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�is research investigates an analytical solution for the slow squeeze �ow of the slightly viscoelastic �uid �lm between two circular
disks in which the upper disk approaches the lower disk with a constant velocity, and the lower disk is kept stationary. �e
determination of the study is to identify the behavior of the di�erential type �uid on the steady squeezing �ow using Langlois
recursive approach. �e governing equations for the axisymmetric �ow are expressed in cylindrical coordinates and yield the
nonlinear system of partial di�erential equations. �e analytical solution of the resulting equations with nonhomogeneous
boundary conditions is obtained by the Langlois recursive approach. Flow variables such as stream function, velocity pro�les,
pressure distribution, shear, normal stresses, and normal force acting on the disk are determined. �ese �ow variables are
nondimensionalized by using suitable dimensional quantities. �e in�uence of slightly viscoelastic parameter β, radial distance r,
and aspect ratio on velocity components, pressure distribution, and normal squeeze force is examined mathematically and
portrayed graphically. �e results illustrate that the axial and radial velocities increase at the higher values of the slightly
viscoelastic parameter β, which con�rms the shear thickening behavior. �e obtained solutions of the �ow variables satis�ed the
existing solutions on squeeze �ow of viscous �uid upon vanishing the slightly viscoelastic parameters. �is solution could
elucidate the classical lubrication problems, particularly in load and thrust bearing characteristics of the human body joints, the
compression molding process of materials, etc.

1. Introduction

�e squeezed �ow has many real-life applications, such as
dampers, motor bearing, lubrication, chewing between teeth
or gums, and the compression molding processes of metals
and polymers (�lled or un�lled). �e valves and arthritic
joints are interesting real-world applications in biology and
biotechnology of essential squeezed �ows [1]. �e entire
synovial �uid in the human knee joint is not pumped im-
mediately from the two sides of the joint during the heel-
strike processes and toe-o� period. In the presence of liquid

viscous resistance, the contact surfaces require a speci�c
period. During this interval, the pressure is generated, and
the squeezed �uid �lm supports the force [2]. Several �ows
are often found in traditional lubrication products, such as
cams, engine connecting rod bearings, and gears. In such
cases, viscoelastic additives are capable of increasing the
load-bearing strength of lubricants [3].

�e study of squeezing �ow can be traced down back to
the 19th century. �e work by Stefan [4], Reynolds [5], and
Scott [6] can be considered as pioneering work. Earlier
experimental works on squeezing �ow between two circular
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disks were reported in [7–9]. In the beginning, creeping flow,
limiting to Newtonian fluids, was studied using nonclassical
lubrication approximation. Later, inertia was included in the
Newtonian creeping flow by Jackson [10], and Kuzma [11]
identified the error in the inertia term of the work done by
Jackson [10]. Jones and Wilson [12] found the squeezing
force of liquids with inertia for large Reynolds values.
Numerical solutions for squeezing flow between parallel
disks have been conducted by Hamza and Macdonald [13].

Further experimental results for slow squeezing are
highlighted in power-law fluids, while rheological models
are applied for fast squeezing flow, which describes the
overshoot phenomena [14]. (e applied forces and spaces
between the disks in the squeezing flow of the power-law
fluid were found by Lieder [14, 15] in the solution of shear-
thinning polymers. From these results, it has been observed
that force and distance parameters deviate from the Scott
equation. Later on, McClelland and Finlayson [16] ex-
tended Oliver’s work and proposed a model that agrees
with experimental data at fast squeezing rates by combining
the effects of normal stress. (e experimental results on a
high viscosity of low-density polyethylene in constant load
tests were compared with Criminale–Ericksen–Filbey fluid
and found a close relationship between the results [3].
However, it has been analyzed that results produced in the
case of slow squeezing are better as compared to fast
squeezing. Kramer [17] repeated Tanner’s work and used
only the lodge rubber-like fluid Maxwell model. Phan–
(ien and Tanner [18] extended the work of [9, 19] by
including the inertia effect but neglecting the body forces
and edge effects of the motion of the nonlinear Maxwell
model. Phan–(ien et al. [20] found the solution of
creeping squeeze film flow of inelastic fluids such as the
Carreau model and modified Phan–(ien–Tanner (MPTT)
model by numerical method considering stress overshoot
phenomena. Yousefi et al. [2] assumed the constitutive
equation of the MPTT model by considering a synovial
fluid and showed a valuable contribution to knee joint
lubrication problems. Lee et al. [9] obtained a finite element
solution to squeeze a convicted Maxwell fluid under the
constant force on the upper disk with the inertia of the
fluid. Muravleva has studied the squeeze flow of the
Bingham fluid [21–23] in the plane and axisymmetric
geometries by the numerical technique, that is, augmented
Lagrangian method and asymptotic solution. After that,
Singeetham and Puttana [24] extended the work of Mur-
avleva and found the analytical solution by matching the
asymptotic expansion technique of plane squeeze flow of
Herschel–Bulkley and Casson fluid between two disks. (e
solution is divided into three regions, that is, shear stress
dominant, pseudo-plug, and central pseudo-plug plastic
regions due to the yielded stress. (e behavior of squeezing
flow of MHD Casson fluid with slip and no-slip conditions
is investigated in [25–27]. (e behavior of Newtonian
[28–30] and non-Newtonian fluid [31–34] on different
geometries is examined numerically and analytically. (e
theoretical and experimental researches of squeezing flows
have been studied by many researchers [35, 36].

(is research study explores the squeeze flow of the
differential type fluids due to their significant features of rod
climbing, shear thinning, shear thickening effects, and
normal stress. (e constitutive equation of a special class of
third-order fluid named the slightly viscoelastic fluid has
applications in journal bearing and slide bearing [37, 38].
Governing equations of the squeeze flow of slightly visco-
elastic fluid film are the nonlinear system of partial differ-
ential equations in the axisymmetric form with
nonhomogeneous boundary conditions. Such types of dif-
ferential equations are complex to solve numerically.
(erefore, in this research investigation, the recursive ap-
proach of Langlois [39] has been used to linearise these
equations, and the analytical solution has been obtained on
specified boundary conditions.

(e aim of this research is to deliver the analytical so-
lution of squeeze flow of steady incompressible viscoelastic
fluid between two circular disks using the Langlois recursive
approach. (is approach is successfully applied by Ullah
et al. [40–42] for the creeping flow of slightly viscoelastic
fluid and Maxwell fluid through a porous plane slit with
uniform reabsorption, no-slip wall, and slip wall. Bhatti et al.
[43] also used this technique for the second-order fluid
flowing through a porous circular tube. (us, we have
employed the recursive approach to study the slow axi-
symmetric squeezed flow of slightly viscoelastic fluid film
between two disks.(e analytical expressions for the velocity
field, pressure distribution, shear, and normal stress for
squeezing flow have been obtained. (e effects of the dif-
ferent physical parameters on the motion of fluid have been
illustrated graphically. (is study was considered to deliver
answers to the following related research questions:

(1) What is the variation in velocity components, and
pressure distribution of the squeeze flow due to the
radial and axial direction?

(2) At various radial points, what is the impact on ve-
locity profile, pressure distribution, and normal
squeeze force due to the rise of slightly viscoelastic
parameter β?

(is paper is structured as follows. In Section 2, the gov-
erning equations of motions with associated boundary condi-
tions have been presented. In Section 3, the geometry of the
problem and themodel of the governing equations in cylindrical
coordinates have been described. (e construction of the ve-
locity field for first, second, and third-order approximation
problems has been explained in Section 4. In Section 5, the
computations of the velocity field are given. (e pressure dis-
tribution for squeezed flow has been obtained in section 6. (e
shear, normal stresses, and normal force are presented in Sec-
tions 7 and 8, respectively. (e effects of different physical
parameters have been investigated in section 9. Finally, in section
10, the concluding remarks are enlightened.

2. The Governing Equations of Motion

(e basic equations governing the motion of an isotropic
incompressible fluid [42] are given as
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divV
􏽥

� 0, (1)

div τ
􏽥

􏼠 􏼡 + ρf
􏽥

� ρ
D V

􏽥

Dt
, (2)

where V
􏽥
denotes the velocity vector, ρ represents the con-

stant fluid density,f
􏽥
represents the body force per unit mass,

and the material time derivative is denoted by D/Dt. (e
constitutive equation of third-order fluid for Cauchy stress
by Truesdell and Noll [44] is given as

τ
􏽥
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􏽥
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where p represents the indeterminate part of the stress due
to constraint of incompressibility, Ι is identity tensor, μ
represents the coefficient of viscosity, the material constants
are represented by α1, α2, β1, β2 and β3,
|A
􏽥 1|

2 � trace(A
􏽥 1A􏽥

T
1 ) and A

􏽥 1, A
􏽥 3 and A

􏽥 3 are the Rivlin-
Ericksen tensors and defined as follows:
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forn≥ 1. (5)

In addition, thermodynamics analysis imposes condi-
tions [45] if all the motions of the fluid meet the Clausius-
Duhem inequality, and assuming the Helmholtz free energy
is minimum while the fluid is at rest, then the material
coefficients met the following restrictions:

μ≥ 0, α1 ≥ 0, α1 + α2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
�����

24μβ3
􏽱

, β1 � β2 � 0, β3 ≥ 0. (6)

By making use of (6), the reduced form of (3) yields as
follows:
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2

􏼠 􏼡A
􏽥 1. (7)

(e authors [45] presented (7) and studied the thermal
effects in the variable viscosity of journal bearings. By
considering the material constants equal to zero in (7),
which becomes as follows:

τ
􏽥

� − p I
􏽥

+μA
􏽥 1 + β3 A

􏽥 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

􏼠 􏼡A
􏽥 1. (8)

Authors [37, 45] claimed that (8) represents the con-
stitutive relation for the slightly viscoelastic fluid and can be
considered the special class of differential type fluids or a
special type of power-law model. Furthermore, in (8), the
slightly viscoelastic parameter β3 > 0 and β3 < 0 represent the
shear thickening and shear thinning behavior of the fluid,
respectively. However, for β � 0, (8) reduces to the New-
tonian fluid.

Substituting (8) in (2), yielding the result in vector form as

div V
􏽥

􏼠 􏼡 � 0, (9)

ρ
D V

􏽥

Dt
� − gradp + μ∇2 V

􏽥

+ βA
􏽥 1 grad A

􏽥 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

􏼠 􏼡 + β A
􏽥 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

∇2 V
􏽥

+ρf
􏽥

,

(10)

where ∇2 is the Laplacian operator and β3 � β.

3. Problem Statement

(e slow squeeze flow of an incompressible slightly visco-
elastic fluid in axisymmetric form has been considered in
Figure 1. (e lower disk is kept fixed while the above disk
moves with constant velocity v(t) under the force F, which
approaches the lower disk. H(t) represents the fluid film
thickness, which decreases with time and fluid flows outside
the disks radially. (e velocity components for the axi-
symmetric flows are assumed as follows:

V
􏽥

� [u(r, θ, z), v(r, θ, z), w(r, θ, z)]

� [u(r, z), 0, w(r, z)]; v � 0,
z

zθ
(.) � 0,

(11)

where u(r, z) and w(r, z) are the radial and axial velocity
components.

In order to write the components form of equations (9)
and (10), substituting (11) in the first Rivlin tensor A

􏽥 1, we get

A
􏽥 1 � gradV

􏽥
􏼠 􏼡 + gradV

􏽥
􏼠 􏼡

T

�

2
zu

zr
0

zu

zz
+

zw

zr

0
2u

r
0

zu

zz
+

zw

zr
0 2

zw

zz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(12)

Using (12) in the definition of |A
􏽥 1|

2 � trace(A
􏽥 1A􏽥

T
1 ), we

obtain
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A
􏽥 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

� trace A
􏽥 1A􏽥

T
1􏼠 􏼡 � 4

zu

zr
􏼠 􏼡

2

+
u

r
􏼒 􏼓

2
+

zw

zz
􏼠 􏼡

2
⎡⎣ ⎤⎦ + 2

zw

zr
+

zu

zz
􏼠 􏼡

2

� M(say). (13)

Putting (11)–(13) in terms of (10), we get the following
expressions:

∇2 V
􏽥

� ∇2u −
u

r
2 0 ∇2w􏼔 􏼕, (14)

A
􏽥 1 grad A

􏽥 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

􏼠 􏼡 �
zM

zz

zw

zr
+

zu

zz
􏼠 􏼡 + 2

zM

zr

zu

zr
0

zM

zr

zw

zr
+

zu

zz
􏼠 􏼡 + 2

zM

zz

zw

zz
􏼢 􏼣, (15)

A
􏽥 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

∇2 V
􏽥

� M ∇2u −
u

r
2􏼠 􏼡 0 M ∇2w􏼐 􏼑􏼢 􏼣, (16)

where M � |A
􏽥 1|

2.

gradp �
zp

zr
0

zp

zz
􏼢 􏼣. (17)

Neglecting the inertial term and body force and putting
(11)–(17) in (9) and (10), we get the following nonlinear
system of partial differential equations:

zu

zr
+

u

r
+

zw

zz
� 0, (18)

zp

zr
� (μ + βM) ∇2u −

1
r
2 u􏼠 􏼡

+ β
zM

zz

zw

zr
+

zu

zz
􏼠 􏼡 + 2

zM

zr

zu

zr
􏼢 􏼣.

(19)

zp

zz
� (μ + βM) ∇2w􏼐 􏼑

+ β
zM

zr

zw

zr
+

zu

zz
􏼠 􏼡 + 2

zM

zz

zw

zz
􏼢 􏼣.

(20)

Similarly, by putting (12) and (13) into (8), four nonzero
components form for the stress tensor are given as

τ
􏽥rr

� − p + 2(μ + βM)
zu

zr
; τ
􏽥zr

� (μ + βM)
zw

zr
+

zu

zz
􏼠 􏼡,

(21)

τθθ � − p + 2(μ + βM)
u

r
; τ
􏽥zz

� − p + 2(μ + βM)
zw

zz
,

(22)

where
M � 4[(zu/zr)2 + (u/r)2 + (zw/zz)2] + 2(zw/zr + zu/zz)2.

We plan to solve the above set of nonlinear partial
differential equations subject to the following nonhomo-
geneous boundary conditions:

w � − v(t), u � 0 at z � H(t); u � 0, w � 0 at z � 0, (23)

where v(t) � − dH/dt.
(e first two conditions in (23) are due to the adherence

of the top disk, and the location H(t) of the top disk is
unknown. In the other two conditions, there is no slip at the
bottom disk. Velocity may be constant, or it may vary with
time.

z = H (t)

z = 0
r = 0 r

z

F

v (t)

Figure 1: Geometry of squeeze flow [21].
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4. Construction of an Analytical
Approximation of Solution by Langlois
Recursive Approach

(e coupled system of nonlinear partial differential equations
(18)–(22) subject to nonhomogeneous boundary conditions
(23) is not easy to be solved exactly. (is nonlinear system is
solved by using the recursive approach suggested by Langlois
[39], which linearises the governing equations of motion given
in equations (18)–(22). To obtain the approximate analytical
solution of equations (18)–(22) subject to boundary conditions
(23), the following equations for the velocity field, pressure, and
stresses are sought in the form of perturbation of the state of the
rest.

u(r, z) � 􏽘
3

i�1
ε(i)

u
(i)

(r, z), (24)

w(r, z) � 􏽘

3

i�1
ε(i)

w
(i)

(r, z), (25)

p(r, z) � constant + 􏽘
3

i�1
ε(i)

p
(i)

(r, z), (26)

τ
􏽥
(r, z) � 􏽘

3

i�1
ε(i) τ

(i)

􏽥
(r, z), (27)

where ε is a small dimensionless number, these assumptions
lead to the systems of linear partial differential equations
corresponding to the boundary conditions for every set
[u(i), w(i), p(i), τ(i)], i � 1, 2, 3, so that [u(r, z), w(r, z), p(r,

z), τ(r, z)] as given by equations (24)–(27) provide the
solution to equations (18)–(22). (e first-order equations
corresponding to [u(1), w(1), p(1), τ(1)] are describing the
solution of the governing equation of the Newtonian fluid
subject to nonhomogeneous boundary conditions. (e
second-order equations corresponding to [u(2), w(2), p(2),

τ(2)] are similar except the nonhomogeneous part con-
taining the terms of [u(1), w(1)] with homogeneous
boundary conditions. (e third-order equations corre-
sponding to [u(3), w(3), p(3), τ(3)] are identical except the
nonhomogeneous part containing the terms of
[u(1), w(1), u(2), w(2)] with homogeneous boundary condi-
tions; hence, third-order equations give the contribution of
the slightly viscoelastic term.

Substituting equations (24)–(27) into equations
(19)–(21) and collecting the coefficients of equal powers of ε,
we get the following first, second, and third-order boundary
value problems, and the aim is to solve these problems
O(ε), O(ε2), and O(ε3).

4.1. First-Order Problem with Associated Nonhomogeneous
Boundary Conditions. On equating the terms of ε from
equations (18)–(22), the following linear system of partial

differential equations subject to nonhomogeneous boundary
conditions is obtained.

zu
(1)

zr
+

u
(1)

r
+

zw
(1)

zz
� 0, (28a)

zp
(1)

zr
� μ ∇2u(1)

−
1
r
2u

(1)
􏼠 􏼡, (28b)

zp
(1)

zz
� μ∇2w(1)

, (28c)

τ
(1)

􏽥
rr � − p

(1)
+ 2μ

zu
(1)

zr
; τ

(1)

􏽥
zr

� μ
zw

(1)

zr
+

zu
(1)

zz
􏼠 􏼡; τ

(1)

􏽥
θθ

� − p
(1)

+ 2μ
u

(1)

r
; τ

(1)

􏽥
zz

� − p
(1)

+ 2μ
zw

(1)

zz
,

(29)

subject to boundary conditions

w
(1)

� − V(t), u
(1)

� 0 at z � H(t); u
(1)

� 0, w
(1)

� 0 at z � 0.

(30)

4.2. Second-Order Problem with Associated Homogeneous
Boundary Conditions. On equating the terms of ε2 from
equations (18)–(22), the following linear system of partial
differential equations subject to nonhomogeneous boundary
conditions is obtained.

zu
(2)

zr
+

u
(2)

r
+

zw
(2)

zz
� 0;

zp
(2)

zr
� μ ∇2u(2)

−
1
r
2u

(2)
􏼠 􏼡;

zp
(2)

zz

� μ∇2w(2)
,

(31)

τ
(2)

􏽥
rr � − p

(2)
+ 2μ

zu
(2)

zr
; τ

(2)

􏽥
zr � μ

zw
(2)

zr
+

zu
(2)

zz
􏼠 􏼡; τ

(2)

􏽥
θθ

� − p
(2)

+ 2μ
u

(2)

r
; τ

(2)

􏽥
zz � − p

(2)
+ 2μ

zw
(2)

zz
,

(32)

subject to homogeneous boundary conditions

w
(2)

� 0, u
(2)

� 0 at z � H(t); u
(2)

� 0, w
(2)

� 0 at z � 0.

(33)

4.3. >ird-Order Problem with Associated Homogeneous
Boundary Conditions. On equating the terms of ε3 from
equations (18)–(22), the following linear system of partial
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differential equations subject to nonhomogeneous boundary
conditions is obtained.

zu
(3)

zr
+

u
(3)

r
+

zw
(3)

zz
� 0, (34a)

zp
(3)

zr
� μ ∇2u(3)

−
1
r
2u

(3)
􏼠 􏼡 + βM

(2) ∇2u(1)
−
1
r
2u

(1)
􏼠 􏼡 + β

zM
(2)

zz

zw
(1)

zr
+

zu
(1)

zz
􏼠 􏼡 + 2

zM
(2)

zr

zu
(1)

zr
􏼢 􏼣, (34b)

zp
(3)

zz
� μ∇2w(3)

+ βM
(2)∇2w(1)

+ β
zM

(2)

zr

zw
(1)

zr
+

zu
(1)

zz
􏼠 􏼡 + 2

zM
(2)

zz

zw
(1)

zz
􏼢 􏼣, (34c)

τ
(3)

􏽥
rr � − p

(3)
+ 2μ

zu
(3)

zr
+ 2βM

(2)zu
(1)

zr
; τ(3)

zr � μ
zw

(3)

zr
+

zu
(3)

zz
􏼠 􏼡 + βM

(2) zw
(1)

zr
+

zu
(1)

zz
􏼠 􏼡, (35a)

τ
(3)

􏽥
θθ � − p

(3)
+ 2μ

u
(3)

r
+ βM

(2)u
(1)

r
; τ

(3)

􏽥
zz � − p

(3)
+ 2μ

zw
(3)

zz
+ +βM

(2)zw
(1)

zz
, (35b)

where M(2) � 4[(zu(1)/zr)2 + (u(1)/ r)2 + (zw(1)/zz)2] + 2
(zw(1)/zr + zu(1)/zz)2,subject to homogeneous boundary
conditions

w
(3)

� 0, u
(3)

� 0 at z � H(t); u
(3)

� 0, w
(3)

� 0 at z � 0.

(36)

5. Computation of Velocity Field

5.1.Velocity Field for First-OrderProblem. In this subsection,
we compute the velocity field of first-order approximation
by rewriting the system of partial differential equations
(28a)–(28c) with associated boundary conditions (30) in
terms of stream function. (e radial and axial velocity
components of the axisymmetric flow can be expressed in
the form of scalar stream function as follows:

u
(1)

� −
1
r

zψ(1)

zz
, w

(1)
�
1
r

zψ(1)

zr
. (37)

It should be noted that (28a) is identically satisfied by
(37). By differentiating (28b) and (28c) partially with respect
to z and r, respectively, and by eliminating the pressure, the
compatibility equation of first-order approximation is ob-
tained as

E
4ψ(1)

(r, z) � 0, (38)

where E2 � (z2/zr2) − (1/r)(z/zr) + (z2/zz2) and E4(∗ ) �

E2(E2(∗ )). Furthermore, by using (37) in (30), boundary
conditions are obtained in terms of stream function as
follows:

1
r

zψ(1)

zr
� − V,

zψ(1)

zz
� 0 at z

� H(t);
zψ(1)

zr
� 0,

zψ(1)

zz
� 0 at z � 0.

(39)

In order to obtain the solution for the boundary value
problem given in (38) and (39) by using the inverse method
[46], assuming the following solution for stream function, a
priori:

ψ(1)
(r, z) � r

2ϕ1(z), (40)

where ϕ1(z) is an unknown function, which needs to be
determined. (us, using Equation (40) into (38) and (39)
yields

d
4ϕ1

dz
4 � 0, (41)

ϕ1(z) �
− V

2
,
dϕ1
dz

� 0 at z � H(t); ϕ1(z)

� 0,
dϕ1
dz

� 0 at z � 0.

(42)

(e unknown function ϕ1(z) can be obtained from (41)
by integrating and using associated conditions (42).

ϕ1(z) � V
z

H
􏼒 􏼓

3
−
3
2

z

H
􏼒 􏼓

2
􏼢 􏼣. (43)

(e steam function, redial velocity, and the axial velocity
can be obtained by mathematical simplification, using
equation (43) into (40) and (37).
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ψ(1)
(r, z) � r

2
V

z

H
􏼒 􏼓

3
−
3
2

z

H
􏼒 􏼓

2
􏼠 􏼡. (44)

u
(1)

(r, z) �
3rV

H

z

H
􏼒 􏼓 −

z

H
􏼒 􏼓

2
􏼠 􏼡. (45)

w
(1)

(r, z) � − 3V
z

H
􏼒 􏼓

2
−
2
3

z

H
􏼒 􏼓

3
􏼠 􏼡. (46)

It is noticed that the first-order velocity components (45)
and (46) are in coherence with those obtained in [4] for the
creeping squeeze flow of viscous fluid between two disks.

5.2. Velocity Field for Second-Order Problem. We determine
the velocity field of second-order approximation from
equations (31) and (32) subject to homogeneous boundary
conditions (34a) by reducing the system of partial differ-
ential equations in terms of stream function. Defining the
stream function for second-order approximation is as
follows:

u
(2)

� −
1
r

zψ(2)

zz
, w

(2)
�
1
r

zψ(2)

zr
. (47)

It is noted that (31) is identically satisfied by using (47).
(erefore, using (47) into (31) and eliminating the pressure,
it reduces into the following form:

E
4ψ(2)

(r, z) � 0. (48)

Furthermore, associated boundary conditions (33) are
reduced in terms of stream function as follows:

1
r

zψ(2)

zr
� 0,

zψ(2)

zz
� 0 at z � H(t);

zψ(2)

zr

� 0,
zψ(2)

zz
� 0 at z � 0.

(49)

(e inverse solution of (48) corresponding to conditions
(49) for any assumed form ψ(2) is zero due to the homo-
geneous boundary conditions. (erefore, we get
ψ(2)(r, z) � 0.

(e radial and axial velocity components for second-
order approximation are obtained by substituting stream
function into (47). We get u(2)(r, z) � 0 and w(2)(r, z) � 0.

5.3. Velocity Field for >ird-Order Problem. In this subsec-
tion, we compute the third-order approximations of the
velocity field from equations (34a–34c) corresponding to
homogeneous boundary conditions (36), and by using the
first-order solution in (34a), we get

zu
(3)

z r
+

u
(3)

r
+

zw
(3)

z z
� 0. (50)

zp
(3)

zr
− μ ∇2u(3)

−
1
r
2u

(3)
􏼠 􏼡 � −

108V
3
r
3

H
7 3 − 12

z

H
􏼒 􏼓 + 12

z

H
􏼒 􏼓

2
􏼠 􏼡β

−
256V

3
r

H
5 34

z

H
􏼒 􏼓

4
− 68

z

H
􏼒 􏼓

3
+ 41

z

H
􏼒 􏼓

2
− 7

z

H
􏼒 􏼓􏼠 􏼡β.

(51)

zp
(3)

zz
− μ∇2w(3)

�
432V

3
r
2

H
6 2

z

H
􏼒 􏼓 − 6

z

H
􏼒 􏼓

2
+ 4

z

H
􏼒 􏼓

3
􏼢 􏼣β

−
432V

3

H
4 30

z

H
􏼒 􏼓

5
− 75

z

H
􏼒 􏼓

4
+ 60

z

H
􏼒 􏼓

3
− 15

z

H
􏼒 􏼓

2
􏼢 􏼣β.

(52)

Defining the stream function for the third-order prob-
lem is as follows:

u
(3)

� −
1
r

zψ(3)

zz
, w

(3)
�
1
r

zψ(3)

zr
. (53)

(50) is identically satisfied, and using (53) in equations
(51) and (52) by eliminating the pressure, the following
equation is obtained:

μ
1
r

E
4ψ(3)

􏼐 􏼑􏼔 􏼕 �
216V

3
rβ

H
6 7 − 90

z

H
􏼒 􏼓 + 228

z

H
􏼒 􏼓

2
− 152

z

H
􏼒 􏼓

3
􏼢 􏼣

+
216V

3
r
3β

H
8 6 − 12

z

H
􏼒 􏼓􏼔 􏼕.

(54)
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Associated boundary conditions in terms of stream
function are written as follows:

1
r

zψ(3)

zr
� 0,

zψ(3)

zz
� 0 at z � H(t);

zψ(3)

zr

� 0,
zψ(3)

zz
� 0 at z � 0.

(55)

Similarly, an inverse solution is sought for stream
function ψ(3), a priori as follows:

ψ(3)
(r, z) � r

2ϕ3(z) + r
4ξ3(z), (56)

where ϕ3(z) and ξ3(z) are unknowns and to be determined.
On substituting (56) into (54), it takes the following form:

μ r ϕ(iv)
3 (z) + 16ξ(iv)

3 (z)􏼐 􏼑 + r
3ξ(iv)

3 (z)􏽨 􏽩 �
216V

3
r
3β

H
8 6 − 12

z

H
􏼒 􏼓􏼔 􏼕

+
216V

3
rβ

H
6 7 − 90

z

H
􏼒 􏼓 + 228

z

H
􏼒 􏼓

2
− 152

z

H
􏼒 􏼓

3
􏼢 􏼣.

(57)

(e following equations (58) and (59) are obtained by
comparing the coefficients of r and r3 in (57).

μξ(iv)
3 (z) �

1296V
3

H
8 β 1 − 2

z

H
􏼒 􏼓􏼔 􏼕. (58)

μ ϕ(iv)
3 (z) + 16ξ3″(z)􏼐 􏼑 �

216V
3β

H
6 7 − 90

z

H
􏼒 􏼓 + 228

z

H
􏼒 􏼓

2
− 152

z

H
􏼒 􏼓

3
􏼢 􏼣. (59)

Using the assumption (56), the corresponding boundary
conditions (55) reduce in (60).

ξ3(H) � 0, ξ3′(H) � 0, ξ3(0) � 0, ξ3′(0) � 0;ϕ3(H)

� 0,ϕ3′(H) � 0,ϕ3(0) � 0,ϕ3′(0) � 0.

(60)

(e solutions of an ordinary differential (58) and (59)
corresponding to boundary conditions (60) are obtained as

ξ3(z) �
54V

3β
5μH

4
z

H
􏼒 􏼓

2
− 4

z

H
􏼒 􏼓

3
+ 5

z

H
􏼒 􏼓

4
− 2

z

H
􏼒 􏼓

5
􏼢 􏼣. (61)

ϕ3(z) �
27V

3β
175μH

6 − 37
z

H
􏼒 􏼓

2
+ 48

z

H
􏼒 􏼓

3
+ 315

z

H
􏼒 􏼓

4
􏼢

− 826
z

H
􏼒 􏼓

5
+ 700

z

H
􏼒 􏼓

6
− 200

z

H
􏼒 􏼓

7
􏼣.

(62)

(e expressions for stream function and velocity com-
ponents are obtained by using equations (61) and (62) into
equations (53) and (56) as follows:

ψ(3)
(r, z) �

54V
3
r
4β

5μH
4

z

H
􏼒 􏼓

2
− 4

z

H
􏼒 􏼓

3
+ 5

z

H
􏼒 􏼓

4
− 2

z

H
􏼒 􏼓

5
􏼢 􏼣

+
27V

3
r
2β

175μH
6 − 37

z

H
􏼒 􏼓

2
+ 48

z

H
􏼒 􏼓

3
+ 315

z

H
􏼒 􏼓

4
− 826

z

H
􏼒 􏼓

5
+ 700

z

H
􏼒 􏼓

6
− 200

z

H
􏼒 􏼓

7
􏼢 􏼣.

(63)

u
(3)

(r, z) �
54V

3β
175μH

3

37
z

H
􏼒 􏼓 − 72

z

H
􏼒 􏼓

2
− 630

z

H
􏼒 􏼓

3

+2065
z

H
􏼒 􏼓

4
− 2100

z

H
􏼒 􏼓

5
+ 700

z

H
􏼒 􏼓

6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
r
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+
54V

3β
175μH

5

− 70
z

H
􏼒 􏼓 + 420

z

H
􏼒 􏼓

2

− 700
z

H
􏼒 􏼓

3
+ 350

z

H
􏼒 􏼓

4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
r
3
. (64)

w
(3)

(r, z) �
54V

3β
175μH

2

− 37
z

H
􏼒 􏼓

2
+ 48

z

H
􏼒 􏼓

3
+ 315

z

H
􏼒 􏼓

4

− 826
z

H
􏼒 􏼓

5
+ 700

z

H
􏼒 􏼓

6
− 200

z

H
􏼒 􏼓

7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
54V

3β
175μH

4

140
z

H
􏼒 􏼓

2
− 560

z

H
􏼒 􏼓

3

+700
z

H
􏼒 􏼓

4
− 280

z

H
􏼒 􏼓

5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
r
2
.

(65)

It is observed that the third-order approximate solution
of the velocity profile and stream function contains the terms
of the slightly viscoelastic parameter β, which is the key
feature of the present study.

5.4. StreamFunctionandVelocityFieldCorrect to>ird-Order
Approximations. (e expressions for stream function cor-
rect to third-order approximation obtained by adding
equations (44) and (63) as follows:

ψ(r, z) � r
2
V

z

H
􏼒 􏼓

3
−
3
2

z

H
􏼒 􏼓

2
􏼠 􏼡 +

54V
3
r
4β

5μH
4

z

H
􏼒 􏼓

2
− 4

z

H
􏼒 􏼓

3

+5
z

H
􏼒 􏼓

4
− 2

z

H
􏼒 􏼓

5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
27V

3
r
2β

175μH
6

·

− 37
z

H
􏼒 􏼓

2
+ 48

z

H
􏼒 􏼓

3
+ 315

z

H
􏼒 􏼓

4

− 826
z

H
􏼒 􏼓

5
+ 700

z

H
􏼒 􏼓

6
− 200

z

H
􏼒 􏼓

7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ o ε3􏼐 􏼑.

(66)

In order to obtain the velocity components, correct to
third-order by substituting equations (45) and (64) into (24),
we get

u(r, z) �
3rV

H

z

H
􏼒 􏼓 −

z

H
􏼒 􏼓

2
􏼢 􏼣 +

54V
3β

175μH
3

37
z

H
􏼒 􏼓 − 72

z

H
􏼒 􏼓

2
− 630

z

H
􏼒 􏼓

3

+2065
z

H
􏼒 􏼓

4
− 2100

z

H
􏼒 􏼓

5
+ 700

z

H
􏼒 􏼓

6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

r +
54V

3β
175μH

5

·

− 70
z

H
􏼒 􏼓 + 420

z

H
􏼒 􏼓

2

− 700
z

H
􏼒 􏼓

3
+ 350

z

H
􏼒 􏼓

4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

r
3

+ o ε3􏼐 􏼑.

(67)

Similarly, by substituting equations (46) and (65) into
(25), we get
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w(r, z) � − 3V(t)
z

H
􏼒 􏼓

2
−
2
3

z

H
􏼒 􏼓

3
􏼢 􏼣 +

54V
3β

175μH
2 − 37

z

H
􏼒 􏼓

2
+ 48

z

H
􏼒 􏼓

3
+ 315

z

H
􏼒 􏼓

4
− 826

z

H
􏼒 􏼓

5
+ 700

z

H
􏼒 􏼓

6
− 200

z

H
􏼒 􏼓

7
􏼢 􏼣

+
54V

3β
175μH

4 140
z

H
􏼒 􏼓

2
− 560

z

H
􏼒 􏼓

3
+ 700

z

H
􏼒 􏼓

4
− 280

z

H
􏼒 􏼓

5
􏼢 􏼣r

2
+ o ε3􏼐 􏼑a.

(68)

Results achieved from this proposed approach agree with
the results presented in the literature [47, 48] for viscous
fluids when β� 0.

6. Computation of Pressure Distribution

6.1. First-Order Approximation of Pressure Distribution.
Substituting the first-order approximation of velocity profile
(45) and (46) into equations (28b) and (28c), the following
equations of pressure distribution are obtained as

zp
(1)

zr
�

− 6μV

H
3 r. (69)

zp
(1)

zz
�
6μV

H
2 2

z

H
􏼒 􏼓 − 1􏼔 􏼕. (70)

Integrating (69) with respect to r, we obtain

p
(1)

(r, z) �
− 3μV

H
3 r

2
+ g(z) (71)

where g(z) is an arbitrary function of z. Differentiating (71)
with respect to z and comparing with (70) yield the following

g′(z) �
6μV

H
2 2

z

H
􏼒 􏼓 − 1􏼔 􏼕,

g(z) �
6μV

H

z

H
􏼒 􏼓

2
−

z

H
􏼒 􏼓􏼢 􏼣 + l,

(72)

where l is the constant of integration. Using equation (72)
into (71), the first-order pressure distribution gets as follows:

p
(1)

(r, z) �
3μV

H
2

z

H
􏼒 􏼓

2
− 2

z

H
􏼒 􏼓 −

r
2

H
2􏼢 􏼣 + l. (73)

6.2. Second-Order Approximation of Pressure Distribution.
Subsequently, substituting the second-order approximation
of velocity profile into (31), the following equations of
pressure distribution are obtained as

zp
(2)

zr
� 0;

zp
(2)

zz
� 0. (74)

After integrating (74) and simplification, the second-
order pressure distribution is obtained p(2)(r, z) � m where
m is the constant of integration.

6.3. >ird-Order Approximation of Pressure Distribution.
Similarly, substituting the third-order approximation of
velocity profile (64) and (65) into equations (34b) and (34c),
the following equations of pressure distribution are obtained
as

zp
(3)

zr
�
54V

3β
175H

7 − 210r
3

􏼐 􏼑 +
54V

3β
175H

5 r − 144 + 560
z

H
􏼒 􏼓 − 560

z

H
􏼒 􏼓

2
􏼢 􏼣. (75)

zp
(3)

zz
�
54V

3β
175H

4 − 74 + 288
z

H
􏼒 􏼓 − 16660

z

H
􏼒 􏼓

2
+ 65240

z

H
􏼒 􏼓

3
− 81200

z

H
􏼒 􏼓

4
+ 32480

z

H
􏼒 􏼓

5
􏼢 􏼣

+
54V

3β
175H

6r
2 280 − 560

z

H
􏼒 􏼓􏼔 􏼕.

(76)

(e solution of the third-order approximation of
pressure distribution is obtained from equations (75) and
(76) by using the procedure of the first-order pressure
distribution as follows:
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p
(3)

(r, z) � −
2835V

3β
175H

7 r
4

+
54V

3β
175H

5r
2

− 72 + 280
z

H
􏼒 􏼓

− 280
z

H
􏼒 􏼓

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
54V

3β
175H

3

− 74
z

H
􏼒 􏼓 + 144

z

H
􏼒 􏼓

2
−
16660
3

z

H
􏼒 􏼓

3

+16310
z

H
􏼒 􏼓

4
− 16240

z

H
􏼒 􏼓

5
+
16240
3

z

H
􏼒 􏼓

6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ n.

(77)

6.4. Pressure Distribution Correct to >ird-Order
Approximation. For obtaining the pressure distribution,
(78) corrects to third-order approximation, adding equa-
tions (73) and (77).

p(r, z) �
3μV

H
2

z

H
􏼒 􏼓

2
− 2

z

H
􏼒 􏼓 −

r
2

H
2􏼢 􏼣 −

2835V
3β

175H
7 r

4
+
54V

3β
175H

5r
2

− 72 + 280
z

H
􏼒 􏼓 − 280

z

H
􏼒 􏼓

2
􏼢 􏼣

+
54V

3β
175H

3 − 74
z

H
􏼒 􏼓 + 144

z

H
􏼒 􏼓

2
−
16660
3

z

H
􏼒 􏼓

3
+ 16310

z

H
􏼒 􏼓

4
− 16240

z

H
􏼒 􏼓

5
+
16240
3

z

H
􏼒 􏼓

6
􏼢 􏼣 + K.

(78)

where K � lε + mε2 + nε3. For the evaluation of the constant
K, there is required an extra boundary condition at the outer
edge of the disk.

In this research investigation, it is observed that the edge
of the disk of fluid that resides is subjected to atmospheric
pressure; therefore, at the free surface, the balance of normal
stress (τzz) is equivalent to atmospheric pressure. (ere is
no loss of generality in taking τzz � 0[9].

τzz � − p + 2(μ + βM)
zw

zz
� 0 at z � Handr � R. (79)

From (68), at z � H, we get (zw/zz) � 0; hence, (79)
reduces to p(R, H) � 0. Using this condition in Equation
(78) to obtain the constant
K � (3μVR2/H3) + (2835V3R4/175H7)β +

(3888V3R2/175H5)β.

Putting the value of K in (78), we have pressure dis-
tribution correct to third-order approximation:

p(r, z) �
3μV

H
2

z

H

z

H
− 1􏼒 􏼓 +

R
2

− r
2

H
2􏼢 􏼣 +

2835V
3β

175H
7 R

4
− r

4
􏼐 􏼑 +

3888V
3β

175H
5 R

2
− r

2
􏼐 􏼑 +

54V
3βr

2

175H
5 280

z

H
􏼒 􏼓 − 280

z

H
􏼒 􏼓

2
􏼢 􏼣

+
54V

3β
175H

3 − 74
z

H
􏼒 􏼓 + 144

z

H
􏼒 􏼓

2
−
16660
3

z

H
􏼒 􏼓

3
+ 16310

z

H
􏼒 􏼓

4
− 16240

z

H
􏼒 􏼓

5
+
16240
3

z

H
􏼒 􏼓

6
􏼢 􏼣 + o ε3􏼐 􏼑.

(80)

7. Computation of Shear and Normal Stresses

7.1. First-Order Shear and Normal Stresses. (e expressions
for first-order approximations of shear and normal stresses

are obtained by substituting first-order velocity approxi-
mations (45) and (46) and pressure distribution (73) into
(29) as follows:

􏽥τ
(1)

rr �
3Vμ
H

4
z

H
􏼒 􏼓 −

z

H
􏼒 􏼓

2
􏼠 􏼡 +

r
2

− R
2

H
2􏼠 􏼡􏼢 􏼣; 􏽥τ

(1)

zr �
3Vμ
H

2 1 − 2
z

H
􏼒 􏼓􏼒 􏼓r

2
􏼔 􏼕,

􏽥τ
(1)

θθ �
3Vμ
H

4
z

H
􏼒 􏼓 −

z

H
􏼒 􏼓

2
􏼠 􏼡 +

r
2

− R
2

H
2􏼠 􏼡􏼢 􏼣; 􏽥τ

(1)

zz �
3Vμ
H

2
z

H
􏼒 􏼓

2
−

z

H
􏼒 􏼓􏼠 􏼡 +

r
2

− R
2

H
2􏼠 􏼡􏼢 􏼣.

(81)

7.2. Second-Order Shear and Normal Stresses. Similarly, the
expressions for second-order shear and normal stresses are

obtained by substituting second-order velocity approxi-
mation and pressure distribution into (32) as follows:
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􏽥τ
(2)

rr � 􏽥τ
(2)

zr � 􏽥τ
(2)

θθ � 􏽥τ
(2)

zz � 0. (82)

7.3. >ird-Order Shear and Normal Stresses. Similarly, the
expressions for third-order shear and normal stresses are

obtained by substituting third-order velocity approximation
(67) and (68) and pressure distribution (77) into Equation
(35a) as follows:

􏽥τ
(3)

rr �
9V

3β
175H

5

4200
z

H
􏼒 􏼓

4
− 8400

z

H
􏼒 􏼓

3
+ 4620

z

H
􏼒 􏼓

2
− 140

z

H
􏼒 􏼓􏼠 􏼡r

2

+432 r
2

− R
2

􏼐 􏼑 − 1680
z

H
􏼒 􏼓 −

z

H
􏼒 􏼓

2
􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (83a)

τ(3)
zr �

54V
3β

175H
4 37 − 144

z

H
􏼒 􏼓 + 490

z

H
􏼒 􏼓

2
− 1260

z

H
􏼒 􏼓

3
+ 1400

z

H
􏼒 􏼓

4
− 560

z

H
􏼒 􏼓

5
􏼠 􏼡r􏼢 􏼣

+
9V

3β
175H

3 888
z

H
􏼒 􏼓 − 1728

z

H
􏼒 􏼓

2
+ 50960

z

H
􏼒 􏼓

3
− 148680

z

H
􏼒 􏼓

4
+ 147840

z

H
􏼒 􏼓

5
− 49280

z

H
􏼒 􏼓

6
− 315

r
4

− R
4

H
4􏼠 􏼡􏼢 􏼣.

(83b)

􏽥τ
(3)

zz � −
9V

3β
175H

5 − 432 r
2

− R
2

􏼐 􏼑 + 1680
z

H
−

z

H
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8. Normal Force on the Upper Disk

(e total force applied on the upper disk calculated by integral
of the negative of τzz that is exerted by the slightly viscoelastic
fluid film in the positive z-direction at z � H is estimated as

F � 􏽚

R

0

2πrp(r, H)dr. (84)

Substituting z � H in (80) to obtain p(r, H) and using in
(84), then obtained the following

F �
3μπVR

4

2H
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2πV
3
R
4

175H
5 β 945

R

H
􏼒 􏼓

2
+ 972􏼢 􏼣. (85)

9. Analysis of Results

(e convergence of the solution using the Langlois recursive
approach is validated by determining the absolute residual
error for different fluid parameters as given in Table 1. It can
be observed that the absolute residual error of the solution

for third-order approximation is approaching to zero that
confirmed the convergence of the solution.

10. Discussion of Results

In this research study, an approximate analytical solution of
the slow squeeze flow of slightly viscoelastic fluid films
between two disks is obtained successfully using the re-
cursive approach of Langlois. (e following dimensionless
variables are introduced to examine the effect of the slightly
viscoelastic parameter β and radial distance r on flow var-
iables such as velocity profile, pressure distribution, and
normal force and depicted in Figures 2–7, drawn using the
mathematics-based Maple software.
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(e impact of the radial velocity component at various
radial points keeping fixed values β � 0.5 and (H/R) � 0.4 is
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shown in Figure 2. It is observed that the radial velocity
increases as the radius increases and velocity is maximum at
the axial distance 􏽢z � 0.5. (e effect of the slightly visco-
elastic parameter β on the radial velocity with fixed values

r � 0.5 and (H/R) � 0.4 illustrated in Figure 3 and shows the
behavior of the radial velocity is parabolic in the case of
viscous fluid [4, 48, 49]. (e radial velocity increases and
occurs backward flow at the edges with the rise in β. (us,

Table 1: Absolute residual error for Langlois recursive approach solution at various slightly viscoelastic parameters.

Z β � 0.2 β � 0.4 β � 0.6
0. 1.01252∗10− 8 4.05095∗10− 8 9.11656∗10− 8

0.1 6.56195∗10− 9 2.62525∗10− 8 5.90788∗10− 8

0.2 2.24776∗10− 9 8.9907∗10− 9 2.02283∗10
0.3 1.97737∗10− 9 7.91431∗10− 9 1.7818∗10− 8

0.4 5.54702∗10− 9 2.21957∗10− 8 4.99573∗10− 8

0.5 8.11939∗10− 9 3.24857∗10− 8 7.31114∗10− 8

0.6 9.53336∗10− 9 3.81402∗10− 8 8.58308∗10− 8

0.7 9.76923∗10− 9 3.90807∗10− 8 8.79403∗10− 8

0.8 8.91384∗10− 9 3.56555∗10− 8 8.0225∗10− 8

0.9 7.13011∗10− 9 2.85168∗10− 8 6.41547∗10− 8

1.0 4.63052∗10− 9 1.85154∗10− 8 4.16447∗10− 8
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physically slightly viscoelastic parameter β is inversely
proportional to the fluid viscosity. (e rise of this parameter
β demotes the viscosity, and as a result, the fluid velocity
intensified. (is profile proved the behavior of the shear
thickening fluid. Furthermore, behavior of the radial velocity
in the case of viscous fluid, when β � 0, is taken as a special
case which is also illustrated in Figure 3.

Figure 4 represents the axial velocity profile at different
radial values keeping β � 0.5 and H � 0.4. Axial velocity (w)

rises in contrast to an increase in the value of r. Figure 5
depicts the impact of the slightly viscoelastic parameter β on
the axial velocity (w). It is noticed that the negative mag-
nitude of axial velocity indicates that the direction of flow is
downward; also, reverse flow is occurring in axial velocity
due to the rise of β, and it is gradually increased with the
maximum magnitude at z � 0.75. In Figures 1–4, the shear-
thickening behavior of the velocity profile appears at the
parameter β.

Figure 6 demonstrates the effect of β on pressure dis-
tribution at (H/R) � 0.4 and (z/H) � 0.7. It shows that the
pressure distribution is directly proportional to the thickness
of the fluid β and reduces radially approaching to zero at the
edge. Physically when the viscoelasticity of the material rises,
then pressure distribution increases to squeeze the fluid film.
In Figure 7, force swiftly increases at the significant values of
the aspect ratio of the film thickness and high values of β.

(e results obtained from this proposed approach for β
� 0 agree with the results presented in the literature [47,48].
Furthermore, it also satisfies the physical behavior of the
shear thickening fluid.

11. Conclusion and Future Recommendations

(is research study is focused on the analytical solution of
the sluggish squeeze flow of the slightly viscoelastic fluid film
between two circular disks where the upper disk is moving

with constant velocity and the lower disk is stationary. (e
recursive approach of Langlois has been applied successfully
for the analytical solution of the governing equations of the
flow in the axisymmetric form. In order to examine the
physical behavior of the flow, analysis is taken up to third-
order linearization by this approach. (e physical param-
eters of the flow such as velocity, pressure distribution,
normal squeeze force, and stresses are determined as a
function of aspect ratio H/R, radial distance r, and visco-
elastic parameter β, which are key flow variables of the study.
(e obtained results by this approach are in good agreement
with the results of the squeezing flow of viscous fluid by
vanishing slightly viscoelastic parameter which also con-
firms the physical behavior of shear thickening fluid. (e
following key points are drawn from the theoretical
investigations.

(1) (e axial and radial velocities increase with the in-
crement in the radial distance and observed that the
maximum velocity occurs at the z� 0.5

(2) (e axial and radial velocities increase at the higher
values of the slightly viscoelastic parameter β, and
backward flow occurs at the boundaries of the
channel due to the slightly viscoelastic term

(3) (e pressure distribution elevates with the rise of the
slightly viscoelastic parameter β and crushes at the
edges of the channel

(4) (e presence of a slightly viscoelastic parameter
boosted the normal squeeze force on the upper disk

(is study attempted to get an analytical solution for the
slow squeeze flow of the slightly viscoelastic fluid film be-
tween two circular disks at no-slip conditions by the Lan-
glois recursive approach. As a future recommendation, it is
proposed that this method can also be used to get an an-
alytical solution of the nonlinear partial differential equa-
tions arising from the squeeze flow of differential type fluids
with slip conditions and inertia effects.

Nomenclature

V
􏽥
: Velocity vector (msec− 1)

u: Radial velocity component (msec− 1)

w: Axial velocity component (msec− 1)

ρ: Constant fluid density (kgm− 3)

f: Body force (N)

r, z: Cylindrical coordinates
(D/Dt): Material derivative
A
􏽥 1, A

􏽥 2, A
􏽥 3: Rivilin Ericksen tensors

β: Slightly Viscoelastic parameter
τ
􏽥
: Cauchy stress tensor (Nm− 2)

p: Pressure (Pa)

(H/R): Aspect ratio
F: Squeeze force on the upper disk (N).

Data Availability

(e data used to support the findings of this study are
available from the corresponding author upon request.
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�is study investigates the heat and mass transfer in the MHD �ow of fractionalized second-grade �uid induced by impulsively
moved bottom porous plate with nonlinear velocity of the magnitude KTD. To acquire the fractionalized nondimensional set of
�ow administering di�erential equations, fractional calculus and dimensionless variables are considered. �e solution process
utilizes Laplace transform and results in the acquired outputs in terms of generalized functions. �e exact solutions for con-
centration, temperature, velocity, and the shear stress are then reduced by certain limits into fractional/traditional second-grade
and Newtonian �uids as per the special cases within and out of the magnetic and porous e�ects. It is observed that these special
cases occur in the previous published literature which verify the results of this study. �e results are pictorially visualized to
perform the analysis for impacts of diverse physical parameters and dimensionless quantities on concentration, temperature, and
velocity �elds. It is learned from the analysis that magnitude of viscoelastic parameter is directly proportional to velocity whereas
the porous and magmatic e�ects are inversely proportional. Increasing fractional parameter values reduce �ow �elds of velocity
and temperature. E�ects of dimensionless parameters for heat and mass transfer are analysed in detail.

1. Introduction

A number of technological developments and industrial
applications of �uids require the complete information
about their complex rheological �ow, due to which the study
of non-Newtonian �uids is carried out at large scale with a
variety of enclosure limitations in di�erent situations. �ese
situations practically appear in many electrochemical,
geophysical, biorheological, petroleum engineering, metal-
lurgical, and other industrial practices like plastic and
polymer melts, pulps, oil, and greases, etc. A second-grade
submodel of a non-Newtonian di�erential type model
suitably describes the complex rheological behavior of the
above-mentioned �uids [1]. �e analytic solutions of this
type of �uid model are found in literature serving as a

solution to such existing �ow problem, and it supports a
veri�cation of di�erent numerical schemes for extremely
complex �ows. Haq [2] investigated solutions of di�erent
�ow forms of second-grade �uid with MHD Darcy’s law
using an Caputo-Fabrizio derivative approach. Salman [3]
calculated the values for movement of second-grade �uid
over the plane having constant acceleration and presented
the exact solutions as the collection of high magnitude time
and transient exact solutions simply reducible to the similar
solution for Newtonian �uid there by concluding that non-
Newtonian e�ects diminish by time.

For a proper and accurate investigation of all the vis-
coelastic properties of a �uid, fractional calculus is adopted
to acquire the fractionalized form of �ow administering
equations [4]. Like the rate type �uids, the second-grade
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fluid model is passed through a modification for the purpose
of generalization, that is, roughly speaking, nothing but a
replacement of integer order differential operator of time
derivative with one of the broadly applied fractional order
differential operators as here we use the Caputo [5]. Flow
produced by a heated plane moving impulsively having
fractionalized second grade fluid is studied by Tassaddiq [6];
he concluded that the fractional approach is more useful for
theory analysis of viscoelasticity. Riaz and Iftikhar [7]
compared local and nonlocal derivative study to analyse heat
transfer in MHD Maxwell fluid. Khan and Wang [8] in-
vestigated the generalized second-grade fluid flow enclosed
by two perpendicular walls induced through the impulsive
movement of surface over which fluid is supposed to be, and
they verified their results with previous literature by van-
ishing the perpendicular bounding walls. Fahad et al. [9]
analysed MHD second grade fluid, Newtonian heating, and
Dufour effect over an infinite vertical plate with fractional
mass diffusion and thermal transports using noninteger-
order derivative Caputo Fabrizio (CF) with nonsingular
kernel.

MHD flow incorporated with porous medium is re-
ported in many processes of the biology and medicine in-
dustry. It is utilized in chemical industry for filtration,
separation, and purification processes which involve the
interaction of electric or magnetic field with hydrodynamic
boundary layers. Analytical results including porous and
MHD terms in second-grade fluid are acquired by Ali et al.
[10], where there exists the magnetohydrodynamic fluctu-
ating free convection flow of incompressible electrically
conducted viscoelastic fluid in a porous medium in the
presence of a pressure gradient. Salah [11] analysed the
rotationally accelerated fluid and found that variable and
constant accelerated MHD flow behave equivalently. Bajwa
et al. [12] found that when the transpiration parameter
approaches zero, the solution for the flow with transpiration
tends to the solution corresponding to the case without
perspiration. Influence of hall currents with MHD and
porous effects is investigated in the second grade fluid with
oscillations by Hussain et al. [13].

Boundary layer flow of viscoelastic non-Newtonian
fluids is of fundamental importance in industrial and
applied sciences. Sticking to the problem under study,
heat transfer is observed due to both the exponential
motion of plate and the buoyancy force that is generated
by the difference of temperatures between the fluid and
moving bottom plate. In practical applications, reduction
of drag due to friction; paper production processes; and
the cooling mechanisms of electronic, nuclear, chemical,
and industrial processes involve such issues. A lot of
research material is available over the flow in touch with
the first layer of boundary and heat transfer for being
found in much application of industrial interest. )e
presence stretching sheet with fluid flow of second-grade
type is effected by heat of friction, heat absorbed or
generated internally, and the heat in terms of deformation
work is dealt by Vajravelu and Roper [14]. Tan and
Masuoka [15] solved Stokes’ first problem over the high-
temperature surface in a semipermeable space. )ey

obtained the steady-state solution in the form of damping
exponential function of distance to a hot plate. Con-
centration and chemical reaction are considered by Hayat
et al. [16] with heat transfer in second-grade fluid thereby
taking into account the HAM method. Hayat and Abbas
[17]also obtained the solutions to same problem in the
presence of MHD and porous effects. )e movement of
fluid of second-grade type in the presence of stretching
sheet in unsteady form is discussed by Sajid et al. [18]; they
addressed both processes of heating and the prescribed
surface temperature, as well as prescribed surface heat
flux, and obtained the analytic solutions valid for all times
by using HAM method.

In recent years, Baoku et al. [19] adopted numerical
approach to find the approximate solutions, where they
applied the Runge-Kutta-Fehlberg of order five by shooting
method strategy. Das [20] did the same in addition with
heated sheet of stretchable form but utilized Nachtsheim-
Swigert shooting method for sixth order Runge-Kutta
scheme. El-Dabe et al. [21] analysed the second-grade fluid
flow with nonlinear form of transfer of both the mass and
heat and discussed the thermophoresis applications in detail.
Khan [22] studied heat transfer in a thin film of the steady
form of flow in touch with the first layer of boundary of
porous material in the presence of second-grade fluid. Wakif
analysed the analytical and numerical solution of fluid flow
with convection heat transfer [23–25]. Bhatti et al. [26]
analysed higher-order slip flow of Eyring-Powell nanofluid
for Darcy-Forchheimer in the presence of bioconvection and
nonlinear thermal radiation and proved that bioconvection
Lewis number declines the microorganism profile while the
increasing trend is noted for higher values of slip parameter.
Bhatti et al. [27] also carried out group analysis and used a
robust computational approach to examine mass transport
and found successive linearization approach (SLM) more
efficient.

)is study investigates the heat and mass transfer in the
MHD flow of fractionalized second-grade fluid induced by
impulsively moved bottom porous plate with exponential
velocity of the magnitude K⊺d. To acquire the fractionalized
nondimensional set of flow administering differential
equations, fractional calculus and dimensionless variables
are considered. )e solution process utilizes Laplace
transform and results in the acquired outputs in terms of
generalized functions. )e solutions in the exact form for
concentration, temperature, velocity, and stress are then
reduced by certain limits into fractional second-grade and
Newtonian fluids as per the special cases within and out of
the magnetic and porous effects. )e results are pictorially
presented to perform the analysis for impacts of diverse
physical parameters and dimensionless quantities. )is
study mainly focuses on the following research questions.

What is the compact form of analytical solutions of flow
field in the presence of MHD and porous medium in terms
of summation style and newly defined M function?

What are the effects of nonlinear movement of plate over
the fluid velocity, heat, and mass transfer?

How the shear stress profile behaves for nonlinear
movement of porous surface in presence of MHD effect?
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Differentiate the responses of the flow field between the
linear and nonlinear/exponential movement of the porous
surface (Table 1).

2. Flow Field Description and Its Solutions

)e free convection heat and mass transfer in MHD un-
steady flow of second-grade fluid over an infinite vertical
porous plate in (x, z) plane is considered, while y-axis being
normal to the plate. Species concentration ℷ, temperature
distribution ℸ, velocity υ in x-direction, and shear stress are
considered as function of only ⊺ and ξ. Initially the plate is at
rest and the fluid too with ambient fluid temperature ℸ∞
(constant) and the constant concentration ℷ∞. At the mo-
ment ⊺ � 0+, plate starts to move in its own plane with the
nonlinear velocity K⊺d there by raising the temperature and
concentration level of the plate toℸw and ℷw, respectively. A
transverse magnetic field B0 with uniform strength is nor-
mally applied to the plate in the direction parallel to y-axis as
shown in Figure 1, while assuming the negligible induced
magnetic field as compared to transverse magnetic field due
to very low Reynold’s number.)e viscous dissipation, Soret
and Duoffer effects are also neglected for low level of
concentration.

From the above assumptions with constant Boussinesq
approximation, the set of flow administrative equations for
heat and mass transfer in incompressible second-grade fluid
is shown [28–30].

zυ(ξ, ⊺)
z⊺

� ] + α
z

z⊺
􏼠 􏼡

z
2υ(ξ, ⊺)

zξ2
−
σB

2
0

ρ
υ(ξ, ⊺)

−
φ
κ

] + α
z

z⊺
􏼠 􏼡υ(ξ, ⊺)

+ gB1 ℸ(ξ, ⊺) − ℸ∞( 􏼁 + gB2 ℷ(ξ, ⊺)(

− ℷ∞􏼁; ξ, ⊺ > 0,

(1)

Ł(ξ, ⊺) � μ + α1
z

z⊺
􏼠 􏼡

zυ(ξ, ⊺)
zξ

; ξ, ⊺ > 0, (2)

ρCp

zℸ(ξ, ⊺)
z⊺

� k
z
2ℸ(ξ, ⊺)

zξ2
−

zqr(ξ, ⊺)
zξ

; ξ, ⊺ > 0, (3)

zℷ(ξ, ⊺)
z⊺

� D
z
2ℷ(ξ, ⊺)

zξ2
; ξ, ⊺ > 0, (4)

subject to the following initial, boundary and natural
conditions, respectively.

υ(ξ, 0) � 0, Ł(ξ, 0) � 0,ℸ(ξ, 0) � ℸ∞, ℷ(ξ, 0) � ℷ∞, ξ ≥ 0,

(5)

υ(0, ⊺) � K⊺d,ℸ(0, ⊺) � ℸw, ℷ(0, ⊺) � ℷw, ⊺ > 0, (6)

υ(ξ, ⊺)⟶ 0,ℸ(ξ, ⊺)⟶ℸ∞, ℷ(ξ, ⊺)⟶ℷ∞, as ξ⟶∞,

(7)

where ], μ, σ, k, ρ,φ, κ, g, B0, B1, B2, Cp, qr, D, and α1 are
kinematic viscosity, dynamic viscosity, fluid electric con-
ductivity, fluid thermal conductivity, fluid density, porosity
parameter, permeability of the porousmedium, gravitational
acceleration, magnetic field strength, volumetric heat
transfer coefficient, volumetric mass transfer coefficient,
specific heat capacity, heat flux radiation, mass diffusion
coefficient, and second grade fluid parameter, respectively,
whereas α � α1/ρ. By introducing the following dimen-
sionless variables,

υ∗ �
υ

K]d
􏼐 􏼑

1/2 d+1, ξ
∗

�
ξ K]d
􏼐 􏼑

1/2 d+1

]
, ⊺∗

Ł∗ �
Ł

K]d
􏼐 􏼑

2/2 d+1
ρ
,ℸ∗ �
ℸ − ℸ∞
ℸw − ℸ∞

, ℷ∗

(8)

and considering

Table 1: Nomenclature.

Nomenclature
υ Velocity field (ms− 1)

Ł Shear stress (Pa)

ℷ Mass concentration (Kgm− 3)

ℸ Temperature distribution (K)

] Kinematic viscosity (m2s− 1)

μ Dynamic viscosity (Pa.s)

φ Porosity constant
σ Fluid electric conductivity (Ω− 1m− 1)

k Fluid thermal conductivity (Wm− 1K− 1)

ρ Fluid density (Kgm− 3)

Ψ Dimensionless porosity parameter
κ Permeability of the porous medium (m2)

g Gravitational acceleration (9.8ms− 2)

υ Laplace transform of υ
ℷ Laplace transform of ℷ
B0 Magnetic field strength (T)

B1 Volumetric heat transfer coefficient (K− 1)

B2 Volumetric mass transfer coefficient
Cp Specific heat capacity (Jm− 3K− 1)

qr Heat flux radiation (Wm− 2)

D Mass diffusion coefficient (m2s− 1)

F )ermal radiation (J)

α1 second grade fluid parameter
M Hartmann number
Gr )ermal Grashof number
Gm Mass Grashof number
Pr Prandtl number
Sc Schmidt number
ℸ Laplace transform of ℸ
Dα
⊺ Caputo fractional operator
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λ �
K]d

􏼐 􏼑
2/2 d+1

α

]2
,

M �
]σB

2
0

K]d
􏼐 􏼑

2/2 d+1
ρ
,

Ψ �
]2φ

K]d
􏼐 􏼑

2/2 d+1
κ
,

Gr �
]gB1 ℸ − ℸ∞( 􏼁

K]d
􏼐 􏼑

3/2 d+1 ,

Gm �
]gB2 ℷ − ℷ∞( 􏼁

K]d
􏼐 􏼑

3/2 d+1
κ

Pr �
μCp

κ
,

F �
]24I

K]d
􏼐 􏼑

2/2 d+1,

Sc �
]
D

,

(9)

where the dimensionless quantities M, Gr, Gm, Pr, Sc,Ψ, and
F represent Hartmann number, thermal Grashof number,
mass Grashof number, Prandtl number, Schmidt number,
thermal radiation, and porosity parameter, respectively.

For the sake of brevity, we omit “∗ ”; thus, the results are

zυ(ξ, ⊺)
z⊺

� 1 + λ
z

z⊺
􏼠 􏼡

z
2υ(ξ, ⊺)

zξ2
− Mu(ξ, ⊺) − Ψ 1 + λ

z

z⊺
􏼠 􏼡

υ(ξ, ⊺) + Grℸ(ξ, ⊺) + Gmℷ(ξ, ⊺),
(10)

L(ξ, ⊺) � 1 + λ
z

z⊺
􏼠 􏼡

zυ(ξ, ⊺)
zξ

, (11)

zℸ(ξ, ⊺)
z⊺

�
1
Pr

z
2ℸ(ξ, ⊺)

zξ2
−

F

Pr

ℸ(ξ, ⊺),

(12)

zℷ(ξ, ⊺)
z⊺

�
1
Sc

z
2ℷ(ξ, ⊺)

zξ2
, (13)

with imposed conditions

υ(ξ, 0) � 0, Ł(ξ, 0) � 0,ℸ(ξ, 0) � 0, ℷ(ξ, 0) � 0, ξ ≥ 0, (14)

υ(0, ⊺) � ⊺d,ℸ(0, ⊺) � 1, ℷ(0, ⊺) � 1, ⊺ > 0, (15)

υ(ξ, ⊺)⟶ 0,ℸ(ξ, ⊺)⟶ 0, ℷ(ξ, ⊺)⟶ 0, as ξ⟶∞.

(16)

)e fractionalized form of the governing equations is

zυ(ξ, ⊺)
z⊺

� 1 + λD
β
⊺􏼐 􏼑

z
2υ(ξ, ⊺)

zξ2
− Mυ(ξ, ⊺) − Ψ 1 + λD

β
⊺􏼐 􏼑υ

(ξ, ⊺) + Grℸ(ξ, ⊺) + Gmℷ(ξ, ⊺),
(17)

Ł(ξ, ⊺) � 1 + λDβ
⊺􏼐 􏼑

zυ(ξ, ⊺)
zξ

, (18)

D
c
⊺ℸ(ξ, ⊺) �

1
Pr

z
2ℸ(ξ, ⊺)

zξ2
−

F

Pr

ℸ(ξ, ⊺), (19)

D
η
⊺ℷ(ξ, ⊺) �

1
Sc

z
2ℷ(ξ, ⊺)

zξ2
, (20)

where β, η, and c are the fractional parameters, and Dα
⊺ is the

Caputo fractional operator defined by [23, 24].

D
α
⊺f(⊺) �

1
(1 − α)

􏽚
⊺

0
exp −

α
1 − α

(⊺ − s)􏼒 􏼓f′(s)ds, α≥ 0;

df(⊺)
d⊺

, α � 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(21)

As per the above system of fractional partial differential
equations (17)–(20) with (14) in mind, we take Laplace of
(15) and (16).

υ(0, q) �
Γ(d + 1)

q
d+1 ,ℸ(0, q) �

1
q
, ℷ(0, q) �

1
q
, (22)

υ(0, q)⟶ 0,ℸ(0, q)⟶ 0, ℷ⟶ 0, as ξ⟶∞, (23)

where q stands for transform parameter while image
function of υ(ξ, ⊺) is represented by υ(ξ, q).

2.1. Calculation of the Mass Concentration. Taking the
Laplace transform of (20) and using the initial condition
(14), we get

z
2ℷ(ξ, ⊺)

zξ2
− Scq

ηℷ(ξ, ⊺) � 0. (24)

Solving (24) using the natural condition (23) and
boundary condition (22), we obtained

ℷ(ξ, q) �
exp − Scq

η
􏼂 􏼃

1/2ξ􏽮 􏽯

q
. (25)

In terms of series, the above equation can be written as
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−
��
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〉1!
q
η 〉1/2− 1

. (26)

Applying the inverse discrete Laplace transform, we have

ℷ(ξ, ⊺) � 1 + 􏽘
∞

ϱ1�1

−
��
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ξ( 􏼁
ϱ1

ϱ1!
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In the form of general Wright function [31],

ℷ(ξ, ⊺) � W− η/2,1 −

��
Sc

⊺η

􏽳

ξ⎛⎝ ⎞⎠ (29)

where the general Wright function is defined as

Wλ,μ(ξ) � 􏽘
∞

k�0

z
k

k!Γ(λk + μ)
, λ> − 1. (30)

2.2. Calculation of the Temperature Distribution. Taking the
Laplace transform of (19) and using the initial condition
(14), we have

z
2ℸ(ξ, q)

zξ2
− Prq

c
+ F( 􏼁ℸ(ξ, q) � 0. (31)

Solving (31) using natural condition (23) and boundary
condition (22), we get

ℸ(ξ, q) �
exp − Prq

c
+ F􏼂 􏼃

1/2ξ􏽮 􏽯

q
. (32)

In terms of series, the above equation can be given as
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Applying the inverse discrete Laplace transform, we have

ℸ(ξ, ⊺) � 1 + 􏽘
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. (34)

Presenting the above equation in more generalized way
of M function,

ℸ(ξ, ⊺) � 1 + 􏽘
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(35)

where the newly formulatedM-function with the help of Fox
H-function [31–33] is explained by

⊺yn− 1
􏽘

∞
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1,m
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(36)

2.3. Calculation of the Velocity. Initial conditions (14) are
imposed after taking Laplace transform of (17), which yield
the results
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Solving (37) utilizing conditions (22) and (23), we get
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Presenting (38) in series form to easily produce υ(ξ, ⊺) �

L− 1 υ(ξ, q)􏼈 􏼉 without prolix computational complexities of
residuals and contours integrals,

υ(ξ, q) �
Γ(d + 1)

q
d+1 + Γ(d + 1) 􏽘

∞

ϱ1�1

(− ξ)
ϱ1

ϱ1!
􏽘

∞

ϱ3 ,ϱ4�0

(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
λβ − ϱ1/2+ϱ3( )

× 􏽘
∞

ϱ6�0

− 1/λβ􏼐 􏼑
ϱ6Γ − ϱ1/2 + ϱ3( 􏼁Γ − ϱ1/2 + ϱ3 + ϱ4( 􏼁Γϱ1/2 ϱ1/2 − ϱ3 + ϱ6( 􏼁

ϱ6!Γ − ϱ1/2( 􏼁Γ − ϱ1/2 + ϱ3( 􏼁Γ ϱ1/2 − ϱ3( 􏼁
q

(1− β) ϱ1/2− 〉3( )− ϱ4− βϱ6− b− 1

+ Gr 􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4,ϱ5�0

(− ξ)
ϱ1

ϱ1!
1
Pr

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
− F/Pr( 􏼁

ϱ5

ϱ5!
λβ − ϱ1/2− ϱ2+ϱ3− 1( )

× 􏽘
∞

ϱ6�0

− 1/λβ􏼐 􏼑
〉6Γ − ϱ1/2 − ϱ2 + ϱ3( 􏼁Γ − ϱ1/2 − ϱ2 + ϱ3 + ϱ4( 􏼁Γ ϱ2 + ϱ5 + 1( 􏼁Γ ϱ1/2 + ϱ2 − ϱ3 + ϱ6 + 1( 􏼁

ϱ6!Γ − ϱ1/2 − ϱ2( 􏼁Γ − ϱ1/2 − ϱ2 + ϱ3( 􏼁Γ ϱ2 + 1( 􏼁Γ ϱ1/2 + ϱ2 − ϱ3 + 1( 􏼁

× q
(1− β) ϱ1/2+ϱ2− ϱ3( )− β− ϱ4− βϱ6− c ϱ2+ϱ5+1( )− 1

+ Gm 􏽘

∞

ϱ1 ,ϱ2,ϱ3 ,ϱ4�0

(− ξ)
ϱ1

ϱ1!
1
Sc

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
λβ − ϱ1/2− ϱ2+ϱ3− 1( )

× 􏽘

∞

ϱ6�0

− 1/λβ􏼐 􏼑
ϱ6Γ − ϱ1/2 − ϱ2 + ϱ3( 􏼁Γ − ϱ1/2 − ϱ2 + ϱ3 + ϱ4( 􏼁Γ ϱ1/2 + ϱ2 − ϱ3 + ϱ6 + 1( 􏼁

ϱ6!Γ − ϱ1/2 − ϱ2( 􏼁Γ − ϱ1/2 − ϱ2 + ϱ3( 􏼁Γϱ ϱ1/2 + ϱ2 − ϱ3 + 1( 􏼁

× q
(1− β) ϱ1/2+ϱ2− ϱ3( )− β− ϱ4− βϱ6− η ϱ2+1( )− 1

− Gr 􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4 ,ϱ5�0

−
��
Pr

􏽰
ξ( 􏼁
ϱ1

ϱ1!
1
Pr

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
− F/Pr( 􏼁

ϱ5

ϱ5!
λβ − ϱ2+ϱ3− 1( )

× 􏽘
∞

ϱ6�0

− 1/λβ􏼐 􏼑
ϱ6Γ − ϱ2 + ϱ3( 􏼁Γ − ϱ2 + ϱ3 + ϱ4( 􏼁Γ − ϱ1/2 + ϱ2 + ϱ5 + 1( 􏼁Γ ϱ2 − ϱ3 + ϱ6 + 1( 􏼁

ϱ6!Γ − ϱ2( 􏼁Γ − ϱ2 + ϱ3( 􏼁Γ − ϱ1/2 + ϱ2 + 1( 􏼁Γ ϱ2 − ϱ3 + 1( 􏼁

× q
(1− β) ϱ2− ϱ3( )− β− ϱ4− βϱ6+c ϱ1/2− ϱ2− ϱ5− 1( )− 1

− Gm 􏽘

∞

〉1 , 〉2 , 〉3 , 〉4�0

−
��
Sc

􏽰
ξ( 􏼁
ϱ1

ϱ1!
1
Sc

􏼠 􏼡

ϱ2+1
(− Ψ)

〉3

ϱ3!
(− M)

ϱ4

ϱ4!
λβ − ϱ2+ϱ3− 1( )

× 􏽘
∞

ϱ6�0

− 1/λβ􏼐 􏼑
ϱ6Γ − ϱ2 + ϱ3( 􏼁Γ − ϱ2 + ϱ3 + ϱ4( 􏼁Γ ϱ2 − ϱ3 + ϱ6 + 1( 􏼁

ϱ6!Γ − ϱ2( 􏼁Γ − ϱ2 + ϱ3( 􏼁Γ ϱ2 − ϱ3 + 1( 􏼁
q

(1− β) ϱ2− ϱ3( )− β− ϱ4− βϱ6+η ϱ1/2− ϱ2− 1( )− 1
.

(39)
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Practicing the discrete inverse Laplace transform, we
obtain

υ(ξ, ⊺) � ⊺b + Γ(d + 1) 􏽘

∞

ϱ1�1

(− ξ)
ϱ1

ϱ1!
􏽘

∞

ϱ3 ,ϱ4�0

(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
λβ − ϱ1/2+〉3( )⊺(β− 1) ϱ1/2− ϱ3( )+ϱ4+b

× 􏽘
∞

ϱ6�0

− ⊺β/λβ􏼐 􏼑
ϱ6Γ − ϱ1/2 + ϱ3( 􏼁Γ − ϱ1/2 + ϱ3 + ϱ4( 􏼁Γ ϱ1/2 − ϱ3 + ϱ6( 􏼁

ϱ6!Γ − ϱ1/2( 􏼁Γ − ϱ1/2 + ϱ3( 􏼁Γ ϱ1/2 − ϱ3( 􏼁Γ (β − 1) ϱ1/2 − ϱ3( 􏼁 + ϱ4 + βϱ6 + b + 1( 􏼁

+ Gr 􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4 ,ϱ5�0

(− ξ)
ϱ1

ϱ1!
1
Pr

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
− F/Pr( 􏼁

ϱ5

ϱ5!
λβ − ϱ1/2− ϱ2+ϱ3− 1( )

× 􏽘
∞

ϱ6�0

− ⊺β/λβ􏼐 􏼑
ϱ6Γ − ϱ1/2 − ϱ2 + ϱ3( 􏼁Γ − ϱ1/2 − ϱ2 + ϱ3 + ϱ4( 􏼁Γ ϱ2 + ϱ5 + 1( 􏼁Γ ϱ1/2 + ϱ2 − ϱ3 + ϱ6 + 1( 􏼁

ϱ6!Γ − ϱ1/2 − ϱ2( 􏼁Γ − ϱ1/2 − ϱ2 + ϱ3( 􏼁Γ ϱ2 + 1( 􏼁Γ ϱ1/2 + ϱ2 − ϱ3 + 1( 􏼁

×
⊺(β− 1) ϱ1/2+ϱ2− ϱ3( )+β+ϱ4+c ϱ2+ϱ5+1( )

Γ (β − 1) ϱ1/2 + ϱ2 − ϱ3( 􏼁 + β + ϱ4 + βϱ6 + c ϱ2 + ϱ5 + 1( 􏼁 + 1( 􏼁

+ Gm 􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4�0

(− ξ)
ϱ1

ϱ1!
1
Sc

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
λβ − ϱ1/2− ϱ2+ϱ3− 1( )

× 􏽘
∞

ϱ6�0

− ⊺β/λβ􏼐 􏼑
ϱ6Γ − ϱ1/2 − ϱ2 + ϱ3( 􏼁Γ − ϱ1/2 − ϱ2 + ϱ3 + ϱ4( 􏼁Γ ϱ1/2 + ϱ2 − ϱ3 + ϱ6 + 1( 􏼁

ϱ6!Γ − ϱ1/2 − ϱ2( 􏼁Γ − ϱ1/2 − ϱ2 + ϱ3( 􏼁Γ ϱ1/2 + ϱ2 − ϱ3 + 1( 􏼁

×
⊺(β− 1) ϱ1/2+ϱ2− ϱ3( )+β+ϱ4+η ϱ2+1( )

Γ (β − 1) ϱ1/2 + ϱ2 − ϱ3( 􏼁 + β + ϱ4 + βϱ6 + η ϱ2 + 1( 􏼁 + 1( 􏼁

− Gr 􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4 ,ϱ5�0

−
��
Pr

􏽰
ξ( 􏼁
ϱ1

ϱ1!
1
Pr

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
− F/Pr( 􏼁

ϱ5

ϱ5!
λβ − ϱ2+ϱ3− 1( )

× 􏽘
∞

ϱ6�0

− ⊺β/λβ􏼐 􏼑
ϱ6Γ − ϱ2 + ϱ3( 􏼁Γ − ϱ2 + ϱ3 + ϱ4( 􏼁Γ − ϱ1/2 + ϱ2 + ϱ5 + 1( 􏼁Γ ϱ2 − ϱ3 + ϱ6 + 1( 􏼁

ϱ6!Γ − ϱ2( 􏼁Γ − ϱ2 + ϱ3( 􏼁Γ − ϱ1/2 + ϱ2 + 1( 􏼁Γ ϱ2 − ϱ3 + 1( 􏼁

×
⊺(β− 1) ϱ2− ϱ3( )+β+ϱ4− c ϱ1/2− ϱ2− ϱ5− 1( )

Γ (β − 1) ϱ2 − ϱ3( 􏼁 + β + ϱ4 + βϱ6 − c ϱ1/2 − ϱ2 − ϱ5 − 1( 􏼁 + 1( 􏼁

− Gm 􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4�0

−
��
Sc

􏽰
ξ( 􏼁
ϱ1

ϱ1!
1
Sc

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
λβ − ϱ2+ϱ3− 1( )⊺(β− 1) ϱ2− ϱ3( )+β+ϱ4− η ϱ1/2− ϱ2− 1( )

× 􏽘
∞

ϱ6�0

− ⊺β/λβ􏼐 􏼑
ϱ6Γ − ϱ2 + ϱ3( 􏼁Γ − ϱ2 + ϱ3 + ϱ4( 􏼁Γ ϱ2 − ϱ3 + ϱ6 + 1( 􏼁

ϱ6!Γ − ϱ2( 􏼁Γ − ϱ2 + ϱ3( 􏼁Γ ϱ2 − ϱ3 + 1( 􏼁Γ (β − 1) ϱ2 − ϱ3( 􏼁 + β + ϱ4 + βϱ6 − η ϱ1/2 − ϱ2 − 1( 􏼁 + 1( 􏼁
.

(40)
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Rewriting the velocity expression using generalized
M-function,

υ(ξ, ⊺) � ⊺b + Γ(d + 1) 􏽘

∞

ϱ1�1

(− ξ)
ϱ1

ϱ1!
􏽘

∞

ϱ3 ,ϱ4�0

(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
λβ − ϱ1/2+ϱ3( ) ∈

× M
1,3
3,5
⊺β

λβ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1+ϱ1/2− ϱ3 ,0( ), 1+ϱ1/2− ϱ3− ϱ4 ,0( ), 1− ϱ1/2+ϱ3 ,1( )

(0,1), 1+ϱ1/2,0( ), 1+ϱ1/2− ϱ3 ,0( ), 1− ϱ1/2+ϱ3 ,0( ), (1− β) ϱ1/2− ϱ3( )− ϱ4− b,β( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

+ Gr 􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4 ,ϱ5�0

(− ξ)
ϱ1

ϱ1!
1
Pr

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
− F/Pr( 􏼁

ϱ5

ϱ5!
λβ − ϱ1/2− ϱ2+ϱ3− 1( )

× M
1,4
4,6
⊺β

λβ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1+ϱ1/2+ϱ2− ϱ3 ,0( ), 1+ϱ1/2+ϱ2− ϱ3− ϱ4 ,0( ), − ϱ2− ϱ5 ,0( ) − ϱ1/2− ϱ2+ϱ3 ,1( )

(0,1), 1+ϱ1/2+ϱ2 ,0( ), 1+ϱ1/2+ϱ2− ϱ3 ,0( ), − ϱ2 ,0( ), − ϱ1/2− ϱ2+ϱ3 ,0( ), (1− β) ϱ1/2+ϱ2− ϱ3( )− β− ϱ4− c ϱ2+ϱ5+1( ),β( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

+ Gm 􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4�0

(− ξ)
ϱ1

ϱ1!
1
Sc

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
λβ − ϱ1/2− ϱ2+ϱ3− 1( )

× M
1,3
3,5
⊺β

λβ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1+ϱ1/2+ϱ2− ϱ3 ,0( ), 1+ϱ1/2+ϱ2− ϱ3− ϱ4 ,0( ), − ϱ1/2− ϱ2+ϱ3 ,1( )

(0,1), 1+ϱ1/2+ϱ2 ,0( ), 1+ϱ1/2+ϱ2− ϱ3 ,0( ), − ϱ1/2− ϱ2+ϱ3 ,0( ), (1− β) ϱ1/2+ϱ2− ϱ3( )− β− ϱ4− η ϱ2+1( ),β( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

− Gr 􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4 ,ϱ5�0

−
��
Pr

􏽰
ξ( 􏼁
ϱ1

ϱ1!
1
Pr

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
− F/Pr( 􏼁

ϱ5

ϱ5!
λβ − ϱ2+ϱ3− 1( )

× M
1,4
4,6
⊺β

λβ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1+ϱ2− ϱ3 ,0( ), 1+ϱ2− ϱ3− ϱ4 ,0( ), 1+ϱ1/2− ϱ2− ϱ5 ,0( ), − ϱ2+ϱ3 ,1( )

(0,1), 1+ϱ2 ,0( ), 1+ϱ2− ϱ3 ,0( ), 1+ϱ1/2− ϱ2 ,0( ), − ϱ2+ϱ3 ,0( ), (1− β) ϱ2− ϱ5( )− β− ϱ4− c ϱ1/2− ϱ2− ϱ5− 1( ),β( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

− Gm 􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4�0

−
��
Sc

􏽰
ξ( 􏼁
ϱ1

ϱ1!
1
Sc

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
λβ − ϱ2+ϱ3− 1( )

× M
1,3
3,5
⊺β

λβ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1+ϱ2− ϱ3 ,0( ), 1+ϱ2− ϱ3− ϱ4 ,0( ), − ϱ2+ϱ3 ,1( )

(0,1), 1+ϱ2 ,0( ), 1+ϱ2− ϱ3 ,0( ), − k2+ϱ3 ,0􏼐 􏼑, (1− β) ϱ2− ϱ5( )− β− ϱ4− η ϱ1/2− ϱ2− 1( ),β( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(41)

2.4. Formulating Shear Stress. Initial conditions (14) are
imposed after taking Laplace transform of Equation (18)
yielding the results

Ł(ξ, q) � 1 + λβq
β

􏼐 􏼑
zυ(ξ, q)

zξ
, (42)

where the Laplace transform of Ł(ξ, ⊺) is given as Ł(ξ, q).
With the help of (38), the given expression can be rearranged
as

Ł(ξ, q) �
Γ(d + 1)

q
d+1 1 + λβq

β
􏼐 􏼑 +

Gr

q

1

Prq
c

+ F − (q + M) 1 + λβq
β

􏼐 􏼑
− 1

+ Ψ􏼒 􏼓􏼔 􏼕

⎧⎪⎪⎨

⎪⎪⎩

+
Gm

q

1

Scq
η

− (q + M) 1 + λβq
β

􏼐 􏼑
− 1

+ Ψ􏼒 􏼓􏼔 􏼕

⎫⎪⎪⎬

⎪⎪⎭
− (q + M) 1 + λβq

β
􏼐 􏼑

− 1
+ Ψ􏼔 􏼕

1/2
􏼨 􏼩
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× exp − (q + M) 1 + λβq
β

􏼐 􏼑
− 1

+ Ψ􏼔 􏼕
1/2
ξ􏼨 􏼩 +

Gr

q

Prq
c

+ F􏼂 􏼃
1/2

Prq
c

+ F − (q + M) 1 + λβq
β

􏼐 􏼑
− 1

+ Ψ􏼒 􏼓􏼔 􏼕

exp − Prq
c

+ F􏼂 􏼃
1/2ξ􏽮 􏽯

+
Gm

q

Scq
η

􏼂 􏼃
1/2

Scq
η

− (q + M) 1 + λβq
β

􏼐 􏼑
− 1

+ Ψ􏼒 􏼓􏼔 􏼕

exp − Scq
η

􏼂 􏼃
1/2ξ􏽮 􏽯.

(43)

Writing the given expression in the form of a series

Ł(ξ, q) � − Γ(d + 1) 􏽘
∞

ϱ1�1

(− ξ)
ϱ1

ϱ1!
􏽘

∞

ϱ3 ,ϱ4�0

(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
λβ − ϱ1+1/2+ϱ3( )

× 􏽘
∞

ϱ6�0

− 1/λβ􏼐 􏼑
ϱ6Γ − ϱ1 + 1/2 + ϱ3( 􏼁Γ − ϱ1 + 1/2 + ϱ3 + ϱ4( 􏼁Γ ϱ1 + 1/2 − ϱ3 + ϱ6( 􏼁

ϱ6!Γ − ϱ1 + 1/2( 􏼁Γ − ϱ1 + 1/2 + ϱ3( 􏼁Γ ϱ1 + 1/2 − ϱ3( 􏼁
q

(1− β) ϱ1/2− ϱ3( )+1/2(1− β)− ϱ4− βϱ6− b− 1

− Gr 􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4 ,ϱ5�0

(− ξ)
ϱ1

ϱ1!
1
Pr

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
− F/Pr( 􏼁

ϱ5

ϱ5!
λβ − ϱ1+1/2− ϱ2+ϱ3( )

× 􏽘
∞

ϱ6�0

− 1/λβ􏼐 􏼑
ϱ6Γ − ϱ1 + 1/2 − ϱ2 + ϱ3( 􏼁Γ − ϱ1 + 1/2 − ϱ2 + ϱ3 + ϱ4( 􏼁Γ ϱ2 + ϱ5 + 1( 􏼁Γ ϱ1 + 1/2 + ϱ2 − ϱ3 + ϱ6( 􏼁

ϱ6!Γ − ϱ1 + 1/2 − ϱ2( 􏼁Γ − ϱ1 + 1/2 − ϱ2 + ϱ3( 􏼁Γ ϱ2 + 1( 􏼁Γ ϱ1 + 1/2 + ϱ2 − ϱ3( 􏼁

q
(1− β) ϱ1+1/2+ϱ2− ϱ3( )− ϱ4− βϱ6− c ϱ2+ϱ5+1( )− 1

− Gm 􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4�0

(− ξ)
ϱ1

ϱ1!
1
Sc

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
λβ − ϱ1+1/2− ϱ2+ϱ3( )

× 􏽘
∞

ϱ6�0

− 1/λβ􏼐 􏼑
ϱ6Γ − ϱ1 + 1/2 − ϱ2 + ϱ3( 􏼁Γ − ϱ1 + 1/2 − ϱ2 + ϱ3 + ϱ4( 􏼁Γ ϱ1 + 1/2 + ϱ2 − ϱ3 + ϱ6( 􏼁

ϱ6!Γ − ϱ1 + 1/2 − ϱ2( 􏼁Γ − ϱ1 + 1/2 − ϱ2 + ϱ3( 􏼁Γ ϱ1 + 1/2 + ϱ2 − ϱ3( 􏼁

q
(1− β) ϱ1+1/2+ϱ2− ϱ3( )− ϱ4− βϱ6− η ϱ2+1)( )− 1

+ Gr

��
Pr

􏽰
􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4 ,ϱ5�0

−
��
Pr

􏽰
ξ( 􏼁
ϱ1

ϱ1!
1
Pr

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
− F/Pr( 􏼁

ϱ5

ϱ5!
λβ − ϱ2+ϱ3( )

× 􏽘
∞

ϱ6�0

− 1/λβ􏼐 􏼑
ϱ6Γ − ϱ2 + ϱ3( 􏼁Γ − ϱ2 + ϱ3 + ϱ4( 􏼁Γ − ϱ1 + 1/2 + ϱ2 + ϱ5 + 1( 􏼁Γ ϱ2 − ϱ3 + ϱ6( 􏼁

ϱ6!Γ − ϱ2( 􏼁Γ − ϱ2 + ϱ3( 􏼁Γ − ϱ1 + 1/2 + ϱ2 + 1( 􏼁Γ ϱ2 − ϱ3( 􏼁

q
(1− β) ϱ2− ϱ3( )− ϱ4− βϱ6+c ϱ1+1/2− ϱ2− ϱ5− 1( )− 1

+ Gm

��
Sc

􏽰
􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4�0

−
��
Sc

􏽰
ξ( 􏼁
ϱ1

ϱ1!
1
Sc

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
λβ − ϱ2+ϱ3( )

× 􏽘
∞

ϱ6�0

− 1/λβ􏼐 􏼑
ϱ6Γ − ϱ2 + ϱ3( 􏼁Γ − ϱ2 + ϱ3 + ϱ4( 􏼁Γ ϱ2 − ϱ3 + ϱ6( 􏼁

ϱ6!Γ − ϱ2( 􏼁Γ − ϱ2 + ϱ3( 􏼁Γ ϱ2 − ϱ3( 􏼁
q

(1− β) ϱ2− ϱ3( )− ϱ4− βϱ6+η ϱ1+1/2− ϱ2− 1( )− 1
.

(44)
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Inverting the Laplace transform results,

Ł(ξ, ⊺) � − Γ(d + 1) 􏽘
∞

ϱ1�1

(− ξ)
ϱ1

ϱ1!
􏽘

∞

ϱ3 ,ϱ4�0

(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
λβ − ϱ1+1/2+ϱ3( )⊺(β− 1) ϱ1/2− ϱ3( )− 1/2(β− 1)+ϱ4+b

× 􏽘
∞

ϱ6�0

− ⊺β/λβ􏼐 􏼑
ϱ6Γ − ϱ1 + 1/2 + ϱ3( 􏼁Γ − ϱ1 + 1/2 + ϱ3 + ϱ4( 􏼁Γ ϱ1 + 1/2 − ϱ3 + ϱ6( 􏼁

ϱ6!Γ − ϱ1 + 1/2( 􏼁Γ − ϱ1 + 1/2 + ϱ3( 􏼁Γ ϱ1 + 1/2 − ϱ3( 􏼁Γ (β − 1) ϱ1/2 − ϱ3( 􏼁 − 1/2(β + 1) + ϱ4 + βϱ6 + b + 1( 􏼁

− Gr 􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4 ,ϱ5�0

(− ξ)
ϱ1

ϱ1!
1
Pr

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
− F/Pr( 􏼁

ϱ5

ϱ5!
λβ − ϱ1+1/2− ϱ2+ϱ3( )

× 􏽘
∞

ϱ6�0

− ⊺β/λβ􏼐 􏼑
ϱ6Γ − ϱ1 + 1/2 − ϱ2 + ϱ3( 􏼁Γ − ϱ1 + 1/2 − ϱ2 + ϱ3 + ϱ4( 􏼁Γ ϱ2 + ϱ5 + 1( 􏼁Γ ϱ1 + 1/2 + ϱ2 − ϱ3 + ϱ6( 􏼁

ϱ6!Γ − ϱ1 + 1/2 − ϱ2( 􏼁Γ − ϱ1 + 1/2 − ϱ2 + ϱ3( 􏼁Γ ϱ2 + 1( 􏼁Γ ϱ1 + 1/2 + ϱ2 − ϱ3( 􏼁

×
⊺(β− 1) ϱ1+1/2+ϱ2− ϱ3( )− 1/2(β+1)+ϱ4+c ϱ2+ϱ5+1( )

Γ (β − 1) ϱ1/2 + ϱ2 − ϱ3( 􏼁 + ϱ4 + βϱ6 + c ϱ2 + ϱ5 + 1( 􏼁 + 1( 􏼁
− Gm 􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4�0

(− ξ)
ϱ1

ϱ1!

·
1
Sc

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
λβ − ϱ1+1/2− ϱ2+ϱ3( )

× 􏽘
∞

ϱ6�0

− ⊺β/λβ􏼐 􏼑
ϱ6Γ − ϱ1 + 1/2 − ϱ2 + ϱ3( 􏼁Γ − ϱ1 + 1/2 − ϱ2 + ϱ3 + ϱ4( 􏼁Γ ϱ1 + 1/2 + ϱ2 − ϱ3 + ϱ6( 􏼁

ϱ6!Γ − ϱ1 + 1/2 − ϱ2( 􏼁Γ − ϱ1 + 1/2 − ϱ2 + ϱ3( 􏼁Γ ϱ1 + 1/2 + ϱ2 − ϱ3( 􏼁

×
⊺(β− 1) ϱ1/2+ϱ2+ϱ3( )+ϱ4+η ϱ2+1( )

Γ (β − 1) ϱ1/2 + ϱ2 + ϱ3( 􏼁 + ϱ4 + βϱ6 + η ϱ2 + 1( 􏼁 + 1( 􏼁

+ Gr

��
Pr

􏽰
􏽘

∞

ϱ1 ,ϱ2 ,ϱ3,ϱ4 ,ϱ5�0

−
��
Pr

􏽰
ξ( 􏼁
ϱ1

ϱ1!
1
Pr

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
− F/Pr( 􏼁

ϱ5

ϱ5!
λβ − ϱ2+ϱ3( )

× 􏽘
∞

ϱ6�0

− ⊺β/λβ􏼐 􏼑
ϱ6Γ − ϱ2 + ϱ3( 􏼁Γ − ϱ2 + ϱ3 + ϱ4( 􏼁Γ − ϱ1 + 1/2 + ϱ2 + ϱ5 + 1( 􏼁Γ ϱ2 − ϱ3 + ϱ6( 􏼁

ϱ6!Γ − ϱ2( 􏼁Γ − ϱ2 + ϱ3( 􏼁Γ − ϱ1 + 1/2 + ϱ2 + 1( 􏼁Γ ϱ2 − ϱ3( 􏼁

×
⊺(β− 1) ϱ2− ϱ3( )+ϱ4− c ϱ1+1/2− ϱ2− ϱ5− 1( )

Γ (β − 1) ϱ2 − ϱ3( 􏼁 + ϱ4 + βϱ6 − c ϱ1 + 1/2 − ϱ2 − ϱ5 − 1( 􏼁 + 1( 􏼁

+ Gm

��
Sc

􏽰
􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4�0

−
��
Sc

􏽰
ξ( 􏼁
ϱ1

ϱ1!
1
Sc

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
λβ − ϱ2+ϱ3( )⊺(β− 1) ϱ2− ϱ3( )+ϱ4− η ϱ1+1/2− ϱ2− 1( )

× 􏽘
∞

ϱ6�0

− ⊺β/λβ􏼐 􏼑
ϱ6Γ − ϱ2 + ϱ3( 􏼁Γ − ϱ2 + ϱ3 + ϱ4( 􏼁Γ ϱ2 − ϱ3 + ϱ6( 􏼁

ϱ6!Γ − ϱ2( 􏼁Γ − ϱ2 + ϱ3( 􏼁Γ ϱ2 − ϱ3( 􏼁Γ (β − 1) ϱ2 − ϱ3( 􏼁 − β + ϱ4 + βϱ6 − η ϱ1 + 1/2 − ϱ2 − 1( 􏼁 + 1( 􏼁
.

(45)
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In terms of M-function

Ł(ξ, ⊺) � − Γ(d + 1) 􏽘
∞

ϱ1�1

(− ξ)
ϱ1

ϱ1!
􏽘

∞

ϱ3 ,ϱ4�0

(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
λβ − ϱ1+1/2+ϱ3( )

× M
1,3
3,5
⊺β

λβ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1+ϱ1+1/2− ϱ3 ,0( ), 1+ϱ1+1/2− ϱ3− ϱ4 ,0( ), 1− ϱ1+1/2+ϱ3 ,1( )

(0,1), 1+ϱ1+1/2,0( ), 1+ϱ1+1/2− ϱ3 ,0( ), 1− ϱ1+1/2+ϱ3 ,0( ), (1− β) ϱ1/2− ϱ3( )+1/2(1+β)− ϱ4− b,β( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

− Gr 􏽘

∞

ϱ1 ,ϱ2,ϱ3 ,ϱ4 ,ϱ5�0

(− ξ)
ϱ1

ϱ1!
1
Pr

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
− F/Pr( 􏼁

ϱ5

ϱ5!
λβ − ϱ1+1/2− ϱ2+ϱ3( )

× M
1,4
4,6
⊺β

λβ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1+ϱ1+1/2+ϱ2− ϱ3 ,0( ), 1+ϱ1+1/2+ϱ2− ϱ3− ϱ4 ,0( ), − ϱ2− ϱ5 ,0( ) 1− ϱ1+1/2− ϱ2+ϱ3 ,1( )

(0,1), 1+ϱ1+1/2+ϱ2 ,0( ), 1+ϱ1+1/2+ϱ2− ϱ3 ,0( ), − ϱ2 ,0( ), 1− ϱ1+1/2− ϱ2+ϱ3 ,0( ), (1− β) ϱ1+1/2+ϱ2− ϱ3( )− ϱ4− c ϱ2+ϱ5+1( ),β( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

− Gm 􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4�0

(− ξ)
ϱ1

ϱ1!
1
Sc

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
λβ − ϱ1+1/2− ϱ2+ϱ3( )

× M
1,3
3,5
⊺β

λβ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1+ϱ1+1/2+ϱ2− ϱ3 ,0( ), 1+ϱ1+1/2+ϱ2− ϱ3− ϱ4 ,0( ) 1− ϱ1+1/2− ϱ2+ϱ3 ,1( )

(0,1), 1+ϱ1+1/2+ϱ2 ,0( ), 1+ϱ1+1/2+ϱ2− ϱ3 ,0( ), 1− ϱ1+1/2− ϱ2+ϱ3 ,0( ), (1− β) ϱ1+1/2+ϱ2− ϱ3( )− ϱ4− η ϱ2+1( ),β( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

+ Gr

��
Pr

􏽰
􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4 ,ϱ5�0

−
��
Pr

􏽰
ξ( 􏼁
ϱ1

ϱ1!
1
Pr

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
− F/Pr( 􏼁

ϱ5

ϱ5!
λβ − ϱ2+ϱ3( )

× M
1,4
4,6
⊺β

λβ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1+ϱ3− ϱ3 ,0( ), 1+ϱ2− ϱ3− ϱ4 ,0( ), 1+ϱ1+1/2− ϱ2− ϱ5 ,0( ), 1− ϱ2+ϱ3 ,1( )

(0,1), 1+ϱ2 ,0( ), 1+ϱ2− ϱ3 ,0( ), ϱ1+1/2− ϱ2 ,0( ), 1− ϱ2+ϱ3 ,0( ), (1− β) ϱ2− ϱ3( )− ϱ4+c ϱ1+1/2− ϱ2− ϱ5− 1( ),β( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

+ Gm

��
Sc

􏽰
􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4�0

−
��
Sc

􏽰
ξ( 􏼁
ϱ1

ϱ1!
1
Sc

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
λβ − ϱ2+ϱ3( )

× M
1,3
3,5
⊺β

λβ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1+ϱ2− ϱ3 ,0( ), 1+ϱ2− ϱ3− ϱ4 ,0( ), 1− ϱ2+ϱ3,1( )

(0,1), 1+ϱ2 ,0( ), 1+ϱ2− ϱ3 ,0( ), 1− ϱ2+ϱ3 ,0( ), (1− β) ϱ2− ϱ3( )− ϱ4+η ϱ1+1/2− ϱ2− 1( ),β( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦.

(46)

3. Some Interesting Particularized Cases

3.1. Ordinary MHD Second-Grade Fluid in Porous Material.

Considering β⟶ 0, c⟶ 0 and η⟶ 0, in equations
(29), (35), (40), and (46), the obtained results are

ℷ(ξ, ⊺) � W− 1/2,1 −

��
Sc

⊺

􏽳

ξ⎛⎝ ⎞⎠,

ℸ(ξ, ⊺) � 1 + 􏽘
∞

ϱ1�1

−
��
Pr

􏽰
ξ( 􏼁
ϱ1

ϱ1!
M

1,1
1,3

Ft

Pr

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1− ϱ1/2,1( )

(0,1), 1+ϱ1/2,0( ), ϱ1/2,1( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦,

υ(ξ, ⊺) � ⊺b + Γ(d + 1) 􏽘
∞

ϱ1�1

(− ξ)
ϱ1

ϱ1!
􏽘

∞

ϱ3 ,ϱ4�0

(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
λ − ϱ1/2+ϱ3( )

× M
1,3
3,5
⊺
λ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1+ϱ1/2− ϱ3 ,0( ), 1+ϱ1/2− ϱ3− ϱ4 ,0( ), 1− ϱ1/2+ϱ3 ,1( )

(0,1), 1+ϱ1/2,0( ), 1+ϱ1/2− ϱ3 ,0( ), 1− ϱ1/2+ϱ3 ,0( ), − ϱ4− b,1( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦
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+ Gr 􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4 ,ϱ5�0

(− ξ)
ϱ1

ϱ1!
1
Pr

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
− F/Pr( 􏼁

ϱ5

ϱ5!
λ − ϱ1/2− ϱ2+ϱ3− 1( )

× M
1,4
4,6
⊺
λ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1+ϱ1/2+ϱ2− ϱ3 ,0( ), 1+ϱ1/2+ϱ2− ϱ3− ϱ4 ,0( ), − ϱ2− ϱ5 ,0( ) − ϱ1/2− ϱ2+ϱ3 ,1( )

(0,1), 1+ϱ1/2+ϱ2 ,0( ), 1+ϱ1/2+ϱ2− ϱ3 ,0( ), − ϱ2 ,0( ), − ϱ1/2− ϱ2+ϱ3 ,0( ), − 1− ϱ4− ϱ2+ϱ5+1( ),1( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

+ Gm 􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4�0

(− ξ)
ϱ1

ϱ1!
1
Sc

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
λ − ϱ1/2− ϱ2+ϱ3− 1( )

× M
1,3
3,5
⊺
λ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1+ϱ1/2+ϱ2− ϱ3 ,0( ), 1+ϱ1/2+ϱ2− ϱ3− ϱ4 ,0( ), − ϱ1/2− ϱ2+ϱ3 ,1( )

(0,1), 1+ϱ1/2+ϱ2 ,0( ), 1+ϱ1/2+ϱ2− ϱ3 ,0( ), − ϱ1/2− ϱ2+ϱ3 ,0( ), − 1− ϱ4− ϱ2+1( ),1( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

− Gr 􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4 ,ϱ5�0

−
��
Pr

􏽰
ξ( 􏼁
ϱ1

ϱ1!
1
Pr

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
− F/Pr( 􏼁

ϱ5

ϱ5!
λ − ϱ2+ϱ3− 1( )

× M
1,4
4,6
⊺
λ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1+ϱ2− ϱ3 ,0( ), 1+ϱ2− ϱ3− ϱ4,0( ), 1+ϱ1/2− ϱ2− ϱ5 ,0( ), − ϱ2+ϱ3 ,1( )

(0,1), 1+ϱ2 ,0( ), 1+ϱ2− ϱ3 ,0( ), 1+ϱ1/2− ϱ2 ,0( ), − ϱ2+ϱ3 ,0( ), − 1− ϱ4− ϱ1/2− ϱ2− ϱ5− 1( ),1( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

− Gm 􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4�0

−
��
Sc

􏽰
ξ( 􏼁
ϱ1

ϱ1!
1
Sc

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
λ − ϱ2+ϱ3− 1( )

× M
1,3
3,5
⊺
λ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1+ϱ2− ϱ3 ,0( ), 1+ϱ2− ϱ3− ϱ4,0( ), − ϱ2+ϱ3 ,1( )

(0,1), 1+ϱ2 ,0( ), 1+ϱ2− ϱ3 ,0( ), − ϱ2+ϱ3 ,0( ), − 1− ϱ4− ϱ1/2− ϱ2− 1( ),1( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦,

(47)

and shear stress is

Ł(ξ, ⊺) � − Γ(d + 1) 􏽘
∞

ϱ1�1

(− ξ)
ϱ1

ϱ1!
􏽘

∞

ϱ3 ,ϱ4�0

(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
λ − ϱ1− 1/2+ϱ3( )

× M
1,3
3,5
⊺
λ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1+ϱ1− 1/2− ϱ3 ,0( ), 1+ϱ1− 1/2− ϱ3− ϱ4 ,0( ), 1− ϱ1− 1/2+ϱ3 ,1( )

(0,1), 1+ϱ1− 1/2,0( ), 1+ϱ1− 1/2− ϱ3 ,0( ), 1− ϱ1− 1/2+ϱ3 ,0( ), 1− ϱ4− b,1( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

− Gr 􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4 ,ϱ5�0

(− ξ)
ϱ1

ϱ1!
1
Pr

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
− F/Pr( 􏼁

ϱ5

ϱ5!
λ − ϱ1− 1/2− ϱ2+ϱ3( )

× M
1,4
4,6
⊺
λ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1+ϱ1− 1/2+ϱ2− ϱ3 ,0( ), 1+ϱ1− 1/2+ϱ2− ϱ3− ϱ4 ,0( ), − ϱ2− ϱ5 ,0( ) 1− ϱ1− 1/2− ϱ2+ϱ3 ,1( )

(0,1), 1+ϱ1− 1/2+ϱ2 ,0( ), 1+ϱ1− 1/2+ϱ2− ϱ3 ,0( ), − ϱ2 ,0( ), 1− ϱ1− 1/2− ϱ2+ϱ3 ,0( ), − ϱ4− ϱ2+ϱ5+1( ),1( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

− Gm 􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4�0

(− ξ)
ϱ1

ϱ1!
1
Sc

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
λ − ϱ1− 1/2− ϱ2+ϱ3( )

× M
1,3
3,5
⊺
λ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1+ϱ1− 1/2+ϱ2− ϱ3 ,0( ), 1+ϱ1− 1/2+ϱ2− ϱ3− ϱ4 ,0( ) 1− ϱ1− 1/2− ϱ2+ϱ3 ,1( )

(0,1), 1+ϱ1− 1/2+ϱ2 ,0( ), 1+ϱ1− 1/2+ϱ2− ϱ3 ,0( ), 1− ϱ1− 1/2− ϱ2+ϱ3 ,0( ), − ϱ4− ϱ2+1( ),1( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

+ Gr

��
Pr

􏽰
􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4 ,ϱ5�0

−
��
Pr

􏽰
ξ( 􏼁
ϱ1

ϱ1!
1
Pr

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
− F/Pr( 􏼁

ϱ5

ϱ5!
λ − ϱ2+ϱ3( )

× M
1,4
4,6
⊺
λ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1+ϱ3− ϱ3 ,0( ), 1+ϱ2− ϱ3− ϱ4 ,0( ), 1+ϱ1− 1/2− ϱ2− ϱ5 ,0( ), 1− ϱ2+ϱ3 ,1( )

(0,1), 1+ϱ2 ,0( ), 1+ϱ2− ϱ3 ,0( ), ϱ1− 1/2− ϱ2 ,0( ), 1− ϱ2+ϱ3 ,0( ), − ϱ4+ ϱ1− 1/2− ϱ2− ϱ5− 1( ),1( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦
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+ Gm

��
Sc

􏽰
􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4�0

−
��
Sc

􏽰
ξ( 􏼁
ϱ1

ϱ1!
1
Sc

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
λ − ϱ2+ϱ3( )

× M
1,3
3,5
⊺
λ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1+ϱ2− ϱ3,0( ), 1+ϱ2− ϱ3− ϱ4 ,0( ), 1− ϱ2+ϱ3 ,1( )

(0,1), 1+ϱ2 ,0( ), 1+ϱ2− ϱ3 ,0( ), 1− ϱ2+ϱ3 ,0( ), − ϱ4+ ϱ1− 1/2− ϱ2− 1( ),1( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦.

(48)

3.2. Fractionalized MHD Second-Grade Fluid in Porous
Medium with Constant Radiative Heat Flux. For the
constant radiative heat flux along y-direction, qr � constant
or F⟶ 0, the flow results are

ℷ(ξ, ⊺) � W
−
η
2
, 1

−

��
Sc

⊺η

􏽳

ξ⎛⎝ ⎞⎠,

ℸ(ξ, ⊺) � W
−
c

2
, 1

−

��
Pr

⊺c

􏽳

ξ⎛⎝ ⎞⎠,

(49)

Porous platex

B0

Velocity boundary layer

Second grade fluid

y

�ermal boundary layer

Concentration boundary layer

g

υ(∞, T) = 0

υ(0, T) = KT
d

ℸ(0, T) = ℸw:

ℷ(0, T) = ℷw

ℸ(∞, T) = 0

ℷ(∞, T) = 0

Figure 1: Geometric view of the problem.

0.75

0.52
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–0.17
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T
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ℷ
 (T

)
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ξ = 1.5
ξ = 2.0

(a)

1

0.8

0.6

0.4

0.2

0
0 0.8 1.6 2.4

T = 1s
T = 2s
T = 4s
T = 7s

3.2 4

ℷ
 (ξ

)

ξ

(b)

Figure 2: Descriptions of the mass concentration ℷ(ξ, ⊺) given by (29), for Sc � 0.6, η � 0.5, and different values of ξ and ⊺.
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with velocity

υ(ξ, ⊺) � ⊺b + Γ(d + 1) 􏽘
∞

ϱ1�1

(− ξ)
ϱ1

ϱ1!
􏽘

∞

ϱ3 ,ϱ4�0

(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
λβ − ϱ1/2+ϱ3( )

× M
1,3
3,5
⊺β

λβ
|

1+ϱ1/2− ϱ3 ,0( ), 1+ϱ1/2− ϱ3− ϱ4,0( ), 1− ϱ1/2+ϱ3 ,1( )

(0,1), 1+
ϱ1
2

, 0􏼒 􏼓, 1+
ϱ1
2

− ϱ3, 0􏼒 􏼓, 1−
ϱ1
2

+ ϱ3, 0􏼒 􏼓, (1− β) ϱ1/2− ϱ3( )− ϱ4− b,β( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ Gr 􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4�0

(− ξ)
ϱ1

ϱ1!
1
Pr

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
λβ − ϱ1/2− ϱ2+ϱ3− 1( )

× M
1,3
3,5
⊺β

λβ
|

1+ϱ1/2+ϱ2− ϱ3 ,0( ), 1+ϱ1/2+ϱ2− ϱ3− ϱ4 ,0( ) − ϱ1/2− ϱ2+ϱ3 ,1( )
(0,1), 1+ϱ1/2+ϱ2 ,0( ), 1+ϱ1/2+ϱ2− ϱ3 ,0( ), − ϱ1/2− ϱ2+ϱ3 ,0( ), (1− β) ϱ1/2+ϱ2− ϱ3( )− β− ϱ4− c ϱ2+1( ),β( )

􏼢 􏼣

+ Gm 􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4�0

(− ξ)
ϱ1

ϱ1!
1
Sc

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
λβ − ϱ1/2− ϱ2+ϱ3− 1( )

× M
1,3
3,5
⊺β

λβ
|

1+ϱ1/2+ϱ2− ϱ3 ,0( ), 1+ϱ1/2+ϱ2− ϱ3− ϱ4 ,0( ), − ϱ1/2− ϱ2+ϱ3 ,1( )
(0,1), 1+ϱ1/2+ϱ2 ,0( ), 1+ϱ1/2+ϱ2− ϱ3 ,0( ), − ϱ1/2− ϱ2+ϱ3 ,0( ), (1− β) ϱ1/2+ϱ2− ϱ3( )− β− ϱ4− η ϱ2+1( ),β( )

􏼢 􏼣

− Gr 􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4�0

−
��
Pr

􏽰
ξ( 􏼁
ϱ1

ϱ1!
1
Pr

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
λβ − ϱ2+ϱ3− 1( )

× M
1,3
3,5
⊺β

λβ
|

1+ϱ2− ϱ3 ,0( ), 1+ϱ2− ϱ3− ϱ4 ,0( ), − ϱ2+ϱ3 ,1( )
(0,1), 1+ϱ2 ,0( ), 1+ϱ2− ϱ3 ,0( ), − ϱ2+ϱ3 ,0( ), (1− β) ϱ2− ϱ3( )− β− ϱ4− c ϱ1/2− ϱ2− 1( ),β( )

􏼢 􏼣

− Gm 􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4�0

−
��
Sc

􏽰
ξ( 􏼁
ϱ1

ϱ1!
1
Sc

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
λβ − ϱ2+ϱ3− 1( )

× M
1,3
3,5
⊺β

λβ
|

1+ϱ2− ϱ3 ,0( ), 1+ϱ2− ϱ3− ϱ4 ,0( ), − ϱ2+ϱ3 ,1( )

(0,1), 1+ϱ2 ,0( ), 1+ϱ2− ϱ3 ,0( ), − k2+ϱ3,0􏼐 􏼑, (1− β) ϱ2− ϱ5( )− β− ϱ4− η ϱ1/2− ϱ2− 1( ),β( )
⎡⎣ ⎤⎦,

(50)

and the respective shear stress is

L(ξ, ⊺) � − Γ(d + 1) 􏽘

∞

ϱ1�1

(− ξ)
ϱ1

ϱ1!
􏽘

∞

ϱ3 ,ϱ4�0

(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
λβ − ϱ1− 1/2+ϱ3( )

× M
1,3
3,5
⊺β

λβ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1+ϱ1− 1/2− ϱ3 ,0( ), 1+ϱ1− 1/2− ϱ3− ϱ4 ,0( ), 1− ϱ1− 1/2+ϱ3 ,1( )

(0,1), 1+ϱ1− 1/2,0( ), 1+ϱ1− 1/2− ϱ3 ,0( ), 1− ϱ1− 1/2+ϱ3 ,0( ), (1− β) ϱ1/2− ϱ3( )+1/2(1+β)− ϱ4− b,β( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

− Gr 􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4�0

(− ξ)
ϱ1

ϱ1!
1
Pr

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
λβ − ϱ1− 1/2− ϱ2+ϱ3( )

× M
1,3
3,5
⊺β

λβ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1+ϱ1− 1/2+ϱ2− ϱ3 ,0( ), 1+ϱ1− 1/2+ϱ2− ϱ3− ϱ4 ,0( ) 1− ϱ1− 1/2− ϱ2+ϱ3 ,1( )

(0,1), 1+ϱ1− 1/2+ϱ2 ,0( ), 1+ϱ1− 1/2+ϱ2− ϱ3 ,0( ), 1− ϱ1− 1/2− ϱ2+ϱ3 ,0( ), (1− β) ϱ1− 1/2+ϱ2− ϱ3( )− ϱ4− c ϱ2+ϱ5+1( ),β( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦
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− Gm 􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4�0

(− ξ)
ϱ1

ϱ1!
1
Sc

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
λβ − ϱ1− 1/2− ϱ2+ϱ3( )

× M1,3
3,5
⊺β

λβ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1+ϱ1− 1/2+ϱ2− ϱ3 ,0( ), 1+ϱ1− 1/2+ϱ2− ϱ3− ϱ4 ,0( ) 1− ϱ1− 1/2− ϱ2+ϱ3 ,1( )

(0,1), 1+ϱ1− 1/2+ϱ2 ,0( ), 1+ϱ1− 1/2+ϱ2− ϱ3 ,0( ), 1− ϱ1− 1/2− ϱ2+ϱ3 ,0( ), (1− β) ϱ1− 1/2+ϱ2− ϱ3( )− ϱ4− η ϱ2+1( ),β( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

+ Gr

��
Pr

􏽰
􏽘

∞

ϱ1 ,ϱ2 ,ϱ3,ϱ4�0

−
��
Pr

􏽰
ξ( 􏼁
ϱ1

ϱ1!
1
Pr

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
λβ − ϱ2+ϱ3( )

× M
1,3
3,5
⊺β

λβ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1+ϱ3− ϱ3,0( ), 1+ϱ2− ϱ3− ϱ4 ,0( ), 1− ϱ2+ϱ3 ,1( )

(0,1), 1+ϱ2 ,0( ), 1+ϱ2− ϱ3 ,0( ), 1− ϱ2+ϱ3 ,0( ), (1− β) ϱ2− ϱ3( )− ϱ4+c ϱ1− 1/2− ϱ2− 1( ),β( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

+ Gm

��
Sc

􏽰
􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ4�0

−
��
Sc

􏽰
ξ( 􏼁
ϱ1

ϱ1!
1
Sc

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
(− M)

ϱ4

ϱ4!
λβ − ϱ2+ϱ3( )

× M
1,3
3,5
⊺β

λβ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1+ϱ2− ϱ3,0( ), 1+ϱ2− ϱ3− ϱ4 ,0( ), 1− ϱ2+ϱ3 ,1( )

(0,1), 1+ϱ2 ,0( ), 1+ϱ2− ϱ3 ,0( ), 1− ϱ2+ϱ3 ,0( ), (1− β) ϱ2− ϱ3( )− ϱ4+η ϱ1− 1/2− ϱ2− 1( ),β( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦.

(51)

3.3. Fractionalized Second-Grade Fluid in Porous Medium. For M⟶ 0, in (41) and (46), the obtained velocity results
are

υ(ξ, ⊺) � ⊺b + Γ(d + 1) 􏽘
∞

ϱ1�1

(− ξ)ϱ1

ϱ1!
􏽘

∞

ϱ3�0

(− Ψ)
ϱ3

ϱ3!
λβ − ϱ1/2+ϱ3( )

× M
1,2
2,4
⊺β

λβ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1+ϱ1/2− ϱ3,0( ), 1− ϱ1/2+ϱ3,1( )

(0,1), 1+ϱ1/2,0( ), 1− ϱ1/2+ϱ3 ,0( ), (1− β) ϱ1/2− ϱ3( )− b,β( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

+ Gr 􏽘

∞

ϱ1 ,ϱ2,ϱ3,ϱ5�0

(− ξ)
ϱ1

ϱ1!
1
Pr

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
− F/Pr( 􏼁

ϱ5

ϱ5!
λβ − ϱ1/2− ϱ2+ϱ3 − 1( )

× M1,3
3,5
⊺β

λβ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1+ϱ1/2+ϱ2 − ϱ3,0( ), − ϱ2− ϱ5,0( ) − ϱ1/2− ϱ2+ϱ3,1( )

(0,1), 1+ϱ1/2+ϱ2,0( ), − ϱ2 ,0( ), − ϱ1/2− ϱ2+ϱ3,0( ), (1− β) ϱ1/2+ϱ2 − ϱ3( )− β− c ϱ2+ϱ5+1( ),β( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

+ Gm 􏽘

∞

ϱ1,ϱ2,ϱ3�0

(− ξ)
ϱ1

ϱ1!
1
Sc

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
λβ − ϱ1/2− ϱ2+ϱ3 − 1( )

× M
1,2
2,4
⊺β

λβ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1+ϱ1/2+ϱ2− ϱ3,0( ), − ϱ1/2− ϱ2+ϱ3 ,1( )

(0,1), 1+ϱ1/2+ϱ2 ,0( ), − ϱ1/2− ϱ2+ϱ3,0( ), (1− β) ϱ1/2+ϱ2− ϱ3( )− β− η ϱ2+1( ),β( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

− Gr 􏽘

∞

ϱ1 ,ϱ2,ϱ3,ϱ5�0

−
��
Pr

􏽰
ξ( 􏼁
ϱ1

ϱ1!
1
Pr

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
− F/Pr( 􏼁

ϱ5

ϱ5!
λβ − ϱ2+ϱ3− 1( )

× M
1,3
3,5
⊺β

λβ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1+ϱ2− ϱ3,0( ), 1+ϱ1/2− ϱ2 − ϱ5 ,0( ), − ϱ2+ϱ3,1( )

(0,1), 1+ϱ2 ,0( ), 1+ϱ1/2− ϱ2 ,0( ), − ϱ2+ϱ3,0( ), (1− β) ϱ2− ϱ3( )− β− c ϱ1/2− ϱ2− ϱ5 − 1( ),β( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

− Gm 􏽘

∞

ϱ1,ϱ2,ϱ3�0

−
��
Sc

􏽰
ξ( 􏼁
ϱ1

ϱ1!
1
Sc

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
λβ − ϱ2+ϱ3 − 1( )

× M
1,2
2,4
⊺β

λβ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1+ϱ2− ϱ3,0( ), − ϱ2+ϱ3 ,1( )

(0,1), 1+ϱ2 ,0( ), − ϱ2+ϱ3,0( ), (1− β) ϱ2− ϱ5( )− β− η ϱ1/2− ϱ2− 1( ),β( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦,

(52)
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and the corresponding shear stress is

Ł(ξ, ⊺) � − Γ(d + 1) 􏽘
∞

ϱ1�1

(− ξ)
ϱ1

ϱ1!
􏽘

∞

ϱ3�0

(− Ψ)
ϱ3

ϱ3!
λβ − ϱ1− 1/2+ϱ3( )

× M
1,2
2,4
⊺β

λβ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1+ϱ1− 1/2− ϱ3 ,0( ), 1− ϱ1− 1/2+ϱ3 ,1( )

(0,1), 1+ϱ1− 1/2,0( ), 1− ϱ1− 1/2+ϱ3 ,0( ), (1− β) ϱ1/2− ϱ3( )+1/2(1+β)− b,β( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

− Gr 􏽘

∞

ϱ1 ,ϱ2 ,ϱ3 ,ϱ5�0

(− ξ)
ϱ1

ϱ1!
1
Pr

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
− F/Pr( 􏼁

ϱ5

ϱ5!
λβ − ϱ1− 1/2− ϱ2+ϱ3( )

× M
1,3
3,5
⊺β

λβ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1+ϱ1− 1/2+ϱ2− ϱ3 ,0( ), − ϱ2− ϱ5 ,0( ), 1− ϱ1− 1/2− ϱ2+ϱ3 ,1( )

(0,1), 1+ϱ1− 1/2+ϱ2 ,0( ), − ϱ2 ,0( ), 1− ϱ1− 1/2− ϱ2+ϱ3 ,0( ), (1− β) ϱ1− 1/2+ϱ2− ϱ3( )− c ϱ2+ϱ5+1( ),β( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦

− Gm 􏽘

∞
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1+ϱ1− 1/2+ϱ2− ϱ3 ,0( ), 1− ϱ1− 1/2− ϱ2+ϱ3 ,1( )

(0,1), 1+ϱ1− 1/2+ϱ2 ,0( ), 1− ϱ1− 1/2− ϱ2+ϱ3 ,0( ), (1− β) ϱ1− 1/2+ϱ2− ϱ3( )− η ϱ2+1( ),β( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦
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−
��
Pr

􏽰
ξ( 􏼁
ϱ1

ϱ1!
1
Pr

􏼠 􏼡

ϱ2+1
(− Ψ)
ϱ3

ϱ3!
− F/Pr( 􏼁
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× M
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(0,1), 1+ϱ2 ,0( ), ϱ1− 1/2− ϱ2 ,0( ), 1− ϱ2+ϱ3 ,0( ), (1− β) ϱ2− ϱ3( )+c ϱ1− 1/2− ϱ2− ϱ5− 1( ),β( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦
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􏽰
􏽘
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1+ϱ2− ϱ3 ,0( ), 1− ϱ2+ϱ3 ,1( )

(0,1), 1+ϱ2 ,0( ), 1− ϱ2+ϱ3 ,0( ), (1− β) ϱ2− ϱ3( )+η ϱ1− 1/2− ϱ2− 1( ),β( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦.

(53)

3.4. Fractionalized MHD Second-Grade Fluid after
Vanishing Porosity. Substituting Ψ⟶ 0, in (41) and (46),
the acquired velocity is

υ(ξ, ⊺) � ⊺b + Γ(d + 1) 􏽘
∞

ϱ1�1
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ϱ1!
􏽘
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1+ϱ1/2− ϱ4 ,0( ), 1− ϱ1/2,1( )
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× M
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􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

1+ϱ1/2+ϱ2− ϱ4 ,0( ), − ϱ2− ϱ5 ,0( ) − ϱ1/2− ϱ2 ,1( )

(0,1), 1+ϱ1/2+ϱ2 ,0( ), − ϱ2 ,0( ), − ϱ1/2− ϱ2 ,0( ), (1− β) ϱ1/2+ϱ2( )− β− ϱ4− c ϱ2+ϱ5+1( ),β( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦
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(0,1), 1+ϱ1/2+ϱ2 ,0( ), − ϱ1/2− ϱ2 ,0( ), (1− β) ϱ1/2+ϱ2( )− β− ϱ4− η ϱ2+1( ),β( )
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1+ϱ2− ϱ4 ,0( ), 1+ϱ1/2− ϱ2− ϱ5 ,0( ), − ϱ2 ,1( )

(0,1), 1+ϱ2 ,0( ), 1+ϱ1/2− ϱ2 ,0( ), − ϱ2 ,0( ), (1− β) ϱ2( )− β− ϱ4− c ϱ1/2− ϱ2− ϱ5− 1( ),β( )
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1+ϱ2− ϱ4 ,0( ), − ϱ2 ,1( )

(0,1), 1+ϱ2 ,0( ), − ϱ2 ,0( ), (1− β) ϱ2− ϱ5( )− β− ϱ4− η ϱ1/2− ϱ2− 1( ),β( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦, (54)

whereas the related shear stress is

Ł(ξ, ⊺) � − Γ(d + 1) 􏽘
∞

ϱ1�1

(− ξ)
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ϱ1!
􏽘
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ϱ4�0
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(0,1), 1+ϱ1+1/2,0( ), 1− ϱ1− 1/2,0( ), (1− β) ϱ1/2( )+1/2(1+β)− ϱ4− b,β( )
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(0,1), 1+ϱ1+1/2+ϱ2 ,0( ), − ϱ2 ,0( ), 1− ϱ1+1/2− ϱ2 ,0( ), (1− β) ϱ1+1/2+ϱ2( )− ϱ4− c ϱ2+ϱ5+1( ),β( )
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(0,1), 1+ϱ1+1/2+ϱ2 ,0( ), 1− ϱ1+1/2− ϱ2 ,0( ), (1− β) ϱ1+1/2+ϱ2( )− ϱ4− η ϱ2+1( ),β( )
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1+ϱ2− ϱ4 ,0( ), 1+ϱ1+1/2− ϱ2− ϱ5 ,0( ), 1− ϱ2,1( )

(0,1), 1+ϱ2 ,0( ), ϱ1+1/2− ϱ2 ,0( ), 1− ϱ2 ,0( ), (1− β) ϱ2( )− ϱ4+c ϱ1+1/2− ϱ2− ϱ5− 1( ),β( )

⎡⎢⎢⎢⎢⎢⎢⎣
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(0,1), 1+ϱ2 ,0( ), 1− ϱ2 ,0( ), (1− β) ϱ2( )− ϱ4+η ϱ1+1/2− ϱ2− 1( ),β( )

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦.

(55)
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3.5. Fractionalized MHD Newtonian Fluid in Porous
Medium. Bymaking λ⟶ 0, in (38) and (43), proceed as in

the previous section, we obtain the velocity of fractionalized
Newtonian fluid:

υ(ξ, ⊺) � ⊺b + Γ(d + 1) 􏽘

∞
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∞
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× M
1,2
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(0,1), 1+ϱ2 ,0( ), 1+ϱ1/2− ϱ2 ,0( ), 1+ϱ2− ϱ3 ,0( ), ϱ2− ϱ3( )− c ϱ1/2− ϱ2− ϱ5− 1( ),1( )
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(56)

and the associated shear stress is

Ł(ξ, ⊺) � − Γ(d + 1) 􏽘
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(0,1), 1+ϱ1+1/2+ϱ2 ,0( ), 1+ϱ1+1/2+ϱ2− ϱ3 ,0( ), ϱ1+1/2+ϱ2− ϱ3( )− η ϱ2+1( ),1( )
􏼢 􏼣
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􏼢 􏼣. (57)

4. Results and Discussions

Here, we analyse the flow behavior with the help of graphical
illustrations after finding the exact solutions of temperature,
concentration, velocity, and shear stress in the previous
sections. All graphs are made in Mathcad software with SI
units.)e values of parameters of interest that are used in the
study are provided in respective figures. All the imposed and
boundary conditions mentioned in (14)–(16) are satisfied. It
can be observed in Figures 2 and 3 that natural and boundary
conditions for mass concentration ℷ(ξ, 0) � 0 and ℷ(0, ⊺) �

1 are, respectively, satisfied. From Figures 4–6 it can be easily
analysed that natural and boundary conditions for tem-
perature ℸ(ξ, 0) � 0 and ℷ(0, ⊺) � 1 are satisfied. Natural
and boundary conditions for velocity and shear stress
υ(ξ, 0) � 0, Ł(ξ, 0) � 0 and υ(0, ⊺) � ⊺d are well visualized in
Figures 7 and 8 , respectively.

Assurance of present work is manifested by constructing
comparison with pervious published literature by limiting
cases in “ section 3” of this study. )ese special cases are
compared to those of Amanet al. [29] and Shahid [30]. Flow
field results with ordinary derivatives and flectional deriv-
atives are compared graphically, and the analytical results
are the same as those of the previously published literature
by vanishing few parameters.

In Figure 2 we have discussed the variations in mass
concentration at different values of time and space above the
plate. A natural behavior of decay in mass concentration is
observed for higher position of the fluid over the plate. )e
significance of fractional parameter η and the effects of
variations in Schmidt number over the dimensionless mass
concentration are analysed in Figure 3. )is reveals the facts
of increase in mass concentration with increase in fractional
parameter values. On the other hand, the opposite behavior
is observed for increase in Schmidt number. Figure 4 reflects
the temperature distribution with respect to increasing time
and vertical space values. )e thermal boundary layer
thickens by increasing time while temperature values de-
crease by considering the increasing vertical position of fluid
over plate. )e effects of fractional parameter and Prandtl
number on temperature of fluid over the moving plate are
portrayed in Figure 5. Naturally, the viscosity of fluid gets
minimized by increasing Prandtl number that ultimately
yields the reduction in thermal boundary layer. Figure 6
depicts the influence of fractional parameter and thermal
diffusivity on temperature distribution which implies that

thermal boundary layer gets thinner with increasing thermal
diffusivity whereas fractional parameter acts opposite to that
of thermal diffusivity on temperature distribution.

Velocity fields along with shear stress behavior are given
in Figure 7 for vertical space values above the moving plate
which shows that velocity of the particles at the moving
surface is higher to that of the particles away from plate,
whereas shear stress profile behaves numerically opposite to
it. It can be noted from Figure 8 that as the time passes,
velocity of the fluid increases and the stress too, while the
impact gets more intense with passage of time. Figure 9
shows the effects of increasing second-grade parameter λ; it
reduces the flow velocity and the stress numerically which is
due to the characteristics of second-grade fluid. )e influ-
ence of magnetic and porous parameters is displayed in
Figures 10 and 11, where both parameters have similar effect,
and the speed and stress increase numerically by raising
either the magnetic or porous parameter values.

To discuss the impacts of thermal Grashof number and
modified Grashof number, we plot Figures 12 and 13, where
velocity and stress mount numerically for the dimensionless
numbers individually since it is buoyancy force that flows
the fluid, whereas the impacts of modified Grashof number
are more intense than those of the thermal Grashof number.
)e importance of Prandtl and Schmidt number can be
observed in Figures 14 and 15; both the dimensionless
numbers endorse their definition there by increasing the
stress and velocity of the particles for increasing values of
these numbers. Figures 16 points out the relation of thermal
diffusivity to the stress and velocity of the particles. In-
creasing the thermal diffusivity parameter, velocity of the
fluid reduces and the stress reduces too. Figures 17–19 are
prepared to analyse the significance of fractional parameters
on the flow field. It can be noted that the increase in
fractional parameters reduces the stress and velocity of the
particles. )us, fractional derivatives are essential in
studying the fluid flows more significantly and accurately.
Figure 20 displays increasing magnitude of stress and ve-
locity of the particles in relation with increasing values of the
exponent of the time factor in the boundary condition for
velocity. A comparison of model flow is displayed graphi-
cally in Figure 21 which assures the influence of fractional
parameters over the stress and velocity of the particles.

Flow characteristics of fractional model are higher in
magnitude than those of the ordinary model. Stress and
velocity of the particles second-grade particles are
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Figure 3: Descriptions of the mass concentration ℷ(ξ, ⊺) given by (29), for ⊺ � 2 s, and different values of Sc and η.
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Figure 4: Descriptions of the temperature distribution ℷ(ξ, ⊺) given by (35), for Pr � 0.6, F � 0.2, and different values of ξ and ⊺.

20 Mathematical Problems in Engineering



γ = 0.2
Pr = 0.6

1

0.79

0.58

0.37

0.16

–0.05

ℸ
 (ξ

)

0 0.8 1.6 2.4 3.2 4
ξ

T = 0.10s
T = 0.25s
T = 0.60s
T = 2.00s

(a)

T = 0.5
γ = 0.8

1

0.79

0.58

0.37

0.16

–0.05

ℸ
 (ξ

)

0 0.8 1.6 2.4 3.2 4
ξ

Pr = 0.5
Pr = 1.5
Pr = 3.0
Pr = 5.0

(b)

Figure 5: Descriptions of the temperature distribution ℷ(ξ, ⊺) given by (35), for F � 0.2, for variational points of ⊺ and Pr.
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Figure 6: Descriptions of the temperature distribution ℷ(ξ, ⊺) given by (35), for Pr � 2, for variational points of F and η.
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Figure 7: Descriptions of the velocity υ(ξ, ⊺) and the stress Ł(ξ, ⊺) given by (41) and (46), for λ � 3, M � 0.5,Ψ � 0.2, Gr � 0.2, Gm �
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Figure 8: Descriptions of the velocity υ(ξ, ⊺) and the stress Ł(ξ, ⊺) given by (41) and (46), for λ � 3, M � 0.5,Ψ � 0.2, Gr � 0.2, Gm �
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Figure 9: Descriptions of the velocity υ(ξ, ⊺) and the stress Ł(ξ, ⊺) given by (41) and (46), for M � 0.5,Ψ � 0.2, Gr � 0.2, Gm � 0.6, Sc �

0.6, Pr � 0.6, F � 0.2, η � β � c � 0.5, d � 1, ⊺ � 0.5 s for variational points of λ.

0 0.8 1.6 2.4 3.2 4
ξ

M = 0.1
M = 0.3
M = 0.5
M = 0.7

5

3.98

2.96

1.94

0.92

–0.1

υ 
(ξ

)

(a)

0 0.8 1.6 2.4 3.2 4
ξ

M = 0.1
M = 0.3
M = 0.5
M = 0.7

0.3

–3.46

–7.22

–10.98

–14.74

–18.5

L 
(ξ

)

(b)

Figure 10: Descriptions of the velocity υ(ξ, ⊺) and the stress Ł(ξ, ⊺) given by (41) and (46), for M � 0.5,Ψ � 0.2, Gr � 0.2, Gm � 0.6, Sc �
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Figure 11: Descriptions of the velocity υ(ξ, ⊺) and the stress Ł(ξ, ⊺) given by (41) and (46), for M � 0.5,Ψ � 0.2, Gr � 0.2, Gm � 0.6, Sc �

0.6, Pr � 0.6, F � 0.2, η � β � c � 0.5, d � 1, ⊺ � 0.5 s for variational points of Ψ.
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Figure 12: Descriptions of the velocity υ(ξ, ⊺) and the stress Ł(ξ, ⊺) given by (41) and (46), for λ � 3, M � 0.5,Ψ � 0.2, Gm � 0.6, Sc �
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Figure 13: Descriptions of the velocity υ(ξ, ⊺) and the stress Ł(ξ, ⊺) given by (41) and (46), for λ � 3, M � 0.5,Ψ � 0.2, Gm � 0.6, Sc �

0.6, Pr � 0.6, F � 0.2, η � β � c � 0.5, d � 1, ⊺ � 0.5s for variational points of Gm.
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Figure 14: Descriptions of the velocity υ(ξ, ⊺) and the stress Ł(ξ, ⊺) given by (41) and (46), for λ � 3, M � 0.5,Ψ � 0.2, Gm � 0.6, Sc �

0.6, Pr � 0.6, F � 0.2, η � β � c � 0.5, d � 1, ⊺ � 0.5s for variational points of Sc.
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Figure 15: Descriptions of the velocity υ(ξ, ⊺) and the stress Ł(ξ, ⊺) given by (41) and (46), for λ � 3, M � 0.5,Ψ � 0.2, Gm � 0.6, Sc �

0.6, Pr � 0.6, F � 0.2, η � β � c � 0.5, d � 1, ⊺ � 0.5s for variational points of Pr.
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Figure 16: Descriptions of the velocity υ(ξ, ⊺) and the stress Ł(ξ, ⊺) given by (41) and (46), for λ � 3, M � 0.5,Ψ � 0.2, Gm � 0.6, Sc �

0.6, Pr � 0.6, F � 0.2, η � β � c � 0.5, d � 1, ⊺ � 0.5s for variational points of F.
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Figure 17: Descriptions of the velocity υ(ξ, ⊺) and the stress Ł(ξ, ⊺) given by (41) and (46), for λ � 3, M � 0.5,Ψ � 0.2, Gm � 0.6, Sc �

0.6, Pr � 0.6, F � 0.2, η � β � c � 0.5, d � 1, ⊺ � 0.2s for variational points of η.
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Figure 18: Descriptions of the velocity υ(ξ, ⊺) and the stress Ł(ξ, ⊺) given by (41) and (46), for λ � 3, M � 0.5,Ψ � 0.2, Gm � 0.6, Sc �

0.6, Pr � 0.6, F � 0.2, η � β � c � 0.5, d � 1, ⊺ � 0.5s for variational points of β.
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Figure 19: Descriptions of the velocity υ(ξ, ⊺) and the stress Ł(ξ, ⊺) given by (41) and (46), for λ � 3, M � 0.5,Ψ � 0.2, Gm � 0.6, Sc �

0.6, Pr � 0.6, F � 0.2, η � β � c � 0.5, d � 1, ⊺ � 0.5s for variational points of c.
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Figure 20: Descriptions of the velocity υ(ξ, ⊺) and the stress Ł(ξ, ⊺) given by (41) and (46), for λ � 3, M � 0.5,Ψ � 0.2, Gm � 0.6, Sc �

0.6, Pr � 0.6, F � 0.2, η � β � c � 0.5, d � 1, ⊺ � 2s for variational points of d.
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numerically higher in comparison with Newtonian fluid.
Figure 22 is plotted to analyse the significance of fractional
parameter. In comparison with Figure 21, it can be observed
that increasing the fractional parameters values, flow
characteristics get closer to those of the ordinary fluid flow
for both the second-grade and Newtonian-type fluids. )e
obtained results are compared with the analytical solutions
of the flow field presented by the recent studies [23–25]
which are found to be more compact and simplified. )e
accuracy of the flow behavior is graphically analysed by
setting three decimal places in numerical calculations.
However, solutions are analytical, thus the numerical so-
lutions and their comparison are beyond the scope of this
study.

5. Conclusions

In this article, transfer and flow characteristics of fractional
MHD second-grade fluid on the porous plate moving with
nonlinear velocity is analysed. Solutions for velocity, tem-
perature distribution, and mass concentration are acquired
using Laplace transforms after nondimensionalising the
system of differential equations. Obtained results satisfying
all imposed natural initial and boundary limitations are
graphically analysed for transfer and rheological parameters
at different times and positions over the plate. )e inves-
tigation reveals the following results ⋆. All solutions are
represented in simpler forms in terms of new summation
style and natural generalized function M for such flows.
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Figure 21: Descriptions of the velocity υ(ξ, ⊺) and the stress Ł(ξ, ⊺) forMHD fractionalized second grade with porous given by (41) and (46),
MHD ordinary second grade with porous given by (48) and (49), MHD fractionalized Newtonian with porous given by (56) and (57) and
MHD ordinary Newtonian with porous for λ � 3, M � 0.5,Ψ � 0.2, Gm � 0.6, Sc � 0.6, Pr � 0.6, F � 0.2, η � β � c � 0.5, d � 1, ⊺ � 0.5s.
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Figure 22: Descriptions of the velocity υ(ξ, ⊺) and the stress Ł(ξ, ⊺) for MHD fractionalized second grade with porous given by (41) and
(46), MHD ordinary second-grade with porous given by (47) and (48), MHD fractionalized Newtonian with porous given by (56), (57) and
MHD ordinary Newtonian with porous for λ � 3, M � 0.5,Ψ � 0.2, Gm � 0.6, Sc � 0.6, Pr � 0.6, F � 0.2, η � β � c � 0.5, d � 1, ⊺ � 0.5s.
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(i) Mass concentration rate increases with increasing
Schmidt number and passage of time while it de-
creases with increasing fractional parameter values
and position of fluid over the plate.

(ii) Temperature distribution of the fluid is the de-
creasing function of Prandtl number, thermal ra-
diation parameter, and position of fluid over the
plate whereas it increases with increasing time and
fractional parameter values.

(iii) Velocity field and stress gets higher magnitude for
increasing thermal Grashof number, mass Grashof
number, Prandtl number, Schmidt number, time,
second grade, magnetic (Hartmann), and porous
and thermal radiation parameters.

(iv) Fractional operators significantly affect the stress
and velocity of the particles there by reducing their
magnitude for increasing fractional parameters.

(v) )e nonlinearity parameter d has direct effects on
fluid motion. )e large values of d enhance the
motion of the fluid.

(vi) It is also verified from graphical results that when
fractional parameters approach to 1, the behavior of
fractionalized second-grade fluid turns into the
usual fluid.
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We propose a novel time-stepping scheme for solving the Allen–Cahn equation.We �rst rewrite the free energy into an equivalent
form and then obtain a new Allen–Cahn equation by energy variational formula of L2-gradient �ow. Using leapfrog formula, a
new linear scheme is obtained, and we prove that the numerical scheme is unconditionally energy stable and uniquely solvable,
and the discrete energy is in agreement with the original free energy. In addition, we also discuss the uniform boundedness and
error estimate of numerical solution, the results show that the numerical solution is uniformly bounded in H2-norm, and error
estimate shows that the time-stepping scheme can achieve second-order accuracy in time direction. At last, several numerical tests
are illustrated to verify the theoretical results. �e numerical strategy developed in this paper can be easily applied to other
gradient �ow models.

1. Introduction

�e Allen–Cahn(AC) equation is an important model for
phase �eld simulation in materials science. It originally
describes the phase transitions process of binary alloys at a
certain temperature [1]. Its important applications can be
found in the �elds of image analysis, crystal growth, mean
curvature �ows, and so on [2–6]. As we all know, the AC
equation can be derived from energy variational formula,
that is, L2 gradient �ow, which will produce a highly
nonlinear function.

In order to solve the AC equation more e�ciently, two
problems need to be solved. Firstly, the nonlinear term
should be discretized appropriately. It is well known in
numerical analysis that the implicit methods [7] have
usually no time step restrictions, but they require the
solution of a nonlinear system. On the other hand, the
explicit time integrator [8, 9] does not require a solution
of linear systems, but small step sizes are taken due to the

stability restrictions. Secondly, the constructed numerical
scheme is expected to be energy dissipative because this
model is also energy dissipative in nature. Nowadays,
many numerical methods are applied to solve AC
equations. Hwang et al. [10] presented benchmark
problems for the numerical methods of the phase �eld
equations.

In [11], Choi et al. proposed an unconditionally gradient
stable scheme to solve the AC equation with a binary
mixture. �e pointwise boundedness of the numerical so-
lution was obtained. Based on operator splitting techniques,
Li et al. [12] presented a second-order hybrid numerical
scheme to solve the AC equation with antiphase domain.
�ey proved that the constructed numerical scheme can
achieve second-order accuracy in time and space direction.
Feng and Prohl [6] constructed some semi-discrete and fully
discrete schemes for solving the AC equation. �ey also
obtained some a priori error estimate results for the pro-
posed numerical schemes.
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However, for the phase field model, it is still a challenge
to construct a linear, second-order, unconditionally energy
stable numerical scheme. -e popular invariant energy
quadratization (IEQ) [13–16] and scalar auxiliary variable
(SAV) [17, 18] techniques can generate linear and uncon-
ditional energy numerical schemes. Based on the Run-
ge–Kutta formula and SAV method, Akrivis et al. [19]
constructed a linear and arbitrarily high-order numerical
scheme for solving AC and Cahn–Hilliard equations. In fact,
both IEQ and SAV methods need to assume that the
nonlinear term is bounded from below. Moreover, the
unconditional energy stability of the two methods is in
agreement with themodified energy, but not the original free
energy.

In this work, a linear and second-order time-stepping
scheme is developed to approximate the AC equation.
Different from IEQ or SAV method, our new scheme can
achieve unconditional energy stability without making any
assumptions about nonlinear terms or introducing auxiliary
functions. In addition, the discrete energy strictly corre-
sponds to the original free energy. We also obtain the

uniform boundedness of the numerical solution and prove
the second-order accuracy of the numerical method in time
direction. Finally, some numerical examples are performed
to show the effectiveness of the numerical scheme.

-e rest of the article is organized as follows. In Section
2, we will briefly introduce the constructed AC equation. In
Section 3, unconditional stability, uniqueness, and conver-
gence of the time-stepping scheme are studied in detail. In
Section 4, some numerical experiments are performed to
demonstrate the accuracy and unconditional stability of the
time-stepping scheme. -e conclusion remark of this paper
will be given in the last section.

2. Energy Dissipation Property of AC Equations

Denote the total free energy

E(ϕ) � 􏽚
Ω

ε2

2
|∇ϕ|

2
+ ϕ2

− 1􏼐 􏼑
2
dx. (1)

-e above free energy can be rewritten as follows:

E(ϕ) � 􏽚
Ω

ε2

2
|∇ϕ|

2
+ cϕ2 + ϕ2 −

c + 2
2

􏼒 􏼓
2
dx −

c
2

4
+ c􏼠 􏼡|Ω|, (2)

with c≥ 0. -e new free energy (2) is completely equal to the
original energy (1). It should be noted that cϕ2 can balance
the influence of nonlinear terms in numerical experiments,
and it can also facilitate us to get L2 estimate.

Taking the variational approach of the total free energy
(2) in L2(Ω), one can get the following AC equation:

ϕt − ε2Δϕ + 4ϕ3 − (2c + 4)ϕ􏽨 􏽩 + 2cϕ � 0, (3)

subject to the initial and boundary condition

ϕ|t�0 � ϕ0,ϕ is periodic. (4)

An important feature of the equation is that it satisfies
the energy dissipation law. Taking the L2 inner product of (3)
with ϕt, we obtain

d

dt
E(ϕ) � − ϕt

����
����
2
. (5)

3. Allen–Cahn Equation

In this section, we will develop a second-order and linear
discrete scheme for AC (3). -e unconditional stability and
uniqueness of time-discrete scheme are proved.

3.1. Unconditional Stability and Uniqueness of Time-Discrete
Scheme. Given ϕn, ϕn− 1, we calculate ϕn+1 as follows:

ϕn+1
− ϕn− 1

2δt
− ε2Δ

ϕn+1
+ ϕn− 1

2
+ c ϕn+1

+ ϕn− 1
􏼐 􏼑 + 2 ϕnϕn+1

+ ϕn− 1ϕn
− (c + 2)􏼐 􏼑ϕn

� 0. (6)

Remark 1. -e above numerical scheme is different from
IEQ or SAV method. We use the leapfrog formula to dis-
cretize the time direction and adopt the implicit-explicit
method to deal with the nonlinear term. In order to obtain
the energy stability, the IEQ and SAV methods need to
assume that the free energy functions are bounded from
below. But we can prove the unconditional stability of the
numerical method without making any assumptions about
the nonlinear term.

Remark 2. To initiate the second-order leapfrog scheme (6),
we need the initial value ϕ1, which can be calculated by the
following first-order Euler scheme:

ϕ1 − ϕ0

δt
− ε2Δϕ1 + 2cϕ1 + 4 ϕ0􏼐 􏼑

3
− (2c + 4)ϕ0􏼒 􏼓 � 0. (7)
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For the above time-discrete scheme, we have the fol-
lowing energy stability results.

Lemma 1. 9e time-discrete scheme (6) satisfies the energy
dissipation as follows:

E ϕn+1
, ϕn

􏼐 􏼑 � E ϕn
,ϕn− 1

􏼐 􏼑 −
1
4δt

ϕn+1
− ϕn− 1����

����
2
, (8)

where

E ϕn+1
, ϕn

􏼐 􏼑 �
ε2

4
∇ϕn+1����

����
2

+ ∇ϕn
����

����
2

􏼒 􏼓 +
c

2
ϕn+1����

����
2

+ ϕn
����

����
2

􏼒 􏼓

+ ϕn+1ϕn
−

c + 2
2

�������

�������

2
−

c
2

4
+ c􏼠 􏼡|Ω|.

(9)

Proof. Computing the inner product of (6) with
2(ϕn+1 − ϕn− 1), and using the following identifies

a
2
(b + c) − (c + 2)a􏼐 􏼑 ×(b − c) � a

2
b
2

− (c + 2)ab +
c + 2
2

􏼒 􏼓
2

􏼠 􏼡 − a
2
c
2

− (c + 2)ac +
c + 2
2

􏼒 􏼓
2

􏼠 􏼡,

� ab −
c + 2
2

􏼒 􏼓
2

− ac −
c + 2
2

􏼒 􏼓
2
.

(10)

-en, we find

−
1
δt

ϕn+1
− ϕn− 1����

����
2

� ε2 ∇ϕn+1����
����
2

− ∇ϕn− 1����
����
2

􏼒 􏼓 + 2c ϕn+1����
����
2

− ϕn− 1����
����
2

􏼒 􏼓

+ 4 ϕn+1ϕn
−

c + 2
2

�������

�������

2
− ϕnϕn− 1

−
c + 2
2

�������

�������

2
􏼠 􏼡.

(11)

Divide both sides by 4, and we can derive (8). □

Theorem 1. 9e time-discrete scheme (6) is uniquely
solvable.

Proof. First, we can rewrite (6) as follows:

ϕn+1
− ε2δtΔϕn+1

+ 2cδtϕn+1
+ 4δt ϕn

( 􏼁
2ϕn+1

� ζ1, (12)

with

ζ1 � ϕn− 1
+ ε2δtΔϕn− 1

− 2cδtϕn− 1

− 4δt ϕn
( 􏼁

2ϕn− 1
+ 4(c + 2)δtϕn

.
(13)

-us, one can solve ϕn+1 directly from (12).
One can obtain the weak form of (12): find ϕ ∈ H1(Ω),

such that

(ϕ,φ) + ε2δt(∇ϕ,∇φ) + 2cδt(ϕ,φ) + 4δt ϕnϕ, ϕnφ( 􏼁 � ζ1,φ( 􏼁,φ ∈ H
1
(Ω). (14)

-e above linear system can be rewritten as

(Lϕ,φ) � ζ1,φ( 􏼁, (15)

with L � 1 − ε2δtΔ + 4δt + 4δt(ϕn)2.
Next, we will show that linear system (15) has a unique

solution. One can find that

(Lϕ,ϕ) � ‖ϕ‖
2

+ ε2δt‖∇ϕ‖
2

+ 2cδt‖ϕ‖
2

+ 4δt ϕnϕ2
����

����
2
≥ c0‖ϕ‖

2
H1,

(16)

where c0 is a constant that depends on ε and δt. Moreover,
note that

(Lϕ,φ)≤ c1‖ϕ‖H1‖φ‖H1 , (17)
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where c1 depends on ε, δt, and ‖ϕn‖L∞ .
Furthermore, (Lϕ,φ) � (Lφ, ϕ). -us, the bilinear form

(Lϕ,φ) is coercive, bounded, and symmetric. -en, we
conclude that linear system (15) admits a unique solution by
using the Lax–Milgram theorem.Meanwhile, one may check
that (Lϕ,ϕ)≥ 0, and (Lϕ,ϕ) � 0↔ϕ ≡ 0.-is means that the
bilinear form (Lϕ,φ) is positive definite. □

3.2. Consistency and Convergence Analysis. Here, we will
analyze the uniform boundedness and error estimate of
numerical solutions. First, using Taylor expansion, one can
derive the error equation as follows:

ϕ ·, tn+1( 􏼁 − ϕ ·, tn− 1( 􏼁

2δt
− ε2Δ

ϕ ·, tn+1( 􏼁 + ϕ ·, tn− 1( 􏼁

2
+ c ϕ ·, tn+1( 􏼁 + ϕ ·, tn− 1( 􏼁( 􏼁

+ 2 ϕ ·, tn( 􏼁ϕ ·, tn+1( 􏼁 + ϕ ·, tn− 1( 􏼁ϕ ·, tn( 􏼁 − (2 + c)( 􏼁ϕ ·, tn( 􏼁 � r
n
0,

(18)

where rn
0 satisfies

r
n
0

����
����≤Cδt

2
. (19)

Second, the pointwise error function can be denoted as

E
n
ϕ � ϕ ·, tn( 􏼁 − ϕn

, n � 0, 1, . . . ,
T

δt
. (20)

Subtracting (6) from (18) yields

E
n+1
ϕ − E

n− 1
ϕ

2δt
− ε2Δ

E
n+1
ϕ + E

n− 1
ϕ

2
+ c E

n+1
ϕ + E

n− 1
ϕ􏼐 􏼑 + χn

� r
n
0,

(21)

with

χn
� 2 ϕ ·, tn( 􏼁ϕ ·, tn+1( 􏼁 + ϕ ·, tn− 1( 􏼁ϕ ·, tn( 􏼁 − (2 + c)( 􏼁ϕ ·, tn( 􏼁

− 2 ϕnϕn+1
+ ϕn− 1ϕn

− (2 + c)􏼐 􏼑ϕn
.

(22)

In order to obtain consistent results, the following
lemmas will be used.

Lemma 2. 9ere is a constant C0 > 0, such that

max
n≤k

ϕ ·, tn( 􏼁
����

����L∞
, ϕn
����

����L∞
􏼐 􏼑≤C0. (23)

-en, we have

χn
����

����≤C1 E
n
ϕ

�����

����� + E
n+1
ϕ

�����

����� + E
n− 1
ϕ

�����

�����􏼒 􏼓, (24)

where C1 > 0 is a constant dependent on C0.

Proof. From the definition of χn, we find

χn
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ 2 ϕ2 ·, tn( 􏼁ϕ ·, tn+1( 􏼁 − ϕn
( 􏼁

2ϕn+1
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + 2 ϕ2 ·, tn( 􏼁ϕ ·, tn− 1( 􏼁 − ϕn
( 􏼁

2ϕn− 1
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 + E
n
ϕ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤ 2 ϕ2 ·, tn( 􏼁 − ϕn
( 􏼁

2
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 ϕ ·, tn+1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + ϕn
( 􏼁

2
E

n+1
ϕ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

+ 2 ϕ2
·, tn( 􏼁 − ϕn

( 􏼁
2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 ϕ ·, tn− 1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + ϕn
( 􏼁

2
E

n− 1
ϕ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 + E
n
ϕ

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

(25)
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-us, for n≤ k, we find

χn
����

����≤C1 E
n
ϕ

�����

����� + E
n+1
ϕ

�����

����� + E
n− 1
ϕ

�����

�����􏼒 􏼓. (26)
□

Lemma 3. Let φn􏼈 􏼉
K− 1
n�0 be sequences of discrete function onΩ.

We find

φn+1􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 􏽘

n

m�1
φm+1

+ φm− 1􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + φ0􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (27)

Proof. We will apply mathematical induction to prove the
above conclusion. For n � 1, we find |φ2| − |φ0|≤ |φ2 + φ0|.
Assume

φk
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − φ0􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 􏽘

k− 1

m�1
φm+1

+ φm− 1􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, for n≤ k − 1. (28)

When n � k, we find

φk+1
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − φ0􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � φk+1
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􏼌􏼌􏼌􏼌􏼌 − φk− 1
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􏼌􏼌􏼌􏼌􏼌 + φk− 1
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − φ0􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≤ 􏽘
k− 2

m�1
φm+1

+ φm− 1􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + φk+1

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 − φk− 1
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

≤ 􏽘
k

m�1
φm+1

+ φm− 1􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(29)

-is ends the proof.
To analyze the consistency results, we denote ρ, such that

ρ � max
0≤t≤T

‖ϕ(·, t)‖L∞ + 1. (30)

It should be mentioned that Shen et al. [9] also made a
similar assumption.

For simplicity of analysis, we set ε � c � 1. -e following
lemma will show the L∞ uniform boundedness results of
numerical solution. □

Lemma 4. Assume the exact solution of the AC equation is
smooth enough (at least 2-order differentiable in time and
W2,∞ bound in space direction). 9ere is a constant τ0 > 0; if
δt< τ0, we can get the uniform boundedness results as follows:

ϕk
�����

�����L∞
≤ ρ, k � 0, 1, . . . ,

T

δt
. (31)

Remark 3. For the assumption of continuous solution of the
AC equation, we can find some similar hypotheses in the
following works [9, 13, 16].

Proof. In order to prove the above conclusion, mathe-
matical induction will be used. For the first step, k � 0. It is
easy to find that ‖ϕ0‖L∞ ≤ ρ. Suppose that the numerical
solution has an L∞ bound at tn:

ϕn
����

����L∞
≤ ρ, for n≤ k. (32)

-en, we will check that ‖ϕk+1‖L∞ ≤ ρ is still valid. By the
assumption of exact solution, we find

ϕ ·, tn( 􏼁
����

����L∞
≤ 􏽥C, ∇ϕ ·, tn( 􏼁

����
����L∞
≤ 􏽥C. (33)

Taking L2 inner product of (21) with 2(En+1
ϕ − En− 1

ϕ ) gives
1
δt

E
n+1
ϕ − E

n− 1
ϕ

�����

�����
2

+ ∇En+1
ϕ

�����

�����
2

− ∇En− 1
ϕ

�����

�����
2

􏼒 􏼓

+ 2 E
n+1
ϕ

�����

�����
2

− E
n− 1
ϕ

�����

�����
2

􏼒 􏼓

� − 2 χn
, E

n+1
ϕ − E

n− 1
ϕ􏼐 􏼑 + 2 r

n
0, E

n+1
ϕ − E

n− 1
ϕ􏼐 􏼑.

(34)

By using Young’s inequality, we find

2 r
n
0, E

n+1
ϕ − E

n− 1
ϕ􏼐 􏼑≤ 4δt r

n
0

����
����
2

+
1
4δt

E
n+1
ϕ − E

n− 1
ϕ

�����

�����
2
, (35)

− 2 χn
, E

n+1
ϕ − E

n− 1
ϕ􏼐 􏼑≤ 4δt χn

����
����
2

+
1
4δt

E
n+1
ϕ − E

n− 1
ϕ

�����

�����
2
. (36)

Using Lemma 2, we arrive at

χn
����

����≤C E
n
ϕ

�����

����� + E
n+1
ϕ

�����

����� + E
n− 1
ϕ

�����

�����􏼒 􏼓. (37)

Combining (34)–(37), we obtain

∇En+1
ϕ

�����

�����
2

− ∇En− 1
ϕ

�����

�����
2

􏼒 􏼓 + 2 E
n+1
ϕ

�����

�����
2

− E
n− 1
ϕ

�����

�����
2

􏼒 􏼓

+
1
2δt

E
n+1
ϕ − E

n− 1
ϕ

�����

�����
2

≤Cδt
5

+ Cδt E
n
ϕ

�����

�����
2

+ E
n+1
ϕ

�����

�����
2

+ E
n− 1
ϕ

�����

�����
2

􏼒 􏼓.

(38)

Summing up the above inequality for n � 1, . . . , k, we
have

E
k+1

+
1
2δt

􏽘

k

n�1
E

n+1
ϕ − E

n− 1
ϕ

�����

�����
2
≤E

1
+ Cδt

4
+ Cδt 􏽘

k

n�1
E

n+1
,

(39)

where

E
k+1

� ∇En+1
ϕ

�����

�����
2

+ ∇En
ϕ

�����

�����
2

􏼒 􏼓 + 4 E
n+1
ϕ

�����

�����
2

+ E
n
ϕ

�����

�����
2

􏼒 􏼓. (40)

For the first step, we note that

E
1 ≤Cδt

4
. (41)

Applying discrete Gronwall’s inequality in (39) gives

E
k+1

+
1
2δt

􏽘

k

n�1
E

n+1
ϕ − E

n− 1
ϕ

�����

�����
2
≤Cδt

4
. (42)
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From (21), we have

Δ E
n+1
ϕ + E

n− 1
ϕ􏼐 􏼑

�����

�����≤C
1
δt

E
n+1
ϕ − E

n− 1
ϕ

�����

����� + E
n+1
ϕ + E

n− 1
ϕ

�����

����� + χn
����

���� + r
n
0

����
����􏼒 􏼓. (43)

Summing up for n � 1, . . . , k and using Lemma 3, we
have

ΔEk+1
ϕ

�����

�����≤ 􏽘
k

n�1
Δ E

n+1
ϕ + E

n− 1
ϕ􏼐 􏼑

�����

�����≤Cδt. (44)

Note that

ϕk+1
�����

�����L∞
≤ E

n+1
ϕ

�����

�����L∞
+ ϕ ·, tn+1( 􏼁

����
����L∞

≤C E
n+1
ϕ

�����

�����
1/2

H1 E
n+1
ϕ

�����

�����
1/2

H2 + ϕ ·, tn+1( 􏼁
����

����L∞

≤Cδt
3/2

+ ϕ ·, tn+1( 􏼁
����

����L∞
.

(45)

If Cδt3/2 ≤ 1, we get

ϕk+1
�����

�����L∞
≤ 1 + ϕ ·, tn+1( 􏼁

����
����L∞
≤ ρ. (46)

-en, we obtain (31). □

Theorem 2. Let ϕ be the solution of (4) and (5) and ϕk􏽮 􏽯
K

k�0
be the solution of (6). Under the assumption of Lemma 4, as
δt⟶ 0, then the following error estimate holds:

ϕ ·, tk( 􏼁 − ϕk
�����

�����H1 ≤Cδt
2
, k � 0, 1, . . . , K. (47)

Proof. Note that in Lemma 4, we prove the uniform
boundedness results:

ϕk
�����

�����L∞
≤ ρ, k � 0, 1, . . . ,

T

δt
. (48)

Following the process of (34)–(42), we can get the
conclusion of the theorem. □

4. Numerical Experiments

In this section, we will propose several numerical examples
to show the accuracy, convergence, and unconditional en-
ergy stability of the time-discrete scheme.

Set c � 2, and let us consider the following AC equation:

ϕt − ε2Δϕ + 4ϕ3 − 8ϕ􏼐 􏼑 + 4ϕ � f(x, y, t). (49)

First, we will test the accuracy of time-discrete scheme by
choosing a suitable source term f(x, y, t) such that the exact
solution is

ϕ(x, y, t) � exp(− t)cos(x)cos(y). (50)

Let T � 1, ε � 0.1. -e L2-error, H1-error, and conver-
gence order of time direction are presented in Table 1. -e
spatial discretization of the time-discrete scheme is handled
by using the Fourier pseudo-spectral method with Fourier
modes Nx � 128, Ny � 128.

We calculate the errors by the following quantities.

p1 � log2
u

n,2Δt
N − u

2n,Δt
N

����
����0

u
2n,Δt
N − u

4n,Δt/2
N

����
����0

⎛⎝ ⎞⎠, p2 � log2
u

n,2Δt
N − u

2n,Δt
N

����
����H1

u
2n,Δt
N − u

4n,Δt/2
N

����
����H1

⎛⎝ ⎞⎠. (51)

-e numerical results indicate that the time-discrete
scheme is 2-order convergent in time direction. -is is
consistent with the theoretical results in -eorem 2.

Second, we fix δt � 0.001, Nx � Ny � 128, set f � 0 in
(49), and present the discrete energies of the time-discrete
scheme for ε � 0.1, ε � 0.25 in Figures 1 and 2. Numerical
results show that discrete energy decays, which is consistent
with our proof.

In order to make a comparison with Choi et al. [11], we
choose the same initial value as

ϕ(x, y, 0) � tanh
0.25 −

������������������

(x − 0.5)
2

+(y − 0.5)
2

􏽱

�
ε

√ . (52)

Let ε � 0.035, dt � 0.01, N � 256, c � 1. Figures 3(a)–3(d)
show the evolution process of initial concentration with
time. We also observe that the circle gradually shrinks,
which is consistent with the theoretical prediction [11]. We
still choose the same parameters as above. Figures 4(a)–4(d)
show the result behaviours of the proposed method with
respect to ε.

At last, the dynamic evolution of numerical solutions is
also studied. Set ϕ0 � cos(x)cos(y),
δt � 0.001, Nx � Ny � 128. -e snapshots of phase sepa-
ration with different times are presented in Figure 5. -is
results show that our numerical method can capture the
process of phase separation.
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Table 1: Numerical error and convergence order for 2D AC equation.

δt L2-error Order H1-error Order
0.1 6.6813E-02 - 2.8594E-01 -
0.02 2.9463E-03 1.9394 1.3413E-02 1.9009
0.01 7.1127E-04 2.0504 3.2606E-03 2.0404
0.002 2.7408E-05 2.0232 1.2630E-04 2.0199
0.001 6.8161E-06 2.0075 3.1430E-05 2.0066
0.0002 2.7147E-07 2.0026 1.2524E-06 2.0023
0.0001 6.7832E-08 2.0007 3.1296E-07 2.0006
0.00002 2.7109E-09 2.0005 1.2507E-08 2.0005
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Figure 1: -e discrete energies for AC equation with ε � 0.1.

3.7

3.6

3.5

3.4

3.3

3.2

En
er

gy

3.1

3
0 50 100 150

Time
200 250 300

Figure 2: -e discrete energies for AC equation with ε � 0.05.
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Figure 3: Continued.
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Figure 4: -e result behaviours of the proposed method with respect to ε: (a) ε � 0.05; (b) ε � 0.02; (c) ε � 0.01; (d).
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Figure 5: Numerical solutions of ϕ for the AC equation using the full discrete scheme (6). Snapshots are taken at t � 0, 1, 40, 80, 100, 300,
respectively.
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5. Conclusion

In this paper, by skillfully dealing with the nonlinear
function, we proposed a novel second-order and linear
scheme to solve AC equation. Uniqueness and uncondi-
tional energy stability of the numerical scheme are proved.
Moreover, by constructing an appropriate auxiliary func-
tion, we prove the uniform boundedness of the numerical
solution. Based on the uniform boundedness result, we get
the error estimate of time direction. Finally, several nu-
merical examples are presented to demonstrate the accuracy,
stability, and efficiency of the numerical scheme, and the
dynamic evolution of the AC equation is also discussed.
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We examined the thin-film flow problem of a third-grade fluid on an inclined plane under a fuzzy environment. *e highly
nonlinear flow governing differential equations (DEs) with the boundary conditions are fuzzified using the triangular fuzzy
numbers (TFNs) developed by α-cut (α ∈ [0, 1]). *e fuzzy perturbation (FPM) method is adopted to calculate the fuzzified form
of the governing equations as well as the fuzzified boundary conditions. For the validation, the present work is in good agreement
as compared to existing work in the literature under the crisp form. For various values of the fluid parameter λ, inclined parameter
c and fuzzy parameter α-cut is presented in graphical form. *e α-cut controls TFNs, and the variability of uncertainty is
investigated using a triangular membership function (MF). Using TFNs, the middle (crisp), left, and right values of the fuzzy
velocity profile are used for fuzzy linear regression analysis. *e outcome of this study and the fuzzy velocity profile have the
maximum rate of flow as compared to the crisp velocity profile (mid values).

1. Introduction

*e fuzzy set theory (FST) concept was first proposed by
Zadeh [1]. *e FST is a useful technique for defining situ-
ations when information is ambiguous, hazy, or unsure. *e
membership function, or belongingness, of FST defines it.
*e membership function (MF) in FST assigns a number
form of the [0, 1] interval to each element of the discourse
universe. A fuzzy number (FN) is a function with a range
between zero and one. Every numerical value in the range is
allocated an MF grade, with “0” indicating the lowest grade
and “1” signifying the highest grade. Numerous authors have
created arithmetic operations on FNs, for example, [1, 2].
Triangular, trapezoidal, and Gaussian fuzzy numbers are all

examples of FNs. In this article, we will employ TFN to keep
things simple.

When the partial or ordinary DEs are converted through
dynamic systems, information is sometimes fragmentary,
ambiguous, or uncertain. *e fuzzy differential equations
(FDEs) are a valuable tool for modeling dynamical systems
with ambiguity or uncertainty. *is impreciseness or
vagueness can be mathematically defined using FNs or
TFNs. FDEs have been the subject of some investigations in
recent years. *e fuzzy differentiability notion was first
developed by Seikala [3]. In [4], Kaleva addressed fuzzy
differentiation and integration. FDEs were first reported by
Kandel and Byatt [5], while Buckley et al. [6] used two ways
to solve them using the extension principle and FNs. Nieto
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[7] investigated the Cauchy problem using FDEs. In [8],
Lakshmikantham and Mohapatra examined the initial value
problems with help of FDEs. For the existence and
uniqueness solution of FDE, Park and Han [9] employed
successive approximation techniques. Hashemi et al. [10]
employed the homotopy analysis method (HAM) to de-
termine a system of fuzzy differential equations (SFDEs).
Mosleh [11] used universal approximation and fuzzy neural
network methods to solve the SFDEs. Gasilov et al. [12, 13]
established the symmetrical method to solve SFDEs. Khastan
and Nieto [14] used a generalized differentiability concept to
solve the second-order FDE. Salahsour et al. [15] applied
FDE and TFNs to evaluate the fuzzy logistic equation and
alley impact. Nadeem et al. [16] numerically examined the
effect of thermal radiation and natural convective flow on
third-grade fuzzy hybrid nanofluid between two upright
plates. Recently, Nadeem et al. [17] explored Magnetohy-
drodynamic (MHD) and ohmic heating on a third-grade
fluid in an inclined channel in a fuzzy atmosphere, using the
triangle MF to address the uncertainty. Siddique et al. [18]
studied the Couette flow and heat transfer on third-grade
fuzzy hybrid (SWCNT+MWCNT/Water) nanofluid over
the inclined plane under a fuzzy environment. Many sci-
entists and engineers have used FST to attain well-known
achievements in science and technology [19–30]. *e above
literature review motivates us to initiate the application of
FDE in fluid mechanics.

In science and engineering, fluid flow is extremely
important. *ere are increases in a wide variety of
problems such as magnetic effect, chemical diffusion, and
heat transfer. Physical problems are transformed into
linear or nonlinear DEs and may contain some ambiguous
information. Physical problems such as parameters, ge-
ometry, initial, and boundary conditions have a signifi-
cant impact on the solution of DEs. *e parameters,
initial, and boundary conditions are not crisp due to
mechanical imperfections, experimental inaccuracies, and
measurement errors. In this situation, FDEs play an
important role in reducing uncertainty and providing an
appropriate manner to explain physical problems that
originate from unknown parameters, initial, and
boundary conditions.

“A fluid is a substance that deforms continuously when
shear stress or an external force is applied. Newtonian and
non-Newtonian fluids are the two main types of fluid.
Newtonian fluids, such as air, mineral oil, water, thin motor
oil, gasoline, glycerol, and alcohol, follow Newton’s law of
viscosity, whereas non-Newtonian fluids are the polar
opposite of Newtonian fluids. *e importance of non-
Newtonian fluids with developments in industries and
technology like polymer, petroleum, pulp, etc, is as follows.
Various industrial ingredients fall into this cluster, such as
cosmetics, soap, paints, tars, shampoos, mayonnaise, blood,
yogurt, syrups biological solutions, and glues. It is difficult
to build a unique model that can represent the features of
all non-Newtonian fluids because of the fluid’s complexity.
A third-grade fluid [31] is a non-Newtonian fluid that
exhibits non-Newtonian phenomena including shear-
thickening, shear-thinning, and normal stresses. So, the

third-grade fluid has received superior attention from
researchers. In this paper, considered fluids are a third-
grade (differential type), which have been successfully
investigated in a variety of flow scenarios [32, 33] and
references therein. Siddiqui et al., [34] used the pertur-
bation method (PM) [35, 36] and homotopy perturbation
method (HPM) [37] to find out the solution of nonlinear
DE formulated for fluids of third grade. He proved that PM
provides more reliable and accurate results than HPM.
Later on, Hayat et al. [38] calculated the exact solution to
the same problem under certain norms. Different authors
like Sajid and Hayat [39] used the HAM. Shah et al. [40]
used HAM, Siddiqui et al. [41] used He’s variational it-
eration method (VIM) and Adomian decomposition
method (ADM), and Iqbal and Abualnaja [42] used
Galerkin’s finite element method. Variation of parameter
method (VPM) was utilized by Zaidi et al. [43] to describe
the thin-film flow of third-grade fluid down an inclined
plane. Khan et al. [44] studied the impact of thermal ra-
diation and MHD on Non-Newtonian fluid over a curved
surface. Koriko et al. [45] considered the impact of viscosity
dissipation on Non-Newtonian Carreau nanofluids and
dust fluids. *ere are some further studies about the thin-
film flow given in [46–50]. Linear regression is a statistical
data-driven prediction tool. *e goal of regression is to use
a sequence of explanatory or independent variables to
explain the uncertainty and variability in a dependent
variable, resulting in a prediction equation. Fuzzy linear
regression is an effort to expand linear regression to fuzzy
number applications. It gives an alternate strategy in cir-
cumstances where crisp linear regression is not achievable,
such as when stringent assumptions are not followed or
when the underlying data or process has visible fuzziness.
Animasaun et al. [51] investigated heat transfer analysis
through linear regression via data points. Wakif et al. [52]
studied the meta-analysis of nanosize particles in various
fluids. Shah et al. [53] measured the linear regression
analysis of Grashof number in different fluids with con-
vective boundary conditions.

In the review of literature, third-grade fluid problems
were studied for only crisp or classical cases. So, the above-
mentioned works motivated us to extend the work of Sid-
diqui et al. [34] for the fuzzy analysis of thin-film flow of a
third-grade fluid down an inclined plane under the fuzzy
environment. *is article discussed the uncertain flow
mechanism through FDEs and the generalization of Siddiqui
et al. [34]. Also, it discusses the fuzzy regression analysis via
data points of the fuzzy velocity profile. *e goal of this
article is to affect the fuzzy velocity profile on various pa-
rameters, using a statistical technique for quantifying the
rate of increase or decrease and scrutinizing the consistent
effects.

*e article is systematized as follows. Section 2 contains
some essential preliminaries connected to the current re-
search. Section 3 develops the governing equations of the
proposed study and also changes governing equations in the
fuzzy form to solve by a regular PM. Results and discussion
in graphical and tabular form are presented in Section 5.
Section 6 gives some conclusions.
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2. Preliminaries

*is section discussed some basic notations and definitions
that are used in the present work.

Definition 1 (Zadeh [1]). “Fuzzy set is defined as the set of
ordered pairs such that 􏽥U � (x, μ􏽥U(x)): x ∈􏽮 X, μ􏽥U(x)

∈ [0, 1]}, where X is the universal set, and μ0􏽥U(x) is
membership function of 􏽥U and mapping defined as
μ􏽥U(x): X⟶ [0, 1].”

Definition 2 (Gasilov et al. [12]). “α-cut or α-level of a fuzzy
set 􏽥U is a crisp set Uα and defined by Uα � x/μ􏽥U(x)≥ α􏽮 􏽯,

where 0≤ α≤ 1.”

Definition 3 (Gasilov et al. [12]). “Let 􏽥U � (a1, a2, a3) with
membership function; μ􏽥U(x) is called a TFN if

μ􏽥U(x) �

a1 − x

a2 − a3
for x ∈ a1, a2􏼂 􏼃,

x − a3

a2 − a3
for x ∈ a2, a3􏼂 􏼃,

0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

*e TFN with peak (or center) a2, left width a2 − a1 > 0,

right width a3 − a2 > 0, and these TFNs being transformed
into interval numbers through α-cut approach is written as
􏽥U � [u(x; α), v(x; α)] � [a1 + α(a2 − a1), a3 − α(a3 − a2)],

where α ∈ [0, 1] as shown in Figure 1. An arbitrary TFN
satisfies the following conditions: (i) u(x; α) is an increasing
function on [0, 1]; (ii) v(x; α) is a decreasing function on [0,
1]; (iii) u(x; α)≤ v(x; α) on [0, 1]; (iv) u(x; α) and v(x; α)

are bounded on left continuous and right continuous at [0,
1] respectively.”

Definition 4 (Seikala [3]): “Let I be a real interval. A
mapping 􏽥u: I⟶ F is called a fuzzy process, defined as
􏽥u(x; α) � [u(x; α), v(x; α)], x ∈ I , and α ∈ [0, 1]. *e
derivative d􏽥u(x; α)/dx ∈ F of a fuzzy process 􏽥u(x; α) is
defined by d􏽥u(x; α)/dx � [du(x; α)/dx, dv(x; α)/dx].”

Definition 5 (Seikala [3]): “Let I⊆R, 􏽥u be a fuzzy-valued
function defined on I. Let 􏽥u(x; α) � [u(x; α), v(x; α)] for
all α-cut. Assume that u(x; α) and v(x; α) have continuous
derivatives or differentiable, for all x ∈ I and α ∈ [0, 1]; then
[d􏽥u(x; α)/dx]α � [du(x; α)/dx, dv(x; α)/dx]α. Similarly,
we can define higher-order ordinary derivatives.

A FN by an ordered pair of functions [d􏽥u(x; α)/dx]α
satisfies the following conditions: (i) du(x; α)/dx and
dv(x; α)/dx are continuous on [0, 1]; (ii) du(x; α)/dx is an
increasing function on [0, 1]; (iii) dv(x; α)/dx is a de-
creasing function on [0, 1]; (iv) du(x; α)/dx≤ dv(x; α)/dx

on [0, 1].”

Example 1. “Consider the fuzzy value function
􏽥u(x) � 􏽥a sin x where 􏽥a is a TFN. Check the differentiability
of 􏽥u(x) w. r. t. x. According to the TFNs,

u(x; α) � a1(α)sin x and v(x; α) � a2(α)sin x.􏽥u(x; α) �

[u(x; α), v(x; α)], where u(x; α) and v(x; α) are differ-
entiable w. r. to x with derivatives, du(x; α)/dx � a1(α)cos
x,dv(x; α)/dx � a2(α)cos x. *e fuzzy derivative of 􏽥u(x) is

[d􏽥u(x; α)/dx]α � [a1(α)cos x, a2(α)cos x]α. Hence
[d􏽥u(x; α)/dx]α � [􏽥a(α)cos x]α.”

3. Research Methodology

3.1. Formulation of a Crisp Model into a Fuzzy Model.
*e thin-film flow of an incompressible third-grade fluid
down an inclined plane of inclination θ≠ 0 with the as-
sumptions that surface tension is negligible, the ambient air
is stationary, and in the absence of a pressure, gradient is
governed by the following boundary value problem (see
Figure 2) [35, 36].

μ
d2w
dx

2 + 6 β2 + β3( 􏼁
d2w
dx

2
dw

dx
􏼠 􏼡

2

+ ρgsinθ � 0, (2)

w(x) � 0, at x � 0,

w′(x) � 0, at x � δ,
(3)

where w is the velocity along the inclined plane, ρ is the fluid
density, β3 and β2 are material constants of third-grade fluid,
g is the acceleration due to gravity, μ is the dynamic vis-
cosity, and δ is the thickness of the thin layer.

We introduced the following nondimensionless vari-
ables in (2) and (3):

u
∗

�
w

]/δ
,

x
∗

�
x

δ
.

(4)

After dropping the sign of asterisks, equation (2) and the
boundary conditions (3) become

d2u
dx

2 + 6λ
d2u
dx

2
du

dx
􏼠 􏼡

2

+ c � 0, (5)

u(x) � 0, atx � 0,

du(x)

dx
� 0, atx � 1,

(6)

1

α

µU (x)

µU (x) = 1, x = a2

µU (x) = 0

x ≤ a1

µU (x) = 0, x ≥ a3

x – a1 , a1 ≤ x ≤ a2a2 – a1

a3 – x
, a2 ≤ x ≤ a3a3 – a2

Figure 1: Membership functions of TFNs.
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where λ � (β2 + β3)]2/μδ
4 is the third-grade fluid parameter

and c � gδ3sinθ/]2 is an inclined parameter.

To deal with this problem, we used TFNs and dis-
cretization in the form of (a1, a2, a3) and (d, e, f) for the
fuzzy parameter α − cut. Due to fuzziness at boundaries, this
discretization is used at the boundary of the inclined plate in
Figures 3 for Figure 4 has certain flow behaviors. Using α-cut
approach, the fuzzy boundary conditions can be decom-
posed into an interval form. Hence, governing equation (5)
with boundary conditions (6) is converted into coupled FDE
and fuzzy boundary conditions as given as follows:

d2u(x; α)

dx
2 + 6λ

d2u(x; α)

dx
2

du(x; α)

dx
􏼠 􏼡

2

+ c � 0, (7)

And also, it can be written as for 0≤ α≤ 1,

d2u(x; α)

dx
2 ,

d2v(x; α)

dx
2􏼢 􏼣 + 6(λ, λ)

d2u(x; α)

dx
2

du(x; α)

dx
􏼠 􏼡

2

,
d2v(x; α)

dx
2

dv(x; α)

dx
􏼠 􏼡

2
⎡⎣ ⎤⎦ +(c, c) � 0. (8)

subject to fuzzy boundary conditions

u(x; α) � [u(x; α), v(x; α)] � a1 + α −a1 + a2( 􏼁, a3 − α −a2 + a3( 􏼁􏼂 􏼃, at x � 0,

du(x; α)

dx
�

du(x; α)

dx
,
dv(x; α)

dx
􏼢 􏼣 � [d + α(−d + e), f − α(−e + f)], at x � 1,

(9)

where du(x; α)/dx and d2u(x; α)/dx2 represent the fuzzy
first and second-order derivatives of fuzzy-valued function
u(x; α). *en, u(x; α) � [u(x; α), v(x; α)], α ∈ [0, 1], are
lower u(x; α) and upper v(x; α) bounds of fuzzy velocity
profiles, while u(x; α) and du(x; α)/dx are fuzzy boundary
conditions.

After simplification of (7) and (9), fuzzy boundary
conditions are

d2u(x; α)

dx
2 + 6λ

d2u(x; α)

dx
2

du(x; α)

dx
􏼠 􏼡

2

+ c � 0,

u(x; α) � 0.05 + 0.15α at x � 0,

du(x; α)

dx
� 0.1α at x � 1.

d2v(x; α)

dx
2 + 6λ

d2v(x; α)

dx
2

dv(x; α)

dx
􏼠 􏼡

2

+ c � 0,

v(x; α) � 0.3 − 0.1α at x � 0,

dv(x; α)

dx
� 0.2 − 0.1α at x � 1.

(10)

3.2. Solution of the Problem in a Fuzzy Environment. *e
method of the PM [35, 36] for solving FDEs: fuzzy and the
crisp velocities u(x) are in the form

u(x; α) � u0(x; α) + λu1(x; α) + λ2u2(x; α) + . . .,

v(x; α) � v0(x; α) + λv1(x; α) + λ2v2(x; α) + . . .,

u(x) � u0(x) + λu1(x) + λ2u2(x) + . . .,

(11)

where u0, v0, u1, v1, u2, and v2 are zero-, first-, and second-
order solutions, respectively.

Zeroth-order fuzzy problem is

d2u0(x; α)

dx
2 + λ � 0. (12)

*e zeroth-order fuzzy boundary conditions for the
above equation are

u0(x; α) � 0.05 + 0.15α, at x � 0,

du0(x; α)

dx
� 0.1α, at x � 1.

(13)

*e first-order fuzzy problem is

d2u1(x; α)

dx
2 + 6

d2u0(x; α)

dx
2

du0(x; α)

dx
􏼠 􏼡

2

� 0. (14)

g

δ

x·

y·

θ ≠ 0

Figure 2: *e geometry of the problem.
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Figure 3: Triangular membership function for the influence of λ.

1

0.9

0.8

0.7

0.6

α-
cu

t

0.5

0.4

0.3

0.2

0.1

0

v (x;α)

u (x;α)

x = 2
λ = 0.75

0 0.1 0.2 0.3 0.4 0.5
ū

0.6 0.7 0.8 0.9 1

γ = 0.5
γ = 0.5
γ = 0.55

γ = 0.55
γ = 0.6
γ = 0.6

Figure 4: Triangular membership function for influence c.
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*e first-order fuzzy boundary condition for the above
equation is

u1(x; α) � 0, at x � 0,

du1(x; α)

dx
� 0, at x � 1.

(15)

*e second-order fuzzy problem is

d2u2(x; α)

dx
2 + 6

d2u1(x; α)

dx
2

du0(x; α)

dx
􏼠 􏼡

2

+ 12
du0(x; α)

dx

d2u0(x; α)

dx
2

du1(x; α)

dx
� 0. (16)

*e second-order fuzzy boundary condition for the
above equation is

u2(x; α) � 0, at x � 0,

du2(x; α)

dx
� 0, at x � 1.

(17)

*e zeroth-order fuzzy solution is

u0(x; α) �
1
2

[α(2x + 3) + 10cx(2 − x) + 1]. (18)

*e first-order fuzzy solution is

u1(x; α) �
cx

100
3α2(x − 2) − 20αc x

2
− 3x + 3􏼐 􏼑 + 50c

2
(x − 2) x

2
− 2x + 2􏼐 􏼑􏽨 􏽩. (19)

*e second-order fuzzy solution is

u2(x; α) �
−cx

5000
3α2 − 30αc(x − 2) + 100c

2
x
2

− 3x + 3􏼐 􏼑􏽮 􏽯

3α2(−2 + x) − 30αc x
2

− 2x + 2􏼐 􏼑

+100c
2
(−2 + x) 1 − x + x

2
􏼐 􏼑

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (20)

Combining equations (18)–(20), which give the ap-
proximate fuzzy solution for a lower and upper velocity,

u(x; α) �
1
2

[1 + α(2x + 3) + 10cx(−x + 2)] +
cλx

100
3α2(x − 2) − 20αc x

2
− 3x + 3􏼐 􏼑 + 50c

2
(x − 2) x

2
− 2x + 2􏼐 􏼑􏽨 􏽩

−
cλ2x
5000

3α2 − 30αc(x − 2) + 100c
2

x
2

− 3x + 3􏼐 􏼑􏽮 􏽯 ×

3α2(−2 + x) − 30αc x
2

− 2x + 2􏼐 􏼑 + 100c
2

(−2 + x) 1 − x + x
2

􏼐 􏼑

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

v(x; a) �
1
10

[3 − a + x(2 − a) − 5cx(x − 2)] +
cλx

100
3(x − 2)(a − 2)

2
+ 20c(a − 2) x

2
− 3x + 3􏼐 􏼑 + 50c

2
(x − 2) x

2
− 2x + 2􏼐 􏼑􏽨 􏽩

+
cλ2x
5000

−9(x − 2)(a − 2)
4

− 180c(a − 2)
3

x
2

− 3x + 3􏼐 􏼑 − 1500c
2
(x − 2)(a − 2)

2
x
2

− 2x + 2􏼐 􏼑 − 600c
3
(a − 2)

5 − 10x + x
2
(x − 5) + 10x

3
􏽮 􏽯 − 10000c

4
(x − 2) −x + 1 + x

2
􏼐 􏼑 −3x + 3 + 3x

2
􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(21)
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*e solution of crisp velocity is

u(x) �
1
2

−cx
2

+ 2cx􏼐 􏼑 +
c
3λx

2
(x − 2) 2 − 2x + x

2
􏼐 􏼑 +

c
5λ2

5
+27x

5
− 115x

4
+ 190x

3
− 15x

2
+ 55x􏼐 􏼑. (22)

4. Analysis and Discussion of Results

4.1. Discussion of Observed Results. We extend the work of
Siddiqui et al. [34] under the fuzzy environment. *e TFNs
are used to fuzzify the boundary conditions and the gov-
erning equations, which are then solved by a modified FPM.
*e effect of numerous fluid and fuzzy parameters on fluid
velocity is analyzed in graphical and tabular forms.

*e comparison of HPM, VPM, PM, and numerical
solutions is presented in Table 1. It can be examined that PM

has good agreement with HPM, VPM, and numerical results
at λ � 0.3 and c � 0.5.

In Figures 3 and 4, membership functions of the fuzzy
velocity profiles are plotted with the influence of
λ, c , and α − cut at x � 2. *e horizontal axis represents the
fuzzy velocity while the vertical axis shows the variation of
the α − cut. We observed that v(x; α) increases and u(x; α)

decreases correspond to values of λ and c with increasing
α − cut, so the solution is strong.*e crisp solution is always
between the fuzzy solutions; when α − cut increases, the

Table 1: Comparison of numerical solution of PM with NM, VPM, and HPM for λ � 0.3 and c � 0.5.

x VPM [43] RK-4 [43] HPM [34] PM (present results)
0.1 0.04406 0.04406 0.04311 0.04311
0.2 0.08401 0.08401 0.08231 0.08231
0.3 0.11969 0.11969 0.11735 0.11735
0.4 0.15096 0.15096 0.14812 0.14812
0.5 0.17769 0.17769 0.17456 0.17456
0.6 0.19975 0.19975 0.19641 0.19641
0.7 0.21704 0.21704 0.21361 0.21361
0.8 0.22946 0.22946 0.22603 0.22603
0.9 0.23694 0.23694 0.23346 0.23346
1 0.23944 0.23944 0.2359 0.2359

v (x;α)

u (x;α)

α-cut = 0
γ = 0.6
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λ = 0.9
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Figure 5: Fuzzy velocity profiles for the influence of λ.
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width between u(x; α) and v(x; α) of fuzzy velocity profiles
decreases and at α − cut � 1 the coherent is with one an-
other. It is proved that uncertainties in physical parameters
and boundary conditions have a nonnegligible impact on the
fuzzy velocity profile. Also, the width between u(x; α) and
v(x; α) fuzzy velocity is less than uncertainty. Achieved

(x; α) and v(x; α) bounds of velocity profiles are plotted in
Figures 5–13 for different values of α-cut
(α � 0, 0.3, 0.7, 1). It may be observed that as α − cut
increases from 0 to 1, the fuzzy velocity profile has a narrow
width, and the uncertainty decreases significantly, which
finally provides crisp results (see Figures 8, 9, 13 and 14) for
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Figure 6: Fuzzy velocity profiles for the influence of λ.

v (x;α)

u (x;α)

α-cut = 0.7
γ = 0.6

0 0.1 0.2 0.3 0.4 0.5
X

0.6 0.7 0.8 0.9 1

λ = 0.7
λ = 0.7
λ = 0.8

λ = 0.8
λ = 0.9
λ = 0.9

ū

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 7: Fuzzy velocity profiles for the influence of λ.
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α − cut � 1. Figures 5–8 show the variations in lower and
upper bounds of velocity profiles for various values of fluid
parameter λ. It can be perceived that by increasing the value
of λ, the u(x; α) and v(x; α) bounds of velocity profile also
increase, while the lower bounds of velocity profile gradually

increase by increasing the different values of λ and α-cut. In
Figure 8 the lower- and upper-velocity profiles give the crisp
or classical behavior at α-cut� 1. Figure 9 displays the crisp
u(x) velocity behavior for different values λ. It is realized
that the fuzzy and crisp velocity of the fluid upsurge with
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Figure 8: Fuzzy velocity profiles for the influence of λ.
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growing the values of λ due to a rise in the boundary layer
thickness. Also in Figure 9, it can be observed that if λ � 0,
the solution reduces to the Newtonian fluid.

Figures 10–13 represent the upper and lower bounds of
the fuzzy velocity profiles, for numerous values of c. *ese
figures show that u(x; α) and v(x; α) bounds of velocity

profiles rise with increasing the c for different values of
α-cut. Due to increasing the values of c and α-cut, the
uncertainty of the fluid gradually decreases in the u(x; α)

and v(x; α) bounds of the velocity profile. From Figure 13,
we can see that at α-cut� 1, fuzzy boundary conditions
convert into crisp boundary conditions. It is exciting that for
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Figure 11: Fuzzy velocity profiles for the influence of c.

10 Mathematical Problems in Engineering



equal responses, fuzzy solutions of u(x; α) and v(x; α)

bounds of velocity profiles are the same at α-cut� 1.
However, further evidence provided by the fuzzy velocity
profiles at different levels of possibility (i.e., different α-cut)
may help decision-makers. Figure 14 shows the crisp velocity

behavior for different values of c. It is seen that the crisp
velocity increases as the c increases. *e reason is that when
c is increased, the fluid velocity upsurges due to the effect of
inclined geometry with an increase in the boundary layer
thickness. It is encouraging to note that the u(x; α) and
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v(x; α) bounds of the velocity profile of the fuzzy solutions
are the same at α-cut� 1, which matched the crisp solution.
From Figures 5–14, it can also be determined that the crisp
solution lies between the u(x; α) and v(x; α) bounds of the
velocity profile of the fuzzy solution. Furthermore, fuzzy
velocity profiles always change at a certain range for any
fixed α-cut and the range gradually decreases with increasing
the values of α-cut. *e conclusion of the whole discussion
the fuzzy velocity profile of the fluid is a better opportunity
as related to the crisp velocity profile of the fluid. *e crisp
velocity profile represents a single flow situation, whereas the
fuzzy velocity profile represents an interval flow situation,
such as the u(x; α) and v(x; α) bounds of the velocity profile.

4.2. Fuzzy Regression Analysis. *e method of slope linear
regression via data points on Microsoft Excel is applied in
this section.

To explain the approach, the effect of the third-grade
fluid parameter (λ) on the fuzzy velocity profile is ex-
amined as shown in Table 2. *e formula in Excel for α −

cut and u(x, α) � Slope (A1 : A2, B1 : B2). Similarly, we use
the formula in Excel for α − cut, v(x, α) and mid values.
Using the slope linear regression through the fuzzy ve-
locity data points suggested by [51–53], it is worth de-
ducing from Table 2 that as α − cut increases for λ � 0.85,

u(x, α) increases at the rate of 0.385418182. But when λ �

0.90, as α − cut increases, u(x, α) now increased at the
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Figure 14: Crisp velocity profile for the influence of c.

Table 2: Method of slope linear regression through the fuzzy velocity data points at x � 0.7 and c � 0.5 for different values of λ onMicrosoft
Excel 2016.

A B C D E A B C D E
α-cut u (x, α) v (x, α) Mid values α-cut u (x, α) v (x, α) Mid values
0 0.05 0.8508 0.4604 0 0.05 0.8796 0.4648
0.1 0.0874 0.8036 0.4455 0.1 0.0882 0.8299 0.4591
0.2 0.1248 0.7579 0.4414 0.2 0.1264 0.7817 0.4541
0.3 0.1624 0.7136 0.438 0.3 0.1648 0.7352 0.4501
0.4 0.2002 0.6707 0.4355 0.4 0.2035 0.6901 0.4468
0.5 0.2383 0.629 0.4337 0.5 0.2426 0.6465 0.4446
0.6 0.2768 0.5884 0.4326 0.6 0.2826 0.6041 0.4431
0.7 0.3158 0.549 0.4324 0.7 0.3221 0.563 0.4431
0.8 0.3554 0.5105 0.433 0.8 0.3627 0.523 0.4429
0.9 0.3955 0.473 0.4343 0.9 0.404 0.4841 0.4441
1 0.4364 0.4364 0.4364 1 0.4461 0.4461 0.4461
Slope 0.385418 −0.41346 −0.01855 Slope 0.395118 −0.43247 −0.01870909
at λ� 0.85 λ� 0.90
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higher rate of 0.395118. However, v(x, α) and mid values
(crisp velocity) decrease with α − cut at the rate of
−0.41346, and −0.01855, respectively, for λ � 0.85. When
λ � 0.90,v(x, α) and mid values decrease with α − cut at
the rate of −0.43247 and −0.01870909, respectively. Fig-
ures 15 and 16 show the fuzzy regression analysis of
triangular MF for different values of λ, c, and α-cut at
x � 0.7. From Figure 15, we conclude that u(x, α) in-
creases with increasing the value of λ while v(x; α) de-
creases with increasing the value of λ sand α − cut at
x � 0.7. From Figure 16, u(x; α) upsurges with increasing
the value of c while v(x; α) declines with growing the value

of c and α − cut for x � 0.7. Also we can see that in both
figures when α − cut � 1, they give the same behavior. *e
impact of the inclined parameter (c) on the fuzzy velocity
profile is examined as shown in Table 3. It is seen that
u(x, α) increases with α − cut at the rate of 0.368764 for
c � 0.50. When c � 0.55, as α − cut increases, u(x, α) now
increased at the larger rate of 0.394109. *is is because the
membership functions are associated with fuzzy numbers
or TFNs including imperative and valuable information
that is not included in crisp regression. Also, the fuzzy
velocity profile shows the maximum rate of flow as
compared to mid values (crisp velocity).
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Figure 15: Slope of the linear regression through the data points for the fuzzy velocity at x � 0.7 and c � 0.5 with different values of λ.
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Figure 16: Slope linear Regression through the data points for the fuzzy velocity at x � 0.7 and λ � 0.75 with different values of c.
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5. Conclusion and Recommendation

In this work, we analyzed the thin-film flow problem of a
third-grade fluid on an inclined plane under a fuzzy en-
vironment. *e governing equations as well as the
boundary conditions which are fuzzified using the TFNs
developed by α-cut are solved by the fuzzy perturbation
technique. As α-cut increases from 0 to 1, the uncertainty of
fuzzy velocity profile decreases gradually, and u(x; α) and
v(x; α) bounds of velocity profile give the crisp behavior at
α-cut � 1. So, from the above observations, we can conclude
that the upper and lower bounds of a TFN coincide with the
crisp value of the original problem. Furthermore, the
current findings are in good accord with previous findings
in the literature when conducted in a crisp environment.
Using fuzzy slope regression analysis, the fuzzy velocity
profile also displays the highest rate of flow when compared
to the crisp velocity.
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)is paper scrutinizes the consequences of radiation and heat consumption of MHD convective flow of nanofluid on a heated
stretchy plate with injection/suction and convective heating/cooling conditions. )e nanofluid encompasses with Cu and Ag

nanoparticles. We enforce the suited transformation to remodel the governing mathematical models to ODE models. )e HAM
(homotopy analysis method) idea is applied to derive the series solutions. )e divergence of fluid velocity, temperature, skin
friction coefficient, local Nusselt number, entropy generation, and Bejan number on disparate governing parameters is exhibited
via graphs and tables. It is seen that the fluid velocity in both directions is subsided when elevating the magnetic field and
Forchheimer number. Also, the Cu nanoparticles possess hefty speed compared to Ag nanoparticles because the density of Ag

nanoparticles is high compared to that ofCu nanoparticles.)e fluid temperature upturns when enlarging the heat generation and
radiation parameters. )e skin friction coefficients and local Nusselt number are high in Ag nanoparticles than in
Cu nanoparticles.

1. Introduction

)e fluid thermal conductivity plays a vital role in many
industrial and engineering processes, such as heat ex-
changes, fabrication of malleable, cooling of vehicles, do-
mestic refrigerators, and cancer treatment. However, the
standard base fluids such as water, ethylene, and engine oil
have low thermal conductivity and do not fulfill the nec-
essary heating and cooling rates. So, strengthening the
thermal conductivity is one of the challenging tasks for
researchers, which leads to upgrading the heat transfer
characteristics. One of the facile methods is for increasing
the thermal conductivity, nanosized metals such as copper,
graphite, alumina, titanium, carbides, metal oxides, and
nitrides are added to common base fluids. )ese fluids

enhance the heat transfer attributes. )e 3D flow of water-
based nanofluid past a stretching sheet with three different
types of nanoparticles was deliberated by Nadeem et al. [1].
)ey noticed that the fluid hotness becomes high for the
more quantity of nanoparticle volume fraction values.
Hosseinzadeh et al. [2] inspected the 3D flow of ethylene
glycol-titanium dioxide nanofluid on a porous stretching
surface with the convective heating condition. )e skin
friction coefficient exalts when aggravating the nanoparticle
volume fraction parameter. )e axisymmetric flow of silver
and copper water-based nanofluids between two rotating
disks was studied by Rout et al. [3]. )ey detected that the
skin friction coefficient elevates when raising the solid
volume fraction. Mishra et al. [4] described theMHD flow of
ethylene-glycol-based copper and aluminium oxide
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nanofluid on an exponentially stretching sheet in a porous
medium. )ey identified that the more extensive momen-
tum boundary layer occurs in aluminium oxide nanofluid
than the copper nanofluid. Various analyses for this di-
rection are found in [5–9].

In recent decades, the study of MHD (magnetohydro-
dynamics) has obtained much interest for many researchers
because of its variety of applications in many industries.
Such applications are polymer processes, extrusion of plastic
sheets, X-ray radiation, vehicle cooling, fiber filters, elec-
trolytes, magnetic cells, manufacture of loudspeakers, etc.
)e impact of zero mass flux on a second-grade nanofluid
flow on a Riga plate was presented by Rasool andWakif [10].
)ey have seen that the momentum boundary layer thick-
ness escalates when enhancing the modified Hartmann
number. Akbar and Khan [11] discussed the impact of
magnetic field and bioconvective flow of a nanofluid over a
stretching sheet. )ey noticed that the fluid velocity deci-
mates when the magnetic field parameter increases.
Chemically reactive MHD flow of Maxwell fluid between
stretching disks with Joule heating and viscous dissipation
was demonstrated by Khan et al. [12]. Reddy and Chamkha
[13] inspected the effects of thermal radiation and magnetic
field of Al2O3 and TiO2-water-based nanofluid on a porous
stretching sheet. )ey acknowledged that the nanoparticle
concentration is intensified when raising the magnetic field
parameter. MHD mixed convective flow of Oldroyd-B
nanofluid between two isothermal stretching disks was il-
lustrated by Hashmi et al. [14].)ey recognized that the heat
transfer gradient becomes high in the upper disk than the
lower disk. Few momentous analyses for this area are col-
lected in [15–23].

)e study of fluid flow via porous material has
plentiful applications in various fields, such as geothermal
operations, catalytic reactors, crude oil production, nu-
clear waste disposal, solar receivers, and beds of fossil
fuels, but this principle was not suitable for higher velocity
and uneven porosity problems; see Umavathi et al. [24]. In
general, many practical issues have enormous flow speed
and nonuniform porosity. In this situation, Forchheimer
[25] remodeled the Darcy principle to insert the second-
order polynomial into the velocity equation, which altered
the consequences of inertia on relative permeability. )e
2D radiative flow of water-based viscous nanofluid on a
shrinking/stretching sheet embedded in a porous medium
with thermal stratification was inspected by Vishnu
Ganesh et al. [26]. )ey revealed that the heat transfer
gradient downturns when increasing the porosity pa-
rameter. Hayat et al. [27] disclosed the consequence of
Darcy–Forchheimer flow of Maxwell fluid with Catta-
neo–Christov theory. )ey uncovered that the fluid speed
slumps when enriching the Forchheimer number. )e 3D
Darcy–Forchheimer porous flow of water-based carbon
nanotubes on a bidirectional stretching sheet was ex-
amined by Alzahrani [28]. Muhammad et al. [29] analyzed
the consequence of 3D Darcy–Forchheimer flow of water-
based carbon nanotubes past a heated stretching sheet.
)ey proved that the fluid velocity deteriorates when
aggravating the porosity parameter.

)ermally radiative flow is usually confronted when the
difference between surface and free stream temperatures is
large. In many industrial operations, thermal radiation af-
fects the thermal boundary layer thickness. A few examples
are missile technology, nuclear reactors, satellites, and power
plants. )e abundant analysis concentrates only on linear
radiation using the linearized Rosseland approximation
theory, but this theory is applicable when the temperature
difference between the plate and ambient fluid is less. In
many practical problems has this difference is high. In this
situation, a nonlinearized Rosseland approximation is ap-
plicable. Uddin et al. [30] deliberated the significance of
nonlinear thermal radiation of a Sisko nanofluid. )ey
noticed that the fluid temperature mounted when enlarging
the temperature ratio parameter. Okuyade et al. [31] de-
liberated the impact of Soret and Dufour effects of a
chemically radiative MHD fluid flow on a vertical plate. )e
consequence of the MHD flow of carbon nanotubes in a
Maxwell nanofluid with thermal radiation was theoretically
investigated by Subbarayudu et al. [32]. )ey detected that
the thermal boundary layer thickness was thicker when
increasing the values of the radiation parameter. Gireesha
et al. [33] analyzed the 3D flow of thermally radiative Jeffrey
nanofluid on an uneven stretching sheet. )e 2D stagnation
point flow of Walter-B nanofluid with nonlinear thermal
radiation was presented by Ijaz Khan and Alzahrani [34].
)ey proved that the temperature ratio parameter leads to
decay in the heat transfer rate.

From the analysis mentioned above, the consequence of
entropy analysis of a nonlinear thermally radiative flow
encompassed with Cu/Ag nanoparticles with the presence of
the magnetic field, heat absorption/generation, suction/in-
jection, and velocity slip on a convectively heated stretchy
plate on a Darcy–Forchheimer porous medium is not
inspected. )e entropy generation is closely related to
thermodynamic irreversibility and randomness, which oc-
curs in all types of heat transfer equipment. )e higher
entropy generation rate suppresses system efficiency. Bejan
[35] initiated the EGM (entropy generation minimization)
model, which is helpful to minimize the energy losses while
heat transfer processes and enrich the thermal system effi-
ciency. Also, the Ag and Cu nanoparticles have enormous
usage in the market because of their outstanding electrical
and thermal properties.)e impact of the first-order velocity
slip condition is essential for fluids that exhibit wall slip seen
in foams, suspensions, emulsions, etc.)ese types of analysis
are the gateways for many researchers to model new thermal
equipment in the industry.

2. Mathematical Formulation

)e present study considers the 3D Darcy–Forchheimer
flow of electrically conducting nanofluid past a stretching
sheet in a porous medium. )e uniform strength (B0) of the
magnetic field applied in the normal direction and the in-
duced magnetic field were not taken because of the small
quantity of the magnetic Reynolds number. )e �x and �y

coordinates can be taken along the surface, and �z can be
assumed perpendicular to the surface. Let us take �Π1 � A�x
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and �Π2 � A�y as the velocity components in the �x�y-plane.
)e nonlinear thermal radiation effect is included in the
energy equation. )is effect changes the heat transfer rate in
the industrial process, and entropy generation is to minimize
the energy losses during these heat transfer processes.
)erefore, these effects are considered for designing thermal
energy systems. Two different types of nanomaterials, such
as copper and silver, are taken, and water is taken as a base
fluid. In addition, the first-order velocity slip condition is
taken into account; see Figure 1. Based on the above as-
sumption, the governing mathematical model can be defined
as follows; see Hayat et al. [36], Nayak et al. [37], and
Tarakaramu et al. [38].

�Π1�x
+ �Π2�y

+ �Π3�z
� 0, (1)

�Π1 �Π1�x
+ �Π2 �Π1�y

+ �Π3 �Π1�z
� ]nf

�Π1�z�z
−
σnf

ρnf

B
2
0

�Π1 −
]nf

k1

�Π1 − F�Π21, (2)

�Π1 �Π2�x
+ �Π2 �Π2�y

+ �Π3 �Π2�z
� ]nf

�Π2�z�z
−
σnf

ρnf

B
2
0

�Π2 −
]nf

k1

�Π2 − F�Π22, (3)

�Π1�T�x + �Π2�T�y + �Π3�T�z � αnf
�T�z�z +

16σ∗

3k
∗
(ρCp)nf

�T
3�T�z�z + 3�T

2�T
2
�z􏼔 􏼕 +

Q

(ρCp)nf

�T − �T∞􏽨 􏽩. (4)

where Π�1, Π�2, and Π�3 are the velocity components in �x, �y,
and �z directions, ]nf is the kinematic viscosity, ρnf is the
density, σnf is the electrical conductivity, k1 is the perme-
ability of the porous medium, F is the nonuniform inertia
coefficient, αnf is the thermal diffusivity, σ∗ is the Ste-
fan–Boltzmann constant, Cpnf is the specific heat capacity,
and Q is the heat generation/absorption coefficient.

)e corresponding boundary conditions are as follows
(see Usman et al. [39]):

�Π1 � A�x +
2 − σv

σv

λ0 �Π1�z;
�Π2 � B�y +

2 − σv

σv

λ0 �Π2�z;

�Π3 � − W; − knf
�T�z � hc

�Tf − �T􏼐 􏼑at �z � 0

�Π1⟶ 0; �Π2⟶ 0; �T⟶ �T∞ as �z⟶∞

, (5)

where A and B are positive constants, W is the suction/
injection velocity, σv is the coefficient of tangential

momentum accommodation, and λ0 is the molecular mean
free path; see Hayat et al. [36].

Define

ψ �

��
A

]f

􏽳

�Π3;

�Π1 � A�xf′(ψ);

�Π2 � A�yg′(ψ);

�Π3 � −
����
A]f

􏽱
[f(ψ) + g(ψ)];

θ �
�T − �T∞

�Tf − �T∞
.

(6)

Substituting equation (6) into equations (2)–(4), we have

A1A2f
‴

(ψ) − f′(ψ)f′(ψ) +[f(ψ) + g(ψ)]f″(ψ) − A2Mf′(ψ) − A1A2λf′(ψ) − Frf′(ψ)f′(ψ) � 0, (7)

A1A2g
‴

(ψ) − g′(ψ)g′(ψ) +[f(ψ) + g(ψ)]g″(ψ) − A2Mg′(ψ) − A1A2λg′(ψ) − Frg′(ψ)g′(ψ) � 0, (8)

Ag Cu

Darcy-Forchheimer porous medium

Π2 = Ay

Π1 = Ax

–knfTz = hc (Tf – T)

x
y

z

Figure 1: Physical model of flow.
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A4

A5

1
Pr
θ″(ψ) +[f(ψ) + g(ψ)]θ′(ψ) + A4

1
Pr

R d (Γ − 1)
3 θ3(ψ)θ″(ψ) + 3θ2(ψ)θ′2(ψ)􏼚 􏼛􏼔

+(Γ − 1)
2 3θ2(ψ)θ″(ψ) + 6θ(ψ)θ′2(ψ)􏼚 􏼛 +(Γ − 1) 3θ(ψ)θ″(ψ) + 3θ′2(ψ)􏼚 􏼛 + θ″(ψ)􏼕 + A4Hgθ � 0.

(9)

)e reduced boundary conditions are

f′(0) � 1 + Λf″(0);

g′(0) � c + Λg″(0);

f(0) + g(0) � fw;

θ′(0) � −
1

A5
Bi[1 − θ(0)]; f′(∞)⟶ 0; g′(∞)⟶ 0; θ(∞)⟶ 0,

(10)

where M is the magnetic field parameter, λ is the porosity
parameter, Fr is the Forchheimer number, Pr is the Prandtl
number, R d is the radiation parameter, Γ is the temperature
ratio parameter, Hg is the heat generation/absorption pa-
rameter, Λ is the slip parameter, c is the ratio parameter, fw

is the suction/injection parameter, and Bi is the Biot
number.

Also,

A1 �
1

(1 − ϕ)
2.5,

A2 �
1

1 − ϕ + ϕρs/ρf􏼐 􏼑
,

A3 � 1 +
3 σs/σf − 1􏼐 􏼑ϕ

σs/σf + 2 − σs/σf − 1􏼐 􏼑ϕ
⎡⎢⎣ ⎤⎥⎦,

A4 �
1

1 − ϕ + ϕ(ρCp)s/(ρCp)f􏼐 􏼑
,

A5 �
ks + 2kf − 2ϕ kf − ks􏼐 􏼑

ks + 2kf + ϕ kf − ks􏼐 􏼑
.

(11)

)e skin friction coefficients and local Nusselt number
are expressed as follows:

Cf�x

���
Re

√
� A1f″(0); Cf�y

���
Re

√
�

A1

c
3/2g
″(0);

Nu
���
Re

√ � − A5θ′(0) + Rd θ′(0) +(Γ − 1)
3θ3(0)θ′(0) + 3(Γ − 1)

2θ2(0)θ′(0) + 3(Γ − 1)θ(0)θ′(0)􏽮 􏽯􏽨 􏽩.

(12)
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3. Entropy Analysis

)e entropy generation (EG) can be defined as

Sgen �
kf

�T
2
∞

knf

kf

+
16σ∗�T3

3kfk
∗⎡⎣ ⎤⎦�T

2
�y +

1
�T∞

μnf + σnfB
2
0􏼐 􏼑 �Π21 + �Π22􏼐 􏼑

+
μnf

�T∞

�Π21�z
+ �Π22�z

􏼔 􏼕.

(13)

)e transformed EG expression is

EG � A3Reθ′
2
(ψ) + RdRe (Λ − 1)

3θ3(ψ)θ′2(ψ) + 3(Λ − 1)
2θ2(ψ)θ′2(ψ) + 3(Λ − 1)θ(ψ)θ′2(ψ) + θ′2(ψ)􏼔 􏼕

+ A3M + A1λ( 􏼁ReBr
1
α1

f′
2
(ψ) + g′

2
(ψ)􏼔 􏼕 + A1ReBr

1
α1

f″
2
(ψ) + g″

2
(ψ)􏼔 􏼕,

(14)

where Re � a�x2/]f is the local Reynolds number,
Br � μfa2�x2/kf(�Tf − �T∞) is the Brinkman number, and
α1 � �Tf − �T∞/�T∞ is the temperature difference parameter.

)e Bejan number is

BE �
entropy generation due to heat andmass transfer

total entropy generation
,

BE �
Z1

Z2
,

(15)

where

Z1 � A3Reθ′
2
(ψ) + R dR e

· (Λ − 1)
3θ3(ψ)θ′2(ψ) + 3(Λ − 1)

2θ2(ψ)θ′2(ψ) + 3(Λ − 1)θ(ψ)θ′2(ψ) + θ′2(ψ)􏼔 􏼕

Z2 � A3Reθ′
2
(ψ) + R dR e (Λ − 1)

3θ3(ψ)θ′2(ψ) + 3(Λ − 1)
2θ2(ψ)θ′2(ψ) + 3(Λ − 1)θ(ψ)θ′2(ψ) + θ′2(ψ)􏼔 􏼕

+ A3M + A1λ( 􏼁ReBr
1
α1

f′
2
(ψ) + g′

2
(ψ)􏼔 􏼕

+ A1ReBr
1
α1

f″
2
(ψ) + g″

2
(ψ)􏼔 􏼕.

(16)

4. HAM Solutions

Reduced models (7)–(9) with associated conditions (10)
are solved by applying the HAM procedure (see Eswar-
amoorthi et al. [40] and Loganathan et al. [41]) because
this method helps to solve the nonlinear equations and it
does not depend on large/small physical parameters.
Also, this method provides the great freedom to fix the
auxiliary linear operator and the initial guess of un-
knowns. In addition, this method is used to solve many
strongly nonlinear problems in various fields in science
and engineering; see Rana and Liao [42].

Initially, we fix the initial approximation as
f0(ψ) � fw + (1/(1 + Λ))(1 − 1/eψ), g0(ψ) � (c/(1+Λ))
(1 − 1/eψ), and θ0(ψ) � Bi/(Bi + A5)e

ψ , the linear operator is
Lf � f′′′ − f, Lg � g′′′ − g, and Lθ � θ″ − θ, and the property

Lf[J1 + J2e
ψ + J31/eψ] � 0, Lg[J4 + J5e

ψ + J61/eψ] � 0, and
Lθ[J7e

ψ + J81/eψ] � 0 where Jl(l � 1 − 8) are constants.
After substituting the ith-order HAM, we get

fi(η) � f°
i (ψ) + J1 + J2e

ψ
+ J3

1
e
ψ ,

gi(η) � g°
i (ψ) + J4 + J5e

ψ
+ J6

1
e
ψ,

θi(η) � θ°i (ψ) + J7e
ψ

+ J8
1
e
ψ .

(17)

Here, f°
i (ψ), g°

i (ψ), and θ°i (ψ) are the particular
solutions.

)e solutions have the parameters hf, hg, and hθ, and
these parameters are responsible for the convergence of
HAM solutions; see Eswaramoorthi et al. [43]. In copper
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nanofluid, the range values are − 1.1≤ hf ≤ − 0.5,
− 1.2≤ hg ≤ − 0.3, and − 1.7≤ hθ ≤ − 0.7, and in silver
nanofluid, they are − 1.2≤ hf ≤ − 0.3, − 1.3≤ hg ≤ − 0.4, and
− 1.6≤ hθ ≤ − 0.6; see Figures 2(a)–2(c). We set hf � hg �

− 0.8 and hθ � − 1.2 for getting higher accuracy.

5. Results and Discussion

In this section, we present the consequences of physical
parameters on �x− direction velocity (f′(ψ)), �y− direction
velocity (g′(ψ)), temperature profile (θ(ψ)), skin friction
coefficients Cf�x

���
Re

√
andCf�y

���
Re

√
, local Nusselt number

(Nu/
���
Re

√
), entropy generation (Ns(ψ)), and Bejan number

(BE). Table 1 provides the thermal conductivity, density,
and specific heat capacity of copper, silver, and water. )e
thermophysical properties of the nanofluid are displayed in
Table 2. )e HAM order of approximation is illustrated in
Table 3. It is noted that 12th order is enough for all calcu-
lations. Table 4 portrays the variations of skin friction co-
efficients and local Nusselt number for various combinations
of Fr, λ, Λ, and fw. It is noticed that the surface shear stress
in both directions declines when the values of fw increase.
)e heat transfer gradient enhances when enriching the
magnitude of fw. )e skin friction coefficient and local

Nusselt number are high in Cu nanoparticles compared to
those of Ag nanoparticles. )e non-Darcy–Forchheimer
flow has higher skin friction coefficient and local Nusselt
number than Darcy–Forchheimer flow. Also, slip parame-
ters control the surface shear stress and reduce the heat
transfer gradient.

)e consequences of M, Fr, c, and Λ on �x− and
�y− direction velocity profiles are displayed in
Figures 3(a)–3(d) and Figures 4(a)–4(d). It is proved that
both direction velocities and their associated boundary layer
thicknesses diminish for the more presence of M, Fr, c, and
Λ. Physically, the presence of a magnetic field generates the
Lorentz force, and this force affects the fluid motion and
reduces the momentum boundary layer thickness. )e
magnitude of the porosity parameter tends to enhance the
fluid resistance during the flow, and this causes to decimate
the fluid velocity and diminish the momentum boundary
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Figure 2: h-graph for f″(0), g″(0), and θ′(0) with Λ � 1.0, M � 0.1, λ � 0.3, Fr � 0.5, fw � 0.3, Bi � 0.2, Hg � − 0.5, Rd � 0.2,

c � 0.5, ϕ � 0.1, Γ � 1.1, and Pr � 6.2.

Table 1: Physical properties; see Rout et al. [3].

Physical characteristics Cu Ag Water
k (W/mK) 401 429 0.613
ρ(kg/m3) 8933 10490 997.1
Cp(J/kgK) 385 235 4179
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layer thickness. In addition, it is observed that the mo-
mentum boundary layer thickness is high in Cu nano-
particles than in Ag nanoparticles. Physically, the Cu

nanoparticles have a small density compared to Ag nano-
particles. Figures 5(a)–5(d) delineate the changes of the
temperature profile for disparate values of Bi, Hg, and Rd. It
is noticed that the fluid hotness and thermal boundary layer
thickness increase when enhancing the values of convective
heating, heat generation/absorption, and radiation param-
eters. However, the convective cooling parameter leads to

weakening the fluid temperature. Physically, the higher
magnitude of the convective heating parameter enriches the
heat transfer coefficient, and this tends to enhance the fluid
hotness and raise the thermal boundary layer thickness.
Additionally, it is noted that the larger thermal boundary
layer thickness occurs in Ag nanoparticles than in Cu

nanoparticles. Physically, the Ag nanoparticles have larger
thermal conductivity compared to the Cu nanoparticles.)e
impact of ϕ on velocity and temperature profiles is presented
in Figures 6(a) and 6(b). It is seen that both direction

Table 2: )ermophysical properties; see Mahanthesh et al. [44].

Properties Nanoliquid
Dynamic viscosity μnf � μf/(1 − ϕ)2.5

Density ρnf � (1 − ϕ)ρf + ϕρs

Heat capacity (ρCP)nf � (1 − ϕ)(ρCP)f + ϕ(ρCP)s

Thermal conductivity knf/kf � ((ks + 2kf) − 2ϕ(kf − ks)/(ks + 2kf) + ϕ(kf − ks))

Electrical conductivity σnf/σf � (1 + 3(σs/σf − 1)ϕ/(σs/σf − 2) − (σs/σf − 1)ϕ)

Table 3: Order of approximations.

Order
Cu Ag

− f″(0) − g″(0) − θ′(0) − f″(0) − g″(0) − θ′(0)

1 0.56170 0.26835 0.13882 0.56516 0.27701 0.13888
5 0.57619 0.27685 0.14169 0.58415 0.28083 0.14155
10 0.57642 0.27700 0.14175 0.58458 0.28112 0.14161
12 0.57642 0.27700 0.14175 0.58459 0.28112 0.14162
15 0.57642 0.2770 0.14175 0.58459 0.28112 0.14162
20 0.57642 0.27700 0.14175 0.58459 0.28112 0.14162
25 0.57642 0.27700 0.14175 0.58459 0.28112 0.14162
30 0.57642 0.27700 0.14175 0.58459 0.28112 0.14162
35 0.57642 0.27700 0.14175 0.58459 0.28112 0.14162
40 0.57642 0.27700 0.14175 0.58459 0.28112 0.14162

Table 4: Skin friction coefficients and local Nusselt number for various combinations of λ, Fr, Λ, and fw.

λ Fr Λ fw
Cu Ag

C
fx
∧

���
Re

√
C

fy
∧

���
Re

√
Nu Cf

x
∧

���
Re

√
Cf

y
∧

���
Re

√
Nu

0.3 0.5 0 − 0.4 − 1.72296 − 1.97777 0.20763 − 1.76959 − 2.01957 0.18195
− 0.2 − 1.87913 − 2.20929 0.21214 − 1.93811 − 2.26941 0.18558
0.0 − 2.05072 − 2.46583 0.21558 − 2.12419 − 2.54782 0.18834
0.2 − 2.23793 − 2.74704 0.21818 − 2.32808 − 2.85441 0.19044
0.4 − 2.44060 − 3.05198 0.22020 − 2.54959 − 3.18801 0.19207

0.3 0.5 1 − 0.4 − 0.63968 − 0.82752 0.20305 − 0.64466 − 0.83180 0.17832
− 0.2 − 0.67002 − 0.88095 0.20856 − 0.67648 − 0.88817 0.18272
0.0 − 0.70154 − 0.93608 0.21292 − 0.70962 − 0.94646 0.18622
0.2 − 0.73383 − 0.99183 0.21625 − 0.74362 − 1.00543 0.18888
0.4 − 0.76641 − 1.04707 0.21876 − 0.77788 − 1.06369 0.19090

0 0 0 − 0.4 − 1.38430 − 1.59075 0.20804 − 1.42585 − 1.63195 0.18228
− 0.2 − 1.54373 − 1.82799 0.21241 − 1.59788 − 1.88787 0.18579
0.0 − 1.72093 − 2.09332 0.21574 − 1.79008 − 2.17572 0.18847
0.2 − 1.91593 − 2.38593 0.21827 − 2.00247 − 2.49454 0.19052
0.4 − 2.12825 − 2.70430 0.22035 − 2.23450 − 2.84251 0.19225

0 0 1 − 0.4 − 0.56625 − 0.71550 0.20410 − 0.57259 − 0.72225 0.17913
− 0.2 − 0.60298 − 0.78024 0.20929 − 0.61105 − 0.79033 0.18328
0.0 − 0.64139 − 0.84740 0.21338 − 0.65137 − 0.86108 0.18657
0.2 − 0.68090 − 0.91540 0.21653 − 0.69285 − 0.93267 0.18909
0.4 − 0.72074 − 0.98251 0.21892 − 0.73461 − 1.00308 0.19102
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Figure 3: )e �x− direction velocity profile for dissimilar values of M (a), Fr (b), c (c), and Λ (d).
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Figure 4: Continued.
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velocities decrease and temperature enhances for raising the
values of ϕ. Physically, the higher value of ϕ gives more
thermal conductivity of the nanofluid, and this causes to
enrich the fluid temperature.

Figures 7(a) and 7(b) and Figures 8(a) and 8(b) indicate
the outcomes of fw, M, and c on skin friction coefficient in
both directions. It is noticed that the surface shear stress
slashes when heightening the quantity of fw and M, and it
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Figure 4: )e �y− direction velocity profile for dissimilar values of M (a), Fr (b), c (c), and Λ (d).
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Figure 5: )e temperature profile for dissimilar values of Bi≥ 0 (a), Bi≤ 0 (b), Hg (c), and Rd (d).
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Figure 6: )e �x− and �y− direction velocity (a) and temperature (b) profiles for dissimilar values of ϕ.
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Figure 7: )e skin friction coefficient (�x− direction) for different combinations of fw, M, and c.
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Figure 8: )e skin friction coefficient (�y− direction) for different combinations of fw, M, and c.
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exalts when rising the values of c on both directions.
Physically, the velocity slip parameter affects the fluid ve-
locity, and as a result, it enhances the surface shear stress.
)e higher quantity of M strengthens the Lorentz force,
which affects the fluid motion and thus decreases the surface
shear stress. Permeability is the calculation of the capacity of
porous material to permit the fluid to pass through it. )e
rise in the parameter enhances the shear stress, which is the

force of friction. )e larger values of fw mean a larger
amount of fluid sucked away from the plate. )is causes to
suppress the fluid speed and reduce the shear stress. )e
larger skin friction coefficient occurs in Cu nanoparticles
than in Ag nanoparticles since Ag nanoparticles exhibit less
surface drag compared to Cu nanoparticles. )e variations
of the local Nusselt number for dissimilar values of fw, c,
Hg, and Rd on both nanoparticles are illustrated in
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–0.4 –0.2 0.0 0.2 0.4

0.200

0.205

0.210

0.215

fw

N
u Re

Ag
Cu

(a)

N
u Re

Rd = 0, 0.5, 1, 1.5

–0.6 –0.4 –0.2 0.0 0.2 0.4 0.6
0.0

0.1

0.2

0.3

0.4

0.5

Hg

Ag
Cu

(b)

Figure 9: )e local Nusselt number for different combinations of fw, c, Hg, and Rd.
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Figure 10: )e entropy generation profile for dissimilar values of Rd (a), Re (b), Br (c), and fw (d).
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Figures 9(a) and 9(b). From these figures, it is seen that the
heat transfer gradient intensifies for larger values of fw and
Rd and decays when enriching the values of c and Hg.
Physically, the velocity slip parameter leads to enhancing
the fluid temperature inside the boundary, which creates
the reduction of the temperature gradient. )e suction
means the heated fluid is taken away from the surface,
resulting in the enhancement of the heat transfer gradient.
)e higher values of Rd with Hg< 0.3 reflect more heat
transfer from a hot place to a cold place which results in the
enhancement of the heat transfer gradient. However,
downfall occurs when Hg> 0.3. )e porosity parameter
decreases the fluid motion, which results in the reduction of
the heat transfer rate. In addition, the higher heat transfer
gradient accounted for Cu nanoparticles than Ag nano-
particles. Figures 10(a)–10(d) portray the reactions of
entropy generation for the diverse quantity of Rd, Re, Br,
and fw. It is seen that the entropy generation upsurges
when increasing the quantity of Rd, Re, and Br, and quite
the opposite behavior is attained for larger values of fw.
)e higher magnitude of Rd leads to enriching the heat
transfer rate, so more heat is produced due to which the
entropy generation rises. )e Bejan number for diff-
erent values of Rd, Hg, fw, and Br is plotted in

Figures 11(a)–11(d). It is concluded that the Bejan number
enriches when rising Rd, Hg, fw, and Br values.

6. Conclusions

)e consequences of heat consumption and radiation of
an MHD Darcy–Forchheimer flow of water-based
nanofluid past a 3D plate are analytically investigated.
)ere are two types of nanoparticles such as Cu and Ag

which are taken into account. )e suitable variables
are implemented to remodel the governing PDEs into
ODEs. )e resultant models are analytically solved by
applying the HAM procedure. In addition, the impact of
radiation, heat consumption/generation, and suction/
injection on entropy generation and the Bejan number is
analyzed. )e key outcomes of our investigation are as
follows:

(i) )e �x− and �y− direction velocities are decreasing
functions of magnetic field and slip parameters

(ii) )e fluid temperature enhances when rising the
convective heating, heat generation/absorption, and
radiation parameters, and it reduces when escalat-
ing the convective heating parameter
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Figure 11: )e Bejan number for dissimilar values of Rd (a), Hg (b), fw (c), and Br (d).

12 Mathematical Problems in Engineering



(iii) )e surface shear stress in both directions is sup-
pressed when enhancing the magnetic field and
porosity parameters

(iv) )e heat transfer gradient accelerates when raising
the values of the radiation parameter, and it reduces
when heightening the heat generation/absorption
parameter

(v) )e entropy generation increases when escalating
the radiation parameter, Reynolds number, Brink-
man number, and suction/injection parameter

(vi) )e Bejan number upsurges when enriching the
quantity of radiation, heat generation/absorption
parameters, Brinkman number, and suction/injec-
tion parameter
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In the current decade, bioconvection phenomenon has received a lot of attention in research because of its applications in the
biological polymer synthesis, biosensors and biotechnology, pharmaceutical industry, microbial enhanced oil recovery, envi-
ronmentally friendly applications, and continuous refinements in mathematical modeling. .erefore, this article is prepared to
address the unsteady mixed bioconvection in electrically conducting fluid flow between two infinite parallel plates with magnetic
field and first-order chemical reaction impacts. Furthermore, the heat and mass transfer study has taken Dufour and Soret effects
into account. .e nonlinear coupled systems representing the continuity, momentum, energy, mass diffusion, and microor-
ganisms’ equations are renewed into an ordinary differential equation (ODE) by employing the similarity renovation. .e
renovated ODEs are interpreted by the Homotopy Analysis Method (HAM). Impacts of the different emerging parameters,
namely, magnetic field parameter (M), heat generation parameter (Q), Dufour number (Du), Soret number (Sr), Schmidt number
(Sc), chemical reaction parameter (K0), Prandtl number (Pr), squeezing parameter (β), Peclet number (Pe), and Lewis number
(Le) on the dimensionless velocity, temperature, concentration, and microorganism profiles as well as the frictional drag, Nusselt
number, Sherwood number, and microorganisms mass flux are presented. .e main outcomes of this investigation are that the
velocity profile rises as the squeezing parameter is increased, and clear enhancement is noticed in the temperature profile for
augmented estimations of chemical reaction, heat generation/absorption, and Dufour parameters..ere is a significant downward
trend in the concentration profile and microorganism density for elevated values of Dufour and Soret parameters.

1. Introduction

Bioconvection is initiated by the accumulated swimming of
motile microorganisms in fluid. .is effect happens because
microorganisms are slightly denser than water in suspension
and usually swim in the upward path. Bioconvection is a
growing response due to its use in microfluidic devices, such
as bioscience dispersions and bio galvanic devices, and in the
investigation of a few thermophilic species existing in high-
temperature springs, in microbial oil recovery, and in the

formulation of oil and gas transporting sedimentary basins.
A relatively new idea of bioconvection prompted by the
insertion of microorganisms to a low concentration sus-
pension of nanoparticles has drawn the consideration of
researchers. Pal and Mondal [1] reported that bioconvection
improves the stability of nanofluid flow. Kuznetsov and
Avramenko [2] examined the bioconvection in fluid flow
that contained gyrotactic microorganisms and nano-
particles. Khan et al. [3] addressed boundary layer nanofluid
flow comprising microorganisms with Naiver slip across a
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vertical plate. .am et al. [4] researched the bioconvection
flow over a solid domain with the effects of gyrotactic mi-
croorganism density factor. Xu et al. [5] analyzed the
completely developed flow using nanofluid having both
gyrotactic microorganisms and nanoparticles in a hori-
zontally placed channel. Raees et al. [6] studied bio-
convective unsteady flow of Newtonian fluid with
nanoparticles between two parallel plates. Mosayebidorcheh
et al. [7] examined fluid flow including nanoparticles in a
horizontal channel with gyrotactic microorganisms. Shen
et al. [8] studied analytically bioconvective nanofluid flow
carrying motile microorganisms across a stretched surface
with radiation and velocity slip impacts by employing HAM.
Kumar et al. [9] analyzed the unsteady bioconvective
nanofluid flow with slip velocity, thermophoresis, and
Brownian effects by employing the Keller-box method. Zhao
et al. [10] explored an electrically conducting unsteady
mixed bioconvection fluid flow between two plates. Tar-
akaramu and Satya Narayana [11] investigated the flow of
bioconvection nanofluids in a rotating system with binary
chemical reaction effects. Waqas et al. [12] visualized
nanofluid flow with heat transfer rates and motile micro-
organisms across a stretching surface. Rashad and Nabwey
[13] examined bioconvection and nanofluid flow over a
horizontal cylinder. Shukla et al. [14] discussed heat transfer
in bioconvective nanofluid flow with solar flux, radiation,
and oblique magnetic field impacts.

In the thermochemical process, convection by two
distinct rates of diffusion is used in a variety of biomedical
applications such as laser tumor therapy, improving oxy-
genated blood movement, polymeric liquids, and novel
lubricants. .e Soret (thermal diffusion) effect is the vari-
ation in mass flux induced by a temperature difference.
However, the Dufour effect is usually defined as the heat flux
caused by the concentration gradient. Soret impact is used to
manage mixtures of gases with lighter and medium mo-
lecular weights. .ese phenomena have many practical
applications in the fields of geoscience, chemical engi-
neering, air pollution, isotope separation, purification of
ground water, hydrology, etc. Researchers have paid ex-
tensive attention to these two aspects because of the above-
mentioned applications. Cheng [15] explained natural
convection with Soret (Sr) andDufour (Du) effects on a fluid
flow saturated in a porous medium. Hayat et al. [16] in-
vestigated viscoelastic fluid flow over a porous surface with a
magnetic field, and Du and Sr impacts. Hayat and Nawaz
[17] also studied Du and Sr effects for second-grade fluid
flow. Unsteady MHD flow on a radiative porous plate along
with binary chemical reaction, and Du and Sr effects was
reviewed by Sharma et al. [18]. Hayat et al. [19] analyzed the
Sr and Du impacts on 3-D viscoelastic fluid flow. Moorthy
et al. [20] investigated MHD and convection flow across a
porous surface with Du and Sr impacts. Sheri and Srinivasa
Raju [21] examined the Soret effect on the time-dependent
MHD fluid flow across a semi-infinite vertical surface with
the consideration of viscous dissipation. Majeed et al. [22]
explored the Du and Sr influences on second-grade fluid
flow induced by an expanding cylinder with radiation effects.
Liu et al. [23] utilizedmultirelaxation phenomena to develop

a dual-diffusion natural convective flow with Du and Sr

effects by using lattice Boltzmann theory. .ey showed that
double-diffuse natural convective flow may be easily
achieved via the use of the Du and Sr impacts. Sardar et al.
[24] evaluated mixed convection processes in a Carreau fluid
flow with Du and Sr influences that were confined by a
wedge. Bilal Ashraf et al. [25] deliberated the mixed con-
vective MHD viscoelastic fluid flow with Du and Sr impacts.
Jiang et al. [26] demonstrated promising results in simul-
taneous heat and mass transfer processes with Du and Sr

impacts. Hafeez et al. [27] studied the fluid flow over a disk
with thermophoresis Du and Sr effects.

Hannes Alfvén, in 1970, was the first person who in-
troduced and developed Magnetohydrodynamics (MHD).
MHD is a dynamics study in the presence of electrically
conducting liquids with magnetic properties and its effects
that has sufficient applications in biomedical sciences and
engineering such as drug targeting, biowaste fluid trans-
portation, cell separation, cancer tumor treatment, magnetic
endoscopy, astrophysics, MHD pumps, metallurgy, ship
propulsion, reduction of turbulent drag, jet printers, and
fusion reactors. MHD flow across different geometries
relevant to engineering is an attractive and appreciable field
of science. .e above-mentioned applications of MHD
compel scientists to create innovative mathematical models
in the fluid mechanics field [28–31]. Patel and Singh [32]
analyzed the MHD, micropolar fluid flow with Brownian
diffusion, and convective boundary condition. Aly and Pop
[33] explored steady MHD hybrid nanofluid flow along the
permeable flat plate. Rashid et al. [34] studied the MHD
boundary layer flow over a porous shrinking surface with the
radiation effects. Waini et al. [35] evaluated the steady fluid
flow across a permeable wedge with magnetic field impacts.
Naqvi et al. [36] addressed the chemical reaction and ra-
diation impacts in MHD nanofluid flow over a radially
stretching/shrinking disk. Raees et al. [37] examined mixed
convection in a magnetized second-grade fluid flow over a
stretched surface. Rizwana et al. [38] investigated MHD
stagnation fluid flow with mixed convection across an os-
cillating plate.

.e motivation of the current study is to examine the
unsteady bioconvective flow in a horizontal squeezing
channel. Multiple results of the magnetic field, chemical
reaction, and Dufour and Soret effects are employed into the
account. .e considered system of PDEs is transformed into
the dimensionless ODEs by employing the similarity
transformation .en, these converted ODEs are solved by
adopting HAM (introduced by Liao [39]). We have suc-
cessfully implemented HAM to solve the dimensionless
form of momentum, energy, nanoparticles mass, and bio-
convection (motile microorganism species) equations with
suitable boundary conditions. Extensive graphical and
tabulated results are presented with the aid of Mathematica
software, and finally, the impacts of different emerging
parameters on the velocity, temperature, nanoparticles
fraction, and motile microorganism profiles along with the
frictional drag, Nusselt number, Sherwood number, and
microorganisms mass flux are examined and deliberated in
detail. .is research may be helpful for researchers and
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engineers who work on the industrial applications of bio-
convection squeezed flow of nanofluid which is quite useful
in the fields of polymer synthesis, biomedicine, lubrication,
metal and polymer molding, foam production process
geothermal system, and many others.

2. Mathematical Formulation

MHD and unsteady electrically conducting bioconvective
nanofluid flow between two infinite parallel plates with first-
order chemical reaction, and Dufour and Soret effects are
considered. .e coordinate system is considered in such a
way that the x-axis is along the lower plate and y- axis is
normal to the flow direction. Figure 1 depicts the geometry
of the flow system. .e plates are assumed at y � h(t) �

[](1 − at)/b]1/2 distance apart, and the top plate is assumed
tomove in towards or away directions of the lower plate with
velocity v(t) � dh/dt. Here, t denotes the time, ] is the
kinetic viscosity, and a, b are the positive numbers. Defi-
nitely, it is clear that 1 − at> 0, which shows that
a<

�������
b2 − 4ac

√
1/t. Clearly, a � 0 indicates that both plates

are static, 0 < a< 1/t illustrates that the upper plate is
squeezed against the lower plate, and a< 0 demonstrates that
the upper plate is gone away from the lower one. Also, it is
assumed that the upper and lower plates are kept at a
constant chemical reaction concentration C2 and C1; con-
stant temperatures and constant microorganisms’ concen-
tration are T2, T1 N2, and N1, respectively. .e magnetic
field (t) is considered along the y-axis.

.e governing system under the above-mentioned as-
sumptions are

∇.V � 0, (1)

zV

zt
+(V.∇)V � υ∇2V +

1
ρ

(J × B) −
1
ρ
∇p, (2)

zT

zt
+ V.∇T � α∇2T +

Qs(t)

ρCp

T − T0( 􏼁 + J, (3)

zC

zt
+ V.∇C � D∇2C − k(t) C − C0( 􏼁 + R, (4)

zN

zt
� −∇.j. (5)

where V, B, J, ρ, p, υ,T0, T, α,Qs(t), D,C, C0,K(t), N, and
j are the velocity vector, magnetic induction along y-di-
rection, electric current density, fluid density, pressure,
kinematic viscosity, reference temperature, temperature,
thermal diffusivity, volumetric heat generation rate, mass
diffusivity, chemical reaction, reference concentrations, re-
action rate, motile microorganism concentration, and flux of
microorganisms, respectively.

J is the heat flux, known as the “Dufour effect,” that can
be given by Frick’s law of diffusion as J � ρ DKt/Cs∇2C, R is
the flux concentration generated by the temperature dif-
ference known as “Soret effect,” from Fourier’s law of heat
conduction Rc � q./A � DKt/Tm∇2T. Tm, D, and Kt are the
mean temperature, coefficient of diffusion species, and
thermal diffusion ratio, respectively.

Momentum Equation (2) in the component form of a
two-dimensional channel flow can be written as

zu

zt
+ u

zu

zx
+ v

zu

zy
� −

zp

ρ zx
+ υ

z
2
u

zx
2 +

z
2
u

zy
2􏼠 􏼡 −

σB
2
(t)u

ρ
, (6)

zv

zt
+ u

zv

zx
+ v

zv

zy
� −

zp

ρ zy
+ υ

z
2
v

zx
2 +

z
2
v

zy
2􏼠 􏼡. (7)

To simplify equations (6) and (7), the given transfor-
mation is used:

ξ �
zv

zx
−

zu

zy
� −∇2ψ. (8)

By using the above information, the governing equations
are transformed as follows:

zu

zx
+

zv

zy
� 0, (9)

zξ
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+ u
zξ
zx

+ v
zξ
zy

� υ
z
2ξ
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2 +

z
2ξ

zy
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2
(t)

ρ
zu

zy
, (10)
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ρCp
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2
T
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2 +
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2
T

zy
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Dkt
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z
2
C
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2􏼠 􏼡, (11)

v = dh
dt T = T2, C = C2, N = N2

h (t)

T = T1, C = C1, N = N1

motile
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Stationary plate

Moving plate

B
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Z
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,

Figure 1: Flow configuration.
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zC
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zx
+ v

zC

zy
� D

z
2
C
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z
2
C

zy
2􏼠 􏼡 − K(t) C − C0( 􏼁 +

Dkt

Tm

z
2
T
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z
2
T
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zN
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+ +

z

zy
(N􏽥v) + u

zN

zx
+ v

zN

zy
+

z

zx
(N􏽥v) � Dm

z
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N

zx
2 +

z
2
N

zy
2􏼠 􏼡. (13)

Boundary conditions are as follows:

u � 0,

v � 0,

T � T1,

C � C1,

N � N1,

aty � 0,

u � 0,

v �
dh

dt
,

T � T2,

C � C2,

N � N2,

asy � h(t),

(14)

where u � zψ/zy and v � −zψ/zx are the velocity compo-
nents, ξ � −∇2ψ is the vorticity function, N represents
motile microorganisms density, Wc is the maximum cell
speed, 􏽥v � [bcWc/(C1 − C0)zC/zy] is the microorganisms’
average swimming velocity, bc is chemotaxis constant, and
Dm is the diffusivity of microorganisms.

Similarity transformations are the transformations that
can be used to convert an n-independent variable partial
differential system to a system with (n − 1) independent
variables. When n � 2, the situation is ideal since one is
dealing with ODEs rather than PDEs. For the solution of
nondimensional problem, the following similarity trans-
formations and nondimensional quantities have been used:

ψ(x, y) �
bυ

1 − at
􏼠 􏼡

1/2

xf(η),

u �
bx

1 − at
f′(η),

v � −
bυ

1 − at
􏼠 􏼡

1/2

f(η),

η �
b

υ(1 − at)
􏼠 􏼡

1/2

y,

θ(η) �
T − T0

T1 − T0
,ϕ(η) �

C − C0

C1 − C0
,

w(η) �
N

N1
.

(15)

Using equation (14) into equations 9–12, we get the
following nondimensional equations of momentum,
energy, concentration, and microorganisms equations;
the continuity equation (10) is satisfied identically as
follows:

f″″ − Mf″ − βηf′″ − 3βf′ − f″f′ + f′″f � 0,

θ″ + PrQθ − Prβηθ′ + Prfθ′ + Du Prϕ′ � 0,

ϕ″ − ScK0ϕ − Scϕ′βη + Scfϕ′ + SCSrθ″,

w″ − Scβηw′ + Scfw′ − Pewϕ″ − Peϕ′w′ � 0.

(16)

According to equation (13), the transform boundary
conditions are

f(0) � 0,

f′(0) � 0,

θ(0) � 1,

(0) � 1,

w(0) � 1,

f(1) � β,

f′(1) � 0,

θ(1) � δθ,

(1) � δϕ,

w(1) � δw,

(17)

where β � a/2b is the squeezing parameter, M � σ/υρB2
0 is

the dimensionless magnetic field number, Pr � ρCPυ/k
indicates the Prandtl number, Q � Q0/ρCp signifies the heat
generation parameter, Du � DkT(C1 − C0)/υCp(T1 − T0)

and Sr � DkT(T1 − T0)/υTm(C1 − C0) represents the
Dufour and Soret numbers, Sc � υ/D is the Schmidt
number, K0, Pe, and Le � α/D are the chemical reaction
parameter, bio convection Peclet number, and Lewis
number, respectively, δθ � T2 − T0/T1 − T0, δϕ �

C2 − C0/C1 − C0, and δw � N2/N1 are the constants.where
B0 � (b/υ(1 − at))− 3/4B(t) and Q0 � (b/1 − at)− 1Qs(t) are
the reference magnetic field and heat generation, respec-
tively, while K0 � (b/1 − at)− 1k(t) is the chemical reaction
parameter.

3. Thermal Transport Analysis

.e nonlinear ODEs (15–19) are tackled by employing
HAM. .is method is used to find the analytic solutions of
the complicated nonlinear ordinary differential system. It
has unique advantages as compared to other analytical
approximation methods. Besides the other different
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analytical techniques, HAM delivers convenient results. It is
investigated that the nonlinear boundary value problems
(BVPs) of science, finance, and engineering can be analyt-
ically solved by applying HAM. It is developed on Mathe-
matica and Maple softwares that can effectively be used on
finite, semifinite, and infinite intervals to solve eigen value

problems. Convergence of the resulting solution can be
found with the help of a module in HAM by using the
optimum value called the “convergence-control parameter,”
which can be used at the minimum squared residual of the
system of the governing equations in a certain order of
approximations.
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Figure 2 portrays the impacts of magnetic parameter
(M) on the velocity profile (f′(η)). It is seen that the velocity
profile develops rapidly with the evolution of M, while the
increment in M boosts the flow velocity in the vicinities of
lower and upper plates, but decline in the flow velocity is
observed between the plates. .e fact behind this is that, the
magnetic field interacts with the electrical conductivity of
nanofluid and formed Lorentz forces which diminish the
velocity of fluid..e influence of the squeezing parameter on
the velocity profile is observed in Figure 3. It predicts that the
velocity profile rises as the squeezing parameter (β) in-
creases; this is because that the accelerated flow has a higher
velocity. It is seen in Figure 4 that the temperature profile is
greatly influenced by heat generation parameter (Q), al-
though continuously increasing Q raises the temperature
profile rapidly. Physically, increasing Q increases the kinetic
energy of the fluid particles, so the thickness of the thermal
boundary layer rises, which leads to an increase in tem-
perature profile. Figure 5 reveals that the temperature profile
increases constantly when the chemical reaction parameter
(K0) rises. .is occurred because of an increase in the
concentration of interfacial nanoparticles.

Figure 6 demonstrates the effect of Dufour number (Du)

on the temperature profile. Graph clearly portrays that Du

has a great influence on temperature profile. It is noticed that
on enhancing Du, the thermal profile is strengthened. .is
can be attributed to an increase in the Du, which leads to a
rise in the concentration gradient, resulting in rapid mass
diffusion. As a result, the rate of energy transfer between
particles increases. Consequently, the temperature profiles
rise. Figure 7 reveals the comportment of Soret number (Sr)

on temperature profile (θ(η)). Rising values of Sr

strengthens the thermal field.

Figures 8–12 depict the impacts of heat generation/ab-
sorption (Q), chemical reaction parameters (K0), Dufour
(Du), Soret (Sr), and Schmidt (Sc) numbers on concen-
tration profile (ϕ(η)). It is established that these physical
parameters have a major impact on concentration. Figure 8
portrays the nanoparticle concentration profile for the heat
generation parameter (Q). .e figure clearly shows that both
the concentration and thickness of the concentration
boundary layer are the decreasing functions of Q. Figure 9
illustrates the impact of chemical reaction parameter (K0)

on concentration profile (ϕ(η)). It is noted that ϕ(η) and
concentration boundary layer decline by raising the value of
K0. .is decline in ϕ(η) is due to a decrease in molecular
diffusivity as the number of chemical species increases.
Figure 10 explores the conduct of Dufour parameter (Du)

on the concentration profile of nanoparticles (ϕ(η)). It is
clear from this graph that ϕ(η) decreases for an increasing
value of Du. Figure 11 explicates the effects of Soret number
(Sr) on the nanoparticle’s concentration profile of (ϕ(η)). It
represents a decreasing trend in ϕ(η) for the uprising values
of Sr. Figure 13 inspects the consequences of the Schmidt
number (Sc) on the concentration field (ϕ(η)). It is ob-
served that by increasing Sc, the concentration profile decays
due to a reduction in mass diffusion.

Figures 13–14 illustrate the effects of Dufour (Du) and
Soret (Sr) on microorganism’s concentration profile. It is
found that increasing estimations of Du and Sr numbers
reduce the density of microorganism’s concentration
(w(η)). .e effect of Peclet number (Pe) against w(η) is
plotted in Figure 15. It illustrates that when Pe increases, the
microorganism density decreases. Physically, Pe is a mea-
surement of the relative strength of motile microorganisms’
directional and random swimming. So, larger Pe values
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Figure 4: Heat generation parameter (Q) effect on θ(η).
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indicate increased directional movement of microorgan-
isms, resulting in reduced w(η) profile.

Moreover, the impacts of some emerging parameters on
the skin friction coefficient number (Cf), Nusselt number

((Nux), Sherwood number (Sh) and microorganism mass
flux (Qx) are described in Tables 1 and 2. Skin friction
coefficient is a special parameter in the studies of heat
transfer.
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Figure 6: Dufour parameter (Du) effect on θ(η).
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Figure 7: Soret parameter (Sr) effect on θ(η).
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Figure 8: Heat generation parameter (Q) effect on ϕ(η).
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Figure 9: Chemical reaction parameter (K0) effect on ϕ(η).
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Figure 10: Dufour parameter (Du) effect on ϕ(η).
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Figure 11: Soret parameter (Sr) effect on ϕ(η).
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Figure 12: Schmidt number (Sc) effect on ϕ(η).
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Figure 13: Soret parameter (Sr) effect on w(η).
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Figure 14: Dufour parameter (Du) effect on w(η).
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Figure 15: Peclet number (Pe) effect on w(η).

Table 1: Skin friction coefficient (Cf ) for various values of magnetic field (M) ,and squeezing parameter (β) and Nusselt number (Nux) for
some distinct values of Prandtl number (Pr) and Dufour number (Du).

M M Cf(Re−1/2
x ) Pr Du Nux(Re−1/2

x )

0.5 −1.170391 0 −0.6517
0 1 −1.921779 0.5 1 −1.0567

1.5 5.183076 1.5 −3.00877
0.5 −1.535277 0 0.29023

5 1 1.799333 0.7 1 0.00054
1.5 5.290921 1.5 −0.22587
0.5 −1.855036 0 0.20216

10 1 1.855036 1 1 −0.31621
1.5 5.411844 1.5 −0.84232

Table 2: Sherwood number (Sh) for several values of Schmidth number (Sc) and Soret number (Sr) and microorganismmass flux (Qx) for
some specific values of Schmidth number (Sc) and Peclet number (Pe).

Sc Sr Sh(Re−1/2
x )) Sc Pe Qx(Re−1/2

x )

0 −1.17103 0.5 −0.16798
0.5 0.5 −1.31598 0.5 1 −0.35603

1 −1.51113 1.5 −0.56174
0 −1.32980 0.5 −0.37250

1 0.5 −1.70517 1 1 −0.78721
S 1 −2.44939 1.5 −1.28813

0 −1.47780 0.5 −0.62969
1.5 0.5 −2.19863 1.5 1 −1.32482

1 −3.83169 1.5 −2.08003
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4. Conclusions

.e Soret and Dufour effects on a two-dimensional unsteady
bioconvection squeezing flow incorporating motile gyro-
tactic microorganisms in a horizontal channel have been
examined in the presence of a chemical reaction and a
magnetic field. Obtained outcomes are exhibited graphically
and in tabulated form. .e summarization of results is as
given below:

(i) .e velocity profile is reduced in the center and
slightly increases along the walls of channel.

(ii) Increasing values of squeezing parameter decrease
the velocity profile.

(iii) For rising chemical reaction, heat generation/ab-
sorption parameters, and Dufour and Soret number
values, the temperature profile is increased.

(iv) Chemical reaction parameter is critical for the
concentration and motile microorganism’s profiles.
When the chemical reaction parameter is increased,
both profiles diminish.

(v) Fluid concentration drops when the heat generation
parameter, Schmidth number, and Dufour and
Soret numbers increase.

(vi) .e concentration of microorganisms decreases for
the rising values of Dufour and Soret, heat gener-
ation/absorption parameter, and bioconvection
Peclet number.

Nomenclature:

V: Velocity vector (LT−1)
B: Magnetic induction (M A−1 T−2)
J: Electric current density (AL−2)
ρ: Fluid density (ML−3)
p: Pressure (M L−1 T2)
υ: Kinematic viscosity (L2T−1)
T: Temperature (K)
T0: Reference temperature (K)
Tm: Mean temperature (K)
α: .ermal diffusivity (L2T−1)
D: Mass diffusivity (L2T−1)
C: Chemical reaction
C0: Reference concentrations
N: Motile micro-organism concentration
j: Flux of microorganisms
Kt: .ermal diffusion ratio (L2T−1)
u: Along x-axis fluid velocity (LT−1)
v: Along y-axis fluid velocity (LT−1)
􏽥v: Microorganisms’ average swimming velocity (LT−1)
Dn: Microorganisms’ diffusion coefficient (L2T−1)
η: Dimensionless variable
f: Dimensionless velocity
θ: Dimensionless temperature
ϕ: Nanoparticle’s dimensionless concentration
w: Microorganism’s dimensionless concentration
β: Squeezing parameter
M: Magnetic field number

Pr: Prandtl number
Q: Heat generation parameter
Du: Dufour numbers
Sr: Soret numbers
Sc: Schmidt number
K0: Chemical reaction parameter
Pe: Bo convection Peclet number
Le: Lewis number.
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