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Noncoding RNA (ncRNA) refers to a kind of endogenous
small RNA molecules that have no protein coding capacity.
In recent years, extensive studies have been conducted to
study the roles of ncRNAs in cell biology, and accumulating
evidences show that these RNA molecules do not constitute
transcriptional noise but play important roles in cellular
functions, such as transcriptional and posttranscriptional
regulation, epigenetic regulation, organ or tissue develop-
ment, cell differentiation, cell cycle control, cellular trans-
port, metabolic processes, and chromosome dynamics. Their
deregulation heavily contributes to various pathological con-
ditions of human complex diseases, including breast cancer,
hepatocellular cancer, prostate cancer, colon cancer, bladder
cancer, thyroid cancer, lung cancer, ovarian cancer, leukemia,
Alzheimer’s disease, diabetes, and HIV. The development
of computational models to predict the various complex
ncRNA-related interactions could significantly benefit the
inference of ncRNA function, the identification of ncRNA-
disease associations, the detection of ncRNA biomarker, the
identification of drug-target interactions, and drug design.

The papers that follow in the next pages describe recent
findings in the field of computational models for prediction
of the varied interactions related to ncRNAs. They represent
only a fraction of the current research, the emerging trends,
and applications of computational models for ncRNAs. The
special issue consists of eight research papers and one review
paper. The research papers include identification and anno-
tation of ncRNAs (four papers), miRNA-target interaction
prediction (one paper), ncRNA function prediction (one

paper), miRNA-transcriptional factor interaction prediction
(one paper), and protein-protein interaction prediction (one
paper). A brief description of the papers follows.

G. Wan et al. analyzed RNA-seq data and ChIP-
seq histone modification data to identify the relationship
between lncRNA genes transcription and histone modifica-
tion H3K4me3 or H3K27me3 in the paper “Transcriptional
Regulation of lncRNA Genes by Histone Modification in
Alzheimer’s Disease.”

J. Qu et al. detected 254 small noncoding RNAs in
genome of Pleurotus ostreatus and analyzed the evolutionary
conservation of them in the paper “Identification and Char-
acterization of SmallNoncodingRNAs inGenome Sequences
of the Edible Fungus Pleurotus ostreatus.”

Ameta-path-based predictionmethodRMLMwas devel-
oped in the paper “AMeta-Path-BasedPredictionMethod for
Human miRNA-Target Association” by J. Luo et al. for
predicting potential miRNA-target interactions. The authors
also developedRMLMSe, inwhich sequence informationwas
utilized to improve the performance of RMLM.

L. Jiang et al. employed backpropagation (BP) neural
network together with 98-dimensional novel features for
microRNA (miRNA) precursor identification in the paper
“BP Neural Network Could Help Improve Pre-miRNA Iden-
tification in Various Species.” The authors demonstrated that
the total prediction accuracy of thismethodwas nearly 13.17%
greater than the state-of-the-artmiRNAprecursor prediction
software tools.
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A framework named Gene2Function to annotate Gene
Reference into Functions (GeneRIFs) was given byY.Hu et al.
in the paper “Annotating the Function of theHumanGenome
with Gene Ontology and Disease Ontology.”

M-fold, TargetScan, and GeneCoDia3 were used in the
paper “Human Ribosomal RNA-Derived Resident MicroR-
NAs as the Transmitter of Information upon the Cytoplasmic
Cancer Stress” for investigating RNA relationships between
rRNA and miRNA against cellular stresses by M. Yoshikawa
and Y. R. Fujii. The authors detected 17 RNA sequences
identical with known miRNAs in the human rRNA and
termed as rRNA-hosted miRNA analogs (rmiRNAs).

The paper “Ens-PPI: A Novel Ensemble Classifier for
Predicting the Interactions of Proteins Using Autocovariance
Transformation from PSSM” by Z.-G. Gao et al. provided a
novel predictor based on the Rotation Forest (RF) algorithm
combined with Autocovariance (AC) features extracted from
the Position-Specific Scoring Matrix. The method achieved
promising prediction performancewhen implemented on the
protein-protein interaction datasets of Yeast, H. pylori, and
independent datasets.

Q. Zhao et al. constructed a computational model of
miRNA-mediated feed-forward loops (FFLs) in the paper
“Effect of Dynamic Interaction between MicroRNA and
Transcription Factor on Gene Expression.” The authors
introduced four possible structural topologies of FFLs with
two gate functions (AND gate and OR gate) based on the
different dynamic interactions between miRNA and TF on
gene expression.

Finally, in the review paper “Long Noncoding RNA
Identification: ComparingMachine Learning Based Tools for
LongNoncoding Transcripts Discrimination” by S. Han et al.,
several popular methods for lncRNA identification such as
Coding Potential Calculator (CPC), Coding-Potential As-
sessment Tool (CPAT), Coding-Non-Coding Index (CNCI),
predictor of long noncoding RNAs and messenger RNAs
based on an improved k-mer scheme (PLEK), Long non-
coding RNA IDentification (LncRNA-ID), lncRScan-SVM,
lncRNA-MFDL, and LncRNApred were summarized with
their advantages, disadvantages, and application scopes.
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Long noncoding RNA (lncRNA) is a kind of noncoding RNA with length more than 200 nucleotides, which aroused interest of
people in recent years. Lots of studies have confirmed that human genome contains many thousands of lncRNAs which exert great
influence over some critical regulators of cellular process. With the advent of high-throughput sequencing technologies, a great
quantity of sequences is waiting for exploitation. Thus, many programs are developed to distinguish differences between coding
and long noncoding transcripts. Different programs are generally designed to be utilised under different circumstances and it is
sensible and practical to select an appropriate method according to a certain situation. In this review, several popular methods
and their advantages, disadvantages, and application scopes are summarised to assist people in employing a suitable method and
obtaining a more reliable result.

1. Introduction

Long noncoding RNAs (lncRNAs), one of the most poorly
understood but also the most common RNA species,
are those noncoding transcripts with length more than
200 nucleotides. Initially, people classified noncoding RNA
(ncRNA) genes as “junk gene” or transcriptional “noise”
[1]. Nonetheless, researchers found that about 70% of the
genome is transcribed in various contexts and cell types [2, 3],
about 80% of the genome has biochemical functions [4], and
many DNAs code for RNAs as the end products instead of
proteins [5]. LncRNAs are involved in a wide range of cellular
mechanisms such as the regulation of genome activity [6],
histone modifications [7, 8], and DNA methylation [9]. In
addition, lots of studies have demonstrated that lncRNAs
have a significant role in diverse biological processes; thus
lncRNAs are especially important to the studies of human
biology and diseases [10]. For example, in prostate cancer
of human, lncRNA SChLAP1 and chromatin remodelling

complex SWI/SNF have opposing roles. SchLAP1 has an
interaction with the SNF5 subunit of SWI/SNF and inhibits
binding of SWI/SNF to chromatin, which leads to genome-
wide derepression of gene activity [11]. Moreover, aber-
rant expression of lncRNAs in cancer can be regarded as
biomarkers and therapeutic targets because of its extremely
specific expression [6]. The LncRNADisease database now
integrates more than 1000 lncRNA-disease entries and 475
lncRNA interaction entries, which suggested that lncRNAs
are associated with diseases closely [12].

Since lncRNAs so closely interact with diseases, many
lncRNA-disease association detection tools are invented.
Assuming that lncRNAs with similar functions tend to
associate with similar diseases, a semisupervised method,
Laplacian Regularized Least Squares for LncRNA-Disease
Association (LRLSLDA) [13], was developed; this tool dis-
plays a satisfying result and needs no negative samples.
Nonetheless, this method is facing the problems of parameter
selection and classifier combination. The principal idea of
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LRLSLDA, as mentioned above, is to measure the functional
similarity of lncRNAs, which means that the performance of
similarity calculation model largely determines the perfor-
mance of associationmodel.The similarity calculationmodel
of LRLSLDA is LFSCM (LncRNA Functional Similarity
Calculation based on the information of MiRNA) which is
based on lncRNA-miRNA interactions and miRNA-disease
associations. In 2015, novel lncRNA functional similarity
calculation models (LNCSIM) [14] were provided by Chen
et al. By integrating LRLSLDA and LNCSIM, the perfor-
mance was enhanced. Recently, a new lncRNA functional
similarity calculation model, FMLNCSIM (Fuzzy Measure-
Based LncRNA Functional Similarity Calculation Model)
[15], has been developed; this new model has a web interface
(http://219.219.60.245/) for users’ convenience. Considering
that nowadays the experimentally confirmed data of miRNA-
disease associations are much easier to obtain than the ones
of lncRNA-disease, Chen [16] utilised the miRNA-disease
association and miRNA-lncRNA interaction to identified
lncRNA-disease association.This method (HGLDA) circum-
vents the utility of LncRNADisease database but still presents
the desired results. Currently, many other tools, such as
RWRlncD [17] and RWRHLD [18], were designed aiming at
predicting lncRNA-disease association and obtaining more
reliable results. Unfortunately, they have their own limitations
[16]. As the titles of these methods implied, RWRlncD
and RWRHLD mainly predict the association by utilising
Random Walk with Restart (RWR). RWRlncD can only
be applied to the case that lncRNAs have known related
diseases and RWRHLD cannot deal with the circumstance
that lncRNAs have unknown lncRNA-miRNA interactions.
Another method, Improved Random Walk with Restart for
LncRNA-Disease Association (IRWRLDA) [19], is also based
on RWR, but IRWRLDA can predict the associations even
when diseases show no known related lncRNAs.

Research [20] has illustrated the lncRNA-disease asso-
ciation extensively and comprehensively. Basically, there are
three approaches to performing lncRNA-disease association
prediction [20]: to train a model based on machine learning
algorithm; to construct a heterogeneous network; or to
integrate lncRNA-miRNA interactions and miRNA-disease
associations. Currently, researches have acknowledged that
it is imperative to analyse the role of lncRNAs in many
diseases especially cancer, but the first step and funda-
mental work is how to discriminate lncRNAs from genes.
With the rapid development of next-generation sequencing
technologies, thousands and thousands of transcriptomes
have been discovered, which furnished us with more and
more useful information on ncRNAs. Meanwhile, many
ncRNAs identification approaches have been developed to
facilitate the researches and analyses. Each kind of ncRNA
has its own prediction tools such as tRNAscan-SE (1997)
[21] and tRNA-Predict (2015) [22] for transfer RNA (tRNA)
identification; mirnaDetect (2014) [23] and imDC (2015) [24]
for microRNA (miRNA) prediction; and RNAmmer (2007)
[25] for ribosomal RNA (rRNA) discrimination. Both tRNA-
Predict and mirnaDetect are constructed with the features of
secondary structure and codon-bias. The method imDC is
an algorithm of ensemble learning to deal with imbalanced

data and is applied to miRNA classification. The research
area of ncRNA is fast growing. However, it is still a challenge
to distinguish lncRNAs from protein-coding genes in that
lncRNAs share many features similar to mRNAs. Moreover,
the incomplete transcripts or genes poorly annotated or
containing sequencing errors also thwart the discrimination
and functional inference. During the last ten years, many
efforts on lncRNA identification have been made and many
approaches have been developed to make a more accurate
discrimination. Several studies [26, 27] have summarised and
reviewed the approaches of ncRNAs identification and anal-
ysis, but a few report the discussion of lncRNAs prediction
methods.Wang et al. [26] discussed several ncRNA detection
methods based on homology information and common
features. Different approaches aiming at detecting different
kinds of ncRNAs are presented and an overview of some
useful tools was given, yet no analysis on application scopes
was provided. Hence, the summary of these methods is more
theoretical than practical. Veneziano et al. [27] summarised
some computational approaches of ncRNA analysis based
on deep sequencing technology. Some lncRNA prediction
tools were discussed briefly butmany other helpful tools were
excluded.

In this paper, we mainly focus on the tools for lncRNA
identification. The aim of this paper is to summarise the
popular algorithms of lncRNA identification and to assist
researchers in determining which method is more appro-
priate for their purpose. Here, comprehensive analyses and
discussions of these tools were provided. Then, we compared
several popular machine learning based methods, including
Coding Potential Calculator (CPC) [28], Coding Potential
Assessment Tool (CPAT) [29], Coding-Non-Coding Index
(CNCI) [30], predictor of long noncoding RNAs and mes-
senger RNAs based on an improved k-mer scheme (PLEK)
[31], Long noncodingRNA IDentification (LncRNA-ID) [32],
and lncRScan-SVM [33]. In addition, lncRNA-MFDL [34]
and LncRNApred [35], two artificial neural network- (ANN-)
involved tools, are also introduced in this paper. However, the
provided access link of lncRNA-MFDL has been forbidden;
LncRNApred often throws errors while handling massive-
scale data which can be processed by CPC andCPAT success-
fully. Thus, we only briefly introduce the algorithms of the
classification model but omit the discussions of application
scope. We expect that this review can be a practical manual
when readers conduct lncRNA identification researches.

CPC (2007) is used to assess the protein-coding potential
of transcripts with high accuracy and speed [28]. However,
with the emergence of new programs, speed is scarcely
considered as amerit.The features of CPC can be divided into
two categories.The first one is based on the extent and quality
of the Open Reading Frame (ORF), and the other category is
derived from BLASTX research. The authors employed the
LIBSVM package to train support vector machine (SVM)
model with the standard radial basis function kernel [36].

CPAT (2013) is another protein-coding potential assess-
ment tool based on the model of logistic regression. The
selected features include the quality of the ORF, Fickett
Score, and hexamer score. Fickett Score is used to evaluate
each base’s unequal content frequency and asymmetrical

http://219.219.60.245/
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Table 1: Overview of the methods concerning lncRNA identification.

Published year Testing datasets Training species Model Query file format Web interface
CPC 2007 ncRNA∗ Eukaryotic SVM FASTA Yes
CPAT 2013 lncRNA∗ Human; mouse; fly; zebrafish LR BED; FASTA Yes
CNCI 2013 lncRNA Human; plant SVM FASTA; GTF No
PLEK 2014 lncRNA Human; maize SVM FASTA No
lncRNA-MFDL 2015 lncRNA Human DL 𝑈𝑛𝑘𝑛𝑜𝑤𝑛∗∗ 𝑈𝑛𝑘𝑛𝑜𝑤𝑛∗∗
LncRNA-ID 2015 lncRNA Human; mouse RF BED; FSATA No
lncRScan-SVM 2015 lncRNA Human; mouse SVM GTF No
LncRNApred 2016 lncRNA Human RF FASTA Web only
Testing datasets denote that one specific method is developed to discriminate ncRNAs or lncRNAs from protein-coding transcripts. The classification model
of CPC, CNCI, PLEK, and lncRScan-SVM is support vector machine (SVM); CPAT employs logistic regression (LR); LncRNA-ID and LncRNApred utilise
random forests (RF) and lncRNA-MFDL uses deep stacking networks (DSNs) of deep learning (DL) algorithm.
∗Note that the most popular tool CPC is trained and tested on datasets of ncRNAs and protein-coding transcripts. The training datasets of CPAT are also
ncRNAs and protein-coding transcripts, though test on lncRNAs for CPAT is conducted and achieved a higher accuracy.
∗∗The access link of lncRNA-MFDL has expired; thus, we cannot verify the information that the original paper failed to mention.

distribution in the positions of codons in one sequence.
Hexamer score is mainly based on the usage bias of adjacent
amino acids in proteins.

CNCI (2013) is a classifier to differentiate protein-coding
and noncoding transcripts by profiling the intrinsic compo-
sition of the sequence. According to the unequal distribution
of adjoining nucleotide triplets (ANT) in two kinds of
sequences, a 64 ∗ 64 ANT Score Matrix is constructed to
evaluate the sequence and the sliding window is used as a
supplement to achieve a more robust result [30]. ANT bears
some similarities to the hexamer score of CPAT, but much
more comprehensive and intricate analysis was conducted
to facilitate the incomplete transcripts classification. The
classification model of CPAT is SVM with a standard radial
basis function kernel.

PLEK (2014) uses k-mer scheme and sliding window to
analyse the transcripts. For multiple species, PLEK does not
have too many advantages over CNCI on testing data of
normal sequence. Nevertheless, compared with PLEK, the
results of CNCI will deteriorate when the sequence contains
some insert or deletion (indel) errors. These errors are very
common in today’s sequencing platforms. The classification
model of PLEK is SVM with a radial basis function kernel.

LncRNA-ID (2015) has 11 features which can be cate-
gorized according to ORF, ribosome interaction, and the
conservation of protein. The first category is similar to the
ORF features in CPC and CPAT. The foundation of the
second feature category is the interactions between mRNAs
and ribosomes during protein translation since some studies
displayed that lncRNAs can be associated with ribosomes
[37, 38] but do not show the release of ribosomes [39]. The
profile hidden Markov model-based alignment is used to
assess the conservation of protein. The classification model
of LncRNA-ID is improved using random forest which assists
LncRNA-ID effectively in handling imbalanced training data.

Some tools are initially designed to predict ncRNAs but
can also be applied to lncRNAs prediction, such as Phyloge-
netic Codon Substitution Frequencies (PhyloCSF, 2011) [40]
and RNAcon (2014) [41]. Based on nucleotide substitutions
and formal statistical comparison of phylogenetic codon

models [40], PhyloCSF utilises multiple sequence alignments
to find conserved protein-coding regions. As an alignment-
basedmethod, PhyloCSF entails high-quality alignments and
suffers from low efficiency. RNAconmainly predicts ncRNAs
utilising k-mer scheme. Based on graph properties [41, 42],
RNAcon can also perform ncRNAs classification and classify
different ncRNA classes.

Some methods are especially developed for long inter-
genic noncoding RNAs (lincRNAs, one subgroup of lncR-
NAs) classification, such as iSeeRNA (2012, web server and L
inux binary package available at http://137.189.133.71/iSeeRN/
index.html) [43] and LincRNA Classifier based on selected
features (linc-SF, 2013) [44]. iSeeRNA built a SVM model
with three feature groups: ORF; adjoining nucleotides fre-
quencies (GC, CT, TAG, TGT, ACG, and TCG); and con-
servation score obtained from Phast [45]. The classifier of
linc-SF evaluates the sequences with the criteria of sequence
length, GC content, minimum free energy (MFE), and k-mer
scheme.

2. Details of the Methods

In this part, we will discuss the machine learning models
and the selected features of each method more specifically.
Firstly, for users’ convenience, some brief information of each
method is displayed in Table 1 and the details of using are
summarised.Then the details of eachmethod are provided in
the following. Table 2 is a summary about the features selected
by each method.

2.1. Details of Using. CPC can be downloaded fromhttp://cpc
.cbi.pku.edu.cn/download/. CPC has a user-friendly web
interface at http://cpc.cbi.pku.edu.cn/programs/run cpc.jsp.
Documents and User Guide are provided at the web-
site. To run CPC on a local PC, a comprehensive pro-
tein reference database is required and users can down-
load it from ftp://ftp.ncbi.nlm.nih.gov/blast/db/ or ftp://ftp.
uniprot.org/pub/databases/uniprot/uniref/uniref90/. About
20 gigabytes (GB) of free space is also needed for storing the
protein reference database.

http://137.189.133.71/iSeeRNA/index.html
http://137.189.133.71/iSeeRNA/index.html
http://cpc.cbi.pku.edu.cn/download/
http://cpc.cbi.pku.edu.cn/download/
http://cpc.cbi.pku.edu.cn/programs/run_cpc.jsp
ftp://ftp.ncbi.nlm.nih.gov/blast/db/
ftp://ftp.uniprot.org/pub/databases/uniprot/uniref/uniref90/
ftp://ftp.uniprot.org/pub/databases/uniprot/uniref/uniref90/
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Table 2: Summary of the features of each method selected.

ORF Codon Sequence structure Ribosome
interaction Alignment Protein

conservation

CPC Quality; coverage;
integrity No No No BLASTX

Number and𝐸-value of hits;
Distribution of

hits

CPAT Length;
coverage

Hexamer
Frequency

Content of the
bases

Position of the
bases

No No No

CNCI No ANT matrix;
Codon-bias MLCDS No No No

PLEK No No Improved k-mer
scheme No No No

lncRNA-
MFDL

Length;
coverage No

k-mer scheme
Secondary
structure
MLCDS

No No No

LncRNA-ID Length;
coverage No Kozak motif

Ribosome release
signal

Changes of binding
energy

Profile HMM
based alignment

Score of
HMMER

Length of the
profile

Length of aligned
region

lncRScan-
SVM No Distribution of

stop codon

Score of
txCdsPredict;
length of
transcripts;

length and count of
exon

No Phylo-HMM
based alignment

Average
PhastCons scores

LncRNApred Length;
coverage No

Length of the
sequence;

signal to noise
ratio;

k-mer scheme;
G + C content

No No No

All features are categorized into six groups according to the similarity or basic principles. Thus, some items in the table might not be exactly in one-to-one
correspondence with the feature names given in the corresponding published references.

CPAT is also available both for download and as a web-
server. Users can obtain the latest resource code from https://
sourceforge.net/projects/rna-cpat/files/?source=navbar. Pre-
releases, tutorial files, and examples are also supplied on
the pages. CPAT requires Python 2.7.x; numpy; cython; and
R when running offline. The web server is available at
http://lilab.research.bcm.edu/cpat/index.php.

CNCI can be downloaded at https://github.com/www-
bioinfo-org/CNCI. Version 2 is updated on Feb 28, 2014.
Setup and running steps are attached on the websites.
Libsvm-3.0 has been enclosed in the package. Other addi-
tional files can be downloaded at http://www.bioinfo.org/np/.

PLEK was implemented by C and Python. The source
code can be freely downloaded from https://sourceforge.net/
projects/plek/files/. Several videos to assist user in utilising
PLEK correctly are also provided. Python 2.7.x is required.

Scripts of LncRNA-ID can be obtained at https://github
.com/zhangy72/LncRNA-ID.

LncRScan-SVM provided scripts, gene annotation files,
anddatasets.The scripts can be downloaded at https://source-
forge.net/projects/lncrscansvm/?source%20=%20directory.
A Readme file is also attached on this site.

All the stand-alone versions of these tools require
Linux/UNIX operating system.

The link of lncRNA-MFDL provided is https://compge-
nomics.utsa.edu/lncRNA MDFL/. LncRNApred only has the
web interface and is available at http://mm20132014.wicp.net:
57203/LncRNApred/home.jsp. However, the link of lncRNA-
MFDL expired when we did this research. And LncRNApred
only provides a web server which cannot handle too many
sequences at one time.

2.2. CPC inDetail. CPC [28] extracted six features to evaluate
the coding potential of transcripts. Log-odds score, coverage,
and integrity of ORF are used to assess the ORFs of one
sequence. ORFs are predicted by framefinder. A high-quality

https://sourceforge.net/projects/rna-cpat/files/?source=navbar
https://sourceforge.net/projects/rna-cpat/files/?source=navbar
http://lilab.research.bcm.edu/cpat/index.php
https://github.com/www-bioinfo-org/CNCI
https://github.com/www-bioinfo-org/CNCI
http://www.bioinfo.org/np/
https://sourceforge.net/projects/plek/files/
https://sourceforge.net/projects/plek/files/
https://github.com/zhangy72/LncRNA-ID
https://github.com/zhangy72/LncRNA-ID
https://sourceforge.net/projects/lncrscansvm/?source%20=%20directory
https://sourceforge.net/projects/lncrscansvm/?source%20=%20directory
https://compgenomics.utsa.edu/lncRNA_MDFL/
https://compgenomics.utsa.edu/lncRNA_MDFL/
http://mm20132014.wicp.net:57203/LncRNApred/home.jsp
http://mm20132014.wicp.net:57203/LncRNApred/home.jsp
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ORF tends to have a high log-odds score and a larger ORF
coverage. The integrity of ORF means ORFs in protein-
coding transcripts are disposed of to begin with a start
codon and end with a stop codon. The other three features
are number of hits, hit score, and frame score, which are
derived from the output of BLASTX search. A protein-coding
transcript prefersmore hits in alignment with lower𝐸-values.
Then the hit score is defined as follows [28]:

𝑆𝑖 = mean
𝑗

{−log10 𝐸𝑖𝑗} , 𝑖 ∈ 0, 1, 2,

Hit Score = mean
𝑖∈{0,1,2}

{𝑆𝑖} = ∑2𝑖=0 𝑆𝑖3 ,
(1)

where 𝐸𝑖𝑗 is the 𝐸-Value of the 𝑗th hits in the 𝑖th ORF. A
noncoding transcript may also contain some hits, but these
hits are inclined to scatter in three frames rather than be
located in one. The frame score to calculate the distribution
of hits among three ORFs is defined in the following:

Frame Score = variance
𝑖∈{0,1,2}

{𝑆𝑖} = ∑2𝑖=0 (𝑆𝑖 − 𝑆)2
2 . (2)

Thus, a protein-coding transcript will achieve a higher hit
score and frame score because of the lower𝐸-value and biased
distribution of the hits.

The training data of CPC [46] are eukaryotic ncRNAs
from the RNAdb [47] and NONCODE [48, 49] databases.
CPC is designed to assess transcripts’ protein-coding poten-
tial, whichmeans it will have high accuracy of discriminating
protein-coding transcripts. Moreover, CPC also has the error
tolerance capacity, which owesmuch to framefinder’s accurate
prediction. Framefinder performed well even though input
transcripts may have some point mutations, indel errors,
and truncations. CPC is slightly inferior in distinguishing
noncoding transcripts in respect of the fact that lncRNAsmay
contain putative ORFs and transcript length is also familiar
to protein-coding transcripts. The slow speed is another
imperfection of CPC.

2.3. CPAT in Detail. CPAT [29] is an alignment-free pro-
gram. CPAT uses a logistic regression model and can be
trained on own data of users. Apart from the features of
maximum length and coverage of ORF akin to CPC, Fickett
Score is another criterion. Fickett Score can be regarded as
a dependent classifier; it is mainly based on calculating the
position of each base favoured and the content of each base
in the sequence [50]. The base’s position parameter of CPAT
is defined as follows:

𝐴1 = Number of As in positions 0, 3, 6, . . .
𝐴2 = Number of As in positions 1, 4, 7, . . .
𝐴3 = Number of As in positions 2, 5, 8, . . .

𝐴-position = max (𝐴1, 𝐴2, 𝐴3)
min (𝐴1, 𝐴2, 𝐴3) + 1 ,

𝐴-content = Occurence Number of 𝐴
Total Number of all bases

,
(3)

where 𝐴 in the formula means the base 𝐴 and the other
three bases are measured in a similar way. The parameter
of position calculates each base’s favoured position and
the parameter of content is the percentage of each base
in the sequence. Then according to distributions of eight
parameters’ values [50], it is easy to obtain the probability that
the sequence will be a protein-coding transcript. Next, each
probability is multiplied by a weight to make a more accurate
result. The weight is the percentage of the times that the
estimate of each parameter alone is correct. Finally, according
to the above descriptions, Fickett Score can be determined as
follows:

Fickett Score = 8∑
𝑖=1

𝑝𝑖𝑤𝑖. (4)

According to Fickett [50], Fickett Score alone can correctly
discriminate about 94% of the coding segments and 97% of
the noncoding segments with 18% of “No Opinion.”

The last feature of CPAT is hexamer score, which is the
most discriminating feature. Hexamer means the adjacent
amino acids in proteins.The features of the in-frame hexamer
frequency of coding and noncoding transcripts are calculated
and hexamer score is defined in the following:

Hexamer Score = 1
𝑚
𝑚∑
𝑖=1

log( 𝐹 (𝐻𝑖)𝐹󸀠 (𝐻𝑖)) . (5)

There are 64 ∗ 64 kinds of hexamers, and 𝑖 denotes each hex-
amer. 𝐹(𝐻𝑖) (𝑖 = 0, 1, 2, . . . , 4095) means the in-frame hex-
amer frequency of protein-coding transcripts, while 𝐹󸀠(𝐻𝑖)
means noncoding transcripts. For a transcript containing𝑚 hexamers, a positive hexamer score indicates a protein-
coding transcript.

A high-quality training dataset is constructed contain-
ing 10,000 protein-coding transcripts selected from RefSeq
database with the annotations of the Consensus Coding
Sequence project and 10,000 noncoding transcripts randomly
collected from GENCODE database. CPAT is prebuilt hex-
amer tables and logit models for human, mouse, fly, and
zebrafish. Meanwhile, CPAT uses pure linguistic features to
facilitate discrimination of the poorly annotated transcripts.
CPAT has an efficient offline program and also provides a
user-friendly web interface.

2.4. CNCI in Detail. CNCI [30] is mainly based on sequence
intrinsic composition, it evaluates the transcripts by calcu-
lating the usage frequency of adjoining nucleotide triplets
(ANT). Firstly, two ANT matrices are constructed based on
the usage frequency of ANT in noncoding sequences and
coding region of the sequences (CDS). For 4,096 ANT, the
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formulas to calculate each ANT usage frequency are defined
as follows:

𝑋𝑖𝑁 = 𝑛∑
𝑗=1

𝑆𝑗 (𝑋𝑖) ,

𝑇 = 𝑚∑
𝑖=1

𝑋𝑖𝑁 = 𝑚∑
𝑖=1

𝑛∑
𝑗=1

𝑆𝑗 (𝑋𝑖) ;
𝑚 = 64 × 64; 𝑛 = 1, . . . , 𝑁,

𝑋𝑖𝐹 = 𝑋𝑖𝑁𝑇 ,

(6)

where 𝑋 means one kind of ANT; 𝑆𝑗(𝑋𝑖) is the occurrence
number of𝑋𝑖 in one sequence 𝑆𝑗.Thus,𝑋𝑖𝑁 denotes the total
occurrence number of one kind of ANT in the dataset while𝑇
indicates the total occurrence number of all kinds of ANT in
the dataset. Accordingly, 𝑋𝑖𝐹 is the usage frequency of ANT.
Then the ANT Score Matrix is utilised, which is the log2-
ratio of the two above-mentioned ANT matrices, to score a
sequence and make a discrimination.

ANT Score Matrix = log2
CDS Matrix

Non-coding Matrix
. (7)

The distinguishing results of ANT Score Matrix are fairly
well, but the matrix is constructed by computing the ANT
usage frequency of coding region and noncoding region;
consequently the untranslated region (UTR) of the entire
sequence will interfere with the performance of discrimina-
tion.The sliding window is employed with one ANT (3 nt) in
each scan step to identify the CDS of a sequence by scanning
six reading frames of each sequence. The different sizes
(30, 60, 90, . . . , 300 nt) of the sliding windows are examined
and the size of 150 nt for this classification model is found to
obtain the most robust result. For a sequence consisting of𝑘 ANT, there will be 𝑘 − 1 segments in this sequence. Based
on the ANT Score Matrix, each segment will get an 𝑆-Score,
and each reading frame can obtain an array comprised of the𝑆-Scores. The formula of 𝑆-Score is defined as follows:

𝑆-Score = 𝑛∑
𝑖=1

{𝐻𝑝 (𝑋𝑖)} , (8)

where 𝑋 means ANT, 𝐻𝑝 is the ANT Score Matrix, and𝑛 is the total number of the ANT in one segment or the
whole sequence. Hence, a correct reading frame of coding
transcript tends to have a higher whole sequence 𝑆-Score
and, in this array of reading frame, the region composed of
consecutive high 𝑆-Scores is the CDS. For long noncoding
transcripts, the Maximum Interval Sum [51] program is used
to identify the most-like CDS (MLCDS) which is the region
that gained the largest sum of consecutive 𝑆-Scores in each
reading frame. Among those six MLCDS, the length and𝑆-Score of the MLCDS with the highest value are selected
as the features of CNCI. Furthermore, the features of the

LENGTH-Percentage, SCORE-Distance, and codon-bias are
also selected to improve accuracy:

LENGTH-Percentage = 𝑀1
∑𝑛𝑖=0 (𝑌𝑖) ,

SCORE-Distance = ∑𝑛𝑗=0 (𝑆 − 𝐸𝑗)
5 ,

(9)

where 𝑀1 is the length of the MLCDS with the highest 𝑆-
Score, 𝑌𝑖 is the length of each MLCDS, 𝑆 is the highest 𝑆-
Score among six MLCDS, and 𝐸𝑗 is the 𝑆-Score of other five
MLCDS. Codon-bias (3-mer frequencies) is a parameter to
evaluate the usage bias of different codons in protein-coding
or long noncoding transcripts. The log2-ratio of occurrence
frequency of each codon (stop codons are excluded) in
protein-coding genes and lncRNAs is calculated, and most
codons have distinct usage bias in two kinds of sequences.

The training datasets of CNCI contain protein-coding
transcripts selected from RefSeq database and long noncod-
ing transcripts selected from GENCODE [52]. The CNCI
is applied to other species with the aim of examining the
scope of application.The results of vertebrates (except birds),
especially mammals, can be accepted since the program
was trained on human gene set. CNCI can be used to
discriminate incomplete transcripts, especially those high-
throughput sequencing data of poorly explored species.

2.5. PLEK in Detail. PLEK [31] is an alignment-free tool
based on 𝑘-mer frequencies of the sequences. For a given
sequence, the sliding windows with size of 𝑘 scan 1 nt as
a step forward. 𝑘 ranges from 1 to 5, which is a trade-
off between accuracy and computational time. Thus, for a
sequence consisting of 𝐴, 𝐶, 𝐺, and 𝑇, the 41 + 42 + 43 +
44 + 45 = 1,364 patterns can be obtained. Then the following
formulas can be used:

𝑓𝑖 = 𝑐𝑖𝑠𝑘𝑤𝑘, 𝑘 = 1, 2, 3, 4, 5; 𝑖 = 1, 2, . . . , 1364,
𝑠𝑘 = 𝑙 − 𝑘 + 1,
𝑤𝑘 = 1

45−𝑘 ,
𝑘 = 1, 2, 3, 4, 5,

(10)

where 𝑖 is the number of the patterns; 𝑐𝑖 denotes the number
of the segments in slidingwindowsmatchingwith patterns; 𝑠𝑘
denotes the total of the segments when sliding window slides
along the sequencewith the size of 𝑘.Therefore,𝑓𝑖 is the usage
frequency multiplied by a factor𝑤𝑘 which is used to facilitate
the discrimination.

A balanced training dataset is conducted with all 22,389
long noncoding transcripts collected from the GENCODE
dataset [52–54] and 22,389 protein-coding transcripts ran-
domly selected from the human RefSeq dataset [55, 56].
Though the training model of PLEK is human, PLEK can
still be applied to other vertebrates. PLEK is particularly
designed for the transcripts acquired from current sequenc-
ing platforms which consist of some indel errors commonly.
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For these transcripts, the performance of PLEK is better
than CPC and CNCI. PLEK can be trained with users’ own
datasets, but it may take a long time to be accomplished.

2.6. LncRNA-MFDL in Detail. LncRNA-MFDL [34] is based
on feature fusion and deep learning algorithm. LncRNA-
MFDL has four kinds of features which are integrated to
build a classification model based on deep stacking networks
(DSNs, one kind of deep learning algorithm) [57, 58]. Four
feature groups of lncRNA-MFDL include 𝑘-mer; secondary
structure; ORF, obtained by utilising txCdsPredict program
(http://genome.ucsc.edu/) [59]; and MLCDS features which
are inspired by CNCI [30].

The 𝑘-mer scheme employed in lncRNA-MFDL is unlike
the one in PLEK. Here, the 𝑘 only ranges from 1 to 3,
but the frequencies are calculated on the regions of the
whole sequence and ORF at the same time. Considering that
the secondary structure is more conserved and stable than
primary structure, a representative criterion, the minimum
free energy (MFE), is used to assess the secondary structure
of the transcripts. Utilising RNAfold program of ViennaRNA
Package [60], the MFE, the ratio of MFE to sequence length,
and the number of paired bases and unpaired bases can be
easily obtained.

2.7. LncRNA-ID in Detail. LncRNA-ID [32] has three cate-
gories of features as mentioned earlier. Except for the length
and coverage of ORF, the features based on translation
mechanism and protein conservation are extracted.

Many studies [61–63] have demonstrated that several
nucleotide sites in Kozak motif play a prominent role
during the initiation of protein translation. An efficient
translation indicates that the highly conserved nucleotides
appear at the positions {−3, +4} and {−2, −1} of Kozak motif
GCCRCCAUGG (R represents purine and the position of A
in start codon AUG is +1). Thus, these conserved sites are
more likely to exist in protein-coding transcripts. Moreover
when the translation starts, the binding energy will change
along with the interaction between the 3󸀠 end of rRNAs and
mRNA transcripts. The Ribosome Coverage to calculate the
changes of the binding energy is defined as follows:

Ribosome Coverage = 𝐿∑
𝑖=1

{𝑁𝑖 | 𝛿𝑖 < 0} , (11)

where 𝛿𝑖 is the free energy at position 𝑖 and 𝑁𝑖 is the
number of base pairs starting at position 𝑖 in a sequence
with the length of 𝐿. Next, the three levels of ribosome occu-
pancy by computing Ribosome Coverage on three regions,
respectively, are obtained: the whole transcript, ORF, and
3󸀠UTR. Accordingly, a true protein-coding transcript tends
to attain higher Ribosome Coverage on the whole transcript
and the ORF region. When the translation terminates, the
ribosomes will be released from protein-coding transcripts.
Therefore, it is likely to capture a considerable drop of
ribosome occupancy when ribosomes reach stop codons.The

Ribosome Release Score to capture this change of ribosome
occupancy is defined:

Ribosome Release Score

= Ribosome coverage of ORF/length (ORF)
Ribosome coverage of 3󸀠UTR/length (3󸀠UTR) ,

(12)

and a protein-coding transcript inclines to exhibit a higher
Ribosome Release Score. For protein translation category,
the selected features including nucleotides at two positions
of Kozak motif, Ribosome Coverage on three regions, and
Ribosome Release Score are selected.

The protein conservation of the sequences is evaluated
according to profile hidden Markov model-based align-
ment scores. HMMER [64] is a software suite for sequence
homology detection using probabilistic methods. LncRNA-
ID employed HMMER with the 𝐸-value cutoff of 0.1 to
align the transcripts against all available protein families. A
protein-coding transcript is expected to get a higher score,
longer aligned region, and a reasonable length of the profile
in the alignment.

In human genome, although the amount of lncRNA is
at least four times more than protein-coding genes [65],
the majority class in training data is protein-coding tran-
script on account of poorly annotated lncRNA. Hence, the
classification model of this method is balanced random
forest [66, 67] which is derived from random forest but
could utilise the sufficient protein-coding data and avoid
inaccurate results caused by the imbalanced training data at
the same time. The human prebuilt model of LncRNA-ID
contains 15,308 protein-coding transcripts and 4586 lncRNAs
from GENCODE [52]. For mouse, the training datasets are
comprised of 22,033 protein-coding transcripts and 2,457
lncRNAs randomly selected from GENCODE. These two
datasets were also used to draw receiver operation charac-
teristic (ROC) curves in the next section (Figure 2). Users
can train LncRNA-ID with their own dataset and apply it to
various species.

2.8. LncRScan-SVM in Detail. LncRScan-SVM [33] classifies
the sequencesmainly by evaluating the qualities of nucleotide
sequences, codon sequence, and transcripts structure. The
counts and average length of exon in one sequence are
calculated. The protein-coding transcripts are disposed of
to include more exons, thus having a longer exon length
than lncRNA. Another feature is the score of txCdsPredict.
This third-part program from UCSC genome browser [68]
can determine if a transcript is protein-coding. Conservation
score is obtained by calculating the average of PhastCons
scores [45] from Phast (http://compgen.cshl.edu/phast/).
Transcript length and standard deviation of stop codon
counts between three ORFs are the last two features.

The reliable datasets are constructed from GENCODE
[54] composed of 81,814 protein-coding transcripts and
23,898 long noncoding transcripts of human. And, formouse,
47,394 protein-coding transcripts and 6,053 long noncoding
transcripts from GENCODE [52] are also contained within
the dataset. After being trained on human and mouse

http://genome.ucsc.edu/
http://compgen.cshl.edu/phast/
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datasets, lncRScan-SVM obtains a good performance on
lncRNA prediction.

2.9. LncRNApred in Detail. Before constructing the classi-
fier, self-organizing feature map (SOM) clustering [69] is
employed to select representative samples as the training
dataset, which enhanced the performance of LncRNApred.
As to the features, the length and coverage of the longest ORF,
one of the classical and typical features, are selected as the
criteria. In addition, G + C content, 𝑘-mer (𝑘 is from 1 to 3
just like lncRNA-MFDL), and length of the sequence are also
the features of LncRNApred. The novel idea of LncRNApred
is SNR, which transforms one sequence into four binary
numeric sequences:

𝑢𝑏 = {{{
1, 𝑆 [𝑛] = 𝑏,
0, 𝑆 [𝑛] ̸= 𝑏,

𝑛 = 0, 1, 2, . . . , 𝑁 − 1, 𝑏 ∈ {𝐴, 𝑇, 𝐶, 𝐺} ,
(13)

where 𝑏 means four kinds of bases, 𝑁 is the length of one
sequence, and 𝑆[𝑛] denotes a sequence of length 𝑁. Thus,
there will be four binary sequences {𝑢𝑏 | 𝑏 ∈ (𝐴, 𝑇, 𝐶, 𝐺)}.
Then applying Discrete Fourier Transform (DFT) to these
four binary numeric sequences, the power spectrum {𝑃[𝑘]}
can be obtained:

𝑈𝑏 [𝑘] =
𝑁−1∑
𝑛=0

𝑢𝑏 [𝑛] 𝑒−𝑖(2𝜋𝑛𝑘/𝑁), 𝑘 = 0, 1, . . . , 𝑁 − 1,
𝑃 [𝑘] = 󵄨󵄨󵄨󵄨𝑈𝐴 [𝑘]󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝑈𝑇 [𝑘]󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝑈𝐺 [𝑘]󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝑈𝐶 [𝑘]󵄨󵄨󵄨󵄨2 .

(14)

The studies of Fickett [50, 70] have presented that positions
and compositions of four bases are different in lncRNAs
and protein-coding RNA, and, because of this, the power
spectrum of one protein-coding transcript will have a peak
at𝑁/3 position. Hence, the SNR is defined as follows:

𝐸 = ∑𝑁−1𝑘=0 𝑃 [𝑘]𝑁 ,
SNR = 𝑃 [𝑁/3]

𝐸 .
(15)

Now, there are 89 features: the length and coverage of
the longest ORF, the length of the sequence, SNR, G + C
content, and 4 + 16 + 64 features of 𝑘-mer. Noticing that not
all the features have high discriminative power, the feature
selection ismade and 25 high-quality features are determined
from the original 84 features of k-mer. Finally, 30 features are
selected to build a random forest model. The performance of
random forest is largely determined by training set.Therefore,
the clustering method is used to find out the most adequate
sequences to form a high standard training set.The clustering
method SOM [69] achieved the best result and was chosen to
select characteristic sequences

An overall procedure of these eight tools is displayed in
Figure 1.

3. Performance of These Methods

To quantify the classification performance under one unified
standard, we first characterise lncRNAs as the positive class
and protein-coding transcripts as the negative class; then the
performance of these tools can be evaluated with several
standard criteria defined as follows:

Sensitivity = TP
TP + FN

,
Specificity = TN

TN + FP
,

Accuracy = TP + TN
TP + FP + TN + FN

,
False Positive Rate = FP

FP + TN
.

(16)

As one of the most popular methods, CPC is especially
designed for assessing protein-coding potential and per-
formed fairly well for discriminating protein-coding tran-
script. It enjoys the best results when screening the coding
transcripts. For 10,000 protein-coding genes and 10,000 lncR-
NAs selected from UCSC genome browser (GRCh37/hg19),
CPC picked up about 97.62% coding transcripts while CPAT
distinguished 85.28% of them. CPAT also outperforms CPC
with 89.94% accuracy [33]. Table 3 shows the performance of
these tools on the same testing dataset. CPC picks up 99.97%
of human protein-coding genes collected from GENCODE,
in comparison with the latest program LncRNA-ID whose
performance is 95.28%. However, the performance of CPC
appears to somewhat decline when focusing on the capability
of discriminating noncoding transcripts, especially long non-
coding transcripts: CPC only picked up 66.48% of human’s
long noncoding transcripts while the results of CPAT, PLEK,
and LncRNA-ID are 86.95%, 99.52%, and 96.28%.

CPC and CPAT are the programs to assess the coding
potential, but CNCI is especially used to classify protein-
coding and long noncoding transcripts. With the sequences
becoming longer and longer, CNCI was more superior to
CPC. According to Sun et al. [30], when the length of
transcript is longer than 2,000 nt, the accuracy of CPC is
only around 0.4 while the CNCI still has an outstanding
performance. The training dataset of CNCI is human but
this method still achieved more than 90% accuracy in other
vertebrates apart from the birds [30]. PLEK is tested on
two datasets sequenced by PacBio and 454 platforms (refer
to Table 3). Among the tools being compared, CPC still
picked up about 99.90% coding genes though this figure
is not that useful because it can only distinguish 19.00%
and 47.20% lncRNAs. CNCI displayed better performance
on both datasets, but PLEK even achieved a more satisfying
result.

LncRNA-ID is another method to identify the long
noncoding transcripts. Compared with other programs,
LncRNA-ID strikes a good balance between sensitivity and
false positive rate. According to Table 3, it is noticeable that
lncRNA is better than PLEK but slightly inferior to CPC
and CPAT on the testing data of coding genes, and the
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Figure 1: An overall procedure of eight tools. The features of each tool are sorted into several groups and only the categories of the features
are listed in the figure.
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Figure 2: The ROC curves of CPC, CPAT, CNCI, and PLEK. We assessed the models using the same datasets as LncRNA-ID (selected from
GENCODE) used. Both CPC and CPAT were evaluated with the latest versions.
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Table 3: Overview of each tool’s performance on different testing datasets.

Testing dataset CPC CPAT CNCI PLEK LncRNA-ID lncRScan-SVM
Human MCF-7 (PacBio)1

Specificity 99.90 91.80 94.70
Sensitivity 19.00 78.70 95.80
Accuracy 97.00 91.30 94.70
Human HelaS3 (454)2

Specificity 99.90 93.90 95.50
Sensitivity 47.20 81.10 92.50
Accuracy 99.00 93.70 95.40
Human (from GENCODE)3

Specificity 99.97 99.55 89.18 95.28
Sensitivity 66.48 86.95 99.52 96.28
Accuracy 83.22 93.25 94.32 95.78
Mouse (from GENCODE)4

Specificity 98.75 98.95 70.94 92.10
Sensitivity 76.55 38.80 88.11 94.45
Accuracy 87.65 68.88 79.49 93.28
Human (from GRCh37/hg19)5

Specificity 97.62 85.28 89.20
Sensitivity 67.23 94.60 93.88
Accuracy 82.43 89.94 91.94
Mouse (from GRCm38/mm10)5

Specificity 98.37 88.17 89.14
Sensitivity 75.46 95.34 95.29
Accuracy 86.91 91.76 92.21
The results of the tools being tested on the same datasets are listed above. Bold numbers denote the highest value of the metrics.
1MCF-7 is available at http://www.pacb.com/blog/data-release-human-mcf-7-transcriptome/; 2dataset of HelaS3 is available at https://www.ncbi.nlm.nih.gov/
sra/SRX214365; 3,4datasets are available at https://www.dropbox.com/sh/7yvmqknartttm6k/AAAQHvLZPjgjf4dtmHM7GNCqa/H1 gencode?dl=0 and
https://www.dropbox.com/sh/7yvmqknartttm6k/AACzaG-QJggvbXW6LA32oo7ba/M1 gencode?dl=0; 5dataset of human and mouse is available at
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0139654.

performance on lncRNAs is just the opposite. LncRNA-ID
can be trained with users’ own data; it can obtain a satisfying
result even when the data is unbalanced.With the proportion
of lncRNA decreasing, CPAT shows a sharp reduction from
79.51% to 54.46%on the capability of lncRNAdiscrimination;
LncRNA-ID, by contrast, fell less than 1% [32].

ROC curves of CPC, CPAT, PLEK, and LncRNA-ID
tested on human and mouse datasets were provided in [32].
Since CPC and CPAT are updated as the accumulation of
gene database, it is useful to assess their performance with
latest version and take CNCI into account. Here we utilise
the test set of LncRNA-ID [32] (both the datasets of human
andmouse are selected fromGENCODE) to reevaluate CPC,
CPAT, CNCI, and PLEK (Figure 2). According to [32], the
area under curve (AUC) of LncRNA-ID on human dataset
is 0.9829 (optimal = 0.0545, 0.9720), while on mouse it is
0.9505 (optimal = 0.0800, 0.9445) [32]. In our assessment,
the performance of PLEK is identical with [32], while the
performance of CPC and CPAT, as we anticipated, displayed
some differences. The ROC curves were drawn in R with the
package of pROC [71].

LncRScan-SVM is compared with CPC and CPAT on
human and mouse datasets from UCSC (version hg19 of

human and mm10 of mouse). CPC, as an excellent coding
potential assessment tool, still achieves 98.37% of specificity
onmouse testing dataset. CPAT, on the contrary, achieved the
highest values of sensitivity both on the datasets of human
and mouse. LncRScan-SVM surpasses CPAT with 89.20%
and 89.14% of specificity on human and mouse datasets. For
sensitivity, lncRScan-SVM obtained 93.88% and 95.29% on
the same testing datasets, which are only 0.72% and around
0.1% lower than CPAT’s results, respectively, but much higher
than CPC’s 67.23% and 75.46%. In addition, lncRScan-SVM
also has the best results of accuracy and AUC [33] on these
datasets.

For the same testing datasets, the running time of CPAT
is the shortest and CPC shows the longest time to finish
the process because of its alignment process. When being
tested on a dataset containing 4,000 protein-coding and 4,000
long noncoding transcripts, CPAT takes 35.36 s and LncRNA-
ID takes 65.35 s to accomplish the discrimination while
PLEK and CPC need 21.47m and 86.51 h, respectively [32].
PLEK is 8 times and 244 times faster than CNCI and CPC,
respectively, on the same testing data [31], and lncRScan-
SVM also needs about 10 times as much as CPAT to finish
computation [33].

http://www.pacb.com/blog/data-release-human-mcf-7-transcriptome/
https://www.ncbi.nlm.nih.gov/sra/SRX214365
https://www.ncbi.nlm.nih.gov/sra/SRX214365
https://www.dropbox.com/sh/7yvmqknartttm6k/AAAQHvLZPjgjf4dtmHM7GNCqa/H1_gencode?dl=0
https://www.dropbox.com/sh/7yvmqknartttm6k/AACzaG-QJggvbXW6LA32oo7ba/M1_gencode?dl=0
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0139654
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Table 4: Priority of employing different methods on different situations.

CPC CPAT CNCI PLEK LncRNA-ID lncRScan-SVM
Coding potential assessment ✓ ✓
Human lncRNAs ✓ ✓ ✓ ✓ ✓ ✓
Mouse lncRNAs ✓ ✓ ✓
Other Species1 ✓ ✓ ✓ ✓
Testing data with sequencing errors2 ✓ ✓ ✓
Lack of annotation ✓ ✓ ✓
Massive-scale data3 ✓ ✓ ✓ ✓
Trained by users4 ✓ ✓ ✓
Web interface ✓ ✓
This table only presents the preferences under different situations, which means a method with a tick can achieve a better performance under a certain
circumstance.
1Only CPAT, LncRNA-ID, and lncRScan-SVM provide the model for mouse. When analysing other species, CPAT has the model for fly and zebrafish; CNCI
and PLEK can predict the sequences of vertebrata and plant. CPAT, PLEK, and LncRNA-ID can build a newmodel based on users’ datasets. 2Users can choose
CNCI for incomplete sequences and CPC or PLEK for the transcripts with indel errors. 3CPAT is the most efficient method. Though lncRScan-SVM needs
more time than CPAT and LncRNA-ID, it is also acceptable. 4LncRNA-ID can handle the imbalanced training data. Training PLEK with users’ own datasets
may be a time-consuming task.

4. Application Scopes of the Methods

All these methods have own particular scopes to exert their
talents, which means an appropriate program can help us
obtain a satisfying result. The priority of utilising these
tools under some particular circumstances is summarised in
Table 4.

CPC is based on sequence alignment which facilitates
protein-coding transcripts selection but impairs the perfor-
mance of noncoding transcripts in that long noncoding tran-
scripts share more similarities with coding transcripts such
as putative ORF, which could mislead CPC. Also, because
of alignment process, utilising CPC to analyse massive-scale
data is a time-consuming process.

CPAT is also used to evaluate the coding potential, though
the performance on long noncoding transcripts is acceptable.
CPAT has a compromise between coding and noncoding
transcripts that is not bad. Since the model of CPAT is
logistic regression and the input file is FASTA format, CPAT
is markedly superior in computational time which means
CPAT is more suitable for being applied to data on a large
scale. Furthermore, linguistic features make CPAT be able to
analyse the sequences without annotation, and allowing users
to train the model with their own dataset extends CPAT’s
scope of application. Users can apply CPAT to other species
instead of being confined to human or mouse only.

CNCI is designed to distinguish between coding and long
noncoding transcripts without the annotations of sequences.
Because lots of lncRNAs are poorly annotated, this quality
provided amore accurate discrimination for these sequences.
CNCI is trained on human dataset but can also be applied to
othermammals such asmouse and orangutan. CNCI displays
acceptable results on vertebrates (except fish), but, for plants
and invertebrates, the result is not very satisfying. CNCI is
valuable when the sequences lack annotations or users do not
have training set of other species. CNCI also shows a good
performance when the transcripts are incomplete.

PLEK employs a higher fault tolerance algorithm and
performs better when the sequences have indel errors. It is a

proper tool to analyse the de novo assembled transcriptome
datasets such as the sequences obtained from Roche (454)
and Pacific Biosciences (PacBio) sequencing platforms. In
addition to human and mouse, PLEK can also be used to
other vertebrates and displays comparable results with the
ones of CNCI. PLEK’s model can be trained by users, but it
takes a long time to be completed.

LncRNA-ID has many merits and delivers better all-
round performance on human andmouse datasets. Although
the time LncRNA-ID spent on classifying is nearly twice of
CPAT, LncRNA-ID is still more efficient than other methods,
which makes it a reasonable choice when data are on a
massive-scale. The model of LncRNA-ID can be trained by
users, but the most excellent attribute is the competence of
handling the unbalanced training data. For studying those
not well-explored species, LncRNA-ID takes priority when
users have training datasets.

LncRScan-SVM achieves a good trade-off between
the discrimination of coding and long noncoding genes.
LncRScan-SVM is slower than CPAT and LncRNA-ID, but it
is still acceptable. For analysing human and mouse datasets,
lncRScan-SVM can be considered as a proper approach.

5. Discussion

According to the features selected by each tool, it is apparent
that different tools have their own advantages and disadvan-
tages. CPC is developed to assess coding potential of the
transcripts; moreover, CPC is trained on datasets of protein-
coding and noncoding RNA which means it achieves excel-
lent performance when analysing ncRNAs. CPC provides
a stand-alone version and a web server, but both of the
two programs need vast amounts of time to process the
sequences. As alignment-based tools, the performance of
CPC varied when using different protein reference database.
CPAT can present satisfying results efficiently partly because
CPAT builds the logistic model which is faster than SVM.
The web server of CPAT can display the result in an instant,
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which facilitates small scale prediction tasks. A minor dis-
advantage of CPAT is that the cutoff of CPAT varies from
species to species and users have to determine the optimum
cutoff value when they are training a new model. CNCI is
designed to predict the transcripts assembled from whole-
transcriptome sequencing data. Thus, CNCI offers a high
accuracy on incomplete transcripts. CNCI did not provide
result of elaborate comparison between CNCI and CPAT,
but CPAT has no regard for the problem of incomplete
transcripts. Meanwhile, UTRs of the transcripts may also
interfere with the performance of CPAT.The features of ANT
of CNCI closely resemble the hexamer of CPAT, but the
distinguishing process of CNCI is more complicated and
accurate than CPAT. However, the sliding window of CNCI
slides 3 nt in each step, and consequently some deletion
or frameshift errors may lead to a false shift and present
users with a disappointing performance. In such cases, PLEK
has made a considerable improvement and exhibits more
flexibility when handling the indel sequencing errors. Indel
errors are very common in the sequences obtained by today’s
sequencing platform, which means PLEK performs well for
de novo assembled transcriptomes. With the indel error rate
increasing, the accuracy of CNCI is decreasing while PLEK
has no distinct fluctuation. Nonetheless, since the nucleotides
compositions differ slightly among different species, the
performance of PLEK on multiple species is not better than
or approximately equivalent to CNCI whose performance
is more stable on different species. Both LncRNA-ID and
lncRScan-SVM achieve a balance between protein-coding
and lncRNAs. But the capacity of lncRScan-SVMwill be lim-
ited when analysing the sequences with a lack of annotation.
Another point that needs to be brought up is that lncRScan-
SVM and CNCI support ∗ .GTF as input file format.

It is apparent that nucleotides composition (such as 𝑘-mer
and G + C content) and ORF are two classic and widely used
feature groups. These features have strong discriminative
power because protein-coding genes will finally be tran-
scribed and translated to produce a specific amino acid chain,
which requires some specified nucleotides composition and
high-quality ORFs. As to the models of these tools, SVM
(CPC, CNCI, and PLEK), logistic regression (CPAT), and
random forest (LncRNA-ID) are more practical for lncRNA
identification, though ANN or deep learning is a more popu-
lar machine learning algorithm now. Along with the protein-
coding genes prediction, the annotations of lncRNA gene
have been performed as well. A new tool named AnnoLnc
(2015, available at http://annolnc.cbi.pku.edu.cn/index.jsp)
has just been developed to annotate new discovered lncRNAs
but related article has not yet been officially published. Users
can access its web server for more information.

LncRNAs are receiving increasing attention and lncRNA
identification has always been a challenge for researches
of life science. For so many different types of sequences,
various excellent tools should be developed to tackle different
problems under various circumstances in the future. In this
review, we summarised several tools for lncRNAs identifica-
tion and concluded respective scopes. Due to their different
scopes of application, using a method apposite to particular
situation will be of essence to achieve convincing results.

We hope this review can help researchers employ a more
appropriate method in certain situations.

Additional Points

Key Points. (i) Different tools have different scopes. Users
should select a proper tool according to the type of sequences.
(ii) From the perspective of sequence types, CPC and
CPAT are mainly used to assess coding potential. CNCI
and PLEK can be applied to the sequences obtained from
high-throughput sequencing platforms or the poorly anno-
tated. LncRNA-ID and lncRScan-SVM are more accurate on
human and mouse datasets. (iii) From the perspective of
other functions, CPC and CPAT have web interfaces. The
classification models of CPAT, LncRNA-ID, and PLEK can
be trained on users’ own datasets. CPAT, LncRNA-ID, and
lncRScan-SVM can be utilised when the data to be analysed
are on a massive-scale.
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MicroRNAs (miRNAs) are endogenous noncoding RNAs which participate in diverse biological processes in animals and plants.
They are known to join together with transcription factors and downstream gene, forming a complex and highly interconnected
regulatory network. To recognize a few overrepresented motifs which are expected to perform important elementary regulatory
functions, we constructed a computational model of miRNA-mediated feedforward loops (FFLs) in which a transcription factor
(TF) regulates miRNA and targets gene. Based on the different dynamic interactions between miRNA and TF on gene expression,
four possible structural topologies of FFLs with two gate functions (ANDgate andOR gate) are introduced.We studied the dynamic
behaviors of these different motifs. Furthermore, the relationship between the response time and maximal activation velocity of
miRNA was investigated. We found that the curve of response time shows nonmonotonic behavior in Co1 loop with OR gate. This
may help us to infer the mechanism of miRNA binding to the promoter region. At last we investigated the influence of important
parameters on the dynamic response of system. We identified that the stationary levels of target gene in all loops were insensitive
to the initial value of miRNA.

1. Introduction

MicroRNAs (miRNAs) [1, 2] are a class of endogenous
small noncoding RNAs that bind to partially complementary
sequences in target mRNAs, negatively regulating their pro-
tein production in higher eukaryotes, plants, and animals [1,
3–5]. Many experimental studies have revealed that miRNAs
can regulate various biological functions [6, 7], for instance,
development and metabolisms [8]. Also, they have been
demonstrated to be involved in many cellular signaling reg-
ulation processes, including apoptosis, proliferation, and dif-
ferentiation [9–11]. Moreover, a lot of biological and clinical

experiments have shown that miRNAs are involved in the
initiation and development of many diseases [12, 13], such as
cancers [14] and HIV [15]. More andmore attention has been
focused on themolecularmechanisms related tomiRNAs and
their functions [16].

The production of miRNA is regulated by certain tran-
scription factors (TFs) that are also key regulators in gene
expression. It has been demonstrated that miRNAs and
TFs are often highly interacted in a dependent or inde-
pendent manner [17]. Therefore, miRNA functions can be
understood more clearly only in the context of regulatory
interactions betweenTF andmiRNA. Experimental data have
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Figure 1: The coherent and incoherent feedforward loops. Arrows mean activation, the turned-over T-bars indicate repression. (a) Type 1
coherent FFL, TF activates target gene and repressesmiRNA synthesis. (b) Type 2 coherent FFL, TF represses target gene and activatesmiRNA
synthesis. (c) Type 1 incoherent FFL, TF activates both target gene and miRNA synthesis. (d) Type 2 incoherent FFL, TF represses both target
gene and miRNA synthesis.
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Figure 2:The time evolutions of𝑍 in various FFLs with different gate functions when 𝑘1 is constant input. Types 1-2 coherent FFLs are shown
in (a)-(b), while types 1-2 incoherent FFLs are given in (c)-(d). The red line corresponds to AND gate function, and the green line represents
OR gate function. Here we fix 𝑘1 = 0.25.

demonstrated that gene regulatory networks are often con-
stituted of some basic subcircuits involving feedforward
or feedback loops [18], which are often called motif [19].
Feedforward loops (FFLs) have been shown to be a major
member of biological network motifs. Many theoretical
works [20–22] and experimental studies [23] have been
conducted to investigate their structure and functions within
the context of gene expression regulation. These studies

focused on FFLs at the transcriptional level, in which gene
expression is controlled by two regulatory TFs. Moreover,
certain miRNA-containing motifs are often embedded in a
lot of gene regulatory networks (GRNs). It has been known
that all miRNAs operate through a repressive action on
target mRNA. However, considering the interaction between
miRNA and TFs, the role of miRNA in gene regulatory
network is not simply repressive. Therefore, the investigation
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Figure 3:The time evolutions of𝑍 in various FFLs with different gate functions in response to on and off steps of 𝑘1. Types 1-2 coherent FFLs
are shown in (a)-(b), while types 1-2 incoherent FFLs are given in (c)-(d). The red line corresponds to AND gate function, and the green line
represents OR gate function. 𝑘1 is set to 1 during the time between 50 and 100 and 0 in other time ranges (the black line).
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Figure 4: The response time is plotted against the variation of V2 in
Co1 loop with different gate regulations.The red line corresponds to
AND gate function, and the black line represents OR gate function.
𝑘1 is set to 1 during the time between 50 and 100 and 0 in other time
ranges.

of the effect of interaction between TF and miRNA on gene
expression is very important to help us understand the role of
miRNAs in the GRN and disease.

Mathematical model is a powerful tool used to describe
the biological systems and discriminate between different

tentativemechanisms [24–36]. Several studies have examined
the mechanisms of miRNA-containing motifs using mathe-
matical models. Osella et al. [37] used a detailed analytical
model and simulations to investigate the function of the
miRNA-mediated FFL. Their analysis demonstrated that the
incoherent version of such FFL motif can provide precision
and stability to the overall gene expression program with
an efficient noise control, given the existence of fluctuations
in upstream regulators. Morozova et al. [38] developed a
mathematical model containing nine known mechanisms of
miRNA action and discriminated among different possible
individual mechanisms based on the kinetic signatures. Duk
et al. [39] analyzed three mathematical models, in which
miRNA either represses translation of its target or promotes
targetmRNAdegradation or is not reused but degrades along
with target mRNA. They showed that different mechanisms
of miRNA action lead to a variety of types of dynamical
behavior of feedforward loops. However, none of previous
studies examined the effects of dependence (AND gate) or
independence (OR gate) between miRNA and TFs on gene
expression.

In this paper, we developed a mathematical model to
quantitatively analyze the dynamics of miRNA-containing
FFLs and investigate the interaction between miRNA and TF
on gene expression. We examined four FFLs, in which each
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Figure 5: The time evolutions of 𝑍 in various FFLs with different gate functions in response to variation of V2. Types 1-2 coherent FFLs are
shown in (a)-(b), while types 1-2 incoherent FFLs are given in (c)-(d). The red line corresponds to AND gate function, and the green line
represents OR gate function. Here we fix 𝑘1 = 0.25.

contains AND gate or OR gate. We analyzed the different
dynamical behaviors between AND gate and OR gate for
each of these four FFLs. Our results showed that different
mechanisms with respect to AND or OR gate might produce
distinct dynamics of the GRN. In addition, we examined the
relationship between response time of gene expression and
certain parameters in the model. Finally we investigated the
influence of important parameters on the response of system.
Our study advances our quantitative understanding on the
dynamic interaction between TF and miRNA, particularly,
with AND or OR gate in the GRN, and provides some
implications on the miRNA-mediated dieses.

2. Results

2.1. Mathematical Model of FFLs. Figure 1 illustrates the
general structure of FFLs in miRNA-mediated gene tran-
scription network, similar to that in [24–27]. The upstream

transcription factor (TF) regulates the target gene via two
parallel pathways: directly and by interaction with miRNA,
which also regulates the target gene. Therefore, regulatory
interactions in FFL create four possible structural topologies
(Figure 1). Two of these configurations are named “coherent”:
the sign of the direct regulation path from TF to gene
is the same as the overall sign of the indirect regulation
path from TF via miRNA to gene. The other two structures
are termed “incoherent”: the sign of the direct regulation
path is opposite to that of indirect path. We specify these
configurations as type 1 or 2 coherent FFLs and type 1
or 2 incoherent FFLs, respectively. The biological network
motif under investigation is described by 3 variables, the
concentrations of transcription factor (𝑋), miRNA (𝑌), and
target gene (𝑍). The dynamical behavior of the FFLs is
governed by the following equations:

𝑑𝑋
𝑑𝑡 = 𝑘1 − 𝑑1𝑋,
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Figure 6: The time evolutions of 𝑍 in various FFLs with different gate functions in response to variation of 𝑑2. Types 1-2 coherent FFLs are
shown in (a)-(b), while types 1-2 incoherent FFLs are given in (c)-(d). The red line corresponds to AND gate function, and the green line
represents OR gate function. Here we fix 𝑘1 = 0.25.

𝑑𝑌
𝑑𝑡 = V2𝑓 (𝑋, 𝑘12) − 𝑑2𝑌,

𝑑𝑍
𝑑𝑡 = V3𝑔 (𝑋, 𝑘13; 𝑌, 𝑘23) − 𝑑3𝑍.

(1)

The regulation function for an activator is 𝑓(𝑢, 𝑘𝑖𝑗) =
(𝑢/𝑘𝑖𝑗)𝑛/(1 + (𝑢/𝑘𝑖𝑗)𝑛) and for a repressor is 𝑓(𝑢, 𝑘𝑖𝑗) =
1/(1 + (𝑢/𝑘𝑖𝑗)𝑛), similar to that we used before in [40,
41]. 𝑔(𝑋, 𝑘13; 𝑌, 𝑘23) is the gate function, the mechanisms
underlying miRNA-mediated repression are not clear so
far, and for this reason we consider that the gate function
has two forms. The gate function for an AND gate is
𝑔(𝑋, 𝑘13; 𝑌, 𝑘23) = 𝑓(𝑋, 𝑘13) ∗ 𝑓(𝑌, 𝑘23), while for an OR
gate we have 𝑔(𝑋, 𝑘13; 𝑌, 𝑘23) = 𝑓(𝑋, 𝑘13) + 𝑓(𝑌, 𝑘23). For
more details about the values of parameters and initial
concentrations we use, see Tables 1 and 2.

2.2. Comparative Analysis of FFLs’ Temporal Behavior under
Different Gate Functions. We shall use for brevity the follow-
ing abbreviations for the FFL identification: Co1 will mean
type 1 coherent FFL, Co2 type 2 coherent FFL, In1 type 1
incoherent FFL, and In2 type 2 incoherent FFL, respectively.

Figure 2 shows the time courses of𝑍 in various FFLs with
different gate functions when 𝑘1 is constant number. Here
𝑘1 represents the basal synthesis rate of TF. The dynamics of
target gene in Co1 loop has a form of increasing function and
then tends to a constant vale (Figure 2(a)). The target gene
profiles in Co2, In1, and In2 loops show pulse-like behavior
due to repressionmediated bymiRNA (Figures 2(b), 2(c), and
2(d)). At the steady state, the concentrations of target gene
in all the loops with AND gate are much lower than those
with OR gate function. It is easy to understand this, because
OR gate function makes the synthesis rate bigger than that of
AND gate.
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Table 1: The values of parameters in the mathematical model.

Parameter number Symbol Value Description
1 𝑑1 0.2 Degradation rate of TF
2 V2 1.0 Maximal activation velocity of miRNA by TF
3 𝑑2 0.2 Degradation rate of miRNA
4 V3 1.0 Maximal activation velocity of target gene by TF and miRNA
5 𝑑3 0.2 Degradation rate of target gene
6 𝑘12 1.0 Michaelis constant of miRNA by TF
7 𝑘13 1.0 Michaelis constant of target gene by TF
8 𝑘23 1.0 Michaelis constant of target gene by miRNA
9 n 2 Hill coefficient

0

5

10

Z

0 50 100 150 200
Time

k1 = 1.0, AND gate
k1 = 0.1, AND gate
k1 = 10, AND gate

k1 = 1.0, OR gate
k1 = 0.1, OR gate
k1 = 10, OR gate

(a)

0

5

10

Z

0 50 100 150 200
Time

k1 = 1.0, AND gate
k1 = 0.1, AND gate
k1 = 10, AND gate

k1 = 1.0, OR gate
k1 = 0.1, OR gate
k1 = 10, OR gate

(b)

0

2

4

6

Z

0 50 100 150 200
Time

k1 = 1.0, AND gate
k1 = 0.1, AND gate
k1 = 10, AND gate

k1 = 1.0, OR gate
k1 = 0.1, OR gate
k1 = 10, OR gate

(c)

0

2

4

6

Z

0 50 100 150 200
Time

k1 = 1.0, AND gate
k1 = 0.1, AND gate
k1 = 10, AND gate

k1 = 1.0, OR gate
k1 = 0.1, OR gate
k1 = 10, OR gate

(d)

Figure 7: The time evolutions of 𝑍 in various FFLs with different gate functions in response to variation of 𝑘1. Types 1-2 coherent FFLs are
shown in (a)-(b), while type 1-2 incoherent FFLs are given in (c)-(d). The red line corresponds to AND gate function, and the green line
represents OR gate function. Here we fix 𝑘1 = 0.25.
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Figure 8: The time evolutions of 𝑍 in various FFLs with different gate functions in response to variation of 𝑑1. Types 1-2 coherent FFLs are
shown in (a)-(b), while types 1-2 incoherent FFLs are given in (c)-(d). The red line corresponds to AND gate function, and the green line
represents OR gate function. Here we fix 𝑘1 = 0.25.

Table 2: Initial values of the mathematical model.

Parameter number Symbol Value Description
1 X 0 Initial value of TF
2 Y 0 Initial value of miRNA
3 Z 0 Initial value of target gene

Living cells constantly have to respond to a changing
environment. To understand how cells deal with a fluctuating
environment, we need to know how cells transduce time
varying signals. Next we consider the effect of providing the
system with simultaneous pulse, a biological scenario which
corresponds to continued exposure to environmental stimuli
within a certain time range. Accordingly, we set 𝑘1 to be a
piecewise constant function

𝑘1 =
{
{
{

1 50 ≤ 𝑡 ≤ 100,

0 otherwise.
(2)

Figure 3 shows the variations in the response of the output
in the motifs. We first compare the kinetics of 𝑍 in Co1 and
In1 loops (Figures 3(a) and 3(c)). When 𝑘1 turns on, we find
out only the steady states of 𝑍 in Co1 and In1 loops with both
gate functions rising up due to the direct activation of𝑍 byTF
(Figures 3(a) and 3(c)). But in In1 loop, 𝑍 first rises slightly
and then falls down because TF inhibits 𝑍 by promoting
miRNA. When 𝑘1 turns off, both the concentrations of 𝑍
in Co1 and In1 loops decrease, but 𝑍 in In1 loop with OR
gate eventually grows again to the stationary level. We then
compare the kinetics of 𝑍 in Co2 and In2 loops (Figures 3(b)
and 3(d)); we observe that the concentration of 𝑍 in Co2
loop decreases as 𝑘1 turns on and increases as 𝑘1 turns off
(Figure 3(b)). But 𝑍 in In2 loop with OR gate rises up again
to the steady state level after 𝑍 falls down, as 𝑘1 turns on
(Figure 3(d)), while𝑍 in In2 loop with AND gate just slightly
decreases when 𝑘1 changes to 1. 𝑍 in In2 loop with two types
of gate functions shows pulse-like behavior after 𝑘1 turns to
0; however, the amplitude of 𝑍 in In2 loop with OR gate is
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Figure 9:The time evolutions of𝑍 in various FFLs with different gate functions in response to the different initial values of miRNA. Types 1-2
coherent FFLs are shown in (a)-(b), while types 1-2 incoherent FFLs are given in (c)-(d). The red line corresponds to AND gate function, and
the green line represents OR gate function. Here we choose three different initial values for 𝑌, 𝑌 = 0, 𝑌 = 5, and 𝑌 = 20. We fix 𝑘1 = 0.25.

much smaller than that with AND gate. From the subfigures
in Figure 3, we can find that 𝑍 in In2 loop with AND gate is
more robust in the presence of 𝑘1 addition, and 𝑍 in In1 loop
with AND gate is more stable after an off step of 𝑘1.

The response time is a measure of the time which a
gene product takes to reach its physiologically determined
steady state level. The speed of the response is characterized
by the response time, which 𝑍 takes to reach half of its
steady state level. Here V2 is the maximal activation velocity
of miRNA by TF. In Figure 4, we study the relationship
between the response time and V2 in Co1 loop with both gate
regulations when providing the system with simultaneous
pulse. We can observe that the response time has a form
of increasing function as V2 turns bigger in Co1 loop with
AND gate, which means the system responses more slowly
as V2 increases. This is easy to understand; larger V2 induces
more miRNA generation which further represses target gene
synthesis, so the response time turns slowly. But for the
case in Co1 loop with OR gate, the response time shows

nonmonotonic behavior, which first climbs and then damps
as further increasing V2. This indicates that there exists a
value of V2 such that the system responses most slowly. To
understand this, we need to refer to OR gate function we use.
It is a nonmonotonic function as V2 increases, so the form
of function decides the speed of the response of the system.
Our result here might be useful to infer the mechanism of
miRNA binding to the promoter region, whether or not the
TF and miRNA compete for binding to the target gene. Also,
we obtain that the response of gene expression in Co1 loop
with OR gate is faster than that in Co1 loop with AND gate
during the period of V2 changing.

2.3. Variations of Parameters on the Response of System. It is
known that the model coefficients might affect the dynamical
behavior of FFLs. Therefore, we further examine how the
changes in parameters affect the temporal behavior of the
target gene. We investigate the effect of changes in V2, 𝑑2, 𝑘1,
and 𝑑1 on the dynamical behavior of 𝑍.
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Figure 5 shows the time course of 𝑍 in various FFLs
with different gate functions in response to variation of V2.
We choose three typical values of V2: the original value, 10-
fold, and 0.1-fold of V2. We find that bigger V2 induces less
expression of target gene when 𝑍 reaches the steady state.
We can understand this from the interaction relationship in
Figure 1. Larger V2 results in more miRNA generation which
further represses target gene synthesis, so at last less target
gene was observed. Parameter 𝑑2 is the degradation rate of
miRNA. For the influence of 𝑑2, the situation is opposite, in
which bigger 𝑑2 results in higher level of gene expression after
it gets to the stationary level (Figure 6). This is because that
larger 𝑑2 induces lessmiRNAgeneration, which results in less
inhibition of miRNA on 𝑍 synthesis.

We also investigate the effect of changes in 𝑘1 and 𝑑1 on
the dynamical behavior of 𝑍 (Figures 7 and 8). In Co1 loop,
bigger 𝑘1 induces more 𝑍 with both gate functions, while,
in Co2 loop, the situation is opposite; lager 𝑘1 makes less
𝑍 with both gate functions. This is due to the fact that TF
activates target gene directly and promotes it indirectly in
Co1 loop, while, in Co2 loop, TF inhibits target gene directly
and represses it indirectly. For the cases in In1 and In2 loops
with OR gate, both lager 𝑘1 and small 𝑘1 generate nearly the
same stationary level of 𝑍 which is higher than what the
original value makes. For the cases in In1 and In2 loops with
AND gate, both lager 𝑘1 and small 𝑘1 induce nearly the same
stationary level of𝑍which is slightly lower than that induced
by the original value. For the variations of 𝑑1 (Figure 8), we
get similar results in In1 and In2 loops with both gates, but
with the opposite results in Co1 and Co2 loops. Furthermore,
we study the effect of different initial values of miRNA on the
response of the system (Figure 9). We find that the different
initial values of miRNA have no significant influence on the
steady state of target gene after it passes the transient state.

3. Conclusions

In summary, there are multiple variations of the feedforward
loops occurring in the nature based on different types of
feedback. Hence, we constructed a mathematical model
of FFLs in miRNA-mediated gene transcription network.
We introduced four possible structural topologies of FFLs
associated with two different gate functions which describe
the dynamic interaction between miRNA and TF on gene
expression. Dynamical behaviors of model component were
investigated by computational simulation. Furthermore, the
different features of system’s response to simultaneous pulse
were investigated. The influence of important parameters
on the response of system was also considered. We first
identified that only the dynamics of target gene in Co1
loop does not show pulse-like behavior when the synthesis
rate of TF is constant. While providing the system with
simultaneous pulse, we found that target gene in In2 loop
with AND gate is more robust in the presence of stimulus
addition, and target gene in In1 loop with AND gate is more
stable after an off step of stimulus. Furthermore, we studied
the relationship between the response time and maximal
activation velocity ofmiRNAwhen providing the systemwith
simultaneous pulse.We found that the curve of response time

shows nonmonotonic behavior in Co1 loop with OR gate. We
further showed that the stationary levels of target gene in all
loops were insensitive to the initial value of miRNA.
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Increasing studies have revealed that long noncoding RNAs (lncRNAs) are not transcriptional noise but play important roles in the
regulation of a wide range of biological processes, and the dysregulation of lncRNA genes is associated with disease development.
Alzheimer’s disease (AD) is a chronic neurodegenerative disease that usually starts slowly and gets worse over time. However, little
is known about the roles of lncRNA genes in AD and how the lncRNA genes are transcriptionally regulated. Herein, we analyzed
RNA-seq data and ChIP-seq histone modification data from CK-p25 AD model and control mice and identified 72 differentially
expressed lncRNA genes, 4,917 differential peaks of H3K4me3, and 1,624 differential peaks of H3K27me3 between AD and control
samples, respectively. Furthermore, we found 92 differential peaks of histone modification H3K4me3 are located in the promoter
of 39 differentially expressed lncRNA genes and 8 differential peaks of histone modification H3K27me3 are located upstream of
7 differentially expressed lncRNA genes, which suggest that the majority of lncRNA genes may be transcriptionally regulated by
histone modification in AD.

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease with
unknown etiology [1–3]. The main clinical manifestation is
intelligence damage. In addition, it is the cause of 60% to 70%
of cases of dementia. AD often begins in people over 65 years
of age, and it affects approximately 6% of people aged 65 years
and older [4]. There are about 48 million persons suffering
from AD around the world in 2015, and dementia resulted in
about 486,000 deaths in 2010 [5].

Long noncoding RNAs (lncRNAs) are non-protein-
coding transcripts longer than 200 nucleotides in length.
Thousands of human and mouse lncRNAs have been iden-
tified and emerging studies have revealed that lncRNAs play
important roles in a wide range of biological processes and
diseases [6–12]. Many studies have demonstrated that lncR-
NAs play crucial roles in the regulation of gene expression
at epigenetic, transcriptional, and posttranscriptional level
[13]. However, little is known about how lncRNA genes are
transcriptionally regulated [14] in disease such as AD.

In this paper, we analyzed RNA-seq data and ChIP-seq
histone modification data from control mice and CK-p25
AD model at 2 weeks after induction of neurodegeneration
and checked whether lncRNA genes are transcriptionally
regulated by histone modification in AD.

2. Materials and Methods

2.1. RNA-seq and ChIP-seq Data in AD and Control. The
RNA-seq and ChIP-seq data were downloaded from GEO
database with ID GSE65159 [15]. There are three control
samples and three AD mice model samples at 2 weeks after
induction of neurodegeneration. The histone modification
marks include H3K4me3 and H3K27me3.

2.2. IdentifyingDifferentially Expressed lncRNAGenes between
AD and Control. We used RNA-seq data to evaluate gene
expression on control mice and CK-p25 Alzheimer’s disease
model. We used the mm10 reference sequence to build an
index by Bowtie2-build [16]; the mm10 reference sequence
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Figure 1: Positive association between expression level of differential lncRNA genes and H3K4me3 modification level in promoters of the
differential lncRNA genes. (a) Scatter diagram and a fitting line show the positive association between fold change of lncRNA gene expression
and fold change of H3K4me3 modification level in the promoter. (b) Boxplot of expression level of differential lncRNA genes and H3K4me3
modification level in the promoters of the differential lncRNA genes in AD and control samples, respectively, which shows that lncRNA genes
with high H3K4me3 level in the promoters have high expression level.The circle in (b) refers to a singular point in statistics, differential from
other points. But the singular point has statistical significance, showing the accuracy and objectivity of this article.

was downloaded from UCSC. Next the RNA-seq data are
mapped to the mm10 reference sequence with TopHat2 [17]
by default parameters. Cufflinks [18] was used to assemble
the outcome of mapping and evaluate gene expression index.
The lncRNA annotation was downloaded from GENCODE
database, and differentially expressed lncRNA genes were
identified by Cuffdiff with default parameters, a component
of Cufflinks software.

2.3. Identifying Differential Histone Modification Peaks. To
explore whether differentially expressed lncRNAs between
AD and control are regulated by histone modification or
not, we identified differential histone modification regions
by analyzing the ChIP-seq data of histone marks H3K4me3
and H3K27me3 in AD and control. We firstly mapped the
ChIP-seq data to the mm10 reference sequence by Bowtie2
software with default parameters. Then we used MACS2-
callpeak [19] to identify the peaks of histone modification
regions in the control mice and CKp25 Alzheimer’s disease
model [20], respectively. Finally, MACS2-bdgdiff is used to
identify significantly differential histonemodification regions
between the control and AD.

2.4. Linking theDifferential lncRNAGeneswith theDifferential
Histone Modification Peaks Based on the Genomic Position.
After identifying differential histone modification regions
and differentially expressed lncRNA genes, we investigated
whether the differential histone modification regions are
located in the regulatory regions of the differential lncRNA
genes. Herein, the regulatory regions are defined as 10 kbp
upstream to 1 kbp downstream of transcriptional start site
(TSS) of each differentially expressed lncRNA gene.

3. Results

3.1. Differentially Expressed lncRNA Genes between AD and
Control Samples. By analyzing three AD and control RNA-
seq data, we identified 72 significantly differentially expre-

ssed lncRNA genes with the BH-adjusted 𝑝 value < 0.05 and
fold change >2 (Supplementary Table 1, in Supplementary
Material available online at http://dx.doi.org/10.1155/2016/
3164238).

3.2. Differential Histone Modification Peaks between AD and
Control Samples. We analyzed ChIP-seq histone modifica-
tion data from CK-p25 AD model and control mice and
identified 4,917 differential peaks of H3K4me3 and 1,624
differential peaks of H3K27me3 between AD and control
samples, respectively.

3.3. Differential Histone Modification Peaks Are Located
Upstream of Differentially Expressed lncRNA Genes. We
found that there are 92 H3K4me3 differential histone mod-
ification peaks located in the promoters (2 kbp upstream to
−1 kbp downstream) of 39 differentially expressed lncRNA
genes (Supplementary Table 2) and 8 differential H3K27me3
histone modification peaks located in the region from 10 kb
upstream to −1 kb downstream of 7 differentially expressed
lncRNA genes. A positive association between histone modi-
fication level of H3K4me3 and lncRNA gene expression level
is shown in Figure 1, and a negative association between
histone modification level of H3K27me3 and lncRNA gene
expression level is shown in Figure 2. A case study for the
lncRNA gene named Gm20559was shown in Figure 3, where
the lncRNA Gm20559 had differential histone modification
of H3K4me3 between AD and control in its promoter region,
and exon 1 and exon 3 ofGm20559 are differentially expressed
betweenADand control.These results suggest that themajor-
ity of lncRNA genes (39 + 7)/72 may be transcriptionally
regulated by histone modification in AD.

4. Discussion

lncRNA is a type of important regulatoryRNAs that play criti-
cal roles in awide range of biological processes.However, how
the lncRNA genes themselves are transcriptionally regulated

http://dx.doi.org/10.1155/2016/3164238
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Figure 2: Negative association between expression level of differential lncRNA genes and H3K27me3 modification level in promoters of the
differential lncRNA genes. (a) Scatter diagram and a fitting line show the negative association between fold change of expression level of
differential lncRNA genes and fold change of H3K27me3 modification level in the promoters. (b) Boxplot of expression level of differential
lncRNA genes and H3K27me3 modification level in the promoters of the differential lncRNA genes in AD and control samples, respectively,
which shows that lncRNA genes with high H3K27me3 level in the promoters have low expression level. The circle in (b) refers to a singular
point in statistics, differential from other points. But the singular point has statistical significance, showing the accuracy and objectivity of
this article.
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H3K4me3 in promoter in Alzheimer’s
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lncRNA gene Gm20559

Figure 3: A lncRNA gene named Gm20559 with differential
H3K4me3 modification level in the promoter between AD and
control samples shows differential expression in exon 1 and exon 3.
The red rectangle shows exon 1 and exon 3 regions of differentially
expressed lncRNA gene Gm20559. And the green rectangle shows
differential H3K4me3 histone modification in the promoter region,
which suggests transcriptional regulation ofGm20559 byH3K4me3.

remains to be elucidated. In this paper, we used RNA-seq and
ChIP-seq data from AD model and control to demonstrate
that the majority of lncRNA genes are transcriptionally
regulated by histone modification in AD.

As known, a protein-coding gene or lncRNA gene is reg-
ulated by many types of factors rather than one factor.There-
fore, it sounds reasonable to integrate kinds of factors such as
transcription factor, microRNA [21–24], DNA methylation,
and histone modification to investigate the transcriptional
regulation of lncRNAs in a specific condition such as AD,
which will improve our understanding of lncRNA genes in
AD.
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Noncoding RNAs (ncRNAs) have been identified in many fungi. However, no genome-scale identification of ncRNAs has been
inventoried for basidiomycetes. In this research, we detected 254 small noncoding RNAs (sncRNAs) in a genome assembly of an
isolate (CCEF00389) of Pleurotus ostreatus, which is a widely cultivated edible basidiomycetous fungus worldwide. The identified
sncRNAs include snRNAs, snoRNAs, tRNAs, and miRNAs. SnRNA U1 was not found in CCEF00389 genome assembly and some
other basidiomycetous genomes by BLASTn. This implies that if snRNA U1 of basidiomycetes exists, it has a sequence that varies
significantly from other organisms. By analyzing the distribution of sncRNA loci, we found that snRNAs and most tRNAs (88.6%)
were located in pseudo-UTR regions, while miRNAs are commonly found in introns. To analyze the evolutionary conservation
of the sncRNAs in P. ostreatus, we aligned all 254 sncRNAs to the genome assemblies of some other Agaricomycotina fungi. The
results suggest that most sncRNAs (77.56%) were highly conserved in P. ostreatus, and 20% were conserved in Agaricomycotina
fungi. These findings indicate that most sncRNAs of P. ostreatus were not conserved across Agaricomycotina fungi.

1. Introduction

Pleurotus ostreatus (Jacq.: Fr.) Kumm. (Dikarya; Basidiomy-
cota; Agaricomycotina; Agaricales) is an important commer-
cially available edible fungus worldwide, and it is the most
popular edible mushroom in Northern China. This fungus
can grow easily on a variety of organic substrates, including
agricultural wastes [1, 2]. In addition to its delicious taste
and nutritional value [3], this mushroom also has health-
promoting effects [4]. Furthermore, it is tolerant of a wide
temperature range during the cultivation [5]. Because of its
wide substrate utilization, it is a good model for the study of
lignin biodegradation [6] and environmental adaptation.

Noncoding RNAs (ncRNAs) producing functional RNA
products instead of proteins [7] are widely expressed in
both prokaryotes and eukaryotes [8–10]. For example, around

98% of transcriptional output in human is ncRNA [11].
NcRNA families are grouped into structural ncRNA and
regulatory ncRNA based on their structure and function [9].
The structural ncRNA includes transfer RNA (tRNA) and
ribosomal RNA (rRNA), as well as other small but stable
noncoding RNAs, such as small nuclear RNAs (snRNAs),
small nucleolar RNAs (snoRNAs), Ribonuclease P (RNase P),
mitochondrial RNA processing (MRP) RNA, signal recogni-
tion particle (SRP) RNA, and telomerase RNA. Regulatory
ncRNAs include microRNAs (miRNAs) and long ncRNAs
(lncRNAs) [12]. These ncRNAs play important roles in splic-
ing [13], transcription [14], translation [15], and chromatin
architecture [16], and many ncRNAs are associated with
diseases [17–24].

Recently, ncRNAs have been identified by experimental
and computational methods in several fungi [10, 25–28].
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But so far, there have been few studies related to ncRNA
in basidiomycetes and even fewer for edible mushroom.
Apart from rRNAs and a few tRNAs, no other ncRNAs
have been annotated and characterized in the P. ostreatus
genome. In this research, we sequenced the genome of a
strain of P. ostreatus and identified small ncRNAs (sncRNAs)
in the genome assembly. Then the distribution of genomic
loci of these sncRNAs was characterized to describe the
preferential locations of different sncRNAs. Lastly, we ana-
lyzed the evolutionary conservation of these sncRNAs among
basidiomycetous fungi.

2. Materials and Methods

2.1. Strains and Culture Conditions. The Pleurotus ostreatus
dikaryotic strain, CCMSSC00389, is widely cultivated in
China and is preserved in the China Center for Mush-
room Spawn Standards and Control, Institute of Agricultural
Resources and Regional Planning, Chinese Academy of Agri-
cultural Sciences. From this strain, the two nuclear types were
separated to constituent monokaryons by dedikaryotisation
as follows: the dikaryon was grown in 10 cm diameter Petri
dishes containing 25mL of potato dextrose agar (PDA)
at 25∘C for 6-7 days. Mycelia (1 g) were collected from
the growing margins of the plate and suspended in 2%
lytic enzyme (Guangdong Institute of Microbiology, China)
and 0.6mol/L mannitol and incubated at 30∘C for 4 h.
The resulting protoplasts were washed twice with 0.6mol/L
mannitol and placed (dissolved = broken up) in mannitol
solution. The protoplast suspension was spread onto malt-
yeast-glucose (MYG) medium and incubated at 25∘C for 4-
5 days. Monokaryons were identified by microscopy among
the regeneration clones by lack of clamp connections and
further confirmed by mating to produce dikaryotic hyphae
with clamps connections. A single monokaryon of each
nuclear type was randomly selected and sequenced and
named CCEF00389 and CCEF00389 9.

2.2. Isolation of Genomic DNA. Genomic DNAs of the two
monokaryons were extracted using a DP305-Plant Genome
Extraction Kit (Tianjin, China). The purity and quality of the
genomic DNA were determined through spectrophotometry
and electrophoresis on a 1.0% agarose gel and sequenced
using the Illumina HiSeq 2500. The raw data were gener-
ated by paired-end and mate-pair sequencing with different
insert sizes. Strain CCEF00389 used a whole genome de
novo sequencing strategy with average coverage of over
300x. Three libraries were constructed for 100 bp paired-end
(300 bp insert size) and mate-pair sequencing (3 kbp and
8 kbp insert length).

2.3. Transcriptomic Data. Mycelia of the same strain were
inoculated on the DifcoTM Potato Dextrose Agar plates
with cellophane at 25∘C for four days and were subjected to
heat stress at 37 centigrade for different time (0, 0.5, 1, and
1.5 h).Themycelia throughdifferent treatmentwere collected,
respectively, for RNA extraction.TheRNA samples were then
sequenced with Illumina HiSeq 2500. One library for each

time point was constructed for 100 bp paired-end (300 bp
insert size) sequencing. The raw data were assembled to the
transcriptome with de novo assembler TRINITY [29].

2.4. Genome Assembly and Annotation. Raw reads were first
trimmed by stripping the adaptor sequences and ambiguous
nucleotides using SeqPrep (https://github.com/jstjohn/Seq-
Prep) and Sickle (https://github.com/najoshi/sickle). Reads
with quality scores less than 20 or “N” more than 10%
or lengths below 25 bp were removed. The cleaned reads
were assembled using the tools PLATANUS [30] and
L RNA Scaffolder [31] with de novo assembly guided by
the assembled transcriptome. Gene models in the genome
assembly of P. ostreatus were predicted using BRAKER1
[32]. The protein-coding genes were then confirmed using
BLAST+ (version 2.2.31) against public databases, including
the NCBI nonredundant database (NR) database, the Refseq
database of fungi, ESTs of P. ostreatus PC15 (http://genome.jgi
.doe.gov/pages/dynamicOrganismDownload.jsf?organism=
PleosPC15 2), the predicted protein models of 134 basid-
iomycetous species in JGI website (http://genome.jgi.doe
.gov/basidiomycota/basidiomycota.info.html), and the tran-
scriptome of CCEF00389. The predicted gene models were
then classified according to Gene Ontology (GO) [33]
with homologous sequences in the NR database and also
annotated by their protein domains using InterProScan [34].

2.5. SncRNA Detection. Small ncRNAs were first identi-
fied by aligning Rfam sequences to our genome assembly
using BLAST+ and Infernal (version 1.0.3). These sncRNAs
included snRNAs and snoRNAs. tRNAs were predicted with
tRNAscan-SE (version 1.3.1) [35]. miRNAs were detected
by alignment of Rfam miRNA sequences (RF00003) to our
genome assembly with BLASTn, with the 𝑒-value cutoff 1𝑒−3
and the word size 19.

2.6. Nucleotide Sequence Accession Number. This whole
genome shortgun project has been deposited at DDBJ/
EMBL/GenBank (http://www.ncbi.nlm.nih.gov/) under the
accession number MAYC00000000 (the project accession
number PRJNA327267).

3. Results and Discussion

3.1. Genome Information of CCEF00389. A 34.9-Mb genome
assembly was obtained by assembling approximately 81 mil-
lion Illumina reads (∼300x coverage) (Table 1 and Figure 1).
Gene prediction from all scaffolds of the assembled genome
and transcriptomic data generated 13,438 gene models. The
genome size, number of predicted genes, and the basic
information of predicted genes are very similar as those
of related edible Agaricales, such as Volvariella volvacea
[36], Agaricus bisporus [37], and Flammulina velutipes [38]
(see Supplement Table 1 in Supplementary Material avail-
able online at http://dx.doi.org/10.1155/2016/2503023). Gene
Ontology (GO) annotations were found for 6,566 proteins
(48.9%) with homologous sequences in the NR database. In
addition, 9,931 (73.9%) of all predicted genes can be annotated
by their protein domains by InterProScan.
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Table 1: General features of the P. ostreatus CCEF00389 genome
assembly.

Number of scaffolds 2,529
Length of all scaffolds combined (Mb) 35.8
GC content (%) 49.54
Scaffold N50 value (bp) 394,787
Number of large scaffolds (>1000) 794
Length of large scaffolds (Mb) 34.9
Number of protein-coding genes 13,438

(a)

(b)

(c)
(d)
(e)
(f)

Figure 1:The ideogram showing the genomic features of P. ostreatus.
(a) Scaffolds longer than 10 kbp. (b) GC content: the percentage of
G+C in 10 kbp nonoverlappingwindows. (c) Gene density: the num-
ber of genes in 10 kbp nonoverlapping windows. (d) Distribution
of tRNAs. (e) Distribution of miRNAs. (f) Distribution of snRNAs,
snoRNAs, and others.

3.2. Identification of sncRNAs in P. ostreatus

3.2.1. sncRNAs from Rfam 11: snRNAs, snoRNAs, and Other
sncRNAs. The spliceosome contains five essential snRNAs:
U1, U2, U4, U5, and U6 [39]. Four of them were identified
in the CCEF00389 genome assembly: U4 and U5 exhibited
a precise genomic location, while U2 and U6 had several
candidate locations in the genome assembly (Table 2). To find
the U1 genomic locus in the genome, we downloaded the U1
sequences of all species from Rfam and the U1 sequences of
fungi from NCBI to be used as query sequences to search
for homologues in the CCEF00389 genome using BLASTn.
Interestingly, U1 was not found in this genome assembly,
even after extensive searching with sequences from other
fungi. Furthermore, U1 was not found in genome assemblies
of other basidiomycetous fungi including Agaricus bisporus
[37], Coprinopsis cinerea [40], Flammulina velutipes [38],
Schizophyllum commune [41], Pleurotus ostreatus PC15 [42],
Volvariella volvacea [36], Laccaria bicolor [43], and Ustilago

maydis [44].This implies that if snRNAU1 of basidiomycetes
exists, it has a sequence that varies significantly from other
organisms.

Small nucleolar RNAs (snoRNAs) guide chemical mod-
ifications of other cellular RNAs, including rRNAs, tRNAs,
and snRNAs. There are two major classes of snoRNA in
eukaryotic cells: the C/D box snoRNAs, which are associated
with methylation, and the H/ACA box snoRNAs, which are
associated with pseudouridylation [10, 45]. Seven snoRNAs
were identified in the CCEF00389 genome assembly: three
of them were of Rfam class snoZ13 snr52, and each of the
others is belonging to Rfam class snosnR60 Z15, SNORD24,
Afu 455, and SNORD46, respectively. There were also six
other sncRNAs in theRfam searching result: oneRNase MRP
RNA and five Hammerhead ribozymes (type 3).

3.2.2. tRNA. A transfer RNA (tRNA) is adaptor RNA
molecule that serves as the physical link between the mRNA
and protein [46], so it is a necessary component of translation
and essential for life. However, the number of tRNAs in
the genome assemblies of different organisms varies tremen-
dously [47–49]. In the genome assembly of CCEF00389, we
identified 185 tRNAs with length from 71 to 144 nt with their
loci and anticodons shown in Supplement Table 2.

3.2.3. miRNA. Amicro-RNA (miRNA) is a small noncoding
RNA molecule about 22 nucleotides in length, which func-
tions in RNA silencing and posttranscriptional regulation
[50].ThemiRNAs have been identified in the genome assem-
blies of most eukaryotic organisms and are very abundant in
many of them [51–54]. There were only 46 mature miRNAs
identified in the CCEF00389 genome assembly by BLASTn,
with lengths from 19 to 23. The most important factor in
uncovering putative miRNAs was the parameter “word size”
of BLASTn. If this parameter was set to 20, many fewer
matches (only 10) were found. As we know, some miRNAs
have a variation of 1-2 nt at the end (often 3󸀠 end) [51]. And
a probable reason of the lack of miRNAs in this genome
assembly is that there is no currently available miRNA
database for basidiomycetes. Compared with the known
miRNAs, the sequences are not evolutionarily conserved.

3.3. Distribution of snRNAs in the CCEF00389 Genome
Assembly. Most sncRNAs are located in noncoding regions of
the genome, including introns, UTRs, and intergenic regions.
The location of ncRNAmight be associated with its function.
For example, the ncRNAs in UTRs and intergenic regions
may play cisregulatory roles regulating their adjacent genes,
and/or transregulatory roles elsewhere in the genome [55].
And the ncRNAs in introns could regulate gene expression
through transcriptional gene silencing (TGS) pathways [56,
57] and posttranscriptional gene silencing pathways [58–60].

We wanted to identify the sncRNAs to locus and charac-
terize their distribution.The UTR regions of the CCEF00389
genome assembly were not identified, so the distribution of
sncRNAs located outside the ORFs (from the start codon to
the stop codon)was defined quantifiably as the distance to the
nearer gene boundary (start/stop codon). The UTR regions
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Table 2: Genomic loci, distance to gene boundary, and neighboring gene of sncRNAs identified using Rfam.

ID Location Strand Distance to gene boundary Neighbor
U2.1 scaffold37 107912–108102 − 470 g12507
U2.2 scaffold43 54422–54612 − 487 g12899
U2.3 scaffold43 63239–63429 + 536 g12905
U2.4 scaffold37 118109–118299 + 329 g12510
RNase MRP.1 scaffold1 325685–326108 + 172 g8330
U6.1 scaffold 59 650694–650810 + 315 g7427
U6.2 scaffold 80 192511–192627 + 150 g8186
U6.3 scaffold63 39552–39668 + 399 g4097
U5.1 scaffold16 469793–469909 − 959 g10739
snoZ13 snr52.1 scaffold46 213325–213430 − 394 g13123
U4.1 scaffold113 43830–43975 + 459 g5145
snoZ13 snr52.2 scaffold1 729232–729339 − Intron g8490
snoZ13 snr52.3 scaffold46 213071–213178 − 646 g13123
snosnR60 Z15.1 scaffold 75 65986–66075 − Intron g7941
Hammerhead 3.1 scaffold59 142237–142291 + 277 g3917
Hammerhead 3.2 scaffold59 152597–152651 − 257 g3922
Hammerhead 3.3 scaffold 12 734778–734832 + 262 g1296
Hammerhead 3.4 scaffold59 146486–146540 + 685 g3919
SNORD24.1 scaffold60 67979–68061 − Intron g3964
Afu 455.1 scaffold 11 316838–316924 − Intron g963
Hammerhead 3.5 scaffold25 333837–333891 + Intron g11689
SNORD46.1 scaffold37 225673–225759 + 1031 g12558
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Figure 2:Distance of sncRNAs to the gene boundary (outside a start
or stop codon).

usually lie within 2000 bp of gene boundary [61], and it can
be assumed that the less the distance to gene boundary, the
greater the possibility to be located in UTR [62].

For the three kinds of sncRNAs (tRNAs, miRNAs, and
other sncRNAs from Rfam), the distribution is shown in
Figure 2.

All detected snRNAs were located within 1,000 bp of
a gene boundary. Among them, U5 was located 959 bp

from a gene boundary, and the other snRNAs were located
within 536 bp of gene boundaries. It is highly likely that
all the snRNAs are located in pseudo-UTR regions of this
genome. A similar distribution of snRNAs was found in
the filamentous fungus Trichophyton rubrum [25]. For the
snoRNAs, Hammerhead RNAs, and the RNase MRP, they
were located diversely in the genome assembly: within 1031 bp
of the gene boundary and in introns (5 out of 13) (see Table 2).

Most tRNAs (136 out of 167, 81.44%) locatedwithin 500 bp
of gene boundary; this means that tRNAs distributed mainly
in pseudo-UTR regions. There are also 16 tRNAs (9.58%)
located in introns. For details, see Supplement Table 3.

As many as 67% (31 out of 46) of miRNAs in the
CCEF00389 genome assembly located in introns, which are
usually regulated together with their host genes [63, 64].
Two miRNAs, miR1171 and miR3948, located at a distance of
more than 2000 bp away from an ORF, were intergenic (see
Table 3).

3.4. Evolutionary Conservation of sncRNAs in P. ostreatus. In
order to analyze the evolutionary conservation of sncRNAs
in P. ostreatus, all identified sncRNAs were then aligned to
the genomes of other fungi, including six P. ostreatus-related
Agaricomycotina fungi: Agaricus bisporus [37], Coprinop-
sis cinerea [40], Flammulina velutipes [38], Schizophyllum
commune [41], Pleurotus ostreatus PC15 [42], Volvariella
volvacea [36], and finally Ustilago maydis [44] which is a
basidiomycete, but basal to the Agaricomycotina.

Only 10 of these sncRNAs were also identified in all
selected basidiomycetes, and all these conserved sncRNAs
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Table 3: Genomic loci, distance to gene boundary, and neighboring gene of miRNAs.

ID Location Strand Distance to gene boundary Neighbor
miR-124-5p scaffold 29 13029–13047 + Intron g3043
miR-190a-3p scaffold48 55792–55810 + 53 g13155
miR-788-5p scaffold8 754188–754207 − Intron g9721
miR-383-3p scaffold 80 111549–111567 − Intron g8156
miR-466g scaffold8 19655–19673 − 94 g9475
miR1171 scaffold 70 119604–119626 + 2094 g7800
miR-467g scaffold 26 54067–54085 − 147 g2750
miR-190a-3p scaffold48 55792–55810 + 53 g13155
miR1427 scaffold85 42007–42025 − 110 g4652
miR2095-5p scaffold 29 43092–43110 + 1121 g3054
miR-788 scaffold8 754188–754207 − Intron g9721
miR2673a scaffold32 244540–244559 + 71 g12059
miR2673a scaffold25 190886–190904 + Intron g11628
miR2673a scaffold 15 223801–223819 − Intron g1786
miR2673b scaffold32 244540–244559 + 71 g12059
miR2673b scaffold25 190886–190904 + Intron g11628
miR2673b scaffold 15 223801–223819 − Intron g1786
miR-2709 scaffold64 62205–62223 + Intron g4162
miR-2783 scaffold392 645–663 + Intron g5776
miR-190a-3p scaffold48 55792–55810 + 53 g13155
miR156h-3p scaffold151 19717–19735 − Intron g5461
miR4243 scaffold 15 464570–464589 − Intron g1895
miR-3677-5p scaffold61 171654–171672 − 363 g4080
miR-3775 scaffold1170 174–192 − Intron g6228
miR3948 scaffold155 16079–16098 + 3715 g5479
miR3948 scaffold8 7775–7794 − Intron g9470
miR-4459 scaffold7 14624–14642 + Intron g9172
miR-4968-3p scaffold 14 64946–64966 − Intron g1539
miR-4968-3p scaffold34 263134–263153 − Intron g12318
miR-4968-3p scaffold 24 6521–6540 − Intron g2572
miR-4968-3p scaffold3 287008–287026 + Intron g8829
miR-5352-5p scaffold53 49526–49544 − Intron g13380
miR-5455-3p scaffold54 13491–13509 − Intron g3643
miR-6012-5p scaffold14 172648–172666 − Intron g10243
miR6214 scaffold58 68922–68940 − Intron g3823
miR-6606-5p scaffold 19 158806–158825 + Intron g2084
miR-7426-5p scaffold46 187269–187287 + Intron g13115
miR7734-3p scaffold21 198083–198101 + Intron g11335
miR-190a-3p scaffold48 55792–55810 + 53 g13155
miR-8481-5p scaffold1214 35–53 + Intron g6248
miR-8922 scaffold21 9675–9693 + Intron g11273
miR-8986a scaffold 4 231055–231073 − Intron g184
miR-9189b scaffold 24 289739–289757 − Intron g2662
miR-9400-5p scaffold3 354824–354842 + Intron g8861
miR-190a-3p scaffold48 55792–55810 + 53 g13155
miR9773 scaffold390 1391–1409 − 292 g5774
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Figure 3: Similarity clustering based on sequence identities of sncRNAs between CCEF00389 and seven other basidiomycetous fungi: (a) the
hierarchical clustering tree; (b) the heat map of identities; the black color means no matches at the cutoff 1𝑒 − 3 (1𝑒 − 1 for miRNAs, because
the length of their sequences is short).

were miRNAs. This means that only a small part of miRNAs
are conserved because of the low rate of evolution [65]. Only
5.9% (15 out of 254) of sncRNAs in the CCEF00389 genome
assembly had homologues inUstilago maydis. Most sncRNAs
identified in Agaricomycotina fungi do not have homologues
in other groups of fungi.There were 51 of these sncRNAs also
identified in all six genomes ofAgaricomycotina fungi, and 74
of these sncRNAs were also identified in at least five genomes
of Agaricomycotina species. Moreover, the sequence identi-
ties of the matches were above 80%. This suggests that many
sncRNAs are highly conserved among Agaricomycotina
fungi. These conserved sncRNAs included the snRNA U2 (4
candidates) and U6 (3 candidates), 10 miRNAs (miR2673a,
miR2673b, and miR-4968-3p), and 57 tRNAs (see Supple-
ment Table 4). In some previous researches, the microRNAs
miR2673 and miR-4968-3p were found to have many target
genes in many species [66, 67] andmay regulate some targets
[68, 69].MicroRNAmiR2673was also be found to have stable
structure and be conserved across plant species [70].

To compare the sequence similarity between sncRNAs of
CCEF00389 and their homologues in selected fungi, a hier-
archical clustering was performed to partition the different
fungi based on the sequence identities. In the hierarchical
clustering method, the Spearman correlation coefficient of
sequence identities of all sncRNAs (if nomatches were found,
the identity was set to zero) was selected to define the
dissimilarity between organisms. Figure 3 shows the result
of clustering. It is clear that the homologues of sncRNAs
of Pleurotus ostreatus PC15 were most similar to sncRNAs
of CCEF00389, because they belong to the same species.
There were 77.56% (197 out of 254) of matched sncRNAs with
sequence identities above 81.65%. For the other five organ-
isms, the clustering results basically reflected the currently
accepted phylogenetic placement of these species [71].

4. Conclusions

The CCEF00389 genome assembly is the first released draft
genome of a strain of P. ostreatus in China. The genome size,
number of genes, and some protein families were in accor-
dance with the released genome of PC15, which is a North
American strain of P. ostreatus. In the CCEF00389 genome
assembly, we detected 254 sncRNAs which were not reported
before.This was the first study of genome-scale identification
of sncRNAs for a basidiomycete. The sequence length of
sncRNAs accounted for 0.054% of CCEF00389 genome, and
the identified sncRNAs included most classes of known
sncRNAs.However, the snRNAU1was not identifiednot only
in CCEF00389, but also in other basidiomycetous genomes.
This implies that if snRNA U1 of basidiomycetes exists, it has
a sequence that varies significantly from other organisms.

For some sncRNAs, the position of loci may be asso-
ciated with some potential functions. The UTR regions
of the CCEF00389 genome assembly were not precisely
determined, so we calculated the distances of sncRNAs to
the gene boundary (start/stop codon) for possible location in
pseudo-UTR regions. The snRNAs and tRNAs had a higher
possibility to be located in pseudo-UTR regions, while the
miRNAs were more common in introns.

There were 197 sncRNAs in CCEF00389 genome, which
had detectable homologues in another strain of P. ostreatus,
and 74 sncRNAs in CCEF00389 genome which were also
found in some other Agaricomycotina fungi. However, only
15 sncRNAs in CCEF00389 genome had homologues in
Ustilago maydis, which does not belong to Agaricomycotina.
It suggests that most sncRNAs of P. ostreatus were not
conserved across Agaricomycotina fungi.

Long ncRNA (lncRNA) is also a kind of impressive
ncRNA which plays critical roles in multiple biological pro-
cesses based on diverse underlying mechanisms [17, 22]. And
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prediction of the interaction between ncRNAs and proteins
has attracted much attention because the ncRNAs function
mediated with proteins. In the future work, we will focus on
identification and analysis of lncRNAs [12] and prediction of
the interactions between ncRNAs and proteins [72–74].
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MicroRNAs (miRNAs) are short noncoding RNAs that play important roles in regulating gene expressing, and the perturbed
miRNAs are often associated with development and tumorigenesis as they have effects on their target mRNA. Predicting potential
miRNA-target associations frommultiple types of genomic data is a considerable problem in the bioinformatics research. However,
most of the existingmethods did not fully use the experimentally validatedmiRNA-mRNA interactions.Here, we developedRMLM
and RMLMSe to predict the relationship between miRNAs and their targets. RMLM and RMLMSe are global approaches as they
can reconstruct the missing associations for all the miRNA-target simultaneously and RMLMSe demonstrates that the integration
of sequence information can improve the performance of RMLM. In RMLM, we use RMmeasure to evaluate different relatedness
between miRNA and its target based on different meta-paths; logistic regression and MLE method are employed to estimate the
weight of differentmeta-paths. In RMLMSe, sequence information is utilized to improve the performance of RMLM.Here, we carry
on fivefold cross validation and pathway enrichment analysis to prove the performance of our methods. The fivefold experiments
show that our methods have higher AUC scores compared with other methods and the integration of sequence information can
improve the performance of miRNA-target association prediction.

1. Introduction

MicroRNAs (miRNAs) are important endogenous 21-22 nt
RNAs that play important regulatory roles in gene expression.
Several studies have shown that miRNAs participate in the
regulation of amount cellular process, such as cell prolifer-
ation and differentiation [1], development [2], and disease
[3, 4]. Considering the importance of miRNAs, it is critical to
identify and deciphermiRNA-target interactions at a genome
level.

All the time, scientists and academics have made great
efforts in uncovering the associations betweenmiRNAand its
targets by using biological experiments [5–8]. However, it is
impossible to depict a complete picture of miRNA regulation
mechanisms only relying on biological experiments due to
the high expenses on time and cost [9]. Therefore, compu-
tational approaches must be designed to be a cost-effective
choice to describe the complete mechanism of miRNA

regulatory. Now, many computational approaches show great
advantage in predicting putative miRNA targets [10–13].

Over the past decade, plenty of miRNA-mRNA pairs
prediction approaches have been developed to identify
miRNA targets by using sequence data, including Tar-
getScanS/TargetScan [14, 15], miRanda [16], Pictar [17],
DITAT-MicroT [18], and PITA [19]. The majority of these
prediction algorithms were built on specific binding rules,
including the degree of site conservation, thermodynamic
stability, sequence complementarity, energy, target site con-
text, secondary structure, and site accessibility. Because of
the complex character of miRNA-target interactions, these
sequence-based methods have relatively high false-positive
rate [20]. Furthermore, those predictions methods were
mostly only at static sequence level, leading to those exact
interactions that are specific to certain conditions or diseases.
More importantly, sequence-based methods do not support
statistically significant predictions as the miRNA binding
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sites are small, causing the results by different methods to be
inconsistent.

To identify condition-specific interactions, many
methods integrating expression profiles information into
sequence-based predictions have been proposed to study
miRNA-mRNA regulatory mechanism. These methods are
based on the assumption that gene has negative correlations
with the miRNA because of the downregulation effect that
miRNAs have on their targets.These methods can be divided
into four categories including simple correlation analysis [21,
22], simple/regularized regression models [23–25], Bayesian
inference [19, 26], and causally inference between miRNAs
and their targets [27]. Pearson correlation, one of the typical
simple correlation methods, is commonly used in computing
the strength of the association between a pair of miRNA and
mRNA. However, Pearson correlation has high false-positive
rate as the simplicity of it. Furthermore, Pearson correlation
is mainly used in predicting linear associations. Lasso
regression [24, 25], one of the regression models, is a high-
dimensionalmethod used to extractmore reliable association
as they usually optimize the network provided by sequence-
based method and retain the relatively reliable edges.
GenMir++ [19], the first and well-cited Bayesian inference
method, calculates the existence probabilities of the relation-
ship between a miRNA and its target based on a Bayesian
model. However, this method needs prior information, such
as sequence information. In general, methods in Bayesian
category assume different priors [28] and are difficult in
learning parameters. MCMG (joint analysis of multiple
cancer for MiRNA-gene interactions), based on empirical
Bayesian model [29], identifies miRNA-target associations
that are either specific to a cancer type or common to several
cancers by jointly analyzed across cancers. Muniategui et al.
use do-calculus to estimate the causal effects themiRNAhave
on all the target mRNAs. The four categories methods can
improve prediction performance as they integrate expression
profiles information into sequence-based predictionmethods
[30]. But, most of the existing approaches cannot effectively
use the valuable experimentally validated information [31–
34]. Besides, the lack of miRNA expression profile may cause
the unreliability of the predicted miRNA-target associations.

On the whole, the limitations of existing methods are
summarized as follows. Firstly, sequenced-based prediction
algorithms suffer from a high false-positive rate; second, the
methods integrating expression profile data can only analyse
one cancer every time; third, somemethods cannot effectively
utilize validated knowledge. To solve these problems, we pro-
pose two network-based approaches, RMLM and RMLMSe,
to identify miRNA-target interactions based on meta-path.
Meta-path is a good measuring method to compute the
relatedness between the same or different types of objects in
heterogeneous information network, as it contains a certain
sequence of different link types [35]. Different meta-paths
have different semantic meaning corresponding to different
relationships between connected objects. In RMLM, we first
utilize RM (a meta-path related measure proposed by Cao
et al. [36]) to evaluate the existence probability of a link
betweenmiRNA and its targets. As differentmeta-path corre-
sponds to different relation graphs, we may improve the final
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Figure 1: Network schema of the miRNA-target network. The
network contains two types of objects, miRNA and its targets. Each
box represents one type of nodes, and each dashed line represents
one type of links. The numbers in the figure represent the numbers
of nodes/links of different types.

performance when integrating these different graphs by
appropriate weights corresponding to different meta-paths.
Thus, we then employ logistic regression and maximum-
likelihood estimation (MLE) method to estimate the weight
of different meta-path. Here, the issue of relationship pre-
diction can be regarded as a two-class classification problem
by using Bayesian analysis and logistic regression and then
the MLE method can be employed to estimate the parameter
vector. In RMLMSe, sequence information is integrated to
improve the performance of the RMLM. Furthermore, as
global approaches, RMLM and RMLMSe can remodel the
missing relationship for all the diseases-associated miRNAs
at the same time. Fivefold cross validations, pathway enrich-
ment analysis about global network, and three important
diseases network show that our proposed methods work well
in predicting the relationship between miRNA and its target.

2. Problem Definition

In this part, we describe the concepts of Heterogeneous
Information Network and meta-path used in this paper.

2.1. Heterogeneous Information Network. A heterogeneous
information network is an important type of information
network with multiple types of nodes and multiple types
of links [36–38]. It can be represented as 𝐺 = (𝑉, 𝐸). 𝑉
is the set of nodes, which involves 𝑛 types of nodes: 𝑉

1
=

{V1
1
, V2
1
, . . . , V𝑥

1
}, . . . , 𝑉

𝑛
= {V1
𝑛
, V2
𝑛
, . . . , V𝑦

𝑛
}, where V𝑗

𝑖
is 𝑗th node

of type 𝑖. 𝐸 ⊆ 𝑉 × 𝑉 is the set of links between the nodes in
𝑉, which involves𝑚 types of links.

Each type of links between source node of type 𝑖 and tar-
get node of type 𝑗 corresponds to a binary relation 𝑅

𝑖𝑗
. More

specifically,𝑅𝑠𝑡
𝑖𝑗
= 1 if V𝑠

𝑖
(𝑠th nodes of type 𝑖) and V𝑡

𝑗
(𝑡th nodes

of type 𝑗) are connected by a link of type 𝑅𝑖𝑗. For example, in
Figure 1, the relation between miRNA and gene is “regulate.”
Particularly, 𝑅𝑠𝑡

𝑖𝑗
equals 1 if 𝑠th miRNA regulates 𝑡th gene.

Moreover, a weighted matrix𝑊
𝑖𝑗
= |𝑉
𝑖
| × |𝑉
𝑗
| can be used

to describe the relation𝑅
𝑖𝑗
, where𝑊𝑠𝑡

𝑖𝑗
∈ [0, 1] is the existence

probability of link between nodes V𝑠
𝑖
and V𝑡

𝑗
. Particularly,

𝑊
𝑠𝑡

𝑖𝑗
= 1, if there exists an edge between V𝑠

𝑖
and V𝑡
𝑗
. Otherwise,

𝑊
𝑠𝑡

𝑖𝑗
is set as 0 in initialization for the unknown links.

2.2. Meta-Path. In heterogeneous information network,
meta-path is defined on network schema. A meta-path 𝑃 is
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described in the form 𝐴
1
→ 𝐴
2
→ ⋅ ⋅ ⋅ 𝐴

𝑛−1
→ 𝐴
𝑛
, where

𝐴
𝑖
is 𝑖th type of object and a relation must exist from 𝐴

𝑖−1

to 𝐴
𝑖
, 𝑖 = 2, 3, . . . , 𝑛. Similarly, we define the inverse path

of 𝑃 as 𝑃
−1, denoted as 𝐴

𝑛
→ 𝐴

𝑛−1
→ ⋅ ⋅ ⋅ 𝐴

2
→ 𝐴

1
.

Specifically, relation A
𝑖−1

→ 𝐴
𝑖
is the inverse relation of

𝐴
𝑖
→ 𝐴

𝑖−1
. For example, in Figure 1, a meta-path “gene →

miRNA → gene” is a composite sequence between genes.The
relation from miRNA to gene is “regulate” and the relation
from gene to miRNA is “regulate−1”; “regulate−1” is the
inverse relation of “regulate.” Meta-path can connect object
of the same or different types; thus, they can show knowledge
between homologous objects or heterologous objects. For
example, in Figure 1, for gene 𝑖 and gene 𝑗, they can connect
through another gene 𝑘, gene 𝑖 → gene 𝑘 → gene 𝑗;
this means gene 𝑖 and gene 𝑗 have relation with gene 𝑘

simultaneously and there may exist relation between gene 𝑖

and gene 𝑗 by information transfer. However, gene 𝑖 and gene
𝑗 can also connect by miRNA 𝑘, gene 𝑖 → miRNA 𝑘 →

gene 𝑗; this means gene 𝑖 and gene 𝑗 are regulated by a
commonmiRNA 𝑘 and theremay exist relation between gene
𝑖 and gene 𝑗 by information transfer. Different meta-paths
of different relations correspond to different relation graphs
with different semantics. For example, in Figure 1, the meta-
path “gene → gene” denotes that two genes are connected by
“PPI” links, while the meta-path “gene → miRNA → gene”
corresponds to the semantic that two genes are regulated by
a common miRNA. Thus, similarity between the same or
different type of nodes can be described by different meta-
paths with different semantics.

In this paper, the meta-path from source node of type
𝑖 to target node of type 𝑗 is described as 𝑃

𝑖𝑗
. Particularly,

𝑃
𝑖𝑖
is the meta-path between nodes of the same type 𝑖; 𝑃

𝑖𝑖𝑠

is 𝑠th meta-path of 𝑃
𝑖𝑖
. 𝑃
𝑗𝑗
and 𝑃

𝑗𝑗𝑡
are the same to 𝑃

𝑖𝑖
and

𝑃
𝑖𝑖𝑠
. 𝑃
𝑖𝑗𝑠𝑡

is a meta-path by connecting 𝑃
𝑖𝑖𝑠
, 𝑅
𝑖𝑗
, and 𝑃

𝑗𝑗𝑡
in

sequence; it can be written as a certain sequence of relations:
𝑅
𝑘0𝑘1

, 𝑅
𝑘1𝑘2

, . . . , 𝑅
𝑘𝑛−1𝑘𝑛

; here 𝑘
0
= 𝑖, 𝑘

𝑛
= 𝑗 and the length of

𝑃
𝑖𝑗𝑠𝑡

is 𝑛.

3. Method

RMLM and RMLMSe consist of three steps. In the first
step, we utilize MISIM (proposed by Wang et al. in [39]) to
calculate the miRNA functional similarity matrix and then
construct the heterogeneous network. Next, we calculate the
relatedness between any miRNA and its targets and extract
the feature vector of these interactions. In RMLM, the feature
vector only contains different relatedness of different meta-
path between miRNA and its targets. However, in RMLMSe,
the feature vector not only contains different relatedness
from different meta-path, but also contains feature extracted
from sequence information. Finally, logistic regression and
MLE method are employed to compute the different weights
of different meta-paths. Sections 3.1–3.4 are the detailed
introduction of RMLM. Section 3.5 is about RMLMSe.

3.1. Construction of the Heterogeneous Network

3.1.1. miRNA-miRNA Similarity Estimation. In [39], Wang
et al. compute miRNA-miRNA functional similarity score

based on the assumption that miRNAs with similar functions
tend to be related to similar disease. To get the miRNA-
miRNA similarity matrix, there contains three procedures.
We takemiRNA 𝑖 andmiRNA 𝑗 as an example. First, we iden-
tify diseases that related to these two miRNAs, encoded as
𝐷
𝑖
and 𝐷

𝑗
. We can obtain the relationship between miRNAs

and diseases fromThe Human MicroRNA Disease Database
(HMDD dataset). Then, we can calculate similarity of any
pair of diseases using a hierarchical structure. The semantic
similarity of disease is calculated based on directed acyclic
graph obtained from the US National Library of Medicine
in 2015 (MeSH, https://www.nlm.nih.gov/mesh/). Finally, we
utilize the similarity score between 𝐷

𝑖
and 𝐷

𝑗
to compute

the relatedness score between miRNA 𝑖 and miRNA 𝑗. In
this paper, we use SM (a 491 × 491 matrix) to represent the
miRNA-miRNA similarity matrix; SM(𝑖, 𝑗) is the functional
similarity score between miRNA 𝑖 and miRNA 𝑗.

3.1.2. Construction of the Heterogeneous Network. We con-
struct the heterogeneous network by connecting the miRNA
interaction network and PPI utilizing the bipartite graph of
the miRNA-target association network. The schema of the
heterogeneous network used in this paper is illustrated in
Figure 1. The network contains two types of objects, miRNA
and its targets. A meta-path 𝑃 is defined at the object type
level and is denoted in the form of 𝐴

1
→ 𝐴
2
→ ⋅ ⋅ ⋅ 𝐴

𝑛−1
→

𝐴
𝑛
, where 𝐴

𝑖
represent the object of type.

3.2. Relatedness Measure. The RM measure [36] is a path-
constrained measure and it can calculate the relatedness of
heterogeneous objects with the same or different types in a
uniform framework. It has been proven that RM has some
good properties, such as symmetric and self-maximum, and
has shown its potential to mining valuable information in
heterogeneous network. Therefore, here we use RM measure
to calculate the relatedness between miRNA and its targets.
RM measure is based on the Linkage Homophily Principle
defined as follows.

Linkage Homophily Principle. Two nodes are more likely to be
directly linked if most of their respective similar nodes are
linked.

In general, the computing of nodes similarity is based
on their neighbors. However, in heterogeneous networks,
the same type similar nodes can be linked by heterogeneous
nodes through composite paths. For example, two similar
genes can be connected by a common miRNA, “gene →

miRNA → gene.” Thus, we can utilize meta-path to extract
the generalized neighbor and define the similarity. Here, we
first extract the meta-path that connects the source node
and target node. We take source node V𝑝

𝑖
and meta-path

𝑃
𝑖𝑖𝑠

as an example. The neighbors of node V𝑝
𝑖
based on 𝑃

𝑖𝑖𝑠

are the nodes of type 𝑖 that linked to V𝑝
𝑖
by 𝑃
𝑖𝑖𝑠
, denoted as

𝑁
𝑝

𝑖
. Similarly, we can get the generalized neighbors of target

node V𝑞
𝑗
and meta-path 𝑃

𝑗𝑗𝑡
, denoted as𝑁𝑞

𝑗
. Then, we can use

the connectivity between 𝑁
𝑝

𝑖
and 𝑁

𝑞

𝑗
to calculate the link’s

existence probability between nodes V𝑝
𝑖
and V𝑞
𝑗
.
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Suppose RMP
𝑖𝑖𝑠
is the similarity matrix of 𝑖th type node

along the meta-path 𝑃
𝑖𝑖𝑠
. Similarity, RMP

𝑗𝑗𝑡
represents the

similarity matrix of 𝑗th type node along the meta-path 𝑃
𝑗𝑗𝑡
.

In general, similarity can be calculated by the path counts.
Expected path number is the number where all of the links
may exist from node of type 𝑖 to node of type 𝑗. Let meta-
path 𝑃

𝑖𝑗𝑠𝑡
= {𝑅
𝑘0𝑘1

, 𝑅
𝑘1𝑘2

, . . . , 𝑅
𝑘𝑛−1𝑘𝑛

}, 𝑘
0
= 𝑖, and 𝑘

𝑛
= 𝑗; then

the expected path number RMP
𝑖𝑗𝑠𝑡

is computed as follows:

RMP
𝑖𝑗𝑠𝑡

=

𝑛

∏

𝑝=1

𝑤
𝑘𝑝−1𝑘𝑝

= RMP
𝑖𝑖𝑠

× 𝑊
𝑖𝑗
× RMP

𝑗𝑗𝑡
. (1)

Here, 𝑃
𝑖𝑗𝑠𝑡

is a meta-path composed of 𝑃
𝑖𝑖𝑠
, 𝑅
𝑖𝑗
, and 𝑃

𝑗𝑗𝑡
;

RMP
𝑖𝑗𝑠𝑡

is amatrixwhose size is |𝑉
𝑖
|×|𝑉
𝑗
|.The computation of

RMP
𝑖𝑖𝑠
(or RMP

𝑗𝑗𝑡
) is similar to the computation of RMP

𝑖𝑗𝑠𝑡
.

Now the relatedness between nodes of type 𝑖 and nodes of
type 𝑗 along the meta-path 𝑃

𝑖𝑗𝑠𝑡
can be formulated as follows:

RM
𝑖𝑗𝑠𝑡

=
RMP
𝑖𝑗𝑠𝑡

RMP
𝑖𝑖𝑠

× 1 × RMP
𝑗𝑗𝑡

=
RMP
𝑖𝑖𝑠

× 𝑊
𝑖𝑗
× RMP

𝑗𝑗𝑡

RMP
𝑖𝑖𝑠

× 1 × RMP
𝑗𝑗𝑡

.

(2)

Here 1 is a matrix in which all the elements are 1 and the size
of is |𝑉

𝑖
| × |𝑉

𝑗
|. Similarly, RM

𝑖𝑗𝑠𝑡
is also a |𝑉

𝑖
| × |𝑉

𝑗
| matrix

and RM𝑝𝑞
𝑖𝑗𝑠𝑡

is the relatedness measured between V𝑝
𝑖
and V𝑞

𝑗

following 𝑃
𝑖𝑗𝑠𝑡

.

3.3. Construction of the Feature Vector. We can get the
relatedness between miRNAs and their targets as described
in Section 3.2. Now we get the feature vector as follows:

(1) Extract meta-path 𝑃
𝑖𝑖
of 𝑖th type node and 𝑃

𝑗𝑗
of 𝑗th

type node.

(2) Compute the similarity based on any pair of meta-
paths 𝑃𝑖𝑖 and 𝑃

𝑗𝑗 and then get the feature vector.

In RMLM, the feature vector between miRNA 𝑖 and gene
𝑗 is defined as

𝜙
𝑖𝑗
= (𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑛
) , (3)

where 𝑓
1
to 𝑓
𝑛
represent the different similarities of different

meta-paths with different semantic meaning.

3.4. Parameter Estimation. As different meta-path corre-
sponds to different relation graphs, the final result may
be improved by combining these different graphs through
different weights. Here, logistic regression and maximum-
likelihood estimation (MLE) method can be employed to
estimate the weight.

In this paper, we regard the issue of relationship predic-
tion as a two-class classification problem by using Bayesian
analysis and logistic regression. Based on logistic regression

and under general assumption [31, 32], the posterior proba-
bility of a specific relation can be formulated as follows:

𝑝 (𝑥
𝑖
= 1 | 𝜑

𝑖
, 𝜔) =

exp (𝜔
𝑇
𝜑
𝑖
)

exp (𝜔𝑇𝜑
𝑖
) + 1

, (4)

𝑝 (𝑥
𝑖
= 0 | 𝜑

𝑖
, 𝜔) =

1

exp (𝜔𝑇𝜑
𝑖
) + 1

. (5)

Here 𝜔 is a weight vector served as parameters and 𝜑
𝑖
is

the feature vector of the link 𝑥
𝑖
. Then, MLE method can be

employed to estimate the parameter vector 𝜔. The likelihood
function can be written as

𝐿 (𝜔; 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
) =

𝑁

∏

𝑖=1

𝑝 (𝑥
𝑖
| 𝜑
𝑖
, 𝜔) . (6)

Here 𝑥
𝑖
is the link to calculate and𝑁 is the number of links,𝜑

𝑖

is the feature vector that is calculated according to RM, and𝜔

is the weight vector of the feature according to differentmeta-
path. The log likelihood of (6) is

ln 𝐿 (𝜔; 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
)

=

𝑁

∑

𝑖=1

[𝑥
𝑖
𝜔
𝑇
𝜑
𝑖
− ln (1 + exp (𝜔

𝑇
𝜑
𝑖
))] .

(7)

The log likelihood (7) is a convex function [40].Hence, we
can find a unique global optimal solution by solving a convex
optimization problem.

3.5. Final Score. The logistic regression based algorithm
returns a set of posterior probabilities. One can directly use
those probabilities to make decision. However, the posterior
probabilities do not always work well because it is difficult
to set a threshold for a relation between miRNA and its
target. Here, we utilize a percentage value as the final score
to evaluate the strength of the relation between a miRNA and
its target. The final score is calculated as follows:

𝑞
𝑖
=

󵄨󵄨󵄨󵄨󵄨
{𝑗 | 𝑝

𝑖
≥ 𝑝
𝑗
}
󵄨󵄨󵄨󵄨󵄨

𝑛
, 𝑖 = 1, 2, . . . , 𝑛. (8)

Here {𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
} is the posterior probabilities of any

association, and 𝑞
𝑖
is the top percentage value of 𝑝

𝑖
among

all those posterior probabilities. The larger the final score is,
the more likely the association exists.

3.6. Integration of Sequence Information. In RMLMSe, we
integrate sequence information to improve the performance
of the RMLM. Here, we use sequence information from
database TargetScan, miRanda, and PITA. As they have a
relatively high false-positive rate, we only download con-
served targets information and select the data whose Pct
> 0.9 from TargetScan, mirSVR > 0.6 from miRanda, and
data in PITATOP to improve the reliability of the regulation
relationships. Sequence information from these databases
acts as new features in feature vector used in RMLMSe.
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Taking interaction between miRNA 𝑖 and gene 𝑗 as an
example, its feature vector can be written as

𝜙
𝑖𝑗
= (𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑛
, 𝑓
𝑚
, 𝑓
𝑚+1

, 𝑓
𝑚+2

) . (9)

Here 𝑓
1
to 𝑓
𝑛
represent the different feature of different

meta-paths and 𝑓
𝑚
, 𝑓
𝑚+1

, and 𝑓
𝑚+2

represent the feature of
sequence information from TargetScan, miRanda, and PITA,
respectively.

3.7. Algorithm. The process description of RMLM and
RMLMSe is given as follows.

Input. The disease set 𝑑
𝑖
of each miRNA 𝑖 from HMDD and

DAG 𝑔
𝑗
of each disease 𝑗 fromMeSH, the protein interaction

matrix SP, and the miRNA-protein matrix MP.

Output. The vector of final score for each unknown interac-
tion between miRNA and its targets.

(1) Calculate the miRNA-miRNA functional similarity
matrix SM as described in Section 3.1.1.

(2) Extract meta-path 𝑃
𝑖𝑖
of 𝑖th type node and 𝑃

𝑗𝑗
of

𝑗th type node. We set the max length of meta-path
between the same type node as (3).

(3) Concatenate 𝑃
𝑖𝑖𝑠

(𝑠th meta-path of 𝑃
𝑖𝑖
), 𝑅
𝑖𝑗
, and 𝑃

𝑗𝑗𝑡

(𝑡thmeta-path of𝑃
𝑗𝑗
) in sequence to compose ameta-

path 𝑃
𝑖𝑗𝑠𝑡

going from the source nodes of type 𝑖 to
target nodes of type 𝑗. Then, the relatedness between
miRNA and its target based on meta-path 𝑃

𝑖𝑗𝑠𝑡
is

calculated according to (2).
(4) Calculate the different similarity of different meta-

path and get the feature vector of each interaction.
The feature vectors used in RMLM and RMLMSe are
described in Sections 3.3 and 3.5.

(5) Estimate parameters 𝜔 by maximizing the log likeli-
hood ln 𝐿(𝜔; 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑁
) in (7) based on 𝑥

𝑖
and 𝜑

𝑖
,

𝑥
𝑖
is the link to be calculated, and𝑁 is the number of

links.
(6) Calculate the probability for each unknown interac-

tion according to (4) by using 𝜔 and feature vector.
(7) Calculate the final score according to (8).

4. Results

4.1. Datasets

The Human MicroRNA Disease Database. HMDD [41] pro-
vides a comprehensive resource of experimentally veri-
fied miRNA-disease associations. We can get the informa-
tion through a website at http://www.cuilab.cn/hmdd. The
database (in June 2014) contains 5100 associations between
491 miRNAs and 326 diseases. In this paper, we first analyse
the global network. Then, we analyse another three diseases,
Ovarian Neoplasms (OV), Lung Neoplasms (Lung), and
Breast Neoplasms (Breast). The miRNAs associated with OV,
Lung, and Breast are 114, 132, and 202, respectively.

The Protein-Protein Interaction Database. The PPI network
was constructed by combining DNA-protein data from
TRANSFAC [42] and protein interaction data obtained from
Bossi and Lehner [43], respectively. The database contains
13306 proteins and 157426 interactions between proteins.

Experimentally Validated miRNA-mRNA Interaction
Databases. The posttranscriptional regulatory knowledge
is obtained from miRNA-target database miRTarbase v6.1.
When mapping onto our miRNA-target matrix, it retains
111770 interactions. We can get the information through a
website at (http://mirtarbase.mbc.nctu.edu.tw/).

Predicted miRNA-mRNA Interaction Database. We also uti-
lize sequence information in database TargetScan v7.0,
miRanda released at 2010, and PITA v6. These databases are
available online at http://www.targetscan.org/, http://www.
microrna.org/, and http://genie.weizmann.ac.il/pubs/mir07/,
respectively.

4.2. Comparisons with Other Methods. To compare the per-
formance of RMLM and RMLMSe, we applied RLSMDA
[44] and RM [36] to the same testing data. RLSMDA
was introduced to predict disease-miRNA association. We
encoded RLSMDA in MATLAB according to the derivation
process of the authors. Here, we set𝜔 used in RLSMDAas 0.5.
RMwas implemented inMATLABwith source code available
from authors personal homepage. RM is the measurement
used to calculate the similarity of objects in heterogeneous
networks. Here, the sum of the different similarities corre-
sponding to different meta-paths is utilized to predict the
miRNA-gene associations. All experiments are carried on a
Windows 7 professional computer (Inter(R) Xeon(R) CPU,
2.93GHz, 56G RAM, 64-bit OS). The performance of each
method is evaluated by fivefold cross validation. First, all
known miRNA-target associations were split into five sets
of the same size randomly: one set was set aside as the
test set and the other four sets were used as train sets. The
experiment was repeated five times so that each set was
hidden once and each hidden miRNA-target pair obtained
a predict relevance score. The ROC (receiver operating
characteristic) curve was calculated according to the various
TPR (true-positive rate) and the various FPR (false-positive
rate) through a varying threshold. The area under the ROC
curve (AUC) is employed to show the overall performance
of methods. We can see from Figure 2 that RMLM and
RMLMSe always work better than RLSMDA and RM. There
is only slight improvement when sequence information is
employed, where the AUC score increases from 0.8919 to
0.9033. This may have two reasons. First, the performance
of the RMLM already achieves a very high AUC score and
there is only a little room for it to be further improved by
using additional prior information. Second, the amount of
the sequence information mapped onto the miRNA-target
matrix is little; for example, when TargatScan, miRanda, and
PITA mapped onto the miRNA-target matrix, they leave
16,7403, 10,4631, and 13,7229 interactions, about 1.6∼2.6%
of the entire size of the miRNA-target matrix MP (a 491 ×
13306 matrix). Although the improvement of the sequence
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Figure 2: The ROC curve of the global network.
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Figure 3: The ROC curve of the OV network.

information is not significant, the increased AUC score still
indicates that additional knowledge is helpful for improving
the prediction performance as any prior knowledge, such as
sequence information, Go Ontology annotations, gene copy
numbers, and gene methylation, related to miRNA-target
associations can be employed to predict associations. Figures
3, 4, and 5 are the result when we execute the methods on
OV, Lung, and Breast database, respectively. The results are
similar to Figure 2. RMLM and RMLMSe always work better
than RLSMDA and RM, and RMLMSe only have a slight
improvement than RMLM.

4.3. The Number of Links Predicted by Our Methods. Here,
we present the number of interactions predicted based on
different thresholds in RMLM and RMLMSe. As shown in
Table 1, the numbers of interactions predicted in RMLM are
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Figure 4: The ROC curve of the Lung network.
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Figure 5: The ROC curve of the Breast network.

higher than in RMLMSe among all of the threshold.This can
further indicate the performance improvement in RMLMSe.
In future, we can utilize the associations predicted by our
method to construct miRNA-target regulatory network and
extract regulatory modules and hub nodes.

4.4. Functional Validation of mRNAs. When we get the result
of the global dataset, we compute every mRNA score and
extract the top 250 mRNAs to carry on the pathway enrich-
ment analysis with the focus on KEGG (Kyoto Encyclopedia
of Genes and Genomes) pathways (adjusted 𝑝 value < 0.05).
In this paper, 𝑝 value calculated by hypergeometric test is
a statistical value that represents the significant enrichment
of pathways. The smaller the 𝑝 value is, the more significant
the pathway enrichment is. As shown in Table 2, many of
the KEGG pathways are highly related to many cancers and
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Table 1: The number of links predicted by our methods based on different thresholds.

Database Methods Validated Th ≥ 0.9 Th ≥ 0.8 Th ≥ 0.7 Th ≥ 0.6 Th ≥ 0.5

Global RMLM 11,1770 17,2912 20,4894 23,4327 26,5883 79,8049
RMLMSe 11,1770 17,6625 21,0909 24,2946 28,1782 80,7688

OV RMLM 4,2730 5,3683 5,9580 6,4676 6,9759 23,3784
RMLMSe 4,2730 5,3891 5,9954 6,5526 7,1565 23,4562

Lung RMLM 4,7764 5,8511 6,4339 6,9397 7,4816 24,5323
RMLMSe 4,7764 5,8870 6,4881 7,0437 7,9293 24,6261

Breast RMLM 6,4403 8,6555 9,8883 10,9659 12,0730 36,4375
RMLMSe 6,4403 8,6690 9,9540 11,1719 12,6556 36,6573

The “validated” column is the number of links validated in database miRTarbase v6.1 and “Th” represents the threshold.

Table 2: In RMLMSe, the enrichment KEGG pathways of global
dataset.

Enrichment KEGG pathways 𝑝 value
1 p53 signaling pathway 4.27𝐸 − 10

2 Chronic myeloid leukemia 8.80𝐸 − 10

3 Bladder cancer 3.24𝐸 − 09

4 Glioma 6.03𝐸 − 09

5 Melanoma 1.35𝐸 − 08

6 Pathways in cancer 2.34𝐸 − 08

7 Prostate cancer 1.01𝐸 − 07

8 Cell cycle 1.61𝐸 − 07

9 Small cell lung cancer 9.71𝐸 − 07

10 Pancreatic cancer 3.26𝐸 − 06

The 𝑝 values have been obtained through hypergeometric test.

respective biological process, for instance, glioma, prostate
cancer, and colorectal cancer. Furthermore, pathways in
cancer are closely related to many cancers and P53 signaling
pathways is proved to be related to the processes of cell
division and DNA replication [45]. The result of Lung KEGG
pathways is shown in Table 3. The pathway focal adhesion
[46], adherens junction [47], and ErbB signaling pathway
[48] are proved to be related to Lung.

5. Discussion and Conclusion

The rapid increase of various biological data provides chal-
lenges and opportunities for us to complete the globalmiRNA
regulatory mechanism. In recent years, academics have made
great efforts to predictmiRNA targets.However, eachmethod
has its pros and cons, and the performance of amethod varies
on different datasets.Thus, how to get precise results is a long-
time challenge for miRNA-target association prediction.

In this paper, two novel methods, RMLM and RMLMSe,
were developed. In RMLM, we first construct miRNA-
miRNA similarity matrix. Second, we use RM to evaluate the
different relatedness between miRNAs and its target based
on different meta-path and extract the feature vectors of
links; different meta-path corresponds to different relation
graphs; we can improve the performance by combining these
different graphs through different weights of corresponding
meta-paths.Third, logistic regression andMLEmethod were

Table 3: In RMLMSe, the enrichment KEGG pathways of lung
dataset.

Enrichment KEGG pathways 𝑝 value
1 p53 signaling pathway 5.15𝐸 − 10

2 Pathways in cancer 3.11𝐸 − 08

3 Small cell lung cancer 1.12𝐸 − 06

4 Non-small cell lung cancer 1.04𝐸 − 05

5 Focal adhesion 1.53𝐸 − 05

6 Neurotrophin signaling pathway 1.81𝐸 − 04

7 Adherens junction 6.05𝐸 − 04

8 ErbB signaling pathway 1.34𝐸 − 03

9 Pathogenic Escherichia coli infection 1.89𝐸 − 03

10 MAPK signaling pathway 1.31𝐸 − 02

The 𝑝 values have been obtained through hypergeometric test.

employed to estimate the weight. Here, the issue of rela-
tionship prediction is regarded as a two-class classification
problem by using Bayesian analysis and logistic regression
and then MLE method can be employed to estimate the
parameter vector. Then, we estimate the posterior probabil-
ities between miRNAs and its targets based on the feature
vectors of links and the corresponding parameter vectors.
Finally, the final scores are obtained by using the percentage
values of individual posterior probabilities. In RMLMSe, we
utilize more information such as sequence information from
TargetSacn, miRanda, and PITA to improve the performance
of the RMLM. The results showed that there are slight
improvement when sequence information is integrated.

Compared with other methods, RMLM and RMLMSe
proposed by us have higher AUC scores. Besides, we con-
duct pathway enrichment analysis and found many relevant
pathways. These results indicate that our two methods were
reasonable and credible.

The comparison results of RMLM and RMLMSe indicate
that ourmethods have the capability to integratemore biolog-
ical data, such as sequence data and gene copy number.Thus,
with the rapid growth of the gene regulatory knowledge, our
method can integrate more prior information to improve the
prediction performance.

In addition, disease target inference [49, 50], disease-
miRNA prioritization [51–54], and lncRNA-disease associa-
tion prediction [55] are also the immediate areas of research
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focus to further study therapeutic strategy. Due to the
scalability of the proposed methods, RMLM and RMLMSe
could be applied to the different constructed heterogeneous
networks to infer disease target, miRNA-disease association,
and lncRNA-disease association, respectively. Moreover, the
performance of our methods should be further evaluated
after extending.

Of course, RMLM and RMLMSe also have some limita-
tions that need to be improved in the future. Firstly, ourmeth-
ods utilize the network topology and known miRNA-gene
associations to calculate the relatedness between miRNA
and its target. It may cause bias to miRNA-gene pair which
has more neighbor nodes. Furthermore, although the better
performance is obtained by our methods on the whole,
the predictive results should be further improved, especially
for the small output. In the future, the prediction perfor-
mance will be further improved by integrating more reliable
biological data and obtaining more known miRNA-gene
associations.
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MicroRNAs (miRNAs) are a set of short (21–24 nt) noncoding RNAs that play significant regulatory roles in cells. In the past
few years, research on miRNA-related problems has become a hot field of bioinformatics because of miRNAs’ essential biological
function. miRNA-related bioinformatics analysis is beneficial in several aspects, including the functions of miRNAs and other
genes, the regulatory network between miRNAs and their target mRNAs, and even biological evolution. Distinguishing miRNA
precursors from other hairpin-like sequences is important and is an essential procedure in detecting novel microRNAs. In this
study, we employed backpropagation (BP) neural network together with 98-dimensional novel features for microRNA precursor
identification. Results show that the precision and recall of our method are 95.53% and 96.67%, respectively. Results further
demonstrate that the total prediction accuracy of ourmethod is nearly 13.17% greater than the state-of-the-art microRNA precursor
prediction software tools.

1. Introduction

MicroRNAs are some of themost important noncoding RNA
genes with rather short length. They regulate the expression
of whole organism genes at the posttranscriptional level [1].
miRNA is widely involved in the metabolic activity of the
body as well as in many important life processes, including
cell proliferation and apoptosis, cell differentiation, growth
and development of plants and animals, and organ formation
[2–4]. Recently, several studies have shown that microRNAs
are related to several cancers [5–7] and other diseases [8–10].
Caligiuri et al. [11] proposed that methods and compositions
involving miRNAs are useful for the treatment of various
diseases and cancers. Some miRNAs are regarded as poten-
tial therapeutic targets for various diseases [12]. Recently,
the target gene (cancer gene) drugs, which developed in
accordance with the theory on miRNA’s gene silencing, have
been used for incurable disease that has become a threat
to human health problems for years [13]. In addition, the
viral genome can encode a large number of miRNAs by

itself. Through combination with target genes and coding
by viruses or host cell, these miRNAs can lead to immune
escape or antiviral effect against the host cell. Therefore,
the accurate prediction of miRNA and its target genes, as
well as the correct understanding of miRNA mechanism,
has important practical significance in medical treatments.
Thus, the research on novel miRNA identification is rather
essential.

Feature selection mainly dominated the performance
of the prediction model in the machine learning process
[14–20]. In addition, effective features can represent the char-
acteristics of the entire sequence data, which enables easy-to-
build better prediction model. To represent the microRNA
precursors, Xue et al. [21] proposed 32D novel triplet features,
which involved secondary structure information. Jiang et al.
[22] found that random rearrangement of the sequence could
help obtain significant free-energy features. However, the
free-energy computation for many random rearrangement
sequences is very time consuming. Wei et al. [23] combined
Xue et al.’s features and triplet nucleotide frequency to 98D
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features and obtained good performance result in human
pre-miRNA identification.However,more features would not
mean better performance because of some irrelevant and
redundant features in the high dimensional or ultra-high
dimensional feature set.The purpose of feature selection is to
eliminate the irrelevant and redundant features of the feature
set. In addition, the training time could be reduced effectively
by the feature selection optimization [24]. Some studies focus
on developing computational predictors by incorporating the
sequence-order or structure-order effects [25, 26]. Several
works indicated that proper features could improve the pre-
diction performance of classification in a certain extent. For
example, Wang et al. [27] employed the feature selection
techniques to optimize the features in miR-SF. They proved
that an optimized feature subset could improve the prediction
performance. In addition, some popular recently proposed
multiobjective optimization evolutionary algorithms can also
be used as a possibly promising feature selection approach
[28, 29].

Another factor that affects the performance of machine
learning prediction method is the classifier algorithm. The
selection of different classifiers often leads to the differ-
ence of classification results. Several different classifiers and
strategies were employed for miRNA identification. Bayesian
classifier algorithm was tested for predicting miRNA across
different species in 2006 [30]. The method also utilized the
multiple species of miRNA sequences and structural features.
It proved that miRNA genes could be detected effectively in
large scale of different species genomes.

MiPred classifier was tested for predicting miRNA in
2007 [22]. The method utilized random forest classifier
algorithm. The prediction accuracy of MiPred is 10% higher
than that of Triplet-SVM; the sensitivity and specificity of
MiPred can reach to 95.09% and 98.21%. CSHMM classifier
was also used forminingmiRNA sequences from the genome
[31], which utilized the Markov model. Overall, the accuracy
of machine learning algorithm was up to 90%. The machine
learning method is more accurate than the other methods.

In this study, we chose backpropagation neural network
as the classifier. It has three advantages, including better gen-
eralization performance, faster learning speed, and good
learning ability.

2. miRNA Identification with
BP Neural Network

2.1. Pre-miRNA Features

2.1.1. 𝑛-Gram Frequency. Some studies showed that the local
primary sequence is crucial to the pre-miRNA sequence [32].
Thus, the 𝑛-gram frequency is often applied for the feature
map in the selection of the primary sequence feature [33, 34].
However, no good methods are still available for tuning the
value of 𝑛. In general, we choose 𝑛 by comparing the effect of
𝑛-gram frequency with different 𝑛-values. In our feature set,
we select the different 𝑛 values (𝑛 = 2, 3, 4) for comparison.
The different frequency characteristics have almost the same
effect on the classifier. Thus, consider that its base and

adjacent base have practical biological significance.We chose
𝑛 as 3. A total of 64 (64 = 43)-dimensional frequency features
were calculated.

2.1.2. Triple Structure Sequence. In addition to high specificity
of the primary sequence features, the secondary structure
sequence of pre-miRNA is also a contributing factor. To
analyze the contribution of the secondary structure, the
secondary structure prediction software RNAfold is used to
calculate the potential structures. In the secondary structure,
each nucleotide of the sequence corresponds to two states,
matching and nonmatching: recordmatching as “(” or “)” and
nonmatching as “⋅.” In the structure, three character groups
are considered as a unit, and every “)” is replaced as “(.”Thus,
8 (8 = 2

3) different combinations are available as a unit,
including “(((,” “((⋅,” “(⋅(,” “⋅((,” “(⋅⋅,” “⋅(⋅,” “⋅⋅(,” and “⋅ ⋅ ⋅.”

To characterize pre-miRNA sequence better, the first
nucleotide of the corresponding subsequence was added to
the front of each structure unit. This provides 32 (32 =

4 × 8) different combinations, that is, “A(((,” “U((⋅,” . . .,
“G⋅((,” “G⋅ ⋅ ⋅.” For a sequence, the occurrence frequency
of each combination is determined and coded into the 32D
feature vector as the input of the classifier. This calculated
32D triple structure sequence feature is used to train the SVM
classifier; the inclusion of the SVM classifier significantly
improved the classification ability of pre-miRNA sequences
[21].

2.1.3. Energy Characteristics. The real pre-miRNA sequences
are generally more stable and show a lower minimum of
free energy (MFE) than the randomly generated pre-miRNA.
Therefore, energy characterization is often used to describe
the structure pre-miRNA sequence as an aspect of feature
extraction of the pre-miRNA sequence. To do this, the
MFE value is obtained by using RNAfold to calculate the
structure.

2.1.4. Structural Diversity Characteristics. The potential for
nucleotide pairing in the sequence is a significant characteris-
tic that can also be used to describe the pre-miRNA sequence.
This includes both traditional Watson-Crick nucleotide pair-
ing (A–U pairing and C–G pairing) and also other forms of
nucleotide pairing, such as the G–U pairing that can occur
in the loop of RNA hairpin structures. We included possible
G–U pairing in our description of base pairing.

To summarize, we extracted 98 features for the input of
the neural network, including 64-dimensional 𝑛-gram fre-
quency characteristics, 32-dimensional triple structure se-
quence characteristics, one-dimensional energy feature, and
one-dimensional structural diversity characteristics.

2.2. Fixing the Number of Nodes in the Hidden Layer. In
general, to select the number of nodes in the hidden layer in
changing the BP neural network structure is difficult. Techni-
cally, a hidden layer could facilitate operation. However, too
many hidden layers can reduce the operation rate.
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Figure 1: Topology structure of the BP neural network.

Table 1: Corresponding training results with different numbers of nodes in the hidden layers.

Hidden layers Training times Training errors Hidden layers Training times Training errors
11 43 9.57718𝑒 − 005 12 39 9.88418𝑒 − 005

13 17 9.42136𝑒 − 005 14 65 9.92537𝑒 − 005

15 34 9.88206𝑒 − 005 16 74 8.38658𝑒 − 005

17 48 7.82527𝑒 − 005 18 157 6.63468𝑒 − 005

19 7 9.46711𝑒 − 005 20 47 9.3627𝑒 − 005

Currently, no theoretical methods are available to fix the
number of nodes in the hidden layer. However, the number
generally depends on the empirical formula, as calculated in

𝑀 = √𝑁 + 𝐿 + 𝛼,

𝑀 = log
2
𝑁,

𝑀 = √𝑁𝐿,

(1)

where𝑀 represents the neuron number of the hidden layers,
𝑁 is the neuron number of the input layers, 𝐿 is the neuron
number of the output layers, and 𝛼 is a constant between 1
and 10.

In this study,𝑁 = 98 and 𝐿 = 1.Therefore, (1) can be used
for any values between 11 and 20. A comprehensive analysis
of the training results with different numbers of nodes in the
hidden layer was performed with the error set to 0.0001. A
total of 621 samples were used to train the network, and one
sample was used to test the network.The results are shown in
Table 1.

From the data shown in Table 1, the increased number of
nodes in the hidden layer did not result in better convergence.
Additionally, the increased number of nodes increased the
network parameters and greatly increased the amount of
calculation of the classifier. Thus, keeping 13 nodes in the
hidden layers required relatively less training times and less
error and still produced relatively good training effects.

2.3. Fixing the Number of Nodes in the Output Layer. Two
kinds of output exist, positive and negative, which are
represented as 1 for a positive sample and 0 for a negative
sample. The topology structure of this prediction method
based on BP neural network is shown in Figure 1.

2.4. Selecting Training and TestModel Samples. Thecollection
and organization of training samples are often limited by the
objective conditions. Appropriate numbers of training sam-
ples are required to achieve sufficient precision. Therefore, it
refers to the rule of experience:

𝑃 = (5 ∼ 10) × 𝑃𝑤
, (2)

where 𝑃 represents the numbers of training samples and 𝑃
𝑤

is the total of network connection weight equal to the sum
of nodes of the input and hidden layers. In this study, 2236
samples were used for training.

The data set used for the pre-miRNAs was downloaded
from http://bioinf.sce.carleton.ca/SMIRP [35], and these data
include negative and positive samples for Arabidopsis lyrata.
The FASTAfile was converted toARFF file using a jar package
written by Java converting the reference index to numerical
form. We randomly selected real pre-miRNAs and pseudo
pre-miRNAs to evaluate our algorithm.

2.5. Error Evaluation Steps Based on BP. The structure of the
intelligent diagnosis model contains three layers of 98-13-1.
First, we set the nodes of the input, output, and hidden layers
as 𝑁,𝑀, and 𝐿, respectively. Assuming the training sample
set {𝜉𝑝, 𝑌} ⊂ 𝑅𝑁×𝑅𝐿, theweightmatrix between the input and
hidden layers can be written as 𝑉 = (V

𝑚𝑛
)
𝑀×𝑁

, where 𝑉
𝑚
=

(V
𝑚1
, V
𝑚1
, . . . , V

𝑚1
)
𝑇
∈ 𝑅
𝑁 and 𝑚 = 1, 2, . . . ,𝑀. We assume

the connection weightmatrix between the hidden and output
layers as 𝑊 = (𝑤

𝑙𝑚
)
𝐿×𝑀

, where 𝑊
𝑙
= (V
𝑙1
, V
𝑙1
, . . . , V

𝑙𝑚
)
𝑇
∈

𝑅
𝑀, 𝑙 = 1, 2, . . . , 𝐿. Then, respectively, take 𝑔 and 𝑓 as

the activation function of each node of the hidden and
output layers. To simplify the derivation, we use the vector
function 𝐺(𝑋) for 𝑋 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
)
𝑇
∈ 𝑅
𝑀, where
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𝐺(𝑋) = (𝑔(𝑥
1
), 𝑔(𝑥
2
), . . . , 𝑔(𝑥

𝑚
))
𝑇
∈ 𝑅
𝑀. After input of the

sample 𝜉𝑝 ∈ 𝑅𝑁, the actual output can be calculated by

𝜁
𝑝

𝑙
= 𝑓 (𝑤

𝑙
⋅ 𝐺 (𝑉

𝑙
𝜉
𝑝
)) . (3)

The error function is defined in

𝐸 (𝑊,𝑉) =

1

2

𝑃

∑

𝑝=1

𝐿

∑

𝑙=1

(𝑂
𝑝
− 𝑓 (𝑤

𝑙
⋅ 𝐺 (𝑉

𝑙
𝜉
𝑝
)))

2

. (4)

Objectively, the target of BP training is to compute the𝑊
and𝑉 tominimize the solution of the error function𝐸(𝑊,𝑉).
With this, a combination of gradient descent, common,
and simple derivatives was used. To simplify the derivation
process, we derive

𝑓
𝑝𝑙
(𝑥) =

1

2

(𝑂
𝑝

𝑙
− 𝑓 (𝑥))

2

. (5)

Then, the error function can be written as

𝐸 (𝑊,𝑉) =

𝑃

∑

𝑝=1

𝐿

∑

𝑙=1

𝑓
𝑝𝑙
(𝑤
𝑙
⋅ 𝐺 (𝑉

𝑚
𝜉
𝑝
)) . (6)

The corresponding gradient function of 𝑊 and 𝑉 can
then be expressed as

𝐸
𝑤𝑙
(𝑊,𝑉) =
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𝑓
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) 𝜉
𝑝
.

(7)

Table 2: Basic parameters of the classifier based on BP neural net-
work.

Setting items The value set
The learning rate 0.1
Error bounds 0.0001
The number of iterations 1000
Transfer function of hidden layer nodes Tansig
Transfer function of output nodes Purelin
The training function Trainlm

For arbitrary initial values of𝑊
0
∈ 𝑅
𝐿×𝑀 and𝑉

0
∈ 𝑅
𝑀×𝑁,

gradient descent rules tomodify theweight of the BP learning
algorithm are applied in

𝑊
𝑛+1

𝑙
= 𝑊
𝑛

𝑙
+ Δ𝑊

𝑛

𝑙
,
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𝑛

𝑙
= −𝜂
𝑛
𝐸
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(𝑊
𝑛
, 𝑉
𝑛
) ,

𝑉
𝑛+1

𝑚
= 𝑉
𝑛

𝑚
+ Δ𝑉
𝑛

𝑚
,

Δ𝑉
𝑛

𝑚
= −𝜂
𝑛
𝐸
𝑤𝑚
(𝑊
𝑛
, 𝑉
𝑛
) ,

(8)

where 𝜂
𝑛
represents the learning efficiency.Δ𝑊𝑛

𝑙
is the partial

derivative of the error function relative to 𝑊. Δ𝑉𝑛
𝑚

is the
partial derivative of the error function relative to 𝑉.

2.6. Selection of Training Functions and Related Parameters.
The above analysis allows fixing of the BP neural network
structure. Table 2 shows the chosen training functions and
the relevant parameters.

This condition allows establishment of a complete clas-
sifier based on BP neural network structure. The model
generation and training are summarized in Figure 2.
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Table 3: Measurements for the classification problems.

Classification result

Actual result Forecast result
P N

P TP FN
N FP TN

2.7. Measurement. The use of pattern recognition and ma-
chine learning methods can be used as a two-way classifica-
tion problem. Four kinds of prediction results are presented
in Table 3.

The four kinds of prediction results are true positive (TP),
the number of positive cases that were correctly predicted;
false positive (FP), the number of positive cases represented
by error prediction; true negative (TN), the number of
counter negative examples that were correctly predicted; and
false negative (FN), the number of negative cases represented
by error prediction.

Many evaluation indicators can be used for the classifi-
cation results. First, the accuracy rate (ACC) is the ratio of
the correctly predicted cases for the entire data set. Precision
and recall can also be used as evaluation indicators in tests of
pattern recognitionmodels. Precision is expressed as the ratio
of the correctly predicted values for the entire positive data
set and recall reflects the number correctly judged as positive
examples in the positive example test set [36].The above three
indicators are expressed in

ACC = TP + TN
TP + FP + TN + FN

,

precision = TP
TP + FP

,

recall = TP
TP + FN

.

(9)

Additionally, sensitivity and specificity parameters may
be used to evaluate the function of the model. Sensitivity
record (SE) is the same as the recall and specificity record (SP)
calculated in accordance with

SP = TN
TN + FP

. (10)

A challenge may be presented if the positive and negative
test sets are unbalanced in the study of biological information.
In most cases, the number of positive samples is far less
than the number of negative samples. In a few cases, the
number of positive samples may be much larger than the
number of negative samples. We can easily obtain ACC-SP
when the number of positive samples is greater than the
negative samples. In this case, the classifier only reflects the
classification effect of the negative samples and is unable to
accurately express the prediction effect of the classifier on the

Table 4: Comparison of classification results based on different
feature sets.

Features SP (%) SE (%) Gm (%) ACC (%)
B 67.89 68.25 68.07 68.00
C 92.74 76.42 84.19 88.03
A + B 91.79 90.41 91.10 91.31
A + C 94.03 80.85 87.19 89.67
B + C 96.12 85.21 90.50 92.49
A + B + C 96.33 86.51 91.29 93.42
Notes: A: energy feature and structural diversity; B: 32-dimensional triad
structure characteristic; C: 64-dimensional 𝑛-gram frequency characteris-
tics.

entire test data set. To solve this problem, researchers typically
use the geometric mean (Gm) as described in

Gm = √SE ⋅ SP. (11)

Matthew’s correlation coefficient (MCC) [16, 21, 37, 38]
can provide more equitable response forecast ability when
a large difference exists between the number of positive
samples and the number of negative samples. MCC can be
expressed as

MCC

=

TP × TN − FP × FN
√(TP + FP) × (TN + FN) × (TP + FN) × (TN + FP)

.

(12)

Currently, studies onmiRNA commonly use one or more
of these above evaluation indices. In this work, we estimate
the overall performance of the classifier by analysis of ACC,
SE, SP, Gm, and MCC.

3. Results and Discussion

3.1. Analysis of Feature Set Performance. To select a better
feature set for classification, we needed to determine the
effect of different feature subsets on the performance of the
classifier. To do this, we used the BP neural network method
with the same training set (553 positive samples and 1150
samples) to test different feature sets, with the results shown
in Table 4.

From Table 4, we learn that the accuracy of the entire
feature sets can be as high as 93.42%. This result indicates
that our feature set is more effective for processing of a more
complex structure or sequence diversity. Considering that the
feature sets used here are not very large and each feature
subset is highly independent, reducing the dimension of the
feature vector is no longer needed.

3.2. Performances of BP. 𝑉-fold cross-validation with mod-
erate computational complexity is widely used for model
selection. The selection of 𝑉 is important because 𝑉 not
only determines the number of samples but also deter-
mines the computational complexity. Usually, a value of 𝑉
between 5 and 10 is selected based on experience. Statistical
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Figure 3: Different test results for varying sample quantities.

performance shows little improvement when 𝑉 selection is
greater than 10. Again, computational complexity must be
considered; thus a value between 5 and 10 is best [32].

We divided the samples into two cases for training and
testing. In the first one, a large difference was observed
between the number of positive and negative samples: 518
positive samples and 1078 negative samples as the training

set and 166 positive samples and 366 negative samples for the
test set. The second case included equal numbers of positive
and negative samples: 552 positive samples and 552 negative
samples as the training set and 138 positive samples and 138
negative samples for the test set. These training and testing
were repeated five times. The testing performance is shown
in Figures 3 and 4.
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Figure 4: Different test results for same sample quantity.

From comparison of the data in Figures 3 and 4, no
significant difference was observed between the actual out-
put and the expected output of each test. As described
above, the evaluation of the reference index is shown in
Table 5.

From the data presented inTable 5, the number of samples
affects the accuracy and recall rate of the positive samples.
In particular, the precision and recall rate of the negative
samples decreased with the decrease in the number of
negative samples in the training set. This result indicates that
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Table 5: Evaluation of the reference index.

Training sample Test sample Output sample Correct sample Precision (%) Recall (%) Gm (%)
D

Positive 553 138 128 124 96.0 90.0 93.43
Negative 1150 287 296 282 95.38 98.19

E
Positive 552 138 136 128 94.10 92.82 93.98
Negative 552 138 140 130 92.87 94.12

Note: D: sample set has different numbers of positive and negative samples; E: the sample set has equal numbers of positive and negative samples; correct
sample: the number of correct predictions.
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Figure 5: Comparison results of different models.

the more the samples in the training process, the better the
classification effect of the classifier. At the same time, the
precision and recall rate of the number of positive samples
were affected. With the number of negative samples in the
training set increased, the number of correct predictions
increased by four and the number of error predictions was
reduced by eight. This result shows that the precision and
recall rate of the positive samples decreased with the increase
in the number of the negative samples.

3.3. Comparison with Other Methods. The performance of
our method was compared with other methods: J48, random
forest, LibD3C [39], Adaboost, string kernel SVM [40], Lib-
SVM, and GBDT, which were classified on the same data set.
The data set contains 691 real pre-miRNAs and 1437 pseudo
pre-miRNAs. As shown in Table 6 and Figure 5, the results
demonstrate that the total prediction accuracy of ourmethod
is 13.64% greater than the string kernel SVM model and
nearly 2% greater than the LibD3C and LibSVMmodels. The
overall performance of the models as measured by MCC was
in the following order: GBDT (0.8682), BP (0.8662), LibSVM
(0.8510), LibD3C (0.8510), Adaboost (0.8120), random forest
(0.7720), J48 (0.7200), and string kernel SVM (0.6002).

Table 6: Comparison of the BP with alternative models.

ACC Precision Recall MCC
BP 95.53% 96.00% 96.67% 0.8662
GBDT 94.27% 94.76% 96.87% 0.8682
LibSVM 93.52% 93.60% 93.50% 0.8510
LibD3C 93.52% 93.50% 93.50% 0.8510
Adaboost 91.82% 91.80% 91.80% 0.8120
Random forest 90.13% 90.00% 90.10% 0.7720
J48 87.78% 87.70% 87.80% 0.7200
String kernel SVM 81.89% 99.37% 46.31% 0.6002

Thus, we conclude that the BP method allows improved
recognition accuracy.

3.4. Performance on Different Species. To demonstrate the
validity and the universal applicability of the BP method,
we analyzed six other species: Anolis carolinensis, Arabidopsis
thaliana,Drosophilamelanogaster,Drosophila pseudoobscura,
Epstein-Barr virus, and Xenopus tropicalis. The results shown
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Figure 6: Test comparison results for six different species.

in Figure 6 indicate that the accuracy of the GBDT is better
than BP method in some situations, but the BP method has
been achieved fairly good results in terms of ACC, precision,
recall, and MCC.

4. Conclusions

Identification of miRNAs is the first step toward under-
standing their biological characteristics. Many approaches
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have been proposed to predict pre-miRNAs in recent years.
However, feature extraction in these methods can result in
information redundancy. To overcome this drawback, a BP
neural network algorithm together with optimal 98D features
was employed for this analysis. We compare our method
with the existing methods of J48, random forest, LibD3C,
Adaboost, GBDT, string kernel SVM, and LibSVM, which
were trained on the same training data set. The results
demonstrate that the total prediction accuracy of ourmethod
is 13.17% greater than the string kernel SVMmodel and nearly
2% greater than LibD3C and LibSVM.

After the identification step, functional analysis is also
important for miRNA research. If human miRNA and
diseases were focused on, two main approaches would be
employed to predict the relationship. The first one is the
statistical comparison analysis for the miRNA or isomiR
expression [41]. The second one is the network analysis and
prediction for miRNA-disease relationship [42–45]. Several
advanced machine learning, network techniques, and bioin-
spired models can be utilized on this problem, including
random forest [46], semisupervised learning [47], HeteSim
Scores [48], spiking neural P systems [49–52], andmembrane
computing ENREF 51 [53–57]. Functional analysis of the
novel detected miRNAs would be our future works.
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Increasing evidences indicated that function annotation of human genome inmolecular level and phenotype level is very important
for systematic analysis of genes. In this study, we presented a framework named Gene2Function to annotate Gene Reference
into Functions (GeneRIFs), in which each functional description of GeneRIFs could be annotated by a text mining tool Open
Biomedical Annotator (OBA), and each Entrez gene could be mapped to Human Genome Organisation Gene Nomenclature
Committee (HGNC) gene symbol. After annotating all the records about human genes of GeneRIFs, 288,869 associations between
13,148 mRNAs and 7,182 terms, 9,496 associations between 948 microRNAs and 533 terms, and 901 associations between 139
long noncoding RNAs (lncRNAs) and 297 terms were obtained as a comprehensive annotation resource of human genome. High
consistency of term frequency of individual gene (Pearson correlation = 0.6401, 𝑝 = 2.2𝑒 − 16) and gene frequency of individual
term (Pearson correlation = 0.1298, 𝑝 = 3.686𝑒 − 14) in GeneRIFs and GOA shows our annotation resource is very reliable.

1. Introduction

The human genome is the complete set of nucleic acid
sequence for human beings [1]. Researches on sequence of the
human genome aim at exploring the functions of genes [2–5].
Human genes consisting of sequences could play diverse roles
based on their functions in molecular level in balancing the
body. Once the balance is lost by lack or enhancement of the
functions of genes, diseases could be induced [6–9].

Previous studies focused on identifying the functions
of the protein-coding genes in molecular level based on
their encoded proteins. For example, through investigating
p53 protein, Brain and Jenkins [10] exposed that TP53 gene
is potentially capable of inhibiting mammalian replicative
DNA synthesis by blocking the DNA strand separation
step during replication origin recruitment. Based on a case

control study, Benzon Larsen et al. [11] determined that ADH
polymorphisms, which modify the rate of ethanol oxidation
to acetaldehyde, were associated with breast cancer risk.

As a growing number of protein-coding genes identified,
lots of functional terms emerged. For ease of comparing the
functions of genes, these terms needed to be normalized.
To this end, ontology was introduced to standardize the
functional terms of genes. Among existing ontologies, Gene
Ontology (GO) [12] is one of the earliest and most frequently
used vocabularies, which focuses on describing biological
process (BP), molecular function (MF), and cell component
(CC) of genes. Since appearing in 2000, a large number of
databases recording the functions of genes were annotated to
the GO.The functional annotation of human protein-coding
genes was provided at GO Annotation (GOA) databases
[13], which involves a nonredundant set of annotations to
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Figure 1:Distribution of functional terms and genes in the annotation results. (a)Histogramof the number of genes associatedwith individual
functional term. (b) Histogram of the number of functional terms associated with individual gene.

the human proteome. In comparison with the GO, Disease
Ontology (DO) [14] focuses on standardizing the functional
terms of genes at phenotype level. And disease terms in Gene
Reference into Function (GeneRIF) [15] were annotated to
the DO [16–18].

Recently, large-scale sequence analysis at genomic and
transcriptomic level has shown that more than 98% of
genome sequence cannot encode protein [19, 20], and
microRNA genes and long noncoding RNA (lncRNA) genes
constitute a large portion of them [21]. In comparison with
protein-coding genes, the functions of microRNA genes and
lncRNA genes are difficult to be identified [22]. However,
these noncoding genes play an important role at molecular
level and phenotype level [23–27]. For example, at molecular
level, qPCR and in silico hybridization revealed that miR-124
and miR-155 can be directly involved in the transcriptional
regulation of Runt-related transcription factor 2 (RUNX2)
and receptor activator of nuclear factor kappa-B ligand
(RANKL) genes [28]. At phenotype level, Huang et al.
identified that underexpression of miR-345 is associated with
prostate cancer [29]. At present, microRNA- and lncRNA-
related diseases in HMDD [30] and LncRNADisease [31]
have been manually annotated by Medical Subject Headings
(MeSH) [32]. And several recent works provedmore relation-
ship betweenmiRNA and diseases would be detected yet [33–
35].

Although a few of databases have been annotated to
gene functional vocabularies, a comprehensive annotation
resource recording the functions of human genes had not yet
appeared. For example, in our knowledge, no databases of
noncoding genes were annotated to functional vocabularies
atmolecular level.Thismay be caused by the lack of resources
that record the functions of protein-coding genes and non-
coding genes simultaneously. Fortunately, GeneRIFs [15] pro-
vides a brief (up to 255 character) functional description of
each gene in theNCBI database, and these functional descrip-
tions could be annotated to vocabularies, such asDOandGO.

In this paper, we presented a framework, Gene2Function,
to annotate the function of human genome with GO andDO.

Table 1: The statistical information of associations between genes
and terms.

The number of
genes

The number of
terms

The number of associations
between genes and terms

mRNA
13,148 7,182 288,869

MicroRNA
948 533 9,496

lncRNA
139 297 901

After annotating GeneRIF, a comprehensive resource involv-
ing protein-coding genes, microRNA genes, and lncRNA
genes could be obtained.The resource could be accessed from
http://www.bio-annotation.cn/gene2function/.

2. Results

2.1. Mapping Genes to Gene Ontology and Disease Ontology.
After annotating GeneRIFs by GO and DO (see Section 3),
288,869 associations between 13,148 mRNAs and 7,182 terms,
9,496 associations between 948 microRNAs and 533 terms,
and 901 associations between 139 lncRNAs and 297 terms
were obtained.The statistical information is shown in Table 1.

Figure 1(a) demonstrates the histogram of the number of
genes associated with terms of GO and DO in the annotation
results. 1,657 functional terms (23.0%) are associated with
only one gene, while 3,924 functional terms (54.5%) are
associated with more than three genes. The histogram of the
number of terms associated with individual gene is shown in
Figure 1(b). 1,375 genes (9.9%) are associated with only one
functional terms, while 10,273 genes (74.3%) are associated
with more than three genes.

The top ten terms ordered by the number of gene
annotations and the top ten genes ordered by the number of
term annotations are shown in Tables 2 and 3, respectively.
Not surprisingly, several general terms in the top layer of the
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Table 2: The top ten terms ordered by the number of gene anno-
tations.

Term ID Term name Number of genes
GO:0005623 Cell 7,524
GO:0005488 Binding 5,011
GO:0065007 Biological regulation 4,846
GO:0023052 Signaling 4,466
GO:0032502 Developmental process 3,521
GO:0009058 Biosynthetic process 3,346
DOID:162 Cancer 3,139
GO:0006351 Transcription, DNA-templated 3,121
DOID:305 Carcinoma 3,069
GO:0040007 Growth 3,011

Table 3: The top ten genes ordered by the number of term anno-
tations.

HGNC gene ID Gene symbol Number of functional terms
HGNC:11998 TP53 828
HGNC:11892 TNF 792
HGNC:6018 IL6 683
HGNC:12680 VEGFA 669
HGNC:11766 TGFB1 664
HGNC:3236 EGFR 560
HGNC:7176 MMP9 521
HGNC:391 AKT1 517
HGNC:7794 NFKB1 494
HGNC:6025 CXCL8 473

DAG have a larger number of genes associated with them,
such as cell, binding, and developmental process (Table 2).
Themost prevalent disease terms appearing in the annotation
result is cancer, which is associated with 3,139 genes (22.7%
of all the terms). When we look at the genes associated with
many terms, TP53 is the most prevalent genes appearing in
the annotation result, which is associated with 828 terms
(11.5% of all the genes).

2.2. Comparing with Existing Ontology Annotation Resources.
To validate the performance of our annotation result, we
compared the result with the previous prevalent annotation
resources GOA [13], in which human gene is manually anno-
tated to GO. To ensure the exact evaluation, DO annotations
of GeneRIFs were discarded, and annotations Inferred from
Electronic Annotations (IEA) of GOA were removed.

In total, we obtained 196,423 associations between 4,613
GO terms and 13,107 genes in GeneRIFs and 168,246 associ-
ations between 13,920 GO terms and 16,724 genes in GOA.
Only 10,658 associations and 3,375 GO terms appeared in
both annotation resources. In comparison, both of them have
more common genes (11,816).

Figures 2(a) and 2(b) demonstrate the histogram of the
number of genes perGO term, and the histogramof the num-
ber of GO terms per gene in annotations of GeneRIFs and

Table 4: Data sources.

Data source Web site (date of download)

GeneRIF http://www.ncbi.nlm.nih.gov/gene/about-generif
(Jun 2016)

HGNC http://www.genenames.org/ (Jun 2016)
GO & GOA http://geneontology.org/ (Jun 2016)
DO http://disease-ontology.org/ (Jun 2016)

GOA, respectively. Obviously, more GO terms (4,545) could
be annotated to only one gene in GOA than that (1,114) in
GeneRIFs. In contrast, more genes (1,671) could be annotated
to only one term in GeneRIFs than that (1,499) in GOA.

In order to evaluate the consistency, we compared the
term frequency of individual gene and gene frequency of
individual term in GeneRIFs and GOA. As a result, term
frequency of individual gene in GeneRIF was significant
positively correlatedwith it inGOA (Pearson correlation 𝛾2 =
0.6401, 𝑝 = 2.2𝑒 − 16; Figure 2(c)), and gene frequency of
individual term in GeneRIF was also significantly positively
correlated with it in GOA (Pearson correlation 𝛾2 = 0.1298,
𝑝 = 3.686𝑒 − 14; Figure 2(d)). Considering that GOA is
most frequency used annotation resource, annotations of
GeneRIFs should be also reliable.

2.3. A Network Visualization Based on the Functional Anno-
tation of the Human Genome. Information in the annotation
result can be used to describe the relationship amongmultiple
genes or multiple terms. To this end, we create a bipartite
network that describes the relationships between three genes
(RNF2, RNF8, and RPS6) and 79 terms (Figure 3). Within
this network, 33 terms are annotated to RNF2, 37 terms are
annotated to RNF8, and 37 terms are annotated to RPS6. At
the centre of the figure, 6 terms involving translation, execu-
tion phase of apoptosis, breast cancer, biological regulation,
binding, and apoptotic process are related to all of these three
genes. Using our annotation result, one can create this type of
bipartite network as needed.

3. Materials and Methods

3.1. Data Collection

3.1.1. GeneRIF. GeneRIF was downloaded in June 2016
(Table 4). It involves five columns for describing tax identifier,
NCBI gene ID, PubMed Unique Identifier (PMID), updated
date, and function description. After extracting function
descriptions of human genes, 650,079 descriptions remained.

3.1.2. Normalized Gene Symbol Vocabulary. The Human
Genome Organisation Gene Nomenclature Committee
(HGNC) [36] is responsible for approving unique symbols
and names for human loci, including protein-coding genes
and noncoding genes, to allow unambiguous scientific
communication. In this paper, genes in GeneRIFs were
normalized to HGNC gene symbols.
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Figure 2: The comparison of annotations in GeneRIFs and with annotations in GOA. (a) Histogram of the number of genes associated with
individual GO term. (b) Histogram of the number of DO terms associated with individual gene. (c) The correlation between term frequency
of gene by GeneRIFs and GOA. (d) The correlation between gene frequency of term by GeneRIFs and GOA.

3.1.3. Ontologies and Annotations. As shown in Figure 4,
GO organized BP terms in the Directed Acyclic Graph
(DAG) by “IS A” relationship. Currently, GO contains 55,565
“IS A” relationships between 28,654 BP terms, 12,375 “IS A”
relationships between 10,159 MF terms, and 5,618 “IS A”
relationships between 3,907 CC terms. GOA was compared
with our annotation result. After removing IEA and getting
rid of duplicate records ofGOA, 168,246 associations between
13,920 GO terms and 16,724 genes remained.

DO is a first ontology to organize terms around human
disease, which describes each disease by a unique identifier,
a disease name, and its synonymous. In the current version,
it involved 7,124 “IS A” relationships between 6,920 disease
terms.

3.2. Method for Annotating Human Genome. As shown in
Figure 5(a), we presented a framework, Gene2Function, to
annotate the function of human genome. Firstly, a raw text of
GeneRIF with functional description should be annotated by
a textmining tool namedOpenBiomedical Annotator (OBA)
[37], which provided an ontology-based web service that
annotates public datasets with biomedical ontology concepts

based on their textual metadata. As a result, the functional
description will be mapped to the corresponding ontologies,
such as GO and DO. Then, the Entrez gene identifier will
be converted into a normalized gene symbol. Here, HGNC
was exploited for normalizing and labelling the locus type
of gene, such as protein-coding genes, microRNA genes, and
lncRNA genes. Finally, each GeneRIF could be annotated to
a triple involving gene symbol, locus type, and functional
description.

All the GeneRIFs could be annotated based on the anno-
tation framework. Figure 5(b) gives an example of annotating
a GeneRIF with GO. “Enzyme activity” is a synonym of “cat-
alytic activity (GO:0003824),” which was identified by OBA.
And Entrez gene identifier “9” was converted into “NAT1
(HGNC:7645)” based on HGNC. Through the annotation
framework, the annotation triple “mRNA, NAT1, catalytic
activity” could be obtained.

4. Discussion

The importance of the functional annotations of genes had
been reflected in the previous annotation resource, such as
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GOA.Unfortunately, functional annotation resources of non-
coding RNA are very few, which lead to the lack of a compre-
hensive annotation resource involving protein-coding genes,
microRNA genes, and lncRNA genes. With the largest num-
ber of noncoding genes in the human genome, it is urgent to
provide functional annotation of these genes. In this study,
we presented a framework, Gene2Function, for annotating
GeneRIFs. As a result, a comprehensive functional annota-
tion resource of human genome was obtained based on the
framework, which could be accessed at http://www.bio-anno-
tation.cn/gene2function/. To evaluate the reliability, our
annotation result was compared with a prevalent resource
GOA. Subsequently, a network visualization of connectivity

of genes by their functional terms shows the usability of the
annotation result.

The annotation framework is based on a text mining tool
OBA [37]. Under the framework, the functional terms of
descriptions of GeneRIFs were annotated to GO and DO
terms. And gene symbols were mapped to a normalized
vocabulary of human gene HGNC [36], which makes it easy
to distinguish the locus type of gene, such as protein-coding
RNA, microRNA, and lncRNA.

The consistency test of the GeneRIFs and GOA (Figures
2(c) and 2(d)) shows the reliability of our annotation result.
Because of a small amount of common associations between
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Figure 5: Diagram of functional annotation of human genome. (a) A framework to annotate functional description of human genome to
ontologies. (b) An example of annotating a GeneRIF.

genes and GO terms in both annotation resources, they
could be complementary in the usage of protein-coding RNA
annotation. More GO terms were annotated in GOA (see
Section 2) suggesting it is more deep and serious than our
annotation results. In comparison, advantage of GeneRIFs is
that not only protein-coding genes but also microRNA genes

and lncRNA genes could be annotated with GO and other
function terms (Table 1).
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Dysfunction of ribosome biogenesis induces divergent ribosome-related diseases including ribosomopathy and occasionally results
in carcinogenesis. Although many defects in ribosome-related genes have been investigated, little is known about contribution
of ribosomal RNA (rRNA) in ribosome-related disorders. Meanwhile, microRNA (miRNA), an important regulator of gene
expression, is derived from both coding and noncoding region of the genome and is implicated in various diseases. Therefore, we
performed in silico analyses using M-fold, TargetScan, GeneCoDia3, and so forth to investigate RNA relationships between rRNA
and miRNA against cellular stresses. We have previously shown that miRNA synergism is significantly correlated with disease and
the miRNA package is implicated in memory for diseases; therefore, quantum Dynamic Nexus Score (DNS) was also calculated
using MESer program. As a result, seventeen RNA sequences identical with known miRNAs were detected in the human rRNA
and termed as rRNA-hosted miRNA analogs (rmiRNAs). Eleven of them were predicted to form stem-loop structures as pre-
miRNAs, and especially one stem-loop was completely identical with hsa-pre-miR-3678 located in the non-rDNA region. Thus,
these rmiRNAs showed significantly high DNS values, participation in regulation of cancer-related pathways, and interaction with
nucleolar RNAs, suggesting that rmiRNAs may be stress-responsible resident miRNAs which transmit stress-tuning information
in multiple levels.

1. Introduction

It has recently been revealed that dysregulation of ribo-
some biogenesis is implicated in various diseases termed
ribosomopathy such as Diamond-Blackfan anemia (DBA),
Shwachman-Diamond syndrome (SDS), X-linked dyskerato-
sis congenita (DKC), Treacher Collins syndrome (TCS), and
cartilage hair hypoplasia (CHH) [1–3]. The most studied
ribosomopathy, DBA, is a rare congenital hypoplastic anemia
and its pathogenesis is associated with defects in various
ribosomal protein (RP) genes such as RPS19, RPS24, RPL5,
and RPL11. Mutation in RPS and RPL genes results in
significant reduction in the amount of mature 40S and

60S subunit, respectively [4]. Other ribosomopathies, SDS,
DKC, TCS, and CHH, are caused by gene defects on SBDS,
DKC1, TCOF1, and RMRP, respectively, which encode pro-
teins involved in ribosome biogenesis [2]. However, what
mechanism is linked to these proteins in the pathogenesis of
ribosomopathies? Whether cancer is related to them? These
are still unsolved.

Ribosomal RNA (rRNA) is themost abundant noncoding
RNA gene in cells and is essential for the structure and
function of ribosomes. All four eukaryotic rRNAs, such as
18S, 5.8S, 28S, and 5S, are highly conserved across human
and related species, and their biogenesis is strictly regulated
by several mechanisms [5–8]. RNA45S, also called RN45S,
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the 45S gene, or rDNA, is an operon containing 18S, 5.8S,
and 28S RNA genes [8–11]. On the other hand, the 5S RNA
gene is coded alone. Among eukaryotes, the RNA45S and 5S
RNA genes are transcribed by Pol I and Pol III, respectively
[12, 13].Thefirst step in rRNAgene transcription in humans is
the formation of the preinitiation complex (PIC) on the core
promoter and the upstream control element of rDNA. PIC
attracts Pol I, and a full-length rRNA precursor called 47S
rRNA is transcribed. 47S rRNA is processed into 45S rRNAby
cleaving fixed positions on the 3󸀠 and 5󸀠 external transcribed
spacers (ETS) in the nucleus and is then divided into 21S and
32S rRNAby either of the two processes [8]. Finally, 18S-E, 6S,
and 28S rRNAs are generated through various mechanisms
and transported into the cytoplasm to construct the mature
ribosomal complex.

RNA45S genes in humans are located on chromosomes
(Chr) 13, 14, 15, 21, and 22 [14]. These acrocentric chromo-
somes have multiple copies of the 45S RNA gene on the p12
region in their short arms. This tandemly repeated rRNA
gene copy is commonly called an rDNA repeat or rRNA gene
cluster, and each repeating unit consists of a nontranscribed
spacer (NTS) and the RNA45S gene. RNA45S also contains a
5󸀠 ETS, an internal transcribed spacer (ITS), and a 3󸀠 ETS in
addition to the 18S, 5.8S, and 28S rRNA genes. On the other
hand, the 5S rRNA gene is only located at the q42 region of
chromosome 1. The copy number of rDNA is important for
normal cell functions although the majority of rDNA copies
are transcriptionally silent; therefore, reduced rDNA copy
number after cell stress is repaired by a specific amplification
system. It has also been reported that perturbation in the
copy number and stability of rRNA gene caused bymutations
in rRNA-related enzymes or cell senescence are linked to
various cellular dysfunctions and insufficiency of genome
integrity [15–18].

MicroRNA (miRNA) is an essential regulator of gene
expression and a member of the small noncoding RNA
family, which are RNAs approximately 22 nucleotides long
[19]. Sequence complementarity-based interactions between
miRNA and its target mRNA suppress and occasionally
augment the translation of mRNAs into proteins [20–23].
One miRNA regulates multiple mRNAs; thus, one mRNA is
targeted by multiple miRNAs [24–26]. Almost all functional
genes in humans are under the control of miRNAs [27].
Therefore, alterations in themiRNAprofile after injury, infec-
tion, or chemical treatment can alter various functions, such
as immunoreactivity, cell proliferation and differentiation,
apoptosis, and carcinogenesis [28–32].The expression profile
of miRNA genes is deeply associated with a considerable
number of human diseases including cancer [28, 29]. There
are several reports about miRNA dynamics after cell stresses,
for instance, participation of poly(ADP-ribose) in controlling
miRNA activity in the cytoplasm [33]. In the deep insight
of miRNA-disease relationship, it needs huge efforts to
make complete data for clinical validation of miRNA-mRNA
associations in diseases. Therefore, it has been shown that
computational analysis is required for miRNA research and
increasing number of disease-related miRNA databases and
computational analyses have recently been established [34,
35]. The miRNA genes are scattered throughout the genome,

and miRNAs are created through many complexed process-
ing pathways [36–38]. Most miRNA genes are transcribed
by RNA polymerase II (Pol II) as hairpin-shaped primary
miRNA (pri-miRNA), and the pri-miRNA is processed into
pre-miRNA after cleavage of the 5󸀠-cap and 3󸀠-polyA tail by
the microprocessor complex, which is composed of Drosha
and DiGeorge syndrome chromosomal region 8 (DCGR8).
These are the RNase III proteins and double-stranded RNA
binding proteins, respectively. Subsequently, pre-miRNA is
exported to the cytoplasm by exportin-5 and further pro-
cessed into the miRNA: miRNA∗ duplex by cleavage of the
5󸀠- and 3󸀠-termini and loop domain by Dicer, which is an
RNase III-like protein. This duplex is finally loaded into
the RNA-induced silencing complex, and a duplex chain is
selected thermodynamically to function as mature miRNA
[39]. However, some noncanonical pathways are used to
mature miRNA [36, 40]. For example, dme-mir-1003 is the
first discovered mirtron, which is a pri-miRNA that exists as
an intron of pre-mRNA and is processed into pre-miRNA
without the Drosha canonical processor [41]. This means
that all protein-coding, noncoding, intergenic, and intragenic
regions can become miRNA hosts.

According to the RNA wave 2000 model advocated by
Fujii, miRNA genes are the RNA information genes with four
critical characteristics: (1) themiRNAgene is amobile genetic
element that induces transcriptional and posttranscriptional
silencing via networking processes; (2) the RNA information
supplied by miRNA genes expands to intracellular, intercel-
lular, intraorgan, interorgan, intraspecies, and interspecies
under a lifecycle in the global environment; (3) mobile
miRNAs self-proliferate; and (4) cells contain resident and
genomic miRNAs [42, 43]. miRNAs can be classified into
genomic and resident miRNAs. The former are miRNAs
preserved in DNA as miRNA genes, and the latter are
miRNAs stored in a non-DNA form. The greatest difference
between genomic and resident miRNAs is the expression
regulatory mechanism. Most known miRNAs are genomic
because their expression levels are controlled by a specific
transcriptional factor, RNA polymerase, and so forth [44–
46]. However, some miRNAs, such as mmu-miR-712, dme-
miR-10404, and hsa-miR-663, are typical resident miRNAs
because they do not require specific transcriptional factors or
nucleases to exert their functions [47, 48].

In particular, it is anticipated that resident miRNAs and
other cytoplasmic RNAs play more important roles in cells
with unique cytoplasmic or genomic characteristics, such
as erythrocytes, spermatozoa, and oocytes, than those of
other cells. Erythrocytes contain diverse and abundant RNA
species, including cytoplasmic miRNAs that contribute to
regulating erythropoiesis and malarial resistance, although
erythrocytes have been thought to contain no RNA because
they are anucleated [49, 50]. Given that erythrocytes are the
most abundant cell in blood, a large number of erythrocyte-
contained miRNAs may be circulating. Spermatozoa are
characterized by minimal cytoplasm and extremely con-
densed DNA. However, various RNAs are abundant in the
cytoplasm of spermatozoa, such as rRNA, transfer RNA
(tRNA), piwi-interacting RNA, andmiRNA, and have impor-
tant roles before and after fertilization [51–53]. Oocytes
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are transcriptionally silent cells; therefore, the many pooled
mRNA and noncoding RNAs in the cytoplasm, such as
miRNAs, are essential to complete late oogenesis and early
embryogenesis without de novo transcription [53, 54]. Only
the resident RNAs in these cells are considered informa-
tion transmitters or memorizing devices, rather than DNA.
Furthermore, as miRNA is self-reproducible, an identical
miRNA could become both genomic and resident miRNA
[42]. The quantities of tRNA and rRNA decrease under
stress, suggesting that resident miRNAs help with biological
regulation under stress [55]. Thus, we hypothesized that
cytoplasmic tRNA and/or rRNA is a pool of self-reproducible
resident miRNAs.

tRNA is another functional noncoding RNA that is most
abundant (approximately 10% of RNAs) in cells next to
rRNA (approximately 80% of RNAs). Recent studies have
discovered that transfer RNA-derived RNA fragments (tRFs)
are generated from tRNAs as terminal functional products. In
the case ofmurine gammaherpesvirus 68, viral miRNAswere
generated by Pol III [56]. Further, a number of endoribonu-
cleases including Dicer and Angiogenin are implicated in the
production of tRFs from tRNA transcripts [57, 58]. tRFs exist
in various species, such as humans, cows, flies, and plants,
and work as gene expression regulators, similar to miRNA
[57, 59–63]. Some tRFswere listed asmiRNAs in themiRBase
(now dead entries). Other common characteristics between
miRNAs and tRFs are their interactions with Argonaute
(AGO) proteins, significant changes in expression levels
during disease and aging, and circulation in a steady form
[61–63]. Several reports have shown that tRFs are occasionally
more abundant than miRNAs [64].

We considered the possibility that RNA fragments may
be derived from rRNA in a manner similar to how tRFs
are derived from tRNA because several tRF-related endori-
bonucleases have common activity of nuclease [58]. Till
date, to the best of our knowledge, only a few studies have
reported biogenesis and functions of rRNA-derived miRNAs
or miRNA-like fragments, although many rRNA-annotated
fragments of miRNA-like size have been detected in deep
sequencing data from RNA studies [65]. Chak et al. revealed
that the novel miRNA hairpin named mir-10404/mir-ITS1
exists in the ITS1 region of Drosophila rDNA [47]. Son et
al. also discovered that mmu-miR-712 is coded in ITS2 of
mouse 45S precursor RNA (Rn45s) and hsa-miR-663 is coded
in the ITS1 region of human RNA45S [48]. Furthermore,
Drosha-related proteins are included in rRNA processing
pathways [66]. These ITS-derived miRNAs are supposed to
be generated upon degradation of the ITS region, similar to
the generation of mirtrons in the nucleoplasm or cytoplasm.

The effects of tRNA or rRNA degradation and processing
on cell activities in response to stress are important. The
small RNA molecules derived through this process play
an important role in the transition from fine-tuning to
stress-tuning functions. Other ncRNA species such as SINE,
especially human Alu elements, have also been revealed to
be contained in nucleolus and control the size of nucleoli
adopting to cell circumstances [67].

Therefore, we examined whether rRNAs contain func-
tional small RNAs and confirmed the relationship between

ribosome and disease shown in previous studies. Moreover,
how rRNA-hostedmicroRNA analogs (rmiRNAs) contribute
to the stress response as nongenomic memory in the nucle-
olus and cytoplasm was also investigated using multiple
computer-based tools and databases to find stress-tuning
RNA interaction in transcriptional and posttranscriptional
level. The quantum relationships among miRNAs were also
calculated as Dynamic Nexus Score (DNS) by MESer pro-
gram that we have previously developed and its significance
in stress response was discussed.

2. Method
2.1. SequenceDataCollection. AllmiRNA sequence data used
in this study were downloaded as miRNA.dat, hairpin.fa, and
mature.fm frommiRBase (http://www.mirbase.org) in release
21 (June 2014) [68]. This includes 2,588 and 1,915maturemiRNA
sequences of human and mouse, respectively. Sequences of
rRNAs were obtained from European Nucleotide Archive
(ENA, http://www.ebi.ac.uk/ena) release 127 (April 6, 2016)
and National Center for Biotechnology Information (NCBI,
http://www.ncbi.nlm.nih.gov) in FASTA format [69]. After
comparing and merging latest rRNA sequence data, two
rRNA coding sequences, RNA45S and human rDNA com-
plete repeating unit, were selected as the source of rRNA
sequence (Supplemental Table 1 in Supplementary Material
available online at http://dx.doi.org/10.1155/2016/7562085).
The latter source involves the sequence of the former but their
sequences have some differences even in common regions,
for instance, slightly polymorphisms in 18S and moderate
ones in 28S, ITS, and ETS region. Sequences of tRNA and tRF
were also obtained fromGenomic tRNAdatabase (GtRNAdb,
http://gtrnadb.ucsc.edu) and tRFdb (http://genome.bioch
.virginia.edu/trfdb), respectively [70, 71].

2.2. Definition of Passenger Strand. Passenger strands of
miRNAs whose guide strands were found in the rRNA
sequences were researched referring to stem-loop structure
inmiRBase. If a passenger strand is not recorded inmiRBase,
a sequence which is complement to the guide strand was
defined as the passenger strand in this study.

2.3. Secondary Structure Prediction. To determine the sec-
ondary structures of found miRNA-like sequences, M-fold
was used in a condition of 37 Celsius degrees and 1M NaCl.
Any other options which influence prediction results were
set in default (RNA sequence is linear, percent suboptimality
number is 5, upper bound on the number of computed
foldings is 50, thewindowparameter is default, themaximum
interior/bulge loop size is 30, the maximum asymmetry of an
interior/bulge loop is 30, and themaximumdistance between
paired bases is no limit).

2.4. Chromosome Confirmation. For browsing miRNA loca-
tions on each chromosome visually, UCSC Genome Browser
on Human Dec. 2013 (GRCh38/hg38) Assembly (https://
genome.ucsc.edu/cgi-bin/hgTracks?db=hg38) was used.

2.5. Calculations of DNS. Dynamic Nexus Score (DNS) was
prepared as a quantum-based score for evaluating quantum
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Table 1: Detected mature miRNAs from rRNA gene and adjacent region.

miR name Mature sequence Region Location
miR-663a AGGCGGGGCGCCGCGGGACCGC 5󸀠 ETS 2049–2071
miR-663b GGUGGCCCGGCCGUGCCUGAGG 5󸀠 ETS 2113–2135
miR-1268a CGGGCGUGGUGGUGGGGG 3󸀠 ETS 13102–13119
miR-1268b CGGGCGUGGUGGUGGGGGUG 3󸀠 ETS 13102–13121
miR-1275 GUGGGGGAGAGGCUGUC (NTS) 42294–42310
miR-3648 AGCCGCGGGGAUCGCCGAGGG 5󸀠 ETS 2513–2533
miR-3656 GGCGGGUGCGGGGGUGG 28S 8524–8540
miR-3687 CCCGGACAGGCGUUCGUGCGACGU (5󸀠 ETS) 2888–2911
miR-4417 GGUGGGCUUCCCGGAGGG 5󸀠 ETS 2412–2429
miR-4466 GGGUGCGGGCCGGCGGGG (5󸀠 ETS) 631–648
miR-4488 AGGGGGCGGGCUCCGGCG 28S 8510–8527
miR-4492 GGGGCUGGGCGCGCGCC 28S 10851–10867
miR-4508 GCGGGGCUGGGCGCGCG 28S 10849–10865
miR-4516 GGGAGAAGGGUCGGGGC 28S 11049–11065
miR-4532 CCCCGGGGAGCCCGGCG 28S 11227–11243
miR-6087 UGAGGCGGGGGGGCGAGC 28S 12007–12024
miR-6724 CUGGGCCCGCGGCGGGCGUGGGG (NTS) 42320–42342
Seventeen sequences homologous to mature human miRNAs were detected from rRNA gene coding region. Note that miR-1268a and miR-1268b were found
in only RNA45S and miR-1275, miR-3687, miR-4466, and miR-6724 were found in only rDNA-repeating unit. This data might be caused by differences in base
alignment between two rRNA sequence data.

interactions between or among miRNAs [72]. DNS calcu-
lation of rRNA-derived miRNA and tRF was performed
by using the original program, MESer (http://meser.mirna-
academy.org). Computational results were statistically ana-
lyzed with Microsoft Office Excel 2013 (Microsoft Japan Co.,
Ltd., Tokyo, Japan).

2.6. Target Prediction and Ontology Analysis. Putative tar-
gets of rmiRNAs were predicted under the seed theory
by using TargetScan (http://www.targetscan.org/) [73]. Val-
idated targets of rmiRNAs were confirmed in miRTarBase
(http://mirtarbase.mbc.nctu.edu.tw/) [74]. Selection of top
10 targets in miRTarBase was conducted by referring to the
number of validation methods (primary) and the number of
reports (secondary). Categorization of putative target genes
in Gene ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways was accomplished by using
GeneCoDis3 web service (http://genecodis.cnb.csic.es/) [75].

2.7. Alu Sequence and Target Site Prediction. Sequence data
of human Alu family were downloaded from SINE Base
(http://sines.eimb.ru), last update May 28, 2015 [76]. Target
sites of rmiRNAs in Alu sequences were predicted using
RNA22 version 2.0 (https://cm.jefferson.edu/rna22/) with
default settings (sensitivity of 63%, specificity of 61%, seed size
of 7, allowmaximum of 1 UN-paired bases in seed, minimum
number of paired-up bases in heteroduplex being 12, max-
imum folding energy for heteroduplex being −12 Kcal/mol,
and maximum number of G :U wobbles allowed in seed
region being no limit) [77].

3. Results

3.1. Pre-miRNA Sequence in Human rRNA. To investigate
whether miRNAs also exist in human rRNA, we firstly
collected base sequences of pre-miRNAs, mature miRNAs,
and rDNA. Then the sequence of rRNA and its adjacent
regions, RNA45S, and rDNA-repeating unit, respectively,
were searched for 2,588 human pre-miRNA sequences by
using a simple C++ based detection program we developed
for this study. As a result, an identical sequence to pre-miR-
3687 was detected from rDNA-repeating unit although the
known location of themiR-3687 genewas distinct from rRNA
coding region. However, other 2,587 pre-miRNA sequences
were not found in any rRNA-related sequences. For further
similar sequencing research, a detection of mature miRNA
sequences instead of pre-miRNA from rRNA gene was
also performed. Subsequently, seventeen RNA alignments
identical to humanmaturemiRNAs, namely, miR-663a, miR-
663b-3p, miR-1268a, miR-1268b, miR-1275, miR-3648, miR-
3656-3p,miR-3687-3p,miR-4417,miR-4466,miR-4488,miR-
4492-3p, miR-4508, miR-4516, miR-4532, miR-6087, and
miR-6724, were detected from the human rRNA sequences
(Table 1). In detail, miR-1268a and miR-1268b were detected
from only RNA45S, and miR-1275, miR-3687, and miR-6724
were detected from only rDNA-repeating unit.

Among these detected miRNAs, miR-1268a, miR-3648,
miR-3687,miR-4508, andmiR-6724were originated in rDNA
containing chromosomes, Chr 15, Chr 21, Chr 21, Chr 15, and
Chr 21, respectively. However, their locations were different
from rRNA coding regions (data not shown). This suggests
that the detected miRNAs might also have been transcribed
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from rRNA-related regions as well as above Chr loci or that
the miRNAs may be generated through further processing of
transcribed rRNA gene.

To further examine whether the detected miRNAs could
form miRNA/miRNA∗ duplex and/or stem-loop structure
like miR-3687, their passenger strand sequences were also
searched in the rDNA repeat region. Passenger strand
sequences were determined referring to their putative stem-
loop structure in miRBase. As a result, passenger strands
of miR-663a, miR-3648, miR-3687, miR-6087, and miR-6724
were found nearby their guide strands (Figure 1(a)). This
result indicated that these rRNA-hosted miRNA-like RNAs
could form stem-loop or at least miRNA/miRNA∗ duplex.
Intriguingly, a passenger strand of miR-3687 was detected
from RNA45S although its guide strand was not detected.
Since these rRNA-hosted RNA pieces, especially miR-3687,
possess high concordance rate to each known pre-miRNA
sequence, therefore we termed them rRNA-hosted miRNA
analog (rmiRNA).

For more rigorous verification, putative precursor
sequences of rmiRNAs were predicted by referring to the
sequences and structures of known human pre-miRNAs
identical to detected rmiRNAs (Figure 1(a)). Subsequently,
secondary structures of pre-rmiRNA sequences were
predicted by using M-fold software. The same prediction
for canonical pre-miRNA sequences were also performed
and used as positive controls for comparison, and it was
proven that all of five pre-rmiRNA candidates could form
hairpin-loop structures which have high similarities to that
original pre-miRNAs form (Figure 1(b)).

3.2. Exploration for Noncanonical Passenger Strands and
Precursors. Since one pre-rmiRNA sequence is identical
with pre-miR-3687 and four pre-rmiRNAs which have high
similarity to known pre-miRNAs were detected in rDNA, we
thought that other twelve rmiRNAs also could form stem-
loop structure with different style. To examine this hypothe-
sis, we have carefully investigated adjacent regions of detected
guide strands. Primarily, some RNA sequences were clipped
out as putative pre-rmiRNA. Each of them contained guide
strand sequence and had the same length to its canonical pre-
miRNA. Next, these putative pre-rmiRNAs were compared
with its canonical pre-miRNA in base sequences and then
secondary structures. Of twelve putative pre-rmiRs, pre-
rmiR-663a showed the highest similarity to pre-miR-663b in
both base sequence and precursor structure (Supplemental
Figure 1A). Other three pre-rmiRNAs, pre-rmiR-3656, pre-
rmiR-4417, pre-rmiR-4466, and pre-rmiR-4508 also showed
high similarity in secondary structures to pre-miR-3656, pre-
miR-4417, pre-miR-4466, and pre-miR-4508, respectively,
although their precursor sequences showed low similarities
to canonical ones (Supplemental Figure 2A). These results
implied that these rmiRNAs have obtained new passenger
strand to maintain their function as mature miRNAs. On
the other hand, putative pre-rmiR-1268b sequence generated
in accordance with the rules above did not form stem-loop
structure according toM-fold prediction. However, we found
that pre-rmiRNA-1268b could construct stem-loop structure

with a slight modification such as lengthening of the 3󸀠
terminal region (Supplemental Figure 1A).

Furthermore, it was ascertained that the left six rmiR-
NAs, namely, rmiR-1268a, rmiR-1275, rmiR-4488, rmiR-
4492, rmiR-4516, and miR-4532, also could form stem-loop
structure by further modification. We conceived an idea of
“reversed pattern” of primary structure; for instance, miR-
1275 usually exists as 5p sequence in pre-miR-1275 but might
exist as 3p sequence in pre-rmiR-1275. To examine this
idea, broader region analysis was performed and some new
candidate rmiRNA sequences were predicted (Supplemental
Figure 1B). As a result, it was confirmed that all of new
rmiRNAs can formwell-ordered stem-loop structure (Table 2
and Supplemental Figure 2B).

3.3. DNS Computation and Comparison. Because concor-
dance of so many sequences must not be detected acciden-
tally, it is natural to consider hiddenmechanisms on the back-
ground. We previously developed a quantum-based score,
Dynamic Nexus Score (DNS), to evaluate miRNA/miRNA
interactions and demonstrated that biological activity of the
miRNA synergy is positively correlated with DNS value. The
average DNS value among mature rmiRNAs was calculated
through MESer computer program. DNSs of 1,032 human
tRFs and all of 2,588 human miRNAs were also calculated as
controls. Surprisingly, the average DNS of rmiRNAs marked
130.23; it was much higher than that of tRFs (40.76) and all
human miRNAs (38.31) (Supplemental Figures 3A and 3B).
Additionally, DNS values between tRFs, rmiRNAs, and all
miRNAs were also calculated. As a result, it was confirmed
that the miRNA pairs including rmiRNAs had relatively
high DNS values (Supplemental Figure 3C), and this meant
that rmiRNAs might induce miRNA-miRNA synergy to
accelerate their biofunctions.

3.4. Target Prediction and Ontology Analysis. To investigate
targets of rmiRNAs, we used TargetScan and miRTarBase.
TargetScan was used for collecting putative target genes
predicted by the seed theory-based algorithm; in contrast,
miRTarBase was used for collecting experimentally validated
target genes. In this experiment, we focused on top 5 high
DNS of rmiRNAs, namely, rmiR-1268, rmiR-3656, rmiR-
4466, rmiR-6087, and rmiR-6724, and these rmiRNAs were
located at separated regions of the rDNA-repeating unit, such
as 5󸀠 ETS, 28S rRNA, 3󸀠 ETS, and NTS. Top 10 targets of
top 5 DNS rmiRNAs (total 50 targets) were extracted from
both TargetScan and miRTarBase (Supplemental Table 2);
subsequently, their classification in GO biological process
(BP), molecular function (MF), and cellular component
(CC) were performed and their results were listed through
GeneCodis3 web tool (Figures 2(a) and 2(b)). Intriguingly,
three gene ontology (GO) terms, namely, nucleus (CC),
protein binding (MF), and nucleotide binding (MF), were
commonly ranked on top 3 place between TargetScan and
miRTarBase. Moreover, almost all their biofunctions were
commonly related to gene regulation such as transcription
and nucleotide binding although the greater parts of the
GO analysis results were different in detail. Contributions
of total 50 targets in biological pathway were also analyzed
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miR-663a miR-3648 miR-6087 miR-6724miR-3687
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Pre-miRNA (left) versus pre-rmiRNA (right)
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Figure 1: An overview of pre-rmiRNAswith high similarity to canonical pre-miRNAs. (a) Sequence comparison between detected precursor-
rmiRNAs (pre-rmiRNAs) and their canonical pre-miRNAs. Mature (guide) miRNA strand is colored with red and passenger is colored with
blue. Differences in base sequences between pre-rmiRNAs and pre-miRNAs are highlighted in yellow and box lines. (b) Comparison of
secondary structure of pre-rmiRNAs with that of their canonical pre-miRNAs. These rmiRNAs contain the identical sequences to canonical
ones in both guide and passenger. This group contains only a few polymorphisms in loop and terminal region.
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Figure 2:GOandKEGGanalysis for predicted targets of rmiRNAs. (a)GOcharacterization of top 10 targets of the top 5 highDNS rmiRNAs in
miRTarBase. (b) GO characterization of top 10 putative targets of the top 5 high DNS rmiRNAs in TargetScan. (c) KEGG pathway annotations
of putative target genes having less than −0.1 cumulative weighted context++ score in TargetScan. Cancer and cancer-related pathways were
colored with red.

using GeneCodis3 with Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway option.However, no pathwaywas
presented in both cases of predicted target (TargetScan) and
validated targets (miRTarBase). Therefore, to investigate in
larger scale, we extracted all predicted targets in TargetScan
having more than 0.1 cumulative weighted context++ score.
KEGG pathway analysis of these targets was conducted and
various biological pathways were successfully indicated. The
results showed that the majority of putative targets were
related to cancer or cancer-related pathways such as MAPK
signaling and ERBB signaling (Figure 2(c)). This suggests
that rmiRNAs have an inclination to target cancer-related
genes and might have some important roles in anticancer or
antistress pathways.

3.5. Prediction of rmiRNA Targets in Alu. Numerous Alu
element-containing RNAs exist in the nucleolus and partic-
ipate in the synthesis of rRNAs. Therefore, to seek RNA-
RNA relationship between nucleolar function and rmiRNA,
target sites of rmiRNAs inside Alu sequence were searched.
Six branched members of Alu family, namely, Alu consensus,
AluJo, AluSz, AluSc, AluSp, and AluY, were processed using
RNA22 tool and then 5, 8, 7, 5, 4, and 3 putative rmiRNA tar-
get sites were detected, respectively (Supplemental Table 3).
Several rmiRNA target sites were conserved among these Alu
sequences.Nine of 17 rmiRNAshave potent target sites onAlu
sequences and 3 of 5 high DNS rmiRNAs such as miR-4466,
miR-6087, and miR-6724-5p were included.

4. Discussion

Ribosomes, large ribonucleoprotein complexes composed
of various RPs and rRNAs, are a molecular machine that
translate mRNAs into proteins and exists in all living cells
[78, 79]. Proper function of the ribosome is essential for
normal cell activities; therefore, modification and assembling
of RPs and rRNAs are strictly and intricately regulated
in the ribosome construction process [78–80]. Ribosomal
dysfunction is associatedwith various diseases represented by
ribosomopathies such as DBA, TCS, and SDS and is caused
by mutation in ribosome-related genes, ribosomal haploin-
sufficiency, cellular stresses from chemical or infection, and
so forth [1–3]. Several ribosomopathies increase the risk of
carcinogenesis and cancer cells often have abnormality in
the ribosome function due to mutation in RP and ribosome-
related processor genes that cause ribosomopathies [4].

The synthesis of the ribosome itself largely contributes
to malignant cell proliferation [81–83]. Ribosomal biogenesis
is generally upregulated in the G1 phase dividing cells
because enhanced protein synthesis is required to produce
viable daughter cells [84]. Thus, inhibiting ribosomal syn-
thesis causes G1 phase arrest and hinders cell proliferation
reversibly in normal cells [85].The upregulation of ribosomal
synthesis is also observed in various cancer cells [82, 83];
therefore, inhibiting ribosomal synthesis has been recognized
as a potent and novel anticancer strategy [81, 86–88]. This
method particularly showed apoptosis-inducing effects in
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various malignant cells that synthesized ribosomes at a
high rate and exhibited sufficient efficacy with only 3 h
transient treatments. This inhibition was accomplished by
deleting ribosomal protein genes or by cell treatments with
actinomycin D, doxorubicin, 5-fluorouracil, and CX-5461,
which have significant tumor suppressing effects [85, 88,
89]. However, this antitumor effect of inhibiting ribosomal
biogenesis is not dependent on suppressing protein synthesis
but on ribosomal biogenesis itself [81].This anticancer mech-
anism presumably depends on stabilizing p53 by inhibiting
a p53 degrading protein, called Murine Double Minute
2, by competitively combining with a ribosomal protein,
which becomes free because it no longer participates in
the construction of ribosomes [81, 88]. Additional evidences
declaring associations between ribosome and cellular dys-
function have been reported. 28S rRNA has been identified
as a novel fusion partner of carcinoma-related genes such as
BCL6, BCL11B, IGKV3-20, andCOG1 in gastric lymphomaor
hematopoietic tumors [90, 91]. Mutation or inhibition of spe-
cific genes associated with ribosome construction pathway
such as DKC1, AROS, and several snoRNAs have been iden-
tified to impair normal cell functions and sometimes cause
carcinogenesis in various cell types [92–95]. Angiogenin-
mediated rRNA transcription has been revealed to be related
to squamous cell carcinoma [96]. Almost all these ribosome-
related genes are considered as potent therapeutic targets for
ribosomopathies.

Similar to rRNA, tRNA is the second most abundant
noncoding RNA and contains many miRNA-like fragments
as tRFs. Various tRFs are generated from mature or pre-
tRNAs by ordered cleavage processing and they have sim-
ilar characteristics to miRNAs, such as evolutionary con-
servation, target RNA recognition, translational regulation,
circulation, and interaction with AGO proteins [57, 59–63,
97, 98]. In addition, miRNAs derived from pre-tRNA or
tRNA–miRNA encoded by tRNA genes have been reported
[59, 99].Therefore, it is appropriate that miRNAs or miRNA-
like functional fragments are also generated from rRNAgene-
related regions.

As a sequel to computational analysis, we found that 17
pre-miRNA-like arrays, which contained identical sequences
to known human mature miRNAs, were located in the
rRNA gene coding region; therefore, we called them rDNA-
hosted pre-miRNA analogs (rmiRNA). We also performed
supplemental examination with mouse miRNAs and rDNA
and found several sequences which are identical to miR-
696, miR-712-5p, miR-712-3p, miR-714, miR-466i-5p, miR-
5099, and miR-6538. Of these miRNAs, miR-696, miR-712,
and miR-714 have already been reported as rRNA-locating
ones [47]. According to Son et al., mmu-miR-712 is located
at ITS2 of mouse rRNA gene (Rn45s) and hsa-miR-663 is
located at ITS1 region of human rRNA gene (RNA45S) [48].
In our research,miR-712was likewise found in ITS2 of Rn45s;
however, hsa-miR-663 was not found in ITS1 but 5󸀠 ETS of
RNA45S. This discrepancy may be caused by the differences
in detection tool or the version of RNA45S sequence data. For
instance, they used MirEval web tool for sequence analysis
and their study probably may be based on the older version
of rRNA sequence data.

We also discovered that almost all of these rmiRNAs
formed stem-loop structures and were located in RNA45S
rather than the NTS (Figure 1, Supplemental Figure 2, and
Table 2). Putative pre-rmiRNAs which have very similar
sequences with their original miRNAs also showed similarity
to their original miRNAs in the thermodynamic stability of
stem-loop structures (Supplemental Figure 4A). Moreover,
putative pre-miRNAs which have moderate substitutions in
their sequences except the guide strands likewise showed
similar stabilities and some showed more stable stem-loop
structures than their original pre-miRNAs.This indicates that
rmiRNAs have adequate potential stability to form stem-
loop structures regarded as pre-miRNA.These results suggest
that a large number of rmiRNAs are continually transcribed
because rRNA is the most abundant noncoding RNA in
eukaryotic cells. rDNA is transcribed so frequently that the
rDNA region on the genome forms multicopies in the nucle-
olus [100]. Furthermore, rmiRNA may be noncanonically
generated from rRNA in the cytoplasm because cytoplasmic
RNA is a miRNA source [55].

All pooled miRNAs, such as rmiRNAs and/or tRFs, are
important for immunoreactivity, transcriptional regulation,
gene mobility, and cytoplasmic memory [17]. Sharma et al.
indicated that paternal diet alters RNA information, such
as population and composition of tRFs, in spermatozoa
and influences progeny phenotype [101]. Likewise, although
it was not confirmed in this study whether rDNA-hosted
miRNAs would work in vivo with known identical miRNAs,
rmiRNAs may function as resident miRNAs and participate
in determining genotype and memorization. The number of
stress-sensitive miRNAs is insufficient to exert an immediate
response to cell damage if these miRNAs are generated
only by transcription fromDNA.Therefore, rapid generation
of miRNAs from ready-made RNAs, such as rRNA and
tRNA, should be considered. In addition, rmiRNAs and their
identical miRNAs may work together because homologous
miRNAs at different loci function together [102].

According to previous reports, rRNA-containedmiRNAs
such as miR-663, miR-1275, miR-3648, miR-3656, miR-3687,
miR-4417, and miR-4516 are associated with tumor sup-
pression, carcinomas, neuronal differentiation, breast cancer,
breast cancer/neuronal differentiation, breast cancer, and
regulation of signal transducer and activator of transcription
3, respectively [103–108]. However, the functions of residual
rRNA-hosted miRNAs remain unclear. This motivated us
to predict the targets of rmiRNAs and a number of puta-
tive and validated target genes which were associated with
cancer-related pathways were found (Figure 2(c)). Therefore,
RNA-RNA and/or RNA-protein interactions may participate
in cancer-related functions. This indicates that rmiRNAs,
in addition to ribosome-associated proteins and snoRNAs,
might also be implicated in cell dysregulation and dysfunc-
tions linked to ribosomopathies in multiple steps such as
transcription, posttranscription, and biofunction.

In our previous study, the DNS was positively correlated
with the strength of miRNA/miRNA synergies [72, 109]. As
these rmiRNAs commonly have high DNS values, rmiRNA-
derived miRNAs may also function as an activity booster of
other miRNAs (Supplemental Figure 2). This characteristic
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would be effective for quick responses to cell emergencies
that are not severe enough to cause changes in intracellular
RNA composition [10, 16, 110, 111]. In this study, most of
the top 10 rmiRNA targets were predicted to play roles in
gene regulation and participate in cancer-related pathways
(Figure 2(c)). This finding indicates that the rRNA copy
number and expression level may be directly associated with
rmiRNAgeneration and regulation of the biological reactions
to cell stress leading to carcinogenesis.

Given the known mechanisms of pre-rRNA processing
and that of miRNA generation from rRNA, maturation
of rmiRNA occurs as follows: (1) rRNA genes containing
rmiRNAs are transcribed as RNA45S by Pol I [7, 9]; (2a)
the RNA45S ITS and ETS are degraded by XRN1 or other
nucleases after the rRNA matures, and pre-rmiRNAs located
in these regions are generated simultaneously [7, 9, 48]; (2b)
pre-rmiRNAs located on 18S rRNA are biologically generated
upon the degradation of mature rRNAs in the ribosome
or degradation of pre-rRNA in response to stress [110–
112]. (3) Drosha, Dicer, or its related proteins and enzymes
process pre-rmiRNAs into mature rmiRNAs. The last step
in which Drosha and Dicer participate in rRNA processing
has been observed in several studies. RNase III enzymes
including Drosha and Dicer have a miRNA-independent
role in RNA processing, because the depletion of Dicer or
Drosha impairs rRNA processing but does not affect the
exonuclease activities required for rRNAprocessing [113, 114].
Fukuda et al. revealed that the DEAD-box RNA helicase
p68 (Ddx5) and p72 (Ddx17), which are subunits of the
Drosha complex, are required for pre-rRNA and pri-miRNA
processing. Woolnough et al. reported that the human Ago2
protein binds rRNA and interferes with the transcription of
nascent human rRNA via binding with Pol III and the tran-
scription factor III complex on the gene [66, 115]. These data
indicate that rRNAprocessing is closely related to themiRNA
processing enzymes and its related proteins. In contrast, Chak
et al. reported that the generation of miR-10404 and endo-
siRNA from the rRNA gene is unaffected by mutations in
Drosha, Pasha, Ago2, or Dcr-2 but by Dcr-1 in Drosophila
[47]. Son et al. demonstrated that the generation of pre-miR-
712 is dependent on XRN1 but independent of Drosha and
DGCR8 in mice [48]. Pre-miR-712 processing is a mirtron-
like, but it remains unknown whether Drosha and Dicer
contribute to generating rRNA-derived miRNA because the
details of the roles of Drosha, Dicer, and related proteins
in rRNA processing are unknown. However, these findings
suggest that rRNA-derived miRNAs could be generated in
both Drosha-dependent and Drosha-independent pathways.

The number of repeated rDNA arrays is strongly asso-
ciated with cell senescence, gene integrity, and ribosomal
function, although the majority of rDNA is inactive [15–
17]. Moreover, rDNA cluster size differs among species and
individuals and even in individual cells when the cells are
responding to DNA damage or when the rRNA repeat
number is being amplified [15–17, 116]. As these differences
are inherited, it is certain that rRNA and rRNA-hosted
miRNAs participate in cell identity [117]. The ETS and ITS
regions are not highly conserved as compared to 18S, 5.8S, and
28S RNA. All three previously reported ITS- or ETS-derived

miRNAs, such as miR-663, miR-712, and miR-10404, are
human-, mouse-, and fly-specific miRNAs, respectively, and
they are well conserved intraspecifically [47, 48], suggesting
that variations in rmiRNAs and rDNA copy number con-
tribute to evolution, particularly the inheritance of acquired
characteristics.

Nucleolus, where rRNA is transcribed and processed, is
the largest structure in the nucleus formed at rRNA coding
regions on chromosomes and composed of diverse specific
proteins and RNAs [118]. It has been revealed that some
miRNAs exist and function in nucleolus. For instance, miR-
206, a highly expressedmiRNA in skeletalmuscle, and several
other miRNAs are detected in the nucleolus as well as in the
cytoplasm with in situ hybridization [119]. Subsequently, it
has been shown by deep sequencing that a set of miRNAs
present in the nucleus rather than in the cytoplasm and some
of them tend to accumulate at the nucleolus [120]. RNA
interference (RNAi) factors such as AGO protein, Dicer, and
TRBP are also found in the cell nuclei, suggesting thatmiRNA
machinery is active even in the nucleolus [121]. Moreover, it
has recently been reported that Alu element-containing Pol
II transcripts (aluRNA) are abundant in nucleolus [67]. Alu
element is the most abundant SINE family that comprises
about 10% of the genome and exists in both noncoding
and coding region including introns and 3󸀠 UTR of mRNA
transcripts [122, 123]. There are growing evidences that a
portion of mRNAs have Alu-derived sequence in their 3󸀠
UTR which can be targeted by a set of miRNAs [124–126].
Since it has been reported that the transcriptional rate of Alu
is upregulated upon cellular stress and strongly influences the
nucleolar size and pre-rRNA transcript rate [67, 127, 128], we
supposed that aluRNAs might also be regulated by miRNAs.
In our investigation, several miRNAs were detected from
rRNA sequence as rmiRNA, and half of these rmiRNAs have
potential target sites in Alu family sequences (Supplemental
Table 3). Although it was not confirmed in this studywhether
rmiRNAs really regulate aluRNAs, at least, the possibility
that rmiRNAs might interact with aluRNA in the nucleolus
and contribute to the regulation of ribosomal function and
composition upon cellular stress as a ribosomal feedback
machinery was implied.

It was technically difficult to distinguish the origins of the
sources using ready-made technologies, because the mature
rmiRNA sequences, such as rmiR-663a/b and rmiR-1268a/b,
were identical between the rDNA and non-rDNA genes.
Therefore, in this study, we performed in silico analyses to
by-pass this problem. No rmiRNA was detected from the
5S rRNA gene but the AGO2 protein binds to 5S rRNA
[115], and AGO2 has Slicer activity [129], suggesting that
various rRNA-derived specificmiRNAswith differentmature
sequences to annotated miRNAs, that is, novel miRNAs, may
be generated from the rRNA coding region. Furthermore,
mature rmiRNA may have been generated in another form,
such as loop miRNAs [130]. Numerous undefined RNA frag-
ments derived from well-known RNAs or other noncoding
RNAsmight unveil the RNAwave enigma and implication of
tumorigenesis. Therefore, additional laboratory and clinical
investigations are required for discovery of the nascent
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human miRNAs and for decipherment of precise interaction
among miRNAs, noncoding RNAs, and human cancer.

5. Conclusion

Seventeen rDNA-hosted miRNA analogs (rmiRNAs) were
found in rRNA coding region by in silico analyses. These
rmiRNAs might be generated from rRNA upon construction
or degradation of ribosomes. The majority of predicted
targets of rmiRNAs were stress- or cancer-related genes and
it was indicated that rmiRNAs could also target AluRNA in
nucleolus, suggesting that rmiRNAs may regulate ribosomal
function at multiple levels adopting to cellular stress. While
rmiRNAs showed significantly high DNS values compared to
those of normal miRNAs and tRFs, rmiRNAs may efficiently
boost bioactivities of other miRNAs to attenuate cell stress
and tumorigenesis as a quantum memory device and a
member of the resident miRNA genes. Altogether, rmiRNAs
would be implicated in human ribosomopathy. In future,
rmiRNA mimics or anti-rmiRNA agents may be developed
to cancer therapy and there is some possibility that rmiRNAs
in serum could be applied for prognosis and/or diagnosis of
ribosomopathy.
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Protein-Protein Interactions (PPIs) play vital roles in most biological activities. Although the development of high-throughput
biological technologies has generated considerable PPI data for various organisms, many problems are still far from being solved. A
number of computational methods based on machine learning have been developed to facilitate the identification of novel PPIs. In
this study, a novel predictor was designed using the Rotation Forest (RF) algorithm combined with Autocovariance (AC) features
extracted from the Position-Specific Scoring Matrix (PSSM). More specifically, the PSSMs are generated using the information of
protein amino acids sequence. Then, an effective sequence-based features representation, Autocovariance, is employed to extract
features from PSSMs. Finally, the RF model is used as a classifier to distinguish between the interacting and noninteracting protein
pairs. The proposed method achieves promising prediction performance when performed on the PPIs of Yeast, H. pylori, and
independent datasets. The good results show that the proposed model is suitable for PPIs prediction and could also provide a useful
supplementary tool for solving other bioinformatics problems.

1. Introduction

Proteins are the most versatile and important macro-
molecules in life. They are vital for nearly all of the activity
in the cell, including signaling cascades, metabolic cycles,
andDNA transcription and replication [1]. Researchers found
out that proteins rarely act as isolated agents to achieve their
function. As expected, proteins are mutually matched with
each other, forming a huge and complex network of Protein-
Protein Interactions (PPIs) [2]. Therefore, research on PPIs
has become the core issue of systems biology [3, 4].

So far, a variety of experimental techniques have been
developed and designed for the detection of PPIs. The high-
throughput techniques including Yeast Two-Hybrid (Y2H)
screen [5–7], Tandem Affinity Purification (TAP) [2], and
Mass Spectrometric Protein Complex Identification (MS-
PCI) [6] spend considerable amounts of time, money, and
manpower for detecting PPIs. In addition, PPIs obtained by

biological experiments at present can only cover a small part
of the whole PPIs network [8]. Therefore, the development
of reliable computational methods which can improve the
recognition efficiency has important significance [9–11].

A large number of in silico methods for predicting PPI
have emerged [12–14]. These methods are usually based on
the information of gene neighboring [15], gene coexpression
[15], phylogenetic relationship [16], gene fusion events [17],
three-dimensional structural information [18], and so on [19].
However, the application of these methods is limited [20, 21],
because they need to rely on preknowledge of the protein.
Recently, the methods based on the sequence information of
protein amino acids for detecting PPI have been proposed
[22–24]. For example, You et al. [25] used only protein
sequence information to predict PPI, in which a kind of
method called PCA-EELM (Principal Component Analysis-
Ensemble Extreme Learning Machine) is designed. When
performed on the PPIs data of Saccharomyces cerevisiae, this
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model yields 87.00% prediction accuracy, 86.15% sensitivity,
and 87.59% precision. Martin et al. [26] designed a model
to detect PPIs by using the extended signature descriptor,
which was extended to protein pairs. In order to verify the
predictive ability of this method, when using 10-fold cross-
validation applied on the H. pylori and Yeast datasets, the
accuracy of this method is from 70% to 80%. Shen et al.
[11] considered the residues local environments and designed
the conjoint triad method. When performed on human PPIs
dataset, this method has yielded 83.9% accuracy. Guo et
al. [9] combined Support Vector Machine classifier with
Automatic Covariance features extracted from the protein
sequences to predict PPIs in Saccharomyces cerevisiae. The
average prediction accuracy of the method reached 86.55%.

In this study, we presented a sequence-based method
which combines the RF classifier and Autocovariance (AC)
algorithm to predict the interacting protein pairs [9, 27, 28]. A
novel protein feature representation is derived fromPosition-
Specific Scoring Matrix (PSSM) [29], which gives the log-
odds score of specific residue replacement based on specific
location of evolutionary information. Then, an effective
sequence-based protein representation, Autocovariance, is
employed to extract features from PSSMs. The interaction
among a certain number of amino acid sequences was
calculated by AC algorithm. Thus, this model took into
account the proximity effect and made it possible to find
patterns throughout the sequence. Finally, the ensemble RF
classifier is established, which is using the PSSM-derived
features as input. In the experiments, the proposedmodel was
evaluated onYeast andH. pylori PPI datasets.The experiment
results show that our model achieved 97.77% and 84.84%
prediction accuracy with 95.57% and 82.77% sensitivity on
these two datasets. In addition, we evaluate the proposed
model on independent datasets of the C. elegans, E. coli, H.
sapiens, and M. musculus PPIs and achieved 96.01%, 97.73%,
98.30%, and 96.81% prediction accuracy, respectively.

2. Materials and Methodology

2.1. Data Sources. In the experiments, we used nonredundant
Yeast data, which was gathered in Saccharomyces cerevisiae
core subset of theDatabase of Interacting Proteins (DIP) [30],
and the version is DIP 20070219 by Guo et al. [9]. Two meth-
ods, Paralogous Verification Method (PVM) and Expression
Profile Reliability (EPR) [31], have proven the reliability of
the core subset. There are 5966 interaction pairs contained
in the core subset. Sequences with less than 50 amino acid
residues were removed because they might just be fragments.
The final positive dataset was comprised of the remaining
5943 protein pairs.TheCD-Hit [32, 33] algorithmwas further
used with less than forty percent identity to decrease pairwise
sequence redundancy. By doing this, the rest of the 5594
protein pairs constructed the positive dataset. We chose 5594
additional protein pairs in different subcellular localization to
construct the negative dataset. Finally, the complete dataset
was constructed; it was composed of 11188 protein pairs, half
of which were positive and the other half were negative.

We also tested our method using two-hybrid mea-
surements of H. pylori introduced by Rain et al. [34].

The H. pylori dataset (available at http://www.cs.sandia.gov/
∼smartin/software.html) contains 2916 protein pairs. There
are interacting pairs and noninteracting pairs, each account-
ing for fifty percent. This dataset provides a platform for
comparing our approach and other approaches [25, 26, 35–
38].

2.2. Position-Specific Scoring Matrix (PSSM). Position-
Specific Scoring Matrix is first used in the detection of
distantly related protein, which is proposed by Gribskov
et al. [29]. Its feasibility has been verified in protein
secondary structure prediction [39], prediction of disordered
regions [40], and protein binding site prediction [41].
Structure of a PSSM is 𝐿 rows and 20 columns. Suppose that
PSSM = {𝜃

𝑖,𝑗
: 𝑖 = 1, . . . , 𝐿, 𝑗 = 1, . . . , 20}. Rows of the

matrix represent the protein residues and columns represent
the naive amino acids. Each matrix can be represented by the
following formula:

PSSM =

[

[

[

[
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[

[
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1,1
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, (1)

where 𝐿 is the length of the corresponding protein sequence
and 𝜃

𝑖,𝑗
in the 𝑖 row of PSSM meant the probability of the

𝑖th residue being mutated into type 𝑗 of 20 native amino
acids during the procession of evolutionary information in
the protein from multiple sequence alignments.

In this experiment, we introduced the Position-Specific
Iterated BLAST (PSI-BLAST) program [42] and SwissProt
dataset on a local machine to produce PSSMs. PSI-BLAST
is more sensitive compared to BLAST, particularly in the
discovery of newmembers of a protein family. To generate the
PSSM, PSI-BLAST needs sequence contrast with very high
sensitivity between the input proteins and the proteins in the
database, and all sequence entries in the SwissProt database
have been carefully verified by computer tools and access
to relevant literature through the experience of molecular
biologists and protein chemists, so we put SwissProt database
as the optimal comparison database in the experiment. And
to get broad and high homologous sequences, we held
the other parameters constant, where the 𝑒-value is set to
0.001 and the number of iterations is set to 3, respectively.
Applications of PSI-BLAST and SwissProt database can be
downloaded from http://blast.ncbi.nlm.nih.gov/Blast.cgi.

2.3. Autocovariance (AC). As one of the most effective ana-
lyzing sequences of vectors statistical tools, the AC has been
widely used in protein family classification by researchers
[43, 44], prediction of secondary structure content [45, 46],
and protein interaction prediction [9]. AC is a variable
expressed in a given protein sequence of two residues’ average
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correlation, which can be calculated by

AC (𝜆, 𝑙𝑔) = 1

𝐿 − 𝑙𝑔

𝐿−𝑙𝑔

∑

𝜆=1

(𝑀
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−

1

𝐿
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∑
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𝑀
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)

⋅ (𝑀

(𝜆+𝑙𝑔),𝜃
−

1

𝐿

𝐿

∑

𝜆=1

𝑀

𝜆,𝜃
) ,

(2)

where 𝑙𝑔 is the distance between residues,𝜆 represents the𝜆th
amino acid, 𝐿 denotes the length of the protein sequence, and
𝑀

𝜆,𝜃
indicates the matrix score of amino acid 𝜆 at position 𝜃.

Using the above expression, the value of AC variable𝑀
can be figured out: 𝑀 = 𝑙𝑔 × 𝑁, where 𝑁 is the number
of descriptors. When all the data in the database complete
the operation, each protein sequence was represented as a
vector of AC variables; a protein pair was characterized by
concatenating the vectors of two proteins in this protein pair.

2.4. Rotation Forest Classifier. Rotation Forest (RF) is a
popular ensemble classifier and this idea originated from
Random Forests classifier. Each decision tree in Rotation
Forest is trained on the dataset in a rotated feature space. As a
decision tree learning algorithm establishes the classification
regions using hyperplanes parallel to the feature axes and a
small rotation of axes may build an entirely different tree,
the diversity of RF can be guaranteed by the transformation.
Thus, RF model can enhance the accuracy for individual
classifier and the diversity in the ensemble at the same
time. It is more robust compared to the previously proposed
ensemble systems, such as Random Forest [32, 47], Bagging
[33, 48], and Boosting [49]. The RF algorithm is described as
follows.

Assuming {𝑥
𝑖
, 𝑦

𝑖
} contains 𝑁 training samples, wherein

𝑥

𝑖
= (𝑥

𝑖1
, 𝑥

𝑖2
, . . . , 𝑥

𝑖𝐷
) is a 𝐷-dimensional feature vector.

Suppose that𝑋 is the training sample set (𝑛×𝐷matrix), which
is composed of 𝑛 observation feature vector composition; 𝑆
denote the feature set, and𝑌 denote the corresponding labels,
and then𝑋 = (𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑛
)

𝑇,𝑌 = (𝑦
1
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2
, . . . , 𝑦

𝑛
)

𝑇. Assume
a feature set with an appropriate factor randomly divided into
𝐾 subsets of the same size; in this case, the decision trees 𝐿 in
the forest can be expressed as 𝑇

1
, 𝑇

2
, . . . , 𝑇

𝐿
, respectively. The

execution steps of the training set for a single classifier 𝑇
𝑖
are

shown below:

(1) Select the appropriate parameter 𝐾 which is a factor
of 𝑛; let 𝑆 be randomly divided into 𝐾 parts of the
disjoint subsets; each subset contains a number of
features, 𝐶 = 𝑛/𝑘.

(2) From the training dataset𝑋, select the corresponding
columnof the feature in the subset𝑇

𝑖,𝑗
and form a new

matrix 𝑋
𝑖,𝑗
, followed by a bootstrap subset of objects

extracting 75 percent of𝑋 constituting a new training
set𝑋󸀠
𝑖,𝑗
.

(3) Matrix 𝑋󸀠
𝑖,𝑗

is used as the feature transform for
producing the coefficients in a matrix𝑀

𝑖,𝑗
, with 𝑗th

column coefficient as the characteristic 𝑗th compo-
nent.

(4) The coefficients obtained in the matrix 𝑀
𝑖,𝑗

are
constructed as a sparse rotation matrix 𝑅

𝑖
, which is

expressed as follows:

𝑅

𝑖
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]

]

]
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]

.

(3)

In the prediction period, the test sample 𝑥, generated by
the classifier 𝑇

𝑖
of 𝑑
𝑖,𝑗
(𝑋𝑅

𝜆

𝑖
) to determine 𝑥, belongs to class

𝑦

𝑖
. Next, the class of confidence is calculated by means of the

average combination, and the formula is as follows:

𝜇

𝑗 (
𝑥) =

1

𝐿

𝐿

∑

𝑖=1

𝑑

𝑖,𝑗
(𝑋𝑅

𝜆

𝑖
) . (4)

Then, assign the category with the largest 𝜇
𝑗
(𝑥) value to

𝑥.

3. Results and Discussions

3.1. Evaluation Measures. In this section, 5-fold cross-
validation is used to evaluate the performance of the pro-
posed method, in which all samples are split into five subsets.
Therefore, one subset is the test set and the remaining four
subsets are the training set. Evaluation criteria used in our
study include overall prediction accuracy (Accu.), sensitivity
(Sen.), precision (Prec.), andMatthews correlation coefficient
(MCC). The calculation formulas are listed below:

Accu. = TP + TN
TP + TN + FP + FN

Sen. = TP
TP + FN

Prec. = TP
TP + FP

MCC

=

TP × TN − FP × FN
√(TP + FP) (TP + FN) (TN + FP) (TN + FN)

,

(5)

where True Positive (TP) represents the number of samples
that are correctly detected as positive, True Negative (TN)
represents the number of samples that are correctly detected
as negative, False Positive (FP) represents the number of
samples that are incorrectly detected as positive, and False
Negative (FN) represents the number of samples that are
incorrectly detected as negative. We also produce Receiver
Operating Characteristic (ROC) [50] curves to assess the
capability of the classifier. Typically, the threshold value of the
classifier is 0.5 by default.When a new set of prediction results
is accepted, the threshold value will be changed with the True
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Figure 1: The workflow of our method.

Positive Rate versus the False Positive Rate; this change can be
drawn out with graphics. In addition, the AreaUnder a Curve
(AUC), with score ranges from 0 to 1, can also be expressed by
the ROC curve.When a predictor of the AUC value is greater
than another predictor, this predictor is regarded as a better
one. The workflow of our method is shown in Figure 1.

3.2. Assessment of Prediction Ability. In order to achieve
better results in the experiment, we used the grid search
method to explore the parameters of the proposed model;
concrete has parameter 𝑙𝑔 for AC and parameters 𝐾 and 𝐿
value for RF. Firstly, we discuss the parameters of AC; the
maximal possible 𝑙𝑔 is the shortest sequence length (50 amino
acids) on the Yeast dataset. In this experiment, several 𝑙𝑔s
(𝑙𝑔 = 5, 10, 15, 20, 25, 30, 35, 40, 45) were evaluated in order
to achieve the best performance of the protein sequences.
The prediction results were shown in Figure 2. As seen from
the curve in the graph, the prediction accuracy gradually
increases when the parameters 𝑙𝑔 of the AC algorithm change
from 5 to 40, and it decreases when the 𝑙𝑔 value changes
from 40 to 45.There is a peak point with an average accuracy
of 95.86% when the value of 𝑙𝑔 was 40. We can draw a
conclusion; when the parameters 𝑙𝑔 of the AC algorithm
are less than 40 or the number of amino acids is less than
40, protein sequences will lose some useful information, but
larger 𝑙𝑔 may introduce noise rather than improvnig the
performance of the model. So we set the value of 𝑙𝑔 as 40.

Secondly, we discuss the parameters of the RF. Based on
previous studies, we chose PCAasRotation Forest conversion
method. Additionally, the J48 decision treewas selected as the
base classifier from the WEKA database. In this experiment,
two parameters (the number of feature subsets 𝐾 and the
number of decision trees 𝐿) were tested by the grid search
method in the range of values to achieve better performance.
Figure 3 shows the prediction results of different parameters.
We can see that accuracy fluctuates at the beginning and then
is slowly enhanced with the increase of 𝐿, but it seems to
be not closely related to the increase of 𝐾. Considering the
accuracy rate and the time cost of the algorithm, as a result,
we obtained optimal parameters of𝐾 = 20 and 𝐿 = 3. For the
H. pylori dataset, we use the AC to extract features and RF
validation with the same parameters with the Yeast dataset.

The 5-fold cross-validation method was introduced to
reduce the dependence of the data on the prediction model
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Figure 2: The average prediction accuracy corresponding to differ-
ent 𝑙𝑔 of the AC algorithm in the proposed model.

Table 1: 5-fold cross-validation results obtained by using the
proposed method on Yeast dataset.

Testing set Accu. (%) Prec. (%) Sen. (%) MCC (%)
1 97.59 100.00 95.14 95.28
2 97.54 100.00 95.03 95.19
3 98.17 100.00 96.40 96.40
4 97.59 100.00 95.01 95.27
5 97.99 99.82 96.27 96.06
Average 97.77 ± 0.29 99.96 ± 0.08 95.57 ± 0.70 95.64 ± 0.55

[51–55]. Table 1 lists all of the prediction results; the pre-
diction accuracies were greater than 97.54%, the precisions
were greater than 99.82%, and the sensitivities were greater
than 95.01%. Our proposed method can yield an average
prediction accuracy of 97.77 ± 0.29%. The ROC curves
performed on Yeast dataset were shown in Figure 4. In this
figure, 𝑥-ray depicts False Positive Rate (FPR) while 𝑦-ray
depicts True Positive Rate (TPR).

3.3. Comparison with the Proposed Method on H. pylori
Dataset. For analyzing the ability of the proposed method
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Table 2: 5-fold cross-validation results obtained by using the
proposed method on H. pylori dataset.

Testing set Accu. (%) Prec. (%) Sen. (%) MCC (%)
1 85.76 87.45 82.87 75.52
2 83.53 82.65 84.38 72.49
3 86.11 87.55 83.57 76.02
4 81.99 83.27 79.51 70.42
5 86.82 90.88 83.55 77.06
Average 84.84 ± 2.01 86.36 ± 3.40 82.77 ± 1.90 74.30 ± 2.76

0 10 20 30 40 50 60
010203040

50
92
94
96
98

100

Ac
cu

ra
cy

 (%
)

0.93
0.94
0.95
0.96
0.97
0.98
0.99

300

K

L

Figure 3: Accuracy surface obtained from Rotation Forest for
optimizing regularization parameters 𝐾 and 𝐿.

to predict PPIs, we tested its ability in different dataset. We
used the proposed method to predict interactions on the
H. pylori dataset. A total of 2916 proteins were included in
this database, half of which were interacting pairs and the
other half were noninteracting pairs. Our prediction results
were shown in Table 2. We can see an accuracy, precision,
sensitivity, andMCC of 84.84%, 86.36%, 82.77%, and 74.30%,
respectively. The ROC curves performed onH. pylori dataset
were shown in Figure 5.

3.4. Comparison with Previous Method. In order to more
clearly assess the proposed method, we compared its results
with the previous models on the Yeast dataset. As a classic
classification algorithm, Support Vector Machine has a very
superior performance in identifying interacting and nonin-
teracting protein pairs. For example, Guo et al. [9] proposed
a new method with Support Vector Machine combined with
Autocovariance to predict Protein-Protein Interactions in
Yeast dataset, and the results have proven its ability. Specif-
ically, we use the same feature extraction method (AC) com-
bined with PSSMs to compare the classification performance
between Rotation Forest and SVM in the same dataset. We
use grid searchmethod to optimize the parameters of Support
Vector Machine and set 𝑐 = 0.5 and 𝑔 = 0.6, respectively.
The LIBSVM tools we adopted can be downloaded from
https://www.csie.ntu.edu.tw/∼cjlin/libsvm/. As can be seen
from Table 3, when using SVM to predict PPIs of Yeast
dataset, we obtained excellent results with the accuracy,
precision, sensitivity, and MCC of 95.86%, 96.46%, 95.21%,
and 92.06%, respectively. Most of the SVM based methods
produce average standard values that were lower than our
method on Yeast dataset.
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Figure 4: ROC curves performed by the proposed method on Yeast
PPIs dataset.
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Figure 5: ROC curves performed by the proposed method on H.
pylori dataset.

In addition, we also compared the other existingmethods
on the Yeast andH. pylori datasets. Table 3 shows the average
results of the other six methods in the Yeast dataset; we can
see that the accuracy results obtained by these methods are
between 75.08% and 89.33%.The average accuracy, precision,
sensitivity, and MCC values of these methods are lower than
those of our method, which are 97.77%, 99.96%, 95.57%, and
95.64%, respectively. Table 4 shows the average predictive
values of the six kinds ofmethods on theH. pylori dataset.We
can see that the accuracy values obtained by these methods
are between 75.80% and 87.50%, and the accuracy value of our
proposed method is 84.84%, which also performs well in it.

3.5. Performance on Independent Dataset. Having achieved
reasonably good results on the Yeast dataset and the H.
pylori dataset, we decided to test the proposed method’s
performance on independent datasets. We built our final
prediction model using all 11188 pairs of Yeast dataset as
the training set with the parameters obtained by the grid
search method; the value of 𝑙𝑔 is 40 in AC, the value of 𝐾
is 20, and 𝐿 is 3 in RF. The feature vector uses the feature



6 BioMed Research International

Table 3: Different methods on Yeast dataset performance comparison.

Model Test set Accu. (%) Prec. (%) Sen. (%) MCC (%)

Guo et al.’s work [9] ACC 89.33 ± 2.67 88.87 ± 6.16 89.93 ± 3.68 N/A
AC 87.36 ± 1.38 87.82 ± 4.33 87.30 ± 4.68 N/A

You et al.’s work [25] PCA-EELM 87.00 ± 0.29 87.59 ± 0.32 86.15 ± 0.43 77.36 ± 0.44

Yang et al.’s work [56]

Cod1 75.08 ± 1.13 74.75 ± 1.23 75.81 ± 1.20 N/A
Cod2 80.04 ± 1.06 82.17 ± 1.35 76.77 ± 0.69 N/A
Cod3 80.41 ± 0.47 81.86 ± 0.99 78.14 ± 0.90 N/A
Cod4 86.15 ± 1.17 90.24 ± 0.45 81.03 ± 1.74 N/A

Zhou et al.’s work [57] SVM + LD 88.56 ± 0.33 89.50 ± 0.60 87.37 ± 0.22 77.15 ± 0.68

Our method SVM + PSSM 95.86 ± 0.34 96.46 ± 0.50 95.21 ± 0.70 92.06 ± 0.62
RF + PSSM 97.77 ± 0.29 99.96 ± 0.08 95.57 ± 0.70 95.64 ± 0.55

Table 4: Different methods on H. pylori dataset performance comparison.

Model Accu. (%) Prec. (%) Sen. (%) MCC (%)
Phylogenetic bootstrap [35] 75.80 80.20 69.80 N/A
HKNN [36] 84.00 84.00 86.00 N/A
Ensemble of HKNN [37] 86.60 85.00 86.70 N/A
Signature products [26] 83.40 85.70 79.90 N/A
Boosting [38] 79.52 81.69 80.37 70.64
Ensemble ELM [25] 87.50 86.15 88.95 78.13
Our method 84.84 86.36 82.77 74.30

Table 5: Prediction results in independent datasets.

Species Test pairs Accu. (%)
C. elegans 4013 96.01
E. coli 6954 97.73
H. sapiens 1412 98.30
M. musculus 313 96.81

extraction method (AC) based on the PSSMs to extract from
the four datasets as RF test input. Independent test dataset is
composed of the four databases (C. elegans, E. coli,H. sapiens,
and M. musculus) collected in DIP database. The results of
our model are listed in Table 5; the prediction accuracies on
C. elegans, E. coli, H. sapiens, and M. musculus are 96.01%,
97.73%, 98.30%, and 96.81%, respectively. Those results show
the excellent performance of our approach in predicting the
accuracy of the interactions of other species.

4. Conclusions

In this study, a stable and robust computationalmethod based
on the features extracted from PSSM has been proposed
to predict PPIs. It is known that the main computational
challenge for sequence-based methods for predicting PPIs
is to find a suitable feature representation to fully describe
the important information of protein interactions. To solve
this problem, we here firstly extracted the features from the

Position-Specific Scoring Matrices (PSSMs) using Autoco-
variance (AC) method. Then, Rotation Forest (RF) model is
employed as a novel and accurate classifier for PPIs prediction
with better performance than state-of-the-art SVM classifier.
In order to evaluate the performance of the proposedmethod,
five PPIs datasets, that is, C. elegans, E. coli, H. pylori, H.
sapiens, and M. musculus, have been used to perform the
comparisons. As expected, the experiments results showed
that the proposed method performs better than the other
methods. Consequently, the proposed approach can be con-
sidered as a powerful tool for predicting PPI.
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