estimated mean
values of 2.73N (medium) and 5N (high) for AF, while 1.8N
(medium) and 2.5N (high) for RF. The ZF + medium velocity
condition corresponded to natural movements during the
calibration at the beginning of the session.

The muscular activation was monitored through surface
electromyography (sSEMG) by seven pairs of surface elec-
trodes placed on two muscles of the subjects’ upper limb: the
biceps brachii (BB) and triceps brachii long head (TBL).
SENIAM recommendations were followed for sensor po-
sitioning and the skin preparation (http://www.seniam.org)
[52]. Ag/AgCl foam pregelled electrodes with a diameter
of 24mm were used with an interelectrode distance set
to 20 mm for each bipolar derivation. The ground and the
reference electrodes for all bipolar derivations were posi-
tioned at the elbow. All electrodes were connected to an
amplifier (g.USBamp amplifier; http://www.gtec.at/) and
digitally converted (1200 Hz sample frequency, 12-bit res-
olution). We preprocessed the envelopes of the activation
signals for analysing isolated movements, as follows.

A band-pass filter was applied (5-500 Hz bandwidth),
followed by high-pass filtering (cutoff frequency of 20 Hz),
tull-wave rectification, and low-pass filtering (1 Hz cutoff
frequency). Then, the signals were divided into epochs using
the maximum peak of the recorded FE elbow angle as
a reference trigger and resampled using a cubic spline in-
terpolation. Figure 6 shows the average muscle profiles of
a healthy volunteer under the different tested conditions.

3.4. Pilot Tests in Patients. To verify the suitability of the
system to be used as an aided method for orthopaedic
physiotherapy of the forearm, we carried out a second ex-
periment with patients. The tests were done to confirm the
capability of the system for providing controlled and mod-
erate motion tasks with patients, after the preliminary eval-
uation with two healthy volunteers. To this purpose, first, we
analysed the kinesiologic patient’s performance and the re-
lationship of the variable difficulty training levels with the
current patient clinical conditions according to the standard
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clinical outcomes (JAMAR, VAS, and DASH tests). We were
also interested in two other issues: (i) the possibility of in-
troducing a new predictive metric of performance as a critical
tool for guiding the recovery by the therapist and (ii) assessing
the system and verifying its acceptance by patients.

3.4.1. Experimental Session. The tests lasted 30 minutes of
exercising divided into three parts, with two pauses of 2
minutes for resting, for a total of 45 minutes per session,
including the initial calibration phase. For practicality, for
FE movements, all tested the Bells game because it did not
require the external support of the arm.

Before starting the session, the patient was assisted to sit
down in the correct posture. Next, we evaluated the current
motion capability (RoM, velocity, and force) of the patient
and then calibrated the starting difficulty level of the game.
The difficulty was progressively adjusted by the hand during
the session, always within safe tolerances. In other words,
with the aim of preventing any manual error by the therapist,
the system constrained the game parameters to ranges that
matched from half to the full current capacity of the patient
according to the calibration. In particular, for FE, completion
task time .,y was constrained up to 2f,, maximum force
intensity up to half of the tolerated force intensity (through the
impedance gain K, up to 1/ ZKIF;X or 1/ 2K£LEX), and RoM,,ox
up to 1.2 RoMpagient- For PS, RoMyyqi was constrained up to
1.2 RoMpqtient- Then, patients were invited to perform and
were kindly instructed to concentrate and to express if they felt
pain or discomfort during the exercising.

3.4.2. Predictive Model of Patient Performance. With the aim
of aiding the therapist to manually individualise the phys-
iotherapy by systematically incrementing the training de-
mand levels, we implemented a model of the performance of
the patients. For this purpose, a principal component analysis
(PCA) was applied to the observed kinesiology information of
patients. The model resulted in the linear combination of
a performed range of motion, velocity, and tolerated exerted
resistive force by the system (RoMperformeds VeloCityperformeds
and Forceperformed) for FE, while RoMperformed and Veloc-
ityperformea for PS. Then, for providing a prior estimation of
performance, predictive regression models of normalised
outcomes of ROM erformed and Velocityperformed for FE and PS
and Forceperformed for FE were developed, all regarding game
input parameters, as follows:

p q
Outcome = b, + Z bix; + Z bjx X (4)
p

where x; is the ith input parameter among the p significant
input variables (significant main factors) for the corre-
sponding outcome, x; and x; correspond to significant
interacting factors, and b, are constant values. Significant
main factors and interactions over outcomes (RoOMperformeds
Velocityperformed> and Forceperformea) Were identified through
a series of multifactorial ANOVAs (MANOVAs). The
MANOVA series followed a design of 3 target sequences x 3

levels of tq X 3 levels of RoM,o X 3 levels of Force,,qy for
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FIGURE 6: Postprocessed sSEMG signals of the monitored muscular activity from the BB and TBL muscles of a healthy subject. The curves
represent the median activations of different working load profiles of 3 force levels (resistance, zero or no force, assistance) X 3 movement’s

speed levels: (a) low, (b) medium, and (c) high.

FE movements, while 2 sequencesx3 RoMu X3 balls’

number x 3 balls’ speed x 3 balls’ frequency for PS movements.
Finally, optimisation of the regression models was

carried out over the training data set of 7 patients for PS and

six patients for FE, while we used the data of 2 patients for PS

and one patient for FE for model comparison and validation.

3.4.3. System Acceptance Evaluation. We applied an ad hoc
designed questionnaire with eight items, all rated on a 7-
point Likert scale (where 1 was the minimum, 7 the max-
imum, and 4 the neutral scores), for qualifying diverse
perceived aspects regarding the confidence and acceptability
of the system (Table 3). Six items assessed the usability and
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TaBLE 3: Self-rated questionnaire for assessing the acceptance of the system and the experience of the patient during the robotic session.

Item Assessment Statement Tag
H h i hat th, i .
Q1 Acceptance oW muc yf)u consider that t. e session was Enjoy
enjoyable and engaging?
Q2 Acceptance How much difficult seemed to you the game? Difficult
H h i level of fati h .
Q3 Acceptance ow much you consider ygur?eve of fatigue after the Fatigue
session?
H h i i ing th .
Q4 Acceptance ow much attention did you pay during the Attention
execution of the game?
H h i level of pain after th .
Qs Acceptance ow much you consider You; evel of pain after the Pain
session?
Q6 Acceptance How much you copsider yourilev?el of annoyance Annoyance
during the session?
Q7 Embodiment sensation Sometimes I felt that t};i n‘;lrtual arm was my own Ownership
Q8 Embodiment sensation The movements of the virtual hand and arm were Agency

caused by my movements.

acceptance of the system: (1) How much the patients per-
ceived it enjoyable (enjoy)? (2) How much difficult it was
(difficult)? (3) How much exhausting they felt (fatigue)? (4)
How much attention they paid (attention)? (5) How much
physical pain patients felt in the affected limb during the
exercises (pain)? (6) How much annoyed they felt during the
exercises (annoyance)? Two extra items evaluated the em-
bodiment sensation during the sessions [45, 53], regarding
two sensations: (1) the sense of ownership, which means how
much they perceived that the virtual avatar was their own
limb, and (2) the sense of agency that indicates how much
they recognised that the movements and actions of the
virtual avatar were caused by their own actions.

4. Results

4.1. Preliminary Evaluation in Healthy Subjects. Different
activation levels were observed for both BB and TBL
(Figure 6), being the biggest motor activation of arm muscles
associated with the movements performed under resistance
forces, following by free movements (zero force) and those
with the lowest level of assistance forces. We also observed
decreasing motor activations from high to medium and from
medium to low velocity movements. The increments in
motor activation were due to dynamic isometric contrac-
tions during voluntary active movements under assistance
or resistance forces and revealed by the increase of the
amplitude of the SEMG [54]. A repeated measures ANOVA
(SPSS 15 statistical package) according to 3 forces x 3 velocity
conditions over mean amplitudes of the signal envelopes
(Figure 7) revealed main factor effects for both force (F(2, 10) =
97.069, p <0.05) and velocity (F(2, 10) =26.872, p <0.05) and
a significant interaction (F(4, 20) = 12.222, p <0.05) for BB,
and similarly for force (F(2,10)=606.725, p <0.05) and ve-
locity (F(2, 10) =24.106, p < 0.05) and a significant interaction
(F(4, 20)=16.037, p<0.05) for TBL, which confirmed the
recruitment of higher motor units as the system increments the
required resistance force and velocity of movements, as ex-
pected. No significant changes in the mean frequency of the
signals were observed, which indicates variable muscular
working load at the arm while flexing and extending the elbow

with the system but without overloading it until excessive
muscle fatigue [55].

4.2. Pilot Tests in Patients. For assessing the capability of the
system for estimating the range of motion of the patients’
movements, a comparative analysis was carried out between
the standard clinical RoM outcome manually estimated by the
therapist with the manual goniometer (Table 2) and the online
estimation performed by the system (RoMpatient) during the
calibration step at the beginning of the session (Table 4).

For FE RoM, an underestimation was observed, from
a mean clinical RoM of 101.57 + 6.32° for the seven patients
performing FE training, in comparison to the mean cali-
brated ROMpagient = 92 +10.63". An error of 11.66 + 10.69%
was observed between both measures, with a medium value
of the Pearson correlation of r=-0.278, but not still sig-
nificant given the small sample size. For PS, a mean clinical
RoM of 118.60 + 11.067° was observed among patients, while
a mean calibrated ROMpgiene = 117.90 + 10.59” was observed
with an error of 5.66 + 6.64% and a high value of the Pearson
correlation of r=0.520 but again not still significant.

An interpretation of the observed errors is that the es-
timation of RoM,tiene during the calibration phase of the
training session is consistent with the clinical observation
and valuable for personalising the level of the working load
difficulty of the training and the scoring of the estimated
performance as a function of real-time kinaesthetic in-
formation. However, on the contrary, the RoM,gient €sti-
mation must not be considered as a valid clinical measure
that may replace the current standard manual method.

During the experiments, we incremented the difficulty
levels from the observed motion capacity of the patients after
the calibration phase. The increments included force re-
sistance levels and working range of motion, decrements in
the task’s time, increasing number of targets, and different
sequences of targets’ position. Patients were invited to test
the system just one session, so we expected that, at first sight,
patients would probably perceive the system with suspi-
ciousness. For this reason, the game parameters were
manually adjusted to maintain the achieved game score as
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FIGURE 7: Observed amplitudes of the postprocessed muscular activation signals of the isolated flexion/extension elbow’s movements for the
3 force x 3 velocity conditions. Main effect factors and significant interactions for force and velocity on both BB (a) and TBL (b) muscles.

TaBLE 4: Observed patients’ performance during the game tests.

Patient Working FE  Performed FE FE velocity l(ljfd FE game Working PS ~ Performed PS PS velocity ~ PS game
RoM (deg) RoM (deg) (deg/s) (kg) score (0-100) RoM (deg) RoM (deg) (deg/s)  score (0-100)
7922+ 0.27 + 46.80 +
P1 73+13 101+ 6 271 014 88.15+15.5 104+13 78+13 20.90 77.05+0.24
86.14 + 0.19+ 87.11+
P2 99+15 91+6 28.44 016 93.40+7.2 123+12 98+13 4417 96.50 = 0.05
66.91 = 0.29 89.14
P3 81+£22 83+ 16 13.57 019 64.30+£5.3 113+11 83+12 5313 87.12+£0.07
86.14 + 0.19+ 85.56 +
P4 99+ 16 101 +6 28.44 016 93.40+7.2 129+11 111+9 51.01 94.49 +0.09
112 + 0.44 + 53.79
P5 97+ 14 91+3 4518 011 81.73+11.3 121+23 99 +20 71.88 93.71 £0.067
88.32+ 0.29 + 78.71 £
P6 100+ 4 84+8 50.92 014 85.29+15.2 112+ 14 85+2 27.90 87.63+0.10
6710+ 0175
p7 95.17+9.38 87.43+18.5 1427 0.04 88.94+15.8 — — — —
P8 123+6 98+5 54+22  93.71+0.067
P9 123+ 11 94+11 79+28 87.63+0.1
P10 136 £ 8 112+13 44 +22 97.19£4.33

high as possible while keeping safe movements’ conditions,
which resulted in the observed performance in Table 4.

We carried out a correlation analysis between the ob-
served kinetic information of patients during the training
and the outcomes of current clinical assessment (JAMAR,
VAS, and DASH scores) to elucidate any possible re-
lationship between the patient’s clinical condition and the
difficulty game conditions.

First, the patient strength given the JAMAR score was
found to be negatively correlated (r=—0.615) with the mean
executed RoM during the game (performed FE RoM;
Table 4). The contrary was less correlated with the mean

working load (FE load, r = 0.126) and velocity of movements
(FE velocity, r=—0.172). These correlations can be explained
by the fact that even though the achievable range of motion
could infer muscular weakness, muscular weakness is not
ultimately expressed in the dynamic components of
movements (loads and velocity) since for safety re-
quirements, the working loads were calibrated for assuring
moderate levels of motion. A moderate negative correlation
(r=-0.369) between the pain sensation (VAS score) and the
performed RoM during FE training (Performed FE RoM)
indicates that the patients who reported higher pain sen-
sation were more cautious of performing painful
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TaBLE 5: Results from PCA over observed kinesiology outcomes explaining the first and second components, around 65% and 30% of the
variance and defining the performance equation as a linear combination of kinesiology information.

Outcome PC, PC, Performance equation
Flexion/Extension

ROMperformed 0.285 0.4424

Velocityperformed 0.618 0.5929 Performancep; = 0.6238PC, + 0.2957PC,
Forceperformed 0.7323 0.6729

Pronation/supination

52ffglt;pl‘fdmd ggg?z (;)559198 Performanceps = 0.6844PC, + 0.3156PC,

TaBLE 6: Regression models for predicting kinesiology information of the achieved range of motion, the velocity of movements, and exerted

opposing forces, as a function of difficulty input parameters.

No significant effect

M i icti 1
ovement Regression predictive mode for the model (p > 0.05)
FE ROM*performed = bO + bl * ROMwork ttask * ROMwork
FE Velocity” performed = Po + by # tragk + b2 % ROMyyoric —
FE Force*performed = bO + bl * FOI-Cework + bZ * Frak * ROMwork trask
PS ROM*performed = bO + bl * RoOMyork -
PS Velocity” performed = bo + by * sequence + b, * ballsgpeeq + balls¢requencys

bs x sequence * ballsspeeq + by * RoOMyork * ballsgrequency

sequence * balls,ymper

movements, and thus, they performed smaller RoM. The
small correlations found between VAS scores with both
working loads (FE load) and velocity of movements (FE
velocity) confirm that the rehabilitation sessions were carried
out at moderate dynamic levels.

Regarding the relationship of the self-perception of the
ability to perform daily-life activities through the DASH
score, we found a positive correlation with the performed FE
RoM (r=0.417) and a negative correlation with FE load
(r=-0.468). Both correlations highlight that the kinesio-
logical performance of patients was lower in those patients
showing higher current disabilities than in patients with less
daily-life difficulties, as occurred with patients P3, P5, and P7
who suffered from injuries affecting elbow FE. It is im-
portant to notice that patient P1 expressed a high pain
sensation in the VAS test but did not show difficulties in
performed FE RoM because of the primary suffering that was
in PS instead of FE movements.

Regarding the PS movements, negative correlations were
found between performed PS RoM with the DASH score
(-0.439) and with the JAMAR score (r=-0.372). An ex-
planation to the observed correlations is the fact that the
higher the level of impairment, the more the difficulty to
perform the rehabilitation exercise involving PS movements.

In general, the working RoM,,,;x was set to be slightly
higher than the patient’s one (measured during the system
calibration). Consequently, the speed of the objects on the
screen was set for resulting in mild slow motions (FE and PS
velocities) within the performed RoM. For FE, the adaptive
loads assigned from zero up to 0.5 kg were well tolerated by
the patients. A necessary clarification at this point is that
working load for patients remained under the same range
applied to healthy volunteers, as can be observed in the force
feedback profiles in Figure 6 (with values up to 5N,
equivalent to 0.5 kg loads).

During all the tests, we did not observe any unexpected
event that may cause risk to the patients. Moreover, all
patients remained calm during the sessions and did not
perceive or express any threat due to the system.

Then, with the aim of modelling the kinematic perfor-
mance score, a PCA was implemented over the training data
sets of six patients for FE and seven patients for PS to
perform dimension reduction of the data and obtain a metric
of performance as a linear combination of the normalised
values of the observed RoMcrformed> VelocCityperformed> and
Forceperformed- Table 5 shows the coefficient values of the two
principal components: for FE, the first and second com-
ponents explain 62.38% and 29.57% of the variance, re-
spectively, while for PS, the first and second components
explain 68.44% and 31.56% of the variance, resulting in the
performance equations in Table 5.

Then, for FE movements, the series of MANOVAs over
outcomes revealed significant main factor effects of RoOM ok
(p<0.0001) and a significant interaction of fi,g * ROM ok
(p<0.007) for the observed RoOMperformed- For the observed
Velocityperformed» main factors were found for tf,q and
RoMyork (p < 0.0001) with no significant interaction. For the
observed Forcepeformeds> Main factors were found for #g
(p = 0.05), Forceyonx (p<0.0001), and a significant interac-
tion of t,q * Forceyo (p <0.0001). On the contrary, for PS
movements, main factor effects of RoMyo (p < 0.0001) for
RoMerformed Were revealed; for Velocityperformeds main factor
effects of sequence (p < 0.0001), ballsgequency (P < 0.0001), and
ballsgeeq (p<0.024) and a significant interaction between
sequence * balls,ymper (P <0.01), sequence * ballsgyeeq (p <
0.032), and RoM oy * ballsgrequency (p = 0.05) were revealed.

Consequently, the predictive regression models given the
equations in Table 6 were obtained, as a function of the
difficult input parameters estimated over the corresponding
training data. The regression models presented a significant
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FiGure 8: Comparison of the performance (from 0 to 1) between the predicted and observed score for the group of three testing patients:
(a) patient 7 for FE, and (b) patient 9 and (c) patient 10 for PS movements.
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FIGURE 9: Observed values of the self-reported scores of the ad hoc
questionnaire for assessing the perception and opinion of the
system by the patients. Items enjoy, difficult, fatigue, attention, pain,
and annoyance evaluated the confidence and acceptance of the
system, while ownership and agency assessed the embodiment
experience during the sessions.

correlation of r=0.837 (the Pearson coefficient) comparing
the predicted and observed performance over one patient
data for FE and r=0.917 over two patients data for PS. This
correlation indicates a good agreement between the esti-
mated performance during the setting up of the difficult
training parameters and the observed performance during
the training under such parameters, as shown in Figure 8.

Figure 9 shows the observed scores of the self-rated
questionnaire for assessing the opinion and experience of
the patients about the system. We adopted the criteria of
considering a median score >5, as the indication that the
diverse aspects were experienced highly. Patients found the
games enjoyable (median of 6.50 + 0.82 in enjoy for PS and

5.50+1.26 for FE). They experienced neutral difficulty
(4.50 £ 0.82 for PSand 5 + 0.69 for FE in difficult) and neutral
fatigue (4.00 +£1.97 for PS and 4.50 + 1.50 for FE), and the
sessions were enough demanding for keeping their attention
quite high (6.75 +0.75 in attention for PS and 6.50 + 1.07 for
FE). Regarding the perceived side effects, most patients
expressed feeling some mild pain (2.00+2.02 for PS and
2.50+2.60 for FE) and low annoyance (1.50+2.16 for PS
and 2.50+2.14 for FE). High embodiment sensation of
the system reflected in the high scores for the ownership
(5.00+£1.29 for PS and 5.00+2.08 for FE) and agency
(6.25+0.50 for PS and 6+0.19 for FE) sensations over the
virtual avatar. Finally, at the end of the session, besides the
questionnaire, they verbally express their high interest in
participating in a more extended clinical study with the system.

5. Discussion

The present work has three important aspects: (i) the de-
velopment for the first time of a robotic-VR-mediated ap-
plication specific for the orthopaedic rehabilitation of the
forearm, (ii) the development of a predictive model of pa-
tient performance for aiding the individualisation of the
training exercises regarding observed kinesiology in-
formation, and (iii) an evaluation of the system by two
healthy subjects and a group of patients to study its ac-
ceptance and the feasibility of carrying out clinical studies.

The system was specially developed for covering the
clinical needs of orthopaedic rehabilitation of injured upper
limbs affecting the forearm mobility, similarly as the manual
method. Diversely from current neurorehabilitation robotic
systems, in this approach, three essential aspects were con-
sidered of particular interest in orthopaedics: the recovery of
functional range of motion [9, 51], muscular strength, and
pain reduction [5, 49]. The system integrates some elements
already reported separately for neurorehabilitation, such as
resistive [26] and assistive force fields and jerk trajectories
[25], but combined and adapted in a new methodology that
satisfies the particular needs of isometric passive, active, or
active-assistive motion training of single joints. An important



Journal of Healthcare Engineering

characteristic is that it allows the therapist to assign different
training loads, imposing incremental motion tasks starting
from small training arcs and mild force loads up to a painless
normal range of motion and moderate force loads.

The restoration of functional ranges of motion is con-
strained by the system to be progressively incremented with
small steps, during all the assisted treatment process, in
particular for the flexion/extension arc from the current
ranges up to a minimum functional range of motion of 100°
[51] and for pronation/supination up to a functional range of
50° [9, 51]. In this way, the system guarantees the gradual and
careful tuning up of the task motion requirements to the
patients. Slight increments in working loads are also possible
through small increases in the intensity of the force feedback,
but at any moment up to moderate tolerated levels observed
during the calibration phase at the beginning of each session.
This characteristic is crucial to avoid harmful movements that
may result in severe side effects such as destabilisation, in-
flammation, and oedema or time delay in the rehabilitation
process, with the consequent risk of developing joint stiffness
and contracture.

In the field of neurorehabilitation, a current trend is the
development of adaptive methods for the individualisation
training with the aim of the optimisation of neuroplasticity
and motor relearning [28, 56, 57]. In the scope of orthopaedic
rehabilitation, this would play an essential role in stimulating
the patient to perform progressively more challenging
movements to promote the motivation and adherence to the
treatment and is more important as a crucial tool in mod-
ulating the incremental kinesiologic requirements of patients
through time. To this aim, the system includes a predictive
model of kinesiologic performance which scores the patient
evolution as a function of the online range of motion, force
teedback intensity, and velocity of movements. This module
enables the possibility to manually personalise the difficulty
level of the therapy during the game in a systematic quan-
titative manner. This information is also useful for managing
and reporting online and historical data of the patient evo-
lution during the treatment by the therapist.

Regarding the evaluation of the system, the observed in-
crements in amplitude in the sSEMG signals of the volunteers
showed that the system allows assigning significant different
levels of working loads, due to the combination of required
strength and velocity. The analysis over the mean amplitude
and mean frequency of the SEMG signals confirmed that the
different loads effectively demanded different levels of motor
unit activations at the arm muscles, but for safety always
keeping the activations below muscular fatigue [54, 55].

The observed mean force feedback intensity remained
similar for both healthy participants and patients (below the
equivalent load of 0.5kg). Moreover, since the resulting
training profiles of the two healthy volunteers corresponded
to profiles conceived for patients, we argue that the working
load may be modulated safely by the therapist, according to
the observed progress of the patient during the treatment. At
this point, we also reviewed the relationship of the observed
kinesiology metrics and the current clinical outcomes (VAS,
JAMAR, and DASH), and due to the observed correlations
between metrics and the clinical scores, we may conclude
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that the motion tasks were programmed efficiently from
mild to moderate demanding.

In fact, the results of the experimental sessions indicate
that it is possible to modulate the expected patient perfor-
mance during the sessions, as a function of kinesiology
metrics computed in real time, through the combination of
difficulty game parameters. The metrics consider the achieved
range of motion, the velocity of movements, and the tolerated
opposing forces for the flexion/extension movements, while
the range of motion and the velocity of movements for
pronation/supination. Moreover, the implemented prediction
model of performance shows a good agreement between the
estimated scores before and during the training, indicating
that it is possible to objectively assign therapeutic levels
systematically, which we argue may play an essential role for
the individualisation of the therapy and the optimal evolution
through the treatment.

The questionnaire for assessing the system revealed that
all patients enjoyed playing the games and that the assigned
difficulty levels were well balanced and demanded their high
attention, which for motor improvement through cognitive
activities is crucial. The questionnaires also confirmed that
patients felt a mild perception of pain, which is line with the
reported scores with the VAS test. Interestingly, patients
experienced a high embodiment sensation of the virtual
representation of their limb in the scenarios; patients were
able to see their forearm, but still perceived the sensation of
ownership of the virtual representation of their injured limbs
[58]. This fact could be valuable for the incorporation of new
proprioceptive exercises and as a biofeedback method that
helps the patients to be aware of their current physical
limitations, such as abnormal movement synergies, com-
pensatory movements, and limited mobility, among other
aspects difficulty to perceive at first sight during daily ac-
tivities. Moreover, this issue could be valuable to design new
games more related to daily-life situations, promoting the
(re)embodiment of the injured limb in their body schema,
especially during the early mobilisation stage.

Patients perceived slightly more difficult the game for FE
than for PS movements because they performed free
movements for PS with the forearm static, while for FE
variable force-resistant movements for placing the hand at
different positions in space.

The experimental sessions were designed in the same
conditions that would be applied during robotic-assisted
physiotherapy sessions. During the tests, we incremented the
difficulty levels from the observed motion capacity of the
patients after the calibration phase. The increments include
force resistance levels and working range of motion risings,
decrements in the task’s time, increasing number of targets,
and different sequences of position targets. No matter the
difficulty levels, we did not observe any unexpected event
that may cause risk to the patients. Moreover, all patients
remained calm during the sessions and did not perceive or
express any threat generated by the system, even when
experiencing more challenging conditions.

Since the experimental conditions were designed to be
applied similarly to sessions during the assisted therapy and
we did not observe risk situations during the tests, we are
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confident that the system was well accepted. Moreover, we
conclude that the system is safe enough to clinically validate
it in an interventional study, as a next research step shortly.

However, regarding the estimated ranges of motion of
patients with the system at the beginning of the session, we
observed an underestimation concerning the standard clinical
outcome. A factor that may affect the precision of the inverse
kinematic algorithm is that, for computing the joint angles of
the upper limb from the wrist position in space, a fixed
posture of the shoulder is assumed, so avoiding slight trunk
adjustment postures by patients bias the estimation. Addi-
tionally, the algorithm also depends on input parameters such
as the dimensions of the arm and forearm, so manual errors in
such measures may also influence the inaccuracy. Conse-
quently, the range evaluation must be considered as an in-
dicative measure of kinesiologic performance during the
training, but not as a valid clinical value. Therefore, it would
be desirable to incorporate other technologies such as
wearable sensors [59, 60] for the precise assessment of other
kinetic aspects such as compensatory movements.

Another limitation is that the current state of the system
does not enable the possibility of force feedback during the
pronation/supination treatment like other systems conceived
for orthopaedic rehabilitation [35-37], which may reduce the
chances of shortening the recovery period because of the
impossibility to assign variable resistant exercises. By fortune,
even if the effects of pronation/supination recovery cannot be
neglected for strength recovery, it accounts in less extent than
elbow strengthening training [33], so our system can be still
a significant tool for aiding the rehabilitation process of the
forearm. Since the robot design followed and end-effector
based approach, instead of an orthotic one [14], the system is
unable to impose strict, joint constraints mechanically. So is
not feasible for the very first period of the physiotherapy after
immobilisation; in this case, not before seven days after the
withdrawal of the splint immobiliser. Therefore, even if the
system enables the possibility of providing small assistive
forces to the patient, we figure out from the experiments that
this feature has no practical clinical use. On the contrary, it
would be more helpful to provide small-to-moderate resistive
forces after the first week of manual mobilisation.

A third limitation is that, for the moment, the kinesi-
ology performance calibration corresponded to pilot tests
with patients performing mild exercising, as observed with
high games scores (hits versus failures), which would lead to
biases in the estimated performance probably below optimal
intensities levels. Moreover, since the hits/failure rates in the
game may involve cognitive abilities and not necessarily
kinesiology performance, it is not still clear if there is a direct
correlation between game and kinesiology scores that would
lead in mechanisms for balancing the physical and cognitive
requirements to patients. So, to optimise both their per-
formance and cognitively demanding tasks (involving at-
tention, perception, the complexity of the game, and
motivation, among other), more research in nonlinear
predictive modelling is required.

Finally, due to the limited number of patients, the sta-
tistical results would be interpreted as preliminary evidence
of the feasibility of the proposed methodology, but more
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comparative studies are needed with more patients and
healthy subjects for confirming the entire validity of the
proposal.

6. Conclusions

Rehabilitation robotics offers the possibility of new
methods of physiotherapy in orthopaedics with patients
with musculoskeletal injuries, such bone fractures. As
a study case, here we presented a new approach to assisted
orthopaedic rehabilitation method of the forearm, in-
volving the elbow and wrist joints. Our proposal combines
an end-effector robotic system and a virtual-reality me-
diated software application with the capability of deliver-
ing passive, active, and assisted exercising training of
flexion/extension and pronation/supination of injured el-
bow affecting the forearm. The proposed methodology
exploits some existing methods reported separately for
neurorehabilitation but integrated within a new framework
conceived explicitly for the orthopaedics clinical goal of
recovery of functional range of motion, strength, pain
reduction, and stiffness prevention.

We studied the possibilities of personalising the exercise’s
intensity and modify it manually according to the kinesiologic
performance of the patient, within safe and moderate con-
trolled online increments during the games, in a more sys-
tematic way than traditional manual physiotherapy. The
results of our experiments in healthy participants and patients
showed that the proposed strategy is suitable. Besides its
limitations, the present work contributed to promoting the
development of new assisted methods in orthopaedics and
further research in this area. We conclude that the proposed
approach may have the potential of enhancing the current
manual methods, incrementing the hours of therapy per
patients and the number of patients simultaneously and re-
ducing the treatment discharge periods.

Future work involves the validation of the system during
interventional clinical studies combining manual and assisted
sessions some days per week during the whole duration of
treatments. Additionally, the developing of other scenarios
and the extension of the current system to other musculo-
skeletal deficits of the upper limb involving other movements
would be valuable and may promote the development of new
physiotherapy patient-specific methods in the scope of or-
thopaedic rehabilitation.
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This paper presents an experimental characterization of NURSE, a device for arm motion guidance. The laboratory setup and
testing modes are presented to explain the experimental procedure. Two exercises for the upper limb exercise are used to test the
NURSE behaviour, and successful results are presented. Trajectories and linear accelerations are tested when the device performs
the two exercises without and with load. In addition, torque and power consumption are considered to check the

NURSE behaviour.

1. Introduction

Every year, 15 million people worldwide suffer a stroke;
more than 70 percent must deal with mobility impairment
and cognitive disabilities [1]. Additionally, the arm mobility
can be affected by neurological, muscle, and joint diseases
[2]. Lymphatic and vascular disorders can also reduce arm
mobility [3]. On the contrary, the arm mobility can be also
affected by traumatic and overuse injuries of the shoulder,
elbow, and wrist [3, 4]. In such a case, exercises are necessary
to recover a suitable range of motion by strengthening,
flexing, and extending the muscles and the joints [5].
However, the number of trained human therapists who can
provide this support is limited, while the demand is growing,
particularly in elderly people [6, 7]. The required exercises
for an assistive therapy should be designed by a specialist
according to the medical diagnosis, and it can be vary from
a specialist to another [3, 8, 9]. However, all exercises start
from the basic movements of the human arm seen in
[3, 4, 8, 10, 11]. During a traditional exercise, the specialist
assists the limb motion. However, it is difficult for the

therapist to keep the same quality of motions during long-
therapy sessions. In addition, the motion cannot be con-
trolled, and a feedback of the patient evolution is difficult to
obtain. While there remain a number of tasks that only
human therapists can perform, many rehabilitation exercises
are mainly highly repetitive. This is where robotic systems
are useful since they can reproduce the same task countless
times, with precision and accuracy without fatigue or loss of
attention [12]. It has been proved that use of robotic systems
benefits the rehabilitation process [13, 14]. In addition, the
use of robotic systems reduces the recovery time by 30% [13].
Several devices have been developed for arm motion as-
sistance. However, there are several issues to solve in the
existing robotic devices such as they are costly and they have
bulky structures very difficult to adjust to the patient arm.

The existing devices for arm motion assistance can be
classified into three groups: nonactuator devices, exo-
skeletons, and end-effector devices. The nonactuator devices
are frequently used by rehabilitation centers since they have
significant lower costs, are easier to use, and are inherently
safe. An example is the handboard to trace the number 8
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[15], and the mechanism is composed of a roller skate for
the arm support, a table with a guide with an 8 shape, and
pieces of different weights to apply resistance to the
motion during the therapy. However, the mechanism
offers only one exercise, and the arm motion is not con-
trolled. Another example is the skateboard [16, 17].
The skateboard is a known mechanism composed of
a board with wheels that allow movements on a horizontal
plane. The patient should perform the movements by
himself/herself. Since the skateboard is a cheap mecha-
nism, it is widely used. However, by using the skateboard,
the therapy motion cannot be controlled. However, the
nonactuator devices do not have movement correction.
Within the exoskeletons group, ArmeoPower can be found
[18]. ArmeoPower has six degrees of freedom to perform
3D motions and a graphical interface for virtual in-
teraction. However, ArmeoPower is difficult to wear,
costly, and has a bulky frame. Another exoskeleton is
MEDARM [19], which can assist the arm motion on
a horizontal plane; it is actuated by cables and has 3 de-
grees of freedom. The MEDARM exoskeleton is adjustable
for users of different sizes. However, MEDARM needs
a bulky frame structure, is difficult to transport and
construct, and has been proposed only to assist the right
arm, and it is difficult to align the exoskeleton joints with
the human arm joints. Another exoskeleton named
“CAREX?” is proposed in [20]. The exoskeleton is actuated
by seven cables and has five degrees of freedom. However,
CAREX needs a very huge structure to support the seven
motors that move the cables. In addition, the cables can be
dangerous for the subject since they move close to his/her
head. Other exoskeletons with similar disadvantages to
ArmeoPower, MEDARM, and CAREX can be seen in
[21-23]: in [21], an exoskeleton is proposed to assist just
the shoulder motion, but it is difficult to wear; in [22], an
exoskeleton is proposed to assist the elbow and wrist
joints, but it has a bulky frame structure and it is not
comfortable to use since the frame must be placed in the
middle of the patient’s legs so that the arm gets a the proper
position; in [23], an exoskeleton named “ARMin III” is
proposed, but like ArmeoPower, it is difficult to wear and
has a bulky frame. As seen in [18-23], the main issues in
the exoskeletons are that the expostulations have joint axes
tully determined as well as physiological movements, but
robot axes have to be aligned with anatomical axes and are
very difficult to transport, construct, and wear. In addition,
the exoskeletons are very difficult to adapt to different
anthropometric sizes. An example of an end-effector de-
vice can be seen in [16]. The device is based on a planar
parallel mechanism 3RRR. The device can assist the arm
motion on a horizontal, vertical, or inclined plane
by performing several trajectories within its workspace.
However, the device has large links and presents stiffness
problems. In [24], an end-effector device is proposed to
assist the arm motion. The forearm of the user is supported
by an end-effector device, and the device can assist the
shoulder/elbow flexion and extension without other tra-
jectories. The disadvantage of this end-effector device is
that it covers a small workspace and offers few types of
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exercises. In [25], a portable end-effector device is pro-
posed for arm exercises on an inclined plane. The device is
composed of two actuators that are actuated by cables and
a hand grip device. The device trajectories are limited by
four guides that constrain the end-effector movement
along straight lines, and the device cannot perform other
types of exercises. In [26], MIT-MANUS is presented,
a commercial and known device for arm therapy that has
been developed in the early 1990s. MIT-MANUS is
principally composed of a five-bar mechanism and
a modular end-effector. The robotic arm helps in the
shoulder and elbow motion on a horizontal plane, and the
modular end-effector allows the movements of the wrist
joint. Currently, MIT-MANUS has a clinical version that is
named “InMotion ARM™” as pointed out in [27]. How-
ever, the device has a reduced workspace in terms of the
range of possible motions. Furthermore, the device is not
portable and it requires to be operated by highly trained
personnel. Another end-effector device named “REAplan”
is presented in [28]. The device is based on the Cartesian
mechanism with a handle that is moved on a horizontal
plane to assist the arm motion. However, REAplan has
a bulky and heavy structure so that is difficult to transport.
In addition, it has a reduced workspace in relation to the
required link sizes. However, the end-effector devices
present advantages with respect to the exoskeletons such as
they present a simple structure and control and they are
easy to adjust to the patient.

As seen in the above examples, the main issues to
consider about the existing devices for arm motion are that
the devices with a large workspace are very difficult to
transport, construct, and wear as seen in [18-23]; the
existing portable devices cover a small workspace [16, 24-28]
and offer few types of exercises [24, 25]; and the widely used
basic mechanisms do not have motion control during the
therapy or they perform a single trajectory as seen in [15, 17].

In order to solve the above issues, NURSE (cassiNo-
qUeretaro uppeR-limb aSsistive dEvice) was developed as an
alternative solution for arm motion assistance with ad-
vantages over the existing devices. NURSE is an end-effector
device composed of a mechanism, a controller, and a user
interface. NURSE is based on a mechanism of 2 degrees of
freedom whose workspace is amplified by using a panto-
graph. NURSE can assist the arm motion during a re-
habilitation therapy and the arm motion of elderly people
during an exercise. The main advantages of NURSE are
presented in this paper together with the experimental
characterization.

2. Exercises for Arm Motion Guidance

In order to assist the arm motion during a therapy, two
exercises for upper limb rehabilitation and exercise have
been designed by the authors as reported in [29] (Figure 1).
The considered exercises can be used in patients recovering
from injuries and neurological, muscular, and joint diseases.
Moreover, they can also be used for the arm exercise by
elderly people. Figure 1(a) shows exercise no. 1 that has been
designed to treat the shoulder. The exercise consists of
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FIGURE 1: The two considered exercises for upper limb rehabilitation and exercise: (a) exercise no. 1 to treat the shoulder joint; (b) exercise
no. 2 to treat both shoulder and elbow joints.
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FIGURE 2: Reference trajectories generated by regression analysis (in black) and the trajectories acquired from the 12 subjects: (a) trajectories
for exercise no. 1 to treat the shoulder joint; (b) trajectories for exercise no. 2 to treat both the shoulder and elbow joints.

(a) (b)

FIGURE 3: NURSE: (a) a prototype; (b) the tracing point (TP) on the end-effector and wheels.
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FIGURE 4: Experiment layout: (a) overview of the lab setup; (b) control area details.

performing a horizontal shoulder flexion by tracing the
trajectory in red dotted lines with a tracing point (TP) from
the point A to the point B (Figure 1(a)). Figure 1(b) shows
exercise no. 2 that has been designed to treat both the
shoulder and elbow joints. The exercise consists of tracing
the number 8 with the TP. Exercise no. 2 starts and ends in
the same point. Since the path to trace the number 8 is
complex, it is also used as a reference trajectory to evaluate
the behaviour of robots that perform human tasks [30].
The procedure for the motion design of the considered
exercises is explained in [29]. The reached coordinates of the
TP with respect to an XY reference frame were used for the
design motion. Since in an assistive therapy, the patient’s

hand is guided by a specialist to perform a desired exercise, it
is assumed that a device for motion assistance should
perform the path of the same exercise. A Kinect vision
system [31] was used to carry out the data collection of the
arm motion from 12 subjects that performed the above
exercises. The subjects performed each exercise during 12
repetitions. From the collected trajectories, a reference
trajectory was generated for each exercise by using re-
gression analysis as reported in [29]. Figure 2 shows the
trajectories generated for each exercise and the trajectories
acquired by the Kinect vision system. It is important to
notice that other arm exercises have also been designed
in [29].
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FIGURE 5: Markers for image processing.
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FIGURE 7: Some snapshots of test no. 1 without load during rep-
etition no. 1 together with the trajectory obtained by image pro-
cessing (in red): (a) the first sample position; (b) the second sample
position; (c) the third sample position.
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FIGURE 9: Acquired linear acceleration during test no. 1 without load for the three repetitions seen in Figure 8: (a) X linear acceleration; (b) Y
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Figure 10: Computed torques during test no. 1 without load for the three repetitions seen in Figure 8: (a) Motor 1; (b) Motor 2.

3. Laboratory Setup and Testing Modes

NURSE has been conceived and designed to solve all the
issues that have been mentioned in Introduction, giving the
possibility to perform exercises useful for physical therapy or
rehabilitation, for treatments of injuries or diseases, for
prevention of injuries or diseases, or for physical exercising
[32] (Figure 3(a)).

The proposed device is composed of a linkage structure
that is driven in planar movements by two actuators. Two
wheels are used to support the NURSE structure (Figure
3(b)). The used wheels have omnidirectional balls of stainless
steel, and they can support a load of 25 kg each. In addition,

an end-effector has been designed for a comfortable grasping
of the user. Figure 3(b) shows the tracing point TP on the
NURSE end-effector. The linkage structure is composed of
aluminum bars that have a thickness of 6 mm and a width of
25 mm. The mechanism structure weighs 2.6 kg, and it fits
into a box of 35 x 45 x 30 cm. More details of the mechanical
design of NURSE are explained in [32, 33]. The mechanism
can guide both right and left human arms on a plane within
a large workspace to follow whatever desired trajectory
[32, 33]. The planar linkage structure is characterized by
light links for compact design, low-power consumption, and
easy portability. The movements that can be performed by
NURSE involve the shoulder and elbow of a human arm in
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Ficure 11: Computed power consumption of test no. 1 without

load for the three repetitions seen in Figure 8.

FIGURE 12: A zoomed view of a NURSE end-effector with a load of
520g.

an independent way or in a coordinated motion. Since
NURSE can perform several trajectories of different sizes, it
can be used by people of any age, anthropomorphic sizes,
and anthropometric sizes, including children and elderly
people as pointed out in [32, 33].

To test the performances and the behaviour of NURSE,
some experiments have been carried out at LARM labora-
tory in Cassino. A specific layout has been designed to allow
a satisfactory acquisition of the needed data (Figure 4). In
Figure 4(a), it is possible to notice that the area can be
divided in two subareas, namely, the mechanism area and
the control area.

The mechanism area includes the NURSE together with
two cameras. One camera has been installed on the top of
NURSE being planar to its workspace, while the other camera
has been installed in front of NURSE. Furthermore, an IMU
(inertial measurement unit) sensor has been placed on the TP.

The control area consists of a laptop in which an interface
sends the positions for the NURSE motors according to a selected
arm exercise, the control unit, and the current-sensing modules
as in Figure 4(b). Each actuator is connected to a control

FIGURE 13: Some snapshots of test no. 1 with a load of 520 g during
repetition no. 1 together with the trajectory obtained by image
processing (in red): (a) the first sample position; (b) the second
sample position; (c) the third sample position.
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FiGure 14: Comparison between the programmed trajectory and
the TP trajectories from three repetitions during test no. 1 with
a load of 520 g.
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FIGURE 15: Acquired linear acceleration during test no. 1 with a load of 520 g for the three repetitions seen in Figure 14: (a) X linear

acceleration; (b) Y linear acceleration.
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Figure 16: Computed torques during test no. 1 with a load of 520 g for the three repetitions seen in Figure 14: (a) Motor 1; (b) Motor 2.

board that will generate the trajectories to reproduce the
selected exercise from the interface. The current-sensing module
is composed of two current sensors, and each sensor is
connected to each motor. Finally, one emergency switch
turns off the motor amplifier, while the second turns off the
entire system.

The top camera has been used to track the movement of
the TP to validate if the programmed trajectory is satisfac-
torily reproduced by NURSE; to do so, some markers (red
color circles) have been placed on the structure for the motion
tracking by image processing (Figure 5). The front camera
allows for an overview of the working area.

The placed IMU sensor on the TP can be used to measure
the angular displacement in terms of roll (0), pitch (®), and
yaw (y) and to acquire the linear acceleration along X, Y, and
Z-axes as shown in Figure 5.

The two current sensors based on the Hall effect are used
to compute the power consumption and check the behaviour
of each actuator.

The experiments are carried out following the flow chart
shown in Figure 6. Before running a test, the device is set
manually in the home position, the actuator is turned on, and
the interface is initialized. After that, the exercise to be per-
formed is selected, the exercise trajectory is sent to the motor
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FIGURE 17: Computed power consumption during test no. 1 with
a load of 520 g for the three repetitions seen in Figure 14.

control board, and the test runs reproducing the desired task.
While the experiment is running, the data are acquired from
the cameras and the sensors. When the exercise ends, the data
are collected and checked to evaluate if there is any data
discrepancy due to sensors or video acquisition failure. In such
a case, the test is repeated; otherwise, the postprocessing stage
starts and the device characterization is carried out to evaluate
the performance of NURSE.

Table 1 shows parameters of the tests that have been
carried out in order to characterize the NURSE behaviour.
The references trajectories of exercise nos. 1 and 2 in Figure 2
are used to carry out the tests. In test no. 1, NURSE performs
exercise no. 1 during three repetitions. In test no. 2, NURSE
performs exercise no. 2 during three repetitions. Both tests
are carried out without load and with a load of 520 g by using
a velocity of 396 °/s. The used load of 520 g is equivalent to
30% of the average weight of the forearm together with the
hand, and it has been considered enough for lab experi-
ments. In both tests, the positions of the TP are programmed
in the control (X, Y) as inputs.

After the acquisition, the positions of the TP (X, Yi,)
are obtained by image processing. The positions of the TP
are used to validate if the device is able to perform the
programmed trajectory. The linear accelerations of the TP
(a a,) are acquired by the IMU sensor, and they can be used
to evaluate the smoothness of the motion as an important
aspect for user safety. Using the acquired motor’s current, it
is possible to compute the torque of each motor (7,, 7,) and
the power consumption (p) of NURSE to evaluate if the
actuators struggle while replicating the task.

4. Test Results

Test no. 1 has been carried without load during three repe-
titions. Figure 7 shows three snapshots of the video while the
test is carried out during repetition no. 1. In addition, Figure 7

FiGure 18: Some snapshots of test no. 2 without load during
repetition no. 1 together with the trajectory obtained by image
processing (in red): (a) the first sample position; (b) the second
sample position; (c) the third sample position.

shows the trajectory obtained from the marker on the TP.
Figure 8 shows the trajectory programmed in the device and
the trajectories obtained from the marker on the TP during
repetition nos. 1, 2, and 3. As shown in Figure 8, the trajec-
tories obtained from the marker on the TP are close to the
programmed one with a maximum deviation of 10 mm. This
deviation is related with the accuracy of the home position
since it is set manually. However, the repeatability deviation
between the trajectories performed by NURSE has a maxi-
mum value of 3mm for test no. 1 without load.

Figure 9 shows the linear accelerations acquired from
the TP during test no. 1 when the device is unloaded for the
three repetitions as seen in Figure 8. The linear accelerations
in X have a maximum value of 0.058 m/s* and a minimum
value of —0.015m/s®, and linear accelerations in Y have
a maximum value of 0.059 m/s*> and a minimum value of
~0.015 m/s*. The linear acceleration values in X and Y are
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FiGure 19: Comparison between the programmed trajectory and
the TP trajectories from three repetitions during test no. 2 without
load.

negligible, and it shows that the movement of the TP is
smooth. The spikes in the linear acceleration are due to the
backlash of the wheels.

Figure 10 shows the acquired motor torques during test
no. 1 when the device is unloaded for the three repetitions as
seen in Figure 8. Motor 1 reaches a maximum magnitude of
2,071 N-mm, and Motor 2 reaches a maximum magnitude of
2,119 N-mm. The torque values confirm that commercial
servomotors can be used for NURSE motion. In addition,
the torques curves show a symmetrical behaviour between
Motor 1 and Motor 2.

Figure 11 shows the power consumption of NURSE
without load during test no. 1. The power consumption
reaches a maximum value of 23.130 W. The power con-
sumption values confirm that NURSE works with low-
power consumption when it is unloaded.

Similarly, test no. 1 has been carried out with a load of
520 g during three repetitions. Figure 12 shows a zoomed
view of a NURSE end-effector with the load of 520 g. Some
snapshots of the test with the acquired trajectory from the
TP during repetition no. 1 are shown in Figure 13. Figure 14
shows the trajectories acquired from the TP during the three
repetitions and the programmed one. When NURSE is
loaded in test no. 1, the deviation between the trajectories
acquired from the TP and the programmed one has a max-
imum value of 13 mm. The deviation when NURSE is loaded
is 3 mm greater than the deviation when NURSE is unloaded.
However, this difference is negligible, and it can also be re-
lated with the accuracy of the home position as mentioned
above. It is important to notice that the repeatability deviation
between the trajectories performed by NURSE has a maxi-
mum value of 4.5 mm for test no. 1 with load.

The linear accelerations acquired from the TP during test
no. 1 with a load of 520 g are shown in Figure 15. The linear
accelerations in X have a maximum value of 0.036 m/s* and
a minimum value of —0.045 m/s?, and linear accelerations in Y
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FIGURE 20: Acquired linear acceleration during test no. 2 without
load for the three repetitions seen in Figure 19: (a) X linear ac-
celeration; (b) Y linear acceleration.

have a maximum value of 0.041 m/s* and a minimum value of
—0.039 m/s>. Therefore, the linear acceleration values in X and
Y are also negligible when the device is loaded. Thus, NURSE
can reproduce the exercise of test no. 1 when it is loaded as
smoothly as when it is unloaded.

When the device is loaded during test no. 1, the torque of
the Motor 1 reaches a maximum magnitude of 2,926 N-mm
and Motor 2 has a maximum magnitude of 3,217 N-mm
(Figure 16). As seen in Figure 16, the torque increases
around 1,098 N-mm when the device is loaded with respect
to the torque when it is unloaded as seen in Figure 10.
However, the torque values confirm that NURSE can also be
moved by commercial motors in the loaded condition.
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FiGure 21: Computed torques during test no. 2 without load for the three repetitions seen in Figure 19: (a) Motor 1; (b) Motor 2.

The power consumption when NURSE is loaded has
a maximum value of 30.35 W for test no. 1 (Figure 17). Thus,
it increased 7.220 W with respect to the power consumption
when NURSE is unloaded. Therefore, the NURSE low-power
consumption characteristic remains.

Test no. 2 has been carried out without load during three
repetitions. In Figure 18 are shown some snapshots of
NURSE when it is performing repetition no. 1 together with
the trajectory acquired from the TP. Figure 19 shows the
trajectories acquired from the TP during repetition nos. 1, 2,
and 3 and the programmed one. As seen in Figure 19, the
trajectories performed by the NURSE to trace the number 8
are close to the programmed one with a maximum deviation
of 16 mm. The deviation in test no. 2 is greater than the
deviation in test no. 1 since the 8 shape has more changes in
direction and is being more complex to perform than the
trajectory for horizontal shoulder flexion. On the contrary,
the backlash of NURSE wheels can affect the motion more
when it has several changes of direction than when it
maintains a same direction. However, the repeatability
deviation between the trajectories performed by NURSE has
a maximum value of 8.22 mm for test no. 2 without load.
Despite the fact that the wheels backlash can affect the
trajectory shape during test no. 2, the linear accelerations
acquired from the TP show that the motion remains smooth
as seen in Figure 20, where the linear accelerations in X have
a maximum value of 0.062m/s* and a minimum value of
—0.008 m/s* and linear accelerations in Y have a maximum
value of 0.095 m/s* and a minimum value of —0.015 m/s. As
seen in Figure 20, the linear acceleration values during test
no. 2 have remained in the same range than the linear
accelerations during test no. 1.

Figure 21 shows the torque required by Motor 1 and
Motor 2 during test no. 2 without load. Motor 1 reaches
a maximum torque of 2,264 N-mm, and Motor 2 reaches
a maximum torque of 1,840 N-mm. As seen in Figure 21, the

Power consumption (watts)

0 5 10 15 20
Time (s)

—— Repetition no. 1
—— Repetition no. 2
—— Repetition no. 3

Figure 22: Computed power consumption during test no. 2
without load for the three repetitions seen in Figure 19.

torques reached by the motors without load during test no. 2
remain in the same range than the torques in test no. 1
without load. Therefore, it shows that when NURSE is
unloaded, it requires a similar force to perform the trajectory
for horizontal shoulder flexion than it requires to perform
the number 8. The latter is confirmed also by the power
consumption that presents a maximum value of 24.510 W
(Figure 22). The power consumption during test no. 2
without load increases only 1.380 W with respect to the value
in test no. 1 without load. Therefore, NURSE maintains low-
power consumption while tracing the number 8.

Similarly, test no. 2 has been carried out during three
repetitions by using a load of 520 g. Figure 23 shows some
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FIGURE 23: Some snapshots of test no. 2 with aload of 520 g during repetition no. 1 together with the trajectory obtained by image processing
(in red): (a) the first sample position; (b) the second sample position; (c) the third sample position.
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F1GURE 24: Comparison between the programmed trajectory and the TP trajectories from three repetitions during test no. 2 with a load of 520 g.
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FIGURE 25: Acquired linear acceleration during test no. 2 with a load of 520 g for the three repetitions seen in Figure 24: (a) X linear
acceleration; (b) Y linear acceleration.



Journal of Healthcare Engineering

4000 —

T 2000 ——— .
Z v
© L
g 0 i

E X
2000 Vs
0 5 10 15 20

Time (s)

—— Repetition no. 1
—— Repetition no. 2
—— Repetition no. 3

()

13

4000 |——

2000 |5

Torque (N-mm)

-2000

0 5 10 15 20
Time (s)
—— Repetition no. 1

—— Repetition no. 2
—— Repetition no. 3

(b)

F1GUre 26: Computed torques during test no. 2 with a load of 520 g for the three repetitions seen in Figure 24: (a) Motor 1; (b) Motor 2.

snapshots of NURSE when it is performing repetition no. 1.
As seen in Figure 24, the trajectories acquired from the TP
during repetition nos. 1, 2, and 3 are close to the pro-
grammed one with a maximum deviation of 21 mm.
However, the repeatability deviation between the trajec-
tories performed by NURSE has a maximum value of
11.94mm for test no. 2 with load. Although the wheels
backlash introduces deviation in the motion to perform the
trajectories, the linear accelerations acquired from the TP
show that NURSE motion continues to be smooth with the
linear accelerations in X having a maximum value of
0.062 m/s” and a minimum value of —0.056 m/s” and linear
accelerations in Y having a maximum value of 0.075 m/s*
and a minimum value of —0.026 m/s” (Figure 25). As seen
in Figures 9, 15, 20, and 25, the linear accelerations ac-
quired from the TP are maintained around the same range.
Therefore, it can be said that NURSE can reproduce the
trajectories with a smooth motion during test nos. 1 and 2
with and without load.

The torque of Motor 1 reached a maximum magnitude
of 3,527N-mm, and the torque of Motor 2 reached
a maximum magnitude of 3,464 N-mm, Figure 26. In test
no. 2, the torque increases 310 N-mm with respect to the
torque when the device is loaded in test no. 1 (Figure 16).
It can be said that NURSE needs more force when per-
forming the exercise of test no. 2 than when performing the
exercise of test no. 1 both in loaded conditions. However,
the torque values are in a range that always can be reached
by commercial servomotors. The power consumption has a
maximum value of 37.080 W as seen in Figure 27. There-
fore, the power consumption increased 6.730 W with re-
spect to the obtained values during test no. 1 with a load as
seen in Figure 17. However, NURSE continues to have low-
power consumption also to trace the number 8 in loaded
conditions.

Power consumption (watts)

Time (s)

—— Repetition no. 1
—— Repetition no. 2
— Repetition no. 3

FIGURE 27: Computed power consumption during test no. 2 with
a load of 520 g for the three repetitions seen in Figure 24.

5. Conclusions

NURSE, a device for arm motion assistance, is presented
with an experimental characterization. NURSE can assist the
motion of both right and left human arms during a re-
habilitation therapy or during the arm exercise for elderly
people. The NURSE behaviour has been characterized by
performing tests of several exercises for upper limb re-
habilitation or training, whereas in this paper, two signifi-
cant ones have been discussed. The tests have successfully
been carried out without and with load by looking at tra-
jectory tracking, linear acceleration, torque, and power
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consumption. The examined trajectories during the tests
show that NURSE is able to perform a trajectory near to the
programmed one with a minimum deviation of 16 mm when
it is unloaded and a maximum deviation of 21 mm in the
loaded condition. The trajectories performed by NURSE
during reported test no. 1 have a satisfactory maximum
repeatability deviation of 3 mm when it is unloaded and
4.5mm when it is loaded. The trajectories performed by
NURSE during reported test no. 2 have a satisfactory
maximum repeatability deviation of 8.22 mm between them
when it is unloaded and 11.94 mm when it is loaded. The
linear accelerations during test nos. 1 and 2 have been
successfully measured within a satisfactory range of mini-
mum —0.008 m/s* and maximum 0.095 m/s” with a smooth
NURSE motion. The NURSE motors operated with a max-
imum torque of 3,527 N-mm occurring during test no. 2
with load as a feasible result for commercial servomotors.
NURSE worked with low-power consumption without and
with a load. The maximum power consumption has been
37.080 W and it has been reached during test no. 2 with load.
The experimental results show that NURSE is capable of
reproducing successfully different exercises with a smooth
motion and a proper low-power consumption.
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Autonomously preventing grasped objects from slipping out of prosthetic hands is an important feature for limb-absent people
since they cannot directly feel the grip force applied to grasped objects. Oftentimes, a satisfactory grip force in one situation will be
inadequate in different situations, such as when the object is rotated or transported. Over time, people develop a grip reflex to
prevent slip of grasped objects when they are rotated with respect to gravity by their natural hands. However, this reflexive trait is
absent in commercially available prosthetic hands. This paper explores a human-inspired grasp reflex controller for prosthetic
hands to prevent slip of objects when they are rotated. This novel human-inspired grasped object slip prevention controller is
evaluated with 6 different objects in benchtop tests and by 12 able-bodied subjects during human experiments replicating realistic
tasks of daily life. An analysis of variance showed highly significant improvement in the number of successfully completed cycles
for both the benchtop and human tests when the slip prevention reflex was active. An object sorting task, which was designed to
serve as a cognitive distraction for the human subjects while controlling the prosthetic hand, had a significant impact on many of
the performance metrics. However, assistance from the novel slip prevention reflex mitigated the effects of the distraction, offering
an effective method for reducing both object slip and the required cognitive load from the prosthetic hand user.

1. Introduction

Approximately 541,000 people in the USA are living with
an upper limb loss [1]; however, only 30%-50% of amputees
use an electromyogram- (EMG-) controlled prosthetic
hand or arm [2]. This high rejection rate is often because
commercially available prostheses do not effectively solve
problems for many limb-absent people, not because they are
unavailable to them [3]. There is still a significant difference
between prosthetic and human hands. This is due in no small
part to the fact that the skin on the human hand has nu-
merous sensory receptors which provide feedback to the
central nervous system. These include the fast responding
Pacinian and Meissner’s corpuscles and the slow responding
Ruffini corpuscle and Merkel cells. Each has unique sensory
functions including the detection of vibration frequency,
object texture, and finger pose, as well as grasp stability and
force to name a few [4]. They provide highly efficient neural
feedback allowing for a 0.06-0.08 second response to the

onset of the object slip [5]. Replicating the functionality and
autonomous control of a human hand with modern-day
prostheses is a challenging task.

Most powered prosthetic hands, such as the Motion
Control Hand (MCH), currently used have a single degree
of freedom (DOF) to enable a three fingered pinch grasp.
However, there have been great advances recently toward
more dexterous prostheses, such as the Vincent hand
(Vincent Systems), the Bebionic hand (RSL Steeper), and the
i-limb (Touch Bionics) [6].

Powered prosthetic hands are often controlled using a set
of EMG preamplifiers placed on antagonistic muscles [7].
EMG signals are typically band-pass filtered, rectified, and
amplified to obtain a functional motor control signal where the
muscle contraction controls the force or speed of the hand
[8, 9]. Although EMG control is a well-established technique
used for the actuation of prostheses, improvements must be
made in order to lessen the need for the user’s visual attention
and the cognitive control burden [9, 10].
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Many myoelectric prosthetic hands have a powered
wrist joint for pronation and supination [11]. While
controlling the wrist joint, clinical practice does not allow
the user to simultaneously control the grip force of grasped
objects. A majority of clinical upper limb prostheses in use
today are operated open loop [12], which can lead to
frustrating situations where objects are inadvertently
dropped as the user cannot directly feel if there is a suf-
ficient grip force to prevent slip as the object is being
rotated by the wrist. Even if the operator could visually
determine if the grip force was insufficient [13], it would
be difficult to react quickly enough to halt slip after the
grasped object begins to slide due to EMG filter time
constants that are prevalent in clinically available pros-
thesis control schemes [2].

Grasped object slip prevention is important for pros-
thetic hands because the user has no direct sense of the
applied grip force, making it common to inadvertently
drop objects [14, 15]. There are two main approaches to
autonomously prevent grasped objects from being acci-
dentally dropped: reactive and proactive. In reactive slip
prevention, specialized tactile sensors [16, 17] can be used
to detect when a grasped object slips and the grip force can
be autonomously increased to prevent the object from
being dropped [18, 19]. With proactive slip prevention, as
incorporated within the SensorHand Speed [20], risky
situations can be identified that are likely to induce slip and
the grip force is autonomously increased prior to the onset
of slip. These scenarios include unfavorable grip force to
load force ratios [20, 21] or increased velocity [22] and
acceleration [23] of the wrist, and both of which are likely
to destabilize the grasp safety margin and cause objects to
be dropped.

Commonly used objects, such as tools, beverages, and
personal items, require grip force compensation to prevent
slip when rotated with respect to gravity [24]. For example,
when an object is grasped with a human hand and pronated
such that the grip axis is aligned with gravity, the object is
likely to slip as the shift in the object’s center of mass location
creates a different torque at the fingertips. However, this trait
is absent in prosthetic hands and could be problematic when
limb-absent operators rotate grasped objects with a powered
wrist or their residual limb.

Because limb-absent people have mentioned that
autonomous slip prevention is a desirable trait for pros-
thetic hands (Table 2 in [14]), the focus of this paper is on
the development of a novel proactive slip prevention
controller. The human-inspired trait of autonomously
increasing the grip force as grasped objects are rotated
with respect to gravity [25] will be implemented within
a hybrid force-position sliding mode controller [26].
Results from benchtop experiments using the human-
inspired slip prevention controller reliant upon hand ori-
entation feedback (HOF) with respect to gravity while
grasping six different objects with the MCH are presented
[27]. New additions to this paper over that previously
presented [27] include data from 12 able-bodied subjects
who used the Motion Control Hand with and without HOF
during an object sorting task.

Journal of Healthcare Engineering

2. Prosthetic and Robotic Systems

2.1. The Motion Control Hand. The Motion Control Hand
(Motion Control, Inc. Salt Lake City, USA) has a single
DOF. It is instrumented with an A1321 Hall effect sensor
(Allegro Micro Systems Inc., Worcester, USA) used to
measure the distance between the thumb and forefingers
which are connected via a motor-driven four-bar linkage.
Strain gauges on the thumb measure normal force (Fy) of
the grasp. The hand is also equipped with a gyro (IDG-300,
InvenSense, Inc., Santa Clara, CA, USA), which is used to
measure the orientation of the wrist with respect to
gravity.

State space equations [28] to describe the single DOF
MCH are given by

3&1 = xz, (1)

xzz_gxz_g(xlc_x1)+EE__> (2)
J J J J

where x, is the distance between the fingertips, x,¢ is the
position when the MCH makes contact with a given object,
and x, is the velocity. E is the voltage input, and ] is the
inertia of the system. K and B are the combined stiffness and
damping of the grasped object-hand system, respectively; n
is a constant derived from the gear ratio, armature re-
sistance, and torque constant of the motor. D is the cu-
mulative unknown and potentially nonlinear disturbances
affecting the system.

D

2.2. Yaskawa SIA10F Robotic Arm. Motoman’s SIA10F is
a seven DOF robotic arm to which the Motion Control
Hand is attached. Only the distal joint of the arm was
necessary for this study to simulate human pronation and
supination of the wrist as described in [25]. The SIA10F
robotic arm utilizes the FS100 controller and DX100 Teach
Pendant.

3. Sliding Mode Controller

Sliding mode control (SMC) has been implemented
for prosthetic hands in the past using a hybrid force-position
control law [29], which is particularly useful for prosthetic
hands because it facilitates an ability to control both the force
and the position of the hand through a single input. When
grasping an object, the desired force from the operator is F,,
which is realized using an outer force control loop to form
a force error signal. This force error signal yields the desired
position of the hand:

xp = G (Fp = Fy): (3)
This force error, shown as the difference between F[, and
the measured normal force of the hand Fy, is scaled by the

gain, Gg. To enable sliding mode control, a position error is
next formed as

e =Xp— X, (4)

with which a sliding manifold is formed as
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FiGure 1: Diagram of the sliding mode controller. When the upper loop is closed, hand orientation feedback modulates the grip force.

S = Gpe + Gpé, (5)

where Gp is the proportional gain and Gy, is the derivative
gain. This enables control over the applied grip force as well
as the position of the hand even if an object is not grasped.

The sliding mode controller (Figure 1) has been dem-
onstrated to be robustly stable using the following control
law:

E = —Csat(S). (6)

The constant, C, is based on an upper bound estimate on
the torques acting on the motor of the hand and sat rep-
resents the saturation function to partially linearize the
controller and prevent undesirable chatter or oscillations.
Refer [26] for more details about this controller and [30] for
discussion about the stability of sliding mode control for
a broad class of systems.

4. Human-Inspired Reflexive Slip
Prevention Controller

Based on prior research, it is clear that the human grip force is
coupled to wrist motions to maintain grasp stability [31]. A
human-inspired prosthetic hand control strategy will be de-
veloped in this paper to mimic this trait. Prosthetic hand
orientation feedback will be used to impart the anthropo-
morphic trait of modulating the grasp force based on pro-
nation and supination motions of the wrist with respect to
gravity, which had been studied in people [25]. This is
a proactive slip prevention technique that is used to increase
the grasp force when the grip axis is rotated through the field of
gravity so that grasped objects are not inadvertently dropped.
The specific control mechanism to enable this biomimetic trait
is to feed back the measured wrist angle into the outer force
feedback loop so that the desired position becomes

xp = Gp(Fp — Fy + Gg0y). (7)

The orientation of the hand with respect to gravity is
denoted by 0, in rad, and Gy is a proportional gain. With the
inclusion of this positive feedback term, the applied grip
force is increased relative to the rotation of the wrist relative
to gravity, to mimic the human trait of proactive slip pre-
vention during wrist rotation [25]. This sliding mode con-
troller with HOF is shown in Figure 1 when the upper switch
is closed.

Note that this HOF controller is robustly stable since
the error term is still minimized by the sliding mode con-
troller (6); the wrist angle feedback can be thought of as an

autonomous modifier of the hand operator’s desired force
signal. This is useful to reduce the cognitive burden required
to operate prosthetic hands as will be subsequently shown.

5. Experimental Methods

The sliding mode controller is implemented using Simulink
(MathWorks, Natick, USA) and the real-time windows
target kernel. Data were recorded at a rate of 1kHz.

For each experiment, the hand is initially set to grasp
a given object, with the grip axis in the plane of gravity
(Figure 2(a)). Once grasped, the hand pronates 77/2 rad in 0.5
seconds (Figure 2(b)). The hand remains oriented with the
grip axis perpendicular to gravity for 2 seconds (Figure 2(c)).
It then supinates back to the start position with the grip
axis in line with gravity in 0.5 seconds (Figure 2(d)). The
hand remains in this position with the grip axis in line with
gravity (Figure 2(e)) for 2 seconds, at which time the entire
cycle (Figures 2(a)-2(e)) is repeated by the Yaskawa arm
according to a predetermined program.

5.1. Benchtop Tests. Six relatively common items numbered
one through six in Figure 3 were used in this study. The
figure shows the grasp location of the thumb for each
grasped item represented by the superimposed white
thumbprint. The copper tube (Object 1, 262 g) was grasped
at one end to induce a noticeable gravitational torque when
the grip axis was rotated out of the plane of gravity. The grasp
location for the paintbrush (Object 2, 57 g) was its wooden
handle. The sealed aluminum soda can (Object 3, 386 g) was
grasped around its middle. The compliant scrap metal
(Object 4, 164 g) was used to show how the control system
reacted to a deformable object. The scrap metal had a stiff-
ness of 2.4 N/mm over the range of deformations imparted
in this study. The compliant foam football (Object 5, 25 g)
had a stiftness of 0.47 N/mm. The aluminum block (Object 6,
461 g) was also tested prior to use by the human subjects.

Each of the six objects was subjected to two different
benchtop tests. The first test involved observing how the
MCH performed the pronation/supination task without the
influence of HOF. Each object was grasped with the mini-
mum grip force and then subjected to the predefined ro-
tations (Figures 2(a)-2(e)). The second test was identical to
the first but with the HOF included (7) by closing the top
teedback loop shown in Figure 1. Each test was repeated for
ten trials, and each trial consisted of ten possible
pronation/supination cycles. The cycle count stopped if the
object was dropped.
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FIGURE 2: (a—e) Pronation-supination motion sequence aligned with (f) normal force, (g) fingertip distance, and (h) wrist angle.

FiGUre 3: The grasped and rotated items includes (1) copper tube
(262 g), (2) paintbrush (57 g), (3) full soda can (386g), (4) com-
pliant sheet metal (164 g), (5) stress football (25g), and (6) alu-
minum block (461 g) equipped with a LED to indicate if the object
was squeezed too tightly during the human trials. The super-
imposed white thumbprint shows how the item was grasped.

The effect of each object and the use of the human-
inspired HOF on the number of successful cycles completed
were analyzed using a two-factor ANOVA test.

5.2. Human Trials. Twelve able-bodied subjects (four
females and eight males) participated in this experiment.
All subjects gave voluntary written and informed consent
in accordance with the approved IRB protocol.

Each subject was allowed approximately 15 minutes
to familiarize him or herself with EMG control while the

experimenter calibrated the EMG hardware (MyoLab II,
Motion Control, Inc. Salt Lake City, USA) for each indi-
vidual. The subject sat comfortably in an office chair facing
the prosthetic hand with the EMG preamplifiers strapped to
the forearm of his or her nondominant hand. One pre-
amplifier was placed atop the extensor digitorum communis
muscle, and the other preamplifier was placed over the flexor
carpi radialis [32].

The dominant hand was kept free for a sorting task
performed in the second half of this experiment. This sorting
task served as an additional cognitive load that is similar to
sorting tasks performed daily; it consisted of separating a mix
of four types of nuts and bolts (50 pieces total) into unique
containers. Figure 4 shows a diagram of the testing envi-
ronment including the data flow for the EMG to the DAQ
(green) and signals sent to and from the robot (dashed blue).
All subjects were timed as they completed the sorting task
three times prior to EMG experimentation. This baseline test
provided information on the individual’s sorting rate while
unhindered by the additional task of EMG control.

All subjects participated in four different sets of ex-
periments with the MCH grasping the instrumented alu-
minum block (Figure 3, Object 6). Each of the four tests was
repeated for three trials, and each trial consisted of ten
possible pronation/supination cycles. The total number of
completed cycles depended on the subject’s success rate. The
first two tests performed by all subjects were either EMG
control without HOF or EMG control with HOF. The third
and fourth tests were the same as the first two; however, the
subjects in these cases were also asked to simultaneously
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FIGURE 4: Test environment: (1) test operator; (2) test subject; (3)
EMG preamplifiers strapped to the subject’s forearm; (4) computer
running Simulink; (5) MyoLab II for EMG signal processing; (6)
sorting task; (7) Yaskawa seven DOF robot arm; (8) Motion
Control Hand; (9) aluminum block, Object 6 in Figure 3; (10) LED
indicator showing a failure if the object was squeezed too tightly.

TasLE 1: Testing order for the 12 subjects who were separated into
four groups. The first two EMG tests were done without the sorting
task, and the third and fourth EMG tests were done with the sorting
task.

Without sorting With sorting

Group

Test 1 Test 2 Test 3 Test 4
1 HOF No HOF HOF No HOF
2 HOF No HOF No HOF HOF
3 No HOF HOF HOF No HOF
4 No HOF HOF No HOF HOF

perform the previously mentioned nuts and bolts sorting
task. The twelve subjects were separated into one of the four
different groups (three subjects per group) and performed
each experimental condition in different orders to coun-
terbalance the impact of learning with the different control
configurations and tasks (Table 1).

Two failure conditions were possible for each test: a break
condition and a drop condition. The instrumented aluminum
block (Figure 3, Object 6) used in this study was equipped
with an LED which lit up if the break condition force
threshold was surpassed. The strain gauges in the MCH’s
thumb were used to determine the normal force applied to the
object. The normal force for the break condition threshold
was set to offer a moderate challenge while rotating the object.
The number of breaks per trial was recorded in Simulink, but
the testing continued regardless of break failures. If the object
was dropped, the drop failure condition was tallied and the
failed trial was terminated. The outline of the MCH’s thumb
was traced onto the block, and it was also considered a “drop”
failure if the object slipped out of the traced area. During the
third and fourth tests involving the sorting task, the number
of nuts and bolts correctly sorted was also recorded for each
trial from which the average rate of sorting was calculated.

After completing the experiments, each person was also
asked to subjectively rate the difficulty of each of the four

S5 SMe
SMc CWIH’HOF

Figure 5: The number of successful cycles completed using the
SMC without HOF is shown in blue, while the number of successful
cycles completed using the SMC with HOF is shown in green for
each object tested. Red lines indicate the standard deviations.

experimental combinations with and without being required
to sort objects with or without HOF. A scale of 1 to 10 was
used with 1 being difficult and 10 being easy.

The statistical significance of individual subject perfor-
mance, HOF, and the sorting task on the collected data for
number of successful cycles, drops, and breaks was analyzed
using a three-factor ANOVA test. Also, the effect of variance
caused by subject performance and HOF on the sorting
count and sorting rate was analyzed using a two-factor
ANOVA test. These analyses were performed to ascertain
whether HOF with or without the cognitive load from the
sorting task significantly impacted the performance metrics
and whether or not there was interaction among any of the
factors. Statistical significance of the subjective ratings was
analyzed using a nonparametric Wilcoxon rank sum test for
equal medians.

6. Results

6.1. Benchtop Tests. The data plots of Figure 2 illustrate the
grip force, Fy;, the distance between the MCH’s fingers, x,
and the angle of the wrist, 0. The normal force (Figure 2(f))
applied to the grasped object increased to compensate for the
wrist rotation with HOF. The tip-to-tip distance between
the finger and thumb of the MCH (Figure 2(g)) decreased as
the compliant object deformed, but it remained nearly constant
when grasping rigid objects. The wrist pronated and supinated
through the 7/2 radians (Figure 2(h)) in 0.5 seconds.

Objects grasped by the MCH without HOF were most
frequently dropped on the first or second cycle. The objects
grasped with HOF remained in the hand for all cycles with
the exception of one football rotation cycle (Figure 5). The
variance in the number of successful cycles completed was
significantly impacted by the unique object and HOF
(p<0.01), but not their interaction (p>0.05). The overall
average number of successful cycles completed for each
object was 0.79+0.37 for SMC and 9.99 +0.03 for SMC
with HOF.
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FIGURE 6: Test data for Group 2, Subject 1. This dataset shows the subject using EMG to control the hand. This subject was able to maintain

a steady grip while focused on the task at hand.

6.2. Human Subject Results. Sample data for two different
tests are presented for a subject with a relatively high level
of skill with EMG control of the prosthetic hand in Figures 6
and 7. The first two subplots in each figure show the nor-
mal force and wrist angle similar to the benchtop tests. The
dashed line in the normal force subplots shows the break
failure threshold. Notice that this threshold is not crossed
in Figure 6(a) like it is in Figure 7(a). The additional cog-
nitive load represented by the sorting task is apparent in the
EMG signals of Figures 6(c) and 7(c) as the subject is unable
to focus entirely on a single task. An example of a break
failure is recorded as shown in Figure 7(d). The EMG input
signals for each trial are included in these figures. These
signals show a nearly proportional relationship between
the EMG signal and the normal force the hand applies to
the object.

The number of successfully completed cycles shown in
Figure 8 shows the efficacy of the artificial slip prevention
reflex afforded by HOF. Each test had a maximum of three
possible drop failures, and the total number of drops is
shown in Figure 9. In these figures, S1, S2, and S3 are the
first, second, and third human subjects in each of the four
groups. The overall average and standard deviation for the
number of successfully completed cycles and number of
drops is shown in Table 2. The sorting task had a significant
impact on the number of drops and total number of suc-
cessful cycles, but the HOF significantly improved this
metric (Table 3).

The maximum possible number of break failures for
each test was 30 (three trials with ten pronation/supination
cycles each) if the object was not dropped. Figure 10
shows the total number of break failures by each subject
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FIGURE 7: Test data for Group 2, Subject 1. This dataset shows the subject using EMG to control the hand without the assistance of HOF
while simultaneously sorting parts. This subject was unable to maintain the same level of focus resulting in the grasp force exceeding the

dashed line which represents the break threshold.

for every test. The overall average and standard deviation for
number of break failures is shown in Table 2. The total break
count was not significantly impacted by the sorting task, but
it was significantly improved with the use of HOF (Table 3).

The number of parts sorted and the completion time for
the sorting task were recorded and compared to the baseline
case when the subjects sorted the nuts and bolts prior to
controlling the hand. The average sorting rate was calculated
from three iterations of the sorting task for each subject to
serve as a baseline comparison to the sorting rate obtained
while controlling the hand with and without HOF. The
total number of parts sorted was summed for each of the
three trials performed with and without HOF (Figure 11).

The average sorting rate was then determined based on the
number of parts sorted and the duration of the successful
cycles for each trial. The overall average and standard de-
viation for these is shown in Table 2. It is clear that more
parts were sorted with HOF and the sorting rate was fairly
consistent. An ANOVA test reveals that the total number of
parts sorted was significantly more with HOF (Table 3)
because the objects were not dropped meaning that the
subject had the maximum possible amount of sorting time.
The influence of the subject was insignificant (Table 3).
The sorting rate was different in the sense that HOF was
not a significant factor, and the subject was a significant
factor (Table 3). This can be attributed to the fact that each
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FiGure 8: Total number of successful cycles out of 30 (10 for each of the 3 trials) attempted trials. S1, S2, and S3 are the first, second, and third
subjects in each of the four groups.
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F1GURE 9: Total number of drop failures for each test out of 3.
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TaBLE 2: The overall average + standard deviation of each performance metric for each of the four tests.

Performance metric Without HOF with sorting Without HOF without sorting With HOF with sorting With HOF without sorting

Successful cycles
Drop count
Break count

Sort count

Sort rate
Subjective ranking

21.4+5.43
1.67+£0.778
4.33+2.77
91.4+27.1
0.819+£0.187
4.17£1.59

25.6+5.15
0.833+£0.835
2.92+2.54

6.33£1.50

30.0+0.00
0.000 £ 0.000
0.167 £ 0.577

129+ 15.2
0.870£0.115

8.50+1.00

30.0+0.00
0.000 £ 0.000
0.000 £ 0.000

9.92 +0.289

TaBLE 3: p values from the three-factor ANOVA showing the level of effect that the subject’s performance, the HOF, and the sorting task had
on the collected data shown in the columns. It is clear that HOF had a highly significant impact on all data except the sorting rate, which was
primarily affected by the individual subject’s performance. The sorting task had a significant impact on all data except the break count.

Variable Successful cycles Drop count Break count Break rate Sort count Sort rate
Subject 0.194 0.440 0.255 0.254 0.095 0.012
HOF 0.000 0.000 0.000 0.000 0.000 0.221
Sorting 0.043 0.025 0.131 0.029 — —
Subject HOF 0.194 0.440 0.296 0.350 0.943 0.397
Subject sorting 0.500 0.500 0.368 0.347 — —
HOF sorting 0.043 0.025 0.224 0.045 — —
Subject HOF sorting 0.989 1.000 0.984 0.862 — —
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Figure 10: Total number of break failures for the 12 individual
subject’s successful number of cycles out of 30.
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Ficure 11: Total number of parts sorted out of 150 (50 for each of
the 3 trials).
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FIGURE 12: Subjective difficulty rating for each test scaling from 1
(hard) to ten (easy).

subject sorted at an individual pace of which the HOF was
independent.

Subjects provided a qualitative rating of the difficulty for
each test ranging from one (very difficult) to ten (very easy)
shown in Figure 12. As expected, the sorting task increased
the difficulty, but the tests performed without HOF were
rated much more difficult than those with HOF. Overall
averages and standard deviations for the subjective ranking

are shown in (Figure 12). The order of the subjective ranking
of the tests from easiest to hardest was statistically proven
to be HOF without sorting, HOF with sorting, no HOF
without sorting, and finally no HOF with sorting (Figure 12).

The order in which subjects attempted each test was
structured to counterbalance the effect of a learning curve
for the overall group of 12 subject’s EMG operation of the
MCH (Table 1). An ANOVA study showed the subject’s
influence on the data collected due to learning curve to be
insignificant (Table 3).

7. Discussion

The increased use of sensor feedback will likely be more
common in future prosthetic hand designs to allow more
functional human-inspired closed loop control [33]. In this
paper, both benchtop and human-controlled prosthetic
hand experiments have demonstrated the utility of a novel
grasped object slip prevention reflex enabled by HOF with
respect to gravity for the MCH. Extension of the HOF slip
prevention technique to multi-DOF hands such as the i-limb
would be simple provided the forward kinematics equations
were used to calculate the orientation of the grip axis.
Another solution to circumvent the need for forward ki-
nematics (which would require joint angle sensors) is to
embed a small accelerometer into the distal link of the
prosthetic finger to assess the grip axis orientation with
respect to gravity. This would be useful for different grasp
types such as power grip, precision grip, lateral pinch, and
key grip [34]. It may also be useful to incorporate this control
system into more complex hand synergies, similar to the one
discussed in [7].

Even with advanced surgical procedures such as targeted
muscle reinnervation [35], there will likely be less biocontrol
signals available than controllable DOFs in the next gen-
eration of dexterous prosthetic hands such as the DEKA arm
[35] and Modular Prosthetic Limb [36], both of which have
powered wrists. Thus, there will be a continued need in the
future for human-inspired low-level control algorithms
[37, 38] such as the slip prevention reflex enabled by HOF to
alleviate the operator’s cognitive burden and reduce training
time to gain proficiency.

8. Conclusion

The human-inspired grasped object slip prevention reflex
enabled by hand orientation feedback dramatically im-
proved the prosthetic hand’s ability to maintain a precision
grip on objects that were subjected to wrist pronation and
supination. Benchtop tests showed the utility of the tech-
nique with six different objects with a wide range of me-
chanical characteristics. Human tests showed far fewer drop
and break failures for each object and person with HOF. A
realistic sorting task performed during testing showed the
usefulness of HOF for all 12 human subjects, which was
further corroborated in their qualitative controller evalua-
tions. The object was broken and dropped much less fre-
quently with the use of HOF while still sorting at
approximately the same speed. Additionally, it would be easy
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to scale the technique to powered prosthetic elbows and
shoulders. This human-inspired slip prevention reflex
provides an inexpensive and practical way to anthropo-
morphically prevent grasped object slip while rotating ob-
jects, which would be very useful for prosthetic hands.
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Aging, injury, or ailments can contribute to impaired balance control and increase the risk of falling. Provision of light touch
augments the sense of balance and can thus reduce the amount of body sway. In this study, a wearable reaction wheel-based system
is used to deliver light touch-based balance biofeedback on the subject’s back. The system can sense torso tilt and, using reaction
wheels, generates light touch. A group of 7 healthy young individuals performed balance tasks under 12 trial combinations based
on two conditions each of standing stance and surface types and three of biofeedback device status. Torso tilt data, collected from
a waist-mounted smartphone during all the trials, were analyzed to determine the efficacy of the system. Provision of biofeedback
by the device significantly reduced RMS of mediolateral (ML) trunk tilt (p < 0.05) and ML trunk acceleration (p < 0.05). Repeated
measures ANOVA revealed significant interaction between stance and surface on reduction in RMS of ML trunk tilt, AP trunk tilt,
ML trunk acceleration, and AP trunk acceleration. The device shows promise for further applications such as virtual reality

interaction and gait rehabilitation.

1. Introduction

Standing with a stable posture is a capability that most of us
take for granted and so considered to be a simple task. The
reality, on the contrary, is totally opposite to this assump-
tion. The achievement of the stable standing posture is
possible through a synergetic collaboration of various fac-
ulties of the human body. The mechanism for maintaining
postural stability can be divided into three parts: sensing,
processing, and actuation. The sense of balance is achieved
by the utilization of the vestibular system, visual input from
the eyes, and proprioceptive input from the lower ex-
tremities [1]. The communication and processing of all the
sensor data are carried out by the central nervous system
(CNS), which generates the actuation signals according to
those data, which are also communicated by the CNS. The
actuation signals are implemented by the musculoskeletal
system [2]. A weakness, injury, or disorder of any of these

systems involved may hamper the execution of the balance
maintaining task, leading to postural instability [3]. The fac-
ulties involved may be weak due to congenital disorders or
degraded due to aging, disease, or injury, thus causing postural
instability. Reduced postural control, apart from causing lack
of confidence and reduced independence, may also be the
cause of falling, thereby causing injury [4]. Therefore, remedial
measures need to be taken to improve postural control.

The remedial measures include the implementation of
various rehabilitation strategies [5]. Rehabilitation strategies
include exercises or tasks that enhance posture control and
are tailored according to the particular patient and modified
according to their progress [6]. The task performance is
sometimes accompanied by the use of various assistive
devices such as orthotics, systems that induce a particular
pattern of movement and biofeedback systems [7]. It is in the
realm of these devices that modern engineering technology
is now being extensively applied [8-10]. The inclusion of
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automated systems in the rehabilitation process can reduce
therapist involvement, allowing them to provide service to
a greater number of patients. Compact and cost efficient
systems may even allow the user to use them and perform
rehabilitation tasks in the comfort of their own home, in-
creasing the chance of the patients adhering to the pre-
scribed exercises till the desired level of rehabilitation has
been achieved [11].

One group of rehabilitation devices that is being ex-
plored for automated rehabilitation is the biofeedback
generation devices [12]. These devices provide feedback to
the user according to their performance. This feedback is in
a form that can be perceived by the user using one or more of
their senses. The different modes of feedback commonly
exploited for balance rehabilitation are visual [13-16], audio
[17-19], and haptic [20-22]. The haptic feedback is further
divided into tactile and kinesthetic feedback. These modes
may also be used in conjunction with each other to form
a multimodal system. Such multimodal systems, with one
system previously developed by us [23], have also shown
positive outcomes with regards to balance rehabilitation
[24]. The visual cue systems require display devices which
make the overall system cumbersome and inappropriate for
use as a wearable device. The audio-based system is more
compact, but it utilizes the sense of hearing which is already
being utilized by the user for listening to the therapist’s
commands and other environmental sounds. Thus, the
haptic-based systems are most suited for unobtrusive de-
livery of biofeedback.

In the field of kinesthetic haptic biofeedback, one point
of great interest is the concept of “light touch.” Light touch
refers to a fingertip contact with a rigid surface that involves
forces which are not strong enough to give mechanical
support to the person but are strong enough to be perceived
by the somatosensory system. This very low force stimulus
when processed by the CNS acts to augment the pro-
prioceptive input coming to the brain and can thus make up
for the weakened balance sensing capability. Light touch is
known to improve postural control [25-27]. We have
previously developed a system that utilized light-touch
biofeedback delivered to the hand by a Phantom Omni®
device for balance training [28]. We have also devised
a multimodal biofeedback generation system for balance
training by combining light-touch biofeedback from the
Phantom Omni device with a visual biofeedback provision
system [23, 29]. Experiments with both these systems
produced promising results, but the biggest limitation in
both cases was that the systems were not portable. A further
varjation of light touch is interpersonal light touch. This
refers to very low force generating contact of parts of the
body with another person or a static or moving object.
Interpersonal light touch is not just limited to fingertip
contact but also encompasses touch at other parts of the
body. It has been seen that interpersonal light touch also acts
to reduce body sway [30]. Johannsen et al. have shown that,
under some test conditions, interpersonal light touch to the
shoulder yields better results than fingertip contact during
performance of balancing tasks [31]. Krishnamoorthy et al.
have shown that light-touch interface of a fixed device with
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the neck and head has a more profound effect in improving
the postural stability than that with the finger [32]. Therefore,
turther exploration of interpersonal light touch, administered
to a part of the body other than the finger, such as the subject’s
back, as a balance rehabilitation tool is warranted. Further-
more, to the best of authors’ knowledge, a wearable system for
inducing light touch on a subject’s back without the in-
volvement of another person has not yet been evaluated. A
wearable system, by virtue of its wearability, is usually easier to
use and less cumbersome than fixed or portable systems.
Therefore, exploration of the possibility to apply currently
available technology to devise a wearable, controlled light
touch-inducing system is also warranted. Such a wearable
system may benefit rehabilitation of subjects with balance
impairment. A wearable haptic biofeedback system may also
be used at home by individuals who find it difficult to go to
a clinic for therapy sessions.

The system presented in this paper utilizes the concept of
interpersonal light touch by inducing forces on the user’s
back to give them feedback of their body sway. It is
a wearable system where instead of using a stationery object
or another person to generate the reaction forces, we have
utilized reaction wheels (RWs). The torso tilt is sensed using
an on-board inertial measurement unit (IMU), and the data
are processed by an on-board microcontroller which then
actuates four RWs to generate the torque required to induce
the light touch. In this paper, we have evaluated the effect of
these cues as a balance biofeedback on young healthy
subjects performing various standing tasks.

2. Materials and Methods

2.1. System Description. We have devised a rather simple,
easy-to-use system that consists of a wearable RW-based
biofeedback generation device and a PC-based system for
device configuration and viewing and logging of sensor data
[33]. Although the biofeedback device is designed to function
as a stand-alone device without being connected to the PC,
during experimental trials, it is connected to the PC for
monitoring purposes. A smartphone-based torso tilt sensing
module is also used during experimental trials; it is not part of
the biofeedback system and is only used to gather experimental
data. The biofeedback device and smartphone both commu-
nicate with the PC over a Wi-Fi link to allow completely
wireless operation. The feedback device has an on-board IMU
which it uses to sense any changes in its orientation. The values
read for the IMU are communicated to the microcontroller
where they are processed to determine torso tilt in the
mediolateral (ML) plane. Based on this calculated tilt angle, the
microcontroller generates control signals for the RW motors.
The data are also communicated to the PC where it is stored for
if further processing is desired. The body sway values measured
by the smartphone are also communicated to the PC where
they are stored for any further analysis. The block diagram of
the complete experimental setup with indication of data flow is
shown in Figure 1(a).

The feedback device generates intuitive balance cues in
the form of light touch generated due to the induction of
torque from the RW. The device is composed of four RWs



Journal of Healthcare Engineering

__________________

2 Biofeedback device \\‘

MPU-6050 () i
Mo
Wi-Fi

[
1
(@) L)
H*: Wi-Fi .
access point !

/ On-board Personal
Microcontroller () Wi-Fi computer
(Arduino Leonardo) [ A

%‘_ On-board

Wi-Fi

AY

\l,/\ \u\ R L E T —
\/ '/'--- ------------------------------ ~

ESC

e

-

Reaction wheels (RWs)

Electronic speed
controllers (ESC)

Arduino Leonardo

IMU (MPU-6050)

Battery

F1GURE 1: System Design. (a) Block diagram of the experimental setup with indication of data flows. The smartphone is not part of the
biofeedback system and is used for data collection purposes only. The biofeedback device can function on its own, and the PC is only
required for an initial configuration of the device and for data monitoring and logging. (b) Developed hardware of the biofeedback device as
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attached to an easy-to-wear harness. The wheel motors are
connected to electronic speed controllers (HW25\30A ESC)
which allow the on-board Arduino microcontroller (Arduino
Leonardo by DFRobot) to control the motors. The micro-
controller takes sensory input from the IMU (MPU-6050 by
Invensense). A lithium polymer battery is used as the power
source for this module, and communication is handled using
an XBee Wi-Fi transceiver. The biofeedback device prototype
as worn by a participant with labeled parts is shown in
Figure 1(b).

The RWs are usually used in spacecraft for attitude
control, but their compact design makes them ideal for use
in applications where low magnitude torque is required.
Every RW used in our system consists of a brushless DC
motor (A2212/13T, 1000KV) attached to a high-inertia
flywheel. When this flywheel is accelerated or decelerated,

a reaction torque is induced on the motor [34]. A simple
representation of this phenomenon is shown in Figure 2(a).

The reaction torque induced on the motor is, by virtue of
the motor’s connection with the mounting harness, con-
verted into a linear force that is perceived by the user as light
touch. The device is worn by the user like a backpack with
two shoulder straps and one strap at the waist. The torque
generated by the RW manifests itself as forces acting on the
contact areas of these straps with the user’s body. These
forces, instead of being felt at individual points, provide
a total sensation of lightly trying to tilt the user’s body to the
right-hand or left-hand side.

Our feedback device consists of 4 RWs arranged in an
“X”-shaped configuration. The RW pairs located at the ends
of each diagonal work in tandem to generate torque in one
direction, so the “X”-shaped configuration allows for the
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FIGURE 2: (a) Torque production in a reaction wheel assembly due to angular acceleration. (b) Layout of the RW in the biofeedback device
with dimensional labels. (c) Cross section of the biofeedback device flywheel with dimensional labels.

generation of torques in two directions. The arrangement of
RW with accompanying dimensional tags is shown in
Figure 2(b). The touch forces generated by these torques
correspond to mediolateral (ML) trunk tilt in both the right
and left directions [33]. When the user’s torso tilt towards
their right-hand side exceeds the set threshold, leftward-
directed cue is generated, and vice versa. The cue itself
consists of a singular impulse application of force every time
the torso tilt exceeds the set threshold. The amount of torque
experienced by the motor is dependent on the amount of
acceleration taking place and the moment of inertia of the
RW (Figure 3(a)). Moment of inertia of a rotating body is the
measure of its mass and its distance from the axis of rotation.
The moment of inertia for the wheel used in this research is
calculated using (1). The variables used in this equation are
defined in Figure 2(c). Since the device is designed to be
wearable, its size is limited, and thus, the size of the com-
ponents used is also restricted. Therefore, the selected wheel
diameter is 10 cm:

T 4 4 4
Iy = PE [Hring(rRW - rdisk) + Hdiskrdisk]' (1)

Using (1), the moment of inertia of each of the RW used
in this research is Iy = 1.625 x 104 kgm®.

The separation distance between the centers of the
wheels is d =19.5 cm. The total mass moment of inertia of
the RW array about its center was found using the parallel
axis theorem, which yielded the following equation:

T =4 (IRW + mwdz)) (2)

where d is the distance of the wheel center from the center of
rotation of the device and m,y is the mass of the wheel found
using the following equation:

My = p1 [rzRWhring - rflisk(hring - hdisk)]' (3)

The mass of each RW was found to be m,, = 0.130kg.
Therefore, from (2), the total mass moment of inertia of the
complete RW array is I,,, = 0.0204kgm®. The RWs were
empirically tested in couples to validate the design. The max-
imum force generated by each RW couple was 1.24 N and can
thus be considered as light touch. The device has a total weight of
4.20 kg inclusive of all its components. Figure 3(b) shows the net
force being generated by the system in relation to the torso tilt.

2.2. Experimental Setup. The PC-based module of the system
runs the LabVIEW environment in which an application is
developed to receive data from the biofeedback device and the
smartphone tilt sensor for display and logging and allows
the operator to configure the biofeedback device. The pro-
gram utilizes bidirectional UDP communication over Wi-Fi
to communicate with the devices. It can receive sensor data
from the feedback device and can be used to switch the RW
motors on and off and to control their speed. Communication
with the smartphone is unidirectional; the PC only receives
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body sway data from the module. The smartphone used in this
research is a Pantech Vega IM-A850L that has a quad-core
1.5GHz CPU with 2GB of RAM and runs the Android®
operating system. We have previously utilized the smartphone
as a reliable body sway assessment tool during both stance and
gait conditions [23, 28, 29, 35-37]. The smartphone runs an
application that measures the trunk tilt in terms of the ML and
anteroposterior (AP) angles and sends these data via UDP over
Wi-Fi to the PC.

Seven healthy young participants took part in the exper-
imental study and performed prescribed balance tasks to check
the effectiveness of biofeedback provided by our system. The
details of these participants are given in Table 1. None of the
subjects had any history of sensorimotor disorders. This study
was conducted according to the Declaration of Helsinki and
had ethical approval from the Institutional Review Board at the
Gwangju Institute of Science and Technology. All subjects gave
written informed consent prior to data collection.

The subjects were asked to wear the feedback device and
the smartphone in order to conduct the experimental tests.
The feedback device is provided with straps so that it can be
worn like a backpack, and the smartphone is attached to the
waist with the help of an elastic belt. For the purpose of
conducting the experiments presented here, the cue generation
threshold for trunk tilt was set at +1° about the vertical. With
all the hardware in place and configuration completed, the
subjects were asked to maintain their balance while standing
with two distinct stance postures on two distinct surfaces for
30 seconds each. The data obtained during first and last 5
seconds of each trial were not utilized during analysis. The
prescribed stance postures were tandem-Romberg and single-
leg. In tandem-Romberg stance, one foot is placed in front of
the other with heel of the anterior foot touching the toe of the

TaBLE 1: Details of the young healthy subjects who participated in
the study.

Age Height ~ Weight
(year) (cm) (kg)
7 27+3 161+9 70+6.5 Male=6 Female=1

Participants Gender

posterior foot, and the nondominant leg is in the posterior
position. In single-leg stance, the subject stands on the non-
dominant leg with the contralateral limb held in approxi-
mately 20" of hip flexion, 45" of knee flexion, and neutral
position in the frontal plane. Subject’s kicking preference is
used to determine leg dominance. The surfaces used in these
tests were solid ground and a platform made of foam. The
platform was used to simulate soft ground conditions. It had
the dimensions of 600 x 600 x 150 mm and was made using
high resilience foam that had a density of 48 kg/m” and tensile
strength of 83 kPa. The subjects were explained appropriate
utilization of kinesthetic biofeedback for balance control prior
to start of the experimental trials. The biofeedback device worn
by the subjects delivered light-touch balance cues. The sub-
jects, utilizing these cues, tried to achieve the objective of
balancing themselves in the prescribed stance on the desig-
nated surface. The stance conditions and surface conditions
would enable us to identify the efficacy of the proposed system
when operated under different conditions. We anticipated that
the system will have greater efficacy when the user is per-
forming balance tasks in relatively more unstable conditions.

Each participant performed balancing tasks under a total
of twelve trial combinations composed of three conditions of
the biofeedback device, two ground conditions, and two
distinct standing postures (3 x2x2=12). The three bio-
feedback device conditions were as follows: not wearing the



TABLE 2: A summary representation of all the testing conditions
used in the experimental trials along with their related abbreviation
tags.

Surface condition
Ground (G) Foam (F)

NTG OTG BTG NTF OTF BTF
NSG OSG BSG NSF OSF BSF

Stance condition

Tandem-Romberg (T)
Single-leg (S)

device, wearing the device but it is not providing any bio-
feedback, and wearing the device while it is providing
biofeedback. The participants stood on normal ground for
stable support and on a foam platform that simulated un-
stable ground conditions. The two standing postures as-
sumed by the participants were the tandem-Romberg stance
and the one-leg stance.

Balancing trials under the mentioned 12 different sets of
conditions were carried out with all the conditions being
applied to all the participants in a random order. The ab-
breviations associated with the testing conditions are tab-
ulated in Table 2. “N” refers to trials done without wearing
the biofeedback device. “O” refers to trials done while
wearing the device but it is not switched on. “B” refers to
trials done while wearing the device and it is switched on and
providing biofeedback.

2.3. Data Collection and Analysis. Body sway is a meaningful
indicator that can be used to recognize the balance of
a human being during upright standing posture [38]. The
smartphone attached to the subjects’ waist measured trunk
tilt angles during trials and communicated them wirelessly
to the PC. The ML and AP, trunk tilt, and acceleration data
were recorded on the PC. In postexperimental analysis, RMS
values of ML trunk tilt, AP trunk tilt, ML trunk acceleration,
and AP trunk acceleration were calculated. Afterwards, we
carried out statistical analysis of the recorded data to make
detailed observations about balance performance [39]. Using
dependent t-test, we compared the body sway under N and
O conditions with statistical significance defined as p < 0.05.
A 3-way repeated measures ANOVA was conducted (fac-
tors: feedback (O, B), stance (T, S), and surface (G, F)) for
analysis of the trunk tilt and acceleration parameters. In
addition, we calculated reduction in RMS values of ML trunk
tilt (RMS-ML-tilt-R), AP trunk tilt (RMS-AP-tilt-R), ML
trunk acceleration (RMS-ML-acceleration-R), and AP trunk
acceleration (RMS-AP-acceleration-R) by calculating ab-
solute difference between O and B conditions. A 2-way
repeated measures ANOVA was conducted to investigate
the effects of stance (factor) and surface (factor) on re-
duction of RMS values of ML trunk tilt, AP trunk tilt, ML
trunk acceleration, and AP trunk acceleration. Post hoc
multiple comparison tests were conducted using the Bon-
ferroni correction method.

3. Results and Discussion

Mean = standard deviation (SD) for all subjects’ RMS of ML
trunk tilt, RMS of AP trunk tilt, RMS of ML trunk
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acceleration, and RMS of AP trunk acceleration are shown in
Table 3. Results of the t-tests showed that there was no
statistically significant difference between N (without
wearing the biofeedback device) and O (wearing the device,
but it is not switched on) for the dependent variables (ML
trunk tilt, AP trunk tilt, ML trunk acceleration, and AP trunk
acceleration) in all trial conditions (Table 4). This shows that
wearing the device did not significantly affect the users’
balance.

Table 5 shows the statistics of the 3-way repeated
measures ANOVA with factors: feedback, stance, and sur-
face. Results of the 3-way repeated measures ANOVA
revealed that all main effects and interactions were signif-
icant for RMS of ML trunk tilt. Post hoc analysis revealed
significant difference of RMS of ML trunk tilt at all levels of
each factor and between factors. However, RMS of AP trunk
tilt exhibited significant main effects and interactions of the
stance and surface factors. The post hoc analysis revealed
significant difference of RMS of AP trunk tilt at all levels of
surface and stance factors and between these factors. RMS
of ML trunk acceleration exhibited significant main effects of
feedback, stance, and surface and interaction of the stance
and surface. Post hoc analysis revealed significant difference
of RMS of ML trunk acceleration at all levels of each factor
and between factors. RMS of AP trunk acceleration exhibited
significant main effects and interaction of the stance and
surface factors. The post hoc analysis revealed a significant
difference of RMS of AP trunk acceleration at all levels of
surface and stance factors and between these factors.

Results of the 2-way repeated measures ANOVA
revealed that both main effects and the interaction were
insignificant for RMS-ML-acceleration-R, RMS-AP-tilt-R,
and RMS-AP-acceleration-R. However, main effects of
stance (p value=0.012), surface (p value=0.003), and
stance x surface interaction (p value =0.005) were statisti-
cally significant for RMS-ML-tilt-R. Due to significant in-
teraction, post hoc analysis was conducted to evaluate simple
main effects for RMS-ML-tilt-R (Figure 4). Statistically
significant difference was found in reduction of RMS values
of ML trunk tilt between tandem-Romberg and single-leg
stance on ground (p value=0.020) and on foam (p val-
ue=0.039) surfaces. Statistically significant difference was
also found in reduction of RMS values of ML trunk tilt
between ground and foam conditions in tandem-Romberg
stance (p = 0.002). However, no statistically significant
difference in reduction of RMS values of ML trunk tilt was
found between ground and foam conditions in single-leg
stance. From this result, we can observe that reduction in
RMS of ML trunk tilt was more on the foam surface relative
to the ground as expected. However, when comparing stance
conditions, the reduction in RMS of ML trunk tilt was more
in tandem-Romberg stance in comparison to the single-leg
stance. This outcome can be attributed to the deficiency of
AP directional cues/assistance from the system.

In this paper, the effect of provision of kinesthetic
biofeedback on the subject’s back for balance is presented.
When the means and standard deviations (SD) of the data
collected during experimental trials are observed, it shows
that provision of biofeedback delivered by our system
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TaBLE 3: RMS values of the measured parameters.

Surface
Ground (G) Foam (F)
Parameter Stance .
Device
N 0 B N 0 B
ML trunk  1andem-Romberg o)) 0361 04961 40,0223 04234400102 13747+0.0668 1.3724+01051 1.1019 +0.0564

. T
tilt (degree) Singlé—l)eg )

1.1251£0.0450 1.1287 +0.0257

1.0582+0.0124 2.1152+0.0391 2.0980+0.0256 2.0058 +£0.0411

Tandem-Romberg
(M)
Single-leg (S)

AP trunk
tilt (degree)

1.0172+£0.0374 1.0219 +0.0470

1.6114+0.0287 1.6205+0.0238

1.0328 £0.2759 1.9030 £0.0552 1.9048 +0.0574 1.8932+0.0501

1.6274+0.0275 2.4284+0.0368 2.4318+0.0446 2.4104+0.0249

ML trunk  Tandem-Romberg ) 2o 1025 0.062940.0029 0.0514+0.0018 01062+0.0026 01054+0.0037 0.0926+0.0043
acceleration (T)
(m/s?) Single-leg (S)  0.0956+0.0016 0.0946+0.0034 0.0858+0.0031 0.1459+0.0032 0.1451 +0.0036 0.1348 +0.0049
AP trunk  Tandem-Romberg 114, 00196 0.061940.0012 0.0620+0.0011 0.1082+0.0029 0.1075+0.0038 0.1079 +0.0034
acceleration (T)
(m/s?) Single-leg (S)  0.1063+0.0027 0.1070+0.0038 0.1066+0.0031 0.1621+0.0023 01613 +0.0028 0.1618 +0.0019

reduced body sway in the participants. This may be at-
tributed to the somatosensory augmentation provided by the
haptic biofeedback. Somatosensory augmentation is known
to improve standing stability [40]. In order to evaluate the
effects of the biofeedback device, RMS of ML and AP trunk
tilt, and RMS of ML and AP trunk acceleration are observed.
The device currently provides balance cues in the ML di-
rection upon trunk sway in the ML direction. Therefore, the
results obtained in the ML direction are the focus of this
research. RMS of ML trunk tilt has been shown to be a re-
liable marker of postural control in multiple prior studies
[41-43]. Likewise, RMS of ML trunk acceleration has been
shown to be a reliable measure of judging balance during
standing trials [44-46]. During the study, the participants
exhibited no significant differences in RMS of ML trunk tilt
and RMS of ML trunk acceleration, between not wearing the
device (N) and wearing the device with no feedback con-
ditions (O). This shows that the wearing of the device did not
affect the postural stability of the participants. On the
contrary, while comparing RMS of ML trunk tilt under no
feedback (O) and biofeedback (B) conditions, statistically
significant differences were found in all stance and surface
conditions. Similar results for RMS of ML trunk acceleration
were observed. Hence, kinesthetic biofeedback generated by
our system had a significant effect on the postural stability of
the subjects. This is in line with our hypothesis that ap-
plication of light-touch cues to a subject’s back works to
reduce their body sway. 2-way repeated measures ANOVA
revealed significant interaction between stance and surface
on reduction in RMS of ML trunk tilt between no device and
biofeedback conditions. This indicates that the amount of
postural stability improvement varies in relation to the
stance and the surface conditions. In contrast, there was no
significant interaction between stance and surface on re-
duction in RMS of ML trunk acceleration, RMS of AP trunk
tilt, and RMS of AP trunk acceleration between no device
and biofeedback conditions.

The system generates a force magnitude of 1.24 N which
can be considered as light touch-based biofeedback and is
sufficient for standing balance tasks as evidenced in previous

TaBLE 4: Comparison of N and O trial conditions with ¢-test
(p value).

Surface condition

Stance condition
Ground (G) Foam (F)

Parameter

L oo @0 00
e
ML trunk Tandem-Romberg (T) 0.310 0.390
acceleration Single-leg (S) 0.351 0.547
AP trunk Tandem-Romberg (T) 0.541 0.278
acceleration Single-leg (S) 0.498 0.180

related works [26, 27]. It might be necessary to increase the
force magnitude in order to apply this biofeedback method
during locomotor tasks as previous related works dealing
with light-touch feedback during walking have utilized up to
4N force [47, 48]. A number of recent studies have reported
on the promising effects of vibrotactile biofeedback on
standing balance [49, 50]. Thus, it is a point of interest to
study this system for provision of kinesthetic biofeedback in
comparison with a vibrotactile balance biofeedback system
to determine the differences in their performance. A study to
compare the neurophysiological effects that these systems
may have on a particular set of users is also envisioned.

A limitation of this study is the small number of par-
ticipants, but several other published works related to effect
of biofeedback devices have also reported trials with small
sample size [51, 52]. Through the testing carried out during
this research, we not only were able to judge the effects of the
device on performance of prescribed balance tasks but also
were able to uncover some shortcomings of the current
device prototype. The participants were able to wear the
device with ease, but they were not comfortable with its
weight. They were in general view that wearing the device for
extended period of time will become uncomfortable due to
its weight. Reduction in weight of the system is thus a point
of consideration for our future work. This may be possible
through variations in material selection so that the system
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TaBLE 5: ANOVA statistics of the dependent variables.

Effect
ML trunk tilt

AP trunk tilt

Parameter

ML trunk acceleration

AP trunk acceleration

F(1, 6) = 86.645,

Feedback <0.001

F(1, 6) =0.497,
p =0.507

F(1, 6) = 104.653,
p<0.001

F(1, 6) =0.165,
p =0.699

F(1, 6) =2368.311,

Stance <0001

F(1, 6) =2120.584,
p<0.001

F(1, 6) =1500.545,
p<0.001

F(1, 6)=2900.932,
p<0.001

E(1, 6) =5434.270,

Surface <0.001

F(1, 6) =2305.391,
p<0.001

F(1, 6) =4238.458,
p<0.001

F(1, 6) = 2899.990,
p<0.001

F(, 6) =10.457,

Feedback x stance p=0.018

F(, 6)=0.181,
p=0.686

F(1, 6) =2.500,
p=0.165

F(1, 6) =0.062,
p=0811

F(1, 6) =23.599,

Feedback x surface p =0.003

E(1, 6) =2.351,
p=0.176

E(1, 6)=0.600,
p=0.468

F(1, 6)=0.628,
p=0.458

E(1, 6) =42.320,

Stance x surface b =0.001

E(1, 6)=13.773,
p=0.010

F(1, 6)=7.235,
p =0.036

E(1, 6) =26.467,
p =0.002

F(1, 6) =18.800,

Feedback x surface x stance p = 0.005

F(1, 6)=0.129, 0.732

F(1, 6) =0.001,
p =0.981

F(1, 6) =0.043,
p=0.842

0.3 -
0.002 0.039

0.25 A

0.2 4

0.15 1

RMS-ML-tilt-R

0.020

0.1 4

0.05 1

mT
s

F1GURE 4: Result of post hoc simple main effects analysis following
the 2-way repeated measures ANOVA. Reduction in RMS of ML
trunk tilt is compared for the different stance and surface. The bars
represent the mean reduction in RMS of ML trunk tilt.

may become suitable for application in extended rehabilitation
schemes. One such scheme is the use of haptic biofeedback
devices in conjunction with virtual reality to enhance poststroke
balance and mobility [53]. As the system provides balance cues
in the ML direction only, to enhance its capabilities, there is
a need to make it a two-dimensional cue delivery system that
can provide cues in both the ML and AP directions. In order to
do this, the appropriate layout of reaction wheels needs to be
determined and hardware needs to be developed that can
generate the desired forces without being too heavy. The

current study didn’t identify the effects of added weight of the
system on the balance recovery of the users during large sway.
In future work, we will also observe the postural control of the
users in detail under condition of postural perturbations.

4. Conclusions

A wearable biofeedback device which generates light-touch
biofeedback in correspondence to torso movement in the
ML directions is evaluated in this research. The tests were
conducted with participants without any balance impair-
ments, and imbalance was induced by the use of imbalance
inducing standing stances and an unstable standing surface.
The level of balance achieved by the participants was judged
based on their body sway in ML and AP. The outcomes
observed during initial trials with healthy young subjects
point towards an important addition to the balance training
procedures. We observed that our method of delivering
kinesthetic biofeedback can be applied to balance re-
habilitation through the use of specifically designed balance
tasks. Being wearable, the system has high potential for use at
home or in outpatient clinics for balance training exercises.
Experimental trials conducted with young healthy subjects
supported the feasibility of the system as a balance training
aid. In future prototype, the system should be designed to
minimize the current limitations. We plan to use this system
to perform long-term balance training of individuals with
upright balance issues. Furthermore, exploiting the wearable
nature of the system, we also plan to explore the benefits of
utilizing this device as a balance assistance aid during gait.
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Robots were introduced in rehabilitation in the 90s to meet different needs, that is, reducing the physical effort of therapists. This
work consists of a meta-analysis of robot-mediated lower limbs rehabilitation for stroke-affected patients; it aims at evaluating the
effectiveness of the robotic approach through the use of wearable robots or operational machines with respect to the conventional
approach (i.e., manual rehabilitation therapy). The primary assessed outcome is the patient’s ability to recover walking in-
dependence, whereas the secondary outcome is the average walking speed. The therapy acceptability and the treatment costs are
also assessed. The assessment shows that the robot-mediated therapy is more effective than the conventional one in reaching the
primary outcome. As for the secondary outcome, there is no significant difference between the robotic (wearable robots or
operational machines) and the conventional approach. Rehabilitation using wearable robots has a greater acceptability than the
conventional one. This does not apply to operational machines. The cost of robotic treatment with wearable robots ranges from
double to triple the cost of the conventional approach. On the contrary, rehabilitation using operational machines costs the same

as the conventional treatment. Robotic rehabilitation based on operational machines is the most cost-effective approach.

1. Introduction

The introduction of robots in rehabilitation therapy dates
back to the 1990s [1]. Since then, the rehabilitation therapy
has been led by the following factors: (i) modern medicine is
based on objective assessments and quantitative bench-
marking of the impact of different therapeutic approaches;
(ii) conventional rehabilitation therapy (i.e., manual re-
habilitation therapy) is an intense, time-consuming activity,
which requires high physical effort for health workers; (iii)
recent studies on neuroplasticity related to functional re-
covery in patients with brain injuries have highlighted that
patients benefit from activity-dependent rehabilitation
therapies. These factors usually require the execution of
repetitive exercises, aimed at a well-defined goal. The patient
has to have an active role during the rehabilitation session in
order to stimulate the whole system of sensorimotor co-
ordination, including the stages of imagination and planning

of the motor task. Therefore, there are unmet or not
completely met needs in the conventional approach to the
motor rehabilitation such as availability of measurable
outcomes, repeatability of the rehabilitation tasks, and active
patient engagement.

Robotic solutions for assisted therapy meet all these
needs [2, 3]. Rehabilitation robotics is a new technological
branch related to the application of robot technology in
medical fields. Nowadays, rehabilitation robots are a key
enabling technologies to help people who suffer limb
movement disorder to restore the normal physiological
muscular activity with the possibility of gain-measurable
outcomes. Robot-mediated rehabilitation aims at developing
new solutions for assisted therapy, thus allowing an objective
functional assessment of patients. Due to the advantages of
their accuracy and reliability, rehabilitation robots can
provide an effective way to improve the outcome of stroke
or postsurgical rehabilitation. Robotic technology offers


mailto:g.carpino@unicampus.it
http://orcid.org/0000-0001-6553-9873
https://doi.org/10.1155/2018/7492024

(i) accuracy, precision, and simple tools for the modelling of
the human behaviour; (ii) repeatable and continuous move-
ments of the human districts to rehabilitate; and (iii) active
engagement of the patients during the rehabilitation tasks,
that is, through virtual reality-based exercises.

Robotic devices for rehabilitation fall into two broad
categories (i.e., the ones considered in this paper) based on
the relationship between the movements of the human body
and those of the machine [4]:

(i) Operational machines: The physical interface between
the robot and human body is in a defined part of the
body, usually the effectors. For these machines, the
trajectories of the robot end-effector and the human
end-effector in the operational space are physically
coupled. In the joint space, instead, the trajectories of
the robot joints and the human joints can be sig-
nificantly different, so that, kinematic schemes can
also be selected based on only the specific re-
quirements of the target application scenario.

(ii) Wearable robots: In these machines, a large portion of
the human body (typically the whole affected limb) is in
continuous physical contact with the robot. In most
cases, a biomimetic exoskeleton kinematic structure is
selected. Therefore, not only the trajectories of the
robot end-effector and the human end-effector are the
same in the operational space but also the trajectories of
the robot joints approximate those of the human joints
in the joint space. These systems require advanced
biomechatronic design approaches in order to mimic
human-like joints motion, while minimizing in-
vasiveness for the patient in terms of weight, di-
mensions, and so on. To overcome these challenging
problems, nonbiomimetic wearable robots are also
currently under investigation in a few pilot research
projects recently launched in Europe and the U.S. [5, 6].

Wearable robots for walking rehabilitation can be divided
in turn into nonportable and portable systems, depending
on whether they are fixed to a specific environment or not.
Portable systems are autonomous while nonportable systems
require a source of energy. Rehabilitation wearable robots
can also be classified as robots for rehabilitation on tread-
mill and robots for overground walking rehabilitation [7, 8].

Lokomat (Hocoma AG, Volketswil, Switzerland), trade
name for the DGO (Driven Gait Orthosis), is one of the most
widely used wearable robots. It is a nonportable robot for
treadmill rehabilitation, with an anthropomorphic non-
redundant structure. It assists and guides the hip and knee
movements in the sagittal plane, while the ankle joint is not
actuated [9]. LOPES (lower-extremity powered exoskeleton)
is another example of nonportable robot. It assists flexion/
extension and abduction/adduction of the hip and flexion/
extension of the knee [10]. ALEX (active leg exoskeleton) is
a wearable robot for treadmill rehabilitation with two ac-
tuated degrees of freedom, which allow movement in the
sagittal plane of the hip and knee joints [11]. AutoAmbulator
and Walkbot are nonportable robotic systems with a me-
chanical structure very similar to Lokomat [12, 13].
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ReWalk (ReWalk Robotics, Marlborough, US) is a mobile
exoskeleton that allows overground rehabilitation. The battery
and the controllers are inside the backpack that the patient
wears on his shoulders. It is primarily used for SCI patients,
and it must be used in conjunction with crutches [14].

Gait Trainer GT I (Reha-Stim, Berlin, Germany) is one of
the most widespread operational machines for walking re-
habilitation, and it consists of two footplates connected with
the patient’s feet mimicking the walking cycle [15]. Gait
Master 4 is another operational machine based on the
movement of two footplates moved by a connecting rod-
crank system. The footplates allow the movement of the
human effector back and forth (to simulate the walk) or up
and down (up/down the stairs) [16].

In this paper, the authors provide a cost-effectiveness
assessment to compare, in terms of efficiency, conventional
rehabilitation therapies to wearable robot-/operational
machine-mediated rehabilitation for the treatment of
stroke-affected patients. The present work aims at assessing
the effectiveness of the two therapeutic approaches and
evaluating the costs for both types of procedure.

2. Materials and Methods

2.1. Assessment of Effectiveness. The authors have carried out
areview of the articles at the state of the art, which compares
the effectiveness of robot-mediated and conventional re-
habilitation in stroke-affected patients. The analysis is based
on average recovery of patients treated with the two ap-
proaches. The study includes all the articles in the Cochrane
review [17] and more recent studies [13, 18-21]. The studies
included in this review focus on patients who suffered a first
stroke, who are over 18 years old (with an average age
ranging between 48 and 71 years old), who have sufficient
cognitive and communication skills that allow a correct
understanding of the rehabilitation session, and who do not
suffer cardiac, psychological, and orthopaedic contraindi-
cations. The authors have included studies on patients in
acute and subacute phases (time elapsed since the ictal event
not exceeding three months), on chronic patients, and on
patients with different levels of disability. The patient groups
range from patients who are able to walk independently even
before the beginning of the rehabilitation therapy to patients
who are completely dependent to walk.

All clinical trials are based on the random division of
patients into two groups: group A and group B.

(i) Group A: patients in this group underwent a re-
habilitation programme consisting of several ses-
sions of robot-mediated therapy and some
additional manual therapy session.

(ii) Group B: patients in this group underwent con-
ventional therapy only.

Depending on the particular study, machines used for
the robot-mediated rehabilitation of patients in the group A
are wearable robots (Lokomat in most of the articles, but also
AutoAmbulator, Anklebot, and Walkbot in one study each)
or operational machines (Gait Trainer I in all cases except
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one where Gate Master 4 is used). In both cases, training
with a BWS (Body Weight Support) is carried out; a 30-40%
of body weight support during the first rehabilitation session
is applied. The body weight support is progressively reduced
as the patient recovered his/her locomotor ability.

At the end of the rehabilitation process, the primary
outcome is the ability of the patients to recover walking
independence. The secondary outcome is the average
walking speed. The acceptability of the therapy is assessed
taking into account the number of dropouts, that is to say,
the number of patients who do not complete the entire
rehabilitation process.

The authors have applied the same statistical methods as
those used in the Cochrane review [17], although not explicitly
described here, but suggested by the homonymous statistical
group in the “Cochrane Handbook for Systematic Reviews of
Interventions” [22]. The odds ratio (OR) is calculated for each
article. It measures the number of patients who recovered
walking independence at the end of the robotic treatment
compared to the conventional one, as well as to quantify the
number of dropouts. The OR is calculated as follows:

a;-d;

OR; = )
! bi * Ci

(1)

where a; is the number of patients in group A who recovered
independence in walk at the end of the planned re-
habilitation process, b; is the number of patients in group A
who did not recover independence in walk, ¢; is the number
of patients in group B who recovered independence in walk,
and d; is the number of patients in group B who did not
recover independence in walk. Similarly, a;, b;, ¢;, and d; can
be used to measure the number of patients who completed or
not the entire rehabilitation process.

The Mantel-Haenzsel (MH) random-effects method is
used for meta-analysis and to calculate the Overall OR,
which takes into account the results of each article:

Y wMH . OR,
ORyy = ZTHI’ (2)
with WMt =b,.c,/n;, where n;=a;,+b;+c;+d;. If no

participelmt or if every participant in the study achieved the
ability to walk independently, the OR of the ith article is
considered “not estimable,” and it is, thus, not included in
the meta-analysis. When this situation just occurs only in
one of the two groups (A or B), a modified formula is used.
OR, is calculated by adding a factor equal to 0.5 to each
element in (1).

The confidence interval (CI) is calculated taking into
account the overall standard error SE (In ORy;), according
to the following formula:

959% CI = eln ORy;—1,96:SE (In ORMH)) eln ORy;5+1,96:SE ( In ORyg5y) i

(3)

with SE (In ORy) = /(1/2) (E/R%) +(F +G/R - S) + (H/S?)),
where R=Ya;-dy/n;, S=Yb;-c/n, E=Y(a;+d,)-a;-
di/m?, F=Y(a;+d;)-b;-c/n?, G=Y(b+c;)-a; d/n,
and H =Y (b; +¢,;) - b; - c;/n?.

If 95% CI includes value 1 (no effect), the result de-
scribed by the corresponding OR does not demonstrate
a clear effectiveness, and it is not considered significant.

The mean difference (MD) is used to calculate the
secondary outcome:

(m/s), (4)

where _v)?T is the average speed that patients reached at the
end of the robotic therapy, and ¥, is the average speed that
patients reached at the end of the conventional therapy.

The inverse variance (IV) random-effects method is used
to calculate the Overall MD:

- i MD_>1~
(MDV)szwg%

with w; = 1/SE(MD7)I.2, where SE(MDV)? is the variance
of the ith article.

The CI is calculated taking into account the overall
standard error SE(MD7V)yy, according to the following
formula:

95% 2CI = [(MDV)py = 1.96 - SE(MDV)yy;
(MD V) + 1.96 - SE(MDV )y ],

(m/s), (5)

(6)

with SE(MD7V);y = 1/4/3 w;. If 95% CI includes the value
0 (no effect), the result described by the corresponding MD
does not demonstrate a clear effectiveness, and it is not
considered significant.

Establishing the abovementioned statistical methods, the
authors verified to be able to exactly reproduce the same
results reported in the Cochrane review [17] (with a differ-
ence of maximum 0.02). Therefore, they carried out the
calculations again, considering also the 5 more recent studies
[13, 18-21], that perfectly fit in terms of inclusion criteria for
the patients and the type of trials with the papers included in
the Cochrane review.

2.2. Costs Analysis. Although in most of the studies patients
were hospitalised for rehabilitation therapy, the authors take
into account only the costs of the rehabilitation therapy,
whereas hospitalisation costs are not considered, as they are
effectively the same in the robotic and conventional ap-
proaches. Costs of medications, meals, and electricity are
identical because the duration of the rehabilitation process,
in all studies included in this review, is the same for patients
of group A and B. The same applies to health cost re-
imbursements from the Lazio Region, which are the same in
Italy for the conventional- and robot-mediated therapies
[23]:

(i) CI*" P (€/h), hourly cost of a single physiotherapist

(ii) ntherapists average number of therapists per session
per patient

(iii) #*e%°" (min), average session duration

(iv) n*¥°" ) average number of sessions for the entire

rehabilitation process for patients mentioned in the
articles.



The hourly cost of conventional therapy (Cgonventionaly,
cost per session (C;‘;gﬁ?ﬁonal), and cost of the entire re-
habilitation process (Cg‘;;‘lvemio“al) are calculated. The cost
estimate of the robot-mediated treatment takes into account
the abovementioned parameters and also the cost to pur-
chase the robot (Crgpor_purchase (€)), the number of years to
amortise the robot (y*™merti#ation (vears)), and the annual
routine maintenance cost (C™Maintenance (g/year)),

The hours of potential use of the robot in a health facility
are estimated to calculate the hourly cost of the robot (and
the cost per session). Physiotherapists’ working shifts are
taken into account to get an idea of how many hours per day
the robot can be used for rehabilitation sessions. Two
possible working shifts were identified in collaboration with
the Polyclinic General Direction of Campus Bio-medico
(Rome, Italy), amounting to a total of 36 weekly working
hours. The cost of the robotic therapy is, therefore, calculated
for both shifts:

(i) “Ist case™ robot used 7.12 hours per day, 5 days
a week. This is the total amount of weekly working
hours of a single therapist.

(ii) “2nd case”: robot used 12 hours per day, 6 days
a week. This is the total amount of weekly working
hours of two therapists, one working in the morning
and the other in the afternoon.

This allows to calculate the hourly cost (CE"b"t), the cost
per session (Ci‘;ts’gn), and the cost of the entire rehabilitation
process (CRo) for the robotic therapy.

The cost estimate for the entire training process of the
two groups (A and B) takes into account, for both ap-
proaches (robotic and conventional), the additional cost of
conventional therapy in the clinical trials as extra training
for patients in both groups:

Cpatient _ C(Robot or Conventional

)
total — “total + Cadditional' (7)

This means that (7) is calculated taking into account the
cost of the specific rehabilitation process (CRo%" for group A

and Cg‘:ﬁve“m’nal for group B), plus the additional cost of

conventional therapy extra sessions.

2.3. Cost-Effectiveness Analysis. The ICER (incremental cost-
effectiveness ratio) is calculated to compare the efficiency of
the two approaches (conventional versus robotic) and to
determine which one is most cost-effective:
ICER = A~ €8, 8)
Ey—Ep
where C, and Cy are the cost of the entire rehabilitation
process for robot-mediated therapy and conventional
therapy, respectively, whereas E, and Ep measure the ef-
fectiveness of each therapy in terms of primary outcome,
that is to say, the Overall OR for walking independence, or in
terms of secondary outcome, the Overall MD of walking
speed.
When calculating the ICER, it is important to distinguish
whether the difference in effectiveness is expressed in terms
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of OR or MD. When the difference in effectiveness (E, — Ey)
is expressed in terms of Overall OR, C, and Cy are cal-
culated by multiplying the cost of the entire rehabilitation
process per patient (Cff:;lem) per the average number of
treated patients. When the difference in effectiveness
(E, — Ep) is expressed in terms of Overall MD, C, and Cy
costs are equal to Cf;:;fnt. In both cases, robot-mediated
therapy is more effective than the conventional therapy
when the ICER value is low. A low value at the ICER ratio
numerator indicates a small difference in cost between the
two approaches, whereas a high value at the denominator
marks a high OR or MD, which means that the robotic
therapy is much more effective than the conventional
therapy. The more the OR is >1 or MD is >0, the more the
robot-mediated therapy is effective compared to the con-
ventional one. Therefore, the ICER is the difference in terms
of cost for the two approaches, weighted by the difference of
effectiveness.

3. Results and Discussion

3.1. Effectiveness. A number of 26 trials are included with
a total of 1064 patients, all of them affected by a stroke for
the first time. 60% of the patients are men and 40% are
women, 70% are affected by ischemic stroke and 30% by
haemorrhagic stroke, and 50% have a left hemiparesis and
50% a right hemiparesis. The total number of sessions
and their duration and frequency are the same in group A
and group B.

The authors have selected the appropriate number of
articles to assess the primary and secondary outcomes, as
well as the therapy acceptability in three different cases:

(1) Robot-mediated therapy for group A based on the
use of both wearable robots and operational
machines.

(2) Robot-mediated therapy for group A based on the
use of wearable robots,

(3) Robot-mediated therapy for group A based on the
use of operational machines.

In all the three cases, the robot-mediated therapy is more
effective than the conventional one to recover the patient
walking independence (Overall OR>1) with statistically
significant results (p value < 0.05 and 95% CI not including
value 1), as shown in Figure 1. The OR is equal to 2.38 in the
first case (p value <0.0001, 95% CI between 1.68 and 3.39),
2.28 in the second case (p value=0.0038, CI between 1.31
and 4.00), and 2.45 in the third case (p value =0.0001, 95%
CI between 1.56 and 3.85).

As for the average walking speed achieved at the end of
the rehabilitation process, the robotic therapy is slightly
more effective than the conventional one (Overall MD is
0.04 m/s, p value=0.0026, 95% CI between 0.01 and 0.06).
Operational machines, in particular, are more effective than
wearable robots, as shown in Figure 2. Operational machines
MD is 0.14 m/s (p value < 0.0001, 95% CI between 0.09 and
0.19). Wearable robots have a null MD, which means that
wearable robots are as effective as conventional therapy.
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Figure 3: Overall OR (and 95% CI) for dropouts in the three
different cases based on the type of robot used for the rehabilitation
of patients in group A.

However, this result is not statistically significant (p val-
ue=0.89, 95% CI between —0.02 and 0.03).

Regarding the acceptability, the robotic therapy is more
effective than the conventional one with OR equal to 0.58
(p value=0.01, 95% CI between 0.39 and 0.88), as shown
in Figure 3. OR <1 indicates fewer dropouts. However, the
results show differences based on the type of robot used for
the rehabilitation of patients in group A. The therapy based
on the use of wearable robots is much more acceptable than
the conventional one (OR=0.39, p value=0.0007, 95% CI
between 0.23 and 0.67). The therapy based on the use of
operational machines has the same acceptability as the
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FIGURE 4: Overall OR (and 95% CI) for walking independence
based on the type of robot and the condition of patients (chronic
versus subacute phase).

conventional one (OR =1.02). However, this result is not
statistically significant (p value =0.95, 95% CI between 0.53
and 1.99).

The authors distinguish between the results for the
primary and secondary outcomes depending on patient
conditions, that is to say, patients in the subacute or chronic
phase.

The use of different types of robots to recover the in-
dependence in walk produces different results, as shown in
Figure 4. The therapy based on the use of wearable robots is
more effective than the conventional one for patients both in
the chronic (OR =2.35, p value=0.17, 95% CI between 0.68
and 8.07) and subacute phases (OR=2.27, p value=0.01,
95% CI between 1.21 and 4.25). The therapy based on the use
of operational machines is extremely more effective than the
conventional one for patients in the subacute phase
(OR=3.12, p<0.0001, 95% CI between 1.90 and 5.14), but it
is less effective than the conventional therapy for chronic
patients. However, this result is not statistically significant
(OR=0.58, p value=0.40, 95% CI between 0.16 and 2.04).

With regards to walking speed, results show no big
difference between patients in the subacute or chronic
phases, as shown in Figure 5. The therapy based on the use
of operational is more effective than the conventional one
for both patients in the subacute and chronic phases. For
patients in the chronic phase, MD is equal to 0.14m/s
(p value=0.01, 95% CI between 0.03 and 0.26). Similar
results are obtained for patients in the subacute phase: MD is
equal to 0.14 m/s (p value < 0.0001, 95% CI between 0.09 and
0.19). The therapy based on the use of wearable robots is as
effective as the conventional one for patients in the subacute
phase (MD=0m/s), but the result is not statistically sig-
nificant (p value = 0.77, 95% CI between —0.02 and 0.03) and
less effective than the conventional one for chronic patients
(MD =-0.02m/s), but the result is still not statistically
significant (p value =0.68, 95% CI between —0.10 and 0.06).

3.2. Costs. Similar to the effectiveness analysis, three types of
comparisons between training costs for the two groups (A
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and B) are carried out. The first comparison is based on all
the articles included in the review, irrespective of the type of
robot used for the therapy (operational machine or wearable
robot). The other two comparisons focus on two subcases:
one based only on studies on wearable robots and the other
only on studies on operational machines.

The results are based on a 20 €/h cost per therapist (as
per 2014 Collective Bargaining Agreement in Italy) and
5 years to amortise the robot, as per “high-tech medical
equipment” tax rate [24]. The annual robot maintenance
cost is calculated as 10% of the robot value. For wearable
robots, the reference value is set to the Lokomat cost, that
is, € 330,000.00. For operational machines, the reference
value is set to the Gait Trainer GT I, that is, € 30,000.00.
For the robotic therapy in general—regardless of the type
of robot—the robot purchase cost is, thus, set equal to
€ 225,000.00, which is the average between the costs of
Lokomat and Gait Trainer GT I weighted by the number of
reference articles.

Table 1 shows the parameters used to calculate costs and
the relative results, when comparing the conventional
therapy to the robot-mediated one, in both the cases de-
scribed in section “Cost Analysis.” As it could be imagined,
the robot-mediated therapy is more expensive and, there-
fore, less economically sustainable than the conventional
one. The cost estimate shows very different results for the
therapy based on the use of wearable robot and the one based
on operational machines.

Table 2 summarises the hourly cost and total cost (for the
full rehabilitation of a patient) for conventional therapy,
wearable robots therapy, and operational machines therapy.
The therapy with wearable robots costs about three times
more than the conventional one considering 12.7 hours of
possible use of the robot for 5 days a week (“1st case”). The
cost decreases and is about two times more than the cost of
the conventional therapy when it is based on 12 hours of
possible use of the robot for 6 days a week (“2nd case”). The
cost of the therapy with operational machines, on the
contrary, is the same as the cost of the conventional therapy
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TaBLE 1: Costs analysis of robotic therapy versus conventional
therapy: parameters and cost estimate results.

Robotic
Conventional
1st case 2nd case
Parameters
CLheraPlSt (€/h) 20.00 20.00 20.00
ptherapists 1 1 1.19
tsession (mm) 52.72 52.72 52.72
pSessions 17.91 17.91 17.91
Crobot purchase (€)  225,000.00  225,000.00 —
yamortization (years) 5 5 —
C;nai“te“a“‘:e (€lyear) 22,500.00 22,500.00 —
Daily robot use 712 12 _
(hours per day) ’
p Y.
Weekly robot use 5 6 -
(days per week)
ys p

Results
ClP™Y (€/h) 56.46 38.03 23.80

th :
CoonidY (€/session) 52.44 35.32 22.10
cptent (¢ 1,023.36 716.76 480.10

TasLE 2: Hourly cost and total cost: comparison between con-
ventional, wearable robots, and operational machines therapies.

Wearable robot Operational
. robot
Conventional

Ist 2nd Ist 2nd

case case  case case
therapy
C, (€/h) 23.80 73.48 46.44 2486 22.40
cPent (g 480.10 1,353.71 866.21 491.00 458.56

in the “Ist case” and even lower than the cost of the con-
ventional therapy in the “2nd case.”

3.3. Cost-Effectiveness (ICER). ICER estimates are carried
out for the three cases described in section “Effectiveness.”
For each case, two different values of ICER are
calculated-the first is based on the cost estimate of the
robotic therapy in the “Ist case” and the second in the “2nd
case.”

Figure 6 shows ICER values regarding patients re-
covering walking independence. For the robot-mediated
therapy in general, without considering the type of robot,
ICER is € 4,565.21 in the “1st case” and is lower in the “2nd
case,” € 1,988.74. Taking into account, instead the type of
robot, results are very different. The wearable robots therapy
has a higher ICER: € 7,889.21 in the “Ist case” and € 3,612.89
in the “2nd case.” The ICER for operational machines
therapy is much lower and amounts to € 71.27 in the
“Ist case.” Increasing the number of hours of possible use
of the robot (“2nd case”), the ICER has a negative value
(€ —193.47). This means that the operational machines
therapy is not only 2.45 times more effective than the
conventional one in the case of patients recovering in-
dependence in walk (as shown by the Overall OR), but also
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the therapy is even more economically sustainable, as it
allows to save € 193.47.

Figure 7 shows ICER values of patients recovering av-
erage walking speed. The ICER of the operational machines
therapy is 62.36 (€/patient)/(m/s) in the “Ist case”. This
means that the robotic therapy costs approximately € 60
more than the conventional one per patient per meter per
second of recovered walking speed. In the “2nd case,” the
ICER is negative (-169.29 €/patient/m/s).

Results are very different for wearable robots: the ICER
for them is divergent being present a zero at denominator in
(8) (Overall MD =0m/s both in the “1st case” and in the
“2nd case”).

4. Conclusions

Robot-mediated therapy has proven to be more effective
than conventional therapy in the treatment of stroke-
affected patients. Overall OR results show that the robotic
therapy enables a larger number of patients to recover in-
dependence in walk, compared to the conventional therapy.

This applies to all analysed cases, being the therapy based on
the use of wearable robots or operational machines and
being the patients in a chronic or subacute phase. This is
particularly interesting since the time that patients in group
A spent for robotic therapy is less than the time that patients
in group B spent for conventional therapy. In the analysed
studies, the duration of the rehabilitation session and the
total number of sessions are the same for both groups.
However, for patients in group A, about half of the session
time is not spent training with the robot but rather setting-
up the machine. In conventional therapy for patients in
group B, the session is entirely dedicated to the rehabilitation
procedure. The therapy based on the use of operational
machines is the most effective treatment, with the highest
Overall OR. This may be due to limitations of wearable
robots. For instance, in the case of exoskeletons when the
coupled joint-links are not perfectly aligned with the human
joints, undesired high forces are produced [25]. This makes
the robot a danger to the patient, as well as an obstacle to
his/her movement. This does not happen with operational
machines. Operational machines are more effective for
patients in the subacute phase, whereas wearable robots are
more effective for patients in the chronic phase. These re-
sults, however, are not statistically significant and require
further study in the future. In terms of secondary outcome,
robot-mediated therapy has the same effectiveness as con-
ventional therapy. To sum up, robotic therapy is particularly
effective in the treatment of critical patients, who are unable
to walk independently before starting the rehabilitation
process. For critical patients, the most important goal is to
recover the walking autonomy, which is more easily
achieved through robotic therapy. For patients who are
already able to walk autonomously, the main goal is to
recover walking speed; thus, the robotic therapy is not
particularly convenient for them. Further studies are needed
to assess the effectiveness of robot-mediated therapy with
wearable robots to achieve the secondary outcome. Current
results on this aspect are still not statistically significant.

As for therapy acceptability, patients who underwent
robotic therapy with wearable robots have the lowest
number of dropouts. This result is rather unexpected, as the
authors thought that robot-mediated therapy would not be
well accepted. A possible explanation may lie in the fact that
the therapist is always present during the sessions, super-
vising the patient, prompting his/her active participation,
and making him/her feel safe. In addition to this, the robot
reduces the physical effort required to the patient and re-
lieves his/her fatigue, especially when he/she is in difficulty.
Another element to take into consideration is that the
wearable robot allows patients to walk as of the very first
session. This could have a positive impact on the patient’s
psychological response, by increasing his/her self-confidence
and motivation to keep on training.

As for the economic point of view, robotic therapy
based on the use of wearable robots has proven to be very
expensive. Costs decrease as the hours of possible use of
the robot increase. The gap between the cost of robotic
and conventional therapies is considerable. Robotic therapy
based on the use of operational machines is the most



economically sustainable method due to the low pur-
chasing cost. It must be said, however, that the cost of robot-
mediated and conventional therapies is estimated based on
the assumption that training time is the same for both
therapies. The fact that the duration of the rehabilitation
therapy is the same for patients in both groups A and B is
based on what is reported in the articles included in this
study. This, in addition to the lack of information on
posttraining patients quality of life, means that the authors
can evaluate only some of the direct medical costs of the
therapy. It is not possible to make a comparison between
the two rehabilitation approaches in terms of nonmedical
direct costs (i.e., social services, home care, transportation,
etc.) nor indirect costs (i.e., working days lost by the patient
due to treatment and health care, working days lost in
terms of lower productivity of working patients, etc.). Also,
the fact that patients of both groups (A and B) underwent
a programme with a similar structure does not allow to
analyse other possible cost differences related, for instance,
to days of hospitalisation for patients locomotion recovery.
The authors, thus, highly recommend organizing clinical
trials differently. Rather than having all patients undergoing
arehabilitation therapy, which has the same duration, it might
be useful to set “targets” (sufficient values of effectiveness) and
assess patients’ recovery time against such “targets.” This
would allow for a more realistic assessment of the cost of
robot-mediated and conventional therapies, which takes into
account rest days for patients to achieve “targets” and the
other aspects mentioned above. Future clinical trials should
also consider different methods for a proper assessment of
nonmedical direct and indirect costs.

Taking into account both economic aspect and effec-
tiveness, the cost difference between robotic therapy and
conventional therapy is reduced. ICER results for the primary
outcome show that the therapy based on wearable robots is
more effective than the conventional one but also more ex-
pensive. This trend is even more evident if we consider ICER
results for the secondary outcome. In this case, the ICER is
divergent. This means that an infinite amount of resources
would have to be spent to increase the patient’s walking speed.
In other words, robot-mediated therapy based on the use of
wearable robots has a cost for benefit equal to 0. It is “in-
finitely” less efficient than conventional therapy. On the
contrary, rehabilitation therapy based on operational ma-
chines is the most cost-effective one, as ICER values are very
low and in some cases, even negative.

In conclusion, the study shows that robotic therapy
based on the use of operational machines is the most efficient
strategy. It is much more effective than the conventional one,
with statistically significant results, both in terms of patients’
recovery of walking ability and walking speed. It is also much
more economically sustainable than robotic therapy based
on the use of wearable robots, as its cost is similar, if not
lower, than the cost of conventional therapy. However, the
therapy which has the highest patients’ acceptability is the
one based on the use of wearable robots.

The investigated topic, and in general the assessment
studies on medical devices, is relatively new with respect to
the studies on drugs, the scientific evidence is sparse, and the

Journal of Healthcare Engineering

attempts to collect information are challenging but the need
of the assessment for medical device is crucial for supporting
the decision-making process [26].
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The robot-assisted therapy has been demonstrated to be effective in the improvements of limb function and even activities of daily
living for patients after stroke. This paper presents an interactive upper-limb rehabilitation robot with a parallel mechanism and an
isometric screen embedded in the platform to display trajectories. In the dynamic modeling for impedance control, the effects of
friction and inertia are reduced by introducing the principle of virtual work and derivative of Jacobian matrix. To achieve the
assist-as-needed impedance control for arbitrary trajectories, the strategy based on orthogonal deviations is proposed.
Simulations and experiments were performed to validate the dynamic modeling and impedance control. Besides, to investigate
the influence of the impedance in practice, a subject participated in experiments and performed two types of movements with
the robot, that is, rectilinear and circular movements, under four conditions, that is, with/without resistance or impedance,
respectively. The results showed that the impedance and resistance affected both mean absolute error and standard
deviation of movements and also demonstrated the significant differences between movements with/without impedance and
resistance (p <0.001). Furthermore, the error patterns were discussed, which suggested that the impedance environment was
capable of alleviating movement deviations by compensating the synergetic inadequacy between the shoulder and elbow joints.

1. Introduction

Stroke is caused by cerebrovascular accident and is one of the
leading diseases of disability, motor disorder, and deteriora-
tion of activities of daily living (ADL). The incidences in
the European Union and the United States are approximately
one million and 0.8 million per year, respectively [1, 2], and
thirty percent of patients suffer recurrent attacks, which
results in increasing demand for rehabilitation services.

For patients after stroke, the task-repetitive training has
been demonstrated to be effective in improving their upper
and lower extremity functions and ADL [3]. To meet the
requirement for repetitive training, various upper-limb reha-
bilitation robots have been developed over the past twenty
years, which are generally classified into two categories [4]:
end-effector robots, such as DIAGNOBOT [5], CARR [6],

MIT-MANUS [7], MIME [8], GENTLE/s [9], and exoskele-
ton robots, such as CADEN-7 [10], RUPERT [11], BONES
[12], and ARMin [13]. Since the robotic rehabilitation
exhibits the advantages in terms of high-dosage, high-inten-
sity, and task-specific training [14], randomized controlled
trials comparing the robot-assisted and conventional therapy
have yielded significant effects of robots on the improve-
ments of limb function [15, 16] and even ADL [17].
Although many robots for the upper-limb rehabilitation
have been developed, mechanical design, control, and train-
ing methods remain an area of interest. As pointed out by
Belda-Lois et al. [18], robot-assisted rehabilitation could be
enhanced by means of precisely controllable assistance or
resistance, enhanced training motivation through interactive
feedback, and quantifiable and objective measures of subject
performance. Besides, cost should also be considered [19].
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Generally, the exoskeleton robots take individual joint
motions into account to minimize abnormal postures and
joint motions. Nevertheless, due to the complexity of the
human upper-limb anatomy, the instantaneous centers of
rotation of the upper-limb joints are changed with move-
ment [20], which causes the inconvenience of joint axis align-
ments and raises interactive force between human and robots
[21], thereby obstructing the development and application of
the exoskeleton robots. In contrast to exoskeleton robots,
end-effector robots are simple and cost-effective and can
adapt to patients with diverse somatotypes [4]. Despite the
disadvantage of end-effector robots in joint training, exten-
sive research has also demonstrated their effectiveness and
superiority for improving upper-limb function and ADL in
comparison with conventional therapies [14].

Compared to serial mechanisms, parallel mechanisms
exhibit inherent advantages of low inertia, high stiffness,
and satisfactory payload capability [22, 23]. More impor-
tantly, as the end-effector is controlled in parallel, the errors
of the joint control are not accumulated and amplified by
serial counterparts, and thus the manipulator is less affected
by joint clearance and has higher precision in aspects of posi-
tion, stiffness, and interactive force control [12]. Therefore,
parallel manipulators have been recently applied to reha-
bilitation robots, including shoulder [12, 24], wrist [25], hip
[26], and upper-limb rehabilitation devices [27].

Another issue is that understanding sensorimotor
physiology is more imperative prior to developing a reha-
bilitation robot. For instance, one aspect is how individual
joints, as well as segments, are coordinated to achieve the
task. In physiology, limb movements are perceived in an
egocentric reference frame, in which targets are defined
with respect to the trunk or head. In contrast, an allo-
centric reference frame represents the coordinate system
external to the body [28]. However, for current training
robots, target and actual trajectories are presented in a stand-
ing monitor, which is a virtual environment based on the
allocentric reference frame for patients. Thus, patients are
required to transform the targets and movements in the
virtual environment to the egocentric reference frame to
accomplish the task, causing difficulties in perception and
sensorimotor control. Besides, it might weaken the effect of
proprioceptive training since the actual positions do not
directly correspond to virtual positions.

Based on the issues discussed above, a novel end-
effector-based upper-limb rehabilitation robot, which is
named PARM, is developed with a parallel mechanism and
patient-frame-based interactive feedback to enhance training
performance. Distinct from other rehabilitation robots, a
monitor was embedded in the platform to show target and
actual trajectories, providing isometric direct visual feedback
for patients. The trajectories displayed on the platform screen
were the same as the actual trajectories in movement space,
particularly in the aspects of scale, position, and direction.
Therefore, patients could perceive targets and movements
in the egocentric reference frame, which should improve
the motor recovery and proprioceptive training. As the pre-
cise control of position, stiffness, and force contributes to
training effects [18], the impacts of friction and acceleration
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FIGURE 1: Training modes of PARM for stroke patients.

were incorporated to improve the control precision. Consis-
tent with the robots such as MIT-MANUS [7], an assist-as-
needed strategy was also introduced in PARM to improve
interaction between patients and robots. In the assist-as-
needed control, patients determine the manipulator in terms
of position, velocity, and acceleration; thus, the reference
positions are variable with the movement and associated
with real-time deviations.

To summarize, the novelty of our work is the strategy
based on the orthogonal deviation for assist-as-needed
impedance control, which aims to obtain the equilibrium
positions and calculate impedance force, and the hardware
which adopts parallel mechanism and isometric visual
feedback. Simulated and experimental results validated
the dynamic modeling and impedance control. Since the
mechanism of the impedance control contributing to the
motor coordination is still less clear, the functional inter-
action between impedance control and movements was
also discussed.

2. Apparatus and Specification

The rehabilitation robot PARM aims to improve the motor
performance of stroke patients by enhancing movement
interaction between the patients and the robot. This inter-
active robot incorporates multiple training modes for
patients with diverse disability and recovery stages, which
are summarized as patient-passive training and patient-
active training (Figure 1). Arbitrary reference trajectories
are predefined by therapists prior to training. In the
patient-passive training, the movements are entirely actuated
by the robot with position control, in which the robot is a
mechanical admittance whereas the patient’s arm is regarded
as an impedance. Contrastively, in the patient-active train-
ing, movements are initiated and actuated by patients with
partially assistance or resistance. For instance, in the training
with impedance and propulsion, the impedance force
towards the target trajectory aims to rectify deviations, while
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3-axis force
sensor

(a)

the propulsive force towards the movement direction could
reduce the active force of the patient, which decreases the
task difficulty. Conversely, the resistance force against the
movement direction increases the movement effort.

To increase the benefit of robot-aided therapy, control
schemes should be customized for individuals and adopted
to patients’ deficits in upper-limb motor function, based on
their poststroke stages and clinical assessments. For subacute
patients, since they are generally unable to perform voluntary
arm-reaching tasks due to dystonia, training is mainly exe-
cuted in patient-passive modality. For chronic patients
(more than 6 months poststroke), robot-aided therapies are
generally performed in patient-active modalities to enhance
patient engagement. Specifically, when patients could per-
form inaccurate arm-reaching tasks, impedance control is
applied for this training stage to rectify deviations and
improve their abilities in motor control. Besides, for patients
with low strength, propulsion in movement direction is
included to reduce the movement effort. However, for the
patients having coordinated motor control, impedance con-
trol is removed. Instead, resistance in movement direction
might be involved to match their motor function and
improve training outcomes.

PARM mainly consisted of a lifting platform, two moni-
tors, a five-bar parallel mechanism with two motors and
actuators, and a three-axis force sensor (Figure 2). A horizon-
tal monitor was embedded in the platform to display the ref-
erence trajectory and actual trajectories, providing direct
visual feedback for patients, while a standing monitor was
used to display the configuration of training parameters
and quantitative assessments. Additionally, the inclination
and height of the platform could be adjusted to make the tra-
jectories conveniently observed for patients.

The five-bar parallel mechanism RPRPR (revolute-pris-
matic-revolute-prismatic-revolute) is shown in Figures 2(b)
and 2(c). Linear rails were adopted to increase movement
range of end-effector and improve kinematic precision, and
linear bearing blocks constituted the prismatic joints to
reduce friction. Each side consisted of three prismatic joints
and two linear rails, and thereby the minimal length of each
side was the length of a rail, while the maximal length was
the sum of two rails and a link. During movement, the length
of two sides was accordingly adjusted to the two revolute
joints controlled by the motors.

(®)

Connector

Prismatic|
joint

-

Thrust
bearing

. Spring

washer

Three-axis

force sensor Thrust
bearing

Connection
e
‘
! Spring washer

FiGURE 3: End-effector components.

The parallel mechanism was actuated by two Maxon RE50
DC motors with shaft keys, and connectors concatenated the
linear rails and motors by screws and shaft keys, respectively.
The motors were fixed on the platform and in serial with angle
encoders, and the nominal voltage, maximum torque, and
torque constant of the motor were 36V, 418 mNm, and
60.4mNm/A, respectively. The Maxon gearboxes EP52C,
whose gear ratios were 43:1, modulated the motor outputs.
The motors were actuated by Maxon EPOS2 70/10, and
control programs were coded in LabVIEW (NI, USA).

In the patient-active training, an assisted-as-needed strat-
egy was introduced by employing impedance control. To
improve the control precision of manipulator impedance, a
three-dimensional force sensor was mounted on the end-
effector, which could additionally record the interactive force
between patients and the robot for quantitative assessments.
The sensor signals were collected by Arduino board (Mega
2560) and subsequently transmitted to PC through USB serial
communication. The end-effector components are shown in
Figure 3. Since the angle between the upper-limb and the links
changed with movements when patients hold the handle, the
handle had one independently rotational degree of freedom
(DoF) with respect to the links, and the revolute friction was
reduced by thrust bearings. The cone below the end-effector
was used to indicate movement positions, and Teflon was
adopted to reduce the friction with screen. In addition, the rev-
olute joint of two links was constituted by an axis, and friction
was also reduced by thrust bearings.



FIGURE 4: Kinematic diagram of PARM.

3. Kinematic and Dynamic Modeling

3.1. Kinematics of PARM. PARM has two DoF actuated by
two servo motors, and the kinematic diagram is shown in
Figure 4. The end-effector position P(x, y) was determined
by the joints Q(q,, g,), which is given by

L tan q,

tang,-tangq,’

_ Ltangtan g,
tang,-tang,

where L means the distance between two joints.

Patient-passive control is based on the inverse kinemat-
ics of the robot arm. For continuous predefined trajectories
g(x, y, t), controlled joints Q is calculated as

y
=tan =,
a4, X

(2)

4
=7 —arctan ——.
qz L

The calculated joint angles are implemented with posi-
tion control of servo motors.
Deriving (1), Jacobian matrix Jp denotes the relationship

between the end-effector and joint velocity, which is given by

e

Besides, link lengths L, and L, were adjusted automati-
cally to the joint angles g, and g, as

L sin g,
sin g, —q, ,
L sin g,

sing, —¢q,

L=

(4)

Similarly, the relation between the elongation velocity
of the two links L(L,,L,) and the joint angular velocity

Q(q,>4,) is expressed by Jacobian matrix J as
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FIGURE 5: Robotic dynamics of the mechanism. In this diagram, 7,
and 7, denote the motor torques; f, and f; are the friction in the
prismatic joint; f,, and f,, denote the friction between the end-
effector and platform; F, and F), denote the interactive force
between patients and the robot; my, m,, and J, denote the inertia
of the link, end-effector, and the moment of inertia of the motor
shaft, respectively; a and a represent the acceleration of the joints
and end-effector, respectively.

el
Lz QZ

3.2. Dynamic Modeling of PARM. For dexterous and accurate
control of a manipulator, inertia and friction should be con-
sidered. In this study, it is hypothesized that three compo-
nents constituted the motor torques. Namely, the first
component counteracted friction; another component com-
pensated the inertia of the end-effector, links, and motor-
gear system; the last component generated the manipulator
impedance and achieved the flexibility. The dynamic dia-
grams of the mechanism and motor-gear system are shown
in Figures 5 and 6, respectively, where the arrows indicate
the positive references.

3.2.1. Friction Component. In this study, the principle of
virtual work was utilized to deduce the equilibrium relations.
Specifically, AQ(8q,,8q,) and AP(dx,8y) were virtual dis-
placement of the motor joints and end-effector, respectively,
and AL(SL,,8L,) was the corresponding virtual change of
link length. In the patient-active training, the end-effector
was mechanical impedance, and conversely, the human arm
was regarded as mechanical admittance [29]. Thus, the equa-
tion can be written as

FAPT + 7,TAQ" = f,sign(AL)AL" — F,APT,  (6)

where 7; denotes the joint torques counteracting friction and
external force; F(F,, F),) is the external force acting on the
end-effector; f, represents the friction in the prismatic joint;
F,y(fy f,) means the friction between the end-effector and
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F1GURE 6: Dynamics of the motor-gear system. J,,, and J, denote the

moments of inertia of the motor and gear shafts, respectively; 7,,;,

Tgr and o, o, are the friction torques and angular accelerations of

the two shafts, respectively; 7, and 7;,,4 represent the motor and
load torques, respectively; N is the gear ratio.

platform, and f, = ||F,||. Based on (3) and (5), (6) can be
deduced as

FJ,AQ" + 7,"AQ" = f;sign (J,AQ") TILAQT

UpaQ)' o )
~ 2 J AQ".
RO TRGE

To calculate the component of the joint torques which
only counteracted the friction, the external force should be
excluded. Eliminating the term AQT, (7) can be written as

T¢ :fJLTSl +f2]stz’ (8)

. . . T
where the joint-parameter matrixes S, =sign(J;Q ) and

- T . T
SZ = IpQ /HIpQ H
According to the motor-gear system shown in Figure 6,
motor torque 7, counteracting the friction is derived as

1 . .
L=y (Tf + diag (sign Q) Tgf) + diag (sign Q) .6 (9)
where 7,,¢ and 7, denote the friction torques of motor and

gear shafts, respectively, and N is the gear ratio.

3.2.2. Inertia Component. The joint torque 7, was assumed to
compensate the inertia force generated by joint angular accel-

eration Q({,, §,) and end-effector acceleration P(%, ), which
can be calculated as

‘ra:diag(]L,]R)QT+me]§pT, (10)

where m, denotes the mass of the end-effector, and J; and J
are the moments of inertia of left and right links, respectively.

The end-effector acceleration could be obtained by the
derivative of (3), which is given by

P =7,Q" +7,Q". (11)

In summary, the motor torque 7, counteracting the iner-
tia force could be calculated as

Predefined
target trajectory

FIGUrRe 7: Diagram of the strategy based on the orthogonal
deviation.

- T

1 1 .
TZZNTu+(]m+ F]g>Q N (12)

where ], and J g are the moments of inertia of the motor and
gear shafts, respectively.

4. Impedance Control for Assist-as-Needed
Training

In impedance control, the end-effector behaves as a damped
spring-mass system, which is represented in a single DoF
system as

Fo=Mix + Cx + K(x — x,), (13)

where F,,, denotes the external force; parameters M, C, and
K are the dynamic parameters of the end-effector corre-
sponding to mass, damping, and spring, respectively; x,; rep-
resents the desired equilibrium position, while x denotes the
actual end-effector position.

In robot-aided training, the predefined target trajectory
g(x, y) meant the movement that patients were expected to
track, which was, however, supposed to be different with
the actual trajectory due to movement error. Actual trajecto-
ries were obtained by joint sensors and forward kinematics.
Assume P,(x,, y;) denoted the desired position on the pre-
defined target trajectory, when P(x, y) was the actual end-
effector position. Since the reference position P, determined
the direction and magnitude of the impedance force, it was
significant to search the appropriate reference position. In
assist-as-needed training, patients determined the manipula-
tor in terms of position, velocity, and acceleration; thus, the
reference positions were variable with movements and asso-
ciated with the real-time deviations. In this study, the strategy
based on the orthogonal deviation was proposed to define the
desired equilibrium positions for arbitrary predefined trajec-
tories. As illustrated in Figure 7, the curve represents the
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Ficure 8: Control schemes of impedance and propulsion/resistance control. (a) Overview. (b) Controller diagram. X", X", X", and F". are
calculated by the strategy based on orthogonal deviation (Figure 7), and F' denotes propulsion/resistance force.

predefined target trajectory, and force F,, and F,, are the
interactive force detected by the three-axis force sensor in x
and y directions, respectively. In this strategy, the direction
of the actual position relative to the reference point was
orthogonal to the tangent of the predefined trajectory at the
equilibrium position, which indicated that the reference posi-
tion P; was the point on the predefined trajectory closest to
the current position P. Therefore, the tangent component
of the external force with respect to the equilibrium point
provided the propulsive force F; along the trajectory, while
the normal component force F; was supposed to be the
impedance force (F,,) shown in (13), and X" denotes the
deviation input to the impedance control.

The dynamic modeling was used to calculate the motor
torques to generate the required impedance according to
deviations and impedance parameters. However, even
though the dynamic modeling incorporated friction and
inertia, control errors inevitably occurred in experiments;
thus, the force sensor was utilized to obtain actual interactive
force as feedback to reduce the errors. Since the acceleration
and friction components have been discussed in Section 3, let
7, be the motor torque-generating manipulator impedance,
which is given by

- %JPT [M(1+R)X" + 1+ KX + K(1+ kX" - k2],
(14)

where k denotes the error feedback coeflicient.
As the tangent force illustrated in Figure 7, for propul-
sion/resistance control, motor torque 7, is implemented as

1
T, :—N]PTFt, (15)

where F' denotes corresponding assistive/resistive tangent
force along the predefined trajectory.

Summarizing (9), (12), (14), and (15), as the control
scheme shown in Figure 8, the motor torque for impedance
control is calculated as

T, =T, +T, + T3+ 7T, (16)

0.10 ~
S 0.5 -
=
2
=
5
a
0.00
-0.05 : : : : : : :
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[C] = Ns/m, [K] = N/m
— C=30,K =200 — C=10,K =200
—— C=30,K =400 —— C=50,K =200
—— C =30, K =600

FIGURE 9: Manipulator responses with different impedance
parameters.

5. Simulations and Experiments

5.1. Impedance Parameter Determination. Impedance
parameters M, C, and K, which determined the dynamic
behavior of the manipulator, were optimized by simulations.
Specifically, it was supposed that the end-effector was
released from the initial coordinates P(0.5,0.4) m, while
the equilibrium position was P;(0.4,0.4) m. M was set to
0.8 kg, which was the approximately actual mass of the end-
effector, whereas the damping and stiffness coefficients C
and K ranged from 10 to 50 Ns/m and 200 to 600 N/m,
respectively. The dynamic responses of the manipulator in
the absence of external interaction are shown in Figure 9.
The result showed that the oscillation deteriorated with
larger K and smaller C and the response time and overshoot
were the least when K =200 N/m and C =30 Ns/m. There-
fore, K and C were set to 200 N/m and 30 Ns/m for experi-
ments, respectively.

5.2. Comparison between Experimental and Desired
Responses. To validate the dynamic modeling and impedance
control, an experiment of the deviation-regression response,
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which was the same as the simulation introduced in Section
5.1, was conducted. The comparisons between the experi-
mental and desired results indicated by simulations are
shown in Figure 10. As shown in Figures 10(a) and 10(b),

the experimental responses of the end-effector and joints
are approximately the same as the desired response, and the
steady-state errors are approximately zero, indicating the
accuracy and validity of the dynamic modeling and
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impedance control. Figure 10(c) shows the simulated and
experimental motor currents, where M, and M, denote the
motor currents of motors 1 and 2, which actuate the g, and

q,> respectively. Consistent with Figures 10(a) and 10(b),
the current responses also demonstrate the consistency
between the actual dynamic performance and the modeling.
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5.3. Movement Experiments. In order to discuss how imped-
ance interacted with participants and the error pattern dur-
ing movements, movement experiments were performed. A
healthy male subject, who was 23 years old and left-handed,
participated the experiments. The subject performed the
movements of two representative types, that is, rectilinear
repetitions and clockwise circular repetitions. Furthermore,
each moment was performed under four conditions, that is,
without impedance or resistance, with impedance only,
with resistance only, and with impedance and resistance
simultaneously. The resistance force was set to 8 N, which
was implemented with (15), and the reference line in recti-
linear repetition was set as x; = 400 mm, while the radius of
circular movements was 125 mm with respect to the center
at P.(400, 425) mm. Since the movement speed could affect
the accuracy, the repetition frequencies of rectilinear and
circular movements were set to 0.5Hz and 0.35 Hz, respec-
tively. Each experiment lasted 100 seconds, and the interval
time between two experiments was 1 hour to eliminate
experimental interactions. The experimental protocol was
approved by the Ethics Committee of Tsinghua University,
Beijing, China.

The trajectories, errors, and interactive force of rectilin-
ear and circular movements are represented in Figures 11
and 12, respectively. The repetitions in rectilinear move-
ments were indicated by the alternation of F, (Figure 11),

while the force alternations in x and y directions both sug-
gested the repetitions of circular movements (Figure 12). In
circular movements, the signals of F, and F, were both sinu-

soidal with time, and the phrase of F, lagged behind that of
F, by 7/2. The maximal F, in rectilinear movements and
the maximal F, and F, in circular moments with resistance

were larger than those without resistance by 8 N in average,
which also validated the force control. Additionally, the
results indicated that fewer errors were observed in the pres-
ence of impedance, whereas the performance deteriorated in
the presence of resistance.

To assess the movement accuracy, the mean absolute
error (MAE) and standard deviation (SD) were employed
to evaluate the deviation of the movements. The brackets
indicated the nonsignificant differences (p > 0.05), while the
significances at p <0.001 were observed between other
groups (Figure 13). The results showed that the rectilinear
movement with impedance only had minimal MAE and
SD. Specifically, the impedance could significantly decrease
the MAEs, whereas the MAEs were significantly increased
in the presence of resistance, for both rectilinear and circular
movements. Significant differences were also noted between
the two groups under the same condition. In addition, the
results suggested that the SDs were larger in the absence of
impedance and in the presence of resistance, demonstrating
that the impedance and resistance mediated the movements
by affecting the MAE and SD simultaneously.

Since the impedance control could reduce the devia-
tions significantly, it was essential to discuss the functional
mechanism of the impedance for motor control, which
incorporated two sides: theoretical and practical aspects.
Theoretically, according to the impedance control proposed

9
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8 -

Movement error (mm)

Circular movement

Rectilinear movement
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Ficure 13: Statistics of absolute errors, where the brackets indicate
nonsignificant differences (p > 0.05), and the significances at p <
0.001 are observed between other groups.

by Hogan [29], the main function of the impedance is to
determine the interactive force given a deviation, in which
case the manipulator is an impedance whereas the environ-
ment is an admittance. The generated impedance force is
opposite to the deviation from the desired trajectory, which
pulls the patient arm towards the desired trajectory as a “vir-
tual damped spring” and alleviates movement deviations as
compensative assistance. On the other hand, to interpret
the functional mechanism of the impedance in practice, it is
imperative to elucidate how the impedance interacts with
participants, which is directly reflected by the error patterns
in these movements. The kinematic analysis is shown in
Figure 14, which indicates the statistic error patterns with
respect to the positions. For rectilinear repetitions in y direc-
tion, the mean errors with respect to y positions presented
the “arched deviations” within 300 to 550 mm, which reached
the maximum at 425 mm (Figure 14(a)). The “arched effect”
probably attributed to the inadequate synergy between the
shoulder and elbow joints. Particularly, the contribution
of the elbow joint motion was more than that of the shoul-
der joint; thus, the movements tended to present arc trajec-
tories with respect to the elbow joint. As presented in
Figure 14(a), the “arched effect” could be alleviated by
impedance control. In circular repetitions, the maximal devi-
ation occurred at polar angles of approximately 140 and 300
degrees (Figure 14(b)), which were close to the occasions
when the elbow angles reached the maximum and minimum,
respectively. Motor performance tended to decrease when
close to the joint boundary, and the inadequacy of the elbow
angles was supposed to be compensated by shoulder abduc-
tion and adduction, which might lead to movement errors
but could be alleviated by impedance control. In summary,
impedance environment was capable of alleviating move-
ment deviations by compensating the synergetic inadequacy
between shoulder and elbow joints, particularly when the
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movements were close to the joint boundary. Although the
efficiency of impedance control regarding dynamic model-
ing and movement performance was demonstrated by
experiments, nevertheless, the physical interaction between
robot and human and the contribution to rehabilitation
process still required further experiments performed on
stroke patients.

6. Conclusions

This paper presented the design, dynamics, impedance con-
trol, and experiments of PARM: a parallel rehabilitation
robot using impedance control to enhance interactive train-
ing. The parallel mechanism was introduced to reduce the
inertia and improve the stiffness, capability, and precision.
The motion perception and interaction could be improved
by embedding an isometric screen. Apart from the mechani-
cal design, the principle of virtual work and derivative of
Jacobian matrix were incorporated to eliminate the frictional
and inertial influence. Besides, the strategy based on orthog-
onal deviation was proposed to achieve the impedance con-
trol in assist-as-needed training. Comparisons between
desired and experimental responses validated the dynamic
modeling and impedance control. To investigate the influ-
ence of impedance for movements, movement experiments
were also performed. The results showed that the errors of
circular movements were mostly larger than those of rectilin-
ear movements and demonstrated the significant differences
between movements with/without impedance and resistance
(p<0.001), where the lowest and highest MAEs were noted
in the presence of impedance and resistance, respectively.
Furthermore, the “arched effect” was observed in rectilinear
repetitions, and the deviation tended to occur when the
motion was close to the joint boundary, but the impedance
environment was capable of alleviating movement devia-
tions by compensating the synergetic inadequacy between

the shoulder and elbow joints. For the prospect of robot-
assisted therapy, PARM could provide a reference for
human-robot interaction in aspects of mechanical design,
dynamic modeling, and assist-as-needed control.
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Motor imagery-based brain-computer interfaces (BCI) have shown potential for the rehabilitation of stroke patients; however, low
performance has restricted their application in clinical environments. Therefore, this work presents the implementation of a BCI
system, coupled to a robotic hand orthosis and driven by hand motor imagery of healthy subjects and the paralysed hand of
stroke patients. A novel processing stage was designed using a bank of temporal filters, the common spatial pattern algorithm
for feature extraction and particle swarm optimisation for feature selection. Offline tests were performed for testing the
proposed processing stage, and results were compared with those computed with common spatial patterns. Afterwards, online
tests with healthy subjects were performed in which the orthosis was activated by the system. Stroke patients’ average
performance was 74.1 + 11%. For 4 out of 6 patients, the proposed method showed a statistically significant higher performance
than the common spatial pattern method. Healthy subjects’ average offline and online performances were of 76.2 +7.6% and 70
+6.7, respectively. For 3 out of 8 healthy subjects, the proposed method showed a statistically significant higher performance
than the common spatial pattern method. System’s performance showed that it has a potential to be used for hand rehabilitation
of stroke patients.

1. Introduction

Stroke is the first cause of disability worldwide [1]. Loss of
motor function, known as hemiparesis, is one of the most
disabling consequences of stroke, which usually affects both
upper and lower limbs from one side of the body. If stroke
patients engage in therapy in the first 6 months after the ini-
tial symptoms appear, they have a 70% chance of regaining
motor function in their affected hand [2, 3].

Assistive technologies such as robotic devices could
increase the number of patients that receive therapy within
this time. In addition, robotic devices have produced
stroke rehabilitation outcomes at least as effective as those
achieved with traditional therapies [4]. Brain-computer

interfaces (BCI) are another type of assistive technology;
these systems provide an artificial communication channel
between the brain and an external device such as a robotic
orthosis [5, 6]. BCIs based on motor imagery (MI) of
affected limbs have shown great potential as a tool for
brain plasticity enhancement [7, 8].

MI is a mental rehearsal of movements of a limb, for
example, the hand or foot, without muscle activation [9-11].
MI elicits distinctive patterns in the electrical activity of the
sensory-motor cortex, mainly in the frequency bands
known as mu (8-13Hz) and beta (14-30Hz) [9, 12]. An
MI-based BCI system is comprised of four stages; the first
one is an electrical signal acquisition module such as
electroencephalography (EEG). EEG is a noninvasive
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technique, has a good time resolution, and is easy to accept
by patients. Preprocessing is the second stage of a BCI sys-
tem; in this stage, signal artefacts such as eye movements,
power line noise, and muscle activity are filtered from EEG
recordings [13, 14]. The third stage is encompassed by fea-
ture extraction methods which preserve only significant
information of the BCI user’s intentions. Finally, the fourth
stage is the classification phase, in which the extracted fea-
tures are interpreted as the BCI user’s intentions; linear dis-
criminant analysis (LDA) is the most used classification
technique reported in BCI publications [15, 16]. One of the
most effective feature extraction methods is the common
spatial pattern (CSP) algorithm, which computes a set of
spatial filters that optimally differentiate two classes of
MI. To achieve good classification accuracies using the
CSP algorithm, the temporal filtering of the EEG signal
must be performed on a specific frequency band. Usually,
this band is selected in the mu and beta frequency range.
Two other parameters that need to be set up are the time
interval from which the features are going to be extracted
and the subset of spatial filters involved in the feature
extraction process [17].

The performance of CSP can be enhanced by selecting
subject-specific parameters. Therefore, modifications to the
original CSP method have been proposed to include this
aspect. One of such modifications is known as filter bank
common spatial patterns (FBCSP); this method performs
an automatic frequency band selection for temporal filtering
of the EEG [18]. FBCSP algorithm employs a filter bank that
decomposes the EEG into different frequency bands. Each
frequency band is spatially filtered using the CSP algorithm;
afterwards, the extracted features for each band are selected
with either the Mutual Information-based Best Individual
Feature (MIBIF) or the Mutual Information-based Rough
Set Reduction (MIRSR) algorithms. Classification is per-
formed only with the selected features [18, 19]. Although,
FBCSP performance was higher than CSP, statistically signif-
icant differences were not observed between both methods. A
bank of filters and CSP are useful for MI; however; in order to
increase classification performance other feature selection
algorithms could be implemented. Feature selection is an
optimisation problem; therefore, artificial intelligence tech-
niques, such as particle swarm optimisation (PSO), could
be applied for finding a solution for it.

PSO was originally proposed by Shi and Eberhart [20]
and inspired by the social behaviour of bird flocks while
searching for food. PSO performs a search in the space of
the problem, with the aid of a population (called swarm) of
individuals (called particles). Each particle executes a search
based on its current position and velocity in the search space.
In each iteration (called generations), the position and veloc-
ity of the particles are updated according to their best previ-
ous position (local search) and the best position of the swarm
(global search). In terms of EEG properties, PSO can be
applied to select which combination of extracted EEG fea-
tures provides higher classification accuracies if used as
inputs for a classifier. In each iteration (generation), several
combinations of selected EEG features (particles) comprise
possible inputs for a classifier. After all combinations have
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been used to train the classifier, and afterwards test it, classi-
fication accuracies for each combination (or other optimisa-
tion metrics) can be used to compare the fitness of each
combination of EEG features. With this fitness information
obtained for each combination, a new set of EEG feature
combinations can be generated (a new generation of parti-
cles), which could contain a solution with higher classifica-
tion accuracy than the ones tested in previous generations.
This process is repeated until a stop criterion (like a number
of generations or achieving a fitness value) is met. To the
authors’ knowledge, few reported studies describe the use of
PSO as a feature selection algorithm for BCI systems. For
example, Wei and Wei propose a frequency band selection
using PSO and CSP algorithms; selection is based on the best
classification accuracies achieved by the BCI. They evaluated
their method using MI information from publicly available
dataset IVa from BCI competition III. Classification perfor-
mances were higher using the frequency bands selected by
PSO than the ones computed with a broader frequency
band [21]. Atyabi et al. proposed a PSO-based method to
reduce the number of electrodes and the number of fea-
tures used for MI classification. The authors evaluated their
method with datasets IVa and Illa from BCI Competition
II [22]. Xu et al. evaluated a PSO-based algorithm for
CSP frequency band and time selection using a database
comprised of finger MI of 18 healthy subjects. They
observed better offline performances with PSO than with
a statistical approach for frequency and time band selection
[23]. These works show that PSO can increase classification
performance of MI while also decreasing the number of
employed features; therefore, PSO could be a good feature
selection method for BCL

Recent studies have reported better motor rehabilitation
outcomes using MI-based BClIs coupled to robotic assistive
devices than the ones achieved with only robotic assistive
devices [24, 25]. Some of the advantages of these combined
systems are that they are noninvasive, are fully automated,
and could increase brain plasticity. Some studies have evalu-
ated the performances of these BCI systems with healthy sub-
jects [6], as well as some proofs of concept [26, 27] and a
randomised controlled trial [28] that have demonstrated pos-
itive rehabilitation outcomes for stroke patients. Even though
BCI systems coupled to robotic assistive devices have shown
promising outcomes for stroke rehabilitation, to date, none
of such systems are used in clinical practice.

Reasons for this include the fact that most BCI systems
are still under development in research centres and universi-
ties, are usually assessed offline, and have quite different per-
formances in online tests. In addition, new processing stages
designed for stroke rehabilitation BCI systems are not tested
with EEG information of these patients. Therefore, tests must
be performed to evaluate if an MI-based BCI is capable of
classification of user’s intentions and activation of external
devices in online implementations, with a processing stage
previously tested with stroke patients” data.

In this work, an MI-based BCI is implemented and
tested; the system is aimed to be driven by hand MI. A novel
signal processing stage comprised of a bank of filters, CSP for
feature extraction, PSO for feature selection, and LDA for
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TaBLE 1: Patients’ clinical and demographic data.

Patient Gender Age Hemiparesis  Evolution Injury location
1 Male 50 Right 7 months Posterior limb of left the internal capsule
) Female 57 Right 36 months Left pulvinar nucleus of thc_e tl?alamus extending t.o the left internal capsule and
ipsilateral lateral ventricle
3 Male 58 Left 2 months Right basal ganglia with involvement of the posterior limb of ipsilateral internal
capsule
Female 79 Left 1 month Posterior limb of the right internal capsule
Male 46 Left 3 months Lenticular nucleus, internal capsule, and right corona radiata

6 Male 45 Left 3 months Right side of the brainstem

classification was designed. The proposed algorithm was
evaluated offline with a sample of stroke patients’ and healthy
subjects’ data and afterwards online tests were performed
with the healthy subjects as users of the system. For online
tests, MI was used to activate a robotic hand orthosis to
evaluate the feasibility of the complete BCI system aimed
for neurological rehabilitation of stroke patients.

2. Materials and Methods

2.1. Participants. The sample for this study comprised 8
healthy subjects (mean=23.9+1.3 years) and 6 patients
diagnosed with stroke (mean=558+12 vyears). Both
healthy subjects and stroke patients were required to have
a normal performance in the subscales of digit detection
and visual detection of the neuropsychological test NEU-
ROPSI (this test has been validated for Spanish-speaking
population) [29]. In addition, all subjects were naive to
BCI, with normal or corrected to normal vision, without
any history of other neurological/psychiatric diseases and
right-handed (at least 90% according to the Mexican adap-
tation of the Edinburgh handedness inventory [30]). In
order to be considered for inclusion in the study, patients
had to have a first stroke event of subcortical localisation,
confirmed by a neurologist by means of neuroimaging
studies (magnetic resonance or computed tomography)
and total or partial paresis of one of their hands. Subcor-
tical stroke patients were selected since their brain damage
does not involve the brain cortex and, therefore, they were
less likely to present significant cognition impairments.
Before the EEG recordings were performed, the partici-
pants signed an informed consent approved by the Ethics
and Research Committee of the National Institute of
Rehabilitation in Mexico. Clinical and demographic data
of the patients are shown in Table 1.

2.2. EEG Acquisition. A g.USBamp biosignal amplifier from
gtec was used for EEG acquisition. EEG was acquired
with 24 bits of resolution and sampling rate of 256 Hz.
Active EEG electrodes were used for acquisition, with 11
electrodes placed over the scalp of the participants, in
positions C3, C4, Cz, T3, T4, F3, F4, Fz, P3, P4, and Pz
of the international 10-20 system. Ground placement
was set in the AFz position, and the reference electrode
was placed in the right earlobe. To verify that no real
movements were elicited during MI, electromyography

(EMG) was recorded from the flexor digitorum superficialis
and flexor digitorum profundus muscles of both forearms.
For the offline tests, each healthy subject participated in
two sessions and performed in consecutive days with 120
trials recorded in total. To avoid exhaustion, stroke
patients participated in four recording sessions which were
performed in consecutive days, with 120 trials recorded in
total. For the online tests, healthy subjects performed in
consecutive days two additional sessions, with another
120 trials recorded in total. Subjects were instructed to
sit in a comfortable armchair, with a computer monitor
placed at 1.5 m in front of them. They were directed, by visual
cues shown in the monitor, to perform either rest with their
open eyes or MI from their paralysed hand (dominant hand
in case of healthy subjects). EEG acquisition was performed
using a similar strategy as the one followed by the Graz
paradigm [31]. Figure 1 shows that the rest interval of the
trials lasted 3 s and the MI interval lasted 5.

2.3. Offline Implementation and Validation of the Processing
Stage. For offline implementation, a window of one-second
length was extracted from 1.5s to 2.5s to obtain the rest
information for each trial (REST). Another window of
one-second length was extracted from the 3.5 to 4.5s
time interval of each trial, to obtain the MI information
of the trials, as observed in Figure 1. These time windows
were selected based on previous studies which show that
differentiation between MI and REST classes is higher in
these time intervals [32]. The FBCSP algorithm encom-
passed the processing stage of the BCI system, and PSO
was used for feature selection (named FBCSP +PSO). A
block diagram of the algorithm’s implementation is shown
in Figure 2.

The following is a detailed description of the algorithm’s
implementation:

(a) Temporal filtering: EEG data were filtered to obtain 6
frequency subbands, each 4 Hz broad and with 1 Hz
of overlapping in order to avoid loss of information.
Encompassing both alpha and beta frequency bands
were as follows: 8-12Hz, 12-16 Hz, 16-20 Hz, 20—
24 Hz, 24-28 Hz, and 28-32Hz. A 60 Hz band-stop
filter was also applied to the EEG signals. All filters
were FIR filters of the 30th order, selected for their
linear phase features.
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FIGURE 1: Illustration of the experimental paradigm. Dotted lines show the time windows extracted from EEG signals.

Training stage

Testing stage

g N
I EEG signals
Acquisition Training set (1 = 216)
A& J
Temporal | ! )
oo 6 band-pass filters _Selected.
filtering : frequency
h l g ! bands
e ~ :
Spatial CSP Computed :
filtering (vector Fryy ) filters !
A& J
l i
I
4 B 1
Feature PSO !
selection (x selected features) [
A& J
' J/ N
ClaSSiﬁcation LDA _______ L Ré_ ______ > -
coeflicients

o J

F1GURE 2: Block diagram of FBCSP + PSO implementation.

(b) Spatial filter: For the EEG data filtered in each sub-
band, spatial filters were computed with the CSP
algorithm. CSP performs a linear transformation on
the EEG data, to obtain features whose variances
are optimal for classification of two classes of MI, in
a specific frequency band. Details of the CSP imple-
mentation can be found in the works of Blankertz
et al. [17] and Ramoser et al. [33]. In this work,
spatial filters were computed using the MATLAB
command W =eig (S1, S1 + 82) as suggested in the
abovementioned works. W is the matrix containing
the spatial filters, and S1 and S2 are the covariance
matrices of MI and REST computed from the EEG
data of each filtered frequency subband. In the imple-
mentation of the original CSP, only the first and last
m columns of the W matrix (m is generally 2) are
used to generate the feature vector used for classifica-
tion. With the goal of having a greater chance of

finding the optimal subband for each patient, in this
work, all possible features were extracted with CSP.
The feature vector generated in this work for each
trial i is comprised as follows:

fi= Ifl,i’fz,i’f3,i’f4,i’f5»i’f6»i]' ®

Therefore, CSP features computed for the training set
comprised for nt trials are

FTrainz[fl;fZ ;f3;f4;"' ;fnt]’ FTrainGRntX%-
(2)

And the true class vector of the training set is

yTrain=D’1;y;y3;y4;"' ;ynt]' (3)
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(c) Feature selection: PSO was used for selecting a subset
of features from F.,,;, in order to decrease both the
classification error and the number of selected fea-
tures. Equation (4) describes PSO implementation.

n+l _ n n n
vit=w-vi +c -1 - (PBest] - x})
n n
+cy 1y (GBestg - x ), (4)
X =k

1

where x' and v} are the position and velocity of
the ith particle of the nth generation. In this work,
50 particles and 50 generations were used. w is the
inertial weight of PSO which linearly descends from
0 to 1 as generations of PSO are computed. ¢; and
¢, are positive constants set to 1. r; and r, have ran-
dom values between 0 and 1, which coupled to ¢, and
¢, set the local and global search properties of PSO.
PBest! is the best position reached by the ith particle
in the nth generation. GBest7 is the best position (g)

reached by the entire swarm in the nth generation.
The maximum position value that a particle could
reach was 1 and the minimum was 0. Maximum
speed of each particle was set to 1 and minimum
speed to 0. In this work, the search space of PSO
was 1 x D, where D equals 66 and was comprised of
the 66 features that can be selected. Each computed
solution with PSO is a subset of the selected features.
Solution values are in the range from 0 to 1. If the
value of an element of the solution was higher or
equal to 0.5, then the corresponding feature was
selected. The original CSP algorithm states that
selected features must be paired, so in this work,
complementary features of the selected ones were
also included, in case they were not originally
selected by PSO. Selected features from the training
set were used for designing an LDA classifier. PSO
fitness value was computed using

value = (err x 2) + <nselec> , (5)

66

where err is the computed classification error from
the training set. nselec is the number of selected fea-
tures. Variables err and nselec/66 have values ranging
from 0 to 1. Both parameters err and nselec are
summed so that PSO is able to perform a reduction
of both classification error and the number of fea-
tures used for classification. The err value was multi-
plied by 2 so that the optimization priority of PSO is
the reduction of the classification error over the selec-
tion of a lower number of features. The stop criteria
used for PSO was either achieving 0% of classification
error or 50 generations.

(d) Classification: With the final selected features (x) and
the training set, an LDA classifier was designed,
which was later evaluated with the testing set. Fea-
tures selected with PSO in the training stage were

the same as the ones used for the testing stage of
the classifiers. LDA performance was measured by
computing the percentage of classification accuracy
(%CA). In this offline stage, the necessary parameters
for the online stage were computed. These parame-
ters were the spatial filters for each frequency sub-
band and the LDA coefficients.

A stratified cross-validation of 10 x 10-fold was used to
avoid bias in the computation of %CA. Classifiers were tested
using totally different datasets than the ones used for train-
ing. For each fold and repetition, the FBCSP + PSO algorithm
was calculated. The 100 values of %CA obtained from this
procedure were used to compute the average %CA for each
participant.

The performance of the FBCSP +PSO was compared
with that of the original CSP (on filtered data between 8 to
32 Hz) using the same training and test subsets. A prelimi-
nary version of the proposed algorithm was presented by
Cantillo-Negrete et al. [34].

2.4. Robotic Hand Orthosis. Since rehabilitation of stroke
patients with robotic assistive devices has advantages, a
right-hand robotic orthosis was developed in previous works
to couple it with the BCI [35, 36]. This orthosis comprised a
3D printed frame of polylactic acid (PLA). The orthosis lin-
ear actuators can provide passive flexion and extension
movements to the fingers. A closed-loop system was used
to sense the moment in which each finger reaches its maxi-
mum extension or flexion. The orthosis has a wireless Blue-
tooth communication with the processing stage of the BCL
The Bluetooth protocol was programmed in both MATLAB®
and in a microcontroller attached to the electronic control
circuit of the orthosis. The orthosis has four different actua-
tors; however, for this study, all actuators were set to perform
flexion and then extension of the hand fingers.

2.5. Online Implementation of the Designed BCI System. A
graphical user interface (GUI) was programmed using
MATLAB, comprised of user’s/patient’s data, a processing
stage, a screen for visual cues presentation, and wireless Blue-
tooth configuration. Communication was established with
the g.USBamp amplifier by means of an adaptor API (avail-
able from g.tec). The online processing stage was optimised
to process windows of one-second length of the EEG signal.
Healthy subjects’ spatial filters and LDA coefficients com-
puted for each selected frequency subband in the offline stage
were programmed in the online BCI system. The BCI para-
digm used for the online implementation was the same as
the one used for the offline one, with the addition of the feed-
back provided by the robotic orthosis. For the online imple-
mentation, 6 windows of one-second length each were
analysed. The first 3 windows comprised REST and the next
3 windows for MI. As soon as each window had elapsed, data
recorded from them were processed in the GUI using the
proposed FBCSP +PSO method and the LDA classifier.
Afterwards, a classification output was generated which indi-
cated if the time window was classified as REST or as right
hand MI. Therefore, for each trial, the system performed 6
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F1GURE 3: Timeline of the online BCI system, depicting a single trial.

classification outputs. A total of 20 trials were recorded for
each run, and 3 runs were performed for each session. A total
of 2 sessions were performed in consecutive days recording
720 LDA outputs for the REST class and 720 for the MI class.
Online %CA was computed per healthy subject by compar-
ing the expected output with the real one.

The robotic hand orthosis was activated by a Bluetooth
command sent from the computer, immediately after the
MI time interval, only if 2 out of 3 motor imagery time
windows were correctly detected by the processing stage.
Within the orthosis activation time, the monitor displayed
a grey background. The percentage of trials in which the
orthosis was activated, regarded as percentage of correct
trials (%CT), was computed for all the 120 trials per
healthy subject. Activation of the orthosis was comprised of
the opening and closing of the healthy subjects’ fingers.
After each run (20 trials), performance feedback was shown
in the computer monitor by using faces with different
degrees of smiling expressions. For example, if %CT was in
the 100-90 interval, the most smiling face was shown to the
subject, and if %CT was below 60%, the most serious face
was shown. A depiction of the online processing stage is
shown in Figure 3.

Averaged online processing time was computed for all
the performed trials. This was the average time required by
the preprocessing, FBCSP + PSO, and LDA stages to generate
a classification output. A PC with a Core i5 processor of
2.53 GHz and 8 GB of RAM was used for running the GUI
with the BCI processing stage. S1 Video shows the complete
BCI system in an online test.

2.6. Statistical Analysis. In order to assess the reliability of the
BCI system, the practical level of chance was computed as
explained by Miiller-Putz et al. [37]. This practical level of
chance is defined as the upper confidence interval of a ran-
dom classifier’s accsuracy. Practical level of chance was calcu-
lated with a binomial distribution using a significance level of
0.5, with 120 trials encompassing the data of each class.

Equations (5) and (6) show the computation of the practical
level of chance.

k+2
n+4

, (6)

p=

Practical level of chance =p +

p(1-p) (1_ “)) (7)

n+4 2

where p is the probability of correct classification, k is the
expected number of correctly classified trials, # is the number
of trials, z,_,,, is the 1 — /2 quantile of the standard distribu-
tion, and « is the level of significance. The computed %CAs
were compared with the practical level of chance to assess if
BCI performance was significantly higher than chance [37].

A Lilliefors-corrected Kolmogorov-Smirnov test («=
0.05) was used to test if stroke patients’ and healthy subjects’
%CAs for offline tests (obtained from 10 x 10-fold cross-
validation) followed a Gaussian distribution. The tests
showed that the offline %CAs computed with FBCSP
+PSO, and CSP for both groups did not have a Gaussian
distribution. Therefore, nonparametric Mann-Whitney U
tests (a=0.05) were used for comparing the offline
%CAs computed with FBCSP+PSO and CSP. A
Lilliefors-corrected Kolmogorov-Smirnov test (a=0.05)
showed that healthy subjects’ offline and online averaged
%CAs had a Gaussian distribution. Therefore, a paired t-
test («=0.05) was used for comparing offline with online
%CAs. Pearson’s correlation and linear regression analyses
were performed for measuring relationships between
online %CA and %CT.

3. Results

3.1. Offline Analysis. Figure 4 shows the offline %CA com-
puted with stroke patients’ data with FBCSP+PSO and
CSP. Results of the statistical analysis are also shown. The
calculated practical level of chance for all experiments was
56.2%. It can be observed that for all patients %CAs were
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computed with data from 6 patients. The dotted line shows
the practical level of chance (56.2%). The asterisk (*) indicates
that the %CA of FBCSP+PSO was statistically significantly
higher (p <0.05) than CSP.
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Ficure 5: Offline classification accuracy percentages (%CAs)
computed with data from 8 healthy subjects. The dotted line
shows the practical level of chance (56.2%). The asterisk (*)
indicates that the %CA of FBCSP+PSO was statistically
significantly higher (p < 0.05) than CSP.

above the practical level of chance (p<0.05) for both
methods. For 4 out of 6 patient’s data, %CA for the
FBCSP+PSO algorithm was statistically significantly
higher (p < 0.05) than the %CA for the CSP algorithm. For
2 patients, there were no statistically significant differences
(p < 0.05) between the %CA for both methods. The averaged
%CA for all stroke patients computed with FBCSP +PSO
(74.1£11%) was statistically significantly higher (p <0.05)
than the %CA obtained with CSP (70.2 +12%).

Figure 5 shows the offline performance for healthy
subjects’ using the FBCSP+PSO and CSP algorithms.
The %CA for all subjects were above the practical level
of chance (p <0.05) with both algorithms. For 3 out of 8
healthy subjects, FBCSP + PSO was statistically significantly
higher (p <0.05) than CSP. For the other subjects, no
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FIGURE 6: Online and offline classification accuracy percentages
(%CAs) computed with data from 8 healthy subjects. The dotted
line shows the practical level of chance (56.2%).
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FIGURE 7: Online classification accuracy percentages (%CA) and
correct trial percentages (%CT) from 8 healthy subjects.

statistically significant differences (p <0.05) were found
between the %CA for both methods. Averaged %CA for
the FBCSP+PSO method (76.2+7.6%) was statistically
significantly higher (p <0.05) than the one obtained with
CSP (75.5+7.8%).

3.2. Online Analysis. Figure 6 shows healthy subjects’ online
and offline performances. For all subjects, online %CA was
above the practical level of chance (p < 0.05). Averaged off-
line %CA (76.2 +7.6%) was higher compared to online tests
(70£6.7%); however, there was no statistically significant
difference (p > 0.05) between them.

Figure 7 shows subjects’ online %CA (70+6.7%) and
%CT (84.5+12.1%). Using Pearson’s analysis, a 0.8 correla-
tion between %CA and %CT was found. In addition, a linear
regression analysis showed an r* value of 0.64. Averaged
online processing time was of 0.04+0.01s.

4. Discussion

The proposed BCI system was tested with stroke patients’
and healthy subjects’ data. Offline performances computed
with FBCSP + PSO and CSP were above the practical level



of chance for all stroke patients and healthy subjects. How-
ever, for 4 out of 6 patients, FBCSP + PSO showed a statis-
tically significant higher performance of their paralysed hand
compared to CSP. In addition, 3 out of 8 healthy subjects’
offline tests using FBCSP +PSO also showed statistically
significant higher performances than CSP. Furthermore, for
none of the stroke patients and healthy subjects, FBCSP
+PSO performance was significantly lower than CSP. Ang
et al. also performed an evaluation of their FBCSP using
MIRSR for MI classification. Their algorithm was tested with
a public database comprised of 9 healthy subjects and com-
pared with the performance of CSP. However, FBCSP trained
with MIRSR performances were not statistically significantly
higher than CSP (with a 7 to 35Hz frequency band) [19],
unlike FBCSP + PSO in which the performance was statisti-
cally significantly higher than CSP. Therefore, FBCSP
+PSO could be a better option for an MI BCI processing
stage than CSP since it showed significantly higher perfor-
mances for both stroke patients and healthy subjects.

The heuristic nature of PSO implies that its perfor-
mance will not be limited by statistical features of the
search space, since the method does not need to compute
inverse matrices or other computations which often pres-
ent restrictions, especially for high dimensional search
spaces. Offline performances of the BCI system show that
PSO implementation for feature selection of FBCSP allows
this method to have better performances than CSP. This
performance is achieved by using a multiobjective optimi-
sation for the PSO algorithm by setting a higher impor-
tance to the LDA’s classification than to the number of
selected features in the fitness function.

The system’s average processing time (0.04+0.015s)
was lower than the time window used for EEG acquisition
(I's), which makes possible the online implementation of
the system.

Stroke patients’ offline performances (74.1 +11%) were
similar to the ones reported by Ang et al. with a sample of
46 stroke patients, which achieved an average offline perfor-
mance of 74% using 27 EEG channels and an FBCSP with
MIBIF algorithm. However, in the present work, only 11
EEG channels were recorded. In addition, stroke patients’
offline performances were higher than online performances
reported using other state-of-the-art BCI designs. For exam-
ple, Morone et al. performed an acquisition of 61 EEG chan-
nels from 8 stroke patients. The goal of the study was to
assess if the recruited patients could perform an online grasp-
ing of a virtual hand. They reported an average %CA of 57
+24% [26]. Performances computed with the proposed BCI
were also higher than the ones reported by Zhang et al. They
recruited 8 stroke patients for the evaluation of a BCI coupled
to a functional electrical stimulator. They processed 19 EEG
channels with a modified CSP algorithm for feature extrac-
tion and support vector machines for classification. The aver-
age performance of their BCI system was 66% [38].

Healthy subjects’ average online performance (70 £ 6.7%)
was higher than the one reported in a study with a similar
feedback, using a hand exoskeleton by Witkowski et al.
[39]. In the study, a %CA of 67.4% was reported (63.59 +
10.8 of sensitivity and 71.3+11.02 of specificity), using 5
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EEG channels, in a sample of 12 healthy subjects. In
another study with a hand exoskeleton feedback reported
by Tang et al, healthy subjects’ online performance was
84.29+2.11%. However, only 4 subjects with good MI
ability were recruited and 24 EEG electrodes were used
[40]. Healthy subjects’ online performances using the pro-
posed BCI system were not significantly lower than the
offline ones. Therefore, the proposed FBCSP +PSO pro-
cessing stage should be able to handle the increased signal
artefacts present in an online acquisition.

Offline and online tests allow us to suggest that stroke
patients’ online performance with the proposed BCI is
likely to be around 70% or at least higher than the
practical level of chance.

Online %CT was positively correlated with the %CA of
the system, which implies that the feedback shown to users
reflected their ability to voluntary elicit hand MI. This is
important since showing a correct feedback to patients moti-
vates them to keep a successful MI strategy or to seek differ-
ent approaches if feedbacks indicate low performances.

This study showed that the proposed FBCSP +PSO pro-
cessing stage and robotic orthosis feedback are suitable for
a BCI aimed for neurorehabilitation. However, tests involv-
ing patients using the system are still required to evaluate
its neuroplasticity-enhancement capabilities. The partici-
pants of these future tests should include patients with corti-
cal stroke located in the dominant and nondominant
hemisphere. The observed performance differences show
that FBCSP + PSO could be a better option than CSP for fea-
ture extraction in an MI-based BCI. However, online acquisi-
tion data from a higher sample of patients participating in a
randomized controlled trial are still necessary to completely
describe the potential of the proposed BCI system as a neu-
rorehabilitation tool for stroke patients. Another study limi-
tation is that 2 sessions were performed per participant,
and a higher number could provide information on perfor-
mance variations across time. Therefore, the next step in
the system’s assessment should be to define a therapy sched-
ule, which should include the lessons learned from this study
which are to use FBCSP + PSO as processing stage, %CT for
patient’s feedback, 3 runs of 20 trials each per day, and a
somatosensory feedback using a robotic hand orthosis.

5. Conclusions

This work presents a BCI system evaluation using a process-
ing stage comprised of FBCSP +PSO combined with LDA
and feedback provided by a robotic orthosis. PSO as a feature
selection algorithm for FBCSP allows reducing the problem’s
dimensionality and achieving better classification perfor-
mances, compared to those obtained if only the original
CSP is used.

The present study shows that with the proposed BCI
design patients are likely to be able to control a hand robotic
orthosis using motor imagery of their paralysed hand. There-
fore, the next developing stage of the system will be to per-
form a randomised controlled study involving direct EEG
acquisition from patients. The BCI system designed in this
study combines the advantages of a robotic device and motor
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imagery, which have separately produced good results for
stroke patients’ rehabilitation. Therefore, if the proposed
BCI system design is introduced into the clinical practice it
would provide medical facilities with a tool that could aid
stroke patient’s functional recovery.
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Robots for stroke rehabilitation at the lower limbs in sitting/lying position have been developed extensively. Some of them have
been applied in clinics and shown the potential of the recovery of poststroke patients who suffer from hemiparesis. These robots
were developed to provide training at different joints of lower limbs with various activities and modalities. This article reviews
the training activities that were realized by rehabilitation robots in literature, in order to offer insights for developing a novel
robot suitable for stroke rehabilitation. The control system of the lower limb rehabilitation robot in sitting position that was
introduced in the previous work is discussed in detail to demonstrate the behavior of the robot while training a subject. The
nonlinear impedance control law, based on active assistive control strategy, is able to define the response of the robot with more
specifications while the passivity property and the robustness of the system is verified. A preliminary experiment is conducted
on a healthy subject to show that the robot is able to perform active assistive exercises with various training activities and assist
the subject to complete the training with desired level of assistance.

1. Introduction

Robots for rehabilitation have gained more attentions in
many research due to some benefits over conventional ther-
apy by physiotherapists. For example, robots for locomotion
training on a treadmill primarily aim to replace physical
demand of the therapist labor because the task is ergonomi-
cally unfavorable and tiring [1]. Without physical burden,
numbers of repetition and duration of the training session
can be increased [2-4]. While the performance of a therapist
could vary from day to day [1] and intervention techniques
by expert and unexperienced therapists are different [5, 6],
a robot follows the certain control algorithm and provides
systematic intervention to the patient. Moreover, robots are
able to obtain and record data such as position, velocity,
interaction force, or biosignal with various kinds of sensors.
This quantitative data can be used for further offline analysis,
which leads to objective evaluation of the patient’s recovery
[3,4], or even used for adapting robot’s behavior correspond-
ing the patient’s current condition. Rehabilitation robots are
also able to perform different types of exercises and varieties

of movement [2, 7, 8]. Moreover, the robot can be imple-
mented with games [9] or virtual reality system [10] in order
to promote active participation of the patient. Robots for
stroke rehabilitation have shown their effectiveness in many
clinical trials worldwide.

The lower limb rehabilitation robots can be categorized
into 2 types according to exercise posture [11]. The first type
is a robot for training in sitting/lying position which benefits
the patient who still suffers from muscle weakness and can-
not stand or walk safely [5, 12]. By excluding concern of bal-
ance, the patient may be more independent and able to focus
on the training [13]. This kind of robot allows the patient to
strengthen muscle, develop endurance, and increase joint
mobility and movement coordination [4]. Another type of
the robot is for training while standing/walking. The gait
training robot in literature was developed to train either over
ground or on a treadmill with a body weight support mecha-
nism. However, the gait training robot is only suitable for the
patient that has adequate endurance and ability to stand [14].

Training modalities used in robots for stroke rehabilita-
tion are often divided into four groups, namely, passive,
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active assistive, active, and active resistive exercises [15].
Exercises may be prescribed to a stroke patient correspond-
ing to the stage of recovery [3] and the muscle tone [2, 16],
which can be graded according to the muscle contraction
observability, ability to move a limb against gravity and
external resistance [17]. In the preliminary stage, the patient
with very low muscle strength should conduct passive train-
ing, for example, moving the patient’s limb along a prede-
fined trajectory by another person or an exercise device
known as continuous passive machine (CPM). Passive exer-
cise could improve movement ability, maintain range of
motion, and reduce muscle atrophy. In the intermediate
stage, the patient with some degree of muscle strength should
perform active assistive, active, or active resistive exercise.
Active assistive exercise allows the patient to move the limb
by himself with assistance provided by another person when
needed. Active exercise allows the patient to move by his own
effort without external assistance and resistance. In active
resistive mode, the robot provides force opposing the move-
ment of the patient. This exercise aims to strengthen muscle
of the patient who is already able to move his limb over the
full range of motion. Different motion and amount of resis-
tive force can be applied to achieve a variety of strengthening
training such as isometric, isotonic, and isokinetic exercise.
There are many types of force that could be applied to the
patient as resistance. Resistive exercise in conventional
rehabilitation can be done against weight, elastic bands, in
the pool, or by an exercise machine [14]. In the advanced
rehabilitation stage, the objective of the exercise is to regain
function related to activities in daily living such as balancing
and gait training.

Apart from training modalities, training activities also
have to be selected appropriately to an individual. Because
the lower limb rehabilitation robots in sitting/lying position
get rid of the stability concern, the robots are able to perform
a variety of training activities. It is interesting to study
how these training activities are selected and what are ben-
efits of each training activity for a stroke patient. This
knowledge would be useful in developing robots suitable
for stroke rehabilitation.

This article focuses on the lower limb rehabilitation
robots for training in sitting/lying position. In Section 2, the
training activities performed by this type of robot are
reviewed. Description of the robot is shown in Section 3.
The control system and the impedance control law proposed
in our previous work [18] for active assistive exercises are
discussed in Section 4. Experiments conducted to study the
performance of the system are also presented in this section.
The experiment by a healthy subject in Section 5 demon-
strates the robot behavior while performing training activi-
ties with many levels of assistance. Finally, the conclusion
of the research article is made on Section 6.

2. Review of Training Activities of Robots for
Stroke Rehabilitation

Training activities performed by lower limb stroke rehabilita-
tion robots in sitting/lying position are summarized in
Table 1. Types and actuated degrees of freedom of the robots
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are also reported since they are corresponding to the training
activities. Foot robotic orthoses and footplate-based end-
effector robots are able to actuate only at ankle joint and foot
section. End-effector robots (nonfootplate-based type) are
usually able to perform movements involving hip, knee,
and ankle joints in the sagittal plane. On the other hand, exo-
skeletons whose structure and joint axes aligned with those of
human body are able to perform the movement of a single
joint or multiple joints.

Robots in lower limb rehabilitation after stroke are devel-
oped with different concepts of the training. Some robots are
able to perform a certain training activity and modality.
Anklebot [19] is able to train ankle joint with active assistive
training modality while the lower limb paediatric therapy
device by Chrif et al. [20] was designed for leg press exercise
performing with active resistive training modality. Besides,
some robots can perform many training activities but with
a certain training modality. For example, the horizontal
lower limb rehabilitation training robot by Guo et al. [5] is
able to train lower limbs in six actions according to the tradi-
tional Chinese medicine technique with passive training
modality, whereas ViGRR [21] can perform gait trajectory
following and leg press exercise with active resistive training
modalities. Moreover, some robots are able to perform only
one training activity but with various kinds of training
modality. MOTOmed [22] can perform cycling exercise with
passive, active assistive, and active resistive training modali-
ties while Vi-RABT [12] can train ankle joint with active
assistive and active training modalities. The other robots
are able to perform many training activities and modalities.
The ankle rehabilitation robot by Yoon et al. [7] is able to
train ankle joint or perform gait trajectory following at the
ankle joint with passive, active assistive, and active resistive
training modalities. Physiotherabot [2] is able to perform
many training activities at hip and knee joints with passive,
active assistive, and active resistive training modalities. Lower
limb rehabilitation robot in our previous research [18] can be
used for therapeutic exercises at hip, knee, and ankle joints.
Because the robot structure is exoskeleton, it can perform
both single- and multiple-joint training. The desired trajec-
tory of the robot can be easily customized. Therefore, range,
pattern, and speed of the movement can be arbitrarily
adjusted to suit with the patient condition. It is also able to
perform passive, active assistive, and active resistive training
modalities. The robot is designed for versatile training for a
stroke patient in sitting position.

According to Table 2, training activities can be catego-
rized as single-joint training and multiple-joint training.
The single-joint training involves the movement of a spe-
cific joint (hip, knee, or ankle joint) in one or several
degrees of freedom. It can be performed by foot robotic
orthoses, footplate-based end-effector robots, and exoskele-
tons. On the other hand, the multiple-joint training
consists of the simultaneous movement of several joints
for performing exercises such as leg press, cycling, and gait
trajectory following. Some robots are able to perform a
customized movement by using recorded data (e.g., posi-
tion, velocity, and interaction force) obtained during the
robot teaching session by a physiotherapist. The multiple-
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TaBLE 1: Training activities of stroke rehabilitation robot in sitting/lying position.

Robot

Robot type

Actuated DOFs

Training activities

Training modalities

Anklebot

Vi-RABT

Ankle rehabilitation
robot by Yoon et al.

Lower limb paediatric

therapy device by Chrif et al.

Horizontal lower limb
rehabilitation training
robot by Guo et al.

ViGRR

Foot robotic
orthosis

Footplate-based
end-effector robot

Footplate-based
end-effector robot

End-effector
robot

End-effector
robot

End-effector

Ankle dorsiflexion/plantar
flexion, inversion/eversion
Ankle dorsiflexion/plantar
flexion, inversion/eversion
Ankle dorsiflexion/plantar
flexion, inversion/eversion,
metatarsophalangeal
flexion/extension

Movement in sagittal plane

Movement in sagittal plane,
ankle internal/external
rotation

Movement in sagittal plane

Training at ankle joint

Training at ankle joint

Training at ankle joint,
gait trajectory following

Leg press

Training at single/multiple
joints

Gait trajectory following,

Active assistive

Active assistive,
active

Passive, active
assistive, active
resistive

Active resistive

Passive

Active resistive

robot leg press
Passive, active
End-effector . . . .
MOTOmed robot Movement in sagittal plane Cycling assistive,
active resistive
Hip flexion/extension, Training at single/multiple Passive,
Physiotherabot Exoskeleton abduction/adduction, . § at sng p active assistive,
. . joints, customized movement . .
knee flexion/extension active resistive
Lower limb rehabilitation Hip flexion/extension, Training at single/multiple Passive,
robot in our previous Exoskeleton knee flexion/extension, & & P active assistive,

research

ankle flexion/extension

joints, customized movement . ..
active resistive

TaBLE 2: Training modalities implemented in each training activity.

Training activity

Training modalities

Passive Active assistive Active Active resistive
Single-joint training (at hip, knee, or ankle joint) X X X X
Multiple-joint training
Leg press
Cycling x x
Gait trajectory following
Customized movement x

joint training can be conducted by end-effector robots
and exoskeletons.

Single-joint training is usually selected for range of
motion exercise which can be performed with passive, active
assistive, or active training modalities. In addition, single-
joint training is also chosen when improvement of functional
ability of a specific joint is required. For example, the ankle
joint is targeted for the training by some rehabilitation robots
because stroke patients are usually unable to activate dorsi-
flexor muscle to lift the foot up. This problem leads to walk-
ing impairments of the patients such as toe dragging in the
swing phase and foot slapping in the heel strike phase.
Besides, the patients might have excessive inversion which
causes lateral instability in the stance phase of the gait [19].
Anklebot and Vi-RABT apply active assistive training
modality to provide assistance to a patient while using the

robots to move a cursor in computer games. The benefits of
the training are supported by results of clinical trials on
chronic stroke patients with Anklebot. It was shown that
the patients had better motor control (increased targeting
accuracy and faster and smoother movements) and walking
ability (increased walking velocity, durations of paretic single
support, and nonparetic step length which could be a result
from greater push-oft of the paretic foot) [23-25].

There are varieties of exercise that involve training of
multiple joints such as leg press, cycling, gait trajectory fol-
lowing and customized movement. The developers of the
robots selected one or several kinds of these exercises to
achieve different aspects of the stroke recovery.

Leg press exercise is extensively used in sport and neu-
romuscular rehabilitation. It aims to strengthen muscles
across multiple joints of the lower limbs in sitting/lying



position [26]. This exercise is able to activate leg muscles in a
similar level compared to bodyweight exercises such as chair
rise and hip thrust [27]. Moreover, it is found that chronic
stroke patients not only gain strength on both affected and
nonaffected legs but also have improvement in balance, walk-
ing ability, and functional performance [28, 29].

Cycling is an alternative exercise to walking for stroke
patients who have difficulty in maintaining balance and
independent gait [30]. It provides continuous repetitions of
movement which promotes coordination of muscle syner-
gies. Its kinematic pattern is also similar to walking as it
requires flexion and extension of hip, knee, and ankle joints
as well as activation of antagonist muscles in alternating
and coordinated manner. In addition, because the range of
motion in cycling is greater than that in walking, cycling
could help maintaining functional range of motion as a prep-
aration for gait training in the future [31]. It was found that
the stationary cycling training is able to enhance dynamic bal-
ance, muscle strength, and walking ability of chronic stroke
patients [30]. MOTOmed, which was specifically designed
for cycling exercise, had been used in clinical trials on stroke
patients. It was found that stroke patients who performed
resistive exercise with the device had improvement in walking
distance in 2 and 6 minutes walking test, increase in comfort-
able speed, and lower time spent on “Up & Go” test [22].

Walking is a functional task of lower limbs and the goal
of rehabilitation. However, the task consists of complex
movement that requires force generation for body weight
support, coordination, and weight shifting [31]. Gait training
of a stroke patient who still suffers from muscle weakness
demands great physical effort from both the patient and sev-
eral physiotherapists. Therefore, duration and numbers of
repetition in a gait training session in an upright position
might not be enough to gain effective rehabilitation outcome
[1]. Some robots are able to perform gait training for stroke
patients in sitting/lying position. These robots recorded gait
trajectories from healthy subjects to create a reference data
for training stroke patients. The ankle rehabilitation robot
by Yoon et al. performs isokinetic exercise by following ankle
and foot (metatarsophalangeal joint) reference trajectory. On
the other hand, ViGRR implements resistive exercise against
virtual damping and inertia to interact with the patient dur-
ing the gait trajectory following task.

Because physical characteristics may differ among stroke
patients and from day to day, the training should be custom-
ized individually at the beginning of each training session.
Physiotherabot was developed to train a stroke patient with
any movement pattern taught by a physiotherapist. Once
the movement is recognized, the robot will train a stroke
patient with that movement as if the training is performed
by a physiotherapist.

3. Lower Limb Rehabilitation Robot

The lower limb rehabilitation robot in this project is devel-
oped for movement training in sitting position. It aims to
be used by patients who have severe hemiparesis condition.
These patients are not comfortable to use typical treadmill
training devices at the beginning of training activities. The
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sitting position robot is more preferable especially at the
beginning state of training. The lower limb rehabilitation
robot in this study as shown in Figure 1 consists of a powered
exoskeleton, a counterbalance mechanism, a control unit,
and a monitor screen (not shown in the figure).

The exoskeleton is able to move in the sagittal plane at
hip, knee, and ankle joints. The hip joint allows 45° flexion
and 0° extension. The knee joint is able to move in the range
of 110° flexion and 0° extension. The ankle joint permits 20°
dorsiflexion and 45° plantar flexion. These ranges of motion
are ensured by mechanical stoppers placed at the end of the
joint movement range.

Figure 2 illustrates components of the cable transmission
mechanism of a robot joint (the knee joint is shown, e.g.).
The mechanism is actuated by a brushless servomotor
(SANYO DENKI). Sizes of the motors are 400 W for hip
and knee joints and 200 W for the ankle joint. Specifications
of the motors are provided in Table 3. The pulley A, which is
mounted at the end of the motor shaft, drives the pulley B via
cable. The second stage of the cable transmission is done by
the shaft connected to the pulley B. Another end of this shaft
works as a small pulley for driving the pulley C via cable.
With the shaft connected between the pulley C and the shank
segment, the shank segment rotates about the knee joint axis
with respect to the pulley C.

The torque requirements (maximum torque) of hip and
knee joints are considered when lower limbs stretch out in
sitting position while the torque requirement for the ankle
joint is considered at neutral sitting position. According to
anthropomorphic data [32], for a human with 100 kg weight
and 180 cm height, torque requirements for hip, knee, and
ankle joints are 67.331, 18.598, 1.945 N-m, respectively. For
the robot joint design, transmission ratios of hip, knee, and
ankle joints are chosen so that continuous torque provided
by the robot joints is sufficient for the torque requirements.
Specifications of the robot joints are shown in Table 4.

To achieve backdrivability of the robot joints, the inertia
of the corresponding robot segment must be lower than the
reflected motor inertia (the product of the square of the
transmission ratio and the inertia of the motor) [33]. The
ranges of inertia of thigh, shank, and foot segments according
to their minimum and maximum lengths are given in
Table 5. It can be noticed that the reflected motor inertias
of hip, knee, and ankle joints are always lower than the
moments of inertia of thigh, shank, and foot segments about
their proximal joint axes, respectively. Therefore, it can be
concluded that the robot joints are backdrivable.

The counterbalance mechanism is designed to reduce
effects of the gravitational load due to robot’s weight. The
mechanism consists of vertical guide rods, linear bearings, a
12 kg mass, and a cable which wraps around a series of idlers
to link the thigh segment of the exoskeleton and the 12kg
mass together. The guide rods and idlers are mounted on
the control unit. The weight of the 12kg mass generates
counterbalance moment about the hip joint whose magni-
tude corresponds to the hip joint angle in order to counteract
the moment due to robot’s weight. With this counterbalance
mechanism, the torque requirement of the hip joint trans-
mission mechanism is reduced up to 20.7 N-m.
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F1GURrk 1: Lower limb rehabilitation robot in sitting position consisted of an exoskeleton (with hip, knee, and ankle joints), the counterbalance
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FIGURE 2: Cable transmission mechanism of the knee joint.

TaBLE 3: Specifications of brushless servomotors.

TaBLE 5: Dimensions and inertia properties of the robot segments.

Peak stall

Power torque Rated Rated Inertia

(W) d torque (N'm) speed (rpm) (x 10™*kg-m?)
(N-m)

400 4.8 1.27 3000 0412

200 2.2 0.637 3000 0.219
TABLE 4: Specifications of the robot joints.

Joint Transmission Continuous Reflected motor inertia

ratio torque (N-m) (kg - m?)

Hip 57.76:1 73.36 0.137

Knee 15:1 19.05 9.27x107°

Ankle 15:1 9.56 4.93x107°

Both the exoskeleton and the counterbalance mecha-
nism are installed on the control unit as a single platform.
The control unit also contains a DC power supply, a

Length Moment of inertia about the proximal joint

Segment (mm) axis (kg - m?)
Thigh 365-465 0.141-0.258
Shank 365-465 0.140-0.259
Foot 75-95 0.006-0.007

computer unit, a data acquisition card, motor amplifiers,
an emergency stop button, and other electronic devices.

4. Control System

The lower limb rehabilitation robot is developed to train a
subject with various training activities and modalities.
Control algorithm for each training modality had been
introduced in the previous work [18]. In this study, the
control algorithm for active assistive exercise is described
in more detail.



4.1. Control Strategy. In active assistive exercise, a patient
moves his limb in desired movements. The assistance on
the patient’s limb exerted by a physiotherapist will be
given as much as necessary to achieve the task and only
when needed.

Modern rehabilitation robots have realized this interven-
tion technique, which is usually called the “assist-as-needed”
control strategy, into their controllers. One of the most pop-
ular controllers is an impedance controller. This controller
simulates the interaction between human and a robot with a
function between force and kinematic variables (position,
speed, and acceleration). The robot will interact to the envi-
ronment (which is human, in this case) as if it is connected
to virtual mechanical components such as springs, dampers,
and masses. Since the characteristics of the human-robot
interaction is controlled rather than position, the impedance
controller allows some degree of position error and does not
enforce the movement of the robot to follow the exact refer-
ence trajectory. This allows both spatial and temporal vari-
ability of the movement which does not only improve
motor coordination and walking ability [34] but also promote
active participation of the patient 3, 35]. Both variability and
active participation are important factors for motor recovery
as they provoke neuroplasticity and motor learning [35-37].

4.2. Control Architecture. The control algorithm for each
joint of the robot as shown in Figure 3 consists of 3 cascaded
loops which are outer, middle, and inner loops. The outer
control loop is implemented with the impedance controller
whose control law (P) is shown in (1). It establishes the rela-
tionship between joint angle error (e,) and the magnitude of
desired torque (7). In literature, many impedance control
laws for rehabilitation robots were nonlinear such as Gauss-
ian [12], polynomial [35, 38], or exponential [39] function.
With a nonlinear impedance control law, low desired torque
is generated for small position error but the magnitude of the
desired torque increases with higher rate compared to the
change of position error. This controller characteristic
encourages a patient to move voluntarily if the position error
is within acceptable tolerance. However, these control laws
usually consist of one control gain. This could limit how
the magnitude of desired torque changes with respect to posi-
tion error. Therefore, the impedance control law developed
for the robot in this research has two control gains K, and
K, so the relationship between joint angle error and desired
torque can be defined with more specifications. The proce-

T NKK, (Kys+K,) (K;s+ 1) (K,s +1,)
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dure to select proper control gains will be presented in the
next section of the article. Moreover, the impedance control
law also considers the magnitude of desired force due to joint
velocity error as represented by the last term in (1). The con-
trol gain K; determines the magnitude of the damping force
which could reduce oscillation of the human-robot interac-
tion. It is noticed that the impedance controller in (1) is sim-
ilar to a PD controller.

7= K, (exp(K,|0,,—0;]) - 1)sgn(6,, - 0,) + K, d/dt(6,,-6,).
(1)

The saturation function is applied after the impedance
control law to limit the maximum assistance force to be gen-
erated by the robot. The required gravitational torque (7)) is
also added to the desired torque to cancel the load at the
robot joint due to robot’s weight. For the hip joint, the
required gravitational torque is reduced by the moment gen-
erated by the counterbalance mechanism. The resultant con-
trol signal is used as the torque reference for the middle
control loop. A PI controller with control gains K, and I, is
used to ensure perfect torque tracking.

The output of the torque controller in the middle control
loop is used as the reference signal for the inner control loop.
Another PI controller with control gains K; and I, is imple-
mented to generate control signal to the motor driver in
order to actuate a robot joint with inertia of J. The encoder
mounted on the motor shaft measures the motor position.
It can be used to estimate the position of the robot joint
(6,) by dividing the motor position by the total transmission

ratio (N) of the robot joint. The velocity of the robot joint (6;)
is differentiated from the estimated joint position.

Motor current (i) measured by the motor driver is
detected due to the elastic force from the transmission mech-
anism. The magnitude of the elastic force is the product of
the mechanism stiffness K and position difference between
angle of the robot joint and angle at the load side that might
be disturbed by an environment (6y;). The joint torque is
obtained from the motor current multiplied by the torque
constant (K,) of the motor and the total transmission ratio
of the joint.

By viewing the impedance controller as a PD controller,
P becomes K s + K. The open loop transfer function of the

system is derived as

From (2), the system is strictly stable since the coeflicient
of the denominator is positive. Moreover, it can be noticed
that the relative degree of the system is 1. Therefore, the

e Js'+Ks® + (I, + NKK, + NKK,K,K,)s> + NKK, (K1, + K,I,)s + NKK, [T,

phase shift of the system in response to sinusoidal inputs is
always less than 90 degrees such that the Nyquist plot of (2)
lies entirely in the right half complex plane. With these
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F1Gure 3: Block diagram of control algorithm for active assistive exercise.

characteristics, it can be concluded that the system is strictly
stable or passive [40]. This property implies that the system
cannot output more energy than that was input into the sys-
tem. In other words, stability of the interaction between the
robot and an environment is guaranteed.

4.3. Control Gain Selection Procedure. The magnitude of the
desired torque due to joint angle error (7, ) is defined by

the first term in the impedance control law (1)
Tae, = Ki(exp(Kyep) = 1), (3)

where e;=10;,—0;| is the magnitude of error between
desired and actual joint position. It is noted that the function
sgn(ey) shown in (1) is for determining the direction of the
desired torque, so it is omitted in (3).

Differentiating (3) with respect to position error, the rate
of change of desired torque is obtained

de’eﬂ

dEQ

= K, Kyexp(K,ep). (4)
The initial rate of change of desired torque (by setting
eg=0) is

de,e(-)
d€9

=KK,, (5)

) (6)
))4 ”

By specifying the maximum desired torque generated by

the controller (r73*)and the maximum allowable position
error (e§™), it is found that

erenax de,e‘,
0 -1]. 8
p( (dee )) ] ®)

If the initial rate of change of desired torque is known, the

SO

K, = 1 (Frae,
Kl d69

Substituting (4) into (3) yields

Td,eg = Kl

max _
Td,ee - Kl

control gain K, can be obtained by solving (5) numerically.
Next, the control gain K, can be calculated from (4).

4.4. Effects of the Impedance Controller Gains on the Robot
Response. To study the effect of the nonlinear relationship
between joint angle error and desired torque in (1). The ankle
joint of the robot is tested with three sets of control gains as
shown in Table 6. The control gains K, and K, are chosen
so that the controller generates the maximum ankle torque
(I0N-m) at joint angle errors of 0.03, 0.05, and 0.07 rad with
different initial rate of change of desired torque (K,K,) as
seen in Figure 4. The control gain K ; is the same for the con-
trollers A, B, and C.

The objective of this experiment is to investigate the
response due to the disturbance torque at robot’s ankle joint
which is implemented with controllers A, B, and C. During
this experiment, no human subject is included and the distur-
bance torque is generated in robot’s program by adding it
before the torque control loop. The desired joint angle is
always fixed at zero while the magnitude of the disturbance
torque changes over time. Its magnitude increases from zero
to the maximum value in 1 second. The maximum distur-
bance torque is hold for another second. Then, the magni-
tude decreases from the maximum value to zero in 1
second and is kept at zero until the end of each tests. The
maximum magnitude of the disturbance torque is chosen as
1, 4, 7, and 10 N-m. This experiment simulates the circum-
stance when a human subject performs a movement training
with the robot. At first, the subject gradually moves out of the
desired path, stays at some position errors, and finally gets
back to the desired path. The disturbance torque on robot’s
controller is caused from the position deviation from the
desired path.

Figure 5 shows the ankle position of the robot during the
experiment with the controllers A, B, and C. Generally, it
could be seen that the controller A always produces the high-
est angle error (deviation from the desired angle which is zero
in this experiment) while the controller C generates the smal-
lest angle error. The higher the magnitude of the disturbance
torque, the higher the controllers produce angle error. Dur-
ing the first second, the controller A produces angle error
which increases with varying rate as the magnitude of the dis-
turbance torque is rising. On the contrary, the controller C
creates angle error almost proportional to the magnitude of
the disturbance torque. This difference originates from the
relationship between angle error and torque generated by
the controllers. As seen from Figure 4, the slope of the
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TaBLE 6: Impedance control gains of the ankle joint.

Initial rate of ~ Angle error at the
Controller ~ change of maximum K, K, K,

desired torque torque (rad)
A 30 0.07 0.81 37.01 2.0
B 100 0.05 3.98 25.13 2.0
C 300 0.03 4342 691 2.0

10
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F1GURE 4: Relationship between angle error and torque generated by
controllers A, B, and C of the ankle joint.

relationship of the controller A is very different at low and
high angle error while the slope of the relationship of the
controller C is almost constant. Therefore, with the same
amount of change in the magnitude of the disturbance tor-
que, the angle error produced by the controller A changes
much faster than that by the controller C. The varying rate
of angle change can also be found in the experiment with
the controller B too, but the change is not as obvious as the
controller A. While the magnitude of the disturbance torque
is at the maximum value, the ankle angle in each case is con-
stant. It can be noticed from Figure 5(d) that the angle error
almost reached the certain error used in the controller design
(0.07, 0.05, and 0.03rad for the controllers A, B, and C).
When the magnitude of the disturbance force is decreasing
from its maximum value, the trends of the angle change by
each controllers are also the same as in the first second of
the experiment. After the magnitude of the disturbance tor-
que reaches zero, it could be seen that the ankle position does
not converge to zero. The remaining angle error is highest in
the experiment with the controller A and lowest in the exper-
iment with controller C. It is found that torque generated by
these controllers is only around —0.3N-:m (not shown in
Figure 5). Since friction in the robot mechanism is minimized
by the robot design and the manufacturing of the robot parts,
it is believed that the remaining angle errors are mainly due
to the imperfect gravity compensation.
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It can be concluded from this experiment that both con-
trol gains K, and K, determine how the robot responds to
external torque. In order to obtain desired interaction
between a human and the robot, these control gains should
be selected appropriately. They can be calculated by using
specified initial rate of change of the desired torque and max-
imum allowable angle error and torque. As demonstrated by
the experimental results, the initial rate of change of desired
torque defines the robot response at low angle error while
the maximum angle error and torque determine the limit of
the robot response. Therefore, if high angle error is allowed
during the movement training, low initial rate of change of
desired torque and high maximum angle error should be
chosen. For more strict movements, high initial rate of
change of desired torque and low maximum angle error
should be selected. The maximum torque can be set accord-
ing to the maximum capacity of the robot actuator or the
amount of assistance required by an individual patient for a
movement training. In the rest of the article, the impedance
control gains of hip, knee, and ankle joints are selected with
the same criterions used in this section. However, the
maximum torque of hip and knee joints is 50 and 20 N-m,
respectively. The controllers A, B, and C are named as low,
medium, and high assistance controllers, respectively.
Table 7 summarizes the impedance control gains of the robot
joints in each mode.

4.5. Robot Response due to External Impact Force. In Section
4.2, it was shown that the robot controller is passive. This
property ensures the stability of the interaction between the
robot and an environment. In this experiment, the robot is
tested under impact force to verify the system’s robustness
in the sense of withstanding external impacts. During the
experiment, there is no human subject worn the exoskeleton.
The impact force is applied at the foot segment of the exo-
skeleton while it is fixed at a certain position (at hip, knee,
and ankle angle of 0.703, 0.097, and 0.0 rad, resp.). The inten-
sity of the impact force is high enough to reach the torque
limit of at least one of the robot joints within a short period
of time (torque limits for hip, knee, and ankle joints are 50,
20, and 10N-m, resp.). The impedance control gains used
in this experiment are referred to Table 7.

As seen in Figure 6, during the impact, hip, knee, and
ankle angles deviate from the desired fixed position. Some
robot joints generate torque at their maximum limit during
the impact. Even though, the robot joint torque reaches the
maximum limit as illustrated by flat peaks of torque signals,
the robot joints finally get back to the desired position
after few oscillations. This experiment has shown that
the system is robust to external large impact force. Moreover,
it confirms the stability of the system when interacting to
an environment.

5. Experiment by a Healthy Subject with
Various Training Activities
5.1. Method. To train a human subject with the robot as

shown in Figure 7, the subject has to sit on a chair with an
adjustable inclination backseat next to the control unit. Next,
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FIGURE 5: Response of robot’s ankle joint implemented with the controllers A, B, and C as a result from the disturbance torque with maximum
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TaBLE 7: Impedance control gains for hip, knee, and ankle joints in
low, medium, and high assistance mode.

Low assistance Medium High assistance

Joint mode assistance mode mode

K, K, K; K K, K; K Ky, Ky
Hip 044 6762 50 138 7230 5.0 320 9367 50
Knee 0.59 50.71 4.0 2.14 46.73 4.0 6.29 47.65 4.0
Ankle 0.81 37.01 2.0 398 2513 2.0 4342 691 2.0

lengths of the exoskeleton segments are adjusted so that the
robot fits on the subject’s leg where the axes of hip, knee, and
ankle joints of the subject are aligned with robot joint axes.
Then, Velcro straps are used to fasten the subject’s leg and
the exoskeleton together at thigh, shank, and foot segments.

Before the training session, the reference path must be
defined by teaching the robot. By manually moving the exo-
skeleton (and the subject’s leg) to the starting point of the
desired movement, the robot operator can use the user inter-
face shown on the monitor screen to record the current joint
position of the robot. The next points of the desired move-
ment are also obtained while moving the exoskeleton and
recording a sequence of the desired position. When the
teaching is done, the reference path for the training is gener-
ated by connecting a series of the selected points with straight
lines. The desired joint angles are linearly interpolated
between a selected point and the consecutive point. The rep-
etition of the path can be selected as moving back and forth
or as a cycle (the last point connected to the first point).
The desired path can be generated to perform various
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FIGURE 7: Training a subject with the robot.

training activities both single-joint and multiple-joint train-
ing. Figure 8 presents the reference path of seated marching
exercise (for hip flexion exercise), the single-joint training at
knee and ankle joint, and cycling exercise both in joint space
and Cartesian space. The virtual leg of the subject is illustrated
as triangles for thigh (pink), shank (blue), and foot (yellow)
segments. It is displayed on the monitor screen as a visual
feedback to the subject while tracking the reference trajectory.

Once the reference trajectory is generated, the operator
must select the trajectory speed and assistance level. When
the training starts, the reference position moves from the first
point to the last point along the reference path and repeats
the movement. Actual joint angle and torque are recorded
at the frequency of 100 Hz and shown on the monitor screen.
The training session continues until the “stop” button on the
user interface is pressed.

In this study, a preliminary experiment was conducted
on a volunteered healthy subject (male, age 28 years,
weight 65kg, height 168cm, and without history of

neurological disorder). The training activities include seated
marching exercise, training at knee and ankle joints, and
cycling training whose reference paths are shown in
Figure 8. The subject is informed to keep tracking the refer-
ence trajectory, which is shown on a monitor screen along
with the current position of the robot, as much as possible.
Speed of the trajectories in Cartesian space is set as a constant
throughout the training. However, for the single-joint train-
ing, when reaching the first and the last point of the reference
path, the movement is paused for one second. Each training
consists of 8 cycles of movement. Control gains K, K,, and
K, used in this experiment are referred to Table 7.

5.2. Statistical Data Analysis. The data of the movement is
separated into data from each cycle. Time spent on a cycle
is normalized so that 0% represents the start of the cycle

and 100% is the end of the cycle. Average angle (0,,)

and assistance torque (Tj,) at i% of a movement cycle
are calculated from

éi% = >
n
L 9)
T
— _ j=1 i%
Ty, = " >

where 7 is the number of movement cycles which is equal to

8 for this experiment, and &, and T”,, are angle and torque at
i% of the j cycle. The average data profile is obtained by
connecting average angle from 0% to 100%.

The root mean square value is chosen as the represen-
tative of the average data in a movement cycle. The root
mean square error (€ _g.m,) between the reference
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FI1GURE 8: Reference paths for seated marching exercise, the single-joint training at knee and ankle joint, and cycling exercise in (a) joint space

and (b) Cartesian space.
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trajectory (6,.¢) and the average trajectory (6) is computed
as follows:

N A 2
6 0 6'0
eereffé,rms = \/Zk:l( relf\’;b M)) > (10)

where N is the number of data in one cycle of movement
(index k=1 and k = N refers to data at 0% and 100%). Note
that the reference trajectory is the same in every movement
cycle, so 0, , is not averaged.

To determine the deviation between the trajectory of each
movement cycle and the average trajectory, another error
that compares the angle of the j* cycle to the average angle

at i%(eé_(9 1) is described by

e

0-0,i%

:6{%_@{% (11)

th ‘ .
The root mean square error of the j cycle (eg_@’rms)m

N

0-0,rms =

The standard deviation of the root mean square error
(SD,,, ) is calculated to identify the variation of data

from 8 movement cycles:

n i _ 2
Zj:l (ele—é,rms - e@—é,rms)

€ Brms n

) (13)

where

é@—@,rms -

no
Z j=1 el@—é,rms
" i

(14)

ms) 18 derived

T = \/Zkﬂﬂ, (15)
N

where T, is the torque averaged from 8 movement cycles
at i%. The root mean square average torque is a good repre-
sentation showing the amount of assistance torque provided
to a subject because the value of positive and negative sign is
not canceled out. The direction of the assistance torque can
be observed from the average torque profile.

The root mean square average torque (T
as follows:

5.3. Results

5.3.1. Seated Marching Exercise. In Figure 9, the average hip
trajectory and torque obtained from 8 movement cycles
and 3 different assistance levels are shown with respect to
movement cycle percentage (0% and 100% represent the
start and the end of each movement cycle). The movement
starts by performing hip flexion (increasing hip angle) and
pauses for one second (constant maximum hip angle) and
then performing hip extension (decreasing hip angle) and
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pauses for another one second (constant minimum hip
angle to complete the cycle). One cycle of the movement
takes 9.45 seconds.

According to Table 8, the training with low assistance has
the highest angle error. In Figure 9, the average trajectory of
low assistance training has the largest deviation from the ref-
erence trajectory while the average trajectory of medium and
high assistance training is closer to the reference trajectory,
respectively. The variation of the actual trajectory in 8
movement cycles as compared to the average trajectory
can be identified by the standard deviation. It is noticed
from Table 8 that the highest variation is found in the
training with low assistance. Moreover, the average assis-
tance torque during the training with low assistance also
has the lowest magnitude. It can also be seen in Figure 9(b)
that the torque profiles in low, medium, and high assistance
training are similar when compared at each percentage of
the movement cycle.

5.3.2. Training at Knee Joint. Figure 10 shows the average
knee angle and torque during the training at knee joint.
The movement starts by performing knee extension
(decreasing knee angle) and pauses for one second (constant
minimum knee angle) and then performing knee flexion
(increasing knee angle) and ends after another one-second
pause (constant maximum knee angle). Hip and ankle joints
do not move, so their reference angles are fixed at zero. One
cycle of the movement takes 24.43 seconds.

As shown in Table 9, the low assistance training has the
highest error between the average and the reference trajec-
tory. The standard deviation which shows variation of the
actual trajectory in 8 movement cycles compared to the
average trajectory is highest in the low assistance training.
Besides, the lowest magnitude of average assistance torque
is found in the low assistance training. As seen from
Figure 10(b), the shapes of torque profiles are similar in
low, medium, and high assistance training.

5.3.3. Training at Ankle Joint. The average ankle angle and
torque during the training are shown in Figure 11. The
movement starts from performing ankle plantar flexion
(increasing ankle angle) and pauses for one second and
then performing ankle dorsiflexion (decreasing ankle angle)
and pauses for another one second. During the training, the
knee angle is fixed at a negative constant angle to avoid
the foot slapping on the floor. One cycle of the movement
takes 6.13 seconds.

According to Table 10, the highest error between the
average and the reference trajectory is found in the low
assistance training. Large variation of the actual trajectory
in 8 movement cycles compared to the average trajectory
also occurs in the low assistance training. Moreover, the
robot provides the lowest average assistance torque to
the subject in low assistance training. It could be noticed
that the variations of the movement in the medium and
high assistance are similar. The torque profiles in low,
medium, and high assistance as shown in Figure 11(b)
are also resemblant.
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FIGURE 9: Seated marching exercise with low (Low), medium (Med), and high (High) assistance. (a) Average hip angle compared to the

reference trajectory (Ref). (b) Average hip assistance torque.

TaBLE 8: Statistical data of the hip joint from the seated marching
exercise.

Level of assistance €y 5, (rad) (x 10’“’:?31:;(1) T\ ms (N-m)
Low 0.0198 28.31 2.40
Medium 0.0123 11.04 2.57
High 0.0090 6.55 4.25

5.3.4. Cycling Exercise. In Figure 12, the average angle and
assistance torque of hip, knee, and ankle joints are compared
when training with low, medium, and high assistance level.
As noticed from Figure 13(b), the starting point of the move-
ment is located at (x, y)=(-310 pixel, =150 pixel) and the
direction of the movement is counterclockwise around the
center of the circle located at (x, y) = (=360 pixel, —150 pixel).

The cycling reference trajectory includes the movement of
hip and knee joints while the ankle angle is fixed at zero.
The reference trajectory is created from straight lines con-
necting reference points to the consecutive points. The move-
ment is continuous, so there is no pause in a movement cycle.
One cycle of movement takes 11.45 seconds.

As noticed from Table 11, the highest error between the
average and reference trajectory almost occurs in the training
with low assistance. High variation of the movement is also
likely to be found in the low assistance training compared
to the medium and high assistance training. Furthermore,
the average assistance torque applied by the robot is usually
low in the low assistance training while the medium and high
assistance training tend to generate higher magnitude of
assistance torque. It can be seen from Figure 12(b) that the
shapes of torque profiles for low, medium, and high assis-
tance are similar. Figure 13 compares the average trajectory
to the reference trajectory when the subject trained with
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FIGURE 10: Training at knee joint with low (Low), medium (Med), and high (High) assistance. (a) Average knee angle compared to the

reference trajectory (Ref). (b) Average knee assistance torque.

TaBLE 9: Statistical data from the training at knee joint.

SD%?Q ms
€9 ,—frms (rad) s T

Level of assistance (x 10 rad) s (N-IT1)
Low 0.0107 23.26 5.35
Medium 0.0077 16.97 5.97
High 0.0033 9.00 6.05

low, medium, and high assistance. The average trajectories as
seen in joint space and Cartesian space are closed to the ref-
erence trajectory with some degree of angle error.

5.3.5. Discussion. The experiment has shown that the robot is
able to train the subject with many activities and levels of
assistance. The subject can track the reference trajectories
with some angle errors. The magnitude of the error is usually
high in low assistance training followed by medium and high
assistance training.

The variation of the movement can be determined from
the standard deviation which derived from the comparison
between the actual trajectories in 8 movement cycles and
the average trajectory. It was found that the low assistance
training is likely to have the highest movement variation
for hip, knee, and ankle joints in any training activities. In
other words, the subject has more freedom to move on his
own in the low assistance, even though the patterns of the
movement in each cycles are not consistent.

The average magnitude of assistance torque is usually
lowest in the low assistance training. Shapes of the torque
profiles for low, medium, and high assistance are similar
when comparing at each movement cycle percentage. It
could be seen that there are abrupt changes of the torque pro-
file in the seated marching exercise and the single-joint train-
ing at knee and ankle joints at the transitions before and after
the movement pauses. These might result from the speed of
the trajectory which is set as a constant and absence of
smooth changes at these transitions. Assistance torque
changes rapidly in order to create acceleration/deceleration
for stopping or initiating the movement. These abrupt
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FIGURE 11: Training at ankle joint with low (Low), medium (Med), and high (High) assistance. (a) Average ankle angle compared to the

reference trajectory (Ref). (b) Average ankle assistance torque.

TaBLE 10: Statistical data from the training at ankle joint.

Level of €5 —B,rms SD,, . (x 107 Tome
assistance (rad) rad) (N-m)
Low 0.0253 19.56 14
Medium 0.0141 4.42 1.81
High 0.0071 5.00 2.15

changes are also found in the cycling exercise when changing
the reference point. Although the speed remains constant,
the direction of the movement changes at the reference
points. Thus, assistance torque changes suddenly in order
to create acceleration for changing the direction of the move-
ment at these transitions.

6. Conclusion

Lower limb rehabilitation robots in sitting position have been
researched extensively. Rehabilitation robots were developed

into many types and targeted at different degrees of freedom
for the physical therapy. Training activities performed by
these robots differ according to robot’s configuration and
the selection of training modalities. These activities can be
categorized as single-joint and multiple-joint training. The
single-joint training focuses on the movement of an individ-
ual joint such as hip, knee, or ankle joint. On the other hand,
the multiple-joint training associates the movement of many
joints in the same time so that a variety of exercises such as
leg press, cycling, gait trajectory following, or customized
movement could be performed. Some robots were developed
to perform a specific training activity while the others are
able to perform several training activities.

A lower limb rehabilitation robot in sitting position for
stroke patients was developed in the previous research. It
has three degrees of freedom at hip, knee, and ankle joints
which allow movements of lower limbs in sagittal plane. This
robot is able to perform many training activities and modal-
ities. The control system for active assistive exercise is
described in detail. The impedance control law implemented
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F1GURE 12: Cycling exercise with low (Low), medium (Med), and high (High) assistance. (a) Average hip, knee, and ankle angle compared to
the reference trajectory (Ref). (b) Average hip, knee, and ankle assistance torque.
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TaBLE 11: Statistical data from the cycling training.
Low assistance Medium assistance High assistance

Statistical data e(:)m-—é,rms SDeﬁfﬁ,rms Trms eeref—é,rms SDeﬁfﬁ,rms Trms eeref—é,rms SDeefe,rms Trms

(rad) (x10*rad) (N-m) (rad) (x10*rad) (N:m) (rad) (x10™*rad) (N:m)
Hip 0.0125 25.31 3.50 0.0104 8.76 3.82 0.0041 9.14 4.11
Knee 0.0199 29.76 191 0.0150 6.91 1.50 0.0073 2.82 1.02
Ankle 0.0090 13.09 0.52 0.0100 1.29 1.31 0.0030 2.82 1.08

by the developed rehabilitation robot uses two constants to
define the relationship between angle error and desired tor-
que to be generated by a robot joint. With the damping term
in the impedance control law, the passivity property of the
system is verified. These control gains are chosen based on
the initial rate of change of desired torque, maximum allow-
able angle error and torque. Different sets of control gains
result in different robot response due to disturbance torque.
The robot is also tested under impact force to prove its
robustness. The experiment conducted on a healthy subject
has shown that the robot is able to perform many training
activities such as seated marching exercise, single-joint train-
ing at knee and ankle joints, and cycling exercise with active
assistive training modality and with many levels of assistance.
It is found that low assistance training usually produces the
highest error between the average trajectory and the refer-
ence trajectory. This implies that the subject is not restricted
to move exactly along the reference trajectory. The standard
deviation is derived by comparing the movement in each
cycle to the average trajectory so that the variation of the
movement could be investigated. The greatest movement
variation is likely to be found in low assistance training than
in medium and high assistance training. High angle deviation
and movement variation in low assistance training imply
that the subject could move the limbs with more freedom.
The assistance torque is provided by the robot to ensure
the completion of the movement. It is also found that
the low assistance training usually generates the lowest
magnitude of the assistance torque. Abrupt changes in
assistance torque, which can be noticed in each training
activity, result from the rapid change in speed and direc-
tion of the reference trajectory.

In future research, the movement of the robot at the
transitions should be improved by smoothing the change in
speed and direction at the transitions. Clinical trials should
be conducted on stroke patients to verify the effectiveness
of the robot and control system for stroke rehabilitation task.
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Robot-mediated neurorehabilitation is a growing field that seeks to incorporate advances in robotics combined with neuroscience
and rehabilitation to define new methods for treating problems related with neurological diseases. In this paper, a systematic literature
review is conducted to identify the contribution of robotics for upper limb neurorehabilitation, highlighting its relation with the
rehabilitation cycle, and to clarify the prospective research directions in the development of more autonomous rehabilitation
processes. With this aim, first, a study and definition of a general rehabilitation process are made, and then, it is particularized
for the case of neurorehabilitation, identifying the components involved in the cycle and their degree of interaction between
them. Next, this generic process is compared with the current literature in robotics focused on upper limb treatment, analyzing
which components of this rehabilitation cycle are being investigated. Finally, the challenges and opportunities to obtain more
autonomous rehabilitation processes are discussed. In addition, based on this study, a series of technical requirements that should
be taken into account when designing and implementing autonomous robotic systems for rehabilitation is presented and discussed.

1. Introduction

According to the findings obtained in the context of a Global
Initiative on Neurology and Public Health carried out by the
World Health Organization (WHO), many of the neurologi-
cal disorders are chronic and progressive, constitute a global
public health problem [1], and affect especially the elderly
people. In addition, a higher life expectancy makes the popu-
lation of people over 60 increasingly higher [2]. The main
patient groups served by the rehabilitation service in the
United Kingdom are for neurological pathologies, as a survey
reported [3]. 70% of respondents provided neurological reha-
bilitation services for people with stroke, multiple sclerosis,
traumatic brain injury, degenerative neurological diseases,
and other neuromuscular conditions. Other services that
were represented were those that provided rehabilitation to
people with severe single-incident brain injury (10%), spinal

injury (9%), amputees (5%), musculoskeletal disability (4%),
learning disabilities (1%), and pain (1%). In Spain, a similar
situation is detected where musculoskeletal and articular
disability (50%), neurological diseases (15%), traumatic inju-
ries (29%), and others (6%) were treated in the rehabilitation
services [4].

This situation, together with the need for rehabilitation
and assistance for people with disabilities, means that robotic
care and rehabilitation may play an important role in the
years ahead.

Nowadays, research on the use of robotic systems in
different fields related to healthcare is widespread [5-7].
In the field of rehabilitation, scientific literature shows vari-
ous classifications of such systems according to their level
of interaction [8], the extremities that are treated [9-12],
the modularity of the rehabilitation robots [13, 14], con-
trol strategies [15, 16], and the effectiveness of treatment
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[17-20]. However, no analysis has been done of the rehabil-
itation process as such, and the contribution of robotics in
the different stages of the rehabilitation cycle or process has
not been studied.

In this paper, a systematic literature review is conducted
to identify the contribution of robotics for upper limb neu-
rorehabilitation highlighting its relation with the rehabilita-
tion cycle and to clarify the prospective research directions
in the development of an autonomous rehabilitation process.

2. The Rehabilitation Process

The World Report on Disability by the WHO and World
Bank [21] provides a definition of rehabilitation: “a set of
measures that assist individuals who experience, or are likely
to experience, disability to achieve and maintain optimal
functioning in interaction with their environments.”
Despite this, the term rehabilitation covers a wide field of
applications, being a subject to different connotations in a
world characterized by a profound cultural diversity. Meyer
etal. [22] provided a conceptual description of rehabilitation:
“it is the health strategy which is based on the WHO’s inte-
grative model of functioning, disability, and health, with the
goal to enable persons with health conditions experiencing
or likely to experience disability to achieve and to maintain
optimal functioning in interaction with the environment.”
The health strategies can be different, but they can
share a series of steps to improve the patient’s health status
throughout the rehabilitation process. This process involves
the identification of a person’s problems and needs, relating
the problems to relevant factors of the person and the envi-
ronment, defining rehabilitation goals, planning and imple-
menting the measures, and assessing the effects [21]. This
approach is named the rehabilitation cycle (see Figure 1),
which is taken from the World Report on Disability [21],

and it was previously stated by Stucki and Sangha [23] and
modified by Steiner et al. [24].

In a simplified way, the rehabilitation cycle includes four
steps: assessment, assignment, intervention, and evaluation.
The process takes place on two levels: the first corresponds
to the guidance provided along the continuum of care and
the second refers to the provision of a specific service [25].

From the point of view of the care guide, the assessment
consists of the identification of the problems and needs of the
person, the analysis of rehabilitation potential and prognosis,
the definition of the long-term service, and the goals of
the intervention program. Assignment refers to the inclu-
sion of the person in a program of intervention in the most
appropriate service for the treatment of their needs. For the
guidance perspective, no specifications appear in the inter-
vention. Evaluation refers to the service and the achievement
of the intervention goal.

From the perspective of providing a specific service, the
assessment includes the identification of the problems, the
review and potential modification of the service or goals of
the intervention program, the definition of the first goals of
the rehabilitation cycle, and the objectives of the interven-
tion. The assignment step refers to the allocation of profes-
sionals and health interventions necessary to achieve the
intervention objectives. The intervention consists in the spec-
ification of the techniques, measures, and the definition of
target values that must be achieved within a predetermined
period of time. Finally, the evaluation determines the
achievements of the objectives with respect to the specific
indicators, the goals of the rehabilitation cycle, and, ulti-
mately, the goals of the intervention program. It also includes
the decision regarding the need for another intervention
cycle based on a new assessment.

2.1. The Rehabilitation Team. Rehabilitation requires the
services of multiple healthcare providers who possess unique
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skills, training, and expertise that are employed for the full res-
toration of the patients’ function and their optimal reintegra-
tion into all aspects of life [26]. Rehabilitation professionals
have recently favoured the concept of “patient-centred
therapy.” This is not meant to trivialize the patient’s needs
but rather to emphasize the patient as the director and arbiter
oftheinterventions according to the patient’s own desires [27].

The integration of the different medical means can be
done through three working models [26, 28]: (a) multidisci-
plinary team model—in which team members interact and
communicate among themselves, knowing the work of all
the components and offering an evaluation and parallel but
independent work; (b) interdisciplinary team model—where
the team members share a formal space in which information
is exposed (designed to facilitate the flow of lateral communi-
cation) and decisions are made around one or several com-
mon objectives (in this way, the treatments performed by
the different professionals are not independent); and (c)
transdisciplinary team model—which not only promotes
communication among group members but also acquires
knowledge from other related disciplines and incorporates
them into the practice [29].

Because the interdisciplinary model is designed to facili-
tate lateral communication, it is theoretically better suited
for rehabilitation teams [28].

2.2. Rehabilitation Measures and Outcomes. Rehabilitation
measures are a set of recovery actions that target body func-
tions and structures, activities and participation, environ-
mental factors, and personal factors.

Rehabilitation outcomes are the benefits and changes
in the functioning of an individual over time that are attrib-
utable to a single measure or set of measures [30]. These out-
comes can be evaluated by the three main dimensions of the
International Classification of Functioning, Disability and
Health (ICF) [31]: body functions and structures, activities,
and participation.

3. Neurological Rehabilitation

A particular case of rehabilitation is aimed at treating the
problems caused by disorders affecting the nervous and neu-
romuscular system, known as neurorehabilitation. These
types of disorders can produce mental or physical disabilities
or both and are chronic and/or progressive.

Neurological rehabilitation can be defined as a process
that aims to optimize a person’s participation in society
and sense of well-being. This definition highlights several
important features: rehabilitation is not a particular type of
intervention; the focus is on the patient as a person; the goals
relate to social functioning, as well as health or well-being;
and it is not a process restricted to patients who may recover,
partially or completely, but applies to all patients left with
long-term problems [32]. This will act on the deficiency,
the limitation of activity, and the restriction of participation,
constituting a holistic therapeutic approach [33].

The complexity of the problems caused by a neurolog-
ical damage highlights even more the need for a team to
work on its treatment, the interdisciplinary model being the

most used [34]. The composition of the interdisciplinary
team in neurorehabilitation is not completely defined, but
there is a consensus on the basic members who should
constitute the team. According to the Union of European
Medical Specialists (UEMS), the interdisciplinary team must
include the following medical professionals: physical thera-
pist, rehabilitation nurses, rehabilitation physicians, occupa-
tional therapists, speech-language pathologist, psychologists,
social workers, orthopaedics, and nutritionists [35].

The rehabilitation cycle shown in Figure 1 applies to the
case of neurological rehabilitation with some nuances that
are discussed below.

3.1. Assessment. The rehabilitation process starts with collect-
ing data from the patient and others to establish: the prob-
lems; the causes of, and factors influencing, each problem;
and the wishes and expectations of all interested parties. It
is also important to consider the prognosis based on the diag-
nosis, natural history, distribution, and severity and type of
the impairment, as well as other personal, social, and envi-
ronmental factors [36].

To this end, a series of objective scales have been devel-
oped to assess the level of independence of patients. The
three main domains of the ICF can be used with this aim as
a clinical tool [37, 38]:

(i) Impairments: the typical body functions that need
to be assessed in the neurological patient are those
related to the functions of the joints, muscles,
movements, and sensation and cognitive functions.
Thus, some constructs of relevance are muscle,
ranges of movement, attention, memory, and bal-
ance. There are scales classically encompassed at this
level such as Beck Depression Inventory, Behavioral
Inattention Test, Canadian Neurological Scale,
Clock Drawing Test, Frenchay Aphasia Screening
Test, Fugl-Meyer Assessment of Motor Recovery
after Stroke, General Health Questionnaire-28,
Geriatric Depression Scale, Hospital Anxiety and
Depression Scale, Mini-Mental State Examination,
Modified Ashworth Scale, Montreal Cognitive
Assessment, Motor-Free Visual Perception Test,
National Institutes of Health Stroke Scale, and
Orpington Prognostic Scale.

(ii) Activity: when examining a patient’s activities, the
therapist will examine whether they can do not only
the tasks but also the quality with which the task is
performed. According to Lennon’s study [39], one
of the most used scales for measuring the indepen-
dence in stroke rehabilitation was the Barthel Index,
followed by the Rivermead Motor Assessment and
Functional Independence Measuring. More than a
quarter of therapists (28%) were using outcome tools
that they had devised themselves, which had not
been tested for reliability or validity. Other examples
of scales at this level are the following: Action
Research Arm Test, Berg Balance Scale, Box and
Blocks Test, Chedoke-McMaster Stroke Assessment



Scale, Clinical Outcome Variables, Functional
Ambulation Categories, National Rehabilitation
Reporting System, Frenchay Activities Index, Modi-
fied Rankin Handicap Scale, Motor Assessment
Scale, Nine-Hole Peg Test, Rivermead Mobility
Index, Timed “Up and Go” Test, and Wolf Motor
Function Test.

(iii) Participation: this a more complex concept than
impairments and activities, but it is fundamental
to understand the patients and their life and help
with planning treatment. Physiotherapy assessment
of participation therefore focuses on those activities
or roles in which patients take part in, patients
are hindered in, and patients wish to work on
and which could be improved and will inevitably
deteriorate. Common scales used are the follow-
ing: Canadian Occupational Performance Measure,
EuroQol Quality of Life Scale, London Handicap
Scale, Medical Outcomes Study Short Form 36,
Nottingham Health Profile, Reintegration to Normal
Living Index, Stroke-Adapted Sickness Impact Pro-
file, Stroke Impact Scale, and Stroke Specific Quality
of Life Scale.

3.2. Planning of Treatment. According to the pathology, the
rehabilitation team designs a specific plan based on the diag-
nosis (problems identification) and disability of the patient. It
is necessary to identify clear objectives related to the func-
tional problems. Rehabilitation objectives normally follow
the SMART rule because they must be specific, measurable,
achievable, relevant, and time-limited [32].

There are three key areas that the rehabilitation process is
broken down: (1) approaches that reduce disability; (2)
approaches designed to acquire new skills and strategies,
which will maximize activity; and (3) approaches that help
to alter the environment, both physical and social, so that a
given disability carries with it minimal consequent handicap.
The planning of a neurological rehabilitation program
should consider the previous three approaches, in addition
to the SMART rule.

3.3. Intervention: Specific Methods. Specific rehabilitation
interventions include those related to physical medicine,
occupational therapy, speech and language therapy, dyspha-
gia management, neurophysiological interventions, psycho-
logical assessment and interventions, nutritional therapy,
and other interventions [25]. A wide range of specific tech-
niques is used in the practice of rehabilitation [40]. These
techniques used to treat different patients vary considerably
across different geographical locations.

At present, the evidence suggests that to be effective,
rehabilitation requires the practice of activities in the most
relevant possible environments, rather than undertaking
analytical exercises aimed at changing impairments [41].
This is sometimes referred to as task-specific training.
However, other approaches are known such as facilitation
techniques (such as Bobath concept, Brunnstrom technique,
Kabat method, or Rood method), modern techniques (such
as treadmill training with body weight support, constraint-
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induced movement therapy, or functional electrical stimula-
tion), or compensation techniques.

3.4. Evaluation. In this phase, the physical condition of the
patient is reevaluated in order to determine the effectiveness
of the treatment, based on the SMART objectives [32] ini-
tially raised. The considerations for discharge in the case of
the neurological patient are very varied, since the clinician
must determine whether the improvement achieved is suffi-
cient from the medical point of view of the patient (patient-
centred practice).

Previous quantitative investigations and case studies have
shown that the use of patient-centred goal planning with
adults undergoing neurological rehabilitation can improve
self-perceived and observed goal performance and satisfac-
tion [42]. A patient-centred approach involves goals that
are set by the patient on the basis of his or her own definition
of the problems. This approach enables greater self-
determination and control and enhances the person’s poten-
tial for active participation.

In addition, one must take into account the underlying
pathological process, the chronic nature of certain patholo-
gies, the need for supervision and/or the continuity in the
absence of an expressive face-to-face rehabilitation treat-
ment, or the degenerative and progressive character of some
neurological pathologies, such as Parkinson’s disease, multi-
ple sclerosis, or Alzheimer’s disease.

4. Robotics in Healthcare:
Neurorehabilitation of Upper Limb

In this section, this review will highlight the particular
aspects of the rehabilitation cycle applied to upper limb neu-
rorehabilitation performed with the assistance of any kind of
robotic system.

4.1. Material and Method

4.1.1. Search Methods. The authors undertook a literature
search in October 2017 about robot-assisted upper limb
rehabilitation in neurological diseases, using keywords such
as robot, neurological, rehabilitation, upper, limb, extremity,
arm, hand, neurorehabilitation, intervention, assisted ther-
apy, treatment design, and various combinations. The data-
bases were Brain, Science Direct, PubMed/Medline, and
IEEE. Only papers written in English were considered, and
the search was extended to the whole database. Studies were
included when (1) systems for upper limb training (uni- and
bilateral) were used; (2) systems are based on end-effector
and exoskeleton devices (commercially available or not); (3)
the clinical intervention was conducted; and (4) the effects
of the robot-assisted therapy were investigated.

4.2. Robotics in Neurorehabilitation of Upper Limb. Accord-
ing to the Strategic Research Agenda for Robotics in
Europe (SPARC) [43], healthcare is seen as a combination
of three subdomains: (1) clinical robotics—systems that
support care (diagnosis) and cure (surgery) processes; (2)
rehabilitation—covering postoperative or postinjury care
where direct physical interaction with a robot system will
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either enhance recovery or act as a replacement for lost func-
tion; and (3) assistive robotics—covering other aspects of
robotics within the healthcare process where the primary
function of the robotic system is to provide assistive help
either to carers or directly to patients either in hospital or
in a specialist care facility.

Thus, devices to train (robot-aided therapies), support
(exoskeletons), or replace (prosthesis) impaired activities
or impaired body functions and structures are covered in
rehabilitation robotics. In this way, robots are presented as
a useful tool in the recovery process in neurological treat-
ment. Such systems participate actively and help the therapist
to perform a better rehabilitation process. However, it is not
clear in what way and to what extent robotic systems provide
this help during the rehabilitation cycle. To improve the
quality of help provided, it must be identified how and when
the aid is administered.

The summary presented in Table 1 collects the informa-
tion obtained from the study of several robot-aided neuror-
ehabilitation systems for the upper extremities. The systems
selected have been used in clinical trials with patients suffer-
ing motor function problems derived from different neuro-
logical disorders. A comprehensive reading has been made
to identify how robotic assistance has been used, how it has
contributed and in which phases of the rehabilitation pro-
cess. Thus, the present review identifies what the robotic sys-
tem contributes to the rehabilitation cycle in a quantitative
way (measurements), the way it does it (automatic or not),
and the phase in which it participates (assessment, assign-
ment, or intervention). Notice that the same robotic systems
could cover several phases of the rehabilitation cycle. The
more phases are covered, the more automated will be the
rehabilitation process.

Rehabilitation, like many aspects of human behaviour,
can be thought of as a purposive problem-solving activity
[44]. The following review draws upon the problem-
solving process from a patient-centred perspective in
neurorehabilitation.

4.2.1. Assessment Approaches. As previously indicated, the
starting and ending component of the rehabilitation cycle
is the functional assessment. It is important to take into
account that most of the assessments performed by
robotic systems are not functional assessments (carried
out in baseline and follow-up stages of treatment), and
its provided outcomes are indicators of a patient’s perfor-
mance. Currently, functional assessment is still carried out
by traditional tests and scales provided by therapists. The
main features of the robot-aided systems reviewed related
to the assessment phase of the rehabilitation cycle are
described as follows:

(1) Assessment Mode. Assessment of the patient’s perfor-
mance can be carried out in two modes: automatic or non-
automatic. The automatic mode corresponds with the
online data analysis, that is, during the development or at
the end of the session. On the contrary, the nonautomatic
mode corresponds with the offline data analysis (after of
the end of the session).

(2) Assessment Method. Robotic rehabilitation systems pres-
ent evaluation methods that are based on the biomechanical
data they are able to acquire. Based on such data, a rapid
report that could be performed in an online or offline mode
is provided to the therapist. 74% of the reviewed systems have
not specified assessment methods, but propose an evaluation
method based on the offline analysis of the biomechanical
data acquired during therapy. In these studies, a later analysis
of the stored information is done, applying algorithms to
obtain information on the patient’s performance. However,
besides having an automatic record of information, only
26% of the systems perform online processing of these
parameters by using specific software (e.g., INMOTION,
IPAM, AMADEO, ARMEOQ, and T-WREX).

(3) Provided Outcome. Robot-assisted systems have the
advantage of providing a reliable and objective quantitative
rapid assessment, based on the comparison of the metrics
acquired during therapy. However, this assessment is at
the level of impairment but does not provide information
on how such impairment influences the activities of the
patient’s daily life. The most automated are commercially
available systems like INMOTION ROBOTS, ARMEO-
SPRING, AMADEOQO, REOGO, and DIEGO. They have an
online processing that generates a report at the end of the
therapy session. However, the reliability of these automatic
assessments, although they are based on objective measures,
has not been validated with respect to determining, on their
own, whether the rehabilitation has been adequate or not.
Also, robot-mediated measurements have even smaller dis-
semination. For this reason, most of the systems reviewed
carry out additional clinical evaluation, using functionality
scales that are of standardized use at the clinical level, such
as those mentioned in Section 3.1, which are still the “gold
standard” for measuring outcomes. The interpretation of
these scales allows the therapist to determine in an objective
way the health condition of the patient and the effectiveness
of the treatment.

(4) Functional Assessment. Given the importance of making a
correct evaluation, it is necessary to highlight the need to use
standardized tools and procedures. The classification of the
ICF is very useful for this functional assessment. The use
of these standard functional scales as the main output of
the rehabilitation systems would provide a better and
more collaborative way to determine the effectiveness of the
therapy based on the metrics obtained by the rehabilitation
systems themselves. Currently, this issue is addressed by
INMOTION software (INMOTION EVAL) that, based on
multiple regression models, calculates Fugl-Meyer Assess-
ment (FMA), Motor Status Score (MSS), Motor Power
(MP), and Modified Ashworth Scale (MAS) from the robot-
based metrics. These measurements of motor control are
highly correlated with the traditional scales [45].

4.2.2. Clinical Decision Support. As previously mentioned, it
is important to emphasize that the complexity of a neuroreh-
abilitation treatment usually requires the participation of a
work team. Therefore, it is important that the patient’s
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progress information is available to the entire work team,
according to the interdisciplinary model. The management
of information is one of the more time-consuming tasks that
facilitate the decision-making of the therapist. Currently,
there are several electronic medical record (EMR) software
for the management of the patient’s data [46], including
based on artificial intelligence [47]. Thus, one of the impor-
tant aids incorporated in robot-assisted systems is the admin-
istration and storage of data automatically, which allows the
generation of updated monitoring reports.

The results of the review show that 45% of the systems (the
commercial ones) also provide some kind of help in the elab-
oration of the therapy. The most common assistance is
through offering a set of exercises, games (REOGO, DIEGO,
and ARMEOQ), or therapy protocols (INMOTION system)
that can be configured or combined by the therapist. One of
the systems (REHAROB) also allows the option of selecting
exercises that are based on the intervention methods most
used in physical rehabilitation, such as the Bobath or Kabat
method. On the other hand, in-depth analysis of the data
recorded robot-aided therapy, as well as allowing rapid func-
tional assessment, serves as a tool for decision support to
determine the patient’s discharge. The INMOTION system
allows discharge plots to be generated based on the perfor-
mance of 5 tests that register kinematics and kinetics data.
To the authors’ knowledge, there are no commercial systems
able to automatically generate a complete rehabilitation strat-
egy from the initial functional assessment data and thus the
therapist still has to properly identify the patient’s problems
by means of a reliable diagnosis and the right choice of clin-
ical measures to evaluate the effectiveness of the treatment.

4.2.3. Rehabilitation Approaches and Outcomes. Typically,
rehabilitation occurs for a specific period of time but can
involve single or multiple interventions delivered by an indi-
vidual or a team of rehabilitation workers and can be needed
from the acute or initial phase immediately following recog-
nition of a health condition through postacute and mainte-
nance phases. Rehabilitation reduces the impact of a broad
range of health conditions. Further, neurorehabilitation is
often still based on therapists’ expertise, with competition
among different schools of thought, generating substantial
uncertainty about what exactly a neurorehabilitation robot
should do [48].

Robot-aided systems allow the training of an impaired
limb in multiple sessions and in a systematic way, without
loss of efficiency. With respect to the target region of
treatment, the number of joints that the same system is
capable of treating has been identified. No devices cover-
ing the movement of all joints of the upper limb have
been found, that is, the shoulder, elbow, wrist, and hand
(including fingers joints). The ARMEOSPRING, INMO-
TION, and ARMEOPOWER systems manage to cover the
shoulder and elbow joints and also to train the flexoextension
of the wrist and the manual grip, excepting finger joints.

The effectiveness of treatments based on task-specific
training in robot-assisted interventions is demonstrated. So
it is understandable that 86% of the review systems consider
this approach. It is observed that the systems have more than
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one operating mode (passive, active, active-assisted, or active
resistance). This represents a great advantage when consid-
ering treatment measures in a flexible way and better
adapted to the type of injury. Some systems describe the
mechanisms of action of the robots, which can offer assis-
tance to the movement or gravity compensation through
cable-based transmissions or pneumatic actuator systems.
The pneumatic actuator systems offer the advantage of pro-
ducing large forces with low weight added to the device, while
cable transmission systems have greater shock absorption,
smoothness in movement, and greater versatility in their
passage through the joints.

Finally, all the robotics rehabilitation systems reviewed
are able to acquire and automatically store biomechanical
metrics during the therapy. Depending on each robotic sys-
tem, it can measure the workspace, joint movement ranges,
and force exerted, as well as the quality in terms of the preci-
sion and smoothness of the trajectories. Other measures
derived from the previous ones for a certain interval of time
are the speed of execution and completion of the tasks, as well
as the reaction times. The acquisition and storage of these
parameters are immediate due to the inherent sensorization
of the robotic systems (encoders, force sensors, current sen-
sors, etc.). These are objective records due to the robotic
intrinsic sensory systems.

5. Towards Autonomous
Rehabilitation Processes?

The development of autonomous systems is an active line in
robotics in general, and with increasing presence in health-
care applications, it is already generating beneficial results
as it has done in industry [49]. That is the case of surgical
robots in minimally invasive procedures for executing auton-
omously simple surgical tasks, based on the accuracy of robot
movements, image processing algorithms, and cognitive sys-
tems. There are many other examples than surgical robotics
of translational research applied to healthcare.

The common understanding in the robotic community is
that the goal of robotic rehabilitation devices should be to
assist therapists in performing the types of activities and
exercises they believe give their patients the best chance of a
functional recovery. But several barriers have been identified,
for the particular case of rehabilitation robotics. The first
identified barrier is the lack of effective communication in
the planning stage of designing robotics aids, between engi-
neers and therapists. Second, many of the devices are incred-
ibly complicated, from both an engineering and a usability
point of view. In fact, “simple-to-use” devices are more likely
to be adopted by the clinical community than those that have
long set-up times or require multiple therapists and/or
aids to use [50]. Another well-known barrier relates to
the cost and availability, its relation to the effectiveness
of the treatment, and how long the robotic treatment must
be applied. Many works discuss these issues. Recent examples
are those by Acosta et al., who show that while video games
can provide a motivational interface, they are the most effec-
tive if designed to target specific impairments [51]. Burgar
et al. highlight the importance of providing higher therapy
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FIGURE 2: The automated rehabilitation cycle.

intensities (hours of therapy per day) in an acute stroke study
using the MIME robot [52]. Telemedicine and telerehabilita-
tion are promising topics for building remote monitoring
and easy to use rehabilitation systems that could allow the
work of therapist with patients at home. Serious games and
low-cost sensory devices are arising as very promising tools
for breaking this barrier. The last barrier, but not the least
from the authors’ point of view, is the lack of automation,
which greatly increases the total cost of the treatments. There
is a huge potential to automate the treatment process.

To apply this automation approach to the rehabilitation
process, it is first necessary to identify how the process is
developed and identify which are the most susceptible ele-
ments to be automated, as well as the requirements and lim-
itations to achieve this purpose.

Based on the review presented in this article, we have
identified three main areas within the rehabilitation cycle
where robotics is contributing to automation: planning treat-
ment protocols, implementing interventions, and evaluating
the treatment’s effectiveness. This rehabilitation cycle, shown
in the previous Figure 1, is being transformed into a more
automated cycle as shown in Figure 2. This transformation
adds more detail but does not alter the rehabilitation cycle,
thus maintaining the philosophy centred on the user. In this
figure, the main actors (patient and therapist) are supported
by several automated tools, as it will be explained below.

5.1. The Automated Rehabilitation Cycle. This paper pro-
poses a framework for the development of the rehabilitation

cycle that clearly identifies which parts of the process are
more likely to be automated, as well as the actors and ele-
ments involved. The autonomous rehabilitation cycle would
be composed in this way by five elements that are directly
correlated with the blocks of the original cycle. According
to this approach, three main actors have been identified:
user, clinician (understood as the team), and automated
systems. Although several automated systems could be avail-
able, as denoted in Figure 2, to simplify, we assume that the
one used is the best fitted to each case. The appropriate
collaboration between the therapy work team and the auto-
mated systems is essential to obtain an effective patient-
centred rehabilitation process.

The interaction between these three participants during
the course of an automated neurological rehabilitation pro-
cess will be described in Figure 3. First, an initial evaluation
(interview and exploration-based) is carried out by the clini-
cian to identify the patient’s problems and needs and select
the most appropriate treatment measures. Also, the appro-
priate scales for functional assessment are chosen to quantify
the level of functionality impairment caused by the neurolog-
ical injury. Here, where the first automated system is, the
automatic assessment system (AAS) performs the functional-
ity assessment using the same clinically accepted scales. The
results obtained with the AAS are automatically updated in
the patient’s clinical history. In addition, these results serve
as input parameters to the second automatic system, the deci-
sion support system (DSS). The DSS aims at designing the
most optimal treatment protocol for the patient, generating
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repeated for n iterations.

the specific intervention plans. This figure is based on the
lacks identified in the literature review previously presented.

The therapist discusses with the patient to review and
adjust the objectives, deciding which treatment plans pro-
posed by the DSS will be adopted. Then, the selected robotic
rehabilitation systems (RRS) perform the intervention. After
the intervention with the RRS, an assessment of functionality
similar to the initial one is carried out again, in order to quan-
tify the effectiveness of the therapeutic measures. For this, the
AAS is used again. Finally, if all the problems identified are
considered resolved or accepted by both the clinician and the
patient, the rehab cycle is concluded. Otherwise, the necessary
iterations will be made to try to solve the remaining problems.

It can be deduced that the proposed automated systems
operate separately and independently but that they are
intrinsically connected and depend on each other for efficient
operation, in coordination with the clinician and the patient.

The methods to extract metrics and share them and their
degree of acceptance by both users and health professionals
should be rationalized and assessed, as a prerogative to
achieve the automation. To design assistance rehabilitation
systems, although the focus is on the subject to be treated,
it is important to systematize the understanding of the
requirements demanded by therapists in order to enable an
easier integration of technology in their daily activities [53].

By providing low-cost and easy to access tools for imple-
menting this automated rehabilitation cycle, the viability of
extending the rehabilitation cycle can be increased, not only
as a temporary activity but also as a lifelong rehabilitation,
as needed, for example, for affordable robotic therapy in
maintaining function in degenerative disorders.

Thus, in the opinion of the authors, the requirements that
the components of a rehabilitation cycle must meet to be
more autonomous are described below.
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5.1.1. Automated Assessment Systems (AAS). As revealed by
the analysis of assessment methods in neurorehabilitation,
the use of traditional motor and functional scales is the main
approach to determine the effectiveness of the rehabilitation
process. For this reason, the development of methods based
on traditional assessment scales that are widely used and
known by specialists in rehabilitation is one of the lines of
research that have been highlighted to achieve a more auton-
omous rehabilitation cycle.

There are already oriented studies in this line of work,
taking into account two premises: the method and metrics.
Regarding the method, tests that are administered without
direct contact of the professional are more suitable to be
automated. Concerning metrics, it is essential to assess which
ones give relevant information and are less invasive for the
subject to be evaluated [54].

It can be seen that the FMA is one of the most used scales
employed for the motor assessment in the clinical trials that
this review included. So it appears reasonable that the poten-
tial for the automation of these kinds of assessment methods
is being studied. The application of RGB-D sensors, inertial
measurement sensors, and other sensors has allowed the
scoring of a part of the FMA to be automated [55]. However,
one of the biggest problems with the evaluation using tradi-
tional tests is the time they take the therapist to administer.
Other works address automatic administration of assessment
procedures, such as the case of BBT [56]. Even so, a large
number of scales and the variety of methods (sensor-based,
tracking systems, computer-based, etc.) make the topic of
automating the assessment a very promising line of research.

In this respect, the literature also presents several projects
that are focused on the automation of the traditional and still
“gold standard” scales. As traditional scales are widely used
in clinical trials in rehabilitation, as seen in this article, and
because the administration of the evaluation is time-consum-
ing, it appears reasonable that the automation of these kinds
of assessment methods is being studied. There is an impor-
tant difference in emphasis between clinical assessment and
measurement. Traditional scales comprise several items.
However, measurement concerns the quantification of an
attribute and some studies [57] demonstrate that multi-
item measures need only a few carefully chosen items to gen-
erate reliable and valid estimates.

Following the model of the rehabilitation process, most of
the systems reviewed (based on end-effector or exoskeletons)
are clearly located within the intervention stages of the reha-
bilitation cycle. However, a percentage of them (46% end-
effector and 43% exoskeletons) addresses the assessment
stage, based on the metrics that are obtained from the use
of systems in therapy. This assessment serves as a method
of “rapid assessment” to support the therapist and inform
the patient of the effectiveness of the rehabilitation process,
but there are few works that report comparative studies or
clinical trials to validate nonclinical metrics.

5.1.2. Decision Support System (DSS). Decision support sys-
tems based on artificial intelligence (AI-powered DSS) are
one of the most active fields in recent years, and it is expected
that they will soon contribute to the decision-making
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process. In healthcare, a variety of software for EMR manage-
ment is already available (see Section 4.2.2) to help the ther-
apist in decision-making. However, the diagnosis of diseases
still presents serious limitations. We can find numerous
smartphone apps that allow an online diagnosis, yet the
reliability of the diagnosis is not yet consistent with that
of a doctor [58]. Besides, researchers in the artificial intel-
ligence community have started to design robot-assisted
rehabilitation devices that implement artificial intelligence
methods to improve upon the active assistance techniques
found in Section 4.2.3.

Clinical decisions are an important component of the
rehabilitation cycle, since they involve the determination of
the objectives and design of the rehabilitation treatment. As
can be seen in this review, the support provided by auto-
mated systems for this kind of task is by providing more reli-
able and objective information about the motor performance
of the user during the intervention, as well as allowing the
execution of different types of intervention procedures that
can be configured by the clinician.

Regarding the assignment stage of the rehabilitation
cycle, there are two steps that could be automated by using
artificial intelligence techniques: the planning of interven-
tion treatments and the assignment of the appropriate RRS
for intervention.

Related to the planning of intervention treatments, the
generation of these protocols is based on different factors that
depend on the type of lesion and on how it affects the devel-
opment of the patient’s daily living activities. Many of the
intervention measures are systematized in order to deal with
a particular effect (concrete measures for specific problems),
but there is no reason to believe that a “one-size-fits-all”
optimal treatment exists. Instead, therapy should be tai-
lored (intensity, number of repetitions, and duration of
the intervention) to each patient’s needs and abilities [59].
In addition, the protocol planning should consider the
available tools (RRS) to execute such protocol in order to
assign the appropriate RRS to the type of lesion (e.g., a
hand injury cannot be trained by a device designed for
elbow training).

Thus, we have identified some requirements that must be
met to develop intelligent systems for treatment planning: (1)
coherence between technological and traditional outcome
measures, for the purpose of a therapeutic intervention based
on technology and the problem-solving approach; (2) differ-
entiating these measures according to the level of the effect
(mild, moderate, and severe); (3), based on models, to iden-
tify the parameters that define an adequate physical condi-
tion according to the demographics of the patient and
healthy profiles; (4) to be able to estimate the physical condi-
tion of the user to compare it with the welfare reference
model; and (5) to generate a protocol that can be executed
by the available intervention systems.

These requirements imply that the integration of an
Al-powered DSS in the automated cycle requires as input
parameters the results of the evaluation systems (AAS) and,
based on them, generates an optimized treatment protocol
that can be executed by the systems of automatic intervention
(RRS). This is why special attention is needed to the
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development of strategies that allow the integration and col-
laborative execution of these automated systems.

5.1.3. Robotic Rehabilitation Systems (RRS). The develop-
ments in medical robotics systems and RRS are fields that
have awakened most interest for research in robotics. Due
to the direct participation in the intervention phase, the
different methods used in rehabilitation (task-oriented, con-
straint-induced, etc.), and the understanding of what consti-
tutes the most, appropriate therapy has the potential to
become an intensively active topic of research [59].

Two main issues have been highlighted: the ability of the
RRS to acquire multiple information on patient performance
during the development and the fact that from these data an
assessment of patient functionality is obtained, even in the
same type of score as the traditional scales.

However, the type and amount of information that is
obtained depend a lot on the type of robotic system (end-
effector or exoskeleton) and the intrinsic sensory system.
Also, the parameters derived from the measurements, as
indicators of quality (accuracy, smoothness, etc.), can be very
heterogeneous. Therefore, a critical issue is to unify the met-
rics acquired by the RRS, so that they provide as much infor-
mation as possible for a rapid assessment by the therapist and
not just raw data. Thus, among this type of metrics we have
the following: range of movement, speed, precision, effi-
ciency, percentage of work of the patient and percentage of
work of the robot, and degree of attention in the task. All
the works reviewed coincide in capturing the kinematic data;
however, they do not address high-level indicators such as
the percentages of robot and patient work (excepting NeRe-
Bot that gives it as a percentage) nor the degree of attention.

Another important issue is to promote the adherence of
the user to therapy. It is necessary to provide an adequate
feedback that motivates the patient. Using virtual reality sys-
tems is the most widely used solution for this purpose. How-
ever, it is important not only the way in which the feedback is
given but also the information provided to the user. In this
sense, therapists agree that a visual feedback that tells the user
if he has improved his score during the execution of the ther-
apy would be beneficial. Other high-level indicators such as
the percentages of robot and patient work, control signal,
or kinematic data could be helpful to the user only if they
help to show the relevance of the patient’s progress.

RRS-type systems are already integrated into the rehabil-
itation cycle, due to their imminent nature in the interven-
tion; however, addressing the aforementioned questions
would allow the rest of the automated components indicated
in this paper (AAS and DSS) to take advantage of the objec-
tive information that is acquired with the RRS.

6. Conclusions

A new automated rehabilitation framework has been pro-
posed based on a literature review of robotic rehabilitation
systems (RRS) for the upper limb treatment, highlighting
its relation with the rehabilitation cycle. This framework
has been presented regarding the implementation of more
autonomous rehabilitation procedures. Three automated

15

elements were described to make up the proposed frame-
work: automated assessment systems (AAS), decision sup-
port systems (DSS), and robotic rehabilitation systems (RRS).

The development of AAS should be based on the tra-
ditional assessment methods, since the traditional scales
are still the “gold standard” for measuring outcomes and
determine the effectiveness of treatment. In addition, the
outcome provided by the AAS is obtained in an objective
way, generating additional information about the user’s
performance.

Those systems must be complemented with a novel DSS
to help in clinical decision-making and treatment planning.
The management of the patient’s data (EMR) is currently
addressed by using specific software based on high-level
algorithms and also on artificial intelligence (AI). Opti-
mized treatment protocols customized to the patient’s con-
dition are expected to be automatically generated by these
DSS. For this purpose, Al is a promising tool. Dealing with
multiple objectives in decision-theoretic planning and rein-
forcement learning algorithms [60] could contribute to
allow the optimal protocols to be generated. Thus, the treat-
ment protocols could require only approval or adjustment by
the clinician.

To conclude, the implementation of the proposed
framework should consider some issues that are summa-
rized as follows:

(i) The development of strategies for allowing the inte-
gration and collaborative execution of these auto-
mated systems is needed. It must be considered a
proper data management in order to allow the AAS
and DSS to use the objective information that is
acquired with the RRS. In this way, a communica-
tion channel similar to the interdisciplinary team
model will be enabled for the automated elements.

(ii) In the case of the AAS development, the auto-
matic administration of the assessment must be
considered and not only the automation of the
outcome. Knowledge of the user is as important
as system functionality, since without the user’s
cooperation and acceptance, the system’s function-
ality may be ineffective.

(iii) The complexity of neurological disorders and its
effect normally presents additional diseases concur-
rent with the primary disorder (comorbidity) that
could limit the patient recovery.

(iv) The feasibility of using Al to generate optimal treat-
ment protocols is still unclear, but considering that
Al is a mature science at present, the potential to
contribute to the implementation of the proposed
DSS is encouraging.

(v) Clinical protocols are validated through randomized
control trials (RCT) where a large number of
patients undergo the same treatment. In this regard,
the most homogeneous samples must be recruited
for RCTs that is challenging because of the inherent
nature of neurological disorders.
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Robots are currently viewed as advanced therapy tools
under a therapist’s guidance. However, the implementation
of the above-mentioned systems could lead to more autono-
mous and intelligent processes in neurorehabilitation.
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Acquired brain injuries (ABIs) can lead to a wide range of impairments, including weakness or paralysis on one side of the body
known as hemiplegia. In hemiplegic patients, the rehabilitation of the upper limb skills is crucial, because the recovery has an
immediate impact on patient quality of life. For this reason, several treatments were developed to flank physical therapy (PT)
and improve functional recovery of the upper limbs. Among them, Constraint-Induced Movement Therapy (CIMT) and
robot-aided therapy have shown interesting potentialities in the rehabilitation of the hemiplegic upper limb. Nevertheless, there
is a lack of quantitative evaluations of effectiveness in a standard clinical setting, especially in children, as well as a lack of
direct comparative studies between these therapeutic techniques. In this study, a group of 18 children and adolescents with
hemiplegia was enrolled and underwent intensive rehabilitation treatment including PT and CIMT or Armeo®Spring therapy.
The effects of the treatments were assessed using clinical functional scales and upper limb kinematic analysis during horizontal
and vertical motor tasks. Results showed CIMT to be the most effective in terms of improved functional scales, while PT
seemed to be the most significant in terms of kinematic variations. Specifically, PT resulted to have positive influence on distal
movements while CIMT conveyed more changes in the proximal kinematics. Armeo treatment delivered improvements mainly
in the vertical motor task, showing trends of progresses of the movement efficiency and reduction of compensatory movements
of the shoulder with respect to other treatments. Therefore, every treatment gave advantages in a specific and different upper
limb district. Therefore, results of this preliminary study may be of help to define the best rehabilitation treatment for each
patient, depending on the goal, and may thus support clinical decision.

In cases of hemiplegia, the aim of rehabilitation of the
upper limbs is to prevent the disuse of the impaired side of

Acquired brain injuries are nonprogressive, nonhereditary
brain injuries acquired sometime after birth and are the
leading cause of long-term disability and death in children
and young adults. Resulting from trauma, hypoxia, stroke,
infection, or a variety of other sources, ABIs can lead to
a wide variety of impairments, including deficiencies in
cognitive, behavioral, metabolic, motor, perceptual motor,
and/or sensory brain functions. In particular, a number
of ABIs lead to significant hemiplegia [1], a weakness or
paralysis on one side of the body, with relevant effects
on the upper limb functionality [2].

the body. Many studies in literature have shown that therapy
involving sensorimotor exercises to simulate meaningful
tasks used in daily life increases the functional recovery of
the affected upper limb [3, 4]. Realistic contexts of functional
activities, such as reaching or pointing towards an everyday
object, help patients acquire control strategies to compensate
for muscle weakness and inaccuracies [5].

In order to rehabilitate the upper limbs, there are a
variety of treatments available. Physical therapy (hereafter
PT) is standard practice worldwide, but there are other types.
Therapy aided by a robotic exoskeleton is noted for its
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capability of supporting repetitive and high-intensity train-
ing tasks as well as its ability to reliably track patients’ motor
progress by quantitatively measuring patients’ movement
kinematics and forces, rather than relying on subjective
impressions [6]. When combined with interactive programs
such as virtual reality, robot-aided therapy can assign
functional meaning to the therapy, creating a motivating
environment [6-9]. Studies involving robotic therapy have
shown improvements in upper limb coordination and flu-
ency of movement in the hands and fingers of children with
cerebral palsy [10, 11].

Constraint-Induced Movement Therapy (CIMT) involves
constraining the nonimpaired upper extremity in order to
encourage use of the impaired side. CIMT therapy often
involves intensive repetitive tasks directed by a therapist
in order to practice motor movements [12]. CIMT is a
rehabilitative methodology widely used nowadays, even on
infants below one year of age (named baby-CIMT); it is
considered feasible and without adverse effects [13]. Studies
involving CIMT had shown improvements in the reaction
time and movement-path length and improved smooth-
ness in actions of the impaired limb in adults, with the
overall goal to increase functional use and support cortical
reorganization [12, 14-19].

There are numerous standardized clinical functional
scales used for the assessment and evaluation of upper limb
impairment and activity limitation. The majority of these
utilize an ordinal-level scoring system, with scores assigned
to the patient by the observing physician or therapist.
Another way to assess upper limb activity is through kine-
matic data from 3D motion capture. Kinematic data is more
objective and quantifiable, and there are a myriad of metrics
available for calculation, both temporal, such as time and
velocity, and spatial, such as joint angles and trunk displace-
ment. However, the protocol for the measurement of kine-
matics is less standardized and can be difficult to compare,
especially when dealing with child subjects [14].

Although previous studies have shown promising results
of CIMT and robot-aided therapy in children [9, 12, 20],
there is a lack of quantitative evaluations of effectiveness in
a standard clinical setting as well as a lack of direct compar-
ative studies between these therapeutic techniques.

The purpose of the present study is to quantify and
compare the effects of constraint, robot-aided, and physical
therapies in the rehabilitation of upper limbs of children
and adolescents after ABI measured by both functional
scales and kinematic data. Preliminary results have been
presented in [21].

2. Materials and Methods

A group of children/adolescents with hemiplegia was
enrolled in the study.

2.1. Subjects. In order to be included in this study, partici-
pants had to be 4-18 years old, had to have a clinical form
of hemiplegia and a severe acquired brain injury, and had
to have the ability to understand and follow test instructions.
Patients were excluded from the study if they had severe
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muscle spasticity and/or contracture, a diagnosis of severe
learning disabilities or behavioral problems, visual or hearing
difficulties that would impact on function and participation,
previously undergone restraint therapy, or injections of
antispasticity drugs (e.g., Botox or Dysport) into the upper
limb musculature in the 6 months leading up to the begin-
ning of the trial.

Taking these criteria into consideration, eighteen chil-
dren/adolescents (hereafter, participants) (9 M and 9 F, mean
age: 12.28 £ 5.13 years) were recruited: ten had right-sided
and eight had left-sided impairments. The mean age at injury
was 10.95 (+4.88) years. Eight participants had a traumatic
brain injury, seven participants had a stroke, two participants
had a brain injury due to encephalitis, and one participant
had a brain injury due to other causes. They took part in
the clinical protocol 1.25 (+1.02) years after the injury.

All parents were informed about the study and signed
a consent statement. The study was approved by the Ethics
Committee of the Scientific Institute IRCCS Eugenio Medea,
located in Bosisio Parini, Italy, in accordance with the
declaration of Helsinki.

2.2. Rehabilitative Protocol. The rehabilitation program
included two consecutive four-week periods of treatment,
attended in a random order: one period of physical therapy
(PT) and one period of a rehabilitative treatment, randomly
chosen between Constraint-Induced Movement Therapy
(CIMT) and training with Armeo®Spring.

PT treatment was administered in five 45-minute ses-
sions per week for each of the four weeks. PT emphasized fine
and gross motor skills and multimodal exploration, with the
overall goal of successfully performing independent daily
living skills such as self-care and eating. It was based on
motor control and motor-learning theories, task-oriented
and customized on the single patient’s functional status. Fine
motor skills included monomanual and bimanual grasping
and use of individual fingers, while gross motor skills focused
on reactive balance responses and postural support. There
were four types of task goals: perceptual motor activities;
activities of reaching, grasping, holding, and manipulating;
activities for posture and balance; and self-care and daily
living activities.

During Constraint-Induced Movement Therapy (CIMT),
a restraining thermoplastic splint was worn on the unaffected
hand, preventing subjects from flexing their fingers or grasp-
ing objects. Even though the thumb was locked in a fixed
position against the index finger, children could use the hand
for support or to break a fall. The splint was worn for at least
3 consecutive hours a day, every day of the week for 4 weeks.
While the splint was worn, children/adolescents underwent
an intensive rehabilitation program to simulate play sessions
and a daily living activity. Unimanual activities performed
included memory cards, puzzles, playing bowls and cards,
using a spoon or fork, and/or dusting a surface.

Armeo®Spring is an exoskeleton with five degrees of
freedom that uses springs (rather than robotic actuators)
to guarantee passive arm weight support and guidance
(Figure 1). By adapting to each patient’s individual mor-
phology and residual ability, the Armeo exoskeleton enables
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FIGURE 1: The exoskeleton Armeo®Spring.

users to achieve a large range of motion in a 3D workspace.
Subjects using Armeo were given 45-minute treatment
sessions 5 times a week for 4 weeks. In each session, sub-
jects used dedicated system software to simulate intense
and meaningful tasks targeting different upper arm joints
and regions. Physical therapists oversaw each session;
adjusted the exercises, weight compensation, and maximal
active workspace according to each subject’s progress;
and performed setup and maintenance on the Armeo
system. As patients improved, physical therapists would
increase the difficulty level and number of repetitions of
the games, as well as introduce more difficult games into
the training system.

2.3. Evaluation. Experimental subjects participated in two
types of therapy and were evaluated with functional
scales and with upper limb kinematic analysis at pre-
treatment (TO), post-first treatment (T1), and post-second
treatment (T2).

2.3.1. Functional Scales. Clinical data in terms of age at
trauma, etiology, and severity were collected at TO while the
Quality of Upper Extremities Skills Test (QUEST), the
Melbourne Assessment of Unilateral Upper Limb Function,
and the Gross Motor Function Measure (GMFM) were
assessed in the clinical examination at T0, T1, and T2.

The Quality of Upper Extremities Skills Test (QUEST) is
an internationally validated scale designed to measure treat-
ment outcome in children with upper extremity movement
disorders. It explores four domains: dissociated movement,
grasp, weight bearing, and protective extension. The dissoci-
ated movement domain includes items that counter typical
patterns of spastic synergy, representing each joint of the
upper limb. Grasp items are based on normal hand grasps
as described in developmental literature, arranged in a
hierarchical and developmental framework. Weight bearing
and protective extension are based on normal developmental
sequence and are scored hierarchically based on the degree of
abnormality as represented by joint positions. The domain
score is a summed-item score converted into a standardized
percentage, and the total score is the average of domain
scores, with higher scores representing a better quality of
movement [22].

The Melbourne Assessment of Unilateral Upper Limb
Function, abbreviated to the Melbourne Assessment [23], is
a criterion-referenced test developed for use with patients
with neurological impairment. The Melbourne Assessment
scores the quality of unilateral upper-limb motor function
based on items involving reach, grasp, release, and manipula-
tion. In comparison to the Melbourne Assessment, items on
the QUEST have been designed also to provide information
about postural responses [23, 24].

The GMFM measures the child’s overall functional
abilities and consists of 88 items, divided into the following
sections: (1) lying and rolling, (2) sitting, (3) crawling and
kneeling, (4) standing, and (5) walking, running, and jump-
ing. Each section contributes to the total GMFM score [25].

2.3.2. Kinematics. The evaluation consisted of two tasks
completed by the subjects, namely horizontal-reaching
movements and vertical-reaching movements, while an
optoelectronic system for motion capture recorded the
kinematics of the participants.

(1) Horizontal Reaching. During this task, the subject was
seated at a table adjusted to a level to support the subject’s
arms. A stationary marker target was placed on the table
along the subject’s midline, at a distance equal to 80% of
the subject’s arm length away from the body. Both hands
were to rest on the table, with the hand performing the
task to trace the midline path from the body to the
marker target and back and the other hand stationary
for support (Figure 2(a)). Neither the trunk nor the head
were constrained, but the subject was asked to complete
the movements as precisely and concisely as possible.
The horizontal task was completed three times with each
arm by each subject.

(2) Vertical Reaching. During the vertical-reaching task
(Figure 2(b)), the subject seated comfortably on a chair with
a pole with an adjustable support in front of him/her. The
pole was adjusted in order to have the edge of the support
aligned with the subject’s knees. In the starting position, the
participant had the tested arm pronated with the finger
leaning on the edge of the pole’s support. The upper arm
was in a neutral adducted position with approximately 90°
flexion at the elbow. The participant’s other hand was resting
on the knee. The subject was asked to move the index finger
upward along the pole, following a thin adhesive stripe, as
fast as possible but with a maximum precision, reaching the
maximum height allowed (but remaining in the seated posi-
tion) and then returning to the initial position. Neither the
trunk nor the head were constrained. The vertical task was
completed three times with each arm by each subject.

(3) Equipment and Kinematic Variables. The task was
recorded using the BTS OEP System (BTS Bioengineering),
with 8 cameras with semi-infrared rays that acquire at a
frequency of 60 Hz and submultiples. 12 semispherical, retro-
reflective markers were placed on specific body landmarks:
two markers were placed on the trunk—one above vertebrae
C7 and the other on the upper part of sternum. Ten markers
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FIGURE 2: 3D sketch of the testing setup, for the horizontal task (left panel) and the vertical task (right panel). Gray dots are the

retroreflective markers.

were placed bilaterally on the acromion, elbow, wrist (ulnar
styloid processes), second metacarpal head, and fingernail
of the index (Figure 2). The system was able to extrapolate
the 3D coordinates of each marker in space and reconstruct
the trajectory of each for the whole duration of the move-
ment. Data were analyzed using MATLAB: at first, data were
filtered by means of a low-pass filter with a cutoft frequency
of 10Hz. Then, for each movement, three phases were
identified, as described in [12]: going phase (Fgo), represent-
ing the movement towards the target marker starting from
the rest position; adjusting phase (Fadj) that is dedicated to
precisely locating the target; and returning phase (Fret)
representing the movement towards the starting point. For
each phase, many parameters were calculated, both for the
horizontal- and the vertical-reaching tasks. In particular,
kinematic parameters were divided into three categories
and are reported in Table 1:

(i) End-point (finger) metrics: parameters belonging
to this category were computed using end-point
(finger) kinematic data and provide information
about speed of execution, accuracy, efficiency, and
smoothness of the movement.

(ii) Joint kinematics: angles at the elbow and shoulder
were computed as described in previous studies
[5, 26]; then, ranges of motion (ROMs) and angu-
lar velocity were computed for elbow and shoulder.

(iil) Trunk compensation: information derived mainly
from the marker placed on the sternum, describing
the compensatory movements of the trunk during
the reaching movements.

Data were gathered from patients before and after each of
the two sets of treatment. Data were divided into groups
based on the treatment (namely PT, CIMT, and Armeo)
and analyzed comparing treatment type, independently from
the order of occurrence of treatments.

2.4. Statistical Analysis. Both clinical scale results and the
data extracted from the kinematic trials were analyzed
in MATLAB using nonparametric statistics, since the
Shapiro-Wilk test highlighted a number of data parameters
not normally distributed.

To evaluate differences between groups at pretreatment,
the Kruskal-Wallis test followed by the Mann-Whitney test
with the Bonferroni correction as post hoc analysis were
used. Further, the chi-square test was used to check the
uniformity of the samples at the beginning of treatment, with
regard to sex, etiology, age, distance from event, GCS, and QL.
For each treatment, the Wilcoxon test for paired samples was
used to compare pre- and posttreatment results, both for
kinematic variables and functional scales. To compare treat-
ments, for each variable, the difference (A) between post- and
pretreatment values was computed, and the Kruskal-Wallis
test was used to compare the three treatments, followed by
the Mann-Whitney test with the Bonferroni correction as
post hoc. For all statistical comparisons, it has defined a max-
imum value of accepted possible error equal to 5% (p = 0.05).

3. Results

All children performed the horizontal task and were
evaluated with kinematic analysis, while 2 children did not
perform the vertical task. 9 subjects (N =9 for horizontal
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TaBLE 1: Kinematic variables computed for the horizontal and vertical task.

Horizontal Vertical

task task
End-point (finger) metrics
A measure of how directly the hand moves toward the target, computed as the ratio
Hand path ratio (P,,) HPR,,  between the length of the real subject’s hand (finger) path and the length of the v v
theoretical or desired trajectory. This metric quantifies the movement efficiency.
Displacement along y-axis, The difference between the maximum and the minimum y coordinate during v
Y-FD the whole movement, representing the vertical displacement of the finger.
Movemen e 7)1, IO ot o ol o he i s st e o
Target error It i§ a measure of the movement quality in terms of accuracy, comp')utejd as the v
maximum distance from the index finger to the target during the adjusting phase.
Mean velocity (Py,) MV, Mean arm velocity attasi;:eddd;l;igige t(l)lfetiziglgl ;e};.ase computed from the v v
Number of velocity peaks It is a quality measure of the movement smoothness computed from the v v
(Tot), #VP,, speed profile of the finger during the whole movement.
Joint kinematics
Range of motion for the elbow (flex-extension) and the shoulder
Joint ROMs (abduction-adduction and flex-extension) computed as the difference between v v
the maximum and the minimum angle, considering the whole movement.
Mean angular velocity Mean angular velocity during elbow flex-extension and shoulder v v
(MAV) abduction-adduction or flex-extension, during the going phase.
Trunk compensation
Trunk 3D path 3D path length of the marker placed on the sternum v v
Displacement along z-axis Displacement of the marker placed on the sternum along the z-axis v
(Pg,), Z-TDy, (towards the target) during the going phase. It quantifies trunk flexion.
Displacement along x-axis Displacement of the marker placed on the sternum along the x-axis during v

(P,,), X-TD,,

the going phase. It quantifies trunk lateral bending.

task, N =9 for vertical task) underwent the CIMT rehabil-
itative treatment, and 9 subjects (N =9 for horizontal task,
N =38 for vertical task) completed successfully the Armeo
protocol; as 6 patients left the study before its end, only
12 (N =12 for horizontal task, N =11 for the vertical task)
subjects were included into the PT group. Specifically, 6
participants out of 9 underwent CIMT as first treatment,
8 patients out of 9 underwent Armeo as first treatment,
and 4 patients out of 12 underwent PT as first treatment.

3.1. Differences among Groups at Pretreatment. First, a
comparison among groups in terms of group features
(sex, etiology, age, distance from event, GCS, and QI)
and functional evaluations was performed at the beginning
of each protocol. No differences were found among groups
in terms of group features except for a significant differ-
ence (Kruskal-Wallis p value=0.02) in etiology, specifi-
cally between Armeo (etiological prevalence of “traumatic
brain injury”) and CIMT (etiological prevalence of “hem-
orrhagic stroke”; Mann-Whitney with Bonferroni correc-
tion p=0.02). Furthermore, many significant differences
(Kruskal-Wallis p value <0.05) were found in pretreatment
functional evaluations among different treatments, mainly
in the group that performed Armeo. CIMT and Armeo
groups differed in terms of the QUEST-A (80.47 (24.61),
54.69 (12.50), p < 0.01), QUEST-C (100 (10), 76 (16), p=

0.01), QUEST-tot (70.88 (21.54), 56.63 (7.03), p=0.02),
Melbourne Assessment (81.00(13.50), 40.00 (37.00), p=
0.02), and GMFM-C (98.00 (2.75), 73.00 (27.75), p=
0.03). Moreover, PT and Armeo differed in terms of the
QUEST-C (98.00 (12.00), 76.00 (16.00), p =0.03) and Mel-
bourne Assessment (72.00 (17.53), 40.00 (37.00), p =0.03).
In contrast, CIMT and PT groups were comparable at the
initial evaluation.

The kinematic data between each group before treat-
ment were also analyzed. For the horizontal task, it was
found there was a significant difference in the target error
(Figure 3(e)) (Kruskal-Wallis p value <0.01), with Mann-
Whitney highlighting lower target error before CIMT
(p value <0.01) and PT (p value <0.05) than Armeo.

With regard to the vertical task, a difference in the finger
displacement along the y-axis (Y-FD) emerged (Kruskal-
Wallis p value<0.01), highlighting higher displacement
before CIMT than Armeo (Mann-Whitney p value <0.01).
In addition, many differences in terms of range of motion
emerged, describing a condition characterized by higher func-
tional ranges of motion before CIMT than Armeo, in partic-
ular for elbow flex-extension (Kruskal-Wallis p value=
0.02, Mann-Whitney p value <0.01), shoulder abduction-
adduction (Kruskal-Wallis p value <0.01, Mann-Whitney
p value<0.01), and shoulder flex-extension (Kruskal-
Wallis p value<0.01, Mann-Whitney p value<0.01).
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FIGURE 3: Effect of treatments on end-point metrics. For the horizontal task, pre- and posttreatment values of (a) movement time, (b) hand
path ratio during the going phase, (c) mean velocity of the finger during the going phase, (d) total number of velocity peaks, and (e) target
error are reported for CIMT (black line), Armeo (black dashed line), and PT (grey line). For the vertical task, pre- and posttreatment
values of displacement of (f) the finger along y-axis are reported for CIMT (black line), Armeo (black dashed line) and PT (grey line).
Data are reported as median (IQR). *p <0.05 Wilcoxon test, before PT versus after PT; °p <0.05 Mann-Whitney post hoc test at
pretreatment, Armeo versus CIMT, Armeo versus PT.
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TaBLE 2: Median (IQR) of functional scales before (pre) and
after (post) each treatment. The sample size is n=8 for the
CIMT, n =9 for the Armeo, and #n =11 for the PT groups. P values
refer to Wilcoxon test. Bold values: p < 0.05.

Pretreatment Posttreatment p value

CIMT (1= 8)
QUEST-tot 70.88 (21.54) 82.02 (17.10)  0.03
QUEST-A 80.47 (24.61) 8672 (21.48)  0.04
QUEST-B 77.78 (1574)  77.78 (17.59)  0.11
QUEST-C 100.00 (10.00) 100.00 (3.00)  0.18
QUEST-D 59.73 (30.56) 59.73 (25.00)  0.18
i/[;l:;‘:umr:; % 81.00 (13.50)  82.50 (7.25)  0.02
GMEM total 214.00 (20.50) 249.00 (18.00)  0.07

Armeo (n=9)
QUEST-tot 56.63 (7.03)  56.63 (9.43)  0.07
QUEST-A 54.69 (12.50) 54.69 (15.63)  0.11
QUEST-B 55.56 (14.81) 55.56 (14.81)  0.32
QUEST-C 76.00 (16.00)  80.00 (16.00)  0.11
QUEST-D 4167 (833)  41.67 (833)  0.08
fsilfs:“mrgjt % 40.00 (37.00)  43.00 (26.00)  0.03
GMEM total 204.50 (28.25) 214.00 (21.75)  0.07

PT (n=11)
QUEST-tot 70.49 (14.81) 7336 (18.95)  0.01
QUEST-A 7031 (17.97)  76.56 (14.85)  0.02
QUEST-B 7037 (16.67) 77.78 (20.37)  0.89
QUEST-C 98.00 (12.00) 100.00 (12.00)  0.10
QUEST-D 44.40 (13.89) 52.78 (19.45)  0.04
Xill’szumrgﬁt % 72.00 (17.53)  77.00 (18.50)  0.14
GMEM total 240.00 (28.50) 240.50 (26.25)  0.07

3.2. Changes in Functional Scales Dependent on Treatment.
Table 2 shows values of functional scales before and after
each treatment. p values are the results of the Wilcoxon test
for paired data. The table highlights several changes that were
conveyed by the CIMT treatment in the QUEST scale
(medium effect size, d =0.6) as well as in the Melbourne
Assessment (large effect size, d=1.1). Armeo treatment
caused improvements in the Melbourne Assessment (large
effect size, d=0.9) while the PT protocol in the QUEST
scale (large effect size, d =0.9) [27]. No changes in GMFM
were detected.

The comparison among the three treatments, considering
the variations between post- and pretreatments did not show
any significant difference (Kruskal-Wallis test p > 0.05).

3.3. Changes in Kinematics Dependent on Treatment. For the
horizontal task, the improvement of mean angular velocity
during shoulder flex-extension was found for CIMT. Several
improvements were also found after PT treatment concern-
ing end-point metrics (Figure 3): the significant reductions
of HPR,, (Figure 3(b)) and #VP, . (Figure 3(d)) as well as

an increase of MV, (Figure 3(c)) suggest enhanced efficiency
and smoothness of distal movement. Moreover, a trend of
improvement was observed with regard to the MT,, which
decreased after PT (p=0.08, decreases in 8 out of 12
children). With regard to Armeo, no significant differences
were found between pre- and posttreatments with regard to
end-point metrics; in contrast, a significant but small (i.e.,
0.52 degrees) reduction of ROM of shoulder flex-extension
emerged (reduces in 8 out of 9 children). No significant
differences emerged with regard to the compensatory move-
ment of the trunk after CIMT, Armeo, and PT. Pre-/post
values of kinematic parameters extracted for the horizontal
task for each treatment are shown in Table 3.

With regard to the vertical task, no significant differ-
ences emerged for CIMT and Armeo treatments between
pre- and postevaluations; on the contrary, some improve-
ments emerged after PT, in particular an increase of Y-FD
(Wilcoxon p value=0.02) (Figure 3(f)) and of the mean
angular velocity of the elbow flex-extension (Wilcoxon
p value=0.03). Trends of improvement, even if not signifi-
cant, were observed: with regard to compensatory move-
ments of the trunk, a reduction of trunk lateral bending
emerged after CIMT (X-TD,,: p=0.05); also, a trend of
increase of movement efficiency was observed after Armeo
(HPR,,: p=0.08, HPR,, increases in 6 children out of 8),
and after PT, increase of shoulder abduction-adduction
ROM (p=0.05, increase in 9 out of 11 children) was
observed. Pre-/post values of kinematic parameters extracted
for the vertical task for each treatment are shown in Table 4.

The comparison of variations (post-pre) among the three
treatments highlighted a significant difference in ROM of the
shoulder during flex-extension (Kruskal-Wallis p =0.02)
that decreased after Armeo while it increased after CIMT
(Mann-Whitney p=0.03) and a significant difference in
the mean angular velocity of the shoulder in flex-extension
during the going phase (Kruskal-Wallis p=0.01) that
increased after CIMT while it decreased after PT (Mann-—
Whitney p =0.01).

For the vertical task, a difference between groups
emerged with regard to the modification of the ROM of
shoulder abduction-adduction during the going phase
(Kruskal-Wallis p=0.03) that increased after PT while it
was reduced after Armeo (Mann-Whitney p =0.05). Also,
compensatory movements of the trunk, namely X-TD,
(Kruskal-Wallis p =0.03), were reduced after CIMT while
they increased after PT (Mann-Whitney p = 0.04).

4. Discussion

In children affected by acquired hemiplegia, several treat-
ments were developed to improve functional recovery of
the upper limbs.

In hemiplegic patients, the rehabilitation of the upper
limb skills is crucial, because the recovery has an immediate
impact on patient quality of life. Recent literature documents
demonstrate the great effort made by rehabilitation facilities
to enhance the recovery of motor function [28]. Two of the
most widely used rehabilitation methods used for this aim
are CIMT (Constraint-Induced Movement Therapy) and
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TaBLE 3: Kinematic variables before (pre) and after (post) each treatment for the horizontal task. Data are presented as median (IQR). The
sample size is n = 9 for the CIMT, n = 9 for the Armeo, and n = 12 for the PT groups. p values refer to the Wilcoxon test. Bold values: p < 0.05.

Horizontal task parameters

CIMT (n=9)
MTgo [s]
HPR,,
End-point metrics MV, [mm/s]
#VP

Joint kinematics

tot
Target error

ROM shoulder flex-ext [°]
ROM shoulder abd-add [°]
ROM elbow flex-ext [°]
MAYV shoulder flex-ext [°/s]
MAYV shoulder abd-add [°/s]
MAYV elbow flex-ext [/s]

Trunk 3D path
Trunk
Z-TD,,
Armeo (n=9)
MT,, [s]
HPR,,
End-point metrics MV,, [mm/s]
#VP

Joint kinematics

tot
Target error

ROM shoulder flex-ext [°]
ROM shoulder abd-add [’]
ROM elbow flex-ext [°]
MAYV shoulder flex-ext [*/s]
MAYV shoulder abd-add [°/s]
MAYV elbow flex-ext [/s]

Trunk 3D path
Trunk
Z-TD,,
PT (n=12)
MT,, [s]
HPR,,
End-point metrics MV, [mm/s]
#VPtOt

Joint kinematics

Trunk

Target error

ROM shoulder flex-ext [°]
ROM shoulder abd-add [°]
ROM elbow flex-ext [°]
MAYV shoulder flex-ext [*/s]
MAV shoulder abd-add [/s]
MAYV elbow flex-ext [/s]

Trunk 3D path
Z-TD,,

Pretreatment Posttreatment p value
3.42 (4.08) 3.08 (2.62) 0.25
1.05 (0.64) 1.11 (0.48) 0.73

95.74 (60.63) 111.72 (49.20) 0.50

28.67 (43.00) 24.00 (19.00) 0.16

0(0) 0(0) 0.88

45.82 (5.35) 47.57 (12.46) 0.25
13.54 (2.49) 19.32 (19.32) 0.10

47.55 (21.26) 44.37 (14.17) 0.91
3.92 (4.52) 7.16 (5.95) <0.01
12.70 (7.95) 14.19 (7.31) 0.65
13.49 (6.21) 18.12 (9.45) 0.16

39.12 (21.06) 34.29 (16.60) 0.91

90.11 (78.62) 74.94 (42.20) 0.65
241 (2.73) 3.59 (2.10) 0.50
1.11 (0.26) 1.12 (0.18) 0.73

122.18 (73.32) 114.65 (39.97) 0.43

25.67 (17.33) 30.00 (20.72) 0.91
3.14 (14.44) 1.30 (3.91) 0.36
45.52 (9.59) 45.00 (15.86) 0.01
13.61 (7.40) 16.13 (4.72) 0.20

31.52 (14.30) 27.27 (16.73) 0.65
6.68 (6.59) 6.03 (8.17) 0.72
15.42 (9.90) 13.37 (4.77) 0.16
14.44 (9.91) 9.63 (9.44) 0.73

352.52 (195.01) 443.60 (189.82) 0.73

136.16 (44.51) 158.63 (54.40) 1.00
3.44 (2.38) 2,61 (2.73) 0.08
1.08 (0.47) 1.02 (0.03) 0.03

103.36 (53.40) 147.31 (61.05) 0.04

31.17 (19.50) 18.50 (9.25) 0.02
0.10 (0.26) 0.67 (0.53) 0.31

44.95 (17.62) 43.23 (8.31) 0.97
17.73 (8.68) 12.82 (14.56) 0.42

41.45 (19.07) 39.57 (28.90) 0.57
5.88 (8.31) 5.42 (3.57) 0.52
11.68 (3.76) 16.72 (14.28) 0.11
12.82 (8.81) 13.85 (7.39) 0.42

313.42 (186.79) 300.32 (182.32) 0.18

90.01 (102.48) 108.07 (91.19) 0.85

robot-aided therapy. The plurality of treatments necessitates
a comparison of the effectiveness of each; in addition, the
current lack of availability of quantitative methods makes
the use of objective measures of functional recovery essential.
Next to the functional scales, the clinic has recently

introduced methods of kinematic analysis of the upper limb
movement to get more objective and quantifiable measures.

In this study, we evaluated a group of children and
adolescents with upper limb movement impairment after
ABI that underwent intensive rehabilitation treatment. The
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TaBLE 4: Kinematics variables before (pre) and after (post) each treatment for the vertical task. Data are presented as median (IQR). The
sample size is n =9 for the CIMT, n = 8 for the Armeo, and n = 11 for the PT groups. p values refer to Wilcoxon test. Bold values: p < 0.05.

Vertical task parameters Pretreatment Posttreatment p value
CIMT (n =9)
HPRgo 1.10 (0.89) 1.09 (0.61) 0.09
. . Y-FD [mm] 757.14 (84.78) 686.79 (81.75) 0.30
End-point metrics
MVgo [mm/s] 150.57 (47.00) 209.59 (76.55) 0.65
#VP,, 48.00 (18.67) 42.67 (39.00) 0.34
ROM shoulder flex-ext [°] 116.56 (22.72) 106.45 (38.87) 0.15
ROM shoulder abd-add [’] 126.69 (15.41) 126.20 (35.95) 1.00
. . . ROM elbow flex-ext [°] 56.61 (11.46) 62.26 (18.99) 0.31
Joint kinematics N
MAYV shoulder flex-ext [°/s] 22.43 (16.58) 25.06 (26.00) 0.84
MAYV shoulder abd-add [°/s] 18.74 (13.24) 19.66 (8.48) 0.46
MAYV elbow flex-ext [/s] 15.59 (8.19) 18.50 (6.62) 0.74
Trunk Trunk 3D path 477.38 (103.88) 386.72 (157.66) 0.20
run
X-TD,, 58.35 (25.96) 49.77 (18.30) 0.05
Armeo (n=38)
HPRgo 1.43 (0.39) 1.26 (0.14) 0.08
. . Y-FD [mm] 618.80 (160.00) 615.27 (217.03) 0.84
End-point metrics
MVgo [mm/s] 125.76 (107.67) 152.51 (66.25) 1.00
#VP,, 46.46 (26.83) 35.67 (32.83) 0.31
ROM shoulder flex-ext [°] 66.93 (34.99) 69.95 (41.34) 0.55
ROM shoulder abd-add [°] 54.39 (48.41) 56.59 (24.32) 031
o , ROM elbow flex-ext [] 3832 (11.65) 35.09 (10.73) 0.64
Joint kinematics .
MAYV shoulder flex-ext [*/s] 13.96 (16.62) 9.56 (9.38) 0.15
MAYV shoulder abd-add [*/s] 13.85 (10.24) 14.05 (8.53) 0.46
MAYV elbow flex-ext [/s] 8.78 (6.28) 10.49 (5.33) 0.74
Trunk 3D path 351.34 (58.49) 303.72 (130.18) 0.46
Trunk X-TD,, 46.51 (25.83) 52.57 (11.13) 0.55
PT (n=11)
HPR,, 1.15 (0.49) 1.12 (0.48) 0.20
. ‘ Y-FD [mm] 669.71 (58.56) 764.82 (138.49) 0.02
End-point metrics
MV, [mm/s] 185.59 (106.09) 194.79 (41.96) 0.52
#VP,,, 56.00 (42.33) 36.00 (32.42) 0.97
ROM shoulder flex-ext [°] 95.13 (36.11) 99.75 (16.26) 0.32
ROM shoulder abd-add [°] 103.43 (67.88) 121.15 (18.94) 0.05
o , ROM elbow flex-ext [] 57.71 (23.32) 62.54 (15.12) 0.43
Joint kinematics .
MAYV shoulder flex-ext [°/s] 26.50 (20.66) 22.46 (13.69) 0.40
MAYV shoulder abd-add [*/s] 18.99 (14.07) 18.21 (10.20) 0.58
MAV elbow flex-ext [*/s] 16.36 (4.14) 18.98 (5.86) 0.03
Trunk Trunk 3D path 347.89 (155.03) 348.67 (180.99) 0.17
run
X—TDgO 49.77 (8.77) 66.22 (24.72) 0.10

rehabilitation program included two consecutive four-week
periods of treatment, attended in a random order: one period
of physical therapy (PT) and one period of a rehabilitative
treatment randomly chosen between Constraint-Induced
Movement Therapy (CIMT) and training with the exoskele-
ton Armeo®Spring. The aim of this study was to compare the
effect of different types of treatments on functional abilities
in a group of children and adolescents suffering from ABI.

Clinical functional scales and upper limb kinematics data
were used as assessment tools.

Only a very low number of studies have previously quan-
tified recovery of upper limbs in children after ABI; our study
investigated a very wide perspective in terms of movement
(kinematic data), gross motor performance, and hand func-
tion. Also, attention was focused on both clinical-functional
scales and kinematic data during different types of treatment.



10

In terms of functional scale, the most significant
improvements were obtained after CIMT. In fact, this
treatment demonstrated progress in both the QUEST and
Melbourne Assessment. The other treatments produced sig-
nificant changes in a single assessment scale: Armeo modi-
fied the Melbourne Assessment score and thus increased
the quality of the upper limb movement, while PT produced
a significant improvement in the QUEST scale, in particular
in postural responses. All these improvements had a large
effect size, except for the QUEST scale in the CIMT group.

Therefore, CIMT seems to still be the most effective
treatment as evidenced by the literature of the past 20 years
[29], significantly improving both the quality of motor limb
function (analyzed by the Melbourne Assessment) and
postural responses and selective motility (evaluated by
the QUEST) [30].

The kinematic analysis of movements during horizontal
as well as vertical tasks showed several improvements in
terms of efficiency and smoothness of end-effector move-
ments and elbow angular velocity after PT, suggesting its
positive influence on distal movements. In contrast, CIMT
conveyed more changes at the shoulder and trunk districts
that means improvements of proximal kinematics and reduc-
tion of compensatory movements. An improvement of the
movement efficiency was observed after Armeo treatment:
specifically, not only a trend of increase of the hand-path
ratio during the vertical reaching but also a significant reduc-
tion of the shoulder flex-extension in the horizontal task was
observed. Compared with other treatments, Armeo showed
an improvement of shoulder abduction-adduction during
the vertical task (i.e., a reduction of compensatory move-
ments of the shoulder). These opposing results may be due
to the mechanical constraints that the exoskeleton gives
during therapy.

More generally, PT seems to be more effective in terms of
kinematic variations than CIMT and Armeo: a possible
hypothesis is that, since PT was often provided as a second
treatment, this depends on a sort of summation effects of
the two treatments. Moreover, it has to be noted that the
PT sample size is bigger than the other treatments. Compared
to a previous work [12], our data after CIMT showed smaller
improvements; this may depend on the duration of the treat-
ment, that is, 4 weeks in the current manuscript versus 10
weeks in the work by Cimolin and coworkers. The results of
the present study are in line with those by Cope and collabo-
rators [31] where there were improvements of the functional
scales but just few trends of improvement with regard to the
kinematics after a 2-week rehabilitation with CIMT in
children with hemiplegia.

With respect to the treatment with Armeo, the small
number of significant improvements can be attributed to
the fact that patients who were assigned to this type of treat-
ment were on average more functionally compromised at the
beginning of their rehabilitative path, with an important
limitation of the upper limb distal level. Specifically, they
had worse functional abilities at the hand level and lower
functional ranges of motion at joint levels. It is already
known, indeed, that patients with a moderate degree of
impairment seem to benefit the most [31].

Journal of Healthcare Engineering

None of the three treatments changed the gross motor
skills (no significant changes in GMFM) because the patients
recruited for the upper limb treatment, generally, had a
framework of global consolidated skills and the rehabilitation
was more concerned with the functionality of the upper limb
and not with gross motor abilities.

The kinematic data allow us to make objective mea-
surements of the movement characteristics of patients after
ABI. Kinematic analysis, known in the literature especially
for gait analysis, proves to be able to describe very well the
upper limb movements and is a valuable aid in discrimi-
nating with greater precision the modifications that each
treatment cause.

This study has some limitations. The small number of
participants resulted in limited strength with regard to the
statistical findings. A larger sample could provide the oppor-
tunity to make a deeper investigation of the differences
between the treatments. In addition, with a larger group of
children, it would be possible to investigate whether the
improvements are greater in patients who start the treat-
ment closer to the time of their injury, by comparing the
results of the program between children with shorter and
longer postinjury times. A bigger sample would also allow
to evaluate the effects on functional abilities of different
matching of treatments.

Another critical point concerns the group of patients who
received robotic treatment with Armeo. They had overall
worse limb function when beginning treatment than the
other patients and even than other groups performing this
treatment [10, 11], and this could have determined the lack
of improvement in kinematic data.

Despite these limitations, the present study has interest-
ing clinical implications: from the rehabilitation point of
view, this study allowed the development of assessment and
treatment protocols that can be used for all patients with
ABI that undergo rehabilitation treatments aimed at improv-
ing the use of the upper limbs. Further, the results of this
study also allow us to give more precise information about
the type of treatment to be offered to children suffering from
hemiplegia from ABI In fact, we can choose the treatments
after identifying the target that one wants to reach in the
single patient, for example, improve the quality of unilateral
upper-limb motor function or increase postural responses.
Moreover, in some patients, the integration of multiple treat-
ments will be indicated because they are complementary and
not only differently effective.

In conclusion, this study investigated the effects of
different types of upper-limb rehabilitative treatments on
the functional improvement of children and adolescents with
ABISs. It was found that CIMT treatment is overall the most
effective in terms of quality in motor limb function and
postural responses as evidenced by functional scales, while
physical therapy and robot exoskeleton-aided therapy convey
improvements only in the QUEST and Melbourne Assess-
ment, respectively. Kinematic analysis results suggest that
CIMT is able to foster proximal movement improvements,
in particular at the shoulder joint. In the contrary, PT showed
good results in terms of distal movements, including increase
of finger speed and fluidity. Finally, Armeo treatment
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conveyed improvements in the shoulder performing the ver-
tical but also a reduction of its functionality in the horizontal
one. These data suggest that these treatments are comple-
mentary and that it would be important to offer to hemiple-
gic children a combination of these protocols depending on
the main rehabilitative goal. Future works will investigate the
ability to prescribe specific treatments in order to maximize
patient improvements.
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Apraxia of speech is a motor speech disorder in which messages from the brain to the mouth are disrupted, resulting in an
inability for moving lips or tongue to the right place to pronounce sounds correctly. Current therapies for this condition
involve a therapist that in one-on-one sessions conducts the exercises. Our aim is to work in the line of robotic therapies
in which a robot is able to perform partially or autonomously a therapy session, endowing a social robot with the ability
of assisting therapists in apraxia of speech rehabilitation exercises. Therefore, we integrate computer vision and machine
learning techniques to detect the mouth pose of the user and, on top of that, our social robot performs autonomously the

different steps of the therapy using multimodal interaction.

1. Introduction

Apraxia of speech (AOS) is a neurological disorder in which
the messages from the brain to the mouth are disrupted, and
the person cannot move his/her lips or tongue to say sounds
properly. This condition is caused by a damage in the left
hemisphere of the brain generated by strokes, Alzheimer’s
or brain traumas, among others. The severity of the apraxia
depends on the nature of the brain damage. AOS is also
known as acquired apraxia of speech, verbal apraxia, and
dyspraxia [1].

The focus of intervention is on improving the plan-
ning, sequencing, and coordination of muscle movements
for speech production. The muscles of speech often need
to be “retrained” to produce sounds correctly and
sequence sounds into words. Exercises are designed to
allow the person to repeat sounds over and over and to
practice correct mouth movements for sounds [2]. Cur-
rently, there are three different interventions for AOS
rehabilitation: (i) intervention based on motor control:
these exercises consist of producing phonemes and
sequences of phonemes through accurate, controlled, and
conscious movements. The aim of these therapies is to

automate such movements to be subsequently performed
unwittingly; (ii) intervention based on augmented systems:
these methods include several input channels to improve
the therapy results. Audio and images are traditionally
mixed to help remembering how to pronounce difficult
and long words; and (iii) interventions based on melodies:
these therapies are adopted in patients that preserve an
auditive comprehension of the language. In these cases,
the patient has to imitate different melodies proposed that
remark the stressed syllables of the wards, establishing the
rhythm of the melodies [3]. These interventions are fre-
quently planned as intensive, one-on-one speech-language
therapy sessions for both children and adults. Thus, the
repetitive exercises and personal attention needed to
improve AOS are difficult to deliver in group therapy [4].

In recent years, robots are gaining popularity in rehabili-
tation therapies, mainly in traumatology, where the robot
holds the user’s weight or helps moving a determined limb.
Robots have been proven to be effective in assisting the ther-
apist to provide safe and intensive rehabilitation training for
the stroke subjects. Nevertheless, in the general setting of
these systems, a therapist is still responsible for the nonphys-
ical interaction and observation of the patient by maintaining
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a supervisory role of the training, while the robot carries out
the actual physical interaction with the patient. In most
applications, rehabilitation robots have been mainly
employed in lower and upper limb therapy [5-8].

Rehabilitation using robotics is generally well tolerated
by patients and has been found to be an effective adjunct
to therapy in individuals suffering from motor impair-
ments, especially due to stroke. Therefore, we believe that
robotics can be introduced to other rehabilitation areas
such as AOS. To the extent of our knowledge, this pro-
posal is innovative as robotic technologies have not been
applied to this field so far. We propose following the first
kind of intervention presented in this section in which the
user repeats exercises to practice mouth movements; in
our case, we take inspiration from mouth poses associated
to the five vowels in the Spanish tongue. Here, “a” is
pronounced like the “a” in the word “father” (/a/); “e” is
pronounced like the “a” in the word “date” (/e/), except
that it is shorter and crisper; “i” is pronounced like the
“ee” in the word “see” (/i/); “0” is pronounced like the
“0” in the word “no” (/o/); and “u” is pronounced like
the “e” in the word “new” (/u/). Thus, we propose using
some of these sounds because their pronunciation imply
different poses of the mouth, associated to a range of
muscular movements.

We believe that a social robot could help in AOS therapy
offering a new and eye-catching way of assisting in the exer-
cises. The robot adds to the therapy some new resources such
as a screen to stimulate the patient, offering a visual rein-
forcement to the exercises. Additionally, the human-robot
interaction (HRI) capabilities of a social robot could enhance
the traditional therapy, maximizing the human resources
while keeping a personalized treatment. That is, a therapist
could take care of more patients having robots develop parts
of the treatments.

We propose using machine learning techniques for
vowel pose recognition and identification. The input infor-
mation is collected by an RGB-D device, a Microsoft
Kinect, and with this information, the system obtains
mouth poses which are used in the exercises to guide the
users. Interaction is performed through a multimodal sys-
tem that integrates body expressions, voice interaction,
and a graphical user interface (GUI), and all of these
modalities are developed to give instructions to the patient
as well as encourage him/her during the exercise.

The rest of this manuscript is structured as follows:
Section 2 provides the insights of current therapies for
AOS, presents new robotic developments for physical ther-
apy and cognitive rehabilitation, and analyses some face
detection and classification techniques related to our
approach. Next, Section 3 presents the details of our pro-
posal, describing its main phases. Section 4 presents the
experiments conducted to validate our work along with
the robotic platform, the social robot Mini, and the met-
rics for evaluating the approach. This section also presents
the preliminary results from integrating and testing the
AOS exercises in the social robot. Finally, Section 5 analy-
ses the main contributions or our work and draws the
main conclusions.
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2. Related Work

The ability of speech is commonly affected after suffering
Alzheimer’s, dementia, or a stroke. Traditional speech thera-
pies focus on mitigating this problem in case of cognitive
impairment or rehabilitating in case of cerebrovascular acci-
dents. The recovery time in these cases is around three years
[9] in which speech therapy yields positive results in most
cases. Apart from this line of therapy, there are others such
as music therapy that are usually applied to patients with
neurological problems, generally elders. In the case of music,
the therapy consists of patients emitting singing and emitting
sounds from given melodies in order to improve pitch, vari-
ability, and intelligibility of speech [10]. Tomaino and Sacks
[11] demonstrated that music therapy helps reorganizing
the brain function in patients with brain alterations.

Apart from traditional therapies, technology is being
incorporated to health environments. More precisely, robot-
ics is gaining importance, mainly in the fields of physical
therapy and cognitive rehabilitation. In these cases, exercises
are supervised by therapists who are in charge of selecting the
tasks to perform and monitor the procedure [12]. The robot
Paro is a good example of the application of robots in cogni-
tive therapy. It imitates a baby harp seal and has been used in
therapy with elder people with dementia, increasing the will-
ingness of patients to communicate and a steady increase in
physical interaction, not only between patients and the robot
but also among patients as well [13, 14]. Another robotic
platform used in cognitive therapy is Babyloid, a baby-like
robot designed to be taken care of [15]. This robot is intended
for recreational therapy in which the robot becomes a pet
instead of an animal. These proposals are mainly intended
for interaction with elderly people with moderate cognitive
impairments.

Other robotic platforms provide a higher degree of inter-
action in therapies with people with mild cognitive problems.
This is the case of Eldertoy [16], a robot developed to achieve
both entertaining and gerontological capabilities. This robot
offers different interaction channels to communicate with
users: gestures, voice, touch-screen, and external actuators.
Therapy with this robot is conceived through manipulation
and display multimedia content. Therefore, therapy special-
ists are furnished with a tool able to run games by using the
sensors integrated in the platform. The robot Mini is another
proposal for therapy with elders in early stages of Alzheimer’s
or dementia [17, 18]. Mini is a plush-like desktop robot that
offers functionalities related to safety, personal assistance,
entertainment, and stimulation. In this work, we aim to
extend the capabilities of Mini to conduct speech therapy.
More details about the robot design and features can be
found in Section 3.

Another research area integrated in our work is computer
vision. The literature offers several approaches for face detec-
tion and recognition [19, 20]. Applications range from peo-
ple recognition [21], surveillance [22] to emotion detection
and regulation [23, 24]. Although there are several tech-
niques to retrieve facial features, this problem is still chal-
lenging since most of the approaches are highly dependent
on the face orientation. In this work, we have integrated
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FIGURE 1: Proposed approach pipeline. The upper path corresponds to the offline analysis for assessing the best classifier. The lower path
corresponds to the software running in the robot with the speech therapy exercise.

Stasm, an active shape model-based approach coupled to a
support vector machine (SVM) classifier that retrieves facial
features [20]. Out of these features, the user’s mouth is repre-
sented with 18 3D points, which will be the input for the
machine learning algorithm.

Apart from detecting the mouth, recognizing the mouth
pose is crucial to have an algorithm that can be integrated
into a speech therapy application. Machine learning has been
widely applied in face recognition and recognition of facial
expressions [25, 26]. Within the number of techniques,
SVM, Adaboost, linear discriminant analysis or, more
recently, deep learning [27], among others, try to cope with
known problems such as different poses, illumination, ages,
and occlusions that nowadays still pose a challenge. In our
work, we test several classifiers integrated within Sci-Kit learn
[28], an open-source machine learning library written in
Python language. It provides feature classification, regres-
sion, and clustering algorithms.

3. Materials and Methods

This section presents the details of the proposed approach
that allows a social robot, equipped with a 3D camera, to con-
duct an AOS exercise autonomously. Figure 1 shows the
main steps of our proposal, which is roughly divided into
two operation modes. First, we need to assess the classifier
that performs best for our kind of data. In this process, we
acquire information from users, preprocess it, and train a
set of classifiers to select the best-performing one. This clas-
sifier is used next online, thus integrated in the robotic plat-
form where the speech therapy application uses the mouth
pose detected to conduct the exercises. Note that the four first
steps are the same in both approaches.

3.1. Mouth Detection from RGB-D Data. The system
described here uses a Microsoft Kinect, which provides
RGB images and depth data synchronized both in terms of
time and field of view. After information acquisition is per-
formed, the system extracts face features in 2D using the
open-source library Stasm [20]. Then, those features are
translated into 3D points which are finally classified to recog-
nize the mouth pose (see Figure 2).

The mouth detection process is composed by two main
steps. Data acquisition is performed through a middleware
specifically designed to work with RGB-D devices, OpenNI
(OpenNI website: http://openniru/). Two information
flows are generated from the Kinect device: an RGB image
stream and a point cloud containing depth information.
Next, the system processes the RGB data to identify the
mouth within a detected face using Stasm. This library
characterizes a face with 77 points of which 18 belong to
the mouth. These points are next matched to the depth
information from the camera and formatted to be used
in the next phase, mouth pose classification. A more
detailed description of the mouth detection system can
be found in a previous work [29].

3.2. Machine Learning Tools for Mouth Pose Classification. In
our approach for mouth pose recognition, we aim to test a
series of classification techniques integrated within Scikit-
Learn [28]. For the classifier selection, we take as a start-
ing point a previous work [29] in which mouth detection
was evaluated using WEKA [30], a well-known data min-
ing tool that allows preprocessing, classification, regres-
sion, clustering, association rules, and visualization of
data. In this case, we wanted to take the study one step
further and integrate the best-performing classifier in our
robotic platform (WEKA was not directly integrated
within the framework ROS). Thus, we compared the per-
formance of the following classifiers:

(i) k-Nearest neighbours (k-NN) is a nonparametric
method used for classification and regression in
which the input consists of the k closest training
examples in a feature space [31]. In our problem,
the output is a mouth pose where a sample is classi-
fied by a majority vote of its neighbours with the
object being assigned to the most common class
among its k-nearest neighbours.

(ii) Support vector machine is a supervised learning tech-
nique for classification and regression that builds a
hyperplane or set of hyperplanes in a high- or
infinite-dimensional space [32]. An SVM can
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FIGURE 2: Mouth detection pipeline using Stasm.

perform linear and nonlinear classification mapping
the inputs into high-dimensional feature spaces.

(iii) C4.5 is an algorithm that generates a decision tree
from a set of training data using the concept of
information entropy [33]. At each node of the
tree, the algorithm chooses the attribute of the
data that most effectively splits the set of samples
into subsets enriched in one of the classes. The
splitting criterion is the normalized information
gain (difference in entropy).

(iv) Random forest is an ensemble learning method for
classification and regression that construct multiple
decision trees at training time and outputs the class
that corresponds to the mode of the possible classes
(mouth poses). An advantage of random forest is
that this technique mitigates the overfitting problem
caused by traditional decision trees [34].

3.3. Assessing the Best Classifier: Offline Analysis. Before
addressing the logic of the speech therapy exercise, it was
necessary establishing which classifier offered better perfor-
mance with our input data. This operation mode, depicted
in the upper path of Figure 1, starts with a data acquisition
phase in which the RGB-D device provides colour images
and point clouds with the 3D representation of the scene.
The next step, mouth detection, works as described in Section
3.1, using Stasm to generate a 3D array of 18 points corre-
sponding to the mouth detected in the input data.

Since the head position in the image varies as the user
moves, it is important to normalize the data to establish a

common frame for reference. Thus, the normalization step
computes the centroid of the mouth, setting it as the origin
of coordinates for the 18 points (see (1), (2), and (3)). Each
one of these points is defined by its <x, y, z> components,
and therefore, (4), (5), and (6) show that the normalization
for each of them is calculated with respect to the centroid.

1 18
Xcentroid = 1_8 Z Xis (])
1
1 18
Yeentroid = ﬁ Z)’i, (2)
1
1 18
Zcentroid = 1_8 Z Zis (3)
1
Xiormatied i Xcentroid Vie [1’ 18]’ (4)
yinorma]ized =i~ Veentroid Vie [1’ 18]’ (5)
Zimalized 21 T Zcentroid Vie[l,18]. (6)

These normalized points are formatted in tuples for
the classifier. Each tuple composed by 54 values plus the
class for each pose was recorded. After the data is format-
ted, we trained the classifiers previously described in
Section 3.2.

3.4. Online Execution. The best-performing classifier identi-
fied in the previous section is integrated in the online exe-
cution mode of our system, described in the lower path of
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TaBLE 1: Set of utterances to convey messages during the exercise
(approximate translation from Spanish).

Situation Sentence Details
Very good
Coneratulatin Keep goin General congratulation
& J P goug utterances
You are doing great
Open a little less
your mouth
Corrections in case the user
Open your mouth . .
is opening the mouth more
less
than expected
Please, close your
mouth a bit
Open your mouth a
Correcting bit more o
Corrections in case the user
Open your moutha .
. is opening the mouth less
bit more
than expected
Make a bigger
mouth
You are almost
there Utterance to encourage the
i user during the exercise
Keep trying
Let us try to say “a”
correctly three Practicing with “a” pose
times
Let us try to say “u”
Starting correctly three Practicing with “u” pose
exercise times
Try to keep your

Practicing with mouth

mouth closed for
closed pose

three rounds

In 3,2, 1... Now! Start signal

Figure 1. The four first steps are common to both offline
and online executions as they are intended for data acqui-
sition, detecting the points corresponding to the mouth
and normalize them as well as formatting the data for
classification. In the online mode, the data formatted is
then processed in a classifier which output is used in the
AOS exercise to assess the user performance and guide
him/her during the session.

When one of the three poses reaches a number of detec-
tions, the system selects that pose as the current one and
interacts with the user, expressing congratulations in case
the pose detected was the one expected, or correcting the user
if another pose is detected. A repertoire or corpus of utter-
ances has been created to congratulate and correct the user
(see Table 1) as a complement to the images shown in the
tablet (see Figure 3). Additionally, the robot expresses
gestures with its body to help engaging the user in the exer-
cise. When the user fails to perform the pose, a sad expression
is performed while otherwise the robot shows a happy
expression (Instead of denning here what they are about, a
demo video has been released in which those gestures are
clearly demonstrated. The video link is presented at the end
of Section 4.4).

In the current version of the system, the process of
detecting a mouth pose and congratulating/correcting the

FI1GURE 3: Images to give feedback about the mouth pose and the
user’s performance. First, image to indicate how to make the “a”
pose. Second, image to indicate how the closed-mouth pose

should be. Third, image to indicate how to make the “u” pose.
Fourth, image to congratulate the user.

user is repeated three times although the system is flexible
enough to change and adapt the exercise logic.

4. Results and Discussion

4.1. Robotic Platform: Mini. The system developed in this
work was integrated in Mini, a desktop social robot
designed and built at RoboticsLab research group from
the Charles IIT University of Madrid (see Figure 4).
Originally, this robot was designed to interact with elder
people with mild cognitive impairment [18]. Nevertheless,
the capabilities of this platform allows other users and
applications such as our current goal.

Mini is equipped with multiple HRI interfaces including
automatic speech recognition (ASR) [35], voice activity
detection [36], emotion detection [37], a text to speech
(TTS) system, a tablet, and an RGB-D device. Moreover,
Mini possesses 5 degrees of freedom to allow moving its
arms, base, and head. The interaction capabilities complete
with touch sensors, two uOled screens for the eyes, RGB
LEDs in the cheeks and heart, and a VUmeter as mouth to
create the illusion of a talking robot. All of these interfaces
are integrated in a natural dialogue management system
[38] which enables the robot to carry out natural interactions.
Finally, these components are integrated using ROS frame-
work [39].

4.2. Metrics for Evaluating the Classifiers. Since our classifiers
have to solve a multiclass problem, the metric selected for
assessing the best one was the macroaverage F-score.
Macroaverage means that the metric is independently
computed from each class and then the average is calcu-
lated. This metric uses the precision and recall for each
class and calculates the mean precision and recall of all
classes as shown as follows:

. ¥ Tp,
Precision = % ,
> TP+ FP,
i=1
) )
- ¥ Tp,
Recall = NL,
Y TP +FN,

where N is the total number of classes, TP, corresponds to the
true positives achieved in class i, FP, are the false positives for
class i, and FN; are the false negatives in class i. Then, the



Lighting mouth
(VUmeter)

Touch
sensors

Articulated
body, arms,
and head

Mic and
speakers
in belly

Screen
(tablet)

Journal of Healthcare Engineering

Lively eyes

(uOled)
Colored
cheeks (RGB)

Colorful heart
simulating the
beating (RGB
LED)

Kinect

Computer
o (i5 with batteries)

FIGURE 4: Mini, the social robot involved in the experiments [40]. Apart from its plushy shape, the robot is equipped with a series of sensors

and actuators for HRI.

50 cm

FIGURE 5: Experimental setup. The user was sitting in front of the robot at 0.5 meters, a natural distance for interaction that ensures clear

images of the face.

macroaverage F-score is computed as the harmonic mean of
these two values as shown as follows:

2 x precision X recall
Macroaverage_F-score = P

precision + recall

4.3. Experiments. In our experiments, users sit in front of the
robot, at 0.5 meters (see Figure 5(a)). A previous study indi-
cated that at a range of 0.5 meters, the detector performance
in order to locate the mouth accurately in the face was high,
suffering a degradation with the distance that at 2 meters was
too poor to achieve reliable detections [29]. Moreover, as
shown in Figure 5, right, this distance allows a natural inter-
action with the robot, for instance with its tablet that is usu-
ally placed between the robot and the user. Note that in
Figure 5(b), the tablet is on the left side of the robot. In this
specific case, the tablet was placed there just for illustrative
purposes. Also, the Kinect camera changed the usual location
(see Figure 4) to allow a better acquisition of face images.
The following sections detail the experiments conducted
to assess the performance of our system and its feasibility
for speech therapy. Also, the aim of this set of tests was to
select the best classifier for our data. We first tested the per-
formance with the most different poses “a” and “u”, as
described in experiment 1. For our second experiment, we
added a new “neutral” pose that corresponded to the mouth

closed and carried out experiment 2. 14 users were involved
in our experiments, and the method for dividing the datasets
was 1-fold cross-validation with 60% of the instances for
training and 40% for test.

4.3.1. Experiment 1: Training 2 Poses. This experiment is
meant to assess the feasibility of the classifiers described in
Section 3.2 to distinguish between two mouth poses.
Although this set of poses may seem reduced, they are differ-
ent enough as to implement a range of mouth movements
that could be useful in SOA therapy. Moreover, recognizing
the mouth is not an easy task, leading to similar representa-
tions of different poses as shown in Figure 6. The two first
images correspond to the poses associated to “a” and “e,”
and the two last ones correspond to “o” and “u.”

In this test, the dataset was composed of 1200 instances
for the pose “a” and 1425 for the “u” pose (see Table 2). After
the test, two classifiers, C4.5 and SVM, showed promising
results, with a macroaverage F-score of 0.82 and 0.81, respec-
tively, as shown in Table 3. Additionally, Table 4 offers the
confusion matrix for the best classifier in this experiment,
(4.5, in which we can observe an accuracy that starts to be
competitive for our speech therapy application.

4.3.2. Experiment 2: Training 3 Poses. In this experiment, a
new pose was added to the dataset, mouth closed, to
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(a) “a” pose
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(b) “e” pose
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(c) “o” pose
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(d) “u” pose

FIGURE 6: Mouth points as detected by Stasm. We can see in this example how there is low variability between some mouth poses.

TaBLE 2: Dataset summary for experiments 1 and 2.

Pose Experiment 1 instances Experiment 2 instances
“a” 1200 4623
“u” 1425 5250
Mouth closed N/A 3624
Total 1625 13497

TaBLE 3: Results for experiments 1 and 2. Macroaverage F-score for
the four classifiers tested with two mouth poses.

Experiment 1: Experiment 2:

Classifier
macroaverage F-score macroaverage F-score
Random 0.57 0.47
forest
C4.5 0.82 0.95
k-NN 0.54 0.93
SVM 0.81 0.63

complement the cases for the AOS exercise. Therefore, a new
class, mouth closed, was added to our dataset with 3624
instances. For the previous classes, new instances were added
as well, having a total of 4623 instances for the “a” pose and

5250 instances for the “u” pose. Finally, the classifiers were
retrained with the new data. The results show that C4.5 is
again the best classifier, with k-NN offering competitive per-
formance (see Table 3). Therefore, since C4.5 showed the
best behaviour in both experiments, this classifier is the one
selected for the online execution.

In this experiment, the results improved with respect
to the previous one as shown in the confusion matrix
for C4.5 classifier (see Table 5). Here, the recognition
rate for the “a” pose reached 95%; in case of the “u”
pose, the rate is 93%, and finally for mouth-closed pose,
the rate is 99.67%.

4.4. Integration in the Social Robot. This section analyses the
performance of the detection and classification integrated
with the speech therapy application. In this case, users
trained the system online in periods ranging between 5
and 10 minutes for the three poses together. Table 6
shows the performance of our pretrained C4.5 classifier
when offered new data. We can see how in some cases
as in mouth-closed pose that the performance drops to
the point that the system is not usable.

At this point, we realised that we needed to perform
some training with the new users’ data, but in this case,
that training should not be as intensive as in previous
experiments. Since the final application is speech therapy,
we cannot expect that users will be willing to train the



TaBLE 4: Experiment 1: confusion matrix for C4.5 classifier
identifying 2 poses.
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TaABLE 6: Confusion matrix for the first test with untrained users.

Predicted Predicted Predicted mouth

Predicted A Predicted U A U closed
Actual A 86% 14% Actual A 52% 32% 16%
Actual U 12% 88% Actual U 36% 40% 24%
Actual mouth closed 0% 90% 10%

TaBLE 5: Experiment 2: confusion matrix for C4.5 classifier
identifying 3 poses.

Predicted Predicted Predicted mouth

A U closed
Actual A 95% 4% 1%
Actual U 5% 93% 2%
Actual mouth closed 0.03% 0.3% 99.67%

robot for long periods of time. In this case, the users are
trained from the system with online detections in periods
ranging between 5 and 10 minutes for the three poses
together. We believe that this would not cause boredom
or fatigue in the users as it only needs to be performed
once per new user. With this new data, the performance
of the system improves to levels comparable to experiment
1 (see Table 7), and although not reaching the scores
achieved in experiment 2 with cross-validation, these levels
are high enough to ensure a good detection rate.

In the online execution, we experimentally set the
score threshold to consider valid detection to 0.35 and a
pose was output after six successful recognitions. In most
cases, we noticed that the detection score was close to
one, dropping to low values for missdetections. The num-
ber of successful recognitions to consider a valid pose
directly impacts the execution time of our system since a
bigger number would cause a slow response and a smaller
number could lead to wrong detections. Therefore, six
valid detections were considered as a good tradeoff
between time of response and accuracy.

Figure 7 offers an overview of the speech therapy pro-
posal with the different phases where the robot guides the
user along the exercise. First, the robot provides a simple
explanation about the exercise (see Figure 6) using gestures,
voice, and the tablet to convey the messages. Next, the exer-
cise starts and the user should start making the desired pose
while the system is detecting and classifying the mouth pose
(see Figure 6). Finally, after three successful detections, the
robot congratulates the user (see Figure 6). There is also the
possibility that the system does not detect the target pose.
In this case, the robot corrects the user, explaining how to
achieve the desired pose (see Figure 6). Along this exercise,
the robot uses voice, gestures, and the tablet to give instruc-
tions and feedback to the user. A video has been uploaded
with more details about the execution of the system which
can be found in https://youtu.be/XRrIP3BcwCY.

4.5. Discussion. The results and the experimental conditions
of the proposed approach are summarized in Table 8. These
results show how our proposal provides high accuracy for

TaBLE 7: Confusion matrix for the test retraining the classifier with
new user data.

Predicted Predicted Predicted mouth

A U closed
Actual A 85% 12% 3%
Actual U 8% 75% 17%
Actual mouth 0% 14% 86%
closed

mouth pose classification, up to 0.95 in the cross-validation
test. It is worth remarking that the experimental phase in this
paper is intended as a proof of concept and that we are cur-
rently working on testing it with real users. Additionally,
we are aware that mouth poses could change when working
with people with motor mouth problems and that this fact
could affect the performance of the classifiers. In this regard,
our plan is to add real user data and retrain the system when
deploying it in real scenarios.

Also, the set of mouth poses recognized may seem
too small but for AOS therapy purposes, their differences
were considered enough for a first approach. It is our
intention involving experts to evaluate the feasibility of
our proposal both in terms of poses recognized and the
dynamic of the exercise.

5. Conclusions

This manuscript introduced an approach for apraxia of
speech therapy using a social robot. The system consists of
two main phases: an offline one in which we train a set of
classifiers after detecting and normalizing the mouth infor-
mation from users and an online one that runs in our social
robot Mini. This operation runs in real time, integrating the
best-performing classifier, and guides the user through an
AOS exercise.

The experiments included up to three mouth poses (“a”,
“u,” and mouth closed) which we consider are enough for a
first approach of therapy for their differences regarding the
mouth positions. The classifiers trained on our dataset are
composed by information from 14 users in our experiments
offline, to assess the best one. In these oftline experiments,
C4.5 was the best classifier for our data (achieving 0.95 of
macroaverage F-score), and therefore, it was integrated
within the final approach. In the online tests with the whole
system integrated in the social robot, we conducted addi-
tional experiments with 7 new users, the first one running
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expression while giving instructions to the user
through voice. In parallel, the tablet shows the pose
that the user should imitate
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(d) If the mouth pose detected does not match the

desired one, the robot corrects the user using voice
and gestures while the tablet shows the target pose

FIGURE 7: Running example of the speech therapy proposal. The robot leads the user through the exercise, encouraging him to keep

participating.

TaBLE 8: Numbers summarizing the experimental conditions and results of our proposal.

Recognized poses

Dataset instances

Input features per instance

Users involved in the dataset
Classifiers tested

Metric for comparison

Best algorithm for classifying poses

Users involved in the real tests

«_ » « »

3 poses (“a,” “u,” mouth closed)
1625 for expenment 1 and 13497 for experiment 2
54 features: 18 mouth points * 3 components (X, y, z)
14 users for the 2 datasets
4 classifiers
Macroaverage F-score
C4.5 (0.81 and 0.95 of macroaverage F-score in the experiments)

7 users

the system with untrained data which showed a performance
decrease in the mouth poses classification. This motivated
the second experiment in which we retrained the classifier
adding a small set of samples from the new users. In this case,
the performance rose again to competitive values.

We believe that the results achieved in our experi-
ments are promising, and thus, we are intended to proceed
with the next stage: testing the AOS exercise with real
users and therapists.

To the extent of our knowledge, this proposal is innova-
tive as robotic technologies have not been applied to this field
so far.
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Standing up from a seated position is a common activity in people’s daily life. However, for transfemoral (i.e., above-knee)
amputees fitted with traditional passive prostheses, the sit-to-stand (STS) transition is highly challenging, due to the
inability of the prosthetic joints in generating torque and power output. In this paper, the authors present a new STS
control approach for powered lower limb prostheses, which is able to regulate the power delivery of the prosthetic knee
joint to obtain natural STS motion similar to that displayed by healthy subjects. Mimicking the dynamic behavior of the
knee in the STS, a unified control structure provides the desired control actions by combining an impedance function with
a time-based ramp-up function. The former provides the gradual energy release behavior desired in the rising phase, while
the latter provides the gradual energy injection behavior desired in the loading phase. This simple and intuitive control
structure automates the transition between the two phases, eliminating the need for explicit phase transition and
facilitating the implementation in powered prostheses. Human testing results demonstrated that this new control approach
is able to generate a natural standing-up motion, which is well coordinated with the user’s healthy-side motion in the

STS process.

1. Introduction

Standing from a seated position is a common yet dynamically
challenging task in people’s daily life. Due to the vertical
ascent of the body’s center of gravity, sit-to-stand (STS) tran-
sition requires high torque in the knee, far exceeding the joint
torque in walking. Various biomechanical studies reported
knee peak torques in STS as high as 2.2Nm/kg (e.g., [1]),
while the typical peak torque in natural walking is only
0.615 Nm/kg [2] (both body weight normalized). As a result,
STS transition poses a major barrier to the mobility of indi-
viduals with lower limb motor impairments, including the
transfemoral (TF) amputees (i.e., individuals suffering from
above-knee amputations). A related study showed that TF
amputees suffer from much higher asymmetry in ground
reaction force and knee moments in the sit-to-stand motion,
compared with no-amputee healthy individuals [3]. Accord-
ing to the results of this study, the healthy individuals’
ground reaction force and knee moment production were

less than 7% asymmetric, while the amputees’ asymmetry
for ground reaction force was 53~69%, and the asymmetry
for knee moments was 110~124%. Note that although a
powered TF prosthesis (Power Knee) was used in this study,
it generated resistance in the STS and thus produced similar
results as the passive devices in the study (C-Leg and Mauch
SNS). The inability of existing prostheses in generating
enough knee torque and regulating the torque delivery in
the STS seriously affects the mobility of the large population
of TF amputees in their daily life.

Motivated by this significant performance deficiency of
traditional passive TF prostheses, researchers have expended
substantial efforts in developing powered devices. The pio-
neering work in this area was conducted by Flowers and
Mann, which uses a hydraulic actuator to actuate the knee
joint [4]. However, multiple drawbacks with hydraulics, such
as leakage and lack of a compact supply, make it less attrac-
tive for prosthetic applications. Currently, most powered
transfemoral prostheses are actuated with electric motors
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FiGURre 1: Knee position (a) and torque (b) trajectories in the STS motion (plotted for a 75 kg person with the data from [1]).

[5-10], for example, Sup et al. developed a powered knee
and ankle prosthesis with both joints powered with a DC
motor—ball screw assemblies [8]; Martinez-Villalpando
and Herr developed a powered knee prosthesis with two
series-elastic actuators positioned in parallel in an agonist-
antagonist arrangement [9]; and Hoover et al. developed
a myoelectric transfemoral prosthesis, in which the pow-
ered knee is controlled with an EMG-based motion con-
troller [10]. Additionally, Ossur, a leading orthopedics
company, manufactured the aforementioned Power Knee,
the first commercially available powered transfemoral pros-
thesis. According to the available technical information, the
Power Knee is also actuated with an electric motor. In
addition to these motor-powered devices, pneumatically
actuated prostheses have also been developed by
researchers including the authors’ group, for example, the
prototypes powered with pneumatic cylinders [11] and
muscle actuators [12].

The powered prostheses mentioned above are able to
actively generate joint torque and power for dynamically
challenging tasks such as STS transition. Making full use of
such capability, however, requires an effective and reliable
controller to regulate the joint power delivery in motion.
Currently, a walking controller for powered prostheses has
been well established. Typical approaches include echo con-
trol, which controls the prosthetic joint to track the recorded
sound-side motion with a half-cycle delay [13], and finite-
state impedance control, which implements an artificial
impedance within each phase of the gait cycle [11]. Electro-
myography has also been attempted in obtaining the user’s
motion intent and generating the corresponding motion
command [14]. STS control, however, is much less investi-
gated. The Center for Intelligent Mechatronics at Vanderbilt
University developed a multimode controller for powered
knee and ankle prostheses, in which STS is incorporated
as a transitional motion between sitting and standing states
[15, 16]. However, no details were provided on the rationale
of the controller structure or the determination of the
control parameters.

In the research presented in this paper, the authors
developed a new control approach to regulate the power
and torque delivery in the STS process. As the basis of this
approach, an analysis of the biomechanical behavior of the

knee in the STS was conducted, providing the inspiration
for the proposed controller structure. Subsequently, curve
fitting was conducted to evaluate the validity of the new
controller structure, utilizing the existing biomechanical
data of the STS motion. This new approach was imple-
mented in a powered knee prosthesis developed in the
authors’ lab, generating qualitative and quantitative results
to evaluate its effectiveness.

2. Knee Biomechanical Behavior-Inspired STS
Controller

Biomechanics in STS is a heavily investigated topic with a
large body of data generated from numerous studies. Ideally,
an STS controller should replicate the biomechanical behav-
ior of the knee in this process, providing the prosthesis user
a natural control experience. However, exactly replicating
the kinetic and kinematic trajectories of the biological knee
is unfeasible. Human locomotion is a highly interactive pro-
cess, in which the human lower limbs interact with the rest
of the human body and the environment to obtain coordi-
nated motion. Enforcing the kinetic/kinematic trajectories
in the prosthetic knee precludes such interaction, resulting
in a poor experience for the prosthesis users. Results of
the biomechanical data, on the other hand, provide insight
to the dynamic behavior of the knee and thus can be used
as the inspiration for the prosthesis controller.

Unlike cyclical motion modes such as walking, STS is a
typical transitional motion with clearly defined start (seated
position) and end (standing position). The typical joint posi-
tion and torque trajectories are shown in Figure 1 (data from
[1]). The entire process can be divided into two phases with
distinct dynamic characteristics, separated by the instant of
seat-off (SO):

(1) Loading phase (from start to SO): with the body
weight shifted from the seat to the lower limb, the
knee torque increases rapidly to support the body
weight and initiate the upward motion. In this
phase, the knee position remains almost constant
until the final portion of the phase, and the torque
increases at a nearly constant rate after the initial
dormant period.
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(2) Rising phase (from SO to end): after reaching the
maximum value, the knee torque reduces with the
joint extension and settles at a steady-state value after
the standing position is reached.

Such segmentation of the STS motion can be clearly seen
in Figure 1. For a powered knee prosthesis to generate natural
motion in this process, the controller should follow the same
strategy, generating a knee torque that changes in a way sim-
ilar to the biological joint torque trajectory. To facilitate the
implementation in powered prostheses, the STS controller
structure should be adequately simplified while retaining
the essence of human biological control. Furthermore, con-
sidering the significant intersubject variation among prosthe-
sis users, subject-specific tuning is an indispensable step in
fitting a powered prosthesis. Ideally, the number of control
parameters should be minimized, and all parameters should
have clearly defined physical meanings to make the tuning
process intuitive and easy to understand. Based on the multi-
ple requirements above, the authors propose a control struc-
ture consisting of a time-based ramp-up function for gradual
loading of the knee combined with an impedance function
for automatic adjustment of knee torque according to the
motion progress:

T=R(t) Tipyp (0, 9) (1)
In this equation, the impedance function 7;,,, is defined as
Timp = K (6 6,) + BY, (2)

where 0 is the joint position (measured from the knee-
straight position), 0 is the joint angular velocity, K is the stiff-
ness of the virtual spring, 8, is the equilibrium point of the
virtual spring, and B is the damping value of the virtual
damper. The ramp-up function R(¢) is defined as

t—t,

R(t) = T when t,<t<t,+T 3)

1 when t>t,+ T,

where ¢ is the current time point, t, is the starting time
point of the ramp-up period, and T is the length of the
ramp-up period.

The impedance function, as the major part of the control-
ler, simulates the dynamics of a mechanical spring combined
with a viscous damper. A mechanical spring is energetically
conservative, while a viscous damper is dissipative. As such,
the simulated spring-damper combination is purely passive,
guaranteeing the stability in the control process. The passiv-
ity, on the other hand, dictates that all the required artificial
mechanical energy (in the form of artificial spring deflection)
is to be introduced at the onset of STS motion, such that suf-
ficient power output can be provided while lifting the user in
the upward motion. Consequently, the torque output of the
spring-damper combination immediately reaches the maxi-
mum at the motion onset, as opposed to the gradual increase
as shown in the biomechanical data.

The time-based ramp-up function is then introduced to
address this problem. As (3) shows, the value of the function
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F1GURE 2: Comparison of the fitted knee torque curve versus the
knee torque curve in the biomechanical data for the STS motion [1].

increases linearly from 0 to 1 within the ramp-up period and
stays at 1 afterwards. As such, it only takes effect in the ramp-
up period, providing the gradual energy injection required in
the loading phase. It is worth mentioning that the use of the
ramp-up function eliminates the need for explicit phase tran-
sition from loading to rising as a result of the limited effective
period, which significantly simplifies the implementation of
controller. Note that other functions may also be used to gen-
erate the gradual loading effect in the load phase. For exam-
ple, a sigmoid function (y =1/(1 + e™*)) also monotonically
increases from 0 to 1, with the additional advantage of having
a continuous derivative. However, such function usually
comes with higher computation load than the ramp-up func-
tion in the real-time implementation. Furthermore, the
ramp-up function has a tunable parameter T that has a
clearly defined physical meaning (the duration of the ramp-
up period). As such, it is easier to tune the speed of loading
to fit each individual user when the ramp-up function is used.

To validate the controller structure shown by (1), (2), and
(3), curve fitting was conducted based on the biomechanical
data of knee position/velocity and torque in the STS for a
75 kg subject [1]. Matlab Curve Fitting Toolbox was utilized
to obtain the optimal set of values for K, 0., B, and T with
the least error from the biomechanical data. Figure 2 shows
the comparison of the fitted knee torque curve versus the
knee torque trajectory plotted from biomechanical data.
The close match between the two curves indicates that the
proposed controller structure is able to replicate the dynamic
behavior of the biological knee joint in the STS motion with
very small error.

Finally, to initiate the control action, the axial load in the
prosthesis combined with the knee joint angle serves as the
indicator for the user’s readiness for the STS motion. When
the user prepares for standing up, he/she first bends the knees
by a large angle (usually greater than 90°) such that the feet
can be directly underneath the body’s center of mass. Subse-
quently, the weight is gradually shifted to the feet, increasing
the axial load born by the prosthesis. Based on such biome-
chanical process, the trigger condition is set as the prosthesis
axial load greater than a certain threshold Fj, and the
prosthesis knee angle also greater than a certain threshold
0. This simple yet effective triggering condition can be easily
implemented by using the embedded sensors in the



prosthesis and provides an intuitive and reliable way to initi-
ate the STS motion. If the axial load information is not avail-
able, the inclination of the upper body may also serve as a
triggering condition, as a user usually leans forward signifi-
cantly when attempting to stand up. Alternatively, direct
human input (e.g., through voice command or a switch)
may also be used for this purpose.

3. Human Testing Results

To demonstrate the effectiveness of the STS controller, the
authors conducted a set of human subject experiments at
the Human-Centered BioRobotics (HUB-Robotics) Labora-
tory at The University of Alabama. The human subject par-
ticipated in the testing was a 22-year-old male unilateral
amputee, 178 cm in height and weighed 57 kg. He was fitted
with a powered knee prosthesis prototype developed at
HUB-Robotics Lab, namely Alabama Powered Prosthetic
Limb-Knee (APPL-K), shown in Figure 3.

The version of the powered knee prosthesis used in this
study, APPL-K-E1, was powered by an 8-pole brushless DC
motor with 70 W power rating (EC 45 flat, Maxon Motor,
Sachseln, Switzerland). For short-term operation, this motor
is able to generate a peak torque of 0.2 Nm and a maximum
rotation speed of 10,000 rpm. A two-stage transmission of
150:1 gear ratio is used, combining a timing belt drive as
the first stage and a harmonic drive gearhead as the second
stage. Note that, in the design of the device, reducing the
weight and simplifying the system structure was given higher
priority than generating higher torque output, and the actu-
ation torque is less than the peak value in the biomechanical
data. This issue, however, did not affect the performance of
the prosthesis in the STS, as indicated by the experimental
results below.

For the implementation of the STS controller, the pros-
thesis is instrumented with various control components for
computing, sensing and regulation of power delivery. The
joint position is measured with a rotary magnetic encoder,
and the position signal is digitally differentiated to obtain
the joint angular velocity information. A custom load cell
developed by the Center for Intelligent Mechatronics at Van-
derbilt University [17] is mounted between the prosthesis
and the standard pyramid connector to measure the axial
force in the prosthesis. The power output of the DC motor
is regulated with a PWM servo drive (AZBDC20AS,
Advanced Motion Controls, Camarillo, CA, USA), which
controls the motor current as a function of the PWM duty
cycle. The controller is implemented on a microcontroller
(Microstick II, Microchip Technology Inc., Chandler, AZ,
USA), which communicates with a host desktop computer
to record and display experimental results for controller tun-
ing and data analysis.

Due to the limitation of available equipment, the data
collected in the testing were all based on the sensors embed-
ded in the prosthesis, primarily the joint angle and torque
trajectories. After being fitted with the powered prosthesis,
the subject repeated the STS motion to identify the best set
of control parameters through his feedback and recorded
experimented data. The stiffness of the artificial spring in
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FIGURE 3: The test subject fitted with the powered knee prosthesis.

TaBLE 1: The parameters of the STS controller.

T (s) K (Nm/deg) B (Nm-s/deg) 0, (deg)
0.47 1.1 0.4 8

the controller K was increased gradually, providing increas-
ing extensional torque to assist the user to stand up. The
final value, with which the user is most comfortable with,
generates a peak torque of 25Nm, much less than that in
the biomechanical data. The primary reason, presumably,
is that the subject is used to the lack of power supply in his
daily-use passive prosthesis, and thus the comfortable level
of power supply in his prosthetic joint has been reduced
significantly compared with that in a healthy biological joint.
This observation, to some extent, validates the original
decision of prioritizing low weight over high torque in the
prosthesis design.

The damping of the artificial viscous damper was also
tuned. With the function of controlling the speed of standing
up, the damper reduces the extensional torque or even gener-
ates a flexional torque if the extension of the knee becomes
too fast. The damping value was also adjusted primarily
according to the feedback of the test subject. The finalized
controller parameters are shown in Table 1.

The typical trajectories of the experimentally measured
prosthetic joint position and torque are shown in Figure 4,
and a sequence of snapshots of the STS process is shown in
Figure 5. The data window started when the triggering condi-
tion was met. As can be seen in Figure 4, the joint position
stayed almost as a constant until the rising phase started,
and the whole trajectory shows smooth and controlled
motion throughout the process. Compared with the biome-
chanical data shown in Figure 1, the contour of the experi-
mentally measured prosthetic position trajectory is highly
similar. For the joint torque trajectory, the dynamics of the
loading and rising phases can be clearly identified and distin-
guished, while the flat peak in the middle of the cycle is a
result of the torque saturation (i.e., reaching the maximum
torque as dictated by the prosthetic actuator). The overall
contour is also similar to that of the biomechanical curve in
Figure 1. Matching the observations from these figures, the
subject also stated a natural control experience in which the
prosthesis motion coordinates with the sound-side leg
motion well, and the extensional torque in the prosthesis
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FIGURg 4: Comparison of the typical trajectories of the prosthetic joint versus the biomechanical trajectories in [1]: (a) angle trajectory
comparison, with the biomechanical trajectory above the experimental trajectory; (b) torque trajectory comparison, with the
biomechanical trajectory (for a 57 kg person) above the experimental trajectory.
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FIGURE 5: A sequence of snapshots of the STS motion.

enabled him to stand up with less effort. Such quantitative
and qualitative results fully demonstrated the effectiveness
of the proposed controller, which provides the prosthesis
user a significantly improved experience over the traditional
passive prosthesis.

4. Conclusions

In this paper, the authors present a new control approach for
powered knee prostheses in the STS motion. The objective
was to develop an STS controller that regulates the exten-
sional torque in powered knee prostheses to obtain smooth
standing-up motion. As the basis of the controller develop-
ment, the biomechanical data from prior STS studies were
analyzed. The dynamics in the loading and rising phases
are vastly different. However, a unique control structure
was created, which combines the impedance function with
a time-based ramp-up function. The impedance function
was introduced to provide the gradual energy release in the
rising phase, while the ramp-up function was included to
mimic the gradual energy injection behavior in the loading
phase. The use of such unified control structure simplifies
the controller implementation while maintaining the unique
biomechanical characteristics of each motion phase. This
new STS controller was implemented on a powered knee
prosthesis developed in the authors’ lab, and human testing
results demonstrated the effectiveness of this approach in

generating smooth standing-up motion according to the
user’s will.
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